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UN' INTRODUZIONE ALLA TEORIA DELLE FUNZIONI DI MYBIUS

Marilena Barnabei
(Universita di Ferrara)
Andrea Brini
(Universita di Bologna)

Gian—-Carlo Rota
(Massachusetts Institute of Technology)

1. Introduzione

Le idee principali che ci sono servite da guida e che vengono
sviluppate in queste note sono le seguenti, In primo luogo si a-
dotta pienamente la dualitd tra il concetto di insieme parzialmen
te ordinato e quello di reticolo distributivo, idea che risale a
Garrett Birkhoff e che & stata ulteriormente sviluppata da M.H.
Stone, fino ad ottenere la versione definitiva nella tesi oxfor-
diana di Ann Priestley. Nel caso pill semplice degli insiemi par-
zialmente ordinati finiti, questa dualitd si riduce all‘osserva-
zione che ogni famiglia finita di sottoinsiemi di un insieme qual
siasi, chiusa per intersezione e unione - ma non sempre per com-—
plementazione — & funtorialmente isomorfa alla famiglia di tutti

i sottoinsiemi decrescenti di un insieme parzialmente ordinato.



Questo fatto si esprime in modo naturale nell'equivalenza tra la
categoria degli insiemi parzialmente ordinati finiti e la catego—-
ria dei reticoli distributivi finiti. 1In linea di massima, si
pud pensare che ogni proprietd combinatoria di insiemi parzialmen
te ordinati sia esprimibile in modo equivalente mediante i retico
1i distributivi. In generale, 1l'espressione di tali proprietd in
termini di reticoli distributivi & preferibile, non solo perché
permette a volte generalizzazioni al caso infinito, ma soprattut-
to perché si inserisce pil agevolmente nella problematica dell‘'al
gebra e della logica di oggi.

In secondo luogo, sviluppiamo il concetto di anello di valuta
zione di un reticolo distributivo, concetto che esprime in forma
algebrica un processo di linearizzazione noto da tempo in analisi
funzionale, cioé il passaggio da una misura su una famiglia di in
siemi all'integrale sull'anello di funzioni semplici ad essa asso
ciate. Questo processo di linearizzazione ci permette di studia-
re le valutazioni su un reticolo distributivo come funzionali 1li-
neari sull'anello di valutazione, in analogia con lo studio della
caratteristica di Eulero per le unioni finite di convessi - e piu
generalmente con i Quartermassintegrali di Minkowski - fatto da
Hadwiger e dalla scuola di Blaschke per la geometria integrale.

Infatti, ancora sulle orme della geometria integrale, riuscia
mo a definire un analogo combinatorio della caratteristica di Eu-
lero per i reticoli distributivi finiti (e quindi per gli insiemi
parzialmente ordinati), come la valutazione, evidentemente unica,
che prende il valore unita sugli elementi sup-irriducibili (o "co
ni") non zero. L'espressione di questa caratteristica di Eulero
mediante la funzione di M8bius non & che un'estrema generalizza-
zione della nota formula di Eulero-Schl&fli per i poliedri,

La teoria delle funzioni di MObius degli insiemi parzialmente
ordinati viene quindi sviluppata in base a questo legame fondamen

tale con la caratteristica di Eulero. Riusciamo cosi a ritrovare



in forma semplice e, vorremmo credere, definitiva, le identitd
scoperte finora per le funzioni di M8bius, nonché varie disugua-
glianze profonde dovute a C, Greene, e le eleganti applicazioni
geometriche dovute a T. Zaslavsky,

Nei paragrafi 3 e 4 sviluppiamo dettagliatamente la struttura
algebrica dell'anello aumentato di valutazione, introdotto da uno
di noi e poi studiato da L. Geissinger in tre eleganti lavori.
Troviamo cosi che con 1'uso sistematico dell'aumentazione si sem—
Plificano varie dimostrazioni. Si pud affermare che, con il con-
cetto di anello di valutazione aumentato, la classica dualitid in-
siemistico-booleana viene linearizzata.

Il presente materiale, con l'eccezione del paragrafo conclusi
vo riguardante le applicazioni della teoria delle funzioni di M8-
bius al problema classico dell'enumerazione delle regioni determi
nate da un sistema di iperpiani non in posizione generica nello
spazio affine o proiettivo, & stato oggetto di alcune delle lezio
ni del Corso CIME tenuto a, Varenna nell'agosto 1980,

La- lettura di queste note non richiede particolari conoscen-—
ze preliminari, al di fuori di alcune elementari nozioni di alge-

bra commutativa.

2. Reticoli distributivi ed insiemi parzialmente ordinati

Nel seguito, L indicherd un reticolo distributivo finito.

Un elemento pel si dice sup-irriducibile se p = avb im-

plica p =a oppure p = b,

Ltinsieme J(L) degli elementi sup-irriducibili di L, con
1l'ordine indotto, é un insieme parzialmente ordinato dotato di
minimo, Indicheremo con 3(L) lt'insieme parzialmente ordinato

ottenuto da J(L) togliendo il minimo,
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2.1. PROPOSIZIONE Ogni elemento del reticolo distributivo L
pud essere espresso in uno ed in un solo modo come sup di

elementi sup-irriducibili a due a due non confrontabili.

DIMOSTRAZIONE Essendo L finito, si riconosce immediatamente
che ogni elemento di L si pud esprimere come sup di elementi
sup-irriducibili; ci limiteremo percid a dimostrare 1l'unicitd del
la rappresentazione. A questo scopo, ricordiamo che, se P & un
elemento sup-irriducibile in L e p < avb, allora p <a OpPpu
re p <b. Supponiamo ora che {p1,p2,...,pn e {q1. Qyrecer
9 siano insiemi di elementi sup-irriducibili a due a due non
confrontabili, tali che

P1VP2\/..-an=q1vq2v...\/qk o

Grazie all'osservazione precedente, si ottiene, ad esempio, 1, <

p1 s d'altra parte
P, = (p1/\ (q2v ceev g )V q,

da cui si deduce p_l = q, . Iterando questo ragionamento, si pro

la tesi,
va la -

Sia P un insieme parzialmente ordinato finito. Un sottoin-
sieme I di P si dice ideale se x < yeI implica xeI .

La famiglia #(P) degli ideali di P , con le operazioni di
unione e intersezione, risulta essere un sottoreticolo dell'alge-
bra di Boole su P , ed & quindi un reticolo distributivo.

Un sottoinsieme F di P si dice filtro se. x > yeF impli-
ca xeF.

Un ideale I di P si dice principale se esiste peP tale
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che I =§xe P; x < p% . Analogamente, un filtro F di P si di-

ce principale se esiste peP tale che F = %xe Py x> p} .

2.2. PROPOSIZIONE Sia L un reticolo distributivo finito, sia
3(L) 1'insieme parzialmente ordinato dei sup-irriducibili
di L privato del minimo, e sia j(E(L)) il reticolo degli
ideali di J(L). Allora, L e .#(J(L)) sono isomorfi.

DIMOSTRAZIONE L'applicazione

L — 2(J1)

x —> %yef(b); y = X}

& biiettiva e preserva 1l'ordine, quindi é un isomorfismo di reti-

COll.-

2.3. PROPOSIZIONE Sia P wun insieme parzialmente ordinato fi-
nito, e sia #(P) il reticolo distributivo degli ideali di

P. Allora P e 3(,¢(P)) sono isomorfi,

-

DIMOSTRAZIONE E' sufficiente osservare che gli elementi di

3(1 (P)) sono tutti e soli i sottoinsiemi di P della forma

IPZ{XCP; xjp% ’

con peP, Si verifica immediatamente che 1l'applicazione

P — J(#(P))

—_ T
P p

& biiettiva e preserva 1'ordine..
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2.4, PROPOSIZIONE Sia P un insieme parzialmente ordinato fi-

. x .
nito, e P il suo duale d'ordine. Allora .}(Px) & i1

duale d'ordine di ¢ (P).

-

. 3 . . . o .
DIMOSTRAZIONE Osserviamo che #(P") & il reticolo dei filtri
di P. Poiché l'insieme complementare di un ideale & un filtro e

viceversa, l'applicazione

#(B) — 4(P")
I —» P-I

risulta un antiisomorfismo di reticoli..

siano L1, L2 reticoli finiti., Unt'applicazione

si dird u-z morfismo di reticoli se & un morfismo reticolare e fa
corrispondere il massimo di lﬁ al massimo di L2 e il minimo di

L1 al minimo di L2.

2.5, TEOREMA La categoria dei reticoli distributivi finiti con
gli u-z morfismi & funtorialmente equivalente alla catego-
ria degli insiemi parzialmente ordinati finiti con i morfi-

smi d'ordine,

DIMOSTRAZIONE siano P1.P2 due insiemi parzialmente ordinati

finiti, e sia

tP. —> P
a: P, 2

un morfismo d'ordine, Siano J(P1) e j(Pg) i reticoli degli
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ideali di P1 e PQ, rispettivamente. Definiamo un'applicazione

at : #(P)) —> J(P_))

2

ponendo

a' (1) = {xc P1; a(x) e I}

dove ICJ(Pz); a' risulta evidentemente un u-z morfismo di re-
ticoli.
Viceversa, siano L1, L2 reticoli distributivi finiti, e sia

: —
B:L, L,

un u-z morfismo; definiamo un'applicazione
pr:j,) — J@,)
ponendo
B (p) = mingxe F(1,); B(x) = B}

dove pe\'f(Lg) .

La definizione di B' & ben posta, in quanto, se x, ye€ 3(L1)
sono tali che B(x) = p = B(y) e sono minimali rispetto a tale
condizione, allora B(xAay) =P 3 Sia XAy = p1vp2v cesV P,
con p, sup-irriducibile per ogni i. Poiché p & a sua volta
sup-irriducibile, deve esistere un indice j tale che E(Pj) =P
dato che x,y sono minimali, si ha necessariamente x = Pj =y .

si verifica poi immediatamente che B' & un morfismo d'ordi-
ne.

Utilizzando le costruzioni precedenti si completa la dimostra

zione..
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3. Coni di valutazione

sia A un anello, e sia ¢ una aumentazione per A, cioé
un morfismo di anelli da A all'anello Z degli interi.
Definiamo ora una nuova operazione su A, che chiameremo mol-

tiplicazione di Geissinger, e indicheremo con %, ponendo

axb = ¢(a)b+ace(b)-ab
per ogni a,beA.

3.1. PROPOSIZIONE (A, +, %) & un anello; inoltre, (A, +, X) &

commutativo se e solo se A & commutativo,

DIMOSTRAZIONE Per ogni a, b,ceA si ha:

i) ax(bxc) = ax(e(b)c + be(c)-bc) =
= ¢(a)e (b)c + e(a)be(c) — ¢(a) bc+ae(b) e(a) +

+ as(b)e(c)-ac(b)e(c)-ae(b)c—-abe(c)+ abc .

L'espressione cosi ottenuta & una funzione simmetrica in

a, b, ¢, quindi
ax(bxc) = (axb)xc .

ii) ax(b+c) = e(a)(b+c)+a(e(b)+e(c))-a(b+c) =

= ¢(a)b+e(a)c+ ae(b) + ae(c)- ab-ac ;
(axb)+ (axc) = e(a)b+ace(b)-ab+e(alc+as(c)-ac .

Analogamente si dimostra l'altra legge distributiva.
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Lt'ultima affermazione dell'enunciato segue direttamente dal-

la definizione dell'operazione x ‘m
3.2. COROLLARIO L'aumentazione ¢ di A & un'aumentazione per
l1t'anello (A, +, %) . Inoltre, la moltiplicazione di Geis-

singer di (A, +, x) & la moltiplicazione di A.g4

Sia A wun anello con aumentazione ¢ ., Un elemento ze€A

si dird integrale se risulta:

i) e(z) = 1

ii) e(a)z = az per ogni a€A .

3.3, PROPOSIZIONE Sia 2z un integrale di A; allora, 2z @&
iielemento neutro dell'operazione %, Viceversa, se A
possiede elemento neutro moltiplicativo , , questo é un
integrale per (A, +,%). In particolare 1l'integrale, se
ésiste, é unico..

Un semianello S(+, *) sard nel seguito una struttura dotata

di due operazioni tali che

i) s(+) ed sS(+) siano semigruppij;

ii) in s(+) wvalga la legge di cancellazione;

il

iii) a(b+c)
(atb)c

ab+ ac

ac + bc

i

per ogni a,b,ceS.
Un'aumentazione di S sard un'applicazione

s S — N
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che risulti un morfismo di semianelli.

Un cono di valutazione & un semianello commutativo unitario

S con una aumentazione ¢ , dotato di integrale, e tale che sia

definita in S un'operazione x che soddisfi 1'identita:
axb + ab = ae (b) + ¢(a)b

per ogni a,be S,
Osserviamo che, nelle precedenti ipotesi, la struttura (S,+,%)
risulta anch'essa un cono di valutazione,

siano 8 1’ 32 coni di valutazione; un'applicazione

. —_—
(1 31 32

si dird morfismo di coni di valutazione se ¢ & un morfismo di se

mianelli, ed inoltre:

1}

p(a) xp(b) 3
¢ (a)

i) p(axb)

[}

ii) e(9(a))

per ogni a,b e:S1 .

3.4, PROPOSIZIONE (Principio di inclusione-esclusione)
Sia S un cono di valutazione, e siano a_, a.jeeesa_€8S.

17 72 n
Allora:

X vee X + ela, )e(a. eee A cee A sse & +
a, Xa,x a, E (al) ( J)a,' a; j n

i<j
+ z _ s(ai)e(aj)S(ah)E(ak)a1...ai...aj...ah...ak...
i<j<h<k
P A I e(ai)a1 ceedyees an +

i
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+ § 8(3.)&(3.-)6(3.) a 0005-0005-000; ceed t o4,
i<j<x i J k 1 i J k n
DIMOSTRAZIONE Segue per induzione su n.g
Sia L un reticolo distributivo finito,

consideriamo il semigruppo abeliano libero su L e definiamo

su questo semigruppo una struttura di semianello ponendo
X*Y = XAY

se x,yelL , ed estendendo il prodotto cosi definito per lineari-
tid. Tale semianello sard indicato con N@,a .

Consideriamo ora le congruenze
(x) XVY + XAY = X+Yy
per -x,yel.

Osserviamo che le congruenze (x) sono compatibili con la
struttura di semianello, in quanto, per ogni aeL e per ogni

x,y€ Lz

a(xvy+xay) = (aax)v (aray) + (arx) A (ary)

]

a(x+y) = (aax) + (any) .

Quindi, & ben definito il semianello quoziente di ]N[:L,fz] ri-
spetto alle congruenze (¥). Tale semianello si indicherd con
v(L).

Diremo elementi puri di V(L) quelli che sono immagine di

elementi di L nell'immersione canonica L - V(L) .

Definiamo ora un'applicazione:
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e: V(L) - N
nel modo seguente:
i) e(x) =1 se x & puro;
ii) e(z xi) = 2 g(xi) con x, puro per ogni i.
i i

¢ risulta percid un'aumentazione per V(L) .

Si ha poi immediatamente che il massimo u del reticolo corri
sponde alltunitd del semianello, e che il minimo 2z del reticolo
corrisponde all'integrale del semianello, cioé ¢(z) =1 e
z*x = e(x)z per ogni xeV(L).

Definiamo ora un‘'operazione su V(L), che indicheremo con x,

nel modo seguente:
XXY = XVy se X,y sono puri

i,j

Ex) x @y =L vy
1 J

dove xi,yj sono puri per ogni 1i,j.

Questa definizione non dipende dalla rappresentazione median-

*

te elementi puri che é stata scelta, poiché, se a,b,c sono pu-

ri, si ha

av(bvec + bac) = av(b+c) .

3.5. PROPOSIZIONE se f,gev(L) si ha:

Frg+ £g =Ffe(g)+ e(f)g .

DIMOSTRAZIONE ~ Siano £ = ) X s 9= )} Yi» X;»y; Puri, Allo-
i 3
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ra

fxg+ fg E : (xivyj)+ E (xi/\yj) =3 (x; + yj) =
l'J 1,j i’j

W) Lxve®) Ly .
i J

Di conseguenza, V(L) risulta un cono di valutazione.
Diremo cono ridotto del reticolo distributivo L il semianel~
1o V,(L) quoziente del cono di valutazione V(L) rispetto al

semiideale generato dall'integrale z:

v, (L) = v(L)/<z> .

3.6. PROPOSIZIONE Sia P un insieme parzialmente ordinato fi-
nito, e #(P) il reticolo distributivo degli ideali d'or—
dine di P,
Una funzione
f:P »> I

& decrescente se e so0lo se esistono Xqr Xpreeas X € #(P)

e c1,..., cn.ell tali che

n

)
]

c. I
=1 1 xi

dove Ixg & la funzione caratteristica dell'ideale Xg e
DIMOSTRAZIONE Sia f: P = N decrescente, Dato che P @& fi-

nito, £ assume un numero finito di valori non nulli; siano

v1 < v2 <eeo <vn questi valori, Poniamo
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Ao =<§PeP; £(p) >0%

Ai={PeP; f(P)>V'} 1= 15000y D=1

i
Ciascuno degli insiemi A, A1,... ’ An—1 & un ideale d'ordi-

ne di P, La funzione

f1 = f-v1 IAo

& anch'essa decrescente, ed inoltre

-1
£(p) ~ v, se pe i&=}1 Ay

£ (p) =
\0 altrimenti

Per induzione si ha allora

£=v I+ (v2—v1) Ip teee® (vn_1—vn__2) TAp-q *
Dato che ciascun Ai & un elemento di ¢ (P) , lt'affermazione

& vera.
Viceversa, & ovvio che ogni IA » con Ae #(P), & una fun-

zione decrescente su P, -

Da questo risultato si deduce il seguente teorema di struttu

ras

3.,7. TEOREMA Per ogni reticolo distributivo finito L, il cono

ridotto V,(L) @& isomorfo al semianello delle funzioni de

crescenti sullt'ordine parziale J(L) , a valori in N.p
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4, Anello di valutazione di un reticolo distributivo

Sia L un reticolo distributivo finito ed M un semigruppo
abeliano, nel quale valga la legge di cancellazione, Una valuta-

zione su L & una funzione
£f:L — M
tale che
f(avb) + £(anb) = £(a) + £(b)
per ogni a,b nel reticolo.
Se poi f:L - M & una valutazione che associa al minimo
z di L l'elemento neutro del semigruppo M, f si dice misura.

Sia A un anello unitario; una valutazione f£:L - A si di

ce moltiplicativa se, per ogni x, yel , risulta

F(xay) = £(x) £(y) .

4,1, PROPOSIZIONE L'immersione canonica

i:L = v(L)

del reticolo distributivo L nel suo cono di valutazione &
1a valutazione universale su L, cioé, per ogni semigruppo

M e per ogni valutazione
f:L > M ,

esiste un morfismo di semigruppi

@: V(L) = M



22

tale che

£ = Qoi .

DIMOSTRAZIONE Definiamo ¢: V(L) == M nel modo seguente:
1) p(x) = (T (%) se x & puro;

2) se x=Zak, con a, puro per ogni k ,
k

poniamo

P00 =7 £G @) .

Dato che f£ & una valutazione, questa definizione non dipende

dalla rappresentazione di x mediante elementi puri..

4,2, PROPOSIZIONE Un morfismo di reticoli distributivi finiti

induce un (unico) morfismo di coni di valutazione
LIV —
g2 v(L,) v(L,)

tale che
@' o i1 = 12 oQ ,
dove i1,i2 sono le immersioni di L1 in V(L1) e di

L2 in V(L2) , rispettivamente.

DIMOSTRAZIONE E' sufficiente osservare che, prolungando per 1i

nearitd la ¢ a ]NEJ,/Q , Si ottiene una funzione che rispetta
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le congruenze

avb+aab = a+b

e che quindi & ben definita su v(L). g

4,3. PROPOSIZIONE siano L1, L2 reticoli distributivi, e sia
L —
gt V(L) > V(L)

un morfismo di coni di valutazione, Allora esiste un uni-

co morfismo di reticoli
(p:L1 —> L
tale che

q"oi1_= i2oq) ,

2
V(L1) e di L2 in V(L2) , rispettivamente,

dove i1,i denotano le immersioni naturali di L1 in

DIMOSTRAZIONE E° ovvio che gli elementi puri di V(L1) e V(L2)
sono tutti e soli gli elementi di aumentazione 1. E' quindi
sufficiente provare che ¢' muta elementi puri in elementi pu-

ri, Ma, se xe:V(L1) , ed x & puro, si ha
X*X = X

che implica

P (x) pr(x) = ¢'(x)

da cui:
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20 (x))° = €9 (x)

quindi
E(p(x))=1 .

Sia L un reticolo distributivo finito; consideriamo il grup-
po abeliano libero su L. Tale gruppo si pud dotare di una strut
tura di Z-algebra mediante 1l'operazione di prodotto indotta dal-

1'inf A del reticolo. Questa algebra si dice algebra di semi-

gruppo di L, e si indica con zZ[L,A| . sia I(L) 1'ideale di
ZE..,A] generato dagli elementi del tipo

avb + aab-a-b
con a,bel . L'anello quoziente
W) = z[L,4] /1(1)

si dird anello di valutazione di L., Gli elementi di Ww(L) im~

magine degli elementi di L si diranno elementi puri.

4.4, PROPOSIZIONE sia L un reticolo distributivo finito, e

sia M un gruppo abeliano. Per ogni valutazione
f:L > M
esiste un morfismo di gruppi
p:w(L) = M

tale che

£ =@ei
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dove i & l'immersione canonica di L in Ww(L).

DIMOSTRAZIONE Analoga a quella della Proposizione 4.1.g

Analogamente a quanto fatto per il cono di valutazione V(L) ,

definiamo 1l'aumentazione

et W(L)—> %z

nel modo seguente:

i) ¢(x) =1 se x & puro;

e

ii) ;_(Z xi) = 2 e(xi) se X puro per ogni i.
i i

Dal momento che W(L) & un anello con aumentazione, si pud

definire in esso la moltiplicazione di Geissinger X @
axb =a ¢(b) + e(a)b - ab
per ogni a,bew(L) . Ovviamente, se a,b sono puri, risulta

axb = avb
e, se a = Z X5 b = Z yj , dove xi,yj sono puri, si ha:
i J
axb = E (xivyj) .
i,

4,5, PROPOSIZIONE L'immersione canonica

j:v(L) - w(L)

& un morfismo di coni di valutazione. g
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Osserviamo che la costruzione di Ww(L) pud essere ripetuta

utilizzando l'operazione sup di L in luogo dell'operazione inf;
K3 - LY x

si ottiene cosi un anello W (L), che gode evidentemente delle

stesse proprietd di Ww(L). Pid precisamente:
4,6, PROPOSIZIONE L'applicagione

T w(L)y — w(L)
tale che

T(x) = u+2z-Xx

& un isomorfismo involutorio di anelli,
DIMOSTRAZIONE E' sufficiente osservare che

T(xAy) = 2+ u- (XAY) = 2+ U+ Xvy~-X-Yy =

= (z+u-x)v(z+u-y) = ©(x)v 1(y) .

4.7. PROPOSIZIONE Gli elementi di W(L) che corrispondono

agli elementi sup-irriducibili di L costituiscono una ba-

se per W(L).

DIMOSTRAZIONE

i) gli elementi sup-irriducibili di L sono ovviamente linearmen

te indipendenti in W(L) ;3

ii) sia xel, non sup-irriducibile, e sia

X = p1VP2V-loVPn

con Poreses Py sup~irriducibili e non confrontabilij grazie
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al principio di inclusione-esclusione, in W(L) , si ha:

= + teoot - A - ~eee T * 0o H
x P1 P2 Py P1 P2 P1/\P3 P1/\P2/\P3 H
ciascuno degli addendi al secondo membro & strettamente mino-
re di x ; ripetendo il procedimento per ogni addendo che non
sia sup-irriducibile, dato che il reticolo L @& finito, otte-

niamo
X = q1+q2+...+ 9

con g reees G sup—-irriducibilis

iii) dato che gli elementi puri generano Ww(L), l'affermazione &

vera. g

4,8, PROPOSIZIONE Sia L un reticolo distributivo finito, Ogni
valutazione su L & determinata dai suoi valori su J(L) ,

® questi valori possono essere assegnati arbitrariamente,

DIMOSTRAZIONE Segue dal fatto che J(L) €& una base per WwW(L) ,
e che ogni valutazione f:L = A si pud esprimere nella forma

Poi, dove ¢:W(L) > A & un morfismo di gruppi.

4.9, COROLLARIO Se J(L) & un inf-semireticolo, allora J(L)
& un inf-sottosemireticolo di L, e W(L) & l'algebra di

semigruppo di (J(L),A).

DIMOSTRAZIONE Indichiamo ¢on A l'operazione di inf in L, con
\/I\ l'operazione di inf in J(L). Siano p,qe J(L) 3 supponiamo

che

p§q<p/\q=t .
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D'altra parte si avra

t= Va e 0
a1 5 v van

con a,ra ...y 2, € J(L) 3 questo implica

A
P T q <ay

per qualche i, il che & assurdo, Di conseguenza
P 6~q = PAaq .

La seconda affermazione segue dal fatto che gli elementi di

J(L) costituiscono una base per W(L) m

4,10. TEOREMA sia L un reticolo distributivo finito; L si
pud immergere in un'algebra di Boole finita, B(L) , di
rango IJ(L)' .

[N

DIMOSTRAZIONE E' sufficiente osservare che, per il Teorema 2.5,
L @& isomorfo a un sottoreticolo dell'algebra di Boole dgenerata

dagli elementi di J) ‘m

4.,11. PROPOSIZIONE Sia L un reticolo distributivo finito, e
B(L) 1'algebra di Boole generata da J(L)3 allora W(L)

e W(B(L)) sono isomorfi.

DIMOSTRAZIONE Segue dal fatto che
7] = |3eE)]

e quindi i due anelli di valutazione sono generati dallo stesso

numero di elementi..
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5. La funzione di M8bius

Sia L un reticolo distributivo finito, e sia J(L) 1ltinsie-
me parzialmente ordinato degli elementi sup—irriducibili di L,

Per ogni pe:]:(L) , 1tinsieme

{xeL; x < p%

ha un massimo, che indicheremo con Jp. Osserviamo inoltre che,
se p,,. PQ,..., p, somo gli elementi sup-irriducibili di L tali

che pi<p per ogni i, allora
ap:P-]VPQV-a.an .
Nell'anello di valutazione Ww(L) , definiamo
e = - .
p-P-OP

Poniamo inoltre

5.1, PROPOSIZIONE L'insieme

{ep; peJ(L)%

& una base di idempotenti ortogonali per W(L). Inoltre,

per ogni xe¢L , risulta

x=Z_eP .

P<x
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DIMOSTRAZIONE Innanzi tutto osserviamo che, per ogni pe J(L),
si ha:

2
ey ey = (p-9p)° = pAp +3PAQpP-2padp = P=3Jp = e,

e, per ogni p,qeJ(L) , P # q , risulta
pAq=0padqg ,
da cui
ey &= (P-9p)(q-9dq) = PAq+OpAdq-0PAq-Padq = 0 .

Inoltre, per ogni xel , risulta

x=Y_ e

p<x

infatti, supponiamo vera 1'affermazione per ogni yeL, y<x3}

se x non & sup-irriducibile, avremo x = avbj} se

a=2_e, b=) e

P<a q<b

allora

anb=(3_e)Q _e) =) _ e

p<a q<b P<aib

poiché gli ep sono idempotenti ortogonali; quindi

Xx = a+b-aab = z eP .
PL<x

Se invece x & sup-irriducibile, si ha:
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XxX=e +0x ,
x
dal momento che 0x < x , la tesi & vera. g

Dato che gli elementi di J(L) sono una base per Ww(L) , sa-

. .
ra in particolare

e, = E u(q,p) q
q<p
qeJ (L)

per ogni pe J(L). I coefficienti u(q,p) sono evidentemente

numeri interi, Per convenzione, poniamo
u(q,p) = 0 se qfpP .
Abbiamo quindi:

5.2. PROPOSIZIONE Per ogni xelL si ha

x=2 __ wpap .
P,qeJ(L)
a<x

DIMOSTRAZIONE Segue dalla Proposizione precedente e dalla de-

finizione di u(p,q) ‘m

5.3, PROPOSIZIONE Per ogni a,beJ(L) si ha:

—/0 se a#b
Z_ P(va)“\1

a<x<b se a=b .,
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DIMOSTRAZIONE Senza perdita di generalitd, supponiamo che a

sia il minimo del reticolo L. Abbiamo quindi:

e a-= Z_ p(x,b)(xra) = a- E_ p(x,b) .

a<b x<b

Ma e a= e(eb)-a=0 se b # a , mentre eca=aj da qui

segue 1lt'affermazione. g

5.4, PROPOSIZIONE Per ogni a,be J(L) si ha:
0O se a#hb

se a=b .,

DIMOSTRAZIONE Per ogni pe J(L) si ha

e =)  u(xp)x 3

P %%

sia qeJ(L) . Allora

Q=T e, =3 T ulxplx -

P=q P<q Xx<P

=3 1> wGP)|x s

X2q [X<p<q

la tesi segue dal fatto che x e g sono linearmente indipenden

ti per ogni xeJ(L), x#gq ‘m
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Sia P un insieme parzialmente ordinato finito; in base al-

le considerazioni precedenti resta definita una funzione

L:PxP —Z

che diremo funzione di M8bius di P. Osserviamo che la funzione

di M8bius & 1l'unica funzione soddisfacente le seguenti condizio-

ni:
M1) u(x,y) = 0 se xfys
M2) p(x,x) = 1 per ogni xeP 3
M3) E p(x,z) = O per ogni x,yeP, x¥vy.

x<z<y

>

A X .
Se P & un insieme parzialmente ordinato finito e P e il
. X . . .
suo duale d'ordine, indichiamo con p la funzione di M8bius
. H
di P .

5.5. PROPOSIZIONE Per ogni x,yeP , si ha:

u*(x,y) = p(y,x) .

DIMOSTRAZIONE Definiamo una funzione
¥
V:iP xP ~> Z

ponendo

v(x,y) = P-(y'x) .

Abbiamo allora che » verifica le condizioni M1), M2), M3), e

. . X
quindi & la funzione di M&bius di P ‘w
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Ricordiamo che, in un reticolo distributivo finito L, si de-
Finisce rango la funzione che ad ogni xel associa la lunghezza
di una catena massimale tra il minimo di L ed x . Osserviamo
che, dato che ogni reticolo distributivo & modulare, la funzione

rango & una valutazione su L,

5.6, PROPOSIZIONE Sia L wun reticolo distributivo finito, ed r

la sua funzione rango, Allora, per ogni xeL, si ha:

r(x) = Hpei(L); p :xH .

DIMOSTRAZIONE Consideriamo lt'applicazione
f:L ~—> Z

£(x) = ]{pe&(n): p < x}l

e proviamo che & una valutazione., Infatti, se a,bel e pe J(L)

& tale che p <avb, allora p <a oppure p <b , da cui

f(avb) + £(aab) = £(a) + £(b) .

A questo punto & sufficiente dimostrare che f ed r assu-
mono gli stessi valori su J(L). L'affermazione & vera per gli
elementi di rango zero ed uno; per ipotesi di induzione, supponia
mo 1'affermazione vera per gli elementi di J(L) di rango <h .
sia aeJ(L), r(a) = ht1 , e sia b <a , tale che r(b) =h .

Allora
%xe}(L); xja%={a}\){xe3(l,); x_<_b}

quindi la tesi segue per induzione.g
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La valutazione X definita sul reticolo distributivo finito

L come segue:

se pej(L)

[t}
-

X(p)
X(2)

ll
o

dove 2z & il minimo di L, si dice valutazione caratteristica
di L.

Osserviamo esplicitamente che, se j(L) & un complesso sim-

pliciale, in base alle considerazioni precedenti si ha che X (u)
(dove u & il massimo di L ) & la caratteristica di Eulero del

complesso simplicijale Jw) .

5.7. PROPOSIZIONE Per ogni yelL, si ha:

Xy) =- 2__ w(z,@) .
qeJ (L)
<y

Inoltre, se pej(L) , risulta

X©p) = 1+p(z,p) .

DIMOSTRAZIONE Applicando X ad ambo i membri dell‘'uguaglianza

y= 2 umaqrp

Ptqu(L)
q<y
si ha
X(y) = 2 u(prq) = - 1__ w(z,@) .
P»qeJ(L) qeJ(L)

<y
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Se poi y = 9p :

X@p) = - 2 u(z,q) = u(z,2) +u(z,p) .
qeJ (L)
g<p

5.8. TEOREMA (Identitda di Xlee) Sia S un inf-semireticolo,
e siano x, A r85reeer @, b1, b2,..., bm elementi di s ta

1i che x> aj_’bj per ogni i,j . Allora, nell'algebra

di semigruppo Z [s,&l, si ha:
Ti—r(x—ai) +]:I.(x—bj) - (x- i,/j (aiAbj)) =

= rT(x—ai)TT (x—bj) .
1 J

DIMOSTRAZIONE Senza perdita di generalita, possiamo supporre S
finito. Per il Corollario 4.9 abbiamo che, identificando un ele-
mento di S con l'ideale (principale) da esso generato, si ottie
ne un isomorfismo tra 2z[S,A] e W(}(S)) . In quest'ultima alge
bra, 1'affermazione del teorema si scrive come

(x-‘i’ ai)+(x-3/ bj) - (x-—i\'/j (ai/\bj)) =

=x- (Y ai)V(S’ bj)

dove v indica l'operazione di sup in #(s) . Quest'ultima i-

dentitd & vera, in quanto, in #(S) :

i\,/j(ai/\bj) = (‘:{ ai),\(s’ bj) ‘.
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PROPOSIZIONE Sia L un reticolo distributivo finito tale
che J(L) risulti a sua volta un reticolo; per ogni p.'.
Pyreces preJ(L) , Sia y il sup in L di p1,p2,....pr.
Allora

X(y) = THe,-Cat e, ...

dove Cy & il numero di sottoinsiemi con k elementi di

{PV P2..... Pr% aventi per inf il minimo 2z d4i L.,

DIMOSTRAZIONE Si ha:

K-1)(y) = X=1)({ p;) =

i,j

= 1 ORI 0D (pyapp) + e

pato che (X-1)(p) =0 se peJ(L) e (X-1)(z) =-1, si ha

la tes:...

5.10.

COROLLARIO Sia P un reticolo finito e siano q, p1. p2,

cees P, eP tali che P; <q per ogni i e, per ogni
X < q, x massimale rispetto a questa proprietd, esiste

i tale che x = Py s allora
p(a,q) = c2—C3+ cee

dove O @& il minimo di P, e cy é il numero di sotto-

insiemi con k elementi di {p_l. Pyreces pr} aventi inf

in O,

DIMOSTRAZIONE  Nel reticolo distributivo F(P) si ha da=Y P;}
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allora, per la Proposizione 5,7, si ha:

X(@q) - 1 = u(0,q) .
Sfruttando il risultato precedente si ha la tesi..

Sia L un reticolo finitoj; indichiamo con 0 ed ? rispetti
vamente il minimo e il massimo di L. Un insieme T = %ar Ay reans
an% di elementi di L si dice taglio (cross—cut) se sono soddi-

sfatte le seguenti condizioni:

i) 0 ed 7 non appartengono a T}
ii) T @& un'anticatena;

iii) ogni catena massimale tra O ed 1 ha intersezione non

vuota con T,

I1 Corollario 5,10 pud essere generalizzato come segue:

5.11. TEOREMA (del Cross—cut) sia L un reticolo finito, e sia
T un taglio di L. Per ogni intero k > 2 sia 9 il
numero dei sottoinsiemi s di T aventi k elementi e tali

che

Allora

p(0, 1) = SR L PR

DIMOSTRAZIONE Definiamo la distanza d(x) di xel dall'ele~
mento ? come la massima cardinalitd di una catena di L avente

per estremi x ed 7 . se T & un taglio di L, definiamo la sua

distanza da 1 ponendo:
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a(T) = max d(x) .
xeT

Procederemo per induzione su d(T), Per il Corollario preceden-
te, la tesi & vera per 4(T) = 2.,

Sia ora B un sottoinsieme di L j per ogni xel , scrivere-
mo x <B (x> B) se esiste yeB taleche y> x (y <x) .
Notiamo che, se B & un taglio, per ogni xel risulta x <B
oppure x> B,

sia L* il reticolo i cui elementi sono tutti e soli gli e~
lementi xel tali che x <T (con T un taglio tale che
d(t) > 2) , uniti all'elemento 7, con 1'ordine indotto da L.,
In L', il taglio T ha distanza 2, per cui, denotando con p'
la funzione di M8bius di L', il Corollario precedente implica

w6, 1) = p,- Pyt Py~ e

dove Py indica il numero di sottoinsjemi A di T con k elemen

ti e tali che, in L',
A
aeA
D'altra parte, avremo:

S~ u@,x) +}__ u@,x) =0 =

x<T x> T

= Z_u'(a,X) + 0 (0,1) .

X<T

Poiché p(a,x) = p'(0,x) per ogni x <T , si ha:
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Y u(@,x) = -ur(0,1) = -p_ +D, =P, * ...
<t 2773 *4

Ora, dato che gli insiemi {xe Ly x < T} e éxc Ly x> T} sono

\
disgiunti, si pud scrivere:

(x) p(6,7) = -3__u@,x) =
x<1
= -(L p(a,x) + Z:_t P(aox)) =
x<T T<x<1

=P2-P3+P4--..—§ “u(O.X) .
T<x<1

Sia ora qk(x) il numero dei sottoinsiemi A di T aventi k ele

menti e tali che

V a= X, A a=0 .
aeA acA

In particolare, qk(?) = q . Ne segue che

Pp = 2 9 (%) (k> 2) 3

x>T
percid, 1'identitd (x) & equivalente all'identita:
(%) R(0,1) = g, = qg+ eee =

-2 (= q2(X)+q3(x)—...+ p(06,%)) .

T<x<3
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sia ora x tale che T <x <1 ; consideriamo 1'intervallo
(6,x] in L. sia T(x) = Tn[0,x] ; dal momento che T(x) &
un taglio dell'intervallo E@,;ﬂ » € che la sua distanza in que-
sto intervallo & strettamente minore di d(T) , per 1l'ipotesi di

induzione si ha:
0,x) = - + -...
r(0,x) = q,(x) q3(X) q4(X)
sostituendo nella (#x), si ha 1'identita voluta..

S

5.12. COROLLARIO Se L & un reticolo finito tale che il suo

massimo j§ risulti sup-irriducibile, allora

5S.13. COROLLARIO Sia .L un reticolo finitoj; allora:

(a) se L ha un taglio di cardinalitd uno, allora
P-(at:i) =03

{b) se L ha un taglio di cardinalitad due, allora
n(6,7) = 0 oppure u(8,7) =1 ;

(c) se L-ha un taglio di cardinalitd tre, allora

P(ap:l‘) pud assumere solo i valori -1,0, 1, 2_.

5.14. PROPOSIZIONE Sia P un insieme parzialmente ordinato

finito, Per ogni a,beP, con a <b, si ha

u(a,b) = —c2(a,b)+c3(a,b)—

dove ck(a,b) indica il numero di catene con k elemen-

ti tra a e b.
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DIMOSTRAZIONE Procediamo per induzione sul numero di elementi

dell'intervallo [é,ﬁﬂ . Se lt'intervallo & costituito solo dai

punti a e b, risulta u(a,b) = -1 , e quindi l'affermazione &

vera.

In generale, si ha:

utaob) = - p(b,b) - L p(x,b)

a<x<b

e quindi, per 1'ipotesi di induzione:

in quanto, per ogni k > 3

5.15'

1l

u(arb) -1- z (’CQ(X,b)+C3(X,b)‘ -0-) =

a<x<b

1]

—1-+c3(a,b)-—c4(a,b)+ e

.o

ck(a,b) = z:_ Ck‘1(xob) .

a<x<b

TEOREMA Siano P,Q insiemi parzialmente ordinati, e
sia

F:P—> Q

un morfismo d'ordine, Siano a,beP tali che a <b e
f(a) < £(b) . Allora, indicando con u 1la funzione di

MObius di P, si ha:

p(a,b) = 3 uela,x) u(x,b)
xeP
£(x)=Ff(b)



dove, per ogni p,qeP , si pone

wp(Pyq) = - 2 u(p,x) .
x<gq
£(x)<£(q)

DIMOSTRAZIONE Per la Proposizione 5,14
n(a,b) = —c2(a,b)+c3(a,b)— cee

dove ck(a,b) indica il numero di catene con k elementi tra

e b, Sia A una variabile formalej poniamo

k._.
Cla,bsn) = 1 cy (a,b)A T
K> 2

analogamente, definiamo ci(a,b) come il numero delle catene

tali che

f(ti) < f£(b)

per i =1,2,...y k-1 . Poniamo

£ -
cFa,psn) =3 c (@, b L
k> 2

Osserviamo che, per ogni catena tra a e b :

43

a
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esiste j < k tale che
£(t.) = £(b £(t, < f£(b H

ne segue che, se a <b e f(a) < £(b) :

cla,bih) = 3 cFla,x3h) C(x,b3n) .
xXeP
£(x)=£(b)

Ponendo A = -1 si ha la tesi..

Ricordiamo che, se P & un insieme parzialmente ordinato fi-

nito, si dice funzione zeta di P 1la funzione
{: PxP—> Z

definita nel modo seguente:

//,,1 se x <Yy
;(xv)') =
~~o altrimenti

5.16., COROLLARIO siano P,Q due insiemi parzialmente ordina-—

ti finiti, e sia
£f:P > Q
un morfismo dtordine, Siano p e ¢ la funzione di M8-

bius e la funzione zeta di P, rispettivamente., Per ogni

a,beP con a <b e f£(a) < f(b) , risulta:
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u(a,b) = u(a,y) (y,x) n(x,db) .

X,yeP
£(y)=£(x)=£(b)

DIMOSTRAZIONE Segue dal teorema precedente, osservando che:

0=3_  ula,x)= 2 p(a,x) + u(a,x) =
x<b x<b x<b
£(x)<£(b) £(x)=£(b)

= - uf(a.b) + ) ula,x) .

x<b
£(x)=f(b)

5.17. TEOREMA (di complementazione) Sia P un reticolo fini-

-~
to, con minimo O e massimo 1. Se seP, indichiamo

con st 1'insieme dei complementi di s in P . Allora

(0,7 = Y w@,x)txy) n(y,1) .

x,yest

DIMOSTRAZIONE Sia
£f: P — [},f]

£(x) = xvs 3

£ & un morfismo d'ordine; per il Teorema 5.15 si ha:

p(0,7) =) e (6,x) u(x,1) .
XeP
xvs=]
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Sia yeP taleche yvs =1 ., Consideriamo 1'insieme

s.—.{xeP; xvs<'{,x§y%u%y% .

L'insieme S, con l'ordine indotto da P, risulta ovviamente u.

reticolo. Per ogni teS si ha tv(say)eS ; di conseguenza,
l'elemento say & un estremo inferiore per gli elementi massi-
mali di S\% y} . Questo implica che {s ,\y} é un taglio di s
purché say # 0 . In questo caso, per il Teorema del Cross—-cut,
pf(ﬁ,y) = 0., Da qui, sfruttando il Corollario precedente, si ot

tiene la tesi. -

5.18. COROLLARIO Se P & un reticolo finito non complementato,

allora:

6. L'algebra di MObius

Sia P un insieme parzialmente ordinato finito. Si defini-

sce algebra di MObius M(P) di P lo Z -modulo libero su P do

tato dell'operazione di prodotto definita nel modo seguente:

ar = » __ u(s,t)s ,
s, teP
s<t<gq,r

per ogni q,reP .,
Osserviamo esplicitamente che, se P & un inf-semireticolo:

M(P) = z[P, A ,
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ciod, l'algebra di M8bius di P coincide con l'algebra di semi-
gruppo su P rispetto all'operazione di inf.

Come abbiamo visto, P & isomorfo all'insieme parzialmente
ordinato J(#(P)). Se P & dotato di minimo 0 , allora anche
#(P) =(ﬁ(P)\‘{¢ % & un reticolo distributivo, il cui minimo é

1'ideale costituito dal solo elemento §. In questo caso
J(#(P)) = J(#(P))

e quindi P é isomorfo a J(#(P)). Ne segue che, dato che gli
elementi di JC?(P)) sono una base per 1l'anello di valutazione

di ‘E(P) , sussiste l'isomorfismo di moduli
(%) M(P) = w(S(P)) .

Se invece P non ha minimo, osserviamo che il minimo 2z di
#(P) , ciod 1'insieme vuoto, & sup—irriducibile in J(P) , e
quindi .appartiene ad una base di W ({#(P)); 2z genera percid un
sottomodulo <z> di Ww(#(P)) avente rango 1, e sussiste 1!

isomorfismo di moduli:
(3x) M(P) = w(#(P)) /<z> .

Gli isomorfismi (x) e (xx) risultano inoltre isomorfismi d4i

algebre, Infatti, in WwW(#(P)) , si ha:

(T e (e -

S<P t<q

Peq

]

e = XL wxmx s

r<P.q X<r<P,q
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percid, l'operazione di prodotto in W(#(P)) coincide con il pro
dotto in M(P) .

Si ha di conseguenza:
6.17. PROPOSIZIONE Sia P un insieme parzialmente ordinato fi-

nito, e sia M(P) 1la sua algebra di M8bius. Per ogni

pe P , poniamo

e, = S ulxp)r .

r<p

Allora, l'insieme {ep;1>ef’} é una base di idempotenti

ortogonali per M(P) ‘m

6.2. PROPOSIZIONE siano P,Q insiemi parzialmente ordinati

finiti, Ogni morfismo d'ordine

asP—>Q
induce i morfismi di algebre

a' : w(#(Q)) — w(#(P))

a" : M(Q) —> M(P)

definiti nel modo seguente:

at(e ) = 21;?? e, » ael(#Q),  arley) =y
a(p)=q
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a"(e ) = 2 e, qeqQ .

peP
a(p)=q

P

DIMOSTRAZIONE Ovvia. -

6.3. PROPOSIZIONE (Lemma di Weisner) Sia P un reticolo fini-

to, e siano a,b,ceP, Allora

Z_ 4(%,b) =/O se ai b
xeP \p(c,b) se a>b .
Xpa=c

DIMOSTRAZIONE Nell'algebra di M8bius M(P) abbiamo

a=) e .

yza
Quindi
0 se a }_ b

e se a>b .

Ricordando poi che

e, = 2 u(t,b)t
t<b

abbiamo

[\
1
1

b Y u(t,b)tra =

t<b

Z p(t,b)c+ l p(t,b) tAa H

t<b t<b
tra=c taafc
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da qui si ha la tesi..

6.4. TEOREMA Sia P un insieme parzialmente ordinato finito
dotato di minimo O e di massimo 7, esia teP tale che

per ogni peP esista pvt in P. Allora, nell'algebra

di MBbius di P, sussiste 1'identita:

Y owl e = u(@Hn (X w@,Dr) .

reP r>t rvt=1

DIMOSTRAZIONE Per t =1 1'affermazione & vera. Sia allora
t # 1. Indichiamo con X 1'insieme degli elementi di P che so

no coperti da 1, e sia
o] ={kex; k > t} o

sia L = ﬁ(P) 3 ltalgebra di M8bius M(P) si pud identificare
con W(L), in quanto P & dotato di minimo., In W(L) avremo
percid

-V x=TT@(-x
3
1 kekx keX

(0]
>
1]
—)
|
Q-
-
1

e, d'altra parte

ea=) _u(xNr .

reP

Inoltre si ha:

TT G-c)ea=TT G-e)TT (G-%x) =
ceC ! ceC kek
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=-|_T(’1‘-k)=e; .

kex

Per ogni ceC e per ogni reP, r < c, si ha:
(a—c)r = 1Aar-car =0 .
Allora

(i-cles = (1-¢) Z;, p(r,Nr
Ir+cC

ve (in #(P)):
ceC

I

e percid, posto 4d

(Y
>
]

3 .l—r (?—C)e? =

ceC

=TT (A-o)&__ u(xr,)r) .

ceC r¢d

Ora, se r £d in #(P) , allora rvt =1 in P, e viceversa.
Osserviamo che, nell'algebra di MBbius dell'intervallo Ec,ﬂ

dell'insieme parzialmente ordinato P, sussiste 1'identita:

TT (1-c) =e, = p(r,Hr

ceC r>t

poiché la funzione di M8bius di un qualunque intervallo di P &

la restrizione di p . Di conseguenza, otteniamo 1'identitd

1l

> uer=es=TT1 (-c)(2_ ulx,Dr) =

reP ceC rvt=7

Q_p@EDn (Y w@xir) .

r>t rvt=9



6.5. TEOREMA Sia P un reticolo finito, e sia P, 1'insieme
dei coatomi di P. Siano A,Bc P, tali che ANB=¢ e
AUB = P, . Allora

T_onGaDx= (1 v, wylz)z)

xeL yeH(A) zeH(B)
dove H(A), H(B) sono gli inf-sottoreticoli di P genera-
ti da A e B, con funzioni di M8bius Hpo by rispettiva-

mente,

DIMOSTRAZIONE Abbiamo, in M(P) :

e, =11 G-p=TTE-»TT G-0 .

peP, PeA geB

Da qui, grazie al Teorema precedente, segue l'uguaglianza..

Sia P un insieme parzialmente ordinato finito. Un operato-

re di chiusura & un'applicazione

o P — P

tale che:
i) @ & un morfismo d'ordine;
ii) per ogni xeP, 0 (o(x)) = e(x) 3

iii) per ogni xeP, x <@(x) .

Gli elementi xeP tali che 0(x) = x si dicono chiusi.

Se P,Q sono insiemi parzialmente ordinati finiti, una con-

nessione di Galois tra P e Q & una coppia di funzioni
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¢:P——>Q R

c:Q — P

tali che:

i) ¢ e o invertono 1l'ordine, cioé se x,yeP, x <y, allora

®(x) > ¢(y) e analogamente per o ;

ii) go@p e Qoo sono operatori di chiusura su P e Q, rispetti

vamente,

6.6, TEOREMA Siano P e Q insiemi parzialmente ordinati fini

ti; un'applicazione

P P—Q
induce un morfismo
¢ : M(P) — M(Q)

se e solo se:

i) @ & un morfismo d'ordine;
ii) la controimmagine attraverso @ di un filtro principa-
le in Q@ & un filtro principale di P, oppure l'insie-

me vuoto,

DIMOSTRAZIONE Supponiamo che ¢! P = Q induca un morfismo
¢:M(P) > M(Q). Poiché x <y in P se e solo se xy = x in
M(P) , si ha che x <y implica O(xy) = ¢(x)3 d'altra parte,
d(xy) = 0(x) d(y) , quindi @(x) < @(y) . Di conseguenza, la
i) & verificata.

Sia ora qe€Q , e sia

.o

{peP; 9(p) > q} 7 ¢
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allora, esiste peP tale che ¢(p) > q ., Poiché in M(Q) :

r e, = 9(p) =0Q _ e)=7_ b)) ,
y<¢(p) x<p * x<p =

si ha che eq & uno dei termini che compaiono nella somma

b))

X__<_P

e quindi esiste x < p tale che eq compaia come addendo nell'
espressione di ¢(ex) ; percié questo x & tale che ¢(x) > q .

Inoltre, tale x & unico, poiché sia gli e teqQ , sia i

t ?
d)(ey) , yeP , sono idempotenti ortogonali di M(Q) ed M(P) ri
spettivamente, Di conseguenza, X<p per ogni peP tale che

p(p) > g . Allora
x = min <EPG:P; ®(p) > q}

e quindi la ii) & verificata.

Viceversa, supponiamo che
Q:P = Q

soddisfi le condizioni i) e dii).

Poniamo
Qo =<quQ; q <@(p) per qualche peP} .
Per q€Q,, Sia

$(q) = min {peP; (p) > q} .



55

si ha allora che ¢ e § costituiscono una connessione di Galois,

e che le funzioni

t(o(p))

hel
V
o
1]

?($(q))

q-»

el
"

sono operatori di chiusura. Definiamo ora un omomorfismo

b:M(P) — M(Q)

ponendo
0 se p>p
d(e) -
P \ -
3 e se p=7p
peq
g=9(p)

ed estendendo per linearita.,
E' immediato verificare che ¢ coincide con ¢ su P, e quindi

& il morfismo voluto..

6.7. COROLLARIO Sia P un insieme parzialmente ordinato fini-
to, e sia P, un sottoinsieme di P. L'algebra M(P,) @&
isomorfa alla sottoalgebra di M(P) generata da P, se e
solo se la restrizione a P, di ogni filtro principale di
P & ancora un filtro principale, o, equivalentemente, se
e solo se esiste un operatore di chiusura @ su P tale
che P, coincida con 1'insieme parzialmente ordinato dei
chiusi di P rispetto a © ‘m

6.8, PROPOSIZIONE Sia P un insieme parzialmente ordinato fi-
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nito, e sia
:P — P

P:ix —> x

un operatore di chiusura su P, Posto

{xeP; X = ;(%

si ha, indicando con p e p 1le funzioni di MObius di P e

i
I

gt

rispettivamente:

"

0 se x <

Y o) =<

teP u(y,x) se x =
=y

®1
-

per ogni x,yeP .,

DIMOSTRAZIONE Per il Teorema 6.6, dato che la restrizione a P
di ogni filtro principale di P & un filtro principale di P y @
si pud estendere ad un morfismo di algebre

b :M(P) — M(P) .

Per ogni xe€P si ha:

t]

/0 se x <
dle,) =7 _ -
x \ex se X = X

dove _ex & 1'idempotente corrispondente ad x in M(P). Ma,

in M(P), risulta:
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e =2 _w(yx)y ;

<x

confrontando i coefficienti di y in EX ed in ¢(ex) si ha
1'uguaglianza voluta.

Se poi x < x , d)(ex) = 0 fornisce la seconda uguaglianza..

6.9, COROLLARIO Siano P,Q insiemi parzialmente ordinati fi-

niti; supponiamo che siano date due funzioni

@p:P—> Q

p:q— P

che formino una connessione di Galois fra P e Q, Allora,

per ogni peP ed ogni qeQ, risulta

0 se ¢(¢(p)) >p
) up(p,t) = <

teP AN ST bo(ssa) se P(9(p))=p,

P(t)=q seQ
P(P(s))=g(p)

dove p, e h, somo le funzioni di M8bius di P e @Q ,

rispettivamente, -
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7. La funzione di M8bius nei reticoli semimodulari

Sia P un insieme parzialmente ordinato finito dotato di mi-
nimo O e tale che, per ogni x,yeP, x <y , tutte le catene
massimali tra x e y abbiano lo stesso numero di elementi; si de

finisce rango di un elemento xeP 1'intero
r(x) = 1(x)-1 ,

dove 1(x) @& la cardinalitd di una catena massimale tra 0O ed
X . Inoltre, se P & dotato di massimo ? » si dice rango di P

l'intero

r(P) = r(1) .

Per ogni a,beP, a < b, si dice polinomio caratteristico

dell'intervallo Ea,b:l il polinomio nella variabile formale A :

P([a,bl; A) = Z_ u(a’x),\r(b)—r(x)

x<b
Osserviamo che

P([a,b]3 0) = u(a,b) .

7.1. TEOREMA Sia P un inf-semireticolo dotato di rango; per

ogni a,b,ceP, con ¢ <aab, si ha:

AP T(aR) p(fe,anglsa) -

= 2 P(x,p]sn) .

XAa=C
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DIMOSTRAZIONE Si ha:

i

> r(foplny = 2 Y u(x,ynTPr)

xXAa=C x1a=c y<b

AT Y Y e () Y w(x,yA T

xeP t<a y<b

AT YT AT ST YT e, t) () (%)

y<b xeP t<a

=AP®) 5 AT Lie,y) E(yaa) =
y<b

- \T(b)-r(asb) bl u(c'y)}\r(al\b)--r(y) -
y<aab

- }\r(b)—r(a/\b) P([_—g,a/\'g__l; A) .

7.2. COROLLARIO Sia P un inf-semireticolo dotato di rango, e
siano a,b,deP tali che asb = aad. Allora, per ogni

ceP, si ha:

A el = AT YT e([s,d

taa=c sAa=cC

DIMOSTRAZIONE Per il Teorema precedente, si ha:
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T p([e,8]5n) = aTOITED) o aB]in) s

taa=c

Y oe([,dsn) = AT b aadlin s

SAa=C

dato che aab = aad, si ha la tesi..

7.3. COROLLARIO Sia P un inf-semireticolo dotato di rango, e

siano a,beP, a < b, Allora

(P2 YT p([R,B]50) ‘m
ta

Un reticolo finito L si dice semimodulare se gode della se-
guente proprietd: per ogni a,bel tali che a copra aAb,
avb copre b,

Ricordiamo che un reticolo semimodulare & dotato di rango r 3

inoltre, per ogni a,bel, risulta:

r(avb) + r(aab) < r(a) + r(b) .

Se L & un reticolo semimodulare, a,beL formano una coppia

modulare se

r(avb) + r(aab) = r(a) + r(b) ,
o, equivalentemente, se, per ogni xelL taleche x <b, si ha

xv(aab) = (xva)ab .
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Un elemento a di L si dice elemento modulare se, per ogni

xel, la coppia (a,x) & una coppia modulare.

Sia L un reticolo semimodulare, Si dice Xk-mo numero di

whitney di prima specie di L il numero

v = o p(0,x)
xel
r(7)-r(x)=k
dove 6, ? sono rispettivamente il minimo ed il massimo di L,
e u & la funzione di MSbius di L. w,  risulta quindi il coef
ficiente di A nel polinomio caratteristico P(L3A) .

S8i dice poi k-mo numero di whitney di seconda specie di L

il numero

W, = er L3 r(;) - r(x) =k H .

Si dice inoltre invariante di Crapo di L il numero

B(L) = |3 P, |

Un reticolo semimodulare si dice supersolubile se esiste una
catena massimale tra 6 ed ? i cui elementi siano tutti modula-
ri,

Un reticolo semimodulare L si dice geometrico se i soli ele

menti sup-irriducibili di L sono gli atomi e il minimo O,

7.4. TEOREMA Sia L un reticolo semimodulare. Per ogni

x,yelL si ha:
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a) se r(x) =r(y) e u(a.x), p(a,y) sono entrambe non

nulle, allora up(0,x) e u(0,y) hanno lo stesso segno;

b) se r(x) =r(y)+1 e p(a,x), u(a,y) sono entrambe non

nulle, allora u(0,x) e p(a,y) hanno segni oppostij;

c) se p(0,x) #0, allora u(0,x) & positivo o negativo,
a seconda che r(x) sia pari o dispari, rispettivamen-
tes

d) se L & geometrico, u(0,x) #O .

DIMOSTRAZIONE Sia xel , tale che r(x) =k >z, Per il Lem

ma di Weisner, si ha, per ogni atomo ae [§,}a=

(x) u(@,x) = - 2 u(0,y)
yva=x

y#x

e, grazie alla semimodularitd d4i L:

A=§yeL; yva=x,yf'x% =

={yeL; y < x, r(y) = k-1, yka} .

Dimostriamo la prima affermazione procedendo per induzione
su r(x). Se r(x) =2, la tesi & vera. Se r(x)=k> 2,
e 1'insieme A & non vuoto, per 1l'ipotesi di induzione tutti i
p(a,y) con yeA hanno lo stesso segno, e, dgrazie alla (x), se
gue la prima affermazione, La seconda affermazione si deduce
dalla prima applicandoc nuovamente 1l'identita (k). La terza af-
fermazione si dimostra ancora per induzione, a partire dalla (¥).

Se poi il reticolo L & geometrico, ricordiamo che:
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p(0,x) > 0 per ogni xel tale che 1r(x) =2 3

procedendo per induzione su r(x) e utilizzando ancora (x), si

ha 1'ultima affermazione. -

7.5. COROLLARIO Sia L un reticolo geometrico, Allora, i co-
efficienti del polinomio caratteristico P(L3A) hanno se-

gni alterni. -

E' ben noto che ogni reticolo geometrico L & isomorfo al re
ticolo dei chiusi dell'algebra di Boole B generata dagli atomi

di L, rispetto ad un operatore di chiusura
®:B—>B

tale che:
i) ¢ muta atomi di B in atomi di B

ii) per ogni a,b,xeB , con a,b atomi,
a <g(xvb), ad g (x

implica

b < p(xva) .

7.6, PROPOSIZIONE Sia L un reticolo geometrico, e sia A
ltinsieme degli atomi di L. Allora, per ogni xelL, si

ha
A N
u(d,x) = ;:A( 1) .

v asx
aeF
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DIMOSTRAZIONE Segue dalla Proposizione 6.8..

7.7. COROLLARIO Sia L wun reticolo geometrico, e sia A 1l'in-
sieme degli atomi di L. Allora:

3! 3y
P(L3A) = z:; (=1) Xr(1) r(f)
FcA

dove

XeF

DIMOSTRAZIONE si ha, per la proposizione precedente:

Z:_ (_1)lFl Ar(?)—r(f)

FeA

D SRS A CSRRAC
xeL Fé_A
f=x

2 u(0,x) (i P(L; A)

i ]
X€L

7.8, TEOREMA sia L un reticolo semimodulare, e sia a un e

lemento modulare di L. Allora:

P(L3n) = P([D,alsn) D p(a,y)}\r(‘l)-r(a)-r(y)
YAa=6

DIMOSTRAZIONE Dal Teorema 6.4 applicato al reticolo duale di

L si ha:
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2_wBx=3 u@,t) Y w@y)tvy
xel

t<a yaa=0

effettuando le sostituzioni:

o < r(Der(x)

tvy <— AT(D7r(tey)

si ha:

(%) Y u(d,x) AT T

xeL

1]

2 w(0,t) Y u(d,y) AT (=r(tvy)

t<a yaa=0

ora, poiché a @& un elemento modulare, per ogni y,tel risul-

ta:

(1) r(yva)+r(yaa) = r(a) + r(y)

e

(2) r(tvyva)+r(tvy)aa) = r(tvy) + r(a) ;

se t <a, essendo a un elemento modulare, risulta:
(tvy)ra = tv(yaa)
e, se ypa=0, siha

(tvy)aa = t
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da cui, utilizzando (1) e (2):
r(tvy) = r(t) + r(y) 3

sostituendo quest'ultima identitd nella (%) si ha la tesi. g

7.9. COROLLARIO Sia L un reticolo semi-modulare, e sia p un

atomo di L, Allora

B(L) = ()T (177 % w@,y) .
Yt P

DIMOSTRAZIONE Segue dalla Proposizione precedente, ponendo

a=P..

7.10. TEOREMA sia L un reticolo supersolubile, e sia

una catena massimale di elementi modulari in L, Allora
P(L3\) = (>\-n1)(>\—n2)...(k—nk) ,

dove

{XGL; X atomo, x < a;, xi ai_1§|

n, =
1

per 1 = 1,2,.0.5 kK &

DIMOSTRAZIONE Procediamo per induzione su k. Se k=1, ltaf-

fermazione & vera. Sia Xk > 1. Dalla Proposizione 7.8, si ha:



PLir) = P(Bra,_ J50) 3 w(@y) AT
yAak_1=0

d'altra parte:
{yels yaay_ .= 0} =
= {o}u{yeL; r(y) = 1, Yﬁak_1} ’

da cui

S w@p AT e

YAak_1=0

7.11. COROLLARIO Se L & un reticolo supersolubile, allora

u(6,7) = (-1)k nn, e

sia L un reticolo geometrico. Il polinomio di MObius di L

& i1 polinomio definito nel modo seguente:

M(Lis,t) = 3 u(x,y) 709 )
X,yelL

Yy S e .

xeL

Sia L un reticolo geometrico, e sia A 1'insieme degli ato

mi di L. Un sottoinsieme I di A si dice indipendente se, po-



sto y = z X , risulta
X

r(y) = 1| .

Un circuito di L & un sottoinsieme di A non indipendente

minimale,

7.12.

TEOREMA  Sia L un reticolo geometrico di rango r; indi
chiamo con ¢ 1la cardinalitd minima di uwn circuito in L,
e con n il numero degli atomi di L., Allora sussistono

le seguenti disuguaglianze:

a
|
no

CTEYED

| > i

i

1) 'wr—k

Il
o

per ogni k < rj; 1l'uguaglianza sussiste se e solo se L
& isomorfo al prodotto diretto dell'algebra di Boole di
rango r-c+1 con il (c-1)-troncamento dell'algebra di

Boole di rango n-r+c-1 ., In particolare

n—r+c—2)

la@, 0] > (LI

n-r+i-1, r-i r—-Cc+1
G TG BTG

dove gq & il numero dei circuiti di L aventi cardinali-

t3 esattamente c. In particolare

n—r+c—1)_

lw@, D1 2 (77
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3) Se L éconnessoe ¢ <r ,

n-r+i-1, ,r-1i r—Cc+2
'“'r—k|il=0< L DG () (o))
per k < r-2; inoltre:
g2 e r~c+2
w22 )T+ () ((F575)-1) + 8(1)
i=0

e, infine:

|u(6.?)| z (n—zt;—z) + (n-r)(r-c) + B(L)

ove B(L) & l'invariante di Crapo del reticolo geometrico

.L‘-

8. L'anello di Tutte-Grothendieck

Sia L un reticolo geometrico, Una base di L & un insieme

A ={a11 a2’oo" an§

di atomi di L tale che:

A
i Va V..oV a =1
) a,va, n

.
1]

ii) A & minimale rispetto alla proprieta 1i).

Un istmo di L & un atomo che appartiene ad ogni base di L,
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Ricordiamo che, se p & un istmo di L, si ha 1'isomorfismo:

(%) L= [o,p] ® [p, 1]

dove @ indica l1'usuale somma diretta di reticoli, Viceversa,
se per un atomo P sSussiste l'isomorfismo (%), allora p & un
istmo di L, Inoltre, se p & un istmo di L, si ha 1l'isomorfi-

Smo

(p,7] = 1-» ,

dove L-p indica il reticolo geometrico generato dagli atomi di
L diversi da p.
E' poi facile verificare che, se p,q sono atomi di L, si

ha:

(q, 7] -(pvq) = [a, ?]L_p ,

dove Eq,?]L_p indica 1'intervallo Eq,;] nel reticolo L-p,

Osserviamo infine che, fissato pel , l'applicazione
q — bpvgq

muta atomi di L in atomi di [b,?] .

Indicheremo in seguito con % 1'insieme delle classi di iso
morfismo di reticoli geometrici, In particolare, indicheremo
con x la classe di equivalenza dei reticoli geometrici con due
elementi.

Dato un anello commutativo unitario A, un invariante di

Tutte-Grothendieck a valori in A & un‘applicazione

p:g —> A

tale che:
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i) (L, ® L,) = qv(L1)<p(L2) H
ii) oL) =9([p,1]) + @(1-p) ,

se p & un atomo di L e non & istmo di L.

Indichiamo ora con Z%Z(¥) la Z-algebra commutativa unitaria
libera generata da % .
Sia # 1l'ideale di Z(¥) generato dagli elementi della for-

mas
P L .
T1) L1@L2 L1 5 3

T2) L- (L-p)- I:p, 7], se p & un atomo di L e non & un istmo
di L.

Si dice anello di Tutte-Grothendieck 1'anello quoziente

T= 2 (L/sF .

8.1. TEOREMA (di struttura) L'anello di Tutte-Grothendieck &
isomorfo all'anello dei polinomi in una variabile a coeffi
cienti interi senza termine noto,

(N

DIMOSTRAZIONE E' sufficiente provare che, per ogni Le¥, nel
la classe di equivalenza di L in 7 esiste un unico polinomio a
coefficienti interi (positivi), senza termine noto, nella varia-
bile x, che rappresenta la classe di equivalenza dei reticoli

geometrici con due elementi, Con un semplice argomento di indu-
zione & facile provare che ogni reticolo L & equivalente ad un
tale polinomio. Per provare che questo polinomio & unico, & suf
ficiente dimostrare che applicare ad L 1le identitad subordinate
da T1 e T2) ordinatamente rispetto agli atomi p,q & equiva-
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lente ad applicare le stesse identitd ordinatamente rispetto agli
atomi gq,p.

Supponiamo dapprima che p,q non siano istmi per L. Dimo-
striamo prima di tutto che, in questo caso, p & istmo per L-gq
se e solo se q & istmo per L-p . Infatti, se p non & istmo
per L-q , esiste una base B di L-q che non contiene p. Da-
to che q non & istmo per L, B & anche una base di L e, non
contenendo p, & una base per L-p. Di conseguenza, q non &
istmo per L-p. Allora, nell'ipotesi che p non sia un istmo per

L-q , si ottengono le seguenti identita:

(t-p) + [p,7] =
(- $psad) + [aid, + ([pi]-a) + va, 7] -
- $piah) + ([@O-»)+ (1] -0 + Bve, 11-

(L-q) + [:q':l‘] =L .

=)
I}

1]

Se invece p @& istmo per L-q @

(L"p) + [_P,;] =
(L- {p.q})x + ([p1]-9) + [pva, 1] =
(L~ %Prq})x + EP';]L—q + [_P"q, :]\] =

(L-q) + [@,1] =1 .

=l
1]

1}

[l

i}

supponiamo ora che p sia istmo per L, e g non lo sia.

Allora:

L-p)x = ((L- <Ep.q%) + Eq,ﬂL_p)x =

[
[t}

(L-q) + [a1] =1 .



8.3.

Infine, se p

PROPOSIZIONE

e

1}

g sono
(L-p)x
(L-q)x

L'immersione naturale

T

entrambi istmi per L, allora:

(L—{P.q%)x2

L

H2

—_> T
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@ 1'invariante di Tutte-Grothendieck universale, cioé&, per

ogni invariante di Tutte-Grothendieck

esiste un unico morfismo di anelli

tale che

Inoltre, per ogni

gt ¥ — A

h:g — A
= ho1tv |,
Le?, ¢(L)

tuando la sostituzione

PROPOSIZIONE

ristico:

x < @(x)

si ottiene da

.

(L)

effet

I1 "valore assoluto" del polinomio caratte—

(-1)

r(1)

P(L3A)
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& un invariante di Tutte-Grothendieck, ed il suo valore si

ottiene da t(L) effettuando la sostituzione

X < 1-A .
DIMOSTRAZIONE Ricordiamo che, se aeL1 e beLz, allora
PL1(093) “LZ (0,b) = uL1®L2 (0, avb)
ed inoltre, in L_l ® L2 , risulta

r(a) + r(b) = r(avbd) .
Da cid si deduce
P(L1 ® L23?\) = P(L1§>\) P(Lzﬂ) .

Proviamo ora che, per ogni Le ¥ e per ogni p atomo di L,

p non istmo, risulta:
P(1;1) = - P([p,T]3N) + P(L-psA) .

Infatti, se A & 1lt'insieme degli atomi di L, si ha:

p(Lin) = 3 (=1)l Bl A7 (- B)
BcA

_Y (el (e
BeA
P¢B



1]

75

LT eplel e
CcA
p¢C

r_(1)-r_(vCvp)
P(L-p5A) = )__ -nlel P P =
CcA
p¢C

P(L-p3;A) - P([p,1]351)

dove rp indica il rango in Ep,?] e

Infine, ricordiamo che, se p non & istmo per L,

r([p,1]) = r(L)-1 = r(L-p)-1 .

Da qui segue la tesi.g

8.4. COROLLARIO Il valore assoluto |up(0,7)| della funzione

di M8bius tra gli estremi 6 ed 71 & un invariante di

Tutte—-Grothendieck.

DIMOSTRAZIONE

che

Segue dalla Proposizione precedente, osservando

r(7)

1w, 1] = (1) P(L;0) .

8,5. COROLLARIO Per ogni Le¥ e per ogni p atomo di L,

si ha:



76

8.6.

8.7.

a) lu(p, 1)l < |00, 1)] 3
lt'uguaglianza sussiste se e solo se p & un istmo;

b) luL_p(On)l < lu(o,n)] ,
dove “L-—p indica la funzione di M8bius di L-p ;

c) se x,yel sono tali che xey! e inoltre (x,y) &
una coppia modulare, allora

lu(o,x)| < lu(yv,Dls

1'uguaglianza sussiste se e s0lo se si ha 1l'isomorfi-

sSmo

I

(6.x] = [yv,2] .

COROLLARIO L'invariante di Craro soddisfa le seguenti

identita:
i) se pel e p non & istmo, allora

B(L) = B(L-p) + B([p,1]) 3
ii) B(L, ®L,) =0 .g

TEOREMA Sia L un reticolo geometrico, e sia ael. Al-

lora

|u(G,a)] §_ [,y < [r(8,7)]
yla

by

dove y|a indica che y & un complemento di a e che

(y,a) & una coppia modulare.
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L'uguaglianza vale se e so0lo se a €& un elemento modulare

di L.

DIMOSTRAZIONE Procediamo per induzione sul numero n di atomi
di L che non sono minori o uguali ad a. Se n =1 1l'afferma-
zione & banale. Sia n> 1, Per 1'ipotesi di induzione, per o-

gni atomo pel, p$ a , risulta

(3) lﬁrﬁaﬁ)lilwam)lgg%!ubpﬁoﬂl.
yia

poiché a€lL-p (0,a) = p(a,a) . Se p & un istmo di L,

il teorema segue immediatamente, in quanto

IuL_p(ﬁ,y)l = |u(8,yvp)|

e yla in L-p se e solo se (yvp)]a in L.
Se invece p non & istmo, sommando lu(p,?)l ad ambo i mem—

bri della (%), otteniamo:

le@, )] > |u,a)] 2__ |uL_p(5.y)| + lu, D] 3
yeL-p
yia

ma, per 1l'ipotesi di induzione, abbiamo:

e, D) > lutprave)] > lue.y)] >
y>p
yia

> |ud,a) S e
y>Pp
yia
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grazie al Corollario 8.5, in quanto (avp)|y in [(p,1] see

solose y>p e a]y . Osserviamo ora che, se y % P,
loy @l = lu(Cy)
e, se y> 7P,

iy 5@+ luey) > .l ,

dove l'uguaglianza sussiste se e solo se p non & istmo per

[ﬁ'ﬂ . Di conseguenza:

lw(, )| > |u(d,a)] 2_ IuL_p(a,y)l +
yel-p
ya

+ 3 luey)D > @)l X [e@wnl .
y>P yia
Yia

In modo analogo si dimostra la seconda affermazione del Teo-

rema..

8.8, COROLLARIO sia L un reticolo geometrico, e sia x un

coatomo di L. Posto
A(x) = I{aeb; a atomo, a f x}l .

risulta:

@, 1) > A(x) [u(@,x)] .
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L'uguaglianza sussiste se e solo se x € un elemento mo-

dulare.

DIMOSTRAZIONE Dal momento che x € un coatomo di L, un elemen
to ael tale che (x,a) sia una coppia modulare e a sia un
complemento di x & necessariamente un atomo non minore di x 3 la

disuguaglianza segue allora dal Teorema precedente..

8.9. COROLLARIO Sia L un reticolo geometrico di rango n; al-

lara

<
W, SV

dove wi indica 1'i-mo numero di wWhitney di seconda specie

di L. L'uguaglianza sussiste se e solo se L & modulare.

DIMOSTRAZIONE Con le notazioni del corollario precedente, si
ha:

wle@nl 2 2 @A) =

XeL
r(x)=n-1
= 7 E%é lu(0,x)] ;
pel xXpp

r(p)=1 r(x)=n-1

per il Lemma di Weisner, quest'ultimo intero & uguale a

L [u(6,7)] ‘u

8.10., COROLLARIO Sia L un reticolo geometrico. Per ogni

i=1,2,...,n-1 risulta:
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8.11. COROLLARIO Sia L un reticolo geometrico, e sia

una catena massimale in L. Posto
A = |§aeL; a atomo, a < x., a jxk—v}l R

risulta:

n(o,1)] 2AN, e A

L'uguaglianza sussiste se e solo se ciascun Xy é modu-

lare,

DIMOSTRAZIONE Si applica il Teorema 8.7 successivamente agli

elementi xn.1, xn_2'o-o' x1 ‘m

9, Un'applicazione geometrica

Nello spazio affine IRd consideriamo un insieme finito H di
iperpiani. Questi individuwano in iRd un numero finito di polie-
dri d-dimensionali (aperti e non necessariamente limitati), chia-
mati regioni. Gli iperpiahi di H saranno detti tagli; diremo

partizione dello spazio mediante H 1'insieme di tutte le facce

(aperte) k-dimensionali, per k = 0,1,...,d , dei poliedri 4-di-
mensionali individuati da H.

La partizione relativa alla famiglia di iperpiani H si dira



centrale se

n h#od .

heH

Per estensione, anche la famiglia H si dird centrale,

Data una famiglia finita H di iperpiani in IRd , consideria
mo l'insieme parzialmente ordinato S costituito da tutte le in-
tersezioni non vuote degli elementi di H, ordinate per inclusio
ne, Per convenzione, poniamo ]Rde S. Indichiamo con LH il dua
le d'ordine di s. Ly risulta un inf-semireticolo, e si dira

semireticolo associato ad H , Osserviamo che, per costruzione,

il semireticolo LH & atomico ed & dotato di rango r ; in par-

ticolare, per ogni xe LH" si ha:

r(x) = d~dim x .
Per definizione, poniamo

r(LH) = max {r(x); X € LH% .

Notiamo che, se H & centrale, posto

Ly, é isomorfo alla restrizione ad H del duale d'ordine dell'in
3 . . AR | :

tervallo Ea,'i_] del reticolo dei sottospazi di R . Di conse-

guenza, LH risulta un reticolo geometrico.

Sia H un insieme finito di iperpiani di R . Poniamo:

[l

c(H) numero delle regioni individuate da H,

fk(H) numero delle facce k-dimensionali individuate da H,

per k = 0,1,...,4 .



La funzione generatrice degli interi £ (H) :
k

d
_ d-k
fH(t) = kZ:O fk(H) t

si dird f-polinomio di H.
9.1. TEOREMA Sia H un insieme finito di iperpiani di IRd .

Allora

c(H) =) {u@y| .
yely

DIMOSTRAZIONE  Proviamo innanzi tutto che c(H) soddisfa la se

guente recursione: per ogni h iperpiano di ]Rd ,h¢H, poniamo

F‘h ={hnk;keH, dim(hnk) = d—Q% H

risulta allora

(x) c(Huh) = c(H) + c(F‘h) .

Infatti, sia P una regione individuata da H, Se P non é in-
tersecata da h, allora & anche una regione relativamente ad

Huh. Se invece P & intersecata da h, P si pud suddividere
in tre parti disgiunte: due sottoinsiemi aperti di ]Rd » Che so
no regioni relative ad Huvh, e Pnh, che & una regione relati
va ad Fh .
Viceversa, se Q & una regione relativa ad F‘h , allora esi

ste una regione P relativa ad H tale che Q = Pnh; infatti,
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se cid non fosse vero, avremmo necessariamente Qeh' per qual-
che h'e€H , e gquesto implicherebbe h = h'eH , il che & assur—
do.

Quindi, ogni regione di H corrisponde ad una regione di

Huh , oppure a due regioni di Hvh e ad una di F,_ , e questa

h

corrispondenza esaurisce le regioni di Huh e di Fh . Questo

prova la ricursione ().

. s s - A . s s d
Poniamo ora, per ogni insieme finito H di iperpiani di R :

v(H) =) |e@.y)]
yeLH

e proviamo che & soddisfatta la recursione:

Vv(Huh) = V(H) + V(Fh) .

Sia yel ‘intervallo [a,y] in Lyon & un reticolo geo-

s 1
Huh ?
metrico, per ovvie considerazioni. Di conseguenza si ha:

(%) Gl = lug@y I+ luy, (1,y)]

IuHuh

indicano la funzione di M8bius di L e di

dove Huh

Pgon € MYH

LH , rispettivamente., Infatti, se h i y , allora

Myop(00Y) = n(0,y)

uHVy(h,y) =0 3

se invece h <y , 1'identitd segue dal fatto che [(6,y] & un
reticolo geometrico e | p (0,y)| & un invariante di Tutte-Gro-
Huh

thendieck. Sommando le identitd (xx) per ogni ye:LHuh si ot-
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tiene la ricursione voluta,
Osserviamo ancora che, se l'insieme H & costituito da un so~

lo elemento, cioé LH & la catena di due elementi, si ha

V(H) = 2 = c(H) .

Ora, poiché le funzioni V(H) e c(H) soddisfano la medesi-
ma ricursione sulla classe ereditaria dei semireticoli associati
ad insiemi di iperpiani, ed assumono lo stesso valore sulle cate-

ne con due elementi, si ha
c(H) = V(H)

per ogni insieme di iperpiani Ho g

9.2, COROLLARIO Sia H una famiglia centrale; allora

r(LH)

c(H) = (=1) P(Lg5-1) ‘m

Osserviamo che, se H & una famiglia finita di iperpiani di
Rd tale che
hel
ma

nnk # 0 per ogni h, keH ,

allora si pud completare il semireticolo LH -aggiungendo un ele-

0y

mento massimo, ed il reticolo Lﬁ cosl ottenuto & un reticolo

geometrico,
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9.3. COROLLARIO Sia H una famiglia di iperpiani tale che

N =
ney B =0
e
hnk # ¢ per ogni h, ke H ;
allora
\]
LH)

r
c(H) = (-1) P(Ly3=1) = |u(3,1)]

dove pu si intende relativa ad Lﬁ ‘m

9.4. TEOREMA Sia H una famiglia finita di iperpiani di R .

Allora

£(0) = T ulxy)(-)TOTO)
x,yeLH

DIMOSTRAZIONE Si ottiene applicando il risultato precedente a
tutti i filtri principali di LH’ e sommando su tutti i punti a-
venti lo stesso rango..

9.5. COROLLARIO Se H & una famiglia centrale, risulta

r(LH)
£,08) = (=1) M(Ls-t,=1) . g

R A .. C e s d . .
Sia H una famiglia finita di iperpiani di R § 1l'invarian-

~

d L .
te di Eulero di R e definito come 1l'intero:
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k(]R ) -"f .E +£ -
o 1 2 Y .

9.6, TEOREMA L'invariante di Eulero non dipende dalla famiglia
.. .. d
di iperpiani H. Inoltre, k(R ) = (-1 )d .

DIMOSTRAZIONE Per ogni famiglia H risulta:

K(rY) = (-1)? £y (-1) =

0T T w0 -

yeLH xeLH

n(8,0)(-n% = ¢ .

1}

Sia H una famiglia finita di iperpiani di JRd , € sia K un
compatto di ]Rd con interno non vuoto; indichiamo con H' il
sottoinsieme di H costituito dagli iperpiani che intersecano
l'interno di X . H' induce allora una partizione di X j; indi-
chiamo con f:]. il numero delle facce di dimensione j di tale

partizione, La caratteristica di Eulero di K si definisce come

ltintero

X(K)=f,‘,—-f"|+fé—... .

. d .
9.7. TEOREMA Per ogni compatto K di R con interno non vuo

to e per ogni famiglia H di iperpiani risulta

Xx) = (-1 .
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DIMOSTRAZIONE Sia H' il sottoinsieme di H costituito dagli

iperpiani che intersecano lt'intero di X ; indichiamo con SH il

semireticolo ottenuto da LH' eliminando gli elementi relativi

A d . . .
a sottospazi di R che non intersecano 1l'interno di X, Rela-
tivamente al semireticolo sH si possono ripetere tutti i ragio

namenti fatti in precedenza per LH 3 procedendo come nella dimo

strazione del teorema precedente, si ha la tesi..

. R - .o PR d .
Sia H una famiglia finita di iperpiani in R , e sia LH
il semireticolo ad essa associato; in generale, Ly risulta iso
morfo ai semireticoli associati ad altre famiglie di iperpiani

in spazi di dimensione diversa. Fra queste famiglie, diremo rap-
n

presentazione minimale di L una famiglia di iperpiani di R,

H
con n = r(LH) y 11 cui semireticolo associato sia isomorfo ad

L .
H
Vogliamo ora esaminare il caso in cui alcune delle regioni
relative alla famiglia H di iperpiani siano limitate; osservia
mo che, in questo caso, la famiglia H non é centrale, ed & una

rappresentazione minimale del semireticolo ad essa associato.

. . .. A c s o4k d .
9.8. TEOREMA Sia H una famiglia di iperpiani di IR che sia
una rappresentazione minimale del semireticolo LH ad es-

sa associato; allora, il numero di regioni limitate indivi

duate da H & dato da

1(H) = | 2 p@0,x)| .

el
X€ h

DIMOSTRAZIONE Sia h wun iperpiano di Rd , h¢H; poniamo

Fh==§hnk;keﬂ,dﬁﬂhnk)= d—2% .
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Con argomenti analoghi a quelli utilizzati nella dimostrazione
del Teorema 9,1, si ottiene che 1 soddisfa la seguente ricur-

sione:

L(Hoh) = 1K) + 1(F) .

Dato che, se |H| = 1, risulta:

1) = 0= 3 wd,x)] ,

xeLH

é sufficiente provare la ricursione:

(%) > B (00%) | = ) ny(0,x)| + ) My (B %)
xe:LHuh xeLH xcLHuh
Sia xc:LHuh 3 analogamente a quanto fatto nella dimostrazione

del Teorema 9.1, si dimostra che

uHuh(O.X) = uH(O.X) - “th(h'x) ;

di conseguenza:

(3ex) P b0 = 2w @Bx) - 3 pg (hx)

L L
xeLHuh xXe H Xe Hoh

Indichiamo con i ed L i reticoli ottenuti da L ed
H Huh H

LH h’ rispettivamente, aggiungendo un massimo 1 3 in questi
v

reticoli 1'identitd (xx) diventa:

(0,7) = uy(8,1) = ny L (0,7) .

l'lﬂuh uHuh
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. . . . X ~ ~
Osserviamo ora che i reticoli LH ed Lﬁuh , duali di LH ed

~ . . 3 03 >
LHuh rispettivamente, sono semimodulari; di conseguenza, grazie

all'affermazione d) del Teorema 7.4, abbiamo

g G = ey @D+ Juy,, (0,1

che & equivalente alla ricursione (x)..

Consideriamo ora lo spazio proiettivo reale Pd , di dimen~
sione d, Se H @& una famiglia finita di iperpiani di :Pd , Pos
siamo considerare la partizione di :Pd-H in parti connesse mas~
simali, che chiameremo regioni, e definire i numeri c(H) e
fj(H) in modo analogo a quanto fatto nel caso affine, Costruen-
do analogamente al caso affine il semireticolo L, , questo risul

ta un reticolo geometrico.

N . Lo . R d
9.9. TEOREMA Sia H una famiglia finita di iperpiani di P
allora
_ 1 _yr(H) .
c(H) = 5 (=1) P(Lys =1)
e
r(H) r(H)

£, (1) = % (t + (-1) M(L-t, -1)) .

DIMOSTRAZIONE Ricordando la corrispondenza tra sottospazi pro-

d+1

. e aa + .
iettivi di Pd e sottospazi vettoriali di R , abbiamo che

la famiglia H corrisponde ad una famiglia H1 di iperpiani per

d+1

.. . + . .
l'origine in IR , € risulta ovviamente

L. 2L .
H Hq
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Ogni regione di ]Pd— H corrisponde a due regioni relative ad
H1 in 1th+1 , simmetriche rispetto all'origine; cosi si ottiene
la prima identita.

La seconda affermazione si dimostra procedendo in modo analo

go, ricordando perd che la faccia hQH h in JPd corrisponde
d+1

sol 1 i N i
olo alla faccia heH, n R ‘m

Sia H una famiglia finita di iperpiani dello spazio affine
. . . . . d . d
]Rd . Consideriamo il completamento proiettivo P di R otte

nuto aggiungendo 1l'iperpiano all'infinito, hm; Sia LH la re~

strizione del reticolo duale di quello dei sottospazi di P al
1'insieme di atomi Huh(D . L;) & un reticolo geometrico e con-

tiene come sottosemireticolo LH .
R e e oas d .o
La famiglia ch: H Uhco di iperpiani 4di P si dira com—

pletamento proiettivo di H .

. d
Le regioni relative ad Hm in sono nello stesso numero

di quelle relative ad H in ®Y . Risulta inoltre

r(H) = r(Hm) -1 .

9.10. TEOREMA Sia H wuna famiglia finita d4i iperpiani in
d . . .. . .
R~ , che sia una rappresentazione minimale del semireti-
. ® . .
colo associato LH ;5 detto LH il reticolo del completa

mento proiettivo di H, risulta
®
1(H) = B(Ly)

dove B & 1l'invariante di Crapo.
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DIMOSTRAZIONE  Indicando con - la funzione di MObius del re

. @® . . .
ticolo LH , Per il Corollario 7.9, si ha:

pg) = (T T u G

xeL®
xbhg,

Grazie al Teorema 9.8, & dunque sufficiente provare che

Z__ p(a,x) = Z_ o (6,)() 5

[e¢)
xeLH xt-:LH

x}_h .

questo segue immediatamente dal fatto che, nelltintervallo [f).)ﬂ
del reticolo L:) , CONn x k hco » non ci sono elementi maggiori
di ho o quindi gli intervalli [6,x] in L: e [ﬁ,x] in Ly
sono isomorfi, -

. e s . d
9.171. PROPOSIZIONE Sia H una famiglia centrale di R , e
sia h¢H un iperpiano parallelo ad uno degli iperpiani

in H. Allora

L(Hoh) = B(L,) .

N

DIMOSTRAZIONE E sufficiente osservare che le regioni limita-
te relative alla famiglia Huh corrispondono biunivocamente al

le regioni limitate indotte su h dagli iperpiani
{hr\k; ke H, dim(hnk) = d—2%

ai ®Y 7. Quindi,
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1(avh) = 1([m,] )

dove Lh’1]<n € l'intervallo superiore con minimo h nel retico

@ . o . .
1o LHoh . Ora, si verifica facilmente che la funzione

@ LH —_— [h,;___lm
® ¢ x =—>» xvh

®

Hoh é un isomorfismo di reticolij;

(dove il sup & inteso in L

da qui si ha la tesi..

Vogliamo ora mostrare come i problemi affrontati a proposito
delle partizioni di uno spazio affine (o proiettivo) mediante fa
miglie di iperpiani permettano di provare in modo assai semplice
alcuni significativi risultati relativi alle orientazioni acicli
che di un grafo.

Sia G un grafo non orientato privo di lati paralleli e di

loops; un'orientazione aciclica di G @& un'orientazione dei la-

ti di G tale che il grafo orientato cosi ottenuto non contenga
circuiti orientati.

Dato un grafo non orientato G con vertici p1, Pyreces Py »
associamo ad esso la famiglia H(G) di iperpiani dello spazio
affine md cosl definita: indicato con hij 1t'iperpiano di EF
di equazione x; = xj , hij e H(G) se e solo se pi,pj sono ver
tici adiacenti in G. Essendo H(G) una famiglia centrale,
LH(G) risulta un reticolo. Inoltre, & facile verificare che i
circuiti del grafo G corrispondono biunivocamente ai circuiti

del reticolo L Di conseguenza, indicato con XG(A) il

H(G) °
polinomio cromatico del grafo G e con c il numero delle compo

nenti connesse di G, applicando la ricursione di Tutte-Grothen-
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dieck si dimostra facilmente 1l'identita:

_,C )
XG(A) = A P(LH(G).A) .

Osserviamo ora che sussiste una corrispondenza biunivoca tra
le regioni relative alla famiglia H(G) e le orientazioni aci-
cliche del grafo G. Infatti, fissata una regione di H(G) , per
ogni lato %Pi’ p.% di G, tutti i punti della regione soddisfa-

J
no una (ed una sola) delle disuguaglianze:

x. < X. X. > X.
i i i J

.o

orientiamo allora il lato {Pi,Pj% scegliendo come sorgente pi
se & soddisfatta la disuguaglianza x; < X5 . E' facile verifi-
care che l'orientazione cosi ottenuta & aciclica.

Da queste considerazioni segue:

9.12. TEOREMA I1 numero delle orientazioni acicliche del gra-

fo G @& dato da

Kl =2 lw@ol

X€L

dove L & il reticolo geometrico associato al grafo G.g

9.13. TEOREMA Fissato un lato {pi,pj% del grafo G, il nume
ro delle orientazioni acicliche di G aventi come unica

sorgente P; e unico pozzo pj é dato da

l8(a)| = |} wn(0,x) e(x)|

xeL
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dove L & il reticolo geometrico associato al grafo G, e
c(x) & il numero delle componenti connesse del grafo asso

ciato al punto x di L,

DIMOSTRAZIONE Sia d il numero dei vertici del grafo G, e sia

h 1'iperpiano avente equazione xj =Xt Ogni regione di
H(G) che interseca h di luogo ad un'orientazione di G in cui

il lato {pi,pj} & orientato da pi a pj . Inoltre, con consi

derazioni elementari si dimostra che, tra queste regioni, quelle
che danno luogo ad orientazioni del tipo voluto sono tutte e so-
le quelle che corrispondono a regioni limitate in una rappresen—

tazione minimale del reticolo L Da qui segue la tesi.

Huh ° |

con metodi analoghi si dimostra infine il seguente risultato:

9.14. TEOREMA Sia p; un vertice del grafo G. Il numero del

le orientazioni acicliche di G per cui P; risulta 1'u-

nica sorgente & dato da

d%: )(G(o)[ =/|p(0,1)| se G & connesso
o altrimenti,

dove p & la funzione di MObius del reticolo geometrico associa

to al grafo G ‘m
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Introduction

In 1970, Crapo and Rota proposed a reformulation of a classical extremal
problem on finite vector spaces, namely, the problem of finding the largest
dimension of a subspace having empty intersection with a given set of vectors
S. Besides achieving an higher degree of generality, their most pleasing re-
sult was that of showing this problem to be equivalent to a problem concerning
the location of zeroes of the characteristic polynomial associated to the ma-
troid structure induced on the set S.

Recently, Kung, Murty and Rota succeeded in proving that an analogous pro-
blem on finite abelian groups admits a solution in terms of the location of
zeroes of another function, the so-called Rédei zeta function of a ret of
points in a Dirichlet lattice.

In this paper, we deal with an unified exnosition of some extremal problems
which can be solved in this way. In section 1,we describe the critical problem
for finite abelian groups and its connection with a class of R&dei zeta fun-
ctions. In section 2,we recall Crapo and Rota's Theorem relating to the criti-
cal problem for .finite vector spaces, here seen as a simple consequence of the
preceding result on groups. Section 3 summarizes specializations to graph co-
lourings. In section 4, we recall connections with the (linear) coding pro-
blem; in particular, we show that some classical results on bounds can be

easily derived from purely matroid theoretic facts about Hamming spheres.
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1.A lattice of Dirichlet type is a pair (L,v), where
i) L is a lattice with O element

ii) v: LxXL—> Z satisfies the identities
0 if =xdy

v(x,y)
and
v(x,y) = v(x,z)v(z,y)>0 for every x<zgy.

Given a set E of elements in L, let M(E) be the lattice spanned by E; the
set E is called a Rédet set if, for every element x in M(E) and every positive
integer n, the number of elements y in M(E) such that v(x,y) = n is finite. In
particular, every finite set is a Rédei set.

Given a Rédei set E of elements in L and an element a¢L, the Rédei zeta
function of E based on a is defined as

ossaE) = 2 (-nAL@n™,

A<E
where A denotes the supremum in L of the elements belonging to the finite

subset A.
The following result exhibits the connection between the Rédei zeta

function of a set E and the Mobius function of the lattice M(E) spanned by E.

(1.1) Proposition: Let M(E) be the lattice spanned by E, u its Mobius function;

then

Z u(0,x)v(0,x) 5.
xeM(E)

0 (s;0,E)

Proof. It is easily scen that we can delete elements from E until it is an
antichain, without changing its Rédei zeta function: then, we can suﬁpose
that E is an antichain. Now, given xe€M(E), let us consider the interval [6,%]
in M(E); the set Eﬂ[@,g] is a cross-cut of [5,i] and, by the Cross—cut Theo-
rem [16] , we get
p(s:0,8) - Z -1 Ah@Em™ -

ACE
- nlrhyeoE -
x€M(E) A=x

S u@,0v@,0 .
x€M(E)

Let G be a finite abelian group and L(G) be the modular lattice of its sub-
groups; by setting v(A,B) = [B|/|A| for every pair A,B,ACB of subgroups of G,
the lattice L(G) turns out to be a lattice of Dirichlet type.
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Let A = {Al’ . ’An} be a collection of subgroups of G; we say that a k-tuple
X = (Xl’ . ,xk) of characters of G distinguishes K if, for every Aj’ there
exists at least a character X5 in x such that X5 is not trivial on Aj' The

eritical problem is to find the smallest k for which such a k-tuple exists.

(1.2) Theorem: Let A = {Al, . ,An}be a collection of subgroups of a finite
abelian group G. The number of ordered k-tuples y = (Xl’ . ’Xk) of characters

of G distinguishing A is given by the evaluation

Ilep(k;G,é) .
Proof. First of all, we recall that a character of G can be seen as an homo-
morphism of G into the complex unit circle (see e.g.[li]). Given the set
A= {Al’ . ,An}and a k-tuple x = (xl, . ,xk) of characters, we define the
"kernel of x relative to A" as the largest subgroup B in M(A) - the lattice
spanned by A - such that X3 is trivial on B for every i; thus, B is the sub-
group of G generated by the subcollection of all subgroups Aj such that X5 is
trivial on Aj for every 1i.

The proof is now by M6bius inversion over M(A). Let us define two functions
f,g : M(A) —>. Z
in the following way:

f(C) = number of k-tuples of characters of G whose

kernel relative to A is exactly C.

g(B) = number of k-tuples of characters of G whose
kernel relative to A contains B.
Thus, we have
g(B) = = £(0)

C2B
for every B € M(4).
We recall now that a finite abelian group G can be splitted into a direct

sum

cl@ 026 e --@cr

e
of cyclic groups of prime power order p '; hence, a character of G is known

whenever its value on a generator of Ci is given, for every i = 1, . ,r. Since

1-th root of the unity in the complex field, we infer

e
its value must be an p
that the number of characters of a finite abelian group equals its order.

Thus, we have
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g(® = (c|/[B)*

and, by Mobius inversion,

S ue.odel/leh®
C=B

£(B)

for every B in M(A). By setting B = 0 and recalling Proposition (1.1), we get

the assertion.

By Theorem (1.2), the critical problem is solved whenever zeroes of the

Rédei =zeta function p(s;ﬁ,é) of the set A are known.

2.As an instance of the preceding result, it is possible to exhibit a simple
proof of the well-known result by Crapo and Rota [8] concerning the critical
problem for finite vector spaces. This problem can be stated as follows: given
a set S = {vl, . ,vn} of vectors in the finite vector space V of dimension n
over the Galois field GF(q), we say that a k—tuple of linear functionals
F = (Fl’ . ’Fk) distinguishes S if
ker Fll\ker sz\ .. 0\ ker ka\S =@

the critical problem is to find the smallest positive integer k such that
there exists a k—tuple of linear functionals distinguishing the set S. This
integer is called the critical exponent of S and will be denoted by c(S;q).

As stated in the introduction, the critical problem is equivalent to that
of finding the largest dimension of a subspace having empty intersection with

a given set of vectors. More precisely, we have

(2.1) Proposition: Let S be a set of vectors in the vector space V. The
largest dimension k of a subspace U of V such that UNS = ¢ is given by

k = n - c(S;q).
We come now to the main result of this section:

(2.2) Theorem: Let S be a set of vectors in V, M(S) be the matroid induced on
S by restriction of V. Then, the number of ordered k-tuples of linear functio-
nals which distinguish S equals

TN a5y 35,

where P(M(S)3;)A) is the characteristic polynomial of the matroid M(S) and r(M)

denotes its rank.
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Proof. We can regard V as the direct sum group G = Gl$ GZQNGGm ,where the
Gi's are all cyclic groups of order p, pr= q; furthiermore, there is an obvious
identifiction between linear functionals on V and characters of G. By Theorem

(1.2), we have

an :El u(a,x)q_r(x)k=
xeM(S)

2 u(a,X)(qk)n—r(x) =
x€eM(S)
- qk(n-r(M))

lc|%p (k;0,8)

PO(S) 305

Let M(S) be a matroid without loops, representable over GF(q). The preceding
Theorem leads us to define the critical exponent C(M;q) of M as the smallest
positive integer k such that P(M(S);qk)>0.

Obviously, if §: S—>V is any representation of M(S) in V, we get

c(y(8);q) = C(M;q).

Furthermore, we have

(2.3) Proposition: Let M(S) be a matroid without loops, representable over
GF(q). Then
i) P(M(S);qk)ao for every non-negative integer k
ii) P(M(S);qj)>0 for every integer j3C(M;q).

Several bounds for critical exponents of representable matroids have been
found in recent years; just as an example, we mention a result which we need
in the last part of this paper.

Let R(M) denote the set of simple restrictions of M, C(M) the set of co-

circuits of M and [o] the smallest integer greater or equal than oeR; we have

(2.4) Theorem: If M is representable over GF(q) and it has no loops, then

C(M;q) < |log (2+ max ( min |C|)ﬂ .
9 yer(My ceC(ll)

3.A proper k-colouring of a graph G = (V,E) is a mapping vy from the vertex set
V to a set A = {al, . ,ak? (colours) satisfying the following condition: if
u and v are adjacent vertices, then y(u) # y(v).

The colouring problem is to find the smallest positive integer k such that a
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proper k-colouring of the graph G exists; this integer is called the chromatic
nunber of G and is usually denoted by x(G).
Now, let K be any field. Set

RO(K) = {f; f: V—K}

{g; g: F—K}.

RI(K)

Let us orient the edges of G in some fashion; if the edge e = {u,v} is direc-
ted from u to v, we set e = u and e+= v, respectively.

The coboundary operator is the linear operator &: RO(K) ——#Rl(l() defined
as follows:

(s (e) = gleM-gle))

for every eeE and geRO(K).

The image space of § is called the coboundary space of the graph G and will
be denoted by C(G,K). One easily checks that

ker 8§ = {f:V~?K; if u and v are adjacent vertices, then f(u) = £(v)};
then, denoted by k(G) the number of connected components of G, we get

dim (ker § ) = k(G)
and
dim (C(G,K)) = |V| - k(G).
Furthermore, C(G,K) is independent of the choice of the orientation on G.

For every ee¢”, we define a lincar functional on C(G,K) as follows:

<Le|f> = f(e)
for every f€C(G,K).
Now, it is well-known that the cycle matroid M(g) of the graph G = (V,E) is

represented over K by the application
y: E ~—> Hom(C(G,K) ,K)
such that

ble) =1L,
for every ee¢kE.

Thus, M(E) is replesentable over any field K and we can state the following

(3.1) Theorem: Set n = IVI , K. = GF(q). There is a bijection between the
set of all proper qk—colourings of the graph G = (V,E) and the set of all
ordered k-tuples of linear functionals on V = K" which distinguish the set

of vectors corresponding to E.
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We give two proofs of this result.

a) Let XG(A) be the chromatic polynomial of the graph G = (V,E) and let r be
the rank of its cycle matroid M(E). The Tutte-Grothendieck recursion in the
hereditary class of graphic matroids yields the identity

xg = Cra@;n .

By Theorem (2.2), recalling that k(G)=n-r, we get the assertion.

N
b) Let 8 be the linear operator

"
§ : Hom(C(G,K) ,K) ——-)Hom(RO(G,K) ,K)
defined as follows:
n
§(L) =

for every LeHom(C(G,K) ,K).
n

The operator § is one to one and hence the application
er—> (Le)

yields a representation of M(E) 1n Hom(R (G,K) ,K).
We choose as a colour set A ([Al q ) the set of all k-tuples on K; hence, any
given mapping f: V-—»A can be seen as a k-tuple of linear functionals on
Hom(RO(G,K) ,K), by setting

W) = (£,(0), . £, (V)
for every veV.
Furthermore, we have:
f is a proper qk—colouring of G=(V,E) 4 for every e¢F there exists an i
such that df (e) # 0 & for every e€E there exists an i such that <L |<5f >#
t0 & foreveryeGE(<5L l£,>, . ,<6L|f>)#(00 . ,0).

This completes the proof.’

(3.2) Corollary: Let G be a graph without loops and let M(E) be its cycle
matroid. Then, for everyprime power q, we have

C(;q)-1 C(M;
Lol Ctha),

<

4. Let V be the vector space of dimension n over GF(q). Given a distinguished

basis B = {b,, . ,b_} of V, the weight of a vector veV is the number w(v) of
1 n

its non-zero coordinates with respect to B.

[n,k,d] -linear code is a subspace C of dimension k of V, such that



w(v)=d

for every veC —{0}. The integer d is called minimum distance of the code C.
Given n,dcz+, the (linear) coding problem is to find the largest integer k
such that an&1,k,d] ~linear code exists.
Set

Sn,q,d-l = {veV; v#0 , w(v)sd} ;

we call Hamming matroid the matroid M(Sn q d-l) obtained by restriction of V
on the set Sn,q,d—l'
The coding problem is a special case of the critical problem for finite

vector spaces. In fact, by Proposition (2.1), we get

(4.1) Proposition: An Elﬂ(gq—linear code over GF(q) exists if and only if the

inequality
C(M(Sn,q,d—l);q)sn_k
holds.
Now, set
. . n . . . .. . .
A= KJl, . ,Jn)éz N PR PR <jpsn, i, is non-negative for i=1,.,n};

moreover, for every (jl’ . ,jn)eA, set
F. o= {v = (v . ,v)eV; v. = 0 if j. # 0} .
Bye iy (vis - 5V eV i i

The subset

. . S

NPT Y n,q,d-1

of Vis a flat of the matroid M(S q g-1) @nd will be called coordinate flat.
3 3

We have

(4.2) Proposition: If F is a coordinate flat of M(Sn,q,d—l) and r(F)<d-1,
then F is a modular flat.

Proof. By induction on the rank of F. If r(F)=1, the assumption trivially
holds. Now, assume the statement true for every coordinate flat of rank smal-
ler than msd-1. Let F and H be coordinate flats, r(F)=m, r(H)=m—-1, HSF. Let K

be any other flat of M(Sn ). We consider two cases:

’q;d_l
i) Suppose KNH<KANF; then
r(H)+r(K)+1 = r(KAH)+r(KVH)+1l £ r(FAK)+r(FUK) < r(K)+r(F) = r(X)+r(H)+1.
Hence, (F,K) is a modular pair.

ii) Suppose KNH = KNF. Let b, be the element of the distinguished basis B
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of V which belongs to F but not to H. Assume that bt is spanned by the set

K VUH; then there exists a minimal set {ki}V{h§of elements in K and H such that

Sujhj + 2ok, RO

Now, if r(F)g d-1, the vector

ziciki - b, - Zjujhj

is in FAH but not in HNK, and this is a contradiction. Hence, r(KUVH) =

= r(KVUF)+1 and (F,K) is a modular pair.

By Proposition (4.2) and Stanley's Theorem on modular elements in geometric

lattices ([lﬂ >, Theorem 2 ), we get

(4.3) Proposition: The characteristic polynomial P(M(S“ q d_1);)\) has at least
b ’

d-1 positive real roots T, namely,

i
r. =q
is a root for every i = 0,1, . ,d-2.
Proof. Let F and H be coordinate flats, HCF, r(H) = r(F)-1<d-2. The number of
1-flats of M(Sn ) which are c¢ontained in F but not in H is given by gq (H{
>4 ()

By the Theorem mentloned above, is a root of P(M(S d_1),)\).
’

(4.4) Corollary (The singleton bound): If an[b,k,q] -linear code exists, the
inequality

n-k2d-1
holds.

The special case M(Sn ) has been widely studied by T.Dowling in [11]( see

’

also [9] , pag. 290 ff. ) In particular, he proved that every coordinate flat

of M(Sn q 2) is a modular flat and hence its geometric lattice is a super—

’ ’
solvable lattice. Thus, we have

n-1
POI(S, )50 = T O-(a-Di-D)
> i=0

and this implies

(4.5) Proposition: An[ﬁ,k,ﬂ ~linear code over GF(q) exists if and only if the

inequality n-k
1+(q-1) (n-1)<q
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holds.

The preceding result is nothing but the well-known Gilbert-Varshamov bound
( [}é], pag.34 ) in the case d=3, here seen to be also a necessary condition
for this class of codes.

Our next aim is to derive the general form of this bound as a specialization

of the general bound on critical exponents given in Theorem (2.4).
(4.6) Theorem: There exists an[n,k,q ~linear code over GF(q), provided
i,n-1 n-k
S @D
i=0 .

Proof. Let G(Sn
matroid M(S

q d__1) be the combinatorial geometry associated to the Hamming
’ ’

). For every coordinate hyperplane Hj (i=1, . ,n) of

5q,d-1
M(S n,q,d- l), denote by HJ the corresponding hyperplane of G(Sn,q,d—l)' 1t is
easily seen that the cardinality of HJ is
d-1
by i-1,n-1
] = = (i i TN
] $=0 1

furthermore, if H is any hyperplane of G(S ), its cardinality is smaller

n,q »d-1
or equal than IH I

Choose now a 1 flat PiG(Q ); we can always find an integer j such that

»q,d-1
P¢Hj' Then, we have

max (min  |c|] ) =

WeR(G(S | 4.)) Ceca

d-1 d-
= (- Z (-11” “11) -1 =
i=1 i=1
d-2
_ (q- 1)1(n 1)
i=0

Recalling that P(G(Sn’q’d_l);k) = P(M(Sn’q’d_l);A), the statement follows by
Theorem (2.4).
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1. Introduction.

Matroid theory (sometimes viewed as the theory of combinatorial
geometries or geometric lattices) is reasonably young as a mathematical
theory (its traditional birthday is given as 1935 with the appearance
of [159]) but has steadily developed over the years and shown
accelerated growth recently due, in large part, to two applications.

The first is in the field of algorithms. To coin an oversimplification:
"when a good algorithm is known, a matroid structure is probably

hidden away somewhere." 1In any event, many of the standard good
algorithms (such as the greedy algorithm) and many important ones
whose complexities are currently being scrutinized (e.g., existence
of a Hamiltonian path) can be thought of as matroid algorithms. 1In

the accompanying lecture notes of Professor Welsh the connections

between matroids and algorithms are presented.

Another important application of matroids is the theory of

the Tutte polynomial
i 3
t(M;x,y) = Xaij(x-l) (y-1)

where aij is the number of subsets A of M with rank r(M)-i
and cardinality r(M)—i+ﬁ. The Tutte polynomial and its chief evalua-

tion, the characteristic polynomial

x(M32) = £u(0,x) AT DT

(the sum being taken over all elements in the geometric lattice

associated with M, and the rank function and M8bius function wu(0,x)
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being computed in that lattice), have come up in a variety of applicationms.
The characteristic polynomial as a lattice invariant can be thought of
as a generating function for the Mdbius function. It has applicationms,
of course, to other, non-geometric, lattices and its rich general theory

is presented in this-volume by Professors Barnabei, Brini, and Rota.

The Tutte polynomial, on the other hand, seems to be special
to matroids. It is to its general theory and applications that we
address our notes. In the present volume, we present the first part,
concentrating (after the next, motivational, section) on the structure
of t(M) for a general matroid and on the nature of a "Tutte-
Grothendieck invariant." These latter invariants deserve a special
treatment, and we give it in the second part to appear elsewhere. For
now, as justification for our general survey we give a sampling of
some of the areas in which certain evaluations of the Tutte polynomial
coincide with important invariants.

- minimal flow calculations in networks {1, 27, 81, 82, 95, 103,

124, 136, 139, 140, 151, 153, 154]

- graph coloring [8, 27, 29, 39, 57, 64, 82, 95, 107, 117, 124,
135, 137, 138, 140, 142, 145, 146, 151, 153, 154, 157, 160,
172]

- percolation theory [47, 71, 115, 116, 152]

- hyperplane arrangements, convexity, and separation in affine
and projective space {32, 49, 50, 76, 77, 163, 164, 167, 168,
174, 175])

- acyclic, totally cyclic, and coherent orientations of graphs
and oriented matroids [16, 44, 50, 61, 76, 77, 87, 89, 90, 134,

163, 167, 170]
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- zonotopes [77, 128, 163, 167]
- packing and coding theory [36, 65, 75, 107, 153, 154, 155]

- intersection numbers for subsets of points in a finite
projective space and the critical problem [27, 37, 43, 60,

65, 83, 107, 144, 148, 151, 153, 154]

- electrical networks [12, 24, 33, 129, 103, 130]

- combinatorial designs [19, 62, 63, 70, 105, 162]

- quantum and statistical mechanics [9, 71, 127]

~ trees [7, 27, 33]

- signed and voltage graphs [66, 67, 168, 169, 170, 172] -

- Eulerian paths [91, 92, 99, 100, 149]

- covering [104]

- scoring in tournaments [76, 77, 167]

- topological dissections [164, 165]

- embedding graphs in surfaces [91, 99]

- root systems [168]

We view the fact that invariants in all the above areas are
evaluations of the same polynomial as ample evidence that a general
theory is merited. 1In addition, it often occurs that applications
in one area suggest analogous formulas in another. A famous example
is the critical exponent of Crapo and Rota applying ideas from the

chromatic theory of graphs to coding and packing theory in finite

projective spaces. In fact,the Tutte polynomial for matroids was
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invented by Crapo [56] as a generalization of Tutte's work in graph
coloring [137, 138]. Recent examples are contained in the work of
Oxley [107, 108, 109] and in [83],where the Hajos construction for
graphs of chromatic number at least gq is analogized to representable

matroids of critical exponent at least k.

Although these notes sketch (or give references to) previously
published results, much is new. In section three, we explore the
nature of what is meant by a "Tutte-Grothendieck invariant,” distinguish-
ing several types while relating them to t(M). 1In section four, we
show that various operations on M (such as adding a point in free
position and '"tensoring" (a new operation)) affect the Tutte polynomial
in predictable ways,while for others (such as the free erection),
the Tutte polynomial of the resulting matroid M' cannot in
general be calculated from t(M). Section five concerns reconstruction:
what partial information about a matroid allows one to calculate its
Tutte polynomial? Conversely, what information can t(M) give us
about useful structural invariants (such as the number of certain
closed sets)? The total number of closed sets (indexed by rank and
cardinality) cannot in general be tabulated if only t(M) is known,
but formulas for it are given for certain classes. We explore one
of these classes - near-designs, which simultaneously generalize

projective spaces and paving matroids.
In the final section, we study some general identities and

inequalities (such as log concavity) satisfied by the evaluations

and coefficients of t(M). Many inequalities depend on parameters



131

and are sharp, becorming equalities when the matroid is in a
certain class. Examples of these extremal classes are given, as
we-1 as a general framework to find other extremal classes and
their respective sharp bounds. A few exercises and many research

problems accompany each chapter.

We will assume the kind of familiarity with matroid theory
obtained from [151] (or, to give the other coauthors equal treatment,

[42] or [60]).

We wish to thank the C.I.M.E. for their sponsorhip of the
lectures on which these notes are based and for affording an
opportunity for all of us at the conference to share ideas in the

beautiful surroundings of Varenna.

In addition, we thank Hazeline Lewis; Gary Gordon, Professor
Rhodes Peele; Hazeline Lewis; and Professor Adriano Barlotti,
respectively, for their utmost patience during the typing, proof-

reading, retyping, and overdue receipt of this paper.

Vorrei dedicare questi appunti a tutti i miei amici italiani

ed in particolare a Bruna ed alla nostra nuova vita insieme.
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2. A Prototypical Example.

In this section, we illustrate the idea of a "Tutte-
Grothendieck” theorem: one which can be (easily) verified on loops
and isthmuses, and which is then proved inductively on matroids of
K points by showing a relationship between relevant properties of
G on the one hand and the pair (G-p, G/p) on the other. 1In the
course of the proof, many ideas will be presented such as the nature
of deletion and contraction for various special classes of matroids

(graphic, representable, etc.).

Theorem 2.1. For a binary matroid M, the following are equivalent.
1. M is affine (i.e. M is isomorphic to a subset
of some binary affine space AG(n,2) with, perhaps,

multiple points).

2. In a binary vector representation for M, there
exists a linear functional £ such that

f(v) 20 (i.e., f(v) =1) for all v e M.

3. All circuits of M are even (i.e., have even

cardinality).
*
4. All hyperplane complements of M are even.

*
5. M has a partition into circuits,

For 6 and 7 when M 1is viewed as a linear code C:

6. C contains the vector (1,1,...,1).
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7. Cl, the dual code, is an even-weight code.

If M is graphic with graphic representation G(M):

8. G(M) is two-colorable.
* *
If M is cographic with a representation G(M) of M as a

connected graph:
*
9. G(M ) has an Eulerian cycle.

10. M 1is loopless,and the associated geometry of M,

M, obeys any (or all) of the above properties.

No pair of the above equivalent properties is hard to prove
directly. Some are classical (3+«++8, 4+<+>9), some are trivial
(1+>2, 5++6, 3<>4, etc.), and all have appeared in the litera-
ture. Our proof will be different than the ones usually presented
as it will proceed by induction. In particular, for each i, let
Xq be the "characteristic function'" of the property Pi’ i.e.

1 1if M satisfies P1
xi(M) =
0 if M does not.

Then each X4 is an invariant and we will show that each obeys

the following two boundary conditions:

0 if M 1is a loop.

Bi. x;(

B xi(M) =1 1if M 1is an isthmus.

2°
Further, X5 obeys the following recursions:

Xi(M) = xi(M-p)-xi(p) if p 1is a loop or isthmus.

B,. Xi(M) = Xi(M_p)—xi(M/p) if p 'is neither a loop nor

an isthmus.
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It then follows that all of the properties are equivalent
since xi(M) = xj(M) on a one-point matroid (necessarily a loop
or an isthmus), and, by an induction hypothesis, on smaller matroids.
1f, for example, M has a point p which is neither a loop nor an

isthmus, X, (M) = x;(M-p) - x, (M/p) = xj(M-p) X M/p) = xj(M).

The rest of this section will be devoted to showing that X4
obeys the system B = {Bl’BZ’B3'BA} for i=1,2,...,10. A common
thread in many of the proofs will be that xi(M) counts something

which is positive exactly when Pi holds.

The first property is a geometric one and we will use synthetic

arguments.

Proof of Pl. By considering the affine span of M, it is easy
to see that M is in some binary affine space if and only if it
is in AG(n-1,2), the affine space of dimension n-1 (rank n),
where n = r(M). Let xi be the number of hyperplanes which miss
M in an embedding of M in PG(n-1,2). (Clearly there is at most
one since PG(n-1,2) - {Hl,HZ} = AG(n-1,2) - H = AG(n-2,2), an

affine space of lower rank.)

We will show that xi obeys B and thus so will xl.
There are no loops in affine space while an isthmus is isomorphic
to AG(0,2). Hence, Bl’BZ’ as well as B3 when p is a loop
are all trivial.

If p is an isthmus and H 1is a hyperplane which misses M,

then clearly H n M~-p 1is a hyperplane in the-projective span of
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M-p, ﬁ:;, which misses M-p. Conversely, if H' 4is a hyperplane
of ﬁ:; which misses M-p, then ﬁT—G—E' is a hyperplane of
PG(n-1,2) which misses M, where q i1s the third point on some
line containing p and another point of M-p. This relationship

is bijective so that xi(M) = xi(M-p) = Xi(M‘P)‘Xi(P)-

To prove recursion B it will be easier to show that

4°
xi(M-p) = xi(M) + Xi(M/P)- For this, let H be any hyperplane which
misses M-p. Then,it either contains p or it does not. In the
latter case it gives a hyperplane which misses M, and in the former
case there is an associated hyperplane H' = H/p in PG(n-2,2)

which misses M/p. Here projection by the point p means picking

a hyperplane H" which does not contain p and projecting, via
lines through p, all the points of H, PG(n-1,2), and M-p
respectively onto H". Conversely, if a hyperplane misses M, it
gives a hyperplane which misses M-p, and if a hyperplane H'

misses M/p, then ET_E_; is a hyperplane which misses M-p and
passes through p. This exhausts all the cases. (For example,

note that there cannot be both a hyperplane with missés M and

another which misses M/p, since this would lead to two distinct

hyperplanes which miss M-p.)

Proof of P2 and P6. A binary representation for M is an n

by K matrix N where n = r(M), K = |[M|, and dependency in M

corresponds to linear dependency among the columns of N. A linear
functional f such that f(v) =1 for all columns v of N then

corresponds to a row vector w such that w*N=1 where 1 is
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the vector of all ones. The existence of sucha w is equivalent to
the vector 1 being in the row space of N. However, the code C
of length K and dimension n associated with a matroid M
represented by a matrix N is precisely the vector subspace of

FK consisting of the 1F|n vectors spanned by the rows of N.

Thus Xy and Xg are equivalent and we can view our proof as an
analytical formulation of the synthetic arguments for Xq- Let xé
count the vectors w such that weN = 1. A loop is represented (in
any dimension) by a column of zeros, and thus,if M contains a loop,
w+N is zero in that column for any, w. Further, an isthmus is
represented by the matrix [1] and for this representation, the scalar

vector w =1 gives the desired conclusion.

The number of vectors w such that w*N =1 is preserved under
row-equivalent representations of M, since if P is a nonsingular
n xn matrix, P¢N also represents M by standard theory,while
weN = (E-P_l)-(P-N). Now assume that p € M is not a loop and

(applying appropriate row operations if necessary) is represented

by the (first) column vector 1 of N. The matrix N is then of
0
0
. 0
the following form:
1 v
0
N=1]0
. A
0

where v 1is a row vector of length K-1, A is a matrix of size

n-1 x K-1, v = 0 if and only if p is an isthmus, A represents
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M/p, and [ M 1 represents M-p.
Al

Using these representations, it is obvious that,if p is an
isthmus, w'+A =1 if and only if w'N =1, where w 1is the

vector w' opreceded by a one. Thus, B3 is satisfied.

If p is not an isthmus, then some entry of

v is 1. Let w be a vector such that wr I = 1l. Then w'N=1
A

if and only if w has a one in its first coordinate,and w has

a zero in its first coordinate if and only if w'+A = 1, where w'

is the vector w with its first coordinate deleted. In terms of

the invariant xé, this shows that xé(M—p) = xé(M) + xé(M/p).

3

circuit, so that recursions Bl’Bé’ and B3 are trivial for x3(M).

Proof of P.. A loop is an odd circuit,and an isthmus is in no

Now assume that p 1is not an isthmus,so that it must be contained

in some circuit C. We prove the recusion x3(M‘p) = XB(M) + x3(M/p).

1f x3(M-p) = 0 then M-p contains an odd circuit C' so that

M does also (x3(M) = 0). In addition, C' is the disjoint union

of (at most two) circuits in M/p. (The subgeometry C u p has

nullity at most two, so is graphic with graphical representation a

6 graph in the nullity-two case.) Thus, one of these circuits is odd, and
x3(M/p) = 0. On the other hand, assume XB(M_p) = 1. If the

circuit C containing p 1is odd, it is an elementary property of

the circuit elimination axiom for binary matroids that all circuits

containing p are odd,and that M/p contains only even circuits,
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0. If C 4is even, so are all

n

in which case xB(M/p) = 1, and x3(M)

circuits containing p. Thus x3(M) =1 and x3(M/p) = 0.

Proof of Ph‘ P4 is of course a (dual) restatement of P3 since

circuits of M are bonds (complements of hyperplanes) of M*. Let

us,however, see what a direct proof (involving bonds) would involve.
% {1 if M has all even bonds

Let XA(M) = Then,

0 otherwise.

* * ¢ %
XA(M) = x4(M ) = x3(M ), and the recursions in the proof of X3

become:
* * *
B.. x, M) =0 if M is a loop
1 3
* * *
B2. x3(M ) =1 if M 1is an isthmus
* * *
B3- x3(M ) = X3(M -p)-x3(p) if p is a loop or isthmus
*
of M
* * * *
34- X3(M ) = X3(M -p) - x3(M /p) if p 1is neither a

loop nor an isthmus.
But standard matroid theory shows us that a loop is dual to an isthmus,

* *
and that deletion is dual to contraction. Thus, Bl - B4 become:

* *
Bl. XA(M) =0 4if M is an isthmus

* *
BZ' XA(M) =1 4if M 4is a loop

* * *M/ * - X * if i isth
By x, 00 = x,M/p)-x,(p) = x, (M-p)-x,(P) p is an isthmus

or loop

* * * *

B, XA(M) = xA(M/P) - XA(M-p) if p is not a loop or isthmus.
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Thus a proof of property P is equivalent to proving recursions

4
* * *
Bl - B“ for Xy and we will use this observation in our proof of Ps.

* *
Proof of PS' As outlined above, we must prove conditions B1 - B4 for

1 if M has a partition into circuits
*
X5 (M) =
0 otherwise.
If M has a loop p, clearly
* * * *
XS(M) = xs(M—p)-xs(p) = x5(M~p). If M contains an isthmus,
it cannot be partitioned into circuits (an isthmus being in no
*
circuit), so we may concentrate our proof on recursion BA' We use a
matrix proof. When M is represented by the matrix N, it is
elementary to show that M 1is partitioned into circuits if and
only if every row of M has an even number of ones. (A set of
columns of N is a disjoint union of circuits if and only if the
modulo-two sum of those vectors is zero.) Assume N 1is as in the
proof of PZ (noting that elementary row operations preserve the
property of every row being even). If A has an odd row, so do
v * * *
N and |-, and XS(M) = XS(M—p) = xs(M/p) = 0. If A has all
A
even rows (i.e. M/p has a partition into circuits), then N has
* .
all even rows (XS(M) = 1) iff v has an odd number of ones iff

*
[Y] has an odd row (XS(M—p) = 0). This handles all cases.
A

Proof of P7. The dual code Cl of C 1is the set of all vectors
w such that w-v =0 for all (row) vectors v in C. Standard theory shows
that when a basis for C forms the rows of a matrix N and when a

basis for C' forms the rows of N', N and N' represent dual
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matroids. But linear combinations (over FZ) of even-weight vectors

1 is an even-weight code if and only if

have even weight,so that C
it has a representing matrix all of whose rows are even. Thus, the

above proof of P5 serves equally well for P7.

Proof of PB' This is perhaps the prototypical example of the
theory since the recursions B1 - B4 for graph coloring have been

well-known since G. D. Birkhoff's pioneering work [10] seventy years
ago and were developed into a theory by Tutte [137]which anticipated
for graphs the present point-of-view. Let G be a connected graph
and let XA(G) be the number of ways to color the vertices of G
with X colors so that no two vertices of the same color are
connected by an edge. (It will be a consequence of our proof that
XA(G) is a polynomial in A whose degree is the number of vertices
of G.) We will show that XA(G)/A obeys the conditions Bl’

Bé, B3 and Bé where Bé is B2 with 1 replaced by A-1l. Since
xk=2(G(M))/2 = XB(M)’ we will then be done. (A connected graph has
either zero or two two-colorings.) If G contains a loop
(graphically,an edge joining a vertex to itself), it cannot be
colored so that XA(G) =0. If G 1is an isthmus, it consists of
two vertices joined by an edge,so that XA(G) = A(X-1), and Bé

is satisfied. We will prove B3 only for trees. In the following section
(3.5), we will show that this apparently weaker requirement in

fact implies B3. If G 1is a tree with n edges,then

XA(G) = A(A—l)n, each edge being an isthmus. Further, the matroid

of G 1is the direct sum of n isthmuses, and, conversely, a direct
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sum of n isthmuses is represented by any tree of n edges. Thus,
%, (6) X, (6-p) *x, (P)

A A A :

show that XA(G) + XA(G/p) = xx(G-p). But,if p 1is not an

= (A—l)n =

for trees To prove Ba, we must
isthmus, G-p is represented by the connected graph formed by
deleting the edge p, while if p is not a loop, G/p 1is represented
by the graph formed by identifying the two vertices joined by p

and then deleting the edge p. It is then elementary to show that
every (proper) coloring of G-p is either a coloring of G (when
the two vertices joined by p receive different colors) or
corresponds in a unique manner to a coloring of G/p (where each
vertex not incident with p gets the same color in G/p and G,

and the new vertex gets the color of the two identified vertices).

Proof of P_. This will be generalized later in Part II

9
*
in a manner analogous to PS. For now, we will show that Xg
* *
satisfies  the conditions B1 - BA using the Euler condition that

a connected graph G has an Eulerian cycle if and only if every
vertex of G has even degree. Certainly if G (= G(M)) has an
isthmus, it cannot have an Eulerianm cycle; while, if p is a loop,
B; and B; are trivial. Now assume that p joins v and V'
in G, and let d(w) denote the degree of the vertex w in G.
If d(w) is odd in G for w mneither v nor v', then

x;(G) = X;(G—p) = x;(G/p) = 0 (using the representations for G-p
and G/p given in the proof of P8). Assume now that d(w) 1is
even for each of these vertices. Then x;(G/p) = 1, since the
identified vertex in G/p must also have even degree. (The sum

of the vertex degrees of any graph is even.) If v and v' both

* *
have even degree, then X9(G) = 1, while x9(G-p) = 0. Conversely,
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*
if v and v' both have odd degree, then xg(G) = 0 while

*@ 1
Xg(G-p) .

Proof of P10° When X4 is viewed as a (generalized) Tutte-Grothendieck
invariant (see 3.20), PlO follows as a special instance of (3.15).
Research Problem. Find other properties of a matroid (perhaps

in some special class) whose characteristic functions satisfy a

similar recursion.
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3. The Tutte Polynomial.

The underlying idea of the invariants X4 of the previous
section was that there was a recursion of the general form
f(M) = af(M-p) + bf(M/p) when p was neither an isthmus nor a
loop,and f(M) = f(M-p)-f(p) otherwise. (In the previous section,
a=1 and b = -1.) But we note that M/p has rank one less
than M when p is not a loop,while r(M-p) = r(M) when p is

not an isthmus. Thus, for each i, fi(M) = (_1)r(M)

xi(M) obeys
the additive recursion

(*) fi(M) = fi(M-p) + fi(M/p)

as well as the multiplicative recursion B3 and the boundary

conditions: fi(loop) =0, fi(isthmus) = -1. Many other invariants

can be'"fudged up" to obey the same additive recusion (*). The

abundance of these invariants which we will exXhibit in the following sections
and, especially, Part II motivatesus to establish a general theory for all such
invariants. The fundamental idea is that of a universal invariant

called the Tutte polynomial. As we saw in the previous section,

the idea is based on the work of Tutte[137] and was generalized to

matroids and given its present name by Crapo [56]. The theorem

below is from [27] while the general categorical frame-

work is presented in [26]. 1In the following, we define a

Tutte-Grothendieck invariant as a function on matroids taking values

in a commutative ring R which satisfies conditions Tl and T2

below. To simplify the statements of such conditions as Tl and

T2, we use the term factor to denote a point p which is a

loop or isthmus. The term comes from the fact that a matroid M
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factors as a direct sum into a point p and its complement:
M = pd(M-p) if and only if p is an isthmus or loop. If p is

neither,it is called a nonfactor.

Theorem 3.1 There is a unique two-variable polynomial with integer
coefficients associated with any matroid M called the Tutte poly-
nomial t(M;x,y) which is an isomorphism invariant (if Ml = MZ’
then t(Ml) = t(Mz)), and which obeys the following four properties:

Tl. t(M) = t(M-p) + t(M/p) if p 1is a nonfactor
T2. tM) = t(M-p)*t(p) if p is a factor

T3. t(L) =y and t(I) = x, where L is a loop (one-
point matroid of rank zero),and I is an isthmus (one-

point matroid of rank one).

T4. If £ 1is any Tutte-Grothendieck invariant with values
in a commutative ring R, then f(M) = t(M;£(1I), £(L)), where the

polynomial operations take place in R.

We will present two proofs of the theorem. The first is longer and

more technical but can be adapted to algebraic objects other than
matroids. The second uses a more concrete matroid invariant.

Abstract categorical algebra techniques similar to those used by
Grothendieck show that there is a ring R' and unique invariant

with values in R' which has the "universal" property of T4 with

respect to conditions Tl and T2 on all matroids. The essential

part of the proof is in showing that this commutative ring R' is

free (i.e., a polynomial ring) so that the ring homomorphism is evaluation.

We will see in the first proof that this is so because an abstract
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" decomposition”" of M along the lines of Tl and T2 is indepen-

dent of how we order the points of M.

First Proof. Consider the class Mo of ordered matroids
Ho((pl,...,pk)) and the function L M0 + Z [x,y] which is

recursively defined by T'l1-T'3 below:

T'L £ (4 ((pysnnesp))) =€ O ((Prseeespy 1)) +

to(Mo((pl,...,pk))/pk) if P is a nonfactor.
' = . -
T'2. tO(MO) to(pk) to(Mo pk) otherwise.

T'3. to(isthmus) = x, to(loop) =vy.

This function clearly satisfies T3 and T4, and the proof consists
of showing that it satisfies Tl and T2 (for any point p). This
is done by showing that we can interchange the last two points

(pk and pk—l) in the order and get the same polynomial. There
are many cases to consider. For example,if Pr_1 is an isthmus in
M- Py but not in M, then Pp_1 and Py form a pair of points

in series,and there is an automorphism of M which interchanges

Py and Pp_1° Then, if o' 1is the ordering (pl,...,pk,pk_l), we

have that

t (M) =t M /{p,_;,p, ) + (e (o )t (M-{p_ .p D

t M /{p, 5P, D) + ()t (M -{p 1P D)

tO(Mo,).

To consider one more case (the generic one) when neither P

nor is a loop or isthmus, and they are not in series or

Pr-1
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parallel, then, e,g., (M_pk-l)/pk = (M/pk)—pk_l, and again
to(Mo) = to(Mo,). Ve use similar arguments for the other cases,
and we note that if pk is not the last point in the order, we
can still transpose it with Py (We apply T1' and T2' to
take care of all the points Py with i > k and then transpose
in each monomial.) Thus, we can filter any point p € M through
the order to give a new order o' in which it is the last point,
so that Tl and T2 are satisfied by tos and we may define

t(M) by t (Mo) where o 1is any ordering on the points of M.
’ o

Second Proof. We define the function

L Q) = y (x_l)cor(A) )nul(A)

AcS

(y-1

where M is a matroid on the set S, and for any subset A of
S, cor(A) is the corank of A (r(S)-r(A)) and nul(A) is the
nullity of A (]A|—r(A)). The function t'(M) is a well-defined
polynomial obeying the boundary conditions of T3. If we show that
t' also obeys Tl and T2, then induction shows that
t(M) = t'(M) satisfies T4 and the theorem. Now, let p be an
isthmus of M. Then,

ey = ) (x_l)r(S)-r(A)(y_l)|A|—r(A) ,

AcS

and we break up the sum according to whether the subset A contains
p or not. If p e A, then the subset A-p has the same corank
as well as nullity in M-p as A does in M. If p ¢ A, A
has the same nullity calculated in the matroid M as in the matroid
M-p, whereas corM(A) = corM_p(A) + 1. Therefore:

cor,, (A) ml,  (A)
M = (x-1) § (x=1) TP (y-1) p
ACS

péA
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cor, (A-p) nul, _(A-p)
+ ] 1 MP Ty MP
AcS
peA
cor,, (A) nul (&)
=x J 1 MP e P
AcS-p

]

t'(p)+t'(M-p).

of a loop and proves Tl when p is neither a loop nor an isthmus.

fact, it is the latter case which shows why we only use the identity

Tl when p is a nonfactor: p is not a loop iff

nulM/P(A—p) = nulM(A) for all subsets A containing p (corank

is preserved for any point) while for all subsets A not containing p,

p is not an isthmus iff corM_p(A) = corM(A) (nullity is always

preserved).

Definition 3.2. For a matroid M of rank n, define the corank-

nullity polynomial by

S(M;u,v)

2 ucor(A)vnul(A)
ACS

n V'A'

AcS (uv)r(A) '

"
[

Proposition 3.3.

1. S(M;u,v) = t(M;ut+l,v+l).

2. t(M;0,0) = O-

3. t(M;1,1) is the number of bases of M.

4. t(M;2,1) is the number of independent sets of M.

5. t(M;1,2) 1is the number of spanning sets of M.

K

6. t(M;2,2) = 2, the number of subsets of M (K = IMDy.

T2 for the case

In
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*
7. tM5x,y) = t(M5y,%).

Proof. The first statement follows from the second proof of
Theorem 3.1 (where it is shown that S(M) is a Tutte-Grothendieck
invariant). An inductive proof based on the recursive definition of
t gives (3.3.2,while 3.3.3) - (3.3.6) are all easily shown by appropri-

ately evaluating S(M) using 3.3.1).

The final statement, showing that the Tutte polynomial of the
dual matroid is obtained by interchanging the two variables, can
be proved via the corank-nullity generating function, since cor (A)
computed in M is the same as nul(S~A) computed in M*, so that
S(M*;u,v) = S(M;v,u). An alternate proof can be formulated exploit-
ing the universal property T4 of t. Define t*(M) to be t(H*).
Then, elementary arguments show that t* is a Tutte-Grothendieck
invariant. Hence, t*(M) = t(M;t*(I), t*(L)) = t(M;t(L),t(I)) =
t(M;y,x). This is essentially the proof of x4 and Xg given in

the previous section.

Example 3.4. Let M be the matroid consisting of the six vertices
of a triangular prism with a seventh point on the center of one of
the rectangular faces. We illustrate the calculation of t(M)
below,where all pictures are to be viewed in the appropriate
Euclidean space, decompositions are with respect to circled points,
juxtaposed points represent multiple points,{::> encloses a loop,
represents deletion, represents contraction, and stands

for an application of T2.
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Completing the decomposition we obtain:
4 2 2 2
t(M) = x + x (xty) + 2(x(x"+xty)) + QQ+)(x+y)x + ¥y +y + %)

= x4 + 3x3 + sz + 2x

+ 2x2y + 5xy + 2y

xy2 + 3y2

In the proof of P in Section 2, condition T2 was verified

8

only for trees. The justification for that apparently weaker

verificationis given in the next proposition.
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Proposition 3.5 Let f be an invariant which satisfies the
additive recursion for all matroids M and nonfactors p e M:
T1. £(M) = £(M-p) + £(M/p).

Then the following are equivalent:

T2. f(M) = £f(M-p)*£f(p) for all matroids M and factors
p €M
] = . i =
T2'. f(MlQMZ) f(Ml) f(Mz) for all direct sums M MIOMZ.
T2". £(B) = £(B-p) f(p) for all totally separable matroids

(i.e., those in which every point is a factor: a boolean

algebra with loops).

Proof. Clearly T2' implies T2 which in turn implies T2".

We show first that T2" implies T2.

Assume that an invariant f satisfies Tl and T2". We show,
by induction on the size of M, that f must, in addition, satisfy
T2. Properties T2 and T2" are equivalent on one-point matroids,
so let M be a matroid on K+1 points and assume £ obeys T2 on
all K-point matroids. If M has only loops and isthmuses, T2
follows from T2", so assume p is a factor of M and qe M is
not a factor. Using arguments similar to those of the first proof

of (3.1) we obtain:
f(M) = £(M-q) + £(M/q)

£((M-q)-p)-£(p) + £((M/q)-p)-£(p)

(£((M-p)-q) + £((M-p)/q)) -£(p)

f(M-p) *£(p)-
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To show that T2 implies T2', assume f 1is a Tutte-Grothendieck
invariant, and that M = Ml QMZ. Property T2 is precisely property T2'
with IMZI = 1. The proof that T2 and T2' are equivalent in
general uses induction on the cardinality of M2 and is similar to
the inductive proof above. The proof rests on the fact that deletions
and contractions in a direct sum may be performed upon the whole
matroid or within the appropriate direct-sum factor resulting in
isomorphic matroids. For example, if p € MZ’ then p is an
isthmus of M2 if and only if it is an isthmus of M = MlﬁMz, and
M1$(M2—p) = (MIOMZ) - p. Now assume |M2| = K+1, and that T2' holds

for all M2 with IH2| = K. If MZ is totally separable, T2'
follows easily from T2, so let p € M2 be a nonfactor. Then:
f(MlﬁMz) = f((MlQMZ)—P) + f((MleMz)/P)

f(MlO(Mz-p)) + f(Mlﬁ(MZ/p))

£QMy) ~£(My-p) + £(M) £(M,/p)

]

f(Ml)-(f(Mz—p) + f(Mz/p))

f(Ml)-f(MZ).

Corollary 3.6 If t is the Tutte polynomial, then t(MlﬂMz) = t(Ml)t(MZ)'

We remark that Proposition 3.5 says that Tutte-Grothendieck
invariants satisfy the apparently stronger T2' which is a useful property
(say in computations or applications), while in verifying whether a given
invariant is a Tutte-Grothendieck invariant, the multiplicative cendition

T2 need only be verified in the very special cases o6f T2".
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We will come back to other applications and examples and give
more properties of the Tutte polynomial, but first we discuss the

nature of a Tutte-Grothendieck invariant.

The abstract algebraic idea is represented in the commutative

diagram below

(3.7) R = FCR[M]

M —» R/1 = Z[x,y]
g

7~
e ~
rd
7~

&

R

‘Here, M is the set of matroid isomorphism classes, R is the
free commutative ring generated by M, i is the map which takes a
matroid (isomorphism class) to its generator,and I is the ideal
generated by all elements of the form i(M)-i(M-p)-i(M/p) and
i(M)-i(M-q)+i(q). Here, q 1is a loop or isthmus of the matroid M,
and p is neither a loop nor isthmus. The map € : R + R/I is
the canonical epimorphismyand t = e°i assigns to any matroid its
Tutte polynomial. General algebraic theory [26] states that, for any
invariant f with values in a commutative ring R which
is zero on the generators of I (i.e., obeys Tl and T2), there
is a unique function e : R/T - R such that f = ect. The ring
R/1 1is called the Tutte-Grothendieck ring and the essence of
Theorem 3.1 is that R/I 1is free (a polynomial ring over the integers
in two variables), while e is evaluation. (Whether R/I contains 1 is
a matter of taste. If it does, then one can define t(E) = 1,where E is

the empty matroid.)
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In this categorical context, Theorem 3.5 states that the ideal
1 contains all elements of the form i(M)—(i(Ml)'i(Mz)) where
M= Mloﬂz, while, on the other hand, 1 is generated by the relations Tl along
with only relations of the form 1(B)-i(B-p)-i(p) for totally
separable matroids B. We now define some invariants with properties
generalized from Tl and T2. Although each is formally different
from the rest, all are related in a fairly natural way to the Tutte
polynomial. It will be the purpose of the rest of this section to

explain these relationships.

Definition 3.8
1. A Tutte-Grothendieck group invariant f is one with values
in an abelian group which obeys axiom T1. That is, f(M) = f(M-p) + £(M/p)

for all nonfactors p € M.

2. A Tutte-Grothendieck set invariant f is a function (with
values in some set S) for which f(Ml) = f(MZ) whenever

t(Ml) =tM,).

3. A generalized Tutte-Grothendieck invariant is one with
values in an R-module in which axiom Tl is replaced by
T1'. f(M) = af (M-p) + bf(M/p) for elements a and b
in R (independent of M) and nonfactors

p € M.

4. A geometric Tutte-Grothendieck (group) invariant £
is one which is defined for combinatorial geometries (matroids without

loops or multiple points) G and which obeys



T1 £(G) = £(G-p) + £(G/p) for any p € G which is not

an isthmus, where 67; is the canonical com-
binatorial geometry associated with G/p. In
57; multiple points of G/p are identified,
and it is characterized by its lattice of closed
sets which is isomorphic to the interval [p, 1]
in the lattice of closed sets of G. It is the

contraction studied by Crapo and Rota [60].

5. A geometric Tutte-Grothendieck ring invariant f is one

which obeys TlG and

TZG. £f(G) = £(G-p)*f(p) for any isthmus p € G.

Combinations of the above may also be defined in the obvious
way (e.g., a geometric Tutte-Grothendieck set invariant). In the
following, we will use acronyms such as T-G for Tutte-Grothendieck,
etc. We now explore these invariants in more detail. First, we
give the commutative diagram equivalent to (3.7) for (3.8.1) and
(3.8.2).

In the following, t(M) = z bijxiyJ

i,]

Proposition 3.9 Let G be the free abelian group generated by

the set of matroid isomorphism classes M with i : M > G the

obvious map. Further, let S be the subgroup of G generated by
elements of the form i(M)-i(M-p)-i(M/p). Then G/S = FAG[...,xiyj,...],

the integer polynomial ring Z[x,y] viewed as a free abelian group.



The Tutte polynomial t : M - G/S serves as a universal T-G

group invariant in the following commutative diagram:

G = FAG[M]
i €
t P
M »  G/S = FAG[...,xy%,...]
”~
h e _~- -
~
G‘*(

Here, h 1is any T-G group invariant into an abelian group G,
while e 1is evaluation on totally separable matroids:

fM) = tM| . . .
xlyJ -+ f(BiJ)

7 b, £
1,5 1

where Bij is the matroid consisting of i disthmuses and j Ioops.

Proof. See [26] or [27].

Proposition 3.10 Let T be the set of all Tutte polynomials. Then

we have the following commutative diagram

M — M = T
1f t(M ) = t(MZ)

£f' _~
-~

P ~



where s 1is the canonical surjection, and, for any T-G set
invariant f : M > S, there is a unique function f' with
f = f'os. Thus, f' (in theory) can be calculated from the coeffi-

cients {b_.} in t(M):
1]

- \ ]
£00) = £'(by5sby bgysbygebyysPygse-s)

Clearly, any T-G ring invariant is also a T-G group invariant,
and any T-G group invariant or generalized T-G invariant is a
T-G set invariant. An example of a T-G group (but not ring) invari-

ant is b the coefficient of x in t(M) called the Crapo beta

10’
invariant which we will discuss later. An example of a set (but not

group) invariant is the rank of M, r(M), where r(M) = max(i : bij # 0).

Example 3.11 Let M' be the matroid consisting of the seven points as

pictured placed on a square pyramid:

When the circled point (p) is deleted and contracted, we get the two
matroids on the second line of Example 3.4. Thus, M-p = M'-p, and
M/p = M"/p, where M 1is the matroid of (3.4). Hence, t(M) = t(M'),

while M # M'. Therefore, an example of an invariant which is not a
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T-G set invariant is the characteristic function Xt

XM' (G) =
0 otherwise.

Another example is the number of three-point planes of a matroid,

since M has five three-point planes while M' has six.

This example points out one way of constructing non-
isomorphic matroids with the same Tutte polynomial. We relate
this fact to another matroid concept: the strong map. If Ml
and M, are two matroids on the same set such that r(Mz) = r(Ml)—l,

2
and such that each closed subset of MZ is closed in Ml, then
there is a matroid M with M-p = Ml and M/p = M2. The matroid
M is determined up to isomorphism not just by the structure of
Ml and MZ’ but also the action of the strong map (i.e. the
labeling) needs to be taken into account. For example, consider the two

strong maps M-p - M/p and M'-p -+ M'/p of (3.4) and(3.11) respectively.

P1P;

(3.11")

The inverse image of the double point {pl,pz} is the two-point

line {a,d} 4in Example 3.4, and the two-point line {b,c} in
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in Example 3.11. Since no automorphism of Ml takes {a,d} to

{b,cl, we have M £ M'.

Another perspective on T-G set invariants is to define two

related classes of invariants (I2 and I3 below):

Proposition 3.12 Let I, be the class of (generalized) T-G

0
invariants (3.8.3), and Il be the class of T-G set invariants.
Let 12 be the class of invariants f : M - S for which
there exists a function £, : $ x § = § such that

2

f(M) = fz(f(M—p), f(M/p)) for any nonfactor p.

Let I, be the class of invariants f for which there exists

3
a function f3 defined on (isomorphism classes of) matroid pairs such
that
fM) = f3(M—p,M/p) for any nonfactor p.
Then:
1. 13 2 Il‘
2. I3 ? 12.

4. (I1 n 12) - IO contains, for example, the cardinality

function f(M) = [M]|.

5. 13 - (I1 u 12) contains, for example, the characteristic

function of the desarguesian projective plane of order 9.
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6. I1 - 12 contains, for example, the characteristic function

of the three-point line.

7. The characteristic function of the matroid M of (3.4) is an
invariant not in 13.

Proof. 1. If f(M) = fl(t(M)), let f3(M-p,M/p) = fl(t(M-p) + t(M/p)).
2. Let f3( M-p ,M/p) = £,(EM-p), £(M/p)).

3. Let f(M) = af(M-p) + bf(M/p). We will prove below in Proposition
3.20 that f is a set invariant. Further, f € 12 since we may

define the function £, by fz(r,s) = ar + bs.

2
4. We saw earlier (3.3.6) that the cardinality function, |[M|, is

a set invariant (|M| = logz(t(M;2,2))). It is in 1 using, e.g.,

2
fz(r,s) =1 + 1. It is clearly not a generalized T-G invariant.
5. We will see below (Proposition 5.15.3)that t(Ml) = t(Mz) if

M. and M, are rank-three combinatorial geometries with the same

1 2
nunber of atoms and i-point lines for all i. Thus, the Tutte
polynomial can not distinguish two projective planes of order nine.
However, if M is the desarguesian plane, M-p is independent of
p and contains 81 ten-point lines as well as 10 nine-point
lines. M may be reconstructed up to isomorphism from M-p by
placing p on the intersection of the nine-point lines since the
contraction M/p consists of a line with ten points each of multi-
plicity nine 1iff p is on 10 ten-point lines in M. A straight-
forward argument then shows that if fM is the characteristic
function of M, then fM(M') = fM_p(M'—p)-fM/p(M'/p) for all

M' and p.

6. A three-point line L 1is the only matroid with Tutte polynomial
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x2 + x + y. 1Its characteristic function, X is certainly not in
I, since (x (L-p), x (L/p)) = (0,0) = (x (M-p), x (M/p)) for

almost all matroids M. (Similarly, of course, the invariant f in

M
3.12.5 is not in 12.)
7. This was shown in (3.11).
An open problem is whether I is contained in I,. As a means

2 1

of attacking the problem, we formulate it in a different manner.

Define the equivalence relation ~ on matroids recursively
generated by the following relations:
El. M~M if M=M'
(3.12") E2. M ~ M' if there is a nonfactor p ¢ M and a
nonfactor q € M' with (M-p) ~ (M'-q) and
M/p ~ M'/q
Note that since both El and E2 are symmetric and reflexive, we
need-only take the transitive closure of the relations El1 and E2.
Also, it is inductively well-defined, since we may determine how
the equivalence relation behaves on matroids of cardinality K by

knowing how it behaves on matroids of cardinality K-1.

Further, if G ~H then t(G) = t(H) since the latter

equivalence relation (having the same Tutte polynomial') satisfies

El and E2.
Proposition 3.13 The class of invariants 12 is contained in the
class of invariants I if and only if M ~ M' for all matroid

1
pairs such that t(M) = t(M').
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Proof. On M, define f(M) to be the equivalence class of M
under the relation ~. We claim that f is an Iz-invariant. In
fact, define fz(A,B) to be the equivalence class C containing M"
such that f(M"-p) = A and f(M"/p) = B. Conditions El and E2
guarantee that the map M > fz(f(M—p),f(M/p)) is well defined. If
t(M) = t(M') for M+ M', we have f(M) = f(M'), and f 1is an

Iz—invariant which is not an Il—invariant.

Conversely, we will show that if, for all M and M', t(M) = t(M') implies

M ~M', then t(M) = t(M') implies f(M) = £(M') for any Iz—invariant f.

(The proof essentially rests on an argument that the function defined
above which takes M to its equivalence class under ~ 1is a universal

Iz-invariant.) For a direct, inductive, proof, assume that i(M) = t(M")

implies £f(M) = £(M') for all matroids on K points,where f is an

Iz—invariant with associated function f2. Let M and M' have cardi-

nality K+ 1 with t(M) = t(M'). By assumption, M~ M', so there is

a chain M = ~M ~M, ~.,..~M =M, with each equivalence given
2 3 t

by E2. (The chain is finite since there are only a finite number of

nonisomorphic matroids on K + 1 points.) For each i, there exist
£ - ~ -

nonfactors p, and %Yy such that (Mi pi) (Mi+l qi+1) and

Mi/pi ~ M1+1/qi+1' Thus, t(Mi-pi) = t(Mi+l—qi+1) and

t(Mi/pi) = t(M ). Using the induction hypothesis,

1417941
f(Mi-pi) = f(Mi+1_qi+ll and f(Mi/pi) = f(Mi+1/qi+1)' Thus, since the

arguments are the same in both cases, fz(f(Mi-pi), f(Mi/pi)) =

fz(f(M ), £f(M )) for all i. Hence, f(M) = £(M').

1417 %41 141741

Exercises 3.14 1. We illustrate a chain of E2-equivalences for

two rank-three matroids Hl and M4 with t(Ml) = t(MA)' In each case veri-

fy that (Mi‘Pi) = (Mi‘.’l—qi"‘l)’ and Mi/pi = Mi‘f‘l/qi"’l.
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93
—~ -~ ~
q 3
2
oY
9
P3.
2. The reader may verify that the rank-three matroids M

and M' below have the same Tutte polynomials by exibiting an

E2-chain between them. Each point is labeled with its multiplicity:

2 3 1 2 3 4

1
e—o0——9o o900
2 3 4
1 2
e ¢ o ¢ o
1 4 5 5@ o
'. "’ " '. 3
4
3. Show that there are no other essentially different strong maps

M1 -> M2 in (3.11'), and, in fact, no other matroid M" with

t(M") = t(M) and M" # M,M'.

We now turn our attention to geometric T-G invariants (3.8.4)
and (3.8.5). We show that, in fact, they are a special case of T-G
(matroid) invariants. Consider any invariant f on combinatorial

geometries and define f on matroids by:
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0 if M has a loop

(3.15')y M) =
f(M) otherwise, where M is the canonical

geometry associated with M (with multiple

points identified).

Similarly, let g be any invariant which is zero on matroids
with loops,and such that g(M) = g(M') when M and M' have the
same canonical geometry. Then,clearly, there is a unique invariant

f on geometries such that f = g.

Proposition 3.15 The following are equivalent,where f and I

are two invariants related by (3.15'),

1. f 1is a geometric T-G group (ring) invariant. Thus, f

satisfies TlG (and TZG).

2. f is a T-G group (ring) invariant with E(M) = 0

if M contains a loop.

3. f isa T-G group invariant with f(BiJ) =0 for j.> 0.

(f is a T-G ring invariant with f(loop) = 0).

Proof. We first show that for a T-G invariant £, f(M) = 0
whenever M has a loop if and only if fM') = f(ﬁ') for any
locpless matroid M' where ﬁ' is the canonical geometry. 1In one
direction this follows from the fact that if p 1is a point of M'
which depends on another point gq (but is not a loop), then p

is a nonfactor,and q 1is a loop of M/p. Therefore f(M'/p) =0

and



M) = FM'-p) + E(M'/p) = T(M'-p).
Continuing in this matter with any multiple point, we eventually
obtain f(M') = £(M'). On the other hand, assume for all loopless
matroids M', M) = f(ﬁ;). For any matroid M with a single
loop p, let M'" be the matroid (M-p) & M' where M' is the

multiple point {q,q'}. Then q is a nonfactor, and

fm) = F("-q) + EM"/q).

n

But M" = M"-q, and M"/q = M. Thus, f(M) = 0. For k loops,
we direct sum with a multiple (k+l)-point and proceed by induction

using the above argument.

Now, assume f satisfies TlG and define f on matroids from

(3.15'). We must show that for any matroid,

(* ) = E-p) + T(/p).

If M has a loop all terms are O, so assume M is loopless. 1If
p is in a multiple point, f(M/p) = 0 while M = M-p. If p is
not a multiple point, M/p is loopless, M-p = M-p, and M/p = M/p.

Thus,

£f(M-p) + £(M/p)

M) = £(M)

FM-p) + £(M/p).

Conversely, if f satisfies Tl and is zero on loops, define f from i

by (3.15'). Then,for-any geometry G and nonfactor p, we have
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£(6) = £(6) = T(G-p) + E(G/p)

£(6-p) + £(C/p).

Thus, f satisfies TlG and (3.15.1) is equivalent to (3.15.2), in

the group case.

We now show that (3.15.2) and (3.15.3) are equivalent in the
group case. The case of ring invariants is treated similarly. Since
Bij has a loop if and only if j > O, any T-G invariant which is
zero on matroids with loops must be zero on all Bij with j > 0.
Conversely, assume g is a T-G group invariant with g(Bij) =0
for all j > 0. If M has a loop, then the coefficients bij in
t(M) are zero whenever j = 0. Thus

ij
gM) = b,..g(B™7) = 0.
jZO +

Corollary 3.16 The geometric Tutte polynomial:

t@) =1} bioxi = t(G;x,0)
i

is a universal invariant for TlG (and T2G). In particular, for

any geometric T-G group invariant f:

£ = J b, 40
i

0

where Bi’ is the boolean algebra with i isthmuses. Further, if

g is a geometric T-G ring invariant, then
g(G) = t(G;g(1),0)
where I is an isthmus. (For simplicity, we will henceforth use B1

to denote the boolean algebra Bi’o, and bi to be the coefficient bio.)
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A consequence of (3.1) and (3.2) is that the corank-nullity
polynomial S(M) is a universal T-G group or ring invariant.
By (3.16), t(G;x,0) is a universal T-G geometric (group or ring)
invariant and thus any geometric T-G invariant can be evaluated
from S(M;u,-1). However, there is a more intrinsically appealing
universal geometric invariant derived from S(M), the characteristic
(or Poincaré) polynomial of a matroid, x(M). We also give a
two-variable generalization x(M) called the coboundary polynomial
by Crapo when he introduced it [56] as a generalization of Tutte's
work on graphs [142]. We also define the cardinality-corank poly-

nomial as a connection between S(M) and X(M).

Definition 3.17 Let M be a matroid of rank n on the set S

with L(M) the geometric lattice of flats of M.

1. The cardinality-corank polynomial S, .(M) is given by

KC

) z|Alucor(A)
A<S

SKC(M;z,u)

i,]

where aij(M) is the number of subsets A of S, with i points

a..ZiuJ
ij

and corank j (so that r(A) = n-j).

2. The characteristic polynomial x(M) 1is defined as:

0 if M contains a loop

X(M;2) = y u(o,x)xcor(x) =
xeL(M)
n s
z wix“ . otherwise
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where u(0,x) 1is the Mtbius function in L(M) of the interval
[0,x] (0, the zero of L(M), is the empty (closed) set).
The coefficients {wi} of x(M) are called the Whitney numbers

of the first kind of M and will be studied in section six.

3. The Poinearé polynomial of M is given by

X0, = 7wl ®(x,11,0
xeL (M)
= ulxlkcor(y)u(x,y) .
x,yeL(M):
X<y

Here, the interval [x,1] is an upper interval in L(M) -.and

is the geometric lattice of the contraction M/X.

Proposition 3.18 We have the following relations for a matroid M

of rank n:

= 2%
1.. SKC(z,u) z S(z,z)
2. X(u,2) = S (u-1,2)
n_ utz
3. SKC(z,u) =z t( Pl z+1)
- A—
4. X, = (-1t (TR
u—
n
5. x(2) = (-1) t(1-2,0).
Proof. The first identify is immediate. The second follows from

the fact that in any lattice, u(0,1) = E(-l)IAL where the sum is
over all subsets A of atoms whose supremum is 1 (see [118]),

and, hence, in a loopless matroid, u(0,x) = 2‘.(—1)IBI where the sum
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is over all sets of points B such that B = x. (A complete proof can be
found in [56] or [37].) The third identity follows
from (3.18.1) and (3.3.1). Identity (3.18.4) follows from (3.18.2)

and (3.18.3), and in turn implies (3.18.5) by setting wu = 0.

From (3.18.5) and (3.16), we may deduce the following.

Corollary 3.19 1. If f is a geometric T-G ring invariant,
then:

r(G)

£(G) = (-1) X(G;1-f(I)) where 1 1is an isthmus.

2. If f is a geometric T-G group invariant, then

£©) = D" I D] CPhupeeh
1 3

where n = r(G), and Bi is the i-point boolean algebra.

So far, in this section, we have shown that from the Tutte
polynomial of a matroid we may evaluate any invariant which obeys
either of the additive recursions Tl or TlG. The reader may ask
himself why we went into such detail for invariants satisfying Tl
and have thus far neglected invariants which satisfy T1', the
generalized additive recursion, especially in view of the fact that
the invariants X4 of section two all satisfied a recursion of this
type (with a = 1, b = -1). The reason is that the Tutte polynomial
allows us to evaluate these invariants also without developing a
more general theory. The following proposition (3.20.2) first appeared
explicitly (for ring invariants) in [116] but is implicit in [27]

and [75].
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Proposition 3.20 Let f be an invariant with values in an

R-module P such that for all matroids M and nonfactors p e M,

T1'. f(M) = af(M-p) + bf(M/p) for fixed elements a and

b of R.

Then,

1. f(M) = X bi:anUl(M)_lbr(M)-{f(Blj) (where, as usual,
i, M
b. is the coefficient of xlyJ in t(™).

ij
2. If f, in addition,satisfies T2 (here R=P), then

nul(Mlbr(Mlt(M_f(I) f L)).

f(M) = a 5 2

3. If f 1is a geometric ring invariant which satisfies

.. £(G) = £(G-p) + bf(G/p), then
£©) = v (e L, 0.
Proof. 1. Let f'(M) denote the right-hand side of (3.20.1).

Since t(BiJ) = xiyJ,
term in the .
i3

summation: f'(B

for totally separable matroids,we have only one nonzero
) = aj-jbl—if(BlJ) = f(BiJ). It now suffices for
an inductive proof to show that f' obeys Tl'. Let

t(M-p) = Zb;jxiyj, and t(M/p) = Zb;jxiyj. Then:

af' (M-p) + bf'(M/p) a():bijanul(M_p)-ibr(M-p)-i'f(Bij))

+ b(Zb;janul (M/p) =3, x M/P)-1 513,y

- amlOD-LF DL 4 e ye(gldy
ij 1]

f'(M).
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2. If f obeys T2, then f£(8J) = (£ (£, so that

i b
. o nul). r(M) f(O,  £(1)
£'(M) = a b ) bij( y ) )

i,]

- anUI(M)br(M)t(M; féI)’ f(L)).
a
3. Define f from f as in (3.15"). Then, as in the proof of
(3.15), f is a matroid invariant which obeys T1' with a = 1.

The rest of the proof imitates (3.15).

We note that there is no more general geometric analog for T1'
when a # 1. One reason for this is that nul(E7E) cannot be
calculated from nul(G). Thus, the Tutte-Grothendieck ring for the
recursion -f(G) = af(G-p) + bf(G/p) 1is not a polynomial ring.

The reader may easily verify this by decomposing the matroid

in two different ways. Starting with p, we obtain

£(G) = af(l 1) + bf(- )

a26(83) + (ab+b)£(B2) + ab’f(8l).

First deleting and contracting q, we obtain:

£(G) = a’£(BY) + 2abf (82) + b2f(8l).
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We also note that every step in the proofs of section two have

been verified since, for all i,

r(M)

Xi(M) = (-1) t(M;-1,0).

In those arguments, M was always binary but this affords no problem
since the entire theory of this section holds when M is replaced
by any hereditary subclass M' of matroids (where if M = M',

and M is in M', so are M', M-p, and M/p).

Research Problems 3.21. 1. When a matroid M on K points is decom-

posed as in (3.4), what is the expected number of nonisomorphic matroids
which appear in the decomposition? (An upper bound is 2K, but this

is toohigh. As our example shows, partial decompositions can be
combined.) Note that if this number can be shown to be always p(K)
for graphic matroids and a polynomial p, then results in Part II will
show that all nondeterministic polynomial algorithms have a polynomial
counterpart if there is a polynomial check for graph isomorphism (i.e.,

the graph isomorphism problem is NP-complete).

2. Is the equivalence relation (3.12') the same as Tutte equivalence?
In particular, are all projective planes of order n equivalent? If we modify
(3.12') for geometries specifying that M/p ~ M'/q, does this correspond

to having the same chromatic polynomial?

3. Characterize algebraically the "Tutte-Grothendieck ring" for

invariants which satisfy Tl'G in (3.20.3) for a = 1.
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4. Matroid Constructions

In this section, we will review some basic matroid operations
and show how they affect the Tutte polynomial. Of course, the
prototypical operations for which the Tutte polynomial can be computed
are duality: (t(G*;X,y) = t(G;y,%x)), and direct sum: (t(GeH) =
t(G)-t(H)). We will see that for other operations (such as trun-
cation), the Tutte polynomial can be calculated directly from the
polynomial(s) of the operand(s) or from related polynomials. First,

we treat the operation of adding a point in general position.

Definition 4.1 For a matroid M(S) the free extension of M by
a point p, M + p, is the matroid on the set S u p whose indepen-
dent sets are the independent sets of M along with subsets consist-
ing of p, along with any independent nonbasis of M. It is related
to the trumcation of M in the following way: T(M) = (M+p)/p,

while M+p = T(Mep). T(M) 1is most easily described by its closed
sets which consist of the closed sets of M except for the hyper-

planes. It is not defined if r(M) = 0. The free coextension of M by

* *
p, M xp, is defined by M xp = (M+p) .

Proposition 4.2 If t(M) = EbijxiyJ, we have the following
formulas:
1. t(wp) = 2[ + 1 b, (xi+xi‘1+...+x+y)yj].

j i>0

2. w(tn) =] [ CRARE ) +by.y A} b, 2y
b 3 i>1 j

x + y)yJ]

3. t(Mxp) = Zb,oxl+l+ 7 b, x(y +y-l+...+y+x
il j50 13
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Proof. 1. It should be familiar by now that many identities
involving the Tutte polynomial may be proved by showing that the
identity holds for totally separable matroids M and are "linear"
in that they are preserved under deletion-contraction decomposition
by nonfactors. If M = Bij, then M+p is an (i+l)-element circuit
along with j 1loops. Thus, its Tutte polynomial is

(xi + xi-1 + ...+ x + y)yj if i >0 and yj+l otherwise. 1In
any case (4.2.1) holds. If q is a nonfactor of M, it remains
so in M+p. Further, (M+p)-q = (M-q)+p, and (M+p)/q = (M/q)+p.
It is then an easy matter to show that (4.2.1) holds for M+p when

it does for (M+p)-q and (M+p)/q.

2. t(TM)) = t((M+p)/p) = t(M+p) - t((Mp)-p) = t(Mp)-t(M).
Thus, we may subtract t(M) from the right-hand side of (4.2.1).

Formula (4.1.3) follows from (4.1.1) by duality (see 3.3.7), as does

a formula for the free lift, FL(M) = (T(M*))*.

Example 4.3 1. Let M1 be the matroid consisting of two
intersecting three-point lines. Then t(Ml) = x3 + 2x2 + x
+ 2xy + y
+ y2’
and t(M4p) = (M) + £(Lg) = t04) + x” + 3x + 3y + 257 + 3.
Here, L5 = T(Ml) is a five-point line. The reader easily checks

that t(M1+p) = t(MZ)’ where M, 1is the six-point rank-three matroid consisting

2
of two (parallel) three-point lines. 1In fact, they are the unique
smallest pair of nonisomorphic matroids with the same Tutte polynomial.

These examples have the following consequences:

~ One cannot tell from t(M) whether M contains a point in

free position.
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- t(E(M)) cannot be calculated from t(M), where E(M) is the

"adjoint" operation of truncation: the free erection of Crapo [58].

In fact, t(E(M1+p)) t(Mlop) = xt(Ml), which is not equal to

(x2+x+y)2.

t(E(Hz)) = t(L30L3)

2. We cannot even determine from t(M) whether
M has a non-trivial erection. For example, let S = {a,b,c,d,A,B,C,D}
and let MI(S) and MZ(S) be two rank-four combinatorial geometries
both of which have as dependent flats: S and hyperplanes aAbB, bBcC,
cCdD, dDaA, and aAcC. Further, assume Ml has the additional
dependent hyperplane bBdD, while M2 has the additional dependent
hyperplane abcd. Then, M1 is erectable,while MZ is not, but

results from the next section (5.15.3) show that t(Ml) = t(MZ).

Another operation which we have studied is
the forming of the canonical geometry M, where loops of a matroid M are
eliminated, and multiple points identified. Information about t (M)

is contained in the following proposition and example.

Proposition 4.4

1. r(M) = max (i). (Dually, nul(M) = max (J).)

bij>o bij>0

2. If r(M) = n, then bnj = 6§(j,m), where M contains m
loops. (Dually, if nul(M) = k, then bjk = §(3,1),
where M contains i isthmuses.)

3. Let M' be the matroid M with its loops removed. Then,
t(M') = t(M)/ym where bnm = 1 and bij =0 for alli>n

and all j.
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4. TM) = tM') = t(M';x,0).
5. Although T(M) can be calculated from t(M) (and, in

fact, from t(M) when M is loopless), t(M) cannot

be determined in general from t(M).

Proof . The first three statements are easily proved by deletion-
contraction. (4.4.4) is Corollary 3.16, while (4.4.5) follows from

(4.4.3), (4.4.4), and Example 4.5 below.

* *
Example 4.5 1. The duals M and M' of the matroids in (3.11)

are pictured below:

—e—@

- * - %
They have the same Tutte polynomial and t(M' ) = t(M ) = x(x+l) (x+2).

* %
However, the reader may readily check that t(M' ) = t(M ).

2. The above matroids may be modified to obtain other matroid
pairs with identical Tutte polynomials. Deleting and contracting p

we can see that t(Ml) = t(MZ) for the following matroids:

M= My =
€& —©—C—©
P
P



Another important operation is the matroid union of Edmonds and
Fulkerson [69] and Nash-Williams[106]: Ml(S) v MZ(S) = (MlVMZ)(S),
where the independent sets of Ml v M2 are subsets of S which
can be partitioned into independent subsets of Ml and M2
respectively. Clearly,nothing can be said about t(M1 v MZ) in
general from t(Ml) and t(Mz), since different orderings on the points
of M2 don't change t(Mz) but d result in vastly different matroid
unions. We might, however, ask about M Vv M. That ¢t(MVM) cannot
in general be recovered from ¢t(M) can be checked by the reader by
counting the number of subsets of size five and rank four in
Ml v Ml and MZ v M2 respectively in (4.5.2). However, r(MVM)

can be recovered from t(M). The result was motivated by remarks

of Las Vergnas [92].

Proposition 4.6 Let M(S) be a matroid with t(M) = Zbijxiyj.

The rank.of the union of M with itself is given by:

r(MvM) = |S] + r(M) - max (i+j)
b,..>0
ij
=2 max (i) + max (j) - max (i+j).
b, .>0 b, .>0 b,,>0
ij ij ij
First Proof. Note that max (i+j) = max (i+j), where a is the
I — ij
b,.>0 a,.>0
ij ij

number of subsets of M of corank i and nullity j (3.2, 3.3).
It is then an easy application of the formula for the rank function

of MV M to show that
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max (i+j) = max (lA] - r(A) + r(M) - r(4))
aij>0 AcS

r(M) - min (2r(A) - |Al])
AcS

IS} + r(M) - min (2r(A) + |S-Al)
AcS

ISl + (M) - r(MvM).

Second Proof. A second method of proof is by our standard method
of deletion-contraction. Note that one way of interpreting both
proofs is that, together, they give a deletion-contraction proof that

r(MVM) = min (2r(A) + |S-Al). If M= Bij, then t(M) = xiyq,
AcS

MVM = Bij, and T(MVM) = i = 2i+j - (i+j) which is the right-hand
side of (4.6). Now, let fl(M) = |S}| + r(M). For any nonfactor gq,
the triple (fl(M—q), fl(M/q), fl(M)) is equal to (r,r-1,r+l) for

some r. Similarly, if fz(M) = max (i+j), the triple (fz(M—q),
b,.>0
ij
fz(M/q), fz(M)) will take one of the forms (m,m+l,m+l), (m+l,m,m+l),
or (m,m,m) for some m. The reason for this is that max (i+j)
b} .>0
ij
in t(M-p) can never differ by more than one from max (i+j) in
b" >0
ij

t(M/p). In fact, for any subset A c S-p, f(A) = cor(A) + null(A)
always differs by one in M-p and M/p. If pe A (in M), then

A has the same corank in both M/p and M-p, while its nullity is one
more in M/p. If p ¢ A, the nullities are equal, but the corank of

A 1is one less in M/p. Combining these two invariants, we see that
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fl - f2 obeys one of the following triples: (k,k-2,k), (k-1,k-1,k),
or (k,k-1,k+1) for appropriate k (=r-m). We will be done when we
show that r(MvM) obeys the same recursion. Note that, in any case,
r(M/q v M/q) < r(M-q v M-q) < r(M/q v M/q) + 2. By definition,
r(MvM) equals the size of the union of two maximally disjoint bases
of M. Call them B and B'. Consider the three possible triples
in turn.

(k,k-2,k). This is the case when there exist such bases B

and B' such that q ¢ Bu B'.

(k-1,k-1,k). This is when there exist such B and B'

with q € B n B'.

(k-1,k-2,k). For all such B and B', q ¢ B-B' or

q € B'-B.

Details are left to the reader. Note that, for example, the first two cases
are mutually exclusive: if q € Bl n B2 and q ¢ Bi U Bé, then, by basis

exchange, we could find two bases more disjoint (see Proposition 7 in [25]).

Certainly,if t(M) d1s known and p € M, then one cannot, in
general, compute either t(M-p) or t(M/p) (although their sum is
known). One way to remedy this situation (see (4.8.2) and (4.8.3)
below) is to be found in [24] where basepointed matroids

were introduced.

Definition 4.7 Let MP denote the class of pointed matroids,
where Mq € MP if M is a matroid,and q 1is a (distinguished)

point of M. An invariant for the class of such pointed matroids is



a four-variable version of the Tutte polynomial tP(Mq;x',x,y',y),

in which the point gq is saved for last in the decomposition ordering
used in the first proof of Theorem 3.1. We then may modify (3.1)

to show that the pointed Tutte polynomial tP(Mq;x',x,y',y) may be

defined such that:

T1,. tP(Mq) = tP(Mq—p) + tP(Mq/p) if p is a
nonfactor and p # q.
TZP. tP(Mq) = tP(Mq—p)-t(p) if p dis a factor

and p * q.

T3,. tP(q) =x' if q 4is an isthmus, and tp(q) =y'

if q 1s a loop

In the above rules, Mq—p = (M-p% is the matroid M-p with distinguished

point q. Similarly for Mq/p = (M/p)q

Two important operations on pointed matroids are the series
connection S(Mq’Mt';') and the parallel connection P(Mq,M"l,). The parallel
connection is defined (following [24]) as the matroid pointed by a on the set
M-q) U (M'-q") U q, whose closed sets are all sets of the form
AUA' or BuB'u{q} where A and B u {q} are closed in M,
while A' and B' u {q'} are closed in M'. We may then define the
series connection dually: S(Mq,M&.) = (P(M:,M&T))*. A related
operation is the two-swnm of Seymour [125]. For our purposes, we may

define this operation as P'(Mq,M&.) = P(Mq,M&.) - q.
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We now list some useful facts,all of whose proofs may be found

in [24] (except for (4.8.7) which follows from (4.8.2) and (4.8.5)).

Proposition 4.8 Let Mq and M;, be pointed matroids on disjoint
sets,where q ¢ M and q' € M' are both nonfactors. Further, let

tP(Mq) = x"f(x,y) + y'g(x,y),tp(Mé.) = x' £f'(x,y) +y' g'(x,y), L denote a loop,

and I denote an isthmus. We have the following formulas:
1.t = xf(x,y) + yeg(x,y).

2. t(Maq) = (x-11f + g(t(q-L) = g, tM-1) = ).
3. t(Mq/q) =f+ (y—l)-g(t(ML/L) =g, t(MI/I) = f).

4, (x+y - xy)-cP(Mq) = x"(t(M/q) - (y-1).t(M-q)) +

y'e(t(M-q) - (x-1)-t(M/q)).
(Formulas ‘5,6, and 7 below are valid with q = L or I, where, appropriately, f or

3=0) .
£=0) 5. tP(P(Mq,M;,) =x"'-ff' +y'((y-1)-geg' + f-g' + g-f').

6. £ (MMM ) = x!(Gel)efef" + fog' + g-f') + y'egeg’.
7. (RN = Gl fef 4 (-1 geg!H frgt 4 g
8. PM ,M',)/q = M /q8&M,/q".
(q q.)/q /9 q./q
Conversely, if ﬁa is any connected matroid such that ﬁa/a =

2 Ma - Sl).

Ml(sl) ® Mz(Sz), then Ma = P(Ma - S
9. s ,M' -qg=M™-q9) & M',-q").
( q q.) q = ( q q) g9 )
Conversely, if ﬁa is any connected matroid such that

Ma -q-= Ml(Sl) ® MZ(SZ), then M(—l = S(Ma/sz,Ma/Sl).
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We remark that there is no particular reason to save just one
point for last,and a theory could also be developed where a matroid
M(S) is "pointed"by a subset A © S. The reader interested in this

generalization is referred to [93].

From the formula in (4.8.5), we see that

i, tpM ) Ep(MY) ,
' = 1 JE! = q_ _r 4q '
tP(P(Mq,Mq,)) x'{f-£')(x,0) o . In particular, t(P(Mq,Mq,)

is independent of the choice of points q and q', and we have

the following formulas:

10. t(P(Mq,M&.)) = t(M)-t(M")/x.

' = x(Mxm")
11. x(P(Mq,Mq.)) Z;“X:i“"“

Formula (4.8.10) has a generalization which is explored in
[29]. Given two combinatorial geometries G(S) and
H(T) on disjoint sets, assume that a geometry X is isomorphic to
a flat H(T') of H and isomorphic to a modular flat G(S') of
G. Then,ihe generalized parallel connectiom Px(Gx,Hx) is defined
to be the matroid on the set of points (S-S') Y (T-T") (J x whose
closed sets are all the subsets A such that A n S is closed in
G (hete, S' and x are identified), and A n T is closed in H.

We then have the following:

= X(G)x(H)
12. x(Px(Gx,Hx)) = X6

We now define a new operation on matroids which encompasses some

of the ideas of Bixby [12], Brylawski [24], and Seymour [125].
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Definition 4.9 let M be a matroid on the set {p,,...,pk}, and
ES

let Mé be a pointed matroid. The tensor product M @ M' is

the matroid formed by making a two-sum of M; at each point of M.

k
Formally, M e M; =M where MO =M, and for all i : 1< 1i <k,
Mi = P'(M;-l, M;) . The reader may readily convince himself that
i
this definition is independent of the ordering on the points of M

and includes as special cases: replacing all the points of M

with multiple points or with comultiple points (points in series).

The tensor product is only defined when q 1is a nonfactor.

Proposition 4.10 If t(M) = f(x,y), and tP(MA) = X"f'(x,y) +y'g'(x,¥),

then the Tutte polynomial of the tensor product of M and M& is

given by:

care M) = (5 Gy ™ g () T e TH0sen

Proof. Fix Ma, and let f(M) = t(Me M&). We will show that f
satisfies the (weighted) T-G recursions T2 and T1' with a = f'
and b = g'. We may then invoke (3.20.2). First, if L 4is a loop
then f£(L) = t(L ® Ma) = t(M&/q) =f' + (y-1)-g' by (4.8.3). 1If
I is an isthmus, then £(I) = t(I @ M&) = t(M&‘q) = (x-1)-f' + g’
by (4.8.2). If p is a factor of M, then

(M&‘Q) ® (M-p) if p is an isthmus

P'(MP,MA') =
(M&/q) ® (M-p) if p is a loop.

Thus, £(M) = t((M-p) @ M&)'t(p ® M&) = £(M-p)-f(p), and T2 holds.

Finally, let p € M be a nonfactor,and let SI{J q denote the
points of M;. Deleting and contracting the points of S simultane-

ously in M' and M ® Mh, we see that when q becomes an isthmus



184

giving I @ M for the decomposition in M;, the tensor product
becomes ((M-p) @ Mé) ® M. Similarly, when q becomes a loop
giving L & M in the decomposition of M&, the tensor product
becomes ((M/p) © M;) @ M. Thus,when all the points of S are
deleted and/or contracted, we get,for t(M @ M&) , the Tutte
polynomial of (M-p) @ M& multiplied by f' (the coefficient of

x' in t(Mé)) plus the Tutte polynomial of (M/p) @ M& multiplied

by g'. This is precisely recursion T1' for f.

Example 4.11 If Mé has a transitive automorphism group, then
we may define the tensor product M @ M' unambiguously without
specifying a particular point q € M as the distinguished one. 1In
fact, even when t(M'-q) = t(M'-q') for all q, q' € M', we will
see in the next section on reconstruction (5.2) that t(M'-q) and
t(M'/q) may be computed from t(M'). Thus, t(M @ Mé) may be

computed from t(M) and t(M').

For now, let Mk be a point of multiplicity k (a k-point
rank-one loopless matroid). Then:

t_P(MI;) = x' + (yk’2 + yk'3 + ... +y+ 1y,

t(Mk-p) = yk'2 + yk-3 + ... +y+x,
and to/p) = y<7L
+
Given a matroid M, let M(k) =M® Mk+1, where Mk 1 is
(k)

defined above. Then M replaces each point of M by a point of

multiplicity k. Further,



k-1 “es 3
ey = e Lyt 1)’(“)t(ML——*L v5).
+o. 4yl
In particular, for example, the number of bases of M(k) is
t(H(k)'l 1) = kr(M)t(M;l,l), its number of independent sets is
kr(M)t(M, kl,l), and the number of spanning sets is (Zk—l)r(M)t(M;l,Zk).

Even though we cannot, in general, calculate t(M-p) from t(M),we certainly
know that (for nonfactors) t(M-p) < t(M) in the sense that the
coefficient bij of xlyJ in t(M-p) is less than or equal to the

corresponding bij in t(M). This remark generalizes as follows:

Proposition 4.12 If M' is a minor of the connected matroid M,

then M' can be obtained from M by a sequence of deletions and conttactions
by nonfactors, and t(M') < t(M).

Proof, This was shown in [27]. The proof involves showing

that any connected minor M' can be obtained by a series of deletions
and contractions by points such that at every step a connected matroid
(and thus one without loops or isthmuses) is obtained. Hence,

t(M) 2 t(M-p) = t(M-p/q) 2 t(M-p/q/r) 2 ... 2 t(M'). " en M' is
separable, say M' M‘ ® Mi, then somewhere in the decomposition

a deletion (or contraction) gives a separable matroid Ml ) M2 with
Mi a minor of Mif Then, in the step immediately preceding that
deletion (or contraction) there was a series connection

S(ﬁl,ﬁz) by (4.8.9) (or a parallel connection by (4.8.8)). In any event,

t(Mi) < t(ﬁi) by induction, and formula (4.8.6) gives the desired result.

Another operation for which something can be said about the Tutte polyno-
mial is that of the action of a rank-preserving bijective weak map.

This will be explored later in Proposition 6.16.
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5. Reconstruction.

Two celebrated open problems in graph theory are whether any graph
G may be reconstructed up to isomorphism from either its multiset
of isomorphism classes of vertex-deleted subgraphs or from its edge-
deleted subgraphs. In an attempt to solve these problems, there is
a wealth of literature reconstructing various invariants of G from
the subgraphs. Both vertex and edge deletions have analogs in
matroid theory (bond and point deletions respectively), and while
a general matroid cannot be reconstructed, its Tutte polynomial can
be computed from selected minors as we shall see below. In the
following, we will often use the cardinality-corank generating function
and the Poincaré polynomial along with the formulas of Proposition 3.18
First, we give an invertible

relating each to the Tutte polynomial.

formula for the Tutte polynomial of a matroid from the weighted sum

of the polynomials of its

Proposition 5.1 Let M
K with Tutte polynomial
SKC(M;z,u). We then have

1. 1 tM/p)
p:p is not a loop

+ (y-1) }

point deletions.

be a matroid of rank n and cardinality

t(M;x,y) and cardinality-corank polynomial
the following formulas.

t(M/p)
p:p is a loop

= [n+ (y-1)~33; - (x—l)a—ax]t(M;x,y).

t(M-p)

2. )

p:p is not an isthmus

+ (x-1) ] t(M-p)
p:p is an isthmus

= [K-n + (x~1)a—")x - (y-l)—a%-] t(M;x,y).
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3
3. ) SgcM/P) = 55 Sy (Miz,0).
P

4. SKC(M;Z,U) = E SKC(M/p) dz + un, where fdz is the (formal)
P
am n+1um
integral operator: z u dz = st
n-1

5. t(M;x,y) = (x—l)n + (y_l)‘ﬂ [x T(zix, x+1)dx
x b y-1

y b (x-1)(y-1)

where TM;x,y) = z t(M/p) + (y-1) Z t(M/p) .
p:p is not a loop p:p is a loop

6. tOx,y) = -DN "+ 1) fy“'“‘lr'<y+1,—’5yﬂ>dy
y b x-1
x b (x-1)(y-1)
where T'(M;x,y) = X t (M-p) + (x-1) 2 t(M-p)
p:p is not an isthmus p:p is an isthmus

Proof. We could proceed by first verifying (5.1.3). Note that any

subset A c S of cardinality i and corank j contributes one to
the coefficient of ziuj in SKC(M). Then, for each of the i points
P in A, A - p contributes one to the coefficient of zi—luj in
t(M/p). The other formulas follow from the identities of (3.18) and
duality.
An alternate proof is based on recursion.
n_K-n

1. If t(M) = xy , then both sides of (5.1.1) equal

n-1 K-n n_K-n-1
x "y .

n + (y-1)-(K-n)*x'y

Now, assume that q is a nonfactor of M, and that q is in a multiple

point with m other points (m 2 0). We partition the points of
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S - g as follows: P1 is the set of loops of M, P2 is the

{possibly empty) set of m points in parallel with gq, and P3 is
the set of all other points (the nonloops of M/q). Let M' denote

M/q with P removed, and let On' be the differential operator

2
Al — .—a - - —a
n' + (y l)ay (x l)ax .

We then have the following:

Or ) t (M)

= OI(M)(t(M-q) + t(M/q))

=0 t(M-q) + 0 t(M/q) + t(M/q)

r(M-q) r(M/q)

(v-1) J  tM-q/p) + § tM-q/p) + ] t(M-q/p)
pePl peP2 peP3

+ (y-1) §  tM/a/p) + (y-1) ] tM/q/p) + | t(M/q/p) + t(M/q)
pePl pePz 1;\&1"3

(y-1) } (tM/p-q) + t(M/p/q)) + | (t(M/p-q) + t(M/p/q))
pePl peP3

oy Lee @) # me(y-1) oy TeeM') + yle")

(v-1) § t/p) + § t/p) + (@+l) -y -t(M")
peP1 psP3

(-1 L t/p) + 1 t/p) .
p:p is a loop of M p:p is not a loop

2. When (5:1.2) and (5.1.1) are added together, both sides equal

K-t(M).
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3 _9%,n  z+u - n-1 n 3 z+u
3. 22 SKC(z,u) = —Bz(z 1:(—z , z+1)) (nz + z _az)t(_z , z+l).
3 z+u -u 93 )
5 _ Z = = (— — 4 —
By the chain rule, 22 t( py z+1) (7_2 Py ay)t(x,y), where

x = —z:“- and y = z+l (so that z = y-1 and u = (y-1)(x-1)). Under

this substitution:

)
3z Skc®W

nl-x 3

ax

@D + G-DCT &+ SNy

= -D" o + (y-l)% - (x—l)%]t(x,y)

G- T e+ D -] taUp)]
nonloops loops

(y—l)n-l- ) tM/p;x,y) + (y-1)" <1 tM/ps3x,y)
nonloops loops

): ‘zn_lt(!'l/p;-——z , z+l) + 2 2"t (M/p;———z , z+1)
z z
nonloops loops

12’ SgcM/p3z,u).

4. We integrate both sides of (5.1.3) with respect to z and note

that the constant of integration is a function of wu. Thus,

SgcMsz,u) = I(E Sec@/P))dz + S, ((M30,u), and S (M30,u) = u”

(the term corresponding to the empty set of cardinality zero and corank

n = r(M)).

5. This formula comes from converting the Tutte polynomial to the

cardinality-corank polynomial and applying (5.1.4).
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6. Formula (5.1.6) is dual to formula (5.1.5). (It can also be
proved in analogy with (5.1.4) and (5.1.5) by means of the cardi-
nality-nullity polynomial.) We now apply the above formulas to

homogeneous matroids. In (5.2.3), we use (4.8.4).

Corollary 5.2 Assume M is a matroid on K points of rank n:

0 <n <K, with t(M/p) = t(M/q) for all p, q € S. (Thus, all deletions
also have the same Tutte polynomial) This occurs, in particular, when

all contractions are isomorphic,or when M has a transitive automorphism

group. Then:

1. t(M/p)

]

Fln+ G-I - DR t06x,y)

2. t(M-p)

Flken + GeDE - -1 ety

3. The pointed Tutte polynomial of (4.7) is given by:
.} ' =
tP(Mq,x SAR N

B K-n

_ Km L) (1os) 0
Xy n xy)+K(xyx>')(lx)ax

= (xby-xy) T [(x'+y' ok

+ Tl((xy'-x'y)(l—y)%;] t(M;x,y).

Examples 5.3

1. In the matroid M2 of Example 4.3.1, all six contractions are
isomorphic to a line L with three single points and one double point.

Equation 5.2.1 then becomes:
2 2, 3
t(L) =-%[3+(y—1)%; - (x—l)%;](x3+3x +Hax+2xy+ay+3y +y7)
2
- %((3x3+9x2+12x+6xy+12y+9y2+3y3) + (2xy-2xthy-4+6y 2 -6y+3yS-3y%)

3

2
+ (3x2—3x3+6x—6x2+4—bx+2y-2xy)) = x2+2x+xy+2y+2y +y~.
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The polynomial 6t(L) is also the sum of the Tutte polynomials of the contrac-
tions of the matroid Ml + p in (4.3.1), but these contractions do not all have
the same Tutte polynomial. Thus, t(M) cannot, in general, determine whether

all contractions have the same Tutte polynomial (i.e.,whether

t(M/p) = t(M/q) for all p and gq).

2. Assume M(S) and M'(S') are two matroids such that, for some ordering
on the points of S and S' respectively, t(M/pi) = t(M'/pi) for

all i. Then, a consequence of (5.1) is that t(M) = t(M'). (A

trivial exception is when M has all loops,and M' 1is a multiple
point,since only in that case can we not determine from the set {t(M/p)}
whether a particular contraction was by a loop.) From the study of non-
desarguesian projective planes and Steiner systems, examples abound of
nonisomorphic matroids Ml and MZ (of the same rank) such that Ml—-pi = Mz—pi
for all i (see, e.g., [37]). Ve exhibit the smallest pair

below in "M&bius representation," i.e., both are rank-four paving

matroids, each with five four-point planes represented below by lines

and circles. 1In particular,the dependent planes of Ml are 1237, 1245,

1268, 3456,and 34783 while those of M2 are 1234, 1257, 1268, 3456,
6

and 3478.
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The respective duals of these matroids are minimum examples of non-

isomorphic matroids with isomorphic contractions.

3. Surprisingly, the geometric Tutte polynomial cannot be recon-
structed by geometric contraction (upper intervals of corank one).
In particular, let G be the planar geometry AG(2,3); and let G'
be the nine-point combinatorial geometry PG(2,3)-Q, where Q is a

quadrilateral. Then all rank-two upper intervals are isomorphic: for

any point p, G/p = G'/p = L4, a four-point line. However, G has
12 three-point lines; while G' has 6 two-point lines, 4 three-point

lines,and 3 four-point lines. Thus, 16 =[p(G)l =lu(G")| = 15.

We now turn to the hyperplane reconstruction of t(M). Details may
be found in [40]. In the following, let the set Ak = {uk}
index isomorphism classes of matroids of rank k. Thus, F 3 stands

a

for a rank-three matroid isomorphism class, and it has |F 3 l atoms.
o

Now, for a fixed matroid M, 1let n(F k,M) denote the number of flats
o

k

of M isomorphic to F and let n(F i,F i+1) denote the number of
a o o

flats isomorphic to F i . The

a

in any matroid isomorphic to F
y P u1+1

hyperplane reconstruction theorem asserts that, for r(M) = n, we may calculate

n-1
€

) for all «a A . We first

t(M) from n(F n—l’M -1

[
give a formula for n(F k,M) (k < n).
a

Lemma 5.4 The number of flats x of M isomorphic to F K is
a

given for all k < n = r(M) and uk € Ak by the formula:
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n(F k,M) =
u - -
o1 BCF o F AT (I-F 4D
- Z n(F n—1’M) 2 a u_ o a
W01 a N (m-lrui_l()
where m = Iﬁ] is the unique integer (greater than the size of any

hyperplane) which satisfies the equation:

- =
L ; n-1 n(Fai-l’Fui)(IFui' IFui—ID
1== n(F __.,M)
Lt R ! 1 i=2 @-TF ; ;D
a Oy ee.,0 a

Essentially, the first formula counts, in two ways, independent

sequences of atoms (ak+1,...,an_l) in M such that for all i,

a, VF = F .. The second formula comes from the fact that there is

a unique flat in M of rank zero.

We may now reconstruct SKC(M):

Proposition 5.5

S, .(M3z,0) = ()X ] Wk - Y n(F _,M)S (F  ;2)].
KC ) RN
k:k<n k a a
a €A
Here, SK(M',Z) is the spanning-set polvnomial of M', so,if a;

is the number of i-element subsets of S which span M', then

S_(M',z) = Z a,zi. Further, n = r(M) = r(F ) + 1, and
K i1 0‘n-l



K= M =2+ ] n(F 1,M)(|F 1]—2), 2 being the number of loops in M
1 a a
a

(or, equivalently, in any hyperplane).

Knowing the Tutte polynomial of M is equivalent to knowing, for
all parameters, the number of all sets in M of fixed cardinality
and corank. It is related, though not as strongly, to the number of
all closed sets of fixed cardinality and corank. In fact,from t(G)
we have seen how to compute the number of loops (4.4.2), and it is not
hard to get the number of k-point atoms for all k (essentially from
the polynomial coefficient of An-l in the Poincaré polynomial).
However, in general, the number of flats of larger rank cannot be
deduced from t(M). This was seen in Example 3.11 where for two matroids
M and M', with the same Tutte polynomial, M had 5
three-point planes,while M' had 6 such three-point planes. In
Example 4.5.1, M* had 2 two-point lines,while M'* had 3 two-point
lines. Conversely, even if we know the cardinality and rank of all

flats, we still cannot in general recover the Tutte polynomial as

the following example shows:

Example 5.6 Let Ml and M2 be the matroids of (4.5.2), let
* *
M! and M be as given in (4.5.1), let L3 be a three-point line,
and let 83 be a three-point boolean algebra. Then, letting T—B(M)
be truncation of M to the plane, the reader may easily verify that
-3 * * * 3
=T (Ml &M @M 8M 8 B)

Moo= T3 eM'*eM'*oM'*oL) nd M
37 ™, 3 @ 4

have the same number of flats of cardinality i and rank j for all i

and j. However, t(M3) z t(M4).

The Poincaré polynomial is a summation of polynomials over closed

sets, and thus can count certain of them. The reason one cannot
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recover all the closed sets from x(M) is that certain characteristic
polynomials x([x%,1],2) '"get lost" when summed with characteristic
polynomials of flats x' of the same cardinality but greater corank.
This is precisely what happens in (4.5.1),where the characteristic
polynomial for the double point "shadows" those for the two-point lines.
What can be determined from the number of certain closed sets is the

"border polynomial" of the Tutte polynomial.

Definition 5.7 Let M be a matroid of cardinality K and rank n.

The Tutte-Grothendieck border polynomial is the polynomial:

- i]
tB(M) z bij Xy

i,j:b,.>0, and b ,=0
ij

i'j

for i'>i,j'>j

We similarly have the corank-nullity border polynomial:
- i3
S = z S T
i,j:aij>0, and

=0

a.,

i'j’

for 1i'>i,j'>j

and the closed-set border polynomial

P00 = ] fi; st ¢!
i,
where f is the number of closed sets of M of corank i and

ij

nullity j, and the sum is again over all indices (i,j) such that

fij > 0, while fi'j' =0 for 1i' > 1, j' > j.
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The cormers of a polynomial ZcijxlyJ are indexed coefficients
Cij such that cij = 0 but ci'j = cij' =0 for i'> i, j' > j.

Two corners 4 j and g 5 with (n-1i,j) < (n-i',j') are consecutive if
’ t ]
there is no corner cyn I with (n-1i,j) < (n-i",j") < (n-i',j'). It is clear
»

that terms in the border polynomial are given below (with not all coefficients

necessarily nonzero):

- - 1 2
1,3-1 3 41 3

xi-zyJ + ...C.|.x1

3
eee +
c. y- o+ ci—2,j i'j

l’j_lx + c,

i
+
3% Y T fi-1,3

1' §+1 i' 3! i'-1 3"
+ Ci',j+lx y + ... + ci,j.x y + ci'—l,j'x y +

where cij and ci'j' are consecutive corners. Some elementary remarks

about the border polynomials are contained in the following proposition.

Proposition 5.8 1. For a matroid M of rank n on a set S of
cardinality K, the corank-nullity border polynomial has K + 1

positive terms beginning with X and ending with yK-n. A coefficient

& in Sy counts the subsets A c S such that |Al = n-1i + j, r(A)=n-i, and
no subset of the same cardinality has larger corank (or, equivalently,

larger nullity).

2. The three border polynomials defined above all have the same corners
(a.., =b., = f£..). These numbers count the subsets A of M of

ij ij ij
corank i and nullity j such that every smaller subset has less

nullity and every bigger subset has greater rank. Each such subset A is

closed and cyclic (a union of circuits).

3. The closed-set border polynomial has at most K + 1 terms and
has exactly K + 1 (positive) terms if and only if M has closed sets
of every cardinality (and, thus, has an isthmus and no loops).

The Tutte-Grothendieck border polynomial has at most K + 1 terms

and has exactly K + 1 terms
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whenever M is connected and not the truncated boolean algebra

TK—n(BK).

Proof. 1. The empty set is the unique subset of nullity 0 and
(maximal) corank n, while S is the unique subset of (maximal)
nullity K-n and corank O. Let k be an integer between 0 and K,
and let i(k) be the maximal corank of a subset A of S with

|Al = k. Then, A has nullity j(k) = k-n + i(k), and
ai(k),j(k)xl(k)yj(k) is a term in the corank-nullity border polynomial.

Each k gives a different index pair.

2. Let aij be a corner of SB(M). Then, there are aij subsets

. . —igs -i. si -
A of S each of cardinality n-i+j and rank n-i. Since ai+l,j ai,j+l

any set smaller than A has less nullity, and every larger set has
greater rank. Thus, A is closed and (as a subgeometry) has no

isthmuses, and these sets A all contribute to fi j° Since, clearly,
’

f, < a; P for all i and j in F(M) and S(M) respectively,

f. . 1is a corner of F_(M). If a,, is a corner of S(M), then
i3 B ij

i! i’ i3
t(M;x,y) = S(M;x-1,y-1) = z ai...(x—l) (y-1) = a.jx y
iy J 1

+ Z b 11 ,x y , where either i' < i or j' < j. Thus,

'3
bij = aij is a corner of t(M), and a similar argument shows that each
corner of t(M) is a corner of S(M).
3. We have seen that fij < aij for all coefficients of F(M) and
S(M) respectively. Since SMj;u,v) = t(M;u+l,v+l), bij < aij for
all coefficients of t(M) and S(M). Since FM), S(M), and t(M)

have the same corners, FB(M) < SB(M) and tB(M) < SB(M) (with

=0’
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term-wise ordering). Thus, FB(M) and tB(M) each have at most

K+ 1 terms. If M has a closed set of size k, then there is a
minimal-rank such set. Conversely, contributions to different border
terms have different cardinalities. Results

of the next section (see (6.5)) show that if bij is a
nonzero term in t(M) for a connected M with i >0 and j > O,

then b >0 and b, |, 0. Thus, the border is a connected

i-1,3 i,3-17

polygonal path of positive coefficients in t(M) as long as
bll > 0. But (6.5) shows that bll >0 if M is a connected
matroid which is not free.

Using the above proposition,we define the pair (i(k),j(k)) to
be the index of the term of SB(M) with n-i(k) + j(k) = k. Thus,
each term of tB(M) and FB(M) is indexed by the pair (i(k),j(k))
for some k. The essence of the following proposition is that
SB(M)’ tB(M), and Fé(M) can all be derived from each other. In
particular, note that any coefficient appearing below is in the border.
We also remark that arguments could be based on the Poincaré polynomial,
where fi(k),j(k)’ if nonzero, is the coefficient of ukki(k).
Proposition 5.9

1. a - [k+3‘3(k)]f = [“’i(k)ﬂ. ]f.
1(k),3(k) 323 (1) k i(k),J 3523 (K) n-i(k)+j(k) ) i(k),j

(_1)j-j<k)[k+j;j(k>]a

2 fw.s00 T Lt 10,3
_ IERTCIE i 1
LTI R R {j(k)lai(k),j * ol [i(k)]ai,j(k)

- i i
b R00,500 T (j(k)]bi(k),j * i>§(k)[i<k)]bi,j(k)

)
323 (k)
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5. b -3 (n-l-i(k)+j—j(k)]
i(k),3(k) 523 (0) | 3-3(k) i(k),3
i-i(k)} i
+ -1 . f. .
ot [sbo )00
j-j (k) (n-1(k) i
6. f, R B S Dt [. b, + 7 |3 b,
10,30 455 373 TR, T gy R )T, 3 ()
Proof. 1,2. The coefficient ai(k),j(k) is the number of subsets A
of cardinality k and corank i(k). For each such subset A, A is
tabulated in fi(k) 5 with j 2 j(k). Conversely, for each closed set
3

n-1(k)+j _ [k+5-300)
n—1 (k)+j (k) k

F of corank i(k) and nullity j, there are [
subsets of cardinality k. Each such subset has corank i(k), since if
it had greater corank, there would be a subset A' of corank i' and
nullity 3j' with 1i' > i(k) and j' > j 2 j(k). This contradicts

the definition of a, Formula (5.9.2) inverts (5.9.1) by

l(k)’j(k) :

standard techniques.

3,4. These formulas come from the reciprocal evaluations
t(M;x,y) = S(M;x-1,y-1), S(M;u,v) = t(M;u+l,v+l), and the fact that

no other terms than the ones listed contribute to bi(k),j(k).

5,6. Combining (5.9.3) and(5.9.1), we obtain:

- _ j—j(k)[ 3 ] [n—i(k>+j']
P100,300 7 ik gy Y swf |3 Jfio,s

i-i(k)[ 1 ),
* 1>Z(k)(—1) [i(k>J‘i,j<k> .



200

. _ j-j(k>[ 3 ] (n—i(k)+j'] - [n-1-1<k)+j'—j<k>
The identity j:j.zgzj(k)( D 500) | 33 3'-300)

- is s
comes from calculating the coefficient of xj 309 = x) J(k)oxJ 3

1o s n-i(k)+j"'
in (1+x)n 1-1(k)+j J(k)= (1+X)j(k)+l . (5.9.6) inverts (5.9.5)
(1+x)
by similar identities.
* K % ij
Proposition 5.10 Let FB(M ) = 2 f 1% (k) j*(k)s t” be the closed-
k=0 ’

* * *
set border polynomial of M . Then, (i (k),j (k)) = (j(K-k),i(K-k)),
and

* i—i(K-k)[k+i—i(K-k)]
X .

Coon 1y = flel ey = (-1
1K1, 3 (k=K) T IR, 1K) T b

323 (R-k)

K-k+j-3 (K-K)| .
K-k i,j

i—i(K-k){k+i—i(K—k)

= LoD k }fi,j(x—k)

i2i(K-k)

K-k+j-3 (K-k)

* K-k ] 1(R-K),5

j>j(K-k)(
Here, cij is the number of cycles of M of corank i and nullity j.

*

Proof. A set A 1is closed in M if and only if S-A 1is a cycle
*

(union of circuits) in M. Also, the corank in M of A 1is equal

* *
to the nullity in M of S-A. Thus, fi . 1is a corner of FB(M ) if

*
and only if fj 5 is a corner of FB(M) (see (5.8.2)). But fi counts
’ ’

h]

(dual-closed) sets of cardinality K-n-i+j = K-(n-j+i). Thus,

* *
(1 (k),3 () =§(K-k),1(K-k)).
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We have already seen that if S(M*) = 7 azj ui vj, then
i,]
a:j = aji (see (3.3.7)). By (5.9.2),
* - - j-j*(k)[kﬂ’-j*(k) *
fixa0,3% 00 jzjz*(k)‘ D K }ai*(k),j '
Thus,
* _ _ i-i(K~k)| k+i-i(K~-k)] *
5 (k-1),1(k-K) izi(K—k)( D { K ]aj(K—k),i .
* _ _ K-k+j-3 (K-k)]
Here, a, . .= a, . = [ £, . by (5.9.1),
J(K k) sl 1,] (K-k) JZJ (K—k) K-k 1,]

and (5.10) follows. (Note that if (i,j) = (i(X-k),j(K-k)), then at

least one of the coordinates is equal.)

*
Example 5.}1 1. Let M be as in (4.5.1). It then has the closed-
set polynomial:

s3 + 552 + 2s

2
+ st + 3st

+ 25t2
+ té.
The corners are f3’0 =1, f2,l =1, fl,2 = 2, and fO,A =1 corresponding
*
to closed sets of cardinality O (@), 2 (@),4 (@), and 7 (M ) respectively.

3 2

*
Thus, FB(M ) =s” + 552 + st + 3st + 25t2 + tA. Note that the only
* * * *
positive term in F(M ) - FB(M ) is 2s. FB(M ) = FB(M‘ ) where
*
M' is as in (4.5.1),since both have the same Tutte polynomial.

* *
However, F(M' ) - FB(N' ) = 3s.

* * 3 2 2
From FB(M ), one computes: tB(M ) =x  + 3x" + x'y + 5xy +

+ 2xy2 + Ayz + 3y3 + y",



(35

@]
(%)

which agrees with the (dual) calculation in (3.4) for t(M). Further,

4 3 2
FM) = s + 787 + 158~ + 5s

+ 252t + 6st

2
+ st

+t3
The border polynomial, FB(M) = Zfijsltj, can then be calculated from

* * 3 *
FB(M ) = Zfi.sitJ with K= 7. For example, in M , j(7-4) = i(7-4) =1, and

o [ar2-1) x 3+2-1) % _ .
f1,=6=16 [ 4 ]f2,1+( 3 ]fl’2—35+8.

*
2. In general, one cannot compute F(M ) from F(M). For example,

the matroids M and M, of (5.6) have the same closed-set polynomials,

3 4
but the reader readily checks that M3 has 38 three-point circuits,
while M4 has 37 three-point circuits. Thus,
* *
F(M3) = ... +38st + ... = F(MA).

The above suggests that t(M) can be reconstructed from F(M)
if the closed sets are all enumerated in FB(M). This is the case of

a special class of matroids called near-designs.

Definition 5.12 A matroid is a near-design if all closed sets of

rank m have the same cardinality k(m) for m = 0,1,...,n-2. Thus,
all atoms, lines, ..., and colines respectively have the same size.
Special cases of near-designs are rank-three combinatorial geometries
(where k(0) = 0, k(1) = 1), paving matroids (where for all m above,
k(m) = m), and homogeneous matroids (see [37]) like projective and affine

geometries, where, in addition, all hyperplanes have the same cardinality.



203

Operations which preserve near-designs are truncation, minors M(S')/T

where S' is a flat, and tensoring with a multiple point (see 4.11).

We parametrize near-designs with the vector

(k(0),k(1),...,k(n-2);f f ;k(n) = K), where f

1,00f1,1°%1,20 > f1 kn 1,1

is the number of hyperplanes of nullity i (and, hence, cardinality

n-1 + i).

Note that we may generalize the notion of a near-design to a matroid
which has no flats F and F' with r(F) > r(F') and |F| < |F']
(a necessary and sufficient condition for FB(M) = F(M)). For these
matroids, t(lf) and F(M) should be also mutually derivable. Examples of
such more general matroids are projective geometries PG(n,q) with

various multiplicities (up to q) on the points.

When all the flats of fixed rank (including the hyperplanes) are
equicardinal, we term the matroid a perfect matroid design (design for

short). We now give some known properties for designs.

Lemma 5.13 Let M be a design with parameters

(k(0),k(1),...,k(n-1),k(n) = K).

1. Every interval |[x,y] with r(x) = r and r(y) = s is a design

of rank s-r with f(r,i,s) flats of rank i-r in its lattice.

Thus, f(r,i,s) is the number of flats in M of rank i which contains or
equals a fixed flat x of rank r and is contained in or equal

to a fixed flat y (y 2 x). Further,

i-1
= 7 k(s)-k(m)
f(r,1,s) = mI=I1r K(1)-k(m)

(Here r < i < s, and empty products are equal to one.)
pLty



In particular, the number of closed sets of M of corank n-i

and nullity k(i)-i is given by:

i-1
. K-k (m)
* = = _nokim)
™ et k(i)-1 - £(01m) o K@D-k@
2. The value of the Mdobius function u(x,y) (with x < y) in the

lattice of flats of M depends only on the rank of x and the rank

y. In particular, if r = r(x), and s = r(y), then

S
w(x,y) = u(r,s) = (DT T (E(r,t-1,t)-£(r+l,t-1,1))
t=r+2

s-T k(s)-k(m)
- ;1:£; k(@-k(x)

3. The characteristic polynomial of the contraction of M by a flat

x of corank i is independent of the choice of x and is given by:

XM/ x) = x(1) I uGya T

yiyzx

i
z f(n—i,n—j,n)u(n-i,n-j))\j
j=0

i
Toxc,pad,
3=0

i-j k(n)-k(n-i+j'-1)
,=1_k(n-i+j')—k(n-i)

-1y

where x(i,j)

4, The coefficients in the Poincaré polynomial,

) RICOR N

X(Mzu,A) = c
i,]

i3



are given by:

= Z w(x,y)
X,y
r(x)=i
r(y)=j

c..
1]

-1
K-k(m) s
_H(; k(1) -k (m) (3=1)

K()-K I k(@)
k(3)- k(l) k(1)~k(m)

mzi

(3>1)

0 (3<1)

Proof. 1. The identify for £(r,i,s) can be found in the papers by
Edmonds, Murty, and Young which introduced perfect matroid designs ([70]
and [162]). An interval of a design is itself a

design whose parameters can be given by k'(0) = k(i), k'(1) = k(i+l),...,
k'(j) = K' = k(i+j). Thus, we need only prove the formula for £(0,i,n).
This comes from counting,in two different ways, the i-tuples

of independent points much as was done for atoms in (5.4). (Note that,

in this context, (5.4) could be thought of as a generalization of the

Young-Murty-Edmonds formula.)

2. That u(x,y) depends only on ranks appears in [66] and [37].

The first formula above for wu(r,s) appears in [19], and a simplification

of the identity:
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s t-2 t-2
_qyS-T k(t)-k(m) _ k(t)-k(m)
o L wenae - L e

gives the second formula.

3. When the elements x(i,j) are tabulated into an (n+l) x (n+l)
matrix,it is the inverse of the matrix Wz(i,j) = f(n-i,n-j,n).

(See [66] or [37].) The formula for x(i,j) then

follows by inverting Wz(i,j). Note that we could get an alternate

proof of (5.13.3) from (5.13.2); or, equivalently, could prove (5.13.2) from

(5.13.3).

4. The Poincaré polynomial is given by

XM = 3 u(x,y)ulxlxcor(Y)

X<y

Thus, the coefficient of uk(l)kn-J is ZIu(x,y) over all pairs x <y with

r(x) =1 and r(y) =3 (i £ j). Using the above formulas we obtain:

Iu(x,y) = f(O,i,j)-u(i,j) 'f(o)j)n)

i-1 i-1 -1
j-i k(§)-k(m) J]T k() -k(m) K-k (m)
= (-1 I - . 5 .
peo KD -k@m) 0y k@-k(@) o k(§)~k(m)

When 1 = j, the formula is obvious (it is £(0,i,n)); and when i < n,

terms in the above product cancel to give the desired result.

We now generalize these results to near-designs.

Proposition 5.14 1. A near-design can be recognized by its Tutte

polynomial. 1In particular, if r(M) = n, then M is a near-design



[
o
~1

if and only if, in the Poincaré polynomial,

(o) e 2L )

X(M3u,2)

Zcf,ulkJ
1]

X
up. (M),
i=0

there are precisely n-1 polynomials

{pio(x), pil(k),...,p. \) : io < il < .. < in_z)

of degree at least two.

Further, in this case,the parameters (...,k(j),ee.3...,f K)

l,i"";

of M are recoverable from X(M):

k(j) = 1.

3) iy

fl,i is the coefficient of un-1+iA (when C;_1+i’2 = 0), and
= - - = . ] - ° 1]

K the u-degree of x(M) i, + (11 io) e’y (n > 2).

l,n—l

2. Equivalently, M is a near-design if and only if there are precisely
n-1 nonzero terms of s-degree greater than one in FB(M) (see (5.7)), where
FB(M) is computed from t(M) by (5.9.6). (The parameters can then

be obtained from the degrees of the terms and from the nonzero coefficients

{fl,j}')

3. If M is a near-design with parameters (...,k(j),...;...,f1 j,...;K),
i)

-

then the nonzero coefficients {f,

i3 in F(M) = FB(M) are given by:
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k@ = 1
i-1
- K-k (m) . _
fet,k(i)-1 [ D@ @ <1is<n-2)
m=0
fl,j = fl,j G = 0,...,1(-rx;f1,j z 0)
fO,K = 1.
4. If the parameters of a near-design M are given as in (5.12), then the
Poincaré polynomial of M is given by:
- K
x(M;u,)) = u
+7 £ W00
1,
s
n-2
+ 7 <O o
. i
i=0
where, for all 1i:
i-1
- K-k (m) n-i_
py(A) = [ 3 k(i)-k(m)]'()‘ D
m=0
- { 3=
. “22 K(i)-K } L K-k (m) . o™i
join Lk(:c)-k(i)J n=p k(@) -K(m)
m=i
s le rgfﬁ (n-1+s)-k(m) . (a-1)
1,s| "" k(i)-k(m) .
s m=0
mzi

5. The Tutte polynomial of a near-design is equal to:

k-n+i

-i
t(M;x,y) = Iaik(x—l)“ (y-1) , where
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. =[un]%%ka> +i§-uu }Pu)x ]*4 K-k (m)

ik meo KD-k@ | 7L K JERAED K@ kGE)-k@
m=i'
(i £ n-2),

n-1+s-K ) |22 K-k (m)

n-l+s “‘2[ k(i)
a1,k " L ( K ] + 1 ( k }
s i=0

n-Trs—k(D | | k@-k@ || f1,s
m#i
. ~ [R] ) nil
n,k k 120 ik
Proof. 1. The A-polynomial coefficient, pi(k), of u' in

X(M;u, 1) is, by definition,a sum of characteristic polynomials of flats
of size 1i. The degree of a nonzero pi(k) is the maximal corank of
such a flat. Thus, the number of distinct polynomials of degree at
least two is the number of sizes of flats of corank at least two. This
number is clearly at least r(M) - 1 (there is at least one polynomial
p(A) of every degree corresponding to the largest flat of that corank).
For near-designs, this number equals r(M)-1. Further, if the flats

of fixed corank were not all the same size, let j be the maximum
corank for which there were k > 1 different flat sizes. Then, there
would be k polynomials {pi(k)} of degree j, and thus there would
be more than r(M) - 1 polynomials {pi(A)} of degree greater than
two. The formulas for the parameters follow from the definition of
;(M;u,k) where K, the number of points of M, 1is given by the number
of loops (the exponent io of the u-co-fficient of A" in X) plus
the sum of the (nonloop) multiplicities of all atoms. But,if n > 2,

all |M| atoms have the same nonloop multiplicities, G, - io).



Here, i is the exponent of u in the unique polynomial

1
il _
u Tpy (A) of i-degree n-1, and [Ml, the number of atoms, is the
1
coefficient «c of the leading term of this polynomial

1l,n—l

(corresponding to the number of characteristic polynomials summed).

2. By the definition of a near-design,all nonzero terms in F(M)

appear on the border.

3. These formulas come from the fact that the truncation of M, T(M), is

a design,so that we may use the identity (*) developed in (5.13.1).

4, The formulas for pi(x) come from the fact that

= I (T waym®r®

x:r(x)=i y:y2x

If cor(y) = 0, then the interval [x,y] 1is a design and we recognize
the formula in (5.13.4). Thus, the formula for pi(X) is correct up

cor(M)). But this term is correct

to a constant (the coefficient of A
also, since pi(x) is a sum of (nontrivial) characteristic polynomials,

and thus pi(l) = 0.

5. We could prove these identities from the polynomial formula in
(3.18.4). However, we will argue directly,as it shows a typical
Mbbius inversion argument and prefigures methods to appear im Part II.

From formula (3.3.1), we see that (5.14.5) is equivalent to showing that

ag. is the number of subsets A c S of rank i and cardinality k.
Thus: a; = Z Sp(x,k) where Sp(x,k) counts the size-k spanning
x:r(x)=1

sets of x. We now invert the following formula for a fixed flat y

of rank 1i:
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k J XiXSy
to obtain:
Sp(y,k) = ] {';"}u(x,w.
X:IX<Y
Hence,
X
s 11 [ e
yir(y)=i x:x<y
i .
= i'zo {k(; )] €y where ey is given
in (5.13.4).

Various instances of (5.13) and (5.14) have appeared in the
literature and we list some below. Formula (5.15.5) is in [37] and
the rest are in [27]. Note, that if some truncation of a
matroid is a near-design, then the parameters of the truncation may be
recovered from t(M); and, conversely, some knowledge of t(M) may be

obtained from those parameters by using (5.14) along with (4.2).

Corollary 5.15 Let M be a matroid of rank n and cardinality

K, with t(M) = Zbijxlyj.

1. All p-element subsets of M are independent if and only if

bn—q 3 =0 for all q < p, j > 0. If all p-element subsets of M are
’

independent (so that Tn—p_l(M) is a near-design with parameters

k(i) = i), then the number of flats of corank k and nullity j 1is

counted for k 2 n-p and all j by:

n n-s r

£ = Z z (_l)t[n—SJ
K3 g2k =0 t

S
\k]bs.jﬂ :




to
[
()

The Whitney number of the second kind wn_k = 5 fk . is then given (for n-k <p)
]

by
n-1 n-s-1

e (T T -

2. If all p-element subsets of M are independent, then for all

s 2 n-p,

b . “1-s
sj v23 n q=s s

3. M 1is a paving matroid (a near-design with k(n-2) = n-2) if

and only if bij =0 forall i22 and j 2 1. Further,

K-i-1
biO [ n-i

n-2+v K-1 K-2
b10 - E [ n-2 ]fl,v - [n-2] - {n—Z]

] for all i 22

- n-2+v-j
b5 vgj { n-2 ]fl,v

_ [k-3-1) _ n-14v-j
bOj ( n-1 ] 2. [ n-1 ]fl,v :
v2j

In particular, M is a truncated boolean algebra if and only if

bij =0 for all 1i+j # 0. 1In this case,

n-1 K-n-1
(@) = ) [K‘“‘l""]x“‘f‘+ ) [

n—l+q]yK—n—q .
p=0 P q=0

q

4, M is a combinatorial geometry if and only if bn-l j =0 for
i

all j 2 1. In this case:

n
2.0 " (E (v+1)fn_2’v] - K(n-1) + [2],

and
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(3 > 0).

bn—2,j

=] H-DE L,
v

The number of points, Wl, is given by K = n+bn_1 o’ and the
’

number of lines, W, is given by:

2’
o4 p - b + (n-1)b
2 n-2,0 n-2,1 n-1,0

n
= b4-2,0 7 Ppog,1 T KO-D - (2} .

5. If M is a design with parameters k(i) for all i, then

(M) = (=D 5 M2, (1) (y-1))

KN
where SKN’ the cardinality-nullity polynomial, is given by:
Sy Miv,2) = Uy O R Ay " P [ fRw ayn™ P R @) @ty ™

(@y"

where the "ith excess nullity" n(i), equals k(i) - k(i-1) -1; k(i) = K-k(i-1),

and fdy is the formal integral operator defined in (5.1).

Exercises 5.16 1. Prove the formulas in (5.15) from the

general formulas in (5.14).

2. Extend Example 5.6 by finding an example of two combinatorial

geometries Gl and G2 such that F(Gl) = F(Gz), but either

* *
t(Gl) 2 t(Gz) or F(Gl) z F(GZ)' What is the smallest such pair?
Research Problems 5.17

1. Find, if possible, two matroids Ml and M2 which are not

isomorphic, but such that with a suitable relabeling of their points,



Ml-p. = M2—pi and M1/pi = I‘lzlp:.l

for all 1.

2. What relationships other than (5.10) exist between the closed
*
set-cardinality numbers {f'j} and those for the dual {fi j}
1 )

He

(i.e., the cycle-cardinality numbers {ci
t ]

3

3. Find examples of near-designs (without loops or multiple points)

which are not designs or paving matroids.

4, Extend the formulas in (5.14) to matroids all of whose flats of
rank 1 + 1 are larger than the flats of rank i for all i. For
example, show that for such matroids M (where F(M) = Fk(n)), t(M)

can be reconstructed from F(M).

5. Can the Tutte polynomial of a matroid be reconstructed from the

Tutte polynomials of its hyperplanes?
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6. Identities, Inequalities, and Extremal Matroid Theory.

"Research Problems'" 6.1 1. Is the following the Tutte polynomial

of a matroid?

x> + 108x° + 891x
+ 999xy + 891y
+ 888xy2 + 1782y2

+ (10-3)+111-xy” + (112'3] - 111-[l§'j] ¥

+ lllxy9 .

+ y108
By (5.15.4), we see that if such an M could be found, it would be a
planar geometry with K = 111 points, f1,9 = 111, and fl,j = 0 for
j # 9. Thus, it must be a projective plane of order 10. Clearly such

a problem will not be resolved using Tutte-Grothendieck recursion!

Related problems include the following:

i M) = = =
2. Assume that in t(M) : bk,O 1, bk-l,O 3, b1r2 0, and
b = 2b =z 0. 1Is Yhk+9-1 a prime power? To answer this question,
2,0 1,0 2
*
consider M . From bk,O =1, bk—l,O = 3 and b10 = 0, it is not

*
hard to show that M is connected, has rank three, and has cardinality

*
K = k+3. Since b2 1= 0, it is a planar geometry. But for a planar
*
geometry, M, with K points, (5.15.4) gives the number of lines,
* * * * *
W as b -b + 2K-3 = b -b + 2b + 3. Thus,

2’ 1,0 1,1 1,0 1,1 2,0



* *
W - W =b. _-b .+

*
> 1 1,0 1,1 b2,0 which by (6.4 ) below is equal to

*
2 This is zero if and only if M has an equal number

0,1 ™ Po,2
of points and lines (i.e., is a connected projective plane). For

such a plane of order n, we would have n2 +n + 1 = k+3, so that

v4k+9-1
n=s— .
2
3. Can we have a Tutte polynomial where, for n > 6, bn 0= 1,
b2,l = 0, bl,O =z 0, and
n n-s c n»s]
. - = ?
y s Z (l){tjbs,t 0 ?
s=1 t=0 J

The above initial conditions mean that M would be a connected paving
matroid of rank at least seven. The equation, by (5.15.1), reflects

the fact that in M, f 0. Thus, M has no independent hyperplanes.

1,0 ©
Thus, the set of hyperplanes H of M have the property that each

has at least n points,and that any subset of n-1 points is in exactly one
hyperplane. Thus, H forms a t-design (with perhaps multiple non-

trivial blocks) for t > 5, and any such t-design gives a paving matroid.

The existence of t-designs with t > 5 1is at present a famous open

problem.

The examples above show that it is as impossible to characterize
the image of the map M » Z[x,y] of (3.7) (i.e., determine all
possible Tutte polynomials) as it is to characterize its domain

(determine all matroids). The kernel of the map is equally intractable.
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We have seen many examples (3.11, 3.14, 4.3, 4.5) of two (or more)
matroids with the same Tutte polynomial. An elementary counting
argument shows that for large K this situation only gets worse:
there are many more matroids than Tutte polynomials.
Proposition 6.2. For any ¢ > 0, there is a K sufficiently large,

2K(l-e)
so that while there are more than 2 nonisomorphic matroids

3

all with the same Tutte polynomial, there are less than 2K distinct

Tutte polynomials of matroids of size K.

Proof. Let M be a paving matroid of cardinality K and rank n
all of whose hyperplanes have nullity 0 or 1. Then, since every

(n-1)-element subset is in a unique hyperplane,we have

= | K . _ .
fl,O = (n—l} nfl,l’ while fl,j =0 for j > 1. A consequence

of (5.15.3) is then that all such matroids with a fixed number fl 1
’

of dependent hyperplanes have the same Tutte polynomial. Results

of Knuth ([86],0r see [151]) show that,when n = Eﬂ, there exists

K K
a family FK of a, 2 /2K >

-2
K q |1 e
2

of size [%], such that any subfamily of FK can be the family of

subsets of K, each subset

nullity-one hyperplanes of such a paving matroid. Letting bK be

the number of subfamilies of F_ each containing

K
i ) e 2 K
fl 1|2 members, we obtain bK = ¢ > — matroids
’ 1,1 c-/z?lg

all with the same Tutte polynomial. Dividing by K! and using

elementary estimates we get the first statement.
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To count the number of distinct Tutte polynomials observe that,
in the corank-nullity polynomial, there are (K+l)2 coefficients

{a,,} all of which are nonnegative and which sum to ZK. Thus, there are

13

(Kix3x 3

at most K2+2K < 2 choices for coefficients (and distinct polynomials).

Although the estimate above for the number of distinct Tutte
polynomials is small compared with the number of matroids, the
actual number of Tutte polynomials is even smaller. Aside from those subtle
considerations pointed out in (6.1), there are several identities and equalities
which the coefficients {bij) must satisfy. The identities can be
characterized completely with reasonable ease,while the search for
inequalities leads into many areas of matroid theory and more general
mathematics,and seems endless. We begin by characterizing all (affine
linear) identities which hold among the coefficients of {t(M) : M
has rank n, cardinality K, and is free of loops, multiple points,
and isthmuses }. We make these restrictions,since most applications
involve combinatorial geometries (no multiple points),while (4.4.2)

and the dual of (4.4.3) show how to reduce to the isthmus-free case.

Proposition 6.3. Let GK n be the class of all isthmus-free
’
combinatorial geometries of rank n and cardinality K. Further,
let MK n be the affine variety spanned by the set of all
’
(K+1) x (n+l) matrices {MK,n} such that the (i,j)-th entry of MK,n is the
coefficient a in the cardinality-corank polynomial (see 3.17.1)

i3

SKC(G;z,u) for some G € GK,n'
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1. The dimension of MK a equals (n-2)+(K-n-1). A basis
’

for the relations which define MK n follow:

’

a. M(i,n) =0 (1<14i<K)
b. M@i,n-1) =0 (i=0,2<1ic<K)
c. M(i,j) =0 (0<j<£n-2, 0< i< n-1-3)
d. M(i,j) =0 (1 <£j<n-2, K-j <1i<K)
n
e. M(i,n-i) = (?ﬂ - Y M@, (0<isn)
1 . .
j=n-i+l
K n-2
£. M(i,0) = (i] - ¥ M(i,3) (n+l < 1 € K)
j=1

2. The following identities form a basis for the relations which

hold among the coefficients (with monnegative subscripts) in the Tutte
polynomial

. - i] .
{bij : t(G) Zbijx y’, G € GK,n}'

a. bi,j =0 (i >mn, j20)
b. b g=13b =0 (>0
c. bn—l,O = K-n ; bn-l,j =0 (G >0
d. b, . =0 (1 <i<n-2, j2K-n)
1,]
e. bO,K—n =13 bO,j =0 (j > K-n)
k k-s ¢ [k-s
£, = )} I (D [ ]b =0 (0<k<K-3).
k t s,t
s=0 t=0
Proof. 1. These identities are found in [38] where they are shown

to be a basis.



2. One easily checks that identities (a-f) are independent since each
involves a coefficient bij not found in any previous one. (For
example, Ik can be interpreted as an equation for bn—2,k-n+2 if

n-2 £ k € K-3, and as an equation for bk 0 if 0 <k < n-2.)

Further, identities (a-e) leave an (n-1) by (K-n) rectangle of

coefficients undetermined, and adding in identities {Ik : 0 <k < K-3}

gives the dimension of MK.n for the number of degrees of freedom.

Thus, by (3.18.3) which can be thought of as giving an invertible affine
map between the coefficients of SKC and those of t, there are no

more identities.

Identities (a-e) are obvious. For example, bi Ken = 6(i,0)
»

follows from the fact that G has no isthmuses,and (c) reflects the

fact that the loopless geometry G has no multiple points. To prove

(f), we first note that it is independent of n and only uses K in a bound

on k. In fact, we will prove {Ik} for all matroids M' with
|M'| > k. These identities first appeared in [27]. Our alternate proof
below uses equation (3.18.3) evaluated at u = 1. Let M' be any

matroid of rank k and cardinality K'. Then,

' k . 2+l
. = s —
SKC(M 52,1) z t(M'; Z z+1l), so that

Al . . -
DX = T b, (it
. ij
1,3

Letting v = z+l1, we get:

\J : . -
VK = z b _v1+J(v-l)k 1, or
P & |
1,]
k-1
v 5Y sl
vK k _ z b, z (_l)m{k l]vJ m .
AT & B m
i m=0
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Considering the constant term on the right (m=j), we get that whenever
K' > k,

t |k-s _
I (D [ . }bs,t = 0.

s,t

This is precisely identity Ik if r(M') = k. To show Ik for a
general M', we use induction on Ir(M') - kl. First, let

r(M') = n' > k, and assume that we have proved 1k on all matroids of

size at least k+1 and rank n'-1l. Using a second induction on the
number of nonfactors of M', we get that Ik certainly holds if M'

is totally separable,since then the nonzero coefficient bn',j in

t(M') does not appear in Ik. But,if p is a nonfactor, then IM'] > k+2,
t(M') = t(M'-p) + t(M'/p), and Ik holds, by induction on the number of

nonfactors,in M'-p, and,by induction on rank,in t(M'/p). Thus, by

linearity, it holds in t(M').

Now,assume k > n', and that we have proved Ik for all matroids
of rank n' + 1 (and cardinality at least k+1). Let M' have rank n'
and size at least k+l. M' is certainly not a boolean algebra so that
we may make a free coextension, adding a nonfactor p freely to M'* obtaining
M"'* with M"/p = M'. Then, t(M') = t(M") - t(M"-p). The two matroids M"

and M"-p have rank n'+1 and size at least k+1, so Ik holds for

each. Thus, it holds for t(M').

We now list the first few instances of {Ik} for future reference,

using identities I with k' < k to simplify I

k' Kk’
Corollary 6.4 The following identities {Ik} hold on the coefficients

of the Tutte polynomial t(M) for any matroid M with ‘MI > k.
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Ig- oo =0
I PPy

Ip» By = Pp1 tBgy = Py

I3- b3p = by ¥ b1y = Bog = by = 2bgy ¥ byge

We now turn our attention to inequalities involving the coefficients

{bij}' Clearly, the most obvious one is that bij >0 for all (i,j).

However, this can be sharpened.

Proposition 6.5 Let M be a connected matroid, and assume that

bij > 0 in its Tutte polynomial. Then bi' It > 0 for all
’

(1',3") = (0,0) with (i',3") < (i,3).

Proof. 1f bij >0 4in t(M), then,somewhere in a decomposition of
M (see (3.1), (3.4)), there is the term BlJ, and thus M has this

1 O
totally separable matroid as a minor. Thus, it has Bi »J as a

minor for all (i',j') : (0,0) < (i',3') < (i,j). Ve may now apply

(4.12).

A special case of (6.5) (and I, of (6.4)) 1is the theorem of
Crapo [53] that, for any matroid M with at least two points,
b, = bo1 = B(M) is positive if and only if M is connected.

10

We will explore the invariant R(M) in more detail below ((6.15),(6.22.2,3),
(6.24.2), (6.26.4)).
To determine which bij can be positive for a general matroid M,

we may first assume that M has no loops or isthmuses, since otherwise we

can reduce to this case by (4.4). The number of connected (direct-sum)
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components of M can be determined from t(M) and is equal to k,

where (in t(M)), b >0 and b _ = 0.

k,0 1,0

For such matroids with k connected components, an easy application

of (3.6) shows that bi .,=c > 0 for all i : 0 £1i <k, and that
’

k-i
bi,j = 0 for all i+j < k. Therefore, in theory, the possibilities

for which bij are positive can be reduced to the connected case since
the possible positive bij of a matroid with rank n, cardinality
K, and k components come from all possibilities of nonzero terms in

t(Hl)-t(M2)~...-t(Mk) where each Mi is connected, 2 ‘Mil = K, and
i

r(Mi) = n. In particular, we note that the set of indices
(i,3) : b,. > 0} formsa rectilinear convex set in the integer lattice

Z x Z 1in the following sense. The sequence b b

K,0° Pk-1,0""""*Pk,0°

b gives the "northeast

b 0,k°20,k+1° " " **P0, K-n

k1,177 Py, g0 0o
boundary" of positive coefficients,and the border sequence of (5.7) gives

the "southwest boundary'. Further, bij > 0 if and only if it "lies within
the boundaries" (e.g., if there is a positive bij' in the northeast boundary
and a bij" in the southwest boundary with j' < j fuj"). To complete our
analysis, we give the possibilities for border terms in connected matroids.

As a preliminary, we distuss an interesting class of matroids introduced in

[114] which will also be useful later (see 6.23)).

Definition 6.6 A nested matroid (of cardinality K and rank n) is
one in which the cyclic flats are totally ordered in that if F and
F' are cyclic flats with |F| < [F'|, then F c F'. These matroids
were first defined in [114]. An alternate definition is that there

exists an ordered basis B = {b,,...,b_} such that every point
1 n
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p not in the basis (and not a loop) forms a circuit with an initial

segment {bl,...,bk} for some k. The cyclic flats are

= L
then subsets of the form Ck {bl,...,bk} u Pk
where Pi is the set of points which form circuits with some (initial or empty)
subset of Bk = {bl,...,bk}. This is clearly closed and is a union of

circuits precisely when Pi - Pé—l is nonempty (i.e., when bk is not

an isthmus in Bk)'
The following facts are either found in [114] or can be easily

demonstrated by the reader.

1. A nested matroid is determined up to isomorphism by the sequence

(ao,al,...,an), where a is the number of loops, and, for i > O,

0
- " _ pt =l - R =
a, = 1+ lPi Pi—ll ]Bi Bi—l" Here, of course, g a; K, and
M 1is a geometry if and only if ag = 0 and a; = 1. We will hereafter

refer to the (unique) nested matroid N(a .,an). Note that any

00"

sequence (ao,...,an) gives a nested matroid of rank n if aO 2 0 and

a; >0 for all i > 0.

2. N(ao,...,an) is connected if and only if it has no loops (aO = 0)
and no isthmuses (an > 1).
3. The connected nested matroid N(ao,...,an) of rank n and nullity

K 1is determined by the sequence:

% .. . s .
*) ((gsdg)s (igsdpdseees (13 ),
with 0 = iO < il < ve. < im = n, and
0= 30 < Jl < ... < Jm = K-n
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Here, ik = r(Ck), the rank of the Kt largest cyclic flat Ck’

and jk = |Ck] - r(Ck), the nullity of C Any such sequence of

X"
pairs parameterizesa connected nested matroid. 1In particular,
N(ao,...,an), with a3, = 0 and a > 1, has a nonempty cyclic flat

of rank i and nullity j if and only if a, > 1, in which case

i
j= E a - i. Conversely, given any sequence of pairs satisfying (*),
k=0

if (ik,jk) is in the sequence (*), while

a; = 1 otherwise (conventionally, j—l =1).

4. The class of nested matroids is closed under the following

operations:

a. Truncation: T(N(ao,...,an)) = N(aO""’an-Z’an-l + an).

b. Free extension: N(ao,...,an) +p= N(ao,...,an +1).
c. Deletion: N(ao,...,an) =P s N(ao,...,ai—l,...,an)

where pi € ﬁi - ﬁi—l' We use the conventions that, for i > 0,

N(ao,...,O ,an) = N(aO,...,l,a

).

28, 4100 i+1_1""’an)’ and that

N(ao,...,a 0) = N(ao,...,a

n-1’ n-1

. ion: . = e + -
d Contraction N(ao, ,an)/pi N(ao, 8, 903y 1 tay 1,

ai+l""’an)'
e, Free coextension: N(ao,...,a ) x p= N(O,ao + 1,al,...,§n).
f. Duality: If a nested matroiJ] N of rank n and cardinality

K 1is parameterized by its sequence of cyclic flats as in (*) above, then
* * % I
N has rank K-n and has the sequence ((io,jo),...,(lm,Jm)) where

%k
(ik, jk) = (K—n-jm_k,n—im_k). (For this, recall that A 1is a cyclic

*
flat of M iff S-A is a cyclic flat of M.)



o
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We leave as an exercise to the reader the explicit formula for

*
ay when

* * *

N(aO""’aK—n) = (N(ao,...,an)) .

5. The hereditary class of nested matroids has,as excluded minors,

the sequence

M, = 2y 8 T3y G=2).

Thus, M2 is a line with two double points, M3 is the matroid M2
of (4.3.1), and, in general, Mi consists of two disjoint i-point

circuits otherwise freely placed in a space of rank i.

6. To get the Tutte polynomial t(N(ao,...,an)), we will use the
cardinality-corank polynomial and apply (3.18.3). If S' 4is a subset
consisting of sy points in Ei - ﬁi—l (i=0,...,n), then x(S')

. . - : =0

is given recursively by fn(so,...,sn) fn(g), where, for all i, f0(§) , and
fi(§) = min(fi_l(§) + si,i). This is easily shown by induction since

each point of Si =S8'n (Bi - Ei—l) is in free position in rank i,

and so adds one to the rank of S' (unlessrank i is reached). Thus:

SKC(N(aO,...,an);z,u)

a a
0 n o fag a | sgte..ts) n—fn(g)

= X...Z cee °Z ‘u
0=0 .=

Proposition 6.7 Necessary and sufficient conditions for possible

sets S of indices {(i,j)} of positive coefficients in t(M) for

a connected matroid M (|M| > 1) are that:
1. (0,0) ¢ S

2. For some i, (i,0) ¢ S and (i +1, 0) ¢ S. In this case,
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(i,j) ¢ S for all j > 0. Similarly, for some j, (0,j) € S and

(0,j+1) ¢ S. Then, (i,j) ¢ S for all i > 0.

3. If (i,j) € S then (i',j') € S for all

(i'aj')

A

1,3 ((1',5") # (0,00.)

Proof. The necessity of (6.7.1) and (6.7.3) were shown in (6.5).
Condition (6.7.2) comes from the fact that M, being connected, has
no loops or isthmuses. The sufficiency of the above conditions

amounts to showing that any set of indices:

{(io,JO),...,(lm,Jm) 2y > 11 > el > im =0,

0=3y<dy <.er<i, m22}
is possible for the corners of tB(M), where M 1is a connected matroid
(see (5.7), (5.8)). But, when each ij is subtracted from io (converting

corank te rank), this is precisely condition (*) in (6.6.3). Thus, there

is a connected nested matroid with these corners.

We mention some more subtle inequalities on the set {bij}.

Proposition 6.8 1. Let G be a geometry of rank n > 2 and
cardinality K. Then:

b by g, € K(n-2) - [2]

n-2,1 ~ Pn-
Equivalently:

n-1
bn—Z,l < bn—2,0 + (n—2)bn_l’0 + { 2 ] - 1.

Further, equality holds if and only if n=3 and G is modular.
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2. For any matroid M with Tutte polynomial t(M) = ZbijxiyJ,
we have
. ' s s PN
) at.pd c(dded - I )eb by 20,
i,331%,3" b
] . sV _ . sV =

and 7 5ead e heent T s it et e, b, L2 0

ok ij i'j

i,31%,7

for all a, b, ¢, and d with 0 <a <b, 0<c<d, and (b-1)(d-1) 2 1.

Proof. 1. This is the line-point inequality for geometries:
w2 2 wl with equality if and only if G 1is a modular plane (see

(5.15.4)).

2. These, and other, inequalities come from the FKG inequality of

statistical mechanics interpreted for t(M) in [127].

We remark that there are two types of inequalities which we have
considered. One type (e.g., b10 > 0 for connected matroids) can
be proved inductively using properties of the Tutte decomposition
(T1 and T2), while the other type (such as (6.8.1)) use other arguments
and cannot be (directly) deduced from the decomposition. Obviously,

those of the latter type are more difficult to discover and prove.

The coefficients of t(M) which have received the most attention
by researchers in matroid theory are those of the geometric Tutte

polynomial

- _ i
t(G) = ) bix

i=1

il ~13

and the related Whitney numbers of the first kind: the coefficients
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{wi} of the characteristic polynomial

n-i

n
x(@ = I wp"t = 1)7EG;31-20)

i=0

Here, we assume G 1is a geometry, and we will henceforth treat the

unsigned Whitney numbers.

= Jw'l = (-1
v, lwi[ (-1) Wi
Thus,
2 n-i -
(6.9.1) [x]6) = ) w.ATT = T(G;AH), so that
i=0
n m'
(6.9.2) W= zi (inm .

The principal conjecture is that the sequence

w, =1, w, = K,...,wn = lu(G)| ) is unimodal, logarithmically concave,

0 2

or strongly log concave in a sense which we will define below. First,
note that there are several analogies of the two kinds of Whitney

numbers (both of which are conjectured to give log concave sequences).
(Proofs are easy applications of (6.9.2).)

(6.9.3) W, = ) 1 < w, = ) |u(0,x)|, with equality,
i . i
r(x)=1i r(x)=i

(6.9.4) w, = Wi = {?],iff all (i+l)-element subsets of G
are independent.
(6.9.5) ‘..105wls...5wB . That woswls...sw~rl is still
. 2 2
only a conjecture.
(6.9.6) w_ . 2w, for all i < [?] . That W_, > W, is yet unproved.
n-i i 2 n-i i
It is not even known at the present time whether (for n 2 5)

\ > W

2 = Wys oOT whether, w3 > W2 for n 2 4.
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However, it is known that,for all i different from O and n,
K<sw and K < W,.

i i

We now make some definitions and elementary remarks about uni-

modality and related concepts.

Definition 6.10 1. A sequence of nonnegative integers
L EREETL N with a, = 1 is said to be wnimodal if, for some 2§,
< < < > > > i i i
ag €a; <...<a za . 2...2a. This is equivalent to the property

that a > min(aj,ak) for all triples j < m < k.

2. The sequence (ai) is strongly unimodal if for some & < k:

ao < a1 < ... <a; = a“_1 = .. = > a4 > .. > an. These

sequences are characterized by the local properties that for all i,

. = <
a; > min(a ), and that, if ai_1 a,, then a;_5 < ai.z ai+1.

i
Equivalently, define Aj = aj+l_aj' Then, Aj > 0 implies

141°%1-1

Aj—l 2 0, and Aj > 0 implies Aj—l > 0.

3. Stronger conditions

which guarantee unimodality are also amenable to local considerations.

The most obvious such is concavity, the discrete analog of having a
a, .+a,
i+l "i-1

nonnegative second derivative. Here ay 4 5

Unfortunately, the Whitney numbers of the first (or second) kind
w.
are seldom concave (usually, ¥, = *%-). However, since (strictly)

monotonic functions preserve unimodality (and nonunimodality), a way
to prove strict unimodality would be to find a strictly monotonic

function whose values on the sequence were concave. It is
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customary to choose the logarithm function, and a (unimodal) sequence

2
is said to b l i<t if, f 11 i . 2 a, .a .
e log concave if, for a >3y 1213441
4, We say a sequence is strongly log concave if a, = K 2 n, and

a,

the sequence (ai = TﬁT ) 1is log concave. A motivation for this

i
definition is that it includes all sequences arising from truncations

of polynomials p(x) with all negative integer roots:

p(x) xn+m + alxn-'.m_1 + ... + anxm + ...

n+m
(x+ci). Further, for such truncated polynomials, the
i=1

'2
inequality will be strict (aj > af_la£+l)
unless all ci = 1. (See [79].) We introduce this concept because it

is known to hold for many well-studied sequences of Whitney numbers
such as binomial coefficients and Stirling numbers
of the first kind. Further, strong log concavity is preserved by the

truncation operator since
m . .
wi(T (G)) = wi(G) if i < n-m
m
and wn_m(T (G)) = wn_m(G) - wn_m+1(G) + ... .

It is easy to see that Whitney numbers of the first kind for
geometric lattices which come from truncations of boolean algebras,

partition lattices, or modular geometries are all strongly log concave.

n
(The polynomials are, respectively, (x+1)n, TT‘ (x+1i), and
n. . i=1
i i
T 7IT (xeva, )

i 3,70
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5. We conjecture that the Whitney numbers of the first kind are

strongly log concave.

Thus, we conjecture that

.10.6 N ) T . S
(6 ) K] 2 TK K )
i 1-1]  [1+1]
Equivalently,
2 _ [(k-i+1) [i+1
.10.7 5 [K=itl) (41 )
(6 ) ¥i ® ( K-1 ]( i ]wi—1“i+1

This reflects the feeling that truncated boolean algebras give
the "least concave" Whitney numbers (see [101] for analogous con-
jectures for (Wi)). The related conjecture for the coefficients of

E(G) is that the sequence:

(6.10.8) b! = =~
g =

is log concave and we call this condition strong log concavity for

E(G). Equivalently, we conjecture that

{_._ s
b2 > lK i l][n i+l

n-i

K-i

i-1"i+1

Thus, again for sequences of Tutte coefficients (bi)’
truncated boolean algebras are thought to be the "least log concave."

(See (5.15.3), or use (4.2).)

Research problems 6.11 1. Find the explicit characterization for the indices

of positive b for a matroid with k components (see (6.7)).

i3

2. Show that if, for G, and G2, the Whitney numbers or Tutte coefficients

1

are strongly log concave, then
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so are these numbers for Gl ® GZ' This amounts for Whitney numbers,
essentially, to showing that if

ntm m : a

. n . .
z dix1 = Z aix1 Z cix1 , and if the sequences ai = —iL
1=0 i=0 3=0 ' : (]
* H
c, .
and |c! =-—3| are log concave, then so is the sequence |d' = —2.
i [m] i~ (n-Hn]
i i

This latter inequality (*) may not be hard to prove and is interesting
in its own right. 1t is probably true since it holds when the two

polynomials p(x) = Eaixl and q(x) = Zcix1 have real negative roots.

Further, it is true for isthmuses, since (*) is proved in [79] for
the degree-one case. We also note that the analogous result for the

log concavity of (di) was shown by Harper (see [81]).

by Harper (see [81]).
b,

P S
K-1-1i
K-1-n

x(G) strongly log concave? In particular, show that the log concavity

2. 1f bi = is log concave, are the coefficients of

of (bi) implies the log concavity of

. j] K—l—j]
W' _ Z i) {K-1-n

G

3. Find classes of geometries (such as dual paving matroids as we

b! .
3

show below) which give unimodal or strongly log concave Tutte coefficients

or Whitney numbers.



4. We cover our bets by offering the problem of finding a geometry

whose Whitney numbers are not unimodal.

We will illustrate some techniques with the next two propositions.
The first shows that if (bi) is log concave, then so is (wi).
Again, this is not surprising since if (bi) came from a polynomial
p(x) with real negative roots, then (wi) would be the coefficients
of p(x+l), another polynomial with real negative roots. We begin

with a lemma presenting the combinatorial arguments we will use.

Lemma 6.12 1. Let (ai : i 20) and (ai : i 2>0) be two non-
r
negative eventually zero sequences, and let a_ = z a; denote the
i=0
h o
't partial sum (where a = ) aj). Assume that (ai) dominates
©
j=0

(ai) in the sense that, for all i, a, 2 a

Further, let (bi :i20) and

(bi : i 2 0) be two nonnegative sequences such that, for all i,

' a'b a'+ b
bi > bi and bi > bi+l' Then, (a b)m > (a'*b )cn .

\J
a a
i+l i+l

2. If for all i 2 0, —— < ——— (with 9. 0), and if
a, a; 0
i i
Em > 5; , then Ei > Ei for all 1i.
3. Let k and i be fixed. Then, the sequence

2 . .
oo (o o020

dominates the sequence
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v [k )k [k (k-3 ) k) (k3] L
(ap [i+1](i-l}’ 25 (i+1] (1-1 i-1)(s41) P D -

Further, the sequence
(bj _ 2{k+3.+1] {ij] C 5 0)

1 1

dominates the sequence

v (ki) (k-3 (k+3+1) (k-3) . .
(b; [ ifl Jli-1) F l -1 fliw) PIE 0
Proof. 1. (ab)_ = Z a (b_-b_,.) (where we can assume that (b,)
—_ © r r r+l N i
=0 is eventually zero)

v
o~
Wl
N -
~
o
]

1
o

Y
Il o~ 8
w
e -
o'
He =

2. Assume that for some r, a_ < 5; and let r be minimal with

this property. Then, a < a;, and, for all s >r, a < a'. Thus,

) s

w1

e < a; for all s > r which contradicts the hypothesis that
a >a'.
. . - -y 2k+1
3. An elementary combinatorial argument shows that a_ = a’ = 2i+1]°
while b =1b' = 2k+2 Simplifying the proportions a T oa,::al :
w o 2i+1)° i+l i i+l

: ::b! : b! i .12, ields t .
and bi+1 bi bi+l bi’ and applying (6.12.2) yields the result

1



236

We are now ready to prove the log concavity of (wi) from the
log concavity of (bi)' The same proof gives the stronger result that
if (bi : 1 £ 1 < n)islogconcave,so is (ﬁi : 0<i<n-1), the

sequence of reduced Whitney numbers.

Reduced Whitney numbers are motivated by the fact that
x(G;1) = 0, so that X-1 divides the characteristic polynomial of G.
(Equivalently, there is no constant term in t(G).) Therefore,

n-1 .
(6.12.4) Ixleesn _ Iowpt

A+l

i=0
(6.12.5) W= W + vy and
R n-1 m
(6.12.6) wos1< L [i]le .
m=1i
Proposition 6.13 Assume that the sequence (bi) of coeffi-

cients of E(G) is log concave. Then, the Whitney numbers (wi) and

reduced Whitney numbers (&i) are also log concave.

n
Proof . By (6.9.2), we have (w .)2 = Z [T]b 2. Symmetrizing the
_— n-i pei i) ®

expansion of the right-hand side, we obtain:

2
k] 2 k+3) (k-3
b+2z[}-{,b,b,
[i k j>1 i i ) k+j k-j

n
k+j+1| {(k-j

* 2 Z 2[ i ].[.]b j b-.

k=1 (320 i i k+j+1 k-j

Similarly,
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{ 3
n
k k 2 k+j| [k-3 k+j| (k-3
M | (A N R z[(, ) o [2)- st b s
n-i-1 n-i+l ke i+l i-1 k j21\1+l i-1 i-1 i+l k+j k-]
n (k+ . . (v s
k+j+1| [k-j k+j+1| (k-j
* kzl jgo [ i+1 ] [1—1) + [ i-1 l1+1 Preri+1%k-3]
Let k be fixed. By the log concavity of (bi)’ (bk+jbk—j)
and (b b ) are both nonnegative decreasing sequences. Further,

i+ k-5

the sequence of binomial coefficients under each summation sign in the

. 2 . .
expansion of (wn ) dominates the respective sequence of binomial

-1

coefficients in the expansion of w by (6.12.3).

n-1-1""n-i-1

Therefore, the conditions in (6.12.1) are met, and, for each k,

. 2 _ ¢ 2
x > xi and Yy 2 yé in (wn_i) = z X + ¥ Vi and
k=1 k=1
n n
- = A V'
Yaei1Vaeian T L%t Ly
k=1 k=1

‘The proof for (Qi) is exactly the same.

Proposition 6.14 Let G be a paving matroid. Then the coefficients

- - %
in both t(G) and in t(G ) are (strictly) unimodal.

Proof. We use the formulas in (5.15.3). Since, for all i 2 2,

{R-i-1 ( K-i-2 . .
bi =il n-i-1 = bi+l’ the sequence (bi(G)) is trivially
unimodal. In fact, since b1 < [i:i], the sequence is strongly log
concave.

* *
Now, let b, = boj(G) = bj(G ). Then, by (5.15.3), for j > O,

3
* _ [k-3-1} _ i-j
bj - [ n-1 ] i>j§n—1 [“‘1]31,
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where G has a; hyperplanes of cardinality i. We use (6.10.2).

* * . il
Then, A, = b, - b, z [1_%]3, - (K 222]. If G has
izj+n-2\07%) 1 n

*
an isthmus, then x(G ) = 0 and there is nothing to prove. So,

assume G is free of isthmuses. Thus, if a, > 0, then 1 < K-2.

* *
Let j be such that Aj 20 (i.e., b > bj). Then,

j+1
i-3 K-j-2
b e = (5]

and, for all i,

22/ - )/ 5

Thus, as we pass from Aj to each term on the left-hand side

By ps
increases in ratio as least as fast as the single binomial coefficient
on the right (and perhaps new terms become nonzero). So we have
A > A b* 2 b* d, finall h (b*) i imodal
jo1 T8y 3By by and, finally, that j is unimodal.

For future reference, we now review some of the important
invariants which, for special classes of matroids (such as graphic and

oriented matroids), have interesting interpretations. We then relate

these invariants using the constructions presented in section four.

Remarks 6.15 1. The T-G group invariants below have the follow-

ing formulas.

a. The number of independent sets of rank r:

Ir = z (nir]bij
i!j
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b. The (absolute) rth Whitney number:
{ s
- i 1
w_ = 5 ]bi

r {n—r
i

c. The reduced rth Whitney number:

&r - % {nfzir]bi - sgr(_l)s—r-lws = szr(-l)r—sws
d. The beta invariant:
B(G) = b,
= 2 050,00 = (-D™ Lyo1)

e. The (absolute) Mobius function:

u®) = |u(0,1)] = ] b,
i 1
= t01,0) =|x(M;0) [= wy = w,

f. The acyclic or alpha invariant and reduced alpha invariant:

a(M)

]
~1
N
o

= t(2,0) = v, = (-1)"x(4;-1)
i

[}

723l
i

a (M) s

t(M;2,0)

l
NI

T e .
S
i

g. The complexity b(M) (number of bases), independence number
i(M) (number of independent sets), and subset number s(M):

b)) =1 = | by = tO41,1),
1,3
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i) = J 2%, = 11 =1t(2,1),
i,j 13 r T

s
s = § 27
i,3

ij = t(M;2,2).

2. These invariants are related by the following inequalities
a(M) = a(M)
z

N
s(M) 2 i(M) R u(M) 2 B(M) 2 0

/]
N]

b(M)

Further,

s(M) > i(M) > a(M), and
bM) > u(M)
unless M 1is a boolean algebra;

i(M) > b(M) unless r(M) = 0,
a(M) > &(M) unless M has a loop,

a(M) > u(M) > B(M) unless M has a loop or
r(M) =1, and

B(M) > 0 unless M 1is a loop or is separable.

3. These invariants are also related through the following constructions.
a. For truncation:

(T T (M) = 1_0n.

i(T(M)) i(M) - b(M).

n

B(T(M)) = u(M) - B(M).

R n=1 i
G = ] w(TTn).
=0



a(T) = a(M) - uM)
u(T(M)) =7 (1-Db,
i

b. For free extension:

L QOHp) =1 () +1 ()
B(Mtp) = u(™)

u(p) = w(T(M)) + u(M)
a(Mtp) = aM) - u(M)

c. For free coextension:

Gr(MxP) = Ir(M)

;(Mxp) = i(M)

u(Mxp) = b()

d. For duality:

*
BM ) = (M)

e. For direct sum with an isthmus:

w, (Mep) = w, ()

[}

a(Mdp) = a(M)

0

u(Mép) = u(M).

All the above can be easily proved using the formulas of (6.15.1)
along with those of (3.18) and ¢.2). Some of the above formulas have
generalizations or "combinatorial proofs'" (one-to-one correspondences

between two families of subsets of S, each counted by a side of the

identity).
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For example, results of [35] show that I is an independent
subset of M({1,2,...,K}) (and contributes to Ir) if and only
if I u {0} is a "x-independent subset' of M x 0. Thus, I also
contributes to &r and (6.15.3c) follows. A consequence of (6.15.3c)
is that the log concavity of (Gr) (or of (bi) by (6.13)) for all
matroids (with a cofree point) implies the log concavity of (Ir) for

all matroids. Other combinatorial correspondences appear in Part II.

As an example of a lattice-theoretic generalization of (6.15.3b),
Zaslavsky [163] showed that, for any point p € S,
gG) = | § u(0,x)|. When G =M+ p,

xeL(G):
X#Pp

the (signed) right-hand side is easily shown to be equal to

L w(0,%) = -u(0,1).
xeL(M):
xzl

(A combinatorial proof of the above identity appears in [46].)

A useful technique for proving inequalities among T-G invariants
is the use of bijective rank-preserving weak maps (see [97]). A
matroid Ml(S) is said to be freer than a matroid MZ(S) if there is
a rank-preserving weak map between Ml and M2 which is the identity
on S. This is equivalent to saying that each basis of Mz is a
basis of M. If Ml z MZ’ we say that Ml is strictly freer and

that the map is non-trivial. We denote this case by writing
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Essential to the proof of all the inequalities below is that if
- > -
Ml >w Mz, then, for any nonfactor p, M1 P2 M2 p and

/p 2 M, /p where, in at least one of the inequalities,the M
w2 1

minor is strictly freer and no new loops are created. Further,

* *
Ml >w M2, and, for any matroid M of rank n and cardinality K,
we have that TV "(B,) » M= BVKT,
K w W

n,K-n

Thus, for any T-G group invariant f : M >R, if f£(M) > f(B ) for

all loopless matroids M of rank n and cardinalitv X, then f(Ml) > f(MZ)

whenever Ml is loopless and M1 >w M, (and a similar result holds

for nonstrict inequality). This gives an easy, alternate proof to

the result in [27] that w,a,b, and i are all (strictly) maximized

K-
on T n(B ) among matroids of the same rank and cardinality. We

K

list some relevant results below.

Proposition 6.16 Let Ml be strictly freer than M Then,

o

1. i(Ml) > i(MZ) and b(Ml) > b(MZ)'

2. a(Ml) > a(Mz) and u(Ml) > u(Mz) with strict inequality if

Ml has no loops.

3. wr(Ml) > wr(MZ)’ Gr(Ml) > wr(MZ)’ Ir(Ml) > Ir(MZ)’ biO(Ml) > biO(MZ)’

).

and boj(Ml) > bOj(M2

4, B(Ml) > B(Mz) with strict inequality if Ml is connected.

Proof. Formulas (6.16.1) - (6.16.3) are easily proved by the above

remarks (see [97]). We prove (6.16.4). This inequality holds
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trivially if K £ 2, and we also note that if M is connected,

n,K-n). Now, let M. be a connected matroid with

then B(M) > 0 = B(B 4

P € Ml'
Case 1. if Ml—p and MZ/p are both connected, we are done

by induction.

Case 2. If M, is separable, then B(Ml) > B(Mz) = 0.

2
Case 3. If Ml/p is separable, then Ml is a parallel connection
of connected matroids Mi and M;. Further, Mz/p is also separable. Hence,
M2 = P(ME,M;) with Mi Zw Mé, M{ ?w ME, and at least one of the

inequalities strict. By (4.8.10) and the induction hypothesis,
= ") R(M" ' "y
B(Ml) B(Ml)F(Ml) > B(MZ)B(MZ) B(Mz).
*
Case 4. If Ml—p is separable, then Mllp is separable,
* *

* *
- _ \ .
Ml >w MZ’ B(Ml) = B(Ml), and B(Mz) B(Mz;. Thus, duality reduces

this case to the previous one.
We end Part I with a discussion of extremal classes. This
concept relates the idea of a T-G recognizable hereditary class and

the theory of (parametric) T-G inequalities.

Definition 6.17 1. Recall that a hereditary class of matroids

H 1is one closed under minors (equivalently, under single-point
deletion and contraction). Any hereditary class can be defined by its
class of excluded minors E where E € E if E ¢ H but every proper
minor of E 1is in H. Conversely, it is clear that any class C

of matroids which contains no proper minors of any of its members

is the class of excluded minors for the hereditary class

H = {M : no minor of M is in C}.
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Since, when célculating T-G group invariants, we forbid deletion
and contraction by loops or isthmuses, we are motivated to define
a T-G hereditary class H' as one which is closed under deletion
and contraction only by nonfactors. The class H' is also defined
by its class E' of T-G excluded minors where M e E' if M ¢ H'
but M-p and M/p are in H' for all nonfactors p € M. Obviously,
every hereditary class is a T-G hereditary class whereas, for example,
{B2} forms a T-G hereditary class which is not an (ordinary)
hereditary class. The next proposition shows how to get the T-G
excluded minors for a hereditary class from its class of (ordinary)
excluded minors. A geometric T-G hereditary class is defined analogously,

where we do not allow deletion or contraction by isthmuses.

2. A hereditary class C of matroids is said to be (T-G) recognizable
if t(Ml) z t(Mz) whenever Ml e C, and M2 ¢ C. Examples
of recognizable classes are boolean algebras, truncated boolean

algebras, and paving matroids (as we saw in (5.15)).

Since, in (3.11), M' 1is transversal while M is not the minor
of a transversal matroid, and since M 1is planar graphic (and hence
graphic, unimodular, and binary), while M' is not, none of the above
classes is recognizable. Further, the matroids in (4.3.2) show that

the class of representable matroids is not recognizable.

3. Let p(M) = (po(M), pl(M),...) ¢ P be a sequence of integer-valued
invariants. We then say that p(M) is a parametrization of M, and

the class of all matroids M is partitioned into parametric families.



A class C of matroids is a parametric (T-G) extremal class
with respect to the parametrization p and a given T-G group

invariant f : M > Z if there is a function g : P > Z such that

(6.17.4) f(M) = g(p(M)) for all Me C, and

(6.17.5) f(M) > g(p(M)) for all M ¢ C.

This situation clearly makes C a T-G recognizable class, and it

gives a sharp lower bound on values of f as well.

Proposition 6.18 Let H be a hereditary class of matroids, and

let E be its class of excluded minors. Further, assume for all

ij ij
Ee E and nonfactors p e E, (E-p) ® B~ ¢ H and (E/p) ® B~ € H.
Then #H 1is also a T-G hereditary class with T~-G excluded minors:
E'=FEuf{EeBY : EeF, i+ 3 >0} In particular, every totally

separable matroid B3 is in H or E.

Similarly, excluded minors for geometric T-G hereditary classes are

direct sums of ordinary excluded minors and boolean algebras.

Proof. It is clear that no member of E' is in #H. On the other

hand, any T-G contraction or deletion of a member E & B of E'
ij ij .

must be of the form (E-p) & B or (E/p) @B where p is a

nonfactor, and these matroids are in H by definition. Thus, all

members of E' are excluded minors.

Conversely, if M ¢ H, then M must have a member of E
as an excluded minor. Decomposing M into its connected direct-sum

factors, we may assume that M = Ml 4 M2 ® ... & Mk and

E = El ® ... 8 Ek" where k > k', and Ei is a minor of Mi for
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all i <k'. For i < k', we may apply (4.12) to find a sequence

of matroids Mq =M,, M%,...,M.l = E, where, for all j < m,, M?+l
i i’ i i i i’ i
equals Mi - pj or Mi/pj with pj a nonfactor of Mi. Similarly,
for i > k', either Mi is a loop or we may find a sequence as
m

above with Mi1 an isthmus. In any case, M has a member of E'

as a T-G minor.

We now give some examples of hereditary classes which we will

later show to be extremal.

Proposition 6.19 1. The class of geometries which are direct sums

of a line and a boolean algebra, BL = B} u {Lm ®B :m=23,1i20)}
forms a geometric hereditary class whose (geometric) excluded

minors are a four-point circuit, C and the direct sum of two

4°

three-point circuits, C3 @ C3.

2. The class T of truncated boolean algebras forms a hereditary

class with the unique excluded minor Bl’l. Its class of T-G excluded

minors is then given by E' = {B1J :1i>0, 3 >0}

3. The class SP of series-parallel networks forms a hereditary class
with excluded minors
LI
E h {Léy M(Kﬁ)}’
where LA is a four-point line, and M(Ké) is the geometry of the

*
complete four-graph (the geometry M of Example (4.5)).

4. The class § of separable matroids forms a T-G hereditary class

1,0, BO,l}.

with excluded minors {B

If {4 is any hereditary class whose excluded minors, E, are
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all connected, then H u S is a T-G hereditary class with T-G

excluded minors E.

5. The class L of matroids with loops is a T-G hereditary class

with T-G excluded minors
E' = {B" : i>0}.

If H is any hereditary class whose excluded minors E are all
loopless, then H u Ll is a T-G hereditary class with T-G excluded

minors

E'={E®B : EekE, i2 0}.

Proof. 1. The reader readily checks that any proper geometric

minor of C4 and C3 ® C3 is in BL. Conversely, if G ¢ BL,

then G must contain (as a subgeometry) a circuit Ci with i 2 4,
or it must contain at least two three-point circuits Cé and C;.
In the former case, contracting points of Ci gives C&’ while, in the
latter case, let r be the maximal rank of S' = Cé u Cg over all
distinct three-point circuits Cé and C; of G. If r =4,

S' = Cé ® Cg; if r =3, S' contains a four-point circuit; and if
r =2, Ge BL.

2. The direct sum of a loop and an isthmus, Bl’l, is not a

0,1 1,0

truncated boolean algebra, while its two minors B and B

both are. If M ¢ T, then M has a circuit C and point p € M-C.

Deleting everything except C and p, and contracting all but one

point of C, we obtain Bl’l as a minor of M.



3. This is proved in [24].

4. Since we are not allowed to delete or contract isthmuses or
loops, if M' 1is a minor of M, then the number of components of

M' is at least as great as M. Thus, S 1is a T-G hereditary class.
Further, (4.12) or (6.5) shows that any connected matroid is either
a loop or has an isthmus as a T-G minor. (Note that an elementary
extension of this argument shows that the class Sk of matroids
with at least k connected components is a T-G hereditary class

with T-G excluded minors {B 7 : i + i < k}.)

It is clear that the union of two T-G hereditary classes is
itself such a class. That E 1is the class of excluded minors for

Hu S follows directly from (4.12).

5. Deletion or contraction by nonfactors never destroys loops. The
reader may supply the rest of the proof by modifying the proof of

(6.18).

Two techniques for obtaining parametric extremal classes are
contained in the following propositions. The first is for when the
T-G invariant is given, and the second allows the class (and function

g) to define the invariant.

Proposition 6.20 A T-G hereditary class C 1is a parametric

extremal class for the parametrizaiton p : M+ P and T-G group
invariant f if there is a function g : P +» Z which satisfies the

three properties below:



1. VWhenever M e C, then £f(M) = g(p(M)).

As an equivalent condition, we have,

1'. 1f Me C 1is totally separable, then f(M) = g(p(M)). 1If
M e C 1is not totally separable, then there exists a nonfactor q € M

such that

gp() = g(p(M-q)) + g(p(M/q)).

2. For all M e M and nonfactors q € M,

g(pM) < g(p(M-@)) + g(pM/q)).

3. Whenever E is a T-G excluded minor for the class C,
then there is some member M of C with the same parameters as E

such that f(E) > £f(M).

Proof. Conditions 1 and 1' are equivalent by induction on the number
of nonfactors since, by hypothesis, f and g o p both obey the

recursion Tl on the class C.

Now, assume we have an invariant £ which obeys conditions 1, 2,
and 3. Condition (6.17.4) is the same as our hypothesis (6.20.1).
To verify (6.17.5) for all matroids M' not in C, we use induction
on the size of M'. Since M' é C, it has a T-G excluded minor E.
If M' = E, then (6.20.3) guarantees that there is a matroid M e C

with p(M) = p(M'), and with £(M') > £(M) = g(p(M)) = g(p(M")).

If M' is not a T-G excluded minor, then there is a nonfactor
q € M' such that either M'-q or M'/q is not in C. Assume the

former (the latter case follows simiiarly). Then,
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f(M') = £f(M'-q) + £(M'/q). Either M'/q is in C or not. If it
is, then f(M'/q) = g(p(M'/q)), and if it is not, then, by induction,
f(M'/q) > g(pM'/q)). 1In any case, £(M'-q) > g(p(M'-q)), and

£ > gp(M-q)) + g(p(M/q))

z g(pM)).

Proposition 6.21 Let C be a T-G hereditary class with E dits class

of T-G excluded minors. Further, assume that there is a parametrization
p:M~>P and a function g : P> Z such that
1. gp®)) < gp(M-q)) + g(p(M/q)) for all M e M and nonfactors
q € M.
Then, there exists a T~G group invariant f for which C is

extremal if and only if the following two properties hold.

2. Whenever M ¢ C 1is not totally separable, there exists a nonfactor
q € M such that
g(p(M) = g(p(M-9)) + g(p(M/q)),
and
3. Whenever E ¢ E is not totally separable, there is a nonfactor
q € E such that

g(p(E)) < g(p(E-q)) + g(p(E/q)).

Under the above conditions, f(M) = z bijcij is a T-G group
i,]

invariant for which C is extremal if and only if

4. c

P RICICE NN S

ij ij
cij > g(P(B )) > B e E.



Proof . The function f : M+ Z is a T-G group invariant by (3.9),

and f(M) = g(p(M)) for all Me C by (6.21.2) and (6.21.4).

Let E be an excluded minor for C. Under the hypothesis of
(6.21.3), there is a nonfactor q such that
g(p(E)) < g(p(E-q)) + g(p(E/q)).
But E-q and E/q are both in C, so that g(p(E-q)) = f(E-q) and
g(p(E/q) = f(E/q). Hence,
£(E) = £(E-q) + f(E/q)
g(p(E-q)) + g(p(E/qQ))

g(p(E)).

[}

A\

Otherwise, E = Bi:l ¢é C so that by our definition of f,

f(E) = S5 > g(p(E)).

For a general M' ¢ C, M' has a T-G excluded minor E and the

proof proceeds as in (6.20). The necessity of (6.21.2) and (6.21.3) for the
existence of f and of (6.21.4) for cij is obvious.

We note that the above propositions can be easily modified to the
geometric case, and to the case when the Tutte-Grothendieck invariant

is maximized on the extremal class. In this latter case, all inequalities are
reversed, and we will refer to the conditions by (6.20.2), etc.

We now state some of the classical T-G inequalities in terms of

parametric extremal classes.

Proposition 6.22 1. Let us parametrize geometries by rank and

cardinality:

p(G) = (x(G), IGl).

r(G)-1

Then, u(G) = |G| - r(G) + 1, and o(G) 2 2 (16l - r(G) + 2), with

equality (for either invariant) on the extremal class BL of direct
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sums of a line and a boolean algebra (see (6.19.1)).

2. When matroids are parametrized by rank and cardinality, we have

[1M)-2
8 (M) _{r(M)_l)

IM]-1
M) < (r(M)—l]

a(M)

IA

r(§)-l{lMl—l}
i=0 .
with equality on the extremal class T of truncated boolean algebras

(see (6.19.2)).

3. When geometries are parametrized by connectedness:
1 if G 1is connected

p(G) =
0 if G 4is separable,

then B(G) 2 p(G) with equality on the extremal class SP u S of
geometries which are either separable or are series-parallel networks

(see (6.19.3), (6.19.4)).

Proof. The proofs for all these are routine calculations using (6.19)
and (6.20). We mention below only a few hints and the original

reference for the theorem.

1. This first appeared in [68]. For any geometry G, G/q is
a geometry of rank r(G)-1 and cardinality at least r(G)-1. Thus,
for example, when q is not an isthmus of G, (6.20.2) follows

from the following set of inequalities:



(3]
u
-

2" L (ken + 2)

L}

g, ((0,K)

1

2™ L (ken + 1) + 2%

ga(n,K-l) + ga(n-l,n-l)

A

8, (r(6-a),[G-a]) + g (r(6/a),[C/a]).

Further, in verifying (6.20.3) for o, we get the following
calculations:

ac, ® BY) = 142" > 62111 - it

and a(c, @ C; @ BY) = 36.2% > g.2i*2 a(L, ® sit?y,

3

2. This result,which first appeared in [27], uses standard identities
on binomial coefficients to verify (6.20.2). The exact formula for

¢ on T is given by (6.15.3a). To verify (6.20.3), note that all

of the above invariants are zero on the class of T-G excluded minors,
E' = {Bij :1i>0, j >0}, whereas the truncated boolean algebra

143

TJ(B has the same parameters as BlJ, and gives a positive

value for each invariant.

3. That B(G) = 0 if and only if G 1is separable first appeared in
[53]. For connected geometries, the fact that B(G) = 1 if and only if
G is a series-parallel network is in [24]. It is obvious that

B(G) = p(G) = 0 for separable matroids,while the fact that B8(G) =1
for connected series-parallel networks follows from (4.8.10) (along

with induction and duality). If G-q is separable for a connected geometry
G, G 1is a series connection and G/q 1is connected, so
p(G) < p(G-q) + p(G/q),

while BMM(K,)) = 8(L,) =2 >1 = 8(G)
for any series—parailel network G with p(G) = 1. M(KA) and L4 are

the T-G excluded minors for SP u S by (6.19.3) and (6.19.4).
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We now generalize (6.22.2) from truncated boolean algebras to the
class N of all nested matroids where the parametrization is, for all

r, by the size of the largest flat of rank r.

Proposition 6.23 For the parametrization

p(M) = (n;ao;al’azt- .o ;an)

where n = r(M) and, for all r,

a; = max(lFl : F is a flat of rank r),
0

I o~

i

then, u(M) = 0 if a, > 0, and, in general,

n

®n _ %n- _ n§3 ®n-r-1 z #n||®n-1 fn-r+l
n-1 n-1 - n-r-1§ . i i, (77 1
r=1 2

(M) < g(n;ao,...,a ) =

where Ei = az+a3+...+ar. Further, equality holds precisely on the

class N u L of nested matroids and matroids with loops.
Proof. We verify the three conditions of (6.207).

1. u(M) = 0 if and only if M has a loop (a0 > 0), so we may

assume that ay = 0. Further, al does not contribute to the formula
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for g and, on the other hand, u(M) = u(M), where, for nested
matroids, p(ﬁ) = (n;O,l,az,...,an). Therefore, we may assume that
M 1is a geometry. We use induction on the size of M. Clearly, if

M =1, u =1 = g(1;0,1).

For a nested geometry of rank two, M = Lm for some m, while

a
p(L) = (2;0,1,m-1). Thus, wu(l ) =m-1 = [12} = g(p(M).

Assume u(M) = g(p(M)) for all matroids of size K, and let G

have size K+1.

If G contains an isthmus p, we note that, whether G is

nested or not, u(G-p) = u(G). Further, if r(G) = n+l, then

a = 1 since G-p 1is a hyperplane. We must verify that
Bl = g(n+1;0,1,...,an,l) = g(n;O,l,...,an) =g
e - [an+l] _ [an ] _ n§2[an—r] z 1{{%n 3 h-rt+2
n+1 n n-1 =1 n-r ilzl il 12 i
+...+ =
il ir r
[an ] _ [an—l](l} _ 23( n—r'—l] z [1] 2 Sh-r'+1
' Ry IR '
n-1 n-1 {1 12pln-r -1 1izl 1 i ir'
v' P R, |
i1+"'+1r' r

"
0Q

If G does not contain an isthmus, then a > 1 where

n = r(G). Let q be a point in free position.



By (6.6.4c) and (6.6.4d),

p(G-q) (n;O,l,...,an_l,an-l) =p', and

p(G/q)

(n-1;0,1,.. +a -1) = p" .

©%h-27%0-1
Then, g(p) - g(p') =

a a -1 n-3{a a a ~1 a

n _ n _ Z n-r-1 z nj _ n n-1
n-1 n-1 r n-r-1 i i i i tee

=1 l%l 1 1 2

[}

- - - il
{an l] 5 [an—Z] ) nis[an—r-l] Z § {an—ll an_1
_ _ o . " s
n-2 n-2 | n-r-1 i -14i.=irs1 |i=ol * il i

r=2 1 o= i=
1t
¥l+1222
st i E o
1l+...+1r_1 r-1

g(pll) R

Note that a similar calculation shows that for all i 2

g(n;O,l,...,ai,ai+l,. i+l
(6.23.1) + e(n-1;0,1,...,a, .,a.+a, . ~1
i-174

417 %4000

which also follows from the fact that if gop obeys the T-G recursion

D g(n:O,l,...,ai,a, -1,..
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)
')!

Tl for some nonfactor, it obeys Tl for every nonfactor, and we may

apply the formulas in (6.6.4) for q ¢ Fi+1 = Bi+1 - Bi'

qn-r+1

P
1

The excluded minor Mi (see (6.6.5)) has parameters (i;0,1,...,1,2,1)

and is a nontrivial weak-map image of the nested matroid Ni with the
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same parameters (where the weak map is the identity on the cyclic
flat Fi—l of N and sends all the points in free position to the

complementary flat Fi’ of Mi)' Since the T-G excluded minor class

1
of Nul is {Mi =i 22} by (6.6.5) and (6.19.5), we have verified

(6.20.3).

It remains to check (6.20.2). To prove this, let q be a

nonfactor of M. Denote p(M-q) by (n;ac'),a1

s++-5a'), and p(M/q)

by (n-l;a",...,a;_l).lt is a routine matter to check (6.20.2) in

the case when q is in a multiple point (so that p(M/q) = 0 and

p(M-q) < p(M)). Let fi’ f;, and f;, respectively, denote the

size of the largest closed set of rank i in M, M-q, and M/q, respectively.
Then fi = fi or fi -~ 1, and equals fi -1 4if and only if

q € f;:a- for every flat Fi € M with rank i and size fi'

Similarly, for i < n, f; > fi since if q ¢ Fi’ then ?;Ga - q

is a flat in M/q of rank i and size at least fi’ while if

q e Fy, then for any p ¢ F, f;a; - q is a flat in M/q of

N . " 3 -
rank i and size zfi. An upper bound for fi is fi+1 1, and
this is achieved whenever q € Fi+l_q for some flat
. . . : [
Fi+1 € M with rank i+l and size fi+l' Hence, if fi fi 1,
. . " = _ v " = _
then, in addition, fi-l fi 1. Further, fn fn_1 fn 1.
Let h(n;fo,fl,...,fn) equal g(n;fo,fl—fo,...,fn—fn_l), and
assume that for j = 1,3,5,...,2mtl, fi. = fi -1, and fi,—l = fi_-l;
b k|
i = = ' = -
while for j = 2,4,...,2m, fi, fi , and fi 1 f, -1 1. (Thus,

. 1,
J J k| 3
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1] = - 2 v = : L -
aij aij 1>0forodd j, aij aij+l for even j, and a; a

otherwise. Further, il > 2.)

Multiple applications of (6.23.1) then yield:

. = '
h(n,fo,f ..,f ) h(n; f 1,...,fn)

1
(6.23.2)

2mtl 2m

+h —he A ...+ (—l)th + ...

where, for all j,

(6.23.3) hj h(n-1; fo, l""’fi,—Z’fij-l’fi,+l_1""’fn—l)'
Let
(6.23.4) by = hL3Eg, pee sy )
where Ei-l = fi—l for all 1i : iZk—l <ic< iZk-l’
or i 2 12m+l’ and
%i—l = fi—l otherwise.
It is easy to show that h2m+2 > h(n—l;fs,f;,...,f;_l), since
E;—l = En—l’ and f; > %i for all 1.
Therefore, using (6.23.2) and (6.23.4), we get
h(n;fo,fl,...,fn) - h(n,fo,f' . ) - h(n-1; f" £, .,f;
2hy = hy +hy =Rt hy by,

and (6.20.5) will follow from the nonnegativity of this alternating

sum.

-h, +h

-1

1



This last inequality is left to the reader who may verify

it by a term-by-term comparison.

Corollary 6.24. 1. Let M be a loopless matroid of size K and
rank n. Further, for all r > 0, assume that M has a flat of

size at least fr' Then,

p(M) < g(n;0,f. ,f -f f -

A N N T

1)
with equality if and only if M 1is the nested matroid

N(O, f ,E,-f ).

NTTRYE 0= FIPTOROIS < 3

-1

2. For matroids parameterized as in (6.23),

B (M) 0 if a, >0 or a = 1 (n>1),

0

and otherwise

B(M) < g(n;O,al,aZ,...,ai,...,an—l).

* *
The extremal class is N u L u L where L is the class of all

matroids with an isthmus.

3. For matroids parameterized as in (6.23),

a(M) < g, + ...+ g,

with equality on the extremal class N v L where, for all i,

g; = 8(is0,a,...,3; j,a4a, , + ..o +a).

Proof. 1. When n and K=a, 6 + ... +a =b. + ... +b are
—_— 1 n 1 n

fixed, then g(n;0,a .,an) > g(n;0,b .,bn) where, for all i,

10 100

a, + ... + a; < bo + ... + bi with strict inequality for at least
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one 1i. (This is a consequence of the fact that for the two respective

nested matroids, Na and Nb’ there is a nontrivial rank-preserving

weak map from Na to Nb.)

2. Amatroid M has an isthmus if and only if in p(M), a = 1. For
any such matroid (of rank n > 1), it is separable and B(M) = O.
Otherwise, an > 1, and we use (6.15.3.b) and (6.16) to obtain:
B(M) < uy(M-p) for any p in M with strict inequality unless p
is a point in free position. The rest of the proof follows in a
straightforward way,noting that if p is in free position, M is
nested with parameters (ao,...,an) if and only if M-p is nested

with parameters (ao,...,an—l).

3. This is an easy application of (6.15.3.a).

Exercises 6.25 1. Imitate Corollary (6.24) to get maximal values and
extremal classes of matroids for the independence number Ir

and the Whitney number W

2. Develop a simpler formula for the upper bound of uw(M) when,
for i 21, all a; = 1, except i =n and i = r. (By (6.24.1),
a bound will then be obtained for all matroids of rank n, cardinality

K, and with a flat Fr of rank r and size at least k.)
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Research Problems 6.26 1. Find combinatorial proofs (i.e.,

bijections or injections among two appropriate families of

subsets) for the equalities and inequalities of (6.15).

2. Develop an extremal theory for minimizing T-G invariants on
connected matroids. In particular, try to extend, in the connected
case, the idea of an extremal class to include the matroids on which

the bounds of [34] are sharp.

3. The most extensive results thus far obtained for parameterized
lower bounds for T-G invariants are found in [15]. 1Imn particular,
Bjdrner obtains the minimum for u(M) when M is parameterized by
rank, cardinality, and size of smallest circuit. This result can be
thought of as dual to the upper bound to be calculated in (6.25.2).
Can (6.23) be dualized in a similar manner to obtain lower bounds for

a finer parametrization (e.g., by the minimum size, cj, of a
cycle of nullity j)?

4. In [112], Oxley characterizes the classes of matroids on which
B equals two, three, and four respectively. Several parametrizations

are implicit in his paper.

For example, parametrize a loopless,connected matroid M by
the invariant p(M), the maximum positive intepger 2 for which
x(M;2) < 0. Then, for p(M) <5, B(M) = p(M)-1, and Oxley's results
give the extremal matroids for these values as well as a class of
matroids ({Lm+2}) for which g(M) = p(M)-1 = m. Is this inequality
true in general? If so, what are the extremal matroids? Similar

questions may be asked for a parametrization in terms of connectivity:
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What is the sharp lower bound for 8(M) among all matroids of

connectivity n (with at least 2n-2 points)? Oxley conjectures that

2n-4

g(n) = [ n—2] and shows that g(n) 2 2n-2.



10.

11.

12.

13.

14.

Bibliography

Arrowsmith, D. K. and Jaeger, F., "On the enumeration of
chains in regular chain-groups " (preprint, 1980).

Baclawski, K., "Whitney numbers of geometric lattices,"
Advances in Math. 16 (1975), 125-138.

, ""The M8bius algebra as a Grothendieck ring,"

J. of Algebra 57 (1979), 167-179.

Barlotti, A., "Some topics in finite geometrical structures,"
Institute of Statistics Mimeo Series No. 439, Department
of Statistics, University of North Carolina, Chapel Hill,
N. C., 1965.

, '"Bounds for k-caps in PG(r,q) wuseful in the

theory of error correcting codes,'" Institute of Statistics
Yy g

Mimeo Series No. 484.2, Department of Statistics, University
of North Carolina, Chapel Hill, N. C., 1966.

"Results and problems in Galois geometry,"

Colloquium on Combinatorics and its Applications, June,

1978, Colorado State University.

Bessinger, J. S., '"On external activity and inversion in trees "

(preprint).

Biggs, N., Algebraic Graph Theory, Cambridge University Press,
1974.

, "Resonance and reconstruction,"'" Proc. Seventh

British Combinatorial Conference, Cambridge U. Press, 1979,

1-21.

Birkhoff, G. D.,"A Determinant formula for the number of ways
of coloring a map," Ann. of Math. (2) 14 (1913), 42-46.

Birkhoff, G. D. and Lewis, D. C., "Chromatic polynomials,"
Trans. Amer. Math. Soc. 60 (1946), 355-451.

Bixby, R. E., "A omposition for matroids," J. Comb. Th. (B)
18 (1975), 59-73.

Bjorner, A., "On the homology of geometric lattices," (preprint:
1977 No. 9, Matematiska Institutionen Stockholms Universitet,
Stockholm, Sweden).

, "Homology of matroids " (preprint, to appear

Combinatorial Geometries, H. Crapo, G.-C. Rota, N. White

eds.).



15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

265

Bjdrner, A., "Some matroid inequalities,” Disc. Math. 31 (1980),
101-103.

Bland, R. G. and Las Vergnas, M., "Orientability of matroids,"
J. Comb. Th. (B) 24 (1978), 94-123.

Bondy, J. A. and Hemminger, R. L., "Graph reconmstruction -- A
survey,' Research Report CORR 76-49, Dept. of Comb. and Opt.,
University of Waterloo, Waterloo, Ontario, Canada, 1976.

Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications,
Macmillan, London; American Elsevier, New York, 1976.

Brini, A., "A class of rank-invariants for perfect matroid
designs," Europ. J. Comb. 1 (1980), 33-38.

Brooks, R. L., "On colouring the nodes of a network,' Proc.
Cambridge Phil. Soc. 37 (1941), 194-197.

Brouwer, A. E. and Schriver, A., "The blocking number of an
affine space,”" J. Comb. Th. (A) 24 (1978), 251-253.

Bruen, A. A. and de Resmini, M., "Blocking sets in affine planes"
(preprint, 1981).

Bruen, A. A. and Thas, J. A., "Blocking sets,'" Geom. Dedic. 6
(1977), 193-203.

Brylawski, T., "A Combinatorial model for series-parallel
networks," Transactions of the AMS, 154 (1971), 1-22.

, "Some properties of basic families of subsets,"
Disc. Math. 6 (1973), 333-341.

, "The Tutte-Grothendieck ring," Algebra Universalis
2 (1972), 375-388.

, "A Decomposition for combinatorial geometries,"

Transactions of the AMS, 171 (1972), 235-282.

, "Reconstructing combinatorial geoemetries," Graphs

and Combinatorics, Springer-Verlag, Lecture Notes in

Mathematics 406 (1974), 226-235.

, "Modular constructions for combinatorial geometries,
Transactions of AMS, 203 (1975), 1-44.

, '"On the nonreconstructibility of combinatorial
geometries," Journal of Comb. Theory (B), 19 (1975), 72-76.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Brylawski, T., "An Affine representation for transversal
geometries," Studies in Applied Mathematics, 54 (1975),
143-160.

, "A Combinatorial perspective on the Radon

convexity theorem) Geometriae Dedicata, 5 (1976), 459-466.

, "A Determinantal identity for resistive networks,"

SIAM J. Appl. Math., 32 (1977), 443-449.

, "Connected matroids with smallest Whitney numbers,"
Discrete Math. 18 (1977), 243-252.

» "The Broken-circuit complex," Transactions of AMS,

234 (1977), 417-433.

, "Geometrie combinatorie e Loro applicazioni (1977).
"Funzioni di Mobius'" (1977).
"Teoria dei Codici e matroidi' (1979).
"Matroidi coordinabili' (1981).
University of Rome Lecture Series.

"Intersection theory for embeddings of matroids

into unlform geometries," Studies in Applied Mathematics 61

(1979), 211-244.

, ""The Affine dimension of the space of intersection

matrices," Rendiconti di Mathematics 13 (1980), 59-68.

, "Intersection theory for graphs," J. Comb.

Th. (B) 30 (1981), 233-246.

, "Hyperplane reconstruction of the Tutte polynomial

of a geometric lattice," Discrete Math. 35 (1981), 25-38.

Brylawski, T. and Kelly, D., '"Matroids and combinatorial
geometries,"” Studies in Combinatorics, G.-C. Rota, ed., Math.
Association of America, 1978.

, Matroids and Combinatorial Geometries, Carolina
Lecture Series Volumn 8, Chapel Hill, N. C., 1980.

Brylawski, T., Lo Re, P. M., Mazzocca, F., and Olanda, D.,
"Alcune applicazioni della Teoria dell' intersezione alle
geometrie di Galois," Ricerche di Matematica 29 (1980),
65-84.

Brylawski, T. and Lucas, T. D., '"Uniquely representable combi-
natorial geometries,' Proceedings of the Colloquio Internazionale
sul tema Teorie Combinatorie, Rome, 1973, Atti Dei Convegni
Lincei 17, Tomo I (1976), 83-104.




45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

2 (1967), 4D6-417.

19 (1968), 595-607.

267

Brylawski, T. and Oxley, J., "The Broken-circuit complex: its
structure and factorizations," European J. Combinatorics 2
(1981), 107-121.

, "Several identities for the characteristic poly-

nomial of a combinatorial geometry," Discrete Math. 31 (1980),

161-170.

Cardy, S., "The Proof of and generalisations to a conjecture
by Baker and Essam," Discrete Math. 4 (1973), 101-122.

Cordovil, R., "Contributions 2 la théorie des géométries
combinatories," Thesis, 1'Université Pierre et Marie Curie,

Paris, France.

, "Sur 1l'evaluation t(M;2,0) du polynome de Tutte

d'un matroide et une conjecture de B. Griinbaum relative aux

arrangements de droites du plan " (preprint, 1980).

Cordovil, R., Las Vergnas, M., and Mandel, A., "Euler's
relation, Msbius functions, and matroid identities " (preprint,
1980).

Cossu, A., "Su alcune propretd dei {k,n}-archi di un piano
proiettivo sopra un corpo finito," Rend. di Mat. (5), 20
(1961), 271-277.

Crapo, H. H., "The MSbius function of a lattice," J. Comb. Th.
1 (1966), 126-131.

, "A Higher invariant for matroids," J. Comb. Th.

, "Mdbius inversion in lattices," Archiv. der Math.

, "The Joining of exchange geometries," J. Math.

Mech. 17 (1968), 837-852.

, "The Tutte polynomial," Aequationes Math. 3 (1969),

211-229.

, "Chromatic polynomials for a join of graphs,"

Colloquia Mathematica Societatis J4nos Bolyai, Combinatorial

Theory and its Applications, Balatonfiired (Hungary), 1969,
239-245.

, "Erecting geometries,'" Proceedings of 2nd Chapel

Hill Conference on Combinatorial Math. (1970), 74-99.

, "Constructions in combinatorial geometries,"

(N.S.F. Advanced Science Seminar in Combinatorial Theory)

(Notes, Bowdoin College), 1971).



60.

61.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Crapo, H. H. and Rota, G.-C., "On the Foundations of
Combinatorial Theory: Combinatorial Geometries
(preliminary edition), M.I.T. Press, 1970.

d'Antona, 0. and Kung, J. P. S., "Coherent orientations and
series-parallel networks,' Disc. Math. 32 (1980), 95-98.

Deza, M., "On perfect matroid designs," Proc. Kyoto Conference,
1977, 98-108.

Deza, M. and Singi, N. M., "Some properties of perfect matroid
designs," Ann. Disc. Math. 6 (1980).

Dirac, G. A., "A roperty of 4-chromatic graphs and some remarks
on critical graphs," J. London Math. Soc. 27 (1952), 85-92.

Dowling, T. A., "Codes, packings and the critical problem," Atti
del Convegno di Geometria Combinatoria e sue Applicazioni
(Perugia, 1971), 210-224.

, "A Class of geometric lattices based on finite
groups,'" J. Comb. Th. 13, (1973), 61-87.

, "A g-analog of the partition lattice," A Survey

of Combinatorial Theory, North Holland (1973), 101-115.

Dowling, T. A. and Wilson, R. M., "The Slimmest geometric
lattices," Trans. Amer. Math. Soc. 196 (1974), 203-215.

Edmonds, J. and Fulkerson, D. R., "Transversals and matroid
partition," J. Res. Nat. Bur. Stand. 69B (1965), 147-153.

Edmonds, J., Murty, U. S. R., and Young, P., "Equicardinal
matroids and matroid designs,'" Combinatorial Mathematics
and its Applications, Chapel Hill, N. C., (1970), 498-582.

Essam, J. W., "Graph theory and statistical physics,'" Discrete
Math. 1 (1971), 83-112.

Goldman, J. and Rota, G.-C., ''The Number of subspaces of a
vector space,' Recent Progress in Combinatorics, Academic
Press, New York, 1969, 75-83.

Greene, C., "An Inequality for the Mobius function of a geometric
lattice," Proc. Conf. on M&bius Algebras (Waterloo), 1971;
also: Studies in Appl. Math. 54 (1975), 71-74.

., "On the Mtbius algebra of a partially ordered set,"
Advances in Math. 10 (1973), 177-187.

"Weight enumeration and the geometry of linear
codes," Studies in Appl. Math. 55 (1976), 119-128.

, "Acyclic orientations,” (Notes), Higher Combinatorics,
M. Aigner, ed., D. Reidel, Dordrecht (1977), 65-68.




77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

269

Greene, C. and Zaslavsky, T., "On the interpretation of Whitney
numbers through arrangements of hyperplanes, zonotopes,
non-Radon partitions, and acyclic orientations of graphs
(preprint, 1980).

"

Greenwell, D. L. and Hemminger, R. L., "Reconstructing graphs,"

The Many Facets of Graph Theory, Springer-Verlag, Berlin,
1969, 91-114.

Hardy, G. H., Littlewood, J. E., and Pblya, G., Inequalities,
Cambridge U. Press, 1934.

Heron, A. P., '"Matroid polynomials," Combinatorics (Institute
of Math. & Appl.) D. J. A. Welsh and D. R. Woodall, eds.,
164-203.

Hsieh, W. N. and Kleitman, D. J., "Normalized matching in direct
products of partial orders," Studies in Applied Math. 52 (1973),
285-289.

, "Flows and generalized coloring theorems in

graphs,”" J. Comb. Th. (B) 26 (1979), 205-216.

, "A Constructive approach to the critical problem

‘(to appear: Europ. J. Combinatorics, 1981).

Kahn, J. and Kung, J. P. S., "Varieties and universal models in
the theory of combinatorial geometries," Bulletin of the AMS
3 (1980), 857-858.

Kelly, D. G. and Rota, G.-C., "Some problems in combinatorial
geometry,' A Survey of Combinatorial Theory, North Holland,
1973, 309-313.

Knuth, D. E., "The Asymptotic number of geometries," J. Comb.
Th. (A) 17 (1974), 398-401.

Las Vergnas, M., '"Matroids orientables," C. R. Acad. Sci. (Paris),
280A (1975), 61-64.

, "Extensions normales d'un matroide, polynéme de

Tutte d'un morphisme," C. R. Acad. Sci. (Paris), 280 (1975),

1479-1482.

, "Acyclic and totally cyclic orientations of

combinatorial geometries," Disc. Math., 20 (1977), 51-61.

, "Sur les activités des orientations d'une geometrie
combinatoire," Colloque Mathématiques Discretes: Codes et
Hypergraphes, Bruxelles, 1978, 293-300.

, "Eulerian circuits of 4-valent graphs imbedded

in surfaces,”" Colloquia Mathematica Societatis Jédnos Bolyai

25, Algebraic Methods in Graph Theory, Szeged (Hungary), 1978,
451-477.




92.  Las Vergnas, M., "On Eulerian partitions of graphs," Graph Theory
and Combinatorics, R. J. Wilson (ed.), Research Notes in Math.
34, Pitman Advanced Publishing Program, 1979.

93. , "On the Tutte polynomial of a morphism of matroids,"
Proc. Joint Canada-France Combinatorial Colloquium, Montréal
1979, Annals Discrete Math. 8 (1980), 7-20.

94. Lindner, C. C. and Rosa, A., "Steiner quadruple systems -- a
survey,’ Discrete Math. 22:147-181 (1978).

95. Lindstrom, B., "On the chromatic number of regular matroids,"
J. Comb. Theory (B) 24 (1978), 367-369.

96. Lucas, T. D., "Properties of rank preserving weak maps," A.M.S.
Bull. 80 (1974), 127-131.

97. , '""Weak maps of combinatorial geometries,' Trans.
Am. Math. Soc. 206 (1975),.247—279.

98. Macwilliams, F. J., "A Theorem on the distribution of weights
in a systematic code," Bell System Tech. J. 42 (1963), 79-94.

99. Martin, P., "Enumérations eulériennes dans les multigraphes et
invariants de Tutte-Grothendieck,'" Thesis, Grenoble, 1977.

100. , "Remarkable valuation of the dichromatic polynomial
of planar multigraphs,”" J. Comb. Th. (B) 24 (1978), 318-324.
101. Mason, J., 'Matroids: unimodal conjectures and Motzkin's
theorem," Combinatorics (Institute of Math. & Appl.)
(D. J. A. Welsh and D. R. Woodall, eds., 1972), 207-221.
102. , "Matroids as the study of geometrical configurationms,"
Higher Combinatorics, M. Aigner, ed., D. Reidel, Dordrecht,
Holland, 1977, 133-176.

103. Minty, G. J., '"On the axiomatic foundations of the theories of
directed linear graphs, electrical networks and network
programming,’ Journ. Math. Mech. 15 (1966), 485-520.

104. Mullin, R. C. and Stanton, R. G., "A Covering problem in binary
spaces of finite dimension," Graph Theory and Related Topics
(J. A. Bondy and U.S.R. Murty, eds.) Academic Press, New York,
1979.

105 Murty, U.S.R., "Equicardinal matroids," J. Comb. Th. 11 (1971),
120-126.

106. Nash-Williams, C. St. J.A., "An Application of matroids to graph
theory," Theory of Graphs International Symposium (Rome),
Dunod (Paris) (1966), 263-265.




107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

271

Oxley, J. G., "Colouring, packing and the critical problem,"
Quart. J. Math. Oxford, (2), 29, 11-22.

, "Cocircuit coverings and packings for binary

matroids," Math. Proc. Cambridge Philos. Soc. 83 (1978),

347-351.

, '"'On cographic regular matroids,'" Discrete Math.

25 (1979), 89-90.

, "A Generalization of a covering problem of Mullin
and Stanton for matroids," Combinatorial Mathematics VI.
Edited by A. F. Horadam and W. D. Wallis, Lecture Notes in
Mathematics Vol. 748, Springer-Verlag, Berlin, Heidelberg,
New York, 1979, 92-97.

, ""On a covering problem of Mullin and Stanton for

binary matroids," Aequationes Math. 19 (1979), 118, and

20 (1980), 104-112.

, "On Crapo's beta invariant for matroids,'" Studies

in Appl. Math. (to appear).

, "On a matroid identity " (preprint, 1981).

Oxley, J. G., Prendergast, K. and Row, D. H., '"Matroids whose

ground sets are domains of functions " (to appear, J. Austral.
Math. Soc. (A).)

Oxley, J. G. and Welsh, D. J. A., "On some percolation results
of J. M. Hammersley," J. Appl. Probability 16 (1979), 526-540.

, and ,- "The Tutte polynomial and perco-

lation," Graph Theory and Related Topics. Edited by
J. A. Bondy and U.S.R. Murty, Academic Press, New York,
San Francisco, London, 1979, 329-339.

Read, R. C., "An Introduction to chromatic polynomials," J.
Comb. Th., 4 (1968), 52-71.

Rota, G.-C., "On the foundations of combinatorial theory I,"
Z. Wahrsch, 2 (1964), 340-368.

, '""Combinatorial analysis as a theory," Hedrick
Lectures, Math. Assoc. of Amer., Summer Meeting, Toronto, 1967.

, "Combinatorial theory, old and new," Int. Cong.

Math. (Nice) (1970) 3, 229-233.



272

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

28 (1980), 305-359.

130-135.

Scafati Tallini, M., "{k,n}-archi di un piano grafico finito,
con particolare riguardo a quelli con due caratteri, Nota I,
II," Rend. Acc. Naz. Lincei 40 (8) (1966), 812-818, 1020-1025.

, "Calotte di tipo (m,n) in uno spazio di Galois

S ," Rend.Acc. Naz. Lincei 53(8) (1973), 71-81.

r,q

Segre, B., Lectures on Modern Geometry, Edizioni Creomonese,
Roma, 1961.

Seymour, P. D., "On Tutte's extension of the four-colour problem "

(preprint, 1979).

"Decomposition of regular matroids," J. Comb. Th. (B)

, ""Nowhere-zero 6-flows," J. Comb. Th. (B) 30 (1981),

Seymour, P. D. and Welsh, D. J. A., "Combinatorial applications
of an inequality from statistical mechanics,'" Math. Proc.
Cambridge Phil. Soc. 77 (1975), 485-497.

Shepherd, G. C., "Combinatorial properties of associated
zonotopes,' Can. J. Math. 26 (1974), 302-321.

Smith, C. A. B., "Electric currents in regular matroids,"
Combinatorics (Institute of Math. & Appl.) (D. J. A. Welsh
& D. R. Woodall, eds., 1972), 262-285.

, "Patroids," J. Comb. Th. 16 (1974), 64-76.

Stanley, R., "Modular elements of geometric lattices," Algebra
Universalis, 1 (1971), 214-217.

, "Supersolvable semimodular lattices," Proc.

Conference on Mobius Algebras, University of Waterloo,

1971, pp. 80-142.

, "Supersolvable lattices," Alg. Universalis 2

(1972), 197-217.

, "Acyclic orientations of graphs," Disc. Math. 5

(1974), 171-178.

Szekeres, G. and Wilf, H., "An Inequality for the chromatic
number of a graph,'" J. Comb. Th. 4 (1968), 1-3.

Tallini, G., "Problemi e risultati sulle geometrie di Galois,"

Rel. N. 30, 1lst. di Mat. dell' Univ. di Napoli (1973).



137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

90 (1959), 527-552.

69B (1965), 1-48.

(1967), 301-320.

(1974), 168-175.

273

Tutte, W. T., "A Ring in graph theoryv," Proc. Cambridge Phil
Soc. 43 (1947), 26-40.

, "A Contribution to the theory of chromatic

polynomials," Canad. J. Math. 6 (1954), 80-91.

, "A Class of Abelian groups," Canad. J. Math. 8

(1956), 13-28.

, "Matroids and graphs," Trans. Amer. Math. Soc.

, "Lectures on matroids," J. Res. Nat. Bur. Stand.

, "On the algebraic theory of graph coloring,"
J. Comb. Th. 1 (1966), 15-50.

, "On dichromatic polynomials,'" J. Comb. Th. 2

, "Projective geometry and the 4-color problem,"

Recent Progress in Combinatorics (W. T. Tutte, ed.)

Academic Press 1969, 199-207.

, "Codichromatic graphs," J. Comb. Th. 16

, "All the king's men (a guide to reconstruction),"

Graph Theory and Related Topics, Academic Press, 1979, 15-33.

Van Lint, J. H., Coding Theory, Springer Lecture Notes, 201,
(1971).

Walton, P. N. and Welsh, D. J. A., "On the chromatic number
of binary matroids,'" Mathematika 27 (1980), 1-9.

Welsh, D. J. A., "Euler and bipartite matroids," J. Comb. Th.
6 (1969), 375-377.

, "Combinatorial problems in matroid theory,"

Combinatorial Mathematics and its Applications, Academic

Press, (1971), 291-307.

, Matroid Theory, Academic Press, London, 1976.

, "Percolation and related topoics,'" Science Progress

64 (1977).

, "Colouring problems and matroids,'" Proc. Seventh

British Combinatorial Conference, Cambridge U. Press (1979),
229-257.




154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Welsh, D. J. A., "Colourings, flows and projective geometry,"
Nieuw Archief voor Wiskunde (3), 28 (1980), 159-176.

White, N., "The Critical problem and coding theory," Research
Paper, SPS-66 Vol. III, Section 331, Jet Propulsion Laboratory,
Pasadena, CA. (1972).

Whitney, H., "A Logical expansion in mathematics," Bull. Amer.
Math. Soc. 38 (1932), 572-579.

, "The Coloring of graphs," Annals of Math. 33
(1932), 688-718.

, "2-isomorphic graphs," Amer. J. Math. 55 (1933),
245-254.

, "On the abstract properties of linear dependence,’
Amer. J. Math. 57 (1935), 509-533.

Wilf, H. S., "Which polynomials are chromatic?'" Atti dei
Convegni Lincei 17, Tomo 1 (1976), 247-256.

Winder, R. 0., "Partitions of n-space by hyperplanes," SIAM
J. Appl. Math. 14 (1966), 811-818.

Young, P. and Edmonds, J., "Matroid designs," J. Res. Nat. Bur.
Stan. 72B (1972), 15-44.

Zaslavsky, T., "Facing up to arrangements: face count formulas
for partitions of space by hyperplanes,'" Memoirs Amer. Math.
Soc. 154 (1975).

, "Counting faces of cut-up spaces,' Bull. Amer.
Math. Soc. 81 (1975), 916-918.

, "Maximal dissections of a simplex," J. Comb. Th.
(A) 20 (1976), 244-257.

, ""The M6bius function and the characteristic poly-
nomial" (preprint: chapter for Combinatorial Geometries,
H. Crapo, G.-C. Rota, and N. White eds.).

o , "Arrangements of hyperplanes; matroids and graphs,"
Proc. Tenth S.E. Conf. on Combinatorics, Graph Theory and
Computing (Boca Raton, 1979), Vol. II, 895-911, Utilitas

Math. Publ. Co., Winnipeg, Man., 1979.

, "The Geometry of root systems and signed graphs,"
Amer. Math. Monthly, 88 (1981), 88-105.




169.
170.
171.
172.

173.

174.

175.

275

Zaslavsky, T., "Signed graphs " (preprint, 1980).
, "Orientation of signed graphs " (preprint, 1980).
, "Signed graph coloring " (preprint, 1980).
, "Chromatic invariants of signed graphs " (preprint, 1980).

"Bicircular geometry and the lattice of forest of a

graph " (preprint, 1980).

, "The slimmest arrangements of hyperplanes: 1I.

Geometric lattices and projective arrangements " (preprint, 1980).

"The slimmest arrangements of hyperplanes: II.

Basepointed geometric lattices and Euclidean arrangements

(preprint, 1980).



CENTRO INTERNAZIONALE MATEMATICO ESTIVO

(CeI.M.E.)

ON 3-CONNECTED MATROIDS AND GRAPHS

JAMES G. OXLEY



ON 3-CONNECTED MATROIDS AND GRAPHS

James G. Oxley
University of North Carolina, Chapel Hill, USA
and
Australian National University, Canberra, Australia

Introduction

This expository paper will be concerned with Tutte's notion of n-
connectedness for matroids. In particular, we shall show how various results

for 3-connected graphs can be extended to matroids.

The terminology used here for matroids and graphs will in general fol-
low Welsh [19] and Bondy and Murty [1] respectively. In particular, if T
is a subset of a matroid M, then rkT will denote the rank of T, while
M\T and M/T will denote respectively the deletion and contraction of T
from M. The uniform matroid of rank r on a set of k elements will be
denoted Ur,k' If G 1is a graph and n 1is a positive integer, G will be

called n-connected if one needs to delete at least n vertices from G in



order to obtain a disconnected or single-vertex graph. Motivated by this
graph-theoretic concept, Tutte [17,18] introduced the following definition
of n-connectedness for matroids. If M is a matroid having ground set
E(M) and k 1is a positive integer, M 1is said to be k-separated if there

is a subset T of E(M) such that |T] > k, |EM\T! > k and
rkT + rk(E(M)\T) - rkM =k -1 .

If n is a positive integer, the matroid M is n-connected provided there
is no k less than n for which M 1is k-separated.

The notions of n-connectedness of a graph G and n-connectedness of
the corresponding cycle matroid M(G) do not, in general, coincide. How-

ever,it is straightforward to check that

(1) for n=2 agnd n =3, if G <s a simple graph having at least four

vertices, then G is n-connected if and only if M(G) is n-connected.

For larger values of n, the precise relationship between the graph and
matroid-theoretic notions of n-connectedness is discussed in [3] and [12].
The matroid concept of n-connectedness generalizes the well-known idea
of non-separability or connectivity for matroids. In fact, a matroid is
2-connected if and only if it is non-separable. A further appealing property

of this concept is that
(2) a matroid is n-connected if and only if its dual is n-connected.

In [15], Seymour has characterized 3-connected matroids in terms of
a decomposition operation which is closely related to Brylawski's operation
of parallel connection of matroids [2]. For i = 1,2, let Mi be a matroid
on a set Si where ISi‘ > 3 and suppose that S1 n S2 = {p} where p is
neither a loop nor a coloop of M, or M,. Then the 2-sum of M, and Hz

1 2 1

is the matroid on the set S1 u 52 having as its collection of circuits all
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circuits of H1 not containing p, all circuits of M2 not containing p
and all sets of the form (Cl\p) u (Cz\p) where Ci is a circuit of Mi

containing p.

(3) PROPOSITION [15, (2.10)(b)]. A matroid is 3-comnected if and only if

it is non-separable and cannot be obtained as a 2-sum of two matroids.

One very important class of 3-connected matroids is the class of cycle
matroids of wheels. Suppose that m > 3. The wheel wm of order m is a
graph having m + 1 vertices, m of which lie on a cycle (the rim); the
remaining vertex is joined by a single edge (a spoke) to each of the vertices
of the rim. Evidently wm is simple and 3-connected. Hence, by (1),

M(wm) is a 3-connected matroid. However, whenever an edge is deleted from
wm the resulting graph has a vertex of degree two and so is not 3-connected.
It follows on applying (1) again that M(wm) is a minimally 3-connected
matroid. That is, n(wm) is a 3-connected matroid for which no single-
element deletion is also 3-connected. Now it is easy to check that M(wm)

is isomorphic to its dual. Therefore, as M(wm) is minimally 3-connected,
it follows from (2) that no single-element contraction of M(wm) is 3-
connected. Another class of minimally 3-connected matroids whose members
share this property with the cycle matroids of wheels is the class of whirls.
The whirl W' 1is the matroid on E(Wm) having as its collection of circuits,
all those circuits of M(wm) other than the rim, together with all sets of
edges formed by adding a single spoke to the set of edges of the rim. 1In
Figure 1, the wheel w3 is shown along with a Euclidean representation for
the whirl WB. For comparison, a Euclidean representation for M(w3) is

also shown. We note that w3 is just the complete graph K&'



&

W W MW,)

Figure 1

The following theorem underlies most of the results in the remainder of
this paper. It is a matroid generalization of an earlier graph-theoretic

theorem [16, (4.1)] and, as such, typifies many of the results in this area of

research,

(4) THEOREM (Tutte [17, 8.3]). Let M be a minimally 3-connected matroid
for which no single-element contraction is 3-comnected. Then M is isomor-
phic to a whirl or the cycle matroid of a wheel.

From this theorem one can deduce a recursive construction for all 3-
connected matroids of rank at least three. A non-trivial extension of a
matroid M is an extension N of M by a single element e such that e
is neither a loop nor a coloop of N and e is not in parallel with any
element of M. On the other hand, N is a non-trivial lift of M if N*
is a non-trivial extension of M* . Thus N is a non-trivial lift of M
if there is an element e of N such that N/e = M where e 1is neither

a loop nor a coloop of N and e is not in series with any element of M.

(5) THEOREM [10, Theorem 4.1]. A matroid of rank at Zeagt three 18 3-
connected if and only if it is a whirl, the cycle matroid of a wheel,or

U3 50 Or is obtainable from such a matroid by a sequence of the following



operations:
(1) non-trivial extensions; and

(ii) non-trivial 1ifts .

The remainder of this paper will concentrate on minimally 3~-connected
matroids. 1In particular, we shall show that a number of results of Halin
for minimally 3-connected graphs have matroid generalizations or analogues.
Many of Halin's results have been extended in another direction by Mader
who has generalized them to minimally n-connected graphs for arbitrary n

(see, for example, [7] and the survey paper [8]).

(6) THEOREM (Halin [4, Satz 7.6]). Let G be a minimally 3-connected graph

having m vertices. Then

2m -2, if m

| A
[e))
e

[E(@®] <

v
~

3m - 9, 2f m >

Moreover, the following are the only graphs attaining equality in these

bounds :
W1 for 4<m<6;
w6 and 1(3’4 for m=7; and
K3,m—3 “for m>8 .

In the case oi arbitrary minimally 3-connected matroids, precisely the

same bounds hold as in the graph case.

(7) THEOREM [9, Theorem 4.7). Let M be a minimally 3-connected matroid

of rank at lcast three. Then

2rkM, <f rkM <53
[EQn | <
3rkM-6, 2f rkM > 6 .



From Theorem 6, we know that the bounds in the preceding result are
best-possible. Moreover, those matroids attaining equality in Theorem 7 have
been characterized [9, Theorem 5.2 and Corollary 5.11]. However, this re-
sult is rather cumbersome and, instead of stating it, we merely note that if
M 1is binary and minimally 3-connected, and M attains the relevant bound
in the preceding theorem, then M is graphic [9, Theorem 5.12]. Thus M is
isomorphic to the cycle matroid of a wheel or a complete bipartite graph
K3,m-3°

A lower bound on the number of elements in a minimally n-connected
matroid of given rank is considerably easier to obtain than Theorem 7. More-
over, whereas no analogue of Theorem 7 is known for n > 3, the following

lower bound holds for all n > 2.

(8) THEOREM [9, Theorem 3.2]. Let M be a minimally n-connected matroid of

rgnk r where r,n > 2. Then

r+n-1, ¢f r>n;
[EQD | >
2r - 1, if r<nmn.

y in equality here.
Moreover, only Ur,r+n—l and Ur,2r—1 attain equality

We now turn to another property of minimally 3-connected graphs and the

corresponding property of minimally 3-connected matroids.

(9) THEOREM (Halin [5, Satz 6]1). If G <s a minimally 3-connected graph,

2lvee) l+e

5 vertices of degree three.

then G has at least

It is well-known that in a 2-connected loopless graph G, the set of
edges meeting at a vertex forms a cocircuit in M(G). Thus one possible
matroid analogue of a vertex of degree three is a 3-element cocircuit.
Theorem 9 now prompts the question as to what one can say about the number

of 3-element cocircuits in an arbitrary minimally 3-connected matroid. The



following lemma extends a result of Seymour [14, (2.3)] for minimally 2-

connected matroids.

(10) LEMMA [9, Theorem 2.5). If C <is a circuit of a minimally 3-connected
matroid M and |EM)| > 4, then M has at least two distinct 3-element

cocircuits meeting C.

This lemma, which is proved by induction on the cardinality of C, con-

tains the core of the proof of the following result.

(11) THEOREM [11, 82]. Let M be a minimally 3-comnected matroid having at
least four elements. Then M has at least 1/2(|E(M)| - rkM)+1 3-element

cocireuits.

It is straightforward to check that for all k > 4, the matroid M(K3 k)
is minimally 3-connected and attains the bound in the preceding result. We

now sketch the main idea of the proof of Theorem 11.

Proof outline. Let X be the set of elements of M which are contained in
some 3-element cocircuit. By the lemma, X meets every circuit of M, hence
X contains a cobasis B* of M. But B* contains at most two elements of
any 3-element cocircuit of M. Hence, the number of such cocircuits is at
least 1IZ|B*I = 1/2(!E(M)l - rkM) . If one uses the full force of Lemma 10,
then it is not difficult to improve this bound by one and thereby obtain the
theorem. The details may be found in the proof of Proposition 2.20 of [11].

On applying Theorem 11 to graphs, one obtains that

(12) a minimally 3-comnected graph G has at least

1/2(JE@) | - V(@] + 1) + 1 minimal cutsets of size three.

Now, in a minimally 3-connected graph, one is more interested in vertices of

degree three than in arbitrary minimal cutsets of size three. This leads one to

ask whether one can strengthen (12) by replacing "minimal cutsets of size
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three" by '"vertices of degree three." The next theorem answers this ques-

tion.

(13) THEOREM [11, Proposition 2.20]. A minimally 3-comnected graph has at

least 1/2(|E(G)| - |V(G)| + 3) vertices of degree three.

The proof of this result is similar to the proof of Theorem 11 and uses
instead of Lemma 10 its graph-theoretic analogue (see Halin [5, Satz 5]).

Both Theorems 9 and 13 give lower bounds on the number of vertices of
degree three in a minimally 3-connected graph G. For certain values of
]E(G)], the bound in Theorem 9 is the sharper, while for other values of
|E(G)|, Theorem 13 gives the sharper bound. The following result is obtained
by combining the two theorems and for each value of IE(G)I choosing the
better of the two bounds. A small amount of additional argument enables
Halin's bound to be sharpened within the given range. We observe that for
a minimally 3-connected graph G, one can easily check that
|E(G) ] 3‘3/2]V(G)|. Moreover, by Theorem 6, |E(G) ]| < 3|v(e)| - 9. The

number of vertices of degree three in G will be denoted by v3(GL

(14) THEOREM [11, Proposition 2.20]. Let G be a minimally 3-connected

graph. Then

WORT g, VO] gy «

b

9|v(G) |-3
5

v3(G) >
E@I=VOIS g, V@IS L 1501 < 3190 - 9.

As another application of Theorem 13 one can characterize all minimally
3-connected graphs attaining equality in Halin's bound [13, Theorem 4.5].

We close by briefly considering minimally n-connected matroids and graphs
for n > 4. The proofs of most of the results stated above rely on Tutte's

characterization, in the case n = 3, of those minimally n-connected matroids



287

for which no single-element contraction remains n-connected (Theorem 4). The
characterization of such matroids when n > 4 1is an open problem. Mader
[7, Satz 1] has shown that every circuit in a minimally n-connected graph
meets a vertex of degree n and, from this, using the proof method of
Theorem 11, one can deduce a new lower bound on the number of vertices of
degree n in a minimally n-connected graph [11, Proposition 2.19].

The links between graph theory and matroid theory have always been
close (see, for example, [20, 6]). The results above show that in the study
of n—-comnectedness these links can be successfully exploited in both direc-

tions to obtain not only new matroid results but also new graph results.
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[. Introduction.

A very well known theorem of Cayley asserts that there are n"'2 distinct
trees with vertex set {1,2, ... , n}. We can express this result in the
language of matroid theory by saying, "The complexity of the complete graph

. . n-2 ,
on n vertices is n .

Below we offer a proof of Cayley's Theorem that is based on Mobius
Inversion in the generalized sense of Rota [2]. Proofs of Cayley's Theorem
are legion, but the present one has the unusual feature that the inversion

takes place over a poset that is not a lattice. The poset is an interesting

combinatorial object that probably has other applications.



II. The Poset of Subpartitions. Define a poset P as follows :
n

a is an element of P iff o is a subset of some (possibly improper)

I =

subset of {1,2, ... , n} =

The elements of P are ordered by containment (ggg refinement).

n
Thus, a < B iff B ¢ o (read "B is a block of «") implies that B ¢ B.
Further notation :

U(a) denotes the union of the constituent blocks of a ;
la| denotes the number of blocks of o ;
¢ denotes the minimum element of P (note that|¢| = 0 and U(4) = ¢ ) ;
v denotes the element of P whose gn]y block is the singleton {n};
n

a dot below a letter in a summation formuia indicates the summation

variable.

Observe that if n > 1 {which we henceforth assume), then the finite
poset P has no maximum element and is therefore not a lattice. But if

n
o and B are comparable elements of P (say,o < 8 ), then [o,B8] is a Boolean
n

algebra, and consequently,
[l - laf
u(a,8) = (-1)

where 1 is the Mobius function of P .
n

The Hasse diagram of [v,=) for P is shown in Figure 1. Note that
4

[v,») and P are isomorphic.
n-1

11. The Subpartition of a Function. Given a function f : n+ n,

k
those j ¢ n for which there exists a k > 0 such that f (j) = j are called

k
recurrent. The relation iRj iff f (i) = j for some k> 0 is transitive
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on n and becomes reflexive and symmetric when restricted to the set of
recurrent elements of f. The induced subpartition of n is denoted by P(f).

Now let T be a labeled tree with vertex set n. Then there is one
and only one function f : n - n such that f(n) = n and for j > n, f(j) =
iff an edge of T joins j and k. This is intuitively clear since after we
add a directed Toop to T at vertex n, there is only one way to properly
orient the edges of T in order to obtain a "functional digraph". For this
f, we have P(f) = v , and conversely, any f that satisfies P(f) = v comes
from some tree T via the above construction (view f as a functional digraph,
and erase the loop and arrows).

We may therefore identify the collection Tree(n) of labeled trees
with vertex set n with the set of functions for which P(f) = v . (This
identification is the starting point of an already published proof of

Cayley's Theorem due to Katz (see [1]), but now the proofs diverge).

CIII. Cayley's Formula for Tree(n) . Denote the collection of all

functions f : n->n by . For ae P , define
- - - n

n
gla) = | { f:fe Df and P(f) = o } |
and

n
h(a) =] { f:fen and P(f) 2a} |.

Example. Let n = 4 and let the blocks of o be precisely the singletons
{1} and {4}. Present any f ¢ §§~as a vector (f(1),f(2),f(3),f(4)). Then

g(a) = 8 since only these functions satisfy P(f) = o :

(1,1,1,4) , (1,1,4,4) , (1,4,1,4) , (1,4,4,4) ,
(1,1,2,4) , (1,3,1,4) , (1,3,4,4) , (1,4,2,4) .



204

Further, h(a) = 16 since only these additional functions satisfy P(f) > o :

(11213’4) 3 (]’3’2’4) ’ (]’2’2’4) i (]’3,3!4) il
(]’] ’3!4) ’ (]l4’3’4) ’ (]’29] l4) b (]’2’4’4)'

Figure 1 exhibits the values of g and h on the interval [v,=).

n - |U(a)]
Lemma. If o is a nonempty subpartition of n, then h(a) = t(a)n

where t(a) is the number of permutations of U(a) whose cycles are precisely

the blocks of U(a).

Proof. If a function f is counted by h(a), then every block B of a
must be cyclically permuted by f. Conversely, any function f that meets
this requirement, is counted by h(a). There are clearly t(cx)nn - vl
such functions, since the elements of n that do not belong to U(a) may be

assigned arbitrary values. _

(An explicit formula for t(a) is easy to write down, but it will

not be needed.)

Theorem (cayley). Let n > 1. Then |Tree(n)| = n

Proof. For all o e P we have

and so by Mobius inversion,

9(a) = zu(a.s)h(a)-

g 20



Taking a = v we get

{gl-1
[Tree(n)| = g(v) = Z(-U h(g) =

neScn

We now fix an arbitrary subset S c n such that n e S and evaluate the

u(v,B8)h(B).
=S
<8

u(B)
AY)

inner sum. There are three cases, and all are quite simple if Figure 1

is kept in mind :

Case 1 : |S| = 1. There is only one term, and it contributes
1-1 n-1 n-1
u(v,v)h(v) = (-1}  t(v)n =n to the outer sum.
Case 2 : |S| = 2. Again there is only one term, and it has the

form p(v,B)h(B) where B has only the two blocks {n} and {j}, for some
2-1 n-2 n-2
J = n. Such a term contributes (-1) t(R)n = -n to the outer sum.

Note however that the set S can be selected in n-1 ways since J < n.

Case 3 : |S| > 2. Here,
j%:: u(v,B8)h(B8) =
U(R) =S
v £ R
Z gl -1 n-|s|
(-1) t(8)n =
u(g) = s



n- ||
n Z t(B) - Zt(s)

18] odd 18] even

The bracketed factor vanishes, since exactly half of the permutations

of S\{n} have an even number of cycles.

We are now ready to perform the outer sum :

n-1 n-2 n-2
|Tree(n)| = n - (n-T1)n +0=n . ]
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INTRODUCTION

The aim of the present contributicn is twofold. First, we
sketch some engineering problems where matroids can be applied
to obtain nontrivial results. Next, one application in electric
network theory is described in some details. Effort was made to
give a more or less complete list of references. The paper is
intended for mathematicians — no previous knowledge in engineer-

ing is required.

[. VARIOUS PROBLEMS

1. For the problem of rigid bodies we refer to [3,4,7,12,13,
36,40,42,58,65,66]. See also [64] in the present volume. For
example, if the planar systems of rigid braces, like on Fig. 1,

A E c

>
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o >
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o=
(@}
t

c C D Fl'g, 24
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are considered and fixed to the plane at points A and B then sys-
tem 4 is raigid while system E is not rigid (the points C and D
can simultaneously move around A and B respectively) and a furth-
er "pin" at C or D or a further brace between, say, A and D is
required. System C is rigid with respect to mechanical motions
but not to "infinitesimal" ones, attacking vertically at point C.
Hence a further "pin" is required at C. All what we wish to em-
phasize here is that there are essentially two types of gquestions
considered:

Question 1A 1Is the given system rigid?

Question 1B If not, determine the minimal number of extra
braces or pins to make the given system rigid (and give such a

system).

Some of the quoted sources treat more general problems. Not
only "pinned braces" but "slides", "rotors" etc. are considered,

and in higher dimensions as well.

2. Strongly related is the activity of [60,61] concerning the
‘man-machine communication via a graphical display. If the design-
er draws the 2-dimensional image of a 3-dimensional body, the
computer must "recognize" the original body. If the recognition
of vertices, edges and faces (and the incidence relations among
them) is solved, still uncertainities, caused by "wrong" or "mis-

understandable" drawings can arise. For example, if the second

drawing of Fig. 2 is o P fig. 2 '
\\
the input, the com- S RN
N P N
puter should prob- ) N / \‘\

ably "ask" the user h
whether the "non-
existence of the
point P" was inten-
tional. Again, two types of questions can be quite natural:
Question 2A Is the given input understandable for the com-
puter?
Question 2B If not, determine the minimal number of further

questions to be answered (and give such a system of questions).
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3. Consider the fundamental problem of network analysis. Details
will be given in Chapter III, so only the questions are formulat-
ed now:

Question 3 Is the given network uniquely solvable?

Question 3B 1If yes, determine the "degree of freedom" or

"complexity" of the network (and give a system of as many inde-

pendent state variables).

II. VARIOUS REMARKS

1. The list of problems in Chapter I is by no means complete.
We are not considering here the applications of matroids in in-
formation theory [21-24,32] or in control theory [31]. Matroidal
concepts and results are also widely applied to operations re-
search, linear programming etc., see e.g. [6,19,37]. Even such
seemingly esoteric fields as behaviourial linguistics have al-
ready applied nontrivial matroidal tools [59,62].

2. Questions iA above, for i=1,2,3, can be answered by "yes"
or "no" while Questions iB by a non-negative number and a subset
of a suitable set. The common feature of all these problems is
that qualitative questions are posed, so discrete mathematical
tools are hopefully applicable. Questions iA will turn out to be,
in a sense, special cases of the corresponding Questions iB. This
will be made somewhat more precise in Chapter IX.

3. At the first glance all these questions (at least those
of form iA) seem to be routine tasks of linear algebra. In prac-
tical applications this is not the case, for the following rea-
son. A necessary and sufficient condition to these problems in
terms of linear algebra would be the nonsingularity of a usually
large matrix with real entries. Checking this nonsingularity by
numerical methods can lead to qualitatively wrong answers, due,
for example, to roundoff errors in arithmetical operations among
real numbers (which are represented by decimals of a finite
length in a computer). We shall return to this and related ques-
tions in Chapter VII.

4. Speaking quite generally, if an arbitrary phenomenon

should be described by a possibly simple mathematical model then
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finiteness and linearity of the model are perhaps the most fre-
quent assumptions in many fields of science and technology. Hence
tools of discrete mathematics and linear algebra are widely app-
lied. Matroid theory, being a branch of combinatorics, still con-
taining linear algebra as a special case, can therefore serve as
a unifying tool. (If a reader find this remark somewhat too gene-
ral and of little practical value, he/she is requested to return
to this point after having finished Chapter V. Both matroids G
and A contained many important information, reflecting properties
by graphs and by matrices respectively. However, only their union

GvA gave the answer to Question 3A.)

III. FORMULATION OF THE NETWORK ANALYSIS PROBLEM

A network is an interconnection of devices. The devices are
given by their physical properties, in form of linear equations

among voltages and currents, see Remark 3 below, while the inter-

connection is described by a graph. 2 fi. 3
Example 1. Consider the net- ——

work of Fig. 3. The devices are :)4 3 415

as follows: A voltage source(1)

is defined by us=u(t), i.e. a

given function of time, while

its current i is arbitrary; a current source(5) is defined by
is=i(t) while its voltage us is arbitrary; a resistor(2) is de-
fined by uz=Ri, and an <deal transformer(3,4) by us=ku, and
iy=-kia. The interconnection of these devices is

represented by the network graph of Fig. 4, where 2 15
edges correspond either to 2-terminal devices

(sources and resistors) or to individual ports of

the multiports (see below); and two edges are incident to the

same vertex if the devices or ports are joined to the same node.

The problem (cf. Remark 3 below) of network analysis is: de-
termine all the voltages and currents of every device (as unique
functions of the voltages of the voltage sources and currents of
the current sources). For example, in the above network i,=k~=1is

or us=u4-rk~lis etc.
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As a common generalization of the concepts of resistors (one
linear equation relating a voltage and a current) and that of the
ideal transformer (two linear equations relating two voltages and
two currents) let us define[5] the concept of n-port as a system
of n linear, homogeneous algebraic equations relating n voltages
and n currents. Each port of such an abstract device has one vol-
tage and one current; and every such port is represented by an
edge of the network graph. The expression multiport will also be
used, if the number of ports need not be emphasized.

Remark 1. The class of networks defined above is usually
called linear, memoryless and time-invariant. The second condi-
tion will be dropped in Chapter IX, see also the next remark. The
first (meaning that the multiport equations are linear) and the
third (meaning that the structure of the network graph does not
change - e.g. by switches) are essential in what follows. However,
the concept of multiports is so general that even this class of
networks contains a great variety of practically important ones.

Remark 2. Linear devices "with memory", like capacitors and
inductors, are excluded in Chapters III-VIII. Hence, if the ans-
wer to Question 3A is positive, the system of network equations
is algebraic and Question 3B does not arise before Chapter IX.

Remark 3. Some devices may be defined in a more convenient
way in terms of other physical quantities, e.g. as in Example 5
in Chapter X below, rather than by voltages and currents. Hence
the definition of a multiport and the problem of network analysis

can be formulated in a more general way.

The voltages and currents in the network must satisfy not
only the defining equations of the devices but also the Kirchhoff
Voltage Laws and Current Laws (KVL and KCL respectively), posed
by the structure of the interconnection. KVL states that the sum
of the voltages along any circuit of the network graph must be
zero. KCL states that the sum of the currents along any cut set
(i.e. minimal set of edges whose removal disconnects the graph)
must be zero. E.g. us+usztus=0 and i2+1is=0 are examples for KVL
and KCL respectively, in the network of Example 1. (The guestion
of reference directions is of no particular importance and will
be neglected here.)

Hence Question 3A sounds like that: Is the system of equa-
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tions for the voltages and currents of the network (obtained from
the device equations, from KVL’s and KCL's) uniquely solvable?

IV, THE cLASSICAL RESULT

If the network graph contains a circuit so that every edge
of the circuit corresponds to a voltage source then the currents
of these edges cannot be uniquely determined. Similarly, a cut
set formed by current sources leads to uncertainity of voltages.
Hence the subgraph G, of the network graph, formed by the edges

of the voltage sources, must not contain any circuit, and
(Cl) the subgraph Gy, formed by the current sources, must not

contain any cut set (i.e. the complement of Gi must be con-

nected).
This necessary condition can be proved to be sufficient if the
network contains voltage and current sources and resistors (u=Ri,
R>0) only. The proof of the sufficiency (essentially [33], see
also [44,8] and some recent textbooks on circuit theory, like
[57]) is by no means trivial.

I1f the network contains arbitrary multiports, too, then (Cl)

is not sufficient any more. 2 Fig. 5

Example 2. If the equations
of the 2-port on Fig. 5 are 1] 3 4 5

uas=kus, is=0 then the network

will have no unique solution.
(No solution at all, if is#¥0 while infinitely many if is=0 since
then us and us may be arbitrary.)

However, observe that the network grapk of Example 2 is the
same as that of Example 1. Hence we can also conclude that a re-
cessary and sufficient condition of unique solvability, in terms

of the network graph only, cannot be given at all.

V. A STRONGER NECESSARY CONDITION

Let the network graph contain k edges and let u, and iv de-

note the voltage and current of the vth edge, respectively. If we
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formally generate all the network equations, the system to be

solved is Nx=0 where x=(u1,u2,...,uk,i1,i2,...,ik)*. N can be de-

0
Q}, where 4 is the collection of the matrices

B

composed like {O
A

of the multiport-equations, 0 denote the zero matrices and £ and

@ are the edge-circuit and the edge-cutset matrices, respectively.
The edges 1,2,...,k can be labelled in such a way that 1,2,
...,a correspond to the voltage sources and B8,8+l,...,k correspond
to the current sources (see the remark below). Let uo=
(u,,uz,...,uu)* and io=(iB,iB+l,...,ik)*. Then Nx=0 can also be

Uo
written as [N'INOIN"][xo}=O. Hence the network is uniquely solv-
Zo

able if and only if No is nonsingular, or if and only if det No#0O,
and then, of course, xo=-No'(N'uo+N"<o).

Generally speaking, if ¥ is a square matrix of the form [g;]
then, by the Laplace expansion, det M arises in form
I +det P, det P> where P, is formed by the rows of M. and by some
columns of M, P, is formed by the rows of M, and by the rest of
the columns of M, and the summation is performed over every
choice of the columns. Hence a necessary condition of det M #0 is
that there must exist at least one decomposition of the column
set of ¥ so that both det P, and det F,, belonging to this decom-
position, should be nonzero.

Let the column space matroids of the matrices 4,B etc be de-
noted by the corresponding script letters A,B etc respectively.
Then det M#0 means that the full column set T of M is independent
in M and, by the above reasoning, this implies that there exists
a decomposition T=T,UT., so that Ti is independent in Mi. But it
exactly means that T is independent in M,vM, where v denotes mat-
roid union.

Let S={u1,uz,...,uk,i1,iz,...,ik}denote the full column set

of N, let furthermore U={u1,u2,...,ua} and I={i .,ik} de-

yi yeo
note those of V' and V" respectively (see the rzmaﬁilbelow).
Remark: Certainly a<B. We allow the cases a=0 or B=k+1l which
means U=@ or I=Q respectively. Then the above decomposition of ¥
is simpler. Even the case U=I=( causes no problem, only the sys-
tem of equations to be solved becomes homogeneous. In fact many

authors start investigations by "contracting the edges which cor-
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respond to voltage sources and deleting the edges which corre-
spond to current sources" if only solvability is concerned. This
makes everything simpler since solvability does not change if the
corresponding homogeneous system is considered only.

If we denote the matrix {g g] by &, we could finally formu-

late the following necessary condition for unique solvability:

(c2) S-(UUI) Zs a base in GvA .

Before presenting some examples we recollect that if K=[51K0]
2

then K=K +K2 where + denotes direct sum. (Here the matrices need
not be squares.) Also recollect that if B and @ are the circuit
and the cut set matrices of a graph H respectively then B=M*(H)
and Q=M (H) where M(H) denotes the cycle matroid of H.

In order to visualize the above concepts, let us return to

Example 1. Both matroids G and A happen toc be graphic - they are
Ry.6

illustrated as the cy-
cle matroids of the
graphs on Fig. 6. The
drawing for G is ob-
vious by the above remarks, while to check the drawing for A let
us explicitly describe the matrix 4:

Uq Uz Us U4 Us 14 iz i3 i4 is

0O-1 0 O O O R O O O

O O0-1 k O O O O O O

0O O O O O O O kX 1 o
The matroid GvA also happens to be Us

graphic in this example and can be il-

4,

lustrated as the cycle matroid of the
graph of Fig. 7. The set S-{u4,is} is
clearly a base of this matroid, hence (C2) is met.

Fig. & On the other QJ

Y,

U

- hand, the matroid

3,5 4,

A of the second u

example can be
drawn as the cycle matroid of the graph of Fig. 8 and then the re-
sult GvA will be illustrated by the graph of Fig. 9. The set
S-{u4,is} will not be a base now, hence (C2) is-violated.
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VI, How cAN ONE cHEcK conpITIONS (C1) anp (C2) ?

Checking condition (Cl) in a graph is certainly an easy task.
The reader is suggested to prepare an algorithm or is referred to
[25, pp.41-42]. On the other hand, (C2) poses some questions.

A large number of algorithms have been published in the last
12 years to decide whether a given set is a base in the union of
the matroids M4,Mz,...,Mn, see e.g.[2,15,17,18,20,34,35,37,38].
These have polynomial complexity provided we have an "independ-
ence oracle" for each Mv (see [64] in this volume). Roughly speak-
ing, we can obtain an algorithm, polynomial in the size m of the
common underlying set S of the Mv’s and in their number n, if the
information "whether the given subset of S is independent in Mv
or not" can be obtained in a time polynomial in m.

An independence test in G is essentially as easy as checking
(Cl). For testing independence in A observe that A always arises
as a direct sum, with the summands corresponding to the individu-
al deviceé. Hence a subset of S is independent in A if and only
if, for every u, the intersection of this subset with the set of
voltages and currents of a multiport device Nu is independent in
the summand Au'

Still, we have to check whether a subset is independent in
Au, which is given as the column set matroid of a matrix with real
entries. However, the difficulty described in Remark 3 of Chapter
II does not exist any more, for the following reason.

In the practical realizations of a computer program for net-
work analysis the user has to specify only the devices to be in-
terconnected - and, of course, the way of the interconnection.
The models of the devices are stored in the data bank of the com-
puter, as subnetworks, matrices etc. Once a new device becomes
available at the market, its model should be prepared and filled
into the data bank. At this stage the corresponding matroid Au
can also be prepared and stored in a suitable way. Even if this
task is "difficult" (requires long time or high precision in nu-
merical calculations), this should be done only once, when.es-
tablishing the model to be stored in the data bank. Then this in-
formation is stored for ever and each time when the device is re-

quired in an actual analysis (which can be the case many times),
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we use only the result of these "difficult" calculations.

VII. Is (C2) SuFFICIENT?

The proof of the necessity of Condition (C2) clearly indi-
cates that it cannot be sufficient in the mathematical sense. It
only implies that we have a nonzero term in the Laplace expansion
but it can easily be cancelled out by other nonzero terms, lead-
ing to det M= O.

Example 3. Consider the trivial example on R
Fig. 10 where the sum of the two resistances is

-R

zero. The network is clearly singular but (C2)
is met.

However, one can argue that situations like that of Example
3 are artificial and can be disregarded. After all, one can never
buy such two resistors Rs and Rz in the shop that the a prior<
given relation R4+R>=0 is exactly met, since the physical parame-—
ters of the devices are subject to technological constraints etc.

Putting it slightly more exact, if we suppose that the nume-
rical values of the device parameters are, say, algebraically in-
dependent transcendentals over the field from which the entries
of B and @ are chosen, then (C2) turns out to be sufficient, too.

This additional assumption is usually called "generality"
[30] and also arises in some form in many other mathematical and
engineering considerations, see e.g. [16,42]. However, there are
nontrivial problems of its correct definition. The interested
reader is referred to [55].

Although we are not going into details of the rigidity prob-
lems, let us return now to Fig. 1 for a moment. The reason of the
differences between 4 and C is that the distance between the pins
A and B is equal to the sum of the distances of the braces AC and
BC in case of system C. Roughly speaking, if such "algebraic re-
lations" are forbidden, then the rigidity problems become purely
combinatorial, e.g. the answers to Questions 1A, 1B will depend
on the "graph" of the braces only, and the only "infinitesimal"
motions of the system will be the velocities of the mechanical

ones[3].
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VIII. SHOULD WE ALWAYS ACCEPT “GENERALITY” ?

The above argument (about the technological uncertainities)
is acceptable only as long as a priori given relations among pa-
rameters of different devices are concerned. But if such rela-
tions are given among different parameters of the same device,
one should be more careful. E.g. the two k’s in the defining equa-
tions of an ideal transformer (see Example 1) are equal, and this
equality is not a coincidence but it reflects the physical fea-

ture of the device. Such "internal relations" might cause diffi-

culties, as shown by the following example: L
Example 4. Let the 2-port of the net- 2 3 4
work of Fig. 11 (the gyrator) be defined by

uz=Riz, ua=-Ri,. It is not difficult to ve-

rify that the network is singular but (C2) is met.

This phenomenon as well as some other similar ones have been
well known by network theorists since long time. [1,45-49,57] are
typical examples for avoiding such difficulties by describing
that the independent subsets from G and A (to meet (C2)) must sa-
tisfy certain additional conditions. E.g. if {x,y} is the edge
set of a 2-port N then only those trees T of the network graph
are accepted for which | {x,y}nT|=1 if N is an ideal transformer
and | {x,ylnTI#1 if N is a gyrator.

This approach was in a sense generalized for arbitrary
2-ports in [53] where we proved that, among the theoretically pos-
sible infinite variety of algebraic relations among the 2-port pa-
rameters, only five relations can really cause such problems. The
essence of this result is that these 5 critical relations are in-
dependent of the way how the 2-port is embedded into the network,
hence they can be checked in stage of establishing the model of
the 2-port for the data bank (c.f. the end of Chapter VI).

The above examples indicate that the additional conditions
to be checked are at least as hard as the matroid 2-parity prob-
lem for represented matroids. Anyhow, this is still a polynomial
problem[39-41]. The reader is also referred to [64] in this vo-
lume but should observe that generalizing the above questions to
k-ports (k>2) will generalize the matroid 2-parity problem in a
different way. For this latter we refer to [56] and mention only
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one interesting gquestion: Let Sq,Sz,...,St be disjoint k-element
subsets of S and let M be a represented matroid over S. Decide
whether there exists a subset X with cardinality at least g so
that ]Sinxl#l for every i=1,2,...,t (observe that this reduces
to the 2-parity problem for k=2 ), and X is independent in M.

IX. SoME REMARKS ON QUESTION 3B

Only memoryless n-ports were considered till now. However,
essentially the same approach works in case of devices "with me-
mory" as well. This concept means that the device can store ener-
gy. For example, the capacitor or the inductor with the defining
equations i=C%% and u=L§% respectively, can store (electric resp.
magnetic) energy. In fact we may suppose without loss of general-
ity that only these two kinds of new devices are introduced (i.e.
a linear n-port with memory can always be substituted by a sub-
network, containing, for a suitable k, a linear memoryless (n+k)-
port and k capacitors and inductors.)

The order o of the system of differential equations to be

solved is clearly bounded from above by the number n, of capaci-

tors plus the number np, of inductors. However, the cgse o<nC+nL
is also possible. For example,

the current i; of the capacitor

in the first network on Fig. 12 1

2
3 4C23
is given by the differential l

equation RC%Fi3 + i3 = C%€u1, subject to an initial condition

usz (to)=uo, while in the second network one simply obtains
iz= Cg€u1, without solving any differential equations.

Suppose for a moment that the network contains voltage and
current sources, capacitors, inductors and positive resistors
only. Then (Cl) is still necessary and sufficient for the unique
solvability, as it can be proved by a rather tedious way, see e.g.
[57]. Observe that (Cl) is equivalent to the following: there ex-
ists a tree T in the network graph, containing all the voltage
source edges and none of the current source edées.

Among all the trees, satisfying the above two conditions,
find the one which contains the maximal number kc of capacitors
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and the one which contains the minimal number kL of inductors.
(It is not difficult to prove that both values kC and kL can be
reached by the same tree as well.) Then o=kC+kL.

Observe that to determine kc and kL (for answering Question
3B) we need Kruskal’s algorithm with gradually decreasing weights
for voltage sources, capacitors, resistors, inductors and current
sources, while to check (Cl) itself, for answering Question 3A
only, we need simple independence tests only.

We refer to [30,50-52] for determining ¢ in networks contain-
ing voltage and current sources, capacitors, inductors and linear
memoryless n-ports, but wish to emphasize that the algorithms re-
guire weighted matroid partition algorithms, unlike in case of
memoryless networks, where cardinality matroid partition algo-
rithms could already do.

Generally speaking, Questions iB seem to require weighted
versions of those algofithms which were used to answer Questions
ia (for i=1,2,3).

X. APPLICATIONS TO NETWORK SYNTHESIS

Until now we considered the problem of network analysis, i.e.
given the network, determine its properties. In this last chapter
we give some remarks on the inverse problem (the real engineering
problem: given some specifications, design a network which meets
them).

Whether such a problem is solvable depends on the set of de-
vices we are allowed to use as building blocks for our realiza-
tion process. Negative results like "a particular specification
cannot be realized from a given set of building blocks" are usu-
ally considered as parts of "realizability theory" while "synthe-
sis" in the narrow sense means rather realization processes, ca-
nonical configurations etc. Here we intend to show how matroids
can help to obtain new realizability criteria. For more detailed
results the reader is referred to [28,54].

Suppose we wish to interconnect the multiports N1,Nz,...,Nk
to form a new multiport No. Their matroids A1,A2,...,Ak and Ao,
respectively, are defined in the same way as in Chapter V - sim-
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ply the column set matroids of their describing matrices. The way
how they are interconnected is described by the network graph H
again —edges correspond to ports— and G=M*(H)+M(H), as before.

If the edge set E of the graph H is of the form EqU(E-Eo)
where Eo is the set of ports of No then [54] A, can be obtained
from A1,A2,...,Ak and G by forming Gv(A1+A2+...+Ak) and then con-
tracting the elements, corresponding to voltages or currents of
E-Eo.

Example 5. Consider the 3-port circulator defined by x4=yaz,
(the physical mean-

X2=ya and x3=y1, where x,=u +iv and yv=uv—i

v v
ing of X, and y,, are incident and reflected waves at port v). It

is not difficult to verify([28,52,54] that the mat-

roid of the circulator is just the cycle matroid U ! 3
of the graph on Fig, 13. If we interconnect the ] N P
circulator with a resistor in the way shown on ((, 4 l'x 4
Fig. l4a, the network graph will look like Fig. G
14b, and a not guite obvious calculation shows that the matroid
4

d A 4 ; B %

Z 2

Fig.1%a 146 HAgtsc

of the resulting 2-port will be the cycle matroid of the graph of

Fig. ld4c.

Of course, a condition, like "generality" in Chapter VII, is
required again: we usually call it qualitative reliability (QR)
in this context[54]. Roughly speaking it means that the realiza-
tion of a multiport No from the Nv’s is QR if and only if small
quantitative changes in the Nv's cannot lead to a qualitative
change of No, hence, after the interconnection of the Nv’s, no
"mutual tuning" of these components is required any more for meet-
ing the qualitative specifications of No. (Somewhat similar ideas
have already been presented in [9-11], too.)

The following theorem will be a typical example to show how
this approach can be applied:

Theorem: The 3-port circulator cannot be QR-synthesized from
1- and 2-ports, using series-parallel topology (i.e. if the net-
work graph is series-parallel[14]).

Sketch of the proof: It requires a straightforward verifica-
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tion that the matroids of all the 1- and 2-ports are gammoids[43].
The matroid G is a gammoid iff the network graph is series-paral-
lel. Finally, the gammoid property is preserved by direct sum,
union and contraction, but the matroid of the circulator is not a
gammoid, hence the assertion follows.

In addition to the more or less well known matroidal classes
(like gammoids, base orderable matroids, representable matroids),
which are closed with respect to union and contraction, one can
construct new matroidal classes, too, which also lead to new re-
alizability criteria. Some of them have interesting meaning in
network theory as well. See [28,54] for further details.
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1. Computational Complexity

§1. Introduction

Although the study of the computational complexity of solvable

decision problems has been to a large extent motivated by considerations

of their practical computability it has also led to a re-examination of

the nature and relationship of classical problems in fields as diverse
as number theory, combinatorial optimisation and recursive function theory.
Indeed, one of the outstanding open problems in contemporary
mathematics is the conjecture (discussed in 83 below) that the class P
of languages recognisable in polynomial time by a deterministic Turing
machine is not equal to the class NP of languages recognisable in
polynomial time by a non-deterministic Turing machine.
In this first lecture I briefly review relevant concepts of complexity
theory, in subsequent lectures I concentrate on the interplay between

complexity theory and recent results about matroids.

8§2. Low level complexity

Consider the problem of multiplying two n xn matrices. The standard

algorithm demands n3 multiplications and n3--n2 additions. One of the more
striking early results in complexity theory was the theorem of Strassen

(1969) who proved that a pair of nxn matrices can be multiplied in

nlog 7

< c arithmetic operations, where c is some constant.



For large n, since log27 ~ 2.81, this represents a considerable
saving over the standard algorithm, and it naturally raised the question:
by how much could the index log 7 be reduced? This question is still
unresolved.

Even though arguments which reduce the upper bound in the above
problem are complicated and ingenious, it is a much more difficult problem
to obtain a non trivial lower bound to such a computational problem. A
moment's reflection suggests that an obvious lower bound on the complexity
of the above problem is O(n2) - all the data has to be examined. (Prove
this!)

Similar arguments apply to combinatorial problems. Consider the

problem of finding the smallest circuit in a graph on n-vertices. Such
a graph would be presented to the computer as a nXn matrix and it is not

difficult to show that in order to decide the size of the largest circuit

we must examine each entry in the adjacency matrix, giving us a lower

bound of O(n2) and that there does exist an algorithm for solving the

problem which takes at most O(n4) arithmetic operations.

Loosely speaking, therefore, the problem is tractable and the only
interest is in deciding the exact value of the exponent. Problems such
as these, although of practical interest will not be our main concern here.
(For a discussion of such problems we refer to Bollobas [78], Milner and
Welsh [76], and Borodin and Munro [75].) We will be more concerned with

the gap between polynomial and exponential complexity.

§3. The class NP
Let T be a computational problem, that is a collection of computational

tasks each of which is called an instance of m. For example the problem of
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prime testing is to determine for any given number n whether it is prime
and a typical instance is a specific integer.

When studying the complexity of a problem 7 we associate with each
instance I a 5352_11!. The choice of the particular measure used to define
size is not unique but generally speaking we take the size |Il to be
correlated to the minimum amount of memory space required to specify I.
Thus the size Inl of an integer n is defined as the number of digits in the
binary representation of n, thus ]n[ = 1og2n. The size of an instance
corresponding to a graph G on n vertices is the number of vertices plus
the number of edges, however for most problems it is standard to use n, the
number of vertices to specify the size of the input.

As far as these lectures are concerned, since we are only concerned
with the gap between polynomial and exponential complexity there is no loss

in precision in making this our standard interpretation of size when dealing

with graph problems.

Complexity theory is based on a Turing machine model of computation
(with which we assume familiarity). Most modifications of such a model do
not affect the complexity notions considered below, though of course some
care has to be exercised, (particularly in problems involving large
integers) - see Aho Hopcroft and Ullman [74] for a discussion of the
relationship between complexity measures with respect to different models.

For any function t, a Turing machine M runs in time t if on each

input of size n the machine halts within t(n) steps. M runs in polynomial

time if M runs in time p for some polynomial p.

If I is the input alphabet of the Turing machine M in question and 7

is a decision problem i.e. a partition of IL* (the set of all finite

sequences from I) into two sets L and L*\L corresponding to the output
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ACCEPT or NON ACCEPT, then we say L belongs to the class P is there exists

a Turing machine M such that for each string I € I*, I is accepted by M

if and only if I €L and moreover M runs in polynomial time. The class P
is thus the class of sets whose membership is decided by some Turing
machine which runs in polynomial time.

Formally, the class NP is the collection of languages which are
accepted by a non-deterministic Turing machine in polynomial time. A
rigorous and formal definition of a non-deterministic Turing machine and the

class NP is given by Garey and Johnson [79] or Hopcroft and Ullman [79].
For our purposes it is probably more instructive to proceed as
follows. A language LcI* is in the class NP if for each member 0 €L

there is an algorithm for demonstrating that o € L which runs in polynomial

time on a deterministic machine.

Because of this existential quantification in the notion of acceptance

by a non-deterministic Turing machine (NDTM) there is no obvious reason
why the complement of a set in NP should also be in NP. This is best

illustrated by example.

Example. Let I* be the collection of inputs corresponding to all graphs,
let L be the subset of I* corresponding to graphs which have Hamiltonian
circuits (i.e. circuits which visit each vertex once and only once). Given
a typical member of L we can demonstrate its membership of L in polynomial

time by exhibiting any one of its Hamiltonian circuits.

However given a member of I*\L there is no known way of demonstrating

that is doesn't have a Hamiltonian circuit in polynomial time!
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Accordingly we define co-NP to be the class of languages L such that
I*\L is in NP.

Clearly if a language L € P, then IL*\L ¢ P and hence we have

PCc NP N co-NP.

§4. NP-complete problems

A major tool in complexity classification is computational reducibility.
In studying NP, the most useful notion has been deterministic polynomial

reducibility. For any problems Ty T, € L* we write LETRLPY and say LY is

reducible to T, if there exists a Turing machine which runs in polynomial

time and which, given an instance of m will convert it into an instance of

LY such that the 'answer' to an instance of LY is 'yes' if and only if

the answer to the instance of m, is "yes". If L1 is reducible to L2 and

L2 has a polynomial time algorithm then so does Ll.

Formally there exists a polynomial transformation of a language

L1 SEI to a language L2f523 if there is a function f: Zi - 2; such that:

(1) There is a polynomial time Turing machine which computes f.
(2) For all xe):i', xeLl if and only if £f(x) ELZ.

In this case we write L, « L,.

A language L is called NP-complete if:

(3) LeNP.

(4) For any other L'e NP, L' « L.

Cook in 1971 proved what is probably the most important theory so far

in complexity theory:

Theorem 1., There exist NP-complete languages.
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Cook 's proof was essentially constructive. He exhibited an NP-complete

language derived from a decision problem in Boolean logic, which is usually

referred to as SATISFIABILITY. We describe it as follows.

The SATISFIABILITY problem is the problem of propositional calculus
of determining whether a given logical formula is true for at least one
assignment of the values 'true' and 'false' to the variables. The associated
NP-complete language is then the collection of logical formulae which are

satisfiable.

By a slight (but very common) loss of precision we shall speak of a

decision problem m being NP-complete if the accepting lan uage (corresponding

to those instances of m for which the answer is YES) is an NP-complete
language.
In other words a problem is NP-complete if it is at least as hard

(algorithmically) as any other problem in the class NP.
Once one knows a single NP-complete problem m one can prove another

problem m' is NP-complete by a) showing that 7' ¢ NP and b) showing that =«

is reducible to 7' in polynomial time. Karp (1972) used this technique to

exhibit a number of natural NP-complete problems and this process has been
contiued almost 'ad nauseam' so that now the number of known NP-complete

problems must be in the thousands.

§5. Some Examples
We 1llustrate the above concepts with some examples of well-known

problems.
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(1) GRAPH COLOURARILITY

INSTANCE: Graph G = (v, E), integer k > 2.

QUESTION: 1Is G k-colourable in the sense that we can assign colours
to V(G) from the set {1,...,k} such that two vertices which
are joined by an edge have the same colour?

This is NP-complete even when k = 3 and the graphs are restricted to being
planar. For k = 2 it is just the problem of recognizing when G is
bipartite and clearly belongs to P.

(2) CLIQUE

INSTANCE: Graph G=(V,E), positive integer k.

QUESTION: Does G contain a set V' of vertices such that |V'l 2 k
and each pair of vertices is joined by an edge?

For any fixed k this is in P since the exhaustive search is of complexity
0(|V|k). However for general k the problem is NP-complete.

(3) LINEAR PROGRAMMING

INSTANCE: Integer valued n-vectors (vi : 1 <i < m, integers
dl,...,dm, Cl""’cn' b
QUESTION: Is there a vector X = (xl,...,xn) of rationals such that
for 1 < i £ m, vi.XS d and c.x 2 b?
In Garey-Johnson [79, (p. 288) ] the exact status of this problem is stated
as uncertain. It was not known to be NP-complete nor was it known to
be in P. However standard linear programming duality arguments showed
that it is also in co-NP and this suggested that it was unlikely to be

NP-complete. The problem was settled in (1979) by L.G. Khachian who, in

one of the most important thoerems of the last decade, has shown that

LINEAR PROGRAMMING is in P.



334

(4) TOTAL UNIMODULARITY

INSTANCE: An mxn matrix A with entries from the set {0, 1, -1}.
QUESTION: Is A not totally unimodular, that is, is there a square
submatrix of A whose determinant is not in the set
{o, 1, -1}2
Again in Garey-Johnson [79, p. 2881 the status of this problem is open.

One of the most important applications of matroid theory is Seymour's
theorem which settles this problem by showing its membership of P. We
devote Lecture 6 to this problem.

Another problem which is open in Garey-Johnson and which has now
been settled by the matroid arguments of Lovasz is the SPANNING TREE
PARITY problem, see Lecture 4 below.

Of the open problems in complexity theory at the moment, one of
the most intriguing is:

(5) GRAPH ISOMORPHISM

INSTANCE: Two graphs G1 = (Vl,El) and G2 = (V2,E2).

QUESTION: Are G1 and G2 isomorphic?

This is a problem known to be in NP but not known to be NP-complete or

to be in P or in co-NP.

§6. P-space
We close this brief introduction to the theory of P and NP by

mentioning some problems which appear to be significantly harder though

still solvable.

A decision problem m can be computed in polynomial space if there

exists a Turing machine which decides m and which for any input x never
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visits more than p(lxl) squares of working tape, where p is some polynomial.
It is obvious that if m is computable in polynomial time it is

computable in polynomial space. Thus Pc P-space. It is not much more

difficult to prove
NP U co NP ¢ P-space.

For example consider our prototype problem of deciding whether
or not a graph has a hamiltonian circuit. If we are uninterested in the
time of the computation but only in its space requirements we can just
exhaustively test all n! possible sequences of possible edge sets - this
will be enormously time consuming but of low polynomial space complexity.
In 1973 Meyer and Stockmeyer identified a P-space complete problem

which bears the same relationship to P-space as SATISFIABILITY does to the
class NP. This problem is known as QUANTIFIED BOOLEAN FORMULAS (QBF) and
is defined as follows:
QBF

INSTANCE: A well formed quantified Boolean formula

F = (Q1 xl)(Q2 x2)...(Qn xn)E
where E i1s a Boolean expression in the variables xl,...,xn
and. each 9, is either "3" or "V".

QUESTION: Is F true?

Note that SATISFIABILITY is the case where each Q. is "3".

Since the appearance of QBF many other P-space complete problems

have been discovered by the usual technique of exhibiting membership of

P-space and then finding some way of showing reducibility to QBF. Many

of these examples have been of the following type involving games on graphs:-
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VERTEX HEX
INSTANCE:

QUESTION:

Graph G = (V, E) and two specified vertices s,t.
Does the player have a winning strategy in the following
game on G. Players 1 and 2 alternately choose a vertex

from V\{s,t}, with those chosen by player 1 being coloured

"white"”, the other being coloured "black". Play continues
until all such vertices have been coloured and player 1 wins

the game iff there is a path in G from s to t whick uses

only white vertices.

Even and Tarjan [76] have proved that this is a preblem which is

complete in P-space. For other examples of P-space complete problems and

an excellent accout of the theory briefly reviewed above we refer to

Garey and Johnson [791].
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2. Matroid Theory

§1. Definitions

First some basic notation. V(r,g) will denote the vector space of
rank r (hence dimension r - 1) over the field GF(q): PG(r - 1,q)
(AG(r - 1,q)) will denote the corresponding projective (affine) space.
We will move freely between vector spaces and the corresponding projective
space. Thus our terminology will vary from say a "subspace" to the
corresponding "flat" for essentially the same set of points depending
on circumstances. Much of the time we shall be working with the field
of 2 elements where the difference between the geometry and corresponding
vector space is minimal.

Our graph terminology is standard, G will denote throughout a graph

with vertex set V and edge set E. An edge which joins a vertex to

itself is called a loop, two edges which have a common pair of endpoints

will be called parallel and a graph with no loops or parallel elements is
called simple. The simple graph on n vertices in which each pair of
vertices is joined is the complete graph Kn. A cycle of G is a set of

edges €1s---18 such that e, and e, are incident 1 < i < t and e, is

t +1
not incident with ej, j#1i +1ori - 1 except that et is incident with

e, .- In other words a cycle is the set of edges of a simple closed path.

The deletion of an edge e from a graph G gives a graph Ge' on the same
vertex set. The contraction of e from G gives a graph Ge" which is

obtained from G by deleting e and then identifying its two endpoints.
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If G and H are two graphs, G i3 said to be contractible to H or to have

H as a subcontraction if we can obtain H from G by an appropriate

sequence of deletions and contractions of edges. A cutset of G is a

set of edges whose removal increases the number of connected components
of G. A cocycle is a minimal cutset.

A bridge or isthmus is a cutset of size 1. We usually write

Xue for Xu{e}l and X\e to denote X\{e}. The cardinality of a set X
will be denoted by |X|. Any other graph terminology used can be found

for example in Bondy & Murty [76].

A matroid is a pair consisting of a finite set S and a collection

6’ of subsets of S which are called independent sets and satisfy the

following axioms:
(m ¢ed
(12) 1If X is independent and Y <X then Y is independent;
(13) If AcS all maximal independent subsets of A have the same

cardinality which is called the rank of A and is denoted by

r(a).

We usually write M to denote the matroid, its rank is the rank of
S, r(S). A set is dependent if it is not independent and is a base if
it is a maximal independent subset of S.

Matroids Ml = (Sl, C’l) and M2 = (52, J’z) are isomorphic if there

is a 1-1 map V¥ : Sl -> 52 such that X is independent in Ml < ¥X is

independent in MZ'
A subset F of S is a flat or a closed set or a subspace if for
each element y ¢ S\F, p(FuY) > p(F). A hyperplane is a maximal proper

flat, that is if a matroid has rank r a hyperplane is any flat of rank
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r -1, a line is any flat of rank 2.

From analogy with graphs (see Example 3 below) we call an element
x of S a loop of Mon S if r({x}) = 0 and a set C is a circuit if it is
minimal dependent. Two elements are parallel if their union is a circuit.

The flats of a matroid, ordered by inclusion, forma geometric
lattice. Every geometric lattice can be obtained from a matroid in this
way and there is a natural one-one correspondence between matroids and
geometric lattices, in which the loops of the matroid are identified
with the zero element of the lattice and sets of mutually parallel
elements are identified with the atoms (elements of rank one in the
lattice) in exactly the same way as projective spaces are obtained from

vector spaces by identifying elements which are mutually linearly dependent.

Duality and Minors

Two crucial ideas in matroid theory are those of duality and of
taking minors.

The first, duality, corresponds to orthogonality in vector space
theory but is really much simpler. If M is a matroid on S its dual
matroid is the matroid on S which has as its bases those subsets of S
of the form S\B, whre B is a base of M. It is denoted by M* and clearly
(M*) * = M*,

If eeS we let Mé denote the matroid on S\e whose independent sets
are those independent sets of M which are contained in S\e. We call this
operation the deletion of e from S, it corresponds exactly to removing
an edge from a graéh.

The dual operation, contractinge from S, gives a matroid M; on

S\e whose independent sets are all sets X of S\e with the property that



340

Xue is independent in M, except in the trivial case when e is a loop of

M irn which case Me" is the same as Me'.

Contracting is the matroid operation corresponding exactly to
contracting an edge from a graph and equivalently to projection in a
vector space.

The key facts about these operations are:

(1) The contraction and deletion of elements are commutative

matroid operations.

(2) Contraction and deletion are dual operations in the sense that

(Me')* = (M*)e“, (M*)e' = Me"’
Finally because of (1) we can define a minor of M to be any matroid
obtainable from M by a series of contractions and deletions, and write
M > N to denote that N is a minor of M.
For proofs of all these statements and more on the theory of

matroids we refer to the books by Bryant and Perfect [80], Brylawski

and Kelly [80], Crapo and Rota [70], Lawler [76], Tutte [70] or welsh [761].

§2. Classes of matroids

In this section we briefly describe some different class of matroids

which commonly arise in combinatorial applications.

Representable matroids

Let V be a vector space over GF(q), let S be any subset of vectors
in V and let X< S be a member of J iff X is a linearly independent set
of vectors. Any matroid obtained in this way is called representable.

Not all matroids are representable, for example the following
9-element matroid is not representable over any field.

Example. Let s = {1,2,...,9} and letlj consist of all subsets
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of cardinality < 3 except those which are collinear in Figure 1. Those

familiar with projective geometry will recognise Figure 1 as the Pappus

configuration with one line missing. Since Pappus' theorem must hold in
any geometrical configuration coordinatised over a field, this matroid

cannot be embedded in a vector space over any field.

Figure 1

Graphic matroids

Let G be a graph. Call a subset X of edges of G independent if
X contains no cycle. This gives a matroid on E(G) called the cycle
or polygon matroid of G, and is denoted by M(G), and any matroid obtainable
this way is called graphic.

All such matroids are representable over any field. As an example

we show in Figure 2 the equivalence and hence coordinisation of the

cycle matroid M(K4) (Figure 2a) with a configuration of points and lines

in 2 dimensional space, Figure 2b.
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(a) (b)

Figure 2

Cographic Matroids

An important class of dual matroids is that obtained from the

class of cycle matroids of graphs. Whitney proved:
Theorem 1. If M(G) is the cycle matroid of a graph G then M*(G) is

the matroid on E(G) whose circuits are the minimal cutsets of G. Moreover

G is a planar graph iff M*(G) is also the cycle matroid of some graph.

Any matroid obtainable in this way is called cographic.

Since it is straightforward to prove that the dual of a representable
matroid is also representable (indeed over the same field) then we knqw:

(1) Cographic matroids are representable over any field.

Transversal Matroids

One of the major applications of matroid theory has been in

obtaining new results in transversal theory. For a comprehensive survey

of this area we refer to Mirsky [71]. We give the bare outlines here.
Let S be a finite set and let S = (Ai : i€I) be a finite collection

of subsets of S. A partial transversal of A is a set X such that

there is an injection ¢ : X - I such that for each x ¢ X,

X € A¢(x) '
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and if i # j = ¢(xi) # ¢(Xj)-
Theorem 2. The collection of partial transversals of a family A of

sets form the independent sets of a matroid M(A) .

Any matroid isomorphic to a matroid of the form M(A4) for some
collection A is called a transversal matroid.

Paving Matroids and Steiner Systems

A matroid is uniquely defined by its collection of hyperplanes,
and axioms for a matroid in terms of its hyperplanes are the following.

A collection (” of subsets of S is the set of hyperplanes of a
matroid on S if:

(a) No member of S properly contains another.

(by If Hl, H, are distinct members ofﬂ and x € H, UH, there

2 1 2
exists Hy € ," such that H32 (Hl nHz) U X.
Using these axioms it is easy to prove that if A = (Ai : 1el) is

family of subsets of S such that:
1) 1) =2 25
(ii) Each member Ai of A has cardinal at least d;
(iii) Each d-element subset of S is contained in exactly one of the

sets A_;
i

Then 4 forms the set of hyperplanes of a matroid; matroids
obtainable in this way are called paving matroids.

A particularly interesting paving matroid is the following.

A Steiner system S(d, k, n) is a collection of k-subsets called

blocks of an n-set S such that each d-subset of S is contained in a unique

block.
It is easy to see that the blocks of any S(d, k, n) form the

hyperplanes of a paving matroid.
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§3. Special Matroids

A few matroids will keep on cropping up throughout these lectures.

The simplest type of matroid is the uniform matroid of rank k on
n elements. It is defined by the property that it is on a groundset
of n elements and every k-subset of the groundset is a base. We

denote this matroid by U .
k,n

A uniform matrcid of particular importance is the matroid 02 a
’

often called the 4 point line. It is the smallest matroid which is not
binary, that is representable over the field of two elements. Moreover

we have the basic theorem of Tutte [65].

Theorem. A matroid is binary if and only if it has no minor isomorphic

to 02'4.
The smallest binary matroid which is not representable over the

reals is the Fano matroid which we denote by Fqy. It is the seven point

matroid of rank 3 corresponding to the projective plane PG(2,2). It

has a binary representation by the columns of the matrix below.

1 o o1 1 o 1
F,=0 1 01011
0o 01 01 11

Its dual matroid F;,

has the matrix representation shown over GF(2).

sometimes called the hegtahedron, has rank 4 and

1 o oo 1 1 o
0100101
Fr =
7 0010011
000 1 1 1 1
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In general we shall write M(G) to denote the cycle or polygon

matroid of a graph G and M*(G) to denote the cocycle or bond matroid of G.

However when the graph G is not planar so that there is no

possible source of confusion we may write G or G* to denote respectively
M{G) or M(G*).

5 will be used to denote the graph K5 and its
equivalent geometric form, the three dimensional Desargues' configuration.

In particular K

It is a useful exercise to carry out this identification. An instant
corollary is that, the Desargues configuration has automorphism group

isomorphic to SS'

Now take the Desargues configuration and join by a line each pair of

points which are not collinear in it. The resulting configuration of

10 points and 15 lines will form the Petersen graph Pl Its cocyle

o"

matroid occurs frequently in lectures 7 and 8 and is denoted by PIO .

The bipartite graph K is another graph whose matroids recur

3,3
in matroid theory. Again we often write K§ 3 to denote M*(K3 3).
r ’

Plo K3.3

All the matroids we have described above have been representable
over some field, graphic and cographic matroids are in fact representable

over every field. BAn example of a matroid which is representable over
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no field in the following matroid which is sometimes described as the

vamos matroid, V It has eight elements a,b,c,d, 1,2,3,4 and rank 4

8"

and its bases are all 4-sets of the groundset except the set ot of 'lines

defined as follows: Take
a = {all}l B = {b12}1 Y = {CI3}I § = {614}-

Then ot is the set auB, auy, aué, Buy, Bud, but not yu§é.
The reason why it is not representable over any field is easy to see.

V8 can be 'represented' in 3 dimensional Euclidean space as follows.

. &

By pestulating o UB etc. to be members of < we are demanding that

a,b 1,2 etc. are coplanar. However if we have a 'true' embedding of

V8 in Euclidean space we have made so many sets of points coplanar that
we would force c,d, 3,4 to be coplanar - however since we demand y U § ¢ J
This is not the case. Hence V_ is not representable.

8

§4. Excluded minor theorems

We have already seen one excluded minor condition in §3 where we
noted Tutte's theorem characterising binary matroids as those which have

no minor isomorphic to U Much of matroid theory is concerned with

2,4°

theorems of this type. The prototype of these theorems is the one



quoted above, Tutte's other big theorems are also of this type and more
recently we have had other excluded minor type conditions found by
Reid [ 70], Bixby [79] and notably Seymour [77], [797, 80 and [81] .

We summarise these results below.

(1) M is binary iff M / Uy y-

*
2,57 U3 50 Fy OF F% .

(2) M is representable over GF(3) iff M ¥ U
Following Walton and Welsh [80] we define EX(M]_’M2""’Mk) to
be the class of binary matroids with no minor isomorphic to Mi’ 1l <i <k.
Then we have:
(3) M is regular, (i.e. representable over every field) iff

Me Ex(F./,F;) .

i i i * * *
(4) M is graphic iff MeEx(F7,F7,K5,K3'3) .

For ¥ any class of matroids F * is the dual class defined by
Me .F * < Me F . Clearly therefore we can dualise (4) to get

(5) M is cographic iff MeEx(F7,F$,K5,K ).

3,3
We shall make extensive use of these crucially important theorems below,

particularly in lectures 6, 7 and 8.

§5. Matroid polyhedra

Instead of axiomatising a matroid by its independent set axioms
+
we could habe defined it as a pair (S,r) where r : 2S + Z satisfies:
for all A,BcS;

(1) r(¢)

(o]
(2) AcB = r(p) < r(B),

(3) r(p) + r(B) 2 r(AUB) + r(AnB),

A

(4) r{x} <1 xes.

347
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Here of course r is the rank function. If we drop the constraint
(4) and have a function p satisfying just (1), (2) and (3) we call

(S,u) an integer polymatroid, and if we allow u to take non-integer

values we have just a polymatroid.

U is called the ground set rank function. It defines a polyhedron

P in ]R; by the 2" +n inequalities (n = ISI) of the form:

[\

XepP < z xiSp(A) AcsS, X,

o,
. i
iehA

we call P the independence polytope of the polymatroid. The vector rank

r(a) of a vector ee]Rs is then given by

r(a) = min{a(a) + p(s\a)} .

Acs
We often write PP = (S,P,u) to indicate that P has ground set rank function
p and independence polytope P.
An alternative definition of a polymatroid is as follows.

Definition 2. A polymatroid is a pair (S,P) where S, the ground set

is a non empty finite set and P, the set of independent vectors inIP is a

+
non empty compact subset of ]RS in the space IRS such that

(a) every subvector of an independent vector is independent
(b) for every vector a in IR;, every maximal independent subvector
x of a has the same modulus, r(g) , the vector rank of a inP .
It is not that difficult to show the equivalence of the two above
definitions, details are given in [Welsh 76, Chapter 18].
The two crucial properties of polymatroids are the following results

of Edmonds [70].



Theorem 1. If P is the independence polytope of an integer polymatroid
all the vertices of P are integer valued.

Proof. (Sketch) Consider any vertex v of P; choose a linear function
which achieves its maximum over P only at v. By the greedy algorithm
(see §3.1) there is an integral solution which is optimum. Since v is
the only solution v must be integral.

Theorem 2. If P., P, are the independence polytopes of two integer

1 2

polymatroids then all the vertices of Pl nP2 are integral.

Proof. Much harder: see Lawler [76].

349



350

3. Matroids and Algorithms

§1. The greedy algorithm

In 1957 R. Rado realised that a well known and simple minded
algorithm for finding a spanning tree of a graph which had a maximum
weight over all weighted trees could be generalised to give an algorithm
which would find a base of maximum (or minimum) weight in any matroid.

Indeed more can be said: .suppose that S is a finite set and

+ . . . S + .
w : S >R is a weight function. Extend w : 2° - R by letting

w(BA) = I w(x) (Acs) .
X€EA

Let F be any collection of subsets of S which satisfies the conditions
(i) g ¢ &F
(i) ae &, Bca=> Bed .
Define problem (& ,w) to be the problem of finding a member ofg

of maximum weight.

For a given such & and w let X(&F ,w) be the subset of S obtained

by the following procedure:
(1) Select element x € S such that {x} € J and such that w{x} is
a maximum over all such x.

(2) Let X = {x}

(3) Select ye S\X such that Xu{y}e JF and such that of all such
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y, w(XUuy) is a maximum. If no such y exists stop.

(4) Let X = Xu {y} and return to (3).
It is not difficult to prove

Theorem 1. If P is the collection of independent sets of a matroid
then for any non negative w, X(& ,w) is an optimum set. Conversely
if X(& ,w) is an optimum set for all possible choices of w 2 O, then &F
is the collection of independent sets of a matroid.
Proof. Straightforward see Welsh [76, Chapter 19].

The procedure of getting the set X (& ,w) above has been aptly
christened the greedy algorithm, and an appealing axiomatisation of
matroids is "that they are the only structures for which the greedy

algorithm works for all choices of non-negative weight function".

§2. The union of matroids

Let Mi(1SiSk) be matroids on the sets Si(lSiSk) which may or may
not be disjoint.
The union of the Mi’ denoted by MlV...VMk is the matroid on

S = Slu...usk in which a set X is independent if and only if

>
]

XlU...U)S(

where Xi is independent in Mi. If r, is the rank function of Mi' then

Mlv"'ka has rank function, defined for all AcS by

(1) r(A) = min (r X+..4r X + [a\x]) .

XcA

k

This construction in matroid theory has many applications, see for example
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the article by A. Recski in this volume.

It is also important because it can be proved by perhaps the first
example of a 'good' but non-trivial algorithm in matroid theory. More
precisely suppose that in the above situation we wish to know whether or

not the ground set S can be partitioned into sets Il,...,Ik such that for

1 <3 <k, Ij is independent in Mj. Edmonds [65] has produced an algorithm
which does this in polynomial time provided that whether or not’'a set X
is independent in Mj can be decided in polynomial time. This algorithm

known as the matroid partitioning algqQrithm, produces constructive proofs

of the result (1) and has an interesting 'dual algorithm' called the

intersection algorithm.

Consider first the following well known theorem, see Welsh

{76, Chapter 8].

Theorem 1. If Ml and M2 are matroids on S then there exists a set X

with ‘X] 2 k and which is independent in both M, and M, if and only if

for all Acs,

rl(A) + r2(S\A) 2 k.

It is not difficult to deduce this result from (1) by duality

theory. Correspondingly, provided there is a fast algorithm for

recognising independence in both Ml and M2 there is a 'fast', that is

polynomial, algorithm for finding a set X of maximum weight w(X) and
which is independent in both Ml and M2' This algorithm, known as the

'matroid intersection algorithm' is well described in Lawler [76]



§3. The Shannon switching game

A very nice application of the partitioning algorithm is that it
gives a polynomial algorithm for the following game, commonly called the

Shannon-switching game but which we shall call EDGE - HEX.
In §1.6 we defined the game VERTEX - HEX in which two players

alternately colour vertices of a graph in an attempt to join (or cut)

two specified vertices.

EDGE - HEX is exactly the same game except that instead of
colouring vertices the players alternately colour edges of G.

Call a graph G (and a pair of specified vertices) a join graph if
there is a winning strategy for the join player whether or not he goes
first. Similarly G is a cut graph if the cut player can win against all
possible strategies of the join player, no matter who goes first. Finally

G is a neutral graph if the player who goes first can win against all
possible strategies of the other player. Mutually exclusive possibilities

are illustrated in the example of Figure 1.

u
u u
v
v
(a) neutral graph (b) join graph (c) cut graph

Figure 1
Lehman [64] characterised join graphs in the following theorem:

Theorem 1. The game (G,u,v) is a join game if and only if there exist

1’ T2 on the same subset of vertices

v(T;) = V(T,) <V(G) such that {u,v} cv(T,).

two edge disjoint trees T



Similar 'derived' theorems characterise cut and neutral graphs.

More importantly, it is reasonably straightforward to apply the

partitioning algorithm of the last section to give a polynomial algorithm
which decides whether or not a graph G is cut, neutral or join. 1In
other words we have the dichotomy when comparing with §1.6.

(1) Deciding whether the firstplayer can win VERTEX HEX is complete
in P-space but the same problem for EDGE HEX can be done in

polynomial time.

§4. A polynomial algorithm for k-connectivity

A matroid M on S is connected if there exists no proper subset

A of S with
r(A) + r(s\a) = r(s) .

It has been known for some time that there exists polynomial algorithms to

test whether a matroid is connected or not (see for example Cunningham [737).

More recently Cunningham and Edmonds (1979) have announced a
polynomial algorithm to test for a given matroid M whether or not it has

a k-separation, that is a set AcsS, such that

(1) r(A) + r(s\A) < r(s) + (k-1)

where both [AI and 'S\Al are not less than k.

As we shall see in 86.4 in connection with Seymour's decomposition
theorem for unimodular matrices we will need to decide whether or not
a given matroid has such a separation. The following method shows the
existence of such a polynomial algorithm provided independence in the

matroid can be checked in polynomial time.
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By the matroid intersection theorem, two matroids My, M2 with

rank functions r have a common independent set of size t iffY Y cs,

17 T2
(2) r (¥) + rz(S\Y) > t.

For the given matroid M on S consider

<4
1

(M\xl)/x2 ,

<4
1

(M\Xz)/Xl .

Then Mi onT = S\(XllJXZ) has rank function ri, for UcT, given by

rl(U) = I(ULJXZ) - r(xz)

r2(U) = r(UlJXl) - r(Xl).

Using (2), Ml' M, have a common independent set of size t if and only if

2

for all U cT,

r((T\U)k)Xz) + r(Ulel) >t + r(xl) + r(Xz).

This proves the validity of the following algorithm:
Algorithm
(1) Select pairs of disjoint k-sets (Xl, X2) in turn,

(2) For each pair (Xl’ X2) use the intersection algorithm to decide

if Ml' M2 above have a common independent set of size t where t is

chosen so that

t + r(Xl) + r(X2) = r(s) + (k-1) .

(3) If no such independent set exists then the corresponding (Xl, X2)

induces a k-separation of M, otherwise M has no k-separation.



Clearly this is polynomial since the intersection algorithm is

polynomial and the number of ways of picking the pair (Xl, X2) is

0(n2k).

For more on connectivity see §6.2 below and also the article by

J.G. Oxley in this volume.
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4. Lovasz's Attack on the Parity Problem

§1. The parity problem

The classical parity problem seems to have originated with E.
Lawler in (1971) when it was defined as follows.

Given a matroid M on S and a partitioning of S (taken to be a

set of even cardinality 2n) into blocks of size 2, say
{el,él}, {62’52]' e {en'gn}'

find an algorithm for deciding whether or not M has an independent set X

of cardinal t with the property that e, e X if and only if its mate

ei € X. Such a set is called an independent parity set.

The above is called the 2-parity problem to distinguish it from the

k-parity problem in which we take ISI = kn, and we partition S into disjoint

blocks Ei' where lEiI =k, 1 £1i £ n, and we wish to decide whether M has
an independent set X, of cardinality t such that if ani # @ then xggEi.

We first remark that the 'k-matroid intersection problem' is a
special case of the ‘'k-parity problem'.

Proof. Let Mi' 1 <1i <k, be matroids on §. Take Sl,...,Sk to be disjoint

copies of S and let Mi be an isomorphic copy of Mi on the set Si' Let



Define the k-parity sets for S' = Slu...USk in the obvious way:-

k . :
a given block is {ei,...,ei} where ei is the copy of ei €S in the set Sj'
It is easy to see that there is a 1-1 correspondence between k-parity sets

of N and intersections of the k matroids Ml""’Mk' 0
Hence since the k-matroid intersection problem reduces in a special case

to deciding whether k families of sets have a common transversal, and this

is NP-complete, we have shown:

(1) For k > 3, the k-parity problem is NP-hard.

However for k = 2 the situation is different.

First note that the 2-parity problem cannot be 'extremely' easy
since it certainly includes 2-matroid intersection, which is not trivial.
It also includes the problem of finding a maximum matching in a graph.

A matching in a graph G = (V,E) is a subset FCE such that no two
members of F are incident with a common vertex. Finding a maximum
matching in a graph is a highly non-trivial problem but it does have a

polynomial algorithm (Edmonds (65)).

It is not difficult to prove:

(2) MAXIMUM MATCHING « 2-PARITY.

Proof. Replace each edge e, of G by a pair of edges fi'fi with a new
vertex between them. Let G' = (V',E') be the graph so obtained. If c;

is the collection of sets XCcE' such that no two edges of X are incident
with the same vertex of G', unless it is one of the new vertices created

by subdivision, then it is not difficult to verify that & is the collection
of independent sets of a matroid M on E'. The 2-parity problem for M

with fi and Ei as mates solves the maximum matching problem for G. ]



§2. 2-polymatroids

We have already met polymatroids in §2.4. Here we concentrate
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on a special class of polymatroids, called by Lovdsz [80], 2-polymatroids.

Recall that a polymatroid can be defined as a pair (S,u) where

u o 2S +-R+ satisfies

(1) u(¢) o,

(2) AcB = u(A) < u(B),

(3) w(A) + u(B) 2 p(AUB) + p(AnB).

The pair (S,u) is a 2-polymatroid if in addition we restrict u to
taking only integer values and to satisfy the constraint

{4) u({x}) =2 for allix €S.

Note first that an immediate consequence of (3), (4) is:

(5) For all Xcs, p(x) < 2|x|.

First some examples:

Example 1. If Ml and M2 on S are matroids with rank functions r and r2

then (S,rl+r2) is a 2-polymatroid.
Example 2. If S is any collection of lines (= flats of rank 2) in a
matroid and we define

u{kl,kz,...,lk} = r{llu...ul }

k

where r is the rank function of the matroid then (S,u) is a 2-polymatroid.
Example 3. If G = (V,E) is a graph with no loops and for XcE we define
u(X) to be the number of vertices of G which are incident with X then

(E,u) is a 2-polymatroid.
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A set X<S is a matching in the 2-polymatroid (S,u) if

uwx) = 2|x],
and the cardinality of a maximum matching we denote by v(S,u), or when
there is no ambiguity by v(S).
Intuitively we may think of v(S,u) as the ‘'cardinality of the

largest independent set in the polymatroid’.

Thus in the examples above we have:

Example 1. vy(S,r +r2) is the maximum cardinality of a set independent

1

in both Ml and M2.
Example 3. V(E(G),u) is the (maximum) cardinality of a set of pairwise

disjoint edges, often denoted by a(G).

The relationship with the 2-parity problem is a conseguence of the
following proposition.
Proposition. Finding a maximum 2-parity set in a matroid is no harder

than finding a maximum matching in a 2-polymatroid.

Proof. We assume M is simple on S = Sl u52 where

s, = {ej,uive ), s, = {él,...,én} .

are disjoint sets.
Let Zi (1<i<n) be the line of the matroid M which contains the pair

ei’éi‘ Let L = {El,...,kn} and let (L,u) be the 2-polymatroid defined by
u{zl,zz,...,lk} = r{klu...uzk}

where r is the rank function of M. It is easy to verify that this in fact
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does give a 2-polymatroid. Moreover {El,...,lk} is a matching of size

k in (L,p) if and only if
u{ﬁl,...,lk} = 2k
which is the case if and only if {el’gl’ek""’ek'gk} is an independent

parity set of size 2k in M. O

§3. The Gallai-Lovasz Identity

Consider Example 3 of the previous sections. A well known identity
of graph theory due to Gallai [61] relates &(G), the maximum number of
disjoint edges with B(G), the minimum number of edges needed to cover

all the vertices of G by

(1) a(@) + 8@ = |v@] .

Suppose we denote by p(S) = p(S,n) the minimum cardinality of a
set XcsS such that p(X) = p(S). 1In other words, p(S) is 'the minimum
cardinality of a spanning set'. Then we can prove the following result

of Lovasz [80].

Theorem 1. 1In agz»Z-polymatroid (s,w),

v(S) + p(S) = u(s).

This obviously gives Gallai's Theorem [6171 as a special case.
When p is the sum of rank functions of two matroids Ml and M2,
Example 1 above, it relates the maximum size of a common independent in

the two matroids with the minimum size of a set spanning in both matroids.
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In order to prove Theorem 1 we need the following lemma.
lemma. Let (S,p) be a 2-polymatroid and let A be a maximum matching. If

Wyt 25 +~ Z is defined by

uA(X) = py(AuX) - u(a) (xcs)

then (S,uA) is a matroid.

Proof. uA(¢) = 0.

uA(x) + uA(Y) = pu(AuX) + p(AUY) - 2u(a)

v

> p(AUXUY) + (AU (XnY)) - 2u(a)

uA(x uy) + uA(xny)

so that p is submodular, and clearly increasing. Moreover
uA{x} = u(Avu {x}) - u(a), so that if x €A, uA{x} = O while since A is a

maximum matching uA{x} < 1 when x ¢A. 0

Proof of Theorem 1. Let (S,u) be a 2-polymatroid and let T be a subset

of S of minimum cardinality such that p(T) = u(S).
Let A be a maximum matching in T, that is A is a set of maximum
cardinality which is contained in T and for which
pwa = L u(x) = 2|al .
X€EA

Let X = T\A, so that

]

u(s) u(T)

= u(AuU (T\A)) .

Thus using the lemma
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u(s) = uA(T\A) + p(A)

< |T\A| + p(R) = |T\A| + 2[A|
< |t| + |a] .
Hence we have
(2) p(s) = |T| 2 u(s) - |a] = u(s) - vi(s).

On the other hand, suppose that A is a maximum matching in (S,u) and suppose

that X is a basis of the matroid (S,uA). Then

BAUX) = u(B) + u,(X)
= w(@) + 1, (8\A) = u(s)
since all the elements of A are loops in (S,UA). Hence p(S) < ‘AKJXI. Thus
p(s) < [aux| = [a[ + [x] = [a] + w0
= [a] + u,(s\a)
= |a| + ues) - w(@)
= |a] + u(s) - 2|a|
= u(s) - |al
= u(s) - v(s)
and this with (2) completes the proof. 0

We close this section by remarking that it is easy to find examples
to show that Theorem 1 fails when (S,u) is a polymatroid but not a

2-polymatroid.
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§4. A min-max theorem for linear 2-polymatroids

Suppose that P is a projective space. Let Al,...,An be subsets

of P and let § = {Al,...,An}. We can define a polymatroid (S,n)

on S by defining
w(x) = r(uf{a, : A, ex}) (xcs),
1 1 -

where r is the rank function of the underlying space . Any polymatroid

obtained in this way we call a linear polymatroid, and when the Ai are

all lines in P we have a linear 2-polymatroid.

Lovdsz [80a?! proved the following remarkable result.
Theorem 1. Let (S,u) be a linear 2-polymatroid formed by subspaces of a
projective space P. Then

u(Si+A) - r(A)
v(S) = minfr(a) + —_—

W ™Mx

1 2

where A ranges over subspaces of P and {Sl'SZ""'Sk} ranges over all

partitions of S, and where
u(s, +a) = r({uAj : Ajesi}UA) .

The proof of this theorem is difficult, we can do no more than
sketch the main idea.

First, however, we describe an equivalent formulation. This was
the original geometrical result proved by Lovasz in (1978).

Let 4¥ be a set of subspaces of a projective geametry. A

subfamilyggf J( is called independent if no member of F intersects the
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flat spanned by the other members.
Theorem 2. Let# be a set of lines in a projective space . Then the

maximum number \J(“) of independent lines in K is equal to the minimum

value of
k r(Ai) - r(A)
r(pA) + I -_—
i=1 | 2
where A,Al,...,Ak are flats of P such that AEAi (i=1,2,...,k) and

each line inc‘l which does not intersect A is contained in some Ai, and r
is the rank function of the underlying projective space IP

We leave it as a (not difficult) exercise for the reader to show
the equivalence of Theorems 1 and 2.

As part of this we state without proof:
(1Y Let F be a set of lines in P, then r(g) < 2[3[ with equality if
and only if j is an independent set of lines.

Sketch Proof of Lovasz's Theorem 2

First we show that if 3 is any set of independent lines and
A,Al,...,Ak are subspaces such that ASAi and each line of J either meets
A or is contained in some Ai, then

r(Ai) - r(a)

2

k
]3] < r(a) +-2

i=1

Let 31 and 30 denote the set of lines of ,} which are contained

in Ai and which meet A respectively.

1] 1
Let Al be the subspace of P spanned by 31 - ‘?, N 3—0.
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Let Aé be the subspace spanned by 32\ 3‘1\ '}O and in general let
' f_
Al be the subspace spanned by 31 '?i\ }i—l\ gi_z\...\ }l\ ‘?0 N
Then

/,
ra)n = 2| 3]
and more generally
Ll - '
ray) = 2] F

and moreover the spaces Ai are clearly independent and hence so are the

spaces Aj'_nA, 0 <i <k. Thus

k
r(d) 2 I r(A!nAa).
1
1
But
r(A! nA) = r(a!) + r(A) - r(A! UR)
1 1 1
2 r(Ai) + r(a) - r(Ai).
' r(Ai) - r(A) r(Ai nAa)
13 =% @) < 5 + 3
r(Ai) - r(A)
£ ———————— + r(A! nAa),
2 i

and using integrality.

IA

r(a) - r(a
S S
2 J

il

+ r(A! na),
i

k k r(Ai) - r(a)
| F! =z ],yils.z —=——— | +x(AlnA) + xr(alnn)
i=0 i=l  |_ -
k r(a;) - r(a)
i=1
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which proves one half of the identity.

We now prove the converse by induction on v(?) .
Case 1. There exists a point p in the projective space P such that p
is contained in the span of each collection of \)(3‘) independent lines.
Project from p onto a hyperplane of P not going though p, (that is
contract p out of the underlying matroid). This gives a collection Z}

1

of independent lines. We assert l?ll < \)(?) - 1 for suppose that
| 91| = wh.

Then the original lines in ? must have formed a set of v(:f) independent
lines.
-1
But pe¢ span (f (U’l)).
Hencep and the set of lines 5‘1 are in a space of rank 2\)(?) . Thus
the lines 31 are contained in a space of rank 2v(F) - 1.

But it is impossible to have v(,?) independent lines in a subspace of

rank 2v(F) - 1.

Hence v(\}l) < wF - 1.

Hence by the induction hypothesis there exist flats A' ,A',...,A}‘c in
this hyperplane H such that each line of 3‘1 not intersecting A' is
contained in some A]_'_, a' SAi , and
kKojr@ap - r@an |
(*) viF) -1z x@a) + ) —_——

i=1 |_ B
Now take A to be the flat spanned by A' and p and Ai to be the flat

spanned by A! and p for 1 £ i £ k, and we obtain the required set of
i

flats inP.
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For clearly the right hand side of (*) is increased by 1 if we
replace A', Ai by A and Ai respectively. Moreover if a line % does not

intersect A its projection &' does not intersect A' and hence &' is

contained in some A{ which implies % is contained in Ai .

Case 2. For each point p ¢PP there exists a set of V(@) independent lines
in & whose span does not include p.

This is the hard part of the proof, and we can only make a few remarks

to illustrate the difficulty.

a) Any A achieving the minimum on the right hand side of the equation
must be empty for otherwise it can be shown that a p exists for
which Case 1 applies.

b) Because of (a) we need to show that there exist pairwise

disjoint flats A Ak in P such that each line of & is

17

contained in one of these Ai and moreover

v(E;) = v1+...+vk

where r(Ai) = 2vi +1, 1 <i<k.

This implies that each collection of V(E;) independent lines in E; has

vi lines which are contained in Ai .

§5. On a polynomial algorithm for the 2-parity problem

Consider now the algorithmic problem.
m, : INSTANCE: A 2-polymatroid (S,u) and an integer t.

QUESTION: Does (S,u) have a matching of cardinality 2 t?

We are interested in the question whether or not ﬂl has a polynomial

algorithm subject to the proviso that we can obtain the rank uX of an
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arbitrary set X in time which is a polynomial function of IX‘.

By taking the special cases of u discussed in §2 any such algorithm
would be a polyncmial algorithm for the graph matching problem and

the matroid intersection problem, and hence is unlikely to be trivial.

Indeed Garey and Johnson [79, p. 287] pose as an open problem that of

deciding whether or not the following problem ﬂ2 is NP~complete.

m, : INSTANCE: Graph G = (V,E) and a partition of E into disjoint
2-element sets El,...,Em .

QUESTION: Is there a spanning tree T = (V,E') for G such that for
each Ei' 1 <i <€ m, either Ei CE' or EifWE' = ¢?
This is clearly a special case of the matroid parity problem in which the
underlying matroid M is graphic.

Now consider Lovasz's Theorem 4.1. Provided we are given a 2-linear
polymatroid represented in the projective space we can nondeterministically
either

"produce a set of k independent lines, that is a matching of size k"
or

"produce a set A and a partition {S .,Sk} of S such that

1'°°
k | w(s;+p) - r(a) "
r(a) + ¥ | ————— <k
. 2
i=11_

and more importantly we can check these assertions in polynomial time.
Thus in the terminology of Chapter 1 we know ™ is a member of

(NP) n (co-NP), and hence in view of our earlier remarks it would give some

hope that there exists a polynomial algorithm for L
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This LovAsz has produced. It is an extremely complicated algorithm,
of high polynomial complexity, and of course only works for linear
polymatroids which are represented not just representable in some
projective space.

There is fairly strong evidence (see 5.3 below) that the matching
problem for general 2-polymatroids is not solvable in polynomial time,

however it is also clear that there do exist polynomial algorithms for

certain classes of 2-polymatroids which are not representable - for
example any polymatroid (S,u) for which p can be written as the sum of two
rank functions. Extending this class is an interesting but almost

certainly formidable problem.

§6. Pinning planar structures

As a nice application of Lovdsz's theory we consider a problem
arising in the theory of rigid structures.

Consider a graph G whose vertices are points in the Euclidean
plane and whose edges are rigid bars with flexible joints at the vertices.
Suppose that some of the bars are pinned down to the plane. An

infinitesimal motion is an assignment of a velocity v(x) to each vertex

x such that for every edge (x,y) of G,

(v(x) - v(y).(x-y) =0

and

v(x) =0 if x is pinned.
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A structure is rigid if its only infinitesimal motion is v(x) =0 V’
x e V(G) .

Deciding whether or not a structure is rigid is a straightforward
exercise in linear algebra. The pinning number w(G) of a structure is
the minimum number of vertices which need to be pinned in order to make
G rigid.

First note, that although we represent m as a function only of G,
in reality it is a function also of its representation in the plane. An

easy illustration of this is provided by the following example.

Example. G v —°

G and G' are isomorphic graphs but 7(G) = 3 whereas m(G') = 2.

Now consider the action of pinning down a vertex; in general such an
action will reduce the dimension of the vector space of possible motions
by exactly 2. Using this basic idea it is not difficult to see (for
a rigorous account see Lovasz [80]) that finding the pinning number of a
planar structure is exactly the problem of finding a minimum spanning set
in a 2-polymatroid.

But by the LovAsz-Gallai identity this is equivalent to finding
the cardinality of a maximum matching and this can then be done by the
2-parity algorithm.

It is interesting that Mansfield 807 has recently shown
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that finding the pinning number of a structure in 3 or more dimensions is
an NP-complete problem and so there will only be a polynomial algorithm

if NP = P.
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5. Oracle Bounds on Algorithms

§1. The concept of an oracle

There are f(n) non-isomorphic matroids where

2n—3/210gn+0(loglogn) 2n-5logn+0(loglogn)
2 < f(n) € 2

so as pointed out in Robinson and Welsh [80] there is little hope of doing
large-scale computing on matroids; for what ever possible way of representing

a matroid is chosen the 'data base' or 'size of input' for a matroid problem
on an n-set will be 0(2%) .

Accordingly the complexity of matroid computations is often
measured in terms of the number of demands made on various possible

oracles. For example in Robinson-Welsh an independence oracle (J'-oracle)

is a function I which for any set S and matroid M on S, and any AcS, tells
us whether A is independent or not in the matroid M. Formally
YEs if ae Jm

I(A) =
NO if not.

A property P of matroids is any collection of matroids which is
closed under isomorphism, i.e. if MeP and N=M, then NeP. If Pn denotes
the property P restricted to matroids on n-sets then the complexity of Pn

with respect to the Cr~orac1e is defined to be the maximum number of

calls on the oracle in a minimum algorithm to decide whether or not a
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matroid M on an n-set has or has not the property P, where the maximum is
taken over all possible matroids M on an n-set. This concept is made
rigorous in Robinson and Welsh [80] and can clearly be defined for other
matroid oracles such as the following.
(1) A base oracle (B—oracle) which tells us whether or not a
given set is a base in the matroid under construction.
(2) A circuit (‘-oracle) which tells whether or not a set is a

circuit.
(3) A rank (ﬂ—oracle) which gives the rank of any set.

Two matroid oracles 91, 02 are polynomially equivalent if there

exist polynomials f , g such that for any property P of matroids,
(o] P ) < f(n) C P
91( n (n) 92( n)

and
Col(Pn) < g(n) Cez(Pn) ’

for all n, where CQ(Pn) denotes complexity with respect to the o-oracle.
Proposition. The J and R oracles are polynomially equivalent and are not
polynomially equivalent to the B and @ oracles.

Proof. That d and R are polynomially related is not difficult to see.
The non-equivalence of the other oracles is achieved by constructing

various examples, such as taking P to be the property LOOP of having a

loop. Then

C!(LOOPn) = C5(L00Pn) = n,



whereas for n > 1,

(LOOP ) = n"3/2 gk

C
®B
Similarly if FREE is the property of having every set independent,

CO (FREEn) = Ce(FREEn) =1

2" -1 0

]

(FREE )
n

‘%

§2. Examples and further results

It is clear that the greedy algorithm discussed in §3.1 gives a

very fast algorithm with respect to the tf -oracle. Similarly all the other

examples 'which worked' in Chapter 3 such as matroid intersection and

having a given connectivity are polynomial algorithms with respect to the
:f -oracle.

However, our next theorem shows that these examples tend to be
the exception rather than the rule.

We,show that with respect to the above oracles 'most' properties
are exponential. More precisely we consider binary oracles, i.e. oracles
which accept as input any set and only give YES-NO answers, and prove the
following theorem.

Theorem. For any binary oracle 9 and any o such that

aln) < e(n—3/2)logn
lim |D_(n) |/M(n) =0
n>e @

where Da(n) denotes the set of properties Pn of n-element matroids which

have Ce(Pn) < o(n), and M(n) denotes the number of different properties
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of matroids on an n-set.
Proof. See Robinson and Welsh [807].

In other words we know that "almost all" matroid properties are
exponential with respect to any binary oracle.

Since the rank oracle, while not binary, is polynomially equivalent

to the gj ~oracle, a similar result holds for the rank oracle.

Other less natural oracles have been considered by some authors.
For example Jensen and Korte [80] consider the GIRTH oracle (ﬁ:—oracle),
defined to give for any matroid M on S and any, T<S, the length of the
smallest circuit in the matroid M?T.

It is easy to find a polynomial p such that for any property P,

C’ (PX;) < p(n) Cd (0:8)

and at the same time to exhibit properties which are exponential with
respect to J but polynomial with respect to f . In other words the
15 ~oracle is strictly stronger (with respect to these measures of
complexity) than the independence oracle.

However the search for the 'best oracle' for matroid problems is
in reality a hopeless quest since in practice in order to set up this

'best oracle' we would need to do an exponential amount of work.

§3. The 2-PARITY problem is exponential

As an example of the 'oracle' approach we prove the following

proposition of Lovasz [80] and Jensen and Korte [80] which is of direct

interest to the work of Chapter 4.



Proposition. With respect to the rank oracle the 2-parity problem is
exponential.
Proof. Consider the family of polymatroids or more precisely the 2-pnly-

matroids (S,u) defined by

2|x{, %] =t
u(x) = 2t+2, [X] 2 t+2
e{2t+1, or 2t+2} x| =t .

Then for all possible assignments of the rank p on t-element sets u is a
polymatroid rank function for t =z 1. Let A be any algorithm based on the

rank oracle and apply to the 2-polymatroid (S"‘b) where

2lx]  if x| <t
ue (X = 2t41  if  |x| = t81
2t+2  if  |x| 2 t+2 .

We assert that A must ask the oracle for uo(x) for each Xc S which has
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|X| = t+l. For suppose not, then there exists X, <S, ]Xl‘ = t+l whose rank

uo(Xl) is not probed.

Now consider the 2-polymatroid (S,ul) where

A

2lx]  if x| <t
w0 = got+l if Ix] = t+1, x # %)

2642 if X = X or [x] = t+2 .

Since for all sets X for which the algorithm has asked for uo(X) we have

uO(X) = ul(X) the algorithm A must give the same answer to the input
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polymatroid (S,uﬁ as it does to the input polymatroid (S'HJ' This is
impossible since the maximum size of a matching v(S,uo) is t while
v(s,ul) = t+l.

Hence the algorithm must ask for all (til) values uo(x), }X| = t+l.

Thus provided we let

v= BRI
2
we have
(L3 > @2-an
for sufficiently large n and this prove the proposition. 0O

Note: This result contrasts with Lovdsz's Theorem 4.5.1. However with
|S| = 4 and t = 1, the polymatroid (S,ul) above is the Vamos matroid, or
more precisely is the set of lines of the Vamos matroid (see §2.3)

which is well known not to be representable over any field.
For a more complete treatment of these topics we refer to the

recent papers of Robinson and Welsh [807], Jensen and Korte [80] (where very

many properties are shown to be exponential) and Hausmann and Korte [80].
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6. Seymour's Characterisation of Regular Matroids

§1. Binary and regular matroids

In his fundamental papers, Tutte [58], [59] characterised matroids
which are binary, that is representable over the field GF(2) and regular,
that is representable over every field by the following theorems.

Theorem 1. A matroid is binary if and only if it has no minor isomorphic

to U2’4

Theorem 2. A matroid is regular if and only if it has no minor isomorphic

*
to U2'4, F7 or F7 .

An easy consequence of Theorem 2 is that M is regular if and only if it is
representable over every field. Another characterisation of regular
matroids is that they are binary matroids which can also be represented
over the reals by the columns of a matrix of the fornx(lr,A)where Ir is

the unit r X r matrix and A is an r X (n-r) totally unimodular matrix (i.e.

all its submatrices have determinants in the set {0,1,-1}).

Well known properties of regular matroids are:

(1) A minor or dual of a regular matroid is regular.

(2) Graphic and cographic matroids are regular.

This last result is especially significant in view of the recent
result of P.D. Seymour [807] which characterises regular matroids as

those which can be built up by 'sticking together' graphic and cographic

matroids and copies of a single matroid on 10 elements (we call it Rlo and
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define it later).
Apart from the beauty of Seymour's theorem and the fact that it
explains why many theorems about graphs are often extendible to regular

matroirds, the methods he used to develop this proof, notably splitters

are proving to be a major tool in other problems in matroid theory.

§2. Splitters

Before we can properly discuss splitters we need the more familiar

notion of a k-separation.
A matroid M(S) has a k-separation for some integer k if there exists

Acs, with |a] 2 k and |S\a| 2 k such that
r(a) + r(s\n) < r(s) + (k-1).

Thus a matroid has a l-separation if and only if it is disconnected or
is l-separable.

If éF is a class of matroids which is closed under the taking of
minors we say that Ne } is a splitter for ; if every Me F with a minor
isomorphic to N either has a 1 or 2-separation or is isomorphic to N.

The first thing to note is that classes of matroids which have
splitters are not easy to find. The existence of a splitter for a class

usually seems to mean a fairly significant structure constraint on the
class.

For example we can assert:

(1) The class of binary matroids has no splitter.

Proof. Suppose Mo is a splitter, then there exists a large binary projective

space containing Mg and this is not 2-separable,contradiction.
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(2) The class of graphic matroids has no splitter.
Proof. As in (1) with a complete graph taking the place of the projective
space.

Probably the first splitter to appear in the literature (though
it was not called by this name) is implicit in the proof by Wagner (647
that the truth of Hadwiger's conjecture for the case n = 5 is equivalent

to the 4-colour theorem. Let V, denote the graph of Figure 1, the

8

Mobius ladder.

1
d

/ {
/
/

[ )

Figure 1
Then
(3) M(VB) is a splitter for the class of graphic matroids with no
minor isomorphic to M(KS) .
Before stating the key proposition in the search for splitters we
need one more definition.
1f F is a class of matroids closed under the taking of minors we
say Ne M is compressed in JF if:
(a) N is a geometry, that is, has no loop or parallel elements;
(b) If Mc F and M\e = N then either e is a loop of M or e is a

loop of M* or e is parallel to some other element of M.
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In other words a geometcy Nc¢ F is compressed in F if there is no
non~trivial single element extension of N in the class EF .

Then we can prove the following proposition which gives us a
straightforward method of deciding whether or not N is a splitter for a
class of binary matroids.

Theorem 1. Suppose that e; is a class of binary matroids which is closed
under the taking of minors and under isomorphism and Ne¢ JF . If N is
non-null, connected and satisfies:

(1) N is compressed in F ,

(ii) N* is compressed in EF *,

(iii) N is not isomorphic to the polygon matroid of the wheel Wn
for any n 2 3;
then N is a splitter for E;.

The wheel wn is the graph on n + 1 vertices, n of which form the

rim, with the remaining vertex (the centre) joined to each of the rim

vertices.

We illustrate the use of Theorem 1 by showing how it gives us a

very important splitter.

(4) F; is a splitter for the class of binary matroids which have
no minor isomorphic to F7.

Proof. F; is certainly non-null and connected. It is a geometry, and

will therefore be compressed in Ex (F7) if we can show that if Me Ex (F7)

and M\e = F; then e is either a loop of M or of M* or e is parallel to

some other element of M. But this is proved by brute force checking all

possible binary single element extensions of F;. In exactly the same way

we can show (F;)* =F, is compressed in Ex (F;) and since F; is certainly



383

o]

not a wheel (4) follows from Theorem 1.
The reader may well puzzle over the significance of the 'wheel
condition (iii)' in Theorem 1. The explanation is that without it the

proposition fails, for example if ‘} is the finite class of minors of

w then W_ satisfies the conditions (i) and (ii) but W is not
n+l n n+l

2-separable.

Although most of the applications of splitters to date have been
within the class of binary matroids we should note that Theorem 1 can be
extended to non-binary matroids as follows.

Theorem 2. If 3 is a class of matrpids, closed under minors, and under
isomorphism and Ne¢ F is non-null, connected and satisfies in addition
to the conditions (i), (ii) and (iii) of Theorem 1 the additional condition:
(iv) N is not isomorphic to the whirl JOn for n 2 3; then N is a
splitter for & .

The ﬂl_r_l C\')n is defined as follows. Consider the wheel Wn' it
is a graph on 2n edges. If the edges are labelled in such a way as to
make {1,2,...,n} the rim (or outer circuit) then @n is the non-binary
matroid whose independent sets are exactly the independent sets of Wn except

that in wn' {1,2,...,n} is not a circuit but an independent set. Wheels
and whirls were first studied by Tutte [6€ " who showed that if M on S
is a matroid which is not 2-separable and is not isomorphic to a wheel or

a whirl then for some pe S, M\p or M/p is not 2-separable.

§3. The decomposition theorem

A very interesting regular matroid is the following l10O-element

matroid, which we call Rio and which first occurred in the work of Bixby [771
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It 1s the matroid consisting of the 10 5~vectors over GF(2) each of which
have exactly 3 non-zero entries.

The following properties are routine to check.

(1) Rlo is regular, self-dual but is not graphic or cographic and

= = *
for any e eRlO’ Rlo\e 1(3’3, Rlo/e K3'3 .

More important is the following property

(2) Rlo is a splitter for the class of regular matroids.

Proof. Tedious checking of one-element extensions of Rlo and then using

Theorem 2.1. 0

Now this means that every regular matroid with an RlO minor is

2-separable, except Rlo itself. Hence we may ask, where are highly

connected regular matroids to be found? They certainly exist, for example
graphic and cographic matroids are regular and can be arbitrarily highly
connected. Seymour's main theorem essentially says that these graphic and

cographic matroids together with R are the only 4-connected regular

10

matroids.
Before giving Seymour's result we need one last set of definitions.

If M,,M, are binary matroids on S, and S, respectively we define

1772 1 2

Ml AM2 to be the matroid on the symmetric difference 51 A32 which has as
its set of cycles all subsets of s1 A82 of the form ClAC2 where C; is a
cycle of Mi' (A cycle of a matroid is a union of disjoint circuits.)

(3) when s1 n S2

¢ and |Sl|,|82| < |SlAS we call MlAM2 a l-sum.

b

(4) When S, nS

1 2 {z} say and z is not a loop or coloop of Ml or Mz

and lsl"lszl < |51Aszl' we say MlAM2 is a 2-sum of M, and M,.
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(5) When |S nszl = 3 and S, nS, = C say where C is a circuit of

1 2

both M, and M_ and Isl|,i52| < |Sl AS2 then we say MlA M

2 2

is a 3-sum of M1 and MZ'

In each case we call M1 and M2 the parts of the sum.

Now a l-sum is just the usual direct sum, the 2-sum and 3-sums are
the matroid operations corresponding to 'sticking' two graphs together by
an edge or triangle respectively and then deleting the edge or triangle
in question. 1In either case if we have a matroid M which is the 2 or 3
sum of other matroids, then we have a convenient way of breaking it up
into these smaller structure.

More precisely, in the language of Brylawski [76] we form the

M, and then delete the modular flat

generalised parallel connection of Ml' )

'across which' we are joining Ml and M2.

Seymour's decomposition theorem can now be stated:

Theorem 1. If M is a regular matroid it is the 1,2 or 3 sum of graphic

matroids, cographic matroids, and copies of the 10 element matroid Rlo'
The full proof of this theorem is difficult and long, (94 pages
of typescript!) However we attempt to give the main ideas below.
First we introduce yet another very special regular matroid which

we call R It is the matroid induced by linear independence over

12°

GF(2) cn the columns of the following matrix.



386

1 111000
1 o 110100
1 1 00010

1 01 0001

o 1 001 011

1 0o o0 111

R12 is regular, is isomorphic but not equal to RIZ, and does not contain

Rlo as a minor. It can be alternatively defined as the matroid obtained

by taking the 3-sum across the edges a,b,c of the cycle matroid of Ks\e

of Figure 2

Figure 2

with a copy of M*(K3 3) in which a,b,c are any three elements of K3 3 which
’ ’

form a triad of edges having a common end point.

Throughout, great use is made of the following decomposition lemmas,

which are surprisingly awkward to prove.

(6) If M is binary the following are equivalent
(a) Mis 1, or 2-separable or has a 3-separation (xl,xz) with
Ix, 1, I%,] > 4
(b) M is expressible as a 1,2 or 3 sum of smaller matroids.
(7) If M is binary and M is the 3-sum of Ml and M2 then if M has

no 2-separation, M1 and Mz are both isomorphic to minors of M.

The key steps in Seymour's proof can now be stated.



(8) Every regular matroid which is 3-connected and which is neither

graphic nor cographic has Rlo or R12 as a minor.

(9) If M is regular and M > R then M has a 3 separation (Xl,xz)

12

with |x | 2 6.
1

(10) Every regular matroid with a minor isomorphic to R12 is
expressible as the 1,2 or 3 sum of matroids in the class

Ex(F7,F§,R ).

12
This is really the crux of the whole proof since it essentially
says that a regular matroid which has connectivity 2= 4 cannot have R12 as

as a

a minor and hence by (8) is either graphic or cographic or has RlO

minor. But now, by the splitter theorem (2) we know that if it has RlO

as a minor it is 2-separable and we can look at the parts of the

2-separation and use inductive arguments.

§4. A polynomial algorithm to test whether a matrix is totally unimodular

An important and immediate practical consequence of Seymour's
decomposition theorem is that it leads to an efficient polynomial
algorithm for testing whether or not an matrix A with entries from the set
{-1,0,1} is totally unimodular, that is is there a square submatrix of A
whose determinant is not in the set {-1,0,1}?

This question was one of the outstanding open problems in

computational complexity, see for example Garey and Johnson [79, p. 228].
Its importance lies in the fact that at the heart of many of the

integer programming problems which can be solved in polynomial time is a
totally unimodular matrix. For example the trivial observation that if in a

linear programming problem we have a totally unimodular matrix means in all
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the divisions used when using the simplex method we shall be dividing by

1 and hence will not be moving outside the class of integers.

Theorem 1. There exists a polynomial algorithm for deciding whether or not

an mxn matrix with entries from {0,1,-1} is totally unimodular.

This follows almost immediately from Seymour's decomposition theorem
with a result of Cunningham and Edmonds [80) which gives a fast (that is
polynomial) algorithm for deciding whether or not a matroid is k-connected
for any fixed integer k. We have described such an algorithm in §3.4.

Roughly speaking the algorithm works as follows:

If

Given a binary matroid M test if it is 1, 2 or 3 separable.

not then it is regular if and only if either (a) M is graphic or
(b) M is cographic or (c) M is RlO .

Possibilities (a) and (b) can then be checked by an algorithm of

Tutte 60] (in case (b) applied to M*). Possiblity (c) is trivial to check.

When M has a 1, 2 or 3 separation then we examine the parts and

recursively apply the above procedure. It is not difficult to see that

since the individual subroutines are polynomial the whole programme can be

completed in polynomial time.
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7. Colouring, Flows and Blocking Problems

§1. The blocking problem

In this lecture we relate the fundamental graph colouring problem
with the less well known problem of deciding which graphs support flows
taking values in various abelian groups and then relate both (via matroid
theory) with a blocking problem in projective spaces which goes back at
least as far as Veblen (1912).

As we shall see the splitter -theory developed in the last chapter
enables us to reduce this last, apparently intractible geometry problem
to a conjecture about graphs which on the surface at least offers much
more hope.

Consider the projective space PG(r,g). For any positive integer
t, a t-block is a set X of points in this space such that XnF # @ for
each flat F of rank r - t. 1In particular the l-blocks are the sets which
have non-empty intersection with every hyperplane of PG(r,q). It is
therefore obvious that if X is a t-block and Y>X then ¥ is a t-block. X
is a Tiﬂiﬂil t—EEEEE,if it is a t-block but X\p is not a t-block for each
pe€X.

Standard vector space arguments give:

(1) The projective space PG(t,q) is a minimal t-block over the

field GF(g) for each integer t 2 2 and each prime power g.

For example PG(2,2) is a 2-block over GF(2) and is a l-block over

GF(4) . More generally we have:
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(2) A t-block over GF(p} is a l-block over GF(pt) for each positive
integer t.

The converse is not always true, there exist l-blocks over GF(pt)
which when regarded as geometrical configurations are not representable
(that is coordinatisable) over GF(p). However we can show:

(3) If a l-block over GF(pt) is representable over GF(p) then

it is a t-block over GF(p) .

Matroids and the Blocking Problem

Suppose that M is a matroid on S with rank function p. Its

chromatic polynomial P(M;)A) defined by

P(M;)) = I (_1)|A| xps—pA

Acs
is a well known Tutte-Grothendieck invariant (see the Lectures in this
volume by T.H. Brylawski).

The relationship between blocking and the chromatic polynomial is
contained in the following remarkable theorem.

Theorem 1l: Suppose that M is a matroid of rank r on S and that M is
embeddable in V(r,q), then there exists an r - t subspace F of V(r,q) such
that FnS = @ if and only if P(M;q0) > O.

The first point to notice about Theorem 1 is that its conclusion does
not depend on the embedding, but says that for any embedding such a subspace
exists. 1In fact, the full version of Theorem 1 proved by Crapo and Rota
[707 shows that P(M;qt) enumerates the collections of hyperplanes whose
intersection is a flat of the type required.

The relationship with blocking is now obvious.

(4) A matroid M which is representable over GF(q) is a t-block over

GF(q) if and only if P(M;qt) = 0.
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The statement (4) illustrates precisely the slight abuse of
language in the statement "M is a t-block”. What we mean is, any of the
various vector representations of M in V(r,q) is a t-block. 1In other words
it is not their coordinatisation in V(r,q) which is important but their
geometrical structure.
Example 1: If F is the Fano matroid consisting of the 7 non-zero

7

vectors of V(3,2),
P(F7;)\) = (A=1) (A-2) (A-4) .

Example 2: More generally the projective geometry M = PG(r,q) has chromatic

polynomial
r T
P(M;A) = 1T (A-q).

Example 3: If Kn is the complete graph on n vertices then its cycle

matroid M(Kn) has chromatic polynomial
(A-1) (A=2) ... (A-n+1).

Example 4: If U2 n denotes the matroid of rank 2 on n points in which
r
every 2-set is independent, in other words the n point line, then its

chromatic polynomial is

P(U ;A = AT = n) + (n-1).

2,n

Thus by evaluating their respective chromatic polynomials at

appropriate values we have

(5) The (g+l)-point line (see Example 4) is a l-block over the field

GF(q) .
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(6) The Fano matroid F, is a 2-block over GF(2).
(7) For any prime power g, the cycle matroid M(Kq+l) is a

l-block over GF(q), and thus if q = pt it is also a t-block over GF(p).

§2. Colouring graphs

The relationship between the chromatic polynomial of a matroid and

graph colouring is straightforward. If G is a graph its chromatic polynomial

P(G;X) is that function of X which when evaluated at A = n for any non-
negative integer n gives the number of proper colourings of the vertices of

G using n or fewer colours. A proper colouring of G is a colouring of the

vertices in which no two vertices which are adjacent in G have the same

colour. For example it is easy to check that
P(Kt;l) = A(A-1) ... (A-t+1) .

I1f G is a connected graph it is shown in Welsh [76, Chapter 16€] that

(1) P(G;X) = X P(M(G) ;)

and thus the chromatic number x(G) of the graph G, the smallest integer n
for which G has an n colouring is given by
X(G) = inf n:P(M(G );n) > O.
nezt
Now every graph G has a cycle matroid M(G) which is representable
over every field. Hence:
(2) A graph G is such that M(G) is a t-block over GF(q) if and
only if it has a chromatic number x(G) > qt.
Thus the graphic l-blocks over GF(2) are the cycle matroids of

non-bipartite graphs.
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In fact Tutte [66a. proves:
(3) Mis a minimal l-block over GF(2) iff M is the cycle matroid of
an odd circuit.
When we come to 2-blocks over GF(2) however, the situation
is much more complicated. Since K5 is a minimal graph which
is not 4-colourable we have:

(4) M(KS) is a minimal 2-block.

However, there are many others, for clearly any graph G which is not
4-colourable but is such that G\e is 4-colourable for every edge e, is
going to have a cycle matroid which is a minimal 2-block. Such graphs are
called edge-critical and an infinite family of them can easily be constructed
see for example Ore [67].

However as we shall see if we consider only those graphs G such

that G is not 4-colourable but every sub-contraction of G is 4-colourable

then the situation changes.

§3. Flows taking values in an abelian group

If D is a directed graph and H is a finite abelian group, an H-flow

on D is a map ¢ : E(G) » H\{O} such that for each vertex v of D

I ¢(e) - £ o¢(e) = O mod H,

e€6+(v) ecd (V)

where 6+(v) denotes the set of edges directed Out of v and & (v) denotes
the set of edges directed into v. In other words an H-flow on D is a

flow in the wusual sense, that is satisfying Kirchoff's laws at each vertex,
with the two provisos a) that arithmetic is in the group H and b) no edge

is allowed to have a zero flow. This is often called a nowhere zero flow

in the literature.
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I1f there exists some H-flow on D we say that D supports an H-flow.

W.T. Tutte in 1954 asked the question: what flows can graphs
accommodate? As we shall see, there are some surprising and beautiful
answers.

First note that if D can support an H-flow and D' is any digraph
which is obtainable from D by reorientation of some edges,then D' can
support an H-flow. In other words for a given group H, whether or not a
digraph D supports an H-flow only depends graphically on the structure of
the underlying graph G(D) obtained from D by removing the directions on
the edges. Thus, henceforth we speak of an undirected graph G supporting
an H-flow to mean that in any orientation of G, an H-flow is possible.

Secondly, and this is a very nice application of Tutte-Grothendieck
theory we have the following theorem:

Theorem 1. The number of H-flows on a graph G depends only on the order of
the group H and is given by evaluating the chromatic polynomial of the
cocycle matroid M*(G) at A = O(H), the order of the group H.

Proof. Straightforward application of contraction-deletion, see the lectures
by T.H. Brylawski in this volume.

Example. Consider H-flows on any directed version of K M*(K4) has

4"
chromatic polynomial (A-1) (A-2) (A-3). Hence the number of Z2><Z2 flows

on K4 is 3.2.1 = 6.

Thus we may sensibly speak of a graph having a k-flow to mean that
for any orientation of G and any abelian group H of order k there exists
an H-flow on G. Moreover, and this is most crucial, we can decide whether
or not a particular graph supports a k-flow by calculating the chromatic

polynomial of its cocycle matroid and then evaluating this polynomial at

A= k.
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As a first consequence of Theorem 1 we have the following result:

(2) Any planar graph G without bridges has a 4-flow.
Proof. This statement follows from the Four Colour Theorem of Appel and
Haken [76]. To see this, we note that if G is planar and bridgeless
there exists a (dual) graph G* which is planar and loop free and M*(G) = M(G*).

Hence

P(M*(G) ;4) = P(M(G*);4)

and by the 4-colour theorem and (6.1) we know

P(M(G*);4) > O

since G* is planar. ]

In his fundamental paper in 1954, W.T. Tutte made two conjectures.
The first, that there exist some integer n such that any bridgeless
graph G has an n-flow, was settled by Jaeger [76] who showed that any
bridgeless graph G had an 8-flow. This very nice result has just been
improved by Seymour [80] wheo has proved
Theorem 2. Every bridgeless graph has a 6-flow.

The second conjecture of Tutte [54] is still unsettled, and is known
as his 5-flow conjecture; it can be stated as follows:

Tutte's 5-flow Conjecture: Every bridgeless graph has a 5-flow.

To see that this conjecture, if true, is best possible consider the

Petersen graph P Oshownin Figure 1.

1

Figure 1 The Petersen graph Pio
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It is non-trivial to verify that P o has no k-flow for k < 4 and that it is

1
the smallest graph with this property.
Alternatively, the reader can (with sufficient patience) show that

P(M*(Plo);k) = (A-l)(A—Z)(A—3)(A—4)(A2—SA+1O) and thus Pio has no 4-flow.

Now when every vertex v of G has degree 3, that is G is cubic, it is
not difficult to see that provided G is bridgeless, G has a 4-flow if and
only if the edges of G are colourable in 3-colours so that no two incident
edges have the same colour. In other words:

(4) A cubic bridgeless graph G has a 4-flow if and only if it is

3-edge colourable.

Using this, a second conjecture of Tutte [69] can be formulated as:

Tutte's 4-flow Conjecture. A cubic bridgeless graph G has a 4-flow if it

has no subgraph contractible to the Petersen graph PlO'

A stronger version of this conjecture is implicit in Tutte [66]

Tutte's 4-flow Conjecture - (Strong Version). A bridgeless graph has a

4-flow if it has no subgraph contractible to PlO'
It seems surprisingly difficult to show that these two versions

of Tutte's 4-flow conjecture are equivaleht.

§4. Tangential Blocks

We return now to the original geometrical problem of Tutte [66],
namely finding the minimal 2-blocks over GF(2).

Examples of minimal 2-blocks which we have already found are:

(a) the 7 point matroid of rank 3, F7,

(b) the 10 point matroid of rank 4, KS'

*

(c) the 15 point matroid of rank 6, Plo .
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From these it is possible to construct other minimal 2-blocks by
"sticking them together" in a non-trivial fashion.

This is because of the observation of Oxley [79] that if M,N are two
minimal k-blocks then their series connection is also a minimal k-block.

(The series connection is the matroid operation corresponding to the graph

operation of HajOs union). Continuing this analogy with graph theory we see
that as mentioned earlier, any edge critical 5-chromatic graph has a
polygon matroid which forms a minimal 2-block. However each of the

matroids of KS' F. and PIO has the additional property that no minor

7
of them is also a 2-block. A 2-block with this property is called a

tangential 2-block. This is not Tutte's original definition but can be seen

to be equivalent to it see Welsh [79]. 1In 1966 Tutte proved that these
three matroids were the only tangential 2-blocks of rank <6. 1In 1976,
Datta proved by a complicated geometrical argument that there is no
tangential 2-block of rank 7.

Tutte's tangential 2-block conjecture, originally made in (1966)
and still unsettled, can be stated in the following form:

Tutte's tangential block conjecture: The only tangential 2-blocks are

*
F7, K5 and PlO .

Seymour's theory of splitters is a major step towards proving this
conjecture. First consider Hadwiger's conjecture which in its full form
asserts
Conjecture. (Hadwiger) If a loopless graph G is not n-colourable it
contains K as a subcontraction.

n+l
Dirac [52] showed that it was true for n = 3 and Wagner [64] showed

that for n = 4 it was equivalent to the 4-colour conjecture. Therefore it

holds for n = 4. Thus we know that there can be no new tangential 2-block
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which is the cycle matroid of a graph. Seymour [80_ uses his characteri-
sation of regular matroids to prove the following striking result:
Theorem 1. Any new tangential 2-block must be the cocycle matroid of a
graph.

In other words, Seymour's result shows that Tutte's tangential
2-block conjecture is exactly equivalent to the strong form of the 4-flow
conjecture. Thus he has reduced this seemingly intractable geometrical
problem to the conceptually much simpler problem of characterising those
graphs which have no 4-flow. More precisely, there exists a tangential
2-block other than F7,M(K5) and M*(Plo) if and only if there is a
bridgeless graph G not containing a sub-graph contractible to Plo which
has no 4-flow.

Sketch proof of Theorem 1. First consider a tangential 2-block M which

is not K., F, or P* (we use K

* * * i
7 10 5 for M (KS), P for ™ (Plo)' If it were

10

graphic there would exist a graph G which was not contractible to K5 but

which was not 4-colourable. This would contradict Hadwiger's conjecture
for the case n = 5, which by Wagner's theorem showing the equivalence of
Hadwiger's 5-chromatic conjecture with the 4-colour theorem of Appel and
Haken, we know to be true. Hence the only tangential 2-block which is

graphic is K Now consider the existence of a non-regular tangential

5°
2-block Mo' Since MO is not regular it must contain either F7 or F; as

a minor. But because F., is a tangential 2-block, by minimality, this

7

minor must be F;. Hence since F; is a splitter for binary matroids with

no F7 minor we know that cither Mo = F; or MO has a 2-separation. It is

not difficult to show that a tangential 2-block cannot have a 2-separation.

Hence, MO = F;. But x(F;) = 2 and hence F; is not a tangential 2-block.

So we have shown that there are no non-regular tangential 2-blocks. It
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remains to show that there exists no tangential block which is regular
but neither graphic nor cographic.

Suppose such a matroid M exists. Then by the decomposition theorem
it must be possible to express M as a 1,2 or 3 sum of graphic or cographic

matroids or copies of R, . An induction argument shows that this is

10

impossible unless M is cographic and hence the only tangential blocks

and K_. O

which are not cographic are F7 5

§5. A problem on the Desargues Configuration

The conjectures and problems posed so far seem to be hard, at least
in the sense that they have stood the test of time. We close this lecture
with new conjectures which may be easier to settle in the negative but’
which if true would imply or further relate some of the earlier conjectures.
The first is a much stronger form of Tutte's 5-flow conjecture -

Conjecture 1. If M is binary and has no minor isomorphic to the
3-dimensional Desargues configuration, then x(M) < 5.

Note: we have presented this conjecture in its geometrical form; the
reader will quickly realise that the 3-dimensional Desargues configuration
is as a matroid identical with M(KS).

The motivation for this conjecture is a recent paper by Walton and
Welsh [80] in which it is shown that if M satisfies the conditions of the
conjecture and also has no minor isomorphic to PG(2,2) then x(M) < 6 and
that if Tutte's 5-flow conjecture is true 6 can be replaced by 5.

Other problems of this sort are contained in Welsh [80]. Possibly
easier to settle is the weaker form of Conjecture 1.

Conjecture 2. If Ms’Ex(KS) then there exists t, independent of M, such

that x(M) < t.
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8. Flows in Matroids

§1. The max-flow min-cut theorem

Many problems in discrete optimisation can be formulated in terms of
finding maximum flows in capacity constrained networks. A comprehensive
account of the theory and its applications is given by Ford and Fulkerson
(1962) . In this chapter we extend these ideas to matroids and get some
intriguing results which could be viewed as bridging a gap between the
applied theory of flows and finite geometry.

Consider an undirected graph G and two distinguished vertices
u,v, to be called the source and sink respectively; ci 2 O is the capacity
of the edge ei and represents the amount of flow which it can support.
Finding the maximum feasible flow from u to v in the capacitated graph
can be found by a well known polynomial method, known as the 'max flow
min cut' algorithm.

In order to consider the problem as a matroid problem we insert an
additional distinguished edge e joining the vertices u,v. Let Cl""'cp
be the circuits of the matroid M(G) which contain the edge e. The value
of the maximum flow from u to v is the maximum value of u1+...+up subject

to the conditions that the flow along ei is not more than ci and where

uy > O represents the flow or circulation around the circuit Ci'
We can now formulate the maximum flow problem for matroids as

follows. Let e be a distinguished element of matroid M on S = {e,el,...,en}
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an et y+-,C e the circuits of M which contain e. et ¢, 20
d 1 Cl o b h i i £ hich tai Let i 2

(1 <i<n) be the capacity of e, Let the nxp matrix A = (aij) be defined

as

A feasible e-flow in M is a vector u = (ul,...,up) satisfying

(1)

N ™~ o
V)
v}
A
(o]
o
1A
M
A
2

and u = (ul,...,up) is a maximum e-flow if it maximises L ui subject to
the constraints (1). Zui is then called the value of the maximum e-flow.
Now let C* be any cocircuit of M which contains e. We define its

capacity, C(C*), by
c(c*) = x{c, : i, e, eC*} .
1 1

The matroid M has the max flow min cut (MFMC) property if for any element

e which is not a loop and any set of real capacities ci 2 0, the maximum
value of an e-flow equals min C(C*) where the minimum is taken over all

cocircuits C* containing e. We call this minimum the min capacity of e.

It is easy to prove (see Welsh [76], chapter 19) the following:

(2) In any matroid the maximum value of an e-flow is less than or
equal to the min capacity of e.
For general matroids not much more can be said since it is easy to
find examples where the maximum e-flow has a value strictly less than the

min capacity. For regular matroids however, we can say more.
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(3) In any regular matroid the maximum value of an e-flow equals
the min capacity of e.

If M is a matroid on Sue we say that (M,e) has the integer max flow

. + . A
min cut property (Z - MFMC) property if when the capacities ci are
restricted to being non-negative integers there exists a non-negative
integer flow (ul,...,up) which equals the min capacity of e.

A matroid M has the integer max flow min cut property if (M,e) has

the (Z+ - MFMC) propertyv'e. It is obvious that

(4) If M has the 7zt - MFMC property then M has the (MFMC)-property.
Gallai [59] and Minty [66] independently proved:

(5) Regular matroids have the integer max flow min cut property.
However (5) is not best possible since it is easy to check that F7 also
has the z* - MFMC property. Seymour [77] completely wrapped up the problem

by proving:

Theorem 1. Let M be a connected matroid. Then M has the integer max

flow min cut property if and only if M is binary and has no minor isomorphic

to F;.

The original proof of this was very involved, we now show how the
theory of splitters simplifies the proof enormously.
Proof. First we let the reader check that the class é} of matroids with
the (Z+ - MFMC) -property is closed under the taking of minors- this is
straightforward.

Secondly it is easy to verify that neither 02'4 nor F; have the
(Z+—MFMC)—property. Hence E; must contain only binary matroids.

Thirdly it is easy to see that Me¢ & if and only if it belongs to

the class :;0 defined by Me }0 if and only if it has the following

apparently weaker property.
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+ . .
For w : S\e ~ Z and k ez suppose that each cocircuit D containing
e satisfies

w(D\e) = I w(a) 2k .
aeD\e

Then there exists k circuits of M, each containing e, but no more than w(p)
containing any other element peS.

We need to prove EX(F;) = 30 .

(a) Suppose Me g'o , then F; £ M for we know every minor of M also
belongs to '3'0 and F; ¢ ?‘0. Hence}ogEX(F!‘,) .

(b) Suppose Me Ex(F;) but M¢ 30. By the Gallai-Minty result

we know M cannot be regular. Hence M > F_, or F*. But M ¥ FX, so M > F

7 7 7"

But F7 is a splitter for EX(F’;) , thus either M = F‘7 or M, is 2-separable.

But F_e F

7 o (simple checking). Thus M is 1 or 2-separable. But now

fairly straightforward arguments show that if parts of a 1 or 2 separation
both belong to }O then the 1 or 2 sum of the parts must also belong

to }O' Hence induction on ]Sl shows that M > F*, and this contradiction
completes the proof. g
Note. It is interesting that the above proof uses splitters together
with the Gallai-Minty theorem that the result holds for regular matroids.
It is somewhat surprising that we cannot get a direct proof by the
following argument. The Ford-Fulkerson theorem says that graphic matroids
belong to F.; it is easy to prove that cographic matroids belong to ?;

(o] (o]

it is routine to check that Rloe Bco. Hence if we could prove that

belonging to ';O was preserved under 1, 2 and 3-sums we would have a
proof that regular matroids also belonged to JO However it is not true

that membership of .'.T' is preserved under 3-sums!

(@)

Example. Take the 3-sum of K4 and F7. Both have the Z+-MFMC property but
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their 3-sum is F;!

§2. Multicommodity flows

If i1nstead of just one source and one sink we have k pairs of
distinct vertices, (ul,vl), (1 <i<k), where u, is a source of commodity
i destined for the sink Vi and cj the capacity of the edge ej is an
upper bound on the total amount of matroid that the edge ej can accommodate

we have what is known as the multicommodity flow problem. It is an obvious

generalisation of the problem: how many edge disjoint paths u > Vyreees
U > vy can be drawn in a graph G? The case k = 1 is of course just the
max flow problem.

2-commodity flow

Let P = Pk be the edge sets of all minimal paths Pl""’Pt which join
u to vy (1 <i<k). Let v(P) be the maximum number of edge disjoint member
of P and let P* be the blocker of P, that 1s P * = {X : X<E(G),
XnPp, #¢ W 11l<i<t, and X is a minimal set with this property}.
It is obvious that

(1) v(®) < min|D| : DcP*.

The max flow min cut theorem of Ford and Fulkerson says that
equality holds in (1) when k = 1.

More generally,if A5 is any clutter, that is a family of sets
x:xy b > X¢ Y}, and & * is its blocking clutter, Apis said to be

Mengerian if

vid) = min{‘Dl : D¢ 6‘} ,

and thus the max flow min cut theorem essentially says that when k = 1,

Ik is a Mengerian clutter.
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For k = 2, however this is false.

Examplel. Let G be as shown,
- @ v
Y a b 2

u2v 6 vl

®, = {a,b,c}, {a,d,e}, {b,e,f}, {c,q,f},

( ]PZ) =1,

but the minimum cardinality of a blocker of P, is 2.
Nevertheless we do have the following:
Theorem 1. (2-commodity flow theorem). Let G be an undirected graph and

+ . . .
/v, be vertices of G. Let ¢ : E+> Q be a capacity function

let ul,uz,vl 5

and let ¢i be a flow from ui to vi, 1 <£1i < 2. Then the maximum value of

¢, + ¢, suchthat
¢l(e) + ¢2(e) < c(e) (e € E(G))

equals the minimum capacity of a cut which disconnects uy from vy and

u, from vy -
This results, originally proved by Hu [63] by a very long and involved
argument now has a very short elegant proof by Seymour [78].
We illustrate the theorem by considering the graph Go of Example 1.
Assign capacity c(e) = 1 to each edge. Then Figure 2 shows an

assignment of (non-integer) flowsto the edges of G, the first component

contributes to a ¢l—flow and the second to a ¢,~flow.
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(1,0) (5N Y
1 2
(%,%) (3,%)
e (5,%)
2 (0,1) V1
Figure 2

§3. Multicommodity flows in matroids

We can now extend the ideas of multicommodity flows in graphs to
matroids exactly analogously to the way we extended the single commodity
problem.

For each source sink pair ui,vi we introduce a new special edge ei
and let the collection of special edges {el,...,ek} = F. To each edge
e, F we assign a demand di = d(ei) which represents the amount of
commodity i we wish to transport from u, to vy -

To each edge e € E(G) \F we assign a capacity c(e) which is the maximum
amount of flow which that edge can accommodate. With this interpretation
we can now define an (F,c,d)-flow for an arbitrary matroid M on S as follows.

Let »61? be the collection of circuits C such that ]Cn Fl =1, in
other words ’617‘ can be regarded as the analogues of 'paths through F'.

Then a map ¥ : ,6F +R" is an (F,c,d) -flow if

z Y(C) = d(e) if (eeF),
ecCe ‘F

z Y(C) < cle) if e(¢F.
ecCe “F

Propositionl. If M has a p-flow through F with p = (c,d) then for each

cocircuit C* of M

d(C*nF) £ c(C*\F).
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Proof. Let ¢ be such a flow. If C is any circuit of M we know |C51C*] # 1

and so if CnF = {f}
l[cxn£] < Jex\(c\D |,

which means |CncC*nF| < |Ccn (CX\F)|.

Now by hypothesis

T $(C) = d(e) ecF,
Ce‘GF
T $(C) < cle) e € E\F,

Ce,gF

where in both cases the left hand sums are over those C containing e,

Hence
d(C*n F) = I dfe)
eeC*nF
< I (z $(C))
ecC*nF ecCe ’
= 3 T $(C)
Ce,ék eec*nCnF
= 3 $(C) |c*ncnF|.
Ce
Similarly c(C*\F) 2 I ¢(C)IC(\(C*\F)| and the result follows.
Ce
F

Example. (2.1 revisited). Consider the corresponding matroid - insert

special edges e, e, joining (ul,vl) and (u2,v2) respectively. We find that

GO together with these edges is essentially the graph K4, see Figure 1 below.
This gives an example in which |F| =2, F = {el,ez} and in which

the converse of Proposition 1 fails if we restrict attention to the integers

though it is in fact true over the rationals and (a fortiori) over the reals.
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Figure 1

+ +. +
Accordingly we say M is F-flowing over % (R+) if for all pez (R )
c(C*\F) 2 d(c*nF) Vc*

+
= the existence of an F-flow with values in 2 CR+).
X . + + .
We go further and describe M as k~flowing over Z (or over R ) if M is
+ .
F-flowing over Z (or over R+) for all subsets Fcs with ]FI = k.
Obviously we have:
. . + . . +
(1) Mis k-flowing over Z = M is k-flowing over R .
However the matroid M(K4) above with k = 2 shows that the converse is
not true.
The max flow min-cut theorem can be restated, albeit exotically, as:
+
(2) Graphic matroids are 1l-flowing over Z .
The 2-commodity flow theorem can be restated as

+
(3) Graphic matroids are 2-~flowing over R .

Cographic matroids

Consider the matroid form of the max~flow min-cut theorem. It
can be stated as:
"The minimum number of circuits Ci which contain e and are otherwise

pairwise disjoint is equal to min lC*l - 1 where the minimum is
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taken over all C* containing e”.
The dual form of this is not only true but is very easy to prove: it
says
(4) The maximum number of cocircuitscz which are pairwise disjoint
except for a single edge e is equal to the minimum size of
ICI - 1 taken over all circuits C which pass through e.
For a proof see Welsh [76, Chapter 19].
In other words, it is easy to prove

+
(5) Cographic matroids are l-flowing over Z .

§4. A summary of results

A very recent paper by Seymour [81] almost completely characterises
k~flowing matroids for each k. We can do no more than summarize some
of these delightful results in the next section.

For example one result which completely generalises (3.5) is:

(1) Cographic matroids are »-flowing .

Since being l-flowing is equivalent to having the max flow min cut

property, the fact that U is not 1l-flowing, together with the fact that

2,4
M being k-flowing implies M is k'-flowing for k' < k shows:

(2) If M is k-flowing then M is binary.

The max flow min cut theorem of §1 can be restated as:

(3) Mis l-flowing over z" if and only if M ¥ F; .

We now indicate the proof idea behind all the following results by
proving:

(4) M is 2-flowing in Z' if and only if Me Ex(M(K,)) .

Proof. First we use the fact that Ex(M(K4)) is the class of matroids which

can be formed by taking 1 or 2 sums of matroids having < 3 elements. It is
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easy to prove that all of these are »-flowing (i.e. k-flowing for all k).

It is straightforward to check that if Ml and M, are k-flowing then

2

so are the 1 and 2 sums of Ml and M2. Hence EX(M(K4)) is =-flowing in z+.
Since M(Kq) is not 2-flowing in z* (see Example 3.1) the result follows. [J
This last resultcompletely settles the first column of the table

below

z* r
1-flowing Ex(F;) ?
2-flowing Ex(M(K4)) Ex(AG(3,2),SB)
3-flowing EX(M(K4)) Ex(F7,Rlo,M(H6D
4-flowing Ex(M(K4)) Ex(F7,RlO,M(K5))
o-flowing EX(M(K4)) EX(F7,R10,M(K5))

Various points about the above table need clarification.

First: the matroid S8 is the matroid whose binary representation

is the set of columns of the matrix A:

= O O O
= O K+
= = O
= = = O
L R

In other words SB with one element deleted is F; .

Secondly: the graph H_ whose cycle matroid is 2-flowing but not

6

3-flowing has the following form:



411

Thirdly: we notice that the only open question in the above
classification is characterising those matroids not 1-flowing over r*.

Three exluded minors for this are:- AG(3,2), Tll and T;l, where
Tll is the eleven point matroid got from the representation of Rlo in §6.3
by adding on the vector (1,1,1,1,1).

Finally we close with a curiosity. Fulkerson [68, 70] showed (in
different terminology) that .

(5) M is l-flowing over R’ < M* is 1-flowing in R'.

The proof hinges on a linear programming argument. No such argument
seems to be known for the statement:

(6) M is 2-flowing over ]R+ < M* is 2-flowing over R+ .

Nevertheless (6) is true since by the above theory of Seymour M is

2-flowing over R if and only if Me Ex(AG(3,2) ’SB) and this is a set

closed under duality!
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1. A voltage graph is a pair & = (T,¢) consisting of a graph T =
(N,E) and a voltage, a mapping ¢: E > ® where © is a group called the
voltage group. The voltage on an edge depends on the sense in which the
edge is traversed: if for e in one direction the voltage is ¢(e) , then
in the opposite direction it is ¢(e)-l . The voltage on a circle is the
product of the edge voltages taken in order with consistent direction; if
the product equals 1 the circle is called balanced. (While in general
the starting point and orientation of C influence its voltage, they have
no effect on whether it is balanced.) A subgraph is balanced if every
circle in it is balanced. Assuming N is finite, let n = ‘Nl and, for

SSE, let b(S) = the number of balanced components of (N,S) .

% 3 () = ale))o(e,) Holey)w(e,)  ales o leg)
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Matroid Theorem. The function rk S = n - b(S) is the rank function
of a matroid G(2) on the set E . A set ASE is closed iff every edge
e £ A has an endpoint in a balanced component of (N,A) but does not com-
bine with edges in A to form a balanced circle, A set is a circuit iff it

is a balanced circle or a bicircular graph containing no balanced circle.

Bicircular
graphs

Theta graphs Handcuffs

We call G(2) a voltage-graphic matroid. When it is a simple matroid,

it is a subgeometry of the Dowling geometry Qn(ﬂ) .
EXAMPLES

1) G(T') , the graphic (polygon) matroid: @ = {1}, ¢

2) Matroids of signed graphs T : ® = {+1,-1} .

3) EC(I') , the even-cycle matroid (M. Doob, Tutte): & = {+1,-1}, ¢ = -1 .

~ E
4) B(T) , the bicircular matroid (Simces-Pereira, Klee): © = Z, , o(e) =

e ;3 or ® = the free abelian group on E , op(e) = e .

) B(TO) R ™ =T with a loop at every node. The lattice of flats is the

set of spanning forests of T .

> >
() ED(T the equidirected circle matroid of a digraph TI' (Matthews):
2
5
® =2, p(e) = +1 when e is taken in the direction assigned by T .
->
(similarly one has EDn(F) , the equidirected circle matroid modulo n ,

when ® =2Z .)
n



->
7) A(T), the anticoherent cycle
group on N , o(e) = vw if
8) & =0GeA, A =agraphon n

by every possible @-labelled

9) Qn(@) , the Dowling geometry
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-
matroid of T (Matthews): @ = the free

e 1is directed v > w .
nodes; & 1is A with each edge replaced
edge.

of rank n of ©, is G(@-Kﬁ) .

Now let & have finite A proper p-coloring of & is

2. order g .

a mapping

k: N> {0} U ({1,...,n) x ©®)

such that, for any edge e from v to w (including loops), we have

k(v) £#0 or (w) #0 and also

Q) Ak () or k() Aep(Mele)  Af (W (W) £ O,

are the numerical and group parts of x . Let

where « and Ko

1
xq(pgi-l) = the number of proper p-colorings of & and let Xg(ug) = the

number which do not take the value O .

Chromatic Polynomial Theorem. XQ(ug-+l) is a polynomial in u .
b(E
(E) (V)

Indeed X;(A) = A p(A where is the characteristic polynomial
Q s

of G(8) .

Balanced Chromatic Polynomial Theorem. Xg(ug) is a polynomial in p .
A)
)

Indeed xg(k) =Z, u(¢,A)Xb( summed over balanced flats A& E .

Fundamental Theorem. Let X;(X) denote the balanced chromatic poly-

nomial of the induced voltage graph on X & N . Then

z
X stable

X(r-1)

X5(1)



This theorem reduces calculation of X@(X) , or of p(A) , to that of

xg(k) , which is often easy.

EXAMPLES (continued)

1) xg(x) = xr(k) .

ép Xb(k) = I (-l)n-kfk)\k , where f, = the number of k-tree spanning

forests in T .

3) XZ(X) z, 2n-rkA.xl__/A()\/E) , summed over flats A of q(T) .

8) xg(\) = &"x,(3/e) .

9) P(Qn(@);K) = gn((X-l)/g)n , where (x)n is the falling factorial.

3. There is a geometric realization when @ &« R*. Let H[®] De the
set of all hyperplanes Xy = cp(e)xi in R" where e €E is an edge from

v, to v, .
1 J

Representation Theorem. The lattice of all intersections of subsets

of MH[®] , ordered by reverse inclusion, is isomorphic to the lattice of

flats of G(&) .

Corollary. MH[3] cuts R®"  into |XQ(—l)l regions (n-dimensional

cells).

L., FEach & has a covering graph 3 = (8 x N, 8 x E) , an unlabelled
graph. If e goes from v to w , the covering edge (g,e) extends

from (g,v) to (ge(e),w). Let p: ® x E > E be the covering projection.
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Covering Theorem. A set S S E 1is closed in G(%) iff p-l(s) is

closed in G(%) .

5. The Matroid Theorem does not essentially require a voltage. All we
need is a specified class of "balanced" circles in T , such that if two
circles in a theta graph are balanced, then the third is also. The pair
(r,B) 1is a biased graph. Although a biased graph cannot be colored in the
usual sense, it has algebraically defined "chromatic polynomials" that

satisfy the Fundamental Theorem.
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MATROIDS WHOSE GROUND SETS ARE DOMAINS OF FUNCTIONS
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ABSTRACT

From an integer valued function f we obtain, in a natural way, a
matroid M on the domain of f. We show that the class M of matroids
so obtained is closed under restriction, contraction, duality, truncation
and elongation, but not under direct sum. We give an excluded-minor
characterisation of [| and show that M consists precisely of those
transversal matroids with a presentation in which the sets in the
presentation are nested. Finally, we show that on an n-set there are

exactly 2" members of M .
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