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1. Introduction

In this work we present a brief introduction to hierarchical bases, and the
important part they play in contemporary finite element calculations. In
particular, we examine their role in a posteriori error estimation, and in the
formulation of iterative methods for solving the large sparse sets of linear
equations arising from finite element discretization.

Our goal is that the development should be largely self-contained, but at
the same time accessible and interesting to a broad range of mathematicians
and engineers. We focus on the simple model problem of a self-adjoint, pos-
itive definite, elliptic equation. For this simple problem, the usefulness of
hierarchical bases is already readily apparent, but we are able to avoid some
of the more complicated technical hurdles that arise in the analysis of more
general situations.

A posteriori error estimates play an important role in two related aspects

* The work of this author was supported by the Office of Naval Research under contract
N00014-89J-1440.



2 R. E. BANK

of finite element calculations. First, such estimates provide the user of a fi-
nite element code with valuable information about the overall accuracy and
reliability of the calculation. Second, since most a posteriori error estim-
ates are computed locally, they also contain significant information about the
distribution of error among individual elements, which can form the basis
of adaptive procedures such as local mesh refinement. Space considerations
prevent us from exploring these two topics in depth, and we will limit our
discussion here to the error estimation procedure itself.

Hierarchical basis iterative methods have enjoyed a fair degree of pop-
ularity as elliptic solvers. These methods are closely related to the classical
multigrid V-cycle and the BPX methods. Hierarchical basis methods typic-
ally have a growth in condition number of order k2, where k is the number
of levels*. This is in contrast to multigrid and BPX methods, where the
generalized condition number is usually bounded independent of the number
of unknowns. Although the rate of convergence is less than optimal, hier-
archical basis methods offer several important advantages. First, classical
multigrid methods require a sequence of subspaces of geometrically increas-
ing dimension, having work estimates per cycle proportional to the number
of unknowns. Such a sequence is sometimes difficult to achieve if adaptive
local mesh refinement is used. Hierarchical basis methods, on the other hand,
require work per cycle proportional to the number of unknowns for any distri-
bution of unknowns among levels. Second, the analysis of classical multigrid
methods often relies on global properties of the mesh and solution (e.g. quasi-
uniformity of the meshes, H? regularity of the solution), whereas analysis of
hierarchical basis methods relies mainly on local properties of the mesh (e.g.
shape regularity of the triangulation). This yields a method which is very
robust over a broad range of problems.

Our analysis of a posteriori error estimates and hierarchical basis iterative
methods is based on so-called strengthened Cauchy—Schwartz inequalities.
The basic inequality for two levels, along with some other important prop-
erties of the hierarchical basis decomposition, is presented in Section 3. In
Section 4 we use these results to analyse a posteriori error estimates, while
in Section 5 we analyse basic two-level iterative methods. In Section 6, we
develop a suite of strengthened Cauchy—Schwartz inequalities for k-level hier-
archical decompositions, which are then used in Section 7 to analyse multi-
level hierarchical basis iterations.

Notation is often a matter of personal preference and provokes considerable
debate. We have chosen to use a mixture of the function space notation typical
in the mathematical analysis of finite element methods, and matrix-vector
notation, which is often most useful when considering questions of practical

* This result is for two space dimensions. For three space dimensions the growth is much
faster, like N'/3, where N is the number of unknowns.



HIERARCHICAL BASES AND THE FINITE ELEMENT METHOD 3

implementation. We switch freely and frequently between these two types
of notation, using that which we believe affords the clearest statement of a
particular result. Some important results are presented using both types of
notation.

2. Preliminaries

For background on finite element discretizations, we refer the reader to Aziz
and Babuska (1972), Brenner and Scott (1994), and Ciarlet (1980). For
simplicity, we will consider the solution of the self-adjoint elliptic partial dif-
ferential equation

—~V(aVu)+bu=f (2.1)

in a polygonal region  C R2, with the homogeneous Neumann boundary
conditions

Vu-n=0 (2.2)

on 0L, where n is the outward pointing unit normal. Most of our results
apply with small modification to the case of Dirichlet boundary conditions
u = 0 on 9N. We assume that a(zx), b(z) are smooth functions satisfying
0<a<a(z)<aand 0 < b <b(x) <bfor x € Q. The requirement that
b > 0 rather than b > 0 is mainly for convenience.

The £2(£) inner product (-,-) is defined by

(u,v) = /qu dz

and the corresponding norm
ol = (u,w) = [ w* da.
Q
Let H = H!(Q) denote the usual Sobolev space equipped with the norm
Julf = IVl + ul = | |Vu o da,

where | - | denotes the Euclidean norm on R?. The energy inner product a(-, -)
is defined by

a{u,v) :/ aVutVy + buv dr, (2.3)

Q

for u,v € H. For u € H, we define the energy norm ||u| by
lull® = a(u,w).

This norm is comparable to the H! norm in the sense that there exist positive
constants ¢; and ¢z, depending on a and b, such that

ciflull < flully < czfjul).
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The weak form of the elliptic boundary value problem (2.1)-(2.2) is as
follows: find u € ‘H such that

a(u,v) = (f,v) (2.4)

for all v € H.

Let 7 be a triangulation of the region Q2. While the results presented
here do not depend on the uniformity or quasiuniformity of the triangulation,
many of the constants depend on the shape regularity of the mesh. Let h,
denote the diameter of triangle t € 7, and let d; denote the diameter of the
inscribed circle for t. We assume there exists a positive constant 6y such that

hbo < dy (2.5)

for all t € T. Later, when we consider sequences or families of triangula-
tions, the constant dg will be assumed to be uniform over all triangulations
considered. While a shape regularity condition like (2.5) does not imply a
globally quasiuniform triangulation, it does imply a local quasiuniformity for
the mesh.

Many of the constants in our estimates depend only on the local variation
of the functions a and b; thus we define

maxges a{T) maxzet b(x)

0 el N4 Ao e
The fact that our estimates have only a local dependence on the coefficients
can be very important in practice. For example, suppose a is piecewise
constant, varying by orders of magnitude over the region Q. If the jumps
in a are aligned with edges of the triangulation, then our estimates will be
independent of a (ap = 1), irrespective of the magnitudes of the jumps.

Let M be an N-dimensional finite element subspace of H, consisting of
continuous piecewise polynomials with respect to the triangulation 7. We
will be more specific about requirements for M later. The finite element
approximation up € M satisfies

a(up,v) = (f,v) (2.6)

for all v € M. From (2.4) and (2.6), it is easy to see that the finite element
solution is the best approzimation of u with respect to the energy norm

—upf = inf Jlu—v.
lu—unll = inf Jlu~v]

Let ¢; 1 <i < N be a basis for M. Then (2.6) can be transformed to the
linear system of equations

AU=F (2.7)
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where
N
Aij =a(¢5,¢:), Fi=(f¢i), and wu,=)» Ui
i=1

The matrix A is typically large, sparse, symmetric, and positive definite.
We note that

lzll% = oAz = Ix|I?,

where
N
X=_ Tids
i=1

Thus the A-norm of a vector in RY is equivalent to the energy norm of the
corresponding finite element function.

At the computational level, many aspects of implementation of the finite ele-
ment method are carried out on an elementwise basis. For example, the stiff-
ness matriz A is typically computed as the sum of element stiffness matrices,
in which integration is restricted to a single element ¢ € 7. The element
stiffness matrix is usually computed by first mapping t to a fixed reference
element t,., and then computing the relevant integrals on the reference ele-
ment. Because such mappings play an important role in our analysis, we
begin by considering them in some detail.

Let S denote the set of triangles ¢t satisfying hy = 1, é9 < di/h; and one
vertex at the origin. Roughly speaking, the set S characterizes all shape
regular triangles of diameter one. We will denote a particular triangle ¢, € S
as the reference triangle. The reference triangle ¢, can be mapped to any other
triangle t € S using a simple linear transformation (which can be represented
as a 2 x 2 matrix). Shape regularity of the triangles in S implies that such
transformations are well conditioned, with condition numbers depending only
on the constant &g.

Let A denote the set of linear transformations mapping the reference tri-
angle t, to t € §. Since the triangles in the triangulation 7 are all shape
regular, any triangle £ € 7 can be generated by a simple scaling and trans-
lation of an element ¢ € S. Thus the reference element ¢, can be mapped to
t using a linear transformation from the set A followed by a simple scaling
and translation.

We now suppose that the finite element space M has the direct sum hier-
archical decomposition M = V @& W. Thus for u € M we have the unique
decomposition © = v + w, where v € V and w € W. Let V; and W, denote
the restrictions of V and W to each triangle t € T, and write u; = v + wy.
Often, V; and W, will be polynomial spaces (as opposed to piecewise poly-
nomial spaces), being restricted to a single element. Let V. and W, denote
reference spaces of polynomials defined with respect to the reference triangle
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tr. We require that the finite element space M =V @ W satisfy the following
assumptions for all t € T:

A1l. If uy = ¢ is constant then wy = 0 and v; = c.

A2. The mapping from £, to t, consisting of a linear mapping from A followed
by simple scaling and translation, induces maps from V, onto V; and W,
onto Wj.

These conditions are very weak and are satisfied by many common finite
element spaces, although sometimes with a nonstandard choice of basis func-
tions. For example, consider the spaces of continuous piecewise polynomials
of degree p > 1. For this choice, we let ¥ be the space of continuous piecewise
linear polynomials and W be the space of piecewise polynomials of degree p
which are zero at the vertices of the triangulation 7. A basis for V is just the
usual nodal basis for the space of continuous piecewise linear polynomials.
A basis for W consists of all the nodal basis functions for the continuous
piecewise polynomials of degree p except those associated with the triangle
vertices. For example, for p = 2, W consists of the span of the quadratic
‘bump functions’ associated with edge midpoints in the triangulation. This
is called the hierarchical basis for the piecewise quadratic polynomial space,
in contrast to the usual nodal basis, and is often employed in practice in
the p-version of the finite element method. It is typically the case that the
dimension of the space W is larger than that of V. In this example, the space
V has a dimension of approximately N/p?, or about dim M/4 for the case
p = 2, and an increasingly smaller fraction as p increases.

We now consider a decomposition of the form M =V @& W for the case
of continuous piecewise linear polynomials. In this case, we imagine that
the triangulation 7 = 7f, which we will call the fine grid, arose from the
refinement of a coarse grid triangulation 7;. For example, we can consider
the case of uniform refinement, in which each triangle t € 7. is refined into
four similar triangles in 7 by pairwise connecting the midpoints of the edges
of t. In this case the space V = M, is just the space of continuous piecewise
linear polynomials associated with the coarse mesh, while W consists of the
span of the fine grid nodal basis functions associated with vertices in 7 which
are not in 7;. If uniform refinement is used, then the space V has a dimension
of approximately N/4 while the dimension of W will be approximately 3N/4.
For iterative methods, it is important in practice that the dimension of the
space V be as small as conveniently possible. In this vein, we note that the
hierarchical decomposition of M can be recursively applied to the space V,
assuming that 7. arose from the refinement of an even coarser triangulation.
This anticipates the k-level iterations discussed in later sections.

Let M =V &W. Let dim V = Ny and dim W = Ny = N — Ny, and
let {#;}7Y, be a basis for V and {¢i} N, 41 be a basis for W. This induces a
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natural block 2 x 2 partitioning of the linear system of (2.7) as
An AlZ][Ul] [Fl]
= 2.8
[ An A Us 2 (28)
where Ay is of order Ny, and Agg is of order Ny .

We note that if the vector U € RY corresponds to the finite element function
u=v+w € M, then

UtAnUL = |3, UbAxnUs = |w||?, and UlApUs; = a(v,w).

3. Fundamental two-level estimates

In this section we develop some of the mathematical properties of the hier-
archical basis. Chief among these properties is the so-called strengthened
Cauchy inequality. One interesting feature of this strengthened Cauchy in-
equality is that it is a local property of the hierarchical basis: that is, it is
true for the hierarchical decomposition corresponding to individual elements
in the mesh as well as on the space as a whole. As a result, the constant in
the strengthened Cauchy inequality does not depend strongly on such things
as global regularity of solutions, the shape of the domain, quasiuniformity of
the mesh, global variation of coefficient functions, and other properties that
typically appear in the mathematical analysis of finite element methods. By
the same reasoning, it is not surprising that the constant in the strengthened
Cauchy inequality does depend on local properties like the shape regularity
of the elements.

Our analysis of the strengthened Cauchy inequality in this section is taken
from Bank and Dupont (1980), but see also Eijkhout and Vassilevski (1991).
We begin our analysis with a preliminary technical lemma.

Lemma 1 Let (+,-) and (-,-) denote two inner products defined on a vector
space X. Let || - || and |- | denote the corresponding norms. Suppose that
there exist positive constants A and A such that

(2,2)
(2,2)

for all nonzero z € X. For any nonzero z,y € X, let

0<A< <A (3.1)

(z,y) (z,y)
— \"Jd) d = . 2
B el ™ 2l ] (3:2)
Then
1-82>K721-+%) (3.3)

where K = A/
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Proof. Lemma 1 states that if two inner products give rise to norms that are
comparable as in (3.1), then the angles measured by those inner products must
also be comparable. Without loss of generality, we can assume |z| = |y| = 1.
Then from (3.1), we have

1-82 = (1-8)(1+5)

1 x 21 x 2
_ ! ‘ I T o |
||37|| [yl lzll vl
= |z + 8y||*||z — Oy 2
sraelle + 0wz = ou)
)\2
> 1 ||4Iﬂc+9y| |z - 6y/?,

where 8 = ||z||/||y||. Since
|z + 0y|? =1 + 62 + 207,

we have
2
1= 2 {0+ g0 -0
A\262
I A
/\2
= — =  (1—~2
et )
> K2(1—7%).
O

We now state the main Lemma of this section, the strengthened Cauchy
inequality.

Lemma 2 Let M = V@ W satisfy the assumptions Al and A2 above. Then
there exists a number vy = y(ao, Bo, 89, Vr, Wr) € [0,1), such that

la(v, w)] < v |lv|| wl (3.4)
forall v €V and all w € W.

Proof. This proof is done in detail, as many later proofs follow a similar
pattern. The first step is to reduce (3.4) to an element-by-element estimate.
In particular, suppose that for each t € 7,

|a(v, w)e| < ellvllefwlle, (3:5)

where

a(v,w)s = /aVvti + bvw dz
t
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is the restriction of a(-,-) to t, and || - ||¢ is the corresponding norm. Then

Za(v,w)t

t
< |a(U7w)t‘
t

]a(v,w)l =

< S wlivllelwlle

t

1/2 1/2
<~ (Z nlvm%) (Z mwm?)
t t
= 7l wl,
where
WZTtI}E%K’Yt-

Thus, if we can show (3.5), then (3.4) follows.
To prove (3.5), we derive the pair of inequalities
la(v,w)iel < mllolydlwlle (3.6)
la(v, w)oel < youllvlloelwllos, (3.7)
where
a(v,w)1t = /taVvti dz, a(v,w)os = /tbv'w dzx,
and || - J|s¢, ¢ = 0,1, are the corresponding seminorms. If (3.6)—(3.7) hold,
then for
Ve = max(Yo,, V1,t)5
we have
a(v,w)? = (a(v,w)oy + a(v,w)14)?
7% Ullodhwlos + vl w]ie)?
7 (ol + o3 ) (el + Bl
velllFwii?.

We now restrict attention to (3.6); the proof of (3.7) follows a similar
pattern. We note that | ||1 + defines a strong norm of W;, but only a seminorm
on V;, since V; contains the constant function, and ||c||1; = 0 for any constant
c. Tt is sufficient to show (3.6) only for the subspace V; = {v € V4| f,v dz =
0}, whose elements have average value zero. For any v € V; let ¢ = [, v dz,
and note v — ¢ € ]}t. Then

IN

IN

Il

a(v,w)ig =a(v—-cw)iy and a(v,v)ir=alv—cv—c)it
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for any w € W;. Thus we need show (3.6) only for v € V, and w € W, and
note that || - |1+ is a strong norm on the space V; @ W;.

A simple homogeneity argument now shows that ;¢ does not depend on
the size of the element hy. Making the change of variable

r — X0
he

where z¢ is any vertex of ¢, (3.6) becomes

1/2 1/2
<t (/falvmz dﬁ:) (/{a\vwﬁ d:Ic) , (3.8)

where £ € S is the image of ¢ under the change of variables, () = v(z),
w(z) = w(z), and 4(Z) = a(x). In view of (3.8), we can restrict our attention
to the set of triangles &, the set of linear mappings A, and the reference
spaces Vr and W,.

Let J € A be the linear mapping that takes the reference triangle ¢, to .

Then we have

ﬂ AV di — |det J| / (I V) (T di. (3.9)
t tr

T =

/ AVl di
t

The right-hand side of (3.9) defines an inner product on the reference triangle
tr. A second inner product is given by the right-hand side of (3.9) witha =1
and J =1

(v,w) = [ Vu'Vw dz.

tr

Since t € S, there is a positive constant C = C (6o) such that, for all
z €V, W,y
_y _ |det J| f, a|lJ7tVz|* di

uC [, V3] dz =

Cay. (3.10)

Here g; < a < a; for x € t, and l}r = {UGVT|ftrvd:fc:0 . Lemma 1 now
tells us that angles measured by these two inner products are comparable.

The last step of the proof is to note that for v € f)r and w € W,;, there
exists v, = ¥ (Vr, W;), 0 < 7, < 1 for which

1/2 1/2
<y ( Vo2 dfc) (/ | Vw|? di:) ‘ (3.11)
tr tr

Estimate (3.11) is true because V, and W, are linearly independent sub-
spaces, so there must be a nonzero angle between them. Through the use
of Lemma 1, it follows that 0 < < ;(ap, 80, Vr, Wr) < 1. The estimate
0 < 7v,t(Bo, 00, Vry, W) < 1 follows by similar reasoning, except that the
reduction to V; is unnecessary. O

VolVw dz

tr




HIERARCHICAL BASES AND THE FINITE ELEMENT METHOD 11

Analysis of methods employing hierarchical bases is often framed in terms
of bounds of certain interpolation operators between fine and coarse spaces.
See for example Borneman and Yserentant (1993), Bramble (1993) Oswald
(1994), Xu (1989) and (1992), and Yserentant (1992). In the present context,
the fine space is M while the coarse space is V. The following lemma shows
that this approach is entirely equivalent to the use of strengthened Cauchy
inequalities.

Lemma 3 Suppose M = VHW, and let I denote the interpolation operator
defined as follows: if u = v+w € M, v € V, and w € W, then Z(u) = v.
Then

IZ(w)l < Cliull (3.12)
if and only if
|a(v, w)| < v|Jvll flw]| (3.13)
fory<landforallv eV and we W.

Proof. First, we assume (3.13) in order to prove (3.12). Let u = v + w,
vEV, weW. Then
lul> = a(v+w,v+w)
= [l + Jlwll® + 2a(v, w)
ol + il = 2yfjol fuwl)
(1=l

(A\VARAY

Therefore
IZ(u)l < (1~ %)~ 2 ]ul).

Now we assume (3.12) to show (3.13). It suffices to take [|v|| = |Jw| = 1.
Then, from (3.12)

o —wll > Lol = &
Thus,
. 1 2 2 2 1
a(w,w) = 3 (Il + ol ~ o — wll?) < 1- o=
O

The last result in this section is related to the space W. The functions in
W are necessarily quite oscillatory, since by assumption V contains local con-
stants. Indeed, typically V contains the larger space of local linear functions,
although it has not been necessary to assume this. The solution of equations
using the space W should be quite simple, because on such an oscillatory
space, an elliptic differential operator behaves very much like a large multiple
of the identity.
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To make this more precise, suppose that there is a basis for the reference
space W, whose elements are mapped onto the computational basis functions
{@};V:Tl for Wi by the affine mapping of ¢, onto t. This is a very natural
assumption for the case of nodal finite elements, and is typically exploited
in practical computations in algorithms for the assembly of the stiffness mat-
rix and the right-hand side. With this additional assumption, we have the
following lemma.

Lemma 4 Suppose {¢; };V:"‘l’ is the basis for W and let

Ny

w=Y_ w;d;(z,y).

Jj=1

Then there exist finite positive constants y and fi, depending only on «ag, B,
and &g, such that

Nwy
pllwll? <3 wiliésl < allwll? (3.14)
Jj=1

Proof. The proof follows the pattern of Lemma 2, so we will provide only a
short sketch here. One first shows it is sufficient to prove

Nr

p ol < Y- williE < fe llwllf,
=1

and set p = ming g, and i = max; fiy. (We have been a bit sloppy in our use
of subscripts on w; and ¢; in order to avoid more complicated notation.) We
then reduce this to showing the pair of inequalities

Nr

00 < D willojllhe < fog wl
=1

to , 1wl 5.6

and
N,

T <> willesl

Jj=1

el 2 < fine Rl

with Et = min{HO,t’Hl,t} and e = max{ﬁo,h ﬂl,t}'
A change of variable as in (3.8), mapping t € 7 to an element € S, proves

that p and fi are independent of h;. Finally, changing variables as in (3.9)
and using equivalence of norms as in (3.10)-(3.11) yields the result. O

We now apply Lemmas 2 and 4 to several finite element spaces having
hierarchical decompositions. Much of our analysis of these examples comes
from the work of Maitre and Musy (1982); see also Braess (1981). In these
examples, we will compute the constants 7y, ¢, By g and fi1 ¢ for the case a = 1,
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illustrating the effect of shape regularity on the estimates. Let £ be a triangle

with vertices v;, edges €;, and angles 8;, 1 < i < 3,

V3 V3

A ﬁ
€2 €1 €2 €1
01 02 01 ' 02

—@
1 €3 120} 121 €3 1 %]

Fig. 1. Quadratic element (left) and piecewise linear element (right).

In our first example, we consider the space of continuous piecewise quad-
ratic finite elements, illustrated on the left in Figure 1. Let ¢; 1 < 7 < 3
denote the linear basis functions for t. Then V; = (¢;)3_,. The space W is
composed of the quadratic bump functions Wy = (¥;)3_,, where v; = 46, %,
and (7, j,k) is a cyclic permutation of (1,2, 3).

In the second example, we consider the space of continuous piecewise linear
polynomials on a refined mesh, illustrated in Figure 1 on the right. Here V4
contains the linear polynomials on the coarse mesh element t; V; = (¢;)3_1,
with ¢; defined as in the first example. The space W contains the continuous
piecewise polynomials on the fine grid that are zero at the vertices of t. Thus
W, = (qgi)f’zl, where @ is the standard nodal piecewise linear basis function
associated with the midpoint of edge ¢; of triangle ¢.

By direct computation, we establish the relation

1 1
—|t|V¢§V¢k =3 cot8; = §Li.

Let
Lo+ L3 —L3 —Lo
A= —L3 Ls+ 1Ly L4 , (3.15)
—Lo —In Ly + Ly
and
Ly 0 0
D=j| 0 Ly 0 |. (3.16)
0 0 Ljs

Then the element stiffness matrix for the quadratic hierarchical basis can
be shown to be
A/2 —2A/3

Mg = —2A/3 4A+D)/3 |

(3.17)
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We know that

Nt = max{a(v,w): o] = flw]l =1}
= max{2z'Ay/3: 2'Az = 2, y'(A+ D)y = 3/4}.

Standard algebraic manipulations yield

2
'7%,t = 5(1 — Amin),
where Apin is the smallest eigenvalue of the generalized eigenvalue problem
Dz = AM(A+ D)z. (3.18)

By direct computation and the use of various trigonometric identities, in
particular Ly1Ls + LoLs + L3L, = 1, we can compute

det{D —MA+ D)} =2(p—3s)\> +3(s —p)A\®> —sA+p =0,
where
p = LiloLs,
s = Li+ Lo+ Ls.
The corresponding eigenvalues are A = 1 and A = (1 £ v/4c — 3)/4, where
¢ = cos? 01 + cos? 0y + cos? 63,

and

p_ l-—c
s 3—c¢

Thus
2 _ 3 + V 40 - 3
Tt = ——6 .

For the second example, the element stiffness matrix for the piecewise linear
hierarchical basis is given by

(3.19)

142 -4
ML_[—A A+D]'

We see that repeating the arguments for the first example leads to the same
values for 77 ¢ but scaled by v/3/2, that is

9 3++vV4c—3
Tt = —8—
We now turn to the bounds for p and i of Lemma 4. These may be

expressed in terms of the largest and smallest eigenvalues in the generalized
eigenvalue problem

(3.20)

(3.21)

(A+ D)z = sAz, (3.22)
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so that
det{A+D—sA}=s3(1-)2>3—s(s2-2)(1-)) —2p=0.

One can easily write down the analytic solutions of this cubic equation in
terms of p and s, but there is no major simplification as in the case of vy ;.
The bounds for the case of the piecewise linear hierarchical basis are given
by Byg = Amin and fi1t = Amax. Those for the quadratic case are a simple

scaling by 4/3; By = 4Amin/3 and fi1 s = 4Amax/3-

Fig. 2. The contour map for 1, (left) and for y /i1 (right).

In Figure 2, we have plotted ;1 ; and the ratio k; t_ My, /B1¢ as a function
of 0<O <mand0< O <7m—¥6, withfy =7—6 —’02. For the case of
quadratic elements, the smallest value v;; = 1/ V2 occurs for an equilateral
triangle, while the largest value v1; = 1 occurs for the degenerate cases
0; = 0; = 0,0, = m. For the case of piecewise linear elements, one should
scale all values of v; ¢ by \/§/ 2; for this case 1+ < 1, even in the degenerate
cases.

It is the ratio x = [i/p that plays a central role in our later analysis.
However, we plot the reciprocal to confine the ratio to the interval [0, 1]. Here
the largest value occurs again for the equilateral triangle, where k; 1= /4,
while k; = 0 whenever §; = 0, 1 < ¢ < 3. A special case occurs in the
corners of the domain where the function x; ! is discontinuous. For example,
if one approaches the origin along the edge 61 = 0, then the limiting cubic
equation is (1 — A)® — (1 — A) = 0, with a corresponding Ht_l = 0. However,
if we approach along, say, the line §; = 62 = §, then the limiting cubic is

(2/3 = A)(A2 = TA/3+4/9) =0, and k7; = (7 — V/33)/(7+ V/33) > 0.
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4. A posteriori error estimates

A posteriori error estimates are now widely used in the solution of partial
differential equations. A recent survey of the field is given by Verfiirth (1995),
which contains a good bibliography on the subject. See also Ainsworth and
Oden (1992 and 1993), Babuska and Gui (1986), Babuska and Rheinboldt
(1978a) and (1978b), Bank and Weiser (1985), Weiser (1981), Zienkiewicz
et al. (1982), and the book edited by Babuska et al. (1986). Our discussion
here is motivated by Bank and Smith (1993).

A posteriori error estimates provide useful indications of the accuracy of a
calculation and also provide the basis of adaptive local mesh refinement or
local order refinement schemes. For example, if one has solved a problem for
a given order p, corresponding to a finite element space M, one can enrich
the space to, say, order p + 1 by adding certain hierarchical basis functions
to the set of basis functions already used for M. If M is the new space, then
we have the hierarchical decomposition

M=MaoWw,

where W is the subspace spanned by the additional basis functions.

If we resolve the problem with the space M using the hierarchical basis,
one expects intuitively that the component of the new solution lying in M will
change very little from the previous calculation. Therefore, the component
lying in W should be a good approximation to the error for the solution on
the original space M.

In fact, for our error estimate, we simply solve an (approximate) problem
in the space W rather than M to estimate the error. Let @, € M be the
finite element solution on the enriched space satisfying

a(an,v) = (f,v) (4.1)

for all v € M, and
— apl| = inf — |- 4.2
o~ aall = inf o (42)

Although we don’t explicitly compute %y, it enters into our theoretical
analysis of the a posteriori error estimate for u — up. In particular, we assume
that the approximate solutions %y converge to u more rapidly than up. This
is expressed in terms of the saturation assumption

lu = anll < B llw — uall, (4.3)

where 8 < 1 independent of h. (We note that since M C M, 8 < 1 is insured
by the best approximation property.) In a typical situation, due to the higher
degree of approximation for the space M, one can anticipate that 3 = O(h"),
for some r > 0. In this case, § — 0 as h — 0, which is stronger than required
by our theorems.
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We seek to approximate the error u — up in the space W. Our first a
posteriori error estimator e, € W is defined by

alen,v) = (f,v) — a{up,v) (4.4)

for all v € W.
To express this using matrix notation, we consider the linear system of
equations corresponding to (4.1), expressed in terms of the hierarchical basis

An A12]{U1} [ﬂ}
- = . 4.5
[ Ax A Us F (1.5)
The vector (Uf,U}) corresponds to the function 2 = v+ w € M expanded
in terms of the hierarchical basis, with U; corresponding to v € M and
U corresponding to w € W. In this notation, the linear system solved to

compute up € M is given by A11U; = Fi. If we combine this with the linear
system for ey, corresponding to (4.4), we have

i w5 ][5
= 4.6
{ Az Az Es E | (4.6)
where the vector Es corresponds to e € W.
We begin our analysis by noting the orthogonality relations

a(u — up,v) 0 for all v € M, (4.7)

a(u — @p,v) = 0 for all v € M, (4.8)

a(ty —up,v) = 0 for all v € M, (4.9)

a(u —up —ep,v) = 0 for all v € W, (4.10)
a(tp —up —ep,v) = 0 forallv e W. (4.11)

Equations (4.7)—(4.11) are proved using various combinations of (2.4),
(2.6), (4.1), and (4.4), restricted to the indicated subspaces. We can use
the orthogonality relationships (4.7)-(4.9) to show

lu = unll® = Mu — @nll® + Nun — unll®. (4.12)
Using (4.12) in conjunction with the saturation assumption (4.3) shows
(1= B%)lu ~ wnll® < llan — unll® < u — unll?, (4.13)

demonstrating 4, — up to be a good approximation to the error. However,
our goal is to show the easily computed function e, also yields a good ap-
proximation of the error. This is shown next.

Theorem 1 Let M = M @ W as above and assume (4.3) and Lemma 2
hold. Then

(1= 841 =) lu = unl® < enll® < flu— ua]l®. (4.14)
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Proof. The right inequality in (4.14) is a simple consequence of (4.10) for
the choice v = ep. Now let %y = uy, + €5, where 43, € M, and é, € W. Then,
using (4.9) with v = 4p, — up, and (4.11) with v = é;,, we obtain

lan — unll® = a(tin — un, éx) = alen, én). (4.15)
Combining this with (4.12), we get
lle = unll? = llw — anll® + a(én, en)- (4.16)

To complete the proof, we must estimate ||é|| in terms of ||ep||. We apply
the strengthened Cauchy inequality (3.4) to obtain

lan —unl® > Nan = unl® + Nenll® — 2 llan — unl el
> (1=")]enl* (4.17)

Combine this with (4.15) to obtain
(1 =7*)lexll < llell. (4.18)
Using(4.16) and (4.18), we have

Ju — unll® < Blu — unll? + llerll®.

1— 2
Rearranging this inequality leads directly to the left-hand inequality in (4.14).
a

We note that computing e}, in (4.4) requires the solution of a linear system
involving the matrix Agy in (4.6). This is a rather an expensive calculation,
given that typically the dimension of the space W is much larger than that of
M. Therefore it is of great interest to explore ways in which this calculation
can be made more efficient. In situations where Lemma 4 can be applied,
one possibility is to replace Aga by its diagonal Doy = diagAgs. In finite
element notation, let d(-,-) be the bilinear form corresponding to Dgg. If
w=3) ;wj¢; €W, and 2 = }_; z;¢; € W, and {¢;} are the basis functions

used in Lemma 4, then
w) =Y zjwja(d), ¢;)-
J

We compute an approximation €, € W satisfying

d(én,v) = (f,v) — alun,v). (4.19)

In our proof of Theorem 1, we replace the orthogonality relations (4.10)—(4.11)
with

a(u — up,v) = d(ép,v) forallve W, (4.20)

a{tp — up,v) for all v e W. (4.21)

Il
U
~~
™
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Theorem 2 Let d(-,-) be defined as above, and assume Theorem 1 and
Lemma 4 hold. Then

L= B = ") llu — unl® < Newl® < g~ llu — ). (4.22)

Proof. One can follow the proof of Theorem 1 with small modifications to
show (4.22). However, we will take a more direct approach. From (4.10) and
(4.20), we have

d(én,v) = a(en,v)
for all v € W. Taking v = &, and v = e, and applying Lemma 4, we have

plenl® < lenl® < allenl®.
Combining this with Theorem 1 proves (4.22). O

A second possibility for improving the efficiency of the computation of the a
posteriori error estimate is to use a nonconforming space W of discontinuous
piecewise polynomials to approximate the error. We assume that W C W,
but W ¢ H. The advantage of this approach is that the resulting stiffness
matrix Agg is block diagonal, with each diagonal block corresponding to a
single element. Thus the error can be computed element by element, by
solving a small linear system for each triangle.

To analyse such an error estimator, we need to consider the effect of using
nonconforming elements. First, we consider the continuous problem. Let £
denote the set of interior edges of 7. For each edge e € £, we denote a
fixed unit normal n., chosen arbitrarily from the two possibilities. For w
discontinuous along e, let w4 and wj denote the average and jump of w on e,
the sign of wy being chosen consistently with the choice of n.. Let v € HUW
and u be the solution of (2.4). Then a straightforward calculation shows that

a(u,v) = (f,v) + g(u,v), (4.23)
where
g(u,v) = Z {aVu'n}avy dz, (4.24)
ecEVE
and

a(u,v) = Z a(u, v)t.

teT
The error estimator &, € W based on this formulation is given by
a(@n,v) = (f,v) + g(un,v) — a{up, v) (4.25)

for all v € W. Note that (4.25) consists of a collection of decoupled problems
having the appearance of local Neumann problems on each element; since the
space W cannot contain local constants, all problems must be nonsingular
and have unique solutions.
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To analyse this process, we note that the orthogonality conditions (4.10)-
(4.11) are now replaced by

a(u—up — €p,v) = g(u—up,v) for all v € W, (4.26)
a(tp — up — €p,v) = 0 for allv e W. (4.27)

Here @p, € M is still the conforming finite element approximation defined in
(4.1). The bilinear form g(-,-) does not appear in (4.27) since vy = 0 for
vEW.

In examining the proof of Theorem 1, we note that the argument used
in proving the left inequality in (4.14) remains unchanged when applied to
ller]]. The difficulty arises only in the upper bound, where the choice v = &,
in (4.26) leads to

lenl® < fu — unll Rewll + 1g(u — wn, en)l.

Obtaining a bound for the nonconforming term is fairly technical and
lengthy, and we will only sketch the arguments here. The interested reader
is referred to Bank and Weiser (1985) for a more complete discussion. First
note that the presence of the nonconforming term demands more (local) reg-
ularity of the solution since line integrals of V(u — up)n. appear. Here we
will make the simplifying assumption

2RIV —un)l < @flu — unll?, (4.28)
teT

which essentially states that a standard a priori estimate for ||u—uy|| is sharp.
A more complicated form of the saturation assumption could be used in place
of (4.28).

Using standard trace inequalities edge by edge for e € £, we are led to the
estimate

lg(u —un,&n)> < C (Z IVaV (u — un)|lf + h{llVaV?(u — uh)ll?)

teT

(Z hy 2||vaer||? + ||\/5Véh||t2) ~

teT

See Brenner and Scott (1994) for a discussion of trace inequalities.
Now, using (4.28), and a slight generalization of Lemma 4,

—92 _
vlwll? < hi?llwlf < zllwll?,
for all w € W, we obtain the bound

|g(u — un, €n)| < Of|u — ur|l ler]l,

which yields our next result.
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Theorem 3 Let &, € W satisfy (4.25). Assume (4.3), (4.28), and Lemmas
2 and 4. Then

(1 =81 =) flu = wnl® < llenll® < (1 + 6)*Jlu — unll?, (4.29)
where 3 and « are as in Theorem 1 and § = é(ayo, Bo, b0, Vr, Wr).

We remark that one could make the diagonal approximation to the systems
of linear equations to be solved in computing &,. One would then have an
estimate modified as in Theorem 2. However, there is less advantage to
be gained in the current situation because Agg is already block diagonal with
diagonal blocks of small order. Another possibility is to use a different bilinear
form b(-, -) in place of a(+, ) on the left-hand side of (4.25). Such an algorithm
would calculate &, € W such that

b(én,v) = (f,v) + g(un,v) — a(up, v). (4.30)

One choice, suggested by Ainsworth and Oden (1992 and 1993), is to let
b(-,-) correspond to the Laplace operator —A. If there exist finite, positive
constants y and i such that

pllwll? < blw,w) < pllw|?

in analogy to (3.14), then the analysis of such approximations may be carried
out in a fashion similar to Theorem 2. Duran and Rodriguez (1992) and
Durdn, Muschietti and Rodriguez (1991) analyse the asymptotic exactness
of error estimates of the type developed here, a topic we will not consider in
detail.

We now develop some examples of a posteriori error estimates for the space
of continuous piecewise linear polynomials. We let M be the space of con-
tinuous piecewise quadratic polynomials, and W the space of quadratic bump
functions. The basis functions, denoted {1}, will be the standard quadratic
nodal basis functions associated with edge midpoints for all edges of the
triangulation 7. We first consider the estimate €, defined in (4.19). Let

€p = Z Ep;.

Let v, be associated with an interior edge e of the triangulation and have
support in triangles ¢t1 and £2, the two triangles sharing edge e. Then

B = (fs¥i)ty — alun, Vi), + (f, i)ty — alun, Yils,
z a(i, Yi)e, + alvs, Yile, '

Here we see that the calculation of Ej involves only local computations. Stand-
ard element-by-element assembly techniques can be used to compute all the
relevant quantities.

We next consider the computation of &, in (4.25). Let W be the space of
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discontinuous piecewise quadratic bump functions. There are now two basis
functions associated with each interior edge, one with support in each element
sharing that edge, so the dimension of W is approximately twice that of W.
However, at the level of a single element ¢, we have Wy = W;. Let {1;} be
the basis for W. Then the function &, of (4.25) can be expressed as

ep = Z E ;.

Suppose ¥, ¥;, and ¢, are the three discontinuous quadratic bump functions
having support in the element £ € 7. Then we must assemble and solve the
3 x 3 linear system
a(i, ¥i)e  a(Pi, ¥i)e  a(tk, Yol E;
a(PisPi)e a5, 95)e alie, ¥y)e Ej | =
a(Pi,¥r)e a(¥j, ¥r)e a(¥e Yr)e 1 L Bk
(f,¥s)e — alun, Pi)e 9(un, i)t
(fr5)e —alun, ¥i)e | + | glun,¥i)e | -
(fs¥i)e — alun, Yr)t g(un, Vi)t
As in the case of €, only local computations are involved. All are com-
pletely standard except for the evaluation of the nonconforming terms. For
example, to evaluate g{up,;):, we first note that v¢; is nonzero on only one
edge of t, say edge e. Thus
g(up, i) = /{aVuﬁ,n}AT/_Ji dz,
€
where n is the outward normal for {. To evaluate the average, we must
compute aVuy, for both £ and the adjacent triangle sharing edge e.

5. Two-level iterative methods

In this section we analyse several two-level iterations for solving (2.6) (in
finite element notation) or, equivalently, (2.7) (in matrix notation). Much of
our development is based on Bank and Dupont (1980) and Bank, Dupont,
and Yserentant (1988). See also the books of Hackbusch (1985) and Bramble
(1993).

Let M =V ® W, let A be the stiffness matrix computed using the hier-
archical basis, and partitioned according to (2.8), and let

A=L+D+ LY, (5.1)
where
_[Aun O [ o o
D—[ 0 AQQ:' and L—[Am 0]

We consider the following iteration for solving (2.6). Let up € M be given.
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We define the sequence ug = v + wg, with v € V and wg € W by

a(vk41 — vk, X) = w{(f,X) —alue, )}, x €V, (5.2)
and
a(Wes1 — wr, X) = w{(f,x) —aluk, x)}  xEW. (5.3)
The iteration (5.2)—(5.3) can be written in matrix notation as
D(xg41 — xx) = w{F — Az}, (5.4)

where the vector z; € RV corresponds to the finite element function u, € M.
Equations (5.2)—(5.4) represent a standard block Jacobi iteration for solving
(2.6)-(2.7). Although we have written (5.4) as a stationary iteration, practic-
ally we expect to use D as a preconditioner in the conjugate gradient proced-
ure. We refer the interested reader to Golub and Van Loan (1983) or Golub
and O'Leary (1989) for a complete discussion of the preconditioned conjugate
gradient algorithm. Here we analyse the generalized condition number of the
preconditioned system.

Theorem 4 Let A= L+ D + L! as defined above. Then for all 2 # 0,
t
1 <a:Dx< 1
14y ~ ztAz — 1—7x

? (5'5)

where 0 < v < 1 is given in Lemma 2.

Proof. It is easiest to analyse (5.5) using finite element notation. Let u =
v+ w, withv € V and w € W, correspond to z € RY. Then

e'Az = lu> and 2'Dz = fv)l* + Jw]*.
Now
lull® = oll® + Jwll* + 2a(v, w).
Applying Lemma 2, we have

(1= Wol® + Iwl®) < full® < @+ 7Bl + lwl?),

proving (5.5). O
The generalized condition number X is given by
1
K=-+2
l—v
The optimum value for w for the stationary iteration (5.4) is w = 1, and the
rate of convergence is given by
K-1_
K+1 "
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See Dupont, Kendall and Rachford (1968) for an analysis of the stationary
method.

If conjugate gradient acceleration is used, the estimate for the rate of con-
vergence is bounded by

V-1 _ Y
VE+1  1+/1—7%

We note that (5.4) requires the solution of linear systems involving the di-
agonal blocks A1; and Ags in each iteration. We next show that the systems
involving Agg can be effectively solved using an inner iteration. Those in-
volving Aj; should either be solved directly, or solved recursively, using a
multilevel iteration.

Let Azz be a symmetric, positive definite preconditioner for Ag2, and sup-
pose we approximately solve the linear system Agox = b, using m > 1 steps
of the iterative process

A22($k+1 - :L'k) =b-— AQQ.’I)k. (5.6)

The iteration (5.6) should not be accelerated, but should be implemented as
a stationary iteration to allow the use of conjugate gradient acceleration for
the overall (outer) iteration. We assume that any fixed parameters for (5.6)
have been already incorporated in the definition of Agy. Let

1/2 1/2
G=1-AMPAZ A2,
We assume G is symmetric with
IGlles = p < 1. (5.7
Let
Ry =G™(I-G™)~ L. (5.8)

The eigenvalues of R, lie on the interval

7

p
1—p™m
when m is even or if all eigenvalues of G are nonnegative. In the latter case,
G is sometimes called a smoother. If G is not a smoother and m is odd, we
must use the weaker bound

0< A< (5.9)

m T

p p

- <A< (5.10)
14 p™ 1—pm

An induction argument shows the m-step process in (5.6) is mathematically
equivalent to the solution of

AYAT + Rp) A2y, = b+ AYPR, AM 2z, (5.11)
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In our current situation, the initial guess zyp = 0, simplifying the right-hand
side of (5.11). Our overall preconditioner, using m inner iterations, is thus

0 0 } . (5.12)

D=D+
0 A’ RmAz)’

Theorem 5 Let A= L + D + L! and D be defined as above. Then for all
x #0,
1 ztDx 1
< < -
A+ +pm) ~ 24z~ (1=9)(1—p™)
Proof. As in the proof of Theorem 4, we let u = v + w € M correspond to
z € RY. Then

Jol® + (1 + o™ Hwl® < 2*Dz < loll® + (1 = p™) " Hlwl®.

(5.13)

Thus
.
1 <:cDJ;< 1 ’
1+pm™ ~ ztDx — 1—pm

and the theorem follows from Theorem 4 and
zt Dz _ wtDz\ (z!Dzx
rtAr  \ xtDx ctAx |

The generalized condition number K is bounded by

K<(1+7) (1+pm>'
“A\1l—x 1—pm

Here we see that the use of inner iterations has only a modest effect on the
generalized condition number, provided that p is small or m is large. We re-
mark that by bounding z'Dz /xt Az directly, instead of bounding zt Dz /ztDzx
and z'Dz/zt Az separately, one can achieve a somewhat smaller but more
complicated bound for K. If G is a smoother, then the bound on K can be

improved to
1 Y 1 p”"

We now consider the symmetric block Gauss—Seidel iteration
(D + L)(.’Ek+1/2 - SCk) = F-— A.’L']C (514)
(D + LY (#k41 — Trt1y2) = F — Azpqrys.

a

In finite element notation, we may write (5.14) as

a(vk+1/2 + wg, X) = (fa X) (515)
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for x €V,

a(Vgy1/2 + Wet1, X) = (f, X) (5.16)
for x € W, and

a(vkt1 + Wet1,X) = (f, x) (5.17)

for x € V. A careful analysis of (5.15)—(5.17) will show that block Gauss—

Seidel and block symmetric Gauss—Seidel are equivalent as stationary iterative

methods (that is, vg1/2 = vg), but this is no longer true when symmetric

Gauss—Seidel is used as a preconditioner for the conjugate gradient algorithm.
Let ex = x — xg. Then from (5.14),

errre = {I—(D+ L) Ale,
exr1 = {{—-(D+ L)_tA}ek_H/g,
from which it follows that
exr1 = {I—(D+L)"AHI - (D + L) Ales
{(I-[(D+L) '+ (D+L) A+ (D+L)PAD+ L) 'Alex
= {I-(D+L)YL+2D+ L' — A)(D+ L) *A}es
= {I-(D+L)*D(D+ L)y 'A}e
{I - B~ A}es, (5.18)
where
B=(D+ LD YD+L")=A+LD'L" (5.19)
Once again, our task is to determine the generalized condition number by

estimating the Rayleigh quotient.

Theorem 6 Let A =L + D + Lt as defined above, and let B be given by

(5.19). Then
!Bz 1
1< Tt Az < =2’ (5.20)

where 0 < v < 1 is given in Lemma 2.

Proof. Since LD~!L! is symmetric, positive semidefinite, it is clear from

(5.19) that the lower bound is one. The upper bound is given by 1+ u where
o' LD 1Ltz (5.21)

= max ———. .
# z#0 rtAzx

This can be written as
1#0 rtAx’
where

Dy = L'z.
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In finite element notation, this becomes

Io)?
[ = max y——, (5.22)
u0 [luf|?
whereu =v+w, v €V, w e W and ¥ € V satisfies
a(9,x) = a(w, x) (5.23)

for all x € V. Written in finite element language, (5.22)—(5.23) is easy to
analyse in terms of the strengthened Cauchy inequality. We take ¥ = ¢ in
(5.23) to see

ol < ~vljwl-

On the other hand

full? lloll® + lewll® + 2a(v, w)
Joll® + el ~ 2 Jlvl 1wl
(1~ 7" wlf?

1 =¥ )y 2o|%

Il

AVANAVAN Y]

The theorem now follows from combining this estimate and (5.22). O

The analysis of the block symmetric Gauss-Seidel scheme with inner iter-
ations is a little more complicated. We formally consider the iteration

(b + L)(mk+1/2 ~x) = F — Axy,
(ﬁ -+ Lt)(l'k+1 —~ $k+1/2) = F- A$k+1/2a (5.24)

where D is given in (5.12). A calculation similar to (5.18) shows that

ere1 = {I—(D+L)*AHI— (D + L) A}e
= (I-[(D+L) +(D+L) A+ (D+ L) tA(D + L)' A}ey
{I—(D+ L)y YL+2D+ L — A)Y(D + L) 1 A}ey
= {I-(D+L)"*2D - D)(D + L) ' A}e;
= {I-B'A}e, (5.25)
where
B = (D+L)2D-D)"Y(D+ L)
A+(D-D+L)2D-D)"Y(D-D+ L)
= A+ LD LI+ A (5.26)
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Here

0 0 0 0
270 APRA( 2R 1 AY? ] B { 0 Az’ RomAgy’ ] ’
and R, is defined in (5.8).
Theorem 7 Let A= L+ D + L! as defined above, and let B be given by
(5.26). Then
z*Br 1

1< < .
< s < (1= (1= 2y (520)

where 0 < 4 < 1 is given in Lemma 2, and p is given in (5.7).

Proof. Since LD7'L! + A is symmetric, positive semidefinite, the lower
bound is one. For the upper bound, z! LD~ Ltz /x* Az was estimated in the
proof of Theorem 6. Let u = v +w € M correspond to x € RY. Then, using
(5.7)~(5.8) and Lemma 2, we have

z'Az o\ el pm ( 1 )
< < )
gtAz ~ \1-p*" ) Jull® = \1-p*" ) \1-+2

Combining these estimates, we have
«'Bz 72 p*m 1 1

<1+ + _ :
rtAz 1 -2 1—p*m J\1-9%) (1-73)(1~-pm)

We now consider some possibilities for the inner iterations. One obvious
choice is a Jacobi method based on the diagonal matrix Dy = diagAgs with
Ago = Doy /w. Using Lemma 4, for the choice w = 2/(p + 1), we have

O

k—1
k+1

p<

9

where kK = /.
A second possibility is to use a symmetric Gauss—Seidel iteration. Let
Agy = Lag + Dag + L, where Log is lower triangular. We then take

Az = (Dag + Lag) Dyyt(Daz + Lao). (5.28)

Lemma 5 Suppose the hypotheses of Lemma 4 hold, and let Ao be given
by (5.28). Then there exists a finite positive constant 7 depending only on
ag, Bo, and 8y, such that

~

xtAzgiL‘

1<

<1 . 5.29
xtAgx ~ +n (5.29)
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Proof. As usual, the lower bound is one, since Agg = Ao +L22D2—21Lt22, and
Loa D3t L, is symmetric and positive semidefinite. Now

n = max ytD22?J
T ztAgsx
where
Dooy = Loz,
In finite element notation, this is
o SO
wo Jwl?

where @ € W corresponds to y, w € W corresponds to x, and {¢;} are the
basis functions for W. Since the basis functions for W are developed from
a fixed set of functions defined on the reference element, the support of a
given basis function can intersect that of only a small number of other basis
functions (there are at most a fixed number of nonzeros in any row of L,
independent of the number of elements in the mesh). Therefore we must have

Y_wileil* < C Y wiliesl?,
i

J

where C' = C(6p). The result now follows directly from Lemma 4. O

Using Lemma 5, we can estimate
= |II — A2 Azt AP, < —1—.
p= 22 4122 22”152_1+n
Thus we see that although these inner iterations perturb the rate of conver-
gence, they do not affect the essential feature that the rate depends only on
local properties of the finite element spaces, and is independent of such things

as the dimension of the space, uniformity or nonuniformity of the mesh, and
regularity of the solution.

6. Multilevel Cauchy inequalities

In this section we will develop several strengthened Cauchy inequalities of use
in analysing hierarchical basis iterations with more than two levels. These
estimates are developed for the special case of continuous piecewise linear
finite elements; they can be combined with the two-level analysis of Section 5
to develop multilevel algorithms for higher-degree polynomial spaces. We will
return to this point in Section 7. Much of the material here is based on Bank
and Dupont (1979), Yserentant (1986), and Bank, Dupont and Yserentant
(1988). See also the books of Hackbusch (1985), Bramble (1993), and Oswald
(1994).
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Let 77 be a coarse, shape regular triangulation of Q. We will inductively
construct a sequence of uniformly refined triangulations 7;, 2 < j < k,
as follows. For each triangle t € 7;_;, we will construct 4 triangles in T;
by pairwise connecting the midpoints of . All triangulations will be shape
regular, as every triangle ¢t € 7; will be geometrically similar to the triangle
in 7y which contains it. We could also allow nonuniform refinements that
control shape regularity, for example those of the type used in the adaptive
finite element program PLTMG (Bank 1994). See also Riide (1993) and
Deuflhard, Leinen and Yserentant (1989).

With this definition, it is easy to introduce the notion of the level of a given
vertex in the triangulation 7;. All vertices in the original triangulation 7; are
called level-1 vertices. The new vertices created in forming 7; from 7;_; are
called level-j vertices. Notice that all vertices in 7; have a level less than or
equal to j. Also note that each vertex has a unique level, and this unique
level is the same in all triangulations that contain it.

Let M; be the space of continuous piecewise linear polynomials associated
with 7;. Functions in M; will be represented using the hierarchical basis,
which is easily constructed in an inductive fashion. Let {¢;}X!, denote the
usual nodal basis functions for the space Mj; this is also the hierarchical
basis for M. To construct the hierarchical basis for M;, j > 1, we take

the union of the hierarchical basis for M;_1, {(]51}5\’:’1_ ! with the nodal basis
functions associated with the newly introduced level j vertices, {d)z}fi’ Ny_1+1-

Let V; be the subspace spanned by the basis functions associated with the
level-; vertices, {¢i}££Nj_1+1v where Ny = 0. Note that V; = M;. Then we
can write for j > 1,

M;=M; 10V, =V1dVa@...8YV;.
Let M;, 1 < j <k —1 be defined by
N; =V ®Vj29...0 W
with Nz = 0. Then we have the decompositions
M =M; &N

for1<j<k.
Before proceeding to the Cauchy inequalities, we need a preliminary tech-
nical result.

Lemma 6 Lett € S, where S is defined as in Section 3. Let 7’ be a shape
regular triangulation of ¢, whose elements have a minimum diameter of h.
Let M’ be the space of continuous piecewise linear polynomials associated
with 77, Then there exists a constant ¢ = ¢(8p), independent of h, such that,
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for all v e M/,
[0]loot < €| log h|Y?|v)1,. (6.1)

Proof. Here we will only sketch a proof, following ideas in Bank and Scott
(1989), but see Yserentant (1986) for a more detailed, but also more ele-
mentary proof. We remark that estimate (6.1) is restricted to two space
dimensions.

Our proof is based on an inverse inequality, and the Sobolev inequality; see
Brenner and Scott (1994) or Ciarlet (1980) for a general discussion of these
topics. Let ¢’ be a shape regular triangle of size hy, and let v be a linear
polynomial. The inverse inequality we require states

[vll zoeqery < Cohia P (10ll 2o er

for 1 < p < 00. Let D be a closed bounded region with a piecewise smooth
boundary; then the Sobolev inequality we need states

vl ze(py < Crv/Plvlira(p)
for all v € H(D) and all p < co. Now let t € S and v € M’; then

||UHL°°(t) = tI,Ilea?>.<,||U||z:°°(t')

IN

Coh™/? max [[v] co(e)

IN

Coh™*P|vl o)
CoCrh™ /v llpr sy
The proof is now completed by taking p =~ —4logh. O

IA

Lemma 7 Let My = M; @ N; as above. Then there exist positive con-
stants 7y;, 1 < j < k — 1 such that

C
i<1—-—— 6.2
7.7—— k_J’ ( )

and the strengthened Cauchy inequality
la(v, w)| < v;llol flwl) (6.3)

holds for v € M; and w € Nj. The positive constant c in (6.2) is independent
of j and k.

Proof. Our proof is based on that of Bank and Dupont (1979). Following
the pattern used in proving Lemma 2, we first reduce the estimate (6.3) to
an elementwise estimate for ¢ € 7;. If we show

la(v, w)i < yjellolielwle, (6.4)



32 R. E. BANK

then

i = max y;¢-
Vi Itré%’] Vit
Let t € 7;, and let z;, 1 < ¢ < 3 denote the three vertices of t. We map ¢
to a triangle t € S using the change of variable

r — T
hy

As in the proof of Lemma 2, this verifies that y;; is independent of h;. Notice
that M, the restriction of M; to t, is just the space of linear polynomials
on t and has dimension three. In the case of uniform refinement, the space
Nt is the space of piecewise linear polynomials on a uniform grid of 4k=J
congruent triangles, which are zero at the three vertices of t. The (local)
constant function is thus contained in M; ¢, and M DON, it is just the space
of continuous piecewise linear polynomials on ¢.

Let v € M;; and w € Nj;. Then

T =

Vit = max  a(v,w);
Holle=lwi:=1

_ v —wl?
ok =Hul=1 2

max 1—cllv —w 2
mvmt:llwmt:l || ||1,t7

where ¢ = ¢(ap, Bp). ‘
We now apply Lemma 6, noting that h = 2¥=7 for the triangulation of £.

Cllv — wll3.;

it < max 1—-———07 "7
Tt = g Sfwe=t log2¥7

where C = C(ag, B0, 60)-

Next we note that, since v is just a linear polynomial on ¢ with ||v|: = 1,
and w(z;) = 0, 1 <1 < 3, we have a fixed constant ¢ > 0, independent of j
and k, such that

¢’ < max|v(z;)| = max |v(z;) — w(@:)| < llv = wlloos-

Thus it follows that
cd

Vit < 1—m,

and the lemma follows. O

We next describe the result of Lemma 7 in terms of interpolation operators.
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Lemma 8 Let u = vj; + w; € My, v; € M; and w; € N. Define the
interpolation operator Z;, mapping My, to M, by Z;(u) = v;. Then

IZi(wll < Cvk = jlull. (6.5)

The positive constant C' is independent of 7 and k.

Proof. Apply Lemmas 3 and 7. See also Yserentant (1986), and Bank,
Dupont and Yserentant (1988). O

We finish this section with

Lemma 9 Let V; and V; for 1 <14,j < k be defined as above. Then there
exist positive constants I'; ; satisfying

Fi,j < 62_|i_j|/2, (6.6)
such that
la(v, w)| < Tijllvll flwl (6.7)

for all v € V; and w € V;. The constant c in (6.6) is independent of ¢ and j.

Proof. Our proof is similar to that given by Yserentant (1986). Without
loss of generality, suppose ¢ < j. We need consider no triangulation finer
than 7j, since subsequent refinements do not affect either v or w. As in the
other Cauchy inequalities, one first reduces the estimate to a single element
t € 7T;, that is

|a(v, w)s] < Tijellollellwle (6.8)

We then consider the gradient terms and the lower order terms separately as
in (3.6)—(3.7). For the highest order term, we must again consider the special
importance of the (local) constant function, which in this case belongs to V; ;.
Following the pattern in the proof of Lemma 2, we next map t € 7; to an
element £ € S by scaling and translation, showing that the estimate must be
independent of h;. Also note that under this mapping, triangles in 7; become
triangles with size h a2,
The central estimate is to show that

|a(0, @)y 4] < Tijaellolly dldlly g (6.9)

where
a(o, ), ; = / VotV di
: :

ol ; = a(9,9);
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We will also use the norms

~12 .2 1 112 2 .
] = [0°dx and ||D A:/ 07 dz.
Joliz = [ o= |

The function ¥ is just a linear polynomial on £, while 4 is a piecewise linear
polynomial vanishing at all the vertices with level smaller than j. Such a
function is necessarily very oscillatory, and for such a function the differential
operator behaves very much like h~! times the identity operator. In particular,
we have the estimates

il < Chlldlly ; < C27 b, 4 (6.10)
and
lillg; < CRMY2|jio]ly ;s < C2CE=D2 i 5, (6.11)

where C' = C(ay, o).
Now, using integration by parts, the fact that Av = 0 in ¢, and (6.10)-(6.11)
we have

a(6, ), ; / _ValVow di + / aVotn ds
’ t ot
C{IVollllwli + IVollalldll e}

<
< CEDRYa|y gl

The lower order term is easy to treat in this case because of (6.10). O

7. Multilevel iterative methods

In this section, we will analyse block Jacobi and block symmetric Gauss—
Seidel iterations using the hierarchical decomposition

Me=V1®Vo®...d Vg

defined in Section 6. Much of this material comes from Bank, Dupont and
Yserentant (1988), but see also Bramble (1993), Bramble, Pasciak, and Xu
(1990), Bramble, Pasciak, Wang, and Xu (1991), Griebel (1994), Hackbusch
(1985), Ong (1989), Xu (1989) and (1992), and Yserentant (1986) and (1992).

As before, we let {¢; }; Nj_1+1 denote piecewise linear nodal basis functions

for the level-j vertices in 7. Then the stiffness matrix A can be expressed
as the symmetric, positive definite block k X k matrix

An A - Ay
a= | A2 A (7.1)
A Ak - Ak

where A;; is the (N; — Nj_1) X (N; — N;_1) matrix of energy inner products
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involving just the level-j basis functions. In similar fashion to the analysis in
Section 5, we set

A=L+ D+ L, (7.2)
where
Al 0
Az Asy 0O
D= and L= . .
Ak App Agp - 0

We first consider the block Jacobi iteration. Let ug € My be given. We
define the sequence

U = V1, + V245 + ...+ Uk,
where vj; € V;, 1 < j < k. In finite element notation, the block Jacobi
iteration is written
a(vji+1 — V5, X) = w{(f, x) — a(ui, x)} (7.3)

for x € Vj, 1 < j < k. The iteration (7.3) can be written in matrix notation
as

D(ziy1 ~ 2i) = w{F — Az}, (7.4)

where the vector z; € RV corresponds to the finite element function u; € Mj.
To estimate the rate of convergence, we must bound the Rayleigh quotient

<A (7.5)

for £ # 0. In finite element notation, this is written

E ol -
o<ggzl—|—”;m2igx, (7.6)

where v; € V; and v = 5 v; # 0.
For any v = v; + vo + ... + vy, we define
zj=vi+v2+...+vj, (7.7)
for 1 < j <k, with 29 =0,

W = Vj41 + Vjp2 T ... + Vg, (7.8)
for 0 < j < k—1, with wg = 0. Thus we have v = z; + w;j, 0 < j < k. Note
zZj € Mj, while w; € ./\/]

We begin our analysis with an upper bound for (7.6). First note that the

angle between the spaces Vi @ Vo & ... ® Vj_1 = M;_1 and Vj; is just the
angle between the spaces V and W of Lemma 2. Therefore the constant in
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the strengthened Cauchy inequality for these spaces, which we will denote by
%, does not depend on j. Now
Iz = lzjr+ ;)
= lziall® + llos)? + 2a(2-1, vy)
> Nzioall® + Noil® = 230 z- 1l llos
> (1=l
We now use Lemma 7 to deduce

ol

Il

ll2; + w;lI?
Izl + llw;ll® + 2a(z;, w;)

fl

> Nzl + il = 2l sl
> (1=l
> (1= =3l

Thus we have

lllvlll ¢

Z 5 < CE|loll®.

k
> Mull® <
=1

To find a lower bound, we note that

k k k k k
Sl =30 awiv5) < 30 3. Tishuil losll = ETE,
i=1 i=1j=1

i=1j=1

where E; = |Jv;]], and T is the k X k matrix introduced in Lemma 9. One can
easily see that ||T'|,2 < C, so that

k k
ol = 1D _will® < O lluill®.
i=1 i=1
Thus we have proved the following result.

Theorem 8 Let A =L + D + Lt as defined above. Then
z!Dzx
rtAz
where C; = Ci(ao, o, 60), 1 = 1, 2.

C1 < < 02k2 (7.9)

Note that the generalized condition number K < ck? now depends on the
number of levels. For the case of uniform refinement, & = O(log Ni), so
this introduces a logarithmic-like term into the convergence rate. Note that
VK < &k, so that conjugate gradient acceleration can be expected to have a
more significant impact on the k-level iteration than on the two-level method.

As in the case of the two-level iteration, we may solve linear systems of the
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form A;z = b by an inner iteration for all i > 1. Following the development,
given in Section 5, let A;; be the preconditioner for A; and let G; = I —

1/2 54— 1/2
Aﬁ/ AiilAz‘i/ . Suppose
. — 1
max [|Gille, = p <1,

and assume for simplicity that m > 1 inner iterations are used for all ¢ > 1.
Let Ry = GT(I — G™)7L. Then, using reasoning similar to that of (5.12),
we replace (7.4) with

A

D(zit1 —x;) = w{F — Ax;} (7.10)

where
0

D=D+D'/? Bam . DYV?2=-pD+Z.

Rk,m

Theorem 9 Let A= L + D + Lt and D be defined as above. Then
C, < ztDzx < Cok? ,
1+p™m = ztAzx — 1-—pm

(7.11)

where C;, i = 1,2 are given in Theorem 8.

Proof. Following the proof of Theorem 5, we see for all z # 0,

1 ztDx 1
< < .
1+pm™ =~ ztDx — 1— pm
The theorem then follows easily from this estimate and Theorem 8. O

We next consider the symmetric block Gauss—Seidel iteration. In finite
element notation, we may write this as

a(Vjir1/2 — V50 X) = (F,X) — a(2j-1i41/2 + Wj-1,i, X) (7.12)
forx €V;,7=12,...,k, and
a(Vji41 = Vji41/2:X) = (F,X) — a(25541/2 + Wjit1,X) (7.13)

for x € V;, j=k,k—1,...,1. Here z;; and w;; are defined analogously to
vj and wj in (7.7)—(7.8). In matrix notation the iteration is written

(D+ L)(Tiy12 — 7)) = F— Az, (7.14)
(D + LY (@ig1 — Tiy12) = F— Azipqpo.
As in the two-level scheme, the preconditioner B is given by

B=(D+L)DYD+LY)=A+LD 'L (7.15)
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Theorem 10 Let A =L + D + Lt and B be defined as above. Then
L < z'Bzx
~ ztAzx

<14 p, (7.16)
where
p < C3k?, Cs = C3(ao, Bo, 60)- (7.17)

Proof. The lower bound is clear since LD7!L? is symmetric and positive
semidefinite. For the upper bound, we estimate

where
Dy = Ltz

Let v =v1+v2+...+ vk = z;+wj, with v; € V; and z; € M; and w; € N
as in (7.7)—(7.8). Then in finite element notation, we have

poung DY
i = max == 7.18)
T P ‘
where
a(i, x) = a(wi, x) (7.19)

for all x € V;.
Taking x = ¥; in (7.19) and applying Lemma 7, we have

ol < villwill,

and
lol* = llzi + wil?
= Nzill® + Nlwell® + 2a(z, w;)
> Nzall® + Nwall® — 2villze )l flws
> (1 =) lwd?
> (L= el

Thus we have

k—1 2
u< Z i 5 < C'3k2.
il 5

|

We next analyse the effect of inner iterations on the symmetric block Gauss—
Seidel iteration. Thus we replace D with D in (7.14) and obtain the iteration

(D + L) (.’131;_'_1/2 - .’I)z) = F- A.Tz (720)
(D + LY (i1 — Tiz1p) = F—Azipyp
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Following arguments similar to (5.26), we have
B = (D+L)2D-D)"YD+ LY
= A+(D-D+L)2D-D)y"YD-D+LY (7.21)
= A+ (L-2Z)(D+22)"Y(L' - 2).
As usual, we need to estimate the Rayleigh quotient xtBaz/mtAx. Since
(L — Z)(D + 2Z)"Y(L* — Z) is symmetric, positive semidefinite, the lower

bound is just 1. To obtain an upper bound, the essential estimate we must
make is
. (L - Z)(D+2Z) "W (Lt - Z2)x
max
z#£0 TtAx
(D +22)"V4(LF - 2)A7 I

< (I(D+22)7 2D || | DL A2 o

=
I

2
+(D +22)72ZD 7| | DV2A7| )"

Now
1 T
(D +22) 2D ¥ < {20
and
~1/2 7 —1/2 o
(D +22)7 22D e < TP

The norms |[D~Y2LtA=/2|| and || DY2A~1/2||,2 are estimated using The-
orems 10 and &, respectively, and we now combine these estimates.

Theorem 11 Let A= L+ D + Lt and B be defined as above. Then

otBx
1< <1+ 7.22
STz TR (7.22)
where
5 2

. 1+ pm pem 2 2
< Co| k*<Csk 7.23
H_(\/l—pm03+\/1—p2m 2) < Caks, (7.23)

and Cy and Cs are given in Theorems 8 and 10, respectively.

If G is a smoother, then using (5.9) we have ||(D + 22Z)~"1/2D'/2||,, < 1,
and the improved estimate

2m

2
i< ( Cs + 1—%@) k2 < Cyk2.

We conclude with several remarks about the two-level and k-level methods.
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Although the k-level method was developed for only the case of continuous
piecewise linear polynomials, this is sufficient to construct efficient methods
for higher-degree spaces. For example, we consider the case of continuous
piecewise quadratic polynomials on a sequence of meshes 7;, 1 < j < k. At
first glance, one might be tempted to try to develop a method in which one
used piecewise quadratic spaces on all levels. Further reflection would lead
one to the conclusion that such a method could potentially be very complic-
ated, as it is not clear that there is a simple way to develop a hierarchical
basis. It is also not clear that the analysis of such a method could be based
on the results in this work.

On the other hand, we could begin by making the usual two-level decom-
position M = V@ W, where V is the space of piecewise linear polynomials on
T and W is the space of piecewise quadratic bump functions that are zero at
the vertices of 7. The dimension of W is then approximately 3N/4 where N
is the dimension of M. For the space V, which is just the space of piecewise
linear polynomials on 7, we can make the hierarchical decomposition

V=VdVe®...DV)
as described here. Overall, we have the hierarchical decomposition
M=V&Vo@..0 Vi OW.

Based on this decomposition, there is an obvious multilevel hierarchical basis
iteration that can be developed. This iteration could be viewed as a two-level
iteration, with an elaborate k-level inner iteration used to solve the linear
systems associated with the space V. Alternatively, this iteration could be
viewed as a k+1-level iteration, in which the the first k levels are the standard
ones, but level k41 is special, in that the degree of approximation is increased
instead of the mesh being refined. For either viewpoint, the algorithm is the
same, and its analysis is straightforward using the results in Sections 3-7.
Another possibility along these lines is to make some further hierarchical
decomposition of the space W. For example, suppose now that M is the
space of continuous piecewise quartic polynomials on 7. We can begin by
making a decomposition M = V @ W, where V is the space of continuous
plecewise linear polynomials and W is the space of quartic polynomials that
are zero at the vertices of 7. We make a further decomposition of V as in the
previous example. We can also conveniently make the further decomposition
W = Wy @ Wy, where Ws is the space of continuous piecewise quadratic
polynomials that are zero at the vertices of 7x. This is the same as the
space W in our last example. The space Wy is now the space of continuous
piecewise quartic polynomials that are zero at the vertices and edge midpoints
of Ty, (that is, all the nodes associated with the piecewise linear and piecewise
quadratic spaces). This space can be characterized in terms of a subset
of the standard nodal basis functions for the piecewise quartic space, the
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bump functions associated with the 1/4 and 3/4 points on each edge, and the
bubble functions associated with the barycentric coordinates (1/4,1/4,1/2),
(1/4,1/2,1/4), and (1/2,1/4,1/4) in each element. This leads to an overall
decomposition

M=V VeD...dV, WD W,

The resulting hierarchical basis iteration could then be viewed as a basic two-
level iteration in which elaborate inner iterations are used for solving linear
systems associated with both the V and W spaces, or as a k + 2-level scheme
in which the last two levels involve an increase in degree of approximation
rather than a refinement of the mesh.

REFERENCES

M. Ainsworth and J. T. Oden (1992), ‘A procedure for a posteriori error estimation
for h-p finite element methods’, Comp. Meth. Appl. Mech. Engrg. 101, 73-96.

M. Ainsworth and J. T. Oden (1993), ‘A unified approach to a posteriori error
estimation using element residual methods’, Numer. Math. 65, 23-50.

A. K. Aziz and 1. Babugka (1972), ‘Survey lectures on the mathematical founda-
tions of the finite element method’, in The Mathematical Foundations of the
Finite Element Method with Applications to Partial Differential Equations (A.
K. Aziz, ed.), Academic Press, New York, 1-362.

I. Babugka and W. Gui (1986), ‘Basic principles of feedback and adaptive ap-
proaches in the finite element method’, Comp. Meth. Appl. Mech. Engrg. 55,
27-42.

I. Babuska, O. C. Zienkiewicz, J. P. de S.R. Gago, and E. R. de Arantes e Oliveira,
eds (1986) Accuracy Estimates and Adaptive Refinements in Finite Element
Computations, Wiley, New York.

I. Babugka and W. C. Rheinboldt {1978), ‘Error estimates for adaptive finite element
computations’, SIAM J. Numer. Anal. 15, 736-754.

I. Babuska and W. C. Rheinboldt (1978), ‘A posteriori error estimates for the finite
element method’, Internat. J. Numer. Methods Engrg. 12, 1597-1615.

R. E. Bank (1994), PLTMG: A Software Package for Solving Elliptic Partial Dif-
ferential Equations, Users’ Guide 7.0. Frontiers in Applied Mathematics 15,
SIAM, Philadelphia.

R. E. Bank and T. F. Dupont (1979), ‘Notes on the k-level iteration’, unpublished
notes.

R. E. Bank and T. F. Dupont (1980), ‘Analysis of a two level scheme for solving
finite element equations’, Technical Report CNA-159, Center for Numerical
Analysis, University of Texas at Austin.

R. E. Bank, T. F. Dupont, and H. Yserentant (1988), ‘The hierarchical basis
multigrid method’, Numer. Math. 52, 427-458.

R. E. Bank and L. R. Scott (1989), ‘On the conditioning of finite element equations
with highly refined meshes’, SIAM J. Numer. Anal. 26, 1383-1394.

R. E. Bank and R. K. Smith (1993), ‘A posteriori error estimates based on hier-
archical bases, SIAM J. Numer. Anal. 30, 921-935.



42 R. E. BANK

R. E. Bank and A. Weiser (1985), ‘Some a posteriori error estimates for elliptic
partial differential equations’, Math. Comp. 44, 283-301.

F. Bornemann and H. Yserentant (1993), ‘A basic norm equivalence for the theory
of multilevel methods’, Numer. Math. 64, 455-476.

D. Braess (1981), ‘The contraction number of a multigrid method for solving the
Poisson equation’, Numer. Math. 37, 387-404.

J. H. Bramble (1993), Multigrid Methods, Pitman Research Notes in Mathematical
Sciences 294, Longman Sci. & Techn., Harlow, UK.

J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu (1991), ‘Convergence estimate
for product iterative methods with application to domain decomposition and
multigrid’, Math. Comp. 57, 1-21.

J. H. Bramble, J. E. Pasciak, and J. Xu (1990), ‘Parallel multilevel preconditioners’,
Math. Comp. 55, 1-22.

S. C. Brenner and L. R. Scott (1994), The Mathematical Theory of Finite Element
Methods, Springer, Heidelberg.

P. G. Ciarlet (1980), The Finite Element Method for Elliptic Problems, North-
Holland, Amsterdam.

P. Deuflhard, P. Leinen, and H. Yserentant (1989), ‘Concepts of an adaptive hier-
archical finite element code’, IMPACT of Comput. in Sci. and Eng. 1, 3-35.

T. F. Dupont, R. P. Kendall, and H. H. Rachford {(1968), ‘An approximate factoriz-
ation procedure for self-adjoint elliptic difference equations’, SIAM J. Numer.
Anal. 5, 559-573.

R. Durén, M. A. Muschietti, and R. Rodriguez (1991), ‘On the asymptotic exactness
of error estimators for linear triangular finite elements’, Numer. Math. 59,
107-127.

R. Durdn and R. Rodriguez (1992), ‘On the asymptotic exactness of Bank—Weiser’s
estimator’, Numer. Math. 62, 297-303.

V. Eijkhout and P. Vassilevski {1991), ‘The role of the strengthened Cauchy-
Buniakowskii-Schwarz inequality in multilevel methods’, SIAM Review 33,
405-419.

G. H. Golub and C. F. Van Loan (1983), Matriz Computations, Johns Hopkins
University Press, Baltimore.

G. H. Golub and D. P. O’'Leary (1989), ‘Some history of the conjugate gradient and
Lanczos algorithms: 1948-1976", SIAM Review 31, 50-102.

M. Griebel (1994), ‘Multilevel algorithms considered as iterative methods on semi-
definite systems’, SIAM J. Sci. Comput. 15, 547-565.

W. Hackbusch (1985), Multigrid Methods and Applications, Springer, Berlin.

J. F. Maitre and F. Musy (1982), ‘The contraction number of a class of two level
methods; an exact evaluation for some finite element subspaces and model
problems’, in Multigrid Methods: Proceedings, Cologne 1981, Lecture Notes
in Mathematics 960, Springer, Heidelberg, 535-544.

E. Ong (1989), ‘Hierarchical basis preconditioners for second order elliptic problems
in three dimensions’, PhD thesis, University of Washington.

P. Oswald (1994), Multilevel Finite Element Approximation: Theory and Applica-
tions, Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart.

U. Ride (1993), Mathematical and Computational Techniques for Multilevel Ad-
aptive Methods, Frontiers in Applied Mathematics 13, SIAM, Philadelphia.



HIERARCHICAL BASES AND THE FINITE ELEMENT METHOD 43

R. Verfiirth (1995), A Posteriori Error Estimation and Adaptive Mesh Refinement
Techniques, Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart.

A. Weiser (1981), ‘Local-mesh, local-order, adaptive finite element methods with
a posteriori error estimators for elliptic partial differential equations’, PhD
thesis, Yale University.

J. Xu (1989), ‘Theory of multilevel methods’, PhD thesis, Cornell University.

J. Xu (1992), ‘Iterative methods by space decomposition and subspace correction’,
SIAM Review 34, 581-613.

H. Yserentant (1986), ‘On the multi-level splitting of finite element spaces’, Numer.
Math. 49, 379-412.

H. Yserentant (1992), ‘Old and new convergence proofs for multigrid methods’, in
Acta Numerica, Cambridge University Press.

0. C. Zienkiewicz, D. W. Kelley, J. P. de S. R. Gago, and I. Babuska (1982), ‘Hier-
archical finite element approaches, adaptive refinement, and error estimates’,
in The Mathematics of Finite Elements and Applications, Academic Press,
New York, 313-346.



Acta Numerica (1996), pp. 45-119 © Cambridge University Press, 1996

Orthogonal polynomials: applications and
computation

Walter Gautschi *
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398, USA
E-mail: wrg@cs.purdue.edu

We give examples of problem areas in interpolation, approximation, and quad-
rature, that call for orthogonal polynomials not of the classical kind. We then
discuss numerical methods of computing the respective Gauss-type quadrature
rules and orthogonal polynomials. The basic task is to compute the coefficients
in the three-term recurrence relation for the orthogonal polynomials. This can
be done by methods relying either on moment information or on discretization
procedures. The effect on the recurrence coefficients of multiplying the weight
function by a rational function is also discussed. Similar methods are applic-
able to computing Sobolev orthogonal polynomials, although their recurrence
relations are more complicated. The paper concludes with a brief account of
available software.

* Work supported in part by the National Science Foundation under grant DMS-9305430.
A preliminary account of this material was presented at the 10th Summer School in
Computational Mathematics, Maratea, Italy, in September of 1992. The material of
Section 1.2 is taken, with permission, from the author’s article in Bowers and Lund, eds
(1989, pp. 63-95).



46 W. GAUTSCHI

CONTENTS
0 Introduction 46

PART I: APPLICATIONS

1 Interpolation 52
2 Approximation 56
3 Quadrature 64

PART II: COMPUTATION

4 Computation of Gauss-type quadrature rules 71
5 Moment-based methods 79
6 Discretization methods 91
7 Modification algorithms 98
8 Orthogonal polynomials of Sobolev type 107
9 Software 111
References 112

0. Introduction

The subject of orthogonal polynomials, if not in name then in substance, is
quite old, having its origin in the 19th-century theories of continued fractions
and the moment problem. Classical orthogonal polynomials, such as those of
Legendre, Laguerre and Hermite, but also discrete ones, due to Chebyshev,
Krawtchouk and others, have found widespread use in all areas of science and
engineering. Typically, they are used as basis functions in which to expand
other more complicated functions. In contrast, polynomials orthogonal with
respect to general, nonstandard, weight functions and measures have received
much less attention in applications, in part because of the considerable diffi-
culties attending their numerical generation. Some progress, nevertheless, has
been made in the last fifteen years or so, both in novel applications of non-
classical orthogonal polynomials and in methods of their computation. The
purpose of this article is to review some of these recent developments.

In Part I, we outline a number of (somewhat disconnected) problem areas
that have given rise to unconventional orthogonal polynomials. These include
problems in interpolation and least squares approximation, Gauss quadrature
of rational functions, slowly convergent series, and moment-preserving spline
approximation. Part II then takes up the problem of actually generating the
respective orthogonal polynomials. Since most applications involve Gauss
quadrature in one way or another, the computation of these quadrature rules is
discussed first. Constructive methods for generating orthogonal polynomials,
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including those of Sobolev type, then follow, among them moment-based
methods, discretization methods, and modification algorithms. We conclude
by giving a brief account of available software.

The choice of topics treated here reflects the author’s past interest and in-
volvement in orthogonal polynomials. There are other applications and com-
putational aspects that would deserve equal treatment. Foremost among these
are applications to iterative methods of solving large (and usually sparse) sys-
tems of linear algebraic equations and eigenvalue problems. The pioneering
work on this was done in the 1950s by Stiefel (1958) and Lanczos (1950); mod-
ern accounts can be found, for instance in Hageman and Young (1981), Golub
and Van Loan (1989) and Freund, Golub and Nachtigal (1991). Among addi-
tional computational issues there is the problem of constructing the measure
underlying a set of orthogonal polynomials, given their recursion coefficients.
Some discussion of this can be found in Askey and Ismail (1984), and Dom-
browski and Nevai (1986).

Before we start, we recall two items of particular importance in the con-
structive theory of orthogonal polynomials: the Gaussian quadrature formula,
and the basic three-term recurrence relation. This will also provide us with
an opportunity to introduce relevant notation.

0.1. Gauss-type quadrature rules

The concept of orthogonality arises naturally in the context of quadrature
formulae, when one tries to maximize, or nearly maximize, their degree of
exactness. Thus suppose we are given a positive measure! d\ on the real
line R with respect to which polynomials can be integrated, that is, for which
Iz t* dA(t) exists for each nonnegative integer £ € Ng. A quadrature formula

[ 080 = XA (m) + Ral), 01)
R v=1

1 For our purposes it suffices to assume that dX is either a discrete measure, dA(t) =
dAn(t), concentrated on a finite number N of points t; < t2 < -+ < ty, that is, A(t) is
constant on each open interval (¢;,ti41), ¢ = 0,1,..., N (where to = —o00, tn4+1 = +00),
and has a positive jump w; = A(£;+0)—A(t;—0) at t;,i =1,2,..., N, or dA(t) = w(t)dt
is an absolutely continuous measure, where w > 0 is integrable on R and fR w(t)dt > 0,
or a combination of both. Then for suitable functions f,

/ F@YAA®) = { jSiV:l wi f(t:), dX discrete,
R 8

upp(d3) f(®)w(t)dt, dx absolutely continuous,

where supp( d)\) denotes the support of d), typically an interval or a union of disjoint
intervals.
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with distinct nodes 7, € R and real weights A, is said to have degree of
exactness d if

Rn(p) =0, all p € Py, (02)

where Py is the set of polynomials of degree < d. It is well known that for
given 7, we can always achieve degree of exactness n — 1 by interpolating at
the points 7, and integrating the interpolation polynomial instead of f. The
resulting quadrature rule (0.1) is called the Newton-Cotes formula (relative to
the points 7, and the measure dA). Indeed, any quadrature formula having
degree of exactness d = n — 1 can be so obtained, and is therefore called
interpolatory. A natural question to ask is: what conditions must the nodes
7, and weights A, satisfy in order for (0.1) to have degree of exactness larger
than n—1, say d = n— 1+ m, where m > 0 is a given integer? The complete
answer is given by the following theorem, essentially due to Jacobi (1826).

Theorem 1 Given an integer m > 0, the quadrature rule (0.1) has degree
of exactness d = n — 1 + m if and only if the following two conditions are
satisfied:

(i) The formula (0.1) is interpolatory.
(ii) The node polynomial wy,(t) = [I7_, (¢t — 7,,) satisfies

/ wa(t)p(t)dA() =0 for each p € P_y. (0.3)
R

Condition (ii) is clearly a condition involving only the nodes 7, of (0.1);
it says that the node polynomial must be orthogonal to all polynomials of
degree < m — 1. Here, orthogonality is in the sense of the inner product

(1, 0) ar = / w(tw() dA(t),  wvEP, (0.4)

in terms of which (0.3) can be stated as (wn,p)dx = O for every p € Pp,_;.
Once a set of distinct nodes 7, has been found that satisfies this orthogonality
constraint, condition (i) then determines uniquely the weights A, for example
by requiring that (0.1) be exact for each power f(t) = t*¥, k =0,1,...,n —
1. This is a system of linear equations for the weights A, whose matrix is
a Vandermonde matrix in the nodes 7, hence nonsingular, since they are
assumed distinct.

It is clear that m < n; otherwise, we could take p = wp in (ii) and get
Jgw2(t)dA(t) = 0, which is impossible if d\ has more than n points of
increase. (In the context of quadrature rules, dA indeed is usually assumed to
be absolutely continuous and thus to have infinitely many points of increase.)
Thus, m = n is optimal and gives rise to the condition

(Wn,P)ar =0,  allpePyy. (0.5)
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This means that w, must be orthogonal to all polynomials of lower degree,
hence (see Section 0.2 below) is the unique (monic) orthogonal polynomial
of degree n relative to the measure dA. We will denote this polynomial by
Tn(+) = mn(-; dA). The formula (0.1) then becomes the n-point Gaussian
quadrature formula (with respect to the measure dA), that is, the interpol-
atory quadrature rule of maximum degree of exactness d = 2n — 1 whose
nodes are the zeros of m,(-; dA). It is known from the theory of orthogonal
polynomials (Szegd 1975) that these zeros are all simple and contained in the
smallest interval containing the support of dA.
There are other interesting special cases of Theorem 1. We mention four:

(1) Assume that the infimum a = inf supp ( d\) is a finite number. We choose
one of the nodes 7, to be equal to a, say 71 = a. Then wy(t) = (t —a)wn—1(t),
where wy,—1(t) = I}_4(t — 7,), and condition (ii) requires that

/ o 1 (OOt —a)dA(E) =0,  all p € Pry. (0.6)

The optimal value of m is now clearly m = n — 1, in which case wp_1 is
the unique (monic) polynomial of degree n — 1 orthogonal with respect to
the modified measure dA,(¢) = (t — a) dA(t) - also a positive measure — that
is, wp_1(t) = mp—1(-; dAg). Again, all zeros of wy_1 are distinct and larger
than a; the resulting formula (0.1) is called the n-point Gauss—Radau formula
(with respect to the measure dA).

(2) Similarly, if both a = inf supp(dA) and b = sup supp (dA) are finite
numbers, and n > 2, and if we want 1 = a and (say) t, = b, then wy(t) =
—(t—a)(b—t)wn—2(t), and wp_a( ) = mp—2( -; dAqp) for optimal m = n —2,
where dAgp(t) = (t—a)(b—t) dA(t) is again a positive measure. The formula
(0.1) with the interior nodes being the (distinct) zeros of mp_o(-; dAgp) then
becomes the n-point Gauss-Lobatto quadrature rule (for the measure d\).

(3) Replace n in (0.1) by 2n+ 1, let 7, = 7™ be the zeros of mn( 5 dA) for
some positive measure dA, and choose n + 1 additional nodes 7, such that
the (2n + 1)-point formula (0.1) with nodes 7, and 7,, has maximum degree
of exactness d > 3n + 1. By Theorem 1 (with n replaced by 2n + 1), the
n + 1 nodes 7, to be inserted must be the zeros of the (monic) polynomial
Trny1 satisfying

/R st (Pt AN dA(E) =0, all p € Py (0.7)

Here, the measure of orthogonality is dA(t) = 7 (t; dA) dA(t), which is no
longer positive, but oscillatory. This calls for special techniques of computa-
tion; see, for instance, Monegato (1982), Kautsky and Elhay (1984), Calio,
Gautschi and Marchetti (1986, Section 2) and Laurie (1996). While 7,41
can be shown to exist uniquely, its zeros are not necessarily contained in
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the support of dA and may even be complex. The resulting (2n + 1)-point
quadrature formula is called the Gauss-Kronrod rule. It has an interesting
history and has received considerable attention in recent years. For surveys,
see Monegato (1982), Gautschi (1988) and Notaris (1994).

(4) Consider s > 1 different measures d\,, 0 = 1,2,...,s, with common
support, and for each an n-point quadrature rule (0.1) with a common set of
nodes {7, } but individual weights {\, s},0 =1,2,...,s. Assume n = ms to

be an integer multiple of s. Find s such quadrature rules, each having degree
of exactness n—1+m. (This is expected to be optimal since there are n(s+1)
unknowns and (n+m)s = ns+s conditions imposed.) According to Theorem
1, each quadrature rule has to be interpolatory, and the node polynomial wy,
must be orthogonal to polynomials of degree m — 1 with respect to each
measure,

/wn(t)p(t) () =0, allpePmi1, o=1,2,...,s (0.8)
R

One obtains the shared-nodes quadrature rules recently introduced by Borges
(1994) in connection with computer graphics illumination models, where the
models d), are colour matching functions. Instead of assuming n = ms,
one could require (0.8) to hold for p € Pp,,—1, where > 5_;ms = n, and
thus ‘distribute’ the degrees of exactness differently among the s measures
dX,. The construction of such quadrature rules calls for quasi-orthogonal
polynomials, that is, polynomials that are only partially orthogonal, as in
(0.8), and not fully orthogonal, as in (0.5).

0.2. The three-term recurrence relation

Next to the Gauss formula, another important fact about orthogonal polyno-
mials is that they always satisfy a three-term recurrence relation. The reason
for this is the basic property

(tu,v)ar = (u,tv) ax (0.9)

satisfied by the inner product (0.4). Indeed, assume that dA has at least N
points of increase. Then the system of orthogonal polynomials 7(-; dA),
k=0,1,...,N — 1, is easily seen to form a basis of Py_;. For any integer
k < N — 1, therefore, since the polynomial

Ter1(t) — tmi(t)

is a polynomial of degree < k (both mg4+1 and tmg being monic of degree
k 4 1), there exist constants ag, O and -y such that

k—2
Tha1(t) — tm(t) = —apmi(t) — Bemr—1(t) + Y W5 (1),
=0

k=0,1,...,N—1,
(0.10)
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where it is understood that 7_;(¢) = 0 and empty sums are zero. To determine
ay, take the inner product of both sides of (0.10) with mg; this yields, by
orthogonality,

—(tmr, ) = —on (T, Tk),
hence
tmy,
o = TR
(ﬂ.kaﬂ-k)

Similarly, forming the inner product with 71 (k > 1) gives

—(tmg, me—1) = —Bre(mh—1, Th—1)-
This can be simplified by noting (t7g, T—1) = (Tk, tTk—1) = (Fk, Tk + -+ ),
where dots stand for a polynomial of degree < k. By orthogonality, then,
(tmg, Tg—1) = (7k, Tk), and we get
Tl Trk)
B = Tk
(Th-1, Tk—1)

Finally, taking the inner product with m;, ¢ < k — 1, in (0.10), we find
—(tmg, mi) = Yri(mi, ™).

It is here where (0.9) is crucially used to obtain ~x; = 0, since (m;, 7;) # 0
and (tmg,m;) = (7, tm;) = 0 because of tm; € Px_1. Thus, we have shown
that

Te41(t) = (8 — ag)me(t) — Bemi-1(t), k=0,1,...,N -1,

Ta(t) =0,  m(t)=1, (0.11)
where
o = MR oy N,
(”(’;;7”;2 ) (0.12)
/Bk:: ————IL, k:1,2,...,N—1.
(=1, Tk—1)

This is the basic three-term recurrence relation satisfied by orthogonal poly-
nomials. Since 7_; = 0, the coefficient By in (0.11) can be arbitrary. It is
convenient, however, to define it by

Bo = (mo, o) = /R dA(). (0.13)

Note that by construction, 7 is orthogonal to all polynomials of degree
< N. If dA = dAy is a discrete measure with exactly N points of increase,
there can be at most N orthogonal polynomials, mg, 71,...,mn_1, which
implies that (7n,7n) = 0, that is, 7x vanishes at all the support points of
dAn. On the other hand, if N = oo, then (0.11) holds for all k¥ € Ny. Vice
versa, if (0.11) holds for all k € Ny, with 8 > 0, then by a well-known
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theorem of Favard (see, for instance, Natanson 1964/65, Volume II, Chapter
VIII, Section 6) the system of polynomials {7} is orthogonal relative to some
positive measure dA having infinitely many support points.

The recurrence relation (0.11) is generally quite stable, numerically, and
indeed provides an excellent means of computing the orthogonal polynomials
7g(+; dA), both inside and outside the interval of orthogonality. For discrete
measures dAy, however, there is a good chance that the recurrence rela-
tion exhibits a phenomenon of ‘pseudostability’ (cf. Gautschi 1993a; Gautschi
1996b, Section 3.4.2), particularly if the support points of dAy are equally
spaced. As a consequence, the accuracy of the mx(-; dAn), if computed by
(0.11), may severely deteriorate as k approaches N.

PART I: APPLICATIONS

1. Interpolation
1.1. Extended Lagrange interpolation

Our interest here is in the convergence of Lagrange interpolation and quadrat-
ure processes on a finite interval [—1, 1], assuming only that the function to be
interpolated is continuous on [—1,1]. A well-known negative result of Faber
(see, for instance, Natanson 1965, Volume III, Chapter II, Theorem 2) tells
us that there is no triangular array of nodes for which Lagrange interpolation
would be uniformly convergent for every continuous function. In response
to this, Erdés and Turdn (1937) showed that if one considers convergence in
the mean, then there indeed exist triangular arrays of nodes — for example
the zeros of orthogonal polynomials — on which convergence holds for every
continuous function. More precisely, given a positive weight function w on
(—1,1), we have

nlLrI;o | f—Lnf |lw=0, for all f € C[-1,1], (1.1)
where

1
lul = [ vt (12

and L, f is the Lagrange interpolation polynomial of degree < n interpolating
f at the n zeros 7; = Ti(n), i=1,2,...,n, of m,(-;w), the nth-degree poly-
nomial orthogonal on [—1, 1] relative to the weight function w. Convergence
of the related quadrature process, that is,

lim [ [f(t) — (Laf)®)]w(t)dt =0 forall f€C]-1,1],  (13)

n—oo -1
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also holds, since the quadrature rule implied by (1.3) is simply the Gaussian
rule (see Section 0.1), which is known to converge for any continuous function.

With this as a backdrop, suppose we wish to improve on L, f by considering
an extended set of 2n + 1 nodes,

M i=12..n &, j=12...n+1 (1.4)

the first n being as before the zeros of 7, ( - ; w), and forming the corresponding
Lagrange interpolant Lo, 1 f of degree < 2n + 1. Is it true that (1.1) and/or
(1.3) still hold if Ly f is replaced by Lopy1f?

The answer cannot be expected to be an unqualified ‘yes’, as the choice of
the added nodes {7;} has a marked influence on the convergence behaviour.
A natural choice for these nodes is the set of zeros of mp41(-;w), for which
it has recently been shown (see Criscuolo, Mastroianni and Nevai (1993),
Theorem 3.2; and Mastroianni and Vértesi (1993), Theorem 2.3) that the
analogue of (1.1), when w is a ‘generalized Jacobi weight’ (see Section 6.1,
Example 6.2), holds if and only if the Jacobi parameters a, 8 are both strictly
between —1 and 0. The analogue of (1.3) holds for any weight function w
since the underlying quadrature rule turns out to be simply the (n + 1)-point
Gaussian rule for w (all nodes 7; receive the weight zero).

Another interesting choice for the nodes 7;, first proposed by Bellen (1981,
1988), is the set of zeros of fipy1(+) = Tut1(-; T2W),

Tnt1(F5; T2w) = 0, j=1,2,...,n+1 (Tn(+) = 7o ;w)).  (1.5)

Here the polynomial #p4+1 is the (n + 1)st-degree polynomial of an infinite
sequence of polynomials 7, (- ;7r,21w), m = 0,1,2,..., studied in Gautschi
and Li (1993) and termed there orthogonal polynomials induced by my,. Both
questions (1.1) and (1.3), for Lap,1f, then become considerably more diffi-
cult, and no precise results are known except for the four Chebyshev weight
functions w(@A(t) = (1 — 1)*(1 + t)?, a,8 = +3. For these it has been
shown in Gautschi (1992) that (1.1) is false unless o = g = —%, in which
case TpTn41 1s a constant multiple of the 2nd-kind Chebyshev polynomial of
degree 2n + 1, and hence (1.1) (for Lony1f) is a consequence of the Erdés—
Turédn result. More recently (Gautschi and Li 1996), the analogue of (1.3) was
established for all four Chebyshev weight functions by showing that the re-
spective quadrature rules are positive and therefore convergent, by a classical
result of Pélya (1933). In the case a = 8 = —%, for example, the weights of
the quadrature rule are given by Gautschi and Li (1996, Theorem 1).

Ai:%; i=1,2,...,n,
2m/3 :

NJZM_WQ_, j:172>,n+1
9——8’?]2

For Jacobi weight functions w = w(®P)  there are only conjectural results,
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obtained by extensive computation based on the methods of Section 7.2. From
these it appears that the analogue of (1.1) for Lon1f holds in the Gegenbauer
case @ < o = f < @, where ¢ = —.31 and @ = 1.6 (perhaps even in a slightly
larger interval), and in the Jacobi case when 0 < a,3 < @ (again possibly
in some slightly larger domain; see Gautschi (1992, Conjectures 5.1-5.3).
The case a < 0 remains open. The analogue of (1.3) is conjectured to hold
for Jacobi weight functions with |a| < 1, |8| < 3 (Gautschi and Li 1996,
Conjecture 3.1).

1.2. Rational interpolation

Given N + 1 distinct points {ti}ijio on R and corresponding function values
fi=ft), i=0,1,..., N, the problem now is to find a rational function

p(t)

t) = —=, =N, 1.6
Tm,n( ) q(t) m+n ( )

with ¢ assumed monic of degree n and p of degree < m, such that
Tm,n(ti) = fi, i=0,1,...,N. (1.7)

To derive an algorithm, one starts from the interpolation conditions (1.7),
written in the form

Now recall that the Nth divided difference of a function g can be represented
in the form

N _ N
[to,t1,. .- tnlg =D ggf), wi =[]t —t5). (1.9)
i=0 K j=0

i#i
Letting ¢;(t) = t/, j = 0,1,...,n — 1, multiplying (1.8) by ;(t;)/w; and
summing, yields

N N

3 ¥;(t:)p(t:) ) ¥;(ta) fig(ta)

b}
i—0 Wi =0 Wi

hence, by (1.9),

[to,tl, .. .,tN](’(ﬂjp) = [to,tl, . ,tN](t/ijq), 7=0,1,...,n—1.

But 9;p is a polynomial of degree m+mn—1 < N, hence the divided difference

on the left vanishes. The same is therefore true of the divided difference on
the right, that is,

N f

jq(ti)zpj(ti) =0, j=0,1,...,n—1. (1.10)

i=0 Ot
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Defining the discrete measure dAx to have support points {to,...,tn}, and
jumps w; = fi/w; at t;, we can write (1.10) as

/Rq(t)dz(t) DN =0,  all ¢ € Pp_y. (1.11)

Thus, q(-) = ma(-; dAnN) is the nth-degree monic polynomial orthogonal with
respect to the (indefinite) measure dAy.

The denominator q(-) = 7,(-; dAn), when generated by methods to be
discussed in Section 6, can be checked to see whether it vanishes at any of
the points t; and, thus, whether the existence of the rational interpolant (1.6)
is in doubt.

If all function values are different from zero, then the numerator polynomial
p or, more precisely, its monic companion, pmen € P, can also be charac-
terized as a discrete orthogonal polynomial. Indeed, it is orthogonal relative

to the measure d)\yl) having the same support points as dAy, but jumps

wi(—l) = f7!/w; instead of f;/w;. This follows immediately from (1.8) if we
write it in the form

q(tl) :lﬁ_lp(tz)7 Z.:O717""N7 (1'12)

and apply the same reasoning as above to find
/pmon(t)cp(t) AV =0, allpePu. (1.13)
R

To obtain p itself, it suffices to multiply pon(-) = 7m(-; d)\g\yl)) by a suit-
able normalization factor ¢, for example, ¢ = foq(t0)/Pmon(to) (assuming, of
course, that q(to) # 0, Pmon(to) # 0).

The procedure described is particularly attractive if all rational interpolants
Tmn With m4+n = N are to be obtained, since the numerator and denominator
of rmn, being orthogonal polynomials, can be generated efficiently by the
three-term recurrence relation (cf. 0.2). Some caution, nevertheless, is advised
because of possible build-up of computational errors. These are caused by
the indefiniteness of the inner product (-, -)4x,, in particular by the fact
that the weights w; and wZ(—l) typically alternate in sign. One expects these
errors to be more prevalent the larger the moduli of these weights, hence the
smaller the interval [to, tx].

Notes to Section 1

1.1. The potential failure of I:2n+1 f to converge in the mean to f for the special
choices of nodes studied here must not so much be regarded as a critique of these
choices, but rather as a reflection of the very large class — C[—1, 1] — of functions
f. Adding only a slight amount of regularity, for example Lipschitz continuity with
a parameter larger than one half, would restore (mean) convergence. For smoother
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functions, numerical evidence presented in Gautschi (1992, Table 6.1) suggests very
fast convergence.

An analogue of the Erd6s—Turan result for a class of rational interpolants has
been established in Van Assche and Vanherwegen (1993, Theorem 7).

Mean convergence of extended Lagrange interpolation with 7; the Gauss-Kronrod
points is studied in Li (1994). Other types of extended Lagrange interpolation
by polynomials are studied in Bellen (1981) for Lipschitz-continuous functions
f € Lipy, v > %, and in Criscuolo, Mastroianni and Occorsio (1990, 1991) and
Criscuolo, Mastroianni and Vértesi (1992) with a view toward uniform convergence;
see also Criscuolo et al. (1993) and Mastroianni and Vértesi (1993). For yet other
extended interpolation processes and their L,-convergence for arbitrary continuous
functions, see Mastroianni (1994).

1.2. There are well-established algorithms for constructing a rational interpolant
when one exists; see, for instance, Stoer and Bulirsch (1980, Section 2.2) and Graves-
Morris and Hopkins (1981). The approach described in this subsection, based on
discrete orthogonal polynomials (though relative to an indefinite measure) can be
traced back to Jacobi (1846) and has recently been advocated in Egecioglu and Kog
(1989). A numerical example illustrating its weaknesses and strengths is given in
Gautschi (1989).

2. Approximation
2.1. Constrained least squares approximation

The problem of least squares ties in with the early history of orthogonal
polynomials. We thus begin by looking at the classical version of the problem.

Given a positive measure dA on the real line R and a function f defined
on the support of dA, we want to find a polynomial p of degree at most n
minimizing the L% \-error,

minimize /R p(t) — FO2AAE) :  pe P (2.1)

Often, the measure dA is a discrete measure dy concentrated on N distinct
points of R, with N > n (cf. footnote (!) of Section 0.1). If not, we must
assume that f is in L%i)n and we will also assume that all polynomials are in
L%/\. On the space P (of all real polynomials), respectively Py_; (if dA =
dAn), we introduce the inner product (0.4),

(4, 0) gr = /IR w(tw(t)d\(t),  wv P (resp. u,v € Py_1),  (2.2)

which renders these spaces true inner product spaces. There exist, therefore,
unique polynomials

mr(t; dA) = t* 4+ lower-degree terms , k=0,1,2,..., (2.3)
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satisfying
=0 if k#Y,
(”’“’”)“{ “o it ALe 24)

These are the (monic) orthogonal polynomials relative to the measure dA (cf.
Section 0.2). There are infinitely many of them if the support of dA is infinite,
and exactly N of them (0 < k < N —11in (2.3)) if dA = dAnx. The solution
of (2.1) is then given by

RS coma(t: o = 5TE) an
p(t) —’;) kT (t; dA), il s P (2.5)

the (n + 1)st partial sum of the Fourier series of f in the orthogonal system

{me}-
Suppose now that we wish to minimize (2.1) among all polynomials p € P,
satisfying the constraints

p(s;) = f(s5), ji=0,1,...,m; m < n, (2.6)

where s; are given distinct points on R where f is defined. It is then natural
to seek p of the form

p(t) = Pm(t; f) + sm()6(2), (2.7)

where

—

sm(t) = (t — s]’)? (2'8)

7=0

Pm(-; f) being the unique polynomial in Py, interpolating f at the points
{s;}8* and é a polynomial of degree n —m — 1. Every polynomial of the form
(2.7) is indeed in P, and satisfies the constraints (2.6). Conversely, every such

polynomial can be written in the form (2.7). It thus remains to determine 6.
We have

[1p(e) = £ aNO = [ [pults £) + s(08(2) = S0 A

=/R[f_(t%t;—f) —6(t)]2sfn(t)d)\(t),

so that our minimization problem (2.1), (2.6) becomes
minimize / (A®R) — 822 dA(E) . 6 € Poomet,  (2.9)
R

where
f(t) — pm(t f)
Sm(t)

Here, the expression on the far right is the divided difference of f of order

Alt) = = [S0,81y---+5m,t|f. (2.10)
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m + 1 with respect to the points sg, 1, .-.,5m,t, and its equality with A
is a consequence of the well-known remainder term of interpolation. We
see that the desired polynomial § is the solution of an unconstrained least
squares problem, but for a new function, A, and a different measure, s2, d\.
Therefore, the solution of the constrained least squares problem is given by
(2.7) with

ot (A, k)52, dx
6(t) = dkﬁ' t s dk = —;—‘Ai—‘- ; (211
kz:% () (ks k)52, d )
where
() = 7l sfn dA). (2.12)

It is required, therefore, to construct the orthogonal polynomials relative
to the measure s2, d\, assuming those for d\ are known. This is an instance
of a modification problem; its solution by ‘modification algorithms’ will be
discussed in Section 7.2.

The same idea can be applied to least squares approximation by a rational
function

p(t)
r{t) = —/=,
® =
where ¢ is a prescribed polynomial satisfying
q(t) >0 for t € supp (dA); q(s;) #0, j=0,1,...,m. (2.14)
One finds that

(2.13)

2
minimize / [@ - (t)] dA(t) : p € Py, (2.15)
R Lg(t)
subject to the constraints
p(s;) .
259~ #(s)), —0,1,...,m, 2.16
PO~ flss) (2.16)
is now equivalent to
e 2 5m(t)
minimize / [A(t) — 8(2)] 21 dA(t) : 6 € Pp—m—1, (2.17)
R q
where
t)f(t) — t;
aw) = WO _Pnlbah) g o0 s (218)
Sm(t)
With é so obtained, the desired p in (2.13) is then given by
p(t) = pm(t; af) + sm(t)6(t). (2.19)

The modification of the measure now involves not only multiplication but
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also division by a polynomial. This requires additional algorithms for gen-
erating the respective orthogonal polynomials, which will be the subject of
Section 7.3.

2.2. Least squares approzimation in Sobolev spaces

In order to approximate (in the least squares sense) not only functions, but
also, simultaneously, some of their derivatives, we may pose the problem

8
minimize / SO ) - FODRAN(E) :  pE P, (2.20)
R o=0
where dAg,..., d\s are positive measures on R and each derivative f ©) is

defined on the support of the corresponding measure dA,. The natural scen-
ario in which to consider this problem is the Sobolev space

H®={f Y [ dr, < ) (2.21)
o=0"R

of functions f whose successive derivatives of order ¢ < s are square integ-
rable against the respective measures dA,. If we assume that the measures
d), are such that the space P of polynomials is a subspace of H(R), the
problem (2.20) can be written as

minimize || p— f ”%13: p € Py, (2.22)
where the norm || v ||z, = v/(u,u)n, is defined in terms of the inner product

(u,0)m, = Z / w@ (0@ (£) dAg (0). (2.23)
o=0YR

If dAg has infinitely many points of increase, then, regardless of whether or
not some or all of the other measures dA,, ¢ > 1, are discrete, the inner
product (2.23) is positive definite on Hg(R) and therefore defines a unique
set of (monic) orthogonal polynomials 7g(-) = m¢(-; Hs), k = 0,1,2,...,
satisfying

—0 if kAL,
(”’“’”)Hs{ S0 i kot (224)

These are called Sobolev orthogonal polynomials. In terms of these functions,
the solution of (2.20), as in (2.5), is given by a finite Fourier series,

v com(t: _ (™) H,
p(t) —g} eme(t ), ok = g (2.25)

It is important to note that the inner product in (2.23), if s > 0, no longer
satisfies the basic property (0.9), that is,

(tu,v) g, # (u,tv)m, (s > 0), (2.26)
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which means that we can no longer expect the orthogonal polynomials to
satisfy a simple three-term recurrence relation. The numerical computation of
Sobolev orthogonal polynomials (not to speak of their algebraic and analytic
properties!) is therefore inherently more complicated; we will give a brief
account of this in Section 8.

A widely used choice of measures is

dAs(t) = 7o dA(2), c=0,1,2,...,s, (2.27)

where d\ is a (positive) ‘base measure’ and the 7, > 0 are positive constants
with 79 = 1. The latter allow us to assign different weights to different
derivatives. The most studied case, by far, is (2.27) with s = 1.

2.3. Moment-preserving spline approximation

Given a function f on [0,00), we wish to approximate it by a spline function
of degree m with n positive knots. The approximation is not to be sought
in any of the usual L,-metrics, but is to share with f as many of the initial
moments as possible. This is a type of approximation favoured by physicists,
since moments have physical meaning, and the approximation thus preserves
physical properties.

The most general spline in question can be written in the form

Sam(t) =Y a(n, — )7, (2.28)
v=1

where m > 0 is an integer, uy = max(0,u), a, are real numbers, and
0<M<M< < Tp <00 (2.29)

are the knots of the spline. The arbitrary polynomial of degree m that one
could add to (2.28) must be identically zero if the moments of sy, ,,, are to be
finite. Since we have 2n parameters to choose from — the n coefficients a,
and the n knots 7, — we expect to be able to match the first 2n moments,

00 , 00 )
/ snm(t)t dt = / fOFdt,  j=01,...2m—1  (230)
0 0

This problem, not surprisingly, leads to a problem of Gaussian quadrature.
Assume, indeed, for fixed n € N and m € Ny, that

(i) f € C™HRY],
(i) / f(®)t? dt exists for j = 0,1,...,2n —1,
0
(iil) f® () = ot~ H#) as t — o0, for u=0,1,...,m,

and define the measure

_ 1
dAm(t) = ~—— ™+ fmFD (14t on Ry. (2.31)
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Then we have the following result.

Theorem 2 Given a function f on [0, 0o) satisfying assumptions (i)—(iii),
there is a unique spline function s, m, (2.28), matching the first 2n moments
of f, (2.30), if and only if the measure d\,, in (2.31) admits a Gaussian
quadrature formula

/Ooo g(t) d’\m(t) = Xn: )‘lcjg(tg) + Rr?,m(g), Rim(PQn—l) =0, (232)
v=1

having distinct positive nodes
0<tf <t§ <. <l (2.33)
If that is the case, then the desired spline sy ;, is given by

)\G

_ 4G —
T, =1, a”_(tg’)—mﬂ’

v=1,2,...,n. (2.34)

Proof. Since 7, is positive, substituting (2.28) in (2.30) yields

n Ty . 0o | }
Za,,/ tJ(Tl,—t)mdtz/ Hfit)ydt, j=0,1,...,2n—1. (2.35)
V=1 O 0

We now apply m (respectively m + 1) integrations by parts to the integrals
on the left (respectively right) of (2.35). On the left, we obtain

m{(G+1)(F+2)---(J+ m)]_IZa,, /OTV H+m gy
vt n (2.36)
=ml[(G+1)(G+2) G +m)G+m+ 1] aritml,

v=1

On the right, we carry out the first integration by parts in detail to exhibit
the reasonings involved. We have, for any b > 0,

1
J+1

1 b
~ T 9L (t) dt. (2.37)

/ "Bt = 1 ot

0

The integrated term clearly vanishes at ¢ = 0 and tends to zero ast = b — o0
by assumption (iii) with g = 0, since j + 1 < 2n. The integral on the left
converges as b — oo by assumption (ii); the same is true, therefore, for the
integral on the right. We conclude that

o <IN 1 oo
) dt = ——— L2 dt.
| Prma=—— [Terre

Continuing in this manner, using assumption (iii) to show convergence to
zero of the integrated term at the upper limit (its value at t = 0 always being
zero) and the existence of [;°t/*Hf (#)(t) dt already established to infer the
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existence of [ ¢/ ftl)(#)dt, u=1,2,...,m, we arrive at

( 1)m+1 o i+m m
IR O e e AL AGRIUL!

In particular, this shows that the first 2n moments of dA,, all exist. Since
the last expression obtained, by (2.35), must be equal to the one in (2.36),
we see that (2.30) is equivalent to

_1)m+1

Z m+1 /°° ( tm+1f(m+1)(t) -t dt,
0 m!

j=0,1,...,2n— 1.
These are precisely the conditions for 7, to be the nodes of the Gauss formula

(2.32) and for a, 77" *! to be the respective weights. Both, if indeed they exist,
are uniquely determined. OO

The measure dAn, in (2.31) is neither one of the classical measures nor is
it necessarily positive, in general. Thus we need constructive methods that
also work for sign-changing measures.

The simplest example is the exponential function, f(t) = e~¢, in which
case
Dimlt) = — t™letat  (f(t) = e (2.38)
m!

is a generalized Laguerre measure with parameter @ = m+1, hence indeed one
of the classical measures. Examples of positive measures dA,, are furnished
by completely monotone functions, that is, functions f satisfying

(-DFf® ) >0  onRy, k=0,1,2,.... (2.39)
The physically important example of the Maxwell velocity distribution, f(t) =
et , 1s an example leading to a sign-variable measure,
1
dAn(t) = — I e P dt (F() = e ), (2.40)

where Hp, 1 is the Hermite polynomial of degree m+1. If m > 0, then Hy, 4]
has [(m + 1)/2] positive zeros, hence the measure (2.40) changes sign that
many times.

Although the spline s, ,, was constructed to match the moments of f, it
also provides a reasonably good pointwise approximation. Its error indeed
can be shown to be related to the remainder Rg m Of the Gauss formula (2.32)
in the sense that for any ¢ > 0 one has

f(#) = snm(t) = RS . (hem), (2.41)
where
hem(u) = u” ™D (-7, 0<u< oo (2.42)
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From a known convergence theorem for Gauss quadrature on [0, 00) (cf. Freud
(1971, Chapter 3, Theorem 1.1)) it follows, in particular, that for fixed m,

lim sam(t) = f(t),  t>0,

if f satisfies the assumptions of Theorem 2 for alln = 1,2,3, ... and if dA,,
is a positive measure for which the moment problem is determined.

Similar approximation problems can be posed on a finite interval, which
then give rise to generalized Gauss—Lobatto and Gauss—Radau quadrature for
a measure d\, which again depends on f(m+1),

Notes to Section 2

2.1. Least squares approximation by polynomials was considered as early as 1859
by Chebyshev (1859} in the case of discrete measures dA = dAy. Although Cheby-
shev expressed the solution in the form (2.5), he did not refer to the polynomials
me(-; dAn) as ‘orthogonal polynomials’ — a concept unknown at the time — but
characterized them, as did other writers of the period, as denominators of certain
continued fractions. A more recent treatment of discrete least squares approxim-
ation by polynomials, including computational and statistical aspects, is Forsythe
(1957). The idea of reducing the constrained least squares problem for polynomials
to an unconstrained one involving a new objective function and a new measure can
be found in Walsh (1969, p. 320). For the extension to rational functions, see Lin
(1988).

2.2. In the case of measures (2.27) with s = 1, the Sobolev-type least squares
approximation problem (2.20) was first considered by Lewis (1947), largely, however,
with a view toward analysing the error of approximation (via the Peano kernel,
as it were). The respective Sobolev orthogonal polynomials were studied later by
Althammer (1962) and Grébner (1967) in the case of the Legendre measure, dA(t) =
dt in (2.27). Other choices of measures dA, in (2.23), especially discrete ones for
o > 1, have been studied extensively in recent years. For surveys, see Marcelldn,
Alfaro and Rezola (1993), Marcellan, Pérez and Pifiar (1995), and for a bibliography,
Marcelldn and Ronveaux (1995). Special pairs of measures { d)g, d\y} in the case
s = 1, termed ‘coherent’, are studied in Iserles, Koch, Ngrsett and Sanz-Serna
(1990; 1991) and shown to allow efficient evaluation not only of the Sobolev—Fourier
coefficients ¢, in (2.25), but also of the Sobolev polynomials 7 (; H;) themselves.
For zeros of such polynomials, see Meijer (1993), and de Bruin and Meijer (1995).

An application of Sobolev-type least squares approximation to the solution of
systems of linear algebraic equations is proposed in Moszyriski (1992). Here, s+ 1
is the dimension of the largest Jordan block in the matrix of the system.

2.3. Piecewise constant approximations on R, to the Maxwell velocity distribu-
tion that preserve the maximum number of moments were used in computational
plasma physics by Calder, Laframboise and Stauffer (1983), and Calder and La-
framboise (1986), under the colourful name ‘multiple-water-bag distributions’. The
connection with Gaussian quadrature was pointed out in Gautschi (1984b). Since
piecewise constant functions are a special case of polynomial spline functions, it is
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natural to extend the idea of moment-preserving approximation to spline functions
of arbitrary degree. This was done in Gautschi and Milovanovié¢ (1986), where one
can find Theorem 2 and the error formulae (2.41), (2.42), along with their proofs.
In the same paper, the sign-variable measure (2.40) was examined numerically and
shown to lead, on occasion, to Gauss formulae with negative, or even conjugate
complex, nodes. The analogous approximation on a finite interval, mentioned at
the end of Section 2.3, was studied in Frontini, Gautschi and Milovanovié¢ (1987).
Further extensions can be found in Milovanovié¢ and Kovacevié¢ (1988, 1992), Mic-
chelli (1988), Frontini and Milovanovié¢ (1989), Gori and Santi (1989, 1992) and
Kovacevié and Milovanovié (1996), with regard to both the type of spline function
and the type of approximation.

3. Quadrature
3.1. Gauss quadrature for rational functions

Traditionally, Gauss quadrature rules (cf. Section 0.1) are designed to integ-
rate exactly (against some measure) polynomials up to a maximum degree.
This makes sense if one integrates functions that are ‘polynomial-like’. Here
we are interested in integrating functions that have poles, perhaps infinitely
many. In this case, the use of rational functions, in combination with poly-
nomials, seems more appropriate. The rational functions should be chosen so
as to match the most important poles of the given function. This gives rise
to the following problem.

Let dA be a (usually positive) measure on R, and let there be given M
nonzero complex numbers (i, ..., such that

Cu #0, 1+¢ut#0 on supp (d\), =12 ..., M. (3.1)

For given integers m, n with 1 < m < 2n, find an n-point quadrature rule
that integrates exactly (against the measure d\) the m rational functions

(1+¢ut)™, w=12,...M, s=1,2,...,8,, (3.2)

where s, > 1 and
M
Z Sy =m, (3.3)
w=1

as well as polynomials of degree < 2n — m — 1. If m = 2n, a polynomial
of degree —1 is understood to be identically zero. We then have the extreme
case of 2n rational functions (with poles of multiplicities s, at —1/(,) being
integrated exactly, but no nontrivial polynomials. The quadrature rule is then
optimal for rational functions, just as the classical Gaussian rule is optimal
for polynomials; cf. Section 0.1. The latter corresponds to the limit case
M=m=0.
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In principle, it is straightforward to construct the desired quadrature rule
according to the following theorem.

Theorem 3 Define
M

wm(t) = [T+ ¢ut)™, (3.4)

u=l1

by (3.3) a polynomial of degree m. Assume that the measure d\/w,, admits
a (polynomial) n-point Gauss quadrature formula, that is,

S WCi(C) + RO(f),  RS(Pami) =0,  (35)
=1

14

and define
t,=t%, A =uwlwun(td), v=1,2,... 0 (3.6)
Then
n
[ 9©ax® = X hglte) + Ralo), (37)
v=1
where

Rn(g) =0 ifg€Paypm-1, org(t)=(1+Gt)" 1<p<M, 1<s<sy,
(3.8)

Once again, we are led to a modification problem that involves division by
a polynomial, so that the algorithms of Section 7.3 become relevant.

Proof of Theorem 3. For p=1,2,...,M; s=1,2,...,5,, define

wrn(t)
el = TGy

Since m < 2n and s > 1, we have q, s € Pr—s C Pap—1, and therefore, by
(3.5),

dA(t dA(t n
/]R ﬁ - /Rq#,s(t) ;ﬁ - waqu,s(tf)
— i wG wm(tg) — = Ay
v=1 Y (1 + Cﬂtlg)s v=1 (1 + Clltl/)s ’

where (3.6) has been used in the last step. This proves the assertion in the
top line of (3.8).
To prove the bottom part of (3.8), let p be an arbitrary polynomial in
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P2n—m—1. Then, since pwy, € Pop_1, again by (3.5) and (3.6),

A)
JECECE /(>wm§t> e
—Zw ptGwth:Z/\,,p

v=1 v=1
O

The existence of the Gaussian quadrature formula in Theorem 3 is assured
if it exists for the measure dA and the polynomial w,, has constant sign on
supp (dA). This is typically the case if the complex poles —1/(, (if any)
occur in conjugate complex pairs and the real ones are all outside the support
interval of dA.

Quantum statistical distributions provide important examples of integrals
amenable to rational Gauss-type quadrature. Thus, the Fermi—Dirac distri-
bution gives rise to the generalized Fermi—Dirac integral

k 1
:/ootwl%- 0t 9> 0

e >0, 7nER, (3.9)

where the k-values of physical interest are the half-integers %, % and % Sim-
ilarly, Bose-Einstein distributions lead to the generalized Bose-Einstein in-

tegral
th /1 + 10t
- / 6 >0, n <0, (3.10)
0

et — 1

with the same values of k as before. For the integral in (3.9), the poles are
located at

t=n+Qu-1)ir, p=123,..., (3.11)
whereas for the one in (3.10) they are at
t=nx2uin, $p=0,1,2,... . (3.12)

This suggests taking for the (, in (3.1) the negative reciprocals of (3.11) and
(3.12), respectively. If in the integral (3.9) we match the first n pairs of
complex poles, we are led to apply Theorem 3 with m = 2n and

n
won(t) = [T +€ut)? + 3t
u=1
where £, and 7, are the real and imaginary parts, respectively, of (, =
—(n+ (2u — 1)iw)~!. Similarly for the integral (3.10), where we need to
match the real pole (at 1) and the first n — 1 pairs of complex poles. This
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calls for Theorem 3 with m = 2n — 1 and

n—1

wan—1(t) = (1 + &t) [[1(1 + €ut)® + mit?),
pu=1

where €, and 7, are the real and imaginary parts of ¢, = —(n + 2pir)~L.

3.2. Slowly convergent series

It may seem strange, at first, to see infinite series dealt with in a section
on quadrature. But infinite series are integrals relative to a discrete measure
supported on the positive integers! It is not unnatural, therefore, to try to
approximate such integrals by finite sums. We do this for a special class of
series in which the general term can be expressed as the Laplace transform
of some function evaluated at an integer. Such series exhibit notoriously slow
convergence. We will show that they can be transformed into an integral
containing a positive, but nonclassical, weight function and then apply Gauss
quadrature to obtain an effective summation procedure.
Thus, suppose that

S=San  a=(LHE), (313)
k=1

where Lf is the Laplace transform of some (known!) function f, that is,

(LF)(s) = /0 T et f(8) dt. (3.14)

Then by Watson’s lemma (see, for example, Wong 1989, p. 20), if f is regular
near the origin, except possibly for a branch point at t = 0, where f(t) ~ tA,
A>0,ast — 0, and if f grows at most exponentially at infinity, one has
ay ~ k! as k — 0o, showing that convergence of the series (3.13) is slow
unless X is large. However, we can write

oo

s =S enm=Y [ eMwa
- k=170
= [ Y e rDteTtf(t)de
- /Ooo : ) e_tf(t) dt,

1—et

assuming the interchange of summation and integration is legitimate. This
yields the following integral representation:

S= /0 T ) @ dt (3.15)
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involving the weight function

€(t) = : on [0, 00). (3.16)

Such integrals occur frequently in solid state physics, where € is known as Ein-
stein’s function. (Of course, € is also the generating function of the Bernoulli
numbers.)

There are two approaches that suggest themselves naturally for evaluating
the integral (3.15). One is Gaussian quadrature relative to the weight function
€, if f(t)/t is sufficiently regular, or, if not, with respect to some modified
weight function. The other is rational Gauss quadrature of the type discussed
in Section 3.1, writing

© t flt) _
S = / = . e7tdt, 3.17
o l1l—et ¢ € ( )
letting e~tdt = dA(¢), and matching as many of the poles at +2uin, p =
1,2,3,..., as possible. Both approaches call for nonclassical orthogonal poly-
nomials.

To give an example, consider the series

:Zm, O<v<l, m>1, (3.18)
k=1

where a is a complex number with Rea > 0, Ima > 0. Writing the general
term of the series as

e (k+a)™™ = (LF)(k),
we note that
t—V

v— -m tm! —a
kvl = (E F(l——l/)) k), (k+a) = (E m e t) (k),

so that the convolution theorem for Laplace transforms (see, for example,
Widder 1941, Theorem 12.1a)

Lg-Lh=Lgx*h,
where

(g*h)(t /g h(t —7)dr,

yields

1

t
10 = D —v) /0 Ty dr
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After the change of variable 7 = tu, this becomes
gm—v e—-at

1) =z )IT(1 —v)

The integral on the right, up to a constant factor, can be recognized as
Kummer’s function M(«, 3, z) with parameters @ = 1—v, f =m+1—v and
variable z = at (see Abramowitz and Stegun, eds, 1964, Equation 13.2.1).
Thus,

1
/ (1 — u)™ " du.
0

ft) =t gm_1(t;a,v), (3.19)

where
tn e —at

gn(t;a,v) = m M(1-v,n+2—v,at), n=0,1,2,... . (3.20)

Tt is known that Kummer’s function satisfies a recurrence relation relative

to its second parameter (Abramowitz and Stegun, eds, 1964, Equation 13.4.2),
from which one gets for g,(-) = gn(-;a, ) the three-term recurrence relation

1 n+1l1—v t
t) = —— t+ —— t) — — gn—1(t) ¢, >0,
gn+l() ntl {( + @ >gn1() agn 1( )} n -2

g—l(t) - I-\(l — l/) .
(3.21)
To compute gm—1 in (3.19), it is enough, therefore, to compute go(t) =
e~ *M(1—v,2—v,at)/T(2—v) and then to apply (3.21). On the other hand,
go is expressible (Abramowitz and Stegun, eds, 1964, Equation 13.6.10) in
terms of Tricomi’s form of the incomplete gamma function (Abramowitz and
Stegun, eds, 1964, Equation 6.5.4),

go(t; a,v) = e~ y*(1 — v, —at), (3.22)

where
)= 2 / et14s (3.23)
’7 b I‘\(A) 0 . -

Since go is known to be an entire function of all its variables (see Tricomi
1954, Chapter IV), it follows from (3.21) that each function g,(t) is an entire
function of t. Putting (3.19) into (3.15), we thus finally arrive at

00 ku—l oo
— = t Ve(t) - ~1(t;a,v)dt,

ICX::I (k+a)m A 6( ) 9m 1( @ V) (324)
Rea > 0, O<r<l, m > 1,

with € given by (3.16) and g,—1 an entire function of t. We can now proceed
evaluating the integral on the right as discussed above, either treating ¢t "e(t)
as a weight function in ordinary Gaussian quadrature, or writing te(t) =
(t/(1—e7t))-t7Ve ! and using ¢ Ye~*dt = dA(¢) in rational Gauss quadrature.
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It is worth noting that in this way we can sum series of the more general
form

S=>k"'rk), O<v<l, (3.25)
k=1

where r(k) is any rational function

r(s) = —&ﬂ, degp < degq. (3.26)
q(s)
It suffices to decompose r into partial fractions and to apply (3.24) to each
of them. The parameter —a in (3.24) then represents one of the zeros of g,
and m its multiplicity. If the condition Rea > 0 is not satisfied, we can sum
a few of the initial terms directly until the condition holds for all remaining
terms.

We remark that for series with alternating sign factors, that is,
o0
S =3 (-D*ar,  ar= (L)) (3.27)
k=1

analogous techniques can be applied, with the result that

S = /Ooo ft)p(t)dt, (3.28)

where now
1
t) = —— 3.29
olt) = o (3.29)
is what is known in solid state physics as Fermi’s function.
Notes to Section 3
3.1. Convergence of the quadrature rule (3.5), when m = 2n, supp(d\) = [-1,1]

and ¢, € (—1,1) with s, = 1, for functions f analytic in a domain containing the
interval [—1, 1] in its interior has been studied by Lépez and Illan (1984). Theorem
3, in this case, is due to Van Assche and Vanherwegen (1993, Theorem 1). These
authors also consider a quadrature rule of the type (0.1) with supp(d\) = [-1,1]
whose nodes are the zeros of the rational function (1+ (,t)~* + ZZ;% cu(1+¢,t)!
orthogonal (in the measure dA) to 1 and to (14 (,t)™!, p=1,2,...,n — 1, where
Cu € (—1,1) are given parameters. This is no longer a ‘Gaussian’ formula, as would
be the case for polynomials, but leads to polynomials orthogonal with respect to the
measure d\/(wy-1wr), where wp, (t) = H,T=1 (14¢ut). The use of conjugate complex
parameters ¢, in the context of rational quadrature rules is considered in Lépez and
Ill4n (1987). Theorem 3 in the general form stated is from Gautschi (1993b), where
one can also find numerical examples. The application of rational Gauss formulae to
generalized Fermi-Dirac integrals (3.9) and Bose—Einstein integrals (3.10) is further
discussed in Gautschi (1993c) and has proven to be very effective.
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3.2. The use of Gaussian quadrature for the purpose of summing infinite series has
already been proposed by Newbery (unpublished). Summation of series (3.13) and
(3.27) involving the Laplace transform by means of Gaussian quadrature relative to
Einstein and Fermi weight functions, respectively, was first proposed in Gautschi
and Milovanovié (1985). The technique has since been applied to series of the type
(3.25), and to analogous series with alternating sign factors, in Gautschi (1991a),
and was also used in Gautschi (1991b) to sum slowly convergent power series of
interest in plate contact problems. For the latter, an alternative complementary
treatment has been given in Boersma and Dempsey (1992). Series of the type
(3.18) were encountered by Davis (1993) in his study of spirals, in particular in his
attempt to smooth certain discrete spirals ascribed by him to the 4th-century BC
mathematician Theodorus. The treatment given here is taken from Davis (1993,
Appendix A), where one also finds numerical examples. Alternative approaches
using special function theory can be found in Boersma and Dempsey (1992), and
using Euler-Maclaurin summation in Lewanowicz (1994); see also Davis (1993, pp.
40-41). Series (3.13) and (3.27) in which the terms aj are values f(k) of certain
analytic functions f are summed in Milovanovié¢ (1994) by Gaussian quadrature
involving weight functions cosh™2(t) and sinh(t)cosh™2(t) on R,. Applications
to series of the type (3.18), also with alternating signs, and to the Riemann Zeta
function, are given in Milovanovié¢ (1995).

PART II: COMPUTATION

4. Computation of Gauss-type quadrature rules

In many applications, as we have seen in Part I, the need for orthogonal
polynomials arises via Gauss-type quadrature with respect to some measure
dA. We therefore begin by discussing the computational aspects of Gaussian
quadrature rules,

4.1. Gaussian rules

We assume that dA is a positive measure whose support contains infinitely
many points, and all moments of which exist. There then exists, for each
integer n > 1, an n-point Gauss formula

[ rwaxe Z/\Gftc +RS(f), RS(Pen-1)=0.  (41)

The connection with orthogonal polynomials is well known (cf. Section 0.1).
The nodes tG are the zeros of m,(-; d)), while the weights AG — also called
the Christoffel numbers — can be expressed in various ways in terms of the
same orthogonal polynomials. For purposes of computation, however, it is
better to characterize both quantities in terms of an eigenvalue problem.
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To describe this characterization, we recall (cf. Section 0.2) that every
system of (monic) orthogonal polynomials mg( - ) = mg(-; d\) satisfies a three-
term recurrence relation

Ter1(t) = (£ — (:rli)ﬁ)(ti—o,ﬂkﬂk;rt)((?),: y k=0,1,2,..., (4.2)

where the coefficients oy = ax(dA), Bx = Br(dA) are real numbers uniquely
determined by the measure d)\, and each [k is positive. With the recursion
coefficients o, B we associate an infinite, symmetric, tridiagonal matrix

a  VBi 0
VB o VB
Joo = Joo( dA) = VB a2 VP . (43)

0

the Jacobi matriz belonging to the measure dA. Its n X n leading principal
minor matrix will be denoted by

Jn = Jn(dA) = [Joo( dN)]nxn- (4.4)

The Gaussian nodes and weights can then be expressed in terms of the ei-
genvalues and eigenvectors of J,(dA) according to the following theorem.

Theorem 4 Let z, be the eigenvalues of J,(dA), and u, the corresponding
normalized eigenvectors, so that

T, =1, wv=12,...,n (4.5)

Jp(dNuy, = zyu,, u,,

Then the Gaussian nodes t& and weights AS in (4.1) are given by
tf =1z, /\S = ,301112,’1, v=12,...,n, (4.6)
where u,,1 is the first component of u, and G = [ dA(t).

Thus, the Gauss formula can be generated by computing the eigenvalues
and (first components of) eigenvectors of a symmetric tridiagonal matrix.
This is a routine problem in numerical linear algebra and can be solved by
powerful algorithms such as the QR algorithm with carefully selected shifts
(see, for example, Parlett 1980, Sections 8.9-8.11). The approach via eigen-
values is generally more efficient than traditional methods based on polyno-
mial rootfinding.

Note also that the positivity of the Gauss weights )\9 is an immediate
consequence of (4.6).

Proof of Theorem 4. Let 7 (- ) = k(- ; dA) denote the normalized orthogonal
polynomials, so that 7y = \/(7k, Tk) dx k. Inserting this into (0.11), dividing
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by v/ (Tk+1, Tk+1) dx, and using (0.12), we obtain
. Tk Tk—1
Trt1(t) = (t —) = — B ———=,
) vV Br+1 V Br+108k
or, multiplying through by /841 and rearranging,

7k (t) = i (t) + VBeFr—1(t) + v/ Brs1Trt1(2), @7
k=0,1,2,...,n—1. '

In terms of the Jacobi matrix J, = J,(dA) we can write these relations in
vector form as

t7(t) = Jn@t(t) + vV Bnfn(t)en, (4.8)

where 7(t) = [#io(t), 71 (t), ..., Tn_1(t))T and e, = [0,0,...,0,1]T are vectors
in R”. Since t€ is a zero of 7y, it follows from (4.8) that

t7(t%) = L7 (t%), v=1,2,...,n (4.9)

This proves the first relation in (4.6), since 7 is a nonzero vector, its first
component being

7o = By 2. (4.10)

To prove the second relation in (4.6), note from (4.9) that the normalized
eigenvector u, is

~1/2
1 ) n ~
W= GG ") (;ﬂﬁ_ﬂt,?)) #((5).

Comparing the first component on the far left and right, and squaring, gives,
by virtue of (4.10),

1
—_ e =fud,, v=12...,n (4.11)
=1 773—1(t§) .

On the other hand, letting f(t) = #,_1(¢) in (4.1), one gets, by orthogonality,
using (4.10) again, that

n
ﬁéﬂéﬂ_l,o = Z A7, 1(t$) (6u—1,0 = Kronecker delta),

r=1
or, in matrix form,
PAC = g1/, (4.12)

where P € R™ " is the matrix of eigenvectors, A¢ € R" the vector of Gauss
weights, and e; = [1,0,...,0]7 € R™. Since the columns of P are orthogonal,
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we have

n
PTP=D, D=diag(d,dy...,dn), dy= 72 ,(t5).

Now multiply (4.12) from the left by PT to obtain
D/\G=B3/2PT61:ﬂé/z-ﬁo_lme:e, e=[1,1,...,1)%.
Therefore, \G = D~ le, that is,
1
n=1 o1 (t)
Comparing this with (4.11) establishes the desired result. O

)‘92 v=12,...,n.

Similar techniques apply to generate Gauss—Radau and Gauss—Lobatto
quadrature rules. This will be discussed in Sections 4.2 and 4.3. Before
we do so, however, it is useful to pursue the connection between Gauss quad-
rature formulae and linear algebra just a bit further.

If U = [u1,ug,...,uy] is the (orthogonal) matrix of the normalized eigen-
vectors of J-= Jn(dA), then, by (4.5) and the first relation in (4.6),
JU=UD;, UTU=1I D,=diag(t{,5,...,15) (4.13)

provides the spectral resolution of J. The second formula in (4.6), on the
other hand, can be written in matrix form as

VAl =B TU, VA= [\//\_15 \/,\?\/AT?]T (4.14)

where e; = [1,0,...,0]T is the first coordinate vector. Letting @ = U7, we
can summarize (4.13), (4.14) by

QTDQ=J  Q"VA=Vh e
We then have

1 of 1 VAT [10T]
0 QT VA Dy 0 Q

:[ ) \/XTQ]_[ : %e{]. (4.15)

QTVX QTD,Q | L VbBea J

Thus, the ‘Gauss matrix’ in the middle on the far left is connected with the
(slightly extended) Jacobi matrix on the far right by the orthogonal similarity
transformation (4.15). This is important for two reasons: it shows that the
passage from the Gauss quantities (more precisely, the n square roots (XG)1/2
and n nodes tf) to the recursion coefficients (more precisely, the 2n quantities

LN

. By, ao,ai,...,an—1) is a stable process in terms of linear
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perturbations. (Orthogonal transformations leave the Euclidean length of
vectors unchanged.) Secondly, (4.15) suggests Lanczos-type algorithms for
computing the recursion coefficients (cf. Section 6.2).

4.2. Gauss—Radau rules

We write the Gauss—Radau formula in the form

[F0NG = 5@ + S ARG + R, REPwm) =0, (410

v=1

where a = inf supp(d)) is assumed to be a finite number. (Everything below
will also be valid if a < inf supp(dA).) We recall from Section 0.1 (where n
is to be replaced by n+ 1) that the nodes ¢ are the zeros of m,(-; d),), that
is,

ma(th dAg) =0, v=1,2,...,n, (4.17)

where dAq(t) = (¢t — a)dA(¢), and that, with the nodes so determined, the

formula (4.16) must be interpolatory, that is, have degree of exactness n.
With 7x(-) = #x(-; d)\) denoting, as before, the normalized orthogonal

polynomials, we adjoin to the n relations (4.7) the additional relation

tin(t) = alFn(t) + VPnin-1(t) + \/ Bns1mh i1 (2). (4.18)

Here, Bn = Bn(dA), Bpn+1 = Br+1(dA), and ¢, is a parameter to be determ-
ined; once aj, is known, (4.18) defines 7y . Letting

7‘i'(t) = [frO(t)’ 'frl(t)a ERER) ﬁn(t)]T7 €n+l = [0’ 0,..., 1]T € Rn+17

we write (4.7) and (4.18) in matrix form as

£ (t) = Ty 7 () + [ Brri s (Densn, (4.19)
where
[ a0 VB 0
VB ax .
1 = Jpp1(dA) = - . (420)
IBn—l (877 | \/,B_n
K VB

We now choose a, in such a way that 7, ,(a) = 0. By (4.18), this requires
that

afn(a) — oy ftn(a) — V/ Bnin—1(a) = 0,
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or, reverting to monic polynomials and recalling that 7,1 /7, = ,371/ 27rn_1 [T,
Tn—1 (a)
o =a— —_—. 4.21
n ﬂn T (CL) ( )

(The denominator m,(a) does not vanish by the assumption on a.) Therefore,

Thi1(t) = (t — a)wn(t), Wn, € Py, (4.22)
and, by (4.19), the zeros ty = a, t1,t2,...,t, of m; , are the eigenvalues of
i1, with 7(a), 7(t1),. 7~r( n) the corresponding eigenvectors. We now
show that t, =t v =1, 2 , M, that is, except for a constant factor,

wn(t) = mn(t; dAg)- (4.23)

By (4.18) we have indeed

VBnt1Taya(t) = Et—

n(t) = VBpftn-1(t )
_ (8 — VBt 1(t) + (an — a})nl)
= \/mﬁnﬁ- t) + (an - n)ﬂ-n(t)’

where in the last step we have used (4.7) for k = n. There follows, for any
p € Pn—l,

VBt [ maa (e \/ﬂnﬂ / wn(t)p(2) - (t — a)dA(t)
7 (\/ Br1Tin41(t — ap) 7 (t)|p(t) dA(t) =

by the orthogonality of the 7;. This proves (4.23).

By reasonings virtually identical with those in the proof of Theorem 4, one
finds that

)\f = Botu,1, vr=20,1,2,...,n, (4.24)

where u,,; is the first component of the normalized eigenvector u, of J,,
corresponding to the eigenvalue t2 (where tg = a). We thus have the following
result.

Theorem 5 The Gauss—Radau nodes tf = a and t£,... t2 are the eigen-
values of the matrix J;, ;(dX) in (4.20), where o}, is defined by (4.21). The
Gauss-Radau weights A are given by (4.24), where u,; is the first com-
ponent of the normalized eigenvector u, of J; ;(dA) corresponding to the
eigenvalue tf.

The same theorem also holds for Gauss-Radau formulae with the fixed
node at the upper end of the support interval. That is, if dA has a support
bounded from above, the number a, both in the formulation of Theorem 5
and in (4.16) and (4.21), may be replaced by b > sup supp(dA\).

Computing «;, by (4.21) may raise some concern about the possibility of a
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large cancellation error. The example of the Jacobi measure dA(®#)(t) = (1—
t)%(1 +t)# dt on [—1, 1], however, suggests that this concern is unwarranted.
In this case, say for a = —1, one indeed finds that

T (—1) 2 (1 N a+ﬁ) (1 + a+ﬁ+1)
which for n — 0o tends to —5, so that for large n at least, there is no danger

of cancellation. It is also interesting to note that for the generalized Laguerre
measure dA\{(®)(t) = t®e~*dt on [0,00), and a = 0, one has o, = n.

Bn (dA = dA@B),

4.3. Gauss-Lobatto rules

Assuming that dA has bounded support, we write the Gauss-Lobatto formula
in the form

/m F&)dA®) = M f(a +ZALftL+AL+1f<>+R£<f>,

(]P’zn+1) =0,

where a < inf supp(dA) and b > sup supp(dA). We recall from Section 0.1
that the interior nodes t{j are the zeros of m,(-; dAgp), that is,

Tn(tl; dAgp) =0, v=12,...,n, (4.26)

where dAgp(t) = (t—a)(b—t) dA(t), and that with these nodes so determined,
the formula (4.25) must be interpolatory, that is, have degree of exactness
n + 1. We proceed similarly as in Section 4.2, but adjoin to the n relations
(4.7) not one, but two additional relations:

tTn(t) = an®n(t) + VBaftn-1(t) + :L+17r;kt+1(t)’
tmne1(t) = o1 1 (8) 4 /Bh 1 Tn(t) + /Bry2mnia(t)

where a7 ,, 3%, are parameters to be determined and a, = a,(d\), B, =
Bn(dA), Bnt2 = Bnt2(dA). We now define

a0 VA 0 -
VB a1 VB2

(4.25)

(4.27)

’:H-? = 7,:+2(dA) = Qn_1 ,/18" ’
VBn COn v/ :1+1

| 0 VIB:L-Fl i1 J

(4.28)

so that, with the usual notation

#(t) = [Fo(t),. .., Fn(t), Thp1 ()T,  ens2=1[0,...,0,1]7 € R™*?,
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the relations (4.7) and (4.27) can be written in matrix form as

t7(t) = Jnya®(t) + 1/ Brtr2Tnio(t)enta. (4.29)

We now choose o, 1, 85 such that 7}, 5(a) = 7, 5(b) = 0. By the second
relation in (4.27) this requires

(t —ap 1) 1(t) =/ Br 1 Ta(t) =0 for t = a, b,

or, using the first relation in (4.27) to eliminate 7}, , 1,

(t—an )t — 0n)Tn(t) — VBrfin—1(t)] — Bpy1Tn(t) =0 for t = a,b.
The expression in brackets, however, is v/Bn+1%n+1(t); thus,

= apy1)y/ Brt1fnt1(t) — Bpiafn(t) =0 for t = a,b.

Converting to monic polynomials, we obtain the 2 X 2 linear system

Tnt1(a) mn(a) anyq _ amni1(a) ]
| i =L |

Tnt1(b)  7n(b) Brs1 brn+1(b)
By assumption on a and b, we have sgn[m,y1(a)mn(b)] = (=1)"*! and
sgn[mp41(b)7n(a)] = (—1)", so that the determinant is nonzero and, in fact,

has sign (—1)"*!. The system, therefore, has a unique solution, namely

., = (aTni1(@)Tn(b) — brns1(b)Tn(a))/An,
= (- At @ (6)/An, (4.30)

where
Ay = Tpy1(a)Tr(b) — Ty (b)mr(a). (4.31)

Since both A,, and mn11(a)mr+1(b) have the sign (—=1)"*! we see that 3, il >
0, so that m; | and 7y 5 in (4.27) are uniquely determined real polynomials,
and Jj,, in (4.28) a real symmetric tridiagonal matrix. Its eigenvalues, by
(4.29), are the zeros of 7}, o, among them a and b. Writing

Thio(t) = (t = a)(b—t)wn(t),  wn € Pn, (4.32)
we now show that, up to a constant factor,
wn(t) = mp(t; dAqgp), (4.33)

so that the eigenvalues of J, 5 are precisely the nodes of the Gauss—Lobatto
formula (4.25), including a and b (¢f. (4.26)). Using in turn the second and
first relation of (4.27), we have

V Brt2my o(t) (t —an )T g1 (t) — /Br i Ta(d),
V BrsBriamyo(t)  =(t — afy)[(t — an)Tn(t ) VBafn-1(t)] — Bry17n(t)
=(t — 1)V Bni1Tns1(t) — BryaTalt).

I
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It follows that 7, 5 is orthogonal relative to the measure dA to polynomials
of degree < n, which by (4.32) implies (4.33).

Since, again by (4.29), the eigenvectors of J} , are #(tL), v = 0,1,...,n,
n + 1, where t§ = a, tL; = b, the now familiar argument (used previously
in Sections 4.1 and 4.2) yields the following theorem.

Theorem 6 The Gauss Lobatto nodes t§ = a, tﬁﬂ = b and tf, ...tk
are the eigenvalues of the matrix J,,(dA) in (4.28), where o, B, are
defined by (4.30), (4.31). The Gauss-Lobatto weights AL are given by

AL = BouZy, v=0,1,2,...,n,n+1, (4.34)

where u,,1 is the first component of the normalized eigenvector u, of J;; ,5(dA)
corresponding to the eigenvalue tf.

Since, as already noted, the two terms defining A, in (4.31) are of opposite
sign, there is no cancellation in the computation of A, nor is there any in
computing 3;, ;. For ay;; this may no longer be true (indeed, o}, = 0 for
symmetric measures!), but here it is more the absolute error than the relative
error that matters.

The construction of Gauss-type quadrature formulae is just one of several
instances illustrating the importance of the recursion coefficients ag(dA),
Br(dA) for computational purposes. It is for this reason that all our con-
structive methods for orthogonal polynomials are directed toward computing
these coefficients.

Notes to Section 4

4.1. The fact that Gauss quadrature nodes can be viewed as eigenvalues of a
symmetric tridiagonal matrix — the Jacobi matrix — has long been known. The
characterization of the Gauss weights in terms of eigenvectors seems more recent;
it was noted in Wilf (1962, Chapter 2, Exercise 9) and previously, around 1954, by
Goertzel (Wilf 1980), and has also been used by Gordon (1968). The importance of
these characterizations for computational purposes has been emphasized by Golub
and Welsch (1969), who give a detailed computational procedure based on Francis’s
QR algorithm. Alternative procedures that compute the Gauss nodes as zeros of
orthogonal polynomials by Newton’s method or other rootfinding methods not only
require considerable care in the selection of initial approximations, but also tend to
be slower (Gautschi 1979). Also of importance is the inverse problem (Boley and
Golub 1987) - given the Gauss nodes and weights, find the corresponding Jacobi
matrix — and its solution by Lanczos-type algorithms.

4.2, 4.3. The eigenvalue techniques described for generating Gauss—Radau and
Gauss-Lobatto quadrature rules are due to Golub (1973); our derivation slightly
differs from the one in Golub (1973).
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5. Moment-based methods

The classical approach of generating orthogonal polynomials is based on the
moments of the given measure dA:

pr = pr(dX) :/tkd)\(t), k=0,1,2,... . (5.1)
R

The desired recursion coefficients can be expressed in terms of Hankel de-
terminants in these moments,

D; D,
a(d) = F — 5
Dx’:Ille ) k k=0,1,2,..., (5.2)
Bi(dA) = — Dz
k
where Dy = D_y = 1, D1 = po, Dj = 0, D} = 1 and Dy, D), m >
2, are determinants whose first row consists of g, pi1,...,4m-1 and uo,
U1y .- -5 Bm—2, tm, respectively (the others having the subscripts successively

increased by 1). Likewise, the orthogonal polynomials themselves admit the
determinantal representation

Ho M1 vt Mnel fn
R R R
Ta(t; dA) = roel IR (5.3)
" Mn-1 Pn ot H2n—2 Mon-1
1 t ... gl tn

The trouble with these formulae is that the coefficients oy, B, and with them
T, become extremely sensitive to small changes (such as rounding errors) in
the moments as k increases. In other words, the (nonlinear) map

K, : R?® - R?" w— p, (5.4)
which maps the moment vector g = [ug, #1, . .., d2n—1]T to the vector p =
[0, ..+, n—1,80,---,8n_1]T of recursion coefficients becomes extremely ill

conditioned. Therefore it is important to study the condition of such moment-
related maps.

A natural idea to overcome this difficulty is to use modified moments in-
stead. That is, given a system of polynomials {py}, one uses

my, = mi(dX) = /pk(t) dA®), k=0,1,2,..., (5.5)
R
in place of ug. One then has a new map K,,
Ky : R S R mw— p, (5.6)

where m = [mg,my, ..., man_1]7, which one hopes is better conditioned than
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the old map (5.4). We discuss the conditioning of these maps in Section
5.1. In Section 5.2 we develop an algorithm that implements the maps A, in
(5.4) and (5.6) when the polynomials py defining the modified moments (5.5)
satisfy a three-term recurrence relation. An example will be given in Section
5.3.

5.1. The conditioning of moment maps

The analysis of the map K, in (5.4) or (5.6) is facilitated if the map is thought
of as a composition of two maps,

K, = Hy 0 G, (5.7)

where Gy, : R?® — R?™ maps p (respectively m) into the Gaussian quadrature
rule,

Gn: i (resp. m) — 7, v=[A1,.. Ans 1, ,tn]T, (5.8)

where A, = XG, t, = tC (cf (4.1)), and H, : R?" — R2™ maps the Gaussian
quadrature rule into the recursion coeflicients,

H,: v p. (5.9)

The reason for this is that the map H,,, as was seen at the end of Section
4.1, is well conditioned, and G, is easier to analyse. For a direct study of the
map K, see, however, Fischer (1996).

Just as the sensitivity of a function f: R — R at a point & can be measured
by the magnitude of the derivative f’ at x, in the sense that a small change dz
of z produces the change df(z) = f’(x)dz, we can measure the sensitivity of
the map G,: R?™ — R?" at a given vector u (respectively m) by the magnitude
of the Fréchet derivative at p (respectively m). For finite-dimensional maps,
this derivative is nothing but the linear map defined by the Jacobian matrix.
We thus define

cond G, = || Gy, ||, (5.10)

where by 0G, we denote the Jacobian matrix of the map G, and where for
|| - || we can take any convenient matrix norm. Note that this concept of
condition is based on absolute errors; one could refine it to deal with relative
errors as well, but we shall not do so here.

5.1.1. We begin with the map Gy for ordinary moments. Since the Gauss
formula (4.1) is exact for the first 2n monomials ¢/, j = 0,1,...,2n — 1, we
have

n
Z,\Vt{;:/tfdA(t)zuj, j=0,1,...,2n—1,
v=1 R
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which can be written as
n .
(V) =p, B =D_ M, j=01,..2n-1 (5.11)
v=1
The map Gy, consists in solving this (nonlinear) system for the unknown
vector 7y, given the vector u. The Jacobian 8G,,, therefore, is the inverse of
the Jacobian 0® of ®. This latter is readily computed to be

1 - 1 0 .. 0
ti ety A1 e An
o=} ¥ ... £ 2\t . 2ntn =TD;,
g2l 2l (n - DA (20— D)A22
where T is the confluent Vandermonde matrix
1 . 1 0 .. 0
t cee tn 1 . 1
T=| t ... 2t e 2ty (5.12)
il g2l (op 132 L (2n - 1)2n2

and D) the diagonal matrix
Dy = diag(1,...,1,A1,...,An). (5.13)
Therefore,
0G,, = DT, (5.14)

It is now convenient to work with the uniform vector and matrix norm
| Il = || - loo- Since 30—y Ay = o implies A, < po, and At > pg?, it
follows readily from (5.14) that

I G || > min(L, g ) 1 T7H |-

Since the factor on the right involving pg is unimportant, we shall henceforth
assume that pug = 1 (which amounts to a normalization of the measure d\).
To obtain a particularly simple result, we further assume that dA\ is supported
on the positive real line,

supp(d\) C R4.

It then follows from norm estimates for the inverse confluent Vandermonde
matrix (see Gautschi 1963) that

:/l=1(1 + tV)2

minlg,,Sn {(1 + ty) Z=1 (t,, — tﬂ)2}
pFEY

| 0Gn || >
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By definition (5.10) of the condition of G,, and because the {¢,} are the zeros

of mp(+) = mp(-; dA), we can write this inequality more elegantly as
ma(=1)

miny<y<n{(1 +t)[m (8)]7}

Elegant as this result may be, it is also quite disconcerting, since orthogonal
polynomials are known to grow rapidly with the degree when the argument
is outside the support interval. In (5.15), the argument is —1, a good distance
away from R, and squaring the polynomial does not help either! Since the
denominator in (5.15) grows only moderately with n, we must conclude that
G, becomes rapidly ill conditioned as n increases.

To illustrate (5.15), consider the (normalized) Chebyshev measure dA(t) =
17t(1 = #)]71/2 on [0,1], for which 7, = T, the ‘shifted’ Chebyshev poly-
nomial, except for normalization. It then follows from (5.15) by elementary
calculations that

cond G, > (5.15)

(3+ V8"
64n?

The lower bound happens to grow at the same exponential rate as the (Turing)
condition number of the n x n Hilbert matrix!

cond G, > (mn =T}).

5.1.2. We consider now the map Gy, : m — +, where m € R?" is the vector of
modified moments (5.5). We assume that the polynomials p; defining these
modified moments are themselves orthogonal, but relative to a measure, ds,
over which we can exercise control,

() =m(-;ds),  k=0,1,2,... . (5.16)

The hope is that by choosing ds ‘close’ to the target measure dA, there is
little chance for things to go wrong during the ‘short’ transition from the py
to the my.

In analysing the condition of G,,, one arrives at a more satisfying result
if, instead of the modified moments my, one departs from the normalized
modified moments

- mg

my = ——,
Il Pe [l as

We thus consider the map

k= 071’27' < || Dk ||ds = (pkapk)ds . (517>

Gr : R™ »R™ ey, o= [hg, R, ..., on 1]t (5.18)

The preliminary map m +— 1 is a perfectly well-conditioned diagonal map,
and therefore does not distort the condition of Gj.
Similarly, as in (5.11), the map G,, amounts to solving the nonlinear system

n
F(y)y=m, Fj(v)=s;"Y Apilt,), §=0,1,....2n—1,
v=1
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where s; = || p; ||as, and

oG, = (0F)™ L.
By an elementary computation,

OF = D;1PD,,

where Dy = diag(sg, 81, --.,82n—1), Dx =diag(l,...,1,A1,..., ), and P €
R?™%?" is a confluent Vandermonde matrix in the polynomials {py}, that is,

I‘OWjP = [pj(tl), .. ,pj(tn),p;-(tl), ‘e ,p;(tn)], j = 0, 1, e ,271 — 1.
(5.19)
Therefore,
8G, = DY'*P71D;. (5.20)

In order to invert the matrix P in (5.19), we let h,, k, be the fundamental
Hermite interpolation polynomials of degree 2n — 1 associated with the Gaus-
sian abscissae t1, t2,...,tn:

hy(ty) = 6uy, hi(tu) =0;
ku(ty) =0, ky,(ty) = bup,

and expand them in the polynomials {py},

(5.21)

2n 2n
hy(t) = Z auuPu—1(t), ky(t) = Z buupu—1(t), v=12,...,n.
p=1 pu=1

(5.22)
Letting

A= [avu]’ B= [bl/#]»

we can write the interpolation conditions (5.21), in conjunction with (5.19),
in the form

AP =[1,0], BP=[0,1I],

alr-lo 7]

P*lz[A].

We are now ready to compute the norm of dG,, in (5.20). This time it
turns out to be convenient to use the Frobenius norm || - || = || - ||p. Since

(DYPPIDy)y, = sp—1aup, (DY P IDg)yinp = Ayt su—1bup,
v=12...,m u=12,...,2n,

that is,

which shows that



ORTHOGONAL POLYNOMIALS: APPLICATIONS AND COMPUTATION 85

one indeed obtains

| 0 |2 = Zzsul( +55th) (529

v=1 pu=1
from (5.20). On the other hand, by (5.22),

/h2 t)ds(t Z aup,au;g/pp—l(t)pn 1 Zsp—lauu’

por=1

where the last equation follows from the orthogonahty of the Pi- Similarly,

/k2 t)ds(t Zsu 1bvu

Hence, recalling (5.10), equation (5.23) finally yields

n 1/2
cond Gy, = { /R ; [h‘ﬁ( ﬁkf( )] ds(t)} . (5.24)

This result clearly identifies the factors influencing the condition of G,.
On the one hand, we have the polynomial of degree in — 2,

n
ont ) = 3 [12(0) + 5200)]. (5.25)
v=1
appearing in the integrand of (5.24), which depends only on the measure dA
(through the Gaussian nodes t, = t&). On the other hand, there is integration
with respect to the measure ds. It is a combination of both, namely the
magnitude of g, on the support of ds, which determines the magnitude of
cond én.
We note from (5.21) and (5.25) that gn(-) = gn(-; dA) is strictly positive
on R and satisfies

gnl(ty) =1, ah(t,) =0, v=12,...,n (5.26)

(By themselves, these conditions of course do not yet determine g,.) Ideally,
one would like g, to remain < 1 throughout the support of ds, in which case
cond G, would be bounded by so = ( Jr ds(t))'/2, uniformly in n. Unfortu-
nately, this is only rarely the case. One example in which this property is
likely to hold, based on computation, is dAx(t) = [(1 — k2t2)(1 — ¢2)]~1/2dt
on [—1,1], where 0 < k < 1. For k = 0, it was shown in Fischer (1996)
that g, <1+ 2/72 on [—1,1]. In other cases, such as dA,(t) = t In(1/t) on
[0,1], where o > —1, the property gn(t) < 1 holds over part of the interval,
whereas in the remaining part, g,, assumes relatively large peaks between
consecutive nodes t,, but such that the integral in (5.24) (when ds(t) = 1) is
still of acceptable magnitude.
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Fig. 1. The polynomial g,, n = 5,10, 20, 40, for the Maxwell measure with ¢ = 1

An example of interest in quantum physics is the Maxwell velocity distri-
bution '

dA\t)=edt  on[0,d, 0<c<oo. (5.27)

One finds by computation that g, ‘almost’ satisfies g, < 1 on [0, c] when c is
only moderately large, but develops larger and larger peaks, encroaching on
an ever increasing portion of the interval, as ¢ increases. This is illustrated
in Fig. 1, which depicts log g, for n = 5,10, 20,40 in the case ¢ = 1, and in
Fig. 2, where the analogous information is shown for ¢ = 5. The respective
condition numbers (when ds(t) = dt) are all less than 1 in the case ¢ = 1, and
range from 3.52 x 1012 to 8.57 x 1019 when ¢ = 5. Fig. 2 is also representative
for the case ¢ = 0o. Arguably, Legendre moments (ds(t) = dt) are a poor
choice in this case, but it has been observed in Gautschi (1996c) that even
the best choice, ds(t) = dA(t), gives rise to very large condition numbers if
c is large.

It has generally been our experience that cond G,, becomes unacceptably
large, even for moderately large n, when the support of d\ is unbounded, as
in the case ¢ = oo of (5.27).

A fina] example of some interest in theoretical chemistry involves a meas-
ure dA of Chebyshev type supported on two separate intervals, say [—1, —¢]
and [€,1], where 0 < £ < 1. Here, all nodes ¢, congregate on the two support
intervals, at most one being located on the ‘hole’ [—¢&,&] (see Szegb 1975,
Theorem 3.41.2). As a consequence, gy, is likely to remain relatively small
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Fig. 2. The polynomial g,,, n = 5,10, 20, 40, for the Maxwell measure with ¢ = 5

(perhaps even < 1) on the two support intervals, but may well become ex-
tremely large on the hole. To avoid a large condition number cond Gy, it is
then imperative not to choose a measure ds for the modified moments that is
supported on the whole interval [—1, 1], but one that preferably has the same
support as dA.

5.2. The modified Chebyshev algorithm

We assumed in Section 5.1.2 that the polynomials p; defining the modified
moments (5.5) are themselves orthogonal. We now assume only that they
satisfy a three-term recurrence relation

p—l(t) = 07 pO(t) = 17
pk+1(t) = (t - a’k)pk(t) - bkpk—l(t)v k= 0, 1a 2) R

with known coeflicients ay, by, where the by need not necessarily be positive.
This, in particular, encompasses the case ax = by = 0, leading to pi(t) = t*,
hence to ordinary moments (5.1).

To formulate an algorithm that implements the map K, : m — p, we
introduce ‘mixed moments’

oo = [ mOp)dNO, k21, (5.29)

(5.28)
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and immediately observe that, by orthogonality, oy ¢ = 0 for k > £, and

[rODD = [ mbpa @A =oee, k21 (5:30)

The relation ogy1 k-1 = 0, therefore, in combination with the recurrence
relation (0.11) for the 7, yields

0= /R[(t — ag)Te(t) = Brmk—1(t)pk—1(t) AA(t) = Ok k — BrOk—1,k-1,

hence

Bp= 2Rk p_123... . (5.31)

Ok—1,k—1

(Recall that Sp = mg by convention.) Similarly, ox41x = 0 gives

0= /Rmc(t)tpk(t) dA(t) — ook k — Brok—1,k-
Using (5.28) in the form tpg(t) = pr+1(t) + arpx(t) + bepr—1(t), we can write
this as
0=0kkt1+ (ak — )Tk k — BrOk—1k,

which, together with (5.31) and o_; = 0, yields

00,0
Okk+l  Ok—Lk (5.32)
o = ai + - , k=1,23,....
Ok.k Ok—1,k—1

With the as and (s expressed by (5.32) and (5.31) in terms of the os, it
remains to compute o . This can be done recursively, using the recurrence
(0.11) for the 7 and (5.28) (with k replaced by £) for the py:

Ok = /R[(t — 1) TE—1(t) — Br—17x—2()]pe(t) dA(2)
= /Rﬂk—1(t)LDe+1(t) + agpe(t) + bepe—1(t)] dA(2)

—Qg—10%-1,¢ — Br-10k—2,¢
= Ok—1,041 — (Qh—1 — @¢)Ok—1,¢ — Pr—10k—2,¢ + beOk—_1,0-1.

The algorithm is now complete: to compute ag, O for k =0,1,...,n—1,
one first initializes

0_140=0, £=1,2,...,2n—2,
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Computing stencil
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Fig. 3. The modified Chebyshev algorithm, schematically

and then continues, for £ =1,2,...,n — 1, with

Ok = Ok—1,4+1 — (Ok—1 — @p)Ok—1¢ — Br—10k—2,0 + beOk_1,4-1,
b=k k+1,. . 2n—k-1,

5.34)
Ok k+1 Ok—1,k Okk (
op(dN) = ax + - yo Be(dA) = ———.

Ok,k Ok—1,k—1 Ok—1,k—1
Given the first 2n modified moments mg, my, ..., mao,—1 and the first 2n — 1
coefficients ag, ai,...,a2,—2 and by, b1, ..., boy_a, this generates the first n
coefficients g, 1,...,an-1 and By, B1,...,0n—1 via a trapezoidal array of

auxiliary quantities oy ¢ depicted schematically (for n = 5) in Fig. 3. The
computing stencil in Fig. 3 indicates the location of the five entries in the
array that are involved in the relation (5.34). The circled entry in the stencil
is the one the algorithm computes in terms of the other four. The entries in
boxes are used to compute the oy and B;. The complexity of the algorithm
is clearly O(n?).

It is interesting to observe that in the special case of a discrete measure dAy
and ordinary moments (that is, ar = by = 0), algorithm (5.34) was already
known to Chebyshev (1859). We therefore call (5.34) the modified Chebyshev
algorithm. The modified moments required can sometimes be computed in
closed form or by a judicious application of recurrence formulae, or else can
be approximated by a suitable discretization, similarly as in Section 6.1 in
another context.

We remark that by virtue of (5.30), the algorithm (5.34) also provides the
normalization constants ok g = (T, Tk) dx-
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Table 1. Errors in the ags and Bys

k err ay err Ok

2 42x1071 7.6x10713
5(42x107° 1.2x10710
8| 43x10% 38x10°°
11 | 1.3 x 10° 3.2 x 107!

5.3. An example

We illustrate the advantage of modified over classical moments in the case of
the measure

dA,(t) = t°In(1/t)dt  on[0,1], &> —1. (5.35)

We expect this advantage to be rather noticeable here, since, as was already
observed in Section 5.1.2, the map G,: 7 — 7 based on (normalized) Le-
gendre moments is quite well conditioned in this case, even for large n, in
contrast to the map Gy,: p — -y, which rapidly becomes ill conditioned as n
increases (cf. Section 5.1.1).

The classical moments for dA, are simple enough,

1
o+1+k’

whereas the modified moments with respect to the Legendre polynomials on
[0,1] (that is, ax = % fork>0andbg=1,b, = (4(4 — k%) L for k> 1in
(5.28)) are more complicated, but still easy to compute:

pr(dAg) = k=0,1,2,..., (5.36)

_o 02(k—-o—1)!
(2k)! GV, | 0foch ok
T M) = o [ S (s - ) T 25
otherwise.
(5.37)

Applying the modified Chebyshev algorithm in single precision (machine pre-
cision & 7 x 1071%) for the case ¢ = 0, using the ordinary moments (5.36)
(that is, ar = by = 0), one obtains the recursion coefficients ay, S with
relative errors shown in Table 1. As can be seen, the accuracy deteriorates
rapidly, there being no significance left by the time k = 11. In contrast,
the use of modified moments (5.37) allows us to compute the first 100 (sic)
recursion coefficients to an accuracy of at least 12 decimal digits.
Unfortunately, such a dramatic improvement in accuracy is not always
realizable. In particular, for measures dA with unbounded support, even the
modified version of Chebyshev’s algorithm, as already mentioned, must be
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expected to become quite susceptible to error growth. It all depends on the
condition of the underlying (nonlinear) map Gy,.

Notes to Section 5

The numerical condition of the classical moment map G, : u — v was studied in
Gautschi (1968); the lower bound (5.15) for the condition number rephrases one of
the basic results of Gautschi (1968). For the growth of the condition number of the
Hilbert matrix, mentioned at the end of Section 5.1.1, see Todd (1954). Although
the explicit expressions (5.2) for the recursion coefficients are extremely sensitive
to rounding errors, with the use of high-precision arithmetic they can be applied to
validate the accuracy of Gaussian quadrature formulae; see Gautschi (1983) for an
example.

The idea of using modified moments to generate orthogonal polynomials was
first advanced by Sack and Donovan (1969, 1971/2), who developed an algorithm
similar to the one in (5.34). The latter was derived by Wheeler (1974) independently
of the work of Chebyshev (1859), where the same algorithm was obtained in the
case of discrete measures and classical moments. Another algorithm, based on the
Cholesky decomposition of a Gram matrix, is given in Gautschi (1970), but is not
competitive with the modified Chebyshev algorithm, since it has complexity O (n?).
The reference Gautschi (1970), however, contains the first analysis of the condition
of the underlying moment map, using the Li-norm for vectors and matrices. The
analysis given in Section 5.1.2, based on the more convenient Frobenius norm, is
taken from Gautschi (1982a), where (in Section 3.1) one also finds the use of more
refined condition numbers based on relative errors. The example of the Maxwell
distribution (5.27) is taken from Gautschi (1991c); other illustrations of the basic
formula (5.24) for the condition of the map G, can be found in Gautschi (1984c)
and Gautschi (1985). The properties (5.26) of the function g, in (5.25) suggest
the distinction between ‘strong’ and ‘weak’ Gaussian nodes, the former being more
likely than the latter to develop severe ill conditioning. For this, and an application
to Jacobi polynomials, see Gautschi (1986a). The example at the end of Section
5.1.2 is taken from Wheeler (1984) and Gautschi (1984a); see also Gautschi (1985,
Example 4.3) for further details. For the example in Section 5.3, cf. Gautschi (1994,
Example 3.2).

6. Discretization methods

These methods, as the name implies, involve a preliminary discretization of
the given measure dA, that is, one approximates dA by a discrete N-point
Dirac measure,

N
dA(t) = dAN(t) == > wib(t — ty) dt. (6.1)
k=1
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This is often done by a suitable quadrature formula (more on this in Section

6.1):
/R (£) dA(2) Zwkp (t4) = / p(t) dAn(2). (6.2)

The desired recursion coefficients are then approximated by

a(dA) = ax(dAN) }
Br(dX) = Bi(dAw)

Assuming dA is a positive measure, and wy > 0 in (6.1), one can show that
for any fixed k,

k=0,1,...,n— 1. (6.3)

ar(dAy) — ak(dA) } as N — oo, (6.4)

Br(dAN) — Br(dA)
provided the discretization process (6.2) has the property that

[ p® ) - / p(t)dA(E)  as N — oo (6.5)

for any polynomial p. Thus, by choosing a quadrature rule in (6.2) that
is convergent for polynomials, we can obtain the coeflicients ax, B¢, 0 <
k < n —1, to any desired accuracy, by selecting N sufficiently large. More
precisely, one selects a sequence N1 < Ny < N3 < - - - of integers N (for a
specific choice, see Gautschi 1994, Equation (4.16)) and iterates until

ﬁk( d)‘Ni+1 ) - ﬂk( d)‘Nz)
ﬁk( d/\Ni+1)

where € is a preassigned error tolerance. The convergence criterion is based
on the relative errors in the (-coefficients, which is possible because the G
are known to be positive. The a-coeflicients are expected to converge at a
similar speed (at least in the sense of absolute errors), as their definition is
similar to that of the 8 (cf. (0.12)).

In Section 6.1 we indicate some possible ways of discretizing the measure
dA. Once the discrete measure is at hand, it remains to compute its first n
recursion coefficients, that is, the approximations on the right of (6.3). We
will discuss two methods in Sections 6.2 and 6.3.

<k,

ma.
0<k<n—1

6.1. Discretization of the measure
Suppose the measure dA has the form
dA(t) = w(t)dt on [a, b, (6.6)

where [a, b] is a finite or infinite interval and w an appropriate weight function.
The first step, in general, is the decomposition of [a,b] into a finite number
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of (possibly overlapping) subintervals,
m
b = Jlai,b]  (m=>1), (6.7)
=1

and to rewrite integrals such as those on the left of (6.2) as

[pwwar=3" [ ptpie)ar (63)
R i=1"%

where w; is an appropriate weight function on [a;, b;]. For example, the weight
function w may be the sum w = wy +ws of two weight functions on [a, b] that
we wish to treat individually. In that case, one would take [a1, b1] = [ag,b2] =
[a, b] and associate w; with [a1, b1] and we with [ag, ba]. Alternatively, we may
simply want to use a composite quadrature rule to approximate the integral,
in which case (6.7) is a partition of [a,b] and w;(t) = w(t) for each i. Still
another example is a weight function w which is already supported on a union
of disjoint intervals; in this case, (6.7) would be the same union, or possibly
a refined union where some of the subintervals are further partitioned.

However (6.7) and (6.8) are constructed, the desired discretization (6.2)
is now obtained by approximating each integral on the right of (6.8) by an
appropriate quadrature rule,

b; Ni
/ pBwi(t)dt ~ Qip,  Qip =3 wrip(tes), (6.9)
Gi r=1

for example a Gaussian rule for the weight function w;. This yields

/R() t)dt~zzwmp rii) (6.10)

i=1r=1

a formula of the type (6.2) with N =7 N;

There is enough flexibility in this approach - choosing the subdivision
(6.7), the local weight functions w; in (6.8), and the quadrature rules in (6.9)
— to come up with an effective scheme of discretization, that is, one that not
only converges in the sense of (6.5), but converges reasonably fast. Further
variations, of course, are possible. In particular, it is straightforward to adapt
the approach to deal with measures containing, in addition to an absolutely
continuous component (6.6), a discrete point spectrum, say

dA(t) = w(t)dt + Y _w;é(t — 75) dt. (6.11)
j

One only has to add 3 ; w;p(7;) to (6.10).
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Ezample 6.1. A good example of the kind of discretization indicated above is
furnished by the measure

dA(t) = t* Ko(t) dt on [0, 00), p>—1, (6.12)

where K is the modified Bessel function.

It is important, here, that one find a discretization that does justice to the
special properties of the weight function w(t) = t*Ky(t), in particular its
behaviour for small and large t. For the factor Kj, this behaviour can be

described by

R(t) + Ip(t) In(l/ti, 0<t<1, (6.13)

Ko(t) = { t=1/2¢7tS(¢), <t < oo,

where R, S are well-behaved smooth functions, and I is the ‘regular’ mod-
ified Bessel function. All three functions can be accurately evaluated on
their respective intervals by rational approximations (Russon and Blair 1969).
Therefore,

0 1 1
| p0axe = [ er@p@)de+ [ e ma/ou@pe)
A] 0 0

+ /1 ” e ttF 28 (t)p(t)] dt.

This suggests a decomposition (6.7) with m = 3, namely [0,00) = [0,1] U
[0,1]U[1, 00), weight functions wy (t) = t#, wa(t) = t#In(1/t) and w3(t) = e,
and for ); the corresponding Gaussian quadrature rules, after the last integral
in (6.14) has been rewritten as

(6.14)

/1 T et 28 ()p(t) dt = e /0 T et 4+ )R V28(1 + t)p(1 + 1)) dt.

The first and last Gauss formulae are classical — Gauss—Jacobi and Gauss—
Laguerre — and are easily generated by the method of Section 4.1. The second
is nonclassical, but can be generated by the same method, once the recursion
coefficients for the respective orthogonal polynomials have been generated by
the modified Chebyshev algorithm, as discussed in Sections 5.2 and 5.3.

Ezample 6.2. We call generalized Jacobi measure a measure of the form

m
dAt) =) (1 -1+ )° Tt —asl®,  te(-1,1), (6.15)
i=2
where ¢ is a smooth function, m > 2, —1 < as < --- < apy < 1, and
m=06>-1; v > —1, 1=2,...,m; Ym+1 = > —1. (6.16)

Here, the natural decomposition is

m
[-1,1] = Jlai, b, a1=-1, bi=ai1, ams1=1,
i=1
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and the appropriate weight function w; on [a;, b;] is the Jacobi weight with
parameters 7;, Y;+1, transformed to the interval [a;, b;]. One then obtains a
formula similar to (6.8), except that on the right, p(t) has to be replaced by

m+1
pt)et) II  P-al™,  a<t<b
J=Lji i+
This function is free of singularities in [a;, b;], so that its Gauss—Jacobi quad-
rature with weight function w; will converge — and reasonably fast at that,
unless one of the a; is very close to either a; or b; (and <y; not an integer).

It may not always be possible to come up with natural discretizations as
in these examples. In that case, one may try to apply a standard quadrature
rule to each integral on the right of (6.8), paying no special attention to the
weight function w; and treat it as part of the integrand. Since w; may have
singularities at the endpoints of [a;, b;], it is imperative that an open quadrat-
ure formula be used; stability considerations furthermore favour Chebyshev
nodes, and convergence considerations an interpolatory formula. Taking the
same number of nodes for each (J;, we are thus led to choose, on the canonical
interval [—1, 1], the N F_point Fejér rule, that is, the interpolatory quadrature
rule

1 NF
[ fdt~Quef.  Quef= Y uffeD),  (617)
- r=1

where tf" = cos((2r — 1)7/2NF) are the Chebyshev points. The weights are
expressible in trigonometric form as

INF /2] F
2 cos(2s6;")
F E : F
w, = ~NF 1-2 T_a— s t,,, = COS 0,,1:7, (618)
s=1

and are known to be all positive (Fejér 1933). Furthermore, the rule converges
as NF — 00, even in the presence of singularities, provided they occur at
the endpoints and are monotone and integrable (Gautschi 1967). The rule
(6.17) is now applied to each integral on the right of (6.8) by transforming
the interval [—1, 1] to [a;, b;] via some monotone function ¢; (a linear function
if [a;, b} is finite) and letting f(t) = p(t)w;(t):

b; 1
|t de= [ pomuadmsin ar

NF
~ > whwi(di(t))di(tF) - p(ei(t)).

r=1

Thus, in effect, we take in (6.9)
— F _ . F F /(4 F .
tri = ¢i(ty ), wri = wy wi(i(ty )ity ), i=1,2,...,m. (6.19)
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Suitable functions ¢; are ¢;(t) = (1 +¢)/(1 — t) if the interval [a;, b;] is half-
infinite, say of the form [0, 00), and similarly for intervals [a, 00) and (—o0, b],
and ¢;(t) = t/(1 — %) if [a;, bi] = (—o0, 00).

6.2. Orthogonal reduction method

Assuming now that a discrete measure (6.1) has been constructed, with (pos-
itive) weights wy, and abscissae t;, we denote by /w the column vector whose
components are y/Wg, and by D; the diagonal matrix with the t; on the di-
agonal. Since for any function p,

/ ) dAn(t) Z wip(ty) (6.20)
R

(¢f. (6.2)), we may interpret (6.20) as a ‘Gauss formula’ for the measure dAy.
From (4.15) it then follows that there exists an orthogonal matrix Q; € RV*V

such that
1 of 1 VuT [1 oT]_
0 Qf | | vw D 0 Q|

[ 1 \/ﬁO(d/\N) e{ ] (6 21)
VBo(dAn) e JN(dAN) ’ )

where e; = [1,0,...,0]7 € RY is the first coordinate vector and Jy(dAn)
the Jacobi matrix of order N for the measure dAy (cf. (4.4)). It is the latter
that we wish to obtain.

Observe that (6.21) has the form

QTAQ =T, (6.22)

where all matrices are (N + 1) x (N + 1), @ is orthogonal and T' symmetric
tridiagonal with positive elements on the side diagonals. It is then well known
(see, for instance, Parlett 1980, p. 113) that @ and T in (6.22) are uniquely
determined by A and the first column of Q. Since the latter in (6.21) is e;,

and the former [ Jo \/g}_T }, we see that knowledge of w and D, that
t
is, of dAn, uniquely determines the desired Jy(dAx) and Fo(dAn) by the
orthogonal similarity transformation (6.21). A method that accomplishes
this transformation is Lanczos’s algorithm. There are various versions of this
algorithm, a particularly elegant one consisting of a sequence of elementary
orthogonal similarity transformations of Givens type designed to successively
push the elements bordering the diagonal matrix D; in (6.21) towards the
diagonal. It is not necessary to carry the transformation to completion; it
can be terminated once the submatrix Jn(dAx) has been produced, which is
all that is needed. Also, in spite of the square roots of the weights appearing
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on the left of (6.21), it is not required in the resulting algorithm that all
weights be of the same (positive) sign, since only their squares enter into the
algorithm.

6.3. The Stieltjes procedure

This is based on the explicit formulae (see (0.12))

ap(dr) = TR oy
(ks Tk) dr
Bo(dX) = (o, M)y Be(dN) = B TR)A o

(Te—1, Tk—1) dr
(6.23)
where mg(-) = mg(-; dA). One applies (6.23) for d\ = dAy in tandem with
the basic recurrence relation (see (0.11))

Te1(8) = (t — ar)mi(t) — Brme—1(t), k=0,1,2,...,

moa(t) =0,  m(t)=1. (6.24)

Note that all inner products in (6.23) are finite sums when dA = dAy, so that
they are easily computed once the 7 are known. Since mp = 1, we can thus
compute ag, fp from (6.23). Having obtained ayg, By, we then use (6.24) with
k = 0 to compute 7 for all {¢1,...,tn} to obtain the values of m; needed
to reapply (6.23) with k = 1. This yields a;, £1, which in turn can be used
in (6.24) to obtain the values of w2 needed to return to (6.23) for computing
ag, (2. In this way, alternating between (6.23) and (6.24), we can ‘bootstrap’
ourselves up to any desired order of the recursion coefficients. The procedure
is now commonly referred to as the Stieltjes procedure.

Although the recurrence relation (6.24) may develop the phenomenon of
pseudostability mentioned at the end of Section 0.2, as k approaches N, this
normally causes no problem for the Stieltjes procedure since the maximum
order n—1 desired for the recursion coeflicients ay, G, is usually much smaller
than the integer N eventually needed for convergence in (6.4). The onset
of pseudostability is thus avoided. On the other hand, suitable scaling of
the weights wy may be required to stay clear of overflow or underflow. No
such problems occur with the Lanczos method, which, moreover, has been
observed to be typically about twice as fast as the Stieltjes procedure. For
these reasons, one normally prefers orthogonal reduction methods over the
Stieltjes procedure.

Notes to Section 6

6.1. The idea of discretizing the measure to approximate the recursion coefficients,
and the use of Fejér’s quadrature rule (6.17) in this context, goes back to Gautschi
(1968). The convergence property (6.4), (6.5) is proved in Gautschi (1968, Theorem
4). The idea has been further developed along the lines of Section 6.1 in Gautschi
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(1982a) and is implemented in the computer routine mcdis of Gautschi (1994).
Example 6.1 is taken from Gautschi (1982a, Example 4.10) and is of interest in the
asymptotic approximation of oscillatory integral transforms (Wong 1982).

6.2, 6.3. A Lanczos-type algorithm of the type mentioned at the end of Section
6.2 can be found in Gragg and Harrod (1984) and is used in the routine lancz of
Gautschi (1994). The bootstrap procedure of Section 6.3 was briefly mentioned by
Stieltjes (1884) and also forms the basis of the procedures in Forsythe (1957). For
the phenomenon of pseudostability mentioned at the end of Section 6.3, see Gautschi
(1993a) and Gautschi (1996b).

7. Modification algorithms

The idea of (and need for) looking at orthogonal polynomials relative to mod-
ified measures goes back to Christoffel (1858), who multiplied the measure
dA by a polynomial u(t) = H§=1(t — u)), where all uy are outside the sup-
port interval (the smallest interval containing supp(d\)); he represented the
polynomial u(t)mp(¢;4dA) in determinantal form as a linear combination of
7n(t; dX), ..., Tnye(t; dN). This is now known as Christoffel’s theorem. More
recently, Uvarov (1959, 1969) extended Christoffel’s result to measures multi-
plied by a rational function u(t)/v(t), where v(t) = J[jjL; (f — vy), expressing
u(t)mp(t; (u/v)dA) again in determinantal form as a linear combination of
Tn—m(t; AA), ..., Tuye(t; dA) if m < n, and of mo(t; dA), ..., Tupe(t; dA) if
m > n. We have called this (Gautschi 1982b) the generalized Christoffel
theorem.

While these theorems are mathematically elegant, they do not lend them-
selves easily to computational purposes. What is more useful is trying to
compute the recursion coefficients ay(dA), Bx(dA) for the modified measure
dA = (u/v)dX in terms of those for dX, which we assume are known. This
need not be accomplished all at once, but can be carried out in elementary
steps: multiply or divide by one linear complex factor ¢ — z at a time, or
else, if we prefer to compute in the real domain, multiply or divide by either
a linear real factor t — x, or a quadratic real factor (t — )2 + y2. Thus,
the problem we wish to consider is the following. Given the recursion coeffi-
cients ag( dA), Bx(dA) for the measure dA, compute the recursion coefficients
ax(dA), Bk d(A) for the measures dA = wdA and dA = dA/v, where u(t) and
v(t) are elementary real factors of the type t — x or (t — z)% + 42, = € R,
yeR.

We begin in Section 7.1 with the theory of quasi-definite measures and
kernel polynomials, which lies at the heart of modification algorithms for
linear and quadratic factors. The latter are discussed in Section 7.2. In
Section 7.3 we develop algorithms for linear and quadratic divisors. The
division algorithms, finally, are applied in Section 7.4 to construct the rational
Gauss quadrature formulae that were discussed in Section 3.1.
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7.1. Quasi-definite measures and kernel polynomials

It is convenient, in this subsection, to allow d) to be any real or complex-
valued measure on R having finite moments of all orders,

e = pr(dN) :/t”d)\(t), r=0,1,2,... . (7.1)
R

The measure dX is called quasi-definite if all Hankel determinants D,, in the
moments are nonzero, that is,

Ho K1t fine1
Dy=det | ¥ H2 7 B n=1,2,3,.. . (1.2)
Hn Hp+l 0 H2n-1

If d)is quasi-definite, there exists a unique system {7}, of (monic) ortho-
gonal polynomials mg(-) = mg(-; dA) relative to the measure dA, which sat-
isfy the three-term recurrence relation (0.11) with coefficients ay = ag(dA),
Br = Br(dA) that are now complex-valued in general but with 8x # 0. The
measure dA is called positive definite if fi p(t)dA(t) > 0 for every polyno-
mial p(t) # 0 that is nonnegative on supp(dA). Equivalently, dA is positive
definite if all moments (7.1) are real and D,, > 0 for all n > 1.
For arbitrary z € C, and for ay = ax(dA), Bx = Bx(dA), Bo =0, let

O =2+ Qg+ €x—1 }
Br = €ex—1qk-1

Lemma 1 Let d\ be quasi-definite and 7 () = mg(-; dA).

k:0,1,2,‘.. ;e_lzq_1=0. (73)

(a) If mp(2) # 0 for all n = 1,2,3,..., then the relations (7.3) uniquely

determine qqg, eg, q1, €1, ... in this order, and
z
= - @ o (7.4)
i (2)

(b) If mpy1(2) = O for some £ > 0, and 7, (2) # O for all k£ < £, then gy, e are
uniquely determined by (7.3) for k < £, while gy = 0 and ey is undefined.

Proof. (a) The quantities qo, €g, g1, €1, ... are uniquely defined if and only
if gy # 0 for all k > 0. It suffices, therefore, to prove (7.4). For k = 0, this
follows from the first relation in (7.3) with k& = 0:

3

~—

1(2

mo(z

Proceeding by induction, assume (7.4) true for k — 1. Then, by (7.3),
(

VA
Qk:ak—z—ek—l:ak“z__ﬂk”'zak‘"z‘f‘ﬁ ! ),
Q-1 Ti(2)

@=a—2=—(2—a)= —

~—

Tk—
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hence
=~ (e~ ame(2) — e ()} = ~ 1D
g = () k)Tk kTk—1 )

where the recurrence relation (0.11) has been used in the last step.

)

(b) The argument in the proof of (a) establishes (7.4) for all £k < ¢, from
which the assertion follows immediately. O

Consider now
dA(t) = (t—2)dA(t), =zeC.

If dA is quasi-definite, and z satisfies the assumption of Lemma 1(a), then dA
is also quasi-definite (Chihara 1978, Chapter I, Theorem 7.1), and hence gives
rise to a sequence of (monic) orthogonal polynomials 7 (-;2) = mx(-; d;\),
k =0,1,2,... . These are called the kernel polynomials. They are given
explicitly in terms of the polynomials 7x(-) = mg(-; dA) by

Tni1(2)

P @), k=012, (75)

. 1
Tn(t;2) = P Tnt1(t) —

as is readily verified. A
Let & = ag(dA), Bx = Bx(dA) be the recursion coeflicients for the kernel
polynomials #g( ) = #g( - ; 2),

7Ar’H-l(t) = (t - dk)’frk(t) - kafrk—l(t)v k=0,1,2,..., (7 6)
) =0, Fo(t) = 1, '

where the dependence on z has been suppressed. The following theorem shows

how the coeflicients &g, Br can be generated in terms of the quantities g, ex
of Lemma 1.

Theorem 7 Let dA be quasi-definite and z € C be such that m,(z; dA) # 0
for all n. Let gy, e, be the quantities uniquely determined by (7.3). Then

O =2+ qr + e

k=01,2,.... 7.7
Bk = grex—1 } (7.7)

In (7.7), BO receives the value zero; it could be assigned any other con-
venient value such as the customary ,30 = [z dj\(t). In that case, BO =
Jr(t—2)dA(t) = [Rt—ap+ap—2) dA(t) = (ap—2)0o, since t—ap = m1(¢; dA)
and [, m1(t)dA(t) = 0.

Proof of Theorem 7. By (7.5) and (7.4) we can write

R(t) = () + ame(t)], (7.8)



ORTHOGONAL POLYNOMIALS: APPLICATIONS AND COMPUTATION 101

or, solved for my,1,
Ti+1(t) = (t — 2)7(t) — qemi(t), k=0,1,2,... . (7.9)

The three-term recurrence relation for the {m}, with the coefficients ay, G
written in the form (7.3), yields

Th+1(t) = (t — 2)m(t) — (g + ex—1)7k(t) — ex—1qp—1Tk—1(2),
from which

Te+1(t) + qeme(t)
t— =z

7k (t) + qe—17k—-1(t)
t—2z

= T(t) — ex—1

or, by (7.8),
7k (t) = m(t) — ex—17k—1(1), k=0,1,2,... . (7.10)

Replacing k by k+1 in (7.10) and applying first (7.9), and then again (7.10),
we get

Trer(t) = meia(t) — exfi(t)
= (t—2)7k(t) — qeme(t) — ex®r(t)
= (t— 2)7k(t) — qr[7r(t) + ex—17k-1(t)] — exTrr(t),

that is,

fkt1(t) = (8 — 2 — gk — ex) 7 (t) — grer—17k—1(2), (7.11)
k=0,1,2,... . :

The assertion (7.7) now follows by comparing (7.11) with (7.6). O

7.2. Linear and quadratic factors

We assume from now on that dA is a positive measure. The support of dA
may extend to infinity at one end, when dealing with linear factors, but will
be arbitrary otherwise.

Consider first modification by a linear factor,

dA(t) = (t —z)dA(), = € R\Lupp(d)),

where, as indicated, z is any real number outside the ‘support interval’
Liupp(dA) of dA, that is, outside the smallest interval containing the sup-
port of dA. Then di is positive definite if z is to the left of this interval, and
negative definite otherwise. In either case, m,(z; d)) # O for all n, since the
zeros of 7, are known to lie in the support interval. Theorem 7, therefore,
applies with 2 = z and, together with the remark immediately after The-
orem 7, and (7.3), produces the following algorithm for calculating the first
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n recursion coefficients of {7} from those of {m}:

8_120

Qp =0~ €1 —T

y B ifk=0

ﬁ’“_q’“{ek_l ifk>0 k=01,...,n—1.

ex = Br+1/ak
G =x+ qr + ex

Note that we need (3, in addition to ag, 8k, k = 0,1,...,n— 1, to obtain the
first n recursion coeflicients ¢y, Bk, k=0,1,...,n—1. Numerical experience
seems to indicate that the nonlinear recursion (7.12) is quite stable. In cases
where the coefficients ¢&; tend rapidly to zero, it is true that they can be
obtained only to full absolute accuracy, not relative accuracy. This, however,
should not impair the accuracy in the recursive computation of 7 by (7.6).

There is a similar, but more complicated, algorithm for modification by a
quadratic factor,

dA\@t) = (t—2)*+3?)dA(t), z€R, y>0, (7.13)

which can be obtained by two successive applications of linear (complex)
factors t — z and t — Z, where z = x + iy. A particularly elegant algorithm is
known when y = 0 in (7.13). In terms of the Jacobi matrices of d\ and dA,
it consists in applying one QR step with the shift z: if

Jn+1(d/\) —zl41 = QR,

Q orthogonal, R upper triangular, diag R > 0, (7.14)

then
Jn(dA) = (RQ + xIni1)nxn. (7.15)

Thus, having completed the QR step applied to the Jacobi matrix of order
n+ 1 for the measure d\, one discards the last row and last column to obtain
the Jacobi matrix of order n for the modified measure dA. This algorithm,
too, appears to be quite stable.

7.8. Linear and quadratic divisors

Consider first division by a linear divisor,

. dA(t
dA(t) = t—(;) , z € R\ Lgypp(dA), (7.16)
where x is assumed real, outside the support interval of dA. Here again, there
exists a nonlinear algorithm of the type (7.12) (indeed, a reversal thereof),
but it is quite unstable unless x is very close to the support interval of dA.
Although such values of z are not without interest in applications, we shall

not develop the algorithm here and refer instead to Gautschi (1982b).
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For other values of x, and particularly for measures with bounded support
(cf. the remark at the end of Section 5.3), we recommend applying the modified
Chebyshev algorithm, using the orthogonal polynomials pg(-) = 7g(-; dA)
as the polynomial system defining the modified moments, that is, letting

Mk :/Rﬂk(t; dX) dA?)

t—x
We shall assume again that the recursion coefficients a = ai(dX), fx =
Br(dA) are known. Under mild assumptions on the measure dA (for instance,
if I ypp(dA) is a finite interval), the sequence {my} is a minimal solution of
the basic recurrence relation

Ye+1 = (.T_ak)yk —,Bkyk—l, k:0,1,2,-.., (7 18)
Yy1= _17 '
where o = ag(dA), B = Bx(dN). Its first N + 1 members can then be

computed by the following algorithm: select v > N and recur backwards by
means of

. k=0,1,2,... . (7.17)

r®) = o, Tx(c"_)1=—i—m, k=v,v—1,...,0.  (7.19)
Then compute
m(_”l) = -1, mg') = r,(:_)lmfcy_)l, k=0,1,...,N. (7.20)

The algorithm converges in the sense that
— 1 )
my = Vlirxgomk . (7.21)

Thus, applying (7.19) and (7.20) for v sufficiently large, we can compute my
to any desired accuracy.
A similar algorithm works for division by a quadratic divisor, say

. dA(E)

dA(t) = ———F— .
(t) e z € R, y >0, (7.22)
if one notes that
S S T
t-2)2+y? 2iy\t-z t-z)> - *TTW
hence
dA(t) Im fi(2)
- t; d) - , 7.23
e /R”’“( S - e (7.23)
where
dA(t
fule) = [ matts ax) 2O (7.24)
R t—=z

This again is a minimal solution of (7.18), where x is to be replaced by z,
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and therefore the same algorithm applies as in (7.19)-(7.20) with z replaced
by z.

7.4. Application to rational Gauss quadrature

We have seen in Section 3.1 that the construction of rational Gauss-type
quadrature rules requires the computation of (ordinary) Gaussian quadrature
formulae relative to a measure that involves division by a polynomial. These
can be generated by the eigenvalue techniques discussed in Section 4.1, once
the recursion coeflicients of the required orthogonal polynomials have been
obtained. This in turn can be accomplished by methods discussed in Sections
7.2 and 7.3.

We will assume in the rational quadrature rule (3.5) that the divisor poly-
nomial wy, is positive on the support interval of dA.

The problem, therefore, is to generate the first n recursion coefficients & =
or(dN), Br = Br(d)), k=0,1,...,n — 1, for the modified measure

dA(t) = () , (7.25)
wm(t)

assuming the coeflicients known for d\. Here, wy, is a polynomial of degree
m,

M M
wn(t) = [T+ &t)™, D su=m, (7.26)
p=1 u=1

with (,, distinct real or complex numbers such that wy, is positive on the
support interval of dA.

A possible solution of the problem is based on the following observation.
Suppose dAp is a discrete N-point measure, say

N
/ p(t)dAN(t) = 3" Wip(Th), (7.27)
R k=1

with coefficients Wy not necessarily all positive, and suppose further that it
provides a quadrature formula for the measure d\ having degree of exactness
2n — 1, that is,

dA

Wm

N
[pOdAO) = X Wip(),  allpePoo,  dh =
k=1

(7.28)

Then the first n recursion coefficients for d.\ are identical with those for dA N:

ag(d)) = ax(dAn),
Be(dA) = Br(dAn),

This follows immediately from the inner product representation (0.12) of the

k=0,1,...,n—1. (7.29)
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coefficients on the left of (7.29), since all inner products are integrals (with
respect to dj\) over polynomials of degree < 2n — 1 and are thus integrated
exactly by the formula (7.28). To generate the coefficients on the right of
(7.29), we can now apply either the Stieltjes procedure of Section 6.3 or the
Lanczos method (of Section 6.2); for the latter, see the remark at the end of
Section 6.2.

It remains to show how a formula of the type (7.28) can be constructed.
We first look at the simplest case where the polynomial wy, in (7.26) has all
sy = 1 (hence M = m) and ¢, = §, are all real. Expanding its reciprocal
into partial fractions,

m
= =3
Wi (t) (1+§u = ot 1/€u
where
m—2
cu_—_——v v=12,...,m,
(& =€)
u v

we then have
/ p(t) di(t) = Z / %— (7.30)

Each integral on the right now involves modification of the measure dA by
a linear divisor. The first n recursion coefficients of the modified measure
can therefore be obtained by the procedure of Section 7.3 (using the modified
Chebyshev algorithm), which then enables us to compute the respective n-
point Gauss formula

¢y dA(2)
p(t) ey = 2 wp(t),  p e P, 7.31
fr0 55 e = Xt S
by the techniques of Section 4.1. Inserting (7.31) in (7.30) then yields
/ tyd = Z Zw (™)), pEPapm-,
v=1lr=1
the desired quadrature formula (7.28), with N = mn and
—

Tonnir =t ) v=12,...,m; r=1,2,...,n. (7.32)

W(u—l)n+r =wr’,

Analogous procedures apply to other polynomials wy,, for example to those
for which the (, occur in m/2 pairs of conjugate complex numbers: (, =
§vt+iny, Cuymye = G, v =1,2,...,m/2, where §, € R, n, > 0, and m is even.
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An elementary computation then yields the partial fraction decomposition

m/2
L 3 o+ dyt tER, (7.33)

wm(t) = (t+ Ef_ﬁfg)z + (glgﬂ#,g)z ’

where
1 ( & Y )
cy = — Imp, + Rep, |,
Yo \EE 42 £2+n2
1
d,=— Imp,
U
and
h— "ﬁ"’ (& + in)?
Y el (&~ &u)? — (n2 — "7;2;) + 2in, (& — &u)’
u#v

with p; = 1 if m = 2. One can proceed as before, except that the modification
of the measure d now involves a quadratic divisor (see (7.33)) and, if d,, # 0,
in addition a linear factor. Thus, not only the methods of Section 7.3, but
also those of Section 7.2 come into play.

The procedures described here, since they rely on the modified Chebyshev
algorithm to execute the division algorithm of Section 7.3, work best if the
support of dA\ is a finite interval. For measures with unbounded support,
methods based on discretization (see Section 6.1) will be more effective, but
possibly also more expensive.

Notes to Section 7

7.1. A good reference for the theory of quasi-definite measures and kernel poly-
nomials is Chihara (1978, Chapter I}). Lemma 1 and Theorem 7 are from Gautschi
(1982b). Kernel polynomials also play an important role in numerical linear algebra
in connection with iterative methods for solving linear algebraic systems and eigen-
value problems; for these applications, see Stiefel (1958). The proof of Theorem 7
indeed follows closely an argumentation used in Stiefel (1958), but does not require
the assumption of a positive definite measure.

7.2. The algorithm (7.12) for modification by a linear factor is due to Galant
(1971); an extension to quadratic factors (7.13) is given in Gautschi (1982b). The
procedure (7.14), (7.15) based on QR methodology is due to Kautsky and Golub
(1983). See also Buhmann and Iserles (1992) for an alternative proof.

7.3, 7.4. The treatment of linear and quadratic divisors follows Gautschi (1981b),
where further details, in particular regarding the recursion algorithm (7.19), (7.20),
can be found. For other, algebraic methods and a plausibility argument for the
instability noted at the beginning of Section 7.3, see Galant (1992). The application
to rational Gauss quadrature is taken from Gautschi (1993b).
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8. Orthogonal polynomials of Sobolev type

As already mentioned in Section 2.2, the computation of orthogonal polyno-
mials in the Sobolev space H; of (2.21), involving the inner product

N [ @) 1)
(u,9)m, ;::0 /R 1@ ()0 (£) dog (8), (8.1)

is complicated by the lack of symmetry of this inner product with respect to
multiplication by ¢ (see (2.26)). This means that we can no longer expect
a three-term recurrence relation to hold, or even a recurrence relation of
constant order. On the other hand, it is certainly true, as for any sequence
of monic polynomials whose degrees increase by 1 from one member to the
next, that

Tee1(t) = tmg(t Z Bime—s(t k=0,1,2,..., (8.2)

for suitable coefficients ﬁjk We may thus pose the problem of computing

{ﬁ]’?}ogjgk for k = 0,1,...,n — 1, which will allow us to generate the first
n + 1 polynomials mg, 71,...,m, by (8.2). Moreover, the zeros of m, are
computable as eigenvalues of the n x n Hessenberg matrix
- _2 1 -
8 51 52 2—% o -1
1 By B - BrZi Brls
0 1 2 .. n—2 n—1
Bn — 0 n—4 n—3 (8 3)
0o 0 o0 .. gy gt
Lo o o -~ 1 gt

In Section 8.1 we briefly describe how moment information can be used
to develop a ‘modified Chebyshev algorithm’ for Sobolev orthogonal polyno-
mials, and in Section 8.2 show how Stieltjes’s idea can be adapted for the
same purpose. Special inner products (8.1) of Sobolev type sometimes lead
to simpler recurrence relations. An instance of this is described in Section
8.3.

8.1. Algorithm based on moment information

In analogy to (5.5), we define modified moments for all s + 1 measures dA,,
but for simplicity use the same system of polynomials {px} for each,

)=/pk(t)d/\a(t), k=0,1,2,...; 0=0]1,...,s. (84)
R
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As in Section 5.2, we assume these polynomials to satisfy a three-term recur-
rence relation

p—l(t) = 07 pO(t) = 17
Pr+1(t) = (t — ax)pr(t) — bepr—1(t), k=0,1,2,...,

where the coeflicients ag, by are given real numbers. The objective is, for given
n > 1, to compute the coeflicients {ﬂf}oggc in (8.2) for k=0,1,...,n—1,
using the recursion coefficients a;, bj, 0 < j < 2n—2in (8.5) and the modified

moments m{”, 0 < j < 2n—1, and m{”, 0 < j < 2n -2 (ifn > 2),
c=1,2,...,s

It is possible to accomplish this task with the help of an algorithm that
resembles the modified Chebyshev algorithm of Section 5.2. Like the latter,
it uses ‘mixed moments’ ok ¢ = (7, T¢)H,, but now relative to the Sobolev

inner product in Hg. These, in turn, require for their computation ‘mixed

(J) = ( () (J))

derivative moments’ Hip, T s Pg ) da,, 0 =1,...,8; 1,7 < o, relative to
the individual inner products (u,v)axn, = Jpul v(t) d/\ (t), ¢ > 1. Accord-
ingly, there will be a tableau containing the mixed moments oy ¢, very much
like the tableau in Fig. 3, and for each ¢, j and o another auxiliary tableau
containing the mixed derivative moments, which has a similar trapezoidal
shape, but with height n —2 instead of n —1. Each quantity in these tableaux
is computed recursively in terms of the three nearest quantities on the next
lower level, and in terms of all quantities vertically below. The initialization

of these tableaux calls for the modified moments (8.4), since o = mgo) and

p(()ogog = mga) o > 1, but the complete initialization of all the quantities pg’gz

is a rather involved process. Once the tableau for the oy ¢ has been completed,
one obtains first

(8.5)

0o _ 001
By = —= + ao,
00,0
and then, successively, for k =1,2,...,n — 1,
k — Tkk+1 _ _%k-1,k
50 T Ok +ag Ok—1,k—1"
k _ Ojk+1 Tk Tjk—1 o1k Iek
. = a2t b — —
B o5s | ke T O T oo Zﬁe o’
j=k—-1,k-2,...,1 1fk22)
k-1
k _ O0,k+1 G0k-1 _ 294k
Bx 000 +ak000+b 70,0 Zﬁegee’
£=0 )

where ay, , by are the coefficients in (8.5).

The algorithm is considerably more complicated than the modified Cheby-
shev algorithm of Section 5.2 — its complexity, indeed, is O(n3) rather than
O(n?) - but this seems to reflect an inherently higher level of difficulty.
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8.2. Stieltjes-type algorithm

The procedure sketched in Section 8.1 employs only rational operations on the
data, which is one of the reasons why the resulting algorithm is so complic-
ated. Allowing also algebraic operations (that is, solving algebraic equations)
permits a simpler and more transparent (though not necessarily more effi-
cient) approach. Basically, one expresses —,BJ’? in (8.2) as the Fourier-Sobolev
coeflicients of w1 — tmg(t), that is,

g = UM Meoidt, 5o (8.6)

| me—j 117,
and evaluates the inner products in both numerator and denominator by nu-
merical integration. If ¥ < n —1, then all inner products involve polynomials
of degree less than 2n, and hence can be computed exactly by n-point Gaus-
sian quadrature rules relative to the measures dM,. It is in the generation
of these Gaussian rules where algebraic processes are required. The poly-
nomials intervening in (8.6), and their derivatives, are computed recursively
by (8.2) and its differentiated version, employing the coefficients ﬂjk already
computed. Thus, initially, (see (0.12))

o_ (& Dar _

ﬂO - (1’ 1)d)\0 - aO(d)‘O)a
which allows us to obtain m; by (8.2). In turn, this allows us to compute
{ﬂ}}ogjgl by (8.6), and hence, via (8.2), to obtain my. Continuing in this
manner yields the following ‘bootstrapping’ procedure:

6 . . .
,30(82) (8. ){ﬁ Yosi< 1('8_%)7T2(8’_>6)_. (86{5n—1}0<]<n 1('8—2)7&1-

8.3. Special inner products

While symmetry with respect to multiplication by ¢ in general does not hold
for the inner product (8.1), a more general symmetry property may hold,
namely

(hu,v)g, = (u, hv)H,, (8.7)
where h is a polynomial of degree > 1. This, however, implies, as is shown in
Evans, Littlejohn, Marcelldn, Markett and Ronveaux (1995), that all meas-

ures d)\,, o > 1, must be of Dirac type. On the other hand, there then exists
a (2m + 1)-term recurrence relation of the form

k+m
ht)me(t Hy) = > wijmy(t; Hy), (8.8)

J=k—m

where m is the smallest degree among polynomials h satisfying (8.7) and h
in (8.8) is a polynomial of that minimum degree.
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If, for example,

(w o), = [ ultyo(t) A +u e o) (8.9)
R
where d) is a positive measure, s an integer > 1, and ¢ € R, then clearly
h(t) = (t - ¢)*! (8.10)

satisfies (8.7) and is a polynomial of minimum degree m = s+ 1 in (8.8). In
this case,

7k (e Hs) = mi(; dA), k=0,1,...,s, (8.11)

as follows easily from (8.9). Moreover, there is an alternative expansion of
the polynomial on the left of (8.8), namely

k+m
h(O)me(t; Hs) = D Okgm(t; d)), (8.12)

j=k—m

where h is as in (8.10) and m = s + 1. The coefficients in (8.8), as well as
those in (8.12), can be computed with some effort, but the resulting procedure
appears to be quite robust.

The two expansions above, together with (8.11), suggest the following two
methods for computing the Sobolev-type orthogonal polynomials belonging to
the inner product (8.9). In Method I, one computes 7;4 541 by solving (8.8)
for mg1s4+1, noting that wg g+s4+1 = 1 (since the 7y are monic). Thus,

k+s
Topsr1(t He) = (=) Tmp(t He)— > wiymi(t He),  k=0,1,2,...,
j=k—s-1
(8.13)
where (8.11) is used on the right, when appropriate, and where wy; = 0 if
j < 0. In Method II, one computes 7y directly from (8.12),

1 k+s+1
mi(t; Hs) = =it Yo Okymilts dN), (8.14)
j=k—s—1

where again 6; = 0 if j < 0, and this time the polynomials 7;(-; dA) on
the right are generated by the basic three-term recurrence relation. Method
I, curiously enough, may develop huge errors at a certain distance from c,
either on one, or both, sides of ¢. Apparently, there is consistent cancellation
at work, but the inherent reasons for this are not known. Some caution in
the use of Method I is therefore indicated. Method II is more reliable, except
in the immediate neighbourhood of ¢ = ¢ (where it is safe to use Method I).
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9. Software

A software package, called ORTHPOL, has been written, that implements all
the procedures discussed above and a few others; see Gautschi (1994). Here
is a brief description of the principal components of the package.

recur  generates the recursion coefficients for the classical orthogonal
polynomials (of Legendre, Chebyshev, Jacobi, Laguerre and

Hermite)

cheb implements the modified Chebyshev algorithm (see Section
5.2)

sti implements the Stieltjes procedure for discrete measures (see

Section 6.3)

lancz  implements Lanczos’s algorithm for discrete measures (see
Section 6.2)

mcdis  implements the discretization procedure sketched in Section
6.1

mccheb implements a version of the modified Chebyshev algorithm
(not described in this article) that uses approximate values
of the modified moments obtained by a discretization process
similar to the one used in Section 6.1

chri implements the nonlinear modification algorithms of Section
7, as well as modification by a QR step (see Section 7.2)

gchri  implements the modified moment précedure for linear and
quadratic divisors (see Section 7.3)

gauss  generates Gauss quadrature formulae via eigenvalues and ei-
genvectors of the Jacobi matrix (see Section 4.1)

radau  generates Gauss-Radau formulae (see Section 4.2)

lob generates Gauss-Lobatto formulae (see Section 4.3)

Numerical experience reported in this article and elsewhere is based on the
use of one or a combination of these routines. Routines for rational Gauss
quadrature rules and Sobolev orthogonal polynomials have also been written,
but are not yet ready for publication.

Notes to Section 9

Historically, the first major effort of computing Gauss quadrature rules on elec-
tronic computers was made in the mid- and late 1950s. Davis and Rabinowitz
{1956) computed Gauss—Legendre rules with up to 48 points to an accuracy of 20-
21 decimal digits, and went up to 96-point rules in Davis and Rabinowitz (1958).
Gauss-Laguerre rules were computed by Rabinowitz and Weiss (1959), and Gauss—
Lobatto rules by Rabinowitz (1960). For a summary, as of 1981, of the major tables
of Gaussian rules and computer programs for generating them, see Gautschi (1981a,
Section 5.4). More recent software that includes also Gauss—Kronrod rules and other
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quadrature methods can be found in Piessens, de Doncker-Kapenga, Uberhuber and
Kahaner (1983); see also NAG (1991).

The software package in Gautschi (1994} is the first that includes routines for
generating Gauss-type formulae and orthogonal polynomials not only for classical
but also for essentially arbitrary measures. The package is public domain, and can
be received via e-mail by sending the following message to netlib@netlib.org:

send 726 from toms

Alternatively, one can access the package via a WWW browser, using the following
URL:

http://www.netlib.org/toms/726

The routines recur and gauss were instrumental in computations assisting de
Branges in his famous proof of the Bieberbach conjecture (Gautschi 19865).
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1. Introduction

The intent of this paper is to give a brief review of current methods for the
automatic generation of grids for the solution of problems from computational
fluid dynamics (CFD), computational electromagnetics and other fields where
the solutions are hyperbolic in nature. These applications require the gener-
ation of high quality grids with a large number of grid points. It is often
the case that the geometry may change with time or it may be necessary
to refine the mesh adaptively. It is thus essential that the grid generation
algorithms be fast, since the grid may have to be regenerated at every step
of a time-dependent simulation. Various popular methods for structured and
unstructured grid generation will be described. Figures will illustrate the
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current state of the technology. Grid generation capabilities have improved
greatly in recent years. However, it is perhaps not an exaggeration to say that
the construction of a grid is currently the most difficult and time-consuming
aspect of determining an accurate solution to a problem on a complicated do-
main. Indeed, starting from scratch, with some description of the geometry,
the time to generate a grid is measured in weeks rather than hours.

N

Fig. 1. A Cartesian grid.

Early computational grids were often Cartesian grids, or cut-out grids (Fig.
1), whereby the region was covered by a single rectangular grid and the por-
tions of the grid lying outside the region were cut out, leaving some irregular
cells. This approach was replaced by boundary-conforming grids, whereby a
rectangular grid was mapped onto the region, with boundaries correspond-
ing to a coordinate line. Such curvilinear grids that are transformations of
a rectangular grid will be called logically rectangular grids. Grids that con-
formed to boundaries improved solution accuracy and made it easier to ap-
ply boundary conditions. As computers became faster and more complicated
problems were attempted, it became apparent that this single-block approach
was not flexible enough to handle complicated geometries. This led to the
introduction of the multi-block approach, where the domain was partitioned
into blocks and within each block a logically rectangular grid was construc-
ted (Fig. 2). In time, however, it became apparent that this approach was
still not sufficiently flexible, and was difficult to automate. Therefore some
other approach was needed. One way to add additional flexibility, while still
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Fig. 2. A multi-block-structured grid divides the region into logically rectangular
blocks.

retaining the logically rectangular structure, was the use of overlapping grids
in which the component grids are allowed to overlap. There has also been
renewed interest in the Cartesian grid approach, using adaptive mesh refine-
ment to improve boundary resolution. Recently, the main interest and focus
of research has been in unstructured meshes, which allow complete freedom
in grid point placement, although at the expense of speed and memory usage.
With little doubt, unstructured meshes offer the best hope for a completely
automatic mesh generation program. Completely unstructured grids are not
without their difficulties for CFD, and perhaps a hybrid method, combining
the unstructured approach with locally structured grids (to resolve boundary
layers, for example), will turn out to be the most effective.

The purpose of grid generation is to create a discrete representation for
a domain. This entails distributing points throughout the domain. There
are two main classes of grids, structured and unstructured. In a structured
grid the points covering the domain result from the transformation of a lo-
gically rectangular square (or cube in three dimensions®). The grid points
can be stored as an array x(i1,42) and the neighbours of a given grid point
are simply found as the neighbours in index space, x(i; £ 1,72 £ 1). In an
unstructured grid, on the other hand, the points are connected to one another

* Throughout this paper, the terminology will be for two-dimensional grids (quadrilat-
erals, triangles), but the remarks will usually apply equally well to three-dimensional
grids (hexahedra, tetrahedra).
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Fig. 3. An overlapping grid consists of logically rectangular blocks that overlap;
some blocks have cut-out regions.

in a general manner; the connectivity information must be explicitly saved.
The grid points might be saved as a list x;, and there would be other lists giv-
ing information about neighbours. Of course, the partition of grid types into
structured and unstructured is not entirely appropriate, since some grids con-
sist of a set of structured grids and other hybrid grids have both unstructured
and structured parts.

Grids are used to solve equations, typically partial differential equations
(PDEs) and integral equations. The computer programs that solve these
equations, hereafter referred to as solvers, typically discretize a continuous
equation with finite-difference, finite-element, finite-volume, spectral-element
or boundary-integral methods. At the grid generation level, it is usually not
important which particular solver will use the grid: rather the style of the
grid is most relevant. That is, it is important whether the grid is structured
or unstructured, whether the grid elements are triangles or quadrilaterals, or
whether the grid is multi-block-structured or overlapping (see Fig. 3). The
unstructured triangular grid (see Fig. 4) can be used either with a finite-
element solver or a finite-volume solver, just as a multi-block-structured grid
can be used by a finite-difference solver or by finite-element solver for quad-
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Fig. 4. An unstructured triangular grid is very flexible for representing geometry.

rilaterals. Despite these remarks, it is not uncommon to see references to a
finite-element mesh (which usually just means an unstructured grid).

The errors in solving a PDE on a grid depend strongly on the quality
of the grid. The quality of a grid is a relative concept and depends on the
actual equations that will be solved, as well as the numerical method that
will be used. In principle, a given problem could be repeatedly solved with
different grids (with the same number of grid points) and the error in the
numerical solution could be measured as a function of the grid. The smaller
the error, the better the quality of the grid. Some adaptive methods do
indeed redistribute points to try and minimize the error. When creating a grid
initially, however, the grid is usually generated with some general principles in
mind, such as keeping the cell size varying smoothly, and resolving boundary
layers, if appropriate. Generally speaking, the solution of equations with
wave-like behaviour (hyperbolic) require smoother grids than the solution of
elliptic equations. The smoothness of a grid is hard to define in general
but relates to the local variation of the cells. An elliptic problem can be
accurately solved on a relatively poor-quality grid since the effects of any
non-smoothness in the grid will be smoothed out by the elliptic operator. In
contrast, hyperbolic operators provide no smoothing effects. To understand
this further, note that the properties of the grid, such as the variations in the
grid point positions, appear, implicitly or explicitly, in the discrete equations
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used in the solver. Comnsider the solution of the one-dimensional wave equation

Oou + Ou
ot oz
If the grid points are allowed to vary according to the parameterization z =

X (r) (that is the grid points are equally spaced in r), then the equation for
v(r,t) = u(X(r),t) becomes

ov 1 Ov

=+ =0

ot X,.or
It is now clear that, if the parameterization is not smooth, then X, will not
be smooth, and this will be reflected in the discrete solution. A grid that is
not smooth can distort waves and cause spurious reflections, rather similar
to the effect of a wave passing through a non-uniform medium. Higher-order
accurate methods are also popular for the solution of wave-like problems, for
both efficiency and accuracy reasons. Higher-order methods will in general
require higher-quality grids than lower-order methods.

It is important to realize that solvers written for one type of grid will typic-
ally not work on other types of grids. Although a structured grid can always
be turned into an unstructured grid and used with an unstructured solver, the
unstructured solver would not usually take advantage of the structured nature
of the grid. There is, however, increasing interest in hybrid grids and hybrid
grid solvers. Hybrid grids range from those that are primarily unstructured
triangles, with some structured quadrilaterals to resolve a boundary layer, to
those that are primarily structured blocks, with triangles used to merge the
blocks.

The number of grid points required for many three-dimensional problems
is extremely large. For typical big simulations there are on the order of 108
grid points, this number being limited only by computer memory and speed.
Viscous fluid flow computations over an entire aircraft could easily use orders
of magnitude more grid points. Points are required not only to represent
complicated geometries (as illustrated by some of the figures in this paper)
but also to resolve rapidly varying features of the solution (shocks, boundary
layers, vortex shedding).

The following grid generation methods will be discussed in more detail in
the rest of this paper:

0.

° Cartesian

e multi-block-structured
e  overlapping

. unstructured.

The area of adaptive mesh refinement, a large and active field in itself, will
only be briefly mentioned here. Further information can be found in many of
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the references. There are a number of issues that must be considered when
evaluating the appropriateness of a given type of grid or grid generator:

the speed of generating a grid

the robustness of grid generation

the quality of the generated grid

the ability to construct grids from standard computer-aided-design spe-

cifications

e  the level to which the grid generation is automatic — how much user
intervention is required and how many tuning parameters are there?

e  the support for adaptivity and moving geometries — can grids be regen-
erated quickly?

e  the speed of the solver on the resulting grid

the effectiveness of the approach on both parallel and serial architectures.

Generally, unstructured grid generators tend to be more robust and auto-
matic, while structured grid generators create higher quality grids for which
faster and more eflicient solvers can be written. Further remarks on these
issues will be made when the different approaches are discussed.

The field of grid generation is expanding rapidly. Many excellent references
have been unavoidably omitted from this review and apologies are due to
the authors. For further information, the reader is referred to the books by
Thompson, Warsi and Mastin (1985), George (1991), Knupp and Steinberg
(1993), and Castillo (1991); the conference proceedings edited by Weatherhill
et al. (1994), Arcilla, Hauser, Eiseman and Thompson (1991), and Babuska,
Flaherty, Henshaw, Hopcroft, Oliger and Tezduyar (1995); and the review
papers by Lohner (1987), and Eiseman (1985). Some other excellent sources
of information are Robert Schneiders’ Finite Element Mesh Generation site
on the World Wide Web:

http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html
and Steven Owen’s Meshing Research Corner site:
http://www.ce.cmu.edu:8000/user/sowen/wuw/mesh.html

These sites include information about both unstructured and structured mesh
generation, and pointers to a variety of public-domain and commercial grid
generation packages.

2. Basic steps in grid generation

There are some basic steps in constructing a grid that are common to many
of the grid generation approaches.

e As a first step in the grid generation process, the geometry of the re-
gion to be discretized must be defined, that is, the surfaces that make
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up the boundary of the region must be described. The geometry can
be represented in many ways, such as with analytic shapes (spheres,
cylinders), splines, NURBS (non-uniform rational b-splines), and inter-
polation methods. The geometry may be constructed within a computer-
aided-design (CAD) system or within the grid generation system itself.
Many CAD systems emphasize solid modelling using analytic shapes and
do not cater particularly well to the creation of grids for flow problems.
As a result, many grid-generation packages provide some level of CAD
support.

e  Given the representation of the surface (as a NURB, for example), it

is often necessary to reparameterize the surface. This step is referred
to as constructing a surface grid. (The Cartesian grid approach would
not require this step.) Given a smooth surface, the most widely used
CAD representations of this surface are only guaranteed to be geomet-
rically smooth — they are often not parametrically smooth. Thus, if grid
lines are drawn on the surface, equally spaced in parameter space, the
lines will not vary smoothly. Typically the parametric derivatives of the
surface will not even be continuous. By relaxing the requirements of
parametric smoothness, it is easier for the CAD system to represent the
surface, but unfortunately such a representation causes major difficulties
for the grid generation system. Furthermore, CAD programs often rep-
resent complicated surfaces by multiple patches and these patches may
not join properly (there may be gaps between patches, or the patches
may overlap). Grid generators must carefully examine the surfaces and
fix such defects. This is a difficult task and one that in principle should
not, be necessary.
Grid generators would like to have parametrically smooth surfaces so
that the grid points vary smoothly over the surface. The smoothing
of the surface parameterization typically involves solving an elliptic-like
equation on the surface or, in the case of triangles, shifting vertices
according to some averaging procedure. This step will also involve clus-
tering of grid points, such as in regions of high curvature. Surface grid
generation techniques are usually quite similar to volume grid generation
methods.

e  The third step is the generation of a volume grid. The procedure followed
at this stage differs significantly between the various grid types, and will
be described in the following sections.

3. Cartesian grid generation

Lately, there has been renewed interest in the Cartesian grid approach, due
to its simplicity and ease of automatic grid generation. By combining the
Cartesian approach with adaptive mesh refinement, several of the drawbacks
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of the technique have been eased; see, for example, Berger and Melton (1994),
and Coirier and Powell (1995). In the Cartesian grid approach, the region
is covered by a rectangular grid. Domain boundaries cut out regions of the
grid. The boundaries are not covered by boundary-fitted grids, but adaptive
refinement can be used to improve surface resolution. Adaptively refined
Cartesian grids combine elements of structured and unstructured grids and
are perhaps best classified as hybrid grids. Cartesian grid solvers are faster
and more efficient than more general unstructured solvers. Since the grids
are all rectangular, much less geometrical information needs to be saved and
there are significantly fewer operations required per grid point. Fig. 5 shows
a Cartesian grid for an F16XL (Berger and Melton 1994).

The main drawback of the Cartesian-grid method lies in the representation
of the boundary, where small cells are often formed. Without special treat-
ment these small cells would force the time-step of a time-dependent solver to
become prohibitively small. Typical applications only solve problems without
boundary layers (Euler equations, for example, as opposed to Navier-Stokes
equations). Since the boundary is not aligned with a grid line, in order to
resolve a boundary layer it is necessary to refine the grid in two directions
in two dimensions and three directions in three dimensions. In contrast, a
three-dimensional boundary-fitted grid need only refine the grid in the direc-
tion normal to the boundary. This can be an important consideration, since
the boundary layer grid spacing can be more than 103 times smaller than the
spacing away from the boundary.

4. Multi-block-structured grid generation

In the multi-block-structured grid approach, the computational volume is di-
vided into a set of non-overlapping logically rectangular blocks. A volume
grid is created on each block; see Thompson (1988) and Spekreijse (1995).
Usually, global smoothing is performed on the blocks to achieve some degree
of continuity in the grid metrics at the block boundaries. Discontinuities in
the grid spacing at block boundaries can result in poor solutions. Grid lines
may or may not join across blocks; if not, the grid is sometimes called a
patched grid. Patched grids require more general interpolation, but this can
easily be made conservative.

The multi-block approach has been popular for many years for aerospace
and other applications. It has improved flexibility over a single logically rect-
angular patch. High-quality grids can be created, and solvers are fast and
efficient. Efficient numerical methods such as implicit methods and multigrid
methods work well. Good-quality, highly stretched boundary-layer grids can
be created. The main disadvantage with the method is that it is difficult to
automate the decomposition of a region into non-overlapping blocks, espe-
cially in three dimensions. There is some difficulty with moving geometries
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Fig. 7. Corresponding grid.
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since the block decomposition may have to change. Generating a multi-block
grid for a complicated three-dimensional region usually requires significant
human intervention.

Figs 6 and 7 show a block structure grid for a hydroelectric power station
(Spekreijse, Boerstoel, Vitagliano and Kuyvenhoven 1992). Fig. 8, showing
a multi-block-structured grid for the space shuttle, is reproduced courtesy of
Steven Alter, Lockheed Engineering and Sciences Company.

4.1. Structured component grid generation approaches

One of the most important parts of structured grid generation (whether multi-
block or overlapping) is the creation of the individual blocks. The blocks will
generally have some or all bounding surfaces specified, and the aim is to create
a smooth volume-filling grid with appropriate grid spacing and orthogonality.
The most common techniques fall into the following categories:

e  algebraic
e  elliptic and variational
e  hyperbolic.

Algebraic grid generation methods create grids for the interior of a domain
by algebraically combining the representations of the boundary surfaces. The
transfinite interpolation procedure uses polynomials to interpolate the interior
grid from the boundaries; see Thompson et al. (1985). For example, a two-
dimensional grid bounded by the two curves C1(s) and Ca(s), can be created
using the simple shearing transformation

G(r,s) =rCi1(s) + (1 —r)Ca(s).

Whether the grid is useful depends strongly on the shape and parameterization
of the curves. Algebraic methods are not as flexible as some of the other
methods but their simplicity and speed of generation makes them popular.
Elliptic generation methods, pioneered by Thompson and co-workers, can
handle more general cases. They can be used to construct high-quality grids
on rather complicated domains; see, for example, Thompson (1987), Sorenson
(1986), and Spekreijse (1995). A Poisson equation is solved to determine the
location of the grid points. This equation commonly takes the form (in two
dimensions):
(927‘1' 627‘¢
oz? i oz3
where {r;} are the unit square coordinates, {x;} are the physical domain
coordinates and {P;} are the control functions. In practice, these equations
are transformed so that {r;} are the independent variables,
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Here,
_0x Ox
I = or, Or,

are the coefficients of the metric tensor. The equations are elliptic in nature
and this means that the resulting grid has desirable smoothness properties.
One of the keys to elliptic grid generation is the choice of control functions that
determine the grid point spacing and grid orthogonality. The Poisson system
that needs to be solved can be highly nonlinear and is difficult and time-
consuming to solve. The solution to the system is generally not guaranteed
to produce a single-valued grid, so care must be taken to prevent the grid
from becoming multi-valued (folding).

The variational approach also produces an elliptic equation whose solu-
tion determines the locations of the grid points; see Brackbill and Saltzman
(1982)Jr and Knupp and Steinberg (1993). The equations determining the
grid point locations are derived by forming the Euler-Lagrange (variational)
equations of a functional that measures properties of the grid such as ortho-
gonality, cell area and smoothness. By weighting these different properties it
is usually possible to obtain a grid with the desired features, although care
must be taken to prevent folding grids.

Hyperbolic grid generation methods solve a hyperbolic set of equations to
grow a grid from a boundary; see Starius (1977) and Chan and Steger (1992).
Fig. 9 shows a grid generated in this way (Chan and Steger 1992).

Typically, the hyperbolic system is defined by requiring that the grid lines
be orthogonal,

ox 0x
= .22 9
67"# aru * /’l‘ # I/?
and that the cell area is specified
ox
ar| =

Hyperbolic methods usually always add smoothing to prevent grid lines from
crossing prematurely. The outer boundary of the grid is determined as
the equations are solved, and thus this method is of limited use for block-
structured grids. It is, however, an extremely useful technique in the context
of overlapping grids. The method is much faster than an elliptic method since
the grid is constructed by marching.

5. Overlapping grid generation

The overlapping (overlaid, overset or Chimera) grid approach is similar to
the block-structured approach except that the component grids are allowed

t It doesn’t hurt to cite your manager whenever possible.
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Fig. 9. Some sections of a three-dimensional grid for the liquid hydrogen feedline
of the space shuttle, created with hyperbolic grid generation methods.

to overlap, instead of aligning along block boundaries; see Steger and Benek
(1987), Chesshire and Henshaw (1990), Meakin (1995), Tu and Fuchs (1995).
This approach has added flexibility over the block-structured technique while
still retaining the efficiency of a set of logically rectangular grids. The great
strength of overlapping grids is that component grids can be created in a
manner that is relatively independent from the other component grids. New
features can be added to the composite grid in an incremental fashion and the
grid only changes locally. Fig. 10 shows part of a detailed overlapping grid
for the space shuttle (Gomez and Ma 1994). The method is also attractive
for moving geometries. Fig. 11 shows the overlapping grid used for a moving
grid computation (Meakin 1995).

Overlapping grids are not as flexible as unstructured grids. It is difficult
to get very many levels of coarser grids for a multigrid algorithm because the
coarsened grids do not overlap enough. Generally, the interpolation between
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Fig. 11. Overlapping grid for the V-22 rotor and flapped wing, used in a moving
grid computation.

component grids is not conservative (Chesshire and Henshaw 1994). In prac-
tice this rarely seems to be an issue. Generally, the grid generation proceeds
in two steps. First, separate component grids are constructed for the vari-
ous parts of the geometry, using algebraic, elliptic or hyperbolic methods.
Then, given a set of component grids, the grid generation process of determ-
ining how the grids overlap can be entirely automatic. The process can fail,
however, if there is insufficient overlap between components.

An approach similar to overlapping grids, but one that avoids using non-
conservative interpolation, is the hybrid grid technique as shown in Fig. 12,
reproduced courtesy of Dr. K.H. Kao at Nasa Lewis Research Center. The
region is covered by overlapping blocks but the grid in the overlapping area
is replaced by an unstructured grid of triangles.
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6. Unstructured grid generation

Unstructured grids have become very popular in recent years, due both to
the influence of the finite-element method and to the increase in the power
of computers. Unstructured grids and unstructured solvers have successfully
demonstrated their capabilities to handle complex geometries in the demand-
ing field of aerospace applications, an area dominated for many years by
structured grids. The most flexible and automatic grid generation codes cre-
ate unstructured grids. They are well suited to point-wise adaptive refinement
and to moving mesh methods. See, for example, Shostko and Lohner (1995),
Mavriplis (1995), Hasan, Probert, Morgan and Peraire (1995), George and
Seveno (1994), Lo (1995), Johnson and Tezduyar (1995).

It is difficult to achieve good performance on unstructured grids; more
memory is required and it is quite hard to apply certain fast algorithms such
as implicit methods and multigrid. Attaining performance on vector, parallel
and cache-based computer architectures is not easy for solvers using unstruc-
tured grids because these machines prefer that operations be performed on
data that is stored locally in memory. On an unstructured grid, the data
belonging to the neighbour of a point may be stored a long distance away.
Moreover, triangular (and tetrahedral) meshes inherently require more ele-
ments and more computations per grid point; in three dimensions, there are
some five to six times more tetrahedra per grid point than on a correspond-
ing mesh of hexahedra. The creation of better-quality grids for hyperbolic
problems and forming highly stretched elements in boundary layers continue
to be active areas of research.

Fig. 13 shows a three-dimensional unstructured grid refined near the bound-
ary, for use in a viscous flow computation. The figure has been provided by
Professor Jaime Peraire.

Fig. 14, showing a cross-section of a three-dimensional grid for Yucca Moun-
tain, is reproduced courtesy of Harold Trease, Los Alamos National Labor-
atory.

6.1. Un-structured grid generation approaches
Three popular methods for creating unstructured grids are

o  Delaunay-based point insertion methods
e  advancing front methods
e  quadtree (octree) type methods.

Some of the most successful approaches use features of both the Delaunay
method and the advancing front method, combining the efficiency of the
former approach with the high element quality of the latter. Although quad-
rilateral (hexahedral) meshes are commonly used for structural problems,
meshes for CFD tend to be based on triangles (tetrahedra), with perhaps
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Fig. 14. Three-dimensional unstructured grid for Yucca Mountain

some quadrilateral (prismatic) elements near boundaries. There is some ques-
tion as to the accuracy of using very thin tetrahedra meshes in a boundary
layer; sometimes prismatic elements are used in the boundary layer. See, for
example, Kallinderis, Khawaja and McMorris (1995).

Most triangulation algorithms require a function defined over the entire
domain that provides the locally suggested value for the triangle size. This
background function is often defined on a background grid, either an existing
triangulation for the region or perhaps a rectangular grid that has been refined
in a quadtree fashion.

6.2. Delaunay-based methods

The Delaunay triangulation of a set of points has the property that the cir-
cumcircle through the vertices of any triangle contains no other points; see
Fig. 15. The Delaunay approach tends to create triangles that are regu-
larly proportioned. When a region is already filled with a distribution of
points, then either an incremental approach based on the Bowyer—-Watson
algorithm (Watson 1981, Bowyer 1981), or an advancing-front/Delaunay ap-
proach (Tannemura, Ogawa and Ogita 1983, Merriam 1991) can be used.
One of the difficulties of the Delaunay approach is maintaining the integrity
of the boundary. The empty circumcircle property of Delaunay triangulations
does not hold at the boundary. Care must be taken to prevent the formation of
triangles whose edges cross the specified boundary. Sometimes this problem
is initially ignored, the boundary being modified at the end by swapping edges
and perhaps by adding new points. Another problem is that the Delaunay
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Fig. 15. In a Delaunay triangulation the circumcircles through the triangles are
empty of other points.

Fig. 16. The incremental Delaunay approach begins from an initial triangulation
and progressively adds points; for example, points may be added at the
circumcentre of the largest circumradius.

triangulation is not appropriate for creating very thin triangles in a boundary
layer: some other method must be used.

In general, the positions of the grid points are not initially specified; they
must be determined as part of the grid generation procedure. Incremental
Delaunay methods start from a very coarse initial triangulation. Points are
added one at a time, and the mesh is locally adjusted so that it remains
Delaunay, using the Bowyer—Watson algorithm (Baker 1992). There are a
variety of strategies for deciding where to add successive points. This point
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Fig. 17. The advancing-front method grows triangles from the boundaries.

placement strategy can be crucial to the quality of the resulting grid. One
simple strategy involves making a list of all triangles that are too large com-
pared to the value indicated by the background function, and incrementally
adding new points to these triangles (Holmes and Synder 1988). The result-
ing grid can depend significantly on the order in which the list is processed.
Another approach is to order the list by triangle size and add points to the
largest triangle first. An alternative algorithm suggested by Rebay (1993)
leads to the triangles being processed along a front that begins at the bound-
ary. It results in a high-quality mesh similar to those produced with the
advancing front method, but without some of the difficulties of that method.

6.3. Advancing front

A widely used method that results in high-quality triangulations is the advan-
cing-front method; see for example Lohner and Parikh (1988) and Marcum
and Weatherhill (1995). As the name suggests, the advancing-front method
starts from the boundaries and progressively adds triangles; see Fig. 17. The
triangulated region grows into the interior, forming a propagating front. Since
the procedure begins at the boundary, the triangles near the boundary can
be constructed to be of high quality; this is an especially important feature
for many PDEs. Furthermore, the integrity of the boundary is more easily
maintained than with the Delaunay approach. However, significant care must
be taken when the fronts merge, especially when the elements are of widely
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Fig. 18. The quadtree decomposition recursively sub-divides the region.

varying scale; otherwise the triangles may overlap, creating an invalid grid.
This requires efficient yet robust search algorithms to determine whether
a given point is close to some other part of the front. Sometimes a local
Delaunay approach is used when adding new points to the front; see Mavriplis
(1995) and Miiller, Roe and Deconinck (1993).

There are also advancing front type methods that use quadrilaterals, but
these meshes are not usually used for CFD computations; see for example
Blacker (1991).

6.4. Quadtree (octree)

In simple terms, the quadtree approach proceeds by dividing the region into
four rectangles and then recursively subdividing some of those rectangles
into four additional rectangles, see Fig. 18. The cell size is reduced to meet
certain criteria and so that the boundary is represented to sufficient resolution.
The cells intersecting the boundary are replaced by polygons that follow the
boundary. If a triangular mesh is required, the rectangles and polygons can
be decomposed into triangles. The quadtree approach is widely used for
structural problems; see for example Shephard and George (1991). It is also
used to create grids for the Cartesian mesh approach, but is not commonly
used to create triangular grids for unstructured flow computations. One
disadvantage of the approach is that it cannot be made to conform to a
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specified boundary tessellation. Furthermore, it is difficult to control the
triangle shape near the boundary.

7. Conclusions

Significant advances have been made in the area of automatic grid generation
in recent years. The most notable accomplishment is the success of the un-
structured grid approach. This flexible approach shows the greatest promise
in achieving the goal of a completely automated grid generation procedure
for general applications. Structured grid methods, although less automatic
(and despite announcements of their death by some in the unstructured com-
munity), will continue to be used due to their superior efficiency and accuracy.
The author’s personal opinion is that overlapping grids, or the hybrid grid ap-
proach that replaces the overlapping region by triangles, have great potential
for many classes of problems since they are quite flexible and fast. In gen-
eral, all types of hybrid grids, which combine the best features of structured
grids (speed, quality and efficiency) with the best features of unstructured
grids (flexibility), will probably be more widely used in the future. One prob-
able reason why hybrid grids are not used more is the complexity of writing
solvers for these grids. Improvements in software through the use of better
computer languages and object-oriented design should alleviate some of these
difficulties.

Despite impressive achievements to date, there is still room for improve-
ment at almost every stage of the grid generation process. For example, the
step of taking a CAD description of the geometry and forming smooth surface
grids is in general very difficult. Designers of CAD systems need to be more
aware of the stringent requirements needed in CFD applications. All grid
generation approaches need to be more automatic, more robust, faster, and
produce better quality grids. It is perhaps not unfair to say that even the
most automatic system of today still requires significant human intervention.
Grid generation takes too long and still requires that the person generating
the grid not only be an expert in grids but also an expert in CAD and solvers.
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atical disciplines. This article is divided into two parts. Part I gives a histor-
ical account of the development of the field. We discuss various applications
that have been especially influential, from structural analysis to combinatorial
optimization, and we survey algorithmic developments, including the recent
advance of interior-point methods for a specific problem class: semidefinite
programming. In Part IT we primarily address optimization of convex func-
tions of eigenvalues of symmetric matrices subject to linear constraints. We
derive a fairly complete mathematical theory, some of it classical and some
of it new. Using the elegant language of conjugate duality theory, we high-
light the parallels between the analysis of invariant matrix norms and weakly
invariant convex matrix functions. We then restrict our attention further to
linear and semidefinite programming, emphasizing the parallel duality theory
and comparing primal-dual interior-point methods for the two problem classes.
The final section presents some apparently new variational results about ei-
genvalues of nonsymmetric matrices, unifying known characterizations of the
spectral abscissa (related to Lyapunov theory) and the spectral radius (as an
infimum of matrix norms).
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PART I: THE HISTORY

1. The shape of the strongest column

In 1773, Lagrange posed the following problem: determine the shape of
the strongest axially symmetric column with prescribed length, volume and
boundary conditions. The mathematical statement of this problem relies on
earlier work of J. Bernoulli and Euler. The latter, in 1744, established the
buckling load of such a column as the least eigenvalue of a self-adjoint fourth-
order differential operator. Consequently, Lagrange’s problem requires the
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maximization of this least eigenvalue, over all possible functions defining the
cross-sectional area of the column.

Lagrange’s problem, so easily stated, proved extraordinarily resistant to
many attempts at its solution. Many authors made substantial contributions
as well as serious errors. Lagrange must have the credit for posing the prob-
lem, yet several errors led to his incorrect conclusion that it is solved by the
uniform column. The first to offer a correct solution was Clausen in 1851,
in the case of clamped-free boundary conditions. The solution has the cigar
shape shown in Fig. 1(a), where the cross-sectional area of the column is plot-
ted as a function of its length. Clausen’s paper is known primarily through
later work of Pearson, who introduced many errors in an attempt to simplify
the results.

Lagrange’s problem then lay dormant for a century before it was taken up
in a modern treatment by J. Keller in 1960. Keller established the solution,
shown in Fig. 1(b), in the case of hinged-hinged boundary conditions. Then
Tadjbakhsh and Keller (1962) offered solutions in the case of clamped-hinged
and clamped-clamped boundary conditions. These are shown in Figs 1 (c)
and (d) respectively. A conspicuous feature in both cases is the vanishing of
the cross-sectional area at an internal point.

These solutions went unchallenged for fifteen years. Then Olhoff and
Rasmussen (1977) claimed that the Tadjbaksh—Keller (TK) clamped-clamped
solution was incorrect, because its solution procedure implicitly assumed that
the least eigenvalue associated with the optimal solution is simple (that is,
has multiplicity one). The solution offered by Olhoff and Rasmussen (OR),
displayed in Fig. 1 (e), has a double least eigenvalue. However, no proof of
the validity of this column was offered, nor were details of their numerical ap-
proximation procedure. Consequently, the issue remained quite controversial,
with some authors defending the TK solution, and others, notably Masur and
Seiranian, offering evidence for the OR solution. Recently, Cox and Overton
(1992) gave the first proof of existence of a solution to the clamped-clamped
problem, as well as the first proof that the OR solution indeed satisfies the
Clarke (1983) first-order necessary conditions for optimality. In addition, Cox
and Overton (1992) offered the first systematic numerical results using direct
optimization techniques that take into account the possibility of a multiple
eigenvalue. Both the theoretical contributions and the numerical techniques
of Cox and Overton (1992) rely on the theory of convex analysis and its
generalizations due to Rockafellar (1970) and Clarke (1983).

However, following in the footsteps of their illustrious predecessors in more
ways than one, Cox and Overton also introduced a new error, claiming in an
appendix that the TK clamped-hinged solution was also incorrect. Rather
than believing their own numerical evidence, albeit uncertain given the van-
ishing of the cross-sectional area at an internal point and the corresponding
absence of an existence proof (Cox and Overton 1992, p. 315), they placed
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faith in a mathematical proof that contained a simple scaling error: the irony
will doubtless be enjoyed by the readers of this journal. That the TK clamped-
hinged solution is indeed correct (though the TK clamped-clamped solution
is not) has now been established beyond doubt by Cox and Maddocks (1996).
For more details, see the article by Cox in Math. Intelligencer (Cox 1992),
accompanied by illustrations of the strongest columns on the cover, and also
the follow-up discussion (Kirmser and Hu 1993, Cox 1993).

2. Optimal partitioning of graphs

Our next example of eigenvalue optimization could not be more different in
character to the strongest column problem. Consider a nonnegative edge-
weighting of the complete (undirected) graph on the vertex set {1,2,...,n}.
We can associate any such weighting with an n X n symmetric matrix W
with diagonal entries all zero and off-diagonal entries all nonnegative: entry
Wi; is just the weight on the edge (7,7). Given integers dy > dy > --- >
dp > 0, with sum n, consider the problem of partitioning the vertex set into
k subsets such that the i¢th subset contains exactly d; vertices and the sum
of weights of edges between subsets is minimized. Equivalently, the sum of
the weights of edges whose endpoints are both inside the same subset is to
be maximized. This problem is NP-hard. However, Donath and Hoffman
(1973) suggested the clever idea of deriving bounds on the solution by means
of eigenvalue optimization. (For other approaches to graph partitioning that
exploit eigenvalues, though not necessarily eigenvalue optimization, see the
early work of Fiedler (1973) and the recent survey paper of Pothen (1996).)

Denote the characteristic (column) vector for the ith subset by z¢ € R™:
thus z is 1 if vertex r is in subset i, and is 0 otherwise. Let X be the nxk mat-
rix [z!,2?,...,2%]. Then, by construction, X7 X = Diag(d1,dz...,dx), and
we seek to maximize Y Wi; (XX T)ij, or equivalently, the trace of WXXT.
Since for any matrices A and B we have tr AB = tr BA, we can write the
partitioning problem as:

max tr XWX
X eRnxk

subject to X7 X = Diag(d) and X;; € {0,1}. (2.1)

Now let us replace the variable matrix X by making the normalized defini-
tions y* = dil/z.ri and Y = [y1,92,... ,y*]T. With this change of variable, the
optimization problem becomes

k
max d; (y)T Wy
YGR"X’“i___Zl (y") Yy

subject to YTY =T and ,/d;d;Yi; € {0,1}. (2.2)
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The last constraint is the integrality constraint, which makes the problem
difficult. So, let us relaz the problem by dropping this constraint. As we shall
see (in Lemma 10.2), the relaxed problem is solved by taking the columns of
Y to be an orthonormal set of eigenvectors for the largest &k eigenvalues of
W: each y* should be an eigenvector corresponding to A;(W), the ith largest
eigenvalue of W (counting multiplicities). The ordering is important since,
by assumption, the d; are given in descending order. Because the relaxation
was obtained by dropping the integer constraint, the quantity }:le didi(W)
is an upper bound for the optimal value of the problem (2.1).

Now we come to the key point: a tighter upper bound can be obtained using
eigenvalue optimization. The diagonal elements of X X7 are all one, so we can
replace the objective function of problem (2.1) by the trace of (W + D)X XT
for any diagonal matrix D with zero trace. Equivalently, after the change of
variables, we replace W by W+ D in the objective function of (2.2). Different
choices of D give different relaxations when the integer constraint is dropped,
and therefore different upper bounds. Thus D can be chosen to improve the

upper bound, by minimizing the weighted sum of the largest eigenvalues of
W + D, that is

k
G(D) =Y di\(W + D),
i=1
over all diagonal matrices D with zero trace.

Donath and Hoffman reasoned that since the function G is convex (as we
shall see in Section 10), the task of minimizing G should be tractable. This
turned out to be a more mathematically interesting and challenging problem
than they anticipated at the time, as we shall now discuss.

3. Multiple eigenvalues, optimality conditions, and
algorithms

Multiple eigenvalues had not been expected in the problem of Lagrange be-
cause, in all but the clamped-clamped case, the structure of the differential
operator makes it impossible for the least eigenvalue, say A1, to have multipli-
city greater than one. If one considers more general eigenvalue optimization
problems, however, it is clear that maximizing a least eigenvalue (equival-
ently minimizing a greatest eigenvalue) will potentially lead to coalescence
of eigenvalues. Of course, minimizing a least eigenvalue has the opposite
effect. The latter occurs, for example, in Rayleigh’s problem of finding the
shape of the two-dimensional drum with the least natural frequency. Math-
ematically, this means finding the shape of the domain that minimizes A1, the
least eigenvalue of the Laplacian. The least eigenvalue is necessarily simple,
and the solution is a circle. An interesting variation is to find the shape that
minimizes the ratio A / A2. This was considered by Payne, Pdélya and Wein-
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berger (1956): they conjectured that the solution is a circle, but this was
proved only recently (Ashbaugh and Benguria 1991). In this case, a double
eigenvalue plays a role, because X2 and A3 coalesce at the solution. FEigen-
value optimization problems for plates (modelled by fourth-order differential
operators in two dimensions) are also of interest, but these have received
relatively little attention. All of these problems are difficult because they are
infinite-dimensional and the operators depend on the variables in a complic-
ated way. For the remainder of this article we confine our attention to matrix
problems with linear dependence on the variables.

The Donath—Hoffman approach to graph partitioning requires minimizing
a weighted sum of the largest eigenvalues of a matrix, the variables being
simply the diagonal elements. This work led to a paper of Cullum, Donath
and Wolfe (1975) that is remarkable for two significant contributions. The
first was the development of an optimality condition using convex analysis,
emphasizing the issue of multiple eigenvalues. Specifically, the authors recog-
nized and addressed the fact that the sum-of-eigenvalues function, although
convex, is not a differentiable function at points where the eigenvalues co-
alesce. The second contribution of Cullum et al. (1975) was the development
of a convergent algorithm to find a minimizer. The significance of this work
was not appreciated for some ten years or so. Then Fletcher (1985) revived
interest in the problem, inspiring further analytical improvements by Overton
and Womersley (1993) and Hirriart-Urruty and Ye (1995). These results are
now largely subsumed by a more general but concise approach due to Lewis
(19964a), presented in Part 1T of this survey. Specifically, rather general com-
posite functions of the form h o A are considered, where A is the eigenvalue
map from symmetric matrix space to R", and h is any convex function that
is symmetric with respect to its arguments. A duality theory for this class of
functions will be given in some detail, building on the fundamental results of
convex analysis due to Rockafellar as well as key matrix theoretic results of
von Neumann and others. Composite eigenvalue optimization includes semi-
definite programming (SDP), a generalization of linear programming that has
received much attention in the last few years.

The SDP problem is to minimize a linear function of a symmetric matrix
variable subject to linear and positive semidefinite constraints on the matrix.
Typically, SDPs have solutions with multiple zero eigenvalues. Semidefin-
ite constraints have been considered in many contexts; two early papers are
Bellman and Fan (1963) and Craven and Mond (1981). In fact, SDP was the
variant of eigenvalue optimization that was primarily addressed by Fletcher
(1985), introducing a new algorithmic approach and emphasizing the issues
of multiple eigenvalues and quadratic convergence. This led to the compu-
tational work on minimizing a maximum eigenvalue due to Overton (1988,
1992) and the associated second-order convergence analysis (a complicated is-
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sue in the presence of multiple eigenvalues) given by Overton and Womersley
(1995) and Shapiro and Fan (1995). However, since many eigenvalue optim-
ization problems can be rephrased as equivalent SDPs, this work has now
been largely overshadowed by the sudden advance of interior-point methods
for SDP, to which we now turn.

4. Interior-point methods and polynomial-time algorithms

Linear programming (LP) was established as a discipline in the 1940s by
Dantzig. The LP problem is to minimize a linear function subject to linear
equality and inequality constraints on the variables, a problem which, remark-
ably, had largely escaped earlier attention, with the exception of some work on
systems of linear inequalities by Fourier and Motzkin. As well as introducing
the problem class, Dantzig gave an algorithm for solving LPs: the simplex
method. Duality played a key role from the beginning, originating in a famous
conversation between Dantzig and von Neumann at Princeton in 1947; see
Dantzig (1991). The highly efficient simplex method went essentially unchal-
lenged for 30 years, although it was known that, in the worst case, it required
computation time exponential in the problem size. In 1979 Khaciyan showed
that the ellipsoid method of Nemirovskii and Shor could be used to guarantee
the solution of LPs in polynomial time. The ellipsoid method proved to be
impractical, but it inspired the work of Karmarkar (1984), which established
the interior-point framework as a practical, polynomial-time approach to solv-
ing LP. In the 10 years since, a profusion of interior-point methods for LP
have been proposed, implemented and theoretically analysed; see the surveys
by Lustig, Marsten and Shanno (1994), Gonzaga (1992) and Wright (1992).
It is now generally accepted that the primal-dual interior-point method due
to Monteiro and Adler (1989) and Kojima, Mizuno and Yoshise (1989) has
substantial theoretical and practical advantages over the other interior-point
methods, including Karmarkar’s method.

As we already noted, the difference between LP and SDP is that, in the
latter case, the variable is a symmetric matrix and the inequality constraint
is a semidefinite matrix constraint. In the case that the matrix is constrained
to be diagonal, SDP reduces to LP. There is no simplex method for SDP,
because the feasible region is not polyhedral. In the late 1980s, Nesterov
and Nemirovskii extended many of the interior-point methods and theoretical
results from LP to a much broader class of convex programming problems,
including SDP; see Nesterov and Nemirovskii (1994). Alizadeh (1991, 1995)
and Karmarkar and Thakur (1992) also independently proposed such a gen-
eralization for SDP, a key component being the ‘log determinant’ barrier
function. In the last three years there has been a burst of activity in the de-
velopment of interior-point methods for SDP. Some of the most recent work,
namely the derivation of a primal-dual interior-point method for SDP, will
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be discussed in Section 14. See Vandenberghe and Boyd (1996) for a survey
article on SDP, including many applications not discussed here.

We now briefly discuss two important application areas that have success-
fully exploited the success of interior-point methods for SDP.

5. Polynomial-time approximations to NP-hard graph
problems

The availability of polynomial-time algorithms for semidefinite programming
has led to great interest by the combinatorial optimization community in
provably good polynomial-time approximations to NP-hard problems. We
consider one example.

As in Section 2, consider the complete graph with vertex set {1,2,...,n}
and edges (%, j) with associated nonnegative weights W;;. The max-cut prob-
lem is to divide the vertices into two sets, V; and V5, such that the weighted
sum of edges crossing from one set to the other is maximized. This is not
the same as the graph partitioning problem with £ = 2 since the number of
vertices in each set is not preassigned. The max-cut problem is NP-hard,
although the min-cut (max-flow) problem can be solved by standard fast al-
gorithms. (The min-cut problem is trivial if one does not specify that Vi and
V2 must be nonempty). The max-cut problem can be expressed as

0% o Z Wi (1 — ziz5) : |z;) = 1 for all ¢ p , (5.1)
1<i<j<n
where we adopt the convention that z; = 1 means 7 € V] and z; = —1 means

1 € Vo. Now consider the modified problem

max > Wi = (@)Ta%) Y = 1forallip, (5.2)
i z2 .. x"ER™ 1<i<;<n
where || - || denotes the Euclidean norm. If the vectors z!,...,z™ solving

problem (5.2) all happen to be parallel, then they can be associated with the
scalar solutions z; = £1 to problem (5.1), and the max-cut problem is solved.
Of course, this is very unlikely to occur. However, given any fixed optimal
solution of problem (5.2), we can generate a cut for the graph by cutting
the unit ball in half, and then assigning vertex i to set V; or V5 according
to which half of the ball contains the vector z*. Goemans and Williamson
(1996) recently established the surprising fact that, if one makes the division
of the unit ball in the appropriate way, the resulting cut in the graph is an
approximate solution of the max-cut problem with an objective value within
a factor of 1.14 of the optimal value. Notice that problem (5.2) is equivalent
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to the SDP
IZntu(}{tr WZ:Z; =1, for each i},

the variable Z being a symmetric matrix associated with the vectors z* by
the equation Z = XT X, where X is the matrix [zl,x2, e ,x"], and where
Z > 0 denotes the semidefinite constraint.

To summarize, the max-cut problem, which is NP-hard, is provably solvable
within a factor of 1.14 in polynomial time, via the solution of a semidefinite
program. For more on the max-cut problem, see the survey by Poljak and
Tuza (1993) and the recent thesis of Helmberg (1994). For other applica-
tions of SDP and eigenvalue optimization to combinatorial optimization, see
Grotschel, Lovasz and Schriver (1988, Chapter 9), Mohar and Poljak (1993)
and Rendl and Wolkowicz (1992).

6. Linear matrix inequalities in system and control theory

The title of this section is also the title of a recent book (Boyd, Ghaoui,
Feron and Balakrishnan 1994). A linear matriz inequality (LMI) is generally
understood to mean a positive semidefinite or definite constraint on a matrix
depending affinely on parameters: as such, an LMI is simply the constraint of
an SDP. However, the term is also sometimes used to describe more general
matrix inequality constraints, especially bounds on the eigenvalues of a pencil
(those scalars A satisfying det(A — AB) = 0, where the matrices A and B are
symmetric and depend affinely on parameters, and B is positive definite). The
application of LMIs to control theory has its origins in the work of Lyapunov
in the 1890s and Yakubovitch in the 1960s.

The impact of LMIs on system and control theory is hard to overstate: it
is fair to say that the field has been revolutionized by the realization that
optimization problems with LMI constraints can be effectively solved using
interior-point methods. We give no further details here since the relevant
material is available in Boyd et al. (1994).

7. Non-Lipschitz eigenvalue optimization

Up to this point we have discussed eigenvalue optimization for symmetric
matrices and self-adjoint operators, which have real eigenvalues and orthonor-
mal sets of eigenvectors. Eigenvalues of nonsymmetric matrices and operators
also play many roles in applied mathematics, though it is well known that their
potential sensitivity to perturbation requires caution. Stability issues arise
in many applications, with instability generally associated with eigenvalues
whose real parts are nonnegative. Indeed, the widespread use of symmetric
linear matrix inequalities in system and control theory is, in part, motiv-
ated by stability issues for nonsymmetric matrices, via Lyapunov theory and
its generalizations. It is therefore natural to consider direct application of
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Fig. 2 Spectral abscissa for
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optimization theory to functions of eigenvalues of nonsymmetric matrices.
However, this is quite complicated because of the non-Lipschitz behaviour of
the eigenvalues.

The damped linear oscillator provides a simple example of eigenvalue op-
timization in the nonsymmetric case. Consider the ordinary differential equa-
tion, for a given real b,

y'(t) + 2by'(t) + y(t) = 0. (7.1)
Noting that the vector z(t) = [y(t) ¥/(t)]T satisfies the first-order system
Z'(t) = A(b)z(t) where A(b) = [ (1) 2; ], the initial value problem may be
solved in terms of the eigenvalues and eigenvectors of A(b). The effectiveness
of the damping is measured by the spectral abscissa of A(b) (that is, the largest
real part of the eigenvalues of A(b)): we denote this function by a(b). Now
a(b) = —b+Re vVb% — 1, so, since the spectral abscissa achieves its minimum
at b = 1, equation (7.1) is said to be over(under)damped if b > 1 (b < 1),
and critically damped if b = 1. The function a(b) is plotted in Fig. 2. Note
that o is not a Lipschitz function of b. The sharply different behaviour of the
function a on the two sides of the minimizer occurs because, on one side, a
double eigenvalue splits into a real pair, while on the other side, it splits into a
complex conjugate pair. In both cases the changes in the eigenvalues are non-
Lipschitz, but only in the former case do the real parts have non-Lipschitz
behaviour. The optimal damping factor b = 1 yields a matrix A(b) with an
eigenvalue having algebraic multiplicity two, but geometric multiplicity one,
and thus with a nontrivial Jordan block.

A similar phenomenon is well known from the analysis of the successive
overrelaxation (SOR) iterative method for solving systems of linear equations;
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see Ortega (1972). The critical value of the overrelaxation parameter is de-
termined by an eigenvalue optimization problem in one variable. Over- and
underrelaxation are well known to have very different consequences, again
because of the presence of a nontrivial Jordan block at the minimizing point.

Of course, non-Lipschitz eigenvalue optimization problems also arise in
more than one variable. Cox and Overton (1996) treat a generalization of the
damped linear oscillator, namely the damped wave equation. Ringertz (1996)
considers applications to stability issues for aircraft design.

Optimality conditions for non-Lipschitz eigenvalue optimization are rather
complicated and beyond the scope of this article. For the present state of the
art, see Burke and Overton (1994) and Overton and Womersley (1988).

Indeed, consider the following, far simpler question. Suppose A4 is a non-
symmetric matrix with multiple eigenvalues, and consider the eigenvalues of
the perturbed matrix A + e€B, where the matrix B is arbitrary and € is a
scalar perturbation parameter. How can we quantify the leading terms of the
expansions of these eigenvalues in fractional powers of €/ When A has non-
trivial Jordan structure, the behaviour of the eigenvalues under perturbation
is quite complicated. Apparently, the only book that addresses this issue is
Baumgértel (1985), building on results of Lidskii and others published in the
Russian literature in the 1960s, but remaining largely unknown in the West.
See Moro, Burke and Overton (1995) for discussion of Lidskii’s results and
connections with the classical Newton diagram.

In the final section of this article we derive some apparently new variational
results for functions of eigenvalues of nonsymmetric matrices. One special
case amounts to a characterization of the spectral abscissa as the optimal
value of a symmetric matrix eigenvalue optimization problem, a result well
known to control theorists and one which may be viewed as a quantitative
version of Lyapunov theory. Another special case implies the well known
result that the spectral radius may be characterized as the infimum of all
submultiplicative matrix norms. These results suggest a possible approach
to non-Lipschitz eigenvalue optimization by means of symmetric eigenvalue
optimization.

PART II: THE MATHEMATICS

8. Conjugacy

Convex analysis is an elegant and powerful tool for studying duality in optim-
ization. Particularly for linearly constrained problems, it provides a concise
and flexible framework. We begin by summarizing the relevant ideas.

Let E be a FEuclidean space, by which we mean a finite-dimensional, real
inner-product space. We could, of course, always identify F with R”, but a



EIGENVALUE OPTIMIZATION 161

less concrete approach helps our future development. We call a real function
f on E a prenorm if it is continuous, and satisfies

e homogeneity: f(ax) = |a|f(zx) for all real @ and points z in E
o positivity: f(x) > 0 for all nonzero points z in E.

A norm is then just a prenorm satisfying the triangle inequality. For a pren-
orm f, we can define a real function f on E by

fP(y) = max{(z,y) : f(z) =1},
The function fP is actually a norm: we call it the dual norm of f.

Theorem 8.1. (von Neumann, 1937) A prenorm f is a norm if and only
if f=fPP.
The reader may consult Horn and Johnson (1985) for these ideas.

In optimization it is very convenient to consider ezxtended-real functions
f: E — [—o00,+00]. We call such a function convez (respectively closed,
polyhedral) if its epigraph {(z,r) € ExR: f(z) < r}, is a convex (respectively
closed, polyhedral) set. The domain of f is the set

domf={zx€FE: f(z) < +x};

if this set is nonempty and if f never takes the value —oo, then f is called
proper. For any extended-real function f we can define an extended-real
function f* on E by

fy) = sup{{z,y) — f(z) : x € E}.

The function f* is always closed and convex: we call it the (Fenchel) con-
jugate of f. The basic reference for these and later convex-analytic ideas is
Rockafellar (1970). Our definition of a closed function is slightly different
from that of Rockafellar (1970): the definitions coincide for proper functions.

Theorem 8.2. (Fenchel-Hormander, 1949) Suppose the extended-real
function f is proper. Then f is closed and convex if and only if f = f**. In
this case, f* is also proper.

The ideas of dual norms and conjugate functions are closely related: if f is a
norm then a short calculation shows

(f2/2) = (FP)%/2. (8.1)

The first-order behaviour of a function f : E — (—o0,+o0] at a point
z in its domain is fundamental to any study of optimality conditions and
algorithms. For convex f this behaviour is encapsulated in the subdifferential

Of(x)={ye E:{y,z—z) < f(2) — f(x) for all z in E}.

Specifically, the directional derivative of f at  in a direction w € E is given
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by the formula
f'(zw) = sup{(w,y) : y € 0f(2)}-
In particular, f is differentiable at x exactly when its subdifferential there is
a singleton (8f(z) = {V f(z)}). If f(z) is infinite, we define df(x) = 0.
Immediately from its definition, we can relate the subdifferential to the
conjugate:

yedf(z) & [fl@)+ )= (zy). (8.2)

Using the Fenchel-Hérmander Theorem (Theorem 8.2), we deduce that for a
proper closed convex function f, the subdifferential map can be ‘inverted’:

yedf(z) & ze€df(y). (8.3)

Example 8.3. (cones) One benefit of convex analysis is the possibility of
studying a subset K of E through its indicator function

5K(w):{0 ifx e K,

+00 otherwise.
This function is convex (closed) exactly when K is convex (closed). Suppose
K is a cone: that is, Rt K = K. Then we deduce immediately that the
function 0% is just éx-, the indicator function of the polar cone

K- ={yeFE:(z,y) <0forall zin K}
The Fenchel-Hérmander Theorem (Theorem 8.2) then shows that a cone K is

closed and convex exactly when K~~ = K. From the subdifferential property
(8.2) we deduce the ‘complementarity’ condition
y€0bg(z) & ze€K,ye K, and (z,y) = 0. (8.4)

In particular, if the space F is R™ and the cone K is the nonnegative orthant
R"}, then the polar K~ is —~R”}, and for vectors x and y in R’} we deduce

y € Obgn(z) & z; 20, y; <0, and x; or y; = 0 for each j. (8.5)

When f is a norm, the subdifferential property (8.2) has a simple analogue.
For nonzero points x in E, an easy calculation shows

yedf(z) & flz)=(z,y)and fP(y) =1, (8.6)
while 8f(0) = {y € E: fP(y) < 1}.

The duality theory of linearly-constrained convex optimization is particu-
larly transparent in this framework. We will always consider R™ as a Eu-
clidean space of column vectors, with the standard inner product. Given a
linear map A : E — R™, we define the adjoint map A* : R™ — E by the
property

yT(Az) = (A*y,z) for all points = in E and y in R™.
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Suppose the function f : E — (—o00, +00] is closed, convex and proper, fix a
vector b in R™, and consider the pair of optimization problems,

Primal: p =inf{f(z):z € E, Az = b};
Dual: 6§ =sup{yTb— f*(A*y):yeR™}.

The following result is derived from theory due to Rockafellar, dating from
1963 (Rockafellar 1970). We say the primal problem is superconsistent if there
is a point Z in int(dom f) satisfying AZ = b, and we say the dual problem
is superconsistent if there is a point § in R™ with A*g in int(dom f*). By
‘consistent’ we mean the same properties with ‘int’ omitted.

Theorem 8.4. (Fenchel Duality)

(i) Weak duality: p > 6.

(ii) Dual attainment: if the primal is superconsistent, then p = 6, and § is
attained, if finite. Furthermore, if A is surjective, then, for any real a,
the set

{y e R™: yTb— f*(A*y) > a}

1s compact.

(iii) Primal attainment: if the dual is superconsistent, then p = §, and p is
attained if finite. Furthermore, for any real «, the set

{z eR": f(z) < a, Az = b}

is compact.

(iv) Polyhedrality: if f is polyhedral and either problem is consistent, then
the other problem is attained, if finite, and p = é.

(v) Complementary slackness: suppose p = §. Then points T and J are
optimal for the primal and the dual problems respectively, if and only if

AT = b and A*y € 0f(Z).

The complementary slackness condition A*y € 0f(T) is equivalent to T €
Of*(A*y), by the inversion formula (8.3). If in addition f* is differentiable
at A*Y then the primal solution T must therefore be Vf*(A*y). In these
circumstances we are thus able to recover a primal optimal solution by solving
the dual problem.

A nice exercise is to apply the Fenchel Duality Theorem (Theorem 8.4) and
Example 8.3 to the ‘cone optimization problem’

inf{(c,z) : Az =b, z € K},

for a convex cone K and an element ¢ of E. This model (cf. Nesterov
and Nemirovskii 1994) subsumes both linear and semidefinite programming,
which we discuss later.
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9. Invariant norms

The theoretical foundations of eigenvalue optimization parallel the better-
known theory of invariant matrix norms pioneered by von Neumann. A brief
sketch of this theory’s salient features is therefore illuminating. For clarity
we consider only square, real matrices.

We consider the Euclidean space M, of n X n real matrices, where the inner
product is defined by (X,Y) = tr X7Y. The singular values of a matrix X
in M, we denote 01(X) > 02(X) > -+ > 0,(X). In this way we define the
‘singular value map’ ¢ : M, — R™

We denote the groups of n X n permutation and orthogonal matrices by P,
and O, respectively. We call a function f on R™ symmetric if, for any point
z in R™ and any matrix @ in Py, we have f(Qx) = f(z). We say a norm ¢
on M, is (orthogonally) invariant if, for any matrices X in M,, and U and
V in Oy, we have ¢(UXV) = ¢(X).

For a vector z in R™, we denote the diagonal matrix with diagonal entries
r1,Z2,...,%, by Diagz. Clearly, for any invariant norm ¢ on M, the real
function g on R™ defined by g(z) = ¢(Diagz) is a symmetric norm that is
also absolute: g((|x1],]z2l,...,|xn|)T) = g(z) for all vectors x in R™. Such
norms are called symmetric gauges. The original norm ¢ is just the composite
function g o . A beautiful result of von Neumann shows that this property
characterizes invariant norms.

Theorem 9.1. (von Neumann, 1937) Invariant matrix norms are ex-
actly those composite functions of the form g o o, where g is a symmetric
gauge.

For our purposes, almost more important than the result is the proof tech-
nique. Naturally, it relies heavily on the existence of an ‘ordered singular
value decomposition’ for any matrix X:

X = U(Diago(X))V for some orthogonal U and V.
If a second matrix Y satisfies Y = U(Diago(Y))V, then we say X and Y

have a simultaneous ordered singular value decomposition. Von Neumann’s
key step was the following result, of substantial independent interest.

Lemma 9.2. (von Neumann, 1937) Any n x n real matrices X and Y
satisfy the inequality

tr XY < o(X)Ta(Y);

equality holds if and only if X and Y have a simultaneous ordered singular
value decomposition.

Equipped with this (nontrivial) result, von Neumann’s characterization
(Theorem 9.1) follows from a beautifully transparent duality argument. For
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an absolute, symmetric prenorm g on R”, we first use Lemma 9.2 to deduce
that the prenorm g o ¢ satisfies

(goo)? =gPoo0. (9.1)

Hence if g is actually a symmetric gauge, applying this formula twice and
using Theorem 8.1, we deduce

DD:(DOJ)D:gDD

(goo)
and, by Theorem 8.1, g o 0 must be a norm. The result is now easy to see.
Lemma 9.2 also greatly facilitates the calculation of subdifferentials. The
following result, due to Zietak (1993) (cf. Watson (1992)) follows immediately
from the Lemma, the subdifferential characterization (8.6), and the duality
formula (9.1) (cf. Lewis (1995a)).

g °cg=goo,

Theorem 9.3. (Zigtak, 1994) If g is a symmetric gauge, then matrices
X and Y satisfy Y € 0(g 0 0)(X) if and only if they have a simultaneous
ordered singular value decomposition and satisfy o(Y) € dg(c(X)).

Such techniques help reveal the intimate geometric connections between the
two norms g and g o 0. For example, g o o is strict (respectively smooth) if
and only if ¢ is: see Arazy (1981) and Zigtak (1988). Furthermore, the facial
structure of the unit ball of g o ¢ can be derived from that of g (de S4 1994a,
19945, 1994¢).

Example 9.4. (invariant approximation) Given a subspace of matrices
and an invariant norm goo (where g is a symmetric gauge), suppose we wish
to approximate, in the norm go g, a given matrix by a matrix from the given
subspace. We can rewrite this problem, for a suitable choice of matrices 4;
and reals b; (for ¢ =1,2,...,m), as

Xienj\fln{(g(a(X)))z/Q s tr AT X = b; for each 4}. (9.2)

By the Fenchel Duality Theorem (Theorem 8.4) and the dual norm equation
(8.1), both this problem and its dual

2
yselg)n {Zbiyi - % <9D (U (Z yiAi>>> (9.3)

have optimal solutions, with equal optimal values: the form of the dual is a
consequence of the duality formula (9.1). If the norm ¢ is strict (that is, the
unit sphere {z : g(z) = 1} contains no line segments) then its dual norm
gP is smooth (see for example Deville, Godefroy and Zizler (1993, 11.1.6)),
whence so is gP o o: Zietak’s Theorem (Theorem 9.3) provides a simple
formula for V(gP o ¢) in terms of VgP. Then the dual problem (9.3) is
an unconstrained, smooth, concave maximization, and if the vector 7 is a
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solution, then the unique primal optimal solution is given by
X = ¢P(o(Y))U(Diag Vg (o(Y)))V,

where Y = >-iT;Ai, and U and V are any orthogonal matrices for which
Y = U(Diago(Y))V.

10. Functions of eigenvalues

We turn next to our principal interest: variational properties of eigenval-
ues. Our development mimics that of the previous section. An invariant
matrix function is simply an absolute, symmetric function of the singular
values. Analogously, a function of a symmetric matrix X that is invariant
under transformations X — UT XU, for all orthogonal matrices U, must be
a symmetric function of the eigenvalues of X.

We consider the Euclidean space Sy, of n xn real symmetric matrices, where
the inner product is defined by (X,Y) = tr XY. We denote the eigenvalues
of a matrix X in S, by A1 (X) > A(X) > -+ > Ap(X). In this way we define
the ‘eigenvalue map’ A : M, — R™.

We say a function ¢ on S, is weakly (orthogonally) invariant if, for any
matrices X in S, and U in Oy, we have »(UTXU) = (X). Clearly, for
any weakly invariant convex function v on S, the extended-real function h
on R" defined by h(z) = ¢¥(Diagz) is symmetric and convex. Remarkably,
just like von Neumann’s Theorem (Theorem 9.1), this property is actually a
characterization.

Theorem 10.1. (Davis, 1957) Functions on S,, that are weakly invariant
and convex are exactly those composite functions of the form Ao A, where the
function h : R™ — [—00, +00] is symmetric and convex.

For proofs of this result, see Davis (1957), Martinez-Legaz (1995) and Lewis
(1996¢). A rather different characterization when the function h is differenti-
able may be found in Friedland (1981).

To pursue our analogy, we sketch a revealing, duality-based proof when the
functions are closed. It begins with an analogue of von Neumann’s Lemma
(Lemma 9.2), for symmetric matrices. The inequality is actually an easy
consequence of von Neumann's; the condition for equality is due to Theo-
bald (1975). We say that two matrices X and Y in S,, have a simultan-
eous ordered spectral decomposition if there is an orthogonal matrix U with

X = UT(Diag A\(X))U and Y = UT (Diag \(Y))U.

Lemma 10.2. (von Neumann—Theobald) Any nXxn real symmetric matrices
X and Y satisfy the inequality

tr XY < MX)TA(Y);
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equality holds if and only if X and Y have a simultaneous ordered spectral
decomposition.

As in the singular value case, this inequality is the key tool. We first use
it to prove that any extended-real symmetric function h satisfies

(hoX)* =h*o A (10.1)

Hence if A is also closed, proper and convex, then applying this formula twice
and using the Fenchel-Hormander Theorem (Theorem 8.2), we deduce

(ho )™ =(h*oXN)* =h™oA=hol,

and, by Theorem 8.2, ho A must be convex. Theorem 10.1 is now easy to see.

Very much as in the invariant norm case, the von Neumann—Theobald
Lemma (Lemma 10.2) helps in the computation of subdifferentials. Using the
Lemma, the subdifferential characterization (8.2), and the conjugacy formula
(10.1), we obtain the following result (Lewis 1996a).

Theorem 10.3. (Lewis, 1996) If the function h : R® — (—00, 00] is sym-
metric and convex, then matrices X and Y satisfy Y € 9(h o A\)(X) if and
only if they have a simultaneous ordered spectral decomposition and satisfy

AY) € BR(A(X)).

There are similar results for smooth and nonsmooth, nonconvex functions
(Lewis 1996b, Tsing, Fan and Verriest 1994). Special versions of some of
these ideas appeared independently in Barbara and Crouzeix (1994).

As in the invariant norm case, geometric/analytic properties of the two
functions h and h oo are intimately related: strict convexity and smoothness
are examples (Lewis 1996a). Furthermore, if the convex subset C of R™ is
symmetric (that is, PC = C for all matrices P in P,), then by applying
Davis’s Theorem (Theorem 10.1), to the function éc o A we see that the
matrix set A7H(C) = {X € S, : \(X) € C} is also convex: the extremal and
facial structure of A=1(C) may be deduced from that of C' (Lewis 19964, Lewis
1995b). Similar examples appear in Seeger (1996) and Martinez-Legaz (1995).

The parallel between the invariant norm case in the previous section and
the development in this section is not accidental. There is a deeper, algebraic
structure underlying both theorems (Lewis 1995¢, Lewis 1996¢).

Example 10.4. (semidefinite cone) Starting with the indicator function
of the positive orthant, 6R1, the composite function 6R1 o\ is just the indicator
function of the cone of positive semidefinite matrices. We denote this cone
S, and for matrices X and Y in S, we write X = Y if X - Y € S/

n

The conjugacy formula (10.1) and Example 8.3 show Fejer’s result that the
positive semidefinite cone is ‘self-dual’ (that is, (S;})~ = —S;}), since

6(51—‘{-)_ = (S;,:. = (6R1 o /\)* = 6&1 o\= 6_]1{7_:_ o\= 6__52-.
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Furthermore, if matrices X and Y in S; satisfy tr XY = 0, then in fact
they must satisfy XY = 0. To see this, note that from the complementarity
condition (8.4) and the self-duality of S, we deduce Y € dég+(X). By
the subdifferential characterization, Theorem 10.3, X and —Y have a simul-
taneous ordered spectral decomposition, and A(=Y) € dégn (A(X)), whence
(by relation (8.5)) A;(X)A;(=Y) = 0 for each j. Thus for some orthogonal
matrix U,

XY = (UT(Diag \(X))U)(UT (Diag \(~Y))U)
= U'(Diag[X;(X)M\(-Y))U = 0.

Example 10.5. (logarithmic barrier) For vectors z and y in R", we
write £ > y if ; > y; for each index j. For matrices X and Y in Sy,
we write X = Y if X — Y is positive definite. Define a symmetric closed
convex function h : R* — (—00, +00] by

-2 jlogz; ifz >0,

hz) = { +00 otherwise. (10.2)

(Henceforth we will interpret log @ as —oo for any nonpositive real a.) The
corresponding matrix function is

(ho N)(X) = { —logdet X if X » 0,

400 otherwise. (10.3)

(Analogously, we henceforth interpret log det X as —oo unless the symmetric
matrix X is positive definite.) By Davis’s Theorem (Theorem 10.1), this
function is convex (and in fact essentially strictly convex, since h is; see
Lewis (1996a). Using Theorem 10.3, a simple exercise shows, for positive

definite X,
V(hoA)(X)=—-X"1 (10.4)

Since h*(y) = —n + h(—y), we deduce from the conjugacy formula (10.1),
(ho \*(Y) = { —n — logdet(—Y) if0>Y,

+00 otherwise.
In this example we see the intimate connection between the functions (10.2)
and (10.3), two of the ‘self-concordant barriers’ fundamental to the devel-
opment of Nesterov and Nemirovskii (1994). This connection suggests the
following interesting question (Tungel 1995): if the function h is a self-
concordant barrier, is the same true of the matrix function h o A?

Example 10.6. (BFGS updates — Fletcher, 1991) Given a matrix H
in S, which is positive definite, and vectors s and b in R™, we consider the
primal problem

X}élg {trH™'X —logdet X : Xs =b, X > 0}. (10.6)

(10.5)
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Using the framework of the Fenchel Duality Theorem (Theorem 8.4), and
formula (10.5), the dual problem is

sup {bTy + logdet(H™! — (ysT + sy7)/2)} +n. (10.7)
yER™

If sTb > 0, standard quasi-Newton theory shows the primal problem (10.6)
is superconsistent, and choosing § = 0 shows the dual problem (10.7) is also
superconsistent. Thus the primal and dual problems are both attained, by the
Fenchel Duality Theorem, and routine calculation using the gradient formula
(10.4) shows that the unique primal optimal solution is the ‘BFGS update’
of the ‘Hessian approximation’ H, subject to the ‘secant equation’ Xs = b
(Fletcher 1991, Lewis 1996a).

Example 10.7. (eigenvalue sums) For an integer k between 0 and n,
define a symmetric closed convex function i on R™ by

h{(z) = sum of the k largest x;. (10.8)

The corresponding matrix function is the sum of the k largest eigenvalues,

k
(ho A)(X) = A\(X).
=1

A calculation shows the conjugate of h is the indicator function of the set

n
{ZER":sz:k, ngjglforeachj},
=1

so by the conjugacy formula (10.1), the conjugate of A o A is the indicator
function of the matrix set

H={YeS,:trY=k I>Y =0} (10.9)

m

For given matrices A, A%2,..., A™ in S,, and a vector b in R™, consider the

optimization problem

k
inf {Z (X)) :tr A'X = b; for each z} ;

X€eSn =1

cf. Fletcher (1985), Overton and Womersley (1993), Hirriart-Urruty and Ye
(1995) and Pataki (1995). In the Fenchel Duality framework the dual problem
is therefore

sup {bTy : ZyiAi € H} , (10.10)

yeR™ i=1

where the set H is given by equation (10.9).
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Rather more generally, suppose the vector d in R™ has nonincreasing com-
ponents. For any vector z in R™, let T denote the vector with components
x; rearranged into nonincreasing order. Then the function h(z) = d'z is
symmetric, closed and convex (since h(z) = maxgep, {d¥ Qz}). The corres-
ponding matrix function is exactly the weighted sum of eigenvalues appearing
in the graph partitioning problem in Section 2, namely (hoA)(W) = dTA(W).

11. Linear programming

An important area of eigenvalue optimization is semidefinite programming
(SDP). Since the analogies with ordinary linear programming (LP) are very
close, we begin by outlining the relevant classical theory.

For given vectors ¢,al,a?,...,a™ in R®, and b in R™, the primal linear

program we study is

po = inf {cTz: (a?)Tx = b; for each j}. (11.1)
TERY

Using the framework of Theorem 8.4 (with objective function f(z) = ¢Tz +
égn (), we obtain the dual problem

6o = sup {bTy:cz Zyiai}. (11.2)
yER™ ;

By polyhedrality, we immediately see from the Fenchel Duality Theorem
(Theorem 8.4) that if either the primal or dual problem is consistent, then
po = dp, and both values are attained if finite. This is the classical linear
programming duality theorem. The complementary slackness condition ({v)
in Theorem 8.4) states that primal feasible Z in R™ and dual feasible 3 in R™
are both optimal if and only if

T
(c — Zyﬁ) =0,
B
or, equivalently, Z,;(c — 3_; 7;a*); = 0, for each index j = 1,2,...,n.

If we penalize the primal constraint z € R7} using the logarithmic barrier
(10.2) with a small positive parameter u, we obtain the new primal problem

TER™

pu = inf {CT:B — uZlong : (@) Tz = b; for each z} ,
J

and the dual problem is

Sy = sg;{p {bTy + uZlog (cj - }:yia;)} + nu(log u — 1).
yeER™ i i

J



EIGENVALUE OPTIMIZATION 171

The Fenchel Duality Theorem now needs a regularity condition. We assume
the following;:

(i) Primal superconsistency: some vector & > 0 in R™ satisfies
(@14 = b;, for each .

(ii) Dual superconsistency: some vector § in R™ satisfies ¢ > Y, g;a’.
(ii1) Independence: the vectors al,a?,...,a™ are linearly independent.

Assumptions (i) and (ii) guarantee p, = 6, by the Duality Theorem, and
both values are attained. The primal objective is (essentially) strictly con-
vex; assumption (iii) ensures the dual objective is too. Hence the primal
and dual both have unique optimal solutions, * = z* in R" and y = y* in
R™ respectively, and by the complementary slackness condition, they are the
unique solution of the system

(a')Tx = b;, for each i, (11.3)

z; (cj - Zyia;') = 4, for each j, (11.4)
%

z>0andc> ) ya'. (11.5)
%
Notice that when @ = 0 these conditions reduce to the complementary slack-
ness conditions for the original linear program.
The trajectory {(z*,y*) : u > 0} is called the central path. From equations
(11.3) and (11.4), we deduce the duality gap

ot — Tyt = np. (11.6)

Thus, using the weak duality inequality (Theorem 8.4(i)), we see that the
feasible solutions z* and y* approach optimality:

limeTz# = pg = 6p = lim bT yH.
10 po 0 10 Yy

But our regularity assumptions (i), (ii) and (iii) then imply, using the Fenchel
Duality compactness results, that the central path (z*, y*) stays bounded for
small positive g. Any limit point (z°,3%) must satisfy ¢7'z® = 6Ty° (by the
duality gap formula (11.6)), whence z° and y° are optimal for the primal
and dual respectively. In fact, a more careful argument shows that the limit
point (z°,¢°) is unique: the vectors z° and y° are the ‘analytic centres’ of
the optimal faces for the primal and dual problems respectively; see Megiddo
(1989) and McLinden (1980). (Given a polytope P = {z € L : z > 0}, where
L is an affine subspace and P contains a point z > 0, the analytic centre
of P is the unique minimizer of the logarithmic barrier —3_;log(z;) over all
z€P.)
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12. Semidefinite programming

In the previous section we outlined some of the classical theory of linear
programming, from a Fenchel Duality perspective. In this section we describe
the parallel theory of semidefinite programming: with a little caution, the
development is largely identical.

For given matrices C, A1, A%2,... A™in S, and a vector b in R™, the primal
semidefinite program is
po= inf {trCX :tr A’X = b; for each i}. (12.1)
XeSt

Calculating the conjugate of the objective function f(X) = trCX + §¢+(X)
is easy, using Example 10.4, and we arrive at the dual problem

8o = sup {bTy :C - ZyiA’} . (12.2)

YyER™

Despite its simple form, the primal-dual pair of semidefinite programs is
a remarkably flexible model. For example, it is easy to see how to rewrite
the dual of the eigenvalue sum problem (see (10.10)) as a dual semidefinite
program. Many other examples appear in Nesterov and Nemirovskii (1994).

The primal and dual problems are not polyhedral. As we have seen, a
linear program with finite optimal value must have an optimal solution, and
its optimal value must equal the optimal value of the dual linear program.
By contrast, these properties may fail for semidefinite programs. Hence we
assume some regularity conditions at the outset:

(i) Primal superconsistency: some matrix X > 0in S, satisfies
tr A'X = b;, for each i.

(ii) Dual superconsistency: some vector § in R™ satisfies C' = 3°, §; A

(iii) Independence: the matrices A1, A%,..., A™ are linearly independent.

With these assumptions, we see from the Fenchel Duality Theorem (The-
orem 8.4) that the optimal values are equal, py = dy, and both are attained.
The complementary slackness condition states that primal feasible X in S,
and dual feasible 7 in R™ are both optimal if and only if

As observed in Example 10.4 this condition is equivalent to (C—); 7;A") X =
0, and therefore it implies that X and Z have a simultaneous ordered spectral
decomposition, where Z = C—>", 3, A*. In other words, there is an orthogonal
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matrix U such that

= UT(Diag A(X)HU, and

| >

=T 0. M (12.3)
—Z = U (Diag\(-2))U.
Thus the complementary slackness condition implies
M(X)Aj(=Z) =0, for each j = 1,2,...,n. (12.4)

The minus signs are present because of the convention that A maps a matrix
to its eigenvalues in descending order. Note that, except in special cases, we
expect both X and Z to have a multiple zero eigenvalue.

As with linear programming, we next consider a penalized version of the
primal problem, using the logarithmic barrier (10.3) with a small positive
parameter p. We obtain the new primal problem

Pu = Xmg {trC'X — plogdet X : tr A’X = b; for each z} .

n

The corresponding dual problem is

6, = sup {bTy + plog det (C’ — ZyiA’) } + nu(logp —1).
yER™ :

By the Fenchel Duality Theorem (Theorem 8.4), p, = é,, and both values

are attained. Both objective functions are (essentially) strictly convex, so the

primal and dual problems have unique optimal solutions X = X* in S,, and

y = y* in R™ respectively: by the complementary slackness condition and

the gradient characterization (10.4), they uniquely solve the system

tr A*’X = b;, for each i, (12.5)

X (C - ZyiAi) = ul, (12.6)

X>0and C = > yA (12.7)
%
The trajectory {(X*,y*) : p > 0} is called the central path. Points on the
central path have the duality gap

trCX* — bTy# = np.

As with linear programming, this guarantees that as y decreases to zero the
solutions X* and y* approach optimality. Once again, the Fenchel Duality
Theorem shows that the central path (X#,y*) stays bounded for small pos-
itive 1, and any limit point (X°,4°) must be a pair of optimal solutions for
the original primal and dual problems.



174 A. S. LEwis AND M. L. OVERTON

Condition (12.6) implies that, just like the solution pair X and Z, X* and
C — 3, y/'A* have a simultaneous ordered spectral decomposition. When
u = 0, equation (12.6) reduces to the complementary slackness condition for
the original semidefinite program.

Notice that, with the choices C = Diagc and A* = Diaga® for each %, the
semidefinite theory developed in this section collapses to the linear theory of
the previous section.

13. Strict complementarity and nondegeneracy

Let us go back to the linear programming problem and its dual, (11.1) and
(11.2). We say a primal-dual solution (Z,7) satisfies the strict complement-
arity condition if, for each j, exactly one of the two statements Z; = 0 and
(¢ — ¥ 7;a"); = 0 holds. We say a strictly complementary solution is nonde-
generate if the vector F has exactly m nonzero components and the corres-
ponding m rows of the matrix [a,a?,.. ., a™] are linearly independent. It is
well known that these conditions guarantee that T is the unique optimal solu-
tion of the primal problem (11.1) and that 7 is the unique optimal solution of
the dual problem (11.2). Furthermore, these conditions hold ‘generically’ for
a linear program: roughly speaking, this means that they hold with probabil-
ity one, given randomly generated linear programs with associated nonempty
feasible regions.

The situation is less clear in semidefinite programming. There is no diffi-
culty with the idea of strict complementarity: we say a primal-dual solution
(X,7) for (12.1) and (12.2) satisfies the strict complementarity condition if,
for each index j, exactly one of the two statements A;(X) = 0 and A\;(—Z) = 0
holds, where Z = C — Y, 7, A*. Let r denote the rank of X and let s denote
the rank of Z; then strict complementarity holds if and only if r + s = n.
Nondegeneracy conditions are more complicated and are discussed by Al-
izadeh, Haeberly and Overton (1996a) and Shapiro (1996). Assume that
strict complementarity holds and let U = [U; Us] be the orthogonal matrix
of eigenvectors which simultaneously diagonalizes X and Z (see equations
(12.3)), with the first r columns (collected in Uj) corresponding to nonzero
eigenvalues of X and the last s columns (collected in Uz) corresponding to
nonzero eigenvalues of Z. Then the appropriate nondegeneracy assumptions
are the following two conditions, motivated by studying the primal and the
dual separately: first, that the matrices

A A :
g%w .gl Uy AUz , fori=1,2,...,m,
U2 AzUl 0
are linearly independent in the space S, and second, that the matrices

_U—rfAiﬁl, fori=1,2,...,m,
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Table 1. Number of occurrences of rank(X ) in 1000 randomly generated
problems with n = 10 and various values of m.

m|[0O 1 2 3 4 5 6 7 8 9 10

) 297 703
10 0 494 506 0
15 18 712 270 0
20 100 813 87
25 1 325 667 7

span the space Sy. It is shown by Alizadeh et al. (19964) that the strict com-
plementarity and nondegeneracy conditions imply uniqueness of the primal
and dual solutions, and also that the conditions are indeed generic properties
of SDP, meaning roughly that they hold with probability one for an optimal
solution pair, given random data with feasible solutions. An immediate con-
sequence is the existence of generic bounds on the optimal solution matrix
ranks 7 and s, and therefore on the multiplicity of the zero eigenvalues. Let
k? denote k(k 4+ 1)/2, and let ¥k = |t|, where t is the positive real root

of t? = k. Then generic bounds on the rank of the primal optimal solution
matrix X are given by

3
|

:I\D
|

3

IN
S

A
§

For further discussion of related issues, see Pataki (1995).

Experiments reported in Alizadeh et al. (1996a) show clearly that, given
randomly generated data, the rank r is far more likely to lie in the centre of
its range than near the end points. This is demonstrated by Table 1, which
shows, for n = 10 and various choices of m, how many times the primal rank
r occurred during 1000 runs with different random data. The zeros indicate
possible values of r which did not occur, while the blanks indicate generically
impossible values.

A natural question is: what is the underlying probability distribution for
the primal solution rank r? We consider this to be a very interesting open
question.

Table 1 also shows, incidentally, the reliability of the numerical method used
to obtain the results: accurate solutions to 5000 different randomly generated
problems were obtained without a single failure. (As with linear program-
ming, it is easy to check the optimality of a solution pair, simply by checking
primal and dual feasibility and the complementary slackness condition.) We
now sketch the ideas behind the primal-dual interior-point method used to
obtain these results.



176 A. S. LEwis AND M. L. OVERTON

14. Primal-dual interior-point methods

We begin again with the case of linear programming. The basic idea of
the primal-dual interior-point method is to generate a sequence of iterates
(z®), y(*)) € R* x R™ (for k = 1,2,...) approximating a sequence of points
lying on the central path and converging to an optimal solution as k — 00.
Briefly, this approximation is achieved by applying, at the kth iteration, one
step of Newton’s method to (11.3) and (11.4), a system of n + m linear and
quadratic equations in the n+m variables x;, y;. Here p is a positive number,
fixed at the kth iteration to a value u(® with u®) — 0 as k — co. (If we
also introduce the equations z; =¢; — >, yiaj-, substituting these into (11.4)
to obtain x;2; = u, and treating z;, j = 1,...,n, as independent variables,
Newton’s method yields an equivalent iteration.) The Newton step is defined
by the linear system

AT 0 Az b— AT (k)
Z® _Xx®A || Ay | T | (W] - xR z®)e |0 (14.1)

where A is the n X m matrix [al, canad™m X (k) and Z(¥) are respectively the
diagonal matrices Diag z*) and Diag(c—-Ay(k)), I is the n x n identity matrix
and e is the n-vector whose components are all one. Block Gauss elimination
reduces this system to

(4T(2®) X" A) Ay = b— AT (a®) - w®) (14.2)

Az =w® 4 (ZE)-1xE oAy, (14.3)

where w®) = (u®)(Z(*))=1 — X(*))e, New iterates are then obtained by
et = (B 4 oA, y(k+1) =y + BAy, where steplengths a and 3 are
chosen so that z**t1D > 0 and ¢ — Ay**) > 0. A value pEHD) < k) g
then chosen and the iterative step repeated. Different rules for reducing the
parameter g and choosing the steplengths o and [ give different variants
of the algorithm, with some specific rules known to guarantee a solution
with prescribed accuracy in polynomial time. The original references for this
method are Monteiro and Adler (1989) and Kojima et al. (1989).

We shall not discuss the global convergence theory. However, the following
well known result is important for understanding the local convergence and
numerical stability of the algorithm. It analyses the condition numbers of the
two key matrices defining the algorithm at points on the central path.

Proposition 14.1 Suppose that (Z, ¥) solves the LP primal-dual pair (11.1)
and (11.2), with both the strict complementarity and nondegeneracy condi-
tions holding. Then, using X# = Diaga* and Z* = Diag(c — Ay*), where
(x*,y*) lies on the central path defined by (11.3), (11.4) and (11.5), the
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condition numbers of the matrices
AT 0
Zh —XHA

are both bounded independent of y as u | 0.

] and AT(ZM)71X*A (14.4)

Proof. It is well known that the assumptions guarantee that (Z,7) is the
unique solution of the linear program and consequently, as discussed in Sec-
tion 11, also the limit point of the central path (z*,y*) as u | 0. Without
loss of generality, we may take

(5] emn[) a-[2]

where all partitionings are from n rows into m and n — m rows respectively,
with & > 0, 2 > 0, and A; nonsingular. Then the first matrix in (14.4)
converges to

AT AT 0
0 0 (—Diag ) A
0 DiagZz 0

as p | 0. This matrix can be permuted into a block upper triangular mat-
rix with nonsingular diagonal blocks AT —Diag(#)A;, Diag2. The second
matrix does not have a limit, but uA7(Z#*)~1X* A has the limit

AT (Diag )2 A,
by virtue of (11.4), which completes the proof. O

Let us refer to the first matrix in (14.4) as the block Jacobian matrix and
to the second as the Schur complement. The consequence of the bounded
condition number of the block Jacobian is that, given strict complementarity
and nondegeneracy assumptions, the primal-dual interior-point method for
linear programming has a quadratic rate of local convergence as long as the
parameter p is reduced sufficiently fast and the steplengths o and 3 are chosen
sufficiently close to one. See Zhang, Tapia and Dennis (1992) for details.
(Even without nondegeneracy assumptions, certain superlinear convergence
properties still hold; see Zhang and Tapia (1993).) The consequence of the
bounded condition number of the Schur complement is that, again under
the given assumptions, there is no numerical difficulty with factorizing the
matrix in (14.2) as g | 0. This is not necessarily the case in the absence of
nondegeneracy assumptions, a fact that is a subject of some current interest
(Wright 1995).

Now let us turn to semidefinite programming. As in linear programming,
the essential idea of the primal-dual interior-point method is to generate a
sequence of iterates (X (k),y(k)) € Sp x R™ approximating a sequence of
points on the central path, converging to a solution as k — ooc. However, it
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is not clear in this case how to apply Newton’s method. The key difficulty
is that the left-hand side of (12.6) is not symmetric, so equations (12.5) and
(12.6) do not map S, x R™ to itself; consequently, Newton's method is not
directly applicable. The cleanest solution seems to be to replace (12.6) by

X (C - ZyiAi) + (C — Zy,-/ﬁ) X =2ul. (14.5)

That (12.6) implies (14.5) is immediate. That the converse holds for X > 0
is easily seen by premultiplying (14.5) by UT and postmultiplying by U,
where the orthogonal matrix U diagonalizes X. Application of Newton’s
method to (12.5) and (14.5) leads to a very effective method for semidefinite
programming called the X Z+Z X method by Alizadeh, Haeberly and Overton
(1996b); this method was used to generate the results shown in Table 1 in
the previous section. On average, each problem was solved in less than 10
iterations, a property which is, in practice, almost independent of the problem
dimension. Other variants of the primal-dual interior-point method given by
Helmberg, Rendl, Vanderbei and Wolkowicz (1996), Kojima, Shindoh and
Hara (1994), Nesterov and Todd (1996) and Vandenberghe and Boyd (1995)
give similar performance, but the X Z 4+ ZX method is especially robust with
respect to changes in the rules for reducing u and choosing the steplengths
a, B (Alizadeh et al. 1996b). It is proved by Alizadeh et al. (1996b) that, given
the SDP strict complementarity and nondegeneracy assumptions stated in the
previous section, the first part of Theorem 14.1, namely that the condition
number of the block Jacobian is bounded, extends from LP to hold also for
the X Z + Z X method for SDP, but the second does not, that is, the condition
number of the corresponding Schur complement matrix is unbounded for SDP,
even with nondegeneracy assumptions. Consequently, the X Z + ZX method
1s locally quadratically convergent, in contrast to other variants of the primal-
dual interior-point method for SDP, given the nondegeneracy assumptions
and appropriate p reduction and steplength rules. However, under the same
conditions, the method is not necessarily numerically stable as y | 0, since the
condition number of the linear system which must be solved at each iteration
is O(1/p). Indeed, this was observed numerically by Alizadeh et al. (1996b):
generally, it was possible to compute results accurate to only about the square
root of the machine precision, given random data. The same difficulty applies
to other variants of the primal-dual interior-point method as well as the X Z +
Z X method. By contrast, there is no difficulty solving modest-sized randomly
generated linear programs to machine precision accuracy using the LP primal-
dual interior-point method.

As in LP, if we use the substitution Z = C' — Y, 4;A° in (12.6), introducing
Z as an independent variable and Z = C -3, y;A* as an additional equation,
Newton’s method yields an equivalent iteration.
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An appealing alternative primal-dual interior-point iteration for SDP is
based on the following idea. Instead of treating the variable X (or X and Z)
directly, recall from the discussion in Section 12 that for (X* y#) to lie on
the central path, X* and Z = C — Y, y¥ A" must have a simultaneous ordered
spectral decomposition. Therefore, consider the following set of variables: an
orthogonal matrix U, which diagonalizes both X and Z = C — ¥, 5 A%, to-
gether with the eigenvalues of X and Z, say £ and (;, j = 1,...,n. Equations
(12.5) and (12.6) then reduce to

tr (UTAiU(Diagﬁi)) = b;, for each i,
(Diag¢;) + > wUTA'U = UTCU,
g

and
;¢ = i, for each j.

Borrowing a technique used by Friedland, Nocedal and Overton (1987), Over-
ton (1988) and Overton and Womersley (1995), the orthogonal matrix U
can be parametrized by U = exp(S) =1+ S + %52 + -+, where S is skew-
symmetric, making the application of Newton’s method straightforward. This
leads to a method which, though it apparently has poor global convergence
properties, is at present able to compute more accurate solutions than any
other SDP interior-point method (Alizadeh et al. 19965).

The eigenvalue optimization method of Overton (Overton 1988, Overton
and Womersley 1995) is easily extended to apply to SDP. This method does
not share the global convergence properties known for the interior-point meth-
ods. However, it can be used as an effective technique to obtain highly ac-
curate solutions when an interior-point method reaches its limiting accuracy.
The same presumably applies to Fletcher’s method (Fletcher 1985), though
this has not been tested. These methods are more difficult to describe because
they use second derivatives, a complicated issue in the presence of multiple
eigenvalues. They need second derivatives to achieve quadratic convergence
because they are based on an appropriate form of Newton’s method in the
dual space only. These Newton methods use primal information to construct
the second derivative of an appropriate Lagrangian function, but they are
not primal-dual methods. A really remarkable property of the XZ + ZX
primal-dual interior-point method for SDP is that, in exact arithmetic, it
generically achieves quadratic convergence with only first-order primal and
dual information, even though the constraints are not polyhedral.

Primal-dual interior-point methods for LP have been used to solve very
large problems; the best methods are generally thought to be superior to the
simplex method, except for special problem classes. However, at present the
implementation of interior-point methods for SDP has been limited to small
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problems, or problems with block-diagonal structure. If C and the A® are
block-diagonal with the same block structure, then, without loss of generality,
the primal matrix X can be taken to have the same block structure: indeed,
LP is a special case with block sizes all one. Consequently, the primal-dual
interior-point methods for SDP can be implemented very efficiently if the
block sizes are not large. However, if C and the matrices A* have a more
general sparse structure, then even if C—3_, y¥* A" is sparse, the corresponding
primal matrix X* = p(C — ¥, y# AY)™! is generally dense. For example, this
is the case when C and the A® are tridiagonal. In this situation, it is possible
that an interior-point method based only on dual information is preferable
to a primal-dual method. It may also be worth reconsidering some older and
simpler first-order methods (Cullum et al. 1975, Overton 1992, Schramm and
Zowe 1992).

15. Nonlinear semidefinite programming and eigenvalue
optimization

The primal semidefinite program (12.1) permits only linear constraints; like-
wise the constraint in the dual program (12.2) is a semidefinite constraint
on an affine matrix function C' — ), y;A®. In many applications, one finds
eigenvalue optimization problems with nonlinear constraints, or with mat-
rix functions depending nonlinearly on the variables. Such problems are, of
course, substantially more difficult and a detailed discussion is beyond the
scope of this article. However, we make two remarks.

First, although much of the duality theory described above fails to extend
to the nonlinear case, some results are possible. Instead of subdifferentials,
one may introduce the Clarke generalized gradient (Clarke 1983). A suitable
chain rule yields first-order optimality conditions, though these are generally
only necessary, not sufficient, conditions for optimality (Cox and Overton
1992, Lewis 19965, Overton 1992). Second-order optimality conditions may
also be derived (Shapiro 1996).

Second, some of the essential ideas of interior-point methods can be exten-
ded to nonlinear, nonconvex problems. Specifically, the logarithmic barrier
function remains a very useful tool (Ringertz 1995). Whether primal-dual
methods have an important role to play in the nonlinear case is not clear.
However, the main idea remains valid, namely the application of Newton’s
method to a perturbed form of the optimality conditions, which, as in the
linear case, involve a complementarity condition.

16. Eigenvalues of nonsymmetric matrices

The eigenvalues of a real symmetric matrix, which we described by the func-
tion A : S, — R™, are Lipschitz functions of the matrix elements. Our devel-
opment in Section 10 and our analysis of semidefinite programming depend
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heavily on the symmetry of the matrices. A completely parallel theory holds
for complex Hermitian matrices. However, the eigenvalues of a real nonsym-
metric or a general complex matrix are, in general, non-Lipschitz functions
of the matrix elements.

In this section we give some apparently new variational results for functions
of eigenvalues of nonsymmetric matrices. One special case characterizes the
spectral abscissa of a nonsymmetric matrix, in a quantitative version of Lya-
punov theory, while another special case yields a well known characterization
of the spectral radius.

We can order the complex numbers C lexicographically: in this order,
one complex number, z, dominates another, w if either Rez > Rew, or
Rez = Rew and Imz > Imw. For a matrix X in the vector space of
n x n complex matrices, M,(C), let us denote the eigenvalues of X by
A(X), A2(X), ..., Ap(X), counted by multiplicity and ordered lexicographic-
ally. In this way we can extend the eigenvalue function A to the space M, (C).
If the matrices X and Z in M, (C) are simslar (that is, some matrix L satisfies
Z = LXL™1), then we write X ~ Z.

Proposition 16.1 If the function F : M,(C) — [—00, +00] satisfies
F(X) > F(Diag A(X)) for all X in My(C), (16.1)

and if, for some matrix Y in M,(C), the function F is upper semicontinuous

at Diag A(Y'), then

o

F(Diag \(Y)) = g/F(Z) (16.

)

A(Y), whence by inequality (16.1)
)

Proof. 1f Z is similar to Y, then A\(Z) =
= F(Diag A\(Y)). Thus F(Diag A(Y)) <

we obtain F(Z) > F(Diag A\(Z))
infz.y F(Z).

On the other hand, by Schur’s Theorem (Horn and Johnson 1985, Theorem
2.3.1), there is a unitary matrix @) and an upper triangular matrix T" with
main diagonal A\(Y'), satisfying QY Q* = T'. For positive real t, let D; denote
the matrix Diag(¢,t2,...,"). As t approaches +00, we have

(D:Q)Y (DQ)~! = D,TD; ! — Diag \(Y),
and since F is upper semicontinuous at Diag A(Y'), we deduce

Jnf F(Z) <limsup F((D:Q)Y (DQ) ") < F(Diag A(Y)).
~ t——+oo

Equation (16.2) follows. O

The key technique in this proof, using diagonal similarity transformations
to reduce the strictly upper triangular part of the Schur triangular form,
is well known: see, for example, Horn and Johnson (1985, Lemma 5.6.10).
Notice that if Y is not diagonalizable, the infimum in (16.2) may not be
attained.
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The following two propositions begin to look reminiscent of the material in
Sections 9 and 10. Indeed, the complex versions of von Neumann’s Lemma
(Lemma 9.2) and the von Neumann-Theobald Lemma (Lemma 10.2) may be
used to prove the propositions (although we quote intermediate results). For
a vector z in C", we write Re z and |z| for the vectors with entries Re z; and
|z;| respectively.

Proposition 16.2 If the function h : R® — [—00, +00] is symmetric and
convex, then any matrix X in M,(C) satisfies the inequality

B (3AX + X*)) > B(Re(A(X))). (16.3)

Proof. Since h is ‘Schur convex’ (see Marshall and Olkin (1979)), it suffices
to show that the inequalities
k
% /\J(X-FX*)EZRE)\](X)
=1

k
J=1 J
hold for each index k = 1,2,...,n, with equality for £ = n. This is exactly

Horn and Johnson (1991, (3.3.33)). O

Proposition 16.3 If g is a symmetric gauge on R", then any matrix X in
M, (C) satisfies the inequality

9(e(X)) = g(IMX))). (16.4)

Proof. By Horn and Johnson (1985, Theorem 7.4.45), it suffices to show
that the inequalities
k k
75(X) 2 D [An(y) (X))
j=1 Jj=1
hold for each index k = 1,2,...,n, where w is any permutation for which

|Ax(;»(X)! is nonincreasing in j. But this is precisely a result of Weyl (Horn
and Johnson 1991, Theorem 3.3.13). O

The analogy between the previous two propositions is clear if we recall that
the components of o(X) are just (A;(X*X))1/2,

Putting together the three previous propositions, we arrive at the main
result of this section.

Theorem 16.4

(a) Suppose the function h : R* — [—00, +00] is convex and symmetric. If
the matrix Y in M, (C) has Re A(Y)) in int(dom h), then it satisfies

h(ReA(Y)) = inf h (IMZ+27).
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(b) Suppose ¢ is a symmetric gauge on R™. Then any matrix Y in M,(C)
satisfies

g(IA)) = jnf g(a(Y)).
Proof.

(a) We choose F(X) = h(%/\(X—i-X*)) in Proposition 16.1. Inequality (16.1)
follows from Proposition 16.2, and since the convex function A must be
continuous on the interior of its domain (Rockafellar 1970, Theorem

10.1) and X is continuous, it follows that F' is continuous at Diag A(Y).
(b) We choose F(X) = g(o(X)) in Proposition 16.1.

O

Example 16.5. (spectral abscissa) The spectral abscissa of a matrix Y
in M, (C) is Re \1(Y). Applying Theorem 16.4(a) with the function h defined
by h(z) = max; z;, we obtain, for any matrix Y in M,(C),

spectral abscissa of Y = %Zlng/ M(Z+ Z7), (16.5)

or equivalently

spectral abscissa of Y = 1 Ldinf (LYL™' + L™*Y*L*). (16.6)
de

A
tLA0 L
We can interpret the spectral abscissa characterization (16.5) as a quant-
itative version of the Lyapunov Stability Theorem. We say a matrix A is
positive stable if all its eigenvalues have strictly positive real part.

Corollary 16.6. (Lyapunov, 1947) For any matrix A in M,(C), the fol-
lowing statements are equivalent.

(a) The matrix A is positive stable.

(b) There is a matrix B similar to A for which B + B* is positive definite.

(c) There is a positive definite matrix W for which WA + A*W is positive
definite.

Proof. The matrix A is positive stable exactly when the spectral abscissa
of —A is strictly negative. The equivalence of parts (a) and (b) now follows
from the characterization (16.5). The equivalence of parts (b) and (c) follows
by observing that W is positive definite if and only if W = L*L for some
invertible L. O

We can give a third form of the spectral abscissa characterization (16.5),
(16.6) using the notation of generalized eigenvalue problems. For Hermitian
matrices H and W, let A\;(H, W) denote the largest real p for which there
is a nonzero vector z in C™ satisfying Hx = pWz. With this notation, we
have, as an immediate consequence of (16.6),

spectral abscissa of Y = % v%/njo M(WY + YW, W). (16.7)
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This result is apparently well known in the contro! theory community, al-
though we are not aware of a standard reference.

Other quantitative results related to the Lyapunov Theorem may be stated
by making different choices for the function h in Theorem 16.4(a). Two
interesting examples follow.

Example 16.7. (products of eigenvalue real parts) Letting the func-
tion h be the logarithmic barrier function (10.2), we have, for a positive
stable matrix Y,

n
[I ReXj(Y) =sup{det 3(Z + Z*): Z ~Y, Z+ Z* > 0}.
Jj=1

Example 16.8. (sums of eigenvalue real parts) Choosing the function
h(z) to be the sum of the k largest x; (see (10.8)), we obtain

k k
) =1 ‘ *
ReZ)\J(Y) =1 Z%ZAJ(LL zZ*).
Jj=1 7j=1
Let us now turn to Theorem 16.4(b):
Example 16.9. (spectral radius) The spectral radius of a matrix X in
M, (C) is max; |A\;(X)|. Applying Theorem 16.4(b) with the symmetric gauge
g() = - lloo, we obtain, for any matrix Y in M, (C),

spectral radius of Y = Zm{/ o01(Z) (16.8)

(recalling that o denotes the largest singular value), or equivalently

. _ . -1
spectral radius of Y = de};ﬁlgéo o1 (LY L™?). (16.9)

A norm f on M, (C) is submultiplicative if f(AB) < f(A)f(B) forall A, B €
M, (C). Clearly, the function f(Y) = (LY L™!) is a submultiplicative mat-
rix norm. Furthermore, it is easy to check that the spectral radjus of any
matrix Y cannot exceed the value of a submultiplicative matrix norm of Y:
to prove this, choose A = Y and B such that every column of B is the ei-
genvector of Y corresponding to the spectral radius. Consequently, equation
(16.9) proves the well known fact that the spectral radius is the infimum of
all submultiplicative matrix norms (Horn and Johnson 1985, Lemma 5.6.10).

More generally, we have the following example.

Example 16.10. (sums of eigenvalue moduli) Choosing g(z) to be the
sum of the k largest |z;|, we obtain

k
sum of k largest |A\;(Y)| = ZIE'I;,JZ_:I ai(Z).



EIGENVALUE OPTIMIZATION 185

Theorem 16.4 suggests a simple approach to nonsymmetric eigenvalue op-
timization which, to some extent, avoids the technical difficulties associated
with the non-Lipschitz nature of the problem. Given a function A : R™ —
M, (C) and a symmetric convex function h : R® — [—00,+00|, consider the
optimization problem

inf {h(Be MA(w)))}.
Using Theorem 16.4(a) we can rephrase this as

. 1 N 1 . .
wERm,lIrjéMn(C){(h oA (5(Z+2%)): Z=LA(w)L™", L invertible}.

Likewise, given a function f : R™ — R, the problem
inf {f(w):ReA(A(w)) > 0}
wER™
can be rewritten as

wemm,ilrjéMn(c){f(w) : LAw)L™' + L™ A(w)*L* > 0, L invertible}.

At the expense of introducing the extra variable matrix L, we have reduced
these problems to symmetric eigenvalue optimization. Indeed, this idea (us-
ing an equivalent Lyapunov formulation based on (16.7)) is exploited in the
application of linear matrix inequalities to system and control theory (Boyd
et al. 1994); for applications to structural mechanics, see Ringertz (1996).

A similar technique could be applied to the problem

inf {g(|A(A(w))])},

wER™

for a symmetric gauge g, this time using Theorem 16.4(b).

However, we caution that there are at least two difficulties with this ap-
proach. The first is the expense of introducing so many extra variables (the
entire matrix L) into the optimization problem. The second is that the in-
fimum is not likely to be achieved for many interesting applications, a fact
that is likely to cause serious difficulties with ill-conditioning.
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1. Introduction

Advances in the understanding of material microstructure are playing an im-
portant role in the development of many new technologies that depend on ma-
terial properties such as shape memory, magnetostriction, and ferroelectricity.
Microstructure occurs in many materials as the fine-scale spatial oscillation
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Fig. 1. Photomicrograph of an austenitic-martensitic phase boundary (see Section
3.9) for a single crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory of C.
Chu and R. James. The martensitic phase is laminated or ‘twinned’. (Field of

view: 1.25 mm x 0.86 mm.)

between symimnetry-related states. In this article, we survey the recent devel-
opment of numerical methods and their analysis to compute microstructure
in materials. We will be mainly concerned here with the microstructure of
martensitic crystals where lattice structure oscillates between ‘twinned’ states
(see Fig. 1 and Fig. 2).

During the past several years a geometrically nonlinear continuum theory
for the equilibria of martensitic crystals based on elastic energy minimiza-
tion has been developed (Ericksen 1986, 1987a, 19875, Ball and James 1987,
James and Kinderlehrer 1989, Ball and James 1992). The invariance of the
energy density with respect to symmetry-related states implies that the elastic
energy density is non-convex and must have multiple energy wells. For a large
class of boundary conditions, the gradients of energy-minimizing sequences
of deformations must oscillate between the energy wells to allow the energy
to converge to the lowest possible value. Even though the deformation gradi-
ents of such energy-minimizing sequences do not converge pointwise, certain
kinds of averages of the deformation gradients converge for a large class of
boundary conditions. This convergence has been studied intensively using
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Fig. 2. Photomicrograph of a second-order laminate (see Section 3.10) for a single
crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory of C. Chu and R. James.
(Field of view: 1.25 mm x 0.86 mm.)

the Young measure (Tartar 1984, Kinderlehrer and Pedregal 1991, Ball and
James 1992) and the H-measure (Tartar 1990, Kohn 1991).

A geometrically linear theory for the equilibria of martensitic crystals was
developed by Eshelby (1961), Khachaturyan (1967, 1983), Khachaturyan and
Shatalov (1969), and Roitburd (1969, 1978). This theory is nonlinear, though,
because the energy density has local minima at multiple stress-free strains.
The relationship between the geometrically linear theory and the geometric-
ally nonlinear theory has been explored by Kohn (1991), Ball and James
(1992), and Bhattacharya (1993). Most of the results for the geometrically
nonlinear theory that we discuss in this article have related counterparts for
the geometrically linear theory.

These theories have presented a major challenge to the development and
analysis of numerical methods, since they have features very unlike those of the
physical theories usually approximated by numerical methods. The presence
of microstructure has motivated the development of numerical methods that
can capture macroscopic information without resolving the microstructure on
the physical length scale (which can vary from nanometres to millimetres).

Although much progress has been made in the analysis of global minima of
models for the energy of martensitic crystals, such erystals typically exhibit
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hysteretic behaviour and are usually observed in local minima or in meta-
stable states (Burkart and Read 1953, Basinski and Christian 1954, Ball,
Chu and James 1994, Ball, Chu and James 1995). Since the analytic study of
these local minima is difficult, the computational approach offers an important
tool for the exploration of meta-stable states. Thus, a further computational
challenge is presented by the multitude of local minima which the numerical
models necessarily inherit from the continuum models (Ball, Holmes, James,
Pego and Swart 1991), as well as the local minima that occur from repres-
enting the same microstructure on the different scales possible for a given
grid.

Early three-dimensional computations and numerical algorithms for a geo-
metrically nonlinear model of microstructure in martensitic crystals have been
given by Collins and Luskin (1989) for the In-20.7 at.% TI alloy, and Silling
(1989) has reported computations for a two-dimensional model exhibiting mi-
crostructure. Later computational results and numerical algorithms for equi-
librium problems are given by Collins, Luskin and Riordan (1993) and Collins
(1993a). Computations and numerical algorithms for geometrically linear
models of martensitic crystals have been given by Wen, Khachaturyan and
Morris Jr. (1981), Wang, Chen and Khachaturyan (1994), Kartha, Castén,
Krumhansl and Sethna (1994) and Kartha, Krumhansl, Sethna and Wickham
(1995).

A theory for the numerical analysis of microstructure was proposed by
Collins, Kinderlehrer and Luskin (1991a) and Collins and Luskin (1991b) and
extended in Chipot (1991), Chipot and Collins (1992), Gremaud (1994) and
Chipot, Collins and Kinderlehrer (1995). This theory has been used to give an
analysis of the convergence of numerical methods for three-dimensional, phys-
ical models of microstructure in ferromagnetic crystals (Luskin and Ma 1992)
and in martensitic crystals with an orthorhombic to monoclinic transforma-
tion (Luskin 19964, Luskin 1996b) and a cubic to tetragonal transformation
(Li and Luskin 1996).

The theory for the numerical analysis of microstructure gives error estim-
ates for the local mixture, rather than the pointwise values, of the deformation
gradients; so the representations of the same microstructure on different scales
are shown to yield almost identical macroscopic properties. These estimates
show that many macroscopic properties converge as the length scale of the
underlying microstructure converges to zero, which gives a justification for
computing microstructure on a length scale that can be orders of magnitude
larger than the physical length scale.

The relaxed energy density for a given deformation gradient F' € R3*3
is given by the infimum of the average energy of deformations defined on
a smooth domain and constrained to be equal to an Fx on the boundary.
Under appropriate conditions, the infimum of the relaxed energy is attained
by deformations that are the limit of energy-minimizing (for the original en-
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ergy) sequences of deformations (Ekeland and Temam 1974, Dacorogna 1989).
Although an explicit formula or practical computational algorithm for the re-
laxed energy density (the quasi-convex envelope) is generally not known for
the non-convex energies used to model martensitic crystals, representations of
the polyconvex and rank-one convex envelopes have been given, which can be
numerically approximated to give lower and upper bounds for the relaxed en-
ergy density (Dacorogna 1989). These representations, especially that given
by Kohn and Strang (1986), have been used in Nicolaides and Walkington
(1993), Roubicek (1994), Carstensen and Plech4c¢ (1995), Roubicek (1996a),
Pedregal (1996), Pedregal (1995) and Kruzik (1995).

The computation of the dynamics of the development and propagation of
microstructure is important for the modelling and control of materials with
microstructure. Swart and Holmes (1992) have studied the ‘viscoelastody-
namics’ of a scalar, two-dimensional model, and Klouéek and Luskin (1994a)
and Klouc¢ek and Luskin (1994b) have computed the viscoelastodynamics of
a three-dimensional model for the In-20.7 at.% TI alloy.

This article focuses on computational methods for continuum theories for
single martensitic crystals. Our bibliography contains references to many
topics that we do not consider in detail in the text, such as homogenization,
polycrystals, surface energy, and dynamics. We refer the reader to Luskin
and Ma (1992, 1993) and Ma (1993) for recent developments in numerical
methods and numerical analysis for the computation of the microstructure in
the magnetization of ferromagnetic crystals.

2. Continuum theory for martensitic crystals

We give here a brief outline of the geometrically nonlinear continuum theory
for martensitic crystals (Ericksen 1986, 1987a, 1987b; Ball and James 1987,
1992). The crystallographic background for the topics treated in this sec-
tion will be given in the forthcoming book by Pitteri and Zanzotto (1996a).
Martensitic crystals have a high-temperature phase known as austenite, and
a low-temperature, less symmetric phase known as martensite. The austen-
itic phase exists in one variant, but the martensitic phase exists in several
symmetry-related variants and can form a microstructure by the fine-scale
mixing of the variants.

2.1. The elastic energy and admissible deformations

We use the austenitic phase at the transformation temperature as the reference
configuration © C R3 of the crystal. We assume that € is either a polyhedron
or a smooth, bounded domain. We denote deformations by functions y(x) :
Q — R3, and we denote the corresponding deformation gradients by F(z) =
Vy(x).

We shall denote the elastic energy per unit volume at temperature 8 and
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deformation gradient F' € R3*3 by ¢(F, ), which shall always be assumed to
be continuous and to satisfy the growth condition

H(F,0) > C1||F||P —Cyp  for all F € R®3, (2.1)

where Cp and C; are positive constants independent of F € R3*3, where we
assume p > 3 to ensure that deformations with finite energy are continuous
(see (2.4) below), and where we are using the matrix norm

3
|F|I? = Z F% for F € R3S,

i,j=1

It is not realistic to consider deformations with arbitrarily large deforma-
tion gradients F'(x) = Vy(z) within the theory of elasticity (we can expect
non-elastic behaviour such as fracture and plasticity to occur at large deform-
ation gradients), so our use of the growth condition (2.1) can be viewed as a
mathematical convenience. Also, we will be concerned only with temperat-
ures in a neighbourhood (0, 07 ) of the transformation temperature 0r, so
we need only assume that the growth condition (2.1) is valid uniformly for
0 e ( 0., oy )

We expect that observed deformations g(z) are local minima of the total
elastic energy

£(j) = /Q 6(Vi(z),8) do (22)

among all deformations satisfying appropriate boundary conditions and hav-
ing finite energy. However, we will see that there generally do not exist
energy-minimizing deformations to (2.2) for the non-convex energy densit-
ies ¢ that we use to model martensitic crystals, and so we must consider
energy-minimizing sequences.

Since p > 3 in the growth condition (2.1), we have that the deformations
with finite energy are uniformly continuous (Adams 1975), so we can denote
the set of deformations of finite energy by

W — {y € C(O: R - /Q¢(Vy(w),9) dz < oo} . (2.3)

We note that
W c WP, R?) c C({;R?), (2.4)

where W1P(; R3) is the Sobolev space of measurable deformations y : Q —
R3 such that (Adams 1975)

[yt + 19y(@)?) dz < oo,

In what follows (and above in the definition of £ and W?), we shall often



COMPUTATION OF CRYSTALLINE MICROSTRUCTURE 197

suppress the explicit dependence on temperature where we do not think that
there is a danger of misunderstanding.

To model an unconstrained crystal, we define the admissible set of deform-
ations A to be the set of deformations of finite energy

A=W?,
and we consider energy-minimizing sequences of deformations for the problem

int £(y). (2.5)

For a crystal that is constrained on the entire boundary by the condition
y(z) = yo(z), for all z € 092, (2.6)

for some yo(z) € W%, we consider energy-minimizing sequences of deform-
ations for the problem (2.5), where the set A of admissible deformations
consists of all deformations of finite energy constrained on the boundary by
(2.6), that is,

A:{y€W¢:y(m)=y0(x), forxeaﬂ} .

Our model and analysis can also accommodate more general boundary con-
ditions, such as the inclusion of boundary loads.

Admissible deformations should be orientation-preserving isomorphisms,
that is, det Vy(z) > 0 for all € Q. However, we shall not explicitly impose
this constraint since we have found that computed solutions have always
satisfied this condition.

2.2. Frame indifference and crystal symmetry
The elastic energy density ¢ is required to be frame-indifferent, that is,

¢(RF,0) = ¢(F,0)  for all R € SO(3) and F € R3*3, (2.7)

where SO(3) denotes the set of orthogonal matrices with determinant equal
to 1. We assume that the energy density inherits the symmetry of the more
symmetric high temperature phase of the crystal when the domain of the
energy density is suitably restricted (Ericksen 1980, Pitteri 1984), so

¢(RiFRY 6) = ¢(F,0) forall R, € G, (2.8)
where G = {Rj,..., Ry} is the symmetry group of the austenite.

2.3. Local minima of the energy density

Near the transformation temperature, we will assume that the energy density
@(F,0) has local minima at the deformation gradients that describe the aus-
tenitic and the martensitic phases, and is therefore non-convex. The reference
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configuration has been taken to be the austenitic phase at the transformation
temperature, so the identity deformation gradient I describes the austen-
itic phase, and by the frame indifference of the energy density (2.7), every
R € SO(3) should then be a local minimum of the energy density ¢(F, ). We
note that for simplicity we have neglected the thermal expansion of the aus-
tenite in the above conditions, since the deformations describing the austenitic
phase are taken to be independent of temperature.

We shall assume that the energy density ¢(F, ) for the temperature 6 near
the transformation temperature 1 also has local minima at the set of variants

{RUIRT : Ri€ G} = {Uh,...,Un} (2.9)

which describe the martensitic phase. Here the U; = U;(f) are deformation
gradients for an unstressed crystal in the low-temperature, martensitic phase.
It follows from the symmetry of the energy density (2.8) that

$(U1,0) = -+ = ¢(Upn, 6). (2.10)
Since M (defined in (2.9)) is equal to the number of cosets of the subgroup
H={Rieg:RURT = U}
in G, we have by Lagrange’s Theorem (Herstein 1975) that

_ 19l

L
It follows from (2.10) and the frame indifference of the energy density (2.7)
that ¢(F, 0) has local minima at the energy wells of each variant given by

U, = SO(3)U; = { RU; : R € SO(3)} . (2.11)

M

If we denote the union of the energy wells by
U=U U Ulp,

then it follows from the frame indifference (2.7) of the energy density and
(2.10) that

&(U,8) = (U1,0) = - = p(Upr,0)  for all U € U.

Also, since admissible deformations are required to be orientation-preserving
isomorphisms, we shall always assume that det Uy > 0, so by (2.9) and (2.11)
we have that

detU =detU; >0 foral U e U. (2.12)

2.4. The orthorhombic to monoclinic transformation

We next present two examples of martensitic phase transformations. First,
we describe the symmetry group G and the corresponding martensitic vari-
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ants {R,L'UlR;fF : R; € G} for one of the orthorhombic to monoclinic trans-
formations (Ball and James 1992). The symmetry group of the orthorhombic
(high-temperature) phase is composed of the rotations of 7 radians about an
orthogonal set of axes, so

G={I,-I+21®e;, —[+2e3Rez, — +2e3Re3},

where {ei, €2, e3} is an orthonormal basis of R3. We recall that v @ w €
R3*3 for v, w € R® is the tensor product defined by (v ® w)r = vgwy, or,
equivalently, (v ® w)u = (w - u)v for u € R3.

The variants of the monoclinic (low-temperature) phase can then be given

by
Ui=I~-nea®e1)D and Ups=(I+ne2®e1)D, (2.13)
where 5 > 0, and where D € R3*3 is the positive diagonal matrix
D =die; ® e1 + daea @ ez + dze3 ® e3
for di,d9,d3 > 0. We note that

{RUIRT : Rie G} ={U1, U} .

2.5. The cubic to tetragonal transformation

For the more common cubic (high-temperature) to tetragonal (low-temp-
erature) transformation, the group G is the symmetry group of the cube

g:{Rl,.~-,R24} ) (214)
which is given by the group of matrices
R = (-1)"Wery @ e + (—1)"Perg @ ez + (=1)"Pegz @ e3,

where v : {1, 2, 3} - {0, 1}; 7 : {1, 2, 3} — {1, 2, 3} is a permutation; and
det R; = 1. We also assume as above that {ej, e2, e3} is an orthonormal basis
of R3. The variants of the tetragonal phase can be taken to be

Ur=vl+ (va—vi)e1 Qe, U =1l + (vy — v1)e2 ® ey,
Us=1l+ (rr—r)esQes (2.15)

where 0 < v1, 0 < vg, and v; # vo. For this transformation,

{ RU\RT : Ri€ G} = {Us, Up, Us} .

2.6. Global minima of the energy density

The reference configuration has been chosen so that F' = I is the deform-
ation gradient for the high-temperature phase at the transformation tem-
perature § = Op. The elastic energy density should then predict that the
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high-temperature phase (represented by F' € SO(3)) is a global minimum for
6 > 61 and the low-temperature phase (represented by U € U = Uy U- - -Uldpr)
is a global minimum for § < 6. Thus, the elastic energy density should satisfy
the conditions that, for § > 6,

d(F,0) > ¢(R,0) for all F ¢ SO(3), R € SO(3); (2.16)

for 8 = 87,
&(F,01) > ¢(R,0r) = ¢(U,0r) for all F ¢ SO(3)UU, R € SO(3), U e U;
(2.17)

and for 8 < Op,
d(F,0) > ¢(U,0) forall F¢U,U €U. (2.18)

2.7. The Ericksen-James energy density for the cubic to tetragonal
transformation

The development of a computational mode! for martensitic crystals requires
the construction of an energy density ¢(F,0) that is frame-indifferent (2.7),
has the symmetry group of the crystal (2.8), satisfies the qualitative prop-
erties of the first-order phase transition (2.16)—(2.18), and matches available
experimental data such as the linear elastic moduli of the pure phases and
the dependence of the transformation temperature on stress. The following
such energy density for the cubic to tetragonal transformation was developed
by Ericksen and James (Ericksen 1986, Ericksen 19874, Collins and Luskin

1989):
om0 2 ()" (T2 (R )]
+@ (Z’;ng - 1) (ifg - 1) (?;rcé? - 1) (2.19)
() () ()T

+5(Ch + Oy + Gy + Gy + G + Ch) + f(tr O = 3)%,

where C = FTF is the right Cauchy—Green strain and tr C' is the trace of
C. The energy density (2.19) is frame-indifferent since it is a function of the
right Cauchy—Green strain C. Ericksen has also shown that it has the cubic
symmetry group, and that the coefficients b, c, d, e, and f can be chosen so
that the energy density satisfies the qualitative conditions for the first-order
phase transition with

vi=v1—e vo =1+ 2¢

for 0 < € < 1 (Ericksen 1986).
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Ericksen and James have also determined moduli that fit experimental data
for the In-20.7 at% T1 alloy. These moduli are given by (# in °C and moduli
in gigapascals)

b=038+(1.22 x 1073)(0 — O7), c=—29.23, d=>562.13
e = 3.26, f =15.25,
where the transformation temperature is 7 = 70°C. The size of In-20.7 at%
T1 crystals used in laboratory experiments is typically on the order of several

centimetres in diameter.
An easy calculation establishes that

d(U(€),8) = b(0)e® + ce® + de?,
where U(e) = diag(v/1+ 26,1 —€,v/1 —€). Thus ¢(U(e),6) has a local

minimum in € corresponding to the austenitic phase at €(f) = 0, for all
temperatures satisfying b(f) > 0 (or for § > —240°C). Further, there is a

local minimum at
_ ~3c+ V/9c2 — 32db(0)

€(0) <

corresponding to the martensitic phase for 8 < 6*, where 8* = 108.92°C
satisfies 9¢2 — 32db(6*) = 0. Thus, €(fr) = 0.026.

3. Microstructure

In this section we will describe some examples and properties of microstruc-
tures.

3.1. Interfaces and the rank-one property

We first give a necessary and sufficient condition for the existence of a continu-
ous deformation with a planar interface separating two regions with constant
deformation gradients Fy € R3%3 and F; € R3*3.

Lemmal Let n € R3 |n| = 1, and s € R. There exists a continuous
deformation w(z) € C(R3;R3) such that

[ Fp for all z such that z-n <s,

Vu(z) = { Fy for all x such that z-n > s, (3.1)
if and only if there exists a € R3 such that

Fi=F+a®n. (3.2)

Proof. If w(z) € C(R3;R3) satisfies (3.1), then the equality of the directional
derivatives of w(z) in directions orthogonal to the normal of the interface
implies that

Filv = Fyv for all v € R? such that v-n = 0.
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Thus, we have that (3.2) holds with
a = Fin — Fyn.
Conversely, if (3.2) holds, then the deformation

() = Fyx for all  such that z-n < s,
W\T) =\ Fiz —sa for all  such that z-n > s,

is continuous and satisfies (3.1). O

Lemma 1 can be strengthened to state that if w(x) is a continuous deform-
ation whose gradient takes constant values Fy € R3*3 and Fy € R3%3, with
Fy # Fi in two regions separated by a smooth interface, then the interface
is planar and (3.2) holds for some a, n € R3, |n| = 1, with n a normal to
the planar interface. A more general result for a deformation with a gradient
taking two values can be found in Ball and James (1987). We also note that
the condition |n| = 1 above is not essential since we can always rewrite a ® n
by |nja ® T%l when n # 0.

The above lemma motivates the following definition.

Definition 1 We say that Fy € R3*3 and F; € R3*3 are rank-one connected
if there exist a € R® and n € R3, |n| = 1, such that

Fi=F+a®n. (3.3)

8.2. Laminated microstructure

More generally, if Fy and F} are rank-one connected as in (3.3), then we can
construct a continuous deformation having parallel planar interfaces

Si={zeQ:z-n=s;}

for 81 < -+ < 8, with the same normal n separating the layers in which the
deformation gradient alternates between Fp and Fj by

r-n
w(z) = For + [/ x (8) ds] a, (3.4)
0
where x(s) : R — R is the characteristic function

(s) = 0 if z € (g, 8914+1) for 0 < 21 < m where l € Z,
XSI=11 ifxe (82141, 89142) for 1 <21+ 1 < m where | € Z,

where we take sg = —oo and smy1 = oo. This deformation satisfies the
property that

Fy for all z such that x(z-n) =0,

Vu(z) = Fo+x(@-nja@n= { Fy for all z such that x(z-n) = 1.

Deformations w(x) of the form (3.4) with layer thickness s;+1 — s; small for
i =1,...,m are the simplest examples of microstructure.
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We define ¢pmin(#) to be the lowest attainable energy at the temperature 6,
that is,
Gmin(0) = min_ ¢(F,6). (3.5)

Fer3x3

For 8 < 61 and Fy, F1 € U, we have that
Pmin(0) = d(Fo,0) = ¢(F1,0).
Thus, if § < 6 and Fy, F} € U, then the deformation w(z) defined by (3.4)

attains the minimum energy, since
E(w) = / d(Vw(z),0) dz = Pmin(0)meas Q.
Q

Furthermore, if § > 67 and Fy, Fy € U, then the deformations w(zx) defined
by (3.4) are equilibria, since every F' € U is a local minimum of ¢(F,8) (see

Section 2.3), and hence
E(w+2) — E(w) = /Q (6 (Vu(z) + V2(z),0) - ¢ (Vw(z), 0)] dz > 0

for all z € WH(§; R3) such that ess sup,cq || V()| is sufficiently small.

3.3. Surface energy

The surface energy S associated with all the interfaces S; can be modelled
by

S(w) =« Z area Sj, (3.6)
i=1

where a > 0 is the surface energy density and m is the number of interfaces.
For 0 < 0y and Fy, F; € U, the total energy is the sum of the bulk energy

and the surface energy given by

m
E(w) + S(w) = Pmin(0) meas N + o Z area Sj, (3.7)

i=1
which is minimized when the deformation w does not have any interfaces,
that is, when w(z) = Fyx or w(z) = Fiz. So, how do we explain the presence
of interfaces in martensitic crystals? We will see later in this section that
the constraint of boundary conditions or the constraint of continuity between
austenitic and martensitic regions can make deformations with closely spaced
interfaces energetically advantageous. The presence of interfaces can also be
explained by the meta-stability of such deformations (Abeyaratne, Chu and

James 1994, Ball et al. 1995).

For analytical and computational purposes, the surface energy is usually
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modelled by a strain gradient term such as
S(w) = 62 / VVu(z) - AVVuw(z)dz, (3.8)
Q

where & is the strain gradient coefficient. Here A is a sixth-order tensor such
that the surface energy density VVw(zx) - AVVw(z) is positive definite, is
frame-indifferent, and has the symmetry properties of the crystal (Barsch,
Horovitz and Krumhansl 1987, Horovitz, Barsch and Krumhans] 1991).

Kohn and Miiller (1992a, 19925, 1994) have given an analysis of the rela-
tion between (3.6) and (3.8) for some scalar models, and they have presented
results for the geometry, energy, and length scale of the microstructure for
energy-minimizing deformations. In addition, Miller (1993) has given a de-
tailed study of energy-minimizing deformations for one-dimensional problems
with an energy of the form

/01 [(Z—:(x) - 1)2 (fl—:(a:) + 1)2 + w(z)? + &2 (%i—f(m))Q] dz

for the singular limit given by & — 0. Miller’s work gives rigorous asymptotic
results on the periodicity, length scales, and energy of energy-minimizing
deformations.

We expect under appropriate conditions that there exist smooth energy-
minimizing deformations ws(z) to the total energy

/Q [qb(Vw(a:), 0) + &>°VVuw(z) - AVVw(x)] de,

and that the deformations wg(x) for & — 0 are an energy-minimizing sequence
for the elastic energy

/Q $(Vew(z), §) dz. (3.9)

Now let © be a reference configuration and suppose that the deformation
wl®L(z) : LQ — R3 is an energy-minimizing deformation defined on the
domain L) = {Lz : x € Q}, with L > 0 for the total energy

/ [6(Vu(z), 0) + &V Vu(z) - AVVu(2)] da. (3.10)
LQ
It can then be seen that

W, 1(T) = %w[‘i’L] (Lx) for all z €

is an energy-minimizing deformation on the domain Q with the total energy

3 /Q [¢(Vw(m), 6) + %zVVw(x)-AVVw(x)J dz.
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Thus, we see that the properties of energy-minimizing deformations for the
total energy given by (3.10) for crystals on a domain L with L > & can
be investigated by considering energy-minimizing sequences of deformations
for the elastic energy given by (3.9) on a reference configuration Q. This
approach has been rigorously justified by DeSimone (1993) for the micro-
magnetics problem (with the exchange energy playing the role of the surface
energy).

For those energies that include a surface energy such as (3.7) or (3.8), we
see that the surface energy determines the length scale and the geometry of
the layers of energy-minimizing deformations, but it often does not influence
many of the macroscopic properties of interest (Ball and James 1987, 1992).
Also, the length scale at which the surface energy is significant is usually
orders of magnitude smaller than our numerical grid scale, and the surface
energy is often orders of magnitude smaller than the expected discretization
error. For this reason, we shall usually neglect the surface energy in our
discussion in this article.

3.4. Classification of interfaces

We give in this subsection a complete description for both the orthorhombic
to monoclinic transformation (2.13) and the cubic to tetragonal transforma-
tion (2.15) of all interfaces separating two regions with constant deformation
gradients in either the martensitic or the austenitic phase (Ball and James
1987).

We start by showing that there does not exist a continuous deformation
with a planar interface separating two regions of the austenitic phase (Ball
and James 1987).

Lemma 2 There do not exist Ry, R1 € SO(3) with Ry # Ry, such that Ry

and R; are rank-one connected.
Proof. 1f Ry € SO(3) and R; € SO(3) are rank-one connected, then
Ri=Ro+a®n
for a € R? and n € R3, |n| = 1. Thus,
Ry'Ry =I+Ryla®n.

Hence
Ry'Riv=w

for all v in the two-dimensional subspace {v € R% : n-v = 0}. Since Rj'R; €
SO(3), we obtain R; = Ry, which proves the lemma. O

The following four lemmas (Ball and James 1987) show that for the or-
thorhombic to monoclinic transformation (2.13) and the cubic to tetragonal
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transformation (2.15) each Fy € U; is not rank-one connected to any F} € U;
with Fp # Fi, but that every Fy € U; is rank-one connected to two distinct
FieU;forall j#1i,j€{1,---,M}.

Lemma 3 If Fy € U; for some i € {1,---, M}, then there does not exist
Fy € U; with Fy # F1, such that Fy and F} are rank-one connected.

Proof. If Fy = RoU; € U; and Fy = R U; € U; are rank-one connected
where Ry, R; € SO(3), then

RiU; = RoUi +a®n
for a € R? and n € R3, |n| = 1. So,
Ri=Ry+a®U "n. (3.11)

It then follows from (3.11) and Lemma 2 that R; = Ry which proves the
lemma. OJ

The following lemma will allow us to reduce the problem of determining
the rank-one connections for the orthorhombic to monoclinic transformation
(2.13) and the cubic to tetragonal transformation (2.15) to a two-dimensional
problem.

Lemma 4 Suppose that Uy, Uz € U satisfy the conditions
Ures = U e3 = Uzes = Uj e3 = Deg (3.12)

for U # 0. If there exists R € SO(3), a € R3, and n € R? with |n| = 1, such
that

RU, =U1 +a®n, (3.13)

then a-e3 = n-e3 = 0 and R = R(oe3) is the rotation matrix of angle o
about the axis eg, which satisfies

R(oe3)Usv = Uyv (3.14)

for v € R? satisfyingv-n=1v-e3 =0, v # 0.

Conversely, if (3.14) holds for some v € R? satisfying v-e3 = 0, v # 0, then
(3.13) holds for R = R(ce3), n € R3 satisfying n-es =n-v =0, |n| = 1, and
a = (RU; — Uy)n.

Proof. We suppose that (3.13) holds. It then follows that
RU; =Ui+a®n=(I+a®UTn)U, (3.15)
so, since det Uy = det Uz # 0 by (2.12), we have that
det Uy = det(RUp) = det(I + a® Uy Tn) det Uy = (1+a- Uy Tn) det Ur.

Hence, it follows that
a-UrTn=0. (3.16)
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We have by (3.15) that

RUUT =T +a® U Tn, (3.17)
so we have for
C= (RU2U;1)T (RURUTY) = (Uszl)T (veUi) (3.18)
that
C=(1+U7"n@a) (I+a@U;"n). (3.19)
Now it follows from (3.12) and (3.18) that
Cez = e3 (3.20)
and from (3.19) that
Ces = e3+ (U Tn-e3)a+ [a ez + |al? (U7 Tn - 63)] UrTn. (3.21)

Since @ and Uy T'n are linearly independent by (3.16), it follows from (3.20)
and (3.21) that

Uin-e3=0 and a-e3=0. (3.22)
Next, we have by (3.12) and (3.22) that
n-es=n- (ﬁUl"le3) = 17U1'Tn -e3 =0. (3.23)
We then obtain from (3.12), (3.13), and (3.23) that
VRe3 = RUzes = (U + a®n) ez = Ujes = ves. (3.24)
We have that Re3z = e3 by (3.24), so we can conclude that
R = R(oes),

where R(oe3) is a rotation matrix of angle o about the axis e3. The result
(3.14) now follows by (3.13) for v € R3 satisfyingv-n=1v-e3 =0, v # 0.

Conversely, if (3.14) holds, then it is easy to check that (3.13) holds for
R = R(oe3), n € R3 satisfying n-e3 = n-v = 0 with |[n| = 1, and a =
(RU; — Up)n. O

Lemma 5 We consider the orthorhombic—monoclinic transformation (2.13).
If Fy € U; for i € {1, 2}, then for j # 4, j € {1, 2}, there exist two distinct
Fi € U; such that Fy and F are rank-one connected.

Proof. Without loss of generality we may assume that Fy = Uy, and we show
that there exist two distinct R € SO(3) such that

RU=U1+a®n (3.25)
for some a, n € R, |n| = 1. Since (3.12) holds with # = 1, by Lemma 4 it is
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sufficient to determine all ¢ € R and v € Span {e1, ez}, v # 0, such that
R(oe3)Usv = Uyv. (3.26)
Now there exist 0 € R and v € Span {e1, €2}, v # 0, such that
R(oe3)Uyv = Uyv
if and only if there exists v € Span {e1, e2}, v # 0, such that

|Urv| = |Uav]. (3.27)
For v = v1e1 + v9e2 where v;, v € R, we have that
|Urv| = |Ugv) (3.28)
if and only if
vivg = 0.

The solution to (3.28) given by v; = 0 or v = eg corresponds to the obvious
solution

Uz = Uy + 2ndies @ e
to (3.25) given by n = e; and o = 0. The solution to (3.28) given by va =0
or v = e; corresponds to the solution to (3.25) given by
Uyv-Uv d% — n2d%
|U1'UHU2’U| d%-*—’l]zd%

We note that solutions v and —v to (3.28) give the same solutions to (3.25).
a

n = ey, CcCosg = for — T <o <.

Lemma 6 We consider the cubic to tetragonal transformation (2.15). If
Fy € UY; for some i € {1, 2, 3}, then for any j # ¢, j € {1, 2, 3}, there exist
two distinct Fy € U; such that Fy and F} are rank-one connected.

Proof. Without loss of generality we again assume that Fo = U; and j = 2,
and we show that there exist two distinct R € SO(3) such that

RUs=U1+a®n (3.29)

for some a, n € R3, |n| = 1. Since (3.12) holds with ¥ = 17, by Lemma 4 it
is sufficient to determine all 0 € R and v € Span {ej, e2}, v # 0, such that

R(oe3)Uzv = Uyv. (3.30)
Again, there exist 0 € R and v € Span {e1, ez}, v # 0, such that
R(oe3)Usv = Uyv
if and only if there exists v € Span {e1, e2}, v # 0, such that
|Urv| = |Uav|. (3.31)
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For v = vie1 + voes where vy, v2 € R, we have that
[Uhv| = |Uav| (3.32)
if and only if
v% = v%.

We have for the solution to (3.32) given by v = e; — eg the corresponding
solution to (3.29) given by

1
n=——=(e; + e3)

V2

and

oS0 Uyv - Usv 2v119
C = —
|U1v||U2v| 1/12 + 1/22

where

s .
O<0<§ if vy >,
™ .

—§<0'<0 if v > .

We also have for the solution v = ej +e2 of (3.32) the corresponding solution
to (3.29) given by
1

n= ﬁ(el —e3)
and
oS0 — Uyv - Usv _ 2u119
[Uv||Ugv| — v3 + 12
where

7!' .
0<0’<§ if v >,
s .

—§<0<O if vy > 1.

Thus, the solutions to (3.29) give two distinct families of parallel interfaces
corresponding to

1 1
n=—(e;+e and n= —=(e; —e9).
(e1+ e2) \/§<1 2)

V2

It follows from symmetry that there are four additional distinct families of
parallel interfaces corresponding to

1 1
n= —=(e1 + e3), "2—5(61—63),

V2
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and

1

E(ez —e3).

1( )
n = —(ey + e3), n =

[

The homogeneous austenitic phase can be separated from the homogeneous
martensitic phase by a planar interface with normal n if and only if there exist
a rotation R € SO(3) and vectors a € R® and n € R3, |n| = 1, such that

RU,=I+a®n

for some ¢ € {1,..., M}, where U; is one of the variants defined by (2.9).
The following theorem gives a necessary and sufficient condition for (3.33) to
have a solution.

Lemma 7 We consider the cubic to tetragonal transformation (2.15). If
vy # 1, then there does not exist a rotation R € SO(3) and vectors a € R?
and n € R3, |n| = 1, such that

RU;=I+a®n (3.33)
for any 7 € {1, 2, 3}. If 14 = 1, then
U =1+ (112 — 1)61‘ X e; (3.34)

for any ¢ € {1, 2, 3}.

Proof. We first assume that 1y # 1 and 9 = 1 and that there exist a rotation
R € SO(3) and vectors a € R® and n € R3, |n| = 1, such that (3.33) holds
for some i € {1, 2, 3}. We have that |RU;v| = |v| if and only if v lies in the

one-dimensional subspace spanned by e;. However, |(I + a ® n)v| = |v| for
all v in the two-dimensional subspace for which v - n = 0, which contradicts
(3.33).

We next assume that v; # 1 and vy # 1. By multiplying (3.33) by its
transpose, we have

U2 = (RU)TRU; = (I +n®a)(I+a®n), (3.35)

since UiT =U; and RT = R~ because R € SO(3). Further, a is nonzero, be-
cause otherwise (3.33) implies that U; € SO(3). Now a X n is an eigenvector of
(I + n®a) (I +a® n) with eigenvalue 1, so we have reached a contradiction,
since 1 is not an eigenvalue of Uf in this case.

The proof of the result (3.34) follows directly from the definition of the U;
given in (2.15). O

Bhattacharya (1992) has shown that martensitic crystals exhibiting the
shape-memory phenomenon that is important for many technological applic-
ations can be expected to have a transformation that is approximately volume

preserving, that is, det U; = det I or v?vs = 1. Hence, we do not expect to
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observe the homogeneous austenitic phase separated from the homogeneous
martensitic phase by a smooth interface in martensitic crystals exhibiting the
shape-memory phenomena. We shall see in Section 3.9 that if

1 1
r1<l<wvy and — + = <2
vy V3

or n<l<iy andl/12+y22<2,

then the homogeneous austenitic phase can be separated by a planar interface
from a martensitic phase that is composed of a fine-scale laminate of two
martensitic variants.

3.5. Boundary constraints and fine-scale laminates

We can construct energy-minimizing deformations w with arbitrarily fine-
scale oscillations from energy-minimizing deformation gradients Fy € U and
Fy € U that are rank-one connected as in (3.3). To construct a laminated mi-
crostructure having deformation gradient Fj for volume fraction 1 — A (where
0 < A < 1) and having deformation gradient Fj for volume fraction A, we
construct the continuous deformation w.(x) with layer thickness v > 0 by

wy(T) = yw <$) , (3.36)

where
-
w(z) = For + [/ x (s) ds} a
0
and where x(s) : R — R is the characteristic function with period 1 defined
by

(s) = 0 forall 0<s<1=)A,
X8)=11 forall 1—-A<s<l1.

Now

zn/y
wsfa) - B@| = fwle/n =P/ =1 [ (o) =N dsa
<M1= Nlaly
(3.37)

where
F, = (1 —)\)Fo+)\F1 =Fy+ da®n.

We also have

Vuw,(z) = Fo+ x (%) a®n, for almost all z € Q,
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SO
V. (z) = F ffjy<z-n<({+1-A)y for some j € Z,
W R O+l -ANy<z-n<(j+1)y forsome j€Z.
(3.38)

The deformations w(x) converge uniformly to Fyz as v — 0 by (3.37), but
the deformation gradients oscillate between Fp in layers of thickness (1 — A)y
and F3 in layers of thickness Av. In the laboratory, we do not observe lam-
inates with arbitrarily small layer thickness «y. Laminates with arbitrarily
small layer thickness exist in our model because we neglect surface energy.
However, even with the inclusion of surface energy in the total energy, the
constraint of boundary conditions makes the formation of layers of finite thick-
ness with a deformation gradient oscillating between Fy and F energetically
advantageous.

The infimum of the energy with respect to deformations constrained by the
boundary condition

y(z) = Fz for all z € 00 (3.39)

for a fixed F € R3*3 has been the subject of much research, since it gives
the minimum energy attainable by a microstructure with average deformation
gradient F. The value of this infimum is called the relazation of ¢ at F' and
is discussed further in Section 7 and in more detail in Ekeland and Temam
(1974) and Dacorogna (1989). For the boundary condition (3.39), we denote
the set of admissible deformations by

Wi ={veW?: v(z)=Fz for z € 92} .
We know from (3.5) that

inf &(z) > Pmin(f)meas()
zEW}‘f

for all F € R3*3. The following theorem shows that the infimum of the total
energy over deformations constrained by the boundary condition

y(z) = Fhxx = [(1 — \)Fo + AFi]z for all z € 99,

where Fy € U and F; € U are rank-one connected as in (3.3) and 0 < 07, is
equal to the lowest energy attainable for deformations that are not constrained
on the boundary. The proof of the following theorem also shows that an
energy-minimizing sequence can be constructed which is equal to the laminate
w~(z) except for a boundary layer whose thickness converges to zero as y — 0.
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Theorem 1 If Fy € U and F} € U are rank-one connected as in (3.3) and
6 < Or, then there exist deformations w, € Wg defined for v > 0 such that
det (Vb (z)) > 0, for almost all z € Q

and

lir%é'(w7) = Pmin(0)meas(§2).

y—
Proof. The deformation 1, () that we construct is equal to wy(x) as defined
in (3.36) in the subset

Q% = {z € Q:dist(z,00) > vy},

where v > 0 is a constant to be determined to ensure that det (Vi (z)) > 0;
W, () is equal to Fyz on 8(2, and it interpolates between w,(x) and Fiz on
a\ Q,ly To construct the interpolation, we define the scalar-valued function

Py(z) : 2 = R by

W (z) = 1 for all z € Q,ly,
T (vy) " Mdist(z, 0Q) for all z € Q\ Q,ly

The function ¥, (x) is easily seen to satisfy the following properties:

0<9Y,y(x) <1 for all x € Q,
Py(z) =1 for all z € Q7
Yy(x) =0 for all x € 091,
|Vipy(z)| < (vy)~? for almost all z € Q. (3.40)

We define the deformation . (z) : @ — R3 by
Wy(z) = Yy(x)wy(z) + (1 —Py(z))Frxx  forall z € Q, (3.41)
so we have for z € ) that
Vi (2) = (wy(z) — FAz) © V() + % () Yoy (2) + (1 = %y () Fi.
It then follows from (3.37), (3.38), and (3.40) that
[y (@) — Fya| = ¥, (@) |y (@) - Fxzl < A1 = Nlaly, z€9,

Vi, (z) = Vwy(z) € { Fo, F1} C U, x € Q,ly,
Vg (z)|| < C, almost all z € Q,
Wy (z) = Pz, x € 09Q, (3.42)

where C > 0 above and in what follows denotes a generic constant that is
independent of ~.
Since ¢ is continuous, it is bounded on bounded sets in R3*3, Thus, it
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follows from (3.5) and (3.42) that for 6 < 67
[ 16V (@),0) ~ buin(0)] d2] = [ [0(Vitn(2),6)  9usn(©)] da
= [ 18(Ti(),0) = Guin®)] o+ | ,[8(70:(0),6) = 6mia(0)] d

o\nL
~ / (6 (Vi (), 8) — Prmin(6)] da
o\l

< Cy (3.43)

since meas (€2 \ Q%) < Cy.
We next show that

det (Vo (z)) > 0, for almost all z € 12, (3.44)

for all v > 0 sufficiently large. Since Fp and F} are rank-one connected as in
(3.3), we have for any £ satisfying 0 < § <1 that

Fr=(1—-8F+¢F=FR+fa@n= (I +éa® FO"Tn)FO. (3.45)
Hence, we have by (3.45) that
det F; = (1 téa- Fo_Tn> det Fy (3.46)
for all 0 < £ < 1. Since Fy, F1 € U, it follows from (2.12) that
det Fy = det F} > 0,
so we have from (3.46) that
a-FyTn=o, (3.47)

and
det Fy = det Fp (3.48)

forall0 <€<1.
Now, by (3.40) and (3.42),

| (wy(z) — Faxz) ® Vs (z)|| < Cv™t for almost all z € Q, (3.49)

and
U (@) V() + (1 — %y (@) Fi = Fega) (3.50)
where
[ (1= (@)A if Vuy(z) = R,
Sa) = { Uy(@) - (1= y(@)A  if Voy(z) = F

So, (3.44) follows from (3.49), (3.48), and (3.50) for v > 0 sufficiently large.
O



COMPUTATION OF CRYSTALLINE MICROSTRUCTURE 215

The results of Kohn and Miiller (1992a, 19926 and 1994) for scalar prob-
lems with strain gradient surface energies of the form (3.8) show that we can
expect the energy-minimizing deformations to have layers that branch in the
neighbourhood of the boundary to form infinitesimally small layers, so that
the deformation is compatible with the boundary conditions. However, these
layers are usually several orders of magnitude smaller than our numerical
grid, so the effect of the surface energy is often negligible on macroscopic
properties. Our results in Section 6 show that we can approximate the mac-
roscopic properties of energy-minimizing microstructures for the energy (2.2)
by solutions obtained on a grid of finite mesh size.

There are affine boundary conditions

y(z) = Fzx for all z € 0Q

for which energy minimization requires a construction more complicated than
first-order laminates of the form w.(x). Higher-order laminates than the first-
order laminates w, () are commonly observed (Arlt 1990) and can be con-
structed from layers of compatible laminates (Bhattacharya 1991, Pedregal
1993, Kohn 1991, Bhattacharya 1992). We shall give a construction of a
second-order laminate in Section 3.10. Furthermore, Sverak (1992) has given
an energy density for which the infimum may only be attained by a micro-
structure that is not even one of these higher-order laminates, although it is
not yet known whether such a property holds for the energy densities used to
model martensitic crystals.

3.6. The Young measure and macroscopic densities

The Young measure is a useful device for calculating macroscopic densities
from microscopic densities and for describing the pointwise volume fractions
of the mixture of the gradient of sequences of energy-minimizing deformations
(Tartar 1984, Chipot and Kinderlehrer 1988, Kinderlehrer and Pedregal 1991,
Ball and James 1992). We will give a description of the Young measure
following most closely the viewpoint of Ball (1989).

We suppose that {yx} C W is a sequence of deformations having uniformly
bounded energy £(yx) < C, and enjoying the property that, for any f €
C(R3*3, R) such that f(F) = o(||F||)||F||P as ||F|| — oo, there exists f €
LY(Q, R) so that

Jim [ f(Vya)dz = [ flo)do (3.51)

w
for every measurable set w C €. It can then be shown that there exists a
family p; of probability measures on R3%3, depending measurably on z € Q,
such that f(z) is given by the formula

flz) = ngxaf(F) dpa(F). (3.52)
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The family of probability measures p, is the Young measure associated with
the sequence yi. In the above, we note that it follows from the growth condi-
tion (2.1) that

/ [Vo(z)||P dz < Cl’l/ ¢(Vv(z),0) dz+C Comeas . for all v € W?.
Q Q

If a sequence of deformations g € W? with uniformly bounded energy has
a Young measure and if for some y € W we have that

Vyr(z) — Vy(z) for almost all z € Q,

then we have by (3.51) and the Lebesgue dominated convergence theorem
(Rudin 1987) that

Jim [ (V@) dz = [ f(Vy@) do

—0 Jw w

for all measurable sets w C 2 and for all deformations f € C,(R3*3; R) where
C.(R3*3;R) denotes the set of continuous deformations f(F) € C(R3*3;R)
with compact support. Thus, it follows from the representation (3.52) that

pz = Ovy(z) for almost all x € Q.

It can be shown by a compactness argument that every sequence has at
least one subsequence with the property that, for every f € C(R3*3, R) such
that f(F) = o(||F|))||F||? as || F|| — oo, there exists a f € L}(£2, R) such that
(3.51) holds. Thus, every bounded sequence of deformations in W contains
a subsequence with a Young measure.

The thermodynamic properties of materials, such as energy density and
stress, depend nonlinearly on the deformation gradient and can be described
by densities f(F) € C(R3*3;R) (the dependence of f on temperature is sup-
pressed in this paragraph). We can identify f(Vyg(z)) with a microscopic
density and f (z) with the corresponding macroscopic density. We observe
that the microscopic density f(Vyx(z)) can be oscillatory, while the corres-
ponding macroscopic density f(z) is smooth. For example, we have for the
energy-minimizing sequence ., (z) defined by (3.41) that the macroscopic
density

f(x) = (1= N f(F) + M (F1)

is constant for every f € C(R3*3, R) such that f(F) = o(||F|)||F||P as | F|| —
oo even though f(Va,, (z)) is oscillatory.
For any deformationy € W%, z € 2, and R > 0, we can define a probability
measure on the Borel sets T C R3*3 by
meas { & € Bg(z) : Vy(z) € T}

pa,r,vy(Y) = mons B(a) (3.53)
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where
Br(z) ={ze€Q:|2—z| <R} .

The probability measure pg gwvy(Y) gives the volume fraction for which
Vy(Z) € T, where & € Br(x). We can easily check that

Jpra FPV el F) = i [ F(Vu@) a2 (354

meas Br(x)
for f(F) € C.(R33;R), so
1
. Ovy(s) AT
meas Bgr(x) /BR(r) vy(z) 4

If y; is a bounded sequence of deformations in W% with Young measure
[z, so that (3.51) holds for every f(F) € C.(R3*3;R) for f given by (3.52);
then it follows from (3.54) that

lim f(F) dﬂz,R,Vyk (F) =

k—00 R3x3

meas Br(z) ! [ " Joows FE Aua(F)dz = [, F(F) dyae.n(F)
(3.55)

Hz,RVy =

where
1

= — 7 dZ. 3.56
/‘L(I),R meas BR(.’E) /BR(;I;) :u‘ ( )

The result (3.55) can be restated as

*
Hz,RVy, — Mz,R as n — o0,

where the limit is understood to be in the sense of measures (weak-* con-
vergence). It further follows from (3.56) and the Lebesgue differentiation
theorem (Ball 1989) that

Hz, R N e as R — 0, for almost all x € Q.

We can thus characterize the Young measure by the result that

lim lim = (.
Avb ko Hz,R,Vy; Mz

3.7. Computation of the Young measure for a first-order laminate

We next compute the Young measure of the sequence of first-order laminates
constructed in Section 3.5. For the energy-minimizing sequence of first-order
laminates ., defined by (3.41), we have that if T C R3*3 is an open set with
smooth boundary, such that

FogY, F¢T,;
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then we have by the above construction that
. y
Ha, RV, (T) S ming 2, 1p.

(In fact, if Br(z) C Q,ly, then we have that u, g vy, (T) = 0.) Also, if
Y € R3*3 is an open set with smooth boundary, such that

FeT, FeéT,
then
|tz .50, (1) = (1 = )| < min {% 1};
and if T C R3*3 is an open set with smooth boundary such that
Fl € Ta FO ¢ Ta

then we have that

M, RV, () — )\’ < min {-;5, 1} :

Thus, we can conclude that for any open set T C R3*3 with smooth boundary
T ¢ R3%3, we have that

o R, (X) = [(1 = N)r, (T) + A6p, (T)]| < min {% 1} (3.57)

where §p(T) is the Dirac measure of unit mass at F € R3*3.
It follows from (3.57) that we have for any sequence v — 0 that

Kz, R = 71’§Ln0 Kz, R Vi, = (1 - )‘)61’0 + )‘6F1'

Hence, we have that the Young measure for the energy-minimizing sequence
W, (z) defined by (3.41) satisfies

Pz = }12i£n>0'ux'R =(1—-A)bg, + ASF,.

We note that in this special case the Young measure g, is independent of
x € (2, although in general the Young measure depends on x € €.

3.8. The failure of the direct method of the calculus of variations to give an
energy-minimizing deformation

The direct method of the calculus of variations is widely used to construct
energy-minimizers to variational problems (2.5) by taking the limit of energy-
minimizing sequences of deformations (Dacorogna 1989). On the other hand,
if (1 — A)Fp+ AF1 ¢ U, then we cannot use this technique to construct an
energy-minimizing deformation for our models of martensitic crystals, since
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we have by (3.43) and (2.18) that

‘lyiirb A ¢ (Vi (x)) do = @minmeas () < ¢((1 — A\)Fy + AF})meas ()

= [ ¢ (V(Fya)) dz = [ $(V ( Jing wﬂ,(x)) da.

This result, together with the fact that Vi, converges weakly to F), shows
that the functional £(y) is not weakly lower semi-continuous (Dacorogna
1989).

The following lemmas show that (1 — A\)Fy+ AF1 ¢ U for 0 < A < 1 in
the orthorhombic to monoclinic case (2.13) and the cubic to tetragonal case
(2.15).

Lemma 8 If Fy € U and Fy € U with Fy # F} are rank-one connected and
{RU\RT : Ri € G} = {th, Un},
then
(1-NFo+AF¢U
for0 <A < 1.

Proof. We prove the result by contradiction, so we assume that Fy € U and
Fy € Y are rank-one connected and that

1-NFR+AR el (3.58)
for some 0 < A < 1. It follows by Lemma 3 that we may assume that
Fy=RoU; and F) = RiUs (3.59)
for Ry, Ry € SO(3) and that we may assume by (3.58) that
(1=NF+ A =QU; (3.60)

for Q € SO(3). Since Fy € U and F} € U are rank-one connected, we have by
(3.3) that there exist a € R3 and n € R3, |n| = 1, such that

(1 —/\)F0+/\F1 = F0+/\a®n. (3.61)
It follows from (3.59)-(3.61) that
QU1 = RoU; + Aa ®@ n, (3.62)

so it follows from Lemma 3 that ) = Ry. Since 0 < A < 1, it follows from
(3.62) that @ = 0 and Fy = F}, which is a contradiction with the hypothesis
of the lemma. O

Lemma 9 For the cubic to tetragonal transformation (2.15), if Fy € U and
Fy € U are rank-one connected, then

(1-NEFo+\F U
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for0 < A< 1.

Proof. If Fy € U and F; € U are rank-one connected, then it follows from
Lemma 3 that we may assume without loss of generality that

Fi=RU;, Fy=Un,
for R € SO(3), and by Lemma 6 that
RU; =U14+a®n (3.63)
where

n= % (e1+e) or n= —\}—5 (1 — e3). (3.64)

We suppose that (1 — A\)Fp + AF} € U. It then follows from the proof of
Lemma 8 that

(1 — /\)Fo + AF1 € Uy Uls,

so we conclude that

(I =XNFy+ AF1 =QUs (3.65)
for @ € SO(3). We next obtain from (3.63) and (3.65) that
Ur+Xa®n=QUs. (3.66)

We have thus reached a contradiction with (3.64) since Lemma 6 implies the
relation

1
n=—(e; te3)

V2

for any solution to (3.66). O

The following result shows that for the orthorhombic to monoclinic case
(2.13) and for the cubic to tetragonal case (2.15) there does not exist an
energy-minimizing deformation (Ball and James 1992).

Theorem 2 For the orthorhombic to monoclinic case (2.13) and for the
cubic to tetragonal case (2.15) there does not exist a deformation y(z) € ng
such that

E(y) = inf &(2). (3.67)

zEW;’A

Proof. We give a proof that covers both the orthorhombic to monoclinic case
(2.13) and the cubic to tetragonal case (2.15). We assume that (3.67) holds,
so by Theorem 1 (which holds for both the orthorhombic to monoclinic case
(2.13) and the cubic to tetragonal case (2.15)) and (3.67) we have that

Ely) = /Q $(Vy,0) AT = i (6)meas Q. (3.68)
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Since (3.67) holds, we can conclude from Theorem 7 in Section 6 (which also
holds for both the orthorhombic to monoclinic case (2.13) and the cubic to
tetragonal case (2.15)) that for all z € 2 and R > 0 we have that

meas {Z € Bgr(z) : Vy(z) = Fy} = (1 — A\) meas Bgr(z),

meas { Z € Br(z) : Vy(x) = Fi} = Ameas Bg(z). (3.69)
It then follows from (3.69) that
1 / L
_ Vy(Z)dz = (1 — A\)Fp + AFy = F). 3.70
meas BR(.’E) Ba(z) y( ) ( ) 0 1 A ( )

Now y is an element of W¢, so the Lebesgue differentiation theorem (Rudin
1987) implies that

1

Rl_rﬂ) m /BR(Z) Vy(x) dz = Vy(:z:), (371)

for almost all x € Q. Hence, we can conclude from (3.70), (3.71), and (3.68)
that

¢<(1 - )‘)FO + )\FI; 0) = ¢min(9)7
which is a contradiction, since (1 — A)Fp + AF1 € U by Lemma 8. O

3.9. The austenitic—-martensitic interface

Microstructure is observed in phase transformations between the austenitic
and the martensitic phases (see Fig. 1). A phase boundary is observed to
separate a homogeneous austenitic region from a microstructured martens-
itic region (Basinski and Christian 1954, Burkart and Read 1953). Ball and
James (1987) have shown that this phenomenon can be explained by the geo-
metrically nonlinear continuum theory and Chu and James (1995) have used
this theory to explain the austenitic-martensitic phase boundary presented
in Fig. 1. The kinematic condition that the martensitic phase be compatible
with the austenitic phase imposes a boundary condition similar to that of
(3.39).

For the cubic to tetragonal case (2.15), Ball and James (1987) have shown
that if

m<l<wand & +L <2
“ V3
or vy < 1<wv and v +1v2 <2,

then the continuum theory predicts that there are fine-scale mixtures of any
two variants of the martensite that can be separated from a homogeneous
austenitic phase by a planar interface. For example, we can construct the

mixture wy, using Fy = Uy and F; = Rl where Kl and U are as defined
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in (3.29). By (3.37), wy — F)z uniformly as v — 0. It turns out that for the

volume fraction 0 < A\* < 1/2 given by
., 1 _ 1/2
3 =3 [1- (203 - 002 - D6t +h)0d - b4 1) ]

there exists a continuous deformation with deformation Fy+z on one side of a
planar interface with normal m, and the homogeneous austenitic deformation
Qx, where @ € SO(3), on the opposite side. Here we have used the fact that
there is a ) € SO(3) and corresponding b, m € R3, with |m| = 1, such that

Fy=(1-=X)U1+ ARUz=Q(I+b®m) (3.72)
where in the orthonormal basis {e, e2, e3}

b=(1+x"+72) (=CIx +7), {(x = 1), B),

m=(1+x"+7)7H(=(x+7), (x-7), 1),
with

x= 5[ +of - 20 -7,
=4[ - v} -,
¢=(1-v))(1+w)Y
B=wv(r? —1)(1+uvp)~ L

All of the remaining austenitic-martensitic interfaces can be obtained from
(3.72) by symmetry considerations, and we obtain that there are 24 distinct
ways a parallel, planar interface can separate the homogeneous austenitic
phase from a microstructured martensitic phase.

We say (3.72) represents an austenitic-martensitic interface because Ball
and James (1987) have constructed an energy-minimizing sequence u, of
continuous deformations such that

/ $(Vauy (2), 67) Az — brmin (67) meas Q (3.73)
Q
and uy(z) — u(z) uniformly as v — 0, where

_ [ Qx forxz-m<O,
u(m)_{ Fy.x forxz-m>0.

We note that
Pmin(07) = H(Q,01) = ¢(RU2,0r1) = ¢(U1, 07).

We can construct u,(z) by

) = Qz for z - m <0,
Uy (@) = { Yy()wy(z) + (1 — Yy(x))Frex for z-m >0,
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where w,(z) is the first-order laminate defined by (3.36), and where

z.m fo<z-m<H,
wv(ac):{7 v

1 itz -m>~.

It is easy to check that u.(z) satisfies the scaling u,(z) = yui(y~lz) for

4 > 0 and z € R3. We also note that we can ensure that det Vu,(z) > 0
almost everywhere by replacing ¥ (z) by %, (v1z) in the definition of u(z)
if the constant v > 0 is sufficiently large (cf. Theorem 1).

Then u,(x) satisfies

Q ifz-m<o,
Uy fz-m>~vyandjy<z-n<(F+1-X)y
Vu,(z) = for some j € Z,
RU; fz-m>~vand (j+1-X)y<z-n<(f+1)y
for some j € Z ,

and

([Vu,y(z)|| < C for almost all z € 2,
luy(z) — u(z)| < C, T €,
uy(z) € C(R%R3).

The estimate (3.73) now follows by the argument (3.43).

The microstructure represented by the deformations u,(zx) for v — 0 is
austenite for £ - m < 0, and is finely twinned martensite for £ - m > 0 with
volume fraction 1 — A* of the deformation gradient U; and volume fraction A*
of the deformation gradient RUz. The plane of the interface satisfies £-m = 0.
It is easily checked that any sequence of deformations ., () with v, — 0
has the Young measure

_ [ ¢g ifz-m <0,
Ha = (1 =Xy, + A6py, ifz-m>0.

Note that u(z) is not an energy-minimizing deformation, since by Lemma 9
&((1 = X)Uy + A*RU,, 61) > ¢(Uy, 07) = ¢(RU2, 67).

The austenitic—martensitic phase transformation has been the subject of
many numerical studies (Collins and Luskin 1989, Kloudek and Luskin 1994a,
Klou¢ek and Luskin 1994b) since it is one of the primary mechanisms for
the creation of microstructure. These numerical studies have been three-
dimensional since the following lemma does not seem to allow for an adequate
two-dimensional model. Two-dimensional models (Collins et al. 1993) usually
represent the martensitic variants by SO(2)U; where the eigenvalues %, 72 of
UTU; satisfy 0 < 02 < 1 and #2 > 1, so the following lemma shows that these
variants have a rank-one connection to the matrices SO(2), which represent
the austenitic phase.



224 M. LUSKIN

Lemma 10 If U € R?*? and the eigenvalues 72, U2 of UTU satisfy 0 <
72 <1 and 72 > 1, then there exist a rotation R € SO(2) and vectors a € R?
and n € R?, |n| = 1, such that

RU=1+a®n. (3.74)

Proof. Since UTU € R?**? has eigenvalues 0%, 72 such that 0 < #2 <1 and
72 > 1, there exists a v € R?, v # 0, such that

|Uv| = |v].
So, there exists R € SO(2) such that
RUv =w.

Hence, for n € R? satisfying n-v = 0 and |n| = 1, we have that (3.74) holds
witha = RUn - n. O

3.10. Higher-order laminates

Higher-order laminates of layers within layers are common in martensitic
materials. For example, the photomicrograph in Fig. 2 shows a second-order
laminate that has been explained by Chu and James (1995) using the geomet-
rically nonlinear continuum theory. More general treatments of higher-order
laminates can be found in Kohn and Strang (1986), Kohn (1991) and Pedregal
(1993).

Collins (1993a) has reported computational results for affine boundary con-
ditions that have a second-order laminate as an optimal microstructure, but
do not have a first-order laminate as an optimal laminate. He reported that
his algorithm computed a first-order laminate until the mesh was sufficiently
fine. He explained this by an argument that the energy associated with the
lack of compatibility of the first-order laminate with the boundary conditions
is less than the additional energy associated with the additional interfaces
needed to represent the second-order laminate until the mesh is sufficiently
fine.

We will construct a second-order laminate by layering two first-order lam-
inates. To construct the first-order laminates, we assume that Fyg, Fp1 € U
and Fig, F11 € U are pairs of rank-one connected matrices, that is, we assume
that there exist ag, no € R3, |ng| = 1, and aj, n1 € R3, |ny| = 1, such that

Fo1 = Fyo + ap ® nyg,
Fii=Fio+a1@ni.

We can construct first-order laminates with layer thickness v1 > 0 and a
mixture of Fjy with volume fraction 1 — A; and Fj;; with volume fraction A,
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following (3.36) by

w,[ﬁ (z) =yl (%) for all z € R3

where

w[i](x) = Fyoz + [/ ' Xi (8) ds} a; for all z € R®
0

for i = 0, 1 and where x;(s) : R — R is the characteristic function with period
1 defined by

(s) = 0 forall 0<s<1— Ay
Xil9 /=11 forall 1-X)<s<l.

We recall that by (3.37) we have that

i <£>_F. _(ﬁ)‘<>\i 1= M\)las 3.75
w " (29 M = ( )Ia‘ 171 ( )

lwil(z) — Fiy 2| = m

for all z € R® where
Fin, = (1 = X)) Fyo + M Fi1 = Fip + Mia; @ n;

for ¢ =0, 1.

We can construct a second-order laminate from the first-order laminates
wlﬁ (x) if there exist 0 < Ag, A; < 1 such that Fpy, € R3*3 and F1y, € R3x3
are rank-one connected, that is, there exist a, n € R3, |n| = 1, such that

Fiy = FO)\O ta®n. (3‘76)

If (3.76) holds, then for 2y; < min {1— A, A} we can construct a second-order
Jaminate for any 0 < A < 1 by the periodic extension to R? of the continuous
deformation

wey (z) = Ym (w)w[ﬁ](w) + (1 =y, (2)Fopgr for0<z-n<1—A,
" Yoy, (I)w’[yﬁ](m) + (1 =9y (2)Fiyez forl—A<z-n<l,

where wlﬂ (x) is the first-order laminate defined by (3.75), and where

mlrn if 0<z-n<m,

1 f n<z-n<l—A—m,
Yonl@) = { Mz o= (L=X)| if 20— (1= M) <,

1 if 1-A+ym<z-n<l-—m,

(71) Yz -n—1| fl-m<z-n<l

We can scale the second-order laminate w., (z) by 72 > 0 to obtain the
second-order laminate w.,~,(z) defined by

Wryiy, (37) = YW~y (%) for all z € R5.
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As 41 — 0, the second-order laminate w.,~, () converges to a mixture with

(0]

layer thickness 72 of the first-order laminate w4, (z) with volume fraction 1—A

1]

and of the first-order laminate w5, (z) with volume fraction A. The analysis
in Section 3.5 can then be used to prove that

|31 (2) — Fae| < max { \s(1 = An)larl, o1 = Ao)lazl} 2
for all z € R® where
Fy= (1= X Fox + AF1y,
We can check that
|V, ()| £ C for almost all z € R, (3.77)
and that
Vs () € { Foo, Fo1, Fio, Fii} CU  forallz e R3\Q,, (3.78)

where

szU{meR3:yx~n—j72]§7172 or lx-n—(j+1—)\)72|§7172}.
JEZ

Since © C R? is a bounded domain,

meas (2N §,,) < Cyi, (3.79)

because 2N 072 is the union of O(vyy 1) non-empty planar layers of thickness
Y172. (Note that only O(v; ') of the sets in the definition of €2,, have a non-
empty intersection with Q.) We thus have from (3.77)-(3.79) that for § < 07

/ﬂ $(Viwyy oy (), 0) da

= fQ\Q72 ¢(Vwy, , (x), 0)dz + anQ.,2 A (Vwy,,(),0) dz
< Pmin(#) meas Q + Cyy.

It can also be shown that for any pair of sequences such that vy — 0 and
Yor, — 0 as k — oo we have that the sequence of deformations w.,,~,, (z) has
the Young measure

(1= A)(1 = A0)8ry + (1 — AAobry + M1 = A)bFrg + AM16F, -

Higher-order laminates than second-order can be constructed by iterating
the above construction.
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4. Finite element methods

We wish to compute an approximation to the microstructure defined by
energy-minimizing sequences of deformations to the problem

inf /Q 6 (Vy(z),0) dz, (4.1)

yeEA

where A denotes a set of admissible deformations. The most accurate fi-
nite element method depends on the scale of the microstructure relative to
the scale of the mesh and whether it is possible to align the mesh with the
microstructure.

4.1. Conforming finite elements

The most commonly used finite element spaces in solid mechanics are con-
forming spaces that approximate the admissible set of deformations .4 by a
finite-dimensional subset A;, C A of continuous deformations which are piece-
wise polynomials with respect to a finite element mesh. We can compute
approximations to energy-minimizing sequences of deformations for problem
(4.1) by computing energy-minimizing deformations of the problem

min /Q é (Vyn(z),0) dz. (4.2)

YnE€EAR

We note that, since Ay, is finite-dimensional and the energy
Ewn) = [ ¢(Vun(),0) da

is continuous, the infimum of the energy £(yp,) is attained for at least one finite
element deformation y, € A, since it follows from the growth property (2.1)
that ¢(F,6) — oo as || F'|| — o0o. The lack of attainment of the infimum for the
continuous problem (4.1) is the result of the development of arbitrarily fine
oscillations by the gradient of energy-minimizing sequences of deformations.
The restriction of the admissible deformations to a finite element space limits
the possible fineness of the oscillations to the scale of the mesh; therefore, the
infimum of the energy is attained among deformations which are constrained
to lie in the finite element space.

Since deformations with microstructure are typically approximately piece-
wise linear, the use of piecewise linear or piecewise trilinear elements is a
good choice of finite element space for the approximation of microstructure.
Although these spaces of continuous finite elements effectively approximate
microstructure with layers that are parallel to the planes across which the fi-
nite element deformation gradients can be discontinuous, they have difficulty
approximating microstructure on the scale of the mesh when the layers are
not oriented with respect to the mesh. Computational experiments with the
continuous, piecewise linear element for a two-dimensional model have shown



228 M. LUSKIN

that numerical solutions for microstructure given by conforming spaces have
a layer thickness that depends on the orientation of the microstructure with
respect to the mesh; see Fig. 3 (below) and Collins (1994).

However, we proved in Section 3 that the number of families of parallel
planes (the ‘twin planes’) across which the deformation gradients of energy-
minimizing deformations can be discontinuous is finite, so it is possible for
many problems to orient the mesh to the possible twin planes. (By Lemma 5
there are two families of twin planes for the orthorhombic to monoclinic trans-
formation (2.13) and by Lemma 6 there are six families of twin planes for the
cubic to tetragonal transformation (2.15).)

Luskin (19964, 1996b) has given the use of conforming methods a theoretical
validation by giving error estimates for the convergence of the conforming
finite element approximation of a laminated microstructure for the rotationally
invariant, double well problem (U = U; UlU), and Li and Luskin (1996) have
given error estimates for the finite element approximation of a laminated
microstructure for the cubic to tetragonal transformation (2.15). We will give
error estimates for this convergence in Section 6.

4.2. Optimization and local minima

It would be most correct to pose the problem of interest as the computa-
tion of local minima of the non-convex energy £(y) = [, ¢ (Vy(z),8) dz
which represent physically observable equilibrium states. The continuous
problem (4.1) can be expected to have multiple local minima (Ball et al.
1991, Truskinovsky and Zanzotto 1995, Truskinovsky and Zanzotto 1996),
only some of which represent states that can be observed in the laboratory.
However, the restriction of our computational interest to global minima is
not appropriate, since martensitic crystals typically exhibit hysteresis and
meta-stability (Abeyaratne et al. 1994, Ball et al. 1995).

In addition to the local minima which the finite-dimensional problem (4.2)
inherits from the continuous problem, there are also local minima created
by the numerical discretization, which are the representation of the same
microstructure on different length scales and which give the same macroscopic
properties.

Gradient iterative methods, which reduce the energy at each iteration, can
be used to compute the local minimum corresponding to the energy well of
the initial state. Conjugate gradient and other accelerations can be used to
develop more efficient iterative methods (Collins and Luskin 1989, Collins
1993a, Collins et al. 1993). Since the iterates of gradient methods remain in
the energy well of the initial state, the addition of random perturbations to an
initial state can be used to explore new local minima (Collins 19934, Collins
et al. 1993).
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The addition of random perturbations to the initial states for gradient meth-
ods suggests the use of more systematic Monte Carlo techniques. Luskin and
Ma (1993) used a variant of the simulated annealing algorithm to compute
microstructures of fine domains in ferromagnetic crystals. They constructed
a discrete set of magnetizations that were close to the set of local minima
and then utilized a gradient method to compute the optimal solution within
the energy well they had computed with the simulated annealing. The key
to the generalization of this algorithm to the case of martensitic crystals is
the construction of a discrete set of deformations that represent the energy
wells of the martensitic crystal. Kartha et al. (1994) have used a Monte Carlo
method to investigate the properties of a two-dimensional model of martens-
ite, and Gremaud (1995) has developed a Monte Carlo method to compute
global minima of two-dimensional variational problems with local minima.

To ensure that one computes physically observed states in a quasi-static or
dynamical process, one should start with a physically observed state and then
compute the change in the state as environmental conditions such as boundary
conditions or temperature are varied. For quasi-static processes, continuation
methods can be used. For example, Kinderlehrer and Ma (1994 a, 1994b) have
used a continuation method to compute hysteresis in the response of a fer-
romagnetic crystal to changes in the applied magnetic field. The techniques
reported in Klouéek and Luskin (1994 a, 1994b) for the computation of the dy-
namics of martensitic crystals offer another possibility for exploring physically
observed local minima and hysteretic phenomena by computing the physical
dynamics of the response of the crystal to changes in its environment.

4.8. Rotation of the coordinate system

We discussed in Section 4.1 that it can be advantageous to orient the mesh
with respect to the planes across which the gradients of energy-minimizing
deformations are allowed to be discontinuous. This can often be achieved by
rotating the coordinate system describing the reference domain with the mesh
fixed in the coordinate system. It is also convenient to rotate the coordinate
system with the mesh fixed in the coordinate system to test the effect of the
orientation of the finite element mesh with respect to the microstructure.

If we rotate the coordinate system of the reference domain by the rotation
RT where R € SO(3), then the energy density for the crystal in the rotated
coordinate system is given by

B(F,0) = ¢(FR,0).

For the transformed energy density ¢(F,#), it follows from (2.18) that for
6 < 01 we have that @min(0) = Pmin(#) and that

W(F, 0) = pmin(0) if and only if F € SO3)U;U---USO3)Upy
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where
U; = RU;RT fori=1,...,M.
We also note that we have that
QU;=Uj+a®n ifandonlyif QU; =U;+a®n
for Q € SO(3), a € R, and n € R3, where
Q= RQRT, a= Ra, 7= Rn.

Hence, it follows that n = Rn is the normal to a plane across which the
gradient of an energy-minimizing deformation for the energy density (;AS(F ,0)
can be discontinuous if and only if n is the normal to a plane across which the
gradient of an energy-minimizing deformation for the energy density ¢(F,0)
can be discontinuous.

4.4. Visualization techniques

The development of techniques to visualize the results of the computation
of microstructure has been important to the study of microstructure. It is
possible to visualize the deformation by displaying the transformation of the
finite element mesh (Collins and Luskin 1989). However, it is generally easier
to study microstructure by displaying the deformation gradient.

Several techniques have been developed to visualize the deformation gradi-
ent. Collins and Luskin (1989) developed the technique of colouring elements
according to the closest energy well to the deformation gradient. They as-
signed the martensitic variant U; to a given element K with right Cauchy—
Green strain C(z) = (Vy(z))T Vy(z) if and only if

IC - Cilk = min{IC-— Cllk,...,IC— Cumlk, [C—IIK,T},

where C; = UTU;, where 7 > 0 is a user-supplied sensitivity, and where the
matrix norm |C|g is defined by

’C|K=[ ! /Ky|0(x)||2dm]l/2.

meas K

They assigned the austenitic phase I to the element K if and only if
IC_‘I’K = min{lc—Cl‘K,---,IC—CMIK,’C_IIK,T}-

Finally, they assigned the ‘unidentified phase’ to the element K if it is not
assigned to the austenitic or martensitic phases by the above formulae. The
different variants of martensite and austenite are then represented by distinct
colours or shades of grey. Collins and Luskin (1989) visualized the gradients
of three-dimensional deformations by displaying the gradients on a series of
parallel cross-sections.

We know from Ball and James (1992), Luskin (1996a) and Li and Luskin
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(1996) or Theorem 7 that the microstructure which minimizes the energy
among deformations constrained on the boundary by the condition

y(x) =[(1 = AN Fo + AF1]x for all z € 02

is a mixture only of the deformation gradients Fyy and F3 for the orthorhombic
to monoclinic transformation (2.13) and for the cubic to tetragonal transform-
ation (2.15) when Fy and F) are rank-one connected, Fy, F1 € U, and 6 < 6.
Thus, for this problem Collins, Luskin and Riordan (199154) and Collins et
al. (1993) displayed the interpolant of the function

_ |FTF — F{ Fylk
~ |FTF — F{ Fo|k + |FTF — F{ Fil
defined at the centre of gravity of the elements K to display the proximity
of the deformation gradient to the energy wells corresponding to Fy (where
¥ = 0) and to F; (where 1 = 1). They represented the function ¢ by a map
of (0,1) into colour space or into a grey scale. Other useful variants of the
function 9 are given by

. FTF — F{ Fy|?

V(F)k = = IT 2 OTIK T 2.

Y(F)k

(4.3)

which increases the range of deformations that are represented to be nearly
in the energy wells of Fy and F}, and

. |F — Folx
F)k = ,
V(F)x |F-—F0lK+|F—F1|K

which measures the proximity of the deformation gradient to Fy and F) rather
than to their respective energy wells.

The use of isosurfaces of the energy density and surface energy density
was developed and used in Kloucek and Luskin (1994q, 19945) to identify the
austenitic—martensitic interface.

(4.4)

4.5. Numerical experiments for the continuous, piecewise linear
approzimation of a two-dimensional model

We can investigate the computation of a simple laminated microstructure by a
two-dimensional model (Collins and Luskin 1990, Collins et al. 19915, Collins
19934, Collins et al. 1993, Collins 1994). For the two-dimensional model,
we have that the reference configuration 2 C R?, the deformation y(z) :
R%? — ), and the energy density ¢(F) : R®*2 — R (where we suppress the
dependence of the energy density on temperature). We present in Figs 3
and 4 the results of two-dimensional computations by C. Collins using the
continuous, piecewise linear finite element for the problem that will next be

described.
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The three-dimensional orthorhombic to monoclinic problem (2.13) can be
modelled in two dimensions by the energy density

O(F) = K1 (011 -1+ 772))2 + Ko (Cag — 1) + K3(C% — )2, (4.5)

where C' = FTF is the right Cauchy—Green strain and where 1, k1, k2, k3
are positive constants. It can then be checked that

$(F)>0  for all F € R?*?
and
¢(F)=0 ifand only if F € SO(2)U; USO(2)U, (4.6)
where
Uy=1—-nes®e; and Uso=T+ne2®e;
for e; € R? and ez € R? given by the canonical basis
e1 =(1,0) and ez = (0, 1).

The proof of LLemma 5 can be used to show that there exists a continuous
deformation with a linear interface with normal n separating two regions
with constant deformation gradients Fy € SO(2)U; and Fy € SO(2)U; if and
only if n = e; or n = ez. It can be checked that the energy density (4.5)
does not have a local minimum at deformations F' € SO(2) representing the
austenitic phase. This is a desired property for a two-dimensional model,
since otherwise, by Lemma 10, there would be rank-one connections between
stress-free deformation gradients representing the martensitic and austenitic
phases.

To allow for interfaces with arbitrary orientation with respect to a fixed
mesh or coordinate system (see Section 4.3), we define for the rotation Re
SO(2) the energy density

H(F) = ¢(FR)  for all F € R**2, (4.7)
For this energy deunsity, it follows from (4.6) that
#(F) =0 if and only if F € SO(2)U; USO(2)U,
where
Uy=I-né620é and Us=I+n62Qé
for
= ﬁel and é9 = Reg.

It follows by the above that there exists a continuous deformation with a linear
interface with normal A separating two regions with constant deformation

gradients Fy € SO(2)U; and F; € SO(2)U, if and only if A = é = Re; or
L = éa = Res.
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We now give computational results for the approximations to the energy-
minimizing microstructure for the energy

/Q $(Vy(z)) dz (4.8)

for the reference configuration Q = (0, 1) x (0, 1) where the deformation y(z)
is constrained on the boundary by

y(z) = [%Ul + %Ug] z, T € 0f. (4.9)

All of the results in Section 6 hold for the two-dimensional problem (4.7)-
(4.9), so we can conclude that the gradients of energy-minimizing sequences
of deformations to the two-dimensional problem (4.7)-(4.9) computed using
the continuous, piecewise linear finite element approximation on a uniform
mesh converge to the Young measure

1 1
Uy = 5501 + 5502.

In Fig. 3, we present Collins’ numerical results for the approximation of
an energy-minimizing microstructure to the problem (4.7)—(4.9) with R =
R(45°) (where R(#) denotes the rotation matrix of # degrees) by the piecewise
linear finite element approximation on a uniform mesh of size h = 1/N where
N = 16, 32, 64. Thus, we have that the lines that can separate regions with
constant deformation gradients Ul and Ug have normal

. . 1
n:€1:7§(61+62),
and are parallel to lines along which the gradients of deformations in the finite
element space are allowed to be discontinuous.
The optimization problem was solved by the Polak—Ribiere conjugate gradi-
ent method (Polak 1971, Glowinski 1984) with initial data

1. 1. 1
Yinit(T) = [§U1 + §U2} x+ §nhr(x) for all z € Q, (4.10)

where h is the mesh size and where r(z) = (r1(z), ro(x)) was obtained by get-
ting values for r;(x) on the interior vertices from a random number generator
for the interval (—1, 1) and then extending r;(x) to all of Q by interpolation.
We note that ||V [phr(z)] || = O (1), so the deformation gradients of the initial
state need not be close to the energy wells.

To visualize the results of the computations of microstructure, we use the
function 9 defined by (4.4) with Fy = U; and F} = U, and enhanced by the

continuous function

g9(s) = {

(26)2 for 0 < ¢ < 3,
~3(2(1-¢))? for3<c<1l

ol 1120
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Fig. 3. Deformation gradients for the problem (4.7)—(4.9) with n = .1 and
R= R(45°) computed by continuous, piecewise linear finite elements for a uniform
finite element mesh of size h = 1/N with N = 16, 32, 64. The finite element mesh
for N = 32 is shown. Courtesy of C. Collins.

AT,

sl

We display a map from g{¥)( F))) into a grev scale so that elements are coloured

white if g(¢(F)) = 0 (corresponding to F' = U;) and elements are coloured
black if g(¢(F)) = 1 (corresponding to F = Uy).

We see in Fig. 3 that microstructure has been obtained on the scale of each
successively refined mesh. Since the computed microstructure shown in Fig. 3
is not completely regular, a local minimum of the finite element optimization
problem has been computed and not a global minimum. However, the energy
of the computed local minimum is close enough to that of a global minimum to

give the microstructure and the macroscopic properties of a global mininuum.
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Fig. 4. Deformation gradients for the problem (4.7)-(4.9) with = .5 and the
mesh N = 64 for the orientation defined by R = R(6) with
6 = 25°, 0°, —25°, —45°. Courtesy of C. Collins.

The results in Fig. 4 illustrate the effect of mesh orientation with respect to
the lines of discontinuity of the deformation gradient. We see that the layers
are several mesh widths thick when they are not oriented with respect to the
mesh.

4.6. Nonconforming finite elements

An alternative approach is that given by the use of non-conforming finite
elements (Ciarlet 1978, Quarteroni and Valli 1994), that is, A, ¢ A. The
use of non-conforming finite elements is intuitively appealing for problems
with microstructure because the admissible finite element deformations should
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then have more flexibility to approximate oscillatory deformation gradients.
Collins (1994) has reported the results of numerical experiments for a two-
dimensional model for the Crouzeix—Raviart piecewise linear, triangular ele-
ment which is constrained to be continuous at the midpoints of line segments
which are edges of adjacent triangles (Ciarlet 1978).

In Klouc¢ek and Luskin (1994a), microstructure was approximated for a
dynamics problem by deformations constrained to be in the polynomial space

P x P x P, where
P = Span { 1,21, T2, x3, (22 — z3), (x? — 23) }
when restricted to the subdomains
Qe = ((¢ — 1)h1,ih1) X ((7 — Dh2, jha) x ((k — 1)h3, kh3), 4,5,k € Z,

where hj, ha, hs are the mesh lengths, and the deformations are constrained to
be continuous at the centres of gravity of the faces of §2;;5. These approximate
deformations are not generally continuous across the faces of ;5. This non-
conforming element has been analysed for Stokes’ equation by Rannacher
and Turek (1992) and for general second-order linear elliptic problems by
Klouéek, Li and Luskin (1996).

5. Approximation of microstructure

In this section, we present estimates for the approximation of microstructure
following Luskin (19964, 1996b) (for transformations with a double well en-
ergy density, such as the orthorhombic to monoclinic transformation) and Li
and Luskin (1996) (for the cubic to tetragonal transformation) for the problem

inf E(v), (5.1)
veWZf)\

where we recall that
WI‘?A = {ve W v(z) = Fz forxeaﬂ}

for F = (1 — A)Fy + AF; and where Fy € U and F| € U satisfy the rank-one
condition that there exist a € R3 and n € R3, |n| = 1, such that

FE=F+a®n. (5.2)

We will assume in this section that 8 < 1 and that the energy density ¢(F,8)
is minimized either on two rotationally invariant energy wells (such as given
by the orthorhombic to monoclinic transformation (2.13)) or on the three
rotationally invariant wells of the cubic to tetragonal transformation (2.15).
The proofs of the main results in this section are given in Luskin (1996a) and
Li and Luskin (1996).

We recall that if the energy density ¢(F, ) is minimized on two rotationally
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invariant wells (the double well case), then
{RURT : Ric G} = {U1, U}, (5.3)
so the energy density ¢(F,6) has minima at F' € Y for
U=U UlU;
where the energy wells are given by
Uy =SO(3)U; and Uy =SO(3)Us.

If the energy density ¢(F,6) is minimized on the three rotationally invariant
wells of the cubic to tetragonal transformation, then

{RUIR] : Rie G} = {U1, U, Us}
where

Up=wnl+ vy —1)e; Qey, Us =11l + (1g — v1)ex ® eq,
Us=uvl+ (r2—vi)e3®e3 (5.4)
for 0 < vy, 0 < vy, and vy # o, so the minima of the energy density are
F el for
U=UUU UUs

where the energy wells are given by
Uy =SO3)U1, Uy =SO(3)Uz, and Uz = SO(3)Us.

All of the results given in Sections 5 and 6 on error estimates for the finite
element approximation apply to both the double well problem (5.3) and to
the cubic to tetragonal problem (5.4).

Since Fy € U and F; € U satisfy the rank-one condition (5.2), it follows
from Lemma 3, Lemma 5, and Lemma 6 that we may assume without loss of
generality for both the double well problem (5.3) and the cubic to tetragonal
problem (5.4) that

el and el
We will also assume in this section without loss of generality that
Dmin(0) =0 (5.5)

(by replacing ¢(F,8) by ¢(F,6) — ¢min(6)). Also, in what follows we shall not
explicity denote the dependence of ¢, £, and U; on the temperature 6.

The results in this section give a bound for v € WI‘?A in terms of £(v) =
Jo #(Vu(z) 0) dz. Since we proved in Theorem 1 that

inf &£(v) =0,
vEW}’)\
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all of the results in this section give related results for the convergence of
energy-minimizing sequences. In Section 6 we will give an estimate for
inf  &(vy),
th.Ah,F)‘ ( h)
where Ay , is a conforming finite element approximation to Wg, which is
then used to give estimates for the finite element approximation of micro-
structure.
We shall also assume that ¢ grows quadratically away from the energy
wells, that is, we shall assume that there exists k > 0 such that

H(F) > k|F —7m(F)|)?  for all F € R¥*3 (5.6)
where 7 : R3*3 — U is a Borel measurable projection defined by

— 7(F)|| = mi ~U.
|F == (F)] rUnElgllF Ul

The projection 7 exists since U is compact, although the projection is not
uniquely defined at F' € R3*3 where the minimum above is attained at more
than one U € U. We also define the Borel measurable projection 71 2 : R3*3
Uy Uls by
F - || = i F-U]|. 57
IF = ma(F)l = min |1F= U] 6.)
We note that 7 = 7 2 in the double well case (5.3), but that = # 7 2 in the
cubic to tetragonal case (5.4) since U # Uy Uly. We shall also find it useful to
utilize the operators R(F) : R3*3 — SO(3) and II : R3*3 — {Fp, F}}, which
are defined by the relation

m12(F) = Ry o F)II1 o(F)  for all F € R3*3, (5.8)

The following theorem demonstrates that the directional derivatives or-
thogonal to n (where F; = Fy + a ® n) of sequences of energy-minimizing
deformations converge strongly in L?. It is crucial to the proof of all of the
other results.

Theorem 3 If w € R? satisfies w - n = 0, then there exists a positive
constant C such that

/Q (Vo(z) — Fywl?dz < CE@)Y/? + CE(w)  forallve WE.  (59)

Proof. See Luskin (19964q) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O

It follows from the convergence of the directional derivatives orthogonal to
n of energy-minimizing sequences of deformations and the Poincaré inequality
(Wloka 1987) that energy-minimizing sequences of deformations converge in

L2
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Corollary 1 There exists a positive constant C such that
/ (z) — Fa2de < CEW)Y2+ CE(w)  forallve WE.  (5.10)
Q

For the double well case (5.3), it follows trivially from the quadratic growth
of the energy density away from the energy wells (5.6) that the deformation
gradients of energy-minimizing sequences converge to the union of the energy
wells U = Uy UUs. However, for the cubic to tetragonal case (5.4) the proof
of this result relies on the bound for the directional derivatives orthogonal to
n given by Theorem 3. We state this result in the following Theorem.

Theorem 4 For the double well case (5.3) we have the estimate
/Q IVo(z) — m1a(Vo(@)|? do < s71E@w)  for all v € WE,.

For the cubic to tetragonal transformation (5.4), there exists a positive con-
stant C such that

/Q IVo(z) — m2(Vo(z))|? dz < CEY?(v) + CE(W) for all v € Wg.

Proof. The proof for the double well case (5.3) follows trivially from the
quadratic growth of the energy density away from the energy wells (5.6). See
Li and Luskin (1996) for the proof in the cubic to tetragonal case (5.4). O

The next theorem shows that the gradients of energy-minimizing sequences
of deformations converge weakly to F). It is a consequence of the convergence
of the deformations in L?.

Theorem 5 If w C 2 is a smooth domain, then there exists a positive
constant C such that

/ (Vo(z) — Fy) dz

Proof. The proof for the double well case (5.3) is given in Luskin (1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in Li
and Luskin (1996). O

< CEW)YB + CEW)Y? forallv e W,

The following theorem shows that the gradients of energy-minimizing se-
quences converge to the set {Fp, F1}. The proof relies on the bound for the
directional derivatives orthogonal to n given in Theorem 3.

Theorem 6 We have the estimate
/Q IVo(z) = Ty o(Vo(e))|2 do < CEw)/2 + CE(w)  for all v € WE,.

Proof. See Luskin (1996a) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O
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The next theorem states that in any smooth domain w C Q and for any
energy-minimizing sequence the volume fraction that Vv(z) is near Fy con-
verges to 1 — A and the volume fraction that Vu(z) is near Fj converges to
A. This result follows from the weak convergence of the deformation gradi-
ents (see Theorem 5) and the convergence of the deformation gradients to the
set {Fp, F1} (see Theorem 6). We recall from Theorem 2 that the result of
the following theorem implies that there does not exist an energy-minimizing
deformation y € WF to the problem (5.1).

To make the result of the following theorem precise, we define for any
smooth domain w C 2, p > 0, and v € W¢/\, the sets

w) =w(v) = {z € w: 1 2(Vu(z)) = Fy and [|Fy — Vo(z)|| < p},
1

wh =wy(v) ={z €w: M (Vu(z)) = Fi and ||F} — Vu(z)] < p} .

We can then use Theorem 5 and Theorem 6 to prove the following theorem
which describes the convergence of the microstructure (or Young measure) of
the deformation gradients of energy minimizing sequences.

Theorem 7 For any smooth domain w C 2 and any p > 0 we have that

Ieas <) _ (13| < CEW)VE + CEW)1, (5.11)
meas w, () /\‘ < CEW)YB + CE(v) /2 (5.12)

for all v € Wg. The constants C' in the estimates (5.11) and (5.12) are
independent of v € W¢A, but they depend on w and p.

Proof. The proof for the double well case (5.3) is given in Luskin (1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in Li
and Luskin (1996). O

We have by the compactness of SO(3)U; and SO(3)Uz that there exists a
positive constant pg such that

dist (SO(3)U1, SO(3)U2) =po>0 (5.13)
where
dist (SO(3)U1, SO(3)Uz) = min {||Vi — Va| : Vi € SO(3)U1, Va € SO(3)Uz)}.

By the definition of 71,2 (see (5.7)) and the definition of IT; o (see (5.8)), we
have for 0 < p < pp/2 that

|F; — F|| < p  implies that L1 2(F) = F;
for all FF € R®*3 and i € {0, 1}. Thus, for any 0 < p < po/2, any smooth
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domain w C Q, any v € W?, and any i € {0, 1} we have that

wf)(v) ={zew:Vu(z) € B,(F)},

where the set B,(F) for p > 0 and F € R3*3 is defined by
B,(F) = {G ERYI.||G - F| < p} .

Hence, it follows from the definition of the probability measure pg g wvy(T)
given by (3.53) that we have forz € 2, R > 0, v € W%, and 0 < p < pp/2
that

meas wy,(v)

Ba,R Vv (Bo(F3)) = (5.14)

meas w
for w = Bg(z).

The following corollary is a direct consequence of Theorem 7 and the iden-
tity (5.14) and implies the result on the uniqueness of the Young measure for
energy-minimizing sequences of the problem (5.1) that was given by Ball and
James (1992).

Corollary 2 Ifz € 2, R > 0, and p < pp/2, where pg is given by (5.13),
then there exists a positive constant C' such that

ke, r v (Bo(F)) — (1 — )| < CE()VE + CE(v)/2,
|tte, R, (Bp(F1)) — Al < CE(v)1/8 + CE(v)1/?
for all v € WI?A.

Next, we show that the estimates for the weak convergence of the deforma-
tion gradients (see Theorem 5) and the convergence of the deformation gradi-
ents to the set {Fy, F1} (see Theorem 6) can be used to give estimates for
the nonlinear integrals of Vv(z) that approximate macroscopic densities.

For linear transformations £ : R3%3 — R we define the operator norm

|£] = max |L(F)|
i ’
and for uniformly Lipschitz functions g(F) : R3*3 — R we define the function
norm

99 99

oF o7 )

We will give estimates of nonlinear integrals of Vu(x) for the Sobolev space
V of measurable functions f(z, F) : @ x R3*3 — R such that

bl

Lo = €S8 SUPp _p3x3

5 (%) o IVG(z) - n|* + G(x)2] dz < co

where

G(.’L’) = f(l'vFl) - f($,F0)
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We note that if f(z, F') € V, then f(z, F') is Lipschitz continuous as a function
of F € R3*3 for almost all z € Q.

Theorem 8 We have for all v € WZ%\ and all functions f(x, F) € V that

<

‘ | £ @ V0@) = [0 = N f (@, o) + A (o, F1)] da

1/2
¢ {/Q ”g—lé(aj’ ) ioo+ VG(z) - 7112 + G(m)2 dac} (5(1})1/4 + 5(0)1/2>

where

G(l‘) = f(x7F1) - f(vaO)

Proof. See Luskin (1996a) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O

6. Numerical analysis of microstructure

We shall give in this section error estimates for the finite element approx-
imation of a laminated microstructure for rotationally invariant, double well
energy densities (Luskin 1996a, 1996b) and for energy densities for the cubic
to tetragonal transformation (Li and Luskin 1996). These error estimates fol-
low directly from the approximation theory given in Section 5 and the theorem
proved in this section for the infimum of the energy
inf £ Vh

vp EAR, Py, ( )
where Ay, , is a conforming finite element space. We shall assume that all
of the assumptions described in Section 5 hold.

6.1. Properties of the conforming finite element approrimation

We now define the properties of conforming finite element spaces required for
our analysis of microstructure in Section 6. We assume that 7 for 0 < h < hg
is a family of decompositions of 2 into polyhedra { K} such that (Quarteroni
and Valli 1994):

1 Q= Uker, K;
interior K Ninterior Ko = () if K7 # K3 for Ky, Ka € 7p;

3 ifS=KnNKy#0for K # Ky, Ky, Ko € 73, then S is a common
face, edge, or vertex of Ky and Ky;

4 diam K < h for all K € 7.

The admissible deformations have finite energy and are constrained on the
part of the boundary where the deformation of the crystal is given. Hence, we



COMPUTATION OF CRYSTALLINE MICROSTRUCTURE 243

have by (2.4) that our family of conforming finite element spaces, Ay, defined
for mesh diameters in the range 0 < h < hyg, satisfies

A, C AC W c WHP(Q;R?) c C(Q;R?)

for 0 < h < hy.
We assume that there exists an interpolation operator 7, : W1’°°(Q; R3) —
Ap, such that

esssup,eq || VZao(z)|| < Cess supeql|Vo(z)|] (6.1)

for all v € W1*(Q; R3), where the constant C in (6.1) and below will always
denote a generic positive constant independent of h. We also assume for v €

WL(; R3) that
Iyv(z)|k = v(z)|k for any K € 73, such that v(z)|k € {Pl(K)}3 (6.2)

where {Pl(K)}3 = PY(K) x PY(K) x PY(K) and P}(K) denotes the space
of linear polynomials defined on K.

We denote the finite element space of admissible functions satisfying the
boundary condition

vp(z) = Fx for all x € 09
for F € R3*3 by
AnF :AhﬂWl‘ff: {vn € Ap, : vp(z) = Fz for xz € 8Q}

and we further assume that the interpolation operator I} satisfies the property
that

T e Anr if  veWp (6.3)

The most widely used conforming finite element methods based on continu-
ous, piecewise polynomial spaces have interpolation operators Zj satisfying
(6.1) (for quasi-regular meshes), (6.2), and (6.3) (see Ciarlet 1978, Quarter-
oni and Valli 1994). In particular, (6.1)—(6.3) are valid for trilinear elements
defined on rectangular parallelepipeds as well as for linear elements defined
on tetrahedra.

6.2. Approximation of the infimum of the energy

Our analysis of the approximation of microstructure begins with an estim-
ate on the minimization of the energy over deformations v, € A that are
constrained to satisfy the boundary condition

vp(z) = [(1 = NFo+ ARlz = Faxx  for all z € 0Q (6.4)
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for Fy € U and F; € U rank-one connected as in (3.3) and 6 < 67. We recall
by (2.18) and (5.5) that

Pmin(0) = ¢(Fo,0) = ¢(F1,0) =0 (6.5)

if Fy, F1 € U and 8 < 6. The following estimate is an extension of similar
results in Gremaud (1994), Chipot et al. (1995) and Luskin (1996a). We note
that improved estimates for all of the results in this section can be obtained
for finite element meshes that are aligned with the microstructure.

Theorem 9 If Fy € U and F} € U are rank-one connected as in (3.3) and
0 < O, then

inf  E(vp) < ChY?  forall 0 < h < hg (6.6)

vhEAR,F,
Proof. By (6.3), we can define the deformation vy (z) € Ap F, by
VR(z) = Ip (Wy())

for y = h/? where 1, () € Wg is defined by (3.41) in Theorem 1. It follows
from property (6.2) of the interpolation operator Zj that

vp(z) = Wy(z) = wy(x) for all x € Qp, (6.7)
for (recalling that |n|=1)
Qn = O} \ An
where
02 = {x € 0 : dist(z, Q) > vhl/? + h} ,
AhZUjez{a:eszgz lz-n—jh?| <hor|z-n—(j+1-Nh/? gh}.

Now meas (2 \ Q2) < Ch!/2, since Q\ Q7 is a layer of width vh'/2 4 h
around the boundary of 2, and meas (Ap) < ChY/2 since A, is the union of
O(h~1/2) planar layers of thickness h. (Note that only @(h~1/2) of the sets
in the definition of Aj are non-empty.) So, since Q\ Q) = {2\ Q2} U Ay,
we have that

meas (2 \ Q) < Chl/?, (6.8)
and we have by (6.1), (3.38), and (6.7) that

Vup(z) € { Fo, F1} CU, for almost all z € Qp,
|Vup ()] < C, for almost all z € Q. (6.9)

Since ¢ is continuous, it is bounded on bounded sets in R3*3. Thus, it
follows from (6.5), (6.8) and (6.9) that

/Q¢(Vvh(:1:)) — /Q\Qh 6 (Von(z)) dz < C'meas (Q\ Qn) < ChI/2.
O
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We have seen in Section 4.2 that we generally expect to compute local
minima of the problem
e r, £
rather than global minima. The local minima that we compute often represent
the energy-minimizing microstructure on a length scale 2h rather than h.
So, it is reasonable to give error estimates for finite element approximations
up, € Ay, F, satisfying the quasi-optimality condition
S(uh) <C inf &E(vp) (6.10)
vh€AR R,
for some constant C' > 1 independent of h. For instance, if we compute a
local minimum that oscillates on a scale of 2h, then it is reasonable from
Theorem 9 to take C' = v/2.

The following corollaries are direct consequences of the estimate given in
Theorem 9 and the bounds given in Section 5. We note that the results in
this section hold for both the case of a double well energy density (5.3) and
the case of an energy density for the cubic to tetragonal transformation (5.4).

We recall that these estimates hold for general finite element meshes sat-
isfying only the conditions given at the beginning of this section. Improved
estimates are possible for meshes which are aligned with the microstructure.

Corollary 3 If uy satisfies the quasi-optimality condition (6.10) and w C 2
is a smooth domain, then there exists a positive constant C such that

/ |(Vun(z) — Fy)w|?dz < ChY4,
Q

Corollary 4 If uy, satisfies the quasi-optimality condition (6.10), then there
exists a positive constant C' such that

/ lup(z) — Fhz|*dz < ChY/4,
Q

Corollary 5 If uy, satisfies the quasi-optimality condition (6.10) and w C
is a smooth domain, then there exists a positive constant C such that

/ (Vo(z) — Fy) de

< Ch1/16 forallv e Wg.

Corollary 6 If uy, satisfies the quasi-optimality condition (6.10) and w C Q
is a smooth domain, then there exists a positive constant C' such that

meas(w},(uh))

meas(w)

meas <w2(uh))

meas(w)

—(1-))| < Chs, — ) < Chs,
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Corollary 7 If uy, satisfies the quasi-optimality condition (6.10), then there
exists a positive constant C such that

/Q f (@ Vun(@)) = [(1 = N f(z, Fo) + M(z, Fy)] dz
9 1/2
+ |VG(z) - n|? + G(x)2:| dx} Rl/8

<ol ot

for all f(z, F) € V where
G(z) = f(z, F1) - f(z, Fo)-

7. Relaxation

We have seen that the deformation gradients of energy-minimizing sequences
of the non-convex energy £(y) develop oscillations that allow the energy to
converge to the lowest possible value. The minimum energy attainable by a
microstructure that is constrained by the boundary condition y(z) = Fz for
x € Ow, where w C R3 is a bounded domain, is given by the relaxed energy
density Q@(F'), which can be defined by

Qo(P) = int { —— [ 4(Vo(@)de
v € WL (w;R®) and v(x) = Fz for z € aw} . (7.1)

The definition of Q@(F') can be shown to be independent of w (Dacorogna
1989).

An energy density ¥(F) is defined to be quasi-convez if QY(F) = ¢ (F') for
all F € R¥3, It can be shown that Q¢(F) is quasi-convex and that Q¢(F)
is the quasi-convex envelope of ¢(F’) since

Q¢ = sup{ ¢ < ¢ : ¢ quasi-convex} .

We note that in general the relaxed energy density @u(F') is not convex
(Kohn 1991).

To make the following discussion simple, we will assume that the energy
density satisfies the growth condition that for positive constants Cyp, C1, Ca, Cs
and p > 3 we have

Ci||F||P — Co < ¢(F,0) < Co||F|IP +C3  for all F € R3S, (7.2)
Hence, we have that
We = WwhP(Q;R?).
We shall also assume that the admissible deformations belong to the set

A={yeW? y(z) = yo(x) for z € 00}
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for yo(z) € W*.
It can then be shown under appropriate conditions on the energy density

6(F) that
int, [ Qo(Vy(@)de = inf, [ 6(Vy(e)) do (7.3)

and that there exists an energy-minimizing deformation g(z) € A for the
relaxed energy density Q¢(F') such that

| @4(Vy(a)) de = int, [ Q8(Ty(a))dz. (74)

Further, it can be shown that there exists an energy-minimizing sequence
{yr} C A for the energy density ¢ such that

lim [ $(Vu(@)) do = [ Qé(Vy(a) da

and that
yk(z) — g(z) weakly in WHP(Q; R3)

as k — oo (Dacorogna 1989).

It is natural to consider the computation of the numerical solution of (7.4)
for the deformation §(z), that is, the macroscopic deformation for the energy-
minimizing microstructure defined by the sequence {y,}. We can also con-
sider the computation of a microstructure at each Z € §2 by computing the
energy-minimizing microstructure for the problem (7.1), which defines the
relaxed energy density Q@(Vg(Z)). However, explicit formulae or effective
algorithms to compute the relaxed energy density (7.1) for the energy densit-
ies used to model martensitic crystals have not been found. (See Kohn 1991,
though, for an explicit solution to (7.1) for a double well energy density with
a special ‘Hooke’s law’.)

We can approximate (7.1) by considering as test functions the first-order
laminates v(x) = W () defined by (3.41) with boundary values W, (z) = Fx
for £ € Ow. To construct the class of all first-order laminates v(z) = wy(z)
with boundary values 1y (z) = Fz for z € Ow we consider all Fy, F; € R3%3
and all 0 < A <1 such that

F=(1-)F+ AR, (7.5)
where
Fi=F+a®n (7.6)
for a, n € R3, |n| = 1. We note that it follows from (7.5) and (7.6) that
FE=F~-X®n and FF=F+(1-Xa®n.

The volume fraction that ., (z) has deformation gradient Fy converges to
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1— X asy — 0, and the volume fraction that w.(x) has deformation gradient
F} converges to A as v — 0. Thus it follows from the proof of Theorem 1
that

limy—0 treass Ju #(Viy(2)) dz = (1 = N)$(Fp) + Ag(F1)
=(1-XNo(F—=xa®n)+Ap(F+(1-Aa®n).
If we optimize (7.1) by restricting v € W1 % (w; R3) to the first-order lam-

inates of the form . () discussed in the preceding paragraph, then we obtain
the energy density R;¢(F') defined by

R1¢(F) =
inf{(1 —AN)d(F —Aa®@n)+ Ap(F + (1 -ANa®n):
0<A<1,a,n€eR? |n=1}
for all F € R3¥3, We can more generally optimize (7.1) over the laminates

of order k discussed in Section 3.10 and obtain the energy density Rip¢(F),
which can be defined by Ro¢(F') = ¢(F') and inductively for k =1,... by

Ryo(F) =
inf{(1 — A\)Rk—1¢(F — Aa®n) + ARk_16(F + (1 = Na®n) :
0<A<1,a,n€R? |n|=1}

for all F € R3*3 (Kohn and Strang 1986).
It can be seen that

QO(F) < Rpp(F) < ... < Rip(F) < ¢(F)  for all F € R3*3,

so we can conclude from (7.3) that

int /Q Qé(Vy(x))dz = inf /Q Red(Vy(@)) do = inf, /Q $(Vy(z)) dz.
(7.7)
. R3x3

An energy density y(F) — R is rank-one convez if

Y((1 = M) Fo + AF1) < (1 = NY(Fo) + Mp(Fy)

for all 0 < A < 1 and all Fy, Fy € R3*3 such that rank (F} — Fy) < 1. The
rank-one convex envelope R¢(F') is then defined by

R¢ = sup{¢ < ¢ : ¢ rank-one convex } .
We note that Kohn and Strang (1986) have shown that
R§(F) = lim Ryg(F)  forall F e R3*3,
—00

and that Sverdk (1992) has shown that in general Q¢(F) # R$(F).
The approximation

inf /QR;CQS(Vy(a:))dx

YyEA,
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for finite element spaces A, C A has been considered in Nicolaides and Walk-
ington (1993), Roubicek (1994), Carstensen and Plechac (1995), Roubicek
(19964), Pedregal (1996), Pedregal (1995), Kruzik (1995).

An energy density ¥(F) : R3*3 — R is polyconvez if it is a convex function
of the minors of F € R3*3 (Ball 1977, Dacorogna 1989). The polyconvex
envelope P@(F) is then defined by

P¢p =sup{vy < ¢: ¢ polyconvex } .

Since a polyconvex energy density is always quasi-convex by Jensen’s in-
equality, we have that Po(F) < Q¢(F) for all F € R3*3, It can be shown
that in general P@(F') # Q@(F'). Representations of the polyconvex envelope
P¢(F), especially that due to Dacorogna (1989), have been used to develop
numerical approximations of the lower bound for the energy given by

inf, /Q P¢(Vy(z)) do

(Roubicek 19964, Pedregal 1996, Pedregal 1995, Kruzik 1995).
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1. Introduction

Parallel processing has made iterative methods an attractive alternative for
solving large systems of initial value problems. Iterative methods for initial
value problems have a history of more than a century, and in the works of
Picard (1893) and Lindelof (1894) they were given a firm theoretical basis.
In particular, the superlinear convergence on finite intervals is included in
Lindel6f (1894).

In the early 1980s waveform relazation (WR ) was introduced for the simula-
tion of electrical networks, by Lelarasmee, Ruehli and Sangiovanni-Vincentelli
(1982). The methodology has been used in several application areas and has
been extended to time-dependent PDEs. There are even books available:
White and Sangiovanni-Vincentelli (1987) and Vandewalle (1993).

In this survey we shall only consider systems of ODEs, with some remarks
on differential algebraic equations.

Practical problems are usually nonlinear, but it has been our working hy-
pothesis that studying the linear case carefully, specifically introducing a clear
notation and suitable concepts, might be what users really need. In applying
the ideas to particular problems, including nonlinear mappings, it is often
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relatively easy to make intelligent guesses, if one has a good understanding of
the nonlinear problem at hand and of the behaviour of the method on linear
problems. On papers dealing with strongly nonlinear problems we mention
Nevanlinna and Odeh (1987), partly because it was Farouk Odeh who intro-
duced the second author to waveform relaxation in 1983.

The iterative method has many names. To call it waveform relaxation is
natural when the application area is electronics. To call it Picard-Lindelof
iteration is historically motivated, although ‘block Picard—Lindelof iteration’
would perhaps be more accurate, if cumbersome. The names Picard and
Lindel6f also occur in the analysis of the iteration: our convergence theory
on finite windows is based on the theory of entire functions, to which both
Picard and Lindel6f made important contributions.

We shall not discuss implementation issues at all, not because they are
unimportant, but because they are well described in the literature. On lin-
ear PDEs we refer to Lubich and Ostermann (1987) and Vandewalle (1992),
mentioning that a combination of multigrid in space and waveform relaxation
in time is fast and parallelizes reasonably well.

2. Finite windows
2.1. Basic estimates

Let A be a constant d by d complex matrix. We want to solve the initial
value problem

z+ Az = f, z(0)= zo, (2.1)

where the forcing function f generally depends on time ¢. The matrix A is
decomposed as A = M — N, where M would typically contain the diagonal
blocks of A, and N the off-diagonal couplings. We consider the iteration

i* + Mz = No* 1 f,  zF(0) = . (2.2)

If nothing better is available, one can take x%(t) = zg. In practice, equa-
tion (2.2) would be solved by high-quality software, within a (perhaps k-
dependent) tolerance. Here we assume it to be solved exactly.

Introducing the following iteration operator

t
Ku(t) = / e~ (=M Ny (5) ds (2.3)
0
we can write (2.2) in the form
o = Kbt 4 g, (2.4)

where

g(t) == e WNgg+ /0 L mlt-aM f(s)ds. (2.5)
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In what follows we shall assume that f is defined for all ¢ > 0 and is locally
in Ly, that is

/(;T |f(t)|dt < oo forall T < oo. (2.6)

So, we in fact replace (2.1) by the fixed-point problem

z=Kz+g, (2.7)
which then has a unique solution within continuous functions on [0, 00).
Proposition 1 Let f be absolutely integrable on bounded subsets of [0, 00),
and let xg be given. Then there exists exactly one continuous solution x on

[0,0) satisfying (2.7). In addition, z is absolutely continuous and satisfies
(2.1) almost everywhere.

Proof. To prove a result like this, one only has to show that (1 — K)™1 is
a bounded operator in C[0,T] for all T This is included in the estimates of
the growth of the resolvent in Proposition 2. That z is absolutely continuous
follows by differentiation. O

We shall use | - | to denote the Euclidean norm, and its induced matrix
norm, throughout the paper. In C[0,T] we shall then use the uniform norm

|z|7 := sup |z(t)|. (2.8)
0<t<T

We shall also use | - |r to denote the induced operator norm

Theorem 1 For k£ > 1, we have the bound

k
|KE|7 < eTIMIgm__ (2.9)
k!

Proof. The iterates K¥ are integral operators whose kernels are k-fold con-
volutions of e *M N satisfying

k-1
—sM nry*k < M| N (’Nlt) 210
(€N H(0)] < e (2.10)
In fact, (2.10) is trivial for K = 1. For k > 1 we have
t
Kku(t) = ] e~ (=M Nick—1y(5) ds, (2.11)
0

and from Kk~lu(t) = (e M N)**=1 4 u(t) we obtain the induction step
needed to conclude (2.10). Then (2.9) follows from (2.10) as

I < fo e M Ny 1) dt. (2.12)
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To obtain an explicit formula for the resolvent operator
RI\K) =(A=-K)L,
consider the following problem for A # 0:

Au—Ku=g. (2.13)
Assuming ¢ is smooth, differentiate (2.13) to obtain
1 1,
a+(M—XN)u= X(g-}-Mg). (2.14)

Thus the only solution of (2.13) is given by

1 1 gt

u(t) = RO K)glt) = 590+ 35 [ e IMNg(o)ds.  (2.15)
0

Proposition 2 The resolvent R(A, K) mapping g to u is given by (2.15) for

A # 0 and it satisfies

1
RO, K)lr < o + g eTM=3N|N T, (2.16)

1Al A
Proof. For smooth g, (2.16) follows in the same way as (2.9). As (2.15) only
deals with values of g, the bound (2.16) holds as such for all g € C[0,7T). O

2.2. Quasimilpotency, order and type

Bounded operators with spectrum equalling the origin are called quasinilpo-
tent. Their resolvents are entire functions in 1/A whose growth can be used
to bound the powers of the operators. From (2.16) we see that R(A,K) is
an entire function in 1/X and that it essentially grows like exp(T|N|/|}|) as
A — 0. This means that R(A, K) is of at most order 1, and if the order is 1,
then the type satisfies 7 < T|N|. These concepts are important because the
growth of the resolvent as A — 0 and the decay of the powers are intimately
related.
Hadamard (1893) used the maximum modulus
M(r, f) := sup | f(2)] (2.17)

|z|=r
of an entire function f to define the order

: log log M(r, f)
w = lim sup ——————=

. 2.18
r—00 logr ( )

In our case R(\, K) is an operator valued entire function in 1/A and likewise

we set, following Miekkala and Nevanlinna (1992, page 207),

. log log(sup)y = | R(A, K)|T)
w := lim sup 1
r—0 log =

. (2.19)
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In general w could be any nonnegative number, but it follows immediately
from (2.16) that 0 < w < 1. In Miekkala and Nevanlinna (1992) we proved
that w must be a rational number with denominator not exceeding the dimen-
sion d of the vectors. Its value depends on the ‘graph properties’ of M and
N only, and in particular is independent of the window size T.

By definition, the order w is an asymptotic concept. Together with the
order, one often talks about the type 7 of an entire function. This is also an
asymptotic concept, which here takes the following form.

If R(A\ K) is of positive order w in 1/A then we say that it is of type 7
where

7 := limsup r* log( sup |R(\, K)|T). (2.20)
r—0 IA[=r

While the order w is independent of T', the type is of the form 7 = ¢T", where

¢ is a positive constant.
Thus, if R(\, K) is of order w > 0 and type T, then

sup |[R(\ K)|p ~ eT/™, as r—0, (2.21)
[A|l=r
and, in particular, we have for any € > 0 a constant C' such that
RO K)lr < %e““”/'*'” (2.22)

holds for all A # 0. To see how the growth of the resolvent is connected with
the decay of the powers of the operator we state the following result.

Theorem 2 Let A be a bounded linear operator on a Banach space. If
R()\, A) is entire in 1/) and satisfies

sup [[R(A, A)|| < Cerm (2.23)
A=r r
for all » > 0, then
A¥) < C(ZZ—“))’“/W, k=1,2,3,.... (2.24)
Conversely, if (2.24) holds, then for 0 < & < 1/2 and r > 0 we have
sup [|[ROLA)| < 21+ Zcweltrerr/=y (2.25)
[A|=r T o
Proof. To obtain (2.24) from (2.23) write
1
At = ——/ A"R(A, A)dA 2.26
7 L TR0 (2.26)

and substitute r* = I¥. The reverse direction is also standard in spirit but
the actual constants needed in (2.25) require some care. Here we refer to the
proof of Theorem 5.3.4 in Nevanlinna (1993). O
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2.3. Characteristic polynomial and computation of order and type

As the iteration operator is given by convolution with a matrix valued kernel,
it is possible to analyse the growth properties of its resolvent using the Laplace
transform.

Consider u = Kg where, say, |g(t)] < Ce* for some positive constants C
and . Taking the Laplace transform we obtain

a(z) = (z + M) INj(2) (2.27)

and in particular @ is analytic for sufficiently large Re z. Here (z + M)™!N
is the symbol of K, denoted by K(z). Analogously, the resolvent operator
R(A, K) has the symbol

1 1,1
- - = ~N]. 28
)\[1+(z+M )‘N) B ] (2.28)
Definition 1 We shall call

1 1
the characteristic polynomial of the iteration operator IC.

In Section 3 we shall see how the zeros of P determine the spectrum of the
operator K when considered on the infinite time interval [0, 00): one looks at
the supremum of all roots |A| when z travels in a right half plane. Here the
properties of K on the finite interval [0,T] are explained in terms of growth
of |z| as A decays to zero.

Expanding the determinant yields the following result.

Proposition 3 We have

d
P(z,p) =Y q;(w)7, (2.30)
0

where g; is a polynomial of degree at most d — j and gq = 1.

The equation P(2(1/)X),1/A) = 0 determines an algebraic function z = z(1/))
which is d-valued. We need to study the behaviour of 2(1/A) as A — 0.

Let z; denote the branches of z. If z; is not independent of A we define w;
by

() = ¢(3) + o((£)*) as A—0 (2.31)
NN A ’

(with ¢; # 0). If z; is independent of A then we define w; = 0. Further we
set w := maxwyj.

Lemma 1

wE {% : k,m integers, 0<m<k<dk#0} (2.32)
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Proof. The wys are computed from the Newton diagram, which is explained
in Section 2.5. Theorem 7 implies the claim. O

We can show that w is the order of the iteration operator K. Consider w > 0.
Let ¢ := max |c;| where j runs over those indices for which w; = w. Then we
can formulate our result as follows.

Theorem 3 The iteration operator K of (2.3) is in C[0,T] of order w = 2

n

with some integers 0 < m < n < d, independently of T'. If w > 0 then there
exists a positive ¢ (¢ = max|c;| as above) such that for all T' the type is 7 =
cT. If w = 0 then the operator is nilpotent with index n < d, independently
of T. Furthermore, K is nilpotent if and only if the characteristic polynomial
P is independent of .

Proof. This is Theorem 4.6 in Miekkala and Nevanlinna (1992).

Since w can take only a finite number of rational values for a d-dimensional
problem, it should not be surprising that w depends on graph properties of
M and N, but not on the values of their elements. This topic is discussed
further in Section 2.5.

For w < 1 we have the following characterization.

Theorem 4 R(\, K) is of the order w < 1 in C[0,T] if and only if N is
nilpotent.

Proof. This is included in Section 2.5. O
Finally, if M and N commute, the analysis of convergence is easy.

Theorem 5 If M and N commute, then either N is nilpotent and then X
is nilpotent too, or the order w = 1 and the type 7 = p(N)T.

Proof. For z € o(—M), we have
K(2)* = (z + M)"*N¥,
which gives

() < - L (V).

(z+ M)
On the other hand, from
Nk = (z + M)FK(2)F

we obtain

and thus
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as z — 0o. The claim follows; see, for example, the proof of Theorem 6,
equation (2.37). O

2.4. Norm estimates

While the order and type are asymptotic concepts relating the decay of |K™|p
to the behaviour of z; = 2;(1/A) as A — 0, it is also possible to relate |[K"|r
to the decay of the symbol as Re 2 — oo. Results of this nature are given in
Nevanlinna (1989b), and here we present the following basic version.

As in the proof of Theorem 1 of Section 2.1 the claim takes a somewhat
better form if formulated for the iterated kernels (e=*™ N)**(t) pointwise in
t rather than for the operator norm.

Let m, k be positive integers with m > k. Consider an estimate of the
form

[(e_SMN)*k(t))l < Be’ﬁ%, for t> 0. (2.33)

Since K(z)* is the Laplace transform of (e~* N)** we have

© e (Bt)™1 B
|K(2)F| < B/O e~ (Rez wtém )_ D dt = (Rez—-’y)m for Rez > +7.
(2.34)

Thus, an estimate for the iterated kernel implies an estimate for the power of
the symbol. The nontrivial fact is that the reverse conclusion also holds.

Theorem 6 Suppose that there are positive integers k and m and positive
constants B and v such that (2.34) holds. Then, for all j = 1,2,..., we have
k BeT

K7k < =de?T (=
m

T ym. (2.35)

Proof. Theorem 2.4.1. in Nevanlinna (1989b) is slightly more general but
formulated for the iterated kernels. Integrating the kernel estimate gives (2.35)
but for a factor of 2. This can be dropped because Spijker (1991) has since
proved a sharp version of a lemma by LeVeque and Trefethen. O

Just for comparison, write w := k/m. Then for n = jk, j =1,2,... (2.35)
reads

e, (2.36)

K7 < e (2T

which should be compared with (2.24) and with Theorem 3.
To make this connection explicit observe that (2.31) implies

p(K(2)) = (1+ o(1))(§|>% (2.37)
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as z — 00. In fact, since

1
A=K(z)=Az+ M) Yzt M~ XN), (2.38)
the eigenvalues of K(z) are obtained from solving P(z,1/\) = 0 and (2.37)
follows by ‘inverting’ (2.31). Thus (2.34) can be viewed as a ‘norm’ version
of (2.37), with k/m = w and B > c.

2.5. Computing order from the graph of A

It was explained in Section 2.3 that the order w of the iteration operator X
can be computed by solving z = z(\) from the characteristic polynomial
P(z,}) = 0 near A = 0. The different branches are of the form (2.31) and
the order w is then the largest w; in (2.31). Before finding these solutions we
need some background connecting graphs to matrices.

Let G(B) be the directed graph associated with a d x d-matrix B. G(B)
contains d vertices v;. Each nonzero element B;; of B corresponds to an
edge of G(B) with weight B; ; directed from v; to v;. By a circuit of G(B)
we mean a subgraph of G(B) which consists of one or more nonintersecting
loops. A circuit is denoted by C; and its length (or number of edges) by I(C;).
Further, the product of the weights of the edges is called the weight of the
circuit and is denoted by w(C;, B). The second argument refers to C; being a
circuit in G(B). Finally, j., means the number of components of even length
in the circuit C;.

The coeflicients b; in the following expansion of the determinant by diagonal
elements

det(2] + B) = 2% + b1z  + ... + by (2.39)
can be linked to G(B) by noticing first that each b; is a sum of all principal
minors of order i in det(B). From the definition of the determinant one can

then show that these sums have the following graph interpretation (Chen 1976,
Theorem 3.1):

bi= Y (~1Y=w(C;,B), i=1,..4, (2.40)
UC;)=i

where the sum is taken over all circuits of length 7 in the digraph of B.
Now back to solving for z(\) from P(z,1/A) = 0, or rather from p(}\, z) = 0,
where

p(A, 2) = APz, %) _ det(z\ + AM — N). (2.41)

Now

d
p(A2) =) pr(N)2,
r=0
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where each p, is a polynomial in A. To compute the solution
2= A+ A2 4 g1 <€y < -+-, (2.42)

near A = 0, we use the Newton diagram; see, for instance, Vainberg and
Trenogin (1974).

For the diagram one needs to determine the smallest power of A occurring
in p,.(A), provided p,(\) # 0. If it is denoted by s, then the Newton diagram
consists of points {(r,s,) : 7 = 0,...,d} and line segments between the points
such that all points are either above or on the line segments. The slopes of the
line segments then give the smallest exponent in the expansion (2.42) in such
a way that descending line segments correspond to positive €;, ascending
segments to negative €1 and horizontal segments to €1 = 0; for details see
Vainberg and Trenogin (1974).

Expanding the determinant in (2.41) by diagonal elements, and using (2.40),
results in

N4+ Y (1) w(C, AM — N)(zA) 54+
1(C;)=1
S (=17 w(Ci, AM — N)(z\)*F + - + det(AM — N) =0. (2.43)
1(Cj)=k

Each weight w(Cj, AM — N) is a polynomial in A, since the weights of the
edges contained in circuit C; are now of the form AM;; — N;;. To draw the
Newton diagram we need to know the smallest power of A occurring in the
coefficient polynomial of each z4~*.

O—®
o Low ]
OO O—@

Fig. 1.

Example 1 Let the graph of Figure 1a) represent the matrix A decomposed
into M — N. G(A) contains four different circuits. Three of them should be
obvious, the fourth contains the two small loops as its components. Consider
the circuit C; of G(A) in Figure 1b). The weight of C; becomes

w(C,AM — N) =
()\Mgl — Nzl)()\M42 — N42)()\M34 — N34)()\M13 — N13). (2.44)
The smallest power of A in this polynomial clearly depends on how many

elements N;; vanish.
The following definition is useful.
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Definition 2 Let m; be the number of nonzero elements of M in the weight
w(Cj, M — N) of the circuit C;. Similarly, let n; be the number of nonzero
elements of N belonging to circuit Cj.

Clearly 0 < mj, n; <I(C;) and I(C;) < mj + n; < 21(C;).

The lowest order of A in the polynomial w(Cj, A\M — N) is I(C;) — n; (and
the highest order m;). Let us denote n(k) := max{n; : [(C;) = k}. If no
cancellation of terms occurs, then the coefficient of z4~* in (2.43) is a multiple
of the polynomial

)\d_k()\k_"(k) + higher order terms in A).
This means that the d + 1 points in the Newton diagram of (2.43) are
(d,d) (for z%) and (d — k,d — n(k)),1 <k <d (for 2¢7F).
The largest slope in the diagram is given by
d—(d- ;
(@d=nk) __ nk) __n

max —/——————— = maxX ——— =<

- d—k) e ey
This corresponds to the solution of (2.43) near A =0

A

which should be compared with (2.42). If there is cancellation of terms in
the coefficients of (2.43), then it is possible that ¢ = 0 in (2.45) and the first
nonzero term in the expansion z = ¢1A®! + - - - satisfies €1 > max; n;/1(C;).
The exponent is a rational number yet to be found by the Newton diagram.
By Section 2.3, —e; gives the order w.

zzc(l)maxgn;/(a)+ . (2.45)

Theorem 7 The order of the iteration operator K defined in (2.3) can be
computed from the digraph of G(M — N) and

w= max{% : there exists C; such that I(C;) = kK and n; = m, and
Y. (=1Yw(C;, M~ N) #0}
HCj)=k,n;=m

where each C; is a circuit in the digraph G(M — N) and n; is given in
Definition 2.

Corollary 1 The order of the iteration operator K has the upper bound

.y
w < max —2.
T UG
Since I(C;) < d and n; < I(C;), it is easy to see that Lemma 1 of Section
2.3 holds.
We will now prove Theorem 4, which states that w < 1 if and only if N is
nilpotent.
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Proof of Theorem 4. We prove the complement: w = 1 if and only if N is
not nilpotent. Since the Newton diagram always contains the point (d, d), we
obtain w = 1 if and only if it also contains the point (d — k,d — k) for some
k e {1,...,d}. From (2.43), we conclude that this can happen if and only
if, for some k € {1,...,d}, the polynomial 3¢ )—¢(—1)’*w(C;, AM — N)
contains a nonzero constant term. Such a constant term is a weight of a
circuit containing only elements of N, whence

w=1 if and only if Z (—1)’*w(Cj, N) # 0 for some k = 1,...,d.
1Cj)=k

By (2.40), this implies that at least one coefficient in expansion (2.39) for N
is nonzero. But this happens if and only if N is not nilpotent. O

For the Gauss—Seidel iteration, A is decomposed so that N contains the
upper triangular part of A.

Corollary 2 The order of the iteration operator corresponding to Gauss—
Seidel iteration is always < 1.

The Newton diagram can also be used to compute the type of the iteration
operator K. For the derivation of the following result we refer to Miekkala
and Nevanlinna (1992).

Theorem 8 Let Cpqr denote the set of all circuits yielding the maximum
quotient in Theorem 7. Then ¢ in the expression of the type 7 = T of the
iteration operator K is the largest root in absolute value of the equation

+ Y > (—1)rw(C, M - N) | TR =0
Cmaac l(Cj):k&nj:m

If there is only one circuit, Cy, say, giving w, then c satisfies the equation
& + (=)™ w(Cp, M — N) =0,
where k = [(Cy,) and me, is the number of even components in C,,.

We have shown how the order of the iteration operator can be computed
from the graph G(M — N). For large systems this may be a very large graph.
It is possible to construct smaller graphs from G(M — N) still containing
the essential information for computing w. Two such graphs are defined in
Miekkala and Nevanlinna (1992). One gives w exactly, the other, based on
block partitioning of A, gives an upper bound on w.

Quite often the dependencies between subsystems are modelled by con-
structing a graph Gg, where one vertex corresponds to one subsystem, and
there is an edge from vertex v; to v; if and only if there is at least one connec-
tion from some of the vertices belonging to subsystem ¢ in the original graph
to some of the vertices belonging to subsystem j. This does give an upper
bound for max; n;/l(C;), but it may be pessimistic.
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Our results are related to the accuracy increase studied by Juang (1990).
Assuming Taylor series expansions near time t = 0 for the iterates and the
exact solution, the accuracy of the iterate is defined to be the number of correct
terms in its Taylor series. The classical Picard-Lindelof iteration (N = —A)
increases accuracy by at least one at every iteration. Juang showed how
the accuracy increase of block Gauss—Seidel can be studied by examining
circuits in the dependency graph Gg. If all subsystems contain only one
vertex (pointwise Gauss—Seidel), then min; [(C;)/n; equals the lower bound
for accuracy increase proved by Juang. In general, we have the inequalities

w < (accuracy increase)™! < max l(nCJJ)
2.6. Other remarks
From the basic estimate of the form
K < 0B e, (2.46)

we see that, for relatively long windows, we reach the ‘superlinear era’ after
O(T) sweeps, when n > BewT. Simultaneously, the error at t > O(T) still
decays at most linearly, if at all.

We shall see below that the convergence on [0, 00) is of the following form.
If K2 # 0, then the spectral radius p(K) is positive and

CP (L™ = p(K). (2.47)
Combined with the superlinear estimate, the convergence can be bounded by
BewT

K™ 7 < min{C( )@ CL(p(K) + €)"). (2.48)

n

For sufficiently small p(K) and large T, superlinear convergence does not
occur for practical tolerances.

Since [K"|Y/™ — 0 as n — oo but UC"|££” — p(K) > 0, the spectrum is not
continuous as T — oo. Trefethen (1992) has defined the pseudospectrum for
an operator 4 on a Banach space by

Ac(A) == {A €C:||R(N A > 1/€). (2.49)

Here it is understood that ||R()A, A)|| = oo if and only if A € o(A). Notice
that 0(A) = .50 Ac(A).

Lumsdaine and Wu (1995) have shown that even though the spectrum is
not continuous at T' = 0o, we do obtain

7,11_{20 Ae(Kr) = Ae(Keo) (2.50)

for € > 0, where K1 and Ko denote the operator K acting on L2[0,T] and
L5[0, 00) respectively.



272 U. MIEKKALA AND O. NEVANLINNA

3. Infinite windows
3.1. Definition of spaces

In practice one would not usually iterate on [0, 00), but the infinitely long win-
dow is a natural setup for stiff problems and for DAEs: for the fast transients
a finite window [0, T'] can be regarded as infinitely long.

The exceptional situation with stiff problems would appear if couplings are
very small, that is, T|N| = O(1), then by the discussion of Section 2 we
would have superlinear convergence. For T|N| > 1 we typically obtain only
linear convergence, and one of the first interesting things is that the linear
rate given by the spectral radius is very insensitive to the choice of norm.

Let X be a Banach space of functions z : [0,00) — C% such that the
following conditions hold:

(1) e*c with Re A > 0 and 0 # ¢ € C% is not in X;;

(ii) eXp(t), where p is a C%-valued polynomial and Re A < 0, is in X;

(iii) z fot e(~)BCx(s) ds, where B, are constant matrices and the
eigenvalues of B have positive real parts, are bounded operators in X;

(iv) test functions C§° are dense in X.
Let || - || denote the norm in X. By (iii), o(M) C C4 implies that K is

a bounded operator in X. In order to formulate our results we recall the
definition of the symbol

K(z):=(z+M)"'N (3.1)

The basic property of X is that it is ‘unweighted’ in exponential scales.
However, such scaling is trivial and simply translates the imaginary axis:
requirements on real parts being positive would become positive lower bounds
on real parts.

The properties (i) and (iii) imply that if we try to solve our initial value
problem in X we must require that all eigenvalues of A have positive real
parts. Furthermore the following holds.

Theorem 9 If all eigenvalues of A have positive real parts, then K is a
bounded operator in X if and only if the eigenvalues of M have positive real
parts.

Proof. The sufficiency part is of course obvious, while the necessity needs
a small discussion. In Miekkala and Nevanlinna (1987a) the result is proved
for Ly spaces.

Assume that X is bounded in X and that u is an eigenvalue of M with
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nonpositive real part. Let J denote the Jordan block
po1

J= H
1
N

associated with this eigenvalue, and let S be a similarity transform such that

M = S 1MS is of the form
~ J 0
=5 a )
Put N = S~!NS and let the corresponding operator be denoted by K. Since
multiplication by a constant matrix is bounded in X, and K = § “lKS K
is bounded in X. Let the block structure induced by M be denoted by

5 N1 Nig >
N = .
< Noy  Noap

We claim that there exists ¢ € C% such that

with b; # 0. Indeed, if Ny; # 0, then this is trivial, while if N1; = 0, then
the claim follows from Nia # 0. Ni; and N2 cannot simultaneously vanish
because every eigenvalue of A has positive real part.

Let ¢ be as above and let A be any complex number such that Re A < 0.
Then u := eMc is an element of X, whence Ku € X. Let k be the largest
index 7 for which by; # 0, where by = (b1, b12, ...)T. Then the kth component
of the vector Ku satisfies

B t
(Ku) (t) =/ et ds  byrey,
k 0

where e, € C? denotes the usual cordinate vector.
For any f € X, define

Lf:= (ek,R'f> ¢

where (-, -) denotes the usual inner product in C¢. Since £f can also be written
as CK, with C = cef, we see that £ is bounded in X. By construction,
Lu = e ¥ x eMc and, since u = eMc € X, we have e ¥ x eMc € X. This
implies e #‘c € X, which, by (i), implies Re 4 > 0. By assumption, Re u < 0
and we conclude that u = i€ and v := e~ ¥tc € X.
It is easily checked that
tn
LM = —w,
n'
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for all n > 0. But, since £ is bounded, we may put

w = ( M) v = exp(t/||2L]|)v
n>0

n!

and obtain the contradiction
w = exp ((”25”-1 - ig)t) ceX.
O

3.2. The spectrum and the spectral radius

From now on we assume that the eigenvalues of M have positive real parts.
The main result here may be found in Nevanlinna (1990a).

Theorem 10 In every space X, we have o(K) = cl U o(K(2)).
Rez>0

We state some consequences before embarking on the proof.
Corollary 3 p(K) = max{K (i) : £ € R}.

Proof. Since the eigenvalues of M have positive real parts, K(z) is analytic
in the closed right half plane. The claim follows from Theorem 10 using
the maximum principle, on a Riemann surface corresponding to the algebraic
function formed by the eigenvalues of K(z), and the fact that all eigenvalues of
K (z) vanish at infinity. Alternatively, we may apply the maximum principle
directly to the spectral radius of K(z), because it is a subharmonic function;
see Theorem 3.4.7 in Aupetit (1991). O

Corollary 4 o¢(K) is compact and connected, and 0 € o(K).

Proof. All branches of the algebraic function vanish at infinity. Thus all
components of o(K) contain the origin, which implies connectedness. Com-
pactness is obvious, remembering that K is bounded by assumption (iii).
[

Corollary 5 p(K) = 0 if and only if there exists m < d such that ™ = 0.

Proof. If p(K) = 0 then K(z) is nilpotent for all z in the right half plane.
Thus there exists m < d such that K(z)™ = 0, for all z. Now K™ applied
to, say, test functions can be written using the inverse Laplace transform in
terms of K(z)™. Since test functions are dense in X and K™ is continuous,
K™ must vanish in all of X. The converse is trivial. O

Comparing this corollary with Theorem 3 in Section 2 we see that p(K) > 0
in X if and only if K is of positive order in C[0,T].
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Proof of Theorem 10. The formula

¢

ROVK)S(O) = 30 + 33 [ M NNfs)as (32
is valid for all ¢ > 0 and X # 0, and at least for smooth f (see Section 2.1).
This implies immediately that R(A,K) is bounded in X by (iii) and (iv),
provided that all eigenvalues of M — A~! N have positive real parts.

On the other hand, suppose that M —A~1 N has an eigenvalue, u say, with
negative real part. Denoting the corresponding eigenvector by b, we choose
f to be the solution of f + Mf = 0 with f(0) = b. Thus f is in X by
(ii). However, from (2.14) we see that u(t) = e #'b, and thus u € X by (i).
Finally, suppose that M — A~! N has a purely imaginary nonzero eigenvalue
Xo. Then, since M — A"! N is analytic in A, M — A" N would have at
least one eigenvalue with negative real part near Ag, unless the eigenvalue
is constant. In that case M would also have a purely imaginary eigenvalue,
contradicting our hypothesis. Since the spectrum is closed, such a Ag does
belong to the spectrum, and we can conclude that A € ¢(K) \ {0} if and only
if det (M — A~! N — ) vanishes for some p with nonpositive real part.

Writing z = —p and recalling that z + M is invertible for Rez > 0, we
deduce that det ((A— z+ M)~} N) vanishes for some z with non-negative real
part.

Thus 0 # A € o(K) if and only if there is a z, Rez > 0, such that
A € 0(K(z)). Since K(z) — 0 as z — oo and a(K) is closed, we deduce
0 € ¢(K), and the claim follows. O

Since the spectral radius p(K) is independent of the space X we may loosely
say that the iteration converges on [0,00) if and only if p(K) < 1. Note that

I Y™ = p(K), (3.3)
so that, for any € > 0, there exists C < oo for which
1K™ < C(p(K) + &)™, (3.4)

but that in general C' depends on both € and on the ambient norm.
The formula p(K) = max¢ p(K(i€)) is very easy to use in practice. For
example, in several special cases one has

max p(K (i€)) = p(K (0)), (3.5)

which simply means that the convergence is dominated by the speed of con-
vergence of the iteration

Mz**l = N2* +p (3.6)

for Az = b. Such situations can occur, for instance in Jacobi splittings of
linearized versions of parabolic equations. Results of this form have been
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discussed in Miekkala and Nevanlinna (1987a). This paper also contains res-
ults where p(K) > p(K(0)). As an example we mention SOR for consistently
ordered matrices. In this case the rate of convergence (p(K(0))) is known for
iteration (3.6). It turns out that for consistently ordered matrices, we obtain
p(K) = p(K(0)) for small values of the overrelaxation parameter w. However,
when w is close to 2, we have p(K) > p(K(0)) and the iteration can diverge.
For the precise result, see Theorem 4.1 in Miekkala and Nevanlinna (1987a).
In comparing two splittings it is important to notice that a splitting that
looks favourable on [0,00) may look inferior on [0,7] and vice versa. For
example, by Theorem 4 of Section 2, the order of R(), K) is always less than
1 for Gauss—Seidel splitting on C[0,T], whilst for overrelaxation splittings
the order equals 1 if the diagonal does not vanish. On the other hand, for
consistently ordered matrices, for instance, p(K) initially decreases as the
overrelaxation parameter increases from 1. So the Gauss—Seidel splitting
provides ultimately the fastest convergence rate on finite windows, but on the
infinite interval creates propagating error waves, which are best damped with
a modest amount of overrelaxation. Overrelaxing too much will in turn cause
growing error waves, making the process diverge on the infinite window.

3.3. On generalizing the theory for DAE systems
Let us change the model problem to
Bi+ Az = f (3.7)

with consistent initial values for x, where B may be singular and f is sufli-
ciently smooth (the required smoothness depends on the index of the system).
The boundedness assumption for continuous solutions of (3.7) on the infinite
time interval becomes

det(zB+ A) #£0, Rez2>0.

To see this and for the whole analysis of Miekkala (1989), one needs to use
the Kronecker Canonical Form (KCF) of the DAE (Gantmacher 1959). De-
compositions of the matrices B = Mg — Ng and A = M4 — N4 define the
dynamic iteration for (3.7)

Mpi™ + Maz" = Ngz" '+ Naz" '+ f, n=1,2,... (3.8)

with consistent initial values for x. The iteration operator can now be written
after transformation of (3.8) into KCF form, and constitutes two parts, one
being an integral operator and the other a sum of matrix multiplication and
differentiation operators. The basic difference to the ODE case is that, in
order to guarantee boundedness of iteration (3.8), one needs to preserve the
structure of the DAE while decomposing B and A in (3.7). Essentially,
we mean that the index is preserved and the state variables and algebraic
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variables are preserved. The condition is formulated for the KCF of (3.8),
but in Miekkala (1989) there is an error, corrected in Miekkala (1991). The
space where z is iterated by (3.8) is chosen in Miekkala (1989) to be that
of continuously differentiable functions with appropriate norm, but one could
equally well use the space of continuous functions with the uniform norm. The
smoothness requirement for f is essential since, for high index DAE systems,
some components of the solution of (3.7) depend on derivatives of f. For index
one (or zero) systems one might consider iteration (3.8) in LP-space (both f
and z" in LP), as in the ODE-case; the results of Miekkala (1989) still hold.
For high index DAEs the space has to be modified so that the components
corresponding to high index algebraic variables have different requirements
from the other components. In general it would be difficult to recognize these
components, but in applications it is sometimes possible. In Section 7 this
kind of modified LP-space formulation is used for the index two case.

In Miekkala (1989), assuming that the algebraic part of the iteration op-
erator is bounded, the other results are analogous to the ODE case. For
example,

det(zMp + My) #0, Rez >0, (3.9)

is needed for boundedness of the iteration. The convergence rate is given by
the ‘Laplace transform’ of (3.8),

P(’CDAE) IRsup p((ZMB+MA)_1(ZNB +NA)). (3.10)
€ z>0

Convergence results, like those for consistently ordered matrices, can be gen-
eralized to special index one systems.

4. Acceleration techniques

We can accelerate waveform relaxation in two ways: we can try to get the
error to decrease more rapidly per iteration, or spend less time integrating
the early sweeps. The latter strategy is outlined in connection with the dis-
cretization, while here we address the former possibility.

4.1. The speed of optimal Krylov methods

Suppose the initial value problem has been transformed into the fixed-point
problem

z=Kz+g. (4.1)
Instead of iterating as usual, that is
o= Kok + g, (4.2)

we could in principle keep all the vectors {xk} in memory and try to find as
good a linear combination of these as possible.
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We outline first the abstract Krylov subspace method approach; see Nevan-
linna (1993). Let A be a bounded operator in a Banach space and b a vector
in that space. Put

Kn(A,b) := span{A7b}7 1 (4.3)
and
K(A,b) := cl span{A7b}. (4.4)

Thus, K(A,b) is the smallest closed invariant subspace of 4 that contains
b. In fact either dimK,(A,b) = n or there exists m < n such that, for all
k>m,

Ki(Ab) = Kn(A,b). (4.5)
If we are given a fixed point problem
z = Az + b, (4.6)

such that 1 € o(A), then clearly x = (1 — A)~1b. Consider the following
simple embedding:

1
oy = 3 An + b, (4.7)

and assume that o(A) does not separate 1 from co. Then there exists a path
A(s) : A(1) =1, A(oo) = oo such that (4.7) has a solution z) and clearly
this solution is continuous along the path. Trivially, the Krylov subspace of
A~ A equals that of A for nonzero A. For |A| > || A| we have

oo
2y = S (ALA), (45)
0
which shows that zy € K(A,b). By continuity, as A(s) — 1 and because
K(A,b) is a closed set, we have z € K(A,b), and K(A,b) is invariant for
(1—.A4)7! as well.
We assume in the following that 1 ¢ o(.A) and that o(.A) does not separate
1 from oco. That the latter must be assumed is clear from the maximum
principle, but can be understood immediately from the following example.
If A := pS where p > 1and S : e; — ej+1 is the unitary shift in £5(Z), then
o(A) is the circle centred at the origin of radius p and 1 is separated from oc.
If b := eg, then K (A, ep) = cl span{e;}§° whilst the solution x ¢ K (A, eo).
In fact, z = Zgoo ple;.
Every vector in K, (A, b) is of the form gn—1(A)b for some polynomial g,_;
of degree n — 1. Let us write

p(A) =1 — (1= A)a(A), (4.9)
where q is a given polynomial; then ¢(.4) approximates (1 —.A)~! well if and
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only if p(A) is small. In fact we have the following result (Nevanlinna 1993,
Proposition 1.6.1).

Proposition 4

1 _ -
m||P(A)|| < 1=A) " =g(A)] < [1(1=A) " lp(A)]-
Now, it is of interest to ask how small p(A) can be. Therefore set b,(A) :=
inf ||p(A)|| where the infimum is taken over all polynomials of degree at most
n, satisfying p(1) = 1 (see (4.9)).

Definition 3 (Nevanlinna 1990a, and Definition 3.3.1 in Nevanlinna 1993).
Given a bounded A, define

n(A) := inf b (A)/".
We call n(.A) the optimal reduction factor of A.
The main properties of n(.A) are collected in the following theorem.
Theorem 11

(i) n(A) <1ifandonlyif1 & c(A) and o(.A) does not separate 1 from
o0;

(ii) if n(A) < 1 then n(A) = 0 if and only if cap(c(A)) = 0;

(ii1)) 0 < n(A) < 1, then the value of 1(.A) only depends on o(A) and
is given by n(A) = e~91), where g is the (extended) Green’s function,
satisfying

e g is harmonic in the unbounded component G of C\o(A);
o g(\) = log A + O(1) as A — oo;
e g(A) —0as A— ( from G, for every ( € 0G C do(A).

Proof. These are covered by Theorem 3.3.4 and Theorem 3.4.9 in Nevan-
linna (1993)

Operators A for which cap(o(A)) = 0 are quasialgebraic. In such a case
o(A) cannot separate 1 from oo, so that we can combine (i) and (ii) in the
statement: The optimal reduction factor vanishes exactly for quasialgebraic
operators with 1 ¢ o(A).

This is analogous to the vanishing of the spectral radius for quasinilpotent
operators.

We shall say that A is algebraic if g(.A) = 0 for some polynomial q. Thus
nilpotent operators form a subclass of algebraic operators.

4.2. Finite windows

Consider K in C[0,T]. From Section 2 we know that

cTew

K" 7 ~ (=) (4.10)
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as n — 0o. We do not know sharp lower bounds for

bn(K) = inf K 4.11
()=, nf  Ip()lr (411)

for general K, but we give an illustrative example instead. Consider the
following operator V,

14
Vu(t) := / u(s) ds (4.12)
0
or M =0 and N = 1. Then clearly
T’n
Vi = —+, (4.13)

so that w = 1, 7 = T'. The following result shows that, when it is optimally
accelerated, we obtain a speed of convergence in which the order is still 1 but
the type is lowered from T to T'/4.

Theorem 12 Let V = [§ operate in C[0,T)]. Then for n > 2
_r(T/4)" r (T/4)"
Proof. This is proposition 5.2.5 in Nevanlinna (1993).

Thus, the speed can be accelerated, but not dramatically.

4.8. Infinite windows

Let X be any space considered in Section 3.1. The first result says that
acceleration is possible, but then we shall see that the acceleration is often
only of modest nature.

Theorem 13
(i) n(K) =0 only if p(K) = 0.
(ii) If 0 < n(K) < 1 then np(K) < p(K).
Proof. This is Theorem 4 in Nevanlinna (1990a). O
Recall that p(K) = 0 implies that K is nilpotent, so that the interesting case is
(ii). By Theorem 11 n(K) < 1 if and only if 1 & o(K) and 1 is not separated

from oo by o(K). In this setup, the case 1 € o(K) can occur, so that the
fixed point problem

r=Kz+g (4.15)

would as such be well posed in X, but for all normalized polynomials p we
would have

Ip(K) ] > 1. (4.16)
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In fact, since (K) is connected and contains the origin, we require real M
and N such that, if 0(K) is symmetric over the real axis, then 1 € ¢(K) but
a € o(K) for some a > 1.

To see how much smaller n(K) can be compared with p(X) consider the
following simple example. Let

Lu(t) = p/ot e~ =9y (s) ds, (4.17)

with p > 0. Then
o(L) ={A:|A—p/2] < p/2}. (4.18)
Thus p(L) = p while n(£) = min{ﬁf—ﬂ, 1}. On the other hand, for the oper-
ator —L we obtain
p

p(=L)=p and n(-L)= 21 (4.19)
(Nevanilinna 1990a, page 155). In particular, if p = 1 — € with a small
g > 0 then n(L£) ~ 1 — 2¢, and this is only a ‘modest’ improvement, while
n(-L) ~ %, in which case we would speak about ‘dramatic’ improvement.
More generally, if p(K) € o(K), with p(K) = 1 — ¢, then there cannot be
any dramatic improvement for the following reason: the boundary of o(K)
must be smooth near p(K) (by Proposition 2 in Nevanlinna (1990a) and the
Green’s function g(\) ~ O(dist(\, o(K))) and n(K) = e~ 90 = 1 — O(e).
This should be contrasted with the situation for self-adjoint operators A, for
which the spectrum would be contained in an interval. Near the end point
the corresponding Green’s function would stretch the distance like the square
root function and one would have n(A) = 1 — O(y/¢), a well known effect of
the conjugate gradient method. Finally, if p(K) < 1, then it is possible to
bound p(K) in terms of n(K). In fact, since o(K) is connected and contains
both 0 and p(K)e®, for some 6, one has

p(K) > cap(a(K)) > 1p(K). (4.20)
This allows us to formulate the following theorem.

Theorem 14 For every K we have as € — 0,

n(EK) = (4 + o(1))plek). (4.21)
Proof. If ge is the Green’s function for the outside of o(eK), then
n(ek) = e %W = (1 + o(1))ecap(a(K)), as & — 0. (4.22)

O

To summarize: Krylov subspace acceleration is always possible, but dramatic
improvement is obtained only if the distance between ¢(K) and 1 is essentially
larger than 1 — p(K).
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4.4. Time-dependent linear combinations

By a subspace method we mean any Krylov-subspace method that takes linear
combinations of sweeps. To generalize this, we may think of processing the
sweeps with some other operation. We outline here an approach of Lubich
(1992). The basic special assumption here is that one decomposes A = mI —
(mI — A), so that the unaccelerated version would be

P4 mabt = Nk, P0) = 2 (4:23)

Observe that multiplication with m commutes with N.
The accelerated version is as follows. Given z*, solve

u* +mu* = No* + f, 4*(0) = o, (4.24)
set
vF = uk — gk (4.25)
and solve again for w* from
W* + Mk =0k, wk(0) = 0. (4.26)
Finally, set
F = o* + apo® + Brwt. (4.27)

Note that all equations and substitutions (4.24)—(4.27) are on the component
level, apart from the evaluation of Nz* in (4.24) — in this sense the extra work
is small compared with (4.23). The parameters ag, Br and Ax can now be
chosen so that the error reduction in La(R. ) is the same as that of Chebyshev
acceleration of Richardson’s iteration

1 1
Rl _ gk 2 oagk 2y
m m

T

for the static linear system Ax = b. To see that this is possible, compute the
Laplace transform of the iteration error, and require this to be the Chebyshev
acceleration of the Laplace transform of the iteration error of the basic scheme
(4.23) for every z.

Related ideas are also discussed in Skeel (1989) and Reichelt, White and
Allen (1995).

4.5. Overlapping splittings

If M in the splitting A = M — N is chosen to be a block diagonal of A then the
iteration (2.2) can clearly be computed in parallel for each small subsystem
corresponding to one block of A. This is known as block Jacobi iteration. If
the order of the original system was d and we use s subsystems (blocks) we
only need to solve systems of order d/s in parallel. The reduction of work
(and time) is so large that one might as well increase the size of subsystems
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with a few components without losing this gain. The idea of overlapping
was introduced by Jeltsch and Pohl (1995) in order to accelerate convergence
of WR iteration. For block Jacobi iteration it can be best explained by an
example.

Example 2 Let

2 -1
1 2 -1 T
A= 1 9 _1 | x= (z1 2 T3 x4)

-1 2
and we use two subsystems of the same size, so that
2 -1

A=M-N=| 1 2

—_ o O

2 -1
-1 2

S O =

0
0

Unknowns z1, 22 are solved from the first subsystem S; and x3, x4 from the
second S3. The idea of overlapping is that some components of the unknown
vector are assigned to several subsystems, for instance x3 in this example.
Then, in (2.1), we obtain

2 -1
-1 2 -1
A= -1 2 -1 ], Xx=(x1 x2 3.1 T32 m4)T
-1 2 -1
-1 2
and
2 _1 0 00
-1 2 1 0 00
M_N= -1 2 -100 001
2 -1 1 000
-1 2 00

We use the first system to find {x1,z9,231} and the second to calculate
{z3.2,24}. The value used for z3 in the next iteration is taken as the linear
combination 3 = axs] + (1 — a)x32

The number of overlapping components between subsystems was first one,
then two, in this example. This number is called the overlap and we denote
it by o.
In general it is reasonable to assume that if we have s > 2 subsystems then
(A1): The overlapping components are assigned to at most two common
subsystems.
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The overlap o can be defined as the maximum number of overlapping com-
ponents in the intersections S; N Sk.

Jeltsch and Pohl (1995) formulated overlapping splittings for block Jacobi
iteration at the subsystem level, and showed that a convergence analysis sim-
ilar to that of basic WR can be carried out. Their numerical results suggested
that overlapping accelerates the convergence of WR. In order to explain when
and why this happens we describe the process for the whole system. Let us
assume that the splitting M — N corresponds to block Jacobi iteration. Thus
the components of x corresponding to each subsystem must be numbered
consecutively, and M must be block diagonal.

When we have chosen the overlapping components of x we modify (2.1) as
follows:

) If x; is copied from subsystem Ky to subsystem k2, then rename it z; g, ,
and add a new component x; i, to subsystem kj.

e  Duplicate the ith row of system (2.1), &; + Z?zl Aijz; = f;, and add
the duplicated row to the row corresponding to index i.ks.

Hence each overlapping component increments the dimension of A by one
by duplicating a row and adjoining a new column to the new duplicated
component. Between the integration sweeps, each overlapped component x;
of x is postprocessed by replacing both copies with a linear combination of
the overlapped components. The effect for the whole solution can be viewed
as a multiplication by a constant matrix E. From the iteration’s perspective,
the iteration matrix (21 + M)7!N is replaced by (21 + M)"*NE. Since the
overlapped components of x are in the nullspace of N, the graphs of NE and
G(N) are identical.

We shall show that overlapping can accelerate convergence by decreasing
the order w of the iteration operator K. The order can be computed from the
directed graph of the matrix A as stated in Section 2.5.

4.6. How overlapping decreases the order

The graph G(A) is formed from G(A) by making the following modifications
to G(A).

e  Duplicate the vertices of G(A) corresponding to the overlapped compon-
ents.

e  Duplicate the edges coming into the vertices corresponding to the over-
lapped components.

The latter statement demands some explanation. If a vertex v is duplicated
from subsystem k; to subsystem k2, then for the copy in k;, draw all edges
incident to v in G(A) not linked to subsystem k. Similarly, for the copy of v
in subsystem ks, draw the edges incident to v not intersecting subsystem k.
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TN T TN TN %z ~a
aje o 3 ° b) ¢ e 0 o/—\o
NN . N
G(A) G(A) witho=1

——————

~——— e —

G(A) with 0=2

Fig. 2. Directed graphs of Example 2. Edges belonging to G(N) are denoted by
dashed lines. Duplicated vertices are recognized by shading.

Ve “a / ~a
aje e O ° b) ¢ o 0 o/\o
\\’/ V\\ //
no overlap =1
e T~ N
0 o o o & 5 %
\_/\/\\\ -
o=

Fig. 3. Critical cycles of Example 2. Edges belonging to G(NN) are denoted by
dashed lines.

All these edges were also in G(A). The new edges are copies of the incoming
edges of v.

Example 2 continued. The directed graphs of A and A are given in Fig. 2.
The cycles giving max(n;/I(C;)) in G(M — N) or G(M — N) are given in
Figure 3.

This example is summarized in Table 1, and overlapping decreases wgraph,
and hence the order of the iteration operator.

Table 1.

o I Weraph

0 1
1]2/4=1/2
2|2/6=1/3
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Fig. 4. Graph structure corresponding to a band matrix with b = 2. The edges
with arrows in both heads are abbreviations of two edges connecting the vertices
both ways.

In general, assuming condition (Al) given in Section 4.5, and that only
adjoining subsystems (S; and S;41) overlap, we can derive our next result.

Theorem 15 Using overlapping in block Jacobi iteration never increases
the ratio Wgraph-

The proof is based on showing that the only new circuits created in G(A)
when compared to the original graph G(A) are such that the maximum ratio
of n;/l(C;) is smaller than in G(A). Simultaneously, for the old circuits
remaining also in G(A), the ratio n;/1(C;) may decrease to 0 if the overlapping
is such that the circuit stays inside one subsystem in the new graph G(A)
The detailed proof is given in Miekkala (1996); the following result is a direct
consequence.

Corollary 6 If wgapn is determined only by the cycle C;, and C; can be
contained into one of the subsystems using overlapping, then wg,,pn decreases.

This result tells us how overlapping should be used to accelerate convergence
of the iteration. Indeed, the cycle (or cycles) attaining max(n;/l(C;)) in
G(M — N) should first be located, and then the subsystems overlapped in
such a way that this cycle stays inside one of the enlarged subsystems.

The matrix A in Example 2 was the so-called Laplacian matrix, a band
matrix. We will now show how overlapping decreases the order for general
band matrices. The band width is denoted by 2b+ 1, where b is the smallest
integer for which A;; = 0 whenever |i — j| > b.

Once again we need only study overlapping between two consecutive sub-
systems, say S1 and Ss. In graph theoretic language, b = 1 means that every
pair of adjacent vertices is connected by a loop of length two; for b = n, every
pair of vertices at mutual distance at most n is connected by a loop of length
two. Figure 2 shows the case b = 1 and Figure 4 case b = 2; the general case
should be obvious (if too messy to draw).

We have already analysed overlapping vertices for b = 1, in Example 2.
The interface between the subsystems has o overlapping vertices; thus the
coupling edge entering one subsystem from another has to skip o vertices.
From Figures 2 and 3, we conclude that the cycle between the subsystems
satisfies I(Cj) = 0+ 0+2 = 20+ 2 and nj = 2. Therefore wyraph = (0+ L



ITERATIVE SOLUTION OF LINEAR ODESs 287

T Vbt Vo -m==~
V]. .oco. .V. V]?i—éoouo O\\
ey e/ b+2
b-1 P00, 0>0 vV,
Yb+1).2
a) b)

Fig. 5. a) Using overlap o < b does not change the indicated loop between the
subsystems. b) A critical circuit for o = b.

In the general case, the length of the critical circuit is [(C;) = 2 + 2|0/b].
Since the graph of a band matrix contains loops as in Figure 5a, it is clear
that these loops remain in G(A) for 0 € {1,...,b — 1}. Hence wgrapn = 1
for these values of 0. If 0 = b, then we duplicate b subsequent vertices as in

Figure 5b and the critical circuit
U1 2 VUp41)2 7 Vg2 — V21 2 UL

has length 4. If overlap o € {b+1,...,2b — 1}, then we still get a circuit of
length 4 and n; = 2, that is

U1 = V(b+1).2 ™ Vot2 — V(o—b+2).1 — V1.

When o = 2b, the second edge of this circuit cannot occur because o + 2 —
(b+ 1) > b and the length of the critical circuit increases to 6. The general
result should now be obvious.

Theorem 16 Let A be a band matrix of band width 2b 4+ 1 and use block
Jacobi iteration with overlap o in (2.2). Then

<1
= To/b] + 1

5. Discretized iterations

The results of the previous sections have analogues for discretized equations.
We briefly discuss these analogues and then look at the new phenomena that
arise when several grids are used during the calculation. Also, we mention
some interesting step size control problems.

5.1. Discretization methods

The most natural approach to ‘continuous time iteration’ is simply to apply
reliable software to integrate the associated equations. The process is suffi-
ciently robust for results on the continuous version to describe what happens
in practice, as long as the iteration errors are larger than the discretization
errors. This robustness can be seen very well from an exact analysis of the
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discretized equations. Here we consider linear multistep methods with a con-
stant time step h:

k k k
Y ooyzn i+ Y BiMah i =Y Bi(NTL L+ fats)- (5.1)
7=0 7=0 5=0

|

As is customary, we use operator notation for the linear multistep methods.
In order to avoid confusion with the spectral radius and the spectrum, we set

k k
a(¢) ==Y e;¢?, b)) = B (5.2)
j=0 Jj=0

We normalize b(1) = 1, require that the order of consistency satisfies p > 1,
and assume that a(¢) and b(¢) have no common factors. We abbreviate

(5% 5t} to av
In this notation, (5.1) reads

—}lzax” +bMz¥ = bNz" "1 + bf. (5.3)

As in the continuous case it is advantageous to introduce a linear operator
K and write the solution of the difference equation (5.3) in the form

¥ = Kpz" ! + op. (5.4)

Here K}, is well defined provided we understand the sequences to vanish
for negative indices and

ak
5, & o(-hM). (5.5)

In what follows we shall always assume that (5.5) holds. The role of the
Laplace transform is played by the ‘(-transform’.
If X}, denotes C%valued sequences, then we write

o0

{)(C) = Z C_kvk, v € Xp,

n=0

and this leads to the following expression for the symbol of Kp:

K() = (3.a(C) + QM) B(ON. (56

In particular, K,({) = K(a(¢)/hb(¢)). It is also useful to write v, = v(nh)
for v € Xj. We shall need standard terminology to describe the stability
properties of the method (a, b).

Definition 4 The stability region S consists of those u € CU{oo} for which
the polynomial a(¢) — ub(¢) (around oo consider u~la — b) satisfies the root
condition. The method is called strongly stable if all roots of a(¢)/({ —1) are
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less than one in modulus. The method is called A-stable if S contains the
closed left half plane.

5.2. Finite windows

Consider bounding K}, on the ‘window’ 0 < j < T//2. We identify the vectors
v € X}, by sequences indexed over Z with v vanishing for negative indices
and

vl = 0 52%, |vj].- (5.7)
Theorem 17 If ay/hfB; ¢ o(—M), then, in the window 0 < j < T/h K
has the spectral radius

p(Knr) = p(K (ck/hBk))- (5.8)

This is Theorem 4.1 in Nevanlinna (1989¢). Comparing this with (5.6), ob-
serve that z — 0o corresponds to ¢ — oo and lim¢_,oc a(¢)/hb(¢) = ar/hPBk.
It should be noticed that, unlike the infinite window case, we do not obtain
a result of the form p(KCp) = p(K) + O(hP) with p related to the accuracy of
the discretization method. However, the following holds.

Corollary 7 Under the assumptions of Theorem 17 we have

oK) = (14 0(1))(5—2@)1/“’, ash — 0, (5.9)

if K is of order w and of type 7 = ¢T.

Proof. This follows immediately from the defining relation of w and ¢ (see
Section 2.1, line (2.37)) by choosing z = z(h) = ax/hf;. O

As this corollary shows, the decay of |IC£|T as k — oo is again related to
the order and type of the original resolvent operator. Upper bounds again
hold, analogous to those in Section 2.4 for |KC¥|p, but here we just refer to
the original paper by Nevanlinna (1989c¢).

5.3. Infinite windows

We now look at the usual £o-space of square summable C%-valued sequences
(but again the spectral radius of Kj, would be the same for a large class of
‘unscaled’ norms). Now the local solvability condition ag/hfBx & o(—M) is
still needed for Kp to be well defined, but another condition is needed to
guarantee that Ky, is bounded in £5. In the continuous case this was simply
the condition o(—M) C C~. Now the role of C_ is played by the stability
region below.

Proposition 5 If o(—M) C h~lintS, then K is bounded in £s.
Proof. This is Lemma 3.1 in Miekkala and Nevanlinna (1987b). O
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The correspondence of C4 with A71(C\ S), best seen in the fact K(¢) =
K(a(¢)/hb(¢)), immediately explains this Proposition and related claims. For
example, the boundaries of these sets osculate at the origin, displaying the
order of accuracy. However, in order to obtain the exact formulation we need
the following concept.

Definition 5 A multistep method (a, b) has order of amplitude fitting q if
the principal root {1(u) of a(¢) — ub({) = 0 (the zero for which (;(u) — e# =
O(pPt1)) satisfies |(1(it)| — 1 = O(t41), for small real ¢.

Thus g > p if p is the usual discretization order, and, with the trapezoidal
rule for instance, we have ¢ = oo, while p = 2.

Theorem 18 Assume that the multistep method is of amplitude fitting or-
der ¢ and is strongly stable. Then, for all sufficiently small A, K}, is a bounded
operator,

11 = IEII[1 + O(R)] (5.10)

and
plKn) = p()[1 + O(hY). (5.11)
Theorem 19 Assume that the multistep method is A-stable. Then, for all

Jjz1,

Il < 1| (5.12)

and
oK) < p(K). (5.13)

Both Theorem (18) and (19) are proved in Nevanlinna (19905b), using res-
ults of Miekkala and Nevanlinna (19875).
For Krylov acceleration it is interesting to know something of the spectrum.

Theorem 20 (Miekkala and Nevanlinna 19875)
o(Kn) =l {J o(K(a(0)/Rhb(Q))).
I¢1>1

Corollary 8 For A-stable methods we have o(Kp) C o(K).

Proof. By A-stability, Ucj>1{a(¢)/hb(¢)} is a subset of the closed right half
plane. O

Corollary 9 o(K}) consists of at most d components, each containing ei-
genvalues of K (ax/hfB%).

Proof. By letting ( — 0o, we see that the eigenvalues of K(a/hB) belong
to 0(Kp). Each eigenvalue, or, rather, branch of the algebraic function, can
be continued to |¢| > 1, giving at most d components. [
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For example, if we take the implicit Euler method and relatively large
step size, then o0(K) and o(K}), and in particular the corresponding optimal
reduction factors, may differ considerably. Lumsdaine and White (1995} give
an example of this nature.

5.4. Multigrid in time

The effective use of ‘multigrids’ in our setup simply consists of balancing the
iteration error and discretization error. Thus one moves only towards ever
finer grids. The computational goal is to be able to compute or simulate the
full system with an amount of work W which is a modest multiple of the
work Wy, say, needed to compute the ‘uncoupled’ system

t+ Mu=Nz+ f(t), u(0)= =z, (5.14)
to the same tolerance, where x denotes the solution of
t+ Mz = Nz+ f(t), =z(0)=xo. (5.15)

The ideas in setting up such a computational strategy, or ‘tolerance game’,
have been discussed in Nevanlinna (1989¢) and Nevanlinna (1990b). We
shall not go into such a discussion here but rather concentrate on two issues
that might cause difficulties if the implementation is careless. It may not be
evident that it is possible to arrange for W = O(Wj) to hold. Two extremes
are possible. First, the step size selection routine is extremely stupid and
the step is constant on the grid. Second, the step size selection process is
extremely clever and the step changes with the smoothness of the solution,
so rapidly reducing the step size when the solution is rough, but increases
the step size stably when the solution becomes smooth. The potential danger
to be avoided is this: in solving stiff problems, it is to be expected that the
solution at the end of the window is smooth. However, on the next window,
say [mT,(m + 1)T], the initial guess z°(¢t) = z(mT) introduces an error
which causes, in exact computation, a travelling error wave, which, however,
has very small support. Roughly speaking, with fixed step strategy the error
wave cannot be supported at all, while integration with automatic software
has to be done with a good step size routine so that not too many time points
are wasted at the thinly supported rough parts. Here we discuss the constant
step case and in the next section the latter one.

For simplicity, let the grid at the 1}, iteration level be {jh, }; where the time
step hy, = 27" hg and n(v) is nondecreasing and unbounded. A detailed
analysis of this is given in Section 3.2. of Nevanlinna (1990b). In the iteration
process, whenever the grid is refined (n(v) > n(v — 1)), we need to be able to
extend a grid function v,_1 = {v(jhy—1)} to a grid function on v, = {v(jh,)}.
Thus we have the prolongation operator

P,: vy_1— Vv,
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computed with accuracy matching the integration method, but the important
point is that there is also a stability property to be satisfied. In fact, we want
the overall process to decay with a rate essentially equalling p(K), for all
refinement sequences {n(v)}, and this is possible if the prolongation operators
{P,} are stable: there exists a C' such that

I Payll £ C,  Pagy € {Pa}

The norms here are the naturally induced operator norms; grid functions
v, = {v(jhy)} are normed as follows:

loul) = {hw 3 o(ihw) P2,
J

It turns out that there are arbitrary high-order stable prolongations but
that the information should in general be collected from both sides of the grid
points. A symbolic calculus for stepwise translation invariant prolongations
was developed in Nevanlinna (19906). The crucial dilation process here is
quite similar to the subdivision algorithm in CAD or in wavelets and this
eventually led Eirola (1992) to study the obtainable smoothness of wavelets.

For the error analysis the main result is the following theorem.
Let

By = identity on grid functions on  {jh,}
B, =KpnP.B,1,, v>p+l

Theorem 21 (Nevanlinna 1990b) Assume that the multistep method is

strongly stable and we are given a stable set of prolongations. Let hy be
small enough so that

o(—M) C %int S

holds for all h < hg. Given € > 0 and h, = 2" by with n(v) nondecreasing
and unbounded, there exists a C such that

[Boull £ C(p(K) + €)™, v>u>0.

This is the key result needed to show that the ‘tolerance game’ is possible.

5.5. A difficulty due to stiffness
Consider solving
t+Az=f (5.16)

in a window where the solution is already smooth, that is, the transient has
died out in the earlier window.

Usually one takes the initial function to be identically the initial value and it
is no longer clear whether the iterates will stay smooth. A naive application of
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Picard-Lindeldf iteration might then spend a lot of time in the early iterations,
because any local error estimator would require tiny steps compared with the
smoothness of the limit function.

We present here a model analysis of the smoothness of the iterates x7,
following Nevanlinna (1989a). We assume that the iterates 7 are computed
exactly from

It + M2Itt = Nz7 + f, (5.17)
I*t10) = 2o = 2°,
but we measure the ‘cost of integration’ as if we were using high quality

software, based on first-order local error estimation: at time ¢ the time step
h = h(t) would satisfy

h(t)|2 ()| = €;. (5.18)

This corresponds to the criterion of error per unit step; calculation for cri-
terion of error per step is analogous.

Thus the relevant measure for the cost or for the total number of time points
is proportional to >_ é []#7|. An efficient implementation of Picard-Lindelof

iteration would gradually decrease the tolerance €;. Here we shall not discuss
the choice of € but focus on estimating [ |Z7].

We put T = 1 and assume that = is so smooth that it can be represented
as a convergent power series

z(t) = > _t'x;. (5.19)
Since we are interested in the second derivatives, we measure smoothness on
the window [0,1] by
oo
|| := |zol + |z1] + > (i — 1)|ail- (5.20)
=2
If e/ := £ — 27 denotes the iteration error, then
&l + Mel*t! = Né?, €7(0) = 0. (5.21)

Introducing
and setting

we have

e = kY x (x — xp). (5.22)
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Substituting (5.19) into (5.22) yields

e (t) = i /0 t(t — 8)'k* (s)zds, (5.23)
i=1

and hence
) =k (t)xy + Zz(z - 1)/ (t — s)72Ek* (s)xds. (5.24)
1=2
In order to estimate this we introduce the following bound:
C :=sup sup/ |k*7 (s)alds. (5.25)
Jj la]=1
Theorem 22 We have
1 :
/ | — 37| < Cllz — o] (5.26)
0

Furthermore, for any given splitting M, N there exists g # 0 and f such that
z(t) = (1 4+ t)xp, £ = 0 and for some 7,

]' .
/ 27| = Cllz — zo]|. (5.27)
0

Proof. The definition of C immediately gives (5.26). Since [ |k*/| tends to
zero and a in (5.25) runs over a compact set, there exist an integer j and a
unit vector g such that

1 )
C = jf 6% (s)z0] ds.
0

If f(t) = zo + (1 +t) Az then z(t) = (14 t)xo is the solution of (5.16). Since
T1 = xg, and &7 = —37, we obtain

‘fuq:czqu—mw
0

from (5.24). O

We conclude from Theorem 22 that the important quantity [ |#7| stays small
for smooth limit functions z if and only if C is of moderate size.

It is important to note that, even if C' is of moderate size, the smallest ‘steps’
can be very small, since we may have supyg |77 > C, while [ |#/] < C.
Nevanlinna (1989a) contains an example of thls

Recall from Section 2 (proof of Theorem 5) that if

|[K(z)] < Rez >,

Rez — v

then we obtain a bound for the norms of the iterated kernels and hence the
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upper bound:
Be .
C S e7dma,x(7)3.
J

6. Periodic problems

We discuss briefly the iterative solution for periodic problems. We shall see
that the speed of the basic iteration is related to the speed of the ‘corres-
ponding’ initial value problem in the infinite window, while the speed after
optimal Krylov acceleration is related to the speed obtained for initial value
problems on the finite window.

6.1. The problem and the iteration operator
Consider solving the periodic boundary value problem
z+ Az =f, z(0)=z(T), (6.1)

when f is a continuous function of period T. Splitting A = M — N as usual
leads to an iteration of the form

b =FF 4 g (6.2)
provided the solvability condition holds:
o
7;111 go(—M) forallneZ. (6.3)

Here the integral operator F can be written in convolution form

T
Fa(t) = / ot — s)a(s) ds, (6.4)
0
where the kernel ¢ is periodic and
ol (t) =e M1 — e TM~IN.

For more details, see Vandewalle (1992).

6.2. Spectrum and consequences
Computation of the Fourier coefficients of ¢ gives ¢$(n) = K (2—’%), where
K(z) = (2 + M)~IN is the symbol of the Volterra operator K. This leads to

the following result.
Theorem 23 (Vandewalle 1992) Let the solvability condition (6.3) hold.
Then F is a compact operator in C[0,T] with the spectrum

2rin

o(F)=cl U o(K( T ))s (6.5)

necz
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and spectral radius

2min
p(F) = max p(K(—

). (6.6)

Corollary 10 Assume that eigenvalues of M have positive real parts. Then

pF) < oK) < p(F) + O 75 ). (6.7)

Proof. Here F is considered in C[0,T] while K is considered on the infinite
window (any space X of Section 3). The first inequality is immediately
verified because

2rin

p(F) = max p(K (Z22)) < max p(K (i6)) = p(K).

The second inequality follows from the fact that the boundary o (K) is locally
analytic at points A € o(K) where |A| = p(K); see Proposition 2 in Nevanlinna
(1990a). Sampling this with density O(T_l) provides the maximum within
tolerance O(T~2). O

Observe in particular that even if the solvability condition holds (and in par-
ticular it holds for all T if M has eigenvalues of positive real parts) we can
have p(F) > 1, so that the iteration would diverge. However, Krylov accel-
eration would always work.

Corollary 11 Let the local solvability condition (6.3) hold and suppose
1 € o(F). Then the optimal reduction factor vanishes: n(F) = 0.

Proof. Since o(F) is countable, it is of zero capacity, and the claim follows
from Theorem 11 in Section 4.1. O

Since n(F) = 0, we consider the superlinear decay of b,(F). Again the
answer can be related to the corresponding initial value problem. Namely,
Piirild (1993) has shown that the order of decay for b,(F) equals that of
|KK™| 7, that is, if R(A, K) is of order w, then

. nlogn
limsup —————~ = w.
log

(1/6n(F))

7. A case study: linear RC-circuits

Linear RC circuits can be modelled in several ways. The sparse tableau model
contains all the equations governing a circuit and results in a large DAE sys-
tem. Nodal formulation results in a substantially smaller system and then
equations are written for nodal voltages with the aid of so-called stamps.
Using nodal formulation it was already shown in the earliest waveform relax-
ation paper of Lelarasmee et al. (1982) that waveform relaxation converges if
the cutting is done only across such capacitors that there is a path connecting
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them to the ground involving only capacitors. A simple model problem where
splitting is done across a capacitor not obeying this rule was considered by
Miekkala, Nevanlinna and Ruehli (1990), showing that in this case waveform
relaxation still converges, but convergence is sublinear. This result can be
generalized to all splittings of linear RC circuits. waveform relaxation always
converges, but convergence may be slow, like O(k~"), where k is the iteration
index and r a small number. This result was proved by Nevanlinna (1991).

We consider here as a case study applying waveform relaxation for the
sparse tableau formulation of linear RC circuits, following closely the treat-
ment of Leimkuhler, Miekkala and Nevanlinna (1991). The system is a DAE
of index one or two. We describe a splitting strategy that allows us to break
the circuit into subcircuits only across resistors. This strategy leads to con-
vergence that is shown using mainly Laplace transforms.

7.1. RC-circuit equations

The system of equations for an RC-circuit is

Cic 0 0 0 -I 0 ve 0
0 0 -R 0 0 Ag iR 0
0o |+] 0 0 0 0 Ag ig | =1 E@®) |. (7.1)
0 -I 0 0 0 Ac ic 0
0 0o AR AL AT o uN 0

The unknown vector contains voltages across capacitors (vc), currents through
resistors (ig), voltage sources (ig) and capacitors (i¢), and nodal voltages
(un). The matrices in (7.1) satisfy

R . a positive, diagonal ng X ng matrix;
C : a positive, diagonal ng X ng matrix;
Ar : an npg X N incidence matrix;
Ag : an ng X N incidence matrix;
Ac : an ng X N incidence matrix.

Here an incidence matriz is a matrix whose elements belong to the set
{-1,0, 1} and whose rows contain either two nonzeros {1, —1} or one nonzero.
The usual definition does not allow the latter case, which arises because we
have eliminated the ground node from the circuit (which is a directed graph).
So N is the number of nodes in the circuit after a reference (ground) node
has been fixed and ngr, nc and ng are the number of resistors, capacitors
and voltage sources in the circuit, respectively. The appropriate sizes of the
variable vectors should be apparent.
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The problem is well posed if

ng+ng+nc >N+1 and

Ag
A=| Ag has full rank. (7.2)
Ac

Another basic assumption is that
Ag  has linearly independent rows. (7.3)

This only means that there cannot be two voltage sources in parallel.

Proposition 6 Assume that assumptions (7.2) and (7.3) hold. Then the
DAE (7.1) has index one if

< Ap ) has linearly independent rows.
Ac

Otherwise it has index two.

Index two occurs if there are loops containing only capacitors and voltage
sources. For the proof of the proposition and a discussion of the assumptions
(7.2) and (7.3) see Manke et al. (1979).

We discuss the initial conditions for (7.1) after applying the Laplace trans-
form to (7.1). The Laplace transform # of z is given by &(z) = [;° e~ *'z(t)dt.
The transformed system becomes

2C00¢c = ic+ Cvc(0),
Rip = Agrin,
Agiy = E, (7.4)
¢ = Actn,
and Ag%R + AEiE + Ag'zc = 0.

Eliminating g, ¢ and i gives

( 0 Ag > is \ _ E (75)
AL ARR AR+ zALECAc DN ALCAcun(0) )0
where we have used vco(0) = Acun(0). Equation (7.5) can be solved for

ﬁE if the coefficient matrix is nonsingular. This can be shown by an
N

indirect proof (Leimkuhler et al. 1991) for Rez > 0 and z # 0. If 2z = 0,
(7.5) can still be solved if

( ﬁg ) has linearly independent columns. (7.6)
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When solving the Laplace-transformed system (7.4), we find that if the trans-
form of the input function E stays bounded as z grows, then ¥¢, iR, 1B, iC
and ¥y are also bounded, if we have an index one DAE system. However,
if index two occurs, then some components of ic and ig may grow linearly
with z even when E is bounded (Leimkuhler et al. 1991).

Now let us discuss the initial values for (7.1). The form of the equation
suggests that one can assign arbitrary initial values to the state variables v, .
However, if we study the Laplace transform of (7.1) we see from (7.5) that
one may as well assume arbitrary initial values for all nodal voltages vy;.
Not all of them will have any effect on the solution but only Acvn(0), that
is, those vy, (0) corresponding to nodes adjacent to capacitors. Notice that
although the solution for O is continuous for any initial values vy (0) there
will, in general, be a discontinuity in the time domain solution because at
t > 0 the algebraic equations in (7.1) determine vy (t), which may jump from
the arbitrary vn(0). If one wants to avoid this discontinuity at the initial
point, one should at least choose vn(0) consistent with F(0) by the third
equation of (7.1):

Agun(0) = E(0).

Since Ag has independent rows by (7.3), the number of independent initial
values that are used to obtain the solution of (7.5) is

Ap
rank( Ao ) —nEg.

By Proposition 6, this equals n¢ for index one and, for index two, it is at
most n¢.

The results motivate us to assume all the bounded components are in an
a-weighted Lo space, but the ‘index two’ variables lie in a larger space, say
Y,. As shown above, the index two variables consist of some components
of ig and i¢. Since it is difficult to identify these particular components,
we assume all components of ig and i are elements of Y,. The a-norm is

defined by
||a__/ a+l€,2d€a a>07

and the Y,-norm by

= 5= [ lota+ )P (1+a?+16P) " ag,

corresponding to the loss of one derivative. We may now take the space X,
to consist of elements zT (vg z% zg iC vN) where vc, tr and vy € LS

and ig and i¢c € Y,. The norm in X, is defined by

2 . . .
jefa = lvelz + lirla + lisly, + licl¥, + lvwla.
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Remark 1 In the index one case we can simply take X, = L§ for all
components of z, since the i g and i¢ have a special behaviour only in the index
two case. Then one should replace | - |y, in the preceding norm definition by
| la-
From the input function E(t) we assume
EclLs. (7.7)

Theorem 24 Assume (7.2), (7.3) and (7.7). Then (7.1) has a unique solu-
tion in X, for all a > 0.

Remark 2 In the classical treatment of DAEs, smoothness for the high
index variables is guaranteed by requiring the input function (E(t) in our
application) to have as many derivatives as needed.

7.2. Splittings

For large-scale circuits it is sometimes natural to write (7.1) in the permuted
form where the RC-circuit equations are repeated for each subcircuit. One
tries to choose the subcircuits in such a way that there are as few connections,
or couplings, to other subcircuits as possible. The resulting permuted form
of (7.1) will have a block structure

o o0 0 p T O % % T f
VI 78 IR Il B =] (78
0 0 O Tk * x 0O Tk fx

where the coefficient matrix of & is still diagonal > 0 and the coeflicient matrix
of x has nonzero elements mainly on its diagonal blocks, but also elsewhere
because of the couplings. We will show that if the subcircuits are chosen in
such a way that the subcircuits are coupled solely through resistors, then the
waveform relaxation method converges linearly. One should duplicate each
interface branch equation and assign the involved resistor current variable
to both subsystems connected through this branch. Applying dynamic block
Jacobi iteration to (7.8) after these modifications will always converge, as we
will show in the next section.

As mentioned above, our rule is that when splitting (7.1) we only cut
through resistors. So the equations that are possibly affected by this re-
laxation are those that contain ip:

—Rip+Apvy = 0
and AEiR + AgiE + Agic =
For one specific resistor r; the first one is

— Tilr, + Vg, — vy, =0, (7.9)
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where r; is between the nodes k; and [;. If we cut through r; it is not obvious
to which subcircuit the above equation and variable i, should be assigned. In
order to preserve symmetry in the flow of information between subcircuits, it
seems that both subcircuits should ‘see’ r; in the same way; this means (7.9)
should be assigned to both of them. To do that we have to duplicate equation
(7.9) and also the variable i,,, in the sense that we associate equation (7.9)
with zj; to the first subcircuit and with ¢ to the second:

—rity +vg, —v; =0  and — iy, + Vg, — v, =0 (7.10)

The relaxation is now defined by the iteration we apply to all pairs of equations
involving ‘cut resistors’ as (7.10):

it ok o =0 and  —mi +ofloof =00 (7.11)

T T

All components of the unknown x other than those v; occurring in the ‘cut
equations’ (7.11) are treated at the new iteration index; thus the mentioned
v; are the only coupling terms.

There is of course no duplication of the KCL equations: the number of nodes
does not change. The only change is that in the KCL equations corresponding
to the nodes k; and I; (refer to (7.11)) we must use ;7 and 4, respectively.

Next we want to describe the splitting process in equation form.

Let Lg be the set of indices of those resistors that are cut in the relaxation
process. Then the resistor current variable ig is modified so that each i,,,
i € Lp, is replaced by the pair of variables z;’; and i, :

. . . . T ~ . . . T .
iR=(try..oiry - lppg) P iR = (ir,...07 iy .. ir, )" foralli€ Lg.

Also, those rows (Ag);. of the incidence matrix Ag for which ¢ is a member
of Lg are duplicated, and the resulting new matrix Ag is split in the way
suggested by (7.11)

Ap = Ay — An,

where Ax has nonzero elements only on the pairs of rows corresponding to
the duplicated equations. On those rows the splitting is

SR
U

- 1 ~1 0 0
Ap = 1 -1 - 0 -1 - -1

o]

=: Ay — An.

If we modify the diagonal matrix of resistors R in the same way as ig, that
is

R =diag(r1,...74,...Tng) — R =diag(ry,...7i, 75, . .. Tnp),
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then we obtain the iterative system

C 4ok 0 0 0 -I 0 ve \ " 0
0 0 —-R 0 0 Ay iR Anvi?
0 +]1 0 0 0 0 Ag ig | = E®) |,
0 -I 0 0 0 Ac ic 0
0 0 AYA:[ Ag Ag 0 UN 0

(7.12)
with initial values v (0) = vn(0). The first observation of (7.12) is that its
left-hand side has exactly the same symmetric structure as (7.1). In fact, if
we can show that assumption (7.2) holds when Ap has been replaced by Ay,
then we can immediately use the results of Section 7.1 to show that (7.12)
can be solved in X, for a > 0.

The following lemma is proved in Leimkuhler et al. (1991).

Lemma 2
Ar Am
IfA=| Ag has full rank, then Ag has full rank.
Ac Ac
Let K : X, — X, be the iteration operator of equation (7.12), and let
= Ko + . (7.13)
The Laplace transform of the iteration equation is then seen to be

i* = K(2)z* ! + ¢,

where
Cz 0 0 —-I o \!
0 —R 0 0 Ay An
Kz=| 0o 0o o0 0 Ag (7.14)

-I 0 0 0 Ac
0 AT, AL AL o

and ¢ is obvious from (7.12) because it does not depend on k.
The operator norm for K induced by |- | is defined by

Kla = sup [Kala.

a=1

By Lemma 1 and the preceding analysis we now obtain

Theorem 25 Assume (7.2) and (7.3) and apply the described splitting pro-
cess. Then |K|, is finite for all positive a.
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7.3. Spectrum of K

We can see from (7.12) that all the other components of x are in ker K than
vn. If we define the projection operators

0 N 0
ve ) vc .
P : = : and P : = : ,
0 R 0
UN oN UN ﬁN

we can deduce that the nontrivial part of the spectrum o(K) is actually
o(PKP), which can be computed as in Leimkuhler et al. (1991):

o(PKP)=cl |J o(PK(2)P).

Re 22

As in Section 7.1 the equation ¥ = K(2)2*~! can easily be manipulated
to yield

0 Ap =\ _ /0 0 0
<A§ BM+ZBC)<{)§V>_<0 BN)<@§/1>’ (7.15)
where

By = AL R YAy, Bo=ALCAc and By = AL R 'Ap.

The solution of this equation clearly satisfies ﬁfv € KerAg. Because of the
incidence matrix structure of Ag (each row has at most two nonzero elements
+1) we can easily eliminate the ig and ng components of 9y from (7.15),
ending up with the equation

(Bur + 2Bc)ok = Byok?, (7.16)

where Up is a part of Oy with N — ng components.

The elimination described in Leimkuhler et al. (1991) is the same as ‘short-
ing the edges’ in graph theory: we short all edges containing voltage sources,
and simultaneously the nodes adjacent to these edges are pairwise combined.

_ The computation of the spectrum relies on the following properties of the
B-matrices. They are all symmetric, By is nonnegative and By and Bc are
positive semidefinite matrices with nonpositive off-diagonal elements. These
facts imply that the splitting in iteration (7.16) is a regular splitting of the
matrix By +2Bc—B N, if z € (0, 00). By the convergence theorem for - regular
splittings, iteration (7.16) then converges for z € (0, 00), since By+2Bc— By
is a nonsingular M-matrix. The spectral radius p((BM +ch) 1BN) =r<l1
for z € Ry, and, by the Perron-Frobenius theorem, r is also an eigenvalue.
For nonreal z with Re z > 0, taking quadratic forms in the eigenvalue equation
provides

(Buy + 2Bc)'Byx = Az,
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that is, following Leimkuhler et al. (1991),

lRell > inf T BMa:+f{ezx Bex
A |z}=1 |z* Byz|

The vector giving the minimum can be directly computed and is, of course,
an eigenvector, so that

1 1
Re-|>~->1.
Rey|>
This inequality can be restated as
(ReAF 2)2+ (ImA) < (3)?,

where the negative sign is used for Re A > 0 and the positive sign for Re A < 0.
So the spectrum of PK(2)P lies in the closed circles of Figure 6 for Re z >
a>0.

Theorem 26 Let a > 0. Assume (7.2), (7.3) and (7.7), and apply the
described splitting process that only allows cutting through resistors. Then
o(K) lies in the set Dy of Figure 6. In particular, p(K) < 1 and the iteration
(7.12) converges in X,.

AR RATZAR,
e e
AT 5 ,06:0.}'0; AT

BRI
o ."«'o: T
-

e g et
L

Fig. 6.

As mentioned in Section 7.1, for those circuits satisfying (7.6), the Laplace
transform of (7.1) may also be boundedly solved for z = 0. Since

(7.6) implies ( :?11:;[ ) has linearly independent columns,
this means that (7.12) can also be solved in the space X without exponential

weighting. In particular, for an index one system, K is a continuous operator
in the ordinary Lo-space.



ITERATIVE SOLUTION OF LINEAR ODES 305

Theorem 27 Assume (7.2), (7.3), (7.6) and (7.7), and apply the described
splitting process that only allows cutting through resistors. Then X is con-
tinuous in Xg and p(K) < 1, that is, the iteration (7.12) converges in Xj.

As stated in the beginning of Section 7.2 we can always permute the circuit
equations and variables to a block form, where the blocks correspond to dif-
ferent subsystems. In that formulation, our iteration scheme is dynamic block
Jacobi iteration and the corresponding iteration matrix clearly has zero trace.
It has the same eigenvalues as PK(z)P defined by (7.12), so we deduce that
the trace of K(z) vanishes.
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1. Introduction

Propagating interfaces occur in a wide variety of settings. As physical en-
tities, they include ocean waves, burning flames, and material boundaries.
Less obvious boundaries are equally important, and include shapes against
backgrounds, hand-written characters, and iso-intensity contours in images.

The goal of this paper is to describe some recent work on level set methods,
which attempts to unify these problems and provide a general framework for
modelling the evolution of boundaries. Our aim is to review a collection
of state-of-the-art details of computational techniques for tracking moving
interfaces, and to give some sense of the flavour and breadth of applications.

Level set methods are numerical techniques that offer remarkably power-
ful tools for understanding, analysing, and computing interface motion in a
host of settings. At their core, they rely on a fundamental shift in how one
views moving boundaries; rethinking the Lagrangian geometric perspective
and exchanging it for an Eulerian, initial value partial differential equation
perspective. Five clear advantages result from this new view of propagating
interfaces.

1  From a theoretical/mathematical point of view, the real complexities of
front motion are illuminated, in particular, the role of singularities, weak
solutions, shock formation, entropy conditions and topological change in
the evolving interface.

2 From a numerical perspective, natural and accurate ways of computing
delicate quantities emerge, including the ability to build high-order ad-
vection schemes, compute local curvature in two and three dimensions,
track sharp corners and cusps, and handle subtle topological changes of
merger and breakage.

3  From an implementation point of view, since the approach is based on
an initial value partial differential equation, robust schemes result from
numerical parameters set at the beginning of the computation. The error
is thus controlled by

e the order of the numerical method
e the grid spacing Ah
e the time step At.

4  Computational adaptivity, both in meshing and in computational labour,
is possible, as is a clear path to parallelism.

5  For monotonically advancing fronts obeying certain speed laws, we in-

troduce exceptionally fast methods based on narrow band techniques
and sorting algorithms.

In this paper, we survey an illustrative subset of past and current applica-
tions of level set methods. By no means is this an exhaustive review. A large
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body of work has been reluctantly skipped in the effort to keep this paper of
reasonable length. The interested reader is referred to the many references
given throughout the text.

PART I: LEVEL SET FORMULATIONS

2. Theory of front evolution

Consider a boundary, either a curve in two dimensions or a surface in three di-
mensions, separating one region from another. Imagine that this curve/surface
moves in its normal direction with a known speed function F. Our goal is
to track the motion of this interface as it evolves. We are only concerned
with the motion of the interface in its normal direction: throughout, we shall
ignore tangential motions of the interface.

/

Inside —F=F(L FB,I)

Outside Outside

/

Fig. 1. Curve propagating with speed F' in normal direction.

The speed function F' can be thought of as depending on three types of
arguments, namely

F=F(L,G,I), (2.1)
where

L = Local properties of the front are those determined by local geomet-
ric information, such as curvature and normal direction.

G = Global properties of the front such as integrals along the front and
associated differential equations, are those whose solutions depend on the
shape and position of the front. For example, suppose the interface is a
source of heat affecting diffusion on either side of the interface, which in
turn influences the motion of the interface. This would be characterized
as global argument.
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I = Independent properties are those that are independent of the shape
of the front, such as an underlying fluid velocity which passively trans-
ports the front.

Much of the challenge in interface problems comes from producing an ad-
equate model for the speed function F': this is a separate issue independent of
the goal of an accurate scheme for advancing the interface based on the model
for F'. In this section, we assume that the speed function F is known. In Part
V, we discuss the development of models for a collection of applications.

Our first goal is to develop the necessary theory to understand the interplay
between the speed function F' and the shape of the interface. For ease of
discussion, we now turn to the simplest case of a closed curve propagating in
the plane.

2.1. Fundamental formulation

Let y be a smooth, closed initial curve in R?, and let y(¢) be the one-parameter
family of curves generated by moving v = (¢ = 0) along its normal vector
field with speed F'. Here, F is the given scalar function. Thus, we have that
n - & = F, where Z is the position vector of the curve, t is time, and 7 is the
unit normal to the curve.

As a first attempt, a natural approach is to consider a parametrized de-
scription of the motion. We further restrict ourselves and imagine that the
speed function F' depends only on the local curvature x of the curve, that
is, F = F(k). Thus, we let the position vector Z(s,t) parametrize 7 at
time t. Here, 0 < s < S, and we assume periodic boundary conditions
Z(0,t) = Z(S,t). The curve is parametrized so that the interior is on the
left in the direction of increasing s (see Fig. 2). Let 7i(s,t) be the para-
metrization of the outward normal and k(s,t) be the parametrization of the
curvature. The equations of motion can then be written in terms of individual
components Z = (z,y) as

uF () o F (k)

G ERST I
where we have used the parametrized expression for the curvature x =
(Ysss — Tssys)(x2 + y2)~3/? inside the speed function F(k). This is a ‘Lag-
rangian’ representation because the range of (z(s,t),y(s,t)) describes the
moving front.

Yt =

Ty = (2.2)

2.2. Total variation: stability and the growth of oscillations

What happens to oscillations in the initial curve as it moves? We summarize
the argument in Sethian (1985) showing that the decay of oscillations depends
only on the sign of F;, at Kk = 0. The metric g(s,t), which measures the
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p

x(s,t=0),y(s,t=0)

Fig. 2. Parametrized view of propagating curve.

‘stretch’ of the parametrization, is given by g(s,t) = (22 + y2)/2. Define the
total oscillation (also known as the total variation) in the front

S
Var(t) = /0 (s, )|g(s, ) ds. (2.3)

This measures the amount of ‘wrinkling’. Our goal is to find out if this
wrinkling increases or decreases as the front evolves (see Fig. 3).

Differentiation of both the curvature and the metric with respect to time,
together with substitution from equation (2.2) produces the corresponding
evolution equations for the metric and curvature, namely

Kt = —g_l(Fsg_l)s — K’F (2.4)

gt = grF (2.5)

(Here, g~1 is 1/g, not the inverse). Now, suppose we have a non-convex

initial curve moving with speed F'(x), and suppose the moving curve stays
smooth. By evaluating the time change of the total variation in the solution,
we have the following (see Sethian (1985)).

Theorem Consider a front moving along its normal vector field with speed
F(k), as in equation (2.2). Assume that the initial curve -y(0) is smooth and
non-convex, so that k(s,0) changes sign. Assume that F' is twice differenti-
able, and that x(s,t) is twice differentiable for 0 < s < Sand 0 <t < T.
Then, for 0 <t < T,

e if F, <0 (F, > 0) wherever k = 0, then

dVZE(t) <0 (dV;;(t) > 0); (2.6)
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T

(a) Original curve (b) Decrease in variation (c) Increase in variation

Fig. 3. Change in variation.

o if F, <0 (Fk>0)and ks # 0 wherever ¥ = 0, then

dVar(t) dVar(t)
—a < 0 (——dt—— > 0). (2.7)

Remarks The theorem states that if F,, < 0 wherever x = 0, then the total
variation decreases as the front moves and the front ‘smooths out’, that is,
the energy of the front dissipates. The front is assumed to remain smooth in
the interval 0 < t < T (the curvature is assumed to be twice differentiable).
(In the next section, we discuss what happens if the front ceases to be smooth
and develops a corner.) In the special case when 7(t) is convex for all ¢, the
theorem is trivial, since Var(t) = fOS kgds = 2w. The proof may be found in
Sethian (1985).

Two important cases can be easily checked. A speed function F(k) = 1—ex
for € positive has derivative F;, = —e¢, and hence the total variation decays.
Conversely, a speed function of the form F(k) = 1 + ex yields a positive
speed derivative, and hence oscillations grow. We shall see that the sign of
the curvature term in this case corresponds to the backwards heat equation,
and hence must be unstable.

2.3. The role of entropy conditions and weak solutions

The above theorem assumes that the front stays smooth and differentiable.
In many cases of evolving fronts, differentiability is soon lost. For example,
consider the periodic initial cosine curve

¥(0) = (—s, [1 + cos 27s]/2) (2.8)

propagating with speed F'(k) = 1. The exact solution to this problem at time
t may be easily constructed by advancing each point of the front in its normal
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(a) Swallowtail (F' = 1.0) (b) Entropy solution (F = 1.0)

Fig. 4. Cosine curve propagating with unit speed.

direction a distance t. In fact, in terms of our parametrization of the front,
the solution is given by

B ys(s,t =0) _
x(s,t) = 25,6 = 0) + 42(s, £ = 0))1/2 t+z(s,t = 0), (2.9)
y(s,t) = — Zs(s,t = 0) t+y(s,t =0). (2.10)

(2(s,t = 0) + y2(s,t = 0))1/2

In Fig. 4, the solution is given for this propagating cosine curve.

It is clear that the front develops a sharp corner, known as a shock, in finite
time; however, once this corner develops, it is not at all clear how to construct
the normal at the corner and continue the evolution, since the derivative is
not defined there. Thus, beyond the formation of the discontinuity in the
derivative, we need a weak solution, so-called because the solution weakly
satisfies the definition of differentiability.

How shall we continue the solution beyond the formation of the singularity
in the curvature corresponding to the corner in the front? The correct answer
depends on the nature of the interface under discussion. If we regard the
interface as a geometric curve evolving under the prescribed speed function,
then one possible weak solution is the ‘swallowtail’ solution formed by letting
the front pass through itself; this is the solution shown in Fig. 4a. We note
that this solution is in fact the one given by equations (2.9), (2.10); the lack
of differentiability at the centre point does not destroy the solution, since we
have written the solution in terms of the initial data.

However, if we regard the moving curve as an interface separating two re-
gions, the front at time ¢ should consist of only the set of all points located
a distance t from the initial curve. (This is known as the Huygens’ principle
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&

(a) Shock (b) Rarefaction fan
Fig. 5. Front propagating with unit normal speed.

construction.) Roughly speaking, we want to remove the ‘tail’ from the ‘swal-
lowtail’. In Fig. 4b, we show this alternate weak solution. Another way to
characterize this weak solution is via the following ‘entropy condition’ posed
by Sethian (1982, 1985): if the front is viewed as a burning flame, then once a
particle is burnt it stays burnt. Careful adherence to this stipulation produces
the Huygens’ principle construction.

What does this ‘entropy condition’ have to do with the notion of ‘entropy’?
An intuitive answer is that an entropy condition stipulates that no new inform-
ation can be created during the evolution of the problem. Once an entropy
condition is invoked, some information about the initial data is lost. Indeed,
our entropy condition says that once a particle is burnt, it stays burnt, that
1s, once a corner has developed, the solution is no longer reversible. The
problem cannot be run ‘backwards’ in time; if we try to do so, we will not
retrieve the initial data. Thus, some information about the solution is forever
lost.

As further illustration, we consider the case of a V-shaped front propagating
normal to itself with unit speed (F = 1). In Fig. 5a, the point of the front
is downwards: as the front moves inwards with unit speed, a shock develops
as the front pinches off, and an entropy condition is required to select the
correct solution to stop the solution from being multiple-valued. Conversely,
in Fig. 5b, the point of the front is upwards: in this case the unit normal
speed results in a circular fan, which connects the left state with slope +1 to
the right state, which has slope —1.

It is important to summarize a key point in the above discussion. Our
choice of weak solution given by our entropy condition rests on the perspective
that the front separates two regions, and the assumption that we are interested
in tracking the progress of one region into the other.
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(a) F=1.—0.25 F=1 —ex (b) Entropy solution (F = 1.0

=

Fig. 6. Entropy solution is the limit of viscous solution.

2.4. Effects of curvature: the viscous limit and the link to hyperbolic
conservation laws

Consider now a speed function of the form F' = 1 — ek, where € is a constant.
The modifying effects of curvature on the former constant speed law are
profound, and in fact pave the way towards constructing accurate numerical
schemes that adhere to the correct entropy condition.

Following Sethian (1985), the curvature evolution equation given by (2.4)
can be rewritten in terms of arclength, namely

L&

Kt = €Kaa + €6° — K2, (2.11)

where the second derivative of the curvature « is taken with respect to arclength
a. This is a reaction-diffusion equation; the drive toward singularities due
to the reaction term (ex® — x2) is balanced by the smoothing effect of the
diffusion term (€kqq). Indeed, with € = 0, we have a pure reaction equa-
tion k; = —k2, and the developing corner can be seen in the exact solu-
tion k(s,t) = k(s,0)/(1 + tx(s,0)), which is singular in finite ¢ if the initial
curvature is anywhere negative. Thus, as shown, corners can form in the
moving curve when € = 0.

Consider again the cosine front given in equation (2.8) and the speed func-
tion Fi(k) = 1—ek, € > 0. As the front moves, the troughs at s =n+1/2,n =
0,%1, 42, .... are sharpened by the negative reaction term (because x < 0 at
such points) and smoothed by the positive diffusion term (see Fig. 6a). For
€ > 0, it can be shown (see Sethian (1985) and Osher and Sethian (1988)) that
the moving front stays C°°. The entropy-satisfying solution to this problem
when F' =1 from Fig. 4b is shown in Fig. 6b.

The central observation, and key to the level set approach, is the following
link.
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Consider the above propagating cosine curve and the two solutions:

® X vaure(t), obtained by evolving the initial front with F, = 1 — ex
®  Xionstant(t), obtained with speed function F' = 1 and the entropy condi-
tion.

Then, at any time T,
llIT(l) X(furvature(T) = XCOHStaHt (T) (212)
€—

Thus, the limit of motion with curvature, known as the ‘viscous limit’, is the
entropy solution for the constant speed case, see Sethian (1985).

Why is this known as the ‘viscous limit’, or, more accurately, what does this
have to do with viscosity? In order to see why viscosity is an appropriate
name, we turn to the link between propagating fronts and hyperbolic conser-
vation laws.

An equation of the form

ug + [G(w)]y = 0 (2.13)

is known as a hyperbolic conservation law. A simple example is Burger’s
equation, given by

ug + uugy = 0, (2.14)

which describes the motion of a compressible fluid in one dimension. The
solution to this equation can develop discontinuities, known as ‘shocks’, where
the fluid undergoes a sudden expansion or compression. These shocks (for
example, a sonic boom) can arise from arbitrarily smooth initial data; they
are a function of the equation itself. However, if one includes the effects of
fluid viscosity, the equation includes a right-hand side, namely

U + Uy = €Ugy. (2.15)

This second derivative on the right-hand side acts like a smoothing term and
stops the development of such shocks; it can be shown that the solutions must
remain smooth for all time.

What does this have to do with our propagating front equation? Consider
the initial front given by the graph of f(z), with f periodic on [0,1], and
suppose that the propagating front remains a function for all time. Let % be
the height of the propagating function at time t, thus ¢¥(x,0) = f(x). The
tangent at (z,) is (1,%5). Referring to Fig. 7, the change in height V in a
unit time is related to the speed F' in the normal direction by

v 1 2\1/2
= (—Uf—)—— (2.16)
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Fig. 7. Variables for propagating graph.

and thus the equation of motion becomes
W = F(1+92)Y2, (2.17)

Using the speed function F(k) = 1—ex and the formula & = —t,,/(1+42)%/2,

we get

€ wxz
1+ 92

We first note that this is a partial differential equation with a first-order time
and space derivative on the left-hand side, and a parabolic second-order term
on the right. Differentiating both sides of this equation yields an evolution
equation for the slope u = dy)/dz of the propagating front, namely

P — (1+ 922 = (2.18)

Ug
1+ u?

Thus, the derivative of our equation with parabolic right-hand side for
the changing height ¢ looks like a viscous hyperbolic conservation law with
G(u) = (1 + u?)Y/2 for the propagating slope u; see Sethian (1987). Hyper-
bolic conservation laws of the above form have a long history, in fact, our
entropy condition is equivalent to the one for propagating shocks in hyper-
bolic conservation laws. Our goal will be to exploit the theory and technology
of numerical solutions of hyperbolic conservation laws to devise accurate nu-
merical schemes to solve the equation of motion for propagating fronts.

Before doing so, however, we have a technical problem. The equation of
motion given by equation (2.17) only refers to fronts that remain the graph
of a function as they move. The above ideas must be extended to include
propagating fronts that are not easily written as functions. This is the time-
dependent level set idea introduced by Osher and Sethian (1988).

w + [—(1+ D)2, = ¢ Je- (2.19)
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3. The time-dependent level set formulation
3.1. Formulation

Given a closed N — 1 dimensional hypersurface I'(¢), we now produce an
Eulerian formulation for the motion of the hypersurface propagating along
its normal direction with speed F, where F' can be a function of various
arguments, including the curvature, normal direction, etc. The main idea of
the level set methodology is to embed this propagating interface as the zero
level set of a higher-dimensional function ¢. Let ¢(z,t = 0), where x is a
point in RN, be defined by

d(z,t = 0) = +d, (3.1)

where d is the distance from x to I'(¢ = 0), and the plus (minus) sign is chosen
if the point z is outside (inside) the initial hypersurface I'(t = 0). Thus, we
have an initial function ¢(x,t = 0) : RN — R with the property that

IT(t = 0) = (z|é(z,t = 0) = 0). (3.2)

Our goal is to produce an equation for the evolving function ¢(x,t) that
contains the embedded motion of I'(t) as the level set ¢ = 0. Let z(t) be the
path of a point on the propagating front. That is, (¢ = 0) is a point on the
initial front I'(t = 0), and z¢ - n = F(z(t)) where n is the normal to the front
at z(t). Since we want the zero level set of the evolving function ¢ to always
match the propagating hypersurface, we must have

d(z(t),t) = 0. (3.3)
By the chain rule,
¢ + Vo(z(t),t) - 2'(t) = 0. (3.4)
Since n = V¢/|V¢|, we have the evolution equation for ¢, namely
¢t + F|Veg| =0 (3.5)
¢(z,t =0) given. (3.6)

This is our time-dependent level set equation. For certain forms of the speed
function F', we obtain a standard Hamilton-Jacobi equation.

In Fig. 8, taken from Sethian (1994), we show the outward propagation of
an initial curve and the accompanying motion of the level set function ¢.

In Fig. 8a, we show the initial circle, and in Fig. 8c, we show the circle at
a later time. In Fig. 8b, we show the initial position of the level set function
¢, and in Fig. 8d, we show this function at a later time. We refer to this as
an Eulerian formulation because the underlying coordinate system remains

fixed.
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Fig. 8. Propagating circle.

3.2. Advantages

There are four major advantages to this Eulerian level set formulation.

1 The evolving function ¢(z,t) always remains a function as long as F is
smooth. However, the level surface ¢ = 0, and hence the propagating
hypersurface I'(t) may change topology, break, merge, and form sharp
corners as the function ¢ evolves.

2 The second major advantage concerns numerical approximation. Be-
cause ¢(z,t) remains a function as it evolves, we may use a discrete
grid in the domain of £ and substitute finite difference approximations
for the spatial and temporal derivatives. For example, using a uniform
mesh of spacing h, with grid nodes (4, j), and employing the standard
notation that ¢7; is the approximation to the solution ¢(ih, jh, nAt),
where At is the time step, we might write

ntl _ 4n
B 20 (F) (V) =0 (37)
Here, we have used forward differences in time, and let Vij¢{’j be some
appropriate finite difference operator for the spatial derivative. Thus, an
explicit finite difference approach is possible.

3 Intrinsic geometric properties of the front may be easily determined
from the level set function ¢. For example, at any point of the front,
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the normal vector is given by
Vo
Vol

and the curvature of each level set is easily obtained from the divergence
of the gradient of the unit normal vector to the front, that is,

. V¢ _ ¢:cz¢§ - 2¢I¢y¢xy + ¢yy¢:%
IVl (63 + 67)3/ '

i = (3.8)

K=V (3.9)

4 Finally, there are no significant changes required to follow fronts in
three dimensions. By simply extending the array structures and gradient
operators, propagating surfaces are easily handled.

As an example of the application of level set methods, consider once again
the problem of a front propagating with speed F(k) =1 —ex. In Fig. 9, we
show two cases of a propagating initial triple sine curve. For € small (Fig.
9a), the troughs sharpen up and result in transverse lines that come too close
together. For e large (Fig. 9b), parts of the boundary with high values of
positive curvature can initially move downwards, and concave parts of the
front can move quickly upwards.

W
B
S§?2§@ZS§?2
_
W S0/ —
(a) F=1.-0.025 (b) F=1.-0.25x

Fig. 9. Propagating triple sine curve.

3.3. Theoretical aspects of the level set formulation

Numerical techniques for approximating moving fronts have been the focus
of much effort in computational physics. At the same time, the theoretical
analysis of moving curves and surfaces has been a subject of considerable
importance in its own right. The work of Gage (1984), Gage and Hamilton
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(1986) and Grayson (1987), discussed later, provided some groundbreaking
analysis of flow of curves under the curvature, and the seminal result that a
closed curve shrinking under its curvature collapses smoothly to a point.

Along a very different approach, Brakke (1978) applied varifold theory to
the problem of a hypersurface moving under its curvature, and in doing so
provided a wide-ranging perspective for these problems. His was a general
approach, and included problems in which the results were not necessarily
smooth. His analysis provided a detailed look at surface curvature evolution
problems.

There has been considerable theoretical analysis of the level set approach,
its formulation, and its relation to other perspectives on front propagation.
The model posed in Sethian (1982), which considered flame propagation as
a function of curvature, and introduced an entropy condition for evolving
fronts, served as the basis for theoretical analysis by Barles (1985). The full
level set methodology of Osher and Sethian (1988) provides a view of surface
evolution different from the one provided in the work of Gage, Grayson, and
Brakke. First, the embedding of the front as a higher-dimensional function
naturally accounts for some of the issues of topological change and corner
formation. Second, and more importantly, the transformation of a geometry
problem into an initial value partial differential equation means that available
technology, including regularity of solutions, viscous solutions of Hamilton—
Jacobi equations, and questions of existence and uniqueness, can be applied
in this geometrical setting.

Using the above level set approach, Evans and Spruck (1991, 19924, 19925,
1995), and Chen, Giga and Goto (1991), Giga and Goto (1992) and Giga,
Goto and Ishii (1992) performed detailed analysis of curvature flow in a series
of papers. They exploited much of the work on viscosity solutions of partial
differential equations developed over the past 15 years (see Lions (1982)),
which itself was inspired by the corresponding work applied to hyperbolic
conservation laws. These papers examined the regularity of curvature flow
equations, pathological cases, and the link between the level set perspective
and the varifold approach of Brakke. These papers opened up a series of in-
vestigations into further issues; we also refer the interested reader to Ilmanen
(1992, 1994) and Evans, Soner and Souganidis (1992).

3.4. Summary
The discussion in Part [ may be summarized as follows:
1 A front propagating at a constant speed can form corners as it evolves;

at such points, the front is no longer differentiable and a weak solution
must be constructed to continue the solution.
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2 The correct weak solution, motivated by viewing the front as an evolving
interface separating two regions, comes by means of an entropy condi-
tion.

3 A front propagating at a speed that depends on its curvature does not
form corners and stays smooth for all time. Furthermore, the limit of this
motion as the dependence on curvature vanishes is the entropy-satisfying
solution obtained for the constant speed case.

4 If the propagating front remains a graph as it moves, there is a direct link
between the equation of motion and one-dimensional hyperbolic conser-
vation laws. The role of curvature in a propagating front is analogous
to the role of viscosity in equations of viscous compressible fluid flow.

5 By embedding the motion of a curve as the zero level set of a higher-
dimensional function, an initial value partial differential equation can
be obtained which extends the above to include arbitrary curves and
surfaces moving in two and three space dimensions.

4. The stationary level set formulation

In the above level set equation
b1+ FIV| =0 (4.1)

the position of the front is given by the zero level set of ¢ at a time ¢. Suppose
we now restrict ourselves to the particular case of a front propagating with a
speed F' that is either always positive or always negative. In this case, we can
convert our level set formulation from a time-dependent partial differential
equation to a stationary one, in which time has disappeared. We now describe
a stationary level set formulation, which is common in control theory.

To explain this transformation, imagine the two-dimensional case in which
the interface is a propagating curve, and suppose we graph the evolving zero
level set above the zy plane. That is, let T'(z,y) be the time at which the
curve crosses the point (z,y). The surface T(z,y) then satisfies the equation

|VT|F = 1. (4.2)

Equation (4.2) simply says that the gradient of arrival time surface is inversely
proportional to the speed of the front. This is a Hamilton—-Jacobi equation,
and the recasting of the a front motion problem into a stationary one is
common in a variety of applications; see Falcone (1994) and Falcone, Giorgi
and Loretti (1994). In the case where the speed function F' depends only on
position, we get the well-known Eikonal equation. The requirement that the
speed function always be positive™ is so that the crossing time surface T(x, y)
is single-valued.

* or conversely, always negative
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To summarize,

e In the time-dependent level set equation, the position of the front I' at
time ¢ is given by the zero level set of ¢ at time ¢, that is I'(¢) = {(z,y) :
¢(z,t) = 0}.

e In the stationary level set equation, the position of the front I" is given
by the level set I'(t) = {(z,y) : T(z,y) = t}.

That is, we wish to solve

Time-dependent formulation Stationary formulation
¢+ F|Ve| =0 IVT|F =1
Front=T'(t) = {(z,y) : $(a,t) = 0} Front='(t) = {(z,) : T(x,y) = 1}
Applies for arbitrary F Requires F > 0.
(4.3)

In both cases, we require an ‘entropy-satisfying’ approximation to the gradi-
ent term. In the next section, we discuss appropriate approximations for this
term, leading to schemes for both the time-dependent and stationary level
set formulations. Our goal now is to turn to the issue of numerical approx-
imations, and to develop the necessary theory and numerics to approximate
accurately the level set initial value partial differential equation.

PART II: NUMERICAL APPROXIMATION

5. Traditional techniques for tracking interfaces

Before discussing the numerical approximation of these level set equations, it
is instructive to review briefly more traditional techniques for computing the
motion of interfaces.

Marker /string methods In these methods, a discrete parametrized ver-
sion of the interface boundary is used. In two dimensions, marker
particles are used; in three dimensions, a nodal triangularization of the
interface is often developed. The positions of the nodes are then updated
by determining front information about the normals and curvature from
the marker representation. Such representations can be quite accur-
ate; however, limitations exist for complex motions. Firstly, if corners
and cusps develop in the evolving front, markers usually form ‘swal-
lowtail’ solutions, which must be removed through delooping techniques
which attempt to enforce an entropy condition inherent in such motion;
see Sethian (1985). Second, topological changes are difficult to handle:
when regions merge, some markers must be removed. Third, significant
instabilities in the front can result, since the underlying marker particle
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motions represent a weakly ill-posed initial value problem; see Osher
and Sethian (1988). Finally, extensions of such methods to three dimen-
sions require additional work.

Cell-based methods In these methods, introduced by Noh and Woodward
(1976), the computational domain is divided into a set of cells containing
‘volume fractions’. These volume fractions are numbers between 0 and
1, and represent the fraction of each cell containing the physical ma-
terial. At any time, the front can be reconstructed from these volume
fractions. Since their introduction, many elaborate reconstruction tech-
niques have been developed over the years to include pitched slopes and
curved surfaces; see Chorin (1980), Hirt and Nicholls (1981) and Puck-
ett (1991). The accompanying accuracy depends on the sophistication
of the reconstruction and the so-called ‘advection sweeps’. Some of the
most elaborate and accurate versions of these schemes to date are due
to Puckett; see Puckett (1991). Advantages of such techniques include
the ability to easily handle topological changes, design adaptive mesh
methods, and extend the results to three dimensions. However, determ-
ination of geometric quantities such as normals and curvature can be
inaccurate.

Characteristic methods In these methods, ‘ray-trace’-like techniques are
used. The characteristic equations for the propagating interface are used,
and the entropy condition at forming corners (see Sethian (1985)) is
formally enforced by constructing the envelope of the evolving charac-
teristics. Such methods handle the looping problems more naturally, but
may be complex in three dimensions and require adaptive adding and
removing rays, which can cause instabilities and /or oversmoothing.

6. A first attempt at constructing an approximation to the
gradient

We now turn to our time-dependent level set equation itself, and attempt to
construct a numerical method.
Recall that our goal is to solve the equation given in (3.5) by

¢t + FIV| =0, (6.1)

¢(z,t =0) given. (6.2)

The marker particle method discretizes the front. The volume-of-fluid (VOF)
method divides the domain space into cells containing fractions of material.
The level set method divides the domain up into grid points that discretize
the values of the level set function ¢. Thus, the grid values give the height of
a surface above the domain, and if we slice this surface by the xy plane, we
extract the zero level set corresponding to the front.
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Another way to look at this is to say that each grid point contains the
value of the level set function at that point. Thus, there is an entire family
of contours, only one of which is the zero level set (see Fig. 10). Rather than
move each of the contours in a Lagrangian fashion, we stand at each grid
point and update its value to correspond to the motion of the surface, thus
producing a new contour value at that grid point.

/]
TUNGR

oo o \
/ Ze=Nwdil

\ ]
—
]
S

F—1
p——1———|
-
[

=

(
)
N AINR=En N

]

Fig. 10. Dark line is zero level set corresponding to front.

What is the right way to approximate this equation? We shall investigate
the most straightforward numerical approach we can think of by studying the
simpler case of an evolving curve whose position can always be described as
the graph of a function. The equation for this case was given in (2.17) as
shown in Fig. 7, namely

v = F(1+y2)Y2 (6.3)

Perhaps the most straightforward way of creating an algorithm to approx-
imate the solution to this equation is to replace all spatial derivatives with
central differences and the time derivative with a forward difference, just as
we did in the Lagrangian case. However, it is easy to see that such an
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algorithm may not work. Let F'(k) = 1 and consider the initial value problem

Yy = (1 + w§)1/27 (64)

w0 =f@={ V205 TS0} (©5)

The initial front is a ‘V’ formed by rays meeting at (1/2,0). By our entropy
condition, the solution at any time t is the set of all points located a distance
t from the initial ‘V’. To construct a numerical scheme, divide the interval
[0,1] into 2M — 1 points, and form the central difference approximation to
the spatial derivative ¢, in equation (6.4), namely

win—'_l B 71[1171’ _ [1 + [d}zn-i—l - 1/}?—-1]2}1/2 (6 6)
t 20z '

Since xpr = 1/2, by symmetry, ¥ar41 = ¥a—1, thus ¥4(1/2,0) = 1.
However, for all z # 1/2, v is correctly calculated to be /2, since the graph
is linear on either side of the corner and thus the central difference approx-
imation is exact. Note that this has nothing to do with the size of the space
step Az or the time step At. No matter how small we take the numerical
parameters, as long as we use an odd number of points, the approzimation
to Yy at © = 1/2 gets no better. It is simply due to the way in which the
derivative 9, is approximated. In Fig. 11, we show results using this scheme,
with the time derivative 1, replaced by a forward difference scheme.

>

<
€

Exact solution Central differences At = .005 Central differences At = .0005

Fig. 11. Central difference approximation to level set equation.

It is easy to see what has gone wrong. In the exact solution, 1; = /2 for all
x # 1/2. This should also hold at = 1/2 where the slope is not defined; the
Huygens construction sets ¢ (z = 1/2,t) equal to lim,_,; /2 ;. Unfortunately,
the central difference approximation chooses a different (and, for our purpose,
wrong) limiting solution. It sets the undefined slope ¥, equal to the average of
the left and right slopes. As the calculation progresses, this miscalculation of
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the slope propagates outwards from the spike as wild oscillations. Eventually,
these oscillations cause blowup in the solution.

It is clear that some more care must be taken in formulating an algorithm.
What we require are schemes that approximate the gradient term |V¢| in a
way that correctly accounts for the entropy condition. This is the topic of the
next section.

7. Schemes from hyperbolic conservation laws

Our schemes are linked to those from hyperbolic conservation laws. As mo-
tivation, consider the single scalar hyperbolic conservation law

ut + [G(u)]z = 0. (7.1)

It is well known that discontinuities known as shocks can develop in the
solution, even with smooth initial data; see Lax (1970) and LeVeque (1992).
These discontinuities occur because of the collision of characteristics, and an
appropriate weak solution must be constructed to carry the solution beyond
the collision time. The correct ‘entropy solution’ is obtained by considering
the limit of the associated viscous conservation laws u; + [G(u)]z = €ugy as
the viscous coefficient € goes to zero.

From a numerical point of view, the equation can be approximated through
the construction of appropriate numerical fluxes ¢ such that

upt! —up _ _g(u?,u?+1) —g(uy, u) (7.2)
At B Az ’ ’
where we require that g(u,u) = G(u). A wide collection of numerical flux
functions are available, such as the Lax—Friedrichs flux, Godunox flux, and
TVD schemes; see Colella and Puckett (1994) and LeVeque (1992). The goal
in the construction of such flux functions is to make sure that the conservation
form of the equation is preserved, make sure the entropy condition is satisfied,
and try to give smooth (highly accurate) solutions away from the discontinu-
ities. One of the most straightforward approximate numerical fluxes is the
Engquist—Osher scheme (Engquist and Osher 1980), which is given by
u2 dG
geo(u1,u2) = G{uy) + min(—dz, 0) du. (7.3)

U1

For the Burger’s equation in which G(u) = u?

compact representation of this flux function as

, we have the particularly

gEo(ul, UQ) = (max(ul, 0)2 + min(uz, 0)2). (7.4)

This flux function will serve as our core technique for approximating the level
set equation.
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Fig. 12. Update of u through numerical flux function.

8. Approximations to the time-dependent level set equation

In this section, we develop schemes for the level set equation

¢+ + F|Ve| = 0. (8.1)
We begin by writing this equation with a general Hamiltonian H as
¢t +H(¢I7¢ya¢z) = Oa (82)

where
H(u,v,w) = Vu? + v2 + w?. (8.3)
We begin with the one-dimensional version, that is, ¢; + H{¢,) = 0, where
H(u) = Vu?.
From the previous section, we have numerical flux functions for the conser-
vation equation u; + [G(u)]s = 0, satisfying
;H_l _u:'l g(u?au?-}—l) —_g(uin—lau’in)

= — . 8.4
At Az (8-4)

In terms of our computational grid shown in Fig. 12, the value of G at
the point (i — 1/2)Az (called G;_/2) is approximated by the numerical flux
function g as

U

Gi-172 = 9(ui_1, u). (8.5)
Similarly, at the point ¢ + 1/2, we have
Gi+1/2 = Q(U?,u?_*_l). (8.6)

Then from Fig. 12, we see that the right-hand side of equation (7.2) is just
the central difference operator applied to the numerical flux function g. As
the grid size goes to zero, consistency requires that g(u,u) = G(u).

We are now all set to build a scheme for our level set equation. Let u = ¢,.
Then we can write

¢t + H(u) =0. (8.7)

In terms of our computational grid in Fig. 13, in order to produce (b?“ we
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Fig. 13. Update of ¢ through numerical Hamiltonian.

need ¢ as well as a value for H(u'). Fortunately, an approximate value for

H(ul) is ezactly what is given by our numerical flux function, hence we have

H(u) = g(u;—1/2, Yit1/2)- (8.8)

All that remains is to construct values for v in the middle of our computa-
tional cells. Since u = ¢, we can use a central difference approximation in
@ to construct those values. Thus (see Fig. 13), we have

P — i1 P — ¢?>
Az Az ’
where ¢ is one of the numerical flux functions and, again, we have substituted
forward and backward difference operators on ¢ for the values of u at the left
and right states.
In the specific case of our one-dimensional level set equation with H(u) =

ol — g7 — At g ( (8.9)

Vu?, we can use the EO scheme given in the previous section and, for speed
F =1, write

PPl = ¢ — At (max(D;,0)? + min(D}®,0)2)1/2, (8.10)

This is the level set scheme given in Osher and Sethian (1988). As long
as the Hamiltonian is symmetric in each of the space dimensions, the above
can be replicated in each space variable to construct schemes for two- and
three-dimensional front propagation problems.

In general we apply the following philosophy:

1 if the Hamiltonian H is convex, then we use the above scheme
if the Hamiltonian H is non-convex, then we use a variant on the Lax—
Friedrichs scheme described below.

It is important to point out that far more sophisticated schemes exist
than the ones presented here. In the applications of these schemes to hy-
perbolic problems and shock dynamics, high-order resolution schemes are
often necessary (Colella and Puckett 1994), because of the differentiation of
the numerical flux function g. However, in our case, because we are solving
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(a) Exact solution (b) Scheme with 20 points (c¢) Scheme with 100 points

Fig. 14. Upwind, entropy-satisfying approximations to the level set equation.

¢ + H(u) = 0 rather than u; + [H(u)]z, the differentiation is not required.
Thus, we have found that for almost all practical purposes, the first- and
second-order schemes presented below are adequate.

Before constructing the general schemes, let’s return to the example of the
propagating curve. Earlier, we attempted to follow the propagation of a simple
corner moving with speed F' = 1. Our attempts to use a central difference
approximation failed. In Fig. 14, we show what happens if we use the scheme
given in equation (8.10). The exact answer is shown, together with two
simulations. The first uses the entropy-satisfying scheme with only 20 points
(Fig. 14b), the second (Fig. 14¢) with 100 points. In the first approximation,
the entropy condition is satisfied, but the corner is somewhat smoothed due to
the small number of points used. In the more refined calculation, the corner
remains sharp, and the exact solution is very closely approximated.

9. First- and second-order schemes for convex speed
functions

Given a convex speed function F' (that is, a speed function F such that the
resulting Hamiltonian H = F|V¢| is convex), we can produce the following
schemes, first presented in Osher and Sethian (1988). Start with the equation

¢t +H(¢.’Ea¢ya¢z) :O7 (91)
and approximate it by

A R P va (9:2)
ik~ Pij-1k Phirik ~ Phgk
Ay ’ Ay ’

Pk~ Piih1 Plikes = Pl
Az ’ Az '
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A multi-dimensional version of this scheme (Osher and Sethian 1988) is then
given by

geo(uy, ug, v1, V2, w1, ws) = [max(uy,0)? + min(ug, 0) + (9.3)
max(vy, 0)2 4+ min(vg, 0)2 +
max(wy,0)? + min(ws, 0)4]/2,
Thus we have
First-order space convex
oit! = ok — At (max(Fijx, 0)VF + min(Fij,, 0)V7) (9.4)
where
vag (max(Di;;, 0)% + min(D}, 0)% + (9.5)
max (D, 0)? + min(D;;z, 0)2 +
1/2
max(Dy77, 0)2 + min(D37,0)2) "7,
v (max(D;;;g, 0)% + min(D;E,0)% + (9.6)

max(D;;z, 0)% + min(D;, 0)% +

max(DlT']'.,Zc, 0)2 + min(D;}, 0)2) 1/2.
Here, we have used a short-hand notation in which D+*¢} is rewritten as
D= ete.

Second-order space convex

The above schemes can be extended to higher order, using technology from
Harten, Engquist, Osher and Chakravarthy (1987). The basic trick is to build
a switch that turns itself off whenever a shock is detected; otherwise, it will
use a higher-order polynomial approximation of minimal oscillations. These
details will not be presented; see Osher and Sethian (1988) for details. The
scheme is the same as the above; however, this time V* and V™ are given by

vt = (max(A, 0)? 4 min(B, 0)? + (9.7
max(C,0)? + min(D, 0)? +
max(E, 0)? 4+ min(F, 0)2) 1/2,

V™ = (max(B,0)? + min(4,0)? + (9.8)
max(D, 0)% 4+ min(C, 0)% +

1/2
max(F,0)% + min(E,0)2) / ,
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where
_z Az o - -
A =D+ = m(Dg", D), B =Dig — S§Em(D*", D),
(9.9)
—y Ay —y—y pHy- A + +y—
C=Dyi + 7m(Dij% YD), D= DZZ - —zym(Dij%”,DijZ ‘),

9.10)

bl

9 ik ijk ijk ijk ik
9.11)

(

A
E=Dgi+~m(Dji % Dii*), F =D}~ 4m(D}it, Dz )
(

and the switch function is given by

z if [z < [y]
m@,y):{{y ifrx|>|yr} “’20}. (9.12)
0 Ty <0

10. First- and second-order schemes for non-convex speed
functions

Given a non-convex speed function F' (that is, a speed function F for which

the resulting Hamiltonian H = F|V¢| is non-convex), we can follow the work

in Osher and Shu (1991), replacing the Hamiltonian F|V¢| with the Lax-
Friedrichs numerical flux function. This produces the following schemes.

First-order space non-conver

D% 4 Di= ny_{_Dij D~_z+D+2

1 ik ijk jk jk j ik
O = R — Ar[H (I, Uk RS (10,1
1 _ 1 + _ 1 _
—50u(Df = D) = sau(Dif = Digt) — Sow(Dfi = Db

where oy, (aw, ay,) is a bound on the partial derivative of the Hamiltonian with
respect to the first (second, third) argument, and the non-convex Hamiltonian
is a user-defined input function.

Second-order space non-convez

A+B C+D E+F
2 7 2 7 2

1 1 1

~5au(B = 4) = zay(D = C) = Sau(F - B)],

Sk = ik — At[H(

) (10.2)

where A, B, C, D, E, and F' are defined as above. For details, see Osher and
Shu (1991) and Adalsteinsson and Sethian (19955, 1995¢).
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11. Approximations to curvature and normals

As discussed above, one of the main advantages of level set formulations is
that geometric qualities of the propagating interface, such as curvature and
normal direction, are easily calculated. For example, consider the case of a
curve propagating in the plane. The expression for the curvature of the zero
level set assigned to the interface itself (as well as all other level sets) is given
by
Vo robl — 20y 60bey + dyyd?
Vol (92 + ¢2)%/2

In the case of a surface propagating in three space dimensions, one has
many choices for the curvature of the front, including the mean curvature

Kkpr and the Gaussian curvature kg. Both may be conveniently expressed in
terms of the level set function ¢ as

=V

(11.1)

(¢yy + ¢zz)¢:% + (d)zz + ¢zz)¢§ + (¢1:1: + ¢yy)¢§

V¢ _2¢x¢y¢x - 2¢w¢z¢xz - 2¢y¢z¢yz
d’g((ﬁyy(ﬁzz - 4’22) + ¢’£2/(¢$Z¢ZZ - ¢:%z) + ¢§(¢wz¢yy - ¢azcy)
+ 2[¢z¢y(¢zz¢yz - ¢xy¢zz) + ¢y¢z (¢:cy¢a:z - ¢yz¢zz)
kg = + ¢z¢z(¢xy¢yz - ¢zz¢yy)] (11‘3)

(92 + ¢35 + ¢2)°

Construction of the normal itself requires a more sophisticated scheme
than simply building the difference approximation to V¢. This is because
at corners, the direction of the normal can undergo a jump. This suggests
the following technique, introduced by Sethian and Strain (1992). First, the
one-sided difference approximations to the unit normal in each possible dir-
ection are formed. All four limiting normals are then averaged to produce the
approximate normal at the corner. Thus, the normal n;; is formed by first
letting

R .
= (Dgz’Dﬂl) (Dij” ’D+y) (11.5)
(D)2 + (DE1)2V2 (D) + (D;¥)2]V/2
(D, D;*) (D", D)

D7 £ (D7 ? (7 + (D

27

and then normalizing so that n;; = nJ;/|nj;|. If any of the one-sided ap-

zyl
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proximations to |V¢| is zero, that term is not considered and the weights are
adjusted accordingly.

12. Initialization and boundary conditions

The time-dependent level set approach requires an initial function ¢(z,t = 0)
with the property that the zero level set of that initial function corresponds
to the position of the initial front. The original level set algorithm computed
the signed distance from each grid point to the initial front, which is matched
to the zero level set. This is an expensive technique. Many other initial
functions are possible, including those that are essentially constant except in
a narrow band around the front itself.

The use of a finite computational grid means that we must develop bound-
ary conditions. If the speed function F' causes the front to expand (such as
in the case F' = 1), upwind schemes will naturally default to outward-flowing
one-sided differences at the boundary of the domain. However, in cases of
more complex speed functions, mirror boundary conditions usually suffice.

PART III: EXTENSIONS

13. A hierarchy of fast level set methods

The ahove time-dependent level set method is easily programmed. However,
it is not particularly fast, nor does it make efficient use of computational re-
sources. In this section, we consider a sequence of more sophisticated versions
of the basic scheme.

13.1. Parallel algorithms

The above method updates all the level sets, not just the zero level set cor-
responding to the front itself. The advantage of this approach is that the data
structures and operations are extremely clear, and it is a good starting point
for building level set codes.

There are a variety of circumstances in which this approach is desirable.
If, in fact, all the level sets are themselves important (such as problems en-
countered in image processing, which are discussed below), then computation
over the entire domain is required. A simple approach is to perform a par-
allel computation. Since each grid point is updated by a nearest neighbour
stencil using only grid points on each side, this technique almost falls under
the classification of ‘embarrassingly parallel’. In Sethian (1989), a parallel
version of the level set method was developed for the Connection Machine
CM-2 and CM-5. In the CM-2, nodes are arranged in a hypercube fash-
ion; in the CM-5, nodes are arranged in a fat-tree. The code was written in
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global CMFortran, and at each grid point CSHIFT operators were used to
update the level set function. The operation count per time step reduces to
O(1), since in most cases the full grid can be placed into physical memory.
A time-explicit second-order space method was used to update the level set
equation.

13.2. Adaptive mesh refinement

As a first level of creating a more efficient level set method, an adaptive
mesh refinement strategy can be pursued. This is the approach taken by
Milne and Sethian (1995), motivated by the adaptive mesh refinement work
in Berger and Colella (1989). Adaptivity may be desired in regions where
level curves develop high curvature or where speed functions change rapidly.
In Fig. 15a, we show mesh cells that are hierarchically refined in response to
a parent—child relationship around the zero level set of ¢. Calculations are
performed on both the fine and coarse grid. Grid cell boundaries always lie
along coordinate lines, and patches do not overlap; in the scheme presented
in Milne and Sethian (1995), no attempt is made to align the refined cells
with the front.

Vs
/
O ®
® @-
® |
(a) Cell hierarchy (b) Hanging nodes

Fig. 15. Adaptive mesh refinement.

The data structures for the adaptive mesh refinement are fairly straight-
forward. However, considerable care must be taken at the interfaces between
coarse and fine cells; in particular, the update strategy for ¢ at so-called
‘hanging nodes’ is subtle. These are nodes at the boundary between two
levels of refinement which do not have a full set of nearest neighbours re-
quired to update ¢. To illustrate, in Fig. 15b, we show a two-dimensional
adaptive mesh; the goal is to determine an accurate update strategy for the
hanging node marked o.
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The strategy for updating ¢ at such points is as follows. Consider the
archetypical speed function F(k) = 1 — ex.

e  The advection term 1 leads to a hyperbolic equation; here, straightfor-
ward interpolation of the updated values of ¢ from the coarse cell grid is
used to produce the new value of ¢ at o. The sophisticated technology
in Berger and Colella (1989) is not required, since we are modelling the
update according to the numerical flux function g, not the derivative of

the numerical flux function as required for hyperbolic conservation laws.
e In the case of the curvature term —ex, the situation is not as straight-

forward. The parabolic term cannot be approximated through simple
interpolation. Interpolation from updated values on the coarse grid to
the fine grid was shown to provide poor answers; if this procedure is
employed, the boundary between the two levels of refinement acts as a
source of noise, and significant error is generated at the boundary. In-
stead, values from both the coarse and refined grid next to the hanging
node are used to construct a least squares solution for ¢ before the up-
date. This solution surface is then formally differentiated to produce the
various first and second derivatives in each component direction. These
values are then used to produce the update value for ¢ similar to all
other nodes. For details, see Milne and Sethian (1995).

Fig. 16. Two-dimensional slice of adaptive mesh for propagating surface.

As illustration, in Fig. 16, we show a two-dimensional slice of a fully three-
dimensional adaptive mesh calculation of a surface collapsing under its mean
curvature. As discussed in a later section, the dumbbell neck pinches off under
such a configuration, due to the high positive value of the principal axis of
curvature.
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13.3. Narrow banding and fast methods

An alternative to the above techniques is particularly valuable when one wants
to track a specific front, namely the one associated with the zero level set.
There are several disadvantages with the ‘full-matrix’ approach given above.

Speed Performing calculations over the entire computational domain re-
quires O(N?) operations in two dimensions, and O(N3) operations in
three dimensions, where N is the number of grid points along a side.
As an alternative, an efficient modification is to perform work only in a
neighbourhood of the zero level set; this is known as the narrow band
approach. In this case, the operation count in three dimensions drops
to O(kN?), where k is the number of cells in the width of the narrow
band. This is a significant cost reduction. Typically, good results can
be obtained with about six cells on either side of the zero level.

Calculating extension variables The time-dependent level set approach
requires the extension of the speed function F' in equation (3.5) to all
of space; this then updates all of the level sets, not simply the zero level
set on which the speed function is naturally defined. Recall that three
types of arguments may influence the front speed F; local, global, and
independent. Some of these variables may have meaning only on the
front itself, and it may be both difficult and awkward to design a speed
function that extrapolates the velocity away from the zero level set in
a smooth fashion. Thus, another advantage of a narrow band approach
is that this extension need only be done to points lying in the narrow

band.

Choosing time step The full-matrix approach requires the choice of a time
step that applies in response to the maximum velocity over the entire
domain, not simply in response to the speed of the front itself. In a
narrow band implementation, the time step can be adaptively chosen in
response to the maximum velocity field only within the narrow band.
This is of significance in problems in which the front speed changes
substantially as it moves (for example, due to the local curvature or
as determined by the underlying domain). In such problems, the CFL
restriction for the velocity field for all the level sets may be much more
stringent than the one for those sets within the narrow band.

The above ‘narrow band’ method was introduced by Chopp (1993), used in
recovering shapes from images by Malladi, Sethian and Vemuri (1994), and
analysed extensively by Adalsteinsson and Sethian (1995a).

In Fig. 17 we show the placement of a narrow band around an initial front.
The entire two-dimensional grid of data is stored in a square array. A one-
dimensional object is then used to keep track of the points in this array (dark
grid points in Fig. 17 are located in a narrow band arcund the front of a user-



LEVEL SET METHODS FOR PROPAGATING INTERFACES 341

G O—6—0O —O—5> o

Fig. 17. Pointer array tags interior and boundary band points.

defined width). Only the values of ¢ at points within the tube are updated;
values of ¢ at grid points on the boundary of the narrow band are frozen.
When the front moves near the edge of the tube boundary, the calculation is
stopped, and a new tube is built with the zero level set interface boundary at
the centre. This rebuilding process is known as ‘re-initialization’.

Thus, the narrow band method consists of the following loop:

tag ‘alive’ points in narrow band
e  build ‘land mines’ to indicate nearby edge

e initialize ‘far away’ points outside(inside) narrow band with large pos-
itive(negative) values

o  solve level set equation until a land mine is hit

s  rebuild, loop.

Use of narrow bands leads to level set front advancement algorithms which
are equivalent in complexity to traditional marker methods and cell tech-
niques, while maintaining the features of topological merger, accuracy, and
easy extension to multi-dimensions. Typically, the speed-up associated with
the narrow band method is about ten times faster on a 160 X 160 grid than
the full matrix method. Such a speed-up is substantial: in three-dimensional
simulations, it can make the difference between computationally intensive
problems and those that can be done with relative ease. Details on the ac-
curacy, typical tube sizes, and number of times a tube must be rebuilt may
be found in Adalsteinsson and Sethian (1995a).

This narrow banding technique requires a rebuilding and re-initialization of
a new narrow band around the location of the front. There are several ways
to perform this re-initialization, one of which leads to an efficient level set
scheme for the particular case of a front propagating with a speed F' = F(z, y)
where F is of one sign.
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13.4. Re-initialization techniques: direct evaluation, iteration, Huygens’
flowing

Direct evaluation

A straightforward approach is to find the zero level set by using a contour
plotter and then recalculate the signed distance from each grid point to this
zero level set to rebuild the band. This technique, first used in Chopp (1993),
can be used to ensure that the level set function stays well behaved. However,
this approach can be expensive, since the front must be explicitly constructed
and distances must be calculated to neighbouring grid points.

Iteration
An alternative to this was given by Sussman, Smereka and Osher (1994),
based on an observation of Morel. Its virtue is that one need not find the zero
level set to re-initialize the level set function. Consider the partial differential
equation

¢ = sign(¢)(1 — [Val). (13.1)

Given initial data for ¢, solving the above equation to steady state provides
a new value for ¢ with the property that |V@| = 1, since convergence occurs
when the right-hand side is zero. The sign function controls the flow of
information in (13.1); if ¢ is negative, information flows one way and if ¢ is
positive, then information flows the other way. The next effect is to ‘straighten
out’ the level sets on either side of the zero level set and produce a ¢ function
with |V¢| = 1, which in fact corresponds to the signed distance function.
Thus, their approach is to periodically stop the level set calculation and solve
(13.1) until convergence: if repeated sufficiently often, the initial data are
often close to the signed distance function, and few iterations are required.
One disadvantage of this technique is the relative crudeness of the switch
function based on the sign of the level set equation; considerable motion of
the zero level set can occur during the re-initialization, since the sign function
does not accurately model the exact location of the front.

Huygens’ principle flowing

An alternative technique is based on the idea of computing crossing times
as discussed in Sethian (1994), and is related to the ideas given in Kimmel
and Bruckstein (1993). Consider a particular value for the level set function
Ginitial (T, t). With speed function F' = 1, flow the level set function both
forward and backwards in time and calculate crossing times (that is when ¢
changes sign) at each grid point. These crossing times (both positive and
negative) are equal to the signed distance function by Huygens’ principle.
This approach has the advantage that one knows a prior: how long to run the
problem forward and backward to re-initialize grid points a given distance
from the front. This calculation can be performed using a high-order scheme
to produce accurate values for the crossing times.
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This idea of computing crossing times is equivalent to converting the level
set evolution problem into a stationary problem. This conversion can be used
to develop an extremely fast marching level set scheme for the particular case
of solving the level set equation for speed function F' = F(z,y), where F'is
always either positive or negative. This is discussed in the section on fast
marching methods for the stationary formulation.

14. Additional complexities

Since their introduction, the capabilities and applicability of time-dependent
level set methods have been considerably refined and extended. In this sec-
tion, we discuss a few extensions that have proved to be useful in a variety
of applications.

14.1. Masking and sources

Consider the problem of a front propagating with a speed I and subject
to the constraint that the evolving interface cannot enter into a region € in
the domain. This region Q is referred to as a ‘mask’, since it inhibits all
motion. There are several solutions to this problem, depending on the degree
of accuracy required.

The simplest solution is to set the speed function F equal to zero for all
grid points inside 2. The location of all points inside §2 can be determined
before any calculation is carried out. This technique assures that the front
stops within one grid cell of the mask. In Fig. 18, we show a plane front
propagating upwards with speed F' = 1 in the upwards direction, with a
rectangular block in the centre of the domain serving as a mask. In Fig. 18a,
the speed function is reset to zero inside the mask region, and as the front
propagates upwards it is stopped in the vicinity of the mask and is forced to
bend around it.

The calculations in Fig. 18a are performed on a very crude 13 x 13 mesh in
order to accentuate a problem with this approach, namely that the front can
only be guaranteed to stop within one grid cell of the obstacle itself. This is
because the level set method constructs an interpolated speed between grid
points, and hence by setting the speed function to zero on and in the mask,
the front slows down before it actually reaches the mask. Note that since this
means one grid cell normal to the mask’s boundary, a considerable amount
of error can result.

A different fix, which eliminates much of this problem, comes from an
alternate view. Given a mask area 2, construct the signed distance function
#% by taking the positive distance if inside Q and the negative distance if
outside (note that this is opposite sign choice from the one typically used).
Then we limit motion into the masked region not by modifying the speed
function, but instead by resetting the evolving level set function. Let ¢*) be
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(a) Velocity = 0 inside rectangle (b) ¢ reset by mask
Fig. 18. Front propagating upwards around masking block: 13 x 13 grid.

the value produced by advancing the level set ¢™ one time step. Then let
¢" ! = max(¢*, ¢"). (14.1)

This resets the level set function so that penetration is not possible; of course,
this is only accurate to the order of the grid. Results using this scheme are
shown in Fig. 18b. Again, we have used a very coarse grid to accentuate the
differences.

If we consider now the opposite problem, in which a region {2 acts as a
source, then the solution is equally straightforward, and we obtain ¢"t! =
min(¢*, —¢); this is the technique used in Rhee, Talbot and Sethian (1995).

14.2. Discontinuous speed functions and sub-grid resolution

Let us generalize the above problem somewhat, and imagine that we want to
solve an interface propagation problem in which there is a clear discontinuous
speed function. For example, one may want to track the propagation of an
interface through materials that correspond to differing media, across which
propagation rates change quite sharply. As an example, consider again the
evolution of the upwards propagating front, but this time the rectangular
block halves the speed (that is, F' = 1 outside 2 and F' = 0.5 inside and
on ). The standard level set will interpolate between these two speeds,
and the results obtained will depend on the placement of the underlying grid;
substantial variation in result will occur depending on whether a grid line lies
directly on, below, or above the bottom edge of the rectangular block.

In order to solve this problem accurately, we need some sub-grid inform-
ation about the speed function to construct correctly the speed function for
those cells that lie only partially within Q. Such a technique can be de-
vised, motivated by the idea of the volume-of-fluid methods discussed earlier.



LEVEL SET METHODS FOR PROPAGATING INTERFACES 345

Given a region {2, before any calculation proceeds wz construct the cell frac-
tion Volin, which is a number between 0 and 1 for those cells that have at
least one grid point in Q and one outside 2. This cell fraction corresponds
to the amount of ) material in the cell. These values are stored, and a list
is kept of such boundary cells. We then proceed with the level set calcula-
tion, letting F' be given by its value in the corresponding region. However,
we modify the speed function for those cells that are marked as boundary
cells. At the beginning of the time step, compute the volume fraction Volfj
for the zero level set in each cell; this may be approximately done without
explicitly finding the zero level set through a least squares fit. This value is
then compared with the stored value Vol?j to provide an appropriate speed.

14.8. Multiple interfaces

As initially designed in Osher and Sethian (1988), the level set technique
applies to problems in which there is a clear distinction between an ‘inside’
and ‘outside’. This is because the interface is assigned the zero level value
between the two regions. Extensions to multiple (more than two) interfaces
have been made in some specific cases. In the case in which interfaces are
passively transported and behave nicely, one may be able to use only one
level set function and judiciously assign different values at the interfaces. For
example, the zero level set may correspond to the boundary between two
regions A and B, with the level set value 10 corresponding to the interface
between two regions B and C. If A and C never touch, then this technique
may be used to follow the interfaces in some cases.

However, in the more general case involving the emergence and motion of
triple points, a different approach is required, because many different situ-
ations can occur; see, for example, Bronsard and Wetton (1995) and Taylor,
Cahn and Handwerker (1992). Consider the following canonical example, as
illustrated in Fig. 19. Regions A and B are both circular disks growing into
region C with speed unity in the direction normal to the interface. At some
point, the interfaces will touch and meet at a triple point, where a clear notion
of ‘inside’ and ‘outside’ cannot be assigned in a consistent manner.

A level set approach to this problem has been proposed by Merriman, Bence
and Osher (1994); they move each interface separately for one time step, find
the interfaces of the various fronts, and then rebuild level set functions. This
technique requires re-initializing the pairwise level set functions; any of the
techniques described earlier can be used. Before describing this technique,
we discuss a later set of techniques presented in Sethian (19954, 1995b),
applicable to many cases, and which do not require any such re-initialization.
We will then return to the first algorithm in the case of motion driven by
surface tension where some sort of re-initialization is required.
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Fig. 19. Regions A and B expand into region C.

The key idea in each method lies in recasting the interface motion as the
motion of one level set function for each material. In some sense, this is what
was done in the re-ignition idea given in Rhee et al. (1995), where the front
was a flame, which propagated downstream under a fluid flow. This front was
re-ignited at each time step at a flame holder point by taking the minimum
of the advancing flame and its original configuration around the flame holder,
thus ensuring that the maximum burned fluid is achieved.

In general, imagine N separate regions and a full set of all possible pairwise
speed functions Fj; which describe the propagation speed of region 1 into
region J: F is taken as zero if region I cannot penetrate J. The idea is to
advance each interface to obtain a trial value for each interface with respect
to motion into every other region, and then combine the trial values in such
a way as to obtain the maximum possible motion of the interface.

In general then, proceed as follows. Given a region I, obtain N — 1 trial
level set functions ¢7; by moving region I into each possible region J, J=1,N
(J # I) with speed Frj. During the motion of region I into region J, assume
that all other regions are impenetrable, that is, use the masking rule given by
equation (14.1). We then test the penetrability of region J itself, leaving the
value of ¢7; unchanged if F7; # 0, otherwise modifying it with the maximum
of itself and —¢%;. Finally, to allow region 1 to evolve as much as possible,
we take the minimum over all possible motions to obtain the new position;
this is the re-ignition idea described earlier. Complete details of the approach
may be found in Sethian (1995q).

Three examples are shown to illustrate this approach. Given regions A, B,
and C, the influence matriz describes the interaction of the various regions
with each other. The interaction of each region with itself is null, hence the
matrix has a dash on the diagonal. The interaction of any pair of regions is
required to be zero in one of the two interactions.

In Fig. 20, regions A and B expand with unit speed into region C, but
cannot penetrate each other. They advance and meet; the boundary between
the two becomes a vertical straight line.
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0 ®

(a) (b) (¢) (d)

Influence matrix | on A onB onC

Effect of A - 0.0 1.0
Effect of B 0.0 - 1.0
Effect of C 0.0 0.0 -

Fig. 20. A and B move into C with speed 1, stop at each other.

(a) (b) () (d)

Influence matrix | onA onB onC

Effect of A - 3.0 1.0
Effect of B 0.0 - 2.0
Effect of C 0.0 0.0 -

Fig. 21. A into C with speed 1, A into B with speed 3, B into C with speed 2.

Next, we consider a problem with different evolution rates. In Fig. 21,
region A grows with speed 1 into region C (and region C grows with speed
0 into region A), and region B grows with speed 2 into region C. Once they
come into contact, region A dominates region B with speed 3, thus region B
grows through Fig. 21c, and then is ‘eaten up’ by the advancing region A.
Note what happens: region A advances with speed 3 to the edge of region
B, which is only advancing with speed 1 into region C. However, region A
cannot pass region B, because its speed into region C is slower than that of
region B.
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Influence matrix \ onA onB onC

Effect of A - 1.0 0.0
Effect of B 0.0 - 1.0
Effect of C 1.0 0.0 -

Fig. 22. Spiralling triple point: 98 x 98 grid.

Finally, in Fig. 22, the motion of a triple point between regions A, B, and
C is shown. Assume that region A penetrates B with speed 1, B penetrates C
with speed 1, and C penetrates A with speed 1. The exact solution is given
by a spiral with no limiting tangent angle as the triple point is approached.
The triple point does not move; instead, the regions spiral around it. In Fig.
22, results are shown from a calculation on a 98 x 98 grid. Starting from the
initial configuration, the regions spiral around each other, with the leading
tip of each spiral controlled by the grid size. In other words, we are unable to
resolve spirals tighter than the grid size, and hence that controls the fine-scale
description of the motion. However, we note that the triple point remains
fixed. A series of additional calculations using this approach may be found
in Sethian (1995b).

14.4. Triple points

Consider now the case of a triple point motion in which the speed of each
interface is driven by curvature, which may correspond to surface tension.
Imagine a triple point in which each of the three regions is attempting to move
according to their own curvature. In Fig. 23a we show an initial configuration,
and in Fig. 23b a final state, which consists of the three lines meeting in equal
angles of 120 degrees.

If one attempts to apply the level set method for multiple interfaces de-
scribed in the previous sections, a difficulty occurs, because each level func-
tion attempts to move away from the others, creating a gap. In Fig. 23c, we
show this gap developing when a level set technique is applied to the final
state.
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(a) Initial state (b) Final state (c) Level set

Fig. 23. Evolution of triple point under curvature.

Two different level set type algorithms were introduced in Merriman et al.
(1994) for tackling this problem. The first can be viewed a ‘fix’ to the above
problem; the second is a wholly different level set approach.

First, the problem with the above calculation is that the various level sets
pull apart. A remedy is to reset the level set functions every time step to
hold the triple point in place, that is,

¢; = ¢; — max ¢, (14.2)

where the maximum is taken over all j # ¢. This keeps the triple point in
place; however, the cost is that the level set functions can develop spontaneous
zero crossings later in time. A remedy is to re-initialize all the level sets using
any of the re-initialization techniques described in the previous section. With
those two added steps in the algorithm, level set methods can easily handle
some interesting problems concerning triple points.

A considerably different approach works by applying applying a reaction-
diffusion type equation to a characteristic function assigned to each region,
which is one inside the region and zero outside. This algorithm works by
exploiting the link between curvature flow and a diffusion equation, along
the lines of the material discussed earlier. The basic idea is that a diffusion
term is applied, and then a sharpening term is executed, which sharpens up
the solution. The net effect is to evolve the boundary line under curvature.
This is a very clever algorithm, and can be applied to multiple interfaces. A
series of fascinating calculations are presented in Merriman et al. (1994); for
additional work on this topic, see Bronsard and Wetton (1995).

14.5. Building extension velocity fields

What happens when the speed of the moving front has meaning only on
the front itself? This is a common occurrence in areas such as combustion,
material science, and fluid mechanics, where the philosophy of embedding the
front as the zero level set of a family of contours can be problematic. In fact,
the most difficult part of level set methods is this ‘extension’ problem, and it
will be a central focus of Part IV,
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Recall the division of arguments in the speed function F' given in equation
(2.1). Front-based arguments are those that depend on geometric quantities
of the front, such as curvature and normal vector, and have a clear meaning
for all the level sets. Independent variables are equally straightforward, since
their contribution to the speed makes no reference to particular information
from the front itself.

The troublesome variables are the so-called ‘global’ variables, which can
arise from solving differential equations on either side of the interface. Briefly,
there are at least four ways to extend a velocity from the front to the grid
points.

1 At each grid point, find the closest point on the front. This was the
technique used in Malladi et al. (1994), and may be done efficiently in
many cases by tracing backwards along the gradient given by V.

2 Evaluate the speed function off the front using an equation that only
has meaning on the front itself. This is the technique used in the crys-
tal growth/dendritic solidification calculations employed in Sethian and
Strain (1992), where a boundary integral is evaluated both on and off
the front.

3 Develop an evaluation technique that assigns artificial speeds to the level
set going through any particular grid point. For example, in the etch-
ing/deposition simulations of Adalsteinsson and Sethian (19955, 1995c,
1996), visibility of the zero level set must be evaluated away from the
front itself.

4  Smearing the influence of the front. In the combustion calculations of
Rhee et al. (1995), the influence of the front is mollified to neighbouring
grid points on which an appropriate equation is solved.

PART IV: A NEW FAST METHOD

Consider the special case of a monotonically advancing front, that is, a front
moving with speed F' where F is always postive (or negative). Previously,
we have produced a stationary level set equation, namely

IVT|F =1. (14.3)

which is simply a static Hamilton—Jacobi equation; if F' is only a function
of position, this becomes the well-known Eikonal equation. A large body of
research has been devoted to studying these types of equations; we refer the
interested reader to Barles and Souganidis (1991), Lions (1982) and Sougan-
idis (1985), to name just a few. At the same time, there are a wide collection
of schemes to solve this problem; see, for example, Bardi and Falcone (1990),
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Falcone et al. (1994), Rouy and Tourin (1992) and Osher and Rudin (1992).
Here we introduce an entirely new and extremely fast method for solving this
equation. It relies on a marriage between our narrow band technique and a
fast heapsort algorithm, and can be viewed as an extreme one-cell version of
our narrow band technique.

For ease of discussion, we limit ourselves to a two-dimensional problem
inside a square from [0, 1] x [0, 1] and imagine that the initial front is along
the line y = 0; furthermore, we assume that we are given a positive speed
function F(z,y) that is periodic in z. Thus, the front propagates upwards off
the initial line, and the speed does not depend on the orientation of the front
(it depends only on independent variables, using our earlier terminology).
Using our approximation to the gradient, we are then looking for a solution
in the unit box to the equation

— _ . 2
F;' = max(D;;*T, 0)? + min(D};*T, 0)*+

max(D;¥T, 0)? + min(Dg-yT, 0)?), (14.4)

where T'(z,0) = 0.

Since equation (14.4) is in essence a quadratic equation for the value at each
grid point (assuming the others are held fixed), we can iterate until conver-
gence by solving the equation at each grid point, selecting the largest possible
value as the solution in accordance with obtaining the correct viscosity solu-
tion. An iterative algorithm for computing the solution to this problem was
introduced by Rouy and Tourin (1992). Typically, one iterates several times
through the entire set of grid points until a converged solution is reached.

15. A fast marching level set method

The key to constructing a fast marching algorithm is the observation that the
upwind difference structure of equation (14.4) means that information propag-
ates ‘one way’, that is, from smaller values of T to larger values. Hence, our
algorithm rests on ‘solving’ equation (14.4) by building the solution outwards
from the smallest time value 7. Our idea is to sweep the front ahead in an
upwind fashion by considering a set of points in a narrow band around the
existing front, and to march this narrow band forward, freezing the values of
existing points and bringing new ones into the narrow band structure. The
key is in the selection of which grid point in the narrow band to update. The
technique is easiest to explain algorithmically; see Fig. 24. We imagine that
we want to propagate a front through an N by /V grid with speed Fj; giving
the speed in the normal direction at each grid point. Here the set of grid
points j = 1 corresponds to the y axis, and we assume that F;; > 0.
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Fig. 24. Narrow band approach to marching level set method.

Algorithm
1 Initialize

(a) (Alive points: grey disks): Let A be the set of all grid points {¢,j =
1}; set T; 1 = 0.0 for all points in A.

(b) (Narrow band points: black circles): Let NarrowBand be the set
of all grid points {i,j = 2}, set T;; = dy/F;; for all points in
NarrowBand.

(c) (Far away points: black rectangles): Let FarAway be the set of all
grid points {i,j > 2}, set T; ; = oo for all points in FarAway.

2 Marching forwards

(a) Begin loop: Let (imin,jmin) be the point in NarrowBand with the
smallest value for T

(b) Add the point (imin, jmin) to A; remove it from NarrowBand.

(c) Add to the narrow band list any neighbouring points (¢min — 1, jmin),
(Ymin + 1, Jmin), (Ymins Jmin — 1), (¥min, Jmin + 1) that are not Alive.
If the neighbour is in FarAway, remove it from that list.

(d) Recompute the values of T at all neighbours according to equation
(14.4), selecting the largest possible solution to the quadratic equa-
tion.

(e) Return to top of loop.

We take periodic boundary conditions where required. Assuming for the
moment that it takes no work to determine the member of the narrow band
with the smallest value of T, the total work required to compute the solution
at all grid points is O(IN?), where calculation is performed on an N by N
grid.

Why does the above algorithm work? Since we are always locating the
smallest value in the narrow band, its value for T' must be correct; other
narrow band points or far away points with larger T' values cannot affect it.
The process of recomputing the T values at neighbouring points (that have
not been previously accepted) cannot yield a value smaller than any of that
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Fig. 25. Matrix of neighbouring values.

at any of the accepted points, since the correct viscosity solution is obtained
by selecting the largest possible solution to the quadratic equation. Thus,
we can march the solution outwards, always selecting the narrow band grid
point with minimum trial value for T, and readjusting neighbours. Another
way to look at this is that each minimum trial value begins an application
of Huygens’ principle, and the expanding wave front touches and updates all
others.

15.1. Proof that the algorithm constructs a viable solution

Here, we prove that the above algorithm produces a solution that everywhere
satisfies the discrete version of our equation, which is given by

2 _ —x R +z 2
fi; = max (max(D;;*T,0), — min(D;"T,0) ) +
2
max (max(Di;yT, 0),——min(D;;yT,O)) , (15.1)

where ffj =1 /F% We shall give a constructive proof. Since the values
of T(z,y, z) are built by marching forwards from the smallest value to the
largest, we need only show that whenever a ‘trial’ value is converted into
an ‘alive’ value, none of the recomputed neighbours obtain new values less
than the accepted value. If this is true, then we will always be marching
ahead in time, and thus the correct ‘upwind’ nature of the differencing will be
respected. We shall prove our result in two dimensions; the three-dimensional
proof is the same.

Thus, consider the matrix of grid values given in Fig. 25. Our argument
will follow the computation of the new value of T in the centre grid point to
replace the value of 7, based on the neighbouring values. We will assume,
without loss of generality, that the value A at the left grid point is the smallest
of all ‘trial’ values, and prove that when we recompute the value at the centre
grid point (called Trecomputed from 4), it cannot be less than A. This will prove
that the upwinding is respected, and that we need not go back and readjust
previously set values. We shall consider the four cases that (1) none of the
neighbours B, C, or D, are ‘alive’, (2) one of these neighbours is ‘alive’,
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(3) two of the neighbours are ‘alive’; and (4) all three of these neighbours are
‘alive’.

A, B, C and D are ‘trial’, A is the smallest

In this case, all of the neighbours around the centre grid point are either
‘trial’ or set to FarAway. Since A is the smallest such value, we convert that
value to ‘alive’ and recompute the value at the centre grid point. We now
show that the recomputed value A < Tiecomputed from 4 < A + f.

1 Suppose A+ f < min(B,D). Then Trecomputed from A = (A + f) is a
solution to the problem, since only the difference operator to the left

grid point is nonzero.

2 Suppose A+ f > min(B, D). Then, without loss of generality, assume
that B < D. We can solve the quadratic equation

(T’recomputed from A — A)2 + (Trecomputed from A — B)2 = f2' (152)

The discriminant is non-negative when f > (L\—&ﬁz’ which must be true

since we assumed that A + f > B and hence f > (B — A). Thus,
a solution exists, and it is easy to check that this solution must then
be greater than or equal to B and thus falls into the required range.
Furthermore, we see that T < A + f, since the second term on the left
is non-negative.

Thus, we have shown that A < Tiecomputed from 4 < A + f, and therefore
T ecomputed from A cannot be less than the just converted value A.
This case will act as template for the other cases.

B is ‘alive’, A, C and D are ‘trial’, A is the smallest of the trial values

In this case, A has just been converted, since it is the smallest of the trial
values. We shall prove when we recalculate Tiecomputed from 4, its new value
must still be greater than A. At some previous stage, when B was converted
from trial to alive, the values of A, C and D were all trial values, and hence
must have been larger. Then this means that when B was converted from trial
to alive, we had the previous case above, and hence B < Tiecomputed from B <
B+ f; furthermore, since the value at the centre was not chosen as the smallest
trial value, we must have that A < B + f. By the above case, we then have
that B < A < Thecomputed rom A < B + f, and hence the recomputed value
cannot be less than the just converted value of A.

t Recall that ‘alive’ means that their T values are less than A. Here, we are using the
notation that the symbol A stands for both the grid point and its T value.

! We are absorbing the grid size Az into the inverse speed function f.
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C is ‘alive’, A, B and D are ‘trial’, A is the smallest of the trial values
In this case, due to the direction of the upwind differencing, the value at C
is the contributor in the x direction, the acceptance of A does not affect the
recomputation, and the case defaults into the first case above.

The remaining cases are all the same, since the differencing takes the smal-
lest values in each coordinate direction. The proof in three dimensions is
identical.

15.2. Finding the smallest value

The key to an efficient version of the above technique lies in a fast way of
locating the grid point in the narrow band with the smallest value for 7. We
use a variation on a heapsort algorithm, see Press, Flannery, Teukolsky and
Vetterling (1988) and Sedgewick (1988), with the additional feature of back
pointers. In more detail, imagine that the list of narrow band points is initially
sorted in a heapsort so that the smallest member can be easily located. We
store the values of these points in the heapsort, together with their indices
which give their location in the grid structure. We keep a companion array
which points from the two-dimensional grid to the location of that grid point
in the heapsort array. Finding the smallest value is easy. In order to find
the neighbours of that point, we use the pointers from the grid array to the
heapsort structure. The values of the neighbours are then recomputed, and
then the results are bubbled upwards in the heapsort until they reach their
correct locations, at the same time readjusting the pointers in the grid array.
This results in an O(log N) algorithm for the total amount of work, where N
is the number of points in the narrow band. For implementation details and
further application of this technique, see Sethian (1995¢, 1996) and Sethian,
Adalsteinsson and Malladi (1996).

The above technique considered a flat initial interface for which trial values
at the narrow band points could be easily initialized. Suppose we are given
an arbitrary closed curve or surface as the initial location of the front. In
this case, we use the original narrow band level set method to initialize the
problem. First, label all grid points as ‘far away’ and assign them T values
of 00. Then, in a very small neighbourhood around the interface, construct
the signed distance function from the initial hypersurface I". Propagate that
surface both forwards and backwards in time until a layer of grid points is
crossed in each direction, computing the signed crossing times as in Sethian
(1994). Then collect the points with negative crossing times as ‘alive’ points
with 7" value equal to the crossing time, and the points with positive crossing
times as narrow band points with 1" value equal to the positive crossing times.
Then begin the fast marching algorithm.
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16. Other speed functions: when does this method work?

Our fast marching method as designed applied to speed functions F which
depend only on position. In such cases, other forms for the gradient approx-
imation can be used; for example, Rouy and Tourin (1992), namely

. 2
Fj' = max (max(D5T,0), - min(DF*T,0)) " +

2
max (max(Di;yT, 0), — min(D;;yT, O)) . (16.1)

How general is our new technique? Suppose now we consider the more
general case of stationary level set equation:

IVT|F = 1. (16.2)

We begin by rewriting this in the standard form of a static Hamiltonian,
namely

H(T,, T, T.) = 1. (16.3)

We already have a scheme for the case where H = VTI'. Some variations
on this Hamiltonian important in computer vision, such as

H = max(|Te|, [Ty, | Tz]) H = |T:| + [Ty| + | T, (16.4)

may be approximated in a straightforward manner using any of the above
entropy-satisfying approximations to the individual gradients. Our fast march-
ing method will work in these cases. When the speed F depends in a subtle
way on the value of VT (for example, in some problems in etching and de-
position discussed in a later section), the situation is more delicate.

When will the technique work? Here, we present an intuitive perspective;
complete details may be found in Sethian (1996) and Sethian et al. (1996).
Suppose H is convex and always positive (or always negative), and suppose
the approximation to H satisfies two properties:

1 the approximation scheme is consistent

2 at each grid point the scheme only makes use of smaller neighbouring
values when updating the value at that point (this is the upwindness
requirement), and cannot produce a new value which is less than any of
the neighbours.

Then we can expect that our upwind sweeping method will work; searching
for the smallest trial value will provide a consistent way of sweeping through
the mesh and constructing the solution surface T'. Complete details and many
other schemes may be found in Sethian (1996) and Sethian et al. (1996).
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17. Some clarifying comments

The time-dependent level set method and the stationary level set method each
require careful construction of upwind, entropy-satisfying schemes, and make
use of the dynamics and geometry of front propagation analysed in Sethian
(1985). However, we note that the time-dependent level set method advances
the front simultaneously, while the stationary method constructs ‘scaffolding’
to build the time solution surface T one grid point at a time. This means that
the time at which the surface crosses a grid point (that is, its T value) may
be found before other positions of that front at that time are determined. As
such, there is no notion of a time step in the stationary method: one is simply
constructing the stationary surface in an upwind fashion.

This means that if one is attempting to solve a problem in which the speed
of a front depends on the current position of the front (such as in the case
of visibility), or on subtle orientations in the front (such as in sputter yield
problems), it is not clear how to use the stationary method, since the front is
being constructed one grid point at a time.

The stationary method works because we were able to construct a simple
approximation to the gradient. This was possible because the speed function
F did not depend on the orientation of the front, nor on issues like visib-
ility. Thus, returning to our earlier categorization of speed functions, our
fast scheme works in cases where the speed F' only depends on independ-
ent variables, such as in the case of photolithography development. Upwind
entropy-satisfying schemes which can be transported to this fast stationary
scheme for the case of more general speed functions F' are more problematic,
and discussed in detail in Sethian (1996).

To summarize,

e  The stationary method is convenient for problems in which the front
speed depends on independent variables, such as a photoresist rate func-
tion, and only applies if the speed function does not change sign.

o  The time-dependent level set method is designed for more delicate speed
functions, and can accurately evolve fronts under highly complex argu-
ments.

In the next part, we discuss a variety of applications which employ both
the time-dependent level set method and the fast marching method for mono-
tonically advancing fronts.
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PART V: APPLICATIONS

In this part, we present a series of applications of both the time-dependent
level set method and the fast marching level set method to propagating in-
terfaces. This is only a subset of the level set applications in the literature;
throughout, we provide references to many other applications.

18. Geometry

In this section, we consider application of level set methods to problems in
the geometric evolution of curves and surfaces. The motion will depend solely
on local geometric properties such as normal direction and curvature; non-
etheless, this is a fascinating and rich area.

18.1. Curvature flow

Suppose we are given a hypersurface in R™ propagating with some speed F(x).
Previously, we have considered speed functions of the form F(k) = 1 — ex,
where & is the curvature. Let us now focus on a special speed function,
namely F' = —g, where & is the curvature. This corresponds to a geometric
version of the heat equation; large oscillations are immediately smoothed out,
and long-term solutions correspond to dissipation of all information about
the initial state. As we shall see in later sections, curvature motion plays
an important role in many applications such as a modelling term for surface
tension in flexible membranes and a viscous term in physical phenomena.

The remarkable work of Gage and Grayson investigated the motion of a
simple closed curve collapsing under its curvature. First, Gage showed that
any convex curve moving under such a motion remains convex and must
shrink to a point (Gage 1984, Gage and Hamilton 1986). Grayson (1987)
followed this work with a stunning proof that all curves must shrink to a
round point, regardless of their initial shape.

In Fig. 26, we take an odd-shaped initial curve and view this as the zero
level set of a function defined in all of R%2. Here, for illustration, we have
¢ such that ¢ < 0 as black and ¢ > 0 as white, thus the zero level set is
the boundary between the two. As the level curves flow under curvature,
the ensuing motion carries each to a point, which then disappears. In the
evolution of the front, one clearly sees that the large oscillations disappear
quickly, and then, as the front becomes circular, motion slows, and the front
eventually disappears.

In three dimensions, flow under mean curvature does not necessarily result
in a collapse to a sphere. Huisken (1984) showed that convex shapes shrink to
spheres as they collapse, analogous to the result of Gage. However, Grayson
(1989) showed that non-convex shapes may in fact not shrink to a sphere,
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Fig. 26. F(k) = —k.

and provided the counterexample of the dumbbell. A narrow handle of a
dumbbell may have such a high inner radius that the mean curvature of the
saddle point at the neck may still be positive, and hence the neck will pinch
off.

As illustration, in Fig. 27, taken from Chopp and Sethian (1993), we show
two connected dumbbells collapsing under mean curvature. As the intersec-
tion point collapses, the necks break off and leave a remaining ‘pillow’ region
behind. This pillow region collapses as well, and eventually all five regions
disappear.

Finally, what about self-similar shapes? In two dimensions, it is clear that
a circle collapsing under its own curvature remains a circle; this can be seen
by integrating the ordinary differential equation for the changing radius. In



360 J. A. SETHIAN

OO Q,- Q Cc0O0 ©-0O

Fig. 27. Collapse of two-handled dumbbell.

(a) Self-similar cube with holes (b) Self-similar octahedron with holes

Fig. 28. Self-similar shapes.

three dimensions, a sphere is self-similar under mean curvature flow, since
its curvature is always constant. Angenent (1992) proved the existence of
a self-similar torus that preserves the balance between the competing pulls
towards a ring and a sphere.

In order to devise an algorithm to produce self-similar shapes, two things
are required. First, since hypersurfaces get smaller as they move under their
curvature, a mechanism is needed to ‘rescale’ their motion so that the evolu-
tion can be continued towards a possible self-similar shape. Second, a way of
pushing the evolving fronts back towards self-similarity is required. Chopp
has accomplished both in a clever numerical algorithm that produces a family
of self-similar surfaces; see Chopp (1994). His family comes from taking a
regular polyhedron (for example, a cube), and drilling holes in each face. The
resulting figure then evolves according to auxiliary level set equations, which
contain the re-scaling as part of the equation of motion. Two such self-similar
surfaces are shown in Fig. 28.

18.2. Grid generation

Imagine that one is given a closed body, either as a curve in two space di-
mensions, or a surface in three space dimensions. In many situations, one
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wishes to generate a logically rectangular, body-fitted grid around or inside
this body. By logically rectangular, we mean that each node of the grid has
four neighbours (in two dimensions; in three dimensions, there are six neigh-
bours). By body-fitted, we mean that the grid aligns itself with the body so
that one set of coordinate lines matches the body itself. This grid generation
problem is difficult in part because of the competing desires of uniformity in
cell area and mesh orthogonality; we refer the interested reader to Knupp and
Steinberg (1993).

Level set techniques offer an interesting technique for generating such grids.
The idea, as presented in Sethian (1994), is to exploit the geometric nature
of the problem and view the body itself as the initial position of an interface
that must be advanced outwards away from the body. The initial position
of the interface and its position at later times forms one set of grid lines; its
orthogonal set forms the other. The body is propagated outwards with speed
F = 1—e¢k; by finding the zero level set at discrete times, the set of coordinate
lines that encircle the body is found. Construction of transverse lines normal
to the body are obtained by following trajectories of V¢. Additional node
adjustment is possible through application of additional smoothing operators.
Node placement on the boundary and the ensuing exterior/interior grid can
be automatically controlled. For details, see Sethian (1994).

This technique can almost be viewed as a hyperbolic solver. However, by
solving the correct evolution equation for an advancing front, we avoid the
difficulties of shock formation and colliding characteristics that plague most
hyperbolic techniques. User intervention is kept to a minimum; for the most
part, grids are generated automatically without the need to adjust parameters.

In Fig. 29, we show a variety of grids constructed using this level set
approach, starting with relatively smooth grids and ending with a three-
dimensional grid around an indented dumbbell. As can be seen, interior
and exterior grids can be created, with the capability of handling significant
corners and cusps. The grids are automatically created; there has been no
adjustment of parameters in the creation of these different grids.

18.3. Image enhancement and noise removal

The previous sections concerned geometrical motion of a particular hyper-
surface of interest. Next, we turn to a level set problem in which all the level
sets have meaning, and must be evolved.

The goal in this section is to apply some of the level set methodology
to image enhancement and noise removal. To do so, we first need a few
definitions. Define an image to be an intensity map I(x,y) given at each
point of a two-dimensional domain. The range of the function I(z,y) depends
on the type of image: for monochrome images, the range is {0,1}; for grey-
scale images, I(z,y) is a function mapping into {0, 1,...,255}; and for colour
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Fig. 30. An image I(z,y) with noise.

images, I(z,y) is a vector-valued function into some colour-space, typically
either RGB or HSI.

Given such an image, two goals are to remove noise from the image (see
Fig. 30) without sacrificing useful detail, and to enhance or highlight certain
features. A straightforward and widely used approach is the Gaussian filter,
in which both 1-D and 2-D signals are smoothed by convolving them with
a Gaussian kernel; the degree of blurring is controlled by the characteristic
width of the Gaussian filter. If the image is viewed as a surface, this convolu-
tion will reduce spikes as they blend into the background values. In this sense,
the Gaussian removes noise. However, the Gaussian is an isotropic operator;
it smoothes in all directions, and sharp boundaries will also be blurred. The
goal is to improve upon this basic idea and remove noise without being forced
into too much blurring. A variety of techniques has been introduced to im-
prove upon this basic idea, including anisotropic diffusion schemes, which
perform intraregion smoothing in preference to interregion smoothing (see
Perona and Malik (1990)), as well as Wiener filters, and wavelet schemes.

Alvarez, Lions and Morel (1992) introduced a significant advancement in
noise removal by employing, in part, some of the above ideas about curvature
flow and level set equations. Consider the equation

I, =F|VI h F=V VIy_ 18.1

t = F|VI|  where = -(W>—n. (18.1)
This is our standard curvature evolution equation. An attractive quality of
this motion is that sharp boundaries are preserved: smoothing takes place
inside a region, but not across region boundaries. Of course, as shown by
Grayson’s theorem, eventually all information is removed as each contour
shrinks to zero and vanishes.
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An alternative approach is due to Rudin, Osher and Fatemi (1992). They
take a total variation approach to the problem, which leads to a level set meth-
odology and a very similar curvature-based speed function, namely F'(k) =
k/|I]; see also Osher and Rudin (1990). Following these works, a variation on
these two approaches was produced by Sapiro and Tannenbaum (1993b). In
that work, a speed function of the form F(x) = x!/3 was employed. In each
of these schemes, all information is eventually removed through continued
application of the scheme. Thus, a ‘stopping criterion’ is required.

A recent level set scheme for noise removal and image enhancement was
introduced by Malladi and Sethian (1995) and Malladi and Sethian (1996a).
The scheme results from returning to the original ideas of curvature flow, and
exploiting a ‘min/max’ function, which correctly selects the optimal motion
to remove noise. It has two highly desirable features:

1 there is an intrinsic, adjustable definition of scale within the algorithm,
such that all noise below that level is removed, and all features above
that level are preserved

2 the algorithm stops automatically once the sub-scale noise is removed;
continued application of the scheme produces no change.

These two features are quite powerful, and lead to a series of open questions
about the morphology of shape and asymptotics of scale-removal; for details,
see Malladi and Sethian (1996a).

The min/maz flow

Consider the equation
¢ = F|V¢|. (18.2)

A curve collapsing under its curvature will correspond to speed F' = . Now,
consider two variations on the basic curvature flow, namely

F(k) = min(k, 0.0) F(k) = max(k,0.0).

Here, we have chosen the negative of the signed distance in the interior, and
the positive sign in the exterior region. The effect of flow under F(k) =
min(k, 0.0) is to allow the inward concave fingers to grow outwards, while
suppressing the motion of the outward convex regions. Thus, the motion
halts as soon as the convex hull is obtained. Conversely, the effect of flow
under F'(k) = max(k,0.0) is to allow the outward regions to grow inwards
while suppressing the motion of the inward concave regions. However, once
the shape becomes fully convex, the curvature is always positive and the flow
becomes the same as regular curvature flow.
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Our goal is to select the correct choice of flow that smoothes out small
oscillations, but maintains the essential properties of the shape. In order to
do so, we discuss the idea of the min/max switch.

Consider the following speed function, introduced in Malladi and Sethian
(1995) and refined considerably in Malladi and Sethian (1996a):

. . R=kh
(Stencil=k _ { mll’l(/i, O) if Ave¢(1v ) <90 (18 3)

min/max ) max(k,0) if A"eg@% 20,

where Aveg(igg is defined as the average value of ¢ in a disk of radius R = kh
centred around the point (z,y). Here, h is the step size of the grid. Thus,
given a StencilRadius k, the above yields a speed function that depends on
the value of ¢ at the point (z,y), the average value of ¢ in neighbourhood of
a given size, and the value of the curvature of the level curve going through
(z,9).

We can examine this speed function in some detail. For ease of exposition,
consider a black region on a white background, chosen so that the interior
has a negative value of ¢ and the exterior a positive value.

StencilRadius k& = 0 If the radius R = 0 (k = 0), then choice of min(k, 0)
or max(k,0) depends only on the value of ¢. All the level curves in the
black region will attempt to form their convex hull, when seen from the
black side, and all the level curves in the white region will attempt to
form their convex hull. The net effect will be no motion of the zero level
set itself, and the boundary will not move.

StencilRadius k = 1 If the average is taken over a stencil of radius kh,
then some movement of the zero level corresponding to the boundary
is possible. If there are some oscillations in the front boundary on the
order of one or two pixels, then the average value of ¢ at the point (z,y)
can have a different sign from the value at (z,y) itself. In this case,
the flow will act as if it were selected from the ‘other side’, and some
motion will be allowed until these first-order oscillations are removed,
and a balance between the two sides is again reached. Once this balance
is reached, further motion is suppressed.

StencilRadius k > 1 By taking averages over a larger stencil, larger amounts
of smoothing are applied to the boundary. In other words, decisions
about where features belong are based on larger and larger perspect-
ives. Once features on the order of size k are removed from the bound-
ary, balance is reached and the flow stops automatically. As an example,
let kK = 00. Since the average will compute to a value close to the back-
ground colour, on this scale all structures are insignificant, and the max
flow will be chosen everywhere, forcing the boundary to disappear.
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(a) Initial boundary (b) Min/max flow: stencil

‘noisy’ shape radius = 0; (T = x)

(¢) Min/max flow: stencil (d) Continued min/max flow:
radius = 1; (T = o0) stencil radius = 2; (T = o0)

Fig. 31. Motion of star-shaped region with noise under min/max flow at various
stencil levels.

To show the results of this hierarchical flow, we start with an initial shape
in Fig. 31a and first perform the min/max flow until steady state is reached
with stencil size zero in Fig. 31b. In this case, the steady state is achieved
immediately, and the final state is the same as the initial state. Min/max flow
is then performed until steady state is achieved with stencil size k = 1 in Fig.
31c, and then min/max flow is again applied with a larger stencil until steady
state is achieved in Fig. 31d.

These results can be summarized as follows:

e  the min/max flow switch selects the correct motion to diffuse the small-
scale pixel notches into the boundary

e  the larger, global properties of the shape are maintained
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e  furthermore, and equally importantly, the flow stops once these notches
are diffused into the main structure

e  edge definition is maintained and, in some global sense, the area inside
the boundary is preserved

e  the noise removal capabilities of the min/max flow are scale-dependent,
and can be hierarchically adjusted

e  the scheme requires only a nearest neighbour stencil evaluation.

Eztension of min/maz scheme to grey-scale, texture, and colour images

The above technique applies to monochrome images. An extension to grey-
scale images can be made by replacing the fixed threshold test value of 0 with
a value that depends on the local neighbourhood. As designed in Malladi and
Sethian (1995), let Tipreshola be the average value of the intensity obtained in
the direction perpendicular to the gradient direction. Note that since the
direction perpendicular to the gradient is tangent to the iso-intensity contour
through (z, y), the two points used to compute are either in the same region,
or the point (z,y) is an inflection point, in which the curvature is in fact zero
and the min/max flow will always yield zero. By choosing a larger stencil we
mean computing this tangential average over endpoints located further apart.

Formally then, our min/max scheme becomes:

. max(k,0) if Average(z,y) < Tinresho
I et R

min(x,0) otherwise.

Further details about this scheme may be found in Malladi and Sethian
(1996a). In that work, these techniques are applied to a wide range of im-
ages, including salt-and-pepper, multiplicative and Gaussian noise applied to
monochrome, grey-scale, textured, and colour images.

Results

In this section, we provide a few examples of this min/max flow. In Fig. 32,
50% and 80% grey-scale noise is added to a monochrome image of a hand-
written character. The noise is added as follows: X% noise means that at
X% of the pixels, the given value is replaced with a number chosen with
uniform distribution between 0 and 255. Here, the min/max switch function
is taken relative to the value 127.5 rather than zero. The restored figures are
converged. Continued application of the scheme yields almost no change in
the results.

Next, salt-and-pepper grey-scale noise is removed from a grey-scale image.
The results are obtained as follows. Begin with 40% noise in Fig. 33a. First,
the min/max flow from equation (18.4) is applied until a steady state is
reached (Fig. 33b). This removes most of the noise. The scheme is then
continued with a larger threshold stencil for the threshold to remove further
noise (Fig. 33c). For the larger stencil, we compute the average over a larger
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(a) 50% noise (b) Restored (c) 80% noise (d) Restored

»

Fig. 32. Image restoration of binary images with grey-scale salt-and-pepper noise
using min/max flow: restored shapes are final shape obtained (T’ = oo).

(a) 40% noise (b) Min/max flow (¢) Cont: larger stencil

Fig. 33. Min/max flow applied to grey-scale image.

disk and calculate the threshold value Tty eshold Using a correspondingly longer
tangent vector.

Finally, we show the effect of this scheme applied to an image upon which
100% Gaussian grey-scale noise has been superimposed; a random compon-
ent drawn from a Gaussian distribution with mean zero is added to each
(every) pixel. Fig. 34 shows the ‘noisy’ original together with the reconstruc-
ted min/max flow image.

19. Combustion, crystal growth, and two-fluid flow

In this section, we consider some applications of the level set methodology
to a large and challenging class of interface problems. These problems are
characterized by physical phenomena in which the front acts as a boundary
condition to a partial differential equation, and the solution of this equation
controls the motion of the front. In combustion problems, the interface is a
flame, and both exothermic expansion along the front and flame-induced vor-
ticity drive the underlying fluid mechanics. In crystal growth and dendritic
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Original Reconstructed

Fig. 34. Continuous Gaussian noise added to image.

formation, the interface is the solid/liquid boundary, and is driven by a jump
condition related to heat release along the interface. In two-fluid problems,
the interface represents the boundary between two immiscible fluids of sig-
nificantly different densities and/or viscosities, and the surface tension along
this interface plays a significant role in the motion of the fluids.

From an algorithmic perspective, the significant level set issue is that in-
formation about the speed of the front itself must be somehow transferred to
the Eulerian framework that updates the level set function at the fixed grid
points. This is a significant challenge for two reasons.

e In many situations, the interface velocity is determined by the interaction
of local geometric quantities of the front itself (such as curvature) with
global variables on either side of the interface (for example, jumps in
velocity, heat, or concentration of species). If these global variables are
calculated on a grid, it may be difficult to extend the values to the front
itself where they are required to evaluate the speed function F. However,
these quantities are only known at grid points, not at the front itself,
where the relationship has meaning.

e [t may be very difficult to extend this interface velocity back to the grid
points (that is, to the other level sets). This problem, known as the
extension problem (see Adalsteinsson and Sethian (19956, 1995¢)) must
be solved in order for the level set method to work; some mechanism of
updating the grid points in the neighbourhood of the zero level set is
required.
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In this section, we discuss three application areas where these problems
have been solved. The common link in these sections is the presence of a
term in the equation represented by a Dirac delta function along the interface.
The interested reader is referred to the literature cited below for a detailed
description of the algorithms and results.

19.1. Turbulent combustion of flames and vorticity, exothermicity, flame
stretch and wrinkling

In Rhee et al. (1995), a flame is viewed as an infinitely thin reaction zone,
separating two regions of different but constant densities. The hydrodynamic
flow field is two dimensional and inviscid, and the Mach number is vanishingly
small. This corresponds to the equations of zero Mach number combustion,
introduced in Majda and Sethian (1984). The flame propagates into the
unburnt gas at a prescribed flame speed S,, which depends on the local
curvature, due to the focusing/de-focusing of heating effects as a function of
flame shape.

As the reactants are converted to products (that is, as the material makes
the transition from ‘unburnt’ to ‘burnt’), the local fluid undergoes volume
increase known as exothermic expansion, associated with the density jump.
At the same time, pressure gradients tangential to the flame cause different
accelerations in the light and heavy gases. This causes a production of vorti-
city (known as baroclinic torque) across the flame, since the pressure gradient
is not always aligned with the density gradient. Together, the burning of the
flame acts as source of vorticity and volume for the underlying hydrodynamic
field, both of which in turn affect the evolution of the flame interface.

This model presents a significant challenge for a level set method. The
flame is tracked by identifying the flame interface as the zero level set of the
level set function. The curvature is determined using the expression given
in equation (11.1). The vortical field is represented by a collection of vortex
blobs as in vortex method; see Chorin (1973) and Sethian (1991). The exo-
thermic field is determined by solving a Poisson’s equation on the underlying
grid with right-hand side given by smearing the Dirac delta function to the
neighbouring grid points. The no-flow boundary is satisfied by the addition
of a potential flow that exactly cancels the existing flow field. Finally, the
tangential stretch component is evaluated by tracing the values of the tan-
gential velocity from the given position backwards along the normal to the
front to evaluate the change in tangential velocity. For complete details, see
Rhee et al. (1995).

Fig. 35, taken from Rhee et al. (1995), shows two results from this al-
gorithm. We compare an anchored flame, with upstream turbulence imposed
by a statistical distribution of positive and negative vortices. The goal here
is to understand the effect of exothermicity and flame-induced vorticity on
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(a) Flame with exothermicity (b) Flame with exothermicity and vorticity

Fig. 35. Comparison of flame brush.

the flame wrinkling and stability. In Fig. 35a, we show an anchored flame in
the oncoming turbulent field; here, different time snapshots are superimposed
upon each other to show the flame ‘brush’. In Fig. 35b, we turn on the effects
of both volume expansion (a large density jump) and vorticity generation
along the flame front. The resulting flow field generates a significantly wider
flame brush, as the vorticity induces flame wrinkling and the exothermicity
affects the surrounding flow field.

In the above application of the level method, the front acted as source of
volume and vorticity. In the next application, developed in Sethian and Strain
(1992), the interface motion is controlled by a complex jump condition.

19.2. Crystal growth and dendritic solidification

Imagine a container filled with a liquid such as water, which has been so
smoothly and uniformly cooled below its freezing point that the liquid does
not freeze. The system is now in a ‘metastable’ state, where a small dis-
turbance such as dropping a tiny seed of the solid phase into the liquid will
initiate a rapid and unstable process known as dendritic solidification. The
solid phase will grow from the seed by sending out branching fingers into
the distant cooler liquid nearer the undercooled wall. This growth process is
unstable in the sense that small perturbations of the initial data can produce
large changes in the time-dependent solid/liquid boundary.

Mathematically, this phenomenon can be modelled by a moving bound-
ary problem. The temperature field satisfies a heat equation in each phase,
coupled through two boundary conditions on the unknown moving solid/liquid
boundary, as well as initial and boundary conditions. First, the normal ve-
locity of the interface depends on the jump in the normal component of the
heat flux across the interface. Second, the temperature at the interface itself
depends on the local curvature and the velocity. Thus, the goal is to incor-
porate the influence of the front on the heat solvers across the interface. For
further details, see Cahn and Hilliard (1958) and Mullins and Sekerka (1963).
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A variety of techniques is possible to approximate numerically these equa-
tions of motion. One approach is to solve the heat equation in each phase
and try to move the boundary so that the two boundary conditions are satis-
fied. Another approach is to recast the equations of motion as a single integral
equation on the moving boundary and solve the integral equation numerically.

In Sethian and Strain (1992) a hybrid level set/boundary integral approach
was developed, which includes the effects of undercooling, crystalline aniso-
tropy, surface tension, molecular kinetics, and initial conditions. The central
idea is to exploit a transformation due to Strain (1989), which converts the
equations of motion into a single, history-dependent boundary integral equa-
tion on the solid/liquid boundary, given by

¢
en(n)/@—l—ev(n)V-f—UnLH/ » )K(:c,a:',t—t') V(z',¢')dz’ dt' = 0 (19.1)
0 24

for all  on the interface I'(t). Here, K is the heat kernel, €, and ey are
constants, U is the temperature, V' is the normal velocity of the interface,
and H is the latent heat of solidification. Note that the velocity V' depends
not only on the position of the front but also on its previous history. Thus,
as shown in Strain (1989), information about the temperature off the front is
stored in the previous history of the boundary. This can be evaluated by a
combination of fast techniques; see Strain (1988, 1989, 1990) and Greengard
and Strain (1990).

In Fig. 36, we show one example from Sethian and Strain (1992) in which
the effect of changing the latent heat of solidification H is analysed. Since
the latent heat controls the balance between the pure geometric effects and
the solution of the history-dependent heat integral, increasing H puts more
emphasis on the heat equation/jump conditions. Calculations are performed
on a unit box, with a constant undercooling on the side walls of ug = —1. The
kinetic coefficient is €y = .001; the surface tension coefficient is ¢, = .001;
there is no crystalline anisotropy. The initial shape was a perturbed circle.
A 96 x 96 mesh is used with time step At = .00125. The calculations are all
plotted at the same time.

In the calculations shown, H is varied smoothly. In Fig. 36a, H = .75; the
dominance of geometric motion serves to create a rapidly evolving boundary
that is mostly smooth. H is increased in each successive figure, ending with
H = 1.0 in Fig. 36d. As the latent heat of solidification is increased, the
growing limbs expand outwards less smoothly, and instead develop flat ends.
These flat ends are unstable and serve as precursors to tip splitting. We also
note that the influence of the heat integral slows down the evolving bound-
ary, as witnessed by the fact that all the plots are given at the same time.
Presumably, increasing latent heat decreases the most unstable wavelength,
as described by linear stability theory. The final shape shows side-branching,
tip splitting, and the strong effects of the side walls.



LEVEL SET METHODS FOR PROPAGATING INTERFACES 373

Upper left: H =.75 Upper right: H = .833
Lower left: H = 916 Lower right: H = 1.0

Fig. 36. Effect of changing latent heat.

20. Two-phase flow

In this section, we discuss level set methods applied to problems of two-phase
flow.

Two early applications of fluid dynamical problems using level set methods
to track the interface are the projection method calculations of compressible
gas dynamics of Mulder, Osher and Sethian (1992) and the combustion cal-
culations of Zhu and Sethian (1992). Each viewed the interface as the zero
level set, and tracked this interface as a method of separating the two regions.

Firstly, in Mulder et al. (1992) the evolution of rising bubbles in com-
pressible gas dynamics was studied. The level set equation for the evolving
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interface separating two fluids of differing densities was incorporated inside
the conservation equations for the fluid dynamics. Both the Kelvin—Helmholtz
instability and the Rayleigh—Taylor instability were studied; the density ratio
was about 30 to 4, and both gases were treated as perfect gases. Considerable
discussion was devoted to the advantages and disadvantages of embedding the
level set equation as an additional conservation law.

Next, in the combustion calculations presented in Zhu and Sethian (1992),
the interface represented a flame propagating from the burnt region into the
unburnt region. Unlike the above calculations concerning flame stability in
flame holders, in these calculations the flame was viewed as a ‘cold flame’;
that is, the hydrodynamic flow field affected the position of the flame, but
the advancing flame did not in turn affect the hydrodynamic field. In these
calculations, the hydrodynamic field was computed using Chorin’s projection
method (see Chorin (1968)), coupled to the level set approach. The problem
under study was the evolution of a flame inside a swirling two-dimensional
chamber; and the results showed the intermixing that can occur, the creating
of pockets of unburnt fuel surrounded by burnt pockets.

These two works were followed by the work of Chang, Hou, Merriman and
Osher (1994) and Sussman et al. (1994), using projection methods coupled to
the level set equation to study the motion of incompressible, immiscible fluids
where steep gradients in density and viscosity exist across the interface, and
the role of surface tension is crucial.

There are three key aspects of these fascinating calculations. First, us-
ing a formulation first developed by Brackbill, Kothe and Zemach (1992),
the surface tension generated by the level set curvature expression can be
smoothed using a mollified delta function to the neighbouring grid points;
this smoothing denotes a ‘thickness’ for the interface layer, and allows the
role of surface tension to be transported to the grid for inclusion in the pro-
jection method. Second, the contribution due to surface tension is converted
from a delta function to the Heaviside formulation, and incorporated as such
into the projection step. This eliminates the standard numerical instabilities
and oscillations that plague attempts to directly difference the delta function
itself. Third, the level set lines cease to correspond to the distance function
due to the significant variation in fluid velocities across the interface; to re-
distribute the level set contours, the re-initialization idea using iteration on
the sign of ¢ described in equation (13.1) was developed.

The calculations performed using these techniques show a wide range of
applications concerning falling drops, colliding drops, and the role of surface
tension, and open the door to a range of important fluid dynamics applica-
tions. We refer the reader to Sussman et al. (1994) and Chang et al. (1994)
for further details.
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21. Constrained problems: minimal surfaces and shape
recovery

Another set of applications include problems in which the motion of the front
is constrained by external boundary conditions. In this section, we briefly
review some work on the construction of minimal surfaces and shape recovery
from images.

21.1. Minimal surfaces

The basic problem may be stated as follows. Consider a closed curve I'(s)
in R3. The goal is to construct a membrane with boundary I' and mean
curvature zero. In some cases, this can be achieved as follows. Given the
bounding wire frame I', consider some initial surface S(t = 0) whose boundary
isT". Let S(¢) be the family of surfaces parametrized by ¢ obtained by allowing
the initial surface S(t = 0) to evolve under mean curvature, with boundary
always given by I'. Defining the surface S by S = limy_,o, S(t), one expects
that the surface S will be a minimal surface for the boundary I". Several
computational approaches exist to construct such minimal surfaces based on
this approach, including Brakke’s Surface Evolver program (Brakke 1990).
A level set approach to this problem rests on embedding the motion of
the surface towards its minimal energy as the zero level set of a higher-
dimensional function. Thus, given an initial surface S(0) passing through
[, construct a family of neighbouring surfaces by viewing S(0) as the zero
level set of some function ¢ over all of R3. Using the level set equation (3.5),

evolve ¢ according to the speed law F(k) = —k. Then a possible minimal
surface S will be given by
S = lim {z : ¢(z,t) = 0}. (21.1)
t—00

The difficult challenge with the above approach is to ensure that the evolving
zero level set always remains attached to the boundary I'. This is accom-
plished in Chopp (1993), by creating boundary conditions of grid points
closest to the wire frame linking together the neighbouring values of ¢, to
force the level set ¢ = 0 through I'. Thus we obtain a constrained level set
problem: we track mean curvature flow requiring that the evolving zero level
set remains attached to the front.

In Fig. 37, taken from Chopp (1993), the minimal surface spanning two
rings each of radius 0.5 and at positions x = +.277259 is computed. A
cylinder spanning the two rings is taken as the initial level set ¢ = 0. A
27 X 47 x 47 mesh with space step 0.025 is used. The final shape is shown in
Fig. 37.
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Fig. 37. Minimal surface: catenoid.

Time = 0.0 Time =0.41 Time = 0.42 Time = 0.50
Fig. 38. Splitting of catenoid.

Next, in Fig. 38 (again taken from Chopp (1993)), this same problem is
computed, but the rings are placed far enough apart so that a catenoid solu-
tion cannot exist. Starting with a cylinder as the initial surface, the evolution
of this surface is computed as it collapses under mean curvature while re-
maining attached to the two wire frames. As the surface evolves, the middle
pinches off and the surface splits into two surfaces, each of which quickly
collapses into a disk. The final shape of a disk spanning each ring is indeed a
minimal surface for this problem. This example illustrates one of the virtues
of the level set approach. No special cutting or ad hoc decisions are employed
to decide when to break the surface. Instead, viewing the zero level set as
but one member of a family of flowing surfaces allows this smooth transition.
Further results may be found in Chopp (1993).

21.2. Shape detection/recovery

Imagine that one is given an image. The goal in shape detection/recoveryis to
extract a particular shape from that image; here, ‘extract’ means to produce
a mathematical description of the shape, which can be used in a variety of
forms. The work on level set techniques applied to shape recovery described
here was first presented in Malladi et al. (1994); further work using the level
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set scheme in the context of shape recovery may be found in Malladi, Sethian
and Vemuri (1995b), Malladi and Sethian (1994), Malladi, Adalsteinsson and
Sethian (1995a) and Caselles, Catte, Coll and Dibos (n.d.). We refer the
interested reader to those papers for motivation, details, and a large number
of examples.

Imagine that we are given an image, with the goal of isolating a shape
within the image. Our approach (see Malladi et al. (1994)) is motivated by
the active force contour/snake approach to shape recovery given by Kass,
Witkin and Terzopoulos (1988). Consider a speed function of the form 1 —ex
(1 + ex), where € is a constant. As discussed earlier, the constant acts as
an advection term, and is independent of the moving front’s geometry. The
front uniformly expands (contracts) with speed 1 (—1) depending on the sign,
and is analogous to the inflation force defined in Cohen (1991). The diffusive
second term €K depends on the geometry of the front and smooths out the
high curvature regions of the front. It has the same regularizing effect on the
front as the internal deformation energy term in thin-plate-membrane splines
(Kass et al. 1988).

Our goal now is to define a speed function from the image data that acts
as a halting criterion for this speed function. We multiply the above speed
function by the term

1

where the expression G, * I denotes the image convolved with a Gaussian
smoothing filter whose characteristic width is o. The term |VG, * I(z,y)|
is essentially zero except where the image gradient changes rapidly, in which
case the value becomes large. Thus, the filter k;(z,y) is close to unity away
from boundaries, and drops to zero near sharp changes in the image gradient,
which presumably corresponds to the edge of the desired shape. In other
words, the filter function anticipates steep changes in the image gradient, and
stops the evolving front from passing out of the desired region.

Thus the algorithm works as follows. A small front (typically a circle)
is started inside the desired region. This front then grows outwards and is
stopped at the shape boundary by the filter term, which drops the value of
the speed function F' to zero.

There are several desirable aspects of this approach:

e  the initial front can consist of many fronts; due to the topological capab-
ilities of the level set method, these fronts will merge into a single front
as it grows into the particular shape

e the front can follow intricate twists and turns in the desired boundary

e  use of narrow band techniques makes the algorithm very fast

e  the technique can be used to extract three-dimensional shapes as well
by initializing in a ball inside the desired region
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(a) Initialization (b) Intermediate stage (e¢) End of stage one

(d) Intermediate stage two (e) End of stage two
Fig. 39. Shape extraction from heart data.

e  small isolated spots of noise where the image gradient changes substan-
tially are ignored; the front propagates around these points and closes
back in on itself and then disappears.

As a demonstration, level set shape recovery techniques are applied to the
difficult problem of extracting images of the left and right ventricles of the
heart. In these calculations, taken from Malladi and Sethian (19965), the
problem is initialized by simultaneously tagging both the left and the right
ventricle; the right ventricle is found by the evolving front, as is the left
ventricle. Note that in the evolution of the right ventricle front, the papillary
muscle is also found; see Fig. 39. This feature is obtained by initializing with
a single contour, enclosing the papillary muscle and separating into an inner
ring and outer ring. After the outer walls of the left and right ventricles are
recovered, the outer wall of the right ventricle is extracted; this is done by
temporarily relaxing the stopping criterion, and allowing the front to move
past the inner wall of the right ventricle. Once this occurs, the stopping
criterion is turned back on, and the front expands until the outer wall is
found.
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This technique for shape detection/recovery can be performed in three
dimensions if three-dimensional data is available. For details of this and
related work, see Malladi et al. (1994), Malladi et al. (1995b) and Malladi
and Sethian (1996b).

22. Applications of the fast marching level set method

In the case of a monotonically advancing front whose speed in the normal
direction depends only on position, we have previously seen that this can be
converted into a stationary time problem. Furthermore, we have developed a
fast marching algorithm for solving the Eikonal equation associated with this
problem. Here, we show two applications of this technique.

22.1. Shape-from-shading

Suppose we illuminate a non-self-shadowing surface from a single point light
source. At each point of the surface, one can define the brightness map I
which depends on the reflectivity of the surface and the angle between the
incoming light ray and the surface normal. Points of the surface where the
normal is parallel to the incoming beam are brightest; those where the normal
is almost orthogonal are darkest (again, we rule out surfaces that are self-
shadowing). The goal of shape-from-shading is to reconstruct the surface from
its brightness function I.

We point out right away that the problem as posed does not have a unique
solution. For example, imagine a beam coming straight down; it is impossible
to differentiate a surface from its mirror image from the brightness function.
That is, a deep valley could also be a mountain peak. Other ambiguities
can exist, we refer the reader to Rouy and Tourin (1992) and Kimmel and
Bruckstein (1992). Nonetheless, in its simplest form the shape-from-shading
problem provides a simple example of an Eikonal equation that can be solved
using our fast marching level set method.

We begin by considering a surface T'(x, y); the surface normal is then given
by

(_Txa ‘Tya 1)

T vVTE A )R

(22.1)

Let (o, B,7) be the direction from the light source. In the simplest case of
a Lambertian surface, the brightness map is given in a very simple form by

I(z,y) = (a,8,7) - n. (22.2)

Thus, the shape-from-shading problem is to reconstruct the surface T'(z,y)
given the brightness map I(z,y).
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(a) Original (b) Brightness (c) Reconstructed

Fig. 40. Shape-from-shading reconstruction of paraboloid surface.

Consider the simplest case, namely that in which the light comes from
straight down. Then the light source vector is (0,0, 1), and we have

1

I(z,y) = Zlv_TW (22.3)

Rearranging terms, we then have an Fikonal equation for the surface, namely

/1

where n 1s the normal to the surface. We still need initial conditions for this
problem. Let us imagine that at extrema of T' we know the values of T. Then
we can construct a viable solution surface using our fast marching method.

To demonstrate, we start with a given surface, first compute the brightness
map I, and then reconstruct the surface by solving the above Eikonal equation.
In Fig. 40, we show a paraboloid surface of the form T = 3. — 3(x? + y?).
In Fig. 40a we show the original surface, in Fig. 40b we show the brightness
map I(z,y), and in Fig. 40c we show the reconstructed surface. This surface
is ‘built’ by setting T = 3 at the point where the maximum is obtained, and
then solving the Eikonal equation.

As a more complex example, we use a double Gaussian function of the form

T(z,y) = 30~ (@7 +y%) _ 9,—20((z~.05)?+(y—.05)?) (22.5)

Once again, we compute the brightness map and then reconstruct the surface;
see Fig. 41.

We have barely touched the topic of shape-from-shading; in the case of
multiple extrema and non-vertical light sources, more care must be taken,
and we refer the interested reader to the above sources. Nonetheless, the fast
marching level set algorithm is extremely effective for these problems.
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(a) Original (b) Brightness {c) Reconstructed

Fig. 41. Shape-from-shading reconstruction of double Gaussian surface.

22.2. Photolithography development

One component process in the manufacturing of microchips is the stage of
lithography development; see Section 17. In this process, the resist properties
of a material have been altered due to exposure to a beam which has been
partially blocked by a pattern mask. The material is then ‘developed’, which
means the material with less resistivity is etched away. While the process is
discussed in more detail in the next section, at this point we simply note that
the problem reduces to that of following an initially plane interface propagat-
ing downwards in three dimensions, where the speed in the normal direction
is given as a supplied rate function at each point. The speed F = F(x,y, z)
depends only on position; however, it may change extremely rapidly. The
goal in lithography development is to track this evolving front. In order to
develop realistic structures in three-dimensional development profiles, a grid
of size 300 x 300 x 100 is not unreasonable; hence a fast algorithm is required
to perform the development step.

Start with a flat profile at height z = 1 in the unit cube centred at (.5, .5, .5)
and follow the evolution of the interface downwards with speed given by the
model Gaussian rate function

F(z,y,2) = e 8 (cos?(122) + .01), (22.6)

where r = \/(z — .5)2 + (y — .5)2). This rate function F' corresponds to the
effect of standing waves which change the resist properties of the material,
and causes sharp undulations and turns in the evolving profile. In Fig. 42, we
show the profile etched out by such an initial state; the calculation is carried
out until T' = 10.

In Fig. 43, we give timings for a parameter study on a SparclO for the
speed function F = e=%4(")(cos?(6z) + .01). We note that loading the file
containing the model Gaussian rate function F' is a significant proportion of
the total compute time.
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Fig. 42. Lithographic development on 50 x 50 x 50 grid.

Grid size | Time to load rate file Time to propagate front Total time

50 x 50 x 50 0.1 secs 0.7 secs 0.8 secs
100 x 100 x 100 1.2 secs 8.2 secs 9.4 secs
150 x 150 x 150 3.9 secs 37.8 secs 41.7 secs
200 x 200 x 200 9.0 secs 80.0 secs 89 secs

Fig. 43. Timings for development to T=10: Sparc 10.

Further details of the application of our fast marching level set method may
be found in Sethian (1995¢, 1996) and Sethian et al. (1996).

23. A final example: etching and deposition for the
microfabrication of semiconductor devices

23.1. Background

A goal of numerical simulations in microfabrication of semiconductor devices
is to model the process by which silicon devices are manufactured. Here, we
briefly summarize the stages involved. First, a single crystal ingot of silicon
is extracted from molten pure silicon. This silicon ingot is then sliced into
several hundred thin wafers, each of which is then polished to a smooth fin-
ish. A thin crystalline layer is then oxidized, a light sensitive ‘photoresist’
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is applied, and then the wafer is covered with a pattern mask that shields
part of the photoresist. This pattern mask contains the layout of the circuit
itself. Under exposure to a light or an electron beam, the exposed photoresist
polymerizes and hardens, leaving an unexposed material which is then etched
away in a dry etch process, revealing a bare silicon dioxide layer. lonized
impurity atoms such as boron, phosphorus and argon are then implanted into
the pattern of the exposed silicon wafer, and silicon dioxide is deposited at
reduced pressure in a plasma discharge from gas mixtures at a low temper-
ature. Finally, thin films such as aluminium are deposited by processes such
as plasma sputtering, and contacts to the electrical components and compon-
ent interconnections are established. The result is a device that carries the
desired electrical properties.

The above processes produce considerable change in the surface profile as
it undergoes the stages of etching, deposition, and photolithography. This
problem is known as the ‘surface topography problem’ in microfabrication,
and is controlled by a large collection of physical effects, including the vis-
ibility of the etching/deposition source at each point of the evolving profile,
surface diffusion along the front, non-convex sputter laws that produce fa-
ceting, shocks and rarefactions, material-dependent discontinuous etch rates,
and masking profiles.

The underlying physical effects involved in etching, deposition and litho-
graphy are quite complex; excellent reviews are due to Neureuther and his
group: see Helmsen (1994), Scheckler (1991), Scheckler, Toh, Hoffstetter and
Neureuther (1991), Toh (1990) and Toh and Neureuther (1991), as well as
Cale and Raupp (1990a, 19905, 1990c), McVittie, Rey, Bariya et al. (1991)
and Rey, Cheng, McVittie and Saraswat (1991). The effects may be summar-
ized briefly as follows.

Deposition Particles are deposited on the surface, which causes build-up
in the profile. The particles may either isotropically condense from the
surroundings (known as chemical or ‘wet’ deposition), or be deposited
from a source. In the latter case, we envision particles leaving the source
and depositing on the surface; the main advantage of this approach is
increased control over the directionality of surface deposition. The rate
of deposition, and hence growth of the layer, may depend on source
masking, visibility effects between the source and surface point, angle-
dependent flux distribution of source particles, the angle of incidence
of the particles relative to the surface normal direction, reflection of
deposited particles, and surface diffusion effects.

Etching Particles remove material from the evolving profile boundary. The
material may be isotropically removed, as in chemical or ‘wet’ etching, or
chipped away through reactive ion etching, also known as ‘ion milling’.
Similar to deposition, the main advantage of reactive ion etching is en-
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hanced directionality, which becomes increasingly important as device
sizes decrease substantially and etching must proceed in vertical direc-
tions without affecting adjacent features. The total etch rate consists of
an ion-assisted rate and a purely chemical etch rate due to etching by
neutral radicals, which may still have a directional component. As in
the above, the total etch rate due to wet and directional milling effects
can depend on source masking, visibility effects between the source and
surface point, angle-dependent flux distributions of source particles, the
angle of incidence of the particles relative to the surface, reflection/re-
emission of particles, and surface diffusion effects.

Lithography As discussed earlier, the underlying material is treated by an
electromagnetic wave that alters the resist property of the material. The
aerial image is found, which then determines the amount of crosslinking
at each point in the material, which then produces the etch/resist rate
at each point of the material. A profile is then etched into the material,
where the speed of the profile in its normal direction at any point is
given by the underlying etch rate. The key factors that determine the
evolving shape are the etch/resist profile and masking effects.

In the final analysis, the above reduces to our familiar problem of track-
ing the boundary of a moving interface moving under a speed function F'.
Abstractly, we may write

F= FDeposition/Etching + FLithography- (231)

Of course, all effects do not take place at once; however, the design of the nu-
merical algorithm allows various combinations of terms to be ‘turned on’ dur-
ing any time step of the surface advancement. For details and additional cal-
culations of level set methods applied to microfabrication, see Adalsteinsson
and Sethian (19955, 1995¢, 1996).

23.2. Results

FEtching/deposition

We begin in Fig. 44 with a deposition source above a trench, where deposition
material is emitted from a line source from the solid line above the trench. In
this experiment, the deposition rate is the same in all directions. The effects of
shadowing are considered. Fig. 44a shows results for 40 computational cells
along the width of the computed region (between the two vertical dashed
lines); Fig. 44b has 80 cells, and Fig. 44c has 160 cells. The time step for
all three calculations is At = .00625. The calculations are performed with
a narrow band tube width of 6 cells on either side of the front. There is
little change between the calculation with 80 cells and the one with 160 cells,
indicating that convergence has been achieved. As the walls pinch toward
each other, the seen visible angle decreases and the speed diminishes.
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(a) 40 cells (b) 80 cells (c) 160 cells

Fig. 44. Source deposition into trench.

Ton-malling: non-convex sputter laws

A more sophisticated set of examples arises in simulations (for example, of
ion milling) in which the normal speed of the profile depends on the angle
of incidence between the surface normal and the incoming beam. This yield
function is often empirically fit from experiment, and has been observed to
cause such effects as faceting at corners; see Leon, Tazawa, Saito, Yoshi and
Scharfetter (1993) and Katardjiev, Carter and Nobes (1988). As shown in
Adalsteinsson and Sethian (19956 and 1995¢), such yield functions can often
give rise to non-convex Hamiltonians, in which case alternative schemes must
be used. To study this phenomenon, in Fig. 45 we consider several front
motions and their effects on corners. We envision an etching beam coming
down in the vertical direction. In the cases under study here, the angle
@ refers to the angle between the surface normal and the positive vertical.
For this set of calculations, in order to focus on the geometry of sputter
effects on shocks/rarefaction fan development, visibility effects are ignored.
The calculations are made using the schemes for non-convex Hamiltonians
described earlier. Following our usual notation, let F'(6) be the speed of the
front in direction normal to the surface.

In column A, the effects of purely isotropic motion are shown; thus the
yield function is F' = 1. Located above the yield graph are the motions of a
downwards square wave. In column B, the effects of directional motion are
shown; thus the yield function is F' = cos(#). In this case, the horizontal
components on the profile do not move, and vertical components move with
unit speed. In column C, the effects of a yield function of the form F =
(1 + 4sin%(6)] cos(8) are shown.

The results of these calculations are given in Fig. 45. The results show that
the effects of angle dependent yield functions are pronounced. In column A
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Fo) =1 F = cos(6) F = [1 4 4sin?(6)] cos(h)
column A column B column C

Fig. 45. Effect of different yield functions: non-convex scheme.

the isotropic rate produces smooth corners, correctly building the necessary
rarefaction fans in outward corners and entropy satisfying shocks in inward
corners, as discussed and analysed in Sethian (1982 and 1985). In column
B, the directional rate causes the front to be essentially translated upwards,
with minimal rounding of the corners. In column C, the yield function results
in faceting of inward corners where shocks form and sharp corners in the
construction of rarefaction fans.

Discontinuous etch rates

Next, we study the effects of etching through different materials. In this
example, the etch rates are discontinuous, and hence sharp corners develop
in the propagating profile. The results of these calculations are shown in Fig.
46. A top material masks a lower material, and the profile etches through the
lower material first and underneath the upper material. The profile depends
on the ratio of the etch rates. In Fig. 46a, the two materials have the same
etch rate, and hence the front simply propagates in its normal direction with
unit speed, regardless of which material it is passing through. In Fig. 46b,
the bottom material etches four times faster than the top; in Fig. 46c, the
ratio is ten to one. Finally, in Fig. 46d, the ratio is forty to one, in which case
the top material almost acts like a mask.

Stmultaneous etching and deposition
Next, a parameter study of simultaneous etching and deposition is taken from
Adalsteinsson and Sethian (1996). The speed function is

F= (1 - a)FetCh + aFDepositiona (232)
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Fig. 46. Etch ratio = bottom material rate to top material rate.

where

Fuan = (5.2249cos — 5.5914 cos? @ + 1.3665 cos* 9),
FDeposition = /g-Flsotropic + (1 - ﬂ)FSOUrce- (233)

Visibility effects are considered in all terms except isotropic deposition. Fig.
47 shows the results of varying a and 3 between 0 and 1.

23.3. Three-dimensional simulations

Finally, a three-dimensional example of a non-convex sputter yield law is
applied to an indented saddle, which gives rise to faceting as shown in Fig.
48. Complete details of the above and a large variety of simulations of etching,
deposition, and lithography development may be found in Adalsteinsson and
Sethian (19955, 1995¢, 1996).

24, Other work

The range of level set techniques extends far beyond the work covered here.
Here, we point the reader to some additional topics.

On the theoretical side, considerable analysis of level set methods has been
performed in recent years; see, for example, Brakke (1978), Ecker and Huis-
man (1991), Evans and Spruck (1991, 1992q, 19925, 1995), Chen et al. (1991),
Giga and Goto (1992), Giga et al. (1992) and Ambrosio and Soner (1994).
This work has concentrated on many aspects, including questions of exist-
ence and uniqueness, pathological cases, extensions of these ideas to fronts of
co-dimension greater than one (such as evolving curves in three dimensions),
coupling with diffusion equations, links between the level set technique and
Brakke’s groundbreaking original varifold approach.

On the theoretical/numerical analysis side, level set techniques exploit
the considerable technology developed in the area of viscous solutions to
Hamilton-Jacobi equations; see the work in Barles (1993), Crandall, Evans
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F= (1 - a)Fetch + aFDeposition

Feten = (5.2249 cos 6 — 5.5914 cos? 8 + 1.3665 cos? ) cos 8

FDeposition = /BFIsotropic + (1 - IB)FSource
a increases from left to right
[ increases from bottom to top

Fig. 47. Simultaneous etching and deposition.
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Fig. 48. Downward saddle under sputter etch.

and Lions (1984), Crandall, Ishii and Lions (1992), Crandall and Lions (1983)
and Lions (1982).

A wide range of applications relates to level set methods, including work
on minimal arrival times by Falcone (1994), flame propagation work by Zhu
and Ronney (1995), a wide collection of applications from computer vision
by Kimmel (1995), gradient flows applied to geometric active contour models
(Kichenassamy, Kumar, Olver, Tannenbaum and Yezzi 1995), work on affine
invariant scale space (Sapiro and Tannenbaum 1993a), and some related work
on the scalar wave equation (Fatemi, Engquist and Osher 1995). We also refer
the reader to the collection of papers from the International Conference on
Mean Curvature Flow (Buttazzo and Visitin 1994).
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