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Foreword

This book presents research on sequencing and scheduling problems in
robotic cells. The authors have been at the forefront of research activity
in this area. Suresh Sethi and Chelliah Sriskandarajah coauthored (to-
gether with Gerhard Sorger, Jacek Blazewicz, and Wieslaw Kubiak) an
influential paper titled “Sequencing of Parts and Robot Moves in a Ro-
botic Cell,” (International Journal of Flexible Manufacturing Systems,
1992) that helped establish the framework for the algorithmic investiga-
tion of throughput optimization problems in the robotic cell literature.
Along with their colleague Milind Dawande and former student Neil
Geismar, they have put together this treatise that incorporates their
own research and that of others.

The authors have done a commendable job in bringing together the
important analytical results on throughput optimization in a variety of
robotic cells. The book starts by providing the reader with a snapshot of
the different applications of robotic cells in the industry. In particular,
such cells are used extensively in the production of semiconductors. The
authors then devise a classification scheme (Chapter 2) for the schedul-
ing problems that arise in the different types of robotic cells. Cyclic
production, the most commonly used mode of production, is analyzed
next (Chapter 3). Using a basic model of a robotic cell, the authors
explain the notion of cycles and cycle times, and proceed to derive a va-
riety of results, exact and approximation algorithms, concerning cyclic
production. Scheduling problems in cells with more advanced hardware
are discussed next. In Chapter 4, algorithms are presented for cells in
which the robot has a gripper that can hold two parts simultaneously.
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Chapter 5 discusses cells that have more than one machine at one or
more processing stages. In Chapters 6 and 7, the authors then widen
the scope of inquiry by addressing cells which are able to produce two
or more different types of parts simultaneously. Cells with more than
one robot are discussed in Chapter 8. Most of the descriptions in Chap-
ters 3-8 are for cells in which a part that has completed processing on
a given machine can stay on that machine indefinitely (until a robot
picks it up). Chapter 9 briefly discusses two other types of cells that
have noteworthy practical applications. The final chapter (Chapter 10)
presents a number of open problems.

Throughput optimization problems for robotic cells are not at all like
the classical machine scheduling problems with which I am familiar with
and have published papers on. The notation required to state and ana-
lyze these problems is significantly different than that used in the pre-
vious scheduling literature, and it may take a reader some effort to gain
familiarity with the notation used in this book. However, the reader will
find the effort worthwhile and will appreciate that this new area has a
number of well-defined and non-trivial combinatorial problems stemming
from practical applications. Efficient solution techniques for solving such
problems may lead to significant cost savings for factories using robotic
cells in their production processes.

Two of the authors of this book, Suresh Sethi and Milind Dawande,
received their Ph.D. degrees from the Graduate School of Industrial
Administration (now the Tepper School of Business) at Carnegie Mellon
University. Suresh was the first student to complete his Ph.D. degree
in five semesters under my direction during the 43 years that I was a
faculty member of Carnegie Mellon University.

Pittsburgh, Pennsylvania Gerald L. Thompson
August 2006 Professor of Operations Research, Emeritus
Carnegie Mellon University
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Preface

The love of learning, the sequestered nooks,
And all the sweet serenity of books.
— Henry Wadsworth Longfellow, ‘Morituri Salutamus,’” 1875

Intense global competition in manufacturing has compelled manufac-
turers to incorporate automation and repetitive processing for improv-
ing productivity. As manufacturers strive to reduce cost and improve
productivity, the benefits offered by computer-controlled material han-
dling systems — efficiency and speed of processing, reduced labor costs,
a largely contaminant-free environment, to name a few — are compelling
reasons for their use. In their typical use, such systems are responsi-
ble for all inter-machine handling of work-in-process as raw materials
progress through the multiple processing stages required to produce a
finished part.

Many modern manufacturing systems use robot-served manufacturing
cells, or robotic cells — a particular type of computer-controlled manu-
facturing system in cellular manufacturing. The exact time of the first
use of such systems is difficult to pinpoint; however, several industrial
implementations were in use in the 1970s. Most of these were classical
machining applications such as automated tool loading and unloading
for metal-cutting, grinding, turning, etc., and automated classification
of parts before palletizing. Over the years, the scope has broadened to
a wide variety of industries including the manufacture of semiconduc-
tors, textiles, pharmaceutical compounds, magnetic resonance imaging
systems, glass products, cosmetics, fiber-optics, and building products.

As they become prevalent, using robotic cells efficiently becomes a
competitive necessity. In this regard, research efforts have focused on
three major issues: cell design, sequencing of robot moves, and optimal
scheduling of the parts to be produced. The latter two issues are the
subject of most of our discussion in this book. In particular, our em-
phasis is on cyclic production in which a sequence of robot actions is
repeated until the production target is met.
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This book is devoted to consolidating the available structural results
about cyclic production in the various models used to represent real-
world cells. As cells become larger and more complex, the need for
increasingly versatile models and easy-to-implement algorithms to opti-
mize cell operations has increased. We have made an attempt to bring
together the results developed over the past 25 years. The material is
organized into 10 chapters. We start by taking a look at industrial appli-
cations and formulating a classification scheme for robotic cell problems.
After presenting some fundamental results about cyclic production, we
proceed to analyze cells with dual-gripper robots, parallel machines,
multiple-part-type production, and multiple robots. Finally, we discuss
some important open problems in the area.

We envision this book as a reference resource for practitioners, re-
searchers, and students. The book can also be used in a graduate course
or a research seminar on robotic cells.

We extend our grateful thanks to our numerous colleagues whose con-
tributions have been directly or indirectly included in this book. In
particular, we are indebted to our co-authors, Jacek Blazewicz, Inna
Drobouchevitch, Nicholas Hall, Hichem Kamoun, Wieslaw Kubiak, Sub-
odha Kumar, Rasaratnam Logendran, Chris Potts, Natarajan Ramanan,
Jeffrey Sidney, and Gerhard Sorger, whose collaboration has been criti-
cal for the development of a significant portion of the material covered
in the book. We thank Alessandro Agnetis, Nadia Brauner, Chengbin
Chu, and Eugene Levner for their encouragement and for suggesting sev-
eral improvements to the manuscript. We also thank our student Mili
Mehrotra for her help in proofreading parts of the manuscript. It was
a pleasure working with Gary Folven and Carolyn Ford of Springer; we
are grateful for their support. Finally, we thank Barbara Gordon for her
help with IATEX.

M.W. DAWANDE H.N. GEISMAR
S.P. SETHI Prairie View, TX
C. SRISKANDARAJAH

Richardson, TX



Chapter 1

ROBOTIC CELLS IN PRACTICE

Computer-controlled material handling systems that convey raw ma-
terials through the multiple processing stages required to produce a fin-
ished part or product are common in industry. One such implementa-
tion, a robotic cell, has become a standard tool in modern manufac-
turing. The efficient use of such cells requires algorithmic solutions to
a variety of challenging combinatorial optimization problems; typical
problems include cell design, optimal sequencing of robot moves, and
scheduling of the products to be produced.

Many diverse industries use robotic cells (see Section 1.5). A dom-
inant area of application is semiconductor manufacturing [6, 64, 102,
128, 129, 154, 159]. Other documented implementations include elec-
troplating lines for a variety of products ranging from printed circuit
boards to airplane wings, where parts are transferred between tanks of
chemicals by hoists [30, 31, 33, 97, 98, 108, 109, 114, 145]. Robotic cells
are also used for testing and inspecting boards used in mainframe com-
puters [121], machining of castings for truck differential assemblies [§],
crane scheduling for computer integrated manufacturing, textile mills,
and engine block manufacturing [149].

As manufacturers implement larger and more complex robotic cells,
more sophisticated models and algorithms are required to optimize the
operations of these cells. A number of studies have been conducted to
find ways to meet this demand. Some date as far back as the late 1970s,
but the majority have been performed since 1990. This chapter pro-
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vides a general introduction to the use of robotic cells in practice. The
concept of cellular manufacturing is discussed in Section 1.1, followed in
Section 1.2 by the basic robotic cell flowshop models useful for analyz-
ing industrial implementations. Section 1.3 discusses the importance of
schedule optimization. Section 1.4 provides a brief historical overview of
robotic cell studies. Finally, Section 1.5 provides a snapshot of the use

of robotic cells in industry.

1.1 Cellular Manufacturing

The idea of using robotic cells for production is part of the larger
theme of cellular manufacturing. The origin of cellular manufacturing
can be traced back to efforts aimed at blending the efficiency of product
layouts (e.g., assembly lines) with the flexibility of process or functional
layouts (e.g., job shops). These layouts represent two extreme paradigms
in manufacturing: on the one hand, process layouts are characterized
by the utilization of general-purpose resources to produce a variety of
products. Typically, the processing requirements vary widely with the
products; resources are grouped by similarities in their processing ac-
tivities. Advantages of process layouts include the ability to handle a
large variety of products, thereby enabling customization, and the use
of general-purpose equipment. On the other hand, product layouts op-
erationalize the idea of using specialized resources for producing a few
standardized goods. Such layouts achieve processing precision and speed
through the specialization of labor and equipment. A cellular layout is
an attempt to exploit the advantages of both of these extremes.

Production cells may be formed in a job shop by grouping together
machines that perform different operations in order to produce a set of
items, or part family, that requires similar processing. For example, a
lathe, a drill press, a milling unit, and a grinder in a machine shop may
each be pulled from their respective work centers and configured into
a cell to produce several batches of related parts. This arrangement
may be either temporary (i.e., to serve a particular customer order) or
permanent. A permanent work cell is also referred to as a focused work
center (Heizer and Render [82]).

A cellular layout is generally preferred to a product layout if the scale
of production, either in volume or number of operations, is not very large.
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Cells require less floor space, less initial investment in machinery and
equipment, and less raw material and finished goods inventory than do
product layouts. The advantages of cellular over process layouts include
faster throughput, reduced setup time, less work-in-process inventory,
reduced direct labor costs, and increased utilization of machinery and
equipment (Stevenson [148]). Simulation studies (e.g., Sassani [140])
have supported these assertions by finding that a cellular layout works
most efficiently if the products for each cell are well defined and the cells
are isolated. The smoothness of production deteriorates as the product
mix and product design become more varied. However, efficiency can be
regained while serving this broadening set of requirements by developing
additional cells to handle them.

For cellular manufacturing to be effective, there must be families of
items that have similar processing characteristics. Moreover, these items
must be identified. The process that organizes the products is known
as group technology, and commonly involves identifying items that have
similarities in design characteristics (size, shape, and function) and then
classifying them into part families via some coding scheme. Parts of a
given family are then processed in a specific cell. An alternative approach
to grouping families of parts is to differentiate based on manufacturing
characteristics (type and sequence of operations required); this approach
is commonly referred to as production flow analysis (Burbidge [26, 27]).
However, some have noted the difficulties in implementing this method
for a facility with a large number of parts (Nahmias [124]). A more
thorough discussion of coding systems and how they relate to group
technology can be found in Groover and Zimmers [72].

1.2 Robotic Cell Flowshops

This book focuses on sequencing and scheduling for a particular type
of automated material handling system in cellular manufacturing: ro-
botic cells. A robotic cell consists of an input device; a series of process-
ing stages, each of which performs a different operation on each part in
a fixed sequence; an output device; and one or more robots that trans-
port the parts within the cell. Each stage has one or more machines
that perform the processing for that stage. The default configuration
of a robotic cell (Figure 1.1) is to have one robot that can hold only
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one part, one machine per stage, and no buffers for intermediate storage
between the stages within the cell; variations to this configuration (e.g.,
Figure 1.2) are presented throughout the book.! Because each machine
can hold only one part, a robotic cell is, in essence, a flowshop with block-
ing (Pinedo [132]) that has common servers that perform all transfers
of materials between processing stations. In robotic cells, each function

direction of
° d processing
Mo

< o 1put input <G

Figure 1.1. A Generic Robot-Centered Cell.

in the process is performed by a machine; there are no human-tended
workstations. Because the material handling — movement between ma-
chines and loading/unloading of machines — is performed by robots, a
variety of remote center compliance devices are available to ensure that
the parts can be reliably loaded onto the machines in the correct orienta-
tion (see Groover et al. [71] for a description of these devices). Once this
is accomplished, robots are advantageous for material handling because
they can operate with speed and precision consistently for long periods.
In addition, in some environments they are preferred because their use
prevents contamination; examples include pharmaceutical compounding

1 Parallel machines (Chapter 5), dual-gripper robots (Chapter 4), multiple robots (Chapter 8),
and internal buffers (Chapter 4).
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Figure 1.2. A Robotic Cell with Parallel Machines and Multiple Robots with Dual
Grippers.

and semiconductor manufacturing. Other manufacturing environments
are inhospitable to humans, so robots are a natural alternative: some
semiconductor processing is done in a vacuum; welding and iron-working
applications may be in high-temperature environments; and painting or
applying other types of coatings may emit noxious fumes.

The functions performed by the machines obviously depend on the use
of the cell. In semiconductor photolithography (Kumar et al. [102]), the
operations include bake, chill, coat, expose, develop, and scan. A cell de-
signed for machining 23 different components of a valve performs milling,
drilling, roughing and finishing bores, chamfering, reaming, spot-facing,
deburring, and threading (Bolz [16]). A cell that processes large in-
vestment castings may perform operations such as slurry dip and sand
coating, and one that produces agricultural equipment uses chuckers,
shapers, and shavers (Kafrissen and Stephans [88]). IBM’s Poughkeep-
sie, NY, plant has used a robotic cell to write and package diskettes
with operations including diskette writing, envelope printing, and la-
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output M3 M> Mi input

Figure 1.3. A Three-Machine Overhead Track-Based Robot Cell.

bel printing (Giacobbe [66]). One example of a cell designed for au-
tomated chemical analysis includes a spectrophotometer, a continuous
dilution apparatus, an electronic balance, a magnetic hotplate-stirrer,
and a pump for dispensing solvents (Dunkerley and Adams [53]).
Different types of robots are used in industrial applications. In a
common implementation for semiconductor manufacturing, the robot
has a fixed base and an arm that rotates, as in Figure 1.1. Such a cell is
commonly called a robot-centered cell. In another configuration, often
used in electroplating printed circuit boards, the robot is attached by
a hoist to an overhead track, and the entire robot moves linearly along
this track (see Figure 1.3). A more general case combines these two:
the robot’s arm rotates on its base, and the robot itself moves linearly
along a track (see Figure 1.4). This configuration is called a mobile
robot cell. Obviously, such a system allows the robot to cover a larger
area. The cell layouts themselves fall into two basic categories. The
first, demonstrated in Figures 1.1, 1.3, and 1.4, can be either linear or
semicircular. A significant characteristic of this category is that in order
to travel from the output buffer to the input buffer, the robot must pass
by each of the machines. Compare this to the cell in Figure 1.5(a). In
this cell, the robot may travel from the output buffer to the input buffer
directly. In addition, it may travel from the output buffer to machine M;
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M2
M3 M1

output input

Figure 1.4. A Cell with More General Robot Capabilities: The Robot’s Arm Rotates
on Its Base, and the Robot Itself Moves Linearly Along a Track.

by traveling either clockwise (passing machines My and M3) or counter-
clockwise (passing the input buffer). This flexibility significantly impacts
the sequence of robot moves which results in optimal productivity from
the cell. A circular cell in which the input buffer and output buffer share
the same location is shown in Figure 1.5(b).

1.3 Throughput Optimization

Standardization of the processing requirements of the parts or prod-
ucts together with the volume required creates an ideal environment for
repetitive production. In their typical use in practice, robotic cells are
employed to produce significant volumes of either a single part or a few
closely related parts. Given the processing requirements, the objective
that most interests manufacturers is the maximization of cell productiv-
ity. A natural and widely used measure of productivity is throughput —
the number of finished parts produced per unit of time.

Given the goal of maximizing the throughput of the cell, two remarks
need immediate mention. One, small improvements in throughput can
improve revenues significantly for one or both of the following reasons:
the significant volumes produced by the cell and the high market value
of the products. A case in point is semiconductor wafer fabrication,
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Figure 1.5. (a) A Three-Machine Robot Cell, (b) A Three-Machine Robot Cell with
Input and Output Together.

where both of these factors contribute to focus attention on throughput
maximization. For example, Geismar et al. [64] show how an 8% increase
in throughput can increase a semiconductor manufacturer’s revenues by
almost $3 million per week. Second, a number of cell characteristics
impact its throughput. These include processing speeds of the machines
and robots, cell layout, and the sequence of robot actions. For a specific
manufacturing environment, an a priori judgment about the relative
impact of these characteristics is often difficult to ascertain.

Over the years, with an increase in the size and the processing com-
plexity of robotic cells, optimization of the schedule of robot moves has
emerged as a dominant tool for achieving throughput maximization. In
practice, many cell parameters are fixed by physical constraints and can-
not be altered. There is generally little flexibility in the layout of the
cell, and changes to it would have relatively less influence on through-
put. In most applications, processing requirements are strict; reducing
the processing time at a stage would change the nature of that opera-
tion and its result. The processing speeds at the different stages of the
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cell are constrained by the latest technology available. Although various
robots with different speeds are available, once a robot is purchased, it
comes with a specified processing speed that cannot be changed.

Alternatively, the best schedule of robot moves can be chosen rela-
tively inexpensively. This requires no changes to the layout, the ma-
chines, or the robots. Many of the results can be proven analytically or
demonstrated through simulation, rather than trying different schedules
in production. Consequently, implementing a schedule change requires
little nonproductive time for the cell. Furthermore, these tactics can be
used to determine the benefits that can be realized by adding advanced
hardware, such as parallel machines or dual-gripper robots, as shown in
Chapters 4 and 5.

1.4 Historical Overview

Because of the nature of processing requirements, the theoretical un-
derpinnings of throughput optimization in robotic cells are in the area of
flowshop scheduling. During the past 50 years, a huge body of literature
has analyzed a variety of flowshop operations. A number of books and
surveys (see e.g., Brucker [25], Lawler et al. [104], Pinedo [132]) discuss
developments in this area; we, therefore, mention just a few works that
are relevant to our discussion. A classical result for optimal job schedul-
ing in a two-machine flowshop is derived by Johnson [86]. Wagner [155]
formulates an integer program for an m-machine flowshop. Garey et
al. [58] establish the NP-hardness of the m-machine flowshop problem
for m > 3. Abadi et al. [1], Levner [110], and Pinedo [131] study flow-
shops with blocking. Papadimitriou and Kannelakis [127], Reddi and
Ramamoorthy [135], Réck [136], Sahni and Cho [139], and Wismer [157]

are early works on no-wait flowshops.

In one of the early papers on robotic cell sequencing, Bedini et al. [11]
develop heuristic procedures for optimizing the working cycle of an in-
dustrial robot equipped with two independent arms. Baumann et al. [10]
derive models to determine robot and machine utilization. Maimon and
Nof [118] and Nof and Hannah [126] study cells with multiple robots.
Devedzic [48] proposes a knowledge-based system to control the robot.

Wilhelm [156] classifies the computational complexity of a number
of scheduling problems in assembly cells. In a later study, Hall and
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output M3 M2 M1 input

Figure 1.6. A Dual-Gripper Overhead-Track Cell.

Sriskandarajah [77] survey scheduling problems with blocking and no-
wait conditions and classify their computational complexities.

Early studies use simulation to compute cycle times. Kondoleon [100]
uses computer modeling to simulate robot motions in order to analyze
the effects of configurations on the cycle time. Claybourne [35] performs
a simulation to study the effects that sequencing robot actions has on
throughput. Asfahl [8] simulates the actions of a robotic cell with three
machines to demonstrate the transition from cold start to steady-state
cyclic operations. Blazewicz et al. [15] develop an analytical method
to derive cycle time expressions for robotic cells. Dixon and Hill [49]
compute cycle times by using a database language to simulate robotic
cells.

Sethi et al. [142] set the agenda for most subsequent studies on cells.
They provide analytical solutions to the problem of sequencing robot
moves for two-machine and three-machine cells that produce identical
parts, and for two-machine cells that produce different parts. Logen-
dran and Sriskandarajah [116] generalize this work to cells with different
types of robots and with more general robot travel times. Brauner and
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Finke [18, 20, 21, 22] perform several studies that compare 1-unit cycles
with multi-unit cycles (cycles are defined in Chapter 3). Crama and
van de Klundert [40] develop a polynomial-time algorithm for finding
an optimal 1-unit cycle in an additive travel-time cell (travel times are
defined in Section 2.2.2). Dawande et al. [47] do the same for constant-
travel-time cells. Brauner et al. [24] prove that finding an optimal robot
move sequence in a robotic cell with general travel times is NP-hard.
Hall et al. [75, 76] and Sriskandarajah et al. [147] study part schedul-
ing problems and their complexities for cells that process parts of dif-
ferent types. Geismar et al. address robotic cells with parallel ma-
chines [59] and with multiple robots [64]. There have also been several
studies [50, 51, 61, 143, 146, 149, 154] on robotic cells with dual-gripper
robots (defined in Chapter 4; see Figure 1.6).

Research on cells with no-wait or interval pickup has been performed
in parallel with the above-mentioned studies on free-pickup cells (see
Section 2.2.1 for information on pickup criteria). Levner et al. [111]
develop an algorithm for an optimal 1-unit cycle in a no-wait cell that
produces identical parts. Agnetis [2] finds optimal part schedules for
no-wait cells with two or three machines. Agnetis and Pacciarelli [3]
study the complexity of the part scheduling problem for three-machine
cells. Che et al. [31] present a polynomial-time algorithm for an optimal
2-unit cycle in no-wait cells that produce identical parts or two part-
types. Kats and Levner [97] address no-wait cells with multiple robots.

An early work on interval robotic cells is that by Lei and Wang [108],
who use a branch-and-bound search process. Chen et al. [33] use branch-
and-bound, linear programming, and bi-valued graphs to find optimal
1-unit cycles, and Che et al. [30] employ these techniques to find optimal
multi-unit cycles. Kats et al. [98] solve this problem using a method
similar to that used by Levner et al. [111] for no-wait cells. Complexity
results for such a system are presented in Crama [38], Crama and van
de Klundert [41], and van de Klundert [153].

1.5 Applications

This section presents several examples of how robotic cells are used
in the industry, discusses their capabilities, and addresses issues in their
implementation.
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Robotic cells often perform the general functions of arc welding, mate-
rial handling, and machining [161]. In addition to semiconductor manu-
facturing, electroplating, and textiles, they are used in many different in-
dustries, including injection molding of battery components [173], glass
manufacturing and processing [162], building products [165], cosmet-
ics [166], lawn tractors [167], and fiber-optics [174]. In the medical field,
robotic cells are used to produce components for magnetic resonance
imaging systems [163], for automated pharmacy compounding [168], to
process nucleic acids, and to generate compounds for tests in relevant
biological screens (Rudge [138]). Cells for grinding, polishing, and buff-
ing handle many products, including rotors, stainless steel elbows for
the chemical and the food industries, sink levers and faucets, propane
tanks, flatware, and automotive products [171].

The Rolls Royce aircraft engine plant in Derby, England, uses a se-
quence of seven robotic cells to machine jet engine turbine blades. These
turbine blades must be produced to extremely high quality standards,
so the cells support advanced casting techniques and blade materials.
The automated line, which uses creep-feed grinding rather than milling
or broaching, has increased throughput from ten per hour to eighty per
hour. This improvement has allowed Rolls Royce to change from machin-
ing batches of blades to producing individual blades, thereby improving
manufacturing flexibility and reducing lead time and inventory (Bolz
16]).

The Sperry Vickers plant in Omaha, Nebraska, uses two robotic cells
to machine 28 varieties of hydraulic pump cover castings made of duc-
tile cast iron. Each cell has a Unimate robot that can handle up to
112.5 kg and has five axes of freedom. After the machining operations
(milling, rough and finish boring, drilling, and facing), the castings are
washed and then checked for quality by an automated gage. The robot
then places a casting onto an output conveyor or the reject conveyor,
depending on the result of the gaging operation (Maiette [117]).

The Flexible Automated Manufacturing Technology Evaluation Cen-
ter at the Illinois Institute of Technology designed a cell that uses a laser
at one stage. This cell produces process control valves that are used to
regulate the flow or pressure of a variety of gases and liquids. Plugs are
machined from different materials (e.g., steel, aluminum, brass), depend-
ing on the fluid to be regulated. The operations in the cell are performed
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by a CNC lathe, a hardening station at which the laser is used for heat
treatment or cladding, an inspection station, and a cleaning station that
uses slotted-paper polishing wheels. A completed plug is produced every
eight minutes (Sciaky [141]).

Miller and Walker [122] describe several real-world implementations of
robotic cells. One example is that of a robot-centered cell with four ma-
chines — an NC lathe, a surface grinding machine, and two NC drilling
machines — serviced by a single-gripper robot. Another example de-
scribes the use of a dual-gripper robot for producing a family of dupli-
cator fuser rollers at Xerox Corporation.

In modern manufacturing, a typical robot may move along six axes
(including linear translation) and have a three-fingered pneumatic grip-
per [164]. Some have angular and parallel motion grippers that include
miniature, low-profile, sealed, long jaw travel, and 180 degree jaw mo-
tion grippers [160]. Robots that can calculate the optimal path between
two locations or that can quickly change their tools are common [161].
Robotic vision-guided systems have grown in the market, especially for
assembly cells [169].

The economic benefits of robotic cells extend beyond increasing the
efficiency of manufacturing. One company states that its 19 cells will
achieve their payoff mark in only 2 years [173]. Another notes that
implementing robotic cells has consolidated several processes, which has
reduced floor space requirements [165]. Such successes have helped the
robotic cell market grow at a healthy rate for the past few years [161,
170].

Companies typically use simulators to study their robotic cells because
factories are often too large, too complex, and too costly to be optimized
any other way. In addition, there are currently no analytical models that
accurately depict cells with general travel times, stochastic processing
times, or random machine failures. Some simulators claim to model au-
tomated systems with better than 98% accuracy (Fowler et al. [55]).
Among the topics studied via simulators are the influence of adding a
parallel machine to a bottleneck process, the effects of equipment failures
and maintenance on performance, and the disruption caused by intro-
ducing high-priority jobs into steady-state production lines (Duenyas et
al. [52]). Simulators are also used for sensitivity analysis to determine if
equipment purchases are required to meet new production goals (Fowler
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et al. [55]). Because simulators can predict and verify throughput before
a cell is assembled, they can be used to improve the cell’s layout during
the planning stage. This capability can also influence product design by
leading to changes that make the product’s fabrication more efficient in
an existing cell [172].

For cells with stochastic data, some companies implement feedback
control by using dispatching rules that determine the robot’s next move
based on the current state of the cell. One such rule is called Longest
Waiting Pair (see Chapter 8). To implement this scheme, the control
computer tracks each part whose processing has completed on its current
machine and is waiting to be moved. It also tracks each empty machine
that is waiting for the next part to process. Each part’s waiting time is
summed with the waiting time of the machine to which it travels next.
For the pair with the largest combined waiting time, the robot’s next
move is to carry the part to its corresponding machine (Kumar et al.
[102]).

When designing a cell and its operating parameters, the main ob-
jective is the maximization of the cell’s throughput. Intermediate goals
toward reaching this objective are high machine utilization and a smooth
distribution of work over the entire system. Management must balance
the pursuit of these goals with its desire to reduce work-in-process in-
ventory levels. As the system operates, bottleneck identification and
knowing which lots might be late become important objectives (Duenyas
et al. [52]). General guidelines for applying operations research tech-
niques to planning, designing, and operating robotic cells can be found
in Hall [74].



Chapter 2

A CLASSIFICATION SCHEME
FOR ROBOTIC CELLS AND NOTATION

In this chapter, we discuss a classification scheme for sequencing and
scheduling problems in robotic cells and provide notation. As in the clas-
sification scheme for classical scheduling problems (Graham et al. [69]),
we distinguish problems based on three characteristics: machine envi-
ronment («), processing characteristics (), and objective function (7).
A problem is then represented by the form «|3|y. Following the discus-
sion of these characteristics, we detail the classification in Section 2.4
and provide a pictorial representation in Figure 2.2. Finally, we discuss
relevant cell data whose values influence a cell’s performance and define
some basic notation for subsequent use.

2.1 Machine Environment

We start by describing characteristics that are represented in the first
field of the classification scheme.

2.1.1 Number of Machines

If each processing stage has only one machine, the robotic cell is called
a simple robotic cell or a robotic flowshop. Such a cell contrasts with a
robotic cell with parallel machines, in which at least one processing stage
has two or more identical machines. Cells with parallel machines are
discussed in Chapter 5.

A typical simple robotic cell contains m processing machines: My, M,
ooy My, Let M ={1,2,...,m} be the set of indices of these machines.
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machine My

machine Mj machine M,

0 (I

Figure 2.1. A Three-Machine Simple Robotic Cell.

The robot obtains a part from the input device (I, also denoted as Mj),
carries the part to the first machine (M), and loads the part. After
M, completes its processing on the part, the robot unloads the part
from M; and transports it to Ms, on which it loads the part. This
pattern continues for machines Mgz, My, ..., M,,. After the last machine
M, has completed its processing on the part, the robot unloads the
part and carries it to the output device (O, also denoted as M,,+1). In
some implementations, the input device and the output device are at
the same location, and this unit is called a load lock. A three-machine
simple robotic cell is depicted in Figure 2.1.

This description should not be misconstrued as implying that the
robot remains with each part throughout its processing by each machine.
Often, after loading a part onto a machine, the robot moves to another
machine or to the input device to collect another part to transport to its
next destination. Determining which sequence of such moves maximizes
the throughput of the cell has been the focus of the majority of research
on robotic cell sequencing and scheduling.

2.1.2 Number of Robots

Manufacturers employ additional robots in a cell in order to increase
throughput by increasing the material handling capacity. Cells with one
(resp., more than one) robot are called single-robot (resp., multiple-robot)
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cells. Most studies in the literature analyze single-robot cells. Multiple-
robot cells are discussed in Chapter 8.

2.1.3  Types of Robots

A single-gripper robot can hold only one part at a time. In contrast,
a dual-gripper robot can hold two parts simultaneously. In a typical
use of this capability, the robot holds one part while the other gripper
is empty; the empty gripper unloads a machine, the robot repositions
the second gripper, and it loads that machine. Dual-gripper robots are
discussed in Chapter 4.

In a single-gripper simple robotic cell, the robot cannot unload a part
from machine M;, i = 0, ..., m—1, unless the next machine M, is empty.
This condition is commonly referred to as a blocking condition.

2.1.4 Cell Layout

The layout refers to the arrangement of machines within the cell.
Most robotic cell models assume one of two layouts: linear or circular.
A semicircular arrangement of machines has also been referred to in the
literature. However, all our results for a linear layout (Figure 1.3) remain
valid for a semicircular layout (Figure 1.1). Unless specified otherwise,
we assume a linear/semicircular layout. Cells employing a circular layout
(Figure 1.5) are discussed in Chapters 4 and 7.

2.2  Processing Characteristics

Four different processing characteristics are specified in the second
field. We describe three in this section. The fourth, called the production
strategy, is detailed in Section 2.4.

2.2.1 Pickup Criterion

Most of the discussion in this book concerns robotic cells with no
buffers for intermediate storage. For such cells, all parts must be either
in the input device, on one of the machines, in the output device, or
with the robot.

Robotic cells can be partitioned into three types — free pickup, no-
wait, and interval — based on the pickup criterion. For all three types, a
part that has completed processing on M; cannot be loaded onto M;
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for its next processing unless M, is unoccupied, i = 0,...,m. In free-
pickup cells, this is the only pickup restriction; there is no limit on the
amount of time a part that has completed processing on a machine can
remain on that machine.

For the more restrictive no-wait cells, a part must be removed from
machine M;, i € M, and transferred to machine M, as soon as M; com-
pletes processing that part. Such conditions are commonly seen in steel
manufacturing or plastic molding, where the raw material must maintain
a certain temperature, or in food canning to ensure freshness (Hall and
Sriskandarajah [77]). Results for no-wait cells are discussed in Chapter 9.

In interval robotic cells, each stage has a specific interval of time —
a processing time window — for which a part can be processed at that
stage. Thus, if [a;, b;] is the processing time window at stage i,i € M,
then a part must be processed for a; time units on stage i, and must be
transferred to stage (i+ 1) within (b; —a;) time units after its completion
of processing on stage ¢. This is applicable, for example, for the hoist
scheduling problem on an electroplating line (Che et al. [30], Chen et al.
[33], Lei and Wang [108]): printed circuit boards are placed in a series
of tanks with different solvents. Each tank has a specific interval of time
for which a card can remain immersed. Interval cells are discussed in
Chapter 9.

Unless specified otherwise, the cells we discuss in the chapters that
follow have the free-pickup criterion.

2.2.2 Travel-Time Metric

The robot’s travel time between machines greatly influences a cell’s
performance. One common model often applies when the machines are
arranged in numeric order in a line (Figure 1.3) or semicircle (Figure 1.1).
The robot’s travel time between adjacent machines M; 1 and M;, de-
noted d(M;_1, M;), equals 6, for i = 1,...,m + 1, and is additive. That
is, the travel time between any two machines M;, M;,0 < 17,7 <m +1
is d(M;, M;) = |i — j|6. This scheme is easily generalized to the case
of unequal travel times between adjacent machines (Brauner and Finke
[20]): d(Mi_l,Mi) = 51‘, 1= 1, oo, m 1, and d(MZ‘,Mj) = Zi:i—i—l 5k7
fori < j. M d(M;—1,M;) =6,i=1,...,m+ 1, then we call the travel-
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time metric reqular additive. If d(M;_1, M;) = d;, 1 =1,...,m+ 1, then
the cell has general additive travel times.

There are also additive travel-time cells in which the machines are
arranged in a circle so that I and O are adjacent or in the same loca-
tion (Drobouchevitch et al. [50], Geismar et al. [61], Sethi et al. [143],
Sriskandarajah et al. [146]). In these cells, the robot may travel in ei-
ther direction to move from one machine to another; e.g., to move from
My to My,_1, it may be faster to go via I, O, and M,,, than to go via
My, Ms, ..., M,,—o. For circular cells with regular additive travel times,
d(M;, M;) = min{|i — j|6, (m+2—|i—j|)0}. For general additive travel-
time cells, d(Mi, Mj) = min{ZizHl Ok, Z’ILCZI O + 50,m+1 + Z;cn:—zl-i-l 5k}
for i < j. Most studies assume that the travel times are symmetric,
ie., d(M;, M;) = d(M;, M;),0 < i,57 < m+ 1, and that the travel time
between any two machines does not depend on whether or not the robot
is carrying a part.

To make this model better represent reality, it can be enhanced to
account for the robot’s acceleration and deceleration (Logendran and
Sriskandarajah [116]). The travel times between adjacent machines do
not change. However, the travel time between nonadjacent machines is
reduced. For each intervening machine, the robot is assumed to save 7

units of time. Therefore, for 0 < i,j < m+ 1, if d(M;_1, M;) = §;, then

d(Mi, My) = > & —(li—jl—-1)n.
k=min(i,j)+1

We use this model in our discussions in Chapter 6.

For certain cells, additive travel times are not appropriate. Dawande
et al. [47] discuss a type of cell for which the robot travel time between
any pair of machines is a constant §, i.e., d(M;, M;) = 6,0 < i,j < m+1,
1 # j. This arises because these cells are compact and the robots move
with varying acceleration and deceleration between pairs of machines.

The most general model, one that can represent all the travel-time
metrics typically encountered in practice, assigns a value d;; for the
robot travel time between machines M; and M;,0 <i,7 < m+1. These
travel times are, in general, neither additive nor constant. Brauner et
al. [24] address this problem by making three assumptions that conform
to basic properties of Euclidean space:
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1. The travel time from a machine to itself is zero, that is, §;; = 0, Vi.

2. The travel times satisfy the triangle inequality, that is, d;; + 0 >
5il€) VZ, jv k.
3. The travel times are symmetric, that is, d;; = d;;, V1, j.

A robotic cell that satisfies Assumptions 1 and 2 is called a Fuclidean
robotic cell, and one that satisfies Assumptions 1, 2, and 3 is called
a Fuclidean symmetric robotic cell. As we shall discuss in Chapter 3,
the robot move sequencing problem for either case is strongly NP-hard
(Brauner et al. [24]). This is also why most studies approximate reality
with additive or constant travel-time models, depending on which of the
two is a better fit.

To summarize, three different robot travel-time metrics have been
addressed in the literature: additive, constant, and Euclidean. Most
studies assume one of these. Therefore, many results in the field have
been proven only for one travel-time metric rather than for all three.

2.2.3 Number of Part-Types

A cell producing identical parts is referred to as a single-part-type
cell. In contrast, a multiple-part-type cell processes lots that contain
different types of parts. Generally, these different part types require dif-
ferent processing times on a given machine. Multiple-part-type cells are
discussed in Chapters 6 and 7. Throughout the rest of the book, un-
less specified otherwise, the cell under consideration processes identical
parts.

2.3 Objective Function

From an optimization aspect, the objective that is predominantly ad-
dressed in the literature is that of maximizing the throughput — the
long-term average number of completed parts placed into the output
buffer per unit time. This will be our objective throughout the book. A
precise definition of throughput is provided in Chapter 3.

2.4  An «a|B|y Classification for Robotic Cells

Figure 2.2 is a pictorial representation of the classification discussed
in the preceding text. A problem is represented using the form «|g3|y,
where
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(a) a = RFi’an(ml, weyMyy). Here, RF stands for “Robotic Flow-
shop,” m is the number of processing stages, and the vector (my,
ma, ..., My, ) indicates the number of identical machines at each stage.
When this vector is not specified, m; = 1,7 = 1, ..., m, and the cell
is a simple cell. The second subscript r denotes the number of ro-
bots; when not specified, » = 1. For cells with output buffers at the
various stages of the cell, the vector b = (b1, ..., by,) denotes the sizes
of the buffers. At stage 7, the size of the output buffer is denoted
by b;,t = 1, ..., m; this notation is omitted for cells without buffers.
The first superscript g denotes the type of robot used. For example,
g = 1 (resp., g = 2) denotes a single-gripper (resp., dual-gripper)
cell. If g is not specified, then ¢ = 1. The second superscript [ in-
dicates the layout of the cell; a linear/semicircular (resp., circular)
layout is indicated by U (resp., o). Most of our discussion is for lin-
ear or semicircular layouts; unless specified otherwise, such a layout
is assumed, and the notation is omitted.

(b) B =(pickup, travel-metric, part-type, prod-strategy), where

m pickup € {free, no-wait, interval} specifies the pickup criterion.

» {ravel-metric € {A, C, E} specifies the travel-time metric, where
A, C, and F denote the additive, the constant, and the Euclidean

travel-time metric, respectively.

m If part-type is not specified, the cell produces a single part-type.
Otherwise, part-type = MP denotes a cell producing multiple
part-types.

» prod-strategy € {cyclic-k, LCM, all, CRM} denotes the spe-
cific production strategy employed. The detailed descriptions
of these strategies appear in later chapters, so we limit our de-
scription here and refer the reader to the corresponding chapter.

(i) In a cell producing either a single part-type or multiple part-
types, cyclic-k refers to a cyclic production strategy wherein
exactly k units are produced per cycle (Chapter 3). When
the integer k is not specified, the production strategy in-
cludes all k-unit cycles, k > 1. LCM cycles form a subclass
of cyclic solutions, and are discussed in Chapters 5 and 8.
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(ii) In a cell producing either a single part-type or multiple part-
types, all refers to a production environment where all pro-
duction strategies (i.e., cyclic as well as noncyclic) are con-
sidered (Chapters 3 and 10).

(iii) In robotic cells producing multiple part-types (Chapters 6
and 7), CRM refers to the concatenated robot-move sequence
strategy.

(¢) v = p denotes the objective function of maximizing the through-

put. Although this is the only objective function addressed in our
discussion, we use a separate field to allow for future work involving
different objective functions.

We now illustrate our classification with a few examples.

1.

RFy|(free,A,cyclic-1)|p represents a four-machine simple robotic cell
with one single-gripper robot, a free-pickup criterion, and additive
travel-time metric. It produces a single part-type and operates a
cyclic production strategy wherein one unit is produced per cycle.
The objective function is that of maximizing the throughput.

RF5(1,4,2,3,2)|(no-wait, E, cyclic-2) | refers to the problem of max-
imizing throughput for a five-stage robotic cell with parallel ma-
chines that has one, four, two, three, and two machines, respectively,
in stages 1, 2, 3, 4, and 5. The cell produces a single part-type, has
one single-gripper robot, employs a no-wait pickup criterion and a
Euclidean travel-time metric, and produces two units per cycle.

RF}, 5| (interval, C,MP,CRM)|uu considers the problem of through-
put maximization in an m-machine simple robotic cell with three
dual-gripper robots, an interval pickup criterion, constant travel-
time metric, and multiple-part-type production using a CRM pro-
duction strategy.

RFS@Oi (free,A,cyclic-k)|p is the problem of maximizing the through-
put over all cyclic schedules in an m-machine dual-gripper cell with
an output buffer of size one at each machine. The travel-time metric
is additive, and the layout of the cell is circular.

In the chapters that follow, we use this classification to specify the prob-

lem under consideration.
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Robotic Cells

Simple Robotic Cells Robotic Cells with Parallel Machines
Single-Robot Cells Multiple-Robot Cells a
Single-Gripper Robot Dual-Gripper Robot

Free-Pickup No-Wait  Interval

BB 8
A CEACE ACE
I N
| |
Single Part-Type Multiple Part-Type
Production| Strategy Produc|tion Strategy
€ {cyclic-k, LCM, all} € {cyclic-k, CRM, all}
Throughput Throughput ol

A, C, E denote Additive, Constant, Euclidean Travel Time, respectively

Figure 2.2. A Classification of Robotic Cells
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2.5 Cell Data

In addition to the robot’s travel-time metric, the processing times at
the various stages and the times required for loading and unloading a
machine influence the cell’s throughput. We now discuss these charac-
teristics and the notation for representing the actions of the robot and
the states of the cell. First, we list the basic assumptions throughout
most studies:

All data and events are deterministic.

All processing is nonpreemptive.

Parts to be processed are always available at the cell’s input device.

There is always space for completed parts at the output device.

All data are rational.

2.5.1 Processing Times

Since each of the m stages performs a different function, each, in
general, has a different processing time for a given part. For cells with
free pickup or no-wait pickup, the processing time of a machine in stage j
is denoted by p;, 7 € M. If a cell processes k different types of parts, the
processing time of part i at stage j is denoted by p;;,i =1,...,k;5 € M.
In interval robotic cells, the processing time of machine M is specified
by a lower bound /; and an upper bound u; > [;. For example, the time
that a printed circuit board spends in tank j must be in the interval
[lj,u;]. If multiple part-types are processed in an interval robotic cell,
the processing interval for part-type i is denoted by [l;;, us;].

2.5.2 Loading and Unloading Times

Another factor that influences the processing duration for a part is the
time required for loading and unloading at each machine. For uniformity,
picking a part from I is referred to as unloading I, and dropping a part
at O is referred to as loading O. Typically, models assume that the
loading and unloading times are equal (€) for all machines. This will be
our assumption as well for most of the discussion. More sophisticated
models have different values for loading and unloading at each machine:
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the loading (resp., unloading) time for M; is €g; (resp., €2;41),1 = 1,...,m;
the unloading (resp., loading) time at I (resp., O) is €1 (resp., €x(m+1))-
We use this more general notation in Chapter 6.

2.5.3 Notations for Cell States and Robot Actions

By the state of the robotic cell at any given instant of time, we mean a
sufficient description of the cell required for the purpose of our analysis.
To keep the notation simple, our discussion in this section is limited to
simple robotic cells with the free-pickup criterion; appropriate enhance-
ments can be made for other classes of cells.

Ideally, a precise mathematical description of the state of the cell
would include the following.

m The occupancy state of each machine. That is, whether a machine
contains a part or it is empty.

= [f a machine contains a part, then the time remaining on its current
processing.

m The location of the robot.

m The occupancy state of the robot, that is, whether the robot arm has

a part or not.

Before we formalize the state space, note that since we are interested
in maximizing the throughput of the cell, it is not necessary to consider
“wasteful” robot actions such as unnecessary waiting at a location or
moving to a location without performing at least one of the loading or
unloading operations. Also, since this is a deterministic problem, it is
sufficient to define decisions regarding the robot’s moves only at those
epochs when the robot has just finished loading or unloading a part at
a machine. It follows that it is sufficient to consider the state when the
robot’s position is at these epochs.’

Our focus in this book is on a steady-state analysis of a certain class
of solutions referred to as cyclic solutions (discussed in Chapter 3). Typ-

n the stochastic setting, say when the processing times are random variables, a throughput
maximizing operation may require the robot arm to change its traversal path while the robot
is in transition, at a time when some new information becomes available. To allow for this,
a continuous state space and continuous decision making over time are required.
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ically, this analysis does not require a detailed state description since the
definition of cyclic solutions involves a requirement that completes the
missing information. In view of this, all that is needed is a specifica-
tion of each machine in terms of whether it is occupied or not. Such a
simplified description can be presented as an (m + 1)-dimensional vec-
tor (e1,...,em+1) (Sethi et al. [142]). Each of the first m dimensions
corresponds to a machine: e; = ) if M; is unoccupied; e¢; = Q if M;
is occupied, ¢ = 1,...,m. The last dimension represents the robot;
em+1 = M, indicates that the robot has just completed loading a part
onto M;,i=1,....,m+1, and ejp41 = Mf indicates that the robot has
just completed unloading a part from M;,i =0,...,m.

EXAMPLE 2.1 For m = 4, consider the state (0,9, 0,, My ): M; and
M3 are unoccupied, My and M, are occupied, and the robot has just
completed loading M>. Suppose that the robot’s next actions were to
travel to I, unload a part from I, travel to M7, and load that part onto
M;. The states corresponding to these actions are (0,2, 0, Q, MJ) and
(2,9Q,0,9, M;). Note that listing the state (0, Q,0,Q, M) is superflu-
ous. To transition from (0,2, 0,2, M;) into (2,9, 0,Q, M), the robot
must have first traveled to I.

In general, a series of robot actions can be completely represented
by a string of M;” symbols. For example, M, M, M5 means that the
robot unloads a part from Mj, travels to Ms, and loads the part onto
Ms. The robot next travels to Ms, waits for Ms to finish processing (if
required), unloads a part from Ms, travels to My, and loads the part
onto My. The robot waits at M, while the part is being processed. The
robot then unloads the part from My, carries it to M5, and loads M5.

A different notation has largely supplanted the M,  notation in the
literature. This more popular notation is based on the concept of an
activity. Activity A; consists of the following sequence of actions:

m The robot unloads a part from M;.
s The robot travels from M; to M; .

m The robot loads this part onto M.
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The sequence of actions discussed above (M; M, M) would be repre-
sented by A;A3A4. Since a part must be processed on all m machines
and then placed into the output buffer, one instance of each of the m+1
activities Ag, A1, ..., A, is required to produce a part.

It is easy to use the activity-based notation to represent the cell’s
current status. Let e,,+1 = A; indicate that the robot has just completed
activity A;; e;,1=1,2,..., m, will have the same meaning as before.

EXAMPLE 2.2 For m = 4, an example state is (Q2,0,0,Q, A3): M, and
M3 are unoccupied, M; and M, are occupied, and the robot has just
completed loading My. From this point, let us now consider what hap-
pens if the robot executes activity sequence A1 AsAy: the robot moves
to M, waits (if required) for M; to finish processing, unloads a part
from M, travels to Ms, and loads the part onto Ms. At this instant,
the state of the cell is (0,Q,0,Q, A;). The robot waits at My for the
entirety of the part’s processing. The robot then unloads the part from
My, carries it to M3, and loads the part onto M3. The cell’s state is now
(0,0,Q,9Q, Ag). The robot next travels to My, waits (if required) for
My to finish processing, unloads a part from My, travels to the output
buffer, and loads the part onto the output buffer, so the cell’s state is

((D’ (Dv Qa (Da A4)

For most of the discussion in this book, we will represent robot actions
by using the activity notation: A;,i = 0,1,...,m. The discussion for
robotic cells producing multiple part-types, however, is easier with the
M, notation; we will use it in Chapters 4 and 6. The M, notation
is also convenient for describing moves in a dual-gripper robotic cell
(Chapter 4).

The simplified state description above omits information represent-
ing the extent of the processing completed on the parts on the various
machines. A more precise representation of a state is an (m + 1)-tuple
I'=(s1,...,8m+1), where s; € {—1,r;},i € M. If s; = —1, machine M;
has no part on it; otherwise r; is the time remaining in the processing
of the current part on M;. As before, sp,+1 € {4;,7 =0,...,m} denotes
that the robot has just completed activity A; (i.e., loaded a part onto
machine M;41).
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EXAMPLE 2.3 For m = 4, the state vector I' = (5,0, —1, p4, A3) indi-
cates that the part on M; has five time units of processing remaining,
Ms has completed processing a part and that part still resides on Ma,
and M3 is empty. The robot has unloaded a part from Mjs, carried it to
My, and just completed loading it onto Mjy.

There is another important observation to be made here. Note that
even with integer data, the remaining processing times are in general
real numbers. However, since we need to consider the system state only
at the epochs mentioned above, the state description will be integral pro-
vided the initial state of the system is restricted to be in integer terms.
This restriction can be imposed without loss of generality since some
initial adjustments can be made at the beginning to bring the state to
integral terms, and the time taken to make these adjustments is of no
consequence in the context of the long-term average throughput crite-
rion. Thus, in any state description I' = (s1,...,Sm+1), si € {—1,7:}
with r; € {k € Z : 0 < k < p;}, i € M. We thus have a finite-state
dynamic system.



Chapter 3

CYCLIC PRODUCTION

Cyclic production in a robotic cell refers to the production of finished
parts by repeating a fixed sequence of robot moves. More precisely, for
an integer k > 1, a typical operation of the cell consists of a sequence
of robot moves in which exactly k parts are taken from the input device
My, exactly k parts are dropped at the output device My, 41, and the cell
returns to its initial state, i.e., the state at the beginning of the sequence.
A particular sequence of robot moves is chosen and repeated until the
required production is complete. In practice, such cyclic schedules are
easy to implement and control, and are the primary way of specifying
the operation of a robotic cell.

In this chapter, we consider cyclic production of identical parts. We
start by proving the sufficiency of considering cyclic schedules. Sec-
tion 3.2 illustrates the computation of cycle time. In Section 3.3, we
examine the optimality of 1-unit cycles. In Section 3.4, we briefly visit
the issue of computing the makespan of a lot. Section 3.5 is devoted to
obtaining upper bounds on the ratio of the throughputs of an optimal
cyclic solution and an optimal 1-unit cycle.

3.1 Operating Policies and Dominance
of Cyclic Solutions

Under the assumption of rational (or, equivalently, integer) data, it is
easy to establish the sufficiency of considering the class of cyclic schedules
to maximize throughput over all schedules (Dawande et al. [45]). To do
so, we analyze the operations of a robotic cell as a sequence of states,
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rather than as a sequence of activities. For simplicity, we limit our
discussion here to simple robotic cells with free pickup; extensions to
other classes of cells are straightforward.

Recall our discussion of Section 2.5.3; in particular, the (i) sufficiency
of considering non-wasteful robot actions and (ii) sufficiency of consider-
ing the state of the cell only at the epochs defined by the following state
description: a state of the cell is an (m + 1)-tuple I' = (s1,..., Sm+1),
where s; € {—1,m},i € Myr, e {k€Z:0<k <p;}. If s; =—1, ma-
chine M; has no part on it; otherwise s; = r; is the time remaining in the
processing of the current part on M;. Finally, s,,+1 € {A;,i =0,...,m}
denotes that the robot has just completed activity A; (i.e., loaded a part
onto machine M;;1). Let F denote the set of all feasible states.

DEFINITION 3.1 An operating sequence for the cell is an infinite se-
quence of successive states resulting from feasible operations of the cell
starting from an initial state.

It is important to note that not every infinite sequence of states is
feasible. For example, the state I'y = (5,0, —1,py, A3) followed im-
mediately by I'y = (5,0,—1,0, Ay) results in an infeasible sequence if
ps + 045 + 2¢ > 0. The reason is as follows. Since I'y is the next state
of the cell after state I'y, after the robot loads a part onto machine My
(state T'1), it waits at that machine for the entire duration while My is
processing the part. The robot then unloads the part from My and loads
it onto M5. However, since machine M is busy processing its part dur-
ing this time, at the instant the robot finishes loading machine Mj5 (state
'), the processing time remaining on M is max{0,5—pg—d45—2€} < 5.

DEFINITION 3.2 A policy for the cell is a function d: F — F such that
there exists a state I' € F for which the infinite sequence 7'(d,I") =
{I',d(I),d*(T),...,d"(T"), ...} is an operating sequence.

Consider an optimal operating sequence, say 3, and suppose that
there exists no policy that can generate it. Then, for some state I,
the action taken by ¥ is different at two (or more) instances when the
cell is in state I'. Without loss of generality, we can assume that state
I occurs in ¥ infinitely often, for if the number of occurrences of a
state is finite, the segment of ¥ up to the last instance of that state
can be deleted without affecting its long-term throughput. Let segment-
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throughput refer to the average number of finished parts produced per
unit of time for the segments of ¥ between two successive occurrences
of I'. If all of the segment-throughputs are equal, we can replace each
of these segments by any one segment and maintain the throughput of
3. Otherwise, replacing a segment having a smaller value of segment-
throughput with one having a larger value contradicts the optimality of
>.. We thus have the following result.

LEMMA 3.1 There exists a throughput maximizing operating sequence
that can be generated by a policy.

Given that the cell is currently in state I' € F, the functional im-
age d(T") of a policy d completely specifies the transition to the next
state, and thus completely defines the robot’s action. Together, a pol-
icy d and an initial state I'g € F generate a unique operating sequence
{T,d(Ty),d*(Tp),...,d"(Tg),...}. We would like to emphasize that an
initial state is required to specify an operating sequence generated by
a policy. To illustrate, suppose F = {I'1,T9,...,I'¢} and d is defined
as follows: d(FZ) = Fi+1,i = 1,2,4,5;d(P3) = Fl,d(PG) = F4. If the
initial state is I';, we obtain the sequence {I';,T'9,T'3,I'1,T'9, '3, ...}. If
the initial state is I'y, we obtain {I'4,I'5, ', 'y, I's, s, ... }.

Let p(d,T') be the throughput of the operating sequence T'(d,T"). The
maximum throughput, u(d), obtainable from a policy d is then

Ilpa}c{,u(d, I'): T(d,T") is an operating sequence}.
€

Note that the maximum exists since | F| is finite. The maximum through-
put of the cell is obtained by maximizing u(d) over all policies d. Since a
policy is a function with domain and range on the finite set F, the total
number of distinct policies is at most |F U]: |. Moreover, since an operat-
ing sequence is completely specified by a policy and an initial state, the
total number of operating sequences is at most | F|(71+1), The finiteness
of F implies that the infinite sequence of states resulting from any policy
is a repeating sequence. Consequently, the sequence of robot actions is
a repeating sequence. Every policy repeats a minimal sequence of robot
moves. The minimal sequence is a state-preserving sequence: the state
of the cell at the beginning is identical to the state of the cell at the
end of the sequence. The discussion above and Lemma 3.1 yield the
following result.
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THEOREM 3.1 There exists a cyclic sequence of robot moves that mazi-
mizes long-term throughput of the robotic cell.

It is therefore sufficient to optimize over the class of cyclic sequences.
This result provides a sound justification for the widely used industry
practice of specifying the operation of a robotic cell via cyclic sequences.
Using the notation defined in the previous chapter, cyclic production
can be represented as a repeatable sequence of activities. For example,
(Ag, Aa, Ay, A3, A1) is a sequence of activities that produces a part in a
four-machine cell. Such a sequence can be repeated in a cyclic fashion,
with each iteration producing a single part. To formalize, we define the
following terms:

DEFINITION 3.3 A k-unit activity sequence is a sequence of robot moves
that loads and unloads each machine exactly k times.

To be feasible, an activity sequence must satisfy two criteria:
m The robot cannot be instructed to load an occupied machine
m The robot cannot be instructed to unload an unoccupied machine.

These concepts are operationalized as follows: During cyclic opera-
tions, fori=1,...,m—1, between any two occurrences of A; there must
be exactly one A;—1 and exactly one A;+1. This condition implies that
between any two instances of Ay there is exactly one A;, and between
any two instances of A,, there is exactly one A,,,_1. For instance, in a cell
with m = 3, the 2-unit activity sequence (Ao, A1, A3, A1, A, Ao, As, A2)
is infeasible because the second occurrence of A; attempts to unload
machine M; when it is empty. Note that all 1-unit activity sequences
are feasible.

DEFINITION 3.4 A k-unit cycle is the performance of a feasible k-unit
activity sequence in a way that leaves the cell in exactly the same state
as its state at the beginning of those moves.

For every feasible k-unit activity sequence, k > 1, there is at least
one initial state for which it is a k-unit cycle, i.e., if the k-unit activity
sequence begins with this state, it leaves the cell in exactly the same
state after its execution [146]. Since a k-unit cycle preserves the state of
the cell, repeating it indefinitely yields a k-unit cyclic solution. A cyclic
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solution is also known as a steady-state solution. We provide a more
rigorous definition of steady state below.

A k-unit activity sequence has k(m + 1) activities; each of the m + 1
activities 4;,7 = 0,1,...,m, is performed exactly k times and in an order
that satisfies the feasibility constraints. A k-unit cycle constructed from

a k-unit activity sequence (Ao, Ai;, Aiyy ..., A will be referred to

ik(erl)fl)

as the k-unit cycle or, simply, cycle (Ag, Aiy, Aiy, ..., A Since

Uo(m+1 71)'
a k-unit cyclic solution is completely characterized by a k<—uJ1rn>t cycle, we
will use the two terms interchangeably when no confusion arises in doing
S0.

Define the function F'(A;,t) to represent the time of completion of
the " execution of activity A; [40]. Given a feasible infinite sequence
of activities and a compatible initial state, we can define the long-run
average throughput or, simply, throughput to be

p= lim #
t—o0 (Am, t)
Intuitively, this quantity represents the long-term average number of
completed parts placed into the output buffer per unit time. Obtaining
a feasible infinite sequence of activities that maximizes throughput is
a fundamental problem of robotic cell scheduling. Such a sequence of
robotic moves is called optimal. Most studies focus on infinite sequences
of activities in which a fixed sequence of m+1, or some integral multiple
of m + 1, activities is repeated cyclically.

DEFINITION 3.5 [40] A robotic cell repeatedly executing a k-unit cycle
7 of robot moves is operating in steady state if there exists a constant
T(m) and a constant N such that for every A;, ¢ = 0,...,m, and for
every t € Z" such that ¢t > N, F(A;,t + k) — F(A;,t) = T(rn). T(w) is
called the cycle time of 7.

For additive travel-time cells, we denote the cycle time by T,(m). The
corresponding notation for constant and Euclidean travel-time cells will
be Tp(m) and T,(m), respectively.

The per unit cycle time of a k-unit cycle 7 is T'(w)/k. This is the
reciprocal of the throughput and is typically easier to calculate directly.
Therefore, minimizing the per unit cycle time is equivalent to maximizing
the throughput.
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An assumption in most studies is that the sequence of robot moves
is active. A sequence is called active if the robot always executes the
next operation, whatever that may be, as soon as possible. For active
sequences, all execution times for the robot’s actions are uniquely deter-
mined once the sequence of activities is given. The robot’s only possible
waiting period can occur at a machine at which the robot has arrived to
unload, but the machine has not completed processing its current part.
In the class of optimal robot move sequences, there is at least one active
sequence [153].

Brauner and Finke [22] show that repeating a k-unit activity sequence
will enable the robotic cell to reach a steady state (or cyclic solution)
in finite time. Therefore, since we are maximizing the long-run average
throughput, i.e., assuming that the cell operates in steady state for an
infinite time, there is no impact from the initial transient phase [45, 76].
Hence, there is no loss of generality by studying only the steady-state be-
havior. Nevertheless, there may be some practical reason to find the time
required to reach steady state. This is discussed in Chapters 6 and 7.

3.2 Cycle Times

In this section, we discuss the robot’s waiting time at a machine and
methods for computing the cycle time of a given cycle. We also estab-
lish lower bounds for the cycle time. For simplicity of exposition, the
discussion is limited to 1-unit cycles in simple robotic cells.

3.2.1 Waiting Times

The robot waits at a machine M; if its next sequenced action is to
unload M;, but M; has not yet completed processing its current part.
The length of the robot’s waiting time, denoted w;, is M;’s processing
time p; minus the time that elapses between when M; was loaded and
when the robot returns to unload it. If this difference is negative, then
the waiting time is zero.

The time that elapses between M;’s loading and the robot’s return is
determined by the intervening activities that are executed between the
loading and the unloading of M;. If there are no intervening activities,
the robot loads M;, waits at M; for time p;, then unloads M;. Such a
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sequence is represented by A;_1A;. In this case, M; is said to have full
waiting [47].

If there are intervening activities between the loading and the un-
loading of M;, then M; has partial waiting [47]. Consider the sequence
A;_1A;A;. The robot loads M;, travels to M; (J;;), waits for M; to
complete processing (w;), unloads M; (e), carries that part to Mjiq
(0jj+1), loads Mj41 (€), then travels to M; (d;41,:). The robot’s waiting
time at M; is

wi = max{0,p; — 8;j —wj — €= djjp1 — €= 01}

For a constant travel-time cell, this expression simplifies to w; = max{0,
pi — 3(5— 2¢ — w]‘}.

The expression for the robot’s waiting time is often dependent on the
waiting time at one or more machines. This recursion makes calculating
the cycle time difficult. However, the condition that a cycle begins and
ends in the same state allows us to uniquely compute the cycle time, as
demonstrated in the next section.

3.2.2 Computation of Cycle Times

The cycle time is calculated by summing the robot’s movement times,
the loading and unloading times, and the robot’s waiting times (full
and partial). A straightforward approach for computing the cycle time
of a given cycle requires solving a linear program. We illustrate this
approach below for 1-unit cycles. Appendix A lists all 1-unit cycles for
simple robotic cells with two, three, and four machines.

For each activity A;,4 = 0, ..., m, the robot unloads M;, carries the
part to M;;1, and loads M;,i. The total time for A; is 0; ;41 + 2¢. We
must also account for the time between activities. If M; has full waiting
(A;—1 immediately precedes A;), the robot spends exactly p; time units
between activities A; 1 and A; waiting at M;. If M; has partial waiting
(A; immediately precedes A;,j # i — 1), then the robot moves from
M1 to M; (0j41,) and waits for M; to complete processing (w;) before
starting activity Aj;.

For specificity, we now consider a constant travel-time cell with con-
stant loading and unloading times. Let V; be the set of machines with
full waiting, and V5 be the set of those with partial waiting. The cycle
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time for a 1-unit cycle is
T.(m) = (m+1)(0+26) + > pi+ Y (wi+0)+0. (3.1)
i€V 1€Va
The extra § accounts for the last movement of the cycle, which takes the
robot to I to collect a new part.
For example, consider the cycle m3 = (Ag, A1, 43, A2). Vi = {1},
Vo ={2,3}, m = 3. The cycle time is

Te(ms) = 4(0 +2€) +p1 + wo + w3 + 36
76 + 8¢ + p1 + wo + w3, where
wy = max{0,ps — 30 — 2¢ — w3},
ws = max{0,p3 —40 —4e —p1},
wy +ws = max{0,ps — 30 — 2¢,p3 — 40 — 4e — p1 }.

Thus, T,(m3) = max{76 + 8¢ + p1,40 + 6€ + p1 + p2,39 + 4e + p3}.

Similarly, the cycle time for the cycle mg = (Ao, As, Aa, A1) is Te(mg) =
max{85 + 8¢, p1 + 30 + 4¢, pa + 30 + 4e, p3 + 35 + 4e}. Writing the equa-
tions for the waiting times requires that the cycle begin and end in the
same state. In general, this method can be implemented as a linear
program with km variables and km constraints, where k is the number
of units produced in one cycle [61, 102]. Hence, it has time complex-
ity O((km)3L), where L is the size of the problem’s binary encoding.
For example, the waiting times required for computing T,(m3) can be
obtained by solving the following linear program.

Minimize w9 + w3
subject to:
wy +ws > p2— 30 — 2
w3 > p3—40—de—p;
wg, w3 > 0
Another linear programming approach that directly deduces the exact
time at which each machine is loaded and unloaded is described in [39].

From a point of view of computational complexity, the linear pro-
gramming approach above is not the most efficient. There are more
efficient graphical methods that find the cycle time without considering
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robot waiting times. These methods analyze a cyclic graph resulting
from the precedence relationships between the activities of the given cy-
cle. We illustrate this approach on the 1-unit cycle m = (Ag, A2, A1, A3)
in a three-machine simple robotic cell with free pickup and constant
inter-machine travel time.

EXAMPLE 3.1 Given m = (Ap, A2, A1, A3), fix an arbitrary value T for
its cycle time. A directed graph G (see Figure 3.1) is constructed as fol-
lows: for each machine M;,: = 1,2, 3, we have one vertex, vﬁ, signifying

u

the beginning of each load operation and one vertex, vy,

signifying the
beginning of each unload operation. In addition, we have two vertices,
vy and vfl, corresponding to the beginning of the unload and load oper-
ations on the input and output, respectively. The edge set consists of

the following:

m Edges (vf,vZZ-Jrl),i = 0,1,2,3, corresponding to activities A;,i =
0,1,2,3. The weight of each of these edges is § + €, the time to
execute each activity.

» Edges (v),v¥), (v4,v¥), (vh,v¥) corresponding to the cycle w. The

weight of each of these edges is § + €, the time between the start of
the loading operation of an activity and the start of the unloading
operation of the next activity in .

» Edge (v),v%). The weight of this edge is § + ¢ — T, which is a lower
bound on the time between the start of the unloading operation on
the first activity Ay and the start of the loading operation of the last
activity As.

» Edges (v}, vY), (v, vY), and (v}, v¥) corresponding to the loading and
unloading of the part on machines M;,i = 1,2, 3, respectively. Note
that activity Ao (resp., Ag2) precedes activity A; (resp., As) in 7.
The weight of edge (v},v}) is p1 + € and the weight of edge (v}, v¥)
is p3 + €; these correspond to lower bounds on the time between the
start of loading and the start of unloading on machines M; and Ms.
Since activity A; does not precede A, the weight of edge (v, vY) is
d +€—T, alower bound on time between start of unloading (in the
next execution of 7) and loading on machine M.

The minimum cycle time of m equals the minimum value of T' for which
the graph G does not contain any cycle of positive length.



38 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

£+06-T £+0

ptE
vy .
Vs

£+0 £+0

Py tE
u
V3 V3

p,+e-T

vl £+0 v

Figure 3.1. 'The Graph G for the Cycle of Example 3.1.

This approach can be easily extended to multi-unit cycles, as well as
multiple part-types. We refer the reader to Crama et al. [39] for an
extensive description.

The computation of the cycle time via the graphical approach, as well
as the precise schedule of the exact time each machine is loaded and
unloaded, has been studied by several authors. For free-pickup cells,
Cohen et al. [36], Carlier and Chrétienne [28], Matsuo et al. [120] and
van de Klundert [153] provide an O(m?) algorithm based on an algorithm
of Karp [91] for finding the minimum mean-length cycle in a digraph.
Other algorithms for free-pickup cells include (i) an O(m?) algorithm
due to Ioachaim and Soumis [85], based on the Bellman-Ford algorithm
for the longest path; (i) an O(m?logmlog B) algorithm, where B is an
upper bound on the optimal cycle time, based on the results of Roundy
[137]; (iii) O(m?logm) algorithms due to Kats and Levner [94] and Lee
and Posner [106], based on the Karp-Orlin algorithm [92] for finding a
parametric shortest path, (iv) an O(m?) algorithm based on the results
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of Hartmann and Orlin [81]. For interval cells, the results include (i)
an O(m?logmlog B) algorithm due to Lei [107], where B is a bound
on the range of possible cycle times; (ii) two algorithms based on the
Bellman-Ford algorithm: an O(mS) algorithm due to Chen et al. [32]
and an O(m3) algorithm due to Kats and Levner [94]. The cycle time
computation for a given cycle is relatively easy in no-wait cells, and is
discussed in Chapter 9.

Computing the cycle time of highly structured cycles is typically much
more efficient. For example, Crama and van de Klundert [40] develop
an O(m) algorithm to find the cycle time in an additive travel-time cell
of any member of a dominant subset of cycles called pyramidal cycles.
Pyramidal cycles are discussed in greater detail in Section 3.3.3.

3.2.3 Lower Bounds on Cycle Times

From Equation (3.1), we can deduce a lower bound for the cycle time
for a 1-unit cycle in a constant travel-time cell (problem RF,,|(free,C,
cyclic-1)|u). Obviously, for any cycle, To(7) > 2(m + 1)e + (m + 2)J.
If all machines with partial waiting have w; = 0, then the minimum
value for T¢(7) is achieved by minimizing > ;cy. pi + D ey, 0, Which is
done by placing those machines for which p; < ¢ in Vj. Thus, in a
constant travel-time robotic cell, for any 1-unit cycle m, T,(7w) > (m +
2)0 4> i, min{p;, 0} +2(m +1)e [47]. In a regular additive travel-time
robotic cell (problem RF,|(free,A,cyclic-1)|p), for any l-unit cycle m,
To(m) >2(m+1)(6+€) + > it min{p;,d} [40].

Suppose that p; = maxi<;<,, p; is large relative to § and e. Since the
cycle time can be measured as the time between successive loadings of
M;, we can derive another lower bound for the cycle time of a 1-unit
cycle. This includes, at minimum, the times for the following: processing
on Mj, unload Mj, move to Mjq, load M;;q, move to M;_1, unload
M;_1, move to M;, and load M;. For constant travel time, this value
is p;j + 30 + 4e and for regular additive travel time it is p; + 4(0 + ).
We combine these bounds, originally derived by Dawande et al. [47] and
Crama and van de Klundert [40], respectively, in the following theorem.

THEOREM 3.2 For 1-unit cycles, the following are lower bounds for con-
stant travel-time robotic cells (problem RF,,|(free,C,cyclic-1)|u) and reg-
ular additive travel-time robotic cells (problem RF,,|(free,A,cyclic-1)|u),



40 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

respectively:

T.(r) > max{(m+2)6+ Y min{p;,d} +2(m + 1)e,
=1
11;1%%11)1* + 39 + 4e},

To(m) > max{2(m+ 1)(0 + €) + ;mm{pi, o}, max pi +4(0+¢€)}.

Generalizations of these lower bounds for k-unit cycles, k > 1, are stated
and proved in Theorems 3.15 and 3.19.

3.3 Optimal 1-Unit Cycles

We first examine two elementary cycles on simple robotic cells with
free pickup and then examine specific conditions under which they are
optimal. We then discuss two classes of cycles in which an optimal cycle
can be found under more general conditions for cells with free pickup.
We conclude by summarizing an approach to find an optimal cycle in
no-wait cells.

3.3.1 Special Cases

In the forward cycle my = (Ag, A1, Ag, ..., Apm—1, Am), the robot un-
loads a part from I, carries it to M7, loads M, waits for M7 to process
the part, unloads M7, and then carries the part to My. The robot con-
tinues in this fashion, waiting at each machine for its entire processing
of the part. Only one machine is processing a part at any given time. A
starting and ending state for this cycle is the state in which all machines
are unoccupied and the robot is at the input buffer I. The processing
times for my in constant and regular additive travel-time robotic cells,
respectively, are

To(ry) = 2(m+ 1)e+§:pi + (m + 2)0,
i=1
To(my) = 2(m+ 1)e—|—ipi +2(m + 1)d.

=1
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For constant and additive travel-time simple robotic cells, Theorems 3.3—
3.6 provide an optimal 1-unit cycle under specific conditions. In terms
of the classification provided in Chapter 2, these results are for problems
RF,,|(free,C,cyclic-1)|n and RE,,|(free,A,cyclic-1)|pu.

THEOREM 3.3 For both constant and regular additive travel-time robotic
cells, if p; < 6,Vi, then my achieves the optimal 1-unit cycle time.

Proof. The result follows immediately from Theorem 3.2. [

The reverse cycle for a simple robotic cell is 7p = (Ao, Am, Am—1,
..., A2, Ay). To perform 7p, the robot unloads a part from the input
buffer (My), carries it to Mj, and loads Mj. It then travels to M,,,
unloads M,,, and carries that part to the output buffer (M,,+1). It
repeats the following sequence for i =m —1,m — 2,...,1: travel to M;,
unload M;, carry the part to M;;1, and load M;;1. After loading Mo
(which completes activity A;), the robot completes the cycle by traveling
to the input buffer (Mj). At each machine, before unloading a part from
it, the robot may have to wait for that machine to complete processing.

The cycle times for mp in constant [47] and regular additive [40] travel-
time robotic cells, respectively, are

Te(mp) = max{2(m+1)(d +e), ax p; + 30 + 4e},

To(mp) = max{4md + 2(m + 1)e, max p;+ 4(0 + ¢€)}.

Note that in each expression, the first argument represents the cycle
time if the robot never waits for a machine to complete its processing.

For each of the following two theorems, if its premises are met, then mp
achieves the lower bound stated in Theorem 3.2. Theorem 3.4 combines
results from Dawande et al. [47] and Crama and van de Klundert [40].

THEOREM 3.4 For the optimal 1-unit cycle problem in constant travel-
time robotic cells (problem REy,|(free,C,cyclic-1)|i), if maxi<i<mpi +
30 +4e > 2(m + 1)(0 + €), then mp is an optimal 1-unit cycle. In
a regular additive travel-time robotic cell (problem RFy,|(free,A,cyclic-
D), if maxi<i<mpi + 4(0 + €) > 4méd + 2(m + 1)e, then mp is an
optimal 1-unit cycle.
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Theorem 3.4 can be generalized to the Euclidean travel-time case (prob-
lem RF,,|(free,E,cyclic-1)|u). If

max {p; + 0j i1 + Oig1,i—1 + 0i—1,; + 4€} >

1<i<m
m m+1
2(m + 1)6 + Z 5i,i+1 + Z 5@',1'72 + 51,7)7,7 (3'2)
=0 =2

then 7p is optimal. If condition (3.2) holds, then the cycle time T, (7p) =
maxi<j<m{pi + 6ii+1 + 0i+1,i—1 + di—1,; + 4€}, which, by following the
logic of Section 3.2.3 and using the triangle inequality, is a lower bound
on the cycle time.

The following theorem is from Dawande et al. [47].

THEOREM 3.5 For constant travel-time robotic cells (problem RF,,|(free,
C,cyclic-1)|u), if p; > 9, Vi, then wp achieves the optimal 1-unit cycle
time.

This theorem does not hold for additive travel-time robotic cells. Con-
sider the following example: my = (Ao, A1, Am, Am—1,- .., Az) with p; >
6,Vi. The cycle time is

To(mo) = max{(4m—2)(5+2(m+1)e+p1, p2 +p1 +6(6 +¢€),

3r£1iag)§n{pi +4(5 + e)}} : (3.3)
If

p2+p1+6(0+e) < (4m—2)0+2(m+ 1)e+p;, and

max {p; +4(0+¢€)} < (dm—2)5+2(m+ 1)e+ pi,

3<i<m
then To(m) = (4m —2)6 +2(m + 1)e 4+ p1. If p1 < 29, then Ty(wp) =
4md + 2(m + 1)e and T,(my) < T,(mp). However, we do have the fol-
lowing results, from Dawande et al. [46], for regular additive travel-time
cells. Our proof of the following theorem requires specific properties of
pyramidal cycles; a proof is provided in Section 3.3.3.

THEOREM 3.6 For problem RF,,|(free,A,cyclic-1)|u, if

pi+pis1 > (Am —6)+2(m—2), i=1,...,m—1,
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then wp is optimal.

COROLLARY 3.1 For problem RF,,|(free,A,cyclic-1)|u, if
pi>(2m—3)0+(m—2), i=1,...,m,

then wp s optimal.

In the next subsection, we provide a description of a polynomial-time
algorithm to obtain an optimal 1-unit cycle in constant travel-time cells
(Dawande et al. [47]). Section 3.3.3 lists the main results of a polynomial-
time algorithm for additive cells due to Crama and van de Klundert [40].

3.3.2 General Cases: Constant Travel-Time Cells

We refer to the problem of finding an optimal 1-unit cycle in a constant
travel-time cell as Problem Q. The results developed in Section 3.3.1 help
us to identify an optimal 1-unit cycle in the following three cases:

Case 1. p; < 4, Vi. The simple l-unit cycle 7y = (Ao, 41, ..., Ap) is
optimal from Corollary 3.3.

Case 2. p; >, Vi. The reverse 1-unit cycle m7p = (Ao, Am, Am—1, - -,
Ayp) is optimal from Theorem 3.5.

Case 3. 2(m + 1)(0 +€) < p; + 30 + 4e for some i € M. The reverse
l-unit cycle mp = (Ao, Am, Am—1, ..., A1) is optimal from Theorem 3.4.

We label the case in which Cases 1-3 do not apply as Case 4. In this
section, our aim is to characterize a class of 1-unit cycles which permits
the efficient identification of an optimal 1-unit cycle in Case 4. We then
develop a polynomial-time procedure FindCycle.

Basic Cycles

To establish a procedure for finding an optimal 1-unit cycle under
Case 4, we first define basic cycles. The set of basic cycles is a subset
of 1-unit cycles. Recall that V; is the set of machines with full waiting,
and Vo = M\V] is the set of machines with partial waiting. A basic
cycle corresponding to Vi is constructed as described below. A string
S;={A4;,Aj11,...,Aj} is a sequence of activities such that consecu-
tive machines M, k = 1,..., ¢, have full waiting and M; has partial
waiting. The size of string S; is £+1, where 0 < ¢ < m. Given a problem
instance and V7, strings are formed as described in the procedure below.
These strings are later concatenated in a certain way to form a basic
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cycle. For a given 1-unit cycle, we let ny denote the number of machines
with full waiting and ny = m — n; as the total number machines with
partial waiting. Thus, n; = |Vi| and ng = |Va| = m — n;.

Procedure Strings

Step 0: Input: A problem instance for an m-machine robotic cell given
by m, 0, €, p1,...,pm and Vi. Let j =0, k =0 and Sp = {Ao}.

Step 1: If j +1 € Vi, then S, = S, U A 1. Otherwise go to Step 3.
Step 2: j =j+1. If j < m, then go to Step 1. Otherwise go to Step 4.

Step 3: k=j5+1,5=j+1, and Sy = {Ax}. If j < m, then go to
Step 1.

Step 4: Terminate.

Let there be ny + 1 strings (So, Sj;, - -,5;,,) obtained from the above

procedure. The basic cycle corresponding to Vj is a concatenation of
ng + 1 strings in the order Sy, 5j, ,S; S

no’ ng—1"°"

REMARK 3.1 Given any 1-unit cycle, the corresponding set V; enables
us to define the strings. For an m-machine cell, there can be multiple 1-
unit cycles corresponding to a given set V7. For example, consider m = 4.
Then, both the cycles { Ay, A3, A1, Aa, A4} and {Ag, Ay, A3, A1, Ao} have
Vi = {2}. For all the l-unit cycles corresponding to a given set V7,
the set of strings is identical. It is the concatenation of the strings
in the particular order defined above that defines a unique basic cycle
corresponding to V. It should be noted that we have m + 1 strings each
of size one if all machines have partial waiting, whereas we have only
one string of size m + 1 if all machines have full waiting.

EXAMPLE 3.2 m = 8, V; = {1,2,4,8} and V5 = {3,5,6,7}. We have
five strings: SO = {Ao,Al,Ag}, 53 = {Ag,A4}, 55 = {A5}, 56 = {A6}
and S7 = {A7, Ag}. The basic cycle corresponding to Vj is Sp, S7, Se,
S5, S3. The basic 1-unit cycle is 7 = {Ao,Al,AQ, Ay, Ag, Ag, As,
As, Ay}

Next we define two sets X; and Y; for each i € Vi, Let Vo =
{i1,12, ... iny } with 4541 > 45, j =1,2,...,n9 — 1. We also let i = 0 and
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ing+1 = m + 1. It is illustrative to describe these sets for Example 3.2
before we provide a formal definition. In this example, Vo = {3,5,6,7}.
Note that no =4, 190 =0, =3,i2 =5,i3=6,i4, =7,and i5 = 9. X3
will be the set of machines with full waiting whose indices are strictly
less than 47 = 3 and strictly greater than igp = 0. Thus, X3 = {1,2}.
Similarly, X5 will be the set of machines with full waiting whose indices
are strictly less than io = 5 and strictly greater than i3 = 3, and so
on. Thus, X3 = {1,2}, X5 = {4}, Xs = X7 = (. Now, we turn to
defining the sets Y;,7 = 3,5,6,7, for the example. Y7 will be the set of
those machines with full waiting whose indices are strictly greater than
14 = 7 and strictly less than i5 = 9. Similarly, Y5 will be the set of
machines with full waiting whose indices are strictly greater than i3 = 6
and strictly less than iy = 7, and so on. Thus, Y7 = {8}, Ys = Y; =0
and Y3 = {4}. These sets are illustrated in Figure 3.2.

Mg M, Mg My M, My M, M,
O @ @® @® O @ O O
L L |

Y7 V3= %5 X3

O  Machines with full waiting

@® Machines with partial waiting
Figure 3.2. Sets X; and Y; for ¢ € V5 in Example 3.2.

We are now ready to define the sets X; and Y;, ¢ € Vo, in the general

case.

DEFINITION 3.6 Suppose Vo = {il,ig, ...,inQ} withij1 > 15,5 =1,2,..,
ng —1. We also let ig = 0 and ip,,41 = m+1. Then for ¢;,5 =1,2,...,no,

{ij,1<k‘<ij:k7€V1},j:1,2,...,n2,
{ij+1>k>ijIkEVl},j:1,2,...,n2.

In terms of the strings defined above, the sets X; and Y; can be expressed
as follows: X; is the set of machines with full waiting associated with
the string that immediately follows S; in the basic cycle corresponding
to V1, and Y; is the set of machines with full waiting associated with the
string S;. We also denote | X;| = r; and |Y;| = ¢;.
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THEOREM 3.7 For a basic 1-unit cycle wg, the cycle time T'(wg) can be
expressed as follows:

T(rp) = max{a, B;|i € Va}, (3.4)
where
a = 2m+1)5+2m+1e—nd+ Y p; (3.5)
i€V
Bi = pi+30+4de+1i(6+ 2€) + ij
JjEX;
+ (6 +20)+ > pj. (3.6)
JEY;

Proof. The cycle time T'(7p) is the sum of (i) the total robot move
time t,,, (ii) the total load/unload time t;, and (iii) the total robot
wait time at machines in a cycle. The total robot wait time is the sum
of two components: the total partial waiting time W, and the total
full waiting time Wy. Thus, T(mg) = t,, + t; + Wy + W,. Note that
tm +t = 2(m +1)6 +2(m + 1)e —n16 and Wy = >,y pi. Thus, we
have o = t,,, +t; + Wy,

T(rg) = a+ W, (3.7)

and W, = > iy, wi, where w; = max{0,p; — #;} and t; denotes the
elapsed time between the moment the robot completes loading a part on
M; and the moment the robot returns to the machine M; for unloading
the part. Note that t; = T'(rp) — w; — A;, where A; is the elapsed time
between the moment the robot begins to unload a part from machine
M; and the moment the robot completes loading a part on M; during
a cycle. A; is the sum of the following times: the time (§ + 2¢ + r;(6 +
2¢) + Zje x, Pj) elapsed between unloading machine M; and loading
the machine in V5 immediately following M;, the time (§) to travel to
the machine in V5 immediately preceding M;, the waiting time at this
machine to finish processing, and the time (6+2¢+q;(6+2€)+>_cy. pj)
elapsed between unloading this machine and loading M;. More precisely,
the expression for A; can be written as follows:

A =30+4e+7(6+2)+ > pj+q(0+2€)+ > pj+ wg,.
JEX; JeY;
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Thus,
t; = Wp+a—wi—[35+4e+ri(5+2e)+ Z Dj +qi(5+26)+2pj] — W,
JjeXi JEY;

where wy, is the partial waiting encountered by the robot at machine
My, where k; is defined as follows. If {j € Vo : j < i} # 0, then
ki = max{j € V5 : j < i}. Otherwise, k; = 0 and wyp = 0. Note that
k; = 0 iff 7 is the first index in V5. Thus, we have

w; = max O,piprfa+[35+4e+ri(5+26)ij

JEX;
+qi(6+2¢) + > pj] + wi + wy,
JjeyY;
= max{0, 5 —a— W, +w; +wy,}. (3.8)
It follows from (3.8) that
szﬂi—a—i—wkizﬁi—a, Vie V. (3.9)

Case 1. W), = 0: Then, w; = 0, ¥V i € V5. It follows from (3.8) that
Vi€ Vs, B —a <0 and hence W), = 0 = max{0, §; — ;i € V}.
Case 2. W), > 0: Let i* = min{i € V5 : w; > 0}. Note that wy,. = 0.
Also from (3.8), it follows that W, = B+ — «. Using (3.9), we have
W, = max{3; — a,i € Vo} = max{0, 5; — a,i € Va}.

Thus, we have

W, = max{0,8; —a,i € Va}. (3.10)

The result follows from (3.7) and (3.10). [

REMARK 3.2 There does not exist a 1-unit cycle with |Va| = 1. Other-
wise, for exactly one machine, say M,, the robot loads M, and leaves it
to travel to some other machine. Since the robot must remain with the
part at all other machines, it could never return to pick up the part at
M,.. Thus, if Vo # (), then |V3| > 2.

In general, there may be many cycles corresponding to a given Vj.
However, there is a unique basic cycle among them. We show below
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that this basic cycle dominates the other cycles. To show this result,
we need to define another Problem R of finding an optimal 1-unit cycle
under the following cell data:

m Processing time p; on machine M;, i = 1,...,m.

= A constant travel time 0 from machine M; to M;, i # j, when the
robot travels empty.

m A constant travel time J; from machine M;_1 to M;, when the robot
travels with a part and §; > 9,1 <i<m+ 1.

m A constant loading and unloading time e.

LEMMA 3.2 For Problem R, the reverse cycle dominates all other cycles
for which Vi = 0.

Proof. For Problem R, the expression for the reverse 1-unit cycle mp =
(Ao,Am, Am—l, N Al) is

m~+1
TR(rp) = max { Z O+ (m+1)5 +2(m + 1)e,
k=1

it1
pi+5+25k+46 ’iGVQ}.
k=i
Note that for any permutation 7 corresponding to Vi = (), we have
TE(m) > pi+6+ 2?;1@ 0 + 4e. After unloading machine M;, the robot
loads M;,; and later returns to load machine M;. This requires at
least & + Z;:; 0 + 4e time. Also, the robot has to process the part
on machine M; exactly once. This requires time p;. Thus, T%(7) >
maxi<ij<m{pi +0 + Z?;lz Ok + 4e}. Next, for # with V4 = ), we have
TR(r) > S0 6y + (m + 1) 4 2(m + 1)e. Thus TF(x) > TH(rp) and
the result follows. |

THEOREM 3.8 For Problem Q, basic cycles dominate all other 1-umnit
cycles.

Proof. Consider any nonbasic 1-unit cycle 7 corresponding to Vi. Let
7 be the unique basic 1-unit cycle corresponding to Vi. Let Vo =
{i1,d9, ... in,}. We show that T(m) < T(x'). Construct the follow-

’

ing instance I of Problem R: We have ns machines M{,Mé, o M

ng?
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with the processing time at machine M,; =i, k=1,2,...,n0; 0 =
S+l ipj+ (i — ik — 1)(0+26), k= 1,2,...,ny + L. Recall
that i9g = 0. Thus, all 1-unit cycles of instance I are equivalent to per-
mutations of the strings of Problem Q given the set Vo. We note the
following equivalence between Problem Q and Problem R:

1. The cycle time T'(m) of the basic cycle 7 for Problem Q is the same
as that of the reverse cycle in instance I for Problem R. This follows
from equations (3.4)—(3.6) and the formula for T¥(7p) in the proof
of Lemma 3.2.

2. The cycle time T(n') of the nonbasic cycle 7 for Problem Q is the
same as that of a cycle in instance I corresponding to V; = () and V, =
{1,2,...,n2}. This follows since the time required by 7 to complete
the processing on machines in V; is accounted for in instance I using
the travel times dj.

The result now follows immediately from Lemma 3.2. [

Theorem 3.8 allows us to focus only on basic 1-unit cycles to look
for an optimal 1-unit cycle. In the remainder of this section, we further
characterize an optimal 1-unit (basic) cycle for Problem Q. The charac-
terization leads to a subclass of the class of basic cycles containing an
optimal 1-unit cycle.

To obtain these characterization results, we define the set Ds of ma-
chines on which the processing time is at least the travel time ¢, i.e.,

Ds={ie M :p;, > d}.

THEOREM 3.9 If |Ds| =1 and p;+p; < 20, Vi, j, then the simple 1-unit
cycle my = (Ao, A1, ..., Ap) is an optimal 1-unit cycle.

Proof. The cycle time of the simple 1-unit cycle 7y is T'(7y) = (m
+2)0+ > pi +2(m+ 1)e. Consider an optimal 1-unit cycle 7’ # 7.
Let V1 and V5 be the sets of machines with full and partial waiting,
respectively, in . We may assume that 7 is a basic cycle due to
Theorem 3.8. Since |Ds| = 1, let i* be the unique machine with p;+ > 4.
Since 7 # 7y, we have Vy # 0. Note that |V5| > 2. From Theorem 3.7,
T(r') > [2(m~+1) —n1)6 + Y ey, pi+2(m+1)e = (m+2)5+ 30y, (0 —
pi) + Y ity pi +2(m + 1)e. Now if i* € Vi, then p; < 4, Vi € Vs, and
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hence } .y, (6 — pi) > 0. Consequently, T(r') > T(ny). If i* € V3 and
since |Va| > 2, there exists a machine M; # M;» with j € V5. By the
hypothesis, p;« +p; < 26. Then T(7') = (m + 2)d + (26 — pi — p;) +
> icva\(ir,j3 (0 — pi) + >z i +2(m+1)e > T'(my). u

THEOREM 3.10 If |Ds| > 2, then there exists an optimal basic 1-unit
cycle with Va # ().

Proof. Suppose not. Since the simple 1-unit cycle 77 is the only cycle
with V5 = (), let it be the unique optimum 1-unit cycle. Since |Dgs| > 2,
there exist i,j € Ds. Consider the basic 1-unit cycle m corresponding
to Vo = {i,j} and Vi = M\Va. From Theorem 3.7, it follows that
T'(m) = max{a*, 3}, B; } with o < T(7p) and 8, < T(7p) for k =i, j.
Thus T'(7) < T'(7y), which is a contradiction. [

THEOREM 3.11 Consider the following three cases:

1. |Ds| = 0: The simple 1-unit cycle 1y = (Ao, A1, ..., Am) is an optimal
1-unit cycle.

2. |Ds| > 2: There exists an optimal basic cycle in which Ds C Vs.

3. |Ds| =1: Let pg > 6 and pr, = max{p; : j € M\{q}}. If pg+pr < 20,
then the simple 1-unit cycle 7y = (Ao, A1, ..., Ap) is an optimal 1-
unit cycle. If pg + pi, > 20, then there exists an optimal basic 1-unit
cycle in which q € V5.

Proof.
Case 1. Follows from Corollary 3.3.

Case 2. Suppose for machine M;, we have p; > § and j € V; in an
optimal 1-unit cycle 7. Without loss of generality, we can assume V5 # ()
due to Theorem 3.10. From Theorem 3.7, T'(7) = max{a, 3;,i € Va}.
Let 5} ={k:k<jkeVa} and 5]2- ={k: k> j,k € Va}. Note that
at least one of f} or 5]2 is non-empty. If §]1~ # (), let j;1 = max 5]1, and
if 5]2- # (), let jo = min 5]2.. We change the waiting at M; from full to
partial. Define V, = Vo U {j} and V] = Vi\{j}. Let © be the basic 1-
unit cycle corresponding to (V;,Vy). Then T(r') = max{a’, 3;,i € Vy}.
Also, ' = a+d—p; <a, ﬁ;-l < Bj, (if j1 exists), H;Q < Bj, (if jo exists),
ﬂ; < pj, for 1 =1,2 and ﬂl/ = (3 for I € Vo\{j1,j2}. Thus T(r') < T(m).
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Case 3. If py +pi, < 26, then the optimality of 7y follows from Theorem
3.9. If p,+pi. > 20, observe that there exists an optimal solution 7 # 7.
For otherwise, if 7y is the unique optimal solution, then the basic cycle
corresponding to Vo = {q, k} and Vi = M\ V; will satisty T'(7) < T'(my),
which is a contradiction to the uniqueness of my. Now consider an
optimal solution @ # 7y, where 7 is the basic cycle corresponding to
(V{, V) with ¢ € V;. Note that |V,| > 2. Define V5 = V, U {¢} and
Vi* = M\ V5. Let m* be the basic 1-unit cycle corresponding to (Vi*, V5).
The proof of T(7*) < T(x') is similar to that in Case 2. [

Theorem 3.11 offers a fundamental insight which is easy to state: If
Ds # (), we can assume Ds C V5. We use this property to construct an
initial partition of the set of machines into those where the robot has
full waiting and where it has partial waiting. Recall from Corollary 3.3
that if Ds = (), the simple 1-unit cycle 7y = (Ag, A1, ..., Ajy) is optimal.
The following definition, therefore, assumes that |Dgs| > 1.

DEFINITION 3.7 An Initial Partition F = (V1,Va) is a partition of the
set of machines M into two subsets V1 and V5 corresponding to machines
with full waiting and partial waiting. These are defined as follows:

1. If |Ds| > 2, then define V5 = D; and V; = M\ Ds.

2. If |Ds| = 1 and pg + pr > 20, where p; > 6, pr, = max{p; : j €
M\{q}}, then define V5 = {¢} and V; = M\ V5. Note that if p,+pj, <
20, then 7y is optimal (Theorem 3.9).

3.3.2.1 Optimization over Basic Cycles

In this section, we develop a polynomial-time algorithm to find an
optimum solution to problem instances under Case 4 (as defined at the
start of Section 3.3.2). For ease of reference, we refer to this algorithm
as FindCycle. First, we describe a polynomial-time solution to the de-
cision question corresponding to the optimization problem. The use of
this polynomial-time solution in a binary search procedure gives the al-
gorithm FindCycle.

Since only basic cycles are considered, we use the cycle time expression
of Theorem 3.7. Under Case 4, the cycle time T'(7*) of an optimal 1-
unit cycle 7* satisfies 2(m + 1)0 — 110 + 3 J;cpp p, Pi + 2(m + 1)e <
T(m*) <2(m+1)0+2(m+1)e. Note that the lower bound follows from
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Theorem 3.2, while the upper bound is the cycle time of the reverse cycle
mp under Case 4. Consider the following question:
Decision Problem (DQ): Given B with 2(m+1)0—n16+3_;cpn p, Pit
2(m+1)e < B <2(m+1)J +2(m + 1)¢, does there exist a 1-unit cycle
7 with T'(7) < B?

In the remainder of this section, we will describe a polynomial-time
algorithm to answer DQ. Given an initial partition F' = (V1,V5), we
define the following structure:

DEFINITION 3.8 A chain of length n is a maximal sequence of consec-
utive machine indices < 4,i + 1,...,%4 + n > satisfying the following
conditions:

1. Either (i=1) or (i € Vo and i — 1 € V3).
2. Either (i+n=m)or (i+ne€Voandi+n+1¢€Vs).

3. No two consecutive indices belong to V5. At least one index belongs
to Vl.

ExAMPLE 3.3 m = 15. Consider an initial partition F' = (Vi,V3),
where Vi = {3,7,9,10,11,13,15} and Vs = {1,2,4,5,6,8,12,14}. Then
we have the following two chains (see Figure 3.3):

1. Ci1= <2,3,4>.
2. Oy = <6,7,8,9,10,11,12,13,14,15 >.

M
15 Mg Mg Myy My Myg My Mg My Mg Mg My My My M,

[o@o@ooo@o@j@[@o(ﬂ@

chain 2 chain 1

@ Machines with Full Waiting

@ Machines with Partial Waiting

Figure 3.3. Chains Corresponding to an Initial Partition F' = (Vi, Va).

Given an initial partition F' = (V1, V3), the chains are mutually exclusive
and every element of V] is contained in exactly one chain. Let C,., r =



Cyclic Production 53

1,...,c, be the chains for F' and let C = {C; : 7 =1, ..., c}. We solve one
shortest path problem for each C, € C to answer the decision problem
DQ for a given value of B.

A Shortest Path Problem on a Chain:

First we briefly state the intuition behind the solution described be-
low. The set of machines with partial waiting uniquely determines the
corresponding basic cycle. From Theorem 3.11, we know that there ex-
ists an optimal solution in which the machines in the set Ds have partial
waiting. Thus, to completely determine the set of machines with partial
waiting, we need to determine which machines, if any, from M\ D; have
partial waiting. In this context, we use the shortest path problem to
optimally determine those machines.

Observe that each chain can be considered independently. As men-
tioned above, each element of Vj is contained in exactly one chain. Let
k € V1 be contained in chain C,.. Changing the status of machine M}
from full waiting to partial waiting affects only the 3; terms in (3.4) cor-
responding to the two machine indices in V5 closest to k on either side
in chain C;. By the definition of a chain, such an index belongs to the
same chain C,.. More precisely, the terms corresponding to the following
machine indices (if they exist) will be affected in the cycle time expres-
sion: (i) max{j:j <k,j € VonC,} and (ii) min{j : j > k,j € VanC,}.
A new (3 term, corresponding to machine My, will now be part of the
cycle time expression. However, as will be shown shortly, this additional
term will not dominate the existing terms in the cycle time expression
(3.4) and hence need not be explicitly stated. We illustrate this using
Example 3.3 above. Consider k£ = 10 € V; contained in chain Cs. If the
status of machine M is changed from full waiting to partial waiting, the
only existing 3; terms in (3.4) that change are s and (312 corresponding
to machines Mg and M;s, respectively.

Before we proceed with the description of the shortest path problem,
we note the connection between strings (defined at the start of Sec-
tion 3.3.2) and chains (defined in Section 3.3.2.1). Note that a string is
a sequence of consecutive activities, while a chain is a sequence of consec-
utive machine indices. Consider a string S; = {A;, Aji1,..., Ajy} with
[ > 1. Then, the machines M;1,..., M;,;, belong to the same chain.
Strings that have exactly one activity do not belong to any chain and
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are responsible for the chain decomposition of the machine indices. It is
also instructive to examine the changes in the strings when the status of
a machine changes from full waiting to partial waiting. Consider a ma-
chine M;,i € Vi. Then, the activity subsequence {A;_1, A;} appears in a
unique string, say Sx. When the status of M; changes from full waiting
to partial waiting, the string S, decomposes into two substrings: the
substring of S; up to and including activity A;_1, and the substring of
Si containing A; and subsequent activities.

As mentioned before, the purpose of the shortest path problem is to
determine the machines, if any, from M\ Ds which have partial waiting.
Recall from Theorem 3.7 that the cycle time expression of a basic 1-
unit cycle 7 can be written as T'(w) = max{a, G|l € V2}. For each
chain C, € C, where C is the set of chains obtained from the initial
partition F' = (V4, V3) as described above, we construct a directed graph
G" whose node set corresponds to the set of machines in (M\Dgs) N C,
plus two distinguished nodes s and t. Given a target cycle time B by
the decision problem DQ, the graphs are constructed in such a way that
there exists a basic cycle with cycle time at most B if and only if there
exists an s-t path in each graph G, r = 1,2, ..., ¢, such that the sum of
the lengths of these paths is at most B — a. Moreover, the nodes on the
s-t paths specify the machines from M\Ds that have partial waiting in
the resulting basic cycle.

Consider a chain C, € C. Let Vl and Vg be the sets of machine indices

in C, with full and partial waiting, respectively. We construct a weighted
directed graph G"(V", E") as follows:

The node set consists of the node indices in V; plus two dummy nodes
s and t. That is, V" = V; U {s,t}. Let E7 = {(s,4) : j € i}, E} =
{(I,m) : I,m € Vi}, and Ej = {(k,t) : k € Vi}. The edge set E"
is either the single edge (s,t) or equals E" = ET U E} U E%, where
Eg C E;, k=1,2,3. Before we proceed with the precise description of
E", we explain the main ideas behind its construction.

Changing the status of a machine M;,i € M\Ds, from full waiting
to partial waiting affects the existing terms in the cycle time expression
(3.4) as follows: (i) the first term « increases by § — p; and (ii) the
terms (;,1 € Va, either decrease or stay unchanged. A new term g;
corresponding to machine M; is now part of the cycle time expression.
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However, this additional term will not dominate the existing terms in the
cycle time expression: Using (3.6) and the properties (i) 7 +¢; < m —2
and (ii) p; < 4,5 € X; UY;, it is easy to verify that 8; <3 ;cppp, 2j +
(m + 1)6 + 2me and is therefore strictly less than the lower bound on
the cycle time established in Theorem 3.2. Thus, this additional term,
0i, need not be explicitly stated in the cycle time expression.

The edge set E” consists of three types of edges: (a) source edges
(s,i),i € Vi; (b) transition edges (i,4),4,j € Vi,i < j; and (c) sink
edges (i,t),i € Vi. Bach edge represents changing the status of a ma-
chine M;, i € V4, from full waiting to partial waiting. Since each element
of V; is contained in exactly one chain, to answer the decision prob-
lem DQ we need to examine exactly one chain to determine whether an
element in V; should be moved to V.

The length of an s-t path (if one exists) in G" measures the total
increase in the first term o when the status of all the machines corre-
sponding to the nodes on the path changes from full waiting to partial
waiting. Given a target cycle time B, if there exists an s-t path in each
graph G",r = 1,..., ¢, such that the sum of the lengths of these paths
is at most B — «, then the status of the machines corresponding to the
nodes on the paths can be changed from full waiting to partial waiting
to obtain a basic 1-unit cycle with cycle time at most B.

We now describe the construction of Eg, k =1,2,3. To describe the
construction steps, we define, for sets X,,Y; C Vi and a machine index
i € Vs, the quantity ﬁ;(Xa, Yy) = pi+30+4e+[Xa|(0+2€) + D ey, Pk+
Yp|(6+2€)+> 4ey;, Pr- An explanation is provided immediately following
each construction step.

1. Construction of dummy edge: Add edge (s,t) to E" with edge
length dgy = 0 if |[DsNCy| > 2 and B < B for all k € Vs and stop
construction. Otherwise, do the following construction steps.

Explanation: Choosing edge (s,t) in G" corresponds to making no
changes in the waiting status for machines My, k € C,.. The only
terms in the cycle time expression (3.4) corresponding to machines
in C, are By, k € Va. Since 8, < B, V k € Vs, there is no need to
change the status of any machine.
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As mentioned previously, chains can be considered independently.
Therefore, changes in the waiting status of machines belonging to
other chains will not affect the terms in (3.4) corresponding to ma-
chines in C).

Since there is no change in the status for any machine in C)., there is
no increase in the first term « of (3.4). Therefore, the length dg of
edge (s,t) is 0.

. Construction of E] (source edges): Consider j € V"\{s,t}. Let
e =min{k : k € Vo}. If j < e, then we add edge (s, ) with length
dsj = 0 —p; to E]. Otherwise, let H; = {k : k € Vo, k < it
g =max{k : k € H;}, and Yq ={k:q<k<j} Weadd edge (s,7)
with length ds; = 6 — p; to E} if, and only if, ﬁ;(Xq,Yq) < B and
Br < BV ke Hj\{q}.

Explanation: Choosing edge (s, j) corresponds to changing the sta-
tus of machine M; from full waiting to partial waiting. The con-
struction ensures that each term 3;,¢ < j,i € C,, in the cycle time
expression (3.4) has value at most B. The set H; corresponds to those
machines with partial waiting whose indices are strictly less than j.
If edge (s,7) is chosen, the value of the term in (3.4) corresponding
to machine M, where ¢ is the highest index in H;, will change. Note
that if edge (s,7) is chosen, the only terms f;,i < j,i € Cp, in (3.4)
are 3;,1 € Hj U{j}. We investigate the values of these (3; terms in
(3.4) as a consequence of choosing edge (s, 7):

(a) As explained above, a new term [3;, corresponding to machine
M;, will be part of (3.4). This term has value less than the lower
bound on the cycle time established in Theorem 3.2 and hence
can be ignored.

(b) The value of the term corresponding to machine M, will change
to ﬁ;(th Yq)~

(c) The values of terms corresponding to machines My, k € H;\{q},
will remain .

Thus, given a target value of B, the edge (s, ) is constructed iff each
term (3;,4 € H; U {j}, has value at most B. The length d; of edge
(s,7) is the amount of increase in the first term « of (3.4) if the status
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of M; changes from full waiting to partial waiting and equals 6 — p;
as explained earlier.

3. Construction of E} (transition edges): Let i,j € V"\{s,t} with
j>i. Let Hy={l:1l¢€ Va,i<l< j}. We consider three cases:

(a) H; =0: Add edge (i,7) to E} with length d;; = ¢ — p;.

(b) |H;| = 1: Let H; = {q}. Alsolet X, ={l € Vi :i <1< q}
and }A/q ={leVi:q<1<j} Include edge (i,j) with length
dij = 6 —pj in B} iff §,(X,,Y,) < B.

(c) |Hj| > 2: Let ¢ = max{k : k € H;} and v = min{k : k € H;}.
Let YV, = {k:q<k<jland X, = {k:i < k < v}. Add
edge (i,7) with length d;; = & — p; to E5 iff 8,(X,,Y,) < B,
Bu(X0,Ye) < B, and By < BY k € H;\{g,v}.

Explanation: Choosing edge (7, j) corresponds to changing the sta-
tus of machine M; from full waiting to partial waiting. The construc-
tion step ensures that an edge (i,7),4,7 € V"\{s,t} with j > i, is
added to the graph G" iff each term fFi,7 < k < j, in (3.4) has value
at most B. If M, changes status from full waiting to partial wait-
ing, then the terms corresponding to machines M, and M, change to
ﬂ;(Xq,Yq) and ﬁ;(f(v, Y, ), respectively. The terms corresponding to
machines My, k € H;\{q,v}, will remain (. The explanation of the
values of 3; and d;; is similar to that provided in the previous step.

4. Construction of E} (sink edges): Let j € V"\{s,t} be such that
either (s,j) € E or (i,j) € Ej for some i € V"\{s,t}. Let f =
max{k : k € Va}. If j > f, then we add edge (j, t) with length djy =0
to Ej. Otherwise, let H; = {l: 1 € Va,1 > j}, ¢ = min{k : k € H,},
and X, = {k:j < k < ¢}. We add edge (j,t) with length d;; = 0 to
By iff B,(X,,Yy) < B and B < BY k € H;\{q}-

Explanation: The existence of edge (j,t) ensures that each term
Bi,i > j,i € Cy, in the cycle time expression (3.4) has value at most
B. Note that edge (j,t) does not correspond to changing the status
of any machine. If j > f, then (3.4) does not contain any term
Bi,i > j. Otherwise, the terms (3;,j € H; appear in (3.4) and edge
(j,t) is added iff all these terms have value at most B.
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Since edge (j,t) does not correspond to changing the waiting status
of any machine, its length d;; = 0.

Figure 3.4. Graph G? Corresponding to Chain Cs in Example 3.3.

EXAMPLE 3.3, CONTINUED: We illustrate the construction above on the
graph G? corresponding to chain Cy. We assume the following data:

" e=1,6=10.

= The vector of processing times (276, 275, 4, 280, 286, 299, 3, 255, 5, 1, 6,
266, 2,245, 7), where the ith entry corresponds to the processing time
p; on machine M;.

The values of o, 3;, © € V3, as defined in Theorem 3.7, are as follows: a =
310, 51 = 310, By = 325,84 = 330, 85 = 320, 5 = 348, B3 = 352, B12 =
362, and 314 = 312. Thus, the cycle time is T'(7) = max{a, G;|i € Va} =
362.

Consider the following instance of DQ: Does there exist a 1-unit cycle
7w with T'(m) < 334 = B?

Since 3; < 334,Vi € C; N Va, the graph G' will contain only the
dummy edge (s,t). Therefore, we need to consider the shortest s-t path
problem only on the chain Cs. Figure 3.4 shows the corresponding graph
G?.

Consider any s-t path s — i3 —i2 — ... — ¢ — ¢ in G". If the status
of the machines corresponding to nodes i;,j = 1,...,1, is changed from
full waiting to partial waiting, the terms §; in C) corresponding to the
machines with partial waiting satisfy the following: (i) the value of the
terms Ok, k < i1,k € Cp, is at most B since the edge (s,i1) exists in G”
(construction step 2); (ii) the value of the terms (B, k € Cp,i; < k <
ij+1,J = 1,...,l—1, is at most B since the edges (ij,ij4+1),j =1,...,1—1,
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exist in G (construction step 3); and (iii) the value of the terms Fi, k >
ii, k € Cy, is at most B since the edge (i;,t) exists in G" (construction
step 4). Thus, the explanations accompanying the construction steps
show that if each graph G",r = 1, ..., ¢, has an s-t path, then changing
the status of the machines corresponding to the nodes on these paths
from full waiting to partial waiting provides us with a basic cycle = with
a cycle time expression (3.4) in which all terms, except possibly the first
term «, have value at most B. We record the precise statement below.

LEMMA 3.3 Consider an initial partition F = (Vq,Va), where Vo = Ds
and Vi = M\Va. Forr =1,...,c, let p" be an s-t path in G and N”
be the set of nodes in p". The basic cycle m corresponding to Vll =
VIM{US_ N} and Vy = M\V] satisfies B, < B, ¥ k € V,.

THEOREM 3.12 Consider an initial partition F = (V1,V3), where Va =
Ds and Vi = M\Va. Given B, there ezists a basic cycle m with T'(w) < B
iff the sum of the shortest s-t paths in graphs G",r =1, ..., ¢, is at most
B —a.

Proof. For F, let Vi and V5 be the machines with full and partial
waiting, respectively. Consider the shortest paths p” in G",r = 1,...;¢,
with respective lengths d” such that > 7, d” < B —a. Let N” be the
set of nodes in p". Consider the basic cycle ™ corresponding to Vll =
Vi\{US_;N"} and VQI = M\Vll Note that |V2/| > 2. The cycle time for 7
can be written as max{o/, max; ﬁ;}, where o' = a + >, d". Since
S¢_,d" < B —a, we have o' < B. By Lemma 3.3, 3; < B, Vi € Va.
Also, as shown earlier, the new terms ﬂ;,l € VQ,\‘/Q = US_N", are less
than the lower bound on the cycle time established in Theorem 3.2, and
hence ﬁ; <B, Vi€ VQI\‘/Q Thus, ﬁ;- <B, Vi€ V2/ Conversely, consider
the unique basic cycle 7 corresponding to (V;,V,) with T'(r) < B. We
will construct the shortest paths p" in G",r = 1,..,¢, with respective
lengths d” such that ) ._, d" < B — a. In chain C,, consider the nodes
iné&" = (VQI\VQ) N C,. By construction, there exists an s-t path p” in G"
with the nodes in ", in ascending order, as the intermediate nodes. Also,
the sum of the lengths of p” is at most B — «; otherwise, by including
the nodes in U, C, in V4, we would obtain a basic cycle corresponding to
(V, V) with T(z) > B, which is a contradiction. ]
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EXAMPLE 3.3, CONTINUED: The shortest s-t path in G2 is s — 7 —
11 — ¢t and has length 11 < B — a = 14. Thus, DQ has a positive
answer. The new basic 1-unit cycle 7 corresponds to V| = Vi\{7,11} =
{3,9,10,13,15} and V, = M\V, = {1,2,4,5,6,7,8,11,12,14}. We get
o = a+11 = 321,3 = 310,08, = 325,38, = 330,05 = 320,0; =
333,03, = 37,3 = 319,06, = 70,3, = 314, and (3, = 312. Observe
that o', 8; < B = 334, Vi € V. The cycle time T'(7) = 333. Continuing
the binary search, it turns out that the 1-unit cycle 7, with T'(7) = 333,
obtained above is in fact the optimal 1-unit cycle (i.e., 7* = 7). Thus,
the optimal 1-unit cycle is

= (AOa A14a A157 A127 A137 All, A87 A97 Al(]v A7a A6a AS, A47 A27 A3a Al)

This completes the solution of the decision problem DQ. We now describe
algorithm FindCycle that uses the solution of DQ within a standard
binary search procedure.

Algorithm FindCycle

Input: p;,i =1,....,m;d;¢; Ds = {i € M : p; > ¢}; an Initial Partition
F = (V1,Va), where Vo = Ds, Vi = M\ Dy; the chains C,,r =1, ..., c,
for F.

Step 1: Initialization: Set UB = 2(m + 1)6 +2(m + 1)e; LB = 2(m +
1)0—n16+) ey, Pit2(m+1)e B = L%ﬁ C={C,:r=1,..,c};
™ =np.

Step 2: Construct and solve the shortest path problem for each C, € C
to answer the decision question DQ for the value of B.

Step 3: If the answer to DQ is “yes”, then update 7* to be the basic
cycle T corresponding to (Vll, Vzl) (as defined in the proof of Theo-
rem 3.12) and set UB = B. Otherwise, let LB = B.

Step 4: If UB — LB > 1, then set B = L%ﬂj, and go to Step 2.
Otherwise, terminate.

Note that in Step 1, UB is initialized to 2(m+ 1)d +2(m + 1)e, which
is the cycle time for the reverse cycle mp under Case 4. Therefore, in
Step 3 the answer to DQ is “yes” at least once. On termination, the
basic cycle 7* is an optimum solution.
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To compute the complexity of algorithm FindCycle, let u, = |V"|, r =
1,...,c. The shortest path problem on G"(V", E") can be solved in time
O(u?) via Dijkstra’s algorithm [4]. Since Y ¢(_;u, < m, DQ can be
solved in time O(m?). Since the cycle time of an optimal 1-unit cycle 7*
satisfies 2(m+1)0 —n10+3_,cpp p, Pit2(m+1)e <T(7%) < 2(m+1)6+
2(m+1)e, algorithm FindCycle performs a binary search over an interval
of length at most md. Since all data are integral, the optimum cycle
time is an integer and hence binary search requires time O(log(md)).
The running time of FindCycle is thus O(m?log(md)). Note that we
start with the same initial partition F' = (V1,V3), Vo = Ds, Vi = M\ V3,
when solving each instance of problem D(Q during the binary search.

REMARK 3.3 Consider a robotic cell in which the loaded travel time
(61) and the empty travel time (d2) are constant between any pair of
machines with 47 > do. It is easy to verify that the entire analysis
can be extended to obtain a polynomial-time algorithm for obtaining an
optimal 1-unit cycle in such robotic cells.

3.3.3 General Cases: Additive and Euclidean
Travel-Time Cells

To solve the optimal 1-unit cycle problem in additive travel-time cells
(problem RF,,|(free,A,cyclic-1)|p), Crama and van de Klundert [40] em-
ploy a concept that has been used to analyze the traveling salesman
problem: the set of 1-unit pyramidal cycles [103].

DEFINITION 3.9 The 1-unit cycle 7 = (Ao, Aiy, Aiy, - - -, Aiy,) 1S pyrami-
dal if there exists a k € M such that 1 < i1 < iy < --- < i, = m, and
m > dgy1 > Ggyo > -0 > iy > 10 Insuch a cycle, U = {iy, i, ... ik}
is the set of uphill activities and D = {ig41,ik42,--.,%m} is the set of
downhill activities.

The permutations 7y = (Ao, A1, ...., Am) and 7p = (Ao, Am, Am—1, -,
A1) are pyramidal, as is the permutation (A, Aa, As, A7, Ag, Ay, A3, A7)
in a seven-machine cell. In an m-machine cell, there are 2™~ pyramidal
cycles. For the proofs of Theorems 3.13 and 3.14, we refer the reader to
Crama and van de Klundert [40].

THEOREM 3.13 The set of pyramidal 1-unit permutations is dominating
among the class of 1-unit cycles.
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We can now prove Theorem 3.6 from Section 3.3.1.
Proof of Theorem 3.6. T,(7p) = max{4md+2(m+1)e, max p;+4(5+
e)}. If Ty(rp) = maxp; + 4(0 + €), then it is optimal by Theorem 3.4.
Assume T,(7p) = 4mé+2(m+1)e. The set of pyramidal cycles contains
an optimal cycle [40]. Note that activity A,, is always considered to
be an uphill activity, so m7p is the pyramidal cycle that corresponds to
U= {m}.

Consider a general pyramidal cycle m, # mp, and let 4, 1 <7 <m —1,
be the smallest index of an uphill activity for cycle m,. This implies that
the form of cycle m, is either

AOAiAi+1 e Am e Ai_lAi_g . Al or
AOAZ' .. .Am c. Ai+1Ai_1Ai_2 R Al.

In either case, we can easily calculate lower bounds on the durations of
the following nonoverlapping segments of the cycle:

1. From the start of activity A; until the start of activity A;11: & + 2¢
+ Pit1
2. From the start of activity A;41 until the start of activity A;_1: 40+2¢

3. From the start of activity A;_1 until the start of activity A;: d+2e+p;

Thus, we have the following lower bound for the cycle time:
T(mp) > pi + pit1 + 66 + 6 > 4md + 2(m + 1)e = T'(7p)
The result now follows immediately. ]

THEOREM 3.14 For rational values of p;,i = 1,...,m;0;,1 = 0,...,m; €,
problem RF,,|(free,A,cyclic-1)|u can be solved via a dynamic program-
ming algorithm in time O(m3).

For Euclidean travel-time cells, Brauner et al. [24] show that the deci-
sion problem corresponding to the optimum 1-unit cycle problem (i.e.,
problem RFE,,|(free,E,cyclic-1)|u) is NP-complete.

For no-wait cells, Levner et al. [111] develop a polynomial-time algo-
rithm for finding the minimum cycle time for Euclidean travel-time cells
(problem RE,,|(no-wait,E,cyclic-1)|p). The algorithm, described later
in Chapter 9, uses the processing times of the machines and the travel
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times of the robot to derive infeasible intervals for the cycle time. The
optimal cycle time is the smallest positive number not in these intervals.
Obviously, this algorithm can be applied to the less general cases of
additive (problem RF,|(no-wait,A,cyclic-1)|p) and constant (problem
RF,,|(no-wait,C,cyclic-1)| 1) travel times, too.

For interval robotic cells with additive travel-times (problem RF, |(in-
terval, A, cyclic-1)|p), the robot move sequencing problem is NP-hard [41].
This implies that the problem is NP-hard for interval cells with Euclid-
ean travel-times, too (problem RF,,|(interval, E,cyclic-1)|u). No results
have been published for interval cells with constant travel time.

3.4 Calculation of Makespan of a Lot

A basic assumption in our analysis so far has been that the cell op-
erates in steady state for an infinite amount of time. Since the amount
of time required to reach steady state (starting with an empty cell) is
finite (Brauner and Finke [22]), this transient phase has no contribu-
tion toward the long-term throughput of the cell. In practice, this is
a reasonable argument for the production of high-demand items. In
some situations, however, low demand or the complexities involved in
implementing repetitive production results in small production lot-sizes.
In such cases, a steady-state behavior is typically inappropriate; the
makespan of the lot is a better measure of the production time. We
now discuss three methods for calculating the makespan of a lot. One is
graphical, the other two are algebraic.

3.4.1 A Graphical Approach

Herrmann et al. [83] use a directed acyclic graph to calculate a lot’s
makespan. Each node represents either the robot’s movement or a ma-
chine’s processing of a part. A node is labeled with the time it requires.
Arcs indicate precedence constraints: (j, k) € A if action j must precede
action k. For example, there is an arc originating at the node represent-
ing activity A; (labeled d+2¢) whose destination is the node representing
processing on My (labeled py). In total, there are [ nodes for each activ-
ity, where [ is the lot size. The total time needed to process a lot equals
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Figure 3.5. Portion of Graph to Calculate Makespan of a Lot Using Cycle
(A07A27A31A1)~

the length of the network’s longest path, called the critical path. This
path is found via a dynamic programming algorithm. An example of a
portion of such a graph for cycle (Ag, A2, As, A1) is in Figure 3.5.

This formulation is very useful for sensitivity analysis. The effect of
an increase in the time of an operation (either a processing time or a
movement time) depends on the size of the increase and whether that
operation is on the critical path. If it is not on the critical path, an
increase may have no effect on the makespan. However, a large enough
increase may put the operation onto the critical path. Thus, the effect
of changing one activity is a nondecreasing piecewise linear function.

3.4.2 Algebraic Approaches

Wood [159] calculates a semiconductor lot’s total processing time by
using two parameters. The first is the incremental lot cycle time ¢, which
is defined as the average increase in the lot cycle time that results from a
lot size increase of one wafer. The fixed time T represents the lot setup
time that is independent of the lot size. If the lot size is [, then a lot’s
total processing time is CT =T + It.

The cell’s throughput is often improved by using multiple input de-
vices, which are called cassette ports in this implementation. If there are
ny, such ports and each holds a lot, then, by Little’s [113] formula, the
throughput is

N nLl
=7

This assumes that the cell’s performance is constrained by the input
supply. If not, then p = 1/t [159].
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The previous two methods find a lot’s total processing time by as-
suming that the cell is in steady state throughout its entire processing.
We now examine a more realistic model by Perkinson et al. [128] that
accounts for the times that the cell is not in steady state.

A lot’s total processing includes five stages: loading the parts to be
processed into the robotic cell (Tjy4q), transition from start into steady
state (T'4), steady state (T's), processing the final parts (Tp), and un-
loading the completed parts (Tynioaq). Thus, the expression for the total
lot makespan is 17, = Tjpaq + Ta + Ts + T + Tynioad- Here, Tipeq and
Tunioad are given constants. Ts = F'P(l —m + 1), where [ is the lot size
and F'P is the fundamental period, i.e., the steady state per unit cycle
time. The times for the transition periods are

Ta = z(p+20)+ Z 2i5,
1=z+1
m—1

Tp = z(p+46)+ > 2(i+1)5 — 34,
i=z+1

where p is the processing time for each machine, ¢ is the travel time
between any two machines (note that € = 0 in this model), and z =
min{m—1, |((p/d)+2)/2]} represents the maximum number of machines
that can be in use before the processing speed becomes a bottleneck.

3.5 Quality of 1-Unit Cycles and
Approximation Results

Having found optimal 1-unit cycles for problems RF,,|(free,A,cyclic-
1)|p and REF,,|(free,C, cyclic-1)|u, a question naturally arises: “Is an
optimal 1-unit cycle superior to every non-trivial k-unit cycle, k > 27”
Sethi et al. [142] prove this to be true for RFs|(free,A,cyclic-1)|p and
conjectured it to be so for m > 3. The attraction of this possibility
is obvious: 1-unit cycles are the easiest to understand, analyze, and
control. If they also have the highest throughput, there is no reason to
consider the more complex and more numerous multi-unit cycles.

For RF3|(free,A,cyclic-1)|p, Crama and van de Klundert [42] and
Brauner and Finke [20] each prove that the conjecture is true. The con-
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jecture also holds for RF3|(free,C,cyclic-1)|u. However, the conjecture
does not hold for RF}y|(free,A,cyclic-1)|u; Brauner and Finke [18, 22]
provide a counterexample. For RF}|(free,C,cyclic-1)|u, consider the cell
with the following data [45]: p1 = 22,pa = 1,p3 = 1,p4 = 22,0 = 4,e =
0. The best 1-unit cycle is (Ag,A4,A43,41,A2); the cycle time is 39. The
best 2-unit cycle is (A(),A4,A3,A1,Ao,A4,A2,A3,A1,AQ), whose per unit
cycle time is 38. Note that although this 2-unit cycle dominates all 1-
unit cycles and all other 2-unit cycles in this cell, we cannot assert its
optimality over all k-unit cycles, & > 1. By Theorem 3.2, the lower
bound on the optimal value is 34, so there may be a k-unit cycle, k > 3,
that has per unit cycle time less than 38.

Similar results for RF,,|(no-wait,A,cyclic-1)|p and RFy,|(interval, A,
cyclic-1)|p are summarized in Crama et al. [39].

Even though 1-unit cycles do not dominate, their simplicity still makes
them attractive in practice. We have seen that the reverse cycle 7p is
optimal under certain conditions. Crama and van de Klundert [40] show
that 7p is a 2-approximation for RF,,|(free,A,cyclic-1)|p (i.e., the cycle
time of mp is at most twice that of an optimal 1-unit cycle). Brauner
and Finke [21] show that if the optimum per unit cycle time over all
k-unit cycles is Typ, then

B 01+ Om+1
01 4 Omg1 + D im0

Ta(']TD) < <2 ) Topt < 2Topt-

For RF,,|(free, C,cyclic-1)|, we have

2(m+1)(0 +¢) 2(m+ 1)
Tc(ﬂ'D) < <(m i 2)5 T 2(m T 1)€> Topt < (m) Topt < 2T’opt-

3.5.1 Additive Travel-Time Cells

In this section, we develop a 1.5-approximation algorithm for the op-
timal per unit cycle time for additive travel-time cells. We begin with
some elementary results, discuss a dominant subclass of 1-unit cycles,
present the algorithm, and prove that it provides the stated bound. We
start by establishing a lower bound for the per unit cycle time. The
following result extends Theorem 3.2, and is based on results by Crama
and van de Klundert [40].
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THEOREM 3.15 For any k-unit (k > 1) cycle w in an additive travel-
time cell, the per unit cycle time T,(7)/k satisfies

To(m)
k

> max {2(m +1)(e+0) + me{pz-, d}, max pi +46 + 46}

i=1

Proof. We begin by addressing the first argument. FEach unit pro-
duced requires that m + 1 activities be performed. Each activity A;,i =
0,...,m, includes unloading machine M; and loading machine M1, for
a total of 2(m + 1)e per part. Each activity A; also includes a loaded
forward robot movement that requires ¢ time, for a total of (m + 1)J.
Furthermore, because the robot’s final location My is the same as its
initial location, each forward movement across the interval (M;, M;i1)
must have a later corresponding backward movement across (M;, M;;1).
This accounts for an additional (m + 1)d.

The summation term in the first argument represents the time be-
tween activities. After the robot completes activity A;,7=20,...,m—1,
by loading machine M; 1, it either waits at machine M;,; for the du-
ration of its processing (p;+1), or it moves to another machine (4§, at
minimum) to begin another activity. The minimum movement after
activity A,, is counted in the first term.

The second argument represents the minimum time between succes-
sive loadings of a given machine M;: processing (p;), activity A; (J+2¢),
move from M; ;1 to M;—1 (20), and activity A;—1 (6 + 2¢). ]

Recall that Ds = {i : p; > 0}, D§ = M\ Ds, and | Dj| is the cardinality
of Ds. For convenience, we denote the per unit cycle time of an optimal
k-unit cycle (k > 1) in an additive travel-time cell by €2,. Using this
notation, Theorem 3.15 can be restated as

Q, > max{2(m+1)e+ [2(m+ 1) + |Dsl|]0 + Z Dis
ieD§
1285711)" + 49 + 4e}. (3.11)
The following two results are based on Sethi et al. [142], Crama and van
de Klundert [40], and Dawande et al. [46].

LEMMA 3.4 If maxi<i<m pi +40 +4€ > 4md +2(m+1)e, then mp is an
optimal k-unit cycle, k > 1.
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LEMMA 3.5 Ifp;i +pit1 > (dm —6)0 +2(m —2)e,i = 1,...,m — 1, then
wp 18 an optimal k-unit cycle, k > 1.

3.5.1.1 Pyramidal Cycles

As described in Section 3.3.3, a pyramidal cycle partitions M into two
sets: the indices of uphill activities denoted by U = {0, 1,42, ...,k = m}
and the indices of downhill activities denoted by D = {igy1, 9,42y .-, im}-
7wy and wp are pyramidal, as is (Ao, Ag, A5, A7, Ag, Ag, Az, A1). Given
the dominance of pyramidal cycles (Theorem 3.13), it is only natural
that they be considered when seeking a cycle that provides an efficient
bound for the optimum per unit cycle time.

An expression for the cycle time of a pyramidal cycle 7, can be derived
as follows. Each of the m + 1 activities has one unloading and one
loading, so T! = 2(m+1)e. During the uphill portion, the robot performs
activities Ao, Ai;, Aigy ..., Am, 0 < 43 < 72 < --- < m. Hence, the
robot travels once the path from My to M,,+1 requiring time (m + 1)J,
no matter how many uphill activities there are. During the downhill
portion, the robot travels from M, to My, which requires a minimum
time of (m + 1)d. For each activity A; during the downhill portion, the
robot travels from M; to M; 1, then from M;,1 to M;, before continuing
to My. Hence, each downhill activity adds 2§ to the cycle’s movement
time. Thus, the total time for robot moves is T," = 2(m + 1 + |D|)J.

The robot will have full waiting at M; if and only if + — 1 € U and
i € U. We designate the set of indices of such machines by U’ = {i :
i—1 € U,i € U}. Partial waiting can occur at all other machines.
Therefore,

To(mp) =2(m+D)e+2(m+1+ D5+ > pit+ >, wi (3.12)
e’ eM\U’

3.5.1.2 A 1.5-Approximation Algorithm

We now show that repeating an optimal 1-unit cycle k times is a 1.5-
approximation of an optimal k-unit cycle. We do this by developing an
O(n) algorithm that finds a 1-unit cycle that can be shown to provide a
1.5-approximation. In this algorithm, the first three steps check for cases
in which an optimal cycle is known. Step 4 considers the case in which,
by inequality (3.11), mp provides a bound of 1.5. For the remaining case,
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we construct a special pyramidal cycle that has a total partial waiting
time of zero.

Algorithm ACell

Input: The data for an additive travel-time simple robotic cell: m, 4,
€ pi,i=1,...,m.

Step 1: If p; <9, Vi, then output 7y = (Ag, A1,...,Ap). Stop.

Step 2: If maxj<j<mpi + 49 + 4e > 4md + 2(m + 1)e, then output
D = (Ao, Am, Am—la e ,AQ, Al) StOp.

Step 3: If p; +pit1 > (4dm —6)d +2(m —2)e, i =1,...,m — 1, then
output mp. Stop.

Step 4: If |Ds| > %m, then output mp. Stop.

Step 5: If |Ds| < %m, then partition the indices 1,2,...,m into two
sets, U and D, as follows:
a) Place m into U.

b) If p,, > 6§ or py,—1 > 9, then place m — 1 in D. Otherwise, place
m—1inU.
c) Fori=m-2m-3,...,2,1:
If p; > 6, then place i in D.
Else if ¢ + 1 € D and placing ¢ into ¢ may cause M; 1 to have

positive partial waiting, i.e., if

piv1 > 2(m—1i)0+2(m—i—1)e+

m m—1
opi+ > 24 (3.13)

j=i42 j=i+2
jeu jeD
then place 7 in D.

Otherwise, place i in U.
Loop
Step 6: Form pyramidal cycle m, by making the activities correspond-

ing to the elements of &/ uphill, and those corresponding to the ele-
ments of D downhill. Output m,. Stop.
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Steps 1, 2, 3, and 4 compare p;,i = 1,...,m, or p; + pir1,t =
1,...,m—1, to a constant, so each requires time O(m). Step 5 compares
p; to a constant and p;41 to a sum, so it requires time O(m). Step 6 or-
ders the m activities according to the algorithm for forming pyramidal
cycles, so it requires time O(m). Therefore, algorithm ACell requires
time O(m).

ExXAMPLE 3.4 We illustrate Step 5. m = 10, § = 2, ¢ = 1. The vector
of processing times is p = (1,20, 1,1,50,1,1,1,12,8). Observe that

plo>90 = AgeD

po=12>46+2¢ = AgeD

pr < 0,pg <8 +4e = ArclU

P < 0,p7 <120 +6e = Ageld

ps >0 = As5€D

p5 =50 > 160+ 10e+p; = A4 €D

p3 < 0,ps <1854+ 10e+p; = Azl
pe>0 = Ay eD

P <6,pp=20<2464+ 16e+p; = A1 €U

Therefore, Tp = (Ao, Al, Ag, AG, A7, Alg, Ag, Ag, A5, A4, AQ) and its cycle
time is Tp(mp) = 226 +2(11 +5)0 +p1 +p7 = 88.

THEOREM 3.16 Algorithm ACell is a 1.5-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5-approximation for an optimal multi-unit cyclic solution.

Proof.

a) From inequality (3.11), if p; < 4§, Vi, then Q, > 2(m + 1)(d +€) +
Z;ilpi = To(my). Therefore, 7y is optimal.

b) If maxi<j<m pi + 40 + 4e€ > 4md + 2(m + 1)e, then by Lemma 3.4,
mp is optimal.

c) Ifp,+piy1 > (4m—6)d+2(m —2)e, i = 1,...,m — 1, then by
Lemma 3.5, mp is optimal.
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d) We can now assume that maxj<;<, pi +40 +4e < 4md+2(m+1)e.
If |Ds| > %m, then by inequality (3.11),

2
Qe > [Q(m—l—l)—l—gm] d+2(m+1)e+ Zpi
ieDs

v

gmé +2(m+ 1e.

Hence,

4md + 2(m + 1)6Q
%mé +2(m+1)e
< 150, (3.14)

To(mp) = 4md+2(m+1)e <

a

e) For |Ds| < 2m, we first derive an expression for Ty ().

Claim: Either pyramidal cycle m, is optimal, or it has no partial
waiting: 3 -;cppg wi = 0.
Proof of Claim.

i) If i € D and i—1 € D, then w; > 0 implies that Ty(m,) =
p; + 46 + 4€, in which case 7, is optimal by Theorem 3.15.

ii) By construction, i € U implies that either p; < ¢ or i = m.
Hence, if i € U and i — 1 € D, then either w; = 0 or w,, > 0.
If wy, > 0, then Ty(mp) = pm + 49 + 4€, so mp, is optimal by
Theorem 3.15.

iii) Ifi € U and i — 1 € U, then they are consecutive activities, so
M; has full waiting equal to p;.

iv) Consider now the case in which ¢ € ¢ and i + 1 € D. By the
three previous cases, for the largest ¢ 4+ 1 in this case, there is no
positive partial waiting between the loading of M;,; and when
the robot returns to unload it. We first prove that w;41 > 0
only if inequality (3.13) is true, which contradicts membership
in this case. We do this by showing that the right-hand side of
inequality (3.13) represents the time between the loading of M; 4
and when the robot returns to unload it in this case.

After M;y is loaded by A;, the robot completes the uphill por-
tion of the cycle by traveling to M,,+1, performing other uphill
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activities along the way. This movement time is (m —3)d. It then
begins the downhill portion by traveling from M, to M;11, for
a movement time of (m—i)J. In addition, each activity performed
during the downhill portion causes the robot to travel an addi-
tional 26 (this amount is represented in the fourth term). Because
7p is pyramidal, between A; and A;11, the robot performs ac-
tivities A;42, Aits, ..., Am—1, Am, though not necessarily in this
order, since, most likely, some will be uphill and some will be
downhill. Each activity requires one loading and one unloading:
2(m — i — 1)e. During the uphill portion of this sequence, the
robot will have full waiting at M; if and only if j € U’ (third
term). Therefore, w;4; > 0 only if inequality (3.13) is true.

Hence, by construction, for the next such machine, say M; .1,
there is no positive partial waiting between the loading of M;/ 1
and the time that the robot returns to unload it. Thus, if py14
does not satisfy inequality (3.13), wy1q1 = 0. It is easy to see
that this argument can be repeatedly applied to the remaining
machines M; 1 for which j €U,j+1€D. 0

Thus, from equation (3.12),

To(mp) = 2(m +1+|D))6 +2(m + e+ > pi.
e’

Note that T, (m,) < T,(mp). First observe that if D = Ds, then

2(m+ 1+ D)5 +2(m + Vet Yiq i
2(m +1) + D56 + 2(m + 1)e + > pe pi
2(m + 14 |Ds])é

[2(m + 1) + |Ds]]6

Ta(ﬂp) <

a

Q, < 1.25Q,,

since this expression is increasing in [Ds| and |Ds| < 2m.

If D\Ds # 0, then let ¢’ be the smallest element of D\ Ds. This implies
that i’ 4 1 satisfies inequality (3.13). Since each element of D\ D; has
a corresponding element of Ds C D that satisfies inequality (3.13)
(except for m — 1 if pp,—1 < 9§ and p,, > J), the number of elements
in D that are greater than i’ 4+ 1 is at least 2(|D\Ds| — 1) — 1. Hence,
m ¢ D implies that i +1 < m — 2(|D\Ds| — 1) — 2, so i/ < m —
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2(|D\Ds| — 1) — 3 = m — 2|D\Ds| — 1. Therefore, inequality (3.13)
becomes

m—1 m
prer > 2m—i)5+2m—i e+ Y 2+ > p

j=i+2 j=i+2

jEeD jeu

> (4/D\Ds| + 2)0 4+ 4|D\Ds|e + 4(|D\Ds| — 1)d

m
+ D
j=i+2
jeu’
Recall that €, > pyy1 + 46 + 4e. Thus,
m
S(D\Ds| +2)6 + 4(D\Ds| + e+ Y p;

j=i+2
jeu

Qq

Y

> 8(|D\Ds| 4+ 2)d + 4(|D\Ds| + 1)e.

If [D\Ds| > 2, then Q, > (3m +2)6 + (3m +4) €, so

4md + 2(m + 1)e
Smé + (3m + 2)e

To(mp) < Ty(mp) < Qq < 1.50,.

If [D\Ds| < %, then

(m+1+ 2 +|Ds|)s
2(m +1)0 + |Dsls

2
Ta(”p) <

This expression is increasing in |Ds| and |Ds| < $m, so

4md

Ta(ﬂ'p) S 8—17159(1 == 1.5Qa.

3

By combining these results with inequality (3.14), we see that algo-
rithm ACell provides the proposed bound.

We now show that the algorithm provides an asymptotically tight
bound. Let m = 3k,k € Z*, ¢ = 0, p3; = 0, and p3j—1 = p3j_2 =
26,7 =1,2,...,k. Obviously, |Ds| = 2k. Define the pyramidal cycle m
byU =1{35,3j—1:5=1,...,k}and D={3j—2:5=1,...,k}. Then
To(m) = 23k + 1)0 + 2ké = (8k + 2)d = g, so m is optimal. Since
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|Ds| > %m, algorithm ACell will yield wp as the heuristic solution in
Step 3, and its cycle time is

12k
8k +2

To(mp) = 4md + 2(m + 1)e = 4(3k)6 < Q, — 1.5Q, as k — oc.

COROLLARY 3.2 In an additive travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times is a 1.5-

approzimation to an optimal k-unit cyclic solution, k > 1.

REMARK 3.4 For the more general additive travel-time case in which
d(M;, Mit1) = 6;, i = 0,...,m, Crama and van de Klundert [40] show
that wp provides a 2-approximation to the optimum per unit cycle time.

For additive travel-time cells, Geismar et al. [62] improve on the result
of algorithm ACell by providing a polynomial-time cyclic solution that
is a 10/7-approximation to an optimum cyclic solution. We discuss this
algorithm next.

3.5.1.3 A 10/7-Approximation for Additive Cells

We start by establishing another lower bound for the per unit cycle
time. Consider the set Dy = {i : p; > 26}. Thus, D§ = {i : p; < 20}.
Obviously, Dy C Ds. We define a run of length ¢ to be any maximal
sequence of ¢ consecutive indices that belong to Do, ie., (4,5 + 1,7 +
2,...,j+£—1)is arun with length ¢ if {5, j+1,74+2,...,j+L—1} C Do,
and {j — 1,5 + ¢} N Dy = (. The number of runs of length ¢ in Dy is
denoted 7y, so |Da| = >~ ¢ry, and the total number of runs is Y ," ; .

In the following theorem, the amount that i € Dy contributes to a
lower bound on the optimum per unit cycle time depends on the size £
of the run to which ¢ belongs. This lower bound includes 2(m +1)(d +¢)
plus the following: if a run has length ¢ and ¢ is even, then the run’s
elements require a total extra time of £0. If ¢ is odd, then the run’s
elements require a total extra time of (£+1)J. Before we state and prove
the theorem, the examples below provide motivation for the result.

ExAMPLE 3.5 Consider a four-machine cell with p; = p3 = 24, ps =
py = 0, € = 0. According to Theorem 3.2, Q, > 120. However, The-
orem 3.17 states that Q, > 149. There are several 1-unit cycles that
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achieve this latter optimum value: (Ag, A2, Ay, A3, A1), (Ag,A1,A2,A3,
A4)7 (A07 A17 A27 A47 A3)7 (AOa AQ? A37 A47 Al)

EXAMPLE 3.6 For the five-machine cell with ps = p3 = py = 26, p1 =
ps =0, € =0, we have Q, > 159 from Theorem 3.2, and 2, > 160 from
Theorem 3.17. Again, several 1-unit cycles achieve this latter optimum
value: (A(), Al, Ag, A5, A4, AQ), (A(), Al, A4, A5, A3, AQ)

THEOREM 3.17 For any k-unit (k > 1) cycle m in an additive travel-
time cell, the per unit cycle time T'(7)/k satisfies

m
# > 2(m+1)(5+6)+22 V—FTIJ r¢0. (3.15)
(=1
Proof. Each unit produced requires that m + 1 activities be performed.
Each activity A;,7 =0, ..., m, includes unloading machine M; and load-
ing machine M;,1, for a total of 2(m + 1)e per part. Each activity A;
also includes a loaded forward robot movement from M; to M;,; that
requires ¢ time, for a total of (m+1)d. Furthermore, because the robot’s
final location My is the same as its initial location, each forward move-
ment across the interval (M;, M;11) must have a later corresponding
backward movement across (M;, M;1). This accounts for an additional
(m+1)d.

We now justify the second term of inequality (3.15). For ¢ even, since
Dy C Dgs, Theorem 3.2 implies that a run of ¢ machines in Do adds
2|(£+1)/2]6 = 6 to the minimum per unit cycle time. For ¢ odd, we
first consider a run of length 1, then extend the result to larger runs.
Let it —1 € DS, i € Dy, i+ 1 € DS, where D§ = M\Dy. We have the
following cases for activity subsequences within a k-unit cycle:

1) For any occurrence of the subsequence (A;_1, A;), the robot has full
waiting at machine M; for duration p; > 24.

2) For any occurrence of the subsequence (Ag, Aj, Aj,,..., A; , A;)
within a k-unit cycle, where j, > i + 1 for some s € {1,...,q}
and j, # i, Yu € {1,...,q}, the robot twice crosses the interval
(M;, M;+1), once forward and once reverse, before performing A;.
This adds 20 to the cycle time in addition to that added by the per-
formance of activity A; and its corresponding backward movement
across the interval (M;, M;i1).
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3) For any occurrence of the subsequence (Ao, Aj,, Aj,,..., Aj, Ai),
Js €{0,1,...,i—1},Vs € {1,...,¢} and j, # i — 1, the robot crosses
the interval (M;_1, M;) without a part immediately before executing
activity A;, which requires additional time d. Before the next instance
of A;, the robot must perform A;_1, so it must return to M;_;. This
requires crossing (M;_1, M;) in the reverse direction, which requires
at least one more extra 6.

Therefore, a run of length 1 adds an extra 2§ to the minimum per unit
cycle time.

Notice that the argument that assigns an extra 20 to an element ¢ of
a one-machine run uses robot travel either over the interval (M;_q, M;)
or (M;, M;+1). Thus, it cannot be applied to consecutive machines of a
multi-machine run. However, the argument can be applied to n consec-
utive one-machine runs. Consider the following sequence of machines:
20 € Dy, i =a,a+1,...,.a+n—1;,2t—1€ DS, 1=a,a+1,...,a+n.
See Figure 3.6.

o O o Q- O O
Maq—1 Mag  Magi1 Mog 2 Ms@ain)y—2 Maain)-1

Q element of Do
L) element of Ds

Figure 3.6. n Consecutive One-Machine Runs.

Here, the machines Maq, Mo 1) - - - s Ma(aqn—1) form n consecutive
one-machine runs, which together add 2né to the minimum per unit cycle
time. Because increasing a machine’s processing time cannot reduce the
cycle time for a given cycle, a run of 2n — 1 machines must add as
much time to the minimum per unit cycle time as do n consecutive one-
machine runs. Therefore, a run of 2n — 1 machines adds at least 2né to
the minimum per unit cycle time. If we let £ = 2n — 1, it follows that
a run of ¢ machines in Dy adds 2| (¢ +1)/2]d to the minimum per unit
cycle time. |

Algorithm ACellnew provides a cyclic solution whose per unit cycle
time is within a factor of 10/7 of the optimum per unit cycle time. Its
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goal is to create a pyramidal cycle with a maximal number of uphill
activities, no full waiting greater than or equal to 20, and no positive
partial waiting. The first two steps check for cases in which an optimal
cycle is known. Afterward, Steps 3, 4, and 5 each loop through the
indices of M. Step 3 ensures that there is no full waiting greater than
or equal to 20: if p; > 24, then at least one of ¢ and ¢ — 1 must be in
D. Step 4 moves any element of & whose corresponding machine could
have positive partial waiting into D. For ¢ € D and i — 1 € U, if M;
could have positive partial waiting, then Step 5 moves ¢ — 1 to D.

Algorithm ACellnew

Input: The data for an additive travel-time simple cell: m, 6, €, p;,i =
1,...,m.

Step 1: If p; <6, Vi, then output 7y = (Ao, A1, ..., An). Stop.

Step 2: If maxj<j<mpi + 40 + 4 > 4md + 2(m + 1)e, or if p; +
pit1 > (4m —6)0 +2(m — 2)e, i = 1,...,m — 1, then output 7p =
(Ao, A, A1, ..., Ao, Al) Stop.

Step 3: Divide the indices 1, 2,...,m into two sets & and D such that
the resulting pyramidal cycle 7, has no machine with full waiting

greater than or equal to 20 and a maximal number of indices are in

Uu.

a) U={0,m}, D=0.
b) Fori=1,...,m—1:
If (p; > 20 and ¢ — 1 € U), then place i into D.
Else place i into U.
Loop
c) If (m—1elU and p,, > 20), then place m — 1 into D.

Step 4: Ensure that no machine corresponding to an element of I/ has
positive partial waiting.
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Fori=2,....m—1:

If i €Y and i — 1 € D, and leaving ¢ in U may cause M; to have
positive partial waiting, i.e., if

1—2 1—2
pi>2i6+2(i— e+ > pi+ Y 25, (3.16)

j=1 j=1

then place ¢ into D.
Loop

Step 5: Improve the partition to avoid positive partial waiting at the
machines in D (i.e., w; = 0,Vi € D).
Fori=m-2m-3,...,1:

Ifiedand i+ 1€ D and

Piv1 > 2(m —i)0 +2(m —i— 1)e+

m m—1
+ > pit Y. 2, (3.17)
j=i+2 j=i+2
jeu’ jED
then place ¢ into D.
Loop

Step 6: Form pyramidal cycle m, by making the activities correspond-
ing to the elements of U uphill, and those corresponding to the ele-
ments of D downhill. Output 7,. Stop.

Steps 1 and 2 compare p;,i = 1,...,m, to a constant, so each requires
time O(m). Steps 3, 4, and 5 each loop once through the m machines.
In each loop, p; is compared to a constant or a sum, which requires time
O(m). Step 6 orders the m activities according to the algorithm for
forming pyramidal cycles, so it requires time O(m). Therefore, algorithm
ACellnew requires time O(m).

ExaMpPLE 3.7 We illustrate Steps 3, 4, and 5. m =14, § =2, e = 1.
The vector of processing times is

p=(5,7,10,30,15,3,12,20,1,38,2,18,1,7).
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Step 3 operates as follows:

pr>20=1€D pg>25,7€D=8¢cl,
p2>20,1eD=2clU p9<20=9€l,
p3>20,2€eU=3€D p1p>25,9€ld =10¢€ D,
py>20,3eD=4ecl p1<20=11 €U,
ps>20,4€U =5€D ppp>25,11eld =12€ D,

pg <20 =>6¢lU Pm =pia>20=>m—1=13 €D,
pr>26,6 U =T7€D 4=m=14€ U,

so after Step 3,

U = {2,4,6,8,9,11,14},
D = {1,3,5,7,10,12,13}.

For Step 4, we examine only indices in U, other than m = 14, by using
inequality (3.16):

po =7 <46 4+ 2¢ = 10, so 2 stays in U.

pg = 30 > 8 + 6e + 26 = 26, so 4 moves to D.

ps =3 < 126 + 10e 4+ 66 = 46, so 6 stays in U.
Since the test value is increasing as the indices increase and each of
pg, P9, and py1 is less than 46, it follows that each of the indices 8, 9,
and 11 stays in U. After Step 4,

u {2,6,8,9,11,14},
D = {1,3,4,5,7,10,12,13}.

For Step 5, we use inequality (3.17) to examine only indices in D whose
predecessors are in U:

p3 = 10 < 249 + 22¢ + pg + 126 = 95, so 2 stays in U,

p7r =12 < 166 + 14€ + pg + 66 = 59, so 6 stays in U,

p1o = 38 > 106 4 8¢ + 46 = 36, so 9 moves to D,

p12 = 18 > 69 + 4e + 26 = 20, so 11 moves to D.
After Step 5,

u = {27 67 87 14}7
D = {1,3,4,5,7,9,10,11,12,13}.
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Therefore,

mp = (Ao, A2, As, As, A1, A13, A12, A11, Aro, Ag, A7, As, Ag, Az, A),
and T'(mp) = 30e + 2(15 4 10)d = 130.

THEOREM 3.18 Algorithm ACellnew is a 10/7-approxzimation algorithm
for the optimum per unit cycle time, and this bound is tight. Conse-
quently, we have a 10/T-approzimation for an optimal multi-unit cyclic
solution.

Proof. From inequality (3.11), if p; < ¢, Vi, then Q, > 2(m + 1)(d +
€) + > pi = T(my). Therefore, ny is optimal. If maxi<ij<m pi +
40 + 4e > 4md + 2(m + 1)e, then by Corollary 3.4, wp is optimal. If
Di +Dig1 > (dm —6)6+2(m —2)e, i = 1,...,m — 1, then mp is optimal
by Theorem 3.6.

The strategy of the remainder of the proof is summarized in four parts
as follows:

1. Show that 7, has no positive partial waiting, unless it is optimal.
2. Find an instance for which T'(7,)/Q, is maximal.

3. Prove that T'(mp)/, < 10/7 for this instance.

4. Show that the bound is tight.

Part 1 of the proof is established by the following claim:
Claim: Either pyramidal cycle 7, is optimal, or it has no partial waiting:

ZiEM\M’ w; = O
Proof of Claim.

i) Ifi el and i —1 € U, then they are consecutive activities, so M;
has full waiting equal to p;.

ii) Suppose i € U and i —1 € D. After machine M; is loaded during
activity A;_1, the robot travels to My and then back to M;, which
requires 2i6 time. During the downhill portion of this trip, the ro-
bot performs |[{j € D : 1 < j < i — 2}| activities, each of which
requires 20 movement time. If an uphill activity A; has full waiting,
then j € U’, and the robot waits for time p;. Because 7, is pyra-
midal, between machine M;’s loading and unloading, ¢ — 1 activities
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(Ag, Aq,...,A;_2) are performed, each requiring 2¢ for loading and
unloading. Therefore, to have positive partial waiting at M;, p; must
satisfy inequality (3.16), in which case Step 4 of ACellnew moves i to
D.

iii) Consider now the case in which ¢ € U,i+1 € D. We first prove that
wi4+1 > 0 only if inequality (3.17) is true. We do this by showing that
the right-hand side of inequality (3.17) represents the time between
the loading of M;,1 and when the robot returns to unload it in this
case.

After M, is loaded by A;, the robot completes the uphill portion
of the cycle by traveling to My, 1, performing other uphill activities
along the way. This movement time is (m —)d. It then begins the
downhill portion by traveling from M, to M;1, for a movement
time of (m — i)0. In addition, each activity performed during the
downhill portion causes the robot to travel for an additional time of
26 (this amount is represented in the fourth term of inequality (3.17)).
Because m, is pyramidal, between A; and A;11, the robot performs
activities Ajy9, Ajts, ..., Am—1, Am, though not necessarily in this or-
der, since, most likely, some will be uphill and some will be downhill.
Each activity requires one loading and one unloading: 2(m —i — 1)e.
During the uphill portion of this sequence, the robot will have full
waiting at M if and only if j € Y (third term). Thus, if p;4q does
not satisfy inequality (3.17), w41 = 0.

iv) Let D' ={i:i € D,i—1 € DU{0}}. We show that if w; > 0
for some i € D', then T'(m,) = max;ep p; + 49 + 4e. If w; > 0, then
the time between the completion of machine M;’s loading and the
beginning of its unloading is p;. The time between the beginning
of its unloading and the completion of its loading is calculated as
follows: unload M; (€), carry part to M; 1 (6), load M; 11 (€), travel to
M;_1 (20), wait (if necessary) before unloading M;_;1 (w;_1), unload
M;_1 (e€), carry part to M; (6), and load M; (€). Therefore, T'(m,) =
pi +46 +4e+w;_1, Vi € D'. Note that w;—1 > 0 only ifi—1 € D' (by
the previous three cases) and p;—1 > p;. Hence, if py = max;epr pi,
then T'(m,) = pir + 40 + 4e. It follows that if w; > 0 for some i € T/,
then T'(m,) = max;cpr p; +49 +4e, and m, is optimal by Theorem 3.2.
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This completes the proof of our claim. 0
From equality (3.12),

T(mp) = 2(m+1+|D)3+2(m + e+ > pi.
e’

We now perform Part 2 of the proof by determining a case for which
T (mp) /82 is maximal. Because i € U’ = p; < 20, T'(mp) is maximized by
maximizing D. To maximize the size of D, first assume that Vi € Dy that
was not placed into D by Step 3, p; is large enough so that ¢ is placed into
D by Step 4. In addition, the processing time of the first element of each
run of elements of Dy must be large enough to satisfy inequality (3.17).
This will cause its predecessor (an element of DS) to be placed into D by
Step 5 of ACellnew. Therefore, |D| < [Da| + > ) 1m0 = D> )y (04 1)1y
Hence, by using the bound for €2, in Theorem 3.17, we have

T(rp) = 2(m+1+[D)5+2m+1)e+ > p; (3.18)
€U’
< 2 (m—&-l—i—Z(E—i—l)m) d+2(m+1)e+ Zpi
/=1 e’

2(m+ 143700 (04 Dre) s +2(m+ e+ 30 pi
- 20m+1)(0+e¢) + 230, [ B o

A+2(m+1)e
B+2(m+1)e ¥

Qq

where A=2(m+ 1432, ({+1)re) 0+> ;0 pi and B =2(m+1)d+
2> [(+1)/2)red. Sincerg > 0,4=1,....,m;p; > 0,0 =1,...,m;e >
0; and 6§ > 0, it follows that B < A. Therefore,

A+2(m+1)e
B+2(m+1)e
A

B

_ 2(mA 1430 (€+1)rg)6+2ieu,pi9
2Am+1)i+2 (B

T(mp) <

a

<

The ratio is maximized by maximizing » ;% (¢+1)r¢/ > ;2 [(€ +1)/2]ry.
(Note that if we try to maximize by maximizing |[U’|, then (3.18) im-
plies that T'(m,) < (4m + 2)6 4+ 2(m + 1)¢, and Theorem 3.2 implies



Cyclic Production 83

Qq > (3m +2)6 +2(m + 1)e. Thus, T'(mp) < (4/3)82,). Therefore, each

run must be small. Because the lower bounds generated by odd-sized

runs differ from those generated by even-sized runs, we allow for both:

r1 > 0,70 >0, and 7, = 0, £ > 3. Hence,

T(r,) < 2(m +1)6 + 2(2r1 4 3r2)0 + >y Pi

2(m+1)d + 2(r1 +12)d

Since 2r1 +3rg <m+1 and p; < 26 Vi e U', T(mp) /8, is maximized by

setting 271 + 3r9 = m + 1 and minimizing the denominator, so choose

r1 = 0 and ro = (m + 1)/3, which implies that |Dz| = (2/3)(m + 1)

(Dy ={1,2,4,5,7,8,...,3k — 2,3k — 1}, k € Z", where m = 3k — 1).
Before we proceed with the remainder of the proof, we provide an

Q.

example to illustrate the subsequent analysis. Let m = 8 and the vec-
tor of processing times be p = (30,59 + 2¢,0, 175 + 8¢,156 + 8¢,0,56 +
2¢,0). After Step 3, D = {1,4,7}. Step 4 places indices 2 and 5
into D. Indices 3 and 6 are placed into D by Step 5. Hence, m, =
(Ao, As, A7, Ag, As, Ay, Az, A2, A1), and T(ﬂ'p) = 320 + 18¢. Using the
lower bounds from Theorem 3.2 and Theorem 3.17, we have Q, >
max{230 + 18¢,246 + 18¢} = 24 + 18e. Thus, for this example, the
worst-case bound is T'(m,)/Q, < 4/3.

Having found set Dj, we find an instance for which |D| is maximal.
Let m =3k —1, p3j_o > 26, P3j—1 = 20, j=1,...,k, and p3; < 20, j =
1,...,k— 1. Specific values for p3;_2, p3j—1, and p3; will be determined
later.

Recall that from inequality (3.11), Q, > 2(m + 1)(0 + ¢€) + |Ds|d +
ZieDg p;. For the current instance, Dy = {35 —2,3j—1:5=1,...,k}U
{35 :0 <p3j <20}. So by Theorem 3.2,

Qo > 8k6 + 6ke + {37 : 6 < p3; <2040+ > psj, (3.19)
3jeDs
which implies that for maximizing T'(mp)/€,, we must have p; = 0,

i € D§. This is easy to see. Recall that DS = {i : p; < 26}. Since we
want both the third and fourth terms of (3.19) to be zero, there should
be (i) no j such that § < p3; < 20, and (ii) no j such that 0 < p3; < 4.
Thus, imposing p; = 0, ¢ € DS, the lower bound of inequality (3.19)
becomes Q, > 8kd + Gke.

Because either 7, is optimal or max{T'(m,)} = 4md + 2(m + 1)e,
and Q, > maxp; + 40 + 4¢, the theorem holds for all cases in which
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4md +2(m+1)e < (10/7)(max p; + 49 + 4¢). Therefore, for all 7, we can
assume that

pi < 1—70(4m<5+2(m+1)e)—4(5—4e

< (8.4k — 6.8)0 + (4.2k — 4)e, (3.20)

using m = 3k — 1.

Step 3 places each index 3j—2 in D. For any index 3j—1,j =1,..., k—
1, that is placed in D by Step 4, T'(m,) increases by 2§ — p3; = 2§ > 0.
Hence, it appears that to maximize T'(7p)/Qq, p3j—1,7 = 1,...,k — 1,
should be large enough to satisfy inequality (3.16). Note that increasing
the values of p3;_1,7 = 1,...,k — 1, has no effect on €Q,.

We now show that not all indices 3j —1,7 =1, ...,k —1, can be placed
in D without violating inequality (3.20). From inequality (3.16),

35—
P3jo1>2(3j —1)6 +2(3j — 2)e+ Y 20,

=1
i€ D

w

because p; = 0,7 € U'.

Consider the summation term. If starting at j = 1, each 35 — 1
is placed in D, then for a given j*, we have |[{i € D : i < 3j* — 3}| =
{3j—1,3j—2:j < j*—1}| = 2j*—2. This would mean that 3j*—1 € D
if

ot > 235 — 1)3 4+ 235" — 2)e + 225" — 2)5
= (105" —6)0 + (65" — 4)e. (3.21)
However, combining this with inequality (3.20) implies

(105* — 6)5 + (65* —4)e < (8.4k —6.8)5 + (4.2k — 4)e, so
(8.4k — .8)0 + 4.2ke
100 + 6e

-k

< 0.84k.

Thus, after Step 4, T'(1,)/Qq is maximized by D = {3j —2:1 < j <
kYU{3j—1:1<j < 84k}

Step 5 loops backward through D, which is increased by large values
of p3j_o. Specifically, by inequality (3.17), 3j —3, j =2,...,k, is added
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to D if
3k—2
psj2 > 23k —3j+2)0+2Bk—3j+1)e+ Y 24
i=3j—1
i1 €D

To simplify the summation term of this inequality, observe that

{ieD:3j—1<i<3k—2} = [184k|—2j+1, 1<j<O0.84k
{ieD:3j—1<i<3k—2} = k—j+1,  j>084k.

Hence, for j > 0.84k, we must have p3;_o > (8k—8j+6)5+ (6k—6;5+2)e.
For j < 0.84k, by combining inequalities (3.17) and (3.20), we get that
index 3j—3 is moved to D only if p3j_o > (9.68k—105+6)d+(6k—65+2)e
and

(9.68k — 105 4 6)3 + (6k — 6 + 2)e (8.4k — 6.8)0 + (4.2k — 4)e, so
(1.28k + 12.8)6 + (1.8k + 6)e

100 + 6e

<
j >
> 0.128k.

It follows that our approximating cycle 7, is the pyramidal cycle formed
by D={3j—-2:1<j<k}U{3j—1:1<j<.84k}U{3j:0.128k <
j<k—1}, and |D| = |2.712k].

Having specified an instance for which T'(7)) /€, is maximal, we now
show that this ratio is at most 10/7 (Part 3 of the proof):

T(mp) < 2(m+1)(0 +€) +2|DJo
Qo = 2(m+1)(0+¢€) +|Ds|d
_ 2Am+1)+2[D| _ 6k+2(2712)k 10
~— 2(m+1)+|Ds| — 8k 7

We now prove the tightness of the 10/7 bound (Part 4). Let m =
3]43—1,6 = O, b3; = 0,1 < ] < k. p3j—2 = 2(5, 1 < ] < 0.1281’6;
p3j—2 = (9.68k5—10j*+6)5—|—1, 0.128 < j < k?;pgj_l = (10j—6)(5+1, 1 <
J < 0.84k; p3j—1 = 20, 0.84k < j < k. An optimal 1-unit pyramidal
cycle 73 is defined by D ={3j—2:j=1,...,k} and U = {35 — 1,35 :
j=1,...,k}. In 73, the partial waiting times are wg = 1, w3p_o = 1,
and w; = 0 otherwise. Therefore, T'(m3) = 2[(3k — 1) + 1]0 + 2k0 + 2 =
8kd +2 — Q4 as k — oo.
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We have seen that algorithm ACellnew defines m, by D = {35 — 2 :
1<j<klU{3j—1:1<j<084k}U{3j:j=0.128 <j <k}, and
that

11.424k6 10

T(mp) = 11.424k0 < — Q0 ~ — .

Note that algorithm ACellnew repeats a specific 1-unit cycle to prove
the 10/7 guarantee; this 1-unit cycle may not necessarily be optimal. If,
instead, we repeat an optimal 1-unit cycle, then it follows that the result
will be at least as good. Recall that an optimal 1-unit cycle in additive
travel-time cells can be obtained in polynomial time (Crama and van de
Klundert [40]). The following result is, therefore, immediate.

COROLLARY 3.3 In an additive travel-time cell, a k-unit cyclic solu-
tion obtained by repeating an optimal 1-unit cyclic solution k times is
a polynomial-time 10/7-approximation to an optimal k-unit cyclic solu-
tion, k > 1.

We can use results from this proof to determine optimal cycles for certain
cases that are common in practice. Define the alternating pyramidal
cycle by mq = (Ao, Ao, Ay, ooy Aoy Ay Ap—1, Ap—s, ..., Az, Aq) if m
is even and Tqg = (Ao, AQ, A4, N Amfg, Am, Amfl, Am,Q, Am747 e ,Ag,
A1) if m is odd. From equality (3.12),

(Bm+2)d+2(m+1)e+ Y " w;, for m even,
T(ma) =
(Bm+3)d+2(m+1)e+ > " w;, for m odd.

If wy, > 0 and wy,—1 = 0, then T'(m,) = Py, +40 + 4€, so 7, is optimal.
If m is odd, wy,—1 > 0, and wy,—2 = 0, then T'(7y) = pm—1 + 40 + 4e,
so m, is optimal. Recall that Z;';l w; = 0 only if p; does not satisfy
inequality (3.16), Vi € U, and p; does not satisfy inequality (3.17), Vi €
D, as we saw in the proof of Theorem 3.18. This leads to the following

corollary.

COROLLARY 3.4 Given an additive travel-time robotic cell with p; >
20, Vi. The alternating cycle 7, is optimal if p; < (30 —2)d + 2(i — 1)e,

for all even i, i < m — 2, and either of the following conditions hold:

1. m is even and p; < (3m — 3i + 1)6 4+ 2(m — i)e, for i odd; or
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2. m is odd and p; < (3m — 3i +2)d + 2(m — i)e, for i odd, i # m.

Proof. The corollary’s conditions imply that 7, can have positive par-
tial waiting only at M,,, or at M,,_1 for m odd. In either case, 7, is
optimal as shown above. Otherwise, the corollary’s conditions imply
that m, has no positive partial waiting, so

(3m +2)6 +2(m+ 1)e, for m even,
T(7a) = (3.22)
(3m +3)d +2(m+1)e, for m odd.

By Theorem 3.17,

T 1
% > 2(m+1)(5+6)+2{%J 5
(3m +2)0 +2(m+ 1)e, for m even,
(3m +3)d +2(m+ 1)e, for m odd.
Therefore, 7, is optimal. |

COROLLARY 3.5 Given an additive travel-time robotic cell with p; >
9, Vi and p; < (3t —2)6 + 2(i — 1)e, for all even i, i < m —2. If m is
even and p; < (3m —3i+1)d+2(m —1i)e, fori odd, then the alternating
cycle m, is optimal. If m is odd and p; < (3m — 3i + 2)0 + 2(m — i)e,
for i odd, i # m, then T(mg) — Qg < 0, so m, is asymptotically optimal

as m increases to infinity.

Proof. The corollary’s conditions imply that 7, can have positive par-
tial waiting only at M,,, or at M,,_1 for m odd. In either case, 7, is
optimal as shown above. By Theorem 3.2, Q, > (3m + 2)d 4+ 2(m + 1)e.
Hence, by equality (3.22), 7, is optimal if m is even. For m odd, we have
T(mg) — Qg < 6. Therefore, T'(m,)/Q0 < 1+ (§/2,) — 1 as m increases
to infinity. So, m, is asymptotically optimal. [

3.5.2 Constant Travel-Time Cells

In this section, we develop a 1.5-approximation algorithm for the op-
timum per unit cycle time for constant travel-time cells. The following
lower bound for the per unit cycle time is based on results from Dawande
et al. [47].
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THEOREM 3.19 For any k-unit cycle m, k > 1, in a constant travel-time
cell, the per unit cycle time T.(m)/k satisfies

T.(m)
k

> max{2(m+ 1)e+ Z min{p;, 0} + (m + 2)4,
i=1

lglizgn pi + 30 + 4e}.

Proof. We show that T,(7) > 2k(m + 1)e+ k> ;- min{p;, 0} + k(m +
2)6, and that T.(7) > k(maxi<j<mpi + 30 + 4¢€). The result follows
immediately.

Consider the first argument. A k-unit cycle consists of k(m + 1)
activities. Each activity requires one loading and one unloading, so
the total time for these actions is 2k(m + 1)e. Before each activity A;,
i =1,...,m, time will be taken either by a robot move () or a processing
time (p;). This time is represented by the second term. The robot never
has to wait for processing to complete before executing activity Ag, so
the total time taken before all & Ag’s is kd; this is included in the last
term. The last term also includes the robot’s movement time while
performing the k(m + 1) activities (transfer of a part from M; to M;;1,
i=0,...,m), which is k(m + 1)6.

For the second argument, observe that the sequence of actions between
the start of M;’s unloading and the completion of its next loading must
include activity A;, travel to M;_1, and activity A;_1. At minimum,
this time is 36 + 4e¢, since each activity requires § + 2¢ time. Thus, the
minimum time between each loading of M; is p; + 36 + 4e. In a k-unit
cycle, this must be done k times. ]

Let Q. denote the per unit cycle time of an optimal k-unit cycle,
k > 1, in a constant travel-time robotic cell. Recall the definition for the
following set: Ds = {i : p; > ¢§}. Using these definitions, Theorem 3.19
can be restated as

Qe > max{2m+1e+ Y pi+[m+2+|Dsls,
i€DS§

[0AX pi + 36 + 46} . (3.23)
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The following result is from Dawande et al. [47].

LEMMA 3.6 If maxi<ij<mpi + 30 + 4e > 2(m + 1)(0 + €), then mp is
optimal.

Recall from Section 3.3.2 that, for a 1-unit basic cycle 7z, the cycle time
is Te(mp) = max{a, B;|i € Va}, where

a = 2m+1)5+2(m+ e+ > (pi—
%
ﬁi = pz+36+46+(rz+QZ 5"’26 Z Dpj-
JEX;UY;

For a constant travel-time cell, the initial partition (V1,Va) divides the
set of machine indices M into those that represent machines with full
waiting and those that represent machines with partial waiting by the
following assignments: V; = D§ and V3 = Ds. Note that for the initial
partition,

a=[m+2+ D] +2(m+ e+ Y pi (3.24)
ieD§

So, by inequality (3.23),

Qe > max{ce, max p; + 30 + 4e}. (3.25)
1<i<m

3.5.2.1 A 1.5-Approximation Algorithm

We now show that repeating an optimal 1-unit cycle k£ times is a 1.5-
approximation of an optimal k-unit cycle. We do this by developing an
O(m) algorithm that finds a 1-unit cycle that can be shown to provide a
1.5-approximation. In the algorithm, the first three steps check for cases
in which an optimal cycle is known. Step 4 considers the case in which,
by inequality (3.23), mp provides a 1.5-bound. For the remaining case,
we construct a special basic cycle 7 in which V4 includes Dj plus some
other machine indices. The cycle 75 satisfies the following properties:
(i) for all i € Ds C V4, X; =Y; =0, so B = p; + 35 + 4¢, and (ii)
o > i1 € Vy\Ds. Therefore, either T,(n3) = &/, or 75 is optimal.

Algorithm CCell

Input: The data for a constant travel-time simple robotic cell: m, 4, ¢,
pi,t=1,....,m



90 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS
Step 1: If p; <6, Vi, then output 7y = (Ao, A1, ..., An). Stop.

Step 2: If maxi<ij<mpi + 39 + 4e > 2(m + 1)(d + €), then output
™D = (A(), Am, Am—ly cee ,AQ, A1> StOp.

Step 3: If p; > 4, Vi, then output mp. Stop.
Step 4: If |Ds| > %(m — 2), then output 7p. Stop.
Step 5: If |Ds| < %(m — 2), then form the set VJ as follows:

Vo = Dsu{j:jeD§, j=i+1,i€ Ds}U
{j:jeD§, j=i—1, i€ Ds}.

Step 6: Form a basic cycle 73 such that the machines corresponding
to the elements of VJ have partial waiting and those corresponding
to the elements of V{ = M\V; have full waiting. Output 7’;. Stop.

Steps 1-4 require time O(m). Step 5 creates V4 by distinguishing
certain members of a previously defined set and requires time O(m).
Step 6 is simply an ordering of the m + 1 activities according to the
algorithm for forming basic cycles. Therefore, the time complexity of
algorithm CCell is O(m).

ExAMPLE 3.8 This example illustrates Steps 5 and 6. Suppose m =
10, § =5, € = 1, and the vector of processing times is p = (2,4, 10, 1, 3, 2,
7,4,2,3). Then Ds = {3,7},s0 Vg = {3,7}U{4,8}U{2,6} = {2,3,4,6,7,

8}
g = (Ao, A1, As, Ag, Avo, A7, As, Ag, As, A3, As),
Te(mg) = {180 + 22¢ + p1 + ps + py + p1o,
ma{({pz‘ + 30+ 4de+ (ri +qi)(0 + 2¢) + Z it}
ieVy JEXUY;

= max{122,32,29,30,31,26,42} = 122.

THEOREM 3.20 Algorithm CCell is a 1.5-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5-approximation for an optimal multi-unit cyclic solution.
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Proof.

a) From Theorem 3.19, if p; < 4, Vi, then we have Q. > 2(m + 1)e +
Yo pi+ (m+2)6 = Te(my). Therefore, my is optimal.

b) If maxj<i<mpi + 30 + 4 > 2(m + 1)(0 + €), then, by Lemma 3.6,
mp is optimal.

c) If p; >4, Vi, then, by Theorem 3.19, Q. > max{2(m + 1)(J + ¢),
maxi<ij<m pi + 30 +4e} =T.(mp). Therefore, mp is optimal.

d) If |Ds| > (m — 2), then, from inequality (3.23), we have

Q. > 2(m+1)e+ Zpi+[m+2+%(m—2)}5

i€ D
4 4
> 2(m+ 1)e+ (gm + §> s.

Thus,

- 2(m +1)(5+¢)
T.(mp) =2(m+1)(0+¢€) < 2m+ e+ (2m+ 1o

Q. < 1.59,.

e) For |Ds| < 2(m — 2), consider the 1-unit basic cycle 7 formed by
the initial partition (Vi,V2), where Vi = D§ and Vo = D;. Recall
that the cycle time of np is T.(mp) = max{«, F;|i € Va}, where
a=2(m+1)(0+€) + X iepe(pi — 6) and B; = p; + 30 + de + (ri +
;) (0 + 2¢) + ZjeXiuYi bj.

An example of a 16-machine cell is shown in Figure 3.7, with machines

corresponding to elements of Ds and D§ distinguished.

. o ° . o o O ° . . o O °
Mye Mis Migy M1z M1z M1z Mio Mg Mg M7z Me Ms My Mz My M

() element of Ds
e element of D§

Figure 3.7. Machines Distinguished by p; > § or p; < J.

For the basic cycle 7,

T.(nty) = max{a’, BlJi € Vy}, (3.26)
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where o/ =2(m+1)(d +¢€) + >ievy (Pi —90), Bl is defined as was (3;,

and

Vi = DsuU{j:jeD§ j=i+1,i€ Ds}U

{j:jeD§ j=i—1,ie Dy} (3.27)

The same 16-machine cell is shown in Figure 3.8, with elements of V/

and VJ distinguished.

EMECACGRORGROROIORGRORININORONO)

Mye Mis Mig M1z Miz Miz Mio Mg Mg M7 Me Ms My Ms My M
() element of Vy N Ds = Ds
(o) element of Vj N D§ = D§\ V{

e element of V/ C D§

Figure 3.8. Machines Distinguished by Full Waiting or Partial Waiting in 7.

To estimate o/, we first derive an inequality for later use. It follows
immediately from the definition of V5 in equation (3.27) that |V5] <
3|Ds|. Hence, m — |V4| > m — 3|Ds|. Since |V;| = m — |V,| and

|D§| = m — |Ds|, we have |V]| > |D§| — 2| Ds|, which implies

2|Ds| = |Djl = Vi = D5\ Vil, (3.28)

in view of V/ C D§. The equality
o' =2(m+1)(0 +€) + > ey (pi — 6) implies that

o —a = Z(pi—é)—Z(pi—(S), S0

eV i€D§
o = a+ Y 6-p)-> (-p)
i€Dg ievy
= a+ > (0-p)
ieDE\Vy

From inequality (3.28), we have

2|Ds|o
o < a+2|D5](5:<1—|— |Ds] >a,
a
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which, together with inequality (3.25), implies

2| D56
o < 1+ Q.
( 2+ DO+ ) + Sreps(pi — 0)

2|Ds|é
: (”2<m+1><5+e>|Dg|6>>QC

2|Ds| >
< 1+ Q.
- ( 2(m+1)—m+\D5|

2|Ds| )
14+ —--——1Q
( m+2+|Ds|)

This expression is increasing in |Ds|. Hence, |Ds| < 1(m —2) implies

2(m -2 2m — 4
o < [14—3m=2 Qc:<1+L>QC
m+ 24 3(m —2) 4m +4

< 159 (3.29)

We now investigate the value of 3,7 € Vj:

1. By construction, for i € Dy, 3. = p; + 30 + 4¢. By Theorem 3.19,
if To(m3) = p; + 36 + 4e for some i, then 75 is optimal.

2. Fori € V3\ Dy, B = pi+30 +4e+ (ri +¢:) (0 +2€) + 3 i x,0v; Pj-
Since i € D§, X; C D§, and Y; C D§, we know that

pi+ Z pj < ij-

JEX;UY; ]EDg

'’y was designed so that |V5| > 2. This implies that r;+¢; < m—2.
Hence,

Bi <D pj+30+4e+ (m—2)(5+ 2)
jeDj§

= Zp] + (m + 1)8 + 2me, i € V3\Ds.
jeDy§

This value is strictly less than « (defined in equation (3.24)),
which, by inequality (3.25), is a lower bound on the cycle time.
Hence, 3!,i € V4 \ Ds, will not dominate the cycle time expression
in equation (3.26).
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To summarize, for i € Ds, (3! = p;+30+4¢c and fori € Vy\Ds, 5] < /.
Therefore, either T.(nl;) = &/, or 5 is optimal. Consequently, from
inequality (3.29), 7’5 is a 1.5 approximation for .. This completes
the proof of the proposed bound.

We now demonstrate the tightness of the bound for |Ds| > (m — 2)/3.
Suppose m =8, =2, =0,p = (0,0,4,0,0,4,0,0). Then

T.(rp) = max{2(m+ 1)d — 6d,p3s + 70,ps + 7}
— max{24,18,18} = 24 = Q..
T.(rp) = max{36,10} = 36.

Hence, To(mp)/Qc = 1.5.

For |Ds| < (m —2)/3, we show the asymptotic tightness of the bound
by taking a large m, the maximum possible |Ds| for this m, and the
maximum |Vj| (= 3|Ds|). Let m = 3k + 3,k € Z*;0 = 1,e = O;p; =
4if i = 35,7 = 1,...,k; p; = 0 otherwise. Also, Ds = {3j : j =
1,...,k}, |V5| = 3k, and | D§ \ V/| = 2k. Thus, by inequality (3.25),

Qe>a = 203k+4)5— (2k+3)0 = (4k + 5)8
o = a+|D§\Vj|é
= (4k+5)0 +2kd = (6k + 5)0, so
o 6k + 5
4k +5

|
IN

— 1.5 as k — oo.

)
)

COROLLARY 3.6 In a constant travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times is a 1.5-

approximation to an optimal k-unit cyclic solution, k > 1.

3.5.3 Euclidean Travel-Time Cells

In this section we consider Euclidean cells. We start with elementary
properties, and then provide a 4-approximation algorithm. We then pro-
vide an algorithm whose performance guarantee depends on the range of
the inter-machine robot movement times. In some cases, this guarantee
is better than 4. Once more, we begin by establishing a lower bound for
the per unit cycle time.
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THEOREM 3.21 For any k-unit cycle m, k > 1, in a Euclidean travel-
time cell, the per unit cycle time Te(m)/k satisfies

T. S o :
;E;W) > max {Z(m +1)e+ Z Oii+1 + Z min{p;, m;n{%}}
=0 =1 7

+min{d;o}, max {p; + 6iit1 + dit1i-1 + di—14 + 46}} :
7>1 1<i<m

Proof. As before when proving Theorem 3.19, we establish a lower
bound for the cycle time, and the result for the per unit cycle time
follows immediately.

Consider the first argument. Each of the k(m + 1) activities requires
one loading and one unloading, so the total time for these actions is
2k(m + 1)e. The second term represents the robot’s total time for
moves while performing the k(m + 1) activities. Before each time a
machine M;,7 = 1,...,m, is unloaded, there will be time taken either
by a processing time (p;) or a robot move (which takes at least time
min;;{d;;}). The robot never has to wait for processing to complete
before getting a new part at I (unloading Mj), so the minimum time
taken after all k such loadings is A min;j>1{d;0}.

For the second argument, observe that the sequence of actions be-
tween the start of M;’s unloading and the completion of its next loading
must include activity A; (6;,:+1 + 2€), travel by some route from M;
to M;_; (the triangle inequality implies that the minimum possible time
is dj41,—1), and activity A;—1 (d;—1; + 2¢). At minimum, this time is
0ii+1 + 0it1,i—1 + 0i—1,; + 4e. Thus, the minimum time between each
loading of M; is p; + 6;i+1 + 6i+1,—1 + 6i—1,; + 4€. In a k-unit cycle, this
must be done k times. |

For convenience and consistency, we denote the per unit cycle time of
an optimal k-unit cycle (k > 1) in a Euclidean travel-time cell by €Q..

LEMMA 3.7 In a Fuclidean robotic cell, the cycle time of the 1-unit
reverse cycle is

m m
TE(WD) = max {2(m + 1)6 + Z (51',1'4_1 + Z (52'4_1,1'_1 + (517m,
=0 =1

max {p; + 0ii+1 + Oit1,i—1 + i1, + 46}} :
1<i<m
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Proof. In the first argument, the total of loading and unloading times
and the movement time during all activities is represented by the first
two terms. Activity A; completes when machine M;,1 is loaded. The
robot’s next action is to prepare to begin activity A;_1 by moving to
M;_1,i=1,...,m. The sum of these movement times is > " | 8411
After completing Ay, the robot moves to My, to begin A, (d1m).

In the second argument, if the robot waits at any machine M;, the
time spent between the completion of M;’s loading and the start of
its unloading, obviously, is p;. The duration between the completion
of processing of one part and the beginning of processing of the next
part is represented by the activity subsequence A;A; 1, which requires
0ii1 + 0igp1,i—1 + 0i—1,; + 4e. m

COROLLARY 3.7 Ifmaxi<i<m{pi+diit1+0it1i—1+0i—1;+4€} > 2(m+
De+ > Giiv1 + D oity dig1,i—1 + O1,m, then mp is optimal.

Proof. By Lemma 3.7, the premise implies that Te(7p) = maxi<i<m{pi
+0i,i+1+0i41,i—1+0i—1,+4€e}, which, by Theorem 3.21, is a lower bound
for Q.. Thus, 7mp is optimal. ]

LEMMA 3.8 In a FEuclidean travel-time cell, a k-unit cyclic solution
obtained by repeating the I1-unit reverse cycle k times provides a 4-
approzimation to the optimal k-unit cycle time, k > 1.

Proof. If Te(ﬂp) = maxlgigm{pi + (5m‘+1 + (5@4_171'_1 + (51'_171' + 46}, then

mp is optimal. Otherwise, by using the triangle inequality, we get

m m
To(wp) = 2(m+De+d g1+ Y Sipti1+01m
=0 =1

m m—1 m
< 2(m+ e+ Z diit1 + (Z diivr1 + Z 5z',i+1>
=0 1=0 =1
m—1
+> it
i=1
m
< 2(m + 1)6 + 42 5i,i+1 < 490,.

=0
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For our next result, we use three constants: § = min0§i<j§m+1{5i7j},
A = max0§i<j§m+1{6i,j}, and q = A/5

Algorithm ECell provides a 1.5¢g bound for the optimum per unit cycle
time. Since finding an optimal 1-unit cycle for Euclidean cells is NP-
hard (Brauner et al. [24]), such an efficient approximation can be very
useful. If ¢ < 4/1.5 ~ 2.67, then the algorithm yields a tighter bound
than 4. Intuitively, if the variation in the inter-machine travel times is
not large, a reasonable approximation is to assume that the Euclidean
cell is a constant travel-time cell. This is the main idea behind algorithm
ECell.

Algorithm ECell

Input: The data for a Euclidean travel-time simple robotic cell: m,
0, 0<i<j<m+1 ¢ p,i=1,...,m.

Step 1: If p; <6, Vi, then output 7y = (Ao, A1,..., An). Stop.

Step 2: If maxlgigm{pi + (51'71'4_1 + (51‘_:,_171'_1 + 51‘_1’1‘ -+ 46} > 2(m -+ 1)6 +
Yo Oiit1+ ity Oir1,i—1 + O1,m, then output mp = (Ao, Am, Am—1,
..., A2, Ay). Stop.

Step 3: If p; > 4, Vi, then output 7p. Stop.
Step 4: If ¢ > 4/1.5 ~ 2.67, then output mp. Stop.

Step 5: Define the set Da = {i : p; > A}. If |Da| > (m — 2)/3, then
output wp. Stop.

Step 6: If |[Da| < (m —2)/3, then form the set V3 as follows:

Vs = DaU{j:j€DX, j=i+1, i€ Da}
Wj:je DX, j=i—1,i€ Da}.

Step 7: Form basic cycle 73 such that machines corresponding to the
elements of V3 have partial waiting and machines corresponding to
the elements of V{ = M\Vj have full waiting. Output 7/5. Stop.

Steps 1-5 require time O(m). Step 6 creates VJ by distinguishing
certain members of a previously defined set and requires time O(m).
Step 7 is simply an ordering of the m + 1 activities according to the
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algorithm for forming basic cycles. The time complexity of algorithm
ECell is thus O(m).

THEOREM 3.22 Algorithm ECell is a 1.5q-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5q-approximation for an optimal multi-unit cyclic solution.

Proof. Consider two related constant travel-time cells whose machine
processing times p;,7 = 1,...,m, are the same as those of the Euclidean
cell. One of these new cells will have constant travel time §, and the
other will have constant travel time A. Their respective optimum per
unit cycle times are 25 and Q. Clearly, Q5 < Q. < QAa.

a) From Theorem 3.19, if p; < §, Vi, then we have Q. > Q5 > 2(m +
De+ (m+2)d+ > pi. In the Euclidean cell,

m m
T(my) = 2(m+1)e+ D i1+ 0miro+ Y pir
=0 =1

Since A = max0§i<j§m+1{5,~7j}, we have

T.(ry) < 2(m+1e+ (m+2)A+) p
=1

2(m+1)e+ (m+2)A+ 35" p;i

2(m+1)e+ (m+2)0 + 3272, pi

A
—Qe = €.
5 q

<

Qe
<

b) If maxi<icm{pi + diit1 + Oit1i—1 + 0i—1,; + 4} > 2(m + 1)e +
Yo i1 + 2oy 0it1i—1 + 01,m, then by Corollary 3.7, mp is opti-
mal.

C) If maxlgigm{pi + (51‘71'_;,_1 + 51‘_:,_171'_1 + 51‘_111‘ + 46} < 2(m + 1)6 +
Z;'Zl (51‘71'4_1 + Z:?ll (5@4_171'_1 + 61,m; then by Lemma 3.7, Te(ﬂp) <
2(m + 1)(A +e).

If p; > 0, Vi, then by Theorem 3.21, Q. > 2(m+1)(d+¢). Therefore,

2(m+1)(A+¢)
2(m+1)(0+¢€)
A

—Qc = ¢Qe.
6 q

Te (TFD) <

e

IN
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d) If ¢ >4/1.5, then 4 < 1.5¢, and so T.(mp) < 1.5¢€2.

e) By Theorem 3.20, algorithm CCell applied to the constant travel-
time A cell can provide a 1.5-approximation for 2. Denoting the
value of this heuristic by H.(2a), we have by Theorem 3.19,

H.(Qa) < 15[(m+2)A+ zm: min{p;, A} + 2(m + 1)¢]
i=1

= 1.5[(m+2)gd + Zmin{pi, qo} +2(m + 1)¢

=1

m
< 15g[(m+2)6+ Y min{p;, 5} + 2(m + 1)e]
i=1
< 1.5¢%s.
Since H.(2a) < 1.5¢Qs < 1.5¢€, algorithm CCell executed on the
constant travel-time cell with travel time A = maxo<i<j<m+1{0i;}
provides a 1.5¢ bound for the optimum per unit cycle time in a Euclid-
ean cell.

To prove asymptotic tightness for the case in which |Ds| > (m —2)/3,
we first need an expression for the cycle time of a basic cycle 75 in a
Euclidean cell: T,(mg) = max{a, §;|i € Va}, where

m n—1
o = 2(m + 1)6 + Z (5i,i+1 + Z pi + Z 5vi+2,vi + 67}11'0”’
=0 i=0

i€V
Vo = {v1,va,...,00},00 =0,041 =m+1, and
Bi = pi+0iit1+0ir15-1+ 015+ 4e+ Z (pj + 0jj41 + 2¢).
JeEX;UY;
Let m = 3k + 2,k € Zt;e = O;p3; = 2A,5 = 1,...,k, and p = 0
otherwise. Let 0;41,—1 = At =1,...,m,01m = A, d;; = 6 otherwise;

and g < 2. If the basic cycle formed from the initial partition is 7p,
then o = (3k +3)0 + (K + 1)6 = 4(k + 1)4. Thus,

T.(rp) = max{4(k+1)0,3A +66} =4(k+ 1)J = Q.,

Te(rp) = Bk+3)(0+A).
Hence,

Te(rp)  (BE+3)(0+4A) 3
0. A+ 1) —4(1+q)—>1.5asq—>1.
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For |Ds| < (m —2)/3, let m = 3k + 3,k € ZT;e = 0;p3; = 2A,j =
1,...,k,p = 0 otherwise. Then, Ds = {3j : j = 1,2,...,k}. Let
5“_‘_1 =6,i=0,...,3k+ 3, 53j,3j—6 =46,j=2,3,...,k, 53,3k =4, and
0;j = A, otherwise. Therefore,

Qe=a = (Bk+4+k+1)6=(4k+5)d,
"= (Bk+3)i+ (3k+2)A,
(3k+3) + (3k + 2)q

= 15 —1.5asq—1and k — oc.

Pl

COROLLARY 3.8 In a Fuclidean travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times provides
a 1.5q-approximation to an optimal k-unit cyclic solution, k > 1.

To summarize, we have O(m) algorithms that produce cyclic solutions
whose per unit cycle times are within a constant factor of the optimum
for the three most common classes of robotic cells viz., additive, con-
stant, and Euclidean travel-time. The approximation guarantees for
these three classes of cells are 10/7, 1.5, and 4, respectively. Note that
the approximation algorithms construct a cyclic solution by repeating
a l-unit cycle. Therefore, the guarantees are, in fact, upper bounds on
ratio of the per unit cycle time of an optimal 1-unit cycle to that of an
optimal multi-unit cycle for each of these three classes of cells.



Chapter 4

DUAL-GRIPPER ROBOTS

This chapter treats the problem of sequencing robot moves in a dual-
gripper robotic cell producing a single part-type. In cells with a single-
gripper robot, a part cannot be moved from its current machine to the
next one if the next one is occupied (this is referred to as blocking in
classical flow shop scheduling; see Chapter 2). However, this is possible
with a dual-gripper robot because it can hold two parts simultaneously.
The grippers reside at the end of the robot’s arm. In a typical usage,
one gripper is empty and the other holds a part to be loaded onto the
next intended machine, which is currently occupied. The robot moves its
arm to that machine, uses the empty gripper to unload the finished part,
rotates the “wrist” at the end of its arm, and loads the other part. The
dual-gripper robot can perform such an unloading-and-loading sequence
faster than a single-gripper robot because the rotation takes less time
than does the robot’s inter-machine movement. Hence, dual-gripper ro-
bots can increase throughput in cells that are constrained by the robot’s
speed. The combinatorial explosion in the number of possible robot
moves with a dual-gripper cell substantially complicates the analytical
and computational aspects of the sequencing problem as compared to
those in a single-gripper cell.

Our presentation in this chapter reflects the different types of cells
that have been considered in the various studies on dual-gripper robotic
cells. Some model the additive travel metric, while others the constant
travel metric; some have addressed cells with a circular layout with the
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input device I and the output device O at the same location (Figure 4.1),
whereas others use a linear, semicircular, or circular layout with separate
locations for I and O. In switching between these models, our intention
is to remain true to the original research.

M; Mo

My My

Dual-Gripper Robot

1/0

Figure 4.1. A Four-Machine Dual-Gripper Robot Cell with the Input and Output
Devices at the Same Location.

4.1 Additional Notation

We let 6 denote the gripper switch time — the duration between the
moment one gripper has unloaded a machine until the moment the sec-
ond gripper is positioned to load the same machine. Furthermore, we
assume that a robot gripper switch is required (if I and O are co-located)
when the robot executes the operation “pick up a part from the input
device” followed by the operation “drop a part onto the output device”;
the same two operations performed in the reverse order (i.e., “drop a
part onto the output device” followed by “pick up a part from the input
device”) do not require a gripper switch. This is because in the latter
case the same gripper that drops a part onto the output device can be
then used to pick up a part from the input device.
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Moreover, we assume that the time required for the dual-gripper robot
to reposition its grippers while traveling from one machine to another
(i.e., when two successive operations are executed on different machines
and require different grippers) does not exceed the robot travel time
between the machines. Formally, let # denote the time taken by the
robot to switch its grippers while traveling between machines. For all
the problems considered in this chapter, we assume that § < § so that
max{d, #} = §; this assumption is valid in most manufacturing applica-
tions. We will use the following additional notation.

» P; — R: Part Pj is transferred to the robot from a machine (i.e., the
machine is unloaded).

m R — M;: The robot moves from its last location to M; and positions
one of its grippers for the next load or unload operation.

s P; — M;: Part P; is transferred from the robot to M; (i.e., M; is
loaded)

m wait: The robot waits at some machine M; for completing the process-
ing of a part P;.

Venkatesh et al. [154] study ways to improve the throughput of an ad-
ditive travel-time cluster tool in semiconductor fabrication that uses
a dual-gripper robot. They show that a dual-gripper robot improves
throughput over a single-gripper robot when part processing times dom-
inate robot travel times. They also show that the travel speeds of a
single-gripper robot would have to be twice those of a dual-gripper robot
to achieve the same throughput. One of our objectives is to compare the
maximum throughputs of single-gripper and dual-gripper cells in a more
general framework. Throughout this chapter, we consider cells with a
circular layout. Sections 4.2-4.7 consider the problem of obtaining an
optimum 1-unit cycle in an m-machine dual-gripper cell under the addi-
(free,A,cyclic-1)|p); Sections 4.3-4.6
present the results from Sethi et al. [143]. Section 4.8 studies a robotic

tive travel-time metric (i.e., RFa°

cell model that is closely related to a dual-gripper cell. Specifically, we
consider throughput maximization for a robotic cell served by a single-
gripper robot with a unit-capacity output buffer at each machine (i.e.,

RF;L’Oi (free,A,cyclic-1)|p). Cells with the constant travel-time metric
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are discussed in Section 4.9. The input device I and the output device
O are assumed to be co-located in Sections 4.2—4.8, and are considered
to be in separate locations in Section 4.9. To keep the description sim-
ple, we avoid the explicit specification of the circular layout in most of
the notation used here. We start our analysis with two-machine cells.

4.2 Cells with Two Machines

The dual-gripper robot move sequencing problem is much more com-
plicated than that with a single gripper even in the two-machine case. Su
and Chen [149] were the first to consider a dual-gripper robotic cell with
two machines producing a single part type (RF2|(free,A,cyclic-1)|u).
They consider only five different 1-unit cycles. We will see shortly that
a complete search for optimality involves analyzing 52 cycles (Sethi et
al. [143]). As a result, a new framework needs to be developed to char-
acterize all possible cycles and their cycle time expressions in terms of
the cell data, such as the processing times of parts on the machines, the
robot travel time between two adjacent locations, and the robot load
and unload times.

As with single-gripper cells, a complete specification of the state of a
robotic cell would be unduly burdensome for specifying the robot move
cycles of interest. The following robot states, which we refer to as basic
robot states, are sufficient to specify the robot move cycles.

s R, (0,k) or R; (k,0) is the robot state in which the robot has just
finished loading (or dropping off) a part on M;, i = 1,...,m + 1,
from a gripper. This gripper now holds zero parts as indicated by
the argument which equals 0. The other gripper has no part if £k = 0,
and if k # 0, it has one part to be processed (or dropped off) on My,
k=1,...,m+1.

» RP(i+1,k) or R (k,i+ 1) is the state in which the robot has just
finished unloading (or picking up) a part from M;, i = 0,...,m.
This part is now held in a gripper to be processed (or dropped off)
on M; 1, where machine M,,11 means O. The meaning of the second
argument k, kK =0,1,...,m + 1, is the same as before.

It should be clear that in each 1-unit cycle for each i (1 <i < m +
1), there will be precisely one loading activity corresponding to a state
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R; (-,-), where the dots will be replaced by appropriate indices; and one
unloading activity corresponding to a state Rj (+,-), where again the dots
are replaced by appropriate indices. Thus, there are 2m + 2 such states
in a l-unit cycle (Sethi et al. [142]). Given these, a set of equations
defining robot waiting times at different machines can be easily written.
It is straightforward to derive the expressions for the cycle times from
solutions of these equations.

Recall, Chapter 3, the following feasibility criteria for robot moves in

a single-gripper cell:
m The robot cannot be instructed to load an occupied machine.

m The robot cannot be instructed to unload an unoccupied machine.

In addition to the above, we have the following necessary criteria for a
cycle to be feasible in a dual-gripper cell:

m The robot cannot be instructed to unload a machine if both of its
grippers are occupied, i.e., a feasible activity sequence cannot have a
subsequence (M;", M ;’, M.

= The robot cannot be instructed to load a machine if both of its grip-
pers are empty, i.e., a feasible activity sequence cannot have a subse-
quence (M, , M, M,;").

m The robot can load a part onto M; only if that part’s most recent
processing was on M; 1,7 =1,...,m+ 1.

To obtain all feasible 1-unit cycles for m = 2, a convenient set of ba-
sic robot states from which to begin the cycles is Ry (3,k),0 < k < 3.
A feasible sequence of operations is one that satisfies all of the oper-
ating constraints of the system, e.g., the parts are scheduled as a flow
shop, the robot can hold at most two parts at a time, each machine can
hold at most one part at a time, etc. We consider only feasible state
sequences. For example, a sequence in which the state R;r(i%, 2) is im-
mediately followed by Ry (0, k) is not feasible and can be eliminated: in
the first state, R; (3,2), the robot has just unloaded a part from My and
is holding two parts that require processing next on My and Mj3. The
next state R; (0, k) is not feasible immediately after the state R3 (3,2),
since loading a part onto M; is not possible as the robot does not have
a part in either of its grippers that requires processing on Mj.
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Before we discuss the generation of all 1-unit cycles, it is instructive
to consider a detailed example of a 1-unit robot move cycle for m =
2. Consider the cycle (R5 (3,2), R, (3,0), R5(0,0), Rf(1,0), R{(1,2),
R{(0,2), Ry (3,2)). At the beginning of the (j—1)th iteration, part Pj_;
has been unloaded from M5 and placed on the robot, P; (already on the
robot) awaits loading on Ms, and Pj; is being processed at M;. Using
our previously defined notation, we may completely describe the cycle
as in Table 4.1. The cycle time for this cycle is 30 + 6¢ + 20 + wy + wo
where, for now, we ignore the calculation of w; and ws.

Cycle Element | Operations Duration
R5 (3,0) switch grippers | 6
P; — M- €
R (0,0) R—1/0 )
P, —1/O €
R;(I,O) Pj+2 — R €
R (1,2) R — M )
wait w1
Pis1— R €
R; (0,2) switch grippers | 6
Pjio — M, €
R (3,2) R — M )
wait wo
P; — R €

Table 4.1. A 1-Unit Cycle.

We now consider all possible (a total of 52) 1-unit cyclic sequences or-
ganized under four cases. Each of the four cases is specified by its initial
basic robot state. For each case, we consider all possible cyclic sequences
starting from the specified basic robot state. We will eventually show
that of the 52 sequences listed, all but 13 are dominated. The sequences
under Case 4,7 = 1,2,3,4, have state Ry (3,7 — 1) as the initial state.
For an enumeration of the sequences under Cases 1, 2, and 3, we refer
the reader to Figures 4.2, 4.3, and 4.4, respectively.

Case 4. (sequences starting with the state R3 (3,3)) At the start of the
cycle, the robot holds two parts, both destined for M3, the I /0 location.
Since a basic robot state of the form Rj (-,-) can occur only once in a
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cycle, it follows that the robot will carry one of these two parts through-
out the whole cycle (in effect, the robot will be operating as if it were a
single-gripper robot). Based on this observation, the reader can confirm
that there are only two feasible cycles that start with R3 (3,3), namely:

Ci1 = (R5(3,3),R5(3,0),R{(3,2),R; (3,0),
RZJSF(37 1)’ R;(37 0)7 R;(Sa 3))a

and

C472 = (R;(?)? 3)7 R:S_(?’? 0)7 R;—(?), 1)7 Rl_ (37 0)7
R{(3,2),R; (3,0), Ry (3,3)).

Notice that in terms of the sequence of loadings and unloadings, Cjy 1
is equivalent to C 5, and Cy2 is equivalent to Cj 13 (see Figure 4.2).
Cycles Cy1 and Cy 2, therefore, have the same cycle times as C 13 and
C1 13, respectively.

For problem RFY|(free,A,cyclic-1)|u, the cycle time expressions for
the 52 cycles can be easily derived and are shown in Tables 4.2, 4.3, 4.4,
and 4.5. All but 13 of the cycles in Tables 4.2, 4.3, 4.4, and 4.5 are
dominated. The last column in these tables indicates the dominance,
if applicable. The 13 undominated cycles are: Ci1, Ci4, C113, C1,14,
01715, C373, 0374, 0375, 03,6, 03797 03710, 03711, and 03716- It can be easily
verified by examining the 13 undominated cycles that C3 1 is optimal
among all dual-gripper 1-unit cyclic schedules under the assumption that
0 < min{d, p1,p2}.

Using the preceding analysis of two-machine cells as intuition, our next
task is to generalize cycle C3 1 for a general m-machine dual-gripper cell.

4.3 A Cyclic Sequence for m-Machine
Dual-Gripper Cells

We now construct a generalization C%, of cycle (3,10 for m-machine
cells. We first analyze its cycle time and then show its optimality
for problem RF?Z|(free,A,cyclic-1)|p under the assumption that 6 <
min{d, p1,...,Pm}

Cycle C7' starts with all machines occupied by parts and the empty
robot positioned at I/O. The sequence of activities for the robot in this
cycle is as follows:
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Cycle | Cycle Time Dominance
Relation

C1,1 T1,1 = max{53 + 6¢, p1 + 30 + B¢, p2 + 28 + 3¢} undominated
Ci2 Tio=T11+6 Tio2>Ti1
Ci3 T1,3 = max{63 + 6¢, p1 + 30 + 4€,p2 + 25 + 3¢} Ti3>Tss
Cia T1,4 = max{p1 + 20 + 4e,p2 + 46 + 6¢} undominated
C1’5 Ti5 = max{56 + 6€,p1 + 30 + be, pa + 35 + 56} Tis > Tia
Cie Tie = max{65 + 6€,p1 + 40 + 5e, pa + 30 + 46} Tie>T11
Ciz T1,7 = max{p2 + 58 + 6¢, p1 + p2 + 39 + He} Ti7>T114
Ci8 Ti,s =40 + 6€ + p1 + p2 Tis > Ths
Cio T1,0 = max{p1 + 53 + 6¢,p1 + p2 + 35 + He} Ti92>T11
Ciio | Thio=Ti14+86 Ti10 > T114
Cinn | i =Ti15+6 Ti,11 > Ti1s
Cii2 | T2 =Ti13+6 Ti12 > Tias
Cias | Th,13 =30 + 6e + p1 + p2 undominated
Craa | Th,1a = max{p1 + 2¢ + 0, p2 + 36 + 6¢ + 6} undominated
Ch,15 | Th,15 = max{5d + 6¢, p1 + 26 + 3¢, p2 + 36 + 5e} | undominated
Ci,16 | Th,16 = max{p1 + 2d + 3¢, p2 + 50 + 6¢} T116 2> T1,15
Cr,17 | Th,17 = max{60 + 6¢,p1 + 30 + 4€,p2 + 45 + 5e} | Ti17 > T8
Ciis | Ti18 = max{60 4 6¢,p1 + 36 + 4€,p2 + 36 +4e} | T8 > T13

Table 4.2. Cycle-Time Expressions for 1-Unit Cycles Ci,, for m = 2.

Cycle C7'

Begin

e: Robot picks up a part from I/0.

For i =1 to m do:

Begin
d: Robot moves to M;.
w;: Robot waits for the part on M; to be completed.
€: Robot unloads M,;.
0: Robot switches to the other gripper.
e: Robot loads M;.

End

d: Robot moves to 1/0.
e: Robot unloads finished part at I/0.

End

111
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Cycle | Cycle Time Dominance
Relation

Co1 To1 =30+ 6+ p1 +p2 =T1,13 T>1 > T1,13
Ca2 | Ta2 = max{p1 + 50 + 6¢,p1 + p2 + 39 + He} T > To 3
Ca3 T5,3 = max{p1 + 49 + 6¢, p1 + p2 + 25 + 4e} Tr3 > 1T33
Cou Toyu=To3+0 To4 > T3
Ca5 T25 = max{pz + 40 + 6¢,p1 + p2 + 26 + 4e} Tz5 > Tha
Co6 | T2 = max{pa + 55 + 6¢,p1 + p2 + 39 + 5S¢} Tr6 > To5
Ca,7 T>,7 = max{60 + 6¢, p1 + 40 + 5¢, p2 + 48 + Be,

p1 + p2 + 20 + 4e} To7 > T14
Cag Tog =To5+0 Tos > Tos
Cro | Ta29 = max{pa + 55 + 6¢,p1 + p2 + 39 + 5S¢} To9 2 To5
Ca,10 T5,10 = max{p1 + 59 + 6¢, p1 + p2 + 35 + He} T5,10 > To 3
Co11 | T2,11 = 40 + 6€ + p1 + p2 To11 > To3
Ca12 | Th12 = max{p1 + 2¢ + 0, pa + 46 + 6¢ + 0} T512 > T 14
C213 | T2,03 = max{5d + 6e+0,p1 +2¢+6,p2+30 +5c + 0} | To13 > T34
C214 | T214 = max{6d + 6¢,p1 + 20 + 3¢, p2 + 39 + 4e} T514 2 T35
Cais | T215 = T1,18 T2,15 > T8
Ca6 | T2,16 = 11,13 T16 2> Th13

Table 4.3. Cycle-Time Expressions for 1-Unit Cycles C5  for m = 2.

The cycle time ¢7' for C* can easily be calculated as

m
t = (m+1)5+2(m+ e+ mb+ > wy. (4.1)
k=1
The time sequence corresponding to Cj* can be represented as
{e, [0, w1,€,0,€], ... [0(1),w;,€,0,€e(2)], ... [0, wm,¢€0,¢€], d,€}.
At point (1) above: the robot returns to unload M;.
At point (2) above: the robot has just loaded a part on M;.

From this time sequence, we can calculate w; as

w; = max{0,p; — (m+1)0 —2me — (m — 1)0 — Zwk} (4.2)
ki
Adding —w; + Y wy, to both sides of (4.2) yields

Zwk = max{—w; + Zwk,pi —(m+1)d —2me — (m —1)0}. (4.3)
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Cycle | Cycle Time Dominance
Relation

Cs.1 T5,1 = max{53 + 6¢, p1 + 30 + He, p2 + 3 + He} T51 > T
C32 T32="T113 T32 > T113
Cs.3 T5,3 = max{p1 + 49 + 6e, po + 20 + 4e} undominated
Cs4 T3,4 = max{46 + 6e + 0, p1 + 0 + 2¢,p2 + 26 + 4e} undominated
Cs5 T35 = max{66 + 6e,p1 + 20 + 3¢, p2 + 25 + 3¢} undominated
Cse T3,6 = max{50 + 6e + 0,p1 + 2¢ + 0, p2 + 20 + 3¢} undominated
C37 | T3,7 = max{p1 + 50 + 6¢, p2 + 20 + 3¢} Ts7 > Tia
Cs8 T38 =T118 T3,8 > 1118
Cs9 T5,0 = max{5d + 6e + 0,p1 + 26 + 3¢, p2 + 0 + 2¢} undominated
Cs,10 | T3,10 = max{3d + 6e + 20, p1 + 6 + 2¢,p2 + 0 + 2¢} undominated
Cs,11 | T5,11 = max{p1 + 36 + 6e + 0, p2 + 2¢ + 6} undominated
C312 | T3,12 =T3,10+0 T5,12 > T3,10
C313 | T513 =T3,11+ 0 13,13 > 1311
C314 | T304 = max{5d + 6¢ +0,p1 + 35 + 5+ 0,p2 +2¢ + 0} | T314 > T30
Cs,15 | T5,15 = max{p1 + 49 + 6e + 0, p2 + 2¢ + 6} 13,15 > 13,11
Cs,16 | T3,16 = max{40 + 6e + 0, p1 + 26 + 4e, p2 + 2¢ + 0} undominated

Table 4.4. Cycle-Time Expressions for 1-Unit Cycles Cs j for m = 2.

Cycle | Cycle Time Dominance
Relation

04,1 T4,1 = max{66 + 6e,p1 + 30 + 4e, p2 + 30 + 46} T4,1 = T1,18

Ca2 Th2 =30+ 6e+ p1 +p2 Tao =Ti1,13

Table 4.5. Cycle-Time Expressions for 1-Unit Cycles Cy j for m = 2.

If w; > 0, (4.3) implies that > wy = p; — (m+1)6 — 2me — (m — 1)6.

If

w; = 0, (4.3) implies that > wg > p; — (m + 1)d — 2me — (m — 1)0. It
follows that

Zwk = max{0, max{p;} — (m + 1)0 — 2me — (m — 1)0}.

Substituting (4.4) into (4.1) yields

o =max{(m +1)0 + 2(m + 1)e + mb, max{p;} + 2¢ + 0}.

(4.4)

(4.5)
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4.4 Dual-Gripper Cells with Small Gripper
Switch Times

In most practical environments, the gripper switch time 6 is typi-
cally less than the inter-machine travel times and the machine process-
ing times. Thus, it is reasonable to assume that § < min{d, p1,...,pm}-
This assumption holds in this section and Sections 4.5-4.7. Under this
assumption, we now show that the dual-gripper robot cycle C'J* is opti-
mal for RF?|(free,A,cyclic-1)|p.

THEOREM 4.1 Assume 6 < min{d,p1,...,pm}. A lower bound for cycle
times for 1-unit robot move cycles using either a single-gripper or dual-
gripper robot is given by the right hand side of (4.5):

LB =max{(m+1)d +2(m + 1)e + m#, max{p;} + 2¢ +0}.  (4.6)

Proof. In part A of the proof, we show that max{p;} + 2¢+ 6 is a lower
bound. In part B, we show that (m + 1)d + 2(m + 1)e + m# is a lower
bound.

Part A: Consider any machine M;,1 < i < m, and a schedule . Since
o is cyclic, we may assume it to be of the form (M, , o1, M;r, 02), where
at least one of o1 and o9 is not empty. We consider two cases.

Case 1. o9 # (). The time from the start of loading a job on M;
until the completion of unloading on M; is at least p; + 2¢ (covering
the subschedule (M, , 01, M;"). The robot will be engaged for at least
an additional amount of time ¢ in order to complete oo. Thus, a lower
bound on the schedule length will be p; + 2¢ + § > p; + 2¢ + 6.

Case 2. 01 # 0,09 = (). This case can occur only with a dual-gripper
robotic cell. The cycle may be denoted by (Mf, M, ,01). The subcycle
(M;r, M;") requires 2¢ 46 time units, and the delay from the completion
of M, to the start of M;r is of length at least p;, for a total time of
i + 2€ + 0 time units.

Cases 1 and 2 prove that max{p;} + 2¢ + 0 is a lower bound on the
cycle times.

Part B: Recall that for any machine M;, the schedule o is of the form
(M;

. 01, M;r, 02), where at least one of 1 and o9 is not empty. We shall

compute lower bounds for the aggregate residence times of the robot at
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each machine and for the aggregate robot transportation time between
machines. The sum of these lower bounds will give us the bound of
(m+1)0 + 2(m + 1)e + m#. In our discussion, pgp = pm+1 = 0 is the
“processing time” at I/O. For residence times at the machines, there
are four cases to consider.

Case 1. M; = My (the “machine” is I/0). The robot is occupied at
My for 2¢ time units.

Case 2. 09 = (). The robot is occupied at M; for at least 2¢ + 6 time
units.

Case 3. o1 = (0. The robot is occupied at M; for at least 2¢ + p; time
units.

Case 4. o1 # () # 02. The robot is occupied at M; for at least 2¢ time
units (split between two visits).

Assuming that the number of machines included in Cases 2, 3, and
4, respectively, are u,v, and w = m — u — v, and that V is the set of
machines included in Case 3, we get an aggregate residence time for the
robot at all machines to be

2¢+u(2e+0) +0(2€) + Y pi+w(2e) =2(m+ De+uf + > pi. (4.7)
eV %

A robot movement from M; to M} occurs when an operation M, or Mf
is followed immediately by a robot operation M ; or M j+, where j # i.
Such a movement is “incident” to both M; and Mj, and requires ¢ time
units if M; is adjacent to M;, and a multiple of § time units otherwise.

For each machine in each cycle, there is at least one movement into and
one movement out of M;, so M, is incident to at least two movements. If
M; is included in Case 4, there are in each cycle at least two movements
into and two movements out of M;, so M; will be incident to at least
four movements. Thus, the aggregate of incidences over all machines is
at least 2(1 +u+v) +4w = 2(m+ 1) + 2w. Hence, the total number of
movements, which is half the aggregate incidences, is at least m+ 1+ w.
These movements require a minimum aggregate time of (m + 1 + w)J.
A lower bound on the cycle times is obtained by adding this to (4.7).
Since # < min{d,p1,...,pm}, we obtain (m + 1) + 2(m + 1)e + mb as
the lower bound. ]
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Since cycle C7' achieves this lower bound, the following corollary is
immediate.

COROLLARY 4.1 CJ' is optimal among all single-gripper and dual-
gripper 1-unit cyclic schedules under the assumption that 6 < min{J, pi,

- Pm}-

4.5 Comparing Dual-Gripper and Single-Gripper
Cells

A fundamental question concerning dual-gripper cells is the extent
of improvement in productivity that they offer as compared to single-
gripper cells. In this section, we present an analysis for additive travel-
time cells. Let Ts (resp., Ty) denote the optimal cycle time for problem
RF,}»[°|(f7’ee,A,cyclic—1)|u (resp., RFE{°|(free,A,cyclic-])m).

THEOREM 4.2 For m-machines robotic cells, Ts/Ty < 2, and this bound
1s tight.

Proof. We define an instance as a vector I = (d,¢€,0,p1,...,pm), where
all parameters are non-negative. Let Tg(I) and Ty(I) denote the opti-
mal values for the instance I in single-gripper and dual-gripper cells,
respectively. Note that € is not a parameter in the calculation of Ts(1),
while Ty(I) = T4(6,¢€,0,p1,...,pm) is monotonically nondecreasing in 6.
It follows that for purposes of the worst case analysis of Ts/T,, we may
assume 6 = 0.

We define the instance I” = (4,¢,0,p1, ..., pm) to be the same as in-
stance I with the one exception that # = 0. Based on the above com-
ments,

T(1)/Ta(I) < To(I") Ty(I").

Since I"” has 6 = 0, it follows that T;(I") = max{(m + 1)J + 2(m +
1)e, max{p;} + 2¢}. Since Ty(I"”) depends on the processing times only
through max{p;}, it follows that for the purpose of the worst case analy-
sis, we may assume that all p;’s are equal: if we increase all p;’s to
max{p;}, we would not increase the optimal cycle time for the dual-
gripper problem, while the duration for the single-gripper problem may
increase. Thus, we assume that § = 0 and p; = ... = p,, = p, and define
the corresponding instance I’ = (d,€,0,p, ..., p). Clearly,

To(I)/Ta(I) < To(I")/To(I") < To(1')/Ta(I').
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Thus, to prove the upper bound, we may restrict our attention to the
instance I’. For the remainder of the proof, the notation Ty and T} refer
to Ts(I') and Ty(I'), respectively.

Next, we define a 1-unit cyclic schedule o for a single-gripper robot
so that the cycle time T, is at most twice the optimal dual-gripper cycle
time Ty. The single-gripper cycle o starts with the robot empty at /0O
and with a job in progress at each of the even-numbered machines. In
each cycle, the robot makes two visits to each of the machines. On
its first visit, each even-numbered machine is unloaded and each odd-
numbered machine is loaded. During its second visit, each odd-numbered
machine is unloaded and each even-numbered machine is loaded. The
analysis for m odd is slightly different from that for m even. We deal
first with the case when m is even.

To begin with, assume that part P; is on M,,, Piy1 is on My,_o, ...,
and P, /51 is on My. To help clarify the proof, we provide in Table 4.6
an example of the sequence of operations and their durations for cycle o
in a six-machine cell. For simplicity and without loss of generality, we let
1 =1, i.e., the initial parts on Mg, My, and My are, respectively, P, Ps,
and P3. Note that the operation wait at /O (the last operation shown
in the table) is a dummy operation with wy = 0, and is included to help
the reader appreciate the symmetry associated with the schedule. The
order of the operations in Table 4.6 is as follows: the 12 operations in
Column 1 followed by the 12 operations in Column 3 and, finally, the 11
operations in Column 5. It is easy to see that the subsequence (P; — R,
R — My, P; — My, R — M4, wait) is repeated seven times, for
appropriate values of j and k, with the last wait (at I/O) in the cycle
being the dummy operation mentioned above. Correspondingly, we have
a sequence of durations that repeats seven times the subsequence (e, d,
€, 0, w;) for appropriate values of i. The w;’s are derived as described
in Chapter 3. We have

L(7-9)/2]
w; = mnax 0,p — 76 — 6e — Z Wi—1+425
j=1
[(i-1)/2]
- wi—25 ¢, for 1 <4 <6.
j=1
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Operation | Duration | Operation | Duration | Operation | Duration
(1) 2) 3) (4) (5) (6)

P, — R € P> — Ms € wait w3

R — M, ) R — Mg 19 P; — R €

Py — M, € wait We R — My

R — M 1) P —R € P; — My

wait wa R—1I/0 1 R — Ms;

P; — R € P —1I/O | € wait ws

R — Ms; ) R — M, 1 P, — R €

P3 — M3 € wait w1 R — Ms )

R — M4 6 P4 — R € P2 — Mﬁ €

wait Wy R — M, ) R—1I/0O )

P2 i R € P4 — M2 € watt wo = 0
R — M; 1) R — Ms 1) - —— - ——

Table 4.6. A 1-Unit Cycle for m = 6.

The cycle time T, for this particular cycle is given by T, = 149 + 14e +
> w;. A solution is given by

wp = 0,
w; = max{0,(p—"T75—6¢)/3}, for 2 <i<6.

Generalizing the ideas illustrated in the example, we will now present
the case in which m is an arbitrary even number.

For m an arbitrary even number, the cycle we get is given by (m + 1)
copies of the subsequence (P; — R, R — My, P; — My, R — M1,
wait) for appropriate values of j and k with the last wait being the
dummy wait at 1/0. Correspondingly, we have a sequence of durations
which repeats (m + 1) times the subsequence (e, 0, €, d, w;) for appro-
priate values of i. The w;’s appear in the order (wa, wy, ..., W, wi, ws,
.oy Wym—1). The w;’s are calculated in the usual fashion. For 1 <i < m,
we may write

L(m—it+1)/2] L(i-1)/2]
w; = max{O,p — (m + 1)5 — me — Z Wi—1425 — ’wi_gj}.
j=1 j=1
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The cycle time T, for this particular cycle is given by T, = 2(m +1)d +
2(m + 1)e+ > w;. A solution is given by

w; = 0,
w; = max{0,[p— (m+1)0 —me]/[m/2]}, for 2 <i<m.
We may now calculate T, for even values of m. Observe that
T, =2(m+1)5+2(m+ e+ > w.
Thus,

T 2(m+1)0+2(m+1)e, ifp—(m+1)d —me <0,
7 (I/m)[2(m 4+ 1)d +4me + 2(m — 1)p],  otherwise.

Note that T, may not be an optimal 1-unit cycle for the single-gripper
robotic cell. Since Ts < T, it is sufficient to establish the worst case ratio
for T, /Ty. Keeping in mind that Ty = max{(m+1)d+2(m+1)e, p+2¢},
we compute the worst case ratio:

m For p— (m+1)d —me <0, we have

Ty /Tqa = [2(m+1)(0 + €)]/ max{(m + 1)(0 + 2¢),p + 2¢},
< R0m+ 16+ /[ + 1 +20] <2

= For p— (m+ 1)d — me > 0, we have

T,/Ty = (1/m)[2(m +1)6 + 4me + 2(m — 1)p]/ max{(m + 1)
+ 2(m 4+ 1)e,p + 2¢},

[(1/m)(2(m + 1)d + 4me)]|/[(m + 1)0 + 2(m + 1)¢]

+ [(1/m)(20m — 1)) /[p+2¢],

< (1/m)@) + (1/m)0m — 1)) = 2.

IN

This completes the proof that T, /T,; < 2 for even values of m.

We now prove the result for odd values of m. For illustration, we
specify in Table 4.7 a schedule o for m = 5 which, as before, starts
with the robot empty at I/O and the machines My and M, occupied.
Without loss of generality, part P, may be assumed to be on M,. For
an arbitrary odd number m, the cycle o obtained is described as follows:
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Operation | Duration | Operation | Duration | Operation | Duration
(1) (2) 3) (4) (5) (6)

P;s — R € Pi— R € P, — R €

R — M, 1) R — Ms 1) R — M, §

P3 — M, € P, — M; € P> — My €

R — M> ) R — M, 26 R — M5 )
wait wa wait w1 wait ws

P, — R € P; — R € Pr— R €

R — M; 4 R — M, 1) R—1I/0 |§

P, — Ms € P; — M € PL—1I/O | €

R — My ) R — Ms; 1) _—— _——
wait W4 wait w3 - — = - — =

Table 4.7. A 1-Unit Cycle for m = 5.

(m — 1)/2 copies of the subsequence (P; — R, R — My, P; — Mj,

R — Mj1, wait) for appropriate values of ¢ and k, followed by one
copy of (P, - R, R — M,,, P, — M,,, R — M, wait), followed by
(m — 1)/2 copies of the subsequence (P, — R, R — My, P, — Mj,
R — My, wait) for appropriate values of ¢ and k, followed by one
copy of (PL - R, R —1/O, P, — 1/0,).

The w;’s are derived as described in Chapter 3. We have

max{0,p — (m+1)0 —
[(m—i+1)/2]

-

J=1

(m — 2[i/2] +2[i/2] + 1)e
Li-1)/2]

> wig}
=1

w; =

Wi—1425 —

Note that (m — 2[i/2] 4+ 2|i/2]| + 1)e equals (m + 1)e when 7 is even,
and equals (m — 1)e when i is odd. The cycle time is T, = 2(m + 1)d +
2(m + 1)e+ > w;. We consider three cases:

m Casel.p—(m+1)d—(m+1e<p—(m+1)d —(m—1)e <0.

=0,T, =2(m+1)6 +2(m + 1)¢, and
+1)e]/[ +1)5 +2(m + 1) < 2.

In this case, wy = ... =
T, /Ty < [2(m + 1)5 + 2(

m Case2. p—(m+1)d—(m+1)e<0<p—(m+1)0 — (m — 1)e.
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In this case, w1 =p—(m+1)d — (m — 1)e, wo = ... = wy, =0, and
Ty = (m+1)d + (m+ 1)e + 2e + p. Therefore, T,,/Tq < [(m + 1) +
(m+1)e]/[(m+1)d+2(m+1)el+ (p+2¢)/(p+2) <1+4+1=2.

m Case3. 0<p—(m+1)d—(m+1)e<p—(m+1)d —(m—1)e.

In this case, we have

wy =[p—(m+1)0 — (m+ 1)el/[(m+1)/2] + 2,
wy=...=wy=[p—(Mm+1)d—(m+1)e/[(m+1)/2] =w; — 2,
T, =20 +4e+ (2mp)/(m + 1).

Therefore, T, /Ty < [26 + 4e€]/[(m + 1)0 4+ 2(m + 1)e] + [(2mp)/(m +
D)]/Ilp + 2¢]. Thus, T, /T < [2/(m+1)] +2m/(m + 1) = 2.

This completes the proof that 2 is an upper bound on T /Ty for instances
of the form of I’ with = 0 and p; = ... = p,, = p. As discussed at the
beginning of the proof, the bound holds for all instances.

To show that 2 is a tight bound on T, /T, we use the following data:
(m+1)d=p=...=pn=p>0and e =6 = 0. In this case,
Ty = (m+ 1)d. The cycle time for the schedule o is T, = 2(m + 1)J.
For any other single-gripper schedule 7 for this instance, we show that
T: > 2(m + 1)6. The proof holds for both odd and even values of m.

The schedules with which we are concerned may be described as cyclic
permutations of the sub-schedules (MjJr_l,Mj*), 1 <j<m+1. Each
such cyclic permutation yields a 1-unit cyclic schedule, and every 1-
unit cyclic schedule can be so described. Assume 7 to be a schedule
of duration less than 2(m + 1)d. We show that such a schedule cannot
exist. A few observations about 7 are in order:

1. Corresponding to each (thp Mj_), 1 <j<m+1, there is a travel
time of § between M;_1 and M;. Thus, the robot is occupied for

(m 4+ 1)6 units of time for these moves.

2. The sub-sequences (M;,M;r_l), 1 <7 <m+1, cannot occur. This
follows from the fact that the sub-sequences (M ;r_ M), 1 <5<
m + 1, do necessarily occur.

3. For 1 < j < m, if the sub-schedule (Mj_, Mj+) is part of a schedule,
then the duration of the schedule is at least 2(m + 1)J. This results
from the (m—+1)J units of robot travel time mentioned in observation
(1) above, and a robot waiting time of (m + 1)d at M;.
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4. It follows that for the purpose of finding a schedule 7 of duration
less than (m + 1)d, we may assume, for 1 < j < m, that M;r is

immediately preceded by Mi( for some i(j) # j. Hence, a travel
) M j). It

follows that in addition to the travel time of (m + 1)0 mentioned in

J)
time of at least § is associated with the sub-schedule (M;

observation (1), there must be an additional travel time of at least
md associated with (M;;), M;) for j # 0, for a total travel duration
of at least 2(m+1)d —3§. Thus, there cannot exist an additional travel
time associated with 7 other than that just mentioned. In particular,
this implies that (M, , M) must be part of the schedule 7.

We now pose the question: For which value of h is (M,,, M. ,j ) a sub-
schedule of 77 By observation (2), h # m—1. By observation (3), h # m.
By observation (4), h # 0, or equivalently h # m+1, since (M, M) is a
sub-schedule. It follows that regardless of what h is, there is a travel time
to M, of at least 2§ associated with (M,,, M,). Thus, by observation (1)
there is an aggregate travel time of (m+1)d associated with (M jtl, M),
1 < j < m+ 1. By observation (4), there is an additional travel time
of at least (m — 1)d associated with each (M;;, M;) for j # 0,h. We
have just seen that associated with (M,,, M ;f ), there is a travel time of
at least 25. Hence, the total travel time of 7 is at least 2(m + 1)d. This
completes the proof. |

4.6 Comparison of Productivity: Computational
Results

One obvious approach to assess the productivity advantage of a dual-
gripper cell over a single-gripper cell is to estimate the performance
ratio of the cycle time of the best single-gripper cycle to that of the best
dual-gripper cycle. In general, one has to consider all possible multi-
unit cycles to arrive at the optimal value of this ratio. For large m,
explicit enumeration becomes impractical even if we limit our search to
all 1-unit cycles. Drobouchevitch et al. [50] show that for single part-
type production in a dual-gripper cell, the increase in the number of
machines in the cell leads to an increase in the number of possible 1-
unit cycles that is much higher as compared to that in a single-gripper
cell. For example, for m = 10, there are 642,787,488,000 feasible 1-unit
cycles for a dual-gripper cell (Table 4.8) and 10! = 3,628,800 feasi-
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ble 1-unit cycles for a single-gripper cell. We describe below a simple
heuristic, ProdRatio, to estimate the ratio Ts/T}, for the class of 1-unit
cycles. Recall that T is the optimal single-gripper cycle time for prob-
lem RF}!|(free,A,cyclic-1)|p, and Ty is the optimal dual-gripper cycle
time for problem RF2|(free,A,cyclic-1)|pu.

Number of | Number of 1-unit cycles Number of 1-unit cycles, m!
machines (Dual-gripper cell) (Single-gripper cell)
m Drobouchevitch et al. [50] | Sethi et al. [142]

1 6 1

2 46 2

3 456 6

4 5 688 24

5 86 640 120

6 1 568 880 720

7 33 022 080 5 040

8 793 215 360 40 320

9 21 423 709 440 362 880

10 642 787 488 000 3 628 800

Table 4.8. Number of 1-Unit Cycles for both Dual-Gripper and Single-Gripper m-
Machine Robotic Cells.

For an instance, algorithm ProdRatio computes cycle time estimates
by exploring 1-unit cycles for both single-gripper and dual-gripper cells,
and then finds the performance ratio based upon these estimates. Let
T, and Ty denote the estimates for T} and T}, respectively.

Algorithm ProdRatio

Input: An instance for both RF} |(free,A,cyclic-1)|u and for RE2 |(free,
A,cyclic-1)|p is specified by m, 6, €, p1,...,pm, and 6.

Step 1: Find the minimum cycle time (i) among all m! 1-unit cy-
cles for the single-gripper problem RE}! |(free,A,cyclic-1)|u. Set T, =

tmin-
Step 2:

2a. If m = 2, then find the minimum cycle time (7}, ) among all un-
dominated 13 1-unit cycles — 0171,01,4, 01713,01714,017157037370374,0375,
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C3.6,C3.9,C3.10,C3.11,C5.16 — for REZ|(free, A, cyclic-1)|u. Set Ty =
Tmin'

2b. If m > 2, then find the cycle time (¢}') for the 1-unit cycle C}*
for RF2|(free,A,cyclic-1)|u. Set Ty = t7" = max{(m + 1)0 + 2(m +
1)e + mb, max{p;} + 2¢ + 60}.

Step 3: Find the ratio Ts/Td.
Step 4: Output: T3, T and T} / Ty,. Terminate.

Theorems 4.3 and 4.4 describe the performance of ProdRatio. Based on
our discussion so far, the following results are immediate.

THEOREM 4.3 For m = 2, ProdRatio yields a performance ratio with
the value Ts/Ty.

THEOREM 4.4 Given any instance of an m-machine problem satisfying
the inequality @ < min{d,p1, ..., pm}, ProdRatio yields a performance
ratio with value Ts/Ty.

Theorem 4.4 leaves open the question of quality of the ratio T, / Ty yielded
by ProdRatio for the case § > min{d, p1,...,pn}. To address this case,
we describe a simulation that will bound the ratio T’ /T v produced by
the algorithm. The simulation works as follows: generate an instance
satisfying 6 > min{d, p1,...,pm}, let 9 = min{d, p1,...,pm}, and exe-
cute ProdRatio on the instance obtained by substituting  for 6. Let
r= Ts / Td denote the ratio produced by ProdRatio applied to the orig-
inal instance, and let r’ = T, /T(; denote the ratio produced by the al-
gorithm applied to the transformed instance that uses 6  instead of 6.
Note that TC} = max{(m+1)d+2(m+1)e+mf , max{p;} +2¢+6'}. We
have T} / T, < T / T:l Theorem 4.4 applies to the transformed problem.
Thus, the maximum percentage by which r may underestimate the ratio
T,/Ty is given by [100(r — r)]/r.

Next, we provide the computational results from applying heuristic
ProdRatio for instances generated for the following two cases. Case I:
0 < min{d,p1,...,pm} and Case 2: 0 > min{d,p1,...,pm}. Note that
for linear and semicircular layouts, the best 1-unit single-gripper cycle
can be found in polynomial time in m (Chapter 3, Crama and van de
Klundert [40]). This result, however, does not hold for the circular layout
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where the input and output devices are located in one place. Since we
do not know of any existing efficient algorithm for a circular layout,
we let Step 1 of ProdRatio enumerate the m! cycles. For m < 12, we
use exhaustive search to find an optimal 1-unit cycle as this search is
computationally feasible. For m > 13, we apply a heuristic based on a
Genetic Algorithm (GA) to find a good 1-unit cycle.

Genetic Algorithms belong to the class of heuristic optimization tech-
niques that utilize randomization as well as directed smart search to
seek a global optimum. The creation of GAs was inspired by evolu-
tionary processes through which life is believed to have evolved in its
present forms (Goldberg [68]). When applied to the robotic cell schedul-
ing problem, a GA views a sequence of machine loadings by the robot as
an individual candidate sequence or solution. For example, for m = 4,
the candidate solution m = (5,4, 2,3, 1) denotes the sequence of machine
loadings in the associated 1-unit cycle: (M;, M, , M3, My , M) (see
Chapter 3). A number of such individual solutions constitutes a pop-
ulation. Each individual solution is characterized by its fitness (e.g.,
cycle time value). The GA works iteratively with the members of the
population using operators such as crossover and mutation; each new it-
eration is referred to as a generation. For details, we refer the reader to
Murata and Ishibuchi [123]. A key challenge in the application of GAs
is the optimization of the computational effort in balancing exploration
of the solution space and exploitation of the features of good solutions
or sequences produced along the way. This balance is affected greatly
by the choices of the different GA parameters, including elite fraction
(ef), population size (Ps), the probability of crossing two parents (Pc),
the probability of mutation (Pm), and the number of generations (ngen)
(for details, we refer the reader to Goldberg [68], Davis [44]). After per-
forming some trial runs, we found that the following values for these
parameters are suitable for our experiments: Ps = 100, Pc = 0.95,
Pm =0.1, ef = 0.5, and nge, = 100.

To test algorithm ProdRatio, we use data guided primarily by practi-
cal relevance. We generate three types of processing times of the parts:
I, I5,I3. Under I; (resp., I and I3), the processing times are cho-
sen randomly from U [1,15] (resp., U [1,25] and U [1,50]). In practice,
the value of 6 is smaller than the processing times of the parts. We
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use three values of 6: 0.25, 1.0, and 1.5. For all instances, we set
e = 0.25 and § = 1.0. For each setting of the parameters, we gener-
ate five instances. Let r; and r;g denote, respectively, the ratio obtained
by the heuristic and the upper bound for the kth instance of each set-
ting. Let 7 = 22:1 re/5, 7 = 22:1 T1./5, Tmin = Mini<k<s{Tk}, Tmaez =
max; <<5{ri}, e = 100(ry —75)/Th, € = Sy €x/5, £ = minj<<s{ex},
and u = max;<p<s{ex}-

‘ m | Instance ‘ 0 ‘ Tmin | T ‘ Tmaz |
2 I 0.25 | 1.2549 | 1.3330 | 1.5000
2 I 0.25 | 1.1206 | 1.1410 | 1.1646
2 I3 0.25 | 1.0726 | 1.1384 | 1.3023
5 I 0.25 | 1.4237 | 1.5083 | 1.6098
5 I 0.25 | 1.1717 | 1.2120 | 1.2881
5 I3 0.25 | 1.0854 | 1.1086 | 1.1475
10 | Ih 0.25 | 1.6053 | 1.7105 | 1.8684
10 | I2 0.25 | 1.5152 | 1.7237 | 1.9211
10 | I3 0.25 | 1.0929 | 1.1281 | 1.2205
15 | I 0.25 | 1.7297 | 1.8667 | 1.9820
15 | I 0.25 | 1.8739 | 2.1514 | 2.2703
15 | I3 0.25 | 1.4426 | 1.4921 | 1.5276

Table 4.9. Performance Evaluation of Algorithm ProdRatio for Case 1 with 8 = 0.25.

Table 4.9 provides the performance ratios of ProdRatio for instances
under Case 1 with § = 0.25. Each row of the table summarizes the
results of the corresponding five instances. The fourth, fifth, and sixth
columns show the minimum, mean, and the maximum performance ra-
tios, respectively. The results for 7 show that, on average, the produc-
tivity improvements obtained by using a dual-gripper cell instead of a
single-gripper cell range from 10% to 115%. The results also indicate
that the productivity improvements are typically higher in cells with
more machines. Over all the 60 instances, the smallest and the largest
performance ratios are 1.0726 and 2.2703, respectively. Note, however,
that the performance ratios r; are an overestimate of the true produc-
tivity improvements: the heuristic used in Step 1 typically overestimates
the single-gripper cycle time. A case in point is Row 11 of Table 4.9,
where the ratios exceed the proven bound of 2 (Theorem 4.2) for some
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| m | Instance | 0

‘ Tmin |

r ‘ rmu.z |

2 I 1.0 | 1.1724 | 1.1950 | 1.2174
2 I 1.0 | 1.0980 | 1.1252 | 1.1613
2 I3 1.0 | 1.0495 | 1.0597 | 1.0704
5 I 1.0 | 1.2414 | 1.3268 | 1.3929
5 I 1.0 | 1.1429 | 1.1744 | 1.2727
5 I3 1.0 | 1.0722 | 1.0902 | 1.1373
10 | Ih 1.0 | 1.0755 | 1.2227 | 1.3396
10 | I 1.0 | 1.3585 | 1.4264 | 1.4906
10 | I3 1.0 | 1.0693 | 1.1302 | 1.3093
15 | I 1.0 | 1.1795 | 1.3205 | 1.4872
15 | I 1.0 | 1.3590 | 1.5000 | 1.5897
15 | I3 1.0 | 1.3366 | 1.3831 | 1.4588
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Table 4.10. Performance Evaluation of Algorithm ProdRatio for Case 1 with 6 = 1.0.

-

m 0 Irmm |F ’rmaz |F/ ‘E |e |u

2 Iy | 1.5 ] 1.3333 | 1.1831 | 1.2857 | - - - -

2 I> | 1.5 | 1.0800 | 1.0982 | 1.1250 | - - - -

2 I3 | 1.5 | 1.0435 | 1.0664 | 1.1053 | - - - -

5 | I | 1.5 | 1.2121 | 1.2606 | 1.3030 | 1.3703 | 6.45 | 8.73 17.86
5 I> | 1.5 | 1.1250 | 1.1952 | 1.2500 | 1.2235 | 2.04 2.37 3.03
5 Is | 1.5 | 1.0652 | 1.0955 | 1.1818 | 1.1117 | 1.10 1.46 2.33
10 | Iy | 1.5 | 1.0159 | 1.1079 | 1.1746 | 1.3170 | 18.87 | 18.87 | 18.87
10 | Iz | 1.5 | 1.1270 | 1.2191 | 1.2857 | 1.4491 | 18.87 | 18.87 | 18.87
10 | Is | 1.5 | 1.0600 | 1.1352 | 1.2292 | 1.1472 | 1.01 1.05 1.12
15 | I; | 1.5 | 1.0108 | 1.1269 | 1.2258 | 1.3436 | 19.23 | 19.23 | 19.23
15 | I | 1.5 | 1.0753 | 1.1807 | 1.3979 | 1.4077 | 19.23 | 19.23 | 19.23
15 | Is | 1.5 | 1.3300 | 1.4058 | 1.4946 | 1.4702 | 0.99 4.39 12.05

Table 4.11. Performance Evaluation of Algorithm ProdRatio for Case 2 with § = 1.5.

instances. Table 4.10 reports the results for instances under Case 1 with

f# = 1.0. Table 4.11 reports the results for instances under Case 2 with

0 = 1.5, and also compares the performance ratios obtained by ProdRa-

tio with an upper bound. As before, each row in Table 4.11 corresponds

to the results of the corresponding five instances; the fourth, fifth, and

sixth columns show the minimum, mean, and the maximum performance
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ratio, respectively. Columns eight, nine, and ten show, respectively, the
minimum, mean, and the maximum percentage deviation from the upper
bound. The results for 7 show that productivity improvements averag-
ing between 6% to 40% may be obtained by using a dual-gripper robot
instead of a single-gripper robot. In general, the productivity improve-
ments are higher in cells with more machines for a given type (i.e., I, I,
or I3) of processing times. The smallest and the largest performance ra-
tio observed are 1.0108 and 1.4946, respectively, over all 60 instances
reported in Table 4.11. On average, the performance of ProdRatio on
smaller cells compares well with the upper bound. The mean relative de-
viations are all less than 8.73%, except for four cases where this value is
either 18.87% or 19.23%. The smallest and the largest relative deviations
are 0.0% and 19.23%, respectively. The results for 7 in Tables 4.9, 4.10,
and 4.11 indicate that the productivity improvements decrease with an
increase in the the value of the gripper switch time 6.

4.7  Efficiently Solvable Cases

This section identifies some efficiently solvable cases of RFZ°

(free, A,
cyclic-1)|p in addition to the one in Corollary 4.1. Surprisingly, the § < §
assumption drastically simplifies the problem in the case of 1-unit cycles.
Drobouchevitch et al. [50] show that problem REZ|(free,A,cyclic-1)|u
with 6 < ¢ is efficiently solvable. A lower bound on an optimal solution
is mentioned below. Let

Do=1{klpr <0,1<k<m}, D=M\Dy, r=|Di. (48)

LEMMA 4.1 For problem RE2|(free,A,cyclic-1)|p with 0 < &, a lower
bound on the length T(C) of any 1-unit cycle C' is:

T(C) > max { max py + 0 + 2 > pe+r0+ (m+1)(5+ 2e)
- k€ Dy
(4.9)

Proof. Similar to that for Corollary 4.1. See Drobouchevitch et al. [50]
for details. |

We are now ready to demonstrate that problem RF2|(free,A,cyclic-
1)|p is efficiently solvable provided 6 < §. The optimality of the 1-unit
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cycle we obtain is guaranteed by its cycle length being equal to the lower
bound (4.9).

Algorithm OPT1

Input: An instance of RF2|(free, A, cyclic-1)|p. The sets Dy and D§ are
as defined in (4.8).

Output: A 1l-unit cycle C*.

Initial setting: Machines My, k € Dy, are occupied with a part; ma-
chines My, k € Dy, are empty. The robot is positioned at I/O; both
robot grippers are empty.

Step 1: The robot picks up a part from 1/0.

Step 2: For k from 1 to m:

Step 2.1: The robot moves to machine M.
Step 2.2: If k € Dg, then
m if necessary, the robot waits for wy time units for a part on
M)}, to complete processing;
= the robot unloads a part from My, (€);
= the robot switches grippers (6);
= the robot loads a part onto My, (e).

Step 2.3: Otherwise (i.e., k € Dy),

= the robot loads a part onto M}, (e);

m the robot waits for p, time units for a part on M} to be
processed;

= the robot unloads a part from M, (e).

Step 3: The robot moves to the I/O hopper and drops a part at the
output device of the I/O station.

It is easy to verify that the running time of algorithm OPT1 is O(m).
The theorem below analyzes its performance.
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THEOREM 4.5 For an instance of RF2|(free,A,cyclic-1)|u with 6 < 4,
OPT1 produces an optimal 1-unit cycle C*. The cycle time of C* is

T(C*) = max { max py + 2¢ + 6; Z e+ 70+ (m+1)(5 + 2¢)
keDg 5
(1.10)

Proof. We leave it to the reader to verify the feasibility of cycle C*. To
prove the optimality of C*, we show that its cycle time indeed achieves
the lower bound represented by the expression on the right-hand side of
inequality (4.9).

We consider two possible scenarios. First, suppose that there exists
at least one k € Dy for which wy, > 0. Then, it is easy to see that

T(C*) = pr, + 2e+ 0. (4.11)
Now, suppose there is no positive wy. Then,

T(C*)= > pr+r0+(m+1)5+2(m+ 1. (4.12)
k€D,

Combining (4.11) and (4.12) together, we obtain (4.10). By Lemma 4.1,
the optimality of C* follows. m

The result of Lemma 4.1 can be extended to the general case of
RF2|(free, A, cyclic-k)|p (i-e., when the search for an optimal cyclic so-
lution is not restricted to the class of 1-unit cycles) if we impose an
assumption on the values of part processing times. The proof of the fol-
lowing theorem is similar to that of a result — Theorem 4.8 in Section 4.9
— we present later. We, therefore, state it here without a proof.

LEMMA 4.2 For problem RFEZ|(free,A,cyclic-k)|pu with 0 < & and
maxi<i<m{pi} > 0, a lower bound on the per unit cycle time of any
k-unit cycle C' is:

7(C) {

5 > max { max pi+0+26;m9+(m+1)5+2(m+1)e}. (4.13)

1<i<m

COROLLARY 4.2 For problem RF?2|(free,A,cyclic-k)|u with 0 < & and
maxi<ij<m{pi} >0, algorithm OPT1 obtains an optimal solution.



Dual-Gripper Robots 131

4.8 Single-Gripper Cells with Output
Buffers at Machines

In this section, we consider a model that is closely related to the
dual-gripper problems we have studied so far. Specifically, we discuss a
robotic cell served by a single-gripper robot that allows for temporary
storage of processed parts at each machine. A unit-capacity buffer at a
machine can be viewed as an alternative to an additional gripper. A local
material handling device at a machine can move a completed part to the
output buffer of that machine, without using the robot. Our aim is to
investigate this model with machine buffers and compare it to a dual-
gripper robotic cell. The analysis we present is from Drobouchevitch et
al. [50]. We start with the formal definition of the problem.

Following the notation of our classification scheme in Chapter 2, we
are interested in RF;’% (free,A,cyclic-1)|p, the problem of obtaining a
1-unit cycle that maximizes throughput in an m-machine single-gripper
robotic cell producing identical parts with a circular layout and with a
unit-capacity output buffer at each machine; 1 = (1,1,...,1) denotes
that each machine has an output buffer of unit capacity. The processing
requirements are the same as that for RFq°|(free,A,cyclic-1)|p. We
denote the buffer at machine M; by B;. The pair (M;, B;) is referred to
as the production unit Z;.

The main purpose of an output buffer at a machine is to allow for tem-
porary storage of a part that has been processed on the machine. This
allows a single-gripper robot to unload and reload M; during a single
visit. From an optimization aspect, we make the following assumptions
on the use of a production unit (M;, B;):

(i) Buffer B; is used to accommodate a part (say, P;) that has finished
its processing on M; if and only if machine M; is scheduled to be
loaded with the next part (Pj41) before part P; leaves the production
unit (M,L, Bl)

(ii) The robot is not allowed to load part Pj+; on M; until part P; is
moved securely to the buffer. This is done for safety — to avoid any
collision between the robot and the local material handling device.

Assumption (i) implies that the use of a buffer is cycle-dependent.
That is, the decision on whether a part P; that has finished its pro-
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cessing on a machine M; is to be transferred to buffer B; depends on
the next robot operation scheduled for unit Z;. Specifically, if the next
operation is “load machine M;,” then part P; goes to B; immediately
on the completion of its processing on M;; thus, machine M; is empty
and ready to take the next part P;i;. Otherwise, when there is no need
to use a buffer, part P; occupies machine M; until the robot unloads
it. The idea is to optimize the use of the buffer; the time to unload a
part from a machine and move it to its buffer is spent only when it is
necessary for the execution of the cycle. The following parameters are
needed for this model:

m p;: the processing time of a part on machine M;, i =1,2,...,m.

= ¢ the time taken by the robot to pick up/drop off a part at /0. Also
the time taken by the robot to perform the load/unload operation at
any production unit Z;, i = 1,2, ..., m (i.e., load /unload machine M;
or unload buffer B;).

m ). the time taken by the robot to travel between two consecutive
production units Z;_1 and Z;, 1 < j < m + 1. The travel times are
additive for nonconsecutive machines/buffers.

= ¢: the time taken by the robot to travel from a machine M; (after it
loads this machine) to this machine’s buffer B;.

m w: the total time taken by the local handling device to unload a
finished part from a machine M; and transfer it to this machine’s
buffer B;.

We conduct our analysis of the problem under the following assumption:
w=¢+e (4.14)

Our choice of w is based on observations in real-world robotic cells.
It turns out that this assumption also slightly simplifies the analy-
sis of the problem. Nevertheless, all the results obtained below for
RF;ZE |(free, A, cyclic-1)| under assumption (4.14) can be easily extended
for an arbitrary value of w. Brauner et al. [23] considered a special case
of RE} 1|(free,A,cyclic-1)|p in which ¢ = w = 0. We also note that the

m7
model considered in this section can be easily converted to one in which
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a part always goes to a machine’s buffer after its processing on that ma-
chine is completed. The latter model is obtained by setting pi*“" = p; +w
and W™ = 0.

We now discuss the construction and notational representation of 1-
unit cycles for RE! ;|(free, A, cyclic-1)|. We denote by M, (M,;") and
B, (B} ), the operatlons “load M}” (“unload M}”) and “load By” (“un-
load By”), respectively. We write Mgr =Tand M, = O to denote the
operations “pick up a part from Input” and “drop a part at Output,”
respectively. Furthermore, we write Z;, and le to refer to the opera-
tions “load unit Z;” and “unload unit Zx,” respectively. Here, Z}, refers
to M}, or By, as appropriate. We refer to the sequence of robot activities
“Unload a part P; from unit Zj, go to machine M}, and load part P;
on machine Mj11” as activity Ay, and use the following notation

Ap= (2 —o— M), (4.15)

where Z;7 € {M;F, B} and o € {0, [M}] 10 Bi.,]}. Here, the symbol
“o” is used to specify whether or not machine My, had to be earlier
served by the local material handling device that would unload a part
previously processed on My and move it to buffer Bry;. In what
follows, we will exploit the representation (4.15) in both its general form
A = (Z,;Ir — 0 — Mk_+1) and a specific form where the ZJr and “o” terms
are explicitly specified. For example, consider the following two 1-unit

cycles for problem RF211|( free, A, cyclic-1)|pu.

Cycle Cy1: ((I— [M{",By] — M), (Bf —M;),(M;y —O)). Theac-
tivities of the robot for this cycle are as follows: the robot picks a
part (P;) from Input (€); goes to machine M (9); if necessary, waits
for a part (Pj_1) on M; to be completed and transferred to buffer
By (wait time wy); loads part P; onto M; (e); moves to buffer By
(¢); unloads part Pj_; from By (€); goes to machine M (0); loads
part Pj_; onto Mp (€); waits for py time units for part P;_; on M> to
be processed; unloads part Pj_; from My (€); goes to I/0O (0); and
drops part Pj_; onto Output (e). Under assumption (4.14), the cycle
time of cycle C is

T(C1) = max {p1 + ¢ + 2¢,p2 + ¢ + 35 + Ge} .
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Cycle Cy: ((I— [M{",By] —M;), (M —0O),(Bf —M;)). In this
cycle, the robot picks a part (P;) from Input (e); goes to machine
M, (6); waits, if necessary, for a part (Pj—1) on M; to be completed
and transferred to buffer By (w1); loads part P; onto M; (e€); goes
to machine My (J); waits, if necessary, for a part (Pj_2) on My to
be completed (ws); unloads part Pj_s from Mp (€); goes to I/0 (6);
drops part Pj_s onto Output (€), goes to buffer By (0); unloads part
P;_; from By (e€); goes to machine My (6); loads part Pj_; onto Mo
(€); and goes to I/O (§). Under assumption (4.14), the cycle time of
cycle Cy is

T(Cs) = max {p1 + ¢ + 2¢,pa + 36 + 4¢; 66 + Ge} .

In any l-unit cycle, each of the operations “load machine My,” k =
1,2,...,m + 1, is performed exactly once. Furthermore, for any k =
0,1,...,m, the robot operation “unload a part P; from unit Z;” is
always immediately followed by “load part P; onto machine Mj1,” i.e.,
after picking up part P; from unit Zj, the robot has no choice for its
next operation but to go to machine My, and load the latter with part
P;. We thus have the following property.

PROPERTY 4.1 For RF;J|(free,A,cyclz'c—1)]u, any feasible 1-unit cycle
corresponds to a unique sequence of activities A = (Z]j' — 0 — Mk_+1)7
k= 0,1,...,m, with each activity occurring exactly once (under the

proviso that the latter sequence is treated in a cyclic manner).

The next result establishes the reverse relationship between 1-unit
cycles and activities.
PROPERTY 4.2 For RFrln 1l (free, A, cyclic-1)|u, any permutation of ac-
tiities Ay, k = 0,1,...,m, in the form (4.15), where each Z,j €
{M;,B;} is specified (i.e., an activity Ay is in the form of either
A = (M/,;|r —o— M) or A = (Bz‘ —o—M,.,)), defines a unique
1-unit cycle.
Proof. We first observe that by specifying Z,j € { M7, B,j} in activity
Aj, we determine how the buffer By is used. In particular, if in A we
have Z,j = B,j, ie., A, = (Bk+ —o— M,;_l) , then the “o”-term of ac-
tivity Ap_1 must be [M;", B; |, ie. Ax_1 = (2, — [M;, B, | — M,).
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Otherwise, if Z,j = Mlj (so that Ay = (M,j‘ — 0 — Mk_ﬂ)), then A;_1 =
(Z,5 | — M) (“o”-term is empty). Thus, by specifying the Z;!-entries
of Aj, we uniquely identify the “o” terms of all activities and, therefore,
both the robot activities and the operations within the production units
are well defined. Hence, a permutation of activities Ay, k =0,1,...,m,
in the form (4.15), where Z,j € {M+, B,‘:}, completely defines a unique
cycle. We leave it to the reader to verify that such a cycle is always

feasible. n

The following lemma gives the total number of 1-unit cycles for an m-
machine single-gripper robotic cell with unit-capacity machine buffers.

LEMMA 4.3 For RF! 1l(free,A,cyclic-1)|p, the number of 1-unit cycles

m,

equals m! x 2™,

Proof. Clearly, any 1-unit cycle for RFgﬂ|(free,A,cyclz’c-1)|u, if repre-
sented by a permutation of activities Ax, k = 0,1, ..., m, admits (m+1)
different representations, depending on which activity is chosen as the
starting activity. To achieve the uniqueness of cycle representation, let
us demand that the cycle always start with Ag = (I —o— M, ); with
this assumption, by Property 4.1, a 1-unit cycle admits a unique rep-
resentation. This representation is defined by a permutation of the
remaining m activities Ag, k = 1,2,...,m, as well as by the Z,j—
entries of activities Ag. There are m! different permutations of activ-
ities Ag, £k = 1,2,...,m, written in the form (Z,j —o —M]€_+1). As
Z,j may stand for either M,j or B,’:, any permutation of activities
A = (Z,j‘ —0o— M,€_+1), k=1,2,...,m, expands into 2™ different per-
mutations of Ay with explicitly specified Z,j € {M ,j ) B:} By Property
4.2, any such permutation of activities Ay defines a unique 1-unit cycle
for RFT}%I](free,A,cyclic—])\u. [
Let

Dy ={klpy < ¢, 1<k<m}, Dg=M\Dy, r=|Dg|. (4.16)
LEMMA 4.4 For RF! 1l (free, A, cyclic-k)|p with ¢ < §, a lower bound on

m7
the per unit cycle time of any k-unit cycle C' is given below:

T
% > max § max p;+ ¢+ 26 > pitré+ (m+1)(8+ 2)

(4.17)
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Proof. The proof is similar to an analogous result obtained by Brauner
et al. [23]. Let C be an arbitrary k-unit cycle for RF! -|(free,A,cyclic-

k)|u written in terms of activities A4;, i = 0,1,...,m. Note that each
activity A; = (ZZ‘Ir —0o— Mi;l), i =20,1,...,m, occurs in C exactly k

times. We first estimate cycle time as the time spent by the robot to
execute the cycle. To execute an activity A; = (ZZJr —0o— M;H), the
robot needs at least 2e¢ + § time units: operations Z;r and M, take €
time each, and the robot travel time from Z; to M;y1 is §. The time
T spent by the robot between two successively executed activities, say
A; and A;, where A; = (Z:r —0o— szrl) is immediately followed by

A = (Zf' —o— M, ) , is estimated as follows:

+1
=0 ifM7,=0,Z" =1,
T = Pi+1 if ZJr MZJ_FH;
T=20¢ if 4* Bf

T = robot travel time
from M;1 toZ; >0 otherwise.

We thus have

T(C) >k x (i min {p;, ¢, 0} + (m+1)(6 + 26)) .

i=1

As ¢ <6, min{p;, ¢,0} = min {p;, ¢}. Hence, we obtain

m
(— > Z min {p;, ¢} +(m+1)(d+2¢) = Z pi+ro+(m+1)(5+2e).
i=1 i€Dy
(4.18)
We now look at cycle time from a different point of view. Consider
any arbitrary machine M;, ¢ € {1,2,...,m}. Let 7/ be the minimum
time spent in the partial execution of cycle C between any two suc-
cessive occurrences of M, and M;r. Furthermore, let 7 denote the
minimum time spent in the partial cycle execution between the moment
an operation M;r starts and the moment the next successive operation
M, finishes. In the k-unit cycle C, each of the operations “load M;”
and “unload M;” is executed k times. Hence,

TC)>kx (r'+7"). (4.19)
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We now estimate the values of 7/ and 7”. Clearly, 7/ > p;. As for
7", we have two possibilities. If the corresponding cycle subsequence
is ([M;r - B; ] — M[), i.e., the subsequence that delivers the minimal
value for 7, then 7/ = w + € = ¢ + 2¢. Otherwise, the corresponding
cycle subsequence takes the form (M;r —o—M_ ... Zitl — Mi_), and
7" must include the time to perform load/unload M; (2¢) as well as the
robot travel time from M; to some other machine(s) (> ) and back.
Therefore, 7 > § + 2¢. Thus, under the condition ¢ < §, we always
have 7" > ¢ + 2¢. By combining the above estimates for 7/ and 7" with
(4.19), we deduce
T(C)

szi+¢+26, i=1,2,...,m.

Together with (4.18), we have the desired bound (4.17). ]

Algorithm OPT2

Input: An instance of RF! -|(free,A,cyclic-1)|ju. The sets Dy and Dg
are as defined by (4.16).

Output: A I-unit cycle C.

Initial setting: Units Z, k € D;, are occupied with a part; units Zy,
k € Dy, are empty. The robot is positioned at I/O and the robot’s
gripper is empty.

Step 1: The robot picks up a part from the input buffer at the I/0O
hopper.

Step 2: For k from 1 to m :

Step 2.1: The robot moves to machine Mj.
Step 2.2: If k € Dy, then

» if necessary, the robot waits for wy time units for a part (F;)
on M} to be completed and transferred to its output buffer
By;

» the robot loads a part (P;41) onto My, (e);

= the robot moves to buffer By (¢);

» the robot unloads the part (F;) from By, (e).
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Step 2.3: Otherwise (i.e., if k € Dy),

= the robot loads a part (FP;) onto My, (€);

m the robot waits for py time units for the part (P;) on My to
be processed;

= the robot unloads the part (P;) from My, (e).

Step 3: The robot moves to I/O hopper and drops a part onto the
output device of the I/O hopper.

THEOREM 4.6 For RF1 1l (free, A, cyclic-k)|p with ¢ < 0, algorithm
OPT2 produces an optzmal cycle C. The cycle time of cycle C is

T(C) = max maxpk—l—Ze—l—qb, Z pe+ro+ (m+1)5+2(m+ 1)e
k€D¢
(4.20)

Proof. The proof of (4.20) is similar to that of Theorem 4.5. The
optimality of C follows from Lemma 4.4. [

Observe that the role of 0 in RF2|(free,A,cyclic-1)|u is somewhat
analogous to that of ¢ in RF1 1l (free, A, cyclic-1)| .

COROLLARY 4.3 If max{0,¢} < §, problems RF2|(free,A,cyclic-1)|u
and RF1 il (free, A, cyclic-k)|p have the same minimum cycle time if 6 =

?.
Proof. Follows from Corollary 4.2 and Theorem 4.6. |

COROLLARY 4.4 Under conditions max{0,¢} < 6 and p; > 6§, i =
1,...,m, problems RF2|(free, A,cyclic-k)|pu and RFl 11( free, A, cyclic-
)|,u have the same minimum cycle time if 0 = ¢.

Proof. Follows from Theorems 4.5 and 4.6. n

We conclude this section on the relationship between problems RE?Z |(free,
A, cyclic-1)|p and RF} ;|(free, A, cyclic-1)|p with a simple result that es-
tablishes the relative equ1va1ence of these two problems. In what follows,
the robot’s travel between any two machines is called an empty move if
it travels empty, and is called a loaded move otherwise. Furthermore, for
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RF;LJ|(free,A,cyclz’c—k)|u, a production unit Z; is said to be fully loaded
if both M; and B; are loaded with a part.

DEFINITION 4.1 A cycle C' for RF2|(free,A,cyclic-1)|p is called simple
if in C' the robot never carries two parts in any of its loaded moves.

DEFINITION 4.2 A cycle C" for RE} ;|(free,A,cyclic-1)|p is called sim-
ple if in C" the robot never makes an empty move from a fully loaded
unit.

Let Q' (resp., ) denote the set of all simple 1-unit cycles for RE2 |(free,
A, cyclic-1)|p (resp., RFnlﬂ|(free,A,cyclic—])|u). We note that a trivial
example of a simple cycle in either ' or Q" is a cycle for RF}|(free,
A, cyclic-1)|p.

LEMMA 4.5 Let 0 = ¢. Then for any cycle C' € V', there exists a cycle
C" € Q" such that
T(C" =T(C"), (4.21)

and vice-versa.

Proof. Cycles C' € ' and C” € Q" that satisfy (4.21) are obtained
from each other as follows. Both cycles are defined by the very same
schedule of robot operations with only one exception: the sequence of
operations “unload machine My, switch grippers, and load machine M}”
in C' translates into “load machine M}, go to buffer By, and unload
buffer By” for cycle C”. We leave it to the reader to verify that for
given problem data (i.e., for given values of p;, i = 1,2,...,m, 0, €, and
0 = ¢), both cycles deliver the same cycle time. ]

The above result shows the relative equivalence of RF! ;|(free,A,
cyclic-1)|p and RE2 |(free, A, cyclic-1)|p, when the utilization of machine
buffers (for RF! ;|(free,A,cyclic-1)|;1) and that of the additional robot
gripper (for RF?2|(free, A, cyclic-1)|us) is limited to swapping parts at
the machines. To provide intuition, we give an example of two 1-unit
cycles C' € ' and C” € Q" that comply with Lemma, 4.5:

Cycle C': T —M; — M;{” — My — M3- — M} — My — O — M) — My ;

Cycle C": I — M — M;" — My — Mj —M; — Bf —0 — Mj — Mj .



140 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Finally, we look at the possible impact of multi-unit cycles on the cycle
time for both RF2|(free,A,cyclic-k)|p and RFTInJ|(free,A,cyclic—k)]u.
Consider the following 2-unit cycle C' for RE2 |(free, A, cyclic-2)|p.
A 2-unit cycle C: The initial state has all of the machines and the
robot empty, with the robot positioned at I/O. The robot then picks
up two parts (say P; and P,y;) at I/O, then moves to My, to Mo, ...,
to M,,, and finally returns to I /O to unload both parts P; and P;y;. At
each machine, P; is loaded, processed, and unloaded, and then F;;; is
loaded, processed, and unloaded. The cycle time of Cis

T(C) = (m+1)8 + 4(m + 1)e + (m + 1)9+2ipi.
=1

Let = be a small positive number and X be sufficiently large such that
0 < z << X. Consider the following problem data:

0=¢p=e=p;=a, i=1,2,...,m; o6=2X. (4.22)

For this instance, the cycle time of C'is T(C) = (m + 1) X + (7Tm + 5) z.
For the data in (4.22), let OPT(P) denote the optimal per unit cycle
for a problem P. For problem RE?2|(free,A,cyclic-2)|u, cycle C delivers
an optimal solution for the data (4.22). That is, we have

OPT(RF?2|(free, A, cyclic-2)|p ) = @ =i ((m+1) X+ (Tm+5)x).

Now, consider problems RF! ;|(free, A, cyclic-k)|p and REp,|(free, A,
cyclic-1)|p. By Theorems 4.5 and 4.6, we have

OPT(RF.|(free, A, cyclic-1)|p) OPT(RFnl@J |(free, A, cyclic-k)|p)

= (m+1)X+Bm+2)x.

As x — 0 and X — oo, we have

OPT(RFZ|(free, A, cyclic-1)|p) OPT(RF,, 1|(free, A, cyclic-k)|p)

OPT(RF2|(free, A, cyclic-2)|) ~  OPT(RF2|(free, A, cyclic-2)|p)

_ 2((m+1)X 4+ (3m+2)x) s
T (m+ DX+ (Tm+5)z ’

As a consequence of the above example and Corollary 4.3, we state the
following result.
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LEMMA 4.6 Under conditions 8 < § and 0 = ¢, the long-term average
throughput of a dual-gripper cell (RF?2|(free,A,cyclic-k)|u) is equal to or
greater than that of the single-gripper cell with a unit-capacity output
buffer at each machine (RF;J|(free,A,cyclic—k)|u).

To summarize, an output buffer at a machine plays the same role as an
extra robot gripper — they both allow for temporary storage of a part.
While the use of output buffers at the machines offers time-flexibility
in part storage (as we are not directly constrained on how long a part
can reside in a buffer), the use of an additional robot gripper makes
storage more time-efficient (as we can save on the robot travel time).
In general, an assessment of their comparative efficiency depends on the
cell parameters and problem data. Finally, we note that all the results
obtained in Sections 4.7 and 4.8 for additive travel-time cells will also
hold for constant travel-time cells (see Chapter 2).

4.9 Dual-Gripper Robotic Cells: Constant
Travel Time

In this section, we consider throughput optimization in constant-
travel-time dual-gripper robotic cells (i.e., problem RF?2 |(free,C,cyclic-
k)|p); the results we present are from Geismar et al. [61]. We provide
a structural analysis of cells with one machine per processing stage to
obtain a lower bound on the throughput. Subsequently, we obtain an
optimal solution under conditions that are common in practice. Unlike
the previous sections of this chapter, we now consider cells where I and
O are at separate locations (Figure 4.5). This is not a major change;
all the results we present also hold for the layout in which I and O are
at one location (with slight changes in the expressions developed for the
cycle times and their lower bounds).

We start by describing a cycle Cj 19 for two-machine cells that is similar
to cycle C3 10 of Section 4.2:

03,10 = (Rg(l,O),RT(l,?),RI(O,Q),R;_(?), 2)7R2_(370)’R3_(070))

At the start of the jth iteration of this cycle, the robot is at the input
buffer and holds no part. Part P;_» is being processed at M and part
P;_; is being processed at M;. The robot unloads part P; from the
input buffer and travels to M. If necessary, the robot waits at M7 until
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M3

M,

Dual Gripper Robot

Figure 4.5. A Four-Machine Dual-Gripper Robot Cell with Separate Input and Out-
put Buffers.

it completes processing part P;_1. The robot then unloads part P;_;
from M, switches the positions of its grippers, and loads part P; onto
M. Next, the robot carries part Pj_q1 to M>. At My, the robot waits
until it completes processing part P;_o, if necessary. The robot then
unloads part Pj_s from M>, switches the positions of its grippers, and
loads part Pj_; onto M>. The robot then travels to the output buffer
and loads part P;_s onto it. The robot completes the cycle by returning
to I. Tt is straightforward to verify that the cycle time of Cj 19 equals
46 + 6¢€ + 20 + w1 + wo, where w; and wy are the robot waiting times
that can be determined from the steady-state conditions.

Instead of analyzing 6’3,10, we study its m-machine generalization C’Zl”.
As expected, C'" is similar to cycle C7" of Section 4.3; the robot moves
are slightly different at I and O. Cycle C7* starts with the state in which
all machines are occupied with parts and the robot is empty at I. The
sequence of activities for the robot in this cycle is as follows:



Dual-Gripper Robots 143

Cycle C’(T
Begin
e: Robot unloads a part from I.
For i =1 to m do:
Begin
d: Robot moves to M;.
w;: Robot waits for the part on M; to be completed.
e: Robot unloads M;.
0: Robot switches to the other gripper.
e: Robot loads M;.
End (Next )
d: Robot moves to O.
€: Robot unloads finished part at O.
d: Robot moves to 1.
End

The cycle time for C_'Zi” can be easily calculated as

T(C) = (m+2)5+2(m+1)e+m0+§:wj. (4.23)
j=1

The total waiting time Z;”:l w; can be derived as in Section 4.3. Sub-
stituting, we obtain the following expression for the cycle time:

T(CT) = max{(m+2)d +2(m+1)e+mb, max {pj} +2e+6}. (4.24)
<j<m

4.9.1 Lower Bounds and Optimal Cycles:
m~Machine Simple Robotic Cells

Assuming 0 < min{d, p1,...,pm}, we show that C’LT is optimal among
all dual-gripper 1-unit cyclic schedules (Corollary 4.5). We then show
that C7" is optimal among all k-unit cycles (k > 1) under an addi-
tional restriction that is quite common in practice: p; > 4, Vi (Corol-
lary 4.6). Intuitively, C’Zl" is optimal because it minimizes inter-machine
travel (each machine is visited once per cycle), and minimizes the time
that the robot spends at each machine waiting for it to complete process-
ing: after loading a particular machine M;, the robot visits every other
machine before returning to M; to unload it.
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4.9.2 One-Unit Cycles

We study here the lower bounds for problem RE?2 |(free, C,cyclic-1)|pu.
To show that C”* is an optimal 1-unit cycle under 6 < min{é, p1, ..., pm},
we establish a lower bound that is equal to T(C7") on such cycles. A
similar lower bound for additive travel-time cells was established in Sec-
tion 4.4.

THEOREM 4.7 Assume 6 < min{d,p1,...,pm}. A lower bound for cycle
times for 1-unit robot move cycles in a constant travel-time dual-gripper
cell is given by

LB = max{(m +2)d + 2(m + 1)e + m#, ax {pi} +2e+6}. (4.25)

Proof. In part A of the proof, we show that max{p;} + 2¢+ 6 is a lower
bound. In part B, we show that (m + 2)d + 2(m + 1)e + m#b is a lower
bound.

Part A: Consider any machine M; (1 < i < m) and a l-unit cyclic
schedule 7. Note that m can be represented by some feasible ordering
of the symbols M = {M", M;", ..., M} M My ,...,M,  }. Since
7 is cyclic, we may assume it to be of the form (Mi_,al,M;r,crg) for
any i, where o1 and oy are feasible subschedules and 6, C M is the
set of activities in o, h = 1,2, such that 01 Ny = ) and 07 Uy =
M\ {M;, M;"}. Two cases are considered.

Case 1. 03 # (0. The time from the start of loading of a part onto M;
until the completion of unloading from M; is at least p; 4+ 2¢ (covering
the subschedule (M; oy, M;")). The robot will be engaged for at
least an additional amount of time 24 in order to complete o9. Thus,
a lower bound on the schedule length is p; + 2¢ + 20 > p; + 2¢ + 6.

Case 2. 01 # (0,09 = ). This case can occur only with a dual-gripper
robot. The cycle may be denoted by (M;", M;,01). The subcycle
(M;", M) requires 2¢ + 6 time units and the delay from the com-

pletion of M, to the start of Mi+ is of length at least p;, for a total
time of p; + 2¢ + 0 time units.
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Cases 1 and 2 prove that max{p;} + 2¢+ 6 is a lower bound on the cycle
times.

Part B: By using that the cycle 7 is of the form (M, o1, M;", 02), where
at least one of o1 and 9 is not empty, we shall compute lower bounds
for the aggregate residence times of the robot at each machine and for
the aggregate robot transportation times between the machines. By
residence times we mean the times during which the robot is occupied at
a machine while either waiting for that machine to complete processing,
rotating its grippers, or loading or unloading the machine. The sum of
these computed lower bounds will give us the bound of (m+2)§+2(m+
1)e + m#@. In our discussion, py = ppm4+1 = 0 is the “processing time” at
I and O. For residence times at the machines, there are five cases to
consider.

Case 0. M; = My (the “machine” is I). Since we do not have loading
on My, the sequence is simply (Mg ,02). The robot is occupied at
M for € time units.

Case 1. M; = My,+1 (the “machine” is O). Since we do not have
unloading on M, 41, the sequence is simply (M, ,01). The robot

is occupied at Mp,+1 for € time units.

Case 2. 09 = (). The robot is occupied at M; for at least 2¢ + 6 time
units.

Case 3. o1 = (. The robot is occupied at M; for at least 2¢ + p; time
units.

Case 4. 01 # () # 79. The robot is occupied at M; for at least 2¢ time
units (split between two visits).

Let u; be the number of machines included in Case j and let U;
be the set of machines included in Case j, 7 = 0,1,2,3,4. Note that
u9 + uz + ug = m and ug + w1 = 2. We now have the following lower
bound on the aggregate residence time for the robot at all machines:

(up+u1)e+us(2e+0)+usz(2€)+ Z pitug(2€) = 2(m+1)e+uz0+ Z Di-
i€Us i€Us
(4.26)
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A robot movement from M; to M) occurs when an operation M, or
Mf is followed immediately by a robot operation M,  or M;[ , where
h # 4. Such a movement is incident to both M; and Mj,, and requires
6 time units.

For each machine M; in Case 0, 1, 2, or 3, there is at least one move-
ment to and one movement away from M;, so M; is incident to at least
two movements. If M; is in Case 4, then each cycle includes at least two
movements to and two movements away from M;, so M; will be incident
to at least four movements. Thus, the aggregate of incidences over all
machines Moy, My, ..., M1 is at least 2(ug + uy + ug + ug) + 4duy =
2(m + 2) + 2uy. Hence, the total number of movements, which is half
the aggregate incidences, is at least m+2-+wu4. These movements require
a minimum aggregate time of (m+2+u4)d. A lower bound on the cycle
times is obtained by adding this to (4.26). The resulting expression,
since # < min{d, p1,...,pm}, can be simplified to give a lower bound of
(m+2)0+2(m+ 1)e + mé. [

COROLLARY 4.5 In a simple robotic cell with a dual-gripper robot, C’C’ln
1s optimal among all 1-unit cyclic schedules under the assumption that
0 < min{d,p1,...,Pm}-

4.9.3 Multi-Unit Cycles

We now discuss lower bounds for problem RF?2 |(free,C,cyclic-k)| .
In Chapter 3, we discussed examples of single-gripper cells where the
throughput of an optimal 2-unit cycle is better than that of an optimal
l-unit cycle. Such examples exist for dual-gripper robotic cells too.
All 1-unit cycles have the form (M, , o1, M;", 02), where 51 UGy = M\
{M;, M;"} and 51N52 = 0. So, they cannot exploit fully the capabilities
of a dual-gripper robot — a dual-gripper robot can (i) unload two parts
from I while resident at I, (ii) load two parts onto O while resident at
O, or (iii) load M;, wait for its processing, unload M;, and then load M;
again, ¢ = 1,...,m. We consider a 2-unit cycle that takes advantage of
these features.

Consider the 2-unit cycle C' of Section 4.8: the initial state has all of
the machines and the robot empty and the robot positioned at I. The
robot then unloads two parts (say P; and Pj11) from I, then moves to
My, to Ms, ..., to M,,, then moves to O where it places both parts
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P; and Pji1, and then finally returns to I. At each machine, P; is
loaded, processed, and unloaded, and then Pj;y; is loaded, processed,
and unloaded.

The cycle time of C' is T(C) = (m + 2)d + 4(m + 1)e + (m + 2)0 +
23", pi. Since two parts are produced in this cycle, the average time
to produce one part is

— A m
@ = (m+2)g +2(m+1)e+ (m—l—2)g+;pi.
i=
Note that the cycle time expression above is slightly different than one
obtained for €' in Section 4.8, as a result of the separation of the locations
for I and O in the layout considered in this section.

Observe that T(C)/2 < T(CT) = max{(m + 2)§ + 2(m + 1)e +
m0, max{p;}+2e+0}, for 0 =05, e=1,0=4,p1 =ps=---=ppy =1,
and that the condition § < min{d, p1,...,pm} is also satisfied. For this
data, the 2-unit cycle C' is better than the best 1-unit cycle. However,
T(C)/2 > T(CP) if p; > 6,¥i, and 0 < min{6,p1,...,pm}-

We now show that the 1-unit cycle C_'Zl” is optimal among all k-unit
(k > 1) cycles under two conditions (i) # < ¢ and (ii) p; > 9, i =
1,...,m, that are common in practice (Kumar et al. [102] and Perkinson
et al. [128]). Again our approach is to show that T'(C7") is a lower bound
on the per unit cycle time in such a cell.

THEOREM 4.8 If 0 < 6 and p; > 6, i = 1,...,m, then for any k-unit
cycle m (k > 1) in a simple robotic cell served by a dual-gripper robot,
the cycle time T'(7) satisfies

1'(m)

— > max § (m+2)0 +2(m + 1)e + mé, max {pi} +2ec+6};.
Proof. The proof that max{p;} + 2¢ + 6 is a lower bound for T'(w)/k
is similar to that for Theorem 4.7. In part B, we show that (m + 2)6 +
2(m + 1)e + mé is a lower bound for T'(7)/k.

Part B: This bound is true for k¥ = 1 by Theorem 4.7. Now we
assume k > 2. First we prove the result for £ even. Note that for
any machine M;, any sequence ¢ of a k-unit cycle that represents two
consecutive loadings and unloadings of machine M; is of the form o =
(Mi,_2T_1,O'1,M~—j_2T_1,O'2, M, o3, M,  o4), where r =1,.... 5 M~

i 1,217 1,217 ’ 2 1,27
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(M

2,21
at least one of o1, 09, 03, and 74 is not empty.

) denotes 2" loading (unloading) of machine M;. Note that in &

Now we establish a lower bound on the aggregate residence time of
the robot at all machines in a k-unit cycle by considering 2-unit subcy-
cles. We need to consider the following cases. Cases 0 and 1 deal with

+
03, M

i72r,04), for i =0

sequences o = (Mi,_2r7170-17Mi—j_2r7170-27 M,
and ¢ = m + 1, respectively, whereas Cases 2-10 deal with all other 7,

1<e<m.

Case 0. M; = My (the “machine” is I). Since we do not have loading
onto My, the sequence is simply (MS:QT_I,O’l,MS:QT,O'Q), where at
least one of o7 and 09 is not empty. If o; # () and o9 # (), then the
robot is occupied at My for 2¢ time units. If 61 = @) (or g2 = ), then
the robot is occupied at My for 2¢ + 6 time units.

Case 1. M; = M,,4+1 (the “machine” is O). Since we do not have un-
loading from M, 1, the sequence is simply (Mr;+1,2r—1’ o1, My 190
02), where at least one of 51 and 79 is not empty. If 51 # () and 72 # 0,
then the robot is occupied at M,,+1 for 2¢ time units. If 3 = 0 (or
o2 = ), then the robot is occupied at M, 1 for 2¢ + 0 time units.

Case 2. 01 # (0,09 # 0,03 # 0,04 # 0. The robot is occupied at M;
for at least 4e time units.

Case 3. o1 = 0 (or o3 = ()). First consider 1 = (). The robot is
occupied at M; for at least 4e + p; time units. As o3 = () has the
same schedule structure as o7 = 0, it will have the same machine
residence time.

Case 4. 09 =0 (or o4 = (). The robot is occupied at M; for at least
4e + 6 time units.

Case 5. 01 =02 =0 (or 63 = 4 = )). The robot is occupied at M;
for at least 4e + 0 + p; time units.

Case 6. 01 = 03 = 0. The robot is occupied at M; for at least 4e+ 2p;

time units.

Case 7. 01 =04 =0 (or 02 = 63 = (). The robot is occupied at M;
for at least 4¢ + 6 4 p; time units.
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Case 8. 09 =04 = (. The robot is occupied at M; for at least 4e + 26
time units.

Case 9. o1 =03 =03 =0 (or 61 = o3 = 04 = () The robot is occupied
at M; for at least 4e¢ + 0 + 2p; time units.

Case 10. 01 =09 =04 = 0 (or 09 = 03 = o4 = ). This schedule
structure is infeasible.

Let u; denote the number of sequences o corresponding to Case j that
occur in a k-unit cycle, for all jand r (j =0,1,...,9,andr =1,...,k/2)
and machines M;, i = 0,...,m+ 1. As there are k/2 sequences for each
machine in a k-unit cycle, we have mk/2 = ug + us + ug +us + ug + u7 +
ug +ug and uy = u; = k/2. By adding residence times corresponding to
all the above cases and setting p; = 8, we get a lower bound for 7., the
aggregate residence time of the robot at all machines:

T, > x+2mke+ (ug + us + uzr + 2ug + ug)0
+(U3 + us + 2ug + uy + 2UQ)5,

where x denotes the total minimum cumulative residence time of the
robot at both I and O in all sequences (MS:QT,_l,O'l, MJQT,UQ) and

(M 19010 01, My, q 9,5 02) in the k-unit cycle.

If a machine M; is included in Case 2, then there are in each cycle at
least four movements to and four movements away from M;, so M; will
be incident to at least eight movements. If a machine M; is included
in Case 3 or 4, there are in each cycle at least three movements to and
three movements away from M;, so M; will be incident to at least six
movements. If a machine M; is included in Case 5, 6, 7, or 8, there are
in each cycle at least two movements to and two movements away from
M;, so M; will be incident to at least four movements. If a machine M;
is included in Case 9, there is in each cycle at least one movement to
and one movement away from M;, so M; will be incident to at least two
movements.

Thus, the aggregate of incidences over all machines is at least 2\ +
Bua+6(ug+ug)+4(us+us+ur+ug)+2ug, where 2 is the total number of
incidences over I and O. Hence, the total number of movements, which
is half the aggregate incidences, is at least A+ 4ug + 3(u3 + u4) + 2(us +
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ug+u7 +ug) +ug. Since mk/2 = ug+- - - +ug, these movements require
a minimum aggregate time of

Ty = A0 + mkd + 2uad + (u3 + ug)d — ugd.
Hence,

T.+T, > x+2mke+ (ug+ us+ ur + 2ug + ug)f + (us + us + 2ug
+ur + 2u9)d + AJ + mkd + +2u26 + (us + ug)d — ugd
(A + x) + mkd + 2mke + (ug + us + uy + 2ug + ug)f
+(2u2 + 2us + ug + us + 2ug + uzy + ug)0.

v

We now obtain an estimate for (Ad + x). We saw in Case 0 (Case 1)
that if the robot unloads (loads) two parts in two separate visits to
(O), its total residence time is 2¢. In this scenario, its travel time covers
four incidences, i.e., it adds 2§ to the minimum travel time. If the robot
unloads (loads) two parts in one trip, its residence time is 2¢ 4+ 6, and
the added travel time is . Therefore,

A8+ X = (28 + 2€) + ug (6 + 2¢ + 0) + uy (26 + 2€) + uy (6 + 2¢ + 6),

where u, (u;) denotes the number of Case 0 (Case 1) subsequences in

which the robot unloads (loads) two parts in two separate visits to I

(0), and uy (u;) denotes the number of Case 0 (Case 1) subsequences

in which the robot unloads (loads) two parts in one visit to I (O). Note

that ug +uy = k/2 and u) +u; = k/2. Therefore,

A +XY = uy(264 2€) + ug (8 + 2 + 0) + u) (20 + 2€) + uy (6 + 2¢ + 6)
= k6 + 2ke + (ug 4 uy)d + (ug + uy)0.

Thus, we have

T+ T, > k6 +2ke+ (ug+u))d + (ug + uy )0 + mkd + 2mbke
+(ug + us + ur + 2ug + ug)0
+(2ug + 2us + ug + us + 2ug + u7 + ug)o
= (m+2)ké + 2(m + ke + (ug + us + ur + 2us + ug + ug
+uy )0 + (2ug + 2us + ug + us + 2ug + wr + Uy — uy — Uy )6
= (m+2)kdé+2(m+ 1)ke + mkb + (2ug + 2uz + ug + us

+2ug + u7r + ug — ug — u/{)(é —0). (4.27)
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Now observe that for each subsequence (MS:QT—17 o1, M(BT, o9),ifo1 =10
or 03 = (, i.e., if the robot loads two parts in one visit to I, then the
choices for its next moves are limited. Obviously, it must first load ma-
chine M;. Furthermore, since § > 0, it is only advantageous to load both
grippers in one trip to I if the next sequence of moves is M| M1+ M,
i.e., for each time the robot has a sequence MJ MJ , machine M; belongs
either to Case 5 or to Case 9. Similarly, for each time there is a sequence
M., M., ., machine M,, belongs to Case 7. Hence, us + ug > ug and
w7 > u;. Therefore, the coefficient of (§ — 6) in (4.27) is positive, so

T.+T, > (m+2)kd+2(m+1)ke+ mkb,

and
(T, +Th)

k

Since T'(w)/k > (T, +T})/ k, we have the desired lower bound for & even.

We now prove the result for £ odd. We have just shown that the lower

bound for the first (k — 1)/2 sequences (Mi,_2r71’0-1’Mi_,‘_27'7170-2? M5,
o3, M{ET, o4), forr=1,...,(k—1)/2,is

> (m+2)0 +2(m+ 1)e +mb.

T.+T, > (m+2)(k—1)0 +2(m+1)(k—1)e + m(k — 1)6.

As a consequence of Theorem 4.7, for the last sequence o = (M, o1,

Mfk, 032), we have the following lower bound for the robot residence

times and robot move times:
T, +T] > (m+2)6 + 2(m + 1)e + mé.
By adding these two inequalities, we obtain

T, + T+ T, +T) > (m+2)ké + 2(m + 1)ke + mkd.

Thus, we have the desired bound

T(m) _ (T + T+ T+ 1))
E— k

> (m+2)0+2(m+ 1)e+mb.
m

COROLLARY 4.6 In a simple robotic cell with a dual-gripper robot, C_‘Zl“ 18
optimal among all k-unit cyclic schedules (k > 1) under the assumption
that 0 < andp; >96,1=1,...,m.
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REMARK 4.1 All the results obtained above for constant travel-time
cells also hold for cells with circular layout and regular additive travel-
time metric (see Chapter 2). In a general additive travel-time cell,
however, the machines are typically arranged along a line (Lei and
Wang [108]), or along a semicircular arc (Brauner and Finke [22]) so
that the total travel time from M,, 1 to My is (m + 1)d. In such a
layout, the cycle time for C_'Q” increases significantly; consequently, the
analysis required to determine a lower bound on the per unit cycle time
is fundamentally different.

REMARK 4.2 Because the lower bound for the per unit cycle time in a
simple robotic cell with a single-gripper robot is (Dawande et al. [47],
Chapter 3)

T(r)

& > max{2(m+1)e+;min{p¢,5}+ (m + 2)9,

1%2251}91‘ + 30 + 46} ,
C’Zl" achieves a greater throughput than all single-gripper k-unit cycles
in cells that satisfy 6 < min{d,p;}, i = 1,...,m. This is not surprising,
given that in cycle C’fi” the dual-gripper robot has a delay of only 6
between unloading and loading a machine. A single-gripper robot, after
unloading a machine M;, must do at least the following before reloading
M;: travel to M,y (6), load M;11 (e), travel to M;_1 (), unload M;_;
(¢), and travel to M; (9).



Chapter 5

PARALLEL MACHINES

In the classical parallel machine part-scheduling problem, jobs are
processed by identical machines in parallel. Each job requires only a
single operation, and it may be processed on any of those machines [132].
Hall et al. [79] analyze such systems in which all jobs must be loaded
(set up) by a common server. They provide either polynomial or pseudo-
polynomial algorithms, or a proof of NP-hardness for various conditions
on setup times, processing times, and objectives. Blazewicz et al. [14]
analyze the Vehicle Routing with Time Windows problem, in addition to
the part-scheduling problem, for a similar system of parallel machines,
each of which can perform various tasks. These machines are served by
several automated guided vehicles that travel the same circuit.

This chapter considers constant travel-time robotic cells with parallel
machines producing a single part-type. Just as a simple robotic cell
is analogous to a flow shop with blocking, a robotic cell with parallel
machines is analogous to a flexible flow shop with blocking. In a robotic
cell with parallel machines, there are m stages, and for each processing
stage ¢ there are m; > 1 identical machines. As with simple cells, each
part is processed at each stage according to the same fixed sequence. A
part can be processed at stage ¢ by any one of the m; machines at that
stage.

The m; distinct machines at stage ¢ are denoted M;,, My, . . ., Mi,a(mm

where the function a(j) assigns to any positive integer j the j letter
of some alphabet. For ease of exposition, we use the standard English
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alphabet, e.g., a(3) = ¢; if a stage i has m; > 27 distinct machines, then
any other appropriate alphabet can be used. Each machine at stage ¢
has processing time p;. All cells discussed in this chapter have constant
travel time: d(M;y, Mj,) = 9, if i # j or v # n, whether the robot is
carrying a part or not. In addition, in this chapter we consider only
cells that produce identical parts. Section 5.1 analyzes robotic cells with
parallel machines that have single-gripper robots; cells with dual-gripper
robots are considered in Section 5.2.

5.1 Single-Gripper Robots

In certain cells, throughput can be improved by adding an identical
machine to a particular processing stage. Such a machine would be
used in parallel with the other machines of that stage. This method
is especially cost effective if there are a small number of stages whose
processing times are significantly larger than those of the other stages.
In fact, using m; parallel machines at stage j reduces that stage’s impact
on the per unit cycle time’s lower bound by a factor of m;: Te(m)/k >
(pj + 39 + 4€)/m;, where cycle m produces k parts. Herrmann et al. [83]
devise a network model that can be used to perform sensitivity analysis
to determine the amount of reduction in the cycle time by the addition
of a parallel machine to a specific stage (see Chapter 3). Our focus is
on finding an optimal cycle of robot moves in a robotic cell with parallel
machines (problem RF,,(m1,ma, ..., my)|(free,C,cyclic-k)|p).

5.1.1 Definitions

For clarity and flexibility, we define the concept of activity for a system
of parallel machines. When transferring a part from one machine to
another, the activity is denoted with three subscripts, e.g., A;,,. This
indicates that a part is being transferred from stage ¢ to stage i + 1, is
being unloaded from machine M;,, and is being loaded onto machine
M;y1,,. If the source is I or the destination is O, instead of a letter, we
use the asterisk symbol (*). For example, activity Ay, means that the
robot takes the part from My, travels to Ms,, and loads the part onto
Ms,. To signify taking a part from I, moving to Mi,, and loading M1,
we write Agsq-
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(7)

machine Mo, Atpe

machine M1,

3)
A1vp

machine M,
. 5)
- Ch M /
machine Ma, A

machine Moy

Figure 5.1. Cycle m of Example 5.1 in a Two-Stage Robotic Cell with Parallel
Machines. m1 = 2, mz = 3. Numbers in Parentheses Indicate Order of Operations.

Note that the definition of a k-unit cycle (Chapter 3) can be easily
adapted to a cell with parallel machines:

DEFINITION 5.1 A k-unit cycle  in a robotic cell with parallel machines
is a feasible sequence of robot moves in which each stage has its machines
loaded and unloaded exactly k times, and the cell returns to its initial
state.

Hence, our definitions of cycle time and per unit cycle time are still valid.

EXAMPLE 5.1 Consider a cell with two stages (m = 2) with m; = 2
and mg = 3. Here is an example of a cycle that produces three (k = 3)
parts:

T = (AO*aa AO*b; Albb7 AO*ba Alaaa A2b*; Albm A2a*7 AQC*)-

Note that this cycle has k(m + 1) = 9 activities. A schematic picture
of this cycle can be found in Figure 5.1. A Gantt chart can be found
in Figure 5.2. This cycle is feasible because the activities that load My,
(Agwp twice) alternate with those that unload My, (A1p, and Agpe).

A cycle in a cell with parallel machines can be checked for feasibility
as follows. For each machine My, i € M, ¢ = a,...,a(m;), between any
two activities that load M;¢ (Ai—1 e, « € {a,...,a(m;—1)}), there must
be exactly one activity that unloads M;e (Aiey, y € {a, ..., a(mit1)}).
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Robot 361 wait | 65 {wait} 656 | wait | 56 | wait | 65 {waitf 65 { wait I26|
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Figure 5.2. Gantt Chart for Cycle w1 of Example 5.1. Thin Lines Indicate that the
Robot Is Traveling Without a Part. In this Cell, p1 = 30, p2 =50, § =5, and € = 0.

5.1.2 k-Unit Cycles and Blocked Cycles

We now examine k-unit cycles (k > 1) for a robotic cell with parallel
machines and m stages. We first derive elementary results for them.
Then, we will study a special class — blocked cycles — of k-unit cycles
(k > 2), and find a dominating subclass.

5.1.2.1 Structural Results for k-Unit Cycles

Given a cell of m stages, we establish a lower bound for the cycle time
of all k-unit cycles on this cell. This lower bound is a generalization of
Theorem 3.19.

THEOREM 5.1 For any k-unit cycle 7, the per unit cycle time T'(m)/k
satisfies

y > max {Q(m +1)e+ Z min{p;, 0} + (m + 2)4,
i=1
pi + 30 + 46}
ax ——— o

1<i<m m;
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Proof. A k-unit cycle consists of k(m + 1) activities. Each activity re-
quires one loading and one unloading, so the total time for these actions
is 2k(m + 1)e. Before each activity A4;, i € M, there will be time taken
either by a robot move () or a processing time (p;). This time is repre-
sented by the second term. The robot never has to wait for processing
to complete before executing an Ag, so the total time taken before all k
Ag’s is kd; this is included in the last term. The last term also includes
the robot travel time while performing the k(m + 1) activities (transfer
of a part from some machine in stage ¢ to a machine in stage i + 1,
i=0,...,m), which is k(m + 1)é. A proof of the second term is trivial;
we leave it to the reader. |
This leads to an immediate result for an elementary case.

THEOREM 5.2 In a robotic cell with parallel machines, if p; < §,Vi,
then the forward 1-unit cycle wy achieves the optimum per unit cycle
time T (my).

Proof. We have previously seen that T'(ry) = 2(m + 1)e + > ", pi +
(m + 2)0 (Chapter 3). Its optimality follows from Theorem 5.1. [

COROLLARY 5.1 Ifp; < 6,Vi, there is no benefit to be gained from using
parallel machines.

Proof. p; < 4,Vi, implies that ny achieves the lower bound on the
optimum per unit cycle time as stated in Theorem 5.1. Therefore, the
per unit cycle time cannot be improved by adding parallel machines. m

5.1.2.2 Blocked Cycles

For k > 2, the number of k-unit cycles for an m-stage simple robotic
cell is much greater than m!, the number of 1-unit (k = 1) cycles. For
example, in a simple robotic cell, if m = 3 and k = 2, there are 20 cycles.
For m = 4 and k = 2, there are 260 cycles. For a robotic cell with parallel
machines, the number of distinct cycles is even larger. Therefore, we
narrow our field of study to a particular subset of k-unit cycles called
blocked cycles. We will define blocked cycles, derive an expression for the
cycle time of a general blocked cycle, and then characterize a dominating
subset of blocked cycles.

Blocked cycles form a highly structured subclass of k-unit cycles and
are a natural generalization of 1-unit cycles. A blocked cycle is composed
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of k blocks of activities. Each block has m + 1 activities, one for each
stage 0,1,2,...,m. Therefore, in each block, one machine in each stage
0,...,m, is unloaded, one machine in each stage 1,...,m+ 1, is loaded.
For a given cycle, each block has the same order of the activities by
numbers, i.e., each block unloads the stages in the same order. This
ordering is called the base permutation. The letters of the activities,
which represent specific machines at each stage, change from block to
block to indicate the loading and unloading of different machines; they
are restricted only by feasibility.

EXAMPLE 5.2 For example, in a cell with two stages (m = 2) with
m1 = 2 and my = 3, consider the following six-unit blocked cycle with
base permutation (0,1, 2):

mo = (Aoxa, Atve, A2ax, Aost, Atabs A2ex, Aosas Atbes A2ps,
AO*b7 Alaaa A20*7 AO*aa Albb> AZa*a AO*ba Alaaa A2b>«<)-

At the beginning of each iteration of this cycle, there are parts being
processed on machines My, and My,. In the first block, the robot unloads
a part from I and carries it to Mi,. It then travels to Mj,, unloads it,
and transfers the part to Ms.. Next, it moves to Ms,, from which it
unloads a completed part that is taken to the output buffer.

The robot starts the second block after returning to I. It obtains
a raw part and loads it onto My,. The robot then unloads Mj, and
carries that part to My,. This block concludes when the robot unloads
a completed part from My, and places it into O. Processing for the
remaining four blocks is similar.

Note that in each block, the indices of the activities follow the (0, 1, 2)
permutation, whereas the letters change to indicate the use of different
machines. In addition, many activities occur more than once during a
cycle, so machines are generally used more than once per cycle, e.g., Agxq
and Agsp are each performed three times and Ajy. is performed twice.
Moy is loaded twice: once by A1, and once by Ayp. A Gantt chart of
this cycle can be found in Figure 5.3.

Most machines M;, are loaded, process a part, and are unloaded more
than once during a cycle. Each occurrence of this sequence is called a
usage of Mp. In cycle mo of Example 5.2, there are three usages each
of M1, and M. If 'y, is the number of usages per cycle for machine
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Figure 5.3. Gantt Chart for Blocked Cycle 7o of Example 5.2. Thin Lines Indicate
that the Robot is Traveling without a Part. In this Cell, p1 = 30, p2 = 50, § = 5, and
e=0.

M;y, then for each stage i € M, Z?S;Z) 'y = k: some machine M;;
in stage ¢ is loaded in each block and some machine M;, is unloaded in
each block (j and ¢ may or may not be equal). The rth usage of M is
denoted M;),. Mile begins with the first loading of M;,. This happens at
the first occurrence of A;_1 z¢, z € {a,...,a(m;—1)}.

The existence of a stage s for which some usage Mgﬁ has full waiting
(defined in Chapter 3) implies that the subsequence (s — 1, s) is in the
base permutation. Furthermore, ms; = 1. If the base permutation con-
tains a subsequence (s — 1,s) and mg > 1, it will be assumed that the
robot’s cycle does not contain a subsequence (As_1 3, Asm) in which
the robot has full waiting at M,g. If the robot were to do this, there
would be no time advantage gained from having parallel machines at
stage s, since another machine in stage s could not be processing at the
same time that M,z did. Thus, in a blocked cycle, if stage s has a ma-
chine with full waiting at some usage, it has only one machine (denoted
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My,), and that machine has full waiting in each of its I's, = k usages.
The set of indices of stages whose machines have full waiting is V;.

If machine usage M/, has partial waiting, then its waiting time is de-
noted by w;j,. From the previous paragraph, we see that in a blocked
cycle, if the usage M/, has partial waiting, then all usages of all ma-
chines of stage ¢ have partial waiting. The set of indices of stages whose
machines have partial waiting is denoted V5.

Cycle Time for Blocked Cycles. For any cycle 7, its cycle time T'()
is the sum of the robot’s total move time (t,,), the total load/unload
time (t;), the total time for full waiting (WWy), and the total time for
partial waiting (1W,,). It is easy to see that for a k-unit blocked cycle in
a cell with constant travel times, t,, +t; + Wy = 2k(m + 1)(d + €) +
k> icv, (pi—6). Note that the value for this expression depends only on
the base permutation, the cell data, and the number of units produced.
For a general blocked cycle 7,

T(r) = 2k(m+1)(6+e)+k> (pi—0)+ W, (5.1)
S%1

a(ml Tie

Wy = D> ) wy, (5.2)
i€Va f=a r=1
Given a cell, a base permutation, and k, the cycle time T'(7) is minimized
by minimizing W,. Note that W, can be modified by specifying 7. In
other words, we may choose which machines of each stage are loaded
and unloaded in each block. To evaluate such choices, we now derive
an expression for the partial waiting time at a machine usage. We will
later use this to prove a theorem that provides two sufficient conditions
for dominant cycles.
To be able to compute the robot’s partial waiting time at a machine
usage M],, we must know which activities are performed during M;,’s
processing.

DEFINITION 5.2 Activities that are executed between the loading and
the unloading of M/, are called intervening activities.

Let G}, be the set of intervening activities for M],. In Example 5.2 (see
below) {A lbc} and GQb - {AQa*7 0xb> 1aa} The
superscrlpts designate different instances of the same activity.

2cx) 0*a7
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EXAMPLE 5.2, CONTINUED:

Gy
—_——~
o= (Aosa, Atbes A2ax, Aosb, Atab > Ases, Aokas Atve,  Aopse
~— ~—
loadMZJb unloadMgzb
G3,
—_——~
Aosb, Alaas Azes Aoka, Aty s Aaxs Aoty Alaa,  Aobe ).
~—~ ~~
load M, 2%) unload M gb

For any blocked cycle, the partial waiting time at any usage M}, is

wiy = max < 0,p; — 2|Gi|(d +€) — 6 — Z(pj —9) — ij , (5.3)
JeGT, (V1) JEGT,(V2)

where G7,(V1) is the set of activities in G}, that unload machine usages
with full waiting. More explicitly, G,(V1) = {Ajuq € G5 € Wi}
Similarly, G7,(Va) = {Ajzy € GL,|j € Va}. In Example 5.2, Vi = () and
wiy, = max{0,py — 76 — 6 — wl. — wi,}.

We can now see that the robot’s total partial waiting time between
the loading of My, by activity A14 and the unloading of My, by activity

1 .
Ay, is
1 1 1 1 1
Wy, + wip +wy, = max{wsy, + wyp, p2 — 70 — 6e}
= max E wj, wi
3s Wap (>
JEGE, (Vo)

where wf, = pi — 2|G|( +€) = § = X jeir (va) (py — ).

Dominant Blocked Cycles. Before presenting our dominance result,
we first define two conditions on blocked cycles and prove two lemmas
concerning cycles that satisfy these conditions. We then show that the
conditions are sufficient for a cycle to be dominant over other cycles with
the same base permutation. The two conditions are:

C5.1. Each machine is loaded as soon as possible after it is unloaded,
as allowed by the base permutation, i.e., for all ¢ € M and all 8 =
a,...,a(m;), machine M;y is unloaded during activity Ajpy, where
v € {a,...,a(m;11)}. Because this is a blocked cycle, exactly one
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machine in stage ¢ will be loaded within the next m activities. This
machine will be M;y.

C5.2. For each stage i, i € M, each of its machines has the same
number of activities between its loading and its unloading for each
usage: for each i, |G},| = g;, V¢, Vr.

LEMMA 5.1 Consider any k-unit blocked cycle m that satisfies Condi-
tions C5.1 and C5.2. For each stage i, i € M, each of its machines
is used the same number of times per cycle. This implies that k is a
multiple of m;, i1 € M, so I';y = %,Vﬁ. Furthermore, these conditions
imply that the machines at stage © are loaded cyclically and that they are
unloaded in the same order.

Proof. For any stage i, Condition C5.1 implies that the number of
activities between unloading M, and loading MZ?"EH is fixed by the base
permutation, for £ = a,...,a(m;),r =1,...,T; (I';p+1 is taken to be 1).
Call this number g;. Condition C5.2 says that the number of activities

between loading M, and unloading M}, is g;, for £ = a,...,a(m;),r =
1,...,I';s. The number of activities in cycle 7 is
k(m+1) =Ty(q + gi +2), VL. (5.4)

Hence, I';y is independent of /¢,Vi, so each machine in stage ¢ is used
the same number of times per cycle. Furthermore, Z?ﬁ:l) I'iy=k=
mLy = k < Ty = £ Vi, Ve Therefore, k must be a multiple of m;, Vi.

Equation (5.4) implies that

k
k(m+1) = ﬁ(%’-l-gﬂr?), S0

(]

g9i = mi(m+1)—(¢+2).
Condition C5.1 implies that 0 < ¢; <m — 1, so
(mi—1)(m+1)<g <miy(m+1)—2.

Therefore, since each block contains m + 1 activities, some activity
(Ai—1,2y) that loads a machine in stage ¢ occurs m; — 1 times between
any loading of a machine M;, and its corresponding unloading. Hence,
each of the m; — 1 other machines of stage ¢ is loaded between successive
loadings of a specified M;;. By Condition C5.2, each is unloaded after
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the same number of activities and, therefore, in the same order. Condi-
tion C5.1 implies that this order is maintained throughout the cycle. m

LEMMA 5.2 Any cycle that satisfies Conditions C5.1 and C5.2 is feasi-
ble.

Proof. Recall that there are two conditions (Chapter 3) that must be
satisfied for a cycle to be feasible. These can now be stated and verified
as follows:

m Usage M&H cannot be loaded unless usage M, has been unloaded
(T';e + 1 is taken to be 1).

n Usage M ZQH cannot be unloaded before it is loaded.

Since the machines of stage i are loaded cyclically, there are m;(m + 1)
activities between M/,’s loading and MZE—H’S loading. In the proof of
Lemma 5.1, we saw that the number of activities between M],’s loading
and its unloading is g; < m;(m+1)—2. Therefore, usage M, is unloaded
before the robot tries to load usage M {fl, Ve, Vr.

Because this is a blocked cycle, the number of activities between the
unloading of M}, and the unloading of MZTZH is a positive multiple of
m + 1. By Condition C5.1, after usage M/, is unloaded, usage MZZH
is loaded within the next m activities. Therefore, M[fl will have been
loaded before the robot attempts to unload it. (]

We are now ready to state and prove a dominance theorem. We prove
that for a given base permutation, a cycle that satisfies Conditions C5.1
and C5.2 is dominant over all other blocked cycles. It follows that the
sub-class of blocked cycles satisfying Conditions C5.1 and C5.2 domi-
nates the class of blocked cycles.

THEOREM 5.3 Given a robotic cell with m stages, fized data (p;, m;, i €
M; 5, €), and a base permutation, a blocked cycle that satisfies Condi-
tions C5.1 and C5.2 is dominant.

Proof. We show that W = min{W,}, where for a given robotic cell,
W, is the total partial waiting in a cycle that satisfies Conditions C5.1
and C5.2, and the minimum is taken over all feasible blocked cycles for
a given base permutation in that cell.
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Note that for any cycle, equation (5.3) can be stated as

wlp = max{0,w, — Y w;}, Vi, b7, (5.5)
JEGT(V2)

Hence, for a k-unit blocked cycle, we have a system of k|Va| inequalities

wip + Z wjz@,iEVQ;ﬁza,...,a(m,)r—l T, (5.6)
JEG,(V2)

where w!, > 0. Furthermore, for each machine M, G, N G}, = 0, for
1 <r < q < Ty Therefore, for each M;p, i € V5, we can add the
inequalities in (5.6) corresponding to w],, » = 1,...,Tj, and derive the
following > .y, mi inequalities:

Tig
Z wip + Z wj >Zw£7 ie Vol =a,...,a(m;).
r=1 JEGT,(V2)

Claim 1. For a fixed I';y, Z w 7, is minimized by a cycle satisfying
Condition C5.1, Vi, £.

Proof of Claim 1. Because Condition C5.1 requires that M;, be reloaded
as soon as possible, it maximizes the sum of the number of activities
between the loading and unloading of the usages of a machine; ie., it

maximizes Z 1 |G%,|. Thus, it also minimizes Z fg 0

Claim 2. Za(m’ ZE ; max{0, w e} is minimized by a cycle satisfying
Conditions C5.1 and C5.2, Vi.

Proof of Claim 2. Condition C5.2 (|G},| = g¢;, V¢,Vr) implies that wf
is the same for all usages of all machines in a given stage 7. Let w], =
1/05 for a cycle satisfying Conditions C5.1 and C5.2. Therefore, since

Ty =k,
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i max{()w} max 1 0, i Zw

a «a
l=a r=1 {=a r=1

=max< 0,k[p; —2¢;(6 +¢€) — 0 — Z (pj —90)]
je

j€GT, (V1)
a(ml zl
< max < 0, Z Z i — 2|Gi|(0+€) — 6 — Z (pj —0)]
l=a =1 JEGT, (V1)
a Z 7,2
Z Zmax{o ww}
b=a r=1

]
Let w]; be the waiting time of the robot at machine usage M/, in a

cycle that satisfies Conditions C5.1 and C5.2. If w}; = 0, then obviously
wl = min{w],}. If w] > 0, then equation (5.5) implies

wip + Z wj = wy, Vi, l,r.
JEG(V2)

Hence, by Claim 2,

a(m;) Ty a(mg) Ty
DD |wit Do Wi o= XX ow
l=a r=1 JEGT,(V2) l=a r=1

a(m;) Ty

Z Zmax{(),@}

{=a r=1

a(m;) Ty
a

IN

IN

Z wip + Z wj |, Vi.

t=a r=1 JEGT,(V2)

This argument holds for all stages i € V5. Therefore, W, = min{W,}. m

5.1.3 LCM Cycles

As we have previously seen (Chapter 3), when dealing with multi-unit
cycles, one must address their feasibility. In this section, we define LCM
(for least common multiple) cycles that satisfy Conditions C5.1 and C5.2
stated in Section 5.1.2.2, and, therefore, are always feasible. This led
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Kumar et al. [102] to use them in their genetic algorithm-based analysis
of a specific company’s robotic cell. They also show that LCM cycles
greatly increase throughput in that cell. We now consider LCM cycles
for general cells with parallel machines.

To motivate LCM cycles, note that as proven in Lemma 5.1, £ must
be a multiple of each m; for Theorem 5.3 to be fulfilled. This leads to
the definition of LCM cycles.

DEFINITION 5.3 LCM Cycles are blocked cycles that have the following
characteristics:

m They satisfy Conditions C5.1 and C5.2 stated in Section 5.1.2.2.
= The number of blocks is A = LCM[m1, ma,...,mpy].

m For each stage 7, the loading of its machines is ordered alphabetically,
beginning with machine M;, in the first block.

The last requirement ensures that a cell has a unique LCM cycle for a
given base permutation. From Theorem 5.3, we know that for a given
base permutation, the LCM cycle dominates all other blocked cycles.
Therefore, the class of LCM cycles dominates the class of blocked cycles.

In the remainder of this section, we further characterize LCM cycles
and derive results. This includes providing examples and computing the
cycle times for those examples.

EXAMPLE 5.3 Consider a two-stage cell (m = 2) in which m; = 2 and
ma = 3. The LCM cycle for base permutation (0,2, 1) is

m.p(2,3) = (Aoxas A2axs Abar Aosbs Aabs, Alabs Aowas Aaex, Atbe,
AO*ba AQa*a Alam AO*aa A2b*7 Albb7 AO*b> A2c*> Alac)-

At the beginning of each iteration of this cycle, there are parts being
processed on machines My, Mo,, Moy, and Ms.. In the first block, the
robot unloads a part from I and carries it to M7,. Next, it moves to Mo,
from which it unloads a completed part, which it takes to the output
buffer. It then travels to My, unloads it, and transfers the part to Mo,.

The robot starts the second block after returning to I. It obtains a
raw part and loads it onto Mj,. The robot then unloads a completed
part from My, and places it into O. This block concludes when the robot
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machine Mas, A1bc(9)

machine My

machine Moy,

3

machine M1,

machine Mo, A14a(12)

B (1,7,13)

Figure 5.4. LCM Cycle 7,p(2,3). Numbers in Parentheses Indicate Order of Oper-
ations.

unloads My, and carries that part to My,. Processing for the remaining
four blocks is similar.

We use 71,p to denote the general LCM cycle that has mp as its base
permutation. The specific instance in Example 5.3 is denoted 77 p(2, 3)
because m; = 2 and my = 3. It has six (LCM]|2,3]) blocks of three
(m+1) activities each. Each block is ordered AgA2A;. For a given stage,
we rotate usage of its machines, beginning with loading machine M;, for
each. For example, the blocks alternate between loading M1, (Ao«a) and
My (Agwp) — each is used \/my = 3 times per cycle (Lemma 5.1). Each
of the three machines in stage 2 is loaded every third block — twice per
cycle. Each usage of a machine in stage 1 has four activities between its
loading and its unloading; each in stage 2 has seven (Condition C5.2 of
Section 5.1.2.2). A schematic representation of this cycle is presented in
Figure 5.4. A Gantt chart of 71,p(2,3) can be found in Figure 5.5.

Note that 7y p satisfies Condition C5.1 by loading each machine as
soon as possible after unloading it. Since processing is cyclical, minimiz-
ing the time between unloading and loading each machine maximizes the
time between loading and returning to unload each machine. This max-
imization in turn minimizes the robot’s waiting time at each machine
usage.
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Robot || 36 | 360 |
Y Y Y Y Y
M| [Parts Part 5 Part 7 Part 9 Part 11]
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Figure 5.5. Gantt Chart for Cycle 7p(2,3). Thin Lines Indicate that the Robot is
Traveling Without a Part. In this Cell, p1 = 30, p2 =50, 6 =5, and € = 0.

The cycle time of the general cycle wrp can be easily computed from
equations (5.1) and (5.3). Since V; =0 in 71,p, we have

T(rrp) =2XA(m+1)(6 + ¢€) +lr§%>§n{max {0, %[p,; —2g;(6 +€) — 9] }} :

(2

Since g; = m;j(m + 1) — 2, Vi, this leads to

T(mp) = max {2)\(m +1)(8 +¢), max { AN 46)}} . (5.7)

<is<m _Z
Therefore,
T(7p(2,3)) = max{360 + 36¢, 3(p1 + 39 + 4¢),2(p2 + 30 + 4e) }.

The LCM cycle in this cell based on 7y or, equivalently, with base
permutation (0,1,2), is

Tv(2,3) = (Aokas Atbas A2bss Aosbs Atabs Azexs Aoxas Atbes Aaxs
Aoy Ataas A2bis Aoxa, Albbs Azexs Aosbs Alacs Aax)-
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A similar computation yields the cycle time of 7y as
T(rruv(2,3)) = max{369 + 36¢, 3(p1 + 5J + 6¢€), 2(p2 + 56 + 6¢) }.

Note that if the robot never waits, T'(mr(2,3)) = T(7rp(2,3)). It is
when the robot must wait that 77 p(2, 3) proves itself as the better cycle.

5.1.4 Practical Implications

In this section, we state and prove a theorem that specifies an optimal
cycle for a very common special case. This theorem is used to generate
a formula for determining how many machines are needed at each stage
to meet a given throughput requirement.

5.1.4.1 Optimal Cycle for a Common Case

We now prove that 7yp is an optimal cycle if p; > 4,Vi. Our work
with a Dallas-area semiconductor equipment manufacturer [64] supports
that this is common in practice, as do the studies [102] and [128]. Note
that the following theorem produces an optimal cycle over all cycles, not
just blocked cycles. Its proof is a straightforward extension, for parallel
machines, of the argument for the optimality of the reverse cycle mp in
simple cells under the assumption p; > ¢, Vi (see Chapter 3).

THEOREM 5.4 If p; > 0,Vi, then wpp achieves the optimum per unit
cycle time.

Proof. By Theorem 5.1, if p; > 4,Vi, then T(w) > 2k(m + 1)e +
kmé + k(m + 2)6 = 2k(m + 1)(6 + €), for all k-unit cycles m. Hence,
T(m)/k > 2(m+1)(0+e€). From equation (5.7), for the A\-unit cycle 7zp,
T(rrp) = 2A(m + 1)(0 + €) if the robot never has to wait at a machine
for it to complete processing, so its per unit cycle time in this case is
2(m +1)(0 +¢).

Observe that the robot’s fewest actions after a specific machine M;,
completes processing and before that machine starts processing its next
part are (1) unload M;, (2) travel to a machine in stage ¢ + 1, say M;41 4,
(3) load Mjt1,4, (4) travel to a machine in stage i — 1, say M; 4, (5)
unload M;_1 5, (6) travel to M;, and (7) load M;, for a total minimum
possible time between the unloading and the loading of M;, of 36 + 4e.
Thus, the minimum possible time between each loading of M, is p; +
3d+4e. Since M;y is used I';y times per cycle, the minimum possible time
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required for its total processing during a complete cycle is T';p(p;+30+4¢).
The best possible total cycle time is

Tiv(p; o+4
mm{m<m{ olpi 30+ @}}

Since >, a(m) Lie = k, Vi, we minimize max,</<q(m,){Lie(pi + 30 + 4e)}
by setting I';y = k/m;, Vi, V¢. Therefore, the best possible cycle time is
maxi<i<m {(k/mz)(p@ + 30 + 46)}. Since T(T('LD) = max{2)\(m + 1)(5 +
€), maxi<i<m {(A/m;)(p; + 30 + 4¢€)}}, mrp achieves the optimum cycle
time for a A-unit cycle. The requirement I';y = k/m;, Vi, only makes
sense if k is a multiple of m;,Vi. Therefore, myp achieves the optimum
per unit cycle time over all k-unit cycles, k > 1. |

COROLLARY 5.2 If max1<z<m{ -(pi + 30 + 4e)} > 2A(m + 1)(6 +¢),
then wrp achieves the optimum per unit cycle time.

Proof. Follows directly from the proof of Theorem 5.4. [

COROLLARY 5.3 Suppose mrp is optimal. For any stage i € M for
which p; < (2m — 1)d + 2(m — 1)e, there is no benefit to be gained from
using parallel machines in stage i.

Proof. Observe that
pi<(2m—1)0+2(m—1)e < p;+36+4e <2(m+1)(6 +¢€).

Therefore, adding parallel machines to stage i cannot reduce T'(7rp). m

Consider the alternative case in which p; > §, Vi, is not true. In
much the same way that 7p is a 2-approximation for an optimal cycle in
a simple cell (Chapter 3), w1 p provides a 2-approximation for an optimal
cycle in a robotic cell with parallel machines. From Theorem 5.1 and
the proof of Theorem 5.4, we know that for any cell, independent of the
relationship between p;, ¢ € M, and ¢, for an optimal cycle 7*,

max {2/\(m + e+ A Zmin{pi, 5} + A(m + 2)0,
i=1

1<i<m

max {mii(pi +35+4e)}} < T(7%).
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From equation (5.7), we have

T(mrp) — Amd < max {2)\(m +1)e+ A Z min{p;,d} + A(m + 2)0,
i=1

max {%(Pi+35+46)}}.

1<i<m i
Hence, T'(mpp) < T'(7*) + Amd < 2T (7).

5.1.4.2 Fewest Machines Required to Meet Timelines

The previous theorem leads to a guideline for adding machines to
meet mandated throughput requirements if p; > 9, Vi, which we have
seen is an important practical case. If a customer specifies a throughput
that implies the per unit cycle time 7, then we must have T'(7zp)/A <
T*. Therefore, for each stage i, we must have (p; + 36 + 4e)/m; < T*.
(Note that if 2(m + 1)(6 + €) > T, then this time requirement cannot
be satisfied). To meet the time requirement, the number of parallel
machines for each stage ¢ must satisfy (p; + 39 + 4e)/T* < m,;. To
minimize overall cost, for each ¢, choose the smallest such m;. Therefore,

_ [py; —|—35—|—4€“

Examples that illustrate the increase in throughput that can be realized
by adding parallel machines can be found in Section 5.2.3.2.

In the case with general processing times, w;p may or may not be
an optimal cycle. However, the preceding analysis is still valid, so if
equation (5.8) is satisfied and 2(m +1)(6 +¢€) < T%, then 7p will meet
the required timeline.

5.2 Dual-Gripper Robots

For dual-gripper cells with parallel machines, we again consider only
constant travel-time cells (REZ (myq, ..., my)|(free, C,cyclic-k)| ) [61]. As
in the previous section, we provide an optimal solution to the k-unit
cycle problem under conditions that are common in practice. The main
idea of this analysis is the construction of a specific cycle C’g’:‘L, which
combines the structures of LCM cycles (Section 5.1.3) and the cycle C7*
for dual gripper simple cells (Chapter 4).
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5.2.1 Lower Bound on Per Unit Cycle Time

We now state and prove the lower bound on the per unit cycle time
for a dual-gripper robotic cell with parallel machines. Both the bound
and its proof are similar to those of Theorems 4.7 and 4.8.

THEOREM 5.5 If0 < 9§ and p; > 9,1 =1,...,m, then for any k-unit
cycle w in a robotic cell with parallel machines served by a dual-gripper

robot, the cycle time T'(7) satisfies

T i +2€+0
% > max{(m+2)5+2(m+ 1)e +mb, max {p+—e+}}

" (5.9)

Proof. In part A of the proof, we show that max;{(p; + 2¢ + 0)/m;} is
a lower bound for T'(7)/k. In part B, we show that (m + 2)é + 2(m +
1)e + m#@ is a lower bound.

Part A: Suppose we represent a cycle by the sequence

- =+ - + - +
(MM , 01, MZ'[ , 02, MZ[ ;035 MZ'( 304y - ’Mif y O20;0—15 MM ) UZFw)

for some specific machine M;,. The time between the beginning of M,
and the end of M;g is at least p; + 2¢. If p; > 9, Vi, we can establish a
lower bound by choosing 03 = 4 = - -+ = 09r,, = (). This leads to

T(r) > r % + 0
(m) &i’fnaﬁ?ﬁz{ ie(pi +2¢+0)}.

Since Z?X;‘) Ly =k, Vi, maxagga(i){l“ig} > mii, SO

1<i<m

T(m) > max {mﬁl(pz + 26+0)}.

Part B: We again examine the cases detailed in the proof of Theo-
rem 4.8. However, we now consider the robot’s residence times at stage 7,
rather than at machine M;. For the sequence (Mlp,M+) p # (3, the
residence time is 2¢ + d: load M;,, move to M;g3, unload M;z. In this
analysis, we establish that the lower bound for each case in a simple ro-
botic cell applies to the respective case for cells with parallel machines.
Hence, the proof of Theorem 4.8 can be directly applied to prove Theo-
rem 5.5.

For any stage i, any sequence o of a k-unit cycle that represents

two consecutive loadings and unloadings of machines in stage ¢ is of
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the form o = (M,

+ - +
1p,2r71701’M'ﬁ,2r71’0‘2’ M. 0‘3,M

% 77y,27 in,2r?
r=1,...,k/2, and M ,, (MZ.‘.‘:QT) denotes 2r" loading (unloading) of a

machine in stage i. Note that in o at least one of 71, 02, 03, and 74 is

04), where

not empty.
Case 0. M; = My. The analysis is identical to that of Theorem 4.8.
Case 1. M; = M,,+1. The analysis is identical to that of Theorem 4.8.

Case 2. 01 # 0,09 # 0,03 # 0,04 # 0. The robot is occupied at
machines in stage ¢ for at least 4e time units.

Case 3. 01 = 0 (for o3 = (0 the analysis is similar). If p = /3, then the
robot is occupied at stage ¢ for at least 4e + p; time units. If p # G,
then the robot is occupied at stage ¢ for at least 4e 4+ § time units.

Hence, in this case, the robot’s minimum residence time at stage @ is
4de + 0.

Case 4. 09 = (for 54 = () the analysis is similar). If 3 = v, then the
robot is occupied at stage i for at least 4e 4+ 0 time units. If 3 # ~,
then the robot is occupied at stage ¢ for at least 4e + § time units
(we assume that the robot switches grippers while moving between
machines). Hence, in this case, the robot’s minimum residence time
at stage 7 is 4e€ 4+ 0 time units.

Case 5. 01 = 03 = ) (for 3 = g4 = () the analysis is similar). The
following subcases imply the listed minimum residence times:
a) p=0=7v = 4e+0+p;
b) p=8#y = de+d+pi;
c) p#*B=v = 4e+0+9;
d) p#pB#v = 4e+26.

Hence, the robot is occupied at stage i for at least 4e + 6 + ¢ time
units.

Case 6. o1 = 03 = (). Recall that “A” means logical and, and “V”
means logical or.

a) p=pBAy=n = de+2p;
b) (p=BAY#n)V(p#BAy=n) = 4e+06+pi;



174 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

c) (p£LBANY#n) = 4de+ 20.
Hence, the robot is occupied at stage 7 for at least 4e + 26 time units.
Case 7. 01 =04 =0 (for 53 = 53 = () the analysis is similar).
a) p=pF=n = de+0+pi
b) p=08#n = de+5+pi;
c) p=n#p = 4de+6+9;
d) n#p#p = 4e+20.

Hence, the robot is occupied at stage i for at least 4e + 6 + ¢ time
units.

Case 8. 0y =04 = 0.

a) f=yAp=n = 4de+ 26,
b) B#yAp#n = 4e+26;
c) B=vAp#n)V(B#yAp=mn) = de+0+0.

Hence, the robot is occupied at stage ¢ for at least 4e + 26 time units.

Case 9. 01 = 09 = 03 = 0 (for 61 = 03 = 74 = () the analysis is
similar.)

a) p=p=v=n = de+0+2p;

b) p=p=v#n = de+0++pi;

c) p=BFy=n = 4de+5+2p;

d) p=B#y#nVy=n#p#[ = 4e+ 20+ p;;

e) B=n#yVp=~v#[ = infeasible;

£) p#B=7v=n = 4e+0+7+p;

8) PEBAPEYNPENABEYANBENNY#n = de+36;

h) p#B=~v#n = 4e+ 0+ 2.

Hence, the robot is occupied at stage ¢ for at least 4e + 0 + 2§ time
units.

Case 10. 01 =03 = 04 = () (or 03 = 03 = g4 = ()). This schedule
structure is infeasible.
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Again, let uj,j = 0,...,9, denote the number of sequences o corre-
sponding to Case j that occur in a k-unit cycle, for all r = 1,...,k/2,
stages i = 0,...,m + 1, and machines My, ¢ = a,...,a(m;). As there
are k/2 sequences for each stage in a k-unit cycle, we have mk/2 =
ug + ug + ug + us + ug + uy + ug + ug and ug = u; = k/2. By adding
residence times corresponding to all the above cases and setting p; = 9,
Vi, we get a lower bound for T, the aggregate residence time of the
robot at all machines in all stages:

T, > gu—i— 2mke +  (ug + us + ur + 2ug + ug)0

+  (us + us + 2ug + uy + 2ug)9,
where p denotes the minimum residence time of the robot at both I and
O in sequences (Mg, 1,01, My, 09) and (M, 1 5. _1,01, M) 5., 09).
Hence, the lower bound for T is the same as the one found in Theo-
rem 4.8.

A robot movement from M;, to My, occurs when an operation Mlg
or M;; is followed immediately by a robot operation M hiy OF M fj;z’ where
h # i or v # 1. Such a movement is incident to both machines M;, and
My, , and requires ¢ time units. Therefore, the proof of Theorem 4.8 can
be directly applied to establish the same lower bound for the aggregate
travel time T3, and hence for Case B. This proves the lower bound of

inequality (5.9). n

5.2.2 An Optimal Cycle

Before defining Cycle _g‘L, in order to develop intuition, we first pro-

vide an example and then describe the cycle in general. Example 5.4
below presents a specific case of cycle C’ZZ}L in a cell with two stages,
where m; = 2 and mo = 3. It begins with all machines occupied and
the robot at I with both grippers empty. The robot unloads a part from
the input buffer and travels to Mi,. If necessary, the robot waits at
M, until it completes processing. The robot then unloads that part
and replaces it in M7, with the one from I. The part from M, is then
carried to My, at which the robot waits (if necessary), unloads the part
from My, and replaces it with the part from Mi,. The part from My, is
carried to and loaded onto O. Then the robot returns to I for the next
raw part. The robot again travels to stages 1 and 2, but this time it
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serves machines M7, and Moyy,. In the following pass through the stages,
it serves machines M, and Ms.. The robot makes three more passes
through the stages, serving machines My, and Ms,, then machines M,
and Moy, and finally machines M7, and Ms.. After loading the last part
onto O, the robot completes the cycle by returning to I. By cycling
through the machines in each stage in this fashion, the robot’s waiting
time at each machine is minimized.

For a cell with parallel machines, our notation for dual-gripper robots
is extended as follows. R;_(0,h) or R;_(h,0) is the robot state in which
the robot has just finished loading a part onto machine Mj,. R;.Z(i—l— 1,h)
or R;g(h, i+1) is the state in which the robot has just finished unloading
a part from machine M;,. The subscript 0% is used when unloading I,
and the subscript (m + 1)x* is used when loading O.

ExXAMPLE 5.4

(R.(1,0), R{,(1,2), Ry, (0,2), R3,(3,2), Ry, (3,0), Ry, (0,0),
R, (1,0), Rf,(1,2), R,(0,2), R3,(3,2), Ry, (3,0), R, (0,0),
Rg,(1,0), Rf,(1,2), Ry, (0,2), R3.(3,2), R;.(3,0), R, (0,0),
Ry, (1,0), R, (1,2), Ry, (0,2), B3, (3,2), Ry, (3,0), Ry, (0,0),
Ry, (1,0), R, (1,2), Ry, (0,2), R}, (3,2), Ry,(3,0), Ry, (0,0),
R, (1,0), Rf,(1,2), R,(0,2), R3.(3,2), Ry.(3,0), R3,(0,0))

Cycle C_'ZZLL has the following characteristics:

1. It begins with all machines occupied and the robot at the input buffer
while holding no part.

2. The number of parts produced in one cycle is A = LC M [mq,ma, ...,
M), the least common multiple of the number of machines in each
stage.

3. For each stage ¢, the unloading of its machines is ordered alphabeti-
cally, beginning with machine M;, in the first block.

4. Each machine is loaded immediately after it is unloaded. That is,
state R;,(i+1,0) immediately follows state R}, (i+1,4), i =1,...,m;
t=a,...,a(m;).
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5. After loading a machine in stage ¢, the robot travels to stage i + 1,
i=1,....m. If 1 <i < m — 1, then the robot unloads and loads
some particular machine in stage ¢ + 1. If ¢ = m, then the robot
places the part into the output buffer (O), travels to the input buffer
(I), and collects a new part which it carries to a machine in stage 1.

Note that characteristics 2, 3, and 4 are analogous to those of LCM
cycles (Section 5.1.3). It follows that C’(TL is feasible and that for each
stage i, each of its machines is used A\/m; times.

In the following definition, ¢(i) is the subscript of the next machine
to be unloaded at stage i. If ¢(i) is incremented to a(m; + 1), then set
(i) = a.

Cycle C’g:‘L
Begin
Set ¢(i) =a,i=1,...,m.
For part k =1 to A = LCM|[my, ma,...,my] do:
Begin
e: robot unloads a part from I.
For ¢ =1 to m do:
Begin
d: robot moves to M; 4(;-
W; 4(i): Tobot waits for the part on M; 4;) to complete.
e: robot unloads M; 4(;.
0: robot switches to the other gripper.
e: robot loads M; 4(;).
increment ¢(i) to next letter.
End (Next 7)
d: robot moves to O.
e: robot loads finished part onto O.
d: robot moves to I.
End (Next k)
End

The cycle time for C_'Zl”L can easily be calculated as

T(CPL) = Am+2)6+2X(m+ L)e+mA+ W,  (5.10)
a(m;) A/m;

where W = i Z Zwl’fg

i=1 f=a 7r=1
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is the robot’s total waiting time during one iteration of cycle C’gfL. Thus,
if the robot never waits at any machine for it to complete processing,
the per unit cycle time of CYZZ}L is the same as that of C“(T, and it equals
the lower bound of Theorem 5.5. We now derive an expression for W.
Let 7 = (m 4+ 2)6 + 2(m + 1)e + mf. The same logic that led to
equation (4.2) shows that the robot’s waiting time at usage M/, during

cyy is

w;p = max < 0,p; — myT + 2+ 6 — Z wj o,
JeGy,
where G7, is the set of usages that are unloaded between the loading and
the unloading of M;,. This yields a system of Am inequalities

wip + Z w; > Xy, Vi, 4,
JEGT,

where w}, > 0, Vi,4,r, and X; = p; — m;T + 2¢ + 0.
For the cycle in Example 5.4, we have the following system of inequal-
ities:

w:l;“ +w%a s +wi, +wgy, +wi, —Hu%C > Xo
wy, +twy, +wy, +w;. > X1
wl, +wi, +wf, +ws, +wly fwy, > X
wy, +w}, fwi, +wi, > X

wi, +wi, +wi, +wy, +wi, +ws, > X
wy, twy, twi, twy. twy, +wy, > X3

w3, 4wy, +wi, +wi, > X

wy, Fwi, fwy, +wy, +wi, +ws, > X

Wy, +wi, fwyy, +wl, > X

1 1 3 1 3 1
wyy, twy, Fwi, twy, Fwiy, fws, = Xo

with w], > 0, Vi, £, r.
We now show that a minimal solution to this system of inequalities

W = maX{O, max {in}}
1<i<m | m;

Each machine M;; has one inequality for each of its A/m; usages. It

yields

is easy to see that each variable appears exactly once in the \/m; in-
equalities corresponding to My, i = 1,...,m; £ = a,...,a(m;). This
is because in the cycle C‘ZZLL, given any machine M;,, every usage of
every other machine is unloaded exactly once between the loading and
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unloading of some usage M],,r € {1,...,A/m;}. By adding the A\/m;
inequalities of machine M;;, we obtain the following m inequalities:

a(mg) A/m; A
— T . ;o
W = Zz; 2 2 w;p > mZ-X“ i=1,..,m.
Since W > 0, we have W > max {0, maxj<j<m {AX;/m;}}. We ex-
hibit a feasible solution whose value is max{0, maxi<j<m, {AX;/m;}}.
Let i’ be such that AX;/my = maxi<j<m{AX;/mi}. Let the wait-
ing time at each usage of each machine in stage i’ be X;/my. That
is, wl, = Xy/my,¥ £,r, and let w], = 0,i # 7. In each of the X
inequalities corresponding to usages of machines in stage ¢/, i.e., in-
equalities whose right-hand sides are X/, the left-hand side evaluates
to my(Xy/my) = Xy. In all other inequalities, the left-hand side eval-
uates to m;X; /my > mi(X;/m;) = X;. Therefore, this is a feasible
solution with W = max {0, max;<j<m {A\X;/m;}}. Thus,

W:Z wag

= max {0, max {LXZ}}
1<i<m | My
A
= max {O, max {—(pl —m;T + 2€ + 9)}}
1<i<m | m;
A 1
= max<0, max { —p;i—A(m+2)0 =2\ (m+1—— )¢
1<i<m | ™My m;

1
(=)t
m;
Combining this result with equation (5.10), we have

T(Cgy) = max{A(m +2)6 +2X\(m + 1)e + mAb,

A
lglig{g(pwzew)}}.

We have thus proved the following result.

THEOREM 5.6 In a robotic cell with parallel machines and a dual-gripper
robot, C. is optimal among all k-unit cyclic schedules (k > 1) under
the assumption that @ <6 andp; > 6,i=1,...,m.
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REMARK 5.1 Because the lower bound for the per unit cycle time in a
robotic cell with parallel machines and a single-gripper robot, according
to Theorem 5.1, is

T(m) > max {2(m +1)e+ i min{p;,d} + (m + 2)0,

k ;
=1
{pz’ + 30 + 4e }}
max { —— 5 >,
1<i<m m;

C7"; achieves a greater throughput than all the single-gripper k-unit
cycles in cells with parallel machines that satisfy 8 < min{d,p;}, i =

1,...,m.

REMARK 5.2 We know of no rigorous studies of robotic cells with par-
allel machines and additive travel times. Hence, the structure of an
optimal cycle or a lower bound on the per unit cycle time are not known
for such cells, either for single-gripper or dual-gripper robots.

5.2.3 Improvement from Using a Dual-Gripper
Robot or Parallel Machines

We first note that starting from the single-gripper simple robotic cell
model, there are essentially three different ways in which managers can
attempt to improve productivity (keeping other process-related proce-
dures fixed):

1. by considering the use of a dual-gripper robot,

2. by considering the installation of parallel machines at bottleneck
stages, and

3. by considering the use of both a dual-gripper robot and parallel ma-
chines.

To assist production managers with the decision making, we provide an
analysis by dividing the discussion into three subsections that reflect
the three options listed above. Our analysis attempts to obtain a bound
on the potential decrease in the per unit cycle time (or, equivalently,
an increase in the throughput) if a particular option is chosen. For a
given cell, the computations required to do the analysis are straightfor-
ward, and the resulting bounds will enable managers to compare these
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options. Throughout our analysis we assume that § < ¢ and p; > 9, as
these conditions hold in most manufacturing applications. Following our
analysis, we illustrate it on two cells we encountered in our work with a
Dallas-area semiconductor equipment manufacturer.

5.2.3.1 Installing a Dual-Gripper Robot in a Simple
Robotic Cell
In a simple robotic cell, we compare the two 1-unit cycles mp (Chap-
ter 3) and C7" (Chapter 4). Recall that T'(mp) = max{2(m + 1)(J +
€), max;{p; } + 30 +4e}, and, if p; > ¢, Vi, then it is optimal in a cell with
a single-gripper robot.
Before we provide the details of the analysis, we summarize the results:

m If T(mp) = 2(m + 1)(6 + €), then the cell is robot-constrained and
the per unit cycle time can be decreased by up to m(J — ) by using
a dual-gripper robot and implementing cycle C’Zl”.

» If T(mp) = max;{p;} + 30 + 4¢, then the decrease in the cycle time
from using a dual-gripper robot is at best 36 + 2¢ — 6.

We now provide the analysis on a case-by-case basis. The cases concern
the relations between the arguments in the per unit cycle time expres-
sions for mp and C_'Zl”:

T(rp) = max{2(m+1)(0+¢€), max {p;} + 35 + 4e},
1<i<m
T(CP) = max{2(m+ 1)e+ (m+2)d +mdb, max {pi} + 2¢+6}.
<i<m
Recall from Corollary 4.6 that cycle C’Z,” is optimal for a simple robotic

cell with a dual-gripper robot among all k-unit cyclic schedules (k > 1)
under the assumption that 8 < §d and p; > 46,1 =1,...,m.

Case 1.

2(m+1)(0+¢€) > max{p;} + 30 + 4e,
2(m+ e+ (m+2)6 + mb > max{p;} + 2¢ + 0.

Using a dual-gripper robot will decrease the per unit cycle time by

m(s — 0).
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Case 2.

2(m+1)(0 +€) > max{p;} + 30 + 4e
> max{p;} + 2¢+0
>

2(m+ 1)e+ (m+ 2)0 + mé.

Using a dual-gripper robot will decrease the per unit cycle time by
x =2(m+1)(d + ¢) — [max{p;} + 2¢ + 0]. Note that 35 +2¢ — 6 <
x<m(d—0).

Case 3.

max{p;} +35+4e > 2(m+1)(5+¢€) >
20m +1)e + (m+2)8 +mh > max{p;} + 2¢ + 0.

The improvement in the cycle time from a dual-gripper robot is z =
max{p;} +30+4e—[2(m+1)e+(m+2)5+mb]. Note that m(d—0) <
z <30+ 2¢—0.

Case 4.

max{p;} +30+4e > 2(m+1)(6+¢€)
max{p;} +2¢+6 > 2(m+1)e+ (m+2)J+mb.

The improvement in the cycle time in this case is 36 + 2¢ — 6.

Table 5.1 lists eight different simple robotic cells and their data. These
were chosen because they cover the four different cases just discussed.
Additionally, based on our experience with a robotic cell manufacturer,
these are reasonable examples. For each cell, the table lists T'(mp) for a
single-gripper robot and T(C7") for a dual-gripper robot. The table also
shows the case to which each cell belongs to as well as the percentage
improvement in throughput from using a dual-gripper robot.

5.2.3.2 Installing Parallel Machines in a Single-Gripper
Robot Cell

Recall that in the case which we consider (i.e., p; > 6,Vi), mrp is
optimal in a single-gripper robotic cell. If max{p;} + 36 + 4e¢ > 2(m +
1)(6 + €), then this cell is process-constrained at stage i*, where p;» =
max{p;}. Its throughput can be increased by adding parallel machines
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m & € 6 max{pi} | T(rp) T(CF) % improvement |
5 3 1 1 20 48 38 20.83 | Case 1
15 3 1 1 50 128 98 23.44 | Case 1
15 10 1 1 150 352 217 38.35 | Case 1
10 3 1 1 70 88 73 17.05 | Case 2
5 3 1 2 38 51 43 15.69 | Case 3
5 3 1 1 50 63 53 15.87 | Case 4
5 3 1 3 50 63 55 12.70 | Case 4
15 3 1 1 150 163 153 6.13 | Case 4

Table 5.1. Cycle-Time Improvement from using a Dual-Gripper Robot in a Simple
Robotic Cell.

to stage i*. The best possible per unit cycle time is 2(m + 1)(J + ¢€).
This is achieved if, for each stage i, the number of parallel machines m;
satisfies (Section 5.1.4.2) (p; +30 +4€)/m; < 2(m+1)(d +¢€). Therefore,
| pit+30+4e
e [Z(m +1)(6+ e)-‘

is the minimum number of machines needed at stage i, Vi. If max{p;} +
30+4e < 2(m+1)(d+¢€), then there will be no benefit from using parallel
machines in this cell.

Table 5.2 lists the same eight cells as those in Table 5.1. For each, it
gives T'(mp) for a simple robotic cell, the best possible value for T'(7p)

in a robotic cell with parallel machines, and the percentage increase in
throughput realized by using parallel machines. Note that only those
single-gripper robotic cells in Cases 3 or 4 (i.e., process-constrained)
benefit from the addition of parallel machines.

5.2.3.3 Installing a Dual-Gripper Robot in a
Single-Gripper Robotic Cell with Parallel Machines

We have seen that dual-gripper robots improve the throughput of
robot-constrained cells, and that parallel machines improve the through-
put of process-constrained cells. There are also instances in which the
use of both can lead to a greater improvement in throughput. Suppose
we have added parallel machines to a process-constrained single-gripper
robotic cell so that T'(7rzp)/A = 2(m+1)(0+e€). Throughput can now be
increased by using a dual-gripper robot and cycle _g?L. Having added a
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‘ m & € 6 max{pi} | T(rp) T(wrp) % improvement | |
5 3 1 1 20 48 48 0 | Casel
15 3 1 1 50 128 128 0 | Casel
15 10 1 1 150 352 352 0 | Casel
10 3 1 1 70 88 88 0 | Case 2
5 3 1 2 38 51 48 5.88 | Case 3
5 3 1 1 50 63 48 23.81 | Case 4
5 3 1 3 50 63 48 23.81 | Case 4
15 3 1 1 150 163 128 21.47 | Case 4

Table 5.2. Cycle-Time Improvement from Adding Parallel Machines to a Simple
Robotic Cell with a Single-Gripper Robot.

dual-gripper robot, if
pi= +2e+ 6 pi +2€+0
———— = max —— >

2(m + 1)e + (m + 2)§ + mé,
M+ 1<i<m m;

then additional parallel machines at stage ¢* will increase throughput
further. The minimum possible per unit cycle time T (C_'CTL) JA=2(m+
1)e+ (m+2)6 + m#b is achieved with the minimum number of machines
if

pi +2+0 ,
m; = , Vi.
2(m + 1)e+ (m +2)6 +mb

We now analyze the benefits of using a dual-gripper robot and par-

(5.11)

allel machines on a case-by-case basis. We show that for all cases these
enhancements will reduce per unit cycle time by at least m (6 — ). The
cases concern the relations between the arguments in the per unit cycle
time expressions for 7yp and C’g’}L:

T(”ALD) :max{2(m+1)(5+e), max {W}},

1<i<m m;

m i 2
al )\d’L) :max{2(m+1)e+(m+2)5+m0, max {w}}

1<i<m mi
Case 1.
i +30+4
2(m+1)(0 +€) > max u,
1<i<m mi
+2e+0
2(m+ e+ (m+2)d+mb > max pitoet?

1<i<m ™m;
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We have seen in the previous two sections that using additional par-
allel machines will have no benefit, and using a dual-gripper robot
will decrease the per unit cycle time by m(J — 6).

Case 2.
i +30+4
Am+1)(6+€) > max HT0T
1<i<m m;
> axc pi + 2+ 0
1<i<m m;

> 2(m+1)e+ (m+2)5 +mb.

Using additional parallel machines will provide no benefit in a single-
gripper robotic cell, but it will in a dual-gripper robotic cell. Using
a dual-gripper robot will decrease the per unit cycle time by

i + 2
z=2m+1)(0+¢€) — ax w
<i<m m;

Note that (30 4+ 2¢ — 0)/m;+ < < m(d — 6). Using a dual-gripper
robot and additional parallel machines will decrease the per unit cycle
time by m(d — 0).

Case 3.

pi + 30 + 4de
ax —————

max. m > 2(m+1)(d+e)

 +2¢+0
>2(m+1)e + (m+2)d+mb > max pitlet+?
1<i<m m;

Adding parallel machines will help in the single-gripper robot case,
but not in the dual-gripper robot case. The benefit of implementing
dual-gripper robot is

p; + 30 + 4e
r= max ——— —
1<i<m m;

Note that m(6 — 0) <z < (30 + 2¢ — 0) /my~.

2(m+ 1)e+ (m + 2)0 + méb)].

Case 4.
+30+4
maxu > 2(m+1)(d+e¢),
1<i<m m;
;4 26+ 0
max BiFZEHl 2(m + 1)e + (m +2)5 + mé.

1<i<m m;
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The benefit of using a dual-gripper robot is (39 + 2¢ — 0)/m;=. The
benefit of using a dual-gripper robot and parallel machines is

P 30X R ol + Ve + (m+2)5 + )
. max{w,m@—@)}-
M=

For each of the eight cells previously analyzed, Table 5.3 lists T'(7p)
for a simple robotic cell with a single-gripper robot, T'( 722) for a robotic
cell with parallel machines (where m; is specified by equation (5.11),
Vi) and a dual-gripper robot, the percentage throughput improvement
realized by using both parallel machines and a dual-gripper robot, and
to which case each belongs.

‘ m & € 0 maxp; ‘ T(rp) T(Cyy) % improvement |
5 3 1 1 20 48 38 20.83 | Case 1
15 3 1 1 50 128 98 23.44 | Case 1
15 10 1 1 150 352 217 38.35 | Case 1
10 3 1 1 70 88 68 22.73 | Case 2
5 3 1 2 38 51 43 15.69 | Case 3
5 3 1 1 50 63 38 39.68 | Case 4
5 3 1 3 50 63 48 23.81 | Case 4
15 3 1 1 150 163 98 39.88 | Case 4

Table 5.3. Cycle-Time Improvement from Adding Parallel Machines and a Dual-
Gripper Robot to a Simple Robotic Cell with a Single-Gripper Robot.

We have previously seen that in a simple robotic cell, using a dual-
gripper robot and cycle C'(T increases throughput. In addition, in a
robotic cell with parallel machines, using a dual-gripper robot and cy-
cle C’Z‘L increases throughput. We can now state that adding parallel
machines to appropriate stages in a single-gripper robotic cell increases
throughput for Cases 3 and 4, and that adding parallel machines to ap-
propriate stages in a dual-gripper robotic cell increases throughput for
Cases 2 and 4.
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5.2.3.4  An Illustration on Data from Implemented Cells

We now consider two simple robotic cells with single-gripper robots
that have been designed and developed by a semiconductor equipment
manufacturer. We illustrate our analysis on these cells by assessing the
gains from using a dual-gripper robot and/or parallel machines.

Cell Data. The first cell has 11 processing stages. The vector of
processing times (in seconds) for these stages is p = (50.00, 52.24, 59.00,
70.13, 52.24, 25.00, 70.13, 52.24, 86.00, 70.13, 52.24). The second cell
has 10 processing stages. The vector of processing times (in seconds) for
these stages is p = (37.5, 70.13, 37.24, 39.5, 100.13, 42.24, 13, 100.13,
42.24, 65). These cells are used in photolithography to transfer elec-
tronic circuit patterns onto silicon wafers. The number of steps varies
to accommodate differing requirements, e.g., top anti-reflective coating,
bottom anti-reflective coating, tri-level, etc. Because of confidentiality
agreements, we cannot be more specific about each cell’s usage.

For both of these cells, the inter-machine travel times, although not
a single value, are roughly equal. For each, the maximum, average, and
minimum inter-machine travel times are 4.15 seconds, 3.9 seconds, and
3.65 seconds, respectively. Thus, the relative difference between the max-
imum (6%) and minimum (4') inter-machine travel time is (§% — &) /6% =
12.0%. The constant travel-time robotic cell model is therefore appro-
priate for both of these cells. We are unable to provide the complete
matrix of inter-machine travel times because of a data confidentiality
agreement with the company. For our purposes, we let § = 3.9 be the
inter-machine travel time for each cell. For both cells, the load and un-
load times are ¢ = 0.5 seconds, and the dual-gripper switch time is 6 =
0.5 seconds.

Results. We first measure the throughput improvements for these two
cells using the constant travel-time model. We then derive theoretical
lower bounds for these improvements when the actual travel times are
used.

The first cell belongs to Case 2. With no parallel machines and a
single-gripper robot, the optimal per unit cycle time for this cell is
T(rp) = 105.6 seconds. Adding parallel machines while keeping the
single-gripper robot will not increase throughput. However, when using
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a dual-gripper robot, the optimal cycle time is T(C’g”) = 87.5 seconds, a
reduction of 17.1%. If we now add one parallel machine each to stages 4,
7,9, and 10, the optimal per unit cycle time with a dual-gripper robot
is T(C_'ZLL) = 68.2 seconds, which represents a reduction of 35.4% over
that of the simple robotic cell with a single-gripper robot.

The second cell belongs to Case 4. With no parallel machines and
a single-gripper robot, the optimal per unit cycle time for this cell is
T(mp) = 113.83 seconds. Adding one parallel machine each to stages
5 and 8 while keeping the single-gripper robot will reduce the per unit
cycle time to 96.80 seconds, a decrease of 15.0%. Using a dual-gripper
robot with no parallel machines will reduce the cycle time to 101.63
seconds, a decrease of 10.7%. If we use a dual-gripper robot and add
one parallel machine each to stages 2, 5, 8, and 10, the per unit cycle
time is T(Cj",) = 62.8, a reduction of 44.8% over the simple robotic
cell with a single-gripper robot. The results for both of these cells are
summarized in Table 5.4.

machines simple robotic cell parallel machines | parallel machines
grippers single dual-grippers single-gripper dual-grippers

metric T(rp) | T(C§*) imprv. | T(rrp) imprv. | T(Cy'y)  imprv.
Cell 1 105.6 875 17.1% 105.6  0.00% 68.2  35.4%
Cell 2 113.8 101.6  10.7% 96.8  15.0% 62.8 44.8%

Table 5.4. Cycle-Time Improvements on Two Cells Used in Semiconductor Wafer
Fabrication.

We now establish theoretical lower bounds on the throughput im-
provements with the actual travel times. To compute the worst possible
improvement realized from implementing dual-gripper robots in these
simple robotic cells, we compare the difference of T'(7p) computed with
6! and T(C") computed with 6%, divided by T'(wp) computed with &*.
For the first cell, the result is

T(mp(8h)) — T(CT(54)) 99.6 — 87.5

T(mp(6%)) = Tine 08

For the second cell the value is 10.1%. Similarly, the lower bounds on the
throughput improvements from adding dual-gripper robots and parallel
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machines to the simple robotic cells with single-gripper robots are 31.0%
and 43.4%.

A rough calculation of the financial benefits of these improvements can
be made as follows. A typical target throughput for a simple robotic cell
with a single-gripper robot is around 110 wafers per hour. The cost of a
wafer is typically in the range $10,000-$30,000. Therefore, a conservative
estimate of the improvement in revenues is

f 1 h
Walers .70 x S10:000 oo HOUIS o 04,000,/ week.

1
00 hour waler week

Given that the marginal cost of adding a dual-gripper to a single-gripper
robot is approximately $10,000, and the required software changes would
require labor on the order of $200,000 [133], the time required to recap-
ture the capital investment is very small. A similar calculation can be
done for the addition of parallel machines.



Chapter 6

MULTIPLE-PART-TYPE PRODUCTION:
SINGLE-GRIPPER ROBOTS

We now examine single-gripper robotic cells that process lots con-
taining different types of parts. In general, the processing times at the
machines differ for the different types of parts. Such implementations
are more commonly used by medium-sized discrete part manufacturers.
Multiple parts are processed in a single lot in order to have enough vol-
ume to use the cell efficiently (Ramanan [133]). All the results in this
chapter are for additive travel-time cells with a linear or semicircular
layout.

In accordance with just-in-time manufacturing, it is typical for the
relative proportions of the part-types in each lot to be approximately
the same as the relative proportions of their demand. Consequently,
research has focused on cycles which contain a minimal part set (MPS)
that has these same proportions. An MPS is a minimum cardinality set
of parts such that the relative proportions of the parts are the same as
those of their demands during a planning horizon. For example, if the
demand for a company’s three products is divided so that product A has
40%, product B has 35%, and product C' has 25%, then the MPS has 20
parts: 8 of product A, 7 of product B, and 5 of product C. In practice,
the size of an MPS can exceed 50 parts (Wittrock [158]).

We will assume that the cell processes k different part-types and that
one MPS produces r; parts of type i, ¢ = 1,...,k. The total number of
finished parts in one MPS cycle is n = r; + - -+ + 1p; these are collec-
tively referred to as MPS parts. The schedule of production, referred to
as the MPS part schedule (or simply a part schedule), is specified by a
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permutation o, with F,;) being the part scheduled in the ith position
of 0,2 =1,...,n. Our objective in this chapter is to minimize the aver-
age (cycle) time T required to produce one MPS in a cyclic production
environment. As before, the throughput rate p is defined as n/T.

6.1 MPS Cycles and CRM Sequences

We define a general MPS cycle as a sequence of robot moves during
which the MPS parts enter the system from the Input, are processed
at machines My, ..., M,,, and leave the system at the Output, after
which the system returns to its initial state. A specific MPS cycle can
be defined by the schedule o in which the MPS parts enter the cell from
the Input and the sequence of robot actions within the cell. An MPS
robot move sequence (or simply a robot move sequence) is a sequence
of robot actions performed during an MPS cycle. Thus, given an MPS
robot move sequence and an MPS part schedule, the corresponding MPS
cycle can be constructed. Single-part-type production is the special case
when the MPS consists of a single part.

Concatenated Robot Move Sequences (CRM sequences) form a class of
MPS cycles in which the robot move sequence is the same 1-unit cycle of
robot actions repeated n times, where n is the total number of parts to
be produced in an MPS cycle (Sriskandarajah et al. [146]). For example,
for m = 3 and n = 3, the CRM sequence corresponding to the sequence
T4 = (Ao, Ag, Al, Ag) is

(74, ma,m4) = (Ao, Az, A1, Ag, Ag, A3, A1, Ao, Ag, Az, A1, A3).

Let CRM (7j) denote the CRM sequence associated with the 1-unit se-
quence 7j. When no confusion arises in doing so, we simply use 7; to
denote CRM (7). Appendix A provides a list of all 1-unit cycles for
m = 2,3, and 4. Ideally, the number of parts to be produced, n, should
also be specified in the notation for a CRM sequence. However, all the
results in this chapter are for arbitrary values of n; we therefore omit
the specification.

In Section 6.2, we show using an example that the MPS cycle based
on the CRM sequence formed by the best 1-unit robot move sequence
can be suboptimal in a two-machine cell producing multiple part-types.
We therefore provide an efficient algorithm for finding the robot move
sequence and the part schedule which jointly minimize the production
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cycle time. In Section 6.3, a number of realistic and easily solvable spe-
cial cases are identified for part scheduling problems in three-machine
cells. Since all of our results are derived for a robotic cell operating in
a steady state, we also study ways in which a robotic cell converges to
such a state in Section 6.4. For two of the six CRM sequences in three-
machine cells, the recognition version of the part scheduling problem is
strongly NP-complete, as is the general part scheduling problem that is
not restricted to any robot move sequence. We prove these results in
Section 6.5. Section 6.6 generalizes the complexity results for cells with
m > 4. In particular, this section determines the tractability of the part
scheduling problems associated with various CRM sequences in an m-
machine cell. Of the m! cycles of this type in an m-machine cell, exactly
2m—2 have an associated part scheduling problem that is efficiently solv-
able; the part scheduling problems associated with the other cycles are
intractable. Among the intractable part scheduling problems, we identify
those that can be easily (in the sense defined later in Section 6.6.3) for-
mulated as Traveling Salesman Problems (TSPs). Sections 6.7-6.8 con-
sider several scheduling problems that have been shown to be intractable
in the previous sections and provide simple but computationally effective
heuristics to solve industry-sized instances. In particular, Sections 6.7.1
and 6.7.2 describe heuristics for intractable part scheduling problems in
three-machine cells. The general three- and four-machine problems are
examined in Sections 6.7.4 and 6.8, respectively. Heuristics for larger
cells are discussed in Section 6.8. Section 6.9 considers the design of
robotic cells within a larger manufacturing system in which several ma-
chines need to be arranged into cells that are separated by intermediate
buffers.
We recall the notation to be used throughout this chapter:

ag, b, ¢k, di: the processing times of part P, on machines M7, My, Ms,
My, respectively, when m < 4. For cells with five or more machines,
the processing time of part P, on machine M; is denoted by py ;.

0;: the time taken by the robot to travel between two consecutive ma-
chines M; 1 and M;, 1 <i<m+ 1.

7: the time saved by not stopping at an intermediate machine during a
robot travel between two nonconsecutive machines.
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€1: the time taken by the robot to pick up a part at I.

€9;: the time taken by the robot to load a part onto machine M;.
€2;+1: the time taken by the robot to unload a part from machine M;.
€am+2: the time taken by the robot to drop a part at O.

o: the order in which parts of an MPS are processed repetitively.

P (j): the jth part to be produced in the schedule o.

ag(j) (Tesp., by(j);Co(j), do(j)): the processing time of the jth part in
schedule o on machine M; (resp., May, M3, My).

(X1s -5 Xm, M}]l) the current state of the system, where y; = ¢ (resp.,
Q) if machine M; is free (resp., occupied by a part). The robot has
just loaded (resp., unloaded) machine My, if j = — (resp., +).

6.2 Scheduling Multiple Part-Types in
Two-Machine Cells

For additive travel-time cells (problem RF5|(free, A, MP,cyclic-n)|u),
Hall et al. [75] address the two problems — part scheduling and robot
move sequencing — simultaneously. They first show that, in general,
CRM sequences are not optimal robot move sequences. Rather, it is
often better to selectively switch between m; and 7, where 7w and 7o
are the two robot move sequences for 1-unit cycles in two-machine cells
(see Chapter 3 and Appendix A).

We begin our analysis of the two-machine robotic cell problem, RF5|
(free,A, MP,cyclic-n)|u, by showing that the optimal solution is not gen-
erally given by an MPS cycle using a CRM sequence. The cycle time
minimization problem for multiple part-types then becomes one of de-
ciding under which robot move sequence (71 or 7 or a combination of m;
and 7g) to process each part and specifying how to switch from m; to mo
or vice versa, while simultaneously choosing the optimal part schedule.
An O(n*) algorithm that solves this problem optimally is provided.

L
chine M}, and the loading of part P, ;1) on My, using the CRM se-
quence 7;, where j € {1,2} and h € {1,2}. We use wj to denote the

be the time between the loading of part P, ;) on ma-
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waiting time of the robot before unloading part P,(; at machine Mj.
We now derive expressions for Tlha(l.)a(z. ) and TZhU(i)a(i 1y
Starting from the initial state E = (0,2, M, ) (see Chapter 2), where
the robot has just completed loading part P ;) onto Ma, the robot move
sequence 71 includes the following activities: wait for P, ;) at Ma (by(;)),
unload (e5), move to O (J3), drop Py(; (€6), move to I (81 +d2+ 63 —2n),
pick up Py ;1) (€1), move to M (1), load (ez), wait for Py(i41) (@ (it1));
unload (e3), move to My (d2), and load (e4). Thus, we have
lea(i)a(iJrl) = bo’(i) + €5 + 03 + €g + ((51 + 09 + 03 — 2?7)
+ €1+ 01 + €2 + ap(it1) + €3 + (62) + €4
Starting from the initial state £ = (0,Q, M, ), where the robot has
just completed loading part F,;) onto Ms, the robot move sequence
7o includes the following activities: move to I (01 + d2 — 7)), pick up
part P, 41) (€1), move to My (61), load (e2), move to Mz (d2), wait (if
necessary) for P,(;y (wh), unload (es), move to O (d3), drop P, (e),
move to M (52 + 3 — 1), wait (if necessary) for P41 (wi™h), unload
(e3), move to Ms (d2), and load (e4). Therefore,
Ty o) = (61+02—1) + e+ 01+ e+ (52) + wh + €5 + 03 + €
+ (69 + 03 — 1) + Wit + €3 + (02) + €4, where

w’ﬁl = max{0, ay(it1) — wh — €5 — eg — 209 — 203 + 1},
w% = max{O, bg(i) — €1 — €9 — 201 — 209 + ’17}.
By combining the expressions for w’frl and w, we obtain the following

result.

LEMMA 6.1 The cycle time expressions for RF|(free,A,MP,CRM)|n are
given by

T votir) = P+ Y+ ahii),

Totyotirny = P+ max{v, b, doqin}, where
a, = a;+e+e+ 20—,
b bi+e5+e€6+203—m,i=1,...,n,

p = €3+ €4+ 209,

3
v o= 2) ditetetete—2n.
=1
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Proof. Follows from the above analysis. |

In both sequences 71 and w2, a pair of parts P, and Py(4q) is
involved. The reader should also note that the state E = (0,Q, M, ), in
which the robot has just finished loading a part on Mbs, is the only state
common to 7 and 7. Hence, this is the only state in which switching
between m; and mo can be achieved without wasteful robot moves. In
E = (0,9, M), the robot has two choices:

a. Wait and unload M (as in sequence 7).

b. Move to I (as in sequence m3).

Because of the possibility of switching between sequences at E = (), 2,
My ), a part P,(; may be processed using both sequences. The following
possibilities exist:

1. During the processing of Py ;), the robot uses sequence m;, 7 €
{1,2}, on both machine M; and machine M. In this case, we say
that P, ;) is processed using sequence ;.

2. The robot uses sequence m during the processing of P, ;) on M
and sequence 7y during the processing of F,;) on Ms. We say that
Py ;) is processed using sequence 71 _3.

3. The robot uses sequence 7y during the processing of P, ;) on M
and sequence 71 during the processing of F(;) on Ms. We say that
Py ;) is processed using sequence ma_1.

The following remark is required before we present our next result.

REMARK 6.1 The two-machine no-wait flow shop scheduling problem,
denoted Fy|no-wait|Cy, has as input a set of n jobs. Job J;,i =1,...,n,
is associated with two numerical parameters e; and f; (processing times
on the two machines M{ and M, respectively), and the objective is
to find a job schedule ¢ that minimizes > ; max {%(i 1) fd,(i)}. This
problem can be solved in time O(n logn) by an algorithm due to Gilmore
and Gomory [67]. See Appendix B for details. Since this algorithm is
used several times in this chapter and the next, we simply refer to it as
the Gilmore-Gomory algorithm.
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LEMMA 6.2 In general, an MPS sequence using the best CRM sequence
is not optimal for RF5|(free,A,MP,cyclic-n)|pu.

Proof. Consider the following instance of RF»|(free,A,MP,cyclic-n)|u:
n=>5k=490 =10 = 17,053 = 1;¢;, = 1,i = 1,...,6;n = 1; the
processing times are shown in Table 6.1. Note that v = 2 Zf’zl 0i +e1+
€2 + €5 + €5 — 2n = 40.

From Lemma 6.1, the time to produce the parts in an MPS in the
schedule ¢ under robot move sequence m is

n n
2
Tve)y = Z Tla(i)a(i+1) =np+ Z(aé + b;)
=1 i=1
= 5[1+ 14 34] + [10 + 400 + 10 + 400 + 10]
+ [400 + 20 + 400 + 10 + 10]

= 1850.

The part scheduling problem under CRM sequence my can be trans-
formed into the problem Fb|no-wait|C; having the form: minimize Z +
Yo max{eq(i11), foi) }, Where Z is a constant, e,(;) = a;(i), and fo() =
max{v, b/, (Z.)} are the processing times for part P, (;) on the first machine

(M7]) and the second machine (MJ}), respectively. In Fy|no-wait|C}, the

1 1 2 3 4
a; 7| 397 71397 | 7
bi | 397 17 | 397 T

Table 6.1. The Example Used in Lemma 6.2.

operations of any job are performed continuously without waiting on or
between the machines (Remark 6.1 and Appendix B). Note that the sch-
edule given by the Gilmore-Gomory algorithm is optimal if the shortest
processing time on M is concurrent with that on M, the second short-
est processing time on Mj is concurrent with that on M/, and so on. For
example, processing times ey and f; are concurrent in Figure 6.1, as are
es and fo. If we use CRM sequence o, the part schedule {1,2,3,4,5}
satisfies this rule and is therefore optimal. From Lemma 6.1, the time
to produce the parts in an MPS using schedule o under CRM sequence
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9 is
_ 2
Toy = D Toniyotisn)
=1

= np+ Z max{v, b:;(i)7 a;(i+1)}
i=1
= 180 + 400 + 40 + 400 + 40 + 40

= 1100.

The use of a combination of different robot move sequences (m1_g, 72, T2,
mo_1,71) in the two-machine flowshop using the same part schedule is
illustrated in Figure 6.1. The part schedule is optimal for this combi-
nation, where part P; is processed under sequence m_o, parts P» and
P; under sequence 7o, part P4 under sequence my_1, and part Ps under
sequence 1.

T1—2 T2 T2 21 T T1—2
P, Py Ps Py Py Py
M |e1 = 10| ez = 400 es3 = 10| eqs = 400 es = 10 e1 = 10
M} f1 =400 | fo=40 | f3 =400 |f+=10 fs =10
880 -

Figure 6.1. Combining Robot Move Sequences in Lemma 6.2.

The length of each operation is shown by its e,(;) or f,(; value, and
the contribution of the unavoidable robot travel time (i.e., np = 5(36) =
180) is ignored in Figure 6.1. Note that f, ;) = max{v, b;(i)} if part P, ;)
is processed by sequence my or sequence 71 _g; otherwise f5(;) = v (@) By
adding in the travel time, we obtain a total cycle time of 880 4+ 180 =
1060. Intuitively, we have taken advantage of the fact that some parts
are suitable for processing under m; and others under my. This completes

the proof of Lemma 6.2. ]

REMARK 6.2 The procedure used by Sethi et al. [142] for this problem
involves fixing the robot move sequence to m; and solving for the optimal
part schedule, repeating this process for 7o, and then comparing the two
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cycle times thus generated. Lemma 6.2 shows that the cycle time can be
improved by using both sequences m; and 7o in the repetitive produc-
tion of an MPS. A further improvement for the above example can be
achieved by using sequence mo_ for part P» and sequence m;_o for part
Ps3. The cycle time then becomes 870 + 180 = 1050. This demonstrates
that an optimal solution may need more than one transition from m; to
79, and vice versa, in RFy|(free, A, MP,cyclic-n)|p. Kise et al. [99] study
the makespan version of the part scheduling problem under an Auto-
mated Guided Vehicle (AGV) cycle equivalent to mo. Their problem is
equivalent to RFy|(free,A, CRM (2))|Cinaz, and they describe an O(n?)
algorithm, where n is the number of jobs to be processed.

We now describe an algorithm, MinCycle, due to Hall et al. [75], that
jointly optimizes the robot move sequence and the part schedule for
problem RFs|(free,A,MP,cyclic-n)|pu. The idea behind the algorithm is
as follows: MinCycle begins with an arbitrary part schedule using robot
move sequence 71 (Step 1) and by finding an optimal part schedule (from
the Gilmore-Gomory algorithm) using robot move sequence 7 (Step 4).
It then compares their cycle times (in Step 2 of Subroutine GG). Between
these two extreme solutions are many other solutions that use a mix of
different robot move sequences; these are investigated in Step 5. In
this step, the algorithm enumerates, in time O(n?), ways of setting ¢ of
the o (i) values and g of the b; values to a large number H, where ¢ =
L...,t,t =min{|{i : a} <v}|,[{i : 0] <v}|}, H=np+> ; (a}+b))+1,
and the permutation 1 places the a;’s in ascending order. In Step 5, the
(¢ — 1) smallest agw)’s and the (¢ — 1) smallest b}’s are set to H. It
remains to set one aip(i) value and one b} value to H; all such possible
assignments are examined. This requires time O(n?) for a fixed ¢. Each
assignment of the ¢ H’s corresponds to a partition of the MPS into four
subsets — B1, Ba, Bio, and Bo; — consisting of parts produced using
robot move sequences 7y, Ty, T1_2, and mwo_1, respectively. If a part P;
has both a} and b, set to H, then that part belongs to By. If only a}
(resp., b;) is set to H, then that part belongs to Bja, (resp., Bap). If
neither a) nor b is set to H, then that part belongs to By. For each
assignment of the ¢ H’s, Subroutine GG is called to solve the equivalent
Fs|no-wait|Cy problem. Following an optimality test (Step 2 of GG), the
smallest cycle time C*, and corresponding schedule ¢* with partitions
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By, By, Bis, and Bs; obtained from Steps 1, 4, and 5, are recorded as
an optimal solution.

Note that since H is large, Subroutine GG provides a schedule in
which each a} set to H is processed on M concurrently with a b} set
to H on M. This pairing in GG means that the processing times cor-
responding to these two H values, e; and f;, can be represented in the
schedule as two consecutive blocks similar to f; and es in Figure 6.1.
Therefore, in any schedule, the sequence m; or ma_1 is followed by either
w1 or m_o. Similarly, the sequence w9 or m_o is always followed by ei-
ther 7o or m9_1. Step 2 of Subroutine GG calculates the actual cycle time
of each partition defined by the assignment of the H values in Step 5 of
MinCycle. The algorithm of Hall et al. [75] for RFs|(free,A, MP,cyclic-
n)| now follows.

Algorithm MinCycle

Step 0: Given a;,b;,1 <1i <n,d1,09,0d3, 0, and €1,..., €,
By ={P,...,P,},By = Big = By; =),
p = €3+ €4+ 209,
V:22?215i+61+62+65+66—277.

Step 1: a, =a; +e1 +e+25 —ni=1,...,n
bQZbZ‘+65+66+253—T],’L‘:1,...,71,

o ={1,...,n},

C* =np+ 3 (a5 + b)),
H=C*+1,

Y =0,q=0.

Step 2: Number the parts so that b, < ... </,

Find an ordering 1 of the parts such that a;}(l) <
Step 3: t = min{[{i: a] < v}|,|{i: b, < v}|}.
Step 4: Call GG(d! b’ 1<i<n).

R 2]

Step 5: For q =1,.

Z ( (i) T )
w(z)_Hbl Hi=1,...,q—1,
For h,5=q,...,n

Wa :a{(b(hywb = b}a

!/ _ /o

Q) —H,bj—H

Y=Y4+W,+W,,

Call GG(al,b;,1 <i<mn),

N
IN
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Y=Y -W,-W,.
End

End

Subroutine GG(al,b},1 <i <n)
Step 1: ¢; @, fi = max{v,bl},i=1,...,n.
Apply the Gilmore-Gomory algorithm to the
instance {e;, fi},i=1,...,n.
Let o denote the optimal part schedule, and C denote
its value.
Step 2: If C+np—qgH +Y < C*, then
C*=CH+np—qH+Y,0" =0,
By ={P:a,=H}n{P :b,=H},
By = {P,:a = H\{P, : . = H},
By = {P,: 0, = H}\{P, :a! = H},
By = {Pl, e ,Pn}\{Bl U B U Bgl}.
End If

To prove the optimality of MinCycle, several preliminary results are
required.

LEMMA 6.3 In any feasible solution for RFs|(free,A, MP,cyclic-n)|u, we
have ‘Bl2| = |Bgl|.

Proof. In general, any feasible solution is a cyclic production of an MPS
in a schedule in which each part is produced using one of the following
robot move sequences: 1, mo, ™ _9, and my_1. Note that sequence m_»
must be preceded by m; or me_1, and followed by 7o or ma_1. Since the
schedule is cyclic, it follows that the number of transitions from m; into
7y (using m1_2) must equal the number of transitions from 7 into m
(using mo_1). (]

LEMMA 6.4 Algorithm MinCycle evaluates all solutions in which |By U
Bia| = |B1 U Ba1| = ¢, where ¢ = 0 if the solution is found in Step 4,
and 1 < q < t if the solution is found in Step 5 and the ¢ — 1 smallest
a (resp., b)) values are associated with the parts in By U By (resp.,
By U Bgl).
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Proof. The proof follows from Steps 4 and 5 of MinCycle and Step 2 of
Subroutine GG. [

LEMMA 6.5 For any real numbers v,w,x > 0 with w > v,
max{z,v} +w > max{z,w} + v.

Proof. max{z,w} = max{z,v + (w —v)} < max{x,v} + (w—v). =

THEOREM 6.1 Algorithm MinCycle finds an optimal solution to RF;|
(free, A,MP,cyclic-n)|u in time O(n?).

Proof. The first part of the proof shows that for given subsets By, Bo,
Bis, and By, MinCycle finds an optimal part schedule o whose cycle
time is denoted by T,,. As we will observe later, during the execution of
this schedule, the robot may switch between robot move sequences
and 1. We write the cycle time as Ty = np + 31| do(i)o(i+1), Where
we define dg(n)g(nJrl) = dg(n)g(l),

I =np+ Z Vo(@yo(it) T Z Woia(i+1)s
=1 =1

b;(i) + afa(iﬂ) if 71 is used for the
do(i)o(i+1) = Vo(io(itl) = pair (Py(), Po(it1));
0 otherwise,
max{v, b;(i), a;(iﬂ)} if w9 is used for the
do(i)o(it1) = Wo(i)o(i+1) = pair (Py(), Po(it1));
0 otherwise.
For these definitions, 7 is used for the pair (P, ), Py(;+1)) if and only
if Py;) € B1 U By and Py(;41) € By U By2. A similar characterization
holds for ms. Since np is a constant, the above problem is equivalent to

that of minimizing
Io = Z Vo Gi)o(i+1) T Z Wo(io(i+1)-
=1 i=1

Let Y = 3 pcpuBy, @ T 2opeB,uBy, Vi Then letting b;(i) = a;(i_H) =
H, whenever V(;)5(i4+1) = b;(i) + a;(iﬂ), gives

Tcr = Z maX{fO’(i)’ ea(i+1)}7

i=1
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where f,(;) =max{v, b;(j)} and e, () = a;(j),j = 1,...,n. It remains
to show that the schedule that minimizes 7. » also minimizes T,. To
see this, note that since H is a large value, each a set to H on M] is
concurrent with a b} set to H on Mj in any optimal solution. Thus,
qH < T+ < (¢+ 1)H. Step 2 of Subroutine GG ignores schedules o for
which T, > (¢+1)H, since the optimal solution can be found elsewhere.
Thus, in ¢*, no part in Bjo can immediately precede a part in B or
Bis, since this would imply that T, > (¢ + 1)H. Similarly, no part in
Bs1 can immediately precede a part in By or Bop in o*. Therefore, if
T, < (¢+1)H, we have

A~

T, =T, —np+qH —-Y,

and the two problems are equivalent under this condition.

The second part of the proof shows that the partitions of the parts
into subsets B1, Bs, B1s, and Bo; considered by MinCycle contain an op-
timal schedule. To characterize such partitions, let (p*,0*) represent an
optimal solution consisting of a partition p* of the parts into By, B2, B2,
and By and a part schedule o*. We make use of two claims.

= Claim 1. If a;*(iﬂ) + b;*(i) < v, then dy-(3)ox (i41) = Vor(i)o= (i41)
it1) T Ooeiy 2 V5 then dow(i)or (i41) = Wor(i)o= (i41)-
Proof of Claim 1. Assume that there exist parts Py«(;) and Pyx(i41)

such that

and if a;*(

do(or(i+1) = Wor(i)or(i+1)

a;.*(l+1) + b/o.* (’L) < V= maX{I/, b:)’*(l)’ a;*(l+1)} = WO’*(’L)O’*(’L-‘,—]_)

Now, if we form a new solution (7/,0*) by setting Ao (i)or(i+1) =
Vor (i)o= (i41) = b;*(i) + a’a*(iﬂ), we find a new cycle time Ty« satis-
fying Trrge — Thrgr = b;*(i) +a;*(i+1) —v. This implies Ty/pr < Ty,
thus contradicting the optimality of (7*,0*). Note that the change
from 7* to 7’ alters the robot move sequences for parts Py+(;) and
Py+(i41)- The proof of the second part is similar. 0

» Claim 2. If there exists an optimal solution (7*, 0*) with |B;UBj2| =
|B1 U Ba1| = g, then there exists an optimal solution satisfying the
following two additional conditions:
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(a) The (¢ — 1) smallest a} values are associated with parts in B; or

BlQ. 'I‘hus7 dO’*(i—l)O’*(i) = VO’*(’Z—I)O’*(i) = b;’*(ifl) + (Z;_*(Z)

(b) The (¢ — 1) smallest b values are associated with parts in By or

Bsi. Thus, do’*(i)a*(i+1) = Vo*(i)o-*(i+1) = b;*(z) + a;*(i+1).

Proof of Claim 2. For condition (a), assume that in (7*,0%), part
P,«(jy € Bz U Ba1, where a;*(j) is one of the (¢ — 1) smallest a
values. It follows that there exist parts Fy«(y), Pyx(y) € B1 U Bi2
such that a’ . () al . ) >al, ) Without loss of generality, let o* =

{Pa*(j)v J;u, Pa*(u)a J’Zvv Pa*(v): U:j}7 where

U;u = {PU*(j+1)7PU*(j+2)’ .. ')PU*(U—2)7PU*(’LL—1)}

denotes a partial schedule of jobs in between the jth and uth positions
of 0%, as in Figure 6.2. Since parts Py«(y), Pye(y) € B1 U Big, it
follows that parts Py« (,—1), Py*(y—1) € B1U Bg1. Similarly, since part
PJ*(j) € By U Boy, it follows that part Po'*(j—l) € By U Bys. Thus we
can write

do’*(jfl)(f*(j) = maX{V, b::r*(j—l)’ a;*(j)}7
dov(u-1)0*(w) = Voo(u—1) T Goe(u);
Ao (v—1)o*(v) = bﬁy*(y_n + aff*(»u)-

As shown in Figure 6.3, let (7/,0’) be another solution with ¢’ =
{Pa*(u),O'ZU,PU*(J'),O';U,PU*(U),U:J- . In ¢/, all parts belong to the
same subsets as in o™ with the following exceptions: Py« (;) € B1UBi2
and Pye«(,) € B2 U Bay. Thus in o', we have

do(j-1)or(uy = maxX{V, 0w (j_1), Gy s
Ao+ (v—1)0*(5) by (o—1) T T (5>

da*(u—l)n*(v) - b,g*(ufl)—’—a;*(v)'
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Comparing the cycle times of the two solutions, we have from

Lemma 6.5,

Tﬂ.lal — Tﬂ,*g* =

<

HlaX{I/, (L;_*( ),b; *(j— )} + b/ *(v—1) +(l, *(5)
+ b;'*(ufl) + CLU*(,U) — maX{V7a ( ) bl (,] 1)}

/ l / /!
= Opr(um1y — (u) ~ g (uo1) = pr(n)
Max{V, Ay Ve (1)} + Tm )
= max{V, ag(j), o (1)} ~ G )
0,

It follows that, without increasing the cycle time, we can repeat such

changes until condition (a) is satisfied.

The proof for condition (b) is similar due to the following symmetry
in the schedule. If we interchange the role of M{ and M/, and consider
any schedule in the reverse direction, we find an equivalent schedule

where b, (resp., a}) is the processing time on M] (resp., M)). O
M} AL+X | AL+ X
M SL+X| | 3L+ X

Figure 6.2. Partition 7* and Schedule 0™ = {P,«(;y, 05w, Po*(u)s Tvs Po* (), 0p; } in
Condition (a) of Theorem 6.1.

M AL+ X | AL+ X

3L+ X 3L+ X

Figure 6.3. Partition 7 and Schedule ¢/ = {Ps+(w), Ttros Pox(5)s Ojus Pox (), 00} in
Condition (a) of Theorem 6.1.

We are now able to prove the theorem. Steps 4 and 5 of MinCycle
consider different values of ¢q. If an optimal solution exists for a given
value of ¢, Lemma 6.3 and Claim 2 define conditions present in at least



206 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

one optimal solution. Lemma 6.4 proves that all possible partitions of
the parts using those conditions are examined in Step 4 for ¢ = 0 and
in Step 5 for 1 < g < t. It follows from Claim 1 and the definition
of t in Step 3 that the assignment of a value of H to any processing
time of a part with index greater than ¢ will not improve the cycle time.
Thus, there exists an optimal solution with 0 < ¢ < t. Finally, given
any partition, the first part of the proof establishes that Subroutine GG
finds an optimal part schedule.

The dominant step in MinCycle is Step 5, where the indices h, j,
and ¢ are all O(n). The number of calls of Subroutine GG is, therefore,
O(n3). Lawler et al. [103] point out that Step 1 of Subroutine GG can be
implemented in time O(nlogn). However, the parts have already been
ordered in Step 4 of MinCycle. Consequently, in Step 5, we only need
to order the jobs whose processing times are set to a value of H. Since
all such jobs have to appear at the end of the ordering in an arbitrary
subschedule, the Gilmore-Gomory algorithm can be implemented in time
O(n). Step 2 of Subroutine GG also runs in time O(n). Thus, the
overall time complexity of MinCycle is O(n*). This completes the proof
of Theorem 6.1. ]

Algorithm MinCycle (Hall et al. [75]) has also been implemented in
a two-machine robotic cell at the Manufacturing Systems Laboratory of
the Industrial Engineering Department of the University of Toronto. The
details of this implementation are provided by Chan and Lau [29]. Aneja
and Kamoun [7] improve the complexity of MinCycle to O(nlogn). We
refer to this algorithm as Improved MinCycle.

6.3 Scheduling Multiple Part-Types in
Three-Machine Cells

In this section, we study the problem of scheduling multiple part-
types in a three-machine robotic cell under CRM sequences (problem
RF3|(free, A,MP,CRM)|u). CRM sequences are easy to understand and
implement, and are therefore the focus of our attention here. We show in
Section 6.3.2 that the optimal part scheduling problems associated with
four of the six CRM sequences are polynomially solvable. The recogni-
tion version of the part scheduling problem is strongly NP-complete for
the other two CRM sequences (Section 6.5). However, we do identify
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several special cases for which the problem is polynomially solvable. The
issue of convergence to a steady state is discussed in Section 6.4.

6.3.1 Cycle Time Derivations

Following Hall et al. [75], we now present the derivation of cycle times
for CRM sequences 1 3, m23, . . . , 76,3, in RE3|(free, A, MP,CRM)|pu, start-

ing from a convenient state in each case. Recall that Tj}; (D)o (i+1

the time between the loading of part P, ;) on machine M} and the load-

) denotes

ing of part F,;;1) on machine M, using CRM sequence 7;3, where
he{1,2,3} and j € {1,...,6}.

Starting from the initial state E = (2,0, 0, M, ), where the robot has
just loaded part P ;) onto M; and where machines My and M; are free,
we can derive the following expression for my 3:

1
Tio@)o(i+1) = @1+ o) + bo(i) + Cogi),

where o] = 2 Z?:l 0; + Z?:l €; — 3n. We obtain

Ty = Z Tlla(i+1)a(i+2) =nay + Z(ai +bi +¢;).
=1 i=1

Starting from the initial state E = (0,9, , M, ), where the robot
has just loaded part Fy(;) onto machine My, Mj is occupied with part
Py(i-1), and M is free, we can derive the following expression for o 3:

8
o (io(i+1) = D_ € 200 + 40y + 403 + 204 — 4y + wit! +wj + wy,
=1
where
i1 i
wy = max{0, A2 (i41) — P2 — wh},
’UJ% = max{O, bZJ(i) — B2 — wg,_l}a
wé_l = Inax{(), C2U(i—1) - ﬁ2 - wll}a
8
Br = )€+ 201 + 205 + 205 + 264 — 3.

i=1
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Substituting for wiﬂ and w$, we obtain

T2(O') = Z 20 (i) (i+1)

= nog + Z max{ﬁ% Q20 (i+1)5 b2a(1 1} + Z w

=1
wg_l = ma,X{O cZO’(’i 1) - max{ﬁg, a20’(i) - maX{O’ b2‘7(i71)
— Bo —wy },

where b20(n+1) = 520(1)7 A20(n+1) = @20(1)5 @20(n+2) = A20(2)>

ay = 209+ 203 — 1,

4 8
A(i) = GQg(i) + Z € + Z €; + 201 + 204 — 21,
i=1 =7
bas(iy = bo@) + Z €
i=3

8
Coo(i) = Co(i) T Z € + Z € + 201 + 204 — 2n.
=1 =5

Starting from the initial state £ = (0,0,, M3 ), where the robot has
just loaded part Py ;) onto machine M3 and where M; and M are free,

we can derive the following expression for 73 3:

8
T?ir(i)o(i—i—l) = ag(i41) 201 + 202 + 403 + 204 + Z € — 31
i=1
+ wéﬂ 4w}, where
wytt = max{0,by(i41) — 203 — 204 — €7 — es + 1) — wh},
’UJ% = maX{()? Co(i) — Ao(i+1) — 251 - 252 — 2(53 — €1 — €2

—€3 — €4 + 2n}.
This then implies

T3 (o(isn) = @3 + max{ B3 + ao(i11), D3g(i+1) T Ga(i41)s C30(i) }» Where
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a3 = 203+ €5+ € — 1,

B3 = 2014+ 202+ 203+ 204+ €1 + €2+ €3+ €4+ €7+ €5 — 21,
bas(iy = bo@) +201+ 202 + €1+ €2 +e3+ € —,
C35(i) = Co(i) T 204+ €7 + €s.

We thus obtain the cycle time T3(,) as

_ 3
Tyo) = Z T3U(i)a(i+1)
i=1

n
= naz+ Z max{ 33 + g (i+1) D30(i+1) T Ao(i+1)> C30(i) } -
i=1
Starting from the initial state E = (0,0,, M), where the robot has
just loaded part P, ;) onto machine M3 and where M; and Ms are free,
we can derive the following expression for my 3:

8
Tja(z’)a(iﬂ) = by(ip1) + 201 + 402 + 403 + 204 + Z € — 5N
i=1
+ wlfrl + wh, where

wzﬁl = max{0,ay(it1) — wh — 205 — 263 — 204 — €7 — €3 + 3},
’wé = max{0, Co(i) — 201 — 209 — 203 — €1 — €2 + 3n}.
This gives
Ty otirn) = 4 bo(ipr) + max{Bs, cio (i) aa(is)}, Where
a4 = 2(52+253—|—63+e4+65+66—2n,
By = 2(51+252+253—|—2(54+61+62—|—€7+68—377,
Uio(i) = Qo) + 201 + €1 + €2,
Cio(i) = Co(i) + 204+ €7 + €s.

Thus, we obtain the cycle time T}, as

Tyo) = Z ng(i)g(prl) = noy + Z b + Z max{ 4, Cao(i)s a4a(i+1)}-
i=1 i=1 i=1

Starting from the initial state E = (0,2, 0, M, ), where the robot has
just loaded part P, ;) onto machine M and where M; and M3 are free,
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we can derive the following expression for 75 3:

8
T520(i)a(i+1) = Co(i) T 201 + 462 + 203 + 204 + Z € — 3N+ wi'H + wé,
i=1
where
wlfrl = max{0, ay(it1) — wh — 205 — 263 — 204 — €5 — €6

— €7 —€g+2n— Ca(i)}a
why = max{0,byq — 201 — 203 — €1 — €2 + 1}

This gives
T otiryy = 5+ max{Bs + Co(i); bso(s) + Co(i)s Gso(i41) }, Where
as = 202+ €3 +e4—1,
B5 = 2014202 + 203 + 204 + €1 + €2 + €5 + €6 + €7 + €5 — 21,
Use(i) = Qo) T 201 + €1 + €2,
bso(iy = bo(s) + 203+ 204+ €5+ €6+ €7 + €5 — 1.

Thus, we obtain the cycle time T5(,) as

T50) = Z ng(i)a(iﬂ) = na5+z max{ 35+ (i), Us5o(i) +Co(i), A5 (i+1) ) -
=1 =1

Starting from the initial state £ = (€,€,Q, M, ), where the robot has
just loaded part F,(;) onto machine M; and where My and M3 are oc-
cupied by parts P, (;_1) and P, (;_9), respectively, we can derive the fol-
lowing expression for 7 3:

8
Tﬁlcr(i)a(i+1) = Z € + 201 + 409 + 493 + 204 — 4n + wi + w?l + wéﬁQ,
=1
where
wi = max{0, A6 (i) — B6 — wh Tt — wi?Y,
wéil = maX{O, b60(i—1) — B — w§72}7

i—2 i—1
ws = max{0, ces(i—2) — 6 —wi "}
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Substituting for w?, wéfl and w§72, we obtain

1
Too) = ZTﬁa(i)a(iJrl)
=1

= nog + Z max{ s, Coq(i—2) — wlfla 6o (i—1)s 6o(i) )5

i=1
where
wi™' = max{0, Uo(i—1) — MaX{ 36, Do (i—2)s Coo(i—3) — wi™?},

8
ag = 0; f=201+40y +403+20,+ Y e — 4n;
=1

4
U6o(i) = Qo)+ 201 + 209 + Z € —n,
i=1

6
bﬁa(i) = bg(i) + 209 + 203 + Z € — 1),
=3
8
Coo(i) = Cold) + 263 + 204 + Z € — 1.
1=5

6.3.2  Efficiently Solvable Special Cases

We now study the cycle time minimization problem under CRM se-
quences 71, T3, T4, and m5. Whenever appropriate, we let ay(,41) = @o(1)
and G, (n42) = Qg (2); similar definitions hold for by (1), bo(n+2); Co(n+1)>
and ¢, (n12)- We also let witt = w}! for i =1,2,3.

THEOREM 6.2 Problem RF3|(free,A,MP,CRM (m1) )| can be solved triv-
ally.

Proof. From Section 6.3.1, we have

n n
Ty(o) = Z Tllo(i)a(i—f—l) =noay + Z(ai +b; +¢i).

i=1 i=1
Clearly, T'(,) depends only on a;,b;,¢;,1 < ¢ < n,a1 and n, and is
independent of the schedule of parts. |
In Theorems 6.3, 6.4, and 6.5, we show that the cycle time of the part
scheduling problem under CRM sequences 73, 74, and 75, respectively,
can be expressed in the form C'+ 3" max{e,(i+1), fo(i)} for some con-
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stant C. A schedule that minimizes the cycle time can then be obtained
in time O(nlogn) by the Gilmore-Gomory algorithm (See Appendix B).

THEOREM 6.3 Problem RF3|(free,A,MP,CRM (ms3))|p can be solved op-
timally in time O(nlogn).

Proof. From Section 6.3.1 we have

T iyo(ir1) = @3 + max{3 + g (i41)s 3o (i+1) + Uo(it+1), C30(i) }-

Letting es,(;) = max{B3 + ay (), b35(i) + Go(i) }, We have

n

Z 30(i)o(i+1) — =naz + Z max{ei’)a (i+1)> 030(1)}

=1

THEOREM 6.4 Problem RF3|(free,A,MP,CRM (m4))|1n can be solved op-
timally in time O(nlogn).

Proof. From Section 6.3.1, we have
T3 (ho(ir1) = 4 + bo(isn) + max{B1, Co(s), Go(it1) }-
Letting e4,(;) = max{ s, ayo(;)}, we have

Tyo) = Z T4U o(i+1) = nog + Z by (i) T Z maX{€4o i+1)> 640(1)}

=1 =1

THEOREM 6.5 Problem RF3|(free,A,MP,CRM (7s5))|u can be solved op-
timally in time O(nlogn).

Proof. From Section 6.3.1, we have

TE)QO,( No(itl) — = a5 + maX{/BE) +c o (i) b5o’(l) + Co’(i)7 a5o’(i+1)}~

Letting f5,(;) = max{fs + Co(i), bso(i) + Co(i) }, We have

n

T5(U) = Z T520'(’i)0'(7j+1) = Naos + Z max{a5a(i+1), f5a'(z)}
=1 i=1
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To derive conditions under which problem RF3|(free,A, MP, CRM)|u
is polynomially solvable, we need the following preliminary results. We
begin by characterizing the cycle time for parts Py, ..., Py(,), under
CRM sequence w9, where o denotes a schedule of the parts.

LEMMA 6.6 The cycle time in RF3|(free,A,MP,CRM (72) )|p for the pro-

duction of n parts in schedule o under CRM sequence ma s given by

Ty(p) = nag + Z max{ [z, asq (i+2)> b2o (i+1) w3} + Z w37

=1
where
wé = max{0, Co0 (i) — max{ 3, Q20 (i+1) — max{0, an (4) — B2 — 5_1}}}
Proof. See Section 6.3.1. n

REMARK 6.3 When 6; =4d,i =1,...,4,¢, =¢,i=1,...,8, and n = 0,
the cycle time in RF3|(free,A,MP,CRM (m32))|i can be obtained from
Lemma 6.6 as follows:

Tyoy = na + T, where

_ ﬂ
T, = Zmax{ﬁ, Ao (i+2) bo(it1) w3} + Zva

wé = max{0, Co(i) = max{g, Ag(it1) — max{0, bo(iy — B — wé_l}}}.

In the definition of w}, « = 48 + 4¢ and 8 = 8§ + 4e.
We next characterize the production cycle time for CRM sequence 7g.

LEMMA 6.7 The cycle time in RF5|(free, A, MP,C RM (mg) )| for the pro-
duction of n parts in schedule o under CRM sequence g is given by

Tﬁ(a) = nag + Z max{ 3, Céo(i) — wlfrl’ b6a(i+1)7 a6a(i+2)}7
i=1

where

wlfrl = max{0, A6 (i+1) — max{Fs, bGU( )5 Coo(i—1) ’LU1}}
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Proof. See Section 6.3.1. n

REMARK 6.4 When §; =6,i=1,...,4,¢, =¢,0=1,...,8 and n = 0,
the cycle time in RF3|(free,A,MP,C RM (7g))|;x can be obtained from
Lemma, 6.7 as follows:

To@o)y = na + T,, where

T, = Z max{ﬁv Co(i) — wlfrl? bo‘(i—i—l)a ao(i+2)}a
i=1

wit™ = max{0, Ao (i+1) — max{3, by, Co(i1) — wi}}-

In the definition of wi™, o =43 + 4¢ and 3 = 85 + 4e.

LEMMA 6.8 In RF3|(free,A,MP,CRM )|,

8
min{TQ(U), TG(U)} > n(2(51 + 4(52 + 4(53 =+ 254 + Z € — 477)
i=1

Proof. Using m as described in Section 6.3.1,

8
To(o) > (o2 + B2) = n(201 + 405 + 463 + 20, + > _ €; — 4n).
=1

Similarly, using 7g as described in Section 6.3.1,

8
To(o) > nlas + Bs) = n(201 + 402 + 403 + 204 + Y _ € — 4n).
i=1

[
It follows from Theorems 6.2, 6.3, 6.4, and 6.5 that problem RE3|(free,
A,MP,CRM)|u is polynomially solvable in two situations. The first of
these occurs when the data are such that the best schedules under g
and mg can be found in polynomial time. The second situation occurs
when the cycle time provided by the best schedule under w9 or mg cannot
be optimal. In the theorem that follows, condition A corresponds to the

first situation, and conditions B through E to the second.

THEOREM 6.6 Problem RFs|(free, A, MP,CRM)u can be solved opti-
mally in time O(nlogn) under any of the conditions A, B, C, D, or E
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below:

A: 0;,=06,i=0,....4,¢,=€,i=1,...,8;n=0;
G <46+2,i=1,...,n.

n
B: Z(aﬁ—bi—kci) < (209 + 203 — ).

C1: ;i1§252—77,i:1,...,n.

C2: bi <203+ 204+€r+es—m,i=1,...,n.

C3: c; <201 +400+2034+€1+ea+e3+e4—3n,i=1,...,n.
D1 : a; <200+ 203 +204+er+eg—3n,1=1,...,n.

D2: b;<mn,i=1,...,n.

D3 : ¢ <201 +200+2034+€1+e—3n,i=1,...,n.

E1: a; <200+ 403 +204+€5+eg+er+eg—3n,i=1,...,n.
E2: b; <201 +20+e14+e—ni=1,...,n.

E3: ¢ <203—m,i=1,...,n.

Proof. Consider each condition A through E in turn.

A: From Remark 6.3 and the conditions in A, we have Ty, =
n(40 + 4e) + >0 max{ fy i), bo(ir1) }» where fo ;) = max{a,(it2) +
46 + 2€,80 + 4e}. It now follows that the part scheduling problem
can be solved by the Gilmore-Gomory algorithm in time O(nlogn).
Similarly, from Remark 6.4 and the conditions in A, we have Ty5) =
n(40+4e)+ " | max{85 +4¢, by (i41); Go(it2) }, With the same result.
It then follows from Theorems 6.2, 6.3, 6.4, and 6.5 that the optimal
part schedules under all six CRM sequences can be found, and their
cycle times compared, in time O(nlogn).

B: Tio) = S0 (@i + b+ c) + (230 6 + 3% & — 3n) < (202
+ 253 —n) +n(2 Z?Zl 0; + Z?Zl €, — 3n) from condition B, and
T () < min{T (), To(s)} from Lemma 6.8.

C: From Theorem 6.3 and Lemma 6.8,
Ty = doica max{az+ 03+ ag(i+1), @3 +b30(i4+1) + Ao (i+1), @3+ C30(:)
< Z?:l max{(253 + €5 + €6 — 77) + (2(51 4+ 269 + 203 + 204 + €1 + €2
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+ e3+es+er+eg—2n) + (202 — 1), (203 + €5 4 €6 — 1) + (203 + 204
+ er+eg—n+201 +202+ €1 +ea+e3+eq — 1)+ (202 — 1), (203 + €5
+ €6 —n) + (201 +402 + 203 + €1 + €2 + €3 + €4 — 37+ 204 + €7 + €3) }
= E?:l max{251 + 4(52 + 4(53 + 2(54 + 21‘8:1 € — 4?7, 251 + 452 + 4(53 =+
204 + Z?:l € — 4n, 201 + 469 + 403 + 204 + Z?:l € — 4?7}

< min{TQ(U), TG(U)}-

D: The proof is similar to part C except that we now use Theorem 6.4.

E: The proof is similar to part C except that we now use Theorem 6.5.
[

REMARK 6.5 The results in Theorem 6.6 provide considerable intuition
about tradeoffs between different CRM sequences. Specifically, each of
the conditions in Theorem 6.6 suggests that if processing times are short
relative to robot travel times, then it is better to wait at a machine while
it is processing as CRM sequences w1, w3, 74, and 75 do, rather than to
load the part and move elsewhere as CRM sequences 7o and 7g do.

In Section 6.5, we show that the decision versions of the part scheduling
problems under CRM sequences 7o and 7g are strongly NP-complete.

6.4  Steady-State Analyses

Note that all the results in this book relate to the performance of
robotic cells operating in a steady state. Thus, a question to be asked is
whether the cell must be initialized into its steady state. Alternatively,
what happens if it starts from a state that does not occur in its steady
state cycle? We show here that a three-machine cell reaches a steady
state in a number of cycles that is bounded by a function of the cell
data. Similar results can be proved for larger cells, and this section’s
results can easily be applied to cells producing identical parts. Usually
the production of parts begins from an initial state Ej, where the cell
is empty and the robot is at I ready to pick up a part. We first show
how a cell converges to a steady state starting from state Ej under
CRM sequences 71, ...,mg in RF5. It is easy to see that the following
remark concerning a steady state for cells processing multiple part-types
is consistent with the definition in Chapter 3.
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REMARK 6.6 If the cell operates in a steady state then the waiting times
of the robot, for each part on each machine, are identical for each MPS.

In CRM sequences 71, 73, T4, and 75, there is a state Ej in which the
robot has just completed the loading of a part onto machine M, and all
other machines are free. In 71, that machine can be My, M>, or Ms; in
w3, the machine is Ms; in 74, the machine can be Ms or Ms; and in 75
the machine is Ms. In every case, E; can be reached from the state Ef
within the production of one MPS. Therefore, the process of convergence
to a steady state is very simple in these four CRM sequences. For the
same reason, CRM sequences m; and 7o in RFy converge to a steady
state within the production of one MPS from the initial starting state
Ey.

REMARK 6.7 In RFj, the state Ej effectively decomposes production
into separate MPSs in cycles based on CRM sequences 71,73, 74, and
ms. Thus, a single MPS may be analyzed by itself. This is one of the
properties that makes the part scheduling problem using these CRM
sequences solvable in polynomial time, as discussed in Section 6.3.2.

The process of convergence to a steady state using CRM sequences o
and g remains to be considered.

6.4.1 Reaching Steady State for
the Sequence CRM (m3)

We first analyze CRM sequence 7y for which the cycle time expression
is derived in Lemma 6.6. First, we need two preliminary results.

LEMMA 6.9 Let w%, ..., wy and wél, e w:;” denote two feasible vectors

of waiting times in mwo, where

é“ = max{0, coy(it1)

— max{2, ayo(i12) — max{0, bys(i11) — w3 — Ba}}},
wy T = max{0, cog(i11)

— max{f, g (i12) — max{0, bys(iy1) —wg — B2}}}

, y , . . gy
If wy < wy, then wy ™ < with and wi™? < wit

Proof. Since wy > w, max{0, bao (1) — wy — Ba} < max{0, bao(i+1)
— w4 — B}. This implies that max {32, aaq(i+2) — Max{0, byy(it1) —
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— Bo}} > max{f2, asy(it2) — max{0,byy(it1) — wh — Bo}}. Thus,
max{0, Cas (1) — Max{f2, Ags(i+2) — Max{0, bog(ip1) — wéi Battt <
max{0, ¢yy(i+1) — max{ B, agy(i12) — max{0, by, (iy1) — ws — G2} }}. We
therefore have wé”l < wéﬂ. The second part of the proof follows from

the first part by setting ¢ =i + 1. m

Owing to the behavior of the waiting times wf in Lemma 6.9, we
need the following lemma to define a steady state for the MPS cycle
corresponding to C RM (m2).

LEMMA 6.10 Forn even, the MPS cycle with CRM (m3) consisting of a
single MPS defines a steady state. However, for n odd, two MPSs may
be required to define a steady state for the MPS cycle with CRM (m2).

Proof. Let w}(q) denote the waiting time of the robot at machine
Mj for part F,; in the gth iteration of the cycle. If n is even, it
is clear from the recursive relations for w}(q) and Lemma 6.9 that if
wi(q) < wi(q), then wi(qg+ 1) < wi(g +1). Thus, a cycle containing
one MPS is sufficient to define a steady state. If n is odd, it is similarly
clear that if wi(q) < wy(q), then wi(q + 1) > wq(q + 1). However,
wi(g+2) < wéi(q + 2). Therefore, two MPSs may be required to define
a steady state. |

EXAMPLE 6.1 n = 3; A25(1) = o, bgg(l) =3, Coo(1) = 7 A25(2) = 6, 520(2)
= 8, 620(2) = 8; agg(g) = 8, b20(3) = 7, 020(3) = 4, where 0 = (Pl,PQ, Pg),
and By = 1.

Consider the schedule 0 = (Py, Py, P3). The steady-state waiting
times at machine M3 for the first, second, and third MPSs are computed

as follows:
For the first MPS, starting with w3(0) = 0,
w%(l) :max{O, 020(1)—max{ﬁ2, aQU(g)—maX{O, 520(1)—ﬁg—w§(0)}}} = 3,
w3 (1) =max{0, Coo(2)—max{ B2, agq(3)—max{0, b20(2)—ﬁg—w§(1)}}} =4,
w3 (1) =max{0, Coo(3)—max{ B2, age(1)—max{0, bgo(g)—ﬂg—wg(l)}}} =1.
For the second MPS,

wi(2) =max{0, Coo(1)—Max{ B2, Agq(2)—max{0, byy(1)—F2— wg(l)}}} =2,
w3 (2) =max{0, ¢y, (2)—max{Fa, ag, (3 —max{0, 520(2)— h—w3(2)}}} =5,
w3 (2) =max{0, ¢y, (3)—max{Ba, ag,1)—max{0, by, 3 —Pa—w3(2)}}} = 0.

For the third MPS,

w3 (3) =max{0, ¢ (1) —max{fa, doy(2)—max{0, by, 1) —Po—w3(2)}}} = 3,
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w%(?)) =max{0, Cyn(2)—max{ 2, as,(3)—max{0, bQJ(g)fﬂgfwé(B)}}} =4,
w3(3) =max{0, y(3)—max{ 2, as,(1)—max{0, b20(3)—/32—wg(3)}}} =1.

Note that the first set of waiting times of parts at Mz in the first
MPS is different from that in the second MPS and is equal to that in
the third MPS. Therefore, it is necessary in this case to include two
MPSs to define a cycle in a steady state.

In view of Lemma 6.10, we let v denote the number of parts in a cycle,
where v = 2n if n is odd and v = n if n is even. For n odd, a given
part schedule 0 means a schedule of 2n parts in which the first n parts
corresponding to an MPS have the same order as the last n parts. Thus,
we renumber the parts in a cycle as Py(1), .- -, Po(n)s Po(nt1), - -+ Po(2n)
where F,(;) and Py, are the same part type for 1 <i <n.

The idea behind the algorithm is as follows. If there exists a steady-
state solution that satisfies certain lower and upper bounds on the wait-
ing times, then the recursive expressions for w} in Lemma 6.6 can be
greatly simplified, and one such solution is found in Step 1. Alterna-
tively, at least one of the lower or upper bound is violated, in which
case one waiting time value is fixed, and such a solution is found in Step
2. The algorithm consists of a series of tests that check which of these
conditions is satisfied.

Algorithm FindTime2
Input: a2, 82 and az,(j), b2s(j), C20(5), 5 = 1,...,n.
Step 1: LB* = max{0, boo(it1) — G2o(it2) 1t =1,...,0.
UB' = min{chr(H—l) - 527 C25(i+1) + b2o‘(i+1) — 20 (i42) — 52}72' =1,...,v.
Testl: If UB* < 0 for some 7,1 < i < v, then go to Step 2.
Test2: If LB > UB' for some 7,1 < i < v, then go to Step 2.
Wait(i) = LB*,i=1,...,v.
Test3:
Forj=1,...,v,do
w} = Wait(5).
wé“. = Cao(j+i) — Q20(j+it1) + Dao(ira) — P2 — wit T i=1,. 0.
If w) = wit" and LB < wl' <UB';i=1,...,v, then
ooy = vo2 + 35 (a20i) + b2o(i) + C20i) — B2)/2.
Terminate.
End If
End
Set Wait(i) = UBY, i =1,...,v, and repeat Test3.
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Step 2: Wait(i) =max{0, coo(;y —max{fa, a2o(i+1)}}, 1 = 1,...,v.
Test4:
For j=1,...,v,do
= Wait(j).
Fori=1,...,v, find
wit = max{0,z} where
:L'AZ ng(j+i)7maX{ﬁ2, a20<j+i+1>fmax{0, b2cr(j+1) - w§+l b BQ}}
If wi= w}™, then
2 Ta(o) = vaz + 37 max{fa, bag(i+1) = W, G20 (42} 21—y W5
Terminate.
End If
End
Set Wait(i) = max{0, c35(;y — B2}, 4 = 1,...,v, and repeat Test4.
Set Wait(i) =0, ¢=1,...,v, and repeat Test4.

To discuss the optimality of FindTime2, we need the following prelimi-
nary results.

LEMMA 6.11 If there exists a feasible MPS cycle with CRM (m2) using
part schedule o and having cycle time Ty (), and if in this cycle (a) w3 =
Co (i) — agg(H_l)—i-bQU )—ﬁQ—w3 and (b) LB < wl <UB' =1,

in steady state, then there exist either one or two feasible MPS cycles
with CRM(’]TQ) that have cycle time Ty, and (i) LB* < w} < UBi,i =
1,...,v, where wh = LB" or wh = UB" in one cycle, and (ii) w} = LB
or w3 = UB’ in the other cycle (if it exists) for some 1 < h,j < v.

Proof. Let w%, ..., w§ denote a feasible vector of waiting times using
part schedule o, and let Ay :minlggv{wé — LB UB? — w%, Co, Wy !

LB"™' UB® — w3}, h =argminj<;<,{w} — LB, UB? —w3,... wy
— LB L UBY—wi}. Let 2t = wi— Ay, 22 = w3+ Ay, ..., 27 = wl~ !

— Ay, ¥ = w¥ + Ay. The new vector of waiting times z%, i = 1,...,v,
also satisfies the equations in the lemma, and we have 2" = LB" or

h' = UB", depending on whether h is odd or even. Similarly, let
Ay = minj<;<,{UB! —w3,w3 LB?,. UB“’l—wg_1 w§—LB"}, j =
argm1n1<2<n{UB — wg,wg LB?,. ,UB” U wy™t wy — LBY}. Let
yt = wi+ Ag, y? = w3 - AQ,...,y” 1:w§_1+A2, ”:wg—AQ. The
new vector of waiting times y*, i = 1,...,v, also satisfies the equations
in the lemma, and we have 2/ = LB’ or 2/ = UBJ, as above. Since
154 is independent of wé,i = 1,...,v, under the conditions stated in
the lemma, T5(,) is unchanged. ]
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REMARK 6.8 If wg =2ati=1,...,v, and wg =9’ i=1,...,v, are
the solutions from two feasible cycles that satisfy the conditions of
Lemma 6.11, then z* # 3%, i = 1,...,v. Without loss of general-
ity, assume that 2! < y'. Then there exists an > 0 such that
gl=al 2 =a -, .,y = v b, and ¥ = 2 — o,
where 7 = minj<;<, {UB! — 2,22 — LB? ... , UB""! —2°~! 2¥ — LB"}
is also a feasible solution. All the solutions in between z' and y?,
i = 1,...?1)7 satisfy wh = Co0(i) — Q20(i+1) T b2o(i) — B2 — wéﬁl and
LB < wy < UB',t = 1,...,v. Thus, an infinite number of solu-
tions with the same cycle time exists in this case. We note that Step 1
finds only one solution, which is 2 or y*,i = 1,...,v. However, given
x',i=1,...,v, it is easy to determine 3, and vice versa. If there exists
only one feasible solution, then n =0 and z° = ¢*,i =1,..., 0.

LEMMA 6.12 There cannot exist both a feasible vector of waiting times
found under the conditions of Step 1 of FindTime2 with cycle time T and
a feasible vector of waiting times found under the conditions of Step 2
of FindTime2 with cycle time T, where T #* T.

Proof. Suppose that a feasible vector of waiting times w} = z¢,i =
1,...,v, is found in Step 1, and another feasible vector of waiting times
wé = 2'i = 1,...,v, is found in Step 2. Note that z',i = 1,...,v,
satisfies the conditions of Step 1. Let y*,i = 1,...,v, be another feasible
vector of waiting times that satisfies the conditions of Step 1. If there
exists some j,1 < j < v, where 2/ = 2/, then from Lemma 6.6, 2 =
2 i=1,...,v. Thus 2° # 2% and y* # 2%, i = 1,...,v. Without loss of
generality, we may assume that 2! < y'. Thus, we have three cases: (1)
rl <2t <yl (2) 2t > 21 and (3) 2! > ¢yt If 2! < 2! < y!, then LB’ <
2t < UB%i=1,...,v, and 2,7 = 1,...,v, cannot be found in Step 2
as claimed. If z! > 2!, then from Lemma 6.11 we may assume without
loss of generality that 2" = LB" or 2" = UB". If 2" = LB", then
2" < LB", and from Lemma 6.6, "1 = 2"*1 which is a contradiction.
If 2" = UB", then 2" > UB", and from Lemma 6.6, again we have

Cbh+1 h+

= M1 which is a contradiction. Similarly, if 2! > 3!, then from
Lemma 6.11 we may assume without loss of generality that ¢/ = LB/
or ) = UBJ. If ¢ = LBJ, then 2/ < LBJ and, from Lemma 6.6,
Y/t = 271 which is a contradiction. If 3/ = UB7, then 2/ > UBJ and,

from Lemma 6.6, we have y/*! = 21 which is a contradiction. n
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Initialization of MPS cycle with CRM (m3): There are two different
ways in which the MPS cycle with C RM (72) can be initialized from the
state Er in RE3|(free,A,MP, CRM (m2))|p. Let wj-(O) denote the waiting
time of the robot at machine M; for part Py ;) in the initialization step.
(a) Initialization INA2, starting with part P,;: pick up P, (e1), move
to My (d1), load P, ;) onto M; (eg), wait at My (w](0) = ay(;)), unload
Py from My (e3), move to My (d2), load P, ;) onto My (e4), move to
I (61 + 02 — ), pick up Pa(z’+1) (e1), move to M; (1), load Po‘(i—‘,—l) onto
M; (e2), move to My (d2), wait (if necessary) at Mz (w5(0)), unload
Py from My (e5), move to M3 (03), load P, ;) onto Mz (e6), move to
M (62+63—n), wait (if necessary) at My (w™(0)), unload P, (i41) from
M; (e3), move to Mz (d2), and load P, ;1) onto Ma (€4). At this point,
the MPS cycle with CRM (m2) starts from the state E = (0, Q,Q, M ).

The waiting time equations corresponding to initialization INA2 are

as follows:
w?l (O) QA (1)
w%(O) = maX{O, bg(i) — 201 — 200 — €1 — g + 77},
wiH(O) = max{0, ag(it1) — wh(0) — 205 — 203 — €5 — € + 1},
wé(O) = maX{O, Co(i) — wi+1(0) — 200 — 203 — €3 — €4 + 77},

The waiting time equations corresponding to the gth iteration of the
MPS cycle with CRM () are as follows:

wé(q) = max{0, ey (j) — max{Ba, azg(j11)
— max{0,byy(jy — o —wi (g - D} ji=i+1,
wi(q) = max{0,cyo(j) — max{Ba, asu(j+1)

— max{0,byy(jy — B —wi (@)} i=i+2,.. . i+,

where w;»(q) denotes the waiting time of the robot at machine M for
part P, in the gth cycle, ¢ > 1, w?f”(q) = wg(q),j =1,...,v, and
Py ;) is the first part produced, starting from Ej.

(b) Initialization INB2, starting with part P,;: pick up Py; (€1), move
to My (61), load P, onto M (ez), wait at My (wf(0) = ag(z)) unload
P,y from M (e3), move to Mz (d2), load F,(;y onto My (e4), wait at
My (w5(0) = by(;)), unload Py from Mz (e5), move to M3 (d3), load
Py ;) onto M3 (e6), move to I (d1+02+03—2n), pick up P, (11 (€1), move
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to My (61), load P,(;41) onto Mi (e2), wait at M (witH(0) = Ao (i41))s
unload Py ;1) from My (e3), move to Mz (d2), and load Py(;41) onto
My (e4). At this point, the MPS cycle with CRM (79) starts from the
state E = (0,9,Q, M;).

The waiting time equations corresponding to initialization INB2 are
as follows: w(0) = ag(i),wé(O) = bg(i),wzﬁl(O) = Qg (it1), and wi(0) =
max{O, Co(i) — wi“(O) — 201 — 209 — 203 — €1 — €2 — €3 — €4 + 277}. The
waiting time equations corresponding to the gth iteration of the MPS
cycle with CRM (m3) are as follows:

w% (9) = max{0, Co0(j) — max{ 2, 20 (j+1)
— max{0,byo(y) — o —w (g -V} =i+ 1,
wi(q) = max{0, Coo(j) — Max{ B2, Ao (1)

— max{0, by, (j) — f2 — wéfl(q)}}},j =i+2,...,i+w,
where ¢ =1,2,..., and w§+v(q) = wg(q),j =1,...,v.

The system can be initialized in two different ways, INA2 and INB2,
and in each case there are n different possible parts in o to start with.
Thus, there are 2n possible ways to initialize the system. The following
theorem uses one of them to provide an upper bound on the number of

MPS cycles needed to reach a steady state.

THEOREM 6.7 Starting from the state Er and using part schedule o,
the cell in RF5|(free,A,MP,CRM (m2) )| will go through at most max{1,
minj<;j<y{si}} cycles before reaching a steady state, where s; = cyo(;)

— max{fB, ay,(i+1) — max{0, bos(iy1) — B2}}, i = 1,2,...,v, and this
bound is attainable.

Proof. Assume, without loss of generality, that all the parameters are
integers. The waiting time equations in Lemma 6.6 show that once the
same value of wé occurs in two consecutive cycles for some 7,1 < i < v,
a steady state has been reached. An induction argument, based on
Lemma 6.9, shows that w’(g) monotonically increases or decreases as q
increases, until a steady state is reached. We have wé =01if s; <0 for
some ¢, 1 < ¢ < v. In this case, the system reaches a steady state in
the first cycle. On the other hand, we have 0 < w} < s; if s; > 0 for
i =1,...,v. In this case, it takes at most minj<;<,{s;} number of cycles
before the system reaches a steady state. ]
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EXAMPLE 6.2 n=4;¢, =0,i=1,...,8;0;, =0,i=1,...,4,n=0;0s =
0. We let Q25(1) = X, b2o(1) = X, Cog(1) = X; (25(2) = X, b20(2) =
X, Cog(2) = X + 1 (25(3) = X, b20(3) = X, Cog(3) = X; and A25(4) =
X, byo(ay = X, Copay = X, where 0 = (P, P, P3, P;) and X > 0 is an
integer. We use initialization INA2, starting with part P, in schedule
0. Then, we have

wi(0) = a,0) =X,
wa (0) max{0, bys(1) — 261 — 202 — €1 — €2 + N} =
w?(0) = max{0, A0 (2) — wa(0) — 26y — 203 — €5 — € + 77} =0,
wi(0) = max{0, Coo(1) — w3 (0) — 269 — 203 — €3 — €4 +n} = X,
w3(1) = max{0, Co(2) — Max{ B2, agq(3)

— max{0, byg(z) — B2 — w3(0)}}} =1,
w3(1) = max{0, Co0(3) — maX{ﬁz, 90 (a)

— max{0,by(3) — f2 — wi(1)}}} = X — 1,
wi(l) = max{0, Coo(4) — maX{ﬁz, 90(1)

— max{0, by(sy — B2 — w3(1)}}} =1,
wi(1) = max{0, Co0(1) — maX{ﬁz, 90(2)

— max{0, by, (1) — B2 — wi)}} =X -1,
w3(2) = max{0, Coo(2) — maX{ﬁz, 90(3)

— max{0, byg(z) — B2 — w3(1)}}} = 2,
wi(2) = max{0, cop(3) — maX{ﬁz, 90 (4)

— max{0,by(3) — f2 — w3(2)}}} = X -2,
w3(2) = max{0, cop(s) — maX{ﬁz, 90(1)

— max{0, by, (4) — B2 — w3(2)}}} =2,
w3(2) = max{0, cop(1) — maX{ﬁz, 96(2)

— max{0, bys(1) — By —wi(2)}}} =X - 2.

Thus, w3(q) (resp., wi(q)) keeps increasing by one time unit per MPS
cycle until it reaches X + 1 (resp., X), at which time a steady state has
also been reached. In this case, it takes X cycles to reach a steady state.
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6.4.2 Reaching Steady State for
the Sequence CRM ()

We first analyze CRM sequence g for which the cycle time expression
is derived in Lemma 6.7. We start with the following preliminary result.

LEMMA 6.13 Let wi,...,w}, and wlll, . ,wlln, denote two feasible vec-
tors of waiting times in mg, where wt = max{0, ags(i+1) — max{Ss,
Deo(i) Coo(i—1) — Wit} and wit' = max{0,ag,(is1) — max{ B, bey (i),

Coo(i—1) — wi}}. If wh < w, then with < w/f“.
Proof. The proof is similar to that of Lemma 6.9.

REMARK 6.9 It follows from Lemma 6.13 that, whether n is even or odd,
the MPS cycle with C RM (7g) consisting of a single MPS is sufficient to
define a steady state.

We now show how the cycle time T(,) can be calculated in polyno-
mial time for a given part schedule o (Hall et al. [76]). The following
algorithm delivers the correct waiting times and cycle time for the MPS
cycle with CRM (7).

Algorithm FindTime6

Input: as, 86 and aeos(j), beo(5), Coo(j)sJ = 1, ..., 1.

Step 1: LB' = max{0, Ceo(i—1) — G6o(i+1) ;¢ =1,...,7,
UBi = min{cﬁa(i,l) - ﬂe, 660(1-,1) - b60<i)},i = 1, e, n,
Testl: if UB* < 0 for any ¢ = 1,...,n, then go to Step 2.
Test2: if LB > UB' for any i = 1,...,n, then go to Step 2,
Wait(i) = LB*, i =1,...,n.
Test3:
For j=1,...,n,do
w] = Wait(),

J+i—1

w{+i = Ao (j+i) — Coo(j+i—2) + W ,i=1,...,n,

If w] =w!*" and LB* <w!™ <UB%,i=1,...,n, then
To(o) = nas + 35y asis
Terminate.

End If

End

Step 2: Wait(i) = max{0, ag,(;)—max{Fs, bs(i—1)} }, 1 = 1,...,m.
Test4 :

Forj=1,...,ndo
wi = Wait(j),
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Fori=1,...,n, find

wiﬂv = max{0, ago(j+i) — max{Bs, beo (j+i—1)> Coo (j+i-2) — wiT Y,

If w] = w!™", then
To(o) = nae + i max{ B, Coo () — Wi ", Doo(i41)s Qoo (i+2) }s
Terminate.

End If

End

Set Wait(i) =0, i=1,...,n, and repeat Test4.

To discuss the optimality of FindTime6, we need the following prelimi-
nary results.

LEMMA 6.14 If there exists a feasible MPS cycle with C RM (mg) using
part schedule o and having cycle time Tg5) in which (a) wi = A6 (i) —
Coo(i—2) T w’i_l and (b) LB* < wi <UB',i =1,...,n, in steady state,
then there exist either one or two feasible MPS cycles with C RM (7¢)
that have cycle time Tg(,) and (i) LB <wi <UB'i=1,...,n, where
wi = LB" in the first cycle, and (ii) w] = UBJ in the second cycle (if
it exists) for some 1 < h,j < n.

Proof. Let wi,...,w?, denote a feasible vector of waiting times using
part schedule 0. Let Ay = minlgign{wi — LB}, h= argminlgign{w’i

— LB'}, and let 2 = w® — Ay, i =1,...,n. The new vector of waiting
times 2%, i = 1, ..., n, also satisfies the equations in the lemma and 2" =
LB". Similarly, let Ay =miny <;<, {UB"—w!} and j =argmin;<;<,{UB*
— wi} Let v = wzi 4+ Ao, i=1,...,n. The new vector of waiting times
y', i =1,...,n, also satisfies the equations in the lemma and ¢/ = UB/.
Since T§ (o) is independent of wli, 1 =1,...,n, under the conditions stated
in the lemma, T (,) is unchanged. |

REMARK 6.10 If w} = z%,i = 1,...,n, and v} = y*',i = 1,...,n,
are the solutions from two feasible cycles that satisfy the conditions of
Lemma 6.14, then 2 # y',i = 1,...,n, and there exists a £ > 0 such that
y' = x'+&, where £ = minj<;<, {UB'—x'}. All the solutions w} = z'+A,
i=1,...,n, with 0 < A < ¢ satisfy w} = 6o (i) — Coo(i—2) T wi_l and
LB" < w{ <UB')i =1,...,n. Thus, an infinite number of solutions
with the same cycle time exist in this case. We note that Step 1 finds
only one solution z*, i = 1,...,n. However, in view of y* = 2 + €, if 2°
is given, then %, = 1,...,n, can easily be determined. If there exists
only one feasible solution, then £ =0 and ' =¢*,i =1,...,n.
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LEMMA 6.15 There cannot exist two distinct feasible vectors of waiting
times, one under the conditions of Step 1 and the other under the condi-
tions of Step 2 of FindTimeb, such that their corresponding cycle times
are unequal.

Proof. Suppose a feasible vector of waiting times w! = 2%,i =1,...,n,
is found in Step 1, and another feasible vector of waiting times w! =
24 i =1,...,n, is found in Step 2. Note that z'i = 1,...,n, satisfies
the conditions of Step 1. Let y*,i = 1, ..., n, be another feasible vector of
waiting times that satisfies the conditions of Step 1. If there exists some
4,1 < j <n, where 2/ = 27, then from Lemma 6.7, 2* = 2}, i =1,...,n.
Thus, 2* # 2% and v # 2%, i = 1,...,n. From Lemma 6.13 we have
three cases: (1) z' < 2/ <y’ i=1,...,n, (2) 2* > 2\, i=1,...,n,
and (3) 2 > ¢', i = 1,...,n. If 2" < 2% < gy, i = 1,...,n, then
LB' < 2 <UB')i=1,...,n. Thus, z',i = 1,...,n, cannot be found
in Step 2 as claimed. If ¢ > 2°, i = 1,...,n, then from Lemma 6.14 we
may assume, without loss of generality, that " = LB". If 2" = LB",
then 2" < LB", and from Lemma 6.7, z"t! = 2P which provides a
contradiction. Similarly, if 2 > y*, i = 1,...,n, then from Lemma 6.14,
we may assume without loss of generality that y/ = UBJ. If y/ = UB/,
then 2/ > UBJ, and from Lemma 6.7, y/t! = 29*! which provides a
contradiction. m

Initialization of an MPS cycle with CRM (7g): There are two dif-
ferent ways in which an MPS cycle with CRM (mg) can be initialized
from the state Er in RF3|(free,A,MP, CRM (m¢))|pu:

(a) Initialization INAG, starting with part P,;): pick up P,; (€1), move
to My (d1), load P, ;) onto My (ez), wait at My (w](0) = ay(;)), unload
P,y from M (e3), move to My (02), load P, ;) onto Mz (e4), move to
I (01 + 02 —n), pick up Py(i11) (€1), move to My (1), load Py(;11) onto
M; (e2), move to My (d2), wait (if necessary) at Ma (w4(0)), unload
P,y from Mj (e5), move to M3 (03), load P, ;) onto M3 (€6), move to
My (02 + 63 — 1), wait (if necessary) at M; (wi™(0)), unload Pyt
from M (e3), move to My (d2), load P,(y1) onto Mz (e4), move to
I (01 + 62 — 1), pick up Py (;19) (€1), move to My (61), and load Py ;49
onto M (e2). At this point, the MPS cycle with CRM (mg) starts from
the state £ = (Q,Q,Q, M").
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The waiting time equations corresponding to initialization INAG6 are

as follows:
wi (0) = Qg(i),
wh(0) = max{0, bo(i) — 261 — 202 — €1 — €2 + 1},
wi*’l(O) = maX{O, Qg (it1) — wé(O) — 209 — 203 — €5 — €6 + 77}.

The waiting time equations corresponding to the gth iteration of the
MPS cycle for CRM (wg) are

wi(q) = max{0, aﬁa(j) max{ s, beo(j—1) Coo(j—2)
—wi T g-}}i=i+2,
wi(q) = max{0,ags(;) — max{Ss, bss(j—1), Coo(j—2)
—wi N @i =i 43, it
where w}t"(q) = w}(q),j =1,...,n
(b) Initialization INB6, starting with part Pp;: pick up P, (€1), move
to My (81), load P, onto M (e2), wait at My (wf(0) = ag(z)), unload
P,y from M (e3), move to My (d2), load P,y onto My (€4), wait at
My (w5(0) = by(;y), unload Py from Mj (e5), move to M3 (d3), load
P,y onto M3 (e6), move to I (01+0d2-+03—2n), pick up Py(i11) (€1), move
to My (01), load P, (;y1) onto My (e2), wait at M (wit(0) = Ao (it1))s
unload P, ;1 1y from M (e3), move to Ma (02), load P11y onto Ma (es),
move to I (01 + 2 —n), pick up P, (19 (€1), move to My (d1), and load
P,(it2) onto My (e2). At this point, the MPS cycle with C'RM ()
starts from the state £ = (Q,Q,Q, M; ). The waiting time equations
corresponding to initialization INB6 are as follows:

10) = ay();w5(0) = bygy; wiTH0) = ag(it),
wy(0) = max{0, o) — Ag(ip1) — 401 — 402 — 203
— 261 — 2e9 — €3 — €4 + 41},
wit (1) = max{0,b, (1) — wh(0) — 261 — 205 — 283 — 20,
— € — € — €7 — €3 + 3},
wit(1) = max{0, aq e — wh0) — wht(1) - 26,

— 453—254—65—66—67—68+377}.
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The waiting time equations corresponding to the ¢'* iteration of the
MPS cycle for CRM (mg) are

wi(g) = max{0, Uo(j) — MaX{ 6, D6 (j—1)> Coo(j—2)
—wl g—-D}hj=i+3,
w{(q) = max{0, Ao (5) — max{ 3, b6a(j71)7 C6o(j—2)

—wl N Qi =i+4, it nt2,
where w§+n(q) = wg(q),j = 1,...,n. The main result for the conver-
gence of the MPS cycle with CRM (7g) to a steady state follows.

THEOREM 6.8 Starting from the state E; and using part schedule o,
the cell in RF3|(free,A,MP,CRM (7¢) )|p will go through at most max{1,
mini<;<n{si}} cycles before reaching a steady state, where s; = agq(;) —
max{ s, bGJ(i_l)}, i =1,...,n. Furthermore, this bound is attainable.

Proof. The proof is similar to that of Theorem 6.7. ]

In this section, we have shown that an RF3 cell operating under CRM