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Preface

In these days and age, when the sheer number of publications in numeri-
cal mathematics increases so rapidly, it is surely necessary to provide valid
justification to a new publication. The reason for Acta Numerica is, para-
doxically, to counteract the information explosion by presenting selected and
important developments in numerical mathematics and scientific computa-
tion on an annual basis.

Each year, the Editorial Board of Acta Numerica poses itself the question
‘what are recent significant developments in our subject, developments that
are important enough to merit interest by the numerical community as a
whole’. Having selected a shortlist of topics, we ask named individuals to
write survey papers. The purpose of the exercise being to disseminate knowl-
edge outside restricted professional boundaries, the authors are expected to
pitch their exposition so that it can be understood and appreciated by all
practitioners of the numerical art, and not just by workers in a narrow sub-
discipline. We are guided in our choice of authors both by their contribution
to the underlying topic and by their track record as expositors.

Numerical analysts, like other professionals in a competitive world, are
busy with their own research, academic and administrative duties. It is
difficult (and sometimes impossible) to keep up with developments outside
one’s narrow experience. This, we believe, is an unhealthy and undesir-
able situation, not only because of broader cultural considerations but also
since developments in different parts of numerical mathematics frequently
impinge upon each other. We hope that Acta Numerica will play a role in
bridging gaps and presenting many new and exciting ideas — algorithms and
mathematical analysis alike — to a wider audience.
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1. Introduction

The subject of ‘wavelets’ is expanding at such a tremendous rate that it is
impossible to give, within these few pages, a complete introduction to all
aspects of its theory. We hope, however, to allow the reader to become suf-
ficiently acquainted with the subject to understand, in part, the enthusiasm
of its proponents toward its potential application to various numerical prob-
lems. Furthermore, we hope that our exposition can guide the reader who
wishes to make more serious excursions into the subject. Our viewpoint is
biased by our experience in approximation theory and data compression; we
warn the reader that there are other viewpoints that are either not repre-
sented here or discussed only briefly. For example, orthogonal wavelets were
developed primarily in the context of signal processing, an application upon

* This work was supported in part by the National Science Foundation (grants DMS-
8922154 and DMS-9006219), the Air Force Office of Scientific Research (contract 89-
0455-DEF), the Office of Naval Research (contracts N00014-90-1343, N00014-91-J-1152,
and N00014-91-J-1076), the Defense Advanced Research Projects Agency (AFOSR con-
tract 90-0323), and the Army High Performance Computing Research Center.
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Fig. 1. An example of functions ¢ and ¢(2*. — 7).

which we touch ouly indirectly. However, there are several good expositions
(e.g. Daubechies (1990) and Rioul and Vetterli (1991)) of this application.
A discussion of wavelet decompositions in the context of Littlewood-Paley
theory can be found in the monograph of Frazier et al. (1991). We shall also
not attempt to give a complete discussion of the history of wavelets. Histor-
ical accounts can be found in the book of Meyer (1990) and the introduction
of the article of Daubechies (1990). We shall try to give sufficient historical
commentary in the course of our presentation to provide some feeling for
the subject’s development.

The term ‘wavelet’ (originally called wavelet of constant shape) was intro-
duced by J. Morlet. It denotes a uni-variate function ¥ (multi-variate wave-
lets exist as well and will be discussed subsequently), defined on R, which,
when subjected to the fundamental operations of shifts (i.e. translation by
integers) and dyadic dilation, yields an orthogonal basis of La(R). That is,
the functions ¥, := 2K/2y(2k. — j), j, k € Z, form a complete orthonormal
system for L2(R). In this work, we shall call such a function an orthogo-
nal wavelet, since there are many generalizations of wavelets that drop the
requirement of orthogonality. The Haar function H := X[g,1/2) — X[1/2,1)
which will be discussed in more detail in the section that follows, is the sim-
plest example of an orthogonal wavelet. Orthogonal wavelets with higher
smoothness (and even compact support) can also be constructed. But before
considering that and other questions, we wish first to motivate the desire
for such wavelets.

We view a wavelet ¥ as a ‘bump’ (and think of it as having compact
support, though it need not). Dilation squeezes or expands the bump and
translation shifts it (see Figure 1). Thus, v, ; is a scaled version of 4 centred
at the dyadic integer j2~%. If k is large positive, then ¥; is a bump with
small support; if k is large negative, the support of 1; ; is large.
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The requirement that the set {1, i};recz forms an orthonormal system
means that any function f € La(R) can be represented as a series

F= Y (fvie) ¥in (1.1)

5kezZ

with (f,9) := [z fgdz the usual inner product of two Ly(R) functions. We
view (1.1) as building up the function f from the bumps ;. Bumps
corresponding to small values of k contribute to the broad resolution of f;
those corresponding to large values of k give finer detail.

The decomposition (1.1) is analogous to the Fourier decomposition of a
function f € Lo(T) in terms of the exponential functions e;, := e**, but there
are important differences. The exponential functions e have global support.
Thus, all terms in the Fourier decomposition contribute to the value of f
at a point z. On the other hand, wavelets are usually either of compact
support or fall off exponentially at infinity. Thus, only the terms in (1.1)
corresponding to ¥, with 2% near  make a large contribution at . The
representation (1.1) is in this sense local. Of course, exponential functions
have other important properties; for example, they are eigenfunctions for
differentiation. Many wavelets have a corresponding property captured in
the ‘refinement equation’ for the function ¢ from which the wavelet 1 is
derived, as discussed in Section 3.1.

Another important property of wavelet decompositions not present di-
rectly in the Fourier decomposition is that the coefficients in wavelet de-
compositions usually encode all information needed to tell whether f is in a
smoothness space, such as the Sobolev and Besov spaces. For example, if ¢
is smooth enough, then a function f is in the Lipschitz space Lip(a, L »(R)),
0 < a < 1, if and only if

sup 2+ DS, ) (12)
is finite, and (1.2) is an equivalent semi-norm for Lip(a, L (R)).

All this would be of little more than theoretical interest if it were not for
the fact that one can efficiently compute wavelet coefficients and reconstruct
functions from these coefficients. Such algorithms, known as ‘fast wavelet
transforms’ are the analogue of the Fast Fourier Transform and follow simply
from the refinement equation mentioned earlier.

In many numerical applications, the orthogonality of the translated di-
lates 1) is not vital. There are many variants of wavelets, such as the
pre-wavelets proposed by Battle (1987) and the ¢-transform of Frazier and
Jawerth (1990), that do not require orthogonality. Typically, for a given
function 9, one wants the translated dilates ¥;x, 7,k € Z, to form a stable
basis (also called a Riesz basis) for La(R). This means that each f € La(R)
has a unique series decomposition in terms of the 1 ;, and that the £
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norm of the coefficients in this series is equivalent to || f|| (&) (this will be
discussed in more detail in Section 3.1). In other applications, when ap-
proximating in L, (R), for example, one must abandon the requirement that
Yik, 3,k € Z, form a stable basis of L;(R), because none exists. (The Haar
system is a Schauder basis for L,([0,1]), for example, but the representa-
tion is not L([0, 1])-stable.) For such applications, one can use redundant
representations of f, with 1 a box spline, for example.

We have, to this point, restricted our discussion to uni-variate wavelets.
There are several constructions of multi-variate wavelets but the final form
of this theory is yet to be decided. We shall discuss two methods for con-
structing multi-variate wavelets; one is based on tensor products while the
other is truly multi-variate.

The plan of the paper is as follows. Section 2 is meant to introduce the
topic of wavelets by studying the simplest orthogonal wavelets, which are
the Haar functions. We discuss the decomposition of L,(R) using the Haar
expansion, the characterization of certain smoothness spaces in terms of the
coefficients in the Haar expansion, the fast Haar transform, and multi-variate
Haar functions. Section 3 concerns itself with the construction of wavelets.
It begins with a discussion of the properties of shift-invariant spaces, and
then gives an overview of the construction of uni-variate wavelets and pre-
wavelets within the framework of multi-resolution. Later, mention is made
of Daubechies’ specific construction of orthonormal wavelets of compact sup-
port. We finish with a discussion of wavelets in several dimensions.

Section 4 examines how to calculate the coefficients of wavelet expan-
sions via the so-called Fast Wavelet Transform. Section 5 is concerned with
the characterization of functions in certain smoothness classes called Besov
spaces in terms of the size of wavelet coefficients. Section 6 turns to nu-
merical applications. We briefly mention some uses of wavelets in nonlinear
approximation, data compression (and, more specifically, image compres-
sion) and numerical methods for partial differential equations.

2. The Haar wavelets
2.1. Overview

The Haar functions are the most elementary wavelets. While they have many
drawbacks, chiefly their lack of smoothness, they still illustrate in the most
direct way some of the main features of wavelet decompositions. For this
reason, we shall consider in some detail their properties which make them
suitable for numerical applications. We hope that the detail we provide at
this stage will render more convincing some of the later statements we make,
without proof, about more general wavelets.

We consider first the uni-variate case. Let H := X[g1/2) — X[1/2,1) be the
Haar function that takes the value 1 on the left half of [0,1] and the value
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—1 on the right half. By translation and dilation, we form the functions
Hjp:=2"2H(2*. - j), jkez (2.1.1)

Then, Hj; . is supported on the dyadic interval I := [27F, (5 + 1)2-F).

It is easy to see that these functions form an orthonormal system. In
fact, given two of these functions H;x, Hj g, k' > k and (4, k) # (§', k'), we
have two possibilities. The first is that the dyadic intervals I x and I/ 4 are
disjoint, in which case [; H;H; 1 = 0 (because the integrand is identically
zero). The second possibility is that k¥’ > k and I; » is contained in one of
the halves J of I ;. In this case H; is constant on J while Hj ;s takes the
values +1 equally often on its support. Hence, again [; H;rHj i = 0.

We want next to show that {Hj; | j,k € Z} is complete in L2(R). The
following development gives us a chance to introduce the concept of multi-
resolution, which is the main vehicle for constructing wavelets and which will
be discussed in more detail in the section that follows. Let S := S° denote
the subspace of Ly(R) that consists of all piecewise-constant functions with
integer breakpoints; i.e. functions in S are constant on each interval j, 7+1),
J € Z. Then S is a shift-invariant space: if S € S, each of its shifts, S(- +k),
k €Z,is also in §. A simple orthonormal basis for S is given by the shifts
of the function ¢ := Xjp ;). Namely, each § € S has a unique representation

S=3e@¢(- —3),  (c()) € L2(). (2-1.2)
Jj€zZ
By dilation, we can form a scale of spaces
S’“:={S(2k-)|S€S}, k€Z.
Thus, S* is the space of piecewise-constant L,(R) functions with breakpoints
at the dyadic integers j2~%. The normalized dyadic shifts bk = 2k/2p(2k.
§) = 2k2¢(2k(. — j2~*)) with step j27*, j € Z, of the function ¢(2* - ), form
an orthonormal basis for S*. However, to avoid possible confusion, we note
that the totality of all such functions ¢; x is not a basis for the space L3(R)

because there is redundancy. For example, ¢ = (¢o,1 + ¢1,1)/ V2.

Clearly, we have S¥ C S**1, k € Z, so the spaces S* get ‘thicker’ as k
gets larger and ‘thinner’ as k gets smaller. We are interested in the limiting
spaces

§%:=J&* and S~ :=[()SF, (2.1.3)

since these spaces hold the key to showing that the Haar basis is complete.
We claim that

8% =Ly(R) and S = {0}. (2.1.4)

The first of these claims is equivalent to the fact that any function in L 3(R)
- can be approximated arbitrarily well (in the Ly(R) norm) by the piecewise-
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constant functions from S* provided k is large enough. For example, it is
enough to approximate f by its best L2(R) approximation from S*. This
best approximation is given by the orthogonal projector Py from L2(R) onto
Sk. It is easy to see that

1
Pkf($)=-—/ fi  xze€ly jez
,I',kl Ik ’

To verify the second claim in (2.1.4), we suppose that f € (NS*. Then,
f is constant on each of (—00,0) and [0, %), and since f € L2(R), we must
have f = 0 a.e. on each of these intervals.

Now, consider again the projector Pi from Ly(R) onto S*. By (2.1.4),
P.f — f, k — 0co. We also claim that P,f — 0, k — —oc. Indeed, if this
were false, then we could find a C > 0 and a subsequence m; — —oo for
which ||Pr; fllz,xy = C for all m;. By the weak-* compactness of L3(R),
we can also assume that Py, f — g, weak-*, for some g € L2(R). Now, for
any m € Z, all Py, f are in 8™ for m; sufficiently large and negative. Since
S™ is weak-* closed, g € S™. Hence g € (8™ implies g = 0 a.e. This gives
a contradiction because by orthogonality

[ \PrssPdz = [ 7Pn,fdz— [ Foaz=o.
It follows that each f € L2(R) can be represented by the series
F=(Pf—Peaf) =) Qufy Qe1:=Fi— Py (2.1.5)

kez kez

because the partial sums, P, f — P_,, f, of this series tend to f as n — 0.

To complete the construction of the Haar wavelets, we need the following
simple remarks about projections. If Y C X are two closed subspaces of
Ly(R) and Px and Py are the orthogonal projectors onto these spaces, then
Q := Px — Py is the orthogonal projector from L2(R) onto X ©Y, the
orthogonal complement of Y in X (this follows from the identity Py Px =
Py). Thus, the operator Qx_; := P, — Pi_; appearing in (2.1.5) is the
orthogonal projector onto W*-1 := S* o §¥~1, The spaces W* are the
dilates of the wavelet space

wW:=8'68°. (2.1.6)

Since the spaces W¥, k € Z, are mutually orthogonal, we have W+ 1 W9,
j # k, and (2.1.5) shows that Lo(R) is the orthogonal direct sum of the W*:

Ly(R) = P wW*. (2.1.7)
kez

How does the Haar function fit into all this? Well, the main point is that
H and its translates H(- — k) form an orthonormal basis for W. Indeed,
H =2¢(2-) — Py(26(2-)), which shows that H is in S1 © 8% = W. On the
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other hand, the identities H +¢ = 2¢(2-) and ¢ — H = 2¢(2-—1) show that
the shifts of ¢ together with the shifts of H will generate all the half-shifts
of 7 := #(2-). Since the half-shifts of v/27 form an orthonormal basis for
S, the shifts of H must be complete in W.

By dilation, the functions Hjx, j € Z, form a complete orthonormal sys-
tem for W*. Hence, we can represent the orthogonal projector Q; onto W*
by

Qcf =D _(f. Hjx) Hip.

jez
Using this in (2.1.5), we have for any f € L2(R) the decomposition

f=3_3 (f Hix) Hj. (2.1.8)

kez jez

In other words, the functions Hjy, j,k € Z, form an orthonormal basis for
Ly(R).

2.2. The Haar decomposition in Ly(R)

While the Haar decomposition is initially defined only for functions in L2 (R),
it is worth noting that Haar decompositions also hold for other spaces of
functions. In this section, we shall discuss the Haar representation for func-
tions in Ly(R), 1 < p < oo. A similar analysis can be given when p =
if Lo(R) is replaced by the space of uniformly continuous functions that
vanish at 0o, equipped with the Lo, (R) norm.

If f € Ly(R), the Haar coefficients (f, H;x) are well defined and we can
ask whether the Haar series (2.1.8) converges in L,(R) to f. To answer
this question, we fix a value of 1 < p < 00 and a k € Z and examine the
projector Py, which is initially defined only on L2(R). For any f € Ly(R), we
have Prf = ¥ 1ep, f1X1 where Dy, denotes the collection of dyadic intervals
of length 27%, and where f; := (1/|I|) f; fdz, I € Dy, is the average of
f over I. In this form, the projector Py has a natural extension to L,(R)
and takes values in the space S*(X, L,(R)) of all functions in L,(R) that are
piecewise-constant functions with breakpoints at the dyadic integers j2 %,
jez.

In representing P on L,(R), it is useful to change our normalization
slightly. We fix a value of p and consider the L,(R)-normalized characteristic
functions @; k. == 25/P¢(2F- — 5), ¢ := X{g,1), which satisfy [ |¢;kplP dz = 1.
Then,

1

+5=1

Pof = (f, bikp) bikpr

jez

"=
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From Holder’s inequality, we find |(f, ¢, )P < [ ik |fIP dz and so

S [ paz= [ Iipas

jez v

1PLFIE gy = 30 1 i) <
JjEZ

Therefore, Py is a bounded operator with norm 1 on the space Lp(R).
If f € Ly(R), then since Py is a projector of norm 1,

f = PefllL,®) = Sig;k I = Pe)(f = Sz, @) < 2dist(f,5%), @) (2:2.1)

It follows that Prf — f in Ly(R) for each f € Ly(R).

On the other hand, consider Prf as k — —oo. If f is continuous and
of compact support then at most two terms in Py f are nonzero for k large
negative and each coefficient is < C2*/?. Hence || P, f|| Lp®) — 0 provided
p’ < 00, i.e. p > 1. This shows that

F=Y(Pef=Peaf) =33 {f, Hjx) Hjx. (2.2.2)

kez kez jez

in the sense of L,(R) convergence. We see that the Haar representation
holds for functions in L,(R) provided p > 1.

But what happens when p = 1?7 Well, as is typical for orthogonal decom-
positions, the expansion (2.2.2) cannot be valid. Indeed, each of the func-
tions appearing on the right in (2.2.2) has mean value zero. If ¢ € L,(R)
has mean value zero and f is an arbitrary function from L,(R), then

fRIf—yIZI/Rf—/Rg /Rf.

This means that the sum in (2.2.2) cannot possibly converge in L;(R) to f
unless f has mean value zero.

This phenomenon is typical of decompositions for orthogonal wavelets
1: They cannot represent all functions in L;(R). However, if ¢ is smooth
enough, the representation (2.2.2) will hold for the Hardy space H;(R) used
in place of L1 (R), and in fact this representation will then hold for functions
in the Hardy spaces H,(R) for a certain range of 0 < p < 1 that depends on
the smoothness of 1. We shall not discuss further the behaviour of orthogo-
nal wavelets in H,, spaces but the interested reader can consult Frazier and
Jawerth (1990) for a corresponding theory in a slightly different setting.

2.8. Smoothness spaces

We noted earlier the important fact that wavelet decompositions provide a
description of smoothness spaces in terms of the wavelet coefficients. We
wish to illustrate this point with the Haar wavelets and the Lipschitz spaces
in L,(R), 1 <p < o0.
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The Lipschitz spaces Lip(e, Lp(R)) of Lp(R), 0 < a < 1,1 < p < o0,
consist of all functions f € Ly(R) for which

If—fC +h)l,® =0G*), h—0.
A semi-norm for this space is provided by

[flLip(a, L, R)) = oSup Rf = £ +PlL,m)-

The relationship between the smoothness of f and the size of its Haar coef-
ficients rests on three fundamental inequalities. The first of these says that,
for a fixed k € Z, the Haar functions Hjx, j € Z, are Ly(R)-stable. Because
of the disjoint support of the H; x, j € Z, stability takes the following partic-
ularly simple form: for any sequence (c(j)) € £p(Z) and S = 3= ¢z c(5) Hjk,
we have

1/p
ISlzyie) = ( 3 lep2int/-1m) ™, (23.)
j€z
This follows by integrating the identity
ISP =D le(5)IP| HjpklP-
j€z
The other two inequalities are related to the approximation properties of
S* and the projectors P:

@ Nf = Pefll,® <227 flLipa L@y 0<a<1, 1<p< oo

(B) ISILip(i/p L, < 2° 25718l @) S € S*(X, Lp(R)), 1 < p < o0.
(2.3.2)

The first of these, often called a Jackson inequality (after similar inequali-
ties established by D. Jackson for polynomial approximation), tells how well
functions from Lip(a, L,(R)) can be approximated by the elements of S k,
The second inequality is known as a Bernstein inequality because of its sim-
ilarity with the classical Bernstein inequalities for polynomials, established
by S. Bernstein.

We shall prove (2.3.2]) and (2.3.2B) for 1 < p < oo. If I € Dy and
h:= |I| = 27%, then, for all x € I, we obtain

t@ -1l < 5 [11E@ - fwidy

(|_}[/;|f(x) - f(y)|”dy) 1/p
(% /h |f(z) _f(x'*'s)lpds)l/p

—h

IN

IA
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If we raise these last inequalities to the power p, integrate over I, and then
sum over all I € Dy, we obtain

1 rk
IIf - Pkfll’ip(n) < A /—h/n; |f(z) = f(z + 8)[Pdzds < 2Ih|ap|f|€ip(a,Lp(R))’

which implies the Jackson inequality.
The Jackson inequality can also be proved from more general principles.
Since the Pj have norm 1 on L,(R) and are projectors, we have
If = Pefliz,@ < 1+ IPl)dist(f, 8%),m < 2dist(f,8%)1,@). (23.3)
Thus, the Jackson inequality follows from the fact that functions in
Lip(c, Lp(R))

can be approximated by the elements of S* with an error not exceeding the
right-hand side of (2.3.2]).
To prove the Bernstein inequality, we note that any § = 3¢z ¢(j)X, , in

S*(x, L,(R)) has norm:
ISIT, &y = D leG)PIL;el = 3 le(s)P27*. (2.34)
jez jez
We fix an h > 0. If h > 27% (i.e. h~1/P < 2%/P) then
h=P||S(- +h) =S| L, @) < 2YPUIS(- +h)| L@ +IS L, @) =2-257S| L, m)-
If h < 2% then
0 z € [j27F,(j +1)27% - h)
S(z+h)- Sz ={’. . . - A
I8G+R) = S@I=\ e+ 1)~ ()l @€ [(G+D2% = h, G+ D2*).

Therefore

p
3 leli +1) — e(3)*h)

AVRIS(+ B = Sl = he(
JEZ

1/p
= 20 Lleti +1) - )Pz )
JEZ
= 2¥/P||S(-+27%) - Sll,m) <2 2%7||S|L,@)-
With the Jackson and Bernstein inequalities in hand, it is now easy to
show that

| fILip(a,L,(®)) & SUp Qk(a+1/ 2—1/p)(
kez

1/
Zl(faHj,k)lp) p, 0<a<l/p

jez
(2.3.5)
(It will be convenient to use the notation A ~ B to mean that the two
ratios A/B and B/A of the functions A and B are bounded from above
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independently of the variables; in (2.3.5), independently of f.) First, from
the Jackson inequality,
I1Pef = Pe-1flle,®) < If = Peflle,® + If — Pe-1fllL,(m)
< C27%fliaL,m)-

If we write Prf — Pr-1f = X;ez(f, Hjk-1) Hjr—1 and replace ||Ppf —
Pe_1fllz,m) by the sum in (2.3.1) (with c(j) = (f, Hjx-1)), we obtain that
the right-hand side of (2.3.5) does not exceed a multiple of the left.

To reverse this inequality, we fix a value of h and choose n € Z so that
27" < h < 27"l We write f = Y ez wk With wg := (Peg1f — Pif) and
estimate

If(- +h) = fllL,m
< Y lwr(- +B) — wellp, @) + D Nlwe(- + B) — will,z)-

k>n k<n
(2.3.6)

The first sum does not exceed
(Sup 2ka”wk”Lp(R)) ( > 2"'“’) < Ch®sup 25wl ., (g)-
an an an

Similarly, using the Bernstein inequality, the second sum does not exceed

W2 3 lwklnipypL,my < CRYP S 267wy, r)
k<n k<n

Chl/”(:gp 2kal|wk||L,(n)) ( > 2’“(1/”""))

k<n

I

< Ch*sup 25wl L, g)-
k<n

If we write wg = Yz (f, Hjk) Hjx and use (2.3.1) to replace [lwi||z,®) by

1
9k(1/2—1/p) ( Z Kf, H; k)|p) /P

jEz
in each of these expressions, and then use the resulting expression in (2.3.6),
we obtain

1/p
£+ ) = fllz,@ < Chsup 2@/ (SO if, i)
kez j€ez
which shows that the left-hand side of (2.3.5) does not exceed a multiple of
the right.
The restriction a < 1/p arises because the Haar function is not smooth;
for smoother wavelets, the range of & can be increased.
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2.4. The fast Haar transform

In numerical applications of the Haar decomposition, one must work with
only a finite number of the functions H;x. The choice of which functions
to use is often made as follows. Given a function f € Ly(R), we choose
a large value of n, compatible with the accuracy we wish to achieve, and
we replace f by P,f with P,, as before, the Ly(R) projector onto 8", the
space of piecewise-constant functions in Lo(R) with breakpoints at the dyadic
integers j2™™, j € Z. If f has compact support then P, f is a finite linear
combination of the characteristic functions X, I € D,. If f does not have
compact support, it is necessary to truncate this sum (which is justified
because fo\(_g,q] |fI2dz — 0, a — o0).
We can now write
n-1
Pof = (Pof = Pooaf)+ -+ (Pif = Pof) + Pof = Pof + Y_ Qi f, (24.1)
k=0

which is a finite Haar decomposition. We have started this decomposition
with Pyf but we could have equally well started at any other dyadic level.

The fast Haar transform gives an efficient method for finding the coeffi-
cients in the expansions

Qkf = Z d(], k)H',ky d(]? k) = <f7 Hj,k)a (2‘4'2)
JEZ
and
P f = Z C(j, k)¢j,k7 c(ja k) = (f: ¢j,k>- (243)
jez

These coefficients are related to the integrals of f over the intervals I;; :=
[i27%, (G +1)27%):

Gk = 22 [ fds,

gk

ok/2 (/ fda:—/ fd:z).
Iy k41 Iojgr k41

Therefore, if the coefficients ¢(j, k + 1), j € Z, are known, then

d(j, k)

(k) = Je(c(2isk+1) +e(2) +1,k+1)),
d(j, k) = %(C(Zj, k+1) —c(2j + 1,k +1)). (2.4.4)

In other words, starting with the known values of ¢(j,n) at level n, we
can iteratively compute all values d(j, k) and c(j, k) needed for (2.4.1) from
(2.4.4). The computation of the ¢(j, k) at dyadic levels k # 0 is necessary
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for the recurrence even though we are, in the end, not interested in their
values.

There is a similar formula for reconstructing a function from its Haar
coefficients. Now, suppose that we know the coeflicients appearing in (2.4.1),
i.e. the values ¢(j,0), j € Z, and d(j, k), j € Z, k = 1,...,n, and we wish
to find ¢(4,n), i.e. to reconstruct f. For this we need only use the recursive
formulae

o(2j,k+1) = 715@(]', k) + d(j, k)),
c(2i+L,k+1) = %(c(j, k) — d(j, k).

More information on the structure of the fast Haar transform can be found
in Section 5.

2.5. Multi-variate Haar functions

There is a simple method to construct multi-variate wavelets from a given
uni-variate wavelet, which, for the Haar wavelets, takes the following form.
Let ¢p := ¢ = X[p,3) and ¢1 := ¥ = H and let V denote the set of vertices
of the cube Q := [0,1]¢. For each v = (v},...,vg) in V and z = (z1,...,Zq)
from RY, we let ¢,(z) := [I%, #v,(z;). The functions 1, are piecewise
constant, taking the values 1 on the d-tants of §2. The set

U= {¢, |veV, v#0}

is the set of multi-dimensional Haar functions; there are 2¢—1 of them. They
generate by dilation and translation an orthonormal basis for L2(R%). That
is, the collection of functions 2%%/24¢,(2%- — j), j € Z%, k € Z, v € V' \ {0},
forms a complete orthonormal basis for Lo(R%).

Another way to view the multi-dimensional Haar functions is to consider
the shift-invariant space S of piecewise-constant functions on the dyadic
cubes of unit length in R%. A basis for S is provided by the shifts of X[o,1)¢-
Note that the space S is the tensor product of the uni-variate spaces of
piecewise-constant functions with integer breakpoints. The collection of all
shifts of the Haar functions v, € ¥ forms an orthonormal basis for the space
W := 8! © 8%. Properties of the multi-variate Haar wavelets follow from
the uni-variate Haar function. For example, there is a fast Haar transform
and a characterization of smoothness spaces in terms of Haar coefficients.
We leave the formulation of these properties to the reader.

3. The construction of wavelets
3.1. Querview

We turn now to the construction of smoother orthogonal wavelets. Almost
all constructions of orthogonal wavelets begin by using multi-resolution,
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which was introduced by Mallat (1989) (an interesting exception, presented
by Strémberg (1981), apparently gave the first smooth orthogonal wavelets).
We begin with a brief overview of multi-resolution that we will expand on
in later sections.

Let ¢ € Ly(RY) and let S := S(¢) be the shift-invariant subspace of
Ly(R?) generated by ¢. That is, S(¢) is the La(R?) closure of finite linear
combinations of ¢ and its shifts ¢(- + j), j € Z%. By dilation, we form the
scale of spaces

Sk.={S8(2F-)| S € S} (3.1.1)

Then S* is invariant under dyadic shifts j27%, j € Z% In the construction
of Haar functions, we had d = 1, and § was the space of piecewise-constant
functions with integer breakpoints. That is, § = §(¢) with ¢ := X := X[g 1)
Other examples for the reader to keep in mind, which result in smoother
wavelets, are to take for S the space of cardinal spline functions of order r
in Ly(R). A cardinal spline is a piecewise polynomial function defined on
R, of local degree < r, that has breakpoints at the integers and has global
smoothness C"~2. Then S = S(N,) with N, the (nonzero) cardinal B-spline
that has knots at 0,1, ...,r. These B-splines are easiest to define recursively:
Nj := X and N, := N,_1 * N1, with the usual operation of convolution

fxg(z) = /R flz —y)g(y)dy.

For example, N3 is a hat function, N3 a C! piecewise quadratic, and so on. In
the multi-variate case, the primary examples to keep in mind are the tensor
product of uni-variate B-splines: N(z) := N(z1,...,zq) := N(z1) - N(zq),
and the box splines, which will be introduced and discussed later.

Multi-resolution begins with certain assumptions on the scale of spaces S*
and shows under these assumptions how to construct an orthogonal wavelet
1) from the generating function ¢. The usual assumptions are:

@) St c st kez
(if) |JS* = Lao(RY);
) (8" = {0
(iv) {6(- —3)}jege forms an Lo(R%)-stable basis for S. (3.1.2)

We have already seen the role of (ii) and (iii) in the context of Haar decom-
positions. The assumption (iv) means that there exist positive constants C'y
and C> such that each S € S has a unique representation

(i) S= > c()¢(- —j), and

jezd
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1/2
@) CillSles < (S 0P) < CalSlpy. (613)
jezd
If ¢ has Ly(R%)-stable shifts then it follows by a change of variables that
for each k € Z, the function 254/2¢(2% .) has Lo(R%)-stable 2~%Z¢ shifts. We
shall mention later how the assumption ((3.1.2)(iv)) can be weakened.
Assumption ((3.1.2)(i)) is a severe restriction on the underlying func-
tion ¢. Because each space S* is obtained from S by dilation, we see that
((3.1.2)(i)) is satisfied if and only if S C S?, or, equivalently, if ¢ is in
the space S'. From the Ly(RY)-stability of the set {¢(- — j)},czq, this is
equivalent to
¢(z) = 3 a(i)¢(2z - j) (3.1.4)
jezd
for some sequence (a(j)) € £2(Z%). Equation (3.1.4) is called the refinement
equation for ¢, since it says that ¢ can be expressed as a linear combination
of the scaled functions ¢(2- — j), which are at the finer dyadic level. We
shall discuss the refinement equation in more detail later and for now only
point out that this equation is well known for the B-spline of order r, for
which it takes the form

—r : T .
Nq(z) =2 +1j§) ( j ) N.(2z — j). (3.1.5)

Because of ((3.1.2)(i)), the wavelet space
w:=8¢s8°

is a subspace of S1. By dilation, we obtain the scaled wavelet spaces Wk,
k € Z. Then, W¥ is orthogonal to S* and

Skl = sk o Wk, (3.1.6)

Since W7 C S* for j < k, it follows that W; and W}, are orthogonal. From
this and ((3.1.2)(ii)) and ((3.1.2)(iii)), we obtain

Ly(RY) = P w*. (3.1.7)
kez

We find wavelets by showing that W is shift invariant and finding its
generators. For example, when d = 1, W is a principal shift-invariant space,
that is it can be generated by one element v, i.e. W = S(¢). Of course,
there are many such generators ¢ for W. In the multi-variate case, the space
W will be generated by 2¢ — 1 such functions.

We find an orthogonal wavelet in one dimension by determining a ¢ whose
shifts form an orthonormal basis for W. Indeed, once such a function ¥ is
found, the scaled functions v ; ; := 2Kk/24(2*. — 5) will then form an orthonor-
mal basis for Ly(R).
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Generators 1 for W whose shifts are not orthogonal are nonorthogonal
wavelets. For example, if 9 has shifts that are Ly(R)-stable (but not or-
thonormal), the functions 1, := 2¥/24(2%. — j) form an La(R)-stable basis
for Ly(R). While they do not form an orthonormal system, they still possess
orthogonality between levels,

/n; Yixpjpdr=0, k#K,

which is enough for most applications. After Battle (1987), we call such
functions v pre-wavelets.

The construction of (uni-variate) orthogonal wavelets introduced by Mal-
lat (1989), begins with a function ¢ that has orthonormal shifts (rather than
just La(R)-stability). Mallat shows that the function

= S (-1Yal—7)e(2- - 4), (3.1.8)
j€z

with a(j) the refinement coefficients of (3.1.4), is an orthogonal wavelet.
(It is easy to check that 1 is orthogonal to the shifts of ¢ by using the
refinement equation (3.1.4).) A construction similar to that of Mallat was
used by Chui and Wang (1990) and Micchelli (1991) to produce pre-wavelets.
In the construction of pre-wavelets, they begin with a function ¢ that has
Lo (R)-stable shifts (but not necessarily orthonormal shifts). Then a formula
similar to (3.1.8) gives a pre-wavelet ¥ (see (3.4.15)).

To find generators for the wavelet space W, we shall follow the construc-
tion of de Boor et al. (1991b), which is somewhat different from that of Mal-
lat. We simply take suitable functions 7 in the space S! and consider their
orthogonal projections P7 onto the space S§. The error function w := n— Py
is then an element of W. By choosing appropriate functions 7, we obtain
a set of generators for W. In one dimension, only one function is needed
to generate W and any reasonable choice for 5 results in such a generator.
The most obvious choices, 7 := ¢(2-) or 7 := ¢(2- ~ 1), lead to the wavelet
(3.1.8) or its pre-wavelet analogue.

If we begin with the orthonormalized shifts of the B-spline ¢ = N, as
the basis for S, the construction of Mallat gives the spline wavelets 3 of
Battle-Lemarié (see, e.g., Battle (1987)), which have smoothness C"2. The
support of ¢ is all of R, although 1 does decay exponentially at infinity. More
details are given in Section 3.4. If we do not orthonormalize the shifts, we
obtain the spline pre-wavelets of Chui and Wang (1991), which have compact
support (in fact minimal support among all functions in W).

It is a more substantial problem to construct smooth orthogonal wavelets
of compact support and this was an outstanding achievement of Daubechies
(1988) (see Section 3.5). Daubechies’ construction depends on finding a
compactly supported function ¢ € C” that satisfies the assumptions of multi-
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resolution and has orthonormal shifts. In this way, she was able to apply
Mallat’s construction to obtain a compactly supported orthogonal wavelet
¥ in C".

The construction of multi-variate wavelets by multi-resolution is based on
similar ideas. We want now to find a set of generators ¥ = {¢} for the
wavelet space W. There are typically 2¢ — 1 functions in ¥. This is an
orthogonal wavelet set if the totality of functions ¢, j € Z%, k € Z, ¢ € ¥,
forms an orthonormal basis for Ly(R?). For this to hold, it is sufficient to
have orthogonality between (- — j) and ¥(- — 7), (j,%) # (§',4). If the
shifts of the functions 1 € ¥ form an L, (R%)-stable basis for W, we say this is
a pre-wavelet set. In this case, we shall still have the orthogonality between
levels: ;x L v if k # k’. Sometimes we also require orthogonality
between ¢ € ¥ and all of the ¥(- — j), j € Z% 9 # 1. Because the
construction of multi-variate wavelets is significantly more complicated and
more poorly understood than the construction of wavelets of one variable,
we shall postpone the discussion of multi-variate wavelets until Section 3.6.

In the following sections, we shall show how to construct wavelets and
pre-wavelets in the setting of multi-resolution. These constructions depend
on a good description of the space S := §(¢) in terms of Fourier transforms,
which is the topic of the next section.

8.2. Shift-invariant spaces

Because multi-resolution is based on a family of shift-invariant spaces, it
is useful to have in mind the structure of these spaces before proceeding
with the construction of wavelets and pre-wavelets. The structure of shift-
invariant spaces and their application to approximation and wavelet con-
struction were developed in a series of papers by de Boor et al. (1991a,b,c);
much of the material in our presentation is taken from these references.

We recall that a closed subspace S of Ly(R?) is shift invariant if S(- + j),
j € 2% is in S whenever S € S. We have already encountered the space
S(¢), which is the L2(R%-closure of finite linear combinations of the shifts of
¢. We say that such a space is a principal shift-invariant space (in analogy
with principal ideals). More generally, if ® is a finite set of Lo(R%) functions,
then the space S(®) is the Ly(R%)-closure of finite linear combinations of the
shifts of the functions ¢ € ®. Of course, a general shift-invariant subspace
of L2(R%) need not be finitely generated.

We are interested in describing the space S(®) in terms of its Fourier
transforms. We let

f@)= [ 1wevay

denote the Fourier transform of an L;(R%) function f. The Fourier transform
has a natural extension from L;(R?%) N L2(R%) to Ly(R?) and, more generally,
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to tempered distributions. We assume that the reader is familiar with the
rudiments of Fourier transform theory. N

The Fourier transform of f(- +t), t € R, is e;f; we shall use the abbre-
viated notation

ei(z) == e®t

for the exponential functions. Now, suppose that the shifts of ¢ form an
Ly(R%)-stable basis for S(¢). Then from (3.1.3), each S € S(¢) can be
written as S = 3 czq c(§)4(- — j) with (c(j)) € £2(2%). Therefore,

S =Y cli)e-i)d) = TW)y), @)= Y_ clie-i(y). (3.2.1)

jezd jezd

Here 7 is an Ly(T¢) function (i.e. of period 27 in each of the variables
Y1,---,¥d)- The La(R?)-stability of the shifts of ¢ can easily be seen to be
equivalent to the statement

17l zorey = ISlLymey- (3.2.2)

The characterization (3.2.1) allows one to readily decide when a func-
tion is in S(¢). Even when the shifts of ¢ are not L(R%-stable, one can
characterize S(¢) by (see de Boor et al. (1991a))

8(8) = {S =1 € Ly(RY | 7 is 2n-periodic}. (3.2.3)

By dilation, (3.2.3) gives a characterization of the scaled spaces S*, S =
S(¢). For example, the functions in S! are characterized by S=r1he€
Ly(RY), n:= ¢(2-), with 7 a 4m-periodic function.

A similar characterization holds for a finite set ® of generators for a shift-
invariant space S(®). We say that this set provides Lo(R%)-stable shifts if
the totality of all functions ¢(- — j), j € Z% ¢ € ®, forms an La(R%-stable
basis for S(®). In this case, a function S € S(®) is described by its Fourier

transform
§=3" 1,6,
PP

where the functions 74, ¢ € ®, are in Ly(T¢) and

ISIL,rey = D WrallLycray -
ry=r

It is clear that the values at points congruent modulo 27 of the Fourier
transform of a function S in S(¢) are related. If we know ¢(z) and S(z),
then, because 7 has period 2, all other values S(z + a), a € 2rZ9, are
determined. It is natural to try to remove this redundancy. The following
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bracket product is useful for this purpose. If f and g are in Lo(R%), we define
[f.9l:=D_ (- +B)g(- + P (3.2.4)

pe2wzd

Then [f, g] is a function in L,(T¢).
One particular use of the bracket product is to relate inner products on
R? to inner products on T4. For example, if f,g € Lo(R% and j € Z9, then

(! [ f@aG=Dde = [ e;@f@FW = [, ®)[F,a16) .
(3.2.5)

Thus, these inner products are the Fourier coefficients of [ £, §]. In particular,
a function f is orthogonal to all the shifts of g if and only if [f,§] =0 a.e.,
in which case one obtains that all shifts of f are orthogonal to all the shifts
of g (which also follows directly by a simple change of variables).

Another application of the bracket product is to relate integrals over R4
to integrals over T¢. For example, if S = 7¢ with 7 of period 27, then

(@m)S ] oty = i, 121 ey - (3.2:6)

Returning to Ls(RY-stability for a moment, it follows from (3.2.6) and
(3.2.2) that the shifts of ¢ are Ly(R%)-stable if and only if C; < [$, ] < Cq,
a.e., for constants Cy,C2 > 0. Also, the shifts of ¢ are orthonormal if and
only if [¢,¢] = 1 a.e. For example, if we begin with a function ¢ with
Lo (R%)-stable shifts, then the function ¢, with Fourier transform
2 ¢
% — TR A 327
PR (327
has orthonormal shifts (this is the standard way to orthogonalize the shifts
of ¢). Incidentally, this orthogonalization procedure applies whenever [, 4]
vanishes only on a set of measure zero in T¢, in particular for any compactly
supported ¢. That is, it is not necessary to assume that ¢ has L o(R%)-stable
shifts in order to orthonormalize its shifts
The bracket product is useful in describing projections onto shift-invari-
ant spaces. Let ¢ be an arbitrary Ly(R?) function and let P := P, denote
the Ly(R%) projector onto the space S(¢). Then for each f € L2(RY), Pf is
the best Lo(R?) approximation to f from S(¢). It was shown in de Boor et
al. (1991a) that

Pf= hely (3.2.8)

¢, ¢]
Here and later, we use the convention that 0/0 = 0. We note some properties
of (3.2.8). First, [f, @] is 2m-periodic and therefore the form of Pf matches
that required by (3.2.3). If ¢ has orthonormal shifts, then [43, # =1ae,



20 R. A. DEVORE AND B. J. LUCIER

and in view of (3.2.5), the formula (3.2.8) is the usual one for the Ly(R%)
projector. If ¢/[, @] is the Fourier transform of an Lo(R?) function v (this
holds, for example, if ¢ has La(R%)-stable shifts), then

Pi= S %o =), %)= [ fenE-Dds,  (329)

jezd

as follows from (3.2.5). Whenever ¢ has compact support and L2(R%)-stable
shifts, the function 4 decays exponentially.

The bracket product is also useful in the description of the properties
of the shift-invariant spaces S(®) that are generated by a finite set ® of
functions from L(R%). The properties of the generating set ® are contained
in its Gramian

G(@) = (14:91), co- (3:2.10)
This is a matrix of 2n-periodic functions from L;(T¢). For example, the
shifts of the functions in ® form an orthonormal basis for S(®) if and only
if G(®) is the identity matrix a.e. on T%. The generating set ® provides an
Ly(R%-stable basis for S(®) if and only if G(®) and G(®)~! exist and are
a.e. bounded on T¢ with respect to some (and then every) matrix norm. For
proofs, see de Boor et al. (1991c).

8.8. The conditions of multi-resolution

The question arises as to when the conditions (3.1.2) of multi-resolution
are satisfied for a function ¢ € Ly(R%). We mention, without proof, two
sufficient conditions on ¢ for ((3.1.2)(ii)) and (iii) to hold. Jia and Mic-
chelli (1991) have shown that if the shifts of ¢ are Lo(R%)-stable, if ¢ satis-
fies the refinement equation (3.1.4) with coefficients (a(4)) in £1(Z%), and if
ez |#(x+35)| is in L>(T?), then ((3.1.2)(ii)) and ((3.1.2)(iii)) are satisfied.

On the other hand, in de Boor et al. (1991b) it is shown that ((3.1.2)(ii))
and ((3.1.2)(iii)) are satisfied whenever ¢ € Ly(R?) satisfies the refinement
condition ((3.1.2)(i)) and, in addition, supp[@, #] = T¢; by this we mean that
[#, #] vanishes only on a set of measure zero. In particular, these conditions
are satisfied whenever ¢ has compact support and satisfies the refinement
condition. Since these conditions are satisfied for all functions ¢ that we shall
encounter (in fact for all functions ¢ that have been considered in wavelet
construction by multi-resolution), it is not necessary to verify separately
((3.1.2)(ii)) and ((3.1.2)(iii))—they automatically hold. We also note that
in the construction of wavelets and pre-wavelets in de Boor et al. (1991b) it
is not necessary to assume that ¢ has Ly(R%)-stable shifts.

We now discuss the refinement condition ((3.1.2)(i)). In view of the char-
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acterization (3.2.3) of shift-invariant spaces, this condition is equivalent to
¢=4i n:=9¢(2) (3.3.1)

for some 4n-periodic function A. If ¢ has La(R%)-stable shifts then this con-
dition becomes the refinement equation (3.1.4) and A(y) = ¥ ;ez4 a(i)e_j 2
in the sense of L2(2T%) convergence.

It was shown in de Boor et al. (1991b) that one can construct generators
for the wavelet space W even when ((3.1.2)(iv)) does not hold. For example,
this condition can be replaced by the assumption that supp ¢ R%. We also
note that if [¢ ¢] is nonzero a.e., then we can always find a generator ¢, for
S with orthonormal shifts, so the condition ((3.1.2)(ii)) is satisfied for this
generator (and the other conditions of multi-resolution remain the same).
However, the generator ¢, does not satisfy the same refinement equation as
¢ (for example, the refinement equation for ¢, may be an infinite sum even if
the equation for ¢ is a finite sum) and ¢. may not have compact support even
if ¢ has compact support, so the construction that gives ¢, is not completely
satisfactory. Furthermore, we would like to describe the wavelets and pre-
wavelets directly in terms of the original ¢. This is especially the case when
¢ does not have Ly(R%-stable shifts, since then we can say nothing about
the decay of ¢, even when ¢ has compact support. In the remainder of this
presentation, we shall assume that ¢ has L2(R%)-stable shifts.

8.4. Constructions of uni-variate wavelets

In this section we restrict our attention to wavelets in one variable, because
multi-resolution is simpler and better understood for a single variable than
for several variables. We suppose that ¢ satisfies the assumptions (3.1.2) of
multi-resolution and follow the ideas presented in de Boor et al. (1991b).

Fundamentally, the approach of de Boor et al. (1991b) is quite simple.
We take a function 7 € S and consider its error w := 1 — P of best La(R)
approximation by the elements of S® = S = S(¢). Here P is the Ly(R)
projector onto S(¢) given by (3.2.8). Clearly w € W and we shall show
that with any reasonable choice for 7, the function w is a generator of W,
i.e. W = S(w). Thus, because of the characterization (3.2.3) of principal
shift-invariant spaces, we can obtain all other generators for w by operations
on the Fourier transform side. Here are the details.

We take n := ¢(2-), which is clearly in S!. Then, w :=n— Ppnisin W
and by virtue of (3.2.8) has Fourier transform

w=p- 093 (3.4.1)
(¢, 9]
It is convenient to introduce (for a function f € L2(R%)) the abbreviated
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notation
f=1If, M7, (3.4.2)

since this expression occurs often in wavelet constructions. Another descrip-
tion of f is
. . 1/2
F=( X i +ar) "

j€27zd

We see that f is a 2m-periodic function, and if f has compact support then
f? is a trigonometric polynomial, because of (3.2.5). The analogue of this
function for half-shifts is

- . 1/2 :
Fe (X 1 +0R) (343)

jednzd
which is now a 4w-periodic function. In particular f has orthonormal half-
shifts if and only if f=2"9?ae., and Ly(R9)-stable half-shifts if and only
if Cy < f < Cy, a.e., for constants Cy,C> > 0.

We return now to the construction of wavelets. We can multiply @ by
any 2m-periodic function, and as long as the resulting function is in Ly(R),
it will be the Fourier transform of a function in W. We multiply (3.4.1) by
@2, which clears the denominator. The result is the function wg with Fourier

transform
o = ¢*ij — [, B (3.4.4)
We note that wo has compact support whenever ¢ does.
We can calculate the bracket products appearing in (3.4.4) by using the
refinement relation ¢ = A1) (see (3.3.1)) with A a 4n-periodic function. For
example, to calculate ¢,

= 3 18- +4)

jE2ML

= Y (A + DRI + D +IAC + 5 +2m)Pa(- +35+ 2m))?)
jE€4TZ

= AR +|A(- +2m)252(- +2m).
Similarly, [4, ¢] = A% + A(- + 2m)7°(- + 2n). Therefore,
@0 = {JAPR +|A(- +2m)%7(- +2r) — AAF
~ A +2m) AR (- +2m)}i
= {A(- +2m) - AYA(- +2m)7 (- +2m)i.

We can msake one more simplification in the last representation for wg.



WAVELETS 23

" The function Ze; s2{A — A(- + 2m)} is 2m-periodic. Therefore, dividing by
this function, we obtain the function

$ = 2e_y;,A(- + 2m)7 (- + 27). (3.4.5)

It is easy to see (and is shown in (3.4.14)) that ¢ is in La(R). It follows,
therefore, that ¢ is in W and S(¢) C W. The following argument shows
that we really have S(y) = W.

If we replace 7 by 7, := n(- — 5) (which is also in S!) and repeat the
previous construction, in place of wg we obtain the function w; whose Fourier
transform is

W1 = e_y2 {A(- +27) + AYA(- +2m)7 (- + 2m)ii.

Hence, dividing by A(- + 27) + A (which is 27-periodic), we arrive at the
same function 1. The importance of this fact is that we can reverse these
two processes. In other words we can multiply ’l/J by a 2m-periodic function
and obtain 7 — Pn (respectively 7; — P7I1) Hence, both of these functions
are in S(¢). Since Pn is in S(¢), n = Pn+ (n — Pn) is in S(¢) + S(¥).
Similarly, 7, is in this space. Since the full shifts of 7 and 5, generate S(¢),
we must have W = S(¢). This confirms our earlier remark that W is a
principal shift-invariant space. Since we can obtain 3 from w and wg by
multiplying by 2#-periodic functions, both w and wy are also generators of
w.

We consider some examples that show that ¢ is the (pre)wavelet con-
structed by various authors.

Orthogonal wavelets To obtain orthogonal wavelets, Mallat (1989) begins
with a function ¢ that satisfies the assumptions (3.1.2) of multi-resolution
and whose shifts are orthonormal. This is equivalent to ¢ =1 a.e., and (by
a cha.nge of variables) to the half-shifts of v/27 being orthonormal ie. to
7= 7 a.e. When this is used in (3.4.5), we obtain

o= e_12A(- +2m)h, (3.4.6)

which is the orthogonal wavelet of Mallat. To see that the shifts of i are
orthonormal, one simply computes

92 = |A(- +2m)%7 +|APR (- +21) = HIA(- +20)2+]AP} =1, (3.4.7)
where the last equality follows from the identity
1=@=¢"+8"(- +2m) = [APF +|A(- +2m)2F(- +2m)
= HIA(- +2m)* + |4} (3.4.8)

The Fourier transform identity (3.4.6) is equivalent to the identity (3.1.8).
We note that from the orthogonal wavelet 1 of (3.1.8) (respectively (3.4.6)),
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we obtain all other orthogonal wavelets in W by multiplying " by a 27-
periodic function 7 of unit modulus. Indeed, we know that any element
w € W satisfies w = 7¢ with 7 € L2(T). To have [#,@] = 1 a.e., the
function 7 must satisfy |7(y)| =1 a.e. in T.

As an example, we consider the cardinal B-spline N, of order r. To ob-
tain orthogonal wavelets by Mallat’s construction, one need only manipulate
various Laurent series. First, one orthogonalizes the shifts of N,. This gives
the spline ¢ = N, whose Fourier transform is

.~ N
=N, := ==. 3.4.9
é & (3.49)

It is easy to compute the coeflicients in the expansion

N2 =3"a(j)e-;. (3.4.10)
jez

In fact, we know from (3.2.5) that this is a trigonometric polynomial whose
coeflicients are

a(j) /]RN,(:I: —J)Ny(z)dz = /I;NT(r +j—z)N.(z)dz

= [N NG +7) = Na(i+7), j€Z,

because N, is symmetric about its midpoint.

The polynomial p.(2) := 2" ¥ ez @(j)z ™7 is the Euler-Frobenius polyno-
mial of order 2r, which plays a prominent role in cardinal spline interpolation
(see Schoenberg (1973)). It is well known that po, has no zeros on |2| = 1.
Hence, the reciprocal 1/ps, is analytic in a nontrivial annulus that contains
the unit circle in its interior. One can easily find the coefficients of reciprocals
and square roots of Laurent series inductively. By finding the coefficients of

p;,,l/ 2, we obtain the coefficients 3(j) appearing in the expansion
¢(z) = No(2) = D BH)N-(z - 7). (3.4.11)
j€z

Because p2, has no zeros on |z| = 1, we conclude that the coefficients 3(j)
decrease exponentially. The spline N, together with its shifts form an or-
thonormal basis for the cardinal spline space S(N,). They are sometimes
referred to as the Franklin basis for S(N,).

Now that we have the spline ¢ := N, in hand, we can obtain the spline
wavelet 1 = N* of Battle-Lemarié (Battle, 1987) from formula (3.1.8). For
this, we need to find the refinement equation for ¢. We begin with the
refinement equation (3.1.5) for the B-spline N,, which we write in terms of
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Fourier transforms as N, = Apfp with 79 := N,(2-) and

;
— r
Ao =2 HZ(J' )e—j/2
i=0

a 4m-periodic trigonometric polynomial. It follows that

b= Af, n:= . = KON - N V-1
¢=An n:=N:(2:), A(y) Lw/2) Ny (y/2)N; (y) Ao(y)-
(3.4.12)

In terms of the B-spline N,, this gives

P(y) = e_12(y)Aly + 2m)ii(y) = 3e_1/2(y)Aly + 2W)ﬁfl(y/2)ﬁr((y/2)- )
3.4.13
In other words, to find the orthogonal spline wavelet 9 of (3.4.13), we need to
multiply out the various Laurent expansions making up A(- + 2m)N1(- /2).
This gives the coefficients ¥(j), j € Z, in the representation

¥(@) = D V()N (2z - j).
j€z
We emphasize that each of the Laurent series converges in an annulus con-
taining the unit circle. This means that the coefficients v(j) converge expo-
nentially to zero when j — *oo.

Pre-wavelets For the construction of pre-wavelets, we do not assume that
the shifts of ¢ are orthonormal, but only that they are L,(R)-stable, i.e. we
assume ((3.1.2)(iv)). Then, it is easy to see that the function 1 defined by
(3.4.5) is a pre-wavelet. Indeed, we already know that 1 is a generator for
W and it is enough to check that it has Lo(R)-stable shifts. For this, we
compute

. ) )
Lo JAG +2mPR( 427 +APFRC +2m). (3419)

Since the shifts of ¢ are L(R)-stable, so are the half-shifts of . This means
that C) < 7 < C; for constants Cy,C2 > 0. Moreover, the formula

& = |APT" +A(- +2m) 257 (- +2m)

shows that C; < |A]2 + |A(- + 27)|2 < C3, again for positive constants
C1,Cz. Combining this information with (3.4.14) shows that 1 is bounded
above and below by positive constants, so that 1 has Ly(R)-stable shifts.
This also shows that 9 is in Lo(R). The pre-wavelet ¢ was introduced by
Chui and Wang (1991) and independently by Micchelli (1991).

We can also find a direct representation for ¢ in terms of the shifts of
#(2-). For this we need the Fourier coefficients u(j) (of e_;/2) for the 4-
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periodic function 247:
27

. 732, - L [ 9Zs,
u(g) = vy 240 ey = yym /R 2¢1ie; o

= [Fn(- +i/2) = [ F@)#(2e+3)da.
R R
Using this in (3.4.5), we find that
b= DG - D8R - 1), )= [ F@6(2a +)de. (3415)

i€z

If ¢ has compact support, then clearly ¢ also has compact support. Chui

and Wang (1990) posed the interesting question as to whether ¢ has the

smallest support among all the elements in W, to which they gave the fol-

lowing answer. We assume that A is a polynomial, i.e. that ¢ satisfies a

finite refinement equation. Next, we note that because W C S1, any w € W
is represented as

W(y) = e_1/2(y)B(y + 27)ii(y) (3.4.16)

with B of period 4n. If B = E}im b(j)e_;/2 is a Laurent polynomial with
b(m)b(M) # 0, then w has compact support, and we define the length of B
to be M — m. We know that there are nonzero polynomials B that satisfy
(3.4.16) for some w because 1:;2 is a polynomial (since 7 has compact support)

and (3.4.5) implies that for By := A?)z, w is the pre-wavelet ¢y € W.

By may not have minimal length among all such polynomials; however,
because it may be possible to cancel certain symmetric factors from By. To
see this, we write Bo(y) = ear(y/2) P(e~'¥/2) with P an algebraic polynomial,
and we let Q(22) := [I,(z — )), with the product taken over all A with A
and —A both zeros of P. Then, the factorization P(z) = Q(22)P.(2) gives
the factorization By(y) = 7(y)B.(y) with 7 a trigonometric polynomial of
period 27 that does not vanish. Therefore, the function i, with Fourier
transform

Du®) = e_12W)Buly +20)ii(),  Buly) :=7"'(4)Boy),  (3417)

is in W and has smaller length than By. A simple argument (which we
do not give) shows that B, has smallest length. For most pre-wavelets of
interest, B, = By.

The problem of finding a wavelet w in the form (3.4.16) with B a polyno-
mial of minimal length, which is solved by w = ., is not always equivalent
to finding the wavelet with minimal support; here the word ‘support’ means
the interval of smallest length outside of which w vanishes identically. In
general, there may be wavelets w of compact support that can be repre-
sented by (3.4.16) with B not a polynomial. However, Ben-Artzi and Ron
(1990) show that this is impossible whenever the following property holds:
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Fig. 2. The Chui-Wang spline pre-wavelet for r = 4, which has support
[~3,4]. The vertical scale is stretched by a factor of eight.

The linear combination 3-,c; 7(5)¢(- — ) (which converges pointwise, since
¢ has compact support) is identically zero if and only if all the coefficients
4(j) are 0. Under these assumptions, the wavelet ¢, has minimal support
(see de Boor et al. (1991b) for details).

For a pre-wavelet 7, we have the wavelet decomposition

F=322 el calf) = /R Sk (3.4.18)

kez jezd

where v has Fourier transform 4 = Jz/ [zﬁ, zﬁ] This follows from the repre-
sentation (3.2.9) for the projector P from L2(R) onto W. It is useful to note
that when ¢ has compact support, the function v will generally not have
compact support because of the division by the bracket product [+, 1]. Thus,
there is in some sense a trade-off between the simplicity of the pre-wavelet
and the complexity of the coefficient functional.

We consider the following important example. Let ¢ := N, be the cardinal
B-spline of order r, which is known to have linearly independent shifts.
Then, the function 1 in (3.4.15) is a spline function with compact support.
It is easy to see that Af;2 has no symmetric zeros so that ¢ has minimal
support. We note also that it is shown in de Boor et al. (1991b) that
the shifts of ¢ are themselves linearly independent. From formula (3.4.15),
we see that 9 is supported on [1 — r,7]. Up to a shift, the spline 9 is the
minimally supported spline pre-wavelet of Chui and Wang (1991); see Figure
2.

3.5. Daubechies’ compactly supported wavelets

The orthogonal spline wavelets of Section 3.4, which decay exponentially
at infinity, can be chosen to have any specified finite order of smoothness.
It is natural to ask whether orthogonal wavelets can be constructed that
have both any specified finite order of smoothness and compact support. A
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celebrated construction of Daubechies (1988) leads to such wavelets, which
are frequently used in numerical applications. Space prohibits us from giving
all the details of Daubechies’ construction, but the following discussion will
outline the basic ideas.

To construct a compactly supported wavelet with a prescribed smoothness
order r and compact support, one finds a special finite sequence (a(j)) such
that the refinement equation (3.1.4) has a solution ¢ € C” with orthogonal
shifts. The orthogonal wavelet 9 of (3.4.5) will then obviously have com-
pact support and the same smoothness. Before we begin, it is necessary to
understand which properties of the sequence (a(j)) guarantee the existence
of a function ¢ with the desired properties, i.e. we need to understand the
nature of solutions to the refinement equation (3.1.4). This has been stud-
ied in another context, namely in subdivision algorithms for computer aided
geometric design (see, for example, the paper by Cavaretta et al. (1991)
for a discussion of subdivision). As was pointed out by Dahmen and Mic-
chelli (1990), it is possible to derive part of Daubechies’ construction from
the subdivision approach. However, we shall describe Daubechies’ original
construction.

Let r be a nonnegative integer that corresponds to the desired order of
smoothness, and let (a(j)) with a(j) = 0, |j| > m, and a(m) # 0, be the
sequence of the refinement equation (3.1.4) for the function ¢ we want to
construct. The sequence (a(j)) and the Fourier transform of ¢ are related
by

m

by) = AW/DBW/2), Aw) =3 3 ali)e . (35.)

j=—m

Here we use a slightly different normalization for the refinement function
(A(y) = 3A(2y)). If ¢ is continuous at 0 and ¢(0) = 1, we can, at least in
a formal sense, write

b(y) = lim Ax(y) (3.5.2)
where
k
A(y) =[] Aw/?). (3.5.3)
j=1

We note that A}(y) := Ax(2*y) is a trigonometric polynomial of degree
(2% — 1)m. The key to Daubechies’ construction is to impose conditions on
A (which are therefore conditions on the sequence (a(j))) that not only make
(3.5.2) rigorous but also guarantee that the function ¢ defined by (3.5.2) has
the desired smoothness and has orthonormal shifts.

We first note that if the shifts of ¢ are orthonormal then, as was shown
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in (3.4.8),
[A@)* + Ay +m)*>=1, yeT (3.5.4)

The converse to this is almost true. Namely, Daubechies’ construction shows
that (3.5.4) together with some mild assumptions (related to the convergence
in (3.5.3)) imply the orthonormality of the shifts of ¢. For this, the following
identities, which follow from (3.5.4) by induction, are useful:

2k—1
Y lApw+i27kemPP =1, k=1,2.... (3.5.5)
7=0
We next want to see what properties of A guarantee smoothness for ¢.
The starting point is the following observation. If [; ¢(z)dx # 0, then
integrating the refinement equation (3.1.4) gives 3 ;c; a(j) = 2. Hence,
A(0) = 1 and A(7) = 0. We can therefore write

Aly) =1 +e")a(y), lellz.m =27° a0)=27", (3.5.6)

for a suitable integer N > 0, a real number 8, and a function a.

By carefully estimating the partial products Ay, it can be shown that
whenever A satisfies (3.5.6) for some 6 > %, the product (3.5.2) converges
to a function in Ly(R) that decays like |x| =% as |z| — co0. The limit function
is the Fourier transform of the solution ¢ to the refinement equation (3.5.1).
We see that the larger we can make @ in (3.5.6), the smoother ¢ is. For
example, if # > r + 1, then ¢ is in C”.

What is the role of the integer N in (3.5.6)7 Practically, one must increase
N to find a function a(y) that satisfies (3.5.6) for large 6. In addition, the
local approximation properties of the spaces S¥(¢) are determined by N;
see Section 5.

Once it is shown that there is a function ¢ that satisfies the refinement
equation for the given sequence a(j), it remains to show that ¢ has com-
pact support and orthonormal shifts. Here the arguments have the same
character as those used to analyse subdivision algorithms for the graphical
display of curves and surfaces. Assume that A satisfies (3.5.4) and (3.5.6)
for some 6 > 5 1 and let X denote the characteristic function of [~ 1, ]. Then

X(y) = (siny/2)/(y/2). We define ¢ to be the function whose Fourier
transform is ¢x(y) := Ax(y)X(2~*y). It can then be shown that

[18®) - t@Pay =0, k- oo. (35.7)

If A} = ¥, a*(j,k)e—j, then 3°;a*(j, k)X(z — j) has Fourier transform
A (y)X(y) and ¢x(y) = Af(27*y)X(27*y). Therefore,

di(x) = Y a* (4, k)2*x (2 - ). (3.5.8)
j€z
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Since the coefficients a*(j, k) of A} are 0 for |j| > (2¥ — 1)m, we obtain that
¢ is supported in [—-m, m]. Letting k — oo, we obtain from (3.5.7) that ¢
is also supported on [-m,m]. From (3.5.8), (3.5.5), and the orthonormality
of the functions 2¥/2x(2*. — j), j € Z, we have

[o@oc-pdr=2 ¥ o'Wk wK) =60, tez.

p—v=2k¢

Here the last equality follows by expanding the identity (3.5.5). Letting
k — oo, we obtain that {¢(- — j)},ecz is an orthonormal system.

This outline shows that a C", compactly supported function ¢ with or-
thonormal shifts exists if (3.5.4) and (3.5.6) hold for a sequence (a(j)) and
two numbers N and 8 > r + 1. The following arguments show that such
sequences exist.

We look for an A of the form (3.5.6) with o a trigonometric polynomial
with real coefficients. Then, |a(y)|? = a(y)a(y) = a(y)a(—y) is an even
trigonometric polynomial, and

|o(w)[? = T(cosy) = T(1 — 2sin® y/2) = R(sin’y/2)
with R an algebraic polynomial. The identity (3.5.4) now becomes
(cos®y/2)N R(sin y/2) + (sin? y/2)N R(cos? y/2) = 272V,
With ¢ := sin? y/2, we have
QA-tMR@Et)+tVR(1 —t) =272V, (3.5.9)

Therefore, to find .4, we must find an algebraic polynomial R that satisfies
(3.5.9). It is easy to see that the degree of R must be at least N — 1. We
can find R of this degree by writing R in the Bernstein form

R(t) = Nz—:l Ak (N k_ 1) th(1 — )Nk,

k=0
Then, (3.5.9) becomes

(1-t)V NZ—:I Ak (Nk_ 1)t"(1—t)N"“1+tN Nil Ak (Nk_ 1)(1 —p)kgN k-1

2N-1
2N -1
—o9—2N _o-2N k(1 _4\2N~1—k
=2"2N -9 E)( . )t (1-t) . (3.5.10)
We see that
(2N—1)
Mg =272V Kk k=0,1,...,N—1,
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satisfies (3.5.10), and we denote the polynomial with these coefficients by
Ry.

It is important to observe that Ry (t) is nonnegative for 0 < ¢t < 1, because
we wish to show that there is a trigonometric polynomials a(y) such that
Rn(sin?y/2) = |a(y)|?, i.e. we somehow have to take a ‘square root’ of
Ry . For this, we use the classical theorem of Fejer-Riesz (see, for example,
Karlin and Studden (1966) p. 185) that says that if R is nonnegative on
[0,1], then R(sin?y/2) = |a(y)|? for some trigonometric polynomial o with
real coefficients and of the same degree as R. We let o be the trigonometric
polynomial corresponding to Ry .

We now set Ay (y) := (1 + %)V oy (y) and note that Ay satisfies (3.5.4)
because Ry satisfies (3.5.9). Therefore, the function ¢ defined via the limit
process (3.5.2) has compact support and orthonormal shifts. The corre-
sponding orthogonal wavelet 1) =: Doy defined by (3.1.8) for the refinement
coefficients (a(j)) is an orthogonal wavelet with compact support. It is easy
to show that Dq is supported in [—(N — 1), N].

The question now is what is the smoothness of Dyy. Here the matter
can become somewhat technical (see Daubechies (1988) and Meyer (1987)).
However, the following ‘poor man’s’ argument based on Stirling’s formula
at least shows that given any integer r, if we choose N sufficiently large, the
orthogonal wavelet Doy will have smoothness C".

Because the Bernstein coefficients of Ry are monotonic, it follows that
Ry is increasing on [0,1]. Therefore, maxg<:<1 Rn(t) = Rn(1) = An—1 =
22N (2N=1)  Therefore, ”aN“%m(T) is bounded by

9—2N 2N -1 < 272N /272N — 1)(2N — 1)2N-1g-(2N~-1)
N = V2xNNNe~-N./2n(N — 1)}(N — 1)N-1e-(N-1)
< CNTV3

by Stirling’s formula. We see that given any value of 8 > 0, we can choose
N large enough so that (3.5.6) is satisfied for that 6, and the function ¢
satisfies ]éS(x)I < C(1+ |z|)~?. Hence, for any r < 6 — 1, ¢, and hence Dy,
isin C".

For N =1, the Daubechies construction gives ¢ = X|pj and D; is the
Haar function. For N = 2, the polynomial R3(t) = (1 + 2t)/16 and

J§8+ 1 \/?_»8- 1e-iy) = (1+€%)%as(y).

Az(y) = (1 +e?)? (

Then o3(y) satisfies |az(y)| < v3/4 < 271. Therefore, the function ¢
and the wavelet D4 := 9 corresponding to this choice is continuous. (See
Figure 3 for a graph of ¢ and 4.) A finer argument shows that D, is in
Lip(.55, L (R)). The reader can consult Daubechies (1988) for a table of
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Fig. 3. The function ¢ and the Daubechies wavelet 1 = Doy when N = 2,

the refinement coefficients of Doy for other values of N and a more precise
discussion of the smoothness of Dy in Loo(R).

3.6. Multi-variate wavelets

There are two approaches to the construction of multi-variate wavelets for
Ly(R%). The first, the tensor product approach, we now briefly describe.
In this section, V will denote the set of vertices of the cube [0,1]¢ and
V! := V \ {0}. Let ¢ be a uni-variate function satisfying the conditions
(3.1.2) of multi-resolution and let 1 be an orthogonal wavelet obtained from
¢. For ¢g := ¢, ¢y = 1, the collection ¥ of functions

¢,,(a:1, - ,:z:d) = ¢y, (:L‘]_) ce ¢vd($d), vE V’, (361)

generates, by dilation and translation, a complete orthonormal system for
L2(R%). More precisely, the collection of functions 1 ik 1= 2kd/24p (2. — j),
j€zi k ez ve V), forms a complete orthonormal system for Lo(R%):
each f € La(R? has the series representation

=33 N (fvike) Yiko (3.6.2)

veV' keZ jezd

in the sense of convergence in Ly(R%). This construction also applies to
pre-wavelets, thereby yielding a stable basis for Lo(R%).

Another view of the tensor product wavelets is the following. We let S
be the space generated by the shifts of the function z — ¢(z1) - - - d(zq).
Then, the wavelets 1, are generators for the wavelet space W := S! © 89.

The second way to construct multi-variate wavelets uses multi-resolution
in several dimensions. We let ¢ be a function in L2(R%) that satisfies the
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conditions (3.1.2) of multi-resolution for § := S§(¢), and we seek a set ¥
of generators for the wavelet space W := S! © 8°. For example, if we
want an orthonormal wavelet basis for L2(R?), we would seek ¥ such that
the totality of functions ¥(- — j), j € Z% v € ¥, forms an orthonormal
basis for W. By dilation and translation, we would obtain the collection
of functions v;; := 2F4/2¢(2%. — j), ¥ € ¥, j € 24, k € Z, which together
form an orthonormal basis for La(R%). Each function f in L2(R%) has the

representation
F=30 Y (f ik Yik (3.6.3)

YeV kEZ jezd

For a pre-wavelet set ¥, we would require Lo(R%)-stability in place of or-
thogonality. Sometimes, we might require additionally that the shifts of ¢
and those of ¢ are orthogonal whenever 1 and 4 are different functions in
v,

Constructing orthogonal wavelets and pre-wavelets by this second ap-
proach is complicated by the fact that there does not seem to be a straight-
forward way to choose a canonical orthogonal wavelet set from the many
possible wavelet sets .

The book of Meyer (1990) contains first results on the construction of
multi-variate wavelet sets by the second approach. This was expanded upon
in the paper of Jia and Micchelli (1991). These treatments are not always
constructive; for example, the latter paper employs in some contexts the
Quillen—Suslin theorem from commutative algebra. Several papers (Riemen-
schneider and Shen, 1991, 1992; Chui et al., 1991; Lorentz and Madych,
1991) treat special cases, such as the construction of orthogonal wavelet
and pre-wavelet sets when ¢ is taken to be a box spline. The paper of
Riemenschneider and Shen (1991) is particularly important, since it gives a
constructive approach that applies in two and three dimensions to a wide
class of functions ¢.

We shall follow the approach of de Boor et al. (1991b), which is based on
the structure of shift-invariant spaces. This approach immediately gives a
generating set for W, which can then be exploited to find orthogonal wavelet
and pre-wavelet sets. De Boor et al. start with a function ¢ that satisfies
the refinement relation ((3.1.2)(i)) and whose Fourier transform satisfies
suppp = R% It is not necessary in this approach to assume ((3.1.2)(ii))
and ((3.1.2)(iii)) — they follow automatically. It is also not necessary to
assume ((3.1.2)(iv)). In particular, this approach applies to any compactly
supported ¢. To simplify our discussion, we shall assume in addition to
((3.1.2)(i)) that ¢ has compact support and that the shifts of ¢ are L,(R%)-
stable; we refer the reader to de Boor et al. (1991b) for a discussion of the
more general theory.

The usual starting point for the construction of multi-variate wavelets is
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the fact that the dilated space S! of S := S(¢) is generated by the half-
shifts of n := ¢(2-), and therefore also by the full shifts of the functions
M = n(- —v/2), v € V. The assumption that supp ¢ = R? is important
because it implies that the set ® := {¢, := ¢(z —v/2) |v € V} isalso a
generating set for S!, i.e. S = S(®). ® is more useful than {n, | v € V}
as a generating set because ® contains a function that is in S, namely ¢.
In analogy with the uni-variate construction, we see that with P the L»(R%)
projector onto S, the functions ¢, — P¢,, v € V', form a generating set for
W. From (3.2.8), we calculate the Fourier transforms of these functions and
multiply them by [@, @] to obtain the functions w,, with Fourier transform

Wy = (¢, BlGy — [$v, dl$, vEV (3.6.4)
The set W := {w, | v € V'} is another generating set for W. We note
that because we assume ¢ has compact support, the two bracket products
appearing in (3.6.4) are trigonometric polynomials, and hence the functions
w, also have compact support.

The set TW, with T = (7y 4 )vev’ & matrix of 27-periodic functions, is
another generating set for W if det(T") # 0 a.e.

It is easy to find an orthogonal wavelet set by this approach. Because the
functions in W have compact support, the Gramian matrix ([, W] )y, ey’
has trigonometric polynomials as its entries. Since this matrix is symmetric
and positive semi-definite, its determinant is nonzero a.e. We can use Gauss
elimination (Cholesky factorization) without division or pivoting to diago-
nalize G(W). That is, we can find a (symmetric) matrix T' = (7,4 )y ey Of
trigonometric polynomials such that W* := TW has Gramian G(TW*) =
TG(W)T* that is a diagonal matrix with trigonometric polynomial entries.
If w} are the functions in W*, then the functions w}* with Fourier trans-
forms w2* := wk/[w:, wE]Y/2, v € V', have shifts that form an orthonormal
basis for W. Indeed,

ANk Akk] __ [w;’w:’]
WS = Ty ety G
which shows that the new set of generators W** has the identity matrix as
its Gramian.

The disadvantage of the orthogonal wavelet set W** is that usually we
can say nothing about the decay of the functions w}*, since this construction
may involve division by trigonometric polynomials that have zeros. How-
ever, when ¢ has Ly(R%-stable half-shifts, this construction can be modified
to give an orthogonal wavelet set whose elements decay exponentially (see
de Boor et al. (1991b)).

While the assumption that the half-shifts of ¢ are L2(R%)-stable is often
not realistic, we shall assume it a little longer in order to introduce some new
ideas that can later be modified to drop the stability assumption. Under the
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half-shift stability assumption, we have that disa trigonometric polynomial

of period 47 that has no zeros. Therefore, Py = Jv/d; serves to define an
L;(R?) function in S1(¢) that decays exponentially and has orthogonal half-

shifts. Moreover, the function w with Fourier transform b := q§/ q~52 is also
in §'(¢) and decays exponentially. Therefore, with [-, -];/2 the bracket
product for half-shifts (which is defined as in (3.2.4) except that the sum is
taken over 47Z%), we have

[¢A5, W)y = [Qs*,é*h/z =1 ae (3.6.5)

The Fourier coefficients (with respect to the e_j/3, j € Z9) of XN /2 are
the inner products of ¢ with half-shifts of w. Hence, all nontrivial half-
shifts of w are orthogonal to ¢. This means that the functions in Wy :=
{w(- +v/2)|veV'} are all in W. It is easy to see that they generate W,
that is W = S(Wp).

Thus, in the special case we are considering, W is generated by the non-
trivial half-shifts of a single function w. It is natural to ask whether this
holds in general (i.e. when we do not assume stability of half-shifts). To see
that this is indeed true, we modify the argument in (3.6.5). If we multiply

1 by the 27-periodic function [[)conv ;( + A)?, the result is a compactly
supported function w,. € Ly(R%), with Fourier transform

b= [] 6(- + N2 (3.6.6)
Ae2xV’
We find that 3
B wdie= J] (- + M2 (3.6.7)
AE2RV

Because the right-hand side is 27-periodic, we deduce that the inner product
of ¢ with w,(+ — j/2) is zero whenever j = v + 2k with v € V' and k € z%.
Hence, the functions w,(: +v/2), v € V’, are all in W and it is easy to see
that they are also a generating set for W.

While the nontrivial half-shifts of w, are a generating set for W, they
have the drawback that they usually do not provide an L,(R%)-stable basis.
The usual approach towards constructing an Lo(R%)-stable basis for W is to
begin with the generating set {n, | v € V}, n:= ¢(2-), for S(¢). With this
as a starting point, Meyer (1990) III, Section 6 and Jia and Micchelli (1991)
have shown the existence of a set of generators for W consisting of compactly
supported functions whose shifts provide an Lo(R%)-stable basis for W. How-
ever, their proofs are not constructive. In one, two or three dimensions, and
with an additional assumption on the symmetry of ¢, Riemenschneider and
Shen (1991, 1992), have given a constructive proof for the existence of such
a generating set, which we now describe.
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We begin again with the function % := 43/(;52 E7 =% cpac(ile_jisa
47-periodic function whose Fourier coefficients ¢(j) = 0 whenever j € 2Z¢,
then the function with Fourier transform 74 is in W provided it is in Lo(R%).
The condition on these Fourier coefficients is equivalent to requiring that

Z (- +v)=0 ae. (3.6.8)
ve2rV
In particular, we can use this method to produce functions in W as follows.

We assume that ¢ is real valued, has Lo(R%)-stable shifts, and satisfies the
refinement equation (3.3.1) for a real valued function A. This assumption
on A is a new ingredient; it will be fulfilled for example if ¢(—z) = ¢(z).
(More generally, one only needs symmetry about the centre of the support
of ¢.) If @ € V' and v, € 2rV, then we claim that the function 1, with
Fourier transform

h =2 ~

Yo 1= 2eq/2 (AN°)(- +va)i) (3.6.9)
is in W, provided e,/3(va) = —1. Indeed, the refinement equation says that
w=r1/ (Arzlz). ‘We obtain 1/:va from @ by multiplying by 7, := 2e, /2A7'~'72A( -+
va)1:72( - 4+ v4). The vertices v and v + v, (modulo 27) contribute values in
(3.6.8) that are negatives of one another. Hence, (3.6.8) is satisfied for 7, and
1, € W. The functions 9, have compact support when A is a polynomial
and ¢ has compact support.

We are allowed to make any assignment of o — v, With e,/2(va) = —1.
To obtain an Ly(R%)-stable basis for W, we need a special assignment with
the property that o — 8 (modulo 2) is assigned v, —vg (modulo 27). If such
a special assignment can be made, then a simple computation shows that
with p:= 2A1":;2,

Do %8l = Y. e(a—p)/2(- +9) u(- +v+va) u(- +v+vp) i (- +v). (3.6.10)
ve2rV

For example, if the shifts of ¢ are orthonormal, then 1:72 = % In this case,
for a # (3, the terms of the sum in (3.6.10) are negatives of one another for
the two values v and v + (v, + vg) (this is where we need to assume that a
special assignment exists), and hence the sum in (3.6.10) is 0. When a = 3,
this sum is
Y A +o)i(-+v)= Y F(-+o)=F=1 ae
vE2rV verV

Hence, the Gramian of ¥ := {9, | @ € V'} is the identity matrix. We obtain
an orthonormal basis for W in this way.

If we begin with a ¢ that has L(R%-stable shifts then a slightly more
complicated argument shows that the functions 1., a € V', are an La(R%)-
stable basis for W.
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This leaves the question of when we can make an assignment o —— v, of
this special type. Such assignments are possible for d = 1,2,3 but not for
d > 3. For example, when d = 2, we can make the assignments as follows:

(0,0) = 2#(0,0), (0,1) — 27(0, 1),
(1,0) — 27(1,1), (1,1) — 27(1,0).

This construction will give orthogonal wavelet and pre-wavelet sets for
box splines. To illustrate this, we consider briefly the following special box
splines on Rz. Let A be the triangulation of R? obtained from grid lines
1=k, x93 =Fk,and 2o — ) =k, kK € Z. Let M be the Courant element for
this partition. Thus, M is the piecewise linear function for this triangulation
that takes the value 1 at (0,0) and the value 0 at all other vertices. The
Fourier transform of M is

- _ (sin(y1/2) ('sin(y2/2) (sin((y1 + ¥2)/2)
M(yhyZ)"( )( )( )
y1/2 y2/2 (1 +y2)/2

By convolving M with itself, we obtain higher order box splines defined
recursively by M; := M and M, := M * M,_;. Then M, is a compactly
supported piecewise polynomial (with respect to A) of degree 3r — 2 and
smoothness C27—2. Since M is real, the box spline M, satisfies the refinement
identity (3.3.1) with A real. Therefore, if we take ¢ := M, and S = S(M,),
the construction of Riemenschneider and Shen applies to give a pre-wavelet
set ¥ consisting of three compactly supported piecewise polynomials for the
partition A/2. The set ¥ provides an Lo(R%)-stable basis for the wavelet
space W.

4. Fast wavelet transforms

It is easy to compute the coefficients in wavelet decompositions iteratively
with a technique similar to the fast Haar transform. We shall limit our
discussion to Daubechies’ orthogonal wavelets with compact support in one
dimension. However, the ideas presented here apply equally well to other or-
thogonal wavelets and to pre-wavelets. We let ¢ be a real-valued, compactly-
supported function with orthonormal shifts that satisfies the conditions of
multi-resolution and in particular the refinement equation (3.1.4). The func-
tion ¢ is real and the refinement coefficients are real and finite in number.
The orthogonal wavelet 1 is then obtained from ¢ by (3.1.8).
A numerical application begins with a finite representation of a function
f as a wavelet sum. This is accomplished by choosing a large value of n,
commensurate with the numerical accuracy desired, and taking an approx-
imation to f of the form
Sn = ij¢j,m (4'1)

Jjez
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with only a finite number of nonzero coefficients f;. The coefficients f; are
obtained from f in some suitable way. For many applications, it suffices to
take f; := f(j27™). The point j2~" corresponds to the support of ¢; .
Since S, € 8", we have
n n—1
Sn = PoSn = PoSn+ Y (PiSn—Pi_15n) = PoSn+ Y Y c(j, k)¥(2*z—3).
k=1 k=0 j€Z
4.2)

We will present an efficient algorithm for computing the coefficients c(j, k)
from the f; and an efficient method to recover Sy, from the coefficients c(j, k).

The algorithm presented later has two main features. First, it computes
the coefficients c(j, k) using only f; and the coefficients a(j) of the refinement
equation (3.1.4) for ¢. In other words, one never needs to find a concrete
realization of the functions ¢ and 1. Second, the iterative computations are
particularly simple to program and run very quickly—the complexity of the
fast wavelet transform of 2™ coefficients is (J(2"); in contrast, the complexity
of the Fast Fourier Transform is O(n2").

During one step of our algorithm, we wish to find the coefficients of
P;_1S when § = ¥ ,c;3(j)¢jk is in S*. The coefficients of P;_1S =
Y icz 8'(1)¢ik—1 are the inner product of S with the ¢;x—1. We therefore
compute, using (3.1.4),

$6) = [ [Zs0die|diamr

jez
-/ [jez;s(j)@,k] B eez;a<e)¢z,~+e,k] =%jz€;a(j—2z’)s<j).

In other words, the sequence 8’ := (s'(7)) is obtained from s := (s(i)) by
matrix multiplication:

s = As, A= (a,',j), j- 21:), i,j € Z. (43)

1
aj’j = %a(
Let Qy be the projector onto the wavelet space W*. A similar calculation
tells us how to compute the coefficients t = (¢(z)) of the projection Qx_1S =
Yicz t(B)Yik—1 of S € S* onto Wi_q:

Lo o s
t=Bs, B:=(08;), Bij:= Eb(y - 2i), 1,j € Z, (4.4)
where b; := (—1)7a(1l — j) are the coefficients of the wavelet 3 given in

(3.1.8).
This gives the following schematic diagram for computing the wavelet
coefficients (c(j, k)):
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A A A
Sn - Pn_lSn — cee ™ P()Sn
\, B \B \/B (4.5)
Qn-l Sn vee QOSn

In other words, to compute the coefficients of P;_1.5, we apply the matrix
A to the coefficients of P;S,, while to compute those of Qx_1.5, we apply
the matrix B to the coefficients of PxS,. The coefficients ¢(j, k), j € Z, are
the coefficients of QrS,. This is valid because Qy_1PrS, = Qs_1S, and
Py 1PSn = Pi15n.

Now suppose that we know the coefficients of PyS, and QiS,, k =
0,...,n — 1. How do we reconstruct S,? We need to rewrite an element
Se&k S = > jez 8(j)®jx as an element of Sktl g = Yicz 8 ()i k1
From the refinement equation (3.1.4), we find

1 1
S=Ys()|—= S a®beisipr| =3 | == ¥ ali — 25)s(5) | fi ps1-
5 ol0)| 5 Zol0ssasan| = T [ 75 ati - 20050 |ores

Therefore, we can express the computation of 8’ from 8 as multiplication by
the transpose A* of A:

s=A's, A :=(o;), o i—2j), i,j € Z. (4.6)

N 1
W= A

A similar calculation tells us how to rewrite a sum S = 3., t(i)¥; ; as a
sum S = Fiez ()i k41

1
¢ =B't, B":=(8;), bi—2j), ,jez.  (47)

Bis=7
The reconstruction of S, from QS,, k=0,...,n—1, and PyS, is then
given schematically by

A* A* A
PS, —» BPS,— e 8,

/ B* /' B* (4.8)
QoSn <o Qn-1Sn

The matrices A, B, A*, and B* have a small finite number of nonzero
elements in each row, so each of the operations in (4.5) and (4.6) has com-
putational complexity proportional to the number of unknowns.

The reconstruction algorithm can be used to display graphically a finite
wavelet sum S. We choose a large value of n, and use the reconstruction
algorithm to write S = 3-.¢; 5(j,n)¢jn. The piecewise linear function with
values s(j, n) at 2™ is an approximation to the graph of S. Such procedures
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for graphical displays are known as subdivision algorithms in computer aided
geometric design.
The matrices A and B have many remarkable properties summarized by

BA* =0,
AA*=1, BB*'=1I,
A*A+B*'B=1. (4.9)

The first equation represents the orthogonality between W and S9, the sec-
ond the fact that the shifts of ¢ and i are orthonormal, and the third the
orthogonal decomposition S1 =S W.

5. Smoothness spaces and wavelet coefficients

We have seen in Section 2 that one can determine when a function f €
Ly(R) is in a Lipschitz space Lip(a, Ly(R)), 0 < a < 1/p, by examining the
coeflicients of the Haar expansion of f. In fact, one can often characterize
membership in general smoothness spaces in terms of the size of coefficients
in general wavelet or pre-wavelet expansions. We do not have the space
to explain in detail how such characterizations are proved, but we shall
outline one approach, based on approximation, that parallels the arguments
in Section 2 about Haar wavelets. A more complete presentation, much along
the lines given here, can be found in the book of Meyer (1990). The article
of Frazier and Jawerth (1990) gives a much more general and extensive
treatment of wavelet-like decompositions from the viewpoint of Littlewood-
Paley theory.

We shall suppose that ¢ satisfies the conditions (3.1.2) of multi-resolution.
We also suppose that ¢ has compact support. This is not a necessary as-
sumption for the characterizations given below (it can be replaced by suit-
able polynomial decay at infinity) but it will simplify our discussion. We
shall also assume that 1 < p < oo. The arguments that follow can be
modified simply to apply when p = oo; the analysis for p < 1 can also be
developed as shown later, but then it must be carried out in the setting of
the Hardy spaces H,(R%).

We fix a value of p and let S := S(¢, Ly(R?)) be the L,(R?) closure of the
finite linear combination of shifts of ¢.

We assume that the shifts of ¢ form an L,(R%)-stable basis for S. For
functions with compact support, this holds whenever the shifts of ¢ form an
Ly (RR%)-stable basis for S(¢, L2(R%)) (see Jia and Micchelli (1991)). It follows
that the dilated functions ¢, := 2k/pgy(2k. — §), j € Z2, form an Ly(RY)-
stable basis of S¥, for each k € Z. That is, there are constants C1,Cs > 0
such that each S € S* can be represented as S = > jeza (G, k, p)(S)bjkp
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with

1/p ) i/p
cl(Z|c(j,k,p)|P) suSnL,(R«)scz(zw(y,k,p)lp) RN

jezd jezd

We will now show that the orthogonal projector P from L3(R%) onto
S(¢, La(RY)) has a natural extension to a bounded operator from L,(R%
onto S. We can represent P as in (3.2.9):

PI=Yue =), %)= [ forG-Dde. (52
jez R?

The function vy € Lo(R?) decays exponentially at infinity and hence is in
Ly(R?) for 1 < g < oo. In particular, vy € Ly (R?), and (5.2) serves to define
Pon L,,(Rd). The compact support of ¢ and the exponential decay of -y then
combine to show that P is bounded on L,(R%). By dilation, we find that
the projectors Py (which map L,(R?) onto S*) are bounded independently
of k.

The projector Q from Ly(R%) onto the wavelet space W is also represented
in the form (5.2) and has an extension to a bounded operator on L,(R?) for
the same reasons as before. We can also derive the boundedness of @ from
the formula Q = P, — P,.

Since the P; are bounded projectors onto S*, their approximation prop-
erties are determined by the approximation properties of the spaces S*.
Consequently, we want to bound the error of approximation by elements in
S* of functions in certain smoothness classes. In particular, we are interested
in determining for which spaces S* it is true that

dist(f,8%) 1, vy < C27%|flwr (1, ey (5.3)

here W7 (L,(R?)) is the Sobolev space of functions with r (weak) derivatives
in Ly(R%) with its usual norm and semi-norm. This well-studied problem
originated with the work of Schoenberg (1946), and was later developed by
Strang and Fix (1973) for application to finite elements. Strang and Fix
show that when ¢ has compact support, a sufficient condition for (5.3) to
hold is that

$#(0)£0 and D“@¢(2ma) =0, |v|<r, a€Z% a#0. (5.4)

This condition is also necessary in a certain context; see de Boor et al.
(1991a) and de Boor and Ron (1991) for a history of the Strang-Fix condi-
tions.

Schoenberg (1946) showed that (5.4) guarantees that algebraic polynomi-
als of (total) degree < r are contained locally in the space S¥. This means
that for any compact set {2 and any polynomial R with deg(R) < r, there
is an S € S that agrees with R on .
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Fig. 4. The function 0- ¢(z + 1) +1- ¢(z) + 2 - ¢(z — 1), with ¢ given by
Daubechies’ formula (3.5.1) with N = 2; see Figure 3. Note the
linear segment between z = 1 and £ = 2.

In summary, the approximation properties of Py are determined by the
largest value of r for which (5.4) is valid. Because we usually know a lot
about the Fourier transform of ¢, the best value of r is easy to determine.
For this r, we have (5.3). For example, for ¢ = N,, the B-spline of order
r, d(y) = (1 — e™W)"/(iy)" satisfies (5.4) for this value of r. Similarly, the
Daubechies wavelets satisfy (5.4) for r = N, with IV the integer appearing
in the representation (3.5.6); see Figure 4.

Assume now that there are positive integers r and s such that the following
Jackson and Bernstein inequalities hold:

D) If = Peflir, ey < C- 277 flwrr,@e))
B) ISlwsz, @) < C-2%ISlL,@e), S €S* (@ Lp(RY), 1 <p < oo
(5.5)

(Actually, s need not be an integer.) The Jackson inequality is just a refor-
mulation of (5.3), and the largest value of r for which (J) holds is determined
by (5.4). The Bernstein inequality holds if ¢ € W*(L,(R?) and in partic-
ular (since ¢ has compact support) whenever ¢ is in C*. It is enough to
verify (B) for k = 0, since (B) would then follow for general k by rescaling.
The left semi-norm in (B) for § = 3;czq ¢(j)¢(- — j) is bounded by the
£,(Z% norm of the coefficients (¢(5)) jezd, Which is bounded in turn by the
right-hand side of (B) by using the L,(R?-stability of the shifts of ¢.

Once the Jackson and Bernstein inequalities have been established, we
can invoke a general procedure to characterize smoothness spaces in terms
of wavelet coefficients. To describe these results, we introduce the Besov
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spaces, which are a family of smoothness spaces that depend on three pa-
rameters. We introduce the Besov spaces for only one reason: They are
the spaces that are needed to describe precisely the smoothness of functions
that can be approximated to a given order by wavelets. The following dis-
cussion is meant as a gentle introduction to Besov spaces for the reader who
instinctively dislikes any space that depends on so many parameters.

The Besov space B,‘I’(Lp(le)), a>0and 0 < ¢q,p < o0, is a smooth-
ness subspace of L,(R%). The parameter a gives the order of smoothness
in L,(R%). The second parameter g gives a finer scaling, which allows us
to make subtle distinctions in smoothness of fixed order a. This second
parameter is necessary in many embedding and approximation theorems.

To define these spaces, we introduce, for h € R%, the rth difference in the

direction h:
r

ifr .
2(2) = Y0 () @+ b)
7=0
Thus, Ap(f,z) := f(z + h) — f(z) is the first difference of f and the other
differences are obtained inductively by a repeated application of A,. With
these differences, we can define the moduli of smoothness

w"’(fa t)p ‘= sup ||A;1(f, ' )"LP(R“)s t>0,
[hi<t

for each r = 1,2,.... The rate at which w,(f,t), tends to zero gives in-
formation about the smoothness of f in L,,(]Rd). For example, the spaces
Lip(a, L,(R%), which we have discussed earlier, are characterized by the
condition wy(f,t)p = O(t*),0<a < 1.

The Besov spaces are defined for 0 < o < r and 0 < p,q < o0 as the set
of all functions f € Ly(R?) for which

(/Ooo [t wr(f, )p)? %)llq, 0<g< oo,

(5.6)
sup t~*w;(f, t)p, g = oo,
t>0

IflBg(L,m) =

Because we allow values of p and ¢ less than one, this ‘norm’ does not always
satisfy the triangle inequality, but it is always a quasi-norm: There exists a
constant C such that for all f and g in Bg(L,,(]Rd)),

If + gllBe(r,mey) < C (llf"Bg(L,,(nd)) + ||9||3;=(L,,(md))) .

Even though the definition of the BF(L,(R?)) norm depends on r through
the modulus of smoothness, we have not parametrized the spaces by r, for
two reasons. First, no one can stand spaces that are parametrized by more
than three parameters. Second, it can be shown that all values of r greater
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than «a give rise to equivalent norms, so the set of functions in B ;’(Lp(]Rd))
does not depend on r as long as r > .

We note that the family of Besov spaces contains both the Lipschitz
spaces Lip(c, Ly(R%)) = B2 (Ly(R%), 0 < & < 1, and the Sobolev spaces
W*(La(R%) = BS(La(R?)), which are frequently denoted by H%(RY).

We have mentioned that once Jackson and Bernstein inequalities have
been established, there is a general theory for characterizing membership in
Besov spaces by the decay of wavelet coefficients. This is based on results
from approximation theory described (among other places) in the articles
by DeVore et al. (1991d), DeVore and Popov (1988), and the forthcoming
book by DeVore and Lorentz (1992). Among other things, this theory states
that whenever (5.5) holds, we have that

1/
gty = ( SRIQK N mlt) 67

kez

for 0 < a < min(r,s), 1 < p < 00, and 0 < g < oo.
If ¥ is a wavelet set associated with ¢, then

Q) =D 3 Yikwr(HWikp
yev jezd
with 9;  p 1= 2%4/Pyp(2K. — 5) the L,(R%)-normalized (pre)wavelets, and the
¥j k. the associated dual functionals. Using the L,(R%-stability of ¥, we
can replace "Qk(f)”zl’,p(nd) by 3 jezd 7j,k,1,p(f) P and obtain

1/
S S S ke DPIE) L (58)

|flBa(L,re)) = (
kez Yev jezd

with the usual change to a supremum when ¢ = oo. This is the characteri-
zation of the Besov space in terms of wavelet coefficients. When g = p, (5.8)
takes an especially simple form:

g Lpmey ® 222 20 3 Mikwa(HF): (5.9)
€

k€Z yev jezd
In particular, (5.9) gives an equivalent semi-norm for the Sobolev space
H2(R%) by taking p = 2.
6. Applications
6.1. Wavelet compression

We shall present a few examples that indicate how wavelets can be used in
numerical applications. Wavelet techniques have had a particularly signif-
icant impact on data compression. We begin by discussing a problem in
nonlinear approximation that is at the heart of compression algorithms.
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Suppose that U is a (pre)wavelet set and f € L,(R%), 1 < p < oo, has the
wavelet representation

F=322" Y cikualHNbinp (6.1.1)

kez ye¥ jezd

with respect to the L,(R%-normalized functions 9;x, = 2F4/Py(2%. — j).
In numerical applications, we must replace the sum in (6.1.1) by a finite
sum, and the question arises as to the most efficient way to accomplish this.
To make this into a well defined mathematical problem, we fix an integer
n, which represents the number of terms we shall allow in the finite sum.
Thus, we want to approximate f in the L,,(IR") norm by an element from
the set

Y= {S = Z dj kv ¥ikp | Al < n}, (6.1.2)
(d.kp)EA

where d; ; ,, are arbitrary complex numbers. We have the error of approxi-
mation

on(flp = Jof (I = SllL,me)- (6.1.3)

In contrast to the usual problems in approximation, the set X, is not a linear
space since adding two elements of ,, results in an element of X5,, but not
generally an element of ¥,,.

The approximation problem (6.1.3) has a particularly simple solution
when p = 2 and ¥ is an orthogonal wavelet set. We order the coeffi-
cients ¢; ;. .2(f) by their absolute value. If A, is the set of indices (3, k, )
corresponding to n largest values (this set is not necessarily unique), then
Sn = 2 kw)eAn Cikw,2(F)Pjk,2 attains the infimum in (6.1.3). For pre-
wavelet sets, this selection is optimal within constants, as follows from the
Ly(R%)-stability of the basis ¥; x 2.

It is somewhat surprising that the strategy of the preceding paragraph also
is optimal (in a sense to be made clear later) for approximation in L,(R%),
p # 2. To describe this, we fix a value of 1 < p < oo (slightly weaker results
than those stated later are known when p = oo) and for f € Ly(R?), we let
A, denote a set of indices corresponding to n largest values of |¢; i y.p(f)|.
We define Sy := 3 yyen, Cikwo(S)¥ikp a0d Gal(f)p := |f — SnllL,gre)-
DeVore et al. (1991d) have established various results that relate o,(f),
with 6,(f), under certain conditions on 3 and the generating function ¢.
For example, it follows from their results that

Gu(f)p = O(™*/) = 04(f), = O(n=2/) (6.1.4)

for 0 < a < r. Here, the integer 7 is related to properties of ¢. Namely,
the generating function ¢ should satisfy the Strang-Fix conditions (5.4) of
this order and ¢ and 3 should have sufficient smoothness (for example, C”
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is enough). It is also necessary to assume decay for the functions ¢ and ;
sufficiently fast polynomial decay is enough. We caution the reader that the
results in DeVore et al. (1991d) are formulated for one wavelet 3 and not a
wavelet set U. However, the same proofs apply in the more general setting.

It is also of interest to characterize the functions f that satisfy (6.1.4).
That is, we would like to know when we can expect the order of approxima-
tion (6.1.4). This has not been accomplished in exactly the form of (6.1.4),
but the following variant has been shown in DeVore et al. (1991d). The
following are equivalent for 7 := 7(a, p) := (a/d + 1/p) "1

0 Yoo~ < oo,

n=1
() S (P E < o0,
n=1
(iii) f € BX(L-(R%). (6.1.5)

Some explanation regarding (6.1.5) is in order. First, ((6.1.5)(i)) is very
close to the condition in (6.1.4). For example, ((6.1.5)(i)) implies (6.1.4),
and if (6.1.4) holds for some 8 > « then ((6.1.5)(i)) is valid. So, roughly
speaking, it is the functions f € B&(L,(R%)) for which the order of approx-
imation in (6.1.4) holds. Second, the characterization (6.1.5) says that it is
those functions with smoothness of order « in L,(R%), 7 = (a/d + 1/p)71,
that are approximated with order O(n~%/9) in L,(R%). This should be con-
trasted with the usual results for approximation from linear spaces (such
as finite element methods), which characterize functions with this approxi-
mation order as having smoothness of order o in L,(R%). Since 7 < p, the
nonlinear approximation problem (6.1.3) provides the approximation order
(6.1.4) for functions with less smoothness than required by linear methods.

The fact that functions with less smoothness can be approximated well by
(6.1.3) is at the essence of wavelet compression. This means that functions
with singularities can be handled numerically. Intuitively this is accom-
plished by retaining in the sum for S, terms corresponding to functions ¥; x ,
that make a large contribution to f near the singularity. Here the situation
is similar to adaptive methods for piecewise-polynomial (finite element) ap-
proximation that have refined triangulations near a singularity. However,
we want to stress that in wavelet compression, it is simple (almost trivial) to
approximate optimally without encountering problems of triangulation. An
overview of this approach to data compression using wavelets can be found
in DeVore et al. (1991a).
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6.2. Image compression

We explain next how a typical algorithm for compression is implemented
from the theoretical results of the previous section. This has been accom-
plished for surface compression in DeVore et al. (1991b) and image com-
pression in DeVore et al. (1991c). We shall discuss only image compression.

A digitized grey-scale image consists of an array of picture elements (pix-
els) represented by numbers that correspond to the brightness (grey scale)
of each pixel, with 0 = black, say, and 255 = white. A grey-scale image
has, say, 1024 x 1024 such numbers taking integer values between 0 and 255.
Thus, the image is given by a matrix (p;);c(o,...,1023)2 With p; € {0,...,255}.
It would take a data file of about one million bytes to encode such an image.
For purposes of transmission or storage, it is desirable to compress this file.

To use wavelets for image compression, we proceed as follows. We think
of the pixel values as associated with the points j2~™, j € [0,2™)%, m = 10,
of the unit square [0,1]2. In this way, we can think of the image as a
discretization of a function f defined on this square.

We choose a function ¢ satisfying the assumptions of multi-resolution, and
a corresponding wavelet set ¥ that provides a stable basis for Ly(R?). Thus,
¥ would consist of three functions, which we shall assume are of compact
support.

We would like to represent the image as a wavelet sum. For this purpose,
we select coefficients v; and consider the function

F=2 "i%im (6.2.1)
JjEQ
with £ the set of indices for which ,,,, does not vanish identically on [0, 1)2.
We think of f as the image and apply the results of the preceding section
to compress f.

The coefficients v; are to be determined numerically from the pixel values;
choosing good values of v; is a nontrivial problem, which we do not discuss.
A typical choice is to take v; = p; for j2~™ € [0, 1] and some extension of
these values for other j.

Once the coefficients (y;) have been determined, we use a fast wavelet
transform to write f in its wavelet decomposition

F=PRof+ Y ciru(Hin (6.2.2)

Gk

with respect to the La(R?)-normalized ;  := 2¥9(2*- — j). We can find the
coefficients of f with respect to the L,(R%)-normalized 3's by the relation
Cikap = 92k(1/p=1/ 2)cj,k,¢. The projection Pyf has very few terms, which
we take intact into the compressed representation at little cost.

To apply the compression algorithm of the previous section, we need to
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decide on a suitable norm in which to measure the error. The L3(R?) norm is
most commonly used, but we argue in DeVore et al. (1991c) that the L;(R?)
is a better model for the human eye for error with high spatial frequency.

If one decides to use the L,(R?) norm to measure compression error, then
the algorithm of the previous section orders the L,(R?)-normalized wavelet
coefficients c¢; x  p and chooses the largest of these to keep. Optimally, one
would send coefficients in decreasing order of size. Thus, we find a (small)
set A of ordered triples {(j, k,%)} that index the largest values of |c; k|
and use for our compressed image

9= D Cikypp¥ikp-
GkDIEA

This sum has |A| terms.

This method of sending coefficients sequentially across a communications
link to allow gradual reconstruction of an image by the receiver is known
as progressive transmission. Our criterion provides a new ordering for the
coefficients to be transmitted that depends on the value of p. However,
sorting the coefficients requires O(m22™) operations, while the fast wavelet
transform itself takes but O(22™) operations. Thus, a faster compression
method that does not rely on sorting is to be preferred; we proceed to give
one.

We discuss compression in La(R?) for a moment. As noted earlier, the
optimal algorithm is to keep the largest L2(R?) coefficients and to discard
the other coefficients. The coeflicients to keep can be determined by fixing
any the following quantities:

) Nl
N\ V2
@) 17 -l = T leamel?)
(j!k)¢)¢A
e
(i) e:= inf  lcikyl

Setting any one of these quantities determines the other two, and by exten-
sion the set A, for any function f. In other words, we can prescribe either
the number of nonzero coefficients N, the total error ||f — g|| L,z2), or €,
which we consider to be a measure of the local error. If we determine which
triples (4, k,v) to include in A by the third criterion, then we do not need
to sort the coeflicients, for we can sequentially examine each coefficient and
put (4, k,v) into A whenever |c; x| > €. This is known as threshold coding
to the engineers, because one keeps only those coefficients that exceed a
specified threshold.

Even more compression can be achieved by noting that we should keep
only the most significant bits of the coefficients c;x 4,. Thus, we choose a
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tolerance € > 0 and we take in the compressed approximation for each v, ,
a coefficient ¢; .  , such that

|Ejkpp — Cikaol <€ (6.2.3)

with the proviso that k4, = 0 whenever |cjryp| < € Then S =
>k CikpoWik,p Tepresents our compressed image, and (6.1.5) holds for
this approximation.

This process of keeping only the most significant bits of c;x ¢, is known
in the engineering literature as scalar quantization. The dependence on the
dyadic level k and the space L,([0,1]?) in which the error is measured is
brought out more clearly when using L. (R?)-normalized wavelets, i.e. when
Yik = ¥(2F. — j). For these wavelets, as the dyadic level increases, the
number of bits of c;xy taken in ¢; 4 decreases. For example, if p = 2, we
would take one less bit at each increment of the dyadic level. On the other
hand, if the compression is done in the L1([0, 1]?) norm, than we would take
two fewer bits as we change dyadic levels. See DeVore et al. (1991c).

6.3. The numerical solution of partial differential equations

Wavelets are currently being investigated for the numerical solution of dif-
ferential and integral equations (see, e.g., the papers of Beylkin et al. (1991)
and Jaffard (1991)). While these applications are only now being developed,
we shall consider a couple of simple examples to illustrate the potential of
wavelets in this direction.

Elliptic equations The Galerkin method applied to elliptic partial dif-
ferential equations gives rise to a matrix problem that involves a so-called
stiffness matrix. We present a simple example that illustrates the perhaps
surprising fact that the stiffness matrix derived from the wavelet basis can
be preconditioned trivially to have a uniformly bounded condition number.
In general, this property allows one to use iterative methods, such as the
conjugate gradient method, to solve linear systems with great efficiency. The
linear systems that arise by discretizing elliptic PDEs have a lot of structure
and can in no way be considered general linear systems, and there are many
very efficient numerical methods, such as multi-grid, that exploit the special
structure of these linear systems to solve these systems to high accuracy
with very low operation counts. We do not yet know of a complete analysis
that shows that computations with wavelets can be more efficient than ex-
isting multi-grid methods when applied to the linear systems that arise by
discretizing elliptic PDEs in the usual way.

Rather than consider Dirichlet and Neumann boundary value problems
in several space dimensions, as discussed in Jaffard (1991), we shall present
only a simple, periodic, second-order ODE that illustrates the main points.
We shall consider functions defined on the one-dimensional torus T, which



50 R. A. DEVORE AND B. J. LUCIER

is equivalent to [0, 1] with the end-points identified, and search for u = u(z),
z € T, that satisfies the equation

- 4" (z) + u(z) = f(z), z €T, (6.3.1)

with f € La(T). In variational form, the solution u € W1(La(T)) of (6.3.1)
satisfies

/(u’v' + uv) = / fv, (6.3.2)
T T
for all v € W1(Ly(T)). We remark that we can take

ulfsczacey = (0P +u).

To approximate u by Galerkin’s method, we must choose a finite-dimen-
sional subspace of W1(Ly(T)), which we shall choose to be a space spanned
by wavelets defined on the circle T. We indicate briefly how to construct
periodic wavelets on T from wavelets on R.

For any f with compact support defined on R, the function

=Y f(+39)
j€z

is a function of period 1, which we call the periodization of f. To obtain
wavelets on T, we apply this periodization to wavelets on R. To be specific,
we consider only the Daubechies wavelets ¢ := Doy with N > 2 because
they are contained in W1(Lo(T)). (The first nontrivial Daubechies wavelet,
Dy, is in W(Lo(T)) for all & < 1 (see Eirola (1992)), but we do not know if
it is in W1(L2(T)).) Let ¢ be the function of Section 3.5 that gives rise to .
For each k € Z, we let 47, and ¢, be the periodization of the functions ¢;
and ¥; x respectively. We define S* to be the linear span of the functions

ik J =0, .,2% — 1. The functions in this space are clearly of period
one. We also note that the ¢7, are orthogonal. Indeed, because they are
periodic,

1
[ 850 = T [ 6ial +0855 =3 [ 6ial- + 0654 +0

115 ez

= P kP = Gikbir k(- +£) = Bj kP 42k
/kak lez/ 3,k 9’k tez/ kPl 402k k-

If j # j/, each integral in the last sum is zero, since we never have j =
§' +2%¢. If j = 7', then exactly one integral in the last sum is nonzero and
its value is one. Similarly, we find that 1/)° ' J=0,. .28~ 1, k>0,is an
orthonormal system for La(T). It is easy to check that by adjoining #§ ,,
which is identically one on T, this orthonormal system is complete.
Returning to our construction of periodic wavelet spaces, we define wk
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to be the linear span of the functions $3,, j =0,...,2F — 1. Then §¥+! =
S* @ W*. To simplify our notation in this section, in which we refer to
periodic wavelets only, we drop the superscripts and tildes, and denote by
ik, Yk S¥, and W, the periodic wavelet bases and spaces.

Returning to the numerical solution of (6.3.1), we choose a positive value
of m and approximate u by an element u,, € 8™ that satisfies:

/(uﬁnv’ + umv) = / fv, veS™ (6.3.3)
T T

We can write u,, and v as in (6.2.2). For example,

m-12k-1

= Poum + E Qrum =900+ > Y By, EYWjk. (6.3.4)

k=0 j=0

Because ¢g is identically one on the circle T, v is just the average of u,,
on T. From (6.3.3) we see that with v = 1, v = f; f. Thus, we need to
determine 3(j, k).

If we replace u,, in (6.3.3) by its representation (6.3.4), we arrive at a
system of equations

m—12%—1
S 506K [ Wi+ diatrw) = [ o,
k=0 j=

for j =0,...,2¥ =1 and ¥ =0,...,m — 1, or, more succinctly,

TB=f (6.3.5)
where the typical entry in T is

/1' ('/’;,kiﬁ;'/,kl + Y kW0 k)
and f a vector with components

/T fjrs B = (B34, k))j=0,.. 21, k=0,..;m—1

is the coefficient vector of the unknown function.

The convergence rate of the conjugate gradient method, a popular itera-
tive method for the solution of systems like (6.3.5), depends on the condi-
tion number, x(T) = ||T)}|T71||, of the symmetric, positive definite, stiffness
matrix T. Now,

ITl= sup a*Ta and |T7}Y'= inf o'Ta,
flall,e=1 lleoxl[2=1

where a := (a(4,k))j=0,.. 2c-1, k=0,.,m—1- For any vector a, we form the
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function S := S(a) € 8™ by

m—12k—1
S=3 > alk)vjx
k=0 j=0
For example, um = vdo,0 + S(B). It follows easily that
m—12k—1
Tl = [[(S7+5) = 1M game ~ 3 3. 12U, BF. (636)
k=0 j=0

The last equivalence in (6.3.6) is a variant of (5.9) (for g = p =2). In
(5.9), we considered wavelet representations beginning at the dyadic level
k = —oo; we could have just as easily begin at the level £k = 0 (by including
Py) and arrived at the equivalence in (6.3.6).

Equation (6.3.6) shows that the matrix DT D, where D has entries

276,68,

satisfies

m—12%—1

la*DTDal~ 3 3 laG, K%

k=0 j=0
i.e. the stiffness matrix 7" can be trivially preconditioned to have a condition
number x(DTD) := ||DTD|||D~1T-'D~}|| that is bounded independently
of m.

Because the subspace S™ of Lo(T) generated by the Daubechies wavelet

Dsn locally contains all polynomials of degree < N, we have that

2—m(N—l

inf |lu —vllwr(Lym) £C )]u]WN(LQ(T))-

veS™
Because of the special form of (6.3.1), u,, is in fact the W!(Ly(T)) projection
of u onto S™, so we have

—m(N-1

lle = umllwr(L,(my) < C2 lulws Lary -

One can treat in an almost identical way the equation (6.3.1) defined on
the torus T¢ with the left-hand side replaced by —V - (aVu) + bu with a and
b bounded, smooth, positive functions on T¢, and obtain the same uniform
bound on the condition number. Of course, ultimately, one would like to
handle elliptic boundary value problems for a domain 2. First results in
this direction have been obtained by Jaffard (1991) and in a slightly differ-
ent (nonwavelet) setting by Oswald (see for example Oswald (1991)). For
example, Jaffard’s approach to elliptic equations with Dirichlet boundary
conditions is to transform the equation to one with zero boundary condi-
tions by extending the boundary function into the interior of the domain €.
He then employs in a Galerkin method wavelets whose support is contained
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strictly inside 2. However, there has not yet been an analysis of the desired
relationship between the extension and the wavelets employed. Another ap-
proach is to develop wavelets for the given domain (which do not vanish on
the boundary) (see Jaffard and Meyer (1989)).

Employing wavelets for elliptic problems as outlined earlier is similar to
the use of hierarchical bases in the context of multi-grid. However, two
points suggest that wavelet bases may be more useful than hierarchical bases.
First, the wavelet bases are L(R%)-stable, while the hierarchical basis are
not. Second, one can choose from a much greater variety of wavelet bases
with various approximation properties (values of N).

Finally, we mention the great potential for compression to be used in
conjunction with wavelets for elliptic problems in a similar way to adaptive
finite elements (see also Jaffard (1991)).

6.4. Time-dependent problems

Wavelets have a potential application for the numerical solution of time-
dependent parabolic and hyperbolic problems. We mention one particular
application where the potential of wavelets has at least a theoretical foun-
dation.

We consider the solution u(z,t) of the scalar hyperbolic conservation law

u + f(u); =0, TER, t>0,
u(z,0) = up(z), z €R, (6.4.1)

in one space dimension. It is well known that the solution to (6.4.1) develops
discontinuities (called ‘shocks’) even when the initial condition is smooth.
This makes the numerical treatment of (6.4.1), and even more so its analogue
in several space dimensions, somewhat subtle. The appearance of shocks
calls for adaptive or nonlinear methods.

Considering the appearance of discontinuities in the solution v to (6.4.1),
the following regularity result of DeVore and Lucier (1990, 1988), is quite
surprising. If the flux f in (6.4.1) is strictly convex and suitably smooth,
and ug has bounded variation, then it has been shown that, for any a > 0
and 7 := 7(a) := (e + 1)},

up € BX(L,(R)) = u(-,t) € B2(L.(R)), (6.4.2)

for all later time t > 0. That is, if up has smoothness of order o in L,(R)
then so will u(-,¢) for all later time ¢ > 0.

The regularity result (6.4.2) has an interpretation in terms of wavelet de-
compositions. We cannot use orthogonal wavelets in these decompositions
because, as we pointed out earlier, they do not provide stable representations
of functions in L; (R) because they have mean value zero. However, the char-
acterization of Besov spaces can be carried out using other, nonorthogonal,
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wavelets, such as B-splines. With this caveat, (6.4.2) says that whenever
up has a wavelet decomposition ), 1z 7vjk(%0)¥jk,1, With certain L;(R)-
normalized wavelets v, whose coeflicients satisfy

33 kI < oo, (6.4.3)

keZ jez

then u(-,t) has a similar wavelet decomposition with the same control
(6.4.3) on the coefficients. We want to stress that the results in DeVore
and Lucier (1990,1988) do not describe directly how to determine wavelet
coefficients at a later time ¢ > 0 from those of the initial function ug. That
is, there is no direct, theoretically correct, numerical method known to us
that describes how to update coefficients with time so that (6.4.3) holds.
The regularity result (6.4.2) is proved by showing that whenever ug can be
approximated well in L;(R) by piecewise polynomials with free (variable)
knots, then u(-,t) can be approximated in the same norm by piecewise
algebraic functions (of a certain type) with free knots.

Finally, we mention that the authors have also shown that the analogue
of regularity result (6.4.3) does not hold in more than one space dimension.
From the point of view of wavelet decompositions, our results seem to indi-
cate that the wavelets described in this presentation are too symmetric to
effectively handle the diverse types of singularities that arise in the solution
of conservation laws in several space dimensions.
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1. Introduction

One of the fundamental building blocks of numerical computing is the ability
to solve linear systems

Ax =b. (1.1)

These systems arise very frequently in scientific computing, for example from
finite difference or finite element approximations to partial differential equa-
tions, as intermediate steps in computing the solution of nonlinear problems
or as subproblems in linear and nonlinear programming.

For linear systems of small size, the standard approach is to use direct
methods, such as Gaussian elimination. These algorithms obtain the solu-
tion of (1.1) based on a factorization of the coefficient matrix A. However, in
practice linear systems arise that can be arbitrarily large; this is particularly
true when solving partial differential equations. Fortunately, the resulting
systems usually have some special structure; sparsity, i.e. matrices with only
a few nonzero entries, is the most common case. Often, direct methods can
be adapted to exploit the special structure of the matrix and then remain
useful even for large linear systems. However, in many cases, especially
for systems arising from three-dimensional partial differential equations, di-
rect approaches are prohibitive both in terms of storage requirements and
computing time, and then the only alternative is to use iterative algorithms.

Especially attractive are iterative methods that involve the coefficient ma-
trix only in the form of matrix—vector products with A or A#. Such schemes
naturally exploit the special structure of large sparse linear systems. They
are also well suited for the solution of certain dense large systems for which
matrix—vector products can be obtained cheaply. The most powerful iter-
ative scheme of this type is the conjugate gradient method (CG) due to
Hestenes and Stiefel (1952), which is an algorithm for solving Hermitian
positive definite linear systems. Although CG was introduced as early as
1952, its true potential was not appreciated until the work of Reid (1971)
and Concus et al. (1976) in the 1970s. Since then, a considerable part of
the research in numerical linear algebra has been devoted to generalizations
of CG to indefinite and nonHermitian linear systems.

A straightforward extension to general nonHermitian matrices is to apply
CG to either one of the Hermitian positive definite linear systems

AfAx = AFD, (1.2)
or
AAfy =b, x= Ay (1.3)

Solving (1.2) by CG was mentioned already by Hestenes and Stiefel (1952);
we will refer to this approach as CGNR. Applying CG to (1.3) was proposed
by Craig (1955); we will refer to this second approach as CGNE. Although
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there are special situations where CGNR or CGNE are the optimal exten-
sions of CG, both algorithms generally converge very slowly and hence they
are not usually satisfactory generalizations of CG to arbitrary nonHermitian
matrices.

Consequently, CG-type algorithms were sought that are applied to the
original system (1.1), rather than (1.2) or (1.3). A number of such methods
have been proposed since the mid-1970s, the most widely used of which is the
generalized minimum residual algorithm (GMRES) due to Saad and Schultz
(1986). While GMRES and related schemes generate at each iteration op-
timal approximate solutions of (1.1), their work and storage requirements
per iteration grow linearly. Therefore, it becomes prohibitive to run the full
version of these algorithms and restarts are necessary, which often leads to
very slow convergence.

For this reason, since the late 1980s, research in nonHermitian matrix it-
erations has focused mainly on schemes that can be implemented with low
and roughly constant work and storage requirements per iteration. A num-
ber of new algorithms with this feature have been proposed, all of which
are related to the nonsymmetric Lanczos process. It is these recent devel-
opments in CG-type methods for nonHermitian linear systems that we will
emphasize in this survey.

The outline of this paper is as follows. In Section 2, we present some
background material on general Krylov subspace methods, of which CG-
type algorithms are a special case. We recall the outstanding properties
of CG and discuss the issue of optimal extensions of CG to nonHermitian
matrices. We also review GMRES and related methods, as well as CG-
like algorithms for the special case of Hermitian indefinite linear systems.
Finally, we briefly discuss the basic idea of preconditioning. In Section 3,
we turn to Lanczos-based iterative methods for general nonHermitian linear
systems. First, we consider the nonsymmetric Lanczos process, with par-
ticular emphasis on the possible breakdowns and potential instabilities in
the classical algorithm. Then we describe recent advances in understanding
these problems and overcoming them by using look-ahead techniques. More-
over, we describe the quasi-minimal residual algorithm (QMR) proposed by
Freund and Nachtigal (1990), which uses the look-ahead Lanczos process to
obtain quasi-optimal approximate solutions. Next, a survey of transpose-free
Lanczos-based methods is given. We conclude this section with comments on
other related work and some historical remarks. In Section 4, we elaborate
on CGNR and CGNE and we point out situations where these approaches
are optimal. The general class of Krylov subspace methods also contains
parameter-dependent algorithms that, unlike CG-type schemes, require ex-
plicit information on the spectrum of the coefficient matrix. In Section 5,
we discuss recent insights into obtaining appropriate spectral information
for parameter-dependent Krylov subspace methods. After that, we turn
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to special classes of linear systems. First, in Section 6, we consider CG-
type algorithms for complex symmetric and shifted Hermitian matrices. In
Section 7, we review cases of dense large linear systems for which iterative
algorithms are a viable alternative to direct methods. Finally, in Section 8,
we make some concluding remarks.

Today, the field of iterative methods is a rich and extremely active research
area, and it has become impossible to cover in a survey paper all recent
advances. For example, we have not included any recent developments in
preconditioning of linear systems, nor any discussion of the efficient use of
iterative schemes on advanced architectures. Also, we would like to point
the reader to the following earlier survey papers. Stoer (1983) reviews the
state of CG-like algorithms up to the early 1980s. In the paper by Axelsson
(1985), the focus is on preconditioning of iterative methods. More modern
iterative schemes, such as GMRES, and issues related to the implementation
of Krylov subspace methods on supercomputers are treated in the survey
by Saad (1989). An annotated bibliography on CG and CG-like methods
covering the period up to 1976 was compiled by Golub and O’Leary (1989).
Finally, readers interested in direct methods for sparse linear systems are
referred to the book by Duff et al. (1986) and, for the efficient use of these
techniques on parallel machines, to Heath et al. (1991).

Throughout the article, all vectors and matrices are in general assumed
to be complex. As usual, i = +/—1. For any matrix M = [m ], we use the
following notation:

M = [m;;] = the complex conjugate of M,
MT = [my;] = the transpose of M,
MH = M’ = the Hermitian of M ,

ReM = (M + M)/2 = the real part of M,
ImM = (M —M)/(2i) = the imaginary part of M,
o(M) = the set of singular values of M,
Omax(M) the largest singular value of M,
O min(M) the smallest singular value of M,
IM|l, = o0gax(M) = the 2-norm of M,
RZ(M) = amax(M)/amin(M)
the 2-condition number of M, if M has full rank.

For any vector ¢ € C™ and any matrix B € C™*™, we denote by
K,(c, B) = span{c, Bc,...,B""Ic}
the nth Krylov subspace of C™, generated by ¢ and B. Furthermore, we
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use the following notation:

lel, = vecfe = Euclidean norm of c,
el = VeFBe

= B-norm of ¢, if B is Hermitian positive definite,
A(B) = the set of eigenvalues of B,
Amax(B) = the largest eigenvalue of B, if B is Hermitian,
Amin(B) = the smallest eigenvalue of B, if B is Hermitian.

Moreover, we denote by I,, the n x n identity matrix; if the dimension n
is evident from the context, we will simply write I. The symbol 0 will be
used both for the number 0 and for the zero matrix; in the latter case, the
dimension will always be apparent. We denote by

P,={o(N)=0y+ oA+ --+0,A" | 0g,04,...,0, €C}

the set of complex polynomials of degree at most n.

Throughout this paper, N denotes the dimension of the coefficient matrix
A of (1.1) and A € CV*¥N is in general nonHermitian. In addition, unless
otherwise stated, A is always assumed to be nonsingular. Moreover, we use
the following notation:

Xy = initial guess for the solution of (1.1),
x, = nth iterate,
r, = b-— Ax, = nth residual vector.

If it is not apparent from the context which iterative method we are con-
sidering, quantities from different algorithms will be distinguished by super-

scripts, e.g. ng or xSMRES.

2. Background

In this section, we present some background material on general Krylov
subspace methods.

2.1. Krylov subspace methods

Many iterative schemes for solving the linear system (1.1) belong to the class
of Krylov subspace methods: they produce approximations x,, to A~'b of
the form

X, €x9+K,(rs,4), n=12,.... (2.1)
Here, x, € CV is any initial guess for the solution of (1.1), ry = b — Ax, is
the corresponding residual vector, and K, (rg, A) is the nth Krylov subspace
generated by ry and A. In view of

Ka(ro, A) = {8(A)ro | 6 € P, 1}, (2.2)
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schemes with iterates (2.1) are also referred to as polynomial-based iterative
methods. In particular, the residual vector corresponding to the nth iterate
x,, can be expressed in terms of polynomials:

r, =b - Ax, =y, (A)r, (2.3)

where
Y, €P,, with %,(0)=1. (2.4)

Generally, any polynomial satisfying (2.4) is called an nth residual polyno-
mial.

As (2.3) shows, the goal in designing a Krylov subspace method is to
choose at each step the polynomial ¥,, such that r,, ~ 0 in some sense. One
option is to actually minimize some norm of the residual r,,:

r,[| = min b-A
Ieall =, min b= x| -
=  min A)rll. '
e, (Aol
Here || - || is a vector norm on C¥, which may even depend on the iteration

number n (see Section 3.3). Another option is to require that the residual
satisfies a Galerkin-type condition:

sfr. =0 forall seS,, (2.6)

where S,, C C¥ is a subspace of dimension n. Note that an iterate satisfying
(2.6) need not exist for each n; in contrast, the existence of iterates with
(2.5) is always guaranteed. The point is that iterates with (2.5) or (2.6) can
be obtained from a basis for K,(ry, A) (and a basis for S, in the case of
(2.6)), without requiring any a priori choice of other iteration parameters.

In contrast to parameter-free schemes based on (2.5) or (2.6), parameter-
dependent Krylov subspace methods require some advance information on
the spectral properties of A for the construction of v,,. Usually, knowledge
of some compact set G with

A4)cGcC, 0¢gg, (2.7)

is needed. For example, assume that A is diagonalizable, and let U be any
matrix of eigenvectors of A. For the case of the Euclidean norm, it then
follows from (2.3) and (2.7) that

lirnlls
e < ko(U) max A
”1‘0”2 2( ) AEA(A) l¢n( )l

< Ky(U) max [ (A)]. (2.8)

Ideally, one would like to choose the residual polynomial 3, such that the
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right-hand side in (2.8) is minimal, i.e.
max [¢, ()] = max [(A)]. (2.9)

PYEPn ¢(0) 1 AeG

Unfortunately, the exact solution of the approximation problem (2.9) is
known only for a few special cases. For example, if G is a real interval,
then shifted and scaled Chebyshev polynomials are optimal in (2.9); the
resulting algorithm is the well-known Chebyshev semi-iterative method for
Hermitian positive definite matrices (see Golub and Varga, 1961). Later,
Manteuffel (1977) extended the Chebyshev iteration to the class of non-
Hermitian matrices for which G in (2.7) can be chosen as an ellipse. We
remark that, in this case, Chebyshev polynomials are always nearly opti-
mal for (2.9), but — contrary to popular belief — in general they are not
the exact solutions of (2.9), as was recently shown by Fischer and Freund
(1990, 1991). The solution of (2.9) is also known explicitly for complex line
segments G that are parallel to the imaginary axis and symmetric about the
real line (see Freund and Ruscheweyh, 1986); this case corresponds to shifted
skew-symmetric matrices A of the form (2.14). In the general case, however,
the exact solution of (2.9) is not available and is expensive to compute nu-
merically. Instead, one chooses polynomials that are only asymptotically
optimal for (2.9). An elegant theory for semi-iterative methods of this type
was developed by Eiermann et al. (1985).

In this survey, we will focus mainly on parameter-free algorithms with iter-
ates characterized by (2.5) or (2.6). Parameter-dependent Krylov subspace
methods will be only briefly discussed in Section 5.

2.2. CG and optimal extensions

Classical CG is a Krylov subspace method for Hermitian positive definite
matrices A with two outstanding features. First, its iterates x,, satisfy a
minimization property, namely (2.5) in the A~!-norm:
b — Ax, | 4-1 = min b — Ax|] 4. 2.10
b Ax,llpm = min b= Ax| s (2.10)
Secondly, x,, can be computed efficiently, based on simple three-term recur-

rences.
An ideal extension of CG to nonHermitian matrices A would have similar

features. However, since in general || - || ,-1 is no longer a norm, one usually
replaces (2.10) with either the minimization property
Ib—Ax,ll;= _ min  |b—Ax|, (2.11)

xexo+Kn(ro,A)
or the Galerkin condition
sH(b-Ax,)=0 forall se€K,(ry,A). (2.12)
In the sequel, a Krylov subspace algorithm with iterates (2.1) defined by
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(2.11) or (2.12) will be called a minimal residual (MR) method or an or-
thogonal residual (OR) method, respectively. We remark that (2.10) and
(2.12) are equivalent for Hermitian positive definite A, and hence (2.12) is
an immediate extension of (2.10). Unfortunately, for nonHermitian A and
even for Hermitian indefinite A, an iterate x,, with (2.12) need not exist at
each step n. In contrast, there is always a unique iterate x,, € x9+K,(r,, 4)
satisfying (2.11). We note that the conjugate residual algorithm (CR) due
to Stiefel (1955) is a variant of CG that generates iterates characterized by
(2.11) for the special case of Hermitian positive definite A.

An ideal CG-like scheme for solving nonHermitian linear systems would
then have the following features:

1  its iterates would be characterized by the MR or OR property; and
it could be implemented based on short vector recursions, so that work
and storage requirements per iteration would be low and roughly con-
stant.

Unfortunately, it turns out that, for general matrices, the conditions 1 and 2
cannot be fulfilled simultaneously. This result is due to Faber and Manteuffel
(1984, 1987) who proved the following theorem (see also Voevodin (1983)
and Joubert and Young (1987)).

Theorem 2.1 (Faber and Manteuffel, 1984 and 1987.) Except for a few
anomalies, ideal CG-like methods that satisfy both requirements 1 and 2
exist only for matrices of the special form

A=¢®(T+0ol), where T=TH @dcR, oecC. (2.13)

The class (2.13) consists of just the shifted and rotated Hermitian matri-
ces. Note that the important subclass of real nonsymmetric matrices

A=I-S, where S=-8T isreal, (2.14)

is contained in (2.13), with e =i, 0 = —i, and T = iS. Concus and Golub
(1976) and Widlund (1978) were the first to devise an implementation of a
OR method for the family (2.14). The first MR algorithm for (2.14) was
proposed by Rapoport (1978), and different implementations were given by
Eisenstat et al. (1983) and Freund (1983). For a brief discussion of actual
CG-type algorithms for the general class of complex nonHermitian matrices
(2.14), we refer the reader to Section 6.2.

Finally, we remark that ideal CG-like methods also exist for the more
general family of shifted and rotated B-Hermitian matrices

A=Y (T +oI), where TB=(TB)#, 9ecR, occC. (215)
Here B is a fixed given Hermitian positive definite N X N matrix (see Ashby
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et al., 1990). However, since for any matrix A of the form (2.15),
AI — B1/2AB—1/2

is of the type (2.13), without loss of generality the case (2.15) can always be
reduced to (2.13).

2.3. CG-type algorithms for Hermitian indefinite linear systems

The family (2.13) also contains Hermitian indefinite matrices; next we review
CG-type methods for this special case.

Luenberger (1969) was the first to propose a modification of standard CG
for Hermitian indefinite matrices; however, his algorithm encountered some
unresolved computational difficulties. The first numerically stable schemes
for Hermitian indefinite linear systems were derived by Paige and Saunders
(1975). Their SYMMLQ algorithm is an implementation of the OR ap-
proach and hence the immediate generalization of classical CG. As pointed
out earlier, an OR iterate x,, satisfying (2.12) need not exist for each n, and,
in fact, SYMMLQ generates x,, only indirectly. Instead of the OR iterates,
a second sequence of well-defined iterates x is updated, from which exist-
ing x,, can then be obtained cheaply. Paige and Saunders also proposed the
MINRES algorithm, which produces iterates defined by the MR property
(2.11) and thus can be viewed as an extension of CR to Hermitian indefinite
matrices. SYMMLQ and MINRES both use the Hermitian Lanczos recur-
sion to generate an orthonormal basis for the Krylov subspaces K ,,(rg, 4),
and, like the latter, they can be implemented based on simple three-term
recurrences. We would like to stress that the work of Paige and Saunders
was truly pioneering, in that they were the first to extend CG beyond the
class of Hermitian positive definite matrices in a numerically stable manner.

SYMMLAQ is also closely connected with an earlier algorithm due to Frid-
man (1963), which generates iterates xME € x,+ K,,(Ar,, A) defined by the
minimal error (ME) property

|47 —xME, = min 47D x|, (2.16)
Unfortunately, Fridman’s original implementation of the ME approach is un-
stable. Fridman’s algorithm was later rediscovered by Fletcher (1976) who
showed that, in exact arithmetic, the ME iterate x,"{lE coincides with the
auxiliary quantity xZ in SYMMLQ. Hence, as a by-product, SYMMLQ also
provides a stable implementation of the ME method. Another direct stabi-
lization of Fridman’s algorithm was proposed by Stoer and Freund (1982).

Finally, we remark that Chandra (1978) proposed the SYMMBK algo-
rithm, which is a slightly less expensive variant of SYMMLQ, and derived
another stable implementation of the MR method, different from MINRES.
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2.4. GMRES and related algorithms

We now return to Krylov subspace methods for general nonHermitian ma-
trices. Numerous algorithms for computing the iterates characterized by the
MR or OR property (2.11) or (2.12), respectively, have been proposed; see
Vinsome (1976), Axelsson (1980, 1987), Young and Jea (1980), Saad (1981,
1982, 1984), Elman (1982), Saad and Schultz (1985, 1986). Interestingly, a
simple implementation of the MR approach was already described in a paper
by Khabaza (1963), which is not referenced at all in the recent literature.
In view of Theorem 2.1, all these algorithms generally involve long vector
recursions, and typically work and storage requirements per iteration grow
linearly with the iteration index n. Consequently, in practice, one cannot
afford to run the full algorithms, and it becomes necessary to use restarts
or to truncate the vector recursions.

The most elegant and most widely used scheme of this type is GMRES,
due to Saad and Schultz (1986), and here we sketch only this particular
algorithm. GMRES is modelled after MINRES, where now a generalization
of the Hermitian Lanczos process, namely the Arnoldi process (see Arnoldi
(1951) and Saad (1980)), is used to generate orthonormal basis vectors for
the Krylov subpaces K, (r,, A).

Algorithm 2.2 (Arnoldi process)
0) Choose v, € CV with ||v,[l, = 1.
Forn=1,2,...,do:
1For k=1,2,...,n, compute
hyy, = Vi Av,,.

2 Set
n
Var1 = AV, — Z Pn Vi

k=1
3 Compute
h"n+1,n = ||‘7n+1|]2-
41f h,yy, =0, stop.
Otherwise, set
Vat1 = i"n+1/hn+1,n-

The vector recurrences in Step 2 of Algorithm 2.2 can be rewritten compactly
in matrix form as follows:

AV, =V, HO, (2.17)
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where
V,=[vy va - Vv,] (2.18)
has orthonormal columns, and
(A1 Pag Rin |
hy :
HO=|,o .. - : (2.19)
: e hppey Bpg
[0 0 hpyya]

is an (n + 1) x n upper Hessenberg matrix of full rank n.
If one chooses the starting vector v, = ry/||rg||, in Algorithm 2.2, then

all possible iterates (2.1) can be parametrized as follows:
X, =X+ V,2,, where z, € C" (2.20)

Moreover, with (2.20) and (2.17), the minimal residual property (2.11) re-
duces to the (n + 1) x n least squares problem

"dn - Hf(ze)zn”2 = min ”dn - Hr(ze)zllz’ (221)
zeC™*
where
d, =[lrolly 0 --- 0)T eR™. (2.22)

GMRES is an implementation of the minimal residual approach (2.11) that
obtains the nth MR iterate x,, by first running n steps of the Arnoldi process
and then solving the (n + 1) X n least squares problem (2.21). Note that
(2.21) always has a unique solution, since H®) is of full column rank. For
a detailed description of the algorithm, we refer the reader to Saad and
Schultz (1986).

The Arnoldi Algorithm 2.2 can also be used to compute the nth OR iterate
characterized by (2.12). Indeed, as Saad (1981) has shown, x,, is again of
the form (2.20) where z,, is now the solution of the n x n linear system

Hyzz,=d,_;. (2.23)

Here
Hn = [In O]ng) (224)

is the matrix obtained from H® by deleting the last row in (2.19). The
problem with this approach is that H,, can be singular, and then the linear
system (2.23) is inconsistent. In fact, H,, is singular if, and only if, no OR
iterate satisfying (2.12) exists.

An interesting alternative is to use quasi-Newton techniques, such as Broy-
den’s method (Broyden, 1965). Although designed for general nonlinear
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equations, these schemes can be applied to nonHermitian linear systems as
a special case. In addition to the iterates x,,, these algorithms also produce
approximations to A, updated from step to step by a simple rank-1 correc-
tion. While these schemes look different at a first glance, they also belong
to the class of Krylov subspace methods, as was first observed by Elman
(1982). Furthermore, Deuflhard et al. (1990) have demonstrated that Broy-
den’s rank-1 update combined with a suitable line search strategy leads to
an iterative algorithm that is competitive with GMRES. Eirola and Nevan-
linna (1989) have proposed two methods based on a different rank-1 update
and shown that one of the resulting schemes is mathematically equivalent
to GMRES. These algorithms were studied further by Vuik (1990).

2.5. Preconditioned Krylov subspace methods

For the solution of realistic problems, it is crucial to combine Krylov sub-
space methods with an efficient preconditioning technique. The basic idea
here is as follows. Let M be a given nonsingular N x N matrix, which
approximates in some sense the coefficient matrix A of the original linear
system (1.1). Moreover, assume that M is decomposed in the form

M = MM, (2.25)

The Krylov subspace method is then used to solve the preconditioned linear
system

A'X =V, (2.26)
where
A =MTAMSY, b'=Mlb, x' = M,x.

Clearly, (2.26) is equivalent to (1.1). This process generates approximate
solutions of (2.26) of the form

x, €xh+K, (t),4). (2.27)

Usually, one avoids the explicit calculation of primed quantities, and instead
one rewrites the resulting algorithm in terms of the corresponding quantities
for the original system. For example, iterates and residual vectors for (1.1)
and (2.26) are connected by

x, = M;'x!, and r,= Mr,. (2.28)
In particular, note that, by (2.27) and (2.28), the resulting approximations
to A~1b are of the form

X, €EXx9+ K, (M'er,M‘lA) .

We remark that the special cases M; = I or M, = I in (2.25) are referred to
as right or left preconditioning, respectively. For right preconditioning, by
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(2.28), the preconditioned residual vectors coincide with their counterparts
for the original system. For this reason, right preconditioning is usually
preferred for MR-type Krylov subspace methods based on (2.11). Moreover,
if A has some special structure, the decomposition (2.25) can often be chosen
such that the structure is preserved for A’. For example, for Hermitian
positive definite A this is the case if one sets M, = M{ in (2.25).

Obviously, there are two (in general conflicting) requirements for the
choice of the preconditioning matrix M for a given Krylov subspace method.
First, M~ should approximate A~! well enough so that the algorithm ap-
plied to (2.26) will converge faster than for the original system (1.1). On
the other hand, preconditioned Krylov subspace methods require at each
iteration the solution of one linear system of the type

Mp=gq. (2.29)

Moreover, for algorithms that involve matrix-vector products with A7 (see
Section 3), one has to solve an additional linear system of the form

MTp=q. (2.30)

Therefore, the preconditioner M needs to be such that linear systems (2.29)
respectively (2.30) can be solved cheaply. In this article, the problem of how
to actually construct such preconditioners is not addressed at all. Instead,
we refer the reader to the papers by Axelsson (1985) and Saad (1989) for
an overview of common preconditioning techniques.

Finally, one more note. In Section 3, explicit descriptions of some Krylov
subspace algorithms are given. For simplicity, we have stated these algo-
rithms without preconditioning. It is straightforward to incorporate pre-
conditioning by using the transition rules (2.28).

3. Lanczos-based Krylov subspace methods

In this section, we discuss Krylov subspace methods that are based on the
nonsymmetric Lanczos process.

3.1. The classical Lanczos algorithm and BCG

The nonsymmetric Lanczos method was proposed by Lanczos (1950) as a
means to reduce an arbitrary matrix A € CV*¥ to tridiagonal form. One
starts the process with two nonzero vectors v, € CV and w; € CV and then
generates basis vectors {v;} for K, (v}, 4) and {w,} for K,(w,, AT) such
that the bi-orthogonality condition

T - 1 k= ja
WiVe = {0 otherwise, (3.1)

holds. The point is that the two bases can be built with just three-term
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recurrences, thus requiring minimal amounts of work and storage per step.
The complete algorithm is straightforward and can be stated as follows.
Algorithm 3.1 (Classical Lanczos method)
0 Choose ¥, W, € CV with ¥;, W, #0.
Set vop = wgy = 0.
Forn=1,2,...,do:
1 Compute 6, = WI¥,.
If 6, =0, set L =n—1 and stop.
2 Otherwise, choose 8,7, € C with 8,7, = §6,,.
Set v, =V,/v, and w, =W, /3,.
3 Compute
a, =wlAv,,
Vo1 = Av, — oV, — BV,
ﬁn-{-l = ATwn O, Wn ™ YnWp_1-
Ifv,,;=00r W,,; =0, set L =n and stop.
The particular choice of the coefficients a,,, 3,, and ~, ensures that the

bi-orthogonality relation (3.1) is satisfied.
Similar to (2.18), (2.19) and (2.24), let

Va=lv vy o v, Wo=[w w - w],
[ay B, O - 0]
Y2 Qg A :
H® = 0 R € CntD)xn (3.2)
. '.. '.. . ﬂn
: R
[0 - oo 0 Yyl

and
H,=[I, 0]H®.
Then the recurrences in the Lanczos process can be written compactly as
AV, =V, H, +[0 --- 0 V,,,],
ATW, =W, HT +[0 -+ 0 W],
while the bi-orthogonality relation (3.1) can be written as
WIv, =1,. (3.4)

(3.3)
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We note that the Lanczos method is invariant under shifts of the form
A— A+o0l, where og€C,

in that the process generates the same vectors {v;} and {w;} and only the
tridiagonal matrix (3.2) is shifted:

H,—H, +o0l,

In particular, for the Lanczos algorithm it is irrelevant whether the matrix
A is singular or not.

Moreover, we would like to stress that the Lanczos process can also be
formulated with A¥ instead of AT, by simply conjugating the three-term
recurrences for the vectors {w,}. We chose the transpose because one can
then avoid complex conjugated recurrence coefficients. Finally, we remark
that the Lanczos process reduces to only one recursion in two important
special cases, namely A = A¥ (with starting vectors W, = ¥,) and complex
symmetric matrices A = AT (with starting vectors W; = V,). In both cases,
one must also choose 8, = 7,. In the first case, the resulting algorithm is
the well-known Hermitian Lanczos method, which has been studied exten-
sively (see, e.g., Golub and Van Loan (1989) and the references therein). In
the second case, the resulting algorithm is the complex symmetric Lanczos
process.

In exact arithmetic, the classical Lanczos method terminates after a finite
number of steps. As indicated in Algorithm 3.1, there are two different sit-
uations in which the process can stop. The first one, referred to as regular
termination, occurs when vy, ; = 0 or wy; = 0. In this case, the Lanc-
zos algorithm has found an invariant subspace of CV: if v, , = 0, then
the right Lanczos vectors v,,..., v, span an A-invariant subspace, while if
w1 = 0, then the left Lanczos vectors wy,...,w; span an AT-invariant
subspace. The second case, referred to as a serious breakdown by Wilkin-
son (1965), occurs when wiv; = 0 with neither v; = 0 nor w;, = 0. In
this case, the Lanczos vectors span neither an A-invariant subspace nor an
AT-invariant subspace of C. We will discuss in Section 3.2 techniques for
handling the serious breakdowns. We remark that, in the special case of the
Hermitian Lanczos process, breakdowns are excluded. In contrast, break-
downs can occur in the complex symmetric Lanczos algorithm (see Cullum
and Willoughby (1985) and Freund (1989b, 1992)).

The Lanczos algorithm was originally introduced to compute eigenvalues,
as — in view of (3.3) - the eigenvalues of H,, can be used as approxima-
tions for eigenvalues of A. However, Lanczos (1952) also proposed a closely
related method, the biconjugate gradient algorithm (BCG), for solving gen-
eral nonsingular nonHermitian linear systems (1.1). By and large, BCG was
ignored until the mid-1970s, when Fletcher (1976) revived the method.

The BCG algorithm is a Krylov subspace approach that generates iterates
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defined by a Galerkin condition (2.6) with the special choice of subspaces
S, ={s=w ’ w € K, (Fy, AT)}.
Here, F; is a nonzero starting vector discussed later. The standard imple-
mentation of the BCG method is as follows.
Algorithm 3.2 (BCG method)
0 Choose x, € CV and set q; = ry = b — Ax,,.
Choose F, € CN, ¥, # 0, and set g, = T, pp = F§ .
Forn=1,2,...,do:

1 Compute
On-17~ “-ig—lAqn—la
Qp_1=Pn-1/0n_1»
Xp = Xp1 + 1901
T, =Ty 1~ ay_149, ),
i:n = i:n—l - an—lAan—l'
2 Compute
pn=FrTn,
Bn = Pn/Pn-1>

q, =T, + ﬂnqn—l’
qn = fn + /Bn(ln—l'
3Ifr, =0orr, =0, stop.

Note that BCG requires a second nonzero starting vector ¥ € C¥, which
can be chosen freely. Usually, one sets T = r( or ¥, = T, or one chooses T
as a vector with random entries.

The BCG algorithm is the archetype of an entire class of Lanczos-based
Krylov subspace methods for nonHermitian matrices, some of which we will
discuss later. Unfortunately, BCG typically exhibits an erratic convergence
behaviour with wild oscillations in the residual norm ||r,,||,. Even worse,
the BCG process can break down completely. More precisely, the BCG
Algorithm 3.2 cannot be continued if

qz—lAqn—l = 07 fn——l 71'. 0’ e # 07 (35)
or if
fg:—lrn—l = O$ i:11,—1 7é 07 rn_l # 0. (36)

The source of the breakdown (3.5) is the Galerkin condition (2.6) used to
define the iterates. As was pointed out in Section 2.2, the existence of an
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iterate satisfying (2.6) is not guaranteed at every step, and in fact (3.5) oc-
curs if, and only if, no BCG iterate exists. Furthermore, it can be shown
that (3.5) is equivalent to the Lanczos matrix H,, being singular. The source
of the second breakdown (3.6) is the underlying nonsymmetric Lanczos pro-
cess, which can have a serious breakdown. It turns out that the vectors
r,_; and ¥,_, in the BCG Algorithm 3.2 are scalar multiples of the vec-
tors v, and w,,, respectively, that are generated by the classical Lanczos
Algorithm 3.1 started with

V,=r; and W;=F,
Hence, a breakdown in the Lanczos process will be parallelled by a break-
down (3.6) in the BCG algorithm.

As the earlier discussion shows, BCG, while requiring little work and stor-
age per step, is susceptible to breakdowns and numerical instabilities. In
addition, another possible disadvantage of the classical BCG algorithm is its
use of the transpose of A, which may not be readily available in some situ-
ations. As a result, variants of BCG were sought which would preserve the
low work and storage requirements, while curing the possible breakdowns
and avoiding the use of the transpose. In the next section, we will discuss the
look-ahead Lanczos algorithm, an extension of the Lanczos method which
handles in almost all cases the serious breakdowns in the Lanczos process.
In Section 3.4 we present the quasi-minimal residual approach, based on the
look-ahead Lanczos algorithm and using a quasi-minimization property to
avoid the breakdowns caused by the Galerkin condition. Finally, in Sec-
tion 3.5 we survey some of the so-called transpose-free algorithms, which
typically replace the multiplication by AT in the BCG algorithm by one or
more multiplications by A.

3.2. A look-ahead Lanczos algorithm

One of the possible terminations of the Lanczos algorithm is a serious break-
down, when §,, = 0 in Algorithm 3.1, with neither v, =0 nor w, = 0. Asa
result, the vectors ¥,, and W,, cannot be scaled to obtain the Lanczos vectors
v,, and w,, corresponding to the basis vectors A"v; and (AT)"w,. Further-
more, it turns out that even if v, and w,, were computed using a different
scaling method, the next pair of vectors v,,,, and W, ; could not be com-
puted so as to fulfil (3.1). The problem here is not just one of scaling, but
also that the bi-orthogonality required of the vectors v,,,; and W, ; cannot
be satisfied. However, it could happen that the bi-orthogonality condition
(3.1) can once again be fulfilled for a pair of vectors corresponding to some
higher power of A and AT. A procedure which somehow advances to this
next pair of Lanczos vectors will be called a look-ahead Lanczos procedure.

The main idea behind the look-ahead Lanczos algorithms is to relax the
bi-orthogonality relation (3.1) when a breakdown is encountered. For each
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fixed n = 1,2,..., the vectors v,,...,v, and w,,...,w, generated by the
look-ahead procedure can be grouped into ! = [(n) blocks
VE) = [Vn, Vis1 0 V-1l k=1 -1
WO =[w, Wpi 0 Wea], A
and
v = [V, Vo1 " Vals
w® = (W, Woer =0 W,],
where

l=n<ny <" < <. <y <n<nyy,.

The blocks are constructed so that (3.1) is relaxed to

(W(j))T (v®) = {OD('“) gj ; I’: ik=1,....1,

where D® is nonsingular for ¥ = 1,...,I — 1, and D® is nonsingular if
n = ny; — 1. The first vectors v, and w,,_ in each block are called regular,
and the remaining vectors are called inner. We note that, in practice, for
reasons of stability, the computed vectors are usually scaled to have unit
length (see Taylor, 1982).

Two such look-ahead procedures have been proposed, one by Parlett et
al. (1985), and a second one by Freund et al. (1991b). The Freund et al.
implementation requires the same number of inner products per step as the
classical Lanczos algorithm, and reduces to the classical Lanczos procedure
in the absence of look-ahead steps. In contrast, the Parlett et al. imple-
mentation always requires more work per step and does not reduce to the
classical Lanczos algorithm in the absence of look-ahead steps. It also does
not generalize easily to blocks of more than two vectors. Therefore, we will
focus on the implementation proposed by Freund et al.. The basic structure
of this look-ahead Lanczos algorithm is as follows.

Algorithm 3.3 (Sketch of the look-ahead Lanczos process)
0 Choose vy, w; € CV with ||v, ||, = ||wy]l, = 1.
Set V) =v,, W) = w,, D) = (W)Ty ),
Setny=1,1l=1,vo=wy=0,V=Wy=0,p,=¢ =1.
Forn=1,2,...,do:
1 Decide whether to construct v, , and w,,, | as regular or inner vectors

and go to Steps 2 or 3, respectively.
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2 (Regular step.) Compute
Ty = Av, — VO(DO) WO Av,,
_ V(l-—l) (D(l—l))—l(W(l—l))TAvn,

3.7
Wpsy = ATw, - WODO)T(VO)T ATw, &0
— W=D (DU-D)=T(yU=1T gTy
Set iy =n+1,1=1+1, VO =W® =0, and go to Step 4.
3 (Inner step.) Compute
i."n+1 = Avn - Cnvn - (%/Pn) Va—1
-y (D(l—l))—l(W(l—l))TAvm
(3.8)

Wn+1 = ATwn - ann - (nn/gn) Wn-1
_ W(l—l)(D(I-l))-T(V(l—l))TATwn_

4 Compute p, 11 = [[Voi1ll, a0d &1 = Wyl
If ppyy =00r &, =0, set L =n, and stop.
Otherwise, set

Vat1 = Vnt1/Prt1s Wni1 = Wi /€nya,
V(l) = [ V(l) vn+1 ] 3 W(l) = [ W(l) wn+1 ] )
DY = (wHTy®,

Step 2 of the algorithm is a block version of the classical Lanczos recur-
rences of Step 3 in Algorithm 3.1. Step 3 builds inner vectors spanning the
gap between two regular vectors. In this implementation, the inner vectors
are generated by a three-term inner recurrence, and then bi-orthogonalized
against the last block. The vectors generated by the look-ahead Lanczos
algorithm still obey (3.3), but now H,,, instead of having simply the tridiag-
onal structure (3.2), is an upper Hessenberg block tridiagonal matrix with
small blocks of size (n; —ny_;) X (ng —n_,) on the diagonal. Furthermore,
the bi-orthogonality relation (3.4) now reads

WV, = D, = diag (D, D@, ... ,D0).

Note that D,, is guaranteed to be nonsingular if n =n, ; — 1.

If only regular steps are performed, then Algorithm 3.3 reduces to the
classical Lanczos process. Thus, the strategy used in Step 1 for deciding
when to construct inner vectors should perform regular steps whenever pos-
sible. In addition, in practice the look-ahead algorithm must also be able to
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handle near-breakdowns, that is situations when
WiV, ~0, ¥,%0, W,#0.

Freund et al. (1991b) proposed a practical procedure for the decision in
Step 1 based on three different checks. For a regular step, it is necessary
that D) be nonsingular. Therefore, one of the checks monitors the size of
Omin(D®). The other two checks attempt to ensure the linear independence
of the Lanczos vectors. The algorithm monitors the size of the components
along the two previous blocks V() and V=1 respectively W* and W{-1),
in (3.7), and performs a regular step only if these terms do not dominate
the components Av, and ATw,, in the new Krylov spaces. For details, see
Freund et al. (1991b).

The look-ahead algorithm outlined here will handle serious breakdowns
and near-breakdowns in the classical Lanczos algorithm, except for the spe-
cial event of an incurable breakdown (Taylor, 1982). These are situations
where the look-ahead procedure would build an infinite block, without ever
finding a nonsingular D). Taylor (1982) has shown in his Mismatch Theo-
rem that, in case of an incurable breakdown, one can still recover eigenvalue
information, as the eigenvalues of the H,, are also eigenvalues of A. For lin-
ear systems, an incurable breakdown would require restarting the procedure
with a different choice of starting vectors. Fortunately, in practice round-off
errors will make an incurable breakdown highly unlikely.

Finally, we remark that, for the important class of p-cyclic matrices A,
serious breakdowns in the Lanczos process occur in a regular pattern. In
this case, look-ahead steps are absolutely necessary if one wants to exploit
the p-cyclic structure. For details of a look-ahead Lanczos algorithm for
p-cyclic matrices, we refer the reader to Freund et al. (1991a).

3.3. The QMR algorithm

We now turn to the quasi-minimal residual approach. The procedure was
first proposed by Freund (1989b) for the case of complex symmetric linear
systems, and then extended by Freund and Nachtigal (1991) for the case of
general nonHermitian matrices.

Recall from (2.2) that the nth iterate of any Krylov subspace method is
of the form

X, € Xg + K, (ro, A).
If now we choose
vy =ro/l|roll2 (3.9)

in Algorithm 3.3, then the right Lanczos vectors v, ..., v, span the Krylov
space K, (ry, A), hence we can write

Xp =X%o + Vnzm
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for some z,, € C". Together with (3.9) and the first relationship in (3.3),
this gives for the residual

r, =10 = AV,2, = Vopy (dn — HS)z,) , (3.10)

where d,, is defined as in (2.22). As V, ., is not unitary, it is not possible
to minimize the Euclidean norm of the residual without expending O(Nn?)
work and O(Nn) storage. Instead, one minimizes just the Euclidean norm
of the coefficient vector in (3.10), that is z,, € C™ is chosen as the solution
of the least-squares problem

Id, — H{Oz, |, = mig |ld, - HE)z,. (3.11)

As was pointed out by Manteuffel (1991), solving the minimization problem
(3.11) is equivalent to minimizing the residual in a norm that changes with
the step number:

XEXO%?(rO,A) D41 Wily(b — Ax)|l,, n=mn;—2.
Thus, the QMR does not contradict the Faber and Manteuffel Theorem 2.1,
which excludes only methods that minimize in a fized norm.

To solve the least-squares problem (3.11), one uses a QR factorization
of H®. As HY is upper Hessenberg, its QR factorization can be easily
computed and updated using Givens rotations; the approach is a standard
one (see, e.g., Golub and Van Loan (1989)). One computes a unitary matrix
Q,, € Cv+1X(n+1) and an upper triangular matrix R,, € C" such that

QnH'SLe) = [1‘(2)"] ) (3.12)
and then obtains z,, from
2, = R't,, t,=[I, 0]Q.d,, (3.13)
which gives
X, = Xq + V,R;'t,. (3.14)

This gives the following QMR algorithm.

Algorithm 3.4 (QMR algorithm)
0 Choose x € CV and set ry = b — Ax, py = |Irglly, V1 = To/po-
Choose w; € CV with ||w, ], = 1.
Forn=1,2,...,do:
1 Perform the nth iteration of the look-ahead Lanczos Algorithm 3.3.
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This yields matrices V,,, V,,,;, H,(,) which satisfy
AV, =V, H®.

2 Update the QR factorization (3.12) of H{® and the vector t, in
(3.13).

3 Compute x,, from (3.14).

4 If x,, has converged, stop.

We note that since Q,, is a product of Givens rotations, the vector t,, is easily
updated in Step 2. Also, as H,, is block tridiagonal, R, also has a block
structure that is used in Step 3 to update x,, using only short recurrences.
For complete details, see Freund and Nachtigal (1991).

The point of the quasi-minimal residual approach is that the least-squares

problem (3.11) always has a unique solution. From Step 4 of Algorithm 3.3,

Px, the subdiagonal entries of H,(l ), are all nonzero, hence H,(,) has full

column rank, R, is nonsingular, and so (3.11) always defines a unique it-
erate x,,. This then avoids the Galerkin breakdown in the BCG algorithm.
But more importantly, the quasi-minimization (3.11) is strong enough to
enable us to prove a convergence theorem for QMR. This is in contrast to
BCG and methods derived from BCG, for which no convergence results are
known. Indeed, one can prove two theorems for QMR, both relating the
QMR convergence behaviour to the convergence of GMRES.

Theorem 3.5 (Freund and Nachtigal, 1991)

Suppose that the L x L matrix H; generated by the look-ahead Lanczos
algorithm is dlagonahzable, and let X € CL*L be a matrlx of eigenvectors
of H;. Thenforn=1,...,L -1,

”rnMRllz ”

"1'0”2

+1||2 N2(X) €ns

where

€n = n |p(A).

YEPn: 1/)(0) 1 AGA(A)

By comparison, the convergence result for GMRES reads as follows.

Theorem 3.6 (Saad and Schultz, 1986)

Suppose that A is diagonalizable, and let U be a matrix of eigenvectors of

A. Then, forn=1,2,...,
[rSMRES |,

”%”2

where ¢, is as described previously.

< K’2(U) €ns
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Thus, Theorem 3.5 shows that GMRES and QMR solve the same approxima-
tion problem. The second convergence result gives a quantitative description
of the departure from optimality due to the quasi-optimal approach.

Theorem 3.7 (Nachtigal, 1991)
IRy < ko (Voga) e MR85y

For both Theorems 3.5 and 3.7, we note that the right Lanczos vectors
{v;} obtained from Algorithm 3.4 are unit vectors, and hence the condition
number of V,,; can be bounded by a slowly growing function,

WVasill, < vVR+1.

Next, we note that it is possible to recover BCG iterates, when they exist,
from the corresponding QMR iterates. We have

Theorem 3.8 (Freund and Nachtigal, 1991)
Letn=mn,—1,k=1,... . Then,

.
xBOC = x 20 + 2P,

IEBCC Iy = [Irollalsy -~ spl -

Here, p,, is the nth column of V, R;;! and is computed anyway as part of
Step 3 of the QMR Algorithm 3.4, s,, and c,, are the sine and cosine of the
nth Givens rotation involved in the QR decomposition of H ,(f), and 7, is
the (n + 1)st component of @,d,,. The point is that the BCG iterate and
the norm of the BCG residual are both by-products of the QMR algorithm,
available at little extra cost, and the existence of the BCG iterate can be
checked by monitoring the size of the Givens rotation cosine c,,. Thus, QMR
can also be viewed as a stable implementation of BCG.

Finally, we remark that, for the special case of Hermitian matrices, the
QMR Algorithm 3.4 (with w; = ¥7) is mathematically equivalent to MIN-
RES. Hence, QMR can also be viewed as an extension of MINRES to non-
Hermitian matrices.

3.4, Transpose-free methods

In contrast to Krylov subspace methods based on the Arnoldi Algorithm 2.2,
which only require matrix—vector multiplications with A, algorithms such as
BCG and QMR, which are based directly on the Lanczos process, involve
matrix—vector products with A and AT. This is a disadvantage for certain
applications, where AT is not readily available. It is possible to devise
Lanczos-based Krylov subspace methods that do not involve the transpose
of A. In this section, we give an overview of such transpose-free schemes.
First, we consider the QMR algorithm. As pointed out by Freund and
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Zha (1991), in principle it is always possible to eliminate AT altogether, by
choosing the starting vector w; suitably. This observation is based on the
fact that any square matrix is similar to its transpose. In particular, there
always exists a nonsingular matrix P such that

ATP = PA. (3.15)

Now suppose that in the QMR Algorithm 3.4 we choose the special starting
vector w; = Pv,/||Pv||,. Then, with (3.15), one readily verifies that the
vectors generated by look-ahead Lanczos Algorithm 3.3 satisfy

w, = Pv,_/||Pv,|, foralln. (3.16)

Hence, instead of updating the left Lanczos vectors {w,} by means of the
recursions in (3.7) or (3.8), they can be computed directly from (3.16). The
resulting QMR algorithm no longer involves the transpose of A; in exchange,
it requires one matrix—vector multiplication with P in each iteration step.
Therefore, this approach is only viable for special classes of matrices A, for
which one can find a matrix P satisfying (3.15) easily, and for which, at the
same time, matrix—vector products with P can be computed cheaply. The
most trivial case are complex symmetric matrices (see Section 6), which fulfil
(3.15) with P = I. Another simple case are matrices A that are symmetric
with respect to the antidiagonal. These so-called centrosymmetric matrices,
by their very definition, satisfy (3.15) with P = J, where

0 ... 0 1
J= 1.0
g . . :

is the N x N antidiagonal identity matrix. Note that Toeplitz matrices
(see Section 7) are a special case of centrosymmetric matrices. Finally, the
condition (3.15) is also fulfilled for matrices of the form

A=TM™, P=M1,

where T' and M are real symmetric matrices and M is nonsingular. Ma-
trices A of this type arise when real symmetric linear systems Tz = b are
preconditioned by M. The resulting QMR algorithm for the solution of
preconditioned symmetric linear system has the same work and storage re-
quirements as preconditioned SYMMLQ or MINRES. However, the QMR
approach is more general, in that it can be combined with any nonsingu-
lar symmetric preconditioner M, while SYMMLQ and MINRES require M
to be positive definite M (see, e.g., Gill et al., 1990). For strongly indefi-
nite matrices T, the use of indefinite preconditioners M typically leads to
considerably faster convergence; see Freund and Zha (1991) for numerical
examples.
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Next, we turn to transpose-free variants of the BCG method. Sonneveld
(1989) with his conjugate gradients squared algorithm (CGS) was the first
to devise a transpose-free BCG-type scheme. Note that, in the BCG Al-
gorithm 3.2, the matrix AT appears merely in the update formulae for the
vectors T,, and q,. On the other hand, these vectors are then used only
for the computation of the vector products p, = Fir, and o0, = 2 Aq,,.
Sonneveld observed that, by rewriting these products, the transpose can be
eliminated from the formulae, while at the same time one obtains iterates

X2n € xO -+ Kzn(ro, A), n= 1, 2, ey (3.17)

that are contained in a Krylov subspace of twice the dimension, as compared
to BCG. First, we consider p,,. From Algorithm 3.2 it is obvious that

rp = ¢n(A)r0 and i'-.'n = ¢n(AT)i:O’ (318)

where v, is the nth residual polynomials (recall (2.3) and (2.4)) of the BCG
process. With (3.18), one obtains the identity

P =T§ (¥,(4))*r, (3.19)
which shows that p,, can be computed without using A7. Similarly,
q, = ‘Pn(A)rO and (-in = ‘Pn(AT)fO’
for some polynomial ¢,, € P,,, and hence
On = igA ((pn(A))2 To- (320)

By rewriting the vector recursions in Algorithm 3.2 in terms of ¥, and ¢,
and by squaring the resulting polynomial relations, Sonneveld showed that
the vectors in (3.19) and (3.20) can be updated by means of short recursions.
Furthermore, the actual iterates (3.17) generated by CGS are characterized
by

2
r§3S = b — Axy, = (¥5°%(4)) ro. (3.21)

2
Hence the CGS residual polynomials wg’nGS = ( E’CG are just the squared

BCG polynomials. As pointed out earlier, BCG typically exhibits erratic
convergence behaviour. As is clear from (3.21), these effects are magnified
in CGS, and CGS typically accelerates convergence as well as divergence of
BCG. Moreover, there are cases for which CGS diverges, while BCG still
converges.

For this reason, more smoothly converging variants of CGS have been
sought. Van der Vorst (1990) was the first to propose such a method. His Bi-
CGSTAB again produces iterates of the form (3.17), but instead of squaring
the BCG polynomials as in (3.21), the residual vector is now of the form

ra, = YECC (A)x, (A)r.
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Here x,, € P,,, with x,,(0) = 1, is a polynomial that is updated from step to
step by adding a new linear factor:

Xn(A) = (1 - nn)‘)x'n—l(A)' (322)

The free parameter 7,, in (3.22) is determined by a local steepest descent
step, i.e. n,, is the optimal solution of

mig [|( = 74)xn_1(A)¥E ¢ (A)rg -

neC
Due to the steepest descent steps, Bi-CGSTAB typically has much smoother
convergence behaviour than BCG or CGS. However, the norms of the Bi-
CGSTAB residuals may still oscillate considerably for difficult problems.
Finally, Gutknecht (1991) has noted that, for real A, the polynomials x,,
will always have real roots only, even if A has complex eigenvalues. He
proposed a variant of Bi-CGSTAB with polynomials (3.22) that are updated
by quadratic factors in each step and thus can have complex roots in general.

In the CGS algorithm, the iterates (3.17) are updated by means of a

formula of the form

xchs = xg(?zil) +an_1(Yan-1+ Yan)- (3.23)

Here the vectors y,,ys,- .., Yo, satisfy
span{y;,¥2:-- -, ¥m} = Kn(rg, 4), m=1,2,...,2n.

In other words, in each iteration of the CGS algorithm two search directions
Yon—1 and y,,, are available, while the actual iterate is updated by the one-
dimensional step (3.23) only. Based on this observation, Freund (1991b) has
proposed a variant of CGS that makes use of all available search directions.
More precisely, instead of one iterate xg,?s per step it produces two iterates
Xy,,_1 and x,,, of the form

Xm=x0+IYI Yy, - ym]zm7 szCm. (324)
Furthermore, the free parameter vector z,, in (3.24) can be chosen such that
the iterates satisfy a quasi-minimal residual condition, similar to the quasi-
minimization property of the QMR Algorithm 3.4. For this reason, the
resulting scheme is called transpose-free quasi-minimal residual algorithm
(TFQMR). For details, we refer the reader to Freund (1991b), where the
following implementation of TFQMR is derived.
Algorithm 3.9 (TFQMR algorithm)
0 Choose x, € CV.

Set Wi =Y =r0=b—Ax0, VO=Ay1, d0=O.

Set 79 = [|rgllz; Fo =0, 79 = 0.

Choose T € CV, ¥, # 0, and set p, = T ro.
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Forn=1,2,...,do:
1 Compute
Onoy =F Va1,
Op_1 = Pn_1/0n_y,
Yon = ¥Yon-1— %, _1Vp_1-
2Form=2n-1,2ndo:
Compute

Wil = Wy — an—lAyrm

I = “wm+1”2/T -1 T 1//1+ 9%,

T = Tm—19mCm> Tm = €201,

Ay = Y + (921 1/ 1)1,

Xy = X1+ Dl

If x,,, has converged, stop.
3 Compute

Pn = i"31""2n+1’
Br = Pn/Pr-1;

Y2nt1 = Wony1 + BnYon,
Vp = AYoni1 + Bn(Ayon + Bavin_1)-

We would like to point out that the iterates generated by the QMR Al-
gorithm 3.4 and the TFQMR Algorithm 3.9 are different in general.

Another transpose-free QMR method was proposed by Chan et al. (1991).
Their scheme is mathematically equivalent to the QMR Algorithm 3.4, where
the latter is based on the classical Lanczos process without look-ahead. The
method first uses a transpose-free squared version of the Lanczos algorithm
(see Gutknecht, 1990a) to generate the tridiagonal matrix (3.2). The right
Lanczos vectors v,, are then computed by running the corresponding recur-
sion in Step 3 of Algorithm 3.1, and finally the QMR iterates are obtained
as in Algorithm 3.4.

Freund and Szeto (1991) have derived yet another transpose-free QMR
scheme, which is modelled after CGS and is based on squaring the residual
polynomials of the standard QMR Algorithm 3.4.

However, the algorithm by Chan et al. and the squared QMR approach
both require per iteration three matrix—vector products with A and hence
they are more expensive than CGS, Bi-CGSTAB or TFQMR, which involve
only two such products per step.

Finally, we remark that none of the transpose-free methods considered in
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this section, except for Freund and Zha’s simplified QMR algorithm based
on (3.15), addresses the problem of breakdowns. Indeed, in exact arithmetic,
all these schemes break down every time a breakdown (3.5) or (3.6) occurs
in the BCG Algorithm 3.2. Practical look-ahead techniques for avoiding
exact and near-breakdowns in these transpose-free methods still have to be
developed.

3.5 Related work and historical remarks

The problem of breakdowns in the classical Lanczos algorithm has been
known from the beginning. Although a rare event in practice, the possibil-
ity of breakdowns certainly has brought the method into discredit and has
prevented many people from actually using the algorithm. On the other
hand, it was also demonstrated (see Cullum and Willoughby (1986)) that
the Lanczos process — even without look-ahead — is a powerful tool for sparse
matrix computation.

The Lanczos method has intimate connections with many other areas of
Mathematics, such as formally orthogonal polynomials (FOPs), Padé ap-
proximation, Hankel matrices and control theory. The problem of break-
downs has a corresponding formulation in all of these areas, and remedies
for breakdowns in these different settings have been known for quite some
time. For example, the breakdown in the Lanczos process is equivalent to a
breakdown of the generic three-term recurrence relationship for FOPs, and
it is well known how to overcome such breakdowns by modifying the recur-
sions for FOPs (see Gragg (1974), Draux (1983), Gutknecht (1990b) and
the references given there). Kung (1977) and Gragg and Lindquist (1983)
presented remedies for breakdowns in the context of the partial realization
problem in control theory. The Lanczos process is also closely related to
fast algorithms for the factorization of Hankel matrices, and again it is well
known how to overcome possible breakdowns of these algorithms (see Heinig
and Rost (1984)). However, in all these cases, only the problem of exact
breakdowns has been addressed. Taylor (1982) and Parlett et al. (1985)
were the first to propose a modification of the classical Lanczos process that
remedies both exact and near-breakdowns.

In recent years, there has been a revival of the nonsymmetric Lanczos
algorithm, and since 1990, in addition to the papers we have already cited
in this section, there are several others dealing with various aspects of the
Lanczos process. We refer the reader to the papers by Boley et al. (1991),
Boley and Golub (1991), Brezinski et al. (1991), Gutknecht (1990c), Joubert
(1990), Parlett (1990), and the references given therein.

Note that Algorithm 3.2 is only one of several possible implementations
of the BCG approach; see Joubert (1990) and Gutknecht (1990a) for an
overview of the different BCG variants. As for the nonsymmetric Lanczos
process, exact and near-breakdowns in the BCG methods can be avoided
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by incorporating look-ahead procedures. Such look-ahead BCG algorithms
have been proposed by Joubert (1990) and Gutknecht (1990c). Particu-
larly attractive in this context is the algorithm called Lanczos/Orthodir in
Joubert (1990). Instead of generating the search directions q,, and q, by
coupled two-term recursions as in Algorithm 3.2, in Lanczos/Orthodir they
are computed by three-term recurrences. This eliminates the vectors r,, and
f,, and hence the second of the two possible breakdowns (3.5) and (3.6).
We note that Brezinski et al. (1991) have proposed an implementation of
the BCG approach that is mathematically equivalent to Lanczos/Orthodir.

Finally, recall that the algorithms QMR, Bi-CGSTAB, and TFQMR are
designed to generate iterates that converge more smoothly than BCG and
CGS. A different remedy for the erratic convergence behaviour of BCG or
CGS was proposed by Schonauer (see Weiss (1990)). The approach used
is to run plain BCG or CGS and then apply a smoothing procedure to the
sequence of BCG or CGS iterates, resulting in iterates with monotonically
decreasing residual norms. However, since the process is based directly on
BCG or CGS, this approach inherits the numerical problems of BCG and
CGS.

4. Solving the normal equations is not always bad

In this section, we consider CGNR and CGNE in more detail. Recall from
Section 1 that CGNR and CGNE are the algorithms that result when (1.1)
is solved by applying standard CG to either one of the normal equations
(1.2) or (1.3), respectively. Clearly, for nonsingular A, both systems (1.2)
and (1.3) are equivalent to the original system (1.1). From the minimization
property (2.10) of CG, it follows that CGNR produces iterates

x, € %+ K, (Ao, 474), n=12,..., (4.1)
that are characterized by the minimal residual condition

b—- Ax, |, = min b — Ax|l,.
b= Axl, = min b= Axl,
Similarly, CGNE generates iterates (4.1) that satisfy the minimal error prop-
erty

||A_1b - xnllz = ”A_lb - x||2.

min
XEX9+n(AHry, AH A)
Note that the letters ‘R’ and ‘E’ in CGNR and CGNE indicate the minimiza-
tion of the residual or of the error, respectively. We also remark that the
LSQR algorithm of Paige and Saunders (1982) is mathematically equivalent
to CGNR, but has better numerical properties.
Since the convergence of CG depends on the spectrum of the coefficient
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matrix, the convergence behaviour of CGNR and CGNE depends on
NAT 4) = {0? | o € o(4)},

i.e. on the squares of the singular values of A. In particular, the worst-case
convergence behaviour of CGNR and CGNE is governed by

ry (AT 4) = (ry(4))?,

which suggests that convergence can be very slow even for matrices A with
moderate condition numbers. This is indeed true in many cases, and gen-
erally it is preferable to use CG-type methods that are applied directly to
(1.1) rather than CGNR or CGNE.

Nevertheless there are special cases for which solving the normal equa-
tions is optimal. A simple case are unitary matrices A for which CGNR and
CGNE find the exact solution after only one step, while Krylov subspace
methods with iterates (2.1) tend to converge very slowly (see Nachtigal et
al., 1990a). More interesting are cases for which CGNR and CGNE are
optimal, in that they are mathematically equivalent to ideal CG-type meth-
ods based on the MR or OR Conditions (2.11) or (2.12). Typically, these
situations arise when the spectrum of A has certain symmetries. Since these
equivalences are not widely known, we collect here a few of these results.
In the following, xM® and xQ® denote iterates defined by (2.11) and (2.12),
respectively.

First, we consider the case of real skew-symmetric matrices.

Theorem 4.1 (Freund, 1983)
Let A= —AT be areal N x N matrix, and let b € RN and x, € R". Then:

MR _ MR _ _CGNR =
Xoni1 X3 = X, , n=01,...,
OR _ . ,CGNE =
Xon = X, ,y n=12,....

Moreover, no odd OR iterate xOF | exists.

Next, we turn to shifted skew-symmetric matrices of the form (2.13). For
this class of matrices Eisenstat (1983a, b) has obtained the following result
(see also Szyld and Widlund (1989)).

Theorem 4.2 Let A =1—S where § = —S7 is a real N x N matrix, and
let b € RY and x, € R". Let xCGNE and %SGNE denote the iterates gener-
ated by CGNE started with initial guess x, and X, = b 4+ 5x;, respectively.
Then, for n=0,1,..., it holds:

OR __ CGNE
Xon = X, ’
OR _ &CGNE

Xontl = Xy .
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We remark that for the MR and CGNR approaches a result corresponding
to Theorem 4.2 does not hold (see Freund, 1983).

Finally, we consider linear systems (1.1) with Hermitian coefficient ma-
trices A. Note that A has a complete set of orthonormal eigenvectors, and
hence one can always expand the initial residual in the form:

m
rp = ijzj7 (4.2)
j=1
where
p] € C, AZJ = /\jzj, Al < /\2 <--- < )\m, zfzk = 6jk'

In the following theorem, xME denotes the iterate defined by (2.16).

Theorem 4.3 (Freund, 1983)
Assume that the expansion (4.2) is ‘symmetric’, i.e. m = 2/ is even and

Aj = —Amt1-js |Pj| = |pm+1-i, I=12,...,1L
Then, for n =0,1,..., it holds:

MR MR
Xopt1 = Xop = xCONR - —0,1,...,
ME __ ME _ (OR _ ,CGNE -
Xop, = Xop,—1 = Xg9, = X, , n= 1, 2, e

Moreover, no odd OR iterate x9F , exists.

5. Estimating spectra for hybrid methods

‘We now turn to parameter-dependent schemes. As mentioned in Section 2.1,
methods in this class require a priori knowledge of some spectral properties
of the matrix. Typically, it is assumed that some compact set G is known,
which in a certain sense approximates the spectrum of A and, in particular,
satisfies (2.7). Given such a set G, one then constructs residual polynomials
1,, as some approximations to the optimal polynomials in (2.9). We would
like to stress that, in view of (2.4) and (2.9), it is crucial that G excludes
the origin. Since in general one does not know in advance a suitable set G,
parameter-dependent methods combine an approach for estimating the set
G with an approach for solving the approximation problem (2.9), usually
cycling between the two parts in order to improve the estimate for G. For
this reason, the algorithms in this class are often called hybrid methods.
In this section, we review some recent insights in the problem of how to
. estimate the set G.

The standard approach for obtaining G is to run a few steps of the Arnoldi
Algorithm 2.2 to generate the upper Hessenberg matrix H,, (2.24) and then
compute its spectrum A(H, ). Saad (1980) showed that the eigenvalues of
H,, are Ritz values for A and can be used to approximate the spectrum



88 R.W. FREUND, G.H. GOLUB AND N.M. NACHTIGAL

A(A), hence one takes the convex hull of A(H,,) as the set G. Once the set
is obtained, a hybrid method turns to solving the complex approximation
problem (2.9), and the possibilities here are numerous.

However, there are problems with the approach outlined here, originating
from the use of the Arnoldi Ritz values. In general, there is no guarantee
that the convex hull of A\(H,,) does not include the origin or, indeed, that one
of the Ritz values is not at or near the origin. For matrices with spectrum in
both the left and right half-planes, the convex hull of the Ritz values might
naturally enclose the origin. Nachtigal et al. (1990b) give an example of a
matrix whose spectrum is symmetric with respect to the origin, so that the
convex hull of A(H,,) will generally contain the origin, and on every other
step, one of the Ritz values will be close to the origin. A second problem
is that the approach aims to estimate the spectrum of A, which may be
highly sensitive to perturbations, especially for nonnormal matrices. In these
cases, a more natural concept is the pseudospectrum A (A), introduced by
Trefethen (1991):

Definition 5.1 For € > 0 and A € CV*¥ | the e-pseudospectrum A (A) is
given by

M(A)={reC | A€ XA+A), A, <€) (5.1)

As is apparent from (5.1), the pseudospectrum, in general, can be expected
to be insensitive to perturbations of A, even for highly nonnormal matrices.
For practical purposes, the sets A,(A) of interest correspond to values of
the parameter ¢ that are small relative to the norm of A but larger than
round-off.

It is easy to construct examples where a hybrid algorithm using the exact
spectrum A(A) of A will in fact diverge, while the same hybrid algorithm
using the pseudospectrum A (A) will converge (see Nachtigal et al. (1990b)
and Trefethen (1991)). Unfortunately, in general the pseudospectrum A (A)
cannot be easily computed directly. Fortunately, it turns out that one can
compute approximations to the pseudospectrum; this is the approach taken
in the hybrid introduced by Nachtigal et al. (1990b). They observed that
the level curves — or lemniscates — of the GMRES residual polynomial bound
regions that approximate the pseudospectrum A_(A). Let

Calm) = (A€ C |l =n}, n20,

be any lemniscate of the residual polynomial 9,,. Due to the normalization
(2.4), the region bounded by C,(n) with 7 < 1 will automatically exclude
the origin; in particular, 0 cannot be a root of a residual polynomial. In
addition, since GMRES is solving the minimization problem (2.11), ,, will
naturally be small on an appropriate set G. Motivated by these considera-
tions, Nachtigal et al. observed that the region bounded by the lemniscate
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Cpn(ny,) with

— |Irn”2 <1

”1'0”2

n

usually yields a suitable set G.

The GMRES residual polynomials are kernel polynomials, and their roots
are a type of Ritz values called pseudo-Ritz values by Freund (1989a). In
fact, one is not restricted to using the GMRES residual polynomial, but
could use the residual polynomials from other minimization methods, such
as QMR or its transpose-free versions. In these cases, the residual poly-
nomials are no longer kernel polynomials, but rather, they are quasi-kernel
polynomials (Freund, 1991c). Nevertheless, their lemniscates still yield suit-
able sets G, and their roots are also pseudo-Ritz values of A.

Freund has also proposed an algorithm to compute pseudo-Ritz values,
using the upper Hessenberg matrix H. T(f) (2.19) appearing in the recurrence
(2.17). One uses the fact that kernel and quasi-kernel polynomials can be

defined by
et ()" () - 2022

det ( (H,(f))H(H,(f)»

which makes it clear that the roots of v,, can be obtained from the general-
ized eigenvalue problem

(H,(f))H(H,(f)) z=MHHz, z#0eCm

Yn(A) =

2

Finally, we should point out another set that has been proposed as a
candidate for G in (2.7), namely the field of values. Defined as

F={z" Az | zeCV, ||z|, =1},

the field of values has the advantage that it is easier to compute (see, e.g.,
Ruhe (1987)) than the pseudospectrum. However, the field of values is
convex and always at least as large as the convex hull of A(A), and hence
may once again enclose the origin. For more details on the field of values in
iterative methods, we refer the reader to Eiermann (1991).

The literature on hybrid methods for nonHermitian linear systems starts
with an algorithm proposed by Manteuffel (1978), which combines a modi-
fied power method with the Chebyshev iteration. Since then, literally dozens
of hybrid methods have been proposed, most of which use Arnoldi in the first
phase and differ in the way they compute the residual polynomial 1,, in (2.9).
For an overview of some of these algorithms, see Nachtigal et al. (1990b).
The hybrid by Nachtigal et al. was the first to avoid the explicit compu-
tation of an estimate of A(A). Instead, it explicitly obtains the GMRES
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residual polynomial and applies it using Richardson’s method until conver-
gence. Finally, hybrids recently introduced include an algorithm by Saylor
and Smolarski (1991), which combines Arnoldi with Richardson’s method,
and an algorithm proposed by Starke and Varga (1991), which combines
Arnoldi with Faber polynomials.

6. CG-type methods for complex linear systems

While most linear systems arising in practice are real, there are important
applications that lead to linear systems with complex]L coefficient matrices
A. Partial differential equations that model dissipative processes usually in-
volve complex coefficient functions or complex boundary conditions, and dis-
cretizing them yields complex linear systems. An important example for this
category is the complex Helmholtz equations. Other applications that lead
to complex linear systems include the numerical solution of Schrodinger’s
equation, underwater acoustics, frequency response computations in con-
trol theory, semiconductor device simulation, and numerical computations
in quantum chromodynamics; for details and further references, see Bayliss
and Goldstein (1983), Barbour et al. (1987), Freund (1989b, 1991a), and
Laux (1985). In all these applications, the resulting linear systems are usu-
ally nonHermitian. In this section, we review some recent advances in un-
derstanding the issues related to solving complex nonHermitian systems.

Until recently, the prevailing approaches used when solving complex linear
systems have consisted of either solving the normal equations or rewriting
the complex system as a real system of dimension 2N. However, as indicated
already in Section 4, the normal equations often lead to systems with very
poor convergence rates, and this has indeed been observed for many of the
complex systems of interest. The other option is to split the original matrix
A into its real and imaginary parts and combine them into a real system
of dimension 2N. There are essentially only two different possibilities for
doing this, namely

Rex] _[Reb _[ReA —ImA
A, [Imx] = [Imb]’ * = [ImA Re A ] (6.1)
and
Rex Reb __ [ReA ImA
A**[—Imx]=[1mb]’ A 1= [ImA —ReA]' (62

Unfortunately, it turns out that this option is not viable either. As Freund
(1989b, 1992) pointed out, both A, and A,, have spectral properties that
make them far more unsuitable for Krylov space iterations than the original

t In this section, ‘complex’ will imply the presence of imaginary components.
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system was. The spectrum of A, in (6.1) is given by

X(A,) = A(4) UX(A), (6.3)
while the spectrum of 4, in (6.2) is given by
MA,) ={reC| X e A(AA)}. (6.4)

In particular, note that the spectrum (6.3) is symmetric with respect to the
real axis, while the spectrum (6.4) is symmetric with respect to both the real
and imaginary axes. The point is that in both cases, the spectrum of the real
system is either very likely to or is guaranteed to contain the origin, thus
presenting a Krylov subspace iteration with the worst possible eigenvalue
distribution. As a result, both approaches have had very poor results in
practice, and have often led to the conclusion that complex systems are ill
suited for iterative methods.

Therefore, instead of solving the normal equations or either one of the
equivalent real systems (6.1) or (6.2), it is generally preferable to solve the
original linear system by a CG-like Krylov subspace methods. In particu-
lar, if A is a general nonHermitian matrix, then we recommend using the
Lanczos-based algorithms discussed in Section 3 or GMRES. However, in
many applications, the resulting complex linear systems have additional
structure that can be exploited. For example, often complex matrices of the
form (2.13) arise. Recall from Theorem 2.1 that ideal CG-type algorithms
based on the MR or OR property (2.11) or (2.12) exist for such shifted Her-
mitian matrices. Freund (1990) has derived practical implementations of the
MR and OR approaches for the class of matrices (2.13). These algorithms
can be viewed as extensions of Paige and Saunders’ MINRES and SYMMLQ
for Hermitian matrices (see Section 2.3). As in the case of SYMMLQ, the
OR implementation for shifted Hermitian matrices also generates auxiliary
iterates xME ¢ x, + K, (Afry, A) that are characterized by the minimal
error property

||A_1b - xrh:[Eﬂz = “A-Ib - x||2.

min

X€X0+Kn(AHrg,A)
Hence the OR algorithm proposed by Freund also generalizes Fridman’s
method to shifted Hermitian matrices. Unfortunately, when matrices A
of the form (2.13) are preconditioned by standard techniques, the special
structure of A is destroyed. In Freund (1989b) it is shown that the shift
structure can be preserved when polynomial preconditioning is used, and
results on the optimal choice of the polynomial preconditioner are given.

Another special case that arises frequently in applications are complex
symmetric matrices A = AT. For example, the complex Helmholtz equa~
tions leads to complex symmetric systems. As pointed out in Section 3.4, the
QMR Algorithm 3.4 can take advantage of this special structure, and work
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and storage is roughly halved. We remark that the complex symmetry struc- -
ture is preserved when preconditioning is used, if the preconditioner M is
again symmetric, as is the case for all standard techniques. For an overview
of other CG-type methods and further results for complex symmetric linear
systems, we refer the reader to Freund (1991a, 1992).

7. Large dense linear systems

As mentioned in Section 1, there are certain classes of large dense linear
systems for which it is possible to compute matrix—vector products cheaply;
for these systems, iterative methods remain an attractive option. Typically,
the matrix—vector product takes advantage of either some special structure
of the matrix or of some special property of the underlying operator. We
will briefly discuss one situation from each class.

The first case is the solution of integral equations involving a decaying
potential, such as a gravitational or Coulombic potential. Some typical
applications are the solution of N-body problems, vortex methods, poten-
tial theory, and others. In these problems, the effort required by a naive
computation of a matrix-vector product is generally O(N2), as it involves
computing the influence of each of N points on all the other N — 1 points.
However, Carrier et al. (1988) noticed that it is possible to approximate
the rgsult of the matrix—vector product Ax in only O(N) time, rather than
O(N4).

The main idea behind their algorithm is to group points in clusters and
evaluate the influence of entire clusters on faraway points. The cumulative
potential generated by m charges in a cluster can be expressed as a power
series. If the power series is truncated after p terms, then the work required
to compute it turns out to be O(mp). Applying the cumulative influence
to n points in a cluster well separated from the first requires an additional
O(np) work, for a total of O(mp + np) work, as compared to the O(mn)
work required to compute the individual interactions. Finally, the point is
that the number p of terms in the series is determined by the preassigned
precision to which the series is computed, and once chosen, p becomes a
constant, giving an O(m + n) algorithm. For a complete description of the
algorithm, see Carrier et al. (1988).

While the Carrier et al. algorithm is the first in the class of fast multipole
methods, it falls in the bigger class of hierarchical algorithms. Several other
algorithms have been proposed in this class; see for example Hockney and
Eastwood (1981), Appel (1985), Rokhlin (1985). More recently, Hanrahan
et al. (1991) have proposed a hierarchical algorithm for radiosity problems
in computer graphics, and Greenbaum et al. (1991) have introduced an
algorithm that uses the Carrier et al. algorithm combined with GMRES to
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solve Laplace’s equation in multiply connected domains. We refer the reader
to these articles for details of the algorithms, as well as further references.

Another important class of dense linear systems where the matrix-vector
product can be computed cheaply are Toeplitz systems, where the coefficient
matrix A has the form

to o tneg
A= | Bt to :
: t,
tv-y 0t b

A matrix—vector product with an N x N Toeplitz matrix can be computed
with O(N log N) operations by means of the fast Fourier transform. Fur-
thermore, as Chan and Strang (1989) observed, Toeplitz systems can be
preconditioned efficiently using circulant matrices

- -

¢ 't 't CN-1
N1 G - CN-2
M= : .
a
L cl e e cN—l co |

Recall from Section 2.5 that preconditioned iterative methods require the
solution of linear systems with the preconditioner M in each iteration. In
the case of circulant M, these systems can also be solved by means of fast
Fourier transform with only O(NN log N) operations per system.

8. Concluding remarks

In conclusion, we have covered some of the developments in iterative meth-
ods, especially for nonHermitian matrices. The introduction of CGS in the
late 1980s spurred renewed interest in the nonsymmetric Lanczos algorithm,
with most of the effort directed towards obtaining a method with better con-
vergence properties than BCG or CGS. Several BCG-based algorithms were
proposed, such as Bi-CGSTAB, introduced by Van der Vorst (1990). The
quasi-minimal residual technique was introduced by Freund (1989b) in the
context of complex symmetric systems, then later coupled with a new vari-
ant of the look-ahead Lanczos approach to obtain a general nonHermitian
QMR algorithm. Finally, several transpose-free algorithms based on QMR
have been introduced recently, which trade the multiplication by AT for
one or more multiplications by A. However, their convergence properties
are not well understood, and none of these algorithms have been combined
with look-ahead techniques yet. In general, it seems that the transpose-free
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methods have more numerical problems than the corresponding methods
that use AT, and more research is needed into studying their behaviour.

With the advent of Lanczos-based methods that require little work and
storage per step, the importance of preconditioners has decreased. With
GMRES or similar algorithms, the high cost of the method makes restarts
necessary in practice, which generally results in much slower convergence.
As a result, preconditioned GMRES requires a very effective preconditioner,
so that the preconditioned system requires few iterations to converge. The
problem is that effective preconditioners are often too expensive, especially
on parallel machines, where the inherently serial nature of many precondi-
tioners makes their use unappealing. In contrast, restarts are not necessary
with Lanczos-based methods, and hence a wider array of preconditioners
— in particular, cheaper or more parallelizable preconditioners — becomes
usable.

Finally, even though the field of iterative methods has made great progress
in the last few years, it is still in its infancy, especially with regard to
the packaged software available. Whereas there are well-established robust
general-purpose solvers based on direct methods, the same cannot be said
about solvers based on iterative methods. There are no established itera-
tive packages of the same robustness and wide acceptance as, for example,
the LINPACK library, and as a result many of the scientists who use itera-
tive methods write their own specialized solvers. We feel that this situation
needs to change, and we would like to encourage researchers to provide code
for their methods.
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1. An example

In this section we discuss a very simple problem. Consider the scalar initial
value problem

!

ey = ay+et, t>0,
y(0) = yo. (1.1)

Here € > 0 is a small constant and a = a1 + ia2, aj,a2 real, is a complex
number with |a| = 1. We can write down the solution of (1.1) explicitly. It
is

y=9°+9F,

where

is the forced solution and

yF = (yo +
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is a solution of the homogeneous equation
ev' = av.

v varies on the time scale ‘1’ while yF varies on the much faster scale 1/c.
We say that 35, yF vary on the slow and fast scale, respectively. We use
also the phrase: 5 and yF are the slow and the fast part of the solution,
respectively.

There are three different possibilities.

Case 1. a; >> ¢. In this case y¥ grows rapidly and dominates the solution.
We are not interested in this case.

Case 2. a; > —¢. Now yF decays rapidly. Therefore, outside a boundary
layer, the solution of (1.1) is essentially represented by y5.

Case 3. a; = 0. For general initial data both scales are present for all times.
However, if

1
=0,
y0+a—ie

then y¥ = 0 and the solution varies on the slow scale only.

In this survey article we shall mainly discuss the third case.

In applications like meteorology, oceanography and plasma physics one is
often only interested in solutions, which vary on the slow scale. However,
the data are such that the fast scale is present anyway. Therefore we shall
develop a theory, which leads to a systematic way to ‘initialize’ the data
such that the fast scale is not excited. This theory is based on a very simple
principle. If y(t) varies on the slow time scale, then

d“y(t)/dt* ~ O(1), v=0,1,2,...,p,

where p > 1 is a suitable number. Therefore our principle as follows.
Choose the initial data y(0) = yo such that at t =0

d“y(0)/dt* ~ O(1), v=0,1,2,...,p. (1.2)

We shall call this procedure the bounded derivative principle.

Let us apply the principle to our example. We think of £ as a small
parameter, which approaches 0, and we want to choose the initial data such
that the derivatives at ¢ = 0 are bounded independently of ¢.

dy(0)/dt is bounded independently of ¢, if and only if

ay(0) +1=0(e), ie. y(0)=-1/a+ O(e).

Thus the initial data are determined up to terms of order O(¢).
For the second derivative we have

€2y’ = eay’ + ee't = a’y + ae't + ice.
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Therefore d2y(0)/dt? is bounded independently of ¢, if and only if
y(0) = —1/a — ie/a? + O(e?).

Thus the initial data are determined up to terms of order O(e?).
An easy calculation shows that the initial data are determined up to terms
of order O(e?), if and only if the first p derivatives are bounded indepentently

of €.

Earlier we have shown that y¥ = 0, if

1 1 & fie\”
y(0) = a—ie a?__%(a) '

The bounded derivative principle gives us the first p terms in the power
series expansion.

We want to prove that for general nonlinear systems the bounded deriva-
tive principle lets us determine the slow solution to any order.

The bounded derivative principle is very much connected with asymptotic
expanstions. To discuss the connection we consider the slightly more general
equation

ey = ia(t)y+ f(1),
y(O) = Yo, (1.3)

where a(t), f(t) € C>®(t) and a(t) > ag, ap = constant > 0.

First we shall show that the bounded derivative principle is valid. The
construction will be generalized to systems in the next section.

If y(t) is a slow solution, then

y(t) = po(t) =:1f(t)/a(?).
This suggests the substitution
y(t) = po(t) + 41 (t)- (1.4)
Introducing (1.4) into (1.3) gives us
eyy = ey +efi(t), f(t) = —p(t),
v1(0) = 10 =: yo — o(0). (1.5)
(1.5) is of the same form as (1.3). However, the forcing is reduced to order
O(e). We can repeat the process. After p steps we obtain

p—1
y(&) = Yp_1(t) + 4p(t), Pp-1(t) = D ;1) (1.6)
3=0

where y,(t) solves

ey, = ia(t)yp +ePfp(t),
¥p(0) = yo—¥p-1(0). (1.7)
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The solution of (1.7) can be written as
Y=7+7,
where % is the forced solution satisfying
ey = ia(t)yg+ePfp(t),
g0 = 0, (1.8)
and 7 solves
ey = ia(t)y,
700) = Yo (1.9)
By Duhamel’s principle
|d’F/dt’| < constant x P91
in any finite time interval 0 < ¢t < 7. Thus 7 has p — 1 derivatives bounded
independently of €.
Now apply the bounded derivative principle to (1.9). An easy calcula-

tion shows that 7(t) and therefore also y(t) have p — 1 derivatives bounded
independently of € at t = 0 if and only if

3(0) = O(eP™), ie. y(0) =4p-1(0) + O(e”™). (1.10)
If (1.10) holds, then %(t) and therefore also
Y(t) = Yp-1(t) + F(2) +F(t) = Pp-1(t) + O(P™), (1.11)

have p— 1 derivatives bounded independently of € in any finite time interval.
This shows that the bounded derivative principle is valid.

(1.10) and (1.11) also show that equation (1.3) has essentially a unique
slow solution and that 1,_;(¢) represents the first p terms of its asymptotic
expansion. One can determine the initial data either by the bounded deriva-
tive principle or by calculating the asymptotic expansion in a neighbourhood
of t = 0 and use 9,_1(0) as initial data.

We have calculated the asymptotic expansion by substitution. Instead we
can also determine it by the iteration

E(y(n_l))’ = ia'y(n) + f, y(-l) = 01 n= 0’ 1’ 27 e
An easy calculation shows that
y(p) = Yp.

Our construction depends heavily on the assumption that a(t), f(t) have
derivatives of order O(1) and that a(t) > a¢ > 0. If, for example,

0 for0§t<%

f(t)={1 fortZ%,
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then the asymptotic expansion tells us that the slow solution is given by

0 foro<t<i
y(t) = ;2(;7+0(e) fort > 1.

Thus the solution of (1.3) with initial data y(0) = 0 will become highly
oscillatory for t > 1. Correspondingly, if
a(t) = (t —to)as(t),

then a solution, which is slow for ¢t < tg, becomes in general highly oscillatory
for t > tp.

2. Systems of ordinary differential equations
2.1. Form of the systems and assumptions

In applications the systems are real and often have the form
1
wy = gAl(t)w + fi(w,t), 0<e<eq, (2.1)

i.e. the large part of the right-hand side is a linear function of w. We assume
that A;(t) has constant rank, i.e. there is a smooth transformation S(t) such

that

S1(t) AL (£)S(t) = (A(()”) 8) det A # 0.

Changing the dependent variables accordingly, we obtain a system of the
form
ey = (AQt)+eClv,y.t))y + f(v,t), 0<e<eo,
Vo= g(vyt), (2.2)
where
y(t), f(v,t) €R™, v(t),9(v,y,t) € R", A(t),C(v,y,t) € R™™™.

We want to show that the results of the previous section can be generalized
to systems (2.2). We follow here closely the presentation in Kreiss and
Lorenz (1991). (See also Kreiss (1979) and Sacker (1965).)

To be precise, we shall use the following terminology

Definition 2.1 Let w(t, ¢) denote a function defined for 0 < ¢t < T, 0 <e <
£9. We say that it is slow to order pin 0 <t < T if w € CP(0,T') and if

sup max |Fw/dt| <0, j=0,1,...,p. 2.3
0<€£€005tg| i J P (2.3)

We say that w is slow if (2.3) holds for any p.

Our main assumption is
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Assumption 2.1
(i) For all t >0

A(t) + A*(£) <0, det A(t) #0.
(ii)
A(t), A71(t),C(v,y, 1), f(v,1),9(v,9,t)

are C*-functions of their arguments with bounded derivatives. They may
also depend on € but we assume that the bounds are uniform in €.

2.2. The bounded derivative principle and asymptotic expansions

We shall separate the fast and slow variables by a suitable substitution. If
y(t), v(t) is a slow solution, then ey’(t) = O(e) and to the first approximation

y(t) = —A () f(v,1).
This suggests the substitution
y(t) = ®o(v,t) + 11(t), ®o(v,t) = —A7L(t)f(v,1).
Introducing (2.3) into (2.2) gives us
eyy(t) + (0% (v, t)/Ov)g(v, Bg + y1,t) + Pos(v, 1)
= A(t)yl (t) + EC('U, @ + Y1, t)(@o(’v, t) +4n (t))
v'(t) = g(v, @0 + 41, 1),
ie.
eyp = (A(t) +eCi(v,y1,1))y1 +efi(v, 1)

/

v o= g (’U, Y1, t)’ (2'4)
where
fl (’U, t) = —(3‘1’0(’0, t)/av)g(va @0’ t) - q)(}t(v’ t)

Thus y; (¢) satisfies a differential equation of the same form as y(t) but the
forcing is reduced to order O(e).
We can repeat the process and obtain

Theorem 2.1 One can construct slow functions ®¢(v,t), ®;1(v,t),... with
the following properties. If one substitutes
y(t) = Yp-a(v,t) +yp(t),
'lp(’U, t) = <I)O(vv t) + sél(v’ t) +oo Ep_lq) —l(v’t)’
into (2.2), then y,(t), v(t) satisfy a system
sy;, = (A(t) + SCp(va ypa t))yp + e”fp(v, t)

/

v o= gp(v,yp:t)’ (2.5)
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where Cp, fp, gp have uniformly bounded derivatives with respect to all vari-
ables. Differentiating (2.5) we obtain immediately

Theorem 2.2 y,(t), v(t) and therefore also y(t), v(t) are slow to order p in
any fixed time interval 0 <t < T, if and only if
yp(0) = O(eP), ie. diy,(0)/dt! = O(eP~7), j=0,1,...,p. (2.6a)
(2.6a) holds if and only if for the original variables
d’y(0)/dt’ = O(1) for j=0,1,...,p. (2.6b)
Thus the bounded derivative principle is valid.

As in the previous section we can use the last theorem to initialize the
data, i.e. for a given vy = v(0) find yo = y(0) such that the solution is
slow to order p. We find the relations by enforcing (2.6b). Essentially we
have to calculate 1,_1(v(0),0). The process can become quite complicated.
Therefore it is often easier to determine the relations by iteration. We have

Theorem 2.3 Let y(0)(t) = 0. p iterations of
WD) = (AQ)+eCylu™, ™, 04 + S, 1),
™) = gw™,y™,t), v™(©0)=vo, n=0,1,...,p—1,

determines a solution of (2.2), which is slow to order p and which, for a
given v, is unique up to terms of order O(e?).

We can solve this iteration numerically in a neighbourhood of ¢ = 0 and
use the resulting y~1)(0) as initial data to solve the system (2.2) in large

time intervals.
Under the following additional assumptions the estimates can be extended

to all times.
Assumption 2.2 There is a constant 8 > 0 and an integer go > 1 such that

Coo (v, 9, ) + Cy (v, 9, t) < =Bt

for all v,y,e.
(For the proof see Kreiss and Lorenz (1991).)

2.8. Eristence of a slow manifold

Theorem 2.2 tells us that we can choose y(0) as a function of v(0) such that
the resulting solution is slow to order p. In general the relationship between
y and v depends on p. If we want the solution to be slow to order p+ 1, then
we have to change the relation by terms of order e?.

For practical purposes this result is completely satisfactory. However, an
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interesting mathematical question is: Can we determine y(0) as a function
of v(0) such that the resulting solution is slow to any order?

There is one trivial case, where this is so. If f(v,t) and all its partial
derivatives with respect to v and t vanish at ¢ = 0, then the initial data

¥(0) =0, v(0) = v

guarantee solutions, which are slow to any order. Also, for given vy the slow
solution is unique to any order in €.

In Kreiss and Lorenz (1991) we have reduced the general case to the above
by constructing a substitution

y=8(v,te) +§, 0<t<T, @7

such that f(v,t) = 0. We have also given conditions such that the substi-
tution exists for all times. (See also Sacker (1965), Kopell (1985), Fenichel

(1985).)
(2.7) shows that the slow solution forms a manifold represented by
y = ®(vt,e)
Vo= g(v,yt) (2.8)

2.4. Interaction between the fast and the slow scale
Consider the system (2.2) and choose the initial data by
v(0) =vo, y(0) = ®(vo,0,¢)
to obtain the slow solution v5(t),y5(t). Now perturb y(0) and consider
v(0) = vy, y(0) = ®(vo,0,¢)+6

and denote the resulting solution by vs(t),ys(t). In general the fast scale is
excited and y5(t) will be of order O(|6]). We want to show that the effect
on the slow part of the solution is much smaller than |6].

Theorem 2.4 Let 0 <t < T be a fixed time interval. For sufficiently small
€, |6] there is a constant ¢y such that
[v5 () — vs(t)) < coleld] + 16]%).

Proof. We shall only indicate the proof. For more details see Kreiss and
Lorenz (1991). Without restriction we can assume that the system (2.2) has
the form

ey = (A(t) +eC(v,y,1))y
) (2.9)
Otherwise we perform the substitution (2.7). The initial data for v5(t), y5(¢)

are
v5(0) =vw, 350)=0, ie (1) =0,
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and for vs(t),ys(¢)
vs(0) = vo, ys(t) =6.
To first approximation ys(t) satisfies
eys(t) = (At) +C(¥5,0,))ys, ie. |ys| = O(6),

and w = v° — vs solves
w = (8g(v5,0,t)/8v)w + 8g(v®,0,t)/Ayys(t),
w(0) = 0. (2.10)
Therefore
t
w®) = [ 56)09(5,0,6)/0uws(6) dt

= ¢ [ 5(,)(090%,0,)/0u)(A +<C)45(6) de.

Here S(t,£) is the solution operator of the homogeneous equation
v = (9g(v®,0,t)/0v)u.

Integration by parts shows that the last integral is of order £§. Also, we
have neglected only terms of order O(e§) + O(62) and therefore the theorem
follows. O

The last theorem is important in applications. Often one is only interested
in slow solutions. In these cases one has to prepare the initial data in such
a way that the fast scale is not excited. Practically one can never remove
the fast scale completely. The theorem says that the effect of the fast scale
on the slow scale can be neglected, provided a moderate amount of data
preparation has been performed. Also, the fast scale can be removed by
post-filtering.

3. Numerical methods for ordinary differential equations
3.1. An example
We consider equation (1.3)

ey = ia(t)y+f(t)
y(0) = yo- (3.1)

To begin with we want only to calculate the slow solution. There are a
number of possibilities.

Asymptotic expansion, i.e.

v =T+ = (L)« v o, (3.2)
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Difference approximation. If we are willing to use a time step k < ¢,
then any of the standard explicit techniques can be used. However, we want
only to calculate the slow solution and therefore we only want to resolve the
slow scale, i.e. we want to use a time step k with ¢ « k < 1. Therefore
we have to use an implicit method. It has to be stable on the imaginary
axis and therefore the order of accuracy of a stable multi-step method is
restricted to one or two. We shall discuss the implicit Euler scheme and the
midpoint rule.

Let k > 0 denote the time step, t; = jk, j = 0,1,..., the grid and denote
by u; = u(jk) the values of u on the grid. Then the implicit Euler scheme
has the form

E(uUn+1 — un) = k(ian+1Unt1 + fnt1). (3.3)
As for the continuous case we can derive an asymptotic expansion. Let
Uy = ﬁ + Gy,
Qn

Then 1, is the solution of
E(Uns1 — i) =k (ian+1ﬁn+1 —iD_ (-‘éli-l-)) , D_gp41=: 9n+1 — gn.
an+1 k

Repeating the process we obtain an asymptotic expansion of the slow dis-
crete solution

=Ly fp (L)1 oe. (3.4)
an Qp Qn
Thus
S Sy _ € (f (tn) ) ! ( f n) 2
th)—uy| = — ||l=—/=) —-D_[—}|+O(ck
Iy ( ﬂ) nl laﬂl a(tn) an (6 )
= Ofek).
If we have chosen the initial data by
v =°(0), (3.5)
then the fast part of the discrete solution satisfies
1

v = Yo — us(O) = O(Ek).

Thus the fast part of the discrete solution is, in general, not zero. However,
|| < and therefore

v, = K g (3.6)

shows that v, converges rapidly to zero regardless of how we choose the
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initial data wg. Thus the implicit Euler method will always determine the
slow solution, if k& > €.

The midpoint rule is given by

e(Unt1 — Un) = 'g(ian+1un+1 + fas1 Hiagun + fo). (3.7)
Now the discrete slow solution satisfies
uS = y5(tn) + O(ek?). (3.8)
The fast part is the solution of

1+ Lik/e —die e’
Un4l = KUn, K=T'_—%—im=—exp( 2 )+0 P = —1,
S

v = up— Uup. (3.9)

In this case the fast part will not be damped. Instead it will oscillate like a
+1 wave. If we choose ug = y°(0), then vy = O(ek?) is small.

The following local smoothing procedure can be used to decrease the am-
plitude of the fast wave, even if vy is large. (See Lindberg (1971).)

1  Starting with up calculate u;, ua.
2  Determine new initial data at ¢ = k by

U] = uy + ;i'(’uz - 2uy + uo).
Repeat the process starting at ¢t = k. We have
uj = u,s- + 17 (ug — uf).

Therefore

U = uf + %(ug - 2u§ + ug) + (k+ -i-(n - 1)2)(u0 - ug)
= u? + O(kz) + O(e/k)(uo — ug)

Thus the amplitude of the fast solution has been reduced by a factor O(e/k).
Generalizations are treated in Majda (1983).

Richardson extrapolation. As we have said in the beginning: If ¢ is

very small, then it is uneconomical to use an explicit method. However,

in applications the systems can be very large and it can therefore be quite

expensive to solve the linear systems connected with the implicit methods.

We know that the slow solution can be expanded into an asymptotic series

in €. )
’uﬁ(k) =&y +¢eP; + 0(62).
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Therefore we can use Richardson extrapolation. We change € to a more
moderate value €* >> € and calculate
uS(e*) = ®o+€"® +O(*?)
ud(2e*) = ®o+2e*®; + O(e*?)
Then
B = ud(2e*) —ud(e*) + O(e*?)
B0 = un(e®) — (un(2e”) —un(e)) + O(?),
ie.
uS(e) = 2u3(e") - uS(26) + S (uf (26") — ul(e") + O(e™?).
For moderate values of €* we may be able to use an explicit method. The

main difficulty is that the initial data have to properly initialized, because
Richardson extrapolation does not work for the fast part of the solution.

Until now we have concentrated on calculating the slow solution. If we also
want to calculate the fast part of the solution, then we have two possibilities.

1  Use a difference method and resolve the fast scale, i.e. choose k < &.
2  Solve the homogeneous equation

ev) = ia(t)v,
v(0) = o,

analytically:

o(t) = exp [(é) /0 " a(6) dg] 2(0).

3.2. Slow solutions of fast systems

We consider systems

ey = Alty+f(t)
¥(0) = o, (3.10)

where A(t), f(t) satisfy Assumption 1.1. We can calculate the slow solution
in the same way as for Example 3.1.

Asymptotic expansion.

¥ (1) = —AT (O F(1) +eATE(AT () + OE?).
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Implicit difference approximation. The implicit Euler scheme has the
form

s(un+1 - un) = k(An+1un+1 + fn+1)~
For the slow part of its solution we have the asymptotic expansion
up = —A7 o + €A D_(A71 fn) + O(E?),

and the fast part satisfies
k -1 € ,_ € ,_
Un41 =~ (I - EA-,H.l) Up — —EAn_}_l (I — 'EA,"_}_I) Un.

Thus, if € € k, then
€

% a1 <1

and v,, converges rapidly to zero, i.e. the implicit Euler scheme gives us the
slow solution regardless of the initial data.

The midpoint rule. The same arguments as in the scalar case show that
the slow part of the solution can be described by an asymptotic expansion
and that the fast part becomes a +1-wave, which can be damped by a local
smoothing.

Richardson extrapolation. The possibility of Richardson extrapolation
depends only on the existence of asymptotic expansions. Therefore we can
also use it here.

3.8. Slow solution of the full system

We consider the system (2.2). All the methods discussed in the previous
section can be generalized.

Asymptotic expansions. By Theorem 2.3 the first term (v(®,3©@) is the
solution of

0 = A®Y9 +£(0,1)
@) = g(@,40)
v90) = v (3.11)
Higher order terms are obtained by the iteration
e@Y) = AUtV +eClv,yD, 11y + f(v,1)
vUrD(0) = . (3.12)
The differential equations can be solved by any standard method.
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Implicit difference methods. We can use the backward Euler scheme or
the midpoint rule for the complete system. However, for less work we obtain
better accuracy, if we apply these schemes to the fast part (y-variables) only.
For example, we can use the Euler scheme for the y-variables and a stable
Adam’s method for

5(gn+1 - gn) = k(An+1 + ECn+1)gn+1 + fn+1)v Jot1 = f(6n+1’tn+1)a

'5n+1 = 'an + Zﬂjgn—ja gn—j = g(ﬁn—j, gn—ja tn-—j)' (3-13)
J
We can also develop the solutions of (3.13) into an asymptotic expansion
and compare it with (3.11) and (3.12). This results in a satisfactory error
estimate. However, the stability of the method has not been investigated.

In applications the system has often the form (2.1) and one uses a com-
bination of leap-frog and the midpoint rule to solve it, i.e.

- - k - _ :
Wng1 — Wn-1 = E(Al n+1Wnt1 + A1 nWn) + 2k f1 5. (3.14)

We shall give a truncation error and stability analysis of the method.
Let w(z,t) be a slow solution of (2.1) and introduce it into (3.14). We
obtain

Wn4l — Wn—1 — %(Al n+1Wn+1 + A1 nWn) — 2k f1n
= Wnp41 — Wnp-1— k(w:1+1 + w, _1) + k(fl n+l + fl n—-17" 2f1 n)
= ck3w, + O(k%).

Thus the method is second order accurate. To discuss the stability we
linearize (3.14) and freeze coefficients, i.e. we consider

Burt —n1 = S(Arinss + Arin 1) +26Bin,  (315)
where A, B are constant matrices. The stability follows from
Theorem 3.3 Assume that
A1 +A;] <0, B=-B* |[kB|<L1-§,

then
8(|n1]? + 19a)?) < 2(|51 )% + |0]?)- (3.16)

Proof. Multiplying (3.15) by 9,41 + Un—1 gives us
- - k,_ - _ _
[5nt1]? = |Bn-1)? = E(vn+1 + ¥p-1, A1(Tns1 + Un-1))

4+ 2k(Vp+41, Bop) + 2k{0p_1, Boy)
2k(tn41, Biy) + 2k(bp—1, Biy,),

IA
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ie.
Ln+1 = |1‘)n+1l2 + Iﬁnlz — 2k Re (’t)n+1, Bi}n)
(52 + [5n—1]? — 2k Re (3, Bin_1) = Ln.

7aN

Therefore
L,< L.

Observing that
(v, Bw) < §|B|(jv]* + |w|?)

(3.16) follows. O

The last theorem tells us that the combination of leap-frog and the mid-
point rule is stable, if the slow part is oscillatory (B = —B*). If this is
not the case, then the weak instability of the leap-frog scheme can cause
difficulties.

It is very desirable to prove stability of other combinations, for example,
the combination of the implicit Euler scheme with a Runge-Kutta method .
Also, it is important to investigate when such a combination automatically
determines the slow solution.

Richardson extrapolation. As in the previous section the method de-
pends only on the existence of an asymptotic expansion. Therefore it can
be used here.

3.4. Highly oscillatory solutions of linear systems

Highly oscillatory problems have been studied for a long time, and a large
number of perturbation techniques have been developed: multi-scaling, av-
eraging and the near identity transformation (see, for example, Bogoliubov
and Mitropolsky (1961), Nayfeh (1973), Hoppensteadt and Miranker (1976),
Kevorkian and Cole (1981), Neu (1980)). For the most part these tools are
difficult to implement numerically. We feel that effective numerical tech-
niques are only available for special problems. We will discuss such methods
in the next two sections.
In this section we consider linear systems

ey = A(t)y, 0<e<eq,
¥y(0) = wo. (3.17)
We make

Assumption 3.1 A(t),A~!(t) € C™ and their derivatives are bounded
independently of £. The eigenvalues of A are distinct and

Re A <.
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If one solves (3.17) by difference approximation, then one has to use a
time step k < €. We want to show that one can solve the system by analytic
means.

This assumption implies that there is a nonsingular transformation

S(t) = (81(t), ..., 8a(t)) € C=®, s,(t) eigenvalues of A,

varying on the slow scale such that

A1 0

S71AS = .. =: A.

0 An

Introducing into (3.17) a new variable y; = S(t)y gives us
edy/dt = (A+€eB)y;, B=-S"1dS/dt.

Now we can find a slowly varying transformation S; such that

A1+ €A 0
(I+eS1)"Y(A+eB)(I+€8;) = .. =: A+eA;.
0 )\n + 5)‘711

The change of variables
1= (I+eS1)y:

gives us
dyz/dt = (A + EA1 + €2Bl)y2.

This process can be continued. Thus we can diagonalize the system to
any order of O(eP). Neglecting the O(eP)-terms we obtain scalar equations,
whose solutions can be written down explicitly. We have proved

Theorem 3.1 The solution of (3.17) can be calculated analytically to any
order in €.

If the eigenvalues change multiplicity, then difficulties arise. An initial
discussion can be found in Scheid (1982).
We consider now systems

dy/dt = A(t)y + F(t,¢),
where A is slowly varying and F has the property that
t
| Foneyan =06
For example, this is the case if

F =el/%g(t), g(t) slowly varying.
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By Duhamel’s principle we can write the solution as

y(t) = S,0u0) + [ S, 6)F () de,

where S(t,£) denotes the solution operator of the homogeneous differential
equation. It is a slowly vaying function of ¢, £. Therefore integration by parts

gives us
¢ 3 t £
[ seor©a=see [ Fma| - [*2HE [ rayand = o)

Thus F changes the solution by an O(g)-term. One can derive an asymptotic
expansion, if more about F is known.

Numerical methods based on these results are exploited in Amdursky and
Ziv (1977), Fatunla (1980), Gautschi (1961), Miranker (1981) and Scheid
(1982).

t

3.5. Highly oscillatory solutions of nonlinear equations

We start with a number of examples.

i
Vo= Zy+y
¥(0) = wo. (3.18)
We can calculate the solution of (3.11) explicitly. Introducing a new variable
by
= ex (zt) 7]
Yy = exp c Y
gives us
7 = e ()
#0) = o (3.19)
Therefore
e . .
Y gp=_% A
/0 g2dt 3 [exp ( p t) 1] ,
ie.
p 1 o %o
5 Ko T Eeo (31
; i
= {1 - ;:10 [exp (l?t) - 1]} + O(e?). (3.20)

Thus the nonlinear term changes the solution only by O(e) in arbitrarily
long time intervals.
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It is also useful to calculate the solution in another way. (3.17) gives us
- t ix ) o
g-% = / exp (—6) §° d¢
0 €
e iA\ o |, 2i€ /“ (i)\ ),,,
= —Fen(2¢) P+ 5 [ exe (T¢) o e
e A\ .o -2 ] 2ie /t (2i)\ ) -3
= 3 [exp(st)y &) =0 + 5 | exp | —¢) 7L
The last integral can again be treated by integration by parts. Therefore

i(t) + §exp (%t) F2(t) = yo + §y2(0) +0O(e?),

7=y {1 - i—::yo [exp (%t) - 1]} +0(e?),

and we again obtain (3.18).
Now consider

i.e.

! = 1%l-y-f-v, v = h\?zv-kvz. (3.21)

The change of variables

gives us
7 =ex (1('\2 ; '\l)t) 9, ¥ =exp (ﬁt) 52

By (3.19)

> ijA

5:‘1}0+Z€Jﬂ‘7 (—2t>

=1 &

Therefore
i & i (i
3’]' = exp (E(/\z — )q)t) v + Z e’ exp (E[(] +1)A2 — Al]t) .

Jj=1
Ifvda— A #0forallv=1,2,..., then
§(t) = yo + O(e).
However, if vA2 = A1, then resonance occurs and

i(t) = {y(O) +erm1gr-1t if v > 1,
Y y(0) + tuo if v =1.

Thus the solution is not bounded.
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Now we can discuss systems
i
y = Ay+PQ)

y(0) = o, (3.22)
where P is a polynomial in y. Introducing new variables by

i -
Y = exp (EAt) 0]

gives us
¥ = exp (—éAt) P [exp (E_At) ;i]] ,
50) = o (3.23)
The right-hand side of (3.22) consists of expressions
exp [ (S asy) ¢ p(a) (3:24)

where the a; are integers and p is a polynomial in y. There are two possi-
bilities.
1 7=3 a;\; =0 for some terms. In this case (3.22) has the form

7 = Qo(9) + (@), (3.25)

where Qg, Q)1 contain the terms with and without exponentials, respec-
tively. Our result in the last section tells us that we commit an error
of order O(g), if we neglect Q,. Thus y is to first approximation the
solution of

7 =@, #0)=uyo, (3.26)

i.e. in general §(¢) does not stay close to yq.
2 7=3% a;)\ #0 for all terms. Integration by parts gives us

§(t) = yo+; /OteXP (ilﬁ)pr(ﬁ)dﬁ
= yo—ieXT:%exp( )pr(y)|0+152 / ( )%yp“'dé
= yo-iezr:%exx)( )pr(y)|o+lez / ( )pr(y)dé

(3.27)

The integrals in (3.26) are over terms of type (3.23) and therefore we can
repeat the previous arguments. If some of the terms are not of exponential
type, then they will in general be of order O(et).
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If all the terms are of exponential type, then we can use integration by
parts to reduce them to (at least) O(e?t).
We obtain

Theorem 3.2 Assume that for all integers a; the linear combinations
> a;A; do not vanish. Then

§=1yo+ O(e)
in time intervals 0 <t < T. T = O(e?) for any p.

There are no difficulties in extending the results and techniques to more
general equations

1
y = EA(t)y + P(y,t).

Here A(t) is slowly varying and P(y,t) is a polynomial in y with slowly
varying coeflicients in time.

The numerical methods based on these results are exploited in Kreth
(1977), Miranker and Wabba (1976), Miranker and van Veldhuisen (1978)
and Scheid (1982).

8.6. Calculations of solutions, which contain both a fast and a slow part

One can solve these problems by brute force, i.e. use a time step k < .
If one instead wants to calculate only the slow scale, i.e. ¢ € k < 1, then
one has to combine analytic techniques with numerical methods. Very little
is known about how to do this, see however (Petzold, 1981) for a different
approach.

If the system has the form (2.1), splitting techniques have been used:
Assume that we know the solution at time ¢,,, then we calculate the solution
of

W@ = fl®,t), ta<t<tn,
w(l)(tn) = w(tn)
at t = t,,1 to obtain w1 (¢,,1).
The next step is to solve

W) = ZABUE), tn<t<tun,

w(ty) = 'w(l)(tn+l)

analytically, using the results of Section 3.3. This gives us w(t,+1). It is not

at all clear what the accuracy of this procedure is. We believe it has to be

modified before it is generally useful, because in general the error is O(1).
Assume now that the system has the form (2.2). If the fast part of the
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solution is small, then by Theorem 2.2 the effect of the fast part on the slow
scale is one order of magnitude smaller. Therefore we can calculate the slow
part of the solution first, and then treat the fast part as a perturbation, i.e.
we have to solve

e(yF) = (A(t) +C1 (%, 45, 0)yF

by analytic techniques as described in Section 3.3. The next step is to
determine the effect of the fast scale on the slow scale. We believe that
progress can be made along these lines, but no results are available yet.

4. Partial differential equations
4.1. General theory

Let 0 < € < g¢ be a small constant, z = (z1,...,Zs) be a point in the real
s-dimensional Euclidian space R,, e; the unit vector in the z; direction and
u = (uM(z,t),...,u™(z,1))T a vector function with n components. We
consider systems

us = € 1Py(8/0zx)u + Py(u,z,t,¢,8/0z)u + F(z,t) (4.1)
with periodic boundary conditions
u(z + 2me;) = u(z), j=1,2,...,s
and smooth periodic initial data
u(z,0) = f(). (4.2)
Here F(z,t) is a smooth function of z,t with derivatives of order O(1), and

the coeflicients of

8
Py, = ZA,-G/B:C,', Aj = A} constant matrices,
J=1

P = Z Bj(u,z,t,6)3/0x;, Bj = B} smooth functions of all variables,
=1
(4.3)

are real symmetric matrices.

We want to prove that the bounded derivative principle is valid. We follow
Browning and Kreiss (1982) closely. (See also Klainerman and Majda (1982)
and Kreiss (1980).)

Theorem 4.1 Assume that p time derivatives at ¢t = 0 are bounded inde-
pendently of €. Then the same is true in a time interval 0 < t < T, where
T > 0 does not depend on e.
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Proof. We consider first the system
wy = Pi(w, z,t,e,08/0z)w. (4.4)
Let
(o) = [(wopdz, [ul? = (u,v)

denote the usual Lo-scalar product and norm. In the usual way we can
derive a priori estimates by constructing differential inequalities for

2 |Dlilwi? = 2 Re (D¥iw, DYI(Pru)), (45)
where j = (j1,...,7s), 13| =X ji, is a multi-index, and
DVly = &1 [0 ... & |8zl

(See, for example, Kreiss and Lorenz (1989).)

If we consider all expressions || DVlw||2 with |j] < [s/2] + 2, then we can
obtain a closed system of differential inequalities. The solutions of this
system are bounded in some time interval 0 <t < T, where T > 0 depends
on the initial data but not on . Thus we obtain bounds of the first [s/2] + 2
space derivatives. Higher order derivatives can then be estimated in the

same time interval.
Now consider the system (4.1). Corresponding to (4.5) we have

%uplflun2 = 2¢7! Re (DVlu, Py(8/8z)DVu) + 2 Re (DVlu, DV!(Pyu)).
(4.6)
Py is a first-order operator with constant symmetric matrix coefficients.
Thus
2 Re (DVlu, Py(8/8z)DVlu) = 0,

and we also obtain for u the relationships (4.5). Therefore we can estimate
all derivatives independently of £ in the same time interval, where we can
estimate the derivatives Dlw. In particular, if we can estimate DVlw for
all times, then the same is true for u.

To obtain estimates of time derivatives we differentiate (4.1) with respect
to t. v = u, satisfies

v, = e 1 Py(8/8x)v + Py(u,z,t,€,8/8z)v + F.
Here F depends on z, t and on u and its derivatives. Therefore Re (v, Pov) =
0 implies
d

E[I’u”2 = 2¢7! Re(v, Po(8/0z)v) + (v, Piv) + (v, Fy)

< constant x (||v||% + ||F1]|?).
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Thus, if v(z, 0) is bounded independently of ¢, then v stays bounded as long
as the space derivatives stay bounded. Higher time derivatives are estimated
correspondingly. This proves the theorem. O

We will now make the connection with the theory for ordinary differential
equations. For simplicity we assume that the coefficients of P; are polyno-
mials in » and do not depend on z,t explicitly.

We have seen that for smooth initial data the solution of the differential
equation is smooth in space. Therefore we can develop it into a rapidly
convergent Fourier series

u(z,t) = Z (w, t) exp(i{w, z)) Z W;T;j. 4.7

w

Introducing (4.7) into (4.1) and neglecting all frequenmes with |w| > N gives
a system of ordinary differential equations

%ﬂ(w, £) = e LPy(w)ii(w, £) + Cu (@, 1). (4.8)

Py(iw) is a skew Hermitean matrix and therefore there is a unitary matrix
U(iw) such that

U*(iw)Po(iw)U(iw)=(R%“’) g), det || 0. (4.9)

Thus we can transform (4.8) into the form (2.2).
We will now formalize the process. We make

Assumption 4.1 There is a constant § > 0 such that for all w
IR (w)| < 671,
Ly consists of all functions
f=3Y fwyexpiw,z)), I If(W)f? < oo,
W
which can be expanded into a Fourier series. Let @ denote the projection
e I, 0\ A, . 2
f1=f =X 0G) ()0 w)explifw, 2))f(w).
w
Here I, is the unit matrix of the same dimension as R(iw), Q splits L, into
two subspaces L}, LI defined by
fI=Qfa fn (I Q)f’ f=fl+fn'

Note that ) commutes with Py, i.e. QPy = PyQ because

QP = 3 U(w) (% g) 0 (1) (w) (R(lw) 0 )
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x U*(iw)a(w) exp(i(w, z))
- ij(iw) (R(“") 0) 0* (i) () exp(iw, 7))
500 (%69 8) oo (5 9)

x U*(iw)i(w) exp(i{w, z))
= PyQu.

Also,

P! = Py(I-Q)u
= 06 ("8 0)[1- (% §)] 0w expltw,2)
= 0.

We can define the inverse of Py on L} uniquely by

Pt = S 00 (BT 0) 0 w)ace) explie 2,

and (4.9) gives us

1Pyl < 67 - (4.10)

Using the projection @, we can now write the system (4.1) in the form
W = e 1Pl + (Py(u,8/8z)u)! + F, (4.11a)
ul!' = (Py(u, (?/(’):):)u)II +FY u=u (4.11b)

which is the generalization of (2.2) to a partial differential equation.
We can now show that if u is slow to order p, then u! is determined by
I up to terms of order O(eP). Hu/dt is bounded independently of € if and
only if
PouI = 0(&'),
hence
ol =eul, ul=0(1), (4.12)
i.e. u has to first approximation no component in L}. Therefore, to first
approximation, the solution to our problem is given by
ul'=0, o= (P (ul 8/8z)u)! + F1I.

Differentiating (4.11) with respect to ¢ and assuming that (4.12) holds gives
us

u, = e 'Pul+0(1)
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_ lp, (Pou} + (Py(u", 8/0z)ul)! + FI) +0),
ur = O(1). (4.13)

Therefore the second time derivative is bounded independently of ¢ if and
only if
Pyul + (Py(u!, 8/8z)u))! + FI = O(e).

Thus ! is determined by u!! up to terms of order O(e2). This process can
be continued, and we obtain the desired relation between u! and w!l.

As in Section 2 we can also derive the asymptotic expansion by the iter-
ation

@™ )] = e R™) + (P(u™,8/8z)u™) + FT, (V) =0,
@I = (P(u™,8/8z)u™ + FI, n=0,1,2,.... (4.14)

It again gives us the relationship between u! and u!l. For meteorological
applications there are many papers, which describe how to obtain this re-
lationship in practice. (See, for example, Kasahara (1982), Leith (1980),
Machenhauer (1977).)

One can generalize the results considerably. However, the theory becomes
much more complicated, if Py = Py(z,t,0/0z) depends on z,t or if one
wants to treat the initial boundary value problem. Details can be found in
Browning and Kreiss (1982), Kreiss (1980) and Tadmor (1982). Numerical
methods are discussed in Guerra and Gustafsson (1982), Gustafsson (1980a),
Gustafsson (1980b), Gustaffson and Kreiss (1983).

4.2. The wave eguation
We cousider in this section the wave equation written as a first-order system

Eur = ((1) (l))um+F

u(z,0) = f. (4.15)

Here u, F, f € C™ are vector-valued 27-periodic functions. (4.15) is of the
form (4.3) with

. . 1
Py(iw) =1i ((1) 0>w, P =0.

Thus the theory applies.
(4.15) implies

2 2%
/ wde= [ Fda,
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- /(;2" u(z,t)dr — /02” u(z,0)dz = é/ot‘/ozr F(x,€)dz dé.
If
/0 " pdz = 0(1),

then the mean value of the solution becomes unbounded for € — 0. For
simplicity we assume that

2 2
/ f(z)dz =0, / F(z,8)dz = 0. (4.16)
0 0
Then \
/O " u(z,t)dz = 0. (4.17)

‘We shall now derive the asymptotic expansion. We proceed in the same man-
ner as for the ordinary diferential equations. u has one derivative bounded
independently of ¢, if

10
This suggests the substitution
u = U1 + o, (4.18)

(0 l)uz+F=(’)(5).

where g is the solution of

0 1 ) 2
( 1 0 Pox 0 %o

Introducing (4.18) into (4.15) gives us

0 1 2n
EUupr = (1 0) Ulxr — €P0t, fo uy dz = 0,

u(z,0) = f(z) - vo(z,0). (4.19)

(4.19) is of the same form as (4.15) with the forcing reduced to O(¢). There-
fore we can repeat the process and we obtain the slow solution

p—1
uS =Y "elp; + O(eP).

i=0
The fast part uF is the solution of

27
evf = ((1) é)vf, ‘/0 vFdz =0,

WF(z,0) = f(z)-u5(z,0), (4.20)
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ie.
vF(z,t) = ;aj (i) exp [ij (.1:+ 2)] +b; (}1) exp [ij ( - 2)] ,
where the a;,b; are determined by the initial data.

In applications the equations often do not appear as symmetric hyperbolic
problems. As an example we consider instead of (4.15)

(), = (& 0) (). (Fe)

u(z,0) = f, p(z,0)=g. (4.21)
We can symmetrize the equations by introducing a new variable
p=ep
and obtain
(3), = 2( o) (5)+ ()
7/, e\1 0/\p/), \e'G)’
u(z,0) = f, p(z,0)=c¢g, (4.22)

which is of the same form as (4.15). Therefore we can again write down the
asymptotic expansion of the slow part of the solution and obtain
u$ =l +eplV +-, FF=epl +e2of +- -,

i.e. we also have bounded asymptotic expansions in the original variables
u,p = €~ 1p. The fast part of the solution is again determined by the homo-
geneous equation (4.20) with initial data

uF(xa 0) = f(x) - uS(z., 0)) ﬁF(za 0) = Eg(z) —ﬁs(x’ 0)
Now we assume that the data have not been initialized. Then

uF (z,0) = 0(1), 5% (z,0) = 0O().

However, at later times energy from uF will be transferred to ¥ and there-
fore

uF(z,t) =0(1), 5 (z,t) = O(1).
Then we obtain in the original variables
uF(z,t) = O(1), p(z,t) = pF(z,t) = O(™Y),

and the amplitude of p will be amplified by a factor e ~1.
For moderate values of ¢ this is not a problem. However, if € becomes very
small, it can cause a lot of trouble in numerical calculations. For example:

1  If the data are initialized analytically but the problem is solved numer-
ically, then the initialization of the difference approximation is, due to
truncation errors, different from the analytic initialization.
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2  Rapid time changes in F can trigger large waves on the fast scale.
3  If € is very small, then rounding errors can also cause difficulties.

Numerical methods. If one is only interested in the slow solution, then
using the asymptotic expansion or Richardson extrapolation are efficient
methods. (Observe that one uses Richardson extrapolation with moderate
values of € and therefore one can also treat nonsymmetric systems.)

If one is interested in both the fast and the slow part of the solution, then
one can use asymptotic expansion for the slow part of the solution and solve
(4.20) analytically.

5. Applications
5.1. Low Mach number flow

A slightly simplified version of the Euler equations for low Mach number
flow in two space dimensions is given by

u;+ (u-V)u+Vp F
M(pi+(u-V)p)+V-u = G (5.1)
with initial data
u(z,y,0) = f(z,y), p(z,y,0) = g(z,y). (5.2)
Here 0 < M2 « 1 is the Mach number and

u = (u(z,y,t),v(z,y,t), p=pz,y,t)

denote the velocity field and the pressure, respectively. We are interested in
27-periodic solutions.
We can also write (5.1) in component form

U v 0 M1 u v O 0 u Fy

(v) +( 0 = O ) (’U) +(0 v M‘l) (v) = (Fz).

), \M™' 0 u p/, \0 M1 b/, g
(5.3)

We have introduced

as a new variable such that the system is symmetric hyperbolic. Thus (5.1)
has the same difficulties as (4.21).
The symbol of the large part

0 0 Wy
Piw)=M1{ 0 0 iw (5.5)
iwl iUJQ 0

has rank two. The general theory tells us that there is one slow variable. In
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the general theory the slow variable can only be defined via Fourier trans-
form. However, in this case we can also identify it in physical space. It is
the vorticity V x u =: v; — u,, because differentiating the second equation
of (5.3) with respect to z and the first with respect to y and subtracting
them gives us

& +ubs + v€y + (uz + vy = Fop — Fyy. (5.6)

The fast variables are the pressure and the dilutation V - u =: uz 4 vy.

We will now describe the results in Kreiss et al. (1991). (See also Klain-
erman and Majda (1982).) We derive an asymptotic expansion of the slow
part, starting from (5.1). If the derivatives are bounded independently of
M, then the leading term must satisfy

U, +(U-V)U+VP=F

v-u=@Gg (5.7
with initial data defined by
V-U(z,y,0) = G(z,y,0), V xU(z,y,0)=V xf(z,y). (5.8)
Defining new variables by
u=U+u, p=P+7p, (5.9)

we obtain from (5.1)
U+ (U-V)u'+ (- V)U+(u-V)u' +Vp' =0

M%(pi+(U-V)p + (- V)P + (u'- V)P)+V o =MG (510)

with
Gi=—-(p:+(U-V)P).
First we determine the slow part of u’,p’ and write
u = MU, +v', p'=M32P 49, (5.11)

where

Uy + (U . V)U1 + (U1 . V)U +VP =0
V.U =G (5.12)

The initial data for (5.11) are given by
V- Ui(z,y,0) = G1(z,9,0), V xUi(z,y,0) =0.

Now we introduce u’,p’ as new variables into (5.10) and repeat the proce-
dure. We obtain

Theorem 5.1 We can expand the slow part of the solution of (5.1) into a
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series
v = U+ MU+ -+ M*Uj+up = UY 4 uy
p = P+M?Pi+---+ M2P +pg =PV 4 pp,

where Uj, P; satisfy linearized incompressible equations and their deriva-
tives are bounded independently of €. The remainder up, pr are the solution
of

up:+(UD - V)up+(ur - V)UD +(ug - V)up+Vpr=M4F,
Mm? (PRt"‘(U(l) - V)pr+(ur - V)PO+(up - V)PR) +V - ug=M3+2G;.
(5.13)
The initial data
ug(z,7,0) = f(z,y) - UD(z,4,0), pr(z,4,0) = G(z,,0) — PO(z,y,0)

satisfy
V x ugr(z,y,0) =0.

One can prove (see Kreiss et al. (1991))

Theorem 5.2 In any finite time interval 0 <t < T
V x up(z,y,t) = O(M).

Thus ug, pr represent the fast part of the solution.

To discuss their behaviour and to simplify the notation we introduce new
variables by

r=t/M, ¢=Mpr, v=ug, UV=U, pPh=p
We also neglect the forcing. Then (5.13) becomes
Ve + M((U-V)v+(v-V)U)+Vg=0
¢+ MU -V)g+ M3(v-V)P+ V- -v=0,
v(z,y,0)=f(z,y) — U(z,4,0), q(z,y,0)=M(G(z,y,0) - P(z,y,0)).

(5.14)
If we neglect terms multiplied by M, (5.14) becomes
vr+Vqg = 0
qr + V V. = 0. (5.15)

(5.14) can be rewritten as the wave equations for g and the dilutation V -v.
Here we see again that the amplitude of the fast waves are amplified by
the factor 1/M because pr = (1/M)q. I |v(z,y,0)| = 1, then ¢ grows on
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the fast time scale from O(M) to O(1), i.e. pr becomes O(1/M). Large
fast waves can only be avoided, if v(z,y,0) = O(M). Since the vorticity is
O(M), this can only be achieved, if the dilutation V - v(z,y,0) = O(M).

To solve this problem numerically we can use the asymptotic expansion. If
we only want to determine the slow solutions, then we can also use Richard-
son extrapolation (see Johansson (1991)). If we are also interested in the
fast part of the solution, then we have to solve (5.14). Here one should use
(5.15) locally, because we can determine its solution analytically.

We have only discussed the periodic problem. However, one can also treat
the initial boundary value problem (see Kreiss et al. (1991)).

5.2. Atmospheric motions

In this section we consider three-dimensional atmospheric motions and dis-
cuss results presented in Browning and Kreiss (1986, 1987). The correspond-
ing results for oceanographic flows can be found in Browning et al. (1990).
In Cartesian coordinates x,y, z are directed eastward, northward and up-
ward, respectively, and the Eulerian equations have the form (see Kasahara
(1974))

ds/dt =0,
d/dt =38/0t +u d/0x + v 8/dy + w 8/0z,
dp/dt + vp(uz + vy +w;) =0, =14,
pdu/dt +p, — fpv =0,
pdv/dt+py + fpu=0, p=sply,
pdw/dt + p, + pg = 0. (5.16)
Here s is the entropy, p the pressure, p the density, u,v,w the velocity
components in the z,y, 2z directions, respectively, and g ~ 10 m s~2 the

gravity acceleration. We make the S-plan approximation, i.e. the Coriolis
force f is given by

f =2Q(sinp + v/r cosbp), 2Q=10"%s"!, r=10"m, (5.17)
where r is the radius, Q the angular speed for the earth, and 6y the latitude
of the coordinate origin.

We have to introduce scaled variables before we can apply our theory.
We change the variables in such a way that the variables and their first
derivatives are of order O(1).

z=Lix', y=Lsy, =z=Dy, t=T¢,
u=Ud, v=Vv, w=Wu'

(5.18)

Density and pressure can be written in the form

p=Po(po(2) + S19’), p=Ro(po(2) +S1/), 0<S1 <1, (5.19)
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where
PyOpo/8z + gRopo = 0,
Pp=10°kgm 152 Ry=1kgm™3
Equations (5.19) express the fact that a number of digits of the pressure

and density are independent of z and y and that p and p are to the first
approximation in the hydrostatic balance. Equations (5.18) also imply that

s = RoPy " po(2)(po(2) (L + 816 /p)(1 + S1p'[po) /"
= RoP; "so(2)(1 + 515,
so(2) = po(2)(po(2) ™7, &' =p/po— (1/7)p' [P0+ O(S1). (5.20)
We assume that the scales in the z,y directions are the same, that du/dt
and dv/dt balance the horizontal convection terms, and that the Coriolis
force has a strong influence. This leads to the following relations:
U =V, Li=L=1L,
UT/L = 1, 29T = S,Py/(RoU?). (5.21)
These relationships are not valid for special types of motions like jet streams,
ultralong waves and small-scale problems. For the treatment of these cases
we refer to Browning and Kreiss (1986). Introducing the scaled variables
into (5.16) gives us
ds’
dat’

dp’ S N

o+ si'm [y (1+ 22 ) (s vy + S32) + Saia| =,
! s\ —1

d_u + 53 p—l S1p P'I/ — ' =0,

dt’ 0 Po

dv Sip -t , -
W+S‘°’[ (1+P_o) ”y"*‘f“ =

+ 871525(2)(1 + S1s")w' =0,

S
dui + 871845t (1 + —=— 1 L=y 15(2)p’ + Sspos’ + O(S1))=0,
dt Po
(5.22)

where
P(2) = (Inpp)z, 8§(z) = (Insg),;
typically,
pr~—13, —-3<5<-1;

d/dt = /8t +u' 8/8x" +v' 8/0y' + Saw'’ 8/87';
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and the parameters S; are given by
Sy = D7ITW, 8§3=2QT,
Sy = TPy(DRyW)™!, S5=gDP;'R,. (5.23)
We now choose the parameters according to the so-called large-scale dynam-
ics:
L=10m, D=10"m, U=V =10ms™}, §;=10"2, W=10"2ms ..
(5.24)

Introducing these values into (5.23) and (5.24), we obtain, dropping the
prime notation,

% +3(zw = 0,
%%+uw+vy+51’w =0, e=107",
ei—?+p§1pz—f’f = 0,
eyt fu = 0
posﬁd_w —~L*p+pgs = 0.

dt
Here
d/dt =9/8t +u 8/dz + v 8/dy + ew 8/8z,
Lw=w, +77'p(z)w, L*p=-p;+7 "6(2)p.
For simplicity only, we have neglected terms of order O(S;). Also, by (5.17),

I = fo+eBy.

We will only consider the mid-latitude case fg =~ 1.
For ease of discussion we simplify the equations slightly by replacing

§(z) > -1, (o) t—>1, f-1, lw—-w, p—1 Lp—p,

(5.25)
and obtain

ds

E —-—w = O,
dp
523 +uz +vyt+ew, = 0,
sd—u +p,—v = 0
dt p:t - b}
dv
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dw
Tat
Here we have replaced € by 7, and we think of 7 as another small parameter.

We will now discuss the initialization. The first time derivatives are
bounded independently of ¢, if

+p.+s = O. (5.26)

p: +5=0(n), (5.27a)
py+u=0(), p:—v=0(), (5.27b)
uz + vy + ew, = O(e?). (5.27¢)

If we replace O(n) and O(¢) by zero in (5.27a) and (5.27b), then the resulting
equations are called the hydrostatic assumption and geostrophic approzrima-
tion, respectively.

The second time derivatives are bounded independently of ¢, if

%(”’ +5) = 0O), (5.28a)
%("v +u) = 0(e), %(pz ~v) = O(e), (5.28b)
%(“z +vy +ew;) = O(e?) (5.28¢)

(5.28) gives us

szi(llz+s) = ¢° (dp) —e:"’H1+e29
& ,

dt dt
(ug + vy +ew,), + 2w — e2H,
= O(*n), (5.29)

where
Hy = u,ps + v.py + ew,p, = u,v — vu+ O(e).

Thus (5.28a) gives us an improvement of (5.27c). If we replace the O(en)
term by zero, then the resulting relation is called Richardson’s equation.
Correspondingly, (5.28b) and (5.28¢c) lead to improvements in (5.27b) and
(5.27c¢), respectively.
The primitive equations, that are often used in weather prediction models,
are given by

ds

a v =0
eg-zi-f- +u = 0
at T Pe -
e@+ -v =0
a P -

p:+s = 0,
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Their mathematical properties are discussed in Browning and Kreiss (1985)
and Oliger and Sundstrom (1978).

Instead of pursuing the initialization to make more and more time deriva-
tives bounded independently of ¢ it is easier to achieve this by iteration. We
shall first derive a set of equations, which will determine the slow solution
to order O(e).

Ler £ = v; — uy denote the horizontal vorticity and use the notation

95 _ 5/0t +u )0z + v 8/8y.

dt
(5.27) gives us the balance equation
Dop=£+0(e), Ay =0%/02" + 8%/8y>. (5.30)
Differentiating the horizontal momentum equations results in
dpé

5(—&— +&(us + vy)) + ug + vy = O(e2).

Therefore, by (5.27c),
dué

The first equation of (5.26) tells us that
w, = disti + u,8; +v;8y + O(e),

i.e. by (5.27a) and (5.27b),

i—‘:(g —8z) = U8+ 8+ O(€)

= —UyPgr — VaPy, + O() = O(e). (5.32)
By (5.30) and (5.27c) we can also write (5.32) as
du
EAP = O(e).
Therefore the slow solution satisfies to a first approximation
dy
—Ap = 0
dt p b
pz+s = 0, py+tu=0, p,—v=0,
dys

Higher order approximations are obtained by iteration.

Remark. If we had not made the simplification (5.25), then (5.33) would
be slightly more complicated. It would still be a well posed problem.
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We have assumed that we can apply our theory. We will now discuss this
question. We can symmetrize the equations by introducing new variables

Jgp=ﬁa ﬁw:u’;,

and obtain
ds 1 .

— — — — 0,

a
dp

+1( + vy) ~ 5, = 0
de T e T T gt = 0
du 1

TR L
dv 1

a T eanr

d_ﬂ)+ 1 ~+—1-3
at " e

_ 1
Py + et = 0,
= 0, (5.34)

where now
0 0 e .0
+u—+v

0
o Yoz Ve T Vo
Therefore our theory applies, provided

(5.35)

& e

€
—— < constant , 5.36
v (5.36)

otherwise the term (¢/,/n)w 0/0z becomes large. We shall assume that
n=¢’. (5.37)
In Browning et al. (1990) we have proved

Theorem 5.3 Assume that (5.26) with 7 > 2 has a solution with deriva-
tives bounded independently of e. We commit an error of order O(e?2), if we
change 7 to €2 and solve the new system with the same initial data.

Thus we can use the system (5.26) with 7 = £2 to obtain the desired slow
solution up to terms of order O(e2), provided it exists. Again we can use
Richardson extrapolation to approximate it to higher order.

The question, whether for 77 < £2 the system (5.26) has slow solutions, is
not clear. Numerical calculations seem to indicate that it is so. However,
if one linearizes (5.26) around a slow solution U, V,..., then the linearized
equations are unstable, if the sheer U, V, is large compared with €/,/7, i.e.
if we locally freeze the coefficients, then there are waves, which grow like
exp(at), a = (|U,| + |V;|)e/\/n. Further investigations are necessary.

There are other applications. For example, in Browning and Kreiss (1982)
some problems in plasma physics are discussed, in Browning et al. (1980) and
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Browning and Kreiss (1982) the shallow water equations are treated and in
Raviart (1991) approximative models of Maxwell’s equation are investigated.
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0. Introduction

Differential algebraic equations (DAE) are special implicit ordinary differ-
ential equations (ODE)

f@' (@), z(t),¢) =0, (0.1)

where the partial Jacobian f;(y,,t) is singular for all values of its argu-
ments.

These DAEs arise in various fields of applications. The most popular
ones are simulation of electrical circuits, chemical reactions subject to in-
variants, vehicle system dynamics, optimal control of lumped-parameter sys-
tems, semi-discretization of partial differential equation systems and singular
perturbation problems. For a fairly detailed survey of applications we refer
to Brenan et al. (1989).

In the last few years, DAEs have developed into a highly topical subject
in applied mathematics. There is a rapidly increasing number of contri-
butions devoted to DAEs in the mathematical literature as well as in the
fields of mechanical engineering, chemical engineering, system theory, etc.
Frequently, other names such as semi-state equations, descriptor systems,
singular systems are assigned to DAEs. In 1971 C.W. Gear proposed that
DAEs should be handled numerically by backward differentiation formulae
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(BDF). Since then, powerful codes which successfully simulate large circuits
have been developed. For a long time DAEs were considered to be essentially
similar to regular implicit ODEs in general. However, challenged by compu-
tation results that could not be brought into line with this supposition (e.g.
Sincovec et al., 1981), the mathematical community started investigating
DAEs more thoroughly. With their famous paper, C.W. Gear et al. (1981)
initiated a discussion on DAEs which will surely continue for a long time.

What kind of mathematical objects are DAEs? First of all, they are
singular ODEs. Can they really be treated numerically like regular ODEs?
Surely not in every case! How can one characterize single classes of problems
for which methods that have proved their value for regular ODEs work well
in other instances? What is the reason for their not working otherwise?
How are appropriate numerical methods to be constructed then? All these
questions can only be answered when more is known about the mathematical
nature of DAEs.

In 1984 W.C. Rheinboldt began regarding DAEs as differential equations
on manifolds. This approach provided useful insights into the geometri-
cal and analytical nature of these equations (e.g. Reich (1990), Rabier and
Rheinboldt (1991)).

Assuming sufficient smoothness of all functions involved, the DAE

'+ g(u,v) =0
o} 02

can be regarded as a vector field on

S1 ={[z] :h(u,v)zO},

W o) J | o] €50

ul
'UI

oW

provided that h/(u,v) is nonsingular everywhere. All solutions belong to
S1, and each point of S is passed by a solution.
The DAE
v +g(u,v) =0
h(u) = 0 (0.3)

is more complicated. By differentiating twice and eliminating derivatives it
can be checked that this system generates the vector field

v = —g(u,v) }
v = (K (w)gy (u, v)) " A" (w)g(u, v) + W' (u)gy,(u, v)}g(u,v) |~

(uT) vT)T € SQa
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where now
Sp = {[ v ]  h(w) = 0, ' (u)g(u, v) = o}

represents the state manifold. The nonsingularity of h’(u)g} (u,v) has been

assumed here.
Analogously, for the DAE

v + flu,v,w) =0
v+ g(u,v) =0 (0.4)

h(u) =0
one can define a vector field on the manifold
Sz = {(T,vT,wh)T : h(u) = 0, h'(u)g(u,v) = 0,
" (w)g(u, v)g(u, v)+h' (u)(gy (u, v)9(u, v) + gy (v, v) f (u, v, w) =0)}

provided that h’(u)g, (u,v)f,,(u, v, w) remains nonsingular.

In these three cases one speaks of semi-explicit DAEs with index 1, 2 and
3, respectively. The special structure of equations (0.3) and (0.4) is called
the Hessenberg form.

If these vector fields were not considered on the specified manifolds S; C
R™, but formally on R™, then the resulting regular ODEs could be inte-
grated with the usual methods. Even if we start with consistent initial
values, we will very swiftly drift away from S; and S3 in (0.3) and (0.4),
respectively. Hence, many authors are concerned with the development of
very special methods for (0.3) and (0.4), thereby exploiting the geometry of
these equations. There are important applications that have this form, e.g.
the Euler-Lagrange formulation of constrained mechanical systems leads to
the form (0.4).

Under the corresponding assumptions, a state manifold and a vector field
can also be assigned to the general DAE (0.1). However, both are only
defined implicitly and, in general, not available in practice. This has already
been indicated by the simple case of equation (0.4) and S3. More general
approaches for the constructive use of geometry for numerical mathematics
are not known to the author.

If we have a closer look at equation (0.2) it becomes obvious that, theo-
retically, in the neighbourhood of a consistent initial value (uf,v)T € S;
we could investigate the locally decoupled system

v +g(u,S(u)) =0, v=58(u) (0.5)

with h(u, S(u)) = 0 instead of (0.2). Now it would be advantageous to inte-
grate this regular ODE for the component u numerically and, then, simply
to determine v; = S(u;) in each case. With suitable integration methods,
this idea can even be realized in practice for general index-1 equations (0.1).
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We would like to point out another aspect of the characterization of DAEs,
which is fundamental, in particular, to the numerical treatment. For this,
we consider the special equation of the form (0.3), which is perturbed by an
inhomogeneity,

u—-v=0
u = p(t) } ' (0.6)

Here, the function p has to be differentiated, i.e. v(t) = p’(t) has to be com-
puted. Differentiation is one of the classical examples of ill posed problems.
A corresponding inhomogeneous problem of the form (0.4) will require a
second differentiation. The greater the number of differentiations, the more
strongly ill posed the problems become.

Both (0.5) and (0.6) make clear that a natural approach to the solution
is directed to u € C!, v € C. In many applications one aims at reducing
smoothness, which has, unfortunately, not yet been successfully taken into
account in the interpretation of DAEs used to represent ODEs on manifolds.

In the present paper we characterize general DAEs (0.1) under possibly
minimal smoothness demands, where the characterization aims at the nu-
merical tractability. Since (from the present point of view) all the essentially
new numerical difficulties in comparison with regular ODEs have already be-
come for linear equations with variable coefficients, we devote most of our
investigations to the analytical characterization and investigation of integra~
tion methods for linear equations.

To apply the results to nonlinear equations we slightly modify the stan-
dard arguments of discretization theory. The BDFs are studied in detail
here because, on the one hand, they can be especially recommended just
for DAEs and, on the other hand, they serve, in a certain sense, as model
methods.

We want to emphasize that this paper does not aim at providing a survey
of all the available results and methods. In particular, we do not enter
into the details of the many nice but very special results for (0.3) and (0.4)
(for this, see e.g. Hairer et al. (1989), Lubich (1990), Potra and Rheinboldt
(1991), Simeon et al. (1991)). We focus our interest on exposing problems
and showing constructive approaches for their solution, where we try to
maintain a uniform concept of representation.

Altogether, many problems with respect to DAEs still remain open. An
appropriate numerical treatment requires — provided it is to be more than
only favourable intention — profound knowledge about the analytical back-
ground of this type of equation.

The paper is organized as follows. In Section 1 the reader becomes ac-
quainted with the fact that additional stability conditions and weak insta-
bilities may occur in the integration of linear constant coefficient DAEs.
Section 2 is devoted to the analytical and geometrical foundations of gen-
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eral DAEs, where those of linear equations with time-dependent coefficients
play a special role. In Section 3 the BDFs are discussed in detail, as already
mentioned, as a model for constructing methods. Section 4 presents brief
outlines on index reduction as well as on boundary value problems.

1. Analysing linear constant coefficient equations

Linear equations
Az'(t) + Bz(t) = q(t) (1.1)

with matrix coefficients A, B € L(R™), A singular, are easy to understand
when taking into account the close relationship with matrix pencils {A, B}
(e.g. Gantmacher (1966)). In this section we explain some basic facts on
how and for what reasons well-known discretization methods behave when
applied to DAEs.

Definition The ordered pair of matrices {A, B} forms a regular matriz
pencil if the polynomial p(A) := det(AA + B) does not vanish identically.
Otherwise, the pencil is called singular.

Weierstrass (cf. Grantmacher (1966)) has shown that a regular pencil
{A, B} can be transformed into { A, B},

A := EAF = diag(1, J), }

B := EAF = diag(W, ) (1.2)

by the use of suitable regular matrices E, F € L(R™). Thereby, W € L(R¥),
and J € L(R™ ) is a nilpotent Jordan block matrix with chains

01
0

1
0

Definition {4, B} given by (1.2) is called the Kronecker canonical normal
form of the regular pencil {4, B}. The indez of a regular pencil is defined
to be ind(A, B) := ind(J) := maximal Jordan chain order of J.

An equation of type (1.1) with a singular matrix pencil {A, B} is some-
what incomplete. For these equations, the homogeneous initial value prob-
lem

Ar'(t)+ Bz(t) =0, z(0)=0

has more than countably many different solutions (see Griepentrog and Mérz
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(1986)). A typical example is

10 11
a3 8) a-[33]
Singular matrix pencils in (1.1) indicate some defect in the modelling.
Here, we are interested in equations (1.1) with regular matrix pencils

{A, B} only. Using the transformation matrices E, F leading to the Kro-
necker normal form (cf. (1.2)) we may transform (1.1) equivalently into

AZ'(t) + Bi(t) = 4(t), (1.3)

where A, B are given by (1.2), §(t) := Eq(t), #(t) := F~1z(t). In more
detail, (1.3) reads

u(t) +Wu(t) = p(t) (1.4)
JU(t) +u(t) = r(t), (1.5)

where u, v and p, r are the related components of  and §, respectively. Now,
the decoupled system (1.4), (1.5) is said to be the Kronecker normal form
of equation (1.1). Moreover the index of equation (1.1) can also be traced
back to ind(A, B) =: u.

In accordance with the Jordan structure of J, equation (1.5) decouples
into parts such as

0 1
) w'(t) + w(t) = s(t) (1.6)
0
of dimension vy < p.
If vy = 1, then (1.6) simply yields
w(t) = s(t).

If ¥ = 2, then (1.6) represents

wh(t) + wi(t) = s1(t
B a0 o)} )

which leads to

o= (3750

For v = 3 we have

wy(t) +wi(t) = s1(t)
wy(t) + wa(t) = s2(t) } ; (1.8)
ws(t) = 83(t)
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hence

s1(t) — (s2(t) — s5(t))’
w(t) = | s2(t) — s5(t) .
s3(t)

In general, if u denotes the index of our equation (1.1), then (1.5) contains
at least one part (1.6) of dimension v = u, and, in consequence, certain
components of the right-hand side have to be differentiated i — 1 times.
Clearly, (1.4) is a regular linear ODE. For all continuous right-hand sides
p(-) : T — R there is a unique solution u(-) : T — R* passing through given
(ud,t0) € RF x T.
On the other hand, the solution of (1.5) may be expressed as

-1
o(t) = 3 (-1 (Fr(®) ).
=0

The initial value v(tp) is fixed completely, and for solvability we have to
assume r(-) : Z — R™F to be as smooth as necessary. From this point
of view, for u > 1, equation (1.5) represents a differentiation problem. It
will be pointed out later that this causes numerical difficulties. (Recall the
well known fact that differentiation represents an ill posed problem in the
continuous function space!)

Clearly, initial value problems for (1.1) only become solvable for consistent
initial values

a(to) = Falto) = F [ %, |,

where u® € RF is a free parameter, but v(ty) is determined as described
earlier.

This is the second essential difference from regular ODEs and, when 1 > 1,
this also entails considerable numerical problems, which have not yet been
solved sufficiently.

At this point it should be emphasized again that the canonical normal
form is used only to provide an immediate insight into the structure of
(1.1). However, we do not think of transforming (1.1) into (1.5), (1.6) in
practical computations!

Next we check what will happen when numerical integration methods
approved for regular ODEs are applied to the singular ODE (1.1). First we
consider the multi-step method

1, < : -
FAY oz + B Bize—; = q(to), (1.9)
j=0 7=0
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8
te:=)_ Bjtej, ap # 0,
j=0

where z; is expected to approximate the true solution value z(t;). Again we
decouple equations (1.9) according to the Kronecker canonical normal form
by multiplying (1.9) by E and transforming

F_1$i=ii=[ui].

Ui
This yields
13 d _
A Y ajue i+ WD Bue; = p(te) (1.10)
j=0 7=0
1S i _
JEZajvg_j + Zﬂj’vg_j = r(te). (1.11)
i=0 i=0

Formula (1.10) represents the given multi-step method applied to the in-
herent regular ODE within the singular system (1.1). On the other hand,
(1.11) may be solved with respect to v, if the matrix

a().] + hﬂo[

is nonsingular, that is for Gy # 0.
In the index-1 case J = 0, and (1.11) simply becomes

zs:ﬂj’vl_j = ’I‘(t-g). (1.12)
j=0

In Maérz (1984, 1985) it was pointed out that, for the stability of the dif-
ference equation (1.12), it is necessary for the polynomial 377, B; X7 to
have all its roots within the interior of the complex unit circle. In partic-
ular, symmetric schemes (1.12) like, for example, the centred Euler scheme
become unstable.

The best way to avoid error accumulations in (1.12) is to choose 3¢ = 1,
p1=---=fBs =0, e.g. to use the BDF.

For higher indexes u > 1 we only discuss the BDF. In index-2 parts such
as (1.7) we have

18
— ; . = t
3 JE=O QW e+ Wiyg s1(te) Ci>s

wa g = S2(te)
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thus
18
Wig = sl(tg) 3 ;)aj32(tg_j) >,
wae = 83(te)
if we assume exact starting values wa; = sa(t;), 1 =0,...,s—1 are available.

Inexact starting values as well as round-off errors in the linear equation (1.9)

to be solved for x4 give rise to a weak instability, i.e. the errors are amplified

by 1/h. However, fortunately, only the component w ¢ is affected by this.
Analogously, in index-3 parts, such as e.g. (1.8), we have

1 8
B Z ajwe—; + Wye =8 (te)
=0
£>s.

1< P
E Z QW3+ Woe = 82(tg)

rd
w3,e = 83(te)

Using these formulae for ¢ > 2s together with exact values w3; = s3(t:),
i=0,...,28 — 1, wy; = 82(t;), i =0,...,8 — 1, would lead to

1 8 1 8 8
wie = si1(te) — 5 Y aysa(te-;) + 7 D ;) aiss(te-js)
=0 =0 =0

1 §
wae = sate) — 7 > ajss(te—;)
7=0

w3y = 83(te)

Of course, in practical computations 2s exact starting values are not avail-
able, thus the components w; ¢ and wy, will be affected by instabilities of
the type 1/h? and 1/h, respectively. It should be mentioned that these in-
stabilities are due to the differentiations arising in (1.1), and in this sense
they are very natural.

Now, let us turn shortly to implicit Runge-Kutta methods for (1.1). Given
the Runge-Kutta tableau

c| A
we have to solve the system
| 87
8
AX!+B(ze-1 +h Y 0y X)) = qlte_1 +cih)  i=1,...,s, (1.13)
j=1
and then to compute
L]
Ty = Tg-1 +h2ﬂjXJ/~. (1.14)

Jj=1
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Again we use the transformation to the Kronecker normal form. This gives

Ui' + W(ug—1 + hz a,'jU;) = p(te—1 + cih), 1=1,...,8, (1.15)
j=1

s
Ug = Up_1 +h2ﬂjUJ/-, (1.16)
Jj=1

8
IV +ve1 +h Y iV =r(tey + k),  i=1,..,s, (117
=1

8
Vg = Vp—1 + hZﬂJ‘/; (118)
i=1
Clearly, (1.15) and (1.16) are nothing else but the given Runge-Kutta meth-
od applied to the regular inherent ODE (1.4). This part does not cause any

new difficulties.
Equations (1.17) and (1.18) decouple further according to the Jordan
chains in J (cf. (1.6)). For index-1 chains (y = 1) we simply have

8
we—1+h Z a,-jVV]{ = 8(tg—1 + c;h), i=1,...,s, (1.19)
j=1
8
we=we_1+hY BiW]. (1.20)
Jj=1

Now it becomes clear that we have to use a nonsingular Runge-Kutta matrix
A to make the system (1.19) solvable with respect to W{,..., W/. Denoting
the elements of A~! by &;;, we obtain

8 8
we = we1+ Y B Y djk(r(te—y + ckh) — we_y)
=1 k=1

8 3
= owe—1+ B Y &jgr(te-1 + cxh)

j=1 k=1
with
e=1-pTA"1(,..., )T (1.21)
Recall that w, should approximate w(t;) = r(t;). Obviously, |o| > 1 would
yield an unstable scheme. Choosing 8; = a,;, j = 1,...,s, in the Runge-

Kutta tableau we obtain ¢ = 0 and wy = r(t;—1 + csh).
Thus, the so-called IRK (DAE) (cf. Petzold (1986), Griepentrog and Marz
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(1986)), i.e. s-stage Runge-Kutta methods, with
Bi = ogj, i=1,...,s, =1, A nonsingular, (1.22)

appears to be an appropriate tool for handling index-1 equations (1.1).
Next we investigate what happens with such a method if (1.5) contains
an index-2 block (1.7). As earlier, we compute

wa e = 82(te—1 + h).

1SN 1<,
wie = 81(te—1+h)— h > Gy ksa(tes +cxh) + B > by pwa ey

L1
sitecr+h) =Y as,kﬁ(32(tl—-1 + cxh) — s2(te-1)) (1.23)
k=1

assuming the starting value wa¢_1 to be consistent, i.e. wa 1 = s2(ts—1).
If the Runge-Kutta method has an inner order of consistency > 1 we
know the condition

8
Z Gger =1
k=1

is satisfied. Thus, (1.23) with a consistent starting value actually provides

an approximation of wy (t¢) = s(t¢)— s5(t;). However, we do not usually have

consistent starting values, and the errors are unstably amplified by 1/h.
Let us summarize what has been pointed out in this section:

1  Singular systems (1.1) of index u are mixed regular differential equa-
tions (1.4) and equations (1.5) including u — 1 differentiations.

2 Consistent initial values are not easy to compute in practice.

3  Integration methods handle the inherent regular ODE (1.4) as ex-

pected.
4  To avoid singular coefficient matrices in the linear systems to be solved

per integration step we should use implicit multi-step methods (3¢ # 0)
and nonsingular Runge-Kutta matrices A. Moreover, there have to be

additional conditions to ensure stability in the related index-1 parts.
5  Errors in the starting values are amplified by A!~* in the best case, but

only the components v; are affected.

The decoupled system (1.4), (1.5) and also (1.10), (1.11) respectively
(1.15)—(1.18) lead us to the idea that it would be nice to allow different
approaches for the parts (1.4) and (1.5), respectively, say a possibly explicit
higher order method for the regular ODE (1.4) and a BDF for (1.5).

Of course, this should be done without knowing the canonical normal
form. Furthermore, we regard the linear constant coefficient equation (1.1)
as the simplest model with which to give some hints as to how to proceed
with more general equations.
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2. Characterizing DAEs
2.1. Linear equations with variable coefficients

Consider the linear equation
A(t)a'(t) + B(t)z(t) = q(t), (2.1)

where A(-), B(-) : Z — L(R™) are continuous matrix functions on the inter-
val T C R, and A(t), t € 7, is singular.

The first classification of these singular ODEs was given by C. W. Gear
and L. Petzold (1984).

Definition (2.1) is said to be a global index u DAE if there exist regular
matrix functions E € C(Z,L(R™)), F € CYZ,L(R™)) so that multiplying
(2.1) by E(t) and transforming F(t)~1z(t) = Z(t) leads to the decoupled
system

[ 3 3 ]"E'(t) + [ Wo(t) (} ] &(t) = E(t)q(t), (2.2)

where J is a constant nilpotent Jordan block matrix, ind(J) = p.

Unfortunately, except for some interesting case studies, this Kronecker
canonical normal form (2.2) as well as the transforms E, F are not available.
Moreover, no way is known for relating this form to nonlinear equations.
This is why we are looking for another way to characterize (2.1).

Denote by N(t) := ker A(t) the null space of A(t), t € Z, and assume
this null space to be smooth, i.e. that there exists a matrix function Q €
CY(Z,L(R™)) which projects R™ onto N(t) for each ¢t € T (that is Q(t)? =
Q(), imQ(t) = N(2)).

If DAE (2.1) has a global index y, then e.g. Q(t) = F(t)diag(0,Q ;) F(t)!
represents such a projector function, where @ ; denotes a projector onto
ker J. In particular, for global index-1 equations (2.1), we simply have
J =0, hence Q(t) = F(t)diag(0, I)F(t)!.

In the following we let @ denote any such a projector function, and we
also use P(t) :=I-Q(t),t€T.

Since A(t)Q(t) = 0, we may insert A(t) = A(t)P(t) into (2.1), and rewrite
it as

A{(Pz)'(t) - P'()=(t)} + Bt)x(t) = q(t)
or
A(t)(Pz)'(t) + (B(t) — A(t)P'(t))z(t) = q(t). (2.3)

This makes clear that, in general, we should not ask for C! solutions of (2.3)
and (2.1), respectively, but for solutions belonging to the function space

Cl := {z € C(T,R™) : Pz € C}(T,R™)}.
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Example A(t) = diag(I,0) immediately leads to
O+ Butn(0 + Balhealt) — o) | 2.0
Ba1(t)z1(t) + Baz(t)z2(t) = qo(t) [’ '

which is called a semi-explicit DAE.
Obviously, it is neither necessary nor useful that o € C1!
Next we reformulate (2.3) to

A(Pz) + (B — AP')(Pz +Qz) = g
and then to
{A+(B-AP)Q}P(Pz)' + Qz) + (B — AP)Pz =q. (2.5)
Denote A; := A+ ByQ, By := B— AP’ and ask whether A;(t) is nonsingular
for all t € Z. If it is so, we multiply (2.5) by PAI'1 and QAI'I, respectively.
This yields the system
(Pz) — PPz + PA{'BoPx = PA7q (2.6)
Qz+ QAT 'BoPr = QA7lg, (2.7)
which decomposes into a regular explicit ODE for the nonnull space compo-
nent Pz and a simple derivative-free equation for determining the null space
component QQz. The inherent ODE
w' — P'Pu+ PAT'Byu = PAT!q (2.8)
has the property that solutions starting in imP(¢) for some ¢y € Z remain
in imP(t) for all ¢t € Z, since multiplying (2.8) by Q yields
(Qu)’ - Q'Qu=0.
Consequently, if for any ¢ € C(Z,R™), up € imP(tg), we denote the solution
of (2.8) passing through (uo,tp) by u € C!, we obtain, with
z = u-QA7'Bou+ QAT'q (2.9)
(I - QAT'Bo)u + QATq,
a C}, solution of (2.1).

To be sure to address the initial condition to the respective component,
we may state as follows

P(to)(z(to) — :L'O) =0. (2.10)
This means that u(tg) = P(tg)z(to) = P(tg)z?, i.e. P(ty)z° plays the role of
up. Now 2% € R™ can be chosen arbitrarily. In general, z(to) = z° cannot

be expected to hold for the solution z(-) of the initial value problem (IVP)
(2.1), (2.10), but

z(to) = (I — Q(to) A1(to) " Bo(to)) P(to)z® + Q(to) A1(to) *qlto).
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Lemma 2.1 Let A,B,Q € L(R™) be given, N := ker A # {0}, Q% = Q,
im@Q =N, §S:= {2z € R™: Bz € imA}.
Then the following three statements are equivalent:

(i) R"=NeoS
(ii) ind(A,B) =1
(iii) A + BQ is nonsingular.

Moreover, if G := A + BQ is nonsingular, then G"!BQ = Q, G~14 =
I — @, and QG 1B represents the projection onto N along S.

Proof. The first part is given in Griepentrog and Marz (1986), Theorem
A.13. Here we check the second part only.
Trivially, G-'BQ = G~(A+ BQ)Q = Q,

GlA=GTAI-Q) =G (A+BQ)I-Q)=1-Q.
Then, we have for Q, := QG~1B
Q? = QG'BQG'B=QG'B=Q,,
R:Q = QG 'BQ=Q, ie imQ,=imQ=N,
and @,z = 0 implies
G 'Bz=(I-Q)G !Bz,
thus Bz = G(I — Q)G 1Bz = AG"'Bz € imA. O

Lemma 2.1 applies to our DAE in the following sense.
In addition to N(t) =: Ny(t) introduce

So(t) = {z €R™: By(t)z € im A(t)}

= {2 €R™: B(t)z € im A(t)}. (2.11)
By Lemma 2.1, our matrix A;(¢) is nonsingular if and only if
So(t) & No(t) =R™. (2.12)
If (2.12) holds, then
Qs(t) == Q(t)A1(t) " Bo(2) (2.13)

projects R™ onto Np(t) along Sp(t).

Definition The DAE (2.1) is said to be indez-1 tractable (or transferable)
if A, B are continuous, A(t) is singular but has a smooth null space, and
A;(t) remains nonsingular for all ¢t € Z.

Theorem 2.2 Let (2.1) be transferable. Then

(i) For all ¢ € C(Z,R™), z° € R™, the IVP (2.1), (2.10) is uniquely solvable
on C}(Z,R™).
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(ii) So(tg) is the set of all consistent initial values at time ty € T for the
homogeneous equation, all IVPs Az’ + Bz = 0, z(to) = z¢ € So(to) are
uniquely solvable.

Proof. It only remains to check the consistency of zg € So(tp). In fact,
solving the IVP Az’ + Bz = 0, P(to)(z(to) — o) = 0, zo € So(to), we derive

z(to) = (I — Qs(t0)) P(to)zo = (I — Qs(t0))T0 = Zo.
0
Remarks
1  The semi-explicit system (2.4) is transferable if B;3(t) remains nonsin-

gular. Here we simply have

Q =diag(0,1), A1=A+BQ= [ I B ]

0 By
and, furthermore,
0 0
Qs— [ B2—21B21 I :l .
2  Equation (2.2) in Kronecker canonical normal form is transferable if
J + @y is regular, that is if p = 1.
3 It may be easily checked whether each DAE (2.1) which has a global

index p = 1 is also transferable, whereby even @, is continuously dif-
ferentiable,

Q, = Fdiag(0,)F 1.
Theorem 2.3 Supposed (2.1) is transferable, the system

A(to)yo + B(to)zo = q(to)
Q(tg)zg +P (tg):(bgo —qz"()) =0 } (2.14)

is uniquely solvable with respect to zq, yo. ¢ is the fully consistent initial
value related to (2.1), (2.10), yo = (Pz)'(to) — P'(to)zo.

Proof. Rewrite the first equation of (2.14) as
A(to){yo + P'(to)zo} + Bo(to)zo = g(to)-
Rearrange this as
A1 (to){P(to)yo + P(to)P'(to)zo + Q(to)xo} + Bo(to) P(to)z® = g(to).
Now we decouple into

P(to)yo + P(to)P'(to)zo + P(to)A1(te) "' Bo(to) P(to)z®
= P(to)A1(to) 'q(to)
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Q(t0)xo + Qs (o) P(to)z° = Q(to) A1(2) q(to)
and compare those with (2.6), (2.7), in order to obtain
Iy = x(tﬂ),
Yo = (Px)(to) — P'(to)x(to).

Finally, the matrix

Alto) Bl(to)
[ Qts) Plto) ] (2.15)

is nonsingular since A(tg) + B(to)Q(to) isso. O

Now, let us turn to nontransferable DAEs (2.1), that is to those DAEs
with a singular matrix A;(t).
Introduce new subspaces

Ni(t) = kerAy(t)
Si(t) = {z€R™:B(t)P(t)z € imA,(t)}
= {z€R™: By(t)P(t)z € imA,(t)}. (2.16)

and now assume that
Nl(t) 32} Sl(t) = Rm, teZ

holds. Choose Q1(¢) to be the projector onto N1(t) along Si(t), and let @
be continuously differentiable. Note that for B; := (By — A1 (PP,)")P

Si1(t) = {z € R™: B;(t)z € im(A1(¢))}
holds. By Lemma 2.1, the matrix
Az(t) == A1(t) + B1()@Qu1(t), teZ
becomes nonsingular and, finally,
Q1(t) = Qi (1) A2(t) ' Bu(t),
which implies that
Q:1(1)Q(t) =0, teZ, (2.17)

is true. As a consequence, the products P(t)P;(t), P(t)Q1(t) are also pro-
jectors. Hence, it makes sense to look for a decomposition r = PPz +
PQ1z + Qz of the solution. To this end, rewrite (2.1) again (cf. (2.5)) as

A(P(Pz) + Qz) + BoPz =g,
then as

A {(PPiz) + PQ,(Pz) + Qz} + (Bo — A|(PP,))Pz =gq



NUMERICAL METHODS FOR DAES 157

and finally as
Ax{P,(PPiz) + PLPQ:(Pz) + P1Qx + Q1z} + BiPPiz = q. (2.18)
Multiplying (2.18) by PP, A5 1 QPA; 1 and Q145 ! respectively, and per-
forming some technical calculations we obtain the system
(PPyz) — (PP1)PPiz + PPiA;' B, PPz = PP Ay q (2.19)

~(QQis) +Qz = QPiA;'q—(QQ1)PQic
—{(QQ1 - QP) + QP1A; B} PPz (2.20)
Qiz = Qi145'q. (2.21)
Clearly, (2.19) represents a regular ODE for the component PPz, (2.21)

simply determines @1z, but to obtain the null space component Qx we have
to insert @1z = Q145 14 into the term (QQ;z), i.e. we have to differentiate

QQlAz_lq once.
Multiplying the ODE

u — (PP)'u+ PPi1A;'Biu = PP Ay Yq (2.22)
by I — PP; leads to ((I — PPy)u) + (PP)'(I — PP1)u = 0. Therefore,
u(to) € im P(to)Pi(to) implies u(t) € im P(¢)Py(t) for all t € T.

Example Consider the semi-explicit DAE (2.4) with B23(¢t) = 0 and assume
that Bo;(t)Bj2(t) is nonsingular. We have

ae =]y 720,

Si(t) = {( v ) ER™: le(t)u=0}.

Now (%) € Ni(t) N S1(t) implies v = —Bia(t)v, Ba(t)u = 0, that is v = 0,
u = (. Then, compute
0 = [ Bi12(B21B12) "By 0 ]
! —(Ba1B12)™'Bn 0|’
PP, = [ I- 312(326312)"1321 g } .

It should be mentioned that this kind of equation is often discussed, and it
is said to be an index-2 DAE in Hessenberg form. The simplest system of
this type is (cf. (1.7))
i +re=q }
T1=q2 |’

Let us turn back to the general equation (2.1). If A,(t) is also singular,
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we proceed analogously using new subspaces and projectors. More precisely,
for given A, B € L(Z, L(R™)), we define the chain of matrix functions
Ao = A, Bo =B — AP’,
Aiy1 = A+ BiQ, (2.23)
Biy1 = (Bi— Aii(PoPr---Pi1) )R, 120,
where P; = I — Q;, and Q,(t) projects onto N;(t) := ker A;(t),t €Z, j > 0.
Introduce further
S;j(t) = {z€R™:Bj(t)z € imA;(t)}
= {z€R™:B;_1(t)P;-1(t)z € imA;(t)}, j=>1
Definition The ordered pair {A, B} of continuous matrix functions (and
also the DAE (2.1)) is said to be index-y tractable if all matrices A;(t),

teZ,j=0,...,u—1, within the chain (2.23) are singular with smooth null
spaces, and A,(t) remains nonsingular on Z.

Theorem 2.4 If the DAE (2.1) has the global index u, then this DAE is
also index-u tractable.

Proof. We refer to Hansen (1990), where this assertion is verified by means
of a very complicated induction. 0O

Theorem 2.5 Let {A, B} be index-u tractable. Then the IVP (2.1),
Py(to) ... Pu—1(to)(z(to) —2°) =0 (2.24)

is uniquely solvable on C}(Z,R™) for any given z° € R™ and sufficiently
smooth right-hand sides g, in particular for all ¢ € C*~1(Z,R™).

Proof. The assertion follows from the previous explanations for 4 = 1 and
pu = 2. It is proved in Marz (1989) for u = 3, and for u > 3 in Griepentrog
and Marz (1989) and Hansen (1989). O

Remark The solution of an index-u-tractable DAE, u > 1 decomposes in
the following way:

z=PD... P, 1z + P... P“_2Q“_1.'L‘ + -+ Py@Q1z + Qoz.
Thereby Py ... P,_1x € C* solves the inherent regular ODE,
F... P“_zQ”-lw ect

is given by the ‘algebraic’ part. The components Py ... P, ;jQu_j+1z € C*
include derivatives of order j — 2 for j = 3,...,u and, finally, Qoz € C
includes a (i — 1) derivative.

When investigating discretizations we are often interested in compact in-
tervals Z, and in the properties of the maps representing our IVPs and
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BVPs. Let Z := [t,T], and {A, B} be index-u tractable. Let I, :=
Po(to) - - - Py-1(t0), M, :=im(II,) € R™. Then introduce the linear map

L:CN(IZ,R™) - C(T,R™) x M, =:Cx M,
by defining
Lz = (A(Pz)’ + Boz,I1,z(t0)), x € CH(Z,R™). (2.25)
The function space C},(Z,R™) completed with its natural norm
Izl := llzlloo + (P2)'llo, = € Ch,

becomes a Banach space. Note that the topology of this space is independent
of the choice of projector function.
The map £ is bounded, but does a bounded inverse exist?

Theorem 2.6 Let {A, B} be index-u tractable, T = [tg,T]. Then
(i) it holds that

pu-1 ]
lzll < K {Z lg9 |0 + |Hum(t0)|} (2:26)
j=0

for all solutions z corresponding to sources g € CH+YZ,R™);

(ii) the map L is injective;

(iii) £ is surjective for 4 = 1, but for 4 > 1 im(L) becomes a nonclosed
proper subset within C x M.

Proof. The first assertion is obvious for x =1 and p = 2 (cf. (2.6), (2.7)
respectively (2.19)—(2.21)). In general, it can be verified by decoupling the
DAE (Griepentrog and Mérz 1989, Hansen 1989).

The injectivity of £ is given by Theorem 2.5. Moreover, for p = 1,
Theorem 2.2 provides solvability for all continuous right-hand sides g, i.e.
im(L) =C x M,,.

In the higher index cases, that is for 12 > 2, we have to assume that certain
components of ¢ are continuously differentiable for solvability. However, the
set of these functions is not closed in the continuous function space, but it
is a nonclosed proper subset. O

Remarks

1  Inequality (2.26) is somewhat liberal. It could be stated more strictly
but would take immense technical effort. To do this by means of the
decoupling technique, those parts of ¢ which have to be differentiated
have to be described precisely. In particular for g = 2, the system
(2.19)-(2.21) makes this transparent. There we have

im(£)={qeC: Q1A2_1q € C'} x My,
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and
Izl < K{llglloo + (@145"9) lloo + [Maz(to)|}- (2.27)
2  The inequalities
p—1
lzllo < K {Z g lloo + Iw(to)l} (2.28)
i=1

are used in Hairer et al. (1989) to define the so-called perturbation
index. In our framework, (2.28) as well as its sharper form (2.26)
appear as secondary effects.

Corollary 2.7 If u = 1, then the inverse of £ is bounded, and £ is a
homeomorphism. If 4 > 1, then the inverse of £ becomes unbounded.

Proof. Since L is acting in Banach spaces, this assertion follows immedi-
ately from Theorem 2.6. O

In other words, higher index DAEs (1 > 1) become ill posed in Tichonov’s
sense in the given setting, i.e. the solutions do not depend continuously on
the inputs. This has bad consequences for the numerical treatment. The
unboundedness of £7! makes the related discretized maps unstable.

At this point it should be recalled that the explanations in Section 1
concerning integration methods confirm the expected instability. On the
other hand, in certain cases they cause us to be optimistic as they are only
weak instabilities and we are to be able to handle them.

We conclude this section by emphasizing once more that the described de-
coupling of (2.1) should be understood as an appropriate technique for
analysing large classes of DAEs and the precise behaviour of numerical meth-
ods.

It should also be possible to compute the projectors Q;(t) and matrices
A;(t) at certain points t in order to formulate the initial conditions and orga-
nize a numerical index-testing. However, in general the decoupling technique
is not aimed at representing a numerical method.

2.2. DAEs as vector fields on manifolds
The most frequently used notion of an index of a general nonlinear DAE
f',z,t) =0 (2.29)

is the differentiation indez, which goes back to the work of S.L. Campbell
on linear DAEs with smooth coefficients (e.g. Campbell (1987), Brenan et

al. (1989)).
Assuming f and the respective solutions to be smooth enough we form
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the system
. f(@z,t) = o ‘
a'if(x,)m7t) = 517]((17’,56, t)(L‘” +..-=0
. > (2.30)
a* ! . 0 ’ (u+1)
M (E,.’L‘,t) = %Tf(xamat)x# +=0)
by differentiating u times. Consider (2.30) as a system in separate dependent
variables z’, 2", ..., z#*+Y with z, ¢ as independent variables.

Definition The DAE (2.29) has the differentiation indez p if there exists
an integer p such that system (2.30) can be solved for z’ = H(z,t), H con-
tinuously differentiable, and p is the smallest integer having this property.

We do not recommend carrying out this procedure in order to obtain the
underlying regular ODE z’ = H(z,t) in practice. This ODE does not give
a good reflection of the qualitative behaviour of the original equation.

Example (Fiihrer and Leimkuhler, 1989) The inherent regular ODE of the
DAE
) —z2+az{=0
z2—axi=0 (2:31)
is i = 0, and the origin represents a stable equilibrium (all solutions are
stationary here). By differentiating once we formally obtain the system

i —z2+az?=0

zo —az? =0

zf — x5 + 2az32] = 0
zH — 2az12; =0

)

which leads to

Ty = 29 — ax? }
rh = 2ax;(z9 — ax?) ° (2.32)

but now the origin is no longer stable.
System (2.30) suggests the idea of defining a compound function or a
derivative array

( f(yl,w,t)

9
3 WLty + -
Fu(fu i) = | | : (2.33)

8
| 5 W T g 4
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where §, := (y7,. .. ,y;‘f_,_l)T € Rs+)m,
If we assume the Jacobian H,(,,z,t) := 0F,(y,,z,t)/8y, has constant
rank, we can form the constraint manifold of order

S, = {(z,t) € R™ x R : F,(, ,t) = 0 for a §j, € RW+Im}
as well as

My(z,t) = {§, € R#D™ . F(g,,z,t) =0},
Ml}(z, t) = {y1 ER™:§, € M,(z,t)} for (z,t) € S,.

Definition (Griepentrog, 1991) f € C**1(R™ x R™ x R,R™) is called an
indez-pu mapping if S,, is nonempty and M,(t, z) is a singleton for all (¢,z) €
Sy, and if u is the smallest integer with these properties.

Clearly, DAE (2.29) has the differentiation index p if f is an index-p
mapping. However, now it becomes transparent that this DAE represents a
vector field defined on S, namely

v(z,t) =y € Ml}(z, t) for (x,t) € S,.

By definition, f(v(z,t),z,t) = 0 holds for (z,t) € S,. The solution of each
Ivp
Z'(t) = v(z(t),t), (z(to),t0) € Sy (2.34)

evolves in the manifold and solves the DAE. More precisely, the following
assertion is proved in Griepentrog (1991).

Theorem 2.8 If (2.29) is an index-p DAE, then all solutions proceed in
the differentiable constraint manifold S,. A vector field v(z, t) is defined on
S, and has the following properties:

(i) v is continuously differentiable; and
(ii) the solutions of (2.29) are identical with the solutions of the IVPs (2.34).

Remark Griepentrog (1991) describes both the manifold S, and the vector
field v in detail by means of the rank theorem. These investigations are
closely related to the differential-geometric concepts of regular DAEs in Re-
ich (1990) and Rabier and Rheinboldt (1991). However, these studies are
still in an early phase, but they are very promising and are aimed at making
the results of differential geometry applicable to numerical treatment.

Return shortly to the trivial example (2.31). Now, it appears to be an
index-1 equation, whereby

Sy :={(z,t) e R x R : 23 — ax? = 0},
and M}(z,t) = {0} for all (z,t) € ;.

We would like to direct attention to an essential detail of this index defini-
tion as well as of Theorem 2.8, namely the condition that the Jacobian of the
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compound function (2.33) has constant rank. If this property is lost, differ-
ent singularities may arise, as is illustrated by the next two easy examples,
which model certain RC circuits (Chua and Deng, 1989).

Examples Consider the DAEs

tf—z3=0, z;-23=0 (2.35)
and
) +x2=0, z,—z3=0. (2.36)
Axl A}wl
Z Z>

In both cases the Jacobian Hy(71,z,t) = dF1(f1,z,t)/8%1 has constant
rank 3 for z9 # 0, but it suffers from a rank deficiency at o = 0. In any
case, the origin becomes a stationary solution. Besides the trivial solution,
(2.35) has the solution z1(t) = (2t)%/2, z5(t) = (3t)'/2, which starts at the
origin. On the other hand, (2.36) has no solutions coming out of the origin,
but z1(t) = (1 — 2t)%2, z(t) = (1 — 2t)1/2 starts at (1,1) for t = 0, and
ends, for t = %, at the origin.

2.8. Many open questions are left

What do the differentiation index and the tractability index have to do with
each other. At first glance seemingly nothing. Let us consider the matter in
the case of homogeneous linear DAEs in Kronecker canonical normal form
(1.4), (1.5). In this case we obtain

I 0 00 u W 0

0 J OO v 0 I u
Fl(yl,yg,.’l:,t) = W o0 I 0 u' + 0 0 { v ] y

o I 0 J v 0 0

where

u u” u
y1=:[vl] y2=1[v//] 33::[,0]»

S :={(z,t) e R™ xR : v € imJ},
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and M{(z,t) is a singleton if and only if
JUV=0, v+Jv =0

implies v’ = 0, that is J =0, indJ = 1.

In general, for linear DAEs (2.1), the different index notations are related
to different smoothness requirements with respect to the coefficients A, B,
g; however, they are identical in essence.

Theorem 2.9 Each linear DAE (2.1) with a differentiation index pp also
has a global Kronecker normal form index yx = up. Each DAE (2.1) having
a global index uk is tractable with index ut = pk.

For the technically expensive proof we refer to Hansen (1990), Griepentrog
and Marz (1989) and Griepentrog (1991).

For linear equations, the concept of index-u tractability seems to be the
most general one. But, how is the index-y tractability to be defined for non-
linear DAEs? First, this concept is based upon another notion of solution,
which can also be reasonably applied to nonlinear equations (2.29) under
certain assumptions.

Assumption 2.10 Let the function f € C(G,R™), where G = R™ x D X
I CR™ x R™ x R is an open set and f,(y,z,t), f,(y, z,t) € L(R™) exist for
all (y,z,t) € G, and f,, f; € C(G, L(R™)).

Suppose that the null space of f,(y,z,t) is independent of (y,z), i.e.

N(t) := ker f,(y,2,t), (y,2,t) €G. (2.37)

Let N(t) be smooth in t. Let Q@ € C}(Z, L(R™)) denote the corresponding
projector function onto N and set P:=1 — Q.

In most applications we know, the null space N(t) is kept constant.
Due to Assumption 2.10, the identity

f(y’ z, t) - f(P(t)y7 z, t)

1
= [+ -9)POY2HQ@ds =0, @z, €G
0

becomes true. Consequently, (2.29) may be rewritten as
f((Pz) (t) — P'(t)z(t), z(t),t) = 0, (2.38)

hence the function space to which the solutions of (2.29) should belong again
appears to be

CJb(IOsRm) = {x € C(IOsRm) : Pz € 01(1'07Rm)}7

where Zg C 7 is a certain interval.
This space seems to be very natural. If z. € Cx(Zo,R™) is any given
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function whose trajectory remains in G, then the equation linearized along
z.(t) has continuous coefficients

At = f,E®), Bu(t) = £2(CH)),
() = ((Pz.)'(t) = P'(t)za(t),za(t),t) € G,
and the null space of A.(t) is again N(¢).

It should also be mentioned that the given nontrivial solutions of the
examples (2.35) and (2.36) do not belong to

Cl([oa 00)7 Rz)a
but to
Cx([0,0),R?).

Does it make sense to define the notion of index-y tractability via lin-
earization?

Definition Suppose (2.29) satisfies Assumption 2.10, and . € C}(Zo,R™)
is given, T, := {¢(t) : t € Ty} € G. The DAE (2.29) is said to be transferable
or indez-1 tractable around z, if the pair {A., B,} is index-1 tractable.

Lemma 2.11 {A,, B.} becomes index-1 tractable if and only if the matrix

Gy, z,t) := fy(y,z,t) + f2(3, 2, 1)Q(t) (2-39)
remains nonsingular for all (y, z,t) from a neighbourhood N C G of T.,.

Proof. Let {A., B.} be index-1 tractable, that means that A; := A,+(B.—
A.P"Q is nonsingular, then G, := A, +B.Q = A1 +A.P'Q = A;(I+PP'Q)
is also nonsingular. Next, G(y, z,t) becomes nonsingular for all (y, z,t) € T,
because of

G.(t) =G(®), tel

Since G depends continuously on its arguments, there is a neighbourhood
N of 7, where G(y, z,t) remains nonsingular. Now the assertion is evident.
0

Theorem 2.12 Let z. € C}([to, T],R™) solve the DAE (2.29). Let (2.29)
be transferable around z.. Then, for any given g € C([to, T],R™), z° € R™

the IVP
f(@'@),z(t),t) = 'q(t)
P(to)(z(to) — z°) 0 } (2.40)

is uniquely solvable on C}([to, T), R™), provided that ||q||oc and |P(to)(z° —
z.(tg))| are sufficiently small.
Moreover,

lz — 2]l < K{llglloo + [ P(to)(® — z.(to))I}
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is valid with constant K.
Proof. Denote shortly C} := Ck([to,T],R™), C = C([to,T],R™). For
z € Ok, g € C, 8 € im(P(tp)) with
Iz -zl <o, llallo<e, 85 <0,
Bx := P(to)z.(to), o >0 sufficiently small,

we define the map F by
F(z,9,8) = (f((Pz) () = P'()=(),2(:),-) — 4(-), P(to)x(to) — B)-
F maps a ball within C}; x C x imP(tg) into C x imP(to), it is continuously
differentiable and, in particular for z € C},,
F(24,0,8:)z = (A.((P2)' — P'z) + Buz, P(to)2(to)).

holds. Trivially, F(z.,0,8.) = 0. Due to Corollary 2.7 (cf. also Theo-
rem 2.2), F.(z4,0,0,) is a homeomorphism, hence it remains to apply the
Implicit Function Theorem. O

Remarks

1  To obtain the fully consistent initial value z¢ := z(to) related to the
IVP (2.40) the system

f(yo, zo, to) — q(to) =0 }
P(to)(zo — 2°) + Q(to)yo = 0

will be helpful (cf. Theorem 2.3). The Jacobian of this system is
nonsingular because of the index-1 requirement.

2 Let (yo,Zo,t0) € G be given, and let G(yp,xo,to) be nonsingular. Re-
write f(y,z,t) = f(w,u + Q(t)w,t) =: f(w,u,t) where new variables
w = P(t)y + Q(t)z, u = P(t)z are introduced.

Clearly, since f(wo,uo,t0) = 0, and f,,(wo,u0,%) = G(yo,Zo,t0)

is nonsingular, due to the Implicit Function Theorem there exists a
continuous function w(u,t) with continuous partial Jacobian w,(u,1),
satisfying f(w,u,t) = 0. Then, it is easy to check that (cf. (2.9))

z(t) = u(t) + Q(t)w(u(t),t) (2.41)

represents a solution of f(z’,z,t) = 0 passing through (z¢, o), whereby
u denotes the solution of the inherent regular IVP

u'(t) — P'(t)u(t) = P@E)YI + P'(t)w(u(t),t), (2.42)
’u(to) = P(to)z‘o.

3  Supposing that G(y, z,t) remains nonsingular for all (y,z,t) € G, we
immediately know that

S1 = {(z,t) e DxT: f(y,z,t) =0 for ay € R™}
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is the manifold of consistent initial values. Comparing this with the
matters related to understanding DAEs as vector fields on manifolds
we feel the smoothness demanded there to be difficult to realise.

4 In our examples (2.35), (2.36) we compute G(y, z,t) to be equal to

1 -1 . 1 1

0 —323 respectively 0 343 |
This shows that the transferability matrix may be used as a tool for
detecting singularities numerically.

Unfortunately, the situation becomes much more complicated for higher
indexes. According to Theorem 2.6 and Corollary 2.7 linear DAEs with an
index-p-tractable coefficient pair {A., B.}, 4 > 1, result in ill posed IVPs,
i.e. they have discontinuous inverse mappings in the given topologies. Now,
the standard arguments used in Theorem 2.12 no longer apply because the
derivative F,(z.,0, 3,) does not have a continuous inverse.

By means of the following example we want to elucidate that Theorem
2.12 cannot be saved for the index-2 case even if P(to)P,(¢o) is appropriately
used instead of P(tg) (cf. Theorem 2.5), and if only g from C! is admissible.

Example (Chua and Deng, 1989; Mirz, 1991) Consider the system
x’l = z%, zh = —x3, a:g + zoxz + 1 =0. (2.43)
z.o(t) = (2(% +1)3,-3(% + 1)%, § + 1)T solves this DAE, and

100 0 0 -it-2
A=|010|, B.ty=|0 0 1
000 1 +1 0

form an index-2-tractable pair {A., B.}. However, e.g.,
z(t) = (2+t,-3-¢,1)T

represents another solution, and z,(0) = z(0) holds, i.e. certain bifurcation
phenomena arise. The respective matrix (2.39)

10 —2x3
Gly,z,t)=10 1 1
0 0 x2+ 323

is nonsingular for 2+ 3z3 # 0. Thus, equation (2.43) represents an index-1
DAE everywhere, where z2 + 3z2 # 0 holds. The whole thing should be
understood as an index-1 DAE with a singularity at z2 + 3z% = 0.

We might possibly overcome these problems by making the following def-
inition: The nonlinear DAE (2.29) is called index-u tractable around z, if
for allz € {% € C}, : | —z.|| < g}, o sufficiently small, the respective pairs
{A, B} are index-p tractable. However, how can this be checked?
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Finally, we are also interested in conditions that can be treated numeri-
cally, such as those provided by Lemma 2.11 for instance. So far, statements
have only been successfully made for index-2 equations (cf. Lemma 3.5) and
for special index-3 equations (e.g. Marz, 1989). In these cases it has also
been successfully proved that the differentiation index and the tractability
index coincide identically except for smoothness.

On the other hand, the approach of considering higher index DAEs as
differential equations on manifolds seems to be easier to grasp and handle.
In particular, this is true for DAEs with a special structure, e.g. those of
Hessenberg form. In this respect, interesting results are to be expected.
However, a uniform analysis of DAEs with natural smoothness is still out of
sight.

3. Numerical integration methods
3.1. General remarks on the BDF

The integration method used most frequently for regular as well as for sin-
gular implicit equations

f@'(#),2(t),z(t)) =0 (3.1)

is the BDF. It is well known that there are powerful codes like DASSL (cf.
Brenan et al. (1989)) which treat large classes of DAEs well.

On the other hand, the following example shows that BDFs may fail even
in very simple cases. Thus, in this section we try to clarify the related
problems together with possible ways out.

Example The DAE

010 1 0 0
[0 nt 1Jz'(t)+[0 n+1 O]Z(t)=q(t) (3:2)
0 00 0 nt 1
has global index-3 for all parameter values n € R. The leading coefficient
matrix also has constant null space and constant image space. Table 1 shows
results generated by BDF's with different constant step-sizes h and consistent
starting values for parameter values n = 0, —0.5 and 2.0, respectively.
The exact solution is

z1(t) = e 'sint, z3(t) =e Zsint, x3(t) =e *cost,

and [0, 0.1] is the integration interval. The absolute errors at ¢t = 0.1 arising
in the components of the solution belonging to the null space ker A(t) and
the other one are given separately.

Note that for 7 = 0 we have a linear constant coefficient equation as
discussed in Section 1. Obviously, the null space component is particularly
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Table 1

n=-05 n=0 n=290
hx | Pz | Qo | Pt [Qz| Pz | Qo
BDF,
252 | 3.-2 340 | 34 1 4-3] 14 5.-2
313 347 | 24+10| 56 | 6.-5 | 1.-5 2.-5
784 | 1.443 | 3.446 | 3-7 | 4-6 | 1.6 | 2.6
394 — — | 8.8 |16 2-7 | 5-7
194 | — — | 2-8 [2-7| 6-8 | 1.7
9.7-5 —_ — 5-9 19-9| 1.-8 3.-8
BDF3
2.5-2 — — 1-5 | 2-2] 1-3 8.-2
3.1-3 — — 3-8 | 1-7| 34 1.-2
7.8-4 — — 4-1012-9] 1-1 1.42
3.9-4 — — 5-11 | 1.-8{ 343 | 4.4+6
1.9-4 — — 5-12 | 3.-8 | 6.4+12 | 2.+16
9.7-5 — — 9-13 { 1-7 ] 1432 | 1.436
BDF,
3.1-3 — — 2.-13 1 3.-9 — —
7.8-4 — — 5.-13 | 2.-8 - —
3.94 — — 4-12 | 3.-8 — —_—
1.9-4 — — 2-12 | 2.-7 — —
9.7-5 — — 4.-12 | 4.-6 — —
(0 =1.-16)

affected by round-off errors. Furthermore, order expectations do not become
true in practice.

Before we investigate the BDF applied to DAEs (3.1) we describe this
class of DAEs in more detail. Assume DAE (3.1) satisfies Assumption 2.10
and, in particular,

N(t) :=ker f/(y,2,t), (y,z,t)€G, (3.3)
Let @ € CY(Z,L(R™)) denote the corresponding projector function onto

N, P := I — Q. Recall that Assumption 2.10 allows equation (3.1) to be
rewritten as

F(P=)'(t) ~ P'(t)x(t), z(t),t) =0, (3.4)

thus the function space to which the solutions of (3.4) should belong again
appears to be

CY(Zo,R™) := {z € C(Zy,R™) : Pz € C1(Zy,R™)},
where Iy C 7.
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We now ask how integration methods approximate solutions of (3.4) and
(3.1). For this purpose, we assume here that solutions exist, say on the
interval Ty = [to,T). However, it should be mentioned once more that
a comprehensive analysis of nonlinear DAEs is only in its infancy. Very
interesting problems remain to be solved. In particular, solvability is closely
related to the description of the set of consistent initial values.

Assume z, € C}, := C}([to, T],R™) solves DAE (3.1). Let B(z.,0) C C&
denote a small ball around z, within C}, such that z(t) € D for t € [to, T},
and for all z € B(z., g). Introduce the map

F : B(z+,00) € CY, — C :=C([to,T))
by means of

(Fz)(t) = f((Pz)'(t) — P'(H)z(t), 2(t), 1),
t € [to,T), = € B(zs, 00)- (3.5)

The map is continuously differentiable; and its Frechet derivative at z, is
given by

(F'(z4)2)(t) := A.(t)((P2)'(t) — P'(t)2(t)) + B.(t)2(2),
t € [to, T), 2 € Ck, (3.6)

where

A(t) = £,(C(#), Ba(t) := f2(4(D)),
¢t = ((Pzx)(t) = P'(t)zx(t), z4(t), 1).

Let the interval [tg, T] be partitioned by
mitp<t1 <.---<ty=T.
Denote by h, h the maximal and minimal step-sizes of 7, respectively, and

hj :=t; —tj_1. Given starting values zy,...,T,—1, we apply the variable
step-size BDF to (3.1), i.e.

1 _
f (; Zaﬁwj—nxj,tj) =0, j=s,...,N, (3.7)
7 i=0

expecting z; to become an approximation of the true solution value z.(¢;).
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Introduce the map

[ 2 — Zy
Z2g-1 — Tg-1

1 8
f (‘E‘ Qgils—iy Lsy ts)
Frz = 9 §=0 ,

1 8
/ (71; > anizn_i, 2N, tN)

i=0
z€R™™D, |z —2.(4)| <0, §=0,1,...,N,

which represents the discretized map corresponding to the BDF. F, acts
within R™~+1)_ Then denote

:l:.(to)
Z.(tN)
and compute the Jacobian
-7 -
I
Fr(zy)=| S24; ... Zlay Fr € L®R™N+D),
hy hs f
ONs (x aNl * *
_ EAN A F J
whereby
Kjo 4%
A = fylm), Fj:= h"’A + fz(m5)
and

N o= (P(t,)—-Za,,m.(t,-.),x*(t,) ta)

11-0
j=ag,. N},

which are consistent with the norms of C and C};, respectively. We then

Complete R™¥+D) with respect to the norms

2l == max{|z]:i=0,1,...,N},
Za],P(tJ_,)z, —i|: ]

7 i=0

|Mhz=”ﬁm+mw{
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use the matrix norms
IGl: = max{||Gz||x : [|z]l0 =1},
IGllx = max{||Gzlleo : l2llx =1}, G € LR™MN¥Y),
Let Br(z%,0) := {z € R™V+D - |2 — z* || < 0}
In the following we use grids m belonging to a given grid class II, e.g. the
class of locally uniform grids with given constants ¢1, ¢z, hmax, such that
cih;j 1 < hj < cohj_1, h < hpax, for all j and all 7 € II. The smallest

grid class in which we are interested is the set Il.q, of all sufficiently fine
equidistant grids; however we always assume Iloq, C II.

Definition The BDF (3.7) is stable for (3.1) on grid class II if there exist
constants S > 0, p > 0 such that for arbitrary = € II the inequality

llz = Zllx < S||Frz — Frzlloo (3.8)

is satisfied for all z, Z € Br(z}, 0).
Definition The BDF (3.7) is weakly unstable for (3.1) on II if the inequality
|z = zllx < Sh7||Frz — FrZlloo (3.9)

is valid for all 2,z € Br(z}, 0r), ® € II, where S > 0, v > 0 are constants
but gr > 0 may depend on the chosen grid =; ~y is said to be the order of

instability.

Then, introduce the local discretization error 7, := Frzk. Clearly, its first
components 7;, j =0,...,5 — 1, represent the errors in the starting values,
but

1< ,
i=f (FZaﬁx*(t,-_i),x.(tj),tj> forj=s,...,N.

Surely, the point of interest is the so-called global error
Ex i=Tp — Xg
where z, € R™"+1) consists of the components xg,Z1,...,Zx € R™. Note
thate; = 7; for j=0,1,...,s - 1.
Recall some standard arguments from discretization theory (e.g. Keller
(1975)), which we apply and modify, appropriately.

1  First of all, if the z;, § > s in (3.7) exist and z, € By(z},0), then
stability implies the error estimate

lexllx < Sll7xlloo,
hence

max |z, (t;) — ;| < S{jlélgfl |z (t5) — ;| + max |71} (3.10)
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2 Then, it is sufficient for stability that there exists a uniform bound S,,

I(Fr@) e <81, mell (3.11)
3  Assuming stability, for sufficiently small h,.x and g, the equation
Frz=0

has exactly one solution z, on Br(z}, ), which can be computed by
the Newton method.

4  (3.11) can be proved by permuting linearization and discretization, and
using the Banach lemma.

Under which conditions do these standard arguments remain valid when
the BDF is applied to DAEs?

In Section 1 we have learnt that, in higher index cases, some weak in-
stabilities should be expected. Is it possible to carry over these standard
arguments then? How can weak instabilities be distinguished?

3.2. On the BDF applied to linear DAEs

In any case, the behaviour of the BDF applied to linear DAEs plays a crucial
role. This is why we investigate this question in more detail. It should not
be surprising that stability and instability, respectively, depend on the index
of the DAE. In the following we will point out that certain time-dependent
subspaces are also responsible for exponential instabilities.

Let us turn to the special case when the BDF is applied to linear DAEs,
that is

1< .
Alty) = D ogizii + Bltj)z; = q(t;),  i2s, (3.12)
7 i=0
where starting values zg,...,Z;—1 are given. For the local error 7, we now
derive
1 8
7= Alti)i > ajiza(tii) + B(t;)z.(t;) — a(t;)

= A(t)) {hi zajim*(tj._i) — (Pz.)'(t;) + P,(tj)(l:*(t)} ; (3.13)

J =0
consequently, the local error belongs to a subspace,
7 € imA(tj)7 Jj2s,

which is characteristic of DAEs, and we will make use of this later.
To obtain z; for j > s, we have to solve the linear system

1 L]
Fjz; = A(t]’)h—j Z iz + q(t;), (3.14)
i=1
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with the coefficient matrix
1
F;:= h—jajoA(tj) + B(t;). (3.15)

Is this matrix F; nonsingular? Clearly, nonsingularity is necessary for the
BDF to work well. Note that for = —1 in (3.2), all related coefficient
matrices F; are singular. However, as example (3.2) also shows, even if the
BDF becomes formally feasible, i.e. if all matrices F; are nonsingular, the
BDF may fail.

Equation Frz = 0, which represents the BDF, now has the special form
Frx = LxX — qr, where

S -
I
Ly = assAs %Aa F, € L(Rm(N+1)),
hs ha
QaNs . QN1 .
v N1y
i o AN oy AN Fy |
(3.16)
Aj:=A(tj), 520, (gr)j == for j=0,...,8—1, (gr); = q(t;) for j > s.
Clearly, £ is nonsingular if F,, ..., Fiy are. Moreover, in the case of linear
DAEs, the stability inequality (3.8) simplifies to
1€z I < 8. (3.17)

It should be mentioned that £, is to be understood as a discretized map
L given in (2.25). By Corollary 2.7, we may expect L, to be stable for
index-1-tractable DAEs only.

Next we are going to prove the characteristic inequalities of £1.

Case 1: Assume (2.1) to be transferable (index-1 tractable).

Recall from Section 2 that A; := A + (B — AP’)Q becomes a nonsingular
matrix function. In addition, by Lemma 2.1, G := A + BQ also remains
nonsingular; and furthermore G = A; + AP'Q = A;(I + PP'Q). First of
all, it is easy to check that F); is nonsingular if

1 -
I+ a,—oh—jP(tj)G(tj) 'B(t;) =: H;
is, i.e. at least for small h;j. Then we compute

Fil= {Q(m + ;l—h,-P,(t»H;lP(tj)} G(t;)™, (3.18)

jo

cond(Fj) ~ hj'.
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Since Fy,..., Fy are nonsingular, so is £,. Next, by decoupling L,z = w
in a similar way as (2.1) in Section 2, we generate a uniform bound for £,
on an approprlate grid class II. £,,z = w means in detail that 2; = w;,
j=0,...,8—1,and

A(t;) Za,,z,-,-&-B(tJ)z, wj, j=s,...,N. (3.19)
-71—0

Denote u; := P(t;)zj, v; := Q(t;)z;. Multiply (3.19) by P(t;)A1(t;)~! and
(tj)Al(tj)_l respectively. This yields
ZaJ'P(tJ (wj~i +vj=i) + (PAT' B)(tj)u; = (PAT')(t))w;

i=o0
v + Qa(tj)u; = (QAT)(tj)w;.
Clearly, if the projector function P is constant, then this formula fits the
system (2.6), (2 7) very well. In particular, the first equation simplifies to

(3.20)

Za,,Pu,_, + (PAT'B)(tj)u; = (PATY)(t))w;.
-7 i=0
For w = g, this is in fact the same expression we would obtain by applying
the BDF to the regular ODE inherent in (2.1)

v + PAT'Bu = PATlq.

If P’ does not vanish, there arises some additional feedback between the
components in (3.20). Because

P(t)(uj—i + vj—i) = wj—; + (P(t;) — P(tj=i))(uj—i + vjs)
1
= uj_i+ / P'(tj—; + s(t; — t;_s))ds(t; — t;_:) (uj—i + vi_)
0
we are able to rearrange the first equation in (3.20) to

h Ea,,u]_, + ZDJl(“J—t +v;-i) + (PAY lB)(tJ)uJ (PAT 1)(’-'1)")],
J i=0 i=1

where the coefficient matrices are uniformly bounded.

Theorem 3.1 Let the given variable step-size BDF applied to a regular
explicit ODE be stable on the grid class II. Let the DAE (2.1) be index-1
tractable. Then, there is a bound S such that £, is bijective, and

ICztlloo < 1L7 £ S for all m € 11 (3.21)
Proof. By standard arguments we easily obtain

| < ,
ng‘ lu’Jl <5 I;‘gngaly
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therefore
| < .

r?ggclvgl < Spmax |w;]
and

1

<
f?fg‘] ZO‘JWJ il < ngax|w,|

O

Note that Theorem 3.1 implies the error estimation
max o.(t) - 251 < S { s mu(ts) - 5| + maxlryl ), (322)
which is well known in the case of regular ODEs.

Case 2: Assume (2.1) to be index-2-tractable.

We begin this part by quoting the nice linear index-2 DAE from Gear and
Petzold (1984), which was constructed to illustrate the instability of Euler’s
backward rule.

Example The DAE

[(1) 1?] '(t)+[(1, 1+n]x(t)"q(t) (3.23)

has the global index-2 for all parameter values 7 € R. Compute here (cf.
(2.19)-(2.21))

o - [1 7] m0-[2,2,]

Qe = [ M poRe -

The backward Euler rule applied to (3.23) gives for n # —1

r1,; = ;) —ntjze;,
n_ 1 1
T2 = 1+TI 2,j-1+ —— 157 {lh(t;)— —(q1(t;) - ¢11(tj-1))},

but the exact solution is

zi(t) = qu(t) —ntz2(?),

z2(t) = gq2(t) — q1(2)-
Careful further investigation will reveal that the backward Euler rule for this
problem is weakly unstable but convergent if > —0.5, and exponentially
unstable for all n < —0.5, n # —1. For n = —1 the backward Euler rule does
not work at all.
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In the following we exclude such situations where the behaviour of a nu-
merical method depends essentially on parameter values, all of which belong
to the same category, by restricting the class of DAEs (2.1) to those with
constant ker A(t) and P’ = 0, respectively.

Let us turn back to the BDF applied to (2.1), that is to formula (3.12).
The first problem to be solved is the nonsingularity of F; given by (3.15).
The question may be answered by the use of the decoupling technique de-
scribed in Section 2. Supposing that P’ = 0, and

) 1 -
H(t;) =1+ hj —~(PP1Gy B)(t;)
jo

becomes nonsingular (which happens at least for small k;), the matrix F;
will also be nonsingular, and

1 (I -QP,G;'B)H™ 1PP1}62 1)(tj)

(3.24)

F;! ({QP1+P1Q1+C!;0 “QQ1+h;~

cond(F;) ~ ;2.

Expression (3.24) is evaluated in Mérz (1990, Lemma 3.1). Thereby, G2 :=
A + BoPQ; is used instead of Ay in Section 2. Due to Lemma 2.1 (cf.
(2.16)), both Az and G are nonsingular simultaneously. More precisely,
A'zl = Gz(I - PI(PP)Q1), (I - Pi(PP)Q1)™! = (I + P(PPYQ,) are
valid.

It should be mentioned that the term Q@ within (3.24) does not vanish
principally as a matter of index-2 tractability. This is true independently of
possible special structural forms of the DAE itself. However, if the DAE has
a special form, e.g. Hessenberg form, then, employing the special structure,
we can look for an appropriate scaling of F;.

Next we decompose the system £,z = w (cf. (3.16), (3.19)) to gain infor-
mation about £;!, once again using the projector technique. Multiplying
(3.19) by (PPiG3Y)(t5), (QP1G5;Y)(t;) and (Q1G5Y)(t;), respectively, we
derive

h_PPI(tJ)ZanzJ -i + PPi(t)Ga2(t)” lB(tJ)PPI(tJ)ZJ
=0
= PPi(t;)G2(t;) ™ wj, (3.25)

- hleQl ()Y 0jizimi +Qz; + QPi(t;)Ga(t;) " B(t;)PPy(t;)z =
i=0
= Qpl(tj)Gz(tj)_le, (3.26)

Ql(tj)zj = Ql(tj)Gg(t,-)'le, (3.27)
for j > s. Recall that z; = w; for j =0,...,s— 1. Note that we also use P,
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Q here as constant projector matrices. Inserting

1
h—PPl(tJ)Za,,zJ_,= Za,,PPl(t, i)zj—i+

i=0 J i=0
+ Z%P (Pl(t]) Py(tj-i){PPy(tj—i)2j—i + PQ1(tj-i)2i}
i=0
in equation (3.25), and taking into account (3.27), we are able to prove the
inequality
max |PPy(t;)z;] < Sy max|w;|
by standard arguments. Trivially,

max |Q1(t)2;] < S max |wj]
also becomes true due to (3.27). Moreover, (3.26), (3.27) yield

Qz = —QQl(tJ)Zay{PPl(t; i) + PQu(tj-i)}zj—i

=0
*QPl(tj)Gz(t]) 1B(t;)PPy(t;)z + QP1(t;)Ga(t;) " w;

= _QQl(tJ)Eathl(tJ—-z)GZ(t]—-z) le-z (3.28)

=0

+ Z aﬂQ (Ql (tJ) -1 (tj—z))Ppl (t_,..,)zj_.l

i=0
“QPI(tJ)G2(tJ) lB(tJ)PPI(t])zJ + QPI(tJ)GZ(tJ) wy,
for j > s, where we introduce, for more convenience,

wj := w; for j > s,
Wj = Ga(tj)w; forj<s-1 (3.29)

Now, we can estimate

IQzJI < _IQQI t]) EaJin(t)—-z)GZ(tJ-z)_ -—zl + S3 max |w,| (3.30)
=0

Since (3. 19) immediately implies

ZQJ,Pz,_, = PA(t;)T{-B(tj)z; + w;}, j>s, (3.31)

}

it follows that
(3.32)

lzllx < Ss {ma.x |w;| + ma.x— QQ1(t;) Za]lQl(tJ i)Ga(tj- )7t W)
i=0
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becomes valid.
Consider now expression (3.14) again. Solving this equation in practice,
instead of the values z;, only certain %; satisfying

~ 1< - ,
Fif; = —Alty)y- Yo GiEi-i+at) +6;, s, (3.33)
=1
where Z; := z;, j =0,...,s — 1, are generated. The 6, represent round-off

errors (but also errors that arise later when solving nonlinear equations).

Then, if we put 2; = x,(t;) — &;, j > 0, wj = 7; — §; results for j > s, and
wj = x«(t;) —z; for the starting phase j = 0,...,s—1. Because 7; € imA(t;)
(cf. (3.13)) we obtain for all k > s

Qi(tr)Ga(tk) MBe = Qu(te)Gal(tr) ‘wi
Q1(t)Ga(te) ™ (i — 6x)
= Qu(tx)Ga(tx) " (A(te) Altk) i — 6).
However, on the other hand,
G;'A = G;Y(A+(B-AP)Q)P=G;'AP
= G;'(A1+ BPQ,)P,P=P,P

holds, thus Q:G5'A = @, PP =0.
Consequently,

Q1(tx)Ga(ty) Yk = ~Q1(tk)Ga(ty) 6% (3.34)

for k > s, which appears to be characteristic of these DAEs.
Finally, collect this result in

Theorem 3.2 Let the given BDF applied to regular explicit ODEs become
stable on the grid class II. Let the DAE (2.1) be index-2 tractable, and,
additionally, let P/ = 0.
(i) Then L, is bijective, and

I£7 oo S ML R < SR™H, mell, (3.35)

is true with a certain constant S > 0.
(ii) The following precise error estimates hold:

max|P(z.(4;) - £;] < Sp{ max |P(z.(t;) — ;)| + max|7; ~ §;l}
(3.36)

and
Qea(t) ~ 35)l <
< Sof max IP(@.(t;) - 2;)| + maxry - 651} +
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+% QR1(t;) Y jiQu1(tj—i)Ga(tj—i) 26—,  (3.37)
i i=0

where 5j = Ga(t;)(z«(t;) — ), 5 =0,...,5 — 1, reflect the errors in
the starting values, and

6j:=6; forj>s.
Remarks

1 If exact values z; = z.(t;), § = 0,...,8 — 1, are used in the starting
phase, (3.36), (3.37) immediately imply, for §; =0, j > s,

max [z, (t;) - 23] < S max|r;, (3.38)

hence the BDF converges formally with the expected order. However,
practical computations cannot be managed in such a way that all §;
vanish in reality.

2 Expression (3.28) shows that, for small h;, Qz; behaves in fact mainly
as

1 2 1~

h_jQQl(tj)Zainl(tj—i)GZ(tj—i) M.
i=0

In this sense, (3.37) and (3.35) cannot be improved. We really have

to deal with a weak instability. Fortunately, this instability does not

affect the nonnull space components at all (cf. (3.36)).

Case 3: Assume (2.1) to be index-3 tractable.
First recall our example (3.2) to illustrate that a restriction to the class
of DAEs with constant null space ker A(t) will not do. It may be checked
that, in (3.2), (PQ1Q2)'(t) does not vanish identically. This seems to be the
crucial point in the index-3 case. As in the previous parts we consider £,
given by (3.16).

Recall that (cf. (3.16), (3.33))

o 0

s— - 0

LaXy = Gr = ;(t‘.j y, LaZp —Qr = 0p = s,
L Q(tN) ] | 6N ]
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Tx (tO) = Ip

Tulls—1) — To—
me:r_Q'Ir:Tw = *( ¢ 11)_ -1 3
s

o]
thus L (z} — Zx) = T — b7.

By the use of this projector technique we decompose (3.19) r%pectlvely
Lrz = w. Now we multiply (3.19) by PP1P2A3 , QP1P2A3 , Q1P2A3
and Q2A3 , respectively. We omit these straigthforward but very extensive
evaluations here and mention only that we now have to insert expressions
given by the BDF into each other twice to approximate first and second
derivatives. This is why the BDF on the whole becomes active just for
7 > 2s. The first s steps have to be analysed separately. Let us formulate
the results:

Theorem 3.3 Let the given BDF applied to regular explicit ODE become
stable on the grid class II. Let the DAE (2.1) be index-3 tractable and, in
addition, let P' =0, (PQ:1Q2) =0.
(i) Then L, is bijective,

167 oo < 1€5 e < 8B72, m e, (3.39)

holds with a certain constant S.
(ii) The following detailed error estimates become true with

wr = max|7j — §;| + max |z.(t;) - z;], forj>2s:

|PPy(2))(xs(t;) — £5)| < S1wn, (3.40)

|PQ1(t;)(z«(t;) — ;)| < Sowr + iPQ1Q2As(tj—i) " 65

(3.41)
and
|Q(-’D*(tj) - %;| < Sawrt+
ZaJt(QQ1P2A3 Y(t—i)(Tj—i — —)l
=0
+ 'Yh Zaﬂh Zag —i—kPQ1Q2A3(t—i—k) 16, i_| (3.42)
i=0 3=t k=g
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Thereby, v := max |QQ1 ()|, and
Sj 6; for j=>s,
§; = As(tj)(zu(tj) —z;) forj<s-—1.
Remarks
1  Now, the worst error sensitivity has order hj'z. It is again somewhat
local and~belongs to the null space component only.
2  Putting é; = 0 in (3.40)—(3.42), i.e. using exact starting values and

computing without any round-off error, (3.40), (3.41) provide for j > 2s
|P(xa(t;) — ;)| < Symax |7, (3.43)

but
Q. (t;) — ;)] < S3maxir;|+

8
+ I 2 en(QQPAT -yl (340
i=0

The last term in (3.44) is also troublesome. It reflects the new quality
of the problem of index-3-tractable DAEs.
In constant step-size computations, the local error is smooth if the
solution z,(t) itself is smooth enough. In this case, we again have
|z« (t;) — x| = 1(h*), 7 > 2s. However, step-size changes, and simi-
larly the first s steps raise difficulties. In particular, the variable step
backward Euler method does not converge since

%((chlpzA;l)(tj)r,— — (QQuP2AFY) (tjr) 11
~ —g}z—j@czloz)(tjxpz*)"(tj)(hj — hj1).

Unfortunately, the backward Euler method also fails to provide accu-
rate starting values.

3.8. On the BDF applied to nonlinear DAEs

Now, having provided information on £, we continue the investigation of
nonlinear DAEs started previously. In the following, we understand £, to
be related to the equation linearized in the solution z,, i.e. (cf. (3.6))

Lr=F(2u)r-

In other words, £, represents the discretization of the linearization. On
the other hand, F.(z}) is the derivative of the discretized map F, at z}.
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Compute
S -
aO
_F)=| %sp, ... o
Le=Fr(ap) = | 32D, D, K, , (3.45)
QNg . aNl'
i o Dy ‘F;T'DN KN_
where
D; = AJt;) - A = £,(Ct5)) — fy(nj),
Kj = F2A)+B.(t) ~ 2245 - fulmy)
2 7
= ‘;;—j"u,',(c(t,-) — £(n3)) + £2(C(t) = fa(ns)),
Ct) = ((Pz.)(t) — P'(t)za(t), z.(t), 1),
noi= (P(tj)%zaﬁw;—i’x;’tj)’ Ty := Za(te)-
=0

Further, we have for j > s
. 1
((Lrx = Fr(z*))2)j = D,-E; 3" jizici + (FLC(E)) = £2(n3))z),
i=0
and D; = D;P(t;),

18 1§
Dij—Y @jizi—i = Dj— 3 auP(ti-i)zj—i +

8
1
+D; Y ajip—(P(t;) = P(tj-i))2j-i.
=0 7

Consequently

I(Lx — Fr(zz))zlloo < Yall2l (3.46)
with a grid-dependent value

Yr = comax || Dj| + max | £z(¢(t) — fo(m)ll,

where ¢y denotes a certain constant. Clearly, v, becomes small for refined
grids.
Note that for all quasi-linear DAEs of the form

A(R)L'(t) + g(z(t),t) =0 (3.47)
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we just obtain
Lr = FL(z}). (3.48)

In other words, the BDF discretization and linearization commute asymp-

totically in general, but for special DAEs (3.47) they commute exactly.
Next, supposing F.(z%) to be bijective, we turn to the question as to

whether the nonlinear equation F,z = 0 is solvable. To this end, we intro-

duce the equivalent fixed point problem FErz = z, where the map E, acts in
Rm(N +1)’

Epz:=z— Fi(zt) 1 Frz, 2z € Br(z},00).

As usual when we mean to apply Banach’s Fixed Point Theorem, we state
1

Epz— B,z = Fli(z})™ / {(FL(z2) - Fi(sz + (1 - 8)2)}ds(z — 5) (3.49)
0

and

Epz—xz% = z—xt = Fo(zr) W Fnz — Fral + Frzl)
1
= Fi@) [{F(a3) - Falsz+ (1= 9)o3)}ds(z - 23) -
0

—Fr(xy) Fray, (3.50)

for z,z € Br(z}, 00)-
Given a constant a < 1, we choose £ = ¢(r) such that

el Fp(zh) e La< 1. (3.51)
Moreover, since F,. is continuous, there exists a ¢ = g(e(w)) > 0 so that
1Fr(23) = Fr@)llx <€ for all y € By(z3, 0)-
Hence, for 2,z € Br(z%, 0) (3.49), (3.51) provide
|Erz = ExZllx < allz—Z|x (3.52)
IBrz —z3lle < allz - 2}llx + 17 (23) " 7l (3.53)
If we are sure to manage the inequality
177 (z0) " Telle < (1 - a)e, (3.54)

we know the map Er to have a unique fixed point on B(z%,0). However,
keep in mind that € and g, may both depend on the grid =.
The same arguments apply to the perturbed equation

fﬂz = 611—. (3-55)
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If we suppose the inequality
[ Fx(@2) " (7x — b)llx < (1 — @)

can be satisfied, equation (3.55) is uniquely solvable on Br(z%,0), and, for
its solution Zr, the error estimate
- 1 _
lz% — Zxllx < 1= a”]:”'(x;) Ve = 62)lln (3.56)
is valid.

The BDF is said to be feasible in this case, i.e. if the nonlinear equations to
be solved per step are locally uniquely solvable. Then, the Newton method
may be applied, where (3.56) suggests how accurate the defects §; should
be.

In the following IIy C II always denotes a grid class where the maximal
step-sizes of all grids are sufficiently small.

Theorem 3.4 Let the given BDF applied to regular explicit ODEs be
stable on the grid class II. Let the DAE (3.1) satisfy Assumption 2.10, and
let z, € C,lv solve this DAE. In addition, let {A., B.} be index-1 tractable.
Then the BDF is feasible and stable on IIg C II. The convergence order is
the same as in case of regular ODEs.

Proof. By Theorem 3.1, there is a uniform bound S such that L], < §
for all 7 € II. Choose sufficiently fine grids (cf. (3.46)) so that

xS < 1, x € .

Hence ||Lx — Fh(z*)|lx < ¥ry |L5 = < S imply the bijectivity of F4(z*) as
well as

S
/ *\—1 < = .
I7L@) e € T = )
Consequently, in (3.51) we need uniform € = a/S; and 6, respectively, for
all T € II,.
Moreover, (3.54) is easy to satisfy by choosing refined grids and sufficiently

accurate starting values such that

1
17z lloo < S_l(l - a)o.

— 1
Moreover, for 2,z € By(z%, 0) the matrix [ F,(sz + (1 — 8)z)ds =: F![z, 2]
0
is also nonsingular since
. _ e S
171 - Fle Al <o, VR < g2
Hence, z—Z = F.[z, 2|~} (Fr2z— FrZ) implies stability immediately. Then,
(3.10) (or (3.56)) provides convergence. O

=: Sy.
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Remark Clearly, the nonlinear equations to be solved per step are locally
uniquely solvable, and the Newton method can be applied. The same is true
for the perturbed equations (cf. (3.56)).

In the case of an index-2-tractable matrix coefficient pair {A., B.} the
situation becomes worse. Theorem 3.2 only provides for |£; |, < Sh~! for
7 € II. How does this affect nonlinear DAEs?

Lemma 3.5 Let Assumption 2.10 be fulfilled, and let z, € C}, be given.
In addition, let P’ = 0. Then, let A;(y,z,t) := f,(y,2,t) + fz(y,7,t)Q be
singular for all (y,z,t) belonging to a neighbourhood N of the trajectory
T. of z, within R™ x R™ x R, but with constant rank there. Moreover, let
A1(¢(t)) have a smooth null space. Furthermore let

ker Ay (y, z,t) N Si(y,z,t) = {0}, (3.57)

S1(y,z,t) :={z €R™ : fo(y,z,t)Pz € imAy(y,z,1)},
for all (y,z,t) € T. Then the DAE linearized in z, is index-2 tractable.

Proof. We have A.(t) := f,(((t)), Ba(t) := f(¢(t)), furthermore A, (t) =
A() + Bu()Q = 41(COY, Sea®) == S1((B), ker(Aes®) N Son(t) =
{0}. Since the null space of A;(¢(t)) is assumed to depend continuously
differentiably on ¢ we are done. O

Lemma 3.6 Let Assumption 2.10 be valid and let z, € C}, solve the DAE
(3.1). In addition, let imfy(y, z,t) be independent of y, i.e.

im(f)(y,2,t,)) = R(z?).
Then, for the local errors 7; generated by the BDF (3.7), the implication
7j € R(z«(t;),t;), =8, (3.58)
becomes true.
Proof. Denote shortly
1 8
pi = P(tj) o~ So@ii(ti=i), A= (Pz.) () — P(t)za(t)).
Derive

i = f(n;) = fus, (), t5)
= fp z(t5) t5) = F(Xj, 2 (t5), 25)

1
= [ Fytens+ (= s mult) ) ds(us = ),
0

thus (3.58) is valid. O
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Theorem 3.7 Let II be such a grid class where the quotient of the max-
imal and minimal step-sizes of any 7 € II is bounded by a global constant
K,ie.
h-h"'<K, 7ell

Let the given BDF applied to regular explicit ODEs become stable on II.
Let DAE (3.1) satisfy all assumptions of Lemma 3.5 as well as Lemma 3.6;
furthermore, let the partial Jacobians fz'/’ f. be Lipschitz with respect to
(y,z). In addition, let

(P:z*)'(tj)— ZaJ,Pa:,.(t,_,) < coh?, (3.59)

J §=0

be valid for all j > s, = € II and certain constants co > 0, p > 1. Then the
BDF is feasible and weakly instable on I

If we suppose the Q1-components of the starting values to have the order
of accuracy p + 1 and the other ones order p, then the convergence order is

P

Proof. Because of the Lipschitz continuity of f, and f;, F; also becomes
Lipschitz continuous. In particular

IF(z7) ~ Fx@)ll= < Llizr - ylix (3.60)

is valid. Moreover, in (3.46) we may estimate (using the notation from the
proof of Lemma 3.6)

e L1 mgxmj - Aj| £ cohP.
8

Since (cf. (3.46)) ||Lr—Fr(z})|lx < cohP and, due to Theorem 3.2, | £ |» <

Sh™!, we may refine the grids in such a way that
2SR~ AP < c2SKRP™! < 1.
Consequently, F; (z}) becomes nonsingular, and
IF4(@) M < ShY(1 - coSKRPY) L,
Next, by Lemma 3.6,
7; € R(z4(t5),t5) =im A, (¢;), j2>s.
Taking into account (3.32), this implies

Ie7 el < s{ max|r;| + (3:61)

}

QQl(tJ) E 0;iQ1(tj~i) (2 (tji) — j-s)

i=j+1-8

s<]<23 1
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Choosing the starting values to be as accurate as necessary for
1
h—lel(tj)(x*(tj) —z;)| < e3h?, (3.62)
lz*(tj) —z;| < e3h?, §=0,...,5—1,
to be satisfied, we obtain
L7 7xllr < cah?.
Then, because
Fa@p) ™t = = L3N (Lr ~ Fr(zn)) L7} (3.63)
the inequality
[ F2@n) el < NI = L3 (Lr = Fr(@5)) M L7 Tl
< (1 - caSKhP~Y)1cyh?
becomes true.
Next we show that both (3.51) and (3.54) may be satisfied. Given 0 < o <
1, choose ¢ = a(1/S)h(1 — c2SKhP~1) to make E, contractive. Since F~.
fulfils the Lipschitz condition (3.60), we may choose the related g((n)) =: o
as p=1/Le.
Finally, condition (3.54) becomes valid if
1.1
LS

(1 —caSKhP ) eyl < (1—a)o=(1-a) h(1 — c;SKhP1)

is satisfied, or equivalently
1
csh? P <a(l - a)fS—(l — caSKhP1)2,

but this can be managed by refining the grids.
By the same arguments as in Theorem 3.4, we derive

P51z, 21 < == Sh7H(1 — S KR,

and hence the BDF becomes weakly unstable. 1

Remarks
1  From (3.56), (3.63) we conclude the error estimate

flzz — Zxllr < Slllﬁ,?l(ﬂr ~ 6 )llx-

Taking (3.32) into consideration we are recommended to compute the
Q1 components of the starting values with a higher order accuracy than
the remaining components (cf. also (3.61)). Moreover, the defects §; in
the nonlinear equations should also be kept smaller in those components
which do not belong to im(fy(...,z.(;),t;) = R(z.(t;),t;). This can
be realized more easily if this subspace is kept constant.
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[ 3]

Clearly, Pz, € C* implies p = s in (3.59).

3  Theorem 3.7 does not apply to the backward Euler method. It is not
yet clear whether the condition p > 1 is a technical one for that large
class of index-2 DAEs considered. However, Theorem 3.2 is also valid
for the backward Euler method. The detailed error estimates (3.36),
(3.37) show that the weak instabilities only affect certain components,
and, moreover, only act locally. Inequality (3.35) does not comprise
this situation precisely, but it represents a crude upper bound.

Using the detailed information given by (3.37), (3.36) and (3.32) for
investigating nonlinear equations requires much technical effort. For
special DAEs in Hessenberg form (0.3) this is done in Gear et al. (1985),
Létstedt and Petzold (1986) and Brenan and Engquist (1988). The
statements of Theorem 3.2 remain valid for these nonlinear DAEs. In
particular, the backward Euler is proved to converge.

Analogously to Theorem 3.7, an assertion concerning index-3-tractable
DAEs could be proved using Theorem 3.3. In Létstedt and Petzold (1986)
and Brenan and Engquist (1988), a careful detailed decoupling of nonlinear
index-3 DAEs in Hessenberg form (0.4) is carried out to obtain results similar
to those we have proved for the linear case (cf. (3.40)—(3.42)).

While we are optimistic about overcoming the practical problems arising
in large classes of index-2 equations, like error estimation and step-size con-
trol, the difficulties concerning the index-3 case seem to be more intractable.
As is shown by (3.42), the Q2 components of the starting values should now
have order hP*2, if the local error 7; has order p. Moreover, the defects §;
of the nonlinear equations to be solved per integration step should be kept
small enough in the respective subspaces. Furthermore, remember that pro-
viding sufficiently accurate initial and starting values now becomes difficult.
The nonlinear systems to be solved are ill conditioned, namely cond(F;)
behaves like A} °.

For special nonlinear index-3 DAEs describing constrained mechanical
motion, BDF codes are reported to work (e.g. Petzold and Lotstedt (1986),
Fiihrer (1988)) if the critical components are omitted from the error control,
and only the PP; component (cf. (3.40)) is controlled. This may be applied
if computing these PP; components only will do for practical reasons.

For a fairly detailed discussion of software for DAEs we refer to Brenan
et al. (1989) and Hairer and Wanner (1991).

3.4. Further integration methods

First of all, it should be mentioned that these results, which have been
proved for variable step-size BDF's, also apply to variable order variable
step-size BDFs in the same way.

For one-step methods, there is a natural extension to fully implicit DAEs
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(3-1), namely
13 s _ 8
f (-h— Z OGiZj—i, Zﬂﬁz,-_,-, tj) =0, tj = Zﬂjitj—i- (3.64)
J §=0 =0 i=0

The consistency conditions are the same as those for the regular ODE case,
but extra stability requirements are needed to ensure stability even in index-
1 DAEs (cf. (1.12)). We do not recommend this method since it did not
work well in experiments.

If the leading coefficient matrix has a constant range imf,(y,z,t) =: R,
and S € L(R™) denotes a projector onto R, T := I — S, we may formulate
(Mérz, 1985) a projected version of (3.64) as follows:

1 8 8 _
Sf (-h— Zaj,-:cj_i, Z B5i%;—i, tj) +Tf(0,z;,t;) =0. (3.65)
J =0 =0
Applied to semi-linear DAEs
v +g(u,v,t) =0, h(u,v,t)=0 (3.66)

this simply means

1 8 8 8 _

h_,- g ajiti—; + g (g Bjitj—i, Z(:) BjiVi—i, tj) =0 ' (3.67)

h(u,-, v, tj) =0

Moreover, linear multi-step methods may be formulated as

1 8 8
P(t;) {7;; g QjiZj—i — gﬂjiw—i} -y=0 (3.68)
f(ijzjatj) =0
Method (3.68) is motivated by the equivalent formulation of (3.1)
P(t){z'(t) —y()} —y(t) =0
@t =0 (3:69)

When applied to the semi-explicit system (3.66), this linear multi-step me-
thod leads to

1 8 L]
» Y ajiuii =Y Biig((uj—i,vj—irtj—i) =0 (3.70)
7 i=0 i=0 : :
h(u;,vj,t;) =0
All these methods are considered on general nonequidistant partitions = :
to <t <--- <ty =T. Our notation does not only allow for variable step-

size, but also for formulae of different order and type, which is the common
situation in many ODE codes.
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Theorem 3.8 Let the methods considered be stable on the grid class IT for
regular ODEs. Let DAE (3.1) satisfy Assumption 2.10, and let z, € C}, solve
this DAE. Furthermore, let {A., B,} be index-1 tractable. In addition, let
the partial Jacobian f,(y,z,t) have a constant null space N when applying
the linear multi-step method (3.68), but a constant range R when applying
the one-step method (3.65).

Then both methods are feasible and stable on IIg € II. The order of
consistency is the same as for regular ODEs.

Proof. Taking into account that (3.69) is again an index-1-tractable DAE,
we apply the same arguments as those used for Theorem 3.4 in both cases.
0

Remarks

1  In both methods, the choice 8;, = 0 is allowed. In particular, in (3.70)
one can take advantage of such ‘explicit’ methods.

2  The linear multi-step method is also proved to be stable (by the same
arguments) for a time varying null space N (). However, then a certain
order reduction may occur. This is caused by a somewhat inexact
realization of the subspace structure of the DAE. More precisely, if z,
is smooth enough, we have

= P(tJ)z:{ aJi(Px*) (ti—i) — Bji(Pz.)' (¢ -—c)}
i=0

+P(t) D" {"%’;ain(tj—i)z*(tj—i) + ﬁjipl(tj—-i)z*(tj-i)}

i=0

p(t,)z{ ji(Paa) (t-4) — Bis(Pra) (ts) +

=0

+ (h_jain(tj—i) - ﬂin’(tj_i)) :B,.,(tj_,-)},
Again, the conditions

L 8 8
Y ooji=0, Y ojilti-i—t;)=h; ) B

i=0 i=0 i=0
turn out to be necessary and sufficient for the consistency at all. How-
ever, for order 2 we need two more conditions, the expected one

]

> {ei(tj—i — t5)® — 2h;Bji(tj—i — t;)} =0
i=0
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as well as
8

D Aeilti-i — t5)* = hiByi(ti—i — t;)}Q (t;) = 0.

=0
Hence, e.g. the trapezoidal rule has order 1 only in this case.

3 The methods (3.65) and (3.68) naturally generate values z; belonging

to the state manifold of the DAE, which turns out to be a favourable
property.

Among the Runge-Kutta methods

s
T =xj-1+ hj El b,‘X;,
z=

8
fXhwj1+hy 2 aik Xy, tj—1 + cih;) =0, (3.71)
i=1,...,s,
those with the coefficients b; = ay4;, ¢ = 1,...,8, ¢, = 1 and a nonsingular

matrix (a;;) automatically provide values x; belonging to the state manifold,
if the method is applied to an index-1 DAE (3.1) with constant null space
(e.g. Griepentrog and Marz (1986)). Then, the method maintains the order
which it has for regular ODEs.

As we have learnt in Section 1, explicit Runge-Kutta methods (those
having a;; = 0 for ¢ < j) are not suited for DAEs.

A fairly detailed discussion of general implicit Runge-Kutta methods as
well as of extrapolation methods for index-1 DAEs is given in Brenan et al.
(1989). As already indicated in Section 1, additional stability conditions
have to be fulfilled, and one has to put up with order reduction.

A comprehensive exposition of Runge-Kutta methods for index-2 and
index-3 DAEs in Hessenberg form (cf. (0.3), (0.4)) one can find in Hairer
et al. (1989). A good work in which the well-known extrapolation methods,
for example, are extended can be found in Deuflhard et al. (1987), Lubich
(1990) and Hairer et al. (1989). All these methods extensively use the special
structure of the given Hessenberg form DAEs. In particular, the problems
caused by weak instability have been overcome e.g. by special error control
in the nonlinear equations and by projections onto the given manifolds,
respectively.

The projected implicit Runge-Kutta methods (Ascher and Petzold, 1990)
also use these ideas.

4. Brief remarks on related problems

4.1. Index reduction

From the point of view of computational tractability, it is desirable for the
DAE to have an index which is as small as possible. The procedure for
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determining the differentiation index described in Section 2.2 is an index
reduction method (cf. Griepentrog (1991)), in fact. However, in Section
2.2 it was mentioned that the attained system does not reflect the stability
behaviour of the original DAE well.

A different method for reducing the index of a DAE is presented in
Mrziglod (1987) and Cistjakov (1982). Instead of replacing constraints by
differential equations, in their method suitable differential equations are
deleted. This method works for linear DAEs, but it is not clear to what
kind of nonlinear DAEs it may be applicable.

A very useful idea for reducing the index is proposed in Gear et al. (1985)
for the special index-3 Hessenberg system

u'(t) —v(t) =0, (4.1)
v'(t) + g(u(t), v(t), ) + A, (u(t), t)Tw(t) =0, (4.2)
h(u(t),t) =0, (4.3)

which results from the Euler-Lagrange formulation of a constrained me-
chanical system. As mentioned earlier, the system with the differentiated
constraint

ha (u(t), )v(t) + hi(u(t),t) =0 (4.4)
instead of (4.3) would cause the numerical solution to drift away from the
constraint manifold. Note that the system (4.1), (4.2), (4.4) has index 2. To
stabilize the obtained index-2 system, an additional Lagrange multiplyer z
is introduced, and (4.3) is summed again. The resulting system

u'(t) —v(t) + kL (u(t), t)Tz(t) =0

v'(8) + g (u(t), v(t), £) + b, (u(t), ) w(t) = 0 (4.5)
ha (u(t), ho(t) + hi(u(t),t) = 0 '
h(u(t),t) =0

is index-2 tractable. Is it easy to check that any solution of (4.5) has a trivial
component z. Note that Fiihrer and Leimkuhler (1990) took advantage of
this fact to create a skilful special BDF modification to the Euler-Lagrange
equations.

In Section 2 we pointed out that higher index DAEs lead to ill posed IVPs
in the naturally given topologies (cf. Corollary 2.7). Hence, we may treat
them as such, i.e. use some regularization procedure. At first glance this
approach might appear a heavy gun, which is true insofar as standard reg-
ularization techniques (Tikhonov regularization, least-squares collocation)
are concerned. However, different special parametrizations may be created,
which are closely connected with the structure of the DAEs and the source of
their ill posedness. As usual, the regularized equations represent singularly
perturbed index-1-tractable DAEs and ODEs, respectively.
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For instance, the index-2 DAE
Ty —22=0, z1=¢
may be approximated by the index-1 system
i —22=0, ezxi+z1=¢q, x1(0)=q(0).

For general DAEs f(z'(t), z(t),t) = O the same regularization method pro-
vides
F(@' (), z(t) + eP(t)(Pz)'(t),t) = 0.

We refer to Hanke (1990, 1991) for a comprehensive survey on methods,
convergence results, asymptotic expansions etc.
4.2. Boundary value problems
Let us consider the linear equation
A(t)a'(t) + Bz(t) = q(t), t€ [to,T), (4.6)

once again. Now we are interested in a solution of (4.6) that satisfies the
boundary condition

Dyx(to) + Doz(T) = d (4.7)

with given matrices D1, Dy € L(R™), d € M := im(D;, D;). According
to the discussion of linear IVPs in section 2.1 we determine a fundamental
solution matrix X(-) by

AX'+BX = 0 (4.8)
IL(X(t)-1) = 0, (4.9)

where II,, := Py(to)... Pu-1(t0), and the coefficient matrix pair {4, B} is

supposed to be index-u tractable. From Theorem 2.5, the fundamental

solution matrix is uniquely determined, the columns of X belong to C},.
Now, (4.8), (4.9) immediately imply that

X(@t) = X(#)1,, (4.10)

holds, i.e. X(t) is singular for all ¢. Moreover, even ker X(t) = kerll,, is
true. However, what about the so-called shooting matrix

K := D1 X(to) + D2 X(T). (4.11)
Trivially, K becomes singular, too.

Theorem 4.1 Let {A, B} be index-u tractable and g sufficiently smooth.
Then the BVP (4.6), (4.7) is uniquely solvable for each d € M if and only if

imK = M, kerK =kerll, (4.12)
are valid.
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Proof. By standard arguments, we have to consider the linear system
Kz =d— D&(T),

where & € C}, denotes that solution of (4.6) which satisfies IT,&(to) = 0.

Clearly, kerIl, C ker K holds. Furthermore, Kz = 0, I,z # 0 would
imply that X (¢)II,z has to become a nontrivial solution of the homogeneous
BVP. O

Remarks

1  Theorem 4.1 generalizes facts that are well known for regular ODEs
(M =R™) and index-1-tractable DAEs (Griepentrog and Marz, 1986),

respectively.
2  The relations (4.12) mean that the boundary conditions are stated well;

in particular, the number of linearly independent boundary conditions

is rank IL,.
3 The wholg BVP is well posed in the naturally given topologies if and

only if 4 = 1, and if (4.12) is satisfied (cf. Corollary 2.7).

Linear and nonlinear BVPs in transferable (index-1-tractable) DAEs are
well understood. Classical arguments apply for discretizations by finite dif-
ferences (Griepentrog and Marz, 1986) and spline-collocation (Degenhardst,
1991; Ascher, 1989), respectively. In particular, it is possible to trace the
stability question of the BVP back to that of the IVPs. However, for the lat-
ter we refer to the typical explanations in Section 3, which are carried out in
the same manner for certain one-step methods, for example in Griepentrog
and Marz (1986). Furthermore, dichotomy is considered in its relationship
to the conditioning of the BVP in Lentini and Marz (1990a,b).

Of course, the singular shooting equation causes numerical difficulties.
This is why modified shooting techniques yielding isolatedly solvable non-
linear shooting equations have been proposed (Lamour, 1991a,b). The basic
idea is to combine the shooting equation and the equation for calculating
consistent initial values (cf. Theorem 2.3). For instance, simple shooting for
a linear BVP leads to the system

A(to)yo + Bl(to)mo = a(to),

Q(to)yo = 0,  Kzo=d— D%(T).
Surely, Theorem 4.1 suggests to apply shooting methods also to higher index
DAEs. This will work, supposed we are able to integrate the IVPs.

We are looking forward to related results for general index-2-tractable
DAEs.
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1. Introduction

A few months ago, while preparing a lecture to an audience that included
engineers and numerical analysts, I asked myself the question: from the point
of view of a user of nonlinear optimization routines, how interesting and
practical is the body of theoretical analysis developed in this field? To make
the question a bit more precise, I decided to select the best optimization
methods known to date — those methods that deserve to be in a subroutine
library — and for each method ask: what do we know about the behaviour of
this method, as implemented in practice? To make my task more tractable,
I decided to consider only algorithms for unconstrained optimization.

I was surprised to find that remarkable progress has been made in the
last 15 years in the theory of unconstrained optimization, to the point that
it is reasonable to say that we have a good understanding of most of the
techniques used in practice. It is reassuring to see a movement towards
practicality: it is now routine to undertake the analysis under realistic as-
sumptions, and to consider optimization algorithms as they are implemented
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in practice. The depth and variety of the theoretical results available to us
today have made unconstrained optimization a mature field of numerical
analysis.

Nevertheless there are still many unanswered questions, some of which are
fundamental. Most of the analysis has focused on global convergence and
rate of convergence results, and little is known about average behaviour,
worst case behaviour and the effect of rounding errors. In addition, we do
not have theoretical tools that will predict the efficiency of methods for large
scale problems.

In this article I will attempt to review the most recent advances in the
theory of unconstrained optimization, and will also describe some important
open questions. Before doing so, I should point out that the value of the
theory of optimization is not limited to its capacity for explaining the be-
haviour of the most widely used techniques. The question posed in the first
paragraph: ‘what do we know about the behaviour of the most popular algo-
rithms?’ is not the only important question. We should also ask how useful
is the theory when designing new algorithms, i.e. how well can it differentiate
between efficient and inefficient methods. Some interesting analysis will be
discussed in this regard. We will see that the weaknesses of several classical
algorithms that have fallen out of grace, such as the Fletcher-Reeves con-
jugate gradient method and the Davidon-Fletcher—Powell variable metric
method, are fairly well understood. I will also describe several theoreti-
cal studies on optimization methods that have not yet enjoyed widespread
popularity, but that may prove to be highly successful in the future.

I have used the terms ‘theoretical studies’ and ‘convergence analysis’,
without stating precisely what I mean by them. In my view, convergence
results fall into one of the four following categories.

1  Global convergence results. The questions in this case are: will the
iterates converge from a remote starting point? Are all cluster points
of the set of iterates solution points?

2  Local convergence results. Here the objective is to show that there
is a neighourhood of a solution and a choice of the parameters of the
method for which convergence to the solution can be guaranteed.

3  Asymptotic rate of convergence. This is the speed of the algorithm,
as it converges to the solution (which is not necessarily related to its
speed away from the solution).

4  Global efficiency or global rate of convergence. There are several mea-
sures; one of them estimates the function reduction at every iteration.
Another approach is to study the worst case global behaviour of the
methods.

Most of the literature covers results in categories 1-3. Global efficiency
results, category 4, can be very useful but are difficult to obtain. There-
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fore it is common to restrict these studies to convex problems (Nemirovsky
and Yudin, 1983), or even to strictly convex quadratic objective functions
(Powell, 1986). Global efficiency is an area that requires more attention and
where important new results can be expected.

To be truly complete, the four categories of theoretical studies mentioned
above should also take into account the effect of rounding errors, or noise in
the function (Hamming, 1971). However, we will not consider these aspects
here, for this would require a much more extensive survey. The term global
optimization is also used to refer to the problem of finding the global mini-
mum of a function. We will not discuss that problem here, and reserve the
term ‘global convergence’ to denote the properties described in 1.

2. The most useful algorithms for unconstrained
optimization

Since my goal is to describe recent theoretical advances for practical methods
of optimization, I will begin by listing my selection of the most useful opti-
mization algorithms. I include references to particular codes in subroutine
libraries instead of simply referring to mathematical algorithms. However
the routines mentioned below are not necessarily the most efficient imple-
mentations available, and are given mainly as a reference. Most of the
algorithms listed here are described in the books by Dennis and Schnabel
(1983), Fletcher (1987) and Gill et al. (1981).

1 The conjugate gradient method, or extensions of it. Conjugate gradient
methods are useful for solving very large problems and can be partic-
ularly effective on some types of multiprocessor machines. An efficient
code implementing the Polak-Ribiére version of the conjugate gradient
method, with restarts, is the routine VA14 of the Harwell subroutine
library (Powell, 1977). A robust extension of the conjugate gradient
method, requiring a few more vectors of storage, is implemented in the
routine CONMIN (Shanno and Phua, 1980).

2  The BFGS variable metric method. Good line search implementations
of this popular variable metric method are given in the IMSL and NAG
libraries. The BFGS method is fast and robust, and is currently being
used to solve a myriad of optimization problems.

3 The partitioned quasi-Newton method for large scale optimization. This
method, developed by Griewank and Toint (1982c), is designed for par-
tially separable functions. These types of functions arise in numerous
applications, and the partitioned quasi-Newton method takes good ad-
vantage of their structure. This method is implemented in the Harwell
routine VE08, and will soon be superseded by a more general routine
of the Lancelot package which is currently being developed by Conn,
Gould and Toint.
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4 The limited memory BFGS method for large scale optimization. This
method resembles the BFGS method but avoids the storage of matrices.
It is particularly useful for large and unstructured problems. It is
implemented in the Harwell routine VA15 (Liu and Nocedal, 1989).

5  Newton’s method. A good line search implementation is given in the
NAG library, whereas the IMSL library provides a trust region im-
plementation (Dennis and Schnabel, 1983; Gay, 1983). A truncated
Newton method for large problems, which requires only function and
gradients, is given by Nash (1985).

6 The Nelder-Meade simplex method for problems with noisy functions.
An implementation of this method is given in the IMSL library.

In the following sections I will discuss recent theoretical studies on many of
these methods. I will assume that the reader is familiar with the fundamental
techniques of unconstrained optimization, which are described, for example,
in the books by Dennis and Schnabel (1983), Fletcher (1987) and Gill et
al. (1981). We will concentrate on line search methods because most of
our knowledge on trust region methods for unconstrained optimization was
obtained before 1982, and is described in the excellent survey papers by
Moré and Sorensen (1984) and Moré (1983). However in Section 8 we will
briefly compare the convergence properties of line search and trust region
methods.

3. The basic convergence principles

One of the main attractions of the theory of unconstrained optimization is
that a few general principles can be used to study most of the algorithms.
In this section, which serves as a technical introduction to the paper, we
describe some of these basic principles. The analysis that follows gives us a
flavour of what theoretical studies on line search methods are, and will be
frequently quoted in subsequent sections.

Our problem is to minimize a function of n variables,

min f(z), (8.1)
where f is smooth and its gradient g is available. We consider iterations of
the form

T41 = Tk + opdy, (3.2)
where d;, is a search direction and « is a step-length obtained by means of a

one-dimensional search. In conjugate gradient methods the search direction
is of the form

dy = —gk + Brdi-1, (3.3)

where the scalar B is chosen so that the method reduces to the linear
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conjugate gradient method when the function is quadratic and the line search
is exact. Another broad class of methods defines the search direction by

dx = =B g (3.4)

where By, is a nonsingular symmetric matrix. Important special cases are
given by

By = I  (the steepest descent method)
By = V3f(zx) (Newton's method).

Variable metric methods are also of the form (3.4), but in this case By is
not only a function of =, but depends also on Bj_; and ;.

All these methods are implemented so that dj, is a descent direction, i.e.
so that ¢ﬂ,; gr < 0, which guarantees that the function can be decreased by
taking a small step along dix. For the Newton-type methods (3.4) we can
ensure that dj is a descent direction by defining By to be positive definite.
For conjugate gradient methods obtaining descent directions is not easy and
requires a careful choice of the line search strategy. Throughout this section
we will assume that the optimization method is of the form (3.2) where d;
is a descent direction.

The convergence properties of line search methods can be studied by mea-
suring the goodness of the search direction and by considering the length
of the step. The quality of the search direction can be studied by moni-
toring the angle between the steepest descent direction —g; and the search
direction. Therefore we define

cos b := —gi d/lIgkll lldxl|- (3.5)

The length of the step is determined by a line search iteration. A strategy
that will play a central role in this paper consists in accepting a positive
step-length o if it satisfies the two conditions:

flor +ordr) < flzi) + or0kgfdy (3.6)
g(zk + ard)Tdr, > oogf di, (3.7)

where 0 < 01 < 02 < 1. The first inequality ensures that the function is
reduced sufficiently, and the second prevents the steps from being too small.
We will call these two relations the Wolfe conditions. It is easy to show
that if di is a descent direction, if f is continuously differentiable and if f
is bounded below along the ray {zj; + adi|a > 0}, then there always exist
step-lengths satisfying (3.6)—(3.7) (Wolfe, 1969, 1971). Algorithms that are
guaranteed to find, in a finite number of iterations, a point satisfying the
Wolfe conditions have been developed by Lemaréchal (1981), Fletcher (1987)
and Moré and Thuente (1990).

This line search strategy allows us to establish the following useful result
due to Zoutendijk. At first, the result appears to be obscure, but its power



204 J. NOCEDAL

and simplicity will soon become evident. We will give a proof so that the
reader can have a clear idea of how it depends on the properties of the func-
tion and line search. This result was essentially proved by Zoutendijk (1970)
and Wolfe (1969, 1971). The starting point of the algorithm is denoted by
ri.

Theorem 3.1 Suppose that f is bounded below in R™ and that f is contin-
uously differentiable in a neighourhood A of the level set £ := {z : f(z) <
f(z1)}. Assume also that the gradient is Lipschitz continuous, i.e. there
exists a constant L > 0 such that

lg(z) — 9(@)|l < L|lz - 2|, (3.8)

for all z,Z € N. Consider any iteration of the form (3.2), where d; is a
descent direction and o satisfies the Wolfe conditions (3.6)—(3.7). Then

Z cos? 0. ||gx||? < oo. (3.9)
k>1

Proof. From (3.7) we have that
(9k41— 91)Tdx > (03 — 1)gi" di.
On the other hand, the Lipschitz condition (3.8) gives
(9k+1 — gr)Tdx < o L|d]|?.
Combining these two relations we obtain

og—1
a2 (22) a7 d/ el (310)

Using the first Wolfe condition (3.6) and (3.10), we have

-1 2
fen < fetor (PN @Tde) /lalP

We now use definition (3.5) to write this relation as

fre1 < fr + ccos? Ok ||ge |,

where ¢ = 01(02 — 1)/L. Summing this expression and recalling that f is
bounded below we obtain

- A
> cos? i [lgk||® < oo,
k=1

which concludes the proof. ]

We shall call inequality (3.9) the Zoutendijk condition. Let us see how
Zoutendijk’s condition can be used to obtain global convergence results.
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Suppose that an iteration of the form (3.2) is such that

cosf; > 6 > 0, (3.11)
for all k. Then we conclude directly from (3.9) that
klim llgx|l = O. (3.12)
—00

In other words, if the search direction does not tend to be orthogonal to the
gradient, then the sequence of gradients converges to zero. This implies, for
example, that the method of steepest descent, with a line search satisfying
the Wolfe conditions, gives (3.12), since in this case we have cos8; = 1 for
all k. Thus to make the steepest descent method ‘globally convergent’ it is
only necessary to perform an adequate line search.

For line search methods of the form (3.2), the limit (3.12) is the best type
of global convergence result that can be obtained — we cannot guarantee
that the method converges to minimizers, but only that it is attracted by
stationary points.

Consider now the Newton-type method (3.2),(3.4), and assume that the
condition number of the matrices By is uniformly bounded, i.e. that for all
k

IBell 1Bl < A,
for some constant A > 0. Then from (3.5) we have that
cosfr > 1/A.

As before, we use Zoutendijk’s condition (3.9) to obtain the global conver-
gence result (3.12). We have therefore shown that Newton’s method or the
variable metric methods are globally convergent if the matrices By, are pos-
itive definite (which is needed for the descent condition), if their condition
number is uniformly bounded, and if the line search satisfies the Wolfe con-
ditions. For a more thorough discussion see Ortega and Rheinboldt (1970).

For some algorithms, such as conjugate gradient methods, it is not possible
to show the limit (3.12), but only a weaker result, namely

liminf ||gg|| = 0. (3.13)

k—-00
We can also obtain this type of result from Zoutendijk’s condition (3.9), but
this time the method of proof is contradiction. Suppose that (3.13) does not

hold, which means that the gradients remain bounded away from zero, i.e.
there exists v > 0 such that for all k&

lgell = . (3.14)
Then from (3.9) we conclude that
cos@ — 0. (3.15)
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In other words, the algorithm can only fail, in the sense of (3.14), if the whole
sequence {cos @} converges to 0. Therefore to establish (3.13) it suffices to
show that a subsequence {cos 0y} is bounded away from zero.

For example, any line search method can be made globally convergent,
in the sense of (3.13), by interleaving steepest descent steps. To be more
precise, consider any method of the form (3.2) where dy, is a descent direction
for all k, and where a;, is chosen to satisfy the Wolfe conditions. Suppose,
in addition, that at every m steps, where m is some pre-selected integer,
we define di. = —gi. Since for these steepest descent steps cosf; = 1, the
previous discussion shows that the limit (3.13) is obtained.

It would seem that designing optimization algorithms with good conver-
gence properties is easy, since all we need to ensure is that the search direc-
tion does not tend to become orthogonal to the gradient, or that steepest
descent steps are interleaved regularly. Indeed, since the gradient g; is
always available, we can compute cos 8, at every iteration and apply the fol-
lowing angle test: if cos @ is less than some pre-selected constant, then we
can modify the search direction by turning it towards the steepest descent
direction. Such angle tests have been proposed many times in the literature,
and ensure global convergence, but are undesirable for the following reasons.

In addition to global convergence we would like the methods to converge
rapidly. After all, if all we want to achieve is global convergence we should
be satisfied with the steepest descent method. It is well known, however,
that steepest descent is very slow and that much faster algorithms can be
designed. A classical result of Dennis and Moré states that the iteration
(3.2) is superlinearly convergent if and only if

ardy = dif + O(||dg]]), (3.16)

where d} is the Newton step (Dennis and Moré, 1974). Therefore to attain
a fast rate of convergence it is necessary that we approximate the Newton
direction asymptotically. An angle test may prevent us from doing so. For
example, the BFGS variable metric method described in Section 5 can gener-
ate ill conditioned approximations By, of the Hessian. It is difficult, however,
to determine if this is undesirable or if the matrices Bj are approximating
well an ill conditioned Hessian matrix. To decide this requires knowledge of
the problem that we do not possess. We have learned that it is preferable
not to interfere with the BFGS method and to let the matrices By evolve
freely, because convergence is usually obtained and the rate is superlinear.

By far the most substantial argument against angle tests is this: the best
implementations of the methods listed in Section 2 do not need them, it has
been found that other types of safeguards are more effective. We will return
to this.

Dennis and Moré (1977) prove a result that is of great practical value
because it suggests how to estimate the initial trial value in the line search
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of a variable metric method. They show that for an iteration in which the
the search directions approach the Newton direction, the step-length oy =1
satisfies the Wolfe conditions for all large k, provided o1 < % Thus the unit
trial step-length should always be used in variable metric methods.

Let us summarize what we have discussed so far. Zoutendijk’s condition
plays a central role when studying the global convergence properties of line
search methods. Most of the global convergence analyses use it explicitly or
follow similar approaches. The Dennis—Moré (3.16) condition is fundamental
to the study of rates of convergence. It states that a method is superlinearly
convergent if and only if the direction and the length of the step approximate
those of Newton’s method, asymptotically. Many variable metric methods
are superlinearly convergent, and this is proved by simply verifying that
(3.16) holds.

So far, we have only talked about one type of line search, namely the one
satisfying the Wolfe conditions, and it would be misleading to suggest that
this is the only useful strategy. Indeed many convergence results can also be
proved for other line searches, as we will discuss in later sections. A popular
strategy, called backtracking, consists of successively decreasing the step-
length, starting from an initial guess, until a sufficient function reduction is
obtained; see, for example, Ortega and Rheinboldt (1970). A backtracking
line search is easy to implement and is well suited for constrained problems.

Let us now discuss global efficiency analyses. One of the earliest results
concerns the steepest descent method, with exact line searches, when ap-
plied to quadratic problems. This result is characteristic of global efficiency
studies, which are established under very restrictive assumptions, and yet
provide useful insight into the methods.

Suppose that f is the quadratic function

f(z) = 12T Az, (3.17)

where A is symmetric and positive definite. Consider the steepest descent
method with exact line searches

Tk+l = Tk — QkGk, (3.18)
where
_ T T
ak = gk” gk/9k" Agk. (3.19)
A simple computation (Luenberger, 1984) shows that

(9" gr)?
Jrr1=(1- - 3.20

H (9xT Age)(9xT A~ gk) d (3.20)

This gives the function reduction at each iteration, and it is interesting that
we have an equality. It is clear that the quotient in (3.20) can be bounded
in terms of quantities involving only the matrix A. To do this, we use the
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Kantorovich inequality to obtain (Luenberger, 1984)

nggk 4)‘1/\71
(9T Agk)(grTA-1gr) = (M1 + An)?’

where A\; < - < A, are the eigenvalues of A. By substituting this in (3.20)
we obtain the simple relation

fir1 < [’\"’)‘1]2f (3.21)
1S3 TR .

This is the worst-case global behaviour of the steepest descent method
(3.18) - (3.19) on the quadratic problem (3.17), but it can be argued that
this is also the average behaviour (Akaike, 1959). Note that this global effi-
ciency result also shows that asymptotic rate of convergence of the sequence
{f(z)} is linear, with a constant that depends on the condition number of
A. Clearly, if A,/ is large, the term inside the square brackets in (3.21) is
close to 1 and convergence will be slow.

Does this analysis help our understanding of the steepest descent method
with inexact line searches on general nonlinear functions? The answer is
definitely ‘yes’. If at the solution point z, the Hessian matrix is positive
definite then, near z., f can be approximated well by a strictly convex
quadratic, and the previous analysis is relevant — except that an inexact
line search can make matters worse. However, if the line search always
performs one quadratic interpolation, then the step-length will be exact
asymptotically, and one can show that the rate of convergence is linear with
constant [(Anp — A1)/(An+A1)]?, where A; < --- < \, are now the eigenvalues
of the Hessian V2 f(z.).
~ This global efficiency result has been presented in some detail because it is
illustrative of such studies in optimization methods: a simple model problem
is chosen, and by direct computation, recurrence relations are established to
determine the function reduction. Such relations are difficult to obtain for
general nonlinear functions, but Nemirovsky and Yudin are able to derive
several interesting results for convex functions. Their work is described in
the book (Nemirovsky and Yudin, 1983) and in subsequent papers. We will
now give a very brief description of their approach, to show its flavour.

Suppose that f is a strongly convex and continuously differentiable func-
tion. Suppose also that the gradient satisfies the Lipschitz condition (3.8)
for all z € R". Let us denote a lower bound on the smallest eigenvalue
of the Hessian V2f(x) by m. Nemirovsky and Yudin define the global
estimate of the rate of convergence on an iterative method as a function
h(z1 — z,,m, L, k) :— R such that for any objective function f and for any
k > 1 we have

fk - f* < clh(zl — Iy, M, Ly k)r
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where c; is a constant, k is the iteration number, L is the Lipschitz constant,
and z, is the solution point.

The faster the rate at which h converges to 0 as k — 00, the more efficient
the method. Nemirovsky and Yudin (see also Nesterov (1988)) show that
there is a lower bound on the rate of convergence of h.

Theorem 3.2 Consider an optimization method which, at every iteration
k, evaluates the function f and gradient g at N, auxiliary points whose
convex hull has dimension less than or equal to I. Then for all k

h(z1—2z,m, L, k) > c3||z1—.||* min [([l +1]k) "%, exp (—\/%c;;k(l - 1))] ,
(3.22)
where cs depends on m and L, and cj3 is a constant.

In this framework, a method is optimal if its efficiency mapping h is
bounded above by the right-hand side of (3.22), where ¢, and c3 are allowed
to be any constants. Nemirovsky and Yudin show that the well known con-
jugate gradient and variable metric methods are not optimal, and Nesterov
(1983) proposed a conjugate gradient method that achieves the optimal
bound. In this theoretical framework optimization algorithms are ranked
according to their worst case behaviour. We will discuss this in more detail
in later sections.

This concludes our outline of some basic principles used in the theoretical
analysis of optimization methods. Two classical books giving an exhaustive
treatment of this subject are Ostrowski (1966) and Ortega and Rheinboldt
(1970). Much of what is known about the theory of quasi-Newton methods
is described in the survey paper by Dennis and Moré (1977) and in Dennis
and Walker (1981). More recent survey papers include Dennis and Schnabel
(1987), Schnabel (1989), Toint (1986a) and Powell (1985). In the following
sections we focus on recent theoretical developments which are, to a great
extent, not covered in these articles.

4. Conjugate gradient methods

The introduction of the conjugate gradient method by Fletcher and Reeves,
in the 1960s, marks the beginning of the field of large scale nonlinear opti-
mization. Here was a technique that could solve very large problems, since
it requires storage of only a few vectors, and could do so much more rapidly
than the steepest descent method. The definition of a large problem has
changed drastically since then, but the conjugate gradient method has re-
mained one of the most useful techniques for solving problems large enough
to make matrix storage impractical. Numerous variants of the method of
Fletcher and Reeves have been proposed over the last 20 years, and many
theoretical studies have been devoted to them. Nevertheless, nonlinear con-
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jugate gradient methods are perhaps the least understood methods of opti-
mization.

The recent development of limited memory and discrete Newton methods
have narrowed the class of problems for which conjugate gradient methods
are recommended. Nevertheless, in my view, conjugate gradient methods
are still the best choice for solving very large problems with relatively inex-
pensive objective functions (Liu and Nocedal, 1989). They can also be more
suitable than limited memory methods on several types of multiprocessor
computers (Nocedal, 1990).

The theory of conjugate gradient methods for nonlinear optimization is
fascinating. Unlike the linear conjugate gradient method for the solution of
systems of equations, which is known to be optimal (in some sense), some
nonlinear conjugate gradient methods possess surprising, and sometimes,
bizarre properties. The theory developed so far offers fascinating glimpses
into their behaviour, but our knowledge remains fragmentary. I view the
development of a comprehensive theory of conjugate gradient methods as
one of the outstanding challenges in theoretical optimization, and I believe
that it will come to fruition in the near future. This theory would not
only be a significant mathematical accomplishment, but could result in the
discovery of a superior conjugate gradient method.

The original conjugate gradient method proposed by Fletcher and Reeves
(1964) is given by

dr = —gr + B dk-1, (4.1)
Tkl = Tk + ody, (4.2)
where ¢y, is a step-length parameter, and where
for k=1,
k= 43
Ak { lgwll?/llgk-1l? for k> 2. (4.3)

When applied to strictly quadratic objective functions this method reduces
to the linear conjugate gradient method provided oy is the exact minimizer
(Fletcher, 1987). Other choices of the parameter 8 in (4.1) also possess this
property, and give rise to distinct algorithms for nonlinear problems. Many
of these variants have been studied extensively, and the best choice of 8 is
generally believed to be

B = i (9 — gx-1)/llgr—1lI?, (4.4)

and is due to Polak and Ribiére (1969).

The numerical performance of the Fletcher—Reeves method (4.3) is some-
what erratic: it is sometimes as efficient as the Polak-Ribiére method, but
it is often much slower. It is safe to say that the Polak-Ribiére method is,
in general, substantially more efficient than the Fletcher-Reeves method.

In many implementations of conjugate gradient methods, the iteration
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(4.1) is restarted every n steps by setting 3 equal to zero, i.e. taking a
steepest descent step. This ensures global convergence, as was discussed in
Section 3. However many theoretical studies consider the iteration without
restarts (Powell, 1977, 1984a; Nemirovsky and Yudin, 1983), and there are
good reasons for doing so. Since conjugate gradient methods are useful for
large problems, it is relevant to consider their behaviour as n — co. When n
is large (say 10,000) we expect to solve the problem in less than n iterations,
so that a restart would not be performed. We can also argue that we would
like to study the behaviour of large sequences of unrestarted conjugate gra-
dient iterations to discover patterns in their behaviour. We will see that
this approach has been very successful in explaining phenomena observed in
practice. Therefore in this section we will only consider conjugate gradient
methods without restarts.

The first practical global convergence result is due to Al-Baali (1985)
and applies to the Fletcher-Reeves method. To establish this result it is
necessary that the line search satisfy the strong Wolfe conditions

[z +ordy) < fzx) + or0kgf di, (4.5)
lg(zk + ardi)Tdr| < —o2g{ di, (4.6)

where 0 < 0] < 02 < % Note that if a step-length o} satisfies the strong
Wolfe conditions, then it satisfies the usual Wolfe conditions (3.6)—(3.7).
Therefore Zoutendijk’s result (3.9) will hold, provided we can show that the
search directions of the Fletcher-Reeves method are descent directions. Al-
Baali does this, obtaining the following global convergence result. Through-
out this section we assume that the starting point is such that the level set
L := {z : f(z) < f(z1)} is bounded, that in some neighbourhood N of L,
the objective function f is continuously differentiable, and that its gradient
is Lipschitz continuous.

Theorem 4.1 Consider the Fletcher-Reeves method (4.1)-(4.2), where
the step-length satisfies the strong Wolfe conditions (4.5)—(4.6). Then there
is a constant ¢ > 0 such that

gr di < —cllgkll? (4.7)

for all k > 1, and
lim inf ||gg|| = 0.
k—o00

This result is interesting in many respects. The relation (4.7) is established
by induction in a novel and elegant fashion. It shows that the strong Wolfe
conditions are sufficient to ensure the descent property of the Fletcher—
Reeves method. Prior to this result it was thought that an ad hoc and
complicated line search would be required to guarantee descent. Relation
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(4.7) appears to play an important role in conjugate gradient methods, and
we will encounter it again later. This theorem is also attractive because
it applies to the algorithm as implemented in practice, and because the
assumptions on the objective function are not restrictive.

Theorem 4.1 can be generalized to other iterations related to the Fletcher—
Reeves method. Touati-Ahmed and Storey (1990) show that Theorem 4.1
holds for all methods of the form (4.1)—(4.2), which satisfy the strong Wolfe
conditions, and with any By such that 0 < 8; < Bf*. Gilbert and Nocedal
(1990) extend this to any method with |8x| < BF®, and show that this result
is tight in the following sense: there exists a smooth function f, a starting
point z; and values of 3 satisfying

|ﬂk| < C,B][;Ra

for some ¢ > 1, such that the sequence of gradient norms {|jgx||} generated
by (4.1)-(4.2) is bounded away from zero.

This is our first encounter with a negative convergence result for conjugate
gradient methods. It shows that the choice of the parameter 8} is crucial.
An analysis of conjugate gradient methods with inexact line searches, shows
that unless By is carefully chosen, the length of the search direction dj can
grow without bound causing the algorithm to fail. In the results mentioned
so far, only the size of 8; with respect to B{* plays an important role in
ensuring global convergence. We will see later that a more subtle property
of B; determines the efficiency of the iteration.

Powell (1977) has given some arguments that explain, at least partially,
the poor performance of the Fletcher-Reeves method in some problems:
if a very small step is generated away from the solution, then due to the
definition (4.3), it is likely, that subsequent steps will also be very short.
We will not give the supporting facts for this argument, but only mention
that the analysis is simple, and also shows that the Polak-Ribiére method
would not slow down in these circumstances. This propensity for short
steps, causes the Fletcher-Reeves algorithm to sometimes stall away from
the solution, and this behaviour can be observed in practice. For example, 1
have observed that when solving the minimal surface problem (Toint, 1983)
with 961 variables, the Fletcher-Reeves method generates tiny steps for
hundreds of iterations, and is only able to terminate this pattern after a
restart is performed.

Powell (1977) and Nemirovsky and Yudin (1983) give global efficiency
results that provide further evidence of the inefficiency of the Fletcher—
Reeves method. The simplest analysis is that of Powell, who shows that
if the Fletcher-Reeves method, with exact line searches, enters a region in
which the function is the two-dimensional quadratic

f(@) = $aTe,
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then the angle between the gradient g; and the search direction dj stays
constant. Therefore, if this angle is close to 90° the method will converge
very slowly. Indeed since this angle can be arbitrarily close to 90°, the
Fletcher—Reeves method can be slower than the steepest descent method.
Powell also shows that the Polak-Ribiére method behaves quite differently
in these circumstances, for if a very small step is generated, the next search
direction tends to the steepest descent direction, preventing a sequence of
tiny steps from happening.

With all the arguments given in favour of the Polak—Ribiére method, we
would expect to be able to prove, for it, a global convergence result similar
to Theorem 4.1. That this is not possible follows from a remarkable result
of Powell (1984a). He shows that the Polak—Ribiére method with exact line
searches can cycle infinitely, without approaching a solution point. Since
the step-length of Powell’s example would probably be accepted by any
practical line search algorithm, it appears unlikely that a satisfactory global
convergence result will ever be found for the Polak—Ribiére method.

Powell establishes his negative result by an algebraic tour de force. He as-
sumes that the line search always finds the first stationary point, and shows
that there is a twice continuously differentiable function of three variables
and a starting point such that the sequence of gradients generated by the
Polak-Ribiére method stays bounded away from zero. Since Powell’s exam-
ple requires that some consecutive search directions become almost contrary,
and since this can only be achieved (in the case of exact line searches) when
Br < 0, Powell (1986) suggests modifying the Polak-Ribiére method by
setting

Bx = max{Gg*,0}. (4.8)

Thus if a negative value of B* occurs, this strategy will restart the iteration
along the steepest descent direction.

Gilbert and Nocedal (1990) show that this modification of the Polak-
Ribiére method is globally convergent both for exact and inexact line sear-
ches. If negative values of B* occurred infinitely often, global convergence
would follow, as discussed in Section 3, because an infinite number of steep-
est descent steps would be taken. Thus Gilbert and Nocedal consider the
case where B[* > 0 for all sufficiently large k, and show that in this case
liminf ||gk|| = 0, provided the line search has the following two properties:
(i) it satisfies the strong Wolfe conditions; and (ii) it satisfies (4.7) for some
constant ¢. Gilbert and Nocedal discuss how to implement such a line search
strategy for any conjugate gradient method with 8 > 0. We will now de-
scribe their analysis, which is quite different from that used by Al-Baali for
the study of the Fletcher—Reeves method.

The use of inexact line searches in conjugate gradient methods requires
careful consideration. In contrast with the Fletcher—-Reeves method, the
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strong Wolfe conditions (4.5)—(4.6) no longer guarantee the descent property
for the Polak-Ribiére or other conjugate gradient methods. It turns out,
however, that if 3; is always nonnegative it is possible to find a line search
strategy that will provide the descent property. To see this note that from
(4.1) we have

T di = —||gkll® + Brgr T dr—1. (4.9)

Therefore, to obtain descent for an inexact line search algorithm, one needs
to ensure that the last term is not too large. Suppose that we perform a
line search along the descent direction dy_,, enforcing the Wolfe (or strong
Wolfe) conditions, to obtain zi. If gxTd;_; < 0, the nonnegativity of £y
implies that the sufficient descent condition (4.7) holds. On the other hand,
if (4.7) is not satisfied then it must be the case that gxTdr—; > 0, which
means that a one-dimensional minimizer has been bracketed. It is then easy
to apply a line search algorithm, such as that given by Lemaréchal (1981),
Fletcher (1987) or Moré and Thuente (1990), to reduce |giT d—1| sufficiently
and obtain (4.7). Note that the only condition imposed so far on fj is that
it be nonnegative.

To obtain global convergence for other conjugate gradient methods we
need to impose another condition on 3;, and interestingly enough, it is the
property that makes the Polak—Ribiére method avoid the inefficiencies of the
Fletcher-Reeves method. We say that a method has Property (x) if a small
step, ak.-1dk-1 in a region away from the solution implies that 3; will be
small. A precise definition is given in Gilbert and Nocedal (1990). It isolates
an important property of the Polak-Ribiére method: the tendency to turn
towards the steepest descent direction if a small step is generated away
from the solution. The global convergence result of Gilbert and Nocedal is
as follows.

Theorem 4.2 Consider any method of the form (4.1)—(4.2) with the fol-
lowing three properties: (i) By > 0 for all k; (ii) the line search satisfies the
Wolfe conditions (3.6)—(3.7) and the sufficient descent condition (4.7); and
(iii) Property (*) holds. Then liminf ||gi|| = 0.

This is one of the most general convergence results known to date. How-
ever it is not clear if the restriction 8 > 0 is essential, in some way, and
should always be imposed in conjugate gradient methods, or if it only sim-
plifies the analysis. It is also not known if the cycling of the Polak-Ribiére
method predicted by Powell can occur in practice; to my knowledge it has
never been observed. LukSan (1991a) performed numerical tests with sev-
eral conjugate gradient methods that restrict 3;* to be nonnegative, as well
as methods that are constrained by Bf®. The results are interesting, but
inconclusive, and more research is needed.

How fast is the convergence of conjugate gradient methods? Let us first
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answer this question under the assumption that exact line searches are made.
Crowder and Wolfe (1972) show that the rate of convergence is linear, and
give an example that shows that the rate cannot be @Q-superlinear. Powell
(1976b) studies the case in which the conjugate gradient method enters a
region where the objective function is quadratic, and shows that either finite
termination occurs, or the rate of convergence is linear. Cohen (1972) and
Burmeister (1973) show that, for general objective functions, the rate of
convergence is n-step quadratic, i.e.

IZktn = 2]l = O(l|zx — 2.]1%),
and Ritter (1980) strengthens the result to
IZk+n = zull = Ollzx — 241%)-

Powell (1983) gives a slightly better result and performs numerical tests
on small problems to measure the rate observed in practice. Faster rates
of convergence can be established (Schuller, 1974; Ritter, 1980), under the
assumption that the search directions are uniformly linearly independent,
but this does not often occur in practice. Several interesting results assuming
asymptotically exact line searches are given by Baptist and Stoer (1977) and
Stoer (1977). We will not discuss any of these rate of convergence results
further because they are not recent and are described, for example, in Powell
(1983).

Nemirovsky and Yudin (1983) devote some attention to the global effi-
ciency of the Fletcher-Reeves and Polak-Ribiére methods with exact line
searches. For this purpose they define a measure of ‘laboriousness’ and
an ‘optimal bound’ for it among a certain class of iterations. They show
that on strongly convex problems, not only do the Fletcher—-Reeves and
Polak-Ribiére methods fail to attain the optimal bound, but they also con-
struct examples in which both methods are slower than the steepest descent
method. Subsequently Nesterov (1983) presented an algorithm that attains
this optimal bound. It is related to PARTAN — the method of parallel tan-
gents (Luenberger, 1984), and is unlikely to be effective in practice, but this
has not been investigated, to the best of my knowledge. Some extensions of
Nesterov’s algorithm have been proposed by Giiler (1989).

Let us now consider extensions of the conjugate gradient method. Moti-
vated by the inefficiencies of the Fletcher-Reeves method, and guided by the
desire to have a method that cannot converge to point where the gradient is
nonzero, Powell (1977) proposed a conjugate gradient method which restarts
automatically using a three-term recurrence iteration introduced by Beale
(1972). This method has been implemented in the Harwell routine VE04
and outperforms the Fletcher-Reeves and Polak-Ribiére methods, but re-
quires more storage. Shanno and Phua (1980) proposed a different extension
of the conjugate gradient method that uses even more storage, and which
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resembles a variable metric iteration. It has been implemented in the highly
successful and popular code CONMIN. This method, which is not simple to
describe, also uses automatic restarts. The iteration is of the form

dy, = —Hygy,

where Hj is a positive definite and symmetric matrix. Since this ensures
that the search directions are descent directions, the line search needs only to
satisfy the usual Wolfe conditions (3.6)—(3.7). Shanno (1978a,b) shows that
this algorithm is globally convergent, with inexact line searches, on strongly
convex problems. The convergence properties on nonconvex problems are
not known; in fact, CONMIN is related to the BFGS variable metric method,
whose global convergence properties on nonconvex problems are not yet
understood, as we will discuss in the next section.

It is interesting to note that for all the conjugate gradient methods de-
scribed in this section, and for their extensions, increased storage results
in fewer function evaluations. The Fletcher—Reeves method requires four
n-vectors of storage, Polak—Ribiére five, VE04 six and CONMIN seven. In
terms of function evaluations, their ranking corresponds to the order in
which they were just listed — with CONMIN at the top.

Are automatic restarts useful? This remains controversial. Gill and Mur-
ray (1979) speculate that the efficiency of VE04 and CONMIN is due to
the fact that they make good use of the additional information they store,
rather than to the effects of restarting. I agree with this assessment, and
as we will see when we discuss limited memory methods, it is possible to
design methods that are more effective than CONMIN and use no restarts.
In my view, an undesirable feature of all the restarting criteria proposed so
far is that they do not rule out the possibility of triggering a restart at every
step, hence degrading the speed of convergence of the methods. Indeed, I
have observed examples in which CONMIN restarts at every iteration and
requires an excessive number of function evaluations.

I will end this section with a question that has intrigued me for some
time: have we failed to discover the ‘right’ implementation of the conjugate
gradient method? Is there a simple iteration of the form (4.1)—(4.2) which
performs significantly better than all the methods proposed so far, and which
has all the desirable convergence properties? Given the huge number of
articles proposing new variations of the conjugate gradient method, without
much success, the answer would seem to be ‘no’. However I have always felt
that the answer is ‘yes’ — but I could say no more.

5. Variable metric methods

We have seen that in order to obtain a superlinearly convergent method it
is necessary to approximate the Newton step asymptotically — this is the
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principle (3.16) of Dennis and Moré. How can we do this without actually
evaluating the Hessian matrix at every iteration? The answer was discov-
ered by Davidon (1959), and was subsequently developed and popularized
by Fletcher and Powell (1963). It consists of starting with any approxi-
mation to the Hessian matrix, and at each iteration, update this matrix
by incorporating the curvature of the problem measured along the step. If
this update is done appropriately, one obtains some remarkably robust and
efficient methods, called variable metric methods. They revolutionized non-
linear optimization by providing an alternative to Newton’s method, which
is too costly for many applications. There are many variable metric meth-
ods, but since 1970, the BFGS method has been generally considered to
be the most effective. It is implemented in all major subroutine libraries
and is currently being used to solve optimization problems arising in a wide
spectrum of applications.

The theory of variable metric methods is beautiful. The more we study
them, the more remarkable they seem. We now have a fairly good under-
standing of their properties. Much of this knowledge has been obtained
recently, and we will discuss it in this section. We will see that the BFGS
method has interesting self-correcting properties, which account for its ro-
bustness. We will also discuss some open questions that have resisted an
answer for many years. Variable metric methods, aside from being highly
effective in practice, are intricate mathematical objects, and one could spend
a lifetime discovering new properties of theirs. Ironically, our many theo-
retical studies of variable metric methods have not resulted in the discovery
of new methods, but have mainly served to explain phenomena observed in
practice. However it is hard to predict the future of this area, which has
given rise to many surprising developments.

The BFGS method is a line search method. At the kth iteration, a sym-
metric and positive definite matrix By is given, and a search direction is
computed by

dy = — B lgy. (5.1)
The next iterate is given by
Tky1 = Tk + ardy, (5.2)

where the step-size oy, satisfies the Wolfe conditions (3.6)-(3.7). It has been
found that it is best to implement BFGS with a very loose line search:
typical values for parameters in (3.6)—(3.7) are 03 = 1074 and o7 = 0.9.
The Hessian approximation is updated by

Bisksi B | ykyf
)
st Bysg, y¥ sk

Bk+1 = Bk - (53)
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where, as before,
Yk = Gk+1 — Gky Sk = Tk41 — Tk. (5.4)

Note that the two correction matrices on the right-hand side of (5.3) have
rank one. Therefore by the interlocking eigenvalue theorem (Wilkinson,
1965), the first rank-one correction matrix, which is subtracted, decreases
the eigenvalues — we will say that it ‘shifts the eigenvalues to the left’. On
the other hand, the second rank-one matrix, which is added, shifts the eigen-
values to the right. There must be a balance between these eigenvalue shifts,
for otherwise the Hessian approximation could either approach singularity
or become arbitrarily large, causing a failure of the method.

A global convergence result for the BFGS method can be obtained by care-
ful consideration of these eigenvalue shifts. This is done by Powell (1976a),
who uses the trace and the determinant to measure the effect of the two
rank-one corrections on Bj. He is able to show that if f is convex, then for
any positive definite starting matrix B; and any starting point z;, the BFGS
method gives liminf ||gx|| = 0. If in addition the sequence {z;} converges
to a solution point at which the Hessian matrix is positive definite, then the
rate of convergence is superlinear.

This analysis has been extended by Byrd et al. (1987) to the restricted
Broyden class of quasi-Newton methods in which (5.3) is replaced by

Bisksg Br | ykyR T T
+ + ¢(83, Brsk)urv 5.5
8{ Bk Sk y{ P ( k ) k> ( )

ve= |2 Bysi
yTsr s Bisk

Biy1 = Bi —

where ¢ € [0,1], and

The choice ¢ = 0 gives rise to the BFGS update, whereas ¢ = 1 defines
the DFP method - the first variable metric method proposed by Davidon,
Fletcher and Powell (see e.g. Fletcher (1987)). Byrd et al. prove global
and superlinear convergence on convex problems, for all methods in the
restricted Broyden class, except for DFP. Their approach breaks down when
¢ = 1, and leaves that case unresolved. Indeed the following question has
remained unanswered since 1976, when Powell published his study on the
BFGS method.

Open question I. Consider the DFP method with a line search satisfying
the Wolfe conditions (3.6)—(3.7). Assume that f is strongly convex, which
implies that there is a unique minimizer z,. Do the iterates generated by
the DFP method converge to z., for any starting point z; and any positive
definite starting matrix B;?

It is rather surprising that, even though the DFP method has been known
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for almost 30 years, we have little idea of what the answer to this basic ques-
tion will turn out to be. DFP can be made to perform extremely poorly on
convex problems, making a negative result plausible. On the other hand,
the method has never been observed to fail; in fact even in the worst ex-
amples we can see the DFP method creeping towards a solution point. The
most we can say is that the DFP method is globally convergent on convex
functions if the line searches are exact (Powell, 1971, 1972), or that if it
converges to a point, and line searches are exact, then the gradient at this
point must be zero (Pu and Yu, 1988). It may also seem puzzling to the
reader that global convergence has been established for ¢ = 0.999, say, but
not for ¢ = 1. Wouldn’t a continuity argument show that if the result holds
for all ¢ < 1 then it must also hold for ¢ = 1?7 To answer this question,
and to describe the self-correcting properties of the BFGS method, men-
tioned earlier, we will now discuss in some detail the convergence analyses
of Powell, and Byrd et al.

Let us begin by considering only the BFGS method, and let us assume
that the function f is strongly convex, i.e. that there exist positive constants
m and M such that

ml|z||? < 2TG(z)z < M||z||? (5.6)

for all 2,z € R", where G denotes the Hessian matrix of f. Computing the
trace of (5.3) we obtain

| Brsi||? + llyx |2

Tsk )

|
Tr (B = Tr(Bg) —

(5.7)

It turns out that the middle term on the right-hand side of this equation
depends on cos f;, the angle between the steepest descent direction and the
search direction, which was used extensively in Section 3. To see this, we
first note that

frs1 — fr = gi sk + 3L G(éx) sk,

for some £; between z;41 and zx. Thus, using the first Wolfe condition (3.6)
we have

0197 sk > gt sk + L8k G(€x) sk (5.8)
Next we use (5.6) and the definition (3.5) of cos 6, to obtain
(1 = o1)ligkllllskll cos 6k > Fmllskii?,

which implies that
llskll < c2llgl| cos Bk, (5.9)
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where ¢z = 2(1 — 01)/m. Since Bjsr = —aug, using (5.9) we obtain

IBesil® _ ofllgkll?
sT Bysy, o ||k llllgkll cos O
o |gll

|Is|| cos Ok
(873

cpcos? by

(5.10)

We have thus shown that the term that tends to decrease the trace can be
proportional to o/ cos? 6. Let us now consider the last term in the trace
equation (5.7). From the definition of y; we have that

yx = Gsy, (5.11)
where
1
G= / Glax + Tsx)dr. (5.12)
0
Let us define z; = G'/2s;, where G/2G1/2 = G. Then from (5.11) and (5.6)
Yelk _ SiG7s
yf sk sFGsy,
_ Gz
I
< M. (5.13)

Therefore the term that tends to increase the trace is bounded above for all
k, on convex problems. We obtain from (5.7) and (5.10)

Te(Bir1) < Te(Br) = — - + M. (5.14)
This relation allows insight into the behaviour of the BFGS method. The
discussion that follows is not rigorous, but all the statements made here can
be established rigorously.

Suppose for the moment that the step-lengths aj are bounded below. If
the algorithm produces iterations for which cos @, is not very small, it will
advance towards the solution, but some of the eigenvalues of {B\} could
become large because the middle term on the right-hand side of (5.14) could
be significantly smaller than M. If, as a result of having an excessively large
Hessian approximation By, steps with very small cos 6y are produced, little
progress may be achieved, but a self-correcting mechanism takes place: the
middle term in (5.14) will be larger than M, thus decreasing the trace. This
self-correction property is in fact very powerful. The smaller cos 8y is, the
faster the reduction in the trace relation.

Suppose now that the step-lengths aj tend to zero. It is easy to see
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(Byrd et al., 1987, p. 1179) that this is due to the existence of very small
eigenvalues in By, which cannot be monitored by the means of the trace.
Fortunately, it turns out that the BFGS update formula has a strong self-
correcting property with respect to the determinant, which can be used to
show that, in fact, oy is bounded away from zero in mean. Indeed, the
determinant of (5.3) is given by Pearson (1969)
_ Yk Sk

det(Bg41) = det(Bk)sszSk . (5.15)
Note that when s Bys;, is small relative to yf sy = sf Gsg, the determi-
nant increases, reflecting the fact that the small curvature of our model is
corrected, thus increasing some eigenvalues.

In conclusion, the trace relation shows that, for strongly convex problems,
the eigenvalues of the matrices B cannot become too large, and the deter-
minant relation shows that they cannot become too small. This can be used
to show that the method is convergent, and by verifying the Dennis-Moré
condition (3.16), one deduces that the rate of convergence is superlinear.

Let us now consider the restricted Broyden class (5.5) with ¢ € [0,1). The
analysis proceeds along similar lines. The trace relation is now (Byrd et al.,
1987)

dar  (1-@lax , 2¢May
—_ 3 + y
1 czc0820;,  mcycosby

where ¢; = (1 — 02)/M. Note that the second and the third terms on the
right-hand side of (5.16) produce a shift to the right in the eigenvalues, in the
sense that they increase the trace. The fourth term on the right-hand side
of (5.16) produces a shift to the left, which can be very strong when cos 8},
is small. The last term can produce a shift in either direction. A crucial
fact is that this last term, of uncertain sign, is inversely proportional to
cos 0, whereas the negative fourth term is inversely proportional to cos? 6j.
Therefore, when cos@; is tiny, we still have a guaranteed decrease in the
trace relation. This can be used to show that the Hessian approximation
By, cannot grow without bound.
The determinant relation, for any ¢ € [0, 1], can be shown to satisfy,

Tr(Br41) < Tr(Bi) + M +

(5.16)

det(By41) > det(By) i Sk , (5.17)
- s{Bksk

which is essentially the same as for the BFGS update, and so we can reason

as before to deduce that small eigenvalues are efficiently corrected. These

arguments can be made rigorous, and can be used to establish global and

superlinear convergence for any method in the restricted Broyden class using
¢ €[0,1).

Why does this analysis not apply to the DFP method? It turns out that
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small eigenvalues do not cause problems, because (5.17) holds when ¢ = 1,
showing that the method possesses the self-correcting property with respect
to the determinant mentioned earlier. Therefore if very small eigenvalues
occur, the DFP method will be able to increase them quickly. Difficulties,
however, can arise due to large eigenvalues. Note that the fourth term on the
right-hand side of (5.16), which plays a crucial role in preventing the trace
from growing, is no longer present. The only term capable of decreasing the
trace is the last term in (5.16). In addition to being of uncertain sign, this
term is smaller in magnitude than the fourth term in (5.16), when cos 6y
is small. Thus it is not certain that a shift to the left will occur and even
if it does we cannot expect it to be as strong as for other methods in the
Broyden class. Therefore we can expect the DFP method to either develop
excessively large Hessian approximations By, or, at the very least, to have
difficulties in reducing a large initial Hessian approximation. Numerical tests
confirm these observations, which also seem to agree with a global efficiency
study of Powell (1986), which we discuss later on.

We have assumed all along that the Wolfe conditions are always satisfied.
Are the good properties of the BFGS method strongly dependent on them?
This question is of practical importance, because for problems with inequal-
ity constraints it is often not possible to satisfy the second Wolfe condition
(3.7). Fortunately it is proved by Byrd and Nocedal (1989) that the BFGS
updating formula has excellent properties as long as it perceives positive
curvature — regardless of how large the function reduction or the change in
the gradient are. We now formally state one of these properties.

Theorem 5.1 Let {B;} be generated by the BFGS formula (5.3) where
B is symmetric and positive definite and where for all k > 1 y; and s; are
any vectors that satisfy

T
%"T:—" > m>0 (5.18)
k 5k
2
Il o0
kL Sk

Then for any p € (0, 1) there exists a constant 3;, such that, for any k > 1,
the relation

CcOSs 0]‘ Z ﬂl (5'20)
holds for at least [pk] values of j € [1, k].

This result states that, even though we cannot be sure that all the cos 8
will be bounded below, we can be sure that this is the case for most of
them. This is enough to obtain certain global convergence results. For
example, Theorem 5.1 can be used to show that the BFGS method using a
backtracking line search is globally convergent on convex problems. Various



THEORY OF ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION 223

results of this type have also been obtained by Werner (1978, 1989); see also
Warth and Werner (1977).

The recent analysis on variable metric methods has not only produced
new results but, as can be expected, has also provided simpler tools for
performing the analysis. Byrd and Nocedal (1989) show that it is easier
to work simultaneously with the trace and determinant relations. For this
purpose they define, for any positive definite matrix B, the function

¥(B) = trB — IndetB, (5.21)

where In denotes the natural logarithm. It is easy to see that ¢/(B) >
In[cond(B)], so that global convergence can be established by analysing the
behaviour of ¥(Bj). Moreover the function 9 can also be used to establish
superlinear convergence without having to explicitly verify the Dennis—-Moré
condition (3.16); this is explained in Byrd and Nocedal (1989).

5.1. Nonconvez objective functions

All the results for the BFGS method discussed so far depend on the as-
sumption that the objective function f is convex. At present, few results
are available for the case in which f is a more general nonlinear function.
Even though the numerical experience of many years suggests that the BFGS
method always converges to a solution point, this has not been proved.

Open question II. Consider the BFGS method with a line search satisfy-
ing the Wolfe conditions (3.6)—(3.7). Assume that f is twice continuously
differentiable and bounded below. Do the iterates satisfy liminf ||gi|| = 0,
for any starting point z; and any positive definite starting matrix B;?

This is one of the most fundamental questions in the theory of uncon-
strained optimization, for BFGS is perhaps the most commonly used method
for solving nonlinear optimization problems. It is remarkable that the answer
to this question has not yet been found. Nobody has been able to construct
an example in which the BFGS method fails, and the most general result
available to us, due to Powell (1976a), is as follows.

Theorem 5.2 Suppose that f is differentiable and bounded below. Con-
sider the BFGS method with a line search satisfying the Wolfe conditions
(3.6)—(3.7). Then the limit lim inf ||gx|| = 0 is obtained for any starting point
z; and any positive definite starting matrix By if

T
Yic Yk
5.22
{yf Sk} 522

is bounded above for all k.
We showed earlier (see (5.13)) that in the convex case (5.22) is always



224 J. NOCEDAL

bounded, regardless of how the step s, is chosen. However in the nonconvex
case, in which the Hessian matrix can be indefinite or singular, the quotient
(5.22) can be arbitrarily large, and only the line search could control its size.
It is not known if the Wolfe conditions ensure that (5.22) is bounded, and
if not, it would be interesting to find a practical line search that guarantees
this.

Now that the global behaviour of variable metric methods on convex prob-
lems is reasonably well understood, it is time that we made some progress in
the case when f is a general nonlinear function. Unfortunately establishing
any kind of practical results in this context appears to be extremely difficult.

The 1970s witnessed the development of a very complete local convergence
theory for variable metric methods. The main results, due to Broyden et
al. (1973) and Dennis and Moré (1974) have been used extensively for the
analysis of both constrained and unconstrained methods, and are very well
summarized in Dennis and Moré (1977) and Dennis and Schnabel (1983). A
typical result is as follows. Suppose that z, is a minimizer where the Hessian
is positive definite. If z; is sufficiently close to z, and B; is sufficiently close
to V2f(z,), then the iterates generated by the BFGS or DFP methods, with
unit step-lengths, converge to z, superlinearly.

Another interesting result of Dennis and Moré makes no assumptions on
the Hessian approximations, and states that if the iterates generated by
BFGS or DFP satisfy

o0
Z ”xk - :L'.“ < 00,
k=1

then the rate of convergence is superlinear. Griewank and Toint (1982b)
extended this result to the restricted Broyden class. A stronger result for
BFGS is implicit in the analysis of Griewank (1991) and Byrd et al. (1990):
if the iterates converge (in any way) then the convergence rate must be
superlinear.

A more general local convergence theory for least change secant methods
has been developed by Dennis and Walker (1981). This work is important
because it unifies several local convergence analyses, and because it can be
used to design methods for special applications. Recently, Martinez (1990)
presented a theoretical framework that applies to some methods not covered
by the theory of Dennis and Walker; see also Martinez (1991).

5.2. Global efficiency of the BFGS and DFP methods

Nemirovsky and Yudin (1983) note that to obtain efficiency measures of
optimization methods on general objective functions appears to be an un-
productive task, because only very pessimistic results can be established.
Therefore they restrict their attention to convex problems, and make some
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interesting remarks on the properties of the DFP method. They do not re-
solve the question of whether DFP is optimal, in their sense, but note that
DFP is not invariant under the scaling of f. They use this fact to show that,
by badly scaling f, the DFP method can develop very large Hessian approx-
imations and advance slowly. Their construction exploits the weakness of
DFP with respect to a large Hessian approximation mentioned earlier.

Powell (1986) is able to obtain much insight into the global behaviour of
BFGS and DFP by focusing on a narrower class of problems. He considers
a strictly convex quadratic objective function of two variables, and studies
the DFP and BFGS methods with step-lengths of one. Since both methods
are invariant under a linear change of variables, he assumes without loss
of generality that G(x,) = I, as this results when making the change of
variables from z to z, + G(x.)/?(z — ). Therefore Powell considers the
objective function

flu,v) = %(u2 +v?), (5.23)

and analyses the behaviour of DFP and BFGS for different choices of the
starting point z; and the starting matrix B;. Due to the special form of
the objective function, the secant equation By, 18r = yx, which is satisfied
at each iteration by both DFP and BFGS, takes the form

Bi1(Tk+1 — k) = (Tk41 — Tk)-

This shows that By always has one unit eigenvalue, and can assume that for

all k,
1 0
Bk_(O Ak)'

The DFP and BFGS iterations can be studied by measuring how fast Ag
converges to 1. Powell derives recurrence relations expressing A2 in terms
of Ax+1 and A, and from them, estimates the total number of iterations
required to obtain the solution to a given accuracy. These recurrence rela-
tions can also be used to estimate the function reduction at each step, and to
predict how many iterations will be required before superlinear convergence
takes place.

The results show vast differences of performance between the DFP and
BFGS methods when the initial eigenvalue A is large. Powell shows that,
in this case, the number of iterations required by the DFP method to obtain
the solution with good accuracy can be of order A;. In contrast, the BFGS
method requires only log;o A; iterations, in the worst case. The analysis
shows that if \; is large, and if the starting point is unfavourable, then the
DFP method may decrease A; by at most one at every iteration.

When J; is small, both methods are very efficient. The BFGS method
requires only log;(log;o)A; ! iterations before superlinear convergence steps
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take place, whereas for the DFP method this occurs after only one or two
iterations.

This analysis depends heavily on the assumption that unit step-lengths are
always taken. It is therefore relevant to ask if this is a reasonable assumption
for problem (5.23). Powell shows that an algorithm using a backtracking
line search, would accept the unit step-length in these circumstances. This
would also be the case for other line search strategies that only demand a
sufficient decrease in the function. However, a line search that requires the
two Wolfe conditions may not accept the unit step-length in some iterations,
if the initial eigenvalue \; is large. Therefore Powell’s analysis has some
limitations, but the predictions of this analysis can be observed in some
nonquadratic problems, as we now discuss.

Byrd et al. (1987) test methods in Broyden’s class with a line search
satisfying the Wolfe conditions. The objective function is strongly convex;
it is the sum of a quadratic and a small quartic term. The problem has
two variables and the starting matrix is chosen as a diagonal matrix with
eigenvalues 1 and 104. The BFGS method obtained the solution to high
accuracy in 15 iterations. It was able to decrease the trace of By from
10% to 3 in only 10 iterations. In contrast, the DFP method required 4041
iterations to obtain the solution (which is amazingly close to the estimate
given by Powell). It took, for example, 3000 iterations for DFP to decrease
the trace from 10% to 1100. These results agree closely with the theoretical
predictions given earlier because the objective function is nearly quadratic
— the quartic term is small.

What should we expect if we use ¢ = 0.999 in this problem? Not surpris-
ingly, we find that very many iterations are needed. However it is interesting
that the number of iterations was 2223 — much less than for DFP. Thus a
tiny change in ¢, away from one, has a marked effect in performance.

5.9. Is BFGS the best variable metric method?

The search for a variable metric method that is more efficient than the
BFGS method began in the 1970s and has not ceased. In fact a new burst
of research has taken place in the last few years, and some of the new ideas
may provide practical improvements in performance.

Davidon (1975) proposed a method in which By, is chosen to be the
member of the Broyden class that minimizes the condition number of

B]:IBIH-la

subject to preserving positive definiteness. The resulting value of ¢ some-
times lies outside [0,1], and often coincides with the value of ¢ that defines
the symmetric rank-one method. We will discuss the symmetric rank-one
method in Section 6, and it suffices to say here that it possesses some impor-
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tant computational and theoretical properties. Unlike the symmetric rank-
one method, however, Davidon’s method is guaranteed to generate positive
definite Hessian approximations By, and can be implemented without any
safeguards. Nevertheless interest in the method died after numerical tests
failed to show an improvement over the BFGS method, and since the the-
oretical study by Schnabel (1978) suggested that the advantages of using
Davidon’s approach were likely to be modest.

Recently several authors have taken a new look at the idea of deriving op-
timally conditioned updates, using different measures than the one proposed
by Davidon. Dennis and Wolkowicz (1991) use the function

(B) = trB

" ndetB’
to obtain a new class of updates. Fletcher (1991) notes that the optimal
updates given by the y-function (5.21) are BFGS or DFP, depending on
how the variational problem is posed. Other work in this area includes Al-
Baali (1990), Luksan (1991b), Nazareth and Mifflin (1991), Yuan (1991) and
Hu and Storey (1991). A different approach, in which the secant equation is
not imposed, has been investigated by Yuan and Byrd (1991). Even though
these studies are interesting, it is too soon to know if any of these new
methods can perform significantly better than the BFGS method.

The analysis of Section 5.2, on the two-dimensional quadratic, suggests
that the BFGS method is better at correcting small eigenvalues than large
ones. Could we modify the method so as to strengthen its ability to correct
large eigenvalues? Some authors feel that this can be done by using negative
values for the parameter ¢; in Broyden’s class. It is easy to explain the
reason for this conjecture. Note that if ¢ < 0, the fourth term in the
right-hand side of (5.16) remains negative and increases in magnitude, and
the third term becomes negative. This suggests that, when ¢; < 0, the
algorithm is better able to correct large eigenvalues. Care should be taken
because there is a negative value ¢f for which the update becomes singular
(for values less than ¢f, the updated matrix becomes indefinite; see for
example Fletcher (1987)). Zhang and Tewarson (1988) performed numerical
tests with fixed negative values of ¢, and their results show a moderate
but consistent improvement over the BFGS method. They also prove that,
for convex problems, global and linear convergence can be established for
negative values of ¢, provided that for all k,

(1-v)di < <0, (5.24)

w

where v is an arbitrary constant in (0,1). However Byrd et al. (1990) show
that this algorithm is not superlinearly convergent, in general. They show
that designing a superlinearly convergent method which uses negative values
of ¢y, is possible, but is difficult to implement in practice.
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One can also attempt to improve variable metric methods by introducing
automatic scaling strategies that adjust the size of the matrix By. If properly
done, this could alleviate, for example, the difficulties that DFP has with
large eigenvalues. An idea proposed by Oren and Luenberger (1974) consists
of multiplying B} by a scaling factor 9; before the update takes place. For
example, for the BFGS method, the update would be of the form

B, Tp T
Biy1 = 9% [Bk _ 2kSkSk k] + Yk (5.25)

sT Bysy, yE sk

Several choices for Y5 have been proposed by Oren and Luenberger (1974),
Oren (1982), and in the references cited in these papers. The choice

T
Yi Sk
Y = —— 5.26
k s{Bksk ( )

is often recommended and has been tested in practice. The original motiva-
tion for self-scaling methods arises from the analysis of quadratic objective
functions, and the main results also assume that exact line searches are per-
formed. Disappointing numerical results were reported by several researches
(see for example Shanno and Phua (1980)), and these results are explained
by the analysis of Nocedal and Yuan (1991). They show that the method
(5.25)—(5.26), using a line search that satisfies the Wolfe conditions, pro-
duces good search directions which allow superlinear convergence to take
place if, in addition, the size of the step is correctly chosen. It turns out,
however, that to estimate this step-size, it is normally necessary to use an ex-
tra function evaluation, which makes the approach inefficient. Nocedal and
Yuan give an example in which the step-sizes needed for superlinear conver-
gence alternate between % and 2, and note that this type of behaviour can
be observed in practice and is responsible for the relative inefficiency of the
self-scaling method compared to the unscaled BFGS method.

For these reasons, the Oren—Luenberger scaling is now commonly applied
only after the first iteration of a variable metric method. A quite different,
and perhaps more promising strategy has been proposed by Powell (1987),
and further developed by Lalee and Nocedal (1991) and Siegel (1991). Pow-
ell’s idea is to work with the factorization

Hy = Z} 2} (5.27)

of the inverse Hessian approximation Hj. This factorization has been used
by Goldfarb and Idnani (1983) for quadratic programming and has the ad-
vantage that it can be used easily when inequality constraints are present.
Powell shows that by introducing an orthogonal rotation that makes the
first column of Z; a multiple of sx, the BFGS update of Hj, can be obtained
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via a simple update to Zj:

. { sk/\/ s,{yk i= 1:

z] = T,
' Zi—(gfr;—;)sk i=2,...,n,
where 2; and 2z} are the ith columns of Z; and Zj respectively. Zk+1ZZ+1
gives Hy 1.

Note that the curvature information gathered during the most recent in-
formation is contained in the first column of Zj., 1, and that all other columns
are obtained by a simple operation. Since in the BFGS update we wish to
reduce the possibility of having an over-estimate of the Hessian, or equiva-
lently an under-estimate of the inverse Hessian, Powell proposes to increase
all columns of Zp,; so that their norms are at least equal to a parameter
which depends on the norm of the first column.

Lalee and Nocedal (1991) extend Powell’s idea to allow scaling down
columns that are too large, as well as scaling up those that are too small.
They give conditions on the scaling parameters in order for the algorithm to
be globally and superlinearly convergent. Siegel (1991) proposes a slightly
different scaling strategy. At every iteration, he only scales up the last [
columns of the matrix Zi, where [ is a nonincreasing integer. The para-
meter [ does not change if the search direction dj is in the span of the first
n — | columns of Zj, or close to it. Otherwise, ! is decreased by 1. These
column scaling methods appear to work very well in practice, but there is
not enough data yet to draw any firm conclusions.

6. The symmetric rank-one method

One of the most interesting recent developments in unconstrained optimiza-
tion has been the resurgence of the symmetric rank-one method (SR1). Sev-
eral new theoretical and experimental studies have reversed the general per-
ception of this method. Instead of being considered ‘fatally flawed’, the SR1
method is now regarded by many researchers as a serious contender with the
BFGS method for unconstrained problems, and as the most suitable quasi-
Newton method for applications in which positive definite updates cannot
be generated, such as constrained problems. The SR1 method remains con-
troversial, and it is difficult to predict if the enthusiasm for this method is
temporary, or if it will find a permanent place in optimization subroutine
libraries.
The symmetric rank-one update is given by

(yx — Bisk)(yx — Brsk)T
= B, + ) 6.1
* s¥(yx — Besk) (6.1)

It was first discovered by Davidon (1959) in his seminal paper on quasi-

By
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Newton methods, and re-discovered by several authors. The SR1 method
can be derived by posing the following simple problem. Given a symmetric
matrix By and the vectors s; and y, find a new symmetric matrix By,
such that By, — By has rank one, and such that

By 18k = Yk-

It is easy to see that if (yx — Bxsx)Tsx # 0, then the unique solution is
(6.1), whereas if y, = Bjsi then the solution is Bgy; = Bi. However if
(yx — Brsk)Tsk = 0 and yx # Bygsg, there is no solution to the problem,
and this case clouds what is otherwise a clean and simple argument. To
prevent the method from failing, one can simply set By,1 = B when the
denominator in (6.1) is close to zero, but this could prevent the method from
converging rapidly.

It was noted early on that the SR1 method has some very interesting
properties, provided it does not break down. For example Fiacco and Mc-
Cormick (1968) show that the SR1 method without line searches finds the
solution of a strongly convex quadratic function in at most n+ 1 steps, if the
search directions are linearly independent and if the denominator in (6.1) is
always nonzero. In this case B, equals the Hessian of the quadratic func-
tion. It is significant that this result does not require exact line searches, as
is the case for the BFGS and DFP methods.

However, the fact that the denominator in (6.1) can vanish, introduces
numerical instabilities and a possible breakdown of the method. Since this
can happen even for quadratic functions, and since (6.1) does not always
generate positive definite matrices, which complicates a line search imple-
mentation, the SR1 method fell out of favour. It was rarely used in practice,
even though very good computational results had been obtained with safe-
guarded implementations (Dixon, 1972). The feeling in the early 1970s was
that the method has some intrinsic weaknesses, and that the BFGS method
was clearly preferable.

The revival of the SR1 method began, interestingly enough, during the de-
velopment of the partitioned quasi-Newton method of Griewank and Toint
(1982c). As we will discuss in the next section, the curvature condition
sTy > 0 cannot always be expected to hold for all element functions, and
therefore the BFGS method cannot always be applied. Therefore the im-
plementation of the partitioned quasi-Newton method by Toint (Harwell
routine VEO8) uses the SR1 update when BFGS cannot be applied. This
happens often; in particular after an SR1 update has been applied all sub-
sequent updates are performed by means of SR1. The partitioned quasi-
Newton method performs very well in practice, giving a first indication of
the success of the SR1 method — but this work drew less attention than it
deserved.

The SR1 method came to the limelight with a sequence of papers by Conn
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et al. (1988a,b, 1991). The first two papers deal with trust region methods
for bound constrained problems, and report better results for SR1 than for
BFGS. The authors speculate that the success of SR1 may be due to its
superior ability to approximate the Hessian matrix at the solution. This is
investigated in the third paper, in which the following result is established.

Theorem 6.1 Suppose that f is twice continuously differentiable, and
that its Hessian is bounded and Lipschitz continuous. Let {zx} be the
iterates generated by the SR1 method and suppose that £, — z. for some
z, € R™. Suppose in addition that, for all k,

|t (ux = Brsw)| 2 rlsll llye — Bisell, (6.2)

for some r € (0,1), and that the the steps s, are uniformly linearly inde-
pendent. Then

lim || B — V2f(z.)| = 0.
k—o0

Condition (6.2) is often used in practice to ensure that the SR1 update is
well behaved: if it is violated then the update is skipped. Conn et al. (1991)
report that the assumption of uniform linear independence of the search
directions holds in most of their runs, and that the Hessian approximations
generated by the SR1 method are often more accurate than those generated
by BFGS or DFP.

Osborne and Sun (1988) propose a modification in which the Hessian
approximation is scaled before the SR1 update is applied. They analyse
this method and report good numerical results. In an interesting recent
paper, Khalfan et al. (1991) make further contributions to the theory of the
SR1 method, and present numerical results that, to some extent, conflict
with those of Conn et al. (1991). They consider both a line search and a
trust region implementation and observe that, for the problems they tested,
the Hessian approximations generated by the SR1 method are on the average
only slightly more accurate than those produced by the BFGS method. They
report that in about one third of their problems neither method produces
close approximations to the Hessians at the solution.

These results suggest that the assumptions of Theorem 6.1 may not always
be satisfied in practice . Therefore Khalfan et al. study whether the steps
generated by the SR1 method are uniformly linearly independent and find
that this is often not the case. They conclude that the efficiency of the SR1
method is unlikely to be due to the properties given in Theorem 6.1, and
pursue an analysis that is not based on the linear independence assumption.
They prove several results which we now describe.

The first result is related to the Dennis—Moré condition for superlinear
convergence, and assumes that unit step-lengths are taken. It states that if
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Z, is a minimizer such that V2f(z,) is positive definite, and if
ex = ||z — z*||

and
(B — V3£ (z.)) skl
llskll

bl

are sufficiently small, then

I(Bx — V2f(z.))skll
llskl

er + cze,%

lzx + sk — ze|| S 1

where ¢; and c2 are constants.

This bound suggests that some kind of quadratic rate is possible. To es-
tablish this, however, Khalfan et al. must assume that the matrices { B}
are positive definite and bounded. This appears, at first, to be a very unre-
alistic assumption, but the authors note that this is very often the case in
their numerical tests. We now formally state this second result on the SR1
method.

Theorem 6.2 Suppose that the iterates generated by the SR1 method
converge to z, — a minimizer such that V2 f(z,) is positive definite. Assume
that for all k > 0 the condition (6.2) is satisfied and that the matrices By,
are positive definite and uniformly bounded above in norm. Then the rate
of convergence is 2n-step g-quadratic, i.e.

. €k
lim sup —+T2" <
k—00 €

These new results are, of course, not as strong as the global convergence
results described for the BFGS method, but one should keep in mind that
the renewed interest in the SR1 method is very recent. Therefore substantial
advances in this area can be expected.

7. Methods for large problems

Every function f with a sparse Hessian is partially separable, i.e. it can be
written in the form

ne
fl@) =3 fil=), (7.1)

i=1
where each of the ne element functions f; depends only on a few variables.
This statement is proved by Griewank and Toint (1982a}), and provides the
foundation for their partitioned quasi-Newton method for large-scale opti-
mization. The idea behind this method is to exploit the partially separable
structure (7.1) and update an approximation B,’; to the Hessian of each el-
ement function f;. These matrices, which are often very accurate, can be



THEORY OF ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION 233

assembled to define an approximation By to the Hessian of f. There is one
complication: even if V2f(z,) is positive definite, some of the element func-
tions may be concave, so that the BFGS method cannot always be used. In
this case Griewank and Toint use the SR1 update formula, and implement
safeguards that skip the update if it is suspect.

The search direction of the partitioned quasi-Newton method, as imple-
mented by Toint (1983), is determined by solving the system

(f: B:;) de = —o1 (72)
i=1

inside a trust region, using a truncated conjugate gradient iteration. If a
direction of negative curvature is detected, the conjugate gradient iteration
is terminated, and dy, is set to this direction of negative curvature. After
this, a line search is performed along dj. This method is described and
analysed by Griewank and Toint (1982b,c, 1984); the implementation just
outlined corresponds to the Harwell routine VEOS.

The partitioned quasi-Newton method performs very well in practice, and
represents one of the major algorithmic advances in nonlinear optimization.
We should note that many practical problems are directly formulated in the
form (7.1), and that many other problems can be recast in that form. Thus
the partitioned quasi-Newton method is of wide applicability.

To establish global convergence results, similar to those for the BFGS
method on convex problems, it is necessary to assume that all the element
functions f; are convex. Under this assumption Griewank (1991) shows
that the partitioned quasi-Newton method is globally convergent, even if
the system (7.2) is solved inexactly. Griewank also relaxes the smoothness
conditions on the gradients of the element functions f;, and establishes rate
of convergence results under the assumption that these gradients are only
Lipschitzian, rather than differentiable. Griewank’s analysis completely de-
scribes the behaviour of the partitioned quasi-Newton method in the convex
case, and strengthens earlier work by Toint (1986b).

A very different approach for solving large problems ignores the struc-
ture of the problem, and uses the information of the last few iterations to
define a variable metric approximation of the Hessian. This, so-called lim-
ited memory BFGS method, has proved to be very useful for solving certain
large unstructured problems, and is in fact competitive with the partitioned
quasi-Newton method on partially separable problems in which the number
of variables entering into the element functions f; exceeds 5 or 6 (Liu and
Nocedal, 1989).

The limited memory BFGS method is very similar to the standard BFGS
method - the only difference is in the matrix update. Instead of storing
the matrices H}, that approximate the inverse Hessian, one stores a certain
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number, say m, of pairs {s;,y;} that define them implicitly. The product
Hy.g;, which defines the search direction, is obtained by performing a se-
quence of inner products involving g and the m most recent vector pairs
{s:, ¥} This is done efficiently by means of a recursive formula (Nocedal,
1980). After computing the new iterate, we delete the oldest pair from the
set {s;,y;} and replace it by the newest one. Thus the algorithm always
keeps the m most recent pairs {s;,y;} to define the iteration matrix. It has
been observed that scaling can be highly beneficial for large problems and
several strategies for doing this have been studied by Gilbert and Lemaréchal
(1989).

The limited memory BFGS method is suitable for large scale problems be-
cause it has been observed in practice that small values of m (say m € [3,7])
give satisfactory results. It is not understood why this method is as fast as
the standard BFGS method on many problems. Another interesting open
question is how to design a strategy for selecting the most useful corrections
pairs — not simply the most recent ones —to improve the performance of the
method.

Since the Dennis-Moré condition (3.16) cannot possibly hold for the lim-
ited memory BFGS method, its rate of convergence must be linear. Liu and
Nocedal (1989) prove that the limited memory BFGS method is globally and
linearly convergent on convex problems for any starting point, and for sev-
eral useful scaling strategies. It is interesting to note that, as implemented
by Liu and Nocedal, the method does not possess quadratic termination. A
different limited memory method, that combines cycles of BFGS and conju-
gate gradient directions has been developed by Buckley and LeNir (1983).

Newton’s method is, of course, the best method for solving many types
of problems. Both line search and trust region implementations have been
developed for the large-scale case; see Steihaug (1983), Nash (1985), O’Leary
(1982) and Toint (1986a). The convergence properties of implementations
of Newton’s method in which the linear system

V2 f(zk)dk = —gk (7.3)

is solved inaccurately were first considered by Dembo et al. (1982) and by
Bank and Rose (1981). Several interesting recent papers generalizing this
work, and focusing on specific methods for solving the linear system (7.3),
include Brown and Saad (1989, 1990), El Hallabi and Tapia (1989), Martinez
(1990) and Eisenstat and Walker (1991). Nonmonotone Newton methods,
i.e. methods in which function values are allowed to increase at some itera-
tions, have been analysed by Grippo et al. (1990a,b); the numerical results
appear to be very satisfactory. Nonmonotone methods may prove to be very
useful for solving highly nonlinear problems.
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8. Remarks on other methods

I have concentrated on recent theoretical studies on methods for solving
general unconstrained minimization problems. Due to space limitations I
have not discussed the solution of systems of nonlinear equations or non-
linear least squares. The Nelder-Meade method is known to fail, so that
establishing a global convergence result for it is not possible. Recently there
has been research on modifications of the Nelder-Meade method to improve
its performance, and it is possible to establish global convergence for some
of them. For a description of this work see Torczon (1991).

As mentioned earlier, I have not reviewed trust region methods because
most of their theoretical studies (for unconstrained problems) are not recent
and are reviewed by Moré and Sorensen (1984). Nevertheless, I would like
to briefly contrast their properties with those of line search methods.

Trust region methods do not require the Hessian approximations B to
be positive definite. In fact, very little is required to establish global con-
vergence: it is only necessary to assume that the norm of the matrices
|| Bk|| does not increase at a rate that is faster than linear (Powell, 1984b).
In contrast, for line search methods one needs to ensure that the condition
number of the Hessian approximations || B/|| does not grow too rapidly. This
requires control on both the largest and smallest eigenvalues of B}, making
the analysis more complex than for trust region methods. It is also possible
to show that for trust region methods the sequence of iterates always has an
accumulation point at which the gradient is zero and the Hessian is positive
semi-definite. This is better than the result liminf ||gi|| = O which is the
most that can be proved for line search methods.

Thus the theory of trust region methods has several advantages over that
of line search methods, but both approaches seem to perform equally well in
practice. Line search methods are more commonly used because they have
been known for many years and because they can be simpler to implement.
At present, line search and trust region methods coexist, and it is difficult
to predict if one of these two approaches will become dominant. This will
depend on the theoretical and algorithmic advances that the future has in
store.
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1. Introduction

In the sciences, situations where dissipation is not significant may invariably
be modelled by Hamiltonian systems of ordinary, or partial, differential equa-
tions. Symplectic integrators are numerical methods specifically aimed at
advancing in time the solution of Hamiltonian systems. Roughly speaking,
‘symplecticness’ is a characteristic property possessed by the solutions of
Hamiltonian problems. A numerical method is called symplectic if, when
applied to Hamiltonian problems, it generates numerical solutions which
inherit the property of symplecticness.

If the reader is expecting to find the definition of symplecticness in this
introduction, I am sorry he is going to be disappointed. I have devoted
Sections 2-4 to the task of explaining symplecticness in what I believe to be
the simplest possible way. The fact that six pages are needed to define sym-
plecticness should not be taken as implying that this notion is particularly
difficult: for readers with a differential geometry background, symplectic-
ness can be defined in one line. However, here and elsewhere in the article, I
have tried to be understandable rather than brief. In particular I have tried
hard to relate the concepts in a language accessible to numerical analysts.
This has not always been easy, as the area of symplectic integration directly
relates to both numerical analysis and to other branches of science, such as
symplectic geometry, dynamical systems, classical mechanics and theoretical
physics.

After the study of the notion of symplecticness in Sections 2—4, I define in
Section 5 the concept of symplectic integrator. Symplectic integrators fall
into two categories. Some of them are standard methods, such as Runge—
Kutta or Runge-Kutta—Nystrom methods, that just happen to achieve sym-
plecticness through some balance in their coefficients. For a method of this
kind to be symplectic it is necessary and sufficient that its coefficients satisfy
some algebraic equations. This first category of symplectic methods is stud-
ied in Sections 6-8. A remarkable feature of the methods of this category
is that, for them, an alternative formulation of the order conditions exists,
whereby the order conditions are expressed in terms of unrooted rather than
rooted trees.

The second category of symplectic methods consists of methods derived
via a so-called generating function. Generating functions were introduced in
the nineteenth century as a means for solving some problems in classical me-
chanics. They are at the root of the Hamilton—Jacobi method for integrating
differential systems via the Hamilton~Jacobi partial differential equation. In
Section 9 I present the necessary background on generating functions and
in Section 10 I survey symplectic integrators based on generating functions.
In Section 11, I return to the first category of symplectic methods (i.e. to
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Runge-Kutta and related symplectic methods) with the goal of seeing them
in the light of the Hamilton—Jacobi theory.

In Sections 12-14, I summarize the general properties of symplectic in-
tegrators. Section 15 is devoted to the practical performance of symplectic
integration and the final Section 16 contains a few indications in connec-
tion with material, such as Hamiltonian partial differential equations, not
covered in the main part of the paper.

The current interest in symplectic integration started with the work of,
for example, Ruth (1983), Channell (1983), Menyuk (1984), Feng (1985,
1986a,b). Since then, several dozens of papers on the subject have been
written. Some of these have been published in the physics literature, while
others have appeared in numerical analysis journals and others are only
available as manuscripts. Under these circumstances, I cannot claim to
have supplied a list of references that covers all the relevant items. However
I have done my best to present a fair view of the field from a numerical
analyst’s point of view.

Symplectic integration is a new field. As such, much of the material re-
ported here is likely to be superseded soon by new developments. From a
theoretical point of view the field has already witnessed some interesting con-
tributions bringing together seemingly unrelated parts of mathematics such
as Hamilton-Jacobi equations and graph theory. On the other hand, little
has been undertaken in the construction of practical high-order methods and
the design of serious symplectic software is still waiting consideration. The
area of symplectic integration is one where much scope is left for newcomers.
I would be glad if this paper helped in attracting some of them to the field.

2. Hamiltonian systems
2.1. Preliminaries

We start by describing the class of problems with which we shall be con-
cerned and by introducing some notation. Let Q be a domain (i.e. a non-
empty, open, connected set) in the oriented Euclidean space R?¢ of the points
(p,q) = (p1,---,Pd;q1,.--,94). If H is a sufficiently smooth real function
defined in €2, then the Hamiltonian system of differential equations with
Hamiltonian H is, by definition, given by
dp,' _ o0H dq,' _ +6H
dt - qu’ dt - ap,' ’
The integer d is called the number of degrees of freedom and 2 is the phase
space. The exact amount of smoothness required of H will vary from place
to place and will not be explicitly stated, but we throughout assume at least
C? continuity, so that the right-hand side of the system (2.1) is C'! and
the standard existence and uniqueness theorems apply to the corresponding

1<i<d. (2.1)
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initial value problem. Sometimes, the symbol Sy will be used to refer to
system (2.1). A good starting point for the theory of Hamiltonian problems
is the textbook by Arnold (1989). MacKay and Meiss (1987) have compiled
an excelient collection of important papers in Hamiltonian dynamics. For
applications to celestial mechanics see Arnold (1988). More advanced results
on symplectic geometry can be found in Arnold and Novikov (1990). For the
early history of the work of Hamilton and Jacobi on Hamiltonian systems,
see Klein (1926).

In applications to mechanics (Arnold, 1989), the q variables are general-
ized coordinates, the p variables the conjugated generalized momenta and
H usually corresponds to the total mechanical energy.

Often the Hamiltonian has the special structure

H(p,q) =T(p) + V(q). (2.2)

In mechanics T and V would represent the kinetic and potential energy,
respectively. Hamiltonians of this form are called separable. A commonly
occurring case has T = pTp, so that the Hamiltonian reads

H(p,q) = 1p"p + V(a). (2.3)

Of course one may also consider nonautonomous (time-dependent) Hamil-
tonians H = H(p,q;t). By using such an H in (2.1), we obtain a non-
autonomous Hamiltonian system. Most of the material that follows may
easily be extended to cater for the nonautonomous case. However, for sim-
plicity, we shall assume that, unless otherwise explicitly stated, all Hamil-
tonians considered are autonomous, i.e. time-independent.

2.2. The flow of a Hamiltonian system

If t is a real number, we denote by ¢,  the flow of the system Sy introduced
in (2.1). Recall that, by definition, ¢, y is a transformation mapping (? into
itself, in such a way that for (p% q°) in Q, (p,q) = ¢: #(p?, q°) is the value
at time t of the solution of (2.1) that at time ¢ = 0 has the initial condition
(p%, q°) (see e.g. Section 1.4 of the contribution by Arnold and Ili’yashenko
to the book by Anosov and Arnold (1988) or Chapter 1 in Guckenheimer
and Holmes (1983)). Therefore, if in

(P, q) = ¢:,a(p°,q°) (2.4)

t varies and (p?, q°) is seen as fixed, then we recover the solution of (2.1)
with initial condition (p°% q°). The key point is that we will mainly be
interested in seeing ¢ in (2.4) as a fixed parameter and (p?, q°) as a variable,
so that we are defining a map of 2 into itself. In fact this is not quite
true. The point ¢: g(p° q°) is defined only if the solution of (2.1) with
initial condition (p?,q°) exists at time ¢, which, for given (p° q°), is not
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necessarily the case if |t| is large: solutions may reach the boundary of € in
a finite time and exist only for bounded intervals of time. Thus, for given
t # 0, the domain of definition of ¢; z may be strictly smaller than Q.

A simple example is provided by the the harmonic oscillator, the Hamil-
tonian system with d = 1, @ = R? and H = 1p?+ 14¢f. If we use the notation
p and q for the dependent variables, and identify the point (p,q) with the
column vector [p, g]T, the system Sy reads

d[p]_ P ] _ [ 0 -1 ]
glal=alt] =1 7] 25)
and the t-flow is simply the mapping that rotates points in R? by an angle
of ¢t radians around the origin:
0 0 ; 0
p P __ | cost —sint P
5] eon[ 2] -t 2 ][5] o

For nonlinear Hamiltonians, in general, an explicit representation of the
flow cannot be found in terms of elementary functions.

3. Area-preserving transformations
3.1. Preservation of area by one degree of freedom Hamiltonian flows

The idea of symplectic integration revolves around the use of symplectic
transformations. In our experience, some numerical analysts find difficulties
when first coming across the notion of symplecticness and tend to confuse
symplectic integrators with energy-preserving integrators or with integrators
whose stability function has unit modulus on the imaginary axis. It is there-
fore important that we devote some time to understanding symplecticness.
It is best to start with the one degree of freedom case, where symplecticness
is nothing but preservation of area. We then assume in this section that
d = 1 and use the notation p and g to refer to the dependent variables p;
and q; respectively.

For each real t, the flow ¢; i is an area-preserving transformation in €,
in the sense that, for each bounded subdomain ¥ C Q for which ¢ (%) is
defined, it holds true that ¥ and ¢z :(X) have the same (oriented) area. To
see this, it is enough, after recalling Liouville’s theorem (see e.g. Section 3.5,
Chapter 1 in the article by Arnold and II’yashenko in Anosov and Arnold
(1988)), to observe that the vector field [-0H/8q,0H/dp]T that features in
(2.1) is divergence free because

o (“o0) * 53 (3) =°

In the harmonic oscillator example (2.5) the area-preserving property of
the flow, i.e. of the rotation (2.6), is evident.
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The area-preserving property of the flow has a marked impact on the long-
time behaviour of the solutions of Hamiltonian problems. Clearly asymp-
totically stable equilibria or limit cycles (Guckenheimer and Holmes, 1983)
cannot occur: in their neighbourhoods the area would have to shrink. The
Poincaré recurrence holds (Arnold, 1989): under suitable assumptions and
as t increases, each point in §2 being moved by ¢; g returns repeatedly to
the vicinity of its initial position.

In fact, all properties specific to the Hamiltonian dynamics can be derived
from the preservation of area property. This is no surprise because the
area-preserving character of the flow, which was shown earlier to hold for
Hamiltonian systems, actually holds only for Hamiltonian systems. More
precisely, assume that 2 is simply connected, i.e. it has no holes, and suppose

that

dp _ dg _

E - f(p7 Q), dt - 9(1” Q), (31)
is a smooth differential system whose flow is area-preserving. Then (3.1) is
actually a Hamiltonian system Sy for a suitable H. There is nothing deep
about this. By Liouville’s theorem the vector field [f, g]T is divergence free,

so that
7] 0
But this is just the necessary and sufficient condition for the field [g, —f]T
to be the gradient of a scalar function H, i.e. for (3.1) to coincide with Sg.
If © is not simply connected, then systems with area-preserving flows are,
in general, only locally Hamiltonian: in each ball B C 2 they coincide with a
Hamiltonian system Sg, but, globally, the system may not be Hamiltonian

because the various Hp cannot be patched together. A typical example is
given by the area-preserving system

dp__» do_ g

dt p?+4? dt p?+¢?
defined in Q = R%\(0,0). In each ball in Q the system is Hamiltonian with
H given by a branch of the argument of the point (p,q). The system is not

Hamiltonian because of course the argument cannot be defined as a smooth
single-valued function in R?\(0, 0).

3.2. Checking preservation of area: Jacobians

Let (p*,q*) = v¥(p,q) be a C! transformation defined in a domain Q. Ac-
cording to the standard rule for changing variables in an integral, ¢ is area-
preserving if and only if the Jacobian determinant is identically 1:

Y(p,q) € Q, e L
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It is a trivial exercise in matrix multiplication to check that this relation-
ship can be rewritten as

A" a)" ;0" a) _ (3.3)

Ve g €9, WY = T ety =

where
0 1
=[5 o)

and ¢ = 9(p*,¢*)/9(p,q) is the Jacobian matrix of the transformation.
Going from (3.2) to (3.3) may appear to be just a matter of complicating
things. This is not so: the matrix J is a very important character in this
play. If v and w are vectors in the plane, then vIJw is the oriented area
of the parallelogram they determine. Now, let us fix a point (p, ¢) in Q and
construct a parallelogram P having a vertex at (p,q) and having as sides
two small vectors v and w (i.e. the vertices are the points (p, q), (p,q) + v,
(p,q) +w, (p,q) + v+ w). Then 9(P) is a parallelogram with curved sides,
which can be approximated by the parallelogram P* based at ¥ (p, ¢) with
sides ¥'v, ¥’w. In fact, by the very definition of ', ¥(P) and P* differ in
terms higher than linear in v and w. Now P* and P have the same area if
and only if

vy TI p'w=vTJ w.

Clearly, the last relationship holds for all parallelograms P in Q if and only
if (3.3) holds. The conclusion is that (3.3) means that, at each point (p,q) €
2, the linear transformation ¢’ maps parallelograms based at (p,q) into
parallelograms based at 1(p, ¢) without altering the oriented area.

3.8. Checking preservation of area: differential forms

Differential forms in §2 provide an alternative language with which to ex-
press the considerations made in the preceding subsection. A detailed study
of the meaning and properties of differential forms is definitely outside the
scope of this paper (the interested reader is referred to Arnold (1989, Chap-
ter 7)). However the algebraic manipulations required to prove conservation
of area via differential forms are as a rule easier than those required to
prove conservation of area via (3.3). It is therefore advisable to comment,
albeit briefly, on differential forms. Our treatment will be merely formal
and we shall not explain why differential 2-forms are ways of measuring
two-dimensional areas. We see a differential 1-form in 2 as a formal combi-
nation P(p, ¢)dp+Q(p, q)dg where P and Q are smooth real-valued functions
defined in Q. For instance, the differentials dp* and dg* of the components
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of the transformation 1) considered earlier are differential 1-forms
op* op* 3‘1 Bq
—dg, dg*

Two differential 1-forms w and w’ give rise, via the exterior product A,
to a new entity w A ' called a differential 2-form. The exterior product is
bilinear, so that, for instance,

dp* d¢* Op* Oq ap aq* Op* 0q
dp*Adg* = —dpAdp+——
X 9 80 dq Bp % 4
The exterior product is skew symmetric. In particular, it holds that

dpAdp=dgAdg=0, dp Adg = —dgAdp.

dp* =

Thus
. a.s_ (Op*O¢" 0p*6q>
dp /\dq—(a 34 Ey dp Adg

and from (3.2) we see that conservation of area is equivalent to

dp* Adg* =dpAdg.

This usually provides a convenient way of checking preservation of area.

4. Symplectic transformations
4.1. Hamiltonian flows and symplectic transformations

It is now time to consider the case d > 1. Is there something analogous to
the area that is being conserved by Hamiltonian flows? The 2d-dimensional
volume in © appears to be a natural candidate and indeed this volume is
conserved. However this is not what we really want. What does the trick
is to consider two-dimensional surfaces X in 2, to find the projections X,
1 < i < d onto the d two-dimensional planes of the variables (p;,¢;) and
sum the two-dimensional oriented areas of these projections. This yields a
number m(X). It can be proved (see e.g. Arnold (1989) Section 44) that
the flow of (2.1) preserves m: m(¢¢ y(X)) = m(X) whenever X is contained
in the domain of ¢; . Now transformations that have this preservation
property are called symplectic or canonical, so that we have the theorem:

Theorem 4.1 For each t, the flow ¢ i of a Hamiltonian system is a sym-
plectic transformation.

Furthermore, if €2 is simply connected (i.e. each closed curved in 2 may
be shrunk down to a single point without leaving §2), then the converse is
also true: an m-preserving differential system is a Hamiltonian system, see
Arnold (1989, Section 40D) (once more, if (2 fails to be simply connected
then preservation of m implies that the system is locally Hamiltonian). In
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this respect the symplecticness of the flow is the hallmark of Hamiltonian
systems and once more the dynamical features that are specific to Hamilto-
nian problems can be traced back to the symplectic character of the flow.

4.2. Checking symplecticness

The condition (3.3) which we used to decide whether a transformation 1 in
the plane was area-preserving or was otherwise generalized to read

ap*,q")T  ap*,q%)
V(ip,q €N, ¢TIy = J =J, 4.1
(P,q) viIe (p,q) o(p,q) “D
where now
_[ 04 I4
J—[—Id 0.;]’ (4.2)

with I; and 04 denoting the unit and zero d-dimensional matrix. Note
that the matrix J has the property that, for each pair (v,w) of vectors
in R%, vTJw represents the sum of the two-dimensional areas of the d
parallelograms that result from projecting the parallelogram determined by
v and w onto the planes of the variables (p;, g;).

Differential forms can also be used. In the present context, 1-differential
forms are formal expressions of the form Pydp; +-- -+ Pydpy+ @Qi1dgy +-- -+
Q4dgq, with P; and @; smooth real-valued functions defined in 2. Again, two
1-forms give rise to a 2-form via the exterior product. The transformation
1) is symplectic if and only if

dpi Adg} +--- +dpgAdgg = dp1 Adgy + - -+ + dpa A dgq,
a relationship that we can rewrite more compactly as

dp* Adq* =dp Adq.

4.8. Conservation of volume

Let ¢¢, g play the role of ¥ in (4.1) and take determinants. The result is that
det(¢; ;) is either +1 or —1. The value —1 is excluded since, by Liouville’s
theorem, the flow of any differential system has a Jacobian matrix with a
positive determinant. Hence det(#; 5) = 1: Hamiltonian flows preserve the
oriented volume in R2¢ or, in other words, points in phase-space convected by
a Hamiltonian flow behave like particles of an incompressible fluid flow. Note
that preservation of volume det(y’) = 1 is a direct generalization to d > 1 of
the property (3.2). However, when going from d = 1 to d > 1, the right gen-
eralization of preservation of area is symplectiness rather than preservation
of volume. Symplectiness characterizes Hamiltonian flows; conservation of
volume is a much weaker property shared by some nonHamiltonian systems.
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5. Symplectic integrators
5.1. Numerical methods

Even though some attention has been given in the literature to symplectic
multistep methods (see Aizu, 1985; Feng and Qin, 1987; Eirola and Sanz-
Serna, 1990; Sanz-Serna and Vadillo, 1986, 1987), in this paper we restrict
our interest to one-step integrators. If h denotes the step-length and (p™, q")
denotes the numerical approximation at time ¢, = nh, n an integer, to the
value (p(t,), (tn)) of a solution of (2.1), then a one-step method is specified
by a smooth mapping

™ q"*) = ¥na(p", q"). (5.1)

The transformation v, i itself is assumed to depend smoothly on h and
H. The domain Q of ¥, need not be, for each h, the whole Q. In fact
for implicit methods, where the actual computation of (p™*!, q"*1) involves
the solution of some system of equations, it is often the case that, for fixed
(p™, q™), the new approximation ¥ y(pP™,q") is only defined if |A| is suitably
small.

The method (5.1) is of order r with r an integer, if, as h — 0, Ypnu
differs from the flow ¢p g by O(h"*!) terms whenever the Hamiltonian H
is suitably smooth. Consistency means order > 1.

Given an initial condition (p?,q°), the numerical approximation at time
t, is found by iterating the mapping ¥, g n times, i.e.

(pn’ qn) = 'M:,H(poa q0)7
whereas for the true solution

(P(tn), a(tn)) = ¢¢,,5(0% q°) = ¢ x(P°,q°).

5.2. Symplectic numerical methods

Is it possible to construct numerical methods (5.1) that take into account
the Hamiltonian nature of the problem being integrated? In other words,
is there such a thing as a Hamiltonian numerical method? Before answer-
ing this question, let us first note that the discrete equations (5.1) do not
intend to mimic the differential system (2.1). On the contrary ¥ g tries to
mimic the flow ¢p . Now, we saw in Section 4 that the Hamiltonian form
of the differential equations corresponds, in terms of flows, to symplectic-
ness. Hence the right question to ask is: are there numerical methods (5.1)
for which 15, i is a symplectic transformation for all Hamiltonians H and
all step-lengths h? Such methods, that do exist, are called symplectic (or
canonical) and are the subject of this paper.

Roughly speaking, there are two main groups of symplectic methods. The
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first group consists of formulae that belong to standard families of numeri-
cal methods, such as Runge-Kutta or Runge-Kutta—Nystrom methods, and
just ‘happen’ to be symplectic (Sanz-Serna, 1991b). These symplectic meth-
ods can be applied to general (i.e. not necessarily Hamiltonian) systems of
differential equations and, when applied to a Hamiltonian system, achieve
symplecticness through a suitable balance between the formula coefficients.
The second main group of symplectic integrators consists of methods that
are derived via a so-called generating function. These methods cannot be
applied to general systems of differential equations, not even to small dissi-
pative perturbations of Hamiltonian systems.

The presentation to a numerical analysis audience of the methods of the
first group is easier than the presentation of the second group. We there-
fore consider the first group in Sections 6-8 and postpone the study of the
methods of the second group until Section 10. This somehow goes against
the history of the field, where methods based on generating functions came
first.

5.8. Composing methods

Before we present particular examples of symplectic integrators, it is ex-
pedient to consider the issue of composition of methods, as this plays a role
in later developments. If ¢’{11]H and qb;f]H are consistent numerical methods,
then the mapping

2 1
Yn i = Vi gV i

is clearly a new consistent numerical method. More general compositions of
the form

2 1
w([ifE,Hwh]—O)h,H’

# a real constant, are also possible. Since it is obvious that the composition
of symplectic maps is a symplectic map, the composition of two symplectic
numerical methods gives rise to a new symplectic method.

On the other hand, along with each method (5.1) we consider its adjoint
{ﬁ\h,g. By definition (see e.g. Hairer et al. (1987, Section II.8)), this is the
method such that 1/3_;,, HYr H is the identity map, i.e. stepping forward with
the given method is just stepping backward with its adjoint. The familiar
forward and backward Euler methods are mutually adjoint. The adjoint of
a symplectic method is itself a symplectic method, because the inverse of a
symplectic transformation is, clearly, a symplectic transformation.

Some methods, such as the implicit midpoint rule, happen to be their own
adjoints. These are called, unsurprisingly, self-adjoint. It is easy to see that
the order of consistency r of a self-adjoint method is necessarily even.
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6. Runge-Kutta and related methods: conditions for
symplecticness

6.1. Runge-Kutta methods

The application of the Runge-Kutta (RK) method to system (2.1) with
tableau
aip -+ Q1

(6.1)

Qg1 - QGgg

Ibl e by

results in the relations

8 8
P;=p"+h)_ai;f(P;,Q;), Qi =q"+h ) a;;g(P;,Q;),1<i< s, (6.2)
i=1 i=1

8 3
p"’+1 = p" + hz b,‘f(P,‘, Q,’), q"+1 = q" + hz big(Pi’ Qi), (6'3)

i=1 i=1

where f and g respectively denote the d-vectors with components —9H/dq;
and OH/8p; and P; and Q; are the internal stages corresponding to the p
and q variables.

The following result was discovered independently by Lasagni (1988),
Sanz-Serna (1988) and Suris (1989).

Theorem 6.1 Assume that the coefficients of the method (6.1) satisfy the
relationships

b;a,-j +bja;; —bib; =0, 1<14,j<s. (6.4)
Then the method is symplectic.

Proof. We follow the technique used by Sanz-Serna (1988). Suris (1989)
resorts to Jacobians rather than to differential forms. No proof is presented
in Lasagni (1988). We employ the notation

k; = f(Pi: Q‘i)) L= g(Pi7 Qt)

for the ‘slopes’ at the stages. Differentiate (6.3) and form the exterior prod-
uct to arrive at

8
dp™*' Adq"*! = dp"Adq*+h) bidk; Adg”

i=1

8 8
+h> bidp™ Adl; + A% Y bibidk; Adl;.
i=1 i,j=1
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Our next step is to eliminate dk; A dq™ and dp™ A dl; from this expres-
sion. This is easily achieved by differentiating (6.2) and taking the exterior
product of the result with dk;, dl;. The outcome of the elimination is

8
dp™t!' Adq™*! —dp” Adq” =h)_ b;[dk; A dQ; + dP; AdLy]
i=1

s
— h? E (bia,'j + bjaj; — b,'bj) dk; A dlj.

i,j=1

The second term on the right-hand side vanishes in view of (6.4). To finish
the proof is then sufficient to show that, for each i, dk; A dQ; + dP; A dl; is
0. In fact, dropping the subscript ¢ that numbers the stages, we can write

d
dk AdQ +dP Adl =) [dk, AdQ, + dP, Adl,]

pw=1
d
=3y [6—f‘idP,, AdQ, + af“dQ,, AdQ,
pr=1 ap
gg,, dP, AdP, + Zg“ dP, A dQ,,] :

To see that this expression vanishes express f, and g, as derivatives of H
and recall the skew-symmetry of the exterior product. O

The symplecticness of the method must be understood in the following
sense. Assume that, for a given h, (p"*!,q"*!) = ¢, g(p", q") is a smooth
function defined in a subdomain Qj of ? and satisfying the RK equations
(6.2)-(6.3), then vy, g is a symplectic transformation. In general, for a
given h there can be several such functions (nonuniqueness of solutions of
the RK scheme). Of course, for h — 0 there is a unigue RK solution that
approximates the true solution and the corresponding domain of definition
Qr tends to . However spurious RK solutions may also exist and they
are also symplectic. For material on the existence and uniqueness of RK
solutions see e.g. Dekker and Verwer (1984, Chapter 5) and Sanz-Serna and
Griffiths (1991). For spurious solutions see Iserles (1990a) and Hairer et al.
(1990).

Lasagni (1988, 1990) has shown that, for RK methods without redundant
stages, (6.4) is actually necessary for the method to be symplectic. A direct
proof of this result is not available in the published literature. However the
result is a corollary of Theorem 5.1 in Abia and Sanz-Serna (1990).
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6.2. Partitioned Runge-Kulta methods

In the integration of systems of differential equations it is perfectly possi-
ble to integrate some components of the unknown vector with a numerical
method and the remaining components with a different numerical method.
For instance, one may wish to do this if the system includes both stiff and
nonstiff components. In our setting, we may wish to integrate the p equa-
tions with an RK formula and the q equations with a different RK formula.
The overall scheme is called a partitioned Runge-Kutta (PRK) scheme and
is specified by two tableaux

a1 - @15 A - Ay
Gs1 c @ss A - Agg (6.5)
l by - b | B, --- B,

The application of (6.5) to system (2.1) results in the relationships (cf.
(6.2)-(6.3))

s
Pi = Pn + hzaijf(Pja Qj)a
Jj=1

S
Qi=q"+h) Ai;gP;,Q;),1<i<s.
=1

Pt =p" +h)_bf(P;,Qi), a**'=q"+h) Big(Pi Qi)
i=1 i=1
Of course an RK method is a particular instance of (6.5) where both
tableaux just happen to have the same entries. The following result was
first given by the present author at the London 1989 ODE meeting (Sanz-
Serna, 1989) and discovered independently by Suris (1990). The proof is
analogous to that of Theorem 6.1.

Theorem 6.2 Assume that the coefficients of the method (6.5) satisfy the
relationships

b;A;; + Bjaji — b,‘B]‘ =0, 1<£4i,j<s. (6.6)

then the method is symplectic when applied to separable Hamiltonian prob-
lems (2.1), (2.2).

Symplecticness must again be understood as in Theorem 6.1 and, once
more, (6.6) is necessary for symplectiness, provided that the method has no
redundant stages, see Abia and Sanz-Serna (1990).
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6.3. Runge—Kutta—Nystrom methods

Systems of differential equations of the special form
dp _ dq _
dt - f(Q)a dt =P (67)

or, equivalently, second-order systems d?q/dt? = f(q) can be efficiently
integrated by means of Runge-Kutta-Nystrom (RKN) methods (see e.g.
Hairer et al. (1987, Section I1.13)). For the RKN procedure with array

M 1255 BN ¢ S ¥
Vs Qg - Qg
i ’ 6.8)
| B - Bs
| & - b,

the intermediate stages Q; are defined by

8
Qi =q" + hyp" +h?)_ ay;f(Q;),
=1

and the approximation at the next time level is

8 8
P =p"+hY_bf(Q;), q*t'=q"+hp"+h?Y Gi(Qi).
i=1

i=1

The system (6.7) is Hamiltonian if and only if f (the ‘force’) is the gradient
of a scalar function —V. When this condition is satisfied the Hamiltonian
is given by (2.3). The following result is due to Suris (1989), who used
Jacobians in the proof. A proof based on differential forms, similar to that
of Theorem 6.1 is easily given, and can be seen in Okunbor and Skeel (1990).

Theorem 6.3 Assume that the coefficients of the method (6.8) satisfy the
conditions
Bi = b(l-m), 1<i<s, (6.9)
bi(B; — i) = bj(Bi—ay), 1<4,j<s. (6.10)
Then the method is symplectic when applied to Hamiltonian problems (2.1),
(2.3).

The conditions (6.9) and (6.10) are also necessary for methods without
redundant stages to be symplectic, see Calvo (1991).
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7. Runge-Kutta and related methods: order conditions for
symplectic methods

Before we construct specific formulae within the classes of symplectic meth-
ods we have identified in the previous section, it is clearly appropriate to
discuss the corresponding order conditions, i.e. the sets of relationships that
the method coefficients must satisfy to ensure that a prescribed order of
consistency r is reached.

7.1. Runge-Kutta methods

Since Hamiltonian problems are only a subclass of the family of all differ-
ential problems, it is @ priori conceivable that the order of consistency r*
that an RK method achieves for Hamiltonian problems is higher than the
classical order of consistency r, i.e. the order of consistency for the most
general problem. This is not the case. By considering Hamiltonians of
the form H = pTg(q), we see that any d-dimensional differential system
dq/dt = g(q) can be thought of as being the q equations of a Hamilto-
nian system with d-degrees of freedom. Hence r = r* and therefore the
material in this subsection applies even if the system being integrated is not
Hamiltonian.

The conditions that (6.1) should satisfy to achieve order > r are well
known (Butcher, 1987, Theorem 306A; Hairer et al., 1987, Theorem 2.13).
Each rooted tree pr with r or fewer vertices gives rise to a condition

®(pr) = 1/7(p7). (7.1)

Here the density v(pr) is an (easily computable) integer associated with pr
and the elementary weight ®(pr) is a polynomial in the method coefficients
aij, bi. Figure 1 contains the rooted trees with four vertices or less; we have
highlighted the roots by means of a cross.

As an illustration, let us recall that for consistency r > 1 we require, in
connection with pry 3,

8
Y =1
i=1
For order 7 > 2 we further impose, in connection with pr3 1,

8
1
bia,-,- =35
i,j=1

For order r > 3 we add further, in view of p73 1,

8
> biajax =4, (7.2)
i,5,k=1
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PT1,1 : 11 @

P21 I 72,1 e

PT31 > PT3,2 \{. 73,1 @o—0—O
PTa 2 PTa2 </ 41 0—0—0—@
PT43 Y PT4,4 .\I/. 74,2 >—0

Fig. 1. Rooted n-trees and n-trees, n =1,2,3,4.

and, in view of p73 3,

2 biaija,-k = -;— (7.3)
i.J,k=1

Butcher (1987, Theorem 306A) proves that, if the number of stages s and
the coefficients a;;, b; are regarded as free parameters, then each equation of
the form (7.1) is independent of the others. However, when the symplectic-
ness conditions (6.4) are imposed, the method coefficients are no longer free
parameters and it turns out that some redundancies appear amongst the
classical order conditions (7.1) arising from the various pr. As a result, in
order to achieve order > r it is not necessary to write down an equation for
every rooted tree of order < r. This point has been studied by Sanz-Serna
and Abia (1991), whose treatment we follow closely.

Assume that two rooted trees are identified if they only differ in the
location of the root, but otherwise consist of the same vertices and edges.
(In Figure 1, this is the case for the rooted trees p3; and p32, or for the
rooted trees ps1 and ps2.) Each equivalence class under this equivalence
relation is called a tree. Thus, in Figure 1, the eight rooted trees of order
< 4 give rise to only five trees.

Some trees are called superfluous. These are the trees that result when
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Table 1. Number of order conditions.

Order General Symplectic General Symplectic General Symplectic

RK RK PRK PRK RKN RKN
1 1 1 2 2 1 1
2 2 1 4 3 2 2
3 4 2 8 5 4 4
4 8 3 16 8 7 6
5 17 6 34 14 13 10
6 37 10 74 24 23 15
7 85 21 170 46 43 25
8 200 40 400 88 79 39

two copies of the same rooted tree with N vertices are joined by their roots
to give rise to a graph with 2N vertices. For instance, in Figure 1, the tree
79,1 is superfluous because it is the juxtaposition of two copies of p711. In a
similar manner, 74 is superfluous as it is the juxtaposition of two copies of
p72,1. There is an alternative way of thinking of superfluous trees. Assume
that trees are coloured in such a way that each vertex is painted either black
or white with adjacent vertices receiving distinct colours. Most trees can be
coloured in two different ways: in 73; we could have either a black vertex
between two white vertices or a white vertex between two black vertices.
However some trees can be coloured in only one way: in 75; we can only
have a black vertex shaking hands with a white vertex. These trees are
precisely the superfluous trees.
After these preliminaries we are ready for the main result.

Theorem 7.1 Assume that the RK method (6.1) satisfies the symplectic-
ness requirement (6.4) and has order of consistency > r > 1. Then it has
order of consistency > r + 1 if and only if for each nonsuperfluous tree
with r + 1 or fewer vertices there is a rooted tree pr € 7 for which (7.1)
holds.

For instance, since only the tree with two vertices is superfluous, each
consistent symplectic RK method actually possesses an order of at least 2.
To ensure order > 3, it is sufficient to impose either (7.2) or (7.3). In other
words (7.2) and (7.3) have become equivalent, as coming from the same tree.
In general, for symplectic RK methods, the number of order conditions for
order > r equals the number of nonsuperfluous trees with r or fewer nodes,
as distinct from the situation for general RK methods, where there is an
order condition for each rooted tree with r or fewer vertices. The reduction
in the number of order conditions is borne out in Table 1.
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7.2. Partitioned Runge—Kutta methods

A similar theory exists for PRK methods (Abia and Sanz-Serna, 1990) ap-
plied to separable Hamiltonian systems. Again, there is no distinction be-
tween the order r of the method (6.5) for separable Hamiltonian systems
and the classical order when applied to systems of the form

dq

dp _
i f(a), - g(p),

where f and g are any smooth functions, rather than gradients of scalar
functions —V and T as they would be in the Hamiltonian case.

It is well known that graph theory can again be used to systematize the
writing of the standard order conditions (e.g. Hairer et al. 1987, Section
I1.14). We now need bicolour rooted trees Gpr, i.e. rooted trees with vertices
coloured black or white as previously described. Clearly each rooted tree
gives rise to two bicolour rooted trees: the root can be coloured either black
or white and the colour of the root recursively determines the colour of all
vertices (cf. Figure 2). There is an order condition for each Spr. The first
of these are as follows. For the two bicolour rooted trees with one vertex we
get

8 8
Yobi=1, > Bi=1
i=1 i=1
Vertices of one colour bring in lower case letters and the vertices of the

other colour bring in upper case letters. In connection with the two bicolour
rooted trees with two vertices, we have

8
> bidi; =1,

=1 6=

8

Bjai; = 1, (7.4)
1

etc. The symplecticness conditions (6.6) bring about some redundancies
among the standard order conditions we have just presented (Abia and Sanz-
Serna, 1990). Again the key point is to disregard the location of the root:
bicolour rooted trees which only differ in the location of the root make an
equivalence class called a bicolour tree 3p (see Figure 2). Then for sym-
plectic methods, it is enough to consider an order condition for a particular
bicolour rooted tree in each bicolour tree. For instance for a consistent
symplectic method to have order 2 we impose one of the two conditions
in (7.4). It should perhaps be emphasized that now bicolour trees arising
from colouring a superfluous tree must also be considered. The difference
between superfluous and nonsuperfluous trees is that a nonsuperfluous tree
gives rise to two bicolour trees (two order conditions), while a superfluous
tree only generates one bicolour tree (only one order condition).

The reduction in the number of order conditions is borne out in Table 1.
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Fig. 2. Rooted bicolour n-trees and bicolour n-trees, n = 1,2, 3, 4.

7.8. Runge-Kutta—Nystrom methods

Similar considerations hold for RKN methods. In the interest of brevity we
omit the corresponding results and the interested reader is referred to Calvo
and Sanz-Serna (1991a). The reduction in the number of order conditions
is apparent in Table 1. A word of warning: in the table, a general RKN
method means a method satisfying (6.9); practical methods as a rule satisfy
this condition.
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7.4. The homogeneous form of the order conditions for symplectic methods

Let us return to the RK case. The fact that, in order to write the order con-
ditions for symplectic methods, we are free to choose any rooted tree within
each nonsuperfluous tree introduces some asymmetry among the various
rooted trees. For instance, at the r = 3 stage, we are free to disregard p731
or pr32, i.e. to omit (7.2) or (7.3). Sanz-Serna and Abia (1991) provide
an alternative way of writing the order conditions, where all rooted trees
belonging to a nonsuperfluous tree play a symmetric role. For a consistent
method to have order r > 4, Sanz-Serna and Abia (1991) put

8 s
6 > biaijajr—3 Y biaijaix =0, (7.5)
ijk=1 ijk=1
] 8
12 z b,-a,-,-ajkajl -4 Z biaija,-kau =0. (76)
ijkl=1 tjkl=1

It may be observed that in (7.5) we find the elemetary weights associated
with (7.2) and (7.3), while in (7.6) we find the elementary weights arising
from both rooted trees in the nonsuperfluous tree with four vertices 743.
This alternative form of the order conditions is called homogeneous. Full
details concerning the systematic writing of the homogeneous order condi-
tions and a proof of the equivalence between the homogeneous and standard
forms can be found in Sanz-Serna and Abia (1991).

Homogeneous forms for PRK and RKN methods exist and can be seen in
Abia and Sanz-Serna (1990) and Calvo (1991) respectively.

8. Runge—Kutta and related methods: available symplectic
methods

8.1. Runge—Kulta methods

We start by noticing that, for methods satisfying the symplecticness con-
dition (6.4), it may be assumed that all the weights b; are not equal to 0.
In fact, if b; = 0, then (6.4) implies that b;a;; = 0 for all ¢ and therefore
neither does the jth stage, which does not contribute to the final quadrature
(6.3), contribute to any other stage with nontrivial b;: thus the method is
equivalent to a method with fewer stages. Under the assumption of nonzero
weights, (6.4) with ¢ = j reveals that a symplectic Runge-Kutta method
cannot be explicit.

A second observation is that the left-hand side of (6.4) provides the entries
of the M matrix that features in the definition of algebraic stability intro-
duced by Burrage and Butcher (1979) and Crouzeix (1979) (see also Dekker
and Verwer (1984)). The condition M = 0 was investigated by Cooper
(1987) in a different context. It is well known that the Gauss-Legendre
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methods satisfy this condition (see e.g. Dekker and Verwer 1984, Theorem
4.6) and hence we have the following result (cf. Sanz-Serna, 1988).

Theorem 8.1 The Gauss-Legendre Runge-Kutta methods are symplec-
tic.

We recall that with s stages the Gauss-Legendre method is the unique
RK method that achieves order 2s. It is also A- and B-stable. There is a
price to be paid: the high computational cost deriving from implicitness.
The efficient implementation of the Gauss-Legendre methods for Hamilto-
nian problems is an area where much work is needed. Current strategies
for choosing the iterative method and initial guess for the solution of the
nonlinear algebraic equations in RK processes are based on the assumption
that the underlying system is stiff. This is reasonable: stiffness has been
until now the main motivation for switching from explicit to implicit meth-
ods. However the problems with which we are concerned are not necessarily
stiff and fresh ideas are required when dealing with the implementation. For
references on the implementation of implicit RK methods see the references
in Cooper and Vignesvaran (1990).

The two-stage, order 4 method has been successfully tested by Pullin and
Saffman (1991) in a difficult Hamiltonian problem arising in fluid mechanics.

Of course, when the system being integrated is linear, the Gauss—Legendre
methods generate diagonal Padé approximants to the exponential. The sym-
plecticness of these rational approximants was shown by Feng (1986a), see
also Feng et al. (1990).

A way of bringing down the implementation costs associated with implicit-
ness is to resort to diagonally implicit methods. These satisfy (6.4) if and
only if they have the tableau

B/2 0 0 - 0
by b2 0 - 0
b by b3/2 - 0
: : oot (8.1)
by by by - by/2
| &0 b2 b3 -+ b,

A step of length h with the method (8.1) is just a concatenation of an
implicit midpoint step of length b, h, an implicit midpoint step of length b2h,
etc. Hence diagonally implicit symplectic methods are as easy to implement
as the implicit midpoint rule. This sort of method is appealing when the
number of degrees of freedom d is high, as would be the case if the system
being integrated in time was the result of the space discretization of a partial
differential equation.
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Sanz-Serna and Abia (1991) show that the self-adjoint three-stage method
(8.1) with
_ltw+w!

by=by=—7—) w=218 p=1-2h

has order 4. This method has been applied to the time-integration of some
partial differential equations by de Frutos and Sanz-Serna (1991). If 1/1;11:415 ]
represents the midpoint rule, the fourth-order method is given by
4 MP|  [MP MP
'/’LIH = ¢l[»1h,1]H ’/’Eb,fly '/’Lh,}r
Following ideas in Yoshida (1990), this construction can be taken further.
Consider the method

Wi 0 g (8.2)

with o and (3 chosen in such a way that 2a + 8 = 1 (consistency) and
205 + 3% = 0 (the leading h® term in the truncation error of the composition
vanishes). Then (8.2) has order > 5, but being self-adjoint the order must
actually be > 6. In turn, a sixth-order self-adjoint method can be composed
to give rise to an eighth-order method etc. The conclusion is that there
are diagonally implicit symplectic RK methods of arbitrarily high order.
Of course it is an open question to decide whether high order methods
constructed in this way have some practical interest.

Diagonally implicit methods are not the only ‘easily implementable’ im-
plicit RK methods. It is well known that, following Butcher (1976), the RK
matrix A = (a;;) can be subjected to a transformation A — T~!AT with a
view to simplifying the linear algebra. For symplectic methods this idea has
been explored by Iserles (1990b) (see also Iserles and Ngrsett, 1991, Section
3.7).

8.2. Partitioned Runge-Kutta methods

Unlike the class of RK methods, the class of PRK methods includes formulae
that are both explicit and symplectic. However it should be emphasized that
these properties only hold when dealing with separable Hamiltonians (2.2).
In fact the methods of the form

by 0 0 --- 0 0 0 0 - 0

by bp 0 -+ 0 B, 0 0 --- 0

by by b3 -+ 0 By B, 0 -~ 0

SRS AR S (83)
by by b3 .- b B, By By -+ 0

| b1 b2 b3 -+ b | B B, Bs -+ B,
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are explicit, symplectic and have the further favourable property that they
can be implemented while only storing two d-dimensional vectors: Q; is
nothing but q”, P; can be overwritten on q*, Q2 can be overwritten on Q;,
etc.

The family of methods (8.3) was introduced by Ruth (1983) in one of
the very first papers on symplectic integration. Ruth constructed methods
with s = r = 1,2,3. In the case s = r = 3, there is a one-parameter
family of methods and Ruth has chosen the parameter so as to obtain simple
coefficients b;, B;. Sanz-Serna (1989) suggested a different choice for the
parameter. Furthermore by composing the third-order, three-stage method
Yp g with its adjoint ¢y z, he constructed an explicit symplectic method
{/7,, /2, HYn/2, 1 that requires five evaluations per step, but produces fourth-
order results both at the grid points ¢, = nh and at the points t(,,1/9) =
(n+1/2)h. A method with s = r = 4 has been constructed by Neri (1987),
Forest and Ruth (1990) and Candy and Rozmus (1991). Yoshida (1990), by
using a construction similar to that discussed earlier for diagonally implicit
RK methods, has proved that there are methods of the form (8.3) possessing
arbitrarily high orders. He furthermore derives sixth-order methods that
use seven function evaluations per step and eighth-order methods requiring
sixteen function evaluations per step.

8.3. Runge-Kutta—Nystrom methods
There are explicit RKN methods that are symplectic. These have the tableau

7 0 0 Tt 0

Y2 | baly2 —m) 0 0

Ys | b1(vs — 7)) ba(vs—y2) - 0 (8.4)
l bi(l=7) ba(1=72) - bs(l1=1)
| b by b,

and hence with s stages provide 2s free parameters. Okunbor and Skeel
(1991) have pointed out that, for implementation purposes, (8.4) can be
rewritten as an explicit PRK method, and hence only requires the storage
of two d-dimensional vectors. Okunbor and Skeel (1990) prove that an ex-
plicit RKN method is symplectic if and only if its adjoint method is also
explicit. This idea can be used to compose a method with its adjoint as
shown earlier for the PRK case. Calvo and Sanz-Serna (1991b) have con-
sidered the family of fourth-order, five-stage methods of the form (8.4) that
effectively require four function evaluations per step due to the fact that the
last evaluation in the current step provides the first evaluation in the next



SYMPLECTIC INTEGRATORS 267

step. An optimal method within this class has been obtained by minimizing
the error constants. Similar work is under way for higher order methods.

Given a number of stages s and an order r, the tableaux (8.4) and (8.3)
have the same number 2s of free parameters, while Table 1 makes it clear
that the number of order conditions for the RKN case is substantially smaller
than the number of order conditions for PRK methods. This is due to the
fact that in the PRK case we are catering for all separable Hamiltonians (2.2)
where RKN methods can only cope with the special case (2.3). However
case (2.3) is very common in the applications and this should make the
construction of explicit symplectic RKN methods an important practical
issue.

9. Generating functions

We cannot make any further progress with the topic of symplectic integrators
without first reviewing some basic facts about the generating functions of a
symplectic transformation.

It is a remarkable feature of Hamiltonian problems that each system of
the form (2.1) is fully determined by the choice of a scalar function H,
whereas a general system dy/dt = f(y) is determined by a vector field f.
In a similar vein, a symplectic transformation (p*,q*) = ¥(p,q) can be
expressed in terms of a single real-valued function S, rather than in terms
of the 2d components of 1. The function S is called the generating function

of ¥.

9.1. Generating functions of the first kind

Let (p*,q*) = ¥(p,q) be a symplectic transformation defined in a simply
connected domain . For each closed path « in Q

/pdq—/p*dq* =0, (9.1)
el Y

where p dq is the differential form p; dg1 +- - - +pg dgy, etc. In fact, by Stokes
theorem, the first integral is the quantity m(X), where m is the sum of two-
dimensional areas considered in Section 4 and X is any two-dimensional
surface bounded by <. The second integral is m(y(X)) and hence (9.1) is
just a way of saying that v is symplectic. The key observation is that (9.1) is
the condition for pdq— p* dq* to be the differential of a function S defined
in Q:
dS = pdq - p*dq*. (9.2)
Now let us further assume that q and q* are independent functions in ,

i.e. each point in 2 may be uniquely specified by the corresponding values
of q and q*. Then we can express S(p,q) in (9.2) as a function S! of q and
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q*. It is evident from (9.2) that

ast  ,_ as
=5 =5 (93)

These formulae implicitly define ¢ by providing 2d relationships among the
4d components of q, p, p*, q*. The function S'(q,q*) is called the gener-
ating function (of the first kind) of 9. The reader may wish to check that

for the rotation in (2.6)

§1(a:9") = = (q2 + q*z) — cosecqq*. (9.4)
Conversely, if we choose any smooth function S'(q,q*) satisfying the con-
dition that the Hessian determinant det 325!/8qdq* does not vanish at a
point (qop,q}), then the formulae (9.3) implicitly define, in the neighbour-
hood of (qg, qp), a symplectic transformation (see e.g. Arnold (1989, Section
474)).

cott

9.2. Generating functions of the third kind

For a symplectic transformation 1 to have a generating function of the first
kind, it is clearly necessary that q and q* are independent, a condition not
fulfilled by the identity transformation. (Note that (9.4) has a singularity at
t = 0, where the rotation (2.6) is just the identity.) Since we are interested
in generating consistent numerical methods v, g7, which, at h = 0, give the
identity transformation, generating functions of the first kind are not really
what we want.
Let us proceed as follows. Note that from (9.2)

d(p’q- S) =qdp +p*dq” (9.5)

and now assume that p and q* are independent functions (which they are for

the identity transformation). Then we can express the function in brackets

in (9.5) in terms of the independent variables p and q*. The result S3(p, q*)

is called the generating function of the third kind of 9 and, from (9.5) we

conclude that the formulae that now implicitly define 9 when S$3 is known
are

oo oS

oq*’ op

The generating function of the identity is pTq*. For the rotation (2.6) we

find

(9.6)

. tant
$%(p,q") = ==~ (p* +4'%) +secpq’;

this is regular near ¢ = 0, but breaks down when ¢ approaches £2x: at these
values p = ¢* and p and ¢* cannot be taken as independent coordinates.
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Conversely given a function S3(p,q*) with a locally nonvanishing Hessian
det 9253 /0pdq*, the formulae (9.6) locally define a symplectic transforma-
tion.

9.8. Generating functions of all kinds

Some classical books on Hamiltonian mechanics considered four kinds of gen-
erating functions. Arnold (1989) has 2" kinds. And in fact there are many
more. According to Feng (1986a), Feng and Qin (1987), Feng et al. (1989),
Wu (1988) the general idea is as follows. Collect in a (2d-dimensional) vector
y the components of (p,q) and in a vector y* the components of (p*, q*).
Introduce new 2d-dimensional variables w and w*, such that w and w* are
linear functions of y and y* (i.e. w = Ay + By* and w = Cy + Dy* for fixed
2d x 2d matrices A, B, C, D). Under suitable hypotheses, the symplectic
transformation (p*,q*) = ¥(p, q) reads, in terms of w and w*, w* = x(w),
where x is the gradient of a scalar generating function o. In the case of the
generating functions of the first kind, A is the matrix that extracts the q
variables of y, B is the matrix that extracts the q* variables of y* etc.

A useful generating function is the so-called Poincaré generating function.
Here w is taken to be the average of y and y*. The formulae for the
transformation are (cf. MacKay, 1991)

p* = p—8,SF (p*+p,q*+q), q =q+68° (p*+p,q*+q),

2 2 2 2
where 0; and &, respectively represent differentiation with respect to the first
and second groups of arguments in S¥. The Poincaré generating function
of the identity is the 0 function.

9.4. Hamilton-Jacobi equations

Let us now complicate things and consider symplectic transformations 1);
that depend on t. We assume that i; has a generating function of the third
kind S3, which depends on t. Let us further consider a Hamiltonian system
(2.1) in the variables p, q. If we change variables in this system we obtain
a new differential system for the new unknowns p*, q*. Then the following
holds true (Arnold, 1989, Section 45A).

Theorem 9.1 In the situation earlier, the transformed system is also a
Hamiltonian system, with the nonautonomous Hamiltonian function
as3
H*(p",q";t) = H — —. (9.7
ot
In (9.7) it is understood that once S3 has been differentiated with respect
tot with p and q* constant, the formulae (9.6) that define the transformation



270 J. M. SANZ-SERNA

are used to express the right-hand side in terms of the new variables p* and
q’.

A first corollary of this result refers to the case where the transformation
is actually independent of ¢: then in the new variables the Hamiltonian
system is still an autonomous Hamiltonian system and the new Hamiltonian
is obtained by changing variables in the old Hamiltonian.

Another remarkable application arises when %, is the t-flow of (2.1) and
we see the old variables evolving under the Hamiltonian system with Hamil-
tonian —H(p, q), i.e. under the flow ¢; g = ;. }I Then, the symplectic
transformation v, just undoes what the Hamiltonian evolution under —H
does; in the new variables, the solutions of the differential equations are p* =
constant and q* = constant and the new Hamiltonian H* = —H — 853%/6t
must be 0 (or a constant: Hamiltonians are only defined up to an additive
constant). We have proved that the generating function S3 of the flow of
the Hamiltonian system with Hamiltonian H satisfies

383
7(13, q*;t) + H(p,q) = 0. (9.8)

This is the celebrated Hamilton-Jacobi equation. Upon replacing q by
053/0p (cf. (9.6)), the relationship (9.8) is a partial differential equation of
the first order for a function S2 of the variables p and ¢ (the q* act just as
parameters). If this equation can be solved explicitly, we find the generating
function of the flow and hence the solution of the system (2.1). This is
Jacobi’s approach to the solution of Hamilton’s equation. Jacobi and others
used this technique explicitly to integrate problems of mechanics that had
proved intractable by other techniques (see e.g. Arnold (1989, Section 47)).
On the other hand, if we want to solve (9.8) by the method of characteristics,
we find that the system of ordinary differential equations that defines the
characteristics is none other than system (2.1)! The equivalence between
the solution of a Hamiltonian ordinary differential system and the solution
of a first-order partial differential equation with Hamilton—Jacobi structure
is thus complete.

These ideas are not confined to generating functions of the third kind; they
do work for all kinds of generating functions. The details of the construc-
tion of the new Hamiltonian H* (and hence the form of the Hamilton—Jacobi
equation) vary with the kind of generating function being used. The inter-
ested reader is referred to Feng (1986a), Feng and Qin (1987), Feng et al.
(1989) and Wu (1988).

10. Symplectic integrators based on generating functions

Theorem 9.1 is the key to the construction of symplectic integrators via
Hamiltonian functions (Channell, 1983; Menyuk, 1984; Feng, 1986a; Feng
and Qin, 1987; Wu, 1988; Feng et al, 1989; Channell and Scovel, 1990;
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Miesbach and Pesch, 1990). Let v g be a symplectic numerical method
consistent of order r with generating function S3. An argument similar to
that leading to the Hamilton-Jacobi equation, proves that H* = —H —
083/0t is O(t") as t — 0; now the transformation % gy undoes the effect of
the evolution ¢; _ i except for terms of order O(t"). Conversely, any function
S3 that makes H* = O(t") generates a symplectic, rth-order numerical
method, see Sanz-Serna and Abia (1991, Theorem 6.1).

Feng and his coworkers take the following approach (Feng, 1986a; Feng
and Qin, 1987; Feng et al., 1989; Wu, 1988). They begin by expanding S3
in (9.8) in powers of t. On substituting this power series in (9.8), expanding
H and collecting similar powers of t, the generating function S can be
expressed in terms of derivatives of H. When the series for §3 is truncated,
an approximate solution of the Hamilton—Jacobi equation is obtained, which
is then used to generate the numerical method via (9.6).

Of course, similar approaches can be taken for generating functions other
than generating functions of the third kind. The use of the Poincaré format
is appealing, because it easily leads to self-adjoint schemes, with only odd
powers of h in the Taylor expansion of the truncation error. The second-
order method derived from the Poincaré generating funtion is none other
than the familiar midpoint rule, with generating function S¥ = hH.

The expression for the fourth-order method turns out to be

h3
P?H =p; —hH,, — 2 [HPijQiHQjHQk +2Hp,p Hy;q, Hy,

- 2HPj9k(IiHPj H,, - 2HPj¢1kHij:'HQk - 2Hijkaqum
+2Hg;q, Hp,q, Hp, + H‘Ij‘lkquPijk] :

h3
q{”’l =gq; + hHp, + 2% [HPijPiHQjH‘Ik + 2HPijH‘IjPiH(Ik

- 2Hpj(1kpi HPJ' qu - 2HPijHPjPink - 2HPj¢IkHPj qui
+ 2H¢1ijHPjPiHPk + qu(IkPiHPijk] .

Here summation in repeated indices must be understood and the functions
featuring in the right-hand sides are evaluated at the averages

[3(P* +p), 3(a* + )],
so that the scheme is implicit. We have reported these formulae to emphasize
the Taylor-series character of Feng’s methods. As with any other Taylor-
series method, these schemes would only be feasible if applied in conjunction
with some automatic procedure for the computation of the higher deriva-
tives.

Miesbach and Pesch (1990) note that, in Runge-Kutta methods for dy/dt
= f(y), one obtains high-order schemes without resorting to higher deriva-
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tives of f by using as increment y"*! — y™ a weighted sum A 3" b;f(Y;).
Furthermore, the terms hf being weighted have the form of the increment
in the Euler (i.e. simplest conceivable) method. In a similar vein, Mies-
bach and Pesch suggest methods where the Poincaré generating function
is a weighted sum of terms, each term being the simplest generating func-
tion hH (i.e. that corresponding to the implicit midpoint rule) evaluated
at some suitable inner stage. The resulting method is Runge-Kutta-like in
that no higher derivatives of H are required; however it is not a symplectic
Runge-Kutta method like those considered in Section 6.

11. Back to symplectic Runge—Kutta methods: the
canonical theory of the order

The symplectic Runge-Kutta methods (6.1), (6.4) define a symplectic trans-
formation which as h — 0 approaches the identity. Hence they must have
an S3 generating function. Lasagni (1990) has found the corresponding
expression

S3(pn, Adn+1; h) = pZQn+1
—h)_biH(P;, Q) — h? D biai Hp(Pi, Qi) Hq(P;, Q;)T.
: i

Here Hp and H are row vectors of partial derivatives and the stages should
be interpreted as functions of pn, qQ,+1 and h implicitly defined in (6.2),
(6.3). (Actually, in Section 9 we showed that a generating function would
exist if the domain € were simply connected. Lasagni’s recipe for S3 works
for all domains. Symplectic RK have generating functions regardless of
the geometry of {2 and therefore, in symplectic geometry jargon, they give
rise to ezact symplectic transformations, i.e. transformations for which (9.1)
holds. Actually, the flow of a Hamiltonian system is also an exact symplectic
transformation.)

In a manner similar to that used for symplectic PRK, Abia and Sanz-Serna
(1990) find the generating function

S3(men+1; h) = pZQn+1
—hY BiV(Qi) - kY BT(P;) +h*) " Biai;g(P:)T£(Qy),
i i ij
and for symplectic RKN schemes the generating function is given by (Calvo
and Sanz-Serna, 1991a)

S53(Pn, An+1;h) = PLGn+1
h h3
-hY_bV(Qi) - Epfpn +5 Y bi(Bs — o) £(Qi)TE(Q;).
i ij

We emphasize that, unlike the situation with the methods considered in
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Section 10, these generating functions are not needed to derive or to imple-
ment the RK and related methods introduced in Section 6. However explicit
knowledge of the generating function can be put to good use. In fact we can
study the order of consistency by simply substituting the expression for 3
with h = t in H +8S3/8t: an O(t") behaviour is, as we know, equivalent to
order r. This is the methodology suggested by Sanz-Serna and Abia (1991).
For the case of RK methods these authors give systematic rules, based on
graph theory, to write the Taylor expansion of H + 353/8t in powers of t.
It turns out that the graphs to be used are nonsuperfluous trees: at the t*
level, p > 1, the Taylor expansion contains a term for each nonsuperfluous
tree with p nodes. Hence the number of order conditions is the number
of nonsuperfluous trees. Furthermore the coefficients that must be annihi-
lated to impose H + 353/0t = O(t") are just the right-hand sides of the
homogeneous order conditions we described at the end of Section 7, see e.g.
(7.5)—(7.6). Thus the use of the Hamilton—Jacobi equation gives a very clear
meaning to the results presented in Section 7.

12. Properties of symplectic integrators: backward error
interpretation

Now that we have introduced the families of symplectic integrators available
in the literature, it is time to investigate the general properties of symplectic
integrators. The a priori motivation for resorting to symplectic methods was
presented in Section 5: by making the integrator symplectic we reproduce an
important property of the true flow. However there is a big gap in numer-
ical analysis between a reasonably motivated method and a method that
works well. It is therefore essential that theoretical analysis and numerical
experiments are presented that show the advantages, if any, of symplectic
integrators.

In our opinion, to the numerical analyst, the most appealing feature of
symplectic integration is the possibility of backward error interpretation.
This idea is very similar to the method of modified equations, see Warming
and Hyett (1974) and, for a more rigorous treatment, Griffiths and Sanz-
Serna (1986). Let us begin with an example. Consider the Hamiltonian
H = 1p? + V(q), leading to the system

dp/dt = f(g), dg/dt=p, (12.1)

where f = —V’/. We assume that f(0) = 0 and f'(0) < 0; the first hypothesis
implies that the origin is an equilibrium of (12.1), the second implies that
this equilibrium is a stable centre (the origin is a minimum of the potential
energy V). The system (12.1) is integrated by the following first-order,
symplectic PRK method

" =p" +hf(e"), T =q"+hp" (12.2)
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In order to describe the behaviour of the points (p”,¢") computed by
(12.2), we could just say that they approximately behave like the solutions
(p(tn),q(ts)) of (12.1). This would not be a very precise description, even
for h small, because ¢p g and ¥y g differ in O(h?) terms (first order of
consistency). Can we find another differential system S; so that (12.2) is
consistent with the second order with S2? The points (p”,¢") would then
be closer to the solutions of S; than to the solutions of the system we want
to integrate. To find the modified system S2 use an ansatz

dp/dt = f(q) + hF1(p,q),  dg/dt =p+ hGi(p,q)

(note that h features here as a parameter so that S = Sa2(h)), substitute
the solutions of the modified system in the difference equations and ask for
an O(h®) residual. This leads to

X f@+ @), P =r- i), (123)

a Hamiltonian system, with Hamiltonian
Hy(h) = 39° + V(9) — (h/2)pf(q)-

If we are not satisfied with Sz(h), we can find a differential system S3(h) for
which (12.2) is consistent with the third order. Again S3(h) turns out to be
a Hamiltonian problem; the expression for the Hamiltonian is

Hs(h) = (1/2)p* + V(q) — (h/2)pf(q) + (K*/12)[f(9)* — P*f'(q)).

There is no limit: for any positive integer p a Hamiltonian system Sy, (h)
can be found such that the method ¥ g differs from the flow ¢ H,(k) iD
O(h#*1) terms (see e.g. MacKay (1991)). By going from local to global
errors, in any bounded time interval, the computed points are O(h”) away
from the solution of Sy, (h).

What is the situation when using a nonsymplectic method? Take the
standard forward Euler method as an illustration. Again a modified system
Sz(h) can be found for which consistency is of the second order. This now

reads
dp [f(4)+-Pf'(¢1)} hpf'(9), 33 [p——f(q)]

the terms in brackets replicate the Hamiltonian system (12.3), but there is
an extra term —hf’(q)p. Since f’(0) < 0 this extra term introduces negative
dissipation near the origin: in any bounded time interval, the computed
points are O(h) away from the solutions of the Hamiltonian system we want
to solve, but O(h?) away from the solutions of a system where the Hamil-
tonian character has been lost and the origin is an unstable focus.

Even though these considerations have been presented by means of an
example, they hold for all symplectic methods: provided that the system
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(2.1) is smooth enough, for arbitrarily high p, a modified Hamiltonian system
SH,(r) can be found such that the method ¥, g differs from the flow ¢4, 51, (n)
in O(h**!) terms. The difference between the true Hamiltonian H and the
modified Hamiltonian H,(k) is O(h"), with r the order of the method.

As shown in this example, the functions H,(h), p = 2,3,..., are trunca-
tions of a power series in h. If this power series converges, its sum H(h)
gives rise to a modified Hamiltonian problem that is integrated exactly by
the symplectic numerical method: YnHg = ¢p g, (n)- In the previous ex-
ample with V(g) = 1¢? (i.e. the harmonic oscillator (2.5)) this modified
Hamiltonian problem is given by Beyn (1991, p. 221)

Sa)-Gom 3 EDL]

when solving this system analytically the matrix in brackets is exponentiated
and the equations (12.2) of the numerical method are recovered.

In general, for nonlinear problems, the series does not converge: the com-
puted points are not quite an exact solution of a differential problem (Sanz-
Serna, 1991a, p. 168). However if H is very smooth, it can be shown (Neish-
tadt, 1984; cf. Lasagni, 1990; MacKay, 1991) that a Hamiltonian H,(h) can
be constructed for which the corresponding h-flow differs from v, g in terms
that tend to 0 exponentially fast as h — 0.

In any case the conclusion is the same: for a symplectic integrator applied
to (2.1) modified Hamiltonian problems exist so that the computed points
lie either exactly or ‘very approximately’ on the exact trajectories of the
modified problem. This makes a backward error interpretation of the num-
erical results possible (cf. Sanz-Serna (1990)): the computed solutions are
solving exactly (or ‘very approximately’) a nearby Hamiltonian problem.
In a modelling situation where the exact form of the Hamiltonian H may
be in doubt, or some coefficients in H may be the result of experimental
measurements, the fact that integrating the model numerically introduces
perturbations to H comparable with the uncertainty in H inherent in the
model is the most one can hope for.

On the other hand, when a nonsymplectic formula is used the modified
system is not Hamiltonian: the process of numerical integration perturbs
the model in such a way as to take it out of the Hamiltonian class. The
acceptability of such nonHamiltonian perturbations is a question that should
be decided in each individual modelling problem.

12.1. An alternative approach

If
(P,a) = ¥nu(®’ q°) (12.5)
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is a numerical method, it is a simple matter to find a differential equation
satisfied by the functions (p(h), q(h)): we differentiate (12.5) with respect
to h and eliminate (p°, q°) in the result by using (12.5).

For the symplectic method (12.2) this procedure yields the system

% @)+ hf @ - RIDF @ S —p— (o)

which (this should not be surprising by now) is a Hamiltonian system, with
Hamiltonian H(p,q;h) = 3(p — hf(g))? + V(g). Since h is our ‘time’, the
system is nonautonomous. Moving from ¢ = 0 to ¢ = h with the method
(12.2) is moving from t = 0 to t = h with a nonautonomous system with
Hamiltonian H. The fact that H and H differ in O(h) terms is a reflection
of the first-order accuracy of the method.

What is unsatisfactory with this approach is that taking two steps 0 —
h — 2h with the numerical method is not going from ¢ = 0 to t = 2h with
S:: given an initial condition, to move from 0 to 2h in a nonautonomous
di}é'erential system is not quite the same as advancing the initial condition
to t = h and then using the result as new initial condition for another 0 — h
forward shift. There is a way around this problem: for 0 < ¢t < h we keep the
Hamiltonian H(p, ¢;t) found earlier and for h <t < 2h, 2h <t < 3h, ...,
we repeat it periodically. The good news is that now the nonautonomous
system is such that the transformation that moves the initial condition from
t = 0 to t = nh is the nth power of the transformation that advances the
initial condition from ¢ = 0 to ¢ = h. Hence, the numerically computed
points exactly lie on solutions of this nonautonomous system. The bad
news is that the new Hamiltonian is not only nonautonomous, but also
discontinuous as a function of £. Such a lack of smoothness is not very
welcome.

The canonical formalism of generating functions provides a very clever
way of finding H without bhaving to differentiate 15 . The initial condi-
tions (p% q°) do not vary with ¢: we could see them as solutions of the 0
Hamiltonian. By using Theorem 9.1, the functions (p(h), q(h)) then evolve
with the Hamiltonian H = —953/dh. In the example, the generating func-
tion is S3 = pOq — (h/2)(»°)? — AV (g) (now p and q play the role played by
p* and g¢* in Section 9, while p® and ¢° play now the role of ‘old’ variables).
Differentiation with respect to h in S3 leads to H = 1(p°)2 + V(g); in view
of (12.2) this equals % p — hf(q))? + V(g), the same expression we found
before. B

McLachlan and Atela (1991) use the discrepancy between H and H as a
measure of the accuracy of the method 9 g. Since such a discrepancy equals
H +85%/0h this is just using the Hamilton—Jacobi methodology introduced
by Sanz-Serna and Abia (1991).
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13. Properties of symplectic integrators: conservation of
energy

For the system (2.1) the Hamiltonian H is a conserved quantity: H(p(t),q(t))
does not vary with ¢ if (p(¢),q(t)) is a solution of (2.1). In applications in
mechanics conservation of H usually corresponds to conservation of total
mechanical energy. Do symplectic integrators possess the analogous prop-
erty that, except for rounding errors, H(p™,q") does not vary with n along
a numerically computed solution? Sometimes they do: if (2.1) is a lin-
ear system and the integrator is a symplectic RK method (6.1)—(6.4), then
H is conserved along numerical trajectories. In fact in this case H is a
quadratic function and symplectic RK methods conserve all quadratic func-
tions that are conserved by the Hamiltonian system being integrated, Sanz-
Serna (1988). However if we still assume linearity in the system and we use
a PRK or a RKN method, conservation of H no longer holds. This is easily
seen in the case of the harmonic oscillator (2.5) integrated by the method
(12.2). We have noticed earlier that the computed points exactly lie on tra-
jectories of the modified system (12.4) and hence on the lines H (p,q; h) =
constant in the (p,q) plane. But, for h small, these lines can be seen to
be ellipses, while for conservation of energy we wanted the points to be on
circles p? + g% = constant. As h — 0 the eccentricity of the ellipses decreases
and they look more like circles: smaller values of h lead to smaller energy
errors, as in the consistent method. Furthermore the fact that the computed
points stay exactly on an ellipse near the theoretical circle implies that the
error in energy remains bounded even if ¢ gets very large.

The same ideas apply more generally. When problem (2.1) is very smooth
but nonlinear, the computed points do not remain exactly on trajectories
of the modified problem Sy (n). Nevertheless, the drift of the points away
from the modified trajectories is very slow: the numerical scheme has ex-
ponentially small local truncation errors when seen as an approximation to
the modified system. Therefore Ho,(h) is conserved by the numerical so-
lutions, except for exponentially small errors, for long (O(h~!)) periods of
time. This in turn implies that the errors in H = H(h) + O(h™) possess
an O(h") bound on time intervals of length O(h~!) (Lasagni, 1988).

For ‘general’ Hamiltonians, Ge and Marsden (1988) prove that a sym-
plectic method v}, g cannot exactly conserve energy (except for the triv-
ial cases where the function v, g actually coincides with or is a time re-
parameterization of the true flow ¢ ). Hence conservation of the symplec-
tic structure and conservation of energy are conflicting requiriments that,
in general, cannot be satisfied simultaneously by a numerical scheme. Since
both the Hamiltonian and the symplectic structure are conserved by Hamil-
tonian systems, the question naturally arises of whether when constructing
an integrator we should choose to conserve symplecticness and violate con-
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servation of energy or vice versa. This is a question that should probably
be answered differently for each specific application. However it should
be pointed out that, as mentioned in Section 4, symplecticness is a prop-
erty that fully characterizes Hamiltonian problems, while conservation of
an energy-like function is a feature also present in many nonHamiltonian
systems. Furthermore conservation of energy restricts the dynamics of the
numerical solution by forcing the computed points to be on the correct
(2d — 1)-dimensional manifold H = constant, but otherwise poses no re-
striction to the dynamics: within the manifold the points are free to move
anywhere and only motions orthogonal to the manifold are forbiden. When
d is large this is clearly a rather weak restriction. On the other hand, sym-
plecticness restricts the dynamics in a more global way: all directions in
phase space are taken into account.

The literature has devoted a great deal of attention to the construction
of numerical schemes that exactly conserve H (or more generally, to the
construction of integrators for a system dy/dt = f(y) that exactly conserve
one or more invariants of motion). Several ideas have been suggested:

1  stepping from ¢, to t,41 with a standard method and then projecting
the numerical result onto the correct energy surface;

2  adding the conservation constraints to the differential system to obtain
a system of differential-algebraic equations; and

3  constructing ad hoc schemes. However conservation of energy is not the
theme of this paper and we shall not attempt to review the relevant
literature.

14. Properties of symplectic integrators: KAM theory

The Kolmogorov—Arnold-Moser (KAM) theory for Hamiltonian problems
explains the behaviour of Hamiltonian systems that are perturbations of
so-called integrable Hamiltonian systems (i.e. of Hamiltonian systems that
can be explicitly solved in terms of quadratures). This material is covered
in the books by Moser (1973), Arnold (1988, 1989) and MacKay and Meiss
(1987). The theory also caters for the case of symplectic mappings that
are perturbations of integrable symplectic mappings. Therefore KAM re-
sults can often be applied to the mappings ¥ i associated with symplectic
integrators.

To get the flavour of this sort of application, let us consider once more the
method (12.2) applied to (12.1). Recall that the origin is a (stable) centre
for the system (12.1). For the discrete equations (12.2), linearization around
the origin leads to

P =p" +hf(O)g" T,  ¢*tl=g" +hp", (14.1)

a system that has, for h small, unit modulus eigenvalues. Thus the origin
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is also a centre for (14.1). However to go from (14.1) to the discretization
(12.2) we must include the effects of the nonlinear terms that were discarded
in the process of linearization. Since (14.1) is only neutrally stable, it may
be feared that the nonlinear effects, small as they may be, will render the
origin unstable for (12.2). The KAM theory can be used to show that the
symplecticness of the method implies that such a destabilization does not
occur. Full details of this example have been given in Sanz-Serna (1991a).
Incidentally, we would like to point out that it is this mechanism that renders
the standard explicit midpoint rule stable in many nonlinear problems, even
though this rule is only neutrally stable in a linear analysis. The interested
reader is referred to Sanz-Serna and Vadillo (1986, 1987).

15. Practical performance of symplectic integrators

Numerical tests provide the final verdict on the usefulness of any numerical
method. For Hamiltonian problems, are symplectic methods more advanta-
geous in practice than their nonsymplectic counterparts? Before we answer
this question, let us observe that many symplectic methods are implicit.
Even though explicit symplectic algorithms exist in the PRK and RKN
families, they are only applicable to restricted classes of Hamiltonians. Fur-
thermore, when deriving such explicit methods, free parameters are used to
ensure symplecticness which could otherwise be directed at increasing ac-
curacy. The result is that, to achieve a given order, a symplectic explicit
PRK or RKN method usually needs more stages than a standard PRK or
RKN method. All these considerations show that there is a price to pay
for symplecticness. Symplecticness is expected to pay back when perform-
ing very long time integrations: then a symplectic scheme has some inbuilt
features that may guarantee the right long-term qualitative behaviour and
even result in a favourable error propagation mechanism. On the other hand
for short-time integrations, where accuracy is of paramount importance, a
good standard code is expected to outperform any symplectic method.

Menyuk (1984), Feng and Qin (1987), Sanz-Serna (1989), Channell and
Scovel (1990), Miesbach and Pesch (1990), Candy and Rozmus (1991),
McLachlan and Atela (1991), Okunbor and Skeel (1991) and Pullin and
Saffman (1991) provide numerical experiments involving symplectic inte-
grators. The sort of experiment performed often consists of the application
of a symplectic method to the long-time integration of a Hamiltonian prob-
lem; some sort of graphic output is then examined. The conclusions appear
to be that symplectic integrators are very successful in identifying most rel-
evant qualitative features of Hamiltonian flows. In most of the papers cited
here, the symplectic method is tested against a standard method of the same
order of accuracy. The standard method is usually proved to require much
smaller step-sizes to correctly identify the true dynamics.
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This sort of experimentation, encouraging as it may be to the developer
of symplectic methods, is open to criticism. To begin with, the reference
standard method being used tends to be either the classical fourth-order RK
method or a low accuracy RK formula like the modified Euler scheme. These
reference methods are far away from state of the art numerical integrators.
Furthermore, in the experiments we are discussing, both the symplectic in-
tegrator and the reference standard method are implemented with constant
step-sizes, which again is far away from current numerical ODE practice. It
is legitimate to ask what would happen if in the comparisons the nonsym-
plectic method would have been chosen to be a modern variable step-size
code. On the other hand, this criticism may not be entirely fair: standard
methods have been under development for several decades, while we are at
the stone age of symplectic integration; it may then make sense to compare
our symplectic integrators with stone-age standard methods.

A somewhat more severe test has been conducted by Calvo and Sanz-Serna
(1991b,c). A fourth-order, explicit, symplectic RKN method is constructed
which is optimal in the sense that the error constants have been minimized
following a methodology due to Dormand et al. (1987). First, this symplec-
tic integrator, implemented with constant step-sizes, is compared with a
variable step-code based on an optimal fourth-order nonsymplectic formula
of Dormand et al. (1987). The result of the comparison is that, in long time
integrations, the symplectic method definitely needs less work to achieve a
given accuracy. This holds even in cases where the solution possesses several
time scales along the integration interval and the code is much benefiting
from the step-changing facility. In the integration of Kepler’s problem, it
can be shown rigorously (Calvo and Sanz-Serna, 1991c) that for symplectic
integrators the errors grow linearly with £, while for nonsymplectic methods
grow like t2. Hence the symplectic methods are guaranteed to win if t is
large enough.

15.1. Variable step-sizes

Calvo and Sanz-Serna (1991b) then go on to compare the nonsymplectic
code with a variable step-size implementation of the symplectic formula.
For this implementation, due care was exercised in constructing the error
estimator, etc. Before the experiments were conducted it was expected that
the combination of the advantages of symplecticness with those of variable
step-sizes would lead to a very efficient algorithm. The numerical results
were very disappointing: in the variable step-size implementation, the sym-
plectic formula does not show any advantage in the long-time error propa-
gation mechanism. For instance, for Kepler’s problem the error growth is
quadratic, just as if a nonsymplectic formula were used. Since the cost per
step of the simplectic algorithm is higher than that of the standard code (see
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earlier), the conclusion is that the variable step-size simplectic algorithm is
not competitive with the standard code.

It thus appears that there is a future for the practical application of sym-
plectic integration, especially if high order symplectic formulae are developed
and if advances are made in efficiently implementing the implicit symplectic
methods. However such a future seems to be limited to constant step-size
implementations!

Before closing this section it is appropriate to say some words on the
failure of variable step-size symplectic methods. In Section 12 we pointed
out that a symplectic integrator 1, g ‘almost’ provides the exact flow of a
Hamiltonian problem ¢, g (n)- If h is held constant during the integration,
the initial condition is numerically advanced to £ = £, by

n
Yo HYRH U H

which for ¢, in a compact time interval differs from

n

A

az,Hm(h)‘ﬁh,Hm(h) B Heo(h) = Pt Hoo(h)

in exponentially small terms: the computed points stay very close of a mod-
ified Hamiltonian trajectory. The situation is quite different for variable
step-sizes. Now the initial condition is advanced by

Vb, Hh_ 1, H ** Vhy H) (15.1)

an approximation to

Phon,Hoo (hn) Phn_1,Hoo (hn_1) * * * Pha,Hoo (1)

The last expression cannot be interpreted as the ¢,-flow of a Hamiltonian
problem: the Hamiltonians being used at different time steps are different.
This shows that the backward error interpretation of symplectic integration
does not hold for variable step-sizes.

There is a difficulty here: in a variable step-size code the step points ¢,
are actually functions of the initial point (p° q°) (and also of the initial
guess for the first step-size). Therefore the algorithm does not really effect a
transformation mapping the phase space {2 at ¢ = 0 into the phase space 2
at time ¢, rather (Q x (¢t = 0)) is mapped into some curved 2d-dimensional
surface in the (2d + 1)-dimensional spacetime. It is then possible to question
the relevance of (15.1) to the analysis of the variable step implementation.
However in the experiments reported by Calvo and Sanz-Serna (1991b) only
one fixed initial condition was used so that, in a ‘mental experiment’, one
could pretend that the sequence of step-sizes hi,hs,..., actually used in
the integration was recorded and would have been used to integrate neigh-
bouring initial conditions. In this context, compatible with the numerical
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experiments, the initial condition is really advanced by the symplectic trans-
formation (15.1).

The advantages of symplectic integration may well originate from the fact
that one advances from t = 0 to time ¢,, by iterating n times a single sym-
plectic mapping. Advancing by composing n different symplectic mappings
does not appear to be as effective.

16. Concluding remarks

In the paper we have restricted ourselves to standard Hamiltonian problems
(2-1) on a domain € in an even-dimensional oriented Euclidean space. One
may also consider a so-called symplectic manifold, an even dimensional man-
ifold endowed with a closed, nondegenerate differential 2-form that plays the
role that was played here by dp Adq (Arnold, 1989; MacKay, 1991). In such
a manifold to each scalar function H there corresponds a Hamiltonian-like
system of differential equations. More generally one could consider a Pois-
son manifold. A reference where a symplectic integrator is derived for a
Poisson system is de Frutos et al. (1990). Another area of active research
in the physics literature is that of Lie—Poisson integrators, see e.g. Ge and
Marsden (1988).

Many partial differential equations also possess a Hamiltonian structure.
In connection with symplectic integration they pose two problems: how to
discretize them in space to obtain a Hamiltonian semi-discretization and how
to advance in time the semi-discrete solution to have an overall symplectic
algorithm. Some references are Qin (1988), Li and Qin (1988), Qin and
Zhang (1990), de Frutos et al. (1990).
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1. Introduction

In the past decade there has been a dramatic growth of engineering interest
in boundary integral or boundary element methods, witnessed by the large
number of recent conference proceedings with these words in the title. At the
same time, the former rivalry between advocates of BIE (boundary integral
equation) and PDE (partial differential equation) approaches seems to have
softened, as the relative strengths and weaknesses of each have become better
understood.

Boundary integral methods may be used for interior and exterior prob-
lems, but have a special advantage for the latter. As a first introduction,
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consider (without equations!) the problem of acoustic scattering from an
object. Under appropriate idealization, the pressure in the region exterior
to the object satisfies the wave equation, with an appropriate (typically
Neumann) condition on the scattering surface, and a radiation condition
at infinity. With the time variable separated, the equation becomes the
Helmholtz equation. Regarded as a PDE problem, the setting is an infinite
three-dimensional region. The boundary integral formulation of this prob-
lem, on the other hand, lives in a region that is only two-dimensional and
finite — namely the surface of the scatterer.

We leave until the next section any serious discussion of boundary integral
formulations (and refer to Colton and Kress (1983) for the specific matter of
the Helmholtz equation), but some readers may find the following thought
useful: If we knew the Green’s function for this scattering problem, then
the pressure at any point could be found by quadrature over the surface.
But the true Green'’s function, incorporating the boundary condition on the
scatterer, is even harder to find than the solution itself. The next best thing
is to use the known fundamental solution, which is the Green’s function for
the infinite region with no scatterer. That incorporates the boundary con-
dition at infinity, and solves the differential equation, but takes no account
of the scatterer. To obtain a solution that satisfies the boundary conditions
on the scatterer we must therefore solve for an unknown function over the
surface of the scatterer. The equation to be solved is a (boundary) integral
equation.

Compared to PDE formulations, those involving BIEs are usually of lower
dimensionality (e.g. two-dimensional against three-dimensional in the earlier
example). On the other hand BIE methods almost invariably have dense
matrices, in contrast to the sparse matrices given by the PDE methods.
Moreover, the matrix elements are relatively hard to compute, involving
for example weakly or strongly singular kernels, perhaps (particularly in
the Galerkin method) several levels of integration, and difficult geometry.
Boundary integral equations rely fundamentally on the linear superposition
of solutions, and therefore are happiest when the underlying differential
equations are linear and homogeneous, and the material properties constant.
The PDE methods in contrast, being local in character, are not so fussy
about any of these matters.

Nevertheless, in the circumstances in which they are appropriate, bound-
ary integral methods can be very useful. And their applicability can be
widened by the coupling of PDE and BIE methods, using each in the re-
gions where they are appropriate. (See, for example, Zienkiewicz et al.
(1977), Johnson and Nedelec (1980), Costabel (1987) and recent reviews by
Hsiao (1990, 1991).)

In this review our concern is with the numerical analysis of boundary in-
tegral methods and, in particular, with certain recent developments. The
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review could not hope to be exhaustive, given the range and the complexity
of the subject. We are helped, however, by the existence of two other recent
reviews, by Wendland (1990) and Atkinson (1990). The former gives a com-
prehensive overview of the recent theory of the Galerkin method for BIEs via
the theory of strong ellipticity for pseudodifferential operators. It consists of
lecture notes for an audience with a strong PDE background; those without
such a background might find the present review a useful introduction. The
review by Atkinson (1990) lays particular stress on the problems involved
in the implementation of three-dimensional boundary integral equations,
such as the problem of evaluating the (often weakly singular) integrals over
boundary elements, and iterative methods for the solution of the dense lin-
ear systems that result. We shall not consider such questions in the present
review.

Nor can we do justice to the large body of recent work on (Cauchy)
singular integral equations in the plane (see, for example, Prossdorf and Sil-
bermann (1977, 1991), Préssdorf (1989)). Mixed boundary value problems
will be ignored (see Wendland et al. (1979), Lamp et al. (1984), Stephan
and Wendland (1985), McLean (1990)). And we will have nothing to say
about another topic currently attracting considerable interest, namely non-
linear aspects of BIE (see Ruotsalainen and Wendland (1988), Ruotsalainen
and Saranen (1989), Atkinson and Chandler (1990), Eggermont and Sara-
nen (1990), Ruotsalainen (1992); and, in connection with coupling of BIEs
and PDEs, Gatica and Hsiao (1989)).

Many aspects of linear integral equations relevant to BIEs and their linear
approximation are discussed carefully in the recent books by Kress (1989),
Hackbusch (1989), and Prossdorf and Silbermann (1991).

In the later part of the review we will give particular attention to problems
in the plane, because this has been an area which has seen considerable
recent activity, with many new methods proposed, some new techniques of
analysis, and some attempt to tackle the challenging problems posed by
corners. Perhaps some of these methods will subsequently be extended to
the even more challenging three-dimensional problems.

The structure of this review is as follows. In the next Section a sim-
ple introduction is given to the BIE formulation of the problem. Sobolev
spaces and the mapping properties of boundary integral operators cannot
be avoided in the modern numerical analysis of BIEs. They are introduced
gently in Section 3, and then, based on this knowledge, existence and unique-
ness questions are considered ir Section 4. Aside from their importance for
the basic theory, the Fourier series techniques introduced in Section 3 will
play a major role later in the paper, for both the analysis and design of
approximate methods.

Of all the methods mentioned in this review, the only one which is in a
reasonably satisfactory condition for a wide class of BIEs is the Galerkin
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method. At heart, this is because it rests on a variational principle. A
simple treatment is given in Section 5. Section 6 is devoted to the collocation
method, and Section 7 to the so-called qualocation method and its discrete
variants, for BIEs on plane curves. In general the analysis of these methods
for smooth curves is reasonably satisfactory, but problems remain where
there are corners. Section 8 summarizes some challenges for the future from
corner and other problems. At the same time it discusses briefly an extreme
case of a corner (the case of the logarithmic-kernel integral equation for a
slit), for which a complete analysis is available. Perhaps this case may give
some insight into the proper handling of general corners for this and other
problems.

It might reasonably be said that in its theoretical analysis the boundary
integral method is a decade or more behind the finite element method. A
defence might be that the problem is genuinely harder, because of the non-
local nature of integral operators. In any event, there can be no argument
that there is still much to be done.

2. Boundary integral equations

The reformulation of elliptic boundary value problems as boundary integral
equations has been discussed by many people, including Jaswon (1963) and
Jaswon and Symm (1977) for potential theory and elastostatics, Kupradze
(1965) for elasticity, and Colton and Kress (1983) for the Helmholtz equa-
tion. Clements (1981) considers general second-order elliptic problems,
Hsiao and MacCamy (1973) and Hsiao (1989) concentrate on first-kind form-
ulations, Ingham and Kelmanson (1984) consider biharmonic and singular
problems, and Wendland (1990) discusses a range of examples. In addition
there are many books and papers with an engineering flavour, among which
we may mention Hess and Smith (1967), Brebbia et al. (1984), Banerjee and
Watson (1986), and the introductory book by Hartmann (1989); for a more
complete bibliography of engineering works see Atkinson (1990).

The classical mathematical formulations are discussed thoroughly by
Mikhlin (1970). An excellent source for modern mathematical developments
is the recent review of boundary integral equations by Maz’ya (1991).

Here our aim is merely to introduce some of the principal ideas in a simple
setting, with no attempt at completeness or maximum generality.

2.1. Indirect methods
Consider the two-dimensional Laplace equation
Ap=0, teQ, (2.1)
subject to the Dirichlet boundary conditions
¢=¢g on I'=099, (2.2)
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where 2 is a simply-connected open domain in the plane with a piecewise-
smooth boundary I The simplest boundary integral formulation of this
problem is via the ‘single-layer representation’ of the potential ¢; that is,
one seeks a representation of ¢ in the form

(1) = —-71; /r log [t — s|2(s)dls, t €, 2.3)

where |t — | is the Euclidean distance between ¢ and s, dl is the element
of arc length, and z is an unknown function, the ‘single-layer density’, or
‘charge density’. The motivation is easily stated: because (27) 1log|t—s| is
the fundamental solution of the Laplace equation, (2.3) yields a solution of
the Laplace equation, no matter how z is chosen; thus all that remains is to
satisfy the boundary condition (2.2). Letting ¢ approach the boundary, and
assuming that the right-hand side of (2.3) is continuous onto the boundary,
we obtain

g(t) = —_1_/ log|t — s|z(s)dl;, teT.
T™Jr

This is an integral equation of the first kind (which merely means that the
unknown z occurs only under the integral sign). Introducing the single-layer
integral operator V defined by

Vo) = —% /r log |t — s|v(s)dl,, teT, (2.4)

we may write the integral equation as
Vz=g. (2.5)

That the integral on the right-hand side of (2.3) is continuous as ¢t — T
has been shown by Gaier (1976), under the assumption that z € Lp(T") for
some p > 1, and that the curve is piecewise smooth and has no cusps.

Next, consider the exterior problem

Ap=0, te,, (2.6)

where Q. = R?\Q and (2 is defined as for (2.1). Again we assume the Dirich-
let condition (2.2) on I', but this time we need also a regularity condition
at infinity,

¢ bounded at infinity. 2.7

Following Jaswon and Symm (1977), it is natural to seek a representation
in the form

#(t) = _;1; /P log [t — s|2(s) dl, +w, (2.8)

where w is a constant, and where, in order to satisfy the condition at infinity,



292 IAN H. SLOAN

the side condition
/ 2(s)dl; =0
r

is imposed. In this case the corresponding boundary integral equation is the
pair

Vz4tw=yg, /z=0. (2.9)
r

In the preceding paragraph we considered the exterior problem, but in fact
there is nothing to stop us from using the same approach, of an additional
unknown w and a side condition on 2, even for the interior problem (2.1),
(2.2). That approach has been advocated by Hsiao and MacCamy (1973), in
order to avoid the existence/uniqueness problems that can beset (2.5) (see
Subsection 4.3). There is a close relationship between the two approaches:
for example, if the pair w, z(1) satisfies (2.9) and if Vz(® = 1 then it is
obvious that z = 2(1) + w2(?) satisfies (2.5). For an elaboration of this
relationship see Sloan and Spence (1988a, Section 3).

Three-dimensional interior and exterior problems for the Laplace equation
with Dirichlet boundary condition (and with the regularity condition ¢(t) —
0 as [t| — oo in the exterior case) may be approached in a manner analogous
to (2.3), the fundamental solution in this case being the Newtonian potential,
the single-layer representation being

1 1
o) = 5 /F o )dSs, teRor (2.10)
and the single-layer operator on I' = 92 being
1 1
Valt) = - /F To5i(e)d5, teT. 2.11)

The resulting integral equation, for both interior and exterior problems,
is (2.5).

2.2. The classical BIEs of potential theory

Returning to the two-dimensional case, the classical approach to the interior
Dirichlet problem (2.1) and (2.2) is to seek a ‘double-layer’ representation
for ¢, i.e.

60 = 1 [ (5o loglt o) s(s)dl

wJr

1 [n(s)-(s—1)
= - /F S t@ds ten (2.12)

Here the derivative is the normal derivative (with respect to s), in the direc-
tion of the outward unit normal n (i.e. the normal directed into the exterior
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region Q). This approach leads to a quite different kind of equation, because
the double-layer operator on the right of (2.12) is generally not continuous
onto I'. The following theorem is proved by Mikhlin (1970) for the case of a

Lyapunov curve, and by Hackbusch (1989) and Wendland (1990) for a curve
with corners.

Theorem 1 Let I be piecewise Lyapunov without cusps, and let z € C(T').
Then the integral

1 0
= /r <5n—s log |t — s|) 2(s)dls, t€RAT, (2.13)
has limiting values as t approaches I' from 2 and 2. separately. If ' € T is
a point at which I" has a tangent, the limiting values as t — t’ are

1 / (anis log |t' - sl) z(s)dl, £ 2(t'), (2.14)

wJr

where the upper and lower signs hold for ¢t € Q and t € Q. respectively.

The proof proceeds by representing z(s) in (2.13) as z(t') + (2(s) — z(¢')),
and showing that the integral corresponding to the second term is continuous
onto I'. For the first term, because 2(t') can be taken outside the integral,
it is sufficient to prove the result for z = 1. Briefly, for s € " and for ¢t a
fixed point in ©, Q or I' (but not a corner point of I'), let p,0 be polar
coordinates of s — t, and let i be the angle between the outward normal
n(s) and the vector s — t. Then

7] _n(s)-(s—t) cosy
ans log |t 3[ - p2 - p )
and
_ pdb
dls = cos’
thus

1 P 1 1 2r if teq,
'/(an log|t—s|)dls=—/d0=— x if tel, (2.15)
T Jr \0ns 4 TL o if teQe.

That is the integral in (2.13) has in this case the value 2 or 0 for ¢ in 2 or
Q. respectively, while (2.14) has the value 1 + 1.

Let
Kz(t) = % /P (a%logu-q) 2(s) dls
L[ n(s)- (s =1

= - /P S A@dl, teT, (2.16)
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be the double-layer operator on I'. Then if ¢/ is a point on I" at which a
tangent exists, the limiting values (2.14) become

Kz(t') + 2(t'). (2.17)

If we now return to the double-layer representation (2.12) of the interior
Dirichlet problem (2.1), (2.2), we see, by taking the limit as t approaches a
point on the boundary and using the theorem, that z satisfies

g(t) = Kz(t) + 2(t), t€T, t nota corner point. (2.18)

This is an equation of the second kind, in the nomenclature introduced by
Fredholm. If I' is a Lyapunov curve the kernel of the integral operator
K when appropriately parametrized turns out to be weakly singular (see
Mikhlin (1970)). Indeed, if T is a C2 curve then the kernel is even continuous.
In these cases the integral operator K is a compact operator on C(T"), and
the classical Fredholm theory applies.

For a region with corners K is no longer compact on C(I') (or indeed any
other space), and the Fredholm theory is inapplicable. However, it is by now
well understood that the double-layer equation (2.18) can still be a very ef-
fective tool (see, for example, Verchota (1984), Costabel (1988), Hackbusch
(1989), Maz’ya (1991)). In particular, Verchota (1984) shows that the jump
relations in Theorem 1 hold, almost everywhere on I', even for general Lip-
schitz curves (and hence for all piecewise Lyapunov curves without cusps),
and with the density function z allowed to be merely in Lo(T'), provided
that the double-layer operator K is defined with appropriate care. (Specif-
ically, one need only replace 3 by 2 and 2x by = in the three-dimensional
generalization (2.27) given below.) The precise nature of the operator K at
a two-dimensional corner was first elucidated by Radon (1919), and further
discussed by Cryer (1970); see also Atkinson and de Hoog (1984) for a study
of the Dirichlet problem for a wedge.

In the same way the exterior Dirichlet problem (2.6), (2.2), (2.7) may be
approached by the double-layer representation (2.12). In this case the jump
relations lead to an operator equation on I' with a different sign,

g(t) = Kz(t) — z(t), t€T, t nota corner point. (2.19)
The classical approach to the Neumann problem
o9
= Q —=h r 2.
Ap=0, teQ Z =honT, (2.20)
or to the corresponding exterior problem satisfying also (2.7), is via the

single-layer representation (2.3) or (2.10). It can be shown (Mikhlin, 1970)
that for z integrable on I' and ¢t ¢ I the potential ¢(¢) can be differentiated



BOUNDARY INTEGRAL METHODS 295
under the integral sign, giving for the two-dimensional case
1
Vo = = / (Vilog |t — s|)z(s)dis
r
1 t—s
= —;A Wz(S) dls, t¢l".

Letting ' denote a point on I' and 8¢/n the directional derivative in the
direction of the (outward) normal at t’, we have

o 1 t) - (t -
6_:’: = /P Wz(s)dts, tgT. (2.21)

The normal derivative has jump discontinuities analogous to those in Theo-
rem 1 as t — t’. For the case of a Lyapunov surface the limits as ¢t = ¢/ € T’
are (Mikhlin, 1970)

- K*z(t') £ 2(t)), (2.22)
where again the upper and lower signs hold for ¢ € Q and 2, respectively,
and

K*z(t) = l/( 9 log|t—s|) z(s)dls,

ong
_ n(t) - (t—s)
- w/rT-T"_ 2(s)dl,, teT. (2.23)

Note that the normal derivative in this case is with respect to ¢, whereas
in the double-layer operator (2.16) it is with respect to s. In fact these
operators are adjoints of each other.

It follows from this that the two-dimensional interior and exterior Neu-
mann problems, at least for a Lyapunov curve, are characterized by the
equation

h(t) = —K*z(t) £ 2(t), teTl. (2.24)
For a curve with corners comments similar to those made earlier for the
double-layer equation are applicable: the same equation holds for ¢ not a

corner point (Hackbusch, 1989).
For the three-dimensional Laplace equation the double-layer representa-

tion is
o) = —o /(ai Itisl)z(s)ds

— % /F ’_‘i“’ii(—sltlz(s)dss, t¢T. (2.25)

Corresponding to (2.15) are the Gauss laws as a result of which jump rela-
tions analogous to those of Theorem 1 hold. This time, however, we state
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the more powerful version due to Verchota (1984). (The analogous two-
dimensional result also holds.) Here 2 is allowed to be an open, bounded,
Lipschitz domain with connected boundary T, and Q. = R3\Q2. Verchota
(1984) shows, by making use of the celebrated Coifman et al. (1982) the-
orem, that for 2 € Lo(T') the limit of (2.25) as t — t/ € I exists almost
everywhere on I', and has the value

Kz(t') £ z(t'), (2.26)
where the upper and lower signs are for the interior and exterior cases re-

spectively, and

n(s)-(s—t)
im — /F e i FO4S, teT @)

Thus the BIEs for the interior and exterior Dirichlet problem become, as in
the two-dimensional case,

Kz(t) = 11

g=Kztz. (2.28)

The operator K defined by (2.27) is a bounded operator on Lo(T), about
which we will have more to say when we turn to the question of existence
and uniqueness. The jump relations for the normal derivatives of the single-
layer potential extend to the three-dimensional situation in a similar way.
Thus one obtains again BIEs of the form (2.24) for the interior and exterior
Neumann problem, where for a general Lipschitz surface (Verchota, 1984)

K*2(t) = lim 217r / . %ﬂz(s) ds,. (2.29)

2.8. Direct methods

The methods discussed so far are termed indirect methods, because they
introduce quantities (namely, the single- or double-layer densities z on I")
which are not part of the problem as originally formulated. Direct methods,
in contrast, deal only with physically meaningful quantities, and for that
reason are often favoured.

Direct methods are based on Green’s theorem or its analogues. Suppose
we are considering the Laplace equation (2.1) for an interior domain 2 having
a smooth boundary, and suppose that ¢ € C?(2) and ¢ satisfies (2.1). Then
Green’s theorem gives (Mikhlin, 1970, p. 224)

1 9 6¢(s)}
o(t)= 27!’/1" [(ans log |t sl) o(s) — log |t — 8| ——= teq.
(2.30)
An equation on the boundary may now be obtained by letting ¢ — I"' and
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using the continuity properties of the single-and double-layer potentials dis-
cussed earlier: we obtain

80 = 280 +00) + S (),

7
or

p=K¢p+V g¢ (2.31)

This equation is an identity, which holds whenever ¢ satisfies the Laplace
equation on 2. Thus far we have assumed stringent conditions on I" and ¢,
but these can be relaxed significantly (see, for example, Costabel (1988)),
to allow curves that are merely Lipschitz, and hence may have corners.

Now let us introduce boundary conditions. Consider first the case of the
Dirichlet boundary condition (2.2). Then (2.31) gives an integral equation
of the first kind for z = d¢/0n,

Vz=g—- Kg. (2.32)

Now suppose instead that the boundary condition is

o
52 = K¢ + h, (2.33)
with k a constant. Then (2.31) becomes a second kind equation for ¢,
¢6=(K+&V)p+Vh. (2.34)

The direct method is particularly attractive in the common situation in
which the boundary conditions are mixed, for example with Dirichlet bound-
ary conditions imposed on I'; C T, and Neumann conditions on I'\I';. This
is because starting from the identity (2.31) (which is appropriate if we as-
sume still that the equation is the Laplace equation), we may easily develop
coupled boundary integral equations for 8¢/dn on I'; and ¢ on I'\I';.

3. Sobolev spaces and mappings of operators

The modern study of boundary integral equations and their numerical ap-
proximation needs some acquaintance with the mapping properties of bound-
ary integral operators in Sobolev spaces. In the case of the Galerkin method,
discussed in Section 5, information of this kind is needed for the analysis.
For some of the other methods discussed in later sections a precise under-
standing of the operators is even more critical, in that this understanding
is built into the very design of the methods. For that reason we defer the
discussion of numerical methods until we have more machinery available to
us.

We shall concentrate here on the two-dimensional case, with a few remarks
on the three-dimensional case at the end. We make every attempt to make
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the presentation as elementary as possible. A more detailed presentation
from a similar point of view has been given by Kress (1989).

We shall assume for the present that I' is a C! closed Jordan curve,
parametrized by ¢t = v(z), where

v:[0,1] - T, v isl-periodic, v € C!, [|V/(z)|#0.
Any integrable function defined on I can be represented after this paramet-

rization as a Fourier series,

v~ Z ,ﬁ(k)e21rik.1:,

kez

where

1 .
(k) =/ e~ 2riky(2)dz, k€ Z.
0

For any real number s we define the Sobolev norm ||v||s of v by

k3#0

1/2
lvlls = (lf)(ﬂ)l2 + > [k If’(k)l2) - (3.1)

When s = 0 the norm ||v||¢ is just the Ly norm. The norm [|v|, also has a
simple enough interpretation when s is a positive integer: if we recall that
the sth derivative of v has the Fourier series

v(® ~ Z(21rik)3iy(k)e2"ikz,
kez

we see that, apart from an unimportant constant factor, ||v|, is essentially
the Ly norm of the sth derivative. (The term |#(0)|? is included on the
right of (3.1) to make this a norm, and not just a semi-norm.) Similarly, for
negative integer values of s the norm is essentially the Lo norm of the sth
anti-derivative of v.

Corresponding to the norm | - ||, we introduce the Sobolev space H?,
which may be defined as the closure with respect to the norm | - ||, of
the space of 1-periodic C* functions. The elements of H*® are 1-periodic
functions (or more generally distributions) with finite ||- || s norm. The space
H*¢ is a Hilbert space with respect to the inner product

(v,w)s = B(0)@(0) + Y |k|**0 (k) (k). (32)
k#0

An important inequality, holding for all real s and q, is
(v, w)s| < [[v)ls-all@llsta, veH™@, weH™* (3.3)

The proof is an easy application of the Cauchy-Schwarz inequality, starting
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from
(v, w)s = 8(0)B(0) + D |k|*~ 0 (k)|k|*+ (k).
k#0
We also have the stronger result
[v]|ls—a = sup (ow)s veE H (3.4)

weHs+e [|0]|s+a ’

with the supremum achieved if (0) = #(0), w(k) = |k| 2> (k) for k # 0.
In the jargon of the trade, H*~® and H**“ provide a ‘duality pairing’ with
respect to the inner product (-, -),.

Now that the spaces are defined, we turn to the boundary integral opera-
tors, beginning with the single-layer operator V. Writing ¢ = v(z), we have,
from (2.4),

1 1
Va(v(z)) = —— /0 log [v(z) — v(y)| 2(v(¥)) |V'(¥)| dy
= 2 [ logv(a) - v(w)lui)dy
=: Lu(z), (3.5)
where we have introduced a new unknown function
u(y) = 5-20:0)) [V 3)] (36)

which incorporates the Jacobian |v/(y)| and also a convenient normalization
factor.

If the curve T" is smooth, or equivalently v € C*, the operator L defined
by (3.5) behaves rather like the corresponding operator for a circle. Let A
denote the operator L for the specific case of a circle of radius . With the
circle parametrized by t = (¢1,t3) = a(cos 27z, sin 27z), we have explicitly

1
Au(z) = —2/0 log |2asin n(z — y)| u(y) dy. (3.7

Then the operator L for the general curve I' can be written as
L=A+B, (3.8)
where

v(z) — v(y)

2asinw(z — y) u(y) dy. (39)

1
Bu(z) = —2/ log
0

For the case in which T is a C*® curve, whereas L and A have kernels
which contain logarithmic singularities, the kernel of B is a C*® 1-periodic
function of two variables. Thus for v € H® with s € R it follows that Bv is
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a C'™ function, from which we see easily that
B:H®*— H' forall steR. (3.10)

This fact will often allow us to treat B as a compact perturbation. (Be
warned, however, that this strategy fails if I"' has corners: for then B does
not have a smooth kernel, and the compact perturbation approach fails.)

The operator A (i.e. the single-layer operator for the case of a circle of
radius o) turns out to have the following extraordinarily simple Fourier
representation.

Proposition 1
Av(z) ~ —2log at(0) + Z v(k)ez’“’“ (3.11)

izo Kl

This follows from the well known Fourier cosine series representation, valid
for = # 0,

o 1 1
—log (2 Isin ﬂ'xl) = Z E cos 2rkx = z k 21nk:c’
k=1 k;éo ] I

or equivalently

—2log (2a [sinwz|) = —2loga + E - e2mikz
el

Equation (3.11) tells us that the effect of the operator A on the kth Fourier
component of v, k # 0, is to multiply that component by 1/|k]. Recalling

the definition of the Sobolev norm || - |4, it follows immediately that, for
v e H?

lAv|,41 < cllvlls, (3.12)
and hence

A: H® — H**L. (3.13)

Assuming for the present that I' is a C* curve, it follows that
L:H® — H**L, (3.14)

(Throughout the paper ¢ denotes a constant which may take different values
at its different occurrences.)

The mapping property (3.14) tells us, in effect, that L is a ‘once-smoothing
operator, but conveys only limited information about L. A more precise
statement is that L is a ‘pseudo-differential operator of order —1 and prin-
cipal symbol |¢|™". That means (following Agranovich (1979)) that L can

t
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be represented in the form

Lu(z) = Z o(k)e?mike +/ m(z, y)v(y) dy, (3.15)
ks#£0 |k|
where m is a smooth kernel. This follows from (3.8), (3.9) and (3.11).
Technically, the order is —1 because [£ | is a positive-homogeneous function
of degree —1. More general pseudo-differential operators exist, for example
the principal symbol may change sign with £, or may depend on z. For the
general form see Agranovich (1979) or Wendland (1990).

The identity operator I is a pseudo-differential operator of order 0 and
principal symbol 1. So too is the operator I + K arising in Section 2 from
the double-layer approach to the Dirichlet problem (see (2.16)) for the case
of a C* curve I, since the double-layer operator K has in that case a C*°
kernel.

Other pseudo-differential operators which arise in boundary integral meth-
ods are the Cauchy singular integral operator

v(s)
Cu(t) = /s_t teT,
where s and t are taken to be complex numbers and the integral is to be
understood in the principal-value sense, which is a pseudo-differential op-
erator of order 0 and principal symbol sign &; and the normal derivative
of the double-layer potential (or the ‘hypersingular’ operator), which is a
pseudo-differential operator of order +1 and principal symbol [€].

For three-dimensional surfaces I' = 02 the Sobolev spaces cannot be
defined in quite such an elementary way, because there is no equivalent of
the 1-periodic parametrization. Rather, one must use the machinery of local
coordinate transformations, C*° cut-off functions, and Fourier transforms
(see, for example, Wendland (1990)). Correspondingly, the definition of
pseudo-differential operators needs to be based on Fourier transforms, rather
than Fourier series. (In fact, strictly speaking this is true even in the two-
dimensional case. However, the equivalence of the simpler Fourier series
approach has been demonstrated by Agranovich (1979); see also Saranen
and Wendland (1987) and McLean (1991).)

Nevertheless, the main results can be stated just as simply: for example,
assuming that I' is the smooth boundary of a simply connected open region,
the single-layer operator defined by (2.11) is a pseudo-differential operator
of order —1, while the operator I + K, with K the double-layer operator, is
a pseudo-differential operator of order 0, and so on.

For regions with corners all of the considerations in this section require
substantial modification. The Fourier series approach to the two-dimension-
al single-layer operator becomes less useful, because the kernel of the oper-
ator B is no longer smooth. For the case of a polygon, parametrized for
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example by arc length, the single-layer potential V' may still be represented
in the form (3.8) where B is given by (3.9), but now the kernel of B, far
from being smooth, is discontinuous at the vertices of the polygon. This
defect notwithstanding, Yan and Sloan (1988, Section 5) studied the single-
layer equation for a polygon in the space H? = Lo by using the fact that
the nonsmooth part of B is, in a certain precise way, not too large. How-
ever, this kind of analysis has only limited applicability to the analysis of
numerical methods, because the discretized operators typically have larger
norms — for example Yan (1990) in using this approach to study a collocation
method for this equation was forced to restrict attention to polygons with
angles no smaller than a certain minimum. A related problem is that the
boundary integral operators are no longer classical pseudo-differential oper-
ators. Considerable progress has been made in the study of these operators
for regions with corners and edges, see Costabel and Stephan (1985) and
Costabel (1988), with, for example, Mellin transforms replacing the Fourier
transforms of the classical theory. However, this is a difficult subject, into
which we will not venture further.

4. Existence and uniqueness questions
4.1. Introduction

Knowledge of existence and uniqueness of the exact solution is always a
precondition for a satisfactory numerical analysis. In the present context
we have an added interest, in that the methods used for the exact equation
often have a parallel in the analysis of approximate methods.

The classical boundary integral formulations are equations of the second
kind. The analysis of these, indicated in the next subsection, uses the clas-
sical Fredholm theory in the case of reasonably smooth curves or surfaces,
and more sophisticated variants when corners or edges are present.

In more recent times there has been great interest in other formulations,
particularly integral equations of the first kind such as those seen already
in Section 2. The extension of these to more general differential equations
has been considered by Fichera (1961), and more recently by Hsiao and
MacCamy (1973); see also Giroire and Nedelec (1978) and, for a review,
Hsiao (1989). We consider in detail the case of the logarithmic-kernel first-
kind equation in the plane, which has some interesting features, and then
consider briefly more general problems. In the analysis of these more general
problems the notion of strong ellipticity has come to play an important role.

4.2. Equations with second kind structure

We begin with the classical case, treated for example by Mikhlin (1970), in
which I is taken to be a connected C? curve or surface. In this situation the
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double-layer operator K defined by (2.16) or (2.27) is a compact operator
on Ly(T), as is its adjoint K*. As the Fredholm theory is applicable, it is
convenient to consider together the integral equations (2.18) for the interior
Dirichlet problem,

2+ Kz=g, (41)
and (2.24) for the exterior Neumann problem
z+ K*z2 = —h, 4.2

since these are mutually adjoint. An argument of potential theory (see
Mikhlin (1970, Chapter 18, Section 10 for the three-dimensional case, and
Section 13 for the two-dimensional case)) shows that the homogeneous equa-
tion corresponding to (4.2) has only the trivial solution. The Fredholm the-
ory (see, for example, Kress (1989)) then tells us that the same is true for the
homogeneous equation corresponding to (4.1), and that both (4.1) and (4.2)
have (unique) solutions z € Ly(T") for arbitrary g € Lo(T') or h € Ly(T) re-
spectively. In other words, both I + K and I + K* are boundedly invertible
in Lo(T).

Now consider the integral equation pair (2.19) for the exterior Dirichlet
problem,

z2-Kz=—g, (4.3)
and (2.24) for the interior Neumann problem,
z—K*2=h, (4.4)

again mutually adjoint. This time the situation is slightly more interesting,
since the Gauss laws (stated explicitly for the two-dimensional case as (2.15))
are equivalent to

1-K1=0, (4.5)

where 1 denotes the function on I' whose values everywhere equal 1, so
that the solution of (4.3) is not unique. It can be shown (Mikhlin 1970,
Chapter 18, Sections11 and 13) that the solution space of 2 — Kz = 0 is one-
dimensional, thus from the Fredholm theory the same is true of the adjoint
homogeneous equation. Let f. denote the unique solution of

Je— K*fe =0, Afe =1 (4.6)

Then by the Fredholm alternative (4.3) has a solution z € Ly(T) if and only
if g is orthogonal to all solutions of the adjoint homogeneous equation, i.e.
if and only if

/F 9fe=0, (4.7)
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and similarly (4.4) has a solution if and only if

/F h=0. (4.8)

If h satisfies (4.8) and zp € Ly(T') is a particular solution of (4.4), it now
follows that the general solution of (4.4) is zg + a f, with a an arbitrary real
number. A unique solution lying in the space

I2 (D)= {z € Ly(T) : fp z= 0} (4.9)

is then obtained by the choice @ = — [ z. In other words, I — K* is

boundedly invertible in the space Z2 (T'). Similarly, I — K is boundedly
invertible in the space

Ly = {z € Ly(T) : /sze = 0}. (4.10)

These arguments assume considerable regularity of I", but it is now known
that these results hold in great generality. In particular, Verchota (1984)
shows for general Lipschitz curves and surfaces that it is still true that I+ K
is boundedly invertible in Ly(T") and that I — K* is boundedly invertible in

10',2 (T'). It then follows by duality (Verchota, private communication) that
I+ K* and I — K are boundedly invertible in Ly(I') and La(T") respectively.

The quantity f. introduced in (4.6) has an interesting interpretation.
Defining a potential 1 in € by

v(®) = -1 [loglt—slf(s)d, te

in the two-dimensional case, or
1 1
vt = 5 [ e fe)ds., tea

in the three-dimensional case, it follows from the jump relation (2.22) for
the normal derivative combined with (4.6) that
s

%_=0 onTl,

in which the normal derivative is the limit as I is approached from the inte-
rior 2. (In the case of a Lyapunov surface this holds everywhere on T'; for a
Lipschitz surface it is valid almost everywhere — see Verchota (1984.)) Since
¥ is harmonic, it follows from the usual uniqueness theorem for the interior
Neumann problem that 1 is constant in §2 and, hence, by the continuity of
the single-layer potential,

Vfe =constant onT (4.11)
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(almost everywhere, in the case of a Lipschitz curve). Thus f. is the ‘equi-
librium distribution’. In physical terms we may think of f. as the charge
distribution on I' (where the total charge is 1, since [ fe = 1) that gives
rise to a constant potential on I' (and hence also in the interior region ).
We conclude this subsection with the observation that integral equation
formulations are not always perfect reflections of the underlying boundary
value problem. The condition (4.7), which we have seen is necessary and
sufficient for the exterior Dirichlet integral equation (4.3) to have a solution,
is by no means a necessary condition for the exterior Dirichlet problem it-
self. Mikhlin (1970, Chapter 18) discusses a modification of the equation
which is solvable for every choice of the boundary-data function g € L2(T').
In a different direction, the exterior Neumann problem in two dimensions
has a necessary condition, namely f.h = 0 (this is shown for example by
Mikhlin (1970, Lemma 18.13.1)), which is not apparent in the integral equa-
tion formulation. Mikhlin shows (Lemma 18.13.2) that if this condition is

satisfied then [ 2 =0 (i.e. I + K™ is boundedly invertible in Lo (T), as well
as in Ly(I')). The general solution of the exterior Neumann problem in two
dimensions is then given by (2.8), where w is an arbitrary constant. Because
Jr z =0, this solution satisfies the boundary condition (2.7) at infinity.

4.3. The logarithmic-kernel BIE and the transfinite diameter

Before turning to more general equations, we consider the first-kind logarith-
mic-kernel integral equation in the plane

Vz(t) = —%/I:log [t —s|z(s)dls = g(t), teT, (4.12)

which we have seen arising in Section 2 from both direct and indirect ap-
proaches to the Laplace equation with Dirichlet boundary conditions. It
turns out that there is a genuine uniqueness/existence difficulty if the linear
scale of the problem is inappropriate (Jaswon and Symm, 1977; Hsiao, 1986;
Sloan and Spence, 1988a). Even for the case of a circle equation (4.12) may
run into trouble: from (3.11), which gives the explicit Fourier representa-
tion of Vz for a circle of radius a, we see that if the radius o is 1 then
z = constant implies Vz = 0 (since then loga = logl = 0). Thus the
solution is not unique for the case of a circle of unit radius. Moreover, for a
circle of this radius it is clear from (3.11) that there is no solution if g = 1.

It is well known that a similar problem arises no matter what the geometry
of I': there is always some linear scaling of I' for which the solution is
nonunique, and no solution exists for a constant right-hand side. (Jaswon
and Symm (1977) refer to a contour with this bad scaling as a ‘T’-contour’.)
The essential argument depends on nothing more than the properties of the
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logarithm: suppose that for a given contour I’ the equation
Vi)="2, teT, fr f=1, (4.13)

has a solution f € L,(I") for some real number u. Then for the re-scaled
contour IV = C~1T, where

C = exp(—u) (4.14)

we find, for ' € IV and t = Ct/, that
-1
— [ og1¢ - s1£.(Cs") dly
m Jr

_C [ 1og(C 1t = ) fi(s) dis

T r
= ¢ (~togo™)} [ o)t +V£0)
(302

Thus the logarithmic-kernel equation on the rescaled contour I'’ has a non-
unique solution.

The number C = Cr is a length associated with the contour I': it is easily
seen that C,r = aCr. It is called the ‘transfinite diameter’ or ‘logarithmic
capacity’ of I'. (We prefer the former name, as it reminds us that Cr scales as
a length.) In the preceding paragraph the rescaled curve I'’ has a transfinite
diameter equal to 1. It also has a nontrivial solution of the homogeneous
logarithmic-kernel equation. This observation should persuade us that for
this equation contours of transfinite diameter 1 are to be avoided.

The argument in the preceding paragraphs depends on the existence of a
solution of (4.13). Fortunately, it can be shown that a solution exists under
very general conditions. For example, Hille (1962, p.280), assuming only
that I is a closed bounded set in the plane, gives a variational definition of
u = ur (the ‘Robin constant’), as

ur = inf (—/I:/Flog |t — s|du(t) dp(s)) , (4.15)

where the infimum is over all normalized positive measures p defined on I'
(i.e. u 2 0, frdpu = 1). The transfinite diameter Cr is then defined by (4.14).
(Actually Hille gives independent definitions of transfinite diameter and log-
arithmic capacity, but shows them to be equivalent, in Theorem 16.4.4.) He
shows moreover (in Theorem 16.4.3) that there exists a unique normalized
positive measure u. which achieves the infimum in (4.15), and that, except
possibly for ¢ in a set of transfinite diameter zero, one has (Hille, 1962,
Theorem 16.4.8)

- /Flog [t — s|due (s) =ur, teT. (4.16)
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Thus a solution of (4.13) always exists in the sense of a measure.
Some useful properties of the transfinite diameter established in Hille
(1962, Chapter 16) are:

1  the transfinite diameter of I does not exceed its Euclidean diameter;
2  if T lies inside IV, then Cr < Cprv;

3  the transfinite diameter of a circle of radius a is a; and

4  the transfinite diameter of an interval of length [ is /4.

For our present purposes it is sufficient to restrict I' to be the union
of a finite number of C? arcs, having only a finite number of points of
intersection. Note that this is both more restrictive and less restrictive than
we have assumed in preceding sections: more restrictive because we do not
allow general Lipschitz curves; less restrictive in that open arcs, cusps and
multiple points of intersection are allowed. Under these conditions it follows
from classical arguments that du. has the form of a classical distribution
fedl, where f. € L1(T'). Indeed, much more can be said about f.. Let

blt) = —= J o8t = slduc(s)

1
= -;/Flog|t—s|f€(s)dls, t eR?,

be the potential corresponding to the equilibrium distribution. By standard
arguments (e.g. Gaier (1976)) ¢. is continuous on R2, except possibly at
ends of arcs, cusps and points of intersection, so that

@mqwm=%anan
With the same exceptions the jump relations (2.22) for the normal derivative
hold in a pointwise sense on I', from which it follows that

mh( -2,

where the normal derivatives are the limits as I' is approached from the
positive and negative sides (with respect to a normal with arbitrary but
fixed sense). The known regularity property of the solutions of the Laplace
equation now allows us to infer that f. is continuous on I' except at points
of intersection, cusps or ends. On the other hand f. is singular at a free
end: for example, for an arc lying on the positive z-axis, with one end at
the origin, in a neighbourhood of the origin we have

de(rcosf,rsinf) = t;—r +cr'?sin -g— +drsinf + O(r¥?), 0<0<2r,
from which it follows, using (4.17), that
fe(z) = cz™ 12 + O(z1/?) (4.18)
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in a neighbourhood of the end. Similar but weaker singularities occur at
corners; for details see Sloan and Spence (1988b). Note that f. € Lo(T) if
there is a free end. On the other hand if I is the piecewise-smooth-without-
cusps boundary of an open domain 2, then f. € Lo(I'), and is just the
function we met in the previous subsection as the solution of the second-
kind integral equation (4.6) (since (4.11) is equivalent to (4.13)).

For Cr # 1 the solution of (4.12), if it exists, is unique. One way to show
this is to decompose z € L1(T') in the form

z = afc+ zo, (4.19)
with
2% €84 (T) = {w € Ly(T) : /F w= o} . (4.20)

Since this decomposition is always possible with a uniquely determined o,

namely
a= / 2,
r

the representation (4.19) corresponds to a direct sum decomposition of
LI(F)’

L) = {af.: a €R}® L (T). (4.21)
Corresponding to the representation (4.19) we have

Vz = aVfe+Vz

= ;al + V2. (4.22)
By a change in the order of integration (using Fubini’s theorem), we see that
/F (Vo) fe = /F 2(Vfe) = % /F 20 =0, (4.23)

thus V :21—» I:l, where
L) = {w € Ly(D): /F wf = 0}. (4.24)

Thus (4.19) and (4.22) correspond to a direct sum representation of V,
namely

V=Veorv, (4.25)

where
Ve:{af:a€R} > {al: a € R} (4.26)

with Ve fe = V f. = (u/7)1, and
Vi1 (D) — Ly(D). (4.27)
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The operator V., having one-dimensional domain and co-domain, is certainly
one-to-one if u # 0 (and hence if Cr # 1); and Doob (1984) shows that the

operator Vis positive definite (and hence one-to-one), in the sense that
- / / log |t — s]z0(s) dls2(t) dl; > 0 (4.28)
rJr

for all 2z Gil. (In fact Doob’s result holds for the much larger class of signed
measures with mean zero.) Thus uniqueness is proved.

When does a solution of (4.12) exist? If I' is a C'™ curve then the existence
can be discussed in terms of the Sobolev spaces introduced in Section 3. As
in (3.5) we define Vz(v(z)) = Lu(z), and as in (3.8) we write L as

L=A+B, (4.29)

where A is the single-layer operator for the case of a circle of radius a. It is
convenient to choose a = e~1/2, because then we see from (3.11) that A has
the especially simple Fourier series representation

Av(z) ~9(0) + 3 ITICTﬁ(k)e%"”. (4.30)

k#0

From this it follows that A is an invertible operator from H* onto H**! for
arbitrary s € R, that is

A:H®* — H" A7l Ht o H*, (4.31)
and, moreover, from the definition (3.1) of the Sobolev norms A is isometric:
| Avlls+1 = [|v]ls. (4.32)
Since A is invertible we may write (4.29) as
L=A(I+K), (4.33)
where
K=A"1B. (4.34)

Now from (3.10) it follows that
K :H® - H* for all s,t € R,

thus K is a compact operator on H®. If we assume that Cr # 1 then,
as discussed earlier, L is a one-to-one operator, thus, from (4.33), so too is
I+ K. It now follows from the Fredholm alternative that I + K is boundedly
invertible on H* or equivalently,

I+K:H*— H° 1-1 and onto. (4.35)
The final conclusion is that if Cr # 1 the operator L behaves just like the
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operator for the case of a circle, in that
L:H® - H**') 1-1 and onto. (4.36)

Thus the equation Lu = f has a solution u € H? for arbitrary f € H*+1.

For T a closed Lipschitz curve Verchota (1984) shows, for Cr # 1, that
(4.12) has a solution z € Lo(I") for arbitrary g € Ly(T') := {w € Lo(T) :
w' € Ly(T')}, v’ being the (tangential) derivative on I.

Before leaving the single-layer equation, it should be said that for the
three-dimensional first-kind boundary integral equation Vz = g, with V'
given by (2.11), no uniqueness difficulty arises; there is no scaling for which
the homogeneous equation has a nontrivial solution, and in fact V, for
any scaling of T, is a positive definite operator. The difficulties that arise
with (4.12) may be thought of as an idiosyncracy of two dimensions.

4.4. More general equations — strong ellipticity

Many of the boundary integral equations that arise in practice are ‘strongly
elliptic’ and hence ‘coercive’ with respect to an appropriate Hilbert space.
We shall see that this not only provides a simple way of establishing the ex-
istence and uniqueness of the exact solution (in an appropriate weak sense),
but also gives a very satisfactory framework for analysing the Galerkin
method (see Section 5).

For simplicity we restrict ourselves to boundary integral equations which
can be written as single equations of the form

Lu=f. (4.37)

In the two-dimensional case it is convenient to assume that the boundary
curve I" has already been parametrized in the manner of (3.5), so that u
and f are l-periodic functions. In the three-dimensional case u and f are
functions on I'. By restricting ourselves to equations of the form (4.37)
we are excluding systems of equations, and also equations such as (2.9), in
which there is a scalar unknown in addition to the unknown function u.
For generalizations see Stephan and Wendland (1976) and Wendland (1983,
1985, 1987).

We shall say that (4.37) has a ‘weak’ solution u if, for all x in an appro-
priate space,

(Lu, X)O = (f, X)Oa (438)
where

(v,w)0=/01 v or /rvw (4.39)

in the two-dimensional or three-dimensional case respectively. In one impor-
tant circumstance the existence of a weak solution is guaranteed: if for some
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Hilbert space H the bilinear form (Lg,)o is both bounded and coercive,
i.e. if for some positive constants D and v

and
Re(L¢,4)o 2 v|¢l} Vo € H, (4.41)

then the Lax-Milgram theorem (Gilbarg and Trudinger, 1983, Theorem 5.8;
Ciarlet, 1978) is applicable:

Theorem 2 (Lax-Milgram) Assume that a(@,%) is a bounded, coercive
bilinear form on a Hilbert space H, and that F' is a bounded linear functional
on H. Then there exists a unique u € H such that

a(u,x) =F(x) Vx€H.

It follows that Lu = f has a weak solution u € H for each f for which
(f,)o is a bounded linear functional on H.

A simple example is provided by the single-layer equation for a circle of
radius o < 1, already discussed in the preceding subsection. From (3.11)
and (3.1) we have in this case

(Lo, ¥)o = (A¢,¢)o=—210ga¢(0)¢(0)+zlkl¢(k (k)

k#0
< max(—-2loga,1)||¢ll_1/2ll%ll-1/2 (4.42)
and
(L$, #)o 2 min(—2log &, 1)||8[12, 2, (4.43)

so that (L¢, @) is bounded and coercive with respect to the Sobolev space
H~1/2, Thus the logarithmic-kernel equation Lu = f for a circle of radius
a < 1 has a weak solution u € H~Y/2 for each f € H'/2. (Recall that H*
and H™*° are a dual pair with respect to the L2 inner product (-, - )¢ — see
(3.3), (3.4).) This is consistent with the previously established result (4.31).

How can we establish, for more general boundary integral operators, that
the conditions (4.40) and (4.41) are satisfied for some Hilbert space H? For
boundary integral operators on smooth closed curves or surfaces, the theory
of pseudo-differential operators, already discussed briefly in Section 3, can
be used to good effect. This theory, and its application to the Galerkin
method, has been discussed with admirable thoroughness in a number of
places, for example Stephan and Wendland (1976), Wendland (1983, 1987,
1990) and Hsiao and Wendland (1981). Here we content ourselves with a
brief look at a two-dimensional case.



312 IAN H. SLoaN

Suppose that L is an operator on 1-periodic functions defined by

1
Lu() = 3 a(z, kyo(k)e?™* + / m(z,y)o(y)dy, z€[0,1, (4.44)
k#0 0

where m € C*°([0,1] x [0, 1]), and a(z, §) is a 1-periodic C* function of z for
each £ # 0, and for some 8 > 0 and each z € R is a positive-homogeneous
function of degree 8 in £&. Then L is a pseudo-differential operator of order
B and principal symbol a(z,€). (The logarithmic-kernel operator defined
by (3.8)-(3.11) is a pseudo-differential operator of order —1 and principal
symbol |£]71.) A pseudo-differential operator of order 8 is (Hérmander,
1965; Wendland, 1987) a continuous operator from H? to H°# for all
o € R. In particular, therefore, L is a continuous operator from HA/2 to
H~A/2_ From this and (3.3) it follows that

[(Lv, w)o| < I Lvll-gy2llwligsz < cllvligallwlia,

so that (4.40) is satisfied with H = HA/2,
Now suppose, in addition, that the principal symbol a(z,£) is ‘strongly
elliptic’, that is to say that for some y > 0

Rea(z,£1) > pu Vz €[0,1). (4.45)

Then it is known (Kohn and Nirenberg, 1965, p.283) that, for any £ >0, L =
Lo + M(e), where Ly is coercive with respect to H?/2,

Re(Lo¢, #)o 2 (1 —e)ll#ll5,, Vo € H, (4.46)

and M = M(e) is a compact operator from H?/2 to H=#/2, The addition
of the compact term M leaves the conclusion of the Lax~Milgram theorem
unaltered, provided that L remains one-to-one (Hildebrandt and Wienholtz
(1964), Remark 3). Thus it follows in the strongly elliptic case that the
equation Lu = f has a weak solution u € H8/2 for each f € H5/2,

It should be noted that the pseudo-differential operator arguments need
serious modification as soon as corners or edges appear (see, for example,
Costabel and Stephan (1985)).

A different and in some ways more versatile approach is to found the strong
ellipticity theory for boundary integral operators on the well studied strong
ellipticity properties of the associated elliptic PDEs. For further details, see
Costabel and Wendland (1986). This approach has the advantage that it
remains available even when corners are present, and indeed even for general
Lipschitz curves (Costabel, 1988).

5. The Galerkin method

Most theoretical treatments of the boundary element method give great
attention to the Galerkin method, a method originated in the context of the
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differential equations of elasticity by a Russian engineer (Galerkin, 1915).
The present treatment will be briefer, not least because of the very complete
discussions that exist elsewhere (see, for example, Stephan and Wendland
(1976), Hsiao and Wendland (1977, 1981), Wendland (1983, 1987, 1990),
Rannacher and Wendland (1985, 1988)). However, the example of the two-
dimensional logarithmic-kernel integral equation will be worked out in some
detail.

Let us assume, as in (4.37), that the problem is expressible as a single
equation of the form

Lu=f, (5.1)

with u and f 1l-periodic in the two-dimensional case, and functions on I" in
the three-dimensional case.

Let S}, be a finite-dimensional space within which the approximate solu-
tion is to be sought. Typically, S}, is defined by partitioning I' into a finite
number of pieces with simple geometry (e.g. plane or curved triangles) and
maximum diameter k, on each of which the restriction of S}, is a piecewise
polynomial space with respect to an appropriate local parametrization (e.g.
one in which the element boundary is a triangle). Continuity conditions
across elements may or may not be imposed, depending on the circum-
stances, one important constraint being S, C H, where H is the space in
(4.40-1). (For further details see, for example, Brebbia et al. (1984).) Then
the Galerkin method is: find u; € Sy, such that

(Lun,x)o = (f,x)o VY X € S, (5.2)

where the inner product is defined by (4.39).
While the Galerkin method is the theorist’s favourite, it is in truth not

easy to implement. Let {¢;,...,¢n} be a basis for S,. Then we may write
N

un =) a;d;, (5.3)
j=1

and the equations to be solved in practice are
N

Z(L¢ja¢k)0aj = (f’ ¢k)0, k= 1,...,N, (54)

j=1
in which each matrix element on the left, even in the two-dimensional case,
is a two-dimensional integral — one integral for the integral operator, and one
for the inner product. In the three-dimensional case four levels of integration
are needed for each matrix element. And the difficulty is compounded by
the fact that the matrix in the boundary element method is invariably dense.
The error analysis for the Galerkin method rests on the variational for-
mulation of the exact problem given in the preceding section. Suppose that
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the bilinear form (L¢, ), satisfies the boundedness and coercivity proper-
ties (4.40) and (4.41) for some Hilbert space H, and that u € H is the weak
solution of the exact equation (5.1). Then, provided only that S, C H,
Céa’s lemma (Ciarlet, 1978) ensures that the Galerkin equation (5.2) has a
unique solution uy, € Sy, whose error in the || - ||z norm is within a constant
factor of the error of best approximation by an element of Sj:

Theorem 3 (Céa’s lemma) Assume that the bilinear form (L¢, ) satis-
fies (4.40) and (4.41), and that Lu = f has the weak solution u € H. As-
sume also that S}, is a finite-dimensional subspace of H. Then the Galerkin
approximation (5.2) has a unique solution uy € Sy, which satisfies

D
— < — i —_ .
lup — ullg < ” v:ggh [lon — ull & (5.5)

Proof. The existence and uniqueness of u follows from the Lax-Milgram
theorem applied to S;, as a subspace of H. Then (4.40), (4.41) and (5.2)
give, for arbitrary v, € Sh,

viwn —ull}y < |(L(un —w),up — w)o| = |(L(up — u), v — u)o)
< D|up - ullgllvn — ullz,

from which the result follows. O

The result (5.5) has the nice property of reducing the Galerkin error esti-
mation in the ‘natural’ or ‘energy’ norm ||-|| i to a problem of approximation.

Now let us be more explicit, and assume that I' is a smooth curve in the
two-dimensional case, or a smooth surface in the three-dimensional case, and
that L is a strongly elliptic pseudo-differential operator of order 3. Then, as
noted in the preceding subsection, L = Lo + M, where L is bounded and
coercive with respect to the space H?/2, and M is a compact operator from
HP/2 4o H—B/2, Tt can be shown (Hildebrandt and Wienholtz, 1964) that the
addition of the compact term leaves the essential conclusion of Céa’s lemma,
unaltered, provided L remains one-to-one: specifically, it follows that hg > 0
exists such that uj, € S}, exists for h < hg, and satisfies

llun — ullg/2 < Cv’fggh llvn — ullg/2, (5.6)

for some constant ¢ > 0.

We now specialize further to the case of the logarithmic-kernel integral
equation. In the following example we indicate ‘power of h’ results for the
Galerkin error not only in the energy norm, but also in a range of other
Sobolev norms. We shall also return to the same example later, in other
sections, to illustrate other numerical methods.

Ezample. Let T’ be a smooth curve with Cr (the transfinite diameter) not
equal to 1, and let L be the logarithmic-kernel operator on [0,1] defined
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by (3.5). Let S be the space of 1-periodic smoothest splines of order r (i.e.
degree < r — 1), where r > 1, on a partition

My:0=z0<z1< - <zN-1<zN =1, (6.7)
with
hy =Tp41— 2k, k=0,...,N—1, (5.8)
and
h = max hg.

That is, v € Sy satisfies v € C"%(R), and v|(;, 5,,,) € Pr—1. Assume,
moreover, that h — 0. Then it is known that for —o00 < ¢t < s < r and
t<r-— %, there exists a constant ¢ depending only on ¢ and s such that

inf |lop — ulls < ch®*Ylulls ifue H. (5.9)
vLES)

(For a discussion see, for example, Arnold and Wendland (1983).) In par-
ticular, therefore, it follows from (5.6) that the Galerkin error estimate in
the natural norm is

llup — ull_1/2 < A2 |ul, ifue H" (5.10)

Error estimates in ‘lower’ norms can now be deduced by a duality argu-
ment (‘Nitsche’s trick’), apparently first used for BIEs by Hsiao and Wend-
land (1981). We illustrate this for the most extreme case, namely the ||-|| .1
norm, in which the maximum order of convergence can be doubled over that
obtained in (5.10) for the natural norm. For simplicity, we assume here that
T is a circle of radius e~1/2, so that L = A, in the language of (4.29)
and (4.30). Using (3.4), (3.2) and (4.30), we have

fun—ullrs = sup A0 gy (Al 1), 0o
veHT [[vls veHT vl
- sup (A(up — u),v —vp)o
veHr o]l
o =yl — vl
T veHr "‘U",. ’

where vy, is an arbitrary element of Sj, which makes its appearance at the
second-last step because we have used again the Galerkin equation (5.2).
Thus, by (5.10) and another application of the approximation theory re-
sult (5.9) we obtain

ch™+1/2|lv||,
llvll»
ch? |y, (5.11)

IN

lun — ull—r—1 llup — ull_1/2 sup
veEHT

IA
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Finally, error estimates in higher Sobolev norms than the || - ||_;/2 norm
may be established if the sequence of meshes is quasi-uniform; i.e. if there
exists ¢ > O such that

hy >ch Vk,

with ¢ independent of h. From this follows the inverse estimate (see, for
example, Arnold and Wendland (1983)), for r <o <1 — ,

lvlle < ch™?||v|l; for v € Sh. (5.12)

We also make use of the fact (again see Arnold and Wendland (1983) for
a discussion) that for given u € H? there exists ¥, € Sy, independent of t,
suchtha.tfort,<_s$ra.ndt<r—%

flu — P le < ch®~t||u)), for u € H?,

with ¢ independent of u. Then for —% <t<r- % it follows that

lun —ulle < llup —Pulle + lvn — ulls
< T lug — Yn |-t + [[90n — ulle
< ch T lup — ullr—1 + ATVl — ull ey + [[0n — ulle
< k™l (5.13)

Here we have assumed, for simplicity, that u € H". Results for u with lesser
smoothness, and correspondingly fewer powers of h, are easily written down.

The highest-order convergence in this example — of order O(h?"*1) - is
obtained in the || - |_,—1 norm. At first sight it may not be clear why
‘negative norm’ results of this kind are of interest, given that they cannot
be observed directly. The answer is that we do indeed see the benefit if we
are interested finally not in u, but rather in an inner product (u,w)o, where
w is a reasonably smooth function. For from (3.3) we have

|(up, w)o — (v, wo| = |(un — u,wo| < [lun — ull—r-1llwllr41,  (5.14)

so that the @O(h?"*!) order of convergence in the example is observable if
w € H™t1, As a specific example of such an inner product, suppose that
in the case of the logarithmic-kernel integral equation we are interested in
computing, in the context of the indirect method for the interior Dirichlet
problem for the Laplace equation, the potential ¢(¢) given by (2.3) at a point
t € T. Then from (2.3) and (3.6)

#(t) —% /F log [t — s|2(s) dl,

1
- 9 /0 log [t — v(y)|u(y) dy
— o (5.15)
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where w; is the C* function defined by

wi(z) = —2log|t —v(z)|, t¢r, z€R. (5.16)
Thus if
1
#n(®) = -2 [ loglt —v(w)lun(v) dy (5.17)
then
Br(t) — o(t) = (un, we)o — (u, wt)o, (5.18)

and (5.14) applies.

Many modifications of the Galerkin method have been proposed for the
case of smooth plane curves. Arnold (1983) has shown that the order of
negative-norm convergence can be made arbitrarily large by the use of an
unsymmetric (or Petrov-Galerkin) approximation, in which the trial space
remains a spline space but the test space is a space of trigonometric polyno-
mials. McLean (1986) obtains exponential rates of convergence in stronger
norms by the use of trigonometric polynomials for both test and trial spaces,
if the exact solution is smooth. Atkinson (1988) obtains a similar rate
of convergence with a fully discrete version of the Galerkin method with
trigonometric polynomials.

The Galerkin-collocation method (Hsiao et al. 1980, 1984), as the name
suggests, has some relation to both the Galerkin and collocation methods.
In this method the logarithmic-kernel integral equation for a smooth curve,
in the modified form (2.9) as advocated by Hsiao and MacCamy (1973), is
handled by decomposing the operator into two parts: a principal part, which
is a convolution operator, treated by a Galerkin method; and a second part,
which is an integral operator with a smooth kernel, treated by a discrete
approximation. (The separation into the two terms is similar to that in (3.8)
and (3.9), but is different in detail.) The analysis exploits the close relation
to the Galerkin method, yet the implementation is much less laborious, since
the matrix corresponding to the principal part is a Toeplitz matrix, and so
is representable as a vector; and moreover it is independent of the particular
curve, and so can be computed once and for all. An extensive discussion of
applications is given in Hsiao et al. (1984).

Before leaving the Galerkin method, we may mention that Rannacher and
Wendland (1985,1988), by the clever use of weighted Sobolev norms, have
established uniform error estimates for the Galerkin approximation for the
single-layer equation on closed curves and surfaces.

6. The collocation method

For the solution of boundary integral equations in practice the collocation
method is generally the method of choice, becaunse it is so much easier to
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implement than the Galerkin method. It does, however, have disadvantages:
a theoretical analysis is available only in special cases (see later); the con-
vergence rate in negative norms is often inferior; and the matrix is generally
not symmetric even if the operator is self-adjoint.

Let us assume, as in the discussion of the Galerkin method, that the
equation to be solved is a single equation of the form

Lu=f, (6.1)

where u and f are either 1-periodic functions on R, or are functions on I in
the three-dimensional case. Let S} be the finite-dimensional space within
which the approximation is to be sought. In the collocation method one

chooses also a set of ‘collocation points’ ti,...,tn, where N = N}, is the
dimension of S};. Then the collocation method is: find u, € Sy such that
Lup(ty) = f(te), k=1,...,N. (6.2)

Needless to say, the choice of the collocation points is a very important
question, one to which we shall return.

Letting {¢1,...,¢n} be a basis for S}, and writing u, in the form (5.3),
the equations to be solved in practice are

N
E L¢j(tk)aj = f(te), k=1,...,N. (6.3)

i=1

Clearly, the labour involved in setting up the matrix is much less than in the
Galerkin method: in the two-dimensional case each matrix element requires
just one integration.

Theoretical analyses of the collocation method are available in a variety
of situations. For the double-layer equation (2.18) on smooth curves or sur-
faces, the standard analysis for Fredholm integral equations of the second
kind (see, for example, Atkinson (1976) or Baker (1977)) is available. For
regions with corners we saw in Section 2 that the double-layer integral oper-
ator is no longer compact, so that the standard theory is not applicable, but
at least in the plane case considerable progress has nevertheless been made
(see, for example, Atkinson and de Hoog (1984), Chandler and Graham
(1988), Elschner (1988)). In the latter papers piecewise-polynomial colloca-
tion is shown to be stable and of optimal order, provided the approximating
space is suitably modified near the corner, and the mesh is appropriately
‘graded’. (The mesh is graded at a corner z, with grading parameter ¢ > 0,
if the points of the partition satisfy |z — 2| = ck?,k =0, 1,..., near 2).

For more general boundary integral equations on smooth plane curves an
important contribution to the theoretical study of the collocation method
is that of Arnold and Wendland (1983). In that paper certain collocation
methods are shown to be equivalent, after integration by parts, to Galerkin
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methods with nonstandard inner products. As a consequence stability and
convergence are established, with almost no restrictions on the mesh. The
principal limitation is that the analysis is restricted to smoothest splines
of even order or odd degree (for example, continuous piecewise-linear func-
tions), and to the particular case of collocation at the knots.

For the case of the logarithmic-kernel equation Lu = f with L defined
by (3.5), and for smoothest splines of (even) order r on the partition (5.7),
the convergence result of highest order obtained by Arnold and Wendland
(1983) is

lun = ull-1 < k™ |lul, (6.4)

if u € H". That is, the highest order of convergence obtainable in any norm
is O(h™*1), compared with O(h?*1) for the standard Galerkin method (see
(5.11)). The nonstandard Galerkin method to which the collocation method
is equivalent has as inner product the Sobolev inner product (-, -),/2, de-
fined by (3.2). The Arnold and Wendland (1983) analysis also handles
more general pseudo-differential operators L, provided that the bilinear form
(L$, %)y 2 is coercive with respect to an appropriate norm. For pseudo-
differential operators of order § the highest order convergence result they
obtain is

llun ~ ulls < ch™ 7 lullr, (6.5)

compared to

lun — ull-rtp < ch®* P |lu.

for the standard Galerkin method.

A generalization this above approach to piecewise-linear collocation on
the torus has been given by Hsiao and Prossdorf (1992).

The present theoretical situation for the collocation method is much less
satisfactory for approximation by piecewise-constants, or other splines of
even degree. For the very special case of smooth plane curves, smoothest
splines and a uniform mesh, a satisfactory analysis has been developed (de
Hoog, 1974; Saranen and Wendland, 1985; Arnold and Wendland, 1985;
Saranen, 1988) by the use of Fourier series methods, combined with local-
ization arguments. In this analysis the collocation points must always be
chosen in an appropriate way; for a full discussion of the correct choice
see Wendland (1990). For example, for the case of the logarithmic-kernel
equation with a uniform mesh and smoothest splines of even degree, the col-
location points should be taken to be the midpoints of each sub-interval. In
this case it is known (Saranen and Wendland, 1985; Arnold and Wendland,
1985) that the result (6.4) holds. More surprisingly, in this even degree case
an order of convergence one power of h higher can be obtained if u has the
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appropriate smoothness: Saranen (1988) shows that
llun = ull 2 < eh™2|lullrs1, (6.6)

ifue H™1,

In the following section we shall see that the collocation method is a
special case of the so-called ‘qualocation’ method. At that point we will
demonstrate the Fourier series method of analysis. A generalization of the
Fourier series techniques to the case of equations on a torus has been given
by Costabel and McLean (1992).

Another situation for which a reasonably satisfactory collocation analysis
exists is that of singular integral operators, or systems of singular operators,
on plane curves; see Prossdorf and Schmidt (1981), Prossdorf and Rathsfeld
(1984), and, for an overview, Prossdorf (1989). Here the principal tool is a
localization technique, combined with the observation that translationally
invariant operators yield circulant matrices (in the case of closed smooth
curves) or Toeplitz matrices (in the case of open arcs). The circulant matrix
methods are closely related to the Fourier series techniques mentioned ear-
lier. A generalization to multi-dimensional equations is given by Prossdorf
and Schneider (1991).

In spite of the successes in the analysis of the collocation method, there
remain some large gaps. Most strikingly, there is apparently no analysis
as yet of piecewise-constant collocation for the single-layer equation (2.5)
on a three-dimensional sphere. Fourier series methods have no obvious ex-
tension, because on a sphere there is no such thing as a uniform partition.
In the two-dimensional analogue, however, significant progress with nonuni-
form partitions has recently been achieved: Chandler (1989, 1990, 1991) has
shown for the logarithmic-kernel integral equation that piecewise-constant
collocation at the midpoints is stable and convergent even for an essentially
arbitrary mesh. Chandler’s analysis exploits the specific structure of the
collocation matrix for this problem.

7. The qualocation and related methods

In this section we consider the qualocation method (Sloan, 1988; Sloan and
Wendland, 1989; Chandler and Sloan, 1990), and its fully discrete variants
(Sloan and Burn, 1991; Saranen and Sloan, 1992). For a review with a more
limited focus but some more details, see Sloan (1992). An earlier review,
restricted to the qualocation method, is that of Wendland (1989).

7.1. The qualocation method

The qualocation method (or ‘quadrature-modified collocation method’) is an
approximation which aims to achieve an order of convergence better than
that of the collocation method, while not being too much more expensive to
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implement. Significant results are so far available only for boundary integral
equations on smooth plane curves, thus we shall assume that the equation
to be solved is a single equation of the form

Lu=f, (7.1)

where u and f are l-periodic functions on R.

The qualocation method is characterized by three things: a trial space S},
which is the finite-dimensional space within which the approximate solution
is to be sought; a test space T}, of the same dimension as Sj; and a quadrature
rule @;. Given these three ingredients, the method is: find u; € S}, such
that

(LUh, X)h = (fr X)h v X € Th, (72)

where
(v, w)n = Qu(vw). (7.3)

Letting {¢1,...,¢n} be a basis for Sy, and {x1,...,xn} a basis for T}, the
equations to be solved in practice are

N
E(L¢j)Xk)haj = (fa Xk)ha k= 1""’N' (74)
j=1

The method is in effect a semi-discrete version of the Petrov—Galerkin
method, i.e. the Galerkin method with different test and trial spaces. It
reduces to the Petrov—Galerkin method if (-, -) is replaced by the exact
inner product (-,-). The novel feature of the qualocation method lies in the
discretization: for we shall see that the recommended quadrature rules can
be curious indeed.

First, though, we note the important fact that the qualocation formalism
includes the collocation method as a special case. For if the quadrature rule
is

N
Qrg =Y weg(te), (7.5)
£=1
an N-point quadrature rule with nonzero weights wy,...,wy, then (7.2) is

equivalent to
N
Zwl[Luh(tl) - f(tl)]Yk(tl) =0, k=1,...,N,
£=1

which is in turn equivalent to the collocation equations (6.2) if the N x N
matrix {X(t¢)} is nonsingular. It is easy to see that quadrature rules with
fewer than N points necessarily make the matrix in (7.4) singular, thus only
quadrature rules with N or more points are of interest.
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At the present time theoretical results are available only if S}, is a space
of smoothest splines of order r,r > 1, and the partition Il is uniform, with
h = 1/N. For the trial space Tj Sloan (1988) and Sloan and Wendland
(1989) used a trigonometric polynomial space,

T} = span {ez”ij’” : —% <j< —}.

This choice was inspired by the Arnold and Wendland (1985) analysis of the
collocation method, in which, effectively, the collocation method was treated
as a qualocation method with an N-point rectangle rule for Q. Here,
however, we shall follow Chandler and Sloan (1990) in taking T} = S}, the
space of smoothest splines of order r/,7' > 1, on the partition IT;. In practice
a low-order spline test space is likely to be preferred over the trigonometric
polynomial test space, because it admits a (B-spline) basis in which each
element has small support. (If »’ = 1 the value of the piecewise-constant
test function at a point of discontinuity must be understood to be the mean
of the left-hand and the right-hand limits. This becomes important if a
quadrature point is a point of the partition.)

Following Chandler and Sloan (1990), the operator L in (7.1) is taken to
be of the form

L=A+B, (7.6)
where A has as its Fourier series representation either
Av(z) ~ D(0) + Y _ |k|Po(k)e? k= (7.7)
k#0
or
Av(z) ~ D(0) + Y _ sign k|k|?5(k)e* =, (7.8)
k#0

where 3 € R, and where
B:H®* — H' foralls,tecR. (7.9)

In the language of the paragraph containing (4.44), L is a pseudo-differential
operator of order 3 and principal symbol either |¢|? or sign£|¢|#. Since the
principal symbol is constant, i.e. independent of z, the operator A can be
represented as a convolution. If (7.7) holds then the principal symbol is
even, and A is said to be even. Similarly, if (7.8) holds then A is said to
be odd. An important special case is that of the logarithmic-kernel integral
operator: setting 3 = —1 and taking the even case, the operators L, A and
B defined by (3.5), (3.7-11) are exactly of the prescribed form, if the free
parameter o is set equal to e~1/2
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The quadrature rule is taken to be a composite rule of the form

Qng=h E Zw;g( 2), (7.10)
=0 j=1
where
0<&i<b< - <€ <], (7.11)
and
J
Swi=1 w;>0 for j=1,...,J. (7.12)

i=1
Thus @, is the composition, onto each subinterval of the partition, of the
J-point rule

J
Qg =2 w;g(&), (7.13)
i=1
a quadrature rule defined in [0, 1].

How should the rule @ be chosen? Since the choice J = 1 is equivalent to
a collocation method, it is natural to consider J = 2. Chandler and Sloan
(1990) restrict attention to J = 2 rules that are symmetric, i.e. having the
property that if £ is a quadrature point then either £ = 0, or else 1 — £ is
also a quadrature point with the same associated weight as £. There are

just two kinds of symmetric rule with J = 2, namely

Qg = wg(0) + (1 — w)g(3), (7.14)
where 0 < w < 1, and
Qg = 39(6) + 39(1-9), (7.15)

with 0 < £ < % The first of these is analogous to Simpson’s rule, and
becomes Simpson’s rule if w = %; and the second is analogous to 2-point
Gauss quadrature, and becomes so if £ = 0.21132 48654 .... We shall see,
however, that these are usually not the recommended values of w or £.
Rather, the value of w or £ should be the unique value that will increase the
maximum order of (negative-norm) convergence. In some circumstances, for

example, the recommended value of w will turn out to be w = % (giving the

3 4 9
£, 7 rule’).

The next two theorems give the highest-order results obtained by Chan-
dler and Sloan (1990) for the two kinds of quadrature rule. First we collect
the main assumptions.

Assumption Y: the equation to be solved is (7.1), with L given by (7.6),
(7.9), and one of (7.7), (7.8); L is one-to-one; the partition II, is uniform;
the test space is S}, the space of smoothest splines on IIj of order r' > 1;
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and r’ has the same parity as r if A is even and the opposite parity if A is
odd.

Theorem 4 Assume that ¥ holds, that @ is given by (7.14), with O<w<
1, and that r > g+ 1.

(i) The qualocation equation (7.2) has a unique solution u, € Sy for all A
sufficiently small.
(ii) If r and A are both even or both odd then u; satisfies

llun — ullg < ch™Pllul,. (7.16)
It satisfies also
llun — ullg—2 < " *2|lullr42 (7.17)
if and only if, in addition,
2r-A-1 1

W= T (7.18)
(iii) If r and A are of opposite parity then uy satisfies
llun — wllp—1 < h™ P+ fullrss. (7.19)
It satisfies also
llun — wllg-3 < ch™#*3||u 43 (7.20)
if and only if, in addition,
r—
w= %’f_l;_ll— (7.21)

A sketch of the proof of this theorem follows Theorem 5. A first observa-
tion about the content of the theorem is that (7.16) is the same as (6.5), the
fastest convergence result obtained by Arnold and Wendland (1983, 1985)
for the collocation method and L a pseudo-differential operator of order 3;
and the one higher order result (7.19) is the improved collocation result ob-
tained by Saranen (1988) for the case of an even operator and odd r, already
referred to in Section 6. More interestingly, we see in (7.17) or (7.20) that
the maximum order of convergence jumps by yet another two if (and only
if) w has the precise values specified in (7.18) or (7.21).

For the particular case of the logarithmic-kernel operator A is even and
B = —1, so if r also is even then the special value of w is

2r -1

w

which yields
llun — ul|-3 < ch™ 3 )|ullrs2, (7.23)

whereas the best result available if w has any other value is the O(h™*1)
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result (6.4). For example, in the piecewise-linear case (i.e. r = 2) the value
w = 3/7 yields an O(h®) result, compared with @(h3) for the collocation
method. If r is odd then the choice

2r+1 -1
yields
llun — ull—4 < ch™||ullrys, (7.25)

whereas the best result if w has any other value is the O(h™+2) result (6.6).
Thus in the piecewise-constant case (i.e. 7 = 1) the value w = 3/7 again
yields an O(h®) result, compared with O(h3) for the midpoint collocation
method.

We should note, though, that the higher order of convergence apparent
in (7.17) or (7.20) require both higher regularity of u and a more negative
norm in which to observe the error. It follows that in some applications the
maximum order of convergence will not be achieved.

In the next theorem the recommended quadrature points for the rule
(7.15) of 2-point Gauss type are the zeros of the function

o
Ga(z) = 2:1 ni" cos 2mnz, (7.26)
n=
for appropriate values of a > 1. It is known that G, has exactly two zeros
on (0,1), located symmetrically with respect to the midpoint. Some values
of the first zero (taken from Sloan and Wendland (1989)) are given in Table
1.

Table 1. The unique zero of G4 in (0, 1)

a Zero of G,

1/6
0.21132 48654
0.23082 96503
0.24033 51888
0.24511 88417
1/4

8 ot oo -

Theorem 5 Assume that Y holds, that @ is given by (7.15) with 0 < £ <
%, andthatr>ﬁ+%.

(i) The qualocation equation (7.2) has a unique solution uj, € Sy, for all h
sufficiently small.
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(ii) Ifr and A are both even or both odd then u, satisfies (7.16). It satisfies
also (7.17) if, in addition, £ is the unique zero in (0, %) of G,_p.

(iii) If » and A are of opposite parity then u, satisfies (7.19). It satisfies
also (7.20) if, in addition, ' > 3 and ¢ is the unique zero in (0, %) of
Gr—ﬁ+1-

The complete proofs of Theorems 4 and 5 are lengthy. Here we indicate
only the outline, with main emphasis on the argument that determines the
special values of w or £. (For a more complete sketch of that part of the
argument, see Sloan (1992).)

The main task is to prove the theorems for the special case L = A, the
result then being extended to the full operator L = A + B by a standard
perturbation argument, given, for example, by Arnold and Wendland (1985).
Because A is a convolution operator, and so invariant under translation, and
because also the partition is uniform, the qualocation matrix in (7.4) can be
made diagonal if the basis functions of S} and S}, are chosen so as to behave
in an appropriate way under translation by h. An appropriate basis for S
is {4, : p € AN}, where

AN={ueZ:—%<u5%}, (7.27)
and
1, p=0,
Yu(@) = ¥ (u/kyremite, e A%, (7.28)
k=p

Here Ay, = An\{0}, and k¥ = u means that k — p is a multiple of N. (If
r = 1 the Fourier series, which is then not absolutely convergent, is to be
understood as the limit of the symmetric partial sums.) That 1, really is a
spline of order r on the uniform partition IIj follows from the fact that the
Fourier coefficients satisfy the appropriate recurrence relation for a function
v € Sp, namely (Arnold (1983), extending Quade and Collatz (1938))

k"o(k) = u"o(p) if k = p.

Since qﬁp(u) = §,, for u,v € Ay, the expansion coefficients of v € §j, in
terms of {1} are just the Fourier coefficients; that is

v= E o(p)p, for v € Sp. (7.29)
BEAN

The function ¥, is, in essence, the spline equivalent of the trigonometric
polynomial e2™#%, In particular, the two functions behave in exactly the
same way under translation by h.

With a basis {¢;, : £ € An} for S}, defined in a similar way, and with the
aid of the expression (7.7) or (7.8) for A, it is a straightforward if tedious
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matter to evaluate the matrix element (A%, wL)h explicitly, and to verify
that it vanishes for p # v. In detail, we find (Chandler and Sloan, 1990,

Lemma 1)

1 fu=v=0,
(A, Y )n = { (signp)|ulPD(uh) if p=v € Ay, (7.30)
if p#v,

where the factor (sign u) in this equation is present only if A is odd, and
where
J

Z 11+ 0(,9)] [1 + 86, 9)) (7.31)
with i
Ay =y #ZO G +y),, e?mitt, (7.32)
and with
(&, y) = |yI"* #5_;) T +y|, e?mité (7.33)

if r and A are both even or both odd, or

. r— sign £ :
Q(Ev y) = s1gn yly! o Z ﬁ_ﬁeszﬁ (734)
&40 y

if r and A are of opposite parity.

Since we will have to divide by D(uh), for stability of the method it is
essential that D(y) be bounded away from zero for y € [-1,1] - a prop-
erty that is not quite trivial, since it is well known that some collocation
methods (e.g. midpoint collocation if » and A are both even) are unstable.
Nevertheless it is shown in Chandler and Sloan (1990), by appeal to known
properties of trigonometric sums, that under the conditions of the theorem
there exists d > 0 such that

D) 2d forallye[-1,3]

It now follows from the qualocation equation (7.4) and from (7.29) and
(7.30) that

W { (z?u, 1/’6)5: if p=0, 35
G (p sign p Ny x 7.35
W(Au, ¢#)h if TS AN'

After evaluating the right-hand side (using e.g. Chandler and Sloan (1990,
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Lemma 1)), we find

Py, p =0,

0 =56 = { Ay D + mag, ey, 0
where
J
E@y) = Y Q) [1+87E,y)], (7.37)
i=1
1Bl < Y nPlam)), (7.38)
n._O
|Ra(p)] < Elnl”lu n)l, (7.39)
and where
=X
n#Ep

The error expression (7.36) is the key to the theorems. The quantities Py,
and Rp(p) in the expression depend only on the Fourier coefficients i(n)
for which |n| > N/2, and so can be made to decay as rapidly as desired
by requiring u to be in a sufficiently high Sobolev space. The first term
for u € A} is in a quite different category, because it is this that imposes
an absolute restriction on the maximum order of convergence that can be
achieved: if E(y) = O(|y|?) as y — 0 then the best order of convergence we
can hope for, given (7.36), is O(h*). For this reason p is called by Chandler
and Sloan (1990) the ‘order’ of the particular qualocation method.

If r and A are both even or both odd then it follows from (7.32), (7.33)
and (7.37) that, for any symmetric rule Q,

E@) = 23w Z°°‘},2_’;‘5’ O(lyl-#+?).  (1.40)
=1

(Note that r' > 2, since under the present assumptions r’ is even.) Thus the
qualocation method is of order r — 3 — unless, that is

00 .
Z w3 cos 2nlt; o, (7.41)

in which case the order jumps to r — 8 + 2. For a rule Q of the form (7.14)
the latter equation becomes

wlz_:lﬁ—_ﬁ—ﬁ—(l—w);_:l =
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or by a standard zeta function trick

- - w0 - ] S =0

which is satisfied if and only if w has the value given by (7.18). And for a
rule @ of the form (7.15) it is immediately obvious that (7.41) is satisfied if
and only if ¢ is the zero in (0, %) of the function G,_g defined by (7.26).

Similarly, if r and A are of opposite parity (and hence r’ is odd) then it
follows from (7.32), (7.34) and (7.37) that, for Q a symmetric rule,

cos 2mweE;

E(y)=—ly|"” B+12(1’ - B) z Z = + 0(|y|r—ﬁ+min(r’,3)>‘

Thus the method is of order r — 8 + 1, unless
cos 2mé¢;
El Z e =0 (7.42)
j=

in which case it is of order r — 8 + 3, provided r’ > 3. The special values of
w or £ in rules of the form (7.14), (7.15) are as before, but with r replaced
by r + 1.

The orders of convergence in every case are now seen to correspond ex-
actly to the maximum orders of convergence in Theorems 4 and 5. For the
remainder of the proof we refer to Chandler and Sloan (1990). In particular,
Theorem 2 of that paper shows that all the results follow once the order and
stability of the method has been established.

The qualocation analysis indicated above conforms to one of the great
paradigms of numerical analysis: first identify the form of the leading term
of the errors, then adjust the method so as to eliminate that leading term.
Looked at that way, the 3/7, 4/7 qualocation rule is no stranger than, say,
the formulas of Romberg integration.

7.2. Fully discrete variants

We have seen that the Galerkin method for (7.1) requires two levels of in-
tegration for each matrix element, whereas the collocation and qualocation
methods need only one level. But the following variant of the qualocation
method proposed by Sloan and Burn (1991) for the logarithmic-kernel inte-
gral equation on a smooth curve requires no exact integrals at all.
In this method, the exact integral (3.5) is first replaced by its rectangle
rule approximation
N-1
Lyu(z) = —2h z log |v(z) — v(kh)|u(kh). (7.43)
k=0
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Then one proceeds as in the qualocation method: find u, € S;, such that

(Lrun, ) = (fix)p YV X € Th. (7.44)

Here (-, - )» is defined again by (7.3) and (7.10-13), but now the parameters
in the rule @ must be chosen differently, as the quadrature rule has the added
burden of compensating for the damage caused by replacing L by L.

In working out this method uj is evaluated only at the points of the
rectangle rule (7.43), thus the trial space S, becomes significant only if one
wants to interpolate between the points. For the analysis, however, the
choice of trial space is important. In Sloan and Burn (1991) a trigonometric
trial space

S, = {e*™#* : p € AN} (7.45)

was assumed.

The following result was established in Sloan and Burn (1991) for the case
of a circle by Fourier methods similar to those used above, but for general
smooth curves was proved only under additional restrictions. The result for
general curves was proved without the extra restrictions by Saranen and
Sloan (1992).

Theorem 6 Assume that the equation to be solved is Lu = f, where
L is the logarithmic-kernel integral operator in (3.5); that the transfinite
diameter is different from 1, so that L is one-to-one; that the partition I,
is uniform; that the trial space is given by (7.45); that the test space is S},
the space of smoothest splines of order r’; that r’ is even; and that

Qg = 39(6) + 39(1 - ),
with 0 < € < % Then
(i) Equation (7.44) has a solution up € Sy, for all h sufficiently small.
(ii)) For s > —1, uy, satisfies
llun —ulls < chlullass. (7.46)

It satisfies also
llun = ulls < ch®|lufls+s (7.47)

if and only if £ = %.

Versions with maximum order higher than O(h3) have been foreshadowed
in Sloan (1992).

An alternative version proposed by Saranen and Sloan (1992) replaces
the right-hand side of (7.44) by the exact inner product. Thus the method
becomes: find u, € Sy, such that

(Lnuwn,x)n = (fix) YV x €T (7.48)
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This has an advantage if u is of low regularity, in that the condition s > —1
in Theorem 6 is replaced by s > —r’ — 1. On the other hand the estimate
(7.47) is replaced by the more restrictive estimate

llun — ulls < k™3 |[ul| 4 mingr,3)- (7.49)

8. Corners, cracks and challenges

At many points we have mentioned difficulties caused by corners. Part of
the problem is that the techniques of analysis (e.g. pseudo-differential op-
erator arguments, compactness of operators, Fourier series methods) break
down when corners are present. Part of it is that corners force us to consider
modifications (such as mesh grading near the corner) which further compli-
cate the analysis. Sometimes (as in the case of the double-layer equations)
the presence of corners forces changes in a method (such as modifications in
the trial space for the collocation method near a corner), even though there
is little or no evidence that such changes are needed other than to make the
proofs go through. It is fair to say that even for plane problems corners still
present many theoretical challenges.

Consider, for a moment, the qualocation method and its discrete variants,
described in Section 7. Once corners are present the Fourier series arguments
outlined there break down, because it is no longer possible to write the
boundary integral operator in the form L = A + B with A given by (7.7) or
(7.8) and B a smoothing operator as in (7.9). Yet numerical experiments
(Chandler and Sloan, 1990; Sloan and Burn, 1991) suggest very strongly
that the methods can remain useful, and even yield orders of convergence
similar to those predicted for smooth curves, if the mesh is suitably graded
in a neighbourhood of the corner.

Curiously, there is one extreme case of a corner, namely the exterior
Dirichlet problem for a slit or crack, for which the theoretical understanding
is reasonably complete. Taking for simplicity a straight slit of length 2+, and
forgetting the boundary condition (2.7) at infinity, the single-layer equation
(2.5) becomes

— = [T roglt = sla(s)ds = g0, te (—m). (8.1)
-

Applying the transformation (Yan and Sloan, 1988)

t = ~ycos 2nz, 8 = ycos 27y, (8.2)

f@) = glycos 2n2), (83)
u(z) = ~vz(ycos 2nz)|sin 27z, (8.4)
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we obtain (on noting that f and u are even and 1-periodic)

- /: log |y(cos 2mz — cos 2mwy)|u(y)dy = f(z), z€R. (8.5)

The cosine transformation used here has a long history, particularly in
connection with the airfoil equation (Multhopp, 1938; Weissinger, 1950;
Schleiff, 1968a,b). Its particular advantage in the present context is that it
reduces the problem to one we have met already, namely the logarithmic-
kernel equation for a circle: using only trigonometric and logarithmic iden-
tities and the fact that u is even, it can easily be shown (see Prossdorf et al.
(1992), Lemma 2.1) that (8.5) is equivalent to

~2 [ logl@n 2 sinn(e - yluy = f@), zER (86)

But from (3.7) this is just the single-layer integral equation for a circle of
radius (y/2)Y/2.

The transformations leading to (8.6) tell us that the solution 2 of (8.1)
usually has singularities of the form (yFt)~1/2 at the two ends (this follows
from (8.4)). It also tells us, since a circle has a transfinite diameter equal
to its radius (see Subsection 4.3), that equation (8.1) for z is singular when
(v/2)Y/? = 1, or 4y = 2. (This corresponds to the fact, mentioned in Sub-
section 4.3, that the transfinite diameter of an interval is one quarter of its
length.)

More importantly for our present purposes, this transformation lies at the
heart of several theoretical analyses of numerical methods for the logarith-
mic-kernel integral equation on open arcs. These include Atkinson and Sloan
(1991), which gives an analysis of a discrete Galerkin method; Sloan and
Stephan (1992), analysing a collocation method with Chebyshev polynomi-
als; Prossdorf et al. (1992), adapting to an open arc the discrete method of
Sloan and Burn (1991) discussed in Subsection 7.2; and Joe and Yan (1991,
1992), analysing a piecewise-constant collocation method on a graded mesh,
with the collocation points taken to be the midpoints with respect to the
transformed variable z in (8.2) rather than with respect to the original vari-
able t.

That work of Joe and Yan (1991, 1992) establishes the (surprising) con-
clusion that the order of convergence can be increased by a seemingly in-
significant shift in the collocation points. Indeed, the order of convergence
established by Joe and Yan is even higher than the apparent order of con-
vergence of the Galerkin method for the same piecewise-constant basis and
the same graded mesh (Yan and Sloan, 1989). A lesson for the future seems
to be that in both the theory and the practice of mesh grading we need to
take more seriously than in the past the transformed independent variable
implicit in the mesh grading: if the partition is uniform with respect to the
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transformed variable x, then perhaps we should specify all collocation points
and quadrature rules with respect to that variable.

A serious challenge for many boundary element methods is the extension
of the analysis to irregular meshes on plane curves, and thence to three-
dimensional surfaces, which is after all where the main game is. This cer-
tainly poses a problem for methods such as the qualocation method which
rely on Fourier series methods for their analysis. It is even a problem, as we
have remarked before, for a method as simple as piecewise-constant colloca-
tion for the single-layer equation on a sphere.

There is still much to be done. Those of us who enjoy the field are happy
that this is so.
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linear programming because of the dominance of the simplex method. Barrier
methods fell from favour during the 1970s for a variety of reasons, including
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1. Introduction to interior methods
1.1. The way we were

Before 1984, the question ‘How should I solve a linear program?’ would have
been answered almost without exception by ‘Use the simplex method’. In
fact, it would have been extremely difficult to find serious discussion of any
method for linear programming (LP) other than the famous simplex method
developed by George B. Dantzig in 1947.

As most readers already know, the simplex method is an iterative proce-
dure derived from a fundamental property of essentially all linear programs:
an optimal solution lies at a vertex of the feasible region. Beginning with
a vertex, the simplex method moves between adjacent vertices, decreasing
the objective as it goes, until an optimal vertex is found.

Although nonsimplex strategies for LP were suggested and tried from time
to time, such techniques had never approached the simplex method in overall
speed and reliability. Hence the simplex method retained unquestioned pre-
eminence as the linear programming method of choice for nearly 40 years.
(We describe later the persistent unhappiness with the simplex method on
grounds of its theoretical complexity.)

Such an exclusive focus on the simplex method had several effects on the
field of optimization. Largely for historical reasons, the simplex method
is surrounded by a bevy of highly specialized terminology (‘basic feasible
solution’) and pedagogical constructs (the tableau) with little apparent con-
nection to other continuous optimization problems. Many researchers and
practitioners consequently viewed linear programming as philosophically dis-
tinct from nonlinear programming. This conceptual gap reinforced a ten-
dency to develop ‘new’ linear programming methods only as variations on
the simplex method.

In marked contrast, the field of nonlinear optimization was characterized
not only by the constant development of new methods with differing flavours,
but also by a shift over time in the preferred solution techniques. Since the
late 1970s, for example, nonlinearly constrained optimization problems have
been solved with sequential quadratic programming (SQP) methods, which
involve a sequence of constrained subproblems based on the Lagrangian func-
tion. In the 1960s, however, constrained problems were most often converted
to unconstrained subproblems. Penalty and barrier methods were especially
popular, both motivated by minimizing a composite function that reflects
the original objective function as well as the influence of the constraints.
Classical barrier methods, intended for inequality constraints, include a com-
posite function containing an impassable positive singularity (‘barrier’) at
the boundary of the feasible region, and thereby maintain strict feasibility
while approaching the solution.

Although barrier methods were widely used and thoroughly analysed dur-
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ing the 1960s (see Section 3 for details and references), they nonetheless
suffered a severe decline in popularity in the 1970s for various reasons, in-
cluding inherent ill-conditioning as well as perceived inefficiency compared
to alternative strategies. By the late 1970s, barrier methods were considered
for the most part an interesting but passé solution technique.

As we shall see, the situation today (1991) in both linear and nonlinear
programming has altered dramatically since 1984, primarily as a result of
dissatisfaction with the theoretical computational complexity of the simplex
method.

1.2. Concerns about the simplex method

On ‘real-world’ problems, the simplex method is invariably extremely effi-
cient, and consistently requires a number of iterations that is a small multi-
ple (2-3) of the problem dimension. Since the number of vertices associated
with any LP is finite, the simplex method is also guaranteed under quite
mild conditions to converge to the optimal solution. The number of ver-
tices, however, can be exponentially large. The well known ‘twisted cube’
example of Klee and Minty (1972) is a linear program with n variables and
2n inequality constraints for which the simplex method with the standard
pivot-selection rule visits each of the 2™ vertices. The worst-case complex-
ity of the simplex method (the number of arithmetic operations required
to solve a general LP) is consequently ezponential in the problem dimen-
sion. The gigantic gap between the observed and worst-case performance of
the simplex method is still puzzling; the issue of whether an (undiscovered)
simplex pivot rule could improve its complexity is also unresolved.

As the formal study of computational complexity increased in importance
during the 1960s and 1970s, it became a strongly held article of faith among
computer scientists that a ‘fast’ algorithm must be polynomial-time, mean-
ing that the number of operations required to solve the problem should be
bounded above by a polynomial in the problem size. The simplex method
clearly does not satisfy this property. Although practitioners routinely and
happily solved large linear programs with the simplex method, the existence
of a provably polynomial algorithm remained a major open question.

In 1979, to the accompaniment of worldwide publicity, Leonid Khachian
published the first polynomial algorithm for LP. The ellipsoid method of
Khachian is based on earlier techniques for nonlinear programming devel-
oped by other mathematicians, notably Shor, Yudin and Nemirovsky. An
interesting feature of Khachian’s approach is that it does not rely on com-
binatorial features of the LP problem. Rather, it constructs a sequence of
ellipsoids such that each successive ellipsoid both encloses the optimal so-
lution and undergoes a strict reduction in volume. The ellipsoid method
generates improving iterates in the sense that the region of uncertainty sur-
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rounding the solution is monotonically ‘squeezed’. (Simplex iterates are
also improving in the sense that the objective value is decreasing, but they
provide no information about the closeness of the current iterate to the
solution.)

The crucial elements in polynomiality of the ellipsoid method are what
might be termed outer and inner bounds for the solution. The outer bound
guarantees an initial enclosing ellipsoid, and the inner bound specifies the
size of the final ellipsoid needed to ensure sufficient closeness to the exact
solution. Similar features also figure prominently in the complexity analysis
of interior methods, and are discussed in Section 6.

Despite its polynomial complexity, the ellipsoid method’s performance was
extremely disappointing. In practice, the number of iterations tended to be
almost as large as the worst-case upper bound, which, although polynomial,
is very large. The simplex method accordingly retained its position as the
clear winner in any comparison of actual solution times. Creation of the
ellipsoid method led to an unexpected anomaly in which an algorithm with
the desirable theoretical property of polynomiality compared unfavourably
in speed to an algorithm with worst-case exponential complexity. The quest
therefore continued for an LP algorithm that was not only polynomial, but
also efficient in practice.

This search ended in 1984, when Narendra Karmarkar presented a novel
interior method of polynomial complexity for which he reported solution
times 50 times faster than the simplex method. Once again, international
coverage in the popular press surrounded the event, which has had remark-
able and lasting scientific consequences.

Karmarkar’s announcement led to an explosion of interest among re-
searchers and practitioners, with substantial progress in several directions.
Interior methods are indeed ‘fast’; extensive numerical trials have shown
conclusively that a variety of interior methods can solve many very large lin-
ear programs substantially faster than the simplex method. After a formal
relationship was shown between Karmarkar’s method and classical barrier
methods (Gill et al., 1986), much research has concentrated on the common
theoretical foundations of linear and nonlinear programming.

Unlike the simplex method, interior techniques can obviously be applied to
nonlinear optimization problems. (In fact, they were devised more than 30
years ago for this purpose!) Interior methods have already been developed
for quadratic and nonlinear programming, and extensions of the interior
approach to difficult combinatorial problems have also been proposed; see
Karmarkar (1990).

A fundamental theme permeating the motivation for interior methods is
the creation of continuously parametrized families of approximate solutions
that asymptotically converge to the exact solution. As the parameter ap-
proaches its limit, the paths to the solution trace smooth trajectories whose
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geometric properties can be analysed. Each iteration of a ‘path-following’
method constructs a step intended to follow one of these trajectories, moving
both ‘toward’ and ‘along’ the path. In the first heyday of barrier methods,
these ideas led to great interest in extrapolation. Today, they are being gen-
eralized and extended to new problem areas; for a discussion of such ideas in
linear programming, see Megiddo (1987), Bayer and Lagarias (1989, 1991),
and Karmarkar (1990). The field of interior methods seems to offer the
continuing promise of original theory and efficient methods.

1.8. Overview

This article covers only a small part of the large and rapidly expanding
number of topics related to interior methods. Although the term ‘interior
methods’ is not precisely defined, several themes perceived as disparate be-
fore 1984 can now be placed in a unified framework. For reasons of space, we
motivate interior methods only through a ‘classical’ barrier function. Kar-
markar’s original 1984 algorithm was based on nonlinear projection, a per-
spective that provides interesting geometric insights. See Gonzaga (1992),
Nesterov and Nemirovsky (1989), and Powell (1990) for further interpreta-
tions.

Work in interior methods today is a melange of rediscovered as well as
new methods, complexity analysis, and sparse linear algebra. The approach
taken in this article is to present some initial background on optimization
(Section 2), followed by a detailed treatment of the theory of classical barrier
methods (Section 3). After reviewing Newton’s method (Section 4), we turn
in Section 5 to the special case of linear programming, and describe the struc-
ture of several interior methods. A particular interior LP method and its
complexity analysis are given in detail (Section 6) to give the flavour of such
proofs. The practical success of interior methods is dependent on efficient
linear algebra; the relevant techniques for linear and nonlinear problems are
described in Section 7. Finally, we close by mentioning selected directions
for future research.

2. Background in optimization
2.1. Definitions and notation

Optimization problems, broadly speaking, involve finding the ‘best’ value of
some function. A continuous optimization problem has three ingredients: a
set of variables, usually denoted by the real n-vector z; an objective function
f(z) to be optimized (minimized or maximized); and constraints (equality
and/or inequality) that restrict acceptable values of the variables.

Except for the linear programming case, our main interest is in inequality
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constraints. We consider a generic optimization problem of the form

mineigknize f(z) subject to c¢i(z)>0, i=1,...,m. (2.1)
x ™

It is assumed throughout that all functions of interest are smooth. This
assumption is stronger than necessary, and is imposed mainly to simplify
the discussion.

The set of points satisfying the constraints of (2.1) is denoted by

F={z|c(z)20,i=1,...,m}, (2.2)

and is called the feasible region. If z is in F, z is said to be feasible.

A linear programming problem is an optimization problem in which the
objective function and all the constraint functions, both equalities and in-
equalities, are linear. An optimization problem is called a nonlinear program
if the objective or any constraint function is nonlinear. A gquadratic program
has a quadratic objective and linear constraints.

Several definitions involving sets will be important in our discussion. All
sets are in R™ unless stated otherwise.

Definition 1 (Interior of a set.) Given a set S, a point z is an interior
point of S if £ € § and there exists a neighbourhood of z that is entirely
contained in S. The interior of S, denoted by int(S), is the collection of all
interior points of S.

Definition 2 (Boundary of a set.) Given a set S, a point z is a boundary
point of S if every neighbourhood of = contains at least one point in S and at
least one point not in S. The boundary of S is the collection of all boundary
points of S.

It is straightforward to show that a closed set contains all its boundary
points.

For the feasible region F (2.2) associated with our generic optimization
problem, the subset of points in F for which all the constraint functions are
strictly positive is denoted by strict(F) and defined as

strict(F) = {z | ci(z) >0, i=1,...,m}. (2.3)

A point z in strict(F) is said to be strictly feasible.

Although the sets strict(F) and int(F) are identical in many instances,
they can be different. For example, consider the single constraint 22 +22 > 0
in R2. The corresponding feasible region F includes all of R?; consequently,
every point in R? is an interior point, and int(F) = R2. In contrast, the set
strict(F) includes all points in R? ezcept the origin.

The idea of a level set will be used in several proofs.

Definition 3 (Level set.) For = in a set S, the level set of the function
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f(z) corresponding to the constant 7 is the set of points in § for which the
value of f is less than or equal to 7:

{ze S| flz) <7}

For reference, we state formal definitions of local, global and isolated
minimizers for the generic problem (2.1). The definitions given here, taken
from Fiacco and McCormick (1968), are tailored to our treatment of interior
methods, and are slightly different from those in standard textbooks. They
can be specialized in an obvious way to include additional restrictions on z.

Definition 4 (Local constrained minimizer.) The point z* is a local (con-
strained) minimizer of problem (2.1) if there exists a compact set S such
that

f eint(S)NF and f(z*)=min{f(z) |z € SNF}.

Definition 5 (Global constrained minimizer.) The point z* is a global
(constrained) minimizer of problem (2.1) if

€ F and f(z*) =min{f(z) |z € F}.

Definition 6 (Isolated constrained minimizer.) A constrained minimizer
T* is isolated if there is a neighbourbood of z* in which z* is the only
constrained minimizer.

For the nonlinear function f(z), the n-vector g(z) denotes the gradient
(vector of first partial derivatives) of f, and the n x n symmetric matrix
H(z) denotes the Hessian (matrix of second partial derivatives) of f. Given
a nonlinear constraint function c;(z), its gradient will be denoted by a;(z),
and its Hessian by H;(x). For an m-vector c¢(z) of constraint functions,
the m x n Jacobian matrix of ¢ is denoted by A(zx), whose ith row (the
transposed gradient of c;) is a;(z)T.

2.2. Optimality conditions

We now state optimality conditions for three varieties of nonlinear optimiza-
tion problems, without any explanation of the origin of these conditions.
(Optimality conditions for linear programming are given in Section 5.) De-
tailed derivations of optimality conditions are given in, for example, Avriel
(1976); Fiacco and McCormick (1968); Fletcher (1987); Gill et al. (1981);
and Luenberger (1984). Optimality conditions are extremely important be-
cause they not only allow us to recognize that a solution has been found,
but also suggest algorithms for finding a solution.

Unconstrained optimization. The definition of a local unconstrained mini-
mizer will be important in our discussion of barrier functions, where ‘uncon-
strained’ implies that no constraints are locally relevant.
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Definition 7 (Local unconstrained minimizer.) The point z* is a local
unconstrained minimizer of f(z) if there exists a compact set S such that

¥ c¢int(S) and f(«*) = {min f(z) | z € S}.

The following conditions are well known to be necessary for z* to be an
unconstrained minimizer of f(z):

g(z*)=0 and H(z*) >0, (2.4)

where the notation ‘M > (0’ means that the matrix M is positive semi-
definite. (Similarly, ‘M > 0’ means that M is positive definite.)
Sufficient conditions for z* to be an isolated unconstrained minimizer of
f(zx) are
g(z*)=0 and H(z*) >0. (2.5)

The ‘order’ of an optimality condition refers to the highest order of the
derivatives that it contains. For example, the requirement that g(z*) = 0 is
a first-order optimality condition.

Linear equality constraints. Consider the problem of minimizing f(z) sub-
ject to linear equality constraints:

mifé%ize f(z) subject to Az =0b, (2.6)

where A is a constant m x n matrix. (Note that A is the Jacobian of the
linear constraints Az — b = 0.) Let N denote any matrix whose columns
form a basis for the null space of A, i.e. for the subspace of vectors p such
that Ap = 0. Although the null space itself is unique, in general there are
an infinite number of associated bases.

The following conditions are necessary for the point z* to be a local solu-
tion of (2.6):

Ar* = b (2.7a)
g(z*) = ATX* for some X*; (2.7b)
NTH(z*)N > o. (2.7¢)

Sufficient conditions for z* to be an isolated solution of (2.6) are that (2.7a~
b) hold and that NTH(z*)N is positive definite.

The first-order condition g(z*) = ATA* of (2.7b) means that the gradient
of f at an optimal point can be expressed as a linear combination of the
columns of A7, and hence lies in the range space of AT. The Lagrange
multiplier X* represents the set of coefficients in this linear combination,
and is unique if A has full row rank.

The Lagrangian function for problem (2.6) is

L(z,)\) = f(z) — AT (Az - b), (2.8)
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where A is an m-vector. Condition (2.7b) can be interpreted as a statement
that t*}‘le gradient of the Lagrangian function with respect to = vanishes when
A=A

The relation g(z*) = ATX* is also equivalent to the condition N Tg(z*) = 0,
namely, the projection of g(z*) into the null space of A vanishes. (The vector
NTy(z) is called the reduced gradient of f at z.) Condition (2.7b) is therefore
analogous to the requirement in the unconstrained case that the gradient
itself must be zero.

The matrix NTH(2*)N appearing in the second-order optimality condi-
tion (2.7c) is the Hessian of f projected into the null space of A, and is
called the reduced Hessian of f. For linear equality constraints, the reduced
Hessian plays the same role in optimality conditions as the full Hessian in
the unconstrained case.

The feasibility and first-order optimality conditions (2.7a-b) satisfied by
£* and X* can conveniently be summarized as a system of (n+m) nonlinear
equations in the variables (z, A):

B(z,)) = ( g(‘jx“_ff’\ ) = ( g ) . (2.9)

These equations state that the gradient of the Lagrangian function (2.8) and
the constraint vector Az — b should both be zero.

Nonlinear inequality constraints. The final problem category to be discussed
is the generic problem with nonlinear inequality constraints:

nugelg}‘lze f(z) subject to c(z) >0, (2.10)
where ¢(z) consists of m component functions. The constraint ¢;(z) > 0 is
said to be active at Z if ¢;(Z) = 0 and inactive if c;(€) > 0. Let A(z) denote
the Jacobian of the active constraints at x, and let N(z) denote a matrix
whose columns form a basis for the null space of A.

Nonlinear constraints can be extremely complicated, and necessary opti-
mality conditions can be stated only after making assumptions about the
constraints (called regularity assumptions or constraint qualifications); see,
for example, Avriel (1976), Fiacco and McCormick (1968) or Fletcher (1987).
The most common form of constraint qualification is an assumption that the
gradients of the active constraints are linearly independent (or that the con-
straints are linear).

The Lagrangian function for problem (2.10) is defined as

L(z, \) = f(z) — ATe(x) (2.11)

(see (2.8)). For future reference, we note that the Hessian of the Lagrangian
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with respect to =, denoted by W, is given by

W(z,\) = ViL(z,)\) = H(z) - i \Hi(z). (2.12)

i=1

If a suitable constraint qualification holds at z*, the following conditions
can be shown to be necessary for the point z* to be a constrained minimizer
of (2.10):

ez > o (2.13a)

g(z*) = A@E*)TA® for some X*; (2.13b)

Me@E*) = 0, i=1,...,m; (2.13¢)

Mo>0 i=1,...,m (2.13d)

N@E&*)TW(*, )N > o. (2-13e)

Condition (2.13c), which forces at least one of c;(z*) and A} to be zero for
every 1, is called a complementarity condition. In particular, it means that
if c;(z*) > 0, i.e. constraint i is inactive at =*, then X} must be zero.

Because the multipliers for inactive constraints are zero, the first-order
condition (2.13b) states that the gradient of f at z* is a linear combina-
tion of the active constraint gradients, so that N(z*)Tg(z*) = 0. Trivial
rearrangement of (2.13b) also reveals that the gradient of the Lagrangian
function with respect to z vanishes at z* when A = \*, ie. z* is a sta-
tionary point of the Lagrangian function when A = X*. However, z* is not
necessarily a minimizer of the Lagrangian function.

A crucial distinction arising from constraint nonlinearities can be seen in
the second-order condition (2.13e), which involves the reduced Hessian of
the Lagrangian, rather than the reduced Hessian of f alone. The inclu-
sion of constraint curvature is an essential feature of efficient algorithms for
nonlinearly constrained problems.

Sufficient conditions for z* to be an isolated constrained minimizer of
(2.10) are: (i) a suitable constraint qualification applies at z* (for exam-
ple, the gradients of the active constraints at z* are linearly independent);
(ii) conditions (2.13a—) are satisfied; and (iii) the following strengthened
versions of (2.13d—e) hold:

XNo> 0 if g(a®)=0; (2.14)
N(E)TW(*, X)NE*) > o. (2.15)

Inequality (2.14) is called strict complementarity, and holds when all La-
grange multipliers associated with active constraints are positive. The prop-
erty of strict complementarity is often assumed because the presence of a
zero multiplier for an active constraint creates complications.
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Condition (2.15) is equivalent to the existence of a > 0 such that
pTW(z*,X)p > allp||® for all p such that A(z*)p = 0. (2.16)

2.8. Converity

Most work on interior methods to date has focused on convex optimization
problems, of which linear programming is the most obvious instance. As we
shall see, many complications that arise for general optimization problems
disappear in the presence of convexity. See Rockafellar (1970) for a complete
treatment of convex analysis.

Definition 8 (Convex set.) The set S is convex if, for every , and z3 in
S, and for all 6 satisfying 0 < 6 < 1, the point z = (1 — 0)z; + 0z is also in
S.

Definition 9 (Convex and concave functions.) The function f(z), defined
for z in a nonempty open convex set S, is convex if, for every two points z ;
and z in S, and for all 6 satisfying 0 < 8 <1,

F((1 = 0)z1 +622) < (1 - 8)f(21) + 6f(z2). (2.17)

(If the set S is not specified, it is assumed to be R™.) The function f is
concave if —f is convex. The function f is strictly convex if the inequality
in (2.17) is strict when z; # z3 and 0 < < 1.

Several useful results associated with convexity are:

the intersection of a finite number of convex sets is convex;

all level sets of a convex function are convex;

3  given a set of convex functions {pi(z)}, ¢ =1, ..., m, the set of points
satisfying ;(z) < 0 is convex;

4  the smooth function f(x), defined for z in an open convex set S, is

convex if its Hessian matrix H(z) is positive semi-definite for all z € S,

and strictly convex if H(z) is positive definite for all z € S.

N =

Conver programs are constrained optimization problems with important
special properties. It should be stressed that the only equality constraints
permitted in a convex program are linear constraints.

Definition 10 (Convex program.) The problem of minimizing f(z) sub-
ject to the linear equality constraints Az = b and the inequality constraints
¢i(z) >0,i=1, ..., m,is a convex program if f(z) is convex and —c;(z) is
convexfori=1,..., m.

A slight irritation is that our generic form for inequality constraints in-

volves a ‘greater than’ relation (c;(z) > 0) for expositional convenience.
Unfortunately, an optimization problem with constraints in this form is a
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convex program only if each negative constraint function —c;(z) is convex,
i.e. if ¢;(z) itself is concave. Hence minus signs appear throughout our dis-
cussion of the constraints in convex programs.

Using these definitions, it is easy to see that a linear function is convex
(and also concave), and that a linear programming problem is a convex
program. Two properties that are important in interior methods for linear
programming are stated formally in the following theorems; see Fiacco and
McCormick (1968) or Fletcher (1987) for details.

Theorem 1 If z* is a local constrained minimizer of a convex program-
ming problem, it is also a global constrained minimizer. Further, the set of
minimizers of a convex program is convex.

Theorem 2 If the optimization problem (2.10) is a convex program, and
if £* satisfies the feasibility and first-order necessary conditions (2.13a—d),
then z* is a global constrained minimizer of (2.10).

3. Barrier methods
S.1. Intuition and motivation

Suppose that we wish to minimize f(x) subject to a set of inequality con-
straints ¢;(z) > 0, ¢ = 1, ..., m. If the constraints affect the solution,
either an unconstrained minimizer of f(z) is infeasible (for example, when
minimizing z? subject to £ > 1), or else f(z) is unbounded below when
the constraints are removed (for example, when minimizing z3 subject to
z 2> 1). Consequently, if an optimization method tries to achieve a ‘large’
reduction in the objective function from its value at a feasible point, the
iterates tend to move outside the feasible region. In fact, many popular
algorithms for nonlinearly constrained optimization (such as SQP methods;
see, for example, Fletcher (1987), and Gill et al. (1981)) typically produce
infeasible iterates that approach feasibility only in the limit.

When feasibility at intermediate points is essential — for example, in prac-
tical problems where the objective function is meaningless unless the con-
straints are satisfied — it seems desirable for iterates to approach the con-
strained solution from the interior of the feasible region. Barrier methods
constitute a well known class of methods with this property.

Barrier methods may be applied only to inequality constraints for which
strictly feasible points exist. This property does not hold for all inequality
constraints, even if the feasible region is nonempty; for example, consider
the constraints 1 + z9 > 0 and —z;1 — z2 > 0, for which the feasible region
consists of the line {z; + z2 = 0}.

Given an initial strictly feasible point and mild assumptions about the
feasible region, strict feasibility can be retained by minimizing a composite
function consisting of the original objective f(z) plus a positive multiple of
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an infinite ‘barrier’ at the boundary of strict(F). The most effective methods
for unconstrained optimization (such as Newton’s method; see Section 4)
require differentiability. A suitable barrier term is therefore composed of
functions that are smooth at strictly feasible points, but contain a positive
singularity if any constraint is zero. Under these conditions, a minimizer of
the composite function must occur at a strictly feasible point.

When the barrier term is heavily weighted, a minimizer of the compos-
ite function will lie, informally speaking, ‘far away’ from the boundary. If
the coefficient of the barrier term is reduced, the singularity becomes less
influential, except at points near the boundary; minimizers of the compos-
ite function can then move closer (but not ‘too close’) to the boundary.
The weight on the barrier term thus tends to regulate the distance from
the iterates to the boundary. In the parlance of modern interior methods,
the barrier term forces the iterates to remain centred in the strictly feasible
region.

As the factor multiplying the barrier term decreases to zero, intuition
suggests that minimizers of the composite function will converge to a con-
strained solution z* that lies on the boundary of strict(F). We shall see
later (Sections 3.3 and 3.4) that this intuition can be verified rigorously
under reasonably mild conditions.

We stress that there is ample room for many formulations of a ‘barrier
function’, as indicated by the range of definitions in Fiacco and McCormick
(1968) and in Nesterov and Nemirovsky (1989). Other varieties of compos-
ite functions — called ‘potential’ and ‘centering’ functions — have also been
proposed for use in interior methods; see, for example, Sonnevend (1986)
and Gonzaga (1992). Karmarkar’s original (1984) LP algorithm included a
logarithmic potential function. The method of centres of Huard (1967) im-
poses an additional constraint at each iteration based on the current value
of the objective function; see Renegar (1988) for an LP method based on
this idea.

In all cases, the composite functions display a common motivation of
simultaneously reflecting the objective function (thereby encouraging its re-
duction) as well as forcing iterates to stay ‘nicely centred’ in the feasible
region. They differ, however, in the balance of these sometimes conflicting
aims.

3.2. The logarithmic barrier function

For simplicity, we discuss only the simplest barrier function based on a log-
arithmic singularity, which was not only the most popular in the 1960s, but
also has received substantial attention since 1984. The logarithmic barrier
function was first defined by Frisch in 1955, and was extensively studied
and analysed during the 1960s. Detailed theoretical discussions of classical
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barrier methods, along with historical background, are given in Fiacco and
McCormick (1968) and Fiacco (1979).

The logarithmic barrier function associated with minimizing f(z) subject
to c(z) > 0is

B(z,4) = f(z) ~u)_Inei(z), (3.1)
i=1

where the barrier parameter p is strictly positive. (When the meaning is
clear, we may write B with a single argument p or without arguments.)
Since the logarithm is undefined for nonpositive arguments, the logarithmic
barrier function is defined only in strict(F).

Simply stating the definition (3.1) does not give an adequate impression
of the dramatic effects of the imposed barrier. Figure 1 depicts the one-
dimensional variation of a barrier function for two values of u. Even for the
modest value p = 0.1, the (visually) extreme steepness of the singularity is
evident.

Fig. 1. The one-dimensional behaviour of a barrier function.

The intuitive motivation for a barrier method is that we seek uncon-
strained minimizers of B(z,u) for values of yu decreasing to zero. If the
solution z* of the constrained problem lies on the boundary and exact arith-
metic is used, a barrier method can never produce the exact solution. Bar-
rier methods consequently terminate when the current iterate satisfies some
approximation to the desired optimality conditions. ‘Classical’ barrier algo-
rithms as well as many recent interior methods have the following form:

Generic Barrier Algorithm

0. Set zq to a strictly feasible point, so that ¢(zo) > 0, and set ug to a
positive value; k — 0.

1. Check whether z; qualifies as an approximate local constrained mini-
mizer for the original problem (2.10). If so, stop with z as the solution.

2. Compute an unconstrained minimizer z(ux) of B(z, ux)-

8. ziy1 — z(uy); choose pry1 < pr; k — k + 1; return to Step 1.
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In practice, the calculation of z(uy) in Step 2 is carried out approximately,
and only a few iterations of an unconstrained method may be performed
before the barrier parameter is updated. In the theoretical results given
here, we assume that z(u) is an exact unconstrained minimizer.

We illustrate the behaviour of the generic algorithm on a simple two-
variable example:

minimize 12 — %w% — 9
subject to x4+ 22 <2
iz <10.
The first constraint is satisfied inside the circle of radius v/2 centred at the
origin; although the second constraint is redundant, it nonetheless affects
each minimizer of the barrier function. The point z* = (—~1,1)7 is an iso-
lated local constrained minimizer at which only the first constraint is active.
Figure 2 depicts selected barrier minimizers converging to z*, which lies on
the boundary of the feasible region (depicted as a dashed curve).

-

i
I
!
1
Fig. 2. Convergence of barrier minimizers to z* = (—1,1)T.

The next two sections provide a rigorous foundation for the generic ap-
proach, including the assumptions necessary to make it succeed in converging
to a solution z* of the original constrained problem. After establishing local
convergence properties, we return in Section 3.5 to a more detailed analysis
of the sequence of barrier minimizers.

8.8. Theoretical results for convex programs

Pre-1984 presentations of barrier methods for nonlinear problems typically
begin with general results, which are then specialized to convex programs.
We have chosen instead to give a self-contained presentation of the convex
results first. Readers whose primary interest is in interior methods for linear
and convex programming can read this section only and skip to Section 3.5.
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Consider the convex programming problem

mineiglize f(z) subject to c¢i(z)>0, i=1,...,m, (3.2)
T n

where f and {—c;} are convex. In this section, F denotes the feasible region
for the constraints of (3.2). Recall from Theorem 1 that every local min-
imizer of a convex program is a global minimizer; hence, if any minimizer
exists, the optimal value of f in F is unique.

An obvious fundamental question involves the conditions under which a
solution z* of (3.2) is the limit of a sequence of unconstrained minimizers
of the barrier function. The main assumption needed to prove convergence
results is that the set M of minimizers of (3.2) is bounded. (We know already
from Theorem 1 that M is convex.) Boundedness of the set of minimizers
holds automatically under the much stronger assumption that the feasible
region itself is bounded.

The major results of this section are given in Theorem 5. Two other
theorems serve as a prelude.

Theorem 3 (a version of Theorem 24 in Fiacco and McCormick (1968))
shows that, if a set of convex functions defines a bounded feasible region,
then suitably perturbed versions of the same functions also define a bounded
feasible region. The application of this theorem in the proof of Theorem 4
involves a level set derived from the objective function.

Theorem 3 (Boundedness of perturbed convex sets.) Let —¢;(z) be a
convex function for i = 1, ..., m, and assume that the convex set

N={z|pi(z) 20, i=1,...,m}

is nonempty and bounded. Then for any set of values {A;}, where A; > 0,
i=1, ..., m, the set

{zl(Pi(x)Z_Ai’ i=11"'1m}
is bounded.

Proof. The result will follow in an obvious way if verified for A; > 0 and
A; =0,i#1. Given A; > 0, let 7 denote the set

M ={z|pi(z) > —-A; and ©; 20, i=2,...,m}.

Because N is the intersection of a finite number of convex sets, N7 is convex.

To prove by contradiction that N is bounded, we assume the contrary:
for any point z; € N, there exists a ray emanating from z, that does not
intersect the boundary of N, so that z; + ap lies in N for some direction
p and any a > 0. (The fact that any unbounded convex set must contain a
ray is standard; see, for example, Griinbaum (1967).)

Because N is bounded by assumption, there must be a point x5 on this
ray that does not lie in V. Let z3 be such a point, given by £ = z1 +azp for
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some ay > 0, for which ¢; assumes a negative value, say ¢1(z2) = —6 <0,
where 6 < A1.

Let x3 denote a point on the ray that lies beyond z, i.e. 3 = 71 + asp,
where a3 > a3. The point x5 can then be written as

z2 =21+ 0(z3 — 1) = (1 — O)z1 + Ox3, (3.3)

where 0 < 8 < 1.
Applying Definition 9 of a convex function to the expression (3.3) for z o,
we obtain

(1= 0)p1(z1) + Op1(z3) < p1(z2) = -6,
which gives
Op1(z3) < —6 — (1 - O)p1(z1).
Because p;1(z1) > 0 and 0 < 8 < 1, it follows that

p1(x3) < :9—6-

If 0 is sufficiently small, namely 8 < §/A;, the value of p;(z3) must be
strictly less than —A1, which shows that z3 cannot lie in M;. This gives the
desired contradiction, and shows that A; must be bounded. O

The next result is related to Lemma 12 in Fiacco and McCormick (1968),
which applies to a general barrier function. Given a convex program with a
nonempty strict interior and a bounded set of minimizers, the theorem states
that any particular level set of the logarithmic barrier function is bounded
and closed. The boundedness property is important because it implies that
the set of minimizers of the barrier function is bounded.

Theorem 4 (Compactness of barrier function level sets.) Consider the
convex program of minimizing f(z) subject to ¢i(z) >0,i=1, ..., m. Let
F denote the (convex) feasible region. Assume that strict(F) is nonempty
and that the set of minimizers M for the convex program is nonempty and
bounded. Then for any u; > 0 and any constant 7, the level set

S(1) = {z € strict(F) | Bz, pur) < 7}
is bounded and closed, where B(z, i) is the logarithmic barrier function.

Proof. Boundedness of S(r) will be established by showing that, under
the stated assumptions, the barrier function cannot remain bounded above
while its argument becomes unbounded.

Let £ denote any point in strict(F) (which is assumed to be nonempty).
Given any € > 0, let D denote the level set defined by the values of f (£)
and e

D={zeF|f(z) < f(&)+e} (3.4)
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Convexity of f implies that D is convex (see Section 2.3). The functions
f and {c¢;} are smooth, so that D is closed. The first step in proving the
theorem is to show that D is bounded, from which it will follow that D is
compact.

To show that the set D is bounded, we invoke Theorem 3. Let f* denote
the minimum value of f(z) for z € F. Because every local minimizer of a
convex program is a global minimizer (see Theorem 1), the quantity A =
f(£) + € — f* must be positive. By assumption, the set M, which may be
written as {z € F | f(z) < f*}, is nonempty and bounded; further, M is
convex because f is convex. We now define the function ¢(z) as f* — f(z),
and observe that —¢ is convex. Theorem 3 then applies to ¢ and the positive
perturbation A, and implies boundedness of the set

{zeFlo@)2-At={zeF|f - f(@=) 2" - f(&) -},
which is simply a rearranged definition of D. Consequently, D is compact.

It is straightforward to see that its boundary, bnd(D), is also compact. The
definition (3.4) of D shows that & does not lie on the boundary of D.

Having established the compactness of D and its boundary, we can now
prove boundedness of S(7) by contradiction. Assume the contrary of the
desired result, namely that for some ux > 0, there is an unbounded sequence
{y;} of points in strict(F) for which the barrier function values B(y;, ux)
remain bounded above.

For such a sequence, let j be sufficiently large so that y; lies outside D.

By definition of D, it must hold that
fly;) > f(£) +e

Let z; be the point on the boundary of D where the line connecting £ and

y; intersects the boundary. (Because D is convex, z; is unique.) Let A; be
the scalar satisfying 0 < A; < 1 such that

zj = (1= X)) + Ajy;. (3.5)

We have assumed that ||y;|| is unbounded for sufficiently large j. Since ||z;]|
is finite, (3.5) shows that

Aj =0 as j—oo. (3.6)

Because £ and y; are both in strict(F), we know that c;(£) > 0 and
c¢i(y;) >0fori=1, ..., m. Convexity of —c;(z) combined with (3.5) gives

ci(zj) 2 (1 = Aj)ei(£) + Ajei(y;) > 0, (3.7)

which shows that z; € strict(F). Since z; is by definition in bnd(D), we
conclude from (3.4) that f(z;) = f(£) + €. Because f is convex (see Defini-
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tion 9), (3.5) implies

fz) £ A= X)f(£) + A f(y))-
Dividing by A; and substituting f(2;) = f(£) + ¢, we obtain a lower bound
on f(y;):

fm02ﬂﬂ+iu (3.8)

It then follows from (3.6) that
f(yj) > o0 as j— o0,

so that the objective function values at {y;} become unbounded.
Turning back to the constraint functions, positivity of A; means that the
first inequality in (3.7) can be rewritten as

ci(zj) — ci(#)
],\_j° (3.9)

Since the set bnd(D) is compact, the function ci(z) — ¢i(£) achieves its
maximum for some z € bnd(D). Let d; denote

d; = max{c;(z) — ¢;(£) | z € bnd(D)}.

We now wish to demonstrate that d; > 0. Because z; € bnd(ﬁ) and
¢i(y;) > 0, we apply the definition of d; and relation (3.9) to show that

ci(y;) < ci(€) +

N, i :
ci(Z) + x >ci(y;) >0, i=1,...,m. (3.10)
j

If d; were negative, the first expression in (3.10) would eventually become

negative as A\; — 0, which is impossible. It follows that d; > 0 for ¢ = 1,
vy ML

Finally, the barrier function B(y;, ux) is formed. Using (3.8), (3.10),
monotonicity of the logarithm function, and positivity of u, we have:

B(yj, k) = f(y;) — e Y Inci(yy)
F@) + j—] — e 3 In(ci(8) + (di/ )

@) + e—ukAjZInicf(i)+(di/Aj))_ (3.11)
7

The logarithm function has the property that, for a positive constant v
and 6 > 0,

v

,\l.if& )\ln(u + f\‘-) = 0.

Thus the limit of the numerator in (3.11) is ¢, and the quotient in (3.11) is
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unbounded above as A; — 0. It follows that B(y;, ut) is unbounded above
as j — 00, thereby contradicting our assumption that the barrier function
values { B(y;, ux)} are bounded above for an unbounded sequence {y;}. This
proves that S(7) is bounded.

To show that S(7) is closed, we prove that it contains all its accumulation
points. Let {z;} be a convergent sequence in S(7), with limit point £. It
follows from the continuity of f and {c;} in strict(F) that £ must satisfy
B(&, pux) < 7. Further, Z must either be in strict(F) or else have the property
that ¢;(Z) = O for at least one index <.

If £ is in strict(F), by definition £ is in S(7). Suppose that Z is not
in strict(F). Then, because ¢;(Z) = 0 for some index i, unboundedness of
the logarithm for a zero argument and convergence of {z;} to Z together
imply that, for sufficiently large j, the barrier term — >3i2, In¢;(z;) cannot
be bounded above. In particular, for any constant v and sufficiently large 7,

- ilnc,'(xj) > . (3.12)

We now define v as v = (7 — f*)/ux; the value of « is finite because f*
is finite. Since z; lies in strict(F), we know from the convexity of f that
f(z;) > f*, which means that —f* > — f(z;). Applying this inequality and
the definition of 4 in (3.12), we obtain

—Zlnc,(x )> 1 f(zj)
After rearrangement, this relation implies that B(z,,px) > 7, ie., that
zj ¢ S(7), a contradiction. We conclude that any accumulation point of a
sequence in S(7) must lie in S(7), which means that S(7) is closed.

We have shown that S(7) is both bounded and closed; its compactness is
immediate. O

We are now ready to give the main theorem concerning barrier methods
for convex programs. The most important result is (vi), which shows that
limit points of a minimizing sequence for the barrier function converge to
constrained minimizers of the convex program.

Theorem 5 (Convergence of barrier methods on convex programs.) Con-
sider the convex program of minimizing f(z) subject to c;(z) > 0, i = 1,

.., m. Let F denote the feasible region for this problem, and assume that
strict(F) is nonempty. Let {ur} be a decreasing sequence of positive barrier
parameters such that limy_,,, g = 0. Assume that the set M of constrained
local minimizers of the convex program is nonempty and bounded, and let
f* denote the optimal value of f. Then

(i) the logarithmic barrier function B(z, ux) is convex in strict(F);
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(ii) B(x,pr) has a finite unconstrained minimizer in strict(F) for every
tx > 0, and the set M of unconstrained minimizers of B(z, ux) in
strict(F) is convex and compact for every k;

(iii) any unconstrained local minimizer of B(x,ux) in strict(F) is also a
global unconstrained minimizer of B(z, uy);

(iv) let yx denote an unconstrained minimizer of B(x, ) in strict(F); then,
for all k,

f(yr+1) < f(yx) and Z Inci(yk) < Z In i (yk+1);

(v) there exists a compact set S such that, for all k, every minimizing point
yr of B(z, pi) lies in S N strict(F);

(vi) any sequence {y} of unconstrained minimizers of B(z, ux) has at least
one convergent subsequence, and every limit point of {yx} is a local
constrained minimizer of the convex program;

(vii) let {zx} denote a convergent subsequence of unconstrained minimizers
of B(z, ux); then hm flz) =

(viii)klingo By = f*, where By denotes B(zy, pk)-

Proof. It is straightforward to prove convexity of B(z, ux) using the convex-
ity of f and {—c;}, monotonicity of the logarithm function and Definition 9
of a convex function. Thus (i) is established.

The assumptions of this theorem are the same as those of Theorem 4.
Let zy denote the strictly feasible point at which the barrier iterations are
initiated. For the barrier parameter uj and some ¢ > 0, we define the set
So as:

So = {z € strict(F) | B(z, ux) < B(zo, px) + €}

Theorem 4 implies that Sy is compact for all g > 0. It follows that the
smooth function B(x,ui) assumes its minimum in Sg, necessarily at an
interior point of Sy. We then apply Definition 7 and conclude that B(z, uj)
has at least one finite unconstrained minimizer.

Because B(z, ux) is convex, any local minimizer is also a global minimizer,
so that every unconstrained minimizer of B(x, ux) must be in the set Sy.
Thus the set M}, of unconstrained minimizers of B(z, ux) is bounded. The
set My is closed because the minimum value of B(z, sx) is unique, and it
follows that M, is compact. Convexity of M}, follows from Theorem 1, and
result (ii) has been verified.

Result (iii) follows from Theorem 1, and results (i) and (ii).

To show result (iv), let yi and yx41 denote global minimizers of the barrier
function for the barrier parameters pix and ug.1. By definition of y; and
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VYr+1 8 minimizers, we have

F) - e Sleue) < Fluke) — i S Inci(pran); (3.19)
i=1

i=l1

m m
1) — 1 Y Inci(yer) < f(ur) — 1 D Inci(yr).
i=1 i=1
We multiply the first of these inequalities by the ratio ux4+1/pk, which lies
strictly between 0 and 1, add the resulting inequality to the second inequal-
ity, cancel the terms involving logarithms and obtain

f(yk+1)(1 - %) < f(yk)(l - ‘—‘1—2’1)

Since 0 < pg41 < pk, it follows that f(yk+1) < f(yx). Applying this result
in (3.13) and dividing by the positive number u), we obtain

- ilnci(yk) < —ilnci(ykn), (3.14)
i=1 i=1

as required for the second part of (iv).

To verify existence of the set S in (v), we use result (iv). Let f; denote
f(yx). Since fry1 < fi for each k, the compact convex level set {z € F |
f(x) < fx} not only contains all minimizers of B(z, u), but also contains
all minimizers of B(z, ur+1). The compact convex level set S defined by the
strictly feasible point xg,

§={zeF| f(=) < fzo)}, (3.15)

accordingly contains M as well as all minimizers of B(z, ;) for all k.

Now we show (vi). It follows from the last statement of the preceding
paragraph that every minimizer y; must lie in the compact set S defined
by (3.15). We conclude that the sequence {yx} is uniformly bounded, and
hence contains at least one convergent subsequence, say with limit point £.
Because y; lies in S for all &, £ must be feasible.

To prove that £ is a local constrained minimizer of the convex program,
we assume otherwise, that £ ¢ M. Since every local solution of a convex
program is a global solution, this would imply that f(£) > f*. A contra-
diction is now established from this inequality and the definition of £ as a
limit point of a convergent subsequence of minimizers of B(z, ux).

Let {z\} denote a subsequence of {y;} converging to £. Continuity of f
and the relation fi > fr41 imply that, for all k,

f(zx) 2 f(2)- (3.16)
We next show that there must exist a strictly feasible point z;,; such that

f(2) > f(int)-
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Let z* denote any point in the set M of constrained minimizers, so that
f(*) = f* and z* is in the set S defined by (3.15). If z* itself is strictly
feasible, we simply take z;i,; = ¥, since our initial assumption was that
£(&) > f(z*).

If ¥ is not strictly feasible, ziy, is found as follows. By assumption,
strict(F) is nonempty, and hence contains at least one point, say z; the
definition and uniqueness of f* guarantee that f(2) > f(z*). If f(2) < f(£),
z may be taken as zin. If f(z) > f(£), consider a generic point £ on the
line segment joining z* and z, defined by & = (1 — A)z* + Az for \ satisfying
0 < XA < 1. Because z is strictly feasible and —c¢; is convexfori =1, ..., m,
we have

ci(Z) > (1 — Nei(x*) + Aci(z) > 0,
so that £ is strictly feasible.
Convexity of f implies that
F&) < (1= Nf(a") +2f(2),

where f(z) > f(£) > f(z*). Using continuity of f, we see that f(Z) < f(£)
for some suitably small A, namely A such that

f(&) - f(=)

A< —————-=<1. 3.17
7&) = 7@) (317

For any A satisfying (3.17), £ may be taken as Tiy;.
Thus far we have shown that, if £ is not in the minimizing set M, then a
strictly feasible point iy exists such that

f(zx) 2 f(#) > f(@ine)- (3.18)
Since zi is a global minimizer of B(z, ux),
m m
fzi) — pe Y_Inci(zk) < F(int) — pk 3 In ci(Tine)- (3.19)
i=1 i=1
The barrier term involving ziy in (3.19) is finite, and
Jm B, pe) = f(@int)-
—00
If the limit point £ of {z} is also strictly feasible, the barrier term in-
volving zj, in (3.19) is similarly finite as k — oo, and
lim Bz, i) = £(8).
—00
Letting ¥ — oo in (3.19), we obtain the inequality f(£) < f(Zint), Which
contradicts (3.18).

Suppose, on the other hand, that £ is not in strict(F), so that ¢;(£) =0
for at least one index 1. Adding a barrier term involving z;, to both sides
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of the inequality f(zint) < f(zr), we have

m m
f(@in) — e 3 Inci(@ine) < f(zk) = ok Y, In¢i(Tint)-
i=1 k=1
Combining this inequality with (3.19), rearranging and dividing by uy, we
obtain

F(x) = pe i Inci(zi) < f(zk) — p i In ¢;(Zint)-
k=1

k=1

Cancelling f(zy) from both sides then gives
m m
- z Ine;(zx) < — Z In ¢;(Zint)-
k=1 k=1

The sum on the right-hand side involving z, is finite. However, since £ is
not strictly feasible, —Inc;(z;) approaches infinity for at least one i. The
left-hand side is therefore unbounded above, and we again have a contradic-
tion.

The conclusion is that £ lies in M, the set of minimizers. Because £ is
the limit point of {z}}, we have obtained the crucial result (vi). For the
remainder of the proof, ¥ will denote the limit point of {zx}.

Part (vii) follows immediately from the fact that limy_,. zx = z*.

To show (viii), note first that the optimal value of B(z, u) is unique, and
is equal to B(z,ur). We distinguish two cases, depending on whether or
not z* (the limit point of {z;}) is strictly feasible.

If «* is strictly feasible, the sum of logarithms of the constraints at x, re-
mf.ins finite as k — oo. It is easy to see that in this case lim .o B(Zk, px) =
fr.
Consider the other possibility, that £* is not strictly feasible. Since at least
one constraint is converging to zero, the barrier term of B(z, ) must be
positive for all sufficiently large k. Combining this property with (3.14), we
have

0<— ilnq(xk) <- iln Ci(ZTp41). (3.20)
i=1 i=1

One implication of this result is that, for sufficiently large k,

B(zk, pe) > f(zk)- (3.21)
In addition, the minimizing property of z;, the first inequality in (3.20),
and the relation pr41 < pg together give:

f(mk+1)—ﬂk+1zlncz'(wk+1) < f(zk) = pre1 ) Inei(zy)

i=1 i=1
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o) —mn S Ina(er) < flor) —meS lna(a),

i=1 i=1

which shows that, for sufficiently large &,

B(zk+1, k1) < B(Tk, pr)- (3.22)
It follows from (3.21) and (3.22) that, for sufficiently large k,
f* <+ < By < By, (3.23)

where By denotes B(zg, px). The sequence {B;} of barrier function values
is consequently nonincreasing and bounded from below, and must converge
monotonically from above to a limit, say B*, where B* > f*.

Suppose that B* > f*. In this case, we define é as the positive number
3(B* — f*). It follows from continuity of f and the relation f* < B* that
there must be a neighbourhood of z* in which

flx)<B*-6 (3.24)

for all z in the neighbourhood. Consider a particular strictly feasible point
Z in this neighbourhood. (Such a point must exist because F is convex
and strict(F) is nonempty.) Strict feasibility of £ implies that the quantity
Yt 1 In¢(Z) is finite. Because pp > 0 and pr — 0, there must be an integer
K such that, for k > K,

— Uk f: Inci(%) < 16. (3.25)

i=1

Since i, is a global minimizer of B(z, ux), we know that

Bt i) < B ux) = £(&) — i 3 Inci(2).

i=1
If we apply (3.24) and (3.25), the result is
B(xg, p) < B* -6+ %6 =B* - %5,

which contradicts the monotonic convergence of {By} to B* from above.
We conclude that B* = f*, which gives result (viii). O

The implications of this theorem are remarkably strong. For any convex
program with a bounded set of minimizers, the barrier function has a fi-
nite unconstrained minimizer for every value of the barrier parameter, and
every limit point of a minimizing sequence for the barrier function is a con-
strained minimizer. It is not necessarily true in general, however, that every
minimizing sequence converges.

To every convex program, there corresponds a related dual convex pro-
gram. For reasons of space, general results from duality theory will not
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be considered here, except for the following important result: the objective
function value at any unconstrained minimizer x; of B(z, uy) satisfies the
inequality f(xx) — f* < muyx, where m is the number of constraints. We
know from results (iv) and (vii) of Theorem 5 that f* < f(z;). Combining
these bounds, we have

0 < fzx) — f* < muy. (3.26)

This somewhat surprising property implies that, when a barrier method
is applied to a convex program, the deviation of f(z;) from optimality is
always bounded by muy, independently of the particular problem functions.
For comments about duality in linear programming, see Section 5.1.

3.4. Results for general nonlinear programs

Once we move from a convex program to a general nonlinear program,
matters become far more complicated. In particular, certain topological
assumptions are required to avoid pathological cases. Furthermore, the re-
sults apply only in a neighbourhood of a constrained minimizer, and involve
convergence of subsequences of global minimizers of the barrier function.
The general approach in this section follows that in Fiacco and McCormick
(1968).

At the most basic level, the nice property given by Theorem 4 that the
level sets of the barrier function are bounded if the set of constrained mini-
mizers is bounded does not hold for the nonconvex case. If the feasible region
is bounded, the barrier function is obviously bounded below. The following
example of Powell (1972), however, shows that difficulties may arise when
the feasible region is unbounded:

241
The objective function is bounded below in the feasible region, and the
unique solution is z* = 1. In contrast, the barrier function

minimize subject to z > 1. (3.27)

is unbounded below in the feasible region, although it has a local minimizer
that approaches z* as u — 0.

The major local convergence results will be given in Theorem 7. To build
up to the statement of this theorem, several preliminary results are required.

The following lemma, an adaptation of Corollary 8 from Fiacco and Mc-
Cormick (1968), plays the role of Theorem 4 for the convex case. The general
result is that, if a continuous function is unbounded above for all sequences
of points in strict(F) and converging to its boundary, then the function

—pln(z —1)
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must achieve its minimum value at a strictly interior point. The obvious
application of Lemma 1 is when B(z, 1) plays the role of .

Lemma 1 Given a set of m smooth constraint functions {c;(z)}, i = 1,

., m, let strict(F) denote the set defined by (2.3). Let S be a compact set,
and assume that the set strict(F)N S is nonempty. Consider any convergent
sequence {yx} € strict(F) NS whose limit point 7 lies on the boundary of
strict(F), i.e. such that

klim yr =y, where § € bnd(strict(F))NS. (3.28)
—00

Suppose that ¢ is a continuous function on strict(F) N S with the property
that ¢(yx) is unbounded above as k — oo for every sequence {y;} satisfying
(3.28). Then the global minimum value of ¢ in strict(F) N S, denoted by
", is finite, and is achieved at some point z* in strict(F) N S:

min{p(z) | z € strict(F) N S} = p(z*) = ¢*
Proof. Given any point £ in strict(F) N S, define the associated level set
W as
W = {z € strict(F) N S | p(z) < ¢},
where ¢ = ¢(£). Because S is compact, W is bounded. Compactness of W
will follow if we show that W is closed, i.e., contains all its accumulation

points.
Let R denote the closed set

R = strict(F) U bnd(strict(F)).

Because S is compact and R is closed, the set RN S is compact. Consider
any convergent sequence {z} such that z; € W for all k, with limit point
Z. Since x; € strict(F) N S, £ must lie in RN S. Hence Z must lie in either
strict(F) N S or bnd(strict(F)) N S.

If £ is in bnd(strict(F)) N S, then {:z:k} is a sequence satisfying (3.28),
which means that ¢(z;) — oo. Since ¢ is an | upper bound on the value of ¢
at any point in W, we conclude that x; ¢ W for sufficiently large k, which
is a contradiction. Any limit point T of a sequence in W therefore cannot
be in bad(strict(F)) N S, and must lie in strict(F) N S.

Because zj is in W, the relation ¢(z1) < ¢ holds for all k. Continuity of
¢ in strict(F) N S then implies that the limit point Z satisfies ¢(Z) < @, so
that Z possesses both properties required for membership in W. Since {zx}
is an arbitrary convergent sequence in W, it follows that W contains all its
accumulation points and is closed. A

We know already that W is bounded, so that W is compact. Because
¢ is continuous in the compact set W, it attains its global minimum in
W at some point z*. By definition of W, the value of ¢ at any point in
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strict(F) N S but outside W must be strictly larger than the smallest value
of ¢ at any point in W. Hence z* is the global minimizer of ¢ in the entire
set strict(F) N S, which is the desired conclusion. O

A property needed for local convergence is that a particular subset of local
constrained minimizers is ‘isolated’ within the full set of local constrained
minimizers. Such a definition is unnecessary for the convex case, since the
set of minimizers is convex.

Definition 11 (Isolated subset.) Let M and M* be sets in R” such that
M* C M. The set M* is called an isolated subset of M if there exists a
closed set E such that M* C int(E) and ENM = M*.

Broadly speaking, M™* is ‘separated’ by E from any other points of M.
The definition is satisfied if M* = M, or if M* is an isolated point in M.

The next theorem (a version of Theorem 7 of Fiacco and McCormick
(1968)) shows that, if a set of constrained minimizing points is compact and
isolated, there is a compact set S, strictly enclosing the set of minimizers,
within which the minimizers are global. The role of the set S is critical: if
we can restrict attention to points in S, the value of f at any minimizing
point in S is a strict lower bound on the value of f at any other feasible
(nonoptimal) point in S. For the convex case, a suitable set .S is provided
‘automatically’ by the level set for f at any strictly feasible point; see (3.15).

Theorem 6 (Existence of compact enclosing set.) Consider the problem
of minimizing f(z) subject to ¢;(z) > 0,7 =1, ..., m. Let M denote the
set of all local constrained minimizers with objective function value f*, and
assume that M is nonempty. Assume further that the set M* C M is a
nonempty compact isolated subset of M. Then there exists a compact set
S such that M™* lies in int(S) N F, with the property that for any feasible
point y in S but not in M*, f(y) > f*. The points in M* are thus global
minimizers of the nonlinear program for z € SN F.

Proof. Applying Definition 11, the assumption that M* is an isolated sub-
set of M implies existence of a closed set E strictly containing M* such
that int(E) "\ M = M*,

The assumption that M™* is compact means that we can construct a se-
quence of strictly nested compact sets {S;} converging to M?*, each strictly
containing M™*, namely such that M™ C int(S;) C int(E),

Sj+1CS;, and ]{1»1{.10 S; =M*. (3.29)

The proof will show by contradiction that the desired compact set S may
be taken as S; for some finite j.

If this is impossible, then for every j we can find a feasible point x; with
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the following properties:
z; €FNS;, z; ¢ M* and f(z;) < f*. (3.30)

Consider this hypothetical sequence {z;}. The nested structure of {S;}
means that {z;} is bounded and hence has at least one limit point, say Z.
It follows from (3.29) and the fact that M™ is closed that £ € M*, so that
f(Z) = f* and 7 is a constrained minimizer. Let {y;} denote a subsequence
of {z;} converging to Z, where y; = z;,.

If f(yx) is strictly less than f(£) for an infinite number of indices k, then
every neighbourhood of Z contains feasible points with a strictly smaller
value of f. This means that £ cannot be a constrained minimizer (see
Definition 4) and gives a contradiction.

We conclude that eventually, for some k = k, any point in Sj; that qualifies
as y; (i.e. any feasible point in Sj, for which f(y;) < f*) must have an
objective function value equal to f*. This result implies that f* is the
smallest value of f achieved at feasible points in S, .

Let S denote Sj;. Since all subsequent sets S, for k > k are subsets of
S, as is the minimizing set M*, it follows that f* is the smallest value of f
assumed at any feasible point in S;, for all k£ > k.

The strictly nested property of the sets {S;} means that, for sufficiently
large j, any point x; satisfying (3.30), not necessarily a member of the
subsequence converging to Z, must lie in the interior of the compact set S.
Because z; is feasible and satisfies f(z;) < f*, and the smallest value of f
for any feasible point in § is equal to f*, it must be true that f (zj) = f*.
Since z; lies in the interior of the compact set S and f(z;) = f * x; satisfies
Definition 4 of a local constrained minimizer with function value f*, and
hence z; is in M, the set of such minimizers. However, z; is by definition
in S;, which is contained in the interior of E. Because int(E) " M = M*,
z; must be in M*. 1t follows that, for sufficiently large j, no points in S
satisfy (3.30).

We have constructed a compact set S that strictly contains M*. Further,
S contains no feasible points with objective function values less than f*,
and every feasible point in S with objective function value equal to f* lies
in M*. It follows that any feasible point y in S but not in M™* must satisfy
f(y) > f*. The set S thus satisfies all the criteria specified for S, and the
theorem is proved. O

We now give a fundamental theorem, analogous to Theorems 8 and 10
in Fiacco and McCormick (1968), about local convergence of logarithmic
barrier methods. This theorem assumes two important properties: (a) a
compactness requirement that the relevant set M™* of local minimizers is
nonempty and compact (in the simplest case, M* is a single point); and
(b) a topological restriction that at least one of the points in M* lies in
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the closure of strict(F), i.e. is either strictly feasible or else an accumulation
point of strict(F).

Assumption (b) disallows minimizers that occur at isolated feasible points
(points in a neighbourhood containing no other feasible points). For exam-
ple, consider the constraints z > 1 and z2 — 5z + 4 > 0. The function
z2 — 5z + 4 is nonnegative if z < 1 and if = > 4, so that the feasible points
lie in two separated regions. The constraint £ > 1 eliminates all of the
region {z < 1} except the single point £ = 1. The feasible region for both
constraints therefore consists of the isolated point {z = 1} and the set of
points {z > 4}. Hence strict(F) is the set {z > 4}, and the point z = 1
does not lie in the closure of strict(F).

Barrier methods can be viewed as finding the infimum of f subject to
¢(z) > 0, and consequently cannot converge to minimizers occurring at
isolated points. Isolated minimizers do not arise in the convex case because
a convex set with a nonempty interior cannot contain an isolated point.

Theorem 7 (Local convergence for barrier methods.) Consider the prob-
lem of minimizing f(x) subject to ci(z) > 0,7 =1, ..., m. Let F denote
the feasible region, and let M denote the set of minimizers corresponding
to the objective function value f*. Let {u:} be a decreasing sequence of
positive barrier parameters such that limj_.o px = 0. Assume that

(a) there exists a nonempty compact set M* of local minimizers that is an
isolated subset of M;
(b) at least one point in M* is in the closure of strict(F).

Then the following results hold:

(i) there exists a compact set S strictly containing M ™ such that for any
feasible point Z in S but not in M*, f(Z) > f*;

(ii) for all sufficiently small u, B(z, 1) has at least one unconstrained min-
imizer in strict(F) N int(S), and any sequence of global unconstrained
minimizers of B(x, pi) in strict(F) Nint(S) has at least one convergent
subsequence;

(iii) let {zx} denote any convergent subsequence of global unconstrained
minimizers of B(z,p) in strict(F) N int(S); then the limit point of
{z+} is in M*;

(v) Jim f(ex) = f* = lim Blo, my)

—00 k—o0

Proof. Result (i) follows immediately from Theorem 6, which implies the
existence of a strictly enclosing compact set S within which all points in
M?* are global constrained minimizers.

Consider the behaviour of the barrier function B(z,ux) in the bounded
set strict(F) N S. Continuity of f and {¢;} in F implies that B(z, ux) is
continuous in strict(F) N S. The barrier function possesses the properties
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of ¢ in Lemma 1, which then implies that B(x, ux) achieves a finite global
minimum value at some point in strict(F) N S. (This result is close but not
equivalent to (ii), which states that the minimizing point lies in int(S).) Let
yx be any point in strict(F) N S for which the minimum value is achieved.

The sequence {yx} is bounded and hence has at least one limit point. Let
£ denote a limit point of {y;}. Because yj, is strictly feasible for all k and
the set S is compact, it follows that £ € F N §, so that £ is feasible.

We wish to show that & lies in the set M™ of constrained minimizers, with
f(£) = f*. The result will be proved by contradiction, and we accordingly
assume the contrary, that # ¢ M*.

Since # is feasible and in S, result (i) implies that f(£) > f*. We next
prove that this inequality implies the existence of a strictly feasible point
Tint in S such that

f(&) > f(Tine)- (3.31)

The point ziy, can be found as follows. We know from assumption (b)
that at least one point in M™ is in the closure of strict(F). Let z* denote
such a point, which must either lie in strict(F) or else be an accumulation
point of strict(F). Because M™* is contained in int(S), z* is also in the
interior of S.

If «* itself is strictly feasible, xi,, may be taken as z*. If 2* is not strictly
feasible, * is an accumulation point of strict(F), which means that every
neighbourhood of &* contains strictly feasible points. Further, every neigh-
bourhood of z* contains points in S. We know that: f is continuous; £ is
feasible and lies in S; f(£) > f(z*); and z* is a global constrained minimizer
of f for all feasible points in S. Hence there must be a strictly feasible point
Tint in a neighbourhood of z* for which f(zin) < f(£).

Let {zi} denote a convergent subsequence of {yx} with limit £. The
relation f(£) > f(zin) then implies that, for sufficiently large k,

f(@e) > f(int). (3.32)

Since zipt is in strict(F) N S, our definition of zj as a global minimizer of
B(zx, px) in strict(F) N S implies the inequality

flzk) — px 2 Inci(zk) < f(@int) — pir i In ¢;(Zine). (3.33)

i=1 i=1
Strict feasibility of zi,x means that the barrier term involving z;, in (3.33)
is finite, and
klim B(Z'inc,#k) = f(ltint)-
—00

Suppose that the limit point £ of {zx} is also strictly feasible, namely
£ € strict(F) N S. Then the barrier term involving x is finite as k — oo
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and
klim B(z, ux) = f(£)-
—00

Letting k — oo in (3.33), we obtain the inequality f(zx) < f(Zint), Which
contradicts the relation f(zr) > f(zint) of (3.32).

Suppose on the other hand that £ is not strictly feasible. Adding a barrier
term to both sides of the inequality f(zx) > f(zint) gives

m m
F@int) — ke ) I ¢i(Tins) < f(zx) — kY Inci(Tint).-
i=1 k=1
Combining this inequality with (3.33), rearranging and then dividing by ux,
we obtain

f(zk) — e f: Inci(zk) < f(zk) — pi i In ¢;(%int)-

k=1 k=1
Cancelling f(zx) from both sides, the result is

m m
— Z Ine¢i(zy) < — E In ¢;(zint ). (3.34)
k=1 k=1

As before, strict feasibility of z;,; guarantees that the sum on the right-hand
side is fixed and finite. However, since £ is not strictly feasible, — In c;(zx)
approaches infinity for at least one i. The left-hand side of (3.34) is therefore
unbounded above, which again gives a contradiction.

In either case, we have shown that f(£) = f* and hence that # € M*.
Since £ was taken as any limit point of {y;}, we conclude that every limit
point of a convergent subsequence of global barrier minimizers lying in
strict(F) N S must be a constrained minimizer with objective value f*.

Result (ii) is proved by noting that the relation # € M™ means that
% € int(S). Since £ is the limit point of {z}, it must hold that zj is also
in int(S) for sufficiently large k. By definition, z is strictly feasible. Hence
the global minimum of B(z, ug) in strict(F) N S is achieved at some point
zx lying strictly inside both F and S§. Applying Definition 7, the global
minimizer z; of B(z, k) in S is an unconstrained minimizer. Results (ii)
and (iii) are thus proved.

The first relation in (iv), that limg_... f(zx) = f*, follows because f(z) =
f*. The second, limy_,o B(zk, px) = f*, follows from the same arguments
used in proving (iv) and (viii) of Theorem 5, with the additional restriction
here that all points must lie in S. O

At this point we should emphasize what has not been proved. Even within
the set S, a general global minimizing sequence {z} of the barrier function
is not guaranteed to converge. The properties of local minimizing sequences
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are even less secure. In particular, it is not true that every limit point of a
local minimizing sequence is a constrained minimizer.
For example, consider the problem

minimize z subject to z2>0, z> -,

where v > 0 (Moré and Wright, 1990); a similar example is given in Fiacco
(1979). The unique solution is obviously the point 2* = —v. The barrier
function B(z, ) has two feasible minimizers:

1/2
3u—v+ ((3# -7+ 87#)
z(p) = 5

For 4 — 0, the global minimizing sequence corresponds to the negative
square root and converges to —v, the unique solution of the constrained
problem. However, the nonglobal minimizing sequence of B(z,pu), corre-
sponding to the positive square root, converges to the origin, which is not a
constrained minimizer.

Despite these cautions, the bright side is that barrier methods will con-
verge to the solutions of constrained problems for which the usual sufficient
conditions do not hold. Barrier methods can converge, for example, when
the constrained minimizer is not locally unique. Barrier methods can suc-
ceed even when a local constrained minimizer does not satisfy a constraint
qualification.

8.5. The barrier trajectory

In this section, we describe conditions under which a sequence z(u) of barrier
minimizers not only converges to z*, but also defines a smooth path (the
‘barrier trajectory’) that is nontangential to the active constraint gradients.

Discussions of the logarithmic barrier function involve special diagonal
matrices related to vectors, for which the following notation has become
popular. When a lower-case letter refers to a vector, its upper-case version
means the diagonal matrix of comparable dimension whose (%,%) element is
the ith component of the vector. For example, C denotes the m x m diagonal
matrix of constraint values {c;}:

1

Cc2
C = diag(c;) = ) ,

Cm

and C~! is the diagonal matrix whose ith element is 1/c;. Using this
convention, we have the general relation Ce = ¢, where e denotes the
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vector of appropriate dimension whose components are all equal to one,
e=(1,1,...,1)7.
The gradient of B(z, u) with respect to z is

m
VB(z,u) =g~ ¢ ai=g—pATC e, (3:35)
i=1
where all functions are evaluated at z, a; is the gradient of ¢;(z) and A is the
Jacobian of c(z). (Recall that the constraint gradients are the transposed
rows of A and hence the columns of AT.) The Hessian of B(z, p) is

m m
VB = H-Y £ H,-+Z§— a;af
i=1 G i=1 %
= H-Y g H; + pATC?A.
=1

The point z(u) is an unconstrained minimizer of B(z, u) only if the gra-
dient vanishes at z(u). Substituting from (3.35), the following relation must
hold at z(u):

N ()

where the argument u denotes evaluation at z(u). Since g > 0 and ¢;(p) > 0,
it follows that the gradient of f at z(u) is a positive linear combination of
the gradients of all the constraints.

The first-order optimality conditions (2.13b—d) for nonlinear constraints
are

o(@") = AGTTX = Y a X, (337)
i=1

where X} > 0 and Xf¢;(z*) =0,i =1, ..., m. At z*, the gradient of f is
thus a nonnegative linear combination of all the constraint gradients, where
inactive constraints have zero multipliers.

The similar forms of (3.36) and (3.37) reveal that the ith coefficient
p/ci(p) in the linear combination (3.36) is directly analogous to the ith La-
grange multiplier A¥. When standard sufficient optimality conditions hold at
z* and the gradients of the active constraints are linearly independent, the
multiplier estimates u/c;(1) do indeed converge to A¥. In fact, under these
conditions a differentiable curve z(u) of barrier minimizers, parametrized
by p, exists near u = 0 and converges to z*. This curve of minimizers is
called the barrier trajectory; in linear programming, it is usually known as
the central path. Its existence and properties define the broad class of ‘path-
following’ algorithms that attempt to follow the trajectory to the solution;
see Sections 5.2 and 6.2.
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The results of the following theorem are essentially those of Theorem 12
of Fiacco and McCormick (1968).

Theorem 8 Consider the problem of minimizing f(z) subject to ¢;(z) > 0,
i=1,..., m, where m > 1. Let F denote the feasible region, and assume
that strict(F) is nonempty. Assume further that z* is a local constrained
minimizer at which

(a) g(z*) = A(z*)TX*, with Xf¢;(z*) = 0;

(b) X¥>0if c;(z*) = 0;

(c) there exists a > 0 such that pTW(z*, X*)p > a||p||? for all p satisfying
Ap = 0, where A denotes the Jacobian of the active constraints at z*
and W is the Hessian of the Lagrangian function (see (2.12));

(d) the gradients of the active constraints at z* are linearly independent.

Consider a logarithmic barrier method in which B(z, ux) is minimized for a
sequence of positive values {4} converging monotonically to zero as k — oo.
Then

(i) there is at least one subsequence of unconstrained minimizers of the
barrier function B(z, ux) converging to z*;

(ii) For such a convergent subsequence {z},

klim pr/ck = /\’:, where c¥ denotes c;(zy);
—+00

(iii) for sufficiently large k, the Hessian matrix V2B (zy, ux) is positive def-
inite;

(iv) a unique, continuously differentiable vector function z(u) of uncon-
strained minimizers of B(z, i) exists in a neighbourhood of u = 0;

(v) limo(u) = z*.

Proof. The properties assumed about z* ensure that it is an isolated con-
strained minimizer. Two implications follow from the linear independence of
the active constraint gradients: the Lagrange multipliers A* are unique; and
every neighbourhood of z* contains points in strict(F), so that z* is in the
closure of the interior of the feasible region. Theorem 7 consequently applies
to z*, and implies that there is at least one subsequence of unconstrained
minimizers of B(z, u) converging to z*. This proves (i).

Let {zx} denote such a convergent sequence, with redefinition of k as
necessary, so that

lim z; = z*. (3.38)
k—o00

As convenient, we denote quantities associated with x; by a subscript or
superscript k; the subscript ¢ always denotes the ith component of a vector.
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For sufficiently large k, z; is an unconstrained minimizer of B(x, uy),
which means that the gradient (3.35) of the barrier function vanishes at z ;:

g = Z:ak/\'c where \f = % (3.39)

=1 i

The quantity \¥ is strictly positive for any ux > 0.
Suppose that constraint i is inactive at z*. Then, from (3.38),

lim ¢f =¢;(*) >0, and hence lim A’ =\ =o0. (3.40)
k—oo k—o0

If no constraints are active, we have verified (ii).
Otherwxse, let A denote the set of indices of constraints active at z*, so
that c;(z*) = 0 for i € A. Let the positive numbers s;, and v* be deﬁned as

k g M
8k = EA,- and v =,
i=1 Sk
Note that vF > 0 and 37, v¥ = 1, so that v* < 1. Since s; > 0 and (3.39)
holds at zj, we have

—g - 2 afof = 0. (3.41)

As k — o0, the sequence {'ufc } is bounded for i = 1, ..., m, and accordingly
contains a convergent subsequence.

The value of lim inf_,., si, denoted by §, must be finite. If not, consider
(3.41) as k — oo. Because of (3.38), a¥ converges to a}, where the super-
script * denotes evaluation at =*. The following relation must hold for any
set {0;} of limit points of {v}}:

m m
D aft; =0, where #;>0 and > #;=L1. (3.42)
i=1 i=1

Because #; = 0 if constraint 3 is inactive at =*, relation (3.42) states that a
nontrivial linear combination of the active constraint gradients at z* is zero,
which contradicts our assumption of their linear independence.

Finiteness of § implies that each component A¥ is bounded for all k, and
consequently the sequence {\¥} has at least one a.ccumulatlon point, say X;.
It follows from (3.39) and (3.40) that

g = AT

Because the rows of A are linearly independent, the values satisfying this
equation are unique, and we conclude that A; = X! for i € A, which com-
pletes the proof of (ii).

We now wish to demonstrate positive-definiteness of the barrier Hessian
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at . This property will be verified using the asymptotic structure of the
Hessian of the barrier function, which approaches the sum of the Hessian of
the Lagrangian function and a ‘large’ matrix in the range space of the active
constraint gradients.

Consider the ratio u, /(c¥)?, which we denote by d*:

k_ Mg _/\_f
Kol E o

When constraint i is active at z*, i.e. i € A, result (ii) and assumption
(b) of strict complementarity imply that A¥ converges to a strictly positive

constant. Since cf converges to zero for i € A, the final ratio in (3.43) is

clearly unbounded, and

- k — i Hi - .
lﬂgf d; h,?_l’loléf —(05)2 oo forie A (3.44)

Recall that the Hessian of the barrier function is given by
m m
VB(z,u) = H - Z—E H; +Z£2— a;ay.
=1 G i=1 4

Let H% denote V2B(zy, ). The limiting properties of this matrix are
revealed by expressing it in the following form:

HE = W* + M* + M} + M§ + M},

The first two matrices on the right-hand side depend on z* and a bounded
positive constant 7:

m
w* = H*-Y XH
=1
M* = 4y Z a; (a})T=~ATA.
icA
The remaining three matrices are expressed as perturbations involving x4,
*
z" and v:

m m
Mf = H'-H*- (YN HF - XH))
i=1 =1

M = 33 (ab(ah) - al (@)

i€A
Mf = ) (dF —7)af(@)T+ Y dFaf(af)".
icA igA

The matrix W* is the Hessian of the Lagrangian function at z*. For
sufficiently large k, the matrices M¥ and M¥ can be made arbitrarily small
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in norm; this statement follows from continuity of the problem functions,
convergence of zj to z*, convergence of Ax to A*, and boundedness of ~.
Because d* is unbounded above for i € A (see (3.44)), the quantity (d¥ —~)
is positive for sufficiently large k; hence the matrix M¥ is the sum of two
positive semi-definite matrices and must itself be positive semi-definite.

Positive-definiteness of H% will follow if the matrix W* +~yAT A is guaran-
teed to be positive definite for some constant . This property is shown by
examining the effect of the matrix in two orthogonal subspaces: the range
space of AT and the null space of A.

It is well known that any n-vector p may be uniquely expressed as the
sum of two orthogonal components,

D =Dpr+Pn,
where pp lies in the range space of AT and py lies in the null space of A.
Using this form, the product pT(W* + vAT A)p can be written as
Py Wy + 205 W*p, + pf W¥p, +vp} AT Ap,,. (3.45)

To ensure positive-definiteness, this quantity must be bounded below by a
positive number when p # 0. To develop the bound, we use a relation that
holds for any matrix C and vectors z and y:

zCy 2 ~||C| |iz|| llyll-

Assumption (c) guarantees the existence of a > 0 (the smallest eigenvalue
of the reduced Hessian of the Lagrangian; see (2.16)) such that

PR W¥py 2 allpy|®.
By definition, py is in the range of AT. Hence, if pp # 0, it holds that
App. #0 and pf ATAp, > Bllp=|?

for some positive 8 (the square of the smallest nonzero singular value of A).
Let w denote ||W*||.
Applying these inequalities to (3.45), we obtain

pT(W* + AT A)p > allpw|? +18Ipxl? - 2wiipzll 1o~ = wipal?

If ||lpr|| = 0, so that p lies entirely in the null space of A, the expression on
the right-hand side is simply a|[px]|?, which must be positive. Otherwise, if
llpr]l # O, the right-hand side is guaranteed to be positive if y is bounded
below as follows:

w? + aw
af

We have shown that the Hessian of the barrier function at z; must be
positive definite for sufficiently large k, which is result (iii). The point z,

(3.46)
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is consequently an isolated unconstrained minimizer of B(z, u) (see (2.5)),
and is locally unique.

To verify the existence of a unique, differentiable function z(x) in a neigh-
bourhood of z(ui), we apply the implicit function theorem (see Ortega and
Rheinboldt (1970)) to the n + 1 variables (z, ). At (z, ux), we know from
(3.36) that the following system of nonlinear equations has a solution:

m
1
Oz, p) = g(x) — — a;(x).
(@) = 9(a) -~ 5 i)
The Jacobian of ® with respect to z is the barrier Hessian H X, which was just
shown to be positive definite at (&, k). The implicit function theorem then
implies that there is a locally unique, differentiable function z(u) passing
through z(u) such that ®(x, u) = 0 for all p in a neighbourhood of p.
Using continuation arguments, it is straightforward to show that the func-
tion z(u) exists for all 0 < u < py for sufficiently large k, which gives result
(iv).
The final result is immediate from the local uniqueness of z(u) and result
). O

We have now verified the existence of both the barrier trajectory x(u)
and the associated multiplier estimate A(u). A remaining question involves
existence and differentiability of the trajectory at z* itself. For sufficiently
small u, the following n 4+ m equations are satisfied identically at every pair
(z(u), A(s)) on the trajectory:

g(z) — A(@)TA = 0 (3.47a)
Aici(z) = p, i=1,...,m. (3.47Db)
If we treat the multipliers A(u1) as separate variables, (3.47) can be viewed as

a system of nonlinear equations in the n +m variables (z, ). The Jacobian
matrix of this system is given by

= ( H(w) - ThWH(W)  —AWT ) | 3.48)

A(p)A(p) C(p)

where A and C are diagonal matrices corresponding to A and c.

We can again apply the implicit function theorem to deduce the existence
of a differentiable trajectory (x(u), A(r)) at (z*, X*) if the matrix (3.48) is
nonsingular at u = 0. Let J* denote the limiting version of (3.48):

* w* AT
J = A*A*  OF .

Nonsingularity of J* will follow if there is no nontrivial solution z to the
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system J*z = 0. Partitioning z into an n-vector u and an m-vector v and
using the form of J*, the condition J*z = 0 implies that

W*u—A*Ty =0 and A*A*u+C*v=0. (3.49)

If & > 0, we know that X} = 0, and the second equation in (3.49) then
implies that v; = 0 for all inactive constraints. If, on the other hand, c’f =0,
the same relation implies that A} (a})Tu = 0 for i € A. It follows that u must
lie in the null space of A, the Jacobian of the active constraint gradients.

Combining these properties, we see that
v;=0fori¢ A and (a})Tu=0 foric A (3.50)

If J*z = 0, the scalar 2TJ*z must also be zero. Writing out 27J*z in
terms of u and v, we have

2T J*2 = uTW*u — vTA*u + vTA* A*u + vTC*v = 0.

It follows from (3.50) that vTA*u = 0, vTA*A*u = 0, and v7C*v = 0.
Therefore, ul W*u = 0. But by assumption (c), this can be true only if
u=0.

If u = 0, the first equation in (3.49) implies that A*Tv = "™, a¥v; = 0.
Because the components of v corresponding to inactive constraints are zero,
it follows that that ;c 4 afv; = 0. Under assumption (d) that the active
constraint gradients are linearly independent, this can be true only if v; =0
for all i € .A. But in this case, © = 0 and v = 0, which means that z = 0.
Since J*z = 0 only for a zero vector z, J* is nonsingular. The implicit
function theorem applied to (3.47) thus implies that the trajectory z(u)
exists and is differentiable at z*.

The approach of the trajectory (i) to * can be analysed as follows. Let
& denote dz(u)/du, with a similar meaning for A. Differentiating (3.47) with
respect to u, we see that, for sufficiently small p, z(u) and A(u) satisfy the
system of differential equations

H-SMH, -AT\[(z) (o0
("E )2 e

with initial conditions z(0) = * and A(0) = X*.

Let y denote the vector & evaluated at 4 = 0, i.e., y is the tangent to
the barrier trajectory at £*. For an active constraint i, the second set of
equations in (3.51) reveals that

1 . o
X(@)Ty=1, sothat (a})Ty= ¥ and Ay = (A*)le. (3.52)
i
The assumption of strict complementarity means that /\f # 0 for any ac-
tive constraint. Hence relation (3.52) shows that the barrier trajectory ap-



INTERIOR METHODS 381

proaches z* nontangentially with respect to the active constraints, i.e. the
iterates do not converge ‘along’ the boundary.

Assume that constraint 7 is active, and let 8; denote the angle between y
and the normal to constraint ¢ at z*. It follows from (3.52) that

cos6; ~ _1 (3.53)

lla X
If all active constraint gradients are approximately equal in norm, relation
(3.53) shows that the approach of barrier trajectory to * is ‘closer to tan-
gential’ for active constraints with larger multipliers.
These properties are illustrated graphically with a two-variable example:

minimize  2z172 — x% —~ 2
subject to % + zg <2
:z:%x% <10
(z1- 3P+ (m2—-1)2< 4.
The first and third constraints (shown as dashed curves in Figure 3) inter-
sect at ¥ = (—1,1)7, which is an isolated local minimizer with Lagrange
multipliers X} = 3 and A5 = 1. The trajectory of barrier minimizers is
depicted as a solid line converging to z*. As expected, the trajectory ap-

proaches both active constraints along a nontangential path. The figure also
confirms the prediction of (3.53) concerning the relative angles of approach

to these constraints.

constraint 3

- ~
- ~

- constraint 1

2 z(4)

Fig. 3. The nontangential approach of z(u) to z*.

The nontangential property fails to hold without strict complementarity,
even if the active constraint gradients are linearly independent. A complete
analysis of this case is given in Jittorntrum (1978).
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8.6. Properties of the barrier Hessian

The Hessian matrices Hp of the barrier function display a special structure
as u — 0. The barrier Hessian is given by

Hy(w)=H-Y -EH,- + pATC2A.

i=1

As z(p) converges to z*, the first two terms of the Hessian approach the

Hessian of the Lagrangian function at =*; the third matrix is given by

pATC-2A = ATD?A, where D?=puC~2=AC~!= %AZ. (3.54)
We have already shown that the elements of D corresponding to inactive
constraints are converging to zero, and the elements corresponding to active
constraints are becoming unbounded (see (3.44)).

Let 7 denote the number of active constraints whose gradients are linearly
independent. The Hessian of the barrier function can be characterized in
three ways, depending on 7.

If no constraints are active at z*, then the Hessian of the barrier function
converges (as we would expect) to the Hessian of f itself.

At the other extreme, suppose that 7 = n, so that the Jacobian of the
active constraints has rank n. If X* > 0, the barrier Hessian along the
trajectory approaches a large multiple of the nonsingular matrix AT(A¥)2A.
In this case, the condition of the limiting Hessian depends on the condition
of A and the condition of A*, but is not necessarily large. (This situation
holds for linear programs in which there are no zero Lagrange multipliers.)

Finally, assume that 0 < 72 < n. The limiting matrix D? then contains 77
unbounded elements and n — 1 zero elements, which means that asymptoti-
cally ATD?A of (3.54) becomes not only unbounded, but also rank-deficient.
Murray (1971) showed that Hz(u) has i unbounded eigenvalues, corre-
sponding to eigenvectors in the range space of AT, and n — 7 bounded
eigenvalues, corresponding to eigenvectors in the null space of A. The bar-
rier Hessian accordingly becomes increasingly ill-conditioned for ‘small’ u,
and is singular in the limit. This property is one of the reasons that barrier
function methods fell into disfavour in the 1970s, since standard uncon-
strained methods (such as Newton-based or quasi-Newton methods) tend to
experience numerical difficulties when the Hessian is ill-conditioned. Var-
ious linear algebraic approaches have been proposed for dealing with this
inherent ill-conditioning of the Hessian, and will be discussed in Section 7.2.

Our general analysis of barrier methods will be applied in Section 5 to the
special case of linear programming. As background, we briefly summarize
the relevant features of Newton’s method in Section 4.
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4. Newton’s method

The application of interior methods to linear programming is heavily based
on Newton’s method, which we review in this section. Newton’s method
enters because satisfaction of certain nonlinear equations is definitive in
optimality conditions (see Section 2.2), and the most popular technique for
solving nonlinear equations is Newton’s method.

4.1. Nonlinear equations and unconstrained minimization

We consider two forms for Newton’s method. First, let ®(z) denote an n-
vector of smooth scalar functions ;(z), i = 1,...,n, and let J(z) denote
the Jacobian matrix of ®. We seek a point z* where ®(z*) = 0. If z is the
current point and J(zy) is nonsingular, the Newton step py is the step from
Z, to the zero of the local affine model of ¥, and is the unique solution of
the linear system

Jipr = —®y, (4.1)

where J;, denotes J(zx) and @ denotes ®(xy).

The second form of Newton’s method is designed for unconstrained min-
imization of f(z). Here, a quadratic model of the local variation of f is
obtained from the Taylor-series expansion about xg:

f(ax +p) — f(zx) = 9fp+ 3p"Hap,
where g = g(xx) and Hy = H(zy). If Hy is positive definite, the Newton
step p;. is the step from z; to the minimizer of this model, and satisfies the
nonsingular linear system

Hyp = —gi. (4.2)

The direction pj of (4.2), derived for minimization, is equivalent to the
Newton step for solving the n-dimensional nonlinear system g(z) = 0.

4.2. Local convergence

A pure Newton method for either zero-finding or minimization begins with
an initial point z¢, and generates a sequence of Newton iterates {z}, where

Tk+1 = Tk + Dk (4.3)

and p;, is defined by (4.1) or (4.2). Newton’s method is often regarded as
an ‘ideal’, in large part because of its fast quadratic convergence. When
z is sufficiently close to the solution and the relevant matrix (Jacobian or
Hessian) is nonsingular, the error after each pure Newton step is effectively
squared:

k41 — I = O(l|ze — ™).
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Far from the solution, a pure Newton method is unreliable and may fail to
converge. The standard way to encourage convergence from a general start-
ing point is to require a reduction at each iteration in some merit function
that measures progress. The new iterate is then defined by

Tk41 = T + CkPr, (44)

where oy, is a positive scalar called the step length.

To guarantee convergence, the step o, must satisfy conditions known as
sufficient decrease in ||®|| or f, as appropriate. The process of choosing
oy to produce a sufficient decrease in F is called a line search. Standard
sufficient decrease conditions are discussed in detail in, for example, Ortega
and Rheinboldt (1970). For well-behaved problems, the ultimate quadratic
convergence of Newton’s method can be retained because the ‘natural’ step
of unity (o =1 in (4.4)) asymptotically produces a sufficient decrease.

4.8. Linear equality constraints

Newton’s method for minimizing f(z) subject to linear equality constraints
can be derived in two ways: solving the nonlinear equations associated with
optimality, or solving the constrained minimization subproblem derived from
the local quadratic model.

The optimal z* and multiplier A* can be viewed as the solution of the
system (2.9) of n + m nonlinear equations in the variables (z,)). Given
zr and \g, we substitute the Jacobian from (2.9) into the generic Newton
equation (4.1), which leads to two equivalent linear systems satisfied by the
Newton step (pg, 6k):

H, -AT\ (p _ [ Hk AT Pe) _ —gr + AT (4.5)
A 0 J\&) \A 0)\-6) \ b—Az J '

(The second form has been rewritten with —6; as an unknown so that the
matrix is symmetric.) The matrices in (4.5) are nonsingular whenever A has
full rank and the reduced Hessian NTH. N is positive definite. Another op-
tion is to treat the ‘new’ Lagrange multiplier Ax 1 = Ag + ;. as an unknown,
producing the linear system

Hp AT Pk ) —9k
(% 0)(an)-(t) e

The form (4.6) is often called the augmented system; the symmetric indefinite
matrix in (4.6) is sometimes called the KKT matriz.

Viewed from a minimization perspective, the Newton step p; is chosen
to minimize the Taylor-series quadratic model of f subject to satisfying
the constraints Azi,; = b. With this formulation, p; solves the quadratic
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program

min&iinize % THip+ gip subject to Ap =b— Azy. 4.7
p "

This subproblem is itself an optimization problem subject to linear equality
constraints. The Newton iterate =4 + pj, satisfies the conditions (2.7a-b) for
optimality of (4.7) if

Apr =b— Azy and g + Hipr = AT A1 (4.8)

After rearrangement, we again obtain the same linear system (4.6).

If z;, already satisfies the linear constraints, so that Az, = b, the Newton
step is constrained to lie in the null space of A. In this case, the first equation
in (4.8) becomes Apy = 0. If H}, is nonsingular, we may multiply the second
equation by AH, ! and use the fact that Ap; = 0, yielding the equations

AH'ATN,, = AH'g;
pe = H'ATA, - H.'g,.

5. Linear programming

The main focus of interior methods since 1984 has been on linear program-
ming. Much of the work on interior methods for LP can be viewed as an
application of the general theory for barrier functions (Section 3), with enor-
mous simplifications arising from the special properties of linear programs.
Before describing specific interior methods, we give the relevant background
on LP, emphasizing the special structure that is relevant to barrier methods.

It should be stressed in advance that hundreds of papers have been and
continue to be written about interior LP methods, so that preparation of a
complete list of references would be a daunting task. Fortunately, the ex-
cellent survey article of Gonzaga (1992) contains an extensive bibliography
covering most aspects of the subject through mid-1991. A general bibliog-
raphy on interior methods has been compiled by Kranich (1991), and can
be accessed via electronic mail.

5.1. Background

For various historical and computational reasons, linear programs are widely
stated in so-called standard form:

minignize Tz subject to Az =b, >0, (6.1)
where A is m x n. The nonnegativity bound constraints > 0 are the only
inequalities in a standard-form problem. It is customary to assume that the
rows of A are linearly independent. The point z is called strictly feasible for
the linear program (5.1) if Az =b and z > 0.
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A standard-form LP is a convex program (see Definition 10), and first-
order conditions are sufficient for optimality. Combining results for linear
equalities and general inequalities, we see that the feasible point z* is a
minimizer of the standard-form LP (5.1) if and only if, for some m-vector
y* and n-vector z*,

c=ATy* +25, >0, and zta:’:=0 fori=1,...,n.

The vector z* is the Lagrange multiplier for the inequality (simple bound)
constraints, and y* is the Lagrange multiplier for the equality constraints.
We note that z* and z* satisfy a complementarity relation (see (2.13c));
because of the special nature of standard form, the values of the variables
{z:} are also the values of the inequality constraints.

A well known property of linear programs is that, if the optimal objective
value is finite, a vertez minimizer must exist. For a standard-form LP, a
point =* > 0 satisfying Az* = b is a vertex if at least n — m components of
z* are zero. At a nondegenerate vertex :z:*, exactly n — m components are
zero. For details about linear programming and its terminology, see, e.g.,
Chviétal (1983) or Goldfarb and Todd (1989).

The LP (5.1) is traditionally called the primal problem. Its dual may be
written in the inequality form

max%mize bTy subjectto ATy <c, (5.2)
or in standard form:
mm;irznize bTy subjectto ATy+z=¢, z2>0. (5.3)

The vector z in (5.3) is called the dual slack. The solution y* of the dual is
the Lagrange multiplier for the m general equality constraints in the primal,
and the primal solution z* is the Lagrange multiplier for the n equality
constraints of the standard-form dual problem (5.3).

The termination criteria in many interior LP methods are based on an
important relationship between the primal and dual objective functions. Let
z be any primal-feasible point (satisfying Az = b, ¢ > 0) and y any dual-
feasible point (satisfying ATy < c), with z the dual slack vector ¢ — ATy. It
is straightforward to show that

e — by =22 >0. (5.4)

The necessarily nonnegative quantity cTz — bTy is called the duality gap, and
is zero if and only if x and y are optimal for the primal and dual.

Given a primal-feasible z and a dual-feasible y, the duality gap also pro-
vides a computable bound on the closeness of ¢Tz to the optimal value ¢’z*.
Assume that ¢’z — bTy = 8. Since eTz* = bTy*,

e —cz* =8+ - bTy*.
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Because the dua.l objective is maximized by y* for all dual-feasible y, we
know that 57y* > by, which means that bTy — bTy* < 0. Similarly, because
the primal obJectlve is minimized among all prlmal fea31ble z, cTx—cTz* > 0.
Hence a duality gap of 3 at (z,y) implies

0<clzr—cz* <. (5.5)

5.2. The central path

Suppose that we wish to apply a barrier method to a standard-form LP for
which the following assumptions are satisfied:

(a) the set of x satisfying Az =b, z > 0, is nonempty;
(b) the set (y, z) sat1sfymg ATy + z = ¢, 2 > 0, is nonempty;
(c) rank(A) =
Because the inequality constraints in a standard-form problem are ex-
clusively simple bounds, the corresponding logarithmic barrier function is
B(z,u) = ¢’z — p Y, Inz;. The barrier subproblem involves minimizing
B(z, p) subject to satisfying the linear equality constraints:
n
minimize ¢’z — p Z Inz; subjectto Az =5b. (5.6)
i=1
The gradient and Hessian of B(z, 1) for this case have particularly simple
forms:

VB(z,p) =c—pXle, V2B(z,p)=pX2, (5.7)
where X = diag(z;).

The barrier subproblem (5.6) has a unique minimizer if assumption (b) is
satisfied, i.e. there exist points that are strictly feasible for the dual problem.
(This result can be deduced from the special nature of linear programs and
Theorem 4.) The optimality conditions (2.7) for linear equality constraints
imply the existence of y such that the solution of (5.6) satisfies

c—puXle=ATy or c=ATy+puXle
Defining z = uX ~le, we may write
c=ATy+2z and Xz=pe.

These equations are reminiscent of the equations (3.47) that hold along
the barrier trajectory, since c is the objective gradient and the variables z
are also the inequality constraints. The central path for a standard-form LP
is defined by the vectors z(u), y(u) and z(u) satisfying

Az = b, >0 (5.8a)
Aly+z = ¢, 2>0 (5.8b)
Xz = pe. (5.8¢c)
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The central path plays a crucial role in many interior LP methods; see
Gonzaga (1992) for a detailed survey of methods based on the central path.
We stress that relation (5.8¢c) formally defines the concept of ‘centering’ z
and z, namely using the barrier parameter to control the distance of both
vectors from zero (the boundary). Furthermore, the objective value along
the path provides an estimate of the deviation from optimality; see (3.26).

5.3. The primal Newton barrier method

Assume that we are given a point z satisfying Az = band = > 0, and that we
wish to apply a barrier method to solve the standard-form LP (5.1). Using
the forms (5.7) for the barrier gradient and Hessian, the Newton subproblem
(4.7) for (5.6) is

minignize % up"X " 2p+ c'p— ppTX le subject to Ap=0. (5.9)

The first-order optimality criteria of (2.7) applied to (5.9) show that the
Newton direction p must satisfy

pX 2p+c—pXle= ATy (5.10)

for some Lagrange multiplier vector y. (We use y rather than A for the
Lagrange multiplier to retain consistency with LP notation.) Multiplying
through by X2 and noting that Xe = z, we obtain two expressions for p:

p = ‘—ILXz(ATy —c+pXle) (5.11a)

p = z+ iX2(ATy—c). (5.11b)

An expression for the Lagrange multiplier y is derived by multiplying
(5.10) by AX? and using the relation Ap = 0 to eliminate p:

AX2ATy = AX%c — pAXe = AX(Xc — pe). (5.12)

Because A has full rank and z # 0, the matrix AX2AT is positive definite.

Equation (5.12) has the familiar form of the normal equations for a lin-
ear least-squares problem with coefficient matrix XAT. The vector y can
therefore equivalently be represented as the solution of

minimize | XATy — (Xc — pe)||2. (5.13)

The residual vector corresponding to (5.13) is given by r = X ATy—(Xc—pe).
Applying (5.11a), we see that the Newton direction p satisfies

1
p= —X'I',
M

and is a diagonally scaled multiple of the least-squares residual.
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Alternatively, we can think of p and y as forming a combined vector
of dimension n + m that solves the linear equations corresponding to the
augmented system (4.6) for (5.9):

puX-?2 AT p\ [ —c+tpXle
(T T)(2)- (78 ) e

Since by construction Ap = 0, it follows that A(z + ap) = b for any step
o along p whenever Az = b. The pure Newton iterate for this problem (see
(4.3)) is £ = z + p; however, a step of unity may violate strict feasibility.
Because the constraints are linear, strict feasibility is retained if the step
taken along p is less than the step & to the boundary of the feasible region.
With simple bound constraints, & can be calculated directly: for all indices
t such that p; < 0, & is the smallest value of —z;/p;.

A model primal Newton barrier algorithm includes both ‘outer’ and ‘inner’
iterations. The outer iterations reduce the barrier parameter, and the inner
iterations apply Newton’s method to solve the current barrier subproblem
(5.6).

Primal Newton Barrier Algorithm
k — 0; po > 0; zq satisfies Azg = b and ¢ > 0;
while z;, is not sufficiently close to optimal for the LP do
1 — x50 0;
while zi is not sufficiently close to optimal for (5.6) do
Calculate the Newton direction p at zi;
it — 2t + o'pf, where o < & and B(zit!, u,) < B(zi, up);
1—1+1;
end while
Tpp1  Thi
Choose pg41 < pr; kK — k+1;
end while

The major computational effort associated with a primal barrier algo-
rithm is the calculation of the Newton direction. The equations satisfied by
the Newton direction can be written in a variety of theoretically equivalent
forms, each of which suggests different linear algebraic techniques; the linear
algebra issues will be discussed in Section 7.1.

The unspecified, implementation-dependent aspects of this algorithm in-
clude the selection of z¢ and pg, the strategy for altering the barrier parame-
ter, and the choice of termination criteria for the inner and outer iterations.
With suitable modification, this algorithm does not necessarily require a
strictly feasible point. See Gonzaga (1992) for references on approaches
that allow a general starting point.

With respect to the choice of the step «, it has been universally observed
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in practice that a very simple line search strategy of choosing « as a fixed
fraction close to one (say, 0.95 or 0.99) of the step & to the boundary almost
always produces an adequate sufficient decrease (see Section 4.2) in the
barrier function. In the extremely rare cases when this step is inadequate,
a standard backtracking line search may be used. (For nonlinear problems,
the issue of the line search becomes more complicated; see Murray and
Wright (1991).)

Affine scaling interior methods were originally derived in terms of scaled
steepest descent, and at first sight appear unrelated to barrier functions.
However, the primal affine scaling method corresponds to defining y from
(5.12) with p = 0. In general, an affine scaling method may be viewed as the
limiting case of Newton’s method applied to a barrier function. Gonzaga
(1992) discusses the history of affine scaling methods.

In the first few years following 1984, affine scaling techniques experienced
considerable popularity, in large part because of their simplicity, and were
among the most effective in practice. At present, primal-dual methods, to
be discussed in the next section, are accepted as the most efficient interior
methods for LP. Certainly they are the most widely implemented in major
software packages.

5.4. Primal-dual barrier methods

The primal Newton barrier algorithm just described finds a Newton step
in only the primal variables z; the Lagrange multiplier y arises from the
equality-constrained Newton subproblem (5.9). An alternative approach is
motivated by finding primal and dual variables z, y, and z that satisfy the
(rearranged) nonlinear equations from (5.8) that define the central path:

XZe— pe
&(z,y,2) = Az —b =0. (5.15)
ATy+z-c¢

Note that the second and third equations are linear; all the nonlinearity
occurs in the first equation.
Applying Newton’s method (4.1) to this system, we obtain

Pz Z 0 X Pr pe — XZe
Jl oy, |=]1 A 0 O Py | = b— Az , (5.16)
Pz 0 AT 1 P c—-ATy—z2

where J is the Jacobian of ® in (5.15) and p;, py and p. are the Newton
directions for z, y and z. Despite the difference in derivation, the linear
systems associated with the Newton step in a primal-dual method have the
same character as those in a primal method.
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The third equation in (5.16) gives the expression
p,=—ATp,+c— ATy — 2.

Substituting in the first equation to eliminate p,, we obtain an augmented
system involving p, and p,:

~1 T -1, _ T,
X1z A Pz _ uXte—c+ Ay (5.17)
A 0 —Dy b- Az
(see (4.6)). Since both z and z are strictly positive, the matrix X ~!Z may
be written as a positive diagonal matrix D?, with d? = z;/z;.

Using X ~1Z as a block pivot to eliminate p, from the second equation of
(5.17), the result is

AZIXATp, = AZ7 X (c— pXle~ ATy) + b — Az. (5.18)

As in (5.12), the matrix is symmetric and positive definite, with the form
AD?AT. Once p, is known, p, and p, may be calculated without solving
further equations.

Finally, if b — Az may be written as ADv for some vector v (for example,
if Az =b), the equations (5.18) are the normal equations for a linear least-
squares problem with matrix DAT; see (5.13).

Primal-dual algorithms typically have a form similar to the primal algo-
rithm given in Section 5.3. Most implementations choose separate steps for
the primal and dual variables, in each case to ensure a sufficient decrease
in some suitable merit function. When z and z are respectively primal-
and dual-feasible, the easily-computable duality gap provides a guaranteed
measure of the deviation from the optimal objective value; see (5.5).

Primal-dual methods of several varieties have been implemented, many
with great practical success. An important feature not discussed here is
the use of a ‘predictor—corrector’ technique closely related to extrapolation
along the trajectory. For detailed discussion of primal-dual methods, see,
for example, Lustig et al. (1990) and Mehrotra (1990).

6. Complexity issues

It is interesting as well as ironic that interior methods possess the same
property as the simplex method: they are much faster in practice than
indicated by complexity analysis. As we shall see, the typical upper bound
on the number of iterations required by an interior method is extremely
large for a problem of even moderate size. However, a lighthearted ‘rule
of thumb’ articulated by several implementors is that interior LP methods
tend to converge in an effectively constant number of iterations for many
problems. This discrepancy has yet to be explained rigorously.

A major reason for the widespread interest in interior methods has been
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their provable polynomial complexity. Although formal complexity proofs
are not typical in the numerical analysis literature, we have included one to
indicate its flavour.

6.1. The role of problem size

In complexity proofs, it is standard to assume that ezact arithmetic is used,
and that all data of the problem (i.e. the entries of A, b and ¢) are integers.
This is equivalent to assuming that the problem data are rational, since
rational values can be rescaled to become integers. We therefore assume, in
discussions of complexity only, that the entries of A, b and c are integers.

For a standard-form LP with n variables and m general constraints, the
worst-case complexity of the simplex method depends on the number of ver-
tices of the feasible region (which provides an upper bound on the number
of iterations) and on the number of arithmetic operations required to per-
form an iteration. Both of these numbers can be bounded by expressions
involving only the dimensions n and m.

When analysing the complexity of interior methods, however, a ‘new’ inte-
ger L makes an appearance. The usual interpretation is that L measures the
‘size’ of a linear program, and indicates the amount of information needed
to represent an encoding of the problem.

The exact definition of L varies somewhat in the literature. For example,
in Goldfarb and Todd (1989), the value of L for a standard-form LP with n
variables and m equality constraints is defined as

L=§:i]’log([aij|+l)+l], (6.1)

=0 j=0

where a;o = b; and ag; = ¢;. It should be stressed that L can be enormous
for problems of even moderate dimension.

The value of L enters the complexity analysis at both lower (termination)
and upper (initialization) extremes. The role of L in the initialization of
interior methods will be discussed following Theorem 9.

With respect to termination, Khachian (1979) showed that the smallest
possible nonzero variation in the objective function between any two distinct
vertices is expressible in terms of L. In particular, if z is any vertex, then ¢’z
is either equal to the optimal value c¢’r* or must exceed the optimal value
by at least 272L. This bound depends on the fact that an optimal vertex
is the solution of a linear system involving b and a nonsingular submatrix
of A. Under an integrality assumption on the entries of A and b, Cramer’s
rule shows that the exact solution of such a system is a vector of rational
numbers, such that the absolute value and denominator of each component
are bounded by 20,

A stopping rule that defines acceptable closeness to optimality is needed
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for interior methods because the exact solution of an LP (a vertex) cannot be
produced in a finite number of iterations by a method that generates strictly
feasible iterates. Given any feasible point z, a formal ‘rounding’ procedure
requiring O(n3) operations is known that will produce a vertex Z for which
cTE < cTz. If the objective value at an interior point is known to be within
272L of the optimal value, a single application of the rounding procedure
will produce an optimal vertex. This result follows from the property stated
above concerning the minimum nonzero variation in objective values between
vertices; see Papadimitriou and Steiglitz (1982) and Gonzaga (1992) for
details.

Although the optimal objective value is in general unknown, an interior
method that constructs primal- and dual-feasible points can use the duality
gap to provide a computable upper bound on the difference between the
current and optimal objective values; see (5.5).

6.2. A polynomial-time path-following algorithm

The material in this section closely follows Roos and Vial (1988); similar
proofs are given in Monteiro and Adler (1989a). See Gonzaga (1992) for a
survey of path-following strategies and the associated complexity bounds.

The argument typifies complexity proofs involving Newton steps and the
central path. The fundamental ideas are: first, defining a computable mea-
sure of closeness to the central path; second, showing that a Newton step
retains a sufficient degree of closeness to the path; and finally, decreasing
the barrier parameter at a rate that allows a polynomial upper bound on the
number of iterations required to reduce the duality gap to less than 2~0(),

An important element of the proof is a suitable definition of a prozimity
measure 6(z, ), which measures closeness to the central path. This quantity
is defined for a strictly feasible z and positive barrier parameter u. Let
y(z,p) and z(z, ) denote the vectors satisfying ATy + z = ¢ for which
| Xz — pe|| is minimized. This requirement means that y(z, u) and z(z, u)
solve an optimization problem with a quadratic objective function and linear
equality constraints:

min!/ifzrlize 12TX%2 - pz’z suchthat ATy+z=c (6.2)

Problem (6.2) is merely a conceptual formalism; the required vectors are
implicit in the calculations (5.11) and (5.12) associated with the primal
Newton direction:

y(r,p) =y and z(z,p) =c— ATy
The projected Newton direction p (5.11) may consequently be written as

p=z— % X2z, (6.3)
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where 2z is the optimal z(u) from (6.2).
The proximity measure §(z, ) is defined as

_ Xz
o(z,) = 1X ol = |

——e
7
If z solves (5.6), i.e. = lies on the central path, then é(z, u) = 0. The value
of 6 is thus a scaled measure of the Newton step, and indicates the distance
of z from the central path.
It is convenient to use the n-vector s whose ith component is s; = z;z;/u,
so that

, where 2z=z(z,u). (6.4)

s = % and z=pXls. (6.5)
The definitions of § and s imply the relations
n iz 2 n
=3 - 1) = s —el2 =3 (s — 12 (6.6)
i=1 i=1

It follows from (6.3) and (6.5) that the next iterate Z of a pure Newton

method is
2

f=a:+p=2:c—£pf=2x—Xs. (6.7)

Component-wise, the new iterate satisfies
T; = 2% — T;8; = (2 - s,')xi. (6.8)

Before treating the algorithm itself, we show that the duality gap is
bounded if the proximity measure is sufficiently small.

Lemma 2 (Bounds on the duality gap.) If z is strictly feasible, §(z, u) < 1
and the vectors y and z solve (6.2), then y is dual-feasible (i.e., ATy < ¢)
and

,u(n—&(z,u)\/'r_z) < dr-bly < u(n+6(w,u)\/ﬁ).

Proof. Since z > 0 and 6(z,u) < 1, it follows from the first equation in
(6.6) that z;z; > 0. Hence z > 0, which means that ATy < candyis
dual-feasible.

Because z and y are primal- and dual-feasible, we know from (5.4) that
the duality gap is given by T2, with z = ¢ — ATy. By definition of § and e,

Xz
@ mvi= | 2L = e| el
Applying the Cauchy-Schwarz inequality, we obtain
Xz Xz Tz
8z, =”——e e|| > eF (== —e)| = |=—= —n|,
(e, vi = |5 = elllel 2 |7 (57 = ¢)| = |5,
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which leads to

(IITZ

n—&(z, p)vn < o < n+6(z,pu)Vn.

Multiplying by g gives the desired result. O

We now begin a sequence of lemmas that prove crucial relationships about
Newton steps and the proximity measure. First, we show that, if the prox-
imity measure is sufficiently small for given z and u, the proximity measure
for the same value of u is squared at the next Newton iterate.

Lemma 3 (Quadratic convergence of proximity measure.) Let z satisfy
Az = b, £ > 0, and assume that §(z, ) < 1. Then the next Newton iterate
 (6.7) also satisfies AZ = b and £ > 0. Further, 6(z, u) < 6(z, u)2.

Proof. Because é(z,u) < 1, it follows from (6.6) that |s; — 1| < 1, so that
0 < s8; < 2for 1 <1< n. Relation (6.8) then implies that £ > 0. The fact
that AZ = b is immediate from the construction (5.9) of p to satisfy Ap = 0.

Because §(Z, 4) is the smallest value of | Xz/u — e| for all vectors y and
z satisfying ATy + z = ¢, we have

Xz
s <X -
(T, 1) m

Using the relations z = uX ~1s and #; = 2z; — z;s; gives
%‘3 =XX1s=(2X - X8)X s =25 S%.

Therefore, 6(z, u) < ||2s — S%e — ¢||, which means that

n

n n 2
8@, < Y (2= of =12 = (o= D' < (L= 1) = 6@ ).

i=1 i=1 i=1
The condition 6(x, 1) < 1 thus ensures that the pure Newton iterates con-
verge quadratically to the point z(x) on the central path. O

The next lemma develops a bound on the proximity criterion correspond-
ing to a reduced value of the barrier parameter.

Lemma 4 (Effect of a reduction in x.) If 0 satisfies 0 < 8 < 1 and 2 is
defined as (1 — ), then

gy ATV

Proof. 1t follows from the definition of § that, for 2z = z(z, u),

8(z, 1) + 64/n
R

6(x7ﬂ) < ﬁf - €
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Let
__1 _&r
T1Toe T p
sothat v>1and v —1=6/(1 —@). Then
Xz Xz
6(z, o SI——_——e = llv— —€e|| = llvs — €.
(z, ) 7 m I |

Applying the triangle inequality gives

6(z, @) < [v(s—e)+(v—1e
< vls—ell + (v=1)ell
6(z, p) + 6v/n
1-9

which is the desired result. O

We now combine the preceding two lemmas to obtain a bound on the
proximity measure for the Newton iterate with a barrier parameter that has
been reduced by a factor related to the problem dimension.

Lemma 5 (Bounds on the proximity measure.) Assume that §(z,u) < 1,
and let

1 1
0= —— h =2
N so that 6v/n 5

When £ is the Newton iterate (6.7) and g = (1 — 0)y, then 6(Z, z) < 3.
Proof. Applying first Lemma 4 and then Lemma 3, we have
B(EW) +OVF _ 6(z,u)? +6ym

T, {1 <
8@ h) < 1-9 ~— 1-9
1 1 5
...+_ PN
< 4 6= 12
= 1-6 1-6
< i

where the last inequality holds because 1/(1 —6) < §. O

An approximate path-following method based on reducing the barrier pa-
rameter and taking a single Newton step is obviously suggested by these
results. Assume that we are given a strictly feasible z( and barrier parame-
ter pg such that 6(zg, uo) < %; the latter condition can always be satisfied,
as we shall discuss after the proof of Theorem 9. The following algorithm
constructs a sequence of pairs (z, ux) such that every zy is strictly feasible,
i >0, 6(zg, pi) < %, and pr — 0 as k — oo.

Let g be an accuracy parameter, to be described later, and define 8 as

1/(6v/n).
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Algorithm I
k0
while ny; > e™?
Pt — (1 — O pi;
Tpyy — 28, — XP2/ 1y, Where zx = 2(zk, pi) of (6.2);
ke—k+1;
end while

An upper bound for the number of iterations required by Algorithm I is
given in the following theorem.

Theorem 9 (Worst-case number of iterations.) Define go = [In(npop)].
Then Algorithm I will terminate after at most 6(g + go)/n steps, and the
final iterate z and the corresponding y obtained from (6.2) satisfy

Iz — bTy < g e 9.
Proof. We know from Lemma 3 that every iterate zj is strictly feasible,
and from Lemma 5 that §(z, ux) < % The algorithm terminates when k&
satisfies nuy < e~9, where by construction px = (1 — 8)*ug. Applying the
definition of g, termination will occur when
npr = n(l —0)*pug < (1 - @)ke® <e9.
Taking logarithms, the termination condition is
-k In(1-6) > q+qo. (6.9)

Since —In(1 — @) > 6 for all § < 1, the inequality (6.9) holds if k8 > q + qo.
Using the definition of 8, we see that the algorithm terminates if &k satisfies

k> 6\/ﬁ(q + (IO),

which gives the first desired result.
For the final iterate zx, let yx = y(zk, ur). Lemma 2 implies that yj is
dual feasible and that

T — Ty < px (n + 6(zk, uk)\/ﬁ)-
Since nuy < e ? and 8(xk, pr) < %, rearrangement gives

6(mkuuk) 3 _
AR PR 2 aa
v )<z

Ty — by < e‘q(l +

which completes the proof. O

To conclude that this bound is polynomial, we need to connect L (6.1) to
both the initial barrier parameter po (which defines ¢g) and to the accuracy
parameter q.

The value of ug is related to L in detailed proofs by Monteiro and Adler
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(1989a, b), who show that any LP is polynomially equivalent (i.e. can be
transformed in a polynomial number of operations) to an LP of similar size.
For this related LP, a strictly feasible z and an initial pg = 202 are known
such that z( lies on the central path. With these choices of i and zy, the
value of gp is O(L), and 6(zg, o) = 0. It should be emphasized that this
value of pg is enormous, and would never be used in a practical algorithm.

Turning now to the accuracy parameter ¢, we know from our initial dis-
cussion of L that the algorithm should terminate when the duality gap is
less than 2=9(1), In Algorithm I, the duality gap is tested against e~9. Con-
sequently, ¢ should be chosen as O(L) to ensure that the rounding procedure
will produce an optimal vertex from the final iterate.

With both ¢ and g taken as O(L), the bound of Theorem 9 is indeed
O(+/nL) iterations. Finally, each iteration of the algorithm requires O(n3)
operations, to calculate p, y and z from (5.11) and (5.12). The total compu-
tational effort for Algorithm I is therefore O(n35L), which is (as promised)
a polynomial in the problem size.

Polynomiality has been proved for a wide variety of interior methods for
linear and quadratic programming. See, for example, Monteiro and Adler
(1989b), in which the nature of the ‘rounding’ required for QP is described in
detail. Various authors have proposed interior path-following methods for
convex nonlinear problems satisfying certain assumptions. Recent discus-
sion of these approaches is given in, for example, Nesterov and Nemirovsky
(1989), den Hertog et al. (1990), Mehrotra and Sun (1990), and Jarre (1991).
With these methods, polynomial bounds can be proved only on the num-
ber of iterations, since no rounding procedure exists for general nonlinear
problems.

7. Linear algebraic issues

A persuasive argument can be made that the practical success of interior
methods depends on numerical linear algebra. For very large problems,
even (say) 40 iterations of an interior method would be inordinately time-
consuming if the associated linear systems could not be solved efficiently
and reliably.

7.1. Linear algebra in interior LP methods

The linear systems in interior methods for linear programming have a strik-
ingly different nature from those associated with the simplex method. At
each simplex iteration, two (transposed) square m x m systems are solved,
and the matrix changes by only a single column per iteration. Typical imple-
mentations of the simplex method perform an initial sparse LU factorization
of the basis, followed by Forrest—Tomlin or Bartels-Golub updates. As an
aside, we stress that linear algebra in the ‘real’ simplex method bears almost
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no resemblance to a typical textbook tableau. Recent discussions of selected
linear algebraic issues in the simplex method may be found in Bixby (1990),
Duff et al. (1986) and Forrest and Tomlin (1990, 1991).

Interior LP methods have been of practical interest mainly for large prob-
lems, and we henceforth assume that the matrix A is large and sparse.
In most implementations to date, the Newton direction is calculated from
equations arising in two theoretically equivalent formulations:

(i) Normal-equation form, involving an m x m symmetric positive-definite
matrix AD?AT (see (5.12) and (5.18));

(ii) Augmented system form, containing an (n + m)-dimensional specially-
structured symmetric indefinite matrix (see (5.14) and (5.17)).

Least-squares problems such as (5.13) have primarily been solved by conver-
sion to (i) or (ii), although some interest remains in application of sparse QR
factorizations. A complete discussion of the relevant linear algebraic issues
for all these approaches is given in Bjorck (1991), along with an extensive
bibliography.

With either (i) or (ii), the following features are important:

e The n x n matrix D changes completely at every iteration, but its
elements are converging to quantities associated with z*;

e  The Newton direction need not necessarily be computed with high ac-
curacy, since it is only a means to follow the path. Unless there is a
complete breakdown in accuracy, the line search ensures progress for
any direction of descent with respect to the particular merit function.

The simplest and by far the most popular linear algebraic technique for
the normal-equation approach is direct solution: we explicitly form AD2AT
and compute its Cholesky factorization,

AD?AT = RTR,

where R is upper triangular. Sparse Cholesky factorizations have been
widely studied and carefully implemented in several sparse matrix pack-
ages. Comprehensive discussions are given in, for example, George and Liu
(1981) and Duff et al. (1986).

Most implementations of a sparse Cholesky factorization perform an ini-
tial symbolic analyse phase that constructs a pivot ordering intended to
produce a sparse factor R. When AD2AT is sufficiently positive definite,
all pivoting orders are numerically stable, so that the ordering need not be
altered later. Because only the diagonal scaling D changes at each iteration
of an interior LP method, a single analyse phase suffices for all iterations.
After a suitable ordering is determined, the triangular matrix R is calculated
using the numerical values in AD?AT.

Standard ordering heuristics, most commonly minimum degree and mini-
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mum local fill, have been very effective in interior methods. The calculation
of R has been organized in both ‘left-looking’ and ‘right-looking’ versions.
The best choice of ordering and organization has been found, not surpris-
ingly, to depend on details of the hardware such as vectorization and memory
hierarchy.

Although the barrier Hessian is nonsingular at strictly interior iterates, it
becomes asymptotically singular when the linear program is dual degenerate.
Many (some would say most) real linear programs display a high degree of
dual degeneracy, leading to obvious ill-conditioning in AD2AT. The small
number of observed numerical difficulties with the normal-equation approach
has therefore been a continuing surprise. A careful error analysis is likely to
explain this phenomenon, but it remains slightly mysterious at this time.

The major practical difficulty with forming the Cholesky factorization
of AD?AT is known as the ‘dense column’ problem. If any columns of A
contain a relatively large number of nonzeros, the matrix AD2AT is much
denser than A. (If A has even one entirely dense column, AD2AT fills in
completely.) To retain efficiency, some strategy must be developed to detect
and treat dense columns separately.

Suppose that A is partitioned into two subsets of columns, with a similar
partition of D:

A= (A; Ay), sothat AD?AT= A, D?AT+ A,DZAL

where A contains the dense columns. The hope is to solve systems involving
AD?AT without forming the matrix explicitly, using a Cholesky factoriza-
tion of the ‘sparse part’:

A, D3?AT = RYR,.

A direct strategy can be devised by observing that the solution p of
AD?ATp = d also satisfies

ADIAT A p\ _(d
(M ) (2)-(5) o

It is well known that the extended system (7.1) can be solved if we can solve
linear systems involving A; D?AT and the (negative) Schur complement

C = D;? + AT(A,D?AT)14,.
The matrix C can be expressed in terms of Ry as
C = D;* + AT(RTR,)'A, = D;2 + U™,
where U = R7T A,. The desired vector p is found by solving (in order)
R’{v =d, Cz=U, Rip=v—-Ux.

If the column dimension of A, is small, the positive-definite matrix C can
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be formed and factorized without undue effort. This technique for dealing
with dense columns is discussed in, for example, Marxen (1989) and Choi et
al. (1990).

A second approach involves applying an iterative technique such as the
conjugate gradient method. Given that the equations need not be solved ex-
actly, there is some hope that the required number of iterative steps will not
be too large on average. Because AD2AT is often ill-conditioned, precondi-
tioning is essential. An obvious source for the preconditioner is a ‘sparsified’
Cholesky factorization of AD? A7, such as the factorization of A; D?A7; see,
for example, Gill et al. (1986). Other strategies combining direct and itera~
tive techniques have also been devised; see Lustig et al. (1990).

A drawback with either strategy is that the matrix A;D?AT remaining
after removal of dense columns has frequently been found to be extremely
ill-conditioned or even numerically singular. A second problematic aspect is
that heuristic criteria must be developed to identify which columns qualify
as dense.

We now turn to formulation (ii) — solving an augmented system in which
the matrix has one of the forms

D=2 AT BI DAT
K= M= - . .
( A 0 ) o ( AD 0 ) (7.2)

The second matrix arises from a least-squares formulation, and the scalar 8
is a scaling factor included to improve stability. Its selection is a compromise
between preserving sparsity and maintaining stability; see Arioli et al. (1989)
and Bjorck (1991).

Both K and M are symmetric but obviously indefinite. (We shall refer to
K in the discussion, but most comments apply also to M.) The standard
direct method for solving systems of this form involves calculation of the
symmetric indefinite factorization

PTKP =LBILT

where P is a permutation matrix, L is unit lower-triangular, and B is block-
diagonal, with 1 x 1 or 2 x 2 blocks. For dense problems, P is chosen using
a stability criterion that determines whether to use a 1 x 1 or 2 x 2 pivot;
see Bunch and Kaufman (1977).

In contrast to the positive-definite case, it cannot be guaranteed that all
pivoting orders for a symmetric indefinite matrix are numerically stable.
The analyse phase for the symmetric indefinite factorization thus attempts
to choose a pivot ordering based solely on sparsity that will lead to low fill-in
in L. When the factorization itself is computed with the actual numerical
values, interchanges that alter the predicted pivot sequence may be required
to retain numerical stability.

The augmented system approach involves an increase in dimension com-
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pared to the normal equations, as well as a more complicated factorization.
Nonetheless, solving the augmented system should be more reliable numer-
ically, particularly in avoiding instabilities attributable to dense columns.
Very promising results have been reported by Fourer and Mehrotra (1990).

As a compromise between approaches (i) and (ii), some suggestions have
been made for working with ‘partially reduced’ augmented systems of the
form K in (7.2). The idea is to perform a block pivot in K with the ‘good’
part of D, simultaneously producing a smaller system and retaining numeri-
cal stability. In any such approach, the dense columns of A are placed in the
portion of K that is not factorized; see, for example, Vanderbei (1991) and
Gill et al. (1991). Alternatively, the indefinite system can be solved using
an iterative method with a sparse preconditioner; see Gill et al. (1990).

Although taking advantage of symmetry often leads to savings in storage
and computation, some linear algebra issues are simplified by ignoring sym-
metry. An approach that deserves exploration is the use of unsymmetric
but highly structured systems, such as (5.16).

Much opportunity clearly remains for improvements and refinements in
the linear algebraic aspects of interior LP methods.

7.2. Linear algebra for nonlinear problems

For nondegenerate linear programs, the results of Section 3.6 show that the
barrier Hessian is asymptotically nonsingular, since A (the Jacobian matrix
of the active constraints) has rank n. As soon as we consider nonlinear prob-
lems (including quadratic programming), however, in general the Hessian of
the barrier function becomes increasingly ill-conditioned as the solution is
approached along the trajectory Since the exact solution of an ill-conditioned
problem is by definition extremely sensitive to small changes in the data,
interior methods might appear to be fundamentally unsound.

Fortunately, a more optimistic view is justified by several observations.
Inherent ill-conditioning afflicts the barrier Hessian only ‘near’ the solution,
which is precisely where asymptotic properties of the Lagrangian function
and the barrier trajectory apply. In particular, a ‘good’ step toward z* from
a point sufficiently near z* is not poorly determined. The ill-conditioning is
consequently an artifact of the barrier transformation rather than inherent
to the constrained problem. In effect, the ill-conditioning gradually and
implicitly reveals subspace information whose asymptotic nature is known.

If the correct active set is identified, a highly accurate approximation to
the Newton step can be calculated in two orthogonal ‘pieces’ lying in the
range of AT and the null space of A, where the condition of the relevant
equations reflects that of the original problem; see Wright (1976). But since
a definitive property of interior methods is that they do not make an explicit
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identification of the active set, it is arguably inappropriate to make such a
prediction. More recent work on this issue has several flavours.

The Newton equations can be solved using a rank-revealing Cholesky
(or modified Cholesky) factorization with symmetric interchanges (Higham,
1990), where linear algebraic criteria are invoked to define numerical rank-
deficiency. When the condition of the Hessian becomes excessively large,
its Cholesky factors lead to bases for the required range and null spaces
(Wright, 1991).

If the nonlinear constraints are formulated in ‘standard form’, namely
as ¢(z) = 0, z > 0, the barrier transformation applies only to the simple
bounds. (Inequality constraints can always be converted to standard form
by adding nonnegative slack variables.) The resulting Hessian of the barrier
function asymptotically approaches the Hessian of the Lagrangian plus a
diagonal matrix, some of whose entries are becoming unbounded. In this
form, the ill-conditioning is concentrated entirely in large diagonal elements
of the Hessian, and does not affect the sensitivity of the solution of the
associated KKT system (Ponceleén, 1990).

Finally, in the spirit of seeking nonsymmetric matrices that may avoid
difficulties with symmetric forms, we recall from Section 3.5 that the matrix

[ H-Y MH:  —AT
AA c )’

which arises in a primal-dual characterization of the barrier trajectory, is
nonsingular at =¥, and does not suffer inevitable ill-conditioning. A nonlin-
ear primal-dual algorithm can thus be developed in which the linear systems
are unsymmetric but well-conditioned; see McCormick (1991).

It is still unknown which, if any, of these strategies will be most successful
in overcoming the difficulties with conditioning that plagued barrier methods
for nonlinear problems in the 1960s and 1970s.

8. Future directions

Many issues remain to be resolved for interior methods, even for linear pro-
gramming. At the most basic level, the problem categories for which simplex
and interior methods are best suited are not well understood. In addition,
the gap between worst-case and average-case performance has not been sat-
isfactorily explained.

One great strength of the simplex method is its efficient ‘warm start’
capability. Many large linear programs do not arise only once, in isolation,
but are modified versions of an underlying model. After each change in the
model, the resulting LP is re-solved. Because the simplex method can make
effective use of a priori information, it is not uncommon for the solution to
be found in a very small number of simplex iterations — many fewer than
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if the problem were solved from scratch. In contrast, the very nature of
interior methods is to move away from the boundary and then approach the
solution along a central path. No effective strategy has yet been devised
for allowing interior methods to exploit ‘strong hints’ about the constraints
active at the solution.

For nonlinear problems, researchers are returning with fresh enthusiasm
to old topics, such as the treatment of ill-conditioning, the choice of merit
function, and termination of the solution of each barrier subproblem. The
work of Nesterov and Nemirovsky (1989) suggests new, previously uncon-
sidered, barrier functions, which may be of practical as well as theoretical
significance.

It seems safe to predict that the field of interior methods will continue to
produce interesting research to suit every taste.
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