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Continuation and path following
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The main ideas of path following by predictor—corrector and piecewise-linear
methods, and their application in the direction of homotopy methods and non-
linear eigenvalue problems are reviewed. Further new applications to areas
such as polynomial systems of equations, linear eigenvalue problems, interior
methods for linear programming, parametric programming and complex bi-
furcation are surveyed. Complexity issues and available software are also
discussed.
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1. Introduction

Continuation, embedding or homotopy methods have long served as useful
theoretical tools in modern mathematics. Their use can be traced back at
least to such venerated works as those of Poincaré (1881-1886), Klein (1882—
1883) and Bernstein (1910). Leray and Schauder (1934) refined the tool and
presented it as a global result in topology, viz. the homotopy invariance of
degree. The use of deformations to solve nonlinear systems of equations
may be traced back at least to Lahaye (1934). The classical embedding

* Partially supported by the National Science Foundation via grant no. DMS-9104058.



2 E. ALLGOWER AND K. GEORG

methods were the first deformation methods to be numerically implemented
and may be regarded as a forerunner of the predictor—corrector methods for
path following which we will discuss here.

Because of their versatility and robustness, numerical continuation or path
following methods have now been finding ever wider use in scientific applica-
tions. Our aim here is to present some of the recent advances in this subject
regarding new adaptations, applications, and analysis of efficiency and com-
plexity. To make the discussion relatively self-contained, we review some
of the background of numerical continuation methods. Introductions into
aspects of the subject may be found in the books by Garcia and Zangwill
(1981), Gould and Tolle (1983), Keller (1987), Rheinboldt (1986), Seydel
(1988) and Todd (1976a). The philosophy and notation of the present arti-
cle will be that of our book Allgower and Georg (1990), which also contains
an extensive bibliography up to 1990.

The viewpoint which will be adopted here is that numerical continuation
methods are techniques for numerically approximating a solution curve c
which is implicitly defined by an underdetermined system of equations. In
the literature of numerical analysis, the terms numerical continuation and
path following are used interchangeably.

There are various objectives for which the numerical approximation of ¢
can be used and, depending upon the objective, the approximating technique
is adapted accordingly. In fact, continuation is a unifying concept, under
which various numerical methods may be subsumed which may otherwise
have very little in common. For example, simplicial fixed point methods
for solving problems in mathematical economics, the generation of bifurca-
tion diagrams of nonlinear eigenvalue problems involving partial differential
equations, and the recently developed interior point methods for solving lin-
ear programming problems seem to be quite unrelated. Nevertheless, there
is some benefit in considering them as special cases of path following. We
personally are struck by the remarkable fact that a technique which was ini-
tially developed for solving difficult nonlinear problems now turns out to be
extremely useful for treating various problems which are essentially linear:
e.g. linear eigenvalue problems, and linear programming and complementar-
ity problems.

The remainder of the article is organized as follows. Section 2 contains
the basic ideas of predictor—corrector path following methods. In Section 3
some technical aspects of implementing predictor—corrector methods are ad-
dressed, e.g. the numerical linear algebra involved and steplength strategies.

Section 4 deals with various applications of path following methods. We
begin with a brief discussion of homotopy methods for fixed point problems
and global Newton methods. Then we address the problem of finding multi-
ple solutions. In particular, we discuss recent homotopy methods for finding
all solutions of polynomial systems of equations. Next we survey some path
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following aspects of nonlinear eigenvalue problems, and address the question
of handling bifurcations. Finally, three new developments in path following
are discussed: (1) The solution of linear eigenvalue problems via special ho-
motopy approaches; (2) the handling of parametric programming problems
by following certain branches of critical points via active set strategies; and
(3) the path following aspects involved in the interior point methods for
solving linear and quadratic programming problems.

Section 5 presents an introduction to the principles of piecewise linear
methods. These methods view path following in a different light: instead of
approximately following a smooth solution curve, they exactly follow an ap-
proximate curve (i.e. a polygonal path). Some instances where these meth-
ods are useful are discussed, e.g. linear complementarity problems or homo-
topy methods where predictor—corrector methods are not implementable,
because of lack of smoothness. We also briefly address the related topic of
approximating implicitly defined surfaces.

The issue of the computational complexity of path following is considered
in Section 6. This issue is related to the Newton—Kantorovich theory and is
currently of considerable interest in the context of interior point methods.

We conclude by listing some available software related to path following
and indicate how the reader might access these codes. No attempt to com-
pare or evaluate the various codes is offered. In any case, our opinion is that
path following codes always need to be considerably adapted to the special
purposes for which they are designed. The path following literature offers
various tools for accomplishing such tasks. Although there are some general
purpose codes, probably none will slay every dragon.

The extensive bibliography contains only cited items. Space considera-
tions prohibited the addressing of some important topics, and consequently
some significant recent contributions to the field are not contained in the
bibliography.

2. The basics of predictor—corrector path following

The simplest (and most frequently occurring) case of an underdetermined
system of nonlinear equations contains just one degree of freedom:

H(u) = 0 where H : RV*! — R" is a smooth map. (2.1)

When we say that a map is smooth we shall mean that it has as many
continuous derivatives as the context of the discussion requires. For conve-
nience, the reader may assume C'*°. In order to apply the Implicit Function
Theorem, we need the following standard

Definition 2.1 We call u a regular point of H if the Jacobian H'(u) has
maximal rank. We call y a regular value of H if u is a regular point of
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H whenever H(u) = y. If a point or value is not regular, then it is called
singular.

Let ug € RV*! be a regular point of H such that H(ug) = 0. It follows
from the Implicit Function Theorem that the solution set H ~!(0) can be
locally parametrized about ug with respect to some coordinate. By a re-
parametrization (according to arclength), we obtain a smooth curve ¢ : J —
RN*! for some open interval J containing zero such that for all s € J:

¢(0) =ug (2.2)
H'(c(s))é(s) = 0, (2.3)
el =1, (24)
H'(c(s))
det ( s ) > 0. (2.5)
These conditions uniquely determine the tangent ¢(s). Here and in the fol-
lowing, (.)* denotes the Hermitian transpose and || .|| the Euclidean norm.

Condition (2.4) normalizes the parametrization to arclength. This is only
for theoretical convenience, and it is not an intrinsic restriction. Condition
(2.5) chooses one of the two possible orientations.

The preceding discussion motivates the following

Definition 2.2 Let A be an (N,N+1)-matrix with maximal rank. For
the purpose of our exposition, the unique vector ¢t(A4) € RV satisfying the
conditions

At =0, (2.6)
1t = 1, (2.7)
det( ;‘} ) > 0, (2.8)

will be called the tangent vector induced by A.

Making use of this definition, solution curve ¢(s) is characterized as the
solution of the initial value problem

w=1t(H'(u)), u(0)=muo (2.9)

which in this context is occasionally attributed to Davidenko (1953), see
also Branin (1972). Note that the domain {u € RN*! : 4 is a regular point}
is open. This differential equation is not used in efficient path following
algorithms, but it serves as a useful device in analysing the path. Two
examples are:

Lemma 2.3 Let (a,b) be the maximal interval of existence for (2.9). If a
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is finite, then c(s) converges to a singular zero point of H as s — a, s > a.
An analogous statement holds if b is finite.

Lemma 2.4 Let zero be a regular value of H. Then the solution curve ¢
is defined on the real line and satisfies one of the following two conditions:

1. The curve c is diffeomorphic to a circle. More precisely, there is a
period T > 0 such that c(s1) = ¢(s2) if and only if s; — s2 is an integer
multiple of T'.

2. The curve c is diffeomorphic to the real line. More precisely, c is injec-
tive, and c(s) has no accumulation point for s — too.

See (2.1.13) and (2.1.14) in Allgower and Georg (1990) for proofs. A more
topological and global treatment of the Implicit Function Theorem can be
found in the books of Hirsch (1976) or Milnor (1969).

Since the solution curve c is characterized by the initial value problem
(2.9), it is evident that the numerical methods for solving initial value prob-
lems could immediately be used to numerically trace c. However, in general
this is not an efficient approach, since it ignores the contractive proper-
ties which the curve ¢ has in view of the fact that it satisfies the equation
H(u) = 0. Instead, a typical path following method consists of a succession
of two different steps:

Predictor step. An approximate step along the curve, usually in the gen-
eral direction of the tangent of the curve. The initial value problem
(2.9) provides motivation for generating predictor steps in the spirit of
the technology of numerical solution of initial value problems.

Corrector steps. One or more iterative steps which aim to bring the pre-
dicted point back to the curve by an iterative procedure (typically of
Newton or gradient type) for solving H(u) = 0.

It is usual to call such procedures predictor-corrector path following meth-
ods. However, let us note that this name should not be confused with the
predictor—corrector multistep methods for initial value problems, since the
latter do not converge back to the solution curve.

The following pseudocode (in MATLAB format) shows the basic steps of a
generic predictor—corrector method.

Algorithm 2.5 u = generic_pc_method(u, h)

% ue RVt such that H(u) ~ 0 is an initial point, input
% h > 0 is an initial steplength, input
WHILE a stopping criterion is not met
% predictor step
predict v such that H(v) ~ 0 and |[u —v|| = h
and v — u points in the direction of traversing
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% corrector step

let w € RV*! approximately solve ...
min { o - wl : H(w) = 0}

% new point along H=*(0)
Uu=w

% steplength adaptation
choose a new steplength h > 0

END

The predictor—corrector type of algorithms for curve following seem to
date to Haselgrove (1961). In contrast to the modern predictor—corrector
methods, the classical embedding methods assume that the solution path is
parametrized with respect to an explicit parameter which is identified with
the last variable in H. Hence, we consider the equation (2.1) in the form

H(z,)) = 0. (2.10)

If we assume that the partial derivative H;(x, A) does not vanish, then the
solution curve can be parametrized in the form (z(A), A). This assumption
has the drawback that folds are excluded, i.e. points such that H(z,\) =0
and H;(z,\) = 0. Such points are sometimes called turning points in the
literature. The assumption has, however, the advantage that the corrector
steps can be more easily handled, in particular if the partial derivative of
H with respect to z is sparse. In some applications it is known a prior:
that no folds are present, and then the embedding method is applicable. For
purposes of illustration we present an analogous generic embedding method:

Algorithm 2.6 =z = generic_embedding-method(z, A, k)

% (z,A) € RN such that H(x,A) ~ 0 is an initial point, input
% h >0 is an initial steplength, input
WHILE a stopping criterion is not met
let y € RN approximately solve H(y, A+ h) =0
() = (y,A+h)
choose a new steplength A > 0
END

The predictor step is hidden; the predictor point would correspond to the
starting point of an iterative method for solving H(y, A + h) = 0. The most
commonly used starting point is the previous point z.

It is common to blend aspects of these two algorithms. A simple example
is to use a predictor tangent to the curve (z()), ) in the embedding algo-
rithm. A more sophisticated example is the use of the bordering algorithm
introduced in Keller (1977, 1983) in the corrector phase of the predictor—
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corrector method. To avoid dealing with the arclength parameter, one can
adopt a strategy of parameter switching, see, e.g., Rheinboldt (1980, 1981).

3. Aspects of implementations

Let us now turn to some of the practical aspects of implementing a predictor—
corrector method.

3.1. Newton steps as corrector

A straightforward way of approximating a solution of the minimization prob-
lem in the predictor—corrector method (2.5) is given by the Newton step

Ny (v) :=v — H'(v)TH(v), (3.1)

where H'(v)™ denotes the Moore—Penrose inverse of H'(v), see, e.g., Golub
and van Loan (1989). Very commonly, an Euler predictor, i.e. a predictor
step in the direction of the tangent to the curve is used:

v = u + ht(H'(u)), (3.2)

where h > 0 represents the current stepsize.

The following algorithm sketches one version of the predictor—corrector
method incorporating an approximate Euler predictor and one Newton-type
iteration as a corrector step.

Algorithm 3.1 u = Euler_Newton(u, h)

WHILE a stopping criterion is not met
approximate A ~ H'(u)
v = u + ht(A) % predictor step
u=v— A+H('U) % corrector step
choose a new steplength h > 0

END

Discussions of Newton’s method using the Moore-Penrose inverse can be
found in several text books, e.g. Ortega and Rheinboldt (1970) or Ben-Israel
and Greville (1974).

Let us first state a convergence result, see (5.2.1) in Allgower and Georg
(1990), which ensures that this algorithm safely follows the solution curve
under reasonable assumptions.

Theorem 3.2 Let H : R¥*! — RM be a smooth map having zero as
a regular value and let H(up) = 0. Denote by cp(s) the polygonal path,
starting at ug, going through all points u generated by Algorithm 3.1 with
fixed steplength h > 0. Denote by c(s) the corresponding curve in H ~1(0)
given by the initial value problem (2.9). For definiteness, we assume that
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cp(0) = ¢(0) = up, and that both curves are parametrized with respect to
arclength. If the estimate ||[A — H'(u)|| = O(h) holds uniformly for the
approximation in the loop of the algorithm, then the following quadratic
bounds hold uniformly for 0 < s < sg and sq sufficiently small:

IH (cn()I < O(R?), llen(s) — c(s)ll < O(R?).
Some major points which remain to be clarified are:

— How do we efficiently handle the numerical linear algebra involved in
the calculation of {(A) and A+ H(v)?

— How do we formulate efficient steplength strategies?
8.2. The numerical linear algebra involved

A straightforward and simple (but not the most efficient) way to handle the
numerical linear algebra would be to use a QR factorization:

a=q( ) (33

where Q is an (N + 1, N + 1) orthogonal matrix, and R is a nonsingular
(N, N) upper triangular matrix. We assume that A is an (N, N + 1) matrix
with maximal rank. If ¢ denotes the last column of @Q, then t(A) = ogq,
where the orientation defined in (2.5) leads to the choice

o= sign(det Q det R) . (3.4)

Hence o is easy to determine. The Moore-Penrose inverse of A can be
obtained from the same decomposition in the following way:

*)—1
A = A*(AA")1=Q ( (ROZ ) . (3.5)
Similar ideas apply if an LU decomposition is given:
PA*:L(é{), (3.6)

where L is a lower triangular (N + 1, N + 1) matrix, U is an (N, N) upper
triangular matrix, and P is a permutation matrix corresponding to partial
pivoting which is, in general, necessary to improve the numerical stability.
Let us first consider the calculation of ¢t(A). If y denotes the last column of
P*(L*)~!, then

t(A) = oy/|lyll, where o = sign(detP det L det U). (3.7)

The Moore-Penrose inverse is obtained by

AT = (I — t{A)H(A)") P*(L*)~ ( (U(;B_l ) . (3.8)
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Hence, a calculation of w = A"z amounts to essentially one forward-solving
with U*, one back-solving with L*, and one scalar product with ¢(A4).

These methods are useful for small dense matrices A. However, in many
applications of path following methods, the corresponding matrix A is large
and sparse, and then this procedure is inefficient. Among such applications
are the approximation of branches of nonlinear eigenvalue problems or the
central path methods of linear and nonlinear programming. Let us point
out some ideas which are useful in dealing with such situations.

In many applications, one encounters matrices A with the following struc-
ture:

A=(L b), (3.9)

where equations of the form Lz = y permit a fast linear solver. If ( ¢* d)
denotes an additional row (typically generated via the last predictor direc-
tion), then a standard block elimination may be employed via the Schur
complement.
Lemma 3.3 Let

s=d-c' L'

denote the Schur complement of L in the augmented matrix
< L b
i=(L ),

det A = det L det s. (3.10)

Then

Furthermore, if Ais nonsingular, then
A1l= L1+ L=bs71e*L7t —L~1ps™1
- —slerL7! st :
As an easy consequence, the tangent t(A) is obtained via

t(A) = ay/llyll, (3.11)

where y denotes the last column of A~!. The sign o € {1} can either be
obtained from an angle test with the previous predictor direction or from
(3.10), since it can be shown that

o= sign( det L det s). (3.12)

Note that the computational expense of determining ¢(A) is roughly one
application of the fast solver and a scalar product.
The Moore—Penrose inverse is obtained via

A* = (I~ t(A)HA)) (A )y, (3.13)
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where (A1), denotes the submatrix consisting of the first N columns of
A1, Hence, a calculation of w = A1z amounts to essentially one additional
call of the fast solver and two additional scalar products.

Among the fast solvers which are of importance here are direct solvers for
sparse linear systems, or preconditioned iterative solvers such as conjugate-
gradient or other Krylov methods, see, e.g., Freund, Golub and Nachtigal
(1992).

This Schur complement construction is also valid if b, ¢ and d are ma-
trices (of appropriate size). This is of interest in parametric optimization,
see Lundberg and Poore (1993). Watson (1986) and deSa, Irani, Ribbens,
Watson and Walker (1992) discuss some numerical linear algebra aspects in
the context of path following.

The popular bordering algorithm of Keller (1977), see also Chan (1984a),
Keller (1983), Menzel and Schwetlick (1978, 1985), is related to these ideas.
These approaches are akin to Keller’s pseudo arclength method, in which the
equation H(v) = 0 is extended by an additional parametrization condition
N (u,v,h) = 0 which is at least transversal to H(v) = 0 for small h, and
often models an approximate arclength parametrization. This viewpoint is
often convenient, in particular for structured problems.

3.3. Step length control and higher order predictors

The convergence considerations of Theorem 3.2 were carried out under the
assumption that the steplength of the Algorithm 3.1 was uniformly con-
stant throughout. This assumption is also typical for complexity studies,
see Section 6. Such an approach is inefficient for any practical implementa-
tion. An efficient algorithm needs to incorporate an automatic strategy for
controlling the steplength. In this respect the predictor—corrector methods
are similar to the methods for numerically integrating initial value problems
in ordinary differential equations. To some extent, the steplength strategy
depends upon the accuracy with which it is desired to numerically trace a
solution curve. Path following methods usually split into two categories:

— either the solution curve is to be approximated with some given accu-
racy, e.g. for plotting purposes; or

— the objective is just to safely follow the curve as fast as possible, until a
certain point is reached, e.g. a zero point or critical point with respect
to some additional functional defined on the curve.

We briefly sketch some ideas which are used to adjust the steplength.

Steplength control via error models. One method, due to Den Heijer
and Rheinboldt (1981), is based upon an error model for the corrector it-
eration. For Newton corrector steps, such error models can be obtained by
analysing the Newton-Kantorovich theory. The steplength is controlled by
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the number of steps which are taken in the corrector iteration until a given
stopping criterion is fulfilled.

We sketch a somewhat modified and simplified version of this steplength
strategy. Let us assume that u is a point on the solution curve, and consider,
for simplicity, an Euler predictor vg(h) = u + ht(H'(u)). Let vo(h), vi(h),

.., Ug(h) be an iterative corrector process for approximating the nearest
point to vg(h) on the curve. Suppose a certain stopping criterion is met
after k iterations. The exact nature of the criterion is not important in this
context. We assume theoretical convergence to v (h).

It is assumed that there exists a constant v > 0 (which is independent of
h) such that the modified error

€i(h) = 7l|veo(h) — vi(h)||
satisfies inequalities of the following type
gi+1(h) < ¥(ei(h)),

where 1 : R — R is a known monotone function such that (0) = 0. For ex-
ample, if Newton’s method is employed, Den Heijer and Rheinboldt suggest
two models:

2
€
= — <e< .
P(e) 35 0<e<1, (3.14)
€+ 10—52 2

We may evaluate a posteriori the quotient

o) o [08R) = via ] s (h) = vka (W] _ epa ()
for(®) — v~ Toao(h) — o™ eolh)

Using the estimate £5_1(h) < ¥*~1(go(h)), we obtain
PF1(eo(h))

w(h) <
(h) < eo(h)
This motivates taking the solution € of the equation
k-1

as an estimate for o(h). )

We now try to choose the steplength h so that the corrector process satis-
fies the stopping criterion after a chosen number (say k) of iterations. Such
a steplength leads to the modified error o(h). Hence, we want the modified
error €;(h) after k iterations to be so small that the stopping criterion is

satisfied. Using the inequality e ,;(fz) < 1/1’.° (e0(R)), we accept the solution &
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of the equation
¥ (e) = ¥H(eo(h))
as an estimate for £9(h). Now we use the asymptotic expansion
llvo (k) = vo(R)]l = Ch? + O(h?)
to obtain the approximation
( h ) go(h)
h eo(h)’

which can be used to determine h. This steplength & will now be used
in the next predictor step. It is usually safeguarded by some additional
considerations such as limiting the steplength to some interval hpj, < h <
hmax, or limiting the factor 0.5 < h/h < 2, etc.

Steplength control via asymptotic expansion. Another method, based
upon asymptotic estimates in the mentality of initial value solvers, is due
to Georg (1983). The basic idea in this approach is to observe the perfor-
mance of the corrector procedure and then to adapt the steplength A > 0
accordingly. More precisely, suppose that a point u on the solution curve
has been approximated. Suppose further that a steplength h > 0 and a
predictor point are given. Then a Newton-type iterative corrector process
is performed which converges to the next point z(h) on the curve.

The steplength strategy is motivated by the following question: Given the
performance of the corrector process, which steplength h would have been
‘best’ for obtaining z(h) from u? This ‘ideal’ steplength % is determined
via asymptotic estimates, and it is then taken as the steplength for the
next predictor step. This strategy depends primarily upon two factors: the
particular predictor—corrector method being utilized, and the criteria used
in deciding what performance is considered ‘best’.

Let us illustrate this technique in the case of the following algorithm (cf.
Algorithm 3.1):

Algorithm 3.4 u = Euler Newton_it(u, h)
WHILE a stopping criterion is not met

v=u+ ht(H'(u)) % predictor step

A= H'(v)

WHILE a convergence criterion is not met
V=V - A"‘H(v) % corrector step

END

u=7v

choose a new steplength h > 0
END
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If v(h) = u + ht(H'(u)) denotes the predictor step depending on the
steplength h, then the first corrector point is given by
w(h) := v(h) — H'(v(h))" H(v(h)).
Let us call the quotient of the first two successive Newton steps
_ I (k) H(®)
w(u, h) = T— -
|1 H' (v(h))" H(v(R)]l
the contraction rate of the corrector process. Since Newton’s method is
locally quadratically convergent, it is plain that x(u,h) will decrease (and
hence Newton’s method will become faster) as h decreases. The following

lemma characterizes the asymptotic behaviour of k(u, h) with respect to h,
see (6.1.2) in Allgower and Georg (1990).

Lemma 3.5 Suppose that
H"(w)[t(H'(w)), t(H'(u))] # 0
(i.e. the curve has nonzero curvature at u), then
K(u, h) = ka(u)h? + O(h?)

for some constant ko(u) > 0 which is independent of A and depends smoothly
on u.

In view of this asymptotic relation, the steplength modification A — h
is now easy to explain. Assume that an Euler-Newton step has been per-
formed with steplength h. Then H'(v(h))* H(v(h)) and H'(v(h))* H(w(h))
will have been calculated and thus x(u,h) can be obtained without any
significant additional cost. Now an a posteriori estimate

Ko(u) = ”(Z;h) +0(h)

is available.

In order to have a robust and efficient method we want to continually
adapt the steplength h so that a nominal prescribed contraction rate &
is maintained. The choice of & will generally depend upon the nature of
the problem at hand, and on the desired security with which we want to
traverse the curve. That is, the smaller & is chosen, the greater will be the
security with which the method will follow the curve. When using the term
securely or safely following the curve we mean that a safeguard prevents
the method from jumping to a different part of the curve (at a significantly
different arclength value) or to a different connected component of H ~1(0).
Depending on the structure of the solution manifold H ~!(0), this may be
an important issue.
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Once & has been chosen, we will consider a steplength h to be appropriate
if k(u,h) = K. By using the above equation and neglecting higher order
terms we obtain the formula

. K
S iows
as the steplength for the next predictor step.

In a similar way, other quantities which are important for the performance
of the path following method can be taken into account, e.g. the angle of two
successive predictor directions, the size of the first Newton step (which gives
an approximation of the distance of the predictor point to the curve) or the
function value H(v(h)). All these quantities admit asymptotic expansions
in h (with varying order). For example, Algorithm 6.1.10 and Program 1
in Allgower and Georg (1990) incorporates such features in the steplength
strategy.

Kearfott (1989) proposes interval arithmetic techniques to determine a
first order predictor which stresses secure path following, see also Kearfott
(1990).

The steplength strategies we have discussed up to now have been based
upon the Euler predictor, which is only of local order two. This is very often
satisfactory since it is usually used in conjunction with rapidly converging
correctors such as Newton-type correctors. However, for large systems, often
less rapidly convergent iterative methods such as conjugate gradient steps
are used. Hence, at least in some cases, one may expect to obtain improved
efficiency by using variable order predictors and formulating corresponding
steplength strategies. Such strategies could be similar to the ones used in
multistep methods for solving initial value problems, see, e.g., Shampine
and Gordon (1975). Georg (1982), suggested such a method, see also Georg
(1983). Lundberg and Poore (1991) have made an implementation using
variable order Adams—Bashforth predictors. Their numerical results show
that there is often a definite benefit to be derived by using higher order
predictors.

Inexpensive higher order predictors are generally based on polynomial
interpolation. In view of the stability of Newton’s method as a corrector,
it may be advantageous to use more stable predictors. Mackens (1989) has
proposed such predictors which are based on Taylor’s formula and which
are obtained by successive numerical differentiation in a clever way, see also
Schwetlick and Cleve (1987) as a predecessor. However, the gain in stability
has to be paid for by additional evaluations of the map H and additional
applications of the Moore-Penrose inverse of the Jacobian H' (where it may
be assumed that H’ has already been decomposed).

Let us sketch a general philosophy for higher order predictors which may
be useful for implementations. Let u be a point on the solution curve ¢ such
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that ¢(s) = u. Consider a polynomial predictor of the form

k
c(s+h) = pe(h)=u+ Z ch’, (3.16)
i=1
(4)

G Cz_' (3.17)
which represents an approximation of the Taylor formula. We see essentially
two different ways for obtaining the coefficients ¢;: (1) by divided differences
or polynomial interpolation making use of previously calculated points on
the curve; and (2) by successive numerical differentiation at u. The former
is less expensive to calculate, but the latter is more accurate.

We sketch one possible way of determining the next steplength and the
next order in the predictor. Let € > 0 be a given tolerance. The term ||cx[|A*
can be viewed as a rough estimate for the truncation error of the predictor

pr—1(h). Hence, we estimate
1/k
5
- (52)
lekll

as the steplength for the predictor px—; in order to remain within the given
tolerance. Due to instabilities of various kinds, we anticipate that

h2<h3"'<hq2hq+1

will hold for some g. Hence, the predictor p,_; with steplength h, is our
next choice.

This idea can be implemented and modified in various ways, and needs
some stabilizing safeguards, such as setting a maximum increase in step-
length and in the order. The strategy to be developed depends on the
objective of the application at hand.

4. Applications

In this section we present a selection of applications of path following meth-
ods. Many more specific examples exist in the literature, some of them are
referred to later. Our discussion of applications concentrates to a large ex-
tent on cases in which the predictor—corrector methods apply. Applications
in which the dimension is relatively low and smoothness does not hold can
be handled by the piecewise-linear methods discussed in Section 5.

In many applications of the numerical homotopy methods, it is possible to
avoid degeneracies in the solution curve by introducing suitable parameters
(perturbations). The theoretical basis of this approach lies in Sard’s theorem
for maps with additional parameters, see, e.g., Abraham and Robbin (1967)
or Hirsch (1976). Yomdin (1990) has given a version of Sard’s theorem which
is adapted for numerical purposes. We consider the following general form:
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Theorem 4.1. (Sard) Let A, B, C be smooth manifolds of finite dimen-
sions with dim A > dim C, and let FF : A x B — C be a smooth map.
Assume that ¢ € C is a regular value of F, i.e. for F(a,b) = ¢ we have that
the total derivative F'(a,b) : T,Ax Ty B — T.C has maximal rank. Here T, A
denotes the tangent space of A at a, etc. Then for almost all b € B (in the
sense of some Lebesgue measure on B) the restricted map F(-,b): A - C
has c as a regular value.

4.1. Fized point problems

To illustrate the use of Sard’s theorem, let us consider a homotopy arising
from a fixed point problem. Let f : RY — RY be a smooth map which is
bounded. According to the theorem of Brouwer (1912), the map f has at
least one fixed point. To simplify the discussion, let us make the assumption
that the map = — z — f(z) has zero as a regular value. This implies that
the fixed points of f are isolated, and that Newton’s method converges
locally. However, the global convergence of Newton’s method is by no means
guaranteed.
We therefore consider the homotopy

H(l‘,/\,p)=l‘—p—/\(f(.’l,')—p). (41)

For the trivial level A = 0, we obtain the trivial map H(z,0,p) =z —p
which has the unique zero point p, our starting point. On the target level
A =1, we obtain the target map H(z,1,p) = = — f(z) whose zero points are
our points of interest, i.e. the fixed points of f.

Let us illustrate by this example how Sard’s theorem is typically employed:
The Jacobian of H is given by

H/(l‘a ’\7p) = (Id - ’\fl(x)vp - f(z)v (’\ - l)Id)

The first N columns of the Jacobian are linearly independent for H(z, A, p) =
0 and A = 1 due to our assumptions, and clearly the last N columns are
linearly independent for A # 1. Consequently, by Sard’s theorem we can
conclude that for almost all p € R™V (in the sense of N-dimensional Lebesgue
measure) zero is a regular value of the restricted map H(-, -,p).

For such a generic choice of p, the solution manifold H(-, -,p) ~1(0) con-
sists of smooth curves which are either diffeomorphic to the circle or to the
real line, see Lemma 2.4. Consider the solution curve c(s) = (z(s), A(s))
(parametrized for convenience with respect to arclength) such that ¢(0) =
(p,0). It is easy to see that the initial tangent vector in the direction of
increasing A has the form

o) = 1+ 15 - pIH 2 (TP,

and hence the curve is transversal to the plane A = 0.
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Since the solution point (p,0) is unique for A = 0, it follows that c is
diffeomorphic to the real line. Furthermore, the boundedness of f implies
that z(s) is bounded for 0 < A(s) < 1. It follows that the curve ¢ reaches
the level A = 1 after a finite arclength sy, i.e. ¢(sp) = (o, 1), and hence z;
is a fixed point of f which can be approximated by tracing the curve c.

Let us note that

(Id ~ f(z0))&(s0) = A(s0)(f(0) ~ p),

and our earlier assumption on f implies that (Id — f'(x)) cannot have a
nontrivial kernel, and hence A(sg) # 0, i.e. the curve c is tranversal to the
level A =1 at any solution.

This discussion is in the spirit of Chow, Mallet-Paret and Yorke (1978).
An earlier approach based on the nonretraction principle of Hirsch (1963)
was given by Kellogg, Li and Yorke (1976). General discussions concerning
the correspondence between degree arguments and numerical continuation
algorithms have been given in Alexander and Yorke (1978), Garcia and
Zangwill (1979a, 1981) and Peitgen (1982). Since the appearance of the
constructive proofs of the Brouwer fixed point theorem many other con-
structive existence proofs have been described. Further references may be
found in Section 11.1 of Allgower and Georg (1990).

Watson and collaborators have given a great number of engineering ap-
plications where an implementation (HOMPACK) of this homotopy method
has been employed. As examples, we mention Arun, Reinholtz and Watson
(1990), Melville, Trajkovic, Fang and Watson (1990), Vasudevan, Lutze and
Watson (1990), Watson (1981), Watson, Li and Wang (1978), Watson and
Wang (1981) and Watson and Yang (1980).

4.2. Global Newton methods

Newton’s method is a popular method for numerically calculating a zero
point of a smooth map G : RN — RM. As is well known, this method may
diverge if the starting point p is not sufficiently near to a zero point Z of G.
Often one would like to determine whether a certain open bounded region
Q C RY contains a zero point Z of G and furthermore, for which starting
values p this solution Z can be obtained by Newton’s method. The so-called
global Newton methods offer a possibility of answering such questions.

One may interpret Newton’s method as the numerical integration of the
differential equation

&= -G'(z)"'G(z)

using Euler’s method with unit step size. The idea of using this flow to
find zero points of G was exploited by Branin (1972). Smale (1976) gave
conditions on 9€? under which the flow leads to a zero point of G in Q.
Such numerical methods have been referred to as global Newton methods.
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Keller (1978) observed that this flow can also be obtained in a numerically
stable way from a homotopy equation which he consequently named the
global homotopy method. Independently, Garcia and Gould (1978, 1980)
discussed this flow.

We briefly sketch Keller’s approach. The global homotopy method in-
volves tracing the curve defined by the equation G(z) — (1 — A\)G(p) = 0
starting from (z,A) = (p,0) € 92 x {0} inward into 2 x R. If the level
2 x {1} is encountered, then a zero point of G has been found.

We consider Smale’s assumption.

Assumption 4.2 Let the following conditions be satisfied:

1. Q C R" is open and bounded and 52 is a connected smooth submani-
fold of RY;

zero is a regular value of G

. G(p) # 0 for p € 0%,

. the Jacobian G’(p) is nonsingular for p € 9Q;

. the Newton direction —G’(p)~1G(p) is not tangent to € at p.

The global homotopy H : RN x R x 8Q — RY is defined by
H(z, A, p) := G(z) — (1 - N)G(p).

Since p varies over the (N — 1)-dimensional surface 01, it is somewhat
difficult to apply Sard’s theorem. This task was achieved by Percell (1980).
Hence, for almost all p € 9Q the global homotopy has 0 as a regular value.

Let p be such a generic choice. We consider again the solution curve
c(s) = (z(s), A(s)) in H(-, -,p)~1(0) such that c(0) = (p,0) and %(0) points
into Q. Keller (1978) showed that the curve hits the target level Q x {1}
in an odd number of points. This possibility of obtaining more than one
solution was first observed by Branin and Hoo (1972).

Given the conditions 1 and 2 of assumption 4.2, the boundary condi-
tions 3-5 can be shown to hold for a sufficiently small ball  around a zero
point of G. Thus, in a certain sense the global homotopy extends the well
known Newton—Kantorovich-type theorems concerning the local convergence
of Newton’s method, see, e.g., Ortega and Rheinboldt (1970).

4.8. Multiple solutions

In the previous section it was observed that the global homotopy method
might actually yield more than one zero point of the map G in a bounded
region . This raises the question as to whether one might be able to
compute more zero points of G in Q in addition to those which lie on the
global homotopy path. To be more precise, let us suppose that & C R¥ is
an open bounded region, and that G : RN — RN is a smooth map having a
zero point zg € . The task is now to find additional zero points of G in ,
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provided they exist. One method which has often been used for handling this
problem is deflation, see, e.g., Brown and Gearhart (1971). In this method
a deflated map G : RV \ {29} — RY is defined by G1(x) = G(z)/||z — zo||.
One then applies an iterative method to try to find a zero point of G;.
Numerical experience with deflation has shown that it is often a matter of
seeming chance whether one obtains an additional solution and if one is
obtained, it is very often not the one which is nearest to zg.

By utilizing homotopy-type methods we can give some conditions which
will guarantee the existence of an additional solution and yield insights into
the behaviour of deflation. This additional solution will lie on a homotopy
path. We illustrate this approach with a discussion of the d-homotopy. Let
us consider the homotopy map Hg : RY x R — R defined by

Hy(z,A) :=G(z) — \d

where d € R" is some fixed vector with d # 0. Since we assume that
a zero point 2 is already given, we have H4(zp,0) = 0. Let us further
assume zero is a regular value of G. Then it follows from Sard’s theorem
that zero is also a regular value of Hy for almost all d € RY. In order
to ensure that the solution curve ¢ in H;!(0) which contains (2o, 0) again
reaches the level A = 0, we need to impose a boundary condition. The
following proposition uses a boundary condition which is motivated by a
simple degree consideration.

Proposition 4.3 Let the following hypotheses hold:

1. G :RY — R" is a smooth map with zero as a regular value;

2. d € RV \ {0} is a point such that the homotopy H also has zero as a
regular value;

3.  C RY is a bounded open set which contains a (known) initial zero
point 2 of G;

4. the boundary condition Hy(z,\) = G(z)~ Ad # 0 holds for all z € 59,

AER;
Then the curve c in H;'(0) which contains (zo, 0) intersects the level Q x {0}
an even number of times at points (2;,0), i = 0,...,n, at which G(z;) = 0.

See (11.5.3) in Allgower and Georg (1990) for a proof. Any two zero points
of G which are consecutively obtained by traversing the curve ¢ have opposite
index. Allgower and Georg (1983b) have shown that this d-homotopy can
be viewed as a continuous version of the deflation technique of Brown and
Gearhart.

4.4. Polynomial systems

In the preceding section we considered the task of computing multiple zero
points of general smooth maps. In the case of complex polynomial systems
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it is actually possible to compute (at least in principle) all of the zero points
by means of homotopy methods. This subject has received considerable
attention in recent years. The book of Morgan (1987) deals exclusively with
this topic, using the path following approach. It also contains a number of
interesting applications to robotics and other fields.

We consider a system of complex polynomials P : C* — C". The task is to
find all solutions of the equation P(z) = 0. If a term of the kth component
P, of P has the form

az'zy? - 20n,
then its degree is 71 + ro + ... + r,. The degree di of Pj is the maximum
of the degrees of its terms. The homogeneous part P of P is obtained
by deleting in each component Pj all terms having degree less than dj.
The homogenization P of P is obtained by multiplying each term of each
component P with an appropriate power z{ such that its degree is dy. Note
that the homogenization P : C**1 — C™ involves one more variable zq. If

(wo,...,wn) #0
is a zero point of P, then the entire ray
[wo : -+ s wy] = {(§wo, ..., Ew,) | £ € C}

consists of zero points of P. Usually, [wp : - - - : wy] is regarded as a point in

the complex projective space CP™. There are two cases to consider:

1 The solution [wg : -+ : wy] intersects the hyperplane zq = 0 trans-
versely, i.e. without loss of generality, wo = 1. This corresponds to a
zero point (w1, ...,wy) of P. Conversely, each zero point (wy,...,w,)
of P corresponds to a solution [1:wj : ---: wy] of P.

2 The solution [wg : --- : wy] lies in the hyperplane zg = 0, i.e. wy =
0. This corresponds to a nontrivial solution [wy : --- : wp] of the
homogeneous part P, and such solutions are called zero points of P at
infinity.

As in the case of one variable, it is possible to define the multiplicity of
a solution. The higher dimensional analogue of the fundamental theorem
of algebra is Bezout’s theorem, which states that the number of zero points
of P (counting their multiplicities and zeros at infinity) equals the product
d =djds - - d,, provided all solutions are isolated.

Garcia and Zangwill (1979b) and Chow, Mallet-Paret and Yorke (1979)
introduced homotopy methods in C™ x R for finding all solutions of the
equation P = 0. Wright (1985) realized that their approaches could be
simplified by going into the complex projective space CP". We use his
approach to illustrate the homotopy idea for polynomial systems.

Define a homotopy H = (Hj,..., H,) by involving the homogenization P
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of P via
Hi(20,- -+ 2y A) = (1 = A)(apzi* — bezd®) + APi(20, - - - , 2n)-

Wright shows by Sard-type arguments that for almost all coefficients ax, by €
C the restricted homotopies H /) which are obtained from H by fixing z;=1
for j = 0,...,n have zero as a regular value for A\ < 1. He concludes that
for A < 1, the homogeneous system of polynomials H has exactly d simple
zero point curves ¢;(A) € CP™, i = 1,...,d, in complex projective n-space.
On the trivial level A = 0, the d solutions are obvious, and it is possible
to trace the d curves emanating from these solutions into the direction of
increasing A. The solution curves are monotone in A, and hence all have to
reach the target level A = 1 on the compact manifold CP". Thus, in this
approach solutions at infinity are treated no differently than finite solutions.
The solution curves are traced in the projective space CP", and from the
numerical point of view we have the slight drawback that occasionally a
chart in CP™ has to be switched.

Recently, attention has been given to the task of trying to formulate
homotopies which eliminate the sometimes wasteful effort involved in trac-
ing paths which go to solutions of P(z1,...,2,) = 0 at infinity. Work in this
direction has been done in Morgan (1986), Li, Sauer and Yorke (1987, 1989)
and Li and Wang (1992a,b). Morgan and Sommese (1987) describe the eas-
ily implemented ‘projective transformation’ which allows the user to avoid
the drawback of changing coordinate charts on CP™. Morgan and Sommese
(1989) show how to exploit relations among the system coefficients, via
‘coefficient parameter continuation’. Such relations occur commonly in eng-
ineering problems, as described in Wampler and Morgan (1991), Wampler,
Morgan and Sommese (1990, 1992). The papers (Morgan, Sommese and
Wampler, 1991-1992) combine a homotopy method with contour integrals
to calculate singular solutions to polynomial and nonlinear analytic systems.
Morgan, Sommese and Watson (1989) documented that HOMPACK, see Wat-
son, Billups and Morgan (1987), in the case of polynomial systems has some
stability issues that CONSOL8, see Morgan (1987), does not have. The path
following approach to systems of polynomial equations is particularly suited
for parallel processing, see Allison, Harimoto and Watson (1989).

4.5. Nonlinear eigenvalue problems, bifurcation

Path following methods are frequently applied in numerical studies of bifur-
cation problems. Up to this point we have assumed that zero is a regular
value of the smooth mapping H : R¥V+1 — RY. However, bifurcation points
are singular points on H~!(0) and hence, if path following algorithms are
applied, some special adaptations are required. Generally, bifurcation points
are defined in a Banach space context, see for example the book by Chow
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and Hale (1982). In the case that H represents a mapping arising from a
discretization of an operator of the form H : E; x R — E5 where Ey and E»
represent appropriate Banach spaces, it is usually of interest to approximate
bifurcation points of the operator equation H = 0. Often one can make the
discretization H in such a way that the resulting discretized equation H = 0
also has a corresponding bifurcation point. Under reasonable assumptions
of nondegeneracy it is possible to obtain error estimates for the bifurcation
point of the original problem H = 0. Such studies are presented in the pa-
pers by Brezzi, Rappaz and Raviart (1980a,b, 1981), Crouzeix and Rappaz
(1990), Fink and Rheinboldt (1983, 1984, 1985) and Liu and Rheinboldt
(1991).

Since we are primarily concerned with bifurcation in the numerical curve
following context, we confine our discussion to the case of the finite dimen-
sional (discretized) equation H = 0. However, we note that the theoretical
discussion later will essentially extend to the Banach space context if we
assume that H is a Fredholm operator of index one. We will discuss how
certain types of bifurcation points along a solution curve ¢ can be detected,
and having detected a bifurcation point, how one can numerically switch
from ¢ onto a bifurcating branch.

Some of the fundamental results on the numerical solution of bifurcation
problems are due to Keller (1970), see also Keener and Keller (1974) and
Keller (1977). The recent literature on the numerical treatment of bifur-
cation is very extensive. For an introduction into the field we suggest the
lecture notes of Keller (1987). See also the two articles by Doedel, Keller
and Kernévez (1991a,b) which discuss the use of the software package AUTO.
For surveys and bibliography we suggest the recent book by Seydel (1988)
and the recent proceedings (Mittelman and Roose, 1989; Roose, de Dier and
Spence, 1990; Seydel, Schneider, Kiipper and Troger, 1991). Most authors
study bifurcation problems in the context of a nonlinear eigenvalue problem

H(z,A\) =0,

where A is the eigenvalue parameter which usually has some physical sig-
nificance. Conventionally, the solution branches are parametrized accord-
ing to A\. We have taken the viewpoint that the solution branches c; are
parametrized with respect to the arclength. There is only one essential
difference, namely that the former approach also considers folds with res-
pect to A as singularities.

Such folds are frequently of intrinsic interest, and there are special algo-
rithms for detecting and calculating them. We omit this subject here for
reasons of space limitations, and refer the interested reader to, e.g., Bol-
stad and Keller (1986), Chan (1984b), Fink and Rheinboldt (1986, 1987),
Melhem and Rheinboldt (1982), Ponisch and Schwetlick (1981), Schwetlick
(1984ab) and Ushida and Chua (1984).
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A standard approach to the determination of bifurcation or other singular
points is to directly characterize such points by adjoining additional equa-
tions to H = 0 and handling the resulting new set of equations by some
special iterative method. In this context, continuation methods often are
used to obtain starting points for these direct methods, see, e.g., Griewank
(1985), Moore and Spence (1980) and Yang and Keller (1986). A hybrid
method for handling unstable branches has been developed by Shroff and
Keller (1991).

Mittelmann and collaborators have made extensive applications of path
following and bifurcation methods in the context of minimal surfaces, free
boundary problems, obstacle problems and variational inequalities, see, e.g.,
Hornung and Mittelmann (1991), Maurer and Mittelmann (1991), Mierse-
mann and Mittelmann (1989-1992) and Mittelmann (1990).

In view of the extensive literature we can only touch upon the problem
here, and we will confine our discussion to the task of detecting a simple
bifurcation point along a solution curve ¢ and effecting a branch switching
numerically. We will see that the detection of simple bifurcation points
requires only minor modifications of predictor—corrector algorithms. A more
detailed discussion along these lines can be found in Chapter 8 of Allgower
and Georg (1990). Let us begin by defining a bifurcation point.

Definition 4.4 Suppose that ¢ : J — RY*! is a smooth curve, defined
on an open interval J containing zero, and parametrized (for reasons of
simplicity) with respect to arc length such that H(c(s)) =0 for s € J. The
point ¢(0) is called a bifurcation point of the equation H = 0 if there exists
an € > 0 such that every neighbourhood of ¢(0) contains zero points z of H
which are not on ¢(—¢,¢€).

An immediate consequence of this definition is that a bifurcation point of
H = 0 must be a singular point of H. Hence the Jacobian H'(c(0)) must
have a kernel of dimension at least two. We consider the simplest case:

Definition 4.5 A point @ € RV is called a simple bifurcation point of
the equation H = 0 if the following conditions hold:
1. H(a) = 0;
2. dimker H'() = 2;
3. e*H” (a)’(ker H'(@))? has one positive and one negative eigenvalue.
where e spans ker H'(%)*.

Using the well known Liapunov—-Schmidt reduction, the following theorem
can be shown, which is essentially a restatement of a famous result from
Crandall and Rabinowitz (1971).

Theorem 4.6 Let @ € RV*! be a simple bifurcation point of the equa-
tion H = 0. Then there exist two smooth curves ci(s),ca(s) € RV+L,
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parametrized with respect to arclength s, defined for s € (—¢,¢) and ¢
sufficiently small, such that the following holds:

1. H(ci(s)) =0, 1 € {1,2}, s € (—¢,¢),;

2. Cz(O) =q,1€ {1,2},;

3. ¢1(0), ¢2(0) are linearly independent;

4. H71(0) coincides locally with range (c;) Urange (cz), more precisely: @
is not in the closure of H~1(0) \ (range(c;) U range(cz)).

By differentiating the equation e*H(c;(s)) = 0 twice and evaluating the
result at s = 0, we obtain the following

Lemma 4.7 Let @ € RVY*! be a simple bifurcation point of the equation
H =0. Then

1. ker H'(u) = span{¢;(0), é2(0)},
2. e*H"(u)[¢;(0), ¢;(0)] = 0 for ¢ € {1, 2}.

The following theorem reflects the well known fact, see Krasnosel’skif
(1964) or Rabinowitz (1971), that simple bifurcation points cause a switch
of orientation along the solution branches. This furnishes a numerically im-
plementable criterion for detecting a simple bifurcation point when travers-
ing one of the curves ¢;. For a proof, see, e.g., Theorem (8.1.14) in Allgower
and Georg (1990).

Theorem 4.8 Let @ € RV*! be a simple bifurcation point of the equation
H = 0. Then the determinant of the following augmented Jacobian

("0

changes sign at s =0 for 7 € {1,2}.

This theorem implies that when traversing a solution curve ¢, a simple
bifurcation point is detected by a change in orientation. Depending upon
the method used to perform the decomposition of the Jacobian during path
following, this orientation can often be calculated at very small additional
cost. A predictor—corrector algorithm generally has no difficulty in jumping
over, i.e. proceeding beyond the bifurcation point @. That is, Keller (1977)
has shown that for sufficiently small steplength h, the predictor point will
fall into the ‘cone of attraction’ of the Newton corrector. See Jepson and
Decker (1986) for further studies.

Conversely, suppose that a smooth ¢ in H~1(0) is traversed and that c(0)
is an isolated singular point of H such that the determinant changes sign at
s = 0, then using a standard argument in degree theory, see Krasnosel’skif
(1964) or Rabinowitz (1971), it can be shown that c¢(0) is a bifurcation point
of H = 0. However, ¢(0) is not necessarily a simple bifurcation point.
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Multiple bifurcations often arise from symmetries with respect to certain
group actions, i.e. H satisfies an equivariance condition

H(")’:L‘, )‘) = ")’H(IE, ’\)

for v in a group I'. See the books by Golubitsky and Schaeffer (1985), Gol-
ubitsky, Stewart and Schaeffer (1988) and Vanderbauwhede (1982). These
symmetries can also be exploited numerically, see, e.g., , Allgower, Bohmer
and Mei (1991a,b), Allgower, Béhmer, Georg and Miranda (1992b), Cliffe
and Winters (1986), Dellnitz and Werner (1989), Georg and Miranda (1990,
1992), Jepson, Spence and Cliffe (1991), Healey (1988-1989), Healey and
Treacy (1991) and Hong (1991); see also the proceedings (Allgower, Bohmer
and Golubitsky, 1992a). As this partial list suggests, there is currently very
much interest in this topic. However, constraints on our available space
prohibits a detailed discussion.

The determinant in Theorem 4.8 is only the simplest example of a so-called
test function. Such test functions are real functions defined on a neighbour-
hood of the curve ¢ and are monitored during path following to reveal certain
types of singular points by a change of sign. In the case of Hopf bifurca-
tion, the determinant is not an adequate test function. Recently, several
authors have proposed and studied classes of test functions for various types
of singular points, see, e.g., Dai and Rheinboldt (1990), Garratt, Moore and
Spence (1991), Griewank and Reddien (1984), Seydel (1991b) and Werner
(1992). A different approach for the prediction of singular points along the
path c has been given by Huitfieldt and Ruhe (1990).

Switching branches via perturbation. In the previous section we have
seen that it is possible to detect and jump over simple bifurcation points
while numerically tracing a solution curve c via a predictor—corrector meth-
od. The more difficult task is to numerically branch off onto the second
solution curve at the detected bifurcation point #. The simplest device
for branching off numerically rests upon Sard’s theorem (4.1). If a small
perturbation vector d € RY is chosen at random, then the probability that
d is a regular value of H is unity. Of course, in this case H~!(d) has
no bifurcation point. Since d € RY is chosen so that ||d|| is small, the
solution sets H~1(0) and H~1(d) are close together. On H ~!(d), no change
of orientation can occur. Therefore, corresponding solution curves in H ~1(d)
must branch off near the bifurcation point #. It is easy to implement this
idea, see, e.g., Allgower and Chien (1986), Allgower, Chien, Georg and Wang
(1991c), Chien (1989), Georg (1981) and Glowinski, Keller and Reinhart
(1985).

Recently, an interesting variation on this idea has been proposed by Huit-
fieldt (1991). He introduces an additional parameter on the perturbation
and an additional constraint equation to obtain the branch connecting equa-
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tion

Blu, 1) = ( Hw+rd ) ~0, (4.2)

||u—ﬁ||2+'r2 —€

where 4 is an approximation to the bifurcation point %. Such approximations
are easily obtained via path following together with test function monitoring
as described earlier. Note the relationship between this homotopy and the
d-homotopy discussed in Section 4.3 in connection with finding multiple
solutions.

It is not difficult to see that for almost all d and € > 0, zero is a regular
value of B, provided that @ is an isolated singular point of H in H~1(0). Let
us assume that such a generic choice of d and € has been made.

Then the solution manifold B~1(0) splits into one or more simple closed
curves of the form (b(s), 7(s)). For 7(s) = 0 we obtain H(b(s)) = 0. Hence
the curves connect points in the intersection of H ~!(0) with the sphere
|lu—1||? = 2. Starting points for a path following of (b(s), 7(s)) are available
from the tracing of the current solution curve ¢ of H = 0. Let b; = b(s;),
i =0,1,..., be successively obtained points such that 7(s;) = 0. It remains
to be demonstrated that b; and b;; are on different solution branches of the
equation H = 0.

Since this seems to have been omitted in the paper of Huitfieldt (1991),
we sketch a proof. It is easily seen that the determinant of the matrix

H'(b(s)) d
(b(s) —a)* 7(s)
b(s)*  7(s)

never changes sign since it never becomes singular. By multiplying this

matrix on the right with
Id b(s)
0* 7(s)

we obtain
H'(b(s)) O
(b(s) —a)* 0
b(s)* 1

Since 7(s;) changes sign for successive i, we obtain that the determinant of

(6o

changes sign for successive 7. Under reasonable assumptions this implies that
t(H'(bi+1)) points out of the sphere ||u — 4|2 = €2 if +(H'(b;)) points into
it. For a simple bifurcation point (or more generally for a bifurcation point
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hich is detected by a change of determinant in the sense of Theorem 4.8),
is means that b; and b;y; cannot lie on the same solution branch.
Huitfeldt reports very successful numerical tests on some interesting prob-
ms of applied mathematics: the Taylor problem, and the von Karman plate
juations. In his experiments he succeeded in obtaining all of the bifurcating
ranches at several multiple bifurcation points, i.e. the 1-manifold B—1(0)
as connected in all cases he considered. However, it does not seem that
1is should always be the case. Advantages of this approach are that no a
riori information concerning the multiplicity of the bifurcation is needed,
nd that it enjoys better numerical stability properties than ordinary per-
wrbation. It should, however, be emphasized that any existing symmetries
:ading to higher multiplicities ought to be taken into account initially, i.e.
y using group actions in the formulation of the problem, see Golubitsky et
l. (1988) and other references cited earlier.

jranching off via the bifurcation equation. Although the branching
ff via perturbation techniques works effectively, this approach can have
ome shortcommings. In general, it cannot be decided in advance which
f the two possible directions along the bifurcating branch will be taken.
‘urthermore, if the perturbation vector d is not chosen correctly (and it is
ot always clear how this is to be done), one may still have some difficulty
a tracing the resulting path. The solution set H ~!(0) can be approximated
iear the bifurcation point % only after an additional bifurcating branch has
)een approximated.

To obtain an approximation of H ~1(0) near a simple bifurcation point ,
he alternative is a direct approach. This may consist of two steps, see, e.g.,
jection 8.3 of Allgower and Georg (1990):

Approximation of the bifurcation point @ by adjoining additional equa-
tions to H = 0 and handling the resulting new set of equations by some
special iterative method.

. Construct a numerical model for the so-called bifurcation equation in
order to approximate all tangents of the bifurcating branches in .
Lemma 4.7 describes such an equation for the case of a simple bifur-
cation point. The approaches in Keller (1977, 1987) and Rheinboldt
(1978) deal with this idea.

§.6. Complez bifurcation

[t has been observed by Allgower (1984) and Allgower and Georg (1983a)
that folds in the A coordinate of solution curves of H(z,A) = 0 lead to
bifurcation points in a setting of complex extension, see also Section 11.8
of Allgower and Georg (1990). This observation can be used to connect
separated real components of H~'(0), and hence may serve as a tool to
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find additional solutions of the equation H = 0. Henderson (1985) and
Henderson and Keller (1990) study complex bifurcation in a general Banach
space setting. Let us briefly summarize one of their main results.

Let B be a real Banach space which can be complexified into B & iB.
We use the notation z = z + iy for z € B @ iB and z,y € B. We consider
B to be naturally embedded into B @ iB via £ — z + i0. In most cases
which occur in applications, e.g. function spaces, the precise meaning of this
setting is obvious. _

Consider a smooth nonlinear problem of the form

H(z,\) =H(z+ iy,\) =0, H:B® iBxR— B@ iB, (4.3)

where H is analytic in the complex variable z = = + iy. Furthermore, we
assume that H is real for real arguments, and denote the restriction to real
arguments by Hgr, i.e. AR : B xR — B.

Let ¢(s) = (z(s), A(s)) be a solution curve of (the real) equation Hg =0
consisting of regular points. We assume that ¢(0) is a simple fold, i.e.

A(0) =0, X(0)#0. (4.4)

Then ¢(0) is a simple bifurcation point of (the complex) equation H = 0.
In fact, it can be seen that for the bifurcating curve

c1(s) = (z1(s) + iya(s), Mi(s))

the following characterization holds at s = 0, see Proposition (11.8.16) of
Allgower and Georg (1990):

#1(0) =0, $1(0) = ££(0), A (0) =0, X (0)=—X0).

Proposition 2.1 in Li and Wang (1992b) generalizes this result to complex
folds.

4.7. Linear eigenvalue problems

In recent years many of the classical problems of numerical linear algebra
have been re-examined in the context of homotopies and path following.
One of the earliest contributors has been Chu (1984-1991). In these pa-
pers iterative processes and matrix factorizations have been studied in the
context of flows satisfying various differential equations. A typical example
is the Toda flow which has been studied as a continuous analogue of the
QR algorithm. A survey of these ideas has been given by Watkins (1984).
According to Watkins, although it seems that the Toda flow and related
flows yield insight into the workings of algorithms, they do not necessarily
directly offer algorithms which are competitive with standard library algo-
rithms that have been developed and polished over numerous years.
Surprisingly, Li and Li (1992), Li and Rhee (1989), Li, Zeng and Cong
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(1992) and Li, Zhang and Sun (1991) have been able to construct special
implementations of homotopy methods which are now at least competitive
with the library routines of EISPACK and IMSL for linear eigenvalue prob-
lems.

The versatility of homotopy methods also permits their application to
generalized eigenvalue problems, see Chu, Li and Sauer (1988) and non-
symmetric matrices, see Li and Zeng (1992) and Li et al. (1992). In this
case complex eigenvalues are likely to arise, and it is necessary to invoke the
idea of complex bifurcation, see Section 4.6.

As an example, let us briefly discuss the homotopy approach given by Li et
al. (1991). Consider a real symmetric tridiagonal matrix A. We assume that
A is irreducible, since otherwise one off-diagonal element A[i+1,3] = A[i,i+
1] would vanish and the matrix A would split into two blocks which can be
treated independently. We consider a homotopy H : RY xRx[0,1] — RY xR
defined by

Az —[(1—8)D + sAjz )
z*z —1 )

H(z,\,8) = (

Here D is a real symmetric reducible tridiagonal matrix which is generated
from A by setting some of the off-diagonal entries of A to zero. The simplest
example for D would be to set all off-diagonal entries to zero. However, it is
advantageous to only reduce D to tridiagonal block structure with relatively
small blocks, e.g. of size < 50. This technique is referred to as divide and
conquer.

Since A(s) := (1 — 8)D + sA is irreducible for all s > 0, the solution set
of H = 0 consists of 2n disjoint smooth curves c (eigenpaths) which can be
parametrized with respect to s. Note that s is not the arclength, but the
homotopy parameter. Hence

c(s) = (£z(s),A(s)) for0<s<1.

The curves obviously occur in pairs, and only one of each pair needs to be
traced. At the level s = 0, initial values on the curves can be obtained by
approximating all eigenvectors and eigenvalues of all small blocks in D. If D
is diagonal, this is trivial, and otherwise a QR routine has to be employed.

Let us sketch a typical step of the predictor-corrector method. We note
first that it follows from differentiation of H(c(s)) = 0 with respect to s that

A(8) = z(s)*(A — D)z(s). (4.5)

Assume that (z(s), A(s)) is (approximately) known. After having decided
on a stepsize h (we are not going to discuss this feature), a predicted eigen-
value A(s+ h) is obtained from this differential equation by a two-step ODE
method. Now a predicted eigenvector Z(s + h) is obtained by one step of



30 E. ALLGOWER AND K. GEORG

the inverse power method with shift, i.e. solve
(A(s +h) = A(s + B)Id)y = z(s) fory

and set Z(s + h) = y/||y||- Then a Rayleigh quotient iteration is performed
as a corrector to approximate (z(s + h), A(s + h)).

There are some stability problems for the case that different eigenvalues
become close. Sturm sequences are computed to stabilize the procedure.

Let us finally note that this homotopy method has an order-preserving
property, i.e. different A-paths can never cross. Hence the jth eigenvalue
of A can be calculated without calculating any other eigenvalues. This is
very often an advantageous feature for applications. On the other hand,
the homotopy method lends itself conveniently to parallelization, since each
solution path can be traced independently of the others and hence also
simultaneously.

4.8. Parametric programming problems

Parametric programming problems and sensitivity analysis can also be stud-
ied in the context of continuation methods. Consider the problem

min{f(z,a) : ¢i(z,a) =0, i € E, ¢i(z,a) <0, i € I}, (4.6)
where f,c; : R"t! — R are smooth functions. Here
E={1,...,q} and I={g¢+1,...,q+p}

denote the index sets for the equality and inequality constraints, respectively.
The local sensitivity of such systems has been analysed, e.g., in Fiacco (1983,
1984) and Robinson (1987). Many authors have used bifurcation and singu-
larity theory to investigate the local behaviour and persistence of minima at
the singular points of this system, see, e.g., Bank, Guddat, Klatte, Kummer
and Tammer (1983), Gfrerer, Guddat and Wacker (1983), Gfrerer, Guddat,
Wacker and Zulehner (1985), Guddat, Guerra Vasquez and Jongen (1990),
Guddat, Jongen, Kummer and Nozicka (1987), Jongen, Jonker and Twilt
(1983, 1986), Jongen and Weber (1990), Kojima and Hirabayashi (1984) and
Poore and Tiahrt (1987, 1990). Rakowska, Haftka and Watson (1991) dis-
cuss algorithms for tracking paths of optimal solutions. Lundberg and Poore
(1993) report on a numerical implementation of a path following method for
this problem. Our discussion is motivated by their exposition.

The Fritz John first-order necessary conditions for (4.6) imply the exis-
tence of (), v) € RP*? x R such that

Lo(z,\v,a) =0, 4.7
ci(z,a) =0, i€E, (4.8)
dici(z,0) =0, iel, (4.9)

v2>20, ¢(z,0) 0, X 2>0,7€l, (4.10)
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where L(z, \,v,a) = vf(z,a) + 3 Aici(z, ) is the Lagrangian.
Now an active set strategy is implemented by using the following homo-
topy equation for a path following algorithm:

Lz (:l?, {Ai}iGA’V7 a)
H(IB, {Ai}iGAylja a) = ci(x>a), i€A = Oa
vP+yaZ-1

where A is the set of active constraints. Hence A includes all of the indices E
and some of the indices I. During the path following procedure, this active
set is adapted in such a way that the inequalities (4.10) are respected.

There are various technical difficulties (such as handling singularities or
efficiently adapting the active set) which have to be overcome in order to
create a successful implementation.

(4.11)

4.9. Linear and quadratic programming

Khachiyan (1979) started a new class of polynomial time algorithms for solv-
ing the linear programming problem. Karmarkar (1984) subsequently gave
a much noted polynomial time algorithm based upon projective rescaling.
Gill, Murray, Saunders, Tomlin and Wright (1986) noted that Karmarkar’s
algorithm is equivalent to a projected Newton barrier method which in turn
is closely related to a recent class of polynomial time methods involving a
continuation method, namely the tracing of the ‘central path’. This last
technique can be extended to quadratic programming problems, and both
linear and nonlinear complementarity problems. Typically, algorithms of
this nature are now referred to as interior point methods.

The presentation of a continuous trajectory (central path) of the iterative
Karmarkar method was extensively studied by Bayer and Lagarias (1989),
see also Sonnevend (1985). Megiddo (1988) related this path to the classical
barrier path of nonlinear optimization (Fiacco and McCormick, 1968). Sev-
eral authors have proposed algorithms that generally follow the central path
to a solution, see, e.g., Renegar (1988a), Gonzaga (1988), Vaidya (1990),
Kojima, Mizuno and Yoshise (1988, 1989) and Monteiro and Adler (1989).

To make the algorithms more efficient, variable steplength and/or higher
order predictor algorithms have been proposed in Adler, Resende, Veiga
and Karmarkar (1989), Mizuno, Todd and Ye (1992) and Sonnevend, Stoer
and Zhao (1989, 1991). The algorithm of Mizuno et al. (1992) has subse-
quently been shown by Ye, Giiler, Tapia and Zhang (1991) to have both
polynomial time complexity and quadratic convergence. Kojima, Megiddo
and Mizuno (1991a) think that there still remain differences between the the-
oretical primal-dual algorithms which enjoy global and/or polynomial-time
convergence and the efficient implementations of primal-dual algorithms,
see, e.g., Marsten, Subramanian, Saltzman, Lustig and Shanno (1990) and
McShane, Monma and Shanno (1989).
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Adler et al. (1989) report extensive computational experiments for an in-
terior point implementation with solution times being in most cases less than
those required by a state-of-the-art simplex method MINOS, see Murtagh
and Saunders (1987). Karmarkar and Ramakrishnan (1991) report com-
putational experience on large scale problems which are representative of
large classes of applications of current interest. Their interior point imple-
mentation incorporates a preconditioned conjugate gradient method as a
corrector step and is consistently faster than MINOS by orders of magni-
tude. Further computational experience comparing an interior point method
0B1 and a simplex method CPLEX is reported in technical reports Bixby,
Gregory, Lustig, Marsten and Shanno (1991), Carpenter and Shanno (1991)
and Lustig, Marsten and Shanno (1991). Polak, Higgins and Mayne (1992)
have given an algorithm for solving semi-infinite minimax problems which
bears a resemblance to the interior penalty function methods. They report
numerical results which show that the algorithm is extremely robust and its
performance is at least comparable to that of current first-order minimax
algorithms.

There is currently immense activity in studying and developing imple-
mentations of interior point algorithms. It is to be expected that our brief
account will be outdated in a few years. For further details and literature, we
refer to the recent surveys of Gonzaga (1992), Kojima, Megiddo, Noma and
Yoshise (1991c), Todd (1989), Wright (1992), and the proceedings edited by
Roos and Vial (1991). As an example, we outline the central path approach
for a primal-dual linear programming problem, following the introductory
parts of Monteiro and Adler (1989) and Mizuno et al. (1992).

Consider the following linear programming problem and its corresponding
dual form:

Problem 4.9
n;in{c*:c Az =b, z > 0}, (4.12)
m;m.x{b*y A*y+z=¢, 220}, (4.13)

We make the following standard assumption.

Assumption 4.10 The rank of A equals the number of its rows, and the
interior feasible set of the primal-dual problem

Fo:={(z,2) : x,2 >0, Ax =b, A*y+ z = c for some y}

is not empty.

It is well established that the linear programming problem has a unique
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solution under these assumptions. The logarithmic barrier function method
associated with Problem 4.9 is

3 * .. —
mz;n{c z—uzj:lnz].Aa:—b, a:>0}, (4.14)

where ¢ > 0 is the barrier penalty parameter. Under Assumption 4.10,
the logarithmic barrier function is strictly convex and has a unique minimal
point z(u) for all g > 0. Moreover, z(x) tends to the unique solution of
Problem 4.9 as p tends to zero.

The Karush-Kuhn—Tucker optimality condition which characterizes the
solution z(u) can be expressed in the following way: (z(u), 2) must belong
to the set

C := {(z,2) € F°: diag(z)z = pe}, (4.15)

where e denotes the column of ones. In fact, C is parametrized by p and
is commonly called the central path of the problem. It turns out that y is
related to the so-called duality gap: c¢*z — b*y = £*2 via

z*

n

z

p= (4.16)

for (z,z) € C, where n is the number of columns of A.

From these remarks, it is clear that the objective now is to follow the
central path C as u tends to zero. In fact, most interior point methods can be
viewed, one way or another, as a special path following method along these
lines. The methods differ in the choice of predictor step, corrector procedure
(usually one or several Newton type iterations) and predictor steplength
control. Many papers discussing such methods or introducing new methods
also contain a sophisticated complexity analysis, see, for example, Section 6.

These interior point algorithms typically require a phase I in which a
feasible starting point is generated. A somewhat different approach is taken
by Freund (1991) who introduces a shifted barrier function approach so that
the need for phase I is obviated.

Finally, this technique is quite general and can be extended to quadratic
programming problems and linear and nonlinear complementarity problems,
see, e.g., Kojima, Megiddo and Ye (1992). The literature on interior methods
is rapidly increasing, and the subject has become one of the major topics
of mathematical programming. In our opinion, it is only a question of time
until the venerable simplex methods will be superceded by interior point
implementations.
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5. Piecewise-linear methods

Up to now we have assumed that the map H : R"*! — R" was smooth. Next
we will discuss piecewise-linear methods which can again be viewed as curve
tracing methods, but which can be applied to nonsmooth situations. The
piecewise-linear methods trace a polygonal path which is obtained by succes-
sively stepping through certain ‘transversal’ cells of a piecewise-linear man-
ifold. The first and most prominent example of a piecewise-linear algorithm
was designed by Lemke and Howson (1964) and Lemke (1965) to calculate a
solution of the linear complementarity problem, see Section 5.2. This algo-
rithm played a crucial role in the development of subsequent piecewise-linear
algorithms. Scarf (1967) gave a numerically implementable proof of the
Brouwer fixed point theorem, based upon Lemke’s algorithm. Eaves (1972)
observed that a related class of algorithms can be obtained by considering
piecewise-linear approximations of homotopy maps. Thus the piecewise-
linear continuation methods began to emerge as a parallel to the classical
embedding or predictor—corrector methods.

The piecewise-linear methods require no smoothness of the underlying
equations and hence have, at least in theory, a more general range of ap-
plicability than classical embedding methods. In fact, they can be used to
calculate fixed points of set-valued maps. They are more combinatorial in
nature and are closely related to the topological degree, see Peitgen and
Siegberg (1981). Piecewise-linear continuation methods are usually consid-
ered to be less efficient than the predictor—-corrector methods when the latter
are applicable, especially in higher dimensions. The reasons for this lie in
the fact that steplength adaptation and exploitation of special structure are
more difficult to implement for piecewise-linear methods.

Eaves (1976) has given a very elegant geometric approach to general piece-
wise-linear methods, see also Eaves and Scarf (1976). We adopt this point
of view and cast the notion of piecewise-linear algorithms into the general
setting of subdivided manifolds which we will call piecewise-linear manifolds.
Our exposition follows the introduction of Georg (1990) to some extent.

Let E denote some ambient finite dimensional Euclidean space which
contains all points arising in the sequel. A half-space 1 and the corre-
sponding hyperplane On are defined by n = {y € E : z*y < o} and
on = {y € E : z*y = a}, respectively, for some z € E with £ # 0 and
some a@ € R. A finite intersection of half-spaces is called a cell. If o is a
cell and ¢ a half-space such that ¢ C € and 7 := 0 N ¢ + @, then the cell
T is called a face of 0. For reasons of notation we consider o also to be a
face of itself, and all other faces are proper faces of 0. The dimension of
a cell is the dimension of its affine hull. In particular, the dimension of a
singleton is 0 and the dimension of the empty set is —1. If the singleton {v}
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is a face of o, then v is called a vertex of 0. If 7 is a face of o such that
dim7 = dimo — 1, then 7 is called a facet of o.

Definition 5.1 A piecewise-linear manifold of dimension n is a system
M # 0 of cells of dimension n such that the following conditions hold:

1. If 04,09 € M, then g1 N gy is a common face of o1 and 5.
2. A cell 7 of dimension n — 1 can be a facet of at most two cells in M.
3. The family M is locally finite, i.e. any relatively compact subset of

M|:= ] o (5.1)

oEM
meets only finitely many cells ¢ € M.

The simplest example of a piecewise-linear manifold is R™ subdivided into
unit cubes with integer vertices.

We introduce the boundary AM of M as the system of facets which are
common to exactly one cell of M. Generally, we cannot expect AM to
again be a piecewise-linear manifold. However, this is true for the case that
|M| is convex. Two cells which have a common facet 7 are called adjacent.
We say that one cell is pivoted into the other cell across the facet r. We will
see that piecewise-linear algorithms perform pivoting steps.

Typical for piecewise-linear path following is that only one current cell is
stored in the computer, along with some additional data, and the pivoting
step is performed by calling a subroutine which makes use of the data to
determine an adjacent cell which then becomes the new current cell.

A cell of particular interest is a simplex o = [v1,v2,...,vp+1] of dimension
n which is defined as the convex hull of n + 1 affinely independent points
V1,2,...,Unt+1 € E. These points are the vertices of o. If a piecewise-linear
manifold M of dimension n consists only of simplices, then M is called a
pseudo manifold of dimension n. Such manifolds are of special importance,
see, e.g., Gould and Tolle (1983) and Todd (1976a). If a pseudo manifold
T subdivides a set |T|, then we also say that 7 triangulates |T|. Some
triangulations of R™ of practical importance had been previously considered
by Coxeter (1934) and Freudenthal (1942), see also Todd (1976a). Eaves
(1984) gave an overview of standard triangulations.

A simple triangulation can be generated by the following pivoting rule,
see Allgower and Georg (1979) or Coxeter (1973): if

o =[v1,v2,...,i...,Vn41]
is a simplex in R"®, and 7 is the facet opposite a vertex v;, then o is pivoted
across T into & = [v1,v2,...,D;...,Un+1] by setting

Vi+1 + Vi1 — Y for 1<i<n+1,
Ui ={ Vg4 Upt1 — V1 for i=1,
Up + V1 — Upy1 for i=n+1.
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In fact, a minimal (nonempty) system of n-simplices in R™ which is closed
under this pivoting rule is a triangulation of R”.

Let M be a piecewise-linear manifold of dimension n + 1. We call H :
|M| — R™ a piecewise-linear map if the restriction H, : 0 — R" of H to o is
an affine map for all ¢ € M. In this case, H, can be uniquely extended to
an affine map on the affine space spanned by o. The Jacobian H/ has the
property H! (z —y) = H,(z) — Hy(y) for z,y in this affine space. Note that
under an appropriate choice of basis H/ corresponds to an (n,n + 1)-matrix
which has a one-dimensional kernel in case of nondegeneracy, i.e. if its rank
is maximal.

A piecewise-linear algorithm is a method for following a polygonal path
in H~1(0). To avoid degeneracies, we introduce a concept of regularity, see
Eaves (1976). A point = € (M| is called a regular point of H if z is not
contained in any face of dimension < n, and if H, has maximal rank n for
all facets 7. A value y € R" is a regular value of H if all points in H~!(y) are
regular. By definition, y is vacuously a regular value if it is not contained
in the range of H. If a point or value is not regular it is called singular.
An analogue of Sard’s theorem 4.1 holds, see, e.g., Eaves (1976) or Peitgen
and Siegberg (1981) for details. This enables us to confine ourselves to
regular values. We note that degeneracies could be handled via the concept
of lexicographical ordering, see Dantzig (1963) and Todd (1976a).

Hence, for reasons of simplicity, we assume that all piecewise-linear maps
under consideration here have zero as a regular value. This implies that
H~1(0) consists of polygonal paths whose vertices are always in the interior
of some facet. If o is a cell, then o N H~1(0) is a segment (two endpoints),
a ray (one endpoint) or a line (no endpoint). The latter case is not of
interest for piecewise-linear path following. A step of the method consists
of following the ray or segment from one cell into a uniquely determined
adjacent cell. The method is typically started at a point of the boundary or
on a ray (coming from infinity), and it is typically terminated at a point of
the boundary or in a ray (going to infinity). The numerical linear algebra
required to perform one step of the method is typical for linear programming
and usually involves n? operations for dense matrices (at least in the case
that the cells are simplices).

Nearly all piecewise-linear manifolds M which are of importance for prac-
tical implementatiens, are orientable. If M is orientable and of dimension
n+1, and if H : M — R" is a piecewise-linear map, then it is possible to
introduce an index for the piecewise-linear solution manifold H ~!(0) which
has important invariance properties and occasionally yields some useful in-
formation, see Eaves (1976), Eaves and Scarf (1976), Lemke and Grotzinger
(1976), Shapley (1974) and Todd (1976¢). It should be noted that this index
is closely related, see, e.g., Peitgen (1982), to the topological index which
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is a standard tool in topology and nonlinear analysis. Occasionally, index
arguments are used to ensure a certain behaviour of the solution path.

We now give some examples of how the piecewise-linear path following
methods are used.

5.1. Piecewise-linear homotopy algorithms

Let us first show how these ideas can be used to approximate a fixed point
of a continuous bounded map f : R® — R" by applying piecewise-linear path
following to an appropriate piecewise-linear homotopy map. Eaves (1972)
presented the first such method. A restart method based on somewhat simi-
lar ideas was developed by Merrill (1972). A number of authors have studied
the efficiency and complexity of piecewise-linear homotopy algorithms, see,
e.g., Alexander (1987), Eaves and Yorke (1984}, Saigal (1977, 1984), Saigal
and Todd (1978), Saupe (1982), Todd (1982) and Todd (1986).

As an example of a piecewise-linear homotopy algorithm, let us sketch
the algorithm of Eaves and Saigal (1972). We consider a triangulation T
of R™ x (0, 1] into (n + 1)-simplices o such that every simplex is contained
in some slab R™ x [27%,2%~1] for k = 0,1,.... Let us call the maximum
of the last coordinates of all vertices of o the level of 0. We call T a re-
fining triangulation if for o € 7, the diameter of o tends to zero as the
level of o tends to zero. The first such triangulation was proposed by Eaves
(1972). Todd (1976a) gave a triangulation with refining factor 1/2. Subse-
quently, many triangulations with arbitrary refining factors were developed,
see Eaves (1984).

Consider the homotopy

H(z,\) =z — Azg — (1 - N)f(z).

The idea is to follow a solution path from (z¢,1) to (Z,0) where zg is the
starting point of the method and z is a fixed point of f we wish to approxi-
mate. However, there are no smoothness assumptions on f, and therefore a
more subtle path following approach involving piecewise-linear approxima-
tions is required. _

We denote by H the piecewise-linear map which interpolates H on the
vertices of the given refining triangulation 7. Then it is possible to follow
the polygonal solution path c(s) = (z(s), A(s)) in H ~1(0) starting at c(0) =
(zo,1). For convenience we regard c¢ to be parametrized by arclength 0 <
s < 89 < 0o. From the boundedness of the map f it follows that A(s) tends
to zero as s tends to sg. Furthermore,

lim Jlz(s) ~ f(z(s)] = 0.

Since z(s) remains bounded as s tends to sg, this implies that every accu-
mulation point of z(s) is a fixed point of f.
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These ideas can be extended to set-valued maps.

5.2. Lemke’s algorithm

The first and most prominent example of a piecewise-linear algorithm was
designed by Lemke (1965) and Lemke and Howson (1964) in order to cal-
culate a solution of the linear complementarity problem. Subsequently, sev-
eral authors have studied complementarity problems from the standpoint of
piecewise-linear homotopy methods, see, e.g., Kojima (1974, 1979), Kojima,
Nishino and Sekine (1976), Saigal (1971, 1976) and Todd (1976b). Comple-
mentarity problems can also be considered from an interior point algorithm
viewpoint, see Section 4.9, hence by following a smooth path, see, e.g.,
Kojima, Mizuno and Noma (1990b), Kojima, Mizuno and Yoshise (1991d),
Kojima, Megiddo and Noma (1991b), Kojima, Megiddo and Mizuno (1990a)
and Mizuno (1992).

We present the Lemke algorithm as an example of a piecewise-linear al-
gorithm since it played a crucial role in the development of subsequent
piecewise-linear algorithms. Let us consider the following linear comple-
mentarity problem: Given an affine map g : R® — R”, find an z € R" such
that

z€R}; g(z)eRy; =z*g(x)=0.

Here R, denotes the set of nonnegative real numbers, and in the sequel we
also denote the set of positive real numbers by R, .. If g(0) € R}, then
z = 0 is a trivial solution to the problem. Hence this trivial case is always
excluded and the additional assumption

9(0) ¢ R}

is made. Linear complementarity problems arise in quadratic programming,
bimatrix games, variational inequalities and economic equilibria problems,
and numerical methods for their solution have been of considerable interest,
see, e.g., Cottle (1974), Cottle and Dantzig (1968), Cottle, Golub and Sacher
(1978) and Lemke (1980). See also the proceedings (Cottle, Gianessi and
Lions, 1980) for further references.

For x € R™ we introduce the positive part z, € R} by setting efz, :=
max{e}z,0}, ¢ = 1,...,n and the negative part z_ € R} by z_ := (—z),.
The following formulae are then obvious: z =24 —z_, (z4)*(z-) = 0.

It is not difficult to show the following: Define f : R — R” by f(2) :=
g(z4+) — z_. If z is a solution of the linear complementarity problem, then
z = — g(z) is a zero point of f. Conversely, if z is a zero point of f, then
Z := z4 solves the linear complementarity problem.

The advantage which f provides is that it is obviously a piecewise-linear
map if we subdivide R™ into orthants. This is the basis for our description
of Lemke’s algorithm. For a fixed d € R}, we define the homotopy H :
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R™ x [0,00) — R™ by
H(z,A) := f(z) + A\d.
For a given subset I C {1,2,...,n} an orthant can be written in the form
or:={(z,\): A>0, ez >0foriel, ez <0fori¢l}.

The collection of all such orthants forms a piecewise-linear manifold M (of
dimension n + 1) which subdivides R™ x [0, 00). Furthermore it is clear that
H : M — R” is a piecewise-linear map since x — x, switches its linearity
character only at the coordinate hyperplanes.

Let us assume for simplicity (as usual) that zero is a regular value of H.
Lemke’s algorithm is started on a ray: if A > 0 is sufficiently large, then

(—g(0)=Ad), =0 and (—g(0)—Ad)_=g(0)+ M€ R},

and consequently
H(—g(0)—Ad, \) =0.

Hence, the ray defined by

A € [Ag,00) —> —g(0) — Md € 0 (5.2)
for Ag:= Jmax, %&)[ﬂ (5.3)

is used (for decreasing A-values) to start the path following. Since the
piecewise-linear manifold M consists of the orthants of R™ x [0,00), it is
finite, and there are only two possibilities:

1. The algorithm terminates on the boundary |0M| = R™ x {0} at a point
(2,0). Then z is a zero point of f, and hence 2, solves the linear

complementarity problem.
2. The algorithm terminates on a secondary ray. Then it can be shown, see

Cottle (1974), that the linear complementarity problem has no solution,
at least if the Jacobian g’ belongs to a certain class of matrices.

5.8. Variable dimension algorithms

In recent years, a new class of piecewise-linear algorithms has attracted con-
siderable attention. They are called variable dimension algorithms since
they all start from a single point, a zero-dimensional simplex, and succes-
sively generate simplices of varying dimension, until a so-called completely
labelled simplex is found. Numerical results from Kojima and Yamamoto
(1984) indicate that these algorithms improve the computational efficiency of
piecewise-linear homotopy methods. The first variable dimension algorithm
is due to Kuhn (1969). However, this algorithm had the disadvantage that
it could only be started from a vertex of a large triangulated standard sim-
plex S, and therefore piecewise-linear homotopy algorithms were preferred.
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By increasing the sophistication of Kuhn’s algorithm considerably, van der
Laan and Talman (1979) developed an algorithm which could start from any
point inside S. It soon became clear, see Todd (1978), that this algorithm
could be interpreted as a homotopy algorithm. Numerous other variable
dimension algorithms were developed. Some of the latest are due to Dai,
Sekitani and Yamamoto (1992), Dai and Yamamoto (1989), Kamiya and
Talman (1990), Talman and Yamamoto (1989). Two unifying approaches
have been given, one due to Kojima and Yamamoto (1982), the other due
to Freund (1984a,b). A variable dimension algorithm which is easy to com-
prehend and may serve the reader as a gateway is the octrahedral algorithm
of Wright (1981).

5.4. Approzimating manifolds

The emphasis of this survey is on path following methods. We should note,
however, that the ideas of predictor—corrector and piecewise-linear curve
tracing can be extended to the approximation of implicitly defined manifolds
H~1(0) where H : RN+K —, RN, Limitations of space preclude a detailed
discussion.

There are two basic types of algorithms: one is the moving frame algo-
rithm of Rheinboldt (1987), see also Rheinboldt (1988b), which is a higher
dimensional analogue of the predictor—corrector method, the other is a piece-
wise-linear algorithm which has been developed in Allgower and Gnutz-
mann (1987), Allgower and Schmidt (1985), Gnutzmann (1989), Widmann
(1990a,b), see also Chapter 15 of Allgower and Georg (1990).

The moving frame algorithm involves predictors that arise from a local
triangulation of the tangent space at a current point. The corrector consists
of a Newton-like method for projecting the generated mesh back to the
manifold. This method is well-suited for smooth manifolds in which the
dimension N is large, such as in multiple parameter nonlinear eigenvalue
problems, see, e.g., Rheinboldt (1988b, 1992a). It has been applied to the
calculation of fold curves and to differential-algebraic equations, see Dai and
Rheinboldt (1990) and Rheinboldt (1986, 1991, 1992b).

So far, it has not been possible to make the moving frame algorithm
global in the sense that a compact manifold is approximated (without holes
or overlaps) by a piecewise-linear compact manifold. The latter task can be
accomplished by the application of piecewise-linear algorithms. However,
these algorithms become extremely costly for large N. The piecewise-linear
algorithms have been applied to the visualization of body surfaces, see All-
gower and Gnutzmann (1991), and to the approximation of surface and
body integrals, see Allgower, Georg and Widmann (1991d). They can also
be used as automatic mesh generators for boundary element methods, see
Georg (1991).
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6. Complexity

In modern complexity investigations of continuation-type methods the so-
called a-theory of Smale (1986) is a convenient tool. This theory is closely
related to the classical Kantorovich estimates for Newton iterations, see,
e.g., Ortega and Rheinboldt (1970) and Deuflhard and Heindl (1979). In
contrast to the Kantorovich estimates, Smale’s estimates are based on in-
formation at only one point, involving however all derivatives. The maps
under consideration have to be analytic.

On the other hand, an analytic map is characterized by all its derivatives
at one point. In fact, Rheinboldt (1988a) showed that Smale’s estimates
can be derived from the Kantorovich estimates. However, for complexity
considerations, it is more convenient to have all the relevant information
situated at only one point. Let us briefly present Smale’s estimates and
show how they are used for complexity discussions. Our presentation is
based on the introductory parts of the papers of Shub and Smale (1991)
and Renegar and Shub (1992).

Let E, F be complex Banach spaces and f : E — F an analytic map. It
would be possible to assume that f is given only on some open domain, but
for reasons of simplicity of exposition we assume f to be defined on all of
E. Then for each point z € E such that Df(z) : E — F is an isomorphism
the following quantities are defined:

B(fa) = IDF@ ™ f@), (61)
Wfa) = sup HIDFE) D @YD, (62)
alfia) = B3, (63)
Ny@) = z-Dj(z)"f(z). (6.4)

Note that N(z) is the Newton iterate of z. It it also convenient to introduce
the notation

Nfe(z) = ,ll.rf,loN}(x) (6.5)

provided Newton’s method started at z is convergent.
A related one-dimensional ‘control’ Newton method is occasionally gen-
erated from the following family of functions
t?

haa(t) = f—t+ 7T (6.6)

For 0 < o < 3—2v/2 = 0.1716, the function hg_ has two real positive roots,
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the smaller one being

() _ (a+1)—\/(a+1)2—8a. (6.7)

gl 4y
Moreover, h% . > 0 on the interval (0, 1/7). Thus, Newton’s method starting
at zero generates a strictly increasing sequence t;(3,7) = ,’;B N (0) converg-

ing to this root.

Occasionally, a slightly smaller upper bound for « is used, namely ag =
1(13 — 3V/17) = 0.1577.

The following is a modification of Smale’s a-theorem.

Theorem 6.1 Letzg€ E,a = a(f,zo), vy =7(f,z0). If a < ap = 0.1577,
then the iterates z;11 = Ny(z;) are defined and converge to a zero point
Too = N7°(20) € E with the rate

2i-1
lzivs @il < (3) lla1 — ol

Moreover, the following estimates hold:

(@)

T\&X) — O
oo — aoll < %2, oo — aal] < TR 2

An easy consequence is
Corollary 6.2 ||z, — z;|| < € fori > 1+ log|log (a)/e7]|.

Furthermore, by using the control Newton iterates t; = t;(,7), a stricter
estimate can be obtained under the same hypotheses:

Theorem 6.3 |z; — z;—1| < t; —ti—1.

Another property which is important for complexity discussions is the fact
that «a is upper semi-continuous, more precisely:

Proposition 6.4 Let ¥(u) := 2u®? — 4u + 1 and u := (£, zo)||zo — z.
Then
a(f7 L":0)(1 —' u) tu
P(u)? '
From the previous proposition it is possible to obtain a uniform estimate
for Newton steps:

o(f,z) <

Theorem 6.5 There are universal constants & ~ 0.0802 and u =~ 0.0221
with the following property: Let ¥ > 0 and z,{ € E. If 5(f,{) < &/ and
lz — ¢l < @/7, then [|Nf(z) — N (Ol < /7.

This theorem is used to investigate the complexity of path following in
the following way: Let H : [0,1] x E — F be a continuous (homotopy)
map which is analytic in the second argument. We further assume that a
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continuous solution path ¢ : [0,1] — F exists, i.e. H(t,{(t)) =0for ¢ € [0, 1],
such that the derivative H¢(t,{(t)) is an isomorphism. The following crude
path-following method can be designed: choose a subdivision 0 =tg < t; <
-+ <ty = 1 and define

xT; = NH(ti,.)(zi—l) for i = 1, ey k. (68)

It is clear that this method follows the solution curve if ||zo — ¢(0)| and
|t; — t;—1| are small enough. Of course, the crucial number for complexity
considerations is the number k of Newton steps involved in this embedding
method. If it is wished to obtain some points of the solution curve with high
accuracy, then the complexity described in Corollary 6.2 has to be added.

The preceding analysis immediately furnishes a tool to determine the es-
timates necessary for a successful tracing of the solution curve:

Theorem 6.6 Let ||zg — ((0)|| < @/7, and let the mesh ¢; be so fine that
B(H(t;, .),¢(ti—1)) < &/7 and y(H (t;, .),{(ti=1)) < 4. Then the embedding
method (6.8) follows the solution path (. In fact, ||z; — {(t;)|| < @/7.

To summarize, we have outlined a program for approaching complexity
investigations when Newton steps are the primary tool of path following
methods. As can be seen from the last theorem, the success of the approach
depends heavily on the availability of estimates B(H(%, .),{(s)) < Ci|t — 3|
and y(H(t, .),((s)) < Ca|t — s| with explicit constants C; and Ca.

This program was carried out by Shub and Smale (1991) for the case of
a homotopy method for calculating all solutions of a system of polynomial
equations (Bezout’s theorem). A previous effort along similar lines was
described by Renegar (1987).

Recently, this approach has also been used by Renegar and Shub (1992) for
a unified complexity analysis of various interior methods designed for solving
linear and convex quadratic programming problems. They obtain and re-
derive various ‘polynomial time’ estimates. The linear programming barrier
method was first analysed by Gonzaga (1988). The quadratic programming
barrier method was analysed by Goldfarb and Liu (1991). A primal-dual
linear programming algorithm was investigated by Kojima et al. (1988) and
Monteiro and Adler (1989). The algorithm has roots in Megiddo (1988).
Primal-dual linear complementarity and quadratic programming algorithms
were discussed by Kojima et al. (1989) and Monteiro and Adler (1989).
All of these algorithms follow the central trajectory studied by Bayer and
Lagarias (1989) and Megiddo and Shub (1989). For the case of the linear
complementarity problem, Mizuno, Yoshise and Kikuchi (1989) present sev-
eral implementations and report computational experience which confirms
the polynomial complexity.

This discussion involved path following methods of Newton type. Renegar
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(1985), see also Renegar (1988b), has made complexity investigations for
piecewise-linear path following methods.

7. Available software

We conclude the paper by listing some available software related to path
following and indicate how the reader might access these codes. No attempt
to compare or evaluate the various codes is offered. In any case, our opinion
is that path following codes always need to be considerably adapted to the
special purposes for which they are designed. The path following literature
offers various tools for accomplishing such tasks. Although there are some
general purpose codes, probably none will slay every dragon.

Rheinboldt, Roose and Seydel (1990) present a list of features and options
that appear to be necessary or desirable for continuation codes. This should
be viewed as a guideline for people who want to create a new code.

Several of the codes can be accessed via netlib: The best way to obtain
them is to ftp into netlib@research.att.com, login as netlib, password =
your e-mail address. It is also possible to e-mail to netlib by writing send
indez. Information on how to proceed will then be e-mailed back to you.

7.1. ALCON

This sofware package has been written by Deuflhard, Fiedler and Kunkel
(1987). ALCON is a continuation method for algebraic equations f(z,7) =
0, based on QR factorization as a solver for the arising equations in the
Gauss—Newton iteration of the corrector step. Turning points and simple
bifurcations can be computed on demand. It can be found in the electronic
library of the Konrad Zuse Zentrum fiir Informationstechnik in Berlin. The
reader may telnet or ftp to sc.ZIB-Berlin.de (130.73.108.11) and login under
the user identification elib, no password is required. The sources can be
found in the directory /pub/ELIB/codelib either in unpacked form or as a
tar.Z file.

7.2. AUTO

This is a software package written by E. Doedel. It is mainly intended
to investigate bifurcation phenomena. There is a charge of $175 for the
software, a manual by Doedel and Kernévez (1986) is also available, contact:
S. K. Shull, Applied Mathematics, 217-50, California Institute of Technology,
Pasadena, CA 91125, USA. Telephone: (818) 356-4560.

7.8. BIFPACK

This package has been written by Seydel (1991a). It is meant primarily
for bifurcation analysis of ODEs. This is not a public domain software.
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However, as a research tool, it is freely distributed for noncommercial use,
except for a $20 contribution for handling. Indicate whether you prefer
BIFPACK on 5.25 in or on 3.5 in diskette (1.4 MB, DOS double-density).
Contact: Professor Riidiger Seydel, Abt. Mathematik VI, Universitat Ulm,
Postfach 4066, W - 7900 Ulm, Germany.

e-mail: seydel@rz.uni-ulm.dbp.de

7.4. CONKUB

This is an interactive program for continuation and bifurcation of large sys-
tems of nonlinear equations written by Mejia (1986), see also Mejia (1990).
It is currently available from him via e-mail:

rayChelix.nih.gov.

7.5. DERPAR

This package was written by Kubi¢ek (1976), and Holodniok and Kubitek
(1984). This is a Fortran subprogram for the evaluation of the dependence
of the solution of a nonlinear system on a parameter. The modified method
of Davidenko, which applies the Implicit Function Theorem, is used in com-
bination with Newton’s method and Adam’s integration formulae. The pro-
gram can be accessed via netlib, see number 502 in the directory toms.

7.6. HOMPACK

This is a suite of FORTRAN 77 subroutines for solving nonlinear systems
of equations by homotopy methods, written by L. T. Watson, see Watson et
al. (1987). There are subroutines for fixed point, zero finding, and general
homotopy curve tracking problems, utilizing both dense and sparse Jacobian
matrices, and implementing three different algorithms: ODE-based, normal
flow and augmented Jacobian. The program can be accessed via netlib under
the directory hompack. See also number 652 in the directory toms.

7.7. LOCBIF

A. Khibnik and collaborators in Moscow have developed several codes for
path following and bifurcation analysis. CYCLE is a one-parameter continua-
tion program for limit cycles. LINLBF has been designed for multi-parameter
bifircation analysis of equilibrium points, limit cycles, fixed points of maps,
respectively. LOCBIF is an interactive program built originally on the top of
LINLBF. People interested in trying this software should contact A. Khibnik
via e-mail:

na.khibnik@na-net.ornl.gov.
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7.8. OB1

This interior point method has been written by I. J. Lustig, R. E. Marsten
and D. F. Shanno. The version of 0B1 that implements a primal-dual algo-
rithm for linear programming is available in source code form to academics
from Roy Marsten at Georgia Tech. This is the December 1989 version,
also known as the WRIP (Workshop on Research in Programming) ver-
sion. The current version of OB1 is commercial. It implements a primal-dual
predictor—corrector algorithm for linear programming and is available from
XMP Software at prices ranging from $15,000 to $100,000: XMP Software,
Suite 279, Bldg 802, 930 Tahoe Blvd, Incline Village, NV 89451, phone:
(702) 831- 4XMP, e-mail:

tlowe@mcimail.com

7.9. PATH

This software package for dynamical systems was originally coded in FOR-
TRAN 77 by Kaas-Petersen (1989), and is currently modified to include a
graphical interface. According to the workers at the Technical University of
Denmark, it seems to be able to handle much larger systems of ODE’s than
AUTO. For more details and availability, readers may contact Michael Rose
via e-mail:

lamfmr@lamf.dth.dk.

7.10. PITCON

This is a Fortran subprogram for continuation and limit points, written
by Rheinboldt and Burkardt (1983b), see also Rheinboldt and Burkardt
(1983a). It is used for computing solutions of a nonlinear system of equations
containing a parameter. The location of target points where a given variable
has a specified value can be located. Limit points are also identified. It uses
a local parameterization based on curvature estimates to control the choice
of parameter value. The program can be accessed via netlib under the
directory contin. See also number 596 in the directory toms.

7.11. PLALGO

This is a software for piecewise-linear homotopy methods developed by Todd
(1981). It can be obtained from him via e-mail:

miketoddQorie.cornell.edu.

No support is available, and he says that on-line documentation is weak,
although he can send a hard copy.
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7.12. plask

This is a C program, written by Widmann (1990a), for triangulating sur-
faces in R3 which are implicitly defined, see Section 5.4. It incorporates mesh
smoothing and some other features. It is particularly suited for mesh gen-
eration (e.g. for boundary element methods) and for visualization purposes.
The program can be obtained via e-mail:

Georg@Math.ColoState.Edu.

7.18. PLTMG

This package has been written by R. E. Bank, see also Bank and Chan
(1986). It solves elliptic partial differential equations in general regions of the
plane. It features adaptive local mesh refinement, multigrid iteration, and
a pseudo-arclength continuation option for parameter dependencies. The
package includes an initial mesh generator and several graphics packages.
Full documentation can be obtained in the PLTMG User’s Guide by R. E.
Bank, available from SIAM publications via e-mail:

SIAMPUBS@wharton.upenn.edu.

The program can be accessed via netlib under the directory pltmg.

7.14. Last and least

The book Allgower and Georg (1990) contains several Fortran codes for
path following which are to be regarded primarily as illustrations. The
intention was to encourage the readers to experiment and be led to make
improvements and adaptations suited to their particular applications. We
emphasize that these programs should not be regarded as programs of library
quality. They can be obtained via e-mail:

Georg@Math.ColoState.Edu.
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1. Introduction

This article was supposed to be on ‘multivariate splines’. An informal sur-
vey, taken recently by asking various people in Approximation Theory what
they consider to be a ‘multivariate spline’, resulted in the answer that a
multivariate spline is a possibly smooth, piecewise polynomial function of
several arguments. In particular, the potentially very useful thin-plate spline
was thought to belong more to the subject of radial basis functions than in
the present article. This is all the more surprising to me since I am con-
vinced that the variational approach to splines will play a much greater role
in multivariate spline theory than it did or should have in the univariate
theory. Still, as there is more than enough material for a survey of mul-
tivariate piecewise polynomials, this article is restricted to this topic, as is
indicated by the (changed) title.
The available material concerning the space

A =17 A (RY)
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of all pp (:= piecewise polynomial) functions in C?)(R?) of degree < k
with some partition A is quite vast, as is evidenced by the bibliography
Franke and Schumaker (1987) (which contains over 1100 items, yet, e.g.,
only skims the available engineering literature on finite elements) and the
supplementary bibliographies in Schumaker (1988, 1991). This means that,
in an article such as this, it is only possible to sketch some of the ideas
underlying some of the recent developments in this area.
After a short section on notation, the major topics addressed here are:

(i) the BB-form;

(ii) the dimension of IT} 4;

(iii) polyhedral splines;

(iv) the Strang-Fix condition;

(v) upper bounds for the approximation power of HZ, A

Of these, the BB- (:= Bernstein-Bézier-) form is perhaps the most im-
mediately useful. Although approximation theorists became aware of it
(through the work of Farin and others in CAGD) in the early 1980s, it
should be much better known. For example, people in Finite Elements
could benefit greatly from its use. For this reason, I am giving a rather
leisurely introduction to it, in the generality of functions of several (rather
than just one or two) variables.

The second topic, the dimension of IIZ’ A» has been a major topic since
Strang published some conjectures concerning the bivariate case. It turned
out to be a hard problem, perhaps solvable only for ‘generic’ partitions if at
all. However, it gives me the opportunity to illustrate further the use of the
BB-form in the process of indicating the difficulty of the problem.

Much effort has been expended in the last 15 years to understand and
make use of polyhedral splines, especially simplex splines and box splines.
These are multivariate generalizations of Schoenberg’s highly successful uni-
variate B-spline. Although some beautiful mathematics has been, and is still
being, generated in pursuit of a better understanding, these multivariate B-
splines have not yet become standard tools for approximation. However (or,
perhaps, because of this), it is important to be aware of the basic idea un-
derlying them, if only because it is the only general principle available at
present for the construction of compactly supported pp functions of two or
more arguments of degree < k and in C») for p ‘near’ k. Also, the recent
introduction, by Dahmen, Micchelli and Seidel, of what looks in hindsight
to be the ‘right’ construction principle for a basis of simplex splines suitable
for a given triangulation, awakens new hope for the ultimate usefulness of
polyhedral splines.

The Strang—Fix condition (as it is called in Approximation Theory) relates
the approximation power of the space spanned by the integer translates
of some compactly supported function ¢ to the behaviour of its Fourier
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transform @ ‘at’ the discrete set 2rZ%\0. Since its formulation in the early
1970s as the result of a mathematical analysis of the Finite Element Method,
it has been the main tool for the determination of approximation orders
for shift-invariant pp spaces (such as those generated from box splines, or
those on regular partitions). Recent understanding of the structure of shift-
invariant spaces has led to a better understanding of what underlies the
Strang-Fix condition.

The last section provides a simple discussion of the basic technique for
determining upper bounds for the approximation power of a pp space.

The omission of any discussion of parametric pp functions, such as curves
and surfaces, is likely to be remedied by an entire article on this topic,
perhaps in the next volume of this journal. It is to be hoped that another
major omission in the context of splines, the discussion of thin-plate splines
and other radial functions, will be similarly remedied. Finally, the discussion
of numerical methods for approximation by multivariate pp functions is
better postponed to a time when these are better understood.

Incidentally, with the exception of numerical methods and, perhaps, the
dimension question, none of the topics mentioned (as being discussed or
omitted here) appears in the early survey Birkhoff and de Boor (1965) on
piecewise polynomial interpolation and approximation.

Finally, a comment concerning the term ‘multivariate’. To the annoyance
and confusion of statisticians, the term ‘multivariate’ has become standard
in Approximation Theory for what statisticians (and, perhaps, others) would
call ‘multivariable’. It is too late to change this.

2. Polynomials

The collection of all polynomials in d arguments is denoted here by

I = II(R%).
For multivariate polynomials, multi-index notation is standard. A multi-
index is, by definition, any vector with nonnegative integer entries. The
length of such a multi-index «a is the sum of its entries,

la = Z a(i).

1

Further, a < 8 iff a(i) < B(3) for all ¢, and a < B iff a < B yet a # S.
With z(i) the ith component of z € R?, one uses the abbreviation

d
%= H 2(1)*®, zeR%aezl.
i=1

The notation
()*:R* S R:z— z®
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for the monomial of degree « is convenient (though nonstandard). With
a€zd,

I, := Il<, := span{())? : B < a}
is the space of all polynomials of degree < a. For any integer k,
II; := My := span{(")? : || < k}

is the space of all polynomials of total degree < k. The spaces II., and
IT. are defined analogously.
Many expressions simplify if one uses the normalized power function

[1%:z— z*/al,
with

al = Ha(i)!,

with the understanding that []* = 0 if & € Z%\zd. For example, with
a,€v,C € Z‘j_, the Multinomial Theorem takes the simple form

[e+y+--+2* = 3 [FWIY-- [ (2.1)
E+vtt(=a

The multinomial theorem is immediate (by induction on the number of
summands in the sum on the left-hand side) once one knows it for two
summands. For two summands, though, it is just the special case p = [-]*
of the Taylor expansion

plx+y) = [z]* Dp(y),
:

in which
1 d

(with D; differentiation with respect to the ith argument), hence
D[1*(y) = vl

A more sophisticated example is provided by the Leibniz—Hérmander
formula

p(sD)(fg) = X ((ID¥p) (sD)f) [sDIg
B

concerning the differentiation of the product fg of two functions, in which s
is an arbitrary scalar, and p an arbitrary polynomial, p = ¥, []c() say,
therefore

p(D) := 2 D%/a! c(a)

the corresponding constant-coeflicient differential operator.
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Since D*[]°(0) = 643, II;, has dimension

d
the last equality can be verified, e.g., with the aid of the invertible map

(o ezl :|a] <k} — ({1,---"”’“}) :ar—>{Z(a(i)+1):j:1,...,d},

d i<y

dimMy = #{a €zl : || <k} = (k+d);

with (§ ) the collection of all d-sets, i.e., all subsets of cardinality d, in X.
While there are various univariate polynomial forms available, there is,
aside from the (possibly shifted and/or normalized) power form, only one
multivariate polynomial form in general use, namely the BB-form, to be
discussed next. In particular, the equivalent of a Chebyshev form (or similar
form of good condition with respect to the max-norm on some domain) is,
as yet, not readily available. The BB-form illustrates that it is often good
to give up on the power form altogether in favour of forms which employ
more general homogeneous polynomials of the form z — [],cy yTz, with

y'e = 3 y(@)a(i)

the standard inner product.

3. BB-form

The BB-form is, at present, the most effective polynomial form for work
with pp functions on a simplicial partition (or, more generally, a simploidal
partition). For, the BB-form of a polynomial, with respect to a given simplex

(V) := conv(V)

spanned by some (d+1)-set V C R¢, is symmetric with respect to the vertices
of that simplex, and readily provides information about the behaviour of the
polynomial on all the faces (W), W C V, of that simplex. This facilitates the
smooth matching of two polynomial pieces across the intersection of their
respective simplicial cells. For more details than are (or can be) offered
here, see Farin (1986) (which concentrates on the bivariate case) as well as
de Boor (1987). The presentation here is based on the latter, albeit with
certain changes in notation. For the use of the BB-form in the treatment of
finite elements, see, e.g., Luscher (1987).

The BB-form can be viewed as a generalization of the standard represen-
tation

p=_ &p(v)

veV
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of the linear interpolant to data given at a (d+1)-point set V' C R? in general
position, with &, = £, v the unique linear polynomial which takes the value
1 at v and vanishes on

Vv == {weV:w#uv}

In this connection, ‘general position’ is tautological since it means nothing
more than that such a representation exists for every p € II;(R?%), hence is
necessarily unique since dimII; (R%) = d+ 1 = #V.

The (d + 1)-vector

&v(z) = (§(2))vev

provides the barycentric coordinates of x with respect to the point set
V. Equivalently, £i/(z) is the unique solution of the linear system

> &) (v,1) = (z,1) eRM™, (3.1)
veV

and this provides the opportunity to write out a formula for its components
& () as a ratio of determinants and so explains the alternative name areal
coordinates.

The BB-form for p € Il employs all possible products of k of the linear
polynomials £,, v € V, with repetitions permitted, i.e., all the functions

& i Ey(z)®

with a any multi-index (indexed by V, i.e, in ZK) of length k. However, it
turns out to be very convenient to use the particular normalization

@
Boi= By = ('a')sa = lal! [&v]",
which arises when we apply the multinomial theorem (2.1) to obtain
1=k[Y &@)]" = Y Ba(a). (3.2)
vev la|=k
The fact that
#{aeZ¥ ol =k} =#{B €20 <k} = dimII;

implies that the collection (Ba)|q|=k i & basis for Il since (i) any p € II;
can be written as a linear combination of products of k linear polynomials
(e.g., the linear polynomials z — z(i),i =1,...,d and = — 1); and (ii) any
linear polynomial can be written as a linear combination of the &,, v € V,
hence I C span{B, : |a| = k}. The resulting representation

b= Z B, bp,V(a)
la]=k
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Fig. 3.3. A cubic patch and its control net.

for p € Il; constitutes the BB-form (a form associated with the names of
Bernstein (Lorentz 1953; p. 51), de Casteljau (1963, 1985), Bézier (1970,
1977), Farin (1977, 1986, 1988), and perhaps others).

Since €, vanishes at all the points in V\v and is linear, it vanishes on
the simplex (V\v) spanned by these points. It follows that, for any subset
U of V, the restriction of B, to (U) is not the zero function if and only if
suppa C U. In particular, the only B, not zero on {v} = ({v}) is the one
with « = ki,, where

iv(u) = 61}’(1,7 v E V
With (3.2), this implies that By; (v) = 1, hence further that
P(’U) = bP,V(kiv)a veV.

This fact and others have made it customary to associate, more generally,
the coefficient b, v (a) with the corresponding domain point

Va = Z va(v)/|al,

veV

thereby obtaining the (Bézier) control net
Cp = Cp vk = (Va, bp,v (@) o=k

for p. Note that suppa C U for some U C V if and only if V,, € (U).
Hence, on (U), p is entirely determined by b, v (a) with V, € (U). To put
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it differently, the restriction of p to (U) has the control net
Covk = (Var bp,v (@) jal=k,vae )

In particular, if

_[p on(V),
r={5 a 9

for some p, q € I, then f is continuous on (V) U (W) if and only if
V{a € ZY"Y : |o| = k,suppa C VO W} b Vi) = byw(aw).

Thus, if f is a continuous pp function of degree < k on some complex
(:= partition of some domain G C R¢ into simplices) A, in formulz:

fenpa,

then it is uniquely describable in terms of its BB-net, bs. This is, by
definition, the mesh-function, defined on the union of all the domain points
Vay la] = k, (V) € A, which, for each (V) € A, agrees with b,y on the
points in (V).

It is well worth stressing that, as d increases, the ratio of domain points
in the boundary of a (V) over the total number of domain points in (V)
increases for fixed k, reaching the limiting value 1 as soon as d > k. In
effect, with increasing d, the polynomial pieces in a pp function of fixed
degree < k become increasingly ‘superficial’, with more and more of their
degrees of freedom needed just to maintain continuity.

3.1. The BB-form as a k-fold difference

For a discussion of a smoother join as well as for its own sake, we need
to know how to differentiate the BB-form. For this, and for various other
properties, we observe the following striking

Fact 3.5 Forw € RV, let wE denote the ‘difference operator’ which acts on
the mesh-function ¢ : ZV — R by the rule

(WE)c := Z w(v)e(: +iy).
veV
Then
Y_ Ba(z)c(a) = (v(2)E)*c(0).

la|=k
Indeed,
Ev(@)E)ec(0) =) 3 -+ D &u(@)bu(@) - Eu(a) cliu+iv+ - +1u)

u€V vev weV

with exactly k¥ summations, hence all summands are of the form {y (z)%c(a)
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for some o € ZY with |a| = k, and this particular summand occurs exactly
(*) times. See Figure 3.13 for an illustration.
With this,
> Babpy(a) =p = (&vE)b,v(0), pell
|a|=k

With this formula in hand, differentiation of the BB-form requires nothing
more than the chain rule, as follows. If y € R4\0, then

Dyp = Dy(¢v E)*c(0) = k(&v E)*~1(Dy&v E)c(0).

We obtain the vector Dy€y by the observation that, by (3.1), év(x + ty) —
év(z) = tnv (y), with v (y) € RV the unique solution of

> m(y) (v,1) = (,0).
veV
Hence, altogether,

Dyp =k Z Ba(nV(y)E)bp,V(a)
|a)=k—1

for p € Iy and Z 70 (y) (v,1) := (y,0) € R4T1\0.
vevV

(3.6)

For example, for two distinct points v,u € V, nv(v — u) = i, — i, hence

bpv(a+iy) —bpyv(a+i
bp,_.pv(a) = v ( v)l/k pv (e + i)

Repeated application of (3.6) provides the BB-form for any derivative of
p of the form Dyp with Y any finite subset of R*\0 and

Dy = H D,.

3.2. Smooth matching of polynomial pieces

Since we now know how to obtain the BB-form of any derivative of a poly-
nomial p from the BB-form of p, we can describe the matching of derivatives
across the common interface (V N W) of two simplicial cells (V) and (W).
Simply put, the derivative in question of the polynomial p on (V) and the
polynomial g on (W) must agree on (VNW), i.e., their corresponding control
points with domain point in (V N W) must agree.

It is not hard to write specific smoothness conditions in the form of an
equality between the expressions, obtained by application of (3.6), for the
relevant control points (see, e.g., Chui and Lai (1987) and Chui (1988, The-
orem 5.1) or Farin (1986)) of the relevant derivatives. However, if the goal
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is a CP)-match, i.e., a matching of all derivatives of order < p, then the
uniformity of the BB-form permits a more unexpected formulation of the
corresponding smoothness conditions, as follows.

For pe Il and 8 € ZK with || < k, let

pg = z bp,v (B + 7) By
lvl=k—|B

These are the subpolynomials introduced in de Boor (1987); see also Farin
(1986; (2.5)). For example, if |3| = k, then pg is the constant polynomial
with value by, 1 (3). Consequently, (3.4) is continuous if and only if pg = gz
for all 8 with supp 8 C VNW and |3| = k. As another example, if |3| = k—1,
then pg is the linear polynomial whose value at v € V' is b, v (8+1i,), and, for
any y, its derivative Dypg is the constant bp p v (53). Consequently, (3.4) is
in CQ) if and only if ps = g for all § with supp3 C VNW and |B| = k— 1.
Here is the general theorem.

Theorem 3.7 The pp function f, defined in (3.4), is in C") for some r < k
if and only if

V{BEZK:supp,HCVﬂW/,|ﬂ|=k—r} g = qg- (3.8)

In particular, since gg(w) = bq w(B8+riy) for each such 3 and each w € W,
C(")_continuity requires that

V{Be€ZY :suppB C VW, |8l =k—r,w € W\V} byw(B+riy) = ps(w).

(3.9)
Conversely, if our f is already in C("~Y, hence p3 = gg for all B with
suppB C VNW and |B| = k — r + 1, then the conditions (3.8) are equiv-
alent to the conditions (3.9). In particular, (3.9) supplies a complete and
independent set of conditions for C(")-continuity across (V N W) in the
presence of C"~D-continuity. Consequently, the union over r = 0,...,p of
these conditions constitutes a complete and independent set of conditions
for CP)_continuity across (V N W).

Note the remarkable uniformity of the conditions (3.9): The weights in
the right-hand side pg(w), considered as a linear combination of the BB-
coefficients b, v (c) for p, depend only on w and r (and V') and not on § or
k.

Note also that the smoothness conditions of order r, i.e., the conditions
(3.9), involve only control points of f in the first r ‘layers’ along (V N W).
Note finally, that we might have, equally well, used the complementary
conditions

V{BezY :suppBCVNW,|B|=k—r,veV\W} bv(B+riy) = gs(v).
(3.10)
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In effect, the subpolynomials pg = gg with supp3 C VNW and |B| =k —r
give a complete description of the behaviour of all derivatives of f of order
< ron (VNW), and enforcement of (3.9) and (3.10) makes certain that the
corresponding derivatives of p and g agree with these of f on (V NW).

It is this remarkably explicit geometric connection between the control
points and the behaviour ‘near’ any particular face of (V) that makes the
BB-form so attractive for work with pp functions.

The simplest nontrivial case, r = 1, is of particular practical interest. It
requires that, for each 8 € ZK with suppf C VNW and |8] = k — 1,
gs(w) = pg(w), i.e., that the control point (Ws,; ,bsw (8 + iy)) lie on the
(hyper)plane spanned by the control points (Vg ,bpv(8 + 1)), v €V, a
particularly nice geometric interpretation rightfully stressed in the CAGD
literature (see, e.g., Boehm, Farin and Kahmann (1984), Farin (1988) and
Hoschek and Lasser (1989)).

3.3. Simple examples

As an illustration of the strength and efficiency of the BB-form, here is a
discussion of three standard topics concerning bivariate pp functions.

Quintic Hermite interpolant In bivariate quintic Hermite interpola-
tion, one matches value and first and second derivatives at three points,
thus using up eighteen of the available 21 = (7) = (*1%) degrees of freedom,
and then uses the remaining three degrees of freedom for a possible C(V-
join with neighbouring quintic patches. Here are the details, well known,
but particularly evident when discussed in terms of the BB-form.

Let d =2,V = {u,v,w}, k=5, and p € II;.

Then p(u) = by(5i,).

Further, for v € V\u,

Dy _up(u) = bp, _,p(4in) = 5(bp(4iy + i) — bp(4iy + 1u)),
showing that the coefficients
bp(di, +1i,), veV\y,

are determined by
D,_,p(u), veV\u

and vice versa (once p(u) = by(5i,) is known). More than that, it shows
that the tangent plane to p at u is the plane spanned by the control points
at and next to u. (This discussion actually applies for arbitrary d and k.)
Finally, with u,v € V\u, all second derivatives are linear combinations of
the second derivatives of the form D, ,, of which there are exactly as many
as there are distinct points of the form 3i, +1,+1i,, i.e., control points in the
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Fig. 3.11. The quintic Hermite interpolant.

second layer of control points near u, and, correspondingly, with the tangent
plane at u already determined, the specification of all second derivatives of p
at u is equivalent to the specification of all the control points in that second
layer. (Again, this discussion applies for arbitrary d and arbitrary k.)

In other words, the behaviour of all derivatives of p at u of order < 2 is
determined by the subpolynomial

D3i, = Z bp(3iu +7)B'y,
[v|=2

and it involves the control points in the zeroth, first and second layer for u.
Since d = 2 and k = 5, this ‘triangle’ of control points associated with «
has no intersection with the corresponding coeflicient ‘triangles’ associated
with the other vertices. This implies that one can freely specify value, first
and second derivatives of p € II5 at each of these three vertices, and this
specifies the 18 control points in those ‘triangles’, and leaves free exactly
one control point per edge. This control point is in the first layer for that
edge, hence determines the middle control point for that edge for any par-
ticular first derivative of p. Equivalently, for the control point associated
in this way with the edge (u,v), it is the only piece of information for the
(linear) subpolynomial py; ,o;, not yet specified (and this is the only lin-
ear subpolynomial pg with supp 8 C ({u,v}) not yet completely specified).
Consequently, if the control point is determined in such a way that it equals
the corresponding control point of the same derivative of a quintic Hermite
interpolant (to the same vertex data) in the triangle sharing this edge, then
the two quintic polynomials form a C1) pp function. This can be achieved,
e.g., by specifying the normal derivative at the midpoint of that edge (or
any other particular, transversal, derivative).

To re-iterate, the point of this example (and the two to follow) is not to
derive a new result, but to show how easily these known results are derivable
in the language of the BB-form.

Clough—Tocher Here, one subdivides a given triangle arbitrarily into
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Fig. 3.12. The Clough-Tocher split and the Powell-Sabin split.

three, by connecting its vertices to an arbitrarily chosen point in the in-
terior. Prescribing the tangent plane at each vertex determines the vertex
control points and the next-to-vertex control points (see the points marked
* in Figure 3.12).

That leaves the points marked x still undetermined, hence allows match-
ing of some transversal derivative at some point. Traditionally, this has
been the normal derivative at the midpoint, with the value either given,
or else estimated from the vertex information. In this way, value and first
derivatives along an edge are entirely determined by information specified
on that edge. Hence C) matching across that edge is ensured provided the
abutting triangle is handled in the same way.

That leaves the control points marked o. These must be determined so
that the C(1) conditions hold across the interior edges. At this point, the
uniformity of the BB-form comes into play, as follows. One determines
the unknown control points to be the control points (with respect to the
triangle(s) to which they are assigned) of the unique quadratic polynomial
for which the six points on the dot-dashed triangle are the control points
(with respect to the triangle to which they are assigned, i.e., the dot-dashed
triangle). This can be done by one application of the de Casteljau algorithm
to evaluate the given BB-form of this quadratic polynomial at the ‘dividing’
point chosen in the interior; see the next subsection for details. The resulting
control points will satisfy the C)-conditions since they represent a piecewise
quadratic which is even in C®. In particular, the resulting piecewise cubic
is C@ at the interior vertex (in addition to being C") everywhere).

Powell-Sabin There is a corresponding construction of a piecewise quad-
ratic C(1) element, the Powell-Sabin macro-element. Here, one subdivides
the triangle into six pieces, starting with some interior point as an additional
vertex, but connecting it not only to the vertices, but also to a point on each
edge. But, as we shall see, this has to be done just right, to ensure a C'1)
match between such macro-elements.

As before, prescription of the tangent plane at each (exterior) vertex pins
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down vertex and next-to-vertex control points (marked * in Figure 3.12),
leaving a ‘Y’ of control points (marked o). The C(D-conditions across the
interior edges determine all but the interior vertex one, and that will nec-
essarily have to lie in the plane spanned by the three control points next to
it.

With this, the element is C1), and any first derivative is piecewise linear
along an (exterior) edge, with its extreme values determined explicitly by
the given tangent planes at the two vertices of interest. The middle corner of
this piecewise linear function is also determined by this information, but in
ways that depend strongly on the choice of that the interior vertex and the
additional vertex on the edge, as well as on the particular derivative direc-
tion. Since only one particular transversal derivative needs to be matched in
order to achieve C(1) across the edge, choose a particular direction and then
make certain that the interior and the additional edge vertices are so cho-
sen that this particular transversal derivative is actually linear (i.e., has no
active interior vertex). Powell and Sabin do this by choosing the midpoint
of the edge as the edge vertex and, correspondingly, the interior vertex as
the intersection of midpoint normals, i.e., as the centre of the circumscribed
circle. This makes the derivative in the direction normal to the edge linear.

More generally, pick, in each macro-triangle to be, the interior vertex in
such a way (e.g., as the centre of the inscribed circle) that the line from it
to the corresponding point in any neighbouring triangle cuts the common
edge at some point strictly between the two common vertices, and use this
intersection point as the additional vertex on that edge. Then the three new
control points along that midline, as the average of two triples of points with
each triple on a straight line, lie themselves on a straight line, thus ensuring

c.

3.4. Evaluation of the BB-form

As a final advertisement for the BB-form, I discuss the de Casteljau algo-
rithm (de Casteljau (1963)) for its evaluation. This algorithm obtains the
value p(z) by carrying out the k-fold application of the difference operator
&v(z)E to the mesh-function by, as described in Fact 3.5. Since only the
value of (£y(z)E)*b, at 0 is wanted, we only require (£y(z)E)*~1b, at o
with |a] = 1, (§v(z)E)*~2b, at a with |a| =2, ..., b, at @ with |a| = k. It
is instructive to visualize the entire discrete (d + 1)-simplex of mesh points
a involved here, as is done in Figure 3.13. For j =k — 1,k - 2,...,0, the
algorithm derives the ‘layer’ of values associated with |a| = j from the layer
associated with |a| = j + 1, with each value computed as exactly the same
averave of the corresponding d-simplex of values in the next layer.

As a remarkable bonus, the calculations provide (Goldman (1983)), si-
multaneously, the BB-form for p with respect to W := (V\v) U z for any
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Fig. 3.13. The mesh-point simplex for evaluation.

particular v € V: If we denote by c¢ the mesh-function whose values at
o, |a| < k, are being generated during the algorithm from the numbers
c(a) :=byv(a), |a| =k, then

bpw(a + (k —|a])i) = ¢(a), alv)=0.

This is another effect of the uniformity of the BB-form. As we evaluate the
BB-form of some polynomial at some point, we are simultaneously evaluating
all associated subpolynomials at the same point. On the other hand, the
coefficient b, () is the value at v of the subpolynomial p,_q(y);,- See the
discussion of the Clough-Tocher element in the preceding section for a ready
application of this.

The evaluation at = of a particular derivative, of the form Dy with the
entries of the sequence Y taken from V', proceeds similarly, except that,
during the first #Y steps, one applies the difference operators ny (y)E cor-
responding to the entries y of Y, and uses the ‘evaluation’ difference operator
&v(z)E only for the remaining k — #Y steps. Of course, since any two such
difference operators commute, one is entitled to apply the relevant difference
operators in any order. In particular, it might be most efficient and stable to
apply the k — #Y ‘evaluation’ operators first, leaving the application of the
‘differentiation’ operators for the remaining #Y layers, which are smaller.

Finally, the de Casteljau algorithm in no way relies on the fact (except,
perhaps in the argument for its stability) that the weights w in the difference
operator wE sum to one. If we employ it with some arbitrary weight vector
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w instead of with £y (z), we obtain the number

Hy(w) == Z bp(a)k!w]?,

|la|=k

i.e., the value at w of the unique homogeneous polynomial H, on R4+ for
which Hy(¢y(z)) = p(z) for all z € R%. In conjunction with (3.6), this leads
to the formulse
k!
F=p)! > Hp,(nv(y))Ba=Dip
la|=k—p

of Farin (1986; Thm. 2.4, Cor. 2.5), sometimes stated with somewhat less
care.

=(kL—-!p)T Z pa Hp, (v (y))

" lal=k—p

4. The space II} o

While automotive and aerospace engineers have been working with tensor
product spline functions since the early 1960s and structural engineers have
been working with pp finite elements just as long, mathematicians in Ap-
proximation Theory began to study spaces of multivariate pp functions of
non-tensor product type seriously only in the 1970s.

The initial focus was the ‘spline’ space

p
Hk,A

(also denoted by Sf(A)) of all pp functions of degree < k in C(P) with
partition A. Here, in full generality, A is a collection of ‘cells’, i.e., closed
convex sets 6, with pairwise disjoint, nonempty interiors, whose union is
some domain G C R? of interest, and Hi, A consists of exactly all those

f € C¥)(G) for which fis € Ik (6) for all § € A. Any such space is contained
in the space
Iy A =: HIZ,IA

of all pp functions of degree < k with partition A. However, as soon as we
impose some smoothness condition, i.e., as soon as p > 0, the ‘cells’ of A are
chosen to be polytopes, i.e., the convex hull of a finite set (the vertex set
for the cell), since the task of matching polynomial pieces across the common
boundary of two such cells becomes too difficult otherwise. Further, the
partition A is taken to be regular in the sense that the intersection of two
cells is the convex hull of the intersection of their vertex sets. In the simplest
case, A is a complex, i.e., a regular partition consisting of simplices. Such
a partition is often called a triangulation even when d > 2.

Initially, there were high hopes that it would be possible to generate a the-
ory of these spaces to parallel the theory of univariate splines (as recorded,
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e.g., in Schoenberg (1969), de Boor (1976, 1978), Schumaker (1981) and
Powell (1981)). For example, here is a list of desirable goals, from Schu-
maker (1988, 1991):

1. Explicit formulee for the dimension of spline spaces;

2. Explicit bases consisting of locally-supported elements;

3. Convenient algorithms for storing and evaluating the splines, their
derivatives, and integrals;

4. Estimates of the approximation power of spline spaces;

5. Conditions under which interpolation is well defined;

6. Algorithms for interpolation and approximation.

However, the experience gained so far has led to some doubt as to whether
these goals are likely to be achieved fully even in the bivariate case.

It is also not clear whether the restriction to polynomials of total degree
< k is reasonable a priori. On a cell which is the Cartesian product 61 x 2 of
lower-dimensional cells §; and 63, it seems, offhand, more reasonable to use
elements from the tensor product IIx(81) ® IIx(82) of polynomials of total
degree < k on those lower-dimensional sets. For example, in a bivariate
context, a typical practical partition involves triangles and quadrilaterals,
and, in such a setting, the restriction to polynomials of total degree < k
seems reasonable only if one first refines the partition, by subdividing each
quadrilateral into triangles. This does have the advantage of uniformity and,
if properly done, may produce partitions which support locally supported
smooth pp functions of smaller degree than did the original partition. In
fact, for a general partition, this is certain to be so if even the triangles
are subdivided appropriately. On the other hand, as of this writing and
as a consequence of the early dominance of tensor product methods, most
commercially used software packages for surface design and manufacturing
can only handle partitions with quadrilateral cells and, correspondingly,
bicubic, or biquintic, polynomial pieces.

4.1. The dimension of IT} 5

When p = —1, then dimII} kA = dim I (RY) - #A. However, already for
p = 0, there is no hope for a formula for dimII% k.A» €xcept in the simplest
case, when A is a triangulation. In this case, the BB-nets for the polynomial
pieces of f € II{ 5 associated with two neighbouring cells, (V) and (W),
necessarily agree at all domain points in the intersection (V)N (W) = (V N
W). Consequently, the map

[ by

from f to its BB-net sets up a 1-1 correspondence between II(,)C’ A and all
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scalar-valued functions on the mesh
Apa ={Va:lo| =k, (V) € A}.

In particular,
dimII) A = #Apa.

For p > 1, one would think of I} , as the linear subspace of Hg, A singled

out by the C(®)-conditions across facets, hence could, in principle, deter-
mine its dimension as the difference between dimII} 5 and the rank of the

collection of C(P)-conditions. While, as we have seen, it is easy to specify
this rank for the collection of all C(®)-conditions across one facet, it is, in
general, very difficult to determine the rank of all conditions, as a simple
example below will illustrate. Already for p = 1, there are real difficulties in
ascertaining dim IT}, 4. Strang’s articles (1973, 1974) called attention to this
by providing a conjecture concerning dim IT/ 4 in the bivariate case, namely
that the lower bound in the following theorem due to Schumaker, is the
exact dimension for ‘generic’ triangulations.

Theorem 4.1 Let A be a finite triangulation in R2, let V;, E; denote the
collection of its interior vertices and edges, respectively. Further, for each
v € V], let E, denote the collection of all edges having v as an endpoint,
and denote by E, C E, those with different slopes.

Then

dim I, 5 — (dim Mg +dim I,y - #Er — (k*+3k— p> —3p) /2-#V]) € [0.. 5],

with
k—p
o= 3 ) (p+i+1-j #E)+

veV; j=1
and & defined in the same way, but with E, replaced by E,.

(Here and elsewhere, [a..b| specifies the (closed) interval with endpoints
a and b, since the more customary notation [a, ] is also used for the divided
difference at two points as well as for the matrix with columns a and b.) See
Schumaker (1979 (1984)) for a proof of the lower (upper) bound.

Perhaps the simplest example indicating that it is not possible to be more
precise than this is provided by consideration of dim I1 5 A, With the partition
A obtained by connecting the four points of a (convex) quadrilateral with
some point in its interior. Assume first that the interior point was chosen
‘generically’, in which case the four interior edges for A have four distinct
slopes, as in the left half of Figure 4.2. In search for some f € H%, A\,
we consider the BB-net for f. We assume without loss that f vanishes on
the bottom triangle, and have indicated this in Figure 4.2 by drawing a
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Fig. 4.2. Generic and related nongeneric partitions.

‘o’ at the six domain points in that triangle for the BB-net for f. Now,
as discussed in the last paragraph of subsection 3.2 above, C (V-continuity
requires the coplanarity of the four control points associated with each of
the shaded quadrilaterals. In particular, this forces all the control points
in the first layer outside the edges of the bottom triangle to be zero, and
this is also indicated in the figure. Offhand, the control points associated
with the two top corners are freely choosable exzcept that the control point
associated with the midpoint of the top edge (the one left blank) must lie
on the plane spanned by the three control points to the left as well as on
the plane spanned by the three control points to the right. In the generic
case, this imposes one constraint on the two vertex control points, and we
conclude that dimII} o = 7 in this case.

The same conclusion can be reached when the interior vertex lies on one
but not the other of the two diagonals of the quadrilateral, as shown in the
middle of Figure 4.2. In terms of that figure, the domain point in the middle
of the upper edge lies on the straight line through the domain points of the
two zero control points to the right of it, hence the corresponding control
point must be zero. Since its domain point does not lie on the straight line
through the domain points of the two zero control points to the left of it,
this implies that also the remaining control point associated with the upper
left shaded quadrilateral, the vertex control point, must be zero. The other
upper vertex control point, however, is freely choosable.

Finally, if that interior vertex happens to be the intersection of the two
diagonals of the quadrilateral (as shown in the right of Figure 4.2), then the
argument just given shows that the control point associated with the middle
of the upper edge must be zero, and both upper vertex control points are
freely choosable. Hence, dim H%, A = 8 in this case.
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For comparison, for this particular example, we have just one interior
vertex, v, and #F, = 4, while, in the three distinct cases, #F = 4,3,2.
Correspondingly, 0 = (1+ 1+ 1—4); = 0, while § = 0,0,1 in the three
cases. Thus, for this example and in these three cases, the theorem is sharp
in the sense that it amounts to the assertion that

(7,7,8) =7 € [0..(0,0,1)].

The arguments used in this example illustrate how, in general, one might
go about to determine dim H‘Z A- As already stressed, one rightly thinks of

I} 5 as the subspace of I} A characterized by the C'¥)-conditions. A pp

function on the triangulation A is in C(®) precisely when it is in C) on
any two simplices of A which share a whole facet, i.e., whose vertex sets
differ only by one point. For this reason, IT{ als hnearly isomorphic to all
the mesh-functions by on A; A which, for each such simplex pair, satisfy the
corresponding conditions (3.9) across their common facet for r = 1,...,p.
Moreover, for each such facet, this provides a maximally linearly indepen—
dent set of C{®)-conditions imposed across one such facet. However, con-
ditions across different (but neighbouring) facets may well be linearly de-
pendent. For example, Figure 4.2 shows four C (1)_conditions involving the
control point at the interior vertex. Yet, since they all require that their
respective control points lie on a certain plane, it takes just two such con-
ditions to ensure that all five control points involved lie on the same plane,
hence the other two conditions must be dependent on them. Unfortunately,
it is in general impossible to provide a basis for the collection of all smooth-
ness conditions imposed. This has made it a challenge (unsolved so far and
not likely to be solved in any generality) to determine the dimension of H‘,‘c” A
when p > 0.

As the example shows, there is no hope to express dim I'Ifc” A entirely in
such combinatorial terms as the number of (interior or boundary) vertices,
edges, triangles. However, even the hope that, as in this case, the counting of
such things as nonparallel edges incident to a vertex might suffice is dashed
by a more subtle example due to Morgan and Scott in 1977 (Morgan and
Scott (1990)), which uses the partition A obtained by placing a scaled and
reflected copy of an equilateral triangle concentrically inside that triangle
and connecting each vertex of the inner triangle to the two closer vertices
of the outer triangle. As Morgan and Scott show (and use of the BB-net
would show more readily), for this A, dim 1'[2 A = 7 while, for any generic
perturbation A’ of A, dim H2 ar =dimIl; = 6.

Since the arguments for Theorem 4.1 make essential use of the fact that
one knows how to construct bases for arbitrary univariate spline spaces,
while we do not know how to do this in general for bivariate spline spaces,
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it is unlikely that one can obtain even the trivariate analogon of Theorem
4.1. An observation of Alfeld (in Alfeld, Schumaker and Sirvent (1992),
see Schumaker (1991)) makes this precise. The latter reference gives a very
good summary of what is presently known about dim Hﬁ, A- In particular,
the recent paper Alfeld, Whiteley and Schumaker (199x) gives first specific
results concerning the dimension of trivariate spline spaces. In addition,
Billera and his colleagues initiated and pursued an investigation of dim IT{ ,
for arbitrary d with tools from Homological Algebra, which, however, forces
them to consider only the case of a ‘generic’ A (which is difficult enough);
see Billera (1988, 1989), Billera and Haas (1987) and Billera and Rose (1989,
1991). For example, Billera (1988) shows Strang’s conjecture for p = 1 to
be correct ‘generically’, using a specific construction of Whiteley (1991) to
make certain that a certain determinant is not identically zero, hence must
be generically nonzero.

Those with an urge to get a feeling for the difficulties one might encounter
in considering arbitrary partitions should try the still unsolved problem of
providing a formula for dim IT3 5 (R?) for arbitrary A.

4.2. Subspaces of I} 5

It is not only the difficulty of determining dim Hﬁ, A, hence of constructing
bases for Hiy A, that makes the full space more of a challenge than of real

interest. For certain partitions, II; 4 contains elements of no use for ap-

proximation (such as the half-space spline R? — R : z — ({(y,z) — c)k,

with y a certain element of R and ¢ some constant). Also, if k is large
enough compared with p, then there are often subspaces of HZ, A With the
same ‘approximation power’ as IT} , itself.

For example, in the Finite Element method, bivariate pp spaces studied
by Zenisek (1970, 1973, 1974) and recently termed super-spline spaces in
Chui and Lai (1987) consist of all elements of Hi’ A Which, at each vertex,

are in C??), In terms of the BB-net, the motivation (as explained, e.g.,
in Farin (1986)) for consideration of such subspaces is simple: if, for some
6 € A, we want to determine the polynomial piece p = f|s on 6 so as to have a

C®)_join with its neighbouring pieces, then its first p layers of control points
along each edge of 6§ are determined by the polynomial piece adjoining that
edge. However, certain of these control points are in the first p layers of two
edges, hence in danger of being overdetermined. For any two edges, these
endangered control points are contained in the first 2p layers for the vertex
common to those two edges (and in no smaller set of layers). Hence, the
enforcement of C(2?)-continuity at the vertices ensures consistency for the
competing smoothness conditions.

There are certain questions to be raised here. First, it has become popular,
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because of the success of the multigrid method, to work with a sequence of
spaces, each obtained from the previous one by refinement, typically looking
at the space of the same type on a refinement of the triangulation of the
preceding one. If the spaces involved are super-spline spaces, then, because
of the higher smoothness requirement at the vertices, the finer space will
fail to contain the rougher space. Also, the degree k must be large enough
so that the only questions of consistency of the smoothness conditions are
of the kind described. For d = 2, this means that kK > 4p + 1. Analogous
considerations for arbitrary d (though not using BB-nets) led Le Méhauté
(1990) to the conclusion that k > 2%p + 1 was necessary (and sufficient)
to provide such a super-spline space, in which an approximation can be
constructed in a totally local way, with the approximant f on the simplex é
depending only on data on 6.

Such degrees are daunting. One response is to give up on using arbitrary
triangulations, but use instead triangulations A obtained, e.g., by proper
refinement of a given triangulation. The standard example is the Clough-
Tocher element (although, because of its greater smoothness at its interior
vertex, the space spanned by it does not properly refine, either). The ex-
treme case of partitions (in general, they are not even triangulations) which
will support compactly supported pp functions of low degree compared with
the required smoothness are those provided by the multivariate B-spline
construct to be discussed next.

5. Multivariate B-splines

The central role ultimately played by the univariate B-splines of (Curry
and) Schoenberg (1946, 1966) in univariate spline theory (as illustrated,
e.g., in Schoenberg (1969), de Boor (1976), or Schumaker (1981)) provided
the impetus for the study of a certain multivariate generalization. Offhand,
this generalization is based on preserving the somewhat obscure property
of the univariate B-spline illustrated in Figure 5.1 and originally proved, in
Curry and Schoenberg (1966), for the purpose of showing that the univariate
B-spline is log-concave. Here are the details.

The univariate B-spline M(-|8) with knot sequence 8 = (f,,...,0;)
is, by one of its definitions, the Peano kernel for the divided difference (func-
tional) [6p, ..., 0;], i.e., it is the unique function for which

Bo,...,6.)f = / M(¢]©) D*£(t) dt/s!

for all sufficiently smooth functions f. On combining this with the Hermite-
Genocchi formula (Norlund, 1924) for the divided difference, Schoenberg
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Py X Pus
Fig. 5.1. A quadratic B-spline as the shadow of a tetrahedron.

obtains the equation

/ M(#|©)D* f(£)dt/s! =

/G,Dsf = /01/: /0‘ D*f(Bp +T1V01 + - + 7,V6,)dr, - - - drp dmy
(with V@; := 6; — 0;_1, as usual). This equation implies that M (t|©) is the
(s — 1)-dimensional volume of the set

{reTy:00+m1VO +---+ 7,V =t},
with T, the standard s-simplex
Ts:={reR°:1>2m1 21> -->27, 20}
This simplex has vertices v; := Z{zl i;, j=0,...,s. Hence,
P.R°*->R:7—G+7Vlh+---+71V0,

is the affine map which carries v; to 8;, all j. Consequently, M(-|8) repre-
sents the distribution (aka continuous linear functional on C(R))

fH/T,fOP

which carries f to the sum over T, of its extension f o P to a function on
R®. This is illustrated in Figure 5.1 for s = 3.

Once this is recognized, there is much scope for generalization (initiated
in Schoenberg (1965) and followed up in de Boor (1976), Micchelli (1980),
de Boor and DeVore (1983) and de Boor and Hollig (1982)), as follows. For
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a given (convex) body B in R® and a given affine map P : R®* — R%, one
defines the corresponding B-spline Mp as the distribution f — [z fo P.
Mpg is nonnegative and has support P(B). Mp is a function exactly when
P(B) C R® has interior, but is always a function on affine(P(B)). When B
is a polytope (i.e., the convex hull of some finite set), then Mp is called a
polyhedral spline. A polyhedral spline is pp, with the junction places the
images under P of the (d — 1)-dimensional faces of B. This is most readily
seen by using Stokes’ theorem, as follows.
After a shift, if need be, we can assume that P is a linear map. Then

D,(foP)=(Dp,f)oP.

Further, with Mp merely a distribution, Dy, Mp is defined by integration by
parts,
DyMpf = —Mp(Dyf).

Therefore, for arbitrary y € R? and for any z € P~!{y},

(DpsMp)f = — /B (Dp.f)o P =— /B D.(f o P)
(5.2)

=—/8‘BzTn(foP)=— E zTanFf.

FeB(s—1)

Here, OB is the (oriented) boundary of B. Since B is a polytope, 8B is
the essentially disjoint union of the collection B(*~1) of facets (i.e., (s — 1)-
dimensional faces) of B. Further, n is the outward unit normal, and ng is
its constant value on the facet F'.

Iteration of this recurrence relation shows that any derivative of Mp of
order > s — d is a linear combination of distributions of the form Mg with
F itself less than d-dimensional. Hence, on any connected component of the
complement of the set

U pw@),

FeB(d-1)

(with B@-1) the collection of all (d — 1)-dimensional faces of B), Mg is
a polynomial of degree < k := s — d. Further, if the polytope B is in
general position and P is onto R, then any d-face of B is mapped by P
to a set with interior, hence all derivatives of Mg of order < s — d are L,
functions. This means that, generically, Mp is pp of degree < s — d and in
C(—4-1)_ However, in the interest of obtaining a relatively simple partition
(or a partition which is not too different from a given one), one may have
to choose B in a special way, and then Mg may not be maximally smooth.
For, as the argument shows, Mp is in C*~™~1) with m the smallest integer
for which P maps every F € B(™) to a set with interior.
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For example, if B = [0..1]° is the s-dimensional unit cube, and 6, := Pij;,
j=1,...,s8 and 6 := PO = 0, then the bivariate B-spline Mp may have
discontinuities in some derivative across any image under P of an edge of B,
i.e., across any segment of the form [} 9.1y 0.. 3 gcw 0], with U, W arbitrary
subsequences of the sequence (6, ...,0s). If each of these segments is also
required to be part of the so-called square mesh (or, two-direction mesh)
(formed by all the lines of the form {x € R? : z(j) = h} with j € {1,2} and
h € Z), then, up to scaling and certain translations, each 6; is necessarily one
of the two unit vectors i;, i;. This implies that some face of B of dimension
[s/2] is mapped by P to a set without (two-dimensional) interior, hence Mp
is, at best, in C®/2=2) if 5 is even. The situation is slightly better for the
three-direction mesh (formed by all lines of the form {z € R? : z(j) = h}
with j € {1,2,3} and h € Z, and z(3) := z(1) — (2)). Now, 6; may, in
addition to i; and i2, also take on the value iz := i; +1;. In fact, if s = 3 and
0; =i;, 7 = 1,2,3, then the resulting Mp is the hat function, the standard
linear finite element at times associated with Courant because of Courant
(1943).

Of course, one uses not just one polyhedral spline but linear combinations
of sufficiently many to effect good approximation. At a minimum, this
means that, after normalization if need be, such a collection (Mpg)pep of
polyhedral splines should form a partition of unity, i.e., satisfy

> Mp=1

This is quite easy to achieve, as follows. Simply choose the collection B so
that its elements are pairwise essentially disjoint, and their union is a set of
the form R? x C for some suitable (convex) (s — d)-dimensional set C. For,
in that case,

> Mp(z) = vol(C),
BeB

while Mg > 0 in any case. If B =[0..1]° (hence Mp is a ‘box spline’) and
P is given by an integer matrix, then the collection Mp(- —j), j € Z%, of all
integer shifts can be shown to be a partition of unity. Standard arguments
concerning approximation order (see the next section) require, more gener-
ally, that it be possible to write every p € Il., as a linear combination of
the Mp, B € B, and this is clearly satisfied for 7 = 1 in case (Mp)pep forms
a partition of unity. Much work has gone into constructing B for which r is
large, preferably as large as s—d+1 (it could be no larger), or, alternatively,
into determining the largest possible such r for a given B.

It is also important to have the means for reliable evaluation of such a poly-
hedral spline. It was only after the discovery of stable recurrence relations
that univariate B-splines became an effective computational tool. In the
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same way, work on polyhedral splines only flourished after Micchelli (1980)
established stable recurrence relations for simplex splines. The following
generalization, to arbitrary polyhedral splines, was given in de Boor and
Hollig (1982); it connects Mp to the M with F a facet of B:

(s—d)Mp(Pz) = Z (z —ar)Tnp Mp(P2), (5.3)
FeB(s-1)

with ar an arbitrary point in affine(F'). But there are only very few bodies
B for which such a facet F is again a body of the same kind: the simplex, the
cube or ‘box’, and the (polyhedral) cone. The corresponding B-splines are
called, correspondingly, simplex spline, box spline, and cone spline (the
last introduced in Dahmen (1979)). Each of these can be described entirely
in terms of P(B). In other words, any such B-spline is (a shift of) Mp with
B a standard simplex, e.g., (0,ij,...,1,), a standard box O:=[0..1]%, or a
standard cone R}, and P a suitable linear map (which is specified as soon
as we know Pi; for all j).

A first survey of multivariate B-splines is given in Dahmen and Micchelli
(1983), an introduction to both simplex splines and box splines is given in
Hollig (1986). The only book so far devoted entirely to multivariate B-splines
is de Boor, Hollig and Riemenschneider (1992), a book on box splines. Box
splines also figure prominently in the survey Chui (1988).

The first multivariate B-spline (and for some still the only one worthy
of this appellation) was the simplex spline. If vy,..., v, is the sequence of
vertices of the underlying simplex, then M, . .,) is, up to a scale factor,
uniquely determined by the sequence © := (Pv;);. For this reason, it has
become standard to denote the typical simplex spline by

with © some finite sequence in R? (the images under P of the vertices of
the underlying simplex) and to choose the underlying simplex to have unit
volume, whence [,4 M(-|8) = 1. This is entirely consistent with the notation
M(-|8) used earlier for the univariate B-spline.

The relative neglect simplex splines have experienced in spite of the fact
that they were the first multivariate B-splines to be considered may have
several reasons.

Box splines, like their univariate antecedents, the cardinal B-splines (see
Schoenberg’s monograph (1969)), lead very quickly to a rich mathematical
theory, as exemplified by the beautiful results of Dahmen and Micchelli
(announced in Dahmen and Micchelli (1984)). This theory concerns mainly
the shift-invariant space spanned by the integer translates of one box spline,
and these are pp spaces with a regular partition A, and this regularity makes
them amenable to Fourier transform techniques.

In contrast, the simplex splines were expected to be the multivariate equi-
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valent of the general univariate B-spline, of use in the understanding and
handling of arbitrary multivariate spline spaces. Since any polytope is the
essentially disjoint union of simplices, any multivariate B-spline is a linear
combination of simplex splines. However, use of the recurrence relations
for the evaluation of simplex splines turned out to be much more expensive
than had been hoped, for the simple reason (Grandine (1986)) that the
recurrrence relation connects a d-variate simplex spline to at least d + 1
simplex splines of one order less, while it connects it to at most two simplex
splines of one order higher. Further, as already pointed out, for an arbitrary
partition A and positive p, Hi’ A Mmay not contain any compactly supported
element unless k is very much larger than p. This means that, for k ‘close’ to
p, only some suitably chosen refinement A’ of A may support enough simplex
splines so that their span has some approximation power. Unfortunately,
the first scheme proposed for this (in Goodman and Lee (1981), Dahmen and
Micchelli (1982) and Hollig (1982)) did not lead to a spline space with easily
constructed quasi-interpolant schemes. However, very recently, a scheme has
become available, in Dahmen, Micchelli and Seidel (1992), that, in hindsight,
appears to be the ‘right’ one. It is based on the multivariate ‘B-patch’ of
Seidel (1991). Given a triangulation A, it provides a suitable basis of simplex
splines for the space II’,z"Al,, with A’ obtained, in effect, as the roughest
partition that contains all the cells for the simplex splines employed, thus
known, at least in principle, once these simplex splines are in hand. These
simplex splines are all possible ones of the form

M(IVﬁ)v
where

i) Visa (d+ 1)-set with (V) € A;

?ii) B € ZY with |8| = k;

giii; V8 = {v; :0<j < Bv);ve V)

iv) the points v; are obtained, by choosing, for each v in the vertex set
V(A) = UwyeaV for A, k additional points vi,...,v € R¢, and
setting vg 1= v.

The only condition imposed upon the choice of these additional points v,

j=1,...,k, v € V(A), is the following. For any (d+1)-set V with (V) € A,

Qui = [{{(vpw))vev) : BEZY; |18 <k} # 0.
Under these assumptions, Seidel (1992) proves that, for any f € H’,;‘Al,

f =Y M(|VPwV,B)Fy(VF), (5.5)
V.8

with w(V, B) certain explicitly known normalizing factors, with

B—i:ve B(v)—1,
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Fig. 5.4. With k = 1, the triangle (V) (lightly shaded and partially covered by)
the set Qy i (strongly shaded), and the meshlines (heavy) for one of the
three related simplex splines.

hence #VP~1 = | 3| = k, and with Fy the blossom of the polynomial which
agrees with f on the cell (V) € A. This means that Fy is the unique
symmetric multi-linear form with k arguments for which

f(z) = Fy(z,z,...,z), Vze (V).

The proof uses the validity of this result for any f € I, as established in
Dahmen et al. (1992).

This is a most surprising and unexpected result. It captures completely
the now standard formula for the coefficients in the B-spline expansion of an
arbitrary univariate spline as stated in de Casteljau (1963) and beautifully
explained in Ramshaw (1987, 1989). It is to be hoped that the computational
aspects of this formulation are equally favourable.

6. Approximation order

The treatment of approximation order given here follows in part the survey
article by de Boor (1992). The approximation power of a subspace S of ITx o
is, typically, measured in terms of the mesh(size)
|A| := supdiamé
s€A
of the partition A and the smoothness of the function f being approximated.
The typical result is a statement of the following sort:

dist(f, 8) < const|A|"[|D" f],

in which || D" f|| is some appropriate measure of the derivatives of order r
of f, and const is independent of f and A, provided A is chosen from some
appropriate class of partitions. For example, the constant may, offhand,
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depend on the uniformity measure

R :=supinf{M/m : Bp(z) C 6§ C By(y)}
6€EA

(with By, (z) the open ball with centre « and radius m), hence be indepen-
dent of A only if A is restricted to have Ra < R for some finite R.

A particularly simple version of the approximation order of S is the fol-
lowing. One considers not just S, but the entire scale (0,S5); with

onS = {f(-/h): f € 8},
and says that S has (exact) approximation order r and writes
ao(S) = r,
provided

(i) for all ‘smooth’ f, dist(f,onS) = O(R");
(ii) for some ‘smooth’ f, dist(f,orS) # o(h").

By itself, (i) provides a lower bound for ao(S), and such lower bounds
are usually established by exhibiting a particular approximation scheme, @y
say, for which ran Q) (= the range of Q) lies in C 055, and ||f — Qnf|| <
consth”|| D" f||l. So-called quasi-interpolants are a favourite choice for the
Q#, of which more below.

By itself, (ii) provides an upper bound on ao(S), and there seems to be
only duality (as made clear below) to establish such upper bounds.

Of course, for completeness, this definition requires specification of the
norm in which the distance is to be measured, i.e., the normed linear space
X in which the approximation is to take place. Typically, it is L,(G),
with G some suitable subset of R%, and p = 1,2 or co. It also requires
a definition of ‘smooth’. Often, it is sufficient to mean ‘polynomial’ or
‘complex exponential’. However, it usually means that some norm involving
certain derivatives is finite.

Somewhat more generally, one considers an indexed family (Sy,), of spaces,
and denotes its approximation order, correspondingly, by ao((Sp)#) to stress
the fact that it is not (necessarily) obtained by scaling. In the latter situa-
tion, it turns out to be helpful to consider Sy to be of the form

Sy, =: o,S™.

If S* is independent of h, we are back to the scaling case which, therefore,
is also referred to as the stationary case, to distinguish it from the more
general nonstationary case.

Questions of approximation order, particularly from (multivariate) pp
spaces, have been dominated by what in Approximation Theory is called the
Strang-Fix theory, which, on careless reading, seems to imply that ao((Sh)s)
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cannot be > r unless II., € N, S*. In fact, such a conclusion can only be
reached in the stationary case, and even there only for very special situ-
ations. See Example 6.4 below for a simple counterexample; Ron (1991,
1992) and Beatson and Light (1992) treat approximation order specifically
in the absence of polynomial reproduction. A similarly careless reading has
also led to the wrong conclusion that, if all of II., is contained in each S*
locally, uniformly in h, then ao((Sy),) > r. Even in the stationary case, the
situation is more subtle, as is indicated in the subsections to follow. A first
counter-example to that careless reading was given in de Boor and Hollig
(1983).

In any event, the Strang—Fix theory applies only to the stationary case
Sy, = o1, S, with S a shift-invariant space.

6.1. Shift-invariance

A collection S of functions on R is called shift-invariant if it is invariant
under any translation by an integer, i.e., if

gesS = g(-+a)e 8 forall acz’

For example, the space H‘,‘; A is shift-invariant in case A is shift-invariant
in the sense that
A+a=A forall aeZzs

Examples of interest include the three- and four-direction mesh popular in
the bivariate box spline literature.

With £o(Z%) the collection of all finitely supported sequences c : Z* — R,
the simplest (nontrivial) example of a shift-invariant space is the space

5o = { & ot~ ) e@) e e tofzh}
a€ezd
of all finite linear combinations of the shifts of one (nontrivial) function, ¢.
This is the shift-invariant space generated by ¢ since it is the smallest
shift-invariant space containing ¢. Following de Boor, DeVore and Ron
(1991), its closure, in whatever norm the context suggests, is denoted by

S(p) = Solp)

and called the principal shift-invariant, or PSI, space generated by .
For example, approximation by box splines has been discussed almost en-
tirely in terms of the scale (05 S(¢))n with ¢ a box spline.

More generally, if ® is a finite collection of functions on R%, then one
defines

So(®) = Y Soly)

ped
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and calls

S(®) = So(®)
the finitely generated shift-invariant, or FSI, space, and calls ® its set
of generators. The structure of PSI and FSI spaces in Ly(R?) is detailed in
de Boor et al. (1991, 1992a), with particular emphasis on the construction
of generating sets for a given FSI space having good properties (such as
‘stability’ or ‘linear independence’).
It is natural to consider approximations from S(¢) in the form

p*c = Z o(- — a)c(a) (6.1)
aezd

for a suitable coeflicient sequence c. However, offhand, such a sum makes
sense only for finitely supported ¢, and one of the technical difficulties in
ascertaining the approximation order of S(y) derives from the fact that,
in general, S(¢) may contain elements which cannot be represented in the
form p*c for some sequence ¢, with the series ¢*c converging in norm. This
is a problem even in the present context, where ¢ is, typically, some pp
finite element and, in particular, compactly supported, hence the sum (6.1)
converges pointwise (and even uniformly on compact sets) for arbitrary c.
To give a simple example, from de Boor, DeVore and Ron (1992a), take
for ¢ the Haar function, specifically ¢ := Xi—1.0) ~ X[o.1)’ with x, the
characteristic function of the set I. Then S(¢) = Ilpz N L2(R) and, in
particular, Xpo.1) € S(p). However, if the equation Xp.1) = P*C is to hold
even only in some weak sense, e.g., in the sense of pointwise convergence,
then necessarily c(a) = ¢(0) + (a—.5)%, all a € Z, and ¢ c fails to converge
in norm.

6.2. Quasi-interpolants

In the spline and finite-element literature, lower bounds for ao((Sh);) are
usually obtained with the aid of a corresponding sequence (@) of linear
maps, with ranQp C Sp, which is a ‘good quasi-interpolant sequence of
order 7’ in the sense of the following definition.

Definition 6.2 (Q);, is a good quasi-interpolant sequence of order
r if it satisfies the following two conditions:

(i) uniformly local: For some h-independent finite ball B and all z € G,

|(Qrf)(z)| < const| fiz+npll;
(i) polynomial reproduction: Qnf = f for all f € Il.,.

For example, if (¢),¢co is a stable and local partition of unity, i.e.,

I} lellleo < 00, supdiamsuppp <oo, > p=1,
pEed pES pED
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then (04,Q0y/4)n With
Q:fr Z ¢ f(15)

ped

and 7, € supp , all ¢ € P, is a good quasi-interpolant sequence of order 1.
As a more substantial example, it is part of the attraction of (5.5) that it
provides an expansion of any f € II; in the form

f =2 M(VAw(V, Aiva(f), (6.3)

V.8

with each Ay g an explicitly known linear functional on II;. In particular
(see Dahmen et al. (1992)) it is possible, as in the univariate case, to specify
points 7y g so that the Schoenberg operator

Qf == Y_ MV ) w(V,B)f(rv,)

V.8

reproduces every f € II;. Since 7y necessarily lies in the support of
M (-|VP) and this support is compact (and of the size of (V)), it follows that
(0nQ01/1)n is a good quasi-interpolant sequence of order 2. In fact, Dahmen
et al. (1992) are able to lift the entire univariate quasi-interpolation argu-
ment (see, e.g., de Boor (1976)) to their multivariate setting, by showing
the uniform linear independence of the functions M(-|V?)w(V, 8) which, in
conjunction with (5.5), implies that any norm-preserving extension of Ay g
from ITx((V')) to some linear functional uy g, all V and 3, provides a bounded
linear projector

P:fw ) M(VPYw(V,B)uvs(f)

V.8

onto the span of the simplex splines involved, and now, (o Poy/,)x is a good
quasi-interpolant sequence of order k + 1.

The term ‘quasi-interpolant’ is used in the finite element literature (see,
e.g., Strang and Fix (1973)) to stress the fact that Qf does not necessar-
ily match function values at all the nodes of the finite elements used, but
‘merely’ reproduces certain polynomials. For a recent survey of the use of
quasi-interpolants in spline theory, see de Boor (1990).

To recall, the standard use made of such a good quasi-interpolant sequence
is to observe that, for arbitrary f and arbitrary g € Il,,

|f (@) — @nf(x)] = |(1 - Qn)(f — 9)(=)| < const||(f — g)jz+rll,

which provides a bound on ||f — @4 f|| in terms of how well f can be ap-
proximated from I, on a set of the form z + hB, giving the error bound
constgh”||D" f|| in which || D" f|| measures the ‘size’ of the rth derivatives
of f and which provides the desired O(h"). If our space X is L, for some
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p < 00, then this argument has to be fleshed out a bit (see, e.g., Jia and Lei
(1991)).

There are certain costs associated with the quasi-interpolant approach,
even when one only considers shift-invariant spaces with compactly sup-
ported generators. For example, it works, offhand, only with integer values
of r. Also, offhand, it requires that NS, contain some nontrivial polyno-
mial space. The artificiality of this last restriction is nicely illustrated by
the following simple example, from Dyn and Ron (1990):

Example 6.4. Let d = 1, p = oo, and let S;, be the span of the hZ-
translates of the piecewise linear function

z+1, 0<z<h;

Ph - T {0 ) otherwise.

Thus S}, consists of certain piecewise linear functions, with breakpoint se-
quence hZ, but the only polynomial (hence the only analytic function) it
contains is the zero polynomial. In particular, it is not possible to construct
a quasi-interpolant of positive order for it. Nevertheless, the approximation

Qnf =Y (= NI
j€hz
has the error
f=@uf=F=2x0-DfG) + X, —en(-NF0),

jehz jehz
with x, the characteristic function of the interval [0..h). Since |[x, —
@hlloo = h,

”f - th”oo < wf(h) + ”f”ooha
where wy is the modulus of continuity of f. It follows that @ f converges to
f uniformly in case f is uniformly continuous and bounded. More than that,

if f has a bounded first derivative, then ||f — Qrllo < ([Dfllco + || flloo)b,
giving approximation order 1 in the uniform norm.

This example could still be treated by an appropriate generalization of the
notion of quasi-interpolant. Specifically, one could consider a good quasi-
interpolant sequence (@) of positive local order r, meaning that (Q) is
uniformly local and that

Qnf = f+O(lfisll |R]")

on hB for any f € Il.,. However, the point is made that a sequence (Sp)n
of spaces does not need to contain a nontrivial polynomial space in order to
have positive approximation order.

Finally, the quasi-interpolant approach is of no help with upper bounds.
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6.8. The Strang—Fiz condition

The literature on ao(S(yp)) for a compactly supported ¢ has been domi-
nated by the Strang-Fix condition. It concerns the behaviour of the Fourier
transform

p:€— / pe_¢
RS
of ¢ at the points of 2rZ%. Here and below,
g REC:iz— exp(iOT:c)

denotes the exponential function (with purely imaginary frequency if). In
one of its many versions, the Strang—Fix condition reads as follows.

Definition 6.5 We say that ¢ satisfies SF, in case

(i) @0)=1;
(ii) For all multi-indices a satisfying |a| < r we have D*$ = 0 on 2wZ%\0.

Its importance derives from the following theorem (see Schoenberg (1946)
for d = 1 and Strang and Fix (1973) for the general case), in which we use
the convenient notation

e¥' = (- —)fQ)
jezd
for the semidiscrete convolution of the two functions ¢ and f even if it
requires further discussion of just what exactly is meant by it when the sum
is not (locally) finite. Also, for any set X of functions on R?, we denote by

Xec
the compactly supported functions in X.

Theorem 6.6 For ¢ € L1(R%)c, the following are equivalent:

(a) p*' is degree-preserving on I, i.e., p¥'p € p+ Il gegp, for all p in
I.,;
(b) ¢ satisfies SF,.

The proof is via the Poisson summation formula (for which see, e.g., Stein
and Weiss (1971; p. 252)). Starting with Strang and Fix (1973), the theorem
is used to construct a good quasi-interpolant sequence (@) of order r with
ran @y C 01,S(p). More than that, it forms part of an argument that seems
to show that ao(S(y)) > r if and only if ¢/P(0) satisfies SF,. The precise
statement of this equivalence for X = Lo(R?) (see Strang and Fix (1973))
involves, unfortunately, a restricted notion of approximation order called
‘controlled’ approximation.
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For X = Ly(R?%), the recent paper de Boor et al. (1991) contains a com-
plete characterization of the approximation order of a not necessarily sta-
tionary scale of closed shift-invariant spaces. A crucial ingredient is the
following theorem from the same reference, in which Psf denotes the or-
thogonal projection of f onto S, hence dist(f,S) = ||f — Psf||-

Theorem 6.7 Let S be a closed shift-invariant subspace of La(R?), and let
f,g9 € La(R%). Then

dist(f,S) < dist(f,S(Psg)) < dist(f,S)+2dist(f,S(g)).

This theorem shows that the approximation power of a general shift-
invariant subspace of Ly is already attained by one of its PSI subspaces,
provided one can, for given 7, supply an element g € Lo(R%) for which
ao(S(g)) > r. But that is easy to do, as follows.

Lemma 6.8 There are simple functions g (e.g., the inverse Fourier trans-
form of the characteristic function of some small neighbourhood of the ori-
gin) for which, for any r,

dist(f,0nS8(9)) = o(A"[|fllwyme)-
Here,

Iflwg ey == N+ 1 D" fll2-

For a directed family (05,S");, with each S* a PSI space, de Boor et al.
(1991) provide the following characterization of the approximation order, in
which

18R _ aezno (- + 2ma)l®
[2,8] Taeze [8(- +2ma)2’
T is the d-dimensional torus, i.e.,
T := [-7..7]¢
with the appropriate identification of boundary points, and

[f,g]:T¢>C:2+— E flz 4+ 27a)g(z + 27a)
aczd

Ay, =1

is the very convenient bracket product of f,g € Ly(R%).
Theorem 6.9 For any (pp), in X := La(RY),

Q.

A
aO((O'hS(<Ph))h) >r — suph” (h+ Th|)2'r Loo (T4) <

This result focuses attention on the behaviour of A,, near 0, hence, if @5,
is bounded away from zero near 0 (uniformly in h), it focuses attention on
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the ratios
Gr(-+2ma)/Pn,  a€z\0. (6.10)

Here is a typical corollary (from the same reference) which shows the
relationship of this characterization to the Strang-Fix condition.

Corollary 6.11 If p € Ly(R?), and 1/ is essentially bounded near 0, and
@ € WH(U) for some p > r + d/2 and some neighbourhood U of 27Z%\0,
and if p satisfies SF,, then ao(S(yp)) > r.

Finally, as a consequence of Theorem 6.7 (and a good understanding of
the structure of FSI spaces), de Boor et al. (1992a) obtains the following
result which finishes a job left undone in Strang and Fix (1973) (see de Boor
et al. (1992a) for historical commentary).

Theorem 6.12 The approximation order in Lo(R?) of the FSI space S(®)
with ® C Lo(R?) is already attained by some PSI space S(yp) with ¢ € So(®).

In particular, if ® consists of compactly supported functions, then the
‘super element’ ¢ of the theorem is also compactly supported. This fol-
lows, more explicitly, from a representation of the Fourier transform of Pgg
as a sum of the form }° .4 7,@, in which the 7, are ratios of 2m-periodic
functions, each a linear combination of products of functions of the form
(@, 4] with ¢,¥ € ® U {g}. Now, for any particular r, it is possible to
choose g compactly supported and such that ao(()S(g)) > r, while all the
elements of & are compactly supported by assumption. This means that,
with such a choice for g, each 7, is the ratio of two trigonometric polyno-
mials, hence, there are trigonometric polynomials Ty, T, ¢ € &, so that

Tgﬁg\g = X oco L,p. This implies that the inverse Fourier transform of

Tgfgq is in So(®) and generates the same shift-invariant space as does Pgsg,
hence may be taken as the desired ‘super-element’.

The paper by de Boor and Ron (1991) deals with approximation from
PSI spaces in Lo, (R?). The results are surprisingly similar in form, even if,
due to the greater difficulties expected in this norm, there is a gap between
lower and upper bounds for the approximation order obtained.

The main tool is Ron’s (1991) surprisingly simple observation that, since

p¥f=fp VY [feS(p) (6.13)
as hinted at in Chui, Jetter and Ward (1987)), therefore
(
pr'eg —egr'p = p¥'(eg — ) — (eo — f)¥p, ¥ fe€S(p)
(recall that eg : z — exp(iHTx)), and this leads to the conclusion that
llo*'es — eg* 0llco < 2|l || oo dist oo (€5, S(¥)), (6.14)
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with
le¥lloo = 1| 3 leo(- = @) lloo-

aczd

Since (as pointed out by A. Ron)

/ ’
Preo—erP ooy E P(0 + 27a) eq,
€9 a€24\0

and the left-hand side has the same norm as ||p*'eg — eg*’¢|| o0, this throws
new light on the connection between ao(S(y)) in Lo, and the behaviour of
@ ‘at’ 2nZ\0, and provides both upper and lower bounds for ao((S(¢1))x).

As to lower bounds, these are obtained (in de Boor and Ron (1991)) by
the approximation

10) = [ eoffemy ~ [ eof/(2m)’
(and a related one), with
co = preg/ D pla)e_q
aczd

an approximation from S(yp) to ey suggested by (6.14). In particular, the
following theorem is proved there, in which S(y) is not the norm-closure of
So(¢p) in Leo(R?) but, in effect, the largest shift-invariant space containing
So(p) and satisfying (6.13). Also, the ‘size’ of the rth derivatives of f is
measured in terms of its Fourier transform, as follows. It is assumed that f
is ‘smooth’ in the sense that its Fourier transform is a Radon measure for
which

£l =N+ 1) Sl < oo,
with the suffix ‘1’ intended to indicate that the total variation of the measure
in question is meant.
Theorem 6.15 Assume that |¢on*'|| < oo for every h. Then, for any posi-
tive m,

dist(f,onS(pn)) < A" 2m) "4 |flly A + o(h")
with

5. (- + 2
Z “ (hr+1| D) 2 1- i “LM(B,,)'

A :=sup
h a€zd\0 ¥h

Since this theorem gives ao((0+S(¢r))r) > r only if A < oo, this focuses,
once again, attention on the behaviour near zero of each of the ratios

Pr(-+2ma)/Pn, a€zZ\0
mentioned already in (6.10). Specifically, in the stationary case, if this ratio
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is a smooth function in a neighbourhood of 0, then the finiteness of A would
require the ratio to have a zero of order r at 0, and conversely, provided &
has some decay. From this vantage point, the Strang-Fix condition SF, is
seen to be neither necessary nor sufficient for ao(S(¢)) > r, but to come
close to being necessary and sufficient for appropriately restricted .

The striking observation (6.14) actually provides more immediately an
upper bound on the approximation order (see Ron (1991)). The main result
of de Boor and Ron (1991) concerning this is the following.

Theorem 6.16 Let (p,) be an indexed collection of elements of X :=
Loo(R?). Assume that supy, ||¢n*’|| < oo, and that € R
If dist(eg, o1, S(pp)) = O(h"), then

> |@n(h8 + 2ma)[? < consty A"
a€zd\0
In particular, then

|&n(h0 + 27a)| < constgh” for all nonzero « in Z°.

Note that nothing is said here about @ (0) (which is particularly impor-
tant if $5(0) is zero). On the other hand, it is easy to recover from this the
rest of SF,. in the stationary case, i.e., in case @ = ¢, for all h.

6.4. Upper bounds

Upper bounds for ao((S4)r) have to be fashioned separately for each case.
However, one always employs duality, which provides the following well-
known observation.

If Y is a linear subspace of the normed linear space X, and A € X* with
ALY (ie., X is a continuous linear functional on X which vanishes on all
of ), then, for any £ € X and any y € Y, Az = Mz — y) < [[Allllz — yll,
hence |Az| < ||A|| dist(z,Y’). In other words,

AlY = dist(z,Y) > lll):\—zlll

For example, Ron’s upper-bound argument mentioned in the preceding
subsection is based on the linear map f — @*'f — f*’p which vanishes on
all of S(yp).

As a more direct example, consider ao(S) for

X=Lw(G), S=H;C),A'
Assume without loss of generality that G is the d-dimensional cube,
G=C:=[-1..17°

let § be any cell in the partition A, and let g be any nontrivial homogeneous
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polynomial of degree k+1. If -y is the error in the best L2(6)-approximation
to g from II;, then the mapping

)\:Loo—>R:f+—>/;'yf

(i) is a bounded linear functional;

(ii) is orthogonal to S, since all X sees of f € S is its restriction to §, and
on § each f € S is just a polynomial of degree < k;

(ili) satisfies Ag = fgyy > 0.

Now consider Ay f := [;vf(h-). Then

(i) Ap is a bounded linear functional, with h-independent norm

Pall = [l = Asignum(s),

where signum(vy) : z — signum(y(z)).
(il) Ap L Sp:=0nS, since g € S}, is of the form f(-/h) for some f € S.
(iii) Using the homogeneity of g, one computes that

Ang = / vg(h) = h*H! / vg = h¥*1)g
) )
with Ag > 0.

So, altogether,
dist(g, Sn) > h**1(\g/Asignum(v)),

showing that ao(II} ,) < k + 1.

If we try the same argument for p < oo, we hit a little snag. Take, in fact,
p at the other extreme, p = 1. There is no difficulty with (ii) or (iii), but
the conclusion is weakened because (i) now reads

() [1Anll = supser, [ f67f (RI/NF L < Hmslloo supser, ) Js | F R/ £l

and the best we can say about that last supremum is that it is at most h—¢
since [, f(h-) = [;5 f/h%. Hence, altogether, | M|l < const/h%. Thus, now
our bound reads

dist 1(g, Sx) > h**1const/(const/h?) # o(hF+1+d)

which is surely correct, but not very helpful.

What we are witnessing here is the fact that the error in a max-norm
approximation is indeed localized, i.e., it occurs at a point, while, for p < oo,
the error ‘at a point’ is less relevant; the error is more global; one needs to
consider the error over a good part of G. Further, in the argument below,
I need some kind of uniformity of the partition A, of the following (very
weak) sort (in which |A| denotes the d-dimensional volume of the set A, and
C continues to denote the cube [—1..1]¢):
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Assumption 6.17 There exists an open set b and a locally finite set I C R%
(meaning that I meets any bounded set only in finitely many points) so that

(o) b+ I is the disjoint union of b+ 4, ¢ € I, with each b+ i lying in some
6 € A (the possibility of several lying in the same § is not excluded);
(B) for some const > 0 and all n, |(b+ I) NnC| > const|nC]|.

For example, any uniform partition of R satisfies this condition. As an-
other example, if d = 2 and A is the three-direction mesh, then A consists
of triangles of two kinds, and taking b to be the interior of one of these
triangles and I = Z? guarantees (a), while (3) holds with const = 1/2. On
the other hand, Shayne Waldron (a student at Madison) has constructed a
neat example to show that the Assumption 6.17 is, in general, necessary for
the conclusion that ao(Hi’ A) < k+ 1. The example uses p = —1 and arbi-
trary k, d=1, G =[-1..1], p=1, and A obtained from Z by subdividing
[5..4 + 1] into 29! equal pieces, j € Z.

With Assumption 6.17 holding, define A as before, but with b replacing
the element § of A. Further, assume without loss that C C G, and define

nf = /b v S f(h- +i),

i€l
where
In:={iel:b+i1CC/h}.
This gives
()1

Yier, Jori VIS (R d
[Aell < sup S = [1mplloo /A%,
fel Eielh fh(b+z') | f] |

using the fact that the union b + I}, is disjoint.

Hence, we have not worsened our situation here. Neither have we sacri-
ficed (ii) because, by assumption, each b+ lies in the interior of some é € A,
and therefore f,vf(h-+i) = 0 for every f € S,. But we have materially
improved the situation as regards (iii), for we now obtain

(iii)
Arg = /7 Z glh-+i) = RF+1 /’y Z g = h**1 const #1I,
b i€ly i€l
with
#Iy, = |b+ I1|/|b] > const|C/h|/|b| = const/h%.
With this, our conclusion is back to what we want:

dist 1(g, Sp) > (h**'const/h?)/(const/h%) # o(hF+1).
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Note that this lower bound on the distance only sees S as a space of pp’s
of degree < k, hence is valid even when we take the biggest such space, i.e.,
the space IIx A of all pp functions of degree < k on the partition A. For
this space, it is not hard to show that the approximation order is at least
k + 1, since approximations can be constructed entirely locally. Thus,

ao(Ilxa) =k + 1.

For this reason, this is called the optimal approximation order for a pp
space of degree < k.

Such a local construction of approximations is still possible for Hg’ A
hence,

ao(Il; \)=k+1 for p<O.

However, for p > 0, the story is largely unknown. Here are some working
conjectures.

Conjecture (Ming-Yun Lai) Ifao(Il} o) = k+1, then ao(Hﬁ,, aA) =kK+1
for all k' > k.

Conjecture ao(Il; ,) >0 == Hﬁ’ A contains elements with compact
support.

Conjecture ao(Hi, A)>0 = sz A contains a local partition of unity.

First results (and more conjectures) can be found in de Boor and DeVore
(1985) and Jia (1989).

Further illustrations of the use of duality in the derivation of upper bounds
on ao(S) (albeit only for bivariate pp S) can be found in de Boor and Jia
(199x) and its references. In particular, in conjunction with de Boor and
Hollig (1988), it is proved there that, with A the three-direction mesh, the
approximation order of Hz’ A (in the uniform norm) is k + 1 (i.e., optimal)
if and only if £ > 3p+ 1.
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1. Introduction

Accurate and efficient algorithms for many problems in numerical linear
algebra have existed for years on conventional serial machines, and there
are many portable software libraries that implement them efficiently (Don-
garra, Bunch, Moler and Stewart, 1979; Dongarra and Grosse, 1987; Gar-
bow, Boyle, Dongarra and Moler, 1977; Smith, Boyle, Dongarra, Garbow,
Ikebe, Klema and Moler, 1976). One reason for this profusion of successful
software is the simplicity of the cost model: the execution time of an algo-
rithm is roughly proportional to the number of floating point operations it
performs. This simple fact makes it relatively easy to design efficient and
portable algorithms. In particular, one need not worry excessively about the
location of the operands in memory, nor the order in which the operations
are performed. That we can use this approximation is a consequence of the
progress from drum memories to semiconductor cache memories, software to
hardware floating point, assembly language to optimizing compilers, and so
on. Programmers of current serial machines can ignore many details earlier
programmers could ignore only at the risk of significantly slower programs.
With modern parallel computers we have come full circle and again need
to worry about details of data transfer time between memory and processors,
and which numerical operations are most efficient. Innovation is very rapid,
with new hardware architectures and software models being proposed and
implemented constantly. Currently one must immerse oneself in the multi-
tudinous and often ephemeral details of these systems in order to write
reasonably efficient programs. Perhaps not surprisingly, a number of tech-
niques for dealing with data transfer in blocked fashion in the 1960s are being
rediscovered and reused (Bell, Hatlestad, Hansteen and Araldsen, 1973).
Our first goal is to enunciate two simple principles for identifying the
important strengths and weaknesses of parallel programming systems (both
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hardware and software): locality and regularity of operation. We do this in
Section 2. Only by understanding how a particular parallel system embodies
these principles can one design a good parallel algorithm for it; we illustrate
this in Section 3 using matrix multiplication.*

Besides matrix multiplication, we discuss parallel numerical algorithms for
linear equation solving, least squares problems, symmetric and nonsymmet-
ric eigenvalue problems, and the singular value decomposition. We organize
this material with dense and banded linear equation solving in Section 4,
least squares problems in Section 5, eigenvalue and singular value problems
in Section 6, direct methods for sparse linear systems in Section 7, iterative
methods for linear systems in Section 8, and iterative methods for eigenprob-
lems in Section 9. We restrict ourselves to general techniques, rather than
techniques like multigrid and domain decomposition that are specialized for
particular application areas.

We emphasize algorithms that are scalable, i.e. remain efficient as they
are run on larger problems and larger machines. As problems and machines
grow, it is desirable to avoid algorithm redesign. As we will see, we will
sometimes pay a price for this scalability. For example, though many par-
allel algorithms are parallel versions of their serial counterparts with nearly
identical roundoff and stability properties, others are rather less stable, and
would not be the algorithm of choice on a serial machine.

Any survey of such a busy field is necessarily a snapshot reflecting some of
the authors’ biases. Other recent surveys include Dongarra, Duff, Sorensen
and van der Vorst (1991) and Gallivan, Heath, Ng, Ortega, Peyton, Plem-
mons, Romine, Sameh and Voigt (1990a), the latter of which includes a
bibliography of over 2000 entries.

2. Features of parallel systems
2.1. General principles

A large number of different parallel computers (Gottlieb and Almasi, 1989),
languages (see Zima and Chapman (1991) and the references therein), and
software tools have recently been built or proposed. Though the details of
these systems vary widely, there are two basic issues they must deal with,
and these will guide us in understanding how to design and analyse parallel
algorithms. These issues are locality and regularity of computation.
Locality refers to the proximity of the arithmetic and storage components
of computers. Computers store data in memories, which are physically sepa-
rated from the computational units that perform useful arithmetic or logical

* This discussion will not entirely prepare the reader to write good programs on any
particular machine, since many machine-specific details will remain.
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Fig. 1. Diagram of a parallel computer (P = processor, M = memory).

functions. The amount of time it takes to move the data from the mem-
ory to the arithmetic unit can far exceed the time required to perform the
arithmetic unless the memory is immediately proximate to the arithmetic
unit; such memory is usually called the register file or cache. There are good
electrical and economic reasons that not all memory can consist of registers
or cache. Therefore all machines, even the simplest PCs, have memory hi-
erarchies of fast, small, expensive memory-like registers, then slower, larger
and cheaper main memory, and finally down to disk or other peripheral
storage. Parallel computers have even more levels, possibly including local
memory as well as remote memory, which may serve as the local memory
for other processors (see Figure 1). Useful arithmetic or logical work can
occur only on data stored at the top of the memory hierarchy, and data
must be moved from the lower, slower levels in the hierarchy to the top level
to participate in computation. Therefore, much of algorithm design involves
deciding where and when to store or fetch data in order to minimize this
movement. The action of processor i storing or fetching data in memory j as
shown in Figure 1 is called communication. Depending on the machine, this
may be done automatically by the hardware whenever the program refers
to nonlocal data, or it may require the explicit sending and/or receiving of
messages on the part of the programmer. Communication among processors
occurs over a network.

A special kind of communication worth distinguishing is synchronization,
where two or more processors attempt to have their processing reach a com-
monly agreed upon stage. This requires an exchange of messages as well,
perhaps quite short ones, and so qualifies as communication.

A very simple model for the time it takes to move n data items from one
location to another is oo + 3 - n, where 0 < 3,a. One way to describe «
is the start up time of the operation; another term for this is latency. The
incremental time per data item moved is 3; its reciprocal is called bandwidth.
Typically 0 < 8 < a, i.e. it takes a relatively long time to start up an
operation, after which data items arrive at a higher rate of speed. This cost
model, which we will see later, reflects the pipeline implementation of the
hardware: the pipeline takes a while to fill up, after which data arrive at a
high rate.
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The constants « and 3 depend on the parts of the memory between which
transfer occurs. Transfer between higher levels in the hierarchy may be
orders of magnitude faster than those between lower levels (for example,
cache-memory versus memory—disk transfer). Since individual memory lev-
els are themselves built of smaller pieces, and may be shared among different
parts of the machine, the values of & and $ may strongly depend on the lo-
cation of the data being moved.

Regularity of computation means that the operations parallel machines
perform fastest tend to have simple, regular patterns, and efficiency de-
mands that computations be decomposed into repeated applications of these
patterns. These regular operations include not only arithmetic and logical
operations but communication as well. Designing algorithms that use a very
high fraction of these regular operations is, in addition to maintaining local-
ity, one of the major challenges of parallel algorithm design. The simplest
and most widely applicable cost models for these regular operations is again
a + - n, and for the same reason as before: pipelines are ubiquitous.

Amdahl’s Law quantifies the importance of using the most efficient parallel
operations of the machine. Suppose a computation has a fraction 0 < p < 1
of its operations which can be effectively parallellized, while the remaining
fraction s = 1 — p cannot be. Then with n processors, the most we can
decrease the run time is from s+ p = 1 to s + p/n, for a speed up of
1/(s + p/n) < 1/s; thus the serial fraction s limits the speed up, no matter
how many parallel processors n we have. Amdahl’s Law suggests that only
large problems can be effectively parallellized, since for the problems we
consider p grows and s shrinks as the problem size grows.

2.2. Examples

We illustrate the principles of regularity and locality with examples of cur-
rent machines and software systems.

A sequence of machine instructions without a branch instruction is called
a basic block. Many processors have pipelined execution units that are opti-
mized to execute basic blocks; since there are no branches, the machine can
have several instructions in partial stages of completion without worrying
that a branch will require ‘backing out’ and restoring an earlier state. So
in this case, regularity of computation means code without branches. An
algorithmic implication of this is loop unrolling, where the body of a loop
like

fori=1:n
a; =a; +b*xc;

is replicated four times (say) yielding

fori=1:nstep4
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a; =a; +bxc;

aiy1 = a4 +b*cipy
aiy2 = Git2 +b*ciyo
ai+3 = ai+3+b*ciy3

In this case the basic block is the loop body, since the end of the loop is a
conditional branch back to the beginning. Unrolling makes the basic block
four times longer.

One might expect compilers to perform simple optimizations like this au-
tomatically, but many do not, and seemingly small changes in loop bodies
can make this difficult to automate (imagine adding the line ‘if ¢ > 1, d; = ¢;’
to the loop body, which could instead be done in a separate loop from ¢ = 2
to n without the ‘if’). For a survey of such compiler optimization techniques
see Zima and Chapman (1991). A hardware approach to this problem is op-
timistic ezecution, where the hardware guesses which way the branch will go
and computes ahead under that assumption. The hardware retains enough
information to undo what it did a few steps later if it finds out it decided in-
correctly. But in the case of branches leading back to the beginning of loops,
it will almost always make the right decision. This technique could make
unrolling and similar low-level optimizations unnecessary in the future.

A similar example of regularity is vector pipelining, where a single in-
struction initiates a pipelined execution of a single operation on a sequence
of data items; componentwise addition or multiplications of two arrays or
‘vectors’ is the most common example, and is available on machines from
Convex, Cray, Fujitsu, Hitachi, NEC, and others. Programmers of such ma-
chines prefer the unrolled version of the above loop, and expect the compiler
to convert it into, say, a single machine instruction to multiply the vector ¢
by the scalar b, and then add it to vector a.

An even higher level of such regularity is so-called SIMD parallellism,
which stands for Single Instruction Multiple Data, where each processor in
Figure 1 performs the same operation in lockstep on data in its local memory.
(SIMD stands in contrast to MIMD or Multiple Instruction Multiple Data,
where each processor in Figure 1 works independently.) The CM-2 and
MasPar depend on this type of operation for their speed. A sample loop
easily handled by this paradigm is

fori=1:n

if ¢; > 0 then

a; = bz + \/a
else

a; = b,' - d,‘
endif

A hidden requirement for these examples to be truly regular is that no
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exceptions arise during execution. An exception might be floating point
overflow or address out of range. The latter error necessitates an inter-
ruption of execution; there is no reasonable way to proceed. On the other
hand, there are reasonable ways to continue computing past floating point
exceptions, such as infinity arithmetic as defined by the IEEE floating point
arithmetic standard (ANSI/IEEE, 1985). This increases the regularity of
computations by eliminating branches. IEEE arithmetic is implemented on
almost all microprocessors, which are often building blocks for larger para-
llel machines. Whether or not we can make sense out of results that have
overflowed or undergone other exceptions depends on the application; it is
true often enough to be quite useful.

Now we give some examples of regularity in communication. The CM-
2 (Thinking Machines Corporation, 1987) may be thought of in different
ways; for us it is convenient to think of it as 2048 processors connected in
an 11-dimensional hypercube, with one processor and its memory at each
of the 2048 corners of the cube, and a physical connection along each edge
connecting each corner to its 11 nearest neighbours. All 11 x 2048 such
connections may be used simultaneously, provided only one message is sent

“on each connection.
We illustrate such a regular communication by showing how to compute

N
fi=>_ F(xi, ),

=1

i.e. an N-body interaction where f; is the force on body i, F(x;,z;) is
the force on body ¢ due to body j, and z; and z; are the positions of
bodies i and j respectively (Brunet, Edelman and Mesirov, 1990). Consider
implementing this on a d-dimensional hypercube, and suppose N = d2¢ for
simplicity. We need to define the Gray code

G(d) = (G40, .-y Ga2d_1),

which is a permutation of the d-bit integers from 0 to 2% — 1, ordered so
that adjacent codes G4 and Ggi41 differ only in one bit. G(d) may be
defined recursively by taking the (d — 1)-bit numbers G(d — 1), followed by
the same numbers in reverse order and incremented by 24-1. For example,
G(2) = {00,01,11,10} and G(3) = {000,001,011,010, 110,111, 101, 100}.
Now imagining our hypercube as a unit hypercube in d-space with one corner
at the origin and lying in the positive orthant, number each processor by
the d-bit string whose bits are the coordinates of its position in d-space.
Since the physically nearest neighbours of a processor lie one edge away,
their coordinates or processor numbers differ in only one bit. Since G4y
and Gg 41 differ in only one bit, the Gray code sequence describes a path
among the processors in a minimal number of steps visiting each one only
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Fig. 2. Force computation on two-dimensional hypercube.

once; such a path is called Hamiltonian. Now define the shifted Gray code
GO(d) = {G$}, .. GC)a_;}

where GU ,)c is obtained by left-circular shifting G4 by s bits. Each GO (d)
also deﬁnes a Hamiltonian path, and all may be traversed simultaneously

without using any edges simultaneously. Let g(s) denote the bit position in

which G((f,)c and G%) a.x+1 differ.

Now we define the program each processor will execute in order to compute
fi for the bodies it owns. Number the bodies z;, where 0 <1 < 24 _1is
the processor number and 0 < k < d — 1; so processor [ owns zg; through
z4-14. Then processor | executes the following code, where ‘forall’ means
each iteration may be done in parallel (a sample execution for d = 2 is shown
in Figure 2).

Algorithm 1 N-body force computation on a hypercube

fork=0:d-1, tmpy =z,
fork=0:d-1, fi; =0 /* fr; will accumulate force on zx; */
form=0:2¢-1
forall k =0:d— 1, swap tmp; with processor in direction 9dm
fork=0:d-1
for k' =0:d-1
feg = fig + F(zr, tmper)

In Section 3 we will show how to use Gray codes to implement matrix
multiplication efficiently. Each processor of the CM-2 can also send data to
any other processor, not just its immediate neighbours, with the network
of physical connections forwarding a message along to the intended receiver
like a network of post-offices. Depending on the communication pattern this
may lead to congestion along certain connections and so be much slower than
the special communication pattern discussed earlier.

Here are some other useful regular communication patterns. A broadcast
sends data from a single source to all other processors. A spread may be
described as partitioned broadcast, where the processors are partitioned and
a separate broadcast done within each partition. For example, in a square

(k)
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Fig. 3. Parallel prefix on 16 data items.

array of processors we might want to broadcast a data item in the first
column to all other processors in its row; thus we partition the processor
array into rows and do a broadcast to all the others in the partition from the
first column. This operation might be useful in Gaussian elimination, where
we need to subtract multiples of one matrix column from the other matrix
columns. Another operation is a reduction, where data distributed over the
machine are reduced to a single datum by applying an associative operation
like addition, multiplication, maximum, logical or, and so on; this operation
is naturally supported by processors connected in a tree, with information
being reduced as it passes from the leaves to the root of the tree.

A more general operation than reduction is the scan or parallel prefix
operation. Let zg, ...z, be data items, and - any associative operation. Then
the scan of these n data items yields another n data items defined by yo = zo,
Y1 =7Zo* 1, ... , ¥ = Lo L1 Z;; thus y; is the reduction of z¢ through z;.
An attraction of this operation is its ease of implementation using a simple
tree of processors. We illustrate in Figure 3 for n = 15, or f in hexadecimal
notation; in the figure we abbreviate z; by i and x;---z; by i : j. Each row
indicates the values held by the processors; after the first row only the data
that change are indicated. Each updated entry combines its current value
with one a fixed distance to its left.

Parallel prefix may be used, for example, to solve linear recurrence rela-
tions 241 = 37 _ai,;2i—; + b; this can be converted into simple parallel
operations on vectors plus parallel prefix operations where the associative
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operators are n by n matrix multiplication and addition. For example, to
evaluate z;41 = a;2; + b;, ¢ > 0, 29 = 0, we do the following operations:

Algorithm 2 Linear recurrence evaluation using parallel prefix

Compute p; = ap - - - a; using parallel prefix multiplication
Compute 3; = b;/p; in parallel

Compute s; = B9 + - - - + B;—1 using parallel prefix addition
Compute 2; = s; - p;—1 in parallel

Similarly, we can use parallel prefix to evaluate certain rational recurrences
zi+1 = (aiz; + b;)/(cizi + d;) by writing z; = u;/v; and reducing to a linear
recurrence for u; and v;:

uipr | _ [ @i b | [ w
[vm]_[q dz'] [Ui]' @1)

We may ask more generally about evaluating the scalar rational recur-
rence z;y1 = fi(2z;) in parallel. Let d be the maximum of the degrees of
the numerators and denominators of the rational functions f;. Then Kung
(1974) has shown that z; can be evaluated faster than linear time (i.e. z; can
be evaluated in o(i) steps) if and only if d < 1; in this case the problem re-
duces to 2 x 2 matrix multiplication parallel prefix in (2.1). Interesting linear
algebra problems that can be cast in this way include tridiagonal Gaussian
elimination, solving bidiagonal linear systems of equations, Sturm sequence
evaluation for the symmetric tridiagonal eigenproblem, and the bidiagonal
dqds algorithm for singular values (Parlett and Fernando, 1992); we discuss
some of these later. The numerical stability of these procedures remains
open, although it is often good in practice (Swarztrauber, 1992).

We now turn to the principle of locality. Since this is an issue many al-
gorithms do not take into account, a number of so-called shared memory
machines have been designed in which the hardware attempts to make all
memory locations look equidistant from every processor, so that old algo-
rithms will continue to work well. Examples include machines from Convex,
Cray, Fujitsu, Hitachi, NEC, and others (Gottlieb and Almasi, 1989). The
memories of these machines are organized into some number, say b, of mem-
ory banks, so that memory address m resides in memory bank m mod b. A
memory bank is designed so that it takes b time steps to read/write a data
item after it is asked to do so; until then it is busy and cannot do anything
else. Suppose one wished to read or write a sequence of n + 1 memory
locations ¢, i + s, © + 2s,..., ¢ + ns; these will then refer to memory banks
tmodbd, i +smodb, ..., i+nsmodb. If s =1, so that we refer to con-
secutive memory locations, or if s and b are relatively prime, b consecutive
memory references will refer to b different memory banks, and so after a wait
of b steps the memory will deliver a result once per time step; this is the
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fastest it can operate. If instead gecd(s,b) = g > 1, then only /g memory
banks will be referenced, and speed of access will slow down by a factor of
g- For example, suppose we store a matrix by columns, and the number
of rows is s. Then reading a column of the matrix will be ged(s,b) times
faster than reading a row of the matrix, since consecutive row elements have
memory addresses differing by s; this clearly affects the design of matrix
algorithms. Sometimes these machines also support indirect addressing or
gather/scatter, where the addresses can be arbitrary rather than forming an
arithmetic sequence, although it may be significantly slower.

Another hardware approach to making memory access appear regular are
virtual shared memory machines like the Kendall Square Research machine
and Stanford’s Dash. Once the memory becomes large enough, it will neces-
sarily be implemented as a large number of separate banks. These machines
have a hierarchy of caches and directories of pointers to caches to enable
the hardware to locate quickly and fetch or store a nonlocal piece of data
requested by the user; the hope is that the cache will successfully anticipate
enough of the user’s needs to keep them local. To the extent that these
machines fulfil their promise, they will make parallel programming much
easier; as of this writing it is too early to judge their success.

For machines on which the programmer must explicitly send or receive
messages to move data, there are two issues to consider in designing efficient
algorithms. The first issue is the relative cost of communication and compu-
tation. Recall that a simple model of communicating n data items is a+ng;
let 4 be the average cost of a floating point operation. If o > 8, which is
not uncommon, then sending n small messages will cost n{a+ 3), which can
exceed by nearly a factor n the cost of a single message a+nS. This forces us
to design algorithms that do infrequent communications of large messages,
which is not always convenient. If o > 7 or 8 >> v, which are both common,
then we will also be motivated to design algorithms that communicate as
infrequently as possible. An algorithm which communicates infrequently is
said to exhibit coarse-grained parallellism, and otherwise fine-grained par-
allellism. Again this is sometimes an inconvenient constraint, and makes it
hard to write programs that run efficiently on more than one machine.

The second issue to consider when sending messages is the semantic power
of the messages (Wen and Yelick, 1992). The most restrictive possibility is
that the processor executing ‘send’ and the processor executing ‘receive’
must synchronize, and so block until the transaction is completed. So for
example, if one processor sends long before the other receives, it must wait,
even if it could have continued to do useful work. At the least restrictive the

¥ There is a good reason to hope for the success of these machines: parallel machines will
not be widely used if they are hard to program, and maintaining locality explicitly is
harder for the programmer than having the hardware do it automatically.
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sending processor effectively interrupts the receiving processors and executes
an arbitrary subroutine on the contents of the message, without any action
by the receiving program; this minimizes time wasted waiting, but places a
burden on the user program to do its own synchronization.

To illustrate these points, imagine an algorithm that recursively subdi-
vides problems into smaller ones, but where the subproblems can be of
widely varying complexity that cannot be predicted ahead of time. Even
if we divide the initial set of problems evenly among our processors, the
subproblems generated by each processor may be very different. A sim-
ple example is the use of Sturm sequences to compute the eigenvalues of a
symmetric tridiagonal matrix. Here the problem is to find the eigenvalues
in a given interval, and the subproblems correspond to subintervals. The
time to solve a subproblem depends not only on the number but also on the
distribution of eigenvalues in the subinterval, which is not known until the
problem is solved. In the worst case, all processors but one finish quickly
and remain idle while the other one does most of the work. Here it makes
sense to do dynamic load balancing, which means redistributing to idle pro-
cessors those subproblems needing further processing. This clearly requires
communication, and may or may not be effective if communication is too
expensive.

2.3. Important tradeoffs

We are accustomed to certain tradeoffs in algorithm design, such as time ver-
sus space: an algorithm that is constrained to use less space may have to go
more slowly than one not so constrained. There are certain other tradeoffs
that arise in parallel programming. They arise because of the constraints of
regularity of computation and locality to which we should adhere. For exam-
ple, load balancing to increase parallellism requires communication, which
may be expensive. Limiting oneself to the regular operations the hardware
performs efficiently may result in wasted effort or use of less sophisticated
algorithms; we will illustrate this later in the case of the nonsymmetric
eigenvalue problem.

Another interesting tradeoff is parallellism versus numerical stability. For
some problems the most highly parallel algorithms known are less numer-
ically stable than the conventional sequential algorithms. This is true for
various kinds of linear systems and eigenvalue problems, which we will point
out as they arise. Some of these tradeoffs can be mitigated by better floating
point arithmetic (Demmel, 1992b). Others can be dealt with by using the
following simple paradigm:

1  Solve the problem using a fast method, provided it is rarely unstable.
2  Quickly and reliably confirm or deny the accuracy of the computed
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solution. With high probability, the answer just (quickly) computed is
accurate enough.
3  Otherwise, fall back on a slower but more reliable algorithm.

For example, the most reliable algorithm for the dense nonsymmetric eigen-
value problem is Hessenberg reduction and QR iteration, but this is hard
to parallellize. Other routines are faster but occasionally unreliable. These
routines can be combined according to the paradigm to yield a guaranteed
stable algorithm which is fast with high probability (see Section 6.5).

3. Matrix multiplication

Matrix multiplication is a very regular computation that is basic to linear
algebra and lends itself well to parallel implementation. Indeed, since it is
the easiest nontrivial matrix operation to implement efficiently, an effective
approach to designing other parallel matrix algorithms is to decompose them
into a sequence of matrix multiplications; we discuss this in detail in later
sections.

One might well ask why matrix multiplication is more basic than matrix—
vector multiplication or adding a scalar times one vector to another vector.
Matrix multiplication can obviously be decomposed into these simpler oper-
ations, and they also seem to offer a great deal of parallelism. The reason is
that matrix multiplication offers much more opportunity to exploit locality
than these simpler operations. An informal justification for this is given in
the following.

Table 1 gives the number of floating point operations (flops), the minimum
number of memory references, and their ratio q for the three Basic Linear
Algebra Subroutines, or BLAS: scalar-times-vector-plus-vector (or saxpy for
short, for az+y), matrix—vector multiplication, and matrix-matrix multipli-
cation (for simplicity only the highest order term in n is given for q). When
the data are too large to fit in the top of the memory hierarchy, we wish to
perform the most flops per memory reference to minimize data movement;
q gives an upper bound on this ratio for any implementation. We see that
only matrix multiplication offers us an opportunity to make this ratio large.

This table reflects a hierarchy of operations. Operations like saxpy oper-
ate on vectors and offer the worst ¢ values; these are called Level 1 BLAS
(Lawson, Hanson, Kincaid and Krogh, 1979) and include inner products and
other simple operations. Operations like matrix—vector multiplication oper-
ate on matrices and vectors, and offer slightly better ¢q values; these are called
Level 2 BLAS (Dongarra, Du Croz, Hammarling and Richard Hanson, 1988),
and include solving triangular systems of equations and rank-1 updates of
matrices (A +zyT, z and y column vectors). Operations like matrix-matrix
multiplication operate on pairs of matrices, and offer the best q values; these
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Table 1. Memory references and operation counts for the BLAS.

Operation Definition Floating Memory q
point references
operations
saxpy yi=axi+y;, i=1,...,n 2n 3n+1 2/3
Matrix-vector mult | y; = 37, Aiz; + ys 2n? n?+3n | 3
Matrix-matrix mult | Ci;=>¢_; AixBi; +Cij 2n® 4n? n/2

are called Level 3 BLAS (Dongarra, Du Croz, Duff and Hammarling, 1990),
and include solving triangular systems of equations with many right-hand
sides. These operations have been standardized, and many high performance
computers have highly optimized implementations of these that are useful
for building more complicated algorithms (Anderson, Bai, Bischof, Demmel,
Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov and
Sorensen, 1992); this is the subject of several succeeding sections.

3.1. Matriz multiplication on a shared memory machine

Suppose we have two levels of memory hierarchy, fast and slow, where the
slow memory is large enough to contain the n x n matrices A, B and C, but
the fast memory contains only M words where n < M <« n2. Further assume
the data are reused optimally (which may be optimistic if the decisions are
made automatically by hardware).

The simplest algorithm one might try consists of three nested loops:

Algorithm 3 Unblocked matrix multiplication

fori=1:n
forj=1:n
fork=1:n
Cij = Cij + A - By

We count the number of references to the slow memory as follows: n3 for
reading B n times, n? for reading A one row at a time and keeping it in fast
memory until it is no longer needed, and 2n? for reading one entry of C at a
time, keeping it in fast memory until it is completely computed. This comes
to n3 4 3n? for a q of about 2, which is no better than the Level 2 BLAS
and far from the maximum possible n/2. If M < n, so that we cannot keep
a full row of A in fast memory, ¢ further decreases to 1, since the algorithm
reduces to a sequence of inner products, which are Level 1 BLAS. For every
permutation of the three loops on i, j and k, one gets another algorithm
with ¢ about the same.
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The next possibility is dividing B and C into column blocks, and com-
puting C block by block. We use the notation B(i : j,k : l) to mean
the submatrix in rows ¢ through j and columns k through /. We partition
B = [BW, B, . B™)] where each B®) is n x n/N, and similarly for C.
Our column block algorithm is then

Algorithm 4 Column-blocked matrix multiplication

forj=1:N
fork=1:n
CW =CW + AQ :n,k) - BY(k,1:n/N)

Assuming M > 2n2/N + n, so that fast memory can accommodate B,
CY) and one column of A simultaneously, our memory reference count is as
follows: 2n? for reading and writing each block of C once, n? for reading
each block of B once, and Nn? for reading A N times. This yields ¢ ~ M/n,
so that M needs to grow with n to keep ¢ large.

Finally, we consider rectangular blocking, where A is broken into an N x N
block matrix with n/N x n/N blocks A and B and C are similarly
partitioned. The algorithm becomes

Algorithm 5 Rectangular-blocked matrix multiplication

fori=1:N
forj=1:N
fork=1,N

Cli) = 09 4 AGK) . Blks)

Assuming M > 3(n/N)? so that one block each from A, B and C fit in
memory simultaneously, our memory reference count is as follows: 2n? for
reading and writing each block of C once, Nn? for reading A N times, and
Nn? for reading B N times. This yields ¢ ~ /M/3, which is much better
than the previous algorithms.

In Hong and Kung (1981) an analysis of this problem leading to an upper
bound near v M is given, so we cannot expect to improve much on this
algorithm for square matrices. On the other hand, this brief analysis ignores
a number of practical issues:

1  high level language constructs do not yet support block layout of ma-
trices as described here (but see the discussion in Section 3.3);

2 if the fast memory consists of vector registers and has vector operations
supporting saxpy but not inner products, a column blocked code may
be superior;

3  a real code will have to deal with nonsquare matrices, for which the
optimal block sizes may not be square (Gallivan et al., 1990).

Another possibility is Strassen’s method (Aho, Hopcroft and Ullman,
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1974), which multiplies matrices recursively by dividing them into 2 x 2
block matrices, and multiplying the subblocks using 7 matrix multiplica-
tions (recursively) and 15 matrix additions of half the size; this leads to an
asymptotic complexity of n!°827 ~ n28l instead of n3. The value of this
algorithm is not just this asymptotic complexity but its reduction of the
problem to smaller subproblems which eventually fit in fast memory; once
the subproblems fit in fast memory standard matrix multiplication may be
used. This approach has led to speedups on relatively large matrices on
some machines (Bailey, Lee and Simon, 1991). A drawback is the need for
significant workspace, and somewhat lower numerical stability, although it
is adequate for many purposes (Demmel and Higham, 1992; Higham, 1990).

Given the complexity of optimizing the implementation of matrix multipli-
cation, we cannot expect all other matrix algorithms to be equally optimized
on all machines, at least not in a time users are willing to wait. Indeed, since
architectures change rather quickly, we prefer to do as little machine-specific
optimization as possible. Therefore, our shared memory algorithms in later
sections assume only that highly optimized BLAS are available and build
on top of them.

3.2. Matriz multiplication on a distributed memory machine

In this section it will be convenient to number matrix entries (or subblocks)
and processors from 0 to n — 1 instead of 1 to n.

A dominant issue is data layout, or how the matrices are partitioned across
the machine. This will determine both the amount of parallellism and the
cost of communication. We begin by showing how best to implement matrix
multiplication without regard to the layout’s suitability for other matrix
operations, and return to the question of layouts in the next section.

The first algorithm is due to Cannon (1969) and is well suited for comput-
ers laid out in a square N x N mesh, i.e. where each processor communicates
most efficiently with the four other processors immediately north, east, south
and west of itself. We also assume the processors at the edges of the grid are
directly connected to the processors on the opposite edge; this makes the
topology that of a two-dimensional torus. Let A be partitioned into square
subblocks A as before, with A/ stored on processor (4, 7). Let B and C
be partitioned similarly. The algorithm is given below. It is easily seen that
whenever A(%) and B9 ‘meet’ in processor i, j, they are multiplied and
accumulated in C9; the products for the different C() are accumulated
in different orders.

Algorithm 6 Cannon’s matrix multiplication algorithm

foralli=0: N -1
Left circular shift row ¢ by 4, so that A
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A00) | A(01) | A(02) A1) | 4(02) | 4(00) A02) | 4(00) | A(01)
AL | 402) | 4Q0) A2) | A(10) A(11) A0 [ 401) | A4Q2)
AQ2) | A(20) | 4(21) AR0) | AL | A(22) AL | 4(22) | A(20)

Bo) [ pa1) | B(22) B(10) | g1 | B(02) B(20) | goy) | gQ12)
B(10) | p21) | B(v2) B(20) | gy | B12) B0 | p1) | p(22)
B20) | gloy) | g(12) B©o) | g(11) | B(22) B(10) | pg(21) | g(02)

A, B after skewing A, B after shift k =1 A, B after shift k =2
Fig. 4. Cannon’s algorithm for N = 3.

is assigned AG.(+i)mod N)

forall j=0: N -1
Upward circular shift column j by j, so that B
is assigned B((j+i)modN.j)
fork=1:N
foralli=0: N—-1,forall j =0: N -1
Ccli) = ¢Gd) 4 A6 . B(Ed)
Left circular shift each row of A by 1, so AG)
is assigned A((j+1)modN)
Upward circular shift each column of B by 1, so B
is assigned B((i+1)modN.j)

Figure 4 illustrates the functioning of this algorithm for N = 3. A variation
of this algorithm suitable for machines that are efficient at spreading sub-
blocks across rows (or down columns) is to do this instead of the preshifting
and rotation of A (or B) (Fox, Johnson, Lyzenga, Otto, Salmon and Walker,
1988).

This algorithm is easily adapted to a hypercube. The simplest way is
to embed a grid (or two-dimensional torus) in a hypercube, i.e. map the
processors in a grid to the processors in a hypercube, and the connections
in a grid to a subset of the connections in a hypercube (Ho, 1990; Johnsson,
1987). Suppose the hypercube is d-dimensional, so the 24 processors are
labelled by d bit numbers. We embed a 2" x 2™ grid in this hypercube
(where m + n = d) by mapping processor (i1,i2) in the grid to processor
Gn;i; 2™+ Gn i, in the hypercube; i.e. we just concatenate the n bits of G, ;,
and m bits of Gy, i,. Each row (column) of the grid thus occupies an m- (n-)
dimensional subcube of the original hypercube, with nearest neighbours in
the grid mapped to nearest neighbours in the hypercube (Ho, Johnsson and
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0000 | 0001 | 0011 { 0010
0100 | 0101 | 0111 | 0110
1100 | 1101 | 1111 | 1110
1000 | 1001 | 1011 | 1010

Fig. 5. Embedding a 4 x 4 grid in a four-dimensional hypercube (numbers are
processor numbers in hypercube).

Edelman, 1991). We illustrate for a 4 x 4 grid in Figure 5. This approach
easily extends to multi-dimensional arrays of size 2™ X --- x 2™ where
Yi=1 M; is at most the dimension of the hypercube.

This approach (which is useful for more than matrix multiplication) uses
only a subset of the connections in a hypercube, which makes the initial
skewing operations slower than they need be: if we can move only to near-
est neighbours, each skewing operation takes N — 1 communication steps, as
many as in the computational loop. We may use all the wires of the hyper-
cube to reduce the skewing to log, N operations. In the following algorithm,
® denotes the bitwise exclusive-or operator. We assume the 2" x 2" grid
of data is embedded in the hypercube so that A7) is stored in processor
i - 2" + j (Dekel, Nassimi and Sahni, 1981):

Algorithm 7 Dekel’s matrix multiplication algorithm

fork=1:n
Let ji = (kth bit of j) - 2%
Let i = (kth bit of 1) - 2%
forallt=0:2"—-1,forall j =0:2" -1
Swap A(“7®ik) and A
Swap BUx®i) to B(i.7)
fork=1:2"
foralli=0:2"—1,forall j =0:2" -1
CE) = ¢ld) 4 AGI) . B()
Swap A(©i®ak) and AG)
Swap B(i®94.x:7) and B)
Finally, we may speed this up further (Ho et al., 1991; Johnsson and
Ho, 1989) provided the A7) blocks are large enough, by using the same

algorithm as for force calculations in Section 2. If the blocks are n by n (so
A and B are n2" x n2"), then the algorithm becomes

Algorithm 8 Ho, Johnsson and Edelman’s matrix multiplication algorithm

fork=1:n
Let jx = (kth bit of j) - 2%
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Table 2. Cost of matrixz multiplication on a hypercube.

Algorithm Message Data sending | Floating point
startups steps steps
Cannon (6) 22" - 1) 2n%(2" — 1) 2n32n
Dekel (7) n+2"~1 | n®+n2(2"-1) 2n32"
Hoetal 8) |n+2"~1| n®+n(2"~1) 2n32n

Let i = (kth bit of 4) - 2%
foral i =0:2" -1, forall j=0:2" -1
Swap A(7®ik) and A7)
Swap B(Jk@%]) to B("'J)
fork=1:2"
foralli=0:2"—1,forall j =0:2" -1
Clid) = 6 4 A6 . Bld)
forall=0:n-1

(6,i®e%))

Swap A and Al(i’j) ( A;“ ) is the Ith row of Alid))
(1®g% ) 7)

Swap B, and B (B is the Ith column of B())

Algorithms 6-8 all perform the same number of floating point operations
in parallel. Table 2 compares the number of communication steps, assuming
matrices are n2" x n2", swapping a datum along a single wire is one step,
and the motions of A and B that can occur in parallel do occur in parallel.
Note that for large enough n the number of floating point steps overwhelms
the number of communication steps, so the efficiency gets better.

In this section we have shown how to optimize matrix multiplication in
a series of steps tuning it ever more highly for a particular computer archi-
tecture, until essentially every communication link and floating point unit
is utilized. Our algorithms are scalable, in that they continue to run effi-
ciently on larger machines and larger problems, with communication costs
becoming ever smaller with respect to computation. If the architecture per-
mitted us to overlap communication and computation, we could pipeline the
algorithm to mask communication cost further.

On the other hand, let us ask what we lose by optimizing so heavily for
one architecture. Our high performance depends on the matrices having
just the right dimensions, being laid out just right in memory, and leav-
ing them in a scrambled final position (although a modest amount of extra
communication could repair this). It is unreasonable to expect users, who
want to do several computations of which this is but one, to satisfy all these
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requirements. Therefore a practical algorithm will have to deal with many
irregularities, and be quite complicated. Our ability to do this extreme
optimization is limited to a few simple and regular problems like matrix
multiplication on a hypercube, as well as other heavily used kernels like the
BLAS, which have indeed been highly optimized for many architectures. We
do not expect equal success for more complicated algorithms on all archi-
tectures of interest, at least within a reasonable amount of time. ¥ Also, the
algorithm is highly tuned to a particular interconnection network topology,
which may require redesign for another machine (in view of this, a number
of recent machines try to make communication time appear as independent
of topology as possible, so the user sees essentially a completely connected

topology).

3.8. Data layouts on distributed memory machines

Choosing a data layout may be described as choosing a mapping f(i,5)
from location (¢,7) in a matrix to the processor on which it is stored. As
discussed previously, we hope to design f so that it permits highly parallel
implementation of a variety of matrix algorithms, limits communication cost
as much as possible, and retains these attractive properties as we scale to
larger matrices and larger machines. For example, the algorithms of the
previous section use the map f(i,5) = (|i/r], |j/r]), where we subscript
matrices starting at 0, number processors by their coordinates in a grid
(also starting at (0,0)), and store an r X r matrix on each processor.

There is an emerging consensus about data layouts for distributed memory
machines. This is being implemented in several programming languages
(Fox, Hiranandani, Kennedy, Koelbel, Kremer, Tseng and Wu, 1990; High
Peformance Fortran, 1991), that will be available to programmers in the
near future. We describe these layouts here.

High Performance Fortran (HPF) (High Peformance Fortran, 1991) per-
mits the user to define a virtual array of processors, align actual data struc-
tures like matrices and arrays with this virtual array (and so with respect
to each other), and then to layout the virtual processor array on an actual
machine. We describe the layout functions f offered for this last step. The
range of f is a rectangular array of processors numbered from (0,0) up to
(p1 —1,p2 —1). Then all f can be parameterized by two integer parameters

b1 and by:
for,62(3,7) = ([biJ mod py, L%J mod p2> .
1 2

¥ The matrix multiplication subroutine in the CM-2 Scientific Subroutine Library took
approximately 10 person-years of effort (Johnsson, 1990).
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00]00]00]00[01]01]01]01]02]02[02[02]0,3]0,37]0,3]0,3
00(00]00]00]01]01]01[0,1]02[02]020,2]03]0,3]0,3]0,3
00]00]00]00]01]01]01]01]02]02]02[0,2[0,3]03]0,3]0,3
00]00]00]00]01]01]01]01[02]02]02[0,2]0,3]0,3]0,3]0,3
101010 (10|l |11 |11 |12](12|12(12]1,3|13]13]13
T0[10[10 30|11 1 12 12]1,2]1,2]13]13]1,3]1,3
10]10[1010 1|11 |1 |11 |12 12112 1,2|1,3]13]1,3|13
10]10[10|10| 1|11 |11 |12 1212121313 ]1,3]13
20120120120 21 21 21 21 2222222223123 |23]|23
201202020 21 21 21 1212222222223 ](23]|23]23
2020120120 21 21 21 12122 2222|22123][23]|23]23
2012020120 21 2121121 2222221222323 ]23]23
3030303031 3131313232 32]32]33]|33|33]33
30(30|30|30]31]31(31]31132][32]32132]33]33]33]33
3030]30]30(31131]31]31]3232]32]32]33]|33]33]33
303030303131 ][31]31132][32]32]32]33]33]33]33

Fig. 6. Block layout of a 16 x 16 matrix on a 4 x 4 processor grid.

Suppose the matrix A (or virtual processor array) is m x n. Then choos-
ing by = n yields a column of processors, each containing some number of
complete rows of A. Choosing b; = m yields a row of processors. Choosing
by = m/p; and by = n/py yields a blocked layout, where A is broken into
b1 x by subblocks, each of which resides on a single processor. This is the sim-
plest two-dimensional layout one could imagine (we used it in the previous
section), and by having large subblocks stored on each processor it makes
using the BLAS on each processor attractive. However, for straightforward
matrix algorithms that process the matrix from left to right (including Gaus-
sian elimination, QR decomposition, reduction to tridiagonal form, and so
on), the leftmost processors will become idle early in the computation and
make load balance poor. Choosing by = by = 1 is called scatter mapping
(or wrapped or cyclic or interleaved mapping), and optimizes load balance,
since the matrix entries stored on a single processor are as nearly as possi-
ble uniformly distributed throughout the matrix. On the other hand, this
appears to inhibit the use of the BLAS locally in each processor, since the
data owned by a processor are not contiguous from the point of view of the
matrix. Finally, by choosing 1 < b3 < m/p; and 1 < by < n/ps, we get a
block-scatter mapping which trades off load balance and applicability of the
BLAS. These layouts are shown in Figures 6 through 8 for a 16 x 16 matrix
laid out on a 4 x 4 processor grid; each array entry is labelled by the number
of the processor that stores it.

By being a little more flexible about the algorithms we implement, we can
mitigate the apparent tradeoff between the load balance and the applicability
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7. Scatter layout of a 16 x 16 matrix on

a 4 x 4 processor grid.
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Fig. 8. Block scatter layout of a 16 x 16 matrix on a 4 x 4 processor grid with

2 x 2 blocks.
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of BLAS. For example, the layout of A shown in Figure 7 is identical to the
layout shown in Figure 6 of PT AP, where P is a permutation matrix. This
shows that running the algorithms of the previous section to multiply A
times B in scatter layout is the same as multiplying PAPT and PBPT to
get PABPT, which is the desired product. Indeed, as long as (1) A and B
are both distributed over a square array of processors; (2) the permutations
of the columns of A and rows of B are identical; and (3) for all i the number
of columns of A stored by processor column ¢ is the same as the number of
rows of B stored by processor row i, the algorithms of the previous section
will correctly multiply A and B. The distribution of the product will be
determined by the distribution of the rows of A and columns of B. We will
see a similar phenomenon for other distributed memory algorithms later.

A different approach is to write algorithms that work independently of
the location of the data, and rely on the underlying language or run-time
system to optimize the necessary communications. This makes code easier
to write, but puts a large burden on compiler and run-time system writers
(Van de Velde, 1992).

4. Systems of linear equations

We discuss both dense and band matrices, on shared and distributed mem-
ory machines. We begin with dense matrices and shared memory, showing
how the standard algorithm can be reformulated as a block algorithm, call-
ing the Level 2 and 3 BLAS in its innermost loops. The distributed memory
versions will be similar, with the main issue being laying out the data to
maximize load balance and minimize communication. We also present some
highly parallel, but numerically unstable, algorithms to illustrate the trade-
off between stability and parallellism. We conclude with some algorithms
for band matrices.

4.1. Gaussian elimination on a shared memory machine

To solve Az = b, we first use Gaussian elimination to factor the nonsingular
matrix A as PA = LU, where L is lower triangular, U is upper triangular,
and P is a permutation matrix. Then we solve the triangular systems Ly =
Pb and Uz = y for the solution z. In this section we will concentrate
on factoring PA = LU, which has the dominant number of floating point
operations, 2n3/3 + O(n?). Pivoting is required for numerical stability, and
we use the standard partial pivoting scheme (Golub and Van Loan, 1989);
this means that L has unit diagonal and other entries bounded in magnitude
by one. The simplest version of the algorithm involves adding multiples
of one row of A to others in order to zero out subdiagonal entries, and
overwriting A with L and U:
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Algorithm 9 Row oriented Gaussian elimination (kij-LU decomposition)

fork=1:n-1
{ choose [ so |Ajx| = maxg<i<n |Aik|, swap rows [ and k of A }
fori=k+1:n
Ak, = Aik/Ark
forj=k+1:n
Aij = Ayj — Aig - Aij

There is obvious parallellism in the innermost loop, since each A;; can be
updated independently. If A is stored by column, as is the case in Fortran,
then since the inner loop combines rows of A, it accesses memory entries
(at least) n locations apart. As described in Section 2, this does not respect
locality. Algorithm 9 is also called kij-LU decomposition, because of the
nesting order of its loops. All the rest of 3! permutations of %, 7 and k lead
to valid algorithms, some of which access columns of A in the innermost
loop. Algorithm 10 is one of these, and is used in the LINPACK routine

sgefa (Dongarra et al., 1979):

Algorithm 10 Column oriented Gaussian elimination (kji-LU decomposi-
tion)

fork=1:n-1

{ choose [ so |Ajx| = maxg<i<n |Aik|, swap Ay, and Agx }
fori=k+1:n

A = Air/Axk
forj=k+1:n

{ swap A;; and Ag; }

fori=k+1:n

Aij = Aij — Aig - A

The inner loop of Algorithm 10 can be performed by a single call to the
Level 1 BLAS operation saxpy. To achieve higher performance, we modify
this code first to use the Level 2 and then the Level 3 BLAS in its innermost
loops. Again, 3! versions of these algorithms are possible, but we just
describe the ones used in the LAPACK library (Anderson et al., 1992). To
make the use of BLAS clear, we use matrix/vector operations instead of

loops:
Algorithm 11 Gaussian elimination using Level 2 BLAS

fork=1:n-1
{ choose [ so |Ajx| = maxg<i<p |Aik|, swap rows ! and k of A }
Alk+1:n,k)=Ak+1:n,k)/Akx
Ak+1:nk+1:n)=Ak+1:nk+1:n)
~Alk+1:n,k) - Ak,k+1:n)
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The parallellism in the inner loop is evident: most work is performed is a
single rank-1 update of the trailing n — k X n — k submatrix

Ak+1:n,k+1:n),

where each entry of
Alk+1:n,k+1:n)

can be updated in parallel. Other permutations of the nested loops lead to
different algorithms, which depend on the BLAS for matrix—vector multipli-
cation and solving a triangular system instead of rank-1 updating (Anderson
and Dongarra, 1990; Robert, 1990); which is faster depends on the relative
speed of these on a given machine.

To convert to the Level 3 BLAS involves column blocking

A=A A

into n X ny blocks, where ny, is the block size and m = n/ny. The optimal
choice of n), depends on the memory hierarchy of the machine in question:
our approach is to compute the LU decomposition of each n x n; subblock
of A using Algorithm 11 in the fast memory, and then use Level 3 BLAS to
update the rest of the matrix:

Algorithm 12 Gaussian elimination using Level 3 BLAS (we assume n,
divides n)

forl=1:m

k=(1-1)-np+1

Use Algorithm 11 to factorize PAYW = LU in place

Apply P to prior columns A(1:n,1:k — 1) and later columns
A(l:nk+np:n)

Update block row of U:
Replace A(k : k+np — 1,k + np : n) by the solution X of
TX = A(k: k+ny — 1,k + nyp : n), where T is the lower
triangular matrix in A(k: k+np— 1,k : k+ny — 1)

Alk+np:nk+ny:n)=Ak+np:n,k+np:n)—
Alk+mny:nk:k+ny—1) - Alk:k+n,— 1, k+np:n)

Most of the work is performed in the last two lines, solving a triangular
system with many right-hand sides, and matrix multiplication. Other similar
algorithms may be derived by conformally partitioning L, U and A, and
equating partitions in A = LU. Algorithms 11 and 12 are available as,
respectively, subroutines sgetf2 and sgetrf in LAPACK (Anderson et al.,
1992).

We illustrate these points with the slightly different example of Cholesky
decomposition, which uses a very similar algorithm: Table 3 shows the
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Table 3. Speed of Cholesky on a Cray YMP

1PE | 8 PEs
Maximum speed 330 | 2640
LINPACK (Cholesky with BLAS 1), n = 500 72 72
Matrix—vector multiplication 311 2285
Matrix—matrix multiplication 312 | 2285
Triangular solve (one right-hand side) 272 584
Triangular solve (many right-hand sides) 309 | 2398
LAPACK (Cholesky with BLAS 3), n = 500 290 | 1414
LAPACK (Cholesky with BLAS 3), n = 1000 301 | 2115

speeds in megaflops of the various BLAS and algorithms on one and eight
processors of a Cray YMP.

4.2. Gaussian elimination on a distributed memory machine

As described earlier, layout strongly influences the algorithm. We show the
algorithm for a block scatter mapping in both dimensions, and then discuss
how other layouts may be handled. The algorithm is essentially the same
as Algorithm 12, with communication inserted as necessary. The block size
ny equals be, which determines the layout in the horizontal direction.

Communication is required in Algorithm 11 to find the pivot entry at each
step and swap rows if necessary; then each processor can perform the scaling
and rank-1 updates independently. The pivot search is a reduction opera-
tion, as described in Section 2. After the block column is fully factorized,
the pivot information must be broadcast so other processors can permute
their own data, as well as permute among different processors.

In Algorithm 12, the ny x n; L matrix stored on the diagonal must be
spread rightward to other processors in the same row, so they can compute
their entries of UU. Finally, the processors holding the rest of L below the
diagonal must spread their submatrices to the right, and the processors
holding the new entries of U just computed must spread their submatrices
downward, before the final rank-n; update in the last line of Algorithm 12
can take place.

The optimal choice of the block sizes b; and b depends on the cost of
the communication versus that of the computation. For example, if the
communication required to do pivot search and swapping of rows is expensive
then b; should be large. The execution time is a function of dimension n,
block sizes b, and by, processor counts py and ps, and the cost of computation
and communication (from Section 2, we know how to model these). Given
this function, it may be minimized as a function of by, bo, p1 and ps. Some
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theoretical analyses of this sort for special cases may be found in Robert
(1990) and the references therein. See also Dongarra and Ostrouchov (1990)
and Dongarra and van de Geijn (1991a). As an example of the performance
that can be attained in practice, on an Intel Delta with 512 processors the
speed of LU ranged from a little over 1 gigaflop for n = 2000 to nearly 12
gigaflops for n = 25000.

Even if the layout is not block scatter as described so far, essentially the
same algorithm may be used. As described in Section 3.3, many possible
layouts are related by permutation matrices. So simply performing the al-
gorithm just described with (optimal) block sizes b; and b on the matrix A
as stored is equivalent to performing the LU decomposition of P; AP, where
Py and P, are permutation matrices. Thus at the cost of keeping track of
these permutations (a possibly nontrivial software issue), a single algorithm
suffices for a wide variety of layouts.

Finally, we need to solve the triangular systems Ly = b and Uz = y
arising from the LU decomposition. On a shared memory machine, this is
accomplished by two calls to the Level 2 BLAS. Designing such an algorithm
on a distributed memory machine is harder, because the fewer floating point
operations performed (O(n?) instead of O(n?®)) make it harder to mask the
communication (see Eisenstat, Heath, Henkel and Romine, 1988; Heath and
Romine, 1988; Li and Coleman, 1988; Romine and Ortega, 1988).

4.8. Clever but impractical parallel algorithms for solving Az = b

The theoretical literature provides us with a number of apparently fast
but ultimately unattractive algorithms for solving Az = b. These may
be unattractive because they need many more parallel processors than is
reasonable, ignore locality, are numerically unstable, or any combination of
these reasons. We begin with an algorithm for solving n x n triangular lin-
ear systems in O(log?n) parallel steps. Suppose T is lower triangular with
unit diagonal (the diagonal can be factored out in one parallel step). For
each i from 1 to n — 1, let T; equal the identity matrix except for column
t where it matches T. Then it is simple to verify T = T1T5---T;,_1 and so
T-!'=T.1, - T, 'T7". One can also easily see that T;"! equals the identity
except for the subdiagonal of column i, where it is the negative of T;. Thus
it takes no work to compute the T[l, and the work involved is to compute
the product 71, --- Ty ! in log, n parallel steps using a tree. Each parallel
step involves multiplying n x n matrices (which are initially quite sparse,
but fill up), and so takes about log, n parallel substeps, for a total of log2 n.
The error analysis of this algorithm (Sameh and Brent, 1977) yields an error
bound proportional to x(T)3¢ where x(T) = ||T|| - [|[T~}| is the condition
number and € is machine precision; this is in contrast to the error bound
k(T)e for the usual algorithm. The error bound for the parallel algorithm
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may be pessimistic — the worst example we have found has an error grow-
ing like k(T)!5¢ — but shows that there is a tradeoff between parallellism
and stability. Also, to achieve the maximum speedup O(n?) processors are
required, which is unrealistic for large n.

We can use this algorithm to build an O(log? n) algorithm for the general
problem Az = b (Csanky, 1977), but this algorithm is so unstable as to be
entirely useless in floating point (in IEEE double precision floating point, it
achieves no precision in inverting 37/, where I is an identity matrix of size
60 or larger). There are four steps:

1  Compute the powers of A (42, A3, ... , A1) by repeated squaring
(logy n matrix multiplications of log, n steps each).

2  Compute the traces s; = tr(A*) of the powers in log, n steps.

3  Solve the Newton identities for the coefficients a; of the characteristic
polynomial; this is a triangular system of linear equations whose matrix
entries and right-hand side are known integers and the s; (we can do
this in logg n steps as described above).

4  Compute the inverse using Cayley-Hamilton Theorem (in about log, n
steps).

For a survey of other theoretical algorithms, see Bertsekas and Tisitsiklis
(1989) and Karp and Ramachandran (1990).

4.4. Solving banded systems

These problems do not lend themselves as well to the techniques deseribed
above, especially for small bandwidth. The reason is that proportionately
less and less parallel work is available in updating the trailing submatrix,
and in the limiting case of tridiagonal matrices, the parallel algorithm de-
rived as above and the standard serial algorithm are nearly identical. If the
bandwidth is wide enough, however, the techniques of the previous sections
still apply (Du Croz et al., 1990; Fox et al., 1988).

The problem of solving banded linear systems with a narrow band has
been studied by many authors, see for instance the references in Gallivan
et al. (1990) and Ortega (1988). We will only sketch some of the main
ideas and we will do so for rather simple problems. The reader should keep
in mind that these ideas can easily be generalized for more complicated
situations, and many have appeared in the literature.

Most of the parallel approaches perform more arithmetic operations than
standard (sequential) Gaussian elimination (typically 2.5 times as many),
twisted factorization being the only exception. In twisted factorization the
Gaussian elimination process is carried out in parallel from both sides. This
method was first proposed in Babuska (1972) for tridiagonal systems Tz = b
as a means to compute a specified component of z more accurately. For a
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tridiagonal matrix twisted factorization leads to the following decomposition
of T:

*
x* % %
* %
*

*

(4.1)

x % * *
* *
_ *
B * K % * ’
*

*)K :*/

or T = PQ, where we have assumed that no zero diagonal element is created
in P or . Such decompositions exist if A is symmetric positive definite,
or if A is an M-matrix, or when A is diagonally dominant. The twisted
factorization and subsequent forward and back substitutions with P and
@ take as many arithmetic operations as the standard factorization, and
can be carried out with twofold parallellism by working from both ends of
the matrix simultaneously. For an analysis of this process for tridiagonal
systems, see van der Vorst (1987a). Twisted factorization can be combined
with any of the following techniques, often doubling the parallellism.

The other techniques we will discuss can all be applied to general banded
systems, for which most were originally proposed, but for ease of exposition
we will illustrate them just with a lower unit bidiagonal system Lz =b. A
straightforward parallellization approach is to eliminate the unknown z;_;
from equation i using equation ¢ — 1, for all 7 in parallel. This leads to a new
system in which each z; is coupled only with ;_». Thus, the original system
splits in two independent lower bidiagonal systems of half the size, one for
the odd-numbered unknowns, and one for the even-numbered unknowns.
This process can be repeated recursively for both new systems, leading to
an algorithm known as recursive doubling (Stone, 1973). In Algorithm 2
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(Section 2.2) it was presented as a special case of parallel prefix. It has
been analysed and generalized for banded systems in Dubois and Rodrigue
(1977). Its significance for modern parallel computers is limited, which we
illustrate with the following examples.

Suppose we perform a single step of recursive doubling. This step can
be done in parallel, but it involves slightly more arithmetic than the serial
elimination process for solving Lz = b. The two resulting lower bidiagonal
systems can be solved in parallel. This implies that on a two-processor
system the time for a single step of recursive doubling will be slightly more
than the time for solving the original system with only one processor. If we
have n processors (where 7 is the dimension of L), then the elimination step
can be done in very few time steps, and the two resulting systems can be
solved in parallel, so that we have a speedup of about 2. However, this is
not very practical, since during most of the time n — 2 processors are idle,
or formulated differently, the efficiency of the processors is rather low.

If we use n processors to apply this algorithm recursively instead of split-
ting into just two systems, we can solve in O(logn) steps, a speedup of
O(n/logn), but the efficiency decreases like O(1/logn). This is theoreti-
cally attractive but inefficient. Because of the data movement required, it is
unlikely to be fast without system support for this communication pattern.

A related approach, which avoids the two subsystems, is to eliminate
only the odd-numbered unknowns z;_; from the even-numbered equations
i. Again, this can be done in parallel, or in vector mode, and it results
in a new system in which only the even-numbered unknowns are coupled.
After having solved this reduced system, the odd-numbered unknowns can
be computed in parallel from the odd-numbered equations. Of course, the
trick can be repeated for the subsystem of half size, and this process is
known as cyclic reduction (Lambiotte and Voigt, 1974; Heller, 1978). Since
the amount of serial work is halved in each step by completely parallel
(or vectorizable) operations, this approach has been successfully applied on
vector supercomputers, especially when the vector speed of the machine is
significantly greater than the scalar speed (Ortega, 1988; de Groen, 1991;
Schlichting and van der Vorst, 1987). For distributed memory computers
the method requires too much data movement for the reduced system to be
practical.

However, the method is easily generalized to one with more parallellism.
Cyclic reduction can be viewed as an approach in which the given matrix
L is written as a lower block bidiagonal matrix with 2 x 2 blocks along the
diagonal. In the elimination process all (2, 1) positions in the diagonal blocks
are eliminated in parallel. An obvious idea is to subdivide the matrix into
larger blocks, i.e. we write L as a block bidiagonal matrix with k x k blocks
along the diagonal (for simplicity we assume that n is a multiple of k). In
practical cases k is chosen so large that the process is not repeated for the
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resulting subsystems, as for cyclic reduction (where k = 2). This approach is
referred to as a divide-and-conquer approach. For banded triangular systems
it was first suggested by Chen, Kuck and Sameh (1978), for tridiagonal
systems it was proposed by Wang (1981).

To illustrate, let us apply one parallel elimination step to the lower bidi-
agonal system Lz = b to eliminate all subdiagonal elements in all diagonal
blocks. This yields a system Lz = b, where for k = 4 and n = 16 we get

(1 )
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X X X X
—
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There are two possibilities for the next step. In the original approach (Wang,
1981), the fill-in in the subdiagonal blocks is eliminated in parallel, or vector
mode, for each subdiagonal block (note that each subdiagonal block has only
one column with nonzero elements). It has been shown in van der Vorst and
Dekker (1989) that this leads to very efficient vectorized code for machines
such as Cray, Fujitsu, etc.

For parallel computers, the parallellism in eliminating these subdiagonal
blocks is relatively fine-grained compared with the more coarse-grained par-
allellism in the first step of the algorithm. Furthermore, on distributed mem-
ory machines the data for each subdiagonal block have to be spread over all
processors. In Michielse and van der Vorst (1988) it has been shown that
this limits the performance of the algorithm, the speedup being bounded by
the ratio of computational speed and communication speed. This ratio is
often very low (Michielse and van der Vorst, 1988).

The other approach is first to eliminate successively the last nonzero el-
ements in the subdiagonal blocks L;;_;. This can be done with a short
recurrence of length n/k — 1, after which all fill-in can be eliminated in
parallel. For the recurrence we need some data communication between
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processors. However, for k large enough with respect to n/k, one can attain
speedups close to 2k/5 for this algorithm on a k processor system (van der
Vorst, 1989c). For a generalization of the divide-and-conquer approach for
banded systems, see Meier (1985); the data transport aspects for distributed
memory machines have been discussed in Michielse and van der Vorst (1988).

There are other variants of the divide-and-conquer approach that move
the fill-in into other columns of the subblocks or are more stabile numerically.
For example, in Mehrmann (1991) the matrix is split into a block diagonal
matrix and a remainder via rank-1 updates.

5. Least squares problems

Most algorithms for finding the z minimizing || Az — b||2 require computing
a QR decomposition of A, where @ is orthogonal and R is upper triangular.
We will assume A is m X n, m > n, so that Q) is m x m and R is m x n.
For simplicity we consider only QR without pivoting, and mention work
incorporating pivoting at the end.

The conventional approach is to premultiply A by a sequence of simple
orthogonal matrices ); chosen to introduce zeros below the diagonal of A
(Golub and Van Loan, 1989). Eventually A becomes upper triangular, and
equal to R, and the product Qn ---@1 = Q. One kind of Q; often used
is a Givens rotation, which changes only two rows of A, and introduces a
single zero in one of them; it is the identity in all but two rows and columns,

z } , with ¢2+s2 = 1. A second kind of Q; is a Householder

where it is [

reflection, which can change any number of rows of A, zeroing out all entries
but one in the changed rows of one column of A; a Household reflection may
be written I —2uu”, where u is a unit vector with nonzeros only in the rows
to be changed.

5.1. Shared memory algorithms

The basic algorithm to compute a QR decomposition using Householder
transformations is given in (Golub and Van Loan, 1989):

Algorithm 13 QR decomposition using Level 2 BLAS

fork=1:n-1
Compute a unit vector uy, so that (I — 2uzuf )A(k+1:m,k) =0
Update A = A — 2 x ug(ul A) (= QrA where Qi = I — 2uzu})

Computing ui takes O(n — k) flops and is essentially a Level 1 BLAS
operation. Updating A is seen to consist of a matrix—vector multiplication
(wT = uf'A) and a rank-1 update (A — 2uzwT), both Level 2 BLAS oper-
ations. To convert to Level 3 BLAS requires the observation that one can
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write Qp - Qp—1--- Q1 = I — UTUT where U = [uy,...,up] is m x b, and T is
b x b and triangular (Schreiber and Van Loan, 1989); for historical reasons
this is called a compact WY transformation. Thus, by analogy with the
LU decomposition with column blocking (Algorithm 12), we may first use
Algorithm 13 on a block of np columns of A, form U and T of the compact
WY transformation, and then update the rest of A by forming A~UTUTA,
which consists of three matrix—matrix multiplications. This increases the
number of floating point operations by a small amount, and is as stable as
the usual algorithm:

Algorithm 14 QR decomposition using Level 3 BLAS (same notation as
Algorithm 12)

forl=1:m
k=(l——1)-nb+1
Use Algorithm 13 to factorize AW = QR;,
Form matrices U; and T from Q;
Multiply X = UF - A(k : m,k + np : n)
Multiply X = T; X
Update A(k: m,k+np:n)=Ak:m,k+mnpy:n)-UX

Algorithm 14 is available as subroutine sgeqrf from LAPACK (Anderson
et al., 1992). Pivoting complicates matters slightly. In conventional column
pivoting at step k we need to pivot (permute columns) so the next column of
A to be processed has the largest norm in rows k through m of all remaining
columns. This cannot be directly combined with blocking as we have just
described it, and so instead pivoting algorithms which only look among
locally stored columns if possible have been developed (Bischof and Tang,
1991a,b).

Other shared memory algorithms based on Givens rotations have also
been developed (Chu, 1988a; Gentleman and Kung, 1981; Sameh, 1985),
although these do not seem superior on shared memory machines. It is also
possible to use Level 2 and 3 BLAS in the modified Gram—Schmidt algorithm
(Gallivan, Jalby, Meier and Sameh, 1988).

5.2. Distributed memory algorithms

Just as we could map Algorithm 13 (Gaussian elimination with Level 3
BLAS) to a distributed memory machine with blocked and/or scattered
layout by inserting appropriate communication, this can also be done for
Q@R with Level 3 BLAS.

An interesting alternative that works with the same data layouts is based
on Givens rotations (Chu, 1988a; Pothen, Jha and Vemulapati, 1987). We
consider just the first block column in the block scattered layout, where each
of a.subset of the processors owns a set of p r x r subblocks of the block
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column evenly distributed over the column. Each processor reduces its own
p-r X r submatrix to upper triangular form, spreading the Givens rotations
to the right for other processors to apply to their own data. This reduces the
processor column to p r X r triangles, each owned by a different processor.
Now there needs to be communication among the processors in the column.
Organizing them in a tree, at each node in the tree two processors, each of
which owns an r x r triangle, share their data to reduce to a single r x r
triangle. The requisite rotations are again spread rightward. So in log, p of
these steps, the first column has been reduced to a single r x r triangle, and
the algorithm moves on to the next block column.

Other Givens based algorithms have been proposed, but seem to require
more communication than this one (Pothen et al., 1987).

6. Eigenproblems and the singular value decomposition
6.1. General comments

The standard serial algorithms for computing the eigendecomposition of a
symmetric matrix A, a general matrix B, or the singular value decomposition
(SVD) of a general matrix C have the same two-phase structure: apply
orthogonal transformations to reduce the matrix to a condensed form, and
then apply an iterative algorithm to the condensed form to compute its
eigendecomposition or SVD. For the three problems of this section, the
condensed forms are symmetric tridiagonal form, upper Hessenberg form and
bidiagonal form, respectively. The motivation is that the iteration requires
far fewer flops to apply to the condensed form than to the original dense
matrix. We discuss reduction algorithms in Section 6.2.

The challenge for parallel computation is that the iteration algorithms for
the condensed forms can be much harder to parallellize than the reductions,
since they involve nonlinear, sometimes scalar recurrences and/or little op-
portunity to use the BLAS. For the nonsymmetric eigenproblem, this has led
researchers to explore algorithms that are not parallel versions of serial ones.
So far none is as stable as the serial one; this is discussed in Section 6.5.

For the symmetric eigenproblem and SVD, the reductions take O(n3)
flops, but subsequent iterations to find just the eigenvalues or singular values
take only O(n?) flops; therefore these iterations have not been bottlenecks on
serial machines. But on some parallel machines, the reduction algorithms we
discuss are so fast that the O(n?) part becomes a bottleneck for surprisingly
large values of n. Therefore, parallellizing the O(n?) part is of interest; we
discuss these problems in Section 6.3.

Other approaches to the symmetric eigenproblem and SVD apply to dense
matrices instead of condensed matrices. The best known is Jacobi’s method.
While attractively parallellizable, the convergence rate is sufficiently slower
than methods based on tridiagonal and bidiagonal forms that it is seldom
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competitive. On the other hand, the Jacobi method is sometimes faster and
can be much more accurate than these other methods and so still deserves
attention; see Section 6.4. Another method that applies to dense symmet-
ric matrices is a variation of the spectral divide-and-conquer method for
nonsymmetric matrices, and discussed in Section 6.5.

In summary, reasonably fast and stable parallel algorithms (if not always
implementations) exist for the symmetric eigenvalue problem and SVD.
However, no highly parallel and stable algorithms currently exist for the
nonsymmetric problem; this remains an open problem.

6.2. Reduction to condensed forms

Since the different reductions to condensed forms are so similar, we discuss
only reduction to tridiagonal form; for the others see Dongarra et al. (1989).
At step k we compute a Householder transformation Q, = I — 2uku£ so
that column k of QrA is zero below the first subdiagonal; these zeros are
unchanged by forming the similarity transformation QAQ7.

Algorithm 15 Reduction to tridiagonal form using Level 2 BLAS (same
notation as Algorithm 12)
fork=1:n-2
Compute a unit vector uy, so that (I — 2ugul )A(k+2:n,k) =0
Update A = (I — 2ugul)A(I — 2ugul) by computing

wg = 2Auy
e = wiug

Vg = Wk — YkUk
A=A- vku{ - ukv,{

The major work is updating A = A — vu{ — uzvT, which is a symmetric

rank-2 update, a Level 2 BLAS operation. To incorporate Level 3 BLAS, we
emulate Algorithm 14 by reducing a single column-block of A to tridiagonal
form, aggregating the Householder transformations into a few matrices, and
then updating via matrix multiply:

Algorithm 16 Reduction to tridiagonal form using Level 3 BLAS (same
notation as Algorithm 12)

forl=1:m

k=(l—1)-nb+1

Use Algorithm 15 to tridiagonalize the first n; columns of
A(k : n,k : n) as follows:
Do not update all of A at each step, just AY)
Compute wy = 2A4u; as 2(4 — b2 (vul + ugv]))uk
Retain U = [uy, ..., ux] and VO = [vy, ..., vy

Update A(k:n,k:n) = A(k:n,k:n) - UOVOT _yOyOT
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Algorithms 15 and 16 are available from LAPACK (Anderson et al., 1992)
as subroutines ssytd2 and ssytrf, respectively. Hessenberg reduction is
sgehrd, and bidiagonal reduction is sgebrd. The mapping to a distributed
memory machine follows as with previous algorithms like QR and Gaussian
elimination (Dongarra and van de Geijn, 1991).

For parallel reduction of a band symmetric matrix to tridiagonal form,
see Bischof and Sun (1992) and Lang (1992).

The initial reduction of a generalized eigenproblem A— B involves finding
orthogonal matrices @) and Z such that QAZ is upper Hessenberg and QBZ
is triangular. So far no profitable way has been found to introduce higher
level BLAS into this reduction, in contrast to the other reductions previously
mentioned. We return to this problem in Section 6.5.

6.3. The symmetric tridiagonal eigenproblem

The basic algorithms to consider are QR iteration (accelerated) bisection
and inverse iteration, and divide-and-conquer. Since the bidiagonal SVD
is equivalent to finding the nonnegative eigenvalues of a tridiagonal matrix
with zero diagonal (Demmel and Kahan, 1990; Golub and Van Loan, 1989),
our comments apply to that problem as well.

QR Iteration The classical algorithm is QR iteration, which produces a
sequence of orthogonally similar tridiagonal matrices T = Ty, T1, T, ...
converging to diagonal form. The mapping from 7; to T;,; is usually sum-
marized as (1) computing a shift o;, an approximate eigenvalue; (2) factoring
T; — 0,1 = QR; and (3) forming T;4+1; = RQ + 0;I. Once full advantage is
taken of the tridiagonal form, this becomes a nonlinear recurrence that pro-
cesses the entries of T; from one end to the other, and amounts to updating
T repeatedly by forming PTPT, with P a Givens rotation. If the eigenvec-
tors are desired, the Ps are accumulated by forming PV, where V is initially
the identity matrix. As it stands this recurrence is not parallellizable, but
by squaring the matrix entries it can be changed into a recurrence of the
form (2.1) in Section 2.2 (see Kuck and Sameh, 1977). The numerical sta-
bility of this method is not known, but available analyses are pessimistic
(Kuck and Sameh, 1977). Furthermore, QR iterations must be done se-
quentially, with usually just one eigenvalue converging at a time. If one
only wants eigenvalues, this method does not appear to be competitive with
the alternatives below. When computing eigenvectors, however, it is easy to
parallellize: each processor redundantly runs the entire algorithm updating
PTPT, but only computes n/p of the columns of PV, where p is the num-
ber of processors and n is the dimension of 7. At the end each processor
has n/p components of each eigenvector. Since computing the eigenvectors
takes O(n?) flops but updating T just O(n?), we succeed in parallellizing
the majority of the computational work.
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Bisection and inverse iteration One of the two most promising methods
is (accelerated) bisection for the eigenvalues, followed by inverse iteration
for the eigenvectors (Ipsen and Jessup, 1990; Lo, Phillipe and Sameh, 1987).
If T has diagonal entries ay, ..., a, and offdiagonals by, ...,b,_1, then we can
count the number of eigenvalues of T less than o (Golub and Van Loan,
1989).

Algorithm 17 Counting eigenvalues using Sturm sequences (1)

count =0,d=1,bg=0
fori=1:n
d=a;—0—-b?,/d
if d < 0, count = count + 1

This nonlinear recurrence may be transformed into a two-term linear re-
currence in p; = dydy - - - d;:

Algorithm 18 Counting eigenvalues using Sturm sequences (2)

count =0,po=1,p_1=0,bpg=0
fori=1:n

pi = (ai — o)pi1 — b2 1pi_2

if p;p;—1 < 0, count = count + 1

In practice, these algorithms need to protected against over/underflow;
Algorithm 17 is much easier to protect (Kahan, 1968). Using either of
these algorithms, we can count the number of eigenvalues in an interval.
The traditional approach is to bisect each interval, say [01, 02], by running
Algorithm 17 or 18 at p = (01 + 03)/2. By continually subdividing intervals
containing eigenvalues, we can compute eigenvalue bounds as tight as we like
(and roundoff permits). Convergence of the intervals can be accelerated by
using a zero-finder such as zeroin (Brent, 1973; Lo et al., 1987), Newton’s
method, Rayleigh quotient iteration (Beattie and Fox, 1989), Laguerre’s
method or other methods (Li, Zhang and Sun, 1991). To choose 7 as an
approximate zero of d,, or p,, i.e. an approximate eigenvalue of T'.

There is parallellism both within Algorithm 18 and by running Algorithm
17 or 18 simultaneously for many values of o. The first kind of parallellism
uses parallel prefix as described in (2.1) in Section 2.2, and so care needs
to be taken to avoid over/underflow. The numerical stability of the serial
implementations of Algorithms 17 (Kahan, 1968) and 18 (Wilkinson, 1965)
is very good, but that of the parallel prefix algorithm is unknown, although
numerical experiments are promising (Swarztrauber, 1992). This requires
good support for parallel prefix operations, and is not as easy to parallellize
as simply having each processor refine different sets of intervals containing
different eigenvalues (Demmel, 1992a).



148 J.W. DEMMEL ET AL.

Within a single processor one can also run Algorithm 17 or 18 for many
different o by pipelining or vectorizing (Simon, 1989). These many ¢ could
come from disjoint intervals or from dividing a single interval into more than
two small ones (multi-section); the latter approach appears to be efficient
only when a few eigenvalues are desired, so that there are not many disjoint
intervals over which to parallellize (Simon, 1989). Achieving good speedup
requires load balancing, and this is not always possible to do by statically
assigning work to processors. For example, having the ith processor out of
p find eigenvalues (i — 1)n/p through in/p results in redundant work at the
beginning, as each processor refines the initial large interval containing all
the eigenvalues. Even if each processor is given a disjoint interval containing
an equal number of eigenvalues to find, the speedup may be poor if the
eigenvalues in one processor are uniformly distributed in their interval and
all the others are tightly clustered in theirs; this is because there will only be
one interval to refine in each clustered interval, and many in the uniform one.
This means we need to rebalance the load dynamically, with busy processors
giving intervals to idle processors. The best way to do this depends on the
communication properties of the machine. Since the load imbalance is severe
and speedup poor only for problems that run quickly in an absolute sense
anyway, pursuing uniformly good speedup may not always be important.
The eigenvalues will also need to be sorted at the end if we use dynamic
load balancing.

Given the eigenvalues, we can compute the eigenvectors by using inverse
iteration in parallel on each processor. At the end each processor will hold
the eigenvectors for the eigenvalues it stores; this is in contrast to the par-
allel @R iteration, which ends up with the transpose of the eigenvector
matrix stored. If we simply do inverse iteration without communication,
the speedup will be nearly perfect. However, we cannot guarantee ortho-
gonality of eigenvectors of clustered eigenvalues (Ipsen and Jessup, 1990),
which currently seems to require reorthogonalization of eigenvectors within
clusters (other methods are under investigation (Parlett, 1992a)). We can
certainly reorthogonalize against eigenvectors of nearby eigenvalues stored
on the same processor without communication, or even against those of
neighbouring processors with little communication; this leads to a trade-
off between orthogonality, on the one hand, and communication and load
balance, on the other.

Other ways to count the eigenvalues in intervals have been proposed as
well (Krishnakumar and Morf, 1986; Swarztrauber, 1992), although these
are more complicated than either Algorithm 17 or 18. There have also
been generalizations to the band definite generalized symmetric eigenvalue
problem (Ma, Patrick and Szyld, 1989).
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Cuppen’s divide-and-conquer algorithm The third algorithm is a div-
ide-and-conquer algorithm by Cuppen (1981), and later analysed and mod-
ified by many others (Barlow, 1991; Dongarra and Sorensen, 1987; Gu
and Eisenstat, 1992; Ipsen and Jessup, 1990; Jessup and Sorensen, 1989;
Sorensen and Tang, 1991). If T is 2n x 2n, we decompose it into a sum

1(;1 192 ] + p:z::cT

of a block diagonal matrix with tridiagonal blocks T} and T3, and a rank-1
matrix pzz! which is nonzero only in the four entries at the intersection of
rows and columns n and n + 1. Suppose we now compute the eigendecom-
positions 71 = @1A1Qf and T3 = Q2A2Q7, which can be done in parallel
and recursively. This yields the partial eigendecomposition

Q10.(A10 T)_ QT o
[ 0 Q 0 Ay | TP 0 QF
where z = diag (QT,Q%)z. So to compute the eigendecomposition of T,
we need to compute the eigendecomposition of the matrix diag (A1, As) +
pzzT = D + pzzT, a diagonal matrix plus a rank-1 matrix. We can easily

write down the characteristic polynomial of D + pzzT, of which the relevant
factor is f(A) in the following so-called secular equation

|

2n 22

f) =1+ i _=0.
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The roots of f(A) = 0 are the desired eigenvalues. Assume the diag-
onal entries d; of D are sorted in increasing order. After deflating out
easy-to-find eigenvalues (corresponding to tiny z; or nearly identical d;) we
get a function with guaranteed inclusion intervals [d;,d;;1] for each zero,
and which is also monotonic on each interval. This lets us solve quickly
using a Newton-like method (although care must be taken to guarantee
convergence (Li, 1992)). The corresponding eigenvector for a root A; is
then simply given by (D — A;I)"'z. This yields the eigendecomposition
D + pzzT = QAQT, from which we compute the full eigendecomposition
T = (diag (Q1,Q2)Q)A(diag (@1,Q2)Q)"

This algorithm, while attractive, proved hard to implement stably. The
trouble was that to guarantee the computed eigenvectors were orthogonal,
d; — A; had to be computed with reasonable relative accuracy, which is not
guaranteed even if A; is known to high precision; cancellation in d; — A;
can leave a tiny difference with high relative error. Work by several authors
(Barlow, 1991; Sorensen and Tang, 1991) led to the conclusion that \; had
to be computed to double the input precision in order to determine d; — A;
accurately. When the input is already in double precision (or whatever is
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the largest precision supported by the machine), then quadruple is needed,
which may be simulated using double, provided double is accurate enough
(Dekker, 1971; Priest, 1991). Recently, however, Gu and Eisenstat (1992)
have found a new algorithm that makes this unnecessary.

There are two types of parallellism available in this algorithm and both
must be exploited to speed up the whole algorithm (Dongarra and Sorensen,
1987; Ipsen and Jessup, 1990). Independent tridiagonal submatrices (such
as T} and T3) can obviously be solved in parallel. Initially there are a great
many such small submatrices to solve in parallel, but after each secular
equation solution, there are half as many submatrices of twice the size.
To keep working in parallel, we must find the roots of the different secular
equations in parallel; there are equally many roots to find at each level. Also,
there is parallellism in the matrix multiplication diag (Q1,Q2) - @ needed to
update the eigenvectors.

While there is a great deal of parallellism available, there are still barriers
to full speedup. First, the speed of the serial algorithm depends strongly on
there being a great deal of deflation, or roots of the secular equation that can
be computed with little work. If several processors are cooperating to solve
a single secular equation, they must either communicate to decide which of
their assigned roots were deflated and to rebalance the work load of finding
nontrivial roots, or else not communicate and risk a load imbalance. This
is the same tradeoff as for the bisection algorithm, except that rebalancing
involves more data movement (since eigenvectors must be moved). If it turns
out, as with bisection, that load imbalance is severe and speedup poor only
when the absolute run time is fast anyway, then dynamic load balancing may
not be worth it. The second barrier to full speedup is simply the complexity
of the algorithm, and the need to do many different kinds of operations in
parallel, including sorting, matrix multiplication, and solving the secular
equation. The current level of parallel software support on many machines
can make this difficult to implement well.

6.4. Jacobi’s method for the symmetric eigenproblem and SVD

Jacobi’s method has been used for the nonsymmetric eigenproblem, the
symmetric eigenproblem, the SVD, and generalizations of these problems to
pairs of matrices (Golub and Van Loan, 1989). It works by applying a series
of Jacobi rotations (a special kind of Givens rotation) to the left and/or
right of the matrix in order to drive it to a desired canonical form, such as
the diagonal form for the symmetric eigenproblem. These Jacobi rotations,
which affect only two rows and/or columns of the matrix, are chosen to
solve the eigenproblem associated with those two rows and/or columns (this
is what makes Jacobi rotations special). By repeatedly solving all 2 x 2
subproblems of the original, one eventually solves the entire problem. The
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Jacobi method works reliably on the symmetric eigenvalue problem and
SVD, and less so on the nonsymmetric problem. We will consider only the
symmetric problem and SVD in this section, and the nonsymmetric Jacobi
later.

Until recently Jacobi methods were of little interest on serial machines
because they are usually several times slower than QR or divide-and-conquer
schemes, and seemed to have the same accuracy. Recently, however, it has
been shown that Jacobi’s method can be much more accurate than QR
in certain cases (Deichmoller, 1991; Demmel and Veselié, 1992; Slapniéar,
1992), which makes it of some value on serial machines.

It has also been of renewed interest on parallel machines because of its
inherent parallellism: Jacobi rotations can be applied in parallel to disjoint
pairs of rows and/or columns of the matrix, so a matrix with n rows and/or
columns can have |n/2| Jacobi rotations applied simultaneously (Brent and
Luk, 1985). The question remains of the order in which to apply the simul-
taneous rotations to achieve quick convergence. A number of good parallel
orderings have been developed and shown to have the same convergence
properties as the usual serial implementations (Luk and Park, 1989; Shroff
and Schreiber, 1989); we illustrate one here in the following diagram (P1-
P4 denotes Processor 1-Processor 4). Assume we have distributed n = 8
columns on p = 4 processors, two per processor. We may leave one column
fixed, and ‘rotate’ the others so that after n — 1 steps all possible pairs of
columns have simultaneously occupied a single processor, so they could have
a Jacobi rotation applied to them:

PL:[ 18 1,7 16 15 1,4 13 1.2
P2 [ 27 8,6 75 6,4 53 42 3,8
P3: [ 36 2,5 84 73 6,2 58 4,7
Pa:[ 45 34 2,3 8,2 7,8 6,7 5,6

Stepl Step2 Step3 Step4d Step5 Step6  Step 7

This is clearly easiest to apply when we are applying Jacobi rotations only
to columns of the matrix, rather than to both rows and columns. Such a one-
sided Jacobi is natural when computing the SVD (Hari and Veselié, 1987),
but requires some preprocessing for the symmetric eigenproblem (Demmel
and Veseli¢, 1992; Slapnicar, 1992); for example, in the symmetric positive
definite case one can perform Cholesky on A to obtain A = LL7T, apply one-
sided Jacobion L or LT to get its (partial) SVD, and then square the singular
values to get the eigenvalues of A. It turns out it accelerates convergence to
do the Cholesky decomposition with pivoting, and then apply Jacobi to the
columns of L rather than the columns of LT (Demmel and Veseli¢, 1992).
It is possible to use the symmetric-indefinite decomposition of an indefinite
symmetric matrix in the same way (Slapnicar, 1992).
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Jacobi done in this style is a fine-grain algorithm, operating on pairs of
columns, and so cannot exploit higher level BLAS. One can instead use
block Jacobi algorithms (Bischof, 1989; Shroff and Schreiber, 1989), which
work on blocks, and apply the resulting orthogonal matrices to the rest of
the matrix using more efficient matrix-matrix multiplication.

6.5. The nonsymmetric eigenproblem

Five kinds of parallel methods for the nonsymmetric eigenproblem have been
investigated:

1  Hessenberg QR iteration (Bai and Demmel, 1989; Davis, Funderlic
and Geist, 1987; Dubrulle, 1991; Geist and Davis, 1990; Stewart, 1987;
van de Geijn, 1987; 1989; Watkins, 1992; Watkins and Elsner, 1991);

2 Reduction to nonsymmetric tridiagonal form (Dongarra, Geist and
Romine, 1990; Geist, 1990; 1991; Geist, Lu and Wachspress, 1989);

3  Jacobi’s method (Eberlein, 1962; 1987; Paardekooper, 1989; Sameh,
1971; Shroff, 1991; Stewart, 1985; Veselié, 1979);

4  Hessenberg divide-and-conquer (Chu, 1988b; Chu, Li and Sauer, 1988;
Dongarra and Sidani, 1991; Li and Zeng, 1992; Li, Zeng and Cong,
1992; Zeng, 1991);

5  Spectral divide-and-conquer (Bai and Demmel, 1992; Lin and Zmijew-
ski, 1991; Malyshev, 1991).

In contrast to the symmetric problem or SVD, no guaranteed stable and
highly parallel algorithm for the nonsymmetric problem exists. As described
in Section 6.2, reduction to Hessenberg form can be done efficiently, but so
far it has been much harder to deal with a Hessenberg matrix (Dubrulle,

1991; Jessup, 1991).

Hessenberg QR iteration Parallelizing Hessenberg QR is attractive be-
cause it would yield an algorithm that is as stable as the quite acceptable
serial one. Unfortunately, doing so involves some of the same difficulties as
tridiagonal QR: one is faced with either fine-grain synchronization or larger
block operations that execute more quickly but also do much more work
without accelerating convergence much. The serial method computes one or
two shifts from the bottom right corner of the matrix, and then processes
the matrix from the upper left by a series of row and column operations
(this processing is called bulge chasing). One way to introduce parallellism
is to spread the matrix across the processors, but communication costs may
exceed the modest computational costs of the row and column operations
(Davis et al., 1987; Geist and Davis, 1990; Stewart, 1987; van de Geijn and

§ As noted in Section 6.2, we cannot even efficiently reduce to condensed form for the
generalized eigenproblem A — AB.
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Hudson, 1989; van de Geijn, 1987). Another way to introduce parallellism is
to compute k > 2 shifts from the bottom corner of the matrix (the eigenval-
ues of the bottom right k x k matrix, say), which permits us to work on k rows
and columns of the matrix at a time using Level 2 BLAS (Bai and Demmel,
1989). Asymptotic convergence remains quadratic (Watkins and Elsner,
1991). The drawbacks to this scheme are twofold. First, any attempt to
use Level 3 BLAS introduces rather small (hence inefficient) matrix-matrix
operations, and raises the operation count considerably. Second, the con-
vergence properties degrade significantly, resulting in more overall work as
well (Dubrulle, 1991). As a result, speedups have been extremely modest.
This routine is available in LAPACK as shseqr (Anderson et al., 1992).

Yet another way to introduce parallellism into Hessenberg QR is to pipe-
line several bulge chasing steps (van de Geijn, 1987; Watkins, 1992; Watkins
and Elsner, 1991). If we have several shifts available, then as soon as one
bulge chase is launched from the upper left corner, another one may be
launched, and so on. Since each bulge chase operates on only two or three
adjacent rows and columns, we can potentially have n/2 or n/3 bulge chasing
steps going on simultaneously on disjoint rows (and columns). The prob-
lem is that in the serial algorithm, we have to wait until an entire bulge
chase has been completed before computing the next shift; in the paraliel
case we cannot wait. Therefore, we must use ‘out-of-date’ shifts to have
enough available to start multiple bulge chases. This destroys the usual lo-
cal quadratic convergence, but it remains superlinear (van de Geijn, 1987).
It has been suggested that choosing the eigenvalues of the bottom right k x k
submatrix may have superior convergence to just choosing a sequence from
the bottom 1 x 1 or 2 X 2 submatrices (Watkins, 1992). Parallelism is still
fine-grain, however.

Reduction to nonsymmetric tridiagonal form This approach begins
by reducing B to nonsymmetric tridiagonal form with a (necessarily) non-
orthogonal similarity, and then finding the eigenvalues of the resulting non-
symmetric tridiagonal matrix using the tridiagonal LR algorithm (Dongarra
et al., 1990; Geist, 1990; 1991; Geist et al., 1989). This method is attractive
because finding eigenvalues of a tridiagonal matrix (even nonsymmetric) is
much faster than for a Hessenberg matrix (Wilkinson, 1965). The drawback
is that reduction to tridiagonal form may require very ill conditioned similar-
ity transformations, and may even break down (Parlett, 1992a). Breakdown
can be avoided by restarting the process with different initializing vectors,
or by accepting a ‘bulge’ in the tridiagonal form. This happens with rela-
tively low probability, but keeps the algorithm from being fully reliable. The
current algorithms pivot at each step to maintain and monitor stability, and
so can be converted to use Level 2 and Level 3 BLAS in a manner analogous
to Gaussian elimination with pivoting. This algorithm illustrates how one
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can trade off numerical stability for speed. Other nonsymmetric eigenvalue
algorithms we discuss later make this tradeoff as well.

Jacobi’s method As with the symmetric eigenproblem, nonsymmetric Ja-
cobi methods solve a sequence of 2 x 2 eigenvalue subproblems by applying
2 x 2 similarity transformations to the matrix. There are two basic kinds
of transformations used. Methods that use only orthogonal transformations
maintain numerical stability and converge to Schur canonical form, but con-
verge only linearly at best (Eberlein, 1987; Stewart, 1985). If nonorthogonal
transformations are used, one can try to drive the matrix to diagonal form,
but if it is close to having a nontrivial Jordan block, the required similarity
transformation will be very ill conditioned and so stability is lost. Alter-
natively, one can try to drive the matrix to be normal (AAT = AT A), at
which point an orthogonal Jacobi method can be used to drive it to diagonal
form; this still does not get around the problem of (nearly) nontrivial Jor-
dan blocks (Eberlein, 1962; Paardekooper, 1989; Sameh, 1971; Shroff, 1991;
Veseli¢, 1979). On the other hand, if the matrix has distinct eigenvalues,
asymptotic quadratic convergence is achieved (Shroff, 1991). Using n2 pro-
cessors arranged in a mesh, these algorithms can be implemented in time
O(nlogn) per sweep. Again, we trade off control over numerical stability
for speed (of convergence).

Hessenberg divide-and-conquer The divide-and-conquer algorithms we
consider here involve setting a middle subdiagonal entry of the original upper
Hessenberg matrix H to zero, resulting in a block upper Hessenberg matrix
S. The eigenproblems for the two Hessenberg matrices on the diagonal of
S can be solved in parallel and recursively. To complete the algorithm, one
must merge the eigenvalues and eigenvectors of the two halves of S to get
the eigendecomposition of H. Two ways have been proposed to do this:
homotopy continuation and Newton’s method. Parallelism lies in having
many Hessenberg submatrices whose eigendecompositions are needed, in
being able to solve for n eigenvalues simultaneously, and in the linear algebra
operations needed to find an individual eigenvalue. The first two kinds
of parallellism are analogous to those in Cuppen’s method (Section 6.3).
The main drawback of these methods is loss of guaranteed stability and/or
convergence. Newton’s method may fail to converge, and both Newton and
homotopy may appear to converge to several copies of the same root without
any easy way to tell if a root has been missed, or if the root really is multiple.
The subproblems produced by divide-and-conquer may be much more ill
conditioned than the original problem. These drawbacks are discussed in
Jessup (1991).

Homotopy methods replace the original Hessenberg matrix H by the one-
parameter linear family H(t) =tS+(1—-t)H, 0 <t < 1. Ast increases from
0 to 1, the eigenvalues (and eigenvectors) trace out curves connecting the
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eigenvalues of S to the desired ones of H. The numerical method follows
these curves by standard curve-following schemes, predicting the position
of a nearby point on the curve using the derivative of the eigenvalue with
respect to t, and then correcting its predicted value using Newton’s method.

Two schemes have been investigated. The first (Li et al, 1992) fol-
lows eigenvalue/eigenvector pairs. The homotopy function is h(z, A, t) =
[(H(t)z = A\2)T, ||z||3 — 1]7, i.e. the homotopy path is defined by choosing
z(t) and A(t) so that h(z(t), A(t),t) = 0 along the path. The simplicity of
the homotopy means that over 90% of the paths followed are simple straight
lines that require little computation, resulting in a speed up of a factor of up
to 2 over the serial QR algorithm. The drawbacks are lack of stability and
convergence not being guaranteed. For example, when homotopy paths get
very close together, one is forced to take smaller steps (and so converge more
slowly) during the curve following. Communication is necessary to decide if
paths get close. And as mentioned previously, if two paths converge to the
same solution, it is hard to tell if the solution really is a multiple root or
if some other root is missing. A different homotopy scheme uses only the
determinant to follow eigenvalues (Li and Zeng, 1992; Zeng, 1991); here the
homotopy function is simply det(H(¢) — AI). Evaluating the determinant
of a Hessenberg matrix costs only a triangular solve and an inner product,
and therefore is efficient. It shares similar advantages and disadvantages as
the previous homotopy algorithm.

Alternatively, one can use Newton’s method to compute the eigendecom-
position of H from S (Dongarra and Sidani, 1991). The function to which
one applies Newton’s method is f(z,\) = [(Hz— A2)T,eTz—1]T, where e is
a fixed unit vector. The starting values for Newton’s method are obtained
from the solutions to S.

Spectral divide-and-conquer A completely different way to divide-and-
conquer a matrix is using a projection on part of the spectrum. It applies
to a dense matrix B. Suppose (1 is an n X m orthogonal matrix spanning a
right invariant subspace of B, and @2 is an n X (n — m) matrix constructed
so that @ = [@1, Q2] is square and orthogonal. Then @ deflates B as follows:

T _ [ Bux Bi2
orBe=| ot g .

Note that this is equivalent to having Q)2 span a left invariant subspace of
B. The eigenvalues of By; are those corresponding to the invariant subspace
spanned by ;. Provided we can construct Q); effectively, we can use this
to divide-and-conquer the matrix.

Of course Hessenberg QR iteration fits into this framework, with @ being
nXx 1 or nx2, and computed by (implicit) inverse iteration applied to B—o1,
where o is a shift. Just splitting so that B2z is 1 X 1 or 2 X 2 does not permit
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much parallellism, however; it would be better to split the matrix nearer the
middle. Also, it would be nice to be able to split off just that part of the
spectrum of interest to the user, rather than computing all eigenvalues as
these methods must all do.

There are several approaches to computing ). They may be motivated
by analogy to Hessenberg QR, where Q is the orthogonal part of the QR
factorization QR = B — ol. If o is an exact eigenvalue, so that B — o[ is
singular, then the last column of @ is (generically) a left eigenvector for 0.
One can then verify that the last row of Q7 (B—0o1)Q is zero, so that we have
deflated the eigenvalue at 0. Now consider a more general function f(B);
in principle any (piecewise) analytic function will do. Then the eigenvalues
of f(B) are just f evaluated at the eigenvalues of B, and f(B) and B have
(modulo Jordan blocks) the same eigenvectors. Suppose that the rank of
f(B) is m < n, so that f(B) has (at least) n—m zero eigenvalues. Factorize
QR = f(B). Then the last n —m columns of @ (generally) span the left null
space of f(B), i.e. a left invariant subspace of f(B) for the zero eigenvalue.
But this is also a left invariant subspace of B so we get

QTf(B)Q=[BOH Bg?] and @7BQ= | B D).

The problem thus becomes finding functions f(B) that are easy to evaluate
and have large null spaces, or which map selected eigenvalues of B to zero.
One such function f is the sign function (Bai and Demmel, 1992; Howland,
1983; Kenney and Laub, 1991; Lin and Zmijewski, 1991; Robert, 1980;
Stickel, 1991) which maps points with positive real part to +1 and those with
negative real part to —1; adding 1 to this function then maps eigenvalues in
the right half plane to 2 and in the left plane to 0, as desired.

The only operations we can easily perform on (dense) matrices are multi-
plication and inversion, so in practice f must be a rational function. A
globally, asymptotically quadratically convergent iteration to compute the
sign function of B is B;y1 = (B; + B; 1)/2 (Howland, 1983; Robert, 1980;
Stickel, 1991); this is simply Newton’s method applied to B2 = I, and can
also be seen to be equivalent to repeated squaring (the power method) of the
Cayley transform of B. It converges more slowly as eigenvalues approach
the imaginary axis, and is in fact nonconvergent if there are imaginary eigen-
values, as may be expected since the sign function is discontinuous there.
Other higher order convergent schemes exist, but they can be more expensive
to implement as well (Kenney and Laub, 1991; Pandey, Kenney and Laub,
1990). Another scheme that divides the spectrum between the eigenvalues
inside and outside the unit circle is given in Malyshev (1991).

If the eigenvalues are known to be real (as when the matrix is symmetric),
we need only construct a function f that maps different parts of the real axis
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to 0 and 1 instead of the entire left and right half planes. This simplifies both
the computation of f(B) and the extraction of its null space. See Auslander
and Tsao (1992), Bischof and Sun (1992) and Lederman, Tsao and Turnbull
(1992) for details.

Of course, we wish to split not just along the imaginary axis or unit circle
but other boundaries as well. By shifting the matrix and multiplying by
a complex number €' one can split along an arbitrary line in the complex
plane, but at the cost of introducing complex arithmetic. By working on
a shifted and squared real matrix, one can divide along lines at an angle
of 7/4 and retain real arithmetic (Bai and Demmel, 1992; Howland, 1983;
Stickel, 1991).

This method is promising because it allows us to work on just that part
of the spectrum of interest to the user. It is stable because it applies only
orthogonal transformations to B. On the other hand, if it is difficult to find
a good place to split the spectrum, convergence can be slow, and the final
approximate invariant subspace inaccurate. At this point, iterative refine-
ment could be used to improve the factorization (Demmel, 1987). These
methods apply to the generalized nonsymmetric eigenproblem as well (Bai
and Demmel, 1992; Malyshev, 1991).

7. Direct methods for sparse linear systems
7.1. Cholesky factorization

In this section we discuss parallel algorithms for solving sparse systems of
linear equations by direct methods. Paradoxically, sparse matrix factoriza-
tion offers additional opportunities for exploiting parallellism beyond those
available with dense matrices, yet it is usually more difficult to attain good
efficiency in the sparse case. We examine both sides of this paradox: the
additional parallellism induced by sparsity, and the difficulty in achieving
high efficiency in spite of it. We will see that regularity and locality play
a similar role in determining performance in the sparse case as they do for
dense matrices.

We couch most of our discussion in terms of the Cholesky factorization,
A = LLT, where A is symmetric positive definite (SPD) and L is lower
triangular with positive diagonal entries. We focus on Cholesky factoriza-
tion primarily because this allows us to discuss parallellism in relative isola-
tion, without the additional complications of pivoting for numerical stability.
Most of the lessons learned are also applicable to other matrix factorizations,
such as LU and QR. We do not try to give an exhaustive survey of research
in this area, which is currently very active, instead referring the reader to
existing surveys, such as Heath, Ng and Peyton (1991). Our main point
in the current discussion is to explain how the sparse case differs from the
dense case, and examine the performance implications of those differences.
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We begin by considering the main features of sparse Cholesky factoriza-
tion that affect its performance on serial machines. Algorithm 19 gives a
standard, column-oriented formulation in which the Cholesky factor L over-
writes the initial matrix A, and only the lower triangle is accessed:

Algorithm 19 Cholesky factorization

forj=1,n
fork=1, j-1
fori=3n {cmod(j,k)}
aij = Q5 — Qi * G5k
ajj = /8jj
fork=j+1,n {cdiv(y)}
akj = akj/aj;

The outer loop in Algorithm 19 is over successive columns of A. The
the current column (indexed by j) is modified by a multiple of each prior
column (indexed by k); we refer to such an operation as cmod(j, k). The
computation performed by the inner loop (indexed by i) is a saxpy. After
all its modifications have been completed, column j is then scaled by the
reciprocal of the square root of its diagonal element; we refer to this oper-
ation as cdiv(j). As usual, this is but one of the 3! ways of ordering the
triple-nested loop that embodies the factorization.

The inner loop in Algorithm 19 has no effect, and thus may as well be
skipped, if ajz = 0. For a dense matrix A, such an event is too unlikely to
offer significant advantage. The fundamental difference with a sparse matrix
is that a;; is in fact very often zero, and computational efficiency demands
that we recognize this situation and take advantage of it. Another way of
expressing this condition is that column j of the Cholesky factor L does not
depend on prior column k if ¢;; = 0, which not only provides a computa-
tional shortcut, but also suggests an additional source of parallellism that
we will explore in detail later.

7.2. Sparse matrices

Thus far we have not said what we mean by a ‘sparse’ matrix. A good
operational definition is that a matrix is sparse if it contains enough zero
entries to be worth taking advantage of them to reduce both the storage
and work required in solving a linear system. Ideally, we would like to store
and operate on only the nonzero entries of the matrix, but such a policy
is not necessarily a clear win in either storage or work. The difficulty is
that sparse data structures include more overhead (to store indices as well
as numerical values of nonzero matrix entries) than the simple arrays used
for dense matrices, and arithmetic operations on the data stored in them
usually cannot be performed as rapidly either (due to indirect addressing of
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operands). There is therefore a tradeoff in memory requirements between
sparse and dense representations and a tradeoff in performance between the
algorithms that use them. For this reason, a practical requirement for a fam-
ily of matrices to be ‘usefully’ sparse is that they have only O(n) nonzero
entries, i.e. a (small) constant number of nonzeros per row or column, inde-
pendent of the matrix dimension. For example, most matrices arising from
finite difference or finite element discretizations of PDEs satisfy this condi-
tion. In addition to the number of nonzeros, their particular locations, or
pattern, in the matrix also has a major effect on how well sparsity can be
exploited. Sparsity arising from physical problems usually exhibits some sys-
tematic pattern that can be exploited effectively, whereas the same number
of nonzeros located randomly might offer relatively little advantage.

In Algorithm 19, the modification of a given column of the matrix by
a prior column not only changes the existing nonzero entries in the target
column, but may also introduce new nonzero entries in the target column.
Thus, the Cholesky factor L may have additional nonzeros, called fill, in
locations that were zero in the original matrix A. In determining the storage
requirements and computational work, these new nonzeros that the matrix
gains during the factorization are equally as important as the nonzeros with
which the matrix starts out.

The amount of such fill is dramatically affected by the order in which
the columns of the matrix are processed. For example, if the first column
of the matrix A is completely dense, then all of the remaining columns,
no matter how sparse they start out, will completely fill in with nonzeros
during the factorization. On the other hand, if a single such dense column
is permuted (symmetrically) to become the last column in the matrix, then
it will cause no fill at all. Thus, a critical part of the solution process for
sparse systems is to determine an ordering for the rows and columns of
the input matrix that limits fill to preserve sparsity. Unfortunately, finding
an ordering that minimizes fill is a very hard combinatorial problem (NP-
complete), but heuristics are available that do a good job of reducing, if not
exactly minimizing, fill. These techniques include minimum degree, nested
dissection, and various schemes for reducing the bandwidth or profile of
a matrix (see, e.g., Duff, Erisman and Reid (1986) and George and Liu
(1981) for details on these and many other concepts used in sparse matrix
computations).

One of the key advantages of SPD matrices is that such a sparsity pre-
serving ordering can be selected in advance of the numeric factorization,
independent of the particular values of the nonzero entries: only the pattern
of the nonzeros matters, not their numerical values. This would not be the
case, in general, if we also had to take into account pivoting for numerical
stability, which obviously would require knowledge of the nonzero values,
and would introduce a potential conflict between preserving sparsity and
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preserving stability. For the SPD case, once the ordering is selected, the
locations of all fill elements in L can be anticipated prior to the numeric
factorization, and thus an efficient static data structure can be set up in
advance to accommodate them (this process is usually called symbolic fac-
torization). This feature also stands in contrast to general sparse linear
systems, which usually require dynamic data structures to accommodate fill
entries as they occur, since their locations depend on numerical informa-
tion that becomes known only as the numeric factorization process unfolds.
Thus, modern algorithms and software for solving sparse SPD systems in-
clude a symbolic preprocessing phase in which a sparsity-preserving ordering
is computed and a static data structure is set up for storing the entries of
L before any floating point computation takes place.

We introduce some concepts and notation that will be useful in our sub-
sequent discussion of parallel sparse Cholesky factorization. An important
tool in understanding the combinatorial aspects of sparse Cholesky factor-
ization is the notion of the graph of a symmetric n X n matrix A, which is
an undirected graph having n vertices, with an edge between two vertices i
and j if the corresponding entry a;; of the matrix is nonzero. We denote the
graph of A by G(A). The structural effect of the factorization process can
then be described by observing that the elimination of a variable adds fill
edges to the corresponding graph so that the neighbours of the eliminated
vertex become a clique (i.e. a fully connected subgraph). We also define the
filled graph, denoted by F'(A), as having an edge between vertices i and j,
with ¢ > j, if £;; # 0 in the Cholesky factor L (i.e. F(A) is simply G(A)
with all fill edges added).

We use the notation M;, to denote the ith row, and M,; to denote the
jth column, of a matrix M. For a given sparse matrix M, we define

Struct(M;.) = {k < i | mj # 0}

and
Struct(M*j) = {k >3 | Mg 75 0}

In other words, Struct(M;,) is the sparsity structure of row i of the strict
lower triangle of M, while Struct(M,;) is the sparsity structure of column j
of the strict lower triangle of M. For the Cholesky factor L, we define the
parent function as follows:

~ _ [ min{i € Struct(L.;)}, if Struct(L.;) # 0,
parent(j) = { J otherwise.

Thus, parent(j) is the row index of the first offdiagonal nonzero in column
j of L, if any, and has the value j otherwise. Using the parent function,
we define the elimination tree as a graph having n vertices, with an edge
between vertices ¢ and j, for ¢ > j, if ¢ = parent(j). If the matrix is
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Fig. 9. Three forms of Cholesky factorization.

irreducible, then the elimination tree is indeed a single tree with its root
at vertex n (otherwise it is more accurately termed an elimination forest).
The elimination tree, which we denote by T'(A), is a spanning tree for the
filled graph F(A). The many uses of the elimination tree in analysing and
organizing sparse Cholesky factorization are surveyed in Liu (1990). We will
illustrate these concepts pictorially in several examples below.

7.8. Sparse factorization

There are three basic types of algorithms for Cholesky factorization, de-
pending on which of the three indices is placed in the outer loop:

1 Row-Cholesky: Taking i in the outer loop, successive rows of L are
computed one by one, with the inner loops solving a triangular system
for each new row in terms of the previously computed rows.

2 Column-Cholesky: Taking j in the outer loop, successive columns of L
are computed one by one, with the inner loops computing a matrix—
vector product that gives the effect of previously computed columns on
the column currently being computed.

3  Submatriz-Cholesky: Taking k in the outer loop, successive columns of
L are computed one by one, with the inner loops applying the current
column as a rank-1 update to the remaining unreduced submatrix.

These three families of algorithms have markedly different memory refer-
ence patterns in terms of which parts of the matrix are accessed and modified
at each stage of the factorization, as illustrated in Figure 9, and each has
its advantages and disadvantages in a given context.

For sparse Cholesky factorization, row-Cholesky is seldom used for a num-
ber of reasons, including the difficulty in providing a row-oriented data struc-
ture that can be accessed efficiently during the factorization, and the diffi-
culty in vectorizing or parallellizing the triangular solutions required. We
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will therefore focus our attention on the column-oriented methods, column-
Cholesky and submatrix-Cholesky. Expressed in terms of the column opera-
tions cmod and cdiv and the Struct notation defined earlier, sparse column-
Cholesky can be stated as follows:

Algorithm 20 Sparse column-Cholesky factorization

forj=1,n
for k£ € Struct(L;,)
cmod(7, k)
cdiv(j)

In column-Cholesky, a given column j of A remains unchanged until the
outer loop index reaches that value of j. At that point column j is updated
by a nonzero multiple of each column k < j of L for which £;; # 0. After all
column modifications have been applied to column j, the diagonal entry £;;
is computed and used to scale the completely updated column to obtain the
remaining nonzero entries of L,;. Column-Cholesky is sometimes said to be a
‘left-looking’ algorithm, since at each stage it accesses needed columns to the
left of the current column in the matrix. It can also be viewed as a ‘demand-
driven’ algorithm, since the inner products that affect a given column are
not accumulated until actually needed to modify and complete that column.
For this reason, Ortega (1988) terms column-Cholesky a ‘delayed-update’
algorithm. 1t is also sometimes referred to as a ‘fan-in’ algorithm, since the
basic operation is to combine the effects of multiple previous columns on a

single target column. The column-Cholesky algorithm is the most commonly
used method in commercially available sparse matrix packages.

Similarly, sparse submatrix-Cholesky can be expressed as follows.

Algorithm 21 Sparse submatrix-Cholesky factorization

fork=1,n
cdiv(k)
for j € Struct(L.k)
cmod(j, k)

In submatrix-Cholesky, as soon as column k has been computed, its effects
on all subsequent columns are computed immediately. Thus, submatrix-
Cholesky is sometimes said to be a ‘right-looking’ algorithm, since at each
stage columns to the right of the current column are modified. It can also be
viewed as a ‘data-driven’ algorithm, since each new column is used as soon
as it is completed to make all modifications to all the subsequent columns
it affects. For this reason, Ortega (1988) terms submatrix-Cholesky an
‘immediate-update’ algorithm. It is also sometimes referred to as a ‘fan-
out’ algorithm, since the basic operation is for a single column to affect
multiple subsequent columns. We will see that these characterizations of
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the column-Cholesky and submatrix-Cholesky algorithms have important
implications for parallel implementations.

We note that many variations and hybrid implementations that lie some-
where between pure column-Cholesky and pure submatrix-Cholesky are pos-
sible. Perhaps the most important of these are the multi-frontal methods
(see, e.g., Duff et al. (1986)), in which updating operations are accumulated
in and propagated through a series of front matrices until finally being in-
corporated into the ultimate target columns. Multi-frontal methods have a
number of attractive advantages, most of which accrue from the localization
of memory references in the front matrices, thereby facilitating the effective
use of memory hierarchies, including cache, virtual memory with paging,
or explicit out-of-core solutions (the latter was the original motivation for
these methods (Irons, 1970)). In addition, since the front matrices are es-
sentially dense, the operations on them can be done using optimized kernels,
such as the BLAS, to take advantage of vectorization or any other available
architectural features. For example, such techniques have been used to at-
tain very high performance for sparse factorization on conventional vector
supercomputers (Ashcraft, Grimes, Lewis, Peyton and Simon, 1987) and on
RISC workstations (Rothberg and Gupta, 1989).

7.4. Parallelism in sparse factorization

We now examine in greater detail the opportunities for parallellism in sparse
Cholesky factorization and various algorithms for exploiting it. One of the
most important issues in designing any parallel algorithm is selecting an
appropriate level of granularity, by which we mean the size of the compu-
tational subtasks that are assigned to individual processors. The optimal
choice of task size depends on the tradeoff between communication costs
and the load balance across processors. We follow Liu (1986) in identifying
three potential levels of granularity in a parallel implementation of Cholesky
factorization:

1  fine-grain, in which each task consists of only one or two floating point
operations, such as a multiply—add pair,

2  medium-grain, in which each task is a single column operation, such as
cmod or cdiv,

3 large-grain, in which each task is the computation of an entire group
of columns in a subtree of the elimination tree.

Fine-grain parallellism, at the level of individual floating point operations,
is available in either the dense or sparse case. It can be exploited effectively
by a vector processing unit or a systolic array, but would incur far too
much communication overhead to be exploited profitably on most current
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generation parallel computers. In particular, the communication latency
of these machines is too great for such frequent communication of small
messages to be feasible.

Medium-grain parallellism, at the level of operations on entire columns, is
also available in either the dense or the sparse case. This level of granular-
ity accounts for essentially all of the parallel speedup in dense factorization
on current generation parallel machines, and it is an extremely important
source of parallellism for sparse factorization as well. This parallellism is
due primarily to the fact that many cmod operations can be computed si-
multaneously by different processors. For many problems, such a level of
granularity provides a good balance between communication and computa-
tion, but scaling up to very large problems and/or very large numbers of
processors may necessitate that the tasks be further broken up into chunks
based on a two-dimensional partitioning of the columns. One must keep
in mind, however, that in the sparse case an entire column operation may
require only a few floating point operations involving the sparsely populated
nonzero elements in the column. For a matrix of order n having a planar
graph, for example, the largest embedded dense submatrix to be factored
is roughly of order /n, and thus a sparse problem must be extremely large
before a two-dimensional partitioning becomes essential.

Large-grain parallellism, at the level of subtrees of the elimination tree,
is available only in the sparse case. If T; and T} are disjoint subtrees of the
elimination tree, with neither root node a descendant of the other, then all
of the columns corresponding to nodes in T; can be computed completely
independently of the columns corresponding to nodes in T'j, and vice versa,
and hence these computations can be done simultaneously by separate pro-
cessors with no communication between them. For example, each leaf node
of the elimination tree corresponds to a column of L that depends on no
prior columns, and hence all of the leaf node columns can be completed im-
mediately merely by performing the corresponding cdiv operation on each
of them. Furthermore, all such cdiv operations can be performed simult-
aneously by separate processors (assuming enough processors are available).
By contrast, in the dense case all cdiv operations must be performed se-
quentially (at least at this level of granularity), since there is never more
than one leaf node at any given time.

We see from this discussion that the elimination tree serves to character-
ize the parallellism that is unique to sparse factorization. In particular, the
height of the elimination tree gives a rough measure of the parallel computa-
tion time, and the width of the elimination tree gives a rough measure of the
degree or multiplicity of large-grain parallellism. These measures are only
very rough, however, since the medium level parallellism also plays a major
role in determining overall performance. Still, we can see that short, bushy
elimination trees are more advantageous than tall, slender ones in terms of
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Fig. 10. One-dimensional grid and corresponding tridiagonal matrix (left), with
Cholesky factor and elimination tree (right).

the large-grain parallellism available. And just as the fill in the Cholesky
factor is very sensitive to the ordering of the matrix, so is the structure
of the elimination tree. This suggests that we should choose an ordering
to enhance parallellism, and indeed this is possible (see, e.g., Jess and Kees
(1982), Lewis, Peyton and Pothen (1989), Liu (1989)), but such an objective
may conflict to some degree with preservation of sparsity. Roughly speak-
ing, sparsity and parallellism are largely compatible, since the large-grain
parallellism is due to sparsity in the first place. However, these two criteria
are by no means coincident, as we will see by example below.

We now illustrate these concepts using a series of simple examples. Fig-
ure 10 shows a small one-dimensional mesh with a ‘natural’ ordering of the
nodes, the nonzero patterns of the corresponding tridiagonal matrix A and
its Cholesky factor L, and the resulting elimination tree T'(4). On the posi-
tive side, the Cholesky factor suffers no fill at all and the total work required
for the factorization is minimal. However, we see that the elimination tree
is simply a chain, and therefore there is no large-grain parallellism available.
Each column of L depends on the immediately preceding one, and thus they
must be computed sequentially. This behaviour is typical of orderings that
minimize the bandwidth of a sparse matrix: they tend to inhibit rather
than enhance large-grain parallellism in the factorization. (As previously
discussed in Section 4.4, there is in fact little parallellism of any kind to be
exploited in solving a tridiagonal system in this natural order. The cmod op-
erations involve only a couple of flops each, so that even the ‘medium-grain’
tasks are actually rather small in this case.)

Figure 11 shows the same one-dimensional mesh with the nodes reordered
by a minimum degree algorithm. Minimum degree is the most effective gen-
eral purpose heuristic known for limiting fill in sparse factorization (George
and Liu, 1989). In its simplest form, this algorithm begins by selecting a
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Fig. 11. Graph and matrix reordered by minimum degree (left), with
corresponding Cholesky factor and elimination tree (right).

node of minimum degree (i.e. one having fewest incident edges) in G(A)
and numbering it first. The selected node is then deleted and new edges are
added, if necessary, to make its former neighbours into a clique. The process
is then repeated on the updated graph, and so on, until all nodes have been
numbered. We see in Figure 11 that L suffers no fill in the new ordering, and
the elimination tree now shows some large-grain parallellism. In particular,
columns 1 and 2 can be computed simultaneously, then columns 3 and 4,
and so on. This twofold parallellism reduces the tree height (roughly the
parallel completion time) by approximately a factor of two.

At any stage of the minimum degree algorithm, there may be more than
one node with the same minimum degree, and the quality of the order-
ing produced may be affected by the tie breaking strategy which is used.
In the example of Figure 11, we have deliberately broken ties in the most
favourable way (with respect to parallellism); the least favourable tie break-
ing would have reproduced the original ordering of Figure 10, resulting in
no parallellism. Breaking ties randomly (which in general is about all one
can do) could produce anything in between these two extremes, yielding
an elimination tree that reveals some large-grain parallellism, but which is
taller and less well balanced than our example in Figure 11. Again, this is
typical of minimum degree orderings. In view of this property, Liu (1989)
has developed an interesting strategy for the further reordering of an initial
minimum degree ordering that preserves fill while reducing the height of the
elimination tree.

Figure 12 shows the same mesh again, this time ordered by nested dissec-
tion, a divide-and-conquer strategy (George, 1973). Let S be a set of nodes,
called a separator, whose removal, along with all edges incident upon nodes
in S, disconnects G(A) into two remaining subgraphs. The nodes in each
of the two remaining subgraphs are numbered contiguously and the nodes
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Fig. 12. Graph and matrix reordered by nested dissection (left), with
corresponding Cholesky factor and elimination tree (right).

in the separator S are numbered last. This procedure is then applied recur-
sively to split each of the remaining subgraphs, and so on, until all nodes
have been numbered. If sufficiently small separators can be found, then
nested dissection tends to do a good job of limiting fill, and if the pieces
into which the graph is split are of about the same size, then the elimination
tree tends to be well balanced. We see in Figure 12 that for our example,
with this ordering, the Cholesky factor L suffers fill in two matrix entries
(indicated by +), but the elimination tree now shows a fourfold large-grain
parallellism, and its height has been reduced further. This behaviour is
again typical of nested dissection orderings: they tend to be somewhat less
successful at limiting fill than minimum degree, but their divide-and-conquer
nature tends to identify parallellism more systematically and produce better
balanced elimination trees.

Finally, Figure 13 shows the same problem reordered by odd—-even reduc-
tion. This is not a general purpose strategy for sparse matrices, but it is
often used to enhance parallellism in tridiagonal and related systems, so we
illustrate it for the sake of comparison with more general purpose methods.
In odd-even reduction (see, e.g., Duff et al. (1986)), odd node numbers come
before even node numbers, and then this same renumbering is applied recur-
sively within each resulting subset, and so on until all nodes are numbered.
Although the resulting nonzero pattern of A looks superficially different, we
can see from the elimination tree that this method is essentially equivalent
to nested dissection for this type of problem.

7.5. Parallel algorithms for sparse factorization

Having developed some understanding of the sources of parallellism in sparse
-Cholesky factorization, we now consider some algorithms for exploiting it.
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Fig. 13. Graph and matrix reordered by odd—even reduction (left), with
corresponding Cholesky factor and elimination tree (right).

In designing any parallel algorithm, one of the most important decisions is
how tasks are to be assigned to processors. In a shared memory parallel
architecture, the tasks can easily be assigned to processors dynamically by
maintaining a common pool of tasks from which available processors claim
work to do. This approach has the additional advantage of providing auto-
matic load balancing to whatever degree is permitted by the chosen task
granularity. An implementation of this approach for parallel sparse factor-
ization is given in George, Heath, Liu and Ng (1986).

In a distributed memory environment, communication costs often pro-
hibit dynamic task assignment or load balancing, and thus we seek a static
mapping of tasks to processors. In the case of column-oriented factorization
algorithms, this amounts to assigning the columns of the matrix to proces-
sors according to some mapping procedure determined in advance. Such an
assignment could be made using the block or wrap mappings, or combina-
tions thereof, often used for dense matrices. However, such simple mappings
risk wasting much of the large-grain parallellism identified by means of the
elimination tree, and may also incur unnecessary communication. For ex-
ample, the leaf nodes of the elimination tree can be processed in parallel
if they are assigned to different processors, but the latter is not necessarily
ensured by a simple block or wrap mapping.

A better approach for sparse factorization is to preserve locality by assign-
ing subtrees of the elimination tree to contiguous subsets of neighbouring
processors. A good example of this technique is the ‘subtree-to-subcube’
mapping often used with hypercube multicomputers (George, Heath, Liu
and Ng, 1989). Of course, the same idea applies to other network topolo-
gies, such as submeshes of a larger mesh. We will assume that some such
mapping is used, and we will comment further on its implications later.
Whatever the mapping, we will denote the processor containing column j
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by map[j], or, more generally, if J is a set of column numbers, map[J] will
denote the set of processors containing the given columns.

One of the earliest and simplest parallel algorithms for sparse Cholesky
factorization is the following version of submatrix-Cholesky (George, Heath,
Liu and Ng, 1988). Algorithm 22 runs on each processor, with each respon-
sible for its own subset, mycols, of columns.

Algorithm 22 Distributed fan-out sparse Cholesky factorization
for j € mycols
if 7 is a leaf node in T'(A)
cdiv(j)
send L.; to processors in map(Struct(L,;))
mycols = mycols — {j}
while mycols #
receive any column of L, say L.
for j € mycols N Struct(L.)
cmod(j, k)
if column j requires no more cmods
cdiv(y)
send L,; to processors in map(Struct(L.;))
mycols = mycols — {5}

In Algorithm 22, any processor that owns a column of L corresponding to
a leaf node of the elimination tree can complete it immediately merely by
performing the necessary cdiv operation, since such a column depends on
no prior columns. The resulting factor columns are then broadcast (fanned-
out) to all other processors that will need them to update columns that they
own. The remainder of the algorithm is then driven by the arrival of factor
columns, as each processor goes into a loop in which it receives and applies
successive factor columns, in whatever order they may arrive, to whatever
columns remain to be processed. When the modifications of a given column
have been completed, then the cdiv operation is done, the resulting factor
column is broadcast as before, and the process continues until all columns
of L have been computed. '

Algorithm 22 potentially exploits both the large-grain parallellism charac-
terized by concurrent cdivs and the medium-grain parallellism characterized
by concurrent cmods, but this data-driven approach also has a number of
drawbacks that severely limit its efficiency. In particular, performing the
column updates one at a time by the receiving processors results in un-
necessarily high communication frequency and volume, and in a relatively
inefficient computational inner loop. The communication requirements can
be reduced by careful mapping and by aggregating updating information
over subtrees (see, e.g., George, Liu and Ng (1989), Mu and Rice (1992),
Zmijewski (1989)), but even with this improvement, the fan-out algorithm
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is usually not competitive with other algorithms presented later. The short-
comings of the fan-out algorithm motivated the formulation of the following
fan-in algorithm for sparse factorization, which is a parallel implementation
of column-Cholesky (Ashcraft, Eisenstat and Liu, 1990):

Algorithm 23 Distributed fan-in sparse Cholesky factorization

forj=1,n
if j € mycols or mycols N Struct(L;.) # @
u=20

for k € mycols N Struct(L )
u=1u+ Ll * Ly {aggregate column update s}
if 7 € mycols
incorporate u into the factor column j
while any aggregated update column for
column j remains, receive in u another
aggregated update column for column j, and
incorporate it into the factor column j
cdiv(j)
else
send u to processor map[j]

Algorithm 23 takes a demand-driven approach: the updates for a given
column j are not computed until needed to complete that column, and they
are computed by the sending processors rather than the receiving processor.
As a result, all of a given processor’s contributions to the updating of the
column in question can be combined into a single aggregate update column,
which is then transmitted in a single message to the processor containing the
target column. This approach not only decreases communication frequency
and volume, but it also facilitates a more efficient computational inner loop.
In particular, no communication is required to complete the columns corres-
ponding to any subtree that is assigned entirely to a single processor. Thus,
with an appropriate locality-preserving and load-balanced subtree mapping,
Algorithm 23 has a perfectly parallel, communication-free initial phase that
is followed by a second phase in which communication takes place over in-
creasingly larger subsets of processors as the computation proceeds up the
elimination tree, encountering larger subtrees. This perfectly parallel phase,
which is due entirely to sparsity, tends to constitute a larger proportion of
the overall computation as the size of the problem grows for a fixed number
of processors, and thus the algorithm enjoys relatively high efficiencies for
sufficiently large problems.

In the fan-out and fan-in factorization algorithms, the necessary infor-
mation flow between columns is mediated by factor columns or aggregate
update columns, respectively. Another alternative is a multi-frontal method,



PARALLEL NUMERICAL LINEAR ALGEBRA 171

in which update information is mediated through a series of front matrices.
In a sense, this represents an intermediate strategy, since the effect of each
factor column is incorporated immediately into a front matrix, but its even-
tual incorporation into the ultimate target column is delayed until actually
needed. The principal computational advantage of multi-frontal methods
is that the frontal matrices are treated as dense matrices, and hence up-
dating operations on them are much more efficient than the corresponding
operations on sparse data structures that require indirect addressing. Unfor-
tunately, although the updating computations employ simple dense arrays,
the overall management of the front matrices is relatively complicated. As
a consequence, multi-frontal methods are difficult to specify succinctly, so
we will not attempt to do so here, but note that multi-frontal methods
have been implemented for both shared-memory (e.g., Benner, Montry and
Weigand (1987), Duff (1986)) and distributed-memory (e.g., Gilbert and
Schreiber (1992), Lucas, Blank and Tieman (1987)) parallel computers, and
are among the most effective methods known for sparse factorization in all
types of computational environments. For a unified description and com-
parison of parallel fan-in, fan-out and multi-frontal methods, see Ashcraft,
Eisenstat, Liu and Sherman (1990).

In this brief section on parallel direct methods for sparse systems, we
have concentrated on numeric Cholesky factorization for SPD matrices. We
have omitted many other aspects of the computation, even for the SPD case:
computing the ordering in parallel, symbolic factorization and triangular so-
lution. More generally, we have omitted any discussion of LU factorization
for general sparse square matrices or QR factorization for sparse rectangular
matrices. Instead we have concentrated on identifying the major features
that distinguish parallel sparse factorization from the dense case and exam-
ining the performance implications of those differences.

8. Iterative methods for linear systems

In this section we discuss parallel aspects of iterative methods for solving
large linear systems. For a good mathematical introduction to a class of
successful and popular methods, the so-called Krylov subspace methods,
see Freund, Golub and Nachtigal (1992). There are many such methods and
new ones are frequently proposed. Fortunately, they share enough properties
that to understand how to implement them in parallel it suffices to examine
carefully just a few.

For the purposes of parallel implementation there are two classes of meth-
ods: those with short recurrences, i.e. methods that maintain only a very
limited number of search direction vectors, and those with long recurrences.
The first class includes CG (Conjugate Gradients), CR (Conjugate Residu-
als), Bi-CG, CGS (CG squared), QMR (Quasi Minimum Residual),
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GMRES(m) for small m (Generalized Minimum Residual), truncated OR-
THOMIN (Orthogonal Minimum Residual), Chebychev iteration, and so on.
We could further distinguish between methods with fixed iteration param-
eters and methods with dynamical parameters, but we will not do so; the
effects of this aspect will be clear from our discussion. As the archetype for
this class we will consider CG; the parallel implementation issues for this
method apply to most other short recurrence methods. The second class of
methods includes GMRES, GMRES(m) with larger m, ORTHOMIN, OR-
THODIR (Orthogonal Directions), ORTHORES (Orthogonal Residuals),
and EN (Eirola—Nevanlinna’s Rank-1 update method). We consider GM-
RES in detail, which is a popular method in this class.

This section is organized as follows. In Section 8.1 we will discuss the par-
allel aspects of important computational kernels in iterative schemes. ¥From
the discussions it should be clear how to combine coarse-grained and fine-
grained approaches, for example when implementing a method on a parallel
machine with vector processors. The implementation for such machines, in
particular those with shared memory, is given much attention in Dongarra et
al. (1991). In Section 8.2, coarse-grained parallel and data-locality issues of
CG will be discussed, while in Section 8.3 the same will be done for GMRES.

8.1. Parallelism in the kernels of iterative methods

The basic time-consuming computational kernels of iterative schemes are
usually:

1  inner products,

2 vector updates,

3  matrix-vector products, like Ap; (for some methods also ATp;),
4  preconditioning (e.g., solve for w in Kw =r).

The inner products can be easily parallellized; each processor computes the
inner product of two segments of each vector (local inner products or LIPs).
On distributed memory machines the LIPs have to be sent to other proces-
sors in order to be reduced to the required global inner product. This step
requires communication. For shared memory machines the inner products
can be computed in parallel without difficulty. If the distributed memory
system supports overlap of communication with computation, then we seek
opportunities in the algorithm to do so. In the standard formulation of most
iterative schemes this is usually a major problem. We will come back to this
in the next two sections. Vector updates are trivially parallellizable: each
processor updates its ‘own’ segment. The matrix—vector products are often
easily parallellized on shared memory machines by splitting the matrix into
strips corresponding to the vector segments. Each processor takes care of
the matrix—vector product of one strip.
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For distributed memory machines there may be a problem if each pro-
cessor has only a segment of the vector in its memory. Depending on the
bandwidth of the matrix we may need communication for other elements
of the vector, which may lead to some communication problems. However,
many sparse matrix problems are related to a network in which only the
nearby nodes are connected. In such a case it seems natural to subdivide
the network, or grid, into suitable blocks and to distribute these blocks over
the processors. When computing the Ap; each processor needs at most the
values of p; at some nodes in the neighbouring blocks. If the number of
connections to these neighbouring blocks is small compared with the num-
ber of internal nodes, then the communication time can be overlapped with
the computational work. For more detailed discussions on the implemen-
tation aspects on distributed memory systems, see de Sturler (1991) and
Pommerell (1992).

Preconditioning is often the most problematic part in a parallel environ-
ment. Incomplete decompositions of A form a popular class of precondition-
ings in the context of solving discretized PDEs. In this case the precondi-
tioner K = LU, where L and U have a sparsity pattern equal or close to
the sparsity pattern of the corresponding parts of A (L is lower triangular,
U is upper triangular). For details see Golub and Van Loan (1989), Mei-
jerink and van der Vorst (1977) and Meijerink and van der Vorst (1981).
Solving Kw = r leads to solving successively Lz = r and Uw = z. These
triangular solves lead to recurrence relations that are not easily parallellized.
We will now discuss a number of approaches to obtain parallellism in the
preconditioning part.

1 Reordering the computations. Depending on the structure of the matrix
a frontal approach may lead to successful parallellism. By inspecting
the dependency graph one can select those elements that can be com-
puted in parallel. For instance, if a second-order PDE is discretized
by the usual five-point star over a rectangular grid, then the triangular
solves can be parallellized if the computation is carried out along diag-
onals of the grid, instead of the usual lexicographical order. For vec-
tor computers this leads to a vectorizable preconditioner (see Ashcraft
and Grimes (1988), Dongarra et al. (1991), van der Vorst (1989a) and
(1989b)). For coarse-grained parallellism this approach is insufficient.
By a similar approach more parallellism can be obtained in three-
dimensional situations: the so-called hyperplane approach (Schlichting
and van der Vorst, 1989; van der Vorst, 1989a; 1989b). The disad-
vantage is that the data need to be redistributed over the processors,
since the grid points, which correspond to a hyperplane in the grid,
are located quite irregularly in the array. For shared memory machines
this also leads to reduced performance because of indirect addressing.
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In general one concludes that the data dependency approach is not
adequate for obtaining a suitable degree of parallellism.

2  Reordering the unknowns. One may also use a colouring scheme for re-
ordering the unknowns, so that unknowns with the same colour are not
explicitly coupled. This means that the triangular solves can be paral-
lellized for each colour. Of course, communication is required for coup-
lings between groups of different colours. Simple colouring schemes,
like red-black ordering for the five-point discretized Poisson operator,
seem to have a negative effect on the convergence behaviour. Duff and
Meurant (1989) have carried out numerical experiments for many differ-
ent orderings, which show that the numbers of iterations may increase
significantly for other than lexicographical ordering. Some modest de-
gree of parallellism can be obtained, however, with so-called incomplete
twisted factorizations (Dongarra et al., 1991; van der Vorst, 1987b;
van der Vorst, 1989a). Multi-colour schemes with a large number of
colours (e.g., 20 to 100) may lead to little or no degradation in conver-
gence behaviour (Doi, 1991), but also to less parallellism. Moreover,
the ratio of computation to communication may be more unfavourable.

3  Forced parallellism. Parallelism can also be forced by simply neglecting
couplings to unknowns residing in other processors. This is like block
Jacobi preconditioning, in which the blocks may be decomposed in
incomplete form (Seager, 1986). Again, this may not always reduce
the overall solution time, since the effects of increased parallellism are
more than undone by an increased number of iteration steps. In order
to reduce this effect, it is suggested in Radicati di Brozolo and Robert
(1989) to construct incomplete decompositions on slightly overlapping
domains. This requires communication similar to that of matrix—vector
products. In Radicati di Brozolo and Robert (1989) results are reported
on a six-processor shared memory system (IBM3090), and speedups
close to six have been observed.

The problems with parallellism in the preconditioner have led to searches
for other preconditioners. Often simple diagonal scaling is an adequate pre-
conditioner and this is trivially parallellizable. For results on a Connection
Machine, see Berryman, Saltz, Gropp and Mirchandaney (1989). Often this
approach leads to a significant increase in iteration steps. Still another ap-
proach is to use polynomial preconditioning: w = p;(A)r, i.e. K -l= pi(A),
for some suitable jth degree polynomial. This preconditioner can be imple-
mented by forming only matrix—vector products, which, depending on the
structure of A, are easier to parallellize (Saad, 1985b). For p; one often
selects a Chebychev polynomial, which requires some information on the
spectrum of A.



PARALLEL NUMERICAL LINEAR ALGEBRA 175

Finally we point out the possibility of using the truncated Neumann series
for the approximate inverse of A, or parts of L and U. Madsen et al. (1976)
discuss approximate inversion of A, which from the implementation point of
view is equivalent to polynomial preconditioning. In van der Vorst (1982)
the use of truncated Neumann series for removing some of the recurrences in
the triangular solves is discussed. This approach leads to only fine-grained
parallellism (vectorization).

8.2. Parallelism and data locality in preconditioned CG

To use CG to solve Ar = b, A must be symmetric and positive definite. In
other short recurrence methods, other properties of A may be required or
desirable, but we will not exploit these properties explicitly here.

Most often, CG is used in combination with some kind of preconditioning
(Freund et al., 1991; Golub and Van Loan, 1989; Hestenes and Stiefel, 1954).
This means that the matrix A is implicitly multiplied by an approximation
K1 of AL, Usually, K is constructed to be an approximation of A, and so
that Ky = z is easier to solve than Az = b. Unfortunately, a popular class
of preconditioners, those based on incomplete factorizations of A, are hard
to parallellize. We have discussed some efforts to obtain more parallellism in
the preconditioner in Section 8.1. Here we will assume the preconditioner is
chosen such that the time to solve Ky = z in parallel is comparable with the
time to compute Ap. For CG we also require that the preconditioner K be
symmetric positive definite. We exploit this to implement the preconditioner
more efficiently.

The preconditioned CG algorithm is as follows.

Algorithm 24 Preconditioned conjugate gradients — variant 1

To= initial guess; ro = b — Azxo;
p-1=0;8-1=0;
Solve for wg in Kwg = ro;
po = (1o, wo)
fori=0,1,2, ...
pi = w; + Bi_1pi—1;
¢ = Api;
a; = pi/(pi, Gi)
Ti+1 = T + ouPi;
Tig1 = Ty — Q4G5
if z;4+1 accurate enough then quit;
Solve for w; 4y in Kwiy; = 7i41;
Pi+1 = (Tit1, Wit1);
Bi = pi+1/pi;
end;
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If A or K is not very sparse, most work is done in multiplying q; = Ap;
or solving Kw;y; = r;4+1, and this is where parallellism is most beneficial.
It is also completely dependent on the structures of A and K.

Now we consider parallellizing the rest of the algorithm. Note that updat-
ing z;y1 and r;4; can only begin after completing the inner product for «;.
Since on a distributed memory machine communication is needed for the
inner product, we cannot overlap this communication with useful computa-
tion. The same observation applies to updating p;, which can only begin
after completing the inner product for 3;_;. Apart from computing Ap;
and solving Kw;4+1 = 741, we need to load 7 vectors for 10 vector floating
point operations. This means that for this part of the computation only
10/7 floating point operation can be carried out per memory reference on
average.

Several authors (Chronopoulos and Gear, 1989; Meurant, 1984a,b; van der
Vorst, 1986) have attempted to improve this ratio, and to reduce the num-
ber of synchronization points (the points at which computation must wait
for communication). In Algorithm 24 there are two such synchronization
points, namely the computation of both inner products. Meurant (1984a)
(see also Saad (1985b)) has proposed a variant in which there is only one
synchronization point, however at the cost of possibly reduced numerical
stability, and one additional inner product. In this scheme the ratio be-
tween computations and memory references is about 2. We show here yet
another variant, proposed by Chronopoulos and Gear (1989).

Algorithm 25 Preconditioned conjugate gradients — variant 2

zo= initial guess; ry = b — Axy;
g-1=p-1=0;8-1=0;
Solve for wg in Kwg = rg;

so = Awp;

po = (ro, wo); o = (S0, wo);
ap = po/ po;
fori=0,1,2,....

Pi = w; + Bi—1pi—1;

g = 8 + Bi—1¢i-1;

Tit1 = T; + a;p;;

Ti41 = T — Q43455

if ;41 accurate enough then quit;

Solve for w;y; in Kwiy1 = riy1;

Sit1 = Awgyg;

Pit1 = (Tit1, Wis1); Pit1 = (Six1, Wit1);

Bi = pi+1/pi;

air1 = Pir1/(pit1 — piv1Bi/au);
end;
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In this scheme all vectors need be loaded only once per pass of the loop,
which leads to improved data locality. However, the price is 2n extra flops
per iteration step. Chronopoulos and Gear (1989) claim the method is sta-
ble, based on their numerical experiments. Instead of two synchronization
points, as in the standard version of CG, we have now only one such syn-
chronization point, as the next loop can be started only when the inner
products at the end of the previous loop have been completed. Another
slight advantage is that these inner products can be computed in parallel.

Chronopoulos and Gear (1989) propose to improve further the data lo-
cality and parallellism in CG by combining s successive steps. Their al-
gorithm is based upon the following property of CG. The residual vectors
70, ---,7; form an orthogonal basis (assuming exact arithmetic) for the Krylov
subspace spanned by rg, Aro, ..., A*"1rg. Given ro through r;, the vectors
T0sT1, -y Tjy ATy ..., A" 1, also span this subspace. Chronopoulos and
Gear propose to combine s successive steps by generating rj, Ar;, ..., A%~ 1r;
first, and then to orthogonalize and update the current solution with this
blockwise extended subspace. Their approach leads to slightly more flops
than s successive steps of standard CG, and also one additional matrix—
vector product every s steps. The implementation issues for vector register
computers and distributed memory machines are discussed in great detail
in Chronopoulos (1991).

The main drawback in this approach is potential numerical instability:
depending on the spectrum of A, the set rj,..., A*"1r; may converge to a
vector in the direction of a dominant eigenvector, or in other words, may be-
come dependent for large values of s. The authors claim success in using this
approach without serious stability problems for small values of s. Neverthe-
less, it seems that s-step CG still has a bad reputation (Saad, 1988) because
of these problems. However, a similar approach, suggested by Chronopou-
los and Kim (1990) for other processes such as GMRES, seems to be more
promising. Several authors have pursued this direction, and we will come
back to this in Section 8.3.

We consider another variant of CG, in which we may overlap all commun-
ication time with useful computations. This is just a reorganized version of
the original CG scheme, and is therefore precisely as stable. The key trick
is to delay the updating of the solution vector. Another advantage over
the previous scheme is that no additional operations are required. We will
assume that the preconditioner K can be written as K = LLT. Further-
more, L has a block structure, corresponding to the grid blocks, so that any
communication can again be overlapped with computation.

Algorithm 26 Preconditioned conjugate gradients — variant 3

T_1 = xo= initial guess; rg = b — Axy;
p-1=0;6-1=00_1 =0;
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s = L 1rg;
PO = (8, 8)
fori=0,1,2,....
w; =L Ts; (0)
pi = w; + Bi_1pi—1; (1)
¢ = Ap;; (2)
v = (P, ¢); (3)
Ti = i1+ &i_1pi—1; (4)
a; = pi/v; (5)
Titl = Ti — 04G;; (6)
s =L ri; (7)
pir1 = (s,8); (8)
if ;41 small enough then 9)
Tirl = T; + ;p;
quit;
Bi = pi+1/pi;
end;

Under the assumptions that we have made, CG can be efficiently paral-
lellized as follows.

1

All compute intensive operations can be done in parallel. Only oper-
ations (2), (3), (7), (8), (9), and (0) require communication. We have
assumed that the communication in (2), (7), and (0) can be overlapped
with computation.

The communication required for the reduction of the inner product in
(3) can be overlapped with the update for z; in (4), (which could in
fact have been done in the previous iteration step).

The reduction of the inner product in (8) can be overlapped with the
computation in (0). Also step (9) usually requires information such as
the norm of the residual, which can be overlapped with (0).

Steps (1), (2), and (3) can be combined: the computation of a segment
of p; can be followed immediately by the computation of a segment of
g; in (2), and this can be followed by the computation of a part of the
inner product in (3). This saves on load operations for segments of p;
and g;.

Depending on the structure of L, the computation of segments of 7,
in (6) can be followed by operations in (7), which can be followed by the
computation of parts of the inner product in (8), and the computation
of the norm of r;;, required for (9).

The computation of 3; can be done as soon as the computation in (8)
has been completed. At that moment, the computation for (1) can be
started if the requested parts of w; have been completed in (0).

If no preconditioner is used, then w; = r;, and steps (7) and (0) are



PARALLEL NUMERICAL LINEAR ALGEBRA 179

skipped. Step (8) is replaced by p;+1 = (7i+1,7i+1). Now we need some
computation to overlap the communication for this inner product. To
this end, one might split the computation in (4) in two parts. The first
part would be computed in parallel with (3), and the second part with

Pi+1-

More recent work on removing synchroniation points in CG while retaining
numerical stability appears in D’Azevedo and Romine (1992) and Eijkhout
(1992).

8.3. Parallelism and data locality in GMRES

GMRES, proposed by Saad and Schultz (1985), is a CG-like method for solv-
ing general nonsingular linear systems Az = b. GMRES minimizes the resid-
ual over the Krylov subspace span[rg, Arg, A%y, ..., Airg), with ro = b— Azy.
This requires, as with CG, the construction of an orthogonal basis of this
space. Since we do not require A to be symmetric, we need long recurrences:
each new vector must be explicitly orthogonalized against all previously gen-
erated basis vectors. In its most common form GMRES orthogonalizes us-
ing Modified Gram—Schmidt (Golub and Van Loan, 1989). In order to limit
memory requirements (since all basis vectors must be stored), GMRES is
restarted after each cycle of m iteration steps; this is called GMRES(m).
A slightly simplified version of GMRES(m) with preconditioning K is as
follows (for details, see Saad and Schultz (1985)):

Algorithm 27 GMRES(m)

zo is an initial guess; r = b — Azxg;
forj=1,2,...
Solve for w in Kw = r;
v1 = w/|lwl2;
fort=1,2,...m
Solve for w in Kw = Av;;

fork=1,...,1 orthogonalization of w
hii = (w,vg); against vs, by modified
w = w — hg Vk; Gram-Schmidt process
end k;

hiy1i = [lwlle;
Viy1 = W/ hip14;

end i;
Compute z,, using the hi; and v;;
r=b— Azxy;

if residual r is small enough then quit
else (zg := Zp;);
end j;
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Another scheme for GMRES, based upon Householder orthogonalization
instead of modified Gram-Schmidt, has been proposed in Walker (1988).
For some applications the additional computation required by Householder
orthogonalization is compensated by improved numerical properties: the
better orthogonality saves iteration steps. In van der Vorst and Vuik (1991)
a variant of GMRES is proposed in which the preconditioner itself may be
an iterative process, which may help to increase parallel efficiency.

Similar to CG and other iterative schemes, the major computations are
matrix—vector computations (with A and K), inner products and vector
updates. All of these operations are easily parallellizable, although on dis-
tributed memory machines the inner products in the orthogonalization act
as synchronization points. In this part of the algorithm, one new vector,
K _lA’Uj, is orthogonalized against the previously built orthogonal set v,
v2, ... , vj. In Algorithm 27, this is done using Level 1 BLAS, which may be
quite inefficient. To incorporate Level 2 BLAS we can do either Householder
orthogonalization or classical Gram—Schmidt twice (which mitigates classi-
cal Gram—Schmidt’s potential instability (Saad, 1988)). Both approaches
significantly increase the computational work and do not remove the syn-
chronization and data-locality problems completely. Note that we cannot,
as in CG, overlap the inner product computation with updating the ap-
proximate solution, since in GMRES this updating can be done only after
completing a cycle of m orthogonalization steps.

The obvious way to extract more parallellism and data locality is to gen-
erate a basis vy, Avy, ..., A™v; for the Krylov subspace first, and to orthog-
onalize this set afterwards; this is called m-step GMRES(m) (Chronopoulos
and Kim, 1990). This approach does not increase the computational work
and, in contrast to CG, the numerical instability due to generating a pos-
sibly near-dependent set is not necessarily a drawback. One reason is that
error cannot build up as in CG, because the method is restarted every m
steps. In any case, the resulting set, after orthogonalization, is the basis of
some subspace, and the residual is then minimized over that subspace. If,
however, one wants to mimic standard GMRES(m) as closely as possible,
one could generate a better (more independent) starting set of basis vectors

V1, Y2 = pl(A)'Uh ey Ym+1 = Pm(A)'Uh

where the p; are suitable degree j polynomials. Newton polynomials are
suggested in Bai, Hu and Reichel (1991), and Chebychev polynomials in de
Sturler (1991).

After generating a suitable starting set, we still have to orthogonalize
it. In de Sturler (1991) modified Gram-Schmidt is used while avoiding
communication times that cannot be overlapped. We outline this approach,
since it may be of value for other orthogonalization methods. Given a basis
for the Krylov subspace, we orthogonalize by
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fork=2,...m+1:
/* orthogonalize yk, ..., Ym+1 W.I.t. Vg_1 */
forj=k&,...,m+1
Yi = Yj — (¥j> Vk—1)Vk—1
vk = Y/ lykll2

In order to overlap the communication costs of the inner products, we
split the j-loop into two parts. Then for each k we proceed as follows.

1. compute in parallel the local parts of the inner products for
the first group

2. assemble the local inner products to global inner products

3. compute in parallel the local parts of the inner products for
the second group

4. update yi; compute the local inner products required for |jyg||2

5. assemble the local inner products of the second group to global
inner products

6. update the vectors yx41, ..., Ym+1

7. compute vk = Y/ ||ykll2

From this scheme it is obvious that if the length of the vector segments
per processor are not too small, in principle all communication time can be
overlapped by useful computations.

For a 150 processor MEIKO system, configured as a 15 x 10 torus, de
Sturler (1991) reports speedups of about 120 for typical discretized PDE
systems with 60,000 unknowns (i.e. 400 unknowns per processor). For
larger systems, the speedup increases to 150 (or more if more processors
are involved) as expected. Calvetti et al. (1991) report results for an imple-
mentation of m-step GMRES, using BLAS2 Householder orthogonalization,
for a four-processor IBM 6000 distributed memory system. For larger linear
systems, they observed speedups close to 2.5.

9. Iterative methods for eigenproblems

The oldest iterative scheme for determining a few dominant eigenvalues and
corresponding eigenvectors of a matrix A is the power method (Parlett, 1980):

Algorithm 28 Power method

select zp with ||zgll2 =1

k=0

repeat
k=k+1
Yk = Az
A= llyell2

Tk = Yk/A
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until z; converges

If the eigenvalue of A of maximum modulus is well separated from the
others, then z; converges to the corresponding eigenvector and A converges
to the modulus of the eigenvalue. The power method has been superseded
by more efficient techniques. However, the method is still used in the form
of inverse iteration for the rapid improvement of eigenvalue and eigenvector
approximations obtained by other schemes. In inverse iteration, the line
‘yp. = Axp_;’ is replaced by ‘Solve for yx in Ayr = zx_1’. Most of the
computational effort will be required by this operation, whose (iterative)
solution we discussed in Section 8.

All operations in the power method are easily parallellizable, except possi-
bly for the convergence test. There is only one synchronization point: x4 can
be computed only after the reduction operation for A has completed. This
synchronization could be avoided by changing the operation y; = Azx_1 to
yx = Ayk—1 (assuming yo = z¢). This means A would change every iteration
by a factor which converges to the maximum modulus of the eigenvalues of
A, and so risks overflow or underflow after enough steps.

The power method constructs basis vectors z; for the Krylov subspace
determined by zo and A. It is faster and more accurate to keep all these
vectors and then determine stationary points of the Rayleigh quotient over
the Krylov subspace. In order to minimize work and improve numerical sta-
bility, we compute an orthonormal basis for the Krylov subspace. This can
be done by either short recurrences or long recurrences. The short (three-
term) recurrence is known as the Lanczos method. When A is symmetric
this leads to an algorithm with can efficiently compute many, if not all,
eigenvalues and eigenvectors (Parlett, 1980).

In fact, the CG method (and Bi-CG) can be viewed as a solution pro-
cess on top of Lanczos. The long recursion process is known as Arnoldi’s
method (Arnoldi, 1951), which we have seen already as the underlying ortho-
gonalization procedure for GMRES. Not surprisingly, a short discussion on
parallellizing the Lanczos and Arnoldi methods would have much in common
with our earlier discussions of CG and GMRES.

9.1. The Lanczos method
The Lanczos algorithm is described by the following scheme (Parlett, 1980):
Algorithm 29 Lanczos method

select 79 # 0; go =0

k=0
repeat
k=k+1

Br—1 = |lre—1ll2
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gk = Tk-1/Br—1

ur, = Agy

Sk = Uk — Br—1qk—1
ay = (gx, k)

Tk = 8k — Qkqk
until the eigenvalues of T}, converge (see below)

The qis can be saved in secondary storage (they are required for back-
transformation of the so-called Ritz vectors below).
The a,, and B, for m = 1,2, ..., k, form a tridiagonal matrix T}:

a1 B
B az P
T, = Bz -
Br-1
Br-1 Qg

The eigenvalues and eigenvectors of T are called the Ritz values and Ritz
vectors, respectively, of A with respect to the Krylov subspace of dimension
k. The Ritz values converge to eigenvalues of A as k increases, and after
backtransformation with the g¢,,s, the corresponding Ritz vectors approx-
imate eigenvectors of A. For improving these approximations one might
consider inverse iteration.

The parallel properties of the Lanczos scheme are similar to those of
CG. On distributed memory machines there are two synchronization points
caused by the reduction operations for 8x_; and ak. The first synchroniza-
tion point can, at the cost of n additional flops, be removed by delaying
the normalization of the n-vector ri_;. This would lead to the following
sequence of statements:

ug = Ark—1; Gk = Tk—1/Bk-1; Sk = uk/Bk—-1 — Br—1qk—1 -

In this approach, the reduction operation for 8;_; can be overlapped with
computing Arx—1. Much in the same spirit as the approach suggested for
CG by Chronopoulos and Gear (see algorithm 25), the synchronization point
caused by the reduction operation for a; can be removed by computing Asy
right after, and in overlap with, this operation. In that case we reconstruct
Arg_; from recurrence relations for r—;. This increases the operation count
by another n flops, and, even more serious, leads to a numerically less stable
algorithm. The Ritz values and Ritz vectors can be computed in parallel by
techniques discussed in Section 6. For small k there will not be much to do in
parallel, but we also need not compute the eigensystem of T for each k, nor
check convergence for each k. An elegant scheme for tracking convergence
of the Ritz values is discussed in Parlett and Reid (1981). If the Ritz value

Gg.k), i.e. the jth eigenvalue of T%, is acceptable as an approximation to some
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eigenvalue of A, then an approximation egk) to the corresponding eigenvector
of A is given by

e§k) = Qky](-k), (9.1)

where yJ(-k) is the jth eigenvector of T}, and Qx = [¢1, g2, ..., qx]. This is easy
to parallellize.

As with CG, one may attempt to improve parallellism in Lanczos by
combining s steps in the orthogonalization step. However, the eigensystem
of T is very sensitive to loss of orthogonality in the g¢,, vectors. For the
standard Lanczos method this loss of orthogonality goes hand in hand with
the convergence of Ritz values and leads to multiple eigenvalues of T (see
Paige (1976) and Parlett (1980)), and so can be accounted for, for instance,
by selective reorthogonalization, for which the converged Ritz vectors are
required (Parlett, 1980). It is as yet unknown how rounding errors will
affect the s step approach, and whether it may lead to inaccurate eigenvalue
approximations.

9.2. The Arnoldi method

The Arnoldi algorithm is just the orthogonalization scheme we used before
in GMRES:

Algorithm 30 Arnoldi’s method

w is an initial vector with ||w||2 # 0;
v = w/l|wllz;

)

repeat
k=k+1;
w = A’l)k;
fori=1,..,k orthogonalization of w
hix = (w,v;); against vs, by modified
w=w — h; v Gram—Schmidt process
end ;

hicr1e = [|wll2;
Vk+1 = ’w/hk+1,k; B
until the eigenvalues of Hy converge (see below)

The elements h; ; computed after k steps build an upper Hessenberg ma-
trix Hy of dimension (k + 1) x k. The eigenvalues and eigenvectors of the
upper k x k part Hj of H; are the Ritz values and Ritz vectors of A with
respect to the k dimensional Krylov subspace generated by A and w. The

Ritz values 0](.’“) of Hj, converge to eigenvalues of A, and the corresponding

Ritz vectors y§-k) can then be backtransformed to approximate eigenvectors
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of e; of A via
ej = ka,(~k),

where Vi, = [v1,v2,...,vk]. The parallel solution of the eigenproblem for a
Hessenberg matrix is far from easy, for a discussion see Section 6. Normally
it is assumed that the order n of A is much larger than the number of Arnoldi
steps k. In this case it may be acceptable to solve the eigenproblem for Hy
on a single processor. In order to limit k, it has been proposed to carry
out the Arnoldi process with a fixed small value for k& (a few times larger
than the desired number of dominant eigenvalues m), and to repeat the
process, very much in the same manner as GMRES(k). At each repetition
of the process, it is started with a w that is taken as a combination of the
Ritz vectors corresponding to the m dominant Ritz values of the previous
cycle. Hopefully, the subspace of m dominant Ritz vectors converges to
an invariant subspace of dimension m. This process is known as subspace
iteration, a generalization of the power method, for details see Saad (1980,
1985a). For a description, as well as a discussion of its performance on the
Connection Machine, see Petiton (1992).

A different approach for computing an invariant subspace of order m,
based on Arnoldi’s process, is discussed in Sorensen (1992). Here one starts
with m steps of Arnoldi to create an initial approximation of the invariant
subspace of dimension m corresponding to m desired eigenvalues, say the m
largest eigenvalues in modulus. Then this subspace is repeatedly expanded
by p new vectors, using the Arnoldi process, so that the m + p vectors form
a basis for a m + p dimensional Krylov subspace. This information is com-
pressed to the first m vectors of the subset, by a QR algorithm that drives
the residual in the projected operator to a small value using p shifts (usually
the p unwanted Ritz values of the projected operator). If this expansion and
compression process is repeated ¢ times, then the computed m dimensional
subspace will be a subset of the m + i - p dimensional Krylov subspace one
would get without compression. The hope is that by compressing well, the
intersection of the desired invariant subspace with the final m dimensional
subspace is close to the intersection with the larger m + i - p dimensional
subspace. The benefit of this method is in limiting storage and time spent
on the projected Hessenberg eigenproblems to depend on m + p rather than
m + i -p. An advantage over the previous approach (subspace iteration)
is in the implicit construction of a suitable starting vector for the m + p
dimensional Krylov subspace. For a basis of this subspace only p matrix
vector products have to be evaluated for each iteration cycle. In these ap-
proaches the eigendecomposition of the projected Hessenberg matrices is
still the hardest step to parallellize.

We do not know of successful attempts to combine s successive Krylov
subspace vectors v, Av, A%v, ..., A* v (as was proposed in combination
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with GMRES). In the case of subspace iteration numerical instability may
not be as severe as for the Lanczos process.
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This article addresses the general problem of establishing upper bounds for the
norms of the nth powers of square matrices. The focus is on upper bounds that
grow only moderately (or stay constant) when n, or the order of the matrices,
increases. The so-called resolvent condition, occurring in the famous Kreiss
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The upper bounds for the powers of matrices discussed in this article are
intimately connected with the stability analysis of numerical processes for
solving initial(-boundary) value problems in ordinary and partial linear dif-
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The article concludes with numerical illustrations in the solution of a simple
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1. Introduction
1.1. Linear stability analysis

This article deals with step-by-step methods for the numerical solution of
linear differential equations. Both initial-boundary value problems in par-
tial differential equations and initial value problems in ordinary differential
equations will be included in our considerations.

A crucial question in the step-by-step solution of such problems is whether
the method will behave stably or not. Here we use the term stability to desig-
nate that any numerical errors, introduced at some stage of the calculations,
are propagated in a mild fashion - i.e. do not blow up in the subsequent steps
of the methods.

Classical tools to assess the stability a priori, in the numerical solution of
partial differential equations, include Fourier transformation and the corre-
sponding famous Von Neumann condition (see the classical work by Richt-
myer and Morton (1967)). Further tools of recognized merit for assessing
stability, in the solution of ordinary differential equations, comprise the so-
called stability regions in the complex plane (see e.g. the excellent works by
Butcher (1987) and Hairer and Wanner (1991)). During the last 25 years
these stability regions have been studied extensively; numerous papers have
appeared dealing with the shape and various peculiarities of these regions.

However, these tools are based on the behaviour that the numerical me-
thod would have when applied to quite simple test problems. Accordingly,
in the case of partial differential equations, Fourier transformation provides
a straightforward and reliable stability criterion primarily only for pure ini-
tial value problems in linear differential equations with constant coefficients.
Similarly, in the case of ordinary differential equations, stability regions are
primarily relevant only to scalar equations

U'(t)=XU(t) fort>0, (1.1)

with given complex constant A.

In the pioneering work by F. John (1952) the scope of Fourier transfor-
mation had already been widened in that it was used in deriving sufficient
conditions for stability in the numerical solution of linear partial differen-
tial equations with variable coefficients. For subsequent related work, rel-
evant to equations with variable coefficients and to initial-boundary value
problems, the reader may consult Richtmyer and Morton (1967), Kreiss
(1966), Gustafsson, Kreiss and Sundstrém (1972), Meis and Marcowitz
(1981), Thomée (1990), and the references therein.

Clearly, rigorous stability criteria with a wider scope than the simple clas-
sical test equations are important — both from a practical and a theoretical
point of view. It is equally important to know to what extent stability re-
gions can be relied upon in assessing stability in the numerical solution of
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differential equations more general than (1.1). The present article reviews
and extends some recent developments which are relevant to these two ques-
tions. No essential use will be made of Fourier transformation.

1.2. Stability and power boundedness
In this paper we shall deal with numerical processes of the form
Up = Bup—1+b, forn=1,23,..., (1.2)

with a given square matrix B of order s > 1 and given s-dimensional vec-
tors b,. The s-dimensional vectors u,, are computed sequentially from (1.2)
starting from a given vector up. Processes of the form (1.2) occur in the
numerical solution of linear initial value problems that are essentially more
general than the simple classical test problems mentioned earlier. The vec-
tors u, provide numerical approximations to the true solution of the initial
(-boundary) value problem under consideration.

As an illustration of (1.2) we consider the initial-boundary value problem

u(z,t) = a(T)ugz(z,t) + b(z)uz(z,t) + c(z)u(z, t) + d(z),
uz(0,¢) =0, u(l,t) =g(), (1.3)
u(xv O) = f(:l?),
where 0 <z < 1,t >0 and a,b,c,d, f, g are given functions with
a(z) >0, b(z)>0, c(z)<0.

We choose At = h > 0, Az = 1/s and consider the approximation of
u(j/s,nh) by quantities u7. The following finite difference scheme has been
constructed by standard principles (see Richtmyer and Morton (1967)):

A} —uph) =
s2a(j/s){0(ur_y — 2uf +uly ) + (1 - 0)(u; - 2ul T i)}
+8b(j/s){0(upyy —uf) + (1= 0)(ufy —ui™h)}
+e(j/s){0u] + (1 - 8)u}~'} + d(j/s),

w7 =u7h Wl =g((n - Dh),
uj = £(i/9),
where j = 0,1,...,s — 1l and n = 1,2,3,.... 6 denotes a parameter, with

0 < 6 < 1, specifying the finite difference method.
Defining vectors u,, by

ug u(0, nh)
ul u(1/s,nh)

un w((s — 1)/s,nh)
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one easily verifies that the u, satisfy a relation of the form (1.2). Here the
matrix B satisfies

B=(I+(1-0)hA)I—0hA)™, (1.4)

where I denotes the s x s identity matrix and A = (o k) an s x s tridiagonal
matrix with its (nonzero) entries given by

o141 = —2s%a(j/s) — sb(j/s) +c(i/s) (0<j<s-1),

Qj+1,5 = s2a(j/s) (1 <j<s-—- 1)7 (1 5)
ajr1i+2 = s%a(j/s)+ sb(j/s) (1<j<s-2), '
ojr1j+2 = 25%a(j/s) + sb(j/s) (j =0).

Suppose the numerical calculations based on the general process (1.2) were
performed using a perturbed starting vector ug, instead of ug. We would
then obtain approximations that we denote by u,. For instance uy may
stand for a finite-digit representation in a computer of the true ug, and the
Uy, then stand for the numerical approximations obtained in the presence of
the rounding error vy = g — up-

In the stability analysis of (1.2) the crucial question is whether the dif-
ference v, = U, — u, (for n > 1) can be bounded suitably in terms of the

perturbation vg = %y — ug. Since
Up = Up — Up = [B'a:n—l + bn] - [Bun—l + bn]

we have
Un = B'Un—l,

and consequently
v, = B™y.

The last expression makes clear that a central issue in stability analysis
is the question of whether given matrices have powers that are uniformly
bounded. Accordingly, in the following we focus, for an arbitrary s x s
matrix B, on the stability property

|B*|| < My forn=0,1,2,..., (1.6)

where M) is a positive constant. For the time being || - || stands for the
spectral norm, i.e. for the norm induced by the Euclidean vector norm in
C*® (for an s x s matrix A we have ||A| = max{|Az|/|z| : £ € C* with
z # 0}, where | - | denotes the Euclidean norm defined by |z| = v/z*z with
z* standing for the Hermitian adjoint of the column vector z € C¥).

1.8. Power boundedness and the eigenvalue condition

For any given matrix B one can easily deduce from its Jordan canonical
form (see, e.g., Horn and Johnson (1990)) a criterion for the existence of
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an My with property (1.6). A necessary and sufficient requirement for the
existence of such an M| is the following eigenvalue condition:

All eigenvalues A of B have modulus |A| < 1, and
the geometric multiplicity of each eigenvalue with (1.7)
modulus 1 is equal to its algebraic multiplicity.

However, in the stability analysis of numerical processes one is often in-
terested in property (1.6) for all B belonging to some infinite family F of
matrices. The crucial question then is whether a single finite M exists such
that (1.6) holds simultaneously for all B belonging to F. In this situation,
(1.7) may only provide a condition that is necessary (and not sufficient) for
such an M; to exist.

For instance, in the example of Section 1.2 one can only expect great
accuracy in the approximations u} to u(j/s,nh) when Az (and At) become
very small. Accordingly one is primarily interested in bounds for B™ that
are uniformly valid for all B of the form (1.4), (1.5) with arbitrarily small
Az =1/s.

An instructive counterexample, illustrating the fact that criterion (1.7)
can be misleading for the case of families F, is provided by the s x s bi-
diagonal matrices

-1/2  3/2 0
-1/2 (1.8)
3/2

0 _1/2

Matrices of the form (1.8) may be thought of as arising in the numerical
solution of the initial-boundary value problem

Ut(a),t) = ux(x,t),
u(l,t) =0, wu(z,0)= f(z), where0<z<1,t>0.

Consider the finite difference scheme

h_l(u;‘ - u;‘_l) = s(u;‘;l1 - u;-‘_l),

uyTh =0, ui=f(j/s)
Here At = h > 0, Az = 1/s, and u} approximates u(j/s,nh) for j =
0,1,...,s—1and n = 1,2,3,.... Clearly, with the choice hs = 3/2 this
finite difference scheme can be written in the form (1.2) with B as in (1.8).

For each s > 1 the matrix B defined by (1.8) satisfies the eigenvalue
condition (1.7).
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Defining the s x s shift matrix £ by
E= - : (1.9)

we have from (1.8) the expression
— _1 3

B =—31+3FE,
so that

n n B

B" = Z (k) (__%)n k(%)kEk.
k=0
Defining x to be the s-dimensional vector whose jth component equals ; =
(—1)7, and denoting the jth component of y = B™z by 7; we easily obtain,
from the above expression for B™,
n n _ )
il =3 (k Gy F@F =2 forl<j<s—n
k=0

For s > n we thus have

1/2
8
(Zlmlz) >vVs—n2",
j=1

and since

, 1/2
(Z |§j|2) = Vs,
j=1

it follows that ||[B"|| > /1 — n/s2". Denoting the s x s matrix B by B, we
thus have

I(B2n)|| = 22 forn=1,2,3,....

Clearly, no My can exist such that (1.6) is valid for all B belonging to
F={Bs:s=1,23,...}.

The fact that the eigenvalue criterion can be a misleading guide to sta-
bility was already known in the 1960s, see e.g. Parter (1962). A related,
but stronger, necessary requirement for stability is the so-called Godunov-
Ryabenkii stability condition, a discussion of which can be found, e.g., in
Richtmyer and Morton (1967), Morton (1980) and Thomée (1990). The
latter condition is not satisfied in example (1.8).

The earlier counterexample is similar to examples in Richtmyer and Mor-
ton (1967), Spijker (1985), Kreiss (1990) and Reddy and Trefethen (1992).
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Further examples of instability under the eigenvalue condition (1.7) can be
found in Griffiths, Christie and Mitchell (1980), Kraaijevanger, Lenferink
and Spijker (1987) and Lenferink and Spijker (1991b). The matrices B in
these references have s different eigenvalues A with |A\| < 1, and occur in
the numerical solution of problems of the form (1.3). See Trefethen (1988)
and Reddy and Trefethen (1992) for related counterexamples in spectral
methods.

We conclude this subsection with the remark that in some special cases the
eigenvalue criterion can be reliable. For normal matrices B (i.e. B*B = BB*
with B* denoting the Hermitian adjoint of B) the stability estimate (1.6)
is valid with My = 1 as soon as all eigenvalues of B have a modulus not
exceeding 1 (see, e.g., Horn and Johnson (1990)). But, in general, one has
to look for conditions different from (1.7).

1.4. Power boundedness and the resolvent condition

The famous Kreiss matriz theorem (see, e.g., Kreiss (1962) and Richtmyer
and Morton (1967)) relates (1.6) to conditions on B which are more reliable
than (1.7). One of these conditions involves the so-called resolvent ((I —
B)~! of B, and reads as follows:

¢I — B is invertible and ||(¢I — B)~}|| < My(|¢| — 1)1

for all complex numbers ¢ ¢ D. (1.10)

Here M, is a positive constant, I the s x s identity matrix and
D={¢(:{e€Cand|(] <1}

the closed unit disk in the complex plane.
If (1.6) is satisfied, then all eigenvalues of B lie in D, so that for all { ¢ D
the matrix (I — B is invertible and

[e.¢}

Z C_k_l Bk
k=0

Hence (1.6) implies (1.10) with M; = M. The Kreiss matrix theorem
asserts that, conversely, (1.10) implies (1.6) with M, depending only on M;
and the dimension s, but otherwise independent of the matrix B.

The Kreiss matrix theorem has often been used in the stability analysis
of numerical methods for solving initial value problems for partial differ-
ential equations. In the classical situation the matrices B are obtained by
Fourier transformation of the numerical solution operators, and they stand
essentially for the so-called amplification matrices (see, e.g., Richtmyer and
Morton (1967)). These matrices are of a fized finite order s. On the other
hand, the implication of (1.6) by (1.10) can also be used without Fourier
transformation, with B standing for the numerical solution operator in (1.2).

I¢I - B)™Y| = <Y KMy = Mo([¢| - 1)L

k=0
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In this situation we may be dealing with a family of matrices B of finite —
but not uniformly bounded — orders s. Therefore, of particular interest is
the dependence of the stability constant M in (1.6) on the dimension s (see
also Tadmor (1981)).

Various authors (see, e.g., Morton (1964), Miller and Strang (1966), Tad-
mor (1981), LeVeque and Trefethen (1984) and Spijker (1991)) have studied
the size of (the optimal) M, as a function of M; and s, and recently some
open problems in this field were solved. Moreover, the implication of (1.6) by
(1.10) as previously discussed has recently been generalized in several direc-
tions. More general norms than the spectral norm have been dealt with and
the resolvent condition (1.10) has been adapted to domains different from
the unit disk D. In the latter case the matrices B in (1.6) and (1.10) are not
the same, but are related to each other by a given (rational) transformation.

1.5. Scope of the rest of the article

In the rest of this article we review and extend some of the recent re-
sults just mentioned, and illustrate them in the numerical solution of initial
(-boundary) value problems.

In Section 2 we still deal with resolvent condition (1.10) with respect to
the unit disk D, but we consider general norms on the vector space of all
s X s matrices. In this situation we focus on the best upper bounds for | B™||
that are possible under condition (1.10).

In Section 3.1 we relate estimates like (1.6) more explicitly to the stabil-
ity analysis of numerical methods for the solution of ordinary and partial
differential equations. In Section 3.2 we show that in this analysis it is use-
ful to consider resolvent conditions with respect to regions V' C C that are
different from the unit disk D. The focus will be on regions V that are
contained in the stability regions corresponding to the numerical methods
under consideration. We give a review of stability estimates from the lit-
erature based on resolvent conditions with respect to such V. Section 3.3
provides various comments on these estimates. We confine our considera-
tions throughout to so-called one-step methods. For related stability results
pertinent to (linear) multistep methods we refer to Crouzeix (1987), Grig-
orieff (1991), Lubich (1991), Lubich and Nevanlinna (1991) and Reddy and
Trefethen (1990, 1992).

Section 4 deals with various concepts and problems that are related to
(generalized) resolvent conditions. In Section 4.1 the resolvent condition is
related to the concept of e-pseudospectra recently used by Trefethen and
others (see e.g. Trefethen (1992) and Reddy and Trefethen (1990, 1992)). In
Section 4.2 it is related to the so-called M-numerical range introduced by
Lenferink and Spijker (1990). Part of the material presented here is used in
some proofs given in Section 2. In Section 4.3 we consider the problem of
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bounding the exponential function of a matrix under the assumption that
the matrix satisfies a resolvent condition (with respect to the complex left
half plane).

In Section 5 we focus on the range of applications of the stability re-
sults reviewed in Section 3. Moreover, a numerical illustration is presented
involving the solution of a partial differential equation.

2. Stability estimates under resolvent conditions with
respect to the unit disk

2.1. The classical situation for arbitrary M, > 1

We start by reviewing classical upper bounds for ||B"|| that were derived
from (1.10), with || - || standing for the spectral norm.

As already mentioned in the introduction, the Kreiss matrix theorem as-
serts, for the spectral norm, that resolvent condition (1.10) implies power
boundedness (1.6) with a stability constant My depending only on M; and
the dimension s. According to Tadmor (1981), the original proof by Kreiss
(1962) yields an upper bound || B"|| < My with

M() >~ (Ml)ss,

which is far from sharp. After successive improvements by various authors
(Morton, 1964; Miller and Strang, 1966), it was Tadmor (1981) who suc-
ceeded in proving a bound that is linear in s,

IB™|| < 32er~1sM;.

LeVeque and Trefethen (1984) lowered this upper bound to 2esM;, and
conjectured that the latter bound can be improved further to

|B"|| <esM; forn=0,1,2,.... (2.1)

Moreover, these authors showed by means of a counterexample that the
factor e in (2.1) cannot be replaced by any smaller constant — if the upper
bound is to be valid for arbitrary factors M; in (1.10) and arbitrarily large
integers s.

Smith (1985) proved a result which, combined with the arguments of
LeVeque and Trefethen (1984), leads to the improved upper bound ||B"| <
n~1(m 4 2)esM, which is an improvement over the upper bound 2esM; but
still weaker than conjecture (2.1). The conjecture was finally proved to be
true by Spijker (1991) (see also Wegert and Trefethen (1992)).

In addition to the upper bound (2.1), which is linear in s and independent
of n, it is possible to derive an upper bound from (1.10) that is linear in n
and independent of s. By the Cauchy integral formula (see, e.g., Conway
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(1985)) we have
n __ 1 n _ -1
B" = —27ri/1"< (¢ - B)~"d¢, (2.2)

where the contour of integration I' is any positively oriented circle |{| = 1+¢
with € > 0. Choosing € = 1/n it readily follows from (1.10) and (2.2) that

IB*| <(Q+1/n)"(n+1)M; <e(n+1)M; forn=1,2,3,... (2.3)

(see also Reddy and Trefethen (1990) and Lubich and Nevanlinna (1991)).

In the next subsection we will discuss a generalization of the upper bounds
(2.1), (2.3) to norms different from the spectral norm. We will also investi-
gate the sharpness of these bounds in the general case.

2.2. Stability estimates for arbitrary My > 1 and arbitrary norms

In this subsection we consider a generalization of the upper bounds (2.1),
(2.3) to the case where || - || is an arbitrary norm on C**, the vector space
of all complex s x s matrices. If the norm is submultiplicative (i.e. ||AB|| <
[|All||B|| for all A, B € C*°) the norm is called a matriz norm. Norms for
which ||I|| = 1 are called unital.

Theorem 2.1 Let s > 1, B € C*>° and || - || denote an arbitrary norm on
the vector space C*7.

(a) If (1.6) holds for some My, then (1.10) holds with M; = My;
(b) If (1.10) holds for some M, then

|IB*| < (1+1/n)"min(s,n+1)M; forn=1,2,3,.... (2.4)

Proof. 1. The proof of (a) is the same as the proof in Section 1.4 for the
spectral norm. Since the proof of (2.3) as given in Section 2.1 also remains
valid for arbitrary norms, the proof of (b) is complete if we can show that

|IB*| < (1+1/n)"sM; forn=1,2,3,.... (2.5)

In order to prove (2.5) we now consider arbitrary but fixed n > 1 and B
satisfying (1.10).

2. A well known corollary to the Hahn-Banach theorem (see, e.g., Chapter
3 in Rudin (1973), or Chapter 5 in Horn and Johnson (1990)) states that,
corresponding to any normed vector space X and vector y € X, there exists
a linear transformation F : X — C with

F(y)=|lyl|| and |F(z)| <|z| forall z€ X.

Applying this result with X = C%® y = B™ we see that a linear F': C%°* —» C
exists with
|F(A)| < ||A]| for all s x s matrices A, (2.6)
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F(B") = |B"||. (2.7)
Combination of (2.7) and (2.2) yields

18] = 5 [ "R,
where I is the positively oriented circle || =1+ 1/n and R is the rational
function defined by R(¢) = F((¢I — B)™1). Integration by parts gives

B = [erR©Q A< gy [IROI) (28

2mi(n + 1)

3. Let Ej;; stand for the s x s matrix with entry in the jth row and kth
column equal to 1, and all other entries 0. Denoting the entries of the matrix
(¢I — B)™! by 7j,(¢) we thus have

I-B)y = ka Ej,

and therefore also
R(¢) =Y (O F(Ejx).
i,k

We define a rational function to be of order s if its numerator and denom-
inator are polynomials of a degree not exceeding s. By Cramer’s rule, the
r;k(¢) are rational functions of order s with the same denominator. Hence
R(¢) is also of order s.

It was proved by Spijker (1991) that, for any rational function R(¢) which
has no poles on the circle I' and is of order s, the following inequality holds:

JIR@ld¢| < 2ms mpx |R(C)! (29)

The proof of (2.5) now easily follows by a combination of (2.8), (2.9), (2.6)
and (1.10). O

We remark that this proof of (2.5) is essentially based on ideas taken
from LeVeque and Trefethen (1984) and Lenferink and Spijker (1991a). For
an interesting discussion and generalization of inequality (2.9) we refer to
Wegert and Trefethen (1992).

In the following theorem we focus on the sharpness of the bound (2.4) in
the case n = s — 1.

Theorem 2.2 Let s > 2 and an arbitrary norm || - | on C** be given.
Then

1 s—1
sup{l[B* /M (B): B e, Mi(B)<ooh= (14 —5) s, (210)
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where M;(B) denotes the smallest M; such that (1.10) holds (we define
M, (B) = oo if (1.10) is not fulfilled for any Mj).

Proof. Define B € C** by B = «E, where v > 0 is large and the s x s
matrix F is defined by (1.9). We have

- ¢ —
My(B) = sup(i¢|~ DI(¢I — B)™Y = sup 121 z( )
[¢]>1 [¢|>1 |(| =0
s—1
s Z%”J‘*r’lll’f’ll = uemrr B (14 0(r 7)),
]:
where
i = sup —1)[¢|™ ! = max (1 —z)2? = +1)7971,
i = 3up (= DICI 7! = (1= 2)a? = 5+ 1)
so that

1B /My(B) > 1/psr+0O(77?)

(1+525) " sr0l) =

It follows that the left-hand member of (2.10) is not smaller than the right-
hand member. In view of (2.4) the proof is complete. O

Corollary 2.3 For each s > 1, let a norm || - || = || - ||®) be given on
C*%. Then there exist matrices B, € C%° for s = 1,2,3,..., such that
M;(B;) < oo and

I(Bs)*~1[|®) ~ esM1(Bs) (as s — o), (2.11)
where M;(B;) has the same meaning as in Theorem 2.2.
Proof. Immediate from Theorem 2.2. O

This corollary was proved by LeVeque and Trefethen (1984) for the spec-
tral norm. Our proof of Theorem 2.2 is essentially based on ideas taken
from that paper.

In view of (2.4), the estimate (2.1) is valid for general norms || - | on C**.
By virtue of Corollary 2.3, this general version of (2.1) is sharp in the sense
of (2.11). However, it should be emphasized that this does not resolve the
sharpness question for given fized M,, since M1(B;) in (2.11) may depend
on s. In the next two subsections we will focus on the situation where M;
is a given fixed number.
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2.8. About the best stability estimates for M1 =1

In the special situation where the resolvent condition (1.10) holds with
M; = 1, the upper bound (2.4) can be improved in various ways. First
we concentrate on arbitrary matrix norms on C**, and at the end of this

subsection we focus on matrix norms || - ||, induced by the pth Hélder norm
on C*® (for p=1,2,00).
Theorem 2.4 Let s > 1, B € C*® and || - || denote an arbitrary matrix

norm on C**. If (1.10) holds with M; = 1, then

|B™|| < nin~"e™ < /27r(n +1) forn=1,23,.... (2.12)

Proof. Property (1.10) with M; = 1 implies that
le*B|| < el forall z €cC.

This can be seen from Theorem 4.7, to be presented in Section 4, or more
directly by using

—k k —k
¢*B = lim [I— EB] = lim (E) {EI—B]

k—o0 k k—oo \ 2 z
and applying (1.10) with { = k/z.
We have
B” = _n_'_ / z—n—lezB dz
27i Jr ’

where I’ is the positively oriented circle with radius n and centre 0. Therefore
|B*|| £ n!n~"e™. From Stirling’s formula

n! = (n/e)"V2rnexplf,(12n)"!] with0< 6, <1
(see, e.g., Abramowitz and Stegun (1965)), we finally obtain

IB*|| < V2rnexp[(12n)71] < y/2n(n + 1).

a

This proof of (2.12) is essentially based on ideas taken from Bonsall and
Duncan (1980) (see also Bonsall and Duncan (1971)). Another proof can
be given along the lines of Lubich and Nevanlinna (1991) (Theorem 2.1) or
McCarthy (1992).

The next theorem shows that the upper bound for ||[B™|| in (2.12) is sharp.
For the elegant proof, which is beyond the scope of this paper, we refer to
McCarthy (1992).

Theorem 2.5 Let s > 2 be given. Then there exists a vector norm on C?*
such that the s x s shift matrix E, defined by (1.9), has the following two
properties with respect to the corresponding induced matrix norm || - ||:
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(a) FE satisfies the resolvent condition (1.10) with M, = 1;
(b) |E*|| =nle™n™ > V2rnforn=1,2,...,5—1.

According to the following theorem the stability estimate (2.12) can be
substantially improved for the case of some important matrix norms.

Theorem 2.6 Let s > 1, Q € C** invertible, and p = 1,2 or oo. Let the
norm || - || on C*° be defined by ||A|| = |QAQ ||, (for all A € C**). Then
(1.10) with M; = 1 implies (1.6) with My =1 (if p =1 or o) or My =2 (if
p=2).

Proof. Since the result for general invertible @ easily follows from the result
for @ = I, it is sufficient to consider the latter case only.

Let p = co. Suppose B = (8;i) satisfies (1.10) with ||- || = ||+ [|oo, M1 = 1.
Clearly (4.11) holds with W = D, M = 1. By Theorem 4.7 relation (4.10)
holds as well. In view of the expression for 71[B] (with ||-|| = ||-||cc) given at

the end of Section 4.2, we conclude that each disk with its centre at 3;; and
radius p; = 34, |Bjk| lies in the unit disk D. Consequently, |3;;] +p; <1,
and

1Blloo = max (1651 + p;) < 1,

so that (1.6) holds with My = 1.

For p = 1 the proof follows from the result for p = oo and the fact that
|A]l1 = ||AT||oo for all A € C%* (where AT denotes the transpose of A).

For p = 2 the value My = 2 was stated, e.g., in Reddy and Trefethen
(1992) and McCarthy (1992). The proof runs as follows. It can be seen by
a straightforward calculation (or directly from the material in Bonsall and
Duncan (1980) or Lenferink and Spijker (1990)) that the numerical range
{z*Bz : ¢ € C® with z*x = 1} is contained in the unit disk D. The
proof continues by applying Berger’s inequality (see, e.g., Pearcy (1966),
Richtmyer and Morton (1967 p. 89), Bonsall and Duncan (1980) or Horn
and Johnson (1990)). This inequality reads

r(A") < [r(A)]* forn=1,23,...,

where A is any s X s matrix, and r(A) denotes the so-called numerical radius
of A defined by

r(A) = max {|z* Az| : ¢ € C° with z*z = 1}.
Since r(B) < 1, there follows
r(B™") < 1.

By splitting B™ into a sum B™ = A; + iAs with Hermitian A, A, and
by noting that for any Hermitian A the relation ||A|l2 = r(A) is valid, we
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finally obtain
1Bl < |41l + [|A2]| = r(A1) + r(A2) < 2r(B™) < 2.
O

2.4. About the best stability estimates for fived M, > 1

Theorem 2.1 shows that if resolvent condition (1.10) is satisfied with fixed
M;, then ||B"|| can grow at most linearly with n or s. Corollary 2.3 reveals
that the corresponding upper bound is sharp — if we allow M to be variable.

For the special case M, = 1, however, this linear growth with n or s is
too pessimistic, as can be seen from Theorems 2.4 and 2.6 in the previous
subsection.

For fixed values M; > 1 the question also arises as to whether the upper
bound (2.4) can be improved. We do not know of any positive results in this
direction. In the following we shall therefore present negative results only —
in the form of lower bounds for || B"||.

A negative result we have seen already is Theorem 2.5, which is also
relevant for any fixed My > 1. It shows that ||B™|| may grow at the rate v/n
or +/s.

The following two theorems show what growth rates can be achieved for
the three important matrix norms || - ||, p = 1,2, c0.

Theorem 2.7 Let p =1 or p = co. Then there exist C > 0and M > 1
such that

sup ||B"||, > Cvn forn=0,1,2,...,

s,B

satisfying the resolvent condition (1.10) with M1 =M and |- || = - |l

where the supremum is over all integers s > 1 and all matrices B € C%*

Proof. The proof for the case p = oo easily follows from a straightforward
adaptation of Example 2.2 in Lubich and Nevanlinna (1991) to the finite-
dimensional case.

More precisely, let ¢ denote a Mobius transformation that maps the unit
disk onto itself and is not just a rotation (such ¢ exist, see, e.g., Henrici
(1974)). We define B; = ¢(E;), where E; stands for the s x s matrix
E defined by (1.9). From the material in Lubich and Nevanlinna (1991) it
follows that every B, satisfies the resolvent condition (1.10) with ||| = |||l o
and a constant M; independent of s, and that

sl_1+1£10 I1Bloo = Cv/n forn=0,1,2,...,
where C is a positive constant. This proves the theorem for the case p = oo.

For p = 1 the result is obtained by noting that ||A||s = ||AT||s for all
AecC*». O
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Theorem 2.8 Let M > m+1 be given. Then there exist a constant C > 0
and matrices B, € C*° for s = 2,4, 6, ..., such that all B, satisfy (1.10) with
Mi=M,|-[|=1["|l2 and

I(Bs)*?|lz > C(log s)'// log log 5.

Proof. It was shown by McCarthy and Schwartz (1965) that for each M >
7 + 1 there exist a constant v > 0 and s x s matrices E,; (for all even
positive s and j = 1,2,...,s) with the following properties:

8
(Eej)? =E,j #0, EsjEsx=0(#k), > Es;=I, (2.13)
=1

| © .
j odd

Bs =371 e*™/SE, ; satisfies (1.10) with
M1=Mand I-1=1H- 2
For even s we have

(B,)*? = Z( 1YE,;=1-2 Y E,;.

j odd

I2 > y(log s)/?/ loglog s, (2.14)

(2.15)

In view of (2.14) this 1mp11es
1(Bs)*"?|l2 > 2vy(log s)*/%/loglogs — 1 for s =2,4,86,... .

Since all (B,)*/? # 0 there exists a constant C with the property stated in
the theorem. O

For additional interesting examples for the matrix norms ||-||, with p = 2,
oo we refer to McCarthy (1992).

We also mention that after completion of the present article new results
related to this were found by Kraaijevanger (1992) for the matrix norm

3. Stability estimates under resolvent conditions with
respect to general regions V
3.1. Linear stability analysis and stability regions

Consider an initial value problem for a system of s ordinary differential
equations of the form
Uty = AU(t)+b(t) (t>0),
U (0) = Ug.
Here A is a given constant s X s matrix, and ug, b(t) are given vectors in C?.
The vector U(t) € C® is unknown for ¢t > 0.

(3.1)
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In this section we analyse the stability of numerical processes for approx-
imating U(t). This analysis will also be relevant to classes of numerical
processes for solving partial differential equations.

To elucidate this relevance, we assume an initial-boundary value problem
to be given for a linear partial differential equation with variable coeflicients
in the differential operator (which depend on the space variable z but not
on the time variable t). Applying the method of semi-discretization, where
discretization is applied to the space variable z only, one arrives at an ini-
tial value problem for a large system of the form (3.1). In this case the
matrix A, the inhomogeneous term b(t), and the vector uy are determined
by the original initial-boundary value problem and by the process of semi-
discretization. The solution U(t) to (3.1) then provides an approximation to
the solution of the original initial-boundary value problem. For an example
we refer to problem (1.3); by replacing the derivatives with respect to z in
(1.3) by the same finite difference quotients as referred toin Section 1.2, one
arrives at an initial value problem (3.1) with the tridiagonal s x s matrix
A = (aji) given by (1.5). We note that problems (3.1) arise not only when
the semi-discretization relies on the introduction of finite differences, but
also when it is based on spectral approximations (see Gottlieb and Orszag
(1977) and Canuto, Hussaini, Quarteroni and Zang (1988)) or on the fi-
nite element method (see, e.g., Oden and Reddy (1976) and Strang and Fix
(1973)).

Many step-by-step methods for the numerical solution of ordinary differ-
ential equations, like Runge-Kutta methods or Rosenbrock methods (see
Butcher (1987) and Hairer and Wanner (1991)), reduce — when applied to
(3.1) - to processes of the form

up = p(hA)up—1+b, forn=1,23,.... (3.2)

Here ¢(¢) = P({)/Q(¢) is a rational function, depending only on the under-
lying step-by-step method. P(({),Q({) are polynomials, without common
zeros, such that ¢(0) = ¢’(0) = 1. Further, h = At > 0 denotes the step-
size, and we define p(hA) = P(hA)Q(hA) ! when Q(hA) is invertible. The
vectors b, € C° are related to b(t), and u, ~ U(nh) are calculated suc-
cessively from (3.2). It is worth noting that many numerical processes in
partial differential equations which are not constructed with the process of
semi-discretization in mind are still of the form (3.2), and can a posteriori
be conceived as relying on semi-discretization. For instance, it follows from
(1.4) that the process constructed in Section 1.2 can be written in the form
(3.2) with

P(Q)=01+(1-6)0a-60~"

and A = (a;i) satisfying (1.5).
Since (3.2) is a special case of (1.2), the stability analysis of (3.2) amounts
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to investigating the growth of matrices B™ with

B = p(hA).
In this analysis it is useful to introduce the stability region S, defined by
S ={¢: ¢ e Cwith Q¢) # 0 and |p(¢)] < 1}. (33)

Consider the following requirement on hA with regard to S,

o[hA] C S, and for each ¢ € 3S which is a zero of the
minimal polynomial of hA with multiplicity m > 1, (3.4)
the derivatives <p(j)(() vanish for j =1,2,...,m — 1.

Here o[hA] denotes the spectrum (set of eigenvalues) of hA, and 89S the
boundary of S. For the concept of minimal polynomial see, e.g., Horn
and Johnson (1990). The spectral mapping theorem (see Conway (1985)
or Rudin (1973)) states that, if Q(¢) # 0 for all ¢ € o[hA], then

olp(hA)] = {e(C) : ¢ € o[hA]}.

Hence, the condition o[hA] C S in (3.4) is equivalent to the condition o[B] C
D in (1.7) with B = ¢(hA). Further, from the Jordan canonical form of hA
it can be deduced that the condition regarding ¢ € 95 in (3.4) is equivalent
to the condition on the geometric multiplicities in (1.7). Consequently, (3.4)
is equivalent to (1.7). It follows that (3.4) is a necessary and sufficient
condition in order that a finite My exists with stability property (1.6) for
B = p(hA). '

We note that most functions ¢(() of practical interest have nonvanishing
derivatives ¢/(¢) on the whole of 8S. In this case (3.4) simply reduces to
o[hA] C S and the condition that all { € dSNa[hA] are zeros of the minimal
polynomial of hA with multiplicity 1.

In general (3.4) has similar advantages (it is relatively simple to verify, and
reliable for normal matrices) and disadvantages (quite unreliable for families
of matrices that are not normal) as the eigenvalue condition (1.7). In the
rest of this section we adapt (3.4) to conditions on hA that reliably predict
stability — also for nonnormal matrices and norms || - || on C** different
from the spectral norm. An advantage of these conditions on hA over a
resolvent condition on B = ¢p(hA) (as dealt with in Section 2) lies in the
circumstance that, in general, hA has a simpler structure than B, and that
knowledge available about S can be exploited.

3.2. Reviewing stability estimates from the literature

In the literature various stability results can be found, which are essentially
based on the use of resolvent conditions of the form
¢I — hA is invertible and ||(¢I — hA) Y| < My d(¢, V) !

for all complex numbers ¢ ¢ V. (3.5)
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Here, V is a closed subset of the stability region S (see (3.3)), M7 is a
constant, || - | denotes a norm on C** and d(¢,V) = min{|{ —n|: n € V}
is the distance from ¢ to V. Under additional assumptions, to be stated
below, it is shown in the literature that (3.5) implies a stability estimate

le(hA)*|| € Myg(n,s) forn=1,2,3,..., (3.6)
where the function g only depends on ¢ and V (and not on h, A, M, or

I 1D-

In the following we list some of these stability results. We assume through-
out that (3.5) is satisfied with closed V C S and a norm || - || on C**. In
each separate case we formulate the relevant additional assumptions and the
resulting function g.

For any W C C we denote by W the boundary of W, and write C~ =
{¢: ¢ € C with Re( < 0}.

1  In Lenferink and Spijker (1991a) (Theorem 2.2) estimate (3.6) is proved
with g(n,s) = s where v depends only on ¢ and V. The additional
assumptions are: V is bounded and convex; ¢’(¢) # 0 on 4V NAS; and
AV lies on an algebraic curve.

2  In Lenferink and Spijker (1991b) (Lemma 3.3) estimate (3.6) is proved
with g(n,s) = yn where v depends only on ¢ and V. The additional
assumptions are: V is bounded and convex; and || - || is induced by a
vector norm on C°.

3  In Reddy and Trefethen (1992) (Theorem 7.1) estimate (3.6) is proved
with g(n, s) = ymin(n, s) where v depends only on ¢. The additional
assumptions are: V = S, S is bounded; ¢’({) # 0 on 8S; and || - || is a
weighted spectral norm (i.e. |B|| = ||QBQ™1||2 for all B € C**, where
Q is an invertible matrix).

4  In Lubich and Nevanlinna (1991) (Theorem 3.1) estimate (3.6) is proved
with g(n, s) = ymin(n, s) where v depends only on ¢. The additional
assumptions are: V = C~ and || - || is induced by a vector norm on C*.

5  From the material in the important paper by Brenner and Thomée
(1979) it follows that (3.6) holds with g(n, s) = v+/n where v depends
only on ¢. The additional assumptions are: V. =C~, M; =1 and || - ||
is induced by a vector norm on C?*.

6  For § > 0 the wedge W (6) is defined by W(6) = {(:{ =0 or |arg( —
m| < 6}. In Lenferink and Spijker (1991b) (Lemma 3.1) estimate (3.6)
is proved with g(n,s) = 7 where v depends only on ¢ and V. The
additional assumptions are: V is a bounded convex subset of W(a),
where 0 < a < 7/2, V C int(S) U {0}; and || - || is induced by a vector
norm on C°.

7  In Crouzeix, Larsson, Piskarev and Thomée (1991) (Theorem 5) esti-
mate (3.6) is proved with g(n, s) = v where v depends only on ¢ and
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V. The additional assumptions, slightly adapted in order to fit in our
framework, are: V = W(a), SO W(B),0<a<f <w/2and | -|
is induced by a vector norm on C*®. For related material see Palencia
(1991, 1992) and Lubich and Nevanlinna (1991).

8  For p > 0the disk D(p) is defined by D(p) = {¢ : ¢ € Cand |[(+p| < p}.
In Lubich and Nevanlinna (1991) (Theorem 3.4) estimate (3.6) is proved
with g(n,s) = vv/1 + nro where v depends only on ¢. The additional
assumptions are: 79 > 0, V = D(rg), S D C~ and || - || is induced by
a vector norm on C*®. (The assumption S O C~ can be relaxed, see
Lubich and Nevanlinna (1991).)

9  The quantity r = sup{p : p > 0 and D(p) C S} is called the stability
radius of the step-by-step method (3.2) (see, e.g., Kraaijevanger et al.
(1987)). In Lenferink and Spijker (1991b) (Sections 2.3 and 2.4) it was
noted that, for 0 < r < oo, estimate (3.6) holds with g(n,s) = yv/n
where v only depends on ¢. The additional assumptions are: M =1,
I-1l=1"lloo and V = D(r). Next consider r € (0,00] and 0 < rq < r.
If (3.5) holds with V' = D(rg), then, again under the assumptions
My =1, ||| = - |lcc, inequality (3.6) even holds with g(n,s) = 7,
where v depends only on ¢ and r¢ (see Kraaijevanger et al. (1987) and
Lenferink and Spijker (1991b)).

10 In Brenner and Thomée (1979) and Lubich and Nevanlinna (1991) more
tefined estizaakes of the form (39) were derived fo1 fontthions p suts-
fying special conditions. For example, from Lubich and Nevanlinna
(1991) (Theorem 3.2) it follows that, in the situation of point 4, an
estimate (3.6) with g(n,s) = ymin(n®,s), a < 1, is possible for func-
tions ¢ with [©(¢)| not identically 1 on the imaginary axis. We refer
to Brenner and Thomée (1979) and Lubich and Nevanlinna (1991) for
more details.

3.8. Various comments on stability estimates from the literature

Remark 3.1 Results 1, 2, 6 and 8 in the last subsection were proved by
using integral representations of the form

plhd) = o [ PO (T~ Ry,

where T is a proper curve in the complex plane surrounding V, and by
estimating the integral (see, e.g., the proof of Theorem 2.1). Results 5, 7
and 10 were proved by using related, but different, integral representations
for p(hA)".

Results 3 and 4 were obtained by first proving that resolvent condition
(3.5) for hA implies a resolvent condition (1.10) for B = ¢(hA) (with a
different constant M) and then applying (a version of) Theorem 2.1 to this
matrix B.
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Finally, the proof of Result 9 relies on an expansion of ¢(hA)™ in a power
series

@(RA)" = yoI +m(hA + pI) + v2(RA+ pI)? + - (3.7)
with p = 7 or 7, and on bounding the terms of the series using the fact that
the resolvent condition (3.5) (with M1 =1, || || = | : |lc and V = D(p))

implies a so-called circle condition |hA+ pI||c < p. The latter implication,
which is in fact an equivalence, follows immediately from Theorem 2.6 (with
B = p~1(hA+pI)), and was stated in Lenferink and Spijker (1991b) (Section
2.4). In Kraaijevanger et al. (1987), Nevanlinna (1984) and Spijker (1985)
this circle condition was combined with (3.7) to yield the desired stability
bounds.

Remark 3.2 We note that Results 2, 3, 4, 6, 7 and 8, although formulated
in Kraaijevanger et al. (1987), Nevanlinna (1984) and Spijker (1985) for
special norms, are valid as well for arbitrary norms || - || on C**. This can
be seen by a straightforward adaptation of the proofs in Kraaijevanger et
al. (1987), Nevanlinna (1984) and Spijker (1985).

Further, it is easy to see that Result 9 is also valid for norms || - || defined
by | B|| = ||QBQ ™|, (for all B € C**), where Q is an invertible matrix and
p=1 or oo.

Remark 3.3 In all of the above, the resolvent condition (3.5) occurs as a
sufficient condition for stability estimates of the form (3.6). Reddy and
Trefethen (1992) (Theorem 7.1) succeeded in showing (for the weighted
spectral norm, see Result 3) that (3.5) is also a necessary condition for
stability. In fact, they showed — for any matrix hA belonging to a spe-
cific family F defined in their paper — that, in general, strong stability (i.e.
le(hA)™| < Mp for all n > 0) implies the resolvent condition (3.5) with
V = 8§ and M; = yM,. Here v depends only on ¢ and F.

Remark 3.4 Modifications of Results 3, 5 and 9 can be proved if we relax
slightly the assumption V' C S for the set V in the resolvent condition (3.5).
This can be useful in applications (see Section 5).

(a) Let S be bounded and ¢’(¢) # 0 on 8S. Further, let 3> 0 and h > 0
be given. Suppose that the resolvent condition (3.5) is (only) satisfied
with respect to the set V = S+ ShD (but not necessarily with respect
to the smaller set V = S itself).

It follows from Reddy and Trefethen (1992) (Theorem 8.2) that there
exist positive constants 1, 2, 73 (only depending on ¢) such that these
assumptions imply the stability estimate

lo(RA)™|| < My1y1€"2P"" min(n,s) forn=1,2,3,... (3.8)
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whenever Sh < 73. This was proved in Reddy and Trefethen (1992)
for the weighted spectral norm (defined in Result 3). The proof in that
paper can be adapted in a straightforward way to arbitrary norms on
Cc2.

(b) Let 7 < oo have the same meaning as in Result 9, and let M; = 1,
|-l = | lloo- Further, let 0 < 79 < 00, rg < r and 8 > 0 be
given. Then there exists a constant hg > 0 such that ¢ is analytic on
W = D(ro) + BhoD = {¢ : ¢ € C and | + ro| < ro + Bho}. Suppose
that 0 < h < hp and (3.5) is (only) satisfied with V = D(rg) + 8hD.
These assumptions imply the stability estimate

lp(hA)™| < me™ ™ y/n forn=1,2,3,..., (3.9)

where the constants 7;, 2 depend only on ¢, r¢ and Shg (and not on
h, n, s or A). The proof is again based on the expansion (3.7) (with
p = 1p), and can be given in two steps. First we apply Theorem 2.6
(with B = (ro + Bh) "' (hA+roI)) to obtain |hA +rol|| < ro+ Bh and
then use (3.7) and estimates for the |yx| (see Spijker (1985), Corollary
4.3) to derive (3.9). Further, it is easy to see that this result is also
valid for norms || - || defined by ||B|| = ||QBQ ™|, (for all B € C**),
where @ is an invertible matrix and p = 1 or oc.

(c) An estimate of the form (3.9) can also be proved if we replace the
condition V = C~ in Result 5 by V = C™ + ShD. We refer to Brenner
and Thomée (1979) (Theorem 1) for more details.

Remark 3.5 Some of the arguments recently used in Kreiss (1990) and
Kreiss and Wu (1992) are closely related to the above, and can be interpreted
as yielding a result of the form (3.6). The assumptions on ¢ which are
made in Kreiss (1990) and Kreiss and Wu (1992) in order to derive stability
estimates comprise:

The half disk {¢ : Re ( <0, |[{| < R1} is contained in S, (3.10)
¢ is a polynomial which does not transform any
two different points ¢ with Re ¢ =0, || < R; (3.11)

into one and the same image point 2 with |z| = 1.
Here R; is a given positive constant. Assume the s x s matrix hA satisfies
kAl < R < Ry, (3.12)
(¢TI — hA)~Y|| < Ki(Re ¢)~!  for all ¢ € C with Re ¢ > 0.(3.13)

Although the setting in Kreiss (1990) and Kreiss and Wu (1992) is different
in appearance from the one we use here, Theorem 3.2 in Kreiss and Wu
(1992) essentially states that (3.10)—(3.13) imply

(e — (hA))~L|| < Ko(Re ¢)~' forall ¢ withRe ¢ >0.  (3.14)
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We now show that this conclusion is related to the stability results described
earlier. First of all, the assumptions (3.12), (3.13) imply our resolvent con-
dition (3.5) with V = {¢ : Re ¢ <0, [¢| < R} and M; = v2K;. Further,
(3.14) can be proved to be equivalent to a resolvent condition of the form
(1.10) with B = ¢(hA). Therefore, by Theorem 2.1, (3.14) implies a result
of the form (3.6).

The stability estimates which are focused on in Kreiss (1990) and Kreiss
and Wu (1992) are pertinent to I3 norms, and essentially different from (1.6)
or (3.6). In fact, the estimates (3.6) are relevant to stability with respect to
perturbations in the initial value ug of process (3.2), whereas the estimates in
Kreiss (1990) and Kreiss and Wu (1992) are relevant to stability with respect
to perturbations in the vectors b, of (3.2). In Kreiss (1990) and Kreiss and
Wu (1992) this stability concept, referred to as stability in a generalized
sense, is argued to be equivalent to an inequality of the form (3.14) (see
Kreiss and Wu (1992) (Theorem 3.1)). Moreover, an analogous concept (of
stability in a generalized sense) for the continuous problem (3.1) is stated
to be equivalent to a resolvent condition of the form (3.13).

4. Various related concepts and problems
4.1. e-pseudospectra

The useful concept of e-pseudospectra has been introduced and studied by
Landau (1975), Varah (1979), Reddy and Trefethen (1990, 1992), Trefethen
(1992) and others. The focus in these papers is on the (weighted) spectral
norm. The main purpose of this subsection is to extend the notion of e-
pseudospectra to the situation of general matrix norms, and to relate it to
the resolvent condition (3.5).

Let ||-|| denote an arbitrary matrix norm on C**®. Let B be an s x s matrix
and € > 0. Consider for a given complex number A the situation where

there exists an s x s matrix E with ||E| < e such that A € ¢[B + E]. (4.1)

Analogously to Reddy and Trefethen (1990, 1992), Reichel and Trefethen
(1992) and Trefethen (1992) we give the following definition.

Definition 4.1 The set of all complex numbers X satisfying (4.1) is called
the e-pseudospectrum of B and is denoted by o[B].

We emphasize that — unlike the spectrum o[B] — the pseudospectrum
o¢[B] depends on the norm || - ||.

The concept of an e-pseudospectrum can be related to the following prop-
erties:

There exists an s X s matrix E with ||E|| =€ (4.2)
such that A\ € o[B + EJ; ’
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There exists an s x s matrix U with |U|| =1
such that ||(B - A)U|| < ¢

B — )1 is singular, (4.4)
or B — Ml is invertible with ||(B — AI) 7Y > ¢71. ’

(4.3)

We have

Theorem 4.2 (a) Let || - || be a matrix norm on C**. Then (4.1) and (4.2)
are equivalent (provided s > 2). Moreover (4.2) implies (4.3), and (4.3)
implies (4.4). If ||I|| = 1 then (4.3) and (4.4) are equivalent.

(b) Let || -|| be induced by a vector norm |-| on C%, s > 2. Then properties
(4.1) — (4.4) are equivalent to each other. Moreover, they are equivalent to
the requirement that

there exists a vector u € C*® with |u| = 1 such that |(B — Al)u| <e. (4.5)

Proof. (a) First we prove the equivalence of (4.1) and (4.2). The impli-
cation of (4.1) by (4.2) is trivial. To prove the reverse implication we as-
sume there exists a matrix E with ||E| < € and a vector u # 0 such that
(B+ E — AI)u = 0. When s > 2 we can choose a matrix C with C' # 0 and
Cu = 0. Define the matrix E(t) = E +tC for t > 0. There exists a positive
to such that |E(to)|| = € and A € o[B + E(t()], which proves (4.2).

Assume (4.2). Define V = [4,0,0,...,0] € C>* where u € C*® is an
eigenvector of B + E corresponding to the eigenvalue A. Defining U =
VI~V we arrive at |U|| = 1 and (B + E)U = AU. Hence ||(B — AI)U|| =
|[EU|| < €, which proves (4.3).

Assume (4.3). For invertible B — AI we get with E = (B — AI)U the
relation ||E|| < ¢, and therefore 1 = [|(B — AI) " E|| < ||(B — AI)7!||¢, which
proves (4.4).

Assume (4.4) and ||I|| = 1. If B — AI is singular then (4.3) holds with
U = [4,0,0,...,0], where u € C*® is in the null space of B — AI and is
chosen such that ||U|| = 1. If B — Al is invertible then (4.3) holds with
U=|I(B=A)~H~H(B -~

(b) Assume (4.3). Choosing v € C* with |v| = 1, |[Uv| = 1, we have
|(B — AI)Uv| < e. With u = Uv we arrive at (4.5).

Assume (4.5). Taking X = C® and y = u in the corollary to the Hahn-
Banach theorem formulated in the proof of Theorem 2.1, we see that there
exists a linear transformation F' : C* — C with

F(u)=1 and |F(z)| <|z| forall z € C®.
Defining the matrix E by
Ezx = -F(z)(B—A)u forall z € C?
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it follows that Fu = —(B — Al)u and ||E|| = |(B — AI)u| < ¢, which proves
(4.1).
In view of (a) the proof is complete. O

Remark 4.3 (a) In part (a) of Theorem 4.2 the assumption ||I|| = 1 is
essential for the equivalence of (4.3) and (4.4). This can be seen as follows.
Let s > 1, e = ||I||7}, A =0 and B = I. Then (4.4) is always satisfied but
(4.3) holds if and only if ||I|| = 1.

(b) For arbitrary matrix norms, (4.1) can be a stronger condition than
(4.3), even if ||I|| = 1. This can be seen from the following example. On
C2? we define a matrix norm by

IAll = max{[|All1, [|4llc} for all A = (a;;) € C*?
(see, e.g., Horn and Johnson (1990, p. 308)) and choose

A=0, e=% and B=<(1) i)

One easily verifies that condition (4.3) is satisfied by taking

(0 %)
U= .
0 3

But, a straightforward calculation reveals that B + E is invertible for all
s X s matrices E with ||E|| < 1/2, showing that Condition (4.1) is violated.

(S

Remark 4.4 If || - || is the spectral norm, then Conditions (4.1)—(4.5) are
all equivalent to the requirement that B — Al has a singular value ¢ with
o < € (see Reddy and Trefethen (1990), Trefethen (1992) and Varah (1979)).

Following Reddy and Trefethen (1990, 1992) we now formulate a theorem
which shows that the resolvent condition (3.5) can be nicely interpreted in
terms of the e-pseudospectra of the matrix hA.

Theorem 4.5 Let the norm || - || on C** be induced by a vector norm on
C% and let V, h, A, M, be as in Section 3.2. Then the resolvent condition
(3.5) is equivalent to the requirement that for all € > 0 the set o [hA] is
contained in V+ MieD={(: { =€+ nwith £ € V, |n| < Mie}.

The theorem can be proved in a straightforward way by using the fact
that, according to Theorem 4.2(b), Properties (4.1) and (4.4) with B = hA
are equivalent in the situation of the theorem.

Following the ideas of Trefethen (1992), the concept of e-pseudospectra
can also be used to determine numerically regions V and constants M; such
that (3.5) holds. In order to explain how this can be done we assume || - ||
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to be induced by a vector norm on C?*, write B = hA, choose a fixed € > 0,
denote the boundary of o.[B] by I'c and its length by |I'¢|. The set

V =0 [B] (4.6)

can be determined numerically, e.g., by checking for a large set of complex
numbers A whether (4.4) is satisfied. A corresponding constant M; can be
computed from the formula

My = | |(2me)~ L. (4.7)
In order to establish (4.7) we note that for ¢ ¢ V we have

(I-B) = -2—713 /F (¢C—X"YAI-B) ldx

and therefore

— -1 < .II-‘_EI — et = -1
66T = Bl < S max|(¢ — M) 7Het = Myd(g, V)
It should be noted that both V and M, depend on € so that it may pay to
evaluate (4.6) and (4.7) for various values of e.
We refer to Trefethen (1992) for closely related considerations and many

further interesting applications of e-pseudospectra.

4.2. The M-numerical range

When applying the stability results discussed in Sections 3.2 and 3.3, one
may want to prove rigorously resolvent conditions of the form (3.5). In the
following we show that the concept of the M-numerical range, introduced by
Lenferink and Spijker (1990), can be helpful. The M-numerical range, to be
defined below, can be viewed as a generalization of the classical numerical
range (for an s x s matrix B),

{z*Bz : z € C° with z*z = 1}.
The resolvent condition (3.5) will be seen to be satisfied when V' contains
the M;-numerical range of hA.

Let || - || be a matrix norm on C*°, and M a constant with M > |I||.
Assume B is a given s X s matrix. We focus on disks

D[y, p] = {¢: { € C with [¢ — 7| < p}
with arbitrary v € C, p > 0 such that
(B = yD)¥|| < Mp* fork=1,2,3,.... (4.8)
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Definition 4.6 The M-numerical range of B with respect to the norm ||-||
is the set 7a[B)] defined by

T™[B] = ﬂD['y, ol, (4.9
where the intersection is over all disks D[y, p] with property (4.8).

Let W be a nonempty, closed and convex subset of C. If £ belongs to the
boundary W of W and

Re{e (¢~ €)} <0 forall ¢ eW,

where @ is a real constant, then 0 is called a normal direction to W at £.
In order to formulate a basic theorem about the M-numerical range we
consider the following four conditions on B:

™[{B] C W, (4.10)
¢I — B is invertible and ||(¢I — B)~%|| < M - d(¢{, W)~ ¥

forall (¢ Wand k=1,23,..., (4.11)
l|exp[te= (B — ¢I)]|| < M for all t > 0,£ € OW (4.12)
and normal directions 6 to W at ¢, ’
there is a unital matrix norm || - [|" on C** with

corresponding 1-numerical range 7{[B] C W and (4.13)

MY Al < 1A' < M||A] (for all s x s matrices A).
The following theorem was proved by Lenferink and Spijker (1990).
Theorem 4.7 Properties (4.10)~(4.13) are equivalent to each other.

Clearly, 7p¢[B] is the smallest nonempty, closed and convex set W C C
with property (4.10). Therefore, Theorem 4.7 reveals three new character-
izations of the M-numerical range. We see that 7)s[B] equals the smallest
nonempty, closed and convex set W C C with property (4.11), and the same
holds with regard to properties (4.12) and (4.13).

It is clear that (4.11) is fulfilled for any set W with

™ [B] cwcc
In view of Definition 4.6 we thus can make the two following observations.

(I) If V is any closed subset of C with 7ps[hA] C V, then (3.5) is fulfilled
with M; = M.
(II) In order to construct a set V' as in (I) we only have to determine a finite
number of pairs v;, p; such that B = hA satisfies (4.8) for all v = v;,
p = pj. Clearly the set V = [ D[y;, p;] is as required.
j

In Lenferink and Spijker (1990) (Theorem 3.1) and Lenferink and Spijker
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(1991b) stability estimates were derived essentially along the lines of the
observations (I), (II).

We finally note that for M = 1 the set (4.9) coincides with the so-called
algebra numerical range (see, e.g., Bonsall and Duncan (1980) and Lenferink
and Spijker (1990)). In this case some simple expressions for 71[B] are
known. For || - || = || - ||, with p = 1,2, co these expressions are as follows.

o Let|:]|=|"|lco- Then m1[B] is equal to the convex hull of the union of
the Gerschgorin disks D[v;, p;] defined by v; = B;; and p; = 31, |Bjxl,
where (3;; denote the entries of B (see, e.g., Lenferink and Spijker
(1990) (Section 3.1.1)).

e Let|l-|| =|I-|l1- Then 71[B] is easily seen to be equal to the 1-numerical
range of BT with respect to || - ||co-
e Let|-|| =] |l Then m[B] equals the classical numerical range

{z*Bzx : x € C* with z*z = 1} - see the papers mentioned earlier.

4.8. Bounds on the exponential function of a matriz

In Section 3 we focused on stability of the time stepping process (3.2). In
this subsection we shall investigate stability of the underlying initial value
problem (3.1) itself.

Suppose the initial value up in (3.1) is replaced by a slightly perturbed
vector %y and U(t) is the solution to (3.1) with initial value . In analogy
to Section 1.2, (3.1) is said to be stable if a small perturbation v = @y — up
always yields errors V(t) = U(t) — U(t) (for t > 0) that are also small.
Therefore, the stability analysis of the initial value problem (3.1) amounts
to bounding V(t) (for t > 0) suitably in terms of vp. Since V(t) = et4vy we
consider the stability property

et < My for all t > 0, (4.14)

where My is a positive constant and | - || a norm on C*°.

By using the Jordan canonical form of A it can be easily seen that there
exists a finite M, with the stability property (4.14) if and only if the following
eigenvalue condition is satisfied:

All eigenvalues A of A have a real part Re A <0,
and the geometric multiplicity of each eigenvalue A (4.15)
with Re A = 0 is equal to its algebraic multiplicity.

Similar to the situation for the eigenvalue conditions (1.7) and (3.4), eigen-
value condition (4.15) can be reliable (e.g. for normal matrices) or misleading
(for families of matrices that are not normal). A reliable criterion for the
stability property (4.14), in general situations, can be based on the resolvent
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of A, and reads

¢I - A is invertible and ||((I — A)7!|| < M;(Re()™!
for all ¢ with Re( > 0.

In the following we shall discuss the relation between the stability property
(4.14) and the resolvent condition (4.16).
By using the formula

(4.16)

(I -A)"1= / e~Ctet4dt for all ¢ with Re¢ >0
0

one can easily see that (4.14) implies (4.16) with M; = Mj,. Conversely,
(4.16) implies (4.14) with M, depending only on M; and the dimension s,
but otherwise independent of A. Various authors have studied the size of
the optimal Mj as a function of M; and s for the spectral norm or other
special norms (see Miller (1968), Laptev (1975), Gottlieb and Orszag (1977)
and LeVeque and Trefethen (1984)). The following theorem sharpens and
generalizes their results to the case of arbitrary norms on C*%°.

Theorem 4.8 Let s > 1, A € C*° and || - || denote an arbitrary norm on
C**. If (4.16) holds for some M;, then
let4]| < esMy for all t > 0. (4.17)

Proof. The proof is analogous to that of Theorem 2.1, and is based on the
representation of et4 for t > 0 as

1
tA __ t¢ T—A -1 d
= ot ey G~ A7
(see also LeVeque and Trefethen (1984)). O

The sharpness of the bound (4.17) is considered in the following theorem,
which generalizes a result by LeVeque and Trefethen (1984) for the spectral
norm to the case of arbitrary norms on C**.

Theorem 4.9 Let s > 2 and an arbitrary norm || - || on C%* be given.
Then we have for all ¢t > 0

sup{le!4||/M1(A) : A € C>*, M;(A) < o0} >

88
—(s-1) -1/2(4 _ 1)1/2
o 1)!e > e(2m) ™ 4(s — 1)/%, (4.18)
where M;(A) denotes the smallest M; such that (4.16) holds (we define
M;(A) = oo if (4.16) is not fulfilled for any M;).

Proof. Let t > 0 be given. Define A € C*° by A = —al + vE where
a > 0 will be specified later, v > 0 is large and F is the matrix defined by
(1.9). After some calculations similar to those in the proof of Theorem 2.2




228 J.L.M. VAN DORSSELAER ET AL.

we obtain the relations

Mi(4) < s7(s—1)t BT (14 0(r7Y)),

41 = et B (14 0 ()

and hence
le41/M1(A) > e (at)*1s* (s — 1)1/ (s — D!+ O(7™)  (as y — o).

If we choose a = (s — 1)/t, the right-hand side of the inequality tends to
s%e~ (-1 / (s—1)! as ¥ — 00, which is strictly larger than e(2r) ~1/2(s—1)1/2
by Stirling’s formula (see e.g. the proof of Theorem 2.4). O

Note that the upper bound ||e*4||/M;(A) < es of Theorem 4.8 and the
lower bound (4.18) of Theorem 4.9 differ by a factor ~ v/27s. This is
a less satisfactory situation than in Section 2.2, where the upper bound
|| B™||/M1(B) < es was shown to be essentially sharp. Further, Theorem 4.9
does not shed any light on the sharpness question for fized constants M,
since arbitrarily large M;(A) are allowed in (4.18).

For the special situation where (4.16) holds with M; = 1, the upper bound
(4.17) can be improved. This is the content of the following theorem, which
is a well-known result in semigroup theory (see, e.g., Pazy (1983) or Theorem
4.7 above).

Theorem 4.10 Let M; = 1 and || - | be a matrix norm. Then (4.16)
implies (4.14) with My = 1.

In the remainder of this section we will answer the question whether — in
addition to the upper bound (4.17) — there exists an upper bound depending
only on t and M;. This would be analogous to the situation in Section 2,
where ||B"|| was not only bounded by esM;, but also by e(n + 1)M; (see
Theorem 2.1). Clearly, this question is equivalent to the existence of a
function g such that

et < g(t, M) for all t >0,

whenever resolvent condition (4.16) is fulfilled. The nonexistence of such a
function g is proved in Theorem 4.11.

Theorem 4.11 The matrices
-1 -2 ... -2

Ay = T e, s>,
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satisfy the resolvent condition (4.16) with ||-|| = ||-|| o and M; = 2. Moreover
we have
Jim lef42]|oo = 00 for all ¢ > 0. (4.19)

Proof. For A= A, we have A= —(I+ E)(I — E)~1, where E is the matrix
defined by (1.9). Hence we arrive for ( € C with Re{ > 0 at

1 2 loc-1\i
Cr-a <+1{I—c+1]§((+1) EJ}’
from which we obtain
_ Re( -1
I—A) Y i 3
(ReQCI-A) o < I<+1I{ IC }
= (Re<)|<+1|’1{1+2(|<+1|—|<—1|)-1}sz,

implying (4.16) with constant M; = 2.

In order to prove (4.19) we fix ¢t > 0 and define the complex function f by
F(¢) = exp[—t(1 +¢)(1 = ¢) Y] (for all ¢ # 1). The function f is analytic on
C\ {1} and can therefore be represented on the open unit disk by a power
series

FO =3 anlt)c™

n=0
Since f(ei?) = exp[— it/ tan(36)] (for small positive §), we see that the limit
limg_,o f(e?) does not exist, implying that

o0

> lan(t)| = oo. (4.20)

n=0

The proof of (4.19) is completed by combining (4.20) with

s—1 s—1
A=f(B) =3 an(DE", lelloo =3 lan(t)l.
n=0 n=0

0

We remark that after completion of the present paper new results related
to this were found by Kraaijevanger (1992) for the maximum norm | - || oo-
5. Applications and examples
5.1. Range of applications

It is clear from Sections 1.2 and 3.1 that the stability estimates discussed
in Sections 2 and 3 are relevant to numerical processes for solving linear
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differential equations which are essentially more general than the classical
test problems mentioned in Section 1.1. The results of Sections 2 and 3 have
a potential for clarifying actual stability problems in cases where Fourier
transformation techniques are unlikely to be successful. Such cases comprise
linear differential equations with nonsmooth variable coefficients, spectral
methods, and finite difference or finite element methods with highly irregular
geometries.

Still, at first sight, most of the stability results in Sections 2 and 3 may
be considered to be quite weak in that the upper bounds for ||B™|| do not
remain bounded as n — oo or s — oo. However, in computational practice
troublesome instability usually manifests itself by an exponential growth of
the error. Evidently such growth is not possible when the upper bounds
of Sections 2 and 3 are in force — these upper bounds grow at the rate of
some power of s or n. In fact, various authors have allowed such polynomial
growth in their definition of stability — e.g. Strang (1960), Forsythe and
Wasow (1960) and Gottlieb and Orszag (1977).

In Section 1.2 we indicated that bounds on ||B"|| are useful when analysing
the propagation of rounding errors vy = ug — ug. But the stability estimates
of Sections 2 and 3 are also relevant to the question of how fast the so-called
global discretization errors

dn = U(nh) — up (5.1)

approach zero when h = At — 0. Here U(t), u, satisfy (3.1) and (3.2),
respectively. We define the local discretization error e, by e, = h7lr,,
where r,, denotes the residual in the right-hand member of (3.2) when u,, and
Un—1 in that formula are replaced by U(nh) and U((n — 1)h), respectively.
Writing B = ¢(hA) we then have d,, = Bd,_1 + he,, and therefore

n
dn=h)_ B" e (5.2)
Jj=1

From this representation it is evident that the stability estimates from Sec-
tions 2 and 3, in combination with bounds on the local discretization errors,
can be used to derive bounds on the errors (5.1). We note that the same
holds true when in the numerical solution of a given partial differential
equation, with solution u(z,t), one replaces the vector U(nh) in (5.1) by a
suitable projection in C*® of the true u(z,t). Of course e, should then be
defined accordingly.

If nh =t > 0 is fixed, and the bounds on ||B"| grow with some power
of n (or s), then a straightforward application of (5.2) yields bounds on the
global errors that are of a lower order than the local discretization errors.
But, Strang (1960) has already shown that, even in the presence of such
polynomial growth, it may be possible to establish bounds on the global
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discretization errors that are of the same order as the local errors — provided
the problem itself is sufficiently smooth.

For subsequent extensions of Strang’s result to linear and nonlinear prob-
lems, see, e.g., Strang (1964), Spijker (1972), Brenner and Thomée (1979),
Thomée (1990), and the references therein. In the case of nonlinear prob-
lems the basic assumptions in these papers include the requirement that a
linearization of the actual numerical process is stable (in the sense that poly-
nomial growth is allowed). Therefore the stability analysis of linear processes
(as in the present paper) may contribute to the stability analysis of numeri-
cal processes for nonlinear differential equations, see also Lopez-Marcos and
Sanz-Serna (1988).

We finally comment on the relevance of the bounds on || exp(tA)|| obtained
in Section 4.3. Similar to the situation for ||p(hA)™|| discussed above, these
bounds are not only relevant for studying the effect of initial perturbations
v = g — uo (such as rounding errors) on the solution U(t) of initial value
problem (3.1), but also for analysing the global discretization error

d(t) =U(t) - U(t)

when (3.1) is obtained by semi-discretization of a partial differential equa-
tion. Here U(t) denotes a suitable projection in C* of the solution to the
partial differential equation. Defining the corresponding local discretization
error e(t) to be the residual appearing in the right-hand side of the differ-
ential equation in (3.1) when U(t) is replaced by U(t), we readily obtain
d'(t) = Ad(t) + e(t), so that

d(t) = /0 " exp((t — 7) A)e(r) dr.

From this representation, which is a continuous analogue of (5.2), one can
derive bounds on the global errors d(t) by combining bounds on the local
errors e(t) and the bounds on || exp(tA)|| obtained in Section 4.3.

5.2. Examples pertinent to the theory of Section 3

In order to illustrate some of the preceding notions and theorems we consider
the simple initial-boundary value problem

ut(z’t) = (a(:c)u(a:,t))x + g(a:,t), (5 3)
u(z,0) = f(z), u(1,t)=0, where0<z<1,t>0. )

Here a, g, f denote given functions with a(z) > 0. The values u(z,t) are
considered unknown for 0 <z < 1,¢t> 0.

We select an integer s > 1 and define Az = 1/s. Approximating (au), by
the forward difference quotient (see, e.g., Richtmyer and Morton (1967))

(a(z)u(z,t)): ~ (Az) H{a(z + Ax)u(z + Az, t) — a(z)u(z, 1)},
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problem (5.3) is transformed into a semi-discrete problem of the form (3.1)
with A = (a;i), where

i = —sa((G-1)/s) (I=12...,s),
Qaji+1 = 3(1(_]/3) (.7 =12,...,5— 1)’
Lo 77" = 0 otherwise.

Further,

o) = (9(0,t),9(1/s,1),...,9((s = 1)/3,t)T,

o = (f(0),f(1/s),...,f((s —1)/s)T,
and the jth component U;(t) of the solution U(t) to (3.1) approximates the
solution u(z,t) to (5.3) at (z,t) = ((j — 1)/s,t) (for j = 1,2,...,s).

In the following we focus on conditions that guarantee the stability of
the fully discrete numerical process (3.2). We will derive upper bounds for
llp(hA)™||p in the cases p = 1 and p = oco. For simplicity we assume that
the ratio 4 = h/Az is fixed. Further we introduce the constants

= = /
o= max a(z), fB Bax a (z).

Case 1: p = 1. For the norm || - ||; one easily verifies that the matrix hA
satisfies
1hA + opl|l1 < ap.
Applying part (a) of Theorem 2.1 to the matrix B = I + (ap) "1hA we see
that hA satisfies the resolvent condition (3.5) with
Mi=1 and V ={¢:[(+ ap| < au}.

Suppose that ap < r, where r is the stability radius, which was defined in
Section 3.2 (Result 9) to be the radius of the largest disk in the complex left
half-plane which is tangent to the imaginary axis at the origin and lies in
the stability region S (defined by (3.3)). Then it follows from Remark 3.2
and the material in Section 3.2 that

le(RA)*||1 < ymin(s,\/n) forn=1,2,3,...,

where v depends only on ¢.
Under the more stringent condition au < r it follows from Result 9 (with
ro = ap) and Remark 3.2 that we even have

”(p(hA)nHI <v forn=12.3,...,

where <y depends only on ¢ and ap . Case 2: p = co. For the norm || - || »
one easily verifies that the matrix hA satisfies

IhA + apllloo < o+ Bh.

When 3 < 0 we can proceed as in Case 1. In the following we assume that
B >0.
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An application of part (a) of Theorem 2.1 to the matrix B = (au +
Bh)~t(hA + aul) shows that hA satisfies the resolvent condition (3.5) with

Mi=1 and V={C:|¢+ayu| <au+ Bh}.

Suppose that ap < r and r < oo. Let the stability region S be bounded and
¢'(¢) # 0 on 8S. Then it follows from Remark 3.4 (parts (a) and (b)) that
we have

lo(hA) oo < ¥1€"2P™ min(s,v/n) for n=1,2,3,...

whenever Sh < 3. Here 71, 72, v3 > 0 only depend on .

In case 7 = 0o we can apply the general result mentioned in Remark 3.4
(part (c)) so as to obtain a similar stability estimate.

Further illustrations of the theory of Section 3 can be found, e.g., in
Lenferink and Spijker (1991b) and Reddy and Trefethen (1992). In Kraai-
jevanger et al. (1987) an example was presented pertinent to problem (1.3).

5.8. Numerical illustrations

In order to give a numerical illustration of the material of Section 5.2 we
consider the classical fourth-order Runge-Kutta method (see, e.g., Butcher
(1987)). Applying this method to the semi-discrete problem (3.1) as speci-
fied in Section 5.2, one arrives at a fully discrete process (3.2) with

CZ <3 <4
P =1+C+ 5+ 5+ (5.4)
The corresponding stability radius r is equal to
r=1.393 (5.5)

(rounded to four decimal places). For later use we note that it follows from
the definition of r that

the interval [—2r, 0] is contained in S. (5.6)

We consider the matrix A, defined in Section 5.2, with three different
choices for the function a(z), viz.

a(@) =1, ay(z)=1-20 a3(x)=1-=z.

Using the notations of the preceding subsection, we have for all of these
functions that

a=1 g<0.

For given s and function a(z) we shall measure the stability of the corre-
sponding numerical process by the quantity

c(p,a) = sup |lo(hA)" |-
n>0
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Table 1. Values of c¢(u,a;) for s =80

h po| o elpea) c(p, az) c(p, a3)
0.0125 1 1 1 1
0.0150 1.2 1.12 1.12 1.08
0.0175 1.4 2.26 2.26 1.30

0.0200 1.6 | 3.47x10° 2.58 x 107 4.20
0.0225 1.8 [4.93x10¥ 7.56x 101 1.73 x 10?
0.0250 2.0 | 9.06 x 105 2.68 x 10?5 4.17 x 104

For s = 80 we have listed some values of c(u,a;) in Table 1. In the table
we see good stability up to g = 1.4. This is perfectly in agreement with the
conditions of Section 5.2 since, in view of (5.5), the requirement

ap <71

amounts to u < 1.393. For p > 1.4 we see large values in the table, indicating
strong instability. It is worth noting that for all 4 < 2.0 requirement (3.4)
is still fulfilled, since for these u we have

olhA) C S\ 8S.

This inclusion follows from (5.5) and (5.6) and the fact that, for our functions
a;,
a[hA] C [-u,0).

The numerical results thus confirm the reliability of the stability criteria
discussed in Section 5.2, and the failing of the eigenvalue condition (3.4).

For further numerical illustrations related to the material of Sections 2
and 3 we refer to Trefethen (1988), Lenferink and Spijker (1991b) and Reddy
and Trefethen (1992). For a numerical illustration pertinent to problem (1.3)
see Kraaijevanger et al. (1987).
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1. Introduction

Viscous incompressible flows are of considerable interest for applications.
Let us mention, for example, the design of hydraulic turbines or rheologi-
cally complex flows appearing in many processes involving plastics or molten
metals. Their simulation raises a number of difficulties, some of which are
likely to remain while others are now resolved. Among the latter are those
related to incompressibility which are also present in the simulation of in-
compressible or nearly incompressible elastic materials. Among the still
unresolved are those associated with high Reynolds numbers which are also
met in compressible flows. They involve the formation of boundary layers
and turbulence, an ever present phenomenon in fluid mechanics, implying
that we have to simulate unsteady, highly unstable phenomena.

This article will deal mainly with problems associated with incompres-
sibility effects but will also try to address the other issues. It will not be
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an exhaustive presentation and will evidently be somewhat biased by the
prejudices of the author and his ignorance of many areas of an ever growing
literature. The reader might consult the books by Girault and Raviart
(1986) where other mathematical aspects of the problem are treated. The
book by Hughes (1987) is application-oriented and is a good reference for
those interested in the actual implementation of finite element methods.
The reader should also refer to Pironneau (1989) or to Thomasset (1981)
for more information and other aspects of the problem.

2. The finite element method
2.1. Sobolev spaces

Let L2(Q) be the space of square integrable functions. We then define the
Sobolev spaces,

H™(Q) = {v|v € L}(Q), D € L*(Q), |a| < m} (2.1)

where D% = 9l°lv/9251025? ... 8z2", |a| = @1 + a2 + -+ + ay. For our
purpose,the most important of these spaces will be H!(2) (and some of its
subspaces). We define on H™((?), the semi-norm

[vlm,@ = ( > /QID"v(w)Px)m- (2.2)

|a|=m

It is then clear that |v|g g is the usual norm on L?(2). In general, we shall
use on H™(?) the standard norm

1/2
olma = ( X ki) 23)

la|]<m
. 1/2
which on H}(Q) reduces to ||v]|1,0 = (|”|(2),9 + |v|iQ) i

2.2. Conforming finite elements

We shall be interested here in finite element approzimations of H}(f2) and
L?(R). It is not possible to give a complete presentation of the finite element
methods as this would require a book in itself. We refer to Ciarlet (1978),
Ciarlet and Lions (1991), Hughes (1987), Raviart and Thomas (1983) or to
the classical Zienkiewicz (1977) for a general presentation. For more specific
issues and details on many of the topics introduced here, Brezzi and Fortin
(1991) should be a suitable reference. We nevertheless need a minimum of
notation.

The basic idea of the finite element method is to construct a partition T}, of
the domain by subdividing it into triangles or quadrilaterals which will be
called elements. One then builds approximations using polynomial functions
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defined element-wise with some continuity requirements at the interfaces
between the elements. To approximate L2(2) no continuity is required while
C%(Q)-continuity yields correct approximations of H1(2) . Higher-order
continuity properties would be required for higher-order Sobolev spaces. To
describe finite element approximations more precisely we shall need a few
definitions. Let us define on an element K € T the space of polynomials of
degree < k,

Pu(K) = {p(z1,23) | p(z1,02) = Y ay 7} 23} (24)
i+j<k

The dimension of Py(K) is (k+1)(k+2)/2 for n = 2 and for n = 3,
(k+ 1)(k + 2)(k + 3)/6. We shall also use, (for n = 2)

Py e, (K) = {p(x1,$2) | p(z1,22) = ) aij 7 x%} (2.5)

i<ky

J<ke
the space of polynomials of degree < k1 in z; and < k2 in z2. In the same
way we can define Py, , x, (K) for n = 3. The dimension of these spaces is
respectively (k1 + 1)(k2 + 1) and (k; + 1)(k2 + 1)(k3 + 1). We then define

[ Pex(K) forn=2,
Qk(K)_{P::k(K) for n = 3.

The classical finite element approximations are obtained by using polyno-
mials like Py (K) or Qx(K) on some reference element K and to carry them
over to an arbitrary element K by a change of variable:

vplg =Do F71, (2.7)

(2.6)

where K = F(k ) and ¥ is a polynomial function on K. Continuity is
obtained by a suitable choice of the degrees of freedom, that is, interpola-
tion points defining the polynomials. The simplest case is described in the
following example.

Example 2.1 (Affine finite elements.) This is the most classical family of
finite elements. The reference element is the triangle K of Figure 2.1 and
we use the affine transformation

F(&) = zo + B3, (2.8)

where B is a two-by-two matrix.

The element K = F(K) is an arbitrary triangle and it is not degenerate
provided det B # 0. We now take P = P,(K) and choose an appropriate
set of degrees of freedom. The standard choices for k¥ < 3 are presented on
Figure 2.2 where the dots represent the degrees of freedom. One notes that
this choice of points ensures continuity at the element interfaces. O
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.

x>

(1,0)

Fig. 2.1. Affine transformation.

Fig. 2.2. Standard affine elements.

The next example presents a second classical family of finite elements.
They are defined on arbitrary quadrilaterals and will not be polynomial
functions even though they are obtained by applying a change of variables
to a polynomial.

Example 2.2 (Quadrilateral elements.) The reference element concern-
ed is taken to be the square K =]0,1[x]0,1[. We take P = Qx(K) and a
transformation F' with each component in Ql(R’ ). We present the standard
choice of degrees of freedom for k =1 in Figure 2.3. It must be noted that
we need F € (Q1(K))? to define a general straight-sided quadrilateral. O

Finally we recall that it is possible to employ curved elements to obtain
better approximation properties near the boundary of the domain 2.

Example 2.3 (Isoparametric elements.) Let us first consider the trian-
gular case. We shall use the same reference element and the same set P
as in Example 2.1. We now take the transformation F(£) so that each of

x>

Fig. 2.3. @) isoparametric element.
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Fig. 2.4. Curved triangular element.

its components F; belongs to Py(K). For k = 1 nothing is changed but
for k > 2, the element K now has curved boundaries. We depict the case
k = 2 in Figure 2.4. It must be noted that the curvature of element bound-
aries introduces additional terms in the approximation error and the curved
elements should be used only when they are really necessary (Ciarlet and
Raviart (1972) or Ciarlet (1978)). Similar constructions enable us to define
isoparametric quadrilateral elements using F € Q(K). O

We note again that the degrees of freedom have been chosen in order to
ensure continuity between elements. We also need some basic results about
the accuracy of interpolation by finite element functions. In dealing with
H(Q), one generally employs Lagrange interpolation, that is, the value of
the interpolant at the degrees of freedom are computed from the value of
the functions at these points, excluding derivatives. There is, however, a
difficulty as point values of functions in H!(f2) are not, in general, defined.
This can be circumvented by using the technique of Clément (1975) where
local averages are employed instead of point values. The details are beyond
the scope of this article. We shall only cite a very basic result, assuming 7,
to be defined by the usual Lagrange interpolant.

Proposition 2.1 If the mapping F is affine, that is F(£) = o+ B%, and if
Thpk = pi for any px € Py(K), we have forv e H*(Q),m<s,1<s<k+1

v = Tholm,x < e [|B7H™ |BII® Jvls, k- (2.9)

As we said above, the condition s > 1 is required in order to ensure that
point values of the function to be interpolated are well defined and the result
can be improved (cf. Brezzi and Fortin (1991)). To obtain global results
on {2, we shall need some assumption to ensure that the partition 7} is not
degenerate, i.e. that the angles of the triangles are bounded away from 7.
Let then hi be the diameter of K, and let us define, for affine elements,

” (2.10)

0K
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where pg is the diameter of the largest inscribed disk (or sphere) in K. We
then say that a family of triangulations (73)n>0 is regular if

ox <o, VK €T, Vh. (2.11)
One may then prove the following result.

Proposition 2.2 If (71),>0 is a regular family of affine partitions, there
exists a constant ¢ depending on k and on ¢ and an interpolation operator
II; such that

Y R -2 g < clvligm=0,1.0 (2.12)
K

For more general partitions including general isoparametric elements, the
result is qualitatively the same: we have an O(h*) approximation provided
the family of partitions is regular in a sense which has to be made precise
for each type of partition.

Finally, we introduce some notation for the usual spaces of finite element
approximations. We thus define

£: = {v | vk € P(K), ve H'(Q)}. (2.13)

In the same way we shall write Lfk] when 7}, consists of quadrilaterals and

the local approximations are built from Qk(ﬁ' ) by an appropriate change of
variables. We shall also quite often need a class of functions called bubble
functions. For an element K a bubble function is a function vanishing on
OK. In particular, we shall denote

{ By, = (Pe(K) N Hy(K)), (2.14)

B[k] =Qr(K)N H&(K))

2.8. Scaling argument

In some of the proofs, we shall invoke scaling arguments in order to express
the dependence of some quantities on the finenes of the mesh. The standard
procedure (cf. Ciarlet (1978)) is to map the quantity to be estimated on a
reference element K on which it can be computed and then to study the
effect of the change of variables which maps K to an arbitrary element K
in the partition. An interesting variant of this procedure, introduced by
Dupont and Scott (1980), consists essentially of separating the two issues of
the size and the shape of the element. Indeed, using the change of variables

z=hga+b, (2.15)
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one can easily check the effect of mesh size on a given quantity. In this way
one sees that one has

) = |op|, £
[valx = lonly g (2.16)
lvrlo,x = bk [Only & »

and many other similar relations. The effect of shape is then treated by an
argument of compactness: a continuous function is bounded on a compact
set. One obtains in this way, for a general transformation,

[vnl1xc = c(k, 80)|Onl; £ » (2.17)

where k is the degree of polynomials employed and g is the smallest angle
of the mesh. We refer the reader to Dupont and Scott(1980) or Brezzi and
Fortin(1991) for more details.

3. Presentation of the problem

Let  be a domain of R? or R? and let us denote I' its boundary. We shall
want to solve in this domain, over a time interval |0, T'[, the Navier-Stokes
equations of incompressible fluid flow with initial conditions and boundary
conditions. Let p be the density of the fluid, u its velocity and p, its pressure.
We thus have to find in 2, a solution of

p(%‘+u-gradu) —2u Au + gradp = pf, (3.1)
divu =0, (3.2)
u(z,0) = uo(x). (3.3)

In equation (3.1), we have denoted
82111 1 0 8u1 a’U2
w7 * 50 (50r * 32)
Ot Org \O0zy 011 (3.4)
62U2 1 o 6u1 a'U2) )
0r3 %011 \0z2 011/’
Taking (3.2) into account, it is easily seen that we have
2Au = Au. (3.5)

However, the variational formulation and natural boundary conditions will,
as we shall see later, be different for these two forms of the equations. We
consider a part I'p of I' on which Dirichlet boundary conditions are given,

ulr, =0, (3.6)

and a part I'y on which Neumann type conditions are specified, that is, in
the present case, a condition on stresses is given. Let m be the outward
unit normal to I',, and ¢ the associated tangent vector for a two-dimensional

Au =
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problem or let ¢;,t2 be tangent vectors for a three-dimensional problem. We
then impose, g = {gn, 9t, gt2} being given, the boundary conditions on I i

ou-n
-p+ 2“_571_ = gn, (3.7
Jun  Ou-t;\ .
H (—67 + -Fn—) = Ggt, = 1,2, (3.8)

For two-dimensional problems, we have only one tangent vector and one
condition in (3.8) instead of two. We shall, in fact, work with a variational
formulation of the Navier—Stokes equations, and for this we shall need to
define appropriate function spaces. Let us denote

V = (H(®)? = {vlv € (H' (@))% vIr, =0} (3.9)

Q = L*(Q). (3.10)
We also define the rate-of-strain tensor e(u) by
1 Bu, an

€ij = 5 (623] + 627,) . (311)

Let ¥ =]0, T[x2 and let us seek a weak solution u € L2(0,T; V), p € L*(X)
of equations (3.1)—(3.3), that is, let us look for {u,p}, solution of

( /@--vdx+2u/ e(u):e(v)dz+/u~gradu-vdx
o Ot ) Q

) _/f.vdx—/pdivvd.r:O, YveV (3.12)
Q Q

/ gdivudz =0, VqeQ,
\ JQ
where the meaning of du/dt would have to be made precise.

Remark 3.1 It can be easily checked through an integration by parts that
the natural boundary conditions associated with this variational formulation
are precisely (3.6)—(3.8). This would not be the case had we employed,
instead of

2;;/95(14) : (V) dz,

a different bilinear form such as p [, grad u : grad v dz which leads to the
same equations inside 2 but with the boundary conditions

—P+p—p— = gnonly, (3.13)

ou-t

—EE— = gtOIlFN. (314)
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It is also possible to obtain as a natural condition
rotulr = g, (3.15)

using p forotu : rotvdz as a bilinear form, which still generates the same
differential operator in 2. O

We refer the reader to Temam (1977) or Lions (1969) for a complete
presentation of existence and uniqueness results. One striking point with
respect to these equations is the absence of an equation containing dp/dt:
thus our system is not of the Cauchy—Kowalevska type. In fact the pressure
appears here as a Lagrange multiplier associated with the divergence-free
condition dive = 0. To understand this we shall, in the next section,
consider the simplified steady-state Stokes problem, valid for low-speed or
highly viscous flows. For the moment, we shall highlight an additional prop-
erty of the above equations. They are equations of ‘convection—diffusion’
type, by which it is meant that they model the mixing of transport phe-
nomena with diffusion. It is well known that in this kind of problem the
behaviour of the solution is determined by the relative magnitudes of the
convection and the diffusion terms. Diffusion-dominated problems behave
like standard parabolic equations while advection-dominated ones, although
theoretically parabolic, behave almost as if they were hyperbolic, except in
some small regions, ‘boundary layers’, where diffusion effects reappear with
startling consequences. In the case of the Navier-Stokes equations, the ratio
of advection to diffusion is expressed by the Reynolds number. It is obtained
by non-dimensionalizing the equations and has the form

Re = B%Li (3.16)

It must be emphasized that a Reynolds number has no absolute meaning: it
is a relative number. It enables problems in the same geometry with similar
boundary conditions to be compared. In practice, high Reynolds number
problems are difficult and must be handled with care but there is no absolute
scale for ‘large’ or ‘small’ .

4. The Stokes problem: incompressibility and pressure
4.1. The continuous problem

We shall consider in this section the simplest possible incompressible flow
problem, the steady-state Stokes problem, obtained from equations (3.1)—
(3.2) by neglecting the time derivative and the inertial terms wgrad u. This
approzimation of the Navier—Stokes equations is valid for very low Reynolds
numbers, that is for small velocities or high viscosity. The problem thus
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becomes:
—2u Au +gradp = f, (4.1)
divu =g, (4.2)
u|r =0. (4.3)

In (4.2) we have introduced a non-zero right-hand side g € Q. This is for
the sake of generality and causes no additional difficulty. In most cases, we
shall take g = 0. We shall describe how the Stokes problem can be seen as
a constrained optimization problem and how pressure appears naturally as
a Lagrange multiplier. This will enable us to apply the general results of
Brezzi (1974), Babuska (1973) or Brezzi and Fortin (1991). This will also
help us later in the construction of numerical algorithms for the computation
of the pressure. First we define

a(u,v) = 2u /Q ) : ef) da, (4.4)
b(v,q) = —/quivvd:z;. (4.5)

Clearly, problem (4.1)—(4.3) can be written in the form:

{ a(u,v) +b(v,p) = (f,v), Yvey, (4.6)
b(u,q) = (9,9), Vge€Q. '

This problem is nothing but the optimality condition of a saddle-point
problem,

inf sup p,/ |s('u)|2dz—/qdiv'vda:—/f-'vdz+/ gqdz, (4.7)
VeV ¢qeQ Q Q Q Q

which is equivalent to the contrained minimization problem,

: 2
Lnf u /Q le@)|? dz — /Q fvde. (4.8)
In this context, it is clear that the pressure may be seen as the Lagrange
multiplier associated with the constraint divv = g. This will also remain
true, in a generalized sense, for the full Navier-Stokes problem (3.1)—(3.3).
If we now return to problem (4.6), we also see that we are now dealing with
a mized variational formulation (Brezzi 1974, Brezzi and Fortin 1991) and
we have a general framework in which to study our problem. In general, the
existence and uniqueness of the solution of a problem of type (4.6) requires
two conditions. The first one is coercivity of the bilinear form a(-,-) on V. In
the case of the Stokes problem, in the setting defined above, this condition
is immediately satisfied and is nothing but Korn’s inequality, that is, there
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exists a constant a > 0 such that

/Q e : e@dz > afv|? Vv eV, (4.9)

which holds for V = (H}(€2))"(n = 2, 3) but also for more general bound-
ary conditions (see Duvaut and Lions (1972)). The second condition is
known as the inf-sup condition, which will be our terminology, but also as
the Babuska-Brezzi condition or even the Ladyzhenskaya—Babuska—-Brezzi
(LBB) condition. It can be written as,

b
inf sup (v,9)

2 > ko > 0. 4.10
veveeo lullviiglo = ™° (410)

This looks somewhat abstract and cumbersome. It means in fact that the
operator B from V into @', the dual of V, is surjective. In a more general
form it can be written as

inf sup b(v.q) > ko >0, (4.11)
vev qeQ lullv llallQ) xer 5t
where
ker B! = {g| b(v,q) = 0,Yv € V} (4.12)
and the quotient norm ||g|| g/ ker pt is defined by
llallo/ ke Bt = qoeiigBt lig + qollq- (4.13)

Condition (4.11) then means that the operator B has a closed range in Q’
and the p part of the solution is then only defined up to an element of ker B®.
In our case, we have Q = Q' = L?(Q) and the operator B is the divergence
operator from V into L2(Q2). With V = (H}(f2))?, it is not surjective and
ker B® = ker(grad) is the subspace of constants. Pressure will then be
defined up to a constant. Whenever we have Neumann conditions on part
of the boundary, we recover surjectivity and hence uniqueness.

4.2. The dual problem

It is usual, when a Lagrange multiplier is introduced to enforce a constraint,
to consider the dual problem, that is the problem transformed into this new
variable. It is obtained by changing the inf-sup problem (4.7) into a sup-
inf problem through reversing the order of operations and eliminating v
by performing the minimization in v for a given ¢. In our case, an easy
calculation shows that the dual problem can be written as

sup%/ A lgradg-gradgdz - / Alf . gradgdz, (4.14)
q Q Q
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for which the optimality condition is
div A~ lgradp =divA~lf. (4.15)

As we shall see later, the properties of the discrete dual problem play a
crucial role in the analysis of the numerical scheme.

4.8. The discrete problem

We are now in a position to consider discretizations of problem (4.6). To do
so, we introduce finite-dimensional subspaces V), C V and @, C Q and we
consider the discrete analogue of (4.6),

{ a(’ll,h,‘vh) + b(vhaph) = (.favh), V’Uh S Vha (4 16)
b(uh’Qh) = (ga Qh), VQh € th )

where, as in (4.6) g will be zero in most cases. For such a conforming
approzimation, the general theory of Brezzi (1974) (see Brezzi and Fortin
(1991)) applies directly. It relies on the discrete version of conditions (4.9)
and (4.11). The first condition is trivial in the present case and follows
directly from the inclusion V;, C V. To consider the second condition, we
first identify Q, and @}, just as we identified Q and Q’, we let B;, = divy,
be the discrete divergence operator from V) into @) associated with the
restriction of the bilinear form b(-,-) to these spaces and let B}, = grad,, be
its transpose,

(divh wh, gn) = b(wh, gn) = (un,grad,gn), un € Vo, gn € Q. (4.17)

In general, divy, is not the restriction of div to V. Indeed, from equation
(4.17) we have

divy up = Py, divu,, (4.18)

where Pg, is the projection operator from @Q onto Qp. As we shall see

later, in many actual cases divy, up, will be some average of divu,. This also
implies that the kernel of the discrete gradient grad,,

kergrad, = {qn € Qn | b(vr,qn) = 0,Vvr, € V3 }, (4.19)

is not necessarily the one-dimensional subspace of constants. Cases will arise
in which nonconstant functions have a zero discrete gradient. Such cases will
be pathological and will require special care if they are not simply avoided.
We can now state the second condition as

inf sup b(vha qh)
VhEVL ah€QM ”vh”V ”(Ih”Qh/kergradh

The first part (> kj) is trivial in a finite dimensional setting. The really
important requirement is the existence of a constant ko independent of h.

> kp > ko > 0. (4.20)
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Given coercivity and the discrete inf-sup condition (4.20) we can apply
the theory of Brezzi (1974) to obtain the existence and uniqueness of (up, pp)
in V, and Qp/ kergrad;, and we can state

Theorem 4.1 Let (u,p) be the solution of problem (4.6) and (wn,pp) be
the solution of the discrete problem (4.16). We then have the error estimates:

llw — unllv (4.21)
< i _ - _
< Cu(1/ay1/k) { int u—valy + st - aillo},

lp — Pull @/ xer(grad,) (4.22)
< Cy(1/a,1/k3) inf ||lu-—wv inf - .
< Co(1/e 1/RD){ inf u—wally + inf llp— arllo}

It must be remarked that both constants C; and C; depend on 1/a but
that C depends on 1/k2, which makes the approximation of pressure much
more sensitive to a bad behaviour of k. In many cases where kj is not
bounded from below but depends on h, it is customary to see acceptable
approximate velocities but a disastrous approximate pressure field. We shall
develop later another approach to clarify this point. Before doing so, we
shall present a criterion for the inf-sup condition and consider some classical
examples.

4.4. The inf-sup condition and criteria

The question that now arises is to find some way of checking condition
(4.20). Although this is not the only possibility, a quite convenient way is
through a criterion introduced in Fortin (1977) which reduces the question
to the construction of a suitable interpolation operator. The criterion can
be found in a general setting in Brezzi and Fortin (1991). For the present
purpose, we consider a special, albeit general enough case. As a starting
point, we assume that the continuous inf-sup condition (4.11) holds, which
is indeed the case for the problem considered. We then prove:

Lemma 4.1 Suppose that we can build an operator II; from V into V,
satisfying

b((lpv —v,qn) = 0 Vgn € Qp, (4.23)

[Mavlly < cllvllv, (4.24)

with a constant ¢ independent of h. Then the discrete inf-sup condition
(4.20) holds
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Proof. Indeed we have from (4.11), as Qp, C Q,

b('U, Qh)
lollv
But by (4.23) and (4.24), we may write

vpevi lvnllv T wev [[Havily

1
vev ¢ |[vllv

sup 2 kollgrllQ/ xer Bt- (4.25)

k
> "C_O‘HQh”Q/kerB'y

hence the result. O

The use of Lemma 1 requires two things: finding a suitable class of el-
ements, constructing I1, which satisfies (4.23) and then checking that this
operator is uniformly continuous in A, that is (4.24). This last requirement
is generally purely technical although establising it could be quite intricate.
It is also worth stating here an important fact about the operator I1;,.

Lemma 4.2 If the condition (4.23) holds, then
ker B}, C ker BY, (4.27)
that is there are no spurious zero-energy mode.

Proof. This is easily inferred from (4.23). Indeed we must show that any
gn € ker B}, that satisfies

b(vn,qr) =0 Yo, € V3, (4.28)

also satisfies
b(v,qn) =0 Vv eV (4.29)

But &(v,qn) = d(IIv, q;) = 0 and the result is immediate. O

Let us come back to the problem of constructing the operator II,. This
is often done in practice by starting from a standard interpolation operator
and by correcting it by some local operations. The following lemma provides
a general procedure to do so.

Lemma 4.3 Let us suppose that the finite element approximation has
been chosen so that Proposition 2.2 or some analogous result applies with
some suitable interpolation operator II,, satisfying the continuity require-
ment,

IMolly < e ljvlly, VveV (4.30)
We also suppose that there exists a second operator 112 € L(V, V,,) satisfying
(I - M)vlly < exllvllv, Yvevy, (4.31)
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/Q div(v—v) gndec = 0, VweV, Vgn€Qn,  (4.32)

where the constants ¢; and ¢y are independent of A. Then the operator II;
defined by

Myu =1Iu + Hz(u — Hl'u.), ucy, (4.33)
satisfies (4.23) and (4.24).
Proof. 1t is easy to see that condition (4.23) holds. Indeed

b(llpw,qn) = b(Il2(w — Miw), gr) + b(Ilyw, gp)
= b(w - Iw, qh) + b(l'Ilw, qh) (4.34)
= b(w’ qh)‘

On the other hand,
IMpwlly < [M2(w - hw)llv + [Thw|lv < (e1 + e2)jwllv (4.35)
so that condition (4.24) holds. O

In many cases, II; will be the interpolation operator of Clement (1975)
(cf. Proposition 2.2) in H1() for which we have

YR - Mo < clloliq, r=0,1. (4.36)
K

Taking r = 1 in (4.36) and using the triangle inequality
|Molly < llv — M|y + [jvllv (4.37)
yields (4.30).

4.5. The matriz form of the discrete problem

Suppose that we are given a basis {¢) }1<i<n of V and a basis {"/’I?}lsks M
of Q. We can define the matrices

B = b(8Y, v2). (4.39)

Matrix A is positive definite while B is a rectangular matrix. We shall also
need later the mass matrices

MR = W8, ¥ (4.41)
We now consider the discrete problem (4.16) and we write

up =Y, Ui¢Y,
{ o3 Prgd (4.42)
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Using this notation, the discrete problem may be written as

(; g)(g)=(§) (4.43)

We therefore have to solve a symmetric indefinite system. It is possible, as
A is invertible, to eliminate U from this problem to get a problem in P
only:

BA™B'P =G — B(A)"'F. (4.44)

We shall come back later to numerical methods adapted to this problem.

4.6. Eigenproblems associated with the discrete inf-sup condition

It should be clear from the earlier analysis that the discrete inf-sup condition
is closely related to the behaviour of the dual problem, in particular the
discrete dual problem (4.44). Let us indeed go back to (4.20) and let us
rewrite it in the notation of the previous subsection. We get

. (BV,Q) _
x}‘éfv . nggh AV, V)2 MRQ, Q)2 kn (4.45)

where we have made the assumption that (AV, V') 1/2 is employed as a norm
on V,,. This involves a Rayleigh’s quotient for the singular value decompo-
sition of the matrix B with the norms defined by A and M@ on V, and
@, respectively. This can be reduced to solving the generalized eigenvalue
problem,

BATB'Q, = i2M€Q,. (4.46)

The square root of the smallest eigenvalue is nothing but the constant kj of
(4.20) while the square root of the largest one is the norm ||b|| of the bilinear
form b(-,-). For more details, we refer to Brezzi and Fortin (1991). This
argument shows that all kinds of behaviour is possible: the correct case is
when the eigenvalues are bounded away from zero. When some eigenvalues
vanish with h, part of the solution will be spoiled. We refer to Malkus
(1981) where these eigenvalues have been computed numerically for some
elements. A more complete discussion of similar eigenvalue problems and
of the condition number of associated systems can be found in Fortin and
Pierre (1992).

5. Finite elements for incompressible problems

In this section, we shall present, in a general framework, some classical
examples of finite element approximations to the equations of incompressible
materials. The problem is a priori simple. We are looking for a velocity
field in H}(2))?, which implies that all classical constructions hold. In the
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same way, the pressure which is sought only in L?(f2) can be approximated
by a very wide choice of elements. Standard conforming elements (built
for H1(Q)) will evidently be suitable and we shall say in that case that
we have a continuous pressure approximation. On the other hand, we are
allowed to avoid any continuity of the discrete pressure at interfaces and to
use discontinuous pressure approrimations. As we shall see in the examples,
this last case will ensure a better conservation of mass. The difficulty which
arises is that our approximations of velocity and pressure cannot be chosen
independently but must satisfy a compatibility condition: the discrete inf-
sup condition (4.20). Our goal will therefore be to build approximations
satisfying this condition while preserving simplicity and efficiency.

5.1. Ezact incompressibility

A natural idea when one comes to the problem of approximating divergence-
free problems is to try to enforce the constraint strongly, that is, at every
point. This can be done quite easily. Indeed, given a choice of a space V},
for the approximate velocities, it would be sufficient to take @ so that it
contains div V}, to ensure that the divergence of the solution is zero every-
where. Just as many simple ideas, this one leads to a dead-end. What hap-
pens, at least for low-degree elements, is that the solution is overconstrained
and we have a locking phenomenon, that is the only function satisfying the
divergence-free constraint is the function identically zero. This is the case
in the following simple example.

Example 5.1 (The P,—P, approximation.) We approximate velocity by
the simplest finite element: piecewise linear functions on triangles. The
divergence is then a subspace of the space of piecewise constants so that using
this space for @, enforces the divergence-free condition exactly. A simple
count, using Euler’s relations on a triangulation, however, shows that, on a
general mesh, the number of constraints is larger than the number of degrees
of freedom and that we have locking. It must, however, be noted that on
a composite mesh where triangles are obtained by dividing quadrilaterals
by their diagonals (Figure 5.1), a linear dependence appears between the
constraints so that non-trivial solutions exist. Nevertheless, the resulting
approximation does not satisfy the discrete inf-sup condition. O

Example 5.2 (Quadrilateral elements.) The reader may easily check that
the same locking phenomenon will appear on rectangular elements (on a
regular grid for instance) if one tries to impose an ezact divergence-free
condition to a bilinear or biquadratic approximation of velocities. O

Example 5.3 (Second-order triangular elements.) The counting proce-
dure also shows that, on a general triangular mesh, piecewise quadratic
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Fig. 5.1. A quadrilateral subdivided by diagonals.

divergence-free elements exist but require far too many triangles to be ef-
ficient. However, using the same mesh as in Figure 5.1, it is possible to
get a divergence-free approximation satisfying the discrete inf-sup condi-
tion; but it is then necessary to filter a spurious mode from the pressure
approximation. We refer to Brezzi and Fortin (1991) for details. O

Remark 5.1 The previous example is directly related to the composite
approximation of Fraeijs de Veubeke and Sander (1968) for plate problems
(see also Ciavaldini and Nédélec (1974)). Those problems indeed require C 1-
continuity, and a composite element of degree three can be built on the mesh
of Figure 5.1. Taking the curl of this approximation yields a divergence-free
function, which is piecewise quadratic and C%-continuous. The construction
is therefore based on the approximation of the stream function in HZ(f).
It must be noted that no similar composite constructions are known for
three-dimensional problems. O

Remark 5.2 (Higher order methods.) We would like to recall briefly the
statement of a basic result by Scott and Vogelius (1985) which, roughly
speaking, says: under minor assumptions on the decomposition 7}, (in tri-
angles) the pair V}, = (£})?, Qn = Li_, satisfies the inf-sup condition for
k > 4. This, in a sense, settles the matter as far as higher order methods are
concerned, and leaves only the problem of finding stable lower order approx-
imations. It must, however, be noted that some instabilities might in certain
cases remain in the pressure, although they could be filtered out a posteriori.
In fact the restrictions to which we alluded earlier are that the sides of the
triangles should not be collinear as in the special grid of Figure 5.1, which
reduces the number of linearly dependent constraints, leaving some of the
pressure degrees of freedom unused. This being said, the use of high-order
metnods 18 not very popuiar as they require the delicate manipulation ol
high-degree polynomials. It has however gained a new popularity.

We have seen that exactly divergence-free methods are delicate, requiring
high-order elements or special grids. This leads us to try enforcing the
divergence-free condition only approximately, in the hope of obtaining sim-
pler constructions. We have already noted (cf. equation (4.17)) that we have
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to deal with a discrete divergence operator divy, which is the projection on
Qp, of the divergence operator. If Q5 is smaller, or V}, larger, this projection
will effectively weaken the divergence-free condition. The effect will be, on
one hand, that the verification of the discrete inf-sup condition (4.20) will
be easier. On the other hand, the accuracy of the approximation would
evidently be impaired by taking @ too small so that we shall privelege the
enrichment of V}, as a potential cure to our difficulties.

5.2. Simple constructions for approximately divergence-free elements

We shall now introduce a simple and general way of satisfying the inf-
sup condition. The basic idea is indeed very simple: the discrete inf-sup
condition involves a supremum over vy € V3. Making the space V}, larger
will make the supremum grow and will intuitively make the condition easier
to fulfil. This technique can be further extended to composite elements but
for the sake of simplicity, it is worth considering the simpler case first.

The idea of enriched elements has been used several times, starting with
Crouzeix and Raviart (1973) for discontinuous pressures and Arnold, Brezzi
and Douglas (1984) and Arnold, Brezzi and Fortin (1984) for continuous
pressures. We present it in the general form given by Brezzi and Pitkiranta
(1984) (see also Stenberg (1984)). It consists essentially in stabilizing an
element by an enrichment of the velocity field by bubble functions, that is
functions having their support restricted to one element and vanishing on the
boundary of this element. The simplest bubble function is the conforming
bubble function, denoted b3 k. It is a polynomial function of degree three. If
we denote by Aq, Ag, A3, the barycentric coordinates of the triangle we then
have b3 k = A1A2A3. We associate with the finite element discretization
Qn C L?(Q) the space

M(gradQp) = {B | Bik = b3 kgradgpix forsome gy € Qn}.  (5.1)

In other words, the restriction of a function 8 € M(grad @) to an element
K is the product of the Ps-bubble functions b3 x and the gradient of a
function from Qp|k.

Remark 5.3 Notice that the space M(grad Q) is not defined through
some basic space M on the reference element. This can be easily done, if
one wants to, in the case of affine elements, for all the reasonable choices of
Q#n. However this is clearly unnecessary: if we know how to compute g5 on
K we also know how to compute grad g, and there is no need for a reference
element. O

We now turn to prove two results, concerning continuous or discontinuous
pressures.

Proposition 5.1 (Stability of continuous pressure elements.) We suppose



M. FORTIN

RVANIYAN

Fig. 5.2. The MINI element.

that there exists II; € £(V,V},) satisfying (4.30), that we have Q; C H()
and that M(grad @) is defined as in (5.1). Then the pair (V},,Q4) is a
stable element, in the sense that it satisfies the inf-sup condition.

Proof. We shall use Lemma 4.3. We already have our operator II; by as-
sumption. We only need to construct IIo. We define II; : V — M(grad Qy),
on each element, by requiring

{ Iyv|x € M(grad Q)|k = b3 kgrad Qy|k,

/ (Iav — v) -grad g, dz =0, Vg, € Qplk. (5-2)
K

Problem (5.2) has obviously a unique solution. It is clear that Il satisfies
(4.31) of Lemma 4.3. Finally (4.30) follows by a scaling argument. We thus
have the desired result. O

Corollary 5.1 Assume that Qp C @ is any space of continuous piecewise
smooth functions. If (£1)? ® M(gradQy) C V; then the pair (Vi,Qs)
satisfies the inf-sup condition.

Proof. Contmulty and piecewise smoothness imply that Q@ C H!(Q2). The
condition (£})? C V;, implies the existence of II; satisfying condition (4.30),
and condition M(grad @) C V4 is by hypothesis. Hence we can apply
Proposition 5.1. O

These results apply, for instance, to the enriched Taylor-Hood element
and to the families introduced in Arnold, Brezzi and Fortin (1984).

Example 5.4 (The MINI element.) The first family is defined by
Vi = (L} ® Bri2)?, Qn=L}Kk>1, (5.3)

where By o is defined as in (2.14). The simplest of these elements is the
so-called MINI element. It is obtained by taking k = 1 in (5.3). This means
that a cubic bubble, (k+2 = 3), is added to a simple piecewise linear approx-
imation of velocity while pressure remains piecewise linear. This element is
sketched in Figure 5.2. The corresponding equal interpolation element,
using piecewise linear approximations for both velocity and pressure is not
stable in the sense that it does not satisfy the inf-sup condition. This is, in
fact, the case for all equal interpolation approximations. 0O
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Fig. 5.3. Enriched Taylor-Hood element.

Example 5.5 The second family is defined by
Vi =(LL® Bry1)?, Qun=1LL_;, k>2. (5.4)

In the simplest case, (k = 2), a cubic bubble is added to a piecewise quadratic
approximation of velocity while pressure is approximated by piecewise linear
functions as in the previous example. This element is sketched in Figure 5.3
Without bubbles, this element is known as the Taylor—Hood element and it
is already stable. The proof of this will be considered later, as it requires a
special technique. O

We turn now to the case of discontinuous pressure elements. Many reasons
may lead us to consider such approximations. Probably the most important
one is probably the better approximation to the equation of conservation of
mass generated by such elements, in comparison with dicontinuous pressure
elements. In fact, whenever (); contains piecewise constant functions, the
divergence-free condition contains, as a particular case, the condition

/ divonde =0, VK €T, (5.5)
K

which means that the average divergence is null on every element or, equi-
valently, that mass is conserved on every element. In the case of continuous
pressure approximations, the divergence-free condition is also averaged, but
the averages cannot be reduced to a local conservation property. In hard
cases this may have important consequences (Fortin and Pelletier (1989)).
Discontinuous pressures are also important because they can be combined
with a penalty method to eliminate pressure as an unknown, as we shall see
in Section 8. Before stating the general result, we shall consider a simple
special case which will be the basis for the general setting.

Example 5.6 (The P,—Fp and Q2—Qq elements.) These are the basic and
simplest stable discontinuous pressure elements. We shall only. consider the
triangular case in detail as the quadrilateral case can be treated in essentially
the same way. The element by itself has no particular property except that
pressure is approximated with very low precision. If we refer to estimates
(4.22) and (4.23), this implies that we do not achieve the full accuracy
expected from second-degree polynomials employed to approximate velocity.



260 M. FORTIN

Fig. 5.4. The P,—-P, element.

The accuracy of the element is thus not optimal and it is not recommnded
in practice.

To check the inf-sup condition, we shall use Lemma 4.1 and build an op-
erator II, satisfying the conditions (4.23) and (4.24). To do so we start from
the standard interpolation operator II; of Proposition 2.2 and we modify the
midside values so that on every side S of K, the resulting new interpolant
II,v satisfies

/ahm-wﬁu=o Yo eV,i=1,2, (5.6)
S

where the v; are the components of v. Formally, we can work again with
Lemma 4.3 and define, on every element K, IIz), by

IIv € P2(K),
Mpv;, (M) =0, for any vertex M of K,

(5.7)
/ v ds = / vds, for everyside S of K.
) )
One then defines II; by
v = Mv + Iz(v — Hv). (5.8)
It is clear that that II; satisfies condition (4.23) for we have
/ div (IIv —v)dz = / (IIgv —v) -nds =0. (5.9)
K 8K
As to the continuity property, it follows by a scaling argument as
Mav)y x = 0], 4 < (2,60)[8]l, & (5.10)

< c(2,00)(hg' |vlo,x + |v|1,x),

where ¢(2,6p) is a constant, depending on the degree of the polynomials
employed, which is 2, and on the minimum angle of the mesh as in (2.17).
Using this result and the properties of II; yields the result. O

Proposition 5.2 (Stability of discontinuous pressure elements.) Let us
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suppose that there exists II; € L(V,V},) satisfying
/ div (v - hv)dz =0 VK €T (5.11)
K

and that M(grad Q) C V}, as defined in (5.1). Then the pair (Vj,Q4) is a
stable element, in the sense that it satisfies the inf-sup condition.

Proof. We shall proceed by applying Lemma 4.3. We take I1; satisfying
(5.11) as operator II;. We are not going to define II; on all of V', but only
in the subspace

V°={v|v€V,/div'udx=0, VKeTh} (5.12)
K

For every v € V? we construct Il;v € M(grad Q) by requiring that, on
each element K,

{ yv|x € M(grad Qr)|x = b3 kgrad Qu |k,

/K div (TIIv — v) godz =0, Vg, € Qilk. (5.13)
Note that (5.13) is uniquely solvable if v € -V since the divergence of a
bubble function always has zero mean value (hence the number of nontrivial
equations is equal to dim(Qn|x) — 1, which is equal to the number of un-
knowns; the nonsingularity then follows easily). It is clear that IIs, as given
by (5.13), will satisfy (4.31) for all v € V°. We have to check that

[Tgv]l1 < c v, (5.14)

which actually follows again by a scaling argument. It is then easy to see
that the operator

II, = fIl +II,(I - ﬁl) (5.15)
satisfies the condition of Lemma 4.3 and the inf-sup condition follows. O

Corollary 5.2 (Bi-dimensional triangular case.) Let us assume that Q; C
Q is any space of piecewise smooth functions and suppose that

(£3)* © M(grad Q1) C V.
Then the pair (V4, Q) satisfies the inf-sup condition.

Proof. The condition (£1)? C V;, implies that we can construct II; as in
Example 5.6. On the other hand we have M (grad Q) C V}, so that we can
apply the previous Proposition 5.2. O

Propositions 4.1, 4.2 and 4.3 require a few comments. They show that
almost any element can be stabilized by using bubble functions. For contin-
uous pressure elements this procedure is mainly useful in the case of triangu-
lar elements. For discontinuous pressure elements it is possible to stabilize
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Fig. 5.5. The Crouzeix—Raviart element.

. &~

Fig. 5.6. The Q2—P; element.

elements provided that they are already stable for piecewise constant pres-
sure field. Examples of such a procedure can be found in Fortin and Fortin
(1985a). Stability with respect to piecewise constant pressure implies that
at least one degree of freedom on each side or face of the element is linked
to the normal component of the velocity (Bernardi and Raugel (1981) or
Fortin (1981)). Let us now consider a few examples of discontinuous pres-
sure elements.

Example 5.7 (The Crouzeix and Raviart element.) We take Q, to be the
space of piecewise linear discontinuous functions. The previous construction
then consists in adding cubic bubbles to a piecewise quadratic approxima-
tion of the velocity. This element is sketched in Figure 5.5. It provides
second-order accuracy and is probably one of the best choices among stable
triangular elements. O

This element has a rectangular (or even isoparametric) counterpart which is
worth presenting. One interesting fact is that the triangular and rectangular
versions are compatible and can be used inside a mixed mesh.

Example 5.8 (The Q2—P; element and generalizations.) Let us consider
an approximation of the velocity by a full biquadratic approximation and
of the pressure by piecewise linear discontinuous functions. It can then be
checked that the element is stable using the same kind of argument as in
Corollary 5.2. This element, sketched in Figure 5.6, is one of the most pop-
ular elements for the approximation of incompressible flows. Although the
previous results, as stated, can only be applied to the triangular case, the
rectangular case and its isoparametric counterpart can be handled along the
same lines. The idea is that once the constant part of the pressure is con-
trolled by integrals on the boundary of the element, one may use internal
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Fig. 5.7. Three-dimensional Crouzeix—Raviart element.

nodes to control the remaining part. In the case of a full biquadratic Q-
approximation of the velocity, we have two internal degrees of freedom so
that a P, pressure field can be used, but not a bilinear );, as this would
require three internal nodes. Evidently, one could enrich the approximation
of the velocity to accommodate any degree of approximation of the pressure
(Fortin and Fortin 1985a). It can be easily checked that for £k > 3 a Q
approximation of the velocity can be combined with a Pj_; or a Qr_1 ap-
proximation of the pressure. The case of k = 1 is pathological and will be
discussed later. O

Example 5.9 (Three-dimensional tetrahedral discontinuous pressure ele-
ments.) The same arguments can be directly translated to the three-dimen-
sional case (cf. Fortin (1981) or Stenberg (1987)). The main difference is
that, in order to control the piecewise constant part of the pressure, one
needs to use degrees of freedom on the faces of tetrahedra rather than on
the edges. The equivalent of the operator II; requires the integration of
fluxes on faces; this requires the use of polynomials of degree greater than
or equal to three if we only want to enrich by internal nodes. However,
there exists a three-dimensional Crouzeix and Raviart element as sketched
in Figure 5.7. It is obtained by enriching a second-degree element (with ten
degrees of freedom on vertices and on the edges) by one cubic bubble on
each face plus one fourth-degree internal bubble. Moving to higher degree
polynomials, one may similarly build enriched elements with any order of
accuracy. Finally with polynomials of degree higher than or equal to nine,
one may build exactly divergence-free elements, as in the result of Scott and
Vogelius (1985) discussed earlier. O

Example 5.10 (Three-dimensional hexahedral discontinuous pressure ele-
ments.) It can easily be checked that the three-dimensional Q2—P; element
sketched in Figure 5.8 is also a stable element. The (2—Q; element is not
stable. For k > 3, a Q;—P;_1 approximation is stable and for k > 4, so will

QrQr—1. O
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o

Fig. 5.8. Three-dimensional Q;—P; element.

5.8. Nonconforming elements

We have just seen that it is possible to build approximately divergence-free
approximations by enriching the approximation of the velocity. A different
way to obtain stable approximations is to employ nonconforming elements,
that is elements for which continuity requirements at interfaces have been
relaxed. Using nonconforming elements implies that the variational formula-
tion must be modified. In the Stokes problem, for instance, one must define
discrete versions of the bilinear forms a(-,-) and b(.,-),

ap(u,v) = zﬂ; /K ) : ef) dz, (5.16)
br(v,q) = ;/quivvdx. (5.17)

These discrete forms are defined even for functions which are discontinuous
at interfaces, as only derivatives inside elements are involved. The discrete
problem can now be written

{ an(un, vp) + bp(vn,pn) = (F,v8), VYon € W, (5.18)
br(un,qn) =0, Vgp € Qp. . ’

It is then possible to perform an error analysis of the problem. We refer to
Brezzi and Fortin (1991) or to the original work of Crouzeix and Raviart
(1973) for precise results the development of which is beyond the scope of this
article. Let us simply say that nonconformity introduces additional consis-
tency terms in the error analysis. These terms have to be properly bounded
and the key for this is the generalized patch-test: ‘for a nonconforming ap-
proximation of degree k to be optimal with respect to error estimates, the
moments [ vpPx—1 ds, must be continuous at any interface S, for any poly-
nomial pr_; of degree k — 1’ . The simplest of these elements is described in
the following example. It was introduced in Crouzeix and Raviart (1973).
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Fig. 5.9. The nonconforming P, element.

Example 5.11 (The nonconforming P; element.) We consider an approx-
imation of the velocity by functions which are piecewise linear but are contin-
uous only at midside points at element interfaces. This implies that [;vds
is continuous as the midpoint rule is exact for polynomials of degree one and
the patch—test is therefore satisfied. The pressure is piecewise constant and
the element is sketched in Figure 5.9. This is the simplest first-order accu-
rate element for incompressible problems. As pressure is discontinuous, one
has local conservation of mass. The three-dimensional analogue is readily
built, using values at the barycentre of the faces as degrees of freedom. O

It is also possible to construct higher order nonconforming elements. This is
easily done for odd degree polynomials. One can find, for instance, a third-
order nonconforming element in the paper of Crouzeix and Raviart (1973)
in which a polynomial of degree three, enriched by bubbles of degree four,
is employed. Continuity is then required at three Gauss-Legendre points on
each element side. This implies that the element passes the correct patch
test and the values at those Gauss—Legendre points can be used, with the
addition of some internal nodes, as degrees of freedom. For even degree poly-
nomials, a pathology arises and a different way must be found, as described
in the next example.

Example 5.12 (The Fortin—Soulié nonconforming element.) It is easy to
see that, in the two-dimensional case, the construction of a nonconforming
element of degree two (or more generally of even degree), leads to unexpected
difficulties. To satisfy the patch test and obtain the correct accuracy, one
should ensure continuity at the two Gauss—Legendre points on the sides of
elements. The trouble is that these six points cannot be used as degrees of
freedom for a polynomial of degree two as one would like to do following the
previous example: there exists a nonconforming bubble which vanishes at all
six Gauss—Legendre points. It is expressed, in barycentric coordinates, as

bne(A1, A2, Az) = 2 — 3(A% 4+ 22 + \2). (5.19)

The way around this difficulty is to construct second-order nonconforming
methods in the same way as one built the element of Example 5.5: by en-
riching a standard conforming element of degree two by the nonconforming
bubble (5.19). We refer to Fortin and Soulié (1983) for details. The degrees
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of freedom are the same as in a Crouzeix—Raviart element and only the bub-
ble function has to be modified in the code, essentially a one line change.
The advantage is that now only polynomials of degree two have to be manip-
ulated. A three-dimensional version has also been derived in Fortin (1985).
O

Finally, let us note that it is possible to build quadrilateral nonconforming
elements along the same lines, that is by enriching a standard element by
a function satisfying the patch test. A @; nonconforming element can,
for example, be obtained by adding to the standard conforming element a
function of the form ¢(z,y) = zy on | — 1,1[x] — 1,1[ (Fortin and Soulié,
1983). It is also possible to add a function of the form z? —y —y? to a P,
approximation (Rannacher and Turék, 1992).

5.4. Taylor-Hood elements and generalizations

There exists another class of stable elements which is not covered by the
previous analysis and which are worth a presentation. This class contains
the Taylor-Hood element and its generalizations (Hood and Taylor, 1973;
Bercovier and Pironneau, 1977; Brezzi and Falk, 1991). They essentially
consist of taking, for triangular elements

Vi=Lk, Qn=Liy, (5.20)

that is continuous pressure elements with the pressure one degree lower than
the velocity. This yields the right order of accuracy as one only approximates
pressure in L2(€2). The corresponding quadrilateral elements are also widely
employed and the three-dimensional counterpart is quite popular. Because
it contains an important idea, Verfiirth’s trick, we rapidly sketch the proof
of stability for the original Taylor-Hood elemencorresponding to k = 2 in
(5.20). The proof proceeds in two steps, the first being very general.

Lemma 5.1 Let Q2 be a bounded domain of R™ with Lipschitz continuous
boundary. Let Vi, C (H}(Q))? = V and Q, C H'(). Suppose that there
exists a linear operator II9 from V into V} and a constant ¢, independent of
h, such that

lon —vllna < X (BT 0lER) 2, WweVir=01  (5.21)
K
Then there exist two positive constants ¢, and ¢y such that for every g, € @y,
/Q qn divop dzx \ . \1/2
v A o T cillgnllo/r — c2 Xk: (hilgradanllix) " - (5:22)

We refer to Brezzi and Fortin(1991) for the proof. Let us remark again that
this is general and holds for any continuous pressure approximation. Now
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let us return to the special case of the quadratic—linear approximation of
Taylor and Hood.

Lemma 5.2 (Stability of the Taylor-Hood element.) Let V; = (£3)? N
(H}(2))? and Qp, = £]. Then, if any element of 73 has no more than one
edge on the boundary, there exists a positive constant cg such that for every

qn € Qn,

/ gr divvp dz
sup

1/2
z( h2|qn? ) : (5.23
o Tl 2 il :
Proof. We shall prove the result by constructing a suitable ©;. Let g, € Qg
be given and let K be an element of 7;,. We define 9, on K by

{ p, = 0 at the vertices of K,

on = —t(grad g, - t.)|e]?, (5.24)

at the midpoint of every edge e of K, denoting by |e| the length of e and
by t. the unit tangent vector to e, with some chosen orientation. One easily
checks that

onllix < chklgnlik- (5.25)

Now, we use a quadrature formula, which is exact for any polynomial of
degree 2,

f pater e = P o), (5.26)

where the sum is taken over the midpoints M of the edges of K. We then
have, with the choice (5.24),

/qhdivi}hdz = —/gradqh-t‘yhdx
Q Q
= —EK/ grad gy, - v dzx
K

= —ZKZM(grath-ﬁh)(M)%(K) (5.27)
= Yk2umlegradgs- telzlelzgf%g2

v

CEy hillgrad gulf x,

where in the last inequality we have implicitly used a nondegeneracy condi-
tion |e| > ohk and the hypothesis that two sides of K are internal so that
¥y, is defined from grad gy, - t. in at least two directions on every triangle.
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From (5.25) and (5.27) we get

/Qqhdw'vhdflf ., Sk hz}{llgradthlﬁ,x

T, : = (5.28)
(zk B llgrad gull2 «

which is the desired result. O

We can now prove

Proposition 5.3 (Stability of the Taylor-Hood element.) The pair V}, =
(LH2N (HY())? and Qp, = L} is a stable element for the Stokes problem,
that is it satisfies the discrete inf-sup condition.

Proof. We multiply the inequality (5.22) by c3 and (5.23) by c2 and we add
them to get

qn divvp dzx

(c3+c2) sup > cicsllgnllo/rs (5.29)

VpEV, lonllx

which is the desired condition. O

This idea of combining a ‘bad inequality’ -like (5.22) and a ‘good inequality
in a bad norm’ -like (5.23) is due to Verfiirth (1984). It can be applied to
other situations, for example to the study of stabilized methods presented
in the next sections.

6. The Q,—P, element (or ‘what might go wrong’ )

We have introduced, in the previous sections, the discrete inf-sup condition
(4.20). It is important in practice to know what should be expected if this
condition is not satisfied. It is clear that the trouble will arise in the dual
problem, that is, with the pressure. The most classical of difficulties is
the appearance of a spurious zero-energy mode in the dual problem. All
functions in ker(grad,) are zero-energy modes in the dual problem. Those
which are nonconstant are known as chequerboard modes because of the first
discovered case:

Example 6.1 (The Q;-P, element and the chequerboard model.) We con-
sider a Q1—Fp approximation, that is we approximate velocity by bilinear
elements and pressure by piecewise constants. Moreover, we restrict our-
selves to a regular and rectangular mesh. Then, if we colour the rectangles
like the squares of a chequerboard, there exists a spurious zero-energy mode
taking value 0 on white squares and value 1 on black squares (Figure 6.1).
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Fig. 6.1. The chequerboard mode.

This mode is defined up to a multiplicative constant and often manifests
itself by huge values. In particular, a small displacement of a node by a
value of € transforms the zero eigenvalue into an O(e) eigenvalue, making
an O(1/¢) chequerboard mode to appear. O

Other examples of zero-energy modes are met in equal-interpolation ap-
proximations, that is approximations in which pressure and velocities are
approximated by polynomials of the same degree. Most of the time, but not
always, they are strongly mesh-dependent and are present only on special
regular meshes. The exactly divergence-free element of Example 5.1 on the
crossgrid mesh of Figure 5.1 also suffers from exactly the same chequerboard
mode as the @Q1—Fy element.

This, however, is not the only way in which things can go wrong. Another
way is that some nonzero eigenvalues become vanishingly small when h
decreases, implying that the constant in condition (4.20) is not bounded
from below and goes to zero with h. The result is at best a loss in the order
of convergence or, worse still, a total loss of convergence. Again, the Q-
P, element provides us with the simplest example. If we consider a regular
rectangular mesh and compute the eigenvalues of the dual problem (Malkus,
1981), we see that a large number of them become smaller as h decreases.
They can be associated with eigenvectors consisting of a restriction of the
chequerboard mode described above to a 2 x 2 patch of elements. In all cases,
a sign of instability first appears in the pressure. It is only in very severe
cases that velocities are polluted in a visible way. Derivatives of velocities are
however likely to suffer so that computing the vorticity is a good indicator
of trouble. To make things still better, it is possible to build special meshes
on which the Q1-P; approximation is stable. One of them is presented in
the next figure and was introduced by Letallec and Ruas (1986). It is also
possible to show that on a regular mesh, formed of 2 x 2 patches of elements,
things are not so bad as would appear from previous considerations: velocity
converges at the right order and pressure can be filtered by projecting it on
a proper subspace. A proof can be found in Brezzi and Fortin (1991).
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Fig. 6.2. A special mesh for Q,-Fp.

7. Stabilization techniques

Up to now, we have obtained stable finite element pairs for the approxima-
tion of the velocity and the pressure by a clever choice of polynomial spaces.
There is, however, another possiblity which has received much attention in
recent years: stabilization can be achieved by modifying the variational for-
mulation of the problem. The idea was introduced by Brooks and Hughes
(1982) for the stabilization of finite element methods for first-order advec-
tion problems. It was later extended in Hughes, Franca and Balestra (1986),
Hughes and Franca (1987) and Franca and Hughes (1988) to the Stokes prob-
lem, improving on the idea of Brezzi and Pitkaranta (1984) that we shall
develop later. Our emphasis will be on the variant of Douglas and Wang
(1989) which we consider to be most suitable for the Stokes problem or,
more generally, for mixed problems. But let us first consider the formula-
tion of Brezzi and Pitkidranta (1984) which is simple and contains all the
basic ideas.

Example 7.1 (The stabilization of Brezzi and Pitkéranta.) The princi-
ple is very simple and consists of considering a perturbation of the Stokes
problem, that is to modify the problem (4.6) into

a(ue, v) +b(v,pe) = (f,v), VeV,
b(te, q) = 6/ gradp. - gradgdr, Vg€ Q. (7.1)
Q
This is the variational formulation of the problem,
-2y Au, +gradp, = f, (7.2)
divu, +eAp. = 0, (7.3)
wlr=0 2| - o (7.4)

onlr

We see from (7.4) that a parasitic Neumann boundary condition has been
introduced for the pressure. In practice, this will imply a boundary layer



NAVIER—-STOKES EQUATIONS 271

effect and pressure values will be polluted near the boundary. Nevertheless,
one can guess how this model stabilizes an unstable finite element method:
chequerboard modes are highly oscillatory and they will be removed by the
smoothing effect of the Laplace operator.

The proof that the solution obtained from the method of Example 7.1 is
stable will be derived in two steps. First we shall try to obtain a bound
on the difference between the solution of the perturbed problem and the
solution of the standard Stokes problem. It can be proved (Brezzi and
Fortin, 1991) that one has the following estimate.

Proposition 7.1 Let (u,p) tbe the solution of Problem (4.6) and (u., p.)
be the solution of Problem (7.1). Then we have

llw — uelly + Ip = pello < cVellpll1- (7.5)

O

We refer to Brezzi and Fortin (1991) for a proof.

This result is not optimal and one can get an 0(5%‘5) estimate if p is
smooth enough. However (7.5) is sufficient for our present purpose. Indeed,
taking € = O(h?) will make the error in (7.5) of the same order as the error
in a standard approximation by piecewise linear functions. Therefore, we
can discretize Problem (7.1) with the simplest possible elements, such as a
P,-P; or a Q1—Q; approximation and obtain results converging with the
correct asymptotic accuracy. This gain is, however, not as complete as one
would like. The choice of € is critical: if it is too small, pressure oscillation
remains while if it is too large, boundary layer effects will spoil the solution.
What we would ultimately like to find would be a more robust formulation.
A first step toward this is to employ the Galerkin-least-squares formulation
as in Hughes and Franca (1987). To understand it better, we return to the
Lagrangian of Problem (4.7) which we change tentatively to

inf sup p [ |e@)|? dw—/ gdivvdz (7.6)
VeV qeQ Q Q

—/f-vda:—cs/ |Av+gradq—f|2dz‘.
Q Q

Note that we have added a squared term with a negative sign. This is
because we want to stabilize the pressure which is the dual variable in the
saddle-point problem. As in the Galerkin-least-squares method, this squared
term corresponds to one of the equations in the strong form, namely (7.2).
We could have added the square of the second equation to improve the
coercivity properties of the problem with respect to u. In the present case,
this is of no use as the bilinear form a(, -) is already fully coercive. Examples
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of cases where this modification would be useful can be found in Brezzi,
Fortin and Marini (1992).

Formulation (7.6) needs a few comments. The first one is that it is in
fact ill defined: indeed, for v € V, Av is not square-integrable. We should
therefore move to a more regular space, with the side effect of a more difficult
approximation, or weaken the formulation as we shall do later. The second
comment is that something will go wrong with the coercivity with respect
to u as we now have a bilinear form

a(u,v) = u/ﬂe(u) :efv)dx — e/QAv - Avdz. (7.7)

The negative sign impairs the coercivity of a(-,-). Only for discrete prob-
lems can this be cured, by taking € small (e.g., @(h?)), and by using the
equivalence of norms on a finite-dimensional space, more precisely an inverse
inequality of the form

C
l4vlo < > lle@nlo (78)

Let us return to the first point. In order to be able to employ a standard
finite element approximation, we shall write the least-squares terms in the
form

eZ/K{Av+gradq—flzdz. (7.9)
K

This is now well defined on the space
W = {(v,q)|Av + grad q|,, € L*(K),VK € T,}. (7.10)

Standard finite element discretizations of H1(£2) x L?(f2) are also contained
in W as the restriction to an element is a regular polynomial function. This
modification does not, however, cure the problem of coercivity. The answer
to this second issue is a formulation introduced by Douglas and Wang (1989)
where the variational problem (4.6) is modified into

a(ue, v) + b(v, pe)
+EEK/ (Au. + gradp. — f) - Avdz = (f,v), Vv eV,
K

buesd) — e [ (Auc +gradp. - f) - gradqds =0, Vg€ Q.
(7.11)
This differs by one sign change from what would be obtained by the opti-
mality conditions of Problem (7.6). This sign change is nevertheless crucial:
choosing v = u, and ¢ = p¢ in (7.11) and substracting the two equations
one gets

u/ﬂ le@).|? dz + GZ/K |Au + gradp?dz < (| fII?).  (7.12)
K
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We have therefore obtained stability in the space W defined in (7.10) for
any value of e. It might appear that we have not really stabilized gradp
but only Au + grad p. However, as u is generally smooth, the stabilization
effort really bears on p. Formulations of this type have been used with suc-
cess with many finite element formulations. They allow equal-interpolation
approximations of low order which would otherwise be forbidden in standard
variational formulations. Everything is not as nice as it would seem from
the above discussion: the solution still suffers from a parasitic boundary
condition on p and a boundary layer effect. The source of trouble is that the
term Au in Au+ gradp— f is not computed accurately in a standard finite
element approximation. It will normally be approximated at one order lower
than the other terms. The limiting case is the piecewise linear one where
Au|k is always identically zero. This will oblige us to take again ¢ = O(h?)
to recover the corrrect error estimate. Moreover, this lack of accuracy in one
term spoils the solution in a visible way near the boundary. Many techniques
have been advocated to remove this boundary layer effect (e.g., Brezzi and
Douglas (1988)). The most popular one consists in substracting boundary
effects by adding a correcting term to the formulation. For example, one
might modify Problem (7.11) into

a(ue, v) + b(v, pe)
+GZK/ (Au. +gradp. — f) - Avdz = (f,v), Vv eV,
K

b(ue,q)—eZK/ (Au, +gradp. — f) - gradgqdz
K
—/ ((Aue + gradp. — f) -nqgds =0, Vge€Q.
on

.

\
(7.13)

Numerical results obtained through such modifications are good (cf., e.g.,
Leborgne (1992)). However, coercivity properties are lost and getting a
solution from the discretized problem becomes delicate. The correct way
of eliminating boundary layer effects is still an open problem. To conclude,
stabilized formulations are an important new idea in the approximation of
incompressility, an idea which is likely to see new developments in future
years.

8. Numerical methods for the discretized problems

Given a stable approximation, we now have the practical task of effectively
computing the approximate solution. We shall deal with two different issues,
namely the treatment of the incompressibility condition and the treatment
of the full nonlinear Navier—Stokes problem.
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8.1. Penalty methods

The numerical methods which we want to introduce are based mainly on
techniques derived from penalty methods. We shall therefore describe these
briefly. We use the steady-state Stokes problem as a prototype but ths
idea applies to any incompressible problem. A penalty method is then a
perturbation of our original problem (4.6) into

{ a(ue,v) + b(v,p) = (f,v), Yv eV,

b(ue, q) — E/Qpeqdw =0, Vge@. (8.1)

It can be shown (Bercovier (1978) or Brezzi and Fortin (1991)) that the
error induced by this (regular) perturbation is O(e¢). Let us now consider
the matrix form of the discrete problem already presented in Section(4.5).
The problem becomes

(,’; —eixiQ)(g)=(f>- (8.2)

But the matrix M@ is invertible and it is possible to eliminate pressure from
these equations to obtain

AU + %Bt(MQ)‘lBU =F. (8.3)

Once U has been obtained by solving (8.3), one can calculate the pressure
by

pP- %(MQ)‘IBU. , (8.4)

This procedure is in fact usable only if the matrix M < is easily invertible
(Bercovier, Engelman and Gresho (1982)). For discontinuous pressure ap-
proximations described in Section 5, we can invert M element by element
and the numerical implementation is direct. It must be said that this simpli-
fication also has some disadvantages: the system (8.3) is ill conditioned for
€ small. Care must be taken if one wishes to get an accurate solution, and
the convergence of iterative methods, such as a conjugate-gradient method
is jeopardized. For continuous pressure approximations, (M®)~1 is a full
matrix and the reduced problem is not tractable. The perturbed problem
(8.2) is nevertheless employed as it cures the singularity (p is defined up to
an additive constant) of the original problem in the case of pure Dirichlet
conditions on wu.

8.2. The augmented Lagrangian method

We briefly describe here how a simple iterative procedure, called the aug-
mented Lagrangian method, can be employed to remove penalty errors and
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to efficiently compute a solution of the original problem (4.16). Our pre-
sentation will be sketchy by necessity. We refer to Fortin and Glowinski
(1983) for a precise analysis of the method. This technique is also closely
related to the artificial compressibility method introduced by Chorin (1968)
and widely used under different names.

Suppose that we choose P, an arbitrary initial guess for the pressure.
We then compute, P,, being known, P,; from the relation,

< ; —ffAQ ) ( g::: ) - ( —eJ\fQPn ) (8.5)

If M@ is easily invertible, one can write this in the decoupled form,

AU, + %Bt(MQ)‘lBUn =F - B'P,, (8.6)

MOP, = MPP, + %BUn. (8.7)

This is a special case of a more general algorithm, Uzawa’s algorithm, for the
numerical solution of saddle-point problems. Convergence is easily proved
for any positive value of e. Taking € small, (say 10~%) makes the algorithm
convergent to machine precision in two or three iterations. In fact taking
€ small makes the dual problem in p very well conditioned (cf. Fortin and
Pierre (1992)) so that this iteration, which is in fact a gradient method
for the dual problem, converges very rapidly. The price we pay is that
Problem (8.6) in U is ill conditioned. When an iterative solution is needed,
as is often the case in three-dimensional problems, a balance should be kept
between the convergence of the iteration for solving Problem (8.6) and the
convergence of the outer iteration in (8.7). Methods of this type have also
been used as preconditioners for conjugate-gradient methods (e.g., Fortin
(1989)).

8.8. Nonlinear problems

When the Navier-Stokes problem is considered, we have to solve a large
nonlinear system. The most popular method is Newton’s method which
reduces this solution to a sequence of linear incompressible problems. The
augmented Lagrangian method can then be used to solve these linear prob-
lems. Under some restrictions on the choice of € it can also be incorporated
to Newton’s iteration (Fortin and Fortin, 1985b). The most efficient solu-
tion method is, however, to employ a conjugate-gradient-like iteration such
as the GMRES method of Saad and Schultz (1986) with a suitable precondi-
tioning. One then needs only to compute products of some vectors and the
Jacobian matrix and this can be approximated by differences, avoiding the
actual computation of the Jacobian. A very good description of this tech-
nique can be found in Shakib, Hughes and Zdenék (1989) for compressible
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problems and can be transposed directly to incompressible problems. For
incompressible problems, some approximate augmented Lagrangian method
can be used as a preconditioner (Fortin, 1989).

9. Time-dependent problems

Our original problem was time-dependent and we now return to this aspect.
The standard procedure for the discretization of a time-dependent problem
is to first consider a discretization in space, reducing it to a large system of
ordinary differential equations and then to employ some numerical scheme
for this system. The choice of scheme can then be made from a vast collection
of ODE solvers.

9.1. Time discretization, projection methods

One important point in the choice of a time discretization is that the system
is not of Cauchy—Kovalevska type as there is no derivative in time of the
pressure in the equations. In fact, in this respect, the problem is related to
the so-called algebraic—differential systems (Petzold, 1983). It can be seen
that the pressure part is elliptic. Indeed, taking the divergence of equation
(3.1), we obtain the Poisson pressure equation

— Ap =div(u - gradu) —div f, (9.1)

in which we have used (3.2) to eliminate a number of terms. This equation
(9.1) holds at all times. It has been widely employed in the construction
of time-stepping procedures, but difficulties arise from the absence of pres-
sure boundary conditions. There is, in reality, no rigorous way to obtain
such conditions apart from some iterative procedure or the construction of
an integral equation on the boundary of the domain like in Glowinski and
Pironneau (1979) (see also Gresho and Sani (1987)). This being said, it is
possible to include the solution of a Neumann problem in p into a fractional
step method, such as the projection method introduced in Chorin (1968) and
developed in Fortin, Peyret and Temam (1971). This scheme, in its simplest
form, would consists of an advection step followed by a projection on the
subspace of divergence-free functions. However, it is not immediately clear
in which space should the projection take place. The two obvious choices
are L2(Q?) or H}(R). Let us consider in some detail these two cases.

Lemma 9.1 (The L?() projection.) Let u be given in (L2(€2))". Then
u can be written as

u = ug + grad pg + grad p;, (9.2)
with po € H}(R), p1 € H(Q) and up € Ho(f2), where
H(Q) = {g|q € H'(Q), Ap =0}, (9.3)
Hy(Q) = {v|v € (L*(Q))*,dive =0,v - n),, = 0}. :
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Proof. The idea is essentially to solve a Dirichlet problem,

— Apg = divu, (94)
to compute u; = u — grad py, to solve a Neumann problem
0
—- Ap; =0, o u; - non 91, (9.5)
on

and then finally obtain g = u; — gradp;. O

A few remarks are needed about the boundary conditions employed. First,
the condition 1 -n has to be justified for it does not make sense, a priori, to
write a boundary condition for a function in (L?(2))". We refer to Temam
(1977) for this justification. Second, the two problems (9.4)—(9.5) may be
combined into one:

0.
% = u - non J9, (9.6)
provided u slightly more regular, namely if divu € L?(2). Let us now see
how one can use this approach to construct a fractional step method.

— Ap =divu,

Example 9.1 (The L? projection scheme.) This scheme will be a frac-
tional step method and many variants are possible, depending on the implicit
or explicit character of the first step. We shall consider here the implicit
variant, which we feel is more reliable but other cases can be easily formu-
lated. Moreover, we shall not explicitly introduce a space discretization and
we shall, formally, write the scheme without any such discretization. Let
then 4™ and p™ be known at time step n. We shall compute the solution at
the next time step n+ 1 in two substeps. First, we solve, denoting by 6t the
time step,

un+% —u”
ot
This is a nonlinear problem which can be solved either by a Newton method
or an approximate Newton method. No incompressibility condition is im-
1 . . .

posed on 4™z and the next step intends to correct this deficiency by pro-
jecting it on the divergence-free subspace H(f2). This amounts to solving
a Neumann problem:

+u™i . gradu™? — 2u Au™E +gradp”=f.  (9.7)

351)_ n+1
m

(S]]

— Abp = divuti, -1 on 8Q (9.8)
and then to compute

unrtl = un+% - grad 5p’ (99)
pmtt=p" + 6p.
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This is simple, but something is wrong: u"*! does not satisfy the correct
boundary conditions because the projection step only requires u™*!.n to be
null and leaves the tangential condition w™*! - ¢ undetermined. In practice,
this problem is bypassed, in a discretized setting, by inserting the correct
values at boundary nodes after the projection step. This is a new projection
step, in some nonexplicit topology. The result is a scheme which is essentially
first order in 6t. O

To do improve this, we would like to be able to project in (H{(£2))"-norm.
But this is essentially equivalent to solving a Stokes problem.

Lemma 9.2 (The (H}(2))"-projection.) Let u be given in (H(2)". Then
u can be written as
u = UO + ’u,p’ (9.10)

where ug € V() with
Vo(Q) = {v|v € (H}(Q)™,dive = 0}, (9.11)

and is the solution of the problem

{ Augy + gradm = Au, (9.12)

div Ug = 0,

where m is analogous to a pressure and serves to enforce the divergence-free
condition.

Proof. The problem is to find ug as the solution of the constrained mini-
mization problem,

: _ 2
L2, o) —e@iq- (9.13)

Introducing the Lagrange multiplier m and writing the optimality conditions
of the Lagrangian obtained, one gets (9.12). O

Using this result we are naturally led to a new projection scheme.

Example 9.2 (The H}-projection scheme.) Let u™ and p" be known at
time step n. We shall compute the solution at the next time step n + 1 in
two substeps. First, we solve, denoting by 6t the time step,

un+% —u”

5 +u™ti - gradu™: — 2u Au™tE +gradp” = f.  (9.14)

We then project u"*+% by solving

Aumt! 4 grad §p = Au™t3,
div g1 = 0, (9.15)
prtt=p" +bp.
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This is only one of possibie variants and second-order methods can also be
built using the #-scheme such as in Bristeau, Glowinski and Périaux (1987?)
or other techniques (Bell, Colella and Glaz, 1989). The price we pay for this
better handling of boundary conditions in the projection step is that the
Stokes Problem (9.15) defining u™*! is harder to solve than the Neumann
problem (9.15). Using this method means that one should dispose of an
efficient and simple Stokes solver. O

Finally, a brute force method, that is a fully implicit scheme, can also be
employed.

Example 9.3 (The fully implicit scheme.) Let 4™ and p" be known at
time step n. We compute the solution at the next time step n + 1 by
solving:

un+1 —u"
+u™t!. gradu™?! — 24 Aumt! + gradp™t! = f,
8 (9.16)

divunrt! = 0.

Now u™*! is the solution of a nonlinear incompressible problem. One pos-
sible way to solve this is by the penalty method already discussed. An
equivalent way of introducing it is through the ‘artificial compressibility
method’ of Chorin (1968) which is usually written as a perturbation of the
above scheme:

un+l —u”
5 +u™tl . gradu™t! — 2 Aumt! 4+ gradp™t! = f,
(9.17)
n+l _ ,.n
P divertl =o.
bt
Using the second equation, the first one may be written as
n+l _ ,,n
u_at_u_ + u"t! . grad u™t? (9.18)

ot
—2p Au™t! 4+ —graddiv u™*! 4 gradp” = f,

which is nothing but a penalty method for the solution of (9.16). One also
sees that € should be small with respect to 6t which may give rise to severe
ill-conditioning. An iterative variant based on the augmented Lagrangian
method is therefore much more preferable. O

Remark 9.1 In the implicit scheme (9.16) we have used an implicit Eu-
ler’s scheme which is a stiffly-stable implicit method for ordinary differential
equations (cf. Crouzeix and Mignot (1984). This strong stability property is
highly desirable for large systems. However, it is now quite well established
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that to detect bifurcations to unsteady solutions in nonlinear Navier—Stokes
problems correctly, a second-order scheme is essential (Fortin, Fortin and
Gervais, 1991). A reasonable solution is through Gear’s method which is
a two-step implicit stiffly-stable scheme. It requires knowledge of u" and
u™! to compute u"*!.

%un+1 —2u™ + %un—l
ot

+ unt -grad unt?

9.19
_2ﬂ Aun+1 +gradpn+1 — .f, ( )

divu™tl = 0.

This scheme has been successfully employed for the computation of Hopf
bifurcations. O

Remark 9.2 An interesting variant for a totally implicit scheme consists
in using a method of characteristics for the discretization of advection terms
(cf. Pironneau (1989)). The simplest way to do so can be summarized in
the following algorithm.

For any vertex V of coordinates & compute . = © — §t (9.20)

Compute u(x,t,) = u(x., t,). (9.21)

n+1

To compute u one then solves

un+1 - u,
5 2u Au™! 4 gradp™t! = f,
t (9.22)

divunt! = 0.

The problem to solve in u™*! is then a linear problem which can be solved
by any suitable Stokes solver. More sophisticated versions of this idea are
currently employed in industrial codes.

10. Conclusion

The possible issues to be considered in the numerical solution of the Navier—
Stokes equations are so numerous that only a small fraction of them has been
addressed here. Some, such as solution algorithms, have only been sketched.
Finally, questions related to a posteriori error estimations and adaptivity
have been completely ignored. The main difficulty remaining in the field is
certainly the treatment of flows at high Reynolds number. Boundary layers
imply delicate questions of mesh adaptation. Turbulence models, which try
to represent the macroscopic effects of the small scales of the flow, are also
an important issue. With respect to the treatment of incompressibilty which
was our main topic, three-dimensional problems remain a challenge in both
the construction of accurate elements and in the design of efficient solution
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methods. We hope that this article shall be useful as a guide into the rapidly
changing world of computational fluid dynamics.
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Multigrid methods are the fastest known methods for the solution of the
large systems of equations arising from the discretization of partial differ-
ential equations. For self-adjoint and coercive linear elliptic boundary value
problems (with Laplace’s equation and the equations of linear elasticity as two
typical examples), the convergence theory reached a mature, if not its final
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1. Introduction

The discretization of partial differential equations leads to very large systems
of equations. For two-dimensional problems, several ten thousand unknowns
are not unusual, and in three space dimensions, more than one million un-
knowns can be reached very easily. The direct solution of systems of this size
is prohibitively expensive, both with respect to the amount of storage and to
the computational work. Therefore iterative methods like the Gaufi-Seidel
or the Jacobi iteration have been used from the beginning of the numerical
treatment of partial differential equations.
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An important step was Young’s successive over-relaxation method (1950)
which is much faster than the closely related Gau3-Seidel iteration. Never-
theless, this method shares with direct elimination methods the disadvantage
that the amount of work does not remain proportional to the number of un-
knowns; the computer time needed to solve a problem grows more rapidly
than the size of the problem. The standard reference on iterative methods
is Varga (1962). For a recent treatment, see Hackbusch (1991).

Multigrid methods were the first to overcome this complexity barrier.
Multigrid methods are composed of simple basic iterations. Probably the
first working multigrid method was developed and analysed by Fedorenko
(1964) for the Laplace equation on the unit square. Bachvalov (1966) con-
sidered the theoretically much more complex case of variable coefficients.
Although the basic idea of combining discretizations on different grids in an
iterative scheme appears to be very natural, the potential of this idea was
not recognized before the middle of the 1970s. At this time, the multigrid
idea began to spread.

The report of Hackbusch (1976) and the paper of Brandt (1977) were
the historical breakthrough. The first big multigrid conference in 1981 in
Koln was a culmination point of the development; the conference proceedings
edited by Hackbusch and Trottenberg (1982) are still a basic reference. With
Hackbusch’s 1985 monograph, the first stage in multigrid theory came to an
end.

Today, multigrid methods are used in nearly every field where partial
differential equations are solved by numerical methods. They are applied
in computational fluid dynamics as well as in semiconductor simulations.
The bibliographies in McCormick (1987) and Wesseling (1992) each contain
several hundred references.

The field of multigrid methods has became too large to review in a single
article. Therefore, in this paper, we restrict our attention to the class of
problems which is best understood, namely to self-adjoint and coercive linear
elliptic boundary value problems. For mathematicians, the typical equation
in this class is the Laplace equation. People, who are more oriented to real
life, would probably think of the partial differential equations of structural
mechanics.

Hackbusch (1982) and Braess and Hackbusch (1983) gave the first really
satisfying convergence proofs for multigrid methods applied to this class of
problem. The main problem with these proofs, and with all other conver-
gence proofs appearing up until the beginning of the 1990s, is that they
are based on regularity properties of the boundary value problem which are
rarely satisfied in practice. In addition, the underlying finite element or
finite difference meshes have to be quasi-uniform, i.e. all discretization cells
have to be of approximately the same size. Although these assumptions are
common in the theory of finite element methods, they are unrealistic.
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These problems led Bank and Dupont (1980) and Axelsson and Gustafs-
son (1983) to the development of the two-level hierarchical basis methods.
Yserentant (1986b) and Bank, Dupont and Yserentant (1988) extended this
idea to the multilevel case. These methods have a simpler structure than
the usual multigrid methods and do not depend, by their construction, on
the restrictive assumptions mentioned earlier. Hierarchical basis methods
have been shown to be very efficient in adaptive finite element codes; see
Bank (1990) and Deuflhard, Leinen and Yserentant (1989).

Another development of the 1980s were the domain decomposition meth-
ods with the Schwarz alternating method as an early example; see Chan
et al. (1989), for example. Recently these independent fields merged in a
joint abstract theory which is flexible enough to treat many, at first sight
completely different iteration schemes. The basic references are Bramble,
Pasciak, Wang and Xu (1991a, 1991b), Bramble and Pasciak (1991), Dryja
and Widlund (1991) and, especially in regard to terminology, Xu (1992b).
This unified theory is one of the main topics of the present review article.

Fast iterative methods for the systems of equations

Au=f (1.1)

resulting from the discretization of self-adjoint, the coercive linear elliptic
boundary value problems are not only of interest in their own field but also
of interest elsewhere.

For example, such methods can be utilized for the efficient solution of

saddle point problems
A BT u_(f
(5% )0)-(37) 0.

as they arise from the discretization of the Stokes equation. Such approaches
are described and analysed in the papers of Bramble and Pasciak (1988) and
Bank, Welfert and Yserentant (1990).

Fast iterative methods for the equation (1.1) can also be used to construct
comparably fast methods for the solution of systems

(A+M)u=f (1.3)

arising from the discretization of boundary value problems with lower order
terms (here represented by M) making the system indefinite and/or un-
symmetric. Helmholtz type and convection—diffusion equations fall into this
class. Methods of this type are described in Yserentant (1986¢), Vassilevski
(1992) and Xu (1992a). The mathematical background of these papers is
an observation concerning the finite element discretization of perturbed el-
liptic boundary value problems which has been made by Schatz (1974).
The analysis of multigrid methods, which can be directly applied to such
boundary value problems, is also based on such perturbation arguments; see
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Bank (1981), for example. A completely different approach can be found in
Yserentant (1988).

If M is not self-adjoint and becomes the dominating part in (1.3), i.e.
for convection-dominated problems, for example, the construction of appro-
priate fast solvers becomes more difficult and is still in its infancy. Until
the present day, most iterative methods for such problems were constructed
on a more or less heuristic basis. Multigrid methods based on incomplete
factorizations turned out to be very efficient. For certain model problems,
a rigorous analysis is possible; see Hackbusch (1985), Wittum (1989b) or
Stevenson (1992). With his frequency decomposition multigrid methods,
Hackbusch (1989a,b) presented a very promising approach. These methods
are also well suited to boundary value problems with strong anisotropies.
It should be mentioned that conjugate-gradient-like algorithms play an im-
portant role in the solution of nonsymmetric linear algebraic equations like
(1.3). For a survey of recent developments, see Freund, Golub and Nachtigal
(1992).

Last, but not least, fast iterative solvers for standard symmetric, positive
definite finite element equations can be applied to related nonlinear bound-
ary value problems via approximate Newton techniques; see Bank and Rose
(1982) and Deuflhard (1992). Often, such methods based on inner—outer
iterations present an alternative to nonlinear multigrid methods which treat
the boundary value problem directly. Information about nonlinear multi-
grid methods can be found in Hackbusch’s 1985 book. A very elaborate
convergence analysis is given in Hackbusch and Reusken (1989).

The rest of this paper is organized as follows. In Section 2, we introduce
a very general class of approximate subspace correction methods for the
solution of abstract linear equations Au = f with self-adjoint and positive
definite operators A replacing the usual matrices. The classical multigrid
or, as we often prefer to say, multilevel methods as well as many domain
decomposition methods are such subspace correction methods. How multi-
grid methods can be interpreted in this sense, will be discussed in detail.
In addition to the classical multigrid algorithms, we present the hierarchi-
cal basis methods, which are extremely well suited to adaptively generated,
nonuniform finite element meshes.

In Section 3, a first convergence proof for two-grid methods is given. This
proof follows the lines given in Bank and Dupont (1981). The two-grid
convergence result can be utilized to prove the convergence of the so called
multigrid W-cycle. All early convergence proofs for multigrid methods fol-
lowed this strategy.

A more sophisticated multigrid convergence proof based on the ideas of
Braess and Hackbusch (1983) will be presented in Section 4. Contrary to
the two grid—multigrid analysis, this convergence proof also applies to the
multigrid V-cycle which is simpler than the W-cycle.
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In Section 5, a general convergence theory for the recursively defined,
multiplicative subspace correction methods introduced in Section 2 is devel-
oped. In Section 6, this abstract theory is applied to multigrid methods for
the solution of finite element equations and to the hierarchical basis multi-
grid method of Bank et al. (1988). In addition to a regularity dependent
convergence result, which is closely related to the result of Wittum (1989a),
a first regularity free convergence estimate is derived.

Utilizing the results presented in Section 7, one can show that multigrid
methods reach an optimal complexity which is independent of the regularity
properties of the boundary value problem. These results are mainly due to
Oswald (1990, 1991) and to the forthcoming paper of Dahmen and Kunoth
(1991). Many of the tools employed in these papers were taken from the
classical approximation theory and the theory of function spaces. A self-
contained presentation for the case of second-order problems can be found
in Bornemann and Yserentant (1992).

Finally, in Section 8, we devote our attention to additive multilevel meth-
ods which are a special case of the additive subspace correction methods
already introduced in Section 2. The most prominent examples of these
methods are the hierarchical basis solver (Yserentant, 1986b) and the re-
cent multilevel nodal basis method of Bramble, Pasciak and Xu (1990) and
Xu (1989). Our presentation follows Xu (1992b) and Yserentant (1990).
These methods are more flexible and simpler than the usual recursively de-
fined multilevel methods and fit very well to nonuniformly refined grids. In
addition, they present advantages for implementation on parallel computers.

The present survey article is strongly influenced by the recent work of
Bramble, Pasciak, Wang and Xu. Although not explicitly stated at every
place, often we follow their argumentation very closely, especially in Sections
2, 5 and 8. The merits of these authors are herewith explicitly acknowledged.

Special thanks also to Randy Bank and Wolfgang Hackbusch who laid
the foundations of multigrid convergence theory. They have supported me
in many respects.

2. Subspace correction and multilevel methods

We begin this section with a very abstract formulation of a discrete elliptic
boundary value problem. Let S be a finite dimensional space. We assume
that S is equipped with an inner product a(u,v) inducing the norm

lull = a(u,u)'/? (2.1)
and a second inner product (u,v) inducing the norm

lullo = (u,u)!/2. (2.2)
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We introduce a symmetric and positive definite operator A: S — S by the
relation

(Au,v) = a(u,v), veES, (2.3)

where symmetric and positive definite here is always understood to be sym-
metric and positive definite with respect to the inner product (u,v). Our
aim is the construction and analysis of a general class of fast solvers for the
abstract linear equation

Au=f. (2.4)

This equation is equivalent to the problem of finding a u € § satisfying the
relation

a(u,v) = (f,) (2.5)

for all elements v € S. We remark that the inner product (2.2) does not enter
the final form of the algorithms as they are implemented on the computer,
and that the constants in our central abstract convergence theorems will be
invariant under a change in this inner product.

In the applications that we have in mind, (2.1) is the norm induced by the
elliptic boundary value problem under consideration whereas (2.2) is chosen
to be a Ly-like inner product. To give an example, let Q C IR? be & bounded
polygonal domain. As a model problem, we consider the differential equation

2
— Z Dj(aijDiu) = f (26)
i,j=1
on 2 with homogeneous boundary conditions u = 0 on the boundary of €.

The weak formulation of this boundary value problem is to find a function
u € H}(Q) satisfying the relation

a(u,v) = /Q fudz 2.7)

for all v € H}(Q) where, in this example, the bilinear form a(u,v) is given
by the integral expression

2
a(u,v) =/Q Z ai;DiuDjvdz. (2.8)
ij=1

We assume that the a;; are continuously differentiable functions, that

aij = Gji, (2.9)
and that there are positive constants M and § with
2 2 2
§Y €& < Y aij(x)&l; < MY € (2.10)
1=1 3,j=1 =1
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for all z € § and all £;,& € IR. These conditions guarantee that (2.8)
defines an inner product on H}(2) which is equivalent to the usual inner
product on this space.

By a triangulation 7 of 2, we mean a set of triangles such that the
intersection of two such triangles is either empty or consists of a common
edge or a common vertex. Here we start with an intentionally coarse initial
triangulation 7 of ). The triangulation 7y is refined several times, giving
a family of nested triangulations 7y, 77,75, . ... For ease of presentation, we
consider only uniformly refined families of triangulations in this article, at
least from a rigorous point of view. Thus a triangle of Ty, is generated by
subdividing of triangle of 7 into four congruent subtriangles.

Nevertheless one should keep in mind that nonuniformly refined meshes
are absolutely necessary to approximate solutions with singularities arising
from corners, cracks, interfaces or nonlinearities. On an informal basis, we
will discuss whether and in which way the presented results can be general-
ized to such sequences of grids.

For triangular grids, the most successful nonuniform refinement scheme is
due to Bank and Weiser (1985). It is also described in Bank et al. (1988).
The scheme is based on the regular subdivision of triangles as described
earlier and on carefully chosen additional bisections of triangles. Refine-
ment schemes, which are based exclusively on the bisection of triangles, are
discussed in Béansch (1991) and Rivara (1984). The nonuniform refinement
of tetrahedral meshes in three space dimensions is a harder challenge. In
Binsch (1991), the bisection of tetrahedra is utilized. The refinement strat-
egy of Bank and Weiser can also be generalized to three dimensions.

Corresponding to the triangulations 7, we have finite element spaces Sk.
In our example, Sy, consists of all functions which are continuous on 2 and
linear on the triangles in 7 and which vanish on the boundary of Q2. By
construction, Sy, is a subspace of S; for k < [. The extension of the presented
results to higher order spaces is more or less obvious.

For the rest of this paper, we fix a final level j and the corresponding finite
element space S = §;. The discrete boundary value problem correspond-
ing to the abstract linear problem (2.4), (2.5) is to find a function u € S
satisfying the relation

a(u,v)=/ﬂfvd:z; (2.11)

for all functions v € S.
As mentioned earlier, the inner product (2.2) is usually a Ls-like inner
product with an appropriate weight function. Our choice is

(u,v) = Z are;(T)/Tuvdx' (2.12)

TeTp




292 HARRY YSERENTANT

The task of the weights here is to make our estimates independent of the size
of the triangles in the initial triangulation. In the three-dimensional case,
these factors have to be replaced by other factors behaving like 1/diam(T")2.

After this illustrating example, which will accompany the whole paper,
we return to the general theory. Let Wy, Wy, ..., W; be subspaces of S. We
assume that every u € S can be written as

u=wo+wy+ ... +wy, w €W, (2.13)

We neither assume that this representation is unique, nor that the spaces
W, are nested.

We need two kinds of orthogonal projections onto the spaces W;. The
projections Q; : § — W, are defined by

(Quu,wr) = (w,wr), w €W, (2.14)
and the projections P; : § — W, by
a(Pu,w;) = a(u,w;), w; € W, (2.15)

If 4 € S is the solution of (2.4), and (2.5), respectively, Pju € W), is the Ritz
approximation of this solution in Wj.

The basic building block of the iterative methods considered here are the
subspace corrections

U~ u+ P(u—1u) (2.16)

with respect to the spaces W;. The subspace correction (2.16) makes the er-
ror u—u between the exact solution and the new approximation a-orthogonal
to the space W,.

To express these subspace corrections in terms of the right-hand side f and
the approximations %, we introduce the Ritz approximations A; : W, — W),
of the operator A with respect to the spaces W;. They are defined by

(Au,v) = (Au,v), u,v €W, (2.17)
or equivalently by
(Aju,v) = a(u,v), u,veEW,. (2.18)
The operators A, A;, P, and (); are connected by the relation
AP = QA. (2.19)

(2.19) easily follows from
(A1Pu, wi) = a(Pru, wr) = a(u, w;) = (Au, wi) = (QrAu, wy).

By (2.19), the Ritz approximation Pju of the solution u of (2.4) satisfies the
equation
AiPu = Qif, (2.20)
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and the subspace correction (2.16) can be written as

U — T+ A7'Qu(f — AR). (2.21)
It requires the computation of the Ritz approximation
P(u—1) = AT'Qu(f - AB) (2:22)

of the error u — u.

The problem is that, for sufficiently large and complicated subspaces W,
the computation of this approximate defect is far too expensive to lead to
a reasonable method. Therefore we replace the subspace corrections (2.21)
by approrimate subspace corrections

i — @+ B 'Qu(f — A) (2.23)

with symmetric and positive definite operators B; : W; — W,. The operators
By should have the property that the correction term

d; = B'Qu(f — AR) (2.24)

can easily be computed as the solution of the linear system
(Bidi, wy) = (f — Au,wy), w €W, (2.25)
Here we should remark that the computation of the right-hand side of (2.25)
(f — Au,w;) = (f,wr) — a(@,wy) (2.26)

does not require an explicit knowledge of the abstract operator A but only
of the bilinear form a(u,v) and of the linear functional representing the
right-hand side of the equation.

A common situation is that the computation of the correction term in
(2.23) consists of, say, m steps of a given convergent iterative procedure

w; «— W+ 51_1(7‘1 — Ay (2.27)
for the solution of the equation
Aw =1, =Qif - Au), (2.28)

with a symmetric positive definite operator Bi:w, — W, that means of m
Jacobi steps, for example, where one starts with w; = 0. Then the operator
By is given by
Bit=(I-(I-B1A)™A4l, (2.29)
and is automatically symmetric and positive definite.
If one combines the single subspaces corrections

i« @+ B 'Qu(f — Aq) (2.30)

sequentially in the order [ = 0,1,...,J, one obtains the multiplicative sub-
space correction method corresponding to the subspaces Wy, ..., Wy of S.
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These method generalize the classical Gaufl—Seidel iteration where the sub-
spaces are one-dimensional and are spanned by basis functions.

Sufficient for the convergence of this composed method is that the itera-
tions

wy — w; + Bl—l(fl - Ay (2.31)

for the solution of the equations A;w; = f; on W, converge for arbitrarily
chosen right-hand sides f; and the initial approximation w; = 0; this follows
from Theorem 5.1 and the finite dimension of S§. If one assumes that

(Aywy, wy) < w (B, wy), w €W, (2.32)
this condition is equivalent to
O<w<2 (2.33)

We remark that the condition (2.33) is automatically satisfied, if the B;
themselves represent multiplicative subspace correction methods with exact
subspace solvers, for example Gaufi-Seidel iterations for the approximate
solutions of the linear systems involving the operator A;. For this particular
choice, we have w = 1.

Classical multigrid methods for the solution of finite element equations like
(2.11) fall into the category of such multiplicative subspace correction meth-
ods. The multigrid V-cycle is a multiplicative subspace correction method
with the coarse grid spaces S; as subspaces W,.

The V-cycle is usually defined by recursion on the number j of refinement
levels. For the initial level 0, when only one grid is present, the equations
are solved exactly. For two or more levels, one proceeds as follows.

Beginning with an approximation ug = u of the finite element equation
Aju = f, first a coarse grid correction is performed. For the two-level case,
one computes the approximate defect d = P;_1(u—u) € S;— as the solution
of the level j — 1 equation

Aj1d = Qj1(f — Aju) (2.34)
and sets
u; = ug + d. (2.35)
Then further intermediate approximations us, ..., un+1 € S; are determined
by m so called smoothing steps
wis1 = u; + By (f — Ajuw). (2.36)

One ends with @ = u,,+1 as the new approximation for the solution of the
equation A;u = f. For more than two levels, the coarse grid equation (2.34)
is approximately solved by a call of the method for the level j — 1.

If the coarse level equations (2.34) are not solved by one but by two calls
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of the method for the preceding level, one speaks of a W-cycle multigrid
method. Other cycling strategies are possible but will not be discussed here.

For the multigrid V-cycle, the number j+1 of levels and the number J + 1
of subspace corrections coincide. Compared with the V-cycle, additional
subspace corrections are added in the W-cycle. The number of subspace
corrections exceeds the number of levels, although each of the subspaces
W, 1=0,...,J, is one of the spaces S, k=0,...,].

The reason for the extremely fast convergence of multigrid methods in
comparison to the underlying smoothers is that these iterations are very
selective for the different components of the error. Fast oscillating com-
ponents (with respect to the given level) are strongly reduced whereas the
remaining components are nearly unaffected. The error is smoothed, as the
term ‘smoothing step’ indicates. As the smooth components of the error are
already small because of the preceding coarse grid correction, the composed
method can be very efficient.

For simple model problems (constant coefficients, square grids, periodic
boundary conditions, etc.) the interaction of the smoothing steps and the
coarse level corrections can be quantitatively studied using a Fourier or
local mode analysis. We refer to Hackbusch’s 1985 book, to Stiiben and
Trottenberg (1982) and to Brandt (1982).

For any good iterative solver for the solution of finite element equations,
the amount of work per iteration step should be proportional to the number
of unknowns. Next we check whether this condition is satisfied for the
multigrid methods introduced earlier.

Without regarding the algorithmic realization in detail (recall only (2.26)),
we get the recursion formula

W; =pW;_1+Chn, (2.37)

for the work W; necessary to perform one step of the multigrid method
for the solution of a equation in S;. n; denotes the dimension of S;. p =1
corresponds to the V-cycle and p = 2 to the W-cycle. Here we have assumed
that the amount of work per cycle, except for the approximate solution of
the coarse level equation (2.34), behaves like Cn j, which is the case for all
reasonable smoothers. The recursion formula (2.37) yields

j .
W; = ijO +C Z p"knk. (2.38)
k=1

If one disregards the work for the solution of the equations on the level 0,
a simple analysis shows that the operation count W; for the single multigrid
cycle behaves like O(n ;) if and only if the dimensions n; are related by

ng < cqj'knj, k=1,...,7, (2.39)
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where ¢ < 1 for the V-cycle and ¢ < 1/2 for the W-cycle. This means
that the dimensions of the spaces Sy have to increase geometrically. These
conditions are satisfied for our model problem (where the dimension essen-
tially grows by the factor 4 from one level to the next), but they can cause
problems for adaptively generated, nonuniformly refined meshes.

An interesting modification of the classical multigrid methods, especially
as it concerns the application to such adaptively generated, highly nonuni-
form meshes, is the hierarchical basis multigrid method introduced by Bank
et al. (1988).

Compared with classical multigrid methods, it works with smaller spaces
W,. Nevertheless, for two-dimensional problems, it reaches a similar effi-
ciency as those of classical multigrid methods. Its structure fits very well
to nonuniformly refined meshes and allows the use of simple data struc-
tures. Under some mild restrictions, the W-cycle version also works in three
space dimensions as can be shown along the lines given in Bank and Dupont
(1980), Braess (1981) and Axelsson and Vassilevski (1989).

To describe this method, we have to realize that a function in the finite
element space Sy, is uniquely determined by its values at the nodes ¢ € N
which are the vertices of the triangles in the triangulation 7} which do not
lie on the boundary of Q2. Therefore we can define an interpolation operator
I, :8 — S by

(Tru)(z) = u(x), € N (2.40)
Utilizing these interpolation operators, we can define the subspace
Wi = {Tru — Tx—1u|u € S} (2.41)

of S as the image of S (or of S;) under the operator Iy — Z;_;. The
functions in this space Wy vanish at the nodes £ € Nj_1. Therefore they
are given by their values at the nodes z € N \ Ni_1.

In the hierarchical basis methods, the spaces S, are replaced by the spaces
(2.41). As with classical multigrid methods, approximate solvers By, of a very
simple structure can be used. For a survey, we refer to Yserentant (1992).

In comparison with the recursion

W;=W;_1+ Cn; (2.42)

for the work necessary to perform one multigrid V-cycle, the corresponding
recursion formula

W; =W;_1+C(n; —nj-1) (2.43)
for the hierarchical basis multigrid method has a different quality. It yields
the operation count

W; < Wy + Cn; (2.44)
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independently of any assumption on the distribution of the unknowns among
the levels.

For nonuniformly refined families of grids, the only alternative to the hier-
archical basis multigrid method are multigrid methods in which the spaces
(2.41) are enriched by those basis functions of Sy which are associated with
the nodes in Nj_1 having neighbours in Ny \ Nx_1. From a computational
point of view, this corresponds to local smoothing procedures. The theoreti-
cal understanding of such methods began with Bramble et al. (1991b).

The recursively defined multiplicative subspace correction methods can
be seen as generalizations of the GauBl—Seidel method. The corresponding
Jacobi-type iterations have recently been the focus of much interest. Because
of their simpler structure, these additive subspace correction methods

1

J
— T+ B 'Q(f — AB) (2.45)
=0

offer many advantages as preconditioners for the conjugate gradient method.

With subspaces W, as in the hierarchical basis multigrid method and
Jacobi-type methods as approximate solvers B, the additive subspace cor-
rection method for the solution of the finite element equations (2.11) be-
comes the hierarchical basis solver; see Yserentant (1986b, 1990, 1992). For
the choice W; = §;, one obtains the multilevel nodal basis preconditioner of
Bramble et al. (1990) and Xu (1989); see also Yserentant (1990).

3. An analysis for the two-level case

The first general convergence proofs for classical, recursively defined multi-
grid methods for finite element equations like (2.11) stem from the end of
the 1970s. They are mainly the work of Wolfgang Hackbusch and of Ran-
dolph E. Bank and Todd Dupont; see Hackbusch (1981, 1985) and Bank
and Dupont (1981).

It is Hackbusch’s merit to have identified and clearly separated the two
main building blocks which lay the foundation to all standard convergence
proofs and which became the basis of a countless number of articles ap-
pearing until the present day. These properties are the smoothing property,
which essentially describes the necessary relations between the approximate
subspace solvers and the finite element equations, and the approrimation
property, which describes the interaction of the different levels. Both prop-
erties will be discussed in this section.

In this and the next section, we assume that the eigenvalues of the error
propagation operators

I-B'A; (3.1)
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of the smoothing iterations
w — wi + By (fe — Arwi) (32)
are nonnegative. This condition is equivalent to
(wi, Axwy) < (wg, Bewg), wi € Sk, (3.3)

and guarantees the convergence of the iteration (3.2). The condition (3.3)
is stronger than (2.33). (3.3) is our version of the smoothing property.
(3.3) holds, if the operators By, are properly scaled, i.e. if the iteration
(3.2) is sufficiently damped. If (3.2) represents a symmetric (block) GauB—
Seidel iteration, (3.3) is automatically satisfied.
Our second assumption concerns the spaces

Vi = {Pru — Pr—1u|u € 8} C Sy, (3.4)

i.e. the a-orthogonal complements of the spaces S;_; in S;. We assume that
there exists a constant K with

(vk,ﬁk'vk) < K(vg, Agvx), vk € Vk. (3.5)

(3.5) is the counterpart to (3.3). As the norms induced by the Bj are
generally much stronger than the energy norm induced by the Ag, (3.5)
can be interpreted as an approximation property of the functions in Sy by
functions from the subspace Si_;.

Without any doubt, (3.5) is a much more critical assumption than (3.3).
In the finite element case, and especially for our model problem, (3.5) is
essentially equivalent to the Aubin—Nitsche Lemma; see Ciarlet (1978), for
example. Assume that, for k =1,...,7 and all uy € S,

c14%|luk 13 < (ug, Brur) < cod¥||ug)|2. (3.6)

Because of the scaling of the La-like norm (2.12) by the areas of the triangles
in the initial triangulation and the fact that the diameter of the triangles
shrinks by the factor 2 from one level to the next, smoothers like the Jacobi
iteration or the symmetric point GauB—Seidel iteration have this property.
With (3.6), the condition (3.5) is equivalent to the estimate

| Peus — Pe—rullo < e27%|| Peu — Py_yu| (3.7)

for the functions u € S, or, with an infinite sequence of spaces Si, even
equivalent to the estimate

llu = Peulo < 3e27*[lu — Peul (3.8)

for the functions u in the continuous solution space H3(Q). (3.8) and (3.7),
respectively, imply (3.5) if the upper estimate in (3.6) holds.
It is well known that (3.8) holds only for H?2-regular problems, i.e. if the
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solution u of the continuous problem (2.6) belongs to H? for right-hand sides
f € L and satisfies an estimate

lull 2 < €lIS L, (3.9)

This holds only if the domain © has a C2-boundary or if Q is convex. For
domains §? with re-entrant corners, (3.9) is wrong.

This fact restricts the applicability of the classical multigrid convergence
theory, although, using differently weighted L2-norms (with weights depend-
ing on the interior angles of the domain) and properly refined triangulations,
the algebraic estimates derived in this and the next section can also be ap-
plied to certain problems on domains with re-entrant corners; see Yserentant
(1986a, 1983) and S. Zhang (1990).

The basic result of this section is an estimate for the convergence rate
of the algorithm described by (2.34), (2.35) and (2.36), i.e. for the case in
which the coarse grid correction is exactly determined and only two levels
are present.

Theorem 3.1 If ug € S is the initial approximation for the solution u € S
of the finite element equation Au = f, the new approximation u,,+1 € S
(after a full two-grid cycle (2.34), (2.35), (2.36)) satisfies the estimate

llu = um4al|® < Ky(m)llu — uoll?, (3.10)
where the generic constant y(m) is given by
1 1 om
= - 3.11
10m) = g7 (U gy (3:11)

and K is the constant from the approximation property (3.5).

Proof. The main ingredient of the proof is a biorthogonal basis ¥1,...,%,
of § with

(i, By) = 6, (%, Ath) = Mid, (3.12)

where we suppress the subscript 7 for a while; the existence of such a basis
follows from basic facts of linear algebra. Then, for u = Y"1 ; a;1); € S, the
norm (2.1) is given by

lul|® = Z Aia?. (3.13)
i=1
If we introduce the discrete norm

lull = (u, Bu)'/?, ueS, (3.14)

this norm has the representation

=3 . (3.15)
=1
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The proof of Theorem 3.1 is based on the eigenfunction expansion

n

Gv = ) (1 N)aih

i=1

for v = Y1, a;9; of the error propagation operator

(3.16)

(3.17)

(3.18)

G=I-B"'4
for the smoothing process. Introducing the errors
erk=u—ug, k=0,....m+1,
between the exact solution u € & and the intermediate approximations
Ug, U1, . . ., Um+1 Of u, the errors eq, ..., e, can be expressed as
ek+1 = GFe;, k=0,...,m,

in terms of the error e; after the coarse grid correction.
If ey = 37 aivi, one finds

n n
lemsal? = 11D (1= X)™assl> = > M1 — X)*™a?.
=1 i=1

The smoothing property (3.3) is equivalent to the bound
MN<1, i=1,...,n,
for the eigenvalues \;. Therefore

max Ai(1— )" < max A(1—A)*™ = y(m)

i=1,....,n

and

n
lem+1l? < ¥(m) 3 af = y(m)lleall®.

i=1
As, by the approximation property (3.5),
lexll* = lleo — Pj—1eoll® < Klleo — Pj_1e0ll® < Klleo|l?,
the proposition
lem+1l1? < Kry(m)lleoll?
of Theorem 3.1 follows. O

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

The theorem states that the two-grid method converges and that its con-
vergence rate K~(m) becomes even arbitrarily small as soon as the number
m of smoothing steps is sufficiently large. As the constant K in the ap-
proximation property (3.5) does not depend on j, the convergence rate is

independent of the grid size.
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This fact can be utilized to prove the convergence of the W-cycle by a rela-
tively simple recursion argument, which is the idea behind all early multigrid
convergence proofs. A detailed discussion can be found in Hackbusch’s 1985
book or in Stiiben and Trottenberg (1982).

Although the two-grid—multigrid analysis is very suggestive and has a
broad range of application, the results obtained in this way do not completely
satisfy for the given case of self-adjoint, coercive elliptic boundary value
problems. Experience says that, applied to problems of this class, not only
the W-cycle but also the much simpler and cheaper V-cycle converges very
fast. In addition, one smoothing step per level turns out to be sufficient.

4. A convergence proof for the V-cycle

The much more sophisticated convergence analysis of Braess and Hackbusch
(1983) supports these observations theoretically. In this section, we derive
their result in an algebraic language as in Yserentant (1983). Closely related
estimates are proven in Bank and Douglas (1985). The assumptions in this
section are the same as in the previous section.

Following the original work and contrary to the definition given in Sec-
tion 2, in this section we assume that the order of the coarse grid correction
(2.34), (2.35) and of the smoothing steps (2.36) is reversed. This is not an
essential change because it is easy to see that the convergence rates of both
versions are equal. The order that we chose in Section 2 seems to be more
natural from the point of view of subspace correction methods. This version
will be analysed in Section 6.

Theorem 4.1 If u € S denotes the exact solution of the equation to be
solved and if ug € S is the given initial approximation of u, the new approx-
imation u,,+1 € S, obtained by a multigrid V-cycle or W-cycle, satisfies the

estimate
c

c+2m

lu = wmaa||?* < llu — woll?, (4.1)

where ¢ = K? and K is the constant from the approximation property (3.5).

As in the two-level proof of the previous section, the proof is based on the
eigenfunction expansion (3.16) of the error propagation operator G for the
smoothing process which is given by (3.17).

As the eigenvalues \; are not greater than 1, we have 1 — \; > 0 for all ¢

and can define the powers G¢, a > 0, of G by

G = zn:(]. - A,’)aai’t/li, (4.2)

i=1

where v = }_I'; a;%; is the eigenfunction expansion of the function v € S.
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The main ingredient of the proof is the functional

o(v) = { ||c§/2vu2/nvu2 , v#0 (43)

, v=_0

for the elements v € S. Note that always p(v) < 1. p(v) can be seen as
a measure for the smoothness of v. If p(v) is small compared with 1, the
smoothed element Gv has a small norm compared with v.

Our first lemma describes the success of the coarse grid correction in terms
of this kind of smoothness of the error.

Lemma 4.2 For all functions v € S, v — P;j_;v satisfies the estimate
lv = Pj-1v|* < min{1, K(1 - p(v))} |[v]*. (4.4)
Proof. Let v € S and v — Pj_ v have the eigenfunction expansions
U—Zaﬂ/h, v— P, Jj— lv—zbd’z
=1
Then

lv — Pj_1v||? = a(v — Pj_1v,v) = Z)\ a;b;.
With the Schwarz inequality, this yields

_ 2 « - b2 V23N 2 1/2
lv = Pj—1vf* < Z > M

i=1

n 1/2
- (z#)’ {ina? - M- Med)
i=1 i=1 i=1
= =Pl {lIvl* - |GY20|* }/?
= [v—Pi-1of {1 = p(v)}? 0.
Inserting (3.5), which means
lv = Pi—1vll? < K|lv — Pj_yv|?,
one obtains
v = Pi—1v[|* < K(1 = p(v)) [lo]|.
This proves the proposition. O

Together with the next lemma describing the effect of the smoothing it-
erations, Lemma 4.2 forms the backbone of the proof of Theorem 4.1.

Lemma 4.3 For all functions v € S, G¥v satisfies the estimate

IG*ull < p(G*v)¥|lo]l. (4.5)
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Proof. Let u; = 1— A;. Because of u; > 0 and utilizing Holder’s inequality,
one obtains, for all v = Y} ; a;¢;,

n
IGF|12 = 3 Ai(uFa;)?
=1

n
= Y ey (yad) TR
=1

n 213k1 n 2lc1 1
z 2k+1 2 + Z 2 )2k
i=1 i=1

IGH=+1/20| 7557 [l 757

IA

This estimate is equivalent to
IG*ullIG*u[I** < (IGY2(G v)(|**||v].
This is the proposition. O

Now we can prove the theorem. Denoting by d = P;_;e,, the exact coarse

grid correction and by d e S;-1 the approximate coarse grid correction
computed by p steps of the method for the level j — 1, one obtains, utilizing

em+1 = (€m — Pj_16m) + (d — d), (4.6)
the relation
lem+1ll? = llem — Pi—1emll* + lid — d||. (4.7)

With an upper bound §;_; for the convergence rate of the method on the
preceding level j — 1,

lem+1ll® < llem = Pi—temll® + 61711 Pj—reml)? (4.8)
follows. This equation can be rewritten as
2 2
lem+all® < (1= 6821)llem — Pi-1eml® + 621 llemll*. (4.9)
Lemma 4.2 yields
llem — Pj-1em||* < min{1, K(1 - p(em))}lemll?, (4.10)
and Lemma 4.3
leml® < p(em)*™lleoll®. (4.11)
If we insert these relations, we have proven the estimate
lu = wmi1[l* < 67 flu = woll?, (4.12)

where §; is given by the relatively complicated expression

8 = Zax, p*™[(1 - 62, ) min{1, K(1 - p)} + 627,]. (4.13)
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Together with
6o =0, (4.14)

this recursion leads to an estimate for the convergence rates 6 ;.
For a fixed p € [0, 1], the function

€ — p*™[(1 —&)min{1, K(1 — p)} + ¢ (4.15)

increases monotonically. Introducing the abbreviation ¢(m) = ¢/(c + 2m),
the assumption

62_; < c(m) (4.16)
leads therefore to
2
& < max R(o) (4.17)

where the function R(p) is given by
R(p) = p*™[(1 ~ c(m)) min{1, K(1 - p)} + c(m)). (4.18)

As necessarily K > 1, R(p) is monotonically increasing on the interval [0, 1].
This proves the estimate

62 < R(1) = ¢(m) (4.19)

for the convergence rate of the multigrid method.

Later, in Wittum (1989a), Theorem 4.1 has been generalized to the case
that the error propagation operator (3.1) can have negative eigenvalues.
Both the analysis of Braess and Hackbusch and that of Wittum do not take
the internal structure of the smoothers into account. A result refined in this
respect has been proven by Stevenson (1992). Reusken (1992) examined the
convergence of multigrid methods with respect to the maximum norm. He
shows that, up to a logarithmic factor, one can obtain the same convergence
estimates as for the energy norm studied here. Another convergence proof,
based on projection arguments and norm estimates instead of eigenfunction
expansions, can be found in Mandel, McCormick and Bank (1987).

5. General multiplicative methods

A main drawback of all these approaches is their strong dependence on the
regularity properties of the boundary value problem and of the considered
family of grids which is reflected in the assumption (3.5). This fact makes
it extremely difficult to apply these theories in a rigorous sense to prob-
lems with singularities caused by re-entrant corners, jumps in the boundary
conditions, by interfaces, and so on.

Recently Bramble et al. (1991a, 1991b) developed an alternative conver-
gence theory which overcomes these difficulties to a large extent.
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This theory can be formulated in the abstract framework of the multi-
plicative subspace correction methods introduced in Section 2. We remark
that the case of nonoverlapping subspaces W;, (which covers the hierarchical
basis multigrid method) has implicitly been treated in Bank et al. (1988).

With some slight modifications as presented in Bramble and Pasciak
(1991), Xu (1992b), or in the present paper, the theory shows that the
convergence rate of multigrid methods is uniformly bounded independently
of any regularity of the boundary value under consideration. It does not
show that the convergence rate tends to zero if one increases the number of
smoothing steps per level.

In this section, we develop the abstract theory for the multiplicative sub-
space correction methods introduced in Section 2. The application to our
model problem and to other elliptic boundary value problems will be dis-
cussed in the next section.

The theory is based on the decomposition of the space S into a direct sum

S=VoeWNd...0V; (5.1)

of subspaces Vi, C W;. These subspaces V;, are only a tool for the theoretical
analysis, they do not enter the practical computation. Often, this fact gives
a lot of freedom in the choice of these subspaces and makes the convergence
theory very flexible.

Two assumptions have to be fulfilled to apply the theory. The first as-
sumption concerns the stability of the decomposition. We require that there
exists a constant K7 such that, for all v; € Vg,

J J
Z(Bkvk,vk) S K1 || Z ’Uk”2. (5.2)
k=0 k=0

The second assumption is a Cauchy-Schwarz type inequality. We assume
that there exist constants yg; = v, with

a(wi,v1) < Vet (Brwg, wi)Y?(Byuy, v)/? (5.3)
for k <1, all wr € Wk, and all v; € V; such that
J J J
> wzew < KD ap) 2O vh)? (5.4)
k,1=0 k=0 =0

holds for all z,y; € IR. That means, we require that the spectral radius of
the matrix (yx;) is bounded by a constant Kj.
In addition, we assume that the constant w in (2.32) satisfies the condition

w<2 (5.5)

which is equivalent to the convergence of the basic iterations (2.31).
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.3) includes the Cauchy—>Schwarz type inequality
5.3) includes the Cauchy—Sch: i ali
a(vk,v) < Yt (Brvk, o) 2 (Bror, u)/2 (5.6)

for vy € Vi, v € V}, and k,1 =0,...,J. (5.6) and (5.4) imply that, corres-
ponding to (5.2),

J J
I wll® < K2 ) (Brvk, k) (5.7)
k=0 k=0
for all vy, € Vi. Therefore the expression
J J
DD vkl = D (Brvk, ve) (5.8)
k=0 k=0

defines a norm on & which is, up to the constants K; and K3, equivalent to
the norm (2.1) induced by the abstract boundary value problem itself.

With the orthogonal projections Pj onto the spaces Wg, the exact sub-
space corrections (2.16) are

U — u+ P(u—1). (5.9
If we define the operators
Ty := By 'ArPe = B; ' Qi A, (5.10)
the approximate subspace corrections (2.23) are correspondingly given by
o — + Ti(u— ). (5.11)
After the substep (2.23), the new error is
b—u — (I —Tp)(u—u). (5.12)

Thus the convergence rate of the multiplicative subspace correction method
with respect to the norm (2.1) is the induced norm of the operator

E=(I-T))...(I-Tp). (5.13)

Theorem 5.1 Every cycle of the abstract multiplicative subspace correc-
tion method introduced in Section 2 reduces the norm (2.1) of the error at
least by the factor ||E|| where

_ 2—-w
K\\\. e Kfz\‘z"
This factor depends only on the constant K; from the stability assumption

(5.2), on the constant K, from (5.4), and on the constant w < 2 from
equation (2.32).

IE® <1 (5.14)

There are several, in principle, very closely related versions of this theorem
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in the papers of Bramble, Pasciak, Wang and Xu. The present version bears
most resemblance to that of Xu (1992b).

The proof of the theorem is somewhat technical. It is not so easy to detect
the idea hidden behind it except that the terms considered are cleverly
arranged and split up. The following two lemmas are the main tools:

Lemma 5.2 For all vy € Vi and all u, € S (1),

1/2
Za(vk,uk < VK1 | kaﬂ (Za(Tkuk,uk)) . (5.15)

k=0 =0 k=0
Proof. One has
J 4 1/2 1/2
> a(ve,ux) = Z(Bk vk, By /2 A Pruy,)
k=0

12 21/2 J 172 21/2
< (ZuB wl?) (Z:uBk AvPa})

1/2
= ( Bkvk, Uk ( B; ! Ap Pug, AkPkUk))

) (5
= ( Bkvk, vk))1/2 ( a(Tkuk, uk))l/z.
(

With the stability assumption (5.2), the proposition follows. O

Lemma 5.3 Forallu € S,
ITkull® < wa(Tyu,u). (5.16)

Proof. Because
I Txull? = (Tiu, AxTiu) < w (Tru, By Tru)
= w (Tyu, B By ' Ax Pru) = w a(Thu, Pru) = w a(Tru, u),
the proposition is a simple consequence of (2.32). O

Now we are ready to prove Theorem 5.1. Proposition (5.14) is equivalent
to the estimate

2 —w)llv)l?* < Ki(1+ K2)?(||v]f® - || Ev||?) (5.17)
forallve S. With E_; =1 and
Ey=(I0I-T)..(I-Ty), k=1,...J,
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one obtains

| Ex-19]1* — | Exvll®* = 2a(TxEg-1v, Bx—1v) — | TwEe_1v]]*.

With Lemma 5.3,
IBk-10[1> = | Exv|l* > (2 - w) a(Ti Ex-1v, Eg-1v)

follows. Because of E; = E, summation yields
J
I[0]I2 = | Ev|® > (2 - w) Y a(TeEx—1v, Ex_1v).
k=0
Because w < 2, (5.17) therefore follows from
J
lvl? < Ki(1+ K2)* Y a(TyEg—1v, Ex_1v).
k=0
For the proof of (5.18), let

J
v = Zvl, v € V.
=0

Then
J J
[0l? = Y a(Eimyv,v) + Y a((I — Ei—1)v,v).
=0 =1
By Lemma 5.2,
J J 1/2
> a(Ei_v,v) < VK| (Za(TkEk—w,Ek—lv)) .
=0 k=0

For the second term on the right-hand side of (5.19), because

-1

I-E_y=7) TiEy,
k=0

(5.18)

(5.19)

(5.20)
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and utilizing (5.3), one gets the estimate
J -1

Za I E[ 1 v 'U[) = ZZ(I TkEk 1Y, ’U[)

=1 k=0

~

-1
> 1 (BeTi Ex—1v, Ti Bi_1v) V2 (Byvy, v) /2
1k=0

IA
M“

o~
Il

%1 (B Tk Ex—1v, Tk Ex—1v)Y2( By, v) /2 (5.21)

IA
M~
|| M“‘

o~
Il
=)

IN

K2(Z(BkaEk 10, Ty B — 1”)) /2(2(3101,01))1/2
Ko (Z(Bkvka 'Uk))l/2 (Za(TkEk—lv, Ek—lv))1/2-

k=0 k=0

By the assumption (5.2),
J

S a1~ B ) < Ko/ Bl (32
=1 k=0
follows. Combined with (5.20), one obtains (5.18). This finishes the proof
of Theorem 5.1.
Sometimes (for multigrid methods with simple smoothers, for example) it
is possible to prove the stronger estimate

a(wk, wf) S Ykl (Bkwk, wk)1/2(Blwf, wf)l/Q (5.23)

for wy € Wk, w; € Wy, k,l = 0,...,J, which implies (5.3). In this case,
the estimate in Theorem 5.1 holds independently of the order in which the
subspace corrections are performed.

There are situations in which the proof of the Cauchy-Schwarz type in-
equality (5.3) causes problems, especially if the coefficients functions of the
differential operator under consideration are not smooth or even not differ-
entiable. In such cases, it is often still possible to prove the norm estimate
(5.7), provided that the energy norm (2.1) behaves like the energy norm in-
duced by a boundary value problem for which one can prove estimates like
(5.3), (5.4). The norm estimate (5.7) is sufficient to derive an estimate for
the norm of the error propagation operator (5.13) which does not deteriorate
too rapidly in terms of the number of subspaces W;.

1/2
o(TxEx_1v, Ex_ 1v)) (5.22)

Theorem 5.4 Assuming only (5.7) instead of (5.3) and (5.4), the norm of
the error propagation operator (5.13) satisfies the estimate

2—-w

E|l’<1- .
=1 mavem )y

(5.24)
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Proof. Instead of (5.21), one obtains
J

J 1-1
Z a((I — Ei—1)v,y) = Z Z a(TyEx_1v,v1)
1=1k=0
)

=1

J-1 J
=3 Y a(TiEp_1v,u

k=0 l=k+1
J-1 12 ,J-1  J 1/2
< (T imBewl) (X1 3 wi?)
k=0 k=0 I=k+1
For the first factor on the right-hand side, one gets, by Lemma 5.3,

J-1

> Tk Ex—1v|* < wza(TkEk 19, E1v).
k=0 k=0

Using (5.7), the second factor can be estimated as follows.

7
Z I E ul? < Kzz > (B, w)

k=0 I= k+1 k=0l=k+1

< KzJZ(Bzvt,vz) < K1 K J|v|2.
=0

This yields the estimate

J J 1/2
S a((z - Biea)v,w) < VoKl ol (3 alTuBi-1v, Be-1v))
k=0

=1
which replaces (5.22). O

6. The application to multilevel algorithms

In this section we apply the abstract theory presented in the last section
to the model problem of Section 2. We prove convergence results for the
multigrid methods introduced there.

We begin with the classical multigrid method where the subspaces Wy
are the finite element spaces Si. In the notation of the previous section, the
error propagation operator of the V-cycle is

By =EJ, EP =(I-Ty)...(I -To). (6.1)
Because Ag = By, i.e. Ty = P, the E( ) satisfy the recursion

EQ =1-P,, E¥)=(1-Tp)EP. (6.2)
The corresponding recursion for the W-cycle version is

EQ =1-Py, E%¥™ =(I-Tw ) EPEP. (6.3)
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It follows by induction that
k k k k
Ey = ByRP, |IRY| < 1. (6.9)
Therefore one gets, for the energy norm of the error propagation operator
By = E‘(,",) of the W-cycle,
IEwll < BV (6.5)

Moreover, if the order of the coarse grid corrections and the smoothing steps
is again reversed, the W-cycle always reduces the energy norm of the error
by at least the same factor as the V-cycle.

For the analysis of the V-cycle multigrid method, we assume that, for
k > 1, the operators By : Sy — Sk, the smoothers, satisfy the estimate

erllurll® < (e, Brur) < cad®|lugll3 (6.6)

for all up € Sx. This condition is less restrictive than (3.6) and also covers
certain symmetric block Gaufi—Seidel schemes, for example.

The crucial point for the application of Theorem 5.1 is the choice of the
spaces Vi C Sk. Recall that these subspaces do not enter into the computa-
tional process.

The most obvious choice is the a-orthogonal decomposition of S, i.e. the
decomposition of § into Vy = Sy and

Vi = {Pku — Pr_1u | u € S} C S (6.7)

for k =1,...,j. Asit has already been discussed in Section 3, for H2-regular
problems,
Fllully < Cllvell®, vk € Vi (6.8)

holds. Because

J
[Poull? + Y | Peu — Pe—ufl® = lul)? (6.9)
k=1

for the functions u € S, (6.8) is equivalent to
J J
looll® + 3 4lwelly < CH Y will?,  ve € Ve (6.10)
k=1 k=0
With assumption (6.6), this yields (5.2), i.e.
J J
Y (Bruk,vr) < K1l ) well®. (6.11)
k=0 k=0

The Cauchy-Schwarz type inequality (5.3) is trivial because
a(wk,vl) =0, wpeW, vy eV (k < l).
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Thus we have shown that, for H2-regular problems, every V-cycle (and
every W-cycle) reduces the energy norm of the error at least by a factor

1-0Q)

which is uniformly less than 1 regardless of the number of refinement levels.
This has already been proven in Wittum (1989a) and, with the restriction
that the smoothing iterations are sufficiently damped, in Braess and Hack-
busch (1983) and Bank and Douglas (1985); see Section 4. Therefore this
estimate is surely not the most spectacular application of the abstract theory
developed in the last section.

But before we discuss other choices of the spaces V; leading to improved
convergence estimates, we turn to the hierarchical basis multigrid method
also described in Section 2.

For the hierarchical basis multigrid method, the finite element space S is
already the direct sum of the spaces Wy = Sy and

Wy = {Iku—Ik_lulu € 8}, k=1,...,3, (6.12)

introduced in Section 2. Therefore the only possible choice for the subspaces
V. here are the spaces Wy, itself.

It has been shown by Yserentant (1986b) that the decomposition of S into
these spaces Vi is stable in the sense that, for all vy € Vg,

J J
llvoll® + > 4¥llwllf < C1(G+ 1)) 3 will®. (6.13)

If we assume that the level 0 equations are again solved exactly, i.e. that
By = Ap, and that, for k¥ > 1, the operators By : W, — W; satisfy an
estimate

e14*(|will§ < (wr, Brwg) < cod®[lwi|§ (6.14)

for all wx € W, a stability condition like (5.2), namely

J J
> (Brok,ve) < KT+ 121D well®. (6.15)

follows. The constant K; = K}(j + 1) depends here on the number j of
refinement levels.
The proof of (6.13) is based on the estimate

IZxull? < CG = k+ Dlul?, uwes, (6.16)

for the energy norm of the interpolation operators 7y : S — Si. On one
hand, this is a very robust estimate which is not affected by arbitrarily large
jumps in the coefficient functions across the boundaries of the triangles in
the initial triangulation. Unfortunately, on the other hand, it is dimension
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dependent. For three space dimensions, the logarithmic factor has to be
replaced by a factor which grows exponentially in the number j — k of the
remaining refinement levels. Details can be found in Yserentant (1986b,
1992) and Bank et al. (1988).

The Cauchy-Schwarz type inequality (5.3) follows from (6.14) and Lemma
6.1 which has essentially been proven in Yserentant (1986b). Related results
can be found in Xu (1992b), Bramble and Pasciak (1991), and in X. Zhang
(1991).

Lemma 6.1 There is a constant C, depending only on the constants in
(2.10) describing the ellipticity of the boundary value problem, on the varia-
tion of the coefficient functions, and on the shape regularity of the triangles,
such that, for £ <[ and all functions u € Si and v € S,

1
a(u,v) < C(==)"F|lul| 2[|v]|o. 6.17
(u,v) < (ﬁ) lJull 2 llvllo (6.17)
Proof. Forl > k+ 1, we fix a triangle T € T} and prove the local estimate
1
a(u,v)|r < 0(75)' * lulyr 2'[lvllosr- (6.18)

This estimate implies the global estimate (6.17). The basic idea is to split
v into the function vy € S; given by

[ v(x) , zeNNAT
vo(m)—{ 0 , TEN\OT

and into v; = v — vg. Then the inner product a(u,v)|7 can be written as
a(u,v)|r = a(u, vo)|T + a(u,v1)|r-

The essential point is that v; vanishes on the boundary of T. Therefore we
obtain, by partial integration and the product rule,

2 2
a(u,v1)|T = - Z / DjaijDiuvl dx — Z / a,-,-DjDiuvl dz. (6.19)
i,j=1"T ij=1"T

As v is linear on T, the second term on the right-hand side of the equation
(6.19) vanishes. Assuming T C T’ € 7Ty and

|(Djaij)(z)] < Mydiam(T")™!, zeT,

the first term on the right-hand side of equation (6.19) and therefore a(u,v;)
can be estimated to be

a(u,v1)lr < alulyrllvillor- (6.20)
The function vy vanishes outside a boundary strip S of T' with

area(S)
area(T)

1-(1-3()" %) <6(3)*.
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Therefore
a(u, vo)|r < Mluly;slvoly;s-

As the restriction of u to T is linear,

2 area(S) o
[ul? 5.5 = area(S)|ul} oo.p = area(T) luli 2.1

Utilizing the inverse inequality
lvoli;s < €22||vollo;s,

the inner product a(u,vo)|r can be estimated to be
b ik !
a(u,v < c3(— u|1.72"||vol|o:s- 6.21
(u, vo) |7 3(\/5) |ul1;72" ||vollo;s (6.21)

We remark that the factor 2! enters because we normalized the Ls-like norm
Il - llo;r according to (2.12) by the areas of the triangles in the initial trian-
gulation. Because

lvollo;s < eallvllor,  Hvillor < eallvliosr

one obtains the proposition combining (6.20) and (6.21).
For | = k,k + 1, the proposition follows from the usual Cauchy—Schwarz
inequality and the inverse estimate given earlier. O

As result, every step of the hierarchical basis multigrid method reduces
the energy norm of the error by at least a factor behaving like

1 - 0O(1/5%).

Thus Theorem 5.1 leads to an alternative proof of the main convergence
theorem in Bank et al. (1988) for the special case that the coefficient func-
tions of the differential operator are continuously differentiable. Note that
the diameter of the triangles shrinks by the factor 27 in the transition from
level O to level j. Therefore j grows logarithmically in the gridsize, which
means very slowly. If the subspace corrections are repeated in the reversed
order after every cycle, one gets a symmetrized iterative procedure which
can be accelerated by the conjugate gradient method. Usually the hierarchi-
cal basis multigrid method is applied in this form, so that every step reduces
the error in fact by a factor behaving like

1-031/j).

We remark that the fact, that the considered finite element functions are
piecewise linear, is not essential for the Cauchy—Schwarz type inequality
(6.17). With an additional factor 2* on the right-hand side of (6.20) arising
from the the second term on the right-hand side of equation (6.19) and a new
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constant in (6.21), the proof of Lemma 6.1 transfers to the case of higher
order polynomials of fixed degree.

The subspace decomposition needed in the construction and analysis of
the hierarchical basis multigrid method can also be used to derive an alter-
native convergence result for the usual multigrid method. How, is described
in the next section by the example of Ls-like decompositions. One finds
that every multigrid cycle reduces the energy norm of the error at least by
a factor behaving like

as for the hierarchical basis multigrid method. For a symmetrized version
accelerated by the conjugate gradient method, one again obtains a better
reduction factor

1-0(1/5).

Contrary to the asymptotically better estimates derived earlier, these es-
timates (as well as the estimates for the hierarchical basis multigrid method)
do not depend on the regularity of the boundary value problem and are even
independent of jumps of the coefficient functions across the boundaries of
the triangles in the initial triangulation. On the other hand, contrary to the
estimate earlier, they are restricted to two space dimensions.

Without any essential change, the analysis of the hierarchical basis multi-
grid method can be transferred to the case of nonuniformly refined grids.
Utilizing the same splitting of S, one can also analyse multigrid methods
which are based on local smoothing procedures.

7. L,-like subspace decompositions

The best, in a certain sense, subspace decomposition is the orthogonal de-
composition of S into Vy = Sp and the orthogonal complements

Vi = {Qru — Qr—1u|u € S} C S (7.1)

for k = 1,...,j. This decomposition has been used for the first time in
the analysis of multigrid methods in Bramble et al. (1991b) and, for the
analysis of closely related additive multilevel methods as discussed in the
next section, in Bramble et al. (1990) and Xu (1989).

The stability (5.2) of this decomposition can be essentially derived from
the error estimate

lw — Qiullo < C127%||ul], (7.2)

which holds for all functions in H1(f). For H?-regular problems, this error
estimate follows from the Aubin—Nitsche Lemma which is also the basis for
the classical proofs in Sections 3 and 4. Here we have less regular boundary
value problems in mind. An elementary proof of (7.2), which does not rely on



316 HARRY YSERENTANT

such regularity assumptions and which is based on local quasi-interpolants,
can be found in Yserentant (1990), for example. Utilizing (7.2), one can
show very easily that the discrete norm

j
lull? = 1 Qoull® + 3 4*1Qwu — Qx—1ull3 (7.3)

k=1
satisfies the estimate
lul? < K3( + 1)ull?, (7.4)

which contains an additional logarithmic factor compared with (6.10).

Utilizing the equivalence of certain Besov and Sobolev spaces, Oswald
(1990, 1991, 1992) and Dahmen and Kunoth (1991) recently developed a
very general framework to compare norms like (7.3) with Sobolev norms.
Especially, they could improve (7.4) to

el < Kilull? (7.5)

with a constant K; neither depending on the number of refinement levels
nor on regularity properties of the boundary value problem. In Bornemann
and Yserentant (1992), a more specialized, but relatively elementary proof
of (7.5) is given. The influence of boundary conditions and nonuniform
refinements is discussed very carefully in this article.

Results, which are related to (7.5), have been proven in Bramble and Pas-
ciak (1991), Xu (1992b), and X. Zhang (1992). These articles are based on
the regularity theory of elliptic equations, although the degree of regularity
finally enters only in the size of the constants.

Supposing again the property (6.6) of the smoothers, (7.5) yields the first
basic assumption (5.2). In addition, with (7.5) (or also with (7.2)) one
obtains

4Flluklld < Cllvell®, vk € Vi, (7.6)

so that, on Vy, the energy norm || - || induced by the boundary value problem
under consideration is equivalent to the scaled L-like norm 2| - ||o.

For the proof of the second basic assumption (5.3), (5.4) of the general
theory in Section 5, we can again utilize Lemma 6.1, i.e.

1,
a(ug,v) < C(ﬁ)l *luell 24lvello- (7.7)

for k <1 and all functions u € Si and v; € §;. With (7.6), one obtains, for
functions v € Vi, the strengthened Canchy-Schwarz inequality

o) < 6(%)'-knukn ol (7.8)
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With (6.6), (7.8) yields the desired Cauchy-Schwarz type inequality (5.3)
~ 1
a{wg,v;) < C(_\/—i)l k(Bkwk,wk)1/2(Blvl,w)l/2 (7.9)

for k < and the functions wy € Wi, and v; € V.
Thus we have proven the convergence of classical multigrid methods with
a convergence rate

1-0(1)

which does not deteriorate with the number of refinement levels and without
utilizing regularity properties of the boundary value problem.

If the smoothers By, : § — & satisfy the stronger and somewhat more
restrictive condition (as compared with the condition (6.6))

er4¥|urllf < (uk, Brur) < ca4*fjuli3 (7.10)

for all uy € S, the proof of the Cauchy-Schwarz type inequality (5.3)
can be based directly on (7.7), and (7.9) holds even for all functions v; €
Si. According to the remark in Section 5, for this case, interestingly the
optimality of the multigrid method does not depend on the order in which
the subspace corrections are performed.

If the coefficient functions of the differential operator in (2.6) are no longer
differentiable, or if the derivatives are large, one can still apply Theorem 5.4
and gets a nearly optimal convergence rate.

For nonuniformly refined grids, one can work with L-like decompositions
which are based on local projections as introduced in Dahmen and Kunoth
(1991) or Bornemann and Yserentant (1992). Such decompositions can be
analysed on the basis of the equivalence of the energy norm to the discrete
norm (7.3).

8. Additive multilevel methods

Stimulated by the development of domain decomposition and of hierarchical
basis methods, the interest has recently shifted from the recursively defined
classical multilevel algorithms to additive multilevel methods. The most
prominent new example in this class of algorithms is the multilevel nodal
basis method of Bramble, Pasciak and Xu.

A main reason for this development is that additive multilevel algorithms
fit much better to nonuniformly refined grids (as they are absolutely nec-
essary for the solution of complicated real-life problems) because these al-
gorithms allow the use of simpler, more natural data structures. Another
reason is that the higher flexibility of these algorithms simplifies the use of
parallel computers, although this should not be viewed too naively. It is
fair to mention that additive methods usually need slightly more iteration
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steps than their multiplicative counterparts, although the single iteration
step tends to be cheaper.

Additive multilevel methods fall into the class of the additive subspace
correction methods already introduced in Section 2. In the same way, as
the multiplicative subspace correction methods introduced in Section 2 cor-
respond to the Gaufi—Seidel method, the additive subspace correction meth-
ods discussed in this section are associated with the Jacobi iteration. In the
notation of Section 2, for given subspaces Wy,...,W; of S and given ap-
proximations By, the additive subspace correction method for the solution
of the abstract equation (2.4) is

J
i — d+a) By'Qu(f - A%). (8.1)
k=0
This means that the single subspace corrections are not applied in a sequen-
tial order but in parallel. The iteration (8.1) can be rewritten as

i — G+ aC(f — Af) (8.2)

with the approximate inverse

J
C =3 B'Q (8.3)
k=0
of the operator A: § — S.

As in the convergence theory for the multiplicative variant, the conver-
gence theory for the additive subspace correction method is based on split-
ting S into subspaces Vi of the spaces Wy. The convergence estimates are
based on two assumptions. The first is again the stability assumption (5.2)
that, for all vy € Vj,

J J
3 (Buvew) < Ka Y well 84)
k=0 k=0
The second assumption is that there exists a (new) constant Ko with
J J
1Y wil® < K2 ) (Brwk, wk) (8.5)
k=0 k=0

for all wy € Wyg. The assumption (8.5) can be deduced from the Cauchy-
Schwarz type estimate (5.23) which is stronger than the assumption (5.3).
The related condition (5.8)

J J
1wl < K2 (Brok, vk)
k=0 k=0

for the elements v, € V}, is not sufficient.
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The main result for additive subspace correction methods is a general-
ization of well known theorems from the theory of domain decomposition
methods; see Widlund (1989) and Bjorstad and Mandel (1991).

Theorem 8.1 The operator C is symmetric and positive definite with
respect to the inner product (2.2) on 8. Therefore the eigenvalues ) of the
operator C A are real and positive. They range in the interval

1/K; £ A< Ko. (8.6)

Proof. As the Bj, are symmetric operators, one has, for all u,v € S,

J
(Cu,v) = Y _(B;'Qxu, Qrv) = (u,Cv)
k=0

so that C is symmetric and also positive definite. Let v € S have the
decomposition v = 21{=0 v with elements vy € Vi. Then, by Lemma 5.2,

J J

Ioll? = Y a(vk,v) = > a(vi, Prv)
k=0 k=0
J 1/2
< VE Il X (TP, Pro))
k=0
J 1/2
= VEilol( X a(Tio,v))
k=0

where, as in Section 5, Ty = By, 10k A. Because Zi:o T, = CA, one gets
a(v,v) < Kja(CAv,v).
Therefore the eigenvalues of CA cannot be less than 1/K;. By the new
assumption (8.5), one obtains, for all v € S,
J J J
IS Tevll® < K2 ) (BT, Tyv) = K2 Y a(Tkv, v)
k=0 k=0 k=0

or, again with E,{=O T, = CA, the estimate
|ICAv||? < K3 a(CAv,v).
Therefore the eigenvalues of C A are not greater than K,. O

By Theorem 8.1, the iteration (8.2) can be accelerated by the conjugate
gradient method. In fact, additive subspace correction methods are nearly
exclusively used in this way so that the proper choice of the damping pa-
rameter o is no longer a question of practical interest. The quality of C
as a preconditioner for A is essentially described by the spectral condition
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number

k= K(CY2AC/?) (8.7)

which is defined as the ratio of the maximum and the minimum eigenvalue
of the operator C1/2ACY/2. As this operator is similar to C A, Theorem 8.1
says that

K S K1K2 (88)

is an upper bound for this condition number.

For additive multilevel methods for the solution of finite element equations
like (2.11), the spaces Wy C S are subspaces of the coarse level spaces
Si; for the multilevel nodal basis method of Bramble et al. (1990) and Xu
(1989) one has Wy = Sk, and for the hierarchical basis method (Yserentant
1986b, 1990, 1992), the spaces Wy, are the hierarchical complements (2.41).
Therefore the multilevel nodal basis method can be seen as the additive
version of the multigrid V-cycle whereas the hierarchical basis method is
the additive version of the hierarchical basis multigrid method.

For both methods, we again require that By = Ag and that, for k > 1,
the operators By, : Wi — W, satisfy an estimate

c14¥|lwi||§ < (wr, Bewg) < cad®||wil3 (8.9)

for all wy € Wy. This is essentially the condition (3.6) which is some-
what more restrictive than the condition (6.6) used in the analysis of the
multiplicative variants. However, remember that simple point Jacobi and
Gaufi—Seidel smoothers are covered by (8.9).

Then, for arbitrary subspaces Wy C Si, the Cauchy-Schwarz type in-

equality

1
V2
from Lemma 6.1 for the functions u € Si and v € S}, k < [, and (8.9) yield
the new condition (8.5).

The subspaces V;, € Wy, are chosen as for the corresponding multiplicative
schemes. Therefore the stability condition (8.4) has already been derived
in the last section. With Theorem 8.1, we can conclude that the additive
multilevel methods have qualitatively the same convergence behaviour as
their multiplicative counterparts.

In order to exhibit the advantages of additive multilevel methods, the
approximations By, for the operators A should be chosen as simple as pos-
sible. The best possible choice is probably the Jacobi method.

In the following we discuss the realization of the multilevel nodal basis
method in conjunction with the Jacobi method. Let Ny = {z1,...,Zn,} be
the set of vertices of the triangles in 7} not lying on the boundary of .

Then S; is spanned by the nodal basis functions ¢£k), i=1,...,ng, which

a(u,v) < C(=)""* llull 2'lvllo (8.10)
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are defined by

W () =61, @ €M (8.11)
Then, for the given By, the operator
C=4"Qo+ ij B Qx (8.12)
k=1
can be written as
Cr = A7'Qor + Z Z p®). (8.13)

—1i=1 a(i/)(k) w(k))
To realize the iteration
4 — u+aCr, r=f-— Au, (8.14)

or its conjugate gradient accelerated version efficiently, the functions % and
the residuals r have to be represented differently. We store u by the values

u(z;), i=1,...,n, (8.15)
whereas 7 is represented by

(r), i=1,...,n, (8.16)

where, for simplicity, n = n; and ¢; = wi(j ). The inner products (8.16) are -
given by

n

(o) = (F,95) = Yo%, ) (=), (8.17)
=1
so that only the usual residual has to be computed; an explicit representa-
tion of the operator A is not needed. Note that the values (r, ,‘/)Z(k)) can be
recursively computed beginning with the values (r,v;) = (r, 't,bz-(j )), and that
the summation of the single terms in (8.13) can be formulated as a recursive
process, too. The function

uy = AalQor € Sy (8.18)

satisfies the relation
a(ug,v) = (r,v), v€Sp. (8.19)
To compute ug, therefore one needs only (r, ¢i(0)), i=1,...,n9, but not Qgr

itself, and one has to solve a linear system with the level 0 discretization
matrix.
The appropriate modification of the multilevel nodal basis preconditioner
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to nonuniformly refined grids is

J (™)
Cr = AEIQ()T + Z Z —(,k-)iw Y, (8.20)
k=1 g0y te-n (¥, %;)

where the inner sum stands for
Nk-1

>, = Z +§. (8.21)

(k) (k—1) =1 i=nk_1+1
Yy FY; _
o vy

Only those basis functions 1/)1('“) of S are still taken into account in the inner
sum which are associated with the new nodes z;,? = nx_; + 1,...,ng, on
the level k and with the neighbours of these nodes. With this modification,
the operation count for the single iteration step (8.14) remains strictly pro-
portional to the number of unknowns independent of the distribution of the
unknowns among the levels.

As the corresponding multigrid methods based on local smoothing proce-
dures, this version of the multilevel nodal basis method can be analysed uti-
lizing the local La-decompositions introduced in Bornemann and Yserentant
(1992). It turns out that the condition number (8.7) behaves like O(1), as
in a uniform refinement.

The hierarchical basis method goes one step further. In Xu’s formulation
(Xu, 1989) it is given by

N re)
Or = Ag'Qor+). Y. —i g (8.22)
ittt a(B, )

As every term in the double sum can be associated with a node of the final
level, the algorithmic realization of this method becomes extremely simple;
see Yserentant (1986b, 1990).

If we introduce the hierarchical basis functions {b\i,i =1,...,n,0of S by
Bi=9®, T €N, (8.23)
and by
$i =™, zi € N\ Mo, (8.24)
the hierarchical basis preconditioner takes the form
n T N
Cr = Ag'Qor + Y {nv) 5 (8.25)

i=ng+1 a({b\i’ 12;2)

Thus it is, up to a small block of the dimension ng of the initial finite element
space Sg, Jacobi’s old method, now with respect to the hierarchical basis
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formulation of the discrete elliptic boundary value problem. In this sense,
it is the most simple multigrid method.
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