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Preface

1. In a most surprising way logic is connected with algebra. Each language,
whether natural or artificial, possesses a complex algebraic structure. In the
simplest case this structure is revealed in the languages of propositional log-
ics as certain absolutely free algebras. The above linguistic perspective es-
tablishes the first bridge between logic and algebra. There are more links
between these two domains and they exist on a deeper level. George Boole
(1854) proved that the “laws of thought” can be framed algebraically as
identities of an algebra. Thus, thinking is also “algebraizable”. Boole’s work
was extended in various directions by a number of researchers, beginning
with William Stanley Jevons. Charles Sanders Peirce integrated his work
with Boole’s during the 1870s. Other significant figures were Augustus de
Morgan, Platon Sergeevich Poretskii, William Ernest Johnson, and Ernst
Schröder. The conception of a Boolean algebra structure on equivalent state-
ments of a propositional calculus is credited to Hugh MacColl (a four part
article from 1877–1879, see (MacColl, 1906), preceding Gottlob Frege’s Be-
griffschrifft). The Fregean principle of compositionality, that the meaning of
any complex expression is a function of the meanings of its constituents, to-
gether with other principles is central in formal semantics. Roughly speaking,
these principles establish a homomorphism between the algebraic structure
of each language and the algebraic structure constituted by meanings of the
expressions of this language.

The above discoveries gave rise to algebraic logic. As a result the link be-
tween logic and algebra is cemented and becomes inseparable. Studying the
dependence existing between them is still one of the vital areas of scientific ac-
tivity. It is also in this very context that the differentiation of the professional
belonging of the individual researcher—a logician or an algebraist—becomes
blurred.

2. Professor Don Pigozzi, together with his colleagues who cooperated with
him at the turn of the 1980s and the 1990s, managed to effect a change of the
paradigm of algebraic logic. This new situation can best be illustrated with

vii



viii Preface

this analogy: at the beginning of the 20th century, mathematicians carried out
extensive studies in the area of function spaces, e.g., the spaces of continuous
functions on compact topological spaces, the spaces of absolutely integrable
functions on measure spaces, etc. A series of deep and detailed results was
obtained regarding this sphere. Still, there was a lack of the right key to the
general theory which would allow ordering the research field and deriving
well-known particular cases from a few notions and theorems. Obviously, the
notion of a Hilbert space did order a certain section of the field. However,
what was obtained then was rather a set of facts loosely connected with one
another, though each separately was an original and deep mathematical the-
orem. It was not until the theory of Banach spaces was put forward, along
with its apparatus of notions and key theorems, that the gathered research
material could be ordered and adequate mathematical arsenal was provided
to make it possible to lay foundations of functional analysis. We came to deal
with a similar situation in algebraic logic in the second half of the last cen-
tury. The continuum of logical systems, grouped into some categories (modal
systems, temporal systems, system of dynamic logic, relevant logics, etc.), en-
tered the stage for good. The then literature of the subject abounded in diffi-
cult and sophisticated metalogical results which characterized various aspects
of individual systems. In the study of the systems, new semantic tools, like
relational semantics, neighborhood semantics, and the like, are made use of.
Still, some types of semantics have limitations, since not every system can be
adequately semantically characterized in terms of an appropriate complete-
ness theorem; there appears the phenomenon of semantical incompleteness—
we are familiar with, e.g., normal modal systems, not possessing an adequate
Kripke-style semantics. It was known that the path from a logical system
to algebraic semantics leads through Lindenbaum-Tarski algebras (Linden-
baum (1929), Tarski (1930),  Lukasiewicz and Tarski (1930)). That was a well-
marked and reliable route for classical logic, intuitionistic logic, and a series of
other logics. Helena Rasiowa, in her pioneering monograph (Rasiowa, 1974),
introduced implicative systems, thought to be a broad class of logical systems
for which the generalization of the Lindenbaum-Tarski method, which she in-
vestigated, did “work”. Here, the key was the notion of an implication, viewed
as a binary connective satisfying natural assumptions, analogous to the prop-
erties of the implication of classical or intuitionistic logics. Nevertheless, the
class of S-logics investigated by Rasiowa does not encompass many elemen-
tary intensional systems, like the main modal logics. If one goes through the
relevant literature of the 1970s, the scenery was saturated with millions of
logical systems, each of which being somehow important, individually exam-
ined and described. However, there were no methodological tools available of
sufficient generality which would allow framing theses systems from a uni-
form research perspective. Again, the key which allowed introducing an order
were the notions of the Leibniz operator and of a protoalgebraic logics, the
latter employing the above-mentioned operator. Both notions were explicitly
defined by Wim Blok and Don Pigozzi (1986), (1989). Although the both
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notions had been known in the literature under other names (e.g., Wójcicki
(1988) in his earlier works wrote about the largest matrix congruences which
are the same objects as Leibniz congruences, and Czelakowski (1985, 1986)
isolated the class of non-pathological logics, the studies launched by Wim Blok
and Don Pigozzi introduced a universal notional network, as well as gave rise
to systematic investigations conducted in the new language of abstract al-
gebraic logic (AAL, in short). It is considered that the most important and
indisputable achievements of them are the introduction of the notion of an
algebraizable logic in the pioneering monograph entitled Algebraizable Logics
and also giving the key properties characterizing this class. Algebraizability is
a rigorous mathematical notion systematically investigated by many logicians
since then. (We omit its definition here.)
3. It can be argued that studies in the field of logic, which were carried out
in the 1960s and the 1970s, whose nucleus was the notion of a consequence
operation, did not meet with a broader interest at that time. The consequence
theory, whose fundamentals had already been laid by Alfred Tarski after
the World War I (see Tarski (1956) remained rather underestimated. It was
mainly Tarski’s concept of truth in formalized languages which attracted
interest as his first-rate achievement, especially in the context of later model
theoretic and algebraic applications. Apparently it was so. A few causes of
such a state of things can be indicated. Firstly, the then trends in the world’s
logic were different and the foundations of mathematics laid, in particular,
by Kurt Gödel and his discoveries developed recursion theory and set theory,
especially upon introducing the notion of forcing by Paul Cohen. In many
universities the methods of relational semantics for intensional logics were
developed. As it was mentioned, in the Warsaw school of Andrzej Mostowski,
Helena Rasiowa and Roman Sikorski the algebraic foundations were created
for a broad class of non-classical logics, viz. the extended implicative calculi.
Roman Suszko, Ryszard Wójcicki and their disciples were also active at that
time.

What is a logical system then? In the literature, we will find several def-
initions. Here, we will limit ourselves to two of them only. Logic (on the
propositional level) is most often understood as a set of formulas closed with
respect to substitutions and certain rules of inference. For example, an array
of modal logics is defined in this way. In another approach, the basic no-
tional frame is composed by structural and finitary consequence operations
defined on pertinent languages. This is a more general approach than the
former one. The following problem is connected with it: if one accepts the
notion of logic, viewed as a certain invariant set of formulas, to be the ba-
sis, what consequence operation should be attached to this set? On the level
of normal modal systems, as e.g. S4, one can associate, in a natural way,
two different consequence operations with each such a system: the first—the
so-called weak consequence, determined by the given system, and the detach-
ment rule, as a primitive rule of inference, as well as the so-called strong
consequence, formed out of the weak one by adjoining the Gödel rule as a
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primitive rule (and thereby applicable in all derivations!). Which consequence
should be chosen? This depends on the research preferences of the given logi-
cian. For instance, within the framework of the rapidly developing unification
theory for propositional and equational logics, one investigates structurally
complete or almost structurally complete systems. Naturally, there are solely
strong modal consequences in sight there.

Comprehensive studies of logical systems, chiefly intensional ones, such as
modal or temporal logics, etc., which have been conducted in recent years,
have caused the consequence theory to be placed in the focal point. The cre-
ation of the theory of entailment relation (this term can be translated as
a multi-conclusion consequence relation), hybrid logics, substructural logics
and the growing interest in non-monotonic reasonings has exercised a strong
impact on consequence theory. The existence of a continuum of logical sys-
tems, of various references and applications, be it in informatics, philosophy,
or theory of language or others, resulted in the need of ordering the research
field, finding a few common principles, according to which one can notionally
embrace the complex matter of contemporary logic.

The introduction of the Leibniz and Suszko operators marked a new stage
for metalogic. It was discovered that a uniform classification scheme encom-
passing all logical systems can be based on some plausible properties of these
operators. As a result, abstract algebraic logic (AAL) has emerged. AAL
offers a transparent and natural hierarchy of logical systems (and not only
propositional ones); each level of the hierarchy is determined by a simple
and concrete property of the above-listed operators, such as monotonicity or
order-continuity. Let us underline that the notion of a consequence operation
is of key importance in the AAL.
4. The central issue that underlay AAL was to get the gist of the dependence
between logic and algebra from the mathematical viewpoint; the point is

AAL takes a more abstract and general approach than the traditional alge-
braic logic. In contrast to algebraic logic, where the focus is on the algebraic
forms of specific deductive systems, AAL is concerned with the process of al-
gebraization itself. AAL investigates degrees of algebraizability of deductive
systems, making use of rigorous mathematical tools. The degree of algebraiz-
ability of a system is determined by the place of the system in the hierachy
of logics based on the Leibniz operator.

The problem area of AAL and the issue of algebraizability of logical sys-
tems in particular, have set new tasks to algebra and logic, viz. to describe
the algebraic semantics for deductive systems. The relation between algebra
and logic is the strongest in the case of algebraizable systems. Speaking in
the most general way, algebraizability of a system L consists in determining
the conditions which allow replacing the process of deduction of logical for-
mulas by the process of congruence generation on appropriate algebras in an
equivalent manner on the ground of this equational system.

about the question which for over 150 years has been permeating the history of
the both disciplines.



Preface xi

We find a development of the idea of linking logic and algebra present in
the prewar Warsaw School, in the works of Adolf Lindenbaum and Alfred
Tarski, the result of which was the notion of Lindenbaum-Tarski algebras of
the given logical system. Not entering into technical and definition-related de-
tails, it can be said that the Lindenbaum-Tarski algebras of classical logic are
Boolean algebras; by analogy—the Lindenbaum-Tarski algebras of intuition-
istic logic are Heyting algebras. As it was mentioned, further studies in that
direction were conducted after the World War II in Warsaw. The following
key ideas should be mentioned: (1) Language viewed as an abstract alge-
bra. (2) Quantifiers treated as infinite conjunctions and disjunction, that is,
suprema and infima in ordered models (Andrzej Mostowski), (3) The theory
of consequence operations as a foundation of deductive systems, originated
from the works of Alfred Tarski and then supplemented with the notion of
structurality by Jerzy  Loś and Roman Suszko. (Structurality reflects the in-
variance of inference patterns with respect to substitutions in the language.)
(4) Introduction of Boolean methods to the theory of models. Many of theses
ideas were presented in Rasiowa and Sikorski’s book (1963) and in Rasiowa’s
monograph (1974).

Rasiowa’s book shows, at last in a clear way, the relations between logic
and the theory of equational classes of algebras and, more generally, between
logic and quasivarieties of algebras. (Maltsev, 1971) is the first systematic
exposition of the theory of quasivarieties).

As mentioned, a certain problem regarding Rasiowa’s framework are in-
tensional systems, such as modal logics, temporal logics, dynamic logic, etc.,
which do not fall under the definitions and notional apparatus introduced
in her monograph. How to overcome this basic obstacle? The Leibniz oper-
ator Ω turned out the key to solving the problem. It is Wim Blok and Don
Pigozzi who must be credited with perceiving the significance of this operator
in metalogic. The Leibniz operator is the tool that enables one to generalize
the approach based on the construction of Lindenbaum-Tarski algebras by
providing a uniform conceptual framework abstracting from the presence of
definite logical connectives like an implication or equivalence in the language.
Following Lindenbaum, each sentential language S is identified with an abso-
lutely free algebra—is a commonly-accepted paradigm. In the simplest case
of sentential logics, the operator Ω assigns to each closed theory T of logic
L a certain congruence ΩT on the sentential language. ΩT is, by definition,
the largest congruence on S that is compatible with the theory T , i.e., the
largest congruence which does not “glue” together formulas belonging to T
with those being outside T . The congruence ΩT exists; it is also called the
relation of (absolute) synonymy on the language with respect to T . As a re-
sult, to each logical system L there corresponds the mapping Ω assigning the
Leibniz congruence ΩT to each logically closed theory T of L. Let Th(L) be
the set of closed theories of L. If the mapping Ω is monotone on the set Th(L),
i.e., it assigns a larger congruence to a larger theory, then the logic L is called
protoalgebraic. One can impose further order conditions on the run of the op-
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erator Ω on the lattice Th(L). In consequence, one obtains proper subclasses
of the class of protoalgebraic logics: equivalential logics, weakly algebraizable
logics, algebraizable logics, regularly algebraiable logics, Fregean logics, etc.
They form a hierarchy of protoalgebraic systems—the higher the position in
the hierarchy, the narrower the class of logics. The largest class is formed by
protoalgebraic systems, while Fregean systems make the smallest one (after
the name of the German logician Gottlob Frege). Nowadays, extensive lit-
erature on protoalgebraic logics and—more broadly—the abstract algebraic
logic (e.g., (Czelakowski, 2001), (Font, 2016)) is available. The hierarchy un-
der consideration builds a bridge between logic sensu largo and the theory
of quasivarieties of algebras, as well as provides most sophisticated methods
of description of its individual rungs. Furthermore, the notional apparatus,
which has been worked out, has contributed to a substantial broadening of the
algebraic discourse with new elements. This influence is evident, especially
with reference to studies on various algebraic aspects of equational logic.

5. The class of protoalgebraic logics, vital as it is, since all the “non-
pathological” logics belong to it, including all known intensional logics, does
not cover all logical systems: some systems “fall” outside the above-mentioned
hierarchy. The simplest example is the conjunctive-disjunctive fragment of
classical propositional logic. The approach which is based on the Leibniz op-
erator does not work here. However, the new operator Σ, which is called the
Suszko operator in honor of Roman Suszko comes in aid. This operator was
implicitly introduced in unpublished notes by Suszko. Its theory was subse-
quently developed in a systematic way (see e.g. (Czelakowski, 2001, 2003)),
and the name the Suszko operator has been coined. The operator is nowadays
extensively investigated by other researchers.

The Suszko operator Σ coincides with the Leibniz operator Ω on protoal-
gebraic systems; moreover, it is always monotone. Properties of the Suszko
operator gave rise to researching the hierarchy of all logical systems, not
only protoalgebraic ones, from the uniform algebraic viewpoint. If we take
into account the algebraic aspects of operator Σ, the classes of algebras de-
fined by it do not have to be either varieties or quasivarieties. They are classes
closed with respect to the formation of subdirect products and (sometimes)
under ultraproducts; they are also called Lyndon classes, after the name of
the outstanding American logician and mathematician.

6. We present the reader with the Festschrift dedicated to Professor Don
Pigozzi on the occasion of his 80th birthday. Professor Don Pigozzi was born

when a round occasion to celebrate the birthday of an outstanding scholar
draws closer, there arises the question: In what way should the scholars’ com-
munity, acquaintances and friends act to express their appreciation? The se-
ries entitled Outstanding Contributions to Logic, which has been in existence
for a few years now, allows choosing a natural and reliable formula: editing
an occasional anthology dedicated to the scholar. The formula realized by the

in June 1935; thus, this book comes out three years after his jubilee. Always,
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Outstanding Contributions to Logic differs, however, from others: it is more
flexible and richer by new motifs. Beside the occasional articles included in
the Festschrift, which were written by outstanding specialists and disciples,
there is also a place in it to present the scientific output of the Jubilarian
and discuss to a broad extent his impact on the development of science, to
catalogue his works, and—first and foremost—to bring his person closer in
the form of an extensive profile which sketches the most important events,
not only related to the scientific activity, but also from his personal life. And
it is this formula that has been applied in the present volume dedicated to
Professor Don Pigozzi.

The publication of the volume is the merit of many people—primarily the
authors, many of whom being disciples of Don Pigozzi, who were willing to
write occasional articles.

We do hope that the present book will be useful for scholars who are
interested in Don Pigozzi’s output, as well as in the areas, to the rise and de-
velopment of which his work contributed, that is AAL, universal algebra and
computer science. The published works contain new scientific results. Some
of the papers also present chronologically ordered facts relating to the devel-
opment of the disciplines, to the rise of which Don Pigozzi again contributed
considerably, especially the abstract algebraic logic. The papers published
in the volume will certainly offer valuable source material for historians of
science, especially those who deal with the history of mathematics and logic.

Acknowledgements. It is self-evident that, in the first place, it is Don
Pigozzi who should be thanked the most. His life and scholarly output
have provided the basic motivation which justifies the publication of this
Festschrift in the series of Outstanding Contributions to Logic. I am person-
ally grateful to Don for his agreeing to undertake to work on editing this
volume and also for his invaluable help in realization of a number of editorial
and substantial aspects of the projects.

I wish to thank all the authors who decided to submit their papers for
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A Mathematical Life

Don Pigozzi

the best of all possible worlds
Leibniz

but not a perfect one
Tarski

Here is the story of my forty years as a professional algebraist and logi-
cian and also as a computer science dilettante. It is divided into seven parts
chronologically. Each part begins with a narrative in which I describe my
relationship with mentors, colleagues, collaborators, and students, often in
very personal terms. I am happy to say that all these relationships have been
cordial and many of them deeply satisfying.

I also mention in passing my research during these times, but the more
detailed discussion of selected papers is left to a Publication part at the end of
most sections for those interested. I have tried here to present at least enough
detail so that the reader has a feeling for what I and my coauthors have tried
to do. The great majority of my research is in universal algebra and algebraic
logic. I expect that most of the likely readers of this autobiography will
themselves have worked in these areas and may feel that the space devoted
to computer science related topics is out of proportion. It is just because they
may be unfamiliar with these topics that I have included this material. In any
case it may be skipped if the reader chooses, which is why I have separated
the description of individual papers from the narrative.

1 Early Life

I was born in Oakland California on the 29th of June, 1935. My first clear
memory was listening to the attack on Pearl Harbor (the beginning of World

1© Springer International Publishing AG 2018
J. Czelakowski (eds.), Don Pigozzi on Abstract Algebraic Logic,
Universal Algebra, and Computer Science, Outstanding Contributions 
to Logic 16, https://doi.org/10.1007/978-3-319-74772-9_1
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War II for us) on the radio with my parents. For the next four years I was
absorbed with following the Allied Forces’ slow but steady island hopping
advance in the Pacific and, on the Atlantic front, through North Africa, Italy
and then northern Europe.

Both my parents were second generation Americans, my mother of German
ancestry and my father of Italian. Neither went beyond grammar school,
although they were certainly capable of much higher education. My father
became a skilled machinist, and went in business with his brother-in-law
(my uncle) at the height of the depression two years before I was born. In the
1940s the business became quite successful, affording the family a comfortable
lifestyle.

Although not educated themselves, my parents always stressed its im-
portance. My brother Leo, who was seven years older than me, became an
electrical engineer.

When I entered The University of California, Berkeley in 1953 I intended
to become an engineer also. I soon realized my interests were more theoretical
and graduated four and a half years later with a bachelors degree in physics.

I was always most interested in the courses that applied calculus to solve
physical problems, but was uncomfortable about the connection. In high
school algebra Cramer’s rule was about the only thing I found interesting.
What was the connection between this mechanical process and the solution
of systems of linear equations? I asked my teacher and he said simply that“it
just works”. I naively concluded that mathematics was an experimental sci-
ence, and this view wasn’t completely dispelled until my senior year in college
when I talked my physics advisor into letting me take the senior course in
mathematical analysis in the mathematics department. It was taught by Pro-
fessor Leo Breiman using Rudin’s Mathematical Analysis textbook. It was a
revelation to me. What I had naively thought was an empirical science was
in fact based on a solid logical foundation.

After a short period satisfying my military obligation, I entered the grad-
uate program in mathematics at Berkeley, with the intention of concentrat-
ing on analysis. I spent my first semester taking senior level courses that
included mathematical logic from Leon Henkin and Boolean algebra from
Robert Vaught. In the second semester I took graduate courses: algebra from
Maxwell Rosenlicht and mathematical logic from William Craig. I enjoyed
both courses, especially algebra and decided to make this my specialty.

Subsequent courses in algebra were less appealing and I drifted rudderless
through the graduate program for a time making little progress and avoiding
the PhD qualifying examinations. (At that time Berkeley put no pressure on
graduate students to finish who did not require Departmental support.) I was
suddenly seized by a sense of urgency and decided on logic as my research
area. I passed the qualifying exam (on the second try) with mathematical
logic as the optional topic, and asked Leon Henkin if he would take me on as
a graduate student. He demurred because he already had several students and
suggested I ask Alfred Tarski, who at that time was looking for a student to
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help him with a book on cylindric algebras that he was writing with Henkin
and Donald Monk. Tarski agreed, and thus begun a close relationship that
lasted five years.

2 Years 1964–1972

At this time Tarski had become especially interested in what he called The
General Theory of Algebra, more commonly called Universal Algebra, UA (a
term he didn’t like). Cylindric algebras were introduced in the late 1950s by
the three authors as an algebraic model of the first order predicate logic, and
thus a natural topic for universal algebra. He agreed to write the introductory
chapter for the book on this topic, based on a graduate course he was teaching
at the time and which I was taking. The cylindric algebra part of the book
was to be written by the other two authors. My job was perceived as assisting
Tarski with this introductory chapter.

The finished typescript manuscript had been prepared in Boulder and
mailed to Berkeley. It included even the color coding for special fonts; this was
in that primitive time before TEX. It arrived with a note from Monk saying he
expected that Tarski, with my help, would rewrite the introductory chapter
as seen fit, and review the cylindric algebra chapters, making any presumably
minor changes Tarski cared to; he expected this would take a few months. In
fact it took almost five years, during which the entire book was rewritten.

I feel an obligation at this point to record for historical reference how Tarski
worked with his graduate students, at least in my case. He always worked at
home in the afternoons; mornings were reserved for working in his garden.
He came on campus only for classes and seminars and for administrative
duties. I recall meeting him the evening of a university holiday and remarking
that Robert Vaught and several other faculty members were in their offices
working. He was outraged: in Europe he said only clerks work in their office–
academics always work at home.

On the weeks we worked we would meet normally two or three times a
week, at his house at about seven or eight in the evening. Although not
infrequently I would come earlier and he would take me out to one of his
favorite restaurants for dinner before we went to work. We would then work
in his downstairs office until about midnight. We would then go upstairs to
the kitchen where Mrs. Tarski would have prepared a midnight snack for us.
Although visibly tired before this break, he would seem to revive and would
ask me if I was up to working more. Of course I would agree, though dreading
it. Then, with the help of some kind of stimulus pills, he would be very alert
for several hours while I was barely functional. Many times we would see the
sun rising before he agreed we should stop.

During this time we would systematically work through the Boulder
manuscript, revising it as he saw fit. He was interested only in the formulation
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of the theorems and especially the interconnecting narrative text. The proofs
of the extant theorems he left for me to check and, as he gained more confi-
dence in me, to reformulate at my discretion. He would also leave to me the
proofs of the new theorems that he added. He felt that the real understanding
of the material is imparted in the interconnecting text, and he would spend a
longtime reflecting on this while smoking his cigarillos. He would then dictate
the text to me. We would discuss it, modify it as needed, and then I would
record it. He always liked to have a native English speaker to help him at
this stage because he was not completely confident of his command of the
language.

My real work was between these meetings. I would edit the dictation I
had taken and give it to the secretary of the Logic and Methodology group
to type up. I would also have to prepare for the next meeting by working
out the proofs of the modified and new theorems and looking up references
for our next meeting. Dale Ogar, the secretary, was an excellent technical
typist. She was in large part responsible for preparing the final manuscript
for submission to the publisher, and we became good friends. I was happy
to have her available to type my thesis and grateful for her offer to move it
through the university bureaucracy for me while I was in Indiana on my first
academic appointment.

There were long periods when Tarski was away from Berkeley and we did
not meet. During these hiatuses I would catch up on my work on the cylindric
algebras book and work on my thesis, which not surprisingly was on a topic in
cylindric algebras, a problem Don Monk gave me: Which classes of cylindric
algebras have the amalgamation property, that is, given two algebras of the
class with isomorphic subalgebras, under what conditions can they be both
isomorphically embedded in a third algebra of the class such that the two
isomorphic images of the subalgebras coincide? This algebraic problem is
closely related to the Craig Interpolation Theorem of first-order predicate
logic.

Don Monk was an enormous help to me—in a sense my defacto thesis ad-
visor; Tarski wasn’t much interested in the problem. I finished the first draft
of the thesis during the summer of 1969, just after finishing my work on the
cylindric algebra book and finally sending the completed manuscript to Boul-
der. The problem was that I had already accepted a one year appointment at
Indiana University under the assumption that my thesis would be completed.
But Indiana graciously honored their offer and I spent the fall semester of
the 1969-70 academic year in Bloomington.

Tarski had accepted a invitation to give a series of lectures at the Penn-
sylvania State University prior to the start of the academic year. When the
opportunity arose Tarski liked to take long motor trips and was eager to see
the Dakota badlands (Leszek Ko lakowski had told him how impressed he was
by them on a motor trip to Berkeley earlier that summer). So Tarski, Mrs.
Tarski, and I drove to State College Pennsylvania in my new Ford Maver-
ick, and after the conference we drove to Columbus Ohio where they took a
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plane to Berkeley, and I went on to Bloomington to join my friend and fellow
Berkeley graduate student Ralph Seifert in a new life.

I spent the year teaching and writing the final version of my thesis, which
I sent on to Dale Ogar to be typed and submitted to Tarski. My appointment
was extended for the 1970-71 year, but I spent the fall of 1970 in Berkeley on
a research assistantship to help in the final production of the cylindric algebra
book. Indiana did not extend my appointment again, and I accepted an offer
of a position at Iowa State University in Ames for the 1972-73 academic year
where I remained for 31 years until my retirement in 2002.

Publications: While working on the introductory chapter in the cylindric
algebra book Tarski had considered the three operations on classes of alge-
bras S, H, P forming subalgebras, homomorphic images, and direct products,
and all their possible compositions. They form a finite ordered set under set
theoretical inclusion. When I had just started working for him, he asked me to
describe its structure. I instinctively sensed that this was my real qualifying
exam, and with considerable anxiety worked hard on the problem which I was
fortunately able to solve. This was my first publication (Pigozzi, 1972b) that
appeared the same year as my thesis (Pigozzi, 1972a). My other publication
of this period (Pigozzi, 1974) dealt with joins of logical theories. It was known
that the first-order theory of a single equivalence relation is decidable while
that of two equivalent relations is not. This paper shows that the join of two
decidable equational theories with disjoint languages is always decidable. On
the other hand, the result fails if the languages are not disjoint, even if the
two theories coincide on the common part of their languages.

3 Years 1972–1979

The person mainly responsible for me coming to Iowa State was Alexander
Abian. He was an analyst turned set theorist. Federico Sioson, a good friend
of Donald Monk, with a Berkeley doctorate in universal algebra from Alfred

tragically died of cancer after only a few years. He together with Abian were
responsible for establishing the courses in foundations then being offered in
the mathematics department, and I had the opportunity to teach graduate
courses in algebra and logic.

Computer science had been part of the mathematics department, but had
been split off into a separate department shortly before I arrived. One of
those who went into the new department was George Strawn. He was Sio-
son’s only doctoral student at Iowa State. After writing a thesis in universal
algebra his interests had turned to computer science. But our research inter-
ests were quite compatible. He was responsible for me spending two years in
the computer science department as an adjunct professor quite a bit later.

Foster, had come to Iowa State not long before me. I never met him since he
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In 1974 I was promoted to associate professor, and in the summer was
invited by John Doner and Richard Büchi to speak in the computer science
department seminar at Purdue University. John had also been a student of
Tarski, writing a thesis on ordinal numbers that Tarski highly regarded. He
finished shortly before me. While on a postdoctoral fellowship at the Rand
Corporation he obtained a result in automata theory that complemented a
well known result of Büchi, who was responsible for John’s appointment in
West Lafayette at about the same time I came to Bloomington. We became
close friends (I was the best man at his wedding). My talk was on equational
logic; it became the basis of a manuscript that was published as a technical
report of the Purdue computer science department (Pigozzi, 1975).

In 1978 the Department with my encouragement hired another Tarski
graduate student, Roger Maddux. His thesis was on a different algebraic
model of predicate logic, relation algebra. It had a much longer history than
cylindric algebras and was of more interest to Tarski at that time, partly I
think because of its structural elegance. Soon after this we acquired another
Berkeley logician, Richard (Dick) Epstein. His thesis was in recursive number
theory, but at the time he was developing an interest in philosophical logic.

I had enough of cylindric algebras after working exclusively on them for five
years and turned my attention to a quite different topic under the influence,
among others, of George McNulty. George was another student of Tarski who
was at the University of South Carolina. Combinatorial universal algebra is
like combinatorial group theory except that instead of word problems, it deals,
among other things, with the base decidability of finitely based equational
theories and equivalently their varieties of models. (A variety is the set of all
models of a set of identities, called a base of the variety; the equational theory
of the variety is its largest base, i.e., the set of all its identities. It can also
be thought of as any base together with the deductive apparatus for deriving
all identities from the base using Birkhoff’s rules.)

The key to my results in this area is the notion of a universal variety.
Roughly speaking an equational theory is universal if any equational theory,
under certain restrictions, can be faithfully interpreted in it. This topic, to-
gether with work on the structure of equationally complete (i.e., minimal)
varieties, locally finite varieties, and questions about the finite axiomatiza-
tion of various varieties took up most of my research time until I went on
my first sabbatical leave during the 1978-79 academic year at the invitation
of George Grätzer and the universal algebra group in Winnipeg Manitoba.
It was an invigorating experience in several regards: during one two week
stretch in the winter the temperature remained at 40 degrees below zero
(Celsius and Fahrenheit). Academically it was even more so. The UA group
was very hospitable and I was quickly accepted as a member.

I met two mathematicians who like me were visiting: Wilhelm (Wim) Blok
and Peter Köhler with whom I immediately bonded and who brought me back
to algebraic logic (AL). Wim Blok had just come to Winnipeg on a postdoc-
toral fellowship after finishing his thesis on varieties of interior algebras under
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Philip Dwinger at Amsterdam and Chicago. Peter Köhler was on leave from
Giessen University in Germany with his wife Adelheid and young son; Wim
and I were invited to the house they were renting several times. His thesis
was on the semigroup of varieties of Brouwerian semilattices, and he had col-
laborated with Blok on a paper on the semigroup of varieties of generalized
interior algebras.

Because Wim Blok and I were both single and together in an unfamil-
iar environment we became very close friends–frequently going out to dinner
together in the evenings and sharing personal things about our lives. One inci-
dent with Wim at this time was particularly memorable. During the interval
of minus 40 degree temperature in Winnipeg Wim and I drove downtown
one evening to attend an opera (the Flying Dutchman). The streets were ice
covered when we started home and were incredibly slick. I could only drive a
couple of miles an hour and could hardly control the car at that speed. I was
just barely able to stop behind a line of cars waiting to turn onto the street
back to the university. The next two cars also were able to stop, but the one
after that couldn’t and collapsed the line like an accordion. The damage to all
the cars but mine was minor, but I had stopped behind a tow truck with it’s
boom down, which pushed through the grill and punctured the radiator and
totalled the Maverick, the one I drove to Penn State with the Tarskis. I was
sorry to lose that car with all its memories, like the burn on the dashboard
that Tarski made when he missed the ashtray with his cigarillo.

So began a personal friendship and professional collaboration that lasted
over twenty years until Wim’s death in a tragic automobile accident in 2003.
After the year in Winnipeg Wim went to Simon Fraser University in Van-
couver on another postdoctoral fellowship, and then a visiting instructorship
at the University of British Columbia where he met his future wife Mary. He
was looking for a permanent position after Vancouver, and I was eager to
have him at Iowa State, but he accepted a competing offer from the Univer-
sity of Illinois at Chicago where his thesis advisor Philip Dwinger had a part
time professorship. I was disappointed but understood that Chicago was the
right place for him. They had a more well formed algebra and foundations
program than we did, and he was very comfortable in Chicago, having spent
much time there with Dwinger working on his thesis. Besides that, he was
a big city guy, having essentially grown up in Amsterdam. I understood he
and Mary would never be happy in a small town like Ames.

Research-wise my year in Winnipeg was very fruitful. Blok, Köhler and I
wrote or began work on several papers dealing with varieties with equationally
definable principal congruences. This was an area of universal algebra that
was getting a lot of attention in the literature currently and proved to be
important in algebraic logic because of its connection with the deduction
theorem.

I was also able to work with other members of the UA group on topics
not connected to algebraic logic. Sichler was a long time member of the
Manitoba UA group, and Michael (Mick) Adams was another visitor like me.

Jĭry
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Both became good friends, especially . He was an avid outdoors-man
and invited me back the following year for a canoe trip to an isolated lake in
the wild lake district of Manitoba.

My collaboration with Peter Köhler did not extend beyond our time to-
gether in Winnipeg. He left academics and began a successful career in soft-
ware development. However we did keep in touch by email over the years. I
stayed one night with Peter and Adelheid at their home in Weilburg-Kubach
north of Frankfurt while I was in the area attending a conference. Recently
they stayed with us several days in Oakland when they came to the West Cost
to visit their son who was working in Washington State. We took them sight-
seeing in San Francisco, and they then picked up the large Cruise America
van they had rented and drove it up to Washington.

Publications: S.I. Adjan and M.O. Rabin (see (Pigozzi, 1976a) for refer-
ences) show that for every property of groups satisfying a certain condition
called the Markov condition, the set of all finite presentations that define a
group with the property fails to be recursive. The Markov condition is sur-
prisingly simple: a property satisfies it if (I) there exists at least one group
with the property, and (II) there exists a group which not only fails to have
the property, but cannot be isomorphically embedded in any group with the
property.

In (Pigozzi, 1976a) we give a Markov-like condition for showing a prop-
erty of arbitrary equational theories is base undecidable. The key is finding a
condition on equational theories analogous to (II) of the Markov condition.
This is based on the notion of a universal equational theory, more specif-
ically a normal universal theory, which is defined and studied in (Pigozzi,
1979b). The universality of the equational theory (equivalently the variety)
of quasigroups is established in (Pigozzi, 1976b).

The paper (Pigozzi, 1981b) and its sequel (Pigozzi, 1981c) investigate the
structure of equationally complete varieties that either fail to be locally finite
or are locally finite but are neither congruence-permutable nor congruence-
distributive. It turns out that the structure of such a variety can, with some
reservations, be as complex as that of an arbitrary variety of the same kind.
In contrast the structure of locally finite varieties having at least one of the
two congruence conditions had previously been shown to be much simpler to
describe.

Two other papers at this time, (Pigozzi, 1979a) and (Pigozzi, 1981a) in-
vestigate the problem of the existence of a finite basis for the identities of
equationally complete locally finite varieties and of finite groupoids. For ex-
ample, one of the results of the second paper is that the category of all
non-finitely based groupoids and all homomorphisms between them included
a subcategory isomorphic to the category of all finite groupoids.

The two papers (Adams et al., 1981) and (Pigozzi and Sichler, 1985) I
wrote with Sichler and Adams were in a different vein: endomorphisms of
direct products of bounded lattices and homomorphisms of partial and of
complete Steiner triple systems.

Jĭry
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A variety of algebras has Equationally Definable Principal Congruences
(EDPC) if there are finitely many equations pi(x,y,z.w) ≈ qi(x,y,z,w),
i = 1, . . . ,n, such that, for each algebra in the variety and every quadruple
a,b,c,d of its elements, c is congruent to d by the congruence generated by
the pair a,b, in symbols c≡ dΘ(a,b), if and only if pi(a,b,c,d) = qi(a,b,c,d)
for each i. It is not difficult to show that for all a,b,c,d the join of the con-
gruences Θ

(
pi(a,b,c,d), qi(a,b,c,d)

)
is the smallest congruence Ψ such that

Θ(c,d) ⊆ Θ(a,b)∨ Ψ , in other words, it is the dual pseudo-complement of
Θ(a,b) relative to Θ(c,d) in the lattice of congruences of the algebra. It fol-
lows without difficulty that if a variety has EDPC, the join-semilattices of
finitely generated, i.e., compact congruences of its members forms a dually
pseudo-complemented join semilattice, and in fact these two properties are
equivalent.

Dually pseudo-complemented join-semilattices are distributive, consequent-
ly, varieties with EDPC are congruence-distributive. This had been an open
problem of some interest in the UA literature. These results are contained in
(Köhler and Pigozzi, 1980), coauthored with Peter Köhler.

A comprehensive list of varieties with EDPC is given in (Blok and Pigozzi,
1982). There are two principal kinds: discriminator varieties and varieties
arising from the algebraization of deductive systems of classical and non-
classical logic that satisfy some reasonable version of the deduction theo-
rem. In fact every algebraizable logic of this kind gives rise to a variety with
EDPC. Discriminator varieties are both congruence-permutable and semisim-
ple and comprehend all EDPC varieties with these two properties. In the two
papers (Blok and Pigozzi, 1982), with Blok, and (Blok et al., 1984), with
Blok together with Köhler, two questions are investigated: (I) Can the char-
acterization of congruence-permutable and semisimple EDPC varieties by
means of the discriminator function be extended in a useful way to classes
of congruence-permutable EDPC varieties that are not semisimple? (II) How
comprehensive is the class of EDPC varieties that arise from logic–can it be
characterized by some natural algebraic conditions?

A discriminator variety has a ternary polynomial function P , called a
discriminator function such that p(a,b,c) equals c if a = b, and a otherwise.
Blok and I wrote two more papers, (Blok and Pigozzi, 1994a) and (Blok and
Pigozzi, 1994b), over the next ten years investigating various generalizations
of the discriminator function, for example, the quaternary discriminator, or
if-then-else function, p where p(a,b,c,d) equals c if a= b and d otherwise.

4 Years 1981–1988

In the fall of 1980 Leszek Szczerba came to Ames as a visiting professor for
the academic year at the invitation of Dick Epstein. He came with his wife
Bożena and their two sons Stanis law and W lodek (at Epstein’s suggestion we
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called them Stan and Wally). Leszek’s field was the foundations of geometry.
He had been in Berkeley visiting Tarski where Epstein and Roger Maddux
got to know him well, and so did I while he was in Ames. Bożena made great
pierogi (a kind of filled dumpling very popular in Poland), and I always looked
forward to an invitation to dinner with the family. During his time in Ames
the Solidarity movement exploded in Poland and martial law was declared.
Leszek considered applying for refugee status to remain in the US, but the
family was reluctant so they returned home at the end of the academic year.

The following year we got the okay to hire another person in universal
algebra and we brought in Clifford (Cliff) Bergman, and a few years later
Jonathan Smith. Cliff was another Berkeley graduate and a student of Ralph
McKenzie, and had just completed a postdoctoral year in Hawaii. Jonathan
came to us from Darmstadt, Germany where he had been for several years
after getting his doctorate from Cambridge. A two semester graduate univer-
sal algebra sequence was added to the curriculum in 1993. I taught a rather
traditional course the first semester based on my notes from Tarski’s course
at Berkeley. The topics I chose in the second semester were influenced by my
research.

Cliff and Roger Maddux, like me, were interested in computer science and
the three of us had held informal joint seminars with George Strawn and other
members of the CS Department. I asked George if CS would be interested in
joining Math in funding a joint position in the two departments. He said no,
but they would like to offer me a halftime position. CS’s problem was that
having just split off from Math they had very few senior positions filled in
their new department. I was intrigued with the idea, but told him I knew very
little basic computer science–I didn’t ever know how to program. George said
that if Math agreed, I could have a halftime adjunct position to teach through
their undergraduate curriculum, one course a semester, and they would send
a graduate student over to Math to take my undergraduate course. At the
end of that time I could decide if I wanted a halftime professorship in CS.
Our department agreed, and starting in the fall of 1984 I taught in CS for
five semesters, beginning with the most basic programming course for non-
majors and ending with the senior level compiler course. I also audited more
advanced CS courses.

It was a very difficult two and a half years; the classes were large and I
was always just a step ahead of the students. The most stressful times came
when programming assignments were due. Occasionally the teaching assistant
couldn’t figure out what was wrong with a student’s program and would send
him or her over to me to debug it. I always broke out into a cold sweat when
this happened, but thank goodness it didn’t happen often and much to my
surprise I was always able to solve the problem. The compiler course was a
particular challenge. I found the textbook almost uncomprehensible, but I
was able to manage things on my own pretty well until one night, near the
end of the term, while I was in the student union trying to prepare the next
morning’s lecture on a critical point, I realized I had no idea what to say.
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Thank goodness, a former colleague in the CS department, who was back on
a visit and happened to be in the union, was able to explain the problem to
me. The CS department had given me two excellent graduate students and
thanks to them I was able to get through the course successfully.

In spite of the time and stress I appreciated the opportunity to learn a lot
of basic computer science in a very short time, and was gratified to know I
was now able to write an actual compiler. But I had been unable to do any
research during this time and was greatly relieved to know I would be able
to escape gracefully by going on sabbatical leave in Chicago for the 1986-87
academic year.

I spent the summer before Chicago in Europe. Wim Blok and I were in-
vited by Hajnal Andréka, Istvan Németi, and Ildiko Sain to participate in the
summer algebra seminar in Budapest. Following that I went on to Warsaw,
at the invitation of Anna Romanowska, to speak in the theoretical computer
science seminar of the Technical University of Warsaw. I gave the first pub-
lic presentation of Blok and my definition of an algebraizable logic. Jeszek
Szczerba graciously offered to drive me through western Poland to meet a
number of logicians and algebraists whose work I knew well but had never
met. The highlights of the tour were a visit to Andrzej Wroński in Kraków, Pi-
otr Wojtylak in Katowice, and to Ryszard Wójcicki, Janusz Czelakowski and
Wies law Dziobiak at the Section of Logic of the Polish Academy of Sciences
in  Lódź. Czelakowski would in time become one of my closest collaborators in
research on algebraic logic. Before returning to the US I visited Aldo Ursini
in Siena, another universal algebraist whose work I knew well.

Chicago is a great place to visit and The University of Illinois at Chicago
(UIC) a great place too for a logician and algebraist to work. At the time the
Department included, besides Wim Blok, also John Baldwin, David Marker,
and Joel Berman; in addition the Philosophy Department contained several
prominent people working in philosophical logic. Berman was kind enough to
let me have his apartment, which was available at the time, for the year, and
within easy walking distance from the campus.

During my time in Chicago Wim and I were finally able to complete our
long delayed paper on a general framework for investigating the precise con-
nection between algebra and logic. This was finally submitted to the Memoirs
of the AMS in April of 1987 and appeared in January of 1989 under the ti-
tle Algebraizable Logics (Blok and Pigozzi, 1989). We were gratified to learn
that the first edition sold out shortly after publication. The monograph has
recently appeared in the Classic Reprints series published by the Advanced
Reasoning Forum, a series edited by my former colleague at Iowa State Dick
Epstein. Wim and I had already started work on it while in Winnipeg in 1978.
The earliest version was intended to be the first part of our paper on the de-
duction theorem in algebraic logic, which itself was still only in manuscript
form when the EDPC I paper (Blok and Pigozzi, 1982) was submitted in
July of 1981. (A reference to this manuscript can be found in the (Blok and
Pigozzi, 1982) bibliography.)
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The deduction theorem paper, not to be confused with Local Deduction
Theorems in Algebraic Logic (Blok and Pigozzi, 1991b), also has a long and
troubled history. It was rewritten several times and finally submitted to the
Bulletin of Symbolic Logic of the Association for Symbolic Logic. It was con-
ditionally accepted, but the referee’s suggestions were so cogent that we de-
termined the last part had to be completely re-written. I worked for a long
time expanding the discussion of the history of the subject and adding many
new references. I sent the manuscript to Wim in 1995 with the recommen-
dation to make any additional changes he saw fit and then send it on to the
editor without having to consult me. But he died before he could complete
his work. Thanks to Joel Berman I got his files and with some effort could
see that the paper was near completion. I was able to interpret the notes he
had made and trace most of the new but frequently incomplete bibliographic
references he intended to insert. But these revisions have not yet been com-
pletely implemented. Considering the time that has elapsed since the paper
was first submitted, I have been reluctant to resubmit it to the Bulletin of
Symbolic Logic or any other journal. The editors have graciously offered to
include it in this volume, but because it still requires substantial work before
it is ready for publication I have decided to decline the offer in order not to
further delay the appearance of the present volume.

Following my sabbatical I remained in Chicago in the autumn of 1987
as a visiting professor (teaching linear algebra and computer programming).
During the intervening summer Walter Carnielli invited me to teach a short
course on algebraic logic at the State University of Campinas, Brazil. I was
thankful to Dick Epstein, who had just returned from an extended stay in
Brazil, for arranging this invitation. This was the first of many trips I would
make to Latin America over the years. Research-wise, Wim and I continued
working on the EDPC papers in which various generalizations of the discrim-
inator function are investigated. This in turn led to my first foray into com-
puter science research: Data Types Over Multi-valued Logics (Pigozzi, 1990)
and Equality-Test and If-Then-Else Algebras: Axiomatization and Specifica-
tion (Pigozzi, 1991). I also obtained an analog for quasivarieties of Baker’s
famous result that every finite member of a congruence-distributive variety
is finitely based (Pigozzi, 1988a).

Because Wim was now married our relationship wasn’t as close as in Win-
nipeg. But I was soon just as comfortable around Mary as I was with him. The
three of us frequently enjoyed dinner together, at their home or a restaurant.
Wim loved good food and wine and kept up to date on the best restaurants
in the Chicago area. For many years I would drive the 350 miles from Ames
to Chicago for Thanksgiving dinner with them and then go with Wim to a
concert or opera. Wim was an excellent violinist and violaist, and played the
viola regularly in a string quartet among friends. He also played the viola
in a local orchestra organized and conducted by his colleague at UIC David
Tartakoff. For several years he and Mary rented a cottage in Lake Michigan
in Indiana for a week or two and would often invite me to join them for a
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weekend. We would take short trips in the nearby countryside: to the Indiana
Dunes and the fall nesting area of the Sand Hill Cranes. My times with Wim
and Mary are some of my fondest memories. I find myself often thinking of
Wim and realizing how much I miss him.

Publications Algebraic logic in the modern sense began with Tarski’s
1935 paper The foundations of the calculus of systems. The sentences of clas-
sical sentential logic (CSL) form the universe of an algebra of sentences whose
operations correspond to the connectives of the logic. Two sentences ϕ and
ψ are equivalent if the two implications ϕ→ ψ and ψ→ ϕ are theorems in
CSL ( i.e. tautologies). This defines a congruence relation Θ on the sentence
algebra and the resulting quotient algebra is a Boolean algebra, the Tarski-
Lindenbaum algebra (the TL) of CSL. A sentence ϕ is a theorem of CSL if and
only if the equation ϕ/Θ ≈ T/Θ is an identity in the TL algebra. Conversely
a deductive system for CSL can be constructed from any set of axioms for
Boolean algebra, together with the Birkhoff laws for equational logic.

A number of nonclassical sentential logics can be algebraized in this
way: the intuitionistic logic of Heyting, the multi-valued logic of Post and
 Lukasiewicz, and the modal logics S4 and S5 of Lewis. There is a correspon-
dence between theorems and algebraic identities that allows the deductive
apparatus of each algebraizable logic to be interpreted in the equational the-
ory of the TL algebra of the logic. Many higher order metalogical properties
also have natural algebraic interpretations, for example the deduction theo-
rem as EDPC.

There are however important sentential logics to which this method does
not apply, such as the Lewis systems S1, S2, S3 which do not have the
Rule of Necessitation ϕ/2ϕ. In this case the equivalence relation Θ defined
as for CSL is not a congruence since ` ϕ→ ψ does not imply ` 2ϕ→ 2ψ.
Other examples arise from considerations of strict (non-material) forms of
implication: the systems R and E of relevance and entailment introduced
by Anderson and Belnap where there exist theorems ϕ and ψ for which
ϕ→ ψ is not a theorem. The question naturally arises if any of these can be
algebraized by some method other than the classical one, or if they are in
some sense inherently non-algebraizable. What is needed is a precise, formal
definition of algebraizability that is generally accepted, such as the formal
definition of a recursive function is accepted as capturing the intuitive notion
of a constructible function. This is what Wim and I set out to do in the
monograph Algebraizable Logics (Blok and Pigozzi, 1989). But we must leave
it to the reader to decide if we have been successful.

A class K algebras is an equivalent algebraic semantics for a sentential
logic S if the consequence relation `S can be interpreted in the (semantical)
equational consequence |=K of K and vice-versa, and moreover the two inter-
pretations are inverses of one another in a natural sense. By definition S is
algebraizable if it has an equivalent algebraic semantics. Equivalent algebraic
semantics are unique in the sense that they all generate the same quasivariety.
This definition is not very useful from a practical point of view since it is not
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intrinsic in the sense it requires a priori knowledge of the equivalent algebraic
semantics. Two intrinsic characterizations are given in the monograph.

Let T be a theory of a sentential logic S, i.e., a subset of sentences closed
under the consequence relation of S. It is natural to think of sentences ϕ and ψ
as being equivalent with respect to T if either one can be replaced by the other
in any third sentence without affecting that sentence’s truth or falsity relative
to T , i.e., whether or not the sentence is contained in T . This is a congruence
relation on the sentence algebra, called the Leibniz congruence of T (because
of the connection with Leibniz’s definition of truth in second order logic),
and is denoted by ΩT . It turns out to be the largest congruence compatible
with T in the sense that if ϕ is in T then so is every sentence equivalent
to ϕ. In order for S to be algebraizable it is necessary that ΩT properly
includes ΩT ′ whenever T properly includes T ′, i.e., the Leibniz operator is
one-one and order preserving on the lattice of theories. The condition is also
sufficient provided a certain other natural condition holds. Although natural
the condition is not easy to establish, but the characterization is useful to
showing a given logic fails to be algebraizable.

The second intrinsic characterization is useful for establishing algebraiz-
ability. A logic is algebraizable if there exists a finite set of sentences in two
variables that collectively have many of the properties of the biconditional
x↔ y of classical logic. It is obtained by adding one additional condition to
the definition of equivalential logic introduced and studied by J. Czelakowski,
T. Prucnal, and A. Wroński. Using these two characterizations we show that
there is a large class of modal logics, including S1, S2, S3, that are not
algebraizable in our sense. Entailment logic E also fails to be algebraizable,
but Relevance logic R is algebraizable.

There is also a large class of logics that, like S1, S2, S3, need not be
algebraizable, but are amenable to most of the standard methods of AL. A
logic S is protoalgebraic if for every S-theory T , every pair of ΩT -equivalent
sentences ϕ and ψ are interderivable relative to T , i.e., T,ϕ `S ψ and T,ψ `S
ϕ. It turns out that S is protoalgebraic if and only if the Leibniz operator
is monotonic on the lattice of theories. Their algebraic counterpart are not
algebras but the matrix models of the logic, that is pairs 〈A,F 〉 where A
is an algebra over the same language as the sentence algebra of S and F
is a subset of the universe A of A closed under the interpretation in A of
the consequence relation of S. F is called an S-filter of A. An S-theory is a
filter of the algebra of sentences. Protoalgebraic logics are studied in detail
in (Blok and Pigozzi, 1986b) and in the monograph Protoalgebraic Logics by
J. Czelakowski.

The three publications just discussed have been followed by a large litera-
ture, by a number of different authors, on a new kind of algebraic logic where
the focus is on the nature of the connection between logic and algebra in
general rather than on specific logical systems. The term Abstract Algebraic
Logic (AAL) has been suggested for this new line of research.
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I returned to universal algebra with the paper Finite Basis Theorems for
Relatively Congruence-Distributive Quasivarieties (Pigozzi, 1988a). Consider
a quasivariety Q. A congruence relation Θ on an algebra A (not necessarily
in Q) is said to be relative to Q, a Q-congruence, if the quotient algebra
A/Θ is a member of Q. The set of relative congruences ConQA forms a
complete lattice that contains the identity congruence only if A ∈ Q. Q is
relatively congruence-distributive if ConQA is distributive for every A in Q.
A subquasivariety R of Q is called a relative subvariety of Q if it is of the
form V∩Q for some variety V, i.e„ a base for R can be obtained by adjoining
only identities to a base for Q.

THEOREM I. Every finitely generated and relatively congruence-distributive
quasivariety is finitely based.

THEOREM II. Let Q be a relatively congruence-distributive quasivariety.
Then every finitely generated relative subvariety of Q is finitely based.

These are the main results of (Pigozzi, 1988a). The first theorem gener-
alizes Baker’s theorem for congruence-distributive varieties in the sense that
the latter is an easy corollary.

The property of being relatively congruence-distributive need not be in-
herited by subquasivarieties. In particular, a quasivariety may generate a
congruence-distributive variety without itself having the property, and vice-
versa; examples of both kind are easy to find. Some problems pertinent to
finite basis theorem for relatively congruence-distributive quasivarieties have
been characterized by J. Czelakowski and W. Dziobiak in their paper Congru-
ence Distributive quasivarieties whose finitely subdirectly irreducible members
form a universal class.

Theorems I and II are closely related, in fact each is a corollary of the
other. But they can apply in quite different situations. Let K be any class of
algebras and let QvK be the quasivariety generated by K. When K is included
in a quasivariety Q, let VaQ K be the relative subvariety of Q generated by
K. In general QvK is strictly smaller than VaQ K, and one may be relatively
congruence-distributive while the other is not. The difference between the
two theorems can be clearly seen by comparing their syntactical forms. To
simplify matters let us consider a single finite algebra A. If A is contained
in a relatively congruence-distributive quasivariety Q, then by Theorem II
the identities of A are logical consequences of the finite set of quasi-identities
of A. However, if QvA itself is relatively congruence-distributive, then the
quasi-identities of A are finitely based by Theorem I.

The applicability of the various finite basis results is limited, at least in
comparison with analogous results for varieties, by the difficulty encountered
in establishing relative congruence-distributivity in concrete situations. No
condition like the existence of Jónsson terms is known to characterize the
property. Such a condition, if it existed would likely be radically different from
the familiar Mal’cev-style conditions since relative congruence-distributivity
is not inherited by subquasivarieties. However some general methods are
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known to work in limited situations. We refer the reader to (Pigozzi, 1988a)
for references.

In Section 7 of (Pigozzi, 1988a) we show how any algebra A with at
least two elements can be transformed into an algebra EtA by adjoining a
(Boolean) equality-test operation to A. The quasivariety generated by EtA
is relatively congruence-distributive, but the reduct obtained by discarding
the equality-test operation need not be. The single-sorted algebra EtA is
admittedly an artificial construction. But this type of construction is natural
for the multi-sorted algebras that play a prominent role in software develop-
ment, which is the topic of the two papers Equality Test and If-Then-Else
Algebras: Axiomatization and Specification (Pigozzi, 1991) and Data Types
Over Multi-Valued Logics (Pigozzi, 1990).

A data structure S is a multi-sorted algebra in which every element is de-
noted by a ground term, i.e., a term without variables. An (abstract) data type
is an isomorphism class of data structures. An sxiom set Γ is an initial (final)
specification of the data type of S if Γ is a set of sentences in some formal
language describing S, and S is the initial (final) object in the category of
models of Γ . Alternatively, Γ is an initial specification of S if S is a model
of Γ and every ground identity of S is a logical consequence of Γ ; final spec-
ifications can be similarly characterized. A specification is called universal,
conditional, or equational if Γ is, respectively, a set of universal first-order sen-
tences, conditional equations (i.e., quasi-equations), or equations. In (Pigozzi,
1991) the conditional theory of multi-sorted algebras with equality tests and
the equational theory of data structures with equality tests and if-then-else
operations are investigated. The main results of the paper are the following:
An equality test (multi-sorted) algebra has a two element Boolean sort with a
separate binary operation eqS for each non-Boolean sort S where eqS(a,b),
for all a,b in sort S, takes the value TRUE if a = b and FALSE otherwise.
The if-then-else algebras are obtained from the equality-test algebras by ad-
joining the if-then-else operation [ , , ]S for each non-Boolean sort S where
[TRUE,a,b]S = a and [FALSE,a,b]S = b for all a,b in sort S.

A simple algorithm is given that converts any universal initial or final
specification of an equality-test data type S into a conditional specifica-
tion of S: moreover, the new specification is complete in the sense that it
is both initial and final. As a consequence every semicomputable or cosemi-
computable equality test data type is computable. If S is an arbitrary data
type, essentially the same algorithm can be used to convert a universal initial
specification of it into a conditional specification with equality tests as hid-
den operations. In this case the new specification will be complete only if the
original one is. Thus an arbitrary data type is computable if and only if its
equality enrichment is semicomputable, or equivalently, cosemicomputable.
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5 Years 1988–1995

While still on leave from ISU I returned to Ames for the 1988 spring semester,
where I finished my work on the quasivariety paper (Pigozzi, 1988a). But
most of the time I was occupied with organizing together with Cliff Bergman
and Roger Maddux a conference: Algebraic Logic and Universal Algebra in
Computer Science. It was held at ISU in June of 1988, and was to the best
of my knowledge the first national conference to bring logicians, universal
algebraists, and computer scientists together for the purpose of exploring the
connections between these disciplines. It attracted a large number of partici-
pants from all over the United States and Canada. Thanks to Dana Scott, who
enthusiastically supported multi-disciplinary efforts of this kind and agreed
to be one of the principal speakers, we were able to obtain financial support
from the National Science Foundation, the Office of Naval Research, and
the Institute for Applied Mathematics in Minneapolis The invited speakers
in order of their position on the program: Eric Wagner, Dana Scott, István
Németi, Dexter Kozen, H.P.Gumm, Vaughan Pratt, and Bjarni Jónsson. The
proceedings of the conference, edited by the three organizers, appeared as a
volume of Lecture Notes in Computer Science (Bergman et al., 1990).

The organization of such a large conference in a small town in agricultural
heart of the country proved challenging, especially to novices like the three
organizers. The nearest good size airport was in Des Moines, thirty miles
from Ames, which meant that we had to arrange transportation for the par-
ticipants who arrived by air at various times of the day. The most suitable
accommodation for them was a hotel abut five miles from the site of the
conference on campus. Transportation also had to be provided between them
twice a day. The University provided the vans and graduate students happily
agreed to be drivers. All in all the conference turned out to be a big success,
much to the satisfaction of the organizers and their helpers.

The summer of 1988 turn out to be another busy one for me. In July
Walter Taylor and I were invited to speak at the Ninth Latin American School
of Mathematics (ELAM) in Santiago Chile. We both owed this invitation
of Renato Lewin, of the Pontifical Catholic University of Chile, who was
a former student of Walter and one of the organizers of the conference. I
knew Renato through Wim Blok. Wim had helped him with some questions
about the algebras of modal logic that arose in connection with his thesis.
I was greatly impressed that Walter was able to give his talk at the ELAM
conference in Spanish. I could only speak English. This was true of all my
subsequent visits to Chile to my increasing embarrassment. At one point I
promised I would give my talk in Spanish on my next visit to Chile, which I
thought would give me lots of time. Sadly I was not able to keep this promise.
Renato later became interested in AAL and our collaboration deepened and
resulted in several more visits to Santiago as a visiting scholar at the Catholic
University. It was also due to his influence while a member of the organizing
committees of two different meetings of the Latin American Symposium of
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Mathematical Logic that I was invited to present hour addresses. The first
was the IX meeting in July of 1991 in Bahia Blanca, Argentina where I spoke
on An Introdution to Lambda Abstractions Algebras (Pigozzi and Salibra,
1993a), joint work with Antonino Salibra. The second was the X meeting
in July of 1995 in Bogotá, Colombia. Here I spoke on my joint paper with
Janusz Czelakowski Amalgamation and Interpolation in Abstract Algebraic
Logic (Czelakowski and Pigozzi, 1999).

Shortly after the ELAM meeting, in August of 1988, there was a large
conference on algebraic logic presented by the Janos Bolyai Mathematical
Society in Budapest and organized by Hajnal Andréka, Istvan Németi, and
Ildiko Sain. Wim Blok and I were invited to jointly present a series of talks
our work that began with the Algebraizable Logics monographic (that had
recently appeared) amd was evolving into what would eventually be called
abstract algebraic logic. It was valuable exposure for us because it attracted
algebraists and logician from all over the world. I met Josep Maria Font, and
my future graduate student Katarzyna Pa lasińska, for the first time here.

My university service during my time at ISU was limited, but during the
1988-89 academic years I was a member of the search committee for the new
dean of the College of Science and Humanities. I tried to promote candidates
sensitive to the needs of the mathematical disciplines and emailed John Ad-
dison, who at the time was chairman of the Department of Mathematics at
Berkeley, inviting him to apply. He thanked me and asked for some time to
consider the application, but eventually declined. I thought he would have
made a very good dean.

My one other significant university service was during the academic years
1990-93 when I served on the Promotion and Tenure Committee of the Col-
lege. The work of the Committee was all done during the Christmas break
between the Fall and Spring semesters, but it was intense. Every committee
member had to read the promotion documents for each candidate that were
submitted by the twenty-three departments of the colleges. The Committee
would then met to decide which candidates to recommend to the dean; the
Committee was only advisory. At a meeting with the dean it was decided
which ones the dean would approve. I was chairman during my last year on
the committee and had the responsibility of explaining to the general faculty
the process by which the tenure decisions were made and defending them.
I had purposely avoided any involvement in university politics up to this
time, and was totally unprepared for the resentment some of the humanity
departments, in particular the English Department, felt towards the sciences
because of a perceived bias in their favor in the tenure process. I was one of
the principal participants at an open meeting about the process and made
some off-the-cuff and admittedly banal remarks on the committee’s role in
it. In the following questions and comments period I was washed over by a
wave of resentment and frustration that left me speechless and running for
cover.
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In the summer of 1989 the Soviet government’s xenophobia had weakened
to the point that the academic community in Siberia was able to organize an
international conference in Novosibirsk in honor of A.I. Mal’cev. I owe my
invitation to Victor Gorbunov I think because of the finite basis results for
quasivarieties paper that had recently appeared. Gorbunov was a specialist on
quasivarieties. I got special treatment that did not correspond to my position
in the hierarchy of participants. For example, although I was not one of the
plenary speakers, I was given a room to myself in the guest hotel, rather than
being placed in a student dormitory like many of my colleagues. The site of
the conference was Akademgorodok (academic town) a part of Novosibirsk
about thirty km from the center. It was the home of the Siberian division of
the Soviet Academy of Sciences, the Novosibirsk State University, and a large
number of research institutes. It is surrounded by a pine and birch forest on
the shore of the OB sea, an artificial reservoir of the River OB. The social
highlight of the conference for me was an invitation from Victor Gorbunov
to join him, Ralph McKenzie, and George McNulty for what turned out to
be a bacchanalian dinner one evening in his cabin on the OB reservoir. The
night ended with a searing banya followed by a naked dive in the reservoir
by Victor and all three guests. I was saddened to find out a few years later
that Victor had died prematurely.

Janusz Czelakowski was invited to Ames as visiting professor for the 1989-
90 academic year and again in 1994-95. The origin of AAL can be traced back
to the work of Polish logicians during the 1970’s, chiefly Helena Rasiowa

investigations by bringing to them a thorough understanding of universal
algebra. A series of his papers in the 1980s significantly influenced Wim
and my work, and I was eager to have him in Ames to work with me and
participate in our seminars. Janusz’s wife Bożena came with him, and she was
a pleasure to have with us. First of all, she spoke almost perfect English, being
an English teacher back home. Like Bożena Szczerba, she was an excellent
cook, and I eagerly looked forward to invitations to dinner. I found out much
later that she was very lonely during her first few days in Ames. She was in
a foreign land, knowing no one and terribly homesick. She told me she was
on the verge of going back to Poland, when a group of neighbors showed up
at her door to welcome her with a basket of gifts and an invitation to join
the community. (This is a tradition in the United States, especially in small
towns, called a Welcome Wagon.) From this time on she was a happy citizen
of our small town.

In 1993 George Voutsadakis enrolled in the graduate program at Iowa
State and eventually turned out to be my second Iowa State doctoral student
(the first was Katarzyna Pa lasińska). He came from Greece where he had
graduated from the University of Patras. George took my graduate course in
algebra and asked to work towards a masters degree under me. His intention
after getting it was to go on for a doctorate in mainstream algebra, possibly

in Warsaw and Ryszard Wójcicki in L ódź, with the latter working in the
wider context of matrices. Janusz, Wójcicki’s student, greatly advanced these
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at another university. But while working on his masters thesis he became
more and more attracted to the kind of logic oriented algebra I was doing.
About this time I was reading about the theory of Institutions, a category
description of logical systems in computer science that had been developed
by Joseph Gougen and Rodney Burstall. George had taken Jonathan Smith’s
category course and I proposed that George investigate reformulating the
algebraization of logic within the framework of institutions to see what new
insight this might give. He attacked the problem with great energy and soon
knew far more about categories than I. He wrote a fine thesis and received
his doctorate in 1998.

He got a one-year visiting position at Western Reserve University where
he became a friend and collaborator of Charles Wells. At the end of the
year he was offered a tenure-track position at WRU. But Charles Wells was
retiring and for this and other reasons he decided to accept another offer
from the Physical Sciences Laboratory in Las Cruces New Mexico to work
on what was essentially artificial intelligence, developing intelligence agents
for computer-based Army simulations. There he joined a group in the area of
finite dynamical systems. He learned a lot there that led to several publica-
tions. The upper level administration at the lab was not easy to deal with and
after several years he returned to academic life by taking a position at Lake
Superior State University in Upper Michigan where he teaches and maintains
an active research program

During this period I began professional relationships with several people
that took my research in three different directions: one was the lambda cal-
culus, more specifically its algebraization. The other two were into the realm
of computer science: Logic Programming and Software Development.

Antonino Salibra came to Ames to visit me for three months in 1992. At
that time he had a position at the University of Bari, but eventually moved
to Venice. I had gotten to know Antonino from several conferences we had
both attended. He was working at this time on the algebraization of the
untyped lambda calculus and wanted to discuss this with me. I was skeptical
about the project at first. I had some knowledge of the formalism of the
calculus but had not studied it in any detail, and had never considered the
possibility it might be algebraizable. Antonino described to me a variety of
algebras, that he called Lambda Abstraction Algebras (LAA). It was clear to
me almost at once that this was the natural algebraization of the untyped
lambda calculus in the same sense the varieties of cylindric and polyadic
algebras were algebraizations of first order predicate logic. Antonino and I
then began to investigate the theory of LAAs that resulted in five joint papers
over the next six years (Pigozzi and Salibra, 1994, 1993c,a, 1995, 1998).

During the years I was teaching in the CS Department I became interested
in logic programming. This was about the time I recall that the Japanese
were promoting logic programming as the “fourth-generation programming
language”. I never really understood what this meant, but was aware that,
whatever it mesnt, Prolog was its prototype. I read J.W. Lloyd’s book Foun-
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dations of Logic Programming, which had recently appeared, and was happy
to see that Prolog was very much like the classical propositional logic. I
joined two members of CS, Professor Giora Slutzki and Bamshad Mobasher,
a graduate student, in investigating the subject. We were joined part of the

the CS Department at the time. Our research resulted in four papers and
extended conference abstracts (Mobasher et al., 1993b, 1997a,b, 2000) and a
technical report (Mobasher et al., 1993a). It also led to Mobasher’s doctoral
dissertation for which Sluzki and I were co-chairs of his committee.

I met Gary Leavens for the first time at a conference on algebraic methods
in Iowa City in May of 1991. He had recently joined the CS Department at
ISU; his research area was software development. The significance of alge-
braic methods had been growing in this area, a fact I was already aware of.
Gary and I soon became good friends and collaborators. I had received a Na-
tional Science Foundation (NSF) research grant in 1989 whose scope included
algebraic data types, and had published two papers in the area. So it was
natural that Gary and I would begin collaborating, and in fact we became
good friends. The CISE division of NSF was eager to promote collaboration
among computer scientists and mathematicians. Gary and I were able to get
three consecutive research grants between 1995 and 2002, the year I retired,
with Gary as the Principal Investigator. We published four papers during this
period (Leavens and Pigozzi, 1991, 1997, 1998, 2000) and a technical report
(Leavens and Pigozzi, 2002).

Publications: The correlation between interpolation theorems of logic
and certain properties of the class of models related to the amalgamation
property is well known. In classical sentential and first-order logic it takes the
form of a correspondence between Craig’s interpolation theorem and Robin-
son’s joint consistency lemma. In the algebraic versions of these logics the
joint consistency property can be replaced by the amalgamation property for
Boolean algebras and locally finite cylindric algebras, respectively. The con-
nection between interpolation and amalgamation has also been explored in
the context of intermediate and modal logics, equational logic, and general
deductive systems in the sense of Tarski. More recently, logical interpolation
results have been shown to have interesting applications for the specification
of abstract data types, especially with regard to the important problem of
modularization.

In the paper Amalgamation and Interpolation in Abstract Algebraic Logic
(Czelakowski and Pigozzi, 1999) a unified theory of interpolation, joint con-
sistency, model extension, and amalgamation is presented that comprehends
all these results. In this general context the Craig interpolation property ram-
ifies into several different interpolation-like properties, one of which is closely
related to the familiar congruence extension property of universal algebra. It
is shown how under quite weak conditions on the logical system, each interpo-
lation property is equivalent to an extension or amalgamation-like property
of the appropriate model class.

time by a Polish computer scientist, Jacek Leszczyl owski, who was visiting
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Lambda Abstraction Algebras: The untyped lambda calculus is a for-
mulation of an intensional as opposed to an extensional theory of functions,
that is, a theory of functions viewed a “rules” rather than “sets of ordered
pairs”. Its basic feature is that functions are not distinguished from the el-
ements of the domains on which the functions act. Thus a function can,
in theory, take other functions, including itself, as arguments. There are two
primitive notions: application, the operation of applying a function to an argu-
ment, and lambda (functional) abstraction, the process of forming a function
from the “rule” that defines it.

As one would expect there are no simple models of the untyped lambda
calculus, but one can imagine idealized models that are “constructed” in the
following way: Start with any set S (possibly empty), and successively form
the sets T0 = S, T1 = SS , T2 = (S∪SS)S∪SS , T3 = (T1∪T2)T1∪T2 , . . . . Iterate
the construction until a “fixpoint” is reached, giving a set V satisfying the
“domain equation” V V = V . We know of course that if V V is interpreted
as the set of all functions from V to itself in the usual set-theoretical sense,
then the above iterative process can never reach a fixpoint since no set can
satisfy the domain equation. By restricting the functions we consider to cer-
tain admissible ones, and interpreting V V accordingly, domains satisfying
the domain equation, or a somewhat weaker form of it that guarantees there
are in some sense enough admissible functions, have been found. (The first
such model was constructed by Dana Scott, Data types as lattices, SIAM J.
Comput. 5 1976). Such domains are the “natural” models of the untyped
lambda calculus. They are called environment models in the literature. They
can be characterized by means of an injective partial mapping λ : V V p−→ V
whose domain is the set of admissible functions. λ may be thought of as the
process of encoding admissible functions as elements of V . With functions
encoded this way, application can be viewed as a binary operation on V . Let
V be the domain V enriched by the application operation and the encoding
mapping. We will denote the application operation by ·V and the encoding
mapping by λV.

Intuitively, each admissible function in V V has two forms, an intensional
one and an extensional one. In its intensional form it is represented by a
term t(x) of the lambda calculus with a free variable x. For each v ∈ V , let
t[[v]] be value t(x) takes in V when x is interpreted as v. Then its extensional
form is the function 〈t[[v]] : v ∈ V 〉 ∈ V V , which is encoded as the element
λV(〈t[[v]] : v ∈ V 〉

)
of V . It is represented by the term λx.t(x) obtained by

applying lambda abstraction to t(x). Note that t(x) and λx.t(x) both rep-
resent the same function, but in environment models only the extensional
form corresponds to an actual element of the universe of the model; this is
an essential difference between the models of lambda calculus and lambda
abstraction algebras.

The two forms of the function are connected by the operation of ap-
plication. Intuitively, the value t[[v]] of the function at a particular argu-
ment v is obtained by applying its extensional form to v; symbolically,
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〈t[[v]] : v ∈ V 〉(v) = t[[v]]. Expressed in the environment model this becomes

λV(〈t[[v]] : v ∈ V 〉
)
·V v = t[[v]].

In the lambda calculus itself this relationship is represented by the funda-
mental axiom of β-conversion:

(β)(λx.t)s = t[s/x], for all terms t,s and variable x such that s is free for x
in t.

Terms of the lambda calculus are constructed as follows: There is an infi-
nite set of variables, each of which is a term; if t and s are terms, so are t ·s
and λx(t) for each variable x. By convention we write ts for t ·s and λx.t for
λx(t). An occurrence of a variable x in a term is bound if it lies within the
scope of a lambda abstraction λx; otherwise it is free. s is free for x in t if no
free occurrence of x in t lies within the scope of a lambda abstraction with
respect to a variable that occurs free in s. t[s/x] is the result of substituting
s for all free occurrences of x in t.

The other fundamental axiom of the lambda calculus is α-conversion:

(α)λx.t= λy.t[y/x], if y does not occur free in t.

α-conversion says that bound variables can be replaced in a term under
the appropriate condition. A lambda theory is any set of equations that is
closed under α and β conversion and the five axioms of equational logic.

The following completeness theorem of A. R. Meyer is a basic result of
lambda calculus: Every lambda theory consists of precisely the equations
valid in some environment model.

Although the axioms of lambda calculus are all in the form of equations,
the lambda calculus is not a true equational theory since the variable-binding
properties of lambda abstraction prevent variables in lambda calculus from
operating as real algebraic variables. The way in which lambda abstraction
theory arises from the lambda calculus parallels the way cylindric algebras
are obtained from first-order logic. The axioms of first-order logic are like
those of lambda calculus in that the formula-variables can not be substituted
without restriction. In both cases the source of the problem is the way sub-
stitution for individuals is handled. By dealing with substitution at the level
of the object language rather than the metalanguage, i.e., by abstracting it, a
pure equational formalization of lambda calculus can be developed giving rise
to the theory of lambda abstraction algebras. Like cylindric algebras, and in
contrast to the lambda calculus, the axioms of lambda abstraction theory are
pure identities (more accurately, they turn out to be equivalent to pure iden-
tities). Among the seven axioms, the first six constitute a recursive definition
of the abstract substitution operator; they express precisely the metamathe-
matical content of β-conversion. The last axiom is an algebraic translation of
α-conversion. The most significant feature of the axioms is that they are true
identities in the sense that they continue to hold when arbitrary terms are
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substituted for the variables. Thus the theory of lambda abstraction algebras
gives a pure equational theory of lambda calculus, and lambda abstraction
algebras form a variety in the universal-algebraic sense.

There is a notion of a “natural” lambda abstraction algebra—the alge-
bras that the axioms of lambda abstraction theory are intended to charac-
terize. They correspond to functional polyadic algebras and, more loosely,
to representable cylindric algebras; we call them functional lambda abstrac-
tion algebras. They are closely related to the environment models of lambda
calculus. The important point here is that, in contrast to environment mod-
els, the intensional form of the function corresponds to an actual element of
the functional lambda abstraction algebra. In this sense functional lambda
abstraction algebras are richer than environment models, and this greater
richness translates into a more algebraic theory.

The basic theory of lambda abstraction algebras is developed in (Pigozzi
and Salibra, 1993a). The main result there may be viewed as the natural
algebraic analogue of the completeness theorem for the lambda calculus. It
is the functional representation theorem for locally finite lambda abstrac-
tion algebras: every locally finite lambda abstraction algebra is isomorphic
to a functional lambda abstraction algebra obtained by coordinatizing an
environment model having the same carrier set. This result corresponds to
what is called the functional representation theorem for locally finite polyadic
Boolean algebras.

However the natural algebraic analogues of the completeness theorem for
first-order logic are the stronger representation theorem for simple, locally
finite polyadic Boolean algebras of infinite degree and the representation
theorem for locally finite cylindric algebras. The representation theorem for
locally finite lambda abstraction algebras that corresponds to these results is
the main result of (Pigozzi and Salibra, 1993c).

Logic Programming: First-order logic turns out to be unsuitable as a
basis for a knowledge representation language in Artificial Intelligence (AI)
systems. The problem with first-order logic is its monotonicity: The truth of
a inference is determined only by its structure, not by the truth or falsity of
its atomic components, and so it can only deal with two truth-values, truth
and falsity. An intelligence agent however must deal with information that
is uncertain or incomplete. This discussion suggests that such systems must
have two common characteristics: they must rely on the expressive power of
an underlying multi-valued logic that can deal with contradictory as well as
incomplete or uncertain information, and secondly, such systems should be
able to interpret statements not only based on their truth or falsity, but also
based on some measure of the knowledge or information contained within
those statements.

Attention has focused on logics that have a knowledge dimension as well
as a truth dimension and thus can be used to model the connection between
truth and knowledge in a particular logic program or deductive database. The
first logic of this kind originated with N. D. Belnap’s four-valued logic. It is
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based on the idea that information in a database can have both a positive
and a negative content with regard to the truth of a particular event. The two
situations in which only positive or only negative information is available give
rise to two truth values that can be identified with classical true and false,
respectively. But there are two other situations: when the information has
both a positive and a negative content, and where there is no information of
either kind. These lead to a third and fourth “truth-value” that are denoted
respectively by > and ⊥. Part of the motivation here is that, in a distributed
database, information about a given event is collected from various sources
at various times and some of it might be contradictory. So the truth-value
of the event can be viewed as representing our state of knowledge about the
classical truth or falsity of the event rather than its actual truth or falsity.

In (Mobasher et al., 1993b,a) a knowledge-based procedural semantics
based on the 4-valued Belnap logic is developed and its soundness and com-
pleteness with respect to M. Fitting’s declarative fixpoint semantics is proved.
A novel feature of this procedural semantics is the introduction of completely
symmetric notions of proof and refutation. Intuitively, the existence of a
proof, respectively refutation, for a given goal corresponds to having posi-
tive, respectively negative, information about it.

M. C. Ginsberg has suggested using general bilattices as the underlying
framework for various AI inference systems including those based on default
logics, truth maintenance systems, probabilistic logics, and others. Bilattices
are mathematical structures with multiple “truth-values” and two separate
orderings, called knowledge and truth orderings, that provide a framework
for the study of knowledge-truth interaction. (The Belnap logic is a four-
element bilattice.) These ideas were pursued by Fitting in the context of
logic programming semantics. More recently, bilattices and their extensions
have been used in the literature to model a variety of reasoning mechanisms
about uncertainty in the presence of incomplete or contradictory informa-
tion. For example, a variant of Fitting’s extension of logic programming to
bilattices has been used to deal with a form of negation as failure (where
the inability to prove a statement is true is interpreted as it being false) as
well as a second explicit negation in logic programs. Bilattices have also been
extended to include a third ordering (called the precision ordering) in order
to effectively deal with varying degrees of belief and doubt in probabilistic
deductive databases.

In (Mobasher et al., 1997b) the procedural semantics in (Mobasher et al.,
1993b,a) is first generalized to an arbitrary distributive bilattice. (It could
just as easily be generalized to any partially ordered algebra.) We intro-
duce the notion of a b-derivation for each element of the bilattice except
> and ⊥. (In the 4-element case true-derivations coincide with proofs and
false-derivations with refutations.) We prove the soundness and complete-
ness theorems for this procedural semantics, again with respect to Fitting’s
declarative fixpoint semantics.
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Although the resulting logic programming system is quite satisfactory in
some respects, for example the symmetry between truth and refutation in the
4-element case is carried over and the mathematical theory is quite smooth,
it has some undesirable defects. For a given truth-value b, the search for a
b-derivation of a complex goal G may entail searches for c-derivations of the
subformulas of G for a large number of truth-values c that are only remotely
related to b; moreover, this complexity ramifies as we pass down the parse tree
of G. It turns out that for finite distributive bilattices (and, more generally,
bilattices with the descending chain property), we can restrict our attention to
derivations that range over a relatively small subset of special truth-values.
These special truth-values turn out to be the so-called join irreducible el-
ements of the knowledge part of the bilattice. Ginsberg has discussed the
ramifications of reducing the complexity of bilattice based inference systems
by focusing on a smaller set of representative elements called grounded ele-
ments. As we will see, join-irreducible elements provide an even smaller set
of representative elements which represent the most “primitive” bits of in-
formation. In fact, this difference could be exponential for certain classes of
bilattices.

A join-irreducible procedural semantics is developed in (Mobasher et al.,
1997b) as an alternative to the standard one. The join-irreducible semantics,
which represents the most novel feature of this paper, can provide the basis for
effective implementation of a family of logic programming languages which,
depending on the choice of the underlying logic, can be used for a variety of
reasoning tasks in intelligent systems.

Software Development: The main advantage of abstract data types
(ADTs) in programming is that they allow reasoning at an appropriate level.
In reasoning about code that uses an ADT, clients rely on the ADT’s specifi-
cation, instead of using more complex and overly specific reasoning about the
ADT’s implementation. The soundness of such an abstract reasoning tech-
nique means that if an implementation is certified correct, then its visible
behavior will not be surprising. By visible behavior we mean, informally, the
printed or returned results of programs. By surprising behavior we mean
visible behavior that would contradict the predictions of the specification.
Completeness of an abstract reasoning technique means that if an implemen-
tation cannot exhibit surprising behavior, then it can be certified as correct.

We investigate sound and complete model-theoretic techniques for proving
that a candidate implementation of an ADT is correct. For reasons discussed
below, we are especially interested in specifications that are incomplete and
not term-generated. For us, a complete specification is one for which all of its
models are behaviorally equivalent, and a specification is not term-generated
if there are nonvisible types that fail to have a complete system of construc-
tors. We shall also assume that a candidate implementation has already been
adapted to the interface (signature) required.

What is known about the soundness and completeness of techniques for
proving that a candidate implementation of an ADT is correct? We shall
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restrict ourselves here to model-theoretic methods. Previous model-theoretic
work on this problem, like our work, is based on comparisons to paradigmatic
models. In most work, there is only one paradigmatic model mentioned, and
so the ADT’s specification must be complete. If the specification is incom-
plete, there is no way to choose a single paradigm, and the technique must be
adapted somehow to deal with the choice of an appropriate paradigm before
the comparison. However, it is a simple matter to adapt this technique to in-
complete specifications by using a collection of paradigms. These paradigms
collectively span the permitted behaviors, and thus to prove the correctness
of a candidate implementation, one must first choose a paradigm and then
make the comparison.

The paper (Leavens and Pigozzi, 1997) concentrates, therefore, on how
to compare an implementation algebra to a paradigm, once a paradigm is
selected. Several authors have studied such notions previously. For our pur-
poses the most important technique is that of Oliver Schoett. He casts the
problem as one of showing that a partial algebra A can be used in place of
the paradigm, a partial algebra A that is assumed not to exhibit surprising
behavior. Then an arbitrary algebra B will also fail to exhibit surprising be-
havior if the two algebras are behaviorally equivalent in the sense that any
program that is run in the two algebras has the same output. He makes the
natural assumption that only visible data is legitimate input-output for the
program. He proves that the existence of a bisimulation between A and B,
i.e., a homomorphic relation that is the identity on visible types, is both nec-
essary and sufficient for the behavior of A to be equivalent to the behavior
of B.

It can be argued however that Schoett’s criterion for behavioral equivalence
is not restrictive enough. It fails to detect some behavioral differences that an
ADT implementor might care about. The main problem with his approach is
that programs can take only visible data as input and hence algebras can be
compared only with respect to the behavior of visible data. For example, in
the context of specifying a parameterized type (e.g., a parameterized priority-
queue), consider the specification of its formal type parameter, PO. The only
operation that would be specified for PO would be a comparison predicate,
leq, taking two POs and returning a Boolean; no constructors would be spec-
ified for PO. In this example, the type PO would not be a visible type (i.e.,
it could not be directly input or output). Hence the only visible type in the
example is the Booleans, and the type PO is hidden. Because PO is hidden
and there are no constructors for it, programs with visible input-output can-
not make any interesting observations. Hence, using Schoett’s criterion, even
candidate implementations that, say, fail antisymmetry would be certified
as correct. In (Leavens and Pigozzi, 1997) we adapt Schoett’s technique by
considering not just observations with visible inputs, but “procedures” with
nonvisible inputs. For example, this allows us to make behavioral distinctions
in the PO example. That is, we allow the behavior of nonvisible data to be
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compared in different models, leading to a stronger notion of implementation
which is important in situations where the specification is not term-generated.

ADTs that are not term-generated are even more important for object-
oriented programming than they are in more conventional programming with
ADTs. For example, a library of object-oriented ADTs typically includes a
type Collection that is “abstract” in the sense that it has no constructors.
Such a type will have subtypes such as Set, Bag, List, and Array. Existing
objects of one of these subtypes can be treated as if they were collections.
This is analogous to the way that objects having the type of a formal type
parameter, such as PO, are treated in parameterized code. It is also apparent
from this example why it is important to be able to compare nonvisible data.
It is natural to want to compare the behavior of a bag constructed from
the integers 1, 2, and 3, for instance, with that of a set constructed from
the same integers. But this cannot always be achieved by simply comparing
the behavior of the visible data, such as the integers 1, 2, and 3 in two
different models, because a (deterministic) program with only visible input
would construct either a set in both A and B or a bag in both A and B, but
not a set in A and a bag in B. This problem is the original motivation for
our study of “procedures” with nonvisible inputs.

In (Leavens and Pigozzi, 1997) we give a sound and complete algebraic
technique for proving the correctness of an implementation, which need not
be term-generated. The technique uses a general notion of simulation, which
in turn uses a generalization of the notion of homomorphic relation; such a
generalization is necessary because standard homomorphic relations do not
give a complete characterization technique for specifications that are not
term-generated.

6 Years 1995–1997

This period was the most intense of my professional life. I spent most of the
time in various parts of Europe while away from Ames on a combination of
sabbatical leave and leave without pay.

In the early 1990s I became aware of a group of researchers in the Institute
of Mathematics at the University of Barcelona (IMUB) who were beginning to
do some serious work on AAL. I began to correspond with Josep Maria Font,
a principal member of the group. His graduate student Raimon Elgueta’s
thesis topic was the algebraic model theory for languages without equality.
Josep Maria asked me to become Raimon’s co-advisor, which I readily agreed
to. Raimon and I consulted frequently about his thesis by email, and he was
able to come to Ames once to work directly with me. He eventually obtained
his doctorate from the University of Barcelona in 1994.

When I got sabbatical leave for the 1995-96 academic year I asked Josep
Maria if I could join his group. He readily agreed and obtained for me a posi-
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tion as a visiting scholar at the Center for Mathematical Research, (CRM), of
the Institute of Catalan Studies. The CRM was located on the campus of the
Autonomous University of Barcelona (UAB). Moreover I received financial
support in the form of a grant from the Ministry of Science and Education of
Spain. I also had the use of one of the apartments that the CRM maintains
for visitors in the nearby town of San Cugat del Vallès. (The origin of its
name has an interesting history. San Cugat was a Christian monk. He was
born in North Africa and came to Barcelona to evangelize in the area. He
was martyred by the Romans about 304 AD. The Benedictine Abbey in San
Cugat del Vallès is by tradition the site where he died by decapitation.)

The CRM turned out to be a wonderful place to work, with seminars in all
areas of mathematics and visitors from all over the world. Its Director Manuel
Castellet was very accommodating and organized daylong sightseeing tours
to various parts of Catalonia every month for the visitors. I looked forward
to them and was one of the few visitors to go on all of them. The IMUB
had a close relationship with the CRM, and the seminars organized by the
AAL group were of course of most interest to me. The UAB is twenty-four km
from Barcelona but is easily accessible by an efficient rail service and excellent
roads. I frequently attended the seminars that were held in Barcelona.

That fall in Barcelona was stimulating and productive in many ways. Apart
from the professional stimulus, there was the city itself: the Ramblas, the
Gothic Quarter, evidence of Gaudi’s work all over. I would often take the
train into Barcelona on the weekend to enjoy its pleasures. One of the first
things I did was climb all the way to the top of one of towers of the Sagrada
Familia for the view of the City. I would return many times over the years.

All the members of the AAL group became good friends: Josep Maria,
Ramon Jansana, Ventura Verdú, Jordi Rebagliato, Antoni Torrens, and Ángel
Gil. My closest collaborators were Josep Maria and Ramon Jansana, and
our collaboration has extended over many years. They took me on many
weekends to visit historical sites in Catalonia. The two most impressive are
of great importance of Catalonians’ sense of national identity: the Monastery
of Santa Marie del Poblet near Tarragona, and the Santa Maria de Montserrat
Abbey on Montserrat mountain.

The Monastery of Santa Maria del Poblet was founded in 1153, and over
the three centuries it rose is size and wealth. Starting in the fourteenth cen-
tury all the kings of Aragon and Catalonia were buried there. Its architecture
was one of the supreme examples of Catalan Gothic, but by the 1890s Poblet
was a wreck and its restoration became a top priority. The restoration (base
on a plan by a young Gaudi and friend) was completed some time ago and
now Poblet has become a major tourist attraction.

Montserrat, whose name means ’serrated mountain’, plays an important
role in the cultural and spiritual life of Catalonia. It is Catalonia’s most
important religious retreat and groups of young people from Barcelona and
all over Catalonia make overnight hikes at least once in their lives to watch the
sunrise from the heights of Montserrat. The Virgin of Montserrat (the black



30 Don Pigozzi

and climbed to the top of the mouontain both times for the great view of the
surrounding countryside.

We also visited the Penedés area south of Barcelona that is Catalonia’s
major wine producing area. We toured the Cordorniu and Torres estates and
caves in Sant Sadurńı d’Anoia. We then drove over to Stiges on the coast,
an art center. While the artistic roots of Stiges date back to the late 19th
century, the town became the center for the 1960 counterculture in mainland
Spain.

Maybe our most most memorable trip was to the town of Roses overlooking
Cala Montjoi, a bay on Catalonia’s Costa Brava. There we had dinner at El
Bulli, a Michelin 3-star restaurant that has been described as “the most
imaginative generator of haute cuisine on the planet”.

In planning my sabbatical it was my intention to go to Kraków af-
ter my stay in Barcelona to visit my former graduate student Katarzyna
Pa lasińska and her family, then to Budapest to work with István Németi,
Hajnal Andréka, and Ildikó Sain, and finally to Siena to see Aldo Ursini and
Paolo Aglianó. Moreover I was determined to do it all by car. This meant that
I had to either rent or buy a car in Barcelona, and since I intended to keep
it for almost a year buying seemed to be the better choice. For a foreigner
buying a car and registering it in Catalonia is no easy matter. But thanks to
the very patient help of Ventura Verd0́u, Antoni Torrens and their friends I
was able to buy a used Opel sedan in good shape and register it, although the
latter took up more than a day at the motor vehicle department and wasn’t
okayed until we made it up all the way to the chief of the department. I will
be eternally grateful to my friends for their effort on my behalf.

I left Barcelona about a week before Christmas 1995 with the intention of
driving to Kraków in three days. The first day’s drive to Karlsruhe Germany
would be the longest, about 1200 km. I left San Cugat at 5 AM. I packed
a bag lunch so that I wouldn’t have to stop to eat, only for fuel. I crossed
into France just south of Perpignan, skirted around Lyon, and crossed the
Rhine and into Germany at Mulhouse. It was 5 PM. I had been on the road
for twelve hours and was still 165 km from Karlsruhe. It was getting dark.
(I hadn’t realized how far north I had come.) On top of it all it started to
rain hard, and the two-lane road I was on was congested with cars going 100
km/hr with little more than a car length between them. I could only go with
the flow and pray that no one in the long line of cars would make a mistake.
I finally got to Karlsruhe and with some effort found a reasonable hotel near
the train station. I fell into bed about nine, without supper, sixteen hours
after leaving San Cugat. I slept soundly for ten hours and was rewarded when
I got up with, what I perceived in my famished state, to be a magnificent
breakfast buffet upon which I gorged myself.

virgin), is Catalonia’s favourite saint, and is located in the sanctuary of the
Mare de D u de Montserrat next to the Benedictine monastery nestling
in the towers and crags of the mountain. I made two visits to Montserrat’s

é
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The next leg of the journey to Vienna was shorter, 740 km, and unevent-
ful except for crossing the border into Austria that at that time was not
an EU country. I was worried when they took me out of line and went into
the administration building with my passport and auto registration papers.
But eventually they let me pass, requiring only that I put a blue E sticker
(for España) on the back of the car. (This caused some trouble later when
I returned to the UAB with its hotbed of student action for Catalonian
independence from Madrid.) After spending the night in a hotel on the out-

Kraków where I saw many large trucks transporting wrecked cars from West-
ern Europe into Poland. Crossing the border I drove through Bielsko-Bia la
to Kraków. I had no problem at either the Czech or Polish borders.

The most interesting, and as it turned out, the most harrowing event of
the whole trip occurred in the early morning of the last day. It was very
cold. I had just crossed into the Czech Republic and found myself on a large
open plain in the bright early morning winter sunlight. There was no sign
of human habitation in any direction except for the long straight road that
stretched before me to the horizon. I was driving very fast, much beyond the
speed limit. I saw a large truck in the distance that I quickly caught up and
passed. I noticed something in the distance that I thought might be a turn
in the road but I didn’t reduce my speed. When I got closer I could see it
was a wooden barrier marking where the road made a ninety degree turn to
the left. I slammed on the breaks, but unfortunately unknown to me some
snow mudt had fallen during the night and the road was very slippery. The
car slid off the end of the road and smashed through the barrier embedding
itself in a snow bank. The car had no visible damage and I could start it, but
it was so firmly embedded I couldn’t back it out. I was seized with panic. I
could see nothing about me except what appeared to be a small village on a
small hill way in the distance. It was very cold, and I knew it would take me
at least an hour to walk there. They probably knew no English and I would
have difficulty making it understood what had happened. The police would
surely be brought in. I had heard they were very tough on foreign drivers and
I had obviously been speeding. While I stood there lamenting my carelessness
and wondering what to do other than commit suicide, the truck I had passed
stopped. The driver was Italian and spoke good English. He offered to try
to pull me out, and tied a rope between his bumper and mine. But the rope
broke when he tried to back up, and my despair deepened after the brief
moment of hope. But he didn’t give up. He doubled the rope and tried again
and this time it worked and my car was free. I was overwhelmed with relief
and gratitude. I offered him all the cash I had, fifty dollars, but he wouldn’t
take it. He just made me promise to drive slower in the future. He pulled out
and I followed, making a point not to pass him.

In the fall of 1989 Katarzyna (Kate) Pa lasińska came to Ames to work
toward her doctorate under my direction. She came with a solid foundation
in logic and algebra as a student of Andrzej Wroński at the Jagiellonian

skirts of Vienna I drove through Brno to Cieszyn, the closest border point to
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University in Kraków. She was on leave from her position at the Tadeusz
Kościuszko University of Technology. She came with her family: her husband
Marek, who himself was on leave from the Jagiellonian, and three young
daughters, Magdalena (Magda), Joanna, and Justyna, ages four, two, and
seven months, respectively. In anticipation of the cultural shock they would
certainly receive, I did what I could to help them begin their new life in a
foreign environment. I helped them arrange for an apartment in a student
housing complex for families, and with the help of two of my colleagues
furnished it as well as I could. I was particularly concerned about the children,
and on the advice of my mother bought three large stuffed animals to have
waiting for them in the apartment when they arrived. Kate later told me the
girls immediatly bonded with the animals. I like to think that these helped
the girls cope with the stress of their long journey to what I’m sure seemed to
them an alien world. I had no family of my own in Ames and the Pa lasiński’s
soon made me part of theirs. I became like an uncle to the girls. They thrived
in Ames and after five years of school became thoroughly Americanized. I
grew to greatly admire Marek who had suspended his career to help Kate
with hers. He constantly sought employment to supplement Kate’s teaching
assistantship stipend although the nature of his visa limited his options. And
he was a devoted and caring father. Kate received her doctorate in 1994 and
the family returned to Kraków. The Pa lasińskis invited me for Christmas
every year they were in Ames, and I looked forward to celebrating it again
in Kraków.

Shortly after the New Year I left for Budapest but would return to Kraków
in a month for a longer stay. I drove over the Tatra Mountains into Slovakia.
Tarski loved these mountains and frequently hiked in them when he was
young. His favorite mountain range in California was the Trinity Alps because
they reminded him so much of the Tatras. I then drove on into Hungary
and finally to Budapest. Luckily the weather was good although there was
evidence of a recent snowfall. Surprisinly there was no problem crossing the
borders. I was using a road that must have been used almost exclusively by
the locals, for the border crossings were very lightly guarded.

Ildikó kindly let me use her apartment, which she was not using at the
time. It was on the Buda side of the Danube, and on most days I would

the river to work with them and Ildikó on a chapter of a proposed volume
of collected articles on the different aspects of algebraic logic. The three of
them with Don Monk and Bjarni Jónsson were its editors. The chapter the
four of us were working on was intended to be a broadening of algebraic logic
by incorporating the important work that the Hungarians had done into the
framework of AAL. One night, while driving back to my apartment, I was
stopped by the Budapest police and falsely accused of running a red light.
(I was exceedingly careful about my driving for fear of just such an event.) I
really got frightened when the officer gave me a sobriety test because I had
had a large bottle of beer at István and Hajnal’s a couple of hours before, and

drive over the Danube to in István and Hajnal’s flat on the Pest side of
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I knew how hard Hungary was on drunk driving. But I passed the test and to
my relief was able to be on my way after paying a small (by western standards)
fine directly to the officer. When I left Budapest in late January to return to
Kraków we had a substantial preliminary draft of our chapter. We continued
to work on it through the following summer, collaborating remotely by email.
There were some other draft chapters, but the project lost steam and was
eventually abandoned, but I incorporated a part of it in a paper I presented
at the Workshop on Combination of Logic and Applications, CombLog’04, in
Lisbon seven years later (Pigozzi, 2004).

I remained in Poland as a guest of the Pa lasińskis for the rest of the
winter. I reluctanly deplaced Magda from her room, but she was happy to
move in with her sisters. When Kate had some free time we would work on
problems that were left open in her thesis. She arranged talks for me at her
university and at the Jagiellonian at the invitation of Andrzej Wroński and

While there Janusz took me to visit Piotr Wotylak and Wojciech Dzik at the
Silesian University in Katowice, and also to Wroc law where I gave a talk at
the Institute of Mathematics. I also went with Janusz to Opole to see the
University where he teaches, and to look at a house for sale. Opole is a long
commute from Kedzierzyn-Koźle, 56 km, and he, Bożena, and their daughters
were planning to move there. They did eventually, but much later into a lovely
new house they built. Janusz took me on a tour of the Opole region. One
place we saw was the small town G logówek. During the Napoleonic wars
Ludwig van Beethoven found shelter in the G logówek castle in the fall of
1806, invited by Count Franz von Oppersdorff. Beethoven worked there on
his IV and V symphonies that were commissioned by the count.

My stay in Kedzierzyn-Koźle ended on a sad note. I received a telephone
call from my brother that my 95 year old mother had had a heart attack, was
in the hospital and not expected to live much longer. I immediately took a
train through East Germany to Frankfurt and flew home to Oakland. While
I was in route she had rallied and was back home and seemed to be doing
pretty well. I stayed with her a couple weeks and returned to Poland. It
was only temporary however and within a short time, while I was in Italy, I
had to fly back to Oakland, but sadly she died just a couple hours before I
arrived home. An academic autobiography is not the place for a eulogy for my
mother, but my love for her demands more than these few emotionless words.
With the greatest affection she nurtured and protected me in my youth and
encouraged and supported me in my adulthood. I owe her more than I can
ever hope to express.

I left Poland at the end of March. I retraced my earlier trip from Vienna
to Kraków, and then went south into Italy, stopping overnight in Klagenfurt
Austria, through Odine, Padova, Bologna, and finally Siena, where Paolo
Aglianó met me at the train station and took me home for dinner with his
family. The mathematics department of the Univesity of Siena at that time
was situated in the center of the city in an old, historic building that had

Pawel Idziak. In March I drove to Kedzierzyn-Kózle to visit the Czelakowskis.
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at one time been an officers billet for a calvary unit. The interior had been
renovated but the foyer still retained the picturesque evidence of its past.

I had met Aldo Ursini at a conference in the US, and in 1986 when I was
in Europe he invited me to Siena for a talk. I reciprocated later when he
again was in the US. I was interested in his and Paolo’s work on ideals in
universal algebra and was curious about its possible consequences for AAL.
I had been invited this time to present an eight week graduate course on
AAL that was funded by a grant from the National Research Council of
Italy. Eight very good students signed up for the course and several faculty
members also attended. I enjoyed the opportunity and the time this gave me
to present the foundations of this relatively new branch of algebraic logic.
I tried to emphasize the ideas that motivated the founders, and I prepared
detailed notes for each day’s lecture with the idea of using them as a basis
of a monograph on the subject. I worked on this the following year for a few
months but never could find the time to finish it.

During my time in Siena I got to stay at a medieval monastery that had
been renovated and donated to the University for a visitor center. The interior
contained a large courtyard, the building on side of which contained cells for
the monks that had been cleverly modified into apartments for visitors, with
all modern conveniences, but that still retained their original character to an
amazing degree. It was the most unique and enjoyable accommodation away
from home I had ever experienced. The monastery was out in the countryside
in a lovely olive grove. Every morning I would drive the seven kilometers to
Siena along a winding country road. I looked forward to turning the last curve
and seeing Siena on its hill before me in the early morning spring sunlight.

I was lucky to be in Siena when a special Palio was held. The Palio di
Siena is a horse race with entries from ten of the fifteen contrade or city wards
that dates back to the fourteenth century. The jockeys ride bareback and are
fiercely competitive, and since the race circles the relatively small Piazza del
Campo it can be very rough. At the end of my stay Aldo invited me, Paolo
and his family to dinner with his family at his home in the country. His house
had been an old farmhouse that he had renovated and was in a lovely setting.
After dinner he took us for a walk in the surrounding Tuscan countryside. I
decided then that there must be no place as beautiful as Tuscany in the early
summer. I drove back to Barcelona in one day along the Italian and French
Riviera and the Spanish Costa Brava. I put my car in storage and flew to
Nashville to attend a big univeral algebra conference at Vanderbilt. I hitched
a ride back to Ames with some graduate students, and my sabbatical year
was over.

I was however to return to Barcelona the following spring. A special
semester on algebraic logic and model theory was to be held at the CRM
from May through July of 1997, and I was given another grant from the
Ministry of Education and Science of Spain to attend. The highlight of the
semester for me was the Workshop on Abstract Algebraic Logic that was to be
organized by Josep Maria Font and Ramon Jansana for the AAL group of the
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IMUB. I was invited to join them on the Organizing Committee. This was the
first meeting devoted to AAL. It was attended by specialists throughout the
world and highlighted the considerable development of the subject that had
occurred during the preceding ten years. This is summarized in A Survey
of Abstract Algebraic Logic (Font et al., 2000b) which appears in Volume II
of the proceedings of the Workshop (Font et al., 2003a). An updated survey
can be found in (Font et al., 2009)

I spent the rest of the summer in Barcelona working with Josep Maria
and Ramon on joint research projects and preparations for the special issue
of Studia Logica to be devoted to papers from the Workshop. I did take some
time off for an auto trip to southern Spain with my future wife Judy Casey
who joined me shortly after the Workshop. I met Judy a couple of years
before through a mutual friend. I was immediately attracted to her, partly
because of her gregariousness. In this regard she reminded me of my mother,
which is odd since no one else in my family was like this. She was born in Iowa
and attended Iowa State. After teaching in elementary schools in California
for several years, she obtained a masters degree in childhood development
from Stanford, and susequently a masters degree in library science from the
University of Northern Iowa. She was working in the Iowa State library when
we met. The summer before she was temporarily without a residnce and I
asked her to house sit for me while I was away on my years sabbatical. We
were married three years later. It was the first marriage for both of us. She
was fifty-eight and I was sixty-five. When this autobiography was written we
had been married sixteen years, and I enjoyed every day of it. You’ll have to
ask her how she feels about it.

I was able to get her a nice apartment in San Cugat for a few weeks
through the CRM. During this time I was living in a special section of a
student dormitory reserved for visiting scholars. The southern Spain trip was
a whirlwind six days. I felt I couldn’t take more time, although I can’t recall
now why. We drove from Barcelona to Granada the first day, spent the next
day seeing the Alhambra, and went on to Madrid on the third day. We spent
half the next day in the Prado and the evening dining on roast sucking pig
at the Restaurant Bot́ın near the Plaza Mayor. On the fifth day we went on
to Toledo for sightseeing and then back to Madrid. The sixth day was spent
in Segovia viewing the best preserved Roman aqueduct in Spain, which was
still being used. We also got to see (from a distance) the city ceremoniously
greeting the Prince of Asturias, the present King Felipe VI of Spain, who was
making an official visit. That evening we drove back to the UAB via Zaragoza,
arriving late at night and completely exhausted. I returned to Ames for the
start of the Fall Semester, thus finally ending the most eventful two years of
my career.

Publications: In 1988, inspired by the work of Roman Suszko, I published
a paper (Pigozzi, 1988b) about a concept I called Fregean logic. The concept
is an old one, going back to Frege, but I considered it in the framework of
abstract algebraic logic. A number of authors have published work on the
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subject considerably expanding its scope. References to this work can be
found in the two papers (Czelakowski and Pigozzi, 2004a,b) coauthored by
Janusz Czelakowski and me which are discussed below.

The origin of Fregean logic is Frege’s principle of compositionality. Frege’s
seminal insight, as interpreted by Alonzo Church, was to think of a (declar-
ative) sentence in the same way as one thinks of a proper name. A sentence,
like every proper name, must denote or name something (Church’s rendering
of Frege’s bedeuten). Church calls the thing it denotes, i.e., its denotation
(Bedeutung), its truth-value. According to Frege a sentence also has a sense
(Sinn), which is also assumed to be compositional. But Frege viewed this con-
cept as extra-linguistic and did not attempt to incorporate it in his formal
system.

Frege’s analysis of proper names when applied to the denotation of sen-
tences leads to the principle of compositionality for truth-values: Assume
a constituent part ϕ of a sentence ϑ is replaced by another sentence ϕ′

to give ϑ(ϕ′/ϕ). If ϕ and ϕ′ both have the same truth-value, then so do
ϑ and ϑ(ϕ′/ϕ). Logical systems that uphold the Frege principle are some-
times called truth-functional or extensional. Those that violate it are called
nontruth-functional or intensional. Most modal logics are intensional in this
sense.

The first one to formally analyze the Frege principle in a general set-
ting was Roman Suszko. In his view the denotation of a sentence is not its
truth-value, but rather something more in keeping with Frege’s notion of
the sense of a sentence. (Suszko looked to Wittgenstein for support for this
view. For him the denotation of a sentence is what the sentence says about
a certain “situation”. This term was chosen by Suszko to interpret Wittgen-
stein’s Sachlage—the state of affairs.) Moreover, he introduced a new binary
connective ∆, called the identity connective, into the language with the idea
that the sentence ϕ∆ψ is to be interpreted as the proposition that ϕ and ψ
have the same denotation in this new sense, which for the purposes of this

meaning. In Suszko’s formal system, which he called logic with identity, the
principal axioms governing the identity-of-meaning connective ∆ express its
compositionality. Suszko’s system also includes all the classical connectives,
in particular the biconditional↔. As in Frege’s system, ϕ↔ ψ is to be inter-
preted as the proposition that ϕ and ψ have the same truth-value. It is easily
shown that the two binary connectives↔ and ∆ are both compositional only
if the sentences ϕ↔ ψ and ϕ∆ψ are themselves logically equivalent for all
sentences ϕ and ψ. Thus Frege’s principle that ↔ is compositional can be
formalized in Suszko’s system as the proposition

(x↔ y)∆(x∆y).

ϕ and ψ have the samediscussion we will view as the proposition that
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Suszko calls this the Fregean axiom. When adjoined to the other axioms of
logic with identity it gives Fregean logic, and extensions of logic with identity
in which it fails to hold are called non-Fregean.

In the paper (Pigozzi, 1988b) and the two papers (Czelakowski and Pigozzi,
2004a,b) with Janusz Czelakowski the Fregean axiom is investigated within
the framework of abstract algebraic logic, where a class of algebras is asso-
ciated with a given logical system based solely on the latter’s metalogical
properties. We consider a much wider class of deductive systems than those
encompassed by Suszko’s logic of identity. In particular, we consider deductive
systems that are not assumed a priori to have special connectives dedicated
to representing identity of meaning and of truth-value.

In (Pigozzi, 1988b) the Fregean axiom is investigated for the assertional
logics of classes of algebras with a distinguished constant. Let K be a class of
similar algebras with a constant 1. Its assertional logic S is defined as follows:
For all formulas ϕ1, · · · ,ϕn,ψ,

ϕ1, · · · ,ϕn |=S ψ

iff every homomorhism from the formula algebra into an algebra of K that
maps each ϕi into 1 must also map ψ into 1. A class K of algebras with a dis-
tingished constant, together with its associated assertional logic, is Fregean
if Θ(a,1) = Θ(b,1) implies a = b for every A in K and every pair of its ele-
ments a, b. The main result of (Pigozzi, 1988b): A variety V is Fregean iff
it is termwise definitionally equivalent to a variety of Brouwerian (i. e., rel-
atively pseudo-complemented) semilattices with additional operations that
are compatible with the congruence relations of the underlying Brouwerian
structure.

A deductive system S by itself is viewed as an “uninterpreted” logic. Its
interpretations take the form of matrices 〈A,F 〉 where A is an algebra and
F ⊆A, the universe of A. An interpretation of S is a matrix 〈A,F 〉 together
with a mapping h:Fm→ A from the set of formulas into A. h(ϕ) is to be
thought of as the meaning of the formula ϕ under the interpretation, and ϕ
is “true” or “false” depending on whether or not h(ϕ)∈F . Several natural as-
sumptions are made about interpretations. First of all, the meaning function
h is assumed to be a homomorphism from the algebra of formulas Fm into
A; this is the principle of compositionality of meaning. Secondly, truth and
meaning are assumed to be connected by another well-known principle, due
to Leibniz. According to the Leibniz principle identity can be characterized
in second-order logic by the formula

x≈ y iff ∀P (P (x)↔ P (y)),

where P ranges over all unary predicates. The principle is adapted to the
interpretations of a deductive system S by restricting attention to predicates
that are “definable” in S by some formula ϑ(x) with a designated variable
x (ϑ(x) may have other variables that are treated as parameters). Thus we
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assume that, if the formulas ϕ and ψ have different meanings in an inter-
pretation, then they can be distinguished by some predicate, i.e., for some
formula ϑ(x), ϑ(ϕ/x) and ϑ(ψ/x) have different truth-values. This is also
known as the principle of contextual differentiation. Finally, we assume the
class of interpretations is sound and complete for the consequence relation in
the sense that Γ `S ϕ iff ϕ is true in every interpretation in which each ψ ∈ Γ
is true.

A consequence of these assumptions is that the global identity-of-truth-
value and identity-of-meaning relations can be characterized entirely in terms
of the consequence relation, without direct reference to the interpretations.
In fact, the identity-of-truth-value relation of S is given by

ΛS = {〈ϕ,ψ〉 : ∀Γ⊆ Fm
(
Γ `S ϕ⇔ Γ `S ψ

)
},

and the identity-of-meaning relation by

ΩS = {〈ϕ,ψ〉 : ∀Γ⊆ Fm ∀ϑ(x) ∈ Fm
(
Γ `S ϑ(ϕ/x)⇔ Γ `S ϑ(ψ/x)

)
}.

ΛS and ΩS are called the Frege relation and Leibniz congruence of S, re-
spectively. The Fregean axiom for S takes the form ΛS = ΩS. Arbitrary
deductive systems with this property have been identified and investigated
in the literature under the name self-extensional.

The paradigms for self-extensional deductive systems are the classical
and intuitionistic propositional calculi. But these systems have a stronger
property: every interpreted classical and intuitionistic logic also satisfies the
Fregean axiom, and it is this that is taken to be the defining property of a
Fregean deductive system. For any theory T of a deductive system S define:

Λ̃S T = {〈ϕ,ψ〉 : ∀Γ⊆ Fm
(
T,Γ `S ϕ⇔ T,Γ `S ψ

)
},

Ω̃ST =

{〈ϕ,ψ〉 : ∀Γ⊆ Fm ∀ϑ(x) ∈ Fm
(
T,Γ `S ϑ(x/ϕ)⇔ T,Γ `S ϑ(x/ψ)

)
}.

Ω̃S T is called the Suszko congruence of T with respect to S; it can be
expressed in the following more perspicuous form by means of the conse-
quence operator CloS of S. Ω̃S T = {〈ϕ,ψ〉 : ∀ϑ(x) ∈ Fm

(
CloS(T,ϑ(x/ϕ)) =

CloS(T,ϑ(x/ψ))
)
}. Similarly, Λ̃S T = {〈ϕ,ψ〉 : CloS(T,ϕ) = CloS(T,ψ)}.

A deductive system S is Fregean if Λ̃S T = Ω̃S T for every theory T of S.
The main result of (Czelakowski and Pigozzi, 2004a) is that the Fregean

axiom together with the deduction theorem is the characteristic property of
the intuitionistic calculus in the following sense: Every Fregean deductive
system with the deduction-detachment theorem (i. e., there exists a formula
x→ y, not necessary a primitive conective, for which both detachment and
the deduction theorem hold) is equivalent in a strong sense to an axiomatic
extension of one of the appropriate fragments of the intuitionistic proposi-
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tional calculus, possibly with arbitrarily many additional connectives that are
compatible with intuitionistic logical equivalence in a natural way. Moreover,
the same applies to every Fregean protoalgebraic deductive system with con-
junction and at least one theorem because these two assumptions guarantee
the deduction-detachment theorem holds.

The paper contains some new insights into the problem as to which de-
ductive systems are strongly algebraizable (that is whose equivalent algebraic
semantics is a variety) both in the form of original results and of elaborations
of significant results on this problem due to J. M. Font and R. Jansana. Every
Fregean deductive system with the deduction-detachment theorem is strongly
algebraizable and its equivalent algebraic semantics is termwise definitionally
equivalent to a variety of Hilbert algebras with possibly additional compat-
ible operations. Accordingly, the algebraic counterpart of every protoalge-
braic, Fregean deductive system with conjunction and at least one theorem
is termwise definitionally equivalent to a variety of Brouwerian semilattices
with compatible operations.

The other central topic of the paper is an investigation of the relationship
between Fregean deductive systems and their 2nd-order matrix semantics.
(These are matrices 〈A,F 〉, where F is a set of subsets of A satisfying certain
natural conditions.) A semantic version of the Fregean property is defined and
it is proved that, if a protoalgebraic deductive system is Fregean, then every
full 2nd-order model of it is Fregean. Conversely, the deductive system deter-
mined by any class of Fregean 2nd-order matrices is Fregean. The latter result
is used to verify that a particular algebraizable, Fregean deductive system is
not strongly algebraizable; the example is due to P. Idziak. A proof is outline
showing that the (→,¬)-fragment of the intuitionistic propositional calcu-
lus is Fregean and algebraizable but not strongly algebraizable. This shows
that the behavior of protoalgebraic, Fregean deductive systems that fail to
have the deduction-detachment theorem differs strikingly from those that
do. A protoalgebraic, Fregean deductive system may be either strongly alge-
braizable or not, but the deduction-detachment theorem guarantees strong
algebraizability in this context. The fact that there is a single binary formula

A deductive system has the multiterm deduction-detachment theorem if
there is a finite set of binary formulas that collectively give the theorem.
An example of a Fregean deductive system with the multiterm deduction-
detachment theorem is given in (Pigozzi, 1976a) that is algebraizable but
not strongly algebraizable. Fregean deductive systems with the multiterm
deduction-detachment theorem are studied in detail in this paper.

with the deduction-detachment property is essential.
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7 Years 1998 to 2004

Late in 1998 I was invited to speak at the 7th International Conference on
Algebraic Methodology and Software Technology (AMAST’98) that was to
be held in Amazonia, Brazil in January of the following year. The organizer
was Armando Haeberer of Rio De Janeiro. Four years earlier he had invited
me to a conference in Rio on Relational and Algebraic Methods in Computer
Science (RAMICS 2) at the suggestion of Roger Maddux. I asked Judy if
she wanted to go to Amazonia, and as expected she jumped at the chance.
We flew to Rio the week before to see the city and then to Manaus on the
Amazon River. The conference site was the Aniao Towers, a boutique hotel
northwest of Manaus on the Rio Negro, a major tributary whose confluence
with the Solimoes forms the Amazon. It consisted of six towers, with all
288 rooms elevated from the rain forest floor by approximately 10-20 meters
and connected by approximately 8 km of catwalks that seemed to be the
home of a large number of monkeys of various sizes. The hotel organized
many interesting excursions into the rain forest for the participants and their
guests. Judy with her capacity to make friends with anyone was of course very
popular. But what made her the “Belle of AMAST’98” was getting bitten
by one of the monkeys on the last evening of the conference. The infirmary
nurse assured us that Amazonian monkeys never get rabies, but she had to
have rabies shots when she returned to Ames.

During May and June of 1999 I was in Lisbon giving a series of lectures on
Abstract Algebraic Logic and the Specification of Abstract Data Types at the
Center for Algebra of the University of Lisbon. This was at the invitation of
Isabel Ferreirim who had been a student of Wim Blok and was now on the
faculty of the Center. She said that if I wanted I could use the apartment of a
colleague of hers who was on leave. It was in the Bairro Alto, which the tour
books describe as a “picturesque working class quarter of Lisbon dating from
the 16th century that has traditionally been the city’s haunt of artists and
writers”. It’s a grid of narrow streets, quiet by day, but transformed at night
into the city’s vibrant nightlife quarter. I of course was quick to accept the
offer, and it certainly lived up to its reputation. During the morning I would
prepare detailed notes for the afternoon lecture, which was intended to be
the basis of an eventual paper. I would then take the subway across town to
the Center for Algebra, returning in the evening to enjoy the offerings of the
Bairro. At the end of my stay in Portugal Judy joined me and we rented a car
and drove to the Algarve, the southernmost region of Portugal. Sagres is the
southwesternmost town in continental Europe with spectacular windswept
bluffs overlooking the sea. We splurged and spent the night on top of one of
these bluffs in the Pousada de Sagres. The next day we drove to Évora in the
Alentejo region. Historically it was a trading and religious center. It has the
largest number of national monuments in Portugal apart from Lisbon.

Judy flew back to Ames and I went on to Barcelona for the 5th Barcelona
Logic Meeting at the CRM. I stayed in Barcelona for the rest of the summer
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working with the AAL group at the IMUB. Judy joined me again in late
July for our second motor trip of the summer. This time over the Pyrenees
through Andorra into the Cathar country of southern France. And then east
to the Rhône delta, the Côte d’Azur to Nice, and as far as Monaco. Heading
east again we spent our last and most memorable night of the trip in the
small town of Quillan in the foothills of the Pyrenees. We stayed the night in
a small provincial hotel and had dinner in the hotel restaurant with a British
couple who spend their summer vacation every year in Quillan. It was our
only experience of the trip with provincial French cuisine and it was a meal I
will never forget. The next day we headed by to Catalonia after visiting the
two Cathar mountain castles of Peyrepertuse and Queribus. The whole trip
was planned to take only ten days, and except for the last night I decided
before we started where we would stop each day and made hotel reservations
accordingly. Again I greatly overestimated how much we could do each day
and had to push hard to keep on schedule. Consequently we arrived back in
San Cugat completely exhausted, especially me because I had to do all the
driving.

This was the end of July and I was planning to return to Ames and relax
before courses began in late August. But I received an urgent email that I
was to be a member of a delegation that was going to Armenia, in a couple
of weeks, in return for a delegation from the Mathematics Department of
Yerevan State University that came to Ames the year before. I knew this
was being contemplated but wasn’t expecting it so soon. Their delegation
included several logicians whose work I was not familiar with. Their trip to
Ames had been arranged for at the college level and I was unaware of it until
they arrived. I returned quickly to Ames to send my passport to Chicago
for an expedited visa. Our delegation consisted of only three people: myself,
Roger Maddux, and Wolfgang Klieman an analyst. It was a long flight: to
Frankfurt and then by Armenian Airlines to Yerevan. In 1999 Armenia had
only recently become independent and signs of its Soviet past were evident.
It is situated in the Caucasus region between Asia and Europe and is among
the earliest Christian civilizations.

Our hosts were extraordinarily hospitable. We were lodged in a good hotel,
and each of us had our own comfortable room. On the days no scientific
activity was scheduled we were taken on a tour of sites in the vicinity of
Yerevan. One of particular interest was the large radio telescope that was built
by the Russians; Armenia was apparently the center of Soviet astronomical
research. It was still operational at the time and we were given a tour of the
control center by the director. Sadly it has now been abandoned. On these off
days our hosts served us enormous meals, sometimes twice a day. There was
far more food and alcoholic beverages than we could possibly consume, but I
forced myself to eat more than I should because I was reluctant to disappoint
our hosts. The scientific part of the visit consisted of several colloquia at
which each participant presented a talk describing a recent research project.
In addition smaller groups would meet to discuss the proposed continuing
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cooperation between the two mathematics departments. Just before leaving
Armenia the three of us discussed the potential of establishing a relationship
that would be valuable to both parties. Roger and I agreed that the research
areas of the logicians at the two schools differed so much that any significant
collaboration between them would be unlikely, and Wolfgang felt that this
would also be the case for analysis. Thus contact with Yerevan ended with
our return to Ames. But I will always have a warm feeling and a tinge of
sadness when I recall our friends there, their hospitality and their eagerness
to reach out to the West after years of Soviet isolation.

It was about this time that I got my last two graduate students: Manuel

abel Ferreirim asked me if I would help her direct the research of a doctoral
student that had already advanced to candidacy at the University of Lisbon,
but did not want to leave Portugal because, unlike Kate Pa lasińska, was not
willing to leave his wife and young child or take them to the US, snd did not
want to take a extended leave of absence from the position he held at the
University of Évora (the second oldest universiy in Portugal, established in
1559). This was similar to the situation with Raimon Elgueta, but Raimon
was well advanced on his research while Manuel had not yet chosen a topic.
I was reluctant but Isabel told me that Walter Taylor had done this with
another of her students, so I agreed to take him on. If I had been aware of
the amount of work it would take to direct a student, who was just starting
his research, by email correspondence, I probably would not have done it.
But Manuel was a good student and well worth the effort.

I had recently been thinking about a more general kind of data structure
than I had dealt with in my Lisbon lectures early that summer. Some of the
sorts are “hidden” in the sense that the data in them and the methods used
to manipulate them are not part of the specification of the program that is
intended to “run” on the data structure viewed as a “machine”. These data
structures with hidden data prove useful in object-oriented programming. I
gave Manuel my notes from the Lisbon lectures and asked him to correct
the deficiencies, of which there were many, and redevelop the whole theory
for data structures with hidden data. He did this with great energy and
dedication, and he was able to come to Ames for a month on four separate
occasions to confer personally with me. Not too long after we started working
together he asked if he should give a talk on his work up to that point at a
conference being held in Europe. I had some misgivings and feared that the
work of a fledgling student of an outsider might not be received generously
by everyone. I agreed though because I admired his confidence and felt the
experience even if hard would be useful. My fears were justified, and he was
confronted with several caustic comments after he spoke which greatly shook
his confidence. Luckily Joseph Goguen was at the conference, and came to
him after his talk to speak well of his work and encouraged him to keep at
it. This meant a lot to Manuel and I will always be grateful to Joseph for the
kindness he showed that day.

Martins and Sergey Babenyshev from Portugal and Russia, respectively. Is-
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Sergey Babenyshev came to me with the recommendation of Vladimir
Rybakov. He was well advanced when he arrived and had already fulfilled
most of the requirements to advance to candidacy. I gave him a problem
Josep Maria Font had raised and he quickly solved it and submitted it for
publication. There was another unfinished paper, the result of an attempt of
mine to fit Gentzen style calculi into the AAL framework. It contained several
open problems, or more precisely, several lines of development that deadened
leaving the problem unformulated. This is what I gave Sergey, admittedly
not a fair thing to do to a new graduate student, but my energy level was
low at the time. I was able to give him a research assistantship during most
of his time in Ames that relieved him of the need to teach beyond what
the Department required. He rarely came to me for help, and I had to ask
him periodically to come and tell me what he had done. But he finished his
thesis, got his doctorate and now has a faculty position in Russia with an
active research program.

I returned to Ames from Armenia just before classes began. I agreed to
teach two sections of discrete mathematics for business and social sciences.
The course was required for business majors and with two lectures a week for
as many as 105 students and much smaller problem sessions run by graduate
students. I thought that with only two lectures to prepare each week I would
have more free time, but I was sadly mistaken. The administrative work
organizing and managing the problem sessions, quizzes and examinations
took all of my time during the semester, and at the end of the semester
I was more exhausted than at the beginning. The 2000-01 academic year
was easier. I got to teach the graduate abstract algebra sequence, one of my
favorites. I was able to take off for a couple of weeks in November to visit
the Kanazawa Institute of Science at the invitation of Hiroakira Ono. Judy
came with me and we had a great time socially, but I was very disappointed
in my performance. I gave a uninspired talk and seemed unable to interact
in a meaningful way mathematically with the other participants. I flew home
after the meeting, but Judy staid on in Japan touring on her own.

When I got back I attempted to escape the depressing state of my research
by becoming a candidate for the Chair of the Department. The only other
candidate was Justin Peters, a good friend, and after the Department voted it
was a virtual tie. It would be up to the Dean to decide after an interview with
both candidates. Mine was delayed because I was attending the Alfred Tarski
Centenary Conference in Warsaw where I gave another uninspired talk. But
otherwise the conference was quite enjoyable. I got to meet old friends. Anna
Romanowska who works closely with Jonathan Smith is a frequent visitor
to Ames. I also visited the Szczerba family. Sadly for Leszek it would be the
last time. He died several years later. The most entertaining event of the
conference was a meeting where people who had known Tarski could relate
their personal experiences with him. Roger Maddux and I were called on
because we were two of his last students. I told the story about Tarski burning
a small hole in the dashboard of my car. I drove that car for many years
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and cherished that hole for the fond memories of Alfred it made me recall
whenever I noticed it. Judy came with me to Warsaw and after the conference
we took the train to Kraków to spend some time with the Pa lasińskis and
then on to Opole to see the Czelakowskis. Judy had met Kate and Janusz
in Warsaw but I wanted her to meet their families. They all became instant
friends of her’s, which always seems to happens when she meets new people.

On our return to Ames I had my interview in the Dean’s office and it
quickly became evident that I had given little thought to what I planned to
do as Chair and that I didn’t really want the job (at least not for the right
reasons). So Justin became Chair, and I became the Graduate Coordinator
for the 2001-02 academic year, which relieved me from teaching. But it took a
lot of time and required me to completely rewrite the Department Graduate
Student Handbook by the College’s mandate. I finally retired in May of 2002,
and Judy and I, who were now married, moved to Oakland California and
into the family house where I had lived for ten years before moving to the
midwest. The house was built by my parents in 1956. It was in the Oakland
hills overlooking San Francisco Bay, but had been neglected for many years
and was badly deteriorated. Judy and I decided to completely restore and
modernize it. This lasted almost three years and took up almost all of our
time, but I still had some mathematical responsibilities I couldn’t abandon
and some unfinished research projects I was reluctant to.

The last time I had seen Wim was the previous summer at the Annual
Meeting of the Association for Symbolic Logic in Chicago in June of 2003.
I had the honor of being invited to present one of the plenary addresses. I
hesitated accepting for some time because of the doubts I was having about
the significance of my research. I finally accepted because I couldn’t pass
up the opportunity to explain the ideas behind AAL to a wider audience. I
spent almost an entire month doing nothing but preparing the lecture, but
afterward felt that I had completely failed. The meeting in general was going
well and Wim was in a good mood when the two of us had lunch together
following the day’s talks. But this was dampened when I told him of my
doubts about the significance of my research. I remember him responding
with a little edge to his voice that it was also his research. This was the last

Manuel and Sergey had not yet received their degrees. I helped them via
email while they were writing their theses, and in Manuel’s case in person
when he got a grant to come to Ames a fourth time in February of 2003
shortly before I returned on other business. I was also back in Ames 1n
2004 for Sergey’s thesis defence. Manuel’s thesis defence was also in 2004,
in September, and in Lisbon since he would receive his doctorate from the
University of Lisbon. I went to Lisbon for his defence, but this was my last
time in Portugal. I had been there the previous summer and had just returned
to Oakland when I got a telephone call from Joel Berman that Wim Blok
had been killed in an automobile accident. It was a terrible blow and I was
in a state of shock for some time.
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time we talked to each other and I will always regret that we parted on that
note.

A short time after Wim’s death I was asked by Jacek Malinowski, Chair-
man of the Editorial Board of Studia Logica to edit a special issue of the
journal in memory of Wim. I understood that I could be considered the nat-
ural choice for the job, and at any other time would have quickly agreed, but
the winter of 2003 was particularly bad for me. We were at a critical stage
in the renovation of our house, and I was fully involved in helping Manuel

me that he, Joel Berman, and James Raftery had agreed to be editors and
would like to have me join them, even on a honorary basis. I was uncomfort-
able sharing credit for the editorial work without actually doing my full share.
But I appreciated the editors recognizing the special relationship I had with
Wim and wanting me to join them on any basis, so with some reservations
I agreed. All the editors were able to meet together in Chicago after Wim’s
memorial service and plan for the initial phase of our work.

In November of 2003 I heard from Renato Lewin that he had received a
grant to bring me to Santiago as a visiting scholar. He had come to Ames on
sabbatical leave in the fall of 1994 and we worked on a problem that Renato
had raised some time before. It had to do with the so-called annotated logics
PL that were introduced in the late 1980s as a logical framework to deal with
deductive databases that contain inconsistent, conflicting or contradictory
information. They are non-structural and hence do not have an algebraic
semantics in the usual sense. Working together, along with my masters degree
student Sara Bowers, we were able to construct a structural and algebraizable
logic that simulates the deductive process of PL in a natural way (Bowers
et al., 2001).

Judy was again eager to come with me to Chile, and while Renato and I
were working she took off on her own to Patagonia for a week. Renato let
her have his cellphone to keep in touch but we didn’t hear from her until she
returned to Santiago, which caused me, Renato and his wife Carmen a lot of
trouble trying to contact her. One Sunday Renato and Carmen took us to
see Valparaiso. It was the busiest seaport on the west coast of South America
before the Panama Canal was built and is still important. Part of the city
sits on the high bluffs that overlook the older commercial part on the coast.
After dinner in a restaurant with a spectacular view of the coast we took
one of the many funicular railways that climb up and down the bluffs to the
center of the city to see the sights, especially the giant flea market that is
open every Sunday in the summer. We also went to Viña del Mar, a modern
resort city just north of Valparaiso. Irene Mikenberg, a colleague of Renato’s,
owns a very nice condominium at the top of a high-rise building there and
she generously offered it to us for the night when Renato and Carmen would
return to Santiago. Irene and a friend of hers joined us in the afternoon and
showed us around Viña del Mar and took us to a seafood restaurant on the
beach for a good dinner. All-in-all it was a very enjoyable two days; Irene

and Sergey finish their theses. But Wies law Dziobiak contacted me and told
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suggested we buy a condominium and spend the North American winters in
Chile. The thought is appealing and we are still considering it. Renato invited
me twice more. Once in 2005, during which I attended my last conference,
and again in 2006. Judy came with me this time and again took off on her
own to the Lake Region of southern Chile. The highlight of the trip for me
was a weekend with Renato and Carmen at their house in Los Molles, a
picturesque village of summer homes on the ocean about 190 km north of
Santiago.

Although I have emphasised the social part of these visits to Chile, their
real purpose was scientific and in fact most of my time was spend with Renato
on campus working on several different projects. It was a disappointment that
none of this work led to a publication, and for this I blame myself. This ended
the forty years of my professional life. I had authored or coauthored over sixty
publications, not a lot compared to many other mathematicians, and many
more that were never published because I could never convince myself that
they were ready for it. Once Wim reminded me of the old aphorism: “perfect
is the enemy of the good”.

One final note. In July of 2016 Judy and I flew to Kraków to attend the
marriage of Magda Pa lasinska, the little four year old girl who came to Ames
with her father, mother, and sisters 27 years before.
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Czelakowski, J. and Pigozzi, D. (2004b). Fregean logics with the multiterm
deduction theorem and their algebraization, Studia Logica 78, 171–212.

Font, J. M. and Jansana, R. and Pigozzi, D. (2000a). Abstract algebraic logic
I, Volume 65. Studia Logica, Proceedings Workshop on Abstract Algebraic
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1 Introduction

The contribution of Don Pigozzi to the recent evolution of algebraic logic
is enormous. He has shaped the field in such a way that the community
has adopted a special name, abstract algebraic logic, promoted by him,1 to
refer to the area of algebraic logic that studies in abstract mathematical
terms the very process of algebraization of logics, associates with every logic
an algebraic counterpart, relates properties of a logic with properties of its
algebraic counterpart, and classifies logics according to the type of relation
they enjoy with it; all this, with the purpose that once one knows where a
logic fits in the classification, the application of the theory built around the
classification criteria and their consequences can immediately reveal many of
its properties.

Don’s fundamental work was developed mostly, but not exclusively, in
his long standing collaborations with Willem J. Blok and with Janusz
Czelakowski. At its center we find the construction of an impressive edi-
fice, the so-called Leibniz hierarchy (Blok and Pigozzi, 1992), based on the
notions of algebraizable logic (Blok and Pigozzi, 1989) and of protoalgebraic
logic (Blok and Pigozzi, 1986). Other scholars (such as Janusz Czelakowski,
Burghard Herrmann, Ramon Jansana, James Raftery) have also contributed
to the enlargement and further study of this hierarchy. The latest addition
to the Leibniz hierarchy is the class of truth-equational logics, characterized
in Raftery (2006); up to now, it is the only class in this hierarchy not con-
tained in the class of protoalgebraic logics (but see below). Don also laid
the foundations (Pigozzi, 1991) of the study with algebraic logic tools of the
distinction between Fregean and non-Fregean logics (due to Roman Suszko);
this gave rise to the technical notion of Fregean logic and later on to the
construction of a simpler hierarchy, the Frege hierarchy,2 where logics are
classified according to replacement properties they (or their models) satisfy.
We adress the reader to Czelakowski (2001) for more information on the
Leibniz hierarchy, and to Font (2015, 2016) for both hierarchies.

One of the goals of the present paper is to contend that the (already
well-known) class of assertional logics (also called “1-assertional” in the liter-
ature) should be counted among those in the Leibniz hierarchy (notice that
it is not included in the class of protoalgebraic logics). We also study the
relations between this class and that of truth-equational logics, and between

1 In this Don followed a suggestion of Hajnal Andréka and István Németi, who first
used the term, in Section 5.3 of Henkin, Monk, and Tarski (1985), for their abstract
model theoretic approach to the algebraization of first-order logic. It was first applied
in the present sense (i.e., to the study of sentential logics) in the Workshop on abstract
algebraic logic organized in Barcelona, under Don’s chairmanship, in 1997. In the 2010
version of the Mathematics Subject Classification, the term appears with code 03G27.
Notice that these initial paragraphs of our Introduction just intend to put the paper in
context; a complete exposition of Don’s work is found elsewhere in this volume.
2 See the detailed references given after Definition 12.
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each of these and the classes in the Frege hierarchy, in order to further clarify
the internal structure of this hierarchy and some relations between the two
hierarchies. In particular, we show that the Frege hierarchy becomes consid-
erably simplified inside large portions of the Leibniz hierarchy. Our results,
and the construction of some ad hoc counterexamples, allow us to answer
several open problems on these issues; one of these answers is only partial
and opens another new problem.

The structure of the paper is as follows. After summarizing the indispens-
able preliminaries in Section 2, we introduce assertional logics and truth-
equational logics in Section 3. The analysis of several characterizations of
the former among the latter supports our claim that the class of assertional
logics should be considered as belonging to the Leibniz hierarchy, as it can be
characterized by conditions formulated purely in terms of the Leibniz congru-
ence, in the same way as, say, regularly algebraizable logics are characterized
among the algebraizable ones. We see that the class of truth-equational logics
occupies an intermediate position between the class of assertional logics and
the class of logics having an algebraic semantics (the latter not belonging
to the Leibniz hierarchy). Then, in Section 4 we introduce the fundamental
notion of full generalized model of a logic, present the Frege hierarchy, and
establish that Fregean logics with theorems are all assertional, and hence
truth-equational, and that for a fully selfextensional logic, to be assertional
is the same as to be truth-equational. In Section 5 we give two characteri-
zations, of independent interest, of truth-equational logics in terms of their
full generalized models. In Section 6, using these characterizations and the
appropriate counterexamples, we prove that for truth-equational logics the
Frege hierarchy reduces to exactly three classes, and that for finitary weakly
algebraizable logics it reduces to two. Finally, we combine our results in or-
der to answer several open problems on the structure of the Frege hierarchy
posed in Font and Jansana (1996) and Font (2003, 2006): we prove that the
class of selfextensional logics is not the union of the classes of Fregean and
fully selfextensional logics, that there are finitely regularly algebraizable log-
ics that are selfextensional but not fully selfextensional, and that for logics
with theorems the class of fully Fregean logics is the intersection of the classes
of Fregean logics and of fully selfextensional logics. This last result opens a
new problem, that of whether the assumption that the logic has theorems
can be deleted from it.

2 Preliminaries

We assume the reader is acquainted with the standard notions, terminology
and notations of abstract algebraic logic, as given for instance in Blok and
Pigozzi (1989); Czelakowski (2001); Font (2015, 2016); Font and Jansana



56 H. Albuquerque, J. M. Font, R. Jansana, T. Moraschini

(1996); Font, Jansana, and Pigozzi (2003); Raftery (2006); Wójcicki (1988).
We recall here just the most central to the paper.

All logics and all algebras we deal with are assumed to share an arbi-
trary but fixed algebraic language. A (sentential) logic L is identified with
its consequence relation L̀.

Three kinds of algebra-based structures play a rôle in this area as models
of logics: just plain algebras (denoted by A,B, etc., with universes A,B,
resp.), matrices in the usual sense (i.e., pairs 〈A,F 〉 where F ⊆ A), and
generalized matrices (g-matrices for short), which are pairs 〈A,C〉 where
C is a closure system of subsets of A. If A is an algebra, the set of all the L-
filters of A is a closure system and is denoted by FiLA. A matrix 〈A,F 〉 is
a model of a logic L when F ∈FiLA, and a g-matrix 〈A,C〉 is a generalized
model (g-model for short) of L when C ⊆ FiLA. Thus, the largest g-model
of L on A is the g-matrix 〈A,FiLA〉.

Given an algebra A and a subset F of its universe A, the Leibniz congru-
ence of F , denoted by ΩAF , is the largest congruence of A that is compatible
with F in the sense that it does not identify elements in F with elements of
A not in F . Note that this congruence is a purely algebraic object and does
not depend on any logic. However, when studying a sentential logic L, the
term Leibniz operator on A refers to the map F 7→ ΩAF restricted to
FiLA. Several classes of logics with particularly well-behaved matrix seman-
tics can be characterized in terms of properties of this operator, constituting
the so-called Leibniz hierarchy (the part of this hierarchy relevant for the
paper is depicted in Figure 1 on page 62). A matrix is reduced when its
Leibniz congruence is the identity relation. The class of reduced models of L
is denoted by Mod∗L, and the class of its algebraic reducts by Alg∗L. This
class of algebras was classically taken to be the most natural algebraic coun-
terpart of the logic L, but in Font and Jansana (1996) it was shown that
this may not be the case for some non-protoalgebraic logics, and that a more
general algebra-based semantics where generalized matrices replace ordinary
matrices seems to yield better results. To introduce it we need a few more
definitions.

If C is a closure system over the universe A of an algebra A, its Tarski
congruence is ∼ΩAC :=

⋂
{ΩAF : F ∈ C}; it is the largest congruence of A

compatible with all F ∈C. The map C 7−→ ∼
ΩAC is called the Tarski operator

on A. The reduction of a g-matrix 〈A,C〉 is the result of factoring it out by
its Tarski congruence, that is, the quotient g-matrix 〈A/∼ΩAC ,C/∼ΩAC〉. A
g-matrix is a g-model of a logic if and only if its reduction is. A g-matrix is
reduced when its Tarski congruence is the identity relation (obviously, the
reduction of a g-matrix is always reduced).

The class AlgL is defined as the class of the algebraic reducts of the re-
duced g-models of a logic L. This class of algebras provides another algebraic
counterpart of a logic that is useful for all logics, even if they are not protoal-
gebraic. Moreover, when L is protoalgebraic, AlgL = Alg∗L. In particular, if
L is algebraizable, then AlgL coincides with its largest equivalent algebraic
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semantics introduced by Blok and Pigozzi (1989), and when L is implicative,
AlgL coincides with the class of L-algebras as defined by Rasiowa (1974).

A simple construction that plays an important rôle in the paper is the
following. If C is a closure system, for each F ∈ C we consider the closure
system CF := {G ∈ C : F ⊆G}. Hence, each g-model 〈A,C〉 of a logic L gives
rise to a family of g-models of the form 〈A,CF 〉, one for each for F ∈ C. In
particular, from the largest g-model 〈A,FiLA〉 we obtain a g-model of the
form 〈A,(FiLA)F 〉 for each F ∈ FiLA.

If 〈A,C〉 is a g-matrix and F ∈ C, the Suszko congruence of F (relative
to C) is ∼ΩA

C F := ∼
ΩACF =

⋂
{ΩAG :G ∈ C ,F ⊆G}. This notion was formally

introduced3 by Czelakowski (2003), in the special case where C = FiLA; in
this case, since the relativization is actually determined by L, it makes sense
to use the symbol ∼ΩA

L F instead of the more complicated ∼
ΩA
FiLAF , when

F ∈ FiLA, and therefore

(1) ∼
ΩA
L F := ∼

ΩA(FiLA)F =
⋂
{ΩAG :G ∈ FiLA ,F ⊆G}.

A model 〈A,F 〉 of a logic L is Suszko-reduced when its Suszko congruence∼
ΩA
L F relative to L is the identity relation. The class of Suszko-reduced models

of L is denoted by ModSuL. The class of algebraic reducts of the matrices in
ModSuL turns out to be the class AlgL; this fact reinforces the relevance of
this class as a universal algebraic counterpart of a logic.

The map given by F 7−→ ∼
ΩA
L F defined on FiLA is called the Suszko

operator (relative to L) on A. A logic is protoalgebraic if and only if the
Suszko operator (relative to it) and the Leibniz operator, both on the for-
mula algebra, coincide on its theories (Czelakowski, 2001, Theorem 1.5.4);
or, equivalently, if and only if the two operators coincide on the filters of the
logic on arbitrary algebras (Czelakowski, 2003, Theorem 1.10). Thus, it seems
that the specific properties of the Suszko operator should be particularly rel-
evant for algebraic studies of logics where protoalgebraicity is not assumed;
for instance, it is one of the key tools in Raftery’s study of truth-equational
logics (Raftery, 2006). The paper by Albuquerque et al. (2016) studies a
common framework that encompasses both the Leibniz and the Suszko oper-
ators, and obtains characterizations of several classes in the Leibniz hierarchy
in terms of properties of the Suszko operator.

Each closure system C on a set A has an associated closure operator C
over A, defined as CX :=

⋂
{F ∈ C : X ⊆ F} for all X ⊆ A. Using it we

can define the Frege relation of a closure system C as ΛC :=
{
〈a,b〉 ∈ A×

A : C{a} = C{b}
}

; notice that 〈a,b〉 ∈ ΛC if and only if a and b belong to
the same members of C. This defines the Frege operator (relative to C)
as the map F 7−→ ΛCF := ΛCF , for F ∈ C. The relations ΛC and ΛCF are
equivalence relations, but not necessarily congruences; it turns out that the

3 Czelakowski attributes its invention and first characterization to Suszko, in unpub-
lished lectures.
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largest congruence of A below the Frege relation ΛC is the Tarski congruence∼
ΩAC, and the largest congruence of A below ΛCF is the Suszko congruence∼
ΩA
C F .
The set ThL of theories of a logic L is a closure system, and so we can

always view a logic as the g-matrix 〈Fm,ThL〉; the associated closure oper-
ator will be denoted by CL. Moreover, FiLFm = ThL. Thus, all the above
definitions and constructions given for arbitrary g-matrices can in particular
be given for a logic. In this case, the superscript that would correspond to the
formula algebra will be omitted; thus, on the set of theories of L we have the
Leibniz operator Ω and the Suszko operator ∼ΩL, and we can also consider
the Tarski operator ∼Ω on closure systems of theories. The Frege relation and
operator relative to ThL are denoted by ΛL and ΛL instead of ΛThL and
ΛThL, respectively. The relation ΛL is also denoted by a L̀, as it is simply
the relation of interderivability with respect to the logic L. As established in
general, note that ∼ΩL is the largest congruence below ΛL.

So far we have recalled the definition of two classes of algebras associated
with each logic L, namely Alg∗L and AlgL. A third class it is useful to con-
sider, called the intrinsic variety of L, is defined as VL := V(Fm/

∼
ΩL),

where for a class K of algebras the variety it generates is denoted by V(K).
Since the congruence ∼

ΩL is fully invariant, it follows that VL � α ≈ β if
and only if 〈α,β〉 ∈ ∼ΩL. The following facts about the three classes will be
relevant to the paper:

Alg∗L ⊆ AlgL ⊆ VL V(Alg∗L) = V(AlgL) = VL.

An interesting fact we will need is the following.

Lemma 1. Let L be a logic complete with respect to a class of (g-)matrices
with the class K of algebras as algebraic reducts. For all α,β ∈ Fm, if K �
α ≈ β, then α a L̀ β. As a consequence, VL ⊆ V(K), and hence both Alg∗L
and AlgL are included in the variety generated by K.

Proof. Assume that K � α ≈ β; this means that for any A ∈ K and any h ∈
Hom(Fm,A) , hα = hβ. In particular, for any matrix 〈A,F 〉 in the class,
hα ∈ F if and only if hβ ∈ F . The completeness of L with respect to the class
of matrices implies that α a L̀ β. The case of g-matrices is proved similarly.
That is,

{
〈α,β〉 ∈ Fm×Fm : K � α≈ β

}
⊆ ΛL. But since the set is clearly a

congruence of the formula algebra, this fact implies that
{
〈α,β〉 ∈Fm×Fm :

K � α≈ β
}
⊆ ∼ΩL. This shows that VL ⊆ V(K), and the fact that Alg∗L and

AlgL generate the variety VL proves the final assertion. ut

In practice, this may give interesting and workable information for a logic
that is defined from a single (g-)matrix, or a small set of (g-)matrices: the
equations that hold in the algebraic reducts of the defining (g-)matrices also
hold in the three classes of algebras associated with the logic (see Example 23
for an application).
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3 Assertional logics and truth-equational logics

Several classes of logics, of different strength, can be defined by considering
how the truth filter in their matrix models (i.e., the set F of the matrices
〈A,F 〉 that are models of L) is determined, and by their relation to the
relative equational consequences of classes of algebras. To introduce them we
need some further notation and terminology.

Equations are identified with pairs of formulas, which are conventionally
denoted by α ≈ β instead of 〈α,β〉. Any set τττ(x) of equations in at most
one variable x induces a map, denoted also by τττ , that transforms (sets of)
formulas into sets of equations; it is defined by putting τττϕ := τττ(ϕ) for any
ϕ ∈ Fm, and τττΓ :=

⋃{
τττϕ : ϕ ∈ Γ

}
for any Γ ⊆ Fm. Then, for any algebra

A we consider the set of “solutions” of the equations in τττ(x),

τττA :=
{
a ∈A : A � τττ(x) [[a]]

}
=
{
a ∈A : δA(a) = εA(a) for all δ ≈ ε ∈ τττ(x)

}
,

and for each a ∈A we put

τττA(a) :=
{
〈δA(a),εA(a)〉 : δ ≈ ε ∈ τττ(x)

}
⊆A×A.

It is interesting to notice that a ∈ τττA if and only if τττA(a)⊆ IdA, the identity
relation on A.

Definition 2. Let 〈A,F 〉 be a matrix, M a class of matrices, and τττ(x) a set
of equations.

• τττ defines the set F , or defines truth in 〈A,F 〉, when F = τττA; i.e.,
when for any a ∈ A, a ∈ F if and only if A � τττ(x) [[a]], i.e., if and only if
τττA(a)⊆ IdA.

• τττ defines truth in M when it defines truth in all the matrices in M.
• Truth is equationally definable in M when there is a set of equations
τττ(x) that defines truth in M.

In all these cases, the equations in the set τττ(x) are called the defining equa-
tions.

Note that when this happens, for each algebra A there can be at most
one subset F of A such that 〈A,F 〉 ∈M; this (in general weaker) property is
called in the literature the implicit definability of truth in M.

We are particularly interested in logics that have a complete matrix seman-
tics where truth is equationally definable. These logics can be alternatively
(and more intuitively) described with the help of the equational conse-
quence relative to a class of algebras K. This is a closure relation �K on
the set of equations, defined as follows. For any set Θ of equations and any
equation δ ≈ ε,
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Θ �K δ ≈ ε ⇐⇒ for every A ∈ K and every h ∈Hom(Fm,A) ,
if A � α≈ β [[h]] for all α≈ β ∈Θ, then A � δ ≈ ε [[h]] .

With this definition, the following fact is easy to prove.

Lemma 3. A logic L is complete with respect to some class M of matrices
where truth is equationally definable if and only if there is a class K of algebras
and a set of equations τττ(x) such that for all Γ ∪{ϕ} ⊆ Fm,

Γ L̀ ϕ ⇐⇒ τττ Γ �K τττϕ.

Proof. For one direction, take K as the class of algebraic reducts of M; for
the other, take M :=

{
〈A,τττA〉 : A ∈ K

}
. ut

When the situation is as in the lemma, the class K is called an algebraic
semantics for the logic L.

A special kind of logics having an algebraic semantics correspond to those
where there is a single defining equation with a particular and simple form,
which we proceed to describe. A class of algebras is pointed when there
is a term that is constant in the class. This term, usually denoted by >,
can be a primitive constant of the language, or be made up from primitive
constants, or be a term with variables such that in the algebras of the class,
all interpretations give it the same value; in this second case, it can safely
be assumed that the term has only the variable x. So, we assume that >
is a term with at most the variable x, and will occasionally write >(x) to
emphasize this fact.

Now we can introduce the first main concept studied in the paper.

Definition 4. Let K be a pointed class of algebras, with > as the correspond-
ing constant term. The assertional logic of K is the logic L determined by
the following condition: for all Γ ∪{ϕ} ⊆ Fm,

Γ L̀ ϕ ⇐⇒ {γ ≈> : γ ∈ Γ} �K ϕ≈>.

A logic L is an assertional logic when it is the assertional logic of some
pointed class of algebras.

In other words, L is the assertional logic of K if and only if L has K as an
algebraic semantics with x ≈ > as defining equation, and if and only if L is
complete with respect to the class of matrices

{
〈A,{>A}〉 : A ∈ K

}
. We will

see that the simplicity of the equation entails strong properties, not shared
by logics having algebraic semantics with arbitrary defining equations.4 Note
that the constant term > must be a theorem of any assertional logic, because
> ≈ > obviously holds in K. Note also that if a class of algebras is pointed,
4 A logic having K as algebraic semantics with defining equations τττ is also called “the
τττ -assertional logic of K” in the literature; in such a case, the term “1-assertional” is used
for our “assertional”. In the present paper we will not need this more general terminology.
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then the variety it generates is pointed as well. Using Lemma 1, we can obtain
the following fact, which is also of interest.

Lemma 5. If L is the assertional logic of a pointed class of algebras K, then
VL ⊆ V(K). As a consequence, the classes Alg∗L and AlgL are also pointed,
with the same constant term as K. ut

Now we can introduce the second main concept studied in the paper.

Definition 6. A logic L is truth-equational when truth is equationally
definable in Mod∗L.

The notion of truth-equational logic was studied by Raftery (2006); the
above definition, which is more convenient for the present paper, is actually an
equivalent characterization, which follows from Theorem 25 of Raftery (2006).
Raftery proved that truth-equational logics need not be protoalgebraic, but
nevertheless they can be characterized by properties of the Leibniz operator
(see Theorem 18 below), and hence they belong in the Leibniz hierarchy.

It is clear from the definition, by the completeness of L with respect to the
class Mod∗L, that if L is truth-equational, then it has an algebraic semantics,
namely the class Alg∗L. Note that the converse is not true, as witnessed by
Example 1 of Raftery (2006), but it is so when τττ has the form x≈>, with > a
constant term of Alg∗L; this fact is contained in the following characterization,
essentially due to Raftery, of the assertional logics as a subclass of truth-
equational logics.

Theorem 7. For any logic L the following conditions are equivalent:

(i) L is an assertional logic.
(ii) L is truth-equational, with a truth definition of the form x≈>, where
> is a constant term of Alg∗L or, equivalently, of AlgL.

(iii) L has Alg∗L as an algebraic semantics with x≈> as defining equation,
where > is a constant term of Alg∗L.

(iv) L has AlgL as an algebraic semantics with x≈> as defining equation,
where > is a constant term of AlgL.

Proof. Assertional logics satisfiy the conditions established in Corollary 40
of Raftery (2006) for a logic to be truth-equational, in this case with a truth
definition of the form x ≈ > where > is a theorem of the logic. Moreover,
by Lemma 5, we know that > will be a constant of Alg∗L and of AlgL. This
shows that (i) implies (ii). It has already been observed as a general property
that (ii) implies (iii). Similarly, (ii) implies (iv), because a logic is truth-
equational if and only if truth is equationally definable in ModSuL (Raftery,
2006, Theorem 28), and the class of algebraic reducts of ModSuL is AlgL.
Finally, each of (iii) and (iv) implies (i), simply by the involved definitions.

ut
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Fig. 1 The classes of logics in the fragment of the Leibniz hierarchy relevant to this
paper, including the newly added class (in boldface), and showing (in italics) two related
classes not belonging to it. Arrows indicate class inclusion.

Thus, all assertional logics are truth-equational; the class of the latter lies
between the class of the former and that of the logics having an algebraic
semantics (see Figure 1). This brings back into the Leibniz hierarchy many
non-protoalgebraic logics that previously had seemed excluded from it. For
instance, the 〈∧,∨,>,⊥〉-fragment of classical logic, which is the assertional
logic of the variety of bounded distributive lattices; Visser’s “basic logic”
BPL?, shown to be non-protoalgebraic by Suzuki et al. (1998, Theorem 14);
the implication-less fragment IPC∗ of intuitionistic logic, proven to be non-
protoalgebraic by Blok and Pigozzi (1989, § 5.2.5); and its denumerably many
axiomatic extensions considered by Rebagliato and Verdú (1993). IPC∗ and
its extensions are examples where the constant term is not made up from
primitive constants of the language; indeed, there > := ¬(x∧¬x).

Observe that by Theorem 7, if L is the assertional logic of some class K
of algebras, then it is the assertional logic of the class Alg∗L, and also of the
class AlgL.

Assertional logics can be characterized in an independent way through the
notion of a unital class of matrices, i.e., a class of matrices where all the
filters are one-element sets:
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Theorem 8. For any logic, L the following conditions are equivalent:
(i) L is an assertional logic.

(ii) The class of matrices Mod∗L is unital.
(iii) The class of matrices ModSuL is unital.
(iv) L has theorems and is complete with respect to a unital class of matrices.

Proof. To show that (i) implies (ii) we use the characterizations of be-
ing assertional in Theorem 7. Thus, the assumption implies that Mod∗L ={
〈A,{>A}〉 : A∈Alg∗L

}
and that this is a unital class. (i) implies (iii) for the

same reason, applied to the class ModSuL =
{
〈A,{>A}〉 : A ∈ AlgL

}
. Triv-

ially, each of (ii) and (iii) implies, separately, the second assertion of (iv), as
a consequence of the completeness of L with respect to Mod∗L and ModSuL,
respectively. Now observe that if L has no theorems, then for any algebra
A, the matrix 〈A,∅〉 is a model of L. But, in particular, for a trivial (i.e.,
one-element) algebra A, the matrix 〈A,∅〉 is always reduced and Suszko-
reduced, because then ΩA{∅}= ∼

ΩA
L {∅}=A×A= IdA. Thus, we would have

that 〈A,∅〉 ∈Mod∗L and 〈A,∅〉 ∈ModSuL, respectively, against the assump-
tion that the respective class is unital. This shows that L has theorems and
completes the proof of (iv). Finally, in order to show that (iv) implies (i),
let M be the unital class of matrices with respect to which L is complete,
and let K be the class of their algebraic reducts. Observe that since L has
theorems, all L-filters are non-empty. Therefore, since the intersection of two
L-filters is always an L-filter, and it cannot be empty, there can be at most
one one-element L-filter in each (arbitrary) algebra. The assumption that M
is unital means that algebras in K have indeed one such L-filter, and it is
the only one on the algebra making the matrix reduced. Let > be a theo-
rem of L in at most the variable x (which exists by the first assumption),
and let A ∈ K. Since > is a theorem, for every a ∈ A the point >A(a) must
belong to the mentioned L-filter, therefore this L-filter must be exactly the
set {>A(a)}, for any a ∈ A. This also implies that >A(a) = >A(b) for all
a,b ∈A. Therefore, > is a constant term of K, that is, the class K is pointed,
and M =

{
〈A,{>A} : A∈K〉

}
. After this, the completeness of L with respect

to M means that L is the assertional logic of K. ut

The fact that assertional logics have a unital class of reduced models has
the following, seldom noticed consequence:

Corollary 9. If L is an assertional logic, then the class of algebras Alg∗L is
relatively point-regular.

Proof. Let > be the constant term of Alg∗L witnessing that L is assertional,
as in the previous results. Let A ∈ Alg∗L and let θ,θ′ ∈ CoAlg∗LA such that
>A/θ =>A/θ′. Since A/θ ∈ Alg∗L, by Theorem 8, 〈A/θ,{>A/θ}〉 ∈Mod∗L.
Now, if π : A→A/θ is the canonical projection, we have that

θ = π−1IdA/θ = π−1ΩA/θ{>A/θ}=ΩAπ−1{>A/θ}=ΩA(>A/θ
)
.
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The same argument for θ′ shows that θ′ =ΩA(>A/θ′
)
. The assumption that

>A/θ =>A/θ′ implies that θ = θ′. ut

The following characterization of assertional logics (if defined as in The-
orem 8) is essentially due to Suszko (in unpublished lectures), according
to Czelakowski (1981); the name “Suszko rules” was coined by Rautenberg
(1993).

Theorem 10. For any logic L, the following conditions are equivalent:

(i) L is an assertional logic.
(ii) L has theorems and satisfies the so-called “Suszko rules”:

(2) x,y,ϕ(x,~z) L̀ ϕ(y,~z) ,

for all ϕ(x,~z) ∈ Fm.
(iii) L has theorems and satisfies that 〈x,y〉 ∈ ∼ΩLCL{x,y}.
(iv) L has theorems and satisfies that for every algebra A and every a,b∈A,

〈a,b〉 ∈ ∼ΩA
L FiAL {a,b}

Proof. (i)⇒(ii) We know all assertional logics have theorems. Completeness
of L with respect to some unital class of matrices, which Theorem 8 guaran-
tees, directly implies the Suszko rules.
(ii)⇒(iii) and (iv) Let Γ ∈ ThL be such that CL{x,y} ⊆ Γ , that is, x,y ∈ Γ .
Then by the Suszko rules, ϕ(x,~z) ∈ Γ if and only if ϕ(y,~z) ∈ Γ , for all
ϕ(x,~z) ∈ Fm. This means that 〈x,y〉 ∈ΩΓ . Therefore, 〈x,y〉 ∈ ∼ΩLCL{x,y},
which proves (iii). Point (iv) is proved in the same way, but working on the
L-filters of an arbitrary algebra.
(iii)⇒(ii) follows by the same argument as the preceding implication; as a
matter of fact, that the Suszko rules hold is equivalent to the condition that
〈x,y〉 ∈ ∼ΩLCL{x,y}.
(ii)⇒(i) Let 〈A,F 〉 ∈ Mod∗L. Since L has theorems, F 6= ∅. Then the
Suszko rules imply that F is a one-element set: If a,b ∈ F , then for every
~c ∈ An , ϕA(a,~c) ∈ F if and only if ϕA(b,~c) ∈ F , that is, 〈a,b〉 ∈ΩAF ; since
the matrix is reduced, this implies that a = b. Thus, all the reduced models
of L are unital, and by Theorem 8 this fact implies that L is an assertional
logic.
(iv)⇒(iii) because the latter is a particular case of the former. ut

After the preceding results, we think it becomes clear that the class of
assertional logics should be counted among those in the Leibniz hierarchy, as
it can be defined by conditions on the Leibniz congruence: notice that the
second conditions in points (iii) and (iv) of Theorem 10 can be paraphrased as
“〈x,y〉 ∈ΩΓ for all Γ ∈ ThL such that x,y ∈Γ” and “〈a,b〉 ∈ΩAF for all F ∈
FiLA such that a,b∈F”, respectively. For protoalgebraic logics, these can be
simplified to “〈x,y〉 ∈ ΩCL{x,y}” and “〈a,b〉 ∈ ΩAFiAL {a,b}”, respectively.
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It is well known that inside protoalgebraic logics, any of these conditions,
or the equivalent ones found in Theorems 7 and 8, determine the classes
of regularly weakly algebraizable logics; and inside equivalential logics, they
produce the regularly algebraizable logics. These classes are usually considered
as belonging to the Leibniz hierarchy, and by the same reason should the class
of assertional logics be considered in it; its location in the hierarchy is parallel
to the former ones, as Figure 1 on page 62 shows.

This new member of the hierarchy is different from the existing ones, and
its location is really as shown in Figure 1, as the following examples confirm.

• There are truth-equational logics that are not assertional. Examples of this
are all algebraizable logics that are not regularly algebraizable, such as all
substructural logics associated with a variety of non-integral residuated
lattices, described by Galatos et al. (2007); among the best known mem-
bers of this class we find Relevance Logic (with and without the “Mingle”
axiom; i.e., R and RM) and the multiplicative-additive fragment of Linear
Logic MALL. Raftery (2006, Example 9) provides a non-protoalgebraic
example: The logic in the language 〈→,¬〉 defined by taking as algebraic
semantics the variety generated by the Sobociński three-element algebra,
with x ≈ x→x as defining equation. This logic, which has the same the-
orems as (but does not coincide with) the implication-negation fragment
of RM , is neither protoalgebraic nor assertional, but is truth-equational.
Notice that, although the term x→x is a theorem of the logic, it is not a
constant term of the class of algebras.

• There are assertional logics that are not (regularly) weakly algebraizable.
Examples of this will be all assertional logics that are not protoalgebraic,
some of which are mentioned after Theorem 7.

From our Theorem 8, using Theorem 5.6.3 of Czelakowski (2001), it follows
that the class of regularly weakly algebraizable logics is the intersection of
the class of protoalgebraic logics and of assertional logics, and hence also the
intersection of the classes of weakly algebraizable logics and of assertional
logics; Figure 1 on page 62 shows these facts. In particular, a logic L is
regularly weakly algebraizable if and only if it is protoalgebraic and Mod∗L is
unital; it is interesting to notice that the two just mentioned conditions can
be formulated by making reference only to the class Alg∗L:

Corollary 11. A logic L is regularly weakly algebraizable if and only if it has
Alg∗L as an algebraic semantics with x≈> as defining equation, where > is
a constant term of Alg∗L, and Alg∗L is closed under subdirect products.

Proof. Putting Theorems 7 and 8 together, we see that the condition that
Mod∗L is unital can be equivalently formulated in terms of Alg∗L as stated. On
the other hand, it is well-known (Czelakowski, 2001, Thm. 1.3.7) that a logic
is protoalgebraic if and only if the class of matrices Mod∗L is closed under
subdirect products; but by the same theorems, the condition that Mod∗L is
unital implies that the logic is truth-equational, which implies that the truth
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filter of the matrices in Mod∗L is unique, and therefore in our situation Mod∗L
is closed under subdirect products if and only if the class of algebras Alg∗L
is closed under subdirect products. ut

4 Full generalized models, and the Frege hierarchy

The reduction construction allows to introduce a special class of g-models of
a logic. A basic full g-model of a logic L is one of the form 〈A,FiLA〉, for
some algebra A. A full g-model of L is one whose reduction is a basic full
g-model; that is, a g-matrix 〈A,C〉 such that C/∼ΩAC = FiL(A/∼ΩAC). Note
that a logic, viewed as a g-matrix, is a full g-model of itself, and indeed the
largest one on the formula algebra. It turns out that AlgL is also the class of
algebraic reducts of the reduced full g-models of L; in fact, the reduced full
g-models of L are exacly those of the form 〈A,FiLA〉 with A ∈ AlgL. The
notion of a full g-model of a logic, introduced by Font and Jansana (1996)
and further studied in Font et al. (2006) and other papers, has allowed to
develop a very general approach to the algebraic study of sentential logics,
and in particular is instrumental in the following definitions.

The Frege hierarchy is a classification of logics according to what kind
of replacement properties they (and their full g-models) satisfy. In abstract
terms, replacement properties are defined algebraically as concerning congru-
ences. A g-matrix 〈A,C〉 has the property of congruence when its Frege
relation is a congruence of A, i.e., when ΛC= ∼

ΩAC. A g-matrix 〈A,C〉 has the
strong property of congruence when for any F ∈ C, the g-matrix 〈A,CF 〉
has the property of congruence, i.e., when ΛCF = ∼

ΩA
C F for all F ∈ C; note

that this means that the Frege and the Suszko operators relative to C coin-
cide. These two properties of congruence are preserved by reductions. Since
the relation ΛThL for a sentential logic L is its interderivability relation a`L,
these two properties when formulated for a sentential logic amount to natural
replacement properties of the interderivability relation.

These two properties originate the four classes of logics in the Frege hier-
archy.

Definition 12. Let L be a logic.

• L is selfextensional when, viewed as the g-matrix 〈Fm,ThL〉, it has the
property of congruence; i.e., when the interderivability relation a`L is a
congruence of Fm.

• L is Fregean when, viewed as the g-matrix 〈Fm,ThL〉, it has the strong
property of congruence; i.e., when for each Γ ∈ ThL, the interderivability
relation modulo Γ (i.e., the relation ΛLΓ ) is a congruence of Fm.

• L is fully selfextensional when all its full g-models have the property
of congruence.
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• L is fully Fregean when all its full g-models have the strong property of
congruence.

The notion of a selfextensional logic is due to Wójcicki (1979); see
also Wójcicki (1988, Chapter 5). The notion of a Fregean logic was intro-
duced, in a slightly restricted form, by Pigozzi (1991) and Czelakowski (1992),
and independently and as given here, by Font (1993). The other two classes
of logics were introduced by Font and Jansana (1996); the hierarchy as such
was first considered by Font (2003), and named after Frege in Font (2006).
Observe that a logic is Fregean if and only if the Suszko and the Frege opera-
tors (relative to it) coincide on the theories of the logic. In Font and Jansana
(1996, Proposition 2.40) it is shown that L is fully selfextensional if and only
if for any algebra A, the basic full g-model 〈A,FiLA〉 has the property of
congruence, and if and only if for every A ∈ AlgL the relation ΛFiLA is the
identity relation; that is, if and only if in the algebras in AlgL, different points
generate different L-filters (“L-filters separate points”). This characterization
is the clue to some of the interesting applications of fully selfextensional log-
ics to the development of an abstract duality theory (Gehrke et al., 2010); it
will be used in Theorem 15.

Some obvious relations hold between the four classes (taking into account
that a logic is always a full g-model of itself), and are depicted in Figure 2.
Two questions this graph naturally rises is whether the top (smallest) class
of fully Fregean logics is the intersection of the two middle classes of Fregean
logics and of fully selfextensional logics, and whether the lowest (largest)
class of selfextensional logics is their union. These questions were posed as
open problems in Font (2003, § 6.2) and Font (2006, p. 202); the first one is
answered affirmatively in the present paper for logics with theorems (Theo-
rem 26), and the second one is answered negatively, even for logics with very
strong properties (Example 23).

fully Fregean

�� ��fully
selfextensional

��

Fregean

��
selfextensional

Fig. 2 The classes of logics in the Frege hierarchy. Arrows indicate class inclusion.
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In order to find relations between the class of truth-equational logics and
the classes in the Frege hierarchy, we start from the following observation.
Lemma 13. Let L be a Fregean logic.
1. L satisfies the “Suszko rules” (2) displayed in Theorem 10.
2. If 〈A,F 〉 ∈Mod∗L, then F is either empty or a one-element set.
Proof. 1. Trivially, for any logic L it holds that 〈x,y〉 ∈ ΛLCL{x,y}. If
L is Fregean, the relation ΛLCL{x,y} will be a congruence, which im-
plies that for all ϕ(x,~z) ∈ Fm,

〈
ϕ(x,~z),ϕ(y,~z)

〉
∈ ΛLCL{x,y}. That is,

CL{x,y,ϕ(x,~z)}= CL{x,y,ϕ(y,~z)}, which amounts to the rules (2).
2. Assume that F is non-empty and take any a,b ∈ F . Since F is an L-
filter, from rules (2) it follows that for any ϕ(x,~z) ∈ Fm and any ~c ∈ An,
ϕA(a,~c) ∈ F if and only if ϕA(b,~c) ∈ F . By the classical characterization
of Czelakowski (2001, Theorem 0.5.3), this says that 〈a,b〉 ∈ΩAF , and since
the matrix is reduced this implies that a= b. Thus, F is a one-element set.

ut

Since, in general, the filter of a reduced matrix can be empty only when
the algebra is trivial, we see that reduced models of Fregean logics on non-
trivial algebras must be unital. This may be a practical criterion to disprove
that a certain logic, (some of) whose reduced models are known, is Fregean.
For instance, this shows that Belnap-Dunn’s well-known four-valued logic is
not Fregean, because it has reduced models on a nontrivial algebra with two-
element designated sets, for instance those given by the two prime filters of
the four-element De Morgan lattice (usually called FOUR) that defines the
logic, which is a simple algebra; see Font (1997, p. 427).

One consequence of Lemma 13 (together with a result to be reviewed in
the next section) is the following characterization:
Theorem 14. Let L be a Fregean logic. The following conditions are equiv-
alent:

(i) L has theorems.
(ii) L is assertional.

(iii) L is truth-equational.
(iv) The Leibniz operator is injective over the L-filters of arbitrary algebras.
(v) The Leibniz operator is injective over the theories of L.

Proof. By Lemma 13, if a Fregean logic has theorems, then its class of reduced
models is unital, and therefore by Theorem 8, the logic is assertional; this
proves that (i) implies (ii). That (ii) implies (iii) is contained in Theorem 7.
Now, that (iii) implies (iv) follows from Theorem 28 of Raftery (2006), a
result that you will find here as Theorem 18, because being completely order
reflecting implies being injective. Clearly, (v) follows from (iv) as a particular
case. Finally, (v) implies (i) because, if a logic has no theorems, then ∅ and
Fm are both theories of the logic, and always Ω∅=ΩFm= Fm×Fm, thus
breaking injectivity of the Leibniz operator on the theories of the logic. ut
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We thus see that Fregean logics with theorems are assertional, and hence
truth-equational; the situation is that depicted in Figure 1 on page 62. The
following examples confirm that there are no other relations.

• There are assertional logics that are not Fregean. We find many examples
of this situation even among the regularly algebraizable logics, such as
the global consequences of the usual normal modal logics (K ,T ,S4 ,S5,
etc.), or  Lukasiewicz’s many-valued logics, or, more generally, the logics
associated in Galatos et al. (2007) with any variety of integral residuated
lattices that is not a variety of generalized Heyting algebras. In all these
examples, the defining equation of the algebraization is of the form x≈>
for a constant >, so that each is the assertional logic of the corresponding
algebraic counterpart (a variety of normal modal algebras, or the corre-
sponding variety of residuated lattices, respectively). But they are not
selfextensional (the modal cases are easily shown by using Kripke models,
and the second group is shown by Bou et al. (2009, Theorem 4.12)), hence
a fortiori they are not Fregean.

• There are Fregean logics with theorems that are not regularly weakly al-
gebraizable. Examples are the already mentioned logic IPC∗ and its ax-
iomatic extensions, which are not protoalgebraic, hence in particular not
regularly weakly algebraizable. That IPC∗ is Fregean is proved by Font
and Jansana (1996, § 5.1.4), and all axiomatic extensions of a Fregean logic
are Fregean as well; and all these logics have theorems (indeed, they are
assertional).

Thus, the class of assertional logics is the smallest class in the Leibniz hier-
archy containing the Fregean logics with theorems, as shown in Figure 1.

As a final application of Theorem 8, we obtain a (weakened) version of
Theorem 14 for fully selfextensional logics.

Theorem 15. A fully selfextensional logic is assertional if and only if it is
truth-equational.

Proof. By Theorem 7, all assertional logics are truth-equational. So let L be
a fully selfextensional and truth-equational logic, and let 〈A,F 〉 ∈ModSuL.
Since ∼ΩA

L (
⋂
FiLA) ⊆ ∼ΩA

L F = IdA, it follows that ∼ΩA
L (
⋂
FiLA) = ∼

ΩA
L F =

IdA. One of the basic characterizations of truth-equational logics (Raftery,
2006, Theorem 28) is that the Suszko operator is injective on their filters,
therefore F =

⋂
FiLA, that is, F is the smallest L-filter of A. Thus, if a,b∈F ,

a and b belong to the same L-filters (namely: all). But A ∈ AlgL and for
these algebras, L-filters separate points, because L is fully selfextensional (as
commented on page 67 after Definition 12). Therefore, a= b. We have shown
that ModSuL is unital, and by Theorem 8 this implies that L is assertional.

ut

Some of the non-protoalgebraic examples of assertional logics mentioned
before are fully selfextensional; for instance, Visser’s logic BPL∗, as shown
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in Bou (2001), or the 〈∧,∨,>,⊥〉-fragment of classical logic, as follows from
Theorem 4.28 of Font and Jansana (1996).

Notice that, unlike in the Fregean case (Theorem 14), the condition that L
has theorems cannot be added as an equivalent one to those in Theorem 15;
the logics that preserve degrees of truth with respect to certain varieties
of commutative, integral residuated lattices (those that are not varieties of
generalized Heyting algebras) provide an infinity of counterexamples: all these
logics are fully selfextensional and have theorems but are not assertional;
these properties are shown in, or follow from, Corollary 4.2, Lemma 2.6,
Corollary 3.6 and Theorem 4.12 of Bou et al. (2009).

5 The full generalized models of truth-equational logics

The key characterization of truth-equational logics uses the following prop-
erty.

Definition 16. Let L be a logic, and let A be an algebra. The Leib-
niz operator ΩA is completely order-reflecting over FiLA when for all
F ∪{G} ⊆ FiLA, if

⋂
F∈F

ΩAF ⊆ΩAG then
⋂
F ⊆G.

The following reformulation in terms of the Suszko operator, whose proof
is an easy exercise, is very convenient:

Lemma 17. Let L be a logic, and let A be an algebra. The Leibniz operator
ΩA is completely order-reflecting over FiLA if and only if for all F ,G ∈
FiLA, if ∼ΩA

L F ⊆ΩAG, then F ⊆G. ut

The main result placing the class of truth-equational logics in the Leibniz
hierarchy, due to Raftery (2006, Theorem 28), is the following.

Theorem 18. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) The Leibniz operator is completely order-reflecting over the L-filters of

arbitrary algebras.
(iii) The Leibniz operator is completely order-reflecting over the theories

of L. ut

In particular this implies that the Leibniz operator is order-reflecting, and
hence injective, on the theories of L (and on the L-filters of any algebra).

This characterization can be used to obtain an alternative proof of the
truth-equationality of Fregean logics with theorems (Theorem 14), which
needs not use assertional logics. To this end we show that the Leibniz operator
is completely order-reflecting on the theories of L, by using Lemma 17 over
the formula algebra. Let Γ,Γ ′ ∈ ThL be such that ∼ΩLΓ ⊆ΩΓ ′. We have to
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show that Γ ⊆ Γ ′, so let ϕ ∈ Γ . Take now any theorem ψ of L, which exists
by assumption; then in particular ψ ∈ Γ , and this implies that CL(Γ,ϕ) =
Γ = CL(Γ,ψ), that is, 〈ϕ,ψ〉 ∈ ΛLΓ . But L is Fregean, which means that
ΛLΓ = ∼

ΩLΓ . Therefore, by the assumption, 〈ϕ,ψ〉 ∈ΩΓ ′. Since also ψ ∈ Γ ′,
by compatibility it follows that ϕ ∈ Γ ′, as desired.

The following technical but important property will allow us to obtain
some characterizations of truth-equationality in terms of the full g-models of
the logic.

Lemma 19. Let L be any logic, A any algebra, and F ∈FiLA. The following
conditions are equivalent:

(i) The g-matrix
〈
A,(FiLA)F

〉
is a full g-model of L.

(ii) For all G ∈ FiLA, if ∼ΩA
L F ⊆ΩAG, then F ⊆G.

Proof. One of the central characterizations of the notion of full g-model of
a logic (Font and Jansana, 1996, Theorem 2.14) is that a g-matrix 〈A,C〉
is a full g-model of L if and only if C = {G ∈ FiLA : ∼ΩAC ⊆ ΩAG}. Since
by (1) on page 57, ∼ΩA(FiLA)F = ∼

ΩA
L F , in particular a g-matrix of the

form
〈
A,(FiLA)F

〉
, for some F ∈ FiLA, is a full g-model of L if and only if

(FiLA)F = {G∈FiLA : ∼ΩA
L F ⊆ΩAG}. But the direct inclusion holds by (1),

and the reverse inclusion is exactly condition (ii). ut

This allows us to obtain our first characterization of truth-equational logics
in terms of the form of their full g-models: a logic is truth-equational if and
only if each of its filters determines a full g-model of the logic; we see that
the same property, limited to the theories of the logic, is also sufficient to
characterize truth-equationality.

Theorem 20. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) For every A and every F ∈ FiLA, the g-matrix

〈
A,(FiLA)F

〉
is a full

g-model of L.
(iii) For every Γ ∈ ThL, the g-matrix

〈
Fm,(ThL)Γ

〉
is a full g-model of L.

Proof. In order to prove that (i) implies (ii), assume that L is truth-
equational. Then, by Theorem 18 and Lemma 17, we see that for any A,
any F ∈ FiLA satisfies condition (ii) in Lemma 19, therefore its condition
(i) yields the present condition (ii). Clearly, (iii) is a particular case of (ii).
And finally from (iii) we can prove (i): By applying Lemma 19 to the formula
algebra, we see that (iii) amounts to saying that for every Γ,Γ ′ ∈ ThL, if∼
ΩLΓ ⊆ ΩΓ ′, then Γ ⊆ Γ ′. But by Lemma 17 applied also to the formula
algebra, this is to say that the Leibniz operator is completely order-reflecting
over the theories of L, and by Theorem 18, this implies that L is truth-
equational. ut
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The equivalence between (i) and (ii) is obtained in Albuquerque et al.
(2016) as a by-product of a more general study of compatibility operators
in abstract algebraic logic, of which the Suszko operator is a paradigmatic
example; here we have given a direct proof. It is interesting to relate this
characterization to that of protoalgebraic logics found in Font and Jansana
(1996, Theorem 3.4): A logic L is protoalgebraic if and only if every full g-
model of L is of the form

〈
A,(FiLA)F

〉
for some algebra A and some F ∈

FiLA. This is in some sense “dual” to the characterization of truth-equational
logics in Theorem 20. As a consequence, a logic is weakly algebraizable if and
only if its full g-models are exactly the g-matrices of the form

〈
A,(FiLA)F

〉
for some F ∈ FiLA; this was already obtained in Font and Jansana (1996,
Theorem 3.8), and in fact this characterization of weakly algebraizable logics
lies at the roots of the very definition of this class of logics in Font and
Jansana (1996).

We are also interested in the following extension of the previous character-
ization: A logic is truth-equational if and only if the class of its full g-models
is so-to-speak closed under the operation C 7→ CF ; and again it is enough to
require this property for the full g-models over the formula algebra.
Theorem 21. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) For every full g-model 〈A,C〉 of L and every F ∈C, the g-matrix 〈A,CF 〉

is a full g-model of L.
(iii) For every full g-model 〈Fm,C〉 of L over the formula algebra and every

Γ ∈ C, the g-matrix 〈Fm,CΓ 〉 is also a full g-model of L.
Proof. (i)⇒(ii) It is a general property of the theory of full g-models that
the intersection of (the closure systems of) two full g-models of a logic pro-
duces another full g-model of the same logic; this is commented just before
Theorem 1.20 of Font et al. (2006), and is also proved in Proposition 5.96
of Font (2016). If L is truth-equational, by Theorem 20, for every F ∈ FiLA,
the g-matrix

〈
A,(FiLA)F

〉
is a full g-model of L. Now, if 〈A,C〉 is a full

g-model of L, C ⊆ FiLA, and hence clearly C ∩ (FiLA)F = CF . Therefore, by
the mentioned general property, the g-matrix 〈A,CF 〉 is a full g-model of L,
as desired.
(iii) is a particular case of (ii), and the implication (iii)⇒(i) is trivial because
the g-matrix 〈Fm,ThL〉 is always full (indeed, it is a basic full g-model, by
definition), therefore our (iii) implies the condition in Theorem 20(iii) as a
particular case, and hence implies that L is truth-equational. ut

6 Applications to the hierarchies

The preceding characterization of the full g-models of truth-equational logics
allows us to refine the Frege hierarchy inside this class.
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Theorem 22. A truth-equational logic is fully selfextensional if and only if
it is fully Fregean.

Proof. Every fully Fregean logic is fully selfextensional, so in one direction
there is nothing to prove. Now assume that L is a truth-equational and fully
selfextensional logic, and let 〈A,C〉 be any full g-model of L and F ∈ C.
Since L is truth-equational, by Theorem 21 the g-matrix 〈A,CF 〉 is also a
full g-model of L. Then, since L is fully selfextensional, the g-matrix has the
property of congruence. This shows that all the full g-models of L have the
strong property of congruence, that is, that L is fully Fregean. ut

Thus, for truth-equational logics (hence, in a large part of the Leibniz
hierarchy) the Frege hierarchy reduces to three classes:

fully Fregean (and truth-equational)

��
Fregean (and truth-equational)

��
selfextensional (and truth-equational)

These three classes are different, and the lowest one is still a proper subclass
of that of all truth-equational logics, as the following considerations show.
• The last mentioned fact (i.e., that not all truth-equational logics are self-

extensional) is witnessed by the many algebraizable logics that are not
selfextensional, as already mentioned after Theorem 14.

• Babenyshev (2003) has constructed a Fregean logic that is not fully
Fregean. This logic, which has a proof-theoretic definition, has theorems,
therefore by Theorem 14 it is assertional, and hence truth-equational.

• Next we construct a truth-equational and non-protoalgebraic logic that is
selfextensional but not Fregean:

Example 23. Consider the algebra A = 〈{0,1,2},�,¬〉, where � and ¬ are
two 1-ary operations, defined as follows:

¬1 =�1 =�0 = 0 ¬0 =�2 = 1 ¬2 = 2,

and consider the logic L in the language 〈�,¬〉 determined by the matrix
〈A,{1}〉.
Fact 1. L is assertional, and hence truth-equational: To see this, note that
in A , ¬��a = 1 for all a ∈ A, so that ¬��x is a constant term of A, and
L is the assertional logic of the class {A} with > := ¬��x. Therefore, by
Theorem 7, L is truth-equational, with {x≈ ¬��x} as defining equation.
Fact 2. L is not Fregean: To see this, it is enough to check, from the
definition, that

�x,¬�x a L̀ �x,¬x
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(because no evaluation makes the two premises on either side simultaneously
equal to 1), and that

�x,¬¬�x 0L ¬¬x

(just evaluate x to 2). Therefore ΛLCL{�x} is not a congruence with respect
to the operation ¬.
Fact 3. If ϕ a`L ψ, then A � ϕ≈ ψ: Since all connectives are unary, there
are two variables x and y such that Var{ϕ,ψ} ⊆ {x,y}.

We first construct all the terms in the variables x and y up to equivalence
in A. Observe that this is equivalent to ask for a set of representatives of the
congruence classes that form the universe of the free algebra FmA{x,y} over
the variety generated by A with two free generators. We reason as follows.
The set AA2 of binary functions on A can be given naturally the structure
of an algebra AA2 . Then let πi : A2→ A be the projection map on the i-th
component, for i ∈ {1,2}, and let C be the subalgebra of AA2 generated by
{π1,π2}. We claim that

C =
{
π1 ,π2 ,�π1 ,�π2 ,¬π1 ,¬π2 ,��π1 ,¬�π1 ,¬�π2 ,¬��π1

}
.

The inclusion from right to left follows from the fact that C is a subalgebra
of AA2 , whereas the other one is a consequence of the fact that the identities
¬¬x≈ x , ��x≈��y , ���x≈��x and �¬x≈�x hold in A.

Now, recall that the free algebra FmA{x,y} is isomorphic to C via the
map sending the equivalence classes of x and y to π1 and π2 respectively; see
for instance (Bergman, 2011, Theorem 4.9). Applying this fact to our claim,
we conclude that

T (x,y) :=
{
x,y,�x,�y,¬x,¬y,��x,¬�x,¬�y,¬��x

}
is the set of terms in two variables up to equivalence in A.

Since Var{ϕ,ψ} ⊆ {x,y}, there are ϕ′,ψ′ ∈ T (x,y) such that A � ϕ ≈ ϕ′

and A � ψ ≈ ψ′. By Lemma 1, ϕ a L̀ ϕ′ and ψ a L̀ ψ′, and since by assump-
tion ϕ a L̀ ψ, it follows that ϕ′ a L̀ ψ′. But it is easy to check, working case
by case, that no two distinct terms in T (x,y) are interderivable in L. There-
fore, we conclude that ϕ′ = ψ′. This implies that A � ϕ≈ ψ, as required.
Fact 4. L is selfextensional: As a consequence of Fact 3 and Lemma 1,
α a L̀ β if and only if A � α ≈ β. But this last relation is clearly a congru-
ence. Therefore, ΛL= a L̀ is a congruence, that is, L is selfextensional.
Fact 5. L is not protoalgebraic: This is because its language contains only
unary connectives. As a direct consequence of the characterization in The-
orem 1.1.3 of Czelakowski (2001), a protoalgebraic logic in such a language
should be trivial, which L is not. ut

This example also answers, in the negative, an open problem on the struc-
ture of the Frege hierarchy, posed in Font (2003, p. 78) and Font (2006,
p. 202): that of whether the class of selfextensional logics is the union of the
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class of Fregean logics and the class of fully selfextensional logics. The logic
constructed in Example 23 is selfextensional but not Fregean, hence not fully
Fregean, and this in turn implies (by Theorem 22, since it is truth-equational)
that it is not fully selfextensional either.

For finitary logics the result in Theorem 22 produces another refinement
of the Frege hierarchy.

Corollary 24. A finitary and weakly algebraizable logic is fully selfexten-
sional if and only if it is Fregean, and if and only if it is fully Fregean.

Proof. By Corollary 80 of Czelakowski and Pigozzi (2004), a finitary pro-
toalgebraic logic is Fregean if and only if it is fully Fregean. Since weakly
algebraizable logics are protoalgebraic, this applies to them, and since they
are also truth-equational, merging this with Theorem 22 we obtain the stated
result. ut

Thus, for finitary weakly algebraizable logics (hence, a fortiori, for finitary
algebraizable logics), the Frege hierarchy reduces to only two classes, the
selfextensional and the Fregean. That in this case these two classes are indeed
different is shown by the following construction.

Example 25. Consider the language 〈→,� ,a,b,c,>〉 of type 〈2,1,0,0,0,0〉,
and the set A := {a,b,c,1} with the order structure given by the following
graph:

1•

a • b • • c
We equip it with the structure of an algebra A = 〈A,→,� ,a,b,c,1〉 of the
above similarity type, where the four constants are interpreted in the obvious
way, and for every x,y ∈A,

x→ y :=
{

1 if x6 y,
y otherwise,

�x :=
{
b if x ∈ {1,a,c},
1 otherwise.

Observe that the implicative reduct of A is a Hilbert algebra.
Let L be the logic determined by the g-matrix 〈A,C〉, where

C :=
{
{1} ,{a,1} ,{c,1} , A

}
.

Observe that all the members of C are implicative filters.
Fact 1. L is finitary: It is well known that any logic defined by a finite set
of finite matrices (hence, in particular, by a finite g-matrix) is finitary.
Fact 2. L is a finitely regularly algebraizable logic: The implicative fragment
of L is a logic defined by a family of implicative filters of a Hilbert algebra,
and is therefore an implicative logic in the sense of Rasiowa (1974). Moreover,
it is easy to check that
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x→y ,y→x L̀ �x→�y.

As a consequence, L itself is an implicative logic, hence a finitely regularly
algebraizable logic (Blok and Pigozzi, 1989, § 5.2).
Fact 3. L is selfextensional: Observe that the closure system C separates
points in A, therefore ΛC = IdA, and hence ∼

ΩAC = IdA, that is, the g-
matrix 〈A,C〉 has the property of congruence (and is reduced). This easily
implies (Czelakowski and Pigozzi, 2004, Theorem 82) that 〈Fm,ThL〉 has
the property of congruence, that is, the logic L is selfextensional.
Fact 4. L is not fully Fregean: It is easy to see that the following deductions
hold

∅ L̀ > a,c L̀ x b L̀ x,

and that this implies that FiLA = C. Therefore, 〈A,C〉 is a full g-model of
L. Now, consider the closure system C{a,1} =

{
{a,1},A

}
. It is clear that

〈c,b〉 ∈ ΛC{a,1}, because c and b belong to the same members of C{a,1}, and
that 〈�c,�b〉 /∈ΛC{a,1}, because �c= b /∈ {a,1} while �b= 1 ∈ {a,1}. Hence
the g-model 〈A,C{a,1}〉 does not have the property of congruence, which is
to say that the full g-model 〈A,C〉 has not the strong property of congruence.
We conclude that L is not fully Fregean.
Fact 5. L is neither Fregean nor fully selfextensional: This follows from
Fact 4 and Corollary 24, taking into account that L is finitary (Fact 1) and
weakly algebraizable (Fact 2). ut

This example also solves an old open problem in abstract algebraic logic:
that of whether, for protoalgebraic logics, to be selfextensional implies to
be fully selfextensional; the general case was solved by Babenyshev (2003).
Example 25 shows that this is not the case, even for logics with much stronger
properties, namely for finitely regularly algebraizable logics.

The reader may have noticed that Example 25 solves the issues addressed
by Example 23 as well. However, the latter has the additional interest, over
the former, of being in some sense “minimal” as an example of a matrix-
determined non-Fregean logic, because it is defined by a 3-element matrix,
and, trivially, all the logics determined by 2-element (g-)matrices are Fregean.

Finally, by combining several of the previous results, we obtain a result
that clarifies the structure of the Frege hierarchy alone (although our proof
goes through a class in the Leibniz hierarchy): for logics with theorems the
top (smallest) class of the Frege hierarchy is actually the intersection of its
two middle classes.

Theorem 26. A logic with theorems is fully Fregean if and only if it is both
Fregean and fully selfextensional.

Proof. Trivially, if a logic is fully Fregean, then it is both Fregean and fully
selfextensional. For the converse, suppose that a logic has these two prop-
erties. By Theorem 14, the logic will be truth-equational, and then we can
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apply Theorem 22, which tells us that, since it is assumed to be fully selfex-
tensional, it is in fact fully Fregean. ut

This gives a partial, positive answer (for logics with theorems) to another
of the open problems formulated in Font (2003, § 6.2) and Font (2006, p. 202).
Now, it becomes an Open Problem whether the assumption that the logic
has theorems can be dispensed with in this result.
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operations, volume 199 of Synthèse Library, Reidel, Dordrecht.



Deduction-Detachment Theorem and
Gentzen-Style Deductive Systems

Sergey Babenyshev

The author is greatly indebted to Don Pigozzi,
under whose supervision were obtained
the results of this paper, for his caring

guidance and generous sharing of ideas.

Abstract Logical implication is an attempt to catch the essence of cause-
effect relationships of the real world in the context of formal deductive sys-
tems. The Deduction-Detachment Theorem (DDT) being, in its turn, a state-
ment about essential logical properties of classical implication, was therefore
of great interest for logicians. Although a statement about a Hilbert-style
deductive system, DDT can be formulated by means of Gentzen-style rules,
and as such seems to be a statement about the metatheoretical properties
of Hilbert-style deductive systems. As is often the case with metatheoretical
properties, DDT leaves the question about its meaning and scope a bit vague
or at least requires a higher order abstraction layer to formalize them. Clo-
sure relations, discussed in this paper, present a convenient context to give
a precise formal statement of the DDT and its connection with Hilbert- and
pertinent Gentzen-style deductive systems.

2010 Mathematics Subject Classification: 03G27, 03B22

Key words: Deduction-Detachment theorem, Abstract Algebraic Logic,
Gentzen systems, Closure relations, Protoalgebraic logics

Sergey Babenyshev
Siberian Fire-Rescue Academy, Severnaya Str 1, Zheleznogorsk, 662971, Russia, e-mail:
sergey.babenyshev@gmail.com

81

Universal Algebra, and Computer Science, Outstanding Contributions 
to Logic 16, https://doi.org/10.1007/978-3-319-74772-9_3

J. Czelakowski (eds.), Don Pigozzi on Abstract Algebraic Logic,
© Springer International Publishing AG 2018



82 Sergey Babenyshev

1 Introduction

The Deduction-Detachment Theorem (DDT), independently discovered by
Tarski and Herbrand, is a metalogical property of deductive systems with
implication:

Γ,α `S β ⇐⇒ Γ `S α→ β.

Being as it is a statement about proofs, DDT allows us in particular to encode
the proof theory of the deductive system into formulas, which leads to nu-
merous and subtle consequences pertinent to the semantics of such deductive
systems. DDT can be formulated using a pair of Gentzen-style rules:

Γ,α ` β
Γ ` α→ β

,
Γ ` α→ β

Γ,α ` β
.

or through modus ponens (→-detachment) and →-deduction:

α,α→ β ` β, Γ,α ` β
Γ ` α→ β

.

Some of the goals of this paper are: 1) to establish the exact meaning of the
above-mentioned rules; 2) to show in what Gentzen-style system, associated
with a Hilbert-style system in question, those rules can formally present the
DDT.

To study the phenomenon of DDT in greater generality, we choose the
context of abstract Hilbert-style deductive systems:

In Abstract Algebraic Logic, an abstract Hilbert-style deductive system
H is identified with a family of sets, called H-theories, of formulas of a given
propositional language, such that this family, usually denoted by ThH, is
closed under

1) arbitrary intersections, i.e., ThH is a closure system,
2) unions of upward-directed families, i.e., ThH is algebraic,
3) inverse substitutions, so that a preimage of any H-theory under an

arbitrary substitution is an H-theory again, i.e., ThH is invariant.
So defined, H is indeed “abstract” because its definition does not refer to

any particular axiomatization. It is easy to see that the closure operator

(.)ThH :X 7→
⋂
{T ∈ ThH |X ⊂ T},

associated with such a closure system ThH, defines a finitary, structural
consequence relation as follows

X `H α ⇐⇒ α ∈XThH.

It was suggested by researchers of the Barcelona group to treat the
Gentzen-style deductive systems similarly and identify an abstract Gentzen-
style deductive system with the set of its theories with two distinctive features

1) a theory is a set of sequents, i.e., finite sequences of formulas,
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2) a substitution acts on sequents componentwise.
The importance of Gentzen-style systems and related axiomatizations by

Gentzen-style rules is largely due to the fact that various metatheoretical
properties of Hilbert-style deductive systems can be formulated in terms of
Gentzen-style rules, and the deduction-detachment theorem manifests one of
these properties.

In this paper, we consider the Deduction-Detachment Theorem in a more
general formulation (c.f. (Czelakowski, 1985, 2001; Blok and Pigozzi, 1997)):

A Hilbert-style deductive system admits a multiterm deduction-detachment
theorem if there is a finite set of formulas ∆= {δi(x,y)}i∈I (may be empty)
such that for all formulas α, β and every set of formulas Γ

Γ,α `H β ⇐⇒ (∀δ ∈∆) Γ `H δ(α,β).

Even though the deduction-detachment theorem can and usually is formu-
lated by the Gentzen-style rules, there is a tendency not to specify precisely
the kind of Gentzen system in which those rules capture the DDT. To make
this precise, we consider axiomatic closure relations:

Let H be an abstract Hilbert-style deductive system and T ∈ ThH. Then
the set of sequents

{〈α1, . . . ,αn,β〉 | T,α1, . . . ,αn `H β}

is called an axiomatic closure relation for H.
In other words, an axiomatic closure relation lists all consequences that

are possible in H if we add all formulas from some H-theory as axioms (not
axiom schemes). In this paper we will show that

An abstract Hilbert-style deductive system H admits the multiterm deduc-
tion-detachment theorem if and only if the set AcrH of all axiomatic closure
relations for H forms an abstract Gentzen-style deductive system, i.e., AcrH
is closed under

1) arbitrary intersections,
2) unions of upward-directed families,
3) inverse substitutions.

The paper is structured as follows: after the Introduction, in Section 2
we state basic definitions and notational conventions; in Section 3 we intro-
duce general and axiomatic closure relations that can be associated with a
given Hilbert-style deductive system and prove necessary facts about them;
in Section 4 we recall the notion of the multiterm deduction-detachment the-
orem and prove the main result of this paper — Theorem 4.3; in Section 5
we discuss some connections between the obtained results and previous re-
search, using yet another type of closure relation associated with Hilbert-style
deductive systems — full closure relations.
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The results of the current paper were first announced at the 9th Asian
Logic Conference, Novosibirsk (Babenyshev, 2006).

2 Definitions and Preliminaries

Throughout this paper we will employ the following terminology and nota-
tional conventions:

Suppose A is a set. Then P(A) := {X |X ⊆A} is the power-set of A. We
write X ⊆ω A if X is a finite subset of A, furthermore Pω(A) := {X |X ⊆ω A}.
The n-th cartesian power of A is denoted by An. A+ denotes

⋃∞
n=1A

n —
the set of all non-empty finite sequences of elements of A. For an arbitrary
element ā= 〈a1, . . . ,an〉 ∈A+ we might write {ā} instead of {a1, . . . ,an}.

For a mapping h : A→ A the operator-style notation ha will be routinely
used instead of the function-style notation h(a). Also any mapping h de-
fined on A can be uniquely extended to a mapping on A+ by the following
definition:

h〈a1, . . . ,an〉= 〈ha1, . . . ,han〉, for all 〈a1, . . . ,an〉 ∈A+.

The latter also uniquely extends to the complex (defined on sets) mapping
on P(A+) as follows:

hX = {h〈ā〉 | 〈ā〉 ∈X}, for all X ⊆A+.

Note that the same symbol h will be routinely used for all these mappings.
A propositional language type is any set L. The elements of L are called

functional symbols in the algebraic context or logical connectives in the logical
context. With L is associated a function ρ :L→ω, where ρf is called the arity
or rank of the functional symbol f ∈L. For each n∈ω, Ln := {f ∈L | ρf =n}.
An algebra A of type L is a pair 〈A,LA〉, where A is a non-empty set called
the universe of A and LA = {fA | f ∈ L} is a list of operations over the
set A such that for every f ∈ Ln, fA : An → A. Members of LA are called
basic operations of A. The set of all congruence relations on the algebra A
is denoted by ConA and forms a complete lattice ordered by inclusion with
0A as the smallest and 1A as the largest element.

LetX = {xi}i∈I be a non-empty set. The set FmLX of formulas (or terms)
of type L over the set of generators X is defined recursively as follows

1) X ⊆ FmLX,
2) if f ∈ Ln and α1, . . . ,αn ∈ FmLX, then f(α1, . . . ,αn) ∈ FmLX,
3) FmLX is the smallest set satisfying 1) and 2).

Formulas will be denoted usually by lowercase Greek letters. We write
α(x1, . . . ,xn) or Var(α) ⊆ {x1, . . . ,xn}, if α ∈ FmL{x1, . . . ,xn}. A sequent
is a tuple 〈α1, . . . ,αk〉 of Fm+

L . A sequent can also be written in the form
α1, . . . ,αk−1 . αk.
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We can induce the structure of an algebra on FmLX by associating
with each f ∈ Ln an n-ary operation fFmLX on the set FmLX defined as
fFmLX〈ᾱ〉 = f(ᾱ). The superscript in this case is usually omitted. This al-
gebra FmLX is called the algebra of formulas (terms) of type L over the set
of variables X. We fix a countable set Var = {x0,x1,x2, ...} of propositional
variables. Then FmLVar is called the formula algebra over the language of
type L and will be denoted FmL. The universe of FmL is denoted as FmL.

The algebra FmLX is the absolutely free algebra over the set X in the class
of all algebras of type L. This means that, for every algebra A of type L, an
arbitrary mapping h :X→A can be uniquely extended to a homomorphism
h : FmLX → A. In particular any homomorphism h : FmLX →A is deter-
mined by the mapping h :X → A. A homomorphism h : FmL→A is called
an evaluation; a homomorphism h : FmL→FmL is called a substitution. A
set X ⊆ FmL [Fm+

L ] is invariant if for every substitution σ: σX ⊆X.
A family C ⊆ P(A) is upward-directed if for every pair X,Y ∈ C there

is Z ∈ C such that X,Y ⊆ Z. A subset C ⊆ P(A) is algebraic if
⋃
D ∈ C for

every upward-directed subfamily D⊆C. A family C ⊆P(A) is called a closure
system over A if A ∈ C and

⋂
D ∈ C for every non-empty subfamily D ⊆ C. A

closure system C over FmL is [surjectively] invariant if for every [surjective]
substitution σ and every T ∈ C, σ−1T := {α | σα ∈ T} ∈ C, or, in other words,
if σ−1C ⊆ C for all [surjective] substitutions σ : FmL → FmL. Similarly, a
closure system C over Fm+

L is [surjectively] invariant if for every [surjective]
substitution σ and every T ∈ C, σ−1T = {ᾱ . α | σ(ᾱ . α) ∈ T} ∈ C.

A closure operator on A is a mapping C : P(A)→P(A) such that for any
X,Y ⊆ A, X ⊆ C(X) = C(C(X)) ⊆ C(X ∪Y ). A set X ∈ P(A) such that
C(X) =X is called a closed set of C. A closure operator C is finitary if for
any X ⊆ A, C(X) =

⋃
{C(Y ) | Y ⊆ω X}. The following relations between

closure systems and closure operators are well known: 1) if C is a closure
operator on A, then the family of its closed sets is a closure system over A; 2)
if C is a closure system over A, then the mapping CC : P(A)→P(A) defined
for each X ⊆A as CCX :=

⋂
{Y ∈ C |X ⊆ Y } is a closure operator on A; 3)

C is algebraic iff CC is finitary. We use interchangeably the exponential and
prefix notations for closure operators, thus XC = (X)C = CC(X) = CCX.

Every closure system C over a set A, as a family of subsets ordered under
set-inclusion, is a complete lattice. The infimum of a family {Xi}i∈I ⊆ C is
its intersection

⋂
i∈IXi, and its supremum is

∨C
i∈IXi := CC(

⋃
i∈IXi); its

largest element is A, and its smallest element is CC(∅) =
⋂
C.

A Hilbert-style system of type L (HSSL) is a pair H = 〈FmL,ThH〉 such
that ThH ⊆ P(FmL) is an algebraic invariant closure system over FmL. A
Gentzen-type system of type L (GSSL) is a pair G = 〈FmL,ThG〉 such that
ThG ⊆ P(Fm+

L) is an algebraic invariant closure system over Fm+
L . For an

HSSL H and all T ∈ThH, [T )ThH := {U ∈ThH | T ⊆ U} denotes the prin-
cipal filter of the lattice ThH generated by T . If R is an HSSL or GSSL,
we denote ThmR :=

⋂
ThR.
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We take a Cantor-style approach towards Gentzen-style rules: we view
a rule not as a “rule”— description of an action, but as a list of all its
applications.

A Gentzen-style sequent is a sequence s̄ . s of sequents. A Gentzen-style
rule s̄ ` s is the set of all substitution instances of the Gentzen-style sequent
s̄ . s, i.e.,

s̄ ` s := {σ(s̄ . s) | σ : FmL→ FmL}.

In this context the sequent s̄ . s is called the scheme for the rule s̄ ` s.
A Gentzen-style rule s1, . . . ,sn ` s can also be written as s1, . . . ,sn

s
.

Let x,y,z be variables. Standard Gentzen-style rules (sometimes called
structural) are rules defined by the schemes

(Ax) : ` Γ,x,Σ . x Axioms
(Ex) : Γ,x,y,Σ . z ` Γ,y,x,Σ . z Exchange
(W) : Γ,Σ . y ` Γ,x,Σ . y Weakening

(Con) : Γ,x,x,Σ . y ` Γ,x,Σ . y Contraction
(Cut) : Γ,x,Σ . y;Θ . x ` Γ,Θ,Σ . y Cut

where Γ,Σ,Θ range over the set of finite, possibly empty, sequences of vari-
ables of FmL.

We denote the collection of the standard rules by (SR), i.e.,

(SR) = (Ax)∪ (Ex)∪ (W)∪ (Con)∪ (Cut).

Suppose G = 〈FmL,ThG〉 is a GSSL. We say that a Gentzen-style rule
s̄ ` s holds in G (we write it as s̄ `G s) if for every substitution σ and every
G-theory T

σ{s̄} ⊆ T =⇒ σs ∈ T.

3 Closure relations

Let us say that a sequent ᾱ . α ∈ Fm+
L is compatible with the set of formulas

X ⊆ FmL (and, reciprocally, that the set X is compatible with the sequent
ᾱ . α) if the following implication holds

{ᾱ} ⊆X =⇒ α ∈X.

Definition 3.1. If C ⊆ P(FmL) is a family of sets of formulas, the (finite)
closure relation RL C for C consists of all sequents that are compatible with
all sets of formulas in C (note that a sequent by definition is a finite sequence
of formulas):

RL C := {ᾱ . α ∈ Fm+
L | (∀X ∈ C) {ᾱ} ⊆X =⇒ α ∈X}. ut



DDT and Gentzen-Style Deductive Systems 87

If C ⊆ P(FmL) is a closure system then the definition above can be rewritten
as

RL C := {ᾱ . α ∈ Fm+
L | α ∈ {ᾱ}

C}.

So defined, compatibility relation gives rise to a Galois connection between
families of sets of formulas and sets of sequents. Finite closure relations rep-
resent the fixed-points for this connection on one side, while algebraic closure
systems are the fixed-points for the other.

It is straightforward to show that the finite closure relations are exactly
the sets of sequents that are closed under all standard rules (SR). In other
words they are theories of the Gentzen-style system axiomatized purely by
(SR).

Definition 3.2. Let H be an HSSL. If C ⊆ ThH is an algebraic closure
system over FmL, then RL C is called a general (finite) closure relation for
H. The set of all general closure relations for H will be denoted by GcrH.

For every HSSL H there is the distinguished general closure relation
RLThH, which in its turn defines a Gentzen-style axiomatization (modulo
(SR)) for a Gentzen-style system of the same type L:

`RLThH :=
⋃
{` ᾱ . α | ᾱ . α ∈RLThH}.

Proposition 3.3. (Bab nyshev, 2004, Theorem 2.2.10) For every HSSL H
1. RLThH= {ᾱ . α | ᾱ `H α}.
2. RLThH is invariant.
3. GcrH can be axiomatized by the standard rules (SR) and `RLThH.
4. GcrH is a GSSL.
5. RLThH= Thm(GcrH).

Proof.
(1) RLThH def= {ᾱ . α | α ∈ {ᾱ}ThH} def= {ᾱ . α | ᾱ `H α}.
(2) For any substitution σ : FmL→ FmL

ᾱ . α ∈RLThH (1)=⇒ ᾱ `H α =⇒ σᾱ `H σα
(1)=⇒ σᾱ . σα ∈RLThH.

(3) Suppose A ∈ GcrH. As a closure relation, A is a theory of (SR).
By definition of GcrH, A = RL C for some algebraic closure system C ⊆
ThH, hence RLThH ⊆ RL C. Therefore for every rule ` ᾱ . α and every
substitution σ

` ᾱ . α⊆ `RLThH def=⇒ ᾱ . α ∈RLThH
(2)=⇒ σ̄α . σα ∈RLThH⊆RL C.

Now let A∈Th((SR)∪`RLThH). Then A is a finite closure relation over
Fm+
L , since it is a theory of (SR). We have that A= RL C for some algebraic

e
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closure system C ⊆P(FmL). Since A∈Th(`RLThH), then, for every X ∈ C
and every ᾱ . α ∈RLThH⊆A:

{ᾱ}C ⊆X =⇒ α ∈ {ᾱ}C ⊆X C =X =⇒ X ∈ ThH.

Thus C ⊆ ThH, therefore A= RL C ∈GcrH.
(4) It follows directly from (3).
(5) By (3), every A∈GcrH is closed under the rules of `RLThH. Thus,

for everyA∈GcrH, we have RLThH⊆A and hence RLThH⊆ThmGcrH.
On the other hand, since RLThH ∈GcrH, then ThmGcrH⊆RLThH. ut

Closure relations were introduced in (Font et al., 2001) as a framework for
studying metatheoretical properties of Hilbert-style systems. The fact that
GcrH forms a Gentzen-style system was first observed also in (Font et al.,
2001). The Gentzen-style system GcrH formalizes some metalogic of the
Hilbert-style system H. This metalogic is quite weak and equivalent in ex-
pressive power to strict universal Horn logic without equality (Bloom, 1975).
Although GcrH is almost trivial, since it can be axiomatized, according to
Proposition 3.3(3), by taking sequents representing the derivations in H and
the standard Gentzen-style rules (SR), it has proved to be useful as a frame-
work for working with other kinds of closure relations like full or axiomatic
ones (Bab nyshev, 2004).

Let us define for every X ⊆ FmL and every A⊆ Fm+
L

. X := {. α | α ∈X}, AxA := {α ∈ FmL | . α ∈ A}, ΘA :=A∩Fm1
L,

where Fm1
L is by definition {〈α〉 | α ∈ FmL}. Thus we obtain the complex

operators:
(.) : P(FmL)→P(Fm1

L),
Ax : P(Fm+

L)→P(FmL),

Θ : P(Fm+
L)→P(Fm1

L).
In the following proofs we mainly use the “exponential” notation for clo-

sures of sets. Namely, if C is a closure system over some set X, then for all
Y ⊆X:

Y C = (Y )C :=
⋂
Y⊆F∈C F.

For the sake of brevity and readability we will make no distinction between
a formula α and an 1-tuple 〈α〉 with this formula as its only component,
so, for instance, for X ⊆ FmL: (X)GcrH will be notationally equivalent to
(. X)GcrH.

Definition 3.4. Let H be an HSSL. The set AcrH of axiomatic closure
relations for H is defined as follows:

AcrH := {(T )GcrH | T ∈ ThH}.

e
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An element of AcrH is called an axiomatic closure relation for H. ut

Note that in the definition above, in the expression (T )GcrH = (. T )GcrH,
the set . T contains sequents of the form . α, where α ∈ T ⊆ FmL, and the
closure of . T is taken in the family of Gentzen theories, where each of the
theories is a set of sequents itself.

Proposition 3.5. For every HSSL H, Γ ⊆ FmL and A ∈AcrH

1. AcrH⊆GcrH.
2. AxA ∈ ThH.
3. A= (ΘA)GcrH = (AxA)GcrH.
4. AcrH= {(X)GcrH |X ⊆ FmL}.
5. AcrH= {RL[T )ThH | T ∈ ThH}.
6. (Γ )GcrH= (Γ )AcrH, where (Γ )AcrH denotes here the smallest axiomatic

closure relation containing the set of sequents . Γ . It coincides with the
usual closure (Γ )AcrH when AcrH is a closure system.

7. ᾱ . α ∈ (Γ )GcrH ⇐⇒ α ∈ {ᾱ}ThH∨ΓThH ⇐⇒ Γ,ᾱ `H α.

Proof. (1) By definition.
(2) Suppose A∈GcrH, then, by definition, A= RL C, for some algebraic

closure system C ⊆ ThH. We have AxA=
⋂
C, because

α ∈
⋂
C = (∅)C ⇐⇒ . α ∈RL C =A ⇐⇒ α ∈AxA.

Therefore, since C ⊆ ThH: AxA=
⋂
C ∈ ThH.

(3) If A ∈AcrH, then, by definition, A = (T )GcrH for some T ∈ ThH.
Therefore

. T ⊆ΘA⊆A =⇒ A= (T )GcrH ⊆ (ΘA)GcrH ⊆AGcrH =A

=⇒ A= (ΘA)GcrH.

(4) If A ∈AcrH, then A = (ΘA)GcrH = (AxA)GcrH. For the other di-
rection, suppose A= (X)GcrH, for some X ⊆ FmL. Then A= (ΘA)GcrH =
(AxA)GcrH, because

(⊇) ΘA⊆A =⇒ (ΘA)GcrH ⊆AGcrH =A,

(⊆) A= (X)GcrH =⇒ . X ⊆A =⇒ . X ⊆ΘA

=⇒ A= (X)GcrH ⊆ (ΘA)GcrH.

(5) Suppose A ∈AcrH. Then, by (3) and (2), A= (T )GcrH, where T =
AxA ∈ ThH. Let C = [T )ThH. Being a general closure relation for H, A =
RLD, for some algebraic closure system D ⊆ThH. Then A= RL C, because
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(⊇) T =
⋂
D =⇒D ⊆ [T )ThH = C =⇒ RL C ⊆RLD =A,

(⊆) ΘRLD = .(
⋂
D) = . T = .(

⋂
C) = ΘRL C =⇒ . T ⊆RL C

=⇒A= (T )GcrH ⊆RL C.

(6) Let Γ ⊆FmL. Then, by (4), (Γ )GcrH ∈AcrH. (Γ )GcrH is the smallest
axiomatic closure relation containing . Γ , because

. Γ ⊆A ∈AcrH =⇒ (Γ )GcrH ⊆AGcrH =A.

(7) ᾱ . α ∈ (T )GcrH (6)= (T )AcrH (5)= RL[T )ThH

⇐⇒ α ∈ {ᾱ} [T )ThH = (T ∪{ᾱ})ThH = T ∨{ᾱ}ThH ⇐⇒ T, ᾱ `H α. ut

The following lemma, although simple, plays nevertheless a crucial role in
the proof of the deduction-detachment theorem characterization.

Lemma 3.6. AcrH is a closure system iff for all families {Ai}i∈I ⊆AcrH⋂
i∈IAi = (

⋂
i∈IΘAi)GcrH.

Proof. It follows directly from the implications

(⇒) Θ(
⋂
i∈IAi) =

⋂
i∈IΘAi

=⇒
⋂
i∈IAi

3.5(3)= (Θ(
⋂
i∈IAi))GcrH = (

⋂
i∈IΘAi)GcrH.

(⇐)
⋂
i∈IAi = (

⋂
i∈IΘAi)GcrH 3.5(4)

∈ AcrH. ut

4 Characterization of the Deduction-Detachment
Theorem

Definition 4.1. An HSSL H admits a multiterm deduction-detachment
theorem (DDT∆) with respect to a finite (may be empty) set ∆(x,y) ⊆
FmL{x,y} of formulas in two variables if the following holds

(1) x,∆(x,y) `H y, (∆-detachment)
(2) for all α,β ∈ FmL, if Γ,α `H β, then Γ `H ∆(α,β). (∆-deduction) ut

Lemma 4.2. Suppose that for some HSSL H, AcrH is an invariant closure
system, and let ∆(x,y) be a nonempty set of formulas in two variables. Then
H admits DDT∆ iff

{x . y}AcrH = (∆(x,y))AcrH. (Eq.1)
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Proof. (⇒) If Γ = Ax((x . y)AcrH), then (x . y)AcrH 3.5(3,6)= (Γ )AcrH.
Therefore

(⊆) x,∆(x,y) `H y
3.5(7)=⇒ x . y ∈ (∆(x,y))GcrH 3.5(6)= (∆(x,y))AcrH

=⇒ (x . y)AcrH ⊆ (∆(x,y))AcrH.

(⊇) x . y ∈ {x . y}AcrH = (Γ )AcrH 3.5(6)= (Γ )GcrH

3.5(7)=⇒ Γ,x `H y
∆−ded=⇒ Γ `H ∆(x,y)

=⇒ ∆(x,y)⊆ (Γ )ThH 3.5(2)= Γ

=⇒ . ∆(x,y)⊆ (Γ )GcrH 3.5(6)= (Γ )AcrH = {x . y}AcrH

=⇒ (∆(x,y))AcrH ⊆ {x . y}AcrH.

(⇐) The statement follows from the implications:

x . y ∈ (∆(x,y))AcrH 3.5(6)= (∆(x,y))GcrH

3.5(7)=⇒ x,∆(x,y) `H y. (∆-detachment)

Γ,α `H β
3.5(7)=⇒ α . β ∈ (Γ )GcrH = (Γ )AcrH

=⇒ (∆(α,β))GcrH 3.5(6)= (∆(α,β))AcrH (Eq.1)= {α . β}AcrH ⊆ (Γ )GcrH

=⇒ ∆(α,β)⊆ (Γ )GcrH 3.5(7)=⇒ Γ `H ∆(α,β). (∆-deduction) ut

Examples. 1) Let us consider the normal modal logic S4, which we associate
with a set of modal formulas — the set of theorems of S4. Let Th `gS4 be the
family of all sets of modal formulas that are simultaneously closed under rules
modus ponens x,x→ y ` y and necessitation rule x/2x and each contain S4.
Then Th `gS4 is the set of theories of the abstract Hilbert system for global
consequence relation `gS4 associated with the normal modal logic S4, while
S4 is the set of its theorems: S4 = Thm(Th `gS4). Let `gS4 also denote the
aforementioned abstract Hilbert system. Then, by deduction theorem for `gS4,

{x . y}Acr `g
S4 = {2x→ y}Gcr `g

S4 = {2x→ y}Acr `g
S4 .

2) The inconsistent Hilbert-style system H = 〈FmL,{FmL}〉 over a lan-
guage L admits DDT∆ with respect to any finite set ∆ ⊆ FmL of formulas,
because

(∆)AcrH = (∆)GcrH = Fm+
L = {x . y}AcrH.

3) Let us also note that the almost inconsistent HSSLH= 〈FmL,{∅,FmL}〉
over a language L admits DDT∅, because
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{x . y}AcrH = RL{∅,FmL}= Fm+
L \Fm1

L = (∅)GcrH = (∅)AcrH.

Theorem 4.3. Let H be a Hilbert-style system with theorems. Then AcrH
forms a Gentzen-style system iff H admits a multiterm deduction-detachment
theorem.

Proof. In view of the remark 2) above, it suffices to prove the theorem for H
that is not inconsistent.
(⇒) Since AcrH is a closure system, there is a closure of the set {x . y} in
AcrH. If {x . y}AcrH = (∅)GcrH, then

{x . y}AcrH = (∅)GcrH =⇒ x . y ∈ (∅)GcrH 3.5(7)=⇒ x `H y,

so H is either inconsistent or almost inconsistent, a contradiction with the as-
sumption. Thus {x . y}AcrH = (T )GcrH, for some T ∈ ThH, such that T 6=
ThmH, because (∅)GcrH = (ThmH)GcrH. Since {x . y}AcrH is compact in
AcrH, there is a finite subset O⊆ T , such that {x . y}AcrH=OGcrH. Sup-
pose σ is any substitution such that σ{x,y} = {x,y} and σ(Var\{x,y}) ⊆
{x,y} and let ∆(x,y) = σO. Since AcrH forms a Gentzen system, it is in-
variant under inverse substitutions, therefore

{x . y}AcrH = {σx . σy}AcrH = (σO)AcrH = (∆(x,y))AcrH.

So, by Lemma 4.2, H admits DDT∆.
(⇐) Suppose H admits DDT∆, where ∆ 6= ∅. ∆ can be viewed as a function
∆ : Fm2

L→P(FmL). Furthermore it can be extended to a function from Fm+
L

to P(FmL) inductively as follows

∆(. α) := α,

∆(α0, . . . ,αn . α) :=∆(α0, . . . ,αn−1 . ∆(αn,α))
:=
⋃
δ∈∆{∆(α0, . . . ,αn−1 . δ(αn,α))},

and further, in the usual way, to a complex function ∆ :P(Fm+
L)→P(FmL).

Thus, for every A ∈AcrH, the following holds

(1) . α ∈ A ⇐⇒ ∆(. α) def= α ∈AxA

(2) ᾱ,α|ᾱ| . α ∈ A
3.5(7)⇐⇒ AxA, ᾱ,α|ᾱ| `H α

4.1⇐⇒ AxA, ᾱ `H ∆(α|ᾱ|,α)
3.5(7)⇐⇒ ᾱ . ∆(α|ᾱ|,α)⊆A ⇐⇒ . . . ⇐⇒ . ∆(ᾱ,α|ᾱ| . α)⊆A

⇐⇒ ∆(ᾱ,α|ᾱ| . α)⊆AxA.

In other words:
ᾱ . α ∈ A ⇐⇒ ∆(ᾱ . α)⊆AxA. (Eq.2)
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Therefore, for every family {Ai}i∈I ⊆AcrH,

ᾱ . α ∈
⋂
i∈IAi ⇐⇒ (∀ i ∈ I) ᾱ . α ∈ Ai

(Eq.2)⇐⇒ (∀ i ∈ I) ∆(ᾱ . α)⊆AxAi ⇐⇒ ∆(ᾱ . α)⊆
⋂
i∈I AxAi

(Eq.2)⇐⇒ ᾱ . α ∈ (.(
⋂
i∈I AxAi))GcrH = (

⋂
i∈IΘAi)GcrH ∈AcrH.

Thus, by Lemma 3.6, AcrH is closed under arbitrary intersections, hence it
is a closure system.

Now suppose A ∈AcrH and σ is any substitution. Then

ᾱ . α ∈ σ−1A ⇐⇒ σ(ᾱ . α) ∈ A
(Eq.2)⇐⇒ ∆(σᾱ . σα) = σ∆(ᾱ . α)⊆AxA

⇐⇒ ∆(ᾱ . α)⊆ σ−1(AxA) (Eq.2)⇐⇒ ᾱ . α ∈ (σ−1ΘA)GcrH∈AcrH.

Thus, in addition to being a closure system, AcrH is invariant.
Finally, suppose {Ai}i∈I is an upward-directed family of axiomatic closure

relations. To prove that AcrH is algebraic, by Proposition 3.5(4), it suffices
to show that ⋃

i∈IAi = (Θ(
⋃
i∈IAi))GcrH.

Indeed
(⊆) Ai ⊆

⋃
i∈IAi =⇒ ΘAi ⊆Θ(

⋃
i∈IAi)

=⇒ (ΘAi)GcrH ⊆ (Θ(
⋃
i∈IAi))GcrH

=⇒ Ai
3.5(3)= (ΘAi)GcrH ⊆ (Θ(

⋃
i∈IAi))GcrH

=⇒
⋃
i∈IAi ⊆ (Θ(

⋃
i∈IAi))GcrH.

(⊇) Since GcrH is algebraic and AcrH⊆GcrH,
⋃
i∈IAi ∈GcrH. Then

Θ(
⋃
i∈IAi)⊆

⋃
i∈IAi =⇒ (Θ(

⋃
i∈IAi))GcrH ⊆ (

⋃
i∈IAi)GcrH =

⋃
i∈IAi.

ut

The characterization provided by Theorem 4.3 is closely related to some
known partial characterizations of the multiterm deduction-detachment the-
orem (see Remark 2 later in the paper for a short historical overview). For
instance, a protoalgebraic deductive system H admits a multiterm deduction-
detachment theorem if and only if the lattice ThH is infinitely meet-
distributive over its compact elements (Czelakowski, 2001, Theorem 2.6.8),
where

Definition 4.4. A complete lattice L is infinitely meet-distributive over its
compact elements if for every compact element c ∈ L and every family
{ai}i∈I ⊆ L
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c∨
(∧

i∈Iai
)

=
∧
i∈I(c∨ai). ut

The relation that the condition given by Definition 4.4 has with Theo-
rem 4.3 is established in the following theorem.

Theorem 4.5. AcrH is a closure system iff the lattice ThH is infinitely
meet-distributive over its compact elements.

Proof. In this theorem ∨ denotes the join in the complete lattice ThH.
(⇒) Suppose AcrH is closed under arbitrary intersections. Let {Ti}i∈I ⊆
ThH and {ᾱ} ⊆ω FmL. Then for every α ∈ FmL

α ∈
⋂
i∈I({ᾱ}ThH∨Ti) ⇐⇒ (∀i ∈ I) α ∈ {ᾱ}ThH∨Ti

3.5(7)⇐⇒ (∀i ∈ I) ᾱ . α ∈ (. Ti)GcrH ⇐⇒ ᾱ . α ∈
⋂
i∈I(. Ti)GcrH

3.6⇐⇒ ᾱ . α ∈
(⋂

i∈I(. Ti)
)GcrH =

(
.(
⋂
i∈ITi)

)GcrH

3.5(7)⇐⇒ α ∈ {ᾱ}ThH∨ (
⋂
i∈ITi).

Thus
⋂
i∈I ({ᾱ}ThH∨Ti) = {ᾱ}ThH∨ (

⋂
i∈ITi).

(⇐) By contradiction. Suppose ThH is infinitely meet-distributive over com-
pact elements, but there is a family {Ai}i∈I ⊆ AcrH and a sequent ᾱ . α
such that ᾱ . α ∈

⋂
i∈IAi and ᾱ . α /∈ (

⋂
i∈I ΘAi)GcrH. Then

1) ᾱ . α /∈ (
⋂
i∈I ΘAi)GcrH 3.5(7)⇐⇒ α /∈ {ᾱ}ThH∨ (

⋂
i∈I AxAi),

2) ᾱ . α ∈
⋂
i∈IAi ⇐⇒ (∀i ∈ I) ᾱ . α ∈ Ai

⇐⇒ (∀i ∈ I) α ∈ {ᾱ}ThH∨AxAi ⇐⇒ α ∈
⋂
i∈I({ᾱ}ThH∨AxAi).

But, by assumption, {ᾱ}ThH ∨ (
⋂
i∈I AxAi) =

⋂
i∈I({ᾱ}ThH ∨AxAi), a

contradiction. ut

Remarks:
1. The fact that the set of axiomatic closure relations is closed under finite

intersections if and only if the lattice of all H-theories is distributive, was
first observed in (Font et al., 2006).

2.1 The equivalence between equational definability of principal congru-
ences in a variety (EDPC) and the fact that the join-semilattice of compact
congruences of every algebra in the variety is dually Brouwerian was estab-
lished by P. Köhler and D. Pigozzi in 1980 (Köhler and Pigozzi, 1980). The
latter paper marks the starting point in the research of algebraic aspects of
DDT. The paper (Czelakowski, 1985) by J. Czelakowski was a positive re-
sponse on the Köhler-Pigozzi work and was published in the abstracted form
1 The author would like to thank Janusz Czelakowski and the anonymous reviewer for
clarifying the historical aspects of the issue.
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under the same title ”Algebraic aspects of Deduction Theorems” in Bulletin
of the Section of Logic, Vol. 12, No. 3 (1983), 111-116. The main result of
(Czelakowski, 1985) is that DDT for any non-pathological finitary logic is
equivalent to the fact that the join-semilattice of its finitely axiomatizable
closed theories is dually Brouwerian (non-pathological logical systems turned
out to be equivalent to protoalgebraic logics defined later by Blok and Pigozzi
(Blok and Pigozzi, 1986)). This equivalence carries over to the associated lat-
tices of deductive filters. The general fact that in any algebraic lattice L, the
join-semilattice of compact elements of L is dually Brouwerian if and only if
the lattice is infinitely meet-distributive over its compact elements is noted in
(Czelakowski, 1985, Theorem 2.12) (see also (Czelakowski, 2001, Proposition
2.6.7)). This fact, in the context of congruence lattices for varieties, was inde-
pendently proved by E. Kiss in 1983 (Kiss, 1983). Wim Blok and Don Pigozzi
had similar ideas at that time. They were aware of the connection between
the deduction theorem and EDPC about the time when Peter Köhler and
Don Pigozzi were writing their paper (Köhler and Pigozzi, 1980) during the
winter of 1978–79 (see the remarks placed in (Czelakowski, 1985)). Wim Blok
and Don Pigozzi wrote a paper on the deduction theorem in algebraic logic,
viz. (Blok and Pigozzi, 1997), which was not published when Wim Blok lived.
(He passed away in 2002.) The full text of (Blok and Pigozzi, 1997) appears
only now in this volume. The results on the deduction theorem they included
in (Blok and Pigozzi, 1997) overlap to some extent the ones presented in
(Czelakowski, 1985), but the focus of their paper is different, being as it is
on the equivalence between the deduction theorem and EDPC, e.g. the basic
fact that for strongly algebraizable Hilbert-style deductive systems the DDT
amounts to EDPC for the equivalent varieties was established in (Blok and
Pigozzi, 1997).

3. Note that ThH is always infinitely join-distributive over its compact
elements, i.e.,

{ᾱ}ThH∩ (
∨
i∈I AxAi) =

∨
i∈I({ᾱ}ThH∩AxAi),

by (Czelakowski, 2001, Proposition 2.5.1), since ThH is algebraic.
A number of prominent Hilbert-style systems fail to admit DDT.

Examples. 4) The Hilbert-style deductive system corresponding to global
consequence relation `gK associated with the smallest modal propositional
logic K does not admit DDT, because the lattice Th `gK is not infinitely
meet-distributive over its compact elements, even though it is distributive.
Thus Acr `gK is closed under finite intersections, but not under arbitrary
intersections.

5) On the other hand, let us consider a Hilbert-style deductive system
`R with x,x→ y ` y and x,y ` x∧ y as inference rules schemes for the An-
derson and Belnap’s logic of relevant implication R (without constants, see
(Czelakowski, 2001, Example 2.1.3) for axiomatization details). Then `R does
not admit DDT because Acr `R is not invariant. It does admit a weaker form



96 Sergey Babenyshev

of DDT though ((Maximova, 1966) and Dziobiak, unpublished):

X,α `R β ⇐⇒ (∃n)(∃γ0, . . . ,γn) X `R
[(∧

i≤n
(γi→ γi)

)
∧α
]
→ β.

5 Deduction-Detachment Theorem and protoalgebraic
systems

The deduction-detachment theorem was originally introduced to investigate
the algebraizability phenomenon of the classical logic. Therefore it is particu-
larly interesting to investigate DDT in the context of protoalgebraic Hilbert-
style deductive systems, which were specifically introduced to capture weak
forms of the algebraizability phenomena (Blok and Pigozzi, 1986).

Definition 5.1. An HSSL H is protoalgebraic if there exists a finite (may
be empty) set ∆(x,y) of formulas in two variables, such that

(1) `H ∆(x,x),
(2) x,∆(x,y) `H y. (∆-detachment)

The class of protoalgebraic Hilbert-style systems contains many well-known
propositional deductive systems, such as deductive systems of propositional
intuitionistic, modal and relevant logics and, of course, that of the classical
logic. It is easy to see that DDT∆ implies protoalgebraicity with the same
set of formulas ∆. But protoalgebraicity is strictly weaker than DDT, as the
above-mentioned examples of deductive systems for K and R show.

For protoalgebraic systems, the conditions for DDT can be weakened, as
was shown by J. Czelakowski (Czelakowski, 2001). Further we will show how
some of J. Czelakowski’s results can be derived using the approach of this
paper.

Lemma 5.2. If H is protoalgebraic, then AcrH is surjectively invariant.

Proof. SupposeA∈AcrH and σ is a surjective substitution. By Lemma 3.5(5),
A= RL[T )ThH for some T ∈ThH. Then, by a characteristic property of pro-
toalgebraic deductive systems (Font et al., 2001, Theorem 2.6):

σ−1[T )ThH = [σ−1T )ThH, (Eq.3)

therefore σ−1A= RL[σ−1T )ThH ∈AcrH. ut

The following lemma is a Gentzen-style analogue of the Lemma 2.3 (Czela-
kowski and Jansana, 2000) for Hilbert-style deductive systems.

Lemma 5.3. Suppose R is an algebraic closure system over Fm+
L . Then R

is invariant, if it is surjectively invariant.
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Proof. Based on correspondence between closure systems and consequence
relations, it suffices to show that for all X,Y ⊆ Fm+

L and every substitution
σ

XR ⊆ Y R =⇒ (σX)R ⊆ (σY )R.

Since R is an algebraic closure system, for every sequent s ∈ X, there is a
finite subset Ys ⊆ω Y , such that {s}R ⊆ Y Rs . Since Ys ∪{s} is finite, then
Var(Ys ∪ {s}) is finite, therefore there is a surjective substitution σs, such
that σss= σs, σsYs = σYs. Thus

(σX)R = (
⋃
s∈X σss)R ⊆ (

⋃
s∈X σsYs)R = (

⋃
s∈X σYs)R ⊆ (σY )R. ut

Corollary 5.4. (Czelakowski, 2001, Theorem 2.6.8(i,iii)) Let H be a pro-
toalgebraic Hilbert-style deductive system. If the lattice ThH is infinitely
meet-distributive over its compact elements, then H admits a multiterm
deduction-detachment theorem.

Proof. By Lemma 5.2, since H is protoalgebraic, AcrH is surjectively in-
variant. On the other hand, since ThH is infinitely meet-distributive over its
compact elements, then AcrH is a closure system over Fm+

L , by Theorem 4.5.
Thus, according to Lemma 5.3, AcrH must be invariant. Altogether, we have
that AcrH is an algebraic, invariant, closure system over Fm+

L , hence it is
a Gentzen-style deductive system. Therefore, by Theorem 4.3, H admits a
multiterm deduction-detachment theorem. ut

Another case, where the characterization of DDT given by Theorem 4.3
can be enlightening, is related to the question of existence of fully adequate
Gentzen-style systems for weakly algebraizable Hilbert-style systems.

Definition 5.5. Let H be an HSSL. The set of full closure relations of H is
defined as follows:

FcrH := {(θ)GcrH | θ ∈ ConFmL}.

An element of FcrH is called a full closure relation for H. ut

This notion is well-defined. Indeed θ ∈ ConFmL contains sequents of the
form α . β

def= 〈α,β〉, for every 〈α,β〉 ∈ θ, and the closure of θ is taken in the
closure system of theories of sequents.

It is more traditional to define full closure relations via closure systems of
compatible H-theories:

An H-theory T is compatible with a congruence θ ∈ConFmL, if 〈α,β〉 ∈ θ
and α∈ T imply β ∈ T . Abusing our notation, we denote the set of all theories
compatible with θ by [θ)ThH.

The largest congruence compatible with an H-theory T (which always
exists) is called the Leibniz congruence for T and denoted by ΩT . If C is
a family of H-theories, then the intersection

⋂
T∈CΩT is called the Tarski
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congruence for C and denoted by Ω̃C. Leibniz congruences are also defined
for closure relations, namely if A is a closure relation then

ΩA= sup{θ ∈ ConFmL | θ ⊆A}.

There is a direct connection between Leibniz congruences for closure relations
and Tarski congruences for families of theories, namely

ΩRL C = Ω̃C.

Proposition 5.6. For every HSSH H and F ∈ FcrH:

1. FcrH⊆GcrH.
2. F = (ΩF)GcrH.
3. F = RL{T ∈ ThS | ΩF ⊆ ΩT}= RL[ΩF)ThH.
4. FcrH is a closure system iff for every non-empty family {Fi}i∈I ⊆FcrH⋂

i∈IFi = (
⋂
i∈IΩFi)GcrH.

Proof. (1) By definition of FcrH.
(2) (⊆) It holds by definition of FcrH, since ΩA ∈ ConFmL.

(⊇) Suppose A= (θ)GcrH, for some θ ∈ ConFmL. Then

θ ⊆ ΩA⊆A =⇒ A= (θ)GcrH ⊆ (ΩA)GcrH ⊆AGcrH =A

=⇒ A= (ΩA)GcrH.

(3) Let F ∈ FcrH. Since F is a general closure relation for H, then F =
RL C, for some algebraic closure system C ⊆ ThH. Let

D = {T ∈ ThH | ΩF ⊆ ΩT}.

Then it is straightforward to show that D is an algebraic closure system over
FmL. Also C ⊆ D, because for all T ∈ C

ΩF = ΩRL C = Ω̃C def=
⋂
S∈C

ΩS ⊆ ΩT.

Thus F = RLD, because
(⊇) C ⊆ D =⇒ RLD ⊆RL C = F ,
(⊆) ΩF ⊆

⋂
{ΩT | T ∈ D} def= Ω̃D = ΩRLD ⊆RLD

=⇒ F 5.6(2)= (ΩF)GcrH ⊆ (RLD)GcrH = RLD.

(4) (⇐) Since
⋂
i∈I ΩFi ∈ ConFmL, then

⋂
i∈IFi = (

⋂
i∈IΩFi)GcrH ∈

FcrH, by Definition 5.5.
(⇒) Let {Fi}i∈I ⊆ FcrH be a non-empty family of full closure rela-

tions, then, since FcrH is a closure system, there is an F =
⋂
i∈IFi ∈FcrH.
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Therefore

F =
⋂
i∈IFi

=⇒ ΩF = Ω(
⋂
i∈IFi) =

⋂
i∈I ΩFi

=⇒
⋂
i∈IFi = F (2)= (ΩF)GcrH = (

⋂
i∈I ΩFi)GcrH.

For the case of the empty family of full closure relations, the intersection
is the largest full closure relation, which, by Definition 5.5, always exists and
is equal to (1FmL)GcrS . More precisely it is equal to Fm+

L if H has theorems,
and to Fm+

L \FmL if H does not. ut

Note that the full closure relations for H arise from the Galois connec-
tion between ConFmL ⊆P(Fm+

L) and the closure system GcrH⊆P(Fm+
L)

(for more general categorical treatment of full closure relations see (Raftery,
2006)).

Full closure relations had previously got attention mainly in connection
with algebraizability phenomena beyond the class of protoalgebraic systems
(see (Font and Jansana, 1996) for details). If, for a Hilbert-style system H
with theorems, FcrH forms a Gentzen-style system, it is called a fully ade-
quate Gentzen-style system for H (Font and Jansana, 1996; Font et al., 2001).
For weakly algebraizable Hilbert-style systems there is a criterion for the ex-
istence of a fully adequate Gentzen-style system:

Corollary 5.7. (Font et al., 2001, Corollary 5.7) Let H be a weakly algebraiz-
able Hilbert-style system. Then H has a fully adequate Gentzen-style system
iff it admits a multiterm deduction-detachment theorem.

Proof. By Theorem 3.6(i,iv) from (Czelakowski and Jansana, 2000), for a
weakly algebraizable Hilbert-style system H, there is an one-to-one corre-
spondence between families of closure systems {[θ)ThH | θ ∈ ConFmL} and
{[T )ThH | T ∈ ThH}, therefore

FcrH={RL[θ)ThH | θ ∈ ConFmL}={RL[T )ThH | T ∈ ThH}=AcrH.

The rest follows directly from Theorem 4.3. ut

Suppose H is a Hilbert-style deductive system. If F ∈FcrH, then AxF ∈
ThH is called a Leibniz theory of H. Let us denote the set of all Leibniz
theories of H by ThLH, i.e,

ThLH= {AxF | F ∈ FcrH}= Ax FcrH.

ThLH, also denoted as ThSH, in the protoalgebraic case, may represent the
strong version of the original deductive system H (Font and Jansana, 2001).

Every Leibniz theory for H is always the least among theories with the
same Leibniz congruence. In the case of protoalgebraic deductive systems,
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FcrH⊆AcrH and Leibniz theories are exactly H-theories that generate full
closure relations as axiomatic ones:

FcrH= {(T )GcrH | T ∈ ThLH}.

Corollary 5.8. Suppose HSSL H admits a multiterm deduction-detachment
theorem. Then H has a fully adequate Gentzen-style system, whenever ThLH
is closed under non-empty intersections.

Proof. Suppose {Fi}i∈I ⊆ FcrH, then {AxFi}i∈I ⊆ ThLH. Since H is pro-
toalgebraic, then FcrH⊆AcrH, so {Fi}i∈I ⊆AcrH. By Theorem 4.5⋂

i∈IFi = (
⋂
i∈I ΘFi)GcrH = (

⋂
i∈I AxFi)GcrH ∈ FcrH,

since, by assumption,
⋂
i∈I AxFi ∈ ThLH.

Furthermore, FcrH is always algebraic and surjectively invariant, there-
fore, being a closure system, it is invariant, by Lemma 5.3. ut
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Introducing Boolean Semilattices
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Abstract We present and discuss a variety of Boolean algebras with opera-
tors that is closely related to the variety generated by all complex algebras of
semilattices. We consider the problem of finding a generating set for the va-
riety, representation questions, and axiomatizability. Several interesting sub-
varieties are presented. We contrast our results with those obtained for a
number of other varieties generated by complex algebras of groupoids.
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The study of Boolean algebras with operators (BAOs) has been a consis-
tent theme in algebraic logic throughout its history. It provides a unifying
framework for several branches of logic including relation algebras, cylindric
algebras, and modal algebras. From a purely algebraic standpoint, a class
of BAOs provides a rich field of study, combining the strength of Boolean
algebras with whatever structure is imposed on the operators.

In fact, with all this structure, one might expect that analyzing a variety
of BAOs would border on the trivial. The variety of Boolean algebras, after
all, is generated by a primal algebra. As such, it is congruence-distributive,
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intricate and unexpected interplay between the Boolean operations and the
additional operators that arise from standard constructions.

In this paper we consider Boolean algebras with one very simple oper-
ator, namely an (almost) semilattice operation, that is, a binary operation
that is associative, commutative, and (almost) idempotent. The qualification
on idempotence will be explained below. We shall develop some of the arith-
metic of these algebras, discuss some representation questions, and pose some
problems. While there are no deep results in this work, we hope that it will
stimulate further research in this interesting class of algebras.

Peter Jipsen is responsible, for better or worse, for introducing me to
representation questions for BAOs. Several of the results presented here are
due to him, or jointly to the two of us. Other theorems described here are
the result of joint work with Wim Blok in the early 1990s. My interest in
algebraic logic in general stems from my long working relationship with Don
Pigozzi. Don was my first mentor as a professional mathematician. He has
played a large role in my subsequent development.

Our universal algebraic terminology and notation follows the book (Berg-
man, 2012). That reference should be consulted for any notions not defined
here. Jipsen’s thesis (Jipsen, 1992), and Jónsson’s survey article (Jónsson,
1993) provide a good introduction to the subject of Boolean algebras with
operators. Goldblatt’s paper (Goldblatt, 1989) is a detailed study of the com-
plex algebra construction.

1 Complex algebras

We begin with a motivating construction. Let G = 〈G, ·〉 be an algebra with
a single binary operation (a groupoid, in common parlance). We form a new
structure, the complex algebra of G by G+ = 〈Sb(G),∩,∪,∼,�,∅,G〉. Here,
Sb(G) is the family of all subsets of G, “∩” and “∪” are the usual operations
of intersection and union, ∼X = G−X is the complement of the subset X,
and X�Y = {x ·y : x ∈X,y ∈ Y }.

The operation “�” is called a complex operation. In practice, it seems un-
necessary to use different notation for an operation and its induced complex
operation, so we will generally write X ·Y in place of X �Y . We want to
stress that there is nothing special about one binary operation. The complex
algebra construction makes sense for any number of operations of any rank.
We restrict our attention to groupoids because it already captures the in-
tricacies of the situation. Generalization to arbitrary algebraic structures is
straightforward.

The complex algebra is, of course, an expansion of a Boolean algebra. The
new operation satisfies several additional identities, namely
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X ·∅=∅, ∅ ·X =∅
X · (Y ∪Z) = (X ·Y )∪ (X ·Z), (Y ∪Z) ·X = (Y ·X)∪ (Z ·X) .

The first pair of identities assert that the complex operation is normal, the
latter pair that it is additive. We can actually say a bit more, although not
in a first-order manner. The Boolean algebra is complete and atomic and the
complex operation distributes over arbitrary union, not just finite union.

This is our “ur-example” of a BAO. We formalize it as follows.

Definition 1.1. A Boolean groupoid is an algebra B = 〈B,∧,∨, ′, ·,0,1〉 such
that 〈B,∧,∨, ′,0,1〉 is a Boolean algebra and “·” is an additional binary op-
eration satisfying the identities

(1)
x ·0≈ 0 ·x≈ 0

x · (y∨ z)≈ (x ·y)∨ (x · z)
(y∨ z) ·x≈ (y ·x)∨ (z ·x).

We shall often use the notation B0 to denote the Boolean algebra reduct of
the Boolean groupoid B and write B = 〈B0, ·〉.

Since it is defined equationally, the class of Boolean groupoids forms a
variety, (that is, a class of algebras closed under subalgebra, homomorphic
image, and product) which we denote BG. From our observations above, the
complex algebra of every groupoid lies in BG. It is natural to wonder whether
the converse could be true: is every Boolean groupoid a complex algebra? A
moment’s reflection shows that this is impossible on cardinality grounds.
There is no complex algebra of cardinality ℵ0, but it is easy to see that there
are indeed Boolean groupoids that are countably infinite.

More generally, we can ask whether the complex algebras generate BG as
a variety. The answer turns out to be “yes” as we discuss in Sect. 3. In order
to demonstrate this, we must develop a technique to extend an arbitrary
Boolean groupoid to one that is complete and atomic. We do this in Sect. 2.

Before continuing, we introduce some terminology that we use in the se-
quel. In the language of Boolean algebras, we write x− y in place of x∧ y′
and

x⊕y = (x−y)∨ (y−x).

With this definition we obtain a ring 〈B,⊕,∧,0,1〉 of characteristic 2 from
the Boolean algebra B0.

One important consequence of additivity in a Boolean groupoid is mono-
tonicity: if x1 ≤ x2 then x1 ·y ≤ x2 ·y and y ·x1 ≤ y ·x2.

Definition 1.2. Let p(x1,x2, . . . ,xn) and q(x1,x2, . . . ,xn) be terms in the
language of groupoids.

1. The identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) is linear if each variable occurs
exactly once in each of p and q.
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2. The identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) is semilinear if p has no repeated
variables and every variable of q occurs in p. (But q can have repeated
variables.)

3. The identity p(x1, . . . ,xn) ≈ q(x1, . . . ,xn) is regular if exactly the same
variables appear in p and q. (But each variable may occur any number
of times.)

Note that semilinearity is nonsymmetric, that is, p≈ q semilinear does not
imply q ≈ p semilinear, unless the identity is actually linear. The significance
of linear and semilinear identities is delineated in the following proposition
whose proof is a simple verification. Regular identities will be addressed in
Sect. 2. Figure 1 shows a few familiar identities and their relationship to these
properties.

linear semilinear regular
x(yz)≈ (xy)z 3 3 3
xy ≈ yx 3 3 3

x≈ x2 3 3
xy ≈ x 3

(xy)y ≈ (yx)y 3

Fig. 1 Some linear, semilinear, and regular identities

Proposition 1.3 ((Shafaat, 1974), (Grätzer and Whitney, 1984)). Let
G be a groupoid and p≈ q an identity.

1. If p≈ q is linear then G � p≈ q ⇐⇒ G+ � p≈ q.
2. If p≈ q is semilinear then G � p≈ q ⇐⇒ G+ � p≤ q.

By a partial groupoid we mean a set with a partially defined binary oper-
ation. For example, every subset of a groupoid inherits a partial groupoid
structure. We shall say that a partial groupoid, P, satisfies an identity
p(x1, . . . ,xn)≈ q(x1, . . . ,xn) if, for every a1 . . . ,an ∈ P , we have p(a1, . . . ,an)
is defined in P if and only if q(a1, . . . ,an) is defined in P, and in that case,
the two quantities coincide.

2 Duality

In this section we explore the passage from an object to its complex algebra.
In particular, we are interested in reversing the process. In order to do this
we must, on the groupoid side, expand our attention to ternary relational
structures, and on the complex side, extend a Boolean groupoid to one that
is complete and atomic.
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To begin with, observe that it is quite easy to recover the structure of a
groupoid from its complex algebra. For a groupoid G and a,b ∈G, we have
a · b = c in G if and only if {a}�{b} = {c} in G+. Speaking abstractly, the
singletons {a}, {b}, and {c} are atoms of the Boolean algebra G+

0 . In the
complex algebra, the product of two atoms is always an atom.

Unfortunately, an arbitrary Boolean groupoid may not have any atoms,
and even when it does, the product of two atoms need not be an atom. Thus,
when we attempt to generalize the passage from complex algebra to groupoid,
we obtain, not an algebra, but a ternary relational structure. By a ternary
relational structure we simply mean a pair 〈H,θ〉 in which H is a set and θ
is a subset of H3.

Definition 2.1. Let B = 〈B0, ·〉 be a Boolean groupoid. The atom structure
of B is the ternary relational structure B+ = 〈A,θ〉 in which A is the set of
atoms of B0 and θ =

{
(x,y,z) ∈A3 : z ≤ x ·y

}
.

To each groupoid G = 〈G, ·〉 we can associate the ternary relational struc-
ture G� = 〈G,θ〉 in which θ= {(x,y,x ·y) : x,y ∈G}. It is easy to verify that
G� ∼= (G+)+. In fact, we can extend this association to any partial groupoid
P. Notice that in this case, if x,y ∈ P with x · y undefined, then there will
be no triple in P� of the form (x,y,z) for any z. Put another way, in the
complex algebra P+ we will have {x}�{y}=∅.

To proceed further, we must extend the complex algebra construction to
ternary relational structures.

Definition 2.2. Let H = 〈H,ψ〉 be a ternary relational structure. The com-
plex algebra of H is the Boolean groupoid H+ = 〈Sb(H),∩,∪,∼,�,∅,H〉 in
which

X�Y = {z ∈H : (∃x ∈X)(∃y ∈ Y ) (x,y,z) ∈ ψ} .

It is not difficult to verify that for a ternary relational structure H, (H+)+ ∼=
H, and dually, for a complete and atomic Boolean groupoid B, (B+)+ ∼= B.

We still have the problem of a lack of atoms in an arbitrary Boolean
groupoid. This was addressed in 1951 by Jónsson and Tarski (Jónsson and
Tarski, 1951) as an extension of the Stone representation theorem. We do
this in two steps. Start with a Boolean groupoid, B. Let B∗ denote the set
of ultrafilters (i.e., maximal filters) of B0. We impose a ternary relational
structure on B∗ by defining

θ =
{

(U,V,W ) ∈ (B∗)3 :W ⊇ {u ·v : u ∈ U, v ∈ V }
}
.

Finally we define Bσ to be 〈B∗,θ〉+.
In his exposition (Jónsson, 1993), Jónsson summarizes the relationship

between B and Bσ as follows (specialized to the case of Boolean groupoids).

Theorem 2.3. Let B be a Boolean groupoid. There is a unique Boolean
groupoid Bσ, called the canonical extension of B such that
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1. Bσ
0 is a complete and atomic extension of B0;

2. For all distinct atoms p and q of (Bσ), there exists a ∈B such that p≤ a
and q ≤ a′;

3. Every subset of B that joins to 1 in Bσ has a finite subset that also joins
to 1;

4. For atoms p,q of Bσ, p ·q =
∧
{a · b : a,b ∈B, a≥ p, b≥ q}. The product

is extended completely additively to the remainder of Bσ.

As an example computation, let B be a Boolean groupoid, A denote the
set of atoms of Bσ

0 , and let p ∈A. Then using Theorem 2.3(4) we compute

(2) p ·1 =
∨
q∈A

p · q =
∨
q∈A

∧
a≥p

∧
b≥q

a · b=

∧
a≥p

∨
q∈A

∧
b≥q

a · b=
∧
a≥p

∨
q∈A

a · q =
∧
a≥p

a ·1 .

In practice, it is unnecessary to make reference to B∗. We start from an
arbitrary Boolean groupoid B, move first to the canonical extension, Bσ,
and then to the atom structure Bσ

+. This ternary relational structure must
serve as an approximation to a groupoid induced by B. The utility of this
approximation varies depending upon the particular situation at hand.

A class, or property, preserved by canonical extensions, is called canonical.
A Boolean groupoid term is called strictly positive if it does not involve
complementation. One of the deep theorems on the subject is the following.

Theorem 2.4 (Jónsson and Tarski, 1951). Let s, t, and u be strictly
positive terms. Then each of the following is canonical.

s≈ t
s≈ 0→ t≈ u
s 6≈ 0→ t≈ u .

Consider now two ternary relational structures 〈G,θ〉 and 〈H,ψ〉. A func-
tion h : G→H induces a complete Boolean algebra homomorphism ~h : H+

0 →
G+

0 given by ~h(X) = {g ∈G : h(g) ∈X }. A necessary and sufficient condi-
tion for ~h to be a Boolean groupoid homomorphism is that h be a bounded
morphism, as in the following definition.

Definition 2.5. A function h : G→H is a bounded morphism between the
ternary relational structures 〈G,θ〉 and 〈H,ψ〉 if

(i) (∀x ∈G3) x ∈ θ =⇒ h(x) ∈ ψ and
(ii) (∀z ∈G)(∀y1,y2 ∈H) (y1,y2,h(z)) ∈ ψ =⇒

(∃x1,x2 ∈G) h(x1) = y1, h(x2) = y2, (x1,x2,z) ∈ θ .
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It is straightforward to verify that h is an injective bounded morphism
if and only if ~h is a surjective Boolean groupoid homomorphism, and h is
surjective iff ~h is injective. Let us study those two special situations a little
more closely.

Suppose first that 〈G,θ〉 and 〈H,ψ〉 are ternary relational structures, with
G ⊆ H. If the inclusion map is a bounded morphism, we call 〈G,θ〉 an in-
ner substructure of 〈H,ψ〉. Unwinding Definition 2.5, we have the following
characterization.

Lemma 2.6. 〈G,θ〉 is an inner substructure of 〈H,ψ〉 if G⊆H and

(i) θ = ψ∩G3 and
(ii) (∀z ∈G)(∀y1,y2 ∈H) (y1,y2,z) ∈ ψ =⇒ y1,y2 ∈G .

When these conditions hold, 〈G,θ〉+ is a homomorphic image of 〈H,ψ〉+.

Based on the first of the two conditions in the lemma, we often refer to G
as an inner substructure of 〈H,ψ〉 without explicitly mentioning θ.

Now suppose that G is a groupoid. A subset K is called a sink if

(x ∈K & y ∈G) =⇒ (x ·y ∈K & y ·x ∈K) .

(It is common to call K an ideal of G, but we wish to avoid conflict with
the use of “ideal” in the Boolean algebra context.) Consider G as a ternary
relational structure G� = 〈G,θ〉. It follows immediately from Lemma 2.6 that
a subset H will be an inner substructure of G� if and only if G−H is a sink.

We now turn to bounded morphic images of a partial groupoid. These
correspond to certain quotient structures. Let P be a partial groupoid, and
α an equivalence relation on P . For an element a ∈ P we write a/α for the
equivalence class of a modulo α. We call α a bounded equivalence if for all
a,b ∈ P the image of the partial map p : a/α× b/α→ P given by p(x,y) =
x · y is a union of α-classes. The bounded equivalence α induces a ternary
relational structure 〈P/α,ψ〉 in which ψ = {(a/α, b/α, c/α) : c= a · b}.

Lemma 2.7. Let α be a bounded equivalence on the partial groupoid P. Then
the natural map q : P�→P/α is a surjective bounded morphism.

Proof. We must check the two conditions in Definition 2.5. The first condition
is simply the definition of the relation ψ on P/α. For the second, let z ∈ P ,
y1/α, y2/α ∈ P/α and suppose that (y1/α, y2/α, z/α) ∈ ψ. Then there are
x1,x2,w such that x1 α y1, x2 α y2, w α z, and x1 ·x2 = w. By assumption,
the image of the partial map p on y1/α×y2/α is a union of α-classes. Since
w lies in that image and z α w, we must have z = p(u1,u2) = u1 ·u2. Hence
q(u1) = y1/α, q(u2) = y2/α, and (u1,u2,z) ∈ θ. ut

The converse of lemma 2.7 is true as well: the kernel of a surjective bounded
morphism is a bounded equivalence.
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The correspondence G 7→G+ and B 7→ B+, together with the bounded
morphisms and homomorphisms, form the basis of a dual equivalence between
the categories of ternary relational structures and of complete and atomic
Boolean groupoids. This duality is explored in great detail in (Goldblatt,
1989). We need only one additional aspect of the duality, which is quite easy
to verify.

The coproduct of a family
〈
〈Gi,θi〉 : i ∈ I

〉
of ternary relational structures

is simply the disjoint union
〈⋃.

iGi,
⋃.
i θi
〉
. The complex algebra of a disjoint

union is isomorphic to the direct product of the complex algebras of the
components:

(3)
(⋃
•

i∈I
Gi

)+
∼=
∏
i∈I

G+
i .

The isomorphism maps the complex, X, of the disjoint union, to the I-tuple,
〈X ∩Gi : i ∈ I〉, in the product. We leave the details to the reader.

Let P be a partial groupoid. We can extend P to a total groupoid P by
adjoining a new element, ∞, to P , and defining x ·y =∞ whenever x,y ∈ P
and their product is undefined in P. This construction is surprisingly robust.
It preserves associativity, commutativity, idempotence; in fact, any regular
identity, as in Definition 1.2. See (Romanowska, 1986) for the importance of
these identities.

It is immediate from Lemma 2.6 that P� is an inner substructure of P�.
Thus, every partial groupoid is an inner substructure of a groupoid. And
conversely, every inner substructure of a groupoid is itself a partial groupoid.

Now suppose that 〈Gi : i ∈ I〉 is a family of groupoids (or even partial
groupoids). Then the disjoint union is a partial groupoid, G, which can be
extended to a total groupoid, G. Taking complex algebras, and applying
the duality principles that we have developed, we have a surjective Boolean
groupoid homomorphism, h:

G+ h−−−→
(⋃
•

i∈I
Gi

)+
∼=
∏
i∈I

G+
i .

We summarize these observations as a theorem.

Theorem 2.8. Let Σ be a set of regular identities and K be the variety of
groupoids defined by Σ.

1. Every partial groupoid that satisfies Σ can be embedded as an inner sub-
structure of a groupoid in K.

2. P(K+)⊆H(K+).
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3 Representation of Boolean Groupoids

We now return to our examination of the relationship between the finitely
based variety, BG, of Boolean groupoids, and the class of complex algebras
of groupoids. Our discussion is lifted almost verbatim from (Jipsen, 1992,
Theorem 3.20).

Lemma 3.1. Every Boolean groupoid, B, can be embedded into P+ for some
partial groupoid, P.

Proof. In light of Theorem 2.3, we can assume that B is complete and atomic.
Let 〈A,ψ〉= B+. Thus A is the set of atoms of the Boolean algebra B0 and

ψ =
{

(u,v,w) ∈A3 : w ≤ u ·v
}
.

Let P =A×A. Fix a surjection g : P → P , and let p1 : P →A denote the
first projection, i.e., p1(x,y) = x. We define a partial binary operation on P
by

(a,b) · (c,d) = g(b,d) if p1g(b,d)≤ a · c .

In this definition, both the computations of a ·c and p1g(b,d)≤ a ·c take place
in B.

We claim that p1 : P→A is a surjective, bounded morphism. If this is so,
then by our observations following Definition 2.5, ~p1 embeds B = A+ into
P+, proving the lemma.

Clearly p1 is surjective. To verify the two conditions in Definition 2.5,
observe that if (a,b) · (c,d) = (u,v) then u = p1g(b,d) ≤ a · c. Consequently,
(a,c,u) ∈ ψ. Thus the first requirement holds.

For the second, let (u,v) ∈ P , a,c ∈ A, and (a,c,u) ∈ ψ. By the definition
of ψ, u ≤ a · c. By the surjectiveness of g, there is a pair (b,d) ∈ P such
that g(b,d) = (u,v). Then p1(a,b) = a, p1(c,d) = c, and (a,b) · (c,d) = (u,v) as
desired. ut

Theorem 3.2. Every Boolean groupoid, B, lies in SH(G+) for some groupoid
G. If B is finite, then G can be taken to be finite as well.

Proof. By Lemma 3.1, B can be embedded into P+ for a partial groupoid, P.
By Theorem 2.8, P is an inner substructure of a total groupoid G. Therefore
P+ is a homomorphic image of G+. Thus B ∈ SH(G+). If B is finite, then,
in the proof of Lemma 3.1, A is finite, so P , hence G, is finite as well. ut

As a result, we see that the variety generated by all complex algebras of
groupoids is axiomatized by the identities of Boolean algebras, together with
those of (1.1). In particular, it is a finitely based variety. If we write G for the
variety of groupoids, and G+ for the class of complex algebras of groupoids,
we can state this relationship succinctly as follows.

Corollary 3.3. BG = SH(G+) = V(G+).
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A Boolean groupoid is commutative if the binary operator is commutative.
We have analogous statements to the results above for the commutative case.
Theorem 3.4. Every commutative Boolean groupoid lies in SH(G+) for
some commutative groupoid, G. Consequently, the variety of commutative
Boolean groupoids is generated by the complex algebras of all commutative
groupoids.
Proof. The construction of the partial groupoid P in Lemma 3.1 must be
modified to make it commutative. Let A be the set of atoms as before. Choose
a set W of cardinality 2 |A|. (If A is infinite, we can simply take W =A.) Let
P = A×W . Fix a surjective function g : W ×W → P such that g(x,y) =
g(y,x). (This is possible because |P | ≤ 1

2 |W ×W |.) Now we define the partial
binary operation on P just as before

(a,b) · (c,d) = g(b,d) if p1g(b,d)≤ a · c

but note that now, a and c lie in A, while b and d lie in W . Thus p1g(b,d)∈A.
The remainder of the argument now proceeds as before. ut

These last two results can be looked at in a couple of different ways. On
the one hand, two fairly natural varieties of BAOs (Boolean groupoids and
commutative Boolean groupoids) are shown to be generated by an easy-to-
characterize class of complex algebras. Following Jónsson, (Jónsson, 1993),
we might call the complex algebras of groupoids the primary models of the
system defined in Definition 1.1. Viewed this way, Theorems 3.2 and 3.4 are
generation theorems: the variety of (commutative) Boolean groupoids can be
generated by the complex algebras of all (commutative) groupoids.

On the other hand, we can consider the two theorems of this section to
be providing a finite axiomatization for two naturally occurring varieties of
algebras, namely the varieties generated by complex algebras of groupoids
and of commutative groupoids. And not just any axiomatization. The axiom
sets consist of only the identities that “must” be included: the axioms for
Boolean algebras, additivitiy, normality, and (in the commutative case), the
commutative law. Note that the commutative law is linear. According to
Proposition 1.3 it is preserved by the passage to complex algebras so it must
be present in the axiomatization.

The simplicity of this axiomatization tells us that in the passage to the
complex algebra of a groupoid, there are no “unexpected” interactions be-
tween the complex operation and the Boolean operations. Peter Jipsen first
presented this topic to the author in a seminar in 1991, in the context of
semigroups, rather than groupoids. Note that the associative law is also lin-
ear. Thus, “of course,” this author thought, “there will be no unexpected
interactions between the semigroup operation and the Boolean ones, besides
associativity.”2 How wrong that was!
2 This author also recalls Don Pigozzi rolling his eyes and proclaiming “You have no
idea what you are getting yourself into.”
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Theorem 3.5 (Jipsen, 2004). The variety generated by all complex alge-
bras of semigroups is not finitely based.

Jipsen’s theorem is in striking contrast to Corollary 3.3. Not only do “un-
expected” interactions exist, but there are infinitely many. In fact, at the
time this paper is being written it is unknown whether the variety generated
by all complex algebras of semigroups even has a decidable equational base.

Somewhat stronger than a generation theorem is a representation theorem.
Let V be a variety of Boolean groupoids, and K a finitely axiomatizable class
of ternary relational structures. We say V is representable by K if V =SP(K+).
At this time it is not known whether Corollary 3.3 or Theorem 3.4 can be
strengthened to representations.

Thus we are presented with a wealth of possible problems that we can pose
in the following general framework. Let V denote a finitely based variety of
Boolean groupoids, and K a finitely axiomatizable class of ternary relational
structures (preferably groupoids).

A generation problem. Given V, find a class K so that V = V(K+).
A representation problem. Given V, does there exist a class K so that V =
SP(K+)?
A finite basis/decidability problem. Given K, is V(K+) finitely based/decid-
able?

Problem 3.6. Is BG represented by the class of all groupoids?

We have positive answers to these questions in a couple of other interesting
cases.

Theorem 3.7. 1. (Bergman) Let Lz denote the variety of left-zero semi-
groups. Then V(Lz+) is finitely based. This variety is representable by
left-zero semigroups.

2. (Jipsen) Let Rb denote the variety of rectangular bands. Then V(Rb+) is
finitely based. This variety is representable by rectangular bands.

We were surprised to discover that the two varieties of complex algebras
in the above theorem are term-equivalent to the varieties of diagonal-free
cylindric algebras of dimensions 1 and 2, respectively. Note also that both
Lz and Rb satisfy the associative law. So it is not the associative law per se
that is responsible for destroying the finite axiomatizability of the complex
algebras in Theorem 3.5. The situation is apparently more subtle. Recently,
Peter Jipsen announced the following theorem.

Theorem 3.8. Let IG (respectively CIG) denote the variety of idempotent
(respectively commutative and idempotent) groupoids. Then V(IG+) coincides
with the variety of Boolean groupoids satisfying the additional identity x≤ x2.
Similarly, V(CIG+) is equal to the variety of commutative Boolean groupoids
satisfying x≤ x2.
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Motivated by all of this, a natural next class to investigate is that of
complex algebras of semilattices. This turns out to be a rich field of study
in and of itself, and constitutes the remainder of this paper. The doctoral
dissertation (Reich, 1996) contains a similar analysis of the variety generated
by complex algebras of semigroups.

4 Boolean semilattices

We now turn to our primary object of study, namely complex algebras of
semilattices. Let Sl denote the variety of semilattices, that is, groupoids sat-
isfying

x · (y · z)≈ (x ·y) · z
x ·y ≈ y ·x
x ·x≈ x .

These are the identities of associativity, commutativity, and idempotence re-
spectively. As before, we can form the complex algebra of any semilattice, and
consider the variety generated by all such complex algebras: HSP(Sl+). Once
again, we are faced with fascinating questions about this variety: Can we find
an axiomatization? Is it finitely axiomatizable? Is the equational theory even
decidable?

Unfortunately, we don’t know the answers to any of these questions. The
evidence suggests that they are all negative. As an approximation to the
theory, we assemble a short list of identities, all of which are easily seen to
hold in Sl+, and derive some interesting algebraic properties.

To begin with, we have the axioms for Boolean groupoids listed in (1).
Guided by Proposition 1.3 we add both the associative and commutative
laws. They are linear, so are inherited by the complex algebras. Idempotence
is semilinear. Thus we add the identity x≤ x ·x, which is called the square-
increasing law.
Definition 4.1. A Boolean semilattice is a Boolean groupoid (Definition 1.1)
satisfying the additional axioms

bsl1 x · (y · z)≈ (x ·y) · z
bsl2 x ·y ≈ y ·x
bsl3 x≤ x ·x

The variety of Boolean semilattices will be denoted BSl.
We introduce the term “Boolean semilattice” with no small amount of

trepidation. Is this the right definition for such a natural piece of terminology?
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Only time will tell. Our axiomatization has the merit of being short, natural
(in light of Proposition 1.3), and equational. As we shall demonstrate in the
next few pages, a number of interesting consequences of these axioms can be
derived that demonstrate the strength and interest of this system. However,
it is certainly possible that further research will suggest additional identities
that should be added to the above set.

Since every semilattice is idempotent, it is reasonable to expect that the
term “Boolean semilattice” should imply idempotence as well, that is, that
bsl3 should be replaced by the stronger identity x ≈ x ·x. However it is not
hard to see that the complex algebra of a semilattice, S, satisfies this stronger
identity if and only if S is linearly ordered. In fact, as we show in Sect. 5,
the variety defined by that stronger identity is generated by the complex
algebras of all linear semilattices. For this reason, we chose to define Boolean
semilattice using the square-increasing law.

As we already noted, the complex algebra of every semilattice is a Boolean
semilattice. Thus we have V(Sl+) ⊆ BSl. Conversely, if G is a Boolean
groupoid and G+ ∈ BSl, then G must be a semilattice. To see this, note
that in G+, the product of two atoms is an atom. Thus, by bsl1 and bsl2, G
is associative and commutative. Further, if a,b ∈G and a ·a= b, then, in G+

we have {a} ⊆ {b} by bsl3, so a= b.
It is easy to see that each of the 3 identities are independent from the others

by considering the complex algebra of a groupoid that is either associative or
not, commutative or not, etc.

We list next several additional identities and other formulae that are conse-
quences of the definition of Boolean semilattice. These are useful in practice.

Proposition 4.2. Every Boolean semilattice satisfies the following formulae.

1 ·1≈ 1(4)
x∧y ≤ x ·y(5)
x ·y ·1≈ (x ·1)∧ (y ·1)(6)
x · ((x ·1)−x)≤ x2∨ ((x ·1−x)2 .(7)

In fact, bsl3 can be replaced by (5).

Proof. By the square-increasing law, 1≤ 1 ·1≤ 1, proving (4). In any Boolean
semilattice, x∧ y ≤ (x∧ y) · (x∧ y) ≤ x · y by monotonicity. Thus (5) holds.
Conversely, bsl3 can be derived from (5) by taking x= y.

For (6), first observe that x ·y ·1≤ x ·1 ·1 = x ·1 and similarly x ·y ·1≤ y ·1.
Thus x · y · 1 ≤ (x · 1)∧ (y · 1). On the other hand by (5), (x · 1)∧ (y · 1) ≤
x ·1 ·y ·1 = x ·y ·1 by bsl1–bsl3.

Let us derive (7). First, by monotonicity, x · ((x · 1)−x) ≤ x · 1. Second,
x ·1−x= (x ·1)∧x′ by definition. Note that

x∨ ((x ·1)∧x′) = (x∨ (x ·1))∧ (x∨x′) = x ·1 .
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Hence x · ((x ·1)−x)≤ x∨ ((x ·1)−x)≤ x2∨ ((x ·1)−x)2. ut

As we have already noted, V(Sl+)⊆ BSl. It was, of course, our hope that
these two varieties would coincide. Alas, that is not the case. We present two
examples. Consider first the identity

(8) x∧ (y ·1)≤ x ·y .

This identity is easily seen to hold in S+, for any semilattice, S. However, let
H denote the ternary relational structure 〈{a,b},θ〉 in which

θ = {(a,a,a),(a,b,b),(b,a,b),(b,b,a),(b,b,b)} .

One can conveniently represent this relation with the multiplication table
· a b

a a b
b b 1

This table can be thought of as a subset of the multiplication table for H+.
Since this particular complex algebra has two atoms, a∨b= 1. The remainder
of the table can be deduced from normality and additivity. H+ is easily
checked to be associative, commutative, and, square-increasing. We see that
H+ fails to satisfy (8) with x= a and y = b.

As a second example, let A be the 8-element Boolean groupoid, with atoms
{a,b,c} that multiply as follows:

a b c

a a a a
b a a∨ b b∨ c
c a b∨ c 1

The algebra A satisfies bsl1–bsl3, so A ∈ BSl. In fact it also satisfies (8).
However, A fails to satisfy the identity

(9) x · τ ≤ (x · z∧v) ·y∨ (x · z−v) · τ

with τ shorthand for u∧ (y ·z). It is a simple computation to verify that the
complex algebra of any semilattice satisfies equation (9). Thus A /∈ V(Sl+).

These examples were relatively easy to find, involving algebras with 2 or
3 atoms. It certainly suggests to us that it will be possible to find longer and
longer identities that fail in larger and larger finite algebras. Based on this,
we conjecture that the answer to the following finite basis problem is ‘no’.

Problem 4.3. Is V(Sl+) finitely based? Is the equational theory decidable?

A useful source of tools for attacking Problem 4.3 might be (Hodkinson
et al., 2001). Perhaps there is more hope for a positive answer to one of the
following problems. (But see Theorem 7.2.)
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Problem 4.4. Is either BSl or V(Sl+) generated by its finite members?

Problem 4.5. Is there a finitely axiomatizable class, K, of ternary relational
structures, such that BSl = V(K+)?

Algebraic theory of Boolean semilattices

Let ↓x denote the term x ·1. Notice that for a semilattice S and X ⊆ S, the
complex ↓X is the downset (i.e., the ideal) generated by X. (We view the
semilattice operation to be the greatest lower bound.) This operator plays a
key role in the structure theory of Boolean semilattices.

Proposition 4.6. In any Boolean semilattice, ‘↓’ yields a closure operator,
that is, for B ∈ BSl and x,y ∈B, x≤ ↓x= ↓↓x, and x≤ y =⇒ ↓x≤ ↓y.

Proof. x≤ x ·x≤ x ·1 = ↓x by bsl3 and monotonicity. Also

↓↓x= (x ·1) ·1 = x · (1 ·1) = x ·1 = ↓x

by associativity and (4). Finally, if x ≤ y then ↓x = x · 1 ≤ y · 1 = ↓y, again,
by monotonicity. ut

An element x of a Boolean semilattice is called closed if x = ↓x. By nor-
mality, we always have ↓0 = 0 and by identity (4), ↓1 = 1. Thus 0 and 1 are
always closed elements.

It is well-known that if θ is a congruence relation on a Boolean algebra
B0, then I = 0/θ is an ideal of B0. Conversely, every ideal, I, gives rise to
a congruence by defining θI =

{
(x,y) ∈B2

0 : x⊕y ∈ I
}

. This correspondence
provides a lattice isomorphism between the congruences and ideals of B0.
It can be extended to Boolean groupoids, indeed, to BAOs in general, as
follows.

Definition 4.7. Let B be a Boolean groupoid, and I an ideal of B0. Then
I is a congruence ideal of B if, for some θ ∈ Con(B), we have I = 0/θ.

Proposition 4.8 (Jipsen, 1992). Let B be a Boolean groupoid, and I and
ideal of B0. Then I is a congruence ideal of B if and only if x ∈ I implies
x ·1 ∈ I and 1 ·x ∈ I. There is a lattice isomorphism between the congruences
and the congruence ideals of B.

Corollary 4.9. Let B be a Boolean semilattice.
1. Let I be an ideal of B0. Then I is a congruence ideal of B if and only if
x ∈ I =⇒ ↓x ∈ I.

2. Let a ∈B. Then the smallest congruence ideal of B containing a is

(↓a] = {x ∈B : x≤ ↓a} .
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An element a such that (a] is a congruence ideal is called a congruence
element. It follows from the above corollary, that on a Boolean semilattice, the
congruence elements are precisely the closed elements. If S is a semilattice,
then the congruence elements of S+ are the downsets of S.

It is easy to see that if x and y are congruence elements in any Boolean
semilattice, then so are x∨ y and x · y. In fact, in the lattice of congruence
ideals, (x]∨ (y] = (x∨y] and (x]∧ (y] = (x ·y], for congruence elements x and
y. Thus the principal congruence ideals form a sublattice of the lattice of all
congruence ideals.

Recall from the discussion following Lemma 2.6 the definition of a sink in a
groupoid. We noted there that the inner substructures of a groupoid coincide
with the complements of the sinks. In the case of a semilattice, the sinks are
precisely the downsets, and the complements of the downsets are the upsets.
We state this formally.

Lemma 4.10. Let S be a semilattice. The inner substructures of S� are the
upsets of S.

We reiterate that every partial semilattice, P, is an upset, hence an inner
substructure, of a semilattice, simply by adjoining a smallest element to P .
Lemma 4.10 can be generalized somewhat.

Proposition 4.11. Let B be a complete and atomic Boolean semilattice, and
let c be a closed element of B. Then U = {z ∈B+ : z ≤ c′ } is an inner sub-
structure of B+.

Proof. Write B+ = 〈A,ψ〉. We need to check the condition in Lemma 2.6. Let
z ∈ U and y1,y2 ∈A. The condition (y1,y2,z) ∈ ψ is equivalent to z ≤ y1 ·y2.
Suppose that y1 /∈ U . Then, since y1 is an atom, y1 ≤ c, hence z ≤ y1 · y2 ≤
c · 1 = c, since c is closed. But this implies z ≤ c∧ c′ = 0, which is false.
Similarly, y2 ∈ U . ut

In a landmark series of papers, (Köhler and Pigozzi, 1980; Blok and
Pigozzi, 1982; Blok et al., 1984; Blok and Pigozzi, 1994a,b), Don Pigozzi,
together with Wilem Blok and Peter Köhler, developed the notion of equa-
tionally definable principal congruences (EDPC). Varieties with EDPC ex-
hibit remarkable properties. The variety of Boolean semilattices has EDPC,
and provides a very interesting case study in its application.

Definition 4.12. A variety, V, has EDPC if there are 4-variable terms
pi(x,y,z,w), and qi(x,y,z,w), for i= 1, . . . ,n, such that for every A ∈ V and
every a,b,c,d ∈A

(c,d) ∈ CgA(a,b) ⇐⇒ A � pi(a,b,c,d) = qi(a,b,c,d), for i= 1, . . . ,n .

Theorem 4.13. The variety BSl has EDPC.
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Proof. Let B be a Boolean semilattice, a,b,c,d ∈B. Then from the theory of
Boolean algebras we know that (c,d) ∈CgB(a,b) iff (c⊕d,0) ∈CgB(a⊕b,0).
From our observations above, in a Boolean semilattice, this latter condition
is equivalent to c⊕d≤ ↓(a⊕b). Thus, in the definition of EDPC, we can take
n= 1, p1(x,y,z,w) = (z⊕w)∧ ((x⊕y) ·1) and q1(x,y,z,w) = z⊕w. ut

Every variety with EDPC is congruence distributive and has the congru-
ence extension property. Of course the first of these holds in any variety of
BAOs. But the second is significant.

Corollary 4.14. The variety BSl has the congruence extension property
(CEP). That is, for every C ≤B ∈ BSl and θ ∈ Con(C), there is θ̄ ∈ ConB
such that θ̄∩C2 = θ.

It is actually quite easy to see from Corollary 4.9 that BSl has the con-
gruence extension property. Suppose that C≤B. For a congruence ideal, I,
on C, let J = {x ∈B : (∃y ∈ I) x≤ y}. It is easy to see that J is an ideal of
B0 and that J ∩C = I. To apply Corollary 4.9, let x ∈ J . By definition, there
is y ∈ I with x≤ y. Then ↓x≤ ↓y ∈ I since I is assumed to be a congruence
ideal.

An important application of the congruence extension property is the fol-
lowing relationship which is useful in understanding the generation of vari-
eties. The proof is a straightforward verification.

Corollary 4.15. Let K be a class of algebras with the congruence extension
property. Then HS(K) = SH(K).

Let us turn now to a consideration of subdirect irreducibility. Recall that
an algebra is subdirectly irreducible if it is nontrivial and has a smallest non-
trivial congruence, called the monolith. Subdirectly irreducible algebras form
the basic building blocks for analyzing varieties. The notion tends to disap-
pear from view in the study of Boolean algebras because the only subdirect
irreducible is the 2-element algebra. However the situation for Boolean semi-
lattices is radically different.

Lemma 4.16. A Boolean semilattice is subdirectly irreducible if and only if
it has a smallest nonzero closed element.

Proof. Let B be a subdirectly irreducible Boolean semilattice and let I be the
congruence ideal associated with the monolith. Choose any a ∈ I, a 6= 0 and
let c = ↓a. Note that c is a nonzero closed element. Since I is a congruence
ideal, c ∈ I, so (c] ⊆ I. But by the minimality of I, (c] = I. Now, if b is any
nonzero closed element, then (b] is a congruence ideal, so (c] ⊆ (b], which is
to say, c≤ b. ut

Proposition 4.17. Let S be a semilattice. Then S+ is subdirectly irreducible
if and only if S has a lower bound. In particular, every finite semilattice has
a subdirectly irreducible complex algebra.
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Proof. Recall that the closed elements of S+ are the downsets of S. The
smallest nonempty downset of a semilattice (if it exists) will always be of the
form {a}, where a is the lower bound. ut

It is usually easier to work with congruence ideals rather than congru-
ences. We will frequently consider the monolith to the the smallest nonzero
congruence ideal on a subdirectly irreducible Boolean semilattice.

Theorem 4.18. Let B be a subdirectly irreducible Boolean semilattice. Then
Bσ is subdirectly irreducible.

Proof. By Lemma 4.16, B has a smallest nonzero closed element, a. Thus, for
every x ∈B−{0}, x ·1≥ a. Let y be an atom of Bσ. Since B is a subalgebra
of Bσ, the condition a= a ·1 continues to hold in Bσ. By Equation (2)

y ·1 =
∧
{x ·1 : y ≤ x ∈B } ≥ a .

Therefore a generates the monolith of Bσ. ut

Two concepts related to subdirect irreducibility are simplicity and finite
subdirect irreducibility. A nontrivial algebra A is simple if Con(A) has ex-
actly 2 elements. A is finitely subdirectly irreducible if, for any two congru-
ences θ and ψ on A, θ > 0 & ψ > 0 =⇒ θ∧ψ > 0. Finally, we call a Boolean
groupoid integral if x > 0 & y > 0 =⇒ x ·y > 0.

Proposition 4.19. Let B be a Boolean semilattice.
1. B is finitely subdirectly irreducible if and only if it is integral.
2. B is simple if and only if x 6= 0 =⇒ ↓x= 1.
3. B simple implies Bσ simple.

Proof. Suppose that B is finitely subdirectly irreducible and that x · y = 0.
Then 0 = x ·y ·1 = (x ·1) · (y ·1) = ↓x · ↓y. Consequently (↓x]∧ (↓y] = (0]. Then
by our assumption, either ↓x = 0, which implies x = 0, or ↓y = 0, so y = 0.
Thus B is integral.

Conversely, suppose that B is integral and that I and J are nonzero con-
gruence ideals of B. Then there are nonzero closed elements x ∈ I and y ∈ J .
We have x · y ≤ x · 1 = x ∈ I and similarly, x · y ≤ y · 1 ∈ J . By integrality,
0 6= x · y ∈ I ∩J . This is enough to show that B is finitely subdirectly irre-
ducible.

Part (2) follows easily from Corollary 4.9. Part (3) follows from Theo-
rem 2.4 since the terms in part (2) are all strictly positive. ut

Corollary 4.20. Let S be a semilattice. Then S+ is finitely subdirectly irre-
ducible. S+ is simple iff |S|= 1.

Proof. The complex algebra of a groupoid is always integral. If S+ is simple,
then the only downset of S is S itself, so S must be trivial. ut

In fact, this corollary, as well as Proposition 4.17 holds whenever S is a
partial semilattice.
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Discriminator algebras

The discriminator on a set A is the ternary operation

dA(x,y,z) =
{
z if x= y

x if x 6= y.

A nontrivial algebra, A, is a discriminator algebra if dA is a term operation
of A. Discriminator algebras have powerful structure. They are simple, every
nontrivial subalgebra is again a discriminator algebra, and they generate
an arithmetical variety. As an example, every finite field is a discriminator
algebra.

A variety is called a discriminator variety if there is a single term that
induces the discriminator on every subdirectly irreducible member. The vari-
eties of Boolean algebras, relation algebras, and cylindric algebras (of a fixed
dimension) are examples of discriminator varieties.

The discriminator is a kind of “if-then-else” operation on a set. Because
of its connection to propositional logic, it is perhaps not surprising that on a
Boolean algebra with operators, there is a convenient shortcut to building a
discriminator term. We define the unary discriminator on a Boolean algebra
B0 to be the function

c(x) =
{

0 if x= 0
1 if x 6= 0.

The ternary and unary discriminators are interdefinable by

c(x) = d(0,x,1)′ and d(x,y,z) =
(
x∧ c(x⊕y)

)
∨
(
z∧ c(x⊕y)′

)
.

Thus, a Boolean algebra with operators has a term defining the (ternary)
discriminator if and only if it has a term defining the unary discriminator.

Proposition 4.19 tells us that every simple Boolean semilattice is a discrim-
inator algebra, with unary discriminator c(x) = ↓x. The variety BSl, of all
Boolean semilattices, is not a discriminator variety since there are many sub-
directly irreducible algebras that are not simple. However, BSl has a largest
discriminator subvariety, which is easily described (see also (Jipsen, 1993;
McKenzie, 1975)).
Theorem 4.21. Let BSlD be the subvariety of BSl defined by the identity

(10) (x ·1)′ ·1≈ (x ·1)′ .

BSlD is a discriminator variety, in fact, it is the largest discriminator subva-
riety of BSl. BSlD is generated by the class of all simple Boolean semilattices.
Proof. Let B be a subdirectly irreducible member of BSlD, with minimal
nonzero congruence ideal, M . Let a be a nonzero element of M . From equa-
tion (10), the element b= (a ·1)′ is closed, consequently I = (b] is a congruence
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ideal. If b 6= 0, then by the minimality of M , we must have M ⊆ I, so a≤ b.
But then a ·1≤ b ·1 = b= (a ·1)′ which is impossible as a> 0. Consequently, we
must have b= 0, which is to say, ↓a= 1. Thus by Proposition 4.21, B is sim-
ple. As we have already argued that every simple algebra is a discriminator,
we conclude that BSlD is a discriminator variety.

On the other hand, let D be any discriminator subvariety of BSl. Then each
of its subdirectly irreducible algebras is simple. It is easy to see that every
simple Boolean semilattice satisfies equation (10). Consequently, D⊆ BSlD.

ut

Equation (10) says that the complement of a closed element is closed.
From this we obtain another property that is characteristic of discriminator
varieties—numerous direct decompositions. If B ∈ BSlD and a is any closed
element of B, then we have the decomposition B∼= B/(a]×B/(a′].

Equation (10) also implies that if S is a nontrivial semilattice, then
S+ /∈ BSlD. For, the closed elements of S+ are the downsets of S. And the
complement of a downset is never a downset.

Thus we have to look harder for primary models for BSlD. Here is one
interesting class of such structures. Let Tot denote the class of all ternary
relational structures 〈H,H3〉 (i.e., total relations) for any set H.

Theorem 4.22. Every member of Tot+ is a simple Boolean semilattice.
V(Tot+) is the subvariety of BSlD defined by the identity x ·y ·1≈ x ·y. This
subvariety is represented by Tot.

Proof. It is straightforward to verify that any member of Tot+ satisfies bsl1–
bsl3. Let H ∈ Tot. Then for any a,b,c ∈ H, we have (a,b,c) ∈ H3, hence
c ≤ a · b in H+. Since c represents an arbitrary atom of the complete and
atomic H+, we conclude that a ·b= 1. Since a and b are themselves arbitrary
atoms we deduce that for any x > 0 and y > 0 in H+, x ·y = 1. In particular,
↓x= 1, so by Proposition 4.19, H+ is simple. Furthermore, we conclude that
H+ � x · y ·1 ≈ x · y since if either x or y is 0 then both sides of the identity
are 0.

Let W be the subvariety of BSlD defined by the identity x · y · 1 ≈ x · y.
By the previous paragraph and Theorem 4.21, V(Tot+)⊆W . We shall show
that, conversely, W ⊆ SP(Tot+). suppose that A is a subdirectly irreducible
member of W. It is enough to show that A ∈ S(Tot+). Since BSlD is a dis-
criminator variety containing A, we must have A simple. Therefore, by The-
orem 4.18, Aσ is simple, hence Aσ ∈ BSlD. Since x · y · 1 ≈ x · y is a strictly
positive identity satisfied by A, by Theorem 2.4 we get Aσ � x · y · 1 ≈ x · y.
Hence Aσ ∈W .

Now, for any three atoms a,b,c of Aσ, we have a · b > 0 (since simple
algebras are integral), so a ·b= ↓(a ·b) = 1. Thus c≤ a ·b. This means that the
ternary relational structure (Aσ)+ is a total relation. Therefore Aσ ∈ Tot+.
Since A is a subalgebra of Aσ, we get A ∈ S(Tot+). ut
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The class V(Tot+) is a proper subvariety of BSlD. The algebras B2 and
B3 in Figure 2 of Sect. 7 are both simple (so they lie in BSlD) but fail to
satisfy the identity x ·y ·1≈ x ·y with x= y = a. Thus the question of a nice
class of generators for BSlD remains open.

Problem 4.23. Is BSlD = V(K+) for some finitely axiomatizable class, K, of
ternary relational structures?

Finally, notice that equation (10) is not strictly positive. Thus we can not
apply Theorem 2.4 to conclude that BSlD is closed under canonical extension.
However, let B be a subdirectly irreducible member of BSlD. Then B is simple,
hence Bσ is simple, so Bσ ∈ BSlD. This suggests the following question.

Problem 4.24. Is BSlD canonical?

5 Linear Semilattices

It would seem, based on a rational naming convention, that a “Boolean semi-
lattice” should always satisfy the identity x ·x ≈ x. However, as we explain
in this section, this identity is too strong to be of much use.

In fact, for a semilattice S, S+ � x2≈ x precisely when S is linearly ordered.
To see this, observe that for X ⊆ S, the condition X ·X =X is equivalent to
X being a subsemilattice of S. Thus S+ � x2 ≈ x says that every subset is a
subsemilattice, and this in turn holds exactly when S is linearly ordered.

We shall call a Boolean semilattice idempotent if it satisfies the identity
x2 ≈ x. Let LS denote the class of linearly ordered semilattices. We have
just argued that every member of LS+ is idempotent. Thus every member of
V(LS+) is idempotent. In this section, we shall establish the converse. Let us
write IBSl for the variety of idempotent Boolean semilattices.

Lemma 5.1 (Bergman-Jipsen). The following identities hold in IBSl.
1. x∧y ≤ x ·y ≤ x∨y;
2. x∧ (y ·1)≤ x ·y;
3. x ·y ≈ (x∧ (y ·1))∨ (y∧ (x ·1)).

Proof. x∧ y ≤ x · y holds in any Boolean semilattice, by Proposition 4.2(5).
By idempotence and additivity,

x∨y = (x∨y)2 = x2∨ (x ·y)∨y2 ≥ x ·y

proving (1).
For (2),

x∧ (y ·1) = x∧y · (x∨x′) = x∧ ((x ·y)∨ (x′ ·y))≤ x∧ ((x ·y)∨ (x′∨y))
= (x∧ (x ·y))∨ (x∧x′)∨ (x∧y)≤ (x ·y)∨ (x∧y) = x ·y
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where (1) is used in the first inequality and the last equality.
Finally, (x∧(y ·1))∨(y∧(x ·1))≤ x ·y follows from (2). Conversely, by (1),

monotonicity, and distributivity

x ·y ≤ (x ·1)∧ (y ·1)∧ (x∨y) =(
(x ·1)∧ (y ·1)∧x

)
∨
(
(x ·1)∧ (y ·1)∧y

)
= (x∧ (y ·1))∨ (y∧ (x ·1)) .

ut

The third identity in the above lemma can be written

(11) x ·y ≈ (x∧↓y)∨ (y∧↓x).

Thus an idempotent Boolean semilattice is term-equivalent to its closure-
reduct.
Lemma 5.2. let B be an idempotent Boolean semilattice. Then for atoms
a,b,

a · b=


a if ↓a < ↓b
a∨ b if ↓a= ↓b
b if ↓a > ↓b
0 otherwise.

Proof. Suppose that ↓a < ↓b. Then a < ↓b and b� ↓a so b∧↓a= 0, since b is
an atom. Consequently a · b = a by (11). The second and third alternatives
are argued similarly. Finally, if ↓a and ↓b are incomparable then a� ↓b and
b� ↓a. Then from (11), a · b= 0. ut

Lemma 5.3. Let B be an atomic, subdirectly irreducible, idempotent Boolean
semilattice. Then Con(B) is linearly ordered.
Proof. We shall first show that the closed elements of B are linearly ordered.
Suppose that b and c are incomparable, closed elements. By atomicity, there
are atoms b0 and c0 such that b0 ≤ b, b0 � c, c0 ≤ c, and c0 � b. If ↓b0 ≤ ↓c0
then (since c is closed)

b0 ≤ ↓b0 ≤ ↓c0 ≤ c

which is a contradiction. Similarly ↓c0 � ↓b0, i.e., ↓b0 and ↓c0 are incompa-
rable. Therefore by Lemma 5.2, b0 · c0 = 0. But B is subdirectly irreducible,
hence integral (by Proposition 4.19), which is a contradiction. Thus our orig-
inal elements b and c must be comparable.

Now we address the statement in the lemma. Because of the correspon-
dence between congruences and congruence ideals, it is enough to show that
for any two congruence ideals I and J , either I ⊆ J or J ⊆ I. So assume
instead that there are elements b ∈ I−J and c ∈ J−I. By Lemma 4.9, ↓b ∈ I
and, since b ≤ ↓b, we have ↓b /∈ J . Similarly ↓c ∈ J − I. By our deductions
above, either ↓b≤ ↓c or ↓c≤ ↓b. But then either ↓b ∈ J or ↓c ∈ I, which is a
contradiction. ut
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Theorem 5.4. Let B be a complete, atomic, idempotent Boolean semilattice,
and suppose that Con(B) is linearly ordered. Then B ∈ S(LS+).

Proof. Let A be the set of atoms of B0. Fix a linear ordering, E, on A. Let
S = {(↓a,n,a) : a ∈A,n ∈ N} ordered lexicographically. That is

(↓a,n,a)< (↓b,m,b) if ↓a < ↓b computed in B, or
↓a= ↓b & n <m or
↓a= ↓b & n=m & a/b .

Because of our assumption on the congruence lattice of B, the closed elements
are linearly ordered. So with this definition, S becomes a linearly ordered
meet-semilattice.

Write S� = 〈S,θ〉 and B+ = 〈A,ψ〉. Recall that

θ = {(u,v,u ·v) : u,v ∈ S }
ψ = {(a,b,c) : c≤ a · b} .

Define h : S� → B+ by h(↓a,n,a) = a. Clearly h is surjective. We shall
show that h is a bounded morphism. From our comments in Sect. 2 it will
follow that ~h embeds B = (B+)+ into S+, thereby proving the theorem.

We apply Definition 2.5. To verify the first condition, let (u,v,u · v) ∈ θ,
say, u = (↓a,n,a) and v = (↓b,m,b). Since S is linear, we can assume that
u≤ v, so u · v = u. Then (h(u), h(v), h(u · v)) = (a,b,a). The condition u≤ v
implies ↓a≤ ↓b. By Lemma 5.2 we must have a≤ a · b, so (a,b,a) ∈ ψ.

For the second condition in the definition of bounded morphism, let a,b ∈
A, u= (↓c,n,c)∈S, and assume that (a,b,h(u))∈ψ. This implies that c≤ a ·b.
By Lemma 5.2 we must have c = a or c = b. If c = a then ↓a ≤ ↓b and u =
(↓a,n,a). Take v = u and w = (↓b,n+1, b). Then v ≤ w in S, so (v,w,u) ∈ θ,
satisfies the condition. On the other hand, if c= b, take v = (↓a,n+1,a), and
w= u= (↓b,n,b). Then w≤ v, so (v,w,u)∈ θ again satisfies the condition. ut

Corollary 5.5 (Bergman-Blok). The variety of idempotent Boolean semi-
lattices is equal to SP(LS+).

Proof. At the beginning of the section we verified that LS+ is contained in
IBSl, from which one inclusion of the theorem follows. We must verify that
every idempotent Boolean semilattice lies in V(LS+). For this, it suffices to
show that every subdirectly irreducible member of IBSl lies in S(LS+).

So let A be a subdirectly irreducible, idempotent Boolean semilattice,
and let B = Aσ. Since the identities defining IBSl are strictly positive, B is
itself an idempotent Boolean semilattice. By Theorem 4.18, B is subdirectly
irreducible as well. And of course B is complete and atomic.

Then by Lemma 5.3, Con(B) is linearly ordered, and therefore by Theo-
rem 5.4, B ∈ S(LS+). Since A is a subalgebra of B, the result follows. ut
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Thus we have a satisfactory resolution to the representation problem: the
finitely based variety IBSl is represented by the (finitely axiomatizable) class
of linearly ordered semilattices. In fact, the variety IBSl is term-equivalent
to the variety S4.3 of modal algebras via the interpretations ♦x = x · 1 and
x ·y = (♦x∧y)∨(x∧♦y). From this equivalence it follows from known results
that IBSl has only countably many subvarieties, each of which is finitely
axiomatizable and generated by its finite members.

6 Semilattice Representability

Let us return to the relationship between the members of BSl and the com-
plex algebras of semilattices. An integral Boolean semilattice is called semi-
lattice representable if it can be embedded into S+ for some semilattice S. In
this section we shall simply say “representable” instead of “semilattice rep-
resentable.” It may also be of interest to determine whether a finite Boolean
semilattice can be embedded into the complex algebra of a finite semilattice.
When this occurs we say that the Boolean semilattice is finitely representable.
Lemma 6.1. Let B be a Boolean semilattice, and r ∈B. Suppose that ↓r= 1.
Then for any homomorphism h : B→ S+ for a semilattice, S, the complex
h(r) must contain all maximal elements of S.
Proof. Let R= h(r)⊆ S. Then ↓r = 1 implies that the downset generated by
R is all of S. Thus if u is a maximal element of S, then for some x∈R, u≤ x.
By maximality, u= x ∈R. ut
Corollary 6.2. Let B be a Boolean semilattice, r ∈ B. Suppose that ↓r =
↓(r′) = 1. Then there is no homomorphism from B to S+ for any semilattice
with a maximal element. In particular B is not finitely representable.
Proof. Let h : B→ S+ be a homomorphism. By Lemma 6.1, both h(r) and
h(r′) = h(r)′ must contain all maximal elements. Since these sets are disjoint,
S has no maximal elements. ut
Corollary 6.3. No simple Boolean semilattice is finitely representable.
Proof. Follows from Proposition 4.19 and Corollary 6.2. ut

Recall that every partial semilattice is an inner substructure (i.e., an upset)
of a semilattice. It is easy to see that the proofs of Lemma 6.1 and Corol-
lary 6.2 remain valid when S is only a partial semilattice. Thus no simple
Boolean semilattice can be embedded into the complex algebra of an upset
of a semilattice.

Finally, we make one observation that may be useful in addressing Prob-
lems 4.3 and 4.4. Since the identities defining semilattices are regular, we can
apply Theorem 2.8 to obtain P(Sl+)⊆H(Sl+) and then Corollary 4.15 yields

V(Sl+) = HSP(Sl+) = HS(Sl+) = SH(Sl+).
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7 Varieties of Boolean semilattices

The lattice of subvarieties of BSl is itself a rich and complex structure. At
this time, we content ourselves with a few simple observations.

Because of normality and square-increasingness, {0,1} forms a subalge-
bra of any nontrivial Boolean semilattice, in which 0 ·0 = 0 ·1 = 1 ·0 = 0 and
1 · 1 = 1. This algebra can be represented as 1+, in which 1 represents a
1-element semilattice. Consequently, this algebra generates the smallest non-
trivial subvariety of BSl. This subvariety is defined, relative to BSl, by the
identity x · y ≈ x∧ y. Thus, this subvariety is term-equivalent to the variety
of Boolean algebras.

There are seven 4-element Boolean semilattices. Two of them are 1+×1+

and 2+, where 2 represents the 2-element semilattice. Figure 2 describes the
product of the two atoms, a and b on each of the 7 algebras.

a ·a b · b a · b
1+×1+ a b 0

2+ a b a
A a 1 b
B1 a 1 a
B2 a b 1
B3 a 1 1
B4 1 1 1

Fig. 2 The 4-element Boolean semilattices, with atoms a and b

The algebra A in the figure is identical to the complex algebra H+ dis-
cussed in conjunction with equation (8). As we demonstrated at that time,
A is not semilattice representable. B1 can be embedded into S+, where S
is the 3-element, nonlinear semilattice. The remaining three algebras are not
finitely representable, by Corollary 6.2. However it is not hard to show that
each can be represented on an infinite semilattice.

1+×1+ of course lies in the variety generated by 1+. Both 2+ and B2
are idempotent, so they lie in IBSl. A, B2, B3, and B4 are simple, so they
lie in BSlD. (In fact, B4 ∈ Tot+, see Theorem 4.22.) Finally, since all six
(except for 1+×1+ ) are subdirectly irreducible and have the same finite
size, by Jónsson’s lemma (see for example (Bergman, 2012, Cor. 5.13)) they
must generate pairwise incomparable varieties. All six generate varieties that
cover V(1+).

Problem 7.1. Determine all covers of V(1+) in the lattice of subvarieties of
BSl. Does every subdirectly irreducible, 8-element Boolean semilattice contain
a 4-element subalgebra?

We have already observed that the variety of Boolean semilattices has
EDPC. In (Blok and Pigozzi, 1982), Blok and Pigozzi discuss the significance
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of quotients via compact congruences. For a class K of algebras we write

Hω(K) = {B/θ : B ∈ K, θ a compact congruence of B} .

In a Boolean semilattice, compact congruences correspond precisely to
closed elements. In a semilattice, S, a closed element of S+ is precisely a
downset, D, of S. The complex S−D is an upset, which is to say, an in-
ner substructure of S. The resulting quotient, S+/[D) is isomorphic to the
complex algebra (S−D)+.

Let A be a member of a fixed variety, V. The algebra A is called a splitting
algebra (relative to V), if V has a largest subvariety excluding A. This variety,
if it exists, is denoted V/A, and is called the conjugate variety to A. The
conjugate variety is defined by a single equation (relative to V) called the
conjugate equation. Blok and Pigozzi prove that if V has EDPC, then every
finitely presented, subdirectly irreducible algebra in V is a splitting algebra,
with conjugate variety

(12) V/A = {B ∈ V : A /∈ SHω(B)} .

In particular, if V has finite similarity type, which is the case for Boolean
semilattices, then every finite subdirectly irreducible algebra is splitting.

As an application of this idea, we offer the following. Let Slfin denote the
class of finite semilattices.

Theorem 7.2. V(Slfin
+) 6= V(Sl+).

Proof. Let B2 be the 4-element algebra in Figure 2. We have already observed
that B2 is finite and simple, hence splitting. Suppose S is a semilattice and
B2 ∈ SHω(S+). Then B2 is a subalgebra of C+ in which C is an inner
substructure, i.e., an upset, of S. By the remark following Corollary 6.3, C,
hence S, must be infinite.

Therefore, by Equation (12), Sl+fin ⊆V(Sl+)/B2. Since the latter class is a
variety, V(Slfin

+) ⊆ V(Sl+)/B2. Since V(Sl+)/B2 obviously omits B2 itself,
it must be a proper subvariety of V(Sl+). ut

We close with a construction of 2ℵ0 distinct subvarieties of V(Sl+). Sev-
eral other constructions are known. For example, it is known that there are
uncountably many varieties of closure algebras, and this can be transformed
into a construction for Boolean semilattices.

For any positive integer n, let An denote an antichain of size n, and let
Yn be the semilattice obtained from An by adjoining a new least element, z.
It is easy to see that the only upsets of Yn are Yn itself and sets of the form
Ak for some k ≤ n.

Clearly, a bounded morphic image of Ak is of the form Al for l≤ k. Also,
no proper bounded morphic image of Yn is a semilattice. To see this, we
use Lemma 2.7. Suppose that α is a proper, nontrivial, bounded equivalence
on Yn. There must be distinct elements a,b,c with (a,b) ∈ α, (a,c) /∈ α and
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a ∈ An. If b = z then the set a/α · c/α is not a union of α-classes, since
it contains b but not a. This contradicts Lemma 2.7. Hence b 6= z, so the
ternary relation on Yn/α contains (a/α,a/α,z/α) which is impossible in a
semilattice.

Since Yn is a lower-bounded semilattice, Y+
n is subdirectly irreducible

(Proposition 4.17). Applying duality to the previous two paragraphs, we de-
duce that

(13) n 6=m =⇒ Y+
m /∈ SH(Y+

n ).

From this and the Blok-Pigozzi relationship (12), we obtain the following.

Proposition 7.3. Let S be a set of natural numbers and define VS =V
{

Y+
n :

n ∈ S
}

. Then Y+
m ∈ VS if and only if m ∈ S. Consequently, {VS : S ⊆ N}

forms an uncountable family of subvarieties of V(Sl+).

Proof. If m /∈ S then by (12) and (13), VS ⊆ V(Sl+)/Y+
m. Since Y+

m is finite
and subdirectly irreducible, it is a splitting algebra, so this latter class is a
variety. ut

The proof of 7.3 actually shows something stronger. The variety V(Sl+fin)
has uncountably many subvarieties.
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Abstract The notion of the equationally-defined commutator was introduced
and thoroughly investigated in (Czelakowski, 2015). In this work the prop-
erties of the equationally-defined commutator in quasivarieties generated by
two-element algebras are examined. It is proved: If a quasivariety Q is gen-
erated by a finite set of two-element algebras, then the equationally-defined
commutator of Q is additive (Theorem 3.1) Moreover it satisfies the asso-
ciativity law (Theorem 3.6). The second result is strengthened if the quasi-
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1 Preliminary Remarks

The paper is a companion piece to the monograph Czelakowski (2015).
While this monograph provides general definitions and results concerning the
equationally-defined commutator, the present paper is focused on the prop-
erties of the commutator for quasivarieties generated by finite sets of two-
element algebras. Some partial observations about the equationally-defined
commutator in selected quasivarieties generated by two-elements algebras
were placed in the above monograph (e.g. in Section 5.4). Theorem 3.1 of
this paper generalizes them. It is proved that the equationally-defined com-
mutator of each quasivariety generated by a finite set of two-element algebras
is additive and associative.

As to the narrative structure of the paper, the first two sections con-
tain indispensable definitions and general facts about quasivarieties and the
equationally-defined commutator. These results are mostly taken from Cze-
lakowski (2015). Section 3 is central; it contains new theorems.

Quasivarieties

The standard algebraic terminology and notation is applied. Let τ be a fixed
algebraic signature and L the corresponding first-order language with equality
≈. V ar= {νn : n∈ ω} is the set of individual variables of L. Te is the algebra
of terms of L and Eq(τ) is the set of equations of L.

An algebra A of signature τ is often referred to as a τ -algebra.
If t = t(x1, . . . ,xn) is a term in at most n individual variables x =

x1, . . . ,xn, and a= a1, . . . ,an is a sequence of elements of a τ -algebra A, then
tA(a1, . . . ,an) is the value of the term t for a= a1, . . . ,an in A. tA(a1, . . . ,an)
is defined in the standard way by induction on complexity of terms. We shall
also use the abbreviation tA(a) or t(a) for tA(a1, . . . ,an), often omitting the
superscript “A”.

A quasivariety is a class of algebras closed under the formation of subalge-
bras S, direct products P and ultraproducts Pu. The operation S,P and Pu
are viewed here in the inclusive sense—they also include isomorphic copies
of subalgebras, direct products and ultraproducts, respectively. The trivial
one element algebra is treated as a direct product of the void family. Every
quasivariety contains (all isomorphic copies of) the trivial algebra.

A well-known result due to Maltsev states that a class of algebras closed
under isomorphisms is a quasivariety iff it is axiomatized by means of a set
of quasi-identities, i.e., a set of the universal closures of implications α1 ≈
β1∧ . . .∧αn ≈ βn→ α≈ β.

Let Q be a quasivariety of τ -algebras and A a τ -algebra, not necessarily in
Q. A congruence Φ on A is called a Q-congruence if A/Φ ∈Q. ConQ(A) is
the set of Q-congruences on A. Thus ConQ(A) = {Φ ∈ Con(A) : A/Φ ∈Q}.
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ConQ(A) contains the universal congruence 1A := A2 and it contains the
smallest Q-congruence being the intersection of all Q-congruences of A. This
smallest Q-congruence is the identity congruence 0A (= diagonal relation on
A) if and only if A ∈Q.
ConQ(A) is a finitary closure system on A2 and therefore forms the uni-

verse of an algebraic lattice ConQ(A) called the lattice of Q-congruences.
If V is a variety, and A is an algebra of type τ , then ConV(A) forms a

principal filter in the lattice Con(A) of all congruences of A. But if A is in
V, then ConV(A) coincides with Con(A).

For anyX ⊆A2, ΘA
Q(X) denotes the least Q-congruence of A that contains

X. Thus
ΘA

Q(X) =
⋂
{Φ ∈ ConQ(A) :X ⊆ Φ}.

Given a class K of τ -algebras, we let K|= denote the consequence operation
(on the set of τ -equations) determined by K. Thus, for {αi ≈ βi : i∈ I}∪{α≈
β} ⊆ Eq(τ), α ≈ β ∈K|=({αi ≈ βi : i ∈ I} if and only if, for every algebra
A ∈K and every h ∈Hom(Te,A), h(α) = h(β) whenever h(αi) = h(βi) for
all i ∈ I.

The consequence K|= is structural, i.e., α ≈ β ∈ K|=({αi ≈ βi : i ∈ I})
implies that eα≈ eβ ∈K|=({eαi ≈ eβi : i∈ I}) for all endomorphisms e of the
term algebra Te. The consequence K|= validates the well known Birkhoff’s
rules. Furthermore, if K is closed under the formation of ultraproducts, the
consequence K|= is finitary. α ≈ β ∈K|=(∅) means that the equation α ≈ β
is valid in the class K.

Following common practice we suppress parentheses as much as possible
and in case of finite set of equations we usually write α ≈ β ∈ K|=(α1 ≈
β1, . . . ,αn ≈ βn) instead of α≈ β ∈K|=({α1 ≈ β1, . . . ,αn ≈ βn}).

There is an obvious translation of K|= into the language of quasi-identities
over Te:

α≈ β ∈K|=(α1 ≈ β1, . . . ,αn ≈ βn) iff the implication
α1 ≈ β1∧ . . .∧αn ≈ βn→ α≈ β is valid in K.

If K is a finite set of finite algebras, then Q := SP(K) is the quasi-variety
generated by K. It follows that the (finitary) consequence operations K|=
and Q|= coincide.

Commutator Equations

Let m and n be positive integers and let x = x1, . . . ,xm, y = y1, . . . ,ym, z =
z1, . . . ,zn, w=w1, . . . ,wn, and u= u1, . . . ,uk be sequences of pairwise distinct
individual variables. The lengths of the strings x and y are equal, |x|= |y|=m
and, similarly, |z|= |w|= n.
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Let τ be an algebraic signature.

p(x,y,z,w,u) := p(x1, . . . ,xm,y1, . . . ,ym,z1, . . . ,zn,w1, . . . ,wn,u1, . . . ,uk)

marks a term in Teτ built up with at most the variables x = x1, . . . ,xm,
y = y1, . . . ,ym, z = z1, . . . ,zn, w = w1, . . . ,wn, and u= u1, . . . ,uk.

Let K be a class of algebras. α(x,y,z,w,u)≈ β(x,y,z,w,u) is a commutator
equation of K in the variables x,y and z,w if K validates the equations

α(x,x,z,w,u)≈ β(x,x,z,w,u) and α(x,y,z,z,u)≈ β(x,y,z,z,u).

CoEq(K) is the set of all commutator equations of K.
A quaternary commutator equation of K (with parameters) is any commu-

tator equation α(x,y,z,w,u)≈ β(x,y,z,w,u) for K in the variables x,y and
z,w.

It follows from the above definition that α(x,y,z,w,u)≈ β(x,y,z,w,u) is
a commutator equation of K (in the variables x,y and z,w) if and only if it is
a commutator equation (in the variables x,y and z,w) of the variety Va(K)
generated by K. Consequently, the classes K, Qv(K) and Va(K) possess the
same commutator equations.

The above definition is reformulated in terms of the consequence operation
K|= as follows: for fixed m,n> 1,

K|=(x1 ≈ y1, . . . ,xm ≈ ym)∩K|=(z1 ≈ w1, . . . ,zn ≈ wn)

is the set of all commutator equations of K in the variables x= x1, . . . .,xm,
y = y1, . . . ,ym, z = z1, . . . ,zn, w = w1, . . . ,wn. In particular

K|=(x≈ y)∩K|=(z ≈ w)

is the set of all quaternary commutator equations of K (with parameters) in
the variables x,y and z and w.

Definition 1.1. Let Q be a quasivariety of algebras of signature τ . Let A be
a τ -algebra, and let Φ and Ψ be Q-congruences on A. The equationally-defined
commutator of Φ and Ψ on A relative to Q, in symbols

[Φ,Ψ ]

is the least Q-congruence on A which contains the following set of pairs:

{〈α(a,b,c,d,e),β(a,b,c,d,e)〉 : α(x,y,z,w,u)≈ β(x,y,z,w,u) ∈ CoEq(Q),
a≡ b (Φ), c≡ d (Ψ), and e ∈A<ω}.

The equationally-defined commutator of Q is additive on A if for any Φ1,
Φ2, Ψ ∈ ConQ(A):
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(C1) [Φ1 +QΦ2,Ψ ] = [Φ1,Ψ ] +Q [Φ2,Ψ ].

The equationally-defined commutator of Q is additive on Q if it is additive
on every algebra A ∈Q.

If the equationally-defined commutator of Q is additive, then it has the
following property (the Correspondence Property):
(C2) If h : A→B is a surjective homomorphism between Q-algebras and

Φ,Ψ ∈ ConQ(A), then

kerQ(h) +Q [Φ,Ψ ]A = h−1([ΘB
Q(hΦ),ΘB

Q(hΨ)]B)

(see (Czelakowski, 2015), Theorem 5.1.1).
The additivity property is extensively applied in the commutator theory—

see (Freese, McKenzie, 1987) and (Kearnes, McKenzie, 1992). The monograph
(Czelakowski, 2015) provides various criteria of additivity of the equationally-
defined commutator. We mention here one:

Theorem 1.2. Let Q be a quasivariety. The following conditions are equiv-
alent:
(1) The equationally-defined commutator of Q is additive;
(2) There exists a set ∆(x,y,z,w,u) of quaternary commutator equations for

Q in x,y and z,w (possibly with k parameters u= u1,u2, . . . ,k 6 ω) such
that for every τ -algebra A and for every pair of sets X,Y ⊆A2,

[ΘA
Q(X),ΘA

Q(Y )] =ΘA
Q(
⋃
{(∀e)∆A(a,b,c,d,e) : 〈a,b〉 ∈X,〈c,d〉 ∈ Y }).ut

(Here (∀e)∆A(a,b,c,d,e) is the set of all pairs {〈α(a,b,c,d,e),β(a,b,c,d,e)〉 :
α(x,y,z,w,u)≈ β(x,y,z,w,u) ∈∆, and e ∈A<ω}.)

It should be underlined that in any relatively congruence-modular (RCM)
quasivariety Q, the equationally-defined commutator of Q coincides with
the one introduced and studied in (Kearnes, McKenzie, 1992) and therefore
it is additive. But there are quasivarieties which are not RCM and whose
equationally-defined commutator retains the property of additivity. In this
paper further examples of such quasivarieties are provided.

The definition of the equationally-defined commutator also makes sense
for the closed theories of the equational consequence Q|=. Thus if X,Y ∈
Th(Q|=), then

[X,Y ] := Q|=({〈α(p,q,r,s, t),β(p,q,r,s, t)〉 : α(x,y,z,w,u)≈ β(x,y,z,w,u)
∈ CoEq(Q),p≈ q ⊆X, r ≈ s (Y ), and t ∈ Te<ω}.

The commutator is additive on Q iff it is additive in the lattice of theories
of Q|= ((Czelakowski, 2015), Theorem 5.2.1). (p≈ q marks a finite sequence
of equations p1 ≈ q1, . . . ,pn ≈ qn, and p ≈ q ⊆X means that pi ≈ qi ∈X for
i= 1, . . . ,n.)
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2 Quasivarieties Generated by Two-Element Algebras

Generally, there may be several two-element algebras in a given signature τ .
For instance, if one takes a two-element Boolean algebra 2 with the carrier
{0,1}, then it can be extended to a modal algebra in two ways: either by
declaring that 20 = 0 and 21 = 1 or by putting: 20 = 1 and 21 = 1. Yet
another example is the variety HSI of the high school identities. HSI con-
tains five two-element algebras (see e.g. (Burris, Lee, 1993), (Burris, Yeats,
2004)). Generally, if the signature τ is finite, there are only finitely many
non-isomorphic two-element algebras of type τ .

In what follows, τ is a fixed algebraic signature and 2 denotes an arbi-
trary but fixed two-element algebra of type τ with the carrier {0,1}.The
quasivariety Q generated by 2 is equal to the class SP(2).

It is well-known that all relatively finitely subdirectly-irreducible algebras
in SP(2) belong to S(2). It follows that there is only one (up to isomor-
phism) non-trivial algebra in S(2), viz. 2. Therefore SP(2)RFSI consists of
isomorphic copies of 2.

The quasivariety SP(2) need not be a variety. Let ′ be a unary operation
symbol and let 2 be the truth-table of negation. Let the three-element algebra
3 result from 2 by augmenting it with a fixed-point a for ′. (Thus 0′ = 1,
1′ = 0 and a′ = a). 3 is a homomorphic image of 2×2. Moreover 2 and 3 are
the only subdirectly irreducible algebras in HSP(2). (Θ(0,1) is the smallest
non-zero congruence in 3.) The algebra 3 is not a member of SP(2), because
no algebra in SP(2) admits a fixed point. Therefore the class HSP(2) is
larger than SP(2).

Berman (1980) proved the following general fact: Let 2 be any two-element
algebra of arbitrary similarity type. The variety HSP(2) has at most three
subdirectly irreducible algebras, and any subdirectly irreducible member of
HSP(2) has at most three elements.

Thus HSP(2) is always residually less than 4.

In the paper we are concerned with the properties of the equationally-
defined commutator in the quasivarieties generated by finite sets of two-
element algebras. Before passing to the commutator we shall first give some
general facts concerning such quasivarieties.

Let τ be a fixed signature. Given a τ - equation p(x,y,z,u) ≈ q(x,y,z,u)
in the variables x,y,z and possibly some other variables u, we define (by
making appropriate substitutions of variables in p ≈ q) the following three-
premiss rule

rp≈q : p(x,x,z,u)≈ q(x,x,z,u), p(x,y,x,u)≈ q(x,y,x,u),
p(x,y,y,u)≈ q(x,y,y,u)/p≈ q
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Lemma 2.1. Let Q be a quasivariety generated by a finite set K of two-
element τ -algebras, that is, Q = SP(K). Then rp≈q is a rule of Q|= for each
equation p(x,y,z,u)≈ q(x,y,z,u).

Proof (of the lemma). Fix terms p and q. It suffices to show that every algebra
2 ∈K validates rp≈q. Let h : Te→ 2 be a homomorphism such that

p(hx,hx,hz,hu) = q(hx,hx,hz,hu),
p(hx,hy,hx,hu) = q(hx,hy,hx,hu),
p(hx,hy,hy,hu) = q(hx,hy,hy,hu).

As 2 has two elements, 0 and 1, there are two variables u and v among
x,y,z such that hu = hv. Suppose e.g. that hx = hy. It then follows that
p(hx,hx,hz,hu) = p(hx,hy,hz,hu) and q(hx,hx,hz,hu) = q(hx,hy,hz,hu).
Hence p(hx,hy,hz,hu) = q(hx,hy,hz,hu). So h validates p ≈ q. The other
cases are similarly handled. ut

The following two theorems provide a characterization of quasivarieties
generated by finite sets of two-element algebras:

Theorem 2.2. For any quasivariety Q the following conditions are equiva-
lent:

(i) Q is generated by a finite set K of two-element algebras.
(ii) For any set of equations X and any three distinct variables x,y,z,

Q|=(X) = Q|=(X,x≈ y)∩Q|=(X,x≈ z)∩Q|=(X,y ≈ z).

(iii) There are three distinct variables x,y,z such that for any set of equa-
tions X,

Q|=(X) = Q|=(X,x≈ y)∩Q|=(X,x≈ z)∩Q|=(X,y ≈ z).

(iv) There are three distinct variables x,y,z such that for any equation
p(x,y,z,u)≈ q(x,y,z,u), rp≈q is a rule of Q|=.

Proof. The equivalence of (i), (ii) and (iii) is a particular instance of Theorem
8.3.8 of (Czelakowski, 2015). The implication (i) ⇒ (iv) is the content of the
above lemma. We shall prove that (iv) implies (ii). Note however that due to
the structurality of Q|=, the quantification “There are three distinct variables
x,y,z” in (iv) can be replaced by the universal quantification “For any three
distinct variables x,y,z”. It suffices to show that (ii) holds for any finite set
X and any three variables x,y,z that do not occur in the equations of X.
Assume that an equation p(x,y,z,u)≈ q(x,y,z,u) belongs to Q|=(X,x≈ y)∩
Q|=(X,x≈ z)∩Q|=(X,y ≈ z). Then by structurality we get that
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p(x,x,z,u)≈ q(x,x,z,u) ∈Q|=(X),
p(x,y,x,u)≈ q(x,y,x,u) ∈Q|=(X),
p(x,y,y,u)≈ q(x,y,y,u) ∈Q|=(X).

Applying the rule rp≈q we obtain that p≈ q ∈Q|=(X). So (ii) holds.
It follows that conditions (i)–(iv) are mutually equivalent. ut

Note. Conditions (ii) and (iii) can be equivalently reformulated in terms of
Q-congruences on the free algebra FQ(ω). Similarly, (iv) can be equivalently
expressed as the Q-validity of the implication

p(x,x,z,u)≈ q(x,x,z,u)∧p(x,y,x,u)≈ q(x,y,x,u)∧
p(x,y,y,u)≈ q(x,y,y,u)→ p≈ q

for any equation p(x,y,z,u)≈ q(x,y,z,u). ut

Given a quasivariety Q, we define the consequence operation Q|=(2) on
Eq(τ) as follows. For any set X ⊆Eq(τ) and any equation p≈ q ∈Eq(τ) we
put:

p≈ q ∈Q|=(2)(X)⇔df ep≈ eq ∈Q|=(eX)
for every endomorphism e : V ar→{x,y}.

It follows that Q|= 6 Q|=(2) and therefore Q|=(2) validates the rules of
Birkhoff logic.

The following observation supplements Theorem 2.2. It is an adaptation
to equational logic of a theorem from propositional logic ((Wójcicki, 1988),
Theorem 4.1.4):

Theorem 2.3. For any quasivariety Q the following conditions are equiva-
lent:

(1) Q = SP(K) for some finite set K of two-element algebras.
(2) Q|=(2) = Q|= and for every ternary equation p(x,y,z) ≈ q(x,y,z),

rp≈q is a rule of Q|=.

Note that the equations p≈ q of (2) do not contain parametric variables.

Proof. (1) ⇒ (2). Assume (1). We must prove that for any set X ⊆ Eq(τ)
and any equation p≈ q ∈ Eq(τ):

(a) p≈ q ∈Q|=(X) ⇔ ep≈ eq ∈Q|=(eX) for every every endomorphism
e of Te such that e : V ar→{x,y}.

We have Q = SP(K), where K is a finite set {21, . . . ,2n} of two-element
algebras. Since Q|= is structural, to establish (a) it suffices to show that

(b) p≈ q 6∈Q|=(X)
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implies

(c) ep≈ eq 6∈Q|=(eX)

for some endomorphism e such that e : V ar→{x,y}.
(b) implies that p ≈ q 6∈ 2|=i (X) for some i, 1 6 i 6 n, where 2i = {0,1}.

Let h : Te→ 2i be a homomorphism which validates the equations of X and
refutes p≈ q, that is, hp 6= hq. Let l (16 l6 2) be the number of values h takes
on the variables. Suppose for simplicity that l = 2. (In case when l = 1, the
reasoning is similar.) Let then z,w be variables such that hz 6= hw. We define
the substitution eh in Te by ehu = x iff hu = hz and ehu = y iff hu = hw.
Thus eh maps V ar onto {x,y}. Then (c) holds for this eh, because taking
any homomorphism h′ : Te→ 2i such that h′eu = hu for all u, we see that
that h′ validates eX and refutes ep≈ eq.

The fact that for every ternary equation p(x,y,z) ≈ q(x,y,z), rp≈q is a
rule of Q|= is immediate. So (2) holds.

Note. Let n > 2 be a positive integer and x1, . . . ,xn different variables.
Q|=(n) is the consequence operation in Eq(τ) defined as follows:

p≈ q ∈Q|=(n)(X) ⇔df ep≈ eq ∈Q|=(eX) for every every endomor-
phism of Te such that e : V ar→{x1, . . . ,xn}.

The above proof shows that the equality Q|=(2) = Q|= occurring in condi-
tion (2) of the above theorem is equivalent to Q|=(n) = Q|= for all n> 2. ut

(2) ⇒ (1). We fix three variables x,y,z and assume (2). It follows that

(∗) Q|=(2) = Q|= and for any set of equations X ⊆ Eq(x,y,z),
Eq(x,y,z)∩Q|=(X,x≈ y)∩Q|=(X,x≈ z)∩Q|=(X,y ≈ z)⊆Q|=(X).

In view of the above note we also have that Q|=(3) = Q|=. In virtue of
Theorem 2.2, to prove (1) it suffices to show that

Q|=(X,x≈ y)∩Q|=(X,x≈ z)∩Q|=(X,y ≈ z)⊆Q|=(X),

for any set X ⊆ Eq(τ).
Assume p ≈ q ∈ Q|=(X,x ≈ y)∩Q|=(X,x ≈ z)∩Q|=(X,y ≈ z). It then

follows that ep≈ eq ∈Q|=(eX,x ≈ y)∩Q|=(eX,x ≈ z)∩Q|=(eX,y ≈ z) for
every endomorphism e of Te such that e : V ar → {x,y,z} and which is
the identity map on {x,y,z}. The second conjunct of (∗) then yields that
ep≈ eq ∈Q|=(eX) for every such an e. Q|=(3) = Q|= then gives that
p≈ q ∈Q|=(X). ut
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3 The Equationally-Defined Commutator

The following observation is central in this work:

Theorem 3.1. Let Q be any quasivariety generated by a finite set of two-
element algebras. Then the equationally-defined commutator for Q is additive.

Particular instances of the above theorem are known in the literature. In
any relatively congruence-distributive quasivariety, the (equationally-defined)
commutator of two relative congrunces coincides with their meet. Therefore
the commutator is additive. In (Czelakowski, 2015) it was proved that the
equationally-defined commutator in the variety of semilattices is Abelian.
(This fact does not hold for other commutators defined for semilattices—see
e.g. (McKenzie, McNulty, Taylor, 1987), Exercise 5, p. 258.)

The methods presented in this paper do not refer to the classifications of

Before proving the theorem, some additional remarks are appropriate.
Let x,y,z,w be different variables. Q|=(x ≈ y)∩Q|=(z ≈ w) is the set of
all quaternary commutator equations of Q in the variables x,y and z,w. Any
set of equations ∆=∆(x,y,z,w,u) such that Q|=(∆(x,y,z,w,u)) = Q|=(x≈
y)∩Q|=(z ≈ w) is called a generating set for the equationally-defined com-
mutator of Q. Since Q is finitely generated, there is a finite generating set ∆
(Theorem 8.1.1 of (Czelakowski, 2015)). Accordingly, we may assume ∆ is a
fixed finite generating set.

Lemma 3.2. Let Q be generated by a finite set of two-element algebras. Then
Q possesses a finite generating set ∆(x,y,z,w) in four variables only (without
parameters).

Proof. Let Q = SP(K), where K is a finite family of two-element algebras.
Q has a finite generating set ∆′ =∆′(x,y,z,w,u1, . . . ,uk), possibly with pa-
rameters. We then define new set of equations ∆′′ =∆′′(x,y,z,w) in the four
variables x,y,z,w only. The idea is to substitute binary terms t in x,y for
the parameters u1, . . . ,uk occurring in the equations of ∆′. Accordingly, we
define:

∆′′(x,y,z,w) :=
⋃
{∆′(x,y,z,w,u1/t1, . . . ,uk/tk) :

t1, . . . , tk are arbitrary terms in at most the variables x,y}.

∆′′ is a set of quaternary commutator equations of K. As ∆′ is a generating
set and Q|= = K|=, we obtain that ∆′′ ⊆ K|=(∆′). But we also have that
∆′ ⊆K|=(∆′′). (One directly works with homomorphisms h in the algebras
of K and uses the fact that for every parameter u, the value hu is equal to ht
for some term t involving at most x,y.) It follows that K|=(∆′′) = K|=(∆′).

clones of two-element algebras due to Post. Instead the techniques based on the
notion of a commutator equation, as well as on simple combinatorial arguments
will be applied.
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Since ∆′ is finite and K|= finitary, there is a finite set ∆ ⊂ ∆′′ such that
K|=(∆) = K|=(∆′). The lemma follows. ut

Note. A slight modification of the above proof shows that if Q is a quasiva-
riety generated by a finite family of finite, at most four-generated algebras,
then the equationally-defined commutator of Q possesses a finite, parameter-
free generating set ∆(x,y,z,w). ut

In what follows we shall assume that ∆(x,y,z,w) is a finite parameter-
free generating set for the equationally-defined commutator for Q. (In the
reasonings we shall carry out, the assumption that a generating set does not
contain parameters is unnecessary but it will simplify notational issues.)

The structurality of the consequence operation Q|= implies that

Q|=(∆(x,y,z,w)) = Q|=(∆(x,y,w,z)) = Q|=(∆(y,x,z,w)) =(1)
Q|=(∆(y,x,w,z)) = Q|=(∆(z,w,x,y)).

Let p(x,y,z,w)≈ q(x,y,z,w) be an equation and α,β,γ,δ arbitrary terms.
We form the equation p(α,β,γ,δ)≈ q(α,β,γ,δ) obtained from p≈ q by means
of the substitution x/α, y/β, z/γ, w/δ.

Let h : Te→A be a homomorphism. The satisfiability of p(α,β,γ,δ) ≈
q(α,β,γ,δ) in the algebra A under h entirely depends on the values hα,
hβ, hγ, hδ. It follows that the satisfiability of p(α,β,γ,δ) ≈ q(α,β,γ,δ) in
A under h is equivalent to the satisfiablity of the equation p(x,y,z,w) ≈
q(x,y,z,w) under an appropriate assignment of the elements of A to the
variables x,y,z,w, viz. under the mapping which assigns hα to x, hβ to y,
hγ to z, and hδ to w.

We define the set of equations ∆(α,β,γ,δ) by making the above substi-
tution in all equations p ≈ q of ∆. It follows from the above remarks that
a homomorphism h : Te→ 2 validates the equations of ∆(α,β,γ,δ) in 2 if
and only if the mapping which assigns hα to x, hβ to y, hγ to z and hδ to
w validates the set of equations ∆(x,y,z,w) in 2. This trivial observation is
crucial in the further reasoning.

To simplify the notation, we shall mark by

∆(a,b,c,d)

the sentence stating that a homomorphism h : Te→ 2 such that a = hx,
b = hy, c = hz, d = hw validates the equations of ∆(x,y,z,w) in 2, when 2
is clear from context. ∆(a,b,c,d) is thus either true or false. In view of (1),
there then hold in 2 the following equivalences:

∆(a,b,c,d) ⇔ ∆(a,b,d,c) ⇔ ∆(b,a,c,d) ⇔ ∆(b,a,d,c) ⇔(2)
∆(b,a,d,c) ⇔ ∆(c,d,a,b),

for all a,b,c,d.
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Let Q = SP(K), where K is a finite family of two-element algebras. To
simplify notation, we put C := Q|=. We shall first prove the following lemma,
being a necessary condition for the equationally-defined commutator to be
additive:

Lemma 3.3. The consequence operation C validates, for arbitrary positive
integers m and n, the following equation:

For any disjoint finite sequences xm,ym,zn,wn of pairwise different
individual variables, where xm = x1, . . . ,xm, y

m
= y1, . . . ,ym, zn =

z1, . . . ,zn, wn = w1, . . . ,wn,

(EqDistr)m,n C(xm ≈ ym)∩C(zn ≈ wn) =

C(
⋃

16i6m,16j6n
C(xi ≈ yi)∩C(zj ≈ wj)).

Proof. (EqDistr)m,n for m > 1 and n > 1, are certain restricted laws of dis-
tributivity tailored for simplest atomic equations. Conditions (EqDistr)m,n
do not continue to hold (with the exception of the trivial case m = 1 and
n = 1) if the individual variables occurring in these laws are uniformly re-
placed by arbitrary terms.

We shall first consider the case when m = 2 and n = 1. We must prove
(omitting some subscripts):

(EqDistr)2,1 C(x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w) =
C(C(x1 ≈ y1)∩C(z ≈ w)∪C(x2 ≈ y2)∩C(z ≈ w)).

The proof of (EqDistr)2,1 will give clues about the proof in the general case.
Let ∆2 = ∆2(x1,y1,x2,y2;z,w) be a set of equations (in the variables

x1,y1,x2,y2, z,w) such that

C(∆2(x1,y1,x2,y2;z,w)) = C(x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w).

Such a set (without parameters) exists. (To show this, suitably modify the
proof of Lemma 3.2.) Thus parametric variables will be discarded in further
reasonings.) Structurality of C yields equations for ∆2 analogous to (1), that
is.

C(∆2(x1,y1,x2,y2;z,w)) = C(∆2(x2,y2,x1,y1;z,w)) =(3)
C(∆2(x1,y1,y2,x2;z,w)) = C(∆2(y1,x1,x2,y2;z,w)) =
C(∆2(y1,x1,y2,x2;z,w)) = etc.

But structurality also gives that

(3a) C(∆2(x1,y1,x1,y1;z,w)) = C(x1 ≈ y1)∩C(z ≈ w)
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and

(3b) C(∆2(x2,y2,x2,y2;z,w)) = C(x2 ≈ y2)∩C(z ≈ w).

As to (3a), ∆2(x1,y1,x1,y1;z,w) is a set of commutator equations in x1,y1
and z, w. Hence C(∆2(x1,y1,x1,y1;z,w)) ⊆ C(x1 ≈ y1) ∩ C(z ≈ w). Let
∆(x1,y1;z,w) be a set of equations such that C(x1 ≈ y1) ∩C(z ≈ w) =
C(∆(x1,y1;z,w)). Evidently, ∆(x1,y1;z,w)⊆C(x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w)
= C(∆2(x1,y1,x2,y2;z,w)). Hence, by structurality, ∆(x1,y1;z,w) ⊆
C(∆2(x1,y1,x1,y1;z,w)). This gives that C(x1 ≈ y1)∩C(z ≈w)⊆C(∆2(x1,
y1,x1,y1;z,w)). (3a) follows. (3b) is similarly checked.

We must therefore prove that

(4) ∆2(x1,y1,x2,y2;z,w)⊆C(∆2(x1,y1,x1,y1;z,w)∪∆2(x2,y2,x2,y2;z,w)),

because the reverse inclusion is immediate. Suppose (4) does not hold. Hence
there is a homomorphism h : Te→ 2 in some algebra 2 ∈K which validates
the equations of ∆2(x1,y1,x1,y1;z,w)∪∆2(x2,y2,x2,y2;z,w) and falsifies
an equation belonging to ∆2(x1,y1,x2,y2;z,w). We assume that {0,1} is the
carrier of 2.

As h does not validate ∆2(x1,y1,x2,y2;z,w), it follows that

(∗) (hx1 6= hy1 or hx2 6= hy2) and hz 6= hw,

because otherwise h would validate ∆2 due to the definition of ∆2.
We shall first consider the case when hz = 1 and hw = 0. Following (∗),

we shall consider the following three cases.
Case A. hx1 6= hy1 and hx2 6= hy2.

Then ∆2(hx1,hy1,hx2,hy2;hz,hw) reduces to one of the following condi-
tions:

(5)(a)∆2(1,0,1,0;1,0),∆2(1,0,0,1;1,0),∆2(0,1,1,0;1,0),∆2(0,1,0,1;1,0).

Case B. hx1 = hy1 and hx2 6= hy2.
Then ∆2(hx1,hy1,hx2,hy2;hz,hw) reduces to one of the following condi-

tions:

(5)(b)∆2(1,1,1,0;1,0),∆2(0,0,1,0;1,0),∆2(1,1,0,1;1,0),∆2(0,0,0,1;1,0).

Case C. hx1 6= hy1 and hx2 = hy2.
Then ∆2(hx1,hy1,hx2,hy2;hz,hw) is one of the conditions:

(5)(c)∆2(1,0,1,1;1,0),∆2(1,0,0,0;1,0),∆2(0,1,1,1;1,0),∆2(0,1,0,0;1,0).

Thus at least one condition among the above conditions listed in (5)(a) +
(5)(b) + (5)(c) is false.
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On the other hand, h validates ∆2(x1,y1,x1,y1;z,w)∪∆2(x2,y2,x2,y2;z,w),
i.e., h validates ∆2(x1,y1,x1,y1;z,w) and h validates ∆2(x2,y2,x2,y2;z,w).
The condition ∆2(hx1,hy1,hx1,hy1;hz,hw)∧∆2(hx2,hy2,hx2,hy2;hz,hw)
cannot take the form in which hx1 = hy1 and hx2 = hy2 or hz = hw, be-
cause h would then validate ∆2(x1,y1,x2,y2;z,w), which is assumed not
to hold. Consequently, the true condition ∆2(hx1,hy1,hx1,hy1;hz,hw) ∧
∆2(hx2,hy2,hx2,hy2;hz,hw) takes one of the following three forms that are
parallel to the above cases.
Case A. hx1 6= hy1 and hx2 6= hy2.

Then at least one of the following conjunctions is true:

∆2(1,0,1,0;1,0)∧∆2(1,0,1,0;1,0),(6)(a)
∆2(1,0,1,0;1,0)∧∆2(0,1,0,1;1,0),
∆2(0,1,0,1;1,0)∧∆2(1,0,1,0;1,0),
∆2(0,1,0,1;1,0)∧∆2(0,1,0,1;1,0).

We may simplify these conditions (because e.g. in some conditions conjuncts
are repeated). But for our purposes it is unnecessary.

If at least one of the conditions listed in (6)(a) is true, they all are true,
because they are equivalent due to the properties of ∆2(x1,y1,x2,y2;z,w)
exhibited in (3).
Case B. hx1 = hy1 and hx2 6= hy2.

Then at least one of the following conjunctions is true:

∆2(1,1,1,1;1,0)∧∆2(1,0,1,0;1,0),(6)(b)
∆2(1,1,1,1;1,0)∧∆2(0,1,0,1;1,0),
∆2(0,0,0,0;1,0)∧∆2(1,0,1,0;1,0),
∆2(0,0,0,0;1,0)∧∆2(0,1,0,1;1,0).

Again, if at least one of the conditions listed in (6)(b) is true, they are all
true. Indeed, the first conjuncts of these conditions are all true and the second
conjuncts are equivalent in virtue of (3).
Case C. hx1 6= hy1 and hx2 = hy2.

Then at least one of the following is true:

∆2(1,0,1,0;1,0)∧∆2(1,1,1,1;1,0),(6)(c)
∆2(1,0,1,0;1,0)∧∆2(0,0,0,0;1,0),
∆2(0,1,0,1;1,0)∧∆2(1,1,1,1;1,0),
∆2(0,1,0,1;1,0)∧∆2(0,0,0,0;1,0).

Again, if at least one of the conditions of (6)(c) is true, they are all true,
because the second conjuncts of these conditions are all true and the first
conjuncts are equivalent.
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If Case A holds, holds, then at least one of the conditions of (5)(a) is false.
Then notice that all conditions of (5)(a) are false, because, in virtue of (3),
they are equivalent. It then follows that the conjuctions listed in (6)(a) are
all false as well. This contradicts the fact that the conditions of (6)(a) are all
true.

To handle Cases B and C, some other facts are needed.
The structurality of C implies that

(7) ∆2(x1,x1,x2,y2;z,w)⊆ C(∆2(x2,y2,x2,y2;z,w)).

Indeed, we have that C(∆2(x2,y2,x2,y2;z,w)) = C(x2 ≈ y2)∩C(z ≈ w), by
(3a). But ∆2(x1,x1,x2,y2;z,w) is a set of quaternary commutator equations
in x2,y2;z,w. Therefore ∆2(x1,x1,x2,y2;z,w) ⊆ C(x2 ≈ y2)∩C(z ≈ w). (7)
then follows.

By a similar argument we also get:

(8) ∆2(x1,y1,x2,x2;z,w)⊆ C(∆2(x1,y1,x1,y1;z,w)).

If Case B holds, one of the conditions listed in (5)(b) is false and the
conditions of (6)(b) are all true.

(7) entails the following true implications:

∆2(1,0,1,0;1,0) implies ∆2(1,1,1,0;1,0)
∆2(1,0,1,0;1,0) implies ∆2(0,0,1,0;1,0)
∆2(0,1,0,1;1,0) implies ∆2(1,1,0,1;1,0)
∆2(0,1,0,1;1,0) implies ∆2(0,0,0,1;1,0)

Since in virtue of (6)(b), the antecedents of the above implications are true,
it follows that their succeedents are true as well. But this means that all
conditions listed in (5)(b) are true. This contradicts the assumption that
some condition of (5)(b) is false.

If Case C holds, one of the conditions listed in (5)(c) is false and the
conditions of (6)(c) are all true. To get a contradiction, a similar argument
is applied. (8) yields the following true implications:

∆2(1,0,1,0;1,0) implies ∆2(1,0,1,1;1,0)
∆2(1,0,1,0;1,0) implies ∆2(1,0,0,0;1,0)
∆2(0,1,0,1;1,0) implies ∆2(0,1,1,1;1,0)
∆2(0,1,0,1;1,0) implies ∆2(0,1,0,0;1,0)

Since in virtue of (6)(c), the antecedents of the above implications are true,
it follows that their succedents are true as well. But this means that all
conditions listed in (5)(c) are true. This contradicts the assumption that
some condition of (5)(c) is false.

Thus in the above three cases we arrive at a contradiction.
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In the above reasoning it was assumed that hz = 1 and hw = 0. But the
situation when hz = 0 and hw= 1 is fully symmetric. In this case we also get
a contradiction.

We now pass to the proof of (EqDistr)m,n for all m> 1 and n> 1.
Let m > 1. We assume that (EqDistr)m+1,1 holds. We then show that

(EqDistr)m+2,1. Let x1 ≈ y1, x2 ≈ y2, x3 ≈ y3, . . . ,xm+2 ≈ ym+2, z ≈ w be
equations of different variables. Put x := x3, . . . ,xm+2, y := y3, . . . ,ym+2. Let
∆(x,y,x1,y1,x2,y2;z,w) be a set of equations in the variables x,x1,x2,y,y1,
y2;z,w such that

(1)m+2,1 C(∆(x,y,x1,y1,x2,y2;z,w)) =
C(x≈ y,x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w).

Structurality of C gives that

C(∆(x,y,x1,y1,x1,y1;z,w)) = C(x≈ y,x1 ≈ y1)∩C(z ≈ w),(2a)m+1,1

C(∆(x,y,x2,y2,x2,y2;z,w)) = C(x≈ y,x2 ≈ y2)∩C(z ≈ w).(2b)m+1,1

Suitably modifying the above proof of (EqDistr)2,1 one proves that

(3)m+2,1 C(∆(x,y,x1,y1,x2,y2;z,w)) =
C(∆(x,y,x1,y1,x1,y1;z,w)∪∆(x,y,x2,y2,x2,y2;z,w)).

From (3)m+2,1 and (2a)m+1,1, (2b)m+1,1 it follows that

(4)m+2,1 C(x≈ y,x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w) =
C(C(x≈ y,x1≈ y1)∩C(z≈w)∪C(x≈ y,x2≈ y2)∩C(z≈w)).

But as (EqDistr)m+1,1 holds by IH, we have that

C(x≈ y,x1 ≈ y1)∩C(z ≈ w) =

C(
⋃

36i6m
C(xi ≈ yi)∩C(z ≈ w)∪C(x1 ≈ y1)∩C(z ≈ w))

and

C(x≈ y,x2 ≈ y2)∩C(z ≈ w) =

C(
⋃

36i6m
C(xi ≈ yi)∩C(z ≈ w)∪C(x2 ≈ y2)∩C(z ≈ w)).

Combining the last two equalities with (4)m+2,1 we obtain that
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C(x≈ y,x1 ≈ y1,x2 ≈ y2)∩C(z ≈ w) =

C(
⋃

16i6m
C(xi ≈ yi)∩C(z ≈ w)∪C(x1 ≈ y1)∩C(z ≈ w)).

So (EqDistr)m+2,1 also holds. This shows (EqDistr)m,1 for all positive m.
Fixm. We shall prove (EqDistr)m,n for all positive n. The case (EqDistr)m,1

is already established. We assume (EqDistr)m,n. We show (EqDistr)m,n+1 for
n> 1.

We consider sets of equations x1 ≈ y1, . . . ,xm ≈ ym and z1 ≈w1, z2 ≈w2,
z3 ≈ w3, . . . ,zn ≈ yn,zn+1 ≈ yn+1. We mark the set x1 ≈ y1, . . . ,xm ≈ ym by
x ≈ y and the set z3 ≈ w3, . . . ,zn ≈ yn,zn+1 ≈ yn+1 by z ≈ w. (This set is
empty when n= 2.)

Let ∆(x,y;z1,w1,z2,w2,z,w) be a set of equations of terms in the above
variables such that

(5)m,n+1 C(∆(x,y;z,w,z1,w1,z2,w2)) =
C(x≈ y)∩C(z ≈ w,z1 ≈ w1,z2 ≈ w2).

Structurality of C gives that

C(∆(x,y;z,w,z1,w1,z1,w1)) = C(x≈ y)∩C(z ≈ w,z1 ≈ w1),(6a)m,n
C(∆(x,y;z,w,z2,w2,z2,w2)) = C(x≈ y)∩C(z ≈ w,z2 ≈ w2).(6b)m,n

By way of an appropriate modification of the proof of (EqDistr)2,1 one proves
that

(7)m,n+1 C(∆(x,y;z,w,z1,w1,z2,w2)) =
C(∆(x,y;z,w,z1,w1,z1,w1)∪∆(x,y;z,w,z2,w2,z2,w2)).

From (7)m,n+1 and (6a)m,n, (6b)m,n it follows that

(8)m,n+1 C(x≈ y)≈ C(z ≈ w,z1 ≈ w1,z2 ≈ w2) =
C(C(x≈ y)∩C(z≈w,z1≈w1)∪C(x≈ y)∩C(z≈w,z2≈w2)).

But as (EqDistr)m,n holds by IH, we have that

C(x≈ y)∩C(z ≈ w,z1 ≈ w1) =

C(
⋃

16i6m,36j6n+1
C(xi≈ yi)∩C(zj ≈wj)∪

⋃
16i6m

C(xi≈ yi)∩C(z1≈w1))

and
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C(x≈ y)∩C(z ≈ w,z2 ≈ w2) =

C(
⋃

16i6m,36j6n+1
C(xi ≈ yi)∩C(zj ≈wj)∪

⋃
16i6m

C(xi ≈ yi)∩C(z2 ≈w2)).

Combining the last two equalities with (8)m,n+1 we obtain that

C(x≈ y)∩C(z ≈ w,z1 ≈ w1,z2 ≈ w2) =

C(
⋃

16i6m,16j6n+1
C(xi ≈ yi)∩C(zj ≈ wj)).

So (EqDistr)m,n+1 holds. This concludes the proof of the lemma. ut

The proof of Lemma 3.3 does not refer to intrinsic properties of two-
element algebras. The lemma is purely combinatorial, because its proof counts
the numbers of pertinent possibilities directly resulting from the fact that
the carrier of the algebra has two-elements. One may pose a natural question
whether the reasoning presented in Lemma 3.3 carries over to finite algebras
of cardinalities greater than 2. We leave this combinatorial question open
here.

The above lemma and Proposition 5.2.13 of (Czelakowski, 2015) imply:

Corollary 3.4. Assume that Q = SP(K) for some finite family K of two-
element algebras. Then for every algebra A ∈Q and any Φ,Ψ ∈ ConQ(A),

[Φ,Ψ ] = sup{[ΘQ(a,b),ΘQ(c,d)] : a≡ b (Φ), c≡ d (Ψ)}

in the algebra A. ut

(Here the supremum is taken in the lattice ConQ(A).)
The property of the equationally-defined commutator shown in Corol-

lary 3.4 is weaker than additivity. To prove additivity we need the following
fact.

Lemma 3.5. Assume Q = SP(K) for some finite family K of two-element
algebras. Let C := Q|= and ∆(x,y,z,w) be a finite generating set. Assume
that

(r) α≈ β ∈ C(α1 ≈ β1, . . . ,αn ≈ βn).

Then for any variables z,w not occurring in the equations α1≈β1,≈,αn≈βn,
α≈ β it holds:

(r∆) ∆(α,β,z,w)⊆ C(∆(α1,β1,z,w)∪ . . .∪∆(αn,βn,z,w)).

Proof (of the lemma). Suppose that (r∆) does not hold. There is an algebra
2 ∈ K and a homomorphism h : Te→ 2 which validates the equations of
∆(α1,β1,z,w)∪ . . .∪∆(αn,βn,z,w) and falsifies some equation belonging to
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∆(α,β,z,w). As above, we assume that {0,1} is the carrier of 2. As h does not
validate ∆(α,β,z,w), the properties of generating sets (they were discussed
in the introduction) imply that hα 6= hβ and hz 6= hw. It follows that the
situation when some equation of ∆(α,β,z,w) is falsified by h occurs exactly
when the false condition ∆(hα,hβ,hz,hw) takes one of the forms:

(∗) ∆(1,0,1,0),∆(1,0,0,1),∆(0,1,1,0),∆(0,1,0,1).

In virtue of (2), these four conditions are equivalent and therefore they all
are false.

On the other hand, (r) and hα 6= hβ imply that h falsifies at least one
equation αi ≈ βi for some i (16 i6 n), i.e., hαi 6= hβi. As h validates the set
∆(α1,β1,z,w)∪ . . .∪(αn,βn,z,w) and hz 6=hw, therefore each of the true con-
ditions ∆(hαi,hβi,hz,hw) takes one of the forms ∆(1,0,1,0),∆(1,0,0,1),
∆(0,1,1,0),∆(0,1,0,1). According to (2), all of them are equivalent and
therefore true. But these conditions are already listed in (∗) and all are false.
We thus arrive at a contradiction. ut

Applying Theorem 5.2.3 of (Czelakowski, 2015) to Lemma 3.5 and Corol-
lary 3.4 we obtain that the equationally-defined commutator for Q is additive.
The theorem has been proved. ut

Theorem 3.6. Let Q be a quasivariety generated by finite family of two-
element algebras. Then equationally-defined commutator for Q satisfies the
associativity law

[[x1,x2],x3]≈ [x1, [x2,x3]].

Comments. [[x1,x2],x3]≈ [x1, [x2,x3]] means that

[[Φ1,Φ2],Φ3] = [Φ1, [Φ2,Φ3]]

holds in any algebra A ∈Q and for any congruences Φ1,Φ2,Φ3 ∈ ConQ(A).
Let x1,y1,x2,y2,x3,y3 be different individual variables from the first-order

language Lτ corresponding to τ . In view of additivity of the commutator, the
equation

[Q|=(x1 ≈ y1), [Q|=(x2 ≈ y2),Q|=(x3 ≈ y3)]] =
[[Q|=(x1 ≈ y1),Q|=(x2 ≈ y2)],Q|=(x3 ≈ y3)]

(holding in the lattice of the equational theories of Q|=) already implies the
commutator identity [[x1,x2],x3]≈ [x1, [x2,x3]] in Q. This follows from the
remarks placed in Sections 3.2 and 5.2 of (Czelakowski, 2015). (The reverse
implication also holds.)

Proof (of the theorem). As in the proof of the previous theorem, it is assumed
that ∆(x,y,z,w) is a generating set of quarternary commutator equations
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for Q, that is, it satisfies the condition: Q|=(∆(x,y,z,w)) = Q|=(x ≈ y)∩
Q|=(z ≈ w). According to Theorem 9.2.1 and 9.2.2 of (Czelakowski, 2015),
we have that

[Q|=(x1≈ y1), [Q|=(x2≈ y2),Q|=(x3≈ y3)]] = Q|=(∆(x1,y1,∆(x2,y2,x3,y3)))

and

[[Q|=(x1≈ y1),Q|=(x2≈ y2)],Q|=(x3≈ y3)]=Q|=(∆(∆(x1,y1,x2,y2),x3,y3)).

In view of the above remarks, it suffices to show that

(∗) Q|=(∆(x1,y1,∆(x2,y2,x3,y3))) = Q|=(∆(∆(x1,y1,x2,y2),x3,y3)).

The proof of (∗) is based on two lemmas—Lemmas 3.7 and 3.8. We shall
first prove that the theory on the RHS of (∗) is included in the theory
on the LHS. After proving Lemma 3.7, we shall show the reverse inclusion
(Lemma 3.8).

Lemma 3.7. ∆(∆(x1,y1,x2,y2),x3,y3)⊆Q|=(∆(x1,y1,∆(x2,y2,x3,y3))).

Proof (of the lemma). We have that Q = SP(K) for some finite set K
of two-element algebras. Suppose that the lemma does not hold. Hence
there is an algebra 2 ∈ K with the carrier {0,1} such that for some ho-
momorphism h : Te → 2 it is the case that h validates the equations of
∆(x1,y1,∆(x2,y2,x3,y3)) and it falsifies an equation

p(r(x1,y1,x2,y2),s(x1,y1,x2,y2),x3,y3)≈
q(r(x1,y1,x2,y2),s(x1,y1,x2,y2),x3,y3)

belonging to ∆(∆(x1,y1,x2,y2),x3,y3). Hence

(1) p(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3)
6= q(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3)

and as p≈ q and r ≈ s are quaternary commutator equations, it follows that

(2) r(hx1,hy1,hx2,hy2) 6= s(hx1,hy1,hx2,hy2)

and

(3) hx1 6= hy1, hx2 6= hy2, hx3 6= hy3.

We shall consider several cases and subcases implied by (1)–(3).
Case 1. p(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 1 and
q(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 0.
Subcase 1.1. r(hx1,hy1,hx2,hy2) = 1 and s(hx1,hy1,hx2,hy2) = 0.
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According to Subcase 1.1 and (3) we isolate further 8 (sub)subcases:
Subcase 1.1.1. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.
Subcase 1.1.2. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.
Subcase 1.1.3. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.
Subcase 1.1.4. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.
Subcase 1.1.5. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.
Subcase 1.1.6. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.
Subcase 1.1.7. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.
Subcase 1.1.8. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.

We shall separately analyse them. The general idea of the proof is to define
equations of the form

(∗) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3)),

a separate equation for each subcase 1.1.1—1.1.8, and to show that the above
homomorphism h, pertinent to each such subcase, falsifies (∗), that is, it
assigns 1 to the left hand side of (∗) and 0 to the right hand side.
Subcase 1.1.1. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.

We define:

r′(x2,y2,x3,y3) := r(x2,y2,x3,y3), s′(x2,y2,x3,y3) := s(x2,y2,x3,y3),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(1.1.1) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

This equation belongs to Q|=(∆(x1,y1,∆(x2,y2,x3,y3))). We then compute
the value of (1.1.1) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) =(1.1.1)L

p′(hx1,hy1, r
′(hx2,hy2,hx3,hy3),s′(hx2,hy2,hx3,hy3)) =

p(r′(hx2,hy2,hx3,hy3),s′(hx2,hy2,hx3,hy3),hx1,hy1) =
p(r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3),hx1,hy1) = (by Subcase 1.1.1)
p(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 1 (by Case 1)

Analogously,
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h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) =(1.1.1)R

q′(hx1,hy1, r
′(hx2,hy2,hx3,hy3),s′(hx2,hy2,hx3,hy3)) =

q(r′(hx2,hy2,hx3,hy3),s′(hx2,hy2,hx3,hy3),hx1,hy1) =
q(r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3),hx1,hy1) =(by Subcase 1.1.1)
q(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 0 (by Case 1).

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.1). But in virtue of (1.1.1)L and (1.1.1)R, h falsifies (1.1.1).
A contradiction.

The other subcases are similarly handled. The details are omitted.
Subcase 1.1.2. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.

We define:

r′(x2,y2,x3,y3) := r(x2,y2,y3,x3), s′(x2,y2,x3,y3) := s(x2,y2,y3,x3),
p′(x,y,z,w) := p(z,w,y,x), q′(x,y,z,w) := q(z,w,y,x),

and form the equation

(1.1.2) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

in the above case we compute the value of (1.1.2) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) =(1.1.2)L

p(r(hx2,hy2,hy3,hx3),s(hx2,hy2,hy3,hx3),hy1,hx1) = (by Subcase 1.1.2)
p(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 1 (by Case 1).

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) =(1.1.2)R

q(r(hx2,hy2,hy3,hx3),s(hx2,hy2,hy3,hx3),hy1,hx1) = (by Subcase 1.1.2)
q(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 0 (by Case 1).

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.2). But in virtue of (1.1.2)L and (1.1.2)R, h falsifies (1.1.2).
A contradiction.
Subcase 1.1.3. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.

We define:

r′(x2,y2,x3,y3) := r(y2,x2,x3,y3), s′(x2,y2,x3,y3) := s(y2,x2,x3,y3),
p′(x,y,z,w) := p(z,w,y,x), q′(x,y,z,w) := q(z,w,y,x),

This equation belongs to Q|= ∆(x1,y1,∆(x2,y2,x3,y3))). Then proceeding as(
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and form the equation

(1.1.3) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

This equation belongs to Q|=(∆(x1,y1,∆(x2,y2,x3,y3))). We then compute
the value of (1.1.3) under h. We have:

(1.1.3)L h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.

Analogously,

(1.1.3)R h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.3). But in virtue of (1.1.3)L and (1.1.3)R, h falsifies (1.1.3).
A contradiction.
Subcase 1.1.4. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.

We define:

r′(x2,y2,x3,y3) := r(y2,x2,x3,y3), s′(x2,y2,x3,y3) := s(y2,x2,x3,y3),
p′(x,y,z,w) := p(z,w,y,x), q′(x,y,z,w) := q(z,w,y,x),

and form the equation

(1.1.4) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

This equation belongs to Q|=(∆(x1,y1,∆(x2,y2,x3,y3))). We then compute
the value of (1.1.4) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.(1.1.4)L

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.(1.1.4)R

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.4). But in virtue of (1.1.4)L and (1.1.4)R, h falsifies (1.1.4).
A contradiction.
Subcase 1.1.5. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.

We define:

r′(x2,y2,x3,y3) := r(y2,x2,x3,y3), s′(x2,y2,x3,y3) := s(y2,x2,x3,y3),
p′(x,y,z,w) := p(z,w,y,x), q′(x,y,z,w) := q(z,w,y,x),
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and form the equation

(1.1.5) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

We then compute the value of (1.1.5) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.(1.1.5)L

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.(1.1.5)R

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.5). But in virtue of (1.1.5)L and (1.1.5)R, h falsifies (1.1.5).
A contradiction.
Subcase 1.1.6. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.

We define:

r′(x2,y2,x3,y3) := r(y2,x2,y3,x3), s′(x2,y2,x3,y3) := s(y2,x2,y3,x3),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(1.1.6) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

We then compute the value of (1.1.6) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.(1.1.6)L

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.(1.1.6)R

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.6). But in virtue of (1.1.6)L and (1.1.6)R, h falsifies (1.1.6).
A contradiction.
Subcase 1.1.7. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.

We define:

r′(x2,y2,x3,y3) := r(x2,y2,x3,y3), s′(x2,y2,x3,y3) := s(x2,y2,x3,y3),
p′(x,y,z,w) := p(z,w,y,x), q′(x,y,z,w) := q(z,w,y,x),

and form the equation
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(1.1.7) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

We then compute the value of (1.1.7) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.(1.1.7)L

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.(1.1.7)R

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.7). But in virtue of (1.1.7)L and (1.1.7)R, h falsifies (1.1.7).
A contradiction.
Subcase 1.1.8. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.

We define:

r′(x2,y2,x3,y3) := r(x2,y2,x3,y3), s′(x2,y2,x3,y3) := s(x2,y2,x3,y3),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(1.1.8) p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))≈

q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))

We then compute the value of (1.1.8) under h. We have:

h(p′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 1.(1.1.8)L

Analogously,

h(q′(x1,y1, r
′(x2,y2,x3,y3),s′(x2,y2,x3,y3))) = 0.(1.1.8)R

As h validates the equations of ∆(x1,y1,∆(x2,y2,x3,y3)), it also validates
the equation (1.1.8). But in virtue of (1.1.8)L and (1.1.8)R, h falsifies (1.1.8).
A contradiction.

The above remarks show that each (sub)subcase of Subcase 1.2 yields a
contradiction.

The other subcase
Subcase 1.2. r(hx1,hy1,hx2,hy2) = 0 and s(hx1,hy1,hx2,hy2) = 1
is handled similarly. Subcase 1.2 yields 8 further (sub)subcases, identical with
the subcses (1.1.1)–(1.1.8) analyzed as above. In each such a (sub)subcase the
identical equation of the form (∗) is defined. The only difference in comparison
with Subcase 1.1 is that the equation (∗) corresponding to each subcase
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among (1.1.1)–(1.1.8) is now falsified by h in such a way that its LHS now
receives value 0 and RHS is equal to 1.

It remains to consider
Case 2. p(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 0 and
q(r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2),hx3,hy3) = 1.

The situation is now symmetric to Case 1. Case 2 gives rise to the two
subcases:
Subcase 2.1. r(hx1,hy1,hx2,hy2) = 1 and s(hx1,hy1,hx2,hy2) = 0
and
Subcase 2.2. r(hx1,hy1,hx2,hy2) = 1 and s(hx1,hy1,hx2,hy2) = 0.
They are both handled in the identical way as in the above Subcases 1.1 and
1.2.

Summing up, in each resulting case the supposition that the above lemma
does not hold leads to a contradiction. ut

We now prove the other implication pertinent to (∗).

Lemma 3.8. ∆(x1,y1,∆(x2,y2,x3,y3)))⊆Q|=(∆(∆(x1,y1,x2,y2),x3,y3))).

To prove the lemma, we suitably modify the above proof of Lemma 3.7.
Suppose that the lemma does not hold. Hence for some algebra 2 ∈K and

some homomorphism h : Te→ 2 it is the case that h validates the equations
of ∆(∆(x1,y1,x2,y2),x3,y3) and falsifies an equation

(∗∗) p(x1,y1, r(x2,y2,x3,y3),s(x2,y2,x3,y3))≈
q(x1,y1, r(x2,y2,x3,y3),s(x2,y2,x3,y3))

belonging to ∆(x1,y1,∆(x2,y2,x3,y3)). Hence

(4) p(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) 6=
q(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3))

and as p≈ q and r ≈ s are quaternary commutator equations, it follows that

(5) r(hx2,hy2,hx3,hy3) 6= s(hx2,hy2,hx3,hy3)

and

(6) hx1 6= hy1, hx2 6= hy2, hx3 6= hy3.

We work with (∗∗) and consider several cases and subcases implied by
(4)–(6).
Case 1. p(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 1 and
q(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 0.
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Subcase 1.1. r(hx2,hy2,hx3,hy3) = 1 and s(hx2,hy2,hx3,hy3) = 0.
According to Subcase 1.1 and (6) we isolate further 8 (sub)subcases, the

same as in the proof of Lemma 3.7:
Subcase 1.1.1. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.

We define

r′(x1,y1,x2,y2) := r(x1,y1,x2,y2), s′(x1,y1,x2,y2) := s(x1,y1,x2,y2)

and

p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y)

and form the equation

(2.1.1) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.1) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) =(2.1.1)L

p′(r′(hx1,hy1,hx2,hy2),s′(hx1,hy1,hx2,hy2),hx3,hy3) =
p(hx3,hy3, r

′(hx1,hy1,hx2,hy2),s′(hx1,hy1,hx2,hy2)) =
p(hx3,hy3, r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2)) = (by Subcase 1.1.1)
p(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 1 (by Case 1).

Analogously

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) =(2.1.1)R

q′(r′(hx1,hy1,hx2,hy2),s′(hx1,hy1,hx2,hy2),hx3,hy3) =
q(hx3,hy3, r

′(hx1,hy1,hx2,hy2),s′(hx1,hy1,hx2,hy2)) =
q(hx3,hy3, r(hx1,hy1,hx2,hy2),s(hx1,hy1,hx2,hy2)) = (by Subcase 1.1.1)
q(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 0 (by Case 1).

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.1). But in virtue of (2.1.1)L and (2.1.1)R, h falsifies (2.1.1).
A contradiction.

The other subcases are similarly handled. (Details are omitted.)
Subcase 1.1.2. hx1 = 1, hy1 = 0, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.

We define:

r′(x1,y1,x2,y2) := r(x1,y1,y2,x2), s′(x1,y1,x2,y2) := s(x1,y1,y2,x2),
p′(x,y,z,w) := p(w,z,x,y), q′(x,y,z,w) := q(w,z,x,y),
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and form the equation

(2.1.2) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.2) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) =(2.1.2)L

p(hy3,hx3, r(hx1,hy1,hy2,hx2),s(hx1,hy1,hy2,hx2)) = (by Subcase 1.1.2)
p(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 1 (by Case 1).

Analogously

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) =(2.1.2)R

q(hx1,hy1, r(hx2,hy2,hx3,hy3),s(hx2,hy2,hx3,hy3)) = 0 (by Case 1).

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.2). But in virtue of (2.1.2)L and (2.1.2)R, h falsifies (2.1.2).
A contradiction.
Subcase 1.1.3. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.

We define:

r′(x1,y1,x2,y2) := r(x2,y2,x1,y1), s′(x1,y1,x2,y2) := s(x2,y2,x1,y1),
p′(x,y,z,w) := p(z,w,xy), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.3) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.3) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1.(2.1.3)L

Analogously

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0 (by Case 1).(2.1.3)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.3). But in virtue of (2.1.3)L and (2.1.3)R, h falsifies (2.1.3).
A contradiction.

q(hy3,hx3, r(hx1,hy1,hy2,hx2),s(hx1,hy1,hy2,hx2)) = (by Subcase 1.1.2)
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Subcase 1.1.4. hx1 = 1, hy1 = 0, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.
We define:

r′(x1,y1,x2,y2) := r(x2,y2,y1,x1), s′(x1,y1,x2,y2) := s(x2,y2,y1,x1),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.4) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.4) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1.(2.1.4)L

Analogously

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0.(2.1.4)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.4). But in virtue of (2.1.4)L and (2.1.4)R, h falsifies (2.1.4).
A contradiction.
Subcase 1.1.5. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 1, hy3 = 0.

We define:

r′(x1,y1,x2,y2) := r(x2,y2,y1,x1), s′(x1,y1,x2,y2) := s(x2,y2,y1,x1),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.5) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.5) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1.(2.1.5)L

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0.(2.1.5)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.5). But in virtue of (2.1.5)L and (2.1.5)R, h falsifies (2.1.5).
A contradiction.
Subcase 1.1.6. hx1 = 0, hy1 = 1, hx2 = 1, hy2 = 0, hx3 = 0, hy3 = 1.
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We define:

r′(x1,y1,x2,y2) := r(x2,y2,x1,y1), s′(x1,y1,x2,y2) := s(x2,y2,x1,y1),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.6) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.6) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1.(2.1.6)L

and

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0.(2.1.6)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.6). But in virtue of (2.1.6)L and (2.1.6)R, h falsifies (2.1.6).
A contradiction.
Subcase 1.1.7. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 1, hy3 = 0.

We define:

r′(x1,y1,x2,y2) := r(x2,y2,y1,x1), s′(x1,y1,x2,y2) := s(x2,y2,y1,x1),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.7) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.7) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1.(2.1.7)L

and

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0.(2.1.7)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.7). But in virtue of (2.1.7)L and (2.1.7)R, h falsifies (2.1.7).
A contradiction.
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Subcase 1.1.8. hx1 = 0, hy1 = 1, hx2 = 0, hy2 = 1, hx3 = 0, hy3 = 1.
We define:

r′(x1,y1,x2,y2) := r(x2,y2,x1,y1), s′(x1,y1,x2,y2) := s(x2,y2,x1,y1),
p′(x,y,z,w) := p(z,w,x,y), q′(x,y,z,w) := q(z,w,x,y),

and form the equation

(2.1.8) p′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3)≈
q′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3).

This equation belongs to Q|=(∆(∆(x1,y1,x2,y2),x3,y3)). We then compute
the value of (2.1.8) under h. We have:

hp′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 1(2.1.8)L

and

hq′(r′(x1,y1,x2,y2),s′(x1,y1,x2,y2),x3,y3) = 0.(2.1.8)R

As h validates the equations of ∆(∆(x1,y1,x2,y2),x3,y3), it also validates
the equation (2.1.8). But in virtue of (2.1.8)L and (2.1.8)R, h falsifies (2.1.8).
A contradiction. ut

From Lemmas 3.7–3.8 the theorem follows. ut
Theorem 3.6 can be strengthened if Q is generated by a single two-element

algebra.
If Q is a quasivariety generated by a two-element algebra, it may happen

that the commutator is Abelian (or nullary), which means that for any algebra
A ∈Q and any a,b,c,d ∈A it is the case that [ΘQ(a,b), [ΘQ(c,d)] = 0A. This
situation occurs e.g. in the variety of semilattices. On the other hand, in the
variety of Boolean algebras we have that [Θ(a,b), [Θ(c,d)] =Θ(a,b)∩Θ(c,d)]
for any Boolean algebra A and any a,b,c,d∈A. (The last equation character-
izes the commutator in relatively congruence-distributive quasivarieties—see
e.g. (Kearnes, McKenzie, 1992).) In turn, the variety CEA of classical equiv-
alence algebras, that is, the variety generated by the algebra represented
by the two-element truth-table 2 for the classical equivalence connective, is
congruence-modular and it is not congruence distributive. (CEA is generated
as a quasivariety by 2, i.e., CEA = SP(2).) The equationally-defined com-
mutator for CEA coincides with the standard commutator (as defined for
any CM variety) and hence it is also additive. CEA is term equivalent to the
variety of Boolean groups, i.e., the variety of Abelian groups in which every
element is an idempotent and therefore it is its own inverse. It can be proved
that any two term equivalent varieties have the same equationally-defined
commutators. It then follows that the equationally-defined commutator for
CEA is nullary.
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The next theorem is a refinement of Theorem 3.6:

Theorem 3.9. Let Q be a quasivariety generated by a two-element algebra.
Then the equationally-defined commutator of Q universally validates one of
the following laws: [x,y] = x∧y or [x,y] = 0.

In other words, the above theorem states that any quasivariety generated
by a single two-element algebra is either relatively congruence-distributive or
Abelian.

Before proving the theorem, we recall some definitions and facts from (Cze-
lakowski, 2015).

Let Q be a quasivariety and A an algebra in Q. Let Φ be a Q-congruence
on A. Φ is said to be prime (in the lattice ConQ(A)) if, for any congruences
Φ1,Φ2 ∈ConQ(A), [Φ1,Φ2]⊆Φ implies that Φ1 ⊆Φ or Φ2 ⊆Φ. (Here [Φ1,Φ2]
is the equationally-defined commutator of the congruences Φ1,Φ2 in A in the
sense of Q.)

A ∈Q is said to be prime (in Q) if the identity congruence 0A is prime
in ConQ(A). Thus A is prime in Q if and only if [Φ1,Φ2] = 0A holds for no
pair of nonzero congruences Φ1,Φ2 ∈ ConQ(A).

QPRIME denotes the class of all prime algebras in Q. It is easy to see that
QPRIME ⊆QRFSI (Proposition 7.2.1 of (Czelakowski, 2015).)

Proposition 3.10. Let Q be quasivariety whose equationally-defined com-
mutator is additive. Let ∆(x,y,z,w,u) be a generating set. Let A be an alge-
bra in Q and Φ ∈ ConQ(A). The following conditions are equivalent:

(i) Φ is prime in ConQ(A);
(ii) For all a,b,c,d ∈A, [ΘA

Q(a,b),ΘA
Q(c,d)]A ⊆ Φ implies 〈a,b〉 ∈ Φ or

〈c,d〉 ∈ Φ;
(iii) For all a,b,c,d ∈ A, ΘA

Q((∀e)∆(a,b,c,d,e))⊆ Φ implies 〈a,b〉 ∈ Φ
or 〈c,d〉 ∈ Φ. ut

Note. In the above proposition, the generating set ∆ may contains para-
metric variables, because in the general case Lemma 3.2 does not apply. ut

In view of Theorem 7.2.4 of (Czelakowski, 2015) we have:

Proposition 3.11. Let Q be a quasivariety whose equationally-defined com-
mutator is additive. The class SP(QPRIME) is the largest RCD quasivariety
included in Q. ut

Note. It follows from Proposition 3.10 that if ∆(x,y,z,w,u) is finite, the
class QPRIME is axiomatized relative to Q by the universal-existential first-
order sentence (∀xyzw)((∀u)∧∆→ (x≈ y∨ z∧w)). If moreover Q is gener-
ated by a finite family of finite at most four-generated algebras, then ∆ can
be assumed to do not contain parametric variables (see the note following
Lemma 3.2). Then QPRIME is a universal class. In fact, as QPRIME is a finite
set of finite algebras, it is a finitely axiomatized universal class (irrespec-
tive of the fact the signature of Q is finite or not). The RCD quasivariety
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SP(QPRIME) is therefore finitely axiomatized. This follows from Pigozzi’s
Theorem (see (Pigozzi, 1988)) or from Theorem 3.4 of (Czelakowski, Dzio-
biak, 1990). ut

In purely syntactical contexts it is sometimes convenient to operate with
prime equational theories rather than prime congruences.

Let Q be as in Proposition 3.10. A theory T of Q|= is prime if for any
terms p,q,r,s

∆(p,q,r,s, t)⊆T for all sequences t of terms implies p≈ q ∈T or r≈ s∈T .

If T is a proper prime theory of Q|=, then by factoring the term algebra Te by
means of the congruence ΩT , where α≡ β (modΩT ) means that α≈ β ∈ T ,
we obtain a non-trivial countable algebra belonging to QPRIME.

We pass to the proof of Theorem 3.9. We first prove:

Lemma 3.12. Assume Q is generated by a finite family K of two-element
algebras. Then for every equation p ≈ q ∈Q|=(x ≈ y)∩Q|=(z ≈ w) \Q|=(∅),
there exists a prime theory T of Q|= such that p≈ q 6∈ T .

Proof (of the lemma). We assume Q = SP(K) for a finite class K of two-
element algebras. In view of Theorem 3.1 the equationally-defined commu-
tator of Q is additive. Let ∆ = ∆(x,y,z,w) be a generating set (without
parameters), that is, Q|=(x≈ y)∩Q|=(z ≈ w) = Q|=(∆(x,y,z,w)). We recall
that the structurality of Q|= gives that

(1) Q|=(∆(x,y,z,w)) = Q|=(∆(x,y,w,z)) =
Q|=(∆(y,x,z,w)) = Q|=(∆(y,x,w,z)).

Let A be a fixed non-trivial algebra in Q. The fact that the equations of
∆ hold in a A under a homomorphism h : Te→A such that a= hx, b= hy,
c= hz and d= hw is marked as

∆(a,b,c,d).

In virtue of (1), there hold the following equivalences:

(2) ∆(a,b,c,d) ⇔ ∆(a,b,d,c) ⇔ ∆(b,a,c,d) ⇔ ∆(b,a,d,c).

Assume p≈ q ∈Q|=(x≈ y)∩Q|=(z ≈w)\Q|=(∅). We may assume p≈ q ∈∆.
There is an algebra 2 ∈K whose carrier is {0,1} and a homomorphism h :
Te→ 2 such that hp 6= hq. As p≈ q ∈∆, it follows that h does not validate
∆(x,y,z,w).

Putting a= hx, b= hy, c= hz and d= hw and taking into account the fact
that p≈ q is a quaternary commutator equation, we then obtain that a 6= b,
c 6= d and ∆(a,b,c,d) does not hold. Hence each of the constituent conditions
of (2) is also excluded.
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As {a,b,c,d}= {0,1}, we obtain from (2) that each of the equivalent con-
ditions

(3) ∆(1,0,1,0),∆(1,0,0,1),∆(0,1,0,1),∆(0,1,1,0)

is excluded.
Let T := {α ≈ β ∈ Eq(τ) : hα = hβ in A}. T is a finitely meet-irreducible

theory of Q|= and p≈ q 6∈ T .

Claim. T is a prime theory of Q|=.

Proof (of the claim). We must prove that for any equations α≈ β and γ≈ δ, if
∆(α,β,γ,δ)⊆ T , then α≈ β ∈ T or γ ≈ δ ∈ T . Assume that ∆(α,β,γ,δ)⊆ T .
Thus ∆(hα,hβ,hγ,hδ) holds. As the values of h belong to {0,1}, (3) implies
that either hα= hβ or hγ = hδ. Hence α≈ β ∈ T or γ ≈ δ ∈ T . ut

This proves the lemma. ut

To conclude the proof of Theorem 3.9, assume Q = SP(2). The class
SP(QPRIME) is the largest RCD quasivariety included in Q. As Q is a min-
imal quasivariety, it follows that either SP(QPRIME) = Q or SP(QPRIME)
is a trivial quasivariety.

Suppose that the equationally-defined commutator of Q does not validate
[x,y] = x∧y. Then the equality SP(QPRIME) = Q is excluded (because oth-
erwise Q would be RCD and therefore it would validate [x,y] = x∧ y). It
then follows that SP(QPRIME) is a trivial quasivariety. This means that Q
contains only trivial prime algebras.

To prove that Q is Abelian, it suffices to show that Q|=(x≈ y)∩Q|=(z ≈ w)
= Q|=(∅) (see (Czelakowski, 2015), Theorem 9.3.3). Suppose otherwise that
Q|=(x≈ y)∩Q|=(z ≈ w)\Q|=(∅) 6= ∅. In view of the above lemma, Q|= pos-
sesses a proper prime theory T . By taking the quotient algebra Te/ΩT , we
obtain a non-trivial prime algebra belonging to Q. This contradicts the fact
that Q contains only trivial prime algebras.

This completes the proof of Theorem 3.9. ut
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Abstract In this paper we review a hidden (sorted) generalization of k-
deductive systems—hidden k-logics. They encompass deductive systems as
well as hidden equational logics and inequational logics. The special case of
hidden equational logics has been used to specify and to verify properties in
program development of behavioral systems within the dichotomy visible vs.
hidden data. We recall one of the main applications of this work—the study
of behavioral equivalence. Related results are obtained through combinato-
rial properties of the Leibniz congruence relation.

In addition we obtain a few new developments concerning hidden equa-
tional logic, namely we present a new characterization of the behavioral con-
sequences of a theory.
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1 Introduction

This paper is intended in part as a survey of results which have been devel-
oped in a series of papers in a broader context - the hidden k-logics. These
logics are a generalization of k-deductive systems and their study originated
in a series of lectures on Abstract Algebraic Logic - Application to Computer
Science, during Don Pigozzi’s visit to CAUL, Lisbon, in 1999 (Pigozzi, 1999).

When we refer to a deductive system we usually mean a 1-dimensional
deductive system such as the deductive system of the classical, the intu-
itionistic and modal propositional calculi. The notion of deductive system,
as an abstract consequence operator, is due to Tarski (see (Tarski, 1930)).
In their groundbreaking work (Blok and Pigozzi, 1986), Blok and Pigozzi
introduced and studied the notion of Leibniz congruence in the context of
1-deductive systems. These systems have been studied for years by several lo-
gicians, for example Blok and Pigozzi (Blok and Pigozzi, 1989), Czelakowski
(Czelakowski, 1981) and (Czelakowski, 2001), the Barcelona group led by
Font and Jansana (Font and Jansana, 1996), and also Hermann (Herrmann,
1996), Pigozzi (Pigozzi, 2001) and Wójcicki (Wójcicki, 1988).

The higher dimensional systems, called k-deductive systems, constitute a
natural generalization including many logical systems, e.g., equational and
inequational logics. k-deductive systems were introduced by Blok and Pigozzi
in (Blok and Pigozzi, 1992); other important references are (Czelakowski and
Pigozzi, 1999) and (Pa lasińska, 1994). For these higher dimension deductive
systems Blok and Pigozzi developed a theory similar to the theory of 1-
deductive systems. The notion of Leibniz congruence still plays the central
role in the study of k-deductive systems. There is another generalization
of k-deductive systems, called K-deductive systems, that includes Gentzen
systems. This theory was developed by Pa lasińska and presented in her PhD
thesis (Pa lasińska, 1994).

We also should call attention to the work by Voutsadakis on the study
of deductive systems within category theory. Voutsadakis has done extensive
work on categorical abstract algebraic logic of π-institutions (Voutsadakis,
2004).

Abstract algebraic logic (AAL) is an area of algebraic logic that focuses on
the study of the relationship between logical equivalence and logical truth.
Moreover, AAL is centered on the process of associating a class of algebras
to a logical system. This approach contrasts with the usual treatment given
in algebraic logic where the emphasis is on the study of the class of algebras
obtained by this process. A logical system, a deductive system as it has been
called, is taken to be a pair formed by a signature Σ and a substitution-
invariant closure relation on the set of terms over Σ in a countably infinite
fixed set of variables X, TeΣ(X) (we will use the word ‘formula’ as a synonym
for ‘term’). By a closure relation on TeΣ(X) we mean a binary relation `,
where ` ⊆ P(TeΣ(X))×TeΣ(X), between subsets of terms and individual
terms satisfying the following conditions: (1) Γ ` γ for each γ ∈ Γ and (2)
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Γ ` ϕ and ∆ ` γ for each γ ∈ Γ imply ∆ ` ϕ. The relation ` is said to
be substitution-invariant if Γ ` ϕ implies σ(Γ ) ` σ(ϕ) for every substitution
σ :X→TeΣ(X). Moreover, ` is said to be finitary if Γ ` ϕ implies ∆ ` ϕ for
some finite subset ∆ of Γ .

The main paradigm in AAL is the representation of the classical proposi-
tional calculus in the equational theory of Boolean algebras by means of the
Lindenbaum-Tarski process. In its traditional form, the Lindenbaum-Tarski
process relies on the fact that the classical propositional calculus has a bi-
conditional “↔” that defines logical equivalence. The set of all formulas is
partitioned into logical equivalence classes and then abstracted by the famil-
iar algebraic process of forming the quotient algebra. This algebra is called
the Lindenbaum-Tarski algebra. There are many deductive systems that do
not have a biconditional, and hence the Lindenbaum-Tarski process cannot
be applied directly. However, there is an abstract notion of logical equiva-
lence in every deductive system called the Leibniz congruence. In this way
the Lindenbaum-Tarski process can be generalized so as to apply to many
deductive systems.

The Leibniz congruence Ω(T ) on the term algebra over a theory T
is characterized in the following way: for any pair of terms α,β, α ≡
β (Ω(T )) if for every term ϕ and any variable p occurring in ϕ, ϕ(p/α) ∈
T if and only if ϕ(p/β) ∈ T . The Leibniz congruence is extended in a natu-
ral way to the power set of an arbitrary algebra. Given a Σ-algebra A and
a designated subset F of A, the pair 〈A,F 〉 is called a matrix. The relation
Ω(F ) identifies any two elements which cannot be distinguished by any prop-
erty defined by a formula. More precisely, for any pair of elements a,b of A,
a≡ b (Ω(F )) if for each formula ϕ(x,u0, · · · ,uk−1), and all parameters c̄∈Ak,
ϕA(a, c̄) ∈ F if and only if ϕA(b, c̄) ∈ F . Moreover, Ω(F ) is a congruence on
A. A matrix 〈A,F 〉 is said to be reduced if Ω(F ) is the identity relation. The
congruence Ω(F ) is called the Leibniz congruence since it may be seen as the
sentential version of the second order definition of equality given by Leibniz.
He defined two objects to be equal if they have exactly the same properties.
In the model of a world given by the matrix 〈A,F 〉, a property is determined
by a formula ϕ(x, ū) and parameters c̄ ∈Ak. Thus two elements are equal, in
the Leibniz sense, if the condition above holds.

Equational logic serves as the underlying logic in many formal approaches
to program specification. The algebraic data types specified in this formal
way may be viewed as abstract machines on which the programs are to be
run. This is one way of giving a precise algebraic semantics for programs,
against which the correctness of a program can be tested. Equational logic
can be seen as a 2-deductive system and then the tools and results of AAL
can be applied to it.

However, object oriented (OO) programs present a special challenge for
equational methods. This is due to properties inherent to the OO programs.
A more appropriate model for the abstract machine in the case of an OO pro-
gram is, arguably, a state transition system: as in the case of a state of such
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a system, a state of an OO program can be viewed as encapsulating all perti-
nent information about the abstract machine when it reaches the state during
execution of the program. As a way of meeting the aforementioned challenge
the standard equality predicate can be augmented by behavioral equivalence;
in this way many of the characteristic properties of state transition systems
can be grafted onto equational logic.

Two terms are said to be behaviorally equivalent if and only if they can-
not be distinguished by any visible context. This is the primitive notion of
behavioral equivalence due to Reichel (Reichel, 1984). The idea of looking
at the satisfaction relation of hidden terms as behavioral equivalence was
also introduced by Reichel in the 80’s (Reichel, 1984) and it seems to be the
correct way of interpreting equality between hidden terms. Since then, it has
been adopted and generalized by many people. The most significant contribu-
tions have been given by Goguen and Malcolm (Goguen and Malcolm, 2000),
Bidoit and Hennicker (Bidoit and Hennicker, 1996) and their coworkers.

Generalizations of the notion of behavioral equivalence have been consid-
ered in the literature. Goguen et al. consider Γ -behavioral equivalence, where
Γ is a subset of the set of all operation symbols in the signature (see, e.g.,
(Goguen and Roşu, 1999)). Γ -behavioral equivalence is defined in a manner
analogous to ordinary behavioral equivalence, but making use only of the
contexts built from the operation symbols in Γ . It can be proved that the
Γ -behavioral equivalence is the largest Γ -congruence with the identity as the
visible part. Thus, coinduction methods, based on this fact, may still be for-
mulated for this more general notion. Other interesting questions concerning
Γ -behavioral equivalence may arise, such as the study of the compatibil-
ity of some operation symbols outside of Γ with respect to Γ -behavioral
equivalence. This problem has been studied by Diaconescu and Futatsugui
(Diaconescu and Futatsugi, 2000) and Bidoit and Hennicker (Bidoit and Hen-
nicker, 1999).

On the other hand, Bidoit and Hennicker (Bidoit and Hennicker, 1996)
generalize this notion by endowing the hidden algebras with a binary rela-
tion that may be partial. As a particular case we can apply their algebraic
approach to the behavioral setting by considering algebras endowed with the
Γ -behavioral equivalence.

One important feature of behavioral equivalence in computer science is
that it is the largest congruence that is the identity on the visible part. This
is, in some way, similar to the property of the Leibniz congruence being the
largest congruence compatible with the filter. To apply AAL to the theory of
the specification of abstract data types, we have to view specification logic
as a deductive system (i.e., as a substitution-invariant closure relation on
an appropriate set of formulas) and behavioral equivalence as a generalized
notion of Leibniz congruence. The class of deductive systems has to be ex-
panded so as to include multisorted as well as one-sorted systems. The notion
of Leibniz congruence has to be considered in the context of the dichotomy
of visible vs. hidden; namely, the formulas used in the characterization of
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the Leibniz congruence also have to be restricted to an appropriate proper
subset of all formulas, namely the visible formulas, which are called contexts.
Therefore, the notion of k-deductive systems has to be generalized by consid-
ering the data to be heterogeneous in the sense that the data elements may
be of different kinds. Specifically, there are the basic data, like integers, reals
and Boolean, whose properties are well-known and for which well-defined and
easily manipulated representations are available; and there are the auxiliary
data such as arrays, lists, stacks, whose properties are specified by their be-
havior under the programs with visible output, and hence ultimately in terms
of the basic data. Thus, we use distinct representations for each kind of data
elements.

This leads to the notion of hidden k-logics. They are a natural general-
ization of k-deductive systems. They encompass deductive systems as well as
equational logics and inequational logics and their respective hidden versions.
Hidden k-logics are used to specify systems whose data may be heterogeneous,
i.e., split in different kinds, usually called sorts. Moreover, in hidden k-logics
we are also able to distinguish internal data (hidden data) and the real data
(visible data). This advantage is central in the specification of OO systems.

Hidden k-logics, as a natural generalization of k-deductive systems, were
introduced by Martins and Pigozzi in (Martins and Pigozzi, 2007). Prelimi-
nary work on applications of AAL to the specification of abstract data types
had been discussed in Lisbon, CAUL, in a series of lectures given by Don
Pigozzi in 1999. The theory was then developed in (Martins, 2004), where
improvements concerning specification and verification of programs were es-
tablished using tools from abstract algebraic logic (AAL). A generalization
of the AAL theory to the hidden setting has been successfully explored and
several applications to the OO paradigm have been developed using AAL
methods (cf. (Martins, 2004, 2006, 2007, 2008; Martins and Pigozzi, 2007)).
This generalization is not straightforward. The multisort aspect is present
for example in the following: in the one-sorted case one can show that a hid-
den k-logic is protoalgebraic (an important semantic property) if and only
if it admits a protoequivalence system without parameters; however, in the
broader context of multi-sorted logics, a generic protoequivalence system con-
tains parameters (cf. (Martins, 2007)). This new bridge between AAL and
the specification and verification theory of software systems has yet to be
further developed. On the other hand, it must be mentioned that behavioral
specification theory has also influenced the development of AAL, namely the
recent theory of behavioral algebraization of logics (cf. (Caleiro et al., 2009)
and (Voutsadakis, 2014)).

For the purposes of this paper, it is useful to define a hidden k-logic as an
abstract closure relation on the set of k-formulas. That is, a hidden k-logic is
a pair L= 〈Σ,`L〉, where Σ is a hidden signature and `L is a substitution-
invariant closure relation on the set of visible k-formulas, called the conse-
quence relation of L. This consequence relation may be finitary or not. It is
finitary just in case it admits a presentation by axioms and inference rules, in
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the usual Hilbert style. In this case, `L is said to be specifiable. An L-theory
of a hidden k-logic L is a set of visible k-formulas that are closed under the
consequence relation `L. The set of all L-theories is denoted by Th(L).

Hidden k-logics are useful mainly because they encompass not only the 2-
dimensional hidden and standard equational logics, but also Boolean logics;
these are 1-dimensional multisorted logics with Boolean as the only visible
sort, and with equality-test operations for some of the hidden sorts in place
of equality predicates. They also include all assertional logics, the purview of
AAL. In this way we obtain a unified theory for a variety of logical systems.
We give special attention to a special hidden 2-logic, the hidden equational
logic. In the hidden equational case we only consider a primitive notion of
equality between visible data. It is defined as a sorted equational logic, us-
ing reflexivity, symmetry, transitivity and congruence rules, but only on the
visible part. The expression “hidden equational logic” comes from the fact
that the equality predicate is restricted so as to apply only to visible data
elements. There is no primitive notion of equality for hidden data elements
in the logic.

There is an important assumption about the syntax of hidden k-logics,
as we define them, that arises from the fact that they are intended to serve
as the underlying logic in the specification of object oriented systems. The
assumption is that the specification can use only visible axioms since we only
have access to the internal behavior by programs with visible output, i.e.,
the equality between two hidden data elements of the same sort is not speci-
fiable by abstract equality axioms as in the standard equational logic. This
assumption follows the work of Leavens and Pigozzi (Leavens and Pigozzi,
2000, 2002). The restriction to axioms of visible type is natural from the per-
spective of operational semantics. That is, in operational terms, one views the
axioms as specifying the output of programs, which indirectly determine the
behavior of the hidden data objects the programs manipulate. Hence, only the
visible part of the system is specified. This does not follow some approaches
in the area (see, e.g., (Goguen and Roşu, 1999) and (Roşu, 2000)) but it does
not restrict the power of specifications in practice. On the contrary, it en-
dows the underlying theory with even richer modes of specification. Indeed,
we may also specify internal properties of the system after checking that they
do not produce unexpected behavioral changes on the system, i.e., that by
adding those properties to the specification we do not obtain a different set
of behavioral consequences. In the hidden equational case, we show that if
a conditional equation is behaviorally valid, then it may be added as a new
axiom without any undesired consequences (Martins and Pigozzi, 2007).

The semantics of hidden k-logics reflects all the special features of these
logics that have been discussed. A k-data structure is a collection of data items
of different sorts, such as lists, Booleans, numbers, and operations involving
them, together with a set of k-tuples of elements, called a filter, that serves
as a set of generalized truth values (the term filter comes from the one-
sorted case in AAL). Moreover, the universe, which is a sorted algebra, is
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split into two disjoint sets, namely the hidden part, which corresponds to the
states of a state transition system, and the visible part. There are also two
different interpretations of the operation symbols: the attributes return visible
data and are used to observe the state of the system while the methods may
change the state. As in AAL, the main object is to understand and clarify the
relationship between logical truth and logical equivalence, which for hidden k-
logics correspond, respectively, to the visible properties of states, as specified
by the axioms of the logic, and their behavioral equivalence.

Since the consequence relation ` is a closure relation on the set of visible
k-formulas, the filter consists exclusively of k-tuples of visible elements of the
k-data structure. The designated filter F of a k-data structure A= 〈A,F 〉 is
considered as the set of “truth values” in A. Thus, we say that A= 〈A,F 〉 is
a model of a hidden k-logic L if every consequence Γ ` ϕ of L is a semantic
consequence of A, in the sense that for every assignment h :X→A, h(ϕ)∈ F
whenever h(Γ )⊆F . In this case, we say that F is an L-filter. The L-filters on
the term algebra are the theories of L and consequently 〈TeΣ(X),T 〉, with
T a theory of L, is always a model of L.

1.1 Related work

Many computer scientists have studied behavioral equivalence for the last 20
years. Here we present some approaches which are important to contextualize
our work.

1.1.1 Hidden algebras

Hidden algebras were introduced by Goguen in (Goguen, 1989) and further
developed in (Goguen and Malcolm, 2000; Goguen and Roşu, 1999; Roşu,
2000), in order to generalize many-sorted algebras and give an algebraic se-
mantics for the object oriented paradigm.

When they first appeared, hidden algebras were considered over restricted
signatures. These were assumed to have the visible part fixed, in the sense
that all sorted algebras over it have the same visible part. Usually, this vis-
ible part was a standard algebra such as the natural numbers or the two-
element Boolean algebra. This is called fixed-data semantics. Another re-
striction which is sometimes assumed in order to apply coalgebraic methods
and results to the study of behavioral equivalence is the requirement that the
methods and the attributes must have exactly one hidden argument. In this
case it is called monadic semantics.

The behavioral aspects of modern software make hidden algebras more
suitable than standard algebras for abstract machine implementations. Con-
sequently, there has been an increasing development in this field. In the last
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fifteen years the theory on hidden algebras has been further developed and
applied to more general settings, first by Goguen and Malcolm (Goguen and
Malcolm, 2000) and more recently by his former collaborators (Goriac et al.,
2010; Moore and Roşu, 2015). Currently, almost all of the results may be
established for polyadic loose-data semantics. Polyadic loose-data semantics
allows any kind of operation symbols. Furthermore, in order to have more
freedom to choose an adequate implementation, the visible part of the alge-
bras is no longer fixed: it may be any sorted algebra in which the requirements
(axioms) of the given specification are valid. Moreover, some authors are in-
terested in applying coalgebraic methods, and then they have to restrict their
signatures to the monadic fixed-data semantics. Malcolm (Malcolm, 1996)
has shown that behavioral equivalence may be formulated in the context of
coalgebra (see also (Reichel, 1995)).

1.1.2 Behavioral equivalence and behavioral validity

Two terms are said to be behaviorally equivalent if and only if they cannot be
distinguished by any visible context. This is the primitive notion of behavioral
equivalence due to Reichel (Reichel, 1984).

The idea of looking at the satisfaction relation of hidden terms as behav-
ioral equivalence was also introduced by Reichel in the 80’s (Reichel, 1984)
and it seems to be the correct way of interpreting equality between hidden
terms. Since then, it has been adopted and generalized by many authors. The
most significant contributions have been given by Goguen, Bidoit, Bouhoula
and their co-authors (e.g., (Goguen and Malcolm, 1999; Bidoit and Hennicker,
1996; Bouhoula and Rusinowitch, 2002)).

Generalizations of the notion of behavioral equivalence have also been
considered in the literature. Goguen and Roşu (Goguen and Roşu, 1999) in-
troduced and studied Γ -behavioral equivalence, where Γ is a subset of the set
of all operation symbols in the signature. Γ -behavioral equivalence is defined
analogously to ordinary behavioral equivalence, but making use only of the
contexts built from the operation symbols in Γ . It can be proved that the
Γ -behavioral equivalence is the largest Γ -congruence with the identity as the
visible part. Thus, coinduction methods, based on this fact, may still be for-
mulated for this more general notion. Other interesting questions concerning
Γ -behavioral equivalence may arise, such as the study of the compatibility
of some operation symbols outside of Γ with respect to Γ -behavioral equiv-
alence. This problem has been studied by Diaconescu and Futatsugi (Dia-
conescu and Futatsugi, 2000) and Bidoit and Hennicker (Bidoit and Hen-
nicker, 1999).

On the other hand, Bidoit et al. (Bidoit et al., 1995) generalize this notion
by endowing the hidden algebras with a binary relation. As a particular case
we can apply their algebraic approach to the behavioral setting by considering
the algebras together with the Γ -behavioral equivalence.
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1.1.3 Hidden logics

Many behavioral logics have been defined and studied in the literature.
The most relevant versions are hidden logic (Goguen and Malcolm, 1999,
2000) and observational logic (Hennicker and Bidoit, 1999; Bidoit and Hen-
nicker, 1996). There is also another observational logic due to Padawitz
(Padawitz, 2000), called swinging types logic, but it is similar to the observa-
tional logic of Bidoit and his coworkers (see http://ls5-www.cs.uni-dort
mund.de/˜peter/ Swinging.html for more details).

Hidden logic is a variant of the equational logic in which some part of the
specification is visible and another is hidden. The formulas are just equations
and the satisfaction relation is taken behaviorally.

Observational logic is different from hidden logic but both are based on
behavioral equivalence, which means indistinguishability under contexts. Ob-
servational logic was introduced by Bidoit and Hennicker (see (Bidoit and
Hennicker, 1996), (Hennicker and Bidoit, 1999) and (Hennicker, 1997)) to
formalize behavioral validity (correctness). Tarski’s satisfaction relation of
first-order formulas (with equality) is considered as a “behavioral satisfac-
tion relation” which is determined, in a natural way, by the family of con-
gruence relations (possibly partial) with which each algebra is endowed. This
relation is called behavioral equality. The behavioral satisfaction relation is
just defined by considering the equality symbol interpreted as the behav-
ioral equality. First-order theories are generalized to the so-called behavioral
theories where the equality symbol is interpreted as the behavioral equality.
In (Bidoit and Hennicker, 1996) Bidoit and Hennicker develop a method for
proving behavioral theorems whenever an axiomatization of the behavioral
equality is provided. This is based on reducing behavioral satisfaction to or-
dinary satisfaction. Consequently any proof system for first-order logic can
be used to prove the behavioral validity, with respect to a given behavioral
equality, of first-order formulas.

1.1.4 Automatic methods for behavioral reasoning in hidden logics

As far as we know, the languages that support automated behavioral reason-
ing are Spike (Berreged et al., 1998), CafeOBJ (Diaconescu and Futatsugi,
1998) and BOBJ (Goguen et al., 2000).

In (Bouhoula and Rusinowitch, 2002), Bouhoula and Rusinowitch set forth
an automatic method for proving behavioral validity of conditional equations
in conditional specifications. They use the fact that there are specifications
for which a smaller set of contexts is enough to know what the outputs of the
remaining ones are. They call them critical contexts. The work of Bouhoula
and Rusinowitch was the genesis of the SPIKE language which is based on
context induction.
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The CafeOBJ language was developed by Diaconescu and Futatsugi (Di-
aconescu and Futatsugi, 1998). It implements behavioral rewriting to make
behaviorally sound reductions of terms. It is based on a behavioral version of
the well known efficient method of rewriting for automated theorem proving
(see http://www.ldl.jaist.ac.jp/Research/CafeOBJ/).

Goguen et al. have been developing algorithms for automating behavioral
reasoning based on their techniques of coinduction and have been making
use of cobases. Coinduction in its pure form requires human intervention in
the choice of the cobasis. A cobasis is just a set of operation symbols that
generates a relation on the set of terms which is a subset of the behavioral
equivalence. A good choice of a cobasis can simplify the proof enormously.
Those algorithms have been improved in order to be applied to more general
situations and have been implemented in the BOBJ language. In (Goguen et
al., 2000) Goguen et al. presented a new technique which combines behavioral
rewriting and coinduction. The most recent version is CCCRW, called con-
ditional circular coinductive rewriting with case analysis. The authors claim
that it is in fact the most powerful automated proof technique available at
present (Goguen et al., 2002) (see also (Goriac et al., 2010; Moore and Roşu,
2015)). Besides the fact that this new algorithm uses conditional circular coin-
ductive rewriting to prove behavioral validity, it also allows for case analysis
(see http://www-cse.ucsd.edu/groups/tatami/bobj). This theoretical re-
sult supports the automated behavioral prover Circ based on the circularity
principle (http://fsl.cs.illinois.edu/index.php/Circ), which general-
izes both circular coinduction and structural induction.

1.1.5 AAL approach to behavioral equivalence

As mentioned earlier, Pigozzi gave a series of lectures on the application of
AAL to Computer Science. These lectures marked the starting point of Mar-
tins’ investigations on the algebraic theory of hidden k-logics, which led to his
PhD thesis (Martins, 2004). In an introductory paper with Pigozzi (Martins
and Pigozzi, 2007) the instantiation to hidden equational logic was studied in
depth. Closure properties of the class of behavioral models (reduced models)
are studied in (Martins, 2007). Refinement and institutions for behavioral
logics in the context of our approach were discussed in (Martins, 2006). A
natural generalization of the Nerode equivalence of finite automata to k-
data structures concerning this general notion of behavioral equivalence of
a k-data structure can be found in (Martins, 2008). Recently, a deduction-
detachment theorem for hidden k-logics was presented in (Babenyshev and
Martins, 2014) and the behavioral equivalence between hidden k-logics is in-
vestigated in (Babenyshev and Martins, 2016) by Babenyshev and Martins.
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Outline of the paper

This paper is organized in two main sections. In section 2 we give an overview
of basic concepts and recent results pertaining to hidden k-logic. The Leib-
niz congruence is one of the tools developed in this context. As in standard
AAL, it plays a crucial role in the theory. Section 3 is devoted to behavioral
equivalence. Theorem 3.3 shows the adequacy of this approach: the behav-
ioral equivalence is, in fact, the (generalized) Leibniz congruence. In Sections
3.1 and 3.2 we present new characterizations for an equation to be a be-
havioral consequence of a theory of a HEL. In Section 3.2 we get a simpler
characterization for the case of strict equational HEL’s.

2 Hidden k-logic

A hidden (sorted) signature is a triple Σ =
〈
SORT,VIS,〈OPτ | τ ∈ TYPE〉

〉
,

where: SORT is a nonempty, countable set whose elements are called sorts;
VIS is a subset of SORT, called the set of visible sorts; TYPE is a set of
nonempty sequences S0, . . . ,Sn of sorts, called types and usually written as
S0, . . . ,Sn−1 → Sn; and, for each τ ∈ TYPE, OPτ is a countable set; the
elements of OPτ are called operation symbols of type τ . Operation symbols
of type → S are said to be constants. We will denote 〈OPτ | τ ∈ TYPE〉 by
OP.

The sorts in SORT\VIS, that are not visible, are called hidden sorts. The
set of hidden sorts is denoted by HID. For simplicity, we require the sets of
operation symbols to be pairwise disjoint in order to avoid overloading of
names (i.e., for any distinct τ,τ ′ ∈ TYPE,OPτ ∩OPτ ′ =∅).

From each hidden signature Σ we obtain the associated un-hidden signa-
ture Σuh by making all sorts of Σ visible.

A Σ-algebra is a pair
〈
A,〈OA | τ ∈TYPE,O ∈OPτ 〉

〉
, where A is a SORT-

sorted set, such that AS 6=∅, for all S ∈ SORT, and for any τ ∈ TYPE and
O ∈ OPτ , OA is an operation on A of type τ (i.e., if τ = S0, . . . ,Sn−1→ Sn
then OA : AS0 × ·· ·×ASn−1 → ASn). As usual, we use the same symbol to
denote an algebra and the carrier of the algebra.

We assume for carrier sets A of data structures that AS 6= ∅ for all S ∈
SORT, a condition similar to one used to define regular universal algebras.
With this assumption we exclude some data structures of practical interest.
However, the mathematics is simpler in this case and most results of universal
algebra hold in their usual form.

A (sorted) congruence on a Σ-algebra A is a sorted binary relation Θ⊆A2

such that: (i) for each S ∈ SORT, ΘS is an equivalence relation on AS and
(ii) Θ satisfies the congruence condition: for every operation symbol O ∈
OPτ with τ =S0, . . . ,Sn−1→Sn, and all a0,a

′
0 ∈AS0 , . . . ,an−1,a

′
n−1 ∈ASn−1



178 Isabel Ferreirim and Manuel A. Martins

such that aiΘSia′i, OA(a0, . . . ,an−1)ΘSnOA(a′0, . . . ,a′n−1) holds. The set of all
congruences over A is denoted by Con(A).

The sorted notions of subalgebra, homomorphism, isomorphism, etc. are
defined in a natural way (see (Meinke and Tucker, 1992) for the formal defi-
nitions).

For each set of sorts SORT we fix a locally countably infinite sorted set
X = 〈XS : S ∈ SORT〉 of (propositional sorted) variables. We assume the
components of the sorted set of variables are pairwise disjoint. The elements
in XS are called S-variables. To denote that a variable x is of sort S (i.e.,
that x ∈XS) we write x :S.

We say that a termO(t0, . . . , tn−1), whereO∈OPτ with τ =S0, . . . ,Sn−1→
Sn, has type Sn. Given a signature Σ we define the SORT-sorted set TeΣ(X)
of terms over the signature Σ with variables in X as usual. Note that, since
the components of the family TeΣ(X) are pairwise disjoint, a SORT-sorted
subset Γ of TeΣ(X) can be identified with the unsorted set

⋃
S∈SORTΓS . A

hidden signature Σ is said to be standard if there is a ground term (i.e., a
term without variables) of every sort. We use the lower case Greek letters
ϕ,ψ,ϑ, . . . to represent terms, possibly with annotations to indicate sorts of
terms and variables. Specifically, writing ϕ in the form

(1) ϕ(x0 :S0, . . . ,xn−1 :Sn−1):S

indicates that ϕ is of sort S and that the variables that actually occur in ϕ are
included in the list x0, . . . ,xn−1 of variables of sorts S0, . . . ,Sn−1, respectively.

We define, in the usual way, operations over TeΣ(X) to obtain the term
algebra over the signature Σ. It is well known that TeΣ(X) has the universal
mapping property over X in the sense that, for every Σ-algebra A and every
sorted map h : X → A, called an assignment, there is a unique sorted ho-
momorphism h∗ : TeΣ(X)→ A that extends h. In the sequel, we will not
distinguish between these two maps. If ϕ is the term (1), and ai ∈ ASi ,
i < n, we write ϕA(a0, . . . ,an−1) for the image h(ϕ) under any homomor-
phism h : TeΣ(X)→ A such that h(xi) = ai for all i < n. A map from X to
the set of terms, and its unique extension to an endomorphism of TeΣ(X),
is called a substitution.

To provide a context that allows us to deal simultaneously with specifi-
cation logics that are assertional (for example the ones with a Boolean sort
but no equality) and equational, we introduce the notion of a k-term for
any nonzero natural number k. In the sequel k denotes a fixed nonzero nat-
ural number. A k-variable of sort S is a sequence of k variables all of the
same sort S. A k-term (k-formula in logical context) of sort S over Σ is
a sequence of k Σ-terms all of the same sort S. We indicate k-terms by
overlining, so ϕ̄(x1, · · · ,xn):S = 〈ϕ0(x1, · · · ,xn):S, . . . ,ϕk−1(x1, · · · ,xn):S〉.
When we do not need to make the common sort S of each term of ϕ̄ :S
explicit, we simply write it as ϕ̄. TekΣ(X) is the sorted set of all k-terms over
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Σ. Thus TekΣ(X) = 〈(TeΣ(X))kS : S ∈ SORT〉. The set of all visible k-terms
(TekΣ(X))VIS is the VIS-sorted set 〈(TeΣ(X))kV : V ∈VIS〉.

2.1 Data structures and Leibniz congruence

Let Σ be a hidden signature. A visible k-data structure (a k-data structure for
short) over Σ is a pair A= 〈A,F 〉, where A is a Σ-algebra and F ⊆AkVIS; A
is called the underlying algebra and F the designated filter of A (see (Martins
and Pigozzi, 2007) for examples in the hidden equational case).

Let A = 〈A,F 〉 be a k-data structure. A congruence relation Θ on A is
VIS-compatible (or simply compatible) with F if for all V ∈ VIS and for all
ā, ā′ ∈AkV the following condition holds.

if ai ≡ a′i(ΘV ) for all i≤ k then, ā ∈ FV iff ā′ ∈ FV ;

that is, each FV is the union of a cartesian product of ΘV -classes i.e.,

FV =
⋃
ā∈FV

(a1/ΘV )× (a2/ΘV )×·· ·× (ak/ΘV ).

Lemma 2.1. Let A = 〈A,F 〉 be a k-data structure. There is a largest con-
gruence relation on A compatible with F .

Proof. Let Φ and Ψ be two congruences on A compatible with F . The rela-
tional product Φ◦Ψ , defined for each S ∈ SORT by

(Φ◦Ψ)S :=
{
〈a,b〉 ∈A2

S : ∃c ∈AS
(
〈a,c〉 ∈ ΦS and 〈c,b〉 ∈ ΨS

)}
,

is also compatible with F . Since the join Φ∨Ψ , in the lattice of congruences,
is given by

⋃
i<ωΦ ◦i Ψ , where Φ ◦0 Ψ = ∆A and Φ ◦i+1 Ψ = (Φ ◦i Ψ) ◦ (Φ ◦

Ψ), we have that Φ∨ Ψ is also compatible with F . Hence, the set of all
congruence relations on A compatible with F is directed in the sense that, for
any pair of congruences compatible with F , there is a third congruence with
the same property that includes both of them. We can conclude from this that
the union of all compatible congruences is again a compatible congruence.
Therefore, the largest congruence compatible with F always exists. ut

Definition 2.2. Let A = 〈A,F 〉 be a k-data structure. The largest congru-
ence relation on A compatible with F is called the Leibniz congruence of F
on A and is denoted by ΩA(F ).

The Leibniz congruence plays a central role in abstract algebraic logic
when restricted to single-sorted, k-data structures; see for example (Pigozzi,
2001) and (Font et al., 2003). The term was introduced in (Blok and Pigozzi,
1989), but the concept appeared much earlier. The motivation behind the
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choice of the term Leibniz will become clear after Theorem 3.3. A systematic
study of the Leibniz congruence in hidden k-logics can be found in (Martins,
2004), in particular a proof of its characterization is given in Theorem 3.3.
In the case of single-sorted 1-data structures, this result was well known in
the literature of sentential logic; see for example (Blok and Pigozzi, 1989).

An interesting property of the Leibniz congruence is its preservation under
inverse images of surjective homomorphisms, i.e., given a k-data structure
A= 〈A,F 〉 over Σ, a Σ-algebra B and a surjective homomorphism h :B→A,
we have that h−1(ΩA(F )) =ΩB(h−1(F )).

2.2 Hidden k-logic

For each nonzero natural number k, a hidden k-logic is considered to be a
consequence relation on the set of visible k-terms of some hidden signature,
independently of any specific choice of axioms and rules of inference. More
precisely, it is defined as a substitution invariant consequence relation on the
set of visible k-terms.

Definition 2.3. A hidden k-logical system (hidden k-logic for short) is a pair
L = 〈Σ,`L〉, where Σ is a hidden signature with VIS as its set of visible
sorts, and `L⊆P((TekΣ(X))VIS)×(TekΣ(X))VIS is an (unsorted) relation that
satisfies for all Γ ∪∆∪{γ̄, ϕ̄} ⊆ (TekΣ(X))VIS the following conditions:

(i) Γ `L γ̄ for each γ̄ ∈ Γ ;
(ii) if Γ `L ϕ̄, and ∆ `L γ̄ for each γ̄ ∈ Γ , then ∆ `L ϕ̄;
(iii) if Γ `L ϕ̄, then σ(Γ ) `L σ(ϕ̄) for every substitution σ.

Note, that being unsorted, `L can relate premises and consequences of dif-
ferent visible sorts.

A hidden k-logic is specifiable if `L is finitary (or compact), i.e., if Γ `L ϕ̄
implies ∆ `L ϕ̄ for some globally finite subset ∆ of Γ (recall that a set Γ
is said to be globally finite if for every S ∈ SORT AS is a finite set and AS
is empty except for a finite number of sorts). The relation `L is called the
consequence relation of L; when L is clear from the context we simply write
`. A hidden k-logic with VIS = SORT will be called a visible k-logic, or simply
a k-logic.

As it is usual in a sentential logic framework, we treat formulas (k-
formulas) as synonymous to terms (k-terms, respectively). Moreover, for a
given hidden k-logic L = 〈Σ,`L〉 we denote TekΣ(X) and (TekΣ(X))VIS by
Fm(L) and FmVIS(L), respectively.

Hidden k-logics were introduced by Martins and Pigozzi (cf. (Martins and
Pigozzi, 2007)) in the context of the algebraic specification and verification
of software systems. The basic theory of hidden k-logics was presented in
(Martins, 2004). The class of hidden k-logics includes such well-known logical
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systems as the 2-dimensional hidden and standard equational logics, as well
as the Boolean logic (for more examples see (Martins, 2004)).

Every consequence relation ` has a natural extension to a relation, also
denoted by `, between sets of visible k-terms; it is defined by Γ `∆ if Γ ` ϕ̄
for each ϕ̄∈∆. We define the relation of interderivability between sorted sets
in the following way: Γ a`∆ if, Γ `∆ and ∆`Γ . We will abbreviate {ψ̄} ` ϕ̄,
Γ ∪{ϕ̄0, . . . , ϕ̄n−1} ` ϕ̄ and Γ0 ∪ ·· · ∪Γn−1 ` ϕ̄ by ψ̄ ` ϕ̄, Γ,ϕ̄0, . . . , ϕ̄n−1 ` ϕ̄
and Γ0, . . . ,Γn−1 ` ϕ̄, respectively.

Let L be a (not necessarily specifiable) hidden k-logic. By a theorem of
L we mean a visible k-term ϕ̄ such that `L ϕ̄, i.e., ∅ `L ϕ̄. The set of all
theorems is denoted by Thm(L). A rule such as

(2) ϕ̄0 :V0, . . . , ϕ̄n−1 :Vn−1
ϕ̄n :Vn

,

where ϕ̄0, . . . , ϕ̄n are all visible k-terms, is said to be a derivable rule of L if
{ϕ̄0, . . . , ϕ̄n−1} `L ϕ̄n. A set of visible k-terms T closed under the consequence
relation, i.e., T `L ϕ̄ implies ϕ̄ ∈ T , is called a theory of L or L-theory. The
set of all theories is denoted by Th(L); it forms a complete lattice under set-
theoretic inclusion, which is algebraic if L is specifiable. Let Ti ∈Th(L), for i∈
I. Their meet is

⋂
i∈I Ti and their joint is the intersection of all theories that

contain each Ti, i.e.,
∨L
i∈I Ti =

⋂
{T ∈Th(L) : Ti ⊆ T for all i∈ I}. Given any

set Γ of visible k-terms, the set ConL(Γ ) is the smallest L-theory containing
Γ . It is easy to see that ConL(Γ ) = { ϕ̄ ∈ (TekΣ(X))VIS : Γ `L ϕ̄}, i.e., the set
of all consequences of Γ .

Very often, a specifiable hidden k-logic has a Hilbert style presentation,
i.e., it is given by a set of axioms (visible k-terms) and inference rules of the
general form (2). We say that a visible k-term ψ̄ is directly derivable from
a set Γ of visible k-terms by a rule such as (2) if there is a substitution
h :X → TeΣ(X) such that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . ,h(ϕ̄n−1) ∈ Γ .

Given a set AX of visible k-terms and a set IR of inference rules, we
say that ψ̄ is derivable from Γ by the set AX and the set IR, in symbols
Γ `AX,IR ψ̄, if there is a finite sequence of k-terms, ψ̄0, . . . , ψ̄n−1 such that
ψ̄n−1 = ψ̄, and for each i < n one of the following conditions hold:

(a) ψ̄i ∈ Γ ,
(b) ψ̄i is a substitution instance of a k-term in AX
(c) ψ̄i is directly derivable from {ψ̄j}j<i by one of the inference rules in IR.

It is clear that 〈Σ,`AX,IR〉 is a specifiable hidden k-logic. Moreover, a
hidden k-logic L is specifiable iff there exist (possibly infinite) sets AX and
IR, of axioms and inference rules, respectively, such that, for any visible k-
terms ψ̄ and any set Γ of visible k-terms, Γ `L ψ̄ iff Γ `AX,IR ψ̄. The pair
〈AX, IR〉 is called a presentation of L by axioms and inference rules. Hence
we can present our examples of specifiable logics by exhibiting their set of
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axioms and of inference rules. If L= 〈Σ,`AX,IR〉, for some AX and IR with
|AX∪ IR|< ω, we say that L is finitely axiomatizable.

2.2.1 Semantics.

Let A = 〈A,F 〉 be a k-data structure. A visible k-term ϕ̄ :V is said to be a
semantic consequence of a set of visible k-terms Γ in A, in symbols Γ |=A ϕ̄,
if, for every assignment h :X→A, h(ϕ̄) ∈ FV whenever h(ψ̄) ∈ FW for every
ψ̄ :W ∈ Γ . A visible k-term ϕ̄ is a validity of A, and conversely A is a model
of ϕ̄, if ∅ |=A ϕ̄. A rule such as (2) is a valid rule of A, and conversely A is a
model of the rule, if {ϕ̄0, . . . , ϕ̄n−1} |=A ϕ̄n. A visible formula ϕ̄ is a semantic
consequence of a set of visible k-terms Γ for an arbitrary class M of k-data
structures over Σ, in symbols Γ |=M ϕ̄, if Γ |=A ϕ̄ for each A ∈M. It can
be proved that |=M is always a k-logic, however it may not be specifiable.
A visible k-term or rule such as (2) is a valid rule of M if it is a validity of
each member of M.

A k-data structure A is a model of a hidden k-logic L if Γ `L ϕ̄ implies
Γ |=A ϕ̄, for every Γ ∪ {ϕ̄} ⊆ (TekΣ(X))VIS. When A is a model of L the
designated filter of A is called an L-filter over A. The set of all L-filters over
an algebra A is denoted by FiL(A). The special models whose underlying
algebra is the formula algebra, i.e., of the form 〈TeΣ(X),T 〉, with T ∈Th(L)
are called Lindenbaum-Tarski models. The class of all models of L is denoted
by Mod(L). If L is a specifiable hidden k-logic, then A is a model of L iff
every axiom and rule of inference is a validity of A. The class of all reduced
models of L, i.e., all models 〈A,F 〉 such that ΩA(F ) = idA, is denoted by
Mod∗(L). A class of k-data structures M is a data structure semantics for
L if `L = |=M. The Completeness Theorem holds for hidden k-logics (cf.
(Martins and Pigozzi, 2007)), i.e., for every Γ ∪{ϕ̄} ⊆ (TekΣ(X))VIS,

Γ `L ϕ̄ iff Γ |=Mod(L) ϕ̄ iff Γ |=Mod∗(L) ϕ̄.

An important class of hidden 2-logics is the class of hidden equational
logics, where the notion of equality is only considered for visible data. It is
defined (using the reflexivity, symmetry, transitivity and congruence rules)
as a sorted equational logic, restricted to the visible part (cf. (Martins and
Pigozzi, 2007)).

In an equational logic framework, a pair of terms of the same sort 〈s, t〉 is
called an equation and it is denoted by s≈ t.

Definition 2.4 (Free hidden equational logic, cf. (Martins, 2004)).
Let Σ be a hidden signature and VIS its set of visible sorts.

1. The free hidden equational logic over Σ (free HELΣ for short) is the
specifiable hidden 2-logic presented as follows:
Axioms: for all V ∈VIS
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x :V ≈ x :V
Inference rules: for each V,W ∈VIS,

(IR1) x :V ≈ y :V
y :V ≈ x :V ;

(IR2) x :V ≈ y :V,y :V ≈ z :V
x :V ≈ z :V ;

(IR3) ϕ :V ≈ ψ :V
ϑ(x/ϕ):W ≈ ϑ(x/ψ):W for each ϑ ∈ TeW and each x ∈XV .

2. The free un-hidden equational logic over Σ (free UHELΣ , for short) con-
tains an equality predicate for each sort, visible and hidden. The axioms
and inference rules are the same as those of the free HELΣ , except that V
and W are now allowed to range over all sorts. Thus UHELΣ = HELΣuh .

An applied hidden equational logic over Σ (or simply a HELΣ) is any hidden
2-logic L over Σ that satisfies all axioms and rules of inference of the free
HELΣ . An applied un-hidden equational logic over Σ (UHELΣ) is defined
similarly; the subscript Σ may be omitted if it is clear from the context.
We say that a specified applied hidden or unhidden equational logic is strict
equational if it does not have extra-logical inference rules.
Definition 2.5. Let L be a HELΣ and E a set of equations of arbitrary,
possibly un-hidden, sort. We define Luh[E] as the natural extension of L by
E to a UHEL over the same signature (when E is empty we just write Luh).

The standard model of the free HELΣ is of the form 〈A, idAVIS〉, where A
is a Σ-algebra and idAVIS is the identity relation on the visible part of A, but
one gets more general 2-data structures as models by taking any congruence
relation on the visible part of A in place of idAVIS . By a congruence relation
on the visible part of A, or simply a VIS-congruence, we mean a VIS-sorted set
〈FV : V ∈VIS〉 such that, for every V ∈VIS, FV is an equivalence relation on
AV , and for every term ϕ(x0 :V0, . . . ,xn−1 :Vn−1,y0 :H0, . . . ,ym−1 :Hm−1):V
with V0, . . . ,Vn−1,V ∈ VIS and H0, . . . ,Hm−1,∈ HID, if 〈ai, bi〉 ∈ FVi for all
i < n, then for all cj ∈AHj j < m,
〈ϕA(a0, . . . ,an−1, c0, . . . , cm−1),ϕA(b0, . . . , bn−1, c0, . . . , cm−1)〉 ∈ FV .

The basic notions and results about hidden k-logics, as well as many ex-
amples of HELs may be found in (Martins, 2004) and (Martins and Pigozzi,
2007). An interesting fact about HELs is that the visible consequences of any
set of visible equations are the same either for LUH or for L, i.e., for any
Γ ∪{t≈ t′} ⊆ Te2

Σ(X)VIS, Γ `LUH t≈ t′ iff Γ `L t≈ t′.

2.3 Concrete examples

We give several examples of specifiable hidden logics. We have purposely
chosen simple, well-known ones that allow us to illustrate the basic ideas
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without burdening the reader with irrelevant detail. The first two illustrate
how the logic of a particular data structure can be alternatively formalized
as a Boolean 1-logic and as an equational 2-logic, a HEL. The flag logics
provide two different ways of specifying semaphores, which are commonly
used in scheduling resources (Goguen and Malcolm, 1999).

Example 2.6. (Flags as a Boolean 1-logic)
Consider the hidden signature Σflag:

SORT = {flag,bool}, with bool the unique visible sort, and the following
operation symbols:

up : flag→ flag; rev : flag→ flag;
dn : flag→ flag; up? : flag→ bool,

and the operation symbols for the Boolean part: ¬,∧,∨,true and false. The
Boolean biconditional ϕ↔ ψ is an abbreviation for the compound operation
(¬ϕ∨ψ)∧ (¬ψ∨ϕ).

The Boolean logic of flags, Lbflag, is the 1-logic with the following extra-
logical axioms:

up?(up(F )) up?(rev(F ))↔¬(up?(F ))
¬up?(dn(F ))

and including usual logical axioms for the classical propositional logic. There
are no extra-logical rules of inference. ♦

Example 2.7. (Flags as a HEL) The signature is the same as above.
The equational logic of flags, Leflag, is the HELΣflag with the following

extra-logical axioms:
up?(up(F ))≈ true up?(rev(F ))≈ ¬(up?(F ))
up?(dn(F ))≈ false

and including the usual logical axioms for Boolean algebra. There are no
extra-logical rules of inference. ♦

As expected, Lbflag and Leflag are equivalent. Precisely,
ϕ1↔ ϕ′1, . . . ,ϕn↔ ϕ′n

ψ↔ ψ′
is a derivable rule of Lbflag iff ϕ1 ≈ ϕ′1, . . . ,ϕn ≈ ϕ′n

ψ ≈ ψ′
is a derivable rule of Leflag.

Example 2.8. (Stacks of Natural Numbers as a HEL) As in the stan-
dard specification of the logic of stacks, only the natural numbers are visible.
Consequently, the axioms and rules of inference can only reference “numeri-
cal behavior” of stacks rather than the stacks themselves. In particular there
can be no axiom or rule involving equality between stacks. Because of this
we get an infinite number of axioms, while in the standard formalizations,
where assertions about the equality of stacks are allowed, the axiomatization
is finite and conceptually simpler.
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The specification differs from the usual one in another regard. The top of
the empty stack is zero and pushing zero on the empty stack gives the empty
stack. This is done to simplify the specification logic and agrees with what is
done in (Goguen and Malcolm, 2000).

Consider the hidden signature Σstacks:

SORT = {nat,stack}, with nat the unique visible sort and the following
operation symbols:

empty : → stack top : stack→ nat
zero : → nat pop : stack→ stack
push : nat,stack→ stack s : nat→ nat
The specification logic of stacks, Lstacks, is the logic with hidden signature

Σstacks and the following axioms and inference rules:

Extra-logical axioms:

top(popn(empty))≈ zero, for all n;
top(push(x,y))≈ x;
top(popn+1(push(x,y)))≈ top(popn(y)), for all n.

Extra-logical inference rule:
s(x)≈ s(y)→ x≈ y. ♦

2.3.1 Other hidden k-logics

Example 2.9 (Free inequational logic). Let Σ be any one-sorted signa-
ture. The free inequational logic is the one-sorted 2-logic over Σ defined by
the axioms and inference rules in Fig. 1. As in the equational case, we use
a special symbol to denote the 2-formula 〈ϕ,ψ〉; namely we write ϕ � ψ for
〈ϕ,ψ〉. This logic is relevant in the context of ordered (universal) algebra (see

Axioms:
x� x;
Inference rules:
x� y ,y � z

x� z ;

x0 � y0, . . . ,xn−1 � yn−1
O(x0, . . . ,xn−1)�O(y0, . . . ,yn−1) ,

for every operation symbol O.

Fig. 1 Free inequational logic.

(Wechler, 1992)) and abstract algebra. We can generalize the inequational
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logic to the sorted case and, more generally, to the hidden sorted case in the
same way we generalized the equational logic to the hidden equational logic.
A more general notion of inequational logic can be found in (Babenyshev and
Martins, 2016). ♦

Example 2.10 (Stacks of natural numbers with Booleans). The signa-
ture is obtained from the signature of stacks of natural numbers by adjoining
a new sort bool, for the Boolean operation symbols, and one new attribute
eq : nat,nat→ bool, the equality test for natural numbers. The sort bool is
the only visible sort. Informally, we can say that the axioms and inference
rules are obtained by applying eq to each of the axioms and inference rules
of the specification of stacks (see Fig. 2). The operation symbol eq is called
an equational test function and the models are called generalized equality
test models. These models have been studied in (Pigozzi, 1991).

Axioms:
eq(x,x)
eq(top(popn(empty)),zero), for all n;
eq(top(push(x,y)),x);
eq(top(popn+1(push(x,y))),top(popn(y))), for all n;
Inference rules:
eq(x,y)
eq(y,x)
eq(x,y),eq(y,z)

eq(x,z)

eq(x,y)
eq(s(x),s(y))
eq(s(x),s(y))
eq(x,y)

Fig. 2 Stacks of natural numbers with Booleans.

♦

3 Behavioral equivalence

In hidden equational logic, we may say that two hidden data elements of the
same sort are behaviorally equivalent if any visible procedure returns the same
value when executed with either of the two objects as input. The notion arises
from the alternative view of a data structure as a transition system in which
the hidden data elements represent states of the system and the operations
(i.e., the methods) that return hidden, as opposed to visible, elements induce
transitions between states.

In the formalism of HEL, the concept of procedure takes the form of a
context. Formally, a S-context over a hidden signature Σ is a term

(3) ϕ(z :S,u1 :T1, . . . ,um :Tm):U
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with a distinguished variable z of sort S and parametric variables u1, . . . ,um
of arbitrary (visible or hidden) sort. It is a visible context if the sort U of ϕ
is visible.

Definition 3.1. Let A be a Σ-algebra and let S be a arbitrary sort. Then,
a,a′ ∈ AS are behaviorally equivalent in A, in symbols a ≡beh

A a′, if for ev-
ery visible S-context ϕ(z :S,u1 :T1, . . . ,um :Tm) and for all b1 ∈AT1 , . . . , bm ∈
ATm ,

ϕA(a,b1, . . . , bm) = ϕA(a′, b1, . . . , bm).

Variants of this notion of behavioral equivalence have occurred in the lit-
erature. For example, Goguen and Malcolm (Goguen and Malcolm, 2000)
restrict the set of contexts to the ones built from a predefined set of obser-
vational operational symbols.

In order to generalize the notion of behavioral equivalence to hidden k-
logics we first generalize the notion of context. A (k,S)-context over a hidden
signature Σ is a k-term

(4) ϕ̄(z :S,u1 :T1, . . . ,um :Tm):U
=
〈
ϕ1(z :S,u1 :T1, . . . ,um :Tm), . . . ,ϕk(z :S,u1 :T1, . . . ,um :Tm)

〉
:U

with a distinguished variable z of sort S and parametric variables u1, . . . ,um.
It is a visible context if the sort U of ϕ̄ is visible.

Definition 3.2. Let A = 〈A,F 〉 be a k-data structure over a hidden sig-
nature Σ. Two elements a,a′ of A of arbitrary sort S are said to be behav-
iorally equivalent in A, in symbols a≡beh

A a′, if for every visible (k,S)-context
ϕ̄(z :S,u1 :T1, . . . ,um :Tm):V and for all b1 ∈AT1 , . . . , bm ∈ATm ,

(5) ϕ̄A(a,b1, . . . , bm) ∈ FV iff ϕ̄A(a′, b1, . . . , bm) ∈ FV .

This notion does indeed generalize behavioral equivalence in equational logic,
since, as a consequence of Theorem 3.4 below, we have that a and a′ are be-
haviorally equivalent in a Σ-algebra A iff they are behaviorally equivalent in
the 2-dimensional equality data structure 〈A, idAVIS〉 in the sense of Defini-
tion 3.2.

Behavioral equivalence over a k-data structure turns out to be a congru-
ence relation on the underlying algebra of the data structure with special
properties. In the 1-sorted, 1-data structures (called matrices) which consti-
tute the natural models of sentential logic, the detailed combinatorial analy-
sis of this congruence constitutes the basis of a branch of mathematical logic
called abstract algebraic logic (cf. (Pigozzi, 2001)). Our intention here is to
extend this analysis to the behavioral congruences of arbitrary multi-sorted
k-data structures and in particular to the models of hidden equational logic.
The following two theorems constitute the basis of this approach. They are
due to Manuel Martins and Don Pigozzi in (Martins and Pigozzi, 2007). We
include their proofs here since this paper is intended also as a survey.
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Theorem 3.3. Let Σ be a hidden signature and let alA= 〈A,F 〉 be a k-data
structure over Σ. Then, ≡beh

A =ΩA(F ), i.e., for every S ∈ SORT and for all
a,a′ ∈AS, a≡beh

A a′ iff a≡ a′ (ΩA(F )S).

Proof. It is easy to see that ≡beh
A is an equivalence relation on A. To see that

it is a congruence relation, let O be an operation symbol of type T1, . . . ,Tn→
S and suppose ai ≡beh

A a′i, 1 ≤ i ≤ n. We must show that, for any visible
(k,S)-context ϕ̄(z :S, ū :Q̄):V , with the designated variable z :S, and for all
parameters b̄ ∈AQ̄, we have

(6) ϕ̄A
(
OA(ā), b̄

)
∈ FV iff ϕ̄A

(
OA(ā′), b̄

)
∈ FV .

Consider any i≤n. Using the assumption ai ≡beh
A a′i, and taking xi as the des-

ignated variable, x1, . . . ,xi−1,xi+1, . . . ,xn,u1, . . . ,un as parametric variables,
and a1, . . . ,ai−1, a

′
i+1, . . . ,a

′
n, b1, . . . , bm as parameters we have

ϕ̄A
(
OA(a1, . . . ,ai−1,ai,a

′
i+1, . . . ,a

′
n), b̄

)
∈ FV

iff ϕ̄A
(
OA(a1, . . . ,ai−1,a

′
i,a
′
i+1, . . . ,a

′
n), b̄

)
∈ FV .

Since this equivalence holds for all i ≤ n, (6) holds, and hence ≡beh
A is a

congruence on A.
To see that ≡beh

A is compatible with F , consider ā, ā′ ∈AkV such that
ā
(
≡beh
A
)k
V
ā′. Consider the k-sequence of pairwise distinct variables x̄ =

〈x1 :V, . . . ,xk :V 〉 (called a k-variable, a special k-formula). For each i, 1 ≤
i ≤ k, view x1, · · · ,xn as a (k,V )-context with designated variable xi and
treat a1, . . . ,ai−1,a

′
i+1, . . . ,a

′
k as parameters. Then from the assumption

ai
(
≡beh
A
)
V
a′i we conclude that

〈a1, . . . ,ai−1,ai,a
′
i+1, . . . ,a

′
n〉 ∈ FV iff 〈a1, . . . ,ai−1,a

′
i,a
′
i+1, . . . ,a

′
n〉 ∈ FV .

So ā ∈ FV iff ā′ ∈ FV . Thus ≡beh
A is compatible with F .

Finally, we must show that ≡beh
A is the largest congruence on A compatible

with F . Let Θ be any congruence on A that is compatible with F . Assume
a ≡ a′ (ΘS). Let ϕ̄(z :S, ū :Q̄):V be a visible (k,S)-formula with designated
variable z :S, and let b̄ ∈ AQ̄ be a system of parameters. By the congruence
property, ϕ̄A(a, b̄) ≡ ϕ̄A(a′, b̄)

(
ΘkV
)
. So by the compatibility of Θ with F we

have ϕ̄A(a, b̄) ∈ FV iff ϕ̄A(a′, b̄) ∈ FV . Thus Θ ⊆≡beh
A . ut

This theorem shows the adequacy of using the Leibniz congruence to study
behavioral equivalence. Moreover, when applied to hidden equational logics,
Theorem 3.3 takes a more natural form in terms of 1-dimensional contexts
as we now see.

Theorem 3.4. Let Σ be a hidden signature and let A = 〈A,F 〉 be a model
of the free HELΣ, i.e., F is a VIS-congruence on A. Then, for every
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S ∈ SORT and all a,a′ ∈ AS, a ≡Ω(F )S a
′ iff, for every visible S-context

ϕ(z :S,u1 :Q1, . . . ,um :Qm):V and for all b1 ∈AQ1 , . . . , bm ∈AQm ,

(7) ϕA(a,b1, . . . , bm)≡ ϕA(a′, b1, . . . , bm)(FV ).

Proof. By Theorem 3.3, a≡Ω(F )S a
′ iff, for every (2,S)-context 〈ϕ(z :S, ū :Q̄),

ψ(z :S, ū :Q̄)〉 of sort V , and every b̄ ∈AQ̄,

(8) ϕA(a, b̄)≡ ψA(a, b̄)(FV ) iff ϕA(a′, b̄)≡ ψA(a′, b̄)(FV ).

Suppose (7) holds for every S-context ϕ(z, ū) and every b̄ ∈ AQ̄. If ϕA(a, b̄)
≡FV ψA(a, b̄), then

ϕA(a′, b̄)≡ ϕA(a, b̄)≡ ψA(a, b̄)≡ ψA(a′, b̄)(FV )

(the first and third equivalences hold because F is a VIS-congruence). Thus
(8) holds for every pair of S-contexts and every sequence of parameters b̄,
hence, a≡Ω(F )V a

′.
Conversely, assume a≡Ω(F )V a

′. Let ϕ(z :S, ū :Q̄):V be an arbitrary visible
S-context, where ū :Q̄ = 〈u1 :Q1, . . . ,un :Qn〉. Let un+1 be a new parametric
variable of sort V ; the single term un+1 can be viewed as a visible S-context
with designated variable z (which does not actually occur) and parametric
variables ū+ := 〈u1, . . . ,un,un+1〉. ϕ can also be viewed as an S-context with
the same parametric variables. Let 〈b1, . . . , bn〉 be any system of parameters
of sort Q̄, and extend it to a system b̄+ := 〈b1, . . . , bn, bn+1〉, where bn+1 =
ϕA(a, b̄). Thus ϕA(a, b̄+) = bn+1 = uAn+1(a, b̄+). So by (8), ϕA(a′, b̄+) ≡FV
uAn+1(a′, b̄+). But uAn+1(a′, b̄+) also equals bn+1. So ϕA(a, b̄) ≡FV ϕA(a′, b̄).
Thus (7) holds for every S context ϕ(z, ū) and every b̄ ∈AQ̄. ut

Applying this result to equality models (i.e., models whose filter is the
identity), we get that a and a′ are behaviorally equivalent, in the sense of Def-
inition 3.1, iff a≡ a′

(
ΩA(idAVIS)

)
; hence behavioral equivalence over k-data

structures does indeed generalize the familiar notion of behavioral equivalence
over a sorted algebra. This result was obtained independently by Goguen and
Malcolm (Goguen and Malcolm, 2000).

For hidden equational logics the Leibniz relation has the following useful
property; this can also be found in (Goguen and Malcolm, 1999, 2000) for
the case of equality models.

Corollary 3.5. Let A = 〈A,F 〉 be a model of the free HELΣ. Then ΩA(F )
is the largest congruence on A whose visible part is F .

Proof. Suppose a ≡ a′
(
ΩA(F )V

)
with V ∈ VIS. Let z be a variable of sort

V . Then z is a visible V -context and hence a= zA(a)≡ zA(a′) = a′ mod FV .
Thus ΩA(F )VIS ⊆ F . Conversely, assume a≡ a′ mod FV . Then for every V -
context ϕ(z, ū) and every choice of parameters b̄ ∈ AQ̄, we have ϕA(a, b̄) ≡
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ϕA(a′, b̄) mod FV . Thus a≡ a′ (ΩA(F )V ) and hence ΩA(F )VIS = F . If Θ is
any congruence on A such that ΘVIS = F , then Θ is compatible with F , and
hence Θ ⊆ΩA(F ). ut

As a special case (for equality models) we have that ΩA(idAVIS)VIS =
idAVIS , i.e., two visible elements of a Σ-algebra are behaviorally equivalent
iff they are equal. However, in computer science it is important to establish
procedures to check if two elements are behaviorally equivalent. The last
result allows the following method of coinduction.

Given a data structure 〈A,F 〉 we want to know if a pair 〈a,a′〉 ∈A2
S is in

Ω(F )S . Our method consists of the following three steps:

1 - Define a suitable relation R on A, such that the visible part is F ;
2 - Show that this relation is a congruence on A;
3 - Finally show that a and a′ are equivalent modulo R.

At first glance, step 1 of this method seems to be a very hard task, however
it works very well in many concrete examples. In Example 2.7, we can use
this method to prove that rev(rev(F ))≈ rev(F ) is behaviorally equivalent in
any equality model A of Leflag. It is enough to consider R :=

{
(a,a′) ∈A2

flag :
up?A(a) = up?A(a′)

}
.

When applied to Lindenbaum models, Corollary 3.5 gives rise to the fol-
lowing results.

Corollary 3.6. Let L be a HEL and G an LUH-theory. Then G⊆Ω(GVIS)
and GVIS =Ω(GVIS)VIS.

We can also conclude from Theorem 3.4 that for every sorted algebra A,
the operator ΩA : FiL(A)→ Con(A) defined by mapping each F ∈ FiL(A)
into ΩA(F ) is injective and monotonic.

Corollary 3.7. Let L be a HEL. Then for every sorted algebra A, ΩA is
injective and monotonic.

Proof. The proof of injectivity is obvious.
Let F,G ∈ FiL(A) such that F ⊆ G. Suppose that a ≡ a′(Ω(F )S). Then

for every S-context ϕ(z :S,x):V and for all b ∈Ak, ϕA(a,b)≡ ϕA(a′, b)(FV ).
Hence, for every S-context ϕ(z :S,x):V and for all b ∈ Ak, ϕA(a,b) ≡
ϕA(a′, b)(GV ). Therefore, a≡ a′(Ω(G)S). ut

For arbitrary hidden logics this result is false, even in the one-sorted case.
The class of logics for which Ω is injective and monotonic is called Weakly Al-
gebraizable Logics. (This class was investigated by Czelakowski and Jansana
in (Czelakowski, 2000)). Injectivity and monotonicity are independent prop-
erties in sense that neither one of them implies the other (see (Descalço and
Martins, 2005) for an example of a non monotonic injective logic).
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For some specifications, certain intuitive properties are not satisfied in
the usual sense. This is the case, for instance, of the usual specification of
Flags (see (Goguen and Malcolm, 1999)), where equation rev(rev(F )) ≈ F
should be a property of the specification of Flags but is not a theorem of the
LUH

eflag. Therefore, we consider, next, a weaker notion of satisfaction, called
behavioral satisfaction. The perspective according to which satisfaction is to
be considered behaviorally is called behavioral approach (see, e.g., (Roşu,
2000)).

Definition 3.8. Let t ≈ t′ be an equation of arbitrary sort, and A = 〈A,F 〉
a k-data structure. We say that the equation t≈ t′ is behaviorally satisfied in
A, in symbols |=beh

A t≈ t′, if for all h :X → A, h(t)≡beh〈A,F 〉 h(t′). Let L be a
HEL and let Mod(L)= denote {A : 〈A,idAVIS〉 ∈Mod(L)}. We say that t≈ t′
is behaviorally valid over L, in symbols |=beh

L t≈ t′, if for every A∈Mod(L)=,
|=beh
〈A,idAVIS〉

t≈ t′. If L is clear from the context we simply write, |=beh t≈ t′.

In the example of Leflag, we have just sketched the proof that equation
rev(rev(F ))≈ F is behaviorally satisfied in each algebra in Mod(Leflag)=.

Lemma 3.9. Let A = 〈A,F 〉 be a data structure over a hidden signature Σ
and S be an arbitrary sort. Then, |=beh

A t ≈ t′ iff for every h : X → A and
every visible S-context ϕ(z :S,x1, . . . ,xn):V ,

h(ϕ(t,x1, . . . ,xn))≡ h(ϕ(t′,x1, . . . ,xn)) (FV )

We are going to introduce some notation.

Definition 3.10. Let t≈ t′ be an equation of type S. We define ∆[t≈ t′] to
be the set

{
t≈ t′

}
, if S ∈VIS; and ∆[t≈ t′] to be the set

{
ϕ(t,x1, . . . ,xn)≈

ϕ(t′,x1, . . . ,xn)|ϕ(z :S,x1, . . . ,xn) ∈ (TeΣ(X))VIS
}

, if S /∈VIS.

The following lemma is a useful characterization for an equation to be
behaviorally satisfied in an algebra A (the version for equality models was
proved by Roşu in (Roşu, 2000)).

Lemma 3.11. Let A= 〈A,F 〉 be a data structure over a hidden signature Σ
and S be an arbitrary sort. Then the following conditions are equivalent:

(i) |=beh
A t≈ t′;

(ii) |=A ∆[t≈ t′].

In the special case of data structures of form 〈TeΣ(X),T 〉, with T a the-
ory, we call the equations in Ω(T ), behavioral consequences of T . Behavioral
consequences of a substitution invariant theory T may be characterized in
the following way.

Corollary 3.12. Let L be a HEL, T a substitution invariant theory of L and
t, t′ ∈ (TeΣ(X))S. Then the following are equivalent:
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(i) t≡ t′ ( Ω(T )S);
(ii) for every visible S-context ϕ(z :S,x1, . . . ,xn),

T `L ϕ(t,x1, . . . ,xn)≈ ϕ(t′,x1, . . . ,xn).

A detailed study of the properties of Ω(T ) can be found in (Martins and
Pigozzi, 2007).

3.1 Formal Behavioral Consequence Relation

In this section we present a characterization of the Leibniz congruence in
terms of the consequence relation of LUH. This characterization justifies the
name we have been using for the elements in Ω(T ) - behavioral consequences
of T .

This result generalizes, in two directions, the work of Leavens and Pigozzi
in (Leavens and Pigozzi, 2002). On the one hand, we allow conditional equa-
tions as axioms (instead of equations only); on the other hand, we characterize
Ω(T ) for all theories (instead of just Ω(Thm(L))).

In the second part of this section, we present a simpler characterization
for the special case of strict HEL, by dropping the condition that G has to
range over all theories.

Now we consider the following generalization of the definition of formal
behavioral consequence (introduced in (Leavens and Pigozzi, 2002)).

Definition 3.13. Let L be a HEL, T ∈Th(L) and F a set of equations over
Σ. Then we say that F is a global formal behavioral consequence of T , in
symbols T `GFBL F , if for every G ∈ Th(LUH), such that T ⊆ G, and every
visible equation s ≈ s′, G∪ F `LUH s ≈ s′ implies that G `LUH s ≈ s′. If
F = {t≈ t′}, then we say that t≈ t′ is a global formal behavioral consequence
of T and we write T `GFBL t≈ t′.

Let L be a HEL and T ∈ Th(L). We define the following relation on the
term algebra. For each sort S, GFB(T )S is the set of all pairs (t, t′) of formulas
of type S, such that T `GFBL t≈ t′. Thus, GFB(T ) = 〈GFB(T )S : S ∈ SORT〉.

The global formal behavioral consequence relation, as a property of a set,
can actually be reduced to a property of its individual members.

Theorem 3.14. Let L be a specifiable HEL and F be a set of equations. Then
for every T ∈ Th(L),

(9) T `GFBL F ⇔ (T `GFBL t≈ t′, for all t≈ t′ ∈ F )

Proof. The implication from left to right is obvious. To prove the converse
we first show that it holds for any finite F , using induction on the number
of elements in F .
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Let G ∈Th(LUH) such that T ⊆G and s,s′ ∈ (TeΣ(X))VIS. Suppose that
G∪F `LUH s≈ s′.

If F has only one equation, we have, by hypothesis, that G `LUH s≈ s′.
Let now F be the union of F ′ with {t ≈ t′}. Suppose that G∪F ′ ∪{t ≈

t′} `LUH s≈ s′. Hence, CnLUH(G∪F ′)∪{t≈ t′} `LUH s≈ s′. Since, T `GFBL
t ≈ t′, we have that CnLUH(G∪F ′) `LUH s ≈ s′. Hence, G∪F ′ `LUH s ≈ s′.
Finally, by the induction hypothesis, G `LUH s≈ s′. So, we have just proved
that T `GFBL F .

Let now F be any set of equations. Let G ∈ Th(LUH) such that T ⊆ G
and s,s′ ∈ (TeΣ(X))VIS. Suppose that G∪F `LUH s ≈ s′. Then, there is a
finite subset F0 of F such that G∪F0 `LUH s≈ s′. From the discussion above,
G `LUH s≈ s′. ut

The following lemma shows that the global formal behavioral consequence
is closed under ordinary equational deduction.

Lemma 3.15. Let L be a specifiable HEL, T ∈ Th(L) and F a set of equa-
tions. Then T `GFBL F and F `LUH t≈ t′ implies that T `GFBL t≈ t′.

Proof. Let G ∈ Th(LUH), such that T ⊆G, and s≈ s′ be a visible equation.
Suppose that G∪{t≈ t′} `LUH s≈ s′. Then, G∪F `LUH s≈ s′. Since T `GFBL
F , we have that G `LUH s≈ s′. Therefore, T `GFBL t≈ t′. ut

Corollary 3.16. Let L be a specifiable HEL and T ∈ Th(L). Then GFB(T )
is a theory of LUH.

Theorem 3.17. Let L be a specifiable HEL and T ∈ Th(L). Then

1. GFB(T )V = TV , for all V ∈VIS.
2. GFB(T )⊆Ω(T ).

Proof. Obviously, T ⊆GFB(T )VIS. To prove the other inclusion, suppose that
(t, t′)∈GFB(T )∩Te2

Σ(X)VIS. Since T ∪{t≈ t′} `LUH t≈ t′, then by definition
of GFB(T ), T `LUH t ≈ t′. Therefore, since T `L t ≈ t′ iff T `LUH t ≈ t′, for
any t, t′ ∈ TeΣ(X)VIS, we have T `L t≈ t′, i.e. t≈ t′ ∈ T .

Since GFB(T ) is a congruence which coincides with T in the visible
part and Ω(T ) is the largest congruence with this property, we have that
GFB(T )⊆Ω(T ). ut

The following theorem is one of the main results of this section.

Theorem 3.18. Let L be a specifiable HEL and T ∈ Th(L). Then

Ω(T ) = GFB(T )

Proof. Suppose that t≡ t′ (Ω(T )). Let s,s′ ∈ TeΣ(X)VIS and G ∈ Th(LUH),
such that T ⊆G. Suppose that
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(10) G∪{t≈ t′} `LUH s≈ s′

Since T ⊆ GVIS and the HEL logics are monotonic (see Corollary 3.7),
Ω(T )⊆Ω(GVIS). Hence, t≡ t′ (Ω(GVIS)). Since G⊆Ω(GVIS) (see Corollary
3.6), (10) implies s ≡ s′ (Ω(GVIS)). Moreover, as s ≈ s′ is visible, s ≈ s′ ∈
GVIS. So, GVIS `LUH s≈ s′. Since the visible L-consequences and the LUH-
consequences of a set of visible equations are the same, we have G `L s≈ s′.
That is, T `GFBL t≈ t′.

The other inclusion is Part 2 of Theorem 3.17. ut

3.2 Strict equational HEL.

In this section we define a simpler notion of behavioral consequence of a
theory -formal behavioral consequence of T . It considers only the theory T
instead of considering all theories of LUH that contain T . For strict equational
HEL’s, we obtain simpler results.

First we define a relation on the term algebra that will play an important
role in the sequel. A similar relation was already considered by Leavens and
Pigozzi in the context of equational reasoning with subtyping (cf. (Leavens
and Pigozzi, 2002)). The difference is that here we do not restrict the type of
the arguments of the term r and we do not consider the substitution instances
of the axioms.

Definition 3.19. Let E be a set of equations and Ẽ = {t′ ≈ t : t ≈ t′ ∈ E}.
We define the SORT-sorted relation ≡E in the following way:

for each sort S, t(≡E)S t′ iff there is a term r(z :S,y1 :T1, . . . ,ym :Tm) and
an equation e(x1 :S1, . . . ,xn :Sn) ≈ e′(x1 :S1, . . . ,xn :Sn) ∈ E ∪ Ẽ of type S
such that t= r(e(x1, · · · ,xn),y1, . . . ,ym) and t′ = r(e′(x1, . . . ,xn),y1, . . . ,ym).

Finally, we define ≡∗E as the reflexive, transitive closure of ≡E .

In the sequel we will use the following immediate consequence of the defi-
nition of ≡∗E :

Lemma 3.20. t≡∗E t′ iff there are terms s1, . . . ,sn such that t= s1 ≡E · · · ≡E
si ≡E si+1 ≡E · · · ≡E sn = t′.

By reformulating Lemma 2.21 of (Leavens and Pigozzi, 2002) we obtain
the following characterization of equational consequence:

Lemma 3.21. Let L be a strict equational HEL with set of equations E. Let
F be a set of equations and t≈ t′ an equation. Then

(11) F `LUH t≈ t′⇔ t(≡F ∪EL)∗ t′,

where EL is the set of all substitution instances of equations in E.



A short overview of Hidden Logic 195

Proof. [⇐] Suppose that t(≡F ∪EL)∗ t′. Then, there are terms s0, . . .sn
such that t = s0 ≡F ∪EL s1 ≡F ∪EL · · ·si ≡F ∪EL si+1 · · · ≡F ∪EL sn = t′.
So, for each i ≤ n, there is a S-context r(z :S,y1, . . . ,ym) and an equation
e(x1, . . . ,xn)≈ e′(x1, . . . ,xn) ∈ (F ∪EL)∪ (F̃ ∪ ẼL) such that:

• si = r(e(x1, . . . ,xn),y1, . . . ,ym) and
• si+1 = r(e′(x1, · · · ,xn),y1, . . . ,ym).

If e≈ e′ ∈EL∪ ẼL then obviously F `LUH si ≈ si+1. Otherwise, by the con-
gruence inference rule, F `LUH si≈ si+1. Therefore, by transitivity, we obtain
F `LUH t≈ t′.

[⇒] We are going to prove that all equations in F and all substitution in-
stances of the extralogical axioms are in (≡F ∪EL)∗ and (≡F ∪EL)∗ is closed
under equation deduction. It is clear that all substitution instances of the
equations in E and all equations in F , considered as ordered pairs, are in
(≡F ∪EL)∗ (by considering the context r = z :S). By definition, (≡F ∪EL)∗
is obviously closed under the rules of reflexivity, symmetry and transitivity.
To show that ≡F ∪EL is closed under the congruence rule, let g be an op-
eration symbol of type S1, . . . ,Sn → S and t1, . . . , tn and t′1, . . . , t

′
n of type

S1, . . . ,Sn respectively. Suppose that ti ≡F ∪EL t′i, for all i≤ n. To prove that
g(t′1, · · · , t′i−1, t

′
i, . . . , t

′
n) ≡F ∪EL g(t1, . . . , ti, ti+1, . . . , tn) it is enough to prove

that
g(t′1, . . . , t′i−1, ti, . . . , tn)≡F ∪EL g(t′1, . . . , t′i, ti+1, . . . , tn), for i≤ n.

We know that ti = r(e(x1, . . . ,xn),y1, . . . ,ym) and t′i = r(e′(x1, . . . ,xn),y1, . . . ,
ym), for some Si-context r and some e(x1, . . . ,xn) ≈ e′(x1, . . . ,xn) ∈ (F ∪
EL)∪ (F̃ ∪ ẼL).

So,
g(t′1,. . ., t′i−1, ti,. . ., tn) = g(t′1,. . ., t′i−1, r(e(x1,. . .,xn),y1,. . .,ym), ti+1,. . ., tn)
and
g(t′1,. . ., t′i, ti+1,. . ., tn) = g(t′1,. . ., t′i−1, r(e′(x1,. . .,xn),y1,. . .,ym), ti+1,. . ., tn).
Hence,
g(t′1, . . . , t′i−1, r(e(x1, . . . ,xn),y1, . . . ,ym), ti+1, . . . , tn) =

ϕ(r(e(x1, . . . ,xn),y1, . . . ,ym),y1, . . . ,ym)
and
g(t′1, . . . , t′i−1, r(e′(x1, . . . ,xn),y1, . . . ,ym), ti+1, . . . , tn) =

ϕ(r(e′(x1, . . . ,xn),y1, . . . ,ym),y1, . . . ,ym),
where ϕ(z,y1, . . . ,ym) = g(t′1, . . . , t′i−1,z :Ti, ti+1, . . . , tn).

Therefore, by the definition of ≡F ∪EL ,

g(t′1, . . . , t′i−1, ti, . . . , tn)≡F ∪EL g(t′1, . . . , t′i, ti+1, . . . , tn).

Now, we show that (≡F ∪EL)∗ is also closed under the congruence rule.
Suppose now that ti (≡F ∪EL)∗t′i, for all i ≤ n. By definition of (≡F ∪EL)∗
and reflexivity, for all i≤ n, there are terms s1

i , . . . ,s
m
i such that

ti = s1
i ≡F ∪EL · · · ≡F ∪EL smi = t′i.
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Hence, by the previous discussion,

g(s1
1, . . . ,s

1
n)≡F ∪EL · · · ≡F ∪EL g(sm1 , . . . ,smn ).

Finally, by transitivity we get g(t1, . . . , tn)(≡F ∪EL)∗ g(t′1, . . . , t′n). ut

Definition 3.22. Let L be a HEL, T ∈ Th(L) and F a set of equations. We
say that F is a formal behavioral consequence of T , in symbols T `FBEL F , if
for every visible equation s≈ s′, T ∪F `LUH s≈ s′ implies that T `LUH s≈ s′.
We say that an equation t ≈ t′ is a formal behavioral consequence of T , if
{t≈ t′} is and we write T `FBEL t≈ t′.

Similarly to the global behavioral consequence relation, the formal behav-
ioral consequence relation, as a property of a set, is actually a local property.

Theorem 3.23. Let L be a strict equational HEL and F be a set of equations.
Then for every T ∈ Th(L),

(12) T `FBEL F ⇔ (T `FBEL t≈ t′, for all t≈ t′ ∈ F )

Proof. The implication from right to left is straightforward. To prove the
other implication, let s,s′ ∈ (TeΣ(X))VIS and assume that T ∪F `LUH s≈ s′.
Since EL ⊆ T , by Lemma 3.21, s ≡∗T∪F s′. Hence, there are s1, · · · ,sn ∈
TeΣ(X) such that s= s1 ≡T∪F · · · ≡T∪F sm = s′. Then, for every i≤ n, si =
r(e(x1, . . . ,xn),y1, . . . ,ym) and si+1 = r(e′(x1, . . . ,xn),y1, . . . ,ym) for some
r(z,y1, . . . ,ym) and e(x1, . . . ,xn)≈ e′(x1, . . . ,xn) ∈ T ∪F ∪ F̃ .

If e(x1, . . . ,xn)≈ e′(x1, . . . ,xn) ∈ T then, by the congruence rule,
T `LUH r(e(x1, . . . ,xn),y1, . . . ,ym)≈ r(e′(x1, . . . ,xn),y1, . . . ,ym). I.e., T `LUH

si ≈ si+1. Otherwise, e(x1, . . . ,xn)≈ e′(x1, . . . ,xn)∈ F ∪ F̃ . Then, by the con-
gruence rule,
{e≈ e′} `LUH si ≈ si+1. So, T ∪{e≈ e′} `LUH si ≈ si+1. Since T `FBEL e≈ e′,
we get T `LUH si ≈ si+1.

So, for every i≤ n, T `LUH si ≈ si+1. Hence, by transitivity rule,
T `LUH s≈ s′. Therefore T `FBEL F ut

Let L be a HEL and T ∈ Th(L). We define a relation FB(T ) on the
term algebra in the following way: for each sort S, FB(T )S is the set of all
pairs (t, t′) of formulas of type S, such that T `FBEL t ≈ t′. Thus, FB(T ) =
〈FB(T )S : S ∈ SORT〉.

Lemma 3.24. Let L be a strict HEL. Then for every T ∈Th(L), GFB(T )⊆
FB(T ).

Proof. Let T ∈ Th(L). Suppose that t ≈ t′ ∈ GFB(T ). Let s ≈ s′ be a visi-
ble equation. Suppose that T ∪{t≈ t′} `LUH s≈ s′. Then, CnLUH(T )∪{t≈
t′} `LUH s≈ s′. Hence, by hypothesis, CnLUH(T ) `LUH s≈ s′. So, T `LUH s≈
s′. I.e., (t, t′) ∈ FB(T ). ut
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The following corollary is a consequence of the previous Lemma and Theo-
rem 3.18. It provides a necessary condition for an equation to be a behavioral
consequence of a theory.

Corollary 3.25. Let L be a strict equational HEL and t ≈ t′ an equation.
Then, for every T ∈ Th(L)

(13) t≡ t′ (Ω(T ))⇒ T `FBEL t≈ t′.

An important result of this paper is the converse of (13). First we show
that, similarly to the global behavioral consequence, the formal behavioral
consequence relation is closed under LUH-consequences.

Lemma 3.26. Let L be a strict equational HEL, T ∈ Th(L) and F a set of
equations. Then T `FBEL F and F `LUH t≈ t′ implies that T `FBEL t≈ t′.

Proof. Let s ≈ s′ be a visible equation such that T ∪{t ≈ t′} `LUH s ≈ s′.
Then, T ∪ F `LUH s ≈ s′. Since T `FBEL F , we have that T `LUH s ≈ s′.
Therefore, T `FBEL t≈ t′. ut

Therefore,

Corollary 3.27. Let L be a strict equational HEL and T ∈ Th(L). Then
FB(T ) is a theory of LUH.

Theorem 3.28. Let L be a strict equational HEL and T ∈ Th(L). Then

1. FB(T )V = TV , for all V ∈VIS.
2. FB(T )⊆Ω(T ).

Proof. Clearly TV ⊆FB(T )V for all V ∈VIS. Let t≈ t′ ∈FB(T )V . Then, by
definition, for every visible equation s ≈ s′, T ∪{t ≈ t′} `LUH s ≈ s′ implies
T `LUH s ≈ s′. In particular, T `LUH t ≈ t′, i.e., T `L t ≈ t′. Since T is a
theory, t≈ t′ ∈ T .
FB(T )⊆Ω(T ) is a consequence of Corollary 3.27 and the fact that Ω(T )

is the largest congruence equal to T on the visible part. ut

We now have gathered all the necessary results to prove the following
characterization of the behavioral consequences of a theory.

Theorem 3.29. Let L be a strict equational HEL and T ∈Th(L). Then, for
every t, t′ ∈ TeΣ(X),

(14) t≡ t′ (Ω(T ))⇔ T `FBEL t≈ t′.

Proof. The direct implication is just Corollary 3.25, and the converse follows
from Part (2) of Theorem 3.28. ut
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4 Conclusion

The discussion of AAL in the many sorted case started in the early nineties.
In (Blok and Pigozzi, 1992, Section 15) Blok and Pigozzi presented some
results for equality-test algebras, where notions such as reduced matrix are
dealt with. However, one can credit Don Pigozzi with the seminal ideas pre-
sented in 1999 in a course at University of Lisbon, that opened this new area
of research. This application of AAL to computer science, namely to behav-
ioral equivalence, produced several results, based on the theory of hidden
k-logic. We believe that there is space for further developments. Actually, we
are currently trying to use tools from AAL to deal with behavioral transi-
tions, another topic in computer science. Preordered algebra is the natural
algebraic framework to specify and reason about transitions. In (Diaconescu,
2011) Diaconescu studies a combination of preordered algebra and hidden
algebra, which he calls hidden preordered algebra. A new concept appears in
this context - behavioral transition. Behavioral transitions are already pre-
sented in CafeOBJ, however there are still several aspects that need more
attention. For instance its methodological aspects remain unexplored. As
shown in (Diaconescu, 2011), the coinduction proof method for behavioral
equivalence can be extended to proving behavioral transitions. This method
is based on the fact that the behavioral preordered algebra congruence on
an ordered algebra (A,≤) is the largest hidden preordered algebra congru-
ence on (A,≤). This is similar to the case of hidden congruence (behavioral
equivalence) vs. Leibniz congruence. Hence, we believe that a model with two
filters, one for equations and another for transitions might prove a good fit
as a semantics for this computer science paradigm. Raftery’s work (Raftery,
2013) on ordered algebraizable logics will probably play an important role in
our intended application.
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matical logic, Bogotá, Colombia, June 24–29, 1995, New York, NY: Marcel
Dekker. Lect. Notes Pure Appl. Math. 203, pages 187–265.

Descalço, L. and Martins, M. A. (2005). On the injectivity of the Leibniz
operator, Bulletin of the Section of Logic, 34(4), 203–211.

Diaconescu, R. (2011). Coinduction for preordered algebra, Information and
Computation, 209(2), 108–117.

Diaconescu, R. and Futatsugi, K. (1998). CafeOBJ report: The language,
proof techniques, and methodologies for object-oriented algebraic specifi-
cation, in A. series in Computing, editor, World Scientific, volume 6.

Diaconescu, R. and Futatsugi, K. (2000). Behavioural coherence in object-
oriented algebraic specification. Journal of Universal Computer Science,
6(1), 74–96.

Font, J. and Jansana, R. (1996). A general algebraic semantics for sentential
logics, Lecture Notes in Logic, 7. Springer, Berlin.

Font, J., Jansana, R. and Pigozzi, D. (2003). A survey of abstract algebraic
logic, Studia Logica, 74, 13–97.

Goguen, J. (1989). Types as theories, in Topology and category theory in
computer science, Oxford Sci. Publ., pages 357–390. Oxford University
Press, New York.
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Abstract We prove that every congruence distributive variety has directed
Jónsson terms, and every congruence modular variety has directed Gumm
terms. The directed terms we construct witness every case of absorption wit-
nessed by the original Jónsson or Gumm terms. This result is equivalent to
a pair of claims about absorption for admissible preorders in congruence dis-
tributive and congruence modular varieties, respectively. For finite algebras,
these absorption theorems have already seen significant applications, but un-
til now, it was not clear if the theorems hold for general algebras as well.
Our method also yields a novel proof of a result by P. Lipparini about the
existence of a chain of terms (which we call Pixley terms) in varieties that
are at the same time congruence distributive and k-permutable for some k.
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1 Introduction

In 1967, Bjarni Jónsson (Jónsson, 1967) proved that a variety V is congru-
ence distributive (CD) if and only if it has, for some n, a sequence of terms
J0(x,y,z), . . . , Jn(x,y,z) satisfying a certain system of equations, namely,
J0(x,y,z) = x, Jn(x,y,z) = z, Ji(x,y,x) = x for each 0 ≤ i ≤ n, and for
each 0 ≤ i < n, either the equation Ji(x,x,y) = Ji+1(x,x,y) or the equa-
tion Ji(x,y,y) = Ji+1(x,y,y). This Maltsev condition can be formulated more
specifically in several equivalent ways. The following formulation is convenient
for our purposes: for some n≥ 0 and terms J0(x,y,z), . . . ,J2n+1(x,y,z), con-
sider the system of equations

(J(n))

J1(x,x,y) = x, J2n+1(x,y,y) = y,

Ji(x,y,x) = x, for 0≤ i≤ 2n+ 1,
J2i+1(x,y,y) = J2i+2(x,y,y) for 0≤ i≤ n−1,
J2i(x,x,y) = J2i+1(x,x,y) for 1≤ i≤ n,

and call this package of equations J(n). By a chain of Jónsson terms for a
variety V, we mean a sequence of terms satisfying over V the equations J(n)
for some n. Jónsson proved that an algebra A has terms obeying the equations
J(n), for some n, if and only if the congruence lattice of every algebra in the
variety generated by A is distributive. A system of directed Jónsson terms
for V consists, for some n ≥ 1, of terms D1(x,y,z), . . . ,Dn(x,y,z) satisfying
over V the equations DJ(n):

(DJ(n))
D1(x,x,y) = x, Dn(x,y,y) = y,

Di(x,y,x) = x for 1≤ i≤ n,
Di(x,y,y) =Di+1(x,x,y) for 1≤ i < n.

Our chief purpose is to show that a variety has Jónsson terms if and only
if it has directed Jónsson terms. Moreover, in such a case, one can find a
sequence of terms which satisfy J(n) and DJ(2n+1) for some n at the same
time. These two results are contained in Corollary 4.1 and Observation 1.2.

H.P. Gumm (Gumm, 1981) proved that a variety V is congruence mod-
ular (CM) if and only if it has, for some n ≥ 0, a sequence of terms
J1(x,y,z), . . . ,J2n+1(x,y,z), and P (x,y,z) satisfying the equations G(n):

(G(n))

J1(x,x,y) = x, J2n+1(x,y,y) = P (x,y,y), P (x,x,y) = y,

Ji(x,y,x) = x for 0≤ i≤ 2n+ 1,
J2i+1(x,y,y) = J2i+2(x,y,y) for 0≤ i≤ n−1,
J2i(x,x,y) = J2i+1(x,x,y) for 1≤ i≤ n.



Absorption and directed Jónsson terms 205

Directed Gumm terms are terms D1(x,y,z), . . . ,Dn(x,y,z), and Q(x,y,z) sat-
isfying DG(n) for some n≥ 1:

(DG(n))
D1(x,x,y) = x, Dn(x,y,y) =Q(x,y,y), Q(x,x,y) = y,

Di(x,y,x) = x for 1≤ i≤ n,
Di(x,y,y) =Di+1(x,x,y) for 1≤ i < n.

Similarly to the congruence distributive case, we show that a variety has
Gumm terms if and only if it has directed Gumm terms, and that given
Gumm terms we can find terms satisfying G(n) and DG(2n+ 1) for some
n at the same time. These two results are contained in Theorem 6.1 and
Observation 1.2.

Our context makes it natural to introduce another Maltsev condition that
looks similar to directed Jónsson terms but is actually much stronger. The
condition is that for some n ≥ 1 there are terms P1(x,y,z), . . . ,Pn(x,y,z)
satisfying P(n):

(P(n))
P1(x,y,y) = x, Pn(x,x,y) = y,

Pi(x,y,x) = x for 1≤ i≤ n,
Pi(x,x,y) = Pi+1(x,y,y) for 1≤ i < n.

This condition, which we call Pixley terms, first appeared in P. Lipparini (Lip-
parini, 1995).

Observe that if we remove the equations “Ji(x,y,x) = x” from DJ(n),
we obtain a Maltsev condition that is always trivially satisfied by taking
D1(x,y,z) = y and Di(x,y,z) = z for all 1 < i ≤ n. For contrast, removing
the equations Pi(x,y,x) = x from P(n) produces the classical Hagemann-
Mitschke terms (Hagemann and Mitschke, 1973), and these have highly non-
trivial consequences. A variety has a chain of n Hagemann-Mitschke terms if
and only if it has (n+ 1)-permuting congruences. The variety of lattices, for
example, satisfies J(1) but does not have Hagemann-Mitschke terms.

A. Pixley (Pixley, 1963) proved that a variety is congruence distribu-
tive and all its congruences permute if and only if it satisfies P(1). A term
P1(x,y,z) for which

P1(x,y,x) = P1(x,y,y) = P1(y,y,x) = x

holds has long been called a Pixley term. In this connection, note that the
term J1(x,y,z) with the equations J1(x,y,x) = J1(x,x,y) = J1(y,x,x) = x
constituting Jónsson terms J(0) is familiarly known as a majority term; and
both J(0) and DJ(1) are just asserting that we have a majority term.

Here is our principal result about these Maltsev conditions.

Theorem 1.1. Let V be any variety of algebras.
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1. V is congruence distributive if and only if it has directed Jónsson terms.
In such a case there is a sequence of terms satisfying DJ(2n+1) and J(n)
at the same time (for some n≥ 1). See Corollary 4.1 and Observation 1.2.

2. For any integer k≥ 1, a variety V is congruence distributive and has (k+
1)-permuting congruences if and only if it satisfies P(k). See Theorem 5.1
for the “⇒” implication.

3. V is congruence modular if and only if it has directed Gumm terms. In
such a case there is a sequence of terms satisfying G(n) and DG(2n+1)
at the same time (for some n≥ 1). See Theorem 6.1 and Observation 1.2.

Statement (2) is Proposition 5 in P. Lipparini (Lipparini, 1995). However,
our proof, given in Section 5, is new, and shows more.

Observation 1.2. Let V be a variety that admits a chain of terms satisfying
DJ(n). Then V admits a chain of terms that satisfy J(n−1) and DJ(2n−1)
at the same time. Similarly, DG(n) implies the existence of a chain of terms
that simultaneously satisfies G(n−1) and DG(2n−1).

Proof. Given directed Jónsson terms D1, . . . ,Dn, we produce the new terms
by letting

J1(x,y,z) =D1(x,y,z), J2i(x,y,z) =Di+1(x,x,z),
J2i+1(x,y,z) =Di+1(x,y,z) for 1≤ i≤ n−1.

We leave to the reader the easy proof that DG(n) implies appropriate terms
for congruence modular varieties.

Similarly, P(n) implies J(n): given some Pixley terms P1, . . . ,Pn, take

J1(x,y,z) = x, J2n+1(x,y,z) = z,

J2i(x,y,z) = Pi(x,y,z) for 0≤ i < n,

J2i+1(x,y,z) = Pi+1(x,z,z) for 0≤ i < n.

It is an easy exercise to show that P(k) implies (k+1)-permuting congruences.
Our proof of the converse implications, that is, J(n) implies DJ(k) for

some k, and G(n) implies DG(k) for some k, will take some work and will
be concluded in Sections 4 and 6. The fact that a (k+1)-permutable variety
with Jónsson terms satisfies P(k) is demonstrated in Section 5.

2 Absorption

The notion of absorption was introduced by L. Barto and M. Kozik (Barto and
Kozik, 2012), who proved deep results about absorption in finite algebras and
used this theory as a powerful tool for applying universal algebraic methods
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in the study of constraint satisfaction problems (this area where universal
algebra and theoretical computer science meet has blossomed over the past
decade).

If C and D are subalgebras of an algebra A we say that C absorbs D if
∅ 6= C ⊆D and there is a term operation s(x1, . . . ,xn) of the algebra A such
that A |= s(x, . . . ,x) = x (i.e. s is idempotent) and whenever d̄ ∈ Dn with
di ∈D \C for at most one i ∈ {1, . . . ,n}, then s(d̄) ∈ C. We denote the fact
that C absorbs D in this sense by C�D, or C�sD where s is the term
operation that witnesses the absorption.

In this paper, however, a different variant of absorption is needed. We will
say that a sequence J1, . . . ,J2n+1 of terms is a chain of weak Jónsson terms if
J1, . . . ,J2n+1 satisfy all of the equations J(n) except perhaps Ji(x,y,x) = x.
We define weak directed Jónsson chains, weak Gumm chains, and weak di-
rected Gumm chains similarly, always dropping the requirement that Ji(x,y,x)
= x.

If C and D are subalgebras of A, ∅ 6= C ⊆ D, and t(x,y,z) is a ternary
idempotent term operation of A, then we write C�mt D and say that C
middle absorbs D with respect to t if t(a,b,c) ∈ C whenever a,c ∈ C and
b ∈ D. If T is a set of ternary idempotent term operations of A, we say
that C middle absorbs D with respect to T , written C�mT D, provided that
C�mt D for every t ∈ T .

We are interested in four special cases of middle absorption: Jónsson ab-
sorption, Gumm absorption, and directed versions thereof. We save Gumm
absorption for the end of this paper and concentrate on Jónsson absorption
for now.

We say that C Jónsson absorbs D if C�mJ D, where J is a sequence of
weak Jónsson terms. Directed Jónsson absorption is defined analogously, with
weak directed Jónsson terms. We shall write C�J D (in words, C Jónsson
absorbs D) to indicate either that C�mJ D for some chain J of weak Jónsson
terms, or that C�mJ D for a specific system of terms that is being held fixed.
The context will make clear which is meant. Our use of the notation C�DJD
(directed Jónsson absorption) is analogous.

One can show that if A is a finite idempotent algebra—equivalently, ev-
ery one-element subset of A is a subuniverse—then A admits a chain of
Jónsson terms (respectively, directed Jónsson terms) if and only if for every
a ∈ A we have {a}�J A (respectively, {a}�DJ A). Moreover, it is imme-
diate that standard absorption, C�D, implies C�DJ D, which in turn
implies C�J D. Indeed, suppose that C�t D for t = t(x1, . . . ,xn). Take
Q1(x,y,z) = t(x, . . . ,x,y),

Qj(x,y,z) = t(x, . . . ,x,y,z, . . . ,z) with y in the (n− j+ 1)-th place,

for 1 < j < n, and Qn(x,y,z) = t(y,z, . . . ,z). This is a system of directed
Jónsson operations with respect to which C middle absorbs D. The proof
that C�DJ D implies C�J D is similar to the argument that if V is a
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variety with a chain of terms that satisfy DJ(n), then V has a chain of terms
satisfying J(n−1).

The second principal result of our paper is included in Theorem 2.2. Before
introducing it we present a proof of the same result for finite algebras. The
result was motivated by Barto (Barto, 2013) and the proof essentially follows
the argument presented there.

Theorem 2.1. Suppose that E and F are admissible preorders on A (that
is, they are subalgebras of A2 that are reflexive and transitive over A). If
E�J F , then E = F .

Proof (Proof (assuming A is finite)). Suppose that E and F are admissible
preorders of the finite algebra A and E�J F . Let J1, . . . ,J2n+1 be the terms
that witness the Jónsson absorption, and let (a,b) ∈ F . We must show that
(a,b) ∈E. For ease of notation, we will write x 99K y for (x,y) ∈ F and x→ y
for (x,y) ∈ E (so we want to show (a 99K b)⇒ (a→ b)).

Without loss of generality, we can assume that A is idempotent, and is
generated by {a,b}. Thus, b is a top element in the order 99K, since if c ∈ A
then we can write c= t(a,b) for some term t, and then c= t(a,b) 99K t(b,b) = b
because 99K respects all term operations. Since A is finite, we can also assume
that a is →-maximal in A. (If there was a c strictly →-larger than a in the
algebra generated by {a,b}, we could replace a by c.) Using J1(→,99K,→)⊂→
and a Jónsson equation, we have

a= J1(a,a,b)→ J1(a,b,b).

Now we prove by induction on i that a→ J2i+1(a,b,b) for all 0 ≤ i ≤ n.
Suppose that a→ J2i+1(a,b,b) = J2i+2(a,b,b) = q. Let p= J2i+2(a,a,b). Ab-
sorption gives that p→ q, and that p = J2i+3(a,a,b)→ J2i+3(a,b,b), so all
we need to show is that a→ p.

The maximality of a yields q→ a. Since p lies in the subalgebra generated
by {a,b}, we have a 99K p. Putting it together, we have q→ a 99K p→ q.

We have obtained q 99K p 99K q. Absorption now allows us to prove that
q→ p:

q = J1(q,q,p)→ J1(q,p,p) = J2(q,p,p)→ J2(q,q,p)
= J3(q,q,p)→ ·· · → J2n+1(q,q,p)→ J2n+1(q,p,p) = p.

Therefore, a→ q→ p→ J2i+3(a,b,b) (see Figure 1 as a reference to what we
did) and we have a→ J2i+1(a,b,b) for all i. In particular, a→ J2n+1(a,b,b) =
b, and we are done.

Note that there is a straightforward proof of the conclusion of the above
Theorem if we assume that E�DJ F instead of E�J F .

Using Theorem 2.1, we will now prove part 1 of Theorem 1.1 in the finite
case. Let V be an idempotent CD variety, and let F2(x,z) and F3(x,y,z) be
the free two and three generated algebras in V. Let
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b

a

J2i+3(a,b,b)

p= J2i+2(a,a,b) = J2i+3(a,a,b)

q = J2i+1(a,b,b) = J2i+2(a,b,b)

Fig. 1 The elements a,b,p,q in the finite case of Theorem 2.1.

G =
{
t(x,y,z) ∈ F3 : t(x,y,x) = x holds in V

}
,

F = {(t(x,x,z), t(x,z,z)) : t ∈ F3}, and E = {(t(x,x,z), t(x,z,z)) : t ∈ G}.

Denote by → (resp. 99K) the transitive closures of E (resp. F ). It is straight-
forward to show that E, F ,→, and 99K are admissible relations on F2 (using
reflexivity). Since E, F are reflexive, the relations → and 99K are preorders
on F2.

Observe that (x,z)∈ F (we can choose t to be the projection to the second
coordinate). Let J be a chain of Jónsson terms in V. One can easily verify
that then E�mJ F , from which it follows that→�mJ 99K. Using Theorem 2.1,
we then have that → and 99K are the same. In particular, x→ z, and there
is a sequence of terms D1, . . . ,Dm ∈ G witnessing this fact. Examining the
terms D1, . . . ,Dm, we get the following system of equalities in V:

D1(x,x,z) = x, Dm(x,z,z) = z,

Di(x,y,x) = x for 1≤ i≤m,
Di(x,z,z) =Di+1(x,x,z) for 1≤ i < m,

which means that D1, . . . ,Dm are directed Jónsson terms.
Of course, the sequence of proofs presented so far only works when F2 is

finite, but we will improve that. In fact, we will show that one can always
make Jónsson absorption into directed Jónsson absorption.

Theorem 2.2. Let V be a variety, and J be a chain of weak Jónsson terms
of V. Then there exists a chain D of weak directed Jónsson terms of V such
that for all A,B ∈ V we have B�mJ A⇒B�mD A.

The proof of Theorem 2.2 will have to wait until Section 4, after we have
constructed suitable tools.
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3 Paths in the free algebra

This section contains the core of this paper – a proof of a somewhat technical
result from which Theorem 2.2 follows.

We choose and fix a varietyW whose only basic operations are J1 . . . ,J2k+1,
which satisfy the equations

(1)
J1(x,x,y) = x,

J2i+1(x,y,y) = J2i+2(x,y,y) for 0≤ i≤ k−1,
J2i(x,x,y) = J2i+1(x,x,y) for 1≤ i≤ k.

By adding more equations and operations, we could make W congruence
distributive or congruence modular. Our aim is to turn the chain J1, . . . ,J2k+1
into a longer chain of directed terms that ends at something like J2k+1(x,z,z).

Notice that the operations ofW are idempotent. Let F3 be the free algebra
on three generators in W, freely generated (relative to W) by the elements
x,y,z. Let F2 ≤ F3 be the subalgebra of F3 freely generated by x and z.

We shall be working with two binary relations E,F on F2. Define F to be
the subalgebra of F2

2 generated by the pairs (x,x), (x,z) and (z,z), that is

F =
{

(t(x,x,z), t(x,z,z)) : t is a ternary term of W
}
.

Let J = {J1, . . . ,J2k+1} and define G to be the set of all W-terms t(x,y,z)
such that whenever A,B ∈W are algebras such that B�mJ A, then B�mt A.
While the set G is hard to describe explicitly, one can easily see that J ⊆ G
and that G is a subalgebra of F3.

From this it immediately follows that

E =
{

(t(x,x,z), t(x,z,z)) : t(x,y,z) ∈ G
}

is an admissible relation over F2. Moreover, it is straightforward to verify
from the definition of absorption that G�mJ F3, from which it follows that
E�mJ F . We will view the pair E�mJ F as a generic instance of absorption in
W. Notice that (x,x),(z,z) ∈E since the projections x,z belong to G. Thus,
since all operations are idempotent, we have that the relations E and F are
reflexive over F2. That is, (a,a) ∈ E for all a ∈ F2.

It is important to notice that for every a ∈ F2 we have (x,a),(a,z) ∈ F . To
see this, write a = t(x,z) for a term t, and apply the term operation tF2 of
F2 to the pairs (x,x) and (x,z) and use that t(x,x) = x, yielding (x,a) ∈ F ;
and for (a,z) ∈ F apply tF2 to (x,z) and (z,z).

We shall write p 99K q to indicate that the pair (p,q) belongs to the tran-
sitive closure of F and p→ q to indicate that (p,q) belongs to the transitive
closure of E. Both relations 99K and → are admissible preorders of F2 (i.e.
they are transitive and reflexive). We leave it to the reader to verify that →
�mJ 99K.
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We now introduce left powers of elements of F2: for any a = a(x,z) ∈ F2
define a0 = z and, inductively,

ak+1(x,z) = a(x,ak).

In more complicated expressions, we evaluate powers first, so for example
a2(b,c) means “take a2(x,z) and substitute x= b,z= c”, giving us a(b,a(b,c)).
Observe that thus defined, exponentiation satisfies the equalities (ak)` = ak`

and zk = z for any a ∈ F2 and any k,` nonnegative integers.
Letting J = J(x,z) = J2k+1(x,z,z), we can state the core result of this

paper, whose proof takes up the remainder of this section.

Theorem 3.1. There exists b ∈ F2 such that x→ J2k(b,J2k−1).

The next lemma is essential for our proof of Theorem 3.1. Every endo-
morphism of F2 is uniquely determined by the elements to which it sends
x and z, and, conversely, for any pair a,b ∈ F2 there is an endomorphism σ
of F2 that sends each c(x,z) ∈ F2 to c(a,b) = c(a(x,z), b(x,z)) (in particular
σ(x) = a and σ(z) = b). An endomorphism σ of F2 will be called special if
σ(x) 99K σ(z).

Lemma 3.2. Every special endomorphism of F2 respects 99K and →. That
is, given a 99K b,
• if c= c(x,z) 99K d(x,z) = d then c(a,b) 99K d(a,b); and
• if c= c(x,z)→ d(x,z) = d then c(a,b)→ d(a,b).

Proof. To show that σ, moving x to a and z to b with a 99K b, respects 99K, it
suffices to show that cF d implies c(a,b) 99K d(a,b). Let c(x,z)F d(x,z). Thus
there is a term s(u,v,w) so that

c(x,z) = s(x,x,z) and d(x,z) = s(x,z,z).

Applying σ to these equations, we have that

c(a,b) = s(a,a,b) and d(a,b) = s(a,b,b),

or in a more suggestive matrix form:(
c(a,b)
d(a,b)

)
= s

(
a a b
a b b

)
.

Now observe that in each of the three columns of the matrix on the right hand
side, the rows are related by 99K. Since s preserves 99K, we have c(a,b) 99K
d(a,b), as required.

To show that σ respects →, it again suffices to show that cE d implies
c(a,b)→ d(a,b). Let c(x,z)E d(x,z). As before, there is a term s(u,v,w) such
that

c(x,z) = s(x,x,z) and d(x,z) = s(x,z,z),
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but this time we also know that s(x,y,z) ∈ G. We again apply σ and write
the result in a matrix form:(

c(a,b)
d(a,b)

)
= s

(
a a b
a b b

)
.

Observe that in the first and third columns on the right hand side, the rows
are →-related, while the middle column is 99K-related. Since s ∈ G it follows
that →�ms 99K and hence the pair on the left hand side must be →-related.
Therefore c(a,b)→ d(a,b), as required.

Using Lemma 3.2, it is an easy exercise to show that if a→ b, then an→ bn

for any positive integer n. Figures 2 and 3 illustrate the next definition.

Definition 3.3. Let n be a nonnegative integer. An n-fence from c to d,
denoted by F (c,d), is a sequence of elements of F2 satisfying

c= a0→ b1← a1→ b2← a2→ ·· · ← an→ bn+1 = d.

Let n be a positive integer. An n-box B is a sequence q1 99K p1 99K q2 99K
p2 99K q3 99K · · · 99K qn 99K pn such that

p1→ p2→ ·· · → pn and q1→ q2→ ·· · → qn.

An n-box from c to b and d, denoted by B(c;b,d), is an n-box with c = q1,
qn→ b, and pn→ d. Note that a 0-fence from c to d is simply c→ d.

c= a0

b1

a1

b2 = d

(a) A 1-fence F (c,d).

c= a0

b1

a1 an

bn+1 = d

. . .

(b) An n-fence F (c,d).

Fig. 2 Pictures of fences.

c= q1

p1

q2

p2

q3

pk

qk+1

pk+1 d

b

. . .

Fig. 3 A (k+ 1)-box B(c;b,d).

The next three lemmas contain the heart of the proof of Theorem 3.1.

Lemma 3.4. Suppose that B(c;b,d) is a (k+1)-box. Then c→ J2k+1(b,d,d).
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Proof. Label the vertices of the box from left to right according to Figure 3
as q1,p1, q2,p2, . . . , qk+1,pk+1, b,d.

Observe that since q1→ q2, p1→ p2, and q1 99K p1 99K q2 (and→�mJ 99K),
we have the sequence:

c= J1(q1, q1,p1)→ J1(q2,p1,p1) = J2(q2,p1,p1)
→ J2(q2, q2,p2) = J3(q2, q2,p2).

Continuing in this vein, we obtain for i ranging from 1 to k the sequence:

c→ J2i−1(qi, qi,pi)→ J2i−1(qi+1,pi,pi) = J2i(qi+1,pi,pi)
→ J2i(qi+1, qi+1,pi+1) = J2i+1(qi+1, qi+1,pi+1).

Letting i= k (and thus 2i+ 1 = n), we conclude that

c→ J2k+1(qk+1, qk+1,pk+1)→ J2k+1(qk+1,pk+1,pk+1).

Finally, using qk+1→ b and pk+1→ d, we get c→ J2k+1(b,d,d).

Lemma 3.5. Assume that there is a 1-fence x→ b← a→ d. Then for every
` > 1 there is an `-box B(x;b,d(b,d)).

Proof. We put q1 = x and p1 = a(x,a). For 2≤ i≤ `, let

qi = b(qi−1,a) and pi = a(qi,a).

We claim that the result is an `-box B(x;b,d(b,d)). The rest of the proof
consists of verifying the various 99K and → relations involved. We invite the
reader to use Figure 4 for a reference (note that some diagonal edges are solid
where the definition of a box required only dashed edges – this is all right
since → is a subset of 99K).

x= q1

p1 = a(x,a)

q2 = b(x,a)

p2 = a(q2,a)

q3 = b(q2,a)

p`−1

q`

p`

b

d(b,d)

. . .

Fig. 4 The `-box B(x;b,d(b,d)).

Observe that x 99K a, so the endomorphism σ sending x to x and z to a
is special. It is easy to see that σ(b) = b(x,a) = q2 and σ(a) = a(x,a) = p1.
Since x→ b← a, it follows by Lemma 3.2 that x→ q2← p1.

We now proceed by induction to prove that qi→ qi+1 and pi→ pi+1 for all
i= 1, . . . , `−1. We already know the arrows for i= 1, and from qi−1→ qi, we
easily get both qi = b(qi−1,a)→ b(qi,a) = qi+1 and pi→ pi+1 for all applicable
values of i.
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Observe that q1 = x 99K a. Since qi = b(qi−1,a), induction gives us that
qi 99K a for all i. Repeated use of this set of dashed arrows allows us to prove
that pi→ qi+1 and qi 99K pi for all i in the following way. Consider first the
endomorphism σ sending x to qi and z to a. Since qi 99K a, this is a special
endomorphism. Since a→ b, we have pi = σ(a)→ σ(b) = qi+1 for all i. To see
qi 99K pi, observe that qi = a(qi, qi) 99K a(qi,a) = pi.

All that remains now is to get the two arrows at the rightmost end of the
box. Similarly to the previous paragraph, it is easy to prove by induction on
i that qi→ b for all i, so in particular q`→ b. To obtain p`→ d(b,d), observe
that p` = a(q`,a)→ d(q`,a)→ d(b,a)→ d(b,d) (we have used first Lemma 3.2,
then q`→ b, and finally a→ d).

Lemma 3.6. For each 0 ≤ i < k, there exists a (k − i)-fence from x to
J2i+1−1. (Recall that J = J(x,z) = J2k+1(x,z,z).)

Proof. We proceed by induction on i. For i= 0, we get a k-fence from x to J
by putting b` = J2`−1(x,z,z) and a` = J2`(x,x,z), for 1≤ `≤ k.

Suppose now that 1≤ i < k and we have a (k− i+ 1)-fence

(2) x→ b1← a1→ b2← a2→ ·· · ← ak−i→ bk−i+1← ak−i+1→ J2i−1.

We proceed to construct a (k− i)-fence from x to J2i+1−1.
Applying first Lemma 3.5 and then Lemma 3.4 to the 1-fence with vertices

x,b1,a1, b2 above, we get

x→ J2k+1(b1, b2(b1, b2), b2(b1, b2)) = J(b1, b2(b1, b2)).

Denote the term on the right hand side of the above arrow by b′1. Using
b1← x, we get

b′1 = J(b1, b2(b1, b2))← J(x,b2(x,b2)) = J(x,b22).

Since b22 ← a2
2, we obtain b′1 ← J(x,a2

2). Consider the sequence b′1,a
′
1 =

J(x,a2
2), and

a′` = J(x,a2
`+1) and b′` = J(x,b2`+1)

for 2≤ `≤ k− i. It is easy to verify that

x→ b′1← a′1→ b′2← a′3→ ·· · ← a′k−i.

Let us look at the element a′k−i in this fence. We have

a′k−i = J(x,a2
k−i+1)→ J

(
x,
(
J2i−1

)2
)

= J(x,J2i+1−2) = J2i+1−1
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(we use ak−i+1→ J2i−1 from (2) above). We have therefore found a (k− i)-
fence from x to J2i+1−1, as was needed.

We are now ready to prove Theorem 3.1.

Theorem (Theorem 3.1). There exists b∈F2 such that x→ J2k(b,J2k−1).

Proof. By taking i = k− 1 in Lemma 3.6, we obtain a 1-fence x→ b← a→
J2k−1. Applying Lemmas 3.5 and 3.4, and observing that

J(b,J2k−1(b,J2k−1)) = J2k(b,J2k−1),

we get x→ J2k(b,J2k−1).

4 Directed Jónsson terms

Theorem (Theorem 2.2). Let V be a variety, and J be a chain of weak
Jónsson terms of V. Then there exists a chain D of weak directed Jónsson
terms of V such that for all A,B ∈ V we have B�mJ A implies B�mD A.

Proof. Let J1, . . . ,J2k+1 be a chain of weak Jónsson terms in V. By taking
an inessential expansion of V, we can assume that Ji are basic operations of
V. Consider the variety W from the previous chapter. Since the equational
basis of W is a subset of the identities true in V, the variety W interprets
into V.

Theorem 3.1 gives us that there is a chain D= {D1, . . . ,Dm}⊆ G such that
the system of equalities

D1(x,x,z) = x,

Di(x,z,z) =Di+1(x,x,z) for each i= 1, . . . ,m−1,

Dm(x,z,z) = J2k(b,J2k−1)

holds in W. Since W interprets into V, these equalities must also hold
in V. Moreover, in V we have the equality J(x,z) = J2k+1(x,z,z) = z, so
J2k(b,J2k−1) = z.

Finally, let B≤A be algebras in V. By removing all of the basic operations
except J1, . . . ,J2k+1, we obtain a pair of reducts B?≤A? which both lie inW.
If B�mJ A, then trivially B?�mJ A?, and D1, . . . ,Dm ∈ G gives us B?�mD A?.
Since A? is a reduct of A, we immediately have B�mD A.

The chain D1, . . . ,Dm middle absorbs anything that J absorbs, and sat-
isfies in V the system of equalities
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D1(x,x,z) = x,

Di(x,z,z) =Di+1(x,x,z) for each i= 1, . . . ,k−1,
Dm(x,z,z) = z.

Therefore, D1, . . . ,Dm is the weak directed Jónsson chain D we were looking
for.

Corollary 4.1. Let V be a variety with a system of Jónsson terms J . Then
V has a system of directed Jónsson terms.

Proof. Let Fid3 be idempotent reduct of the free three generated algebra in
V. Then Fid3 contains a chain of Jónsson terms J such that {x}�mJ F id3 .
Applying Theorem 2.2 with B = {x} and A = Fid3 gives us that there is a
chain of directed weak Jónsson terms D such that {x}�mD F id3 . Every Di in
D satisfies Di(x,y,x) = x, making D a chain of directed Jónsson terms for V.

We are now ready to give a full proof of Theorem 2.1.

Theorem (Theorem 2.1). Suppose that E and F are admissible preorders
on A (that is, they are subalgebras of A2 that are reflexive and transitive).
If E�J F then E = F .

Proof. Let A∈V , where V has a weak Jónsson system of terms J and suppose
that E,F are admissible preorders of A with E�J F . Let D = {D1, . . . ,Dm}
be the system of weak directed Jónsson terms for A supplied by Theorem 2.2.
Then E�mD F and so for every (a,b) ∈ F we have:

a=D1(a,a,b)ED1(a,b,b) =D2(a,a,b)ED2(a,b,b) = · · ·
· · ·=Dm(a,a,b)EDm(a,b,b) = b,

yielding (a,b) ∈ E.

5 Pixley terms

We now proceed to prove the statement (2) of Theorem 1.1 (Lipparini’s
Proposition 5 in (Lipparini, 1995)).

Theorem 5.1. Let k be any positive integer and let V be a (k+1)-permutable
variety with a system of Jónsson terms J . Then V has a system of Pixley
terms P = {P1, . . . ,Pk} such that whenever A,B∈V and B�mJ A, then B�mP
A.

Proof. The proof is a variant of the proof of Theorem 3.1. Choose and fix an
arbitrary idempotent variety V that has a system J of Jónsson terms and a
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system H1, . . . ,Hk of Hagemann-Mitschke terms, i.e. terms that satisfy the
equations

H1(x,z,z) = x, Hk(x,x,z) = z,

Hi(x,x,z) =Hi+1(x,z,z) for 1≤ i < k.

Starting as in Section 3, we let F2 be the free algebra of rank two in V freely
generated by x and z. Let F be the subalgebra of F2

2 generated by the pairs
(x,x), (x,z), and (z,z), that is

F =
{

(t(x,x,z), t(x,z,z)) : t a term of V
}
.

As before, we define G to be the set of all V-terms t(x,y,z) such that whenever
A,B ∈ V and B�mJ A, then also B�mt A, and let

E =
{

(t(x,x,z), t(x,z,z)) : t(x,y,z) ∈ G
}
.

As before, E and F are idempotent admissible relations over F2 and we have
E�mJ F .

Using p→ q to denote that (p,q) belongs to the transitive closure of E,
we proved in Sections 3 and 4 that x→ z. Since the operations Hi respect E
and →, we have that z→ x. This is a classical observation, but the proof is
easy and so we give it in the following paragraph.

Since x→ x, z→ z, and x→ z, we have

z =H1(z,x,x)→H1(z,z,x) =H2(z,x,x)
→H2(z,z,x) =H3(z,x,x)→ ·· · →Hk(z,z,x) = x.

Transitivity of → gives z→ x.
We now demonstrate the classical fact that Ek+1 = Ek, which gives us

that Ek is the transitive closure of E (and in particular (z,x) ∈Ek). Since E
is reflexive, we have Ek ⊆ Ek+1. Suppose that we have (a,b) ∈ Ek+1. Then
there are ai for i≤ k+ 1 such that

a= a0 E a1 E · · ·E aiE ai+1 E · · ·E ak+1 = b.

Letting ci =Hi+1(ai,ai+1,ai+1) for 0≤ i < k, it is easy to verify that

aE c1 E c2 E · · ·E ck−1 E b,

so (a,b) ∈ Ek.
Continuing with the main proof, we have (z,x) ∈ Ek. This means that

there are V-terms
D1(x,y,z), . . . ,Dk(x,y,z) ∈ G

satisfying z = D1(x,x,z), Di(x,z,z) = Di+1(x,x,z) for 1 ≤ i < k, and
Dk(x,z,z) = x. As before, whenever A�mJ B, we also have A�mD1,...,Dk

B,
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so in particular Di(x,z,x) = x. The terms Pi = Dk−i+1 for 1 ≤ i ≤ k then
satisfy P(k) in V.

6 Directed Gumm terms

To conclude the proof of Theorem 1.1, we focus on Gumm terms and intro-
duce Gumm absorption. Gumm terms G(n), directed Gumm terms DG(n),
and weak versions of both were defined in the introduction. (Recall that weak
versions drop the conditions Ji(x,y,x) = x.)

When a variety V has a chain of weak Gumm terms (respectively, weak
directed Gumm terms) J1, . . . ,Jn,P , and A,B ∈ V are such that B≤A, we
say that B Gumm absorbs A (respectively, directed Gumm absorbs A) with
respect to these chains if B�mJ1,...,Jn

A. We next state and prove a variant of
Theorem 2.2 for Gumm terms.

Theorem 6.1. Let V be a variety, and J1, . . . ,J2k+1,P be a chain of weak
Gumm terms of V. Then there exists a chain D1, . . . ,Dm,Q of weak directed
Gumm terms of V such that whenever A,B ∈ V and B�mJ1,...,J2k+1

A, then
B�mD1,...,Dm

A.
In particular, if J1, . . . ,J2k+1,P is a chain of Gumm terms, then it follows

that D1, . . . ,Dm,Q is a chain of directed Gumm terms.

Note that Theorem 6.1 immediately gives us the third assertion of Theo-
rem 1.1.

Proof. The argument follows the same pattern as our proof of Theorem 2.2.
We consider the variety W and use Theorem 3.1 to obtain terms D1, . . . ,Dm
in V such that

D1(x,x,z) = x,

Di(x,z,z) =Di+1(x,z,z) for each i= 1, . . . ,m−1,

Dm(x,z,z) = J2k(b,J2k−1),

where b is some term composed from J1, . . . ,J2k+1, and

J(x,y) = J2k+1(x,y,y) = P (x,y,y) in V.

The term J2k(b,J2k−1) can be expressed as

J(b,J(b, . . . ,J︸ ︷︷ ︸
2k-many J’s

(b, J(x,J(x, . . . ,J︸ ︷︷ ︸
(2k−1)-many J’s

(x,z)) . . .)) . . .)),

More formally, if we let d0(x,z) = z and
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di(x,z) = J2k+1(x,di−1(x,z),di−1(x,z)) for 1≤ i < 2k,
di(x,z) = J2k+1(b(x,z),di−1(x,z),di−1(x,z)) for 2k ≤ i < 2k+1,

then we will have d2k+1−1(x,z) =Dm(xzz).
Now we systematically rewrite J2k(b,J2k−1), replacing all but the right-

most occurrence of z by y, and replacing all occurrences of J2k+1 by P , to
obtain a term Q(xyz).

More formally, we let Q0(xyz) = z, Q1(x,y,z) = P (x,y,z), and

Qi(x,y,z) = P (x,Qi−1(x,y,y),Qi−1(x,y,z))

for 2≤ i < 2k, and

Qi(x,y,z) = P (b(x,y),Qi−1(x,y,y),Qi−1(x,y,z))

for 2k ≤ i < 2k+1. Having done that, we let Q(x,y,z) =Q2k+1−1(x,y,z).
Using the equality J2k+1(x,z,z) = P (x,z,z), one can easily prove that

Q(x,z,z) = J2k(b,J2k−1) in F2. Idempotence of b together with P (x,x,z) = z
then gives us that Q(x,x,z) = z.

Thus we have a chain of weak directed Gumm terms D1, . . . ,Dm,Q. Since
D1, . . . ,Dm ∈ G, the middle absorption property follows as in Theorem 2.2.
Showing that ordinary Gumm terms imply the existence of a chain of directed
Gumm terms is analogous to the proof of Corollary 4.1.

We can now also state and prove a version of Theorem 2.1 for Gumm
terms.

Theorem 6.2. Suppose that E and F are reflexive subalgebras of A2 and that
E Gumm absorbs F. Whenever (a,b) ∈ F , there is c ∈ A such that (b,c) ∈ F
and (a,c) belongs to the transitive closure of E.

Proof. Apply Theorem 6.1 to get weak directed Gumm terms D1, . . . ,Dm,Q
for the variety generated by A so that E�D1,...,Dm F. Then

aED1(a,b,b)ED2(a,b,b)E · · · EDm(a,b,b) =Q(a,b,b) = c,

where b=Q(a,a,b)F Q(a,b,b) = c.

7 Final Remarks

We have worked through the various parts of the proof of Theorem 3.1,
calculating the precise lengths of the E-chains produced. The final formula
for the length of the E-chain connecting x to J2k(b,J2k−1) simplifies to
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(2k+ 1)(k+ 1)((k+ 1)k−2−1)
k

.

Thus, to be precise, we have proved that J(k) implies DJ(m) with m equal
to the displayed number. This is our best value for m. It would be interesting
to know if a different approach, or the introduction of some new tricks, can
lower this value of m substantially. We close the paper by posing a problem
stemming from our work here.

Problem 7.1. Does there exist a sequence of algebras A1,A2, . . . such that
each An is J(n), but the least m such that An is DJ(m) grows at least
exponentially in n?
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Is it true that every finitely generated and relatively congruence modular quasiva-
riety is finitely based?

This question is still open. Pigozzi’s paper shows the answer to be affirmative
if “modular” is strengthened to “distributive”. Analogous problems for vari-
eties were shown to have positive solutions in (Baker, 1977; McKenzie, 1987;
Willard, 2000; Kearnes et al., to appear), and a related problem for quasiva-
rieties was shown to have an affirmative solution in (Maróti and McKenzie,
2004). The best partial answer to Problem 9.13 that now exists is Theorem 8
of (Dziobiak et al., 2009), which says that if a quasivariety K and the variety
it generates are finitely generated and relatively congruence modular, then K
is finitely based.

A relatively congruence distributive quasivariety is nothing other than a
relatively congruence modular quasivariety in which no member has a non-
trivial abelian congruence, so Pigozzi’s paper solves the part of Problem 9.13
that does not involve abelian congruences. Tools for dealing with abelian con-
gruences in relatively congruence modular quasivarieties were developed in
(Kearnes and McKenzie, 1992; Kearnes and Szendrei, 1998), but they have
not yet yielded a full solution to the problem. What these tools show is that
abelian congruences in such quasivarieties are quasiaffine, which means the
blocks of an abelian congruence support a module-like structure. In this pa-
per we study the purest relatively congruence modular quasivarieties which
are not distributive, namely quasivarieties of modules. Our main result is a
description of all relatively congruence modular quasivarieties of modules.

2 the classification theorem

For a unital ring R let R-Mod be the variety of left R-modules. If K is
a subquasivariety of R-Mod and M ∈ K, then a K-submodule (or relative
submodule) of M is an R-submodule S ≤M such that M/S ∈ K. K is rela-
tively congruence modular (RCM) if every M ∈ K has a modular lattice of
K-submodules.

For the simplest example of these definitions take R = Z, so that R-Mod
is the variety of abelian groups. Let K be the subquasivariety of Z-Mod
consisting of torsion-free abelian groups. The only relative submodules on,
say, Z ∈ K are (0) and Z. That is, Z is relatively simple (although Z is far
from being a simple module). It can be shown that this quasivariety, the
quasivariety of torsion-free abelian groups, is a minimal quasivariety which
happens to be RCM.

Let’s generalize the example above in an artificial way. Let R = Z[t] and
let K be the subquasivariety of R-Mod consisting of all torsion-free abelian
groups considered as R-modules by defining t to act as zero on any module
in K Then K is axiomatized by the identity tx= 0 together with a family of
quasiidentities of the form
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nx= 0→ x= 0.

This is essentially the same as the preceding example, so in particular it is
RCM.

The point of this paper is to show that every RCM quasivariety of modules
looks like the one from the previous paragraph. For any RCM quasivariety
K of R-modules there is a set Σ of 1-variable identities along with a specific
torsion notion which realizes K as the subquasivariety of R-Mod consisting
of the torsion-free R-modules that satisfy Σ. Σ corresponds to a two-sided
ideal in R while the torsion notion corresponds to a filter in the lattice of left
ideals of R.

Let’s begin by identifying the role played by Σ.

Lemma 2.1. Let V be a subvariety of R-Mod and let I = {r ∈R | V |= rx= 0}
be its annihilator. Then

(1) I is a two-sided ideal in R,
(2) Σ := {rx= 0 | r ∈ I} axiomatizes V relative to R-Mod, and
(3) V is definitionally equivalent to R/I-Mod.

We imagine applying this in the situation where K is a subquasivariety of
R-Mod and V is the variety generated by K.

We do not prove Lemma 2.1, but do point out that a key idea in the proof
is that a single module identity r1x1 + · · ·+ rkxk = 0 has the same strength
as the set {r1x1 = 0, . . . , rkxk = 0} of 1-variable module identities.

Lemma 2.1 allows us to pass from R to R/I and henceforth consider only
the situation where K generates R-Mod. We shall make this assumption as
we work out the main result of the paper.

Next we describe the torsion concept that plays a role in this paper.

Definition 2.2. Let L be the poset of finitely generated left ideals of R
ordered by inclusion. A torsion notion for R is a subset F ⊆L satisfying the
following conditions:

(1) F is a nonempty order filter in L. (A ∈ F , B ∈ L, and A ⊆ B implies
B ∈ F .)

(2) F is downward directed. (A,B ∈ F implies there is a C ∈ F such that
C ⊆A and C ⊆B.)

(3) If X,Y ⊆ R are finite subsets such that the left ideals (X) and (Y )
belong to F , then the left ideal (XY ) belongs to F .

(4) For all A ∈ F and r ∈R there is B ∈ F such that Br ⊆A.
(5) (Regularity of elements of F) If A ∈ F , r ∈R, and Ar = 0, then r = 0.

Given a torsion notion F we say that an element m of an R-module M is an
F-torsion element if Am= 0 for some A ∈ F . If M has no nonzero F -torsion
elements, then it is F-torsion-free. This may also be expressed by saying that
M |= Ax = 0→ x = 0 for each A ∈ F . It is easy to see that a statement of
the form Ax= 0→ x= 0 for a finitely generated left ideal A is equivalent to
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a quasiidentity. Namely if A= (a1, . . . ,am), then Ax= 0→ x= 0 is satisfied
if and only if

(qA) (a1x= 0)∧·· ·∧ (amx= 0)→ (x= 0)

is satisfied, so the class of F -torsion-free R-modules is a quasivariety.
Any torsion notion F contains R, and the set {R} is always a torsion

notion. Every R-module is torsion-free with respect to this trivial torsion
notion.

Items (1)–(4) of Definition 2.2 simplify quite a bit when R is commutative.
Namely, (4) automatically holds when R is commutative, since we can choose
B = A. Item (3) now asserts that F is closed under multiplication. When
this holds, (2) will also hold, since for commutative rings the product of two
ideals is contained in each of them. Thus (1)–(4) merely say that F is a
multiplicatively closed order filter in the poset of finitely generated ideals.
(For any ring R, item (5) of the definition asserts that the free R-module, R,
is F -torsion-free.)

Here is the statement of the main theorem of the paper.

Theorem 2.3. Let K be a quasivariety of R-modules such that the variety
generated by K is all of R-Mod. Then K is RCM iff there is a torsion notion
F such that K is the quasivariety of F-torsion-free R-modules.

We prove Theorem 2.3 in the next two sections, but here we derive a
corollary.

Corollary 2.4. Let R be a left Artinian ring. If K is an RCM quasivariety
of R-modules, then K may be axiomatized relative to R-Mod by a finite set
of identities together with at most one proper quasiidentity. In particular, if
R is a finitely presentable ring, then K is finitely axiomatizable.

Proof. By the Hopkins-Levitski Theorem, a left Artinian ring is left Noethe-
rian, so every left ideal of R is finitely generated. In particular, we can effect
the passage from R-modules to R/I-modules (as indicated in Lemma 2.1) by
imposing finitely many identities on the variety R-Mod. Thus we may assume
henceforth that K generates R-Mod as a variety and our goal is now to prove
that K can be axiomatized relative to R-Mod by at most one quasiidentity.

Let F be the torsion notion guaranteed by Theorem 2.3. Since R is Ar-
tinian, F is generated as an order filter by its minimal elements. By item
(2) of Definition 2.2, F is a principal order filter in L, say F is the order
filter generated by A ∈ L. Now the notion of ‘F -torsion-free’ is expressible
by Ax= 0→ x= 0, or equivalently by the single quasiidentity qA. (What has
been left unsaid so far is that if A⊆B, then Ax= 0→ x= 0 is stronger than
Bx= 0→ x= 0.)

The last assertion of the corollary follows from the fact that R-Mod is
finitely axiomatizable when R is finitely presentable.
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The one proper quasiidentity mentioned in Corollary 2.4 can be eliminated
when R is commutative.

Corollary 2.5. Let R be a commutative Artinian ring. Any RCM quasivari-
ety of R-modules is a variety.

Proof. Let K be an RCM quasivariety of R-modules. We shall argue the proof
for arbitrary R until it is necessary to appeal to commutativity.

Using Lemma 2.1 we may reduce to the case where the variety generated
by K is all of R-Mod. In the proof of Corollary 2.4 we showed that the torsion
notion F associated to K is a principal filter in the poset of finitely generated
left ideals of R. Let A be the generator of this principal filter.

Item (4) of the definition of ‘torsion notion’ implies that A is a two-sided
ideal. For if r ∈R, then there must be a B ∈F such that Br⊆A. Since A⊆B
this yields Ar ⊆Br ⊆A.

Another special property that A must satisfy is that A2 =A. To see this,
choose a finite set X that generates A as a left ideal. Then item (3) implies
that (X2) ∈ F . But clearly (X2)⊆A2, so A⊆ (X2)⊆A2 ⊆A.

Now we invoke the commutativity hypothesis. A finitely generated idem-
potent ideal is generated by an idempotent element, so A = (e) for some
element e satisfying e2 = e. For r = 1− e we have Ar = 0, so item (5) of the
definition of ‘torsion notion’ yields that 1− e = 0, i.e. e = 1, or equivalently
A=R. This forces F = {R}. As noted after Definition 2.2, this implies that
every R-module is F -torsion-free, so K = R-Mod.

Corollaries 2.4 and 2.5 are not true if you weaken ‘Artinian’ to ‘Noethe-
rian’, since the quasivariety of torsion-free abelian groups is not finitely
axiomatizable and is not a variety. Also, Corollary 2.5 is not true with-
out the commutativity hypothesis. To see this, let R be the ring of up-
per triangular 2× 2 matrices over some field. If the matrix units in R are
e11,e12,e22, then the quasivariety of R-modules axiomatized relative to R-
Mod by (e11x= 0)∧ (e12x= 0)→ (x= 0) is RCM and is not a variety.

3 RCM =⇒ torsion notion

In this section we prove that if K is an RCM quasivariety of R-modules and
the variety generated by K is all of R-Mod, then there is a torsion notion
F such that K is the quasivariety of F -torsion-free R-modules. This is one
direction of the proof of Theorem 2.3.

To prove what is needed we make use of the fact, proved in (Kearnes and
McKenzie, 1992), that an RCM quasivariety has an ‘almost equational axiom-
atization’, and that the K-extension of a submodule can be computed easily
with the aid of that axiomatization. Here the K-extension of a submodule
S ≤M is the least K-submodule S ≤M that contains S.
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We recall the necessary concept from (Kearnes and McKenzie, 1992). A
∆-axiom is a first-order sentence, involving pairs of terms (pj(x,y, ū, v̄, z̄),
qj(x,y, ū, v̄, z̄)), j < n, expressing that

(1) the identities
pj(x,x, ū, ū, z̄) = qj(x,x, ū, ū, z̄)

hold for j < n, and
(2) the quasiidentity∧

(pj(x,y, ū, ū, z̄) = qj(x,y, ū, ū, z̄)))→ (x= y)

holds.
We label this ∆-axiom ∆(p,q).

The two theorems from (Kearnes and McKenzie, 1992) that we will use
are:

Theorem 3.1. (Theorem 5.1 of (Kearnes and McKenzie, 1992)) Let K be
an RCM quasivariety. K is axiomatized by a set of ∆-axioms combined with
a set of identities.

For the following theorem, the K-extension of a congruence θ is the least
K-congruence containing θ.

Theorem 3.2. (Theorem 5.2 of (Kearnes and McKenzie, 1992)) Let K be an
RCM quasivariety. Let A ∈K, θ ∈Con(A), and u,v ∈A. Then (u,v) belongs
to the K-extension of θ iff there is some ∆-axiom ∆(p,q) valid in K, some
pairs (ai, bi)∈ θ, and some elements c̄ such that pi(u,v, ā, b̄, c̄) = qi(u,v, ā, b̄, c̄)
for all i.

When dealing with quasivarieties of modules it is possible to code a ∆-
axiom ∆(p,q) as a left ideal in such a way that the following are true.

Theorem 3.3. Let ∆(p,q) be a ∆-axiom and let A be its encoding as a left
ideal.

(1) An R-module M satisfies ∆(p,q) iff it satisfies Ax= 0→ x= 0.
(2) If K is an RCM quasivariety of R-modules, M ∈ K, S ≤M is a sub-

module, and S is its K-extension, then m ∈M can be shown to lie in
S using ∆(p,q) (in the way described in Theorem 3.2) iff Am⊆ S.

In order to prove the theorem we must first describe how to encode a
∆-axiom as a left ideal.

The first step of the construction uses the fact that equations of the form
p= q can be rewritten as equations of the form (p−q) = 0. So take a ∆-axiom
for R-modules, ∆(p,q), and rewrite its pairs as differences

Dj(x,y, ū, v̄, z̄) := pj(x,y, ū, v̄, z̄)− qj(x,y, ū, v̄, z̄)
= ajx+ bjy+

∑
i cijui+

∑
i dijvi+

∑
i eijzi,
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where aj , bj , cij ,dij ,eij ∈ R. Item (1) from the definition of a ∆-axiom now
reads

(1)′ Dj(x,x, ū, ū, z̄) = 0 = (aj + bj)x+
∑
i

(cij +dij)ui+
∑
i

eijzi.

We will be working in the situation where K is a quasivariety of modules and
the variety it generates is all of R-Mod. For (1)′ to hold in such a quasivariety
the coefficients in the righthand expression must all be zero, i.e. aj + bj =
cij +dij = eij = 0. Thus

Dj(x,y, ū, v̄, z̄) = aj(x−y) +
∑
i

cij(ui−vi)

(no dependence on the last block of variables). Introducing new variables
X,Ui to represent x−y,ui−vi we shall find that the module term operation

(1) Ej(X,Ū) = ajX+
∑
i

cijUi

can be used to replace the pair (pj , qj) in the definition of ‘∆-axiom’. That
is, ∆(p,q) can be rewritten in a reduced form in an obvious way using the
terms Ej(X,Ū).

The left ideal associated to ∆(p,q) is defined to be A= (a0, . . . ,an−1), the
left ideal generated by the coefficients of X in the module terms Ej(X,Ū),
j < n.

Proof (Proof of Theorem 3.3). For part (1) of Theorem 3.3 consider a ∆-
axiom ∆(p,q) and write it using the terms from (1). Condition (1)′ of the
definition of a ∆-axiom now reads

(1)′′ Ej(0, 0̄) = 0,

which must hold simply because Ej is a module term. Condition (2) of the
definition of a ∆-axiom reads∧

j

(Ej(X, 0̄) = 0)→ (X = 0).

This is equivalent to Ax = 0 → x = 0 for x = X. This establishes Theo-
rem 3.3 (1).

Now we turn to Theorem 3.3 (2). Suppose that M ∈K, S ≤M and m∈ S.
Choose ∆(p,q) witnessing that m ∈ S. With ∆(p,q) written in terms of the
Ej ’s we have that there exist a tuple s̄ with entries in S such that Ej(m,s̄) =
ajm+

∑
i cijsij belongs to S for all j. This means that ajm ∈ −

∑
i cijsij +

S = S for all j, or Am⊆ S for A equal to the associated left ideal. Conversely,
assume that Am⊆ S. Then for s̄= 0̄ we have that Ej(m, 0̄) ∈ S for all j, so
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the form of ∆(p,q) that uses the terms Ej(X,Ū) shows that m ∈ S̄. This
establishes Theorem 3.3 (2).

Now we state and prove the main theorem of this section.

Theorem 3.4. Let K be an RCM quasivariety such that the variety generated
by K is all of R-Mod. If F is the set of left ideals of R that code ∆-axioms
true in K, then F is a torsion notion for R-modules and K is the quasivariety
of F-torsion-free R-modules.

Proof. According to Theorem 3.1, K is axiomatized relative to R-Mod by a
set of ∆-axioms together with a set of identities. Since the variety generated
by K is all of R-Mod, we will not use any identities other than those that hold
in R-Mod. According to Theorem 3.3, the ∆-axioms true in K are equivalent
to a family of statements of the form Ax = 0→ x = 0 where A is a finitely
generated left ideal. Let F be the set of finitely generated left ideals of R
such that Ax= 0→ x= 0 holds in K. Since the subset of these left ideals that
arise from ∆-axioms already serves to axiomatize K relative to R-Mod, the
full set also serves to axiomatize K relative to R-Mod. It follows from this
that, if we show that F is a torsion notion, then K must be the quasivariety
of F -torsion-free R-modules.

Item (1) from definition of a ‘torsion notion’ is the claim that F is an order
filter in the poset of finitely generated left ideals of R. That is, if A and B
are finitely generated left ideals of R, A ⊆ B, and Ax = 0→ x = 0 holds in
K, then Bx= 0→ x= 0 also holds in K. This is true because A⊆B implies
that Bx= 0→Ax= 0.

Item (5) is the next easiest to verify. Since the variety generated by K is R-
Mod, both K and R-Mod have the same free modules. Hence the 1-generated
free module R belongs to K. Hence R satisfies Ax= 0→ x= 0 for each A∈F ,
which is exactly what (5) claims.

Item (2) asserts F is down directed. Choose A,B ∈ F . We shall apply
Theorem 3.3 to the situation M := R⊕R (∈ K) and S := A⊕B ≤M . Note
that the pair (1,0) ∈M belongs to the K-extension of S, since A ∈ F and
A(1,0)⊆A⊕B. Similarly (0,1) belongs to the K-extension of S, since B ∈F
and B(0,1)⊆A⊕B. Since S is a submodule, the element (1,0)+(0,1) = (1,1)
must belong to the K-extension of A⊕B. Hence there must exist C ∈F such
that C(1,1)⊆A⊕B. Necessarily C ⊆A∩B.

Item (4) asserts that for all A ∈ F and r ∈ R there is a B ∈ F such that
Br ⊆ A. To prove this we again apply the second part of Theorem 3.3. Let
M = R ∈ K and let S = A. The element 1 ∈ R(= M) belongs to the K-
extension of A(= S), since A · 1 ⊆ S. The K-extension of S is a submodule,
so for any r ∈R we have that r ·1 = r ∈M also belongs to the K extension of
S = A. Theorem 3.3 guarantees the existence of B ∈ F such that B · r ⊆ A,
which is what item (4) requires.

Item (3) asserts that if X,Y ⊆R are finite subsets such that the left ideals
(X) and (Y ) belong to F , then the left ideal (XY ) belongs to F . To prove
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this, assume that X = {a0, . . . ,am−1} and Y = {b0, . . . , bn−1}. The fact that
(X),(Y ) ∈ F implies that K satisfies the quasiidentities∧

i

(aix= 0)→ (x= 0) and
∧
j

(bjx= 0)→ (x= 0).

But this means that K satisfies

(2)
∧
j

(∧
i

(ai(bjx) = 0)
)
→ (x= 0).

For, if
∧
i(ai(bjx) = 0) holds for a fixed j, then the quasiidentity associated to

X guarantees that bjx= 0. But if this holds for all j, then the quasiidentity
associated to Y guarantees that x = 0. Now (2) is just the quasiidentity
associated to XY = {aibj | i < m,j < n}. Since we have shown that it holds
in K we conclude that (XY ) ∈ F .

4 torsion notion =⇒ RCM

In this section we prove that if F is a torsion notion for R-modules, then the
quasivariety of F -torsion-free R-modules is RCM and the variety it generates
is all of R-Mod. This is other direction of the proof of Theorem 2.3.

Lemma 4.1. Assume that F is a torsion notion for R-modules, and that K
is the quasivariety of F-torsion-free R-modules. If M ∈ K and S ≤M is a
submodule of M , then the K-extension of S is the set

S := {m ∈M | ∃A ∈ F(Am⊆ S)}.

(In this lemma we are not assuming that K is RCM, so we cannot refer to
Theorem 3.3.)

Proof. The set S defined in the statement contains S because S is a submod-
ule. (One can take A=R ∈ F to prove any m ∈ S belongs to S.)

Let’s prove that S is closed under addition. If x,y ∈ S, then there exist
A,B ∈ F such that Ax,By ⊆ S. By the down directedness of F there is a
C ⊆A∩B such that C ∈ F . For this C we have

C(x+y)⊆ Cx+Cy ⊆Ax+By ⊆ S,

yielding x+y ∈ S.
Now we argue that S is closed under scalar multiplication. Assume that

x ∈ S and r ∈R. Since x ∈ S there is some A ∈ F such that Ax⊆ S. By item
(4) of Definition 2.2 there exists B ∈ F such that Br ⊆A. Thus
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B(rx)⊆Ax⊆ S,

yielding rx ∈ S.
Next we argue that S is a K-submodule of M . For this we must show

that M/S ∈ K, or that M/S is F -torsion-free. This can be established
by showing that if A ∈ F , m ∈ M , and Am ⊆ S, then m ∈ S. Suppose
that A = (a0, . . . ,am−1) as a left ideal. The statement Am ⊆ S now means
{a0m,. . . ,am−1m} ⊆ S. For each k there must exist Ak ∈ F such that
Ak(akm) ⊆ S. By the down directedness of F there is a B ⊆ ∩Ak, and this
B has the property that Bakm⊆ S for all k. Suppose that B = (b0, . . . , bn−1)
as a left ideal. By item (3) of Definition 2.2 the left ideal C generated by the
set {bjai | i < m,j < n} belongs to F . Cm is the submodule of M generated
by all elements bjaim, all of which belong to S. Thus Cm ⊆ S. This forces
m ∈ S, concluding the proof that M/S is F -torsion-free.

We have shown that S is a K-submodule extending S, but still must show
that it is the least such. For this it suffices to observe that, from the definition
of S, if m ∈ S, then for any submodule T ≤M satisfying S ≤ T ≤ S we have
that m/T is an F -torsion element of M/T .

For the next theorem, which is the main result of the section, we need
another fact from (Kearnes and McKenzie, 1992). In Theorem 4.1 of that
paper it is shown that a quasivariety is RCM if it satisfies the ‘extension
principle’ and the ‘relative shifting lemma’. The second of these properties
will hold for any subquasivariety of an RCM quasivariety. Thus, since R-Mod
is RCM, any subquasivariety of R-Mod satisfies the ‘relative shifting lemma’.
The ‘extension principle’ is not typically inherited by subquasivarieties.

The extension principle for a quasivariety K of modules is the property
that, for M ∈K, the function mapping a submodule S ≤M to its K-extension
S is a lattice homomorphism from the lattice of submodules of M to the
lattice of K-submodules of M . In the presence of the ‘relative shifting lemma’,
the extension principle is equivalent to the weak extension principle, which
asserts that if S ∩T = 0 for submodules S,T ≤M , M ∈ K, then S ∩T = 0.
(The equivalence of the weak and full extension principles for quasivarieties
satisfying the ‘relative shifting lemma’ is explained at the foot of page 482 of
(Kearnes and McKenzie, 1992).)

Altogether, this means that a subquasivariety of R-Mod is RCM iff it
satisfies the weak extension principle. We need this fact to prove the following
theorem.

Theorem 4.2. If F is a torsion notion for R-modules, then the quasivariety
K of F-torsion-free R-modules is RCM and the variety it generates is R-Mod.

Proof. As discussed before the statement of the theorem, to prove that the
quasivariety of F -torsion-free modules is RCM it suffices to establish the
weak extension principle. So choose an F -torsion-free module M ∈K and two
submodules S,T ≤M satisfying S∩T = 0. Let’s prove that their K-extensions
S and T are disjoint.
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Choose m ∈ S∩T . By Lemma 4.1 there exist A,B ∈ F such that Am⊆ S
and Bm ⊆ T . By the down directedness of F there is a C ⊆ A∩B that
belongs to F , and for this C we have Cm ⊆ Am∩Bm ⊆ S ∩T = 0, so m is
an F -torsion element. This forces m = 0, as desired. We conclude that the
quasivariety of F -torsion-free R-modules is RCM.

To show that the variety generated by the F -torsion-free R-modules is
all of R-Mod, it suffices to note that the 1-generated free R-module is F -
torsion-free. This is the content of item (5) of Definition 2.2. Thus R ∈K, so
the variety generated by K is R-Mod.

5 final statement

Given a fixed ring R, we now know that a typical RCM quasivariety K of R-
modules can be described by a pair (I,F) where I is an ideal – the annihilator
of K – and F is a torsion notion for R/I. This information can be expressed
entirely in terms of the left ideal structure of R by replacing F with the set G
defined to consist of all ν−1(A) for A ∈ F and ν : R→R/I the natural map.
This yields the following statement.

Theorem 5.1. Let R be a ring. A quasivariety K of R-modules is RCM iff
there is a pair (I,G) such that K is the collection of R-modules satisfying
Ix = 0 and Ax = 0→ x = 0 for all A ∈ G. Here we require that I be a two-
sided ideal of R and G be a family of left ideals of R, each containing I and
finitely generated over I, such that items (1)–(4) of Definition 2.2 hold, along
with

(5)′ (Regularity modulo I of elements of G) If A ∈ G, r ∈R and Ar ⊆ I, then
r ∈ I.
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whether a finite algebra generates
a minimal variety
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Abstract We prove that the problem of deciding whether a finite algebra
of finite signature generates a minimal variety is complete for deterministic
2EXPTIME.

Key words: minimal variety of algebras; NP-hard; finite algebra decision
problems

1 Introduction

This paper addresses the complexity of the following computational problem:

The Minimal Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is minimal.

We understand an algebra to be a nonempty set endowed with a system
(here always a finite system) of operations, each of some finite rank. A variety
of algebras is a class of algebras, all of the same signature, that is closed with
respect to the formation of homomorphic images, subalgebras, and arbitrary
direct products—or what is the same according to a classical theorem of
Garrett Birkhoff, that is the class of all models of some set of equations. The
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variety generated by A consists of all those algebras that are homomorphic
images of subalgebras of direct powers of A. Varieties of a fixed signature
are (lattice) ordered by the inclusion relation ⊆. The variety of all algebras
is the largest variety in this ordering while the class consisting of all the one-
element algebras is the smallest—it is called the trivial variety. A variety is
minimal if it is nontrivial but has no nontrivial proper subvarieties.

The Minimal Variety Problem is one of a series of similar problems that,
roughly, take finite algebras as inputs and ask whether the variety they gen-
erate has some particular property. Perhaps the most famous problem of this
kind is

Tarski’s Finite Basis Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is axiomatized by some finite
set of equations.

Ralph McKenzie (1996c) settled this problem, outstanding for more than
thirty years, by showing that there is no algorithm to make such decisions.
Some techniques McKenzie developed in his solution find their way into our
arguments below.

Despite the common wisdom that most everything is undecidable, it turns
out that a number of these finite algebra problems are decidable. One of the
key results was found early.

The Two Finite Algebra Membership Problem

Input: Two finite algebra A and B of the same finite signature.

Problem: Decide if A belongs to the variety generated by B.

Jan Kalicki (1952) provided a brute force algorithm to settle this problem.
Soon afterwards, Dana Scott (1956) used Kalicki’s algorithm in devising an-
other brute force algorithm to settle that Minimal Variety Problem: First
build the algebra freely generate by a two-element set for the variety gener-
ated by A (this is a certain sublagebra of AA2); second generate a list of all
the nontrivial homomorphic images of this free algebra; last, check for each
B on the list that A belongs to the variety generated by B. Now Kalicki’s
algorithm is itself very costly, but even if it weren’t Scott’s algorithm would
be.

Our task here is to provide more information concerning the computational
complexity of the Minimal Variety Problem. To obtain some lower bound on
the complexity, we rely on another problem in this series. Fix a finite algebra
B of finite signature.

The Finite Algebra Membership Problem for B.

Input: A finite algebra A of finite signature.

Problem: Decide if A belongs to the variety generated by B.
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In 1998 Zoltán Székely in his dissertation (Székely, 1998, 2002) devised a 7-
element algebra S with an NP-complete Finite Algebra Membership Problem.
Building on this result, in 2006 Marcel Jackson and Ralph McKenzie invented
a finite semigroup with an NP-hard membership problem. By 2009, Marcin
Kozik (2009, 2007) created a finite algebra with a 2EXPTIME-complete Finite
Algebra Membership Problem. In 2000, Clifford Bergman and Giora Slutzki
proved that the Finite Algebra Membership Problem belongs to 2EXPTIME.
Further results of Bergman and Slutzki on finite algebra decision problems
can be found in (Bergman and Slutzki, 2002a,b).

Suppose that B generates a minimal variety. Then an algebra A belongs
to the variety generated by B if and only if A×B generates a minimal va-
riety. In this way we can conclude that the Minimal Variety Problem is at
least as hard as the Finite Algebra Membership Problem for B. The alge-
bras constructed by Székely and later by Kozik do not generated minimal
varieties. Fortunately, Don Pigozzi (1979) discovered a way to convert a non-
finitely based finite algebra into one that also generates a minimal variety.
This is exactly the method we need to apply to the results of Székely and of
Kozik to obtain the conclusion that Minimal Variety Problem is complete for
deterministic 2EXPTIME.

It has long been known that the problems of deciding if a finite algebra gen-
erates a congruence distributive variety (or a variety with most other Mal’cev
conditions) is decidable. Freese and Valeriote (2009) were able to show that
the problems associated with congruence distributivity and congruence mod-
ularity are actually EXPTIME-complete. Kaarli and Pixley (2002) showed
that the problem of deciding of a finite algebra whether it generates an affine
complete variety is decidable. The complexity of this problem, seemingly, as
yet to be investigated.
A remark on technical matters
There is a technical difficulty in the way these problems have been formulated.
Not all finite algebras of finite signature are suitable as inputs to computa-
tional procedures. The individual elements of an algebra might themselves
not be amenable as inputs. A way to remedy this is to insist that the mem-
bers of these algebras must be finite strings of 0’s and 1’s. Then the universe
of the algebra can be regarded as a list of those finite strings. Moreover, each
basic operation of an algebra can be regarded as a list r+1-tuples of elements
of the algebra, where r is the rank of the operation. By reserving some short
strings of 0’s and 1’s to use as delimiters, the whole finite algebra can be
regarded as a finite string of 0’s and 1’s. In this way, each finite algebra (up
to isomorphism) can be regarded as a suitable input for a Turing machine.
There are many ways in which this reduction of a finite algebra to a string
of 0’s and 1’s might be accomplished, some more efficient than others. Since
our interest here is in procedures that require at least exponential time com-
plexity, the details of how this reduction is done have small importance. So
we assume that one of the more or less obvious methods of reduction has
been adopted. For an algebra A we take the length of the resulting string of
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0’s and 1’s as the magnitude of A. The only constraint we impose on the
reduction is that there is a polynomial p(x) with natural number coefficients
so that there is an algorithm for evaluating the basic operations of A that
uses time bounded above by p(α), where α is the magnitude of A. (Actually,
even this constraint can be relaxed.)

2 An upper bound

Scott’s algorithm produces a list containing an isomorphic copy of each 2-
generated member for the variety generated by A and then invokes Kalicki’s
algorithm to determine whether each algebra on the list generates the same
variety as A. Bergman and Slutzki (2000) have shown that Kalicki’s algorithm
is in 2EXPTIME and Marcin Kozik (2009) has given a 2EXPTIME-complete
instance of the Finite Algebra Membership Problem—so Kalicki’s algorithm
cannot be replaced by anything substantially cheaper. It is conceivable that
the list produced by Scott’s algorithm is quite long and that Scott’s algorithm
is even more expensive than Kalicki’s algorithm.

In 1997 Keith Kearnes and Ágnes Szendrei gave a deep characterization of
minimal locally finite varieties, see (Kearnes and Szendrei, 1997). This leads
to an algorithm that is like Scott’s but much simpler. Consider a given finite
nontrivial algebra A of finite signature. Among the homomorpic images of
subalgebras of A one can find a nontrivial algebra B of smallest cardinality.
This algebra B is strictly simple in the sense that it has no proper nontriv-
ial subalgebras and no proper nontrivial congruences (and hence no proper
nontrivial homomorphic images). Were the variety generated by A minimal,
then B would have two further properties:

(a) The algebras A and B would generate the same variety, and
(b) The algebra B would generate a minimal variety.

On the other hand, the failure of either (a) or (b) ensures that A does not
generate a minimal variety. Of course (a) can be tested by one use of Kalicki’s
algorithm. Kearnes and Szendrei prove that in a minimal locally finite variety
the strictly simple generator is unique up to isomorphism and is embeddable
into every nontrivial algebra in the variety. This gives us another modest sim-
plification: we can take be B to be minimal among the nontrivial subalgebras
of A rather than among their homomorphic images. So the broad outline of
the Kearnes-Szendrei algorithm is:

(1) Obtain the nontrivial subalgebra B of A of smallest cardinality.
(2) Test whether B is simple.
(3) Test whether A and B generate the same variety.
(4) Test whether B generates a minimal variety.
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Steps (1) and (2) can be accomplished in polynomial time. Step (3) can be
handled be one use of Kalicki’s algorithm. So we see that our problem reduces
to

The Strictly Simple Minimal Variety Problem

Input: A finite strictly simple algebra B of finite signature.

Problem: Decide if the variety generated by B is minimal.

Addressing this problem was principal point of the investigation of Kearnes
and Szendrei.

A one-variable term function e of A is said to be idempotent provided
e◦e= e and, further, is called a minimal idempotent provided the image e(A)
of A under e has more than one element and f(A) is not properly included in
e(A) for any idempotent nonconstant term function f . The term consisting of
just the variable x names the identity map on A, which is idempotent and not
constant. Evidently, every nontrivial finite algebra has minimal idempotents.
Here is the Kearnes-Szendrei characterization:

The Kearnes-Szendrei Characterization
Let B be a finite strictly simple algebra and let e be a minimal idempotent
term operation on B. The following are equivalent.

(a) B generates a minimal variety.
(b) B is not Abelian or has a trivial subalgebra and for some positive

natural number n, there exist binary terms fi and unary terms gi
and hi for 0≤ i≤ n such that each of the following equations hold
in B.

x≈ f0(x,eg0(x))
fi(x,ehi(x))≈ fi+1(x,egi+1(x)) (0≤ i≤ n−1)(�)
fn(x,ehn(x))≈ e(x)

To determine the complexity of the algorithm outlined above for the Min-
imal Variety Problem we must determine the complexity, in terms of the
magnitude of a given finite algebra A of finite signature, of each of the fol-
lowing.

• Constructing a nontrivial subalgebra B of A of smallest cardinality.
• Determining whether B is simple.
• Determining whether B is Abelian or has a trivial subalgebra.
• Constructing a minimal idempotent term function e of B.
• Determining whether there are finite systems of unary and binary terms

so that the equations (�) hold in B.
• Determining whether A and B generate the same variety.
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Let α be the magnitude of A.
To find the nontrivial sublagebra B of least cardinality, one need only ex-

amine the subalgebras generated by the two-elements subsets. As the number
of two-element subsets is bounded above by |A|2 ≤ α2 and closing each such
subset using the basic operations is also bounded by a polynomial in α, this
can be accomplished in polynomial time.

Once B is in hand, to determine whether it is simple is just a matter
of constructing all its congruences generated by collapsing pairs of distinct
elements. With the help of Mal’cev’s Congruence Generation Theorem, this
can be accomplished in time polynomial in the magnitude of B and hence of
A.

Determining whether B is Abelian we need only determine if the diagonal
{〈b,b〉 | b∈B} of B is a congruence class of some congruence of B2. As above,
we can do this in time polynomial in the magnitude of B2 and hence of A.

To facilitate addressing the next two tasks, it pays to begin by listing
term functions in the variables x and y on the algebra B. Doing this in
any reasonably parsimonious way will cost only an exponential amount of
time—this amounts to listing the elements of the clone Clo2 B, which is the
subuniverse of BB2 generated be the two projection functions. The elements
of Clo2 B are recorded as certain lists of 3-tuples of elements of B. Finding
a minimal idempotent e is now a matter of searching through this (perhaps
exponentially) long list of terms for all the nonconstant idempotents and
selecting one that gives the smallest image of B. Since |B||B| is an upper
bound on the number of term fuctions in x, this process can be completed in
time exponential in the magnitode of B and hence also in time exponential
in the magnitude of A.

To discover if there is a way to fulfill (�). We impose the structure of a
directed graph on Clo2 B as follows. The vertices will just be the elements of
Clo2 B. Given such vertice f and f ′, we create an edge from f to f ′ provided
there are term functions h and g in Clo2 B (in the subclone generated by the
first projection function) so that

f(x,eh(x)) = f ′(x,eg(x))

holds in Clo2 B. The (�) is just the contention that there is a directed path
from the first projection function to e (considered as a member of Clo2 B).
There at most |B||B|2 vertices in this directed graph. So this reachability
problem can be settled in time exponential in the magnitude of B and, hence
also exponential in the magnitude of A. The author would like to thank the
referee for suggesting this reachability argument.

Finally, the last task can be accomplished by Kalicki’s algorithm, which
requires only doubly exponential time.

In this way, we find the following corollary of the work of Kearnes and
Szendrei:
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Corollary 1. The Minimal Variety Problem belongs to the deterministic
complexity class 2EXPTIME.

3 The Minimal Variety Problem is NP-hard

In the next section, we will prove that the Minimal Variety Problem is com-
plete for deterministic 2EXPTIME. So the content of this section will be su-
perceded. The method is roughly the same in these two sections, but in the
current section it is applied to algebras built from finite graphs that have only
a few basic operations, whereas in the next section the algebras are built from
arbitrary alternating Turing machines working in exponential space. Such al-
gebras have many somewhat complicated operations. So the basic idea of the
method is more transparent here in the case of graph algebras.

The graph S displayed in Figure 1 is one of a sequence of graphs de-
vised by Zoltán Székely in 1998 (Székely, 1998, 2002) to characterize k-
colorable graphs and to build a finite algebra with an NP-complete finite
algebra membership problem. In 1979 William Wheeler, as part of his inves-

e′

r

s′ e r′

s

S W

Fig. 1 Zoltán Székely’s graph S and Willaim Wheeler’s graph W

tigation (Wheeler, 1979) of the first-order theory of k-colorable graphs, gave
a similar sequence of graphs. Székely and Wheeler show that the two graphs
displayed in Figure 1 capture 3-colorability in the sense that a graph is 3-
colorable if and only if it is isomorphic to an induced subgraph of a direct
power of S (in Székely’s case) or of W (for Wheeler). Below we will use S
since its symmetrical nature simplifies the discussion.

Let H be any graph so that H and S have no common vertices. The graph
SH is the disjoint union H with S. So there are no edges between S and H.
See Figure 2.

We think of the vertices of S as colors: r for ruby, s for sapphire, and e
for emerald and three “primed” variants. By an admissable coloring of H we
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mean a homomorphism from H into S, where a homomorphism is a map that
preserves adjacency.

We associate with the graph SH an algebra S∗H as follows. The universe of
S∗H is the set of vertices of SH extended by a single new element ⊥, called
the default element. The signature provides eight two-place operation sym-
bols: ·,∧,Qr,Qs,Qe,Qr′ ,Qs′ , and Qe′ as well as seven constant symbols:
⊥, cr, cs, ce, cr′ , cs′ , and ce′ to name the default element and each vertex of S.
Here is how the operations of S∗H are defined:

a · b=
{
a if a and b are adjacent vertices of SH
⊥ otherwise

a∧ b=
{
a if a= b

⊥ otherwise

Qd(a,b) =
{
b if a= d

⊥ otherwise
for d ∈ {r,s,e,r′,s′,e′}

By proper elements of this algebra (and others below) we mean those different
from⊥. The operation · is the graph algebra operation introduced by Caroline
Shallon in her dissertation (Shallon, 1979), see also (McNulty and Shallon,
1983). The operation ∧ is a semilattice operation making our algebra into a
flat graph algebra, that is a graph algebra that is also a height 1 semilattice.
Flat graph algebras where investigated by Dejan Delić in (Delić, 2001) and by
William Lampe, the author, and Ross Willard in (Lampe et al., 2001). Here
we use the semilattice operation to access a construction of Ralph McKenzie
from (McKenzie, 1996c). Finally, the operations of the form Qa where in-
vented by Don Pigozzi (1979) to construct a finite nonfinitely based algebra

H

S

e′

r

s′ e r′

s

Fig. 2 The graph SH: The disjoint union of the graph H with the graph S
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that generates a minimal variety—an alternative approach to Pigozzi’s result
was given by Ágnes Szendrei (1993).

We use S∗ to denote S∗H when H is empty. The algebra S is the associated
flat graph algebra—it is the reduct of S∗ resulting from forgetting the con-
stant symbols and the operations Qa. Likewise, H is the flat graph algebra
associated with the graph H.

Theorem 2. The problem of deciding whether a finite algebra of finite sig-
nature generates a minimal variety is at least NP-hard.

Proof. Zoltan Székely proved, for any finite connected graph H that

H ∈ HSPS if and only if H is 3-colorable.

Determining 3-colorability of finite connected graphs an NP-complete prob-
lem. So our theorem will be proven if we can show for every finite connected
graph H that

S∗H generates a minimal variety if and only if H ∈ HSPS.

Our first task is to see that S∗ generates a minimal variety. We duplicate
here Pigozzi’s reasoning that S∗ is embeddable into any nontrivial algebra in
the variety generated by S∗. First, observe that the following equations are
true in S∗:

Qacay ≈ y for all proper elements a ∈ S
Qacby ≈⊥ for all proper elements a,b ∈ S with a 6= b(?)
Qa⊥y ≈⊥ for all proper elements a ∈ S

Now let B be any nontrivial algebra belonging to the variety generated by
S∗. Let h : S→B be defined by

h(a) =
{
cB
a if a is a proper element of S
⊥B if a is ⊥S

Because B is in the variety generated by S∗ and because every proper element
of S is named by a constant symbol, we find that h is a homomorphism. So
we only have to argue that h is one-to-one. To this end suppose a,b ∈ S with
a 6= b. It does no harm to assume that a is proper. From the last two equations
in (?) we have in S∗

Qady ≈⊥

where d is either the constant symbol cb or the constant symbol ⊥. So this
equation must hold in B as well. We also see from the first equation in (?)
that

Qacay ≈ y
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holds in B.
Now let e be any proper element of B. So we have

QB
a (dB,e) =⊥ 6= e=Qa(cB

a ,e).

It follows that h(b) = dB 6= cB
a = h(a). So h is one-to-one as desired. As a

consequence, S∗ generates a minimal variety.

Observe that S∗ is a subalgebra of S∗H. Consequently,

S∗H generates a minimal variety if and only if S∗H ∈ HSPS∗.

So what we need to prove our theorem is to establish

S∗H ∈ HSPS∗ if and only if H ∈ HSPS.

Now the left-to-right direction of this equivalence can be established by
considering the reduct to the signature of flat graph algebras: notice that the
set H ∪{⊥}⊆ S∗H, where H is the set of vertices of H, is closed under the flat
graph operations.

This leaves the right-to-left implication. So suppose that H is a finite con-
nected graph such that H ∈ HSPS. Following Székely, this means that H is
3-colorable. Székely shows that this entails the existence of a particular nat-
ural number t, a particular subalgebra BH of St, and a particular congruence
θ of BH so that H∼= BH/θ. Székely provides fuller details of this construction
in (Székely, 1998). Below, you will find an outline of Székely’s method that
covers the points we will need to adapt.

Let n be the number of vertices of H. Let

H = {p0,p1, . . . ,pn−1}

.
The algebra BH is generated by n t-tuples π0, . . . ,πn−1. We construe each

of these t-tuples as a column vector and the whole sequence of them as an
array with t rows and n columns. This array is constructed with the help of
admissable 3-colorings of H, using the colors e,r, and s. Such a coloring is
construed as an n-tuple of colors called a color row. Székely’s t×n array has
the following properties:

(a) Each row is a copy of a color row modified so that one or two entries
are primed.

(b) For any pair of distinct nonadjacent vertices of H there is a row in the
array were the entries associated to the two vertices are primed.

(c) Every column has both primed and unprimed entries.
(d) No two distinct columns are the same.

Now let BH be the subalgebra of St generated by the columns of this array.
Let B⊥ consist of those elements of BH that have at least one entry equal to⊥.
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As Székely points out, BH = {π0, . . . ,πn−1}∪B⊥ and the equivalence relation
that collapses B⊥ and isolates each of the πk’s is a congruence relation θ such
that H∼= BH/θ. The fact that θ is a congruence is a consequence of the fact
that B⊥ is an absorbing set in the sense that the output of any of the basic
operations of BH is in B⊥ when at least one of the inputs is in B⊥. The
isomorphism holds because each of e, r, and s is adjacent to the other two in
S, e′ is adjacent to r and s (and likewise for r′ and s′), but no primed vertex
is adjacent to a primed vertex in S.

We will adapt this strategy of Székely to construct B∗H. In our case the
signature is expanded by constant symbols to name each element of S and by
the Pigozzi operations. In any direct power of S∗ the elements named by the
constant symbol εd will be a tuple (here construed as a column vector) all
of whose entries are d. We must have these tuples. Since there are no edges
connecting vertices in H with vertices in S, we must arrange matters in B∗H
so that ⊥ is produced on at least one coordinate when the graph product is
applied in these cases.

To complete this proof, we have to extend Székely’s array, making each
column longer and adding six new columns. Each new column will have all
entries equal to one of e,r,s,e′, r′ and s′. So in the direct power of S∗ they
will be named by the new constant symbols. We add extra rows to capture
those adjacencies and nonadjacencies involved in this extension.

We add 3n new rows to obtain a (t+3n)×n array with columns denoted
by π†0, . . . ,π

†
n−1. What we require is the following constraints to hold:

(a†) Each row is an admissible color row modified so that one or two entries
are primed.

(b†) For any pair of distinct nonadjacent vertices of H there is a row in
the array were the entries associated to the two vertices are primed.

(c†) Every column has both primed and unprimed entries.
(d†) No two distinct columns are the same.
(e†) Each column π†k with 0≤ k < n has each of e′, r′, and s′ as entries.

Provided the 3n new rows satisfy (a†), we only have to contend with the last
constraint. For each vertex q among the n vertices p, . . . ,pn−1 of H we select
three admissible r,s,e-colorings of H as follows. The first assigns r to q. The
second coloring assigns s to q, while the third coloring assigns e to q. Now
modify each of these colorings just at the vertex q by priming the color. Each
of these modified colorings is admissable, so constraint (a†) is not injured. So
by using three entries we have ensured that constraint (e†) holds for q. We
do this for each of the n vertices of H.

Let B†H to the subalgebra of the appropriate direct power of S generated
by {π†0, . . . ,π

†
n−1} and let B†⊥ be the subset of those elements of B†H that have

⊥ as an entry. The set B†⊥ is absorbing. It is clear that

B†H = {π†0, . . . ,π
†
n−1}∪B

†
⊥.
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Now for each d ∈ {e,r,s,e′, r′,s′} let εd be the t+ 3n-tuple all entries of
which are d. Let B∗H be the subalgebra of the appropriate power of S∗ gen-
erated by

{εe,εr,εs,εe′ ,εr′ ,εs′}∪{π
†
0, . . . ,π

†
n−1}.

Let θ be the equivalence relation that collapses B∗⊥ and isolates every other
element. Since B∗⊥ is an absorbing set, θ will a congruence relation. To see
that the associated quotient map η is really a homomorphism from B∗H onto
S∗H, first observe that the set

{εe,εr,εs,εe′ ,εr′ ,εs′}∪B∗⊥

is a subuniverse of B∗H and the restriction of η to this subuniverse is a homo-
morphism. Second, observe that the set

{π†0, . . . ,π
†
n−1}∪B

∗
⊥

is closed with respect to the flat graph algebra operations and that η restricted
to this set respects all the flat graph algebra operations. So to confirm that η
is a homomorphism we need to consider the Pigozzi operations and the flat
graph algebra operations when inputs come from both parts of our generating
set. The Pigozzi operation Qd(µ,ν) produces an output in B∗⊥ unless µ= εd,
in which case the output is ν. This means η always respects the Pigozzi oper-
ations. Now consider the graph algebra operation ·. Let us suppose, without
loss of generality, that µ = εd, where d ∈ {r,s,e,e′, r′,s′}, and ν = π†k with
0≤ k < n. Since in S no vertex is adjacent to itself nor to its primed version,
constraint (e†) ensures that µ · ν,ν ·µ ∈ B∗⊥. So η respects each instance of
the graph algebra operation of this kind. Last we must consider the meet.
But this is easy since µ∧ν = µ if µ = ν and otherwise µ∧ν ∈ B∗⊥. So η is a
homomorphism mapping B∗H onto S∗H.

So we reach the conclusion we desire: S∗H ∈ HSPS∗. This completes the
proof of the theorem. ut

4 The Minimal Variety Problem is 2EXPTIME
Complete

Theorem 2
The Minimal Variety Problem is 2EXPTIME complete.

Marcin Kozik (2009) proved that there is a finite algebra E that has a
2EXPTIME complete finite algebra membership problem. In this section we
will show that Kozik’s work can be modified, roughly in the way that Székely’s
work was modified in the previous section, to show that the Minimal Variety
Problem is 2EXPTIME complete.
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In 1981 it was shown by Chandra, Kozen, and Stockmeyer, see (Chandra
et al., 1981), that 2EXPTIME=AEXPSPACE. That is, the class of languages
recognized in doubly exponential time by deterministic Turing machines is
the same as the class of languages recognized using in exponential space
by alternating Turing machines. What Kozik does is associate with each
alternating Turing machine T an algebra E(T) and with each input word w
of T an algebra Sw of magnitude bounded polynomially in the length of w,
so that

Sw ∈ HSPET if and only if w /∈ L,

where L is the language recognized by T is exponential space. By way of
Chandra, Kozen and Stockmeyer, this result about alternating Turing ma-
chines operating in exponential space is equivalent to a deterministic result
for doubly expontential time. Because deterministic complexity classes are
closed with respect to complementation, this establishes Kozik’s theorem.

While Kozik’s machine algebras take their inspiration from McKenzie’s
machine algebras (McKenzie, 1996a), those of Kozik are more involved: they
must reflect the behavior of T on all inputs (where McKenzie needed only
the blank tape as input) and they must take into account the limitation to
exponential space.

Rather than repeating here the details of Kozik’s method from (Kozik,
2009), we adopt almost all his notation and presume that the reader has a
copy of (Kozik, 2009) in hand for reference. From this point we regard T as
a fixed alternating Turing machine (with the minor restrictions imposed by
Kozik) and we take w to be a word of length n on the tape alphabet of T.
We take E to be the algebra Kozik associates with the machine T. Just as
we did in the previous section we let E∗ be the expansion of E by using new
constant symbols to name each element of E and by the inclusion of a two-
place Pigozzi operation for each proper element of E. So for each element
d ∈ E our signature has a constant symbol cd and, in case d is proper, a
two-place operation symbol Qd.

Following Don Pigozzi (1979), as we did at the beginning of the proof of
Theorem 1, we see that E∗ generates a minimal variety. We will form S∗w
by an amalgamation of E∗ with Sw by identifying ⊥E and ⊥Sw and letting
⊥E be the value of any operation when it has inputs from both parts of
this amalgamation, with a few well-controlled exceptions. Evidently, E∗ is a
subalgebra of S∗w. This means

S∗w generates a minimal variety if and only if S∗w ∈ HSPE∗.

So the proof of Theorem 2 will be complete once we establish

Main Contention

S∗w ∈ HSPE∗ if and only if Sw ∈ HSPE.
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Proof. The left-to-right implication is easy. We can simply forget the Pigozzi
operations and ignore the constant symbols naming the elements of E. Once
this is done Sw is a subalgebra of the reduct of S∗w. So Sw ∈ HSPE.

For the reverse implication, we suppose that Sw ∈ HSPE. In this case,
Kozik constructs a subalgebra B(w) of E2n as well as a congruence θ of
B(w) such that Sw ∼= B(w)/θ. Moreover, the θ-class of ⊥B(w) is the only
congruence class that is not a singleton. We will follow the same strategy. The
main difficulty is that our B∗(w) must have the constant tuples named by our
new constant symbols in the direct power as well as all the elements generated
with their help and the help of those elements in Kozik’s construction.

Since the word w is fixed, to simplify notation, we suppress it from this
point on. So we use S and B where Kozik uses Sw and B(w). We also dis-
pense with the use of superscripts to indicate the operations denoted by the
operation symbols is our various algebras, relying on context to resolve any
ambiguities.

To proceed we must describe the algebras E,S, and B, as well as their
corresponding modified versions E∗,S∗, and B∗.

The signature of the algebra E is complicated because it reflects the al-
ternating Turing machine T. This machine has a tape alphabet A and a set
S of states. We use β to denote the blank tape symbol. Notice that β ∈ A.
There are two special states: 1 the initial state and 0 the accepting state. The
universe E of the algebra E is the union of the following eleven disjoint sets:

Y = {∆L,0,∆L,1,∆H,0,∆H,1,∆R,0,∆R,1}
XL = {LZ,a(i,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S}

XH = {HZ,a
(i,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S}

XR = {RZ,a(i,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S}

X̂L = {LZ,a(ı̂,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S−{0}}

X̂H = {HZ,a
(ı̂,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S−{0}}

X̂R = {RZ,a(ı̂,b),c | a,b,c ∈ A,Z ∈ {R,H,L}, and i ∈ S−{0}}

ZL = {LZ,a | a ∈ A and Z ∈ {R,H,L}}
ZH = {HZ,a | a ∈ A and Z ∈ {R,H,L}}
ZR = {RZ,a | a ∈ A and Z ∈ {R,H,L}}
{⊥}

Further, we let
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X = XL∪XH ∪XR
X̂ = X̂L∪X̂H ∪X̂R
Z = ZL∪ZH ∪ZL.

So E = Y ∪X ∪X̂ ∪Z ∪{⊥}.
The three element set {L,H,R} has a binary relation ≺ all of whose in-

stances are displayed below.

L≺ L≺H ≺R≺R.

Finally, with each state i other than the accepting state 0 there is a distinct
associated state ı̂.

Each element of E, apart from the default element ⊥, is determined by
specifying a number of parameters. For example, the elements of X have a
main symbol (one of L, H, or R), two superscripts, and three subscripts. The
basic operations of E are described by telling how to use the parameters of the
inputs to obtain the parameters of the output. Kozik invented a convenient
notational scheme for this purpose. Two examples will suffice (but the scheme
is carefully described in (Kozik, 2009)).

��,�(�,�),�(RH,a(2,b),c) =��,�(�,�),�(RL,a(2,b),c).

��,�(�,�),�(RH,a(2,b),c) =H ≺R=��,�(∆R,1).

The first displayed formula asserts (correctly) that the corresponding param-
eters of the inputs at the � positions are equal. The second asserts that the
parameters at the � positions stand in the relation ≺.

The basic operations of E fall into three categories: space building op-
erations, computation and checking operations, and a handful of auxiliary
operations. The element ⊥ is an absorbing element for each of the basic op-
erations of E. That is, if ⊥ is among the inputs of the operation, then the
output is ⊥. By the proper domain of an operation Q of rank r we mean
the set of all t̄ ∈ Er so that Q(t̄) 6=⊥.

The signature of E is rather involved. More details are found below. Nev-
ertheless we can describe here two important algebras. Let w be a word in
the tape alphabet of the underlying alternating Turing machine and suppose
the length of w is n. The signature of E has among its operation symbols a
one-place operation symbol G, a two-place operation symbol Ω, a three-place
operation symbol F a for each letter a of the tape alphabet, and a zero-place
operation symbol ⊥. The algebra Sw = S has 2n+ 3 distinct elements

S = {s0, . . . ,sn}∪{`0, . . . , `n}∪{⊥}.

The basic operations of S return the output ⊥ on all inputs with only the
following exceptions:
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G(s0) = s0

Fw(k)(`k, `k+1,sk) = sk+1 for all k < n

Here w(k) is the kth letter of w. So the leftmost letter of w is w(0) and
the rightmost is w(n− 1). [We make a minor departure here from Kozik’s
notation: he uses Σk where we have sk and Λk where we have `k.]

The algebra S∗ has additional elements and operations.

S∗ = E∪{s0, . . . ,sn}∪{`0, . . . , `n}∪{⊥}= E∪Sw,

where E, the universe of E, is disjoint from {s0, . . . ,sn}∪ {`0, . . . , `n}. The
basic operations of S∗ are defined so that E is a subalgebra, so that S is a
subalgebra of the reduct to the signature of E, and with every basic operation
applied to other sorts of inputs returns⊥ as the output with only the following
exceptions:

Ω(e,c) =
{
c if ��,�(�,�),�(e) = 1̂
⊥ Otherwise.

Qd(e,c) =
{
c If d= e

⊥ Otherwise

and where each constant symbol ce names the element e of E−{⊥}.
The algebra S∗ is, in essence, an amalgamation of the algebra E∗ and the

algebra S with very little interaction between these two parts. From another
viewpoint, S∗ is an extension of E∗ where the interplay of the operations
with the additional elements is sharply restricted.

4.1 Space Building Operations of E

For each a ∈ A there is a three-place operation F a. A triple 〈b,c,d〉 belongs
to the proper domain of F a if and only if all of the following hold:

• b,c ∈ Y ,
• d ∈ X ∪Z,
• d ∈ Z or ��,�(�,�),�(d) = 1,
• ��,�(b) =��,�(�,�),�(d)≺��,�(c), and
• ��,�(b) 6=H or ��,�(�,�).�(d) = a.

When 〈b,c,d〉 belongs to the proper domain of F a and d ∈ X then F a(b,c,d)
is determined as follows:

• ��,�(�,�),�(F a(b,c,d)) = (1,a),
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• ��,�(�,�),�(F a(b,c,d)) =��,�(c),
• ��,�(�,�),�(F a(b,c,d)) =��,�(�,�),�(d),
•

��,�(�,�),�(F a(b,c,d)) =
{
R if ��,�(�,�),�(d) =H and ��,�(b) = 1
��,�(�,�),�(d) otherwise

•

��,�(�,�),�(F a(b,c,d)) =
{
a if ��,�(�,�),�(d) =H and ��,�(b) = 0
��,�(�,�),�(d) otherwise.

In this case, the outputs of F a all belong to X ∪{⊥}.
In case 〈b,c,d〉 belongs to the proper domain of F a and d ∈ Z then

F a(b,c,d) belongs to Z and is determined as follows:

• ��,�(F a(b,c,d)) =��,�(c),
• ��,�(F a(b,c,d)) =��,�(d),
•

��,�(F a(b,c,d)) =
{
R if ��,�(d) =H and ��,�(b) = 1
��,�(d) otherwise

For each a ∈A there is another three-place operation F acompl. This opera-
tion has the same proper domain as F a and its proper outputs always belong
to Z. Here is how F acompl(b,c,d) is determined, when d ∈ X .

• ��,�(F a(b,c,d)) =��,�(c),
• ��,�(F a(b,c,d)) =��,�(�,�),�(d),
•

��,�(F a(b,c,d)) =
{
L if ��,�(�,�),�(d) =H and ��,�(b) = 0
��,�(�,�),�(d) otherwise

Here is how F acompl(b,c,d) is determined, when d ∈ Z.

• ��,�(F a(b,c,d)) =��,�(c),
• ��,�(F a(b,c,d)) =��,�(d),
•

��,�(F a(b,c,d)) =
{
L if ��,�(d) =H and ��,�(b) = 0
��,�(d) otherwise
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4.2 Computing and Checking Operations of E

These operations have the most complex definitions, as they reflect the in-
structions of the Turing machine T and the involved manner in which accep-
tance/rejection is understood for alternating Turing machines. Fortunately,
we only need to describe some features of the proper domains of these opera-
tions. For each instruction of T there is a three-place operation F . These are
called computing operations by Kozik. If F (a,b,c) 6=⊥, then

• a,b ∈ Z and c ∈ X ∪X̂ and
• ��,�(a) =��,�(b) =��,�(�,�),�(c).

The checking operations arise from certain sets of machine instruction,
with the ranks of the operations depending on the size of these sets. All the
tuples in the proper domains of such operations are tuples of elements of
X ∪ X̂ and, as with the computing operations, a tuple that belongs to the
proper domain has the property that all its superscript agree.

4.3 Auxiliary Operations of E

There is a one-place operation G with proper domain those elements of b ∈
X so that ��,�(�,�),�(b) = H(1,β),β . On its proper domain, G is the identity
function.

There is a one-place operation Π and a belongs to the proper domain of
Π if and only if

• a ∈ X ∪Z, and
• a ∈ Z or ��,�(�,�).�(a) = 1. When a belongs to the proper domain of Π we

put
Π(a) =��,�(�,�),�(a).

There is a two-place operation Ω. The tuple 〈a,b〉 belongs to the proper
domain of Ω if and only if b 6=⊥ and a∈ X̂ with ��,�(�,�),�(a) = 1̂. When 〈a,b〉
belongs to the proper domain of Ω, we put

Ω(a,b) = b.

4.4 The Pigozzi Operations of E∗

For each d ∈E−{⊥} we had the two-place Pigozzi operation Qd defined via
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Qd(a,b) =
{
b if d= a

⊥ otherwise.

Finally, for each d ∈ E we provide a zero-place operation cd, that is a
constant to name the element d.

4.5 The Algebras B, B†, and B∗

For our fixed word w of length n, Marcin Kozik (2009) constructs the algebra
B as a subalgebra of E2n by specifying a set

{σ0}∪{λ0, . . . ,λn}

of n+2 generators. Here we need a slightly modification. We use one more co-
ordinate, listing it first. We display these modified generators σ†0,λ

†
0,λ
†
1, . . . ,λ

†
n

as column vectors of length 1 + 2n.

σ†0 λ†0 λ†1 λ†2 λ†3 . . . λ†n−1 λ†n

HR,β
(1,β),β ∆R,0 ∆R,0 ∆R,0 ∆R,0 . . . ∆R,0 ∆R,0

H
H,w(0)
(1,β),β ∆H,0 ∆R,0 ∆R,0 ∆R,0 . . . ∆R,0 ∆R,1

H
L,w(1)
(1,β),β ∆L,1 ∆H,0 ∆R,0 ∆R,0 . . . ∆R,0 ∆R,1

H
L,w(2)
(1,β),β ∆L,0 ∆L,1 ∆H,0 ∆R,0 . . . ∆R,0 ∆R,1

H
L,w(3)
(1,β),β ∆L,1 ∆L,1 ∆L,0 ∆H,0 . . . ∆R,0 ∆R,1

H
L,w(4)
(1,β),β ∆L,0 ∆L,0 ∆L,1 ∆L,0 . . . ∆R,0 ∆R,1

...
...

...
...

... . . . ...
...

H
L,w(n−1)
(1,β),β ∆L,∗ ∆L,∗ ∆L∗ ∆L,∗ . . . ∆H,0 ∆R,1

H
L,w(n−1)
(1,β),β ∆L,∗ ∆L,∗ ∆L∗ ∆L,∗ . . . ∆L,1 ∆H,1

H
L,w(n−1)
(1,β),β ∆L,∗ ∆L,∗ ∆L∗ ∆L,∗ . . . ∆L,1 ∆L,1

...
...

...
...

... . . . ...
...

Observe that the word w is recorded in the second superscripts of σ†0. The
three rows partially displayed are row n, row n+1, and row n+2. The ∗ in the
second superscript indicates that the pattern of 0’s and 1’s set out in the first
few rows should continue—apart from the top row, it sweeps systematically
through all 2n strings of 0’s and 1’s of length n. For example, reading down
column 0 these second superscripts simply alternate, while reading down
column n−1 there are 2n−1 instances of 0 followed by 2n−1 instances of 1.
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The second superscripts for λn are always 1. Our modifications of Kozik’s
generators is the insertion of a new first element, so σ0 and each λk can be
obtained by deleting the first entry of the variants marked with †.

Now consider Fw(0)(λ†0,λ
†
1,σ
†
0).

λ†0 λ†1 σ†0 Fw(0)(λ†0,λ
†
1,σ
†
0)

∆R,0 ∆R,0 RR,β(1,β),β HR,β
(1,w(0)),w(0)

∆H,0 ∆R,0 H
H,w(0)
(1,β),β H

R,w(0)
(1,w(0)),w(0)

∆L,1 ∆H,0 H
L,w(1)
(1,β),β R

H,w(1)
(1,w(0)),w(1)

∆L,0 ∆L,1 H
L,w(2)
(1,β),β H

L,w(2)
(1,w(0)),w(0)

∆L,1 ∆L,1 H
L,w(3)
(1,β),β R

L,w(3)
(1,w(0)),w(3)

∆L,0 ∆L,0 H
L,w(4)
(1,β),β H

L,w(4)
(1,w(0)),w(0)

...
...

...
...

Following Kozik, we put σ†1 = Fw(0)(λ†0,λ
†
1,σ
†
0). More generally, by recursion

we put
σ†k+1 = Fw(k)(λ†k,λ

†
k+1,σ

†
k)

for all k < n. Our modification of Kozik’s generators introduces no significant
changes in Kozik’s analysis. This is a point that we will verify.

Marcin Kozik (2009) proved that the equivalence relation that isolates the
2n+ 2 elements (unmodified)

σ0,λ0,σ1,λ1, . . . ,σn.λn

and collapses all the other elements of B is a congruence of B. As the quotient
algebra is isomorphic with S, this establishes that S ∈ HSPE.

We reserve ρ : E1+2n → E2n to denote the projection onto the last 2n
coordinates. So we see that ρ(σ†k) = σk and ρ(λ†k) = λk, for all k ≤ n.

We let B† be the subalgebra of E1+2n that is generated by our modified

{σ†0}∪{λ
†
0, . . . ,λ

†
n}.

We let B∗ be the subalgebra of (E∗)1+2n generated by the modified

{σ†0}∪{λ
†
0, . . . ,λ

†
n}.

The main difference between B∗ and B† is that B∗ contains all the constant
tuples that are named by the new constant symbols that were added to the
expanded signature of E∗. Of course, we also have to account for the behavior
of the Pigozzi operations.

For each proper element d ∈E we use εd to denote that constantly d tuple
in E1+2n .
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In (Kozik, 2009), Kozik establishes for the subalgebra B of E2n the fol-
lowing assertions.

(A) B−
(
{σ0, . . . ,σn}∪{λ0, . . . ,λn}

)
is an absorbing set for B.

(B) The only applications of operations in B that do not give outputs
in this absorbing set are

G(σ0) = σ0

Fw(k)(λk,λk+1,σk) = σk+1 for all k < n.

(C) Except for σ0 and λ0 all the elements of B of full support exhibit
each of R,H, and L in their first superscripts. In particular, the only
constant 2n-tuple belonging to B is the tuple that is constantly ⊥.

(D) There is no element γ ∈ B that also belongs to X ∪ X̂ so that
��,�(�,�),�(γ) is 1̂ on all coordinates.

It follows from (B) that for any γ ∈B† and any k ≤ n

ρ(γ) = λk⇒ γ = λ†k, and
ρ(γ) = σk⇒ γ = σ†k.

This means that

B†−
(
{σ†0, . . . ,σ

†
n}∪{λ

†
0, . . . ,λ

†
n}
)

= ρ−1 (B− ({σ0, . . . ,σn}∪{λ0, . . . ,λn}
))
.

It is straightforward to check that the inverse image of an absorbing set
with respect to a homomorphism is again an absorbing set.

This means that for the subalgebra B† of E1+2n we obtain

(A†) B†−
(
{σ†0, . . . ,σ

†
n}∪{λ†0, . . . ,λ

†
n}
)

is an absorbing set for B†.
(B†) The only applications of operations in B† that do not give outputs

in this absorbing set are

G(σ†0) = σ†0

Fw(k)(λ†k,λ
†
k+1,σ

†
k) = σ†k+1 for all k < n.

(C†) All the elements of B† of full support exhibit each of R,H, and L in
their first superscripts. In particular, the only constant 1+2n-tuple
belonging to B† is the tuple that is constantly ⊥.

(D†) There is no element γ ∈ B† that also belongs to X ∪ X̂ so that
��,�(�,�),�(γ) is 1̂ on all coordinates.

Let B∗⊥ consist of those elements of B∗ that have⊥ on at least one position.
Claim
The set B†∪{εd | d ∈ E−{⊥}}∪B∗⊥ is a subuniverse of (E∗)1+2n .



254 George F. McNulty

Proof. The set {εd | d ∈ E} is certainly a subuniverse and the set

B†∪B∗⊥

is closed with respect to all the operations of E1+2n . So we need only consider
what happens with operations of rank at least 2 with at least one input
from {εd | d ∈E} and at least one input from B†. By considering the proper
domains of the tape building operations, the computing operations, and the
checking operations, in this setting the outputs always belong to B∗⊥. In
more detail, for the tape building operations the fact that each of R,H, and
L occur in the first superscripts of any element of B∗ of full support must
disrupt the constraint dealing with ≺ as long as some input is a constant
tulple and some other input is in B† and has full support. [The absence of
R has a first superscript in σ0 and λ0 was the reason for the introduction of
a new coordinate.] The disruption in the proper domains for the computing
and checking operations is even more straightforward.

This leaves the operation Ω and the Pigozzi operations. But these opera-
tions either produce a member of B∗⊥ or else return their second input. ut

Now let θ be the equivalence relation that isolates each element of

{εd | d ∈ E−{⊥}}∪{σ†, . . . ,σ†n}∪{λ
†
0, . . . .λ

†
n}

and collapses all the other elements of B∗ into a single θ-class. We claim that
θ is a congruence of B∗.

Let us first consider the Pigozzi operation Qd. Suppose that γ θ γ′ and
δ θ δ′. If these are both equalities, then Qd(γ,δ) θ Qd(γ′, δ′) is clear. If γ and
γ′ belong to the big block, then neither pair of inputs belongs to the proper
domain of Qd and our result follows. If δ and δ′ belong to the big block, then
both outputs belong to the big block.

Next consider the operation Ω. Observe that Ω(γ,δ) = δ when γ = εd with
��,�(�,�),�(d) = 1̂ and otherwise the output belongs to the big block, by D†.
So θ respects Ω.

For the remaining operations, we are back in the signature of E, but with-
outΩ. Notice that mixed inputs (some fromB† and some not) always produce
outputs in the big block. This means that such instances cannot prevent θ
from being a congruence relation. On the other hand, the restriction of θ to
the subuniverse {εd | d ∈E} is just the identity relation, while the restriction
of θ to B† isolates the elements σ†0, . . . ,σ

†
n and λ†0, . . . ,λ

†
n while identifying the

remaining elements. This big block is an absorbing set. So this restriction of
θ is also a congruence.

So θ is a congruence of B∗. But B∗/θ is evidently isomorphic to S∗. There-
fore S∗ ∈ HSPE∗, completing the proof of the Main Contention and so the
proof of the theorem. ut
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Characterization of protoalgebraic
k-deductive systems

Katarzyna Pa lasińska

Dedicated to Professor Don Pigozzi
on his 80th Birthday.

Abstract A sentential logic is protoalgebraic iff it has a finite system of
equivalence formulas (Blok and Pigozzi, 1986). This can be generalized to the
context of universal Horn logic without equality, (Blok and Pigozzi, 1992).
In this paper we revise this characterization.
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1 Introduction

Among many contributions of Don Pigozzi to universal algebra and logic,
the concepts of protoalgebraic and algebraizable logics, introduced in his joint
research with Willem J. Blok (1986; 1989), are of particular importance. In
their fundamental paper, (Blok and Pigozzi, 1992), the authors generalize
these concepts to universal Horn logic with one predicate that need not be
equality. If the arity of the predicate is k, then a strict universal Horn the-
ory in such logic is called a k-deductive system (Blok and Pigozzi, 1992). If
k = 1 and the predicate is interpreted as ”truth”, then a k-deductive system
becomes a sentential logic, understood as a system of axioms and rules. On
the other hand, the quasi-equational logic of a quasivariety of algebras is an
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example of a 2-deductive system with the binary predicate interpreted as a
congruence, or as equality in the quotient structure. In (Blok and Pigozzi,
1992), the semantics of k-deductive systems is studied along the lines of uni-
versal algebra. The concepts of protoalgebraic and algebraizable k-deductive
systems lead to considering the whole hierarchy of properties between these
two; the stronger the condition on a k-deductive system in this hierarchy, the
more its semantics resembles that of a quasivariety.

The authors thoroughly explain the roots of their research, carefully ac-
knowledging the work of others before them. In return, their work in (Blok
and Pigozzi, 1986, 1989, 1992) has opened a new chapter in the area of alge-
braic logic, motivating a lot of subsequent research, see (Czelakowski, 2001;
Font, 2016) for recent overviews.

The protoalgebraic property of a deductive system is a Malcev-style con-
dition: a 1-deductive system is protoalgebraic if and only if it has a system of
binary equivalence formulas, (Blok and Pigozzi, 1986). The aim of Theorem
13.2 in (Blok and Pigozzi, 1992) is to generalize this fact to k-deductive sys-
tems. This characterization requires a small modification. It is stated there
that a k-deductive system is protoalgebraic iff there exists a finite system
of binary equivalence k-formulas. It should be noticed, however, that in case
of k > 1, the equivalence formulas should not be claimed to be binary, as
justified by Example 3 below, see also (Pynko, 1999). We indicate the place
in the original proof where a mistake has crept in and state a corrected ver-
sion, Theorem 6. This has been noticed in (Pa lasińska, 1994) (published as
(Pa lasińska, 2003, Theorem 5.12)), independently in (Elgueta and Jansana,
1999) and (Pynko, 1999), with (Elgueta and Jansana, 1999, Theorem 6) being
more general than Theorem 6. A natural definition of a congruence system
of k-formulas with k−1 parameters is also proposed and the Leibniz opera-
tor in protoalgebraic k-deductive systems is characterized with their use. We
give an example of a k-deductive systems with a finite system of congruence
k-formulas with parameters that does not have such a system without pa-
rameters (Example 15) and we correct the proof of (Blok and Pigozzi, 1992,
Theorem 13.10). The paper (Blok and Pigozzi, 1992) is a thorough exposition
of an important topic with a lasting potential to motivate further research on
k-deductive systems. We believe that it is worthwhile to discuss explicitely
these fragments of (Blok and Pigozzi, 1992, section 13).

2 Preliminaries

Let Λ be a propositional language i.e., a finite set of symbols with an associ-
ated arity function ρ assigning a natural number to each symbol. A Λ-algebra
is a pair A = 〈A,ΛA〉, where A is a nonempty set and ΛA := {ΛA : Λ ∈ Λ} is
a set of operations on A, one for each symbol in Λ, with ΛA being a ρ(Λ)-ary
operation on A. Let V be an infinite countable set of variables, disjoint with
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Λ. Assume that x,y,z,y1,y2, . . . ,x1,x2 . . . ,z1, . . . ,zk are in V . Notice that we
have listed infinitely many variables xi’s and yi’s and finitely many zi’s. The
symbols u,v and w, with indices, will be meta-variables ranging over V . By
Te we mean the set of all terms in the language Λ over the variables V and
by Te(x,y1, . . . ,yn) the set of those terms in which no other variable than
possibly x,y1, . . . ,yn occurs. Terms involving only two variables are called
binary. The symbol Te denotes the algebra of terms defined on the set Te in
the usual way. Terms are also called formulas and for a natural number k, a
k-term, or a k-formula, is a k-tuple of terms. Boldface symbols t,s,r are used
to denote k-terms, with the convention that t = 〈t1, . . . , tk〉, similarly for s and
r. We will often use a special sequence of k− 1 variables 〈z1, . . . ,zk−1〉 that
will also be denoted by z (even though it is a (k−1)-term and not a k-term).
As usual, an operator C on the power set of k-terms, C : P(Tek)−→P(Tek)
that is increasing, monotone and idempotent is called a closure operator. It
is a consequence operator if it is in addition finitary and structural, i.e.,

C(X) =
⋃
{C(Y ) : Y ⊆X,Y is finite}

and
σ(C(X))⊆ C(σ(X)),

for every set X ⊆ Tek and every endomorphism σ on the algebra Te, with
σ(X) defined as the set resulting from application of σ to each term in X.

Following (Blok and Pigozzi, 1992), by a k-deductive system we mean a
pair S = 〈Λ,C〉 such that Λ is a propositional language and C is a consequence
operator on the power set of k-terms for this language. We write CnS for C
in this case. With each k-deductive system there is associated a consequence
relation `S :

X `S t iff t ∈ CnS(X),

where X ∪{t} ⊆Tek. The subscript S is omitted, if known from the context.
Each set of the form Cn(X) is a theory of S. Equivalently, theories are sets
of k-terms closed under Cn. The members of Cn(∅) are called theorems of
S. A rule of S is a pair 〈X,t〉 such that X ∪{t} is a finite subset of Tek
and X `S t. Conversely, a given set of k-terms (axioms) and a set of rules,
determine a consequence operator and therefore a k-deductive system.

A k-matrix is a pair M = 〈M,R〉, where M = 〈M,ΛM〉 is a Λ-algebra and
R is a k-ary relation on M . A model of a k-deductive system S is a k-matrix
M = 〈M,R〉, where the relation R is closed under all axioms and rules of S.
In such case R is called an S-filter on M and M is called an S-matrix.

A congruence θ on M is compatible with the k-ary relation R on M
if for all a1, b1, . . . ,ak, bk ∈ M , the conditions (a1, b1), . . . ,(ak, bk) ∈ θ and
(a1, . . . ,ak) ∈R imply (b1, . . . , bk) ∈ R. The largest congruence on M com-
patible with R always exists; it is denoted by ΩM(R) and called the Leibniz
congruence of R on M; the subscript M is often omitted. The Leibniz con-
gruence ΩM(R) can also be characterized as follows. A pair (a,b) ∈M2 is in
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Ω(R) iff for every n, every t ∈ Te(x,y1, . . . ,yn) and c̄ ∈Mn,

tM(a, c̄) ∈R=⇒ tM(b, c̄).

The operator ΩM assigning to each k-ary relation R on M its Leibniiz con-
gruence, is called the Leibniz operator on M. Let S be a k-deductive system
and let M be a Λ-algebra. The restriction of ΩM to S-filters is denoted by
ΩSM. Thus ΩSM assigns to each S-filter R on M the Leibniz congruence of R
on M.

3 Protoalgebraic k-deductive systems

Definition 1. (Blok and Pigozzi, 1992, Definition 7.1.) A k-deductive system
S is protoalgebraic if for each Λ-algebra M the operator ΩSM is monotone,
i.e., for every two S-filters R and S on M,

R⊆ S =⇒ΩSM(R)⊆ΩSM(S).

The property of being ”protoalgebraic” is a Malcev type condition. Speci-
fically, a 1-deductive system is protoalgebraic iff it has a finite system of
equivalence formulas (Blok and Pigozzi, 1986). A finite system of equivalence
k-formulas was defined in (Blok and Pigozzi, 1992) as follows.

Definition 2. (Blok and Pigozzi, 1992, Definition 13.1.) By a finite system
of equivalence k-formulas for S we mean a sequence ∆1, . . . ,∆n of binary
k-formulas, with n ∈N, ∆j =∆j(x,y), such that

(1) `S ∆j(x,x), for all j = 1, . . . ,n and

〈z1, . . . ,zi−1,x,zi+1, . . . ,zk〉, ∆1(x,y), . . . ,∆n(x,y)
`S 〈z1, . . . ,zi−1,y,zi+1, . . . ,zk〉,(2)

for all i= 1, . . . ,k.

Since in the deduction the order of premisses does not matter, we iden-
tify the system of equivalence k-formulas with the set ∆ = {∆1, . . . ,∆n}. So
∆(x,y) abbreviates {∆1(x,y), . . . ,∆n(x,y)} and hence (1) and (2) can be
written equivalently as

(3) `S ∆(x,x) and

(4) 〈z1, . . . ,zi−1,x,zi+1, . . . ,zk〉, ∆(x,y) `S 〈z1, . . . ,zi−1,y,zi+1, . . . ,zk〉,
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for all i = 1, . . . ,k. It follows from Definition 2 that for k = 1, ∆ is a finite
system of equivalence k-formulas for a 1-deductive system S iff

(5) `S ∆(x,x) and

(6) x,∆(x,y) `S y

The characterization of protoalgebraic 1-deductive systems in the style of
Malcev is a special case of the following statement (Blok and Pigozzi, 1992,
Theorem 13.2).

A k-deductive system S is protoalgebraic if and only if it has a finite system
of equivalence k-formulas.

Therefore a 1-deductive system S is protoalgebraic iff there is a finite
system ∆(x,y) of binary formulas such that

(7) `S ∆(x,y) and

(8) x, ∆(x,y) `S y.

This characterization of 1-deductive protoalgebraic systems has proved to be
fundamental in abstract algebraic logic. As already mentioned, for k greater
than 1, it requires a correction.

4 Example

Consider the following example of a 2-deductive system.

Example 3. (Pa lasińska, 1994) Let Λ= {·} with ρ(·) = 2. The operation sym-
bol · is omitted when writing terms. Let S be the 2-deductive system over Λ
defined by the following axiom and rules.

` 〈x,x〉(9)
〈xz,yz〉,〈x,z〉 ` 〈y,z〉(10)
〈xz,yz〉,〈z,x〉 ` 〈z,y〉.(11)

We first show that this 2-deductive system does not have a finite system
of binary equivalence formulas.

Proposition 4. There is no finite set ∆(x,y) of binary 2-formulas, such that
(3) and (4) hold for the 2-deductive system S of Example 3.
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Proof. For the proof by contradiction assume that ∆ = ∆(x,y) is a finite
system of equivalence 2-formulas for S. Then

(12) ∆∪{〈x,z〉} `S 〈y,z〉.

Notice that

(13) ∆⊆ CnS∆ ∩ Te2(x,y)

and that

(14) {〈t, t〉 : t ∈ Te} ⊆ CnS(∅).

Consider the S-theory T generated by ∆∪{〈x,z〉}. By definition

(15) T = CnS (∆∪{〈x,z〉}) .

We claim that

(16) T =
(
CnS∆ ∩ Te2(x,y)

)
∪{〈x,z〉}∪{〈t, t〉 : t ∈ Te} .

Let T̃ be the right hand side of (16). By (14) and (15) T̃ ⊆ T .

Recall that by assumption, ∆⊆ Te2(x,y), so

∆∪{〈x,z〉} ⊆
(
CnS∆ ∩ Te2(x,y)

)
∪{〈x,z〉} ⊆ T̃ .

Therefore T ⊆ CnS T̃ . To finish the proof of (16) it remains to show that T̃
is an S-theory. By definition, T̃ is closed under the axiom (9). To show the
closure of T̃ under (10), let t,r,s be arbitrary terms and assume that

(17) 〈ts,rs〉 ∈ T̃

and

(18) 〈t,s〉 ∈ T̃ .

We want to show that

(19) 〈r,s〉 ∈ T̃ .

If t= r there is nothing to prove. Also, 〈ts,rs〉 cannot be 〈x,z〉. So it is enough
to assume that

(20) 〈ts,rs〉 ∈ (CnS∆)∩Te2(x,y).

It follows that

(21) t,r,s ∈ Te(x,y).
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By (18) and(21)

(22) 〈t,s〉 ∈ T̃ ∩Te2(x,y).

Now by (14)

T̃ ∩Te2(x,y) ⊆ (CnS∆ ∩ Te2(x,y))∪ (CnS∅ ∩ Te2(x,y))
⊆ (CnS∆ ∩ Te2(x,y)).

So by (22)
〈t,s〉 ∈ CnS (∆)∩ Te2(x,y).

We have by (20)
〈ts,rs〉 ∈ CnS (∆)

and
〈t,s〉 ∈ CnS (∆) .

It follows by (10) that
〈r,s〉 ∈ CnS (∆)

and by (21) that
〈r,s〉 ∈ CnS (∆)∩ Te2(x,y)⊆ T̃ .

This finishes the proof of (19) and the proof of the closure of T̃ under (10).
Closure under (11) is proved similarly. This establishes (16).

By (16), the 2-formula 〈y,z〉 is not a member of T . This contradicts (12).

The assumption that ∆ is finite does not play any role in the above ar-
gument. This is not accidental, because the existence of any set ∆ satisfying
conditions (10) and (2) of Definition 2 implies the existence of a finite sub-
set with these properties. In spite of not having a finite system of binary
2-formulas, the 2-deductive system S of Example 3 is protoalgebraic. This
will be stated as Corollary 7 in the next section.

5 Characterization of protoalgebraic k-deductive
systems

Theorem 6 below characterizes protoalgebraic k-deductive systems by the
existence of a finite system of k+ 1-ary equivalence k-formulas with k− 1
parameters. The proof we give is a modification of that of Theorem 13.2
in (Blok and Pigozzi, 1992); similar ones occur in the literature for 1-de-
ductive systemss (e.g., (Herrmann, 1997; Czelakowski, 2001)) and for atomic
theories of first order structures in (Elgueta and Jansana, 1999).
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5.1 Equivalence k-formulas with parameters

Definition 5. Let S be a k-deductive system. By a system of k+ 1-ary
equivalence k-formulas with k−1 parameters for S we mean a sequence ∆ =
〈∆1, . . . ,∆n〉 of k-formulas, ∆i =∆i(x,y,z1, . . . ,zk−1) such that

(23)

〈z1, . . . ,zi−1,x,zi, . . . ,zk−1〉,
∆1(x,y,z1, . . . ,zk−1), . . . ,∆n(x,y,z1, . . . ,zk−1)

`S 〈z1, . . . ,zi−1,y,zi, . . . ,zk−1〉(24)

for all i= 1, . . . ,k.

Recall that the sequence 〈z1, . . . ,zk−1〉 is collectively denoted as z.

Theorem 6. A k-deductive system S is protoalgebraic if and only if it has a
finite system of k+ 1-ary equivalence k-formulas with k−1 parameters.

Proof. Assume that there is a system ∆(x,y,z1, . . . ,zk−1) of k+1-ary equiv-
alence k-formulas. Let M be a Λ-algebra and let F ⊆ G be two S-filters on
M. We want to show that Ω(F ) is compatible with G.

Suppose that (a,b) ∈ Ω(F ) and that 〈c1, . . . , ci−1,a,ci, . . . , ck−1〉 ∈ G, for
some a,b,c1, . . . , ck−1 ∈A. By (23), ∆(a,a,c1, . . . , ck−1)⊆ F and since (a,b)∈
Ω(F ), also ∆(a,b,c1, . . . , ck−1)∈F ⊆G. By (24), 〈c1, . . . , ci−1, b,ci, . . . , ck−1〉 ∈
G, finishing the proof that Ω(F ) is compatible with G. By the definition of
Ω(G) as the largest congruence on M compatible with G, we get the inclusion
Ω(F )⊆Ω(G), which finishes the proof of the ”if” direction.

For the “only if” direction, assume that S is protoalgebraic. Consider the
term algebra Te(x,y,z1, . . . ,zk−1). Let T consist of all k-terms t(x,y,z) such
that `S t(x,x,z). Notice that then T is an S-filter on Te(x,y,z1, . . . ,zk−1).
We first show that (x,y) ∈Ω(T ).

Assume that s(v,x,y,z) is a k-term such that s(x,x,y,z)∈T . By the defini-
tion of T , s(x,x,x,z) ∈CnS(∅). Let ŝ(x,y,z) := s(y,x,y,z). Then ŝ(x,x,z) :=
s(x,x,x,z) ∈ CnS(∅). Hence ŝ(x,y,z) ∈ T , i.e., s(y,x,y,z) ∈ T . So indeed,
(x,y) ∈Ω(T ).

Consider i= 1, . . . ,k and let

Si := CnS (T ∪{〈z1, . . . ,zi−1,x,zi, . . . ,zk−1〉}) .

Since (x,y) ∈Ω(T ) and S is protoalgebraic, (x,y) ∈Ω(Si). It follows that

〈z1, . . . ,zi−1,y,zi, . . . ,zk−1〉 ∈ Si.

Therefore there exists a finite set ∆(i)(x,y,z1, . . . ,zk−1)⊆ T such that

`S ∆i(x,x,z1, . . . ,zk−1), for all i= 1, . . . ,n
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〈z1, . . . ,zi−1,x,zi, . . . ,zk−1〉,∆(i)(x,y,z1, . . . ,zk−1)
` 〈z1, . . . ,zi−1,y,zi, . . . ,zk−1〉.(25)

Taking the union ∆ :=
⋃k
i=1 ∆(i) we obtain a system satisfying conditions

(23) and (24).

For k = 1 this gives the well-known characterization of protoalgebraic log-
ics by the existence of a finite set of binary equivalence formulas without
parameters.

The following corollary finishes the discussion of Example 3.

Corollary 7. The 2-deductive system of Example 3 is protoalgebraic.

Proof. Let ∆(x,y,z) be the set {〈xz,yz〉}. By (10) and (11) ∆(x,y,z) is a
finite system of ternary equivalence formulas for S . By Theorem 6, S is
protoalgebraic.

Thus the protoalgebraic property of k-deductive systems cannot be charac-
terized by the existence of a finite system of equivalence k-formulas without
parameters. An alternative example can be found in (Pynko, 1999, section
5).

5.2 A comment of the original argument

The argument in (Blok and Pigozzi, 1992) makes use of a certain theory T on
the term algebra. The term algebra is generated by the full set V of variables,
but the theory T itself is generated by k-terms that do not involve variables
z1, . . . ,zk and have some additional property. Specifically,

T = {t(x,y,u1, . . . ,um) : ` t(x,x,u1, . . . ,um)} ,

with m ranging over natural numbers and ui being arbitrary variables other
than x,y,z1, . . . ,zk−1. At a crucial stage of the proof it is assumed that
〈x,y〉 6∈ Ω(T ), with the aim of deriving a contradiction. It follows from this
assumption that there is a k-formula s = s(v,x,y,u1, . . . ,um,z1, . . . ,zk) such
that

T ` s(x,x,y,u1, . . . ,um,z1, . . . ,zk)

while
T 6` s(y,x,y,u1, . . . ,um,z1, . . . ,zk).

Consider the k-formula

s̃(v,x,y,u1, . . . ,um)
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resulting from s(v,x,y,u1, . . . ,um,z) by replacing z’s by the variables u1, . . . ,um
disjoint with them. By structurality,

T `S s̃(x,x,y,u1, . . . ,um).

It does not follow, however, that T 6` s̃(y,x,y,u1, . . . ,um), for the implication

T 6` s(y,x,y,u1, . . . ,um,z1, . . . ,zk)⇒ T 6` s̃(y,x,y,u1, . . . ,um),

does not hold in general. The authors’ claim that without the loss of generality
s may be assumed to be free from variables z, cannot be justified.

As an illustration, consider again the 2-deductive system S of Example 3
and let s(v,x,y,z) = 〈v,z〉. Then s(y,x,y,z) = 〈y,z〉 6∈ T . Replacing z with y
we get s̃(v,y) = 〈v,y〉. Then T ` s̃(y,y).

6 Congruence formulas

The proofs of some results in (Blok and Pigozzi, 1992, Section 13) depending
on Theorem 13.2. need tiny changes to make the application of this theorem
right; such a change is obvious for Corollary 13.3. and Theorem 13.13. Below
we discuss Theorems 13.5 and 13.10, and propose a notion of a system of
congruence formulas with k− 1 parameters z, as a possible additional one
to consider in addition to those of a finite system of congruence formulas
and an infinite system of congruence formulas with parameters used in these
theorems.

Definition 8. Let S be a k-deductive system and let ∆(x,y,z) be a finite
system of k+ 1-ary equivalence k-formulas with k− 1 parameters z. Then
∆(x,y,z) is called a finite system of congruence formulas with k−1 param-
eters z if in addition

(26)
ρ(Λ)⋃
i=1

∆(xi,yi,z) `∆
(
Λ(x1, . . . ,xρ(Λ)),Λ(y1, . . . ,yρ(Λ),z

)
.

If ∆(x,y,z) = ∆(x,y) does not depend on z, then we call it a finite system
of congruence k-formulas, following (Blok and Pigozzi, 1992, Definition 13.4)

Theorem 9. (Compare with (Blok and Pigozzi, 1992, Theorem 13.5)) Let
S be a protoalgebraic k-deductive system with a finite system of k+ 1-ary
equivalence k-formulas ∆(x,y,z) with k− 1 parameters z. Then for every
Λ-algebra M, every pair a,b ∈M and every S-filter F on M, we have

(27) (a,b) ∈Ω(F ) iff ∆M (
t(a, c̄), t(b, c̄), d̄

)
⊆ F,
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for all t ∈ Te such that t = t(x, ū) for some sequence ū of variables from
V \{x}, for all sequences c̄ of elements of M of the same length as ū and for
all d̄= 〈d1, . . . ,dk−1〉 ∈Mk−1.

If ∆(x,y,z) is a finite system of k+1-ary congruence k-formulas with k−1
parameters z then for every Λ-algebra M, every pair of elements a,b ∈M ,
every S-filter F on M, we have

(a,b) ∈Ω(F ) iff ∆(a,b, d̄)⊆ F,
for all d̄= 〈d1, . . . ,dk−1〉 of k−1 elements of M .(28)

Finally, if ∆(x,y) is a finite system of congruence k-formulas then for
every Λ-algebra M, every pair of elements a,b ∈M , every S-filter F on M,
we have

(a,b) ∈Ω(F ) iff ∆(a,b)⊆ F.

An example given at the end of this section shows a k-deductive system with a
finite set of congruence k-formulas with parameters z that does not have such
a system without parameters. A direct consequence is the following version
of (Blok and Pigozzi, 1992, Corollary 13.6 (i)), where D is the symbol for the
”truth” predicate in the language of the universal Horn theory interpreted as
the filter F .

Corollary 10. (Compare with (Blok and Pigozzi, 1992, Corollary 13.6 (i)))
Let S be a k-deductive system with a finite system of k+ 1-ary congruence
k-formulas with k−1 parameters. Let M be a model of S. Then M is reduced
iff

M |=
[
∀z1,...,zk−1

n∧
i=1

D (∆i(x,y,z))
]
→ x≈ y.

Corollary 13.6. in (Blok and Pigozzi, 1992) has a second part that states
that the class of reduced models of S is closed under submodels and filtered
products if S has a finite system of congruence formulas without parameters.
Under the weaker assumption that congruence formulas may involve k−
1 parameters, the closure under filtered products continues to hold, but a
submodel of a reduced model need not be reduced.

Corollary 11. (Compare with (Blok and Pigozzi, 1992, Corollary 13.6 (ii)))
Let S be a k-deductive system with a finite system of k+ 1-ary congruence
k-formulas with k−1 parameters. Then the class Mod∗(S) of reduced models
of S is closed under the formation of filtered products.

For the same reason, an analogue of Theorem 13.7 for does not hold under
the weaker assumption.
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Theorem 12. (Blok and Pigozzi, 1992, Theorem 13.7) Let S be a k-deduc-
tive system with a finite system of congruence k-formulas. Then for all K⊆
Mod∗(S) the reduced Horn class Mod∗(K) generated by K is ISPPUK .

In the next theorem we consider a system of congruence k-formulas with
arbitrary parameters. The system may be infinite and the parameters may
form an infinite set, intersecting with the variables in the sequence z. Of
course in a single k-formula there are oly finitely many parameters at once.

Definition 13. (Blok and Pigozzi, 1992, Definition 13.9.) Let w̄ be an infi-
nite sequence of variables, possibly including some or all of z1, . . . ,zk−1. A
(possibly infinite) set ∆ of k-formulas, ∆(x,y, w̄) is called an infinite system
of congruence k-formulas with parameters if for every Λ-algebra M, every
S-filter F on M and for every pair of elements a,b ∈M , we have

(a,b) ∈Ω(F ) iff ∆(a,b, c̄)⊆ F,

for all choices of sequences c̄ of elements of M of appropriate length.

Finally, (Blok and Pigozzi, 1992, Theorem 13.10) characterizes protoalgebraic
k-deductive systems by the existence of an infinite system of congruence
formulas with parameters. The original proof is used, with small corrections
concerning the use of structurality and equivalence k-formulas.

Theorem 14. (Blok and Pigozzi, 1992, Theorem 13.10) A k-deductive sys-
tem S is protoalgebraic iff S has a possibly infinite system of congruence
k-formulas with parameters.

Proof. Assume first that S is protoalgebraic. Let ∆ be a finite system of k+1-
ary equovalence k-formulas with k−1 parameters z1, . . . ,zk−1 that exists by
Theorem 6. Let Σ(x,y, w̄,z) be the union of all sets

∆(t(x,w̄), t(y, w̄),z),

for all possible terms t(x,w̄). Then Σ is an infinite set of congruence k-
formulas with parameters for S.

Assume now that there is an infinite set Σ(x,y, w̄) of congruence k-
formulas with parameters for S. In order to show that S is protoalgebraic
we want to use Theorem 6 again. Let l ∈ {1, . . . ,k− 1}. Define Tl to be the
theory generated by the union of the sets

Σ(x,y, t̄(x,y, ȳ)),

for all possible choices of sequence t̄ of terms. together with the k-formula
〈z1, . . . ,zl−1,x,zl, . . . ,zk−1〉.

Since Σ is a system of congruence formulas, it follows by (29) that (x,y) ∈
Ω(Tl). So 〈z1, . . . ,zl−1,y,zl, . . . ,zk−1〉 ∈ Tl, i.e.,
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Tl ` 〈z1, . . . ,zl−1,y,zl, . . . ,zk−1〉.

It follows by structurality that there is a finite subset ∆(l) of the union of all
sets Σ(x,y, t̄(x,y, ȳ)) for all sequences of terms t̄, that together with the k-
term 〈z1, . . . ,zl−1,x,zl, . . . ,zk−1〉 allows to deduce 〈z1, . . . ,zl−1,y,zl, . . . ,zk−1〉,
i.e.,

∆(l),〈z1, . . . ,zl−1,x,zl, . . . ,zk−1〉 ` 〈z1, . . . ,zl−1,y,zl, . . . ,zk−1〉.

There is a finite set of variables, say w̄ occurring in the k-terms in ∆(l) other
than x and y; some of the w̄’s may be in z. Also, since ∆(l) ⊆Σ and Σ is a
congruence system, we have that

`∆(l)(x,x, w̄).

Finally, substitute in ∆(l) every variable from the sequence w̄ other than x,y
and z with x and obtain Γ(l) = Γ(l)(x,y,z). By structurality,

` Γ(l)(x,x,z) and

Γ(l)(x,y,z),〈z1, . . . ,zl−1,x,zl, . . . ,zk−1〉
` 〈z1, . . . ,zl−1,y,zl, . . . ,zk−1〉.

Let Γ =
⋃k−1
l=1 Γl(x,y,z). Then Γ is a finite system of k+ 1-ary equivalence

k-formulas with k−1 parameters z for S. By Theorem 6, S is protoalgebraic.

Example 15. We define a 2-deductive system T as an extension of S from
Example 3 by rules. Here v denotes any variable from V other than x,y,z.

Let Λ= {·} with ρ(·) = 2. The operation symbol · is omitted when writing
terms. Let T be the 2-deductive system defined by the following axiom and
rules.

` 〈x,x〉
〈xz,yz〉,〈x,z〉 ` 〈y,z〉
〈xz,yz〉,〈z,x〉 ` 〈z,y〉

〈xz,yz〉, ` 〈(xv)z,(yv)z〉(29)
〈xz,yz〉 ` 〈(vx)z,(vy)z〉(30)

Clearly, the two-formula 〈xz,yz〉 forms by itself the system of congruence
formulas for T with parameter z. However, we have the following

Proposition 16. The 2-deductive systems T of Example 15 does not have a
system of binary congruence formulas without parameters.
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Proof. For the proof by contradiction suppose that Σ(x,y) is a congruence
system without parameters. Let γ = 〈γ1,γ2〉 be a 2 formula. The following
claim is proved by induction on the length of the proof of γ.

Claim
If Σ(x,y),〈x,z〉 `T γ

then γ = 〈x,z〉 or Var(γ1)\{x,y}= Var(γ2)\{x,y},

where for a term t, Var(t) denotes the set of all variables occurring in t.

It follows from the claim that

Σ(x,y), 〈x,z〉 6` 〈y,z〉.

Hence Σ(x,y) is not even a system of equivalence formulas for T .
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Diagrammatic duality

Anna B. Romanowska and Jonathan D.H. Smith∗

dualizable algebras, diagrammatic duality provides dual representing objects
in terms of corresponding dual diagrams appearing in the dual category of
representation spaces for the dualizable algebras. The general technique is
illustrated by a selection of examples, including quasigroups, bilattices, and
Nelson algebras.

Key words: duality, bilattices, Nelson algebras, constructive logic, quasi-
groups, nets

1 Introduction

Dualities between algebras and representation spaces have now become a
staple topic of interest at the interface of algebra and logic, and indeed in
many areas of mathematics. While dualities are often produced with the aid
of “schizophrenic objects” as codomains for both algebra and space homo-
morphisms, various other techniques are also available. As an addition to
the palette of alternative techniques, diagrammatic duality is presented as
a method for obtaining new dualities founded on existing ones. Whenever
algebras of a certain class are equivalent to diagrams in a category of known

Anna B. Romanowska
Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland, e-mail: aroman@mini.pw.edu.pl

Jonathan D.H. Smith
Department of Mathematics, Iowa State University, Ames, Iowa, 50011, USA, e-mail:
jdhsmith@iastate.edu

∗ The first author’s research was supported by the Warsaw University of Technology
under grant number 504P 1120 0064 000l.

273

Universal Algebra, and Computer Science, Outstanding Contributions 
to Logic 16, https://doi.org/10.1007/978-3-319-74772-9_11

Abstract If a class of algebras is characterized by diagrams in a category of

J. Czelakowski (eds.), Don Pigozzi on Abstract Algebraic Logic,
© Springer International Publishing AG 2018



274 Anna B. Romanowska and Jonathan D.H. Smith

dualizable algebras, diagrammatic duality furnishes representation spaces for
the algebras in the class by examining dual diagrams in the category of rep-
resentation spaces for the known dualizable algebras.

Sections 2–5 summarize the required background from categories and du-
ality theory. Section 6 introduces diagrammatic algebras as objects of a cat-
egory that is equivalent to a category of diagrams of algebras. Among the
more immediate examples are the interlaced bilattices studied by Don Pigozzi
and others (6.1). Further examples are given by the N-lattices or Nelson alge-
bras that provide the algebraic semantics for Nelson’s constructive logic with
strong negation (6.2), and central piques (6.4). More generally, 6.3 interprets
arbitrary classical universal algebras as diagrammatic algebras over sets.

Section 7 introduces diagrammatic duality in detail, the precise definition
appearing in 7.2. Corresponding to the examples of diagrammatic algebras
presented in Section 6, diagrammatic dualities for these algebras are given in
Section 8. In particular, Lindenbaum-Tarski duality between sets and com-
plete atomic Boolean algebras provides the basis for a so-called cabalistic
(or CABAlistic) duality for each class of classical universal algebras. In the
concluding section, this technique is used to show how quasigroups are dual
to 3-nets.

Algebraic conventions generally follow those of (Smith and Romanowska,
1999). In particular, algebraic or “reverse-Polish” notation serves to limit
the proliferation of brackets, and to avoid the awkward twisting caused by
Eulerian notation, for example in the domain of the composition function of
a category.

2 Diagram categories

2.1 Quivers

Definition 1. A quiver or “directed graph”

C = (C0,C1,∂0,∂1)

consists of two classes C0, C1 and two maps ∂0 : C1→ C0, ∂1 : C1→ C0.

(a) Elements of C0 are called vertices, points, or objects.
(b) Elements of C1 are called edges, arrows, or morphisms.
(c) The map ∂0 is variously called the tail or domain map.
(d) The map ∂1 is variously called the head or codomain map.

Edges f are depicted in the form f : x→ y to indicate that f∂0 = x and
f∂1 = y. For a given pair (x,y) of vertices in a quiver C, set

(1) C(x,y) = {f ∈ C1 | f∂0 = x,f∂1 = y}.
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A quiver C = (C0,C1,∂0,∂1) is small if C0 and C1 are sets.

Definition 2. The opposite or dual of a quiver C = (C0,C1,∂0,∂1) is the
quiver Cop = (C0,C1,∂1,∂0).

In Definition 2, note that each edge f : x→ y of C corresponds to an edge
x← y : f of Cop. Thus Cop(y,x) = C(x,y).

2.2 Categories and their duals

Definition 3. A category C = (C0,C1) is defined as a quiver

C = (C0,C1,∂0,∂1)

with an identity function ε : C0 → C1;X 7→ 1X such that ε∂0 = 1C0 = ε∂1,
and a composition function

(2) C(U,V )×C(V,W )→C(U,W ); (f,g) 7→ fg

for {U,V,W,X} ⊆C0, such that

1Uf = f = f1V

for f in C(U,V ), and the associative law

(3) (fg)h= f(gh)

holds for f in C(U,V ), g in C(V,W ), and h in C(W,X). The category C is
said to be concrete if its objects are sets (possibly equipped with additional
structure) and its morphisms are functions, the composition function (2)
being given by the usual mixed associative law ufg = (uf )g for u ∈ U .

Proposition 4. Suppose that C = (C0,C1) is a category, as in Definition 3.
Then the dual Cop is a category, where the composition function

Cop(U,V )×Cop(V,W )→Cop(U,W ); (f,g) 7→ f ◦g

is exactly the same function as the composition function

C(V,U)×C(W,V )→C(W,U); (f,g) 7→ gf

within C. ut
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2.3 Isomorphisms and inverses

Definition 5. Let C be a category.

(a) A morphism f : X→ Y of C is an isomorphism (or invertible) if there is
a morphism g : Y →X such that fg = 1X and gf = 1Y .

(b) Two objects X and Y of C are said to be isomorphic if there is an
isomorphism f : X → Y .

In the situation of Definition 5, the morphism g is unique. It is written as
the inverse f−1 of the morphism f .

2.4 Graph maps and diagrams

Definition 6. A graph map F :D→C from a quiver D to a quiver C consists
of two functions, a vertex map or object part F0 : D0→ C0 and an edge map
or morphism part F1 : D1→C1, such that for each pair x, y of vertices of D,
the map F1 restricts to

(4) F1 :D(x,y)→ C(xF0 ,yF0).

The respective suffices 0 and 1 on the object and morphism parts are usually
suppressed.

Definition 7. A diagram in a category C is a graph map F : D→ C with
codomain C. The diagram is proper if its domain D is small.

Definition 8. Consider two diagrams F :D→C and G :D→C with com-
mon domain quiver D and codomain category C. A natural transformation
τ : F →G is a vector having a component τx : xF → xG in C(xF ,xG) for each
vertex x of D, such that the naturality property fF τy = τxf

G is satisfied for
each edge f : x→ y of D.

Proposition 9. For a quiver D and category C, let
(
CD

)
0 be the class of

diagrams F : D → C. For given diagrams F : D → C and G : D → C, let(
CD

)
(F,G) be the class of natural transformations τ :F →G. Define (1F )x =

1xF at each vertex x of D. For H in
(
CD

)
0 and υ : G→H, define (τυ)x =

τxυx at each vertex x of D. Then CD forms a category. ut

If D is a proper diagram, then categories of the form CD described in
Proposition 9 are known as diagram categories.
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3 Duality

3.1 Functors and natural isomorphisms

Definition 10. (a) A (covariant) functor F : B→C from a domain category
B to a codomain category C is a graph map satisfying the two functoriality
properties:

(i) For each object X of B, one has (1X)F = 1XF ;
(ii) For {U,V,W} ⊆ B0, f ∈ B(U,V ), and g ∈ B(V,W ), one has fF gF =

(fg)F .

(b) A contravariant functor F : B→C is a functor F : Bop→C, or equiva-
lently F : B→Cop.
(c) The identity functor 1C on a category C consists of the identity functions
on the classes C0 and C1.

Two functors F : B→C and G : B→C are said to be naturally isomorphic
if they are isomorphic within the category CB of Proposition 9. In that case,
for an object X of B, the objects XF and XG of C are also said to be
naturally isomorphic. Thus if τ : F → G is an isomorphism within CB, the
component τX : XF →XG provides an isomorphism within C.

3.2 Equivalence and dual equivalence

Definition 11. An equivalence F : B ∼= C : G between categories B and C
consists of covariant functors F : B→C and G : C→B such that:

(a) the functors FG and 1B are naturally isomorphic, and
(b) the functors GF and 1C are naturally isomorphic.

For a dual equivalence, the same conditions (a), (b) are imposed on a pair of
contravariant functors F : B→C and G : C→B.

The notation
F : B�C :G

will be used to denote a dual equivalence as in Definition 11.

3.3 Duality

A duality will denote a dual equivalence
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(5) D : A� X : E

in which A is a category of algebras (in the sense of modern universal algebra)
and homomorphisms, while X is a concrete category of objects known as
spaces. For an algebra A, the image AD is called the representation space
of A. For a space X, the image XE is called the algebra represented by X.
The functor D is called the dual space functor. The functor E is called the
represented algebra functor.

Remark 12. In (5), the determination of which side has the algebras and
which side has the spaces may be purely conventional. For example, in the
Lindenbaum-Tarski duality (4.3 below), one might equally well take the sets
as the spaces and the Boolean algebras as the algebras.

4 Examples of duality

4.1 Finite-dimensional vector spaces

For a field K, take both A and X to be the category K<ω of finite-dimensional
vector spaces and linear transformations overK. Then for a finite-dimensional
vector space V , both V D and V E are defined as the spaceK<ω(V,K) of linear
functionals on K.

4.2 Pontryagin duality

Take A to be the category Ab of abelian groups. Take X to be the cat-
egory CHAb of compact Hausdorff topological abelian groups and con-
tinuous homomorphisms. For a (discrete) abelian group A, the representa-
tion space is the group AD := Ab(A,R/Z) of characters or homomorphisms
into the circle group R/Z, topologized as a subspace of the product space
(R/Z)A. Then a compact Hausdorff abelian group X represents the discrete
group XE := CHAb(X,R/Z) of continuous characters, continuous homo-
morphisms into the circle group. The duality between discrete and compact
Hausdorff abelian groups is extended to a self-duality on the category of
locally compact abelian groups (Dixmier, 1964),(Pontryagin, 1966, §37).



Diagrammatic duality 279

4.3 Lindenbaum-Tarski duality

Take A to be the category Set of sets (algebras without operations). Take X
to be the category CABA of complete atomic Boolean algebras and homo-
morphisms preserving all joins and meets. Consider the set 2 = {0,1}, possibly
endowed with Boolean algebra structure. For a set A, the representation space
AD is defined to be the set 2A or P(A) of (characteristic functions of) subsets
of A, with the singletons as atoms. For a complete atomic Boolean algebra
B, the represented algebra BE := CABA(B,2) is naturally isomorphic to
the set of atoms of B (Johnstone, 1982, p. xiv), (Tarski, 1935).

4.4 Priestley duality

Take A to be the category DL of distributive lattices. Take X to be the
category O′Stone of partially ordered Stone spaces (a.k.a Priestley spaces)
and monotone continuous maps. Consider the set 2 = {0< 1} as a distributive
lattice or as a partially ordered Stone space. For a distributive lattice L, the
representation space LD = DL(L,2) carries the induced order and subspace
topology from the product 2L. A partially ordered Stone space S represents
the algebra SE = O Stone′ (S,2), a (distributive) sublattice of 2 (Johnstone,S

1982, pp. 66, 75), (Priestley, 1970).

4.5 Esakia duality

Take A to be the category Heyt of Heyting algebras. Take X to be the
category Esakia of Esakia spaces, partially ordered Stone spaces where the
downset C≥ of each clopen subset C is clopen. Morphisms in Esakia are
O′Stone-morphisms f such that (x≤)f = (xf)≤ for all elements x of the do-
main of f . Consider the set 2 = {0< 1} as a Heyting algebra or as an Esakia
space. For a Heyting algebra H, the representation space HD = Heyt(H,2)
carries the induced order and subspace topology from the product 2H . An
Esakia space S represents the algebra SE = Esakia(S,2), a Heyting subal-
gebra of 2 (Esakia, 1974, 1985).S

4.6 Gel’fand duality

Take A to be the category C∗ of commutative C∗-algebras and norm-
decreasing, involution-preserving algebra homomorphisms. Take X to be the
category CH of compact Hausdorff topological spaces. For a C∗-algebra A,
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4.8 Schizophrenic objects

The examples 4.1–4.5 each arise from a schizophrenic object T appearing in
an algebraic personality as an object of A, and in a spatial personality as
an object of X. The dual space functor D is then naturally isomorphic with
A( ,T ), while the represented algebra functor E is naturally isomorphic with
X( ,T ):

• In 4.1, T appears as the one-dimensional vector space K in both its per-
sonalities.

• In 4.2, T is the one-dimensional Torus R/Z, discrete in its algebraic per-
sonality, but with the usual topology in its spatial personality.

• In 4.3, T is the Two-element set, with no additional structure in its alge-
braic personality, and appearing as a Boolean algebra in its spatial per-
sonality.

• In 4.4, T is the Two-element set, as a distributive lattice in its algebraic
personality, and as a partially ordered discrete space in its spatial person-
ality.

• In 4.5, T is the Two-element set, as a Heyting algebra in its algebraic
personality, and as an Esakia space in its spatial personality.

The dualities 4.3–4.5 are “natural” in the sense of (Clark and Davey, 1998).
Note that the duality 4.7 does not arise from a schizophrenic object.

4.9 Finiteness

In (5), each object of A generally appears as a directed colimit of its finitely
generated subalgebras. Since the functors D and E are mutually right and

the representation space AD is the space of maximal ideals. A compact Haus-
dorff space X represents the C∗-algebra C∗(X) of continuous complex-valued
functions on X. Compare (Herrlich and Strecker, 1973, §38.4) to justify con-
sideration of C∗ as a category of algebras (Loomis, 1953, §26E).

4.7 Affine schemes

Take A to be the category CRing of commutative, unital rings. Take X to be
the category Aff of affine schemes. For a ring A, the space AD is the affine
scheme (SpecA,OSpecA). For an affine scheme X or (X,OX), the algebra
XE is the ring Γ (X,OX) of global sections (Mumford, 1988, II.2 Cor. 1).
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left adjoint, they preserve limits and colimits respectively (Smith and Ro-
manowska, 1999, Th. III.3.4.1). To specify the duality (5), it then suffices to
specify its restriction to finitely generated algebras. The somewhat pathologi-
cal topologies used in axiomatizing X (e.g., in Priestley duality) are often best
understood merely as directed limits of the representation spaces of finitely
generated algebras.

5 Applications

Dualities in the sense of (5) have a variety of applications, illustrated by the
examples from 4.

5.1 Simplification

It may happen that the space AD is much simpler than the original algebra
A, so the duality may be regarded as a useful way of constructing A from
the simple object AD as ADE . Thus in the finite case, Priestley duality (4.4)
reconstructs a distributive lattice as the lattice of ideals of its poset of join-
irreducibles.

5.2 Coproducts

The underlying set functor from A to Set preserves products, so that prod-
ucts in A are easy to understand, by virtue of their componentwise structure.
On the other hand, coproducts in A are often messy to construct. Duality
constructs the coproduct A1 +A2 of two objects A1, A2 of A as the alge-
bra (AD1 ×AD2 )E represented by the product of the spaces of the individual
objects.

5.3 Logic

Many dualities provide backgrounds for logic. A basic example is Lindenbaum-
Tarski duality D : Set�CABA :E (4.3). For a set S, the complete atomic
Boolean algebra SD is the home for propositions describing properties of S.
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5.4 Coordinatization

Dualities such as 4.1 and 4.7 may be understood as coordinatizing geometries.
In 4.1, a non-zero linear functional on a vector space V (or element of V D)
measures coordinates along a certain axis.

6 Diagrammatic algebras

Definition 13. Suppose that C and A are categories of algebras and homo-
morphisms. Suppose that there is an equivalence C ∼= CA between C and a
subcategory CA of a diagram category AV with given domain diagram V .
Then the objects of C are known as diagrammatic algebras (relative to A).

In the context of Definition 13, it is often convenient to abuse notation and
suppress the distinction between C and CA, merely stating that a C-algebra
C is equivalent to a diagram γ : V → A, or further that a C-homomorphism
f : C1 → C2 is equivalent to an AV -morphism ϕ : γ1 → γ2. For this reason,
the functors producing the equivalence C ∼= CA are not mentioned explicitly
in the definition.

6.1 Interlaced and distributive bilattices

Among the simplest examples of diagrammatic algebras in the sense of Defi-
nition 13 are interlaced or distributive bilattices, as studied by many authors,
including Pigozzi et al. (Mobasher et al., 2000).

Definition 14. Consider an algebra (B,∨,∧,+, ·) equipped with four binary
operations.
(a) The algebra is a bilattice if both the reducts B1 = (B,∨,∧) and B2 =

(B,+, ·) are lattices.
(b) A bilattice B is bounded if both B1 and B2 are bounded lattices.
(c) A bilattice is distributive if for each pair of basic operations ×1,×2, the

identity

(6) ((x×1 z)×2 (y×1 z) = (x×2 y)×1 z

is satisfied.
(d) A bilattice is interlaced if each basic operation preserves the ordering

relations in each of the lattices B1 and B2.

Proposition 15. (Romanowska and Trakul, 1989) A bilattice is interlaced if
and only if it satisfies the identities:
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(7) ((x×2 y)×1 z)×2 (y×1 z) = (x×2 y)×1 z

for each pair of operations ×1,×2 ∈ {∨,∧,+, ·}. ut

Remark 16. The equations (6) and (7) may be considered as hyperidentities
(remaining valid under substitution of basic binary operations as well as
under substitution of arguments).

Corollary 17. A distributive bilattice is interlaced.

Proof. Within bilattices, note that the hyperidentity (6) implies the hyperi-
dentity (7). ut

Let (L1,∨1,∧1) and (L2,∨2,∧2) be lattices. The superproduct B=L1 ./L2
of the lattices L1 and L2 is the algebra

B = (L1×L2,∧,∨, ·,+)

with basic operations defined by

∧= (∧1,∨2) , ∨= (∨1,∧2) , ·= (∧1,∧2) , + = (∨1,∨2) .

The reducts B1 and B2 of B are lattices. In fact B1 ∼= L1×Ld2, with Ld2 as
the dual of L2, while B2 ∼= L1×L2. For bounded lattices L1 and L2, their
superproduct L1 ./ L2 is also a bounded bilattice, with the four bounds

⊥1 = (01,12) , >1 = (11,02) , ⊥2 = (01,02) , >2 = (11,12)

written in terms of the respective bounds 01,11 of L1 and 02,12 of L2.

Proposition 18. (Movsisyan et al., 2006) Consider an algebra (B,∨,∧,+, ·)
equipped with four binary operations.

(a) The algebra B is an interlaced bilattice iff it is isomorphic to the super-
product L1 ./ L2 of two lattices L1 and L2.

(b) The algebra B is a bounded interlaced bilattice if and only if it is isomor-
phic to the superproduct L1 ./ L2 of two bounded lattices L1 and L2.

(c) The algebra B is a distributive bilattice iff it is isomorphic to the super-
product L1 ./ L2 of two distributive lattices L1 and L2.

(d) The algebra B is a bounded distributive bilattice iff it is isomorphic to the
superproduct L1 ./ L2 of two bounded distributive lattices L1 and L2. ut

Now define the following categories of algebras and homomorphisms:

• BL: the category of bounded lattices;
• BIB: the category of bounded interlaced bilattices;
• BDL: the category of bounded distributive lattices;
• BDB: the category of bounded distributive bilattices.
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Suppose that V is the “discrete” quiver with two vertices and no edges. By
virtue of Proposition 18(b), there is an equivalence BIB∼= BLBIB (Mobasher
et al., 2000, Th. 10). Similarly, by virtue of Proposition 18(d), there is an
equivalence BDB ∼= BDLBDB (Mobasher et al., 2000, Cor. 11). Thus the
results of Pigozzi et al. realize both bounded interlaced bilattices and bounded
distributive bilattices as diagrammatic algebras, relative to the categories of
bounded lattices and bounded distributive lattices respectively. Pigozzi et
al. were only able to consider these bounded cases, since they did not have
Proposition 18(a),(c) at their disposal. However, their methods extend to
cover all the cases summarized as follows.

Theorem 19. (a) Interlaced bilattices are diagrammatic relative to lattices.
(b) Distributive bilattices are diagrammatic relative to distributive lattices.
(c) Bounded interlaced bilattices are diagrammatic relative to bounded lattices.
(d) Bounded distributive bilattices are diagrammatic relative to bounded dis-
tributive lattices. ut

6.2 Nelson algebras

These algebras (Sendlewski, 1990), also known as “N-lattices” (Rasiowa,
1958), provide the algebraic semantics for Nelson’s constructive logic with
strong negation (Nelson, 1949; Rasiowa, 1974).

Definition 20. (Odintsov, 2010, Defn. 2.1) Consider an algebra

(B,∨,∧,→,∼,0,1)

equipped with three binary operations ∨,∧,→, and with ∼ as a unary oper-
ation (strong negation). Suppose that (B,∨,∧,0,1) is a bounded distributive
lattice, with ≤ as the lattice ordering. Then the algebra (B,∨,∧,→,∼,0,1)
is a Nelson algebra if the following conditions are satisfied:

(i) The reduct (B,∨,∧,∼,0,1) is a De Morgan algebra (i.e. the De Morgan
identities ∼ (x∨y) =∼ x∧ ∼ y and ∼ (x∧y) =∼ x∨ ∼ y hold, along with
∼∼ x= x);

(ii) A reflexive, transitive relation � is defined on B by setting

x� y iff (x→ y)→ (x→ y) = x→ y ;

(iii) The lattice order relation x≤ y on B is equivalent to x� y and ∼ x� ∼ y;
(iv) The equivalence relation χ, defined on B by x χ y iff x� y and y � x, is

a congruence on the reduct (B,∨,∧,→) such that the quotient

(B,∨,∧,→,0,1)χ
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is a Heyting algebra;
(v) For all x,y ∈B, one has (x∧ ∼ x,0) ∈ χ and (∼ (x→ y),x∧ ∼ y) ∈ χ.
Remark 21. Nelson algebras form a variety (Odintsov, 2010).
Definition 22. A congruence α on a Heyting algebra H is Boolean if the
quotient Hα is a Boolean algebra.
Theorem 23. (Sendlewski, 1990, Th. 4.1) The category Nelson of Nelson
algebras is equivalent to the category of pairs (H,α), where H is a Heyting
algebra and α is a Boolean congruence on H. ut

Theorem 23 associates a pair BP = (H,αB) with a Nelson algebra B,
including the Heyting algebra quotient H = Bχ from Definition 20(iv). The
Boolean congruence αB is obtained by identifying the quotient Bχ with a
certain subset B∗ of B (Sendlewski, 1990, Lemma 3.3), and then restricting
a certain congruence on B (Sendlewski, 1990, Lemma 3.4) to the subset B∗.

Conversely, consider a Heyting algebra H with a Boolean congruence α.
The Nelson algebra (H,α)N associated with the pair (H,α) is built on the
subset

(H,α)N = {(x,y) ∈H2 | x∧y = 0 and x∨y ∈ 1α}

of H2, with operations

(x1,y1)∨ (x2,y2) = (x1∨x2,y1∧y2) ,
(x1,y1)∧ (x2,y2) = (x1∧x2,y1∨y2) ,

(x1,y1)→ (x2,y2) = (x1→ x2,y1∧y2) ,
∼ (x1,y1) = (y1,x1)

for (x1,y1),(x2,y2) ∈ (H,α)N . (See (Sendlewski, 1990, Theorem 3.6(i)).)
One may now exhibit Nelson algebras as diagrammatic relative to (the

category Heyt of) Heyting algebras. Consider the quiver V given as a : h→ b.
Then by virtue of Theorem 23, a Nelson algebra B is equivalent to a diagram
β : V →Heyt sending the arrow a to the natural projection of the Boolean
congruence αB from the Heyting algebra Bχ.

6.3 Classical universal algebras

Consider a type τ : Ω→N, with operator domain Ω. Then a τ -algebra (A,τ),
or more informally, an Ω-algebra (A,Ω), is a set A with an operation

(8) ω : Aωτ →A

corresponding to each operator or element ω of Ω. Let τ denote the category
of τ -algebras and homomorphisms between them (Smith and Romanowska,
1999, §§IV1.1–2).
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Fig. 1 The {ω1, . . . ,ωn}-cospan.

The Ω-cospan is a quiver Ω∞ with edge set Ω (compare Figure 1). Its
vertex set is the disjoint union Ω+> of Ω with a singleton >= {∞}. The tail
map is the identity function on Ω, while the head map is the unique function
Ω →>. A τ -algebra A is equivalent to a diagram α : Ω∞ → Set with edge
map α1 : ω 7→ (ω : Aωτ →A). Thus the edge map sends each operator to the
corresponding operation on the set A. Each τ -homomorphism

f : (A1, τ)→ (A2, τ)

is equivalent to a SetΩ∞ -morphism ϕ with component fωτ : Aωτ1 → Aωτ2 at
a vertex ω, and component f : A→B at the unique element ∞ of >. For the
equivalence, consider the following.

Proposition 24. Suppose that A1 and A2 are τ -algebras, with respective
equivalent diagrams α1 and α2 in SetΩ∞ . Then a SetΩ∞-morphism

ϕ : α1→ α2

is a τ Set-morphism if and only if ϕω = ϕωτ∞ for each operator ω.

Proof. The naturality property of ϕ is the commuting of

(9) Aωτ1
ϕω //

ω

��

Aωτ2

ω

��
A1 ϕ∞

// A2

for each operator ω. If ϕω =ϕωτ∞ , the commuting of (9) shows that ϕ∞ : A1→
A2 is a τ -homomorphism. Conversely, if ϕ∞ = f and ϕω = fωτ for operators
ω and a τ -homomorphism f : A1→A2, the commuting of (9) is given, along
with the condition ϕω = ϕωτ∞ . ut

One may summarize as follows.

Theorem 25. Algebras from any variety are diagrammatic relative to sets.
ut
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6.4 Central piques

A quasigroup (Q, ·) is a set Q equipped with a binary multiplication oper-
ation denoted by · or simple juxtaposition of the two arguments, in which
specification of any two of x,y,z in the equation x · y = z determines the
third uniquely. Equationally, a quasigroup (Q, ·,/,\) is a set Q equipped with
three binary operations of multiplication, right division / and left division \,
satisfying the identities:

(IL) y\(y ·x) = x;
(IR) x= (x ·y)/y;
(SL) y · (y\x) = x;
(SR) x= (x/y) ·y.

An element e of a quasigroup Q is said to be idempotent if {e} forms a
singleton subquasigroup of Q. A pique or pointed idempotent quasigroup is a
quasigroup P , containing an idempotent element 0, that has its quasigroup
structure of multiplication and the divisions enriched by a nullary operation
selecting the idempotent element 0 (Chein et al., 1990, §III.5),(Romanowska
and Smith, 2006). Note that piques also form a variety.

On a pique (P, ·,0), there are permutations

R : P → P ;x 7→ x ·0

and
L : P → P ;x 7→ 0 ·x

of the set P . A loop B is a pique in which the pointed idempotent element acts
as an identity, so that R = L= 1B . For a general pique (P, ·,0), the cloop or
corresponding loop is the loop B(P ) or (P,+,0) in which the “multiplication”
operation + is defined by

(10) x+y = xR−1 ·yL−1.

Inverting (10), the multiplication of a pique is recovered from the cloop by

(11) x ·y = xR+yL.

Definition 26. A pique (P, ·,0) is said to be central if:

1. The cloop B(P ) is an abelian group, and
2. The maps R and L are automorphisms of B(P ).

Remark 27. Central piques may also be characterized structurally as quasi-
groups Q where the diagonal Q̂= {(q,q) | q ∈Q} is a normal subquasigroup
of the square Q2, and Q∼=Q2/Q̂ (Smith, 2007, (3.27)).

Take C as the category of central piques. Take A as the category of abelian
groups and homomorphisms. Consider the quiver
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V = ·L
##

R
{{

Take CA as the subcategory of the diagram category AV given by those dia-
grams where the images of L and R are invertible. The preceding discussion
may then be summarized as follows.

Proposition 28. Central piques are diagrammatic relative to abelian groups.
ut

Now recall that for a given type τ : Ω → N (in the sense of 6.3), a τ -
algebra (A,Ω) is topological if A is a topological space and the operations (8)
are continuous.

Proposition 29. (Romanowska and Smith, 2006, Prop. 3.3) A central pique
P is topological if and only if:

1. The cloop B(P ) is a topological abelian group, and
2. The maps R : P → P and L : P → P are homeomorphisms. ut

Proposition 28 then yields:

Proposition 30. (a) Topological central piques are diagrammatic relative to
topological abelian groups.
(b) Locally compact central piques are diagrammatic relative to locally com-
pact topological abelian groups. ut

7 Diagrammatic duality

7.1 Duality of diagram categories

Theorem 31. Let V be a quiver, and let F : B�C :G be a dual equivalence.
Define a contravariant functor

FV : BV →C(V op)

by
(FV )0 : β 7→ βF

(compare Figure 2) and
(FV )1 : ϕ 7→ ϕF

for ϕ ∈ FV (β1,β2), where the component of ϕF at a vertex x of V is given
by
(
ϕF
)
x

= (ϕx)F . Define a contravariant functor

GV : C(V op)→BV
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Fig. 2 The object part of FV .

in similar fashion. Then

FV : BV �C(V op) :GV

is a dual equivalence.

Proof. Let τ : FG→ 1B be an isomorphism in BB. Then a natural isomor-
phism τV : FVGV → 1BV will be defined, by giving its component

(12) (τV )β : βF
V GV → β

at a diagram β : V →B. The component of (12) at a vertex x of V is

(13) τxβ : xβFG→ xβ .

Note that (13) is an isomorphism in B, with inverse (τxβ)−1. Thus (12) is
an isomorphism in BV : its inverse has component (τxβ)−1 at the vertex x
of V . In turn, this means that τV : FVGV → 1BV is a natural isomorphism.
In similar fashion, it may be shown that GV FV and 1CV op are naturally
isomorphic. ut
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7.2 Diagrammatic duality

Consider a duality

(14) D : A� X : E

as given by (5). In the current context, (14) is known as the seed duality.
Let C be a category of algebras that are diagrammatic relative to A, by an
equivalence C ∼= CA of C with a subcategory CA of a diagram category AV .
Then the dual equivalence

DV : AV � X(V op) : EV

given by Theorem 31 restricts to a dual equivalence

(15) DV : CA� XA : EV

of CA with a subcategory XA of X(V op). The dual equivalence (15) becomes

(16) DV : C� XA : EV

when rewritten in terms of the category C that is equivalent to CA.

Definition 32. The duality (16) is known as diagrammatic duality of C, or
between C and XA, relative to the seed duality (14).

8 Examples of diagrammatic duality

8.1 Duality for distributive bilattices

According to Theorem 19(d), bounded distributive bilattices are diagram-
matic relative to bounded distributive lattices. The duality theory for bounded
distributive bilattices given by Pigozzi et al. (Mobasher et al., 2000, Cor. 12)
may then be construed as a diagrammatic duality for bounded distributive
bilattices relative to Priestley duality for bounded distributive lattices. Using
Theorem 19(b), one further obtains a diagrammatic duality for general dis-
tributive bilattices, relative to Priestley duality (4.4) for general distributive
lattices. An alternative approach to duality for general distributive bilattices
has recently been presented by Cabrer and Priestley (Cabrer and Priestley,
2015).
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8.2 Duality for Nelson algebras

Duality for Nelson algebras has been discussed in (Cignoli, 1986; Sendlewski,
1990). The considerations of 6.2 yield a diagrammatic duality for Nelson
algebras, based on Esakia duality for Heyting algebras.

8.3 Cabalistic duality

It was observed in 6.3 that for a given type τ : Ω → N, the τ -algebras are
diagrammatic relative to sets. More specifically, the category τ of τ -algebras
is equivalent to a subcategory τSet of the diagram category SetΩ∞ given by
the Ω-cospan Ω∞. Now consider Lindenbaum-Tarski duality

D : Set�CABA : E

between sets and complete atomic Boolean algebras (4.3). Then with Linden-
baum-Tarski duality as the seed duality (14), the corresponding diagrammatic
duality

(17) DΩ∞ : τ �CABASet : EΩ∞

given by (16) is known as CABAlistic or cabalistic duality for (the class of) τ -
algebras. This terminology carries over to restrictions of (17) to subcategories
of τ .

The dual of the Ω-cospan Ω∞ is known as the Ω-span Ω∞. Thus in the
cabalistic duality (17), the representation spaces are given by objects in the
diagram category CABAΩ∞ , or their equivalents. An important detailed
case, interpreting the relationship between quasigroups and the 3-nets they
coordinatize, is worked out in 9.

8.4 Locally compact central piques and Suvorov duality

The considerations of 6.4, and most notably Proposition 30(b), yield a dia-
grammatic duality for locally compact central piques, based on Pontryagin
duality for locally compact abelian groups (Romanowska and Smith, 2006,
Th. 5.5). This duality specializes to the duality obtained by Suvorov (Su-
varov, 1969) for locally compact, idempotent, entropic quasigroups (locally
compact quasigroup modes in the terminology of (Romanowska and Smith,
2002)).
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9 Quasigroups and 3-nets

As observed in 5.4, one general application of duality is the coordinatization
of a geometry. In this section, it will be shown how cabalistic duality for
quasigroups leads to the well-known geometric or combinatorial structures,
namely 3-nets or (discrete) 3-webs, that are coordinatized by quasigroups.

9.1 3-nets

For a set N , let N̂ denote the diagonal {(n,n) | n ∈N}. For binary relations
α,β on N , let α◦β denote the relation product

{(l,n) ∈N2 | ∃m ∈N . (l,m) ∈ α and (m,n) ∈ β}

of α and β.

Definition 33. (Bruck, 1963, p.73), (Chein et al., 1990, §II.8), (Smith and
Romanowska, 1999, Defn. I.4.2) (a) A 3-net is a relational structure
(N,α1,α2,α3) with three equivalence relations α1,α2,α3 on N such that

(18) ∀1≤ i 6= j ≤ 3 , αi∩αj = N̂ and αi ◦αj =N2 .

(b) For 1≤ i≤ 3, the αi-classes are known as i-lines.

The condition (18) means that N is isomorphic to the direct product
Nαi ×Nαj for 1≤ i 6= j ≤ 3.

Definition 34. A 3-net N as in Definition 33 is labeled by a set Q iff for
1≤ i≤ 3, there is a bijection θi : Q→Nαi . In this case, an element q of Q is
described as the label of the i-line qθi .

9.2 Labeled 3-nets from quasigroups

Each quasigroup (Q, ·) determines a 3-net Q2 labeled by Q: The 1-line labeled
by q in the 3-net specified by the quasigroup (Q, ·) is

(19) {(x,y) ∈Q2 | x= q} .

The 2-line labeled by q is

(20) {(x,y) ∈Q2 | y = q} .

The 3-line labeled by q is
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(21) {(x,y) ∈Q2 | x ·y = q} .

9.3 Quasigroups from labeled 3-nets

A quasigroup Q may be recovered from its labeled 3-net. For elements x,y,z
ofQ, one has x ·y= z if and only if the unique point of intersection of the 1-line
labeled x and the 2-line labeled y lies on the 3-line labeled z. More generally,
the same procedure yields a quasigroup structure (Q, ·) on the label set Q of
a labeled 3-net.

9.4 3-nets from cabalistic duality

For the cabalistic duality considered here, a quasigroup (Q, ·) is construed as
carrying three binary operations: a left zero band or left projection operation

(22) p1 : Q2→Q; (x1,x2) 7→ x1 ,

a right zero band or right projection operation

(23) p2 : Q2→Q; (x1,x2) 7→ x2 ,

and the quasigroup multiplication

(24) p3 : Q2→Q; (x1,x2) 7→ x1 ·x2 .

The cabalistic dual of (22) is the CABA-morphism (inverse image func-
tion)

(25) p−1
1 : P(Q)→P(Q2);X 7→ p−1

1 X .

This morphism is specified by its action on the atoms of P(Q), namely the
singletons. For such an atom {q}, the image under (25) is

p−1
1 {q}= {(x,y) ∈Q2 | x= q} .

This is the 1-line (19) labeled by q in the 3-net specified by the quasigroup
(Q, ·). The 2- and 3-lines appear in similar fashion. For example, the image
of an atom {q} under the cabalistic dual p−1

3 of (24) is

p−1
3 {q}= {(x,y) ∈Q2 | x ·y = q} ,

the 3-line labeled by q. In this way, the cabalistic dual of the quasigroup Q
may be interpreted as the 3-net coordinatized by Q.
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9.5 Covariant and contravariant passage to the 3-net

In 9.4, the association of a 3-net to a quasigroup provided by cabalistic duality
is contravariant with respect to quasigroup homomorphisms. For contrast, a
covariant association is given in (Smith, 2008, Th. 1).
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a subdirect representation with subdirectly irreducible factors that belong to
the same variety. This result, whose scope is as wide as it can be, is not very
informative in itself. In some special cases, though, qualitatively superior
representations can be attained by imposing additional desiderata on the
target structure. Boolean products, of course, are the prime example of this
situation.

Recall that a weak Boolean product of a family (Ai)i∈I of algebras is a
subdirect product A≤

∏
i∈I

Ai, where I can be endowed with a Boolean space

topology such that: (i) the set {i ∈ I : ai = bi} is open for all a,b ∈ A, and
(ii) if a,b ∈ A and N ⊆ I is clopen, then the element c, defined by ci = ai
for i ∈ N and ci = bi for i ∈ I −N , belongs to A. Also, recall that a weak
Boolean product of a family (Ai)i∈I of algebras is a Boolean product if the
set {i ∈ I : ai = bi} is clopen for all a,b ∈ A. The study of (weak) Boolean
products is motivated by Stone’s representation theorem: every Boolean alge-
bra B is isomorphic to the algebra of clopen subsets of its Stone space S(B).
Since the 1970s, various researchers have sought to generalise Stone’s result
to ever-larger classes of algebras. Pierce (Peirce, 1967) proved that every
commutative ring with unit is representable as a Boolean product of directly
indecomposable rings. Subsequently, Burris and Werner (Burris and Werner,
1979, 1980) obtained Boolean product representations for algebras in discrim-
inator varieties. The technique of Boolean products underwent remarkable
developments over the following years (Burris and Sankappanavar, 1981, Ch.
4.8), giving rise to further generalisations of Stone’s theorem by Comer (cov-
ering the case of algebras with Boolean factor congruences: (Comer, 1971))
and by Vaggione (who emphasised the importance of central elements in
(weak) Boolean product-like constructions: (Vaggione, 1996)).

Contemporaneous with these developments, researchers in theoretical com-
puter science have extensively pursued the study of the if-then-else construct.
Focussing solely on algebraic developments, Bloom and Tindall (Bloom and
Tindall, 1983) and Mekler and Nelson (Mekker and Nelson, 1987), among
others, investigated a number of algebraic functions modeling if-then-else
constructs, including the ternary discriminator. With applications to logic in
mind, Pigozzi introduced the concept of an equality-test algebra, and pub-
lished a number of papers on these structures, including (Pigozzi, 1990, 1991).
In a different direction, in (Bergman, 1991) Bergman modelled the if-then-else
construct by considering Boolean algebras acting on sets. If the Boolean al-
gebra of actions is the 2-element algebra, simply set 1(a,b) = a and 0(a,b) = b
to mimic the if-then-else construct. The approach followed by the first author
and Manzonetto in (Manzonetto and Salibra, 2008) differs from Bergman’s
in that the if-then-else is treated as a proper algebraic ternary operation q
on a double-pointed algebra A, having the property that for every a,b ∈ A,
q(1,a,b) = a and q(0,a,b) = b. The resulting variety of Church algebras is
one of the fundamental notions in the present work and is investigated in
(Manzonetto and Salibra, 2008, 2010; Salibra et al., 2013).
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Not all (weak) Boolean product representations are in the same league. At
one extreme we have the optimal example of discriminator varieties, whose
members are representable as Boolean products of simple algebras; yet, the
weak Boolean product construction is so flexible that little can be said about
the factors of the product (the stalks of the representation, as we will call them
hereafter) in the general case. The situation improves if V is a Church variety.
Using Vaggione’s concept of central element in a double-pointed algebra,
it is proved in (Salibra et al., 2013) (following the lead of (Comer, 1971)
and (Vaggione, 1996)) that every algebra A in a Church variety V admits a
weak Boolean product representation f : A→

∏
I∈S

A/θI (S the spectrum
of maximal ideals), and that the stalks A/θI are directly indecomposable
whenever the class of directly indecomposable members of V is a universal
class. Outside the borders of the double-pointed territory, however, universal
algebra is of little avail and we often have to proceed case by case.

In this paper, with an eye to extending the above results to arbitrary alge-
bras, we mimic the construction of guard algebras (Urbanik, 1965; Bloom et
al., 1990). In (Bloom et al., 1990), Bloom, Esik, and Manes proved a Cayley-
type theorem for Boolean algebras, which says that any Boolean algebra is
isomorphic to a Boolean algebra of binary functions on a set; such a Boolean
algebra of binary functions is called a guard algebra. Borrowing from this
idea, we introduce the notion of a substitution Church algebra F (A) of bi-
nary functions on an arbitrary algebra A, and show that this algebra always
contains a Church subalgebra that we denote by Â of binary polynomial op-
erations, which latter may then be used to recover a weak Boolean product
representation f|A : A→

∏
I∈S

A/θI of A (S the spectrum of maximal ide-
als). Although we cannot, in general, say much about the factors in these
products, we identify a number of sufficient conditions for the stalks to be di-
rectly indecomposable. As an application, we prove that every skew Boolean
algebra is a weak Boolean product of directly indecomposable skew Boolean
algebras.

The topics we cover, and the approach we adopt, throughout the paper are
consonant with Don Pigozzi’s angle on universal algebra. Pigozzi consistenly
paid a special attention to the cross-fertilisation potential inherent not only
to the application of universal algebraic methods to theoretical computer
science, but also to the construction of abstract algebraic models of compu-
tational structures, which have oftentimes delivered an unexpected payoff —
the creation of new tools for addressing purely algebraic problems (Pigozzi,
1991; Pigozzi and Salibra, 1998; Martins and Pigozzi, 2007).

The article is structured as follows. In Section 2 we dispatch various pre-
liminaries on factor congruences, decomposition operations, Church algebras,
and guard algebras. In Section 3 we introduce the idea of a substitution
Church algebra. Roughly speaking, a substitution Church algebra is an al-
gebra A of given type ν expanded by a ternary operation qA(a,b,c) and
constants 0 and 1 such that (A, qA,0,1) is a Church algebra and, for each
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n-ary f ∈ ν, the operation fA respects qA(a,b,c). We also identify a cer-
tain subalgebra A0 ≤ A, called zero-dimensional, that plays an important
role in subsequent developments. In Section 4, we show that any algebra A
of given type ν is isomorphic to the zero-dimensional subreduct F (A)0 of
a substitution Church algebra F (A) of binary functions on A, obtained by
appropriately tweaking the guard algebra construction. We also prove that
the central elements of any subalgebra B≤F (A) such that F (A)0 ⊆B corre-
spond to decomposition operations enjoying certain commutation properties;
such a subalgebra B is called a functional Church algebra of value domain
A.

In Section 5, we consider the situation in which the functional Church
algebra of value domain A is the algebra Â of binary polynomial operations
on A. We show that the central elements of Â are exactly the operations on
A that are simultaneously polynomial operations on A and decomposition
operations on A. From this observation it follows that, given an arbitrary
algebra A, the map f : Â→

∏
I∈S

Â/θI (S the spectrum of maximal ideals)
yields a weak Boolean product representation of Â, the restriction of which
to the constant polynomials provides a weak Boolean product representation
f|A :A→

∏
I∈S

A/θI of A. Moreover, we identify sufficient conditions under
which this representation has directly indecomposable stalks. In Section 6,
we apply these results to a concrete setting: building on previous results from
(Cvetko-Vah and Salibra, 2015), we show that every skew Boolean algebra
(Leech, 1990) is a weak Boolean product of directly indecomposable skew
Boolean algebras.

2 Preliminaries

If A is an algebra and x,y ∈A, then θ(x,y) denotes the least congruence on
A including the pair (x,y). We denote respectively by ∆,∇ the least and the
greatest congruence of the congruence lattice Con(A).

If f : Ak → A and g1, . . . ,gk : An → A are maps, then we denote by
f〈g1, . . . ,gk〉 :An→A the function defined as follows:

(1) f〈g1, . . . ,gk〉(x1, . . . ,xn) = f(g1(x1, . . . ,xn), . . . ,gk(x1, . . . ,xn)).

We recall from (McKenzie et al., 1987) that, if f,g :A×A→A are binary
maps, then f and g commute, and we write f Cm g, if the following condition
holds for all xij ∈A:

(2) f(g(x11,x12),g(x21,x22)) = g(f(x11,x21),f(x12,x22)).

Equation (2) holds for f and g iff f is a homomorphism of (A,g)2 into
(A,g) iff g is a homomorphism of (A,f)2 into (A,f).
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2.1 Factor congruences and decomposition operations

Definition 1. A congruence φ on an algebra A is a factor congruence if
there exists a congruence φ̄ such that φ∩ φ̄ = ∆ and φ ◦ φ̄ =∇. In this case
we call (φ, φ̄) a pair of complementary factor congruences.

Under the hypotheses of Definition 1, the homomorphism f : A→A/φ×
A/φ̄ defined by f(x) = (x/φ,x/φ̄) is an isomorphism. Consequently, (φ, φ̄)
is a pair of complementary factor congruences of A if, and only if, A ∼=
A/φ×A/φ̄ under the natural map x 7→ (x/φ,x/φ̄). ∆ and ∇ are the trivial
factor congruences, corresponding to A∼= A×B, where B is a trivial algebra;
of course, B is isomorphic to A/∇ and A is isomorphic to A/∆.

We denote by FC(A) the set of factor congruences of an algebra A. We
recall that factor congruences in a generic algebra do not satisfy any particular
condition. For example, the set of factor congruences is not in general a
sublattice of the lattice of all congruences.

An algebra A is directly indecomposable if FC(A) = {∆,∇}. Clearly, every
subdirectly irreducible algebra is directly indecomposable, while the converse
need not hold.

Factor congruences can be characterised in terms of certain algebra ho-
momorphisms called decomposition operations (see (McKenzie et al., 1987,
Def. 4.32) for more details).

Definition 2. Let A be an algebra of type ν. A decomposition operation on
A is a function f : A×A→A satisfying the following conditions:

D1: f(x,x) = x;
D2: f(f(x11,x12),f(x21,x22)) = f(x11,x22);
D3: f is an algebra homomorphism from A×A into A.

We denote by DE(A) the set of all decomposition operations on A.
There exists a bijective correspondence between pairs of complementary

factor congruences and decomposition operations, and thus, between decom-
position operations and factorisations of the form A∼= B×C.

Proposition 3. (McKenzie et al., 1987, Thm. 4.33) Let A be an algebra of
type ν. Given a decomposition operation f on A, the binary relations θf and
θ̄f defined by:

x θf y iff f(x,y) = x,

x θ̄f y iff f(x,y) = y,

form a pair of complementary factor congruences. Conversely, given a pair
(φ, φ̄) of complementary factor congruences, the function f defined by:

(3) f(x,y) = u iff yφuφ̄x,

determines a decomposition operation on A such that φ= θf and φ̄= θ̄f .
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Notice that if (φ, φ̄) is a pair of complementary factor congruences, then
for all x and y there is exactly one element u such that yφuφ̄x.

An algebra A has Boolean factor congruences (BFC, for short) if the factor
congruences of A form a distributive sublattice of the congruence lattice
Con(A) of A. A class of algebras has BFC if each algebra in the class has
BFC.

A congruence φ is said to be:

• balanced, if φ= (φ∨θ)∩ (φ∨ θ̄) for all pairs (θ, θ̄) of complementary factor
congruences.

• bi-balanced if φ is a balanced factor congruence which admits a balanced
factor complement.

We have that:
Lemma 4. (Swamy and Suryanarayana Murti, 1981, Theorems 1 and 2)
(i) A congruence φ is balanced if and only if φ◦ θ = θ ◦φ and (φ∨ θ)∩ θ̄ ⊆ φ
for every factor congruence θ. (ii) The set B(A) of all bi-balanced factor
congruences is the universe of a permutable Boolean sublattice of Con(A),
which we also denote by B(A).

2.2 Church Algebras

The key observation motivating the introduction of Church algebras (Man-
zonetto and Salibra, 2008) is that many algebras arising in completely differ-
ent fields of mathematics — including Heyting algebras, rings with unit, or
combinatory algebras — have a term operation q satisfying the fundamental
properties of the if-then-else connective:

q(1,x,y)≈ x and q(0,x,y)≈ y.

As simple as they may appear, these properties are enough to yield rather
strong results. This motivates the next definition.
Definition 5. An algebra A of type ν is a Church algebra if there are term
definable elements 0A,1A ∈ A and a term operation qA such that, for all
a,b ∈A

qA(1A,a,b) = a and qA(0A,a,b) = b.

A variety V of type ν is a Church variety if every member of V is a Church
algebra with respect to the same term q(x,y,z) and the same constants 0,1.

Examples of Church algebras include FLew-algebras (commutative, inte-
gral and double-pointed residuated lattices, for which see (Galatos, 2007))
and, in particular, Heyting algebras and thus also Boolean algebras; ortho-
lattices; rings with unit; combinatory algebras.

Expanding on an idea due to Vaggione (Vaggione, 1996), we also define:
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Definition 6. An element e of a Church algebra A is called central if the
pair (θ(e,0),θ(e,1)) is a pair of complementary factor congruences on A. A
central element e is nontrivial if e /∈ {0,1}. By Ce(A) we denote the centre
of A, i.e., the set of central elements of the algebra A.

Proposition 7. (Salibra et al., 2013, Prop. 3.6) An element e of a Church
algebra A of type ν is central if and only if it satisfies the following conditions
for all a,aij , b, c in A:

A1: q(e,a,a) = a.
A2: q(e,q(e,a11,a12), q(e,a21,a22)) = q(e,a11,a22).
A3: q(e,σ(b),σ(c)) = σ(q(e,b1, c1), . . . , q(e,bn, cn)), for every σ ∈ ν of ar-

ity n.
A4: q(a,1,0) = a.

It is proved in (Salibra et al., 2013, Thm. 3.7) that Church algebras have
BFC and that, by defining

(4) x∧y = q(x,y,0); x∨y = q(x,1,y); x′ = q(x,0,1),

we get:

Theorem 8. Let A be a Church algebra. Then c[A] = (Ce(A),∨,∧,′ ,0,1)
is a Boolean algebra which is isomorphic to the Boolean algebra of factor
congruences of A.

It clearly follows that a Church algebra is directly indecomposable iff
Ce(A) = {0,1}.

Corollary 9. Let A be a Church algebra. For every decomposition operation
f on A, there exists a central element e such that f(x,y) = q(e,y,x), θf =
θ(e,0) and θ̄f = θ(e,1).

Theorem 8, together with theorems by Comer (Comer, 1971) and Vaggione
(Vaggione, 1996), implies:

Theorem 10. (Salibra et al., 2013, Thm. 3.8) Let A be a Church algebra, S
be the Boolean space of maximal ideals of c[A] and f : A→

∏
I∈S

A/θI be the

map defined by
f(a) = (a/θI : I ∈ S),

where θI =
∨
e∈I

θ(0,e). Then:

(1) f gives a weak Boolean representation of A;
(2) f provides a Boolean representation of A iff, for all a 6= b ∈ A, there

exists a least central element e such that q(e,a,b) = a (i.e., (a,b) ∈
θ(0,e)).
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In general, not much can be said about the factors in this representation
for a generic Church variety V. However, these factors are guaranteed to be
directly indecomposable provided that the directly indecomposable members
of V form a universal class. In fact, following (Vaggione, 1996), it is shown in
(Salibra et al., 2013, Thm. 3.9) that:

Theorem 11. Let V be a Church variety of type ν. Then, the following con-
ditions are equivalent:

(1) For all A ∈ V, the stalks A/θI (I ∈ S a maximal ideal) are directly
indecomposable.

(2) The class Vdi of directly indecomposable members of V is a universal
class.

2.3 Guard algebras

Let A be an algebra of a fixed type ν. We add to ν a symbol ca of arity 0 for
each a ∈A, and call the new type νA. The binary terms of type νA are called
the binary polynomials of A. If p= p(x,y) is a polynomial, we call polynomial
operation the interpretation pA :A×A→A of p in the algebra A. Moreover,
oftentimes we use the same symbol a for an element a ∈A and its realisation
in the type νA. The set of all binary polynomial operations on A is noted as
P 2(A).

In 1965, K. Urbanik (Urbanik, 1965) defined an algebra of polynomial
operations along the following lines. Given an algebra A of type ν, he set:

BA = (P 2(A),∨,∧,′ ,0,1),

where:

• (p1∨p2)(x,y) = p1(x,p2(x,y));
• (p1∧p2)(x,y) = p1(p2(x,y),y);
• p′(x,y) = p(y,x);
• 1(x,y) = x and 0(x,y) = y.

We reproduce hereafter the main result in his paper:

Theorem 12. If A is an idempotent algebra that has an essentially binary
operation and no essentially n-ary polynomial operation for some n≥ 3, then
BA is a finite Boolean algebra.

Later on, Urbanik’s ideas were developed along several different directions.
On the one hand, instead of focussing on polynomial operations on an algebra
A, some authors have considered more general sets of binary functions on A
(or even on an unstructured set X) satisfying appropriate closure conditions.
On the other hand, there have been attempts to replace the rather unwieldy
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assumptions of Theorem 12 by equational conditions that A must satisfy
for the result to hold true. Finally, it has been investigated whether every
Boolean algebra is so representable. Bloom et al. (Bloom et al., 1990) proved
the following result.

Theorem 13. (1) Let X be a set, and let Y be any set of binary functions
on X (i.e., functions from X ×X into X) that is closed under the
operations ∨,∧,′ ,0,1, defined as above. Then the algebra

B′X = (Y,∨,∧,′ ,0,1)

is a Boolean algebra if all functions in Y satisfy conditions (D1) and
(D2) in Definition 2 and commute with each other. Such Boolean alge-
bras of binary functions on X are called guard algebras on X.

(2) Every Boolean algebra A is isomorphic to a guard algebra on an ap-
propriate set X.

The denomination “guard algebra” is clearly inspired by guard conditions
in computer science, see e.g. (Manes and Arbib, 1986) — in fact, the target
algebra in part (2) of Theorem 13 is an algebra on the set of all polynomial
“if-then-else” operations q(a, -, -), where a ∈ A and q is the Church term for
Boolean algebras. Observe that part (1) of the same theorem implies that the
guard algebra of all polynomial decomposition functions on an algebra A is a
Boolean algebra. For other results along these lines, see e.g. (Padmanabhan
and Penner, 1967) or (Movsisyan, 2009).

3 Substitution Church algebras

As important as they are, the results of Section 2.3 are still somewhat un-
satisfactory in that, given some algebra, one obtains a Boolean algebra of
polynomial operations in the above-described manner only under rather re-
strictive conditions. We intend to generalise this approach in such a way as
to construct Church algebras of functions out of arbitrary algebras. Since the
resulting Church algebras will enjoy special properties, we need an abstract
concept to accommodate them, which it is the aim of the present section to
provide.

Let ν be a type of algebra and let ν′ = ν ∪{q,0,1} be the expansion of ν
by the ternary operation symbol q and the constants 0,1.

Definition 14. A substitution Church algebra is an algebra S = (S,σ,q,
0,1)σ∈ν of type ν′ satisfying the following identities:

S1: The Church algebra identities for (S,q,0,1).
S2: q(x,1,0)≈ x.
S3: q(q(x,y,z), t,u)≈ q(x,q(y,t,u), q(z, t,u)).
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S4: q(σ(x̄),y,z)≈ σ(q(x1,y,z), . . . , q(xk,y,z)) for every σ ∈ ν of arity k.

As usual, define x∧y = q(x,y,0), x∨y = q(x,1,y) and x′ = q(x,0,1).

Proposition 15. Any substitution Church algebra S satisfies the following
conditions for all a,b,c ∈ S:

(1) (S,∧,1) and (S,∨,0) are monoids with respective absorbing elements 0
and 1.

(2) (a′)′ = a.
(3) (a∧ b)′ = a′∨ b′ and (a∨ b)′ = a′∧ b′.
(4) 0′ = 1; 1′ = 0.
(5) q(a′, b,c) = q(a,c,b).

Proof. Let a,b,c ∈ S. Then:
(1) (a∧ b)∧ c = q(q(a,b,0), c,0) =S2,S0 q(a,q(b,c,0),0) = a∧ (b∧ c) and (a∨
b)∨ c= q(q(a,1, b),1, c) =S2,S0 q(a,1, q(b,1, c)) = a∨ (b∨ c).
(2) (a′)′ = q(q(a,0,1),0,1) =S2 q(a,q(0,0,1), q(1,0,1)) =S0 q(a,1,0) =S1 a.
(3) (a∧b)′= q(q(a,b,0),0,1) =S2 q(a,q(b,0,1),1) =S2 q(q(a,0,1),1, q(b,0,1)) =
a′∨ b′. Similarly for (a∨ b)′.
(4) Trivial.
(5) follows by applying (S2) to q(q(a,0,1), b,c).

If S is an arbitrary substitution Church algebra, then b ∈ S is zero-
dimensional if q(b,x,y) = b for all x,y ∈ S. We denote by S0 the set of all
zero-dimensional elements of S.

Lemma 16. S0 is a subuniverse of the ν-reduct of S satisfying the following
condition:

x ∈ S and y,z ∈ S0 ⇒ q(x,y,z) ∈ S0.

Proof. Let b̄≡ b1, . . . , bk ∈ S0, t,u ∈ S and σ ∈ ν of arity k. Then we have:

q(σ(b̄), t,u) = σ(q(b1, t,u), . . . q(bk, t,u)) by (S3)
= σ(b̄) by bi ∈ S0.

Moreover, for every x ∈ S and y,z ∈ S0, we have:

q(q(x,y,z), t,u) =S2 q(x,q(y,t,u), q(z, t,u)) = q(x,y,z),

because y,z ∈ S0.

We denote by S0 the ν-algebra of universe S0.

Example 17. Let Fν be the absolutely free algebra of type ν over a countable
infinite set X of generators and let x0,x1 ∈X. We define

0Fν = x0, 1Fν = x1, qFν (t,u1,u0) = t[u1/x1,u0/x0],
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where t[u1/x1,u0/x0] is the term obtained by substituting the term ui for ev-
ery occurrence of xi in the term t (i= 0,1). The algebra (Fν ,σ,qFν ,1Fν ,0Fν )
is a substitution Church algebra. A term t is zero-dimensional if and only if
the variables x0 and x1 do not occur in t.

4 Substitution Church algebras of binary functions

In what follows, we dovetail the results of Subsections 2.2 and 2.3. The fact
that central elements in a Church algebra form a Boolean algebra isomor-
phic to the Boolean algebra of its factor congruences invites a conjecture to
the effect that Theorem 13 can be appropriately generalised. Mimicking the
construction of guard algebras, in fact, we construct a substitution Church
algebra F (A) out of the binary functions on an arbitrary algebra A, which
remains embedded therein as its subreduct of zero-dimensional elements. We
show that the central elements of any subalgebra B of F (A) containing F (A)0
are decomposition operations on A that commute with every element of B.
We also prove that the factor congruences corresponding to decomposition
operations on A that commute with every other decomposition operation are
bi-balanced and form a Boolean sublattice of the lattice of congruences of A.

Let A be an algebra of type ν and F (A) be the set of all functions from
A×A into A. Consider the algebra of type ν′

F (A) = (F (A),σF (A), qF (A),π
F (A)
0 ,π

F (A)
1 )σ∈ν ,

whose operations are defined as follows (for all f,g,h,f1, . . . ,fk ∈ F (A) and
all a,b ∈A):

(1) π
F (A)
0 (a,b) = b,

(2) π
F (A)
1 (a,b) = a,

(3) qF (A)(f,g,h) = f〈g,h〉,
(4) σF (A)(f1, . . . ,fk) = σA〈f1, . . . ,fk〉,

where the operation −〈−, . . . ,−〉 is defined in Equation (1) on page 300.

Proposition 18. (i) The algebra F (A) is a substitution Church algebra.
(ii) The algebra A is isomorphic to the ν-algebra F (A)0 of all zero-

dimensional elements of F (A).

Proof. (i) It is immediate to see that F (A) abides by the conditions of Defi-
nition 14. By way of example, we show Condition (S1); in fact, for a,b ∈ A,
f〈π1,π0〉(a,b) = f(π1(a,b),π0(a,b)) = f(a,b). (ii) The required map, for any
a ∈A, is a 7→ fa, where fa(x,y) = a.

Any subalgebra B of F (A) such that F (A)0 ⊆ B is called a functional
Church algebra of value domain A.
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In the next proposition we give a representation theorem for substitution
Church algebras, in a similar vein to Theorem 13(2).

Proposition 19. Let S be a substitution Church algebra of type ν′. The map

(5) a ∈ S 7→ qS(a, -, -) : S0×S0→ S0

is a homomorphism from S to the functional Church algebra F (S0), whose
value domain is the ν-algebra of all zero-dimensional elements of S.

Proof. If a ∈ S, then qS(a,x,y) ∈ S0 for all x,y ∈ S0, by Lemma 16. It fol-
lows that the map defined in (5) is well-defined. We now prove that it is a
homomorphism.
Let x,y ∈ S0.

qS(σS(ā),x,y) = σS(q(a1,x,y), . . . , q(ak,x,y)) by (S3)
= σS〈q(a1, -, -), . . . , q(ak, -, -)〉(x,y)
= σF (S0)(q(a1, -, -), . . . , q(ak, -, -))(x,y).

qS(qS(ā),x,y) = qS(a1, q
S(a2,x,y), qS(a3,x,y)) by (S2)

= qF (S0)(qS(a1, -, -), qS(a2, -, -), qS(a3, -, -))(x,y).

Moreover, qS(0, -, -) = π
F (S0)
0 and qS(1, -, -) = π

F (S0)
1 . This concludes the proof

that a 7→ q(a, -, -) is a homomorphism.

4.1 Commuting decomposition operations

Recall that two binary functions f and g on A commute, noted by f Cm g, if
the equation (2) of Section 2 holds. We denote by Cm(f) the set {g ∈ F (A) :
f Cm g}. If g,h∈Cm(f) it is not the case, in general, that g and h commute.

Proposition 20. Let f :A×A→A be a decomposition operation on A. Then
the set Cm(f) is a subuniverse of the functional Church algebra F (A).

Proof. Let σ ∈ ν of arity k. We show that, for every g1, . . . ,gk ∈ Cm(f), f
and σA〈g1, . . . ,gk〉 commute.
Let H = f(σA〈g1, . . . ,gk〉(x1,x2),σA〈g1, . . . ,gk〉(x3,x4)). Then we have:

H = f(σA(. . .gi(x1,x2) . . .),σA(. . .gi(x3,x4) . . .))
= σA(. . .f(gi(x1,x2),gi(x3,x4)) . . .) f homomorphism
= σA(. . .gi(f(x1,x3),f(x2,x4)) . . .) by f Cm gi
= σA〈g1, . . . ,gk〉(f(x1,x3),f(x2,x4)).

We show that, for every g,h,u ∈ Cm(f), f and qF (A)(g,h,u) commute. Let
K = f(g〈h,u〉(x1,x2),g〈h,u〉(x3,x4)). Then we have:
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K = f(g(h(x1,x2),u(x1,x2)),g(h(x3,x4),u(x3,x4)))
= g(f(h(x1,x2),h(x3,x4)),f(u(x1,x2),u(x3,x4))) by f Cm g
= g(h(f(x1,x3),f(x2,x4)),u(f(x1,x3),f(x2,x4))) by f Cm h,u
= g〈h,u〉(f(x1,x3),f(x2,x4)).

In the hypothesis of Proposition 20, Cm(f) contains all binary constant
functions. We denote by Cm(f) the functional Church algebra of value do-
main A with universe Cm(f).

The following proposition characterises commuting decomposition opera-
tions in terms of factor congruences.

Recall that, if g : A×A→ A is a function, then g′ is the function defined
by

g′(x,y) = g(y,x).

Proposition 21. Let A be an algebra of type ν and g,h be decomposition
operations on A. Then the following conditions are equivalent:

(i) g Cm h;
(ii) θx = (θx∨θy)∩ (θx∨θy′) for every x,y ∈ {g,h,g′,h′};
(iii) θx ◦θy = θy ◦θx and (θx∨θy)∩θy′ ⊆ θx for every x,y ∈ {g,h,g′,h′}.

Proof. The equivalence of (ii) and (iii) follows from the proof of (Swamy and
Suryanarayana Murti, 1981, Theorem 1).

(i) ⇒ (iii): We prove that g Cm h implies:

(6) ∃z(xθhzθgy)⇒ xθgh(x,y)θhy.

Let xθhzθgy. Then h(x,z) = x and g(y,z) = y. By this last equality and
by g Cm h we derive that g(h(x,y),h(x,z)) = h(g(x,x),g(y,z)) = h(x,y),
whence h(x,y)θgh(x,z) = x. Since h(y,h(x,y)) = h(y,y) = y, then the conclu-
sion xθgh(x,y)θhy follows and θg ◦θh = θh ◦θg holds.

We show that (θg ∨θh)∩θh′ ⊆ θg. Let xθguθhyθ̄hx. We have to show that
g(x,y) = x (i.e., xθgy) assuming g(x,u) = x, h(y,x) = x and h(y,u) = y:

g(x,y) = g(h(y,x),h(y,u)) = h(g(y,y),g(x,u)) = h(y,x) = x,

where the second equality holds because by hypothesis g and h commute.
From the hypothesis g Cm h it follows that g′ Cm h, g Cm h′ and g′ Cm h′.

Then the other conditions of (iii) can be proved in a similar way.
(ii) ⇒ (i): By (Swamy and Suryanarayana Murti, 1981, Lemma 3(2)) and

by the hypothesis we derive that φ1 ≡ θh∨θg, φ2 ≡ θh∨ θ̄g, φ3 ≡ θ̄h∨θg and
φ4 ≡ θ̄h∨ θ̄g are factor congruences. Then we have:

A∼= A/θh×A/θ̄h ∼= [A/(θh∨θg)×A/(θh∨ θ̄g)]× [A/(θ̄h∨θg)×A/(θ̄h∨ θ̄g)]

because by hypothesis θh = (θh∨θg)∩ (θh∨ θ̄g) and θ̄h = (θ̄h∨θg)∩ (θ̄h∨ θ̄g).
It is easy to check that the map t(x1,x2,x3,x4) = h(g(x4,x3),g(x2,x1)) is
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the unique element u ∈ A such that uφixi for every i = 1,2,3,4, and that t
satisfies the following identities:

• t(x,x,x,x) = x;
• t(t(x11,x12,x13,x14), . . . , t(x41,x42,x43,x44)) = t(x11,x22,x33,x44);
• t commutes with the operations of A.

Then the conclusion that h and g commute follows from (McKenzie et al.,
1987, Exercise 4.38(15)).

4.2 Central elements of functional Church algebras

Recall that, by Theorem 8, the algebra

c[S] = (Ce(S),∨,∧,′ ,0,1)

of central elements of a substitution Church algebra S is a Boolean algebra
isomorphic to the Boolean algebra of factor congruences of S. We now prove
the main theorem of this section.

Theorem 22. Let A be a ν-algebra and B be a functional Church ν′-algebra
of value domain A. Then the following conditions are equivalent, for every
e ∈B:

(i) e is a central element of B;
(ii) e is a decomposition operation on A such that e Cm g for every g ∈B

(in other words, B is a subalgebra of Cm(e)).

Proof. (ii)⇒(i). Let e ∈ B be a decomposition operation on A such that
e Cm g for every g ∈ B. We show that e is a central element of B, i.e., it
satisfies conditions (A1)-(A4) of Proposition 7. In the following, x,y range
over A and g,h, t,r,s,u over B.
(A1): q(e,g,g) = e〈g,g〉 = g, because by (D1) in Definition 2 we have that
e(g(x,y),g(x,y)) = g(x,y) for every x,y ∈A.
(A2):

q(e,q(e,g11,g12), q(e,g21,g22)) = e〈e〈g11,g12〉,e〈g21,g22〉〉
= e〈g11,g22〉 by (D2)
= q(e,g11,g22).

(A3): We recall that the type of the algebra B is ν ∪{q,0,1}. Then, taking
into account the fact that e is a decomposition operation on A and the fact
that e Cm g and e Cm r, we have that:



Boolean product representations via binary polynomials 311

q(e,q(g,h, t), q(r,s,u)) = e〈g〈h,t〉, r〈s,u〉〉
= e〈e〈g〈h,t〉,g〈s,u〉〉,e〈r〈h,t〉, r〈s,u〉〉〉 by (A2)

where g11 = g〈h,t〉, g12 = g〈s,u〉, etc.
= e〈g〈e〈h,s〉,e〈t,u〉〉, r〈e〈h,s〉,e〈t,u〉〉〉

because e Cm g and e Cm r
= (e〈g,r〉)〈e〈h,s〉,e〈t,u〉〉
= q(q(e,g,r), q(e,h,s), q(e, t,u)).

Now, let σ ∈ ν:

q(e,σB(ḡ),σB(h̄))(x,y) = e〈σB(ḡ),σB(h̄)〉(x,y)
= e(σA(ḡ(x,y)),σA(h̄(x,y)))
= σA(. . . ,e(gi(x,y),hi(x,y)), . . .) by (D3)
= σB(q(e,g1,h1), . . . , q(e,gn,hn))(x,y).

(A4): By definition of π1,π0 we easily obtain the conclusion: q(e,π1,π0) =
e〈π1,π0〉= e.

(i)⇒(ii). Let e : A×A→ A be a central element of B. Then by definition
of qB and by Proposition 7, the map fe :B×B→B, defined by

fe(g,h) = qB(e,g,h) = e〈g,h〉,

is a decomposition operation on B that satisfies the following conditions for
all maps g,gij ∈B:

(1) e〈g,g〉= g;
(2) e〈e〈g11,g12〉,e〈g21,g22〉〉= e〈g11,g22〉;
(3) fe is a homomorphism from B×B into B.

The proof that e is a decomposition operation on A is now trivial, because,
by Proposition 18(ii), A is isomorphic to B0 and fe restricted to B0×B0
maps B0×B0 into B0. Moreover, e Cm g for every g ∈ B follows from the
fact that fe is a homomorphism from B×B into B.

Corollary 23. Let f be a decomposition operation on A. Then f is a central
element of the algebra Cm(f).

Proposition 24. Let A be an algebra of type ν and B be an algebra in the
similarity type of Boolean algebras such that B ⊆ F (A). Then B is a guard
algebra of decomposition operations on A if and only if B is a Boolean algebra
of central elements of a functional Church algebra of value domain A.

Proof. (⇐) By Theorems 22 and 13(1).
(⇒) By Theorem 13(1) B is a set of mutually commuting decomposi-

tion operations. Then from Theorem 22 it follows that B is a subalgebra
of the Boolean algebra of central elements of the functional Church algebra⋂
f∈BCm(f).
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Let A be an algebra of type ν. The function

f ∈ DE(A) 7→ θf = {(x,y) ∈A×A : f(x,y) = x} ∈ FC(A)

is a bijective correspondence between the set DE(A) of decomposition opera-
tions and the set FC(A) of factor congruences. If X is a set of decomposition
operations we denote by ΘX the set {θf : f ∈X}.

Proposition 25. The map associating to any set of decomposition opera-
tions X the set ΘX determines a bijective correspondence between universes
of guard algebras of decomposition operations and universes of Boolean sub-
lattices of Con(A) of permutable factor congruences.

Proof. If g and h are mutually commuting decomposition operations on A,
then it is easy to show that θg∧h = θg ∩ θh and θg∨h = θg ∨ θh. Then the
conclusion follows from Proposition 21.

Another proof of the above proposition can be found in (Knoebel, 2012,
Proposition VI.2.2).

4.3 Totally commuting factor congruences

Let A be an algebra of type ν. A decomposition operation f : A×A→ A
is called totally commuting if f Cm g for every decomposition operation g
on A. We denote by T C(A) the set of all totally commuting decomposition
operations on A. If f is totally commuting, then the factor congruence θf is
also called totally commuting.

Proposition 26. Let A be an algebra of type ν. A factor congruence of A is
totally commuting if and only if it is bi-balanced.

Proof. By Proposition 21.

The following proposition provides a proof of (Swamy and Suryanarayana
Murti, 1981, Theorem 2).

Proposition 27. Let A be an algebra of type ν. The set of all bi-balanced
factor congruences is a Boolean sublattice of Con(A) of permutable factor
congruences.

Proof. If g is a totally commuting decomposition operation on A, then by
Proposition 20 Cm(g) is a functional Church algebra containing all decompo-
sition operations on A. The functional Church algebra B =

⋂
g∈T C(A) Cm(g)

contains all decomposition operations on A and satisfies T C(A)⊆Ce(B). By
Theorem 22 a decomposition operation e is a central element of B if and only
if e Cm g for every g ∈ B, that implies e Cm g for every decomposition op-
eration g. In conclusion, T C(A) = Ce(B).
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The following proposition partially solves (Knoebel, 2012,Problem 2.16(a)).
Proposition 28. Let A be an algebra of type ν. The set of all bi-balanced
factor congruences is the intersection of all maximal Boolean sublattices of
Con(A) of permutable factor congruences.
Proof. By Propositions 25 and 26 we can work on decomposition operations.
Let L be a maximal Boolean algebra of mutually commuting decomposition
operations on A and let B =

⋂
f∈LCm(f). Since f Cm g for all f,g ∈L, then

by Theorem 22 and by the maximality of L we derive that L= Ce(B). We now
show that T C(A)⊆L. Let h be a totally commuting decomposition operation.
Since h ∈ Cm(f) and f ∈ Cm(h) for every f ∈ L, then h ∈ B ∩Cm(h), so
that L∪{h} ⊆ Ce(B∩Cm(h)). By maximality of L we derive that h ∈ L =
Ce(B∩Cm(h)).

Let h ∈ L for every maximal Boolean lattice L of mutually commuting
decomposition operations on A. If there exists a decomposition operation f
such that h /∈Cm(f), then by Zorn’s Lemma there exists a maximal Boolean
lattice L such that Ce(Cm(f))⊆ L but h /∈ L. This contradicts the hypoth-
esis, so h is totally commuting.

5 Weak Boolean product representations via
polynomials

A case of special interest as regards the construction of the foregoing sec-
tion arises when the functional algebra of value domain A is the algebra Â
of binary polynomial operations of A. Under this circumstance, the central
elements of Â are exactly the polynomial decomposition operations of A.
This allows us to take advantage of the results in Section 2.2 and obtain a
weak Boolean decomposition of A out of the decomposition of Â provided
by Theorem 10. Although we cannot, in general, say much about the factors
in these products, we identify a number of sufficient conditions for the stalks
to be directly indecomposable.
Definition 29. Let A be an arbitrary algebra of type ν.

(1) A map f : A×A→ A that is both a decomposition operation and a
polynomial operation is called a polynomial decomposition operation.

(2) If f is as in (1), the complementary factor congruences θf and θ̄f are
called polynomial factor congruences.

(3) A is polynomially directly indecomposable if ∆ and ∇ are the unique
polynomial factor congruences.

The set Â of all binary polynomial operations on A is the universe of the
least subalgebra Â of the functional Church algebra F (A) of value domain
A. The next theorem sheds some light on the reasons behind Theorem 13(1)
and the other results in Section 2.3.
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Theorem 30. A polynomial operation is a central element of Â if and only
if it is a decomposition operation on A.

Proof. The conclusion follows from Theorem 22, because the decomposition
operations commute with all polynomial operations.

Let p ∈ Ce(Â). We denote by (θ̂p, θ̂′p) the pair of complementary factor
congruences on Â determined by the central element p. By Corollary 9 we
have that θ̂p = θ(p,πÂ

0 ) and θ̂′p = θ(p,πÂ
1 ). Since p ∈ Ce(Â) is a decomposi-

tion operation on A, we denote by (θp,θ′p) the pair of complementary factor
congruences on A determined by p. Clearly, for all x,y ∈A and f,g ∈ Â,

xθpy iff p(x,y) = x and fθ̂pg iff p〈f,g〉= f.

Also,
fθ̂pg iff f(x,y)θpg(x,y) for all x,y ∈A,

and similarly for θ̂′p and θ′p. We now show that the Church algebra of polyno-
mial operations on the quotient of A modulo θp is nothing but the quotient
modulo θ̂p of the Church algebra Â of polynomial operations on A.

Proposition 31. Â/θ̂p ∼= Â/θp.

Proof. Let t(cā,y,z) be a polynomial. Define

ϕ(tA(cā,y,z)/θ̂p) = tA/θp(cā/θp ,y,z).

It is not difficult to show that the map ϕ is a well-defined isomorphism.

Let X be the Boolean space of the maximal ideals of the Boolean algebra
c[Â]. For every maximal ideal I we define two congruences:

θI = {(a,b) ∈A2 : ∃p(p ∈ I Z p(a,b) = a)}

and
θ̂I = {(f,g) ∈ Â2 : ∃p(p ∈ I Z p〈f,g〉= f)}.

Since θI =
⋃
p∈I

θp and θ̂I =
⋃
p∈I

θ̂p, from Proposition 31 it follows that

Â/θ̂I ∼= Â/θI . We are now ready to state the main result of this section:

Theorem 32. Let A be an arbitrary algebra and let X be the Boolean space
of maximal ideals of the Boolean algebra c[Â]. Then:

(1) The map
F : Â→

∏
I∈X

Â/θ̂I ∼=
∏
I∈X

Â/θI ,
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defined by
F (p) = (p/θ̂I : I ∈X)

gives a weak Boolean representation of Â.
(2) The restriction F|A of F to the constant polynomials provides a weak

Boolean product representation F|A :A→
∏
I∈X

A/θI of A.

(3) The stalks of the representation of Â are directly indecomposable if and
only if the stalks of the representation of A are polynomially directly
indecomposable.

Proof. (1) By Theorem 10 and Proposition 31.
(2) The polynomial factor congruences constitute a Boolean algebra of

permuting congruences.
(3) By Theorem 30.

If V is a variety of algebras of type ν, then we denote by Ch(V) the variety
of algebras of type ν ∪{q,0,1} axiomatised by the equational theory Eq(V)
of V and the axioms of substitution Church algebra.

We say that a variety V has polynomial factor congruences (PFC, for
short) if, for every A ∈ V , all factor congruences of A are polynomial factor
congruences. By Theorem 30, PFC implies BFC. Now, Theorems 11 and 32
imply the following corollary.

Corollary 33.

(1) If Ch(V)di is a universal class then every algebra A∈V is representable
as a weak Boolean product of polynomially directly indecomposable al-
gebras.

(2) If V has PFC and Ch(V)di is a universal class then every algebra A∈V
is representable as a weak Boolean product of directly indecomposable
algebras.

If p is a (binary) polynomial on A, then we write p ≡ p(a1, . . . ,ak,x,y),
where ai ∈ A, to spell out in full all constants and variables occurring in p.
For every homomorphism g : A→B of algebras of type ν, let ĝ : Â→ B̂ be
the homomorphism of algebras of type ν ∪{q,0,1}, defined by

ĝ(pA(a1, . . . ,ak,x,y)) = pB(g(a1), . . . ,g(ak),x,y)

for every polynomial p on A. We recall that, for every onto homomorphism
g : C→D of Church algebras, the restriction of g to the central elements of
C is a (non necessarily onto) Boolean homomorphism from c[C] into c[D].

Theorem 34. Let V be a variety of algebras satisfying the following two con-
ditions:

(1) The polynomially directly indecomposable members of V are directly
indecomposable;
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(2) For every homomorphism g from A ∈ V onto a directly decompos-
able algebra B, the codomain of ĝ|c[Â] : c[Â]→ c[B̂] properly includes
{πB

0 ,π
B
1 }.

Then the weak Boolean product representations, provided by Theorem 32,
have directly indecomposable stalks.
Proof. Let A ∈ V, and let I be a maximal ideal of the Boolean algebra c[Â]
of central elements of Â. Let f : A → A/θI be the onto homomorphism
mapping a to a/θI . Assume A/θI to be directly decomposable. Then by (1)
c[Â/θI ] 6= {π0,π1}. By (2), there exists a polynomial operation p ∈ c[Â] such
that f̂(p) 6= π0,π1. To simplify notation, let p̂= f̂(p). So, there are a,b,c,d∈A
such that a/θI 6= d/θI , b/θI 6= c/θI and

p̂(b/θI , c/θI) = p(b,c)/θI = c/θI ; p̂(a/θI ,d/θI) = p(a,d)/θI = a/θI

that is, p(b,c) θI c and p(a,d) θI a. Since I is a maximal ideal, then either
p ∈ I or p′ ∈ I (recall that p′(x,y) = p(y,x)). Assume w.l.g. that p′ ∈ I. So
θ̄p = {(x,y) : p(x,y) = y} ⊆ θI . Since

θI = {(a,b) ∈A2 : ∃r ∈ I (r(a,b) = a)}= {(a,b) ∈A2 : ∃r ∈ I (aθrb)}=
⋃
r∈I

θr,

then by p(b,c) θI c there exists a polynomial decomposition operation e ∈ I
such that p(b,c) θe c. In other words, the algebra A satisfies the equality
e(c,p(b,c)) = c. Since e and p are polynomial decomposition operations, we
have:

c= e(c,p(b,c)) = e(p(c,c),p(b,c)) = p(e(c,b),e(c,c)) = p(e(c,b), c).

This, together with {(x,y) : p(x,y) = y} ⊆ θI , implies cθIe(c,b). Since
bθee(c,b)θ̄ec and θe ⊆ θI , we obtain bθIe(c,b). In conclusion, from cθIe(c,b),
bθIe(c,b) we get bθIc, contradicting the hypothesis b/θI 6= c/θI . A similar
reasoning works if p ∈ I.

6 An application

As a first application of the results in the previous section, we give a weak
Boolean product representation of skew Boolean algebras.

Weakenings of lattices where the meet and join operations may fail to be
commutative attracted from time to time the attention of various communi-
ties of scholars, including ordered algebra theorists (for their connection with
preordered sets) and semigroup theorists (who viewed them as structurally
enriched bands possessing a dual multiplication). Probably the most interest-
ing and successful such generalisation is the concept of skew lattice (Leech,
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1996), along with the related notion of skew Boolean algebra (Leech, 1990).
Here we will just review some definitions needed in the sequel; the interested
reader is referred to (Leech, 1996) or (Spinks, 2003) for far more compre-
hensive accounts and for an illustration of the importance of both notions,
especially in light of their connection to discriminator varieties (Bignall and
Leech, 1995; Cvetko-Vah and Salibra, 2015).

Definition 35. A band is a semigroup (A, ·) satisfying the identity xx ≈ x.
A band is regular if it satisfies xyxzx ≈ xyzx; it is left (right) regular if it
satisfies the identity xyx≈ xy (xyx≈ yx).

Left and right regular bands are obviously regular. Observe that, given a
band A, the relation

a≤ b ⇔ ab= a= ba

is a partial ordering on A.

Definition 36. A double band is an algebra (A,+, ·) of type (2,2) such that
the reducts (A, ·) and (A,+) are both bands. A double band satisfying the
absorption identities

x(x+y)≈ x≈ x+xy;
(y+x)x≈ x≈ yx+x.

is called a skew lattice. A skew lattice is called left-handed (right-handed)
if the reduct (A, ·) is left (right) regular and the reduct (A,+) is right (left)
regular.

If we expand skew lattices by a subtraction operation and a constant 0,
we get the following noncommutative variant of Boolean algebras.

Definition 37. A skew Boolean algebra is an algebra A = (A,+, ·,\,0) of
type (2,2,2,0) such that:

• its reduct (A,+, ·) is a skew lattice satisfying the identities xyzx ≈ xzyx,
x(y+z)≈ xy+xz and (y+z)x≈ yx+zx;

• 0 is left and right absorbing w.r.t. multiplication;
• the operation \ satisfies the identities

xyx+ (x\y)≈ x≈ (x\y) +xyx;
xyx(x\y)≈ 0≈ (x\y)xyx.

We call right- (left-) handed any skew Boolean algebra that is right- (left-)
handed as a skew lattice. In the interests of brevity, we write “right-handed
SBA” for “right-handed skew Boolean algebra”.

Let A = (A,+, ·,\,0) be a right-handed SBA. Define the following term:

t(x,y,z) = (xy) + (z \x).

For every a ∈A, ta will denote the polynomial operation on A given by
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ta(x,y) = tA(a,x,y).

Cvetko-Vah and the first author of the present paper proved the following
result.

Lemma 38. (Cvetko-Vah and Salibra, 2015) If A is a right-handed SBA
then, for every a ∈A, the map ta is a polynomial decomposition operation on
A. Moreover, the factor congruence θta associated with ta is θ(a,0), the least
congruence collapsing a and 0.

It follows that the pair (θta , θ̄ta), where θta = θ(a,0) = {(x,y) : tA(a,x,y) =
x} and θ̄ta = {(x,y) : tA(a,x,y) = y}, is the pair of complementary factor con-
gruences determined by the polynomial decomposition operation ta. Notice
that t0 = πA

0 . We recall one more result from (Cvetko-Vah and Salibra, 2015).

Lemma 39. (Cvetko-Vah and Salibra, 2015, Lemma 4.5) A right-handed
SBA A is directly indecomposable iff ta = πA

1 for every a 6= 0 (that is,
θta = θ(a,0) =∇ for every a 6= 0).

By Proposition 3, a decomposition operation f on an algebra A corre-
sponds to a pair of trivial factor congruences if and only if either f = πA

0 or
f = πA

1 .

Lemma 40. (i) Every right-handed SBA A is isomorphic to a weak
Boolean product of directly indecomposable right-handed SBAs1.

(ii) Every left-handed SBA A is isomorphic to a weak Boolean product of
directly indecomposable left-handed SBAs.

Proof. (i) We show that the assumptions (1) and (2) of Theorem 34 are
satisfied.

(1) Assume that there exists a 6= 0 ∈A such that ta = π0. Then by Lemma
38 we have

θ(a,0) = {(x,y) : tA(a,x,y) = x}=∆,

which contradicts a 6= 0. Then ta = π1 for all a 6= 0 and the conclusion follows
from Lemma 39(ii).

(2) Let f : A→B be an onto homomorphism of right-handed SBAs. As-
sume B to be directly decomposable. Then, Ce(B̂) 6= {πB

0 ,π
B
1 }. By Lemma

39 there exists b ∈ B such that tb 6= πB
1 defines a nontrivial pair of factor

congruences. Since f is onto, then there exists a ∈ A such that f(a) = b.
The polynomial ta defines a nontrivial pair of factor congruences on A and
f̂(ta) = tb. (ii) Follows from (i) by skew-lattice duality.

Theorem 41. Every skew Boolean algebra is isomorphic to a weak Boolean
product of directly indecomposable skew Boolean algebras.
1 This result has been part of the folklore on the subject for more than a decade (Matthew
Spinks, personal communication). To the best of the authors’ knowledge, it has never
been explicitly written down in print.
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Proof. Recall that by (Leech, 1989, Thm. 1.15) every skew Boolean algebra
A is isomorphic to the fibred product

i : A∼= A/R×A/DA/L,

where A/R and A/L are the maximal left- and right-handed homomorphic
images of A, respectively, and D is the Green’s congruence (Leech, 1989,
Sec. 1.6). By Lemma 40, A/L admits a weak Boolean product representation
f : A/L→

∏
I∈S

A/L/θI (S the spectrum of maximal ideals), with directly

indecomposable stalks, and similarly for A/R, g : A/R→
∏

I∈T
A/R/θI (T

the spectrum of maximal ideals). Consider the Boolean space T ]S, which is
the disjoint union of the spaces T and S with the topology in which a subset
U of T ]S is open if U ∩T is open in T and U ∩S is open in S. By (Kop-
pleberg, 1989, Sec. 3, Prop 8.7), the Boolean algebra Clop(T ]S) of clopen
subsets of T ]S is isomorphic to the product Clop(T )×Clop(S). Then (g,f) :
A/R×A/L→

∏
I∈T

A/R/θI ×
∏

I∈S
A/L/θI ∼=

∏
I∈T]S

A/φI , where, for
all a,b∈A, aφIb iff a/RθIb/R (resp.a/LθIb/L) in the case I ∈ T (resp.I ∈ S).
Therefore it can be easily seen that the map (g,f)◦i provides a weak Boolean
product representation of A in

∏
I∈(S]T )

A/φI , with directly indecompos-
able stalks.
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Paraconsistent constructive logic with
strong negation as a contraction-free
relevant logic

Matthew Spinks and Robert Veroff∗

1 Introduction

Summary Logics with strong negation are a class of sentential calculi that
originally arose from concerns about the non-constructive nature of negation
in intuitionistic logic. Nelson’s paraconsistent constructive logic with strong
negation N4 (Almukdad and Nelson, 1984; Odintsov, 2003, 2004, 2008),
the most important member of this class, is an axiomatic expansion of the
negation-free fragment of the intuitionistic propositional calculus (Rasiowa,
1974, Chapter X) by a unary logical connective ∼ of strong negation. It is well
known that strong negation plays an important role as ‘explicit negation’ in
logic programming (Akama, 1997; Eiter et al., 1999; Gelfond, 2002; Kamide
and Wansing, 2012; Pearce, 1999; Wansing, 1993). Nelson’s constructive logic
with strong negation N3 (Nelson, 1949; Rasiowa, 1974; Sendlewski, 1984;
Vakarelov, 1977) is the axiomatic extension of N4 by the ex falso quodlibet
law ` x→ (∼x→ y). Recent work due to (Järvinen et al., 2013; Järvinen and
Radeleczki, 2011a,b, 2014) establishes fundamental connections between the
algebraic counterpart of N3 and the rough sets of Pawlak (1982).

Relevant logics are a class of logics that were occasioned in the first in-
stance by the desire to avoid the so-called paradoxes of material and strict
implication. The basic ‘logic of relevant implication’ R of Anderson and Bel-
nap (1975, §3) is the {∧,∨,∗,⇒,∼}-fragment of the involutive distributive
full Lambek calculus with exchange and contraction (Galatos et al., 2007, Sec-
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tion 2.2.3). Brady’s contraction-free relevant logic RW (Brady, 1990, 1991,
1996a,b) is the deductive system obtained from R upon dropping the con-
traction axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y). Girard’s linear logic LL (Gi-

rard, 1987) is closely related to RW: roughly speaking, LL + contraction =
R−distribution + exponentials; cf. (Avron, 1988, Section 2, p. 173). Over
the past three decades, linear logic has found extensive application in com-
puter science as a logic of resources (Abramsky, 1993; Girard, 1987, 1995;
Troelstra, 1992).

In the present work, we uncover connections between the previously dis-
parate classes of relevant logics and logics with strong negation. The main
result of the paper, Theorem 2.1, announces that N4 is, up to definitional
equivalence, the axiomatic extension of RW by the axioms

`
(
(x� y)∧ (∼y�∼x)

)
⇒ (x⇒ y)(Paraconsistent Nelson�` )

` (x∗y)� x(Internal weakening�` )

for a certain naturally arising formula-definable connective �. (For an al-
ternative approach to commingling RW and N4, see (Kamide, 2016).) This
generalises an earlier theorem of the authors (Spinks and Veroff, 2008b, The-
orem 1.1) showing that N3 is, up to definitional equivalence, an axiomatic
extension of InFLew, the involutive full Lambek calculus with exchange and
weakening. The description of N4 qua a contraction-free relevant logic is
subsequently used in showing that numerous well-known and familiar para-
consistent and relevant logics, including the 3-valued relevant logic with min-
gle RM3 and the 4-valued paraconsistent logic BN4 of Brady and Dunn,
arise, up to definitional equivalence, as naturally occurring axiomatic exten-
sions of N4. For an omnibus (yet partial) statement of results connecting N4
with the existing literature of non-classical logics, see Theorem 2.2 below.

Aims of the paper The present work meets a triple duty. First, it offers a
conspectus of (some of) the main results of the series of papers (Spinks and
Veroff, a,b,c), serving in particular to announce Theorems 2.1 and 2.2 below.
Second, the paper provides an overview of the global structure of the proof
of Theorem 2.1. The proof of this theorem is conceptually difficult, owing
both to its length and to its intricate structure (the proof comprises many
highly interlocking parts, almost all of which are established via lengthy first-
order computations). The present work thus functions as a kind of high-level
guide to the proof. We warn the reader that the arguments sketched in this
paper, although indicative, do not do justice to the proof of Theorem 2.1;
for complete proofs of all results reported herein, the series of papers (Spinks
and Veroff, a,b,c) should instead be consulted. Finally, the paper promotes
the thesis that the deductive system N4 is of central import to the study
of non-classical logics, in that it sits at the nexus of two distinct logical
domains—viz., the paraconsistent and relevant logics.
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Algebraic and logical preliminaries The set of natural numbers is de-
noted N. For typographical convenience, we sometimes denote the application
of the function f to a by af . Given a set A and an equivalence relation θ on A,
the equivalence class of a ∈ A is denoted [a]θ. We assume familiarity with
the rudiments of general algebra and model theory, especially that part of
first-order logic known as equational logic. For general algebraic background,
see (Burris and Sankappanavar, 1981; Grätzer, 2008; McKenzie et al., 1987);
for particulars on equational logic, see (Burris, 1998; McNulty, 1992; Pigozzi,
1975; Tarski, 1968; Taylor, 1979). Algebras are denoted A,B, . . . . Given an
algebra A, the set of all congruences on A is denoted ConA and the principal
congruence on A generated by {a,b} ⊆ A is denoted ΘA(a,b). Given a join
semilattice 〈A;∨〉, the supremum of a,b ∈A is denoted l.u.b.{a,b}. Classes of
algebras are denoted K,V, . . . . Standard use is made throughout of the class
operators I, H, S, P, and Ps (for subdirect products); class operators always
yield abstract classes.

We fix a countably infinite set X := {xi : i ∈ N} of variables for use
throughout the paper; we write x,y,z, . . . as metavariables ranging over X.
Arbitrary language types are denoted Λ, while applied language types are
denoted Λ[. . . ]. All language types are algebraic unless stated otherwise.
Throughout the paper we overload a profusion of operation symbols [resp.
logical connectives], in particular the symbols ∧,∨,∗,⇒,→, and ∼, repeatedly
and without warning. We assume familiarity with the fundamentals of ab-
stract algebraic logic, especially that part of abstract algebraic logic that con-
cerns logics that are (strongly) algebraisable in the sense of Blok and Pigozzi
(1989). For background on abstract algebraic logic, see (Blok and Pigozzi,
1989; Czelakowski, 2001; Font et al., 2003); for particulars on Blok-Pigozzi
algebraisable logics, see (Blok and Pigozzi, 1989, 2001) or (Czelakowski, 2001,
Chapter 4§6). The absolutely free algebra of type Λ generated by X is de-
noted FmΛ and its universe is denoted FmΛ; a substitution of type Λ is
an endomorphism of FmΛ. Following (Blok and Pigozzi, 1989, Chapter 1),
a deductive system is a pair 〈Λ,`〉 where Λ is a language type and ` is
a finitary and substitution-invariant consequence relation over Λ. Deductive
systems are denoted S,T, . . . . Given a deductive system S, the set of all the-
ories of S is denoted ThS. Unless otherwise specified, all deductive systems
considered in the sequel are Blok-Pigozzi (finitary and finitely) algebraisable.
Logical matrices are denoted M,N, . . . .

Organisation The remainder of this paper is organised as follows. The main
results of the paper, Theorem 2.1 and Theorem 2.2, are stated in Section 2.
The proof of Theorem 2.1 is delineated in Section 3, while the proofs com-
posing Theorem 2.2 are outlined in Section 4. Some remarks relating the
main results of the paper to contemporary developments in abstract alge-
braic logic (Blok and Pigozzi, 1989; Czelakowski, 2001; Font and Jansana,
2009) in general and to the work of Czelakowski and Pigozzi on Fregean
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logics (Czelakowski, 2001; Czelakowski and Pigozzi, 2004) in particular are
presented in Section 5.

2 Main results

The main theorem Let IPC+ denote the negation-free fragment of the in-
tuitionistic propositional calculus, considered over the language Λ[IPC+] :=
{∧,∨,→} where ∧, ∨, and → are all binary logical connectives, and let
Σ[IPC+] denote the standard Hilbert-style presentation of IPC+ given in
(Rasiowa, 1974, Chapter X§1). Paraconsistent constructive logic with
strong negation, in symbols N4, is the deductive system over the language
Λ[N4] := Λ[IPC+]∪{∼}, where ∼ is a unary logical connective (called the
strong negation), determined by the presentation Σ[N4] consisting of the
axioms and inference rules of Σ[IPC+] together with the axioms (Odintsov,
2003, Section 2)

` ∼(x∨y)↔ (∼x∧∼y)
` ∼(x∧y)↔ (∼x∨∼y)

` ∼(x→ y)↔ (x∧∼y)
` ∼∼x↔ x.

(1)

Here the expression ϕ↔ψ abbreviates (ϕ→ψ)∧(ψ→ϕ) for all formulas ϕ,ψ
in the language of N4. The deductive system N4 was introduced in (Routley,
1974) (not (Almukdad and Nelson, 1984), as is commonly asserted) and has
recently been the subject of intense investigation; witness for instance the
works (Odintsov, 2003, 2004, 2005, 2007, 2008).

Constructive logic with strong negation, in symbols N3, is the de-
ductive system over the language Λ[N4] determined by the axioms and in-
ference rules of Σ[N4] together with the ex falso quodlibet law ` x→ (∼x→
y). The deductive system N3 was introduced in (Nelson, 1949) and has
been considered extensively in the literature; a representative selection of
works includes (Busaniche and Cignoli, 2010; Kracht, 1998; Rasiowa, 1974;
Sendlewski, 1984, 1990; Spinks and Veroff, 2008a,b; Vakarelov, 1977).

The logic N4⊥, introduced recently by Odintsov in (Odintsov, 2005), is
the deductive system over the language Λ[N4⊥] := Λ[N4]∪{⊥}, where ⊥ is
a nullary logical connective, determined by the axioms and inference rules of
Σ[N4] together with the additional axioms `⊥→ x and ` x→∼⊥.

Let RW denote the contraction-free relevant logic obtained from Ander-
son and Belnap’s ‘logic of relevant implication’ R (Anderson and Belnap,
1975, §3) upon omitting the contraction axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y)

from the standard Hilbert-style presentation of R given in (Anderson and
Belnap, 1975, §27.1.1). Here and throughout we are considering R, hence
RW, to have language Λ[RW] := {∧,∨,∗,⇒,∼}, where ∧, ∨, ∗, and ⇒ are
binary logical connectives and ∼ is a unary logical connective. The study
of the deductive system RW dates back to at least (Slaney, 1984), and has
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been extensively pursued by Brady (1990, 1991, 1996a,b) in the context of
decidability questions.

Let Λ be a language type having a distinguished binary logical connec-
tive ⇒. For all Λ-formulas ϕ, let |ϕ| abbreviate ϕ⇒ ϕ. Further, let Λ be a
language type having distinguished binary logical connectives ⇒ and ∧. For
all Λ-formulas ϕ,ψ, let

ϕ
RM⇒ ψ abbreviate

(
ϕ∧|ψ|

)
⇒ ψ, and

ϕ� ψ abbreviate ϕ
RM⇒ (ϕ RM⇒ ψ).

Notice ϕRM⇒ ψ is the “enthymematic” implication of Dunn and McCall (An-
derson and Belnap, 1975, §29). Let DPNRW� denote the axiomatic exten-
sion of RW by the axioms

`
(
(x� y)∧ (∼y�∼x)

)
⇒ (x⇒ y)(Paraconsistent Nelson�` )

` (x∗y)� x.(Internal weakening�` )

The main result of the present work asserts:

Theorem 2.1.

1. The map α : Λ[RW]→ FmΛ[N4] defined by

x∧y 7→ x∧y
x∨y 7→ x∨y
x∗y 7→ ∼(x→∼y)∨∼(y→∼x)(∗def)

x⇒ y 7→ (x→ y)∧ (∼y→∼x)(⇒def)
∼x 7→ ∼x

is an interpretation of DPNRW� in N4.
2. The map β : Λ[N4]→ FmΛ[RW] defined by

x∧y 7→ x∧y
x∨y 7→ x∨y

x→ y 7→
(
x∧
(
((x∧ (y⇒ y))⇒ y)⇒

((x∧ (y⇒ y))⇒ y)
))
⇒
(
(x∧ (y⇒ y))⇒ y

)(→def)

∼x 7→ ∼x

is an interpretation of N4 in DPNRW�.
3. The interpretations α and β are mutually inverse.

Hence the deductive systems N4 and DPNRW� are definitionally equiva-
lent.
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For deductive systems that are algebraisable, the notion of definitional
equivalence (Gyuris, 1999) used throughout this paper is an analogue of the
well known notion of term equivalence (McKenzie et al., 1987) for varieties.
For details, see Subsection 3.5 below. See also (Spinks and Veroff, 2008b, Sec-
tion 4). For alternative notions of definitional equivalence with applicability
to abstract algebraic logic see (Caleiro and Gonçalves, 2005; Pynko, 1999;
Wójcicki, 1988).

Consequences of the main theorem Theorem 2.1 allows connections to
be drawn with many deductive systems that have been considered previously
in the literature, including (but not limited to) those of the following theorem.
Theorem 2.2.

1. The axiomatic extension of N4 by the weakening axiom ` x⇒ (y⇒ x)
is N3.

2. The axiomatic expansion of N4 by the Ackermann constant t is, up to
definitional equivalence, the deductive system BN of Slaney (Restall,
1993; Slaney, 1991; Slaney et al., 1989).

3. The axiomatic extension of N4 by the contraction axiom `
(
x⇒ (x⇒

y)
)
⇒ (x⇒ y) is, up to definitional equivalence, the 3-valued relevant logic

with mingle RM3 (Anderson and Belnap, 1975, p. 470 ff.).
4. The axiomatic extension of N4 by the weakening axiom ` x⇒ (y⇒ x)

and the contraction axiom `
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional

equivalence, the classical propositional calculus CPC.
5. The axiomatic extension of N4⊥ by the contraction axiom `

(
x⇒ (x⇒

y)
)
⇒ (x⇒ y) is, up to definitional equivalence, the 3-valued logic J3 of

D’Ottaviano and da Costa (Carnielli and Marcos, 2002; D’Ottaviano and
da Costa, 1970; Epstein, 1995).

6. The axiomatic extension of N4 by the weakening axiom ` x⇒ (y⇒ x)
and the prelinearity axiom ` (x→ y)∨(y→ x) is, up to definitional equiv-
alence, the nilpotent minimum logic NM of Esteva and Godo (Bianchi,
2011; Esteva and Godo, 2001; Gispert, 2003; Noguera, 2007; Noguera
et al., 2008).

7. The axiomatic extension of N4 by the Peirce law `
(
(x→ y)→ x

)
→ x is

the (Hilbert style) ‘basic system’ HBe of Avron (Arieli, 1999; Arieli and
Avron, 1994, 1996; Avron, 1991).

8. The axiomatic extension of N4 by the Peirce law `
(
(x→ y)→ x

)
→ x

is, up to definitional equivalence, the deductive system BN4 of Brady
(Brady, 1982; Meyer et al., 1984; Restall, 1993; Slaney, 1991).

9. The axiomatic extension of N4 by the weakening axiom ` x⇒ (y⇒ x)
and the Peirce law `

(
(x→ y)→ x

)
→ x is, up to definitional equivalence,

the 3-valued logic  L3 of  Lukasiewicz ( Lukasiewicz, 1970a,b).
10. The axiomatic extension of N4⊥ by the Peirce law `

(
(x→ y)→ x

)
→ x

is, up to definitional equivalence, the logic BS4 of Omori and Wara-
gai (De and Omori, 2015; Omori and Sano, 2014; Omori and Waragai,
2011; Sano and Omori, 2014).
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Theorem 2.2 is by no means exhaustive. For example, it follows from the
results of the series of papers (Spinks and Veroff, a,b,c) that the axiomatic
extension of N4⊥ by the Peirce law `

(
(x→ y)→ x

)
→ x interprets the

deductive system determined by Smiley’s matrices for the logic Efde of first
degree entailments (Anderson and Belnap, 1975, pp. 161–162); cf. (Muskens,
1995, Chapter 5) or (Villadsen, 2001, Section 2.1). Numerous other connec-
tions with the existing literature may be similarly established.

3 Definitional Equivalence

3.1 Proof strategy

The proof of Theorem 2.1 mirrors the proof of the authors’ earlier result
(Spinks and Veroff, 2008b, Theorem 1.1) showing that N3 is definition-
ally equivalent to an axiomatic extension of InFLew. First, we establish
the term equivalence of the algebraic counterparts of N4 and DPNRW�.
Subsequently, this term equivalence result is lifted to the setting of de-
ductive systems to establish the definitional equivalence of the logics N4
and DPNRW�. In this subsection, the proof strategy used to establish the
requisite term equivalence result is presented.

N4-lattices Following (Nemitz, 1965, Section 2), an algebra 〈A;∧,∨,→〉 of
type 〈2,2,2〉 is an implicative lattice if: (i) 〈A;∧,∨〉 is a lattice (with lattice
ordering ≤); and (ii) for all a,b,c ∈ A, it holds that a∧ b ≤ c iff a ≤ b→ c.
Let Λ be a language type having a distinguished binary operation symbol→.
By abuse of notation, let |ϕ| abbreviate ϕ→ ϕ for every Λ-term ϕ. Observe
that if A is an implicative lattice, then the unary term > := |x| is constant
over A; we write > ∈A for >A.

Recall from (Odintsov, 2003, Definition 5.1) that an algebra A := 〈A;∧,∨,
→,∼〉 of type 〈2,2,2,1〉 is an N4-lattice if:

(N1) The reduct 〈A;∧,∨,∼〉 is a De Morgan lattice with lattice ordering ≤.
(N2) The relation � defined for all a,b ∈A by a� b iff a→ b= |a→ b| is a

quasiorder on A.
(N3) The relation Ξ :=�∩ (�)−1 is a congruence on the reduct 〈A;∧,∨,→〉

such that the quotient algebra A./ := 〈A;∧,∨,→〉/Ξ is an implicative
lattice.

(N4) For all a,b ∈A, it holds that ∼(a→ b)≡ a∧∼b (mod Ξ).
(N5) For all a,b ∈A, it holds that a≤ b iff a� b and ∼b�∼a.

N4-lattices were introduced in (Odintsov, 2003) and they have been fur-
ther studied in (Odintsov, 2004, 2005, 2007, 2008). By (Odintsov, 2008, The-
orem 8.5.3), the class N4 of all N4-lattices forms a variety. Let Λ be a lan-
guage type having distinguished binary operation symbols ∧ and → and a
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distinguished unary operation symbol ∼. For all Λ-terms ϕ and ψ, let ϕ⇔ ψ
abbreviate

(
(ϕ→ ψ)∧ (∼ψ→∼ϕ)

)
∧
(
(ψ→ ϕ)∧ (∼ϕ→∼ψ)

)
; notice ϕ⇔ ψ

can also be written as (ϕ⇒ ψ)∧ (ψ⇒ ϕ), where the derived connective ⇒
is as fixed by the map (⇒def). By (Rivieccio, 2011, Theorem 2.6), N4 is
strongly algebraisable with system of equivalence formulas {ϕ⇔ ψ}, system
of defining equations

{
x≈ |x|

}
, and equivalent variety semantics N4.

Lemma 3.1. The variety of N4-lattices satisfies the identities

∼(∼x→∼y)→∼x≈
∣∣∼(∼x→∼y)→∼x

∣∣(2)
x⇒ (y→ x)≈

∣∣x⇒ (y→ x)
∣∣(3)

(x⇔ y)→ x≈ (x⇔ y)→ y(4)
x→ y ≈ x→ (x→ y)(5)

x→ (y→ z)≈ y→ (x→ z)(6)
x→ (y→ z)≈ (x→ y)→ (x→ z).(7)

A Nelson algebra is an N4-lattice satisfying the ex falso quodlibet iden-
tity

x→ (∼x→ y)≈
∣∣x→ (∼x→ y)

∣∣.(8)

Nelson algebras were introduced in (Bia lynicki-Birula and Rasiowa, 1958;
Rasiowa, 1958, 1959) and they have been considered extensively in the lit-
erature (Kracht, 1998; Rasiowa, 1974; Sendlewski, 1984; Vakarelov, 1977;
Viglizzo, 1999); for a recent survey and further references, see (Vakarelov,
2006). Because N4 is equationally definable, the class N3 of all Nelson alge-
bras also forms a variety; this was first shown by (Brignole, 1969, Theorem 3,
Theorem 4). By the algebraisability of N4 and (Blok and Pigozzi, 1989,
Corollary 4.9), the deductive system N3 is strongly algebraisable with the
same systems of equivalence formulas and defining equations as N4 and with
equivalent variety semantics N3.

An N4⊥-lattice is an algebra A := 〈A;∧,∨,→,∼,⊥〉 of type 〈2,2,2,1,0〉
such that: (i) 〈A;∧,∨,→,∼〉 is an N4-lattice; and (ii) for all a ∈ A, it holds
that ⊥� a and a�∼⊥. By (N5), condition (ii) is equivalent to asserting that
⊥ ≤ a for all a ∈ A; the class N4⊥ of all N4⊥-lattices thus forms a variety.
By the algebraisability of N4 and (Blok and Pigozzi, 1989, Theorem 4.7),
the deductive system N4⊥ is strongly algebraisable with the same systems
of equivalence formulas and defining equations as N4 and with equivalent
variety semantics N4⊥.

Dimorphic paraconsistent Nelson RW-algebras Let 〈A;≤〉 be a poset.
A binary operation ∗ on A is compatible with ≤ if, for all a,b,c ∈A, it holds
that

if a≤ b, then a∗ c≤ b∗ c and c∗a≤ c∗ b.(Compat)
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A structure 〈A;∗,⇒;≤〉 of type 〈2,2;2〉 is a residuated po-semigroup if:
(i) ≤ is a partial order on A; (ii) ∗ is an associative commutative binary
operation on A compatible with ≤; and (iii) for all a,b,c ∈A, it holds that

a∗ b≤ c iff a≤ b⇒ c.(Res)

Observe that every residuated po-semigroup satisfies the identity

x⇒ (y⇒ z)≈ (x∗y)⇒ z.(9)

A residuated lo-semigroup is an algebra 〈A;∧,∨,∗,⇒〉 of type 〈2,2,2,2〉
such that: (i) 〈A;∧,∨〉 is a lattice (with lattice ordering≤); and (ii)〈A;∗,⇒;≤〉
is a residuated po-semigroup. A residuated lo-semigroup A is distributive
if its lattice reduct is distributive; it is adjunctive (Blok and Raftery, 2008;
Font and Pérez, 1992; Font and Rodŕıguez, 1990; Hsieh, 2008; Hsieh and
Raftery, 2007) if the inequality

(
|a| ∧ |b|

)
⇒ c ≤ c holds identically on A.

By a result implicit in (van Alten and Raftery, 2004, Section 7), a residu-
ated lo-semigroup is adjunctive iff it is the 〈∧,∨,∗,⇒〉-subreduct of a resid-
uated lattice; recall a residuated lattice (Hart et al., 2002) is an algebra
〈A;∧,∨,∗,⇒,e〉 where 〈A;∧,∨,∗,⇒〉 is a residuated lo-semigroup and 〈A;∗,e〉
is a monoid. The study of residuated lattices has been pursued extensively
in the literature; see (Jipsen and Tsinakis, 2002) for a survey and (Galatos
et al., 2007) for a detailed treatment.

An algebra A := 〈A;∧,∨,∗,⇒,∼〉 of type 〈2,2,2,2,1〉 is a dimorphic
paraconsistent Nelson RW�-algebra if:

(D1) The reduct 〈A;∧,∨,∗,⇒〉 is a residuated lo-semigroup (with lattice
order ≤) that is adjunctive and distributive.

(D2) The operation ∼ is a (compatible) negation on A. That is, for all
a,b ∈A it holds that ∼∼a= a and a⇒ b=∼b⇒∼a.

(D3�) The algebra A satisfies the identities(
(x� y)∧ (∼y�∼x)

)
∨ (x⇒ y)≈ x⇒ y(Paraconsistent Nelson�)

(x∗y)� x≈
∣∣(x∗y)� x

∣∣.(Internal weakening�)

(a� b)∧ (∼b� ∼a) ≤ a⇒ b holds identically on A. Because of (van Alten
and Raftery, 2004, Proposition 7.1), the class DPNRW� of all dimorphic
paraconsistent Nelson RW�-algebras forms a variety.

Recall that, for a language type Λ having a distinguished binary operation
symbol ⇒, the expression |ϕ| abbreviates ϕ⇒ ϕ for every Λ-term ϕ. The
next result is almost immediate on combining (Hsieh and Raftery, 2007,
Theorem 7.7) with (Blok and Pigozzi, 1989, Corollary 4.9).

Proposition 3.2. The deductive system DPNRW� is strongly algebraisable
with system of equivalence formulas {ϕ⇒ ψ,ψ ⇒ ϕ} and system of defin-

Notice that a residuated lo-semigroup A satisfies (Paraconsistent Nelson ) iff�
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ing equations
{
x ≈ |x|

}
. The equivalent variety semantics of DPNRW� is

DPNRW�.
An algebraic analogue of Theorem 2.1 As previously remarked, to
prove Theorem 2.1, we establish an algebraic analogue of Theorem 2.1 and
then lift this result to the setting of deductive systems. The algebraic ana-
logue of Theorem 2.1 that we prove is:
Theorem 3.3.

1. The map α of Theorem 2.1.(1) is an interpretation of DPNRW� in N4.
2. The map β of Theorem 2.1.(2) is an interpretation of N4 in DPNRW�.
3. The interpretations α and β are mutually inverse.

Hence the varieties N4 and DPNRW� are term equivalent.
Owing to its syntactic complexity, the right projection of the ordered pair

(→def) is difficult to work with in practice. Thus, to prove Theorem 3.3, we
establish a variant in which the right projection of the ordered pair (→def)
is replaced with a simpler expression; Theorem 3.3 then follows easily from
this variant result. To this end, let Λ be a language type having distinguished
binary operation symbols ∧ and ⇒. For all Λ-terms ϕ and ψ, let

ϕ→ ψ abbreviate
(
ϕ∧|ψ|

)
⇒
(
(ϕ∧|ψ|)⇒ ψ

)
.

An algebra A := 〈A;∧,∨,∗,⇒,∼〉 of type 〈2,2,2,2,1〉 is a dimorphic para-
consistent Nelson RW-algebra if (D1)–(D2) hold, and:
(D3) The algebra A satisfies the identities(

(x→ y)∧ (∼y→∼x)
)
∨ (x⇒ y)≈ x⇒ y(Paraconsistent Nelson)

(x∗y)→ x≈
∣∣(x∗y)→ x

∣∣.(Internal weakening)

Because of (van Alten and Raftery, 2004, Proposition 7.1), the class DPNRW
of all dimorphic paraconsistent Nelson RW-algebras forms a variety. The vari-
ant of Theorem 3.3 we establish is:
Theorem 3.4.

1. The map α of Theorem 2.1.(1) is an interpretation of DPNRW in N4.
2. The map β : Λ[N4]→ FmΛ[RW] defined by

x∧y 7→ x∧y
x∨y 7→ x∨y
x→ y 7→

(
x∧ (y⇒ y)

)
⇒
(
(x∧ (y⇒ y))⇒ y

)
(→′def)

∼x 7→ ∼x

is an interpretation of N4 in DPNRW.
3. The interpretations α and β are mutually inverse.

Hence the varieties N4 and DPNRW are term equivalent.
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3.2 Proof of Theorem 3.4.(1)

In this subsection we give the proof of Theorem 3.4.(1). The proof is along the
lines of the proof of (Busaniche and Cignoli, 2010, Theorem 3.1); the main
tool used in the proof is the twist-structure representation for N4-lattices of
Odintsov (2003, 2004, 2008).

Twist structures Let A be an implicative lattice. The full twist-structure
over A is the algebra A./ := 〈A×A;∧,∨,→,∼〉 of type 〈2,2,2,1〉 with oper-
ations defined for all 〈a,b〉,〈c,d〉 ∈A×A by

〈a,b〉∧ 〈c,d〉 := 〈a∧ c,b∨d〉(∧./def)
〈a,b〉∨ 〈c,d〉 := 〈a∨ c,b∧d〉
〈a,b〉 → 〈c,d〉 := 〈a→ c,a∧d〉(→./

def)
∼〈a,b〉 := 〈b,a〉.(∼./def)

By (Odintsov, 2003, Proposition 5.2), A./ is an N4-lattice, and by Odintsov
(2004, Corollary 3.2), every N4-lattice can be represented as a subalgebra of
the full twist-structure B./, for a suitable implicative lattice B; we give the
details.

Let A be an implicative lattice. The set ∇d(A) :=
{
a∨ (a→ b) : a,b ∈ A

}
is the filter of dense elements of A (Odintsov, 2004, Section 3, p. 395;
Proposition 3.2); it is easy to see that ∇d(A) is a lattice filter. Let ∇⊆A be
a non-empty lattice filter such that ∇d(A)⊆∇ and let ∆⊆A be an arbitrary
non-empty lattice ideal. Then the set B :=

{
〈a,b〉 ∈A×A : a∨b∈∇,a∧b∈∆

}
is closed under the operations ∧, ∨,→, and ∼ of A./. Thus 〈B;∧,∨,→,∼〉 is
an N4-lattice, that, following (Odintsov, 2004), we denote by Tw(A,∇,∆).

Given an arbitrary N4-lattice B, let

∇(B) :=
{

[a∨∼a]Ξ : a ∈B
}

and ∆(B) :=
{

[a∧∼a]Ξ : a ∈B
}
.

Then ∇(B) is a lattice filter of the implicative lattice B./ such that ∇d(B)⊆
∇(B), and ∆(B) is an ideal of B./.

Theorem 3.5. (Jansana and Rivieccio, 2013, Proposition 2.2) Every N4-
lattice B is isomorphic to the algebra Tw

(
B./,∇(B),∆(B)

)
, with B./ an

implicative lattice, via the map B
jB→ B/Ξ×B/Ξ defined for all b ∈ B by

jB(b) :=
〈
[b]Ξ, [∼b]Ξ

〉
.

Proof of Theorem 3.4.(1) With the ingredients of Section 3.2 to hand,
we have everything in place needed to prove Theorem 3.4.(1). But first, let Λ
be a language type having a distinguished binary logical connective ∗. For
every Λ-term ϕ, let ϕ2 [resp. ϕ3] abbreviate ϕ∗ϕ

[
resp. ϕ∗ (ϕ∗ϕ)

]
.

Theorem 3.6. The map α of Theorem 3.4.(1) is an interpretation of
DPNRW in N4.
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Proof. (Sketch) Let A be an N4-lattice. To prove the theorem, it suffices to
verify that (D1)–(D3) hold over Aα := 〈A;cα〉c∈Λ[RW].

By Theorem 3.5, we may assume without loss of generality that A
is the form Tw

(
A./,∇(A),∆(A)

)
. In what follows we write Tw(A) for

Tw
(
A./,∇(A),∆(A)

)
and Tw(A) for the universe of Tw(A). To begin,

observe that the derived operations ∗ and ⇒ on Tw(A) induced by
the maps (∗def) and (⇒def) respectively take the following forms for all
〈a,b〉,〈c,d〉 ∈Tw(A):

〈a,b〉 ∗ 〈c,d〉=
〈
a∧ c,(a→ d)∧ (c→ b)

〉
(10)

〈a,b〉 ⇒ 〈c,d〉=
〈
(a→ c)∧ (d→ b),a∧d

〉
.(11)

Because ∗ and⇒ are both term operations on Tw(A), both these operations
are well-defined. Observe in particular that for all 〈a,b〉 ∈Tw(A),

〈a,b〉 ⇒ 〈a,b〉= 〈>,a∧ b〉(12)
〈a,b〉 ∗ 〈a,b〉= 〈a,a→ b〉.(13)

To complete the proof of the theorem, it suffices to verify that (D1)–(D3)
hold over Tw(A)α. This reduces to a routine series of computations; we show
Tw(A)α |= (Paraconsistent Nelson) by way of example. But first, let B be
an implicative lattice. Note B satisfies the identity

(x→ y)∧
(
z→ (x→ (w∨ (y∧ z)))

)
≈ x→ y.(14)

Indeed, let e,f,g,h ∈B. From f ∧g ≤ h∨ (f ∧g) we have f ≤ g→ (h∨ (f ∧
g)) by the theory of implicative lattices, whence

e→ f ≤ e→
(
g→ (h∨ (f ∧g))

)
= g→

(
e→ (h∨ (f ∧g))

)
,

again by the theory of implicative lattices. Hence B |= (14).
Observe next that for all 〈a,b〉,〈c,d〉 ∈Tw(A),

〈a,b〉 →Tw(A)αβ 〈c,d〉= 〈a→ c,a∧d〉= 〈a,b〉 →Tw(A) 〈c,d〉.(15)

Indeed, we have:
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〈a,b〉 →Tw(A)αβ〈c,d〉=
(
〈a,b〉∧ |〈c,d〉|

)
⇒
(
(〈a,b〉∧ |〈c,d〉|)⇒ 〈c,d〉

)
=
(
〈a,b〉∧ |〈c,d〉|

)2⇒ 〈c,d〉 by (9)

=
(
〈a,b〉∧ 〈>, c∧d〉

)2⇒ 〈c,d〉 by (12)

=
〈
a,b∨ (c∧d)

〉2⇒ 〈c,d〉 by (∧./def)
=
〈
a,a→ (b∨ (c∧d))

〉
⇒ 〈c,d〉 by (13)

=
〈

(a→ c)∧
(
d→ (a→ (b∨ (c∧d)))

)
,a∧d

〉
by (11)

= 〈a→ c,a∧d〉 by (14)
= 〈a,b〉 →Tw(A) 〈c,d〉 by (→./

def),

vindicating the claim. To see Tw(A)α |= (Paraconsistent Nelson), simply note(
〈a,b〉 →Tw(A)αβ 〈c,d〉

)
∧
(
∼〈c,d〉 →Twαβ

∼〈a,b〉
)

=
(
〈a,b〉 → 〈c,d〉

)
∧
(
∼〈c,d〉 → ∼〈a,b〉

)
by (15)

=
(
〈a,b〉 → 〈c,d〉

)
∧
(
〈d,c〉 → 〈b,a〉

)
by (∼./def)

= 〈a→ c,a∧d〉∧ 〈d→ b,d∧a〉 by (→./
def)

=
〈
(a→ c)∧ (d→ b),a∧d

〉
by (∧./def)

= 〈a,b〉 ⇒ 〈c,d〉 by (12).

Thus Tw(A)α |= (Paraconsistent Nelson). A similar argument shows Tw(A)α
|= (Internal weakening). Thus (D3) holds over Tw(A)α; conditions (D1)
and (D2) are readily established.

The next result obtains from the proof of Theorem 3.6; it generalises a
result for Nelson algebras found in (Viglizzo, 1999, Chapter 1, p. 18). See also
(Spinks and Veroff, 2008a, Proposition 3.2) and the accompanying historical
footnote.

Corollary 3.7. The variety of N4-lattices satisfies the identity

x→ y ≈
(
x∧|y|

)
⇒
(
(x∧|y|)⇒ y

)
.

3.3 Proof of Theorem 3.4.(2)

In this subsection we give the proof of Theorem 3.4.(2). The proof proceeds
in the näıvest manner possible, by showing that if A ∈ DPNRW, then con-
ditions (N1)–(N5) hold over Aβ := 〈A;cβ〉c∈Λ[N4], where β is the map of
Theorem 3.4.(2).

The proof that conditions (N1)–(N5) hold over Aβ proceeds largely by
equational reasoning. The first-order results composing the proof that condi-
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tions (N1)–(N5) hold over Aβ were obtained, in large measure, with the assis-
tance of the automated reasoning program Prover9 (McCune). Prover9 is
a resolution-based theorem-prover for first-order logic with equality that has
been shown to be particularly useful (Spinks and Veroff, 2008a,b; Veroff and
Spinks, 2006) in the investigation of problems arising from algebraic logic. For
a brief survey on automated theorem-proving in general algebra, see (Phillips
and Stanovský, 2010, Section 6); for examples of the application of automated
reasoning to a wide range of problems in equational logic, see (McCune and
Padmanabhan, 1996).

Fundamental properties of dimorphic paraconsistent Nelson RW-
algebras We begin the proof of Theorem 3.4.(2) by establishing some fun-
damental properties of dimorphic paraconsistent Nelson RW-algebras. But
first, let A be a dimorphic paraconsistent Nelson RW-algebra. Observe that,
by the theory of residuated lo-semigroups, the inequality

a≤ b→ a(16)

holds identically on A. In addition, call an algebra A := 〈A;∧,∨,∗,⇒,∼〉
of type 〈2,2,2,2,1〉 a residuated lo-semigroup with negation if: (i)
〈A;∧,∨,∗,⇒〉 is a residuated lo-semigroup; and (ii) (D2) holds on A, that
is, ∼ is a (compatible) negation on A. Mutatis mutandis, let the notion of a
residuated lattice with negation be defined analogously.

Lemma 3.8 (Fundamental properties lemma). Let A be a dimorphic
paraconsistent Nelson RW-algebra. The following statements hold for all
a,b ∈A:

1. |a| ⇒ b≤ b. (Implicativity)
2. a≤ |a|. (Mingle)
3. a2 ≤ a. (Square decreasingness)
4. a⇒ |a| ≤ |a|. (Auto-contraction)
5. a⇒ |a|= |a|. (Strong auto-contraction)
6. a3 = a2. (3-potence)

Proof.
(1) By adjunctivity, |a| ⇒ b=

(
|a|∧ |a|

)
⇒ b≤ b.

(2) By (16), ∼a ≤ a→∼a. Thus ∼a ≤ a→∼a = (a→∼a)∧
(
∼(∼a)→

∼a
)
≤ a⇒∼a by (Paraconsistent Nelson). That is, ∼a≤ a⇒∼a. But then

a≤ |∼a|= |a|.
(3) This follows from (2) by (Res).
(4) By (Mingle) and the theory of residuated lo-semigroups with negation,

∼a ≤ |a2|. Also, |a2| = a→ a2 by (Mingle) and the theory of residuated lo-
semigroups. Thus ∼a ≤ a→ a2. Now by (16), ∼a ≤ ∼(a2)→ ∼a, whence
∼a ≤ (a→ a2)∧

(
∼(a2)→∼a

)
≤ a⇒ a2 by (Paraconsistent Nelson). Thus

∼a ≤ a⇒ a2; over residuated lo-semigroups with negation, this inequality
holds identically iff a⇒ |a| ≤ |a| holds identically.
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(5) This follows from (2) and (4).
(6) By (Square decreasingness), a2 ≤ a, so by (Compat), a3 ≤ a2. For the

converse, note ∼(a3) =∼(a2 ∗∼∼a) = a2⇒∼a=
(
a∧|∼a|

)2⇒∼a (by (Min-
gle)) = a→∼a = (a→∼a)∧

(
∼(∼a)→∼a

)
≤ a⇒∼a (by (Paraconsistent

Nelson) =∼(a∗∼∼a) =∼(a2). That is, ∼(a3)≤∼(a2). Thus a2 ≤ a3.
Let (P) be a fundamental property of dimorphic paraconsistent Nelson

RW-algebras, as identified in Lemma 3.8. In the sequel, a residuated lo-
semigroup having property (P) is called a (P) residuated lo-semigroup.
Thus, for example, a square decreasing residuated lo-semigroup is a residu-
ated lo-semigroup such that a2 ≤ a holds identically.

The following trivial lemma plays a fundamental role in the sequel.
Lemma 3.9 (Doubling construction). Let 〈A;≤〉 be a partially ordered
set and let ∗ be a binary operation on A such that (Compat) holds for all
a,b,c ∈A. Then for all a,b ∈A, if a≤ b, then a2 ≤ b2.

Proof. Suppose a ≤ b. By (Compat), a ∗ a ≤ a ∗ b, and by (Compat) again,
a∗ b≤ b∗ b. By transitivity, a∗a≤ b∗ b.

The following lemma, which is inspired by (Sendlewski, 1990, Lemma
3.1(viii)), also plays a crucial role in subsequent developments.
Lemma 3.10 (The centripetal lemma). Let A be a dimorphic paracon-
sistent Nelson RW-algebra. Then A satisfies the identity

(x∧y)2 ≈ (x2∧y2)2.(∧-Centrip.)

Proof. Let a,b ∈ A. By two applications of (Square decreasingness), a2 ≤ a
and b2 ≤ b; thus a2 ∧ b2 ≤ a∧ b. By the doubling construction, (a2 ∧ b2)2 ≤
(a∧ b)2. Conversely, from a∧ b ≤ a,b we have (a∧ b)2 ≤ a2, b2 by two ap-
plications of the doubling construction, whence (a∧ b)2 ≤ a2 ∧ b2. By the
doubling construction,

(
(a∧ b)2)2 ≤ (a2 ∧ b2)2, whence (a∧ b)2 ≤ (a2 ∧ b2)2

by (3-potence). Hence A |= (∧-Centrip.).
A quasiorder on dimorphic paraconsistent Nelson RW-algebras
Armed with the fundamental properties lemma, the doubling construction,
and the centripetal lemma, we have all we need in place to establish the
following result; the long proof is omitted.
Lemma 3.11. (cf. (Spinks, 2004, Lemma 3.2)) Let A be a dimorphic para-
consistent Nelson RW-algebra. Then A satisfies the identities

x→ (y∧ z)≈ (x→ y)∧ (x→ z)(17)
x→ (y∨ z)≈ x→

(
(x→ y)∨ (x→ z)

)
(18)

x→ (y⇒ z)≈ (x→ y)⇒ (x→ z)
x→ (y ∗z)≈ x→

(
(x→ y)∗ (x→ z)

)
x→∼y ≈ x→∼(x→ y).(19)
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The next result exploits ideas due to (Idziak et al., 2009, Section 1) and
(Aglianò, 2001, Section 1). In preparation for the proposition, observe that,
by adjunctivity, every A ∈ DPNRW satisfies

|x| → y ≈ y.(20)

Proposition 3.12. Let A be a dimorphic paraconsistent Nelson RW-algebra.
The relation � on A defined for all a,b ∈ A by a� b iff a→ b= a→ |b| is a
quasiorder on A. Moreover, for all a,b ∈A, the following statements hold:

1. a� b iff a→ b= |a→ b|.
2. a� b iff (a∧|b|)2 ≤ b.
3. a� b iff (a∧|b|)2 = (a∧ b)2.

Proof. (Sketch) Let v be the relation defined on A by a v b iff ΘA(b, |b|) ⊆
ΘA(a, |a|). By properties of ⊆, the relation v is a quasiorder on A. To prove
the first statement, therefore, it suffices to show v=�. For each c ∈A, let θc
be the relation on A defined for all a,b ∈ A by c→ a = c→ b. Each θc is
clearly an equivalence relation on A, which moreover is a congruence relation
on A by Lemma 3.11. We claim that for every c∈A, we have θc =ΘA(c, |c|).
Indeed, c→ |c| = |c| by (Strong auto-contraction), whence ΘA(c, |c|) ⊆ θc.
For the opposite inclusion, let a,b ∈A and suppose a≡ b (mod θc). Then

a
(20)= |c| → a ΘA(|c|, c) c→ a

(Hyp.)= c→ b ΘA(|c|, c) |c| → b
(20)= b.

Hence θc⊆ΘA(|c|, c), vindicating the claim. Observe now that for all a,b∈A,
we have a� b iff a→ b= a→|b| iff b≡ |b| (mod θa) iff b≡ |b| (mod ΘA(a, |a|))
iff ΘA(b, |b|)⊆ΘA(a, |a|) iff av b. Thus � is a quasiorder on A.

(1) It suffices to show a→ |b|= |a→ b| for all a,b ∈ A. Observe first that,
over implicative residuated lo-semigroups, the inequality a⇒ |a| ≤ |a| holds
identically iff the inequality a⇒ |b| ≤ |a⇒ b| holds identically (the argument
is non-trivial). Let a,b ∈A. Then a→ |b|=

(
a∧||b||

)2⇒ |b|= (a∧|b|)2⇒ |b|
(by (Implicativity)) ≤

∣∣(a∧ |b|)2⇒ b
∣∣ (by (Auto-contraction) and preceding

remarks) = |a→ b|. Conversely, |a→ b| ≤ a→ |b| by the theory of implicative
residuated lo-semigroups.

(2) It suffices to show that for all a,b ∈ A, the equivalence a ≤ b iff a⇒
b= |a⇒ b| holds; by (Implicativity) and (Square decreasingness), this follows
from (Hsieh and Raftery, 2006, Proposition 5.6).

(3) This follows easily from (2).

Congruence properties of dimorphic paraconsistent Nelson RW-
algebras For every dimorphic paraconsistent Nelson RW-algebra A, let
Ξ :=� ∩ (�)−1, where � is the quasiorder of Proposition 3.12. Our next
order of business is to show that for each A ∈DPNRW, the equivalence rela-
tion Ξ on A enjoys the substitution property with respect to the operations
∧,∨, and →.
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Lemma 3.13. Let A be a dimorphic paraconsistent Nelson RW-algebra.
Then A satisfies the identity(

x∧|x∧y|
)2 ≈ (x∧|y|)2.(21)

Proof. (Sketch) Let a,b∈A. By (Mingle), a∧|b| ≤ |a|∧|b|. Also, |a|∧|b| ≤ |a∧
b| by the theory of implicative residuated lo-semigroups. Thus a∧|b| ≤ |a∧b|,
whence a∧

(
a∧ |b|

)
≤ a∧ |a∧ b|. By the doubling construction,

(
a∧ |b|

)2 ≤(
a∧|a∧ b|

)2. For the converse, from a∧|a∧ b| ≤ a we have
(
a∧|a∧ b|

)2 ≤ a2

by the doubling construction; as a2 ≤ a by (Square decreasingness), it holds
that

(
a∧ |a∧ b|

)2 ≤ a. On the other hand,
(
a∧ |a∧ b|

)2 ≤ b by the theory
of 3-potent strongly auto-contractive adjunctive distributive residuated lo-
semigroups with negation (the argument is non-trivial). Therefore

(
a∧ |a∧

b|
)2 ≤ a∧b. By the doubling construction,

(
(a∧|a∧b|)2)2 ≤ (a∧|b|)2, whence

by (3-potence),
(
a∧|a∧ b|

)2 ≤ (a∧|b|)2. Hence A |= (21).

Lemma 3.14. Let A be a dimorphic paraconsistent Nelson RW-algebra. The
following statements hold for all a,b,c,d ∈A such that a Ξ c and b Ξ d:

1. a∧ b Ξ c∧d.
2. a∨ b Ξ c∨d.

Proof. (Sketch) We show only (1); the proof of (2) is non-trivial. Suppose
a � b. By Proposition 3.12.(3),

(
a∧ |b|

)2 = (a∧ b)2. By Proposition 3.12.(3)
again, to see a∧ c� b∧ c it suffices to show

(
a∧ c∧|b∧ c|

)2 = (a∧ c∧ b)2. For
this, just note(

(a∧ c)∧|b∧ c|
)2 =

(
a∧ (c∧|b∧ c|)

)2
=
(
a2∧ (c∧|b∧ c|)2)2 by (∧-Centrip.)

=
(
a2∧ (c∧|b|)2)2 by (21)

=
(
a∧ (c∧|b|)

)2 by (∧-Centrip.)

=
(
(a∧|b|)∧ c

)2
=
(
(a∧|b|)2∧ c2

)2 by (∧-Centrip.)

=
(
(a∧ b)2∧ c2

)2 by hypothesis
= (a∧ b∧ c)2. by (∧-Centrip.).

Hence a∧ c� b∧ c. The opposite inequality is established similarly.

It is not easy to show directly that the relation Ξ enjoys the substitu-
tion property with respect to the operation →. For this reason, we instead
establish:
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Lemma 3.15. Let A be a dimorphic paraconsistent Nelson RW-algebra.
Then A satisfies the identity

(x∧y)→ z ≈ x→ (y→ z).(22)

Proof. (Sketch) The crux of the proof lies in showing that for all a,b ∈ A,
it holds that a∧ b Ξ a ∗ b. By (Internal weakening) and Proposition 3.12.(1)
we have a ∗ b � a,b, so by (the proof of) Lemma 3.14.(1), (a ∗ b)∧ (a ∗ b) �
a∧ b. Hence a ∗ b � a∧ b. Conversely, (a∧ b)2 ≤ (a ∗ b)2 by the theory of 3-
potent residuated lo-semigroups, so certainly (a∧ b)2 ∧ |a ∗ b|2 ≤ (a ∗ b)2. By
the doubling construction, therefore,

(
(a∧b)2∧|a∗b|2

)2 ≤ ((a∗b)2)2, whence(
(a∧ b)∧ |a ∗ b|

)2 ≤ ((a ∗ b)2)2 by (∧-Centrip.). By (3-potence),
(
(a∧ b)∧

|a∗ b|
)2 ≤ (a∗ b)2; as (a∗ b)2 ≤ a∗ b by (Square decreasingness), we get that(

(a∧b)∧|a∗b|
)2≤ a∗b. By Proposition 3.12.(2), a∧b� a∗b. Thus a∧bΞ a∗b.

Hence A |= (22).

Corollary 3.16. Let A be a dimorphic paraconsistent Nelson RW-algebra.
For all a,b,c ∈A,

c� a→ b iff c∧a� b.(Internal residuation)

Proof. Suppose c� a→ b. By Proposition 3.12.(1), c→ (a→ b) =
∣∣c→ (a→

b)
∣∣, whence

(c∧a)→ b= c→ (a→ b) by (22)
=
∣∣c→ (a→ b)

∣∣
=
∣∣(c∧a)→ b

∣∣ by (22).

By Proposition 3.12.(1) again, we have that c∧a� b. The converse is analo-
gous.

Now we can easily see that:

Lemma 3.17. Let A be a dimorphic paraconsistent Nelson RW-algebra. For
all a,b,c,d ∈A, if a Ξ b and c Ξ d, then a→ c Ξ b→ d.

Proof. Suppose a Ξ b and c Ξ d. To see a→ c Ξ b→ d, note that from b � a
we have that b∧ (a→ c) � a∧ (a→ c) by (the proof of) Lemma 3.14.(1).
By (Internal residuation), a∧ (a→ c) � c, so by transitivity, b∧ (a→ c) � c.
Since c� d, by transitivity again we have that b∧ (a→ c)� d, which is to say
(a→ c)∧ b � d. By (Internal residuation), we conclude that a→ c � b→ d.
An analogous argument shows b→ d� a→ c. Hence a→ cΞ b→ d as desired.

Proof of Theorem 3.4.(2) It is now a (comparatively) routine exercise to
complete the proof of Theorem 3.4.(2).



Paraconsistent constructive logic as a contraction-free relevant logic 341

Lemma 3.18. Let A be a dimorphic paraconsistent Nelson RW-algebra. For
all a,b ∈A,

Proof. (Sketch) The theory of 3-potent square decreasing residuated lo-
semigroups with negation shows that

(
(a∧∼b)∧ |∼(a→ b)|

)2 = (a∧∼b)2 ≤
∼(a→ b). By Proposition 3.12.(2), therefore, a∧∼b�∼(a→ b). For the op-
posite inequality, note

(
a∧ |b|

)2 ∗∼b � (a∧ |b|)2 (by (Internal weakening))
� a∧ |b| (by Square decreasingness) � a, whence ∼(a→ b) = ∼

(
(a∧ |b|)2⇒

b
)

= ∼∼
(
(a∧ |b|)2 ∗∼b

)
=
(
a∧ |b|

)2 ∗∼b � a. On the other hand, ∼(a→
b)�∼b, owing to (16). By (the proof of) Lemma 3.14.(1), we conclude that
∼(a→ b)� a∧∼b. Thus ∼(a→ b) Ξ a∧∼b.

Lemma 3.19. Let A be a dimorphic paraconsistent Nelson RW-algebra. For
all a,b ∈A,

a≤ b iff a� b and ∼ b�∼a.

Proof. (Sketch) Suppose a� b and ∼b�∼a. Then

a⇒ b=(a→ b)∧ (∼b→∼a) by (Paraconsistent Nelson)
= |a→ b|∧ |∼b→∼a| by Proposition 3.12.(1), as a� b and ∼b�∼a
=
∣∣|a→ b|∧ |∼b→∼a|

∣∣ by adjunctivity and
(Hsieh and Raftery, 2007, Theorem 4.2)

=
∣∣(a→ b)∧ (∼b→∼a)

∣∣ by Proposition 3.12.(1), as a� b and ∼b�∼a
= |a⇒ b| by (Paraconsistent Nelson).

By implicativity and (Hsieh and Raftery, 2006, Proposition 5.6), a≤ b. Con-
versely, suppose a ≤ b. By (Paraconsistent Nelson), (a→ b)∧ (∼b→∼a) =
a⇒ b = |a⇒ b| (by implicativity and (Hsieh and Raftery, 2006, Proposi-
tion 5.6), since a ≤ b) =

∣∣(a→ b)∧ (∼b→ ∼a)
∣∣ by (Paraconsistent Nelson)

again. By the theory of square decreasing implicative residuated lo-semi-
groups, this is enough to conclude a→ b= |a→ b| and ∼b→∼a= |∼b→∼a|.
By Proposition 3.12.(1), a� b and ∼b�∼a.

Theorem 3.20. The map β of Theorem 3.4.(2) is an interpretation of N4
in DPNRW.

Proof. Let A∈DPNRW. To prove the theorem, it suffices to verify that (N1)–
(N5) hold over Aβ . Conditions (N2)–(N5) hold over Aβ by virtue of Proposi-
tion 3.12, Lemmas 3.14 and 3.17, Lemma 3.18, and Lemma 3.19 respectively.
By implicativity and (Hsieh and Raftery, 2006, Lemma 4.4), the negation ∼
is an involution of 〈A;≤〉; it follows directly that condition (N1) also holds
over Aβ .

∼(a→ b)≡ a∧∼b (mod Ξ).
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Proof of Theorem 3.4 We are finally in a position to complete the proof
of Theorem 3.4.

Lemma 3.21. The interpretations α and β of Theorem 3.4 are mutually
inverse.

Proof. By Corollary 3.7, N4 satisfies x→ y≈
(
x∧|y|

)
⇒
(
(x∧|y|)⇒ y

)
, while

by (Hsieh and Raftery, 2006, Lemma 4.6), DPNRW satisfies x ∗ y ≈ ∼(x⇒
∼y). Collectively, these two identities guarantee that the maps α and β are
mutually inverse.

The proof of Theorem 3.4 now follows on combining Theorem 3.6, Theo-
rem 3.20, and Lemma 3.21.

3.4 Proof of Theorem 3.3

In this subsection we give the proof of Theorem 3.3. The proof proceeds
by showing that Theorem 3.3 is simply a restatement of Theorem 3.4; once
again, equational reasoning composes the key tool used in the proof.

Proof of Theorem 3.3 With Theorem 3.4 to hand, to establish Theo-
rem 3.3 it suffices to show: (i) DPNRW� = DPNRW; and (ii) V |= x→ y ≈
x� y, for each V ∈ {DPNRW�,DPNRW}. Theorem 3.3 then follows directly
from Theorem 3.4.

The hypotheses of the next proposition are somewhat artificial, but are
nonetheless sufficiently general to meet our avowed purpose.

Proposition 3.22. Let A be a strongly auto-contractive adjunctive distribu-
tive residuated lo-semigroup with negation. Then A satisfies the identity

x→ y ≈ x RM⇒ (x RM⇒ y).(23)

Proof. (Sketch) Let a,b ∈ A. Then a
RM⇒ (a RM⇒ b) ≤ a→ b by the theory of

residuated lo-semigroups. For the converse, the proof strategy is to show that
if B is a strongly auto-contractive adjunctive residuated lo-semigroup with
negation, then B satisfies

(x∧∼x)2⇒ (x RM⇒ y)≈ (x∧∼x)⇒ (x RM⇒ y).(24)

By (24), adjunctivity, and distributivity, a→ b≤ aRM⇒ (aRM⇒ b) then follows.
(Both steps of the converse are non-trivial.) Hence A |= (23).

Proposition 3.23. For each V ∈ {DPNRW,DPNRW�}, it holds that V |=
(23). Hence DPNRW = DPNRW�.
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Proof. (Sketch) We prove the second statement first. By the fundamental
properties lemma, each A ∈ DPNRW is strongly auto-contractive; also, A is
adjunctive, distributive, and has a negation by fiat. By Proposition 3.22, it
holds that A |= (23). Thus A ∈ DPNRW�. So DPNRW ⊆ DPNRW�. For the
converse, an analogue of the fundamental properties lemma for DPNRW�

shows that every A ∈ DPNRW� is strongly auto-contractive. The argument
showing DPNRW ⊆ DPNRW� therefore also establishes, mutatis mutandis,
that DPNRW� ⊆ DPNRW. The first statement is now clear.

The proof of Theorem 3.3 now follows from Theorem 3.4 and Proposi-
tion 3.23.

Categorical isomorphism Let N4 [resp. DPNRW�] denote the finitary
algebraic category whose objects are the algebras in N4 [resp. the algebras
in DPNRW�] and whose morphisms are all the homomorphisms f : A→B,
where A,B ∈ N4 [resp. A,B ∈ DPNRW�]. Consider the following functors,
where α and β denote the maps of Theorem 3.3.(1) and 3.3.(2) respectively:

• R : N4→ DPNRW�, where the object function Robj sends each A ∈ N4
to its associated algebra Aα, and the arrow function Rarw sends each
homomorphism h : A→ B (A,B ∈ N4) to the same homomorphism h :
Aα→Bα.

• N : DPNRW� → N4, where the object function Nobj sends each A ∈
DPNRW� to its associated algebra Aβ , and the arrow function Narw sends
each homomorphism h : A→B (A,B∈DPNRW�) to the same homomor-
phism h : Aβ →Bβ .

The next theorem generalises a result of (Busaniche and Cignoli, 2010,
Theorem 3.11).

Theorem 3.24. The categories N4 and DPNRW� are isomorphic.

Proof. From the definitions, it is easy to see that the functor N is both a right
and left adjoint of the functor R. Moreover, the composition NR coincides
with the identity 1N4, while the composition RN coincides with the identity
1DPNRW� . Thus N4 and DPNRW� are categorically isomorphic.

3.5 Proof of Theorem 2.1

In this subsection we lift the term equivalence result of Theorem 3.3 to the
setting of deductive systems to establish the definitional equivalence of the
logics N4 and DPNRW�.
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Definitional equivalence Let A := 〈A;cA〉c∈Λ be an algebra of type Λ,
and let F ⊆A. A congruence θ on A is compatible with F if a ∈ F and a θ b
implies b ∈ F . The Leibniz congruence on A over F , in symbols ΩAF , is
the largest congruence on A compatible with F . Thus ΩAF =

∨
{θ ∈ConA :

θ is compatible with F}; we write simply Ω for ΩFmΛ . For a survey of the
(induced) operator ΩAF in abstract algebraic logic, see (Font, 1993).

For a deductive system S over a language type Λ, the Tarski congru-
ence Ω̃(S) is the largest congruence on FmΛ that is compatible with every
theory of S. Thus Ω̃(S) =

⋂
{ΩT : T ∈ThS}. For studies of the Tarski congru-

ence in (second-order) abstract algebraic logic see (Font and Jansana, 2009;
Czelakowski and Pigozzi, 2004).

Let Λ1 and Λ2 be two language types, and let α be a map from Λ1 to
FmΛ2 . The standard extension of α is the function ᾱ : FmΛ1 → FmΛ2
defined recursively based on the complexity of terms by

(xi)ᾱ := xi,

(cϕ0, . . . ,ϕn−1)ᾱ := [[ϕᾱ0 , . . . ,ϕᾱn−1]]cα

where xi is a variable, c ∈ Λ1 is an n-ary connective, ϕ0, . . . ,ϕn−1 are Λ1-
formulas, and [[ϕ0, . . . ,ϕn−1]] is the surjective substitution that takes values
ϕi on xi for i= 0, . . . ,n−1, and takes value xj on xj+n for all j ≥ 0 (Gyuris,
1999, Section 2.1.1, p. 48). The map ᾱ extends to sets of formulas in the
natural way upon defining Γ ᾱ := {ϕᾱ : ϕ ∈ Γ} for all Γ ⊆ FmΛ1 .

Let S1 := 〈Λ1,`S1〉 and S2 := 〈Λ2,`S2〉 be two deductive systems. A map
α : Λ1→ FmΛ2 is an interpretation of S1 in S2 if it satisfies the following
two conditions (Gyuris, 1999, Definition 2.5):

1. 〈cα,µcα〉 ∈ Ω̃(S2) for all connectives c of Λ1 with arity n and substitu-
tions µ of Λ2 that fix the first n variables;

2. If Γ `S1 ϕ then Γ ᾱ `S2 ϕ
ᾱ for all Γ ⊆ FmΛ1 and ϕ ∈ FmΛ1 .

By (Gyuris, 1999, Chapter 2§2.1, pp. 49–50), this notion of interpretation
generalises the usual notion (McKenzie et al., 1987, Chapter 4§12) of inter-
pretation for quasivarieties.

Let α be an interpretation of S1 in S2, and β an interpretation of S2 in
S1. We say that α and β are mutually inverse if 〈ϕ,ϕᾱβ̄〉 ∈ Ω̃(S1) and
〈ψ,ψβ̄ᾱ〉 ∈ Ω̃(S2) for all ϕ ∈ FmΛ1 and ψ ∈ FmΛ2 . The deductive systems S1
and S2 are definitionally equivalent if there are interpretations α of S1 in
S2 and β of S2 in S1 that are mutually inverse (Gyuris, 1999, Definition 2.14).
By (Gyuris, 1999, Proposition 2.17), this notion of definitional equivalence is
a generalisation of the usual notion (McKenzie et al., 1987, Chapter 4§12) of
term equivalence for quasivarieties.

Proof of Theorem 2.1 For each i= 1,2, let Si be a deductive system over
a language type Λi such that Ki is an algebraic (quasivariety) semantics for Si
with singleton system of defining equations δi(x)≈ εi(x). Let α : Λ1→ FmΛ2
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and β : Λ2→ FmΛ1 be interpretations of K1 in K2 and K2 in K1 respectively.
Adapting terminology from (Czelakowski, 2001, Chapter 4§2), the defining
equations δi(x) ≈ εi(x), i = 1,2, are said to commute with the interpre-
tations α and β if for all Γi ⊆ FmΛi (i= 1,2), it holds that

K1 |=
(
δ2(Γ2)

)β̄ ≈ δ1(Γ β̄2 ) and K1 |=
(
ε2(Γ2)

)β̄ ≈ ε1(Γ β̄2 ),

K2 |=
(
δ1(Γ1)

)ᾱ ≈ δ2(Γ ᾱ1 ) and K2 |=
(
ε1(Γ1)

)ᾱ ≈ ε2(Γ ᾱ1 ).

The proof of the next theorem is along the lines of the proof of (Spinks
and Veroff, 2008b, Theorem 4.6); it calls for considerable technical machinery
of abstract algebraic logic.

Theorem 3.25. Let S1 and S2 be algebraisable deductive systems over lan-
guage types Λ1 and Λ2 respectively, let δ1(x) ≈ ε1(x) and δ2(x) ≈ ε2(x) be
singleton systems of defining equations for S1 and S2 respectively, and let K1
and K2 be the equivalent quasivariety semantics of S1 and S2 respectively.
Suppose K1 and K2 are term equivalent with mutually inverse interpreta-
tions α : Λ1 → FmΛ2 and β : Λ2 → FmΛ1 such that the defining equations
δ1(x) ≈ ε1(x) and δ2(x) ≈ ε2(x) commute with the interpretations α and β.
Then the following statements hold:

1. The maps α and β are interpretations of S1 in S2 and S2 in S1 respec-
tively.

2. The interpretations α and β are mutually inverse.
3. The deductive systems S1 and S2 are definitionally equivalent with mu-

tually inverse interpretations α : Λ1→ FmΛ2 and β : Λ2→ FmΛ1 .

The proof of Theorem 2.1 follows from Theorem 3.3 and Theorem 3.25.
Inasmuch as Theorem 3.25 is oriented towards applications, the restriction

to singleton systems of defining equations in the statement of the theorem is
quite natural. For a discussion of this point, see (Raftery, 2006, Section 10)
or (Blok and Raftery, 2008, Sections 5, 9, 11, 13).

Necessary conditions to be satisfied by any reasonable notion of definitional
equivalence are postulated in (Caleiro and Gonçalves, 2005). There, it is
asserted that deductive systems S1 and S2 are definitionally equivalent if
there exist:

• mutually inverse syntactic translations, uniform in the sense of (Caleiro
and Gonçalves, 2005), mapping formulas of S1 to formulas of S2 and con-
versely, and

• mutually inverse lattice isomorphisms between the lattices of theories of S1
and S2.

These stipulations are met by the notion of definitional equivalence used in
this work.
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4 Extensions and expansions of N4

4.1 Extensions of N4 by the weakening axiom
` x⇒ (y⇒ x)

Let S be an extension of RW. By the theory of relevant logics (Restall, 2000,
Section 2.3, p. 24 ff.), (Galatos et al., 2007, Section 2.1, p. 85 ff.) the exten-
sion of S by weakening may be identified with the axiomatic extension of S
by the weakening axiom ` x⇒ (y⇒ x). Since DPNRW� is an (axiomatic)
extension of RW, the extension of N4 by weakening may therefore be iden-
tified (in view of Theorem 2.1) with the axiomatic extension of N4 by the
weakening axiom ` x⇒ (y⇒ x), where the derived connective ⇒ of this
latter axiom is as fixed by the map (⇒def). Mutatis mutandis, these remarks
extend also to N4⊥ and N3. For each S ∈ {N4,N4⊥,N3}, the extension
of S by weakening, in symbols Sw, is thus the axiomatic extension of S by
the weakening axiom ` x⇒ (y⇒ x).

Constructive logic with strong negation Recall from Section 2 that N3
denotes the axiomatic extension of N4 by the axiom ` x→ (∼x→ y).

Theorem 4.1. The axiomatic extension of N4 by the weakening axiom
` x⇒ (y⇒ x) is N3.

Proof. Let N4w denote the class of all N4-lattices satisfying the identity

x⇒ (y⇒ x)≈
∣∣x⇒ (y⇒ x)

∣∣.(25)

To prove the theorem, it suffices to show N4w = N3. To this end, observe first
that an N4-lattice B satisfies (25) iff the inequality a≤ b⇒ a holds identically
on B. Let A be an N4-lattice and let a,b∈A. Suppose A∈N3. Then A |= (8).
By (8), a�∼a→∼b. Also,∼(∼a→∼b)�∼a by (2), so a≤∼a→∼b by (N5).
On the other hand, a ≤ b→ a by (3). Thus a ≤ (b→ a)∧ (∼a→∼b), which
is to say a≤ b⇒ a. Hence A |= (25). Conversely, suppose A |= (25). By (25),
a≤∼b⇒ a, whence a≤∼a⇒∼∼ b=∼a⇒ b= (∼a→ b)∧ (∼b→ a). Thus
a≤∼a→ b. By (N5), a�∼a→ b. Hence A |= (8). Thus A ∈ N3.

Observe that Theorem 4.1 asserts that the extension of N4 by weakening
is N3.

Let S be a deductive system over a language type Λ. Following Smiley
(1962, 1963), Λ-formulas ϕ,ψ are synonymous in S, in symbols ϕ ≡S ψ,
if ϕ and ψ are freely interreplaceable in all contexts in S (Humberstone, 2015,
Section 3, p. 300), (Humberstone, 2005, Section 2). That is, ϕ ≡S ψ if, for
every formula ξ(ϕ) and every formula ξ(ψ) obtained from ξ(ϕ) upon replacing
one or more occurrences of ϕ in ξ(ϕ) by ψ, it holds that ξ(ϕ) `S ξ(ψ) and
vice versa. In particular, for all N4-formulas ϕ,ψ, the formulas |ϕ| and |ψ|
are synonymous in N4w; thus the unary term |x| is constant over N3. From
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this it follows that the extension of N4⊥ by weakening is, up to definitional
equivalence, N3.

In (Spinks and Veroff, 2008b, Theorem 1.1) (see also (Busaniche and Cig-
noli, 2010, Sections 2–3)) the present authors proved that N3 is, up to defi-
nitional equivalence, the axiomatic extension NInFLew of the involutive full
Lambek calculus with weakening InFLew (Galatos et al., 2007, Section 2.1,
p. 90) by the axiom

`
(
(x⇒ (x⇒ y))∧ (∼y⇒ (∼y⇒∼x))

)
⇒ (x⇒ y).(Nelson)

In the result of (Spinks and Veroff, 2008b, Theorem 1.1), the ordered
pair (→def) is replaced by the ordered pair x→ y 7→ x⇒ (x⇒ y). Because
|ϕ| ≡N4w |ψ| for all N4-formulas ϕ,ψ, it holds that ϕ∧ (ψ⇒ ψ)≡N4w ϕ for
all N4-formulas ϕ,ψ. Therefore ϕRM⇒ ψ≡N3 ϕ⇒ψ for all N4-formulas ϕ,ψ;
since the right projection of the ordered pair (→def) rewrites to xRM⇒ (xRM⇒
y), it follows that the right projection of the ordered pair (→def) and the for-
mula x⇒ (x⇒ y) are synonymous in N3. Moreover, (Internal weakening�` )
is a theorem of NInFLew, while its analogue is provable in N3. Theorem 2.1
thus specialises, up to definitional equivalence, to (Spinks and Veroff, 2008b,
Theorem 1.1). The next theorem, which sharpens (Busaniche and Cignoli,
2010, Corollary 3.8), is an algebraic analogue of this latter result; in the
statement of the theorem, a residuated lattice A is integral if a ≤ e for all
a ∈A. The long proof is again omitted.

Theorem 4.2. Up to term equivalence, a Nelson algebra is an integral resid-
uated lattice with negation A such that l.u.b.{a2,a∧∼a}= a for all a ∈A.

Slaney’s logic F∗∗ The deductive system F∗∗ is the axiomatic extension of
RW by the axiom ` x⇒ (y⇒ x) and the axiom

`
(
(x⇒ (x⇒ y))∧ (∼y⇒ (x⇒ y))

)
⇒ (x⇒ y).(Nelson′)

The logic F∗∗ was introduced in (Slaney et al., 1989) in connection with the
study of future contingent propositions; it has been further studied in (Re-
stall, 2005; Slaney, 2010; Spinks and Veroff, 2010).

Let S ∈ {F∗∗,N3}. Because ∼ is contraposable in S, for all S-formulas
ϕ,ψ it holds that ϕ⇒ ψ ≡S ∼ψ⇒∼ϕ. From this, it follows directly that the
formulas (Nelson) and (Nelson′) are synonymous in S. As N3 is the axiomatic
extension of N4 by the weakening axiom ` x⇒ (y⇒ x), we conclude:

Theorem 4.3. (Spinks and Veroff, 2010, Theorem 1.1) The axiomatic ex-
tension of N4 by the weakening axiom ` x⇒ (y⇒ x) is, up to definitional
equivalence, the logic F∗∗ of future contingents of Slaney et al. (Restall, 2005;
Slaney, 2010; Slaney et al., 1989; Spinks and Veroff, 2010).

Slaney’s logic BN Let S be an axiomatic extension of RW. The ax-
iomatic expansion of S by the Ackermann constant t, in symbols St,
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is the deductive system over the language Λ[RW]∪{t}, where t is a nullary
logical connective, axiomatised by a presentation of S together with the ax-
ioms ` t and ` t⇒ |x| (Restall, 2006, Section 2.2, pp. 298–299). The intended
interpretation of t in this context is ‘the conjunction of all logical truths’.

For a language type Λ having distinguished binary logical connectives ∧
and ⇒ and a distinguished nullary logical connective t, let

ϕ
t→ ψ abbreviate (ϕ∧ t)⇒

(
(ϕ∧ t)⇒ ψ

)
for all Λ-formulas ϕ,ψ. The deductive system BN is the axiomatic extension
of RWt by the axioms

` (x∗y) t→ x and `
(
(x t→ y)∧ (∼y t→∼x)

)
⇒ (x⇒ y).

As with F∗∗, the deductive system BN was introduced in (Slaney et al.,
1989) in connection with the study of future contingent propositions. The
logic BN has been further studied in (Restall, 1993; Slaney, 1991).

Let RM denote the relevant logic with mingle of McCall and Dunn (An-
derson and Belnap, 1975, §§29.3–29.4), (Avron, 2016), that is, the axiomatic
extension of R by the mingle axiom ` x⇒ |x|. In (Blok and Raftery, 2004,
Section 2.5, p. 74) Blok and Raftery observe that for all RMt-formulas ϕ,ψ,
it holds that ϕ RM⇒ ψ ≡RMt (ϕ∧ t)⇒ ψ. Similarly, it can be observed that
ϕ→ ψ ≡(DPNRW�)t ϕ

t→ ψ for all (DPNRW�)t-formulas ϕ,ψ. Identify-
ing the axiomatic expansion of N4 by the Ackermann constant t with the
deductive system (DPNRW�)t, we obtain:

Theorem 4.4. The axiomatic expansion of N4 by the Ackermann constant t
is, up to definitional equivalence, the deductive system BN of Slaney (Restall,
1993; Slaney, 1991; Slaney et al., 1989).

4.2 Extensions of N4 by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y)

Let S be an extension of RW. By the theory of relevant logics (Restall,
2000, Section 2.3, p. 24 ff.), (Galatos et al., 2007, Section 2.1, p. 85 ff.) the
extension of S by contraction may be identified with the axiomatic extension
of S by the contraction axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y). Since DPNRW�

is an (axiomatic) extension of RW, the extension of N4 by contraction may
therefore be identified (in view of Theorem 2.1) with the axiomatic extension
of N4 by the contraction axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y), where the

derived connective ⇒ of this latter axiom is as fixed by the map (⇒def).
Mutatis mutandis, these remarks extend also to N4⊥ and N3. For each
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S ∈ {N4,N4⊥,N3}, the extension of S by contraction, in symbols Sc,
is thus the axiomatic extension of S by the axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y).

The 3-valued relevant logic with mingle RM3 The logic RM3 (An-
derson and Belnap, 1975, §26.9, §29.12) is the deductive system over the
language Λ[RW] determined by the matrix:

∧ > b ⊥
†> > b ⊥
†b b b ⊥
⊥ ⊥ ⊥ ⊥

∨ > b ⊥
> > > >
b > b b
⊥ > b ⊥

∗ > b ⊥
> > > ⊥
b > b ⊥
⊥ ⊥ ⊥ ⊥

⇒ > b ⊥
> > ⊥ ⊥
b > b ⊥
⊥ > > >

∼
> ⊥
b b
⊥ >

(Here and in the sequel the designated elements of a matrix are marked with
the symbol ‘†’.) Denote this matrix by RM3. The logic RM3 is, in a sense,
the strongest logic in the family of relevant logics (Avron, 1991, p. 277); it has
been further investigated in (for instance) (Avron, 1991; Brady, 1982; Dunn,
1970; Parks, 1972; Tokarz, 1975). Axiomatically, RM3 may be obtained from
a standard presentation of RM (Blok and Raftery, 2004, Section 2, p. 65)
upon adjoining the axiom ` x∨ (x⇒ y). Recall from (Font and Pérez, 1992,
Corollary 9, Theorem 4) that RM, hence RM3, is strongly algebraisable
with system of equivalence formulas {ϕ⇒ ψ,ψ⇒ ϕ} and system of defining
equations

{
x≈ |x|

}
; the equivalent variety semantics of RM is the variety of

Sugihara algebras considered in (Blok and Dziobiak, 1986; Blok and Raftery,
2004; Font and Pérez, 1992).

Let RM3 denote the algebra reduct of RM3. Let RM3 := HSP(RM3).
Observe that, since the right projection of the ordered pair (→′def) is syn-
onymous with the the right projection of the ordered pair (→def) in N4, it
follows that the right projection of the ordered pair (→def) and the formula
x

RM⇒ y are synonymous in N4c. This simplifies computations in the proof of
the next theorem.

Theorem 4.5. The axiomatic extension of N4 by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional equivalence, the 3-valued

relevant logic with mingle RM3 (Anderson and Belnap, 1975, p. 470 ff.).

Proof. (Sketch) Let B be an adjunctive distributive residuated lo-semigroup
with negation. Notice first that:

(i) If B is square increasing (that is, if b≤ b∗b holds identically on B), then
B |=

(
(x RM⇒ y)∧ (∼y RM⇒ ∼x)

)
∨ (x⇒ y) ≈ x⇒ y iff B is a Sugihara

algebra. (See also (Avron, 1986, Theorem 1.7) for this observation.)
(ii) If B is a Sugihara algebra, then B |= x∨ (x⇒ y) ≈

∣∣x∨ (x⇒ y)
∣∣ iff

B |= (x∗y) RM⇒ x≈
∣∣(x∗y) RM⇒ x

∣∣.
Let DPNRW�

c denote the class of all members of DPNRW� satisfying the
identity
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x⇒ (x⇒ y)

)
⇒ (x⇒ y)≈

∣∣(x⇒ (x⇒ y))⇒ (x⇒ y)
∣∣(26)

and let A be an adjunctive distributive residuated lo-semigroup with nega-
tion. From (i) and (ii), it follows that A ∈ DPNRW�

c iff A ∈ RM3. Thus
DPNRW�

c = RM3. Let N4c denote the class of all N4-lattices satisfying (26).
From Theorem 3.3, it follows that N4c and DPNRW�

c are term equivalent;
thus N4c and RM3 are term equivalent. Applying Theorem 3.25, we conclude
that N4c and RM3 are definitionally equivalent.

Observe that Theorem 4.5 asserts that the extension of N4 by contraction
is RM3.

The classical propositional calculus Let CPC denote the classical
propositional calculus, considered in the language Λ[N4]. In (Spinks and
Veroff, 2008a, Corollary 3.8), the present authors essentially observe that
CPC is the axiomatic extension of N3 by the contraction axiom `

(
x⇒

(x⇒ y)
)
⇒ (x⇒ y). As N3 is the axiomatic extension of N4 by the weak-

ening axiom ` x⇒ (y⇒ x), we conclude:

Theorem 4.6. The axiomatic extension of N4 by the weakening axiom
` x⇒ (y⇒ x) and the contraction axiom `

(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up

to definitional equivalence, the classical propositional calculus CPC.

The axiomatic expansion of RM3 by the Church constant > Fol-
lowing (Restall, 2006, Section 2.2, pp. 298–299), the axiomatic expansion
of RM3 by the Church constant >, in symbols RM3>, is the deductive
system over the language Λ[RW>] := Λ[RW]∪{>}, where > is a nullary
logical connective, axiomatised by a presentation of RM3 together with the
axiom ` x⇒ >. The intended interpretation of > in this context is ‘the
disjunction of all sentences’; cf. (Meyer, 2004, Section 5.2, p. 209). Modulo
Theorem 4.5, the next result is clear.

Theorem 4.7. The axiomatic extension of N4⊥ by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional equivalence, the logic RM3>.

The deductive system Pac Let Λ[Pac] be a language consisting of binary
logical connectives ∧, ∨, and ⊃, and the unary logical connective ∼. The logic
Pac is the deductive system over Λ[Pac] determined by the matrix:

∧ > b ⊥
†> > b ⊥
†b b b ⊥
⊥ ⊥ ⊥ ⊥

∨ > b ⊥
> > > >
b > b b
⊥ > b ⊥

⊃ > b ⊥
> > b ⊥
b > b ⊥
⊥ > > >

∼
> ⊥
b b
⊥ >

The deductive system Pac was introduced in (Batens, 1980, Section 6)
(but see also (Schütte, 1960, Chapter II§7)), where it was denoted PIs, and
independently in (Avron, 1986), where it was denoted RM⊃3 . The designa-
tion Pac is due to (Avron, 1991). According to (Carnielli, 2002, Section 2),
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Priest’s logic of paradox LP (Priest, 1989) is the {⊃}-free fragment of Pac;
(Arieli et al., 2010, Example 40) show Pac is maximally paraconsistent. For
studies of Pac, see in particular (Avron, 1991) or (Arieli and Avron, 2015,
Section 5.4); for a discussion and further references, see (Carnielli and Mar-
cos, 2002, Section 2.4).

The next result is essentially (Avron, 1986, Theorem 2.10(a)). See also
(Avron, 1991, Proposition, Section 3, p. 287).

Theorem 4.8.
1. The map α : Λ[Pac]→ FmΛ[RW] defined by

x∧y 7→ x∧y x⊃ y 7→ (x⇒ y)∨y
x∨y 7→ x∨y ∼x 7→ ∼x

is an interpretation of Pac in RM3.
2. The map β : Λ[RW]→ FmΛ[Pac] defined by

x∧y 7→ x∧y x⇒ y 7→ (x⊃ y)∧ (∼y ⊃∼x)
x∨y 7→ x∨y x∗y 7→ ∼(x⊃∼y)∨∼(y ⊃∼x)
∼x 7→ ∼x

is an interpretation of RM3 in Pac.
3. The interpretations α and β are mutually inverse.

Hence the deductive systems Pac and RM3 are definitionally equivalent.

Since definitional equivalence is an equivalence relation on deductive sys-
tems (cf. (McKenzie et al., 1987, Section 4.12, p. 246)), we conclude:

Corollary 4.9. The axiomatic extension of N4 by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional equivalence, Avron’s logic

Pac (Arieli and Avron, 2015; Avron, 1986, 1991; Batens, 1980).

The deductive system J3 Let Λ[J3] :=Λ[Pac]∪{∇}, where ∇ is a unary
logical connective. The logic J3 is the deductive system over Λ[J3] determined
by the matrix:

∧ > b ⊥
†> > b ⊥
†b b b ⊥
⊥ ⊥ ⊥ ⊥

∨ > b ⊥
> > > >
b > b b
⊥ > b ⊥

⊃ > b ⊥
> > b ⊥
b > b ⊥
⊥ > > >

∼
> ⊥
b b
⊥ >

∇
> >
b >
⊥ ⊥

The deductive system J3 was introduced by D’Ottaviano and da Costa (1970)
in connection with the solution to a problem of Jaśkowski. It has been further
studied by Epstein (1995, Chapter IX); applications are given in (da Costa,
1974). See also (Avron, 1986, 1991). The formulation of J3 given here can be
found in (Marcos, 2005, Section 2.2).
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The next result is basically stated in (Carnielli and Marcos, 2002, Sec-
tion 2.4, p. 26).

Theorem 4.10.

1. The map α : Λ[J3]→ FmΛ[RW>] defined by

x∧y 7→ x∧y x⊃ y 7→ (x⇒ y)∨y
x∨y 7→ x∨y ∼x 7→ ∼x
∇x 7→ x∗>

is an interpretation of J3 in RM3>.
2. The map β : Λ[RW>]→ FmΛ[J3] defined by

x∧y 7→ x∧y x∗y 7→ ∼(x⊃∼y)∨∼(y ⊃∼x)
x∨y 7→ x∨y ∼x 7→ ∼x
x⇒ y 7→ (x⊃ y)∧ (∼y ⊃∼x) > 7→ ∇(x⊃ x)

is an interpretation of RM3> in J3.
3. The interpretations α and β are mutually inverse.

Hence the deductive systems RM3> and J3 are definitionally equivalent.

Since definitional equivalence is an equivalence relation on deductive sys-
tems (cf. (McKenzie et al., 1987, Section 4.12, p. 246)), we conclude:

Corollary 4.11. The axiomatic extension of N4⊥ by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional equivalence, the 3-valued logic

J3 of D’Ottaviano and da Costa (Carnielli and Marcos, 2002; D’Ottaviano
and da Costa, 1970; Epstein, 1995).

The deductive system LFI1 Let Λ[LFI1] be a language type having
binary logical connectives ∧, ∨, and ⊃, and unary logical connectives ∼ and •.
The logic LFI1 is the deductive system over Λ[LFI1] determined by the
matrix:

∧ > b ⊥
†> > b ⊥
†b b b ⊥
⊥ ⊥ ⊥ ⊥

∨ > b ⊥
> > > >
b > b b
⊥ > b ⊥

⊃ > b ⊥
> > b ⊥
b > b ⊥
⊥ > > >

∼
> ⊥
b b
⊥ >

•
> ⊥
b >
⊥ ⊥

The deductive system LFI1 was introduced in (Carnielli et al., 2000) qua
a ‘logic of formal inconsistency’ (Carnielli et al., 2007; Carnielli and Marcos,
2002), and it has been further considered in (for example) (de Amo et al.,
2002; Carnielli et al., 2007; Carnielli and Marcos, 2002; Carnielli, 2002). The
next result is essentially (Carnielli et al., 2000, Remark 3.2).
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Theorem 4.12.

1. The map α : Λ[LFI1]→ FmΛ[J3] defined by

x∧y 7→ x∧y x⊃ y 7→ x⊃ y
x∨y 7→ x∨y ∼x 7→ ∼x
•x 7→ ∇x∧∇∼x

is an interpretation of LFI1 in J3.
2. The map β : Λ[J3]→ FmΛ[LFI1] defined by

x∧y 7→ x∧y x⊃ y 7→ x⊃ y
x∨y 7→ x∨y ∼x 7→ ∼x
∇x 7→ x∨•x

is an interpretation of J3 in LFI1.
3. The interpretations α and β are mutually inverse.

Hence the deductive systems J3 and LFI1 are definitionally equivalent.
Since definitional equivalence is an equivalence relation on deductive sys-

tems (cf. (McKenzie et al., 1987, Section 4.12, p. 246)), we conclude:
Corollary 4.13. The axiomatic extension of N4⊥ by the contraction axiom
`
(
x⇒ (x⇒ y)

)
⇒ (x⇒ y) is, up to definitional equivalence, the logic LFI1

of Carnielli et al. (Carnielli et al., 2007; Carnielli and Marcos, 2002; Carnielli
et al., 2000).

4.3 Extensions of N4 by the prelinearity axiom
` (x→ y)∨ (y→ x)

The nilpotent minimum logic NM Let NM denote the deductive sys-
tem over the language {∧,∗,⇒,⊥}, where ∧, ∗, and ⇒ are binary logical
connectives and ⊥ is a nullary logical connective, presented by the axioms
and inference rules

` (x⇒ y)⇒
(
(y⇒ z)⇒ (x⇒ z)

)
`
(
(x∗y)⇒ z

)
⇒
(
x⇒ (y⇒ z)

)
` (x∗y)⇒ x `

(
(x⇒ y)⇒ z

)
⇒
(
((y⇒ x)⇒ z)⇒ z

)
` (x∗y)⇒ (y ∗x) `⊥⇒ x

` (x∧y)⇒ x `
(
(x⇒⊥)⇒⊥

)
⇒ x

` (x∧y)⇒ (y∧x) `
(
(x∗y)⇒⊥

)
∨
(
(x∧y)⇒ (x∗y)

)
`
(
x∗ (x⇒ y)

)
⇒ (x∧y) x,x⇒ y ` y,

`
(
x⇒ (y⇒ z)

)
⇒
(
(x∗y)⇒ z

)
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where for all formulas ϕ,ψ in the language of NM, the expression ϕ∨ψ abbre-
viates

(
(ϕ⇒ ψ)⇒ ψ

)
∧
(
(ψ⇒ ϕ)⇒ ϕ

)
. The deductive system NM is known

as Esteva and Godo’s nilpotent minimum logic in the literature (Bianchi,
2011; Esteva and Godo, 2001; Gispert, 2003; Noguera, 2007; Noguera et al.,
2008).

Let NM denote the class of nilpotent minimum algebras introduced in (Es-
teva and Godo, 2001) and further studied in (Bianchi, 2011; Noguera, 2007;
Noguera et al., 2008). By (Noguera et al., 2008, Theorem 2.8), NM is the
variety generated by the (involutive) left-continuous t-norm of Fodor (1995)
on the real unit interval [0,1], while by (Noguera, 2007, Theorem 3.4), NM is
strongly algebraisable with system of equivalence formulas {ϕ⇒ ψ,ψ⇒ ϕ},
system of defining equations

{
x≈ |x|

}
, and equivalent variety semantics NM.

Let N3` denote the equational class of all Nelson algebras satisfying the pre-
linearity identity (x→ y)∨ (y→ x)≈

∣∣(x→ y)∨ (y→ x)
∣∣. By remarks due to

(Busaniche and Cignoli, 2010, Section 6.3), the varieties N3` and NM are term
equivalent. Because N3 is the axiomatic extension of N4 by the weakening
axiom ` x⇒ (y⇒ x), from Theorem 3.25 we deduce:

Theorem 4.14. The axiomatic extension of N4 by the weakening axiom
` x ⇒ (y ⇒ x) and the prelinearity axiom ` (x → y) ∨ (y → x) is, up to
definitional equivalence, the nilpotent minimum logic NM of Esteva and
Godo (Bianchi, 2011; Esteva and Godo, 2001; Gispert, 2003; Noguera, 2007;
Noguera et al., 2008).

The logic L∗ of fuzzy reasoning of Wang The logic L∗ of fuzzy reason-
ing of Wang (Pei and Wang, 2002; Wang, 1997, 1999, 2000; Wang and Wang,
2001) is the deductive system over the language {∨,⇒,∼}, where ∨ and ⇒
are binary logical connectives and ∼ is a unary logical connective, presented
by the axioms and inference rules

` x⇒ (y⇒ x) `
(
(x⇒ z)∧ (y⇒ z)

)
⇒
(
(x∨y)⇒ z

)
` (∼x⇒∼y)⇒ (y⇒ x) `

(
(x∧y)⇒ z

)
⇒
(
(x⇒ z)∨ (y⇒ z)

)
`
(
x⇒ (y⇒ z)

)
⇒
(
y⇒ (x⇒ z)

)
` (x⇒ y)∨

(
(x⇒ y)⇒ (∼x∨y)

)
` (y⇒ z)⇒

(
(x⇒ y)⇒ (x⇒ z)

)
` x⇒

(
y⇒ (x∧y)

)
` x⇒∼∼x `

(
(x⇒ y)∧ (x⇒ z)

)
⇒
(
x⇒ (y∧ z)

)
` x⇒ (x∨y) x,x⇒ y ` y,
` (x∨y)⇒ (y∨x)

where for all formulas ϕ,ψ in the language of L∗, the expression ϕ∧ψ abbre-
viates ∼(∼ϕ∨∼ψ). Routine arguments show that L∗ is strongly algebraisable
with system of equivalence formulas {ϕ⇒ ψ,ψ⇒ ϕ} and system of defining
equations

{
x≈ |x|

}
; the equivalent variety semantics of L∗ is the variety R0

of R0-algebras introduced in (Wang, 2000) and studied further in (Cheng and
Wang, 1999; Wang, 2002; Zhou and Li, 2010).
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In (Pei, 2003, Theorem 5) Pei showed that the varieties of R0-algebras and
NM-algebras are term equivalent. Since term equivalence is an equivalence
relation on quasivarieties (cf. (McKenzie et al., 1987, Section 4.12, p. 246)),
it also holds that the varieties N3` and R0 are term equivalent. We therefore
have the following result, which may be understood as both strengthening
and sharpening (Pei, 2003, Theorem 4).

Theorem 4.15. The axiomatic extension of N4 by the weakening axiom
` x⇒ (y⇒ x) and the prelinearity axiom ` (x→ y)∨ (y→ x) is, up to defi-
nitional equivalence, the logic L∗ of fuzzy reasoning of Wang (Pei and Wang,
2002; Wang, 1997, 1999, 2000; Wang and Wang, 2001).

4.4 Extensions of N4 by the Peirce law
`
(
(x→ y)→ x

)
→ x

The logic B of Brouwerian bilattices Let Σ′[IPC+] be the set of ax-
ioms and rules got from Σ[IPC+] by replacing the axiom ` (x→ y)→

(
(x→

z)→ (x→ (y ∧ z))
)

of Σ[IPC+] with the axiom ` x→
(
y → (x∧ y)

)
, and

let Σ′[N4] denote the presentation determined by the axioms and inference
rules of Σ′[IPC+] together with the axioms for the strong negation connec-
tive of (1). Bou and Rivieccio’s logic of Brouwerian bilattices (Bou and
Rivieccio, 2013, Definition 1.1) is the deductive system B over the language
{∧,∨,⊕,⊗,→,∼}, where ∧,∨,⊕,⊗, and→ are binary logical connectives and
∼ is a unary logical connective, presented by the axioms and inference rules
of Σ′[N4] together with the axioms

` (x⊗y)→ x

` (x⊗y)→ y

` x→
(
y→ (x⊗y)

)
` ∼(x⊗y)↔∼x⊗∼y

` x→ (x⊕y)
` y→ (x⊕y)
` (x→ z)→

(
(y→ z)→ ((x⊕y)→ z)

)
` ∼(x⊕y)↔∼x⊕∼y.

(Here ϕ↔ ψ abbreviates (ϕ→ ψ)∧ (ψ→ ϕ) for all B-formulas ϕ,ψ.)

Theorem 4.16. (Bou and Rivieccio, 2013, Section 2.2) N4 is the {∧,∨,→
,∼}-fragment of the logic B of Brouwerian bilattices of Bou and Rivieccio
(Bou and Rivieccio, 2013).

The Hilbert-style ‘basic system’ HBe of Avron The (Hilbert-style)
basic system, in symbols HBe, is the deductive system over the language
Λ[N4] presented by the set of axioms and inference rules Σ′[N4], together
with the Peirce law `

(
(x→ y)→ x

)
→ x. The deductive system HBe was in-

troduced in (Avron, 1991, Section 4) in connection with the study of ‘natural’
3-valued logics.
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For each S ∈ {N4,N4⊥,N3}, let Sp denote the axiomatic extension of S
by the Peirce law `

(
(x→ y)→ x

)
→ x.

Theorem 4.17. The axiomatic extension of N4 by the Peirce law `
(
(x→

y)→ x
)
→ x is the (Hilbert style) ‘basic system’ HBe of Avron (Arieli, 1999;

Arieli and Avron, 1994, 1996; Avron, 1991).

Proof. It is well known that the presentations Σ[IPC+] and Σ′[IPC+]
both axiomatise IPC+. It follows that Σ′[N4] constitutes an axiomatisation
of N4. As HBe and N4p have the same language type, the two deductive
systems coincide.

By (Avron, 1991, Theorem on Extensions), Pac is the axiomatic extension
of HBe by the law of the excluded middle ` x∨∼x. This yields the next
result, which is essentially observed in (Brady, 1982, Section 6, p. 32).

Corollary 4.18. The axiomatic extension of N4 by the Peirce law `
(
(x→

y)→ x
)
→ x and the law of the excluded middle ` x∨∼x is, up to definitional

equivalence, RM3.

The logic HBL of implicative bilattices The deductive system HBe
has been further considered by Arieli et al. in the context of the logic of
implicative bilattices (Arieli, 1999; Arieli and Avron, 1994, 1996). The logic
of implicative bilattices (Arieli and Avron, 1996, Section 3), in symbols
HBL, is the axiomatic extension of the logic B by the Peirce law `

(
(x→

y)→ x)→ x
)
. For recent studies of the logic of implicative bilattices, see (Bou

and Rivieccio, 2011; Rivieccio, 2010; Rivieccio et al., 2011).
The next result is unsurprising in view of Theorem 4.16.

Theorem 4.19. The axiomatic extension of N4 by the Peirce law `
(
(x→

y)→ x
)
→ x is the {∧,∨,→,∼}-fragment of the logic HBL of implicative

bilattices of Arieli and Avron (Arieli and Avron, 1996; Bou and Rivieccio,
2011; Rivieccio, 2010; Rivieccio et al., 2011).

Proof. Let Σ[HBL] denote the presentation of HBL given in (Arieli and
Avron, 1996, Section 3). By (Arieli and Avron, 1996, Corollary 3.24), the
presentation Σ[HBL] is separable in the sense that for each subset Λ ⊆
Λ[HBL] such that →∈ Λ, the Λ-fragment of HBL is axiomatised by those
axioms and inference rules of Σ[HBL] whose connectives are among those in
Λ. The {∧,∨,→,∼}-fragment of HBL is thus axiomatised by Λ′[N4] together
with the Peirce law `

(
(x→ y)→ x

)
→ x. The {∧,∨,→,∼}-fragment of HBL

is thus HBe, which is to say, N4p.

The logic BN4 The logic BN4 (Restall, 2006, Example 17), (Restall, 2000,
Example 8.39) is the deductive system over the language Λ[RW] determined
by the matrix:
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∧ > b n ⊥
†> > b n ⊥
†b b b ⊥ ⊥
n n ⊥ n ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∨ > b n ⊥
> > > > >
b > b > b
n > > n n
⊥ > b n ⊥

∗ > b n ⊥
> > > n ⊥
b > b n ⊥
n n n ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

⇒ > b n ⊥
> > ⊥ n ⊥
b > b n ⊥
n > n > n
⊥ > > > >

∼
> ⊥
b b
n n
⊥ >

Denote this matrix by BN4. The logic BN4 was introduced in (Brady, 1982,
Section 1) in connection with the study of Anderson and Belnap’s logic Efde
of first-degree entailments (Anderson and Belnap, 1975, pp. 161–162). See
also (Belnap, 1977, 1976) and (Dunn, 1976). The deductive system BN4
has been further studied as a logic permitting both truth value ‘gaps’ and
truth value ‘gluts’ in (Meyer et al., 1984; Restall, 1993; Slaney, 1991, 2004);
cf. (Kapsner, 2014, Chapter 4).

Let 4 denote the algebra with universe {>,b,n,⊥}, and whose operations
∧, ∨, →, and ∼ are fixed by the Cayley tables

∧ > b n ⊥
> > b n ⊥
b b b ⊥ ⊥
n n ⊥ n ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∨ > b n ⊥
> > > > >
b > b > b
n > > n n
⊥ > b n ⊥

→ > b n ⊥
> > b n ⊥
b > b n ⊥
n > > > >
⊥ > > > >

∼
> ⊥
b b
n n
⊥ >

Let BN4 denote the algebra reduct of BN4. Let BN4 := HSP(BN4).
Observe that: (i) 4α = BN4, where α is the map of Theorem 3.3.(1); (ii)
(BN4)β = 4, where β is the map of Theorem 3.3.(2); and (iii) 4αβ = 4 and
(BN4)βα = BN4. Thus 4 and BN4 have the same n-ary term operations for
n> 0, and so are term equivalent. By (McKenzie et al., 1987, Theorem 4.140),
we conclude that the varieties HSP(4) and BN4 are term equivalent.

Given a variety V, let VS [resp. VSI; resp. VSS] denote the class of simple
[resp. subdirectly irreducible; resp. semisimple] members of V.

Theorem 4.20. HSP(4) = HSP(N4SS).

Proof. By direct inspection, 4 is simple. Thus 4 ∈ N4SS and HSP(4) ⊆
HSP(N4SS). For the converse, suppose first that B∈N4 is simple. Then |B| ≤
4. Indeed, ConB = ConB./, by (Odintsov, 2004, Corollary 4.3). But to within
isomorphism, the only simple implicative lattice is the 2-element chain 2 (con-
sidered as an implicative lattice). Thus B has at most 2× 2 = 4 elements.
Observe next that, by direct inspection, there are precisely four simple N4-
lattices to within isomorphism, viz.:

4 := 2./ := Tw
(
2,{0,1},{0,1}

)
2./◦ := Tw

(
2,{1},{0}

)
2./R := Tw

(
2,{1},{0,1}

)
2./L := Tw

(
2,{0,1},{0}

)
.

(Cf. (Odintsov, 2005, Section 5, p. 307).) Thus N4S⊆ I
(
{2./,2./◦ ,2./R ,2./L }

)
. By

direct inspection again, I
(
{2./,2./◦ ,2./R ,2./L }

)
⊆ IS(4)⊆ S(4); thus N4S ⊆ S(4).

Now let K be the class of simple members of N4SS and let A∈N4SS. As N4SS
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is semisimple, A ∈ Ps(K) ⊆ Ps(N4S) (because K ⊆ N4S) ⊆ PsS(4) = SP(4).
Thus N4SS ⊆ SP(4). But then HSP(N4SS)⊆ HSPSP(4)⊆ HSP(4).

The next lemma generalises results of (Monteiro, 1963, 1995) to the setting
of N4-lattices.

Lemma 4.21. For a variety V of N4-lattices the following are equivalent:

1. V is semisimple.
2. V satisfies the identity

(
(x→ y)→ x

)
→ x≈

∣∣((x→ y)→ x)→ x
∣∣. (Peirce)

3. V satisfies the identity x∨ (x→ y)≈
∣∣x∨ (x→ y)

∣∣. (Peirce∨)

Proof. (Sketch) (1)⇒ (2) Suppose V is semisimple. Then V ⊆ HSP(4). By
direct inspection, 4 |= (Peirce). Thus HSP(4) |= (Peirce) and therefore so too
does V.

(2)⇒ (3) By equational reasoning.
(3) ⇒ (1) Observe first that, if B is an implicative lattice and B |=

(Peirce∨), then B is subdirectly irreducible iff B is simple. Suppose now that
V |= (Peirce∨). Let A ∈ VSI. By (Odintsov, 2004, Corollary 4.3), ConA =
ConA./; thus A./ is subdirectly irreducible. As A./ |= (Peirce∨) (because
A |= (Peirce∨)), it follows that A./ is simple. But by (Odintsov, 2004, Corol-
lary 4.3) again, ConA = ConA./; thus A is simple. Thus A ∈ VS. Therefore
VSI ⊆ VS, and V is semisimple.

From the remarks preceding Theorem 4.20, Theorem 4.20 itself, Lemma
4.21, Theorem 3.3, and Theorem 3.25 we have the following theorem, a version
of which is established in (Méndez and Robles, 2016, Section 6.5). See also
(Odintsov and Speranski, 2016, Introduction, p. 4).

Theorem 4.22. The axiomatic extension of N4 by the Peirce law `
(
(x→

y)→ x
)
→ x is, up to definitional equivalence, the deductive system BN4 of

Brady (Brady, 1982; Meyer et al., 1984; Restall, 1993; Slaney, 1991).

 Lukasiewicz’s 3-valued logic  L3 Let Λ[ L3] be a language type having
binary logical connectives ∧, ∨, and ⇒ together with a unary logical connec-
tive ∼. The well-known 3-valued logic of  Lukasiewicz ( Lukasiewicz, 1970a,b),
in symbols  L3, is the deductive system over Λ[ L3] determined by the matrix:

∧ > n ⊥
†> > n ⊥
n n n ⊥
⊥ ⊥ ⊥ ⊥

∨ > n ⊥
> > > >
n > n n
⊥ > n ⊥

⇒ > n ⊥
> > n ⊥
n > > n
⊥ > > >

∼
> ⊥
n n
⊥ >

Since the 1950s, the deductive system  L3 has been the subject of enormous
exegesis; for surveys and standard references, see for instance (Wójcicki, 1988,
Section 4.3.1) or (Malinowski, 1993, Chapter 2, Chapter 5). In (Vakarelov,
1977, Theorem 11) Vakarelov essentially proved that the axiomatic extension
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of N3 by the Peirce law `
(
(x→ y)→ x

)
→ x is, up to definitional equiv-

alence, the deductive system  L3; in this connection, see also (Spinks and
Veroff, 2008b, Example 1.3). As N3 is the axiomatic extension of N4 by the
weakening axiom ` x⇒ (y⇒ x), we conclude:

Theorem 4.23. The axiomatic extension of N4 by the weakening axiom
` x⇒ (y⇒ x) and the Peirce law `

(
(x→ y)→ x

)
→ x is, up to definitional

equivalence, the 3-valued logic  L3 of  Lukasiewicz ( Lukasiewicz, 1970a,b).

4.5 Extensions of N4⊥ by the Peirce law
`
(
(x→ y)→ x

)
→ x

In this subsection extensions of N4⊥ by the Peirce law `
(
(x→ y)→ x

)
→ x

are considered; the logic N4⊥
p itself has been briefly considered (under the

appellation B→4 ) in (Odintsov, 2005; Odintsov and Speranski, 2016). The
key tool used throughout this subsection is the ternary discriminator con-
struct (Burris and Sankappanavar, 1981; Jónsson, 1995; Werner, 1978) of
general algebra; use of this construct calls in turn for the study of the con-
gruence properties of N4-lattices.

Congruence permutability Because every N4-lattice has a lattice reduct,
the variety of N4-lattices is congruence distributive. The next two results,
which collectively extend and sharpen (Odintsov, 2008, Proposition 9.2.12)
and (Spinks, 2004, Theorem 4.4, Corollary 4.5), affirm that congruences on
N4-lattices are very well behaved in general.

Theorem 4.24. The variety of N4-lattices is congruence permutable, with
Mal’cev term p(x,y,z) :=

(
(x⇒ y) RM⇒ z

)
∧
(
(z⇒ y) RM⇒ x

)
.

Proof. Using adjunctivity, mimic the proof of (van Alten and Raftery, 2004,
Proposition 8.3).

Corollary 4.25. The variety of N4-lattices is arithmetical.

EDPC A variety V has equationally definable principal congruences
(EDPC) if there exists a finite set

{
〈pi(x,y,z,w), qi(x,y,z,w)〉 : i < n

}
of pairs

of quaternary terms of V such that for every A ∈ V and for all a,b,c,d ∈A,

c≡ d (mod ΘA(a,b)) iff pA
i (a,b,c,d) = qA

i (a,b,c,d), for all i < n.

The study of varieties with EDPC was initiated by Baldwin and Berman
in (Baldwin and Berman, 1975) and further developed in (Fried et al., 1980;
Köhler and Pigozzi, 1980). By (Köhler and Pigozzi, 1980, Corollary 6) ev-
ery variety with EDPC is congruence distributive; this turned the study of
such varieties into a major topic. In their series of papers (Blok et al., 1984;
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Blok and Pigozzi, 1982, 1994a,b, 2001) Blok and Pigozzi extensively investi-
gated EDPC for quasivarieties of logic (in the sense of (Barbour and Raftery,
2003, Section 1), (Font et al., 2003, Theorem 4.8)), showing in particular
that a strongly algebraisable deductive system has the deduction-detachment
theorem iff its equivalent variety has EDPC (Blok and Pigozzi, 2001, The-
orem 5.5). By (Wójcicki, 1988, Theorem 2.4.2), N4 has the deduction-
detachment theorem; thus N4 has EDPC. Indeed, a modification of the proof
of (Blok et al., 1984, Lemma 2.4) shows that for every N4-lattice A and for
all a,b,c,d ∈ A, it holds that c ≡ d (mod ΘA(a,b)) iff a⇔ b � c⇔ d. This
observation is sharpened in Theorem 4.26 below.

TD terms Following (Blok and Pigozzi, 1994a, Definition 2.1), a ternary
term e(x,y,z) is a ternary deductive (TD) term for a class K of similar
algebras if: (i) K |= e(x,x,z)≈ z; and (ii) for all A∈K and for all a,b,c,d ∈A,
eA(a,b,c) = eA(a,b,d) if c≡ d (mod ΘA(a,b)). By (Blok and Pigozzi, 1994a,
Corollary 2.4(iii)), e(x,y,z) is a TD term for the variety HSP(K) generated
by K iff K satisfies the identities

e(x,x,y)≈ y(27)
e(x,y,x)≈ e(x,y,y)(28)

together with the identities

e
(
x,y,c(z1, . . . ,zn)

)
≈ e
(
x,y,c(e(x,y,z1), . . . ,e(x,y,zn))

)
(29)

for every n-ary operation symbol c in the type of K. A TD term e(x,y,z) on
an algebra A is commutative if A |= e

(
x,y,e(x′,y′,z)

)
≈ e
(
x′,y′,e(x,y,z)

)
(Blok and Pigozzi, 1994a, Definition 3.1). A TD term e(x,y,z) on a class K
of similar algebras is commutative if it is commutative on every member
of K.

The next result generalises (Spinks, 2004, Theorem 3.3) to N4-lattices.

Theorem 4.26. The ternary term e(x,y,z) := (x⇔ y)→ z is a commutative
TD term for the variety of N4-lattices.

Proof. Let A be an N4-lattice and let a,b,c,d ∈ A. Note eA(a,a,b) = (a⇔
a)→ b= |a| → b= b (by (20)), whence A |= (27). And, eA(a,b,a) = (a⇔ b)→
a= (a⇔ b)→ b (by (4)) = eA(a,b,b), whence A |= (28). Also,

eA(a,b,c∧d) = (a⇔ b)→ (c∧d)
= (a⇔ b)→

(
(a⇔ b)→ (c∧d)

)
by (5)

= (a⇔ b)→
(
((a⇔ b)→ c)∧ ((a⇔ b)→ d)

)
by (17)

= eA(a,b,eA(a,b,c)∧ eA(a,b,d)
)

whence A |= (29) for the basic operation symbol ∧. Similar arguments using
the identities (18), (7), and (19) show A |= (29) for each of the fundamen-
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tal operation symbols ∨, →, and ∼. So e(x,y,z) is a TD term for N4. To
see e(x,y,z) is commutative, note that for all a,b,a′, b′, c ∈ A, it holds that
eA(a,b,eA(a′, b′, c)

)
= (a⇔ b)→

(
(a′⇔ b′)→ c

)
= (a′⇔ b′)→

(
(a⇔ b)→ c

)
(by (6)) = eA(a′, b′,eA(a,b,c)

)
.

From (Blok and Pigozzi, 1994a, Corollary 2.5), we infer:
Corollary 4.27. For every N4-lattice A and for all a,b,c,d ∈ A, it holds
that c ≡ d (mod ΘA(a,b)) iff eA(a,b,c) = eA(a,b,d). Hence the variety of
N4-lattices has EDPC.
QD Terms Following (Blok et al., 1984, p. 359), a quaternary term
q(x,y,z,w) on an algebra A is a Quaternary Deductive (QD) term on A
if, for all a,b,c,d ∈A,

qA(a,b,c,d) =
{
c if a= b

d if c≡ d (mod ΘA(a,b)).

A Quaternary Deductive (QD) term on a variety V is a quaternary term
q(x,y,z,w) of V such that q is a QD term on every member of V.
Lemma 4.28. (Spinks, 2004, Lemma 5.1) Let V be a variety with a TD
term e(x,y,z) and a Mal’cev term p(x,y,z). Then the term q(x,y,z,w) :=
p
(
e(x,y,z),e(x,y,w),w

)
is a QD term for V.

Combining Lemma 4.28 with Theorem 4.26 and Theorem 4.24 yields the
following result, which generalises (Spinks, 2004, Theorem 5.2) to N4-lattices.
Theorem 4.29. The variety of N4-lattices has a QD term. Given the com-
mutative TD term e(x,y,z) of Theorem 4.26 and the Mal’cev term p(x,y,z)
of Theorem 4.24, a QD term for N4 is q(x,y,z,w) := p

(
e(x,y,z),e(x,y,w),w

)
.

Discriminator varieties of N4-lattices The (ternary) discriminator
(Burris and Sankappanavar, 1981, Definition IV§9.1) on a set A is the func-
tion t : A3→ A defined for all a,b,c ∈ A by t(a,b,c) := c if a = b and a oth-
erwise. A (ternary) discriminator variety is a variety V for which there
exists a ternary term t(x,y,z) of V that realises the discriminator on each sub-
directly irreducible member of V. According to (Burris and Sankappanavar,
1981, Chapter IV§9,10), discriminator varieties constitute “. . . the most suc-
cessful generalization of Boolean algebras to date.” As such, discriminator
varieties have been considered extensively in the literature; standard refer-
ences include (Werner, 1978) and (Jónsson, 1995).

By a classic result of Blok, Köhler, and Pigozzi (1984, Corollary 3.4) (see
also (Fried and Kiss, 1983)), an equational class is a discriminator vari-
ety iff it is congruence permutable, semisimple, and has EDPC. For each
K ∈ {N4,N4⊥,N3}, let Kp be the subvariety of K axiomatised (relative to K)
by the identity

(
(x→ y)→ x

)
→ x≈

∣∣((x→ y)→ x)→ x
∣∣. Observe that, by

Lemma 4.21, a variety V of N4-lattices is semisimple iff V⊆ N4p. Generalis-
ing (Spinks, 2004, Corollary 5.3), we have:
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Corollary 4.30. A variety V of N4-lattices is a discriminator variety iff
V ⊆ N4p. In this case a discriminator term for V is given by t(x,y,z) :=
q(x,y,z,x), where q(x,y,z,w) is the QD term of Theorem 4.29.

Proof. The first assertion is clear in view of Theorem 4.24, Corollary 4.27,
and the remarks preceding the corollary. If V is a discriminator variety, then
q(x,y,z,w) must coincide with the normal transform (see (Burris and Sankap-
panavar, 1981, Chapter IV§9)) on each subdirectly irreducible member of V,
by virtue of the semisimplicity of V. From (Burris and Sankappanavar, 1981,
Lemma IV§9.2(a)) it follows that t(x,y,z) is a discriminator term for V.

For RM3, the first assertion of the next result may be deduced from Font
and Pérez (1992, Theorem 12).

Corollary 4.31. Each of the varieties RM3 and BN4 is a discriminator va-
riety, with the discriminator term of Corollary 4.30.

Proof. (Sketch) Let V ∈ {RM3,BN4}. Then V is generated as a variety by
either RM3 or BN4. Since each of these algebras is simple, V is semisimple
(by (van Alten, 1998, Proposition 5.19)), and the result follows.

Given an algebra A and pairwise distinct elements a1, . . . , an ∈ A,
let Aa1,...,an denote the algebra obtained from A upon distinguishing the
elements a1, . . . ,an. Thus, for example, RM⊥

3 denotes the algebra obtained
from RM3 upon distinguishing the element ⊥. Let RM⊥

3 := HSP(RM⊥
3 ) and

BN⊥
4 := HSP(BN⊥

4 ).

Corollary 4.32. Each of the varieties RM⊥
3 and BN⊥

4 is a discriminator
variety, with the discriminator term of Corollary 4.30.

Primality Recall from (Burris and Sankappanavar, 1981, Chapter IV§7)
that a finite algebra A is primal if every n-ary function on A, for every
n≥ 1, is representable by a term. The next result is essentially (Avron, 1999,
Theorem 3.8).

Corollary 4.33. The algebra 4b,n is primal.

Proof. Observe that the term t(x,y,z) of Corollary 4.30 realises the ternary
discriminator on 4b,n. In view of this, to prove the theorem it suffices by the
main result of (Werner, 1970) to show that every element of (the universe
of) 4b,n is realised by a constant. For this, just note n4b,n → n4b,n = > and
∼(n4b,n → n4b,n) =⊥.

Observe that 4⊥ is not primal; {⊥,>} is the universe of a 2-element sub-
algebra.

The algebra 4>,b,n,⊥ serves as an algebraic ‘base’ for various of the modal
bilattice logics studied in (Jung and Rivieccio, 2013; Rivieccio, 2014a,b);



Paraconsistent constructive logic as a contraction-free relevant logic 363

by Corollary 4.33, the algebra 4>,b,n,⊥ is primal. The utility of Corol-
lary 4.30 is that, when combined with (Burris, 1992, Lemma 3.5), other
(bilattice) operations potentially of interest to (Jung and Rivieccio, 2013;
Rivieccio, 2014a,b) can be realised readily on 4b,n, hence 4>,b,n,⊥. In-
deed, let q(x,y,z,w) be the QD term of Theorem 4.29. By (Burris, 1992,
Lemma 3.5), q

(
q(x,>,x,b),x,y,n

)
realises Fitting’s guard operation : (Fit-

ting, 1994) on 4b,n (qua 4>,b,n,⊥); the term q
(
q(x,>,x,b),x,>,⊥

)
realises

Moore’s autoepistemic operator L (Moore, 1985), as interpreted by Gins-
berg (1990); and q

(
q(x,⊥,x,>),x,x,q(n,x,b,n)

)
realises Fitting’s conflation

operator − (Fitting, 1989, 1991).

The deductive system BS4 Let Λ[BS4] := Λ[N4]∪ {◦}, where ◦ is a
unary logical connective. The logic BS4 is the deductive system over Λ[BS4]
determined by the matrix:

∧ > b n ⊥
†> > b n ⊥
†b b b ⊥ ⊥
n n ⊥ n ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∨ > b n ⊥
> > > > >
b > b > b
n > > n n
⊥ > b n ⊥

→ > b n ⊥
> > b n ⊥
b > b n ⊥
n > > > >
⊥ > > > >

∼
> ⊥
b b
n n
⊥ >

◦
> >
b ⊥
n ⊥
⊥ >

Denote this matrix by BS4. The deductive system BS4 was introduced
in (Omori and Waragai, 2011) as a generalisation of LFI1 to the Belnapian
four-valued setting; it has been further investigated in (De and Omori, 2015;
Omori and Sano, 2014; Sano and Omori, 2014). In (Omori and Waragai,
2011, Theorem 7) Omori and Waragai establish the existence of translations
τ1 : Λ[BS4]→ FmΛ[N4⊥] and τ2 : Λ[N4⊥]→ FmΛ[BS4] such that `BS4 ϕ iff
`N4⊥

p
τ1(ϕ) and `N4⊥

p
ϕ iff `BS4 τ2(ϕ); because of (Omori and Sano, 2014,

Remark 8), Omori and Sano’s clause for mapping ◦ϕ into N4⊥ can be given
as τ1(ϕ) :=

(
(τ1(ϕ)∧ τ1(∼ϕ))→ ⊥

)
∧
(
τ1(ϕ)∨ τ1(∼ϕ)

)
. In this connection,

see also (Sano and Omori, 2014, Proposition 5.13).
In (Omori and Waragai, 2011, Remark 3, p. 321) Omori and Waragai notice

that the unary formula ◦x∧x∧∼x acts as a falsum (bottom particle) in BS4;
cf. the map α of Theorem 4.12.(1). Let BS4 denote the algebra reduct
of BS4. Routine arguments show that BS4 is strongly algebraisable with
system of equivalence formulas {ϕ⇔ ψ} and system of defining equations{
x≈ |x|

}
. Let V be the equivalent variety semantics V of BS4. Because each

A ∈ V is subdirectly irreducible iff its ◦-free reduct is subdirectly irreducible,
V = HSP(BS4). Let q(x,y,z,w) be the QD term of Theorem 4.29 and observe:
(i) that q(x,∼x,⊥,∼⊥) induces the operation ◦ on 4⊥ (apply Corollary 4.32);
and (ii) that q(x,∼x,⊥,∼⊥) rewrites to the term

(
(x→∼x)∧ (∼x→ x)

)
→

⊥ over 4⊥. Notice also that
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BS4 |= ◦x≈
(
(x→∼x)∧ (∼x→ x)

)
→ (◦x∧x∧∼x) and

4⊥ |=⊥≈
(
((x→∼x)∧ (∼x→ x))→⊥

)
∧x∧∼x.

Since the 〈∧,∨,→,∼〉-reduct of BS4 is 4, we conclude that the algebras BS4
and 4⊥ have the same n-ary term operations for n > 0, and so are term
equivalent. By (McKenzie et al., 1987, Theorem 4.140), therefore, the va-
rieties HSP(BS4) and HSP(4⊥) are term equivalent. But HSP(4⊥) is N4⊥

p

(cf. (Odintsov and Speranski, 2016, Introduction, p. 4)), as can be seen from
Theorem 4.20 and Lemma 4.21 (mutatis mutandis). Applying now standard
techniques we have the following theorem, which sharpens the aforementioned
translational equivalence of Omori and Sano; cf. (De and Omori, 2015, Re-
mark 18), (Sano and Omori, 2014, Remark 5.12).

Theorem 4.34.

1. The map α : Λ[BS4]→ FmΛ[N4⊥] defined by

x∧y 7→ x∧y ∼x 7→ ∼x
x∨y 7→ x∨y ◦x 7→

(
(x→∼x)∧ (∼x→ x)

)
→⊥

x→ y 7→ x→ y

is an interpretation of BS4 in N4⊥
p .

2. The map β : Λ[N4⊥]→ FmΛ[BS4] defined by

x∧y 7→ x∧y ∼x 7→ ∼x
x∨y 7→ x∨y ⊥ 7→ ◦x∧x∧∼x
x→ y 7→ x→ y

is an interpretation of N4⊥
p in BS4.

3. The interpretations α and β are mutually inverse.

Hence the deductive systems N4⊥
p and BS4 are definitionally equivalent.

Corollary 4.35. The axiomatic extension of N4⊥ by the Peirce law `
(
(x→

y)→ x
)
→ x is, up to definitional equivalence, the logic BS4 of Omori and

Waragai (De and Omori, 2015; Omori and Sano, 2014; Omori and Waragai,
2011; Sano and Omori, 2014).

Connections between BS4 and other deductive systems considered previ-
ously in the literature—including Kachi’s simple partial logic (Kachi, 2002,
2007) and Sano and Omori’s logic BD∆ (Sano and Omori, 2014)—are given
in (De and Omori, 2015; Sano and Omori, 2014).
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5 Concluding remarks

Fregean deductive systems Recall from (Czelakowski and Pigozzi, 2004,
Definition 59) that a deductive system S over a language type Λ is Fregean if,
for every theory T of S, the relativised interderivability relation a`TS defined
for all Λ-formulas ϕ,ψ by

ϕa`TS ψ iff T,ϕ `S ψ and T,ψ `S ϕ

is a congruence relation on FmΛ. A logic S is non-Fregean if it is not
Fregean. Fregean deductive systems with the (uniterm) deduction-detachment
theorem are essentially the intermediate logics, possibly with additional log-
ical connectives (Czelakowski and Pigozzi, 2004, Theorem 63). For studies
of Fregeanity in algebraic logic, see (Czelakowski, 2001; Czelakowski and
Pigozzi, 2004; Font and Jansana, 2009; Idziak et al., 2009; Pigozzi, 1991).

In (Czelakowski and Pigozzi, 2004, Section 2.1) Czelakowski and Pigozzi
observe that it is characteristic for the properties of protoalgebraicity and
equivalentiality to coalesce in Fregean deductive systems. In particular, if S
is a deductive system with the deduction-detachment theorem (with, say,
Σ(x,y) as a deduction-detachment system for S), then S is Fregean iff
Σ(x,y)∪Σ(y,x) is an equivalence system for S (Czelakowski and Pigozzi,
2004, Lemma 62). In consequence, if S is a non-Fregean equivalential de-
ductive system with the deduction-detachment theorem, then the notions of
equivalence and deduction necessarily diverge.

Strong and weak connectives As a rule, each non-Fregean deductive sys-
tem S arises as the logical cognate of a Fregean deductive system SF ; in the
archetypical situation, SF has the uniterm deduction-detachment theorem
(and is thus strongly and regularly algebraisable (Czelakowski and Pigozzi,
2004, Theorem 66)). Non-Fregean deductive systems bearing witness to this
phenomenon include, for example, Suzsko’s sentential calculus with identity
(Bloom and Suszko, 1972; Ishii, 2000; Suszko, 1968, 1971, 1975) and (various
of) the substructural logics (Došen, 1993; Galatos et al., 2007; Restall, 2000;
Spinks and Veroff, 2008b).

Let S be a non-Fregean equivalential logic with the deduction-detachment
theorem arising as the logical cognate of some Fregean deductive system SF
with the deduction-detachment theorem; by (Czelakowski and Pigozzi, 2004,
Theorem 61), SF is regularly algebraisable. Suppose (prototypically) that
{⊃} is a uniterm deduction-detachment system for SF . Because the no-
tions of equivalence and deduction necessarily diverge in S, the connective ⊃
of SF ramifies on passage to S. In the simplest (yet most common) situation,
⊃ bifurcates, yielding, on the one hand, an implication-like connective ⇒,
whose symmetrisation {ϕ⇒ ψ,ψ⇒ ϕ} acts as a system of equivalence for-
mulas for S; and, on the other hand, a separate, distinct implication con-
nective → that witnesses the uniterm deduction-detachment system for S
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(and which is thus a conditional for S in the usual Tarskian sense). In gen-
eral, ϕ⇒ ψ `S ϕ→ ψ for all formulas ϕ,ψ, owing to properties of SF ; the
converse holds if S is Fregean. See for instance (Spinks et al., 2014, Proposi-
tion 3.1). The connectives ⇒ and → are thus strong and weak respectively;
cf. (Rasiowa, 1974, Chapter VIII§1, p. 279).

By the same token, if a nullary logical connective ⊥ is available in the
language of SF , hence S, and negation is introduced in SF via the defi-
nition −ϕ := ϕ⊃⊥, the derived connective − also splits on passage to S.
(Here no postulates are assumed regarding ⊥, as in the manner of Johansson
(1936).) On the one hand, we obtain a negation ∼, defined as ∼ϕ := ϕ⇒⊥,
which is typically contraposable; while on the other hand, we obtain a nega-
tion ¬, defined as ∼ϕ := ϕ→⊥, for which it typically holds that Γ `S ¬ϕ iff
Γ ∪{ϕ} `S ψ for all formulas ϕ,ψ; cf. (Wójcicki, 1988, Lemma 2.3.2). In gen-
eral, ∼ϕ `S ¬ϕ for all formulas ϕ, owing to properties of SF ; the converse
holds if S is Fregean. The connectives ∼ and ¬ are thus strong and weak
respectively; cf. (Vakarelov, 1977, p. 109). For more on the phenomenon
of strong and weak connectives in the literature, see for example (Arieli
and Avron, 1996; Avron, 1991; Jung and Rivieccio, 2013; Rivieccio, 2014a,b;
Spinks et al., Spinks et al., 2014; Veroff and Spinks, 2006).

Constructive logic with strong negation Recall from the literature (Ra-
siowa, 1974, Chapter VIII) that Nelson’s constructive logic with strong nega-
tion N3 admits both a (primitive) conditional → and a (derived) impli-
cation ⇒, where ϕ⇒ ψ abbreviates (ϕ→ ψ)∧ (∼ψ → ∼ϕ) for all ϕ,ψ ∈
FmΛ[N4]. Moreover, ϕ⇒ ψ `N3 ϕ→ ψ for all N4-formulas ϕ,ψ. Further, N3
admits both a (primitive) contraposable negation ∼ and a (derived) nega-
tion ¬ such that Γ `N3 ¬ϕ iff Γ ∪{ϕ} `N3 ψ for all ϕ,ψ ∈ FmΛ[N4]; because
of (Spinks and Veroff, 2008b, Theorem 1.1), the negation ∼ [resp. ¬] may
be realised up to synonymity as ϕ⇒⊥ [resp. ϕ→⊥] for a suitably defined
nullary logical connective ⊥. Again, ∼ϕ `N3 ¬ϕ for all N4-formulas ϕ. Of
course, N3 is non-Fregean (Humberstone, 2011, Chapter 8§23).

The deductive system N3 is thus the exemplar of an (integral) non-Fregean
logic with the uniterm deduction-detachment theorem, in much the same way
as Suszko’s sentential calculus with identity is the paradigm of a non-Fregean
logic; cf. (Pigozzi, 1991, Section 2, pp. 488–489) with respect to this latter.
The results of the present work are informed by similarly viewing paracon-
sistent constructive logic with strong negation canonically as a non-Fregean
logic with the uniterm deduction-detachment theorem. For consonant studies
of a large class of non-Fregean logics generalising classical logic, see (Spinks
et al., Spinks et al., 2014; Veroff and Spinks, 2006); for an alternative perspec-
tive on the remarks of this section, see (Caret and Weber, 2015, Section 2.3).
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of all the reasonably small topological algebras. Here the terrain is surveyed,
and a program of investigation is proposed.
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Introduction.

This paper is part of a continuing investigation—see the author’s papers
(Taylor, 1986), (Taylor, 2000), (Taylor, 2006), (Taylor, 2010), and (Taylor,
2011)—into the compatibility relation, which is described in (2) below. A. D.
Wallace defined the inquiry succinctly in 1955, when he asked (Wallace, 1955,
p. 96), “Which spaces admit what structures?” By “structure,” he meant the
existence of continuous operations identically satisfying certain equations:
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0.1 Role of this investigation in mathematics.

We see such topological structure as fundamental to mathematics. Gener-
ally, there seem to be two ways to put an infinite number system on a firm
logical and practical foundation. The first is through recursion, the method
that underlies calculations with integers and rational numbers (for example).
The second is through continuity of operations, as in the real number system
R, where we can meaningfully calculate values like sin(π/3) or 3√2 by ap-
proximation. Here we are looking into the possibilities of calculation through
continuity.

For these two modalities to be available in any practical way, we must,
at the very least, be talking about a topological space that has a countable
dense subset—the first axiom of countability. Thus, for example, discrete
topological spaces are compatible with any consistent set of equations, but
a discrete topological algebra is of no use in pursuing calculations through
continuity. Discrete spaces play no role in the rest of this paper.

0.2 Limited focus of this investigation.

The investigation emphasizes topological algebras that satisfy some non-
trivial (in the sense of §6.1) equations. We do not wish to diminish the
importance of other algebras—for instance some topological semigroups are
of paramount importance, and yet the associative law remains trivial in the
sense of §6.1. But the main unknown, under the present focus, is the identical
satisfaction of equations.

In keeping with the ideas of §0.1, we limit our attention to first-countable
spaces. In fact we mostly limit ourselves to very simple spaces: finite simplicial
complexes. First of all, much of the variation and mystery of the subject
already lies in this seemingly elementary domain. Secondly, as soon as we
admit infinite polyhedra, any consistent set of equations can be modeled (see
§5 below).

Most of our attention will be to connected simplicial complexes. Every
finite model of an equation-set Σ may be viewed as a topological model of
Σ based on a zero-dimensional complex, which is of course disconnected.
These models, and any other disconnected topological models, are generally
not under consideration. This exclusion is most important, and will be re-
iterated, in the open questions of §9.



Classification of Hausdorff topological algebras 383

0.3 Layout of the paper.

The beginning sections lay out concepts relevant to our results and problems.
The reader who is proficient in these notions may proceed to §7, and examine
the examples shown there, which are the heart of the paper. After that, one
might read the comments and questions that arise in §§8–9. These sections
comprise the main new material of this paper.

I thank George M. Bergman, who read the manuscript very closely, and
made many helpful suggestions. I want also to acknowledge and thank Don
Pigozzi for his long-term encouragement of myself and others in the study
of equational logic, the central focus of this article. This is a field where he
clarified many issues; see for instance his articles with W. J. Blok (Blok and
Pigozzi, 1988) and with K. Palasińska (Palasińska and Pigozzi, 1995).

1 Satisfaction of equations by operations.

Readers with some familiarity with logic or general algebra can easily skip
§1, at least on a first reading.

A similarity type consists of a set T and a function t 7−→ nt from T to natural
numbers. A term of type 〈nt : t∈ T 〉 is recursively either a variable or a formal
expression of the form Ft(τ1, . . . , τnt) for some t∈ T and some shorter terms τi
of this type. An equation of this type is a formal expression τ ≈ σ for terms τ
and σ of this type. A formal equation makes no assertion, but merely presents
two terms for consideration. The actual mathematical assertion of equality is
made (in a given context) by the satisfaction relation |= (see (1) below). We
mostly work with a set Σ of equations, finite or infinite, and tacitly assume
that there is a similarity type 〈nt : t ∈ T 〉 such that each equation in Σ is of
this type.

Examples: In almost any concrete example of interest, the foregoing
formality is not really necessary for comprehension. It suffices to give, for
example, the familiar assertion that “Σ has two binary operations ∧ and
∨,” instead of insisting on e.g. “∧ = F1 and ∨ = F2, where T = {1,2} and
n1 = n2 = 2.” In such a simplified context, formal equations may be writ-

0.4 Acknowledgments.

1.1 Terms and equations.
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ten like ordinary equations in standard lattice theory. (One should be care-
ful, however, about writing informal terms such as “x∧ y∧ z,” which is not
meaningful in the absence of associativity.)

Given a set A and for each t ∈ T a function Ft :An(t) −→ A (called an oper-
ation), we say that the operations Ft satisfy Σ and write

(1) (A,F t)t∈T |= Σ,

iff for each equation σ ≈ τ in Σ, both σ and τ evaluate to the same function
when the operations Ft are substituted for the symbols Ft appearing in σ
and τ .

A structure of the form (A,F t)t∈T (as in (1)) is called an algebra; the
set A is called the universe of (A,F t)t∈T . Often, if the context permits, we
denote (A,F t)t∈T by the bold letter corresponding to the letter denoting the
universe, and so on. Then we can express (1) by saying that the algebra A
satisfies (or models) Σ.

In discussing satisfaction of equations, it is standard (and helpful) to dis-
tinguish as we have done between an operation symbol Ft and an operation
F t interpreting the symbol.1 Nevertheless in keeping with the last part of
§1.1 above, we may sometimes omit the bar from familiar operations like +,
∧ and so on.

2 Compatibility of a space with a set of equations.

Given a topological space A and a set of equations Σ, we write2

(2) A |=ctn Σ,

and say that A and Σ are compatible, iff there exist continuous operations
Ft on A satisfying Σ, in other words iff (1) holds with continuous operations
F t. (Here we mean that each function F t :Ant −→ A should be continuous
relative to the usual product topology formed on the direct power Ant .)

1 Obviously the simple notation F t will be inadequate if more than one operation
interprets Ft in a given discussion.
2 In a context that contains little possibility of confusing (1) and (2) one may omit the
designation “ctn” for continuous modeling, and simply write A |= Σ for (2). We have
done this in (Taylor, 1986), (Taylor, 2000), (Taylor, 2006), (Taylor, 2010) and (Taylor,
2011).

1.2 Satisfaction of equations.
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One may also read (2) as “A topologically models Σ,” or “A continuously
models Σ.”

Given operations F t on a topological space A, we may of course form the
algebra A = (A;F t); if in addition each F t is continuous, we may say that
this A is a topological algebra based on the space A. With this vocabulary,
the compatibility relation (2) may be rephrased as follows: there exists a
topological algebra satisfying Σ that is based on the space A.

Thus, for instance, A is compatible with group theory if and only if A is
the underlying space of some topological group. If desired, one may skip to
§7 on a first reading, for a much longer list of examples.

3 General results on compatibility.

While the definitions are simple, the relation (2) remains mysterious. Two
results, one fifty years old, the other recent, point toward this mystery. First,
the algebraic topologists have long known that the n-dimensional sphere Sn
is compatible with H-space theory (x · e ≈ x ≈ e ·x) if and only if n = 1,3
or 7. (There is a large literature on this topic; one landmark paper was
Adams (Adams, 1960).) Second, for A=R, the relation (2) is algorithmically
undecidable for Σ — see (Taylor, 2006); i.e. there is no algorithm that accepts
as input an arbitrary finite Σ, and outputs the truth value of (2) for A=R. In
any case, (2) appears to hold only sporadically, and with no readily discernible
pattern.

The mathematical literature contains numerous but scattered further ex-
amples of the truth or falsity of specific instances of (2). The author’s earlier
papers (Taylor, 1986), (Taylor, 2000), (Taylor, 2006), (Taylor, 2010) collec-
tively refer to most of what is known, and in fact many of the earlier exam-
ples illustrating incompatibility are recapitulated throughout the long article
(Taylor, 2010). The present article will cover most of the known compatibil-
ities for finite simplicial complexes.

4 Compatibility and the interpretability lattice.

Here we review a notion introduced by W. D. Neumann in 1974 (see (Neu-
mann, 1974)), and further studied by O. C. Garćıa and W. Taylor in 1981 (see
(Garćıa and Taylor, 1984)). (In 1968 J. Isbell (Isbell, 1968) constructed quasi-
orderings of arbitrary categories; the ordering we use—i.e. Neumann’s—can
be seen as arising from Isbell’s ordering.)
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4.1 Interpretability as an order.

We introduce an order on the class of all sets Σ, Γ . . . of equations, as follows.
Let us suppose that the operation symbols of Σ are Fs (s ∈ S), and the
operation symbols of Γ are Gt (t ∈ T ). We say that Σ is interpretable in Γ ,
and write Σ ≤ Γ , iff there are terms αs (s ∈ S) in the operation symbols Gt
such that, if (A,Gt)t∈T is any model of Γ , then (A,αs)s∈S is a model of Σ.

A typical example has Γ defining Boolean algebras and Σ defining Abelian
groups with operations +,−,0. Here the terms α+ and α− are both equal
to the so-called symmetric difference α+(x,y) = α−(x,y) = (x∧ (¬y))∨ (y∧
(¬x)). (It is worthwhile noticing that this interpretation is neither one-one
on the class of all BA’s nor onto the class of all Abelian groups.) For further
concrete examples, see §7.2.5, §7.5.4 and §8.3 below.

Strictly speaking, we need to observe that, so far, our relation ≤ is not
anti-symmetric. It is easy to find distinct sets Σ1 and Σ2 that are mutually
related by ≤. It is however a quasi-order, and when we speak of an order, or
a least upper bound, and so on, we are referring to the order formed in the
usual way modulo the equivalence relation that includes the pair (Σ1,Σ2)
whenever the two Σi are as above, i.e. Σ1 ≤Σ2 ≤Σ1. We generally will leave
this fine point unexpressed.

Given sets Σ and Γ of equations, there is a set Σ∧Γ that is a greatest lower
bound of Σ and Γ in the ≤-ordering of §4. For a precise definition, including
an axiomatization of Σ∧Γ , the reader may consult R. McKenzie (McKenzie,
1975) or O. Garćıa and W. Taylor (Garćıa and Taylor, 1984).

We describe here the (algebraic) models of Σ∧Γ . We make the inessential
assumption that the operation symbols of Σ (resp. Γ ) are Fs (s ∈ S) (resp.
Ft (t ∈ T )), with S disjoint from T . The operation symbols of Σ ∧Γ are Fj
(j ∈ S ∪T ), together with a new binary operation symbol p. The models of
Σ∧Γ are precisely all algebras isomorphic to a product A×B, where

(i) A |= Σ.
(ii) B |= Γ .

(iii) For each t ∈ T , A |= Ft(x1, . . . ,xn)≈ x1 and A |= p(x1,x2)≈ x1.
(iv) For each s ∈ S, B |= Fs(x1, . . . ,xn)≈ x1 and A |= p(x1,x2)≈ x2.

For instance, to see that Σ∧Γ ≤Σ, we define an interpretation as follows.
For s ∈ S, the term αs is Fs(x1,x2, . . .); for t ∈ T , the term αt is x1, and
αp(x1,x2) is x1. For any (A,F s)s∈S , the interpreted algebra (A,F j)j∈S∪T
clearly has the form A×B described above, with B a singleton. Mutatis
mutandis, we have Σ ∧Γ ≤ Γ . For the fact that Σ ∧Γ is a greatest lower
bound, let us suppose that Φ is a set of equations with operation symbols Gi

4.2 Interpretability defines a lattice.
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(i ∈ I), and that there are terms αi (resp. βi) interpreting Φ in Σ (resp. Γ ).
It is not hard to see that the terms p(αi,βi) will interpret Φ in Σ∧Γ .

Continuing our inessential assumption that S∩T = ∅, it is not hard to see
that Σ ∪Γ is a least upper bound3 of Σ and Γ , which we may also denote
Σ∨Γ .

4.2.1 The spaces compatible with ∆∧Γ .

For an arbitrary topological space C, and for arbitrary sets Σ and Γ of equa-
tions, C |=ctn Σ ∧Γ if and only if C is homeomorphic to a product space
A×B, where A |=ctn Σ and B |=ctn Γ .

Proof. We continue the notation and assumptions of §4.2. Given C equal
(or homeomorphic) to the product space A×B, and topological algebras
A and B modeling Σ and Γ , respectively, we extend A and B to (S ∪T )-
algebras using clauses (iii) and (iv) of §4.2, and then take their product. This
product has underlying space C and models Σ ∧Γ . Thus C is compatible
with Σ∧Γ .

Conversely, given a space C compatible with Σ ∧Γ , the existence of the
corresponding spaces A and B is proved in (Garćıa and Taylor, 1984, Propo-
sition 5, p. 22).

4.3 For each space, compatibility defines an ideal of
the lattice.

Let A be an arbitrary topological space. We will see that the class of all Σ
that are compatible with A forms an ideal in the interpretability lattice. In
this report we shall denote this ideal by I(A).

First, let us suppose that A |=ctn Γ and that Σ ≤ Γ . By definition of |=ctn,
there is a topological algebra (A,Gt)t∈T , that models Γ . By the definition
of Σ ≤ Γ , we have that (A,αs)s∈S models Σ, with S and T disjoint. The
operations αs are built using composition from the continuous operations Gt,
hence are continuous themselves. In other words, (A,αs)s∈S is a topological
algebra that models Σ. Therefore A |=ctn Σ, as desired.

Next, given Σ and Γ , each compatible with the space A, we must show
that Σ∨Γ =Σ∪Γ (described at the end of §4.2) is compatible with A. This
result is immediate from the definitions involved.

Thus each space A yields an ideal in the interpretability lattice, which is
denoted I(A).

3 For any set A of sets of equations (with all their types disjoint), the union
⋃
A is a

least upper bound of the family A. However the lattice is a proper class, and there may
exist a subclass that has no join.
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4.3.1 I(A) is principal: the theory ΣA.

Given a space A, we define a theory ΣA as follows. For each continuous
function µ:An−→A, there is an n-ary operation symbol Fµ. For 1≤ i≤n<ω
we let πni :An−→A be the continuous function defined by πni (a1, . . . ,an) = ai.
For a continuous function λ :An −→Am, and for 1≤ i≤m, we let λi denote
the continuous function πmi ◦λ. Now we define ΣA to consist of the equations

Fπn
i

(x1, . . . ,xn) ≈ xi(3)
Fµ(Fλ1(x1, . . . ,xm), . . . ,Fλn(x1, . . . ,xm)) ≈ Fµ◦λ(x1, . . . ,xm).(4)

for all 1≤ i≤ n and all pairs of continuous functions Am λ−→ An
µ−→ A. We

shall see that ΣA generates the ideal I(A). (This was asserted without proof
in (Garćıa and Taylor, 1984, Proposition 11).)

It is not hard to see that A |=ctn ΣA: for the requisite topological algebra
on A, one simply takes Fµ = µ, for all An µ−→A. Thus ΣA ∈ I(A), and so the
principal ideal generated by ΣA is a subset of I(A). For the reverse inclusion,
let us consider an arbitrary Σ ∈ I(A). This means that A |=ctn Σ; i.e., there
exists a topological algebra A = (A,Gs)s∈S satisfying Σ. We construct an
interpretation of Σ in ΣA as follows. For each n = 1,2, . . . and each n-ary
s ∈ S we define the term αs to be Fλ(x1, . . . ,xn), where λ is the operation
Gs :An −→A. It is not hard to see that the terms αs form an interpretation
of Σ in ΣA. (The proof uses the given fact that A |=ctn Σ, together with
an inductive argument on all the subterms of terms appearing in Σ.) Thus
Σ ≤ ΣA.; i.e., Σ lies in the desired principal ideal. Thus the two sets are
equal: I(A) is the principal ideal generated by ΣA.

Nevertheless, the equation-set ΣA is large and unwieldy. In a few cases,
we know a simple finite generator of I(A). For example if A is any of the
spaces mentioned in §6.1 below, then I(A) is the principal ideal generated by
F (x)≈ F (y), as one may easily see from the results cited in §6.1. For such a
space A and a finite exponent k, the ideal I(Ak) is also principal, as is proved
in (Taylor, 2000, Theorem 2 and §11.4).

If A is the one-sphere S1, then I(A) is the principal ideal generated by
Abelian group theory (Taylor, 2000, Theorems 42–43). If A is the dyadic
solenoid, then I(A) is the principal ideal generated by the theory of Z[1/2]-
modules4 (Taylor, 2000, Theorems 46–47). For both I(S1) and I(S) (S the
solenoid), the ideal generator can be taken as a finite set of equations.

For any given A, we generally do not know whether I(A) is generated by a
single finite set Σ of equations. Further speculations on the generators (e.g.
whether there exists such a Σ that is a recursive set of equations) remain
equally opaque.

4 Z[1/2] is the ring of all rationals with denominator a power of 2.
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If Λ2 is a set of equations, and if Λ1 is an arbitrary subset of Λ2, then
Λ1 ≤ Λ2 in our lattice. The converse is far from true: even if Λ1 ≤ Λ2, it may
be true that the two Λi have disjoint similarity types. Thus the consideration
of the union of a chain (under inclusion) is not central to our main topic.
Nevertheless, we include one small observation.

The ideal I(A) may not be closed under unions of chains. One may have
Λ1 ⊆ Λ2 ⊆ Λ3 ⊆ . . ., with A |=ctn Λk for each k, but A 6|=ctn Λ =

⋃
Λk. Such

Λk—with A taken as a closed interval of the real line—may be seen in §7.2.2
below. (The example comes from (Taylor, 1977, p. 525).) In other words,
every finite subset of Λ lies in I(A), but Λ does not.

Incidentally, this example shows that while the union of a chain (under
inclusion) is an upper bound of that chain, it need not be a least upper bound.

4.3.3 Sometimes I(A) is a prime ideal.

If C is a product-indecomposable space, then ΣC is meet-prime, which further
implies that I(C) is a prime ideal in the lattice.

Proof. Suppose that Σ ∧ Γ ≤ ΣC . By §4.2.1, C is homeomorphic to a
product space A×B with A |=ctn Σ and B |=ctn Γ . Since C is product-
indecomposable, either A or B is a singleton. Thus C is homeomorphic to A
or to B. In the former case Σ ≤ΣC , and in the latter Γ ≤ΣC .

4.3.4 The complementary filter.

If A is product-indecomposable, then by §4.3.3 the complement of I(A) is a
filter which we will denote F (A). This consists of all Σ that are not compati-
ble with A. By §4.3.2, when A is a closed interval of R, there is a set Σ ∈F (A)
such that no finite subset of Σ is in F (A). Hence this filter is generally not
Mal’tsev-definable (see (Taylor, 1973)). It is unknown whether it might be
subject in some cases to a syntactic definition (such as a weak Mal’tsev con-
dition). (Exception: in (Taylor, 1973) we gave a Mal’tsev condition describing
F (A) for A a two-element discrete space.)

4.4 The ideal of a product of two spaces.

Let A and B be topological spaces. We saw in §4.2.1 that if A and B are com-
patible with Σ and Γ , respectively, then the product space A×B is compatible
with the meet Σ∧Γ .

4.3.2 Unions of chains.
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Now if we have ∆ ∈ I(A)∩ I(B), then ∆ is compatible with both A and
B. By the previous paragraph, A×B is compatible with ∆∧∆, which is co-
interpretable with ∆, hence equal to ∆ in the lattice. In other words, we now
have I(A)∩I(B)⊆ I(A×B). They are not generally equal. For instance, if A
is not homeomorphic to a perfect square, then, though I(A×A) will contain
the perfect-square equations (§7.5 below), I(A)∩ I(A) will not.

5 Note on free topological algebras.

Let A be a metrizable space, and Σ a finite or countable set of equations
that is consistent (does not entail x≈ y) . Considering A purely as a set, one
of course has the free algebra FΣ(A); it has A embedded as a subset, and
satisfies the equations Σ. In 1964, S. Świerczkowski showed (Świerczkowski,
1964) how to topologize (even metrize) FΣ(A) in such a way that A is em-
bedded as a subspace, and each operation is continuous. Thus in particular,
Σ is compatible with the topological space that underlies FΣ(A).

We mention this example of compatibility to illustrate the fact that, be-
yond consistency, there is no apparent constraint on the Σ that can appear
in the compatibility relation A |=ctn Σ, even when we require A to satisfy the
first countability axiom, as described in §0.1.

The topological spaces defined by Świerczkowski are large and non-com-
pact. If A is a CW-complex, then so is FΣ(A) (see Bateson (Bateson, 1982)),
but the construction of the algebra FΣ(A) is inherently infinitary, and so the
complex structure is, to our knowledge, almost always infinite. It is only for
very special and somewhat trivial equation-sets Σ that FΣ(A) turns out to
be finitely triangulable.5 By way of contrast, our main proposal in this report
(see §6 below) will be to consider I(A) when A is a finite simplicial complex.
Here the compatible Σ appear to be more limited.

6 Restrictions on compatibility for a finite complex.

We turn our attention toward compact Hausdorff spaces, mostly limiting it
to those connected spaces that have the form of a finite simplicial complex.
The latter form the most down-to-earth geometric corner of topology, and
hopefully our understanding could be rooted there. For simplicity, we will
refer to a space as finite if it has a finite triangulation, and as compact if it
is compact and Hausdorff.

Our starting point is the impression that the various Σ that have been
observed on finite connected complexes often fall into several broad cate-

5 For example, for Σ defining G-sets over a finite group G.
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gories: lattice-related equations, group-related equations, [k]-th power equa-
tions, simple equations, and a few special equation-sets. In this section we
review a few incompatibility results that make such a division slightly more
plausible.

6.1 Undemanding sets of equations.

A set Σ is called undemanding if it can be satisfied on some set of more
than one element—equivalently, on any set— by taking each operation to
be either a projection function or a constant function. Such operations are
continuous, and hence if Σ is undemanding, then Σ is compatible with every
space A. Taylor proved (Taylor, 2000) a sort of converse result: that many
finite spaces A have the property that A |=ctn Σ only for undemanding sets Σ.
(The proofs apply algebraic topology of the sort used in analyzing H-spaces,
as mentioned in §3.)

In other words, such an A is compatible with no interesting Σ! The list
of such A contains, for instance, all spheres other than S1, S3 and S7, the
Klein bottle, the projective plane, a one-point join of two 1-spheres, and
several others. It appears that the proofs could be extended to many other
finite A, but no one has carried out this job. From these considerations it
appears that for many finite A, perhaps for most, the situation is totally
arid.

For such a space A, the ideal I(A) is the smallest ideal containing every
undemanding set of equations. In fact this ideal is generated by the single
undemanding equation f(x)≈ f(y) (which postulates the existence of a con-
stant function).

Among those Σ that have at least one constant function, any undemanding
Σ is least in the interpretability ordering.

(For a k-dimensional counterpart of “undemanding,” see §7.5.3 below.)

6.1.1 “Undemanding” is an algorithmic property.

There is an easy algorithm that accepts any finite set Σ of equations as input,
and halts with output 1 or 0, depending whether Σ is undemanding. We will
describe this algorithm informally.

Given Σ, it has a finite similarity type n :T −→ Z. We now consider an
arbitrary finite set K of equations of the form

Ft(x1, . . . ,xn(t)) ≈ xj(5)

or of the form
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Ft(x1, . . . ,xn(t)) ≈ C,(6)

where our formal language has been augmented to include a single new con-
stant symbol C. For each t ∈ T , our K must include a single equation in-
volving Ft; that one equation must be either Equation (6) or one instance of
Equation (5)—thereby choosing a value of j in that equation.

If σ is any term in the language of Σ, the equations in K will immediately
imply either σ ≈ xj for some unique j, or σ ≈C. For each σ ≈ τ occurring in
Σ, we may check whether σ and τ both reduce to the same xj or else both
to C. If this happens for all equations in Σ, we say that K is consistent with
Σ.

We now undertake to do this for all of the (finitely many) possibilities for
K. If one K turns out to be consistent with Σ, we may say Σ is undemanding.
Otherwise, all such K turn out to be inconsistent with Σ, in which case we
conclude that Σ is demanding.

If all the operations are for instance binary, then the number of sets K
is obviously 3|T |; we see therefore that the algorithm is exponential in |T |.
Nevertheless, in many cases of interest |T | is small, and the algorithm is easily
carried out. The reader is invited to try his/her hand at equations (25–26)
in §7.6.2.

The incompatibility of (non-trivial) compact Hausdorff spaces with lattice-
ordered groups was proved by M. Ja. Antonovskĭı and A. V. Mironov
(Antonovskĭıand Mironov, 1967) in 1967. Therefore, of course, if Σ is an
axiom-set for LO-groups, we will not have A |=ctn Σ for any non-trivial finite
space A. If A is also connected, we in fact have the stronger conclusion—a
consequence of J. D. Lawson and B. Madison (Lawson and Madison, 1970)—
that A is not compatible both with group theory and with lattice theory.

Of course, from the perspective of the present investigation, it would be
very desirable to have a stronger version of this result, where group theory
and lattice theory are replaced by lower elements of the interpretability lat-
tice. In any case we will use §6.2 as a rough guide in organizing §7 which
follows, separating group-like topological algebras from lattice-like ones. (In
§7.3, however, we find some examples that lie on the overlap.)

6.2.1 Proof of the assertion in §6.2.

In §6.2.1, all citations refer to items in Lawson and Madison (Lawson and
Madison, 1970) (1970).

6.2 Not both groups and semilattices.
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Our proof (that no nontrivial connected compact Hausdorff space is com-
patible with both group theory and lattice theory) is by contradiction. We
will assume that A is a non-trivial compact connected Hausdorff space, and
that there are continuous operations ∧, ∨, · and −1 such that (A,∧,∨) is a
topological lattice and (A, ·,−1 ) is a topological group.

By compactness, (A,∧,∨) has 0 and 1. Therefore (A,∧) is certainly a
non-trivial compact connected nontrivial idempotent semigroup with 0. By
Corollary 2.12 on page 135, each maximal idempotent of (A,∨) is marginal.
Therefore A has at least one marginal element.

Marginal elements are defined in Definition 1.1 on page 129. Peripheral
elements are defined in Definition 1.2. On the bottom of page 129 we are told
that every marginal element is peripheral, with a reference to another paper
of Lawson and Madison. Also in Definition 1.2 we have that a point is inner
if and only if it is not peripheral. Therefore our space A contains one point
that is not inner.

On the other hand, Theorem 1.6 on page 130 tells us that if A is a finite
dimensional locally compact Hausdorff space, then the set of inner points of
A is dense in A. And hence non-empty. Thus our space A has one point that
is inner and one point that is not inner.

On the other hand (A, ·,−1 ) is a topological group, and hence A is ho-
mogeneous. Therefore, either all points of A are inner or no points of A are
inner. This contradiction completes the proof.

7 A |=ctn Σ for Σ non-trivial and A given by a finite
complex.

We present essentially all the examples that we know for sure. Our rough
division into types of Σ is partly based on the results mentioned in §6.2.

7.1 Σ related to group theory.

7.1.1 Grouplike algebra on spheres.

We look at one strengthening of group theory (i.e. higher in the lattice), and
two weakenings.

The one-dimensional sphere S1 is compatible with Abelian group theory.
(The Abelian group may be modeled as the set of unit-modulus complex
numbers under multiplication, or as the set of orthogonal 2×2 real matrices
of determinant 1.) On the other hand, S3 is the space underlying the group
of unit quaternions, which is not Abelian. (R. Bott proved in 1953 that S3

is not compatible with Abelian group theory—see (Bott, 1953).) S7 has the
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multiplication of unit octonians. With this multiplication, S7 forms an H-
space (see §3), which in fact satisfies the alternative laws (associativity on
all two-generated subalgebras). S7 does not, however, have a multiplication
forming an associative H-space (monoid), as was proved by I. M. James in
1957 (see (James, 1957)). Thus, for k any positive integer with k 6= 1,3,7, we
have the set inequalities

I(Sk) = I(Sk)∩ I(S7)∩ I(S3)∩ I(S1) ⊂
I(S7)∩ I(S3)∩ I(S1) ⊂ I(S3)∩ I(S1) ⊂ I(S1).

The four ideals are separated by H-space theory, associative H-space theory
(monoids) (or by group theory), and Abelian group theory, using the results
cited here and in §3. (Recall that I(S1) is described near the end of §4.3.1,
and I(Sk) is described in §6.1.)

7.1.2 Other groups.

There are various compact Lie groups (orthogonal, special orthogonal, and
so on). Matrix multiplication (which is inherently continuous) is often the
basic operation. Their various underlying spaces appear to be very sparse
among the class of all compact manifolds. The underlying spaces of compact
Lie groups may be finitely triangulated (see (Wikipedia, 2016) and references
given there).

7.2 Σ derived from lattice theory.

7.2.1 Distributive lattices (with 0 and 1).

A real interval [a,b] has a well-known distributive lattice structure. Therefore
each simplex [a,b]n has compatible distributive lattice operations, as does
any of its sublattices. In the compact realm, every compatible lattice has a
zero (bottom) and a one (top). The compact subuniverses of ([0,1],∧,∨,0,1)2

appear to be limited in their possible shapes, although a full description of
the limitations has not yet been discovered.

For the first such limitation, we note that in 1959 Dyer and Shields proved
(Dyer and Shields, 1959) that every compact connected metric topological
lattice is contractible and locally contractible. In particular a finite graph
(one-dimensional complex) with a lattice structure must be acyclic.

For a further limitation on finite graphs, we note that if A is an acyclic
non-linear finite graph, i.e., a one-dimensional compact connected simplicial
complex that does not define a line segment—e.g. if A is a Y-shaped space—
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then A is not compatible with lattice theory, and hence cannot be such a
subuniverse of [0,1]2. See §7.2.4 below for further incompatibilities.

The aforementioned result, of non-compatibility between lattice theory
and an acyclic non-linear finite graph A, comes in essence from Wallace (Wal-
lace, 1955), although only a weaker theorem is stated, and without proof. (See
the “Alphabet Theorem” on page 107 of (Wallace, 1955).) We shall thus in-
clude a short proof here, by contradiction. So suppose that A = (A,∧,∨) is
a topological lattice. Since our space A is compact, A has a 0 and a 1. Since
A is not homeomorphic to a segment, there is a point E of A such that A\E
has at least three components S0, S1, S2, . . .SN . Clearly there is one Sk that
contains neither 0 nor 1.

We now take P ∈ Sk; clearly P 6= E. We consider the map X 7−→ X∨P .
It maps 0 to P and 1 to 1. By connectedness, and the fact that every path
from P to 1 must pass through E, we see that our map must have E in its
range. In other words, for some X, P∨X = E. Thus P ≤ E.

A dual argument shows that P ≥E; by anti-symmetry P =E. This is the
contradiction that establishes our result.

It is worth mentioning, for future reference (§8.2) that the lattice opera-
tions on a real interval are piecewise linear:

x∧y = x if x≤ y; y if x≥ y,(7)

and similarly for join.

7.2.2 One can go higher in I([0,1]).

For this section, we let Λ0 be a finite equational axiom system for distributive
lattice theory with zero and one. For each integer n ≥ 1 we let Λn be Λ0
augmented with a unary operation symbol f and constant symbols a1, . . . ,an,
and extended with the following axioms:

a1∧a2 ≈ a1, a2∧a3 ≈ a2, · · · , an−1∧an ≈ an−1

f(0) ≈ 0, f(a1) ≈ 1, f(a2) ≈ 0, f(a3) ≈ 1, · · ·
f(1) ≈ 1 if n is even, 0 otherwise.

One easily checks that, in the interpretability lattice

Λ0 < Λ1 < · · · < Λn < Λn+1 < · · · .

(For non-interpretability of Λn+1 in Λn, we note that, modulo equational
deductions, Λn has only n+ 2 constant terms, whereas any interpretation of
Λn+1 will require n+ 3 logically distinct constant terms.)

Compatibility of Λn with a closed interval is easiest if we use the interval
[−1,1]. Then the desired function f can be taken as the Chebyshev polyno-
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mial Tn+1 of degree n+ 1. (Or one can simply take f to be piecewise linear
as specified by our equations.)

We therefore have an ω-chain of sets in the ideal I([0,1]), going upward
from the theory of distributive lattices with zero and one (§7.2.1).

7.2.3 Lattices (with 0 and 1).

Lattice theory lies strictly below modular lattice theory in the interpretability
lattice. Nevertheless, we do not know any space B that is compatible with
lattice theory (with or without zero and one), and yet is not compatible
with modular lattice theory. (It is possible that, for Σ = lattice theory, and
for suitably chosen A, the space of the free algebra FΣ(A) (see §5) might
be such a B. Furthermore, in (Bergman, 2015), G. Bergman has suggested
several finite spaces that are compatible with lattice theory, but may fail to
be compatible with modular lattice theory.)

We do know a space B that separates modular lattice theory from dis-
tributive lattice theory in this manner, namely such that B is compatible
with modular lattice theory but not with distributive lattice theory. If B is
the union of three closed 2-simplices along one common edge, then B has the
announced properties. The proof, by G. Bergman and W. Taylor, appears in
(Bergman, 2015, §3.1). See also §9.4.7 for a more general question about the
separation of one variety from another by the compatibility relation

In the nineteen-fifties A. D. Wallace conjectured that every compact, con-
nected topological lattice (L,∧,∨) is distributive. This was disproved in 1956
by D. E. Edmondson (Edmondson, 1956), who gave a non-modular exam-
ple6 with L homeomorphic to [0,1]3. (Of course this space is compatible
with distributive lattice theory.) Wallace’s conjecture holds for L = [0,1]2
(see (Anderson, 1959)) and for modular lattices with L = [0,1]3 (see (Gierz
and Stralka, 1989)).

7.2.4 Semilattices (with 0 and 1).

By contrast with §7.2.1, every finite tree (see §7.2.1) is compatible with semi-
lattice theory—as may be seen in §3.7 of W. Taylor (Taylor, 1986)—even
semilattice theory with 0 and 1. (And it is not hard to see from the proof
that the semilattice operation may be taken to be piecewise linear, i.e. sim-
plicial.)

Taylor proved in 1977 (see (Taylor, 1977)) that if A is a topological semi-
lattice, then the homotopy group πn(A,a) is trivial for every n≥ 1 and every
a∈A. (In 1965 (see (Brown, 1965)) D. R. Brown had obtained the same con-
clusion for a different equation-set: x∧x≈ x,x∧0≈ 0∧x≈ 0. In the compact
6 G. Bergman has recently found a simpler construction of an example with these
properties—see §4.2 of (Bergman, 2015).
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case Brown’s result already applies to a semilattice A, since A will then have
a zero.)

(In 1959 Dyer and Shields had proved (Dyer and Shields, 1959) that ev-
ery compact connected metric topological lattice is contractible and locally
contractible.)

7.2.5 Majority operations and median algebras.

It is well known that if (A,∧,∨) is a lattice, then the derived operation defined
by the term

m(x,y,z) = (x∧y)∨ (x∧ z)∨ (y∧ z)(8)

satisfies the majority equations

m(x,x,y) ≈ m(x,y,x) ≈ m(y,x,x) ≈ x.(9)

Thus the majority equations lie below lattice theory in the interpretabil-
ity lattice, and so are compatible with the space of any topological lattice
(§7.2.3).

Moreover the majority equations are also compatible with the finite trees
mentioned in §7.2.1 and §7.2.4. The idea (due to M. Sholander in 1954—see
(Sholander, 1954)) is very simple. Given such a tree T , for any two points
a,b∈ T , there is a smallest connected subset containing the two, which will be
denoted [a,b]. Moreover, Sholander proved, for any three points a, b and c∈T ,
the intersection [a,b]∩ [b,c]∩ [c,a] is a singleton. Taking its lone member as the
value of m(a,b,c), we obtain a symmetric, continuous operation m :T 3 −→ T
that satisfies Equation (9). Finally, we remark here that the m so defined on
a tree T satisfies a stronger set of equations, the axioms of median algebra—
see e.g. the 1983 treatise by Bandelt and Hedĺıková (Bandelt and Hedĺıková,
1983), or the 1980 treatise by Isbell (Isbell, 1980).

In fact, it was proved in 1979–82 by J. van Mill and M. van de Vel (Mill and
Vel, 1979, 1982) that, among finite-dimensional spaces, the ones compatible
with the majority equations are precisely the absolute retracts. (They refer
to a continuous majority operation as a “mixer.”)

7.2.6 Multiplication with one-sided unit and zero.

One very weak consequence of semilattice theory with zero and one—or of
ring theory—is the following set of two equations:

x∧0 ≈ 0, x∧1 ≈ x.
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These equations lie quite low in the interpretability lattice; hence it is not
hard to find contractible spaces that model them. (For example see e.g. §7.2.1
and §7.2.4.) On the other hand, as was mentioned in §3.6 of (Taylor, 1986),
it is easy to see that if A is a path-connected finite space compatible with
these equations, then A is contractible.

H-spaces (multiplication with two-sided unit element), and associative H-
spaces (otherwise known as monoids) were mentioned in §7.1.1; their theories
lie well below group theory. It is interesting to note that both of these theories
also lie below ∧-semilattices with 1 (§7.2.4).

For example, we may let S1 = (S1, ·,e) denote the circle group, with unit
element e. We may let I = (I, ·,1) denote the unit interval, where · is the usual
semilattice operation, and 1 is the top element, and also the unit element for
this algebra. Then S1× I is also an associative H-space, with two-side unit
element (e,1). One may easily check that

P = {(u,v) ∈ S1× I : u = e or v = 0}

is a subuniverse of S1× I. It is homeomorphic to the pointed union of the
pointed spaces (S1,e) and (I,0). (In other words, the space P is homeo-
morphic to the letter P.) Thus the space P is, for example, compatible with
monoids. (This example appeared in (Taylor, 1986), and is derived from work
of Wallace (Wallace, 1955).)

If B is any compact metrizable space that is an absolute retract among
metric spaces, then B is compatible with H-spaces (see §3.2.3 of W. Taylor
(Taylor, 2009)).

If A is compatible with the Mal’tsev equations, then A is compatible with
ΣH—see §7.4.3 below.

7.3.1 A mysterious theorem.

Algebraic topology has a lot to say about—and methods concerning—H-
spaces. As one sample result, we mention this:

J. R. Harper proved in 1972 (inter alia, see (Harper, 1972)) that if A is
a finite connected H-space, then the homotopy group π4(A) obeys the law
x2 = 1. (A= S3 is an example of such an H-space with π4(A) 6= 0.)

7.3 Below both groups and lattices: H-spaces.
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One may examine satisfaction up to homotopy. In the case of H-space theory,
one asks for a continuous map F :A2 −→A, and an element e ∈A, such that
the maps x 7−→ F (x,e) and x 7−→ F (e,x) are each homotopic to the identity
map x 7−→ x.

Many of the spaces of interest in this investigation are contractible, and
therefore model x≈ y up to homotopy — which means that they model any
Σ up to homotopy. We therefore will not pursue this notion here, except to
report that if A is a CW-complex, and if A is compatible with H-space theory
up to homotopy, then7 in fact A is an H-space.

7.4 Σ consisting of simple equations.

If A is an absolute retract in the class of metric spaces, and if Σ is a consis-
tent set of simple equations, then A is compatible with Σ (see Taylor (Taylor,
2009)). A term σ is simple iff there is at most one operation symbol Ft in σ,
appearing at most once. An equation σ ≈ τ is simple iff both terms σ and τ
are simple. For example, the majority equations (9) are simple,

For absolute retracts, consult works by Borsuk (Borsuk, 1967) and Hu
(Hu, 1965). For example, the finite trees defined in §7.2.1 are absolute re-
tracts (among, e.g., metric spaces). Thus the result of this section extends
the compatibility results of §7.2.5.

Moreover, if Σ is a consistent set of simple equations in a finite similarity
type, and if A is an absolute extensor (see (Hu, 1965)) in the class of com-
pletely regular spaces, then there is a topological algebra A = (A,. . .Ft . . .)
whose simple identities are precisely the simple consequences of Σ (see (Tay-
lor, 2009, Theorem 7(b))). This is the rare case where we have some control
over equations not holding in an algebra A constructed in this report.

If Σ is a finite (or recursive) set of simple equations, and if A is a finite
(or recursive) tree, and if we know some computable (hence continuous) op-
erations modeling Σ on a closed interval, then there are computable (hence
continuous) operations modeling Σ on A. The method is described in §4.2 of
(Taylor, 2009); it probably can be extended to an arbitrary absolute retract
which is a finite complex. A special case of the method is given in detail in
§7.4.2 below. (For computability of real functions, see (Pour-El and Richards,
1989).)

7 See Whitehead (Whitehead, 1978, Theorem III..4.7, page 117). In fact Whitehead
proves this under assumptions weaker than what we have stated here.

7.3.2 Digression on homotopy.
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7.4.1 Minority equations on a closed interval.

As an example of simple equations, we consider the ternary minority equa-
tions

q(x,x,y) ≈ q(x,y,x) ≈ q(y,x,x) ≈ y.(10)

A closed real interval [a,b] is well known to be an absolute retract, so by
§7.4 there exists a ternary operation q on [a,b] satisfying (10). We can, how-
ever, define such an operation directly, without reference to §7.4. A minority
operation q may be defined by the following two conditions:

(i) If u≤ v ≤ w, then q(u,v,w) = u−v+w.
(ii) q is completely symmetric in its three variables.

It is worth noting that there is a single formula defining this q, namely

q(u,v,w) = u∧v∧w −m(u,v,w) + u∨v∨w,(11)

where m is the ternary majority operation defined in Equation (8).
If A is a space homeomorphic to an interval, then of course our definition

of q may be transferred to A by laying down coordinates. Any non-linear
change of coordinates will effect the values of the resulting qA :A3 −→A, but
Equation (10) will not be affected. Linear changes of coordinates will not
affect any values of qA.

(A very different—and more complicated—q was described in Equation
(71) of §9.3 of (Taylor, 2006).)

7.4.2 Minority equations on a tree.

Here we will illustrate one way to satisfy the minority equations (10) on a
simple tree—as mentioned in §7.2.1 and §7.2.4 and §7.2.5. Specifically let Y
stand for the Y-shaped space that is formed by joining three closed intervals
with the amalgamation of one endpoint each. Y is an absolute retract; hence
compatible with the minority equations (10) by §7.4. We can, however, define
such an operation directly, without reference to §7.4.

Let Y1,Y2,Y3 be the three subsets of Y that can be formed by joining two
out of three of the constituent intervals. The significant facts about the Yi
are these:

(i) Each element of Y belongs to at least two of the Yi.
(ii) Each Yi is homeomorphic to an interval, and hence has a minority

operation qi by §7.4.1.
(iii) For each i there is a continuous function pi retracting Y onto Yi.

Let m be a majority operation on Y—whose existence is assured by §7.2.5.
We now define Q :Y 3 −→ Y as follows:
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Q(a,b,c) = m(q1(p1(a),p1(b),p1(c)),
q2(p2(a),p2(b),p2(c)), q3(p3(a),p3(b),p3(c))).

From points (i)–(iii) it follows easily that Q is a minority operation on Y .
As mentioned at the end of §7.4, the methods of §4.2 of (Taylor, 2009)—

a recursive invocation of the methods here—will allow one to construct a
ternary majority operation on any finite tree.

7.4.3 Mal’tsev operations.

The Mal’tsev equations are

p(x,x,y) ≈ p(y,x,x) ≈ y.(12)

One may say that their study initiated the investigation of relative strengths
of equation-sets, ultimately leading to the lattice of §4.2. Equations (12)
obviously lie below the minority equations (10) in the lattice. Thus Mal’tsev
operations are found on a closed interval and on any finite tree (by §7.4.1
and §7.4.2).

Moreover, in any group (A, ·,−1), the formula

p(a,b,c) = a · b−1 · c(13)

defines a Mal’tsev operation on A. Therefore S1, S3 have Mal’tsev operations.
As a sort of hybrid example, we look at the cylinder [a,b]×S1. It has

a Mal’tsev operation as does any (necessarily closed) subset onto which the
entire space [a,b]×S1 retracts. (E.g. a belt around the cylinder that is pinched
so as to be one-dimensional in spots and two-dimensional in other spots.)

Notice that any space A that has a Mal’tsev operation is an H-space (§7.3):
if p :A3 −→A satisfies (12), and if e ∈A, we may then define a multiplication
x ·y = p(x,e,y). This multiplication has e as a two-sided unit.

7.4.4 Two-thirds minority operations.

The two-thirds minority equations are

t(x,x,y) ≈ t(y,x,x) ≈ y; t(x,y,x) ≈ x.(14)

Clearly they lie higher in the lattice than the Mal’tsev equations (12).
(Strictly higher because they are not interpretable in Abelian group theory—
cf. §4.3.1.) Equations (14) also lie above the ternary majority equations
(9): p(x,y,z) = t(x,t(x,y,z),z) defines a majority operation, as one may
easily check. Equations (14) play a significant role in the study of arith-
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metic varieties (varieties that are congruence-permutable and congruence-
distributive)—see e.g. A. F. Pixley (Pixley, 1979).

Of course an interval [a,b] or a tree has a continuous two-thirds minority
operation by the general results of §7.4. One choice for t on [a,b] is this:

t(u,v,w) = u −m(u,v,w) + w,

whose form has much in common with Equations (11) and (13). For the tree
Y one may use the method of §7.4.2.

7.5 Σ defining [k]-th powers.

For each set Σ of equations, and for each k = 2,3, . . . , there exists a set Σ[k]

with the following property: an arbitrary topological space A is compatible
with Σ[k] if and only if there exists a space B such that B |=ctn Σ and A is
homeomorphic to the direct power Bk. If Σ is finite (resp. recursive, resp.
r.e., etc.), then Σ[k] may be taken as finite (resp. recursive, resp. r.e., etc.).

From the definition (which we have skipped) it is immediate that Σ[k] ≥Σ
in our lattice (§4). The theory Σ[k] was developed in 1975 by R. McKenzie
(McKenzie, 1975); see also (Taylor, 1975, pp. 268–269) or §10.1 of (Taylor,
2006). The connection of Σ[k] with topological spaces was perhaps first noted
in (Garćıa and Taylor, 1984).

Obviously, if Γ [k] ∈ I(A), then Γ ∈ I(A) and A is a k-th power. The con-
verse is false,8 even when k = 2: take A to be a four-element discrete space,
and Γ to be the Σ[2] of §7.5.2 below. Then Γ ∈ I(A) and A is a square, but
Γ [2] 6∈ I(A) (for then, by §7.5.2, A would be the square of a square, which it
is not).

In this context, of course, every example adduced so far in §7 yields further
examples for each k = 2,3, . . .. If B is known to be compatible with Σ, then
A = Bk is known to be compatible with Σ[k]. In the opposite direction, we
of course need to know all possible factorizations of A as homeomorphic to
some Bk. If each such B is incompatible with Σ, then we know that A is
not compatible with Σ[k]. (This of course includes the case where no such
factorization exists.)

7.5.1 The operations of Σ[k].

Given operations F 1, · · · ,F k on a set B, each of arity nk, we may define an
n-ary operation F on the set Bk as follows:

8 This observation thanks to G. M. Bergman.
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F ((b11, · · · , bk1), · · · ,(b1n, · · · , bkn))
= (F 1(b11, · · · , bkn), · · · ,F k(b11, · · · , bkn)).(15)

Clearly, if B has a topology, and if each F j is continuous, then F is con-
tinuous. One may think of Σ[k] as having one such n-ary operation symbol
for each k-tuple of nk-ary term operations of Σ. More usually, we take only
these special cases as fundamental operations of Σ[k]:

H((b11, · · · , bk1), · · · ,(b1k, · · · , bkk)) = (b11, · · · , bkk);(16)
d((b11, · · · , bk1)) = (b21, · · · , bk1 , b11);(17)

Gt((b11, · · · , bk1), · · · ,(b1n, · · · , bkn)) = (F t(b11, · · · , b1n), · · · ,F t(bk1 , · · · , bkn)),(18)

where F t (t∈ T ) are the fundamental operations of Σ. (The other operations
(15) can formed from these.)

7.5.2 Squares—Σ empty and k = 2.

For Σ empty, Σ[2] may be axiomatized as:

H(x,x) ≈ x

H(x,H(y,z)) ≈ H(x,z) ≈ H(H(x,y),z)
d(d(x)) ≈ x

d(H(x,y)) ≈ H(d(y),d(x)).

If A is the square of another space B, i.e. A=B2 with the product topology,
then A is compatible with Σ[2] in the following manner. We define operations
H and d on B2 via

H((b1, b2),(b3, b4)) = (b1, b4)(19)
d((b1, b2)) = (b2, b1),(20)

for all b1, . . . , b4 ∈ B. These operations are obviously continuous, and it is
easy to check by direct calculations that they obey Σ[2]. Thus B2 |=ctn Σ[2].
(Equations (19–20) are special cases of Equations (16–17) above.)

Conversely, it is not hard to prove that if A is any space with continuous
operations H ′ and d′ modeling this Σ[2], then there exist a space B and
a bijection φ :A −→ B2 that is both a homeomorphism of spaces and an
isomorphism of (A,H ′,d′) with (B2,H,d), with H and d defined as above.
(One begins by defining B to be the subspace {a ∈A : d′(a) = a}.)

Thus this Σ[2] is compatible with A if and only if A is homeomorphic to
a square, as claimed.
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7.5.3 Squares of spaces.

If B is any space and F i is a 2n-ary operation on B (i = 1,2), then—as a
special case of (15)—one has an n-ary operation F defined on A = B2 as
follows:

F ((b11, b21), · · · ,(b1n, b2n)) = (F 1(b11, · · · , b1n),F 2(b21, · · · , b2n)).(21)

If each F i is continuous, then F is continuous.
For most spaces B, there are many continuous operations on B2 besides

those described in Equation (21), and there is little or no real restriction on
the equation-sets that may be compatible with B2. But for certain spaces,
notably those described at the start of §6.1, the compatible equation-sets are
very limited.

In Theorem 2 of (Taylor, 2000) it was proved that if B is one of these
spaces, such as a figure-eight or a sphere Sn (n 6= 1,3,7), then a set Σ is
compatible with B2 only if Σ is interpretable in operations of type (21),
where each F i is either a coordinate projection function or a constant. Such
a set Σ is called 2-undemanding. There is an algorithm to determine if a
finite set is 2-undemanding.

The reader may easily imagine the corresponding definition for k-unde-
manding sets. Then a k-th power such as (Sn)k (n 6= 1,3,7) is compatible
with Σ only if Σ is k-undemanding.

7.5.4 Below squares in the interpretability lattice.

Let Γ consist of the single equation

(x?y)? (y ?z) ≈ y.(22)

In the context of §7.5.2, if we define

x?y = d(H(y,x)),(23)

then it is not hard to check that Equation (22) follows from the equations
Σ[2] of §7.5.2. In other words, Γ is interpretable in Σ[2] (where Σ is empty).
Therefore, by §7.5.2 and by §4.3, if A is the square of another space B, then
A=B2 |=ctn Γ .

In fact, if we apply the definition (23) to our operations d and H of §7.5.2,
we obtain the following concrete definition of a continuous ? modeling Γ on
any square B2:

(b1, b2)?(b3, b4) = (b2, b3).(24)

(And the fact that (B2,?) |= Γ can be reconfirmed by an easy calculation.)
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Thus (22) is an example of an equation that is 2-undemanding (§7.5.3)
but is not undemanding (§6.1).

(This discussion of Γ and ? is due in part to T. Evans (Evans, 1967).
Equation (22) was also discussed on pages 202–203 of (Taylor, 2000).)

7.5.5 A special case: A= Rk.

We mentioned at the start of §7.5 that one might need to know all topological
factorizations of A as a power Bk in order to assess the truth of B |=ctn Σ[k].
There is one case where all such factorizations are known, namely A = Rk.
If Rk is homeomorphic to Bk for some B, then B is homeomorphic to R
(Taylor, 2006, Lemma 29) (bassed on F. B. Jones and G. S. Young (Jones
and Young, 1959)). (In other words, topologically the space Rk has unique
k-th roots.)

The remarks in §7.5 now yield that, for any finite k and any set Σ of
equations, Σ[k] is compatible with Rk if and only if Σ is compatible with R.
(This result first appeared as (Taylor, 2006, Corollary 30).)

Few other k-th power spaces are known to have unique k-th roots, and so
the result stated here cannot be generalized very far. It does, however, hold
for powers [0,1]k.

7.5.6 The [k]-th root of a theory.

It is possible to turn the tables and define a theory k
√
Σ such that an arbitrary

space A is compatible with k
√
Σ if and only if the space Ak is compatible with

Σ. The theory k
√
Σ was defined by R. McKenzie in 1975 (see (McKenzie,

1975)); it is also briefly discussed on page 68 of (Garćıa and Taylor, 1984).
We will exhibit k

√
Σ for k = 2 and Σ the theory of H-spaces (binary mul-

tiplication with two-sided unit element, §7.2.6). Here is 2√Σ; it has two con-
stants and two 4-ary operations:

f1(x1,x2, c1, c2) ≈ x1

f2(x1,x2, c1, c2) ≈ x2

f1(c1, c2,x1,x2) ≈ x1

f2(c1, c2,x1,x2) ≈ x2.

It should be clear that if operations f i, ci (i= 1,2) satisfy these equations on
A, then one may define an H-space operation on A2 via

F ((a1,a2),(a3,a4)) = (f1(a1, . . . ,a4),f2(a1, . . . ,a4))

for all a1, . . . ,a4 ∈ A. The general method of defining k
√
Σ should be clear

from here.
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Obviously in general I(A)⊆ I(Ak), and the reverse inclusion may fail; for
example, if Σ = ∆[k] for some ∆ and if A is not homeomorphic to a k-th
power, then ∆[k] ∈ I(Ak) but ∆[k] 6∈ I(A) (for ∆ taken as, say, the empty
theory). In terms of this section, we may equivalently say that if A |=ctn Σ,
then A |=ctn k

√
Σ, but not always conversely.

J. van Mill exhibited (Mill, 1981) a space V such that V is not compatible
with group theory, but V 2 is compatible. In other words group theory lies in
I(V 2) but not I(V ). Nevertheless, the space V seems far from being a finite
space, and we do not expect examples of this type to play a big role in the
analysis of compatibility for finite spaces.

If Σ is a set of simple equations (see §7.4), then k
√
Σ is equivalent to

Σ in the interpretability lattice, which entails that I(Ak) = I(A) and that
Ak |=ctn Σ implies A |=ctn Σ. This theorem was proved in 1983 by B. Davey
and H. Werner (Davey and Werner, 1983), and about the same time by R.
McKenzie [unpublished]. A later proof appears in (Garćıa and Taylor, 1984,
Prop. 39, p. 69).

7.6 Miscellaneous Σ.

7.6.1 Exclusion of fixed points.

We consider the equation-set

F (x,x,y) ≈ y; F (φ(x),x,y) ≈ x.

If A is a space of more than one element that has the fixed-point property
(each continuous self-map has a fixed point), then, applying that property
to a given φ, we clearly see that these equations are not compatible with
A. Such spaces include the closed simplex of each finite dimension (Brouwer
fixed-point Theorem).

The equations also fail to be compatible with S1—which obviously does
not have the fixed-point property. Indeed, in §4.3.1, S1 |=ctn Σ if and only
if, in our lattice, Σ lies below the theory of Abelian groups. Thus φ will be
interpreted as a unary Abelian group operation. All such operations have 0
as a fixed point, and so the fixed-point argument may be applied again.

It is easy to find operations that show R to be compatible with the equa-
tions, but in fact I do not know of any finite complex that is compatible.

In the reverse direction, one may note that in 1959 E. Dyer and A. Shields
proved (Dyer and Shields, 1959) that if A is a finite-dimensional compact
connected space compatible with lattice theory, then A has the fixed-point
property.
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7.6.2 One-one but not onto.

We consider the equations

F (x,y,0) ≈ x, F (x,y,1) ≈ y,(25)
ψ(θ(x)) ≈ x, φ(θ(x)) ≈ 0, φ(1) ≈ 1,(26)

which first appeared in (Taylor, 1986, §3.17). Clearly this set is demanding
(see §6.1.1). In a non-singleton model A = (A,F ,ψ,θ,φ,0,1), Equations (25)
imply that 0 6= 1. The next equation tells us that θ is one-to-one, and the
last two tell us (using 0 6= 1) that the range of θ is not all of A. Every one-
one continuous self-map of the sphere Sn (n = 1,2, . . .) maps onto Sn (for
example, by the Invariance of Domain Theorem). Therefore these equations
are incompatible with spheres Sn. (For most spheres, we already knew this,
by §6.1. For S1, S3 and S7, the result is new in this section; for all spheres,
the proof here is much easier than the proof referenced in §6.1.)

On the other hand, it is not hard to satisfy the equations with continuous
operations on the closed interval [0,1]:

0 = 0, 1 = 1, F (a,b,c) = (1− c)a+ cb(27)
θ(a) = a/2, ψ(a) = 2a∧1, φ(a) = (2a−1)∨0.(28)

We would also like to see that Equations (25–26) can be satisfied on [0,1]
with (continuous) piecewise linear operations. The operations in Line (28)
are already piecewise linear; we need only add a piecewise linear definition
for (a new) F that satisfies (25). The reader may check that the following
definition suffices:

F (a,b,c) =
{
a∨2c if c≤ 1/2
b∨ (2−2c) if c≥ 1/2.

A slight variant of Equations (25–26) replaces Equations (25) with the
equations of §7.2.6. These equations serve, again, to separate 0 from 1 in any
algebra of more than one element. They are satisfied on [0,1] by using (28)
together with the ordinary meet operation on [0,1].

7.6.3 Entropic operations on [0,1].

In 1974 Fajtlowicz and Mycielski (see (Fajtlowicz and Mycielski, 1974)) con-
sidered continuous affine combinations on [0,1], i.e. functions that have this
form:

Fα(a,b) = αa+ (1−α)b,(29)
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one such operation for each α ∈ [0,1]. Such an operation is easily seen to
satisfy the equations

Fα(x,x) ≈ x, Fα(Fα(x,y),Fα(u,v)) ≈ Fα(Fα(x,u),Fα(y,v))

The first of these is the idempotent law; the second is the entropic law. They
also proved that if α is transcendental, then ([0,1],Fα) satisfies no equations
other than the logical consequences of idempotence and entropicity. These
equations are obviously undemanding (see the algorithm in §6.1.1), and hence
not interesting for the present investigation.

On the other hand, they proved that if α is algebraic, then ([0,1],Fα) sat-
isfies some equations beyond the logical consequences of idempotence and
entropicity. Regrettably, I don’t know which values of α yield an equa-
tion set that is demanding. (E.g. when α = 1/2, we have the equation
Fα(x,y) ≈ Fα(y,x), which renders the equations demanding. I don’t know
other examples.)

One may further consider two or more Fα in the same term. For instance,
for any α and β we clearly have the mixed entropic law

Fα(Fβ(x,y),Fβ(u,v)) ≈ Fβ(Fα(x,u),Fα(y,v)).

Moreover, one can consider affine combinations with more than two variables.
We do not emphasize such combinations, since each of them can be formed by
concatenating binary affine combinations. For example, given positive reals
µ, ν, λ that sum to 1, if we let α= µ+ν and β = µ/(µ+ν), then we have

Fα(Fβ(x,y),z) = µx+νy+λz.

7.6.4 Some twisted ternary operations on [0,1].

Let Rθ :R3 −→ R3 be the rotation of 3-space through angle θ, whose axis is
the line joining (0,0,0) to (1,1,1). (For example, when θ= 2π/3 this rotation
cyclically permutes the three positive coordinate axes.) Further, let m be the
ternary majority operation on R that is defined by Equation (8) of §7.2.5.
Here we consider the composite ternary operation on R, defined by

F θ = m◦Rθ.

As established in (Taylor, 2006, §9.4), the interval [0,1] is a subuniverse
of (R,F θ), and moreover the operation F θ satisfies the equations

Fθ(x,x,x) ≈ x, Fθ(x,y,z) ≈ Fθ(z,x,y).

Moreover, the derived operation
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pθ(a,b) = F θ(a,a,b)

turns out to be an affine combination on [0,1] (as defined in Equation (29)).
Therefore pθ obeys the idempotent and entropic equations of §7.6.3, plus
further equations if the coefficients of pθ are algebraic. These easily translate
to further laws for F θ.

We do not have a clear idea of how high in the lattice these examples
might lie.

8 The operations needed for the examples in §7.

Somewhat surprisingly, the concrete examples of compatibility provided
throughout §7 require operations only of a very unsophisticated design. (A
few examples above, such as the P in §7.3, are originally formed as products.
In such a case, the following analysis should be seen as applying to the two
factors separately.)

Let A be a topological subspace of some power Rk. For α ∈R and K a subset
of {1, . . . ,n}×{1, . . . ,k} we consider continuous functions F :An −→R of the
form

F ((x(1,1), . . . ,x(1,k)), . . . ,(x(n,1), . . . ,x(n,k))) = α
∏

(i,j)∈K
x(i,j)

uniformly over An. We usually restrict our attention to sets K with the
property that for each i ∈ {1, . . . ,n} there is at most one j with (i, j) ∈ K.
For such a set K, we will say that this F , or any linear combination of such
F ’s for varying α and K, is multilinear.

If k = 1 (in which case, each j = 1) we may say that F is linear, resp.
bilinear, if each K is a singleton, resp. has two elements.

Then for an operation F :An −→ A ⊆ Rk, we say that F is multilinear
(resp. linear) iff each of its components is multilinear (resp. linear).

Given a continuous operation F :An −→A, if the space An may be trian-
gulated so that on each simplex F is multilinear, then we may say that F
is piecewise multilinear. Similarly piecewise linear, piecewise bilinear, and so
on.

8.1 Multilinear Operations.
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8.2 Piecewise linear operations seem to suffice on [0,1].

Let us first look at I([0,1]), the sets Σ known to be compatible with the
interval [0,1]. In fact, piecewise linear operations suffice for all the concrete
examples included in §7. The piecewise linearity is made explicit in Equation
(7) of §7.2.1, in points (i) and (ii) of §7.4.1 and in §7.6.2; elsewhere it may
be easily inferred from the context.

In detail, the operations in §7.2.1 are piecewise linear, by Equation (7).
The equations in §7.2.2 can be modeled either with piecewise linear func-
tions or with Chebyshev polynomials (among infinitely many possibilities).
The equation-sets below lattice theory—semilattices in §7.2.4, majority oper-
ations in §7.2.5 and 0,1-multiplication in §7.2.6—are a fortiori satisfied with
piecewise linear operations on [0,1]. And then the minority operation q de-
fined in Equation (11) of (§7.4.1), the Mal’tsev operation of §7.4.3, and the
two-thirds minority operation t of §7.4.4 are linear combinations of operations
defined earlier, and hence still piecewise linear.

Finally, it is not hard to check that the entropic operations in §7.6.3, and
the twisted operations in §7.6.4 are all piecewise linear. As for the composite
ring-lattice operations in §7.6.2, we gave two ways to define F , one piecewise
linear, and one not.

In the first sentence of §7.4 we cited only an existence proof for operations
on [0,1] to make A compatible with Σ. To constructively provide such oper-
ations would require solving the word problem for free Σ-algebras, and then
analyzing the topological structure of FΣ([0,1]).
Σ[0,1] obviously defines a huge and complicated mathematical structure;

complete knowledge of it may be impossible (unless, for example, we are so
lucky as to find a simple finite generator for I([0,1])). We do, however, know
something about it. In several places—notably §7.2, §7.4 and §7.6—we have
reported on positive findings of [0,1] |=ctn Σ for various sets Σ. Each of these
reports amounts to a description of a finite piece of Σ[0,1].

8.3 Some further piecewise bilinear operations on a
closed interval.

In this speculative section we note the possibility that for A a closed interval
of the real line, there may exist Σ ∈ I(A) that is higher than any other such
Σ that we have considered so far in this account.

In this context it works best to consider the interval [−1,1]. The operations
we will consider, beyond the ordinary join ∨ and meet ∧ and constants 0 and
1 that we have already considered, are these:

(i) Ordinary multiplication, x ·y
(ii) Truncated addition: x�y, to mean [(x+y)∧1]∨ (−1)
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(iii) Shrinking: F (x) to mean9 x/3.

Besides the distributive-lattice equations for ∧,∨, and commutativity and
associativity for x ·y, the equations satisfied by our operations include10 these:

x�y ≈ y�x; (F (x)�F (y))�F (z) ≈ F (x)� (F (y)�F (z))(30)
(F (x)�F (x))�F (x) ≈ x(31)

x · (F (y)�F (z)) ≈ (x·F (y)) � (x·F (z))(32)
(x∨0) · (y∧ z) ≈ (x∨0) ·y ∧ (x∨0) · z(33)

((x∨0)�y)� (z∨0) ≈ (x∨0)� (y� (z∨0))(34)
((x∨0)�y)� (z∧0) 4 (x∨0)� (y� (z∧0))(35)

F (x∧y) ≈ F (x)∧F (y)(36)
(x ·x)∨0 ≈ x ·x(37)

(x∧0) · (y∧ z) ≈ ((x∧0) ·y) ∨ ((x∧0) · z)(38)

and the duals of (33–36). (The dual of (37) is not included.) For the notation
in (35): α4 β means α∨β ≈ β. Probably the careful reader can find further
interesting examples.11

For our context, the question is whether the operations defined here on
[−1,1] satisfy an equation-set that lies higher in the interpretability lattice
than (or incomparable with), say, the equations already seen in §7.2.2. Equa-
tions (30–36) do not have this property: they are (jointly) interpretable in
distributive lattice theory by defining F (x) to be x, and defining both x�y
and x ·y to be x∧y. This interpretation does not work for the set of Equations
(30–38); we do not know the location in the lattice of this set.

8.4 Multilinear maps define many group operations.

The groups on S1, S3 and S7 (see §7.1.1) all proceed from coordinate systems
(pairs, quadruples or octuples of real numbers). The product in S3, say, of
(x1,x2,x3,x4) and (y1,y2,y3,y4) has four components, each of which is a
bilinear function of the xi and the yj—a linear combination of the sixteen
products xiyj . Products in S1 and S7 are calculated similarly. In all three
groups, inverses are calculated by a form of conjugation, which is linear.

The matrix groups (§7.1.2) involve the ordinary product of two N ×N
matrices; in the product, each entry is a bilinear function of the entries in the
two given matrices. In dealing with unitary matrices, the inverse is simply

9 The 3 is somewhat arbitrary here.
10 We thank George M. Bergman for Equations (35) and (38).
11 For example the list could be extended by adding 1 (or any other constants), and
adding laws satisfied by such constant(s).
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conjugation, which is linear. For more general non-singular matrices, one
will also require the operation of calculating inverses, which can be seen as
the calculation of many determinants, followed by non-zero division. Each
determinant may be calculated as a multilinear function of the columns.

8.5 Point operations.

Operations such as those defined in Equations (19–20) of §7.5.2 were termed
point operations by Trevor Evans in (Evans, 1967). Another point operation
may be seen in Equation (24). The definition is that our space is a direct
power, and each coordinate of an F -value is determined as one of the input
coordinates. Obviously point operations are multilinear in the sense of §8.1.

More generally, if each coordinate of an F -value is determined as one of
the input coordinates or a constant, then we have operations that can model
the k-undemanding equations in the third paragraph of §7.5.3.

The operation of Σ[k] defined in Equation (15) of §7.5.1 may be seen as a
hybrid of Evans’ pure point operations, and the basic operations of the root
variety Σ. If the basic operations F i of §7.5.1 can be taken as multilinear,
then the constructed operation F defined in Equation (15) will be multilinear
as well.

8.6 Operations of arity 4 and higher.

None of our concrete examples mentions an operation of arity 4 or higher. (Of
course simple equations (§7.4) can involve operation symbols of any arity.)
We therefore do not know of any significant role played by N -ary operations
for N ≥ 4. For example, we do not know whether, for each N ≥ 4, there
exists a (finite) space A such that any generator of the ideal I(A)) (§4.3)
must include an operation symbol of arity ≥ N . (In fact we do not even
know whether this holds with N = 3; some of our examples involve ternary
operations, but in some or all cases they might be dispensable.)

9 Outlook and questions.

From known examples of the compatibility relation A |=ctn Σ, and from the
many instances in which the relation is known to fail, it may be possible
to catalog or classify the possibilities, at least for some finite spaces A (i.e.
spaces homeomorphic to the realization of a finite simplicial complex) and
for some finite Σ. Or at least to formulate a conjecture as to what is possible.
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9.1 Topological models of a given theory Σ.

It may be difficult to characterize or enumerate the finite models of a given
Σ. The overall difficulty should be apparent from the surprising results sur-
rounding H-spaces (§7.1.1).

Moreover, there seems to be little structure to the collection (among finite
complexes) of all topological groups, say, or all topological semilattices, etc.
Algebraically, the collection is a category and a variety, and products are of
some use—e.g. the product of two finite complexes is a finite complex. But
subalgebras and homomorphic images of finite complexes are not usually
finite complexes.

There are, of course, a few exceptional cases where the topological spaces
compatible with Σ can be expressly described or classified. Such are for ex-
ample the squaring equations of §7.5.3 (and analogous k-th power equations),
and also the majority operations of §7.2.5.

9.2 The theories compatible with a given space A.

In a few places—such as §7.5.3 and §4.3.1—we have seen a space A for which
the compatible theories Σ can be described or enumerated, such as A= S1.
For general A, however, the task eludes us.

More precisely, we are asking for some description of the ideal I(A) of §4.3
and §4.3.1. We thus have the lattice-theoretic structure to help formulate a
description. In particular, we know (§4.3.1) that I(A) is principal. The task
here will be to find a generator, or generating family, that is (in some sense)
small and easily understood.

For a relatively simple space like [0,1] or its finite powers, it may be possible
to refine our understanding of I(A). It seems interesting that all the known
theories compatible with [0,1] are very simple (or lie below some simpler
compatible theory). This points either to an inherent simplicity of I([0,1]),
or to a large misapprehension on the part of those who have studied it.
Hopefully, the former.

9.3 The theories compatible with any finite space.

Let I be the union of the ideals I(A) for all finite complexes A. By §6.2
it is not an ideal, but it is down-closed. Remarkably, it again seems that
everything we know to be in I is relatively simple, or at least lies below a
fairly simple set of equations. The upper boundary of I may be easier to
define than the boundaries of an individual I(A). (We have no conjecture as
to a possible form.)
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9.4 Specific questions.

9.4.1 Thoroughness of §7.

Does §7 include, at least implicitly, all the known examples of equation-sets
Σ that hold on a finite topological space A?

(In saying “implicitly,” we allow for example that Σ might lie below some
theory mentioned in our text, or that A might be a direct product or a finite
power.) (And of course, this could change with time; again please let the
author know of any new discoveries.)

9.4.2 Completeness of §7.

Does §7 include, at least implicitly, all equation-sets Σ that hold on a finite
topological space A?

In other words, we are asking about the down-set I described in §9.3. The
answer here may surely be “no,” even after §9.4.1 may have been corrected.
It may, however, be true that we are close to a full knowledge of I.

9.4.3 What is I =
⋃
{I(A) :A any finite complex}?

For example, Does there exist a recursive sequence Σ0, Σ1 . . . (with each Σn
a finite set of equations) such that Σ ∈ I if and only if for some n, Σ ≤Σn
in the interpretability lattice?

9.4.4 What operations are needed for I?

For each Σ ∈ I (as defined in §9.4.3), do there exist a finite complex A and
continuous piecewise multilinear operations F t on A such that (A,F t)t∈T |=
Σ ?

We suspect the answer here is “no,” but we have no counterexample.
If not, does there exist some reasonable enlargement of the category “piece-

wise multilinear” for which the answer is yes?

9.4.5 Algorithmic questions: fixed space.

Given a fixed finite space A, does there exist an algorithm that inputs a finite
set Σ of equations, and outputs whether A |=ctn Σ?

Given a fixed finite space A, is the set of all finite Σ with A |=ctn Σ recur-
sively enumerable?

(We assume that one can work out a language to code a set of equations.)
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In special cases, an algorithm for A |=ctn Σ exists and is implicit in what
we have already written. For A one of the spaces of §6.1, the algorithm would
check whether Σ is undemanding. For a k-th power of one of those spaces, the
algorithm would check whether Σ is k-undemanding (§7.5.3). For the sphere
S1, one would check whether Σ can be modeled by linear operations with
integer coefficients (see §4.3.1). For the majority of finite spaces, however,
the answer is unknown. In fact, we know of no finite A for which we can say
that the answer to either question is negative. By contrast, for A=R, we do
know that there is no algorithm (see (Taylor, 2006)).

(The proof in (Taylor, 2006) of the algorithmic undecidability of R |=ctn Σ
seems to require a non-compact space, where some periodic functions can be
found to live.)

9.4.6 Algorithmic questions: fixed theory.

For a fixed set Σ of equations, does there exist an algorithm to decide, for a
finite complex A, whether A |=ctn Σ?

Is the set of such A recursively enumerable?
We advise the reader that some very simple questions on finite complexes—

such as the question of the simple connectedness of a 2-complex—can fail to
have an algorithmic solution. (See (Markov, 1958) or (Barwise, 1977) for
examples.)

9.4.7 How well can A |=ctn Σ separate two theories?

We restate a question from §7.2.3:
Does there exist a space A that is compatible with lattice theory but not

with modular lattice theory? Is there a finite space A with this property?
Obviously the corresponding question may be asked for any two Σ that

are distinct in the interpretability lattice. The specific question posed here
remains open, and may be taken as an indicator of how little we know in this
area. For a similar question, that of separating modular lattice theory from
distributive lattice theory, an example is known. If B is the topological space
formed by joining three triangles (closed 2-simplices) along a single common
edge, then B is compatible with modular lattice theory, but not with distribu-
tive lattice theory. The proof—to which the present author contributed—may
be found in §3.1 of G. Bergman (Bergman, 2015); see especially Theorem 7
there.
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9.4.8 Description of I([0,1])?

(i) Does §7 give a thorough description of all known Σ compatible with
[0,1]?

(ii) Is there a finite Σ that generates the ideal I([0,1]) of all theories
compatible with the interval [0,1]? If so, attempt to exhibit a specific finite
generator Σ.

(iii) If so, will the Σ that is implicit in §7 suffice for this purpose? Would
it help to include the operations shown in §8.3?

(iv) Can one recursively enumerate a set of finite Σ’s that collectively
generate the ideal I([0,1])?

(v) In question (ii) or (iv), can one find such a Σ (or Σ’s) that can be
modeled with piecewise linear operations on [0,1]?

(vi) In question (ii) or (iv), can one find such a Σ (or Σ’s) whose operation
symbols all have arity ≤ 3? What about ≤ 2?

9.4.9 Description of F ([0,1])?

Describe the filter F ([0,1]) of all theories not compatible with the space [0,1].
If possible, frame this description as a weak Mal’tsev condition (Taylor, 1973).

As mentioned in §4.3.4, F ([0,1]) is not a Mal’tsev filter.

9.4.10 Other spaces A.

The questions in §9.4.8 may be asked for any space A, and we consider them
to be on the table, especially for A a finite complex. (“Linearity” may require
a specified coordinate system.) With a few exceptions (such as A = S1), we
do not expect them to be any easier than the questions for A= [0,1].

If A is product-indecomposable, then the questions of §9.4.9 may also be
asked for A.

9.4.11 How dense are the non-trivial finite complexes?

Among those complexes that have at most m simplices, of dimension at most
n, what fraction are compatible with some demanding theory (§6.1)?

We expect a meaningful answer only in the limit as m, or as m and n
together, approach infinity. The precise method of counting complexes (sim-
ply by raw data, or by isomorphism types of complex, or by homeomorphism
types of space, for example), is certainly part of the problem. We would not
be surprised if the limiting fraction turns out to be zero.
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Świerczkowski, S. (1964). Topologies in free algebras, Proceedings of the Lon-
don Mathematical Society (3) 14, 566–576.

Taylor, W. (1973). Characterizing Mal’cev conditions, Algebra Universalis 3,
351–397.

Taylor, W. (1975). The fine spectrum of a variety, Algebra Universalis 5,
263–303.

Taylor, W. (1977). Varieties obeying homotopy laws. Canadian Journal of
Mathematics 29, 498–527.

Taylor, W. (1986). The clone of a topological space, Volume 13 of Research
and Exposition in Mathematics, 95 pages. Heldermann Verlag, Berlin.

Taylor, W. (2000). Spaces and equations, Fundamenta Mathematicae 164,
193–240.

Taylor, W. (2006). Equations on real intervals, Algebra Universalis 55, 409–
456.

Taylor, W. (2009). Simple equations on real intervals, Algebra Universalis 61,
213–226.

Taylor, W. (2010). Approximate satisfaction of identities. 98 pp., to appear,
see http://euclid.colorado.edu/˜wtaylor/approx.pdf, see also http:
//arXiv.org/abs/1504.01165

Taylor, W. (2011). Discontinuities in the identical satisfaction of equations. 75
pp., to appear, see http://euclid.colorado.edu/˜wtaylor/jumps.pdf,
see also http://arXiv.org/abs/1504.01445

Mill, J. van (1981). A rigid space X for which X×X is homogeneous, Pro-
ceedings of the American Mathematical Society 83, 597–600.

Mill, J. van (1983). A topological group having no homeomorphisms other
than translations, Transactions of the American Mathematical Society 280,
491–498.

Mill, J. van and Vel, M. van de (1979). On an internal property of absolute
retracts, Topology Proceedings 4, 193–200.

Mill, J. van and Vel, M. van de (1982). On an internal property of absolute
retracts II, Topology and its applications 13, 59–68.

Wallace, A. D. (1955). The structure of topological semigroups, Bulletin of
the American Mathematical Society 61, 95–112.



420 Walter Taylor

Whitehead, G. W. (1978). Elements of homotopy theory, Graduate Texts in
Mathematics, Volume 61, Springer-Verlag, Berlin.



Categorical Abstract Algebraic Logic:
Compatibility Operators and
Correspondence Theorems

George Voutsadakis

To Don Pigozzi this work is dedicated
on the occasion of his 80th Birthday.

Abstract Very recently Albuquerque, Font and Jansana, based on preceding
work of Czelakowski on compatibility operators, introduced coherent compat-
ibility operators and used Galois connections, formed by these operators, to
provide a unified framework for the study of the Leibniz, the Suszko and the
Tarski operators of abstract algebraic logic. Based on this work, we present a
unified treatment of the operator approach to the categorical abstract alge-
braic logic hierarchy of π-institutions. This approach encompasses previous
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1 Introduction: The Three Operators of AAL

The operator approach in abstract algebraic logic (AAL) has born many
fruits and forms the cornerstone of all three main directions in the field: The
association of classes of algebras with logical systems, the correspondence
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between logical and algebraic properties and the study of specific classes of
logical systems or specific classes of algebras per se in the context of alge-
braization and/or property correspondence. General surveys of the approach
can be found in (Font and Jansana, 1996; Czelakowski, 2001; Font et al.,
2003).

The operator approach has been extended by the author to a categorical
framework starting with (Voutsadakis, 2015a) and in a bulk of subsequent
work (Voutsadakis, 2005a,b, 2007a,b) and has provided equally intriguing re-
sults, while in the last few years, the levels of the AAL hierarchy of sentential
logics have been extended, based on this approach, to the categorical abstract
algebraic logic (CAAL) hierarchy of π-institutions (Voutsadakis, 2007a, 2006,
2008, 2007c, 2015b).

Since the overviews cited above contain remarkably inclusive and relatively
up-to-date presentations of the work in the field, we restrict the introduction
to some of the essentials needed in placing the present work in context and
in outlining some of the contents of the paper.

The operator approach in AAL was initiated by Blok and Pigozzi in
their seminal “Memoirs” monograph (Blok and Pigozzi, 1989), which was,
to a certain extent, anticipated in the ground-breaking work of Czelakowski
on equivalential logics (Czelakowski, 1981a,b). This was followed by vital
and influential contributions by Hermann (Herrmann, 1993, 1996, 1997),
Czelakowski and Pigozzi (Czelakowski and Pigozzi, 1999, 2004a,b), Font and
Jansana (Font and Jansana, 1996), Czelakowski and Jansana (Czelakowski
and Jansana, 2000), Czelakowski (Czelakowski, 2003) and Raftery (Raftery,
2006).

Blok and Pigozzi introduced the Leibniz operator associating with a the-
ory of a sentential logic the largest congruence on the formula algebra that is
compatible with the theory. This may be generalized to an association with
an arbitrary filter of the logic on any algebra of the same similarity type as
the logic of the largest congruence on the algebra that is compatible with
the filter. One of the main results of (Blok and Pigozzi, 1989) was a char-
acterization of algebraizability via a correspondence between theories and
congruences. This was subsequently refined in many works, e.g., in (Font and
Jansana, 1996), and, much more recently, in a unifying setting, encompassing
many previously known results of this type, in (Albuquerque et al., 2016).

The bulk of Blok and Pigozzi’s and subsequent work focuses on establishing
the main classes of the AAL Leibniz hierarchy, consisting of the protoalge-
braic (Blok and Pigozzi, 1986), equivalential (Czelakowski, 1981a,b), truth-
equational (Raftery, 2006), weakly algebraizable (Czelakowski and Jansana,
2000) and algebraizable logics (Blok and Pigozzi, 1989; Herrmann, 1993, 1996,
1997), based on properties of the Leibniz operator, and on exploring various
metalogical properties and related properties of their associated classes of
algebras.

In the CAAL context, a categorical Leibniz operator, inspired by the work
in AAL, was introduced in (Voutsadakis, 2007a) with the goal of obtain-
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ing abstractions of the various results obtained in the AAL context using the
Leibniz operator of Blok and Pigozzi; among them, perhaps most importantly,
developing a CAAL hierarchy of π-institutions based on their algebraic char-
acter, indicating the strength of ties between the structure of the lattice of
their theory families and that of the congruence systems on algebraic systems.

The second operator that was introduced historically was the Tarski op-
erator (Font and Jansana, 1996) in seminal work carried out by Font and
Jansana and ushering in a period of intense and fruitful investigations by
the Barcelona School of AAL. The Tarski operator associates to a collection
of filters on a specific algebra the largest congruence on the algebra that is
compatible with all filters in the collection. The Tarski operator served the
purpose of lifting the model theory of sentential logics from the level of logical
matrices, which had been at the focus of the work of Czelakowski and Blok
and Pigozzi, to the level of generalized matrices and of abstract logics (see,
e.g., (Font and Jansana, 1996; Hendriks and Malinowski, 2003)). A key aspect
of this theory, playing a decisive role in the characterization of the classes
in the Leibniz hierarchy, is the determination of full models of either single
logical systems under consideration in a specific study or of classes of logical
systems (Font and Jansana, 1995; Jansana, 2002; Babenyshev, 2003; Font
et al., 2006). These are the models that include all filters that are compatible
with the Tarski congruence of the model.

Perhaps surprisingly, but understandably, if one takes into account the
nature of closure systems defining π-institutions, the categorical Tarski oper-
ator (Voutsadakis, 2015a) was introduced in CAAL before the corresponding
abstraction of the Leibniz operator (Voutsadakis, 2007a, 2006). It served the
purpose of abstracting the theory of abstract logics of Font and Jansana to
the level of models of π-institutions. Very important for our present work
was the establishment of a General Correspondence Theorem (Voutsadakis,
2005a,b), which parallels a celebrated Correspondence Theorem in the con-
text of sentential logics (Font and Jansana, 1996), in turn generalizing one of
the original results of Blok and Pigozzi (Blok and Pigozzi, 1989, 1992).

In (Czelakowski, 2003), Czelakowski introduced the last of the three ma-
jor operators, the Suszko operator. Raftery (Raftery, 2006) has employed the
Suszko operator in the study of truth equational sentential logics. More re-
cently, it has played a potent role in providing alternative characterizations
and in studying properties of various classes of the Leibniz hierarchy (Albu-
querque et al., 2016), in addition to its critical role in the characterization of
truth equationality. Following (Albuquerque et al., 2016), we use in a simi-
lar way the corresponding CAAL operator, also termed the Suszko operator,
which was introduced in (Voutsadakis, 2007b), following (Czelakowski, 2003).

The three operators are closely related, the Leibniz being in a sense the
fundamental one. The Leibniz operator and the Suszko operator are applied
to single filters of a logic and the Suszko congruence associated with a given
filter is the intersection of all Leibniz congruences associated with filters of
the logic that include the given filter. On the other hand the Tarski operator
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is applied to collections of filters of a logic and it gives the intersection of
all Leibniz congruences of the filters in the collection. Thus, both the Suszko
and the Tarski operators can be expressed in terms of the Leibniz operator
in a straightforward way. One of the elegant contributions of (Albuquerque
et al., 2016) was the introduction of the unifying framework of compatibility
operators in which all three operators can be treated uniformly to a far-
reaching extent. We follow here (Albuquerque et al., 2016) in treating the
categorical operators in a similar way. We are able, as a result, on the one
hand to both unify and simplify already known results from CAAL, and,
on the other, to establish many hitherto unknown ones, that generalize to
π-institutions corresponding known results from the AAL domain.

2 Abstract Compatibility Operators

In (Albuquerque et al., 2016), Albuquerque, Font and Jansana developed
the theory of S-compatibility operators, encompassing and treating under a
unified framework the three classical operators of AAL. We review briefly the
basic components of the work in (Albuquerque et al., 2016) since it forms the
foundation for the work developed in the present paper.

We fix a sentential logic S = 〈L,CS〉. S-compatibility operators are map-
pings ∇A from the set of all S-filters FiS(A) on an arbitrary algebra A, of
the similarity type L of S, to the set of congruences Con(A) on the algebra.
Such an operator ∇A maps an S-filter F on A to a congruence ∇A(F ) that is
compatible with the filter. Since, by definition, the Leibniz congruence ΩA(F )
is the largest congruence on A compatible with F (Blok and Pigozzi, 1989),
it follows that ΩA is the largest S-compatibility operator on A. Moreover, as
shown by Czelakowski in (Czelakowski, 2003), the Suszko operator Ω̃A is the
largest order-preserving S-compatibility operator.

In the abstract theory, the Leibniz and Suszko operators form an example
of another type of relationship. Namely, given an S-compatibility operator
∇A, two more “companion” operators are defined from it (Albuquerque et
al., 2016):

• The lifting ∇̃A is applied to arbitrary collections of S-filters on A; it
associates with such a collection, the largest congruence on A that is com-
patible with all filters in the collection.

• The relativization ∇̃A
S is applied to an S-filter and associates with it the

largest congruence on A that is compatible with all S-filters on A con-
taining the given filter. Thus, its action is that of the lifting applied on
the upset of the lattice of all S-filters generated by the given filter.

Clearly, the Tarski operator is the lifting of the Leibniz operator and the
Suszko operator is its relativization, and they constitute the prototypical
examples of operators that motivate the general theory.
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The springboard of the theory in (Albuquerque et al., 2016) is the observa-
tion that ∇̃A is part of a Galois connection between the powerset P(FiS(A))
of the collection of S-filters on A and the collection Con(A) of congruences
on A. The fixed points are the so-called ∇A-full sets of S-filters and the
∇A-full congruences.

Another pair of important concepts consists of the ∇A-class JF K∇A of an
S-filter F , which is composed of all filters with which ∇A(F ) is compatible,
and the smallest element F∇A of this class. A filter F is termed a ∇A-filter
in (Albuquerque et al., 2016) if F = F∇

A , i.e., if it is the smallest filter that
is compatible with its ∇A-associated congruence, again a concept that has
been studied extensively in the traditional setting by Font and Jansana (Font
and Jansana, 2001, 2011) and Jansana (Jansana, 2003).

If an S-compatibility operator ∇A is defined for every algebra A of the
same similarity type L as that of the sentential logic S, then a family
∇ = {∇A}A∈Alg(L) is assembled. To relate the members of ∇ the increas-
ing in strength notions of coherence, commutativity with inverse images of
surjective homomorphisms and commutativity with inverse images of arbi-
trary homomorphisms are introduced. The first is novel in (Albuquerque et
al., 2016) whereas the latter two are well known in traditional AAL and play
a critical role in the theory of protoalgebraic (Blok and Pigozzi, 1986), equiv-
alential (Czelakowski, 1981a,b) and algebraizable (Blok and Pigozzi, 1989)
logics (see also (Czelakowski, 2001; Font et al., 2003)).

Remarkably, taking advantage of coherence, a General Correspondence
Theorem (Theorem 4.17 of (Albuquerque et al., 2016)) is obtained to the
effect that, for every surjective homomorphism h : A→B and every S-filter
F on A, such that h is ∇A-compatible with F , a technical condition, h in-
duces an order isomorphism between the ∇A-class of F and the ∇B-class of
h(F ), with inverse h−1. Several well-known isomorphism theorems from the
theory of protoalgebraic logics and beyond follow from this General Corre-
spondence Theorem, including results of Blok and Pigozzi (Blok and Pigozzi,
1989, 1992), of Czelakowski (Czelakowski, 2003) and of Font and Jansana
(Font and Jansana, 2001).

Following the lead from the classical theory of AAL, based on ∇A,∇̃A and
∇̃A
S , classes of algebras are defined consisting of algebras that are reduced

with respect to corresponding types of congruences. The abstract hypotheses
of coherence and commutativity with inverse images of surjective homomor-
phisms imply various relationships between the classes analogous to those
established in the traditional context in relation to the well-known classes
Alg∗S,AlgSuS and AlgS (see Subsection 4.2 of (Albuquerque et al., 2016)).

Using the concepts of full generalized matrix models, of the Leibniz op-
erator, of the Suszko operator and of the aforementioned classes of algebras
associated with S, a wealth of characterizations of the classes in the AAL hi-
erarchy is obtained in Section 6 of (Albuquerque et al., 2016). Some of these
have been well-known in the AAL literature, some less well-known and some
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are new. What is remarkable, however, and motivated the present exposi-
tion, is the fact that they are all obtained as consequences of the treatment
of abstract S-compatibility operators and the basic Galois connection, as spe-
cialized in the context of the three main operators of AAL, essentially the
Leibniz operator, since it is the fundamental among the three, and the Tarski
and Suszko as the lifting and relativization of the Leibniz operator.

3 The Categorical Operators

Let Sign be a category, referred to as a category of signatures. Let, also,
SEN : Sign→ Set be a set-valued functor from the category of signatures,
referred to as a sentence functor. A collection T = {TΣ}Σ∈|Sign|, with
TΣ ⊆ SEN(Σ), for allΣ ∈ |Sign|, is called a sentence family of SEN.1 A sen-
tence family is a sentence system if it is invariant under Sign-morphisms,
i.e., for all Σ,Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), SEN(f)(TΣ) ⊆ TΣ′ . An
equivalence family θ = {θΣ}Σ∈|Sign| on SEN is a |Sign|-indexed family
of equivalence relations θΣ ⊆ SEN(Σ)2. It is called an equivalence sys-
tem if it is invariant under Sign-morphisms, i.e., if, for all Σ,Σ′ ∈ |Sign|
and f ∈ Sign(Σ,Σ′), SEN(f)2(θΣ) ⊆ θΣ′ . Signature-wise inclusion of both
sentence families and equivalence families is denoted by ≤, i.e.,

T ≤ T ′ iff TΣ ⊆ T ′Σ , for all Σ ∈ |Sign|,

and
θ ≤ θ′ iff θΣ ⊆ θ′Σ , for all Σ ∈ |Sign|.

Consider, in addition to a sentence functor SEN : Sign→ Set, a category
N of natural transformations on SEN in the sense of, e.g., Section 2 of
(Voutsadakis, 2007a). The triple A = 〈Sign,SEN, N〉 is called an algebraic
system. An equivalence family θ on SEN is called a congruence family on
A if it is invariant under N -morphisms, i.e., if, for all σ : SENk→ SEN in N ,
all Σ ∈ |Sign| and all ϕ0,ψ0, . . . ,ϕk−1,ψk−1 ∈ SEN(Σ),

〈ϕi,ψi〉 ∈ θΣ , i < k, imply 〈σΣ(ϕ0, . . . ,ϕk−1),σΣ(ψ0, . . . ,ψk−1)〉 ∈ θΣ .

A congruence system is a congruence family that is an equivalence system,
i.e., an equivalence family that is invariant under both Sign-morphisms and
N -morphisms. The collection of all congruence systems on A is denoted by
ConSys(A). Ordered by signature-wise inclusion ≤, they form a complete
lattice, denoted by ConSys(A) = 〈ConSys(A),≤〉.

Let F = 〈Sign,SEN,N〉 be an algebraic system, termed the base alge-
braic system. An algebraic system A = 〈Sign′,SEN′,N ′〉 is called an N -

1 This was called an axiom family in CAAL before.
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algebraic system if there exists a surjective functor ′ : N →N ′ that pre-
serves all projection natural transformations and, therefore, preserves also
the arities of all natural transformations in N . We write σ′ in N ′ to indicate
the image in N ′ of a σ in N under the functor ′. Given two N -algebraic sys-
tems A = 〈Sign′,SEN′,N ′〉 and B = 〈Sign′′,SEN′′,N ′′〉, an N -(algebraic
system) morphism 〈H,γ〉 : A→B consists of

• a functor H : Sign′→ Sign′′ and
• a natural transformation γ : SEN′ → SEN′′ ◦H, such that, for all σ :

SENk→ SEN in N , all Σ ∈ |Sign′| and all ϕ0, . . . ,ϕk−1 ∈ SEN′(Σ),

γΣ(σ′Σ(ϕ0, . . . ,ϕk−1)) = σ′′H(Σ)(γΣ(ϕ0), . . . ,γΣ(ϕk−1)).

Given an N -morphism 〈H,γ〉 : A→B, the kernel of 〈H,γ〉 is the congruence
system Ker(〈H,γ〉) = {KerΣ(〈H,γ〉)}Σ∈|Sign′|, defined, for all Σ ∈ |Sign′|, by

KerΣ(〈H,γ〉) = {〈ϕ,ψ〉 ∈ SEN′(Σ)2 : γΣ(ϕ) = γΣ(ψ)}.

Given an algebraic system A = 〈Sign,SEN,N〉 and a congruence system θ
on A, one can define the quotient algebraic system A/θ = 〈Sign,SENθ,
Nθ〉 of A by θ (see, e.g., (Voutsadakis, 2015a)). In this case 〈ISign,π

θ〉 : A→
A/θ denotes the projection morphism from A onto A/θ. Thus, given a class K
of algebraic systems, it makes sense to consider the K-relative congruence
systems on A, i.e., those θ ∈ ConSys(A), such that A/θ ∈ K. The class of
all relative K-congruence systems on A is denoted by ConSysK(A).

Let A = 〈Sign,SEN,N〉 be an algebraic system and T = {TΣ}Σ∈|Sign|
a sentence family of SEN. A congruence system θ = {θΣ}Σ∈|Sign| on A is
compatible with T if, for all Σ ∈ |Sign| and all ϕ,ψ ∈ SEN(Σ),

〈ϕ,ψ〉 ∈ θΣ and ϕ ∈ TΣ imply ψ ∈ TΣ .

This condition is denoted T comp θ and may be characterized in the following
ways:

Lemma 1. Let A = 〈Sign,SEN,N〉 be an algebraic system, θ ∈ ConSys(A)
and T a sentence family of SEN. The following conditions are equivalent:

(i) θ is compatible with T .
(ii) ϕ ∈ TΣ iff ϕ/θΣ ∈ TΣ/θΣ, for all Σ ∈ |Sign| and all ϕ ∈ SEN(Σ).

(iii) T = πθ
−1(πθ(T )) (πθ−1 := (πθ)−1).

(iv) TΣ =
⋃
ϕ∈TΣ ϕ/θΣ, for all Σ ∈ |Sign|, i.e., TΣ is a union of θΣ-equi-

valence classes, for all Σ ∈ |Sign|.

As for the kernel of an N -morphism, we have:

Lemma 2. Let A = 〈Sign′,SEN′,N ′〉 and B = 〈Sign′′,SEN′′,N ′′〉 be N -
algebraic systems and 〈H,γ〉 : A→B an N -morphism.
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(1) For all sentence families T of SEN′, Ker(〈H,γ〉) is compatible with T
iff γ−1

Σ (γΣ(TΣ)) = TΣ, for all Σ ∈ |Sign′|.
(2) For all θ ∈ConSys(A), if Ker(〈H,γ〉)≤ θ, then γ−1

Σ (γΣ(θΣ)) = θΣ, for
all Σ ∈ |Sign′|.

Consider again an algebraic system A = 〈Sign,SEN,N〉. Given a sen-
tence family T of SEN, there always exists a largest congruence system on
A that is compatible with T (Proposition 2.2. of (Voutsadakis, 2007a)).
It is called the Leibniz congruence system of T on A and denoted
ΩA(T ) = {ΩA

Σ(T )}Σ∈|Sign|.
Given a collection T of sentence families of SEN, there always exists a

largest congruence system on A that is compatible with every T ∈ T . This is
termed the Tarski congruence system of T on A and denoted by Ω̃A(T ).

A π-institution2 I = 〈A,C〉 consists of
• an algebraic system A = 〈Sign,SEN,N〉 and
• a closure system C on SEN, i.e., a family of closure operators C =
{CΣ}Σ∈|Sign| that satisfy, for all Σ,Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

SEN(f)(CΣ(Φ))⊆ CΣ′(SEN(f)(Φ)), for all Φ⊆ SEN(Σ),

a condition known as structurality.
Given a π-institution I = 〈A,C〉, a sentence family (system) T={TΣ}Σ∈|Sign|
of SEN is called a theory family (system) if each TΣ ⊆ SEN(Σ) is a Σ-
theory, i.e., a closed set under C: CΣ(TΣ) = TΣ . The collection of all theory
families of I is denoted by ThFam(I). Ordered by signature wise inclusion ≤,
the collection of all theory families forms a complete lattice that is denoted
by ThFam(I) = 〈ThFam(I),≤〉.

Let I = 〈A,C〉 be a π-institution. As a special case of the definition of the
Tarski congruence system of a collection of sentence families, we obtain the
Tarski congruence system of I, i.e., the largest congruence system that
is compatible with every theory family T ∈ ThFam(I). Ordinarily, instead
of the notation Ω̃A(ThFam(I)), we use the notation Ω̃A(C) or Ω̃(I) for this
congruence system.

Consider again a π-institution I=〈A,C〉 and a theory family T∈ThFam(I).
The Suszko congruence system of T in I, denoted Ω̃I(T ), is the largest
congruence system that is compatible with all T ′ ∈ ThFam(I), such that
T ≤ T ′. Taking after similar notation in AAL, this set is usually denoted by

(ThFam(I))T = {T ′ ∈ ThFam(I) : T ≤ T ′}.

Therefore, Ω̃I(T ) = Ω̃A((ThFam(I))T ).
In summary, the three congruence systems ΩA(T ), Ω̃I(T ) and Ω̃A(C) are

related by
2 This is the same as a π-institution I = 〈Sign,SEN,C〉, augmented with a category N
of natural transformations on its sentence functor SEN, in traditional CAAL.
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Ω̃I(T ) =
⋂
{ΩA(T ′) : T ′ ∈ ThFam(I),T ≤ T ′}

and
Ω̃(I) =

⋂
{ΩA(T ) : T ∈ ThFam(I)}.

Let F = 〈Sign,SEN,N〉 be a base algebraic system and A = 〈Sign′,SEN′,
N ′〉 an N -algebraic system. A pair A = 〈A,〈F,α〉〉 is an (interpreted) N -
algebraic system3 if A is an N -algebraic system and 〈F,α〉 : SEN→ SEN′
is an N -morphism.

Let A = 〈A,〈F,α〉〉 and B = 〈B,〈G,β〉〉 be two interpreted N -algebraic
systems. An N -morphism 〈H,γ〉 : A→B is called an N -morphism from A
to B, denoted 〈H,γ〉 :A→B, if the following triangle commutes:

SEN

SEN′
〈H,γ〉

-
�

〈F
,α
〉

SEN′′

〈G
,β〉
-

Such an N -morphism is said to be surjective if both H : Sign′→ Sign′′ and
all γΣ′ : SEN′(Σ′)→ SEN′′(H(Σ′)), Σ′ ∈ |Sign′|, are surjective.

An N -matrix system A = 〈A,T ′〉 is a pair consisting of an N -algebraic
system A = 〈Sign′,SEN′,N ′〉 and a sentence family T ′ = {T ′Σ}Σ∈|Sign′| of
SEN′. An (interpreted) N -matrix system3 A= 〈A,T ′〉 is a pair consisting
of an interpreted N -algebraic system A = 〈A,〈F,α〉〉 and a sentence family
T ′ = {T ′Σ}Σ∈|Sign′| of SEN′.

Fix a base algebraic system F = 〈Sign,SEN,N〉 and a π-institution I =
〈F,C〉, referred to as the base π-institution.4 Then an interpreted N -matrix
system A = 〈A,T ′〉 is called an I-matrix system if T ′ is an I-filter family
of A, i.e., for all Σ ∈ |Sign|, Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈ CΣ(Φ), and
all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(Φ))⊆ T ′F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T ′F (Σ′).

We denote by FiFamI(A) the collection of all I-filter families of A. Ordered
by signature-wise inclusion ≤, this collection becomes a complete lattice,
denoted by FiFamI(A) = 〈FiFamI(A),≤〉. Keeping in line with previously
introduced notation, given T ′ ∈ FiFamI(A), we set

(FiFamI(A))T
′
= {T ′′ ∈ FiFamI(A) : T ′ ≤ T ′′}.

3 Hopefully, the overloading of terminology will not cause any confusion.
4 The qualifying “base” is omitted whenever I is considered fixed in a specific context.
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The following lemma provides some preservation properties of I-filter families
under the application of N -morphisms between the underlying N -algebraic
systems.

Lemma 3. Let I = 〈F,C〉 be a π-institution, A= 〈A,〈F,α〉〉,B = 〈B,〈G,β〉〉
be N -algebraic systems, with A = 〈Sign′,SEN′,N ′〉 and B = 〈Sign′′,SEN′′,
N ′′〉, 〈H,γ〉 :A→B an N -morphism and T ′′ a sentence family of B.

1. If T ′′ ∈ FiFamI(B), then γ−1(T ′′) ∈ FiFamI(A).
2. If γ−1(T ′′) ∈ FiFamI(A), then T ′′ ∈ FiFamI(B).
3. If 〈H,γ〉 is such that H is an isomorphism, and Ker(〈H,γ〉) is compatible

with T ′ ∈ FiFamI(A), then γ(T ′) ∈ FiFamI(B).

Proof:

1. Suppose Σ ∈ |Sign|, Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈ CΣ(Φ) and
αΣ′(SEN(f)(Φ))⊆ γ−1

F (Σ′)(T
′′
H(F (Σ′))).

SEN

SEN′
〈H,γ〉

-
�

〈F
,α
〉

SEN′′

〈G
,β〉
-

This holds iff

γF (Σ′)(αΣ′(SEN(f)(Φ)))⊆ T ′′H(F (Σ′))
iff βΣ′(SEN(f)(Φ))⊆ T ′′G(Σ′)
implies βΣ′(SEN(f)(φ)) ∈ T ′′G(Σ′)
iff γF (Σ′)(αΣ′(SEN(f)(φ))) ∈ T ′′H(F (Σ′))
iff αΣ′(SEN(f)(φ)) ∈ γ−1

F (Σ′)(T
′′
H(F (Σ′))).

2. Suppose Σ ∈ |Sign|, Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈ CΣ(Φ) and
βΣ′(SEN(f)(Φ))⊆ T ′′G(Σ′). This holds iff

γF (Σ′)(αΣ′(SEN(f)(Φ)))⊆ T ′′H(F (Σ′))
iff αΣ′(SEN(f)(Φ))⊆ γ−1

F (Σ′)(T
′′
H(F (Σ′)))

implies αΣ′(SEN(f)(φ)) ∈ γ−1
F (Σ′)(T

′′
H(F (Σ′)))

iff γF (Σ′)(αΣ′(SEN(f)(φ))) ∈ T ′′H(F (Σ′))
iff βΣ′(SEN(f)(φ)) ∈ T ′′G(Σ′).

3. Note that compatibility of Ker(〈H,γ〉) with T ′ ∈ FiFamI(A) implies that,
for all Σ ∈ |Sign′|, γ−1

Σ (γΣ(T ′Σ)) = T ′Σ , or, more compactly, γ−1(γ(T ′)) =
T ′. Now assume Σ ∈ |Sign|, Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈CΣ(Φ) and
βΣ′(SEN(f)(Φ))⊆ γF (Σ′)(T ′F (Σ′)). This holds iff
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γF (Σ′)(αΣ′(SEN(f)(Φ)))⊆ γF (Σ′)(T ′F (Σ′))
iff αΣ′(SEN(f)(Φ))⊆ γ−1

F (Σ′)(γF (Σ′)(T ′F (Σ′)))
iff αΣ′(SEN(f)(Φ))⊆ T ′F (Σ′)
implies αΣ′(SEN(f)(φ)) ∈ T ′F (Σ′)
iff αΣ′(SEN(f)(φ)) ∈ γ−1

F (Σ′)(γF (Σ′)(T ′F (Σ′)))
iff γF (Σ′)(αΣ′(SEN(f)(φ))) ∈ γF (Σ′)(T ′F (Σ′))
iff βΣ′(SEN(f)(φ)) ∈ γF (Σ′)(T ′F (Σ′)).

ut

Similar concepts and terminology may be applied to the so-called genera-
lized matrix systems or gmatrix systems for short. An N -gmatrix system
A= 〈A,T ′〉 is a pair consisting of an N -algebraic system A = 〈Sign′,SEN′,
N ′〉 and a collection of sentence families T ′ of SEN′. An (interpreted)
N -gmatrix system3 A = 〈A,T ′〉 is a pair consisting of an interpreted N -
algebraic system A = 〈A,〈F,α〉〉 and a collection of sentence families T ′ of
SEN′. An I-gmatrix system A= 〈A,T ′〉 is a tuple, such that every sentence
family in T ′ is an I-filter family of A.

Note that, given an interpreted N -algebraic system A = 〈A,〈F,α〉〉, the
pair I ′ = 〈A,FiFamI(A)〉 is also a π-institution (in closure system form). In
accordance, we define the Suszko congruence of T ′ ∈ FiFamI(A), denoted
Ω̃A,I(T ′) by

Ω̃A,I(T ′) = Ω̃I
′
(T ′) =

⋂
{ΩA(T ′′) : T ′′ ∈ FiFamI(A),T ′ ≤ T ′′}.

We also extend the notation ΩA(T ′) and ΩA(T ′) to interpreted N -algebraic
systems, writing ΩA(T ′) and ΩA(T ′), with the meaning that these are iden-
tical to those applied to the underlying N -algebraic system A of A. The
restriction of ΩA to FiFamI(A) is the Leibniz operator on A. The restric-
tion of Ω̃A,I to ThFamI(A) is the Suszko operator onA and the restriction
of Ω̃A on P(FiFamI(A)) is the Tarski operator on A. The families

Ω = {ΩA :A an N -algebraic system}
Ω̃I := Ω̃•,I = {Ω̃A,I :A an N -algebraic system}

Ω̃ = {Ω̃A :A an N -algebraic system}

are termed the Leibniz, the Suszko and the Tarski operator, respectively.
Saying that one of those has a property P globally means that property
P holds for every member of the family. E.g., the Leibniz operator is globally
order preserving if ΩA : FiFamI(A)→ ConSys(A) is order preserving, for
every N -algebraic system A.

Concerning these operators, we have

Proposition 4. Let I be a π-institution, A,B two N -algebraic systems and
〈H,γ〉 :A→B a surjective N -morphism. For all T ′′∪{T ′′} ⊆ FiFamI(B),

1. γ−1(ΩB(T ′′)) = ΩA(γ−1(T ′′));
2. γ−1(Ω̃B(T ′′)) = Ω̃A(γ−1(T ′′)).
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3. γ−1(Ω̃B,I(T ′′)) = Ω̃A,I((γ−1(FiFamI(B)))γ−1(T ′′)).

Proof: Property 1 is a well-known property of the categorical Leibniz oper-
ator (see, e.g., Lemma 5.4 of (Voutsadakis, 2007a)). For Property 2,

γ−1(Ω̃B(T ′′)) = γ−1(
⋂
T ′′∈T ′′ΩB(T ′′)) =

⋂
T ′′∈T ′′ γ

−1(ΩB(T ′′))
=
⋂
T ′′∈T ′′ΩA(γ−1(T ′′)) = Ω̃A(γ−1(T ′′)).

Finally, for Property 3, it suffices to notice that, because of surjectivity,

γ−1((FiFamI(B))T
′′
) = (γ−1(FiFamI(B)))γ

−1(T ′′)

and, then, take advantage of Property 2. ut

4 Full Models, Algebras and the Hierarchy

The original definition of a full model in AAL was given by Font and Jansana
in (Font and Jansana, 1996) and, it was, subsequently, adapted in CAAL in
(Voutsadakis, 2005a).

Let I = 〈F,C〉, with F = 〈Sign,SEN,N〉, be a π-institution and A =
〈A,〈F,α〉〉, with A = 〈Sign′,SEN′,N ′〉, an N -algebraic system. A collection
T ′ ⊆ FiFamI(A) is full if

T ′ = {T ′ ∈ FiFamI(A) : Ω̃A(T ′)≤ ΩA(T ′)},

i.e., T ′ consists of all I-filter families on A with which the Tarski congruence
system Ω̃A(T ′) of T ′ is compatible.

If T ′ is full, then T ′ is a closure system on A, whence the pair I ′ = 〈A,T ′〉
is a π-institution. We use the terminology full I-gmatrix system for A =
〈A,T ′〉 when T ′ is a full collection of I-filter families.

Using the CAAL notion of a quotient algebraic system A/θ = Aθ =
〈Sign,SENθ,Nθ〉 of a given algebraic system A = 〈Sign,SEN,N〉 modulo
a congruence system θ on A (Voutsadakis, 2015a), we may give several char-
acterizations of full I-gmatrix systems that parallel results from AAL (Propo-
sition 2.7 of (Albuquerque et al., 2016)).

Proposition 5. Let A = 〈A,〈F,α〉〉 be an N -algebraic system, with A =
〈Sign′,SEN′,N ′〉, let T ′⊆FiFamI(A) and 〈ISign′ ,π〉 : A→A/Ω̃A(T ′) be the
canonical projection N -morphism. Then the following conditions are equiva-
lent:

(i) T ′ is full.
(ii) π(T ′) = FiFamI(A/Ω̃A(T ′)).

(iii) T ′ = π−1(FiFamI(A/Ω̃A(T ′))).
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(iv) T ′ = γ−1(FiFamI(B)) for some N -algebraic system B and some sur-
jective N -morphism 〈H,γ〉 :A→B, with H an isomorphism.

Proof:
(i)⇒(ii) Suppose that T ′ is full.

F

A
〈ISign′ ,π〉

-
�

〈F
,α
〉

A/Ω̃A(T ′)

〈F,π
F ◦α〉-

If T ′ ∈T ′, then we have Ω̃A(T ′)≤ΩA(T ′). Thus, Ker(〈ISign′ ,π〉) =
Ω̃A(T ′) is compatible with T ′, and, hence, by Lemma 3, π(T ′) ∈
FiFamI(A/Ω̃A(T ′)). If, conversely, T ′′ ∈FiFamI(A/Ω̃A(T ′)), con-
sider π−1(T ′′). It is not difficult to see that Ω̃A(T ′) is compatible
with π−1(T ′′), whence, since T ′ is full, π−1(T ′′) ∈ T ′. Moreover,
π(π−1(T ′′)) = T ′′ by surjectivity and, therefore,
FiFamI(A/Ω̃A(T ′))⊆ π(T ′).

(ii)⇒(iii) Since every filter family T ′ ∈ T ′ is compatible with Ω̃A(T ′), it
follows that π−1(π(T ′)) = T ′, whence the hypothesis yields the
conclusion.

(iii)⇒(iv) Obvious.
(iv)⇒(i) The inclusion T ′ ⊆ {T ′ : Ω̃A(T ′) ≤ ΩA(T ′)} is universally valid,

since Ω̃A(T ′) is compatible with every T ′ ∈T ′. For the converse, we
note that the hypothesis that Ω̃A(T ′) is compatible with every T ′ ∈
γ−1(FiFamI(B)) implies that there exists 〈H,γ̃〉 : A/Ω̃A(T ′) →
B/Ω̃B(FiFamI(B)) that makes the following diagram commute:

A
〈H,γ〉 - B

F
〈H
F,
γF
,α
〉-

�

〈F,α〉

A/Ω̃A(T ′)

〈I,π〉

?

〈H,γ̃〉
-

�
〈F
,π
F
,α
〉

B/Ω̃B(FiFamI(B))

〈I,πB〉

?

〈H
F,π B

H
F γ

F α〉-

Now diagram chasing gives that, if Ω̃A(T ′) is compatible with T ′,
then T ′ ∈ γ−1(FiFamI(B)) = T ′ and, hence, T ′ is full.
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ut

Given two N -matrix systems A = 〈A,T ′〉 and B = 〈B,T ′′〉, an N -matrix
system morphism 〈H,γ〉 : A→B is a N -morphism 〈H,γ〉 : A→ B, such
that γ−1(T ′′)≤ T ′. It is called strict if γ−1(T ′′) = T ′. These definitions ex-
tend to interpreted systems with the proviso that N -morphisms must be re-
placed by morphisms between interpreted systems, i.e., algebraic morphisms
commuting with the interpretations.

A N -matrix system A = 〈A,T ′〉, with A = 〈Sign′,SEN′,N ′〉 is said to be
Leibniz reduced or simply reduced if ΩA(T ′) =∆SEN′ , where ∆SEN′ is the
identity congruence system of A. This terminology applies also to interpreted
N -matrix systems and to I-matrix systems.

A gmatrix system A = 〈A,T ′〉 is Tarski reduced or simply reduced if
Ω̃A(T ′) = ∆SEN′ . This terminology also extends to interpreted N -gmatrix
systems and to I-gmatrix systems.

Finally, we call an I-matrix system A = 〈A,T ′〉 Suszko reduced if
Ω̃A,I(T ′) =∆SEN′ .

By analogy with the universal algebraic framework, reduced I-matrix sys-
tems, Suszko reduced I-matrix systems and Tarski reduced I-gmatrix sys-
tems give rise to natural classes of N -algebraic systems that are associated
to a given base π-institution I.

AlgSys∗(I) = {A : (∃T ′ ∈ FiFamI(A))(ΩA(T ′) =∆SEN′)}
AlgSysSu(I) = {A : (∃T ′ ∈ FiFamI(A))(Ω̃A,I(T ′) =∆SEN′)}

AlgSys(I) = {A : (∃T ′ ⊆ FiFamI(A))(Ω̃A(T ′) =∆SEN′)}
= {A : Ω̃A(FiFamI(A)) =∆SEN′}.

Analogously with the corresponding AAL classes and accompanying results,
established in (Blok and Pigozzi, 1989; Czelakowski, 2003; Font and Jansana,
1996), we may obtain the following characterizations of these classes (I de-
notes the isomorphic copies operator for interpreted N -algebraic systems):
Lemma 6. Let I be a π-institution.

1. AlgSys∗(I) = I({A/ΩA(T ) :A N -alg system,T ∈ FiFamI(A)}).
2. AlgSysSu(I) = I({A/Ω̃A,I(T ) :A N -alg system,T ∈ FiFamI(A)}).
3. AlgSys(I) = I({A/Ω̃A(T ) :A N -alg system,T ⊆ FiFamI(A) full}).
4. AlgSys(I) = I({A/Ω̃A(T ) :A N -alg system,T ⊆ FiFamI(A)}).
5. AlgSys(I) = AlgSysSu(I).

Adopting the operator approach in defining the main classes of a categorical
abstract algebraic hierarchy of π-institutions, we have:
Definition 7. Let F = 〈Sign,SEN,N〉 be a base algebraic system and I =
〈F,C〉 a π-institution based on F.
• I is protoalgebraic ((Blok and Pigozzi, 1986) in AAL and (Voutsadakis,

2007a) in CAAL) if Ω is globally order-preserving.
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• I is equivalential ((Czelakowski, 1981a,b) in AAL and (Voutsadakis,
2008) in CAAL) if Ω is globally order preserving and commutes with in-
verse images of N -morphisms.

• I is truth-equational ((Raftery, 2006) in AAL and (Voutsadakis, 2015b)
in CAAL) if Ω is globally completely order reflecting.

• I is weakly algebraizable ((Czelakowski and Jansana, 2000) in AAL and
(Voutsadakis, 2007c) in CAAL) if it is protoalgebraic and truth-equational.

• I is algebraizable ((Blok and Pigozzi, 1989; Herrmann, 1993) in AAL
and (Voutsadakis, 2002) in CAAL) if it is equivalential and truth-equa-
tional.

These definitions preserved the structure of the AAL Leibniz hierarchy:

algebraizable

equivalential
�

weakly algebraizable
-

protoalgebraic
�

-

truth-equational
-

5 I-Operators

Taking after (Albuquerque et al., 2016), we define and study arbitrary I-
operators, which correspond in the CAAL framework to arbitrary S-operators
in AAL.
Definition 8. Let I = 〈F,C〉 be a base π-institution and A= 〈A,〈F,α〉〉 an
N -algebraic system.
• An I-operator on A is a map ∇A : FiFamI(A)→ ConSys(A).

The I-operator ∇A is called order-preserving if, for all
T ′,T ′′ ∈ FiFamI(A),

T ′ ≤ T ′′ implies ∇A(T ′)≤∇A(T ′′).

• The lifting ∇̃A : P(FiFamI(A))→ ConSys(A) of ∇A is defined by

∇̃A(T ′) =
⋂
{∇A(T ′) : T ′ ∈ T ′}, for all T ′ ⊆ FiFamI(A).

• The relativization ∇̃A,I : FiFamI(A)→ ConSys(A) of ∇A is defined,
for all T ′ ∈ FiFamI(A), by
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∇̃A,I(T ′) =
⋂
{∇A(T ′′) : T ′′ ∈ FiFamI(A),T ′ ≤ T ′′}

= ∇̃A((FiFamI(A))T ′).

• The map ∇A−1 : ConSys(A)→P(FiFamI(A)) is defined by

∇A
−1

(θ) = {T ′ ∈ FiFamI(A) : θ ≤∇A(T ′)}, for all θ ∈ ConSys(A).

Directly from these definitions we obtain

Lemma 9. Let I = 〈F,C〉 be a base π-institution, A = 〈A,〈F,α〉〉 an N -
algebraic system and ∇A an I-operator on A.

1. ∇̃A,I is also an I-operator.
2. ∇̃A,I(T ′)≤∇A(T ′), for all T ′ ∈ FiFamI(A).
3. ∇̃A,I is order-preserving.
4. ∇̃A(T ′)≤∇A(T ′), for all T ′ ∈ T ′.

By analogy with (Albuquerque et al., 2016), the categorical Leibniz and
Suszko operators are the prototypical examples of the general notion of I-
operator. The Suszko operator is the relativization of the Leibniz operator
and is order-preserving. Finally, the Tarski operator is the lifting of the Leib-
niz operator.

In all subsequent results, when we say “let ∇A be an I-operator on
A” or quantify “for all A”, we implicitly make the assumption that F =
〈Sign,SEN,N〉 is a base algebraic system, I = 〈F,C〉 is a π-institution based
on F and A= 〈A,〈F,α〉〉 an N -algebraic system.

Proposition 10. Let ∇A be an I-operator on A. The maps ∇̃A and ∇A−1

establish a Galois connection between P(FiFamI(A)) and ConSys(A) with
the first ordering being the subset relation ⊆ and the second the signature-
wise inclusion relation ≤.

Proof: Suppose T ⊆ FiFamI(A) and θ ∈ ConSys(A).

• Assume θ ≤ ∇̃A(T ). If T ∈ T , then ∇̃A(T ) ≤ ∇A(T ). Thus, θ ≤ ∇A(T ),
whence T ∈∇A−1(θ). This proves that T ⊆∇A−1(θ).

• If T ⊆∇A−1(θ), then θ ≤∇A(T ), for all T ∈ T . Thus, θ ≤ ∇̃A(T ). ut

Applying now general results pertaining to Galois connections (see, e.g.,
p. 55 onwards of (Davey and Priestley, 2002)), we may obtain the following
statements as direct consequences of Proposition 10.

Corollary 11. Let ∇A be an I-operator on A.

1. The maps ∇̃A and ∇A−1 are order-reversing.
2. The map ∇A−1 ◦ ∇̃A is a closure operator over FiFamI(A).
3. The map ∇̃A ◦∇A−1 is a closure operator on ConSys(A).
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4. The set of fixed points of ∇A−1 ◦ ∇̃A is Ran(∇A−1).
5. The set of fixed points of ∇̃A ◦∇A−1 is Ran(∇̃A).
6. The maps ∇̃A and ∇A−1 restrict to mutually inverse dual order isomor-

phisms between the set of fixed points of ∇A−1 ◦∇̃A and the set of fixed
points of ∇̃A ◦∇A−1 .

We assign special names to the fixed points of the closure operators of Parts
2 and 3 of the preceding corollary. Both will be central to our subsequent
analysis and to many of our results.

Definition 12. Given an I-operator ∇A on A,

• a family T ⊆ FiFamI(A) is ∇A-full if T =∇A−1(∇̃A(T ));
• a congruence system θ ∈ ConSys(A) is ∇A-full if θ = ∇̃A(∇A−1(θ)).

Then, Part 6 of the corollary asserts that ∇̃A and ∇A−1 restrict to mutu-
ally inverse dual order isomorphisms between the sets of ∇A-full I-gmatrices
on A and ∇A-full congruence systems on A.

Another consequence of the previously described Galois connection is the
following

Proposition 13. Let ∇A be an I-operator on A.

1. T ⊆FiFamI(A) is ∇A-full iff it is the largest U ⊆FiFamI(A), such that
∇̃A(U) = ∇̃A(T ).

2. θ ∈ ConSys(A) is ∇A-full iff it is the largest η ∈ ConSys(A), such that
∇A−1(η) =∇A−1(θ).

Focusing, next, on the Leibniz operator ΩA, whose lifting is the Tarski
operator Ω̃A, we note, first, that, if θ ∈ ConSys(A),

ΩA−1(θ) = {T ∈ FiFamI(A) : θ ≤ ΩA(T )}
= {T ∈ FiFamI(A) : T comp θ}
⊆ FiFamI(A).

We obtain

Proposition 14. Let A = 〈A,〈F,α〉〉 be an N -algebraic system, with A =
〈Sign′,SEN′,N ′〉, θ ∈ConSys(A) and 〈ISign,π〉 := 〈ISign,π

θ〉 : SEN→ SENθ
the corresponding projection N -morphism.

1. ΩA−1(θ) = π−1(FiFamI(A/θ)) and FiFamI(A/θ) = π(ΩA−1(θ)).
2. The natural transformations π : PSEN→PSENθ and π−1 : PSENθ →
PSEN restrict to order-isomorphisms between the sets ΩA−1(θ) and
FiFamI(A/θ).

Proof:
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1. Suppose that T ∈ ΩA−1(θ). Then θ is compatible with T . By Lemma
3, π(T ) ∈ FiFamI(A/θ). Since, by compatibility, T = π−1(π(T )), we
obtain T ∈ π−1(FiFamI(A/θ)).
If, conversely, T ′ ∈ FiFamI(A/θ), we get π−1(T ′) ∈ FiFamI(A), and,
by the surjectivity of π, T ′ = π(π−1(T ′)). This implies π−1(T ′) =
π−1(π(π−1(T ′))), showing that θ is compatible with π−1(T ′), or, equiv-
alently, π−1(T ′) ∈ ΩA−1(θ).
Taking into account the surjectivity of π, we get the second equality.

2. By Part 1, both π and π−1 are onto their respective codomains. Note,
in addition, that

• by the surjectivity of π, ππ−1 = IFiFamI(A/θ) and
• by the definition of ΩA−1(θ), π−1π = IΩA−1 (θ).

These show that π and π−1 are mutually inverse bijections and, there-
fore, being order preserving, must be order isomorphisms. ut

Taking into account that isomorphisms preserve least elements, we get

Corollary 15. Let T ∈ FiFamI(A) and θ ∈ ConSys(A), such that θ is com-
patible with T . Then T is the least element of ΩA−1(θ) iff T/θ is the least
element of FiFamI(A/θ).

Using the characterization of full I-gmatrix systems of Proposition 5, we
get

Corollary 16. For all θ ∈ ConSys(A), the set ΩA−1(θ) is full and, hence, a
closure system.

Specifically for the ΩA-full sets of I-filter families and the ΩA-full congru-
ence systems on A, we have the following characterizations, which form an
abstraction to the categorical level of Propositions 3.10 and 3.11 of (Albu-
querque et al., 2016):

Proposition 17. Let T ⊆ FiFamI(A) and θ ∈ ConSys(A).

• T is ΩA-full iff it is full.
• θ is ΩA-full iff θ ∈ ConSysAlgSys(I)(A).

Proof:

• In general, ΩA−1(Ω̃A(T )) = {T ∈ FiFamI(A) : Ω̃A(T ) ≤ ΩA(T)}. On the
other hand, T is ΩA-full iff T = ΩA−1(Ω̃A(T )) and it is full iff T = {T ∈
FiFamI(A) : Ω̃A(T )≤ ΩA(T)}. Thus, the two notions coincide.

• Assume θ is ΩA-full. Then, A/θ = A/Ω̃A(ΩA−1(θ)). By Corollary 16,
ΩA−1(θ) is full. By Part 3 of Lemma 6, A/Ω̃A(ΩA−1(θ)) ∈ AlgSys(I).
Therefore, we conclude that θ ∈ ConSysAlgSys(A)(A).
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If, conversely, A/θ ∈ AlgSys(I), then Ω̃A/θ(FiFamI(A/θ)) =∆SEN′θ ,
whence

θ = Ker(〈ISign′ ,π
θ〉) = πθ

−1(∆SEN′θ )
= πθ

−1(Ω̃A/θ(FiFamI(A/θ)))
Prop. 4= Ω̃A(πθ−1(FiFamI(A/θ))) Prop. 14= Ω̃(ΩA−1(θ)).

Hence θ is ΩA-full.
ut

Using Proposition 17 we obtain the following statement on the Galois
connection established in Proposition 10 and Corollary 11 as pertaining to
the special case of the Tarksi operator, viewed as the lifting of the Leibniz
operator:

Corollary 18. The maps Ω̃A and ΩA−1 establish a Galois connection be-
tween P(FiFamI(A)) and ConSys(A), and they restrict to mutually inverse
dual order isomorphisms between the poset of all full I-gmatrix systems on
A and the poset ConSysAlgSys(I)(A).

The isomorphism of Corollary 18 is actually the one established a decade
ago as Theorem 13 of (Voutsadakis, 2005b), taking after the Isomorphism
Theorem 2.30 of (Font and Jansana, 1996). The form in Corollary 18, ex-
pressed in terms of Galois connections in the context of I-operators, is Corol-
lary 3.12 of (Albuquerque et al., 2016).

Finally, putting together the equivalence between fullness of I-gmatrix
systems and ∇A-fullness given in Proposition 17 and the general characteri-
zation of ∇A-fullness given in Proposition 13, we obtain

Proposition 19. A subset T ⊆ FiFamI(A) is full iff T is the largest U ⊆
FiFamI(A), such that Ω̃A(T ) = Ω̃A(U).

Leaving, once more, aside the special case of the Leibniz operator and re-
turning to arbitrary I-operators, and still following the ideas in (Albuquerque
et al., 2016), we introduce the concept of a ∇A-class of a theory family T and,
based on it, that of a ∇A-filter family (see Subsection 3.3 of (Albuquerque
et al., 2016)).

Definition 20. Let ∇A be an I-operator on A and T ∈ FiFamI(A). The
∇A-class of T is the set

JT K∇
A

= ΩA
−1

(∇A(T )) = {T ′ ∈ FiFamI(A) :∇A(T )≤ ΩA(T ′)}.

In other words, the ∇A-class of a filter family T of A consists of all those
filter families of A with which the ∇A-congruence system of T is compatible.

Exploiting Corollary 16, with θ =∇A(T ), we get



440 George Voutsadakis

Proposition 21. Let ∇A be an I-operator on A and T ∈ FiFamI(A). The
∇A-class JT K∇

A of T is full. Thus, it is a closure system and JT K∇
A =

ΩA−1(Ω̃A(JT K∇A)).
As a consequence it makes sense to consider the ≤-smallest I-filter family

in the ∇A-class of T :

Definition 22. Given an I-operator ∇A on A and T ∈ FiFamI(A), the
smallest element of the ∇A-class JT K∇A is denoted by T∇A =

⋂
JT K∇

A . We
call T a ∇A-filter family if T = T∇

A and we denote the set of all ∇A-filter
families of A by FiFam∇

A
(A).

The first result asserts the injectivity of the I-operator ∇A on the collec-
tion of ∇A-filter families:

Proposition 23. Every I-operator ∇A on A is order-reflecting and, thus,
injective, on FiFam∇

A
(A).

Proof: Suppose T ′,T ′′ ∈FiFam∇
A

(A), with∇A(T ′)≤∇A(T ′′). Then, clearly,
JT ′′K∇

A ⊆ JT ′K∇A , whence T ′ =
⋂
JT ′K∇

A ≤
⋂
JT ′′K∇

A = T ′′. ut

One can now state the following properties relating to ∇A-filter families:

Lemma 24. Let ∇A be an I-operator on A. For all T,T ′ ∈ FiFamI(A),

1. JT K∇A ⊆ (FiFamI(A))T∇
A

;
2. If JT K∇A ⊆ JT ′K∇A , then T ′∇

A ≤ T∇A .
If, moreover, ∇A is order-preserving, then:

3. If T ≤ T ′, then JT ′K∇
A ⊆ JT K∇A and T∇A ≤ T ′∇A .

4. (FiFam∇
A

(A))T ⊆ JT K∇A ;

Proof: Part 1 follows from T∇
A =

⋂
JT K∇

A . For Part 2, we have T ′∇A =⋂
JT ′K∇

A ≤
⋂
JT K∇

A = T∇
A . For Part 3, taking into account order preser-

vation, if T ≤ T ′, then ∇A(T ) ≤ ∇A(T ′), whence JT ′K∇
A ⊆ JT K∇

A and
T∇
A ≤ T ′∇A . For Part 4, suppose T ≤ T ′ =

⋂
JT ′K∇

A . By order preservation
and by Proposition 21, ∇A(T )≤∇A(T ′)≤ΩA(T ′), whence T ′ ∈ JT K∇A . ut

In concluding this section on I-operators and their properties, we prove
a lemma, relating the property of a filter family being a ∇A-filter family
with the form of its ∇A-class, for an order preserving I-operator ∇A that is
dominated by the Leibniz operator on A. Lemma 25 also helps usher in the
material of Section 6.

Lemma 25. Let ∇A be an order-preserving I-operator, such that ∇A(T )≤
ΩA(T ), for all T ∈ FiFamI(A). Then JT K∇

A = (FiFamI(A))T iff T = T∇
A ,

i.e., iff T is a ∇A-filter family.
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Proof: Suppose, first, that JT K∇A = (FiFamI(A))T . Then, we have T∇A =⋂
JT K∇

A =
⋂

(FiFamI(A))T = T .
Conversely, if T = T∇

A , then by Part 1 of Lemma 24, we have JT K∇A ⊆
(FiFamI(A))T . On the other hand, if T ′ ∈ FiFamI(A), with T ≤ T ′, then,
by the hypotheses, ∇A(T )≤∇A(T ′)≤ ΩA(T ′), whence T ′ ∈ JT K∇A . ut

6 I-Compatibility Operators and Coherence

We focus next on I-operators that associate to a given filter family on an
algebraic system A a congruence system that is compatible with the filter
family. In the AAL context of (Albuquerque et al., 2016), such operators are
termed S-compatibility operators.

Definition 26. An I-compatibility operator on A is an I-operator ∇A
on A, such that, for all T ∈ FiFamI(A), the congruence system ∇A(T ) is
compatible with T , i.e., ∇A(T )≤ ΩA(T ).

This is equivalent to saying that an I-operator is an I-compatibility op-
erator iff T ∈ JT K∇A , for all T ∈ FiFamI(A). By definition, the largest I-
compatibility operator is ΩA and the smallest one is the one sending every
I-filter family to the identity congruence system ∆SEN′ on SEN′. As has been
shown in Theorem 4 of (Voutsadakis, 2007a) (see, also, (Voutsadakis, 2007b)
and Theorem 1.6 of (Czelakowski, 2003) for the progenitor in AAL), the
Suszko operator Ω̃A,I has the distinction of being the largest order-preserving
I-compatibility operator on A.

Some easy properties of I-compatibility operators, refining those proper-
ties of I-operators enumerated in Lemma 24, follow. Note, also, that Lemma
25 dealt with an I-compatibility operator.

Lemma 27. Let ∇A be an I-compatibility operator on A. For all T ∈
FiFamI(A),

1. T ∈ JT K∇A ;
2. T∇A ≤ T .

If ∇A is order-preserving, then:

3. JT K∇A ⊆ JT∇AK∇A ;
4. Every ∇A-full class of I-filter families is an upset of FiFamI(A).

Proof: Part 1 follows by the remark following Definition 26. Part 2 follows
by Part 1 and the definition of T∇A . Part 3 follows by Part 2 and Part 3
of Lemma 24. Finally, Part 4 follows by the definition ∇A-fullness and the
order preservation of ∇A. ut
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Compatibility of the I-operators allows the following rewriting of Corollary
15 characterizing ∇A-filter families:

Corollary 28. Let ∇A be an I-compatibility operator on A. Then, for all
T ∈ FiFamI(A), T is a ∇A-filter family of A iff T/∇A(T ) is the least I-
filter family of A/∇A(T ).

Proof: Set θ =∇A(T ) in Corollary 15. ut

The following corollary characterizes the property of an N -algebraic sys-
tem having all filter families being ∇A-filter families:

Corollary 29. Let ∇A be an I-compatibility operator on A. The the follow-
ing are equivalent:

(i) Every I-filter family of A is a ∇A-filter family.
(ii) For all T,T ′ ∈ FiFamI(A), ∇A(T )≤ ΩA(T ′) implies T ≤ T ′.

Proof:

(i)⇒(ii) Suppose ∇A(T )≤ ΩA(T ′). Then T ′ ∈ JT K∇A . But, by hypothesis,
T is the smallest theory family in JT K∇

A , whence T ≤ T ′.
(ii)⇒(i) By Lemma 27, Part 2, we have T∇A ≤ T . On the other hand, by

the definition of T∇A , we get that ∇A(T ) is compatible with T∇A ,
whence ∇A(T ) ≤ ΩA(T∇A). But, then, by hypothesis, T ≤ T∇A .
So T = T∇

A . ut

A family of I-compatibility operators (see Subsection 4.1 of (Albu-
querque et al., 2016))

∇ := {∇A :A an N -algebraic system}

is a collection, where ∇A is an I-compatibility operator on A, for every
N -algebraic system A.

Definition 30. Let ∇A and ∇B be I-compatibility operators on A and B.
The pair 〈∇A,∇B〉 commutes with inverse (surjective) N -morphisms
if, for all (surjective) 〈H,γ〉 :A→B and all T ′′ ∈ FiFamI(B),

∇A(γ−1(T ′′)) = γ−1(∇B(T ′′)).

A family ∇ of I-compatibility operators commutes with inverse (sur-
jective) N -morphisms if, for all N -algebraic systems A and B, the pair
〈∇A,∇B〉 commutes with inverse (surjective) N -morphisms.

The following notions of compatibility of morphisms with filter families
and with collections of filter families will prove helpful. It abstracts to the
categorical context Definition 4.7 of (Albuquerque et al., 2016).
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Definition 31. Let ∇A be an I-compatibility operator on A = 〈A,〈F,α〉〉,
with A = 〈Sign′,SEN′,N ′〉, and assume T is a I-filter family on SEN′ and
T is a collection of I-filter families on SEN′.
• An N -morphism 〈H,γ〉 :A→B is ∇A-compatible with T if

Ker(〈H,γ〉)≤∇A(T ).

• An N -morphism 〈H,γ〉 :A→ B is ∇A-compatible with T if it is ∇A-
compatible with every T ∈ T .

Note that 〈H,γ〉 : A→ B is ΩA-compatible with a filter family T on SEN′
iff the congruence Ker(〈H,γ〉) is compatible with T and, in case H is
an isomorphism, this happens if and only if the matrix system morphism
〈A,T 〉 → 〈B,γ(T )〉 is strict. Also note that, in case H is an isomorphism,
〈A,T 〉 〈H,γ〉→ 〈B,γ(T )〉 is a deductive matrix system morphism if and only if
〈H,γ〉 :A→B is Ω̃A,I-compatible with T . Czelakowski used the correspond-
ing sentential concept in his study of the Suszko operator in (Czelakowski,
2003) to obtain a general Correspondence Theorem that was generalized in
Theorem 4.17 of (Albuquerque et al., 2016). Using the abstract version en-
capsulated in Definition 31, we will obtain a similar general correspondence
result in Theorem 40 as an analog of Theorem 4.17 of (Albuquerque et al.,
2016).

For all T ∈ FiFamI(A), the projection N -morphism 〈ISign′ ,π〉 : A →
A/∇A(T ) is always ∇A-compatible with T . In addition, since ∇A is an
I-compatibility operator, if 〈H,γ〉 : A→ B is ∇A-compatible with T , then
it is also ΩA-compatible with T , i.e., Ker(〈H,γ〉) is compatible with T . In
case H is an isomorphism, this implies that T = γ−1(γ(T )) and ∇A(T ) =
γ−1(γ(∇A(T ))).
Definition 32. A family ∇ of I-compatibility operators is called (weakly)
coherent if, for all surjective N -morphisms 〈H,γ〉 :A→B (with H an iso-
morphism) and all T ′′ ∈ FiFamI(B),

〈H,γ〉 ∇A-compatible with γ−1(T ′′)
implies ∇A(γ−1(T ′′)) = γ−1(∇B(T ′′)).

Since the reverse implication of the defining condition is universally valid,
a family ∇ of I-compatibility operators is (weakly) coherent iff, for every
surjective N -morphism 〈H,γ〉 : A → B (with H an isomorphism) and ev-
ery T ′′ ∈ FiFamI(B), 〈H,γ〉 is ∇A-compatible with γ−1(T ′′) if and only if
∇A(γ−1(T ′′)) = γ−1(∇B(T ′′)).
Lemma 33. Let ∇ be a weakly coherent family of I-compatibility operators.
Then, for every surjective N -morphism 〈H,γ〉 : A→ B, with H an isomor-
phism, and every T ′ ∈ FiFamI(A), if 〈H,γ〉 is ∇A-compatible with T ′, then

γ(∇A(T ′)) =∇B(γ(T ′)).
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Proof: Suppose ∇ is weakly coherent, T ′ ∈ FiFamI(A), and 〈H,γ〉 :A→B
surjective, with H an isomorphism, and compatible with T ′. By compatibility
of ∇ and Lemma 3, we get T ′ = γ−1(γ(T ′)) and γ(T ′) ∈ FiFamI(B). Thus,
by weak coherence ∇A(T ′) =∇A(γ−1(γ(T ′))) = γ−1(∇B(γ(T ′))). Finally, by
surjectivity, γ(∇A(T ′)) =∇B(γ(T ′)). ut

Corollary 34. Let ∇ be a weakly coherent family of I-compatibility operators
and 〈H,γ〉 : A→ B an N -isomorphism. Then, for all T ′ ∈ FiFamI(A) and
all T ′′ ∈ FiFamI(B),

γ(∇A(T ′)) =∇B(γ(T ′)) and ∇A(γ−1(T ′′)) = γ−1(∇B(T ′′)).

Proof: The first property follows immediately by Lemma 33. For the second
property, note that the kernel of an isomorphism is the identity congruence
system, whence every isomorphism is ∇A-compatible with all sentence fam-
ilies of A, for any I-operator ∇A. Therefore, the property holds by weak
coherence. ut

Putting together Definitions 30 and 32, we obtain

Proposition 35. If ∇ is a family of I-compatibility operators that commutes
with inverse surjective N -morphisms, then it is coherent.

Since Ω satisfies this property (see (Voutsadakis, 2007a)), we obtain that the
Leibniz operator (viewed as a family of operators) is indeed a coherent family
of I-compatibility operators.

For weakly coherent families ∇ of I-compatibility operators, the ∇A-full
congruence systems on A and the ∇A-full collections of filter families, in-
troduced in Definition 12 as the fixed-points of ∇̃A ◦∇A−1 and ∇A−1 ◦ ∇̃A,
respectively, can be characterized more elegantly (see Corollary 4.14 and
Proposition 4.16 of (Albuquerque et al., 2016) for the original characteriza-
tions in the AAL context).

Proposition 36. If ∇ is a weakly coherent family of I-compatibility opera-
tors, for all θ ∈ ConSys(A) (denoting 〈ISign′ ,π〉 := 〈ISign′ ,π

θ〉 :A→A/θ),

∇A
−1

(θ) = π−1({T ′ ∈ FiFamI(A/θ) : π−1(∇A/θ(T ′)) =∇A(π−1(T ′))}).

Proof: If T ∈∇A−1(θ), then, by definition, T ∈ FiFamI(A) and θ ≤∇A(T ).
Thus, T = π−1(π(T )), whence, by Lemma 33, π(∇A(T )) =∇A/θ(π(T )). Set
T ′ = π(T ) ∈ FiFamI(A/θ). Then T = π−1(T ′) and ∇A(π−1(T ′)) =∇A(T ) =
π−1(π(∇A(T ))) = π−1(∇A/θ(π(T ))) = π−1(∇A/θ(T ′)).

Conversely, suppose that T ′ ∈ FiFamI(A/θ), such that π−1(∇A/θ(T ′)) =
∇A(π−1(T ′)). Then 〈ISign′ ,π〉 is ∇A-compatible with π−1(T ′), or, equiva-
lently, π−1(T ′) ∈∇A−1(θ). ut

Now, Definition 12 immediately yields
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Corollary 37. Let ∇ be a weakly coherent family of I-compatibility operators
and T ⊆ FiFamI(A). Then T is ∇A-full iff

T = πθ
−1

({T ′ ∈ FiFamI(A/θ) : πθ
−1

(∇A/θ(T ′)) =∇A(πθ
−1

(T ′))}),

for some θ ∈ ConSys(A), which can be taken equal to ∇̃A(T ).

Recall that, by Proposition 14, ΩA-full filter families are of the form
πθ
−1(FiFamI(A/θ)), for some θ ∈ConSys(A). But since, given an I-compa-

tibility operator ∇A, for every filter family T , ∇A(T ) ≤ ΩA(T ), we get
∇A−1(θ) ⊆ ΩA−1(θ) = πθ

−1(FiFamI(A/θ)). Thus, ∇A−1(θ) must be of the
form πθ

−1(T ′), for some T ′ ⊆ FiFamI(A/θ).

Lemma 38. Let ∇ be a weakly coherent family of I-compatibility operators
and 〈H,γ〉 :A→B be a surjective N -morphism, with H an isomorphism.

1. For all T ′′ ⊆FiFamI(B), if 〈H,γ〉 is ∇A-compatible with γ−1(T ′′), then
∇̃A(γ−1(T ′′)) = γ−1(∇̃B(T ′′)).

2. For all T ′ ⊆ FiFamI(A), if 〈H,γ〉 is ∇A-compatible with T ′, then
γ(∇̃A(T ′)) = ∇̃B(γ(T ′)).

Proof:

1. If 〈H,γ〉 is ∇A-compatible with γ−1(T ′′), then, by definition, it is ∇A-
compatible with every γ−1(T ′′), for T ′′ ∈ T ′′. Using weak coherence,
we get ∇̃A(γ−1(T ′′)) =

⋂
T ′′∈T ′′∇A(γ−1(T ′′)) =

⋂
T ′′∈T ′′ γ

−1(∇B(T ′′)) =
γ−1(

⋂
T ′′∈T ′′∇B(T ′′)) = γ−1(∇̃B(T ′′)).

2. If 〈H,γ〉 is ∇A-compatible with T ′, then 〈H,γ〉 is ∇A-compatible with all
T ′ ∈ T ′, by definition of ∇A-compatibility, whence γ−1(γ(T ′)) = T ′, for all
T ′ ∈ T ′, i.e., γ−1(γ(T ′)) = T ′. This implies that 〈H,γ〉 is ∇A-compatible
with γ−1(γ(T ′)). Now using Part 1, we get

∇̃A(T ′) = ∇̃A(γ−1(γ(T ′))) = γ−1(∇̃B(γ(T ′)))

and, finally, using surjectivity, γ(∇̃A(T ′)) = ∇̃B(γ(T ′)). ut

A characterization of ∇A-full congruence systems analogous to that of a
∇A-full collection of filter families, given in Corollary 37, is as follows:

Proposition 39. Let ∇ be a weakly coherent family of I-compatibility op-
erators and θ ∈ ConSys(A). Then θ is ∇A-full iff (denoting 〈ISign′ ,π〉 :=
〈ISign′ ,π

θ〉 :A→A/θ)

∇̃A/θ({T ′′ ∈ FiFamI(A/θ) : π−1(∇A/θ(T ′′)) =∇A(π−1(T ′′))}) =∆SEN′/θ.
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Proof: Let T ′′ = {T ′′ ∈ FiFamI(A/θ) : π−1(∇A/θ(T ′′)) = ∇A(π−1(T ′′))}.
Then 〈ISign′ ,π〉 is ∇A-compatible with π−1(T ′′), whence, by Proposition 36
and Lemma 38, we get θ ∇A-full iff

(1) θ = ∇̃A(∇A
−1

(θ)) = ∇̃A(π−1(T ′′)) = π−1(∇̃A/θ(T ′′)).

If θ ∇A-full, then, by Condition (1) and the surjectivity of π, ∇̃A/θ(T ′′) =
π(π−1(∇̃A/θ(T ′′))) = π(θ) =∆SEN′/θ.

If, on the other hand, ∇̃A/θ(T ′′) = ∆SEN′/θ, then θ = π−1(∆SEN′/θ) =
π−1(∇̃A/θ(T ′′)) and, therefore, θ is ∇A-full, by Condition (1). ut

Since the Leibniz operator commutes with all surjective N -morphisms,
when ∇ ≡ Ω in Proposition 39, the family T ′′ = FiFamI(A/θ), whence
ΩA−1(θ) = FiFamI(A/θ), as was shown in Proposition 14.

Since Ω̃A/θ(T ′′) =∆SEN′/θ is equivalent to θ ∈ConSysAlgSys(I)(A), we also
obtain the result proven in Proposition 17.

We are now ready to lift the General Correspondence Theorem 4.17 of
(Albuquerque et al., 2016) to CAAL.

Theorem 40 (General Correspondence Theorem). Let ∇ be a weakly
coherent family of I-compatibility operators. For every surjective N -mor-
phism 〈H,γ〉 :A→B, with H an isomorphism, and every T ∈ FiFamI(A), if
〈H,γ〉 is ∇A-compatible with T , then 〈H,γ〉 induces an order isomorphism
between JT K∇

A and Jγ(T )K∇B , whose inverse is given by γ−1.

Proof: Since 〈H,γ〉 is ∇A-compatible with T , by Lemma 1, γ−1(γ(T )) =
T and, in addition, by Lemma 3, taking into account the fact that H is
postulated to be an isomorphism, γ(T ) ∈ FiFamI(B).

Let, first, U ∈ JT K∇A . Then Ker(〈H,γ〉) ≤ ∇A(T ) ≤ ΩA(U). Thus, by
Lemma 3, γ−1(γ(U)) = U and γ(U) ∈ FiFamI(B). Since 〈H,γ〉 is ΩA-
compatible with U and∇A-compatible with T , and both operators are weakly
coherent, Lemma 33 yields ∇B(γ(T )) = γ(∇A(T ))≤ γ(ΩA(U)) = ΩB(γ(U)).
Therefore, γ(U) ∈ Jγ(T )K∇B .

Next, assume U ′ ∈ Jγ(T )K∇B . Thus, ∇B(γ(T ))≤ΩB(U ′). It is the case, by
Lemma 3, that γ−1(U ′)∈FiFamI(A) and, by surjectivity, that γ(γ−1(U ′)) =
U ′. Moreover, 〈H,γ〉 is ∇A-compatible with T = γ−1(γ(T )). Therefore, by
weak coherence,

∇A(T ) =∇A(γ−1(γ(T ))) = γ−1(∇B(γ(T )))≤ γ−1(ΩB(U ′)) = ΩA(γ−1(U ′)),

proving that γ−1(U ′) ∈ JT K∇A .
Thus, 〈H,γ〉 induces a bijection between JT K∇A and Jγ(T )K∇B with inverse

γ−1. Both mappings are order-preserving, whence we obtain the asserted
order isomorphism. ut
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This isomorphism also shows that the least elements of the corresponding
isomorphic complete lattices correspond.

Corollary 41. Let ∇ be a weakly coherent family of I-compatibility opera-
tors. For every surjective N -morphism 〈H,γ〉 : A→ B, with H an isomor-
phism, and every T ∈ FiFamI(A), if 〈H,γ〉 is ∇A-compatible with T , then

T ∈ FiFam∇
A

(A) iff γ(T ) ∈ FiFam∇
B

(B).

To obtain an analogous correspondence theorem for the relativized oper-
ators ∇̃A,I (see Theorem 4.20 of (Albuquerque et al., 2016)), we first show
that relativization preserves weak coherence:

Proposition 42. If ∇ is a weakly coherent family of I-compatibility opera-
tors, then the family

∇̃•,I = {∇̃A,I :A an N -algebraic system}

is also a weakly coherent family of I-compatibility operators.

Proof: By definition of ∇̃A,I , if ∇ is a family of I-compatibility operators,
then ∇•,I is one also. To show that it is also weakly coherent, let T ′′ ∈
FiFamI(B) and 〈H,γ〉 : A → B surjective, with H an isomorphism, ∇̃A,I-
compatible with γ−1(T ′′). Then Ker(〈H,γ〉) ≤ ∇̃A,I(γ−1(T ′′)). Let T ′ ∈
(FiFamI(A))γ−1(T ′′), i.e., γ−1(T ′′)≤ T ′. Then Ker(〈H,γ〉)≤∇̃A,I(γ−1(T ′′))
≤ ∇̃A,I(T ′) ≤ ∇A(T ′). Therefore, 〈H,γ〉 is ∇A-compatible with T ′ and,
hence, T ′ = γ−1(γ(T ′)) and γ(T ′) ∈ FiFamI(B). Now we get

(2) ∇A(T ′) =∇A(γ−1(γ(T ′))) = γ−1(∇B(γ(T ′))).

Claim: γ((FiFamI(A))γ−1(T ′′)) = (FiFamI(B))T ′′ .
If T ′ ∈ FiFamI(A), with γ−1(T ′′) ≤ T ′, then we have already shown that
γ(T ′) ∈ FiFamI(B) and T ′′ = γ(γ−1(T ′′))≤ γ(T ′). Conversely, suppose that
U ′′ ∈ FiFamI(B), with T ′′ ≤ U ′′. Then U ′′ = γ(γ−1(U ′′)), γ−1(U ′′) ∈
FiFamI(A) and γ−1(T ′′) ≤ γ−1(U ′′). This finishes the proof of the claim.
N

Using Equation (2), we now get

∇̃A,I(γ−1(T ′′)) =
⋂
{∇A(T ′) : T ′ ∈ (FiFamI(A))γ−1(T ′′)}

Eq. (2)=
⋂
{γ−1(∇B(γ(T ′))) : T ′ ∈ (FiFamI(A))γ−1(T ′′)}

= γ−1(
⋂
{∇B(γ(T ′)) : T ′ ∈ (FiFamI(A))γ−1(T ′′)})

Claim= γ−1(
⋂
{∇B(U ′′) : U ′′ ∈ (FiFamI(B))T ′′})

= γ−1(∇̃B,I(T ′′)).

Therefore, the family ∇̃•,I is weakly coherent, as claimed. ut
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Recall that to simplify notation, we sometimes use ∇̃I := ∇̃•,I for the
family of the relativized operators corresponding to the I-operator ∇.

Theorem 43 (Relativized Correspondence). Let ∇ be a weakly coher-
ent family of I-compatibility operators. For every surjective N -morphism
〈H,γ〉 :A→B, with H an isomorphism, and every T ∈ FiFamI(A), if 〈H,γ〉
is ∇̃A,I-compatible with T , then 〈H,γ〉 induces an order isomorphism between
JT K∇̃

A,I and Jγ(T )K∇̃B,I , whose inverse is given by γ−1.

Proof: Immediately follows by Theorem 40, taking into account the weak
coherence property of ∇̃•,I , established in Proposition 42. ut

The ordinary reduction processes of AAL, using the Leibniz and Suszko
operators, were abstracted to the case of an arbitrary family of S-operators in
Definition 4.21 of (Albuquerque et al., 2016). In a parallel treatment, the re-
ductions with respect to the categorical Leibniz and Suszko operators, which
give rise to the CAAL algebraic system classes, can be lifted to arbitrary
I-operators.

Definition 44. Let ∇ be a family of I-operators. Define

AlgSys∇(I) = I({A/∇A(T ) :A an N -algebraic system, T ∈ FiFamI(A)})
AlgSys∇(I) = I({A : exists T ∈ FiFamI(A) such that ∇A(T ) =∆SEN′})
AlgSys∇̃

I
(I) = I({A/∇̃A,I(T ) :A an N -algebraic system, T ∈ FiFamI(A)})

AlgSys∇̃I (I) = I({A : exists T ∈ FiFamI(A) such that ∇̃A,I(T ) =∆SEN′}).

We undertake, first, the task of showing that each pair of identically sup-
and sub-scripted classes of algebraic systems, i.e., classes referring to the
same weakly coherent family of I-compatibility operators, consists of iden-
tical classes of N -algebraic systems. The key observation is the well-known
(in both AAL and CAAL) fact that the congruence system corresponding to
a reduced matrix system is the identity congruence system, i.e., “reduction
always produces a reduced system”.

Lemma 45. If ∇ is a weakly coherent family of I-compatibility operators,
then, for all T ∈ FiFamI(A) and all θ ∈ ConSys(A), if θ ≤ ∇A(T ), then
∇A/θ(T/θ) =∇A(T )/θ. In particular, ∇A/∇A(T )(T/∇A(T ))=∆SEN′/∇A(T ).

Proof: For the first equality, noting that 〈ISign′ ,π
θ〉 is ∇A-compatible with

T , by the hypothesis, and using weak coherence and Lemma 33, we get that

∇A/θ(T/θ) =∇A/θ(πθ(T )) = πθ(∇A(T )) =∇A(T )/θ.

For θ = ∇A(T ), then, we obtain ∇A/∇A(T )(T/∇A(T )) = ∇A(T )/∇A(T ) =
∆SEN′/∇A(T ). ut
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Proposition 46. If ∇ is a weakly coherent family of I-compatibility opera-
tors, then AlgSys∇(I) = AlgSys∇(I). Moreover, the class

{A : exists T ∈ FiFamI(A) such that ∇A(T ) =∆SEN′}

is closed under isomorphic copies.
Proof: If A ∈ AlgSys∇(I), then, there exists T ∈ FiFamI(A), such that
∇A(T ) =∆SEN′ . Thus, A/∇A(T )∼=A and A ∈ AlgSys∇(I).

If, conversely, A ∈ AlgSys∇(I), then, there exists B and T ∈ FiFamI(B),
such that A ∼= B/∇B(T ). But then, by Lemma 45, ∇B/∇B(T )(T/∇B(T )) =
∆SEN′′/∇B(T ), whence, B/∇B(T ) ∈ AlgSys∇(I). Therefore, A ∈ AlgSys∇(I).

ut

Corollary 47. If ∇ is a weakly coherent family of I-compatibility operators,
then AlgSys∇̃

I
(I) = AlgSys∇̃I (I). Moreover, the class

{A : exists T ∈ FiFamI(A) such that ∇̃A,I(T ) =∆SEN′}

is closed under isomorphic copies.
Proof: By putting together Proposition 42, asserting that ∇̃•,I is also a
weakly coherent family of compatibility operators, and Proposition 46. ut

As special cases of Proposition 46 and Corollary 47, we get AlgSysΩ(I) =
AlgSysΩ(I) = AlgSys∗(I) and AlgSysΩ̃•,I (I) = AlgSysΩ̃•,I (I) = AlgSysSu(I),
equalities that were asserted in Lemma 6.

Relating to the lifting of an I-operator ∇, we consider the following cor-
responding classes of N -algebraic systems.
Definition 48. For a π-institution I and family ∇ of I-operators, define

AlgSys∇̃(I) = I({A/∇̃A(T ) :A an N -algebraic system, T ⊆ FiFamI(A)})
AlgSys∇̃(I) = I({A : exists T ⊆ FiFamI(A) such that ∇̃A(T ) =∆SEN′}).

Like before, each of these two classes may be obtained by considering
exclusively the∇-full I-gmatrix systems. Moreover, in the case of AlgSys∇̃(I),
we may consider the largest I-gmatrix system, which is always ∇-full.
Lemma 49. Let ∇ be a family of I-operators. The following hold:

1. AlgSys∇̃(I) = I({A/∇̃A(T ) :A an N -algebraic system,
T ⊆ FiFamI(A) ∇-full})

2. AlgSys∇̃(I) = I({A : exists ∇-full T ⊆ FiFamI(A)
such that ∇̃A(T ) =∆SEN′})

= I({A : ∇̃A(FiFamI(A)) =∆SEN′}).
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Proof:
1. The right-to-left inclusion is obvious. Suppose that T ⊆ FiFamI(A). By

Corollary 11 and Definition 12, the congruence system ∇̃A(T ) is a ∇-full
congruence system. Thus, there exists a ∇-full T ′ ⊆FiFamI(A), such that
∇̃A(T ′) = ∇̃A(T ). Therefore, A/∇̃A(T ) =A/∇̃A(T ′) ∈ AlgSys∇̃(I).

2. The first equality repeats the argument in Part 1. For the second, the
right-to-left inclusion is obvious and, for the reverse, if ∇̃A(T ) = ∆SEN′ ,
for some T ⊆FiFamI(A), then ∇̃A(FiFamI(A))≤∇̃A(T ) =∆SEN′ , which
yields the conclusion. ut

We establish some connections between the algebraic system classes asso-
ciated with the lifting and those associated with the relativization of a family
of I-operators.

Proposition 50. Let ∇ be a family of I-operators. Then

AlgSys∇̃(I) = AlgSys∇̃I (I) and AlgSys∇̃
I

(I)⊆ AlgSys∇̃(I).

Proof: Since, for all T ∈FiFamI(A), ∇̃A,I(T ) = ∇̃A((FiFamI(A))T ), we ob-
tain that AlgSys∇̃I (I)⊆AlgSys∇̃(I) and, also, that AlgSys∇̃

I
(I)⊆AlgSys∇̃(I).

To show equality in the first case, suppose that A ∈ AlgSys∇̃(I). By Lemma
49, we get ∇̃A(FiFamI(A)) =∆SEN′ . Setting T ′ =

⋂
FiFamI(A), we get

∇̃A,I(T ′) = ∇̃A((FiFamI(A))T
′
) = ∇̃A(FiFamI(A)) =∆SEN′ .

Therefore, A ∈ AlgSys∇̃I (I). ut

Lemma 51. If ∇ is a weakly coherent family of I-compatibility operators,
then, for all T ⊆ FiFamI(A),

∇̃A/∇̃
A(T )(T /∇̃A(T )) =∆SEN′/∇̃A(T ).

Proof: Let θ = ∇̃A(T ). Note that 〈ISign′ ,π
θ〉 is ∇A-compatible with T , by

the hypothesis. Thus, using weak coherence and Lemma 38, we get

∇̃A/θ(T /θ) = ∇̃A/θ(πθ(T )) = πθ(∇̃A(T )) = ∇̃A(T )/θ =∆SEN′/∇̃A(T ).
ut

Proposition 52. If ∇ is a weakly coherent family of I-compatibility opera-
tors, then AlgSys∇̃(I) = AlgSys∇̃(I).

Moreover, the class {A : ∇̃A(FiFamI(A)) = ∆SEN′} is closed under iso-
morphic images and

AlgSys∇̃(I) = I({A/∇̃A(FiFamI(A)) :A an N -algebraic system}).
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Proof: If A ∈ AlgSys∇̃(I), then, there exists T ⊆ FiFamI(A), such that

∇̃A(T ) = ∆SEN′ . Thus, A/∇̃A(T ) ∼= A and A ∈ AlgSys∇̃(I). If, conversely,
A ∈ AlgSys∇̃(I), then, A ∼= B/∇̃B(T ), for some T ⊆ FiFamI(B). But then,
by Lemma 51, ∇̃B/∇̃B(T )(T /∇̃B(T )) = ∆SEN′′/∇̃B(T ), whence, B/∇̃B(T ) ∈
AlgSys∇̃(I). Therefore, A ∈ AlgSys∇̃(I).

The displayed equality now follows by Lemma 49. ut

Taking into account Corollary 47 and Proposition 50, Proposition 52 yields
that, under weak coherence, four of our six classes of N -algebraic systems
actually coincide.

Corollary 53. If ∇ is a weakly coherent family of I-compatibility operators,
then

AlgSys∇̃(I) = AlgSys∇̃(I) = AlgSys∇̃
I

(I) = AlgSys∇̃I (I).

Proposition 54. Let ∇ be a family of I-compatibility operators that com-
mutes with inverse surjective N -morphisms. For every N -algebraic system A
and θ ∈ ConSys(A),

θ is ∇A-full iff θ ∈ ConSys
AlgSys∇̃(I)

(A).

Proof: Suppose θ ∈ ConSys(A) is ∇A-full. By Corollary 11, θ = ∇̃A(T ), for
some T ⊆ FiFamI(A). Thus, A/θ ∈ AlgSys∇̃(I).

Conversely, if θ ∈ ConSys
AlgSys∇̃(I)

(A), then A/θ ∈ AlgSys∇̃(I). By Pro-

position 52, there exists T ′ ⊆ FiFamI(A/θ), such that ∇̃A/θ(T ′) =∆SEN′/θ.
Let 〈ISign′ ,π〉 := 〈ISign′ ,π

θ〉 :A→A/θ. Then π−1(T )⊆ FiFamI(A) and, by
commutativity,

θ = Ker(〈ISign′ ,π〉) = π−1(∆SEN′/θ) = π−1(∇̃A/θ(T ′)) = ∇̃A(π−1(T ′)).

Thus, by Corollary 11, θ is ∇A-full. ut

Proposition 54, taking into account the isomorphism in Corollary 11, gives
a natural generalization of the isomorphism of Corollary 18.

Corollary 55. Let ∇ be a family of I-compatibility operators that commutes
with inverse surjective N -morphisms. For every A, the maps ∇̃A and ∇A−1

are mutually inverse dual order isomorphisms betwen the lattice of ∇A-full
I-gmatrix systems and the lattice ConSys

AlgSys∇̃(I)
(A).

We will continue our developments along the line of the general theory
presented here, establishing more analogs of results obtained in the AAL
framework in (Albuquerque et al., 2016), pertaining to characterizations of
classes in the Leibniz hierarchy, in a forthcoming companion to the present
work.
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