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Foreword

This book presents research on sequencing and scheduling problems in
robotic cells. The authors have been at the forefront of research activity
in this area. Suresh Sethi and Chelliah Sriskandarajah coauthored (to-
gether with Gerhard Sorger, Jacek B�lażewicz, and Wieslaw Kubiak) an
influential paper titled “Sequencing of Parts and Robot Moves in a Ro-
botic Cell,” (International Journal of Flexible Manufacturing Systems,
1992) that helped establish the framework for the algorithmic investiga-
tion of throughput optimization problems in the robotic cell literature.
Along with their colleague Milind Dawande and former student Neil
Geismar, they have put together this treatise that incorporates their
own research and that of others.

The authors have done a commendable job in bringing together the
important analytical results on throughput optimization in a variety of
robotic cells. The book starts by providing the reader with a snapshot of
the different applications of robotic cells in the industry. In particular,
such cells are used extensively in the production of semiconductors. The
authors then devise a classification scheme (Chapter 2) for the schedul-
ing problems that arise in the different types of robotic cells. Cyclic
production, the most commonly used mode of production, is analyzed
next (Chapter 3). Using a basic model of a robotic cell, the authors
explain the notion of cycles and cycle times, and proceed to derive a va-
riety of results, exact and approximation algorithms, concerning cyclic
production. Scheduling problems in cells with more advanced hardware
are discussed next. In Chapter 4, algorithms are presented for cells in
which the robot has a gripper that can hold two parts simultaneously.
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Chapter 5 discusses cells that have more than one machine at one or
more processing stages. In Chapters 6 and 7, the authors then widen
the scope of inquiry by addressing cells which are able to produce two
or more different types of parts simultaneously. Cells with more than
one robot are discussed in Chapter 8. Most of the descriptions in Chap-
ters 3-8 are for cells in which a part that has completed processing on
a given machine can stay on that machine indefinitely (until a robot
picks it up). Chapter 9 briefly discusses two other types of cells that
have noteworthy practical applications. The final chapter (Chapter 10)
presents a number of open problems.

Throughput optimization problems for robotic cells are not at all like
the classical machine scheduling problems with which I am familiar with
and have published papers on. The notation required to state and ana-
lyze these problems is significantly different than that used in the pre-
vious scheduling literature, and it may take a reader some effort to gain
familiarity with the notation used in this book. However, the reader will
find the effort worthwhile and will appreciate that this new area has a
number of well-defined and non-trivial combinatorial problems stemming
from practical applications. Efficient solution techniques for solving such
problems may lead to significant cost savings for factories using robotic
cells in their production processes.

Two of the authors of this book, Suresh Sethi and Milind Dawande,
received their Ph.D. degrees from the Graduate School of Industrial
Administration (now the Tepper School of Business) at Carnegie Mellon
University. Suresh was the first student to complete his Ph.D. degree
in five semesters under my direction during the 43 years that I was a
faculty member of Carnegie Mellon University.

Pittsburgh, Pennsylvania Gerald L. Thompson
August 2006 Professor of Operations Research, Emeritus

Carnegie Mellon University
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Preface

The love of learning, the sequestered nooks,
And all the sweet serenity of books.

– Henry Wadsworth Longfellow, ‘Morituri Salutamus,’ 1875

Intense global competition in manufacturing has compelled manufac-
turers to incorporate automation and repetitive processing for improv-
ing productivity. As manufacturers strive to reduce cost and improve
productivity, the benefits offered by computer-controlled material han-
dling systems – efficiency and speed of processing, reduced labor costs,
a largely contaminant-free environment, to name a few – are compelling
reasons for their use. In their typical use, such systems are responsi-
ble for all inter-machine handling of work-in-process as raw materials
progress through the multiple processing stages required to produce a
finished part.

Many modern manufacturing systems use robot-served manufacturing
cells, or robotic cells – a particular type of computer-controlled manu-
facturing system in cellular manufacturing. The exact time of the first
use of such systems is difficult to pinpoint; however, several industrial
implementations were in use in the 1970s. Most of these were classical
machining applications such as automated tool loading and unloading
for metal-cutting, grinding, turning, etc., and automated classification
of parts before palletizing. Over the years, the scope has broadened to
a wide variety of industries including the manufacture of semiconduc-
tors, textiles, pharmaceutical compounds, magnetic resonance imaging
systems, glass products, cosmetics, fiber-optics, and building products.

As they become prevalent, using robotic cells efficiently becomes a
competitive necessity. In this regard, research efforts have focused on
three major issues: cell design, sequencing of robot moves, and optimal
scheduling of the parts to be produced. The latter two issues are the
subject of most of our discussion in this book. In particular, our em-
phasis is on cyclic production in which a sequence of robot actions is
repeated until the production target is met.
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This book is devoted to consolidating the available structural results
about cyclic production in the various models used to represent real-
world cells. As cells become larger and more complex, the need for
increasingly versatile models and easy-to-implement algorithms to opti-
mize cell operations has increased. We have made an attempt to bring
together the results developed over the past 25 years. The material is
organized into 10 chapters. We start by taking a look at industrial appli-
cations and formulating a classification scheme for robotic cell problems.
After presenting some fundamental results about cyclic production, we
proceed to analyze cells with dual-gripper robots, parallel machines,
multiple-part-type production, and multiple robots. Finally, we discuss
some important open problems in the area.

We envision this book as a reference resource for practitioners, re-
searchers, and students. The book can also be used in a graduate course
or a research seminar on robotic cells.

We extend our grateful thanks to our numerous colleagues whose con-
tributions have been directly or indirectly included in this book. In
particular, we are indebted to our co-authors, Jacek B�lażewicz, Inna
Drobouchevitch, Nicholas Hall, Hichem Kamoun, Wieslaw Kubiak, Sub-
odha Kumar, Rasaratnam Logendran, Chris Potts, Natarajan Ramanan,
Jeffrey Sidney, and Gerhard Sorger, whose collaboration has been criti-
cal for the development of a significant portion of the material covered
in the book. We thank Alessandro Agnetis, Nadia Brauner, Chengbin
Chu, and Eugene Levner for their encouragement and for suggesting sev-
eral improvements to the manuscript. We also thank our student Mili
Mehrotra for her help in proofreading parts of the manuscript. It was
a pleasure working with Gary Folven and Carolyn Ford of Springer; we
are grateful for their support. Finally, we thank Barbara Gordon for her
help with LATEX.

M.W. Dawande H.N. Geismar

S.P. Sethi Prairie View, TX
C. Sriskandarajah

Richardson, TX



Chapter 1

ROBOTIC CELLS IN PRACTICE

Computer-controlled material handling systems that convey raw ma-
terials through the multiple processing stages required to produce a fin-
ished part or product are common in industry. One such implementa-
tion, a robotic cell, has become a standard tool in modern manufac-
turing. The efficient use of such cells requires algorithmic solutions to
a variety of challenging combinatorial optimization problems; typical
problems include cell design, optimal sequencing of robot moves, and
scheduling of the products to be produced.

Many diverse industries use robotic cells (see Section 1.5). A dom-
inant area of application is semiconductor manufacturing [6, 64, 102,
128, 129, 154, 159]. Other documented implementations include elec-
troplating lines for a variety of products ranging from printed circuit
boards to airplane wings, where parts are transferred between tanks of
chemicals by hoists [30, 31, 33, 97, 98, 108, 109, 114, 145]. Robotic cells
are also used for testing and inspecting boards used in mainframe com-
puters [121], machining of castings for truck differential assemblies [8],
crane scheduling for computer integrated manufacturing, textile mills,
and engine block manufacturing [149].

As manufacturers implement larger and more complex robotic cells,
more sophisticated models and algorithms are required to optimize the
operations of these cells. A number of studies have been conducted to
find ways to meet this demand. Some date as far back as the late 1970s,
but the majority have been performed since 1990. This chapter pro-
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vides a general introduction to the use of robotic cells in practice. The
concept of cellular manufacturing is discussed in Section 1.1, followed in
Section 1.2 by the basic robotic cell flowshop models useful for analyz-
ing industrial implementations. Section 1.3 discusses the importance of
schedule optimization. Section 1.4 provides a brief historical overview of
robotic cell studies. Finally, Section 1.5 provides a snapshot of the use
of robotic cells in industry.

1.1 Cellular Manufacturing

The idea of using robotic cells for production is part of the larger
theme of cellular manufacturing. The origin of cellular manufacturing
can be traced back to efforts aimed at blending the efficiency of product
layouts (e.g., assembly lines) with the flexibility of process or functional
layouts (e.g., job shops). These layouts represent two extreme paradigms
in manufacturing: on the one hand, process layouts are characterized
by the utilization of general-purpose resources to produce a variety of
products. Typically, the processing requirements vary widely with the
products; resources are grouped by similarities in their processing ac-
tivities. Advantages of process layouts include the ability to handle a
large variety of products, thereby enabling customization, and the use
of general-purpose equipment. On the other hand, product layouts op-
erationalize the idea of using specialized resources for producing a few
standardized goods. Such layouts achieve processing precision and speed
through the specialization of labor and equipment. A cellular layout is
an attempt to exploit the advantages of both of these extremes.

Production cells may be formed in a job shop by grouping together
machines that perform different operations in order to produce a set of
items, or part family, that requires similar processing. For example, a
lathe, a drill press, a milling unit, and a grinder in a machine shop may
each be pulled from their respective work centers and configured into
a cell to produce several batches of related parts. This arrangement
may be either temporary (i.e., to serve a particular customer order) or
permanent. A permanent work cell is also referred to as a focused work
center (Heizer and Render [82]).

A cellular layout is generally preferred to a product layout if the scale
of production, either in volume or number of operations, is not very large.
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Cells require less floor space, less initial investment in machinery and
equipment, and less raw material and finished goods inventory than do
product layouts. The advantages of cellular over process layouts include
faster throughput, reduced setup time, less work-in-process inventory,
reduced direct labor costs, and increased utilization of machinery and
equipment (Stevenson [148]). Simulation studies (e.g., Sassani [140])
have supported these assertions by finding that a cellular layout works
most efficiently if the products for each cell are well defined and the cells
are isolated. The smoothness of production deteriorates as the product
mix and product design become more varied. However, efficiency can be
regained while serving this broadening set of requirements by developing
additional cells to handle them.

For cellular manufacturing to be effective, there must be families of
items that have similar processing characteristics. Moreover, these items
must be identified. The process that organizes the products is known
as group technology, and commonly involves identifying items that have
similarities in design characteristics (size, shape, and function) and then
classifying them into part families via some coding scheme. Parts of a
given family are then processed in a specific cell. An alternative approach
to grouping families of parts is to differentiate based on manufacturing
characteristics (type and sequence of operations required); this approach
is commonly referred to as production flow analysis (Burbidge [26, 27]).
However, some have noted the difficulties in implementing this method
for a facility with a large number of parts (Nahmias [124]). A more
thorough discussion of coding systems and how they relate to group
technology can be found in Groover and Zimmers [72].

1.2 Robotic Cell Flowshops

This book focuses on sequencing and scheduling for a particular type
of automated material handling system in cellular manufacturing: ro-
botic cells. A robotic cell consists of an input device; a series of process-
ing stages, each of which performs a different operation on each part in
a fixed sequence; an output device; and one or more robots that trans-
port the parts within the cell. Each stage has one or more machines
that perform the processing for that stage. The default configuration
of a robotic cell (Figure 1.1) is to have one robot that can hold only



4 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

one part, one machine per stage, and no buffers for intermediate storage
between the stages within the cell; variations to this configuration (e.g.,
Figure 1.2) are presented throughout the book.1 Because each machine
can hold only one part, a robotic cell is, in essence, a flowshop with block-
ing (Pinedo [132]) that has common servers that perform all transfers
of materials between processing stations. In robotic cells, each function

Figure 1.1. A Generic Robot-Centered Cell.

in the process is performed by a machine; there are no human-tended
workstations. Because the material handling – movement between ma-
chines and loading/unloading of machines – is performed by robots, a
variety of remote center compliance devices are available to ensure that
the parts can be reliably loaded onto the machines in the correct orienta-
tion (see Groover et al. [71] for a description of these devices). Once this
is accomplished, robots are advantageous for material handling because
they can operate with speed and precision consistently for long periods.
In addition, in some environments they are preferred because their use
prevents contamination; examples include pharmaceutical compounding

1Parallel machines (Chapter 5), dual-gripper robots (Chapter 4), multiple robots (Chapter 8),

and internal buffers (Chapter 4).
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Figure 1.2. A Robotic Cell with Parallel Machines and Multiple Robots with Dual

Grippers.

and semiconductor manufacturing. Other manufacturing environments
are inhospitable to humans, so robots are a natural alternative: some
semiconductor processing is done in a vacuum; welding and iron-working
applications may be in high-temperature environments; and painting or
applying other types of coatings may emit noxious fumes.

The functions performed by the machines obviously depend on the use
of the cell. In semiconductor photolithography (Kumar et al. [102]), the
operations include bake, chill, coat, expose, develop, and scan. A cell de-
signed for machining 23 different components of a valve performs milling,
drilling, roughing and finishing bores, chamfering, reaming, spot-facing,
deburring, and threading (Bolz [16]). A cell that processes large in-
vestment castings may perform operations such as slurry dip and sand
coating, and one that produces agricultural equipment uses chuckers,
shapers, and shavers (Kafrissen and Stephans [88]). IBM’s Poughkeep-
sie, NY, plant has used a robotic cell to write and package diskettes
with operations including diskette writing, envelope printing, and la-
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Figure 1.3. A Three-Machine Overhead Track-Based Robot Cell.

bel printing (Giacobbe [66]). One example of a cell designed for au-
tomated chemical analysis includes a spectrophotometer, a continuous
dilution apparatus, an electronic balance, a magnetic hotplate-stirrer,
and a pump for dispensing solvents (Dunkerley and Adams [53]).

Different types of robots are used in industrial applications. In a
common implementation for semiconductor manufacturing, the robot
has a fixed base and an arm that rotates, as in Figure 1.1. Such a cell is
commonly called a robot-centered cell. In another configuration, often
used in electroplating printed circuit boards, the robot is attached by
a hoist to an overhead track, and the entire robot moves linearly along
this track (see Figure 1.3). A more general case combines these two:
the robot’s arm rotates on its base, and the robot itself moves linearly
along a track (see Figure 1.4). This configuration is called a mobile
robot cell. Obviously, such a system allows the robot to cover a larger
area. The cell layouts themselves fall into two basic categories. The
first, demonstrated in Figures 1.1, 1.3, and 1.4, can be either linear or
semicircular. A significant characteristic of this category is that in order
to travel from the output buffer to the input buffer, the robot must pass
by each of the machines. Compare this to the cell in Figure 1.5(a). In
this cell, the robot may travel from the output buffer to the input buffer
directly. In addition, it may travel from the output buffer to machine M1
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Figure 1.4. A Cell with More General Robot Capabilities: The Robot’s Arm Rotates

on Its Base, and the Robot Itself Moves Linearly Along a Track.

by traveling either clockwise (passing machines M2 and M3) or counter-
clockwise (passing the input buffer). This flexibility significantly impacts
the sequence of robot moves which results in optimal productivity from
the cell. A circular cell in which the input buffer and output buffer share
the same location is shown in Figure 1.5(b).

1.3 Throughput Optimization
Standardization of the processing requirements of the parts or prod-

ucts together with the volume required creates an ideal environment for
repetitive production. In their typical use in practice, robotic cells are
employed to produce significant volumes of either a single part or a few
closely related parts. Given the processing requirements, the objective
that most interests manufacturers is the maximization of cell productiv-
ity. A natural and widely used measure of productivity is throughput –
the number of finished parts produced per unit of time.

Given the goal of maximizing the throughput of the cell, two remarks
need immediate mention. One, small improvements in throughput can
improve revenues significantly for one or both of the following reasons:
the significant volumes produced by the cell and the high market value
of the products. A case in point is semiconductor wafer fabrication,
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M3

M2

M1

tuptuo tupni

M3

M2

M1

tuptuo/tupni

)a( )b(

Figure 1.5. (a) A Three-Machine Robot Cell, (b) A Three-Machine Robot Cell with

Input and Output Together.

where both of these factors contribute to focus attention on throughput
maximization. For example, Geismar et al. [64] show how an 8% increase
in throughput can increase a semiconductor manufacturer’s revenues by
almost $3 million per week. Second, a number of cell characteristics
impact its throughput. These include processing speeds of the machines
and robots, cell layout, and the sequence of robot actions. For a specific
manufacturing environment, an a priori judgment about the relative
impact of these characteristics is often difficult to ascertain.

Over the years, with an increase in the size and the processing com-
plexity of robotic cells, optimization of the schedule of robot moves has
emerged as a dominant tool for achieving throughput maximization. In
practice, many cell parameters are fixed by physical constraints and can-
not be altered. There is generally little flexibility in the layout of the
cell, and changes to it would have relatively less influence on through-
put. In most applications, processing requirements are strict; reducing
the processing time at a stage would change the nature of that opera-
tion and its result. The processing speeds at the different stages of the
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cell are constrained by the latest technology available. Although various
robots with different speeds are available, once a robot is purchased, it
comes with a specified processing speed that cannot be changed.

Alternatively, the best schedule of robot moves can be chosen rela-
tively inexpensively. This requires no changes to the layout, the ma-
chines, or the robots. Many of the results can be proven analytically or
demonstrated through simulation, rather than trying different schedules
in production. Consequently, implementing a schedule change requires
little nonproductive time for the cell. Furthermore, these tactics can be
used to determine the benefits that can be realized by adding advanced
hardware, such as parallel machines or dual-gripper robots, as shown in
Chapters 4 and 5.

1.4 Historical Overview

Because of the nature of processing requirements, the theoretical un-
derpinnings of throughput optimization in robotic cells are in the area of
flowshop scheduling. During the past 50 years, a huge body of literature
has analyzed a variety of flowshop operations. A number of books and
surveys (see e.g., Brucker [25], Lawler et al. [104], Pinedo [132]) discuss
developments in this area; we, therefore, mention just a few works that
are relevant to our discussion. A classical result for optimal job schedul-
ing in a two-machine flowshop is derived by Johnson [86]. Wagner [155]
formulates an integer program for an m-machine flowshop. Garey et
al. [58] establish the NP-hardness of the m-machine flowshop problem
for m ≥ 3. Abadi et al. [1], Levner [110], and Pinedo [131] study flow-
shops with blocking. Papadimitriou and Kannelakis [127], Reddi and
Ramamoorthy [135], Röck [136], Sahni and Cho [139], and Wismer [157]
are early works on no-wait flowshops.

In one of the early papers on robotic cell sequencing, Bedini et al. [11]
develop heuristic procedures for optimizing the working cycle of an in-
dustrial robot equipped with two independent arms. Baumann et al. [10]
derive models to determine robot and machine utilization. Maimon and
Nof [118] and Nof and Hannah [126] study cells with multiple robots.
Devedzic [48] proposes a knowledge-based system to control the robot.

Wilhelm [156] classifies the computational complexity of a number
of scheduling problems in assembly cells. In a later study, Hall and
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Figure 1.6. A Dual-Gripper Overhead-Track Cell.

Sriskandarajah [77] survey scheduling problems with blocking and no-
wait conditions and classify their computational complexities.

Early studies use simulation to compute cycle times. Kondoleon [100]
uses computer modeling to simulate robot motions in order to analyze
the effects of configurations on the cycle time. Claybourne [35] performs
a simulation to study the effects that sequencing robot actions has on
throughput. Asfahl [8] simulates the actions of a robotic cell with three
machines to demonstrate the transition from cold start to steady-state
cyclic operations. B�lażewicz et al. [15] develop an analytical method
to derive cycle time expressions for robotic cells. Dixon and Hill [49]
compute cycle times by using a database language to simulate robotic
cells.

Sethi et al. [142] set the agenda for most subsequent studies on cells.
They provide analytical solutions to the problem of sequencing robot
moves for two-machine and three-machine cells that produce identical
parts, and for two-machine cells that produce different parts. Logen-
dran and Sriskandarajah [116] generalize this work to cells with different
types of robots and with more general robot travel times. Brauner and
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Finke [18, 20, 21, 22] perform several studies that compare 1-unit cycles
with multi-unit cycles (cycles are defined in Chapter 3). Crama and
van de Klundert [40] develop a polynomial-time algorithm for finding
an optimal 1-unit cycle in an additive travel-time cell (travel times are
defined in Section 2.2.2). Dawande et al. [47] do the same for constant-
travel-time cells. Brauner et al. [24] prove that finding an optimal robot
move sequence in a robotic cell with general travel times is NP-hard.
Hall et al. [75, 76] and Sriskandarajah et al. [147] study part schedul-
ing problems and their complexities for cells that process parts of dif-
ferent types. Geismar et al. address robotic cells with parallel ma-
chines [59] and with multiple robots [64]. There have also been several
studies [50, 51, 61, 143, 146, 149, 154] on robotic cells with dual-gripper
robots (defined in Chapter 4; see Figure 1.6).

Research on cells with no-wait or interval pickup has been performed
in parallel with the above-mentioned studies on free-pickup cells (see
Section 2.2.1 for information on pickup criteria). Levner et al. [111]
develop an algorithm for an optimal 1-unit cycle in a no-wait cell that
produces identical parts. Agnetis [2] finds optimal part schedules for
no-wait cells with two or three machines. Agnetis and Pacciarelli [3]
study the complexity of the part scheduling problem for three-machine
cells. Che et al. [31] present a polynomial-time algorithm for an optimal
2-unit cycle in no-wait cells that produce identical parts or two part-
types. Kats and Levner [97] address no-wait cells with multiple robots.

An early work on interval robotic cells is that by Lei and Wang [108],
who use a branch-and-bound search process. Chen et al. [33] use branch-
and-bound, linear programming, and bi-valued graphs to find optimal
1-unit cycles, and Che et al. [30] employ these techniques to find optimal
multi-unit cycles. Kats et al. [98] solve this problem using a method
similar to that used by Levner et al. [111] for no-wait cells. Complexity
results for such a system are presented in Crama [38], Crama and van
de Klundert [41], and van de Klundert [153].

1.5 Applications

This section presents several examples of how robotic cells are used
in the industry, discusses their capabilities, and addresses issues in their
implementation.
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Robotic cells often perform the general functions of arc welding, mate-
rial handling, and machining [161]. In addition to semiconductor manu-
facturing, electroplating, and textiles, they are used in many different in-
dustries, including injection molding of battery components [173], glass
manufacturing and processing [162], building products [165], cosmet-
ics [166], lawn tractors [167], and fiber-optics [174]. In the medical field,
robotic cells are used to produce components for magnetic resonance
imaging systems [163], for automated pharmacy compounding [168], to
process nucleic acids, and to generate compounds for tests in relevant
biological screens (Rudge [138]). Cells for grinding, polishing, and buff-
ing handle many products, including rotors, stainless steel elbows for
the chemical and the food industries, sink levers and faucets, propane
tanks, flatware, and automotive products [171].

The Rolls Royce aircraft engine plant in Derby, England, uses a se-
quence of seven robotic cells to machine jet engine turbine blades. These
turbine blades must be produced to extremely high quality standards,
so the cells support advanced casting techniques and blade materials.
The automated line, which uses creep-feed grinding rather than milling
or broaching, has increased throughput from ten per hour to eighty per
hour. This improvement has allowed Rolls Royce to change from machin-
ing batches of blades to producing individual blades, thereby improving
manufacturing flexibility and reducing lead time and inventory (Bolz
[16]).

The Sperry Vickers plant in Omaha, Nebraska, uses two robotic cells
to machine 28 varieties of hydraulic pump cover castings made of duc-
tile cast iron. Each cell has a Unimate robot that can handle up to
112.5 kg and has five axes of freedom. After the machining operations
(milling, rough and finish boring, drilling, and facing), the castings are
washed and then checked for quality by an automated gage. The robot
then places a casting onto an output conveyor or the reject conveyor,
depending on the result of the gaging operation (Maiette [117]).

The Flexible Automated Manufacturing Technology Evaluation Cen-
ter at the Illinois Institute of Technology designed a cell that uses a laser
at one stage. This cell produces process control valves that are used to
regulate the flow or pressure of a variety of gases and liquids. Plugs are
machined from different materials (e.g., steel, aluminum, brass), depend-
ing on the fluid to be regulated. The operations in the cell are performed
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by a CNC lathe, a hardening station at which the laser is used for heat
treatment or cladding, an inspection station, and a cleaning station that
uses slotted-paper polishing wheels. A completed plug is produced every
eight minutes (Sciaky [141]).

Miller and Walker [122] describe several real-world implementations of
robotic cells. One example is that of a robot-centered cell with four ma-
chines – an NC lathe, a surface grinding machine, and two NC drilling
machines – serviced by a single-gripper robot. Another example de-
scribes the use of a dual-gripper robot for producing a family of dupli-
cator fuser rollers at Xerox Corporation.

In modern manufacturing, a typical robot may move along six axes
(including linear translation) and have a three-fingered pneumatic grip-
per [164]. Some have angular and parallel motion grippers that include
miniature, low-profile, sealed, long jaw travel, and 180 degree jaw mo-
tion grippers [160]. Robots that can calculate the optimal path between
two locations or that can quickly change their tools are common [161].
Robotic vision-guided systems have grown in the market, especially for
assembly cells [169].

The economic benefits of robotic cells extend beyond increasing the
efficiency of manufacturing. One company states that its 19 cells will
achieve their payoff mark in only 2 years [173]. Another notes that
implementing robotic cells has consolidated several processes, which has
reduced floor space requirements [165]. Such successes have helped the
robotic cell market grow at a healthy rate for the past few years [161,
170].

Companies typically use simulators to study their robotic cells because
factories are often too large, too complex, and too costly to be optimized
any other way. In addition, there are currently no analytical models that
accurately depict cells with general travel times, stochastic processing
times, or random machine failures. Some simulators claim to model au-
tomated systems with better than 98% accuracy (Fowler et al. [55]).
Among the topics studied via simulators are the influence of adding a
parallel machine to a bottleneck process, the effects of equipment failures
and maintenance on performance, and the disruption caused by intro-
ducing high-priority jobs into steady-state production lines (Duenyas et
al. [52]). Simulators are also used for sensitivity analysis to determine if
equipment purchases are required to meet new production goals (Fowler
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et al. [55]). Because simulators can predict and verify throughput before
a cell is assembled, they can be used to improve the cell’s layout during
the planning stage. This capability can also influence product design by
leading to changes that make the product’s fabrication more efficient in
an existing cell [172].

For cells with stochastic data, some companies implement feedback
control by using dispatching rules that determine the robot’s next move
based on the current state of the cell. One such rule is called Longest
Waiting Pair (see Chapter 8). To implement this scheme, the control
computer tracks each part whose processing has completed on its current
machine and is waiting to be moved. It also tracks each empty machine
that is waiting for the next part to process. Each part’s waiting time is
summed with the waiting time of the machine to which it travels next.
For the pair with the largest combined waiting time, the robot’s next
move is to carry the part to its corresponding machine (Kumar et al.
[102]).

When designing a cell and its operating parameters, the main ob-
jective is the maximization of the cell’s throughput. Intermediate goals
toward reaching this objective are high machine utilization and a smooth
distribution of work over the entire system. Management must balance
the pursuit of these goals with its desire to reduce work-in-process in-
ventory levels. As the system operates, bottleneck identification and
knowing which lots might be late become important objectives (Duenyas
et al. [52]). General guidelines for applying operations research tech-
niques to planning, designing, and operating robotic cells can be found
in Hall [74].



Chapter 2

A CLASSIFICATION SCHEME
FOR ROBOTIC CELLS AND NOTATION

In this chapter, we discuss a classification scheme for sequencing and
scheduling problems in robotic cells and provide notation. As in the clas-
sification scheme for classical scheduling problems (Graham et al. [69]),
we distinguish problems based on three characteristics: machine envi-
ronment (α), processing characteristics (β), and objective function (γ).
A problem is then represented by the form α|β|γ. Following the discus-
sion of these characteristics, we detail the classification in Section 2.4
and provide a pictorial representation in Figure 2.2. Finally, we discuss
relevant cell data whose values influence a cell’s performance and define
some basic notation for subsequent use.

2.1 Machine Environment
We start by describing characteristics that are represented in the first

field of the classification scheme.

2.1.1 Number of Machines
If each processing stage has only one machine, the robotic cell is called

a simple robotic cell or a robotic flowshop. Such a cell contrasts with a
robotic cell with parallel machines, in which at least one processing stage
has two or more identical machines. Cells with parallel machines are
discussed in Chapter 5.

A typical simple robotic cell contains m processing machines: M1, M2,
. . . , Mm. Let M = {1, 2, . . . ,m} be the set of indices of these machines.
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Figure 2.1. A Three-Machine Simple Robotic Cell.

The robot obtains a part from the input device (I, also denoted as M0),
carries the part to the first machine (M1), and loads the part. After
M1 completes its processing on the part, the robot unloads the part
from M1 and transports it to M2, on which it loads the part. This
pattern continues for machines M3,M4, . . . ,Mm. After the last machine
Mm has completed its processing on the part, the robot unloads the
part and carries it to the output device (O, also denoted as Mm+1). In
some implementations, the input device and the output device are at
the same location, and this unit is called a load lock. A three-machine
simple robotic cell is depicted in Figure 2.1.

This description should not be misconstrued as implying that the
robot remains with each part throughout its processing by each machine.
Often, after loading a part onto a machine, the robot moves to another
machine or to the input device to collect another part to transport to its
next destination. Determining which sequence of such moves maximizes
the throughput of the cell has been the focus of the majority of research
on robotic cell sequencing and scheduling.

2.1.2 Number of Robots
Manufacturers employ additional robots in a cell in order to increase

throughput by increasing the material handling capacity. Cells with one
(resp., more than one) robot are called single-robot (resp., multiple-robot)
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cells. Most studies in the literature analyze single-robot cells. Multiple-
robot cells are discussed in Chapter 8.

2.1.3 Types of Robots
A single-gripper robot can hold only one part at a time. In contrast,

a dual-gripper robot can hold two parts simultaneously. In a typical
use of this capability, the robot holds one part while the other gripper
is empty; the empty gripper unloads a machine, the robot repositions
the second gripper, and it loads that machine. Dual-gripper robots are
discussed in Chapter 4.

In a single-gripper simple robotic cell, the robot cannot unload a part
from machine Mi, i = 0, ...,m−1, unless the next machine Mi+1 is empty.
This condition is commonly referred to as a blocking condition.

2.1.4 Cell Layout
The layout refers to the arrangement of machines within the cell.

Most robotic cell models assume one of two layouts: linear or circular.
A semicircular arrangement of machines has also been referred to in the
literature. However, all our results for a linear layout (Figure 1.3) remain
valid for a semicircular layout (Figure 1.1). Unless specified otherwise,
we assume a linear/semicircular layout. Cells employing a circular layout
(Figure 1.5) are discussed in Chapters 4 and 7.

2.2 Processing Characteristics
Four different processing characteristics are specified in the second

field. We describe three in this section. The fourth, called the production
strategy, is detailed in Section 2.4.

2.2.1 Pickup Criterion
Most of the discussion in this book concerns robotic cells with no

buffers for intermediate storage. For such cells, all parts must be either
in the input device, on one of the machines, in the output device, or
with the robot.

Robotic cells can be partitioned into three types − free pickup, no-
wait, and interval − based on the pickup criterion. For all three types, a
part that has completed processing on Mi cannot be loaded onto Mi+1
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for its next processing unless Mi+1 is unoccupied, i = 0, . . . ,m. In free-
pickup cells, this is the only pickup restriction; there is no limit on the
amount of time a part that has completed processing on a machine can
remain on that machine.

For the more restrictive no-wait cells, a part must be removed from
machine Mi, i ∈ M , and transferred to machine Mi+1 as soon as Mi com-
pletes processing that part. Such conditions are commonly seen in steel
manufacturing or plastic molding, where the raw material must maintain
a certain temperature, or in food canning to ensure freshness (Hall and
Sriskandarajah [77]). Results for no-wait cells are discussed in Chapter 9.

In interval robotic cells, each stage has a specific interval of time –
a processing time window – for which a part can be processed at that
stage. Thus, if [ai, bi] is the processing time window at stage i, i ∈ M ,
then a part must be processed for ai time units on stage i, and must be
transferred to stage (i+1) within (bi−ai) time units after its completion
of processing on stage i. This is applicable, for example, for the hoist
scheduling problem on an electroplating line (Che et al. [30], Chen et al.
[33], Lei and Wang [108]): printed circuit boards are placed in a series
of tanks with different solvents. Each tank has a specific interval of time
for which a card can remain immersed. Interval cells are discussed in
Chapter 9.

Unless specified otherwise, the cells we discuss in the chapters that
follow have the free-pickup criterion.

2.2.2 Travel-Time Metric
The robot’s travel time between machines greatly influences a cell’s

performance. One common model often applies when the machines are
arranged in numeric order in a line (Figure 1.3) or semicircle (Figure 1.1).
The robot’s travel time between adjacent machines Mi−1 and Mi, de-
noted d(Mi−1,Mi), equals δ, for i = 1, . . . ,m + 1, and is additive. That
is, the travel time between any two machines Mi,Mj , 0 ≤ i, j ≤ m + 1
is d(Mi,Mj) = |i − j|δ. This scheme is easily generalized to the case
of unequal travel times between adjacent machines (Brauner and Finke
[20]): d(Mi−1,Mi) = δi, i = 1, . . . ,m + 1, and d(Mi,Mj) =

∑j
k=i+1 δk,

for i < j. If d(Mi−1,Mi) = δ, i = 1, . . . ,m + 1, then we call the travel-
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time metric regular additive. If d(Mi−1,Mi) = δi, i = 1, . . . ,m + 1, then
the cell has general additive travel times.

There are also additive travel-time cells in which the machines are
arranged in a circle so that I and O are adjacent or in the same loca-
tion (Drobouchevitch et al. [50], Geismar et al. [61], Sethi et al. [143],
Sriskandarajah et al. [146]). In these cells, the robot may travel in ei-
ther direction to move from one machine to another; e.g., to move from
M1 to Mm−1, it may be faster to go via I, O, and Mm, than to go via
M2,M3, . . . ,Mm−2. For circular cells with regular additive travel times,
d(Mi,Mj) = min{|i− j|δ, (m+2−|i− j|)δ}. For general additive travel-
time cells, d(Mi,Mj) = min{

∑j
k=i+1 δk,

∑i
k=1 δk + δ0,m+1 +

∑m+1
k=j+1 δk}

for i < j. Most studies assume that the travel times are symmetric,
i.e., d(Mi,Mj) = d(Mj ,Mi), 0 ≤ i, j ≤ m + 1, and that the travel time
between any two machines does not depend on whether or not the robot
is carrying a part.

To make this model better represent reality, it can be enhanced to
account for the robot’s acceleration and deceleration (Logendran and
Sriskandarajah [116]). The travel times between adjacent machines do
not change. However, the travel time between nonadjacent machines is
reduced. For each intervening machine, the robot is assumed to save η

units of time. Therefore, for 0 ≤ i, j ≤ m + 1, if d(Mi−1,Mi) = δi, then

d(Mi,Mj) =
max(i,j)∑

k=min(i,j)+1

δk − (|i − j| − 1)η.

We use this model in our discussions in Chapter 6.

For certain cells, additive travel times are not appropriate. Dawande
et al. [47] discuss a type of cell for which the robot travel time between
any pair of machines is a constant δ, i.e., d(Mi,Mj) = δ, 0 ≤ i, j ≤ m+1,
i �= j. This arises because these cells are compact and the robots move
with varying acceleration and deceleration between pairs of machines.

The most general model, one that can represent all the travel-time
metrics typically encountered in practice, assigns a value δij for the
robot travel time between machines Mi and Mj , 0 ≤ i, j ≤ m+1. These
travel times are, in general, neither additive nor constant. Brauner et
al. [24] address this problem by making three assumptions that conform
to basic properties of Euclidean space:
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1. The travel time from a machine to itself is zero, that is, δii = 0,∀i.

2. The travel times satisfy the triangle inequality, that is, δij + δjk ≥
δik,∀i, j, k.

3. The travel times are symmetric, that is, δij = δji,∀i, j.

A robotic cell that satisfies Assumptions 1 and 2 is called a Euclidean
robotic cell, and one that satisfies Assumptions 1, 2, and 3 is called
a Euclidean symmetric robotic cell. As we shall discuss in Chapter 3,
the robot move sequencing problem for either case is strongly NP-hard
(Brauner et al. [24]). This is also why most studies approximate reality
with additive or constant travel-time models, depending on which of the
two is a better fit.

To summarize, three different robot travel-time metrics have been
addressed in the literature: additive, constant, and Euclidean. Most
studies assume one of these. Therefore, many results in the field have
been proven only for one travel-time metric rather than for all three.

2.2.3 Number of Part-Types
A cell producing identical parts is referred to as a single-part-type

cell. In contrast, a multiple-part-type cell processes lots that contain
different types of parts. Generally, these different part types require dif-
ferent processing times on a given machine. Multiple-part-type cells are
discussed in Chapters 6 and 7. Throughout the rest of the book, un-
less specified otherwise, the cell under consideration processes identical
parts.

2.3 Objective Function
From an optimization aspect, the objective that is predominantly ad-

dressed in the literature is that of maximizing the throughput − the
long-term average number of completed parts placed into the output
buffer per unit time. This will be our objective throughout the book. A
precise definition of throughput is provided in Chapter 3.

2.4 An α|β|γ Classification for Robotic Cells
Figure 2.2 is a pictorial representation of the classification discussed

in the preceding text. A problem is represented using the form α|β|γ,
where
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(a) α = RF g,l
m,r,b̄

(m1, ...,mm). Here, RF stands for “Robotic Flow-
shop,” m is the number of processing stages, and the vector (m1,

m2, ...,mm) indicates the number of identical machines at each stage.
When this vector is not specified, mi = 1, i = 1, ...,m, and the cell
is a simple cell. The second subscript r denotes the number of ro-
bots; when not specified, r = 1. For cells with output buffers at the
various stages of the cell, the vector b̄ = (b1, ..., bm) denotes the sizes
of the buffers. At stage i, the size of the output buffer is denoted
by bi, i = 1, ...,m; this notation is omitted for cells without buffers.
The first superscript g denotes the type of robot used. For example,
g = 1 (resp., g = 2) denotes a single-gripper (resp., dual-gripper)
cell. If g is not specified, then g = 1. The second superscript l in-
dicates the layout of the cell; a linear/semicircular (resp., circular)
layout is indicated by � (resp., ◦). Most of our discussion is for lin-
ear or semicircular layouts; unless specified otherwise, such a layout
is assumed, and the notation is omitted.

(b) β =(pickup, travel-metric, part-type, prod-strategy), where

pickup ∈ {free, no-wait, interval} specifies the pickup criterion.

travel-metric ∈ {A, C, E} specifies the travel-time metric, where
A, C, and E denote the additive, the constant, and the Euclidean
travel-time metric, respectively.

If part-type is not specified, the cell produces a single part-type.
Otherwise, part-type = MP denotes a cell producing multiple
part-types.

prod-strategy ∈ {cyclic-k, LCM, all, CRM} denotes the spe-
cific production strategy employed. The detailed descriptions
of these strategies appear in later chapters, so we limit our de-
scription here and refer the reader to the corresponding chapter.

(i) In a cell producing either a single part-type or multiple part-
types, cyclic-k refers to a cyclic production strategy wherein
exactly k units are produced per cycle (Chapter 3). When
the integer k is not specified, the production strategy in-
cludes all k-unit cycles, k ≥ 1. LCM cycles form a subclass
of cyclic solutions, and are discussed in Chapters 5 and 8.
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(ii) In a cell producing either a single part-type or multiple part-
types, all refers to a production environment where all pro-
duction strategies (i.e., cyclic as well as noncyclic) are con-
sidered (Chapters 3 and 10).

(iii) In robotic cells producing multiple part-types (Chapters 6
and 7), CRM refers to the concatenated robot-move sequence
strategy.

(c) γ = μ denotes the objective function of maximizing the through-
put. Although this is the only objective function addressed in our
discussion, we use a separate field to allow for future work involving
different objective functions.

We now illustrate our classification with a few examples.

1. RF4|(free,A,cyclic-1)|μ represents a four-machine simple robotic cell
with one single-gripper robot, a free-pickup criterion, and additive
travel-time metric. It produces a single part-type and operates a
cyclic production strategy wherein one unit is produced per cycle.
The objective function is that of maximizing the throughput.

2. RF5(1, 4, 2, 3, 2)|(no-wait,E,cyclic-2)|μ refers to the problem of max-
imizing throughput for a five-stage robotic cell with parallel ma-
chines that has one, four, two, three, and two machines, respectively,
in stages 1, 2, 3, 4, and 5. The cell produces a single part-type, has
one single-gripper robot, employs a no-wait pickup criterion and a
Euclidean travel-time metric, and produces two units per cycle.

3. RF 2
m,3|(interval,C,MP,CRM)|μ considers the problem of through-

put maximization in an m-machine simple robotic cell with three
dual-gripper robots, an interval pickup criterion, constant travel-
time metric, and multiple-part-type production using a CRM pro-
duction strategy.

4. RF 2,◦
m,1̄

|(free,A,cyclic-k)|μ is the problem of maximizing the through-
put over all cyclic schedules in an m-machine dual-gripper cell with
an output buffer of size one at each machine. The travel-time metric
is additive, and the layout of the cell is circular.

In the chapters that follow, we use this classification to specify the prob-
lem under consideration.
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Robotic Cells

Simple Robotic Cells Robotic Cells with Parallel Machines

Single-Robot Cells Multiple-Robot Cells

Single-Gripper Robot Dual-Gripper Robot

Free-Pickup No-Wait Interval

A C E A C E A C E

Single Part-Type Multiple Part-Type

Production Strategy
∈ {cyclic-k, LCM, all}

Production Strategy
∈ {cyclic-k, CRM, all}

Throughput Throughput

α

β

γ

A, C, E denote Additive, Constant, Euclidean Travel Time, respectively

Figure 2.2. A Classification of Robotic Cells
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2.5 Cell Data
In addition to the robot’s travel-time metric, the processing times at

the various stages and the times required for loading and unloading a
machine influence the cell’s throughput. We now discuss these charac-
teristics and the notation for representing the actions of the robot and
the states of the cell. First, we list the basic assumptions throughout
most studies:

All data and events are deterministic.

All processing is nonpreemptive.

Parts to be processed are always available at the cell’s input device.

There is always space for completed parts at the output device.

All data are rational.

2.5.1 Processing Times
Since each of the m stages performs a different function, each, in

general, has a different processing time for a given part. For cells with
free pickup or no-wait pickup, the processing time of a machine in stage j

is denoted by pj , j ∈ M . If a cell processes k different types of parts, the
processing time of part i at stage j is denoted by pij , i = 1, . . . , k; j ∈ M .
In interval robotic cells, the processing time of machine Mj is specified
by a lower bound lj and an upper bound uj ≥ lj . For example, the time
that a printed circuit board spends in tank j must be in the interval
[lj , uj ]. If multiple part-types are processed in an interval robotic cell,
the processing interval for part-type i is denoted by [lij , uij ].

2.5.2 Loading and Unloading Times
Another factor that influences the processing duration for a part is the

time required for loading and unloading at each machine. For uniformity,
picking a part from I is referred to as unloading I, and dropping a part
at O is referred to as loading O. Typically, models assume that the
loading and unloading times are equal (ε) for all machines. This will be
our assumption as well for most of the discussion. More sophisticated
models have different values for loading and unloading at each machine:
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the loading (resp., unloading) time for Mi is ε2i (resp., ε2i+1), i = 1, ...,m;
the unloading (resp., loading) time at I (resp., O) is ε1 (resp., ε2(m+1)).
We use this more general notation in Chapter 6.

2.5.3 Notations for Cell States and Robot Actions
By the state of the robotic cell at any given instant of time, we mean a

sufficient description of the cell required for the purpose of our analysis.
To keep the notation simple, our discussion in this section is limited to
simple robotic cells with the free-pickup criterion; appropriate enhance-
ments can be made for other classes of cells.

Ideally, a precise mathematical description of the state of the cell
would include the following.

The occupancy state of each machine. That is, whether a machine
contains a part or it is empty.

If a machine contains a part, then the time remaining on its current
processing.

The location of the robot.

The occupancy state of the robot, that is, whether the robot arm has
a part or not.

Before we formalize the state space, note that since we are interested
in maximizing the throughput of the cell, it is not necessary to consider
“wasteful” robot actions such as unnecessary waiting at a location or
moving to a location without performing at least one of the loading or
unloading operations. Also, since this is a deterministic problem, it is
sufficient to define decisions regarding the robot’s moves only at those
epochs when the robot has just finished loading or unloading a part at
a machine. It follows that it is sufficient to consider the state when the
robot’s position is at these epochs.1

Our focus in this book is on a steady-state analysis of a certain class
of solutions referred to as cyclic solutions (discussed in Chapter 3). Typ-

1In the stochastic setting, say when the processing times are random variables, a throughput

maximizing operation may require the robot arm to change its traversal path while the robot

is in transition, at a time when some new information becomes available. To allow for this,

a continuous state space and continuous decision making over time are required.
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ically, this analysis does not require a detailed state description since the
definition of cyclic solutions involves a requirement that completes the
missing information. In view of this, all that is needed is a specifica-
tion of each machine in terms of whether it is occupied or not. Such a
simplified description can be presented as an (m + 1)-dimensional vec-
tor (e1, . . . , em+1) (Sethi et al. [142]). Each of the first m dimensions
corresponds to a machine: ei = ∅ if Mi is unoccupied; ei = Ω if Mi

is occupied, i = 1, . . . ,m. The last dimension represents the robot;
em+1 = M−

i indicates that the robot has just completed loading a part
onto Mi, i = 1, . . . ,m + 1, and em+1 = M+

i indicates that the robot has
just completed unloading a part from Mi, i = 0, . . . ,m.

Example 2.1 For m = 4, consider the state (∅,Ω, ∅,Ω,M−
2 ): M1 and

M3 are unoccupied, M2 and M4 are occupied, and the robot has just
completed loading M2. Suppose that the robot’s next actions were to
travel to I, unload a part from I, travel to M1, and load that part onto
M1. The states corresponding to these actions are (∅,Ω, ∅,Ω,M+

0 ) and
(Ω,Ω, ∅,Ω,M−

1 ). Note that listing the state (∅,Ω, ∅,Ω,M+
0 ) is superflu-

ous. To transition from (∅,Ω, ∅,Ω,M−
2 ) into (Ω,Ω, ∅,Ω,M−

1 ), the robot
must have first traveled to I.

In general, a series of robot actions can be completely represented
by a string of M−

i symbols. For example, M−
2 M−

4 M−
5 means that the

robot unloads a part from M1, travels to M2, and loads the part onto
M2. The robot next travels to M3, waits for M3 to finish processing (if
required), unloads a part from M3, travels to M4, and loads the part
onto M4. The robot waits at M4 while the part is being processed. The
robot then unloads the part from M4, carries it to M5, and loads M5.

A different notation has largely supplanted the M−
i notation in the

literature. This more popular notation is based on the concept of an
activity. Activity Ai consists of the following sequence of actions:

The robot unloads a part from Mi.

The robot travels from Mi to Mi+1.

The robot loads this part onto Mi+1.
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The sequence of actions discussed above (M−
2 M−

4 M−
5 ) would be repre-

sented by A1A3A4. Since a part must be processed on all m machines
and then placed into the output buffer, one instance of each of the m+1
activities A0, A1, . . . , Am, is required to produce a part.

It is easy to use the activity-based notation to represent the cell’s
current status. Let em+1 = Ai indicate that the robot has just completed
activity Ai; ei, i = 1, 2, . . . ,m, will have the same meaning as before.

Example 2.2 For m = 4, an example state is (Ω, ∅, ∅,Ω, A3): M2 and
M3 are unoccupied, M1 and M4 are occupied, and the robot has just
completed loading M4. From this point, let us now consider what hap-
pens if the robot executes activity sequence A1A2A4: the robot moves
to M1, waits (if required) for M1 to finish processing, unloads a part
from M1, travels to M2, and loads the part onto M2. At this instant,
the state of the cell is (∅,Ω, ∅,Ω, A1). The robot waits at M2 for the
entirety of the part’s processing. The robot then unloads the part from
M2, carries it to M3, and loads the part onto M3. The cell’s state is now
(∅, ∅,Ω,Ω, A2). The robot next travels to M4, waits (if required) for
M4 to finish processing, unloads a part from M4, travels to the output
buffer, and loads the part onto the output buffer, so the cell’s state is
(∅, ∅,Ω, ∅, A4).

For most of the discussion in this book, we will represent robot actions
by using the activity notation: Ai, i = 0, 1, ...,m. The discussion for
robotic cells producing multiple part-types, however, is easier with the
M−

i notation; we will use it in Chapters 4 and 6. The M−
i notation

is also convenient for describing moves in a dual-gripper robotic cell
(Chapter 4).

The simplified state description above omits information represent-
ing the extent of the processing completed on the parts on the various
machines. A more precise representation of a state is an (m + 1)-tuple
Γ = (s1, . . . , sm+1), where si ∈ {−1, ri}, i ∈ M . If si = −1, machine Mi

has no part on it; otherwise ri is the time remaining in the processing
of the current part on Mi. As before, sm+1 ∈ {Ai, i = 0, ...,m} denotes
that the robot has just completed activity Ai (i.e., loaded a part onto
machine Mi+1).
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Example 2.3 For m = 4, the state vector Γ = (5, 0,−1, p4, A3) indi-
cates that the part on M1 has five time units of processing remaining,
M2 has completed processing a part and that part still resides on M2,
and M3 is empty. The robot has unloaded a part from M3, carried it to
M4, and just completed loading it onto M4.

There is another important observation to be made here. Note that
even with integer data, the remaining processing times are in general
real numbers. However, since we need to consider the system state only
at the epochs mentioned above, the state description will be integral pro-
vided the initial state of the system is restricted to be in integer terms.
This restriction can be imposed without loss of generality since some
initial adjustments can be made at the beginning to bring the state to
integral terms, and the time taken to make these adjustments is of no
consequence in the context of the long-term average throughput crite-
rion. Thus, in any state description Γ = (s1, . . . , sm+1), si ∈ {−1, ri}
with ri ∈ {k ∈ Z : 0 ≤ k ≤ pi}, i ∈ M . We thus have a finite-state
dynamic system.



Chapter 3

CYCLIC PRODUCTION

Cyclic production in a robotic cell refers to the production of finished
parts by repeating a fixed sequence of robot moves. More precisely, for
an integer k ≥ 1, a typical operation of the cell consists of a sequence
of robot moves in which exactly k parts are taken from the input device
M0, exactly k parts are dropped at the output device Mm+1, and the cell
returns to its initial state, i.e., the state at the beginning of the sequence.
A particular sequence of robot moves is chosen and repeated until the
required production is complete. In practice, such cyclic schedules are
easy to implement and control, and are the primary way of specifying
the operation of a robotic cell.

In this chapter, we consider cyclic production of identical parts. We
start by proving the sufficiency of considering cyclic schedules. Sec-
tion 3.2 illustrates the computation of cycle time. In Section 3.3, we
examine the optimality of 1-unit cycles. In Section 3.4, we briefly visit
the issue of computing the makespan of a lot. Section 3.5 is devoted to
obtaining upper bounds on the ratio of the throughputs of an optimal
cyclic solution and an optimal 1-unit cycle.

3.1 Operating Policies and Dominance
of Cyclic Solutions

Under the assumption of rational (or, equivalently, integer) data, it is
easy to establish the sufficiency of considering the class of cyclic schedules
to maximize throughput over all schedules (Dawande et al. [45]). To do
so, we analyze the operations of a robotic cell as a sequence of states,
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rather than as a sequence of activities. For simplicity, we limit our
discussion here to simple robotic cells with free pickup; extensions to
other classes of cells are straightforward.

Recall our discussion of Section 2.5.3; in particular, the (i) sufficiency
of considering non-wasteful robot actions and (ii) sufficiency of consider-
ing the state of the cell only at the epochs defined by the following state
description: a state of the cell is an (m + 1)-tuple Γ = (s1, . . . , sm+1),
where si ∈ {−1, ri}, i ∈ M ; ri ∈ {k ∈ Z : 0 ≤ k ≤ pi}. If si = −1, ma-
chine Mi has no part on it; otherwise si = ri is the time remaining in the
processing of the current part on Mi. Finally, sm+1 ∈ {Ai, i = 0, ...,m}
denotes that the robot has just completed activity Ai (i.e., loaded a part
onto machine Mi+1). Let F denote the set of all feasible states.

Definition 3.1 An operating sequence for the cell is an infinite se-
quence of successive states resulting from feasible operations of the cell
starting from an initial state.

It is important to note that not every infinite sequence of states is
feasible. For example, the state Γ1 = (5, 0,−1, p4, A3) followed im-
mediately by Γ2 = (5, 0,−1, 0, A4) results in an infeasible sequence if
p4 + δ45 + 2ε > 0. The reason is as follows. Since Γ2 is the next state
of the cell after state Γ1, after the robot loads a part onto machine M4

(state Γ1), it waits at that machine for the entire duration while M4 is
processing the part. The robot then unloads the part from M4 and loads
it onto M5. However, since machine M1 is busy processing its part dur-
ing this time, at the instant the robot finishes loading machine M5 (state
Γ2), the processing time remaining on M1 is max{0, 5−p4−δ45−2ε} < 5.

Definition 3.2 A policy for the cell is a function d: F → F such that
there exists a state Γ ∈ F for which the infinite sequence T (d, Γ) ≡
{Γ, d(Γ), d2(Γ), ..., dn(Γ), ...} is an operating sequence.

Consider an optimal operating sequence, say Σ, and suppose that
there exists no policy that can generate it. Then, for some state Γ,
the action taken by Σ is different at two (or more) instances when the
cell is in state Γ. Without loss of generality, we can assume that state
Γ occurs in Σ infinitely often, for if the number of occurrences of a
state is finite, the segment of Σ up to the last instance of that state
can be deleted without affecting its long-term throughput. Let segment-
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throughput refer to the average number of finished parts produced per
unit of time for the segments of Σ between two successive occurrences
of Γ. If all of the segment-throughputs are equal, we can replace each
of these segments by any one segment and maintain the throughput of
Σ. Otherwise, replacing a segment having a smaller value of segment-
throughput with one having a larger value contradicts the optimality of
Σ. We thus have the following result.

Lemma 3.1 There exists a throughput maximizing operating sequence
that can be generated by a policy.

Given that the cell is currently in state Γ ∈ F , the functional im-
age d(Γ) of a policy d completely specifies the transition to the next
state, and thus completely defines the robot’s action. Together, a pol-
icy d and an initial state Γ0 ∈ F generate a unique operating sequence
{Γ0, d(Γ0), d2(Γ0), ..., dn(Γ0), ...}. We would like to emphasize that an
initial state is required to specify an operating sequence generated by
a policy. To illustrate, suppose F = {Γ1,Γ2, ...,Γ6} and d is defined
as follows: d(Γi) = Γi+1, i = 1, 2, 4, 5; d(Γ3) = Γ1, d(Γ6) = Γ4. If the
initial state is Γ1, we obtain the sequence {Γ1,Γ2,Γ3,Γ1,Γ2,Γ3, ...}. If
the initial state is Γ4, we obtain {Γ4,Γ5,Γ6,Γ4,Γ5,Γ6, ...}.

Let μ(d, Γ) be the throughput of the operating sequence T (d, Γ). The
maximum throughput, μ(d), obtainable from a policy d is then

max
Γ∈F

{μ(d, Γ): T (d, Γ) is an operating sequence}.

Note that the maximum exists since |F| is finite. The maximum through-
put of the cell is obtained by maximizing μ(d) over all policies d. Since a
policy is a function with domain and range on the finite set F , the total
number of distinct policies is at most |F||F|. Moreover, since an operat-
ing sequence is completely specified by a policy and an initial state, the
total number of operating sequences is at most |F|(|F|+1). The finiteness
of F implies that the infinite sequence of states resulting from any policy
is a repeating sequence. Consequently, the sequence of robot actions is
a repeating sequence. Every policy repeats a minimal sequence of robot
moves. The minimal sequence is a state-preserving sequence: the state
of the cell at the beginning is identical to the state of the cell at the
end of the sequence. The discussion above and Lemma 3.1 yield the
following result.
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Theorem 3.1 There exists a cyclic sequence of robot moves that maxi-
mizes long-term throughput of the robotic cell.

It is therefore sufficient to optimize over the class of cyclic sequences.
This result provides a sound justification for the widely used industry
practice of specifying the operation of a robotic cell via cyclic sequences.
Using the notation defined in the previous chapter, cyclic production
can be represented as a repeatable sequence of activities. For example,
(A0, A2, A4, A3, A1) is a sequence of activities that produces a part in a
four-machine cell. Such a sequence can be repeated in a cyclic fashion,
with each iteration producing a single part. To formalize, we define the
following terms:

Definition 3.3 A k-unit activity sequence is a sequence of robot moves
that loads and unloads each machine exactly k times.

To be feasible, an activity sequence must satisfy two criteria:

The robot cannot be instructed to load an occupied machine

The robot cannot be instructed to unload an unoccupied machine.

These concepts are operationalized as follows: During cyclic opera-
tions, for i = 1, . . . ,m−1, between any two occurrences of Ai there must
be exactly one Ai−1 and exactly one Ai+1. This condition implies that
between any two instances of A0 there is exactly one A1, and between
any two instances of Am there is exactly one Am−1. For instance, in a cell
with m = 3, the 2-unit activity sequence (A0, A1, A3, A1, A2, A0, A3, A2)
is infeasible because the second occurrence of A1 attempts to unload
machine M1 when it is empty. Note that all 1-unit activity sequences
are feasible.

Definition 3.4 A k-unit cycle is the performance of a feasible k-unit
activity sequence in a way that leaves the cell in exactly the same state
as its state at the beginning of those moves.

For every feasible k-unit activity sequence, k ≥ 1, there is at least
one initial state for which it is a k-unit cycle, i.e., if the k-unit activity
sequence begins with this state, it leaves the cell in exactly the same
state after its execution [146]. Since a k-unit cycle preserves the state of
the cell, repeating it indefinitely yields a k-unit cyclic solution. A cyclic
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solution is also known as a steady-state solution. We provide a more
rigorous definition of steady state below.

A k-unit activity sequence has k(m + 1) activities; each of the m + 1
activities Ai, i = 0, 1, . . . ,m, is performed exactly k times and in an order
that satisfies the feasibility constraints. A k-unit cycle constructed from
a k-unit activity sequence (A0, Ai1 , Ai2 , . . . , Aik(m+1)−1

) will be referred to
as the k-unit cycle or, simply, cycle (A0, Ai1 , Ai2 , . . . , Aik(m+1)−1

). Since
a k-unit cyclic solution is completely characterized by a k-unit cycle, we
will use the two terms interchangeably when no confusion arises in doing
so.

Define the function F (Ai, t) to represent the time of completion of
the tth execution of activity Ai [40]. Given a feasible infinite sequence
of activities and a compatible initial state, we can define the long-run
average throughput or, simply, throughput to be

μ = lim
t→∞

t

F (Am, t)
.

Intuitively, this quantity represents the long-term average number of
completed parts placed into the output buffer per unit time. Obtaining
a feasible infinite sequence of activities that maximizes throughput is
a fundamental problem of robotic cell scheduling. Such a sequence of
robotic moves is called optimal. Most studies focus on infinite sequences
of activities in which a fixed sequence of m+1, or some integral multiple
of m + 1, activities is repeated cyclically.

Definition 3.5 [40] A robotic cell repeatedly executing a k-unit cycle
π of robot moves is operating in steady state if there exists a constant
T (π) and a constant N such that for every Ai, i = 0, . . . ,m, and for
every t ∈ Z

+ such that t > N , F (Ai, t + k) − F (Ai, t) = T (π). T (π) is
called the cycle time of π.

For additive travel-time cells, we denote the cycle time by Ta(π). The
corresponding notation for constant and Euclidean travel-time cells will
be Tc(π) and Te(π), respectively.

The per unit cycle time of a k-unit cycle π is T (π)/k. This is the
reciprocal of the throughput and is typically easier to calculate directly.
Therefore, minimizing the per unit cycle time is equivalent to maximizing
the throughput.
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An assumption in most studies is that the sequence of robot moves
is active. A sequence is called active if the robot always executes the
next operation, whatever that may be, as soon as possible. For active
sequences, all execution times for the robot’s actions are uniquely deter-
mined once the sequence of activities is given. The robot’s only possible
waiting period can occur at a machine at which the robot has arrived to
unload, but the machine has not completed processing its current part.
In the class of optimal robot move sequences, there is at least one active
sequence [153].

Brauner and Finke [22] show that repeating a k-unit activity sequence
will enable the robotic cell to reach a steady state (or cyclic solution)
in finite time. Therefore, since we are maximizing the long-run average
throughput, i.e., assuming that the cell operates in steady state for an
infinite time, there is no impact from the initial transient phase [45, 76].
Hence, there is no loss of generality by studying only the steady-state be-
havior. Nevertheless, there may be some practical reason to find the time
required to reach steady state. This is discussed in Chapters 6 and 7.

3.2 Cycle Times

In this section, we discuss the robot’s waiting time at a machine and
methods for computing the cycle time of a given cycle. We also estab-
lish lower bounds for the cycle time. For simplicity of exposition, the
discussion is limited to 1-unit cycles in simple robotic cells.

3.2.1 Waiting Times

The robot waits at a machine Mi if its next sequenced action is to
unload Mi, but Mi has not yet completed processing its current part.
The length of the robot’s waiting time, denoted wi, is Mi’s processing
time pi minus the time that elapses between when Mi was loaded and
when the robot returns to unload it. If this difference is negative, then
the waiting time is zero.

The time that elapses between Mi’s loading and the robot’s return is
determined by the intervening activities that are executed between the
loading and the unloading of Mi. If there are no intervening activities,
the robot loads Mi, waits at Mi for time pi, then unloads Mi. Such a
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sequence is represented by Ai−1Ai. In this case, Mi is said to have full
waiting [47].

If there are intervening activities between the loading and the un-
loading of Mi, then Mi has partial waiting [47]. Consider the sequence
Ai−1AjAi. The robot loads Mi, travels to Mj (δi,j), waits for Mj to
complete processing (wj), unloads Mj (ε), carries that part to Mj+1

(δj,j+1), loads Mj+1 (ε), then travels to Mi (δj+1,i). The robot’s waiting
time at Mi is

wi = max{0, pi − δi,j − wj − ε − δj,j+1 − ε − δj+1,i}.

For a constant travel-time cell, this expression simplifies to wi = max{0,
pi − 3δ − 2ε − wj}.

The expression for the robot’s waiting time is often dependent on the
waiting time at one or more machines. This recursion makes calculating
the cycle time difficult. However, the condition that a cycle begins and
ends in the same state allows us to uniquely compute the cycle time, as
demonstrated in the next section.

3.2.2 Computation of Cycle Times
The cycle time is calculated by summing the robot’s movement times,

the loading and unloading times, and the robot’s waiting times (full
and partial). A straightforward approach for computing the cycle time
of a given cycle requires solving a linear program. We illustrate this
approach below for 1-unit cycles. Appendix A lists all 1-unit cycles for
simple robotic cells with two, three, and four machines.

For each activity Ai, i = 0, . . . ,m, the robot unloads Mi, carries the
part to Mi+1, and loads Mi+1. The total time for Ai is δi,i+1 + 2ε. We
must also account for the time between activities. If Mi has full waiting
(Ai−1 immediately precedes Ai), the robot spends exactly pi time units
between activities Ai−1 and Ai waiting at Mi. If Mi has partial waiting
(Aj immediately precedes Ai, j �= i − 1), then the robot moves from
Mj+1 to Mi (δj+1,i) and waits for Mi to complete processing (wi) before
starting activity Ai.

For specificity, we now consider a constant travel-time cell with con-
stant loading and unloading times. Let V1 be the set of machines with
full waiting, and V2 be the set of those with partial waiting. The cycle
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time for a 1-unit cycle is

Tc(π) = (m + 1)(δ + 2ε) +
∑

i∈V1

pi +
∑

i∈V2

(wi + δ) + δ. (3.1)

The extra δ accounts for the last movement of the cycle, which takes the
robot to I to collect a new part.

For example, consider the cycle π3 = (A0, A1, A3, A2). V1 = {1},
V2 = {2, 3}, m = 3. The cycle time is

Tc(π3) = 4(δ + 2ε) + p1 + w2 + w3 + 3δ

= 7δ + 8ε + p1 + w2 + w3, where

w2 = max{0, p2 − 3δ − 2ε − w3},
w3 = max{0, p3 − 4δ − 4ε − p1},

w2 + w3 = max{0, p2 − 3δ − 2ε, p3 − 4δ − 4ε − p1}.
Thus, Tc(π3) = max{7δ + 8ε + p1, 4δ + 6ε + p1 + p2, 3δ + 4ε + p3}.

Similarly, the cycle time for the cycle π6 = (A0, A3, A2, A1) is Tc(π6) =
max{8δ + 8ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε, p3 + 3δ + 4ε}. Writing the equa-
tions for the waiting times requires that the cycle begin and end in the
same state. In general, this method can be implemented as a linear
program with km variables and km constraints, where k is the number
of units produced in one cycle [61, 102]. Hence, it has time complex-
ity O((km)3L), where L is the size of the problem’s binary encoding.
For example, the waiting times required for computing Tc(π3) can be
obtained by solving the following linear program.

Minimize w2 + w3

subject to:

w2 + w3 ≥ p2 − 3δ − 2ε

w3 ≥ p3 − 4δ − 4ε − p1

w2, w3 ≥ 0

Another linear programming approach that directly deduces the exact
time at which each machine is loaded and unloaded is described in [39].

From a point of view of computational complexity, the linear pro-
gramming approach above is not the most efficient. There are more
efficient graphical methods that find the cycle time without considering
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robot waiting times. These methods analyze a cyclic graph resulting
from the precedence relationships between the activities of the given cy-
cle. We illustrate this approach on the 1-unit cycle π = (A0, A2, A1, A3)
in a three-machine simple robotic cell with free pickup and constant
inter-machine travel time.

Example 3.1 Given π = (A0, A2, A1, A3), fix an arbitrary value T for
its cycle time. A directed graph G (see Figure 3.1) is constructed as fol-
lows: for each machine Mi, i = 1, 2, 3, we have one vertex, vl

i, signifying
the beginning of each load operation and one vertex, vu

i , signifying the
beginning of each unload operation. In addition, we have two vertices,
vu
0 and vl

4, corresponding to the beginning of the unload and load oper-
ations on the input and output, respectively. The edge set consists of
the following:

Edges (vu
i , vl

i+1), i = 0, 1, 2, 3, corresponding to activities Ai, i =
0, 1, 2, 3. The weight of each of these edges is δ + ε, the time to
execute each activity.

Edges (vl
0, v

u
2 ), (vl

3, v
u
1 ), (vl

2, v
u
3 ) corresponding to the cycle π. The

weight of each of these edges is δ + ε, the time between the start of
the loading operation of an activity and the start of the unloading
operation of the next activity in π.

Edge (vl
4, v

u
0 ). The weight of this edge is δ + ε − T , which is a lower

bound on the time between the start of the unloading operation on
the first activity A0 and the start of the loading operation of the last
activity A3.

Edges (vl
1, v

u
1 ), (vl

2, v
u
2 ), and (vl

3, v
u
3 ) corresponding to the loading and

unloading of the part on machines Mi, i = 1, 2, 3, respectively. Note
that activity A0 (resp., A2) precedes activity A1 (resp., A3) in π.
The weight of edge (vl

1, v
u
1 ) is p1 + ε and the weight of edge (vl

3, v
u
3 )

is p3 + ε; these correspond to lower bounds on the time between the
start of loading and the start of unloading on machines M1 and M3.
Since activity A1 does not precede A2, the weight of edge (vl

2, v
u
2 ) is

δ + ε − T , a lower bound on time between start of unloading (in the
next execution of π) and loading on machine M2.

The minimum cycle time of π equals the minimum value of T for which
the graph G does not contain any cycle of positive length.



38 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

δε +

T−+δε

uv0
lv1

lv4

uv3

lv2
uv1

lv3

uv2

Tp −+ ε2

δε +

δε +

δε +

δε +

δε +

δε +

ε+1p

ε+3p

Figure 3.1. The Graph G for the Cycle of Example 3.1.

This approach can be easily extended to multi-unit cycles, as well as
multiple part-types. We refer the reader to Crama et al. [39] for an
extensive description.

The computation of the cycle time via the graphical approach, as well
as the precise schedule of the exact time each machine is loaded and
unloaded, has been studied by several authors. For free-pickup cells,
Cohen et al. [36], Carlier and Chrétienne [28], Matsuo et al. [120] and
van de Klundert [153] provide an O(m3) algorithm based on an algorithm
of Karp [91] for finding the minimum mean-length cycle in a digraph.
Other algorithms for free-pickup cells include (i) an O(m3) algorithm
due to Ioachaim and Soumis [85], based on the Bellman-Ford algorithm
for the longest path; (ii) an O(m2 log m log B) algorithm, where B is an
upper bound on the optimal cycle time, based on the results of Roundy
[137]; (iii) O(m2 log m) algorithms due to Kats and Levner [94] and Lee
and Posner [106], based on the Karp-Orlin algorithm [92] for finding a
parametric shortest path, (iv) an O(m2) algorithm based on the results
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of Hartmann and Orlin [81]. For interval cells, the results include (i)
an O(m2 log m log B) algorithm due to Lei [107], where B is a bound
on the range of possible cycle times; (ii) two algorithms based on the
Bellman-Ford algorithm: an O(m6) algorithm due to Chen et al. [32]
and an O(m3) algorithm due to Kats and Levner [94]. The cycle time
computation for a given cycle is relatively easy in no-wait cells, and is
discussed in Chapter 9.

Computing the cycle time of highly structured cycles is typically much
more efficient. For example, Crama and van de Klundert [40] develop
an O(m) algorithm to find the cycle time in an additive travel-time cell
of any member of a dominant subset of cycles called pyramidal cycles.
Pyramidal cycles are discussed in greater detail in Section 3.3.3.

3.2.3 Lower Bounds on Cycle Times
From Equation (3.1), we can deduce a lower bound for the cycle time

for a 1-unit cycle in a constant travel-time cell (problem RFm|(free,C,
cyclic-1)|μ). Obviously, for any cycle, Tc(π) ≥ 2(m + 1)ε + (m + 2)δ.
If all machines with partial waiting have wi = 0, then the minimum
value for Tc(π) is achieved by minimizing

∑
i∈V1

pi +
∑

i∈V2
δ, which is

done by placing those machines for which pi ≤ δ in V1. Thus, in a
constant travel-time robotic cell, for any 1-unit cycle π, Tc(π) ≥ (m +
2)δ +

∑m
i=1 min{pi, δ}+2(m +1)ε [47]. In a regular additive travel-time

robotic cell (problem RFm|(free,A,cyclic-1)|μ), for any 1-unit cycle π,
Ta(π) ≥ 2(m + 1)(δ + ε) +

∑m
i=1 min{pi, δ} [40].

Suppose that pj = max1≤i≤m pi is large relative to δ and ε. Since the
cycle time can be measured as the time between successive loadings of
Mj , we can derive another lower bound for the cycle time of a 1-unit
cycle. This includes, at minimum, the times for the following: processing
on Mj , unload Mj , move to Mj+1, load Mj+1, move to Mj−1, unload
Mj−1, move to Mj , and load Mj . For constant travel time, this value
is pj + 3δ + 4ε and for regular additive travel time it is pj + 4(δ + ε).
We combine these bounds, originally derived by Dawande et al. [47] and
Crama and van de Klundert [40], respectively, in the following theorem.

Theorem 3.2 For 1-unit cycles, the following are lower bounds for con-
stant travel-time robotic cells (problem RFm|(free,C,cyclic-1)|μ) and reg-
ular additive travel-time robotic cells (problem RFm|(free,A,cyclic-1)|μ),
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respectively:

Tc(π) ≥ max{(m + 2)δ +
m∑

i=1

min{pi, δ} + 2(m + 1)ε,

max
1≤i≤m

pi + 3δ + 4ε},

Ta(π) ≥ max{2(m + 1)(δ + ε) +
m∑

i=1

min{pi, δ}, max
1≤i≤m

pi + 4(δ + ε)}.

Generalizations of these lower bounds for k-unit cycles, k ≥ 1, are stated
and proved in Theorems 3.15 and 3.19.

3.3 Optimal 1-Unit Cycles
We first examine two elementary cycles on simple robotic cells with

free pickup and then examine specific conditions under which they are
optimal. We then discuss two classes of cycles in which an optimal cycle
can be found under more general conditions for cells with free pickup.
We conclude by summarizing an approach to find an optimal cycle in
no-wait cells.

3.3.1 Special Cases
In the forward cycle πU = (A0, A1, A2, . . . , Am−1, Am), the robot un-

loads a part from I, carries it to M1, loads M1, waits for M1 to process
the part, unloads M1, and then carries the part to M2. The robot con-
tinues in this fashion, waiting at each machine for its entire processing
of the part. Only one machine is processing a part at any given time. A
starting and ending state for this cycle is the state in which all machines
are unoccupied and the robot is at the input buffer I. The processing
times for πU in constant and regular additive travel-time robotic cells,
respectively, are

Tc(πU ) = 2(m + 1)ε +
m∑

i=1

pi + (m + 2)δ,

Ta(πU ) = 2(m + 1)ε +
m∑

i=1

pi + 2(m + 1)δ.
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For constant and additive travel-time simple robotic cells, Theorems 3.3–
3.6 provide an optimal 1-unit cycle under specific conditions. In terms
of the classification provided in Chapter 2, these results are for problems
RFm|(free,C,cyclic-1)|μ and RFm|(free,A,cyclic-1)|μ.

Theorem 3.3 For both constant and regular additive travel-time robotic
cells, if pi ≤ δ,∀i, then πU achieves the optimal 1-unit cycle time.

Proof. The result follows immediately from Theorem 3.2.

The reverse cycle for a simple robotic cell is πD = (A0, Am, Am−1,

. . . , A2, A1). To perform πD, the robot unloads a part from the input
buffer (M0), carries it to M1, and loads M1. It then travels to Mm,
unloads Mm, and carries that part to the output buffer (Mm+1). It
repeats the following sequence for i = m− 1,m− 2, . . . , 1: travel to Mi,
unload Mi, carry the part to Mi+1, and load Mi+1. After loading M2

(which completes activity A1), the robot completes the cycle by traveling
to the input buffer (M0). At each machine, before unloading a part from
it, the robot may have to wait for that machine to complete processing.

The cycle times for πD in constant [47] and regular additive [40] travel-
time robotic cells, respectively, are

Tc(πD) = max{2(m + 1)(δ + ε), max
1≤i≤m

pi + 3δ + 4ε},

Ta(πD) = max{4mδ + 2(m + 1)ε, max
1≤i≤m

pi + 4(δ + ε)}.

Note that in each expression, the first argument represents the cycle
time if the robot never waits for a machine to complete its processing.

For each of the following two theorems, if its premises are met, then πD

achieves the lower bound stated in Theorem 3.2. Theorem 3.4 combines
results from Dawande et al. [47] and Crama and van de Klundert [40].

Theorem 3.4 For the optimal 1-unit cycle problem in constant travel-
time robotic cells (problem RFm|(free,C,cyclic-1)|μ), if max1≤i≤m pi +
3δ + 4ε ≥ 2(m + 1)(δ + ε), then πD is an optimal 1-unit cycle. In
a regular additive travel-time robotic cell (problem RFm|(free,A,cyclic-
1)|μ), if max1≤i≤m pi + 4(δ + ε) ≥ 4mδ + 2(m + 1)ε, then πD is an
optimal 1-unit cycle.
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Theorem 3.4 can be generalized to the Euclidean travel-time case (prob-
lem RFm|(free,E,cyclic-1)|μ). If

max
1≤i≤m

{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε} ≥

2(m + 1)ε +
m∑

i=0

δi,i+1 +
m+1∑

i=2

δi,i−2 + δ1,m, (3.2)

then πD is optimal. If condition (3.2) holds, then the cycle time Te(πD) =
max1≤i≤m{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε}, which, by following the
logic of Section 3.2.3 and using the triangle inequality, is a lower bound
on the cycle time.

The following theorem is from Dawande et al. [47].

Theorem 3.5 For constant travel-time robotic cells (problem RFm|(free,
C,cyclic-1)|μ), if pi ≥ δ, ∀i, then πD achieves the optimal 1-unit cycle
time.

This theorem does not hold for additive travel-time robotic cells. Con-
sider the following example: π0 = (A0, A1, Am, Am−1, . . . , A2) with pi ≥
δ,∀i. The cycle time is

Ta(π0) = max
{

(4m − 2)δ + 2(m + 1)ε + p1, p2 + p1 + 6(δ + ε),

max
3≤i≤m

{pi + 4(δ + ε)}
}

. (3.3)

If

p2 + p1 + 6(δ + ε) ≤ (4m − 2)δ + 2(m + 1)ε + p1, and

max
3≤i≤m

{pi + 4(δ + ε)} ≤ (4m − 2)δ + 2(m + 1)ε + p1,

then Ta(π0) = (4m − 2)δ + 2(m + 1)ε + p1. If p1 < 2δ, then Ta(πD) =
4mδ + 2(m + 1)ε and Ta(π0) < Ta(πD). However, we do have the fol-
lowing results, from Dawande et al. [46], for regular additive travel-time
cells. Our proof of the following theorem requires specific properties of
pyramidal cycles; a proof is provided in Section 3.3.3.

Theorem 3.6 For problem RFm|(free,A,cyclic-1)|μ, if

pi + pi+1 ≥ (4m − 6)δ + 2(m − 2)ε, i = 1, . . . ,m − 1,
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then πD is optimal.

Corollary 3.1 For problem RFm|(free,A,cyclic-1)|μ, if

pi ≥ (2m − 3)δ + (m − 2)ε, i = 1, . . . ,m,

then πD is optimal.

In the next subsection, we provide a description of a polynomial-time
algorithm to obtain an optimal 1-unit cycle in constant travel-time cells
(Dawande et al. [47]). Section 3.3.3 lists the main results of a polynomial-
time algorithm for additive cells due to Crama and van de Klundert [40].

3.3.2 General Cases: Constant Travel-Time Cells
We refer to the problem of finding an optimal 1-unit cycle in a constant

travel-time cell as Problem Q. The results developed in Section 3.3.1 help
us to identify an optimal 1-unit cycle in the following three cases:
Case 1. pi ≤ δ, ∀i. The simple 1-unit cycle πU = (A0, A1, ..., Am) is
optimal from Corollary 3.3.
Case 2. pi ≥ δ, ∀i. The reverse 1-unit cycle πD = (A0, Am, Am−1, . . . ,

A1) is optimal from Theorem 3.5.
Case 3. 2(m + 1)(δ + ε) < pi + 3δ + 4ε for some i ∈ M . The reverse
1-unit cycle πD = (A0, Am, Am−1, ..., A1) is optimal from Theorem 3.4.

We label the case in which Cases 1–3 do not apply as Case 4. In this
section, our aim is to characterize a class of 1-unit cycles which permits
the efficient identification of an optimal 1-unit cycle in Case 4. We then
develop a polynomial-time procedure FindCycle.

Basic Cycles
To establish a procedure for finding an optimal 1-unit cycle under

Case 4, we first define basic cycles. The set of basic cycles is a subset
of 1-unit cycles. Recall that V1 is the set of machines with full waiting,
and V2 = M\V1 is the set of machines with partial waiting. A basic
cycle corresponding to V1 is constructed as described below. A string
Sj = {Aj , Aj+1, . . . , Aj+�} is a sequence of activities such that consecu-
tive machines Mj+k, k = 1, . . . , 	, have full waiting and Mj has partial
waiting. The size of string Sj is 	+1, where 0 ≤ 	 ≤ m. Given a problem
instance and V1, strings are formed as described in the procedure below.
These strings are later concatenated in a certain way to form a basic



44 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

cycle. For a given 1-unit cycle, we let n1 denote the number of machines
with full waiting and n2 = m − n1 as the total number machines with
partial waiting. Thus, n1 = |V1| and n2 = |V2| = m − n1.

Procedure Strings

Step 0: Input: A problem instance for an m-machine robotic cell given
by m, δ, ε, p1, . . . , pm and V1. Let j = 0, k = 0 and S0 = {A0}.

Step 1: If j + 1 ∈ V1, then Sk = Sk ∪ Aj+1. Otherwise go to Step 3.

Step 2: j = j +1. If j < m, then go to Step 1. Otherwise go to Step 4.

Step 3: k = j + 1, j = j + 1, and Sk = {Ak}. If j < m, then go to
Step 1.

Step 4: Terminate.

Let there be n2 + 1 strings (S0, Sj1 , . . . , Sjn2
) obtained from the above

procedure. The basic cycle corresponding to V1 is a concatenation of
n2 + 1 strings in the order S0, Sjn2

, Sjn2−1 . . . , Sj1 .

Remark 3.1 Given any 1-unit cycle, the corresponding set V1 enables
us to define the strings. For an m-machine cell, there can be multiple 1-
unit cycles corresponding to a given set V1. For example, consider m = 4.
Then, both the cycles {A0, A3, A1, A2, A4} and {A0, A4, A3, A1, A2} have
V1 = {2}. For all the 1-unit cycles corresponding to a given set V1,
the set of strings is identical. It is the concatenation of the strings
in the particular order defined above that defines a unique basic cycle
corresponding to V1. It should be noted that we have m+1 strings each
of size one if all machines have partial waiting, whereas we have only
one string of size m + 1 if all machines have full waiting.

Example 3.2 m = 8, V1 = {1, 2, 4, 8} and V2 = {3, 5, 6, 7}. We have
five strings: S0 = {A0, A1, A2}, S3 = {A3, A4}, S5 = {A5}, S6 = {A6}
and S7 = {A7, A8}. The basic cycle corresponding to V1 is S0, S7, S6,
S5, S3. The basic 1-unit cycle is πB = {A0, A1, A2, A7, A8, A6, A5,
A3, A4}.

Next we define two sets Xi and Yi for each i ∈ V2. Let V2 =
{i1, i2, ..., in2} with ij+1 > ij , j = 1, 2, . . . , n2 − 1. We also let i0 = 0 and
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in2+1 = m + 1. It is illustrative to describe these sets for Example 3.2
before we provide a formal definition. In this example, V2 = {3, 5, 6, 7}.
Note that n2 = 4, i0 = 0, i1 = 3, i2 = 5, i3 = 6, i4 = 7, and i5 = 9. X3

will be the set of machines with full waiting whose indices are strictly
less than i1 = 3 and strictly greater than i0 = 0. Thus, X3 = {1, 2}.
Similarly, X5 will be the set of machines with full waiting whose indices
are strictly less than i2 = 5 and strictly greater than i1 = 3, and so
on. Thus, X3 = {1, 2},X5 = {4},X6 = X7 = ∅. Now, we turn to
defining the sets Yi, i = 3, 5, 6, 7, for the example. Y7 will be the set of
those machines with full waiting whose indices are strictly greater than
i4 = 7 and strictly less than i5 = 9. Similarly, Y6 will be the set of
machines with full waiting whose indices are strictly greater than i3 = 6
and strictly less than i4 = 7, and so on. Thus, Y7 = {8}, Y6 = Y5 = ∅
and Y3 = {4}. These sets are illustrated in Figure 3.2.

Figure 3.2. Sets Xi and Yi for i ∈ V2 in Example 3.2.

We are now ready to define the sets Xi and Yi, i ∈ V2, in the general
case.

Definition 3.6 Suppose V2 = {i1, i2, ..., in2} with ij+1 > ij , j = 1, 2, ...,
n2−1. We also let i0 = 0 and in2+1 = m+1. Then for ij , j = 1, 2, ..., n2,

Xij = {ij−1 < k < ij : k ∈ V1}, j = 1, 2, . . . , n2,

Yij = {ij+1 > k > ij : k ∈ V1}, j = 1, 2, . . . , n2.

In terms of the strings defined above, the sets Xi and Yi can be expressed
as follows: Xi is the set of machines with full waiting associated with
the string that immediately follows Si in the basic cycle corresponding
to V1, and Yi is the set of machines with full waiting associated with the
string Si. We also denote |Xi| = ri and |Yi| = qi.
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Theorem 3.7 For a basic 1-unit cycle πB, the cycle time T (πB) can be
expressed as follows:

T (πB) = max{α, βi|i ∈ V2}, (3.4)

where

α = 2(m + 1)δ + 2(m + 1)ε − n1δ +
∑

i∈V1

pi, (3.5)

βi = pi + 3δ + 4ε + ri(δ + 2ε) +
∑

j∈Xi

pj

+ qi(δ + 2ε) +
∑

j∈Yi

pj . (3.6)

Proof. The cycle time T (πB) is the sum of (i) the total robot move
time tm, (ii) the total load/unload time tl, and (iii) the total robot
wait time at machines in a cycle. The total robot wait time is the sum
of two components: the total partial waiting time Wp and the total
full waiting time Wf . Thus, T (πB) = tm + tl + Wf + Wp. Note that
tm + tl = 2(m + 1)δ + 2(m + 1)ε − n1δ and Wf =

∑
i∈V1

pi. Thus, we
have α = tm + tl + Wf ,

T (πB) = α + Wp, (3.7)

and Wp =
∑

i∈V2
wi, where wi = max{0, pi − ti} and ti denotes the

elapsed time between the moment the robot completes loading a part on
Mi and the moment the robot returns to the machine Mi for unloading
the part. Note that ti = T (πB)−wi −Δi, where Δi is the elapsed time
between the moment the robot begins to unload a part from machine
Mi and the moment the robot completes loading a part on Mi during
a cycle. Δi is the sum of the following times: the time (δ + 2ε + ri(δ +
2ε) +

∑
j∈Xi

pj) elapsed between unloading machine Mi and loading
the machine in V2 immediately following Mi, the time (δ) to travel to
the machine in V2 immediately preceding Mi, the waiting time at this
machine to finish processing, and the time (δ+2ε+qi(δ+2ε)+

∑
j∈Yi

pj)
elapsed between unloading this machine and loading Mi. More precisely,
the expression for Δi can be written as follows:

Δi = 3δ + 4ε + ri(δ + 2ε) +
∑

j∈Xi

pj + qi(δ + 2ε) +
∑

j∈Yi

pj + wki
.
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Thus,

ti = Wp+α−wi− [3δ+4ε+ri(δ+2ε)+
∑

j∈Xi

pj +qi(δ+2ε)+
∑

j∈Yi

pj ]−wki
,

where wki
is the partial waiting encountered by the robot at machine

Mki
, where ki is defined as follows. If {j ∈ V2 : j < i} �= ∅, then

ki = max{j ∈ V2 : j < i}. Otherwise, ki = 0 and w0 = 0. Note that
ki = 0 iff i is the first index in V2. Thus, we have

wi = max

⎧
⎨

⎩
0, pi − Wp − α + [3δ + 4ε + ri(δ + 2ε)

∑

j∈Xi

pj

+ qi(δ + 2ε) +
∑

j∈Yi

pj ] + wi + wki

⎫
⎬

⎭

= max{0, βi − α − Wp + wi + wki
}. (3.8)

It follows from (3.8) that

Wp ≥ βi − α + wki
≥ βi − α, ∀ i ∈ V2. (3.9)

Case 1. Wp = 0: Then, wi = 0, ∀ i ∈ V2. It follows from (3.8) that
∀ i ∈ V2, βi − α ≤ 0 and hence Wp = 0 = max{0, βi − α, i ∈ V2}.
Case 2. Wp > 0: Let i∗ = min{i ∈ V2 : wi > 0}. Note that wki∗ = 0.
Also from (3.8), it follows that Wp = βi∗ − α. Using (3.9), we have
Wp = max{βi − α, i ∈ V2} = max{0, βi − α, i ∈ V2}.

Thus, we have

Wp = max{0, βi − α, i ∈ V2}. (3.10)

The result follows from (3.7) and (3.10).

Remark 3.2 There does not exist a 1-unit cycle with |V2| = 1. Other-
wise, for exactly one machine, say Mr, the robot loads Mr and leaves it
to travel to some other machine. Since the robot must remain with the
part at all other machines, it could never return to pick up the part at
Mr. Thus, if V2 �= ∅, then |V2| ≥ 2.

In general, there may be many cycles corresponding to a given V1.
However, there is a unique basic cycle among them. We show below
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that this basic cycle dominates the other cycles. To show this result,
we need to define another Problem R of finding an optimal 1-unit cycle
under the following cell data:

Processing time pi on machine Mi, i = 1, ...,m.

A constant travel time δ from machine Mi to Mj , i �= j, when the
robot travels empty.

A constant travel time δi from machine Mi−1 to Mi, when the robot
travels with a part and δi ≥ δ, 1 ≤ i ≤ m + 1.

A constant loading and unloading time ε.

Lemma 3.2 For Problem R, the reverse cycle dominates all other cycles
for which V1 = ∅.

Proof. For Problem R, the expression for the reverse 1-unit cycle πD =
(A0, Am, Am−1, . . . , A1) is

TR(πD) = max

{
m+1∑

k=1

δk + (m + 1)δ + 2(m + 1)ε,

pi + δ +
i+1∑

k=i

δk + 4ε | i ∈ V2

}

.

Note that for any permutation π corresponding to V1 = ∅, we have
TR(π) ≥ pi + δ +

∑i+1
k=i δk + 4ε. After unloading machine Mi, the robot

loads Mi+1 and later returns to load machine Mi. This requires at
least δ +

∑i+1
k=i δk + 4ε time. Also, the robot has to process the part

on machine Mi exactly once. This requires time pi. Thus, TR(π) ≥
max1≤i≤m{pi + δ +

∑i+1
k=i δk + 4ε}. Next, for π with V1 = ∅, we have

TR(π) ≥
∑m+1

k=1 δk + (m + 1)δ + 2(m + 1)ε. Thus TR(π) ≥ TR(πD) and
the result follows.

Theorem 3.8 For Problem Q, basic cycles dominate all other 1-unit
cycles.

Proof. Consider any nonbasic 1-unit cycle π
′
corresponding to V1. Let

π be the unique basic 1-unit cycle corresponding to V1. Let V2 =
{i1, i2, . . . , in2}. We show that T (π) ≤ T (π

′
). Construct the follow-

ing instance I of Problem R: We have n2 machines M
′
1,M

′
2, ...,M

′
n2

,
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with the processing time at machine M
′
k = pik , k = 1, 2, . . . , n2; δk =

δ +
∑ik−1

j=ik−1+1 pj + (ik − ik−1 − 1)(δ + 2ε), k = 1, 2, . . . , n2 + 1. Recall
that i0 = 0. Thus, all 1-unit cycles of instance I are equivalent to per-
mutations of the strings of Problem Q given the set V2. We note the
following equivalence between Problem Q and Problem R:

1. The cycle time T (π) of the basic cycle π for Problem Q is the same
as that of the reverse cycle in instance I for Problem R. This follows
from equations (3.4)–(3.6) and the formula for TR(πD) in the proof
of Lemma 3.2.

2. The cycle time T (π
′
) of the nonbasic cycle π

′
for Problem Q is the

same as that of a cycle in instance I corresponding to V̄1 = ∅ and V̄2 =
{1, 2, ..., n2}. This follows since the time required by π

′
to complete

the processing on machines in V1 is accounted for in instance I using
the travel times δk.

The result now follows immediately from Lemma 3.2.

Theorem 3.8 allows us to focus only on basic 1-unit cycles to look
for an optimal 1-unit cycle. In the remainder of this section, we further
characterize an optimal 1-unit (basic) cycle for Problem Q. The charac-
terization leads to a subclass of the class of basic cycles containing an
optimal 1-unit cycle.

To obtain these characterization results, we define the set Dδ of ma-
chines on which the processing time is at least the travel time δ, i.e.,

Dδ = {i ∈ M : pi ≥ δ}.

Theorem 3.9 If |Dδ| = 1 and pi+pj ≤ 2δ, ∀i, j, then the simple 1-unit
cycle πU = (A0, A1, ..., Am) is an optimal 1-unit cycle.

Proof. The cycle time of the simple 1-unit cycle πU is T (πU ) = (m
+ 2)δ +

∑m
i=1 pi + 2(m + 1)ε. Consider an optimal 1-unit cycle π′ �= πU .

Let V1 and V2 be the sets of machines with full and partial waiting,
respectively, in π

′
. We may assume that π

′
is a basic cycle due to

Theorem 3.8. Since |Dδ| = 1, let i∗ be the unique machine with pi∗ ≥ δ.
Since π

′ �= πU , we have V2 �= ∅. Note that |V2| ≥ 2. From Theorem 3.7,
T (π

′
) ≥ [2(m+1)−n1]δ +

∑
i∈V1

pi +2(m+1)ε = (m+2)δ +
∑

i∈V2
(δ−

pi) +
∑m

i=1 pi + 2(m + 1)ε. Now if i∗ ∈ V1, then pi ≤ δ, ∀i ∈ V2, and
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hence
∑

i∈V2
(δ − pi) ≥ 0. Consequently, T (π

′
) ≥ T (πU ). If i∗ ∈ V2 and

since |V2| ≥ 2, there exists a machine Mj �= Mi∗ with j ∈ V2. By the
hypothesis, pi∗ + pj ≤ 2δ. Then T (π

′
) = (m + 2)δ + (2δ − pi∗ − pj) +

∑
i∈V2\{i∗,j}(δ − pi) +

∑m
i=1 pi + 2(m + 1)ε ≥ T (πU ).

Theorem 3.10 If |Dδ| ≥ 2, then there exists an optimal basic 1-unit
cycle with V2 �= ∅.

Proof. Suppose not. Since the simple 1-unit cycle πU is the only cycle
with V2 = ∅, let it be the unique optimum 1-unit cycle. Since |Dδ| ≥ 2,
there exist i, j ∈ Dδ. Consider the basic 1-unit cycle π corresponding
to V2 = {i, j} and V1 = M\V2. From Theorem 3.7, it follows that
T (π) = max{α∗, β∗

i , β∗
j } with α∗ ≤ T (πU ) and β∗

k ≤ T (πU ) for k = i, j.
Thus T (π) ≤ T (πU ), which is a contradiction.

Theorem 3.11 Consider the following three cases:

1. |Dδ| = 0: The simple 1-unit cycle πU = (A0, A1, ..., Am) is an optimal
1-unit cycle.

2. |Dδ| ≥ 2: There exists an optimal basic cycle in which Dδ ⊆ V2.

3. |Dδ| = 1: Let pq ≥ δ and pk = max{pj : j ∈ M\{q}}. If pq +pk ≤ 2δ,
then the simple 1-unit cycle πU = (A0, A1, ..., Am) is an optimal 1-
unit cycle. If pq + pk ≥ 2δ, then there exists an optimal basic 1-unit
cycle in which q ∈ V2.

Proof.
Case 1. Follows from Corollary 3.3.

Case 2. Suppose for machine Mj , we have pj ≥ δ and j ∈ V1 in an
optimal 1-unit cycle π. Without loss of generality, we can assume V2 �= ∅
due to Theorem 3.10. From Theorem 3.7, T (π) = max{α, βi, i ∈ V2}.
Let ξ1

j = {k : k < j, k ∈ V2} and ξ2
j = {k : k > j, k ∈ V2}. Note that

at least one of ξ1
j or ξ2

j is non-empty. If ξ1
j �= ∅, let j1 = max ξ1

j , and
if ξ2

j �= ∅, let j2 = min ξ2
j . We change the waiting at Mj from full to

partial. Define V
′
2 = V2 ∪ {j} and V

′
1 = V1\{j}. Let π

′
be the basic 1-

unit cycle corresponding to (V
′
1 , V

′
2 ). Then T (π

′
) = max{α′

, β
′
i, i ∈ V

′
2}.

Also, α
′
= α+ δ−pj ≤ α, β

′
j1

< βj1 (if j1 exists), β
′
j2

< βj2 (if j2 exists),
β

′
j ≤ βjl

for l = 1, 2 and β
′
l = βl for l ∈ V2\{j1, j2}. Thus T (π

′
) ≤ T (π).
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Case 3. If pq +pk ≤ 2δ, then the optimality of πU follows from Theorem
3.9. If pq+pk > 2δ, observe that there exists an optimal solution π �= πU .
For otherwise, if πU is the unique optimal solution, then the basic cycle
corresponding to V2 = {q, k} and V1 = M\V2 will satisfy T (π) ≤ T (πU ),
which is a contradiction to the uniqueness of πU . Now consider an
optimal solution π

′ �= πU , where π
′

is the basic cycle corresponding to
(V

′
1 , V

′
2 ) with q ∈ V

′
1 . Note that |V ′

2 | ≥ 2. Define V ∗
2 = V

′
2 ∪ {q} and

V ∗
1 = M\V ∗

2 . Let π∗ be the basic 1-unit cycle corresponding to (V ∗
1 , V ∗

2 ).
The proof of T (π∗) ≤ T (π

′
) is similar to that in Case 2.

Theorem 3.11 offers a fundamental insight which is easy to state: If
Dδ �= ∅, we can assume Dδ ⊆ V2. We use this property to construct an
initial partition of the set of machines into those where the robot has
full waiting and where it has partial waiting. Recall from Corollary 3.3
that if Dδ = ∅, the simple 1-unit cycle πU = (A0, A1, ..., Am) is optimal.
The following definition, therefore, assumes that |Dδ| ≥ 1.

Definition 3.7 An Initial Partition F = (V1, V2) is a partition of the
set of machines M into two subsets V1 and V2 corresponding to machines
with full waiting and partial waiting. These are defined as follows:

1. If |Dδ| ≥ 2, then define V2 = Dδ and V1 = M\Dδ.

2. If |Dδ| = 1 and pq + pk > 2δ, where pq ≥ δ, pk = max{pj : j ∈
M\{q}}, then define V2 = {q} and V1 = M\V2. Note that if pq+pk ≤
2δ, then πU is optimal (Theorem 3.9).

3.3.2.1 Optimization over Basic Cycles

In this section, we develop a polynomial-time algorithm to find an
optimum solution to problem instances under Case 4 (as defined at the
start of Section 3.3.2). For ease of reference, we refer to this algorithm
as FindCycle. First, we describe a polynomial-time solution to the de-
cision question corresponding to the optimization problem. The use of
this polynomial-time solution in a binary search procedure gives the al-
gorithm FindCycle.

Since only basic cycles are considered, we use the cycle time expression
of Theorem 3.7. Under Case 4, the cycle time T (π∗) of an optimal 1-
unit cycle π∗ satisfies 2(m + 1)δ − n1δ +

∑
i∈M\Dδ

pi + 2(m + 1)ε ≤
T (π∗) ≤ 2(m+1)δ +2(m+1)ε. Note that the lower bound follows from
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Theorem 3.2, while the upper bound is the cycle time of the reverse cycle
πD under Case 4. Consider the following question:

Decision Problem (DQ): Given B with 2(m+1)δ−n1δ+
∑

i∈M\Dδ
pi+

2(m + 1)ε ≤ B ≤ 2(m + 1)δ + 2(m + 1)ε, does there exist a 1-unit cycle
π with T (π) ≤ B?

In the remainder of this section, we will describe a polynomial-time
algorithm to answer DQ. Given an initial partition F = (V1, V2), we
define the following structure:

Definition 3.8 A chain of length n is a maximal sequence of consec-
utive machine indices < i, i + 1, . . . , i + n > satisfying the following
conditions:

1. Either (i = 1) or (i ∈ V2 and i − 1 ∈ V2).

2. Either (i + n = m) or (i + n ∈ V2 and i + n + 1 ∈ V2).

3. No two consecutive indices belong to V2. At least one index belongs
to V1.

Example 3.3 m = 15. Consider an initial partition F = (V1, V2),
where V1 = {3, 7, 9, 10, 11, 13, 15} and V2 = {1, 2, 4, 5, 6, 8, 12, 14}. Then
we have the following two chains (see Figure 3.3):

1. C1 = < 2, 3, 4 >.

2. C2 = < 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 >.

Figure 3.3. Chains Corresponding to an Initial Partition F = (V1, V2).

Given an initial partition F = (V1, V2), the chains are mutually exclusive
and every element of V1 is contained in exactly one chain. Let Cr, r =
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1, ..., c, be the chains for F and let C = {Cr : r = 1, ..., c}. We solve one
shortest path problem for each Cr ∈ C to answer the decision problem
DQ for a given value of B.

A Shortest Path Problem on a Chain:

First we briefly state the intuition behind the solution described be-
low. The set of machines with partial waiting uniquely determines the
corresponding basic cycle. From Theorem 3.11, we know that there ex-
ists an optimal solution in which the machines in the set Dδ have partial
waiting. Thus, to completely determine the set of machines with partial
waiting, we need to determine which machines, if any, from M\Dδ have
partial waiting. In this context, we use the shortest path problem to
optimally determine those machines.

Observe that each chain can be considered independently. As men-
tioned above, each element of V1 is contained in exactly one chain. Let
k ∈ V1 be contained in chain Cr. Changing the status of machine Mk

from full waiting to partial waiting affects only the βi terms in (3.4) cor-
responding to the two machine indices in V2 closest to k on either side
in chain Cr. By the definition of a chain, such an index belongs to the
same chain Cr. More precisely, the terms corresponding to the following
machine indices (if they exist) will be affected in the cycle time expres-
sion: (i) max{j : j < k, j ∈ V2∩Cr} and (ii) min{j : j > k, j ∈ V2∩Cr}.
A new βk term, corresponding to machine Mk, will now be part of the
cycle time expression. However, as will be shown shortly, this additional
term will not dominate the existing terms in the cycle time expression
(3.4) and hence need not be explicitly stated. We illustrate this using
Example 3.3 above. Consider k = 10 ∈ V1 contained in chain C2. If the
status of machine M10 is changed from full waiting to partial waiting, the
only existing βi terms in (3.4) that change are β8 and β12 corresponding
to machines M8 and M12, respectively.

Before we proceed with the description of the shortest path problem,
we note the connection between strings (defined at the start of Sec-
tion 3.3.2) and chains (defined in Section 3.3.2.1). Note that a string is
a sequence of consecutive activities, while a chain is a sequence of consec-
utive machine indices. Consider a string Sj = {Aj , Aj+1, ..., Aj+l} with
l ≥ 1. Then, the machines Mj+1, ...,Mj+l, belong to the same chain.
Strings that have exactly one activity do not belong to any chain and
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are responsible for the chain decomposition of the machine indices. It is
also instructive to examine the changes in the strings when the status of
a machine changes from full waiting to partial waiting. Consider a ma-
chine Mi, i ∈ V1. Then, the activity subsequence {Ai−1, Ai} appears in a
unique string, say Sk. When the status of Mi changes from full waiting
to partial waiting, the string Sk decomposes into two substrings: the
substring of Sk up to and including activity Ai−1, and the substring of
Sk containing Ai and subsequent activities.

As mentioned before, the purpose of the shortest path problem is to
determine the machines, if any, from M\Dδ which have partial waiting.
Recall from Theorem 3.7 that the cycle time expression of a basic 1-
unit cycle π can be written as T (π) = max{α, βl|l ∈ V2}. For each
chain Cr ∈ C, where C is the set of chains obtained from the initial
partition F = (V1, V2) as described above, we construct a directed graph
Gr whose node set corresponds to the set of machines in (M\Dδ) ∩ Cr

plus two distinguished nodes s and t. Given a target cycle time B by
the decision problem DQ, the graphs are constructed in such a way that
there exists a basic cycle with cycle time at most B if and only if there
exists an s-t path in each graph Gr, r = 1, 2, ..., c, such that the sum of
the lengths of these paths is at most B −α. Moreover, the nodes on the
s-t paths specify the machines from M\Dδ that have partial waiting in
the resulting basic cycle.

Consider a chain Cr ∈ C. Let V̂1 and V̂2 be the sets of machine indices
in Cr with full and partial waiting, respectively. We construct a weighted
directed graph Gr(V r, Er) as follows:

The node set consists of the node indices in V̂1 plus two dummy nodes
s and t. That is, V r = V̂1 ∪ {s, t}. Let Er

1 = {(s, j) : j ∈ V̂1}, Er
2 =

{(l,m) : l,m ∈ V̂1}, and Er
3 = {(k, t) : k ∈ V̂1}. The edge set Er

is either the single edge (s, t) or equals Ēr = Ēr
1 ∪ Ēr

2 ∪ Ēr
3 , where

Ēr
k ⊆ Er

k, k = 1, 2, 3. Before we proceed with the precise description of
Ēr, we explain the main ideas behind its construction.

Changing the status of a machine Mi, i ∈ M\Dδ, from full waiting
to partial waiting affects the existing terms in the cycle time expression
(3.4) as follows: (i) the first term α increases by δ − pi and (ii) the
terms βl, l ∈ V2, either decrease or stay unchanged. A new term βi

corresponding to machine Mi is now part of the cycle time expression.



Cyclic Production 55

However, this additional term will not dominate the existing terms in the
cycle time expression: Using (3.6) and the properties (i) ri + qi ≤ m− 2
and (ii) pj ≤ δ, j ∈ Xi ∪ Yi, it is easy to verify that βi ≤

∑
j∈M\Dδ

pj +
(m + 1)δ + 2mε and is therefore strictly less than the lower bound on
the cycle time established in Theorem 3.2. Thus, this additional term,
βi, need not be explicitly stated in the cycle time expression.

The edge set Ēr consists of three types of edges: (a) source edges
(s, i), i ∈ V̂1; (b) transition edges (i, j), i, j ∈ V̂1, i < j; and (c) sink
edges (i, t), i ∈ V̂1. Each edge represents changing the status of a ma-
chine Mi, i ∈ V̂1, from full waiting to partial waiting. Since each element
of V̂1 is contained in exactly one chain, to answer the decision prob-
lem DQ we need to examine exactly one chain to determine whether an
element in V̂1 should be moved to V̂2.

The length of an s-t path (if one exists) in Gr measures the total
increase in the first term α when the status of all the machines corre-
sponding to the nodes on the path changes from full waiting to partial
waiting. Given a target cycle time B, if there exists an s-t path in each
graph Gr, r = 1, ..., c, such that the sum of the lengths of these paths
is at most B − α, then the status of the machines corresponding to the
nodes on the paths can be changed from full waiting to partial waiting
to obtain a basic 1-unit cycle with cycle time at most B.

We now describe the construction of Ēr
k, k = 1, 2, 3. To describe the

construction steps, we define, for sets Xa, Yb ⊆ V̂1 and a machine index
i ∈ V̂2, the quantity β

′
i(Xa, Yb) = pi +3δ+4ε+ |Xa|(δ+2ε)+

∑
k∈Xa

pk +
|Yb|(δ+2ε)+

∑
k∈Yb

pk. An explanation is provided immediately following
each construction step.

1. Construction of dummy edge: Add edge (s, t) to Er with edge
length dst = 0 if |Dδ ∩ Cr| ≥ 2 and βk ≤ B for all k ∈ V̂2 and stop
construction. Otherwise, do the following construction steps.

Explanation: Choosing edge (s, t) in Gr corresponds to making no
changes in the waiting status for machines Mk, k ∈ Cr. The only
terms in the cycle time expression (3.4) corresponding to machines
in Cr are βk, k ∈ V̂2. Since βk ≤ B, ∀ k ∈ V̂2, there is no need to
change the status of any machine.
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As mentioned previously, chains can be considered independently.
Therefore, changes in the waiting status of machines belonging to
other chains will not affect the terms in (3.4) corresponding to ma-
chines in Cr.

Since there is no change in the status for any machine in Cr, there is
no increase in the first term α of (3.4). Therefore, the length dst of
edge (s, t) is 0.

2. Construction of Ēr
1 (source edges): Consider j ∈ V r\{s, t}. Let

e = min{k : k ∈ V̂2}. If j < e, then we add edge (s, j) with length
dsj = δ − pj to Ēr

1 . Otherwise, let Hj = {k : k ∈ V̂2, k < j},
q = max{k : k ∈ Hj}, and Ŷq = {k : q < k < j}. We add edge (s, j)
with length dsj = δ − pj to Ēr

1 if, and only if, β
′
q(Xq, Ŷq) ≤ B and

βk ≤ B ∀ k ∈ Hj\{q}.
Explanation: Choosing edge (s, j) corresponds to changing the sta-
tus of machine Mj from full waiting to partial waiting. The con-
struction ensures that each term βi, i ≤ j, i ∈ Cr, in the cycle time
expression (3.4) has value at most B. The set Hj corresponds to those
machines with partial waiting whose indices are strictly less than j.
If edge (s, j) is chosen, the value of the term in (3.4) corresponding
to machine Mq, where q is the highest index in Hj , will change. Note
that if edge (s, j) is chosen, the only terms βi, i ≤ j, i ∈ Cr, in (3.4)
are βi, i ∈ Hj ∪ {j}. We investigate the values of these βi terms in
(3.4) as a consequence of choosing edge (s, j):

(a) As explained above, a new term βj , corresponding to machine
Mj , will be part of (3.4). This term has value less than the lower
bound on the cycle time established in Theorem 3.2 and hence
can be ignored.

(b) The value of the term corresponding to machine Mq will change
to β

′
q(Xq, Ŷq).

(c) The values of terms corresponding to machines Mk, k ∈ Hj\{q},
will remain βk.

Thus, given a target value of B, the edge (s, j) is constructed iff each
term βi, i ∈ Hj ∪ {j}, has value at most B. The length dsj of edge
(s, j) is the amount of increase in the first term α of (3.4) if the status
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of Mj changes from full waiting to partial waiting and equals δ − pj

as explained earlier.

3. Construction of Ēr
2 (transition edges): Let i, j ∈ V r\{s, t} with

j > i. Let Hj = {l : l ∈ V̂2, i < l < j}. We consider three cases:

(a) Hj = ∅: Add edge (i, j) to Ēr
2 with length dij = δ − pj .

(b) |Hj | = 1: Let Hj = {q}. Also let X̂q = {l ∈ V̂1 : i < l < q}
and Ŷq = {l ∈ V̂1 : q < l < j}. Include edge (i, j) with length
dij = δ − pj in Ēr

2 iff β
′
q(X̂q, Ŷq) ≤ B.

(c) |Hj | ≥ 2: Let q = max{k : k ∈ Hj} and v = min{k : k ∈ Hj}.
Let Ŷq = {k : q < k < j} and X̂v = {k : i < k < v}. Add
edge (i, j) with length dij = δ − pj to Ēr

2 iff β
′
q(Xq, Ŷq) ≤ B,

β
′
v(X̂v, Yv) ≤ B, and βk ≤ B ∀ k ∈ Hj\{q, v}.

Explanation: Choosing edge (i, j) corresponds to changing the sta-
tus of machine Mj from full waiting to partial waiting. The construc-
tion step ensures that an edge (i, j), i, j ∈ V r\{s, t} with j > i, is
added to the graph Gr iff each term βk, i < k ≤ j, in (3.4) has value
at most B. If Mj changes status from full waiting to partial wait-
ing, then the terms corresponding to machines Mq and Mv change to
β

′
q(Xq, Ŷq) and β

′
v(X̂v, Yv), respectively. The terms corresponding to

machines Mk, k ∈ Hj\{q, v}, will remain βk. The explanation of the
values of βj and dij is similar to that provided in the previous step.

4. Construction of Ēr
3 (sink edges): Let j ∈ V r\{s, t} be such that

either (s, j) ∈ Ēr
1 or (i, j) ∈ Ēr

2 for some i ∈ V r\{s, t}. Let f =
max{k : k ∈ V̂2}. If j > f , then we add edge (j, t) with length djt = 0
to Ēr

3 . Otherwise, let Hj = {l : l ∈ V̂2, l > j}, q = min{k : k ∈ Hj},
and X̂q = {k : j < k < q}. We add edge (j, t) with length djt = 0 to
Ēr

3 iff β
′
q(X̂q, Yq) ≤ B and βk ≤ B ∀ k ∈ Hj\{q}.

Explanation: The existence of edge (j, t) ensures that each term
βi, i > j, i ∈ Cr, in the cycle time expression (3.4) has value at most
B. Note that edge (j, t) does not correspond to changing the status
of any machine. If j > f , then (3.4) does not contain any term
βi, i > j. Otherwise, the terms βj , j ∈ Hj appear in (3.4) and edge
(j, t) is added iff all these terms have value at most B.
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Since edge (j, t) does not correspond to changing the waiting status
of any machine, its length djt = 0.
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Figure 3.4. Graph G2 Corresponding to Chain C2 in Example 3.3.

Example 3.3, continued: We illustrate the construction above on the
graph G2 corresponding to chain C2. We assume the following data:

ε = 1, δ = 10.

The vector of processing times (276, 275, 4, 280, 286, 299, 3, 255, 5, 1, 6,
266, 2, 245, 7), where the ith entry corresponds to the processing time
pi on machine Mi.

The values of α, βi, i ∈ V2, as defined in Theorem 3.7, are as follows: α =
310, β1 = 310, β2 = 325, β4 = 330, β5 = 320, β6 = 348, β8 = 352, β12 =
362, and β14 = 312. Thus, the cycle time is T (π̂) = max{α, βi|i ∈ V2} =
362.

Consider the following instance of DQ: Does there exist a 1-unit cycle
π with T (π) ≤ 334 = B?

Since βi ≤ 334,∀i ∈ C1 ∩ V2, the graph G1 will contain only the
dummy edge (s, t). Therefore, we need to consider the shortest s-t path
problem only on the chain C2. Figure 3.4 shows the corresponding graph
G2.

Consider any s-t path s − i1 − i2 − ... − il − t in Gr. If the status
of the machines corresponding to nodes ij , j = 1, ..., l, is changed from
full waiting to partial waiting, the terms βi in Cr corresponding to the
machines with partial waiting satisfy the following: (i) the value of the
terms βk, k ≤ i1, k ∈ Cr, is at most B since the edge (s, i1) exists in Gr

(construction step 2); (ii) the value of the terms βk, k ∈ Cr, ij < k ≤
ij+1, j = 1, ..., l−1, is at most B since the edges (ij , ij+1), j = 1, ..., l−1,
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exist in Gr (construction step 3); and (iii) the value of the terms βk, k >

il, k ∈ Cr, is at most B since the edge (il, t) exists in Gr (construction
step 4). Thus, the explanations accompanying the construction steps
show that if each graph Gr, r = 1, ..., c, has an s-t path, then changing
the status of the machines corresponding to the nodes on these paths
from full waiting to partial waiting provides us with a basic cycle π with
a cycle time expression (3.4) in which all terms, except possibly the first
term α, have value at most B. We record the precise statement below.

Lemma 3.3 Consider an initial partition F = (V1, V2), where V2 = Dδ

and V1 = M\V2. For r = 1, ..., c, let ρr be an s-t path in Gr and N r

be the set of nodes in ρr. The basic cycle π corresponding to V
′
1 =

V1\{∪c
r=1N

r} and V
′
2 = M\V ′

1 satisfies βk ≤ B, ∀ k ∈ V
′
2 .

Theorem 3.12 Consider an initial partition F = (V1, V2), where V2 =
Dδ and V1 = M\V2. Given B, there exists a basic cycle π with T (π) ≤ B

iff the sum of the shortest s-t paths in graphs Gr, r = 1, ..., c, is at most
B − α.

Proof. For F , let V1 and V2 be the machines with full and partial
waiting, respectively. Consider the shortest paths ρr in Gr, r = 1, ..., c,
with respective lengths dr such that

∑c
r=1 dr ≤ B − α. Let N r be the

set of nodes in ρr. Consider the basic cycle π̄ corresponding to V
′
1 =

V1\{∪c
r=1N

r} and V
′
2 = M\V ′

1 . Note that |V ′
2 | ≥ 2. The cycle time for π̄

can be written as max{α′
,max

i∈V
′
2

β
′
i}, where α

′
= α +

∑c
r=1 dr. Since

∑c
r=1 dr ≤ B − α, we have α

′ ≤ B. By Lemma 3.3, β
′
i ≤ B, ∀i ∈ V2.

Also, as shown earlier, the new terms β
′
i, i ∈ V

′
2\V2 = ∪c

r=1N
r, are less

than the lower bound on the cycle time established in Theorem 3.2, and
hence β

′
i ≤ B, ∀i ∈ V

′
2\V2. Thus, β

′
i ≤ B, ∀i ∈ V

′
2 . Conversely, consider

the unique basic cycle π corresponding to (V
′
1 , V

′
2 ) with T (π) ≤ B. We

will construct the shortest paths ρr in Gr, r = 1, .., c, with respective
lengths dr such that

∑c
r=1 dr ≤ B − α. In chain Cr, consider the nodes

in ξr = (V
′
2\V2)∩Cr. By construction, there exists an s-t path ρr in Gr

with the nodes in ξr, in ascending order, as the intermediate nodes. Also,
the sum of the lengths of ρr is at most B − α; otherwise, by including
the nodes in ∪rCr in V2, we would obtain a basic cycle corresponding to
(V

′
1 , V

′
2 ) with T (π) > B, which is a contradiction.
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Example 3.3, continued: The shortest s-t path in G2 is s − 7 −
11 − t and has length 11 ≤ B − α = 14. Thus, DQ has a positive
answer. The new basic 1-unit cycle π̄ corresponds to V

′
1 = V1\{7, 11} =

{3, 9, 10, 13, 15} and V
′
2 = M\V ′

1 = {1, 2, 4, 5, 6, 7, 8, 11, 12, 14}. We get
α

′
= α + 11 = 321, β

′
1 = 310, β

′
2 = 325, β

′
4 = 330, β

′
5 = 320, β

′
6 =

333, β
′
7 = 37, β

′
8 = 319, β

′
11 = 70, β

′
12 = 314, and β

′
14 = 312. Observe

that α
′
, β

′
i ≤ B = 334, ∀i ∈ V

′
2 . The cycle time T (π̄) = 333. Continuing

the binary search, it turns out that the 1-unit cycle π̄, with T (π̄) = 333,
obtained above is in fact the optimal 1-unit cycle (i.e., π∗ = π̄). Thus,
the optimal 1-unit cycle is

π∗ = (A0, A14, A15, A12, A13, A11, A8, A9, A10, A7, A6, A5, A4, A2, A3, A1).

This completes the solution of the decision problem DQ. We now describe
algorithm FindCycle that uses the solution of DQ within a standard
binary search procedure.

Algorithm FindCycle

Input: pi, i = 1, ...,m; δ; ε;Dδ = {i ∈ M : pi ≥ δ}; an Initial Partition
F = (V1, V2), where V2 = Dδ, V1 = M\Dδ; the chains Cr, r = 1, ..., c,
for F .

Step 1: Initialization: Set UB = 2(m + 1)δ + 2(m + 1)ε; LB = 2(m +
1)δ−n1δ+

∑
i∈V1

pi+2(m+1)ε; B = �LB+UB
2 �; C = {Cr : r = 1, ..., c};

π∗ = πD.

Step 2: Construct and solve the shortest path problem for each Cr ∈ C
to answer the decision question DQ for the value of B.

Step 3: If the answer to DQ is “yes”, then update π∗ to be the basic
cycle π̄ corresponding to (V

′
1 , V

′
2 ) (as defined in the proof of Theo-

rem 3.12) and set UB = B. Otherwise, let LB = B.

Step 4: If UB − LB ≥ 1, then set B = �UB+LB
2 �, and go to Step 2.

Otherwise, terminate.

Note that in Step 1, UB is initialized to 2(m+1)δ +2(m+1)ε, which
is the cycle time for the reverse cycle πD under Case 4. Therefore, in
Step 3 the answer to DQ is “yes” at least once. On termination, the
basic cycle π∗ is an optimum solution.
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To compute the complexity of algorithm FindCycle, let ur = |V r|, r =
1, ..., c. The shortest path problem on Gr(V r, Er) can be solved in time
O(u2

r) via Dijkstra’s algorithm [4]. Since
∑c

r=1 ur ≤ m, DQ can be
solved in time O(m2). Since the cycle time of an optimal 1-unit cycle π∗

satisfies 2(m+1)δ−n1δ+
∑

i∈M\Dδ
pi+2(m+1)ε ≤ T (π∗) ≤ 2(m+1)δ+

2(m+1)ε, algorithm FindCycle performs a binary search over an interval
of length at most mδ. Since all data are integral, the optimum cycle
time is an integer and hence binary search requires time O(log(mδ)).
The running time of FindCycle is thus O(m2log(mδ)). Note that we
start with the same initial partition F = (V1, V2), V2 = Dδ, V1 = M\V2,
when solving each instance of problem DQ during the binary search.

Remark 3.3 Consider a robotic cell in which the loaded travel time
(δ1) and the empty travel time (δ2) are constant between any pair of
machines with δ1 > δ2. It is easy to verify that the entire analysis
can be extended to obtain a polynomial-time algorithm for obtaining an
optimal 1-unit cycle in such robotic cells.

3.3.3 General Cases: Additive and Euclidean
Travel-Time Cells

To solve the optimal 1-unit cycle problem in additive travel-time cells
(problem RFm|(free,A,cyclic-1)|μ), Crama and van de Klundert [40] em-
ploy a concept that has been used to analyze the traveling salesman
problem: the set of 1-unit pyramidal cycles [103].

Definition 3.9 The 1-unit cycle π = (A0, Ai1 , Ai2 , . . . , Aim) is pyrami-
dal if there exists a k ∈ M such that 1 ≤ i1 < i2 < · · · < ik = m, and
m > ik+1 > ik+2 > · · · > im ≥ 1. In such a cycle, U = {i1, i2, . . . , ik}
is the set of uphill activities and D = {ik+1, ik+2, . . . , im} is the set of
downhill activities.

The permutations πU = (A0, A1, ...., Am) and πD = (A0, Am, Am−1, ...,

A1) are pyramidal, as is the permutation (A0, A2, A5, A7, A6, A4, A3, A1)
in a seven-machine cell. In an m-machine cell, there are 2m−1 pyramidal
cycles. For the proofs of Theorems 3.13 and 3.14, we refer the reader to
Crama and van de Klundert [40].

Theorem 3.13 The set of pyramidal 1-unit permutations is dominating
among the class of 1-unit cycles.
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We can now prove Theorem 3.6 from Section 3.3.1.

Proof of Theorem 3.6. Ta(πD) = max{4mδ+2(m+1)ε, max pi+4(δ+
ε)}. If Ta(πD) = max pi + 4(δ + ε), then it is optimal by Theorem 3.4.
Assume Ta(πD) = 4mδ+2(m+1)ε. The set of pyramidal cycles contains
an optimal cycle [40]. Note that activity Am is always considered to
be an uphill activity, so πD is the pyramidal cycle that corresponds to
U = {m}.

Consider a general pyramidal cycle πp �= πD, and let i, 1 ≤ i ≤ m−1,
be the smallest index of an uphill activity for cycle πp. This implies that
the form of cycle πp is either

A0AiAi+1 . . . Am . . . Ai−1Ai−2 . . . A1 or

A0Ai . . . Am . . . Ai+1Ai−1Ai−2 . . . A1.

In either case, we can easily calculate lower bounds on the durations of
the following nonoverlapping segments of the cycle:

1. From the start of activity Ai until the start of activity Ai+1: δ + 2ε
+ pi+1

2. From the start of activity Ai+1 until the start of activity Ai−1: 4δ+2ε

3. From the start of activity Ai−1 until the start of activity Ai: δ+2ε+pi

Thus, we have the following lower bound for the cycle time:

T (πp) ≥ pi + pi+1 + 6δ + 6ε ≥ 4mδ + 2(m + 1)ε = T (πD)

The result now follows immediately.

Theorem 3.14 For rational values of pi, i = 1, ...,m; δi, i = 0, ...,m; ε,
problem RFm|(free,A,cyclic-1)|μ can be solved via a dynamic program-
ming algorithm in time O(m3).

For Euclidean travel-time cells, Brauner et al. [24] show that the deci-
sion problem corresponding to the optimum 1-unit cycle problem (i.e.,
problem RFm|(free,E,cyclic-1)|μ) is NP-complete.

For no-wait cells, Levner et al. [111] develop a polynomial-time algo-
rithm for finding the minimum cycle time for Euclidean travel-time cells
(problem RFm|(no-wait,E,cyclic-1)|μ). The algorithm, described later
in Chapter 9, uses the processing times of the machines and the travel
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times of the robot to derive infeasible intervals for the cycle time. The
optimal cycle time is the smallest positive number not in these intervals.
Obviously, this algorithm can be applied to the less general cases of
additive (problem RFm|(no-wait,A,cyclic-1)|μ) and constant (problem
RFm|(no-wait,C,cyclic-1)|μ) travel times, too.

For interval robotic cells with additive travel-times (problem RFm|(in-
terval,A,cyclic-1)|μ), the robot move sequencing problem is NP-hard [41].
This implies that the problem is NP-hard for interval cells with Euclid-
ean travel-times, too (problem RFm|(interval,E,cyclic-1)|μ). No results
have been published for interval cells with constant travel time.

3.4 Calculation of Makespan of a Lot

A basic assumption in our analysis so far has been that the cell op-
erates in steady state for an infinite amount of time. Since the amount
of time required to reach steady state (starting with an empty cell) is
finite (Brauner and Finke [22]), this transient phase has no contribu-
tion toward the long-term throughput of the cell. In practice, this is
a reasonable argument for the production of high-demand items. In
some situations, however, low demand or the complexities involved in
implementing repetitive production results in small production lot-sizes.
In such cases, a steady-state behavior is typically inappropriate; the
makespan of the lot is a better measure of the production time. We
now discuss three methods for calculating the makespan of a lot. One is
graphical, the other two are algebraic.

3.4.1 A Graphical Approach

Herrmann et al. [83] use a directed acyclic graph to calculate a lot’s
makespan. Each node represents either the robot’s movement or a ma-
chine’s processing of a part. A node is labeled with the time it requires.
Arcs indicate precedence constraints: (j, k) ∈ A if action j must precede
action k. For example, there is an arc originating at the node represent-
ing activity A1 (labeled δ+2ε) whose destination is the node representing
processing on M2 (labeled p2). In total, there are l nodes for each activ-
ity, where l is the lot size. The total time needed to process a lot equals
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Figure 3.5. Portion of Graph to Calculate Makespan of a Lot Using Cycle

(A0, A2, A3, A1).

the length of the network’s longest path, called the critical path. This
path is found via a dynamic programming algorithm. An example of a
portion of such a graph for cycle (A0, A2, A3, A1) is in Figure 3.5.

This formulation is very useful for sensitivity analysis. The effect of
an increase in the time of an operation (either a processing time or a
movement time) depends on the size of the increase and whether that
operation is on the critical path. If it is not on the critical path, an
increase may have no effect on the makespan. However, a large enough
increase may put the operation onto the critical path. Thus, the effect
of changing one activity is a nondecreasing piecewise linear function.

3.4.2 Algebraic Approaches
Wood [159] calculates a semiconductor lot’s total processing time by

using two parameters. The first is the incremental lot cycle time t, which
is defined as the average increase in the lot cycle time that results from a
lot size increase of one wafer. The fixed time T represents the lot setup
time that is independent of the lot size. If the lot size is l, then a lot’s
total processing time is CT = T + lt.

The cell’s throughput is often improved by using multiple input de-
vices, which are called cassette ports in this implementation. If there are
nL such ports and each holds a lot, then, by Little’s [113] formula, the
throughput is

μ =
nLl

T + lt
.

This assumes that the cell’s performance is constrained by the input
supply. If not, then μ = 1/t [159].
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The previous two methods find a lot’s total processing time by as-
suming that the cell is in steady state throughout its entire processing.
We now examine a more realistic model by Perkinson et al. [128] that
accounts for the times that the cell is not in steady state.

A lot’s total processing includes five stages: loading the parts to be
processed into the robotic cell (Tload), transition from start into steady
state (TA), steady state (TS), processing the final parts (TB), and un-
loading the completed parts (Tunload). Thus, the expression for the total
lot makespan is TL = Tload + TA + TS + TB + Tunload. Here, Tload and
Tunload are given constants. TS = FP (l − m + 1), where l is the lot size
and FP is the fundamental period, i.e., the steady state per unit cycle
time. The times for the transition periods are

TA = z(p + 2δ) +
m−1∑

i=z+1

2iδ,

TB = z(p + 4δ) +
m−1∑

i=z+1

2(i + 1)δ − 3δ,

where p is the processing time for each machine, δ is the travel time
between any two machines (note that ε = 0 in this model), and z =
min{m−1, �((p/δ)+2)/2�} represents the maximum number of machines
that can be in use before the processing speed becomes a bottleneck.

3.5 Quality of 1-Unit Cycles and
Approximation Results

Having found optimal 1-unit cycles for problems RFm|(free,A,cyclic-
1)|μ and RFm|(free,C, cyclic-1)|μ, a question naturally arises: “Is an
optimal 1-unit cycle superior to every non-trivial k-unit cycle, k ≥ 2?”
Sethi et al. [142] prove this to be true for RF2|(free,A,cyclic-1)|μ and
conjectured it to be so for m ≥ 3. The attraction of this possibility
is obvious: 1-unit cycles are the easiest to understand, analyze, and
control. If they also have the highest throughput, there is no reason to
consider the more complex and more numerous multi-unit cycles.

For RF3|(free,A,cyclic-1)|μ, Crama and van de Klundert [42] and
Brauner and Finke [20] each prove that the conjecture is true. The con-
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jecture also holds for RF3|(free,C,cyclic-1)|μ. However, the conjecture
does not hold for RF4|(free,A,cyclic-1)|μ; Brauner and Finke [18, 22]
provide a counterexample. For RF4|(free,C,cyclic-1)|μ, consider the cell
with the following data [45]: p1 = 22, p2 = 1, p3 = 1, p4 = 22, δ = 4, ε =
0. The best 1-unit cycle is (A0,A4,A3,A1,A2); the cycle time is 39. The
best 2-unit cycle is (A0,A4,A3,A1,A0,A4,A2,A3,A1,A2), whose per unit
cycle time is 38. Note that although this 2-unit cycle dominates all 1-
unit cycles and all other 2-unit cycles in this cell, we cannot assert its
optimality over all k-unit cycles, k ≥ 1. By Theorem 3.2, the lower
bound on the optimal value is 34, so there may be a k-unit cycle, k ≥ 3,
that has per unit cycle time less than 38.

Similar results for RFm|(no-wait,A,cyclic-1)|μ and RFm|(interval,A,
cyclic-1)|μ are summarized in Crama et al. [39].

Even though 1-unit cycles do not dominate, their simplicity still makes
them attractive in practice. We have seen that the reverse cycle πD is
optimal under certain conditions. Crama and van de Klundert [40] show
that πD is a 2-approximation for RFm|(free,A,cyclic-1)|μ (i.e., the cycle
time of πD is at most twice that of an optimal 1-unit cycle). Brauner
and Finke [21] show that if the optimum per unit cycle time over all
k-unit cycles is Topt, then

Ta(πD) ≤
(

2 − δ1 + δm+1

δ1 + δm+1 +
∑m

i=2 δi

)

Topt ≤ 2Topt.

For RFm|(free,C,cyclic-1)|μ, we have

Tc(πD) ≤
(

2(m + 1)(δ + ε)
(m + 2)δ + 2(m + 1)ε

)

Topt ≤
(

2(m + 1)δ
(m + 2)δ

)

Topt ≤ 2Topt.

3.5.1 Additive Travel-Time Cells
In this section, we develop a 1.5-approximation algorithm for the op-

timal per unit cycle time for additive travel-time cells. We begin with
some elementary results, discuss a dominant subclass of 1-unit cycles,
present the algorithm, and prove that it provides the stated bound. We
start by establishing a lower bound for the per unit cycle time. The
following result extends Theorem 3.2, and is based on results by Crama
and van de Klundert [40].
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Theorem 3.15 For any k-unit (k ≥ 1) cycle π in an additive travel-
time cell, the per unit cycle time Ta(π)/k satisfies

Ta(π)
k

≥ max

{

2(m + 1)(ε + δ) +
m∑

i=1

min{pi, δ}, max
1≤i≤m

pi + 4δ + 4ε

}

Proof. We begin by addressing the first argument. Each unit pro-
duced requires that m +1 activities be performed. Each activity Ai, i =
0, . . . ,m, includes unloading machine Mi and loading machine Mi+1, for
a total of 2(m + 1)ε per part. Each activity Ai also includes a loaded
forward robot movement that requires δ time, for a total of (m + 1)δ.
Furthermore, because the robot’s final location M0 is the same as its
initial location, each forward movement across the interval (Mi,Mi+1)
must have a later corresponding backward movement across (Mi,Mi+1).
This accounts for an additional (m + 1)δ.

The summation term in the first argument represents the time be-
tween activities. After the robot completes activity Ai, i = 0, . . . ,m−1,
by loading machine Mi+1, it either waits at machine Mi+1 for the du-
ration of its processing (pi+1), or it moves to another machine (δ, at
minimum) to begin another activity. The minimum movement after
activity Am is counted in the first term.

The second argument represents the minimum time between succes-
sive loadings of a given machine Mi: processing (pi), activity Ai (δ+2ε),
move from Mi+1 to Mi−1 (2δ), and activity Ai−1 (δ + 2ε).

Recall that Dδ = {i : pi ≥ δ}, Dc
δ = M \Dδ, and |Dδ| is the cardinality

of Dδ. For convenience, we denote the per unit cycle time of an optimal
k-unit cycle (k ≥ 1) in an additive travel-time cell by Ωa. Using this
notation, Theorem 3.15 can be restated as

Ωa ≥ max{2(m + 1)ε + [2(m + 1) + |Dδ|]δ +
∑

i∈Dc
δ

pi,

max
1≤i≤m

pi + 4δ + 4ε}. (3.11)

The following two results are based on Sethi et al. [142], Crama and van
de Klundert [40], and Dawande et al. [46].

Lemma 3.4 If max1≤i≤m pi +4δ +4ε ≥ 4mδ +2(m+1)ε, then πD is an
optimal k-unit cycle, k ≥ 1.
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Lemma 3.5 If pi + pi+1 ≥ (4m − 6)δ + 2(m − 2)ε, i = 1, ...,m − 1, then
πD is an optimal k-unit cycle, k ≥ 1.

3.5.1.1 Pyramidal Cycles

As described in Section 3.3.3, a pyramidal cycle partitions M into two
sets: the indices of uphill activities denoted by U = {0, i1, i2, . . . , ik = m}
and the indices of downhill activities denoted by D = {ik+1, ik+2, . . . , im}.
πU and πD are pyramidal, as is (A0, A2, A5, A7, A6, A4, A3, A1). Given
the dominance of pyramidal cycles (Theorem 3.13), it is only natural
that they be considered when seeking a cycle that provides an efficient
bound for the optimum per unit cycle time.

An expression for the cycle time of a pyramidal cycle πp can be derived
as follows. Each of the m + 1 activities has one unloading and one
loading, so T l

a = 2(m+1)ε. During the uphill portion, the robot performs
activities A0, Ai1 , Ai2 , . . . , Am, 0 < i1 < i2 < · · · < m. Hence, the
robot travels once the path from M0 to Mm+1 requiring time (m + 1)δ,
no matter how many uphill activities there are. During the downhill
portion, the robot travels from Mm+1 to M0, which requires a minimum
time of (m + 1)δ. For each activity Ai during the downhill portion, the
robot travels from Mi to Mi+1, then from Mi+1 to Mi, before continuing
to M0. Hence, each downhill activity adds 2δ to the cycle’s movement
time. Thus, the total time for robot moves is Tm

a = 2(m + 1 + |D|)δ.
The robot will have full waiting at Mi if and only if i − 1 ∈ U and

i ∈ U . We designate the set of indices of such machines by U ′ = {i :
i − 1 ∈ U , i ∈ U}. Partial waiting can occur at all other machines.
Therefore,

Ta(πp) = 2(m + 1)ε + 2(m + 1 + |D|)δ +
∑

i∈U ′

pi +
∑

i∈M\U ′

wi. (3.12)

3.5.1.2 A 1.5-Approximation Algorithm

We now show that repeating an optimal 1-unit cycle k times is a 1.5-
approximation of an optimal k-unit cycle. We do this by developing an
O(n) algorithm that finds a 1-unit cycle that can be shown to provide a
1.5-approximation. In this algorithm, the first three steps check for cases
in which an optimal cycle is known. Step 4 considers the case in which,
by inequality (3.11), πD provides a bound of 1.5. For the remaining case,
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we construct a special pyramidal cycle that has a total partial waiting
time of zero.

Algorithm ACell

Input: The data for an additive travel-time simple robotic cell: m, δ,

ε, pi, i = 1, . . . ,m.

Step 1: If pi ≤ δ, ∀i, then output πU = (A0, A1, . . . , Am). Stop.

Step 2: If max1≤i≤m pi + 4δ + 4ε ≥ 4mδ + 2(m + 1)ε, then output
πD = (A0, Am, Am−1, . . . , A2, A1). Stop.

Step 3: If pi + pi+1 ≥ (4m − 6)δ + 2(m − 2)ε, i = 1, . . . ,m − 1, then
output πD. Stop.

Step 4: If |Dδ| ≥ 2
3m, then output πD. Stop.

Step 5: If |Dδ| < 2
3m, then partition the indices 1, 2, . . . ,m into two

sets, U and D, as follows:

a) Place m into U .

b) If pm ≥ δ or pm−1 ≥ δ, then place m − 1 in D. Otherwise, place
m − 1 in U .

c) For i = m − 2,m − 3, . . . , 2, 1:

If pi ≥ δ, then place i in D.

Else if i + 1 ∈ D and placing i into U may cause Mi+1 to have
positive partial waiting, i.e., if

pi+1 > 2(m − i)δ + 2(m − i − 1)ε +
m∑

j = i + 2

j ∈ U ′

pj +
m−1∑

j = i + 2

j ∈ D

2δ, (3.13)

then place i in D.

Otherwise, place i in U .

Loop

Step 6: Form pyramidal cycle πp by making the activities correspond-
ing to the elements of U uphill, and those corresponding to the ele-
ments of D downhill. Output πp. Stop.
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Steps 1, 2, 3, and 4 compare pi, i = 1, . . . ,m, or pi + pi+1, i =
1, . . . ,m−1, to a constant, so each requires time O(m). Step 5 compares
pi to a constant and pi+1 to a sum, so it requires time O(m). Step 6 or-
ders the m activities according to the algorithm for forming pyramidal
cycles, so it requires time O(m). Therefore, algorithm ACell requires
time O(m).

Example 3.4 We illustrate Step 5. m = 10, δ = 2, ε = 1. The vector
of processing times is p = (1, 20, 1, 1, 50, 1, 1, 1, 12, 8). Observe that

p10 > δ ⇒ A9 ∈ D
p9 = 12 > 4δ + 2ε ⇒ A8 ∈ D

p7 < δ, p8 < 8δ + 4ε ⇒ A7 ∈ U
p6 < δ, p7 < 12δ + 6ε ⇒ A6 ∈ U

p5 > δ ⇒ A5 ∈ D
p5 = 50 > 16δ + 10ε + p7 ⇒ A4 ∈ D

p3 < δ, p4 < 18δ + 10ε + p7 ⇒ A3 ∈ U
p2 > δ ⇒ A2 ∈ D

p1 < δ, p2 = 20 < 24δ + 16ε + p7 ⇒ A1 ∈ U

Therefore, πp = (A0, A1, A3, A6, A7, A10, A9, A8, A5, A4, A2) and its cycle
time is Ta(πp) = 22ε + 2(11 + 5)δ + p1 + p7 = 88.

Theorem 3.16 Algorithm ACell is a 1.5-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5-approximation for an optimal multi-unit cyclic solution.

Proof.

a) From inequality (3.11), if pi ≤ δ, ∀i, then Ωa ≥ 2(m + 1)(δ + ε) +
∑m

i=1 pi = Ta(πU ). Therefore, πU is optimal.

b) If max1≤i≤m pi + 4δ + 4ε ≥ 4mδ + 2(m + 1)ε, then by Lemma 3.4,
πD is optimal.

c) If pi + pi+1 ≥ (4m − 6)δ + 2(m − 2)ε, i = 1, . . . ,m − 1, then by
Lemma 3.5, πD is optimal.
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d) We can now assume that max1≤i≤m pi +4δ +4ε < 4mδ +2(m+1)ε.
If |Dδ| ≥ 2

3m, then by inequality (3.11),

Ωa ≥
[

2(m + 1) +
2
3
m

]

δ + 2(m + 1)ε +
∑

i∈Dc
δ

pi

≥ 8
3
mδ + 2(m + 1)ε.

Hence,

Ta(πD) = 4mδ + 2(m + 1)ε ≤ 4mδ + 2(m + 1)ε
8
3mδ + 2(m + 1)ε

Ωa

≤ 1.5Ωa. (3.14)

e) For |Dδ| < 2
3m, we first derive an expression for Ta(πp).

Claim: Either pyramidal cycle πp is optimal, or it has no partial
waiting:

∑
i∈M\U ′ wi = 0.

Proof of Claim.

i) If i ∈ D and i − 1 ∈ D, then wi > 0 implies that Ta(πp) =
pi + 4δ + 4ε, in which case πp is optimal by Theorem 3.15.

ii) By construction, i ∈ U implies that either pi ≤ δ or i = m.
Hence, if i ∈ U and i − 1 ∈ D, then either wi = 0 or wm > 0.
If wm > 0, then Ta(πp) = pm + 4δ + 4ε, so πp is optimal by
Theorem 3.15.

iii) If i ∈ U and i − 1 ∈ U , then they are consecutive activities, so
Mi has full waiting equal to pi.

iv) Consider now the case in which i ∈ U and i + 1 ∈ D. By the
three previous cases, for the largest i + 1 in this case, there is no
positive partial waiting between the loading of Mi+1 and when
the robot returns to unload it. We first prove that wi+1 > 0
only if inequality (3.13) is true, which contradicts membership
in this case. We do this by showing that the right-hand side of
inequality (3.13) represents the time between the loading of Mi+1

and when the robot returns to unload it in this case.

After Mi+1 is loaded by Ai, the robot completes the uphill por-
tion of the cycle by traveling to Mm+1, performing other uphill
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activities along the way. This movement time is (m− i)δ. It then
begins the downhill portion by traveling from Mm+1 to Mi+1, for
a movement time of (m−i)δ. In addition, each activity performed
during the downhill portion causes the robot to travel an addi-
tional 2δ (this amount is represented in the fourth term). Because
πp is pyramidal, between Ai and Ai+1, the robot performs ac-
tivities Ai+2, Ai+3, . . . , Am−1, Am, though not necessarily in this
order, since, most likely, some will be uphill and some will be
downhill. Each activity requires one loading and one unloading:
2(m − i − 1)ε. During the uphill portion of this sequence, the
robot will have full waiting at Mj if and only if j ∈ U ′ (third
term). Therefore, wi+1 > 0 only if inequality (3.13) is true.

Hence, by construction, for the next such machine, say Mi′+1,
there is no positive partial waiting between the loading of Mi′+1

and the time that the robot returns to unload it. Thus, if pi′+1

does not satisfy inequality (3.13), wi′+1 = 0. It is easy to see
that this argument can be repeatedly applied to the remaining
machines Mj+1 for which j ∈ U , j + 1 ∈ D.

Thus, from equation (3.12),

Ta(πp) = 2(m + 1 + |D|)δ + 2(m + 1)ε +
∑

i∈U ′

pi.

Note that Ta(πp) ≤ Ta(πD). First observe that if D = Dδ, then

Ta(πp) ≤
2(m + 1 + |Dδ|)δ + 2(m + 1)ε +

∑
i∈U ′ pi

[2(m + 1) + |Dδ|]δ + 2(m + 1)ε +
∑

i∈Dc
δ
pi

Ωa

≤ 2(m + 1 + |Dδ|)δ
[2(m + 1) + |Dδ|]δ

Ωa ≤ 1.25Ωa,

since this expression is increasing in |Dδ| and |Dδ| < 2
3m.

If D\Dδ �= ∅, then let i′ be the smallest element of D\Dδ. This implies
that i′ +1 satisfies inequality (3.13). Since each element of D\Dδ has
a corresponding element of Dδ ⊂ D that satisfies inequality (3.13)
(except for m − 1 if pm−1 < δ and pm > δ), the number of elements
in D that are greater than i′ +1 is at least 2(|D\Dδ| − 1)− 1. Hence,
m �∈ D implies that i′ + 1 ≤ m − 2(|D\Dδ| − 1) − 2, so i′ ≤ m −
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2(|D\Dδ| − 1) − 3 = m − 2|D\Dδ| − 1. Therefore, inequality (3.13)
becomes

pi′+1 > 2(m − i′)δ + 2(m − i′ − 1)ε +
m−1∑

j = i + 2

j ∈ D

2δ +
m∑

j = i + 2

j ∈ U ′

pj

≥ (4|D\Dδ| + 2)δ + 4|D\Dδ|ε + 4(|D\Dδ| − 1)δ

+
m∑

j = i + 2

j ∈ U ′

pj .

Recall that Ωa ≥ pi′+1 + 4δ + 4ε. Thus,

Ωa ≥ 8(|D\Dδ| + 2)δ + 4(|D\Dδ| + 1)ε +
m∑

j = i + 2

j ∈ U ′

pj

≥ 8(|D\Dδ| + 2)δ + 4(|D\Dδ| + 1)ε.

If |D\Dδ| ≥ m
3 , then Ωa ≥ (8

3m + 2)δ +
(

4
3m + 4

)
ε, so

Ta(πp) ≤ Ta(πD) ≤ 4mδ + 2(m + 1)ε
8
3mδ + (4

3m + 2)ε
Ωa ≤ 1.5Ωa.

If |D\Dδ| < m
3 , then

Ta(πp) ≤
2(m + 1 + m

3 + |Dδ|)δ
2(m + 1)δ + |Dδ|δ

Ωa.

This expression is increasing in |Dδ| and |Dδ| < 2
3m, so

Ta(πp) ≤
4mδ
8
3mδ

Ωa = 1.5Ωa.

By combining these results with inequality (3.14), we see that algo-
rithm ACell provides the proposed bound.

We now show that the algorithm provides an asymptotically tight
bound. Let m = 3k, k ∈ Z

+, ε = 0, p3j = 0, and p3j−1 = p3j−2 =
2δ, j = 1, 2, . . . , k. Obviously, |Dδ| = 2k. Define the pyramidal cycle π1

by U = {3j, 3j − 1 : j = 1, . . . , k} and D = {3j − 2 : j = 1, . . . , k}. Then
Ta(π1) = 2(3k + 1)δ + 2kδ = (8k + 2)δ = Ωa, so π1 is optimal. Since
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|Dδ| ≥ 2
3m, algorithm ACell will yield πD as the heuristic solution in

Step 3, and its cycle time is

Ta(πD) = 4mδ + 2(m + 1)ε = 4(3k)δ ≤ 12k
8k + 2

Ωa → 1.5Ωa as k → ∞.

Corollary 3.2 In an additive travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times is a 1.5-
approximation to an optimal k-unit cyclic solution, k ≥ 1.

Remark 3.4 For the more general additive travel-time case in which
d(Mi,Mi+1) = δi, i = 0, . . . ,m, Crama and van de Klundert [40] show
that πD provides a 2-approximation to the optimum per unit cycle time.

For additive travel-time cells, Geismar et al. [62] improve on the result
of algorithm ACell by providing a polynomial-time cyclic solution that
is a 10/7-approximation to an optimum cyclic solution. We discuss this
algorithm next.

3.5.1.3 A 10/7-Approximation for Additive Cells

We start by establishing another lower bound for the per unit cycle
time. Consider the set D2 = {i : pi ≥ 2δ}. Thus, Dc

2 = {i : pi < 2δ}.
Obviously, D2 ⊆ Dδ. We define a run of length 	 to be any maximal
sequence of 	 consecutive indices that belong to D2, i.e., (j, j + 1, j +
2, . . . , j+	−1) is a run with length 	 if {j, j+1, j+2, . . . , j+	−1} ⊆ D2,
and {j − 1, j + 	} ∩ D2 = ∅. The number of runs of length 	 in D2 is
denoted r�, so |D2| =

∑m
�=1 	r�, and the total number of runs is

∑m
�=1 r�.

In the following theorem, the amount that i ∈ D2 contributes to a
lower bound on the optimum per unit cycle time depends on the size 	

of the run to which i belongs. This lower bound includes 2(m+1)(δ + ε)
plus the following: if a run has length 	 and 	 is even, then the run’s
elements require a total extra time of 	δ. If 	 is odd, then the run’s
elements require a total extra time of (	+1)δ. Before we state and prove
the theorem, the examples below provide motivation for the result.

Example 3.5 Consider a four-machine cell with p1 = p3 = 2δ, p2 =
p4 = 0, ε = 0. According to Theorem 3.2, Ωa ≥ 12δ. However, The-
orem 3.17 states that Ωa ≥ 14δ. There are several 1-unit cycles that
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achieve this latter optimum value: (A0, A2, A4, A3, A1), (A0,A1,A2,A3,
A4), (A0, A1, A2, A4, A3), (A0, A2, A3, A4, A1).

Example 3.6 For the five-machine cell with p2 = p3 = p4 = 2δ, p1 =
p5 = 0, ε = 0, we have Ωa ≥ 15δ from Theorem 3.2, and Ωa ≥ 16δ from
Theorem 3.17. Again, several 1-unit cycles achieve this latter optimum
value: (A0, A1, A3, A5, A4, A2), (A0, A1, A4, A5, A3, A2).

Theorem 3.17 For any k-unit (k ≥ 1) cycle π in an additive travel-
time cell, the per unit cycle time T (π)/k satisfies

T (π)
k

≥ 2(m + 1)(δ + ε) + 2
m∑

�=1

⌊
	 + 1

2

⌋

r�δ. (3.15)

Proof. Each unit produced requires that m+1 activities be performed.
Each activity Ai, i = 0, . . . ,m, includes unloading machine Mi and load-
ing machine Mi+1, for a total of 2(m + 1)ε per part. Each activity Ai

also includes a loaded forward robot movement from Mi to Mi+1 that
requires δ time, for a total of (m+1)δ. Furthermore, because the robot’s
final location M0 is the same as its initial location, each forward move-
ment across the interval (Mi,Mi+1) must have a later corresponding
backward movement across (Mi,Mi+1). This accounts for an additional
(m + 1)δ.

We now justify the second term of inequality (3.15). For 	 even, since
D2 ⊆ Dδ, Theorem 3.2 implies that a run of 	 machines in D2 adds
2�(	 + 1)/2�δ = 	δ to the minimum per unit cycle time. For 	 odd, we
first consider a run of length 1, then extend the result to larger runs.
Let i − 1 ∈ Dc

2, i ∈ D2, i + 1 ∈ Dc
2, where Dc

2 = M\D2. We have the
following cases for activity subsequences within a k-unit cycle:

1) For any occurrence of the subsequence (Ai−1, Ai), the robot has full
waiting at machine Mi for duration pi ≥ 2δ.

2) For any occurrence of the subsequence (A0, Aj1 , Aj2 , . . . , Ajq , Ai)
within a k-unit cycle, where js ≥ i + 1 for some s ∈ {1, . . . , q}
and ju �= i, ∀u ∈ {1, . . . , q}, the robot twice crosses the interval
(Mi,Mi+1), once forward and once reverse, before performing Ai.
This adds 2δ to the cycle time in addition to that added by the per-
formance of activity Ai and its corresponding backward movement
across the interval (Mi,Mi+1).



76 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

3) For any occurrence of the subsequence (A0, Aj1 , Aj2 , . . . , Ajq , Ai),
js ∈ {0, 1, . . . , i− 1},∀s ∈ {1, . . . , q} and jq �= i− 1, the robot crosses
the interval (Mi−1,Mi) without a part immediately before executing
activity Ai, which requires additional time δ. Before the next instance
of Ai, the robot must perform Ai−1, so it must return to Mi−1. This
requires crossing (Mi−1,Mi) in the reverse direction, which requires
at least one more extra δ.

Therefore, a run of length 1 adds an extra 2δ to the minimum per unit
cycle time.

Notice that the argument that assigns an extra 2δ to an element i of
a one-machine run uses robot travel either over the interval (Mi−1,Mi)
or (Mi,Mi+1). Thus, it cannot be applied to consecutive machines of a
multi-machine run. However, the argument can be applied to n consec-
utive one-machine runs. Consider the following sequence of machines:
2i ∈ D2, i = a, a + 1, . . . , a + n − 1; 2i − 1 ∈ Dc

2, i = a, a + 1, . . . , a + n.
See Figure 3.6.

M2a−1 M2a M2a+1 M2a+2 M2(a+n)−2 M2(a+n)−1

element of D2

element of Dc
2

Figure 3.6. n Consecutive One-Machine Runs.

Here, the machines M2a,M2(a+1) . . . ,M2(a+n−1) form n consecutive
one-machine runs, which together add 2nδ to the minimum per unit cycle
time. Because increasing a machine’s processing time cannot reduce the
cycle time for a given cycle, a run of 2n − 1 machines must add as
much time to the minimum per unit cycle time as do n consecutive one-
machine runs. Therefore, a run of 2n − 1 machines adds at least 2nδ to
the minimum per unit cycle time. If we let 	 = 2n − 1, it follows that
a run of 	 machines in D2 adds 2�(	 + 1)/2�δ to the minimum per unit
cycle time.

Algorithm ACellnew provides a cyclic solution whose per unit cycle
time is within a factor of 10/7 of the optimum per unit cycle time. Its
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goal is to create a pyramidal cycle with a maximal number of uphill
activities, no full waiting greater than or equal to 2δ, and no positive
partial waiting. The first two steps check for cases in which an optimal
cycle is known. Afterward, Steps 3, 4, and 5 each loop through the
indices of M . Step 3 ensures that there is no full waiting greater than
or equal to 2δ: if pi ≥ 2δ, then at least one of i and i − 1 must be in
D. Step 4 moves any element of U whose corresponding machine could
have positive partial waiting into D. For i ∈ D and i − 1 ∈ U , if Mi

could have positive partial waiting, then Step 5 moves i − 1 to D.

Algorithm ACellnew

Input: The data for an additive travel-time simple cell: m, δ, ε, pi, i =
1, . . . ,m.

Step 1: If pi ≤ δ, ∀i, then output πU = (A0, A1, . . . , Am). Stop.

Step 2: If max1≤i≤m pi + 4δ + 4ε ≥ 4mδ + 2(m + 1)ε, or if pi +
pi+1 ≥ (4m − 6)δ + 2(m − 2)ε, i = 1, . . . ,m − 1, then output πD =
(A0, Am, Am−1, . . . , A2, A1). Stop.

Step 3: Divide the indices 1, 2, . . . ,m into two sets U and D such that
the resulting pyramidal cycle πp has no machine with full waiting
greater than or equal to 2δ and a maximal number of indices are in
U .

a) U = {0,m}, D = ∅.
b) For i = 1, . . . ,m − 1:

If (pi ≥ 2δ and i − 1 ∈ U), then place i into D.

Else place i into U .

Loop

c) If (m − 1 ∈ U and pm ≥ 2δ), then place m − 1 into D.

Step 4: Ensure that no machine corresponding to an element of U has
positive partial waiting.
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For i = 2, . . . ,m − 1:

If i ∈ U and i− 1 ∈ D, and leaving i in U may cause Mi to have
positive partial waiting, i.e., if

pi > 2iδ + 2(i − 1)ε +
i−2∑

j = 1

j ∈ U ′

pj +
i−2∑

j = 1

j ∈ D

2δ, (3.16)

then place i into D.

Loop

Step 5: Improve the partition to avoid positive partial waiting at the
machines in D (i.e., wi = 0,∀i ∈ D).

For i = m − 2,m − 3, . . . , 1:

If i ∈ U and i + 1 ∈ D and

pi+1 > 2(m − i)δ + 2(m − i − 1)ε +

+
m∑

j = i + 2

j ∈ U ′

pj +
m−1∑

j = i + 2

j ∈ D

2δ, (3.17)

then place i into D.

Loop

Step 6: Form pyramidal cycle πp by making the activities correspond-
ing to the elements of U uphill, and those corresponding to the ele-
ments of D downhill. Output πp. Stop.

Steps 1 and 2 compare pi, i = 1, . . . ,m, to a constant, so each requires
time O(m). Steps 3, 4, and 5 each loop once through the m machines.
In each loop, pi is compared to a constant or a sum, which requires time
O(m). Step 6 orders the m activities according to the algorithm for
forming pyramidal cycles, so it requires time O(m). Therefore, algorithm
ACellnew requires time O(m).

Example 3.7 We illustrate Steps 3, 4, and 5. m = 14, δ = 2, ε = 1.
The vector of processing times is

p = (5, 7, 10, 30, 15, 3, 12, 20, 1, 38, 2, 18, 1, 7).
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Step 3 operates as follows:

p1 ≥ 2δ ⇒ 1 ∈ D p8 ≥ 2δ, 7 ∈ D ⇒ 8 ∈ U ,

p2 ≥ 2δ, 1 ∈ D ⇒ 2 ∈ U p9 < 2δ ⇒ 9 ∈ U ,

p3 ≥ 2δ, 2 ∈ U ⇒ 3 ∈ D p10 ≥ 2δ, 9 ∈ U ⇒ 10 ∈ D,

p4 ≥ 2δ, 3 ∈ D ⇒ 4 ∈ U p11 < 2δ ⇒ 11 ∈ U ,

p5 ≥ 2δ, 4 ∈ U ⇒ 5 ∈ D p12 ≥ 2δ, 11 ∈ U ⇒ 12 ∈ D,

p6 < 2δ ⇒ 6 ∈ U pm = p14 ≥ 2δ ⇒ m − 1 = 13 ∈ D,

p7 ≥ 2δ, 6 ∈ U ⇒ 7 ∈ D 14 = m ⇒ 14 ∈ U ,

so after Step 3,

U = {2, 4, 6, 8, 9, 11, 14},
D = {1, 3, 5, 7, 10, 12, 13}.

For Step 4, we examine only indices in U , other than m = 14, by using
inequality (3.16):

p2 = 7 ≤ 4δ + 2ε = 10, so 2 stays in U .
p4 = 30 > 8δ + 6ε + 2δ = 26, so 4 moves to D.
p6 = 3 ≤ 12δ + 10ε + 6δ = 46, so 6 stays in U .

Since the test value is increasing as the indices increase and each of
p8, p9, and p11 is less than 46, it follows that each of the indices 8, 9,
and 11 stays in U . After Step 4,

U = {2, 6, 8, 9, 11, 14},
D = {1, 3, 4, 5, 7, 10, 12, 13}.

For Step 5, we use inequality (3.17) to examine only indices in D whose
predecessors are in U :

p3 = 10 ≤ 24δ + 22ε + p9 + 12δ = 95, so 2 stays in U ,
p7 = 12 ≤ 16δ + 14ε + p9 + 6δ = 59, so 6 stays in U ,
p10 = 38 > 10δ + 8ε + 4δ = 36, so 9 moves to D,
p12 = 18 > 6δ + 4ε + 2δ = 20, so 11 moves to D.

After Step 5,

U = {2, 6, 8, 14},
D = {1, 3, 4, 5, 7, 9, 10, 11, 12, 13}.
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Therefore,

πp = (A0, A2, A6, A8, A14, A13, A12, A11, A10, A9, A7, A5, A4, A3, A1),

and T (πp) = 30ε + 2(15 + 10)δ = 130.

Theorem 3.18 Algorithm ACellnew is a 10/7-approximation algorithm
for the optimum per unit cycle time, and this bound is tight. Conse-
quently, we have a 10/7-approximation for an optimal multi-unit cyclic
solution.

Proof. From inequality (3.11), if pi ≤ δ, ∀i, then Ωa ≥ 2(m + 1)(δ +
ε) +

∑m
i=1 pi = T (πU ). Therefore, πU is optimal. If max1≤i≤m pi +

4δ + 4ε ≥ 4mδ + 2(m + 1)ε, then by Corollary 3.4, πD is optimal. If
pi + pi+1 ≥ (4m− 6)δ + 2(m− 2)ε, i = 1, . . . ,m− 1, then πD is optimal
by Theorem 3.6.

The strategy of the remainder of the proof is summarized in four parts
as follows:

1. Show that πp has no positive partial waiting, unless it is optimal.

2. Find an instance for which T (πp)/Ωa is maximal.

3. Prove that T (πp)/Ωa ≤ 10/7 for this instance.

4. Show that the bound is tight.

Part 1 of the proof is established by the following claim:
Claim: Either pyramidal cycle πp is optimal, or it has no partial waiting:
∑

i∈M\U ′ wi = 0.
Proof of Claim.

i) If i ∈ U and i − 1 ∈ U , then they are consecutive activities, so Mi

has full waiting equal to pi.

ii) Suppose i ∈ U and i − 1 ∈ D. After machine Mi is loaded during
activity Ai−1, the robot travels to M0 and then back to Mi, which
requires 2iδ time. During the downhill portion of this trip, the ro-
bot performs |{j ∈ D : 1 ≤ j ≤ i − 2}| activities, each of which
requires 2δ movement time. If an uphill activity Aj has full waiting,
then j ∈ U ′, and the robot waits for time pj . Because πp is pyra-
midal, between machine Mi’s loading and unloading, i − 1 activities
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(A0, A1, . . . , Ai−2) are performed, each requiring 2ε for loading and
unloading. Therefore, to have positive partial waiting at Mi, pi must
satisfy inequality (3.16), in which case Step 4 of ACellnew moves i to
D.

iii) Consider now the case in which i ∈ U , i+1 ∈ D. We first prove that
wi+1 > 0 only if inequality (3.17) is true. We do this by showing that
the right-hand side of inequality (3.17) represents the time between
the loading of Mi+1 and when the robot returns to unload it in this
case.

After Mi+1 is loaded by Ai, the robot completes the uphill portion
of the cycle by traveling to Mm+1, performing other uphill activities
along the way. This movement time is (m − i)δ. It then begins the
downhill portion by traveling from Mm+1 to Mi+1, for a movement
time of (m − i)δ. In addition, each activity performed during the
downhill portion causes the robot to travel for an additional time of
2δ (this amount is represented in the fourth term of inequality (3.17)).
Because πp is pyramidal, between Ai and Ai+1, the robot performs
activities Ai+2, Ai+3, . . . , Am−1, Am, though not necessarily in this or-
der, since, most likely, some will be uphill and some will be downhill.
Each activity requires one loading and one unloading: 2(m− i− 1)ε.
During the uphill portion of this sequence, the robot will have full
waiting at Mj if and only if j ∈ U ′ (third term). Thus, if pi′+1 does
not satisfy inequality (3.17), wi′+1 = 0.

iv) Let D′ = {i : i ∈ D, i − 1 ∈ D ∪ {0}}. We show that if wi > 0
for some i ∈ D′, then T (πp) = maxi∈D′ pi + 4δ + 4ε. If wi > 0, then
the time between the completion of machine Mi’s loading and the
beginning of its unloading is pi. The time between the beginning
of its unloading and the completion of its loading is calculated as
follows: unload Mi (ε), carry part to Mi+1 (δ), load Mi+1 (ε), travel to
Mi−1 (2δ), wait (if necessary) before unloading Mi−1 (wi−1), unload
Mi−1 (ε), carry part to Mi (δ), and load Mi (ε). Therefore, T (πp) =
pi +4δ +4ε+wi−1, ∀i ∈ D′. Note that wi−1 > 0 only if i−1 ∈ D′ (by
the previous three cases) and pi−1 > pi. Hence, if pi′ = maxi∈D′ pi,
then T (πp) = pi′ + 4δ + 4ε. It follows that if wi > 0 for some i ∈ D′,
then T (πp) = maxi∈D′ pi +4δ+4ε, and πp is optimal by Theorem 3.2.
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This completes the proof of our claim.
From equality (3.12),

T (πp) = 2(m + 1 + |D|)δ + 2(m + 1)ε +
∑

i∈U ′

pi.

We now perform Part 2 of the proof by determining a case for which
T (πp)/Ωa is maximal. Because i ∈ U ′ ⇒ pi < 2δ, T (πp) is maximized by
maximizing D. To maximize the size of D, first assume that ∀i ∈ D2 that
was not placed into D by Step 3, pi is large enough so that i is placed into
D by Step 4. In addition, the processing time of the first element of each
run of elements of D2 must be large enough to satisfy inequality (3.17).
This will cause its predecessor (an element of Dc

2) to be placed into D by
Step 5 of ACellnew. Therefore, |D| ≤ |D2| +

∑m
�=1 r� =

∑m
�=1 (	 + 1)r�.

Hence, by using the bound for Ωa in Theorem 3.17, we have

T (πp) = 2(m + 1 + |D|)δ + 2(m + 1)ε +
∑

i∈U ′

pi (3.18)

≤ 2

(

m + 1 +
m∑

�=1

(	 + 1)r�

)

δ + 2(m + 1)ε +
∑

i∈U ′

pi

≤
2 (m + 1 +

∑m
�=1 (	 + 1)r�) δ + 2(m + 1)ε +

∑
i∈U ′ pi

2(m + 1)(δ + ε) + 2
∑m

�=1

⌊
�+1
2

⌋
r�δ

Ωa

=
A + 2(m + 1)ε
B + 2(m + 1)ε

Ωa,

where A = 2 (m + 1 +
∑m

�=1 (	 + 1)r�) δ+
∑

i∈U ′ pi and B = 2(m+1)δ+
2
∑m

�=1 �(	 + 1)/2� r�δ. Since r� ≥ 0, 	 = 1, ...,m; pi ≥ 0, i = 1, ...,m; ε ≥
0; and δ ≥ 0, it follows that B ≤ A. Therefore,

T (πp) ≤ A + 2(m + 1)ε
B + 2(m + 1)ε

Ωa

≤ A

B
Ωa

=
2 (m + 1 +

∑m
�=1 (	 + 1)r�) δ +

∑
i∈U ′ pi

2(m + 1)δ + 2
∑m

�=1

⌊
�+1
2

⌋
r�δ

Ωa.

The ratio is maximized by maximizing
∑m

�=1(	+1)r�/
∑m

�=1 �(	 + 1)/2�r�.
(Note that if we try to maximize by maximizing |U ′|, then (3.18) im-
plies that T (πp) ≤ (4m + 2)δ + 2(m + 1)ε, and Theorem 3.2 implies
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Ωa ≥ (3m + 2)δ + 2(m + 1)ε. Thus, T (πp) ≤ (4/3)Ωa). Therefore, each
run must be small. Because the lower bounds generated by odd-sized
runs differ from those generated by even-sized runs, we allow for both:
r1 ≥ 0, r2 ≥ 0, and r� = 0, 	 ≥ 3. Hence,

T (πp) ≤
2(m + 1)δ + 2(2r1 + 3r2)δ +

∑
i∈U ′ pi

2(m + 1)δ + 2(r1 + r2)δ
Ωa.

Since 2r1 + 3r2 ≤ m + 1 and pi < 2δ ∀i ∈ U ′, T (πp)/Ωa is maximized by
setting 2r1 + 3r2 = m + 1 and minimizing the denominator, so choose
r1 = 0 and r2 = (m + 1)/3, which implies that |D2| = (2/3)(m + 1)
(D2 = {1, 2, 4, 5, 7, 8, . . . , 3k − 2, 3k − 1}, k ∈ Z

+, where m = 3k − 1).
Before we proceed with the remainder of the proof, we provide an

example to illustrate the subsequent analysis. Let m = 8 and the vec-
tor of processing times be p = (3δ, 5δ + 2ε, 0, 17δ + 8ε, 15δ + 8ε, 0, 5δ +
2ε, 0). After Step 3, D = {1, 4, 7}. Step 4 places indices 2 and 5
into D. Indices 3 and 6 are placed into D by Step 5. Hence, πp =
(A0, A8, A7, A6, A5, A4, A3, A2, A1), and T (πp) = 32δ + 18ε. Using the
lower bounds from Theorem 3.2 and Theorem 3.17, we have Ωa ≥
max{23δ + 18ε, 24δ + 18ε} = 24δ + 18ε. Thus, for this example, the
worst-case bound is T (πp)/Ωa ≤ 4/3.

Having found set D2, we find an instance for which |D| is maximal.
Let m = 3k−1, p3j−2 ≥ 2δ, p3j−1 ≥ 2δ, j = 1, . . . , k, and p3j < 2δ, j =
1, . . . , k − 1. Specific values for p3j−2, p3j−1, and p3j will be determined
later.

Recall that from inequality (3.11), Ωa ≥ 2(m + 1)(δ + ε) + |Dδ|δ +
∑

i∈Dc
δ
pi. For the current instance, Dδ = {3j−2, 3j−1 : j = 1, . . . , k}∪

{3j : δ ≤ p3j < 2δ}. So by Theorem 3.2,

Ωa ≥ 8kδ + 6kε + |{3j : δ ≤ p3j < 2δ}|δ +
∑

3j∈Dc
δ

p3j , (3.19)

which implies that for maximizing T (πp)/Ωa, we must have pi = 0,
i ∈ Dc

2. This is easy to see. Recall that Dc
2 = {i : pi < 2δ}. Since we

want both the third and fourth terms of (3.19) to be zero, there should
be (i) no j such that δ ≤ p3j < 2δ, and (ii) no j such that 0 < p3j < δ.
Thus, imposing pi = 0, i ∈ Dc

2, the lower bound of inequality (3.19)
becomes Ωa ≥ 8kδ + 6kε.

Because either πp is optimal or max{T (πp)} = 4mδ + 2(m + 1)ε,
and Ωa ≥ max pi + 4δ + 4ε, the theorem holds for all cases in which
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4mδ +2(m+1)ε ≤ (10/7)(max pi +4δ +4ε). Therefore, for all i, we can
assume that

pi <
7
10

(4mδ + 2(m + 1)ε) − 4δ − 4ε

≤ (8.4k − 6.8)δ + (4.2k − 4)ε, (3.20)

using m = 3k − 1.
Step 3 places each index 3j−2 in D. For any index 3j−1, j = 1, . . . , k−

1, that is placed in D by Step 4, T (πp) increases by 2δ − p3j = 2δ > 0.
Hence, it appears that to maximize T (πp)/Ωa, p3j−1, j = 1, . . . , k − 1,
should be large enough to satisfy inequality (3.16). Note that increasing
the values of p3j−1, j = 1, . . . , k − 1, has no effect on Ωa.

We now show that not all indices 3j−1, j = 1, ..., k−1, can be placed
in D without violating inequality (3.20). From inequality (3.16),

p3j−1 > 2(3j − 1)δ + 2(3j − 2)ε +
3j−3∑

i = 1

i ∈ D

2δ,

because pi = 0, i ∈ U ′.
Consider the summation term. If starting at j = 1, each 3j − 1

is placed in D, then for a given j∗, we have |{i ∈ D : i ≤ 3j∗ − 3}| =
|{3j−1, 3j−2 : j ≤ j∗−1}| = 2j∗−2. This would mean that 3j∗−1 ∈ D
if

p3j∗−1 > 2(3j∗ − 1)δ + 2(3j∗ − 2)ε + 2(2j∗ − 2)δ

= (10j∗ − 6)δ + (6j∗ − 4)ε. (3.21)

However, combining this with inequality (3.20) implies

(10j∗ − 6)δ + (6j∗ − 4)ε < (8.4k − 6.8)δ + (4.2k − 4)ε, so

j∗ <
(8.4k − .8)δ + 4.2kε

10δ + 6ε
< 0.84k.

Thus, after Step 4, T (πp)/Ωa is maximized by D = {3j − 2 : 1 ≤ j ≤
k} ∪ {3j − 1 : 1 ≤ j < .84k}.

Step 5 loops backward through D, which is increased by large values
of p3j−2. Specifically, by inequality (3.17), 3j − 3, j = 2, . . . , k, is added
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to D if

p3j−2 > 2(3k − 3j + 2)δ + 2(3k − 3j + 1)ε +
3k−2∑

i = 3j − 1

i ∈ D

2δ.

To simplify the summation term of this inequality, observe that

|{i ∈ D : 3j − 1 ≤ i ≤ 3k − 2}| = �1.84k� − 2j + 1, 1 ≤ j < 0.84k

|{i ∈ D : 3j − 1 ≤ i ≤ 3k − 2}| = k − j + 1, j ≥ 0.84k.

Hence, for j ≥ 0.84k, we must have p3j−2 > (8k−8j+6)δ+(6k−6j+2)ε.
For j < 0.84k, by combining inequalities (3.17) and (3.20), we get that
index 3j−3 is moved to D only if p3j−2 > (9.68k−10j+6)δ+(6k−6j+2)ε
and

(9.68k − 10j + 6)δ + (6k − 6j + 2)ε < (8.4k − 6.8)δ + (4.2k − 4)ε, so

j >
(1.28k + 12.8)δ + (1.8k + 6)ε

10δ + 6ε
≥ 0.128k.

It follows that our approximating cycle πp is the pyramidal cycle formed
by D = {3j − 2 : 1 ≤ j ≤ k} ∪ {3j − 1 : 1 ≤ j < .84k} ∪ {3j : 0.128k <

j ≤ k − 1}, and |D| = �2.712k�.
Having specified an instance for which T (πp)/Ωa is maximal, we now

show that this ratio is at most 10/7 (Part 3 of the proof):

T (πp)
Ωa

≤ 2(m + 1)(δ + ε) + 2|D|δ
2(m + 1)(δ + ε) + |Dδ|δ

≤ 2(m + 1) + 2|D|
2(m + 1) + |Dδ|

≤ 6k + 2(2.712)k
8k

≈ 10
7

.

We now prove the tightness of the 10/7 bound (Part 4). Let m =
3k − 1, ε = 0, p3j = 0, 1 ≤ j ≤ k. p3j−2 = 2δ, 1 ≤ j ≤ 0.128k;
p3j−2 = (9.68k−10j∗+6)δ+1, 0.128 < j ≤ k; p3j−1 = (10j−6)δ+1, 1 ≤
j < 0.84k; p3j−1 = 2δ, 0.84k ≤ j ≤ k. An optimal 1-unit pyramidal
cycle π3 is defined by D = {3j − 2 : j = 1, . . . , k} and U = {3j − 1, 3j :
j = 1, . . . , k}. In π3, the partial waiting times are w2 = 1, w3k−2 = 1,
and wi = 0 otherwise. Therefore, T (π3) = 2[(3k − 1) + 1]δ + 2kδ + 2 =
8kδ + 2 → Ωa as k → ∞.
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We have seen that algorithm ACellnew defines πp by D = {3j − 2 :
1 ≤ j ≤ k} ∪ {3j − 1 : 1 ≤ j < 0.84k} ∪ {3j : j = 0.128 < j ≤ k}, and
that

T (πp) = 11.424kδ ≤ 11.424kδ

8kδ
Ωa ≈ 10

7
Ωa.

Note that algorithm ACellnew repeats a specific 1-unit cycle to prove
the 10/7 guarantee; this 1-unit cycle may not necessarily be optimal. If,
instead, we repeat an optimal 1-unit cycle, then it follows that the result
will be at least as good. Recall that an optimal 1-unit cycle in additive
travel-time cells can be obtained in polynomial time (Crama and van de
Klundert [40]). The following result is, therefore, immediate.

Corollary 3.3 In an additive travel-time cell, a k-unit cyclic solu-
tion obtained by repeating an optimal 1-unit cyclic solution k times is
a polynomial-time 10/7-approximation to an optimal k-unit cyclic solu-
tion, k ≥ 1.

We can use results from this proof to determine optimal cycles for certain
cases that are common in practice. Define the alternating pyramidal
cycle by πa = (A0, A2, A4, . . . , Am−2, Am, Am−1, Am−3, . . . , A3, A1) if m

is even and πa = (A0, A2, A4, . . . , Am−3, Am, Am−1, Am−2, Am−4, . . . , A3,
A1) if m is odd. From equality (3.12),

T (πa) =

⎧
⎪⎨

⎪⎩

(3m + 2)δ + 2(m + 1)ε +
∑m

i=1 wi, for m even,

(3m + 3)δ + 2(m + 1)ε +
∑m

i=1 wi, for m odd.

If wm > 0 and wm−1 = 0, then T (πa) = pm +4δ+4ε, so πa is optimal.
If m is odd, wm−1 > 0, and wm−2 = 0, then T (πa) = pm−1 + 4δ + 4ε,
so πa is optimal. Recall that

∑m−1
i=1 wi = 0 only if pi does not satisfy

inequality (3.16), ∀i ∈ U , and pi does not satisfy inequality (3.17), ∀i ∈
D, as we saw in the proof of Theorem 3.18. This leads to the following
corollary.

Corollary 3.4 Given an additive travel-time robotic cell with pi ≥
2δ, ∀i. The alternating cycle πa is optimal if pi ≤ (3i − 2)δ + 2(i − 1)ε,
for all even i, i ≤ m − 2, and either of the following conditions hold:

1. m is even and pi ≤ (3m − 3i + 1)δ + 2(m − i)ε, for i odd; or
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2. m is odd and pi ≤ (3m − 3i + 2)δ + 2(m − i)ε, for i odd, i �= m.

Proof. The corollary’s conditions imply that πa can have positive par-
tial waiting only at Mm, or at Mm−1 for m odd. In either case, πa is
optimal as shown above. Otherwise, the corollary’s conditions imply
that πa has no positive partial waiting, so

T (πa) =

⎧
⎪⎨

⎪⎩

(3m + 2)δ + 2(m + 1)ε, for m even,

(3m + 3)δ + 2(m + 1)ε, for m odd.

(3.22)

By Theorem 3.17,

T (π)
k

≥ 2(m + 1)(δ + ε) + 2
⌊

m + 1
2

⌋

δ

=

⎧
⎪⎨

⎪⎩

(3m + 2)δ + 2(m + 1)ε, for m even,

(3m + 3)δ + 2(m + 1)ε, for m odd.

Therefore, πa is optimal.

Corollary 3.5 Given an additive travel-time robotic cell with pi ≥
δ, ∀i and pi ≤ (3i − 2)δ + 2(i − 1)ε, for all even i, i ≤ m − 2. If m is
even and pi ≤ (3m− 3i+1)δ +2(m− i)ε, for i odd, then the alternating
cycle πa is optimal. If m is odd and pi ≤ (3m − 3i + 2)δ + 2(m − i)ε,
for i odd, i �= m, then T (πa) − Ωa ≤ δ, so πa is asymptotically optimal
as m increases to infinity.

Proof. The corollary’s conditions imply that πa can have positive par-
tial waiting only at Mm, or at Mm−1 for m odd. In either case, πa is
optimal as shown above. By Theorem 3.2, Ωa ≥ (3m + 2)δ + 2(m + 1)ε.
Hence, by equality (3.22), πa is optimal if m is even. For m odd, we have
T (πa) − Ωa ≤ δ. Therefore, T (πa)/Ωa ≤ 1 + (δ/Ωa) → 1 as m increases
to infinity. So, πa is asymptotically optimal.

3.5.2 Constant Travel-Time Cells
In this section, we develop a 1.5-approximation algorithm for the op-

timum per unit cycle time for constant travel-time cells. The following
lower bound for the per unit cycle time is based on results from Dawande
et al. [47].
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Theorem 3.19 For any k-unit cycle π, k ≥ 1, in a constant travel-time
cell, the per unit cycle time Tc(π)/k satisfies

Tc(π)
k

≥ max{2(m + 1)ε +
m∑

i=1

min{pi, δ} + (m + 2)δ,

max
1≤i≤m

pi + 3δ + 4ε}.

Proof. We show that Tc(π) ≥ 2k(m + 1)ε + k
∑m

i=1 min{pi, δ}+ k(m +
2)δ, and that Tc(π) ≥ k(max1≤i≤m pi + 3δ + 4ε). The result follows
immediately.

Consider the first argument. A k-unit cycle consists of k(m + 1)
activities. Each activity requires one loading and one unloading, so
the total time for these actions is 2k(m + 1)ε. Before each activity Ai,
i = 1, . . . ,m, time will be taken either by a robot move (δ) or a processing
time (pi). This time is represented by the second term. The robot never
has to wait for processing to complete before executing activity A0, so
the total time taken before all k A0’s is kδ; this is included in the last
term. The last term also includes the robot’s movement time while
performing the k(m + 1) activities (transfer of a part from Mi to Mi+1,
i = 0, . . . ,m), which is k(m + 1)δ.

For the second argument, observe that the sequence of actions between
the start of Mi’s unloading and the completion of its next loading must
include activity Ai, travel to Mi−1, and activity Ai−1. At minimum,
this time is 3δ + 4ε, since each activity requires δ + 2ε time. Thus, the
minimum time between each loading of Mi is pi + 3δ + 4ε. In a k-unit
cycle, this must be done k times.

Let Ωc denote the per unit cycle time of an optimal k-unit cycle,
k ≥ 1, in a constant travel-time robotic cell. Recall the definition for the
following set: Dδ = {i : pi ≥ δ}. Using these definitions, Theorem 3.19
can be restated as

Ωc ≥ max

⎧
⎨

⎩
2(m + 1)ε +

∑

i∈Dc
δ

pi + [m + 2 + |Dδ|]δ,

max
1≤i≤m

pi + 3δ + 4ε
}

. (3.23)
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The following result is from Dawande et al. [47].

Lemma 3.6 If max1≤i≤m pi + 3δ + 4ε ≥ 2(m + 1)(δ + ε), then πD is
optimal.

Recall from Section 3.3.2 that, for a 1-unit basic cycle πB, the cycle time
is Tc(πB) = max{α, βi|i ∈ V2}, where

α = 2(m + 1)δ + 2(m + 1)ε +
∑

i∈V1

(pi − δ),

βi = pi + 3δ + 4ε + (ri + qi)(δ + 2ε) +
∑

j∈Xi∪Yi

pj .

For a constant travel-time cell, the initial partition (V1, V2) divides the
set of machine indices M into those that represent machines with full
waiting and those that represent machines with partial waiting by the
following assignments: V1 = Dc

δ and V2 = Dδ. Note that for the initial
partition,

α = [m + 2 + |Dδ|]δ + 2(m + 1)ε +
∑

i∈Dc
δ

pi. (3.24)

So, by inequality (3.23),

Ωc ≥ max{α, max
1≤i≤m

pi + 3δ + 4ε}. (3.25)

3.5.2.1 A 1.5-Approximation Algorithm

We now show that repeating an optimal 1-unit cycle k times is a 1.5-
approximation of an optimal k-unit cycle. We do this by developing an
O(m) algorithm that finds a 1-unit cycle that can be shown to provide a
1.5-approximation. In the algorithm, the first three steps check for cases
in which an optimal cycle is known. Step 4 considers the case in which,
by inequality (3.23), πD provides a 1.5-bound. For the remaining case,
we construct a special basic cycle π′

B in which V ′
2 includes Dδ plus some

other machine indices. The cycle π′
B satisfies the following properties:

(i) for all i ∈ Dδ ⊂ V ′
2 , Xi = Yi = ∅, so β′

i = pi + 3δ + 4ε, and (ii)
α′ > β′

i, i ∈ V ′
2\Dδ. Therefore, either Tc(π′

B) = α′, or π′
B is optimal.

Algorithm CCell

Input: The data for a constant travel-time simple robotic cell: m, δ, ε,

pi, i = 1, . . . ,m.
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Step 1: If pi ≤ δ, ∀i, then output πU = (A0, A1, . . . , Am). Stop.

Step 2: If max1≤i≤m pi + 3δ + 4ε ≥ 2(m + 1)(δ + ε), then output
πD = (A0, Am, Am−1, . . . , A2, A1). Stop.

Step 3: If pi ≥ δ, ∀i, then output πD. Stop.

Step 4: If |Dδ| ≥ 1
3(m − 2), then output πD. Stop.

Step 5: If |Dδ| < 1
3(m − 2), then form the set V ′

2 as follows:

V ′
2 = Dδ ∪ {j : j ∈ Dc

δ, j = i + 1, i ∈ Dδ} ∪
{j : j ∈ Dc

δ, j = i − 1, i ∈ Dδ}.

Step 6: Form a basic cycle π′
B such that the machines corresponding

to the elements of V ′
2 have partial waiting and those corresponding

to the elements of V ′
1 = M\V ′

2 have full waiting. Output π′
B. Stop.

Steps 1–4 require time O(m). Step 5 creates V ′
2 by distinguishing

certain members of a previously defined set and requires time O(m).
Step 6 is simply an ordering of the m + 1 activities according to the
algorithm for forming basic cycles. Therefore, the time complexity of
algorithm CCell is O(m).

Example 3.8 This example illustrates Steps 5 and 6. Suppose m =
10, δ = 5, ε = 1, and the vector of processing times is p = (2, 4, 10, 1, 3, 2,
7, 4, 2, 3). Then Dδ = {3, 7}, so V ′

2 = {3, 7}∪{4, 8}∪{2, 6} = {2, 3, 4, 6, 7,
8}.

π′
B = (A0, A1, A8, A9, A10, A7, A6, A4, A5, A3, A2),

Tc(π′
B) = {18δ + 22ε + p1 + p5 + p9 + p10,

max
i∈V ′

2

{pi + 3δ + 4ε + (ri + qi)(δ + 2ε) +
∑

j∈Xi∪Yi

pj}}

= max{122, 32, 29, 30, 31, 26, 42} = 122.

Theorem 3.20 Algorithm CCell is a 1.5-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5-approximation for an optimal multi-unit cyclic solution.
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Proof.

a) From Theorem 3.19, if pi ≤ δ, ∀i, then we have Ωc ≥ 2(m + 1)ε +
∑m

i=1 pi + (m + 2)δ = Tc(πU ). Therefore, πU is optimal.

b) If max1≤i≤m pi + 3δ + 4ε ≥ 2(m + 1)(δ + ε), then, by Lemma 3.6,
πD is optimal.

c) If pi ≥ δ, ∀i, then, by Theorem 3.19, Ωc ≥ max{2(m + 1)(δ + ε),
max1≤i≤m pi + 3δ + 4ε} = Tc(πD). Therefore, πD is optimal.

d) If |Dδ| ≥ 1
3(m − 2), then, from inequality (3.23), we have

Ωc ≥ 2(m + 1)ε +
∑

i∈Dc
δ

pi + [m + 2 +
1
3
(m − 2)]δ

≥ 2(m + 1)ε +
(

4
3
m +

4
3

)

δ.

Thus,

Tc(πD) = 2(m + 1)(δ + ε) ≤ 2(m + 1)(δ + ε)
2(m + 1)ε +

(
4
3m + 4

3

)
δ
Ωc ≤ 1.5Ωc.

e) For |Dδ| < 1
3(m − 2), consider the 1-unit basic cycle πB formed by

the initial partition (V1, V2), where V1 = Dc
δ and V2 = Dδ. Recall

that the cycle time of πB is Tc(πB) = max{α, βi|i ∈ V2}, where
α = 2(m + 1)(δ + ε) +

∑
i∈Dc

δ
(pi − δ) and βi = pi + 3δ + 4ε + (ri +

qi)(δ + 2ε) +
∑

j∈Xi∪Yi
pj .

An example of a 16-machine cell is shown in Figure 3.7, with machines
corresponding to elements of Dδ and Dc

δ distinguished.

M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1

element of Dδ

element of Dc
δ

Figure 3.7. Machines Distinguished by pi ≥ δ or pi < δ.

For the basic cycle π′
B,

Tc(π′
B) = max{α′, β′

i|i ∈ V ′
2}, (3.26)
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where α′ = 2(m + 1)(δ + ε) +
∑

i∈V ′
1
(pi − δ), β′

i is defined as was βi,
and

V ′
2 = Dδ ∪ {j : j ∈ Dc

δ, j = i + 1, i ∈ Dδ} ∪
{j : j ∈ Dc

δ, j = i − 1, i ∈ Dδ}. (3.27)

The same 16-machine cell is shown in Figure 3.8, with elements of V ′
1

and V ′
2 distinguished.

M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1

element of V ′
2 ∩ Dδ = Dδ

element of V ′
2 ∩ Dc

δ = Dc
δ \ V ′

1
element of V ′

1 ⊂ Dc
δ

Figure 3.8. Machines Distinguished by Full Waiting or Partial Waiting in π′
B .

To estimate α′, we first derive an inequality for later use. It follows
immediately from the definition of V ′

2 in equation (3.27) that |V ′
2 | ≤

3|Dδ|. Hence, m − |V ′
2 | ≥ m − 3|Dδ|. Since |V ′

1 | = m − |V ′
2 | and

|Dc
δ| = m − |Dδ|, we have |V ′

1 | ≥ |Dc
δ| − 2|Dδ|, which implies

2|Dδ| ≥ |Dc
δ| − |V ′

1 | = |Dc
δ \ V ′

1 |, (3.28)

in view of V ′
1 ⊂ Dc

δ. The equality

α′ = 2(m + 1)(δ + ε) +
∑

i∈V ′
1
(pi − δ) implies that

α′ − α =
∑

i∈V ′
1

(pi − δ) −
∑

i∈Dc
δ

(pi − δ), so

α′ = α +
∑

i∈Dc
δ

(δ − pi) −
∑

i∈V ′
1

(δ − pi)

= α +
∑

i∈Dc
δ\V ′

1

(δ − pi).

From inequality (3.28), we have

α′ ≤ α + 2|Dδ|δ =
(

1 +
2|Dδ|δ

α

)

α,
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which, together with inequality (3.25), implies

α′ ≤
(

1 +
2|Dδ|δ

2(m + 1)(δ + ε) +
∑

i∈Dc
δ
(pi − δ)

)

Ωc

≤
(

1 +
2|Dδ|δ

2(m + 1)(δ + ε) − |Dc
δ|δ)

)

Ωc

≤
(

1 +
2|Dδ|

2(m + 1) − m + |Dδ|

)

Ωc

=
(

1 +
2|Dδ|

m + 2 + |Dδ|

)

Ωc.

This expression is increasing in |Dδ|. Hence, |Dδ| < 1
3(m− 2) implies

α′ <

(

1 +
2
3(m − 2)

m + 2 + 1
3(m − 2)

)

Ωc =
(

1 +
2m − 4
4m + 4

)

Ωc

≤ 1.5Ωc. (3.29)

We now investigate the value of β′
i, i ∈ V ′

2 :

1. By construction, for i ∈ Dδ, β′
i = pi + 3δ + 4ε. By Theorem 3.19,

if Tc(π′
B) = pi + 3δ + 4ε for some i, then π′

B is optimal.

2. For i ∈ V ′
2 \Dδ, β′

i = pi +3δ +4ε+(ri + qi)(δ +2ε)+
∑

j∈Xi∪Yi
pj .

Since i ∈ Dc
δ, Xi ⊂ Dc

δ, and Yi ⊂ Dc
δ, we know that

pi +
∑

j∈Xi∪Yi

pj ≤
∑

j∈Dc
δ

pj .

π′
B was designed so that |V ′

2 | ≥ 2. This implies that ri+qi ≤ m−2.
Hence,

β′
i ≤

∑

j∈Dc
δ

pj + 3δ + 4ε + (m − 2)(δ + 2ε)

=
∑

j∈Dc
δ

pj + (m + 1)δ + 2mε, i ∈ V ′
2\Dδ.

This value is strictly less than α (defined in equation (3.24)),
which, by inequality (3.25), is a lower bound on the cycle time.
Hence, β′

i, i ∈ V ′
2 \Dδ, will not dominate the cycle time expression

in equation (3.26).
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To summarize, for i ∈ Dδ, β′
i = pi+3δ+4ε and for i ∈ V ′

2\Dδ, β′
i < α′.

Therefore, either Tc(π′
B) = α′, or π′

B is optimal. Consequently, from
inequality (3.29), π′

B is a 1.5 approximation for Ωc. This completes
the proof of the proposed bound.

We now demonstrate the tightness of the bound for |Dδ| ≥ (m − 2)/3.
Suppose m = 8, δ = 2, ε = 0, p = (0, 0, 4, 0, 0, 4, 0, 0). Then

Tc(πB) = max{2(m + 1)δ − 6δ, p3 + 7δ, p6 + 7δ}
= max{24, 18, 18} = 24 = Ωc.

Tc(πD) = max{36, 10} = 36.

Hence, Tc(πD)/Ωc = 1.5.
For |Dδ| < (m− 2)/3, we show the asymptotic tightness of the bound

by taking a large m, the maximum possible |Dδ| for this m, and the
maximum |V ′

2 | (= 3|Dδ|). Let m = 3k + 3, k ∈ Z
+; δ = 1, ε = 0; pi =

4 if i = 3j, j = 1, . . . , k; pi = 0 otherwise. Also, Dδ = {3j : j =
1, . . . , k}, |V ′

2 | = 3k, and |Dc
δ \ V ′

1 | = 2k. Thus, by inequality (3.25),

Ωc ≥ α = 2(3k + 4)δ − (2k + 3)δ = (4k + 5)δ

α′ = α + |Dc
δ \ V ′

1 |δ
= (4k + 5)δ + 2kδ = (6k + 5)δ, so

α′

Ωc
≤ 6k + 5

4k + 5
→ 1.5 as k → ∞.

Corollary 3.6 In a constant travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times is a 1.5-
approximation to an optimal k-unit cyclic solution, k ≥ 1.

3.5.3 Euclidean Travel-Time Cells
In this section we consider Euclidean cells. We start with elementary

properties, and then provide a 4-approximation algorithm. We then pro-
vide an algorithm whose performance guarantee depends on the range of
the inter-machine robot movement times. In some cases, this guarantee
is better than 4. Once more, we begin by establishing a lower bound for
the per unit cycle time.
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Theorem 3.21 For any k-unit cycle π, k ≥ 1, in a Euclidean travel-
time cell, the per unit cycle time Te(π)/k satisfies

Te(π)
k

≥ max

{

2(m + 1)ε +
m∑

i=0

δi,i+1 +
m∑

i=1

min{pi,min
j 
=i

{δj,i}}

+min
j≥1

{δj,0}, max
1≤i≤m

{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε}
}

.

Proof. As before when proving Theorem 3.19, we establish a lower
bound for the cycle time, and the result for the per unit cycle time
follows immediately.

Consider the first argument. Each of the k(m + 1) activities requires
one loading and one unloading, so the total time for these actions is
2k(m + 1)ε. The second term represents the robot’s total time for
moves while performing the k(m + 1) activities. Before each time a
machine Mi, i = 1, . . . ,m, is unloaded, there will be time taken either
by a processing time (pi) or a robot move (which takes at least time
minj 
=i{δj,i}). The robot never has to wait for processing to complete
before getting a new part at I (unloading M0), so the minimum time
taken after all k such loadings is k minj≥1{δj,0}.

For the second argument, observe that the sequence of actions be-
tween the start of Mi’s unloading and the completion of its next loading
must include activity Ai (δi,i+1 + 2ε), travel by some route from Mi+1

to Mi−1 (the triangle inequality implies that the minimum possible time
is δi+1,i−1), and activity Ai−1 (δi−1,i + 2ε). At minimum, this time is
δi,i+1 + δi+1,i−1 + δi−1,i + 4ε. Thus, the minimum time between each
loading of Mi is pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε. In a k-unit cycle, this
must be done k times.

For convenience and consistency, we denote the per unit cycle time of
an optimal k-unit cycle (k ≥ 1) in a Euclidean travel-time cell by Ωe.

Lemma 3.7 In a Euclidean robotic cell, the cycle time of the 1-unit
reverse cycle is

Te(πD) = max

{

2(m + 1)ε +
m∑

i=0

δi,i+1 +
m∑

i=1

δi+1,i−1 + δ1,m,

max
1≤i≤m

{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε}
}

.
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Proof. In the first argument, the total of loading and unloading times
and the movement time during all activities is represented by the first
two terms. Activity Ai completes when machine Mi+1 is loaded. The
robot’s next action is to prepare to begin activity Ai−1 by moving to
Mi−1, i = 1, . . . ,m. The sum of these movement times is

∑m
i=1 δi+1,i−1.

After completing A0, the robot moves to Mm to begin Am (δ1,m).

In the second argument, if the robot waits at any machine Mi, the
time spent between the completion of Mi’s loading and the start of
its unloading, obviously, is pi. The duration between the completion
of processing of one part and the beginning of processing of the next
part is represented by the activity subsequence AiAi−1, which requires
δi,i+1 + δi+1,i−1 + δi−1,i + 4ε.

Corollary 3.7 If max1≤i≤m{pi+δi,i+1+δi+1,i−1+δi−1,i+4ε} ≥ 2(m+
1)ε +

∑m
i=1 δi,i+1 +

∑m
i=1 δi+1,i−1 + δ1,m, then πD is optimal.

Proof. By Lemma 3.7, the premise implies that Te(πD) = max1≤i≤m{pi

+δi,i+1+δi+1,i−1+δi−1,i+4ε}, which, by Theorem 3.21, is a lower bound
for Ωe. Thus, πD is optimal.

Lemma 3.8 In a Euclidean travel-time cell, a k-unit cyclic solution
obtained by repeating the 1-unit reverse cycle k times provides a 4-
approximation to the optimal k-unit cycle time, k ≥ 1.

Proof. If Te(πD) = max1≤i≤m{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε}, then
πD is optimal. Otherwise, by using the triangle inequality, we get

Te(πD) = 2(m + 1)ε +
m∑

i=0

δi,i+1 +
m∑

i=1

δi+1,i−1 + δ1,m

≤ 2(m + 1)ε +
m∑

i=0

δi,i+1 +

(
m−1∑

i=0

δi,i+1 +
m∑

i=1

δi,i+1

)

+
m−1∑

i=1

δi,i+1

≤ 2(m + 1)ε + 4
m∑

i=0

δi,i+1 ≤ 4Ωe.
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For our next result, we use three constants: δ = min0≤i<j≤m+1{δi,j},
Δ = max0≤i<j≤m+1{δi,j}, and q = Δ/δ.

Algorithm ECell provides a 1.5q bound for the optimum per unit cycle
time. Since finding an optimal 1-unit cycle for Euclidean cells is NP-
hard (Brauner et al. [24]), such an efficient approximation can be very
useful. If q < 4/1.5 ≈ 2.67, then the algorithm yields a tighter bound
than 4. Intuitively, if the variation in the inter-machine travel times is
not large, a reasonable approximation is to assume that the Euclidean
cell is a constant travel-time cell. This is the main idea behind algorithm
ECell.

Algorithm ECell

Input: The data for a Euclidean travel-time simple robotic cell: m,

δi,j , 0 ≤ i < j ≤ m + 1, ε, pi, i = 1, . . . ,m.

Step 1: If pi ≤ δ, ∀i, then output πU = (A0, A1, . . . , Am). Stop.

Step 2: If max1≤i≤m{pi + δi,i+1 + δi+1,i−1 + δi−1,i +4ε} ≥ 2(m+1)ε+
∑m

i=1 δi,i+1+
∑m

i=1 δi+1,i−1 + δ1,m, then output πD = (A0, Am, Am−1,

. . . , A2, A1). Stop.

Step 3: If pi ≥ δ, ∀i, then output πD. Stop.

Step 4: If q ≥ 4/1.5 ≈ 2.67, then output πD. Stop.

Step 5: Define the set DΔ = {i : pi ≥ Δ}. If |DΔ| ≥ (m − 2)/3, then
output πD. Stop.

Step 6: If |DΔ| < (m − 2)/3, then form the set V ′
2 as follows:

V ′
2 = DΔ ∪ {j : j ∈ Dc

Δ, j = i + 1, i ∈ DΔ}
∪{j : j ∈ Dc

Δ, j = i − 1, i ∈ DΔ}.

Step 7: Form basic cycle π′
B such that machines corresponding to the

elements of V ′
2 have partial waiting and machines corresponding to

the elements of V ′
1 = M\V ′

2 have full waiting. Output π′
B. Stop.

Steps 1–5 require time O(m). Step 6 creates V ′
2 by distinguishing

certain members of a previously defined set and requires time O(m).
Step 7 is simply an ordering of the m + 1 activities according to the
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algorithm for forming basic cycles. The time complexity of algorithm
ECell is thus O(m).

Theorem 3.22 Algorithm ECell is a 1.5q-approximation algorithm for
the optimum per unit cycle time, and this bound is tight. Consequently,
we have a 1.5q-approximation for an optimal multi-unit cyclic solution.

Proof. Consider two related constant travel-time cells whose machine
processing times pi, i = 1, . . . ,m, are the same as those of the Euclidean
cell. One of these new cells will have constant travel time δ, and the
other will have constant travel time Δ. Their respective optimum per
unit cycle times are Ωδ and ΩΔ. Clearly, Ωδ ≤ Ωe ≤ ΩΔ.

a) From Theorem 3.19, if pi ≤ δ, ∀i, then we have Ωe ≥ Ωδ ≥ 2(m +
1)ε + (m + 2)δ +

∑m
i=1 pi. In the Euclidean cell,

Te(πU ) = 2(m + 1)ε +
m∑

i=0

δi,i+1 + δm+1,0 +
m∑

i=1

pi.

Since Δ = max0≤i<j≤m+1{δi,j}, we have

Te(πU ) ≤ 2(m + 1)ε + (m + 2)Δ +
m∑

i=1

pi

≤ 2(m + 1)ε + (m + 2)Δ +
∑m

i=1 pi

2(m + 1)ε + (m + 2)δ +
∑m

i=1 pi
Ωe

≤ Δ
δ

Ωe = qΩe.

b) If max1≤i≤m{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε} ≥ 2(m + 1)ε +
∑m

i=1 δi,i+1 +
∑m

i=1 δi+1,i−1 + δ1,m, then by Corollary 3.7, πD is opti-
mal.

c) If max1≤i≤m{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε} < 2(m + 1)ε +
∑m

i=1 δi,i+1 +
∑m

i=1 δi+1,i−1 + δ1,m, then by Lemma 3.7, Te(πD) ≤
2(m + 1)(Δ + ε).

If pi ≥ δ, ∀i, then by Theorem 3.21, Ωe ≥ 2(m+1)(δ+ ε). Therefore,

Te(πD) ≤ 2(m + 1)(Δ + ε)
2(m + 1)(δ + ε)

Ωe

≤ Δ
δ

Ωe = qΩe.
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d) If q ≥ 4/1.5, then 4 ≤ 1.5q, and so Te(πD) ≤ 1.5qΩe.

e) By Theorem 3.20, algorithm CCell applied to the constant travel-
time Δ cell can provide a 1.5-approximation for ΩΔ. Denoting the
value of this heuristic by Hc(ΩΔ), we have by Theorem 3.19,

Hc(ΩΔ) ≤ 1.5[(m + 2)Δ +
m∑

i=1

min{pi,Δ} + 2(m + 1)ε]

= 1.5[(m + 2)qδ +
m∑

i=1

min{pi, qδ} + 2(m + 1)ε]

≤ 1.5q[(m + 2)δ +
m∑

i=1

min{pi, δ} + 2(m + 1)ε]

≤ 1.5qΩδ.

Since Hc(ΩΔ) ≤ 1.5qΩδ ≤ 1.5qΩe, algorithm CCell executed on the
constant travel-time cell with travel time Δ = max0≤i<j≤m+1{δi,j}
provides a 1.5q bound for the optimum per unit cycle time in a Euclid-
ean cell.

To prove asymptotic tightness for the case in which |Dδ| ≥ (m−2)/3,
we first need an expression for the cycle time of a basic cycle πB in a
Euclidean cell: Te(πB) = max{α, βi|i ∈ V2}, where

α = 2(m + 1)ε +
m∑

i=0

δi,i+1 +
∑

i∈V1

pi +
n−1∑

i=0

δvi+2,vi + δv1,vn ,

V2 = {v1, v2, . . . , vn}, v0 = 0, vn+1 = m + 1, and

βi = pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε +
∑

j∈Xi∪Yi

(pj + δj,j+1 + 2ε).

Let m = 3k + 2, k ∈ Z
+; ε = 0; p3j = 2Δ, j = 1, . . . , k, and p = 0

otherwise. Let δi+1,i−1 = Δ, i = 1, . . . ,m, δ1,m = Δ, δi,j = δ otherwise;
and q ≤ 2. If the basic cycle formed from the initial partition is πB,
then α = (3k + 3)δ + (k + 1)δ = 4(k + 1)δ. Thus,

Te(πB) = max{4(k + 1)δ, 3Δ + 6δ} = 4(k + 1)δ = Ωe,

Te(πD) = (3k + 3)(δ + Δ).

Hence,

Te(πD)
Ωe

=
(3k + 3)(δ + Δ)

4(k + 1)δ
=

3
4
(1 + q) → 1.5 as q → 1.
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For |Dδ| < (m − 2)/3, let m = 3k + 3, k ∈ Z
+; ε = 0; p3j = 2Δ, j =

1, . . . , k, p = 0 otherwise. Then, Dδ = {3j : j = 1, 2, . . . , k}. Let
δi,i+1 = δ, i = 0, . . . , 3k + 3, δ3j,3j−6 = δ, j = 2, 3, . . . , k, δ3,3k = δ, and
δi,j = Δ, otherwise. Therefore,

Ωe = α = (3k + 4 + k + 1)δ = (4k + 5)δ,

α′ = (3k + 3)δ + (3k + 2)Δ,

α′

Ωe
=

(3k + 3) + (3k + 2)q
4k + 5

→ 1.5 as q → 1 and k → ∞.

Corollary 3.8 In a Euclidean travel-time cell, a k-unit cyclic solution
obtained by repeating an optimal 1-unit cyclic solution k times provides
a 1.5q-approximation to an optimal k-unit cyclic solution, k ≥ 1.

To summarize, we have O(m) algorithms that produce cyclic solutions
whose per unit cycle times are within a constant factor of the optimum
for the three most common classes of robotic cells viz., additive, con-
stant, and Euclidean travel-time. The approximation guarantees for
these three classes of cells are 10/7, 1.5, and 4, respectively. Note that
the approximation algorithms construct a cyclic solution by repeating
a 1-unit cycle. Therefore, the guarantees are, in fact, upper bounds on
ratio of the per unit cycle time of an optimal 1-unit cycle to that of an
optimal multi-unit cycle for each of these three classes of cells.



Chapter 4

DUAL-GRIPPER ROBOTS

This chapter treats the problem of sequencing robot moves in a dual-
gripper robotic cell producing a single part-type. In cells with a single-
gripper robot, a part cannot be moved from its current machine to the
next one if the next one is occupied (this is referred to as blocking in
classical flow shop scheduling; see Chapter 2). However, this is possible
with a dual-gripper robot because it can hold two parts simultaneously.
The grippers reside at the end of the robot’s arm. In a typical usage,
one gripper is empty and the other holds a part to be loaded onto the
next intended machine, which is currently occupied. The robot moves its
arm to that machine, uses the empty gripper to unload the finished part,
rotates the “wrist” at the end of its arm, and loads the other part. The
dual-gripper robot can perform such an unloading-and-loading sequence
faster than a single-gripper robot because the rotation takes less time
than does the robot’s inter-machine movement. Hence, dual-gripper ro-
bots can increase throughput in cells that are constrained by the robot’s
speed. The combinatorial explosion in the number of possible robot
moves with a dual-gripper cell substantially complicates the analytical
and computational aspects of the sequencing problem as compared to
those in a single-gripper cell.

Our presentation in this chapter reflects the different types of cells
that have been considered in the various studies on dual-gripper robotic
cells. Some model the additive travel metric, while others the constant
travel metric; some have addressed cells with a circular layout with the
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input device I and the output device O at the same location (Figure 4.1),
whereas others use a linear, semicircular, or circular layout with separate
locations for I and O. In switching between these models, our intention
is to remain true to the original research.

M1

M2M3

I/O

M4

Dual-Gripper Robot

Figure 4.1. A Four-Machine Dual-Gripper Robot Cell with the Input and Output

Devices at the Same Location.

4.1 Additional Notation
We let θ denote the gripper switch time – the duration between the

moment one gripper has unloaded a machine until the moment the sec-
ond gripper is positioned to load the same machine. Furthermore, we
assume that a robot gripper switch is required (if I and O are co-located)
when the robot executes the operation “pick up a part from the input
device” followed by the operation “drop a part onto the output device”;
the same two operations performed in the reverse order (i.e., “drop a
part onto the output device” followed by “pick up a part from the input
device”) do not require a gripper switch. This is because in the latter
case the same gripper that drops a part onto the output device can be
then used to pick up a part from the input device.
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Moreover, we assume that the time required for the dual-gripper robot
to reposition its grippers while traveling from one machine to another
(i.e., when two successive operations are executed on different machines
and require different grippers) does not exceed the robot travel time
between the machines. Formally, let θ̄ denote the time taken by the
robot to switch its grippers while traveling between machines. For all
the problems considered in this chapter, we assume that θ̄ ≤ δ so that
max{δ, θ̄} = δ; this assumption is valid in most manufacturing applica-
tions. We will use the following additional notation.

Pj → R: Part Pj is transferred to the robot from a machine (i.e., the
machine is unloaded).

R → Mi: The robot moves from its last location to Mi and positions
one of its grippers for the next load or unload operation.

Pj → Mi: Part Pj is transferred from the robot to Mi (i.e., Mi is
loaded)

wait: The robot waits at some machine Mi for completing the process-
ing of a part Pj .

Venkatesh et al. [154] study ways to improve the throughput of an ad-
ditive travel-time cluster tool in semiconductor fabrication that uses
a dual-gripper robot. They show that a dual-gripper robot improves
throughput over a single-gripper robot when part processing times dom-
inate robot travel times. They also show that the travel speeds of a
single-gripper robot would have to be twice those of a dual-gripper robot
to achieve the same throughput. One of our objectives is to compare the
maximum throughputs of single-gripper and dual-gripper cells in a more
general framework. Throughout this chapter, we consider cells with a
circular layout. Sections 4.2–4.7 consider the problem of obtaining an
optimum 1-unit cycle in an m-machine dual-gripper cell under the addi-
tive travel-time metric (i.e., RF 2,◦

m |(free,A,cyclic-1)|μ); Sections 4.3–4.6
present the results from Sethi et al. [143]. Section 4.8 studies a robotic
cell model that is closely related to a dual-gripper cell. Specifically, we
consider throughput maximization for a robotic cell served by a single-
gripper robot with a unit-capacity output buffer at each machine (i.e.,
RF 1,◦

m,1̄
|(free,A,cyclic-1)|μ). Cells with the constant travel-time metric
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are discussed in Section 4.9. The input device I and the output device
O are assumed to be co-located in Sections 4.2–4.8, and are considered
to be in separate locations in Section 4.9. To keep the description sim-
ple, we avoid the explicit specification of the circular layout in most of
the notation used here. We start our analysis with two-machine cells.

4.2 Cells with Two Machines
The dual-gripper robot move sequencing problem is much more com-

plicated than that with a single gripper even in the two-machine case. Su
and Chen [149] were the first to consider a dual-gripper robotic cell with
two machines producing a single part type (RF 2

m|(free,A,cyclic-1)|μ).
They consider only five different 1-unit cycles. We will see shortly that
a complete search for optimality involves analyzing 52 cycles (Sethi et
al. [143]). As a result, a new framework needs to be developed to char-
acterize all possible cycles and their cycle time expressions in terms of
the cell data, such as the processing times of parts on the machines, the
robot travel time between two adjacent locations, and the robot load
and unload times.

As with single-gripper cells, a complete specification of the state of a
robotic cell would be unduly burdensome for specifying the robot move
cycles of interest. The following robot states, which we refer to as basic
robot states, are sufficient to specify the robot move cycles.

R−
i (0, k) or R−

i (k, 0) is the robot state in which the robot has just
finished loading (or dropping off) a part on Mi, i = 1, . . . ,m + 1,
from a gripper. This gripper now holds zero parts as indicated by
the argument which equals 0. The other gripper has no part if k = 0,
and if k �= 0, it has one part to be processed (or dropped off) on Mk,
k = 1, . . . ,m + 1.

R+
i (i + 1, k) or R+

i (k, i + 1) is the state in which the robot has just
finished unloading (or picking up) a part from Mi, i = 0, . . . ,m.
This part is now held in a gripper to be processed (or dropped off)
on Mi+1, where machine Mm+1 means O. The meaning of the second
argument k, k = 0, 1, . . . ,m + 1, is the same as before.

It should be clear that in each 1-unit cycle for each i (1 ≤ i ≤ m +
1), there will be precisely one loading activity corresponding to a state
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R−
i (·, ·), where the dots will be replaced by appropriate indices; and one

unloading activity corresponding to a state R+
i (·, ·), where again the dots

are replaced by appropriate indices. Thus, there are 2m + 2 such states
in a 1-unit cycle (Sethi et al. [142]). Given these, a set of equations
defining robot waiting times at different machines can be easily written.
It is straightforward to derive the expressions for the cycle times from
solutions of these equations.

Recall, Chapter 3, the following feasibility criteria for robot moves in
a single-gripper cell:

The robot cannot be instructed to load an occupied machine.

The robot cannot be instructed to unload an unoccupied machine.

In addition to the above, we have the following necessary criteria for a
cycle to be feasible in a dual-gripper cell:

The robot cannot be instructed to unload a machine if both of its
grippers are occupied, i.e., a feasible activity sequence cannot have a
subsequence (M+

i ,M+
j ,M+

k ).

The robot cannot be instructed to load a machine if both of its grip-
pers are empty, i.e., a feasible activity sequence cannot have a subse-
quence (M−

i ,M−
j ,M−

k ).

The robot can load a part onto Mi only if that part’s most recent
processing was on Mi−1, i = 1, . . . ,m + 1.

To obtain all feasible 1-unit cycles for m = 2, a convenient set of ba-
sic robot states from which to begin the cycles is R+

2 (3, k), 0 ≤ k ≤ 3.
A feasible sequence of operations is one that satisfies all of the oper-
ating constraints of the system, e.g., the parts are scheduled as a flow
shop, the robot can hold at most two parts at a time, each machine can
hold at most one part at a time, etc. We consider only feasible state
sequences. For example, a sequence in which the state R+

2 (3, 2) is im-
mediately followed by R−

1 (0, k) is not feasible and can be eliminated: in
the first state, R+

2 (3, 2), the robot has just unloaded a part from M2 and
is holding two parts that require processing next on M2 and M3. The
next state R−

1 (0, k) is not feasible immediately after the state R+
2 (3, 2),

since loading a part onto M1 is not possible as the robot does not have
a part in either of its grippers that requires processing on M1.
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Before we discuss the generation of all 1-unit cycles, it is instructive
to consider a detailed example of a 1-unit robot move cycle for m =
2. Consider the cycle (R+

2 (3, 2), R−
2 (3, 0), R−

3 (0, 0), R+
3 (1, 0), R+

1 (1, 2),
R−

1 (0, 2), R+
2 (3, 2)). At the beginning of the (j−1)th iteration, part Pj−1

has been unloaded from M2 and placed on the robot, Pj (already on the
robot) awaits loading on M2, and Pj+1 is being processed at M1. Using
our previously defined notation, we may completely describe the cycle
as in Table 4.1. The cycle time for this cycle is 3δ + 6ε + 2θ + w1 + w2

where, for now, we ignore the calculation of w1 and w2.

Cycle Element Operations Duration

R−
2 (3, 0) switch grippers θ

Pj → M2 ε

R−
3 (0, 0) R → I/O δ

Pj−1 → I/O ε

R+
3 (1, 0) Pj+2 → R ε

R+
1 (1, 2) R → M1 δ

wait w1

Pj+1 → R ε

R−
1 (0, 2) switch grippers θ

Pj+2 → M1 ε

R+
2 (3, 2) R → M2 δ

wait w2

Pj → R ε

Table 4.1. A 1-Unit Cycle.

We now consider all possible (a total of 52) 1-unit cyclic sequences or-
ganized under four cases. Each of the four cases is specified by its initial
basic robot state. For each case, we consider all possible cyclic sequences
starting from the specified basic robot state. We will eventually show
that of the 52 sequences listed, all but 13 are dominated. The sequences
under Case i, i = 1, 2, 3, 4, have state R+

2 (3, i − 1) as the initial state.
For an enumeration of the sequences under Cases 1, 2, and 3, we refer
the reader to Figures 4.2, 4.3, and 4.4, respectively.

Case 4. (sequences starting with the state R+
2 (3, 3)) At the start of the

cycle, the robot holds two parts, both destined for M3, the I/O location.
Since a basic robot state of the form R−

3 (·, ·) can occur only once in a
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cycle, it follows that the robot will carry one of these two parts through-
out the whole cycle (in effect, the robot will be operating as if it were a
single-gripper robot). Based on this observation, the reader can confirm
that there are only two feasible cycles that start with R+

2 (3, 3), namely:

C4,1 = (R+
2 (3, 3), R−

3 (3, 0), R+
1 (3, 2), R−

2 (3, 0),

R+
3 (3, 1), R−

1 (3, 0), R+
2 (3, 3)),

and

C4,2 = (R+
2 (3, 3), R−

3 (3, 0), R+
3 (3, 1), R−

1 (3, 0),

R+
1 (3, 2), R−

2 (3, 0), R+
2 (3, 3)).

Notice that in terms of the sequence of loadings and unloadings, C4,1

is equivalent to C1,18, and C4,2 is equivalent to C1,13 (see Figure 4.2).
Cycles C4,1 and C4,2, therefore, have the same cycle times as C1,18 and
C1,13, respectively.

For problem RF 2
2 |(free,A,cyclic-1)|μ, the cycle time expressions for

the 52 cycles can be easily derived and are shown in Tables 4.2, 4.3, 4.4,
and 4.5. All but 13 of the cycles in Tables 4.2, 4.3, 4.4, and 4.5 are
dominated. The last column in these tables indicates the dominance,
if applicable. The 13 undominated cycles are: C1,1, C1,4, C1,13, C1,14,
C1,15, C3,3, C3,4, C3,5, C3,6, C3,9, C3,10, C3,11, and C3,16. It can be easily
verified by examining the 13 undominated cycles that C3,10 is optimal
among all dual-gripper 1-unit cyclic schedules under the assumption that
θ ≤ min{δ, p1, p2}.

Using the preceding analysis of two-machine cells as intuition, our next
task is to generalize cycle C3,10 for a general m-machine dual-gripper cell.

4.3 A Cyclic Sequence for m-Machine
Dual-Gripper Cells

We now construct a generalization Cd
m of cycle C3,10 for m-machine

cells. We first analyze its cycle time and then show its optimality
for problem RF 2

m|(free,A,cyclic-1)|μ under the assumption that θ ≤
min{δ, p1, . . . , pm}.

Cycle Cm
d starts with all machines occupied by parts and the empty

robot positioned at I/O. The sequence of activities for the robot in this
cycle is as follows:
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Cycle Cycle Time Dominance

Relation

C1,1 T1,1 = max{5δ + 6ε, p1 + 3δ + 5ε, p2 + 2δ + 3ε} undominated

C1,2 T1,2 = T1,1 + θ T1,2 ≥ T1,1

C1,3 T1,3 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 2δ + 3ε} T1,3 ≥ T3,5

C1,4 T1,4 = max{p1 + 2δ + 4ε, p2 + 4δ + 6ε} undominated

C1,5 T1,5 = max{5δ + 6ε, p1 + 3δ + 5ε, p2 + 3δ + 5ε} T1,5 ≥ T1,1

C1,6 T1,6 = max{6δ + 6ε, p1 + 4δ + 5ε, p2 + 3δ + 4ε} T1,6 ≥ T1,1

C1,7 T1,7 = max{p2 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T1,7 ≥ T1,14

C1,8 T1,8 = 4δ + 6ε + p1 + p2 T1,8 ≥ T1,13

C1,9 T1,9 = max{p1 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T1,9 ≥ T1,1

C1,10 T1,10 = T1,14 + θ T1,10 ≥ T1,14

C1,11 T1,11 = T1,15 + θ T1,11 ≥ T1,15

C1,12 T1,12 = T1,13 + θ T1,12 ≥ T1,13

C1,13 T1,13 = 3δ + 6ε + p1 + p2 undominated

C1,14 T1,14 = max{p1 + 2ε + θ, p2 + 3δ + 6ε + θ} undominated

C1,15 T1,15 = max{5δ + 6ε, p1 + 2δ + 3ε, p2 + 3δ + 5ε} undominated

C1,16 T1,16 = max{p1 + 2δ + 3ε, p2 + 5δ + 6ε} T1,16 ≥ T1,15

C1,17 T1,17 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 4δ + 5ε} T1,17 ≥ T1,18

C1,18 T1,18 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε} T1,18 ≥ T1,3

Table 4.2. Cycle-Time Expressions for 1-Unit Cycles C1,k for m = 2.

Cycle Cm
d

Begin
ε: Robot picks up a part from I/O.
For i = 1 to m do:
Begin
δ: Robot moves to Mi.
wi: Robot waits for the part on Mi to be completed.
ε: Robot unloads Mi.
θ: Robot switches to the other gripper.
ε: Robot loads Mi.

End
δ: Robot moves to I/O.
ε: Robot unloads finished part at I/O.

End
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Cycle Cycle Time Dominance

Relation

C2,1 T2,1 = 3δ + 6ε + p1 + p2 = T1,13 T2,1 ≥ T1,13

C2,2 T2,2 = max{p1 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T2,2 ≥ T2,3

C2,3 T2,3 = max{p1 + 4δ + 6ε, p1 + p2 + 2δ + 4ε} T2,3 ≥ T3,3

C2,4 T2,4 = T2,3 + θ T2,4 ≥ T2,3

C2,5 T2,5 = max{p2 + 4δ + 6ε, p1 + p2 + 2δ + 4ε} T2,5 ≥ T1,4

C2,6 T2,6 = max{p2 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T2,6 ≥ T2,5

C2,7 T2,7 = max{6δ + 6ε, p1 + 4δ + 5ε, p2 + 4δ + 5ε,

p1 + p2 + 2δ + 4ε} T2,7 ≥ T2,14

C2,8 T2,8 = T2,5 + θ T2,8 ≥ T2,5

C2,9 T2,9 = max{p2 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T2,9 ≥ T2,5

C2,10 T2,10 = max{p1 + 5δ + 6ε, p1 + p2 + 3δ + 5ε} T2,10 ≥ T2,3

C2,11 T2,11 = 4δ + 6ε + p1 + p2 T2,11 ≥ T2,3

C2,12 T2,12 = max{p1 + 2ε + θ, p2 + 4δ + 6ε + θ} T2,12 ≥ T1,14

C2,13 T2,13 = max{5δ + 6ε + θ, p1 + 2ε + θ, p2 + 3δ + 5ε + θ} T2,13 ≥ T3,4

C2,14 T2,14 = max{6δ + 6ε, p1 + 2δ + 3ε, p2 + 3δ + 4ε} T2,14 ≥ T3,5

C2,15 T2,15 = T1,18 T2,15 ≥ T1,18

C2,16 T2,16 = T1,13 T2,16 ≥ T1,13

Table 4.3. Cycle-Time Expressions for 1-Unit Cycles C2,k for m = 2.

The cycle time tmd for Cm
d can easily be calculated as

tmd = (m + 1)δ + 2(m + 1)ε + mθ +
m∑

k=1

wk. (4.1)

The time sequence corresponding to Cm
d can be represented as

{ε, [δ, w1, ε, θ, ε], . . . [δ(1), wi, ε, θ, ε(2)], . . . [δ, wm, ε, θ, ε], δ, ε}.
At point (1) above: the robot returns to unload Mi.
At point (2) above: the robot has just loaded a part on Mi.

From this time sequence, we can calculate wi as

wi = max{0, pi − (m + 1)δ − 2mε − (m − 1)θ −
∑

k 
=i

wk}. (4.2)

Adding −wi +
∑

wk to both sides of (4.2) yields
∑

wk = max{−wi +
∑

wk, pi − (m + 1)δ − 2mε − (m − 1)θ}. (4.3)
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Cycle Cycle Time Dominance

Relation

C3,1 T3,1 = max{5δ + 6ε, p1 + 3δ + 5ε, p2 + 3δ + 5ε} T3,1 ≥ T1,1

C3,2 T3,2 = T1,13 T3,2 ≥ T1,13

C3,3 T3,3 = max{p1 + 4δ + 6ε, p2 + 2δ + 4ε} undominated

C3,4 T3,4 = max{4δ + 6ε + θ, p1 + θ + 2ε, p2 + 2δ + 4ε} undominated

C3,5 T3,5 = max{6δ + 6ε, p1 + 2δ + 3ε, p2 + 2δ + 3ε} undominated

C3,6 T3,6 = max{5δ + 6ε + θ, p1 + 2ε + θ, p2 + 2δ + 3ε} undominated

C3,7 T3,7 = max{p1 + 5δ + 6ε, p2 + 2δ + 3ε} T3,7 ≥ T1,1

C3,8 T3,8 = T1,18 T3,8 ≥ T1,18

C3,9 T3,9 = max{5δ + 6ε + θ, p1 + 2δ + 3ε, p2 + θ + 2ε} undominated

C3,10 T3,10 = max{3δ + 6ε + 2θ, p1 + θ + 2ε, p2 + θ + 2ε} undominated

C3,11 T3,11 = max{p1 + 3δ + 6ε + θ, p2 + 2ε + θ} undominated

C3,12 T3,12 = T3,10 + θ T3,12 ≥ T3,10

C3,13 T3,13 = T3,11 + θ T3,13 ≥ T3,11

C3,14 T3,14 = max{5δ + 6ε + θ, p1 + 3δ + 5ε + θ, p2 + 2ε + θ} T3,14 ≥ T3,9

C3,15 T3,15 = max{p1 + 4δ + 6ε + θ, p2 + 2ε + θ} T3,15 ≥ T3,11

C3,16 T3,16 = max{4δ + 6ε + θ, p1 + 2δ + 4ε, p2 + 2ε + θ} undominated

Table 4.4. Cycle-Time Expressions for 1-Unit Cycles C3,k for m = 2.

Cycle Cycle Time Dominance

Relation

C4,1 T4,1 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε} T4,1 = T1,18

C4,2 T4,2 = 3δ + 6ε + p1 + p2 T4,2 = T1,13

Table 4.5. Cycle-Time Expressions for 1-Unit Cycles C4,k for m = 2.

If wi > 0, (4.3) implies that
∑

wk = pi − (m + 1)δ − 2mε− (m− 1)θ. If
wi = 0, (4.3) implies that

∑
wk ≥ pi − (m + 1)δ − 2mε − (m − 1)θ. It

follows that
∑

wk = max{0,max{pi} − (m + 1)δ − 2mε − (m − 1)θ}. (4.4)

Substituting (4.4) into (4.1) yields

tmd = max{(m + 1)δ + 2(m + 1)ε + mθ, max{pi} + 2ε + θ}. (4.5)
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4.4 Dual-Gripper Cells with Small Gripper
Switch Times

In most practical environments, the gripper switch time θ is typi-
cally less than the inter-machine travel times and the machine process-
ing times. Thus, it is reasonable to assume that θ ≤ min{δ, p1, . . . , pm}.
This assumption holds in this section and Sections 4.5-4.7. Under this
assumption, we now show that the dual-gripper robot cycle Cm

d is opti-
mal for RF 2

m|(free,A,cyclic-1)|μ.

Theorem 4.1 Assume θ ≤ min{δ, p1, . . . , pm}. A lower bound for cycle
times for 1-unit robot move cycles using either a single-gripper or dual-
gripper robot is given by the right hand side of (4.5):

LB = max{(m + 1)δ + 2(m + 1)ε + mθ, max{pi} + 2ε + θ}. (4.6)

Proof. In part A of the proof, we show that max{pi}+2ε+ θ is a lower
bound. In part B, we show that (m + 1)δ + 2(m + 1)ε + mθ is a lower
bound.

Part A: Consider any machine Mi, 1 ≤ i ≤ m, and a schedule σ. Since
σ is cyclic, we may assume it to be of the form (M−

i , σ1,M
+
i , σ2), where

at least one of σ1 and σ2 is not empty. We consider two cases.

Case 1. σ2 �= ∅. The time from the start of loading a job on Mi

until the completion of unloading on Mi is at least pi + 2ε (covering
the subschedule (M−

i , σ1,M
+
i ). The robot will be engaged for at least

an additional amount of time δ in order to complete σ2. Thus, a lower
bound on the schedule length will be pi + 2ε + δ ≥ pi + 2ε + θ.

Case 2. σ1 �= ∅, σ2 = ∅. This case can occur only with a dual-gripper
robotic cell. The cycle may be denoted by (M+

i ,M−
i , σ1). The subcycle

(M+
i ,M−

i ) requires 2ε+θ time units, and the delay from the completion
of M−

i to the start of M+
i is of length at least pi, for a total time of

pi + 2ε + θ time units.

Cases 1 and 2 prove that max{pi} + 2ε + θ is a lower bound on the
cycle times.

Part B: Recall that for any machine Mi, the schedule σ is of the form
(M−

i , σ1, M+
i , σ2), where at least one of σ1 and σ2 is not empty. We shall

compute lower bounds for the aggregate residence times of the robot at
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each machine and for the aggregate robot transportation time between
machines. The sum of these lower bounds will give us the bound of
(m + 1)δ + 2(m + 1)ε + mθ. In our discussion, p0 = pm+1 = 0 is the
“processing time” at I/O. For residence times at the machines, there
are four cases to consider.

Case 1. Mi = M0 (the “machine” is I/O). The robot is occupied at
M0 for 2ε time units.

Case 2. σ2 = ∅. The robot is occupied at Mi for at least 2ε + θ time
units.

Case 3. σ1 = ∅. The robot is occupied at Mi for at least 2ε + pi time
units.

Case 4. σ1 �= ∅ �= σ2. The robot is occupied at Mi for at least 2ε time
units (split between two visits).

Assuming that the number of machines included in Cases 2, 3, and
4, respectively, are u, v, and w = m − u − v, and that V is the set of
machines included in Case 3, we get an aggregate residence time for the
robot at all machines to be

2ε + u(2ε + θ) + v(2ε) +
∑

i∈V

pi + w(2ε) = 2(m + 1)ε + uθ +
∑

i∈V

pi. (4.7)

A robot movement from Mi to Mj occurs when an operation M−
i or M+

i

is followed immediately by a robot operation M−
j or M+

j , where j �= i.
Such a movement is “incident” to both Mi and Mj , and requires δ time
units if Mi is adjacent to Mj , and a multiple of δ time units otherwise.

For each machine in each cycle, there is at least one movement into and
one movement out of Mi, so Mi is incident to at least two movements. If
Mi is included in Case 4, there are in each cycle at least two movements
into and two movements out of Mi, so Mi will be incident to at least
four movements. Thus, the aggregate of incidences over all machines is
at least 2(1 + u + v) + 4w = 2(m + 1) + 2w. Hence, the total number of
movements, which is half the aggregate incidences, is at least m+1+w.
These movements require a minimum aggregate time of (m + 1 + w)δ.
A lower bound on the cycle times is obtained by adding this to (4.7).
Since θ ≤ min{δ, p1, . . . , pm}, we obtain (m + 1)δ + 2(m + 1)ε + mθ as
the lower bound.
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Since cycle Cm
d achieves this lower bound, the following corollary is

immediate.

Corollary 4.1 Cm
d is optimal among all single-gripper and dual-

gripper 1-unit cyclic schedules under the assumption that θ ≤ min{δ, p1,

. . . , pm}.

4.5 Comparing Dual-Gripper and Single-Gripper
Cells

A fundamental question concerning dual-gripper cells is the extent
of improvement in productivity that they offer as compared to single-
gripper cells. In this section, we present an analysis for additive travel-
time cells. Let Ts (resp., Td) denote the optimal cycle time for problem
RF 1,◦

m |(free,A,cyclic-1)|μ (resp., RF 2,◦
m |(free,A,cyclic-1)|μ).

Theorem 4.2 For m-machines robotic cells, Ts/Td ≤ 2, and this bound
is tight.

Proof. We define an instance as a vector I = (δ, ε, θ, p1, . . . , pm), where
all parameters are non-negative. Let Ts(I) and Td(I) denote the opti-
mal values for the instance I in single-gripper and dual-gripper cells,
respectively. Note that θ is not a parameter in the calculation of Ts(I),
while Td(I) = Td(δ, ε, θ, p1, . . . , pm) is monotonically nondecreasing in θ.
It follows that for purposes of the worst case analysis of Ts/Td, we may
assume θ = 0.

We define the instance I ′′ = (δ, ε, 0, p1, ..., pm) to be the same as in-
stance I with the one exception that θ = 0. Based on the above com-
ments,

Ts(I)/Td(I) ≤ Ts(I ′′)/Td(I ′′).

Since I ′′ has θ = 0, it follows that Td(I ′′) = max{(m + 1)δ + 2(m +
1)ε,max{pi} + 2ε}. Since Td(I ′′) depends on the processing times only
through max{pi}, it follows that for the purpose of the worst case analy-
sis, we may assume that all pi’s are equal: if we increase all pi’s to
max{pi}, we would not increase the optimal cycle time for the dual-
gripper problem, while the duration for the single-gripper problem may
increase. Thus, we assume that θ = 0 and p1 = ... = pm ≡ p, and define
the corresponding instance I ′ = (δ, ε, 0, p, ..., p). Clearly,

Ts(I)/Td(I) ≤ Ts(I ′′)/Td(I ′′) ≤ Ts(I ′)/Td(I ′).
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Thus, to prove the upper bound, we may restrict our attention to the
instance I ′. For the remainder of the proof, the notation Ts and Td refer
to Ts(I ′) and Td(I ′), respectively.

Next, we define a 1-unit cyclic schedule σ for a single-gripper robot
so that the cycle time Tσ is at most twice the optimal dual-gripper cycle
time Td. The single-gripper cycle σ starts with the robot empty at I/O

and with a job in progress at each of the even-numbered machines. In
each cycle, the robot makes two visits to each of the machines. On
its first visit, each even-numbered machine is unloaded and each odd-
numbered machine is loaded. During its second visit, each odd-numbered
machine is unloaded and each even-numbered machine is loaded. The
analysis for m odd is slightly different from that for m even. We deal
first with the case when m is even.

To begin with, assume that part Pi is on Mm, Pi+1 is on Mm−2, . . .,
and Pi+m/2−1 is on M2. To help clarify the proof, we provide in Table 4.6
an example of the sequence of operations and their durations for cycle σ

in a six-machine cell. For simplicity and without loss of generality, we let
i = 1, i.e., the initial parts on M6, M4, and M2 are, respectively, P1, P2,
and P3. Note that the operation wait at I/O (the last operation shown
in the table) is a dummy operation with w0 = 0, and is included to help
the reader appreciate the symmetry associated with the schedule. The
order of the operations in Table 4.6 is as follows: the 12 operations in
Column 1 followed by the 12 operations in Column 3 and, finally, the 11
operations in Column 5. It is easy to see that the subsequence (Pj → R,
R → Mk, Pj → Mk, R → Mk+1, wait) is repeated seven times, for
appropriate values of j and k, with the last wait (at I/O) in the cycle
being the dummy operation mentioned above. Correspondingly, we have
a sequence of durations that repeats seven times the subsequence (ε, δ,
ε, δ, wi) for appropriate values of i. The wi’s are derived as described
in Chapter 3. We have

wi = max

⎧
⎨

⎩
0, p − 7δ − 6ε −

�(7−i)/2
∑

j=1

wi−1+2j

−
�(i−1)/2
∑

j=1

wi−2j

⎫
⎬

⎭
, for 1 ≤ i ≤ 6.
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Operation Duration Operation Duration Operation Duration

(1) (2) (3) (4) (5) (6)

P4 → R ε P2 → M5 ε wait w3

R → M1 δ R → M6 δ P3 → R ε

P4 → M1 ε wait w6 R → M4 δ

R → M2 δ P1 → R ε P3 → M4 ε

wait w2 R → I/O δ R → M5 δ

P3 → R ε P1 → I/O ε wait w5

R → M3 δ R → M1 δ P2 → R ε

P3 → M3 ε wait w1 R → M6 δ

R → M4 δ P4 → R ε P2 → M6 ε

wait w4 R → M2 δ R → I/O δ

P2 → R ε P4 → M2 ε wait w0 = 0

R → M5 δ R → M3 δ −−− −−−

Table 4.6. A 1-Unit Cycle for m = 6.

The cycle time Tσ for this particular cycle is given by Tσ = 14δ + 14ε +
∑

wi. A solution is given by

w1 = 0,

wi = max{0, (p − 7δ − 6ε)/3}, for 2 ≤ i ≤ 6.

Generalizing the ideas illustrated in the example, we will now present
the case in which m is an arbitrary even number.

For m an arbitrary even number, the cycle we get is given by (m + 1)
copies of the subsequence (Pj → R, R → Mk, Pj → Mk, R → Mk+1,
wait) for appropriate values of j and k with the last wait being the
dummy wait at I/O. Correspondingly, we have a sequence of durations
which repeats (m + 1) times the subsequence (ε, δ, ε, δ, wi) for appro-
priate values of i. The wi’s appear in the order (w2, w4, . . . , wm, w1, w3,

. . . , wm−1). The wi’s are calculated in the usual fashion. For 1 ≤ i ≤ m,
we may write

wi = max{0, p − (m + 1)δ − mε −
�(m−i+1)/2
∑

j=1

wi−1+2j −
�(i−1)/2
∑

j=1

wi−2j}.
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The cycle time Tσ for this particular cycle is given by Tσ = 2(m + 1)δ +
2(m + 1)ε +

∑
wi. A solution is given by

w1 = 0,

wi = max{0, [p − (m + 1)δ − mε]/[m/2]}, for 2 ≤ i ≤ m.

We may now calculate Tσ for even values of m. Observe that

Tσ = 2(m + 1)δ + 2(m + 1)ε +
∑

wi.

Thus,

Tσ =

{
2(m + 1)δ + 2(m + 1)ε, if p − (m + 1)δ − mε ≤ 0,
(1/m)[2(m + 1)δ + 4mε + 2(m − 1)p], otherwise.

Note that Tσ may not be an optimal 1-unit cycle for the single-gripper
robotic cell. Since Ts ≤ Tσ, it is sufficient to establish the worst case ratio
for Tσ/Td. Keeping in mind that Td = max{(m+1)δ+2(m+1)ε, p+2ε},
we compute the worst case ratio:

For p − (m + 1)δ − mε ≤ 0, we have

Tσ/Td = [2(m + 1)(δ + ε)]/max{(m + 1)(δ + 2ε), p + 2ε},
≤ [2(m + 1)(δ + ε)]/[(m + 1)(δ + 2ε)] ≤ 2.

For p − (m + 1)δ − mε > 0, we have

Tσ/Td = (1/m)[2(m + 1)δ + 4mε + 2(m − 1)p]/max{(m + 1)δ

+ 2(m + 1)ε, p + 2ε},
≤ [(1/m)(2(m + 1)δ + 4mε)]/[(m + 1)δ + 2(m + 1)ε]

+ [(1/m)(2(m − 1)p)]/[p + 2ε],

≤ (1/m)(2) + (1/m)(2(m − 1)) = 2.

This completes the proof that Tσ/Td ≤ 2 for even values of m.

We now prove the result for odd values of m. For illustration, we
specify in Table 4.7 a schedule σ for m = 5 which, as before, starts
with the robot empty at I/O and the machines M2 and M4 occupied.
Without loss of generality, part P1 may be assumed to be on M4. For
an arbitrary odd number m, the cycle σ obtained is described as follows:
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Operation Duration Operation Duration Operation Duration

(1) (2) (3) (4) (5) (6)

P3 → R ε P1 → R ε P2 → R ε

R → M1 δ R → M5 δ R → M4 δ

P3 → M1 ε P1 → M5 ε P2 → M4 ε

R → M2 δ R → M1 2δ R → M5 δ

wait w2 wait w1 wait w5

P2 → R ε P3 → R ε P1 → R ε

R → M3 δ R → M2 δ R → I/O δ

P2 → M3 ε P3 → M2 ε P1 → I/O ε

R → M4 δ R → M3 δ −−− −−−
wait w4 wait w3 −−− −−−

Table 4.7. A 1-Unit Cycle for m = 5.

(m − 1)/2 copies of the subsequence (Pi → R, R → Mk, Pi → Mk,
R → Mk+1, wait) for appropriate values of i and k, followed by one
copy of (P1 → R, R → Mm, P1 → Mm, R → M1, wait), followed by
(m − 1)/2 copies of the subsequence (Pi → R, R → Mk, Pi → Mk,
R → Mk+1, wait) for appropriate values of i and k, followed by one
copy of (P1 → R, R → I/O, P1 → I/O).

The wi’s are derived as described in Chapter 3. We have

wi = max{0, p − (m + 1)δ − (m − 2�i/2� + 2�i/2� + 1)ε

−
�(m−i+1)/2
∑

j=1

wi−1+2j −
�(i−1)/2
∑

j=1

wi−2j}.

Note that (m − 2�i/2� + 2�i/2� + 1)ε equals (m + 1)ε when i is even,
and equals (m − 1)ε when i is odd. The cycle time is Tσ = 2(m + 1)δ +
2(m + 1)ε +

∑
wi. We consider three cases:

Case 1. p − (m + 1)δ − (m + 1)ε ≤ p − (m + 1)δ − (m − 1)ε ≤ 0.

In this case, w1 = . . . = wm = 0, Tσ = 2(m + 1)δ + 2(m + 1)ε, and
Tσ/Td ≤ [2(m + 1)δ + 2(m + 1)ε]/[(m + 1)δ + 2(m + 1)ε] ≤ 2.

Case 2. p − (m + 1)δ − (m + 1)ε ≤ 0 < p − (m + 1)δ − (m − 1)ε.
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In this case, w1 = p − (m + 1)δ − (m − 1)ε, w2 = . . . = wm = 0, and
Tσ = (m + 1)δ + (m + 1)ε + 2ε + p. Therefore, Tσ/Td ≤ [(m + 1)δ +
(m + 1)ε]/[(m + 1)δ + 2(m + 1)ε] + (p + 2ε)/(p + 2ε) ≤ 1 + 1 = 2.

Case 3. 0 < p − (m + 1)δ − (m + 1)ε ≤ p − (m + 1)δ − (m − 1)ε.

In this case, we have
w1 = [p − (m + 1)δ − (m + 1)ε]/[(m + 1)/2] + 2ε,
w2 = . . . = wm = [p − (m + 1)δ − (m + 1)ε]/[(m + 1)/2] = w1 − 2ε,
Tσ = 2δ + 4ε + (2mp)/(m + 1).
Therefore, Tσ/Td ≤ [2δ + 4ε]/[(m + 1)δ + 2(m + 1)ε] + [(2mp)/(m +
1)]/[p + 2ε]. Thus, Tσ/Td ≤ [2/(m + 1)] + 2m/(m + 1) = 2.

This completes the proof that 2 is an upper bound on Tσ/Td for instances
of the form of I ′ with θ = 0 and p1 = ... = pm ≡ p. As discussed at the
beginning of the proof, the bound holds for all instances.

To show that 2 is a tight bound on Ts/Td, we use the following data:
(m + 1)δ = p1 = . . . = pm = p > 0 and ε = θ = 0. In this case,
Td = (m + 1)δ. The cycle time for the schedule σ is Tσ = 2(m + 1)δ.
For any other single-gripper schedule τ for this instance, we show that
Tτ ≥ 2(m + 1)δ. The proof holds for both odd and even values of m.

The schedules with which we are concerned may be described as cyclic
permutations of the sub-schedules (M+

j−1,M
−
j ), 1 ≤ j ≤ m + 1. Each

such cyclic permutation yields a 1-unit cyclic schedule, and every 1-
unit cyclic schedule can be so described. Assume τ to be a schedule
of duration less than 2(m + 1)δ. We show that such a schedule cannot
exist. A few observations about τ are in order:

1. Corresponding to each (M+
j−1,M

−
j ), 1 ≤ j ≤ m + 1, there is a travel

time of δ between Mj−1 and Mj . Thus, the robot is occupied for
(m + 1)δ units of time for these moves.

2. The sub-sequences (M−
j ,M+

j−1), 1 ≤ j ≤ m + 1, cannot occur. This
follows from the fact that the sub-sequences (M+

j−1,M
−
j ), 1 ≤ j ≤

m + 1, do necessarily occur.

3. For 1 ≤ j ≤ m, if the sub-schedule (M−
j ,M+

j ) is part of a schedule,
then the duration of the schedule is at least 2(m + 1)δ. This results
from the (m+1)δ units of robot travel time mentioned in observation
(1) above, and a robot waiting time of (m + 1)δ at Mj .
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4. It follows that for the purpose of finding a schedule τ of duration
less than (m + 1)δ, we may assume, for 1 ≤ j ≤ m, that M+

j is
immediately preceded by M−

i(j) for some i(j) �= j. Hence, a travel
time of at least δ is associated with the sub-schedule (Mi(j),Mj). It
follows that in addition to the travel time of (m + 1)δ mentioned in
observation (1), there must be an additional travel time of at least
mδ associated with (Mi(j),Mj) for j �= 0, for a total travel duration
of at least 2(m+1)δ−δ. Thus, there cannot exist an additional travel
time associated with τ other than that just mentioned. In particular,
this implies that (M−

0 ,M+
0 ) must be part of the schedule τ .

We now pose the question: For which value of h is (M−
m,M+

h ) a sub-
schedule of τ? By observation (2), h �= m−1. By observation (3), h �= m.
By observation (4), h �= 0, or equivalently h �= m+1, since (M−

0 ,M+
0 ) is a

sub-schedule. It follows that regardless of what h is, there is a travel time
to Mh of at least 2δ associated with (M−

m,M+
h ). Thus, by observation (1)

there is an aggregate travel time of (m+1)δ associated with (M+
j−1,M

−
j ),

1 ≤ j ≤ m + 1. By observation (4), there is an additional travel time
of at least (m − 1)δ associated with each (Mi(j),Mj) for j �= 0, h. We
have just seen that associated with (M−

m,M+
h ), there is a travel time of

at least 2δ. Hence, the total travel time of τ is at least 2(m + 1)δ. This
completes the proof.

4.6 Comparison of Productivity: Computational
Results

One obvious approach to assess the productivity advantage of a dual-
gripper cell over a single-gripper cell is to estimate the performance
ratio of the cycle time of the best single-gripper cycle to that of the best
dual-gripper cycle. In general, one has to consider all possible multi-
unit cycles to arrive at the optimal value of this ratio. For large m,
explicit enumeration becomes impractical even if we limit our search to
all 1-unit cycles. Drobouchevitch et al. [50] show that for single part-
type production in a dual-gripper cell, the increase in the number of
machines in the cell leads to an increase in the number of possible 1-
unit cycles that is much higher as compared to that in a single-gripper
cell. For example, for m = 10, there are 642,787,488,000 feasible 1-unit
cycles for a dual-gripper cell (Table 4.8) and 10! = 3, 628, 800 feasi-
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ble 1-unit cycles for a single-gripper cell. We describe below a simple
heuristic, ProdRatio, to estimate the ratio Ts/Td for the class of 1-unit
cycles. Recall that Ts is the optimal single-gripper cycle time for prob-
lem RF 1

m|(free,A,cyclic-1)|μ, and Td is the optimal dual-gripper cycle
time for problem RF 2

m|(free,A,cyclic-1)|μ.

Number of Number of 1-unit cycles Number of 1-unit cycles, m!

machines (Dual-gripper cell) (Single-gripper cell)

m Drobouchevitch et al. [50] Sethi et al. [142]

1 6 1

2 46 2

3 456 6

4 5 688 24

5 86 640 120

6 1 568 880 720

7 33 022 080 5 040

8 793 215 360 40 320

9 2 1 423 7 09 440 362 880

10 64 2 787 4 88 000 3 628 800

Table 4.8. Number of 1-Unit Cycles for both Dual-Gripper and Single-Gripper m-

Machine Robotic Cells.

For an instance, algorithm ProdRatio computes cycle time estimates
by exploring 1-unit cycles for both single-gripper and dual-gripper cells,
and then finds the performance ratio based upon these estimates. Let
T̂s and T̂d denote the estimates for Ts and Td, respectively.

Algorithm ProdRatio

Input: An instance for both RF 1
m|(free,A,cyclic-1)|μ and for RF 2

m|(free,
A,cyclic-1)|μ is specified by m, δ, ε, p1, . . . , pm, and θ.

Step 1: Find the minimum cycle time (tmin) among all m! 1-unit cy-
cles for the single-gripper problem RF 1

m|(free,A,cyclic-1)|μ. Set T̂s =
tmin.

Step 2:

2a. If m = 2, then find the minimum cycle time (Tmin) among all un-
dominated 13 1-unit cycles – C1,1,C1,4, C1,13,C1,14,C1,15,C3,3,C3,4,C3,5,
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C3,6,C3,9,C3,10,C3,11,C3,16 – for RF 2
2 |(free,A,cyclic-1)|μ. Set T̂d =

Tmin.

2b. If m > 2, then find the cycle time (tmd ) for the 1-unit cycle Cm
d

for RF 2
m|(free,A,cyclic-1)|μ. Set T̂d = tmd = max{(m + 1)δ + 2(m +

1)ε + mθ, max{pj} + 2ε + θ}.

Step 3: Find the ratio T̂s/T̂d.

Step 4: Output: T̂s, T̂d and T̂s/T̂d. Terminate.

Theorems 4.3 and 4.4 describe the performance of ProdRatio. Based on
our discussion so far, the following results are immediate.

Theorem 4.3 For m = 2, ProdRatio yields a performance ratio with
the value Ts/Td.

Theorem 4.4 Given any instance of an m-machine problem satisfying
the inequality θ ≤ min{δ, p1, . . . , pm}, ProdRatio yields a performance
ratio with value Ts/Td.

Theorem 4.4 leaves open the question of quality of the ratio T̂s/T̂d yielded
by ProdRatio for the case θ > min{δ, p1, . . . , pm}. To address this case,
we describe a simulation that will bound the ratio T̂s/T̂d produced by
the algorithm. The simulation works as follows: generate an instance
satisfying θ > min{δ, p1, . . . , pm}, let θ

′
= min{δ, p1, . . . , pm}, and exe-

cute ProdRatio on the instance obtained by substituting θ
′

for θ. Let
r = T̂s/T̂d denote the ratio produced by ProdRatio applied to the orig-
inal instance, and let r′ = T̂s/T̂

′
d denote the ratio produced by the al-

gorithm applied to the transformed instance that uses θ
′

instead of θ.
Note that T̂

′
d = max{(m+1)δ+2(m+1)ε+mθ

′
,max{pj}+2ε+θ

′}. We
have T̂s/T̂d ≤ T̂s/T̂

′
d. Theorem 4.4 applies to the transformed problem.

Thus, the maximum percentage by which r may underestimate the ratio
T̂s/T̂d is given by [100(r

′ − r)]/r.

Next, we provide the computational results from applying heuristic
ProdRatio for instances generated for the following two cases. Case 1:
θ ≤ min{δ, p1, . . . , pm} and Case 2: θ > min{δ, p1, . . . , pm}. Note that
for linear and semicircular layouts, the best 1-unit single-gripper cycle
can be found in polynomial time in m (Chapter 3, Crama and van de
Klundert [40]). This result, however, does not hold for the circular layout
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where the input and output devices are located in one place. Since we
do not know of any existing efficient algorithm for a circular layout,
we let Step 1 of ProdRatio enumerate the m! cycles. For m ≤ 12, we
use exhaustive search to find an optimal 1-unit cycle as this search is
computationally feasible. For m ≥ 13, we apply a heuristic based on a
Genetic Algorithm (GA) to find a good 1-unit cycle.

Genetic Algorithms belong to the class of heuristic optimization tech-
niques that utilize randomization as well as directed smart search to
seek a global optimum. The creation of GAs was inspired by evolu-
tionary processes through which life is believed to have evolved in its
present forms (Goldberg [68]). When applied to the robotic cell schedul-
ing problem, a GA views a sequence of machine loadings by the robot as
an individual candidate sequence or solution. For example, for m = 4,
the candidate solution π = (5, 4, 2, 3, 1) denotes the sequence of machine
loadings in the associated 1-unit cycle: (M−

5 ,M−
4 ,M−

3 ,M−
2 ,M−

1 ) (see
Chapter 3). A number of such individual solutions constitutes a pop-
ulation. Each individual solution is characterized by its fitness (e.g.,
cycle time value). The GA works iteratively with the members of the
population using operators such as crossover and mutation; each new it-
eration is referred to as a generation. For details, we refer the reader to
Murata and Ishibuchi [123]. A key challenge in the application of GAs
is the optimization of the computational effort in balancing exploration
of the solution space and exploitation of the features of good solutions
or sequences produced along the way. This balance is affected greatly
by the choices of the different GA parameters, including elite fraction
(ef), population size (Ps), the probability of crossing two parents (Pc),
the probability of mutation (Pm), and the number of generations (ngen)
(for details, we refer the reader to Goldberg [68], Davis [44]). After per-
forming some trial runs, we found that the following values for these
parameters are suitable for our experiments: Ps = 100, Pc = 0.95,
Pm = 0.1, ef = 0.5, and ngen = 100.

To test algorithm ProdRatio, we use data guided primarily by practi-
cal relevance. We generate three types of processing times of the parts:
I1, I2, I3. Under I1 (resp., I2 and I3), the processing times are cho-
sen randomly from U [1, 15] (resp., U [1, 25] and U [1, 50]). In practice,
the value of θ is smaller than the processing times of the parts. We
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use three values of θ: 0.25, 1.0, and 1.5. For all instances, we set
ε = 0.25 and δ = 1.0. For each setting of the parameters, we gener-
ate five instances. Let rk and r

′
k denote, respectively, the ratio obtained

by the heuristic and the upper bound for the kth instance of each set-
ting. Let r̄ =

∑5
k=1 rk/5, r̄′ =

∑5
k=1 r′k/5, rmin = min1≤k≤5{rk}, rmax =

max1≤k≤5{rk}, ek = 100(r
′
k−rk)/rk, e =

∑5
k=1 ek/5, 	 = min1≤k≤5{ek},

and u = max1≤k≤5{ek}.

m Instance θ rmin r̄ rmax

2 I1 0.25 1.2549 1.3330 1.5000

2 I2 0.25 1.1206 1.1410 1.1646

2 I3 0.25 1.0726 1.1384 1.3023

5 I1 0.25 1.4237 1.5083 1.6098

5 I2 0.25 1.1717 1.2120 1.2881

5 I3 0.25 1.0854 1.1086 1.1475

10 I1 0.25 1.6053 1.7105 1.8684

10 I2 0.25 1.5152 1.7237 1.9211

10 I3 0.25 1.0929 1.1281 1.2205

15 I1 0.25 1.7297 1.8667 1.9820

15 I2 0.25 1.8739 2.1514 2.2703

15 I3 0.25 1.4426 1.4921 1.5276

Table 4.9. Performance Evaluation of Algorithm ProdRatio for Case 1 with θ = 0.25.

Table 4.9 provides the performance ratios of ProdRatio for instances
under Case 1 with θ = 0.25. Each row of the table summarizes the
results of the corresponding five instances. The fourth, fifth, and sixth
columns show the minimum, mean, and the maximum performance ra-
tios, respectively. The results for r̄ show that, on average, the produc-
tivity improvements obtained by using a dual-gripper cell instead of a
single-gripper cell range from 10% to 115%. The results also indicate
that the productivity improvements are typically higher in cells with
more machines. Over all the 60 instances, the smallest and the largest
performance ratios are 1.0726 and 2.2703, respectively. Note, however,
that the performance ratios rk are an overestimate of the true produc-
tivity improvements: the heuristic used in Step 1 typically overestimates
the single-gripper cycle time. A case in point is Row 11 of Table 4.9,
where the ratios exceed the proven bound of 2 (Theorem 4.2) for some
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m Instance θ rmin r̄ rmax

2 I1 1.0 1.1724 1.1950 1.2174

2 I2 1.0 1.0980 1.1252 1.1613

2 I3 1.0 1.0495 1.0597 1.0704

5 I1 1.0 1.2414 1.3268 1.3929

5 I2 1.0 1.1429 1.1744 1.2727

5 I3 1.0 1.0722 1.0902 1.1373

10 I1 1.0 1.0755 1.2227 1.3396

10 I2 1.0 1.3585 1.4264 1.4906

10 I3 1.0 1.0693 1.1302 1.3093

15 I1 1.0 1.1795 1.3205 1.4872

15 I2 1.0 1.3590 1.5000 1.5897

15 I3 1.0 1.3366 1.3831 1.4588

Table 4.10. Performance Evaluation of Algorithm ProdRatio for Case 1 with θ = 1.0.

m Ii θ rmin r̄ rmax r̄
′

� e u

2 I1 1.5 1.3333 1.1831 1.2857 - - - -

2 I2 1.5 1.0800 1.0982 1.1250 - - - -

2 I3 1.5 1.0435 1.0664 1.1053 - - - -

5 I1 1.5 1.2121 1.2606 1.3030 1.3703 6.45 8.73 17.86

5 I2 1.5 1.1250 1.1952 1.2500 1.2235 2.04 2.37 3.03

5 I3 1.5 1.0652 1.0955 1.1818 1.1117 1.10 1.46 2.33

10 I1 1.5 1.0159 1.1079 1.1746 1.3170 18.87 18.87 18.87

10 I2 1.5 1.1270 1.2191 1.2857 1.4491 18.87 18.87 18.87

10 I3 1.5 1.0600 1.1352 1.2292 1.1472 1.01 1.05 1.12

15 I1 1.5 1.0108 1.1269 1.2258 1.3436 19.23 19.23 19.23

15 I2 1.5 1.0753 1.1807 1.3979 1.4077 19.23 19.23 19.23

15 I3 1.5 1.3300 1.4058 1.4946 1.4702 0.99 4.39 12.05

Table 4.11. Performance Evaluation of Algorithm ProdRatio for Case 2 with θ = 1.5.

instances. Table 4.10 reports the results for instances under Case 1 with
θ = 1.0. Table 4.11 reports the results for instances under Case 2 with
θ = 1.5, and also compares the performance ratios obtained by ProdRa-
tio with an upper bound. As before, each row in Table 4.11 corresponds
to the results of the corresponding five instances; the fourth, fifth, and
sixth columns show the minimum, mean, and the maximum performance
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ratio, respectively. Columns eight, nine, and ten show, respectively, the
minimum, mean, and the maximum percentage deviation from the upper
bound. The results for r̄ show that productivity improvements averag-
ing between 6% to 40% may be obtained by using a dual-gripper robot
instead of a single-gripper robot. In general, the productivity improve-
ments are higher in cells with more machines for a given type (i.e., I1, I2,
or I3) of processing times. The smallest and the largest performance ra-
tio observed are 1.0108 and 1.4946, respectively, over all 60 instances
reported in Table 4.11. On average, the performance of ProdRatio on
smaller cells compares well with the upper bound. The mean relative de-
viations are all less than 8.73%, except for four cases where this value is
either 18.87% or 19.23%. The smallest and the largest relative deviations
are 0.0% and 19.23%, respectively. The results for r̄ in Tables 4.9, 4.10,
and 4.11 indicate that the productivity improvements decrease with an
increase in the the value of the gripper switch time θ.

4.7 Efficiently Solvable Cases
This section identifies some efficiently solvable cases of RF 2,◦

m |(free,A,
cyclic-1)|μ in addition to the one in Corollary 4.1. Surprisingly, the θ ≤ δ

assumption drastically simplifies the problem in the case of 1-unit cycles.
Drobouchevitch et al. [50] show that problem RF 2

m|(free,A,cyclic-1)|μ
with θ ≤ δ is efficiently solvable. A lower bound on an optimal solution
is mentioned below. Let

Dθ = {k|pk ≤ θ, 1 ≤ k ≤ m} , Dc
θ = M \ Dθ, r = |Dc

θ|. (4.8)

Lemma 4.1 For problem RF 2
m|(free,A,cyclic-1)|μ with θ ≤ δ, a lower

bound on the length T (C) of any 1-unit cycle C is:

T (C) ≥ max

⎧
⎨

⎩
max

1≤k≤m
pk + θ + 2ε,

∑

k∈Dθ

pk + rθ + (m + 1)(δ + 2ε)

⎫
⎬

⎭
.

(4.9)

Proof. Similar to that for Corollary 4.1. See Drobouchevitch et al. [50]
for details.

We are now ready to demonstrate that problem RF 2
m|(free,A,cyclic-

1)|μ is efficiently solvable provided θ ≤ δ. The optimality of the 1-unit
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cycle we obtain is guaranteed by its cycle length being equal to the lower
bound (4.9).

Algorithm OPT1

Input: An instance of RF 2
m|(free,A,cyclic-1)|μ. The sets Dθ and Dc

θ are
as defined in (4.8).

Output: A 1-unit cycle C∗.

Initial setting: Machines Mk, k ∈ Dc
θ, are occupied with a part; ma-

chines Mk, k ∈ Dθ, are empty. The robot is positioned at I/O; both
robot grippers are empty.

Step 1: The robot picks up a part from I/O.

Step 2: For k from 1 to m:

Step 2.1: The robot moves to machine Mk.

Step 2.2: If k ∈ Dc
θ, then

if necessary, the robot waits for wk time units for a part on
Mk to complete processing;

the robot unloads a part from Mk (ε);

the robot switches grippers (θ);

the robot loads a part onto Mk (ε).

Step 2.3: Otherwise (i.e., k ∈ Dθ),

the robot loads a part onto Mk (ε);

the robot waits for pk time units for a part on Mk to be
processed;

the robot unloads a part from Mk (ε).

Step 3: The robot moves to the I/O hopper and drops a part at the
output device of the I/O station.

It is easy to verify that the running time of algorithm OPT1 is O(m).
The theorem below analyzes its performance.
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Theorem 4.5 For an instance of RF 2
m|(free,A,cyclic-1)|μ with θ ≤ δ,

OPT1 produces an optimal 1-unit cycle C∗. The cycle time of C∗ is

T (C∗) = max

⎧
⎨

⎩
max
k∈Dc

θ

pk + 2ε + θ;
∑

k∈Dθ

pk + rθ + (m + 1)(δ + 2ε)

⎫
⎬

⎭
.

(4.10)

Proof. We leave it to the reader to verify the feasibility of cycle C∗. To
prove the optimality of C∗, we show that its cycle time indeed achieves
the lower bound represented by the expression on the right-hand side of
inequality (4.9).

We consider two possible scenarios. First, suppose that there exists
at least one k ∈ Dc

θ for which wk > 0. Then, it is easy to see that

T (C∗) = pk + 2ε + θ. (4.11)

Now, suppose there is no positive wk. Then,

T (C∗) =
∑

k∈Dθ

pk + rθ + (m + 1)δ + 2(m + 1)ε. (4.12)

Combining (4.11) and (4.12) together, we obtain (4.10). By Lemma 4.1,
the optimality of C∗ follows.

The result of Lemma 4.1 can be extended to the general case of
RF 2

m|(free,A,cyclic-k)|μ (i.e., when the search for an optimal cyclic so-
lution is not restricted to the class of 1-unit cycles) if we impose an
assumption on the values of part processing times. The proof of the fol-
lowing theorem is similar to that of a result – Theorem 4.8 in Section 4.9
– we present later. We, therefore, state it here without a proof.

Lemma 4.2 For problem RF 2
m|(free,A,cyclic-k)|μ with θ ≤ δ and

max1≤i≤m{pi} ≥ δ, a lower bound on the per unit cycle time of any
k-unit cycle C is:

T (C)
k

≥ max
{

max
1≤i≤m

pi + θ + 2ε;mθ + (m + 1)δ + 2(m + 1)ε
}

. (4.13)

Corollary 4.2 For problem RF 2
m|(free,A,cyclic-k)|μ with θ ≤ δ and

max1≤i≤m{pi} ≥ δ, algorithm OPT1 obtains an optimal solution.
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4.8 Single-Gripper Cells with Output
Buffers at Machines

In this section, we consider a model that is closely related to the
dual-gripper problems we have studied so far. Specifically, we discuss a
robotic cell served by a single-gripper robot that allows for temporary
storage of processed parts at each machine. A unit-capacity buffer at a
machine can be viewed as an alternative to an additional gripper. A local
material handling device at a machine can move a completed part to the
output buffer of that machine, without using the robot. Our aim is to
investigate this model with machine buffers and compare it to a dual-
gripper robotic cell. The analysis we present is from Drobouchevitch et
al. [50]. We start with the formal definition of the problem.

Following the notation of our classification scheme in Chapter 2, we
are interested in RF 1,◦

m,1̄
|(free,A,cyclic-1)|μ, the problem of obtaining a

1-unit cycle that maximizes throughput in an m-machine single-gripper
robotic cell producing identical parts with a circular layout and with a
unit-capacity output buffer at each machine; 1̄ = (1, 1, . . . , 1) denotes
that each machine has an output buffer of unit capacity. The processing
requirements are the same as that for RF 2,◦

m |(free,A,cyclic-1)|μ. We
denote the buffer at machine Mi by Bi. The pair (Mi, Bi) is referred to
as the production unit Zi.

The main purpose of an output buffer at a machine is to allow for tem-
porary storage of a part that has been processed on the machine. This
allows a single-gripper robot to unload and reload Mi during a single
visit. From an optimization aspect, we make the following assumptions
on the use of a production unit (Mi, Bi):

(i) Buffer Bi is used to accommodate a part (say, Pj) that has finished
its processing on Mi if and only if machine Mi is scheduled to be
loaded with the next part (Pj+1) before part Pj leaves the production
unit (Mi, Bi).

(ii) The robot is not allowed to load part Pj+1 on Mi until part Pj is
moved securely to the buffer. This is done for safety – to avoid any
collision between the robot and the local material handling device.

Assumption (i) implies that the use of a buffer is cycle-dependent.
That is, the decision on whether a part Pj that has finished its pro-
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cessing on a machine Mi is to be transferred to buffer Bi depends on
the next robot operation scheduled for unit Zi. Specifically, if the next
operation is “load machine Mi,” then part Pj goes to Bi immediately
on the completion of its processing on Mi; thus, machine Mi is empty
and ready to take the next part Pj+1. Otherwise, when there is no need
to use a buffer, part Pj occupies machine Mi until the robot unloads
it. The idea is to optimize the use of the buffer; the time to unload a
part from a machine and move it to its buffer is spent only when it is
necessary for the execution of the cycle. The following parameters are
needed for this model:

pi: the processing time of a part on machine Mi, i = 1, 2, . . . ,m.

ε: the time taken by the robot to pick up/drop off a part at I/O. Also
the time taken by the robot to perform the load/unload operation at
any production unit Zi, i = 1, 2, . . . ,m (i.e., load/unload machine Mi

or unload buffer Bi).

δ: the time taken by the robot to travel between two consecutive
production units Zj−1 and Zj , 1 ≤ j ≤ m + 1. The travel times are
additive for nonconsecutive machines/buffers.

φ: the time taken by the robot to travel from a machine Mi (after it
loads this machine) to this machine’s buffer Bi.

ω: the total time taken by the local handling device to unload a
finished part from a machine Mi and transfer it to this machine’s
buffer Bi.

We conduct our analysis of the problem under the following assumption:

ω = φ + ε. (4.14)

Our choice of ω is based on observations in real-world robotic cells.
It turns out that this assumption also slightly simplifies the analy-
sis of the problem. Nevertheless, all the results obtained below for
RF 1

m,1̄
|(free,A,cyclic-1)|μ under assumption (4.14) can be easily extended

for an arbitrary value of ω. Brauner et al. [23] considered a special case
of RF 1

m,1̄
|(free,A,cyclic-1)|μ in which φ = ω = 0. We also note that the

model considered in this section can be easily converted to one in which



Dual-Gripper Robots 133

a part always goes to a machine’s buffer after its processing on that ma-
chine is completed. The latter model is obtained by setting pnew

i = pi+ω

and ωnew = 0.

We now discuss the construction and notational representation of 1-
unit cycles for RF 1

m,1̄
|(free,A,cyclic-1)|μ. We denote by M−

k (M+
k ) and

B−
k (B+

k ), the operations “load Mk” (“unload Mk”) and “load Bk” (“un-
load Bk”), respectively. We write M+

0 = I and M−
m+1 = O to denote the

operations “pick up a part from Input” and “drop a part at Output,”
respectively. Furthermore, we write Z−

k and Z+
k to refer to the opera-

tions “load unit Zk” and “unload unit Zk,” respectively. Here, Zk refers
to Mk or Bk as appropriate. We refer to the sequence of robot activities
“Unload a part Pj from unit Zk, go to machine Mk+1, and load part Pj

on machine Mk+1” as activity Ak, and use the following notation

Ak =
(
Z+

k − ◦ − M−
k+1

)
, (4.15)

where Z+
k ∈

{
M+

k , B+
k

}
and ◦ ∈

{
∅,

[
M+

k+1, B
−
k+1

]}
. Here, the symbol

“◦” is used to specify whether or not machine Mk+1 had to be earlier
served by the local material handling device that would unload a part
previously processed on Mk+1 and move it to buffer Bk+1. In what
follows, we will exploit the representation (4.15) in both its general form
Ak =

(
Z+

k − ◦ − M−
k+1

)
, and a specific form where the Z+

k and “◦” terms
are explicitly specified. For example, consider the following two 1-unit
cycles for problem RF 1

2,1̄
|(free,A,cyclic-1)|μ.

Cycle C1:
((

I −
[
M+

1 , B−
1

]
− M−

1

)
,
(
B+

1 − M−
2

)
,
(
M+

2 − O
))

. The ac-
tivities of the robot for this cycle are as follows: the robot picks a
part (Pj) from Input (ε); goes to machine M1 (δ); if necessary, waits
for a part (Pj−1) on M1 to be completed and transferred to buffer
B1 (wait time w1); loads part Pj onto M1 (ε); moves to buffer B1

(φ); unloads part Pj−1 from B1 (ε); goes to machine M2 (δ); loads
part Pj−1 onto M2 (ε); waits for p2 time units for part Pj−1 on M2 to
be processed; unloads part Pj−1 from M2 (ε); goes to I/O (δ); and
drops part Pj−1 onto Output (ε). Under assumption (4.14), the cycle
time of cycle C1 is

T (C1) = max {p1 + φ + 2ε, p2 + φ + 3δ + 6ε} .
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Cycle C2:
((

I −
[
M+

1 , B−
1

]
− M−

1

)
,
(
M+

2 − O
)
,
(
B+

1 − M−
2

))
. In this

cycle, the robot picks a part (Pj) from Input (ε); goes to machine
M1 (δ); waits, if necessary, for a part (Pj−1) on M1 to be completed
and transferred to buffer B1 (w1); loads part Pj onto M1 (ε); goes
to machine M2 (δ); waits, if necessary, for a part (Pj−2) on M2 to
be completed (w2); unloads part Pj−2 from M2 (ε); goes to I/O (δ);
drops part Pj−2 onto Output (ε), goes to buffer B1 (δ); unloads part
Pj−1 from B1 (ε); goes to machine M2 (δ); loads part Pj−1 onto M2

(ε); and goes to I/O (δ). Under assumption (4.14), the cycle time of
cycle C2 is

T (C2) = max {p1 + φ + 2ε, p2 + 3δ + 4ε; 6δ + 6ε} .

In any 1-unit cycle, each of the operations “load machine Mk,” k =
1, 2, . . . ,m + 1, is performed exactly once. Furthermore, for any k =
0, 1, . . . ,m, the robot operation “unload a part Pj from unit Zk” is
always immediately followed by “load part Pj onto machine Mk+1,” i.e.,
after picking up part Pj from unit Zk, the robot has no choice for its
next operation but to go to machine Mk+1 and load the latter with part
Pj . We thus have the following property.

Property 4.1 For RF 1
m,1̄

|(free,A,cyclic-1)|μ, any feasible 1-unit cycle
corresponds to a unique sequence of activities Ak = (Z+

k − ◦ − M−
k+1),

k = 0, 1, . . . ,m, with each activity occurring exactly once (under the
proviso that the latter sequence is treated in a cyclic manner).

The next result establishes the reverse relationship between 1-unit
cycles and activities.

Property 4.2 For RF 1
m,1̄

|(free,A,cyclic-1)|μ, any permutation of ac-
tivities Ak, k = 0, 1, . . . ,m, in the form (4.15), where each Z+

k ∈
{
M+

k , B+
k

}
is specified (i.e., an activity Ak is in the form of either

Ak = (M+
k − ◦ − M−

k+1) or Ak = (B+
k − ◦ − M−

k+1)), defines a unique
1-unit cycle.

Proof. We first observe that by specifying Z+
k ∈

{
M+

k , B+
k

}
in activity

Ak, we determine how the buffer Bk is used. In particular, if in Ak we
have Z+

k = B+
k , i.e., Ak =

(
B+

k − ◦ − M−
k+1

)
, then the “◦”-term of ac-

tivity Ak−1 must be
[
M+

k , B−
k

]
, i.e. Ak−1 =

(
Z+

k−1 −
[
M+

k , B−
k

]
− M−

k

)
.
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Otherwise, if Z+
k = M+

k (so that Ak =
(
M+

k − ◦ − M−
k+1

)
), then Ak−1 =

(
Z+

k−1 − M−
k

)
(“◦”-term is empty). Thus, by specifying the Z+

k -entries
of Ak, we uniquely identify the “◦” terms of all activities and, therefore,
both the robot activities and the operations within the production units
are well defined. Hence, a permutation of activities Ak, k = 0, 1, . . . ,m,
in the form (4.15), where Z+

k ∈
{
M+

k , B+
k

}
, completely defines a unique

cycle. We leave it to the reader to verify that such a cycle is always
feasible.

The following lemma gives the total number of 1-unit cycles for an m-
machine single-gripper robotic cell with unit-capacity machine buffers.

Lemma 4.3 For RF 1
m,1̄

|(free,A,cyclic-1)|μ, the number of 1-unit cycles
equals m! × 2m.

Proof. Clearly, any 1-unit cycle for RF 1
m,1̄

|(free,A,cyclic-1)|μ, if repre-
sented by a permutation of activities Ak, k = 0, 1, . . . ,m, admits (m+1)
different representations, depending on which activity is chosen as the
starting activity. To achieve the uniqueness of cycle representation, let
us demand that the cycle always start with A0 =

(
I − ◦ − M−

1

)
; with

this assumption, by Property 4.1, a 1-unit cycle admits a unique rep-
resentation. This representation is defined by a permutation of the
remaining m activities Ak, k = 1, 2, . . . ,m, as well as by the Z+

k -
entries of activities Ak. There are m! different permutations of activ-
ities Ak, k = 1, 2, . . . ,m, written in the form

(
Z+

k − ◦ − M−
k+1

)
. As

Z+
k may stand for either M+

k or B+
k , any permutation of activities

Ak =
(
Z+

k − ◦ − M−
k+1

)
, k = 1, 2, . . . ,m, expands into 2m different per-

mutations of Ak with explicitly specified Z+
k ∈

{
M+

k , B+
k

}
. By Property

4.2, any such permutation of activities Ak defines a unique 1-unit cycle
for RF 1

m,1̄
|(free,A,cyclic-1)|μ.

Let

Dφ = {k|pk ≤ φ, 1 ≤ k ≤ m} , Dc
φ = M \ Dφ, r = |Dc

φ|. (4.16)

Lemma 4.4 For RF 1
m,1̄

|(free,A,cyclic-k)|μ with φ ≤ δ, a lower bound on
the per unit cycle time of any k-unit cycle C is given below:

T (C)
k

≥ max

⎧
⎨

⎩
max

1≤i≤m
pi + φ + 2ε;

∑

i∈Dφ

pi + rφ + (m + 1)(δ + 2ε)

⎫
⎬

⎭
.

(4.17)
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Proof. The proof is similar to an analogous result obtained by Brauner
et al. [23]. Let C be an arbitrary k-unit cycle for RF 1

m,1̄
|(free,A,cyclic-

k)|μ written in terms of activities Ai, i = 0, 1, . . . ,m. Note that each
activity Ai =

(
Z+

i − ◦ − M−
i+1

)
, i = 0, 1, . . . ,m, occurs in C exactly k

times. We first estimate cycle time as the time spent by the robot to
execute the cycle. To execute an activity Ai =

(
Z+

i − ◦ − M−
i+1

)
, the

robot needs at least 2ε + δ time units: operations Z+
i and M−

i+1 take ε

time each, and the robot travel time from Zi to Mi+1 is δ. The time
τ spent by the robot between two successively executed activities, say
Ai and Al, where Ai =

(
Z+

i − ◦ − M−
i+1

)
is immediately followed by

Al =
(
Z+

l − ◦ − M−
l+1

)
, is estimated as follows:

τ = 0 if M−
i+1 = O,Z+

l = I;
τ = pi+1 if Z+

l = M+
i+1;

τ = φ if Z+
l = B+

i+1;
τ = robot travel time

from Mi+1 toZl ≥ δ otherwise.

We thus have

T (C) ≥ k ×
(

m∑

i=1

min {pi, φ, δ} + (m + 1)(δ + 2ε)

)

.

As φ ≤ δ, min {pi, φ, δ} = min {pi, φ}. Hence, we obtain

T (C)
k

≥
m∑

i=1

min {pi, φ}+(m+1)(δ+2ε) =
∑

i∈Dφ

pi +rφ+(m+1)(δ+2ε).

(4.18)

We now look at cycle time from a different point of view. Consider
any arbitrary machine Mi, i ∈ {1, 2, . . . ,m}. Let τ ′ be the minimum
time spent in the partial execution of cycle C between any two suc-
cessive occurrences of M−

i and M+
i . Furthermore, let τ ′′ denote the

minimum time spent in the partial cycle execution between the moment
an operation M+

i starts and the moment the next successive operation
M−

i finishes. In the k-unit cycle C, each of the operations “load Mi”
and “unload Mi” is executed k times. Hence,

T (C) ≥ k ×
(
τ ′ + τ ′′) . (4.19)
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We now estimate the values of τ ′ and τ ′′. Clearly, τ ′ ≥ pi. As for
τ ′′, we have two possibilities. If the corresponding cycle subsequence
is

([
M+

i − B−
i

]
− M−

i

)
, i.e., the subsequence that delivers the minimal

value for τ ′′, then τ ′′ = ω + ε = φ + 2ε. Otherwise, the corresponding
cycle subsequence takes the form

(
M+

i − ◦ − M−
i+1 . . . Z+

i−1 − M−
i

)
, and

τ ′′ must include the time to perform load/unload Mi (2ε) as well as the
robot travel time from Mi to some other machine(s) (≥ δ) and back.
Therefore, τ ′′ ≥ δ + 2ε. Thus, under the condition φ ≤ δ, we always
have τ ′′ ≥ φ + 2ε. By combining the above estimates for τ ′ and τ ′′ with
(4.19), we deduce

T (C)
k

≥ pi + φ + 2ε, i = 1, 2, . . . ,m.

Together with (4.18), we have the desired bound (4.17).

Algorithm OPT2

Input: An instance of RF 1
m,1̄

|(free,A,cyclic-1)|μ. The sets Dφ and Dc
φ

are as defined by (4.16).

Output: A 1-unit cycle C̄.

Initial setting: Units Zk, k ∈ Dc
φ, are occupied with a part; units Zk,

k ∈ Dφ, are empty. The robot is positioned at I/O and the robot’s
gripper is empty.

Step 1: The robot picks up a part from the input buffer at the I/O

hopper.

Step 2: For k from 1 to m :

Step 2.1: The robot moves to machine Mk.

Step 2.2: If k ∈ Dc
φ, then

if necessary, the robot waits for wk time units for a part (Pi)
on Mk to be completed and transferred to its output buffer
Bk;

the robot loads a part (Pi+1) onto Mk (ε);

the robot moves to buffer Bk (φ);

the robot unloads the part (Pi) from Bk (ε).
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Step 2.3: Otherwise (i.e., if k ∈ Dφ),

the robot loads a part (Pi) onto Mk (ε);

the robot waits for pk time units for the part (Pi) on Mk to
be processed;

the robot unloads the part (Pi) from Mk (ε).

Step 3: The robot moves to I/O hopper and drops a part onto the
output device of the I/O hopper.

Theorem 4.6 For RF 1
m,1̄

|(free,A,cyclic-k)|μ with φ ≤ δ, algorithm
OPT2 produces an optimal cycle C̄. The cycle time of cycle C̄ is

T (C̄) = max

⎧
⎨

⎩
max
k∈Dc

φ

pk + 2ε + φ;
∑

k∈Dφ

pk + rφ + (m + 1)δ + 2(m + 1)ε

⎫
⎬

⎭
.

(4.20)

Proof. The proof of (4.20) is similar to that of Theorem 4.5. The
optimality of C̄ follows from Lemma 4.4.

Observe that the role of θ in RF 2
m|(free,A,cyclic-1)|μ is somewhat

analogous to that of φ in RF 1
m,1̄

|(free,A,cyclic-1)|μ.

Corollary 4.3 If max{θ, φ} ≤ δ, problems RF 2
m|(free,A,cyclic-1)|μ

and RF 1
m,1̄

|(free,A,cyclic-k)|μ have the same minimum cycle time if θ =
φ.

Proof. Follows from Corollary 4.2 and Theorem 4.6.

Corollary 4.4 Under conditions max{θ, φ} ≤ δ and pi ≥ δ, i =
1, . . . ,m, problems RF 2

m|(free, A,cyclic-k)|μ and RF 1
m,1̄

|( free,A,cyclic-
k)|μ have the same minimum cycle time if θ = φ.

Proof. Follows from Theorems 4.5 and 4.6.

We conclude this section on the relationship between problems RF 2
m|(free,

A, cyclic-1)|μ and RF 1
m,1̄

|(free,A,cyclic-1)|μ with a simple result that es-
tablishes the relative equivalence of these two problems. In what follows,
the robot’s travel between any two machines is called an empty move if
it travels empty, and is called a loaded move otherwise. Furthermore, for
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RF 1
m,1̄

|(free,A,cyclic-k)|μ, a production unit Zi is said to be fully loaded
if both Mi and Bi are loaded with a part.

Definition 4.1 A cycle C ′ for RF 2
m|(free,A,cyclic-1)|μ is called simple

if in C ′ the robot never carries two parts in any of its loaded moves.

Definition 4.2 A cycle C ′′ for RF 1
m,1̄

|(free,A,cyclic-1)|μ is called sim-
ple if in C ′′ the robot never makes an empty move from a fully loaded
unit.

Let Ω′ (resp., Ω′′) denote the set of all simple 1-unit cycles for RF 2
m|(free,

A, cyclic-1)|μ (resp., RF 1
m,1̄

|(free,A,cyclic-1)|μ). We note that a trivial
example of a simple cycle in either Ω′ or Ω′′ is a cycle for RF 1

m|(free,
A,cyclic-1)|μ.

Lemma 4.5 Let θ = φ. Then for any cycle C ′ ∈ Ω′, there exists a cycle
C ′′ ∈ Ω′′ such that

T (C ′) = T (C ′′), (4.21)

and vice-versa.

Proof. Cycles C ′ ∈ Ω′ and C ′′ ∈ Ω′′ that satisfy (4.21) are obtained
from each other as follows. Both cycles are defined by the very same
schedule of robot operations with only one exception: the sequence of
operations “unload machine Mk, switch grippers, and load machine Mk”
in C ′ translates into “load machine Mk, go to buffer Bk, and unload
buffer Bk” for cycle C ′′. We leave it to the reader to verify that for
given problem data (i.e., for given values of pi, i = 1, 2, . . . ,m, δ, ε, and
θ = φ), both cycles deliver the same cycle time.

The above result shows the relative equivalence of RF 1
m,1̄

|(free,A,
cyclic-1)|μ and RF 2

m|(free,A,cyclic-1)|μ, when the utilization of machine
buffers (for RF 1

m,1̄
|(free,A,cyclic-1)|μ) and that of the additional robot

gripper (for RF 2
m|(free, A, cyclic-1)|μ) is limited to swapping parts at

the machines. To provide intuition, we give an example of two 1-unit
cycles C ′ ∈ Ω′ and C ′′ ∈ Ω′′ that comply with Lemma 4.5:

Cycle C ′: I −M−
1 −M+

1 −M−
2 −M+

3 −M+
4 −M−

4 −O −M+
2 −M−

3 ;

Cycle C ′′: I −M−
1 − M+

1 − M−
2 − M+

3 −M−
4 −B+

4 −O −M+
2 −M−

3 .
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Finally, we look at the possible impact of multi-unit cycles on the cycle
time for both RF 2

m|(free,A,cyclic-k)|μ and RF 1
m,1̄

|(free,A,cyclic-k)|μ.

Consider the following 2-unit cycle Ĉ for RF 2
m|(free,A,cyclic-2)|μ.

A 2-unit cycle Ĉ: The initial state has all of the machines and the
robot empty, with the robot positioned at I/O. The robot then picks
up two parts (say Pi and Pi+1) at I/O, then moves to M1, to M2, . . .,
to Mm, and finally returns to I/O to unload both parts Pi and Pi+1. At
each machine, Pi is loaded, processed, and unloaded, and then Pi+1 is
loaded, processed, and unloaded. The cycle time of Ĉ is

T (Ĉ) = (m + 1)δ + 4(m + 1)ε + (m + 1)θ + 2
m∑

i=1

pi.

Let x be a small positive number and X be sufficiently large such that
0 < x << X. Consider the following problem data:

θ = φ = ε = pi = x, i = 1, 2, . . . ,m; δ = X. (4.22)

For this instance, the cycle time of Ĉ is T (Ĉ) = (m + 1) X +(7m + 5)x.
For the data in (4.22), let OPT (P ) denote the optimal per unit cycle
for a problem P . For problem RF 2

m|(free,A,cyclic-2)|μ, cycle Ĉ delivers
an optimal solution for the data (4.22). That is, we have

OPT (RF 2
m|(free, A, cyclic-2)|μ ) = T (Ĉ)

2 = 1
2 ((m + 1)X + (7m + 5) x) .

Now, consider problems RF 1
m,1̄

|(free, A, cyclic-k)|μ and RF 2
m|(free, A,

cyclic-1)|μ. By Theorems 4.5 and 4.6, we have

OPT (RF 2
m|(free, A, cyclic-1)|μ) = OPT (RF 1

m,1̄|(free, A, cyclic-k)|μ)

= (m + 1) X + (3m + 2) x.

As x → 0 and X → ∞, we have

OPT (RF 2
m|(free, A, cyclic-1)|μ)

OPT (RF 2
m|(free, A, cyclic-2)|μ)

=
OPT (RF 1

m,1̄|(free, A, cyclic-k)|μ)

OPT (RF 2
m|(free, A, cyclic-2)|μ)

=
2((m + 1)X + (3m + 2)x)

(m + 1)X + (7m + 5)x
−→ 2.

As a consequence of the above example and Corollary 4.3, we state the
following result.
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Lemma 4.6 Under conditions θ ≤ δ and θ = φ, the long-term average
throughput of a dual-gripper cell (RF 2

m|(free,A,cyclic-k)|μ) is equal to or
greater than that of the single-gripper cell with a unit-capacity output
buffer at each machine (RF 1

m,1̄
|(free,A,cyclic-k)|μ).

To summarize, an output buffer at a machine plays the same role as an
extra robot gripper – they both allow for temporary storage of a part.
While the use of output buffers at the machines offers time-flexibility
in part storage (as we are not directly constrained on how long a part
can reside in a buffer), the use of an additional robot gripper makes
storage more time-efficient (as we can save on the robot travel time).
In general, an assessment of their comparative efficiency depends on the
cell parameters and problem data. Finally, we note that all the results
obtained in Sections 4.7 and 4.8 for additive travel-time cells will also
hold for constant travel-time cells (see Chapter 2).

4.9 Dual-Gripper Robotic Cells: Constant
Travel Time

In this section, we consider throughput optimization in constant-
travel-time dual-gripper robotic cells (i.e., problem RF 2

m|(free,C,cyclic-
k)|μ); the results we present are from Geismar et al. [61]. We provide
a structural analysis of cells with one machine per processing stage to
obtain a lower bound on the throughput. Subsequently, we obtain an
optimal solution under conditions that are common in practice. Unlike
the previous sections of this chapter, we now consider cells where I and
O are at separate locations (Figure 4.5). This is not a major change;
all the results we present also hold for the layout in which I and O are
at one location (with slight changes in the expressions developed for the
cycle times and their lower bounds).

We start by describing a cycle C̄3,10 for two-machine cells that is similar
to cycle C3,10 of Section 4.2:

C̄3,10 = (R+
0 (1, 0), R+

1 (1, 2), R−
1 (0, 2), R+

2 (3, 2), R−
2 (3, 0), R−

3 (0, 0))

At the start of the jth iteration of this cycle, the robot is at the input
buffer and holds no part. Part Pj−2 is being processed at M2 and part
Pj−1 is being processed at M1. The robot unloads part Pj from the
input buffer and travels to M1. If necessary, the robot waits at M1 until
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M1

M2M3

IO

M4

Dual Gripper Robot

Figure 4.5. A Four-Machine Dual-Gripper Robot Cell with Separate Input and Out-

put Buffers.

it completes processing part Pj−1. The robot then unloads part Pj−1

from M1, switches the positions of its grippers, and loads part Pj onto
M1. Next, the robot carries part Pj−1 to M2. At M2, the robot waits
until it completes processing part Pj−2, if necessary. The robot then
unloads part Pj−2 from M2, switches the positions of its grippers, and
loads part Pj−1 onto M2. The robot then travels to the output buffer
and loads part Pj−2 onto it. The robot completes the cycle by returning
to I. It is straightforward to verify that the cycle time of C̄3,10 equals
4δ + 6ε + 2θ + w1 + w2, where w1 and w2 are the robot waiting times
that can be determined from the steady-state conditions.

Instead of analyzing C̄3,10, we study its m-machine generalization C̄m
d .

As expected, C̄m
d is similar to cycle Cm

d of Section 4.3; the robot moves
are slightly different at I and O. Cycle C̄m

d starts with the state in which
all machines are occupied with parts and the robot is empty at I. The
sequence of activities for the robot in this cycle is as follows:
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Cycle C̄m
d

Begin
ε: Robot unloads a part from I.
For i = 1 to m do:
Begin

δ: Robot moves to Mi.
wi: Robot waits for the part on Mi to be completed.
ε: Robot unloads Mi.
θ: Robot switches to the other gripper.
ε: Robot loads Mi.

End (Next i)
δ: Robot moves to O.
ε: Robot unloads finished part at O.
δ: Robot moves to I.

End

The cycle time for C̄m
d can be easily calculated as

T (C̄m
d ) = (m + 2)δ + 2(m + 1)ε + mθ +

m∑

j=1

wj . (4.23)

The total waiting time
∑m

j=1 wj can be derived as in Section 4.3. Sub-
stituting, we obtain the following expression for the cycle time:

T (C̄m
d ) = max{(m + 2)δ + 2(m + 1)ε + mθ, max

1≤j≤m
{pj}+ 2ε + θ}. (4.24)

4.9.1 Lower Bounds and Optimal Cycles:
m-Machine Simple Robotic Cells

Assuming θ ≤ min{δ, p1, . . . , pm}, we show that C̄m
d is optimal among

all dual-gripper 1-unit cyclic schedules (Corollary 4.5). We then show
that C̄m

d is optimal among all k-unit cycles (k ≥ 1) under an addi-
tional restriction that is quite common in practice: pi ≥ δ, ∀i (Corol-
lary 4.6). Intuitively, C̄m

d is optimal because it minimizes inter-machine
travel (each machine is visited once per cycle), and minimizes the time
that the robot spends at each machine waiting for it to complete process-
ing: after loading a particular machine Mi, the robot visits every other
machine before returning to Mi to unload it.
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4.9.2 One-Unit Cycles
We study here the lower bounds for problem RF 2

m|(free,C,cyclic-1)|μ.
To show that C̄m

d is an optimal 1-unit cycle under θ ≤ min{δ, p1, . . . , pm},
we establish a lower bound that is equal to T (C̄m

d ) on such cycles. A
similar lower bound for additive travel-time cells was established in Sec-
tion 4.4.

Theorem 4.7 Assume θ ≤ min{δ, p1, . . . , pm}. A lower bound for cycle
times for 1-unit robot move cycles in a constant travel-time dual-gripper
cell is given by

LB = max{(m + 2)δ + 2(m + 1)ε + mθ, max
1≤i≤m

{pi} + 2ε + θ}. (4.25)

Proof. In part A of the proof, we show that max{pi}+2ε+ θ is a lower
bound. In part B, we show that (m + 2)δ + 2(m + 1)ε + mθ is a lower
bound.

Part A: Consider any machine Mi (1 ≤ i ≤ m) and a 1-unit cyclic
schedule π. Note that π can be represented by some feasible ordering
of the symbols M = {M+

0 ,M+
1 , . . . ,M+

m,M−
1 ,M−

2 , . . . ,M−
m+1}. Since

π is cyclic, we may assume it to be of the form (M−
i , σ1,M

+
i , σ2) for

any i, where σ1 and σ2 are feasible subschedules and σ̂h ⊂ M is the
set of activities in σh, h = 1, 2, such that σ̂1 ∩ σ̂2 = ∅ and σ̂1 ∪ σ̂2 =
M\ {M−

i ,M+
i }. Two cases are considered.

Case 1. σ̂2 �= ∅. The time from the start of loading of a part onto Mi

until the completion of unloading from Mi is at least pi +2ε (covering
the subschedule (M−

i , σ1,M
+
i )). The robot will be engaged for at

least an additional amount of time 2δ in order to complete σ2. Thus,
a lower bound on the schedule length is pi + 2ε + 2δ ≥ pi + 2ε + θ.

Case 2. σ̂1 �= ∅, σ̂2 = ∅. This case can occur only with a dual-gripper
robot. The cycle may be denoted by (M+

i ,M−
i , σ1). The subcycle

(M+
i ,M−

i ) requires 2ε + θ time units and the delay from the com-
pletion of M−

i to the start of M+
i is of length at least pi, for a total

time of pi + 2ε + θ time units.
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Cases 1 and 2 prove that max{pi}+2ε+ θ is a lower bound on the cycle
times.

Part B: By using that the cycle π is of the form (M−
i , σ1,M

+
i , σ2), where

at least one of σ̂1 and σ̂2 is not empty, we shall compute lower bounds
for the aggregate residence times of the robot at each machine and for
the aggregate robot transportation times between the machines. By
residence times we mean the times during which the robot is occupied at
a machine while either waiting for that machine to complete processing,
rotating its grippers, or loading or unloading the machine. The sum of
these computed lower bounds will give us the bound of (m+2)δ+2(m+
1)ε + mθ. In our discussion, p0 = pm+1 = 0 is the “processing time” at
I and O. For residence times at the machines, there are five cases to
consider.

Case 0. Mi = M0 (the “machine” is I). Since we do not have loading
on M0, the sequence is simply (M+

0 , σ2). The robot is occupied at
M0 for ε time units.

Case 1. Mi = Mm+1 (the “machine” is O). Since we do not have
unloading on Mm+1, the sequence is simply (M−

m+1, σ1). The robot
is occupied at Mm+1 for ε time units.

Case 2. σ̂2 = ∅. The robot is occupied at Mi for at least 2ε + θ time
units.

Case 3. σ̂1 = ∅. The robot is occupied at Mi for at least 2ε + pi time
units.

Case 4. σ̂1 �= ∅ �= σ̂2. The robot is occupied at Mi for at least 2ε time
units (split between two visits).

Let uj be the number of machines included in Case j and let Uj

be the set of machines included in Case j, j = 0, 1, 2, 3, 4. Note that
u2 + u3 + u4 = m and u0 + u1 = 2. We now have the following lower
bound on the aggregate residence time for the robot at all machines:

(u0+u1)ε+u2(2ε+θ)+u3(2ε)+
∑

i∈U3

pi+u4(2ε) = 2(m+1)ε+u2θ+
∑

i∈U3

pi.

(4.26)
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A robot movement from Mi to Mh occurs when an operation M−
i or

M+
i is followed immediately by a robot operation M−

h or M+
h , where

h �= i. Such a movement is incident to both Mi and Mh, and requires
δ time units.

For each machine Mi in Case 0, 1, 2, or 3, there is at least one move-
ment to and one movement away from Mi, so Mi is incident to at least
two movements. If Mi is in Case 4, then each cycle includes at least two
movements to and two movements away from Mi, so Mi will be incident
to at least four movements. Thus, the aggregate of incidences over all
machines M0,M1, . . . ,Mm+1 is at least 2(u0 + u1 + u2 + u3) + 4u4 =
2(m + 2) + 2u4. Hence, the total number of movements, which is half
the aggregate incidences, is at least m+2+u4. These movements require
a minimum aggregate time of (m+2+u4)δ. A lower bound on the cycle
times is obtained by adding this to (4.26). The resulting expression,
since θ ≤ min{δ, p1, . . . , pm}, can be simplified to give a lower bound of
(m + 2)δ + 2(m + 1)ε + mθ.

Corollary 4.5 In a simple robotic cell with a dual-gripper robot, C̄m
d

is optimal among all 1-unit cyclic schedules under the assumption that
θ ≤ min{δ, p1, . . . , pm}.

4.9.3 Multi-Unit Cycles
We now discuss lower bounds for problem RF 2

m|(free,C,cyclic-k)|μ.
In Chapter 3, we discussed examples of single-gripper cells where the
throughput of an optimal 2-unit cycle is better than that of an optimal
1-unit cycle. Such examples exist for dual-gripper robotic cells too.
All 1-unit cycles have the form (M−

i , σ1,M
+
i , σ2), where σ̂1 ∪ σ̂2 = M\

{M−
i ,M+

i } and σ̂1∩σ̂2 = ∅. So, they cannot exploit fully the capabilities
of a dual-gripper robot – a dual-gripper robot can (i) unload two parts
from I while resident at I, (ii) load two parts onto O while resident at
O, or (iii) load Mi, wait for its processing, unload Mi, and then load Mi

again, i = 1, . . . ,m. We consider a 2-unit cycle that takes advantage of
these features.

Consider the 2-unit cycle Ĉ of Section 4.8: the initial state has all of
the machines and the robot empty and the robot positioned at I. The
robot then unloads two parts (say Pj and Pj+1) from I, then moves to
M1, to M2, . . ., to Mm, then moves to O where it places both parts
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Pj and Pj+1, and then finally returns to I. At each machine, Pj is
loaded, processed, and unloaded, and then Pj+1 is loaded, processed,
and unloaded.

The cycle time of Ĉ is T̄ (Ĉ) = (m + 2)δ + 4(m + 1)ε + (m + 2)θ +
2
∑m

i=1 pi. Since two parts are produced in this cycle, the average time
to produce one part is

T̄ (Ĉ)
2

= (m + 2)
δ

2
+ 2(m + 1)ε + (m + 2)

θ

2
+

m∑

i=1

pi.

Note that the cycle time expression above is slightly different than one
obtained for Ĉ in Section 4.8, as a result of the separation of the locations
for I and O in the layout considered in this section.

Observe that T̄ (Ĉ)/2 < T (C̄m
d ) = max{(m + 2)δ + 2(m + 1)ε +

mθ, max{pj}+2ε+θ}, for θ = 0.5, ε = 1, δ = 4, p1 = p2 = · · · = pm = 1,
and that the condition θ ≤ min{δ, p1, . . . , pm} is also satisfied. For this
data, the 2-unit cycle Ĉ is better than the best 1-unit cycle. However,
T̄ (Ĉ)/2 ≥ T (C̄m

d ) if pi ≥ δ,∀i, and θ ≤ min{δ, p1, . . . , pm}.
We now show that the 1-unit cycle C̄m

d is optimal among all k-unit
(k ≥ 1) cycles under two conditions (i) θ ≤ δ and (ii) pi ≥ δ, i =
1, . . . ,m, that are common in practice (Kumar et al. [102] and Perkinson
et al. [128]). Again our approach is to show that T (C̄m

d ) is a lower bound
on the per unit cycle time in such a cell.

Theorem 4.8 If θ ≤ δ and pi ≥ δ, i = 1, . . . ,m, then for any k-unit
cycle π (k ≥ 1) in a simple robotic cell served by a dual-gripper robot,
the cycle time T (π) satisfies

T (π)
k

≥ max
{

(m + 2)δ + 2(m + 1)ε + mθ, max
1≤i≤m

{pi} + 2ε + θ}
}

.

Proof. The proof that max{pi} + 2ε + θ is a lower bound for T (π)/k
is similar to that for Theorem 4.7. In part B, we show that (m + 2)δ +
2(m + 1)ε + mθ is a lower bound for T (π)/k.

Part B: This bound is true for k = 1 by Theorem 4.7. Now we
assume k ≥ 2. First we prove the result for k even. Note that for
any machine Mi, any sequence σ of a k-unit cycle that represents two
consecutive loadings and unloadings of machine Mi is of the form σ =
(M−

i,2r−1, σ1,M
+
i,2r−1, σ2, M−

i,2r, σ3,M
+
i,2r, σ4), where r = 1, . . . , k

2 . M−
i,2r
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(M+
i,2r) denotes 2rth loading (unloading) of machine Mi. Note that in σ

at least one of σ̂1, σ̂2, σ̂3, and σ̂4 is not empty.

Now we establish a lower bound on the aggregate residence time of
the robot at all machines in a k-unit cycle by considering 2-unit subcy-
cles. We need to consider the following cases. Cases 0 and 1 deal with
sequences σ = (M−

i,2r−1, σ1,M
+
i,2r−1, σ2, M−

i,2r, σ3,M
+
i,2r, σ4), for i = 0

and i = m + 1, respectively, whereas Cases 2-10 deal with all other i,
1 ≤ i ≤ m.

Case 0. Mi = M0 (the “machine” is I). Since we do not have loading
onto M0, the sequence is simply (M+

0,2r−1, σ1,M
+
0,2r, σ2), where at

least one of σ̂1 and σ̂2 is not empty. If σ̂1 �= ∅ and σ̂2 �= ∅, then the
robot is occupied at M0 for 2ε time units. If σ̂1 = ∅ (or σ̂2 = ∅), then
the robot is occupied at M0 for 2ε + θ time units.

Case 1. Mi = Mm+1 (the “machine” is O). Since we do not have un-
loading from Mm+1, the sequence is simply (M−

m+1,2r−1, σ1, M−
m+1,2r,

σ2), where at least one of σ̂1 and σ̂2 is not empty. If σ̂1 �= ∅ and σ̂2 �= ∅,
then the robot is occupied at Mm+1 for 2ε time units. If σ̂1 = ∅ (or
σ̂2 = ∅), then the robot is occupied at Mm+1 for 2ε + θ time units.

Case 2. σ̂1 �= ∅, σ̂2 �= ∅, σ̂3 �= ∅, σ̂4 �= ∅. The robot is occupied at Mi

for at least 4ε time units.

Case 3. σ̂1 = ∅ (or σ̂3 = ∅). First consider σ̂1 = ∅. The robot is
occupied at Mi for at least 4ε + pi time units. As σ̂3 = ∅ has the
same schedule structure as σ̂1 = ∅, it will have the same machine
residence time.

Case 4. σ̂2 = ∅ (or σ̂4 = ∅). The robot is occupied at Mi for at least
4ε + θ time units.

Case 5. σ̂1 = σ̂2 = ∅ (or σ̂3 = σ̂4 = ∅). The robot is occupied at Mi

for at least 4ε + θ + pi time units.

Case 6. σ̂1 = σ̂3 = ∅. The robot is occupied at Mi for at least 4ε+2pi

time units.

Case 7. σ̂1 = σ̂4 = ∅ (or σ̂2 = σ̂3 = ∅). The robot is occupied at Mi

for at least 4ε + θ + pi time units.
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Case 8. σ̂2 = σ̂4 = ∅. The robot is occupied at Mi for at least 4ε+2θ
time units.

Case 9. σ̂1 = σ̂2 = σ̂3 = ∅ (or σ̂1 = σ̂3 = σ̂4 = ∅) The robot is occupied
at Mi for at least 4ε + θ + 2pi time units.

Case 10. σ̂1 = σ̂2 = σ̂4 = ∅ (or σ̂2 = σ̂3 = σ̂4 = ∅). This schedule
structure is infeasible.

Let uj denote the number of sequences σ corresponding to Case j that
occur in a k-unit cycle, for all j and r (j = 0, 1, . . . , 9, and r = 1, . . . , k/2)
and machines Mi, i = 0, . . . ,m + 1. As there are k/2 sequences for each
machine in a k-unit cycle, we have mk/2 = u2 +u3 +u4 +u5 +u6 +u7 +
u8 +u9 and u0 = u1 = k/2. By adding residence times corresponding to
all the above cases and setting pi = δ, we get a lower bound for Tr, the
aggregate residence time of the robot at all machines:

Tr ≥ χ + 2mkε + (u4 + u5 + u7 + 2u8 + u9)θ

+(u3 + u5 + 2u6 + u7 + 2u9)δ,

where χ denotes the total minimum cumulative residence time of the
robot at both I and O in all sequences (M+

0,2r−1, σ1, M+
0,2r, σ2) and

(M−
m+1,2r−1, σ1, M−

m+1,2r, σ2) in the k-unit cycle.

If a machine Mi is included in Case 2, then there are in each cycle at
least four movements to and four movements away from Mi, so Mi will
be incident to at least eight movements. If a machine Mi is included
in Case 3 or 4, there are in each cycle at least three movements to and
three movements away from Mi, so Mi will be incident to at least six
movements. If a machine Mi is included in Case 5, 6, 7, or 8, there are
in each cycle at least two movements to and two movements away from
Mi, so Mi will be incident to at least four movements. If a machine Mi

is included in Case 9, there is in each cycle at least one movement to
and one movement away from Mi, so Mi will be incident to at least two
movements.

Thus, the aggregate of incidences over all machines is at least 2λ +
8u2+6(u3+u4)+4(u5+u6+u7+u8)+2u9, where 2λ is the total number of
incidences over I and O. Hence, the total number of movements, which
is half the aggregate incidences, is at least λ +4u2 +3(u3 +u4) + 2(u5 +
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u6 +u7 +u8)+u9. Since mk/2 = u2 + · · ·+u9, these movements require
a minimum aggregate time of

Tt = λδ + mkδ + 2u2δ + (u3 + u4)δ − u9δ.

Hence,

Tr + Tt ≥ χ + 2mkε + (u4 + u5 + u7 + 2u8 + u9)θ + (u3 + u5 + 2u6

+u7 + 2u9)δ + λδ + mkδ + +2u2δ + (u3 + u4)δ − u9δ

≥ (λδ + χ) + mkδ + 2mkε + (u4 + u5 + u7 + 2u8 + u9)θ

+(2u2 + 2u3 + u4 + u5 + 2u6 + u7 + u9)δ.

We now obtain an estimate for (λδ + χ). We saw in Case 0 (Case 1)
that if the robot unloads (loads) two parts in two separate visits to I

(O), its total residence time is 2ε. In this scenario, its travel time covers
four incidences, i.e., it adds 2δ to the minimum travel time. If the robot
unloads (loads) two parts in one trip, its residence time is 2ε + θ, and
the added travel time is δ. Therefore,

λδ + χ = u
′
0(2δ + 2ε) + u

′′
0(δ + 2ε + θ) + u

′
1(2δ + 2ε) + u

′′
1(δ + 2ε + θ),

where u
′
0 (u

′
1) denotes the number of Case 0 (Case 1) subsequences in

which the robot unloads (loads) two parts in two separate visits to I

(O), and u
′′
0 (u

′′
1) denotes the number of Case 0 (Case 1) subsequences

in which the robot unloads (loads) two parts in one visit to I (O). Note
that u

′
0 + u

′′
0 = k/2 and u

′
1 + u

′′
1 = k/2. Therefore,

λδ + χ = u
′
0(2δ + 2ε) + u

′′
0(δ + 2ε + θ) + u

′
1(2δ + 2ε) + u

′′
1(δ + 2ε + θ)

= kδ + 2kε + (u
′
0 + u

′
1)δ + (u

′′
0 + u

′′
1)θ.

Thus, we have

Tr + Tt ≥ kδ + 2kε + (u
′
0 + u

′
1)δ + (u

′′
0 + u

′′
1)θ + mkδ + 2mkε

+(u4 + u5 + u7 + 2u8 + u9)θ

+(2u2 + 2u3 + u4 + u5 + 2u6 + u7 + u9)δ

= (m + 2)kδ + 2(m + 1)kε + (u4 + u5 + u7 + 2u8 + u9 + u
′′
0

+u
′′
1)θ + (2u2 + 2u3 + u4 + u5 + 2u6 + u7 + u9 − u

′′
0 − u

′′
1)δ

= (m + 2)kδ + 2(m + 1)kε + mkθ + (2u2 + 2u3 + u4 + u5

+2u6 + u7 + u9 − u
′′
0 − u

′′
1)(δ − θ). (4.27)
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Now observe that for each subsequence (M+
0,2r−1, σ1,M

+
0,2r, σ2), if σ̂1 = ∅

or σ̂2 = ∅, i.e., if the robot loads two parts in one visit to I, then the
choices for its next moves are limited. Obviously, it must first load ma-
chine M1. Furthermore, since δ ≥ θ, it is only advantageous to load both
grippers in one trip to I if the next sequence of moves is M−

1 M+
1 M−

1 ,
i.e., for each time the robot has a sequence M+

0 M+
0 , machine M1 belongs

either to Case 5 or to Case 9. Similarly, for each time there is a sequence
M−

m+1M
−
m+1, machine Mm belongs to Case 7. Hence, u5 + u9 ≥ u

′′
0 and

u7 ≥ u
′′
1 . Therefore, the coefficient of (δ − θ) in (4.27) is positive, so

Tr + Tt ≥ (m + 2)kδ + 2(m + 1)kε + mkθ,

and
(Tr + Tt)

k
≥ (m + 2)δ + 2(m + 1)ε + mθ.

Since T (π)/k ≥ (Tr +Tt)/k, we have the desired lower bound for k even.

We now prove the result for k odd. We have just shown that the lower
bound for the first (k − 1)/2 sequences (M−

i,2r−1, σ1,M
+
i,2r−1, σ2, M−

i,2r,

σ3, M+
i,2r, σ4), for r = 1, . . . , (k − 1)/2, is

Tr + Tt ≥ (m + 2)(k − 1)δ + 2(m + 1)(k − 1)ε + m(k − 1)θ.

As a consequence of Theorem 4.7, for the last sequence σ
′
= (M−

i,k, σ1,

M+
i,k, σ2), we have the following lower bound for the robot residence

times and robot move times:

T ′
r + T ′

t ≥ (m + 2)δ + 2(m + 1)ε + mθ.

By adding these two inequalities, we obtain

Tr + Tt + T ′
r + T ′

t ≥ (m + 2)kδ + 2(m + 1)kε + mkθ.

Thus, we have the desired bound

T (π)
k

≥ (Tr + Tt + T ′
r + T ′

t)
k

≥ (m + 2)δ + 2(m + 1)ε + mθ.

Corollary 4.6 In a simple robotic cell with a dual-gripper robot, C̄m
d is

optimal among all k-unit cyclic schedules (k ≥ 1) under the assumption
that θ ≤ δ and pi ≥ δ, i = 1, . . . ,m.
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Remark 4.1 All the results obtained above for constant travel-time
cells also hold for cells with circular layout and regular additive travel-
time metric (see Chapter 2). In a general additive travel-time cell,
however, the machines are typically arranged along a line (Lei and
Wang [108]), or along a semicircular arc (Brauner and Finke [22]) so
that the total travel time from Mm+1 to M0 is (m + 1)δ. In such a
layout, the cycle time for C̄m

d increases significantly; consequently, the
analysis required to determine a lower bound on the per unit cycle time
is fundamentally different.

Remark 4.2 Because the lower bound for the per unit cycle time in a
simple robotic cell with a single-gripper robot is (Dawande et al. [47],
Chapter 3)

T (π)
k

≥ max

{

2(m + 1)ε +
m∑

i=1

min{pi, δ} + (m + 2)δ,

max
1≤i≤m

pi + 3δ + 4ε
}

,

C̄m
d achieves a greater throughput than all single-gripper k-unit cycles

in cells that satisfy θ ≤ min{δ, pi}, i = 1, . . . ,m. This is not surprising,
given that in cycle C̄m

d the dual-gripper robot has a delay of only θ

between unloading and loading a machine. A single-gripper robot, after
unloading a machine Mi, must do at least the following before reloading
Mi: travel to Mi+1 (δ), load Mi+1 (ε), travel to Mi−1 (δ), unload Mi−1

(ε), and travel to Mi (δ).



Chapter 5

PARALLEL MACHINES

In the classical parallel machine part-scheduling problem, jobs are
processed by identical machines in parallel. Each job requires only a
single operation, and it may be processed on any of those machines [132].
Hall et al. [79] analyze such systems in which all jobs must be loaded
(set up) by a common server. They provide either polynomial or pseudo-
polynomial algorithms, or a proof of NP-hardness for various conditions
on setup times, processing times, and objectives. B�lażewicz et al. [14]
analyze the Vehicle Routing with Time Windows problem, in addition to
the part-scheduling problem, for a similar system of parallel machines,
each of which can perform various tasks. These machines are served by
several automated guided vehicles that travel the same circuit.

This chapter considers constant travel-time robotic cells with parallel
machines producing a single part-type. Just as a simple robotic cell
is analogous to a flow shop with blocking, a robotic cell with parallel
machines is analogous to a flexible flow shop with blocking. In a robotic
cell with parallel machines, there are m stages, and for each processing
stage i there are mi ≥ 1 identical machines. As with simple cells, each
part is processed at each stage according to the same fixed sequence. A
part can be processed at stage i by any one of the mi machines at that
stage.

The mi distinct machines at stage i are denoted Mia,Mib, . . . ,Mi,α(mi),
where the function α(j) assigns to any positive integer j the jth letter
of some alphabet. For ease of exposition, we use the standard English
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alphabet, e.g., α(3) = c; if a stage i has mi ≥ 27 distinct machines, then
any other appropriate alphabet can be used. Each machine at stage i

has processing time pi. All cells discussed in this chapter have constant
travel time: d(Miγ ,Mjη) = δ, if i �= j or γ �= η, whether the robot is
carrying a part or not. In addition, in this chapter we consider only
cells that produce identical parts. Section 5.1 analyzes robotic cells with
parallel machines that have single-gripper robots; cells with dual-gripper
robots are considered in Section 5.2.

5.1 Single-Gripper Robots

In certain cells, throughput can be improved by adding an identical
machine to a particular processing stage. Such a machine would be
used in parallel with the other machines of that stage. This method
is especially cost effective if there are a small number of stages whose
processing times are significantly larger than those of the other stages.
In fact, using mj parallel machines at stage j reduces that stage’s impact
on the per unit cycle time’s lower bound by a factor of mj : Tc(π)/k ≥
(pj + 3δ + 4ε)/mj , where cycle π produces k parts. Herrmann et al. [83]
devise a network model that can be used to perform sensitivity analysis
to determine the amount of reduction in the cycle time by the addition
of a parallel machine to a specific stage (see Chapter 3). Our focus is
on finding an optimal cycle of robot moves in a robotic cell with parallel
machines (problem RFm(m1,m2, . . . ,mm)|(free,C,cyclic-k)|μ).

5.1.1 Definitions

For clarity and flexibility, we define the concept of activity for a system
of parallel machines. When transferring a part from one machine to
another, the activity is denoted with three subscripts, e.g., Aiγη. This
indicates that a part is being transferred from stage i to stage i + 1, is
being unloaded from machine Miγ , and is being loaded onto machine
Mi+1,η. If the source is I or the destination is O, instead of a letter, we
use the asterisk symbol (*). For example, activity A1ba means that the
robot takes the part from M1b, travels to M2a, and loads the part onto
M2a. To signify taking a part from I, moving to M1a, and loading M1a,
we write A0∗a.
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machine M1a

machine M1b

machine M2a

machine M2b

machine M2c

� �IO

�

A0∗a

(1)

�

A0∗b

(2, 4)� A1aa

(5)

� A1bb

(3)

�
A1bc

(7)

�

A2a∗

(8)

�

A2b∗
(6)

�

A2c∗
(9)

Figure 5.1. Cycle π1 of Example 5.1 in a Two-Stage Robotic Cell with Parallel

Machines. m1 = 2, m2 = 3. Numbers in Parentheses Indicate Order of Operations.

Note that the definition of a k-unit cycle (Chapter 3) can be easily
adapted to a cell with parallel machines:

Definition 5.1 A k-unit cycle π in a robotic cell with parallel machines
is a feasible sequence of robot moves in which each stage has its machines
loaded and unloaded exactly k times, and the cell returns to its initial
state.

Hence, our definitions of cycle time and per unit cycle time are still valid.

Example 5.1 Consider a cell with two stages (m = 2) with m1 = 2
and m2 = 3. Here is an example of a cycle that produces three (k = 3)
parts:

π1 = (A0∗a, A0∗b, A1bb, A0∗b, A1aa, A2b∗, A1bc, A2a∗, A2c∗).

Note that this cycle has k(m + 1) = 9 activities. A schematic picture
of this cycle can be found in Figure 5.1. A Gantt chart can be found
in Figure 5.2. This cycle is feasible because the activities that load M1b

(A0∗b twice) alternate with those that unload M1b (A1bb and A1bc).

A cycle in a cell with parallel machines can be checked for feasibility
as follows. For each machine Mi�, i ∈ M, 	 = a, . . . , α(mi), between any
two activities that load Mi� (Ai−1,x�, x ∈ {a, . . . , α(mi−1)}), there must
be exactly one activity that unloads Mi� (Ai�y, y ∈ {a, . . . , α(mi+1)}).
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Robot

I

M1a

M1b

M2a

M2b

M2c

O

Part 1 Part 4

Part 2 Part 3 Part 5 Part 6

Part 1 Part 4

Part 2 Part 5

Part 3 Part 6

� �

� � � �

� �

� �

� �

� �� �� �

3δ wait 6δ wait 6δ wait 5δ wait 6δ wait 6δ wait 2δ

� �� �

� �

� �

� �

� �

� �

� �

Figure 5.2. Gantt Chart for Cycle π1 of Example 5.1. Thin Lines Indicate that the

Robot Is Traveling Without a Part. In this Cell, p1 = 30, p2 = 50, δ = 5, and ε = 0.

5.1.2 k-Unit Cycles and Blocked Cycles
We now examine k-unit cycles (k ≥ 1) for a robotic cell with parallel

machines and m stages. We first derive elementary results for them.
Then, we will study a special class – blocked cycles – of k-unit cycles
(k ≥ 2), and find a dominating subclass.

5.1.2.1 Structural Results for k-Unit Cycles

Given a cell of m stages, we establish a lower bound for the cycle time
of all k-unit cycles on this cell. This lower bound is a generalization of
Theorem 3.19.

Theorem 5.1 For any k-unit cycle π, the per unit cycle time T (π)/k
satisfies

T (π)
k

≥ max

{

2(m + 1)ε +
m∑

i=1

min{pi, δ} + (m + 2)δ,

max
1≤i≤m

pi + 3δ + 4ε
mi

}

.
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Proof. A k-unit cycle consists of k(m + 1) activities. Each activity re-
quires one loading and one unloading, so the total time for these actions
is 2k(m + 1)ε. Before each activity Ai, i ∈ M , there will be time taken
either by a robot move (δ) or a processing time (pi). This time is repre-
sented by the second term. The robot never has to wait for processing
to complete before executing an A0, so the total time taken before all k

A0’s is kδ; this is included in the last term. The last term also includes
the robot travel time while performing the k(m + 1) activities (transfer
of a part from some machine in stage i to a machine in stage i + 1,
i = 0, . . . ,m), which is k(m + 1)δ. A proof of the second term is trivial;
we leave it to the reader.

This leads to an immediate result for an elementary case.

Theorem 5.2 In a robotic cell with parallel machines, if pi ≤ δ,∀i,
then the forward 1-unit cycle πU achieves the optimum per unit cycle
time T (πU ).

Proof. We have previously seen that T (πU ) = 2(m + 1)ε +
∑m

i=1 pi +
(m + 2)δ (Chapter 3). Its optimality follows from Theorem 5.1.

Corollary 5.1 If pi ≤ δ,∀i, there is no benefit to be gained from using
parallel machines.

Proof. pi ≤ δ,∀i, implies that πU achieves the lower bound on the
optimum per unit cycle time as stated in Theorem 5.1. Therefore, the
per unit cycle time cannot be improved by adding parallel machines.

5.1.2.2 Blocked Cycles

For k ≥ 2, the number of k-unit cycles for an m-stage simple robotic
cell is much greater than m!, the number of 1-unit (k = 1) cycles. For
example, in a simple robotic cell, if m = 3 and k = 2, there are 20 cycles.
For m = 4 and k = 2, there are 260 cycles. For a robotic cell with parallel
machines, the number of distinct cycles is even larger. Therefore, we
narrow our field of study to a particular subset of k-unit cycles called
blocked cycles. We will define blocked cycles, derive an expression for the
cycle time of a general blocked cycle, and then characterize a dominating
subset of blocked cycles.

Blocked cycles form a highly structured subclass of k-unit cycles and
are a natural generalization of 1-unit cycles. A blocked cycle is composed
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of k blocks of activities. Each block has m + 1 activities, one for each
stage 0, 1, 2, . . . ,m. Therefore, in each block, one machine in each stage
0, . . . ,m, is unloaded, one machine in each stage 1, . . . ,m + 1, is loaded.
For a given cycle, each block has the same order of the activities by
numbers, i.e., each block unloads the stages in the same order. This
ordering is called the base permutation. The letters of the activities,
which represent specific machines at each stage, change from block to
block to indicate the loading and unloading of different machines; they
are restricted only by feasibility.

Example 5.2 For example, in a cell with two stages (m = 2) with
m1 = 2 and m2 = 3, consider the following six-unit blocked cycle with
base permutation (0, 1, 2):

π2 = (A0∗a, A1bc, A2a∗, A0∗b, A1ab, A2c∗, A0∗a, A1bc, A2b∗,

A0∗b, A1aa, A2c∗, A0∗a, A1bb, A2a∗, A0∗b, A1aa, A2b∗).

At the beginning of each iteration of this cycle, there are parts being
processed on machines M1b and M2a. In the first block, the robot unloads
a part from I and carries it to M1a. It then travels to M1b, unloads it,
and transfers the part to M2c. Next, it moves to M2a, from which it
unloads a completed part that is taken to the output buffer.

The robot starts the second block after returning to I. It obtains
a raw part and loads it onto M1b. The robot then unloads M1a and
carries that part to M2b. This block concludes when the robot unloads
a completed part from M2c and places it into O. Processing for the
remaining four blocks is similar.

Note that in each block, the indices of the activities follow the (0, 1, 2)
permutation, whereas the letters change to indicate the use of different
machines. In addition, many activities occur more than once during a
cycle, so machines are generally used more than once per cycle, e.g., A0∗a
and A0∗b are each performed three times and A1bc is performed twice.
M2b is loaded twice: once by A1ab and once by A1bb. A Gantt chart of
this cycle can be found in Figure 5.3.

Most machines Mi� are loaded, process a part, and are unloaded more
than once during a cycle. Each occurrence of this sequence is called a
usage of Mi�. In cycle π2 of Example 5.2, there are three usages each
of M1a and M1b. If Γi� is the number of usages per cycle for machine
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Figure 5.3. Gantt Chart for Blocked Cycle π2 of Example 5.2. Thin Lines Indicate

that the Robot is Traveling without a Part. In this Cell, p1 = 30, p2 = 50, δ = 5, and

ε = 0.

Mi�, then for each stage i ∈ M ,
∑α(mi)

�=a Γi� = k: some machine Mij

in stage i is loaded in each block and some machine Mi� is unloaded in
each block (j and 	 may or may not be equal). The rth usage of Mi� is
denoted M r

i�. M1
i� begins with the first loading of Mi�. This happens at

the first occurrence of Ai−1,x�, x ∈ {a, . . . , α(mi−1)}.
The existence of a stage s for which some usage M q

sβ has full waiting
(defined in Chapter 3) implies that the subsequence (s − 1, s) is in the
base permutation. Furthermore, ms = 1. If the base permutation con-
tains a subsequence (s − 1, s) and ms > 1, it will be assumed that the
robot’s cycle does not contain a subsequence (As−1,αβ, Asβγ) in which
the robot has full waiting at Msβ. If the robot were to do this, there
would be no time advantage gained from having parallel machines at
stage s, since another machine in stage s could not be processing at the
same time that Msβ did. Thus, in a blocked cycle, if stage s has a ma-
chine with full waiting at some usage, it has only one machine (denoted
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Msa), and that machine has full waiting in each of its Γsa = k usages.
The set of indices of stages whose machines have full waiting is V1.

If machine usage M r
i� has partial waiting, then its waiting time is de-

noted by wr
i�. From the previous paragraph, we see that in a blocked

cycle, if the usage M r
i� has partial waiting, then all usages of all ma-

chines of stage i have partial waiting. The set of indices of stages whose
machines have partial waiting is denoted V2.

Cycle Time for Blocked Cycles. For any cycle π, its cycle time T (π)
is the sum of the robot’s total move time (tm), the total load/unload
time (tl), the total time for full waiting (Wf ), and the total time for
partial waiting (Wp). It is easy to see that for a k-unit blocked cycle in
a cell with constant travel times, tm + tl + Wf = 2k(m + 1)(δ + ε) +
k
∑

i∈V1
(pi − δ). Note that the value for this expression depends only on

the base permutation, the cell data, and the number of units produced.
For a general blocked cycle π,

T (π) = 2k(m + 1)(δ + ε) + k
∑

i∈V1

(pi − δ) + Wp, (5.1)

where

Wp =
∑

i∈V2

α(mi)∑

�=a

Γi�∑

r=1

wr
i�. (5.2)

Given a cell, a base permutation, and k, the cycle time T (π) is minimized
by minimizing Wp. Note that Wp can be modified by specifying π. In
other words, we may choose which machines of each stage are loaded
and unloaded in each block. To evaluate such choices, we now derive
an expression for the partial waiting time at a machine usage. We will
later use this to prove a theorem that provides two sufficient conditions
for dominant cycles.

To be able to compute the robot’s partial waiting time at a machine
usage M r

i�, we must know which activities are performed during M r
i�’s

processing.

Definition 5.2 Activities that are executed between the loading and
the unloading of M r

i� are called intervening activities.

Let Gr
i� be the set of intervening activities for M r

i�. In Example 5.2 (see
below), G1

2b = {A1
2c∗, A

2
0∗a, A

2
1bc} and G2

2b = {A2
2a∗, A

3
0∗b, A

2
1aa}. The

superscripts designate different instances of the same activity.
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Example 5.2, continued:

π2 = (A0∗a, A1bc, A2a∗, A0∗b, A1ab︸︷︷︸
loadM 1

2b

,

G1
2b

︷ ︸︸ ︷
A2c∗, A0∗a, A1bc, A2b∗︸︷︷︸

unloadM 1
2b

,

A0∗b, A1aa, A2c∗, A0∗a, A1bb︸︷︷︸
loadM 2

2b

,

G2
2b

︷ ︸︸ ︷
A2a∗, A0∗b, A1aa, A2b∗︸︷︷︸

unloadM 2
2b

).

For any blocked cycle, the partial waiting time at any usage M r
i� is

wr
i� = max

⎧
⎨

⎩
0, pi − 2|Gr

i�|(δ + ε) − δ −
∑

j∈Gr
i�(V1)

(pj − δ) −
∑

j∈Gr
i�(V2)

wj

⎫
⎬

⎭
, (5.3)

where Gr
i�(V1) is the set of activities in Gr

i� that unload machine usages
with full waiting. More explicitly, Gr

i�(V1) = {Ajaq ∈ Gr
i�|j ∈ V1}.

Similarly, Gr
i�(V2) = {Ajxy ∈ Gr

i�|j ∈ V2}. In Example 5.2, V1 = ∅ and
w1

2b = max{0, p2 − 7δ − 6ε − w1
2c − w1

1b}.
We can now see that the robot’s total partial waiting time between

the loading of M1
2b by activity A1ab and the unloading of M1

2b by activity
A1

2b∗ is

w1
2c + w1

1b + w1
2b = max{w1

2c + w1
1b, p2 − 7δ − 6ε}

= max

⎧
⎨

⎩

∑

j∈G1
2b(V2)

wj , ŵ1
2b

⎫
⎬

⎭
,

where ŵr
i� = pi − 2|Gr

i�|(δ + ε) − δ −
∑

j∈Gr
i�(V1)(pj − δ).

Dominant Blocked Cycles. Before presenting our dominance result,
we first define two conditions on blocked cycles and prove two lemmas
concerning cycles that satisfy these conditions. We then show that the
conditions are sufficient for a cycle to be dominant over other cycles with
the same base permutation. The two conditions are:

C5.1. Each machine is loaded as soon as possible after it is unloaded,
as allowed by the base permutation, i.e., for all i ∈ M and all θ =
a, . . . , α(mi), machine Miθ is unloaded during activity Aiθγ , where
γ ∈ {a, . . . , α(mi+1)}. Because this is a blocked cycle, exactly one
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machine in stage i will be loaded within the next m activities. This
machine will be Miθ.

C5.2. For each stage i, i ∈ M , each of its machines has the same
number of activities between its loading and its unloading for each
usage: for each i, |Gr

i�| = gi,∀	,∀r.

Lemma 5.1 Consider any k-unit blocked cycle π that satisfies Condi-
tions C5.1 and C5.2. For each stage i, i ∈ M , each of its machines
is used the same number of times per cycle. This implies that k is a
multiple of mi, i ∈ M , so Γi� = k

mi
,∀	. Furthermore, these conditions

imply that the machines at stage i are loaded cyclically and that they are
unloaded in the same order.

Proof. For any stage i, Condition C5.1 implies that the number of
activities between unloading M r

i� and loading M r+1
i� is fixed by the base

permutation, for 	 = a, . . . , α(mi), r = 1, . . . ,Γi� (Γi�+1 is taken to be 1).
Call this number qi. Condition C5.2 says that the number of activities
between loading M r

i� and unloading M r
i� is gi, for 	 = a, . . . , α(mi), r =

1, . . . ,Γi�. The number of activities in cycle π is

k(m + 1) = Γi�(qi + gi + 2),∀	. (5.4)

Hence, Γi� is independent of 	,∀i, so each machine in stage i is used
the same number of times per cycle. Furthermore,

∑α(mi)
�=a Γi� = k ⇒

miΓi� = k ⇔ Γi� = k
mi

,∀i,∀	. Therefore, k must be a multiple of mi,∀i.
Equation (5.4) implies that

k(m + 1) =
k

mi
(qi + gi + 2), so

gi = mi(m + 1) − (qi + 2).

Condition C5.1 implies that 0 ≤ qi ≤ m − 1, so

(mi − 1)(m + 1) ≤ gi ≤ mi(m + 1) − 2.

Therefore, since each block contains m + 1 activities, some activity
(Ai−1,xy) that loads a machine in stage i occurs mi − 1 times between
any loading of a machine Mi� and its corresponding unloading. Hence,
each of the mi−1 other machines of stage i is loaded between successive
loadings of a specified Mi�. By Condition C5.2, each is unloaded after
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the same number of activities and, therefore, in the same order. Condi-
tion C5.1 implies that this order is maintained throughout the cycle.

Lemma 5.2 Any cycle that satisfies Conditions C5.1 and C5.2 is feasi-
ble.

Proof. Recall that there are two conditions (Chapter 3) that must be
satisfied for a cycle to be feasible. These can now be stated and verified
as follows:

Usage M r+1
i� cannot be loaded unless usage M r

i� has been unloaded
(Γi� + 1 is taken to be 1).

Usage M r+1
i� cannot be unloaded before it is loaded.

Since the machines of stage i are loaded cyclically, there are mi(m + 1)
activities between M r

i�’s loading and M r+1
i� ’s loading. In the proof of

Lemma 5.1, we saw that the number of activities between M r
i�’s loading

and its unloading is gi ≤ mi(m+1)−2. Therefore, usage M r
i� is unloaded

before the robot tries to load usage M r+1
i� , ∀	, ∀r.

Because this is a blocked cycle, the number of activities between the
unloading of M r

i� and the unloading of M r+1
i� is a positive multiple of

m + 1. By Condition C5.1, after usage M r
i� is unloaded, usage M r+1

i�

is loaded within the next m activities. Therefore, M r+1
i� will have been

loaded before the robot attempts to unload it.
We are now ready to state and prove a dominance theorem. We prove

that for a given base permutation, a cycle that satisfies Conditions C5.1
and C5.2 is dominant over all other blocked cycles. It follows that the
sub-class of blocked cycles satisfying Conditions C5.1 and C5.2 domi-
nates the class of blocked cycles.

Theorem 5.3 Given a robotic cell with m stages, fixed data (pi, mi, i ∈
M ; δ, ε), and a base permutation, a blocked cycle that satisfies Condi-
tions C5.1 and C5.2 is dominant.

Proof. We show that W ∗
p = min{Wp}, where for a given robotic cell,

W ∗
p is the total partial waiting in a cycle that satisfies Conditions C5.1

and C5.2, and the minimum is taken over all feasible blocked cycles for
a given base permutation in that cell.
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Note that for any cycle, equation (5.3) can be stated as

wr
i� = max{0, ŵr

i� −
∑

j∈Gr
i�(V2)

wj}, ∀i, 	, r. (5.5)

Hence, for a k-unit blocked cycle, we have a system of k|V2| inequalities

wr
i� +

∑

j∈Gr
i�(V2)

wj ≥ ŵr
i�, i ∈ V2; 	 = a, . . . , α(mi); r = 1, . . . ,Γi�, (5.6)

where wr
i� ≥ 0. Furthermore, for each machine Mi�, Gr

i� ∩ Gq
i� = ∅, for

1 ≤ r < q ≤ Γi�. Therefore, for each Mi�, i ∈ V2, we can add the
inequalities in (5.6) corresponding to wr

i�, r = 1, . . . ,Γi�, and derive the
following

∑
i∈V2

mi inequalities:

Γi�∑

r=1

⎡

⎣wr
i� +

∑

j∈Gr
i�(V2)

wj

⎤

⎦ ≥
Γi�∑

r=1

ŵr
i�, i ∈ V2; 	 = a, . . . , α(mi).

Claim 1. For a fixed Γi�,
∑Γi�

r=1 ŵr
i� is minimized by a cycle satisfying

Condition C5.1, ∀i, 	.
Proof of Claim 1. Because Condition C5.1 requires that Mi� be reloaded
as soon as possible, it maximizes the sum of the number of activities
between the loading and unloading of the usages of a machine; i.e., it
maximizes

∑Γi�
r=1 |Gr

i�|. Thus, it also minimizes
∑Γi�

r=1 ŵr
i�.

Claim 2.
∑α(mi)

�=a

∑Γi�
r=1 max{0, ŵr

i�} is minimized by a cycle satisfying
Conditions C5.1 and C5.2, ∀i.
Proof of Claim 2. Condition C5.2 (|Gr

i�| = gi,∀	,∀r) implies that ŵr
i�

is the same for all usages of all machines in a given stage i. Let ŵr
i� =

ŵ∗
i for a cycle satisfying Conditions C5.1 and C5.2. Therefore, since

∑α(mi)
�=a Γi� = k,
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α(mi)∑

�=a

Γi�∑

r=1

max{0, ŵ∗
i } = max

⎧
⎨

⎩
0,

α(mi)∑

�=a

Γi�∑

r=1

ŵ∗
i

⎫
⎬

⎭

= max

⎧
⎨

⎩
0, k[pi − 2gi(δ + ε) − δ −

∑

j∈Gr
i�(V1)

(pj − δ)]

⎫
⎬

⎭

≤ max

⎧
⎨

⎩
0,

α(mi)∑

�=a

Γi�∑

r=1

[pi − 2|Gr
i�|(δ + ε) − δ −

∑

j∈Gr
i�(V1)

(pj − δ)]

⎫
⎬

⎭

≤
α(mi)∑

�=a

Γi�∑

r=1

max{0, ŵr
i�}.

Let wr∗
i� be the waiting time of the robot at machine usage M r

i� in a
cycle that satisfies Conditions C5.1 and C5.2. If wr∗

i� = 0, then obviously
wr∗

i� = min{wr
i�}. If wr∗

i� > 0, then equation (5.5) implies

wr∗
i� +

∑

j∈Gr
i�(V2)

w∗
j = ŵ∗

i , ∀i, 	, r.

Hence, by Claim 2,

α(mi)∑

�=a

Γi�∑

r=1

⎡

⎣wr∗
i� +

∑

j∈Gr
i�(V2)

w∗
j

⎤

⎦ =
α(mi)∑

�=a

Γi�∑

r=1

ŵ∗
i

≤
α(mi)∑

�=a

Γi�∑

r=1

max{0, ŵr
i�}

≤
α(mi)∑

�=a

Γi�∑

r=1

⎡

⎣wr
i� +

∑

j∈Gr
i�(V2)

wj

⎤

⎦ , ∀i.

This argument holds for all stages i ∈ V2. Therefore, W ∗
p = min{Wp}.

5.1.3 LCM Cycles
As we have previously seen (Chapter 3), when dealing with multi-unit

cycles, one must address their feasibility. In this section, we define LCM
(for least common multiple) cycles that satisfy Conditions C5.1 and C5.2
stated in Section 5.1.2.2, and, therefore, are always feasible. This led
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Kumar et al. [102] to use them in their genetic algorithm-based analysis
of a specific company’s robotic cell. They also show that LCM cycles
greatly increase throughput in that cell. We now consider LCM cycles
for general cells with parallel machines.

To motivate LCM cycles, note that as proven in Lemma 5.1, k must
be a multiple of each mi for Theorem 5.3 to be fulfilled. This leads to
the definition of LCM cycles.

Definition 5.3 LCM Cycles are blocked cycles that have the following
characteristics:

They satisfy Conditions C5.1 and C5.2 stated in Section 5.1.2.2.

The number of blocks is λ = LCM [m1,m2, . . . ,mm].

For each stage i, the loading of its machines is ordered alphabetically,
beginning with machine Mia in the first block.

The last requirement ensures that a cell has a unique LCM cycle for a
given base permutation. From Theorem 5.3, we know that for a given
base permutation, the LCM cycle dominates all other blocked cycles.
Therefore, the class of LCM cycles dominates the class of blocked cycles.

In the remainder of this section, we further characterize LCM cycles
and derive results. This includes providing examples and computing the
cycle times for those examples.

Example 5.3 Consider a two-stage cell (m = 2) in which m1 = 2 and
m2 = 3. The LCM cycle for base permutation (0, 2, 1) is

πLD(2, 3) = (A0∗a, A2a∗, A1ba, A0∗b, A2b∗, A1ab, A0∗a, A2c∗, A1bc,

A0∗b, A2a∗, A1aa, A0∗a, A2b∗, A1bb, A0∗b, A2c∗, A1ac).

At the beginning of each iteration of this cycle, there are parts being
processed on machines M1b, M2a, M2b, and M2c. In the first block, the
robot unloads a part from I and carries it to M1a. Next, it moves to M2a,
from which it unloads a completed part, which it takes to the output
buffer. It then travels to M1b, unloads it, and transfers the part to M2a.

The robot starts the second block after returning to I. It obtains a
raw part and loads it onto M1b. The robot then unloads a completed
part from M2b and places it into O. This block concludes when the robot
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machine M1a

machine M1b

machine M2a

machine M2b

machine M2c

� �IO

�

A0∗a

(1, 7, 13)

�

A0∗b

(4, 10, 16)� A1aa(12)

�
A1ab

(6)

�A1ac(18)

�
A1ba

(3)

�
A1bb

(15)

�
A1bc(9)

�

A2a∗
(2, 11)

�

A2b∗

(5,
14)

�

A2c∗
(8, 17)

Figure 5.4. LCM Cycle πLD(2, 3). Numbers in Parentheses Indicate Order of Oper-

ations.

unloads M1a and carries that part to M2b. Processing for the remaining
four blocks is similar.

We use πLD to denote the general LCM cycle that has πD as its base
permutation. The specific instance in Example 5.3 is denoted πLD(2, 3)
because m1 = 2 and m2 = 3. It has six (LCM [2, 3]) blocks of three
(m+1) activities each. Each block is ordered A0A2A1. For a given stage,
we rotate usage of its machines, beginning with loading machine Mia for
each. For example, the blocks alternate between loading M1a (A0∗a) and
M1b (A0∗b) – each is used λ/m1 = 3 times per cycle (Lemma 5.1). Each
of the three machines in stage 2 is loaded every third block – twice per
cycle. Each usage of a machine in stage 1 has four activities between its
loading and its unloading; each in stage 2 has seven (Condition C5.2 of
Section 5.1.2.2). A schematic representation of this cycle is presented in
Figure 5.4. A Gantt chart of πLD(2, 3) can be found in Figure 5.5.

Note that πLD satisfies Condition C5.1 by loading each machine as
soon as possible after unloading it. Since processing is cyclical, minimiz-
ing the time between unloading and loading each machine maximizes the
time between loading and returning to unload each machine. This max-
imization in turn minimizes the robot’s waiting time at each machine
usage.
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Figure 5.5. Gantt Chart for Cycle πLD(2, 3). Thin Lines Indicate that the Robot is

Traveling Without a Part. In this Cell, p1 = 30, p2 = 50, δ = 5, and ε = 0.

The cycle time of the general cycle πLD can be easily computed from
equations (5.1) and (5.3). Since V1 = ∅ in πLD, we have

T (πLD) = 2λ(m + 1)(δ + ε) + max
1≤i≤m

{

max
{

0,
λ

mi
[pi − 2gi(δ + ε) − δ]

}}

.

Since gi = mi(m + 1) − 2, ∀i, this leads to

T (πLD) = max
{

2λ(m + 1)(δ + ε), max
1≤i≤m

{
λ

mi
(pi + 3δ + 4ε)

}}

. (5.7)

Therefore,

T (πLD(2, 3)) = max{36δ + 36ε, 3(p1 + 3δ + 4ε), 2(p2 + 3δ + 4ε)}.

The LCM cycle in this cell based on πU or, equivalently, with base
permutation (0, 1, 2), is

πLU (2, 3) = (A0∗a, A1ba, A2b∗, A0∗b, A1ab, A2c∗, A0∗a, A1bc, A2a∗,

A0∗b, A1aa, A2b∗, A0∗a, A1bb, A2c∗, A0∗b, A1ac, A2a∗).
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A similar computation yields the cycle time of πLU as

T (πLU (2, 3)) = max{36δ + 36ε, 3(p1 + 5δ + 6ε), 2(p2 + 5δ + 6ε)}.

Note that if the robot never waits, T (πLU (2, 3)) = T (πLD(2, 3)). It is
when the robot must wait that πLD(2, 3) proves itself as the better cycle.

5.1.4 Practical Implications
In this section, we state and prove a theorem that specifies an optimal

cycle for a very common special case. This theorem is used to generate
a formula for determining how many machines are needed at each stage
to meet a given throughput requirement.

5.1.4.1 Optimal Cycle for a Common Case

We now prove that πLD is an optimal cycle if pi ≥ δ,∀i. Our work
with a Dallas-area semiconductor equipment manufacturer [64] supports
that this is common in practice, as do the studies [102] and [128]. Note
that the following theorem produces an optimal cycle over all cycles, not
just blocked cycles. Its proof is a straightforward extension, for parallel
machines, of the argument for the optimality of the reverse cycle πD in
simple cells under the assumption pi ≥ δ,∀i (see Chapter 3).

Theorem 5.4 If pi ≥ δ,∀i, then πLD achieves the optimum per unit
cycle time.

Proof. By Theorem 5.1, if pi ≥ δ,∀i, then T (π) ≥ 2k(m + 1)ε +
kmδ + k(m + 2)δ = 2k(m + 1)(δ + ε), for all k-unit cycles π. Hence,
T (π)/k ≥ 2(m+1)(δ+ε). From equation (5.7), for the λ-unit cycle πLD,
T (πLD) = 2λ(m + 1)(δ + ε) if the robot never has to wait at a machine
for it to complete processing, so its per unit cycle time in this case is
2(m + 1)(δ + ε).

Observe that the robot’s fewest actions after a specific machine Mi�

completes processing and before that machine starts processing its next
part are (1) unload Mi�, (2) travel to a machine in stage i + 1, say Mi+1,a,
(3) load Mi+1,a, (4) travel to a machine in stage i − 1, say Mi−1,b, (5)
unload Mi−1,b, (6) travel to Mi�, and (7) load Mi�, for a total minimum
possible time between the unloading and the loading of Mi� of 3δ + 4ε.
Thus, the minimum possible time between each loading of Mi� is pi +
3δ+4ε. Since Mi� is used Γi� times per cycle, the minimum possible time
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required for its total processing during a complete cycle is Γi�(pi+3δ+4ε).
The best possible total cycle time is

max
1≤i≤m

{

max
a≤�≤α(mi)

{Γi�(pi + 3δ + 4ε)}
}

.

Since
∑α(mi)

�=a Γi� = k,∀i, we minimize maxa≤�≤α(mi){Γi�(pi + 3δ + 4ε)}
by setting Γi� = k/mi,∀i,∀	. Therefore, the best possible cycle time is
max1≤i≤m {(k/mi)(pi + 3δ + 4ε)}. Since T (πLD) = max{2λ(m + 1)(δ +
ε),max1≤i≤m {(λ/mi)(pi + 3δ + 4ε)}}, πLD achieves the optimum cycle
time for a λ-unit cycle. The requirement Γi� = k/mi,∀i, only makes
sense if k is a multiple of mi,∀i. Therefore, πLD achieves the optimum
per unit cycle time over all k-unit cycles, k ≥ 1.

Corollary 5.2 If max1≤i≤m{ λ
mi

(pi + 3δ + 4ε)} ≥ 2λ(m + 1)(δ + ε),
then πLD achieves the optimum per unit cycle time.

Proof. Follows directly from the proof of Theorem 5.4.

Corollary 5.3 Suppose πLD is optimal. For any stage i ∈ M for
which pi ≤ (2m − 1)δ + 2(m − 1)ε, there is no benefit to be gained from
using parallel machines in stage i.

Proof. Observe that

pi ≤ (2m − 1)δ + 2(m − 1)ε ⇐⇒ pi + 3δ + 4ε ≤ 2(m + 1)(δ + ε).

Therefore, adding parallel machines to stage i cannot reduce T (πLD).

Consider the alternative case in which pi ≥ δ, ∀i, is not true. In
much the same way that πD is a 2-approximation for an optimal cycle in
a simple cell (Chapter 3), πLD provides a 2-approximation for an optimal
cycle in a robotic cell with parallel machines. From Theorem 5.1 and
the proof of Theorem 5.4, we know that for any cell, independent of the
relationship between pi, i ∈ M , and δ, for an optimal cycle π∗,

max

{

2λ(m + 1)ε + λ
m∑

i=1

min{pi, δ} + λ(m + 2)δ,

max
1≤i≤m

{
λ

mi
(pi + 3δ + 4ε)

}}

≤ T (π∗).
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From equation (5.7), we have

T (πLD) − λmδ ≤ max

{

2λ(m + 1)ε + λ
m∑

i=1

min{pi, δ} + λ(m + 2)δ,

max
1≤i≤m

{
λ

mi
(pi + 3δ + 4ε)

}}

.

Hence, T (πLD) ≤ T (π∗) + λmδ ≤ 2T (π∗).

5.1.4.2 Fewest Machines Required to Meet Timelines

The previous theorem leads to a guideline for adding machines to
meet mandated throughput requirements if pi ≥ δ,∀i, which we have
seen is an important practical case. If a customer specifies a throughput
that implies the per unit cycle time T ∗, then we must have T (πLD)/λ ≤
T ∗. Therefore, for each stage i, we must have (pi + 3δ + 4ε)/mi ≤ T ∗.
(Note that if 2(m + 1)(δ + ε) > T ∗, then this time requirement cannot
be satisfied). To meet the time requirement, the number of parallel
machines for each stage i must satisfy (pi + 3δ + 4ε)/T ∗ ≤ mi. To
minimize overall cost, for each i, choose the smallest such mi. Therefore,

mi =
⌈

pi + 3δ + 4ε
T ∗

⌉

, i = 1, . . . ,m. (5.8)

Examples that illustrate the increase in throughput that can be realized
by adding parallel machines can be found in Section 5.2.3.2.

In the case with general processing times, πLD may or may not be
an optimal cycle. However, the preceding analysis is still valid, so if
equation (5.8) is satisfied and 2(m + 1)(δ + ε) ≤ T ∗, then πLD will meet
the required timeline.

5.2 Dual-Gripper Robots
For dual-gripper cells with parallel machines, we again consider only

constant travel-time cells (RF 2
m(m1, ...,mm)|(free,C,cyclic-k)|μ) [61]. As

in the previous section, we provide an optimal solution to the k-unit
cycle problem under conditions that are common in practice. The main
idea of this analysis is the construction of a specific cycle C̄m

d,L, which
combines the structures of LCM cycles (Section 5.1.3) and the cycle C̄m

d

for dual gripper simple cells (Chapter 4).
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5.2.1 Lower Bound on Per Unit Cycle Time
We now state and prove the lower bound on the per unit cycle time

for a dual-gripper robotic cell with parallel machines. Both the bound
and its proof are similar to those of Theorems 4.7 and 4.8.

Theorem 5.5 If θ ≤ δ and pi ≥ δ, i = 1, . . . ,m, then for any k-unit
cycle π in a robotic cell with parallel machines served by a dual-gripper
robot, the cycle time T (π) satisfies

T (π)
k

≥ max
{

(m + 2)δ + 2(m + 1)ε + mθ, max
1≤i≤m

{
pi + 2ε + θ

mi

}}

(5.9)

Proof. In part A of the proof, we show that maxi{(pi + 2ε + θ)/mi} is
a lower bound for T (π)/k. In part B, we show that (m + 2)δ + 2(m +
1)ε + mθ is a lower bound.
Part A: Suppose we represent a cycle by the sequence

(M−
i� , σ1,M

+
i� , σ2,M

−
i� , σ3,M

+
i� , σ4, . . . ,M

−
i� , σ2Γi�−1,M

+
i� , σ2Γi�

)

for some specific machine Mi�. The time between the beginning of M−
i�

and the end of M+
i� is at least pi + 2ε. If pi > δ, ∀i, we can establish a

lower bound by choosing σ̂2 = σ̂4 = · · · = σ̂2Γi�
= ∅. This leads to

T (π) ≥ max
1≤i≤m

max
a≤�≤α(i)

{Γi�(pi + 2ε + θ)}.

Since
∑α(mi)

�=a Γi� = k, ∀i, maxa≤�≤α(i){Γi�} ≥ k
mi

, so

T (π) ≥ max
1≤i≤m

{
k

mi
(pi + 2ε + θ)

}

.

Part B: We again examine the cases detailed in the proof of Theo-
rem 4.8. However, we now consider the robot’s residence times at stage i,
rather than at machine Mi. For the sequence (M−

iρ ,M+
iβ), ρ �= β, the

residence time is 2ε + δ: load Miρ, move to Miβ, unload Miβ. In this
analysis, we establish that the lower bound for each case in a simple ro-
botic cell applies to the respective case for cells with parallel machines.
Hence, the proof of Theorem 4.8 can be directly applied to prove Theo-
rem 5.5.

For any stage i, any sequence σ of a k-unit cycle that represents
two consecutive loadings and unloadings of machines in stage i is of
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the form σ = (M−
iρ,2r−1, σ1,M

+
iβ,2r−1, σ2, M−

iγ,2r, σ3,M
+
iη,2r, σ4), where

r = 1, . . . , k/2, and M−
i·,2r (M+

i·,2r) denotes 2rth loading (unloading) of a
machine in stage i. Note that in σ at least one of σ̂1, σ̂2, σ̂3, and σ̂4 is
not empty.

Case 0. Mi = M0. The analysis is identical to that of Theorem 4.8.

Case 1. Mi = Mm+1. The analysis is identical to that of Theorem 4.8.

Case 2. σ̂1 �= ∅, σ̂2 �= ∅, σ̂3 �= ∅, σ̂4 �= ∅. The robot is occupied at
machines in stage i for at least 4ε time units.

Case 3. σ̂1 = ∅ (for σ̂3 = ∅ the analysis is similar). If ρ = β, then the
robot is occupied at stage i for at least 4ε + pi time units. If ρ �= β,
then the robot is occupied at stage i for at least 4ε + δ time units.
Hence, in this case, the robot’s minimum residence time at stage i is
4ε + δ.

Case 4. σ̂2 = ∅ (for σ̂4 = ∅ the analysis is similar). If β = γ, then the
robot is occupied at stage i for at least 4ε + θ time units. If β �= γ,
then the robot is occupied at stage i for at least 4ε + δ time units
(we assume that the robot switches grippers while moving between
machines). Hence, in this case, the robot’s minimum residence time
at stage i is 4ε + θ time units.

Case 5. σ̂1 = σ̂2 = ∅ (for σ̂3 = σ̂4 = ∅ the analysis is similar). The
following subcases imply the listed minimum residence times:

a) ρ = β = γ ⇒ 4ε + θ + pi;

b) ρ = β �= γ ⇒ 4ε + δ + pi;

c) ρ �= β = γ ⇒ 4ε + θ + δ;

d) ρ �= β �= γ ⇒ 4ε + 2δ.

Hence, the robot is occupied at stage i for at least 4ε + θ + δ time
units.

Case 6. σ̂1 = σ̂3 = ∅. Recall that “∧” means logical and, and “∨”
means logical or.

a) ρ = β ∧ γ = η ⇒ 4ε + 2pi;

b) (ρ = β ∧ γ �= η) ∨ (ρ �= β ∧ γ = η) ⇒ 4ε + δ + pi;



174 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

c) (ρ �= β ∧ γ �= η) ⇒ 4ε + 2δ.

Hence, the robot is occupied at stage i for at least 4ε+2δ time units.

Case 7. σ̂1 = σ̂4 = ∅ (for σ̂2 = σ̂3 = ∅ the analysis is similar).

a) ρ = β = η ⇒ 4ε + θ + pi;

b) ρ = β �= η ⇒ 4ε + δ + pi;

c) ρ = η �= β ⇒ 4ε + θ + δ;

d) η �= ρ �= β ⇒ 4ε + 2δ.

Hence, the robot is occupied at stage i for at least 4ε + θ + δ time
units.

Case 8. σ̂2 = σ̂4 = ∅.

a) β = γ ∧ ρ = η ⇒ 4ε + 2θ;

b) β �= γ ∧ ρ �= η ⇒ 4ε + 2δ;

c) (β = γ ∧ ρ �= η) ∨ (β �= γ ∧ ρ = η) ⇒ 4ε + θ + δ.

Hence, the robot is occupied at stage i for at least 4ε+2θ time units.

Case 9. σ̂1 = σ̂2 = σ̂3 = ∅ (for σ̂1 = σ̂3 = σ̂4 = ∅ the analysis is
similar.)

a) ρ = β = γ = η ⇒ 4ε + θ + 2pi;

b) ρ = β = γ �= η ⇒ 4ε + θ + δ + pi;

c) ρ = β �= γ = η ⇒ 4ε + δ + 2pi;

d) ρ = β �= γ �= η ∨ γ = η �= ρ �= β ⇒ 4ε + 2δ + pi;

e) β = η �= γ ∨ ρ = γ �= β ⇒ infeasible;

f) ρ �= β = γ = η ⇒ 4ε + θ + δ + pi;

g) ρ �= β ∧ ρ �= γ ∧ ρ �= η ∧ β �= γ ∧ β �= η ∧ γ �= η ⇒ 4ε + 3δ;

h) ρ �= β = γ �= η ⇒ 4ε + θ + 2δ.

Hence, the robot is occupied at stage i for at least 4ε + θ + 2δ time
units.

Case 10. σ̂1 = σ̂2 = σ̂4 = ∅ (or σ̂2 = σ̂3 = σ̂4 = ∅). This schedule
structure is infeasible.
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Again, let uj , j = 0, . . . , 9, denote the number of sequences σ corre-
sponding to Case j that occur in a k-unit cycle, for all r = 1, . . . , k/2,
stages i = 0, . . . ,m + 1, and machines Mi�, 	 = a, . . . , α(mi). As there
are k/2 sequences for each stage in a k-unit cycle, we have mk/2 =
u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 and u0 = u1 = k/2. By adding
residence times corresponding to all the above cases and setting pi = δ,
∀i, we get a lower bound for Tr, the aggregate residence time of the
robot at all machines in all stages:

Tr ≥ k

2
μ + 2mkε + (u4 + u5 + u7 + 2u8 + u9)θ

+ (u3 + u5 + 2u6 + u7 + 2u9)δ,

where μ denotes the minimum residence time of the robot at both I and
O in sequences (M+

0,2r−1, σ1, M
+
0,2r, σ2) and (M−

m+1,2r−1, σ1,M
−
m+1,2r, σ2).

Hence, the lower bound for Tr is the same as the one found in Theo-
rem 4.8.

A robot movement from Miγ to Mhη occurs when an operation M−
iγ

or M+
iγ is followed immediately by a robot operation M−

hη or M+
hη, where

h �= i or γ �= η. Such a movement is incident to both machines Miγ and
Mhη , and requires δ time units. Therefore, the proof of Theorem 4.8 can
be directly applied to establish the same lower bound for the aggregate
travel time Tt, and hence for Case B. This proves the lower bound of
inequality (5.9).

5.2.2 An Optimal Cycle
Before defining Cycle C̄m

d,L, in order to develop intuition, we first pro-
vide an example and then describe the cycle in general. Example 5.4
below presents a specific case of cycle C̄m

d,L in a cell with two stages,
where m1 = 2 and m2 = 3. It begins with all machines occupied and
the robot at I with both grippers empty. The robot unloads a part from
the input buffer and travels to M1a. If necessary, the robot waits at
M1a until it completes processing. The robot then unloads that part
and replaces it in M1a with the one from I. The part from M1a is then
carried to M2a, at which the robot waits (if necessary), unloads the part
from M2a, and replaces it with the part from M1a. The part from M2a is
carried to and loaded onto O. Then the robot returns to I for the next
raw part. The robot again travels to stages 1 and 2, but this time it
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serves machines M1b and M2b. In the following pass through the stages,
it serves machines M1a and M2c. The robot makes three more passes
through the stages, serving machines M1b and M2a, then machines M1a

and M2b, and finally machines M1b and M2c. After loading the last part
onto O, the robot completes the cycle by returning to I. By cycling
through the machines in each stage in this fashion, the robot’s waiting
time at each machine is minimized.

For a cell with parallel machines, our notation for dual-gripper robots
is extended as follows. R−

ia(0, h) or R−
ia(h, 0) is the robot state in which

the robot has just finished loading a part onto machine Mia. R+
ib(i+1, h)

or R+
ib(h, i+1) is the state in which the robot has just finished unloading

a part from machine Mib. The subscript 0∗ is used when unloading I,
and the subscript (m + 1)∗ is used when loading O.

Example 5.4

(R+
0∗(1, 0), R+

1a(1, 2), R−
1a(0, 2), R+

2a(3, 2), R−
2a(3, 0), R−

3∗(0, 0),

R+
0∗(1, 0), R+

1b(1, 2), R−
1b(0, 2), R+

2b(3, 2), R−
2b(3, 0), R−

3∗(0, 0),

R+
0∗(1, 0), R+

1a(1, 2), R−
1a(0, 2), R+

2c(3, 2), R−
2c(3, 0), R−

3∗(0, 0),

R+
0∗(1, 0), R+

1b(1, 2), R−
1b(0, 2), R+

2a(3, 2), R−
2a(3, 0), R−

3∗(0, 0),

R+
0∗(1, 0), R+

1a(1, 2), R−
1a(0, 2), R+

2b(3, 2), R−
2b(3, 0), R−

3∗(0, 0),

R+
0∗(1, 0), R+

1b(1, 2), R−
1b(0, 2), R+

2c(3, 2), R−
2c(3, 0), R−

3∗(0, 0)).

Cycle C̄m
d,L has the following characteristics:

1. It begins with all machines occupied and the robot at the input buffer
while holding no part.

2. The number of parts produced in one cycle is λ = LCM [m1,m2, . . . ,
mm], the least common multiple of the number of machines in each
stage.

3. For each stage i, the unloading of its machines is ordered alphabeti-
cally, beginning with machine Mia in the first block.

4. Each machine is loaded immediately after it is unloaded. That is,
state R−

i�(i+1, 0) immediately follows state R+
i�(i+1, i), i = 1, . . . ,m;

	 = a, . . . , α(mi).
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5. After loading a machine in stage i, the robot travels to stage i + 1,
i = 1, . . . ,m. If 1 ≤ i ≤ m − 1, then the robot unloads and loads
some particular machine in stage i + 1. If i = m, then the robot
places the part into the output buffer (O), travels to the input buffer
(I), and collects a new part which it carries to a machine in stage 1.

Note that characteristics 2, 3, and 4 are analogous to those of LCM
cycles (Section 5.1.3). It follows that C̄m

d,L is feasible and that for each
stage i, each of its machines is used λ/mi times.

In the following definition, φ(i) is the subscript of the next machine
to be unloaded at stage i. If φ(i) is incremented to α(mi + 1), then set
φ(i) = a.

Cycle C̄m
d,L

Begin
Set φ(i) = a, i = 1, . . . ,m.
For part k = 1 to λ = LCM [m1,m2, . . . ,mm] do:
Begin

ε: robot unloads a part from I.
For i = 1 to m do:
Begin

δ: robot moves to Mi,φ(i).
wi,φ(i): robot waits for the part on Mi,φ(i) to complete.
ε: robot unloads Mi,φ(i).
θ: robot switches to the other gripper.
ε: robot loads Mi,φ(i).
increment φ(i) to next letter.

End (Next i)
δ: robot moves to O.
ε: robot loads finished part onto O.
δ: robot moves to I.

End (Next k)
End

The cycle time for C̄m
d,L can easily be calculated as

T (C̄m
d,L) = λ(m + 2)δ + 2λ(m + 1)ε + mλθ + W, (5.10)

where W =
m∑

i=1

α(mi)∑

�=a

λ/mi∑

r=1

wr
i�



178 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

is the robot’s total waiting time during one iteration of cycle C̄m
d,L. Thus,

if the robot never waits at any machine for it to complete processing,
the per unit cycle time of C̄m

d,L is the same as that of C̄m
d , and it equals

the lower bound of Theorem 5.5. We now derive an expression for W .
Let τ = (m + 2)δ + 2(m + 1)ε + mθ. The same logic that led to

equation (4.2) shows that the robot’s waiting time at usage M r
i� during

C̄m
d,L is

wr
i� = max

⎧
⎨

⎩
0, pi − miτ + 2ε + θ −

∑

j∈Gr
i�

wj

⎫
⎬

⎭
,

where Gr
i� is the set of usages that are unloaded between the loading and

the unloading of M r
i�. This yields a system of λm inequalities

wr
i� +

∑

j∈Gr
i�

wj ≥ Xi, ∀i, 	, r,

where wr
i� ≥ 0, ∀i, 	, r, and Xi = pi − miτ + 2ε + θ.

For the cycle in Example 5.4, we have the following system of inequal-
ities:

w3
1a +w1

2b +w2
1b +w1

2c ≥ X1

w3
1a +w2

2a +w2
1a +w1

2b +w2
1b +w1

2c ≥ X2

w3
1a +w2

2a +w3
1b +w1

2c ≥ X1

w3
1a +w2

2a +w3
1b +w2

2b +w2
1b +w1

2c ≥ X2

w2
2a +w3

1b +w2
2b +w1

1a ≥ X1

w3
1a +w2

2a +w3
1b +w2

2b +w1
1a +w2

2c ≥ X2

w2
2b +w1

1a +w2
2c +w1

1b ≥ X1

w3
1b +w2

2b +w1
1a +w2

2c +w1
1b +w1

2a ≥ X2

w2
2c +w1

1b +w1
2a +w2

1a ≥ X1

w1
1a +w2

2c +w1
1b +w1

2a +w2
1a +w1

2b ≥ X2

w1
2a +w2

1a +w1
2b +w2

1b ≥ X1

w1
1b +w1

2a +w2
1a +w1

2b +w2
1b +w1

2c ≥ X2

with wr
i� ≥ 0, ∀i, 	, r.

We now show that a minimal solution to this system of inequalities
yields

W = max
{

0, max
1≤i≤m

{
λ

mi
Xi

}}

.

Each machine Mi� has one inequality for each of its λ/mi usages. It
is easy to see that each variable appears exactly once in the λ/mi in-
equalities corresponding to Mi�, i = 1, . . . ,m; 	 = a, . . . , α(mi). This
is because in the cycle C̄m

d,L, given any machine Mi�, every usage of
every other machine is unloaded exactly once between the loading and
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unloading of some usage M r
i�, r ∈ {1, ..., λ/mi}. By adding the λ/mi

inequalities of machine Mi�, we obtain the following m inequalities:

W =
m∑

i=1

α(mi)∑

�=a

λ/mi∑

r=1

wr
i� ≥

λ

mi
Xi, i = 1, ...,m.

Since W ≥ 0, we have W ≥ max {0,max1≤i≤m {λXi/mi}}. We ex-
hibit a feasible solution whose value is max{0, max1≤i≤m {λXi/mi}}.
Let i′ be such that λXi′/mi′ = max1≤i≤m{λXi/mi}. Let the wait-
ing time at each usage of each machine in stage i′ be Xi′/mi′ . That
is, wr

i′� = Xi′/mi′ ,∀ 	, r, and let wr
i� = 0, i �= i′. In each of the λ

inequalities corresponding to usages of machines in stage i′, i.e., in-
equalities whose right-hand sides are Xi′ , the left-hand side evaluates
to mi′(Xi′/mi′) = Xi′ . In all other inequalities, the left-hand side eval-
uates to miXi′/mi′ ≥ mi(Xi/mi) = Xi. Therefore, this is a feasible
solution with W = max {0,max1≤i≤m {λXi/mi}}. Thus,

W =
m∑

i=1

α(mi)∑

�=a

λ/mi∑

r=1

wr
i�

= max
{

0, max
1≤i≤m

{
λ

mi
Xi

}}

= max
{

0, max
1≤i≤m

{
λ

mi
(pi − miτ + 2ε + θ)

}}

= max
{

0, max
1≤i≤m

{
λ

mi
pi − λ(m + 2)δ − 2λ

(

m + 1 − 1
mi

)

ε

−λ

(

m − 1
mi

)

θ

}}

.

Combining this result with equation (5.10), we have

T (C̄m
d,L) = max {λ(m + 2)δ + 2λ(m + 1)ε + mλθ,

max
1≤i≤m

{
λ

mi
(pi + 2ε + θ)

}}

.

We have thus proved the following result.

Theorem 5.6 In a robotic cell with parallel machines and a dual-gripper
robot, C̄m

d,L is optimal among all k-unit cyclic schedules (k ≥ 1) under
the assumption that θ ≤ δ and pi ≥ δ, i = 1, . . . ,m.
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Remark 5.1 Because the lower bound for the per unit cycle time in a
robotic cell with parallel machines and a single-gripper robot, according
to Theorem 5.1, is

T (π)
k

≥ max

{

2(m + 1)ε +
m∑

i=1

min{pi, δ} + (m + 2)δ,

max
1≤i≤m

{
pi + 3δ + 4ε

mi

}}

,

C̄m
d,L achieves a greater throughput than all the single-gripper k-unit

cycles in cells with parallel machines that satisfy θ ≤ min{δ, pi}, i =
1, . . . ,m.

Remark 5.2 We know of no rigorous studies of robotic cells with par-
allel machines and additive travel times. Hence, the structure of an
optimal cycle or a lower bound on the per unit cycle time are not known
for such cells, either for single-gripper or dual-gripper robots.

5.2.3 Improvement from Using a Dual-Gripper
Robot or Parallel Machines

We first note that starting from the single-gripper simple robotic cell
model, there are essentially three different ways in which managers can
attempt to improve productivity (keeping other process-related proce-
dures fixed):

1. by considering the use of a dual-gripper robot,

2. by considering the installation of parallel machines at bottleneck
stages, and

3. by considering the use of both a dual-gripper robot and parallel ma-
chines.

To assist production managers with the decision making, we provide an
analysis by dividing the discussion into three subsections that reflect
the three options listed above. Our analysis attempts to obtain a bound
on the potential decrease in the per unit cycle time (or, equivalently,
an increase in the throughput) if a particular option is chosen. For a
given cell, the computations required to do the analysis are straightfor-
ward, and the resulting bounds will enable managers to compare these
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options. Throughout our analysis we assume that θ ≤ δ and pi ≥ δ, as
these conditions hold in most manufacturing applications. Following our
analysis, we illustrate it on two cells we encountered in our work with a
Dallas-area semiconductor equipment manufacturer.

5.2.3.1 Installing a Dual-Gripper Robot in a Simple
Robotic Cell

In a simple robotic cell, we compare the two 1-unit cycles πD (Chap-
ter 3) and C̄m

d (Chapter 4). Recall that T (πD) = max{2(m + 1)(δ +
ε),maxi{pi}+3δ +4ε}, and, if pi ≥ δ,∀i, then it is optimal in a cell with
a single-gripper robot.

Before we provide the details of the analysis, we summarize the results:

If T (πD) = 2(m + 1)(δ + ε), then the cell is robot-constrained and
the per unit cycle time can be decreased by up to m(δ − θ) by using
a dual-gripper robot and implementing cycle C̄m

d .

If T (πD) = maxi{pi} + 3δ + 4ε, then the decrease in the cycle time
from using a dual-gripper robot is at best 3δ + 2ε − θ.

We now provide the analysis on a case-by-case basis. The cases concern
the relations between the arguments in the per unit cycle time expres-
sions for πD and C̄m

d :

T (πD) = max{2(m + 1)(δ + ε), max
1≤i≤m

{pi} + 3δ + 4ε},

T (C̄m
d ) = max{2(m + 1)ε + (m + 2)δ + mθ, max

1≤i≤m
{pi} + 2ε + θ}.

Recall from Corollary 4.6 that cycle C̄m
d is optimal for a simple robotic

cell with a dual-gripper robot among all k-unit cyclic schedules (k ≥ 1)
under the assumption that θ ≤ δ and pi ≥ δ, i = 1, . . . ,m.

Case 1.

2(m + 1)(δ + ε) ≥ max{pi} + 3δ + 4ε,

2(m + 1)ε + (m + 2)δ + mθ ≥ max{pi} + 2ε + θ.

Using a dual-gripper robot will decrease the per unit cycle time by
m(δ − θ).
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Case 2.

2(m + 1)(δ + ε) ≥ max{pi} + 3δ + 4ε

≥ max{pi} + 2ε + θ

≥ 2(m + 1)ε + (m + 2)δ + mθ.

Using a dual-gripper robot will decrease the per unit cycle time by
x = 2(m + 1)(δ + ε) − [max{pi} + 2ε + θ]. Note that 3δ + 2ε − θ ≤
x ≤ m(δ − θ).

Case 3.

max{pi} + 3δ + 4ε ≥ 2(m + 1)(δ + ε) ≥
2(m + 1)ε + (m + 2)δ + mθ ≥ max{pi} + 2ε + θ.

The improvement in the cycle time from a dual-gripper robot is x =
max{pi}+3δ+4ε− [2(m+1)ε+(m+2)δ+mθ]. Note that m(δ−θ) ≤
x ≤ 3δ + 2ε − θ.

Case 4.

max{pi} + 3δ + 4ε ≥ 2(m + 1)(δ + ε)

max{pi} + 2ε + θ ≥ 2(m + 1)ε + (m + 2)δ + mθ.

The improvement in the cycle time in this case is 3δ + 2ε − θ.

Table 5.1 lists eight different simple robotic cells and their data. These
were chosen because they cover the four different cases just discussed.
Additionally, based on our experience with a robotic cell manufacturer,
these are reasonable examples. For each cell, the table lists T (πD) for a
single-gripper robot and T (C̄m

d ) for a dual-gripper robot. The table also
shows the case to which each cell belongs to as well as the percentage
improvement in throughput from using a dual-gripper robot.

5.2.3.2 Installing Parallel Machines in a Single-Gripper
Robot Cell

Recall that in the case which we consider (i.e., pi ≥ δ,∀i), πLD is
optimal in a single-gripper robotic cell. If max{pi} + 3δ + 4ε > 2(m +
1)(δ + ε), then this cell is process-constrained at stage i∗, where pi∗ =
max{pi}. Its throughput can be increased by adding parallel machines
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m δ ε θ max{pi} T (πD) T (C̄m
d ) % improvement

5 3 1 1 20 48 38 20.83 Case 1

15 3 1 1 50 128 98 23.44 Case 1

15 10 1 1 150 352 217 38.35 Case 1

10 3 1 1 70 88 73 17.05 Case 2

5 3 1 2 38 51 43 15.69 Case 3

5 3 1 1 50 63 53 15.87 Case 4

5 3 1 3 50 63 55 12.70 Case 4

15 3 1 1 150 163 153 6.13 Case 4

Table 5.1. Cycle-Time Improvement from using a Dual-Gripper Robot in a Simple

Robotic Cell.

to stage i∗. The best possible per unit cycle time is 2(m + 1)(δ + ε).
This is achieved if, for each stage i, the number of parallel machines mi

satisfies (Section 5.1.4.2) (pi +3δ +4ε)/mi ≤ 2(m+1)(δ + ε). Therefore,

mi =
⌈

pi + 3δ + 4ε
2(m + 1)(δ + ε)

⌉

is the minimum number of machines needed at stage i, ∀i. If max{pi}+
3δ+4ε ≤ 2(m+1)(δ+ε), then there will be no benefit from using parallel
machines in this cell.

Table 5.2 lists the same eight cells as those in Table 5.1. For each, it
gives T (πD) for a simple robotic cell, the best possible value for T (πLD)
in a robotic cell with parallel machines, and the percentage increase in
throughput realized by using parallel machines. Note that only those
single-gripper robotic cells in Cases 3 or 4 (i.e., process-constrained)
benefit from the addition of parallel machines.

5.2.3.3 Installing a Dual-Gripper Robot in a
Single-Gripper Robotic Cell with Parallel Machines

We have seen that dual-gripper robots improve the throughput of
robot-constrained cells, and that parallel machines improve the through-
put of process-constrained cells. There are also instances in which the
use of both can lead to a greater improvement in throughput. Suppose
we have added parallel machines to a process-constrained single-gripper
robotic cell so that T (πLD)/λ = 2(m+1)(δ+ε). Throughput can now be
increased by using a dual-gripper robot and cycle C̄m

d,L. Having added a
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m δ ε θ max{pi} T (πD) T (πLD) % improvement

5 3 1 1 20 48 48 0 Case 1

15 3 1 1 50 128 128 0 Case 1

15 10 1 1 150 352 352 0 Case 1

10 3 1 1 70 88 88 0 Case 2

5 3 1 2 38 51 48 5.88 Case 3

5 3 1 1 50 63 48 23.81 Case 4

5 3 1 3 50 63 48 23.81 Case 4

15 3 1 1 150 163 128 21.47 Case 4

Table 5.2. Cycle-Time Improvement from Adding Parallel Machines to a Simple

Robotic Cell with a Single-Gripper Robot.

dual-gripper robot, if

pi∗ + 2ε + θ

mi∗
= max

1≤i≤m

pi + 2ε + θ

mi
≥ 2(m + 1)ε + (m + 2)δ + mθ,

then additional parallel machines at stage i∗ will increase throughput
further. The minimum possible per unit cycle time T (C̄m

d,L)/λ = 2(m +
1)ε + (m + 2)δ + mθ is achieved with the minimum number of machines
if

mi =
⌈

pi + 2ε + θ

2(m + 1)ε + (m + 2)δ + mθ

⌉

, ∀i. (5.11)

We now analyze the benefits of using a dual-gripper robot and par-
allel machines on a case-by-case basis. We show that for all cases these
enhancements will reduce per unit cycle time by at least m(δ − θ). The
cases concern the relations between the arguments in the per unit cycle
time expressions for πLD and C̄m

d,L:

T (πLD)
λ = max

{

2(m + 1)(δ + ε), max
1≤i≤m

{
pi + 3δ + 4ε

mi

}}

,

T (C̄m
d,L)

λ = max
{

2(m + 1)ε + (m + 2)δ + mθ, max
1≤i≤m

{
pi + 2ε + θ

mi

}}

.

Case 1.

2(m + 1)(δ + ε) ≥ max
1≤i≤m

pi + 3δ + 4ε
mi

,

2(m + 1)ε + (m + 2)δ + mθ ≥ max
1≤i≤m

pi + 2ε + θ

mi
.
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We have seen in the previous two sections that using additional par-
allel machines will have no benefit, and using a dual-gripper robot
will decrease the per unit cycle time by m(δ − θ).

Case 2.

2(m + 1)(δ + ε) ≥ max
1≤i≤m

pi + 3δ + 4ε
mi

≥ max
1≤i≤m

pi + 2ε + θ

mi

≥ 2(m + 1)ε + (m + 2)δ + mθ.

Using additional parallel machines will provide no benefit in a single-
gripper robotic cell, but it will in a dual-gripper robotic cell. Using
a dual-gripper robot will decrease the per unit cycle time by

x = 2(m + 1)(δ + ε) − max
1≤i≤m

pi + 2ε + θ

mi
.

Note that (3δ + 2ε − θ)/mi∗ ≤ x ≤ m(δ − θ). Using a dual-gripper
robot and additional parallel machines will decrease the per unit cycle
time by m(δ − θ).

Case 3.

max
1≤i≤m

pi + 3δ + 4ε
mi

≥ 2(m + 1)(δ + ε)

≥ 2(m + 1)ε + (m + 2)δ + mθ ≥ max
1≤i≤m

pi + 2ε + θ

mi
.

Adding parallel machines will help in the single-gripper robot case,
but not in the dual-gripper robot case. The benefit of implementing
dual-gripper robot is

x = max
1≤i≤m

pi + 3δ + 4ε
mi

− [2(m + 1)ε + (m + 2)δ + mθ].

Note that m(δ − θ) ≤ x ≤ (3δ + 2ε − θ)/mi∗ .

Case 4.

max
1≤i≤m

pi + 3δ + 4ε
mi

≥ 2(m + 1)(δ + ε),

max
1≤i≤m

pi + 2ε + θ

mi
≥ 2(m + 1)ε + (m + 2)δ + mθ.



186 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

The benefit of using a dual-gripper robot is (3δ + 2ε − θ)/mi∗ . The
benefit of using a dual-gripper robot and parallel machines is

pi∗ + 3δ + 4ε
mi∗

− [2(m + 1)ε + (m + 2)δ + mθ]

≥ max
{

3δ + 2ε − θ

mi∗
,m(δ − θ)

}

.

For each of the eight cells previously analyzed, Table 5.3 lists T (πD)
for a simple robotic cell with a single-gripper robot, T (C̄m

d,L) for a robotic
cell with parallel machines (where mi is specified by equation (5.11),
∀i) and a dual-gripper robot, the percentage throughput improvement
realized by using both parallel machines and a dual-gripper robot, and
to which case each belongs.

m δ ε θ max pi T (πD) T (C̄m
d,L) % improvement

5 3 1 1 20 48 38 20.83 Case 1

15 3 1 1 50 128 98 23.44 Case 1

15 10 1 1 150 352 217 38.35 Case 1

10 3 1 1 70 88 68 22.73 Case 2

5 3 1 2 38 51 43 15.69 Case 3

5 3 1 1 50 63 38 39.68 Case 4

5 3 1 3 50 63 48 23.81 Case 4

15 3 1 1 150 163 98 39.88 Case 4

Table 5.3. Cycle-Time Improvement from Adding Parallel Machines and a Dual-

Gripper Robot to a Simple Robotic Cell with a Single-Gripper Robot.

We have previously seen that in a simple robotic cell, using a dual-
gripper robot and cycle C̄m

d increases throughput. In addition, in a
robotic cell with parallel machines, using a dual-gripper robot and cy-
cle C̄m

d,L increases throughput. We can now state that adding parallel
machines to appropriate stages in a single-gripper robotic cell increases
throughput for Cases 3 and 4, and that adding parallel machines to ap-
propriate stages in a dual-gripper robotic cell increases throughput for
Cases 2 and 4.
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5.2.3.4 An Illustration on Data from Implemented Cells

We now consider two simple robotic cells with single-gripper robots
that have been designed and developed by a semiconductor equipment
manufacturer. We illustrate our analysis on these cells by assessing the
gains from using a dual-gripper robot and/or parallel machines.

Cell Data. The first cell has 11 processing stages. The vector of
processing times (in seconds) for these stages is p = (50.00, 52.24, 59.00,
70.13, 52.24, 25.00, 70.13, 52.24, 86.00, 70.13, 52.24). The second cell
has 10 processing stages. The vector of processing times (in seconds) for
these stages is p = (37.5, 70.13, 37.24, 39.5, 100.13, 42.24, 13, 100.13,
42.24, 65). These cells are used in photolithography to transfer elec-
tronic circuit patterns onto silicon wafers. The number of steps varies
to accommodate differing requirements, e.g., top anti-reflective coating,
bottom anti-reflective coating, tri-level, etc. Because of confidentiality
agreements, we cannot be more specific about each cell’s usage.

For both of these cells, the inter-machine travel times, although not
a single value, are roughly equal. For each, the maximum, average, and
minimum inter-machine travel times are 4.15 seconds, 3.9 seconds, and
3.65 seconds, respectively. Thus, the relative difference between the max-
imum (δu) and minimum (δl) inter-machine travel time is (δu−δl)/δu =
12.0%. The constant travel-time robotic cell model is therefore appro-
priate for both of these cells. We are unable to provide the complete
matrix of inter-machine travel times because of a data confidentiality
agreement with the company. For our purposes, we let δ = 3.9 be the
inter-machine travel time for each cell. For both cells, the load and un-
load times are ε = 0.5 seconds, and the dual-gripper switch time is θ =
0.5 seconds.

Results. We first measure the throughput improvements for these two
cells using the constant travel-time model. We then derive theoretical
lower bounds for these improvements when the actual travel times are
used.

The first cell belongs to Case 2. With no parallel machines and a
single-gripper robot, the optimal per unit cycle time for this cell is
T (πD) = 105.6 seconds. Adding parallel machines while keeping the
single-gripper robot will not increase throughput. However, when using
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a dual-gripper robot, the optimal cycle time is T (C̄m
d ) = 87.5 seconds, a

reduction of 17.1%. If we now add one parallel machine each to stages 4,
7, 9, and 10, the optimal per unit cycle time with a dual-gripper robot
is T (C̄m

d,L) = 68.2 seconds, which represents a reduction of 35.4% over
that of the simple robotic cell with a single-gripper robot.

The second cell belongs to Case 4. With no parallel machines and
a single-gripper robot, the optimal per unit cycle time for this cell is
T (πD) = 113.83 seconds. Adding one parallel machine each to stages
5 and 8 while keeping the single-gripper robot will reduce the per unit
cycle time to 96.80 seconds, a decrease of 15.0%. Using a dual-gripper
robot with no parallel machines will reduce the cycle time to 101.63
seconds, a decrease of 10.7%. If we use a dual-gripper robot and add
one parallel machine each to stages 2, 5, 8, and 10, the per unit cycle
time is T (C̄m

d,L) = 62.8, a reduction of 44.8% over the simple robotic
cell with a single-gripper robot. The results for both of these cells are
summarized in Table 5.4.

machines simple robotic cell parallel machines parallel machines

grippers single dual-grippers single-gripper dual-grippers

metric T (πD) T (C̄m
d ) imprv. T (πLD) imprv. T (C̄m

d,L) imprv.

Cell 1 105.6 87.5 17.1% 105.6 0.00% 68.2 35.4%

Cell 2 113.8 101.6 10.7% 96.8 15.0% 62.8 44.8%

Table 5.4. Cycle-Time Improvements on Two Cells Used in Semiconductor Wafer

Fabrication.

We now establish theoretical lower bounds on the throughput im-
provements with the actual travel times. To compute the worst possible
improvement realized from implementing dual-gripper robots in these
simple robotic cells, we compare the difference of T (πD) computed with
δl and T (C̄m

d ) computed with δu, divided by T (πD) computed with δu.
For the first cell, the result is

T (πD(δl)) − T (C̄m
d (δu))

T (πD(δu))
=

99.6 − 87.5
111.6

= 10.8%.

For the second cell the value is 10.1%. Similarly, the lower bounds on the
throughput improvements from adding dual-gripper robots and parallel
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machines to the simple robotic cells with single-gripper robots are 31.0%
and 43.4%.

A rough calculation of the financial benefits of these improvements can
be made as follows. A typical target throughput for a simple robotic cell
with a single-gripper robot is around 110 wafers per hour. The cost of a
wafer is typically in the range $10,000–$30,000. Therefore, a conservative
estimate of the improvement in revenues is

100
wafers
hour

× 10.7% × $10, 000
wafer

× 32
hours
week

= $3, 424, 000/week.

Given that the marginal cost of adding a dual-gripper to a single-gripper
robot is approximately $10,000, and the required software changes would
require labor on the order of $200,000 [133], the time required to recap-
ture the capital investment is very small. A similar calculation can be
done for the addition of parallel machines.



Chapter 6

MULTIPLE-PART-TYPE PRODUCTION:
SINGLE-GRIPPER ROBOTS

We now examine single-gripper robotic cells that process lots con-
taining different types of parts. In general, the processing times at the
machines differ for the different types of parts. Such implementations
are more commonly used by medium-sized discrete part manufacturers.
Multiple parts are processed in a single lot in order to have enough vol-
ume to use the cell efficiently (Ramanan [133]). All the results in this
chapter are for additive travel-time cells with a linear or semicircular
layout.

In accordance with just-in-time manufacturing, it is typical for the
relative proportions of the part-types in each lot to be approximately
the same as the relative proportions of their demand. Consequently,
research has focused on cycles which contain a minimal part set (MPS)
that has these same proportions. An MPS is a minimum cardinality set
of parts such that the relative proportions of the parts are the same as
those of their demands during a planning horizon. For example, if the
demand for a company’s three products is divided so that product A has
40%, product B has 35%, and product C has 25%, then the MPS has 20
parts: 8 of product A, 7 of product B, and 5 of product C. In practice,
the size of an MPS can exceed 50 parts (Wittrock [158]).

We will assume that the cell processes k different part-types and that
one MPS produces ri parts of type i, i = 1, . . . , k. The total number of
finished parts in one MPS cycle is n = r1 + · · · + rk; these are collec-
tively referred to as MPS parts. The schedule of production, referred to
as the MPS part schedule (or simply a part schedule), is specified by a
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permutation σ, with Pσ(i) being the part scheduled in the ith position
of σ, i = 1, . . . , n. Our objective in this chapter is to minimize the aver-
age (cycle) time T required to produce one MPS in a cyclic production
environment. As before, the throughput rate μ is defined as n/T .

6.1 MPS Cycles and CRM Sequences
We define a general MPS cycle as a sequence of robot moves during

which the MPS parts enter the system from the Input, are processed
at machines M1, . . ., Mm, and leave the system at the Output, after
which the system returns to its initial state. A specific MPS cycle can
be defined by the schedule σ in which the MPS parts enter the cell from
the Input and the sequence of robot actions within the cell. An MPS
robot move sequence (or simply a robot move sequence) is a sequence
of robot actions performed during an MPS cycle. Thus, given an MPS
robot move sequence and an MPS part schedule, the corresponding MPS
cycle can be constructed. Single-part-type production is the special case
when the MPS consists of a single part.

Concatenated Robot Move Sequences (CRM sequences) form a class of
MPS cycles in which the robot move sequence is the same 1-unit cycle of
robot actions repeated n times, where n is the total number of parts to
be produced in an MPS cycle (Sriskandarajah et al. [146]). For example,
for m = 3 and n = 3, the CRM sequence corresponding to the sequence
π4 = (A0, A3, A1, A2) is

(π4, π4, π4) = (A0, A3, A1, A2, A0, A3, A1, A2, A0, A3, A1, A2).

Let CRM(πj) denote the CRM sequence associated with the 1-unit se-
quence πj . When no confusion arises in doing so, we simply use πj to
denote CRM(πj). Appendix A provides a list of all 1-unit cycles for
m = 2, 3, and 4. Ideally, the number of parts to be produced, n, should
also be specified in the notation for a CRM sequence. However, all the
results in this chapter are for arbitrary values of n; we therefore omit
the specification.

In Section 6.2, we show using an example that the MPS cycle based
on the CRM sequence formed by the best 1-unit robot move sequence
can be suboptimal in a two-machine cell producing multiple part-types.
We therefore provide an efficient algorithm for finding the robot move
sequence and the part schedule which jointly minimize the production
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cycle time. In Section 6.3, a number of realistic and easily solvable spe-
cial cases are identified for part scheduling problems in three-machine
cells. Since all of our results are derived for a robotic cell operating in
a steady state, we also study ways in which a robotic cell converges to
such a state in Section 6.4. For two of the six CRM sequences in three-
machine cells, the recognition version of the part scheduling problem is
strongly NP-complete, as is the general part scheduling problem that is
not restricted to any robot move sequence. We prove these results in
Section 6.5. Section 6.6 generalizes the complexity results for cells with
m ≥ 4. In particular, this section determines the tractability of the part
scheduling problems associated with various CRM sequences in an m-
machine cell. Of the m! cycles of this type in an m-machine cell, exactly
2m−2 have an associated part scheduling problem that is efficiently solv-
able; the part scheduling problems associated with the other cycles are
intractable. Among the intractable part scheduling problems, we identify
those that can be easily (in the sense defined later in Section 6.6.3) for-
mulated as Traveling Salesman Problems (TSPs). Sections 6.7–6.8 con-
sider several scheduling problems that have been shown to be intractable
in the previous sections and provide simple but computationally effective
heuristics to solve industry-sized instances. In particular, Sections 6.7.1
and 6.7.2 describe heuristics for intractable part scheduling problems in
three-machine cells. The general three- and four-machine problems are
examined in Sections 6.7.4 and 6.8, respectively. Heuristics for larger
cells are discussed in Section 6.8. Section 6.9 considers the design of
robotic cells within a larger manufacturing system in which several ma-
chines need to be arranged into cells that are separated by intermediate
buffers.

We recall the notation to be used throughout this chapter:

ak, bk, ck, dk: the processing times of part Pk on machines M1,M2,M3,

M4, respectively, when m ≤ 4. For cells with five or more machines,
the processing time of part Pk on machine Mj is denoted by pk,j .

δi: the time taken by the robot to travel between two consecutive ma-
chines Mi−1 and Mi, 1 ≤ i ≤ m + 1.

η: the time saved by not stopping at an intermediate machine during a
robot travel between two nonconsecutive machines.
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ε1: the time taken by the robot to pick up a part at I.

ε2i: the time taken by the robot to load a part onto machine Mi.

ε2i+1: the time taken by the robot to unload a part from machine Mi.

ε2m+2: the time taken by the robot to drop a part at O.

σ: the order in which parts of an MPS are processed repetitively.

Pσ(j): the jth part to be produced in the schedule σ.

aσ(j) (resp., bσ(j), cσ(j), dσ(j)): the processing time of the jth part in
schedule σ on machine M1 (resp., M2,M3,M4).

(χ1, . . . , χm,M j
h): the current state of the system, where χi = φ (resp.,

Ω) if machine Mi is free (resp., occupied by a part). The robot has
just loaded (resp., unloaded) machine Mh if j = − (resp., +).

6.2 Scheduling Multiple Part-Types in
Two-Machine Cells

For additive travel-time cells (problem RF2|(free,A,MP,cyclic-n)|μ),
Hall et al. [75] address the two problems − part scheduling and robot
move sequencing − simultaneously. They first show that, in general,
CRM sequences are not optimal robot move sequences. Rather, it is
often better to selectively switch between π1 and π2, where π1 and π2

are the two robot move sequences for 1-unit cycles in two-machine cells
(see Chapter 3 and Appendix A).

We begin our analysis of the two-machine robotic cell problem, RF2|
(free,A,MP,cyclic-n)|μ, by showing that the optimal solution is not gen-
erally given by an MPS cycle using a CRM sequence. The cycle time
minimization problem for multiple part-types then becomes one of de-
ciding under which robot move sequence (π1 or π2 or a combination of π1

and π2) to process each part and specifying how to switch from π1 to π2

or vice versa, while simultaneously choosing the optimal part schedule.
An O(n4) algorithm that solves this problem optimally is provided.

Let T h
jσ(i)σ(i+1) be the time between the loading of part Pσ(i) on ma-

chine Mh, and the loading of part Pσ(i+1) on Mh, using the CRM se-
quence πj , where j ∈ {1, 2} and h ∈ {1, 2}. We use wi

j to denote the
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waiting time of the robot before unloading part Pσ(i) at machine Mj .
We now derive expressions for T h

1σ(i)σ(i+1) and T h
2σ(i)σ(i+1).

Starting from the initial state E = (∅,Ω,M−
2 ) (see Chapter 2), where

the robot has just completed loading part Pσ(i) onto M2, the robot move
sequence π1 includes the following activities: wait for Pσ(i) at M2 (bσ(i)),
unload (ε5), move to O (δ3), drop Pσ(i) (ε6), move to I (δ1+δ2+δ3−2η),
pick up Pσ(i+1) (ε1), move to M1 (δ1), load (ε2), wait for Pσ(i+1) (aσ(i+1)),
unload (ε3), move to M2 (δ2), and load (ε4). Thus, we have

T 2
1σ(i)σ(i+1) = bσ(i) + ε5 + δ3 + ε6 + (δ1 + δ2 + δ3 − 2η)

+ ε1 + δ1 + ε2 + aσ(i+1) + ε3 + (δ2) + ε4.

Starting from the initial state E = (∅,Ω,M−
2 ), where the robot has

just completed loading part Pσ(i) onto M2, the robot move sequence
π2 includes the following activities: move to I (δ1 + δ2 − η), pick up
part Pσ(i+1) (ε1), move to M1 (δ1), load (ε2), move to M2 (δ2), wait (if
necessary) for Pσ(i) (wi

2), unload (ε5), move to O (δ3), drop Pσ(i) (ε6),
move to M1 (δ2 + δ3 − η), wait (if necessary) for Pσ(i+1) (wi+1

1 ), unload
(ε3), move to M2 (δ2), and load (ε4). Therefore,

T 2
2σ(i)σ(i+1) = (δ1 + δ2 − η) + ε1 + δ1 + ε2 + (δ2) + wi

2 + ε5 + δ3 + ε6

+ (δ2 + δ3 − η) + wi+1
1 + ε3 + (δ2) + ε4, where

wi+1
1 = max{0, aσ(i+1) − wi

2 − ε5 − ε6 − 2δ2 − 2δ3 + η},
wi

2 = max{0, bσ(i) − ε1 − ε2 − 2δ1 − 2δ2 + η}.

By combining the expressions for wi+1
1 and wi

2, we obtain the following
result.

Lemma 6.1 The cycle time expressions for RF2|(free,A,MP,CRM)|μ are
given by

T 2
1σ(i)σ(i+1) = ρ + b′σ(i) + a′σ(i+1),

T 2
2σ(i)σ(i+1) = ρ + max{ν, b′σ(i), a

′
σ(i+1)}, where

a′i = ai + ε1 + ε2 + 2δ1 − η,

b′i = bi + ε5 + ε6 + 2δ3 − η, i = 1, . . . , n,

ρ = ε3 + ε4 + 2δ2,

ν = 2
3∑

i=1

δi + ε1 + ε2 + ε5 + ε6 − 2η.
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Proof. Follows from the above analysis.

In both sequences π1 and π2, a pair of parts Pσ(i) and Pσ(i+1) is
involved. The reader should also note that the state E = (∅,Ω,M−

2 ), in
which the robot has just finished loading a part on M2, is the only state
common to π1 and π2. Hence, this is the only state in which switching
between π1 and π2 can be achieved without wasteful robot moves. In
E = (∅,Ω,M−

2 ), the robot has two choices:

a. Wait and unload M2 (as in sequence π1).

b. Move to I (as in sequence π2).

Because of the possibility of switching between sequences at E = (∅,Ω,

M−
2 ), a part Pσ(i) may be processed using both sequences. The following

possibilities exist:

1. During the processing of Pσ(i), the robot uses sequence πi, i ∈
{1, 2}, on both machine M1 and machine M2. In this case, we say
that Pσ(i) is processed using sequence πi.

2. The robot uses sequence π1 during the processing of Pσ(i) on M1

and sequence π2 during the processing of Pσ(i) on M2. We say that
Pσ(i) is processed using sequence π1−2.

3. The robot uses sequence π2 during the processing of Pσ(i) on M1

and sequence π1 during the processing of Pσ(i) on M2. We say that
Pσ(i) is processed using sequence π2−1.

The following remark is required before we present our next result.

Remark 6.1 The two-machine no-wait flow shop scheduling problem,
denoted F2|no-wait|Ct, has as input a set of n jobs. Job Ji, i = 1, ..., n,
is associated with two numerical parameters ei and fi (processing times
on the two machines M ′

1 and M ′
2, respectively), and the objective is

to find a job schedule ψ that minimizes
∑n

i=1 max
{
eψ(i+1), fψ(i)

}
. This

problem can be solved in time O(n log n) by an algorithm due to Gilmore
and Gomory [67]. See Appendix B for details. Since this algorithm is
used several times in this chapter and the next, we simply refer to it as
the Gilmore-Gomory algorithm.
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Lemma 6.2 In general, an MPS sequence using the best CRM sequence
is not optimal for RF2|(free,A,MP,cyclic-n)|μ.

Proof. Consider the following instance of RF2|(free,A,MP,cyclic-n)|μ:
n = 5; k = 4; δ1 = 1, δ2 = 17, δ3 = 1; εi = 1, i = 1, . . . , 6; η = 1; the
processing times are shown in Table 6.1. Note that ν = 2

∑3
i=1 δi + ε1 +

ε2 + ε5 + ε6 − 2η = 40.
From Lemma 6.1, the time to produce the parts in an MPS in the

schedule σ under robot move sequence π1 is

T1(σ) =
n∑

i=1

T 2
1σ(i)σ(i+1) = nρ +

n∑

i=1

(a′i + b′i)

= 5[1 + 1 + 34] + [10 + 400 + 10 + 400 + 10]

+ [400 + 20 + 400 + 10 + 10]

= 1850.

The part scheduling problem under CRM sequence π2 can be trans-
formed into the problem F2|no-wait|Ct having the form: minimize Z +
∑n

i=1 max{eσ(i+1), fσ(i)}, where Z is a constant, eσ(i) = a′σ(i), and fσ(i) =
max{ν, b′σ(i)} are the processing times for part Pσ(i) on the first machine
(M ′

1) and the second machine (M ′
2), respectively. In F2|no-wait|Ct, the

i 1 2 3 4 5

ai 7 397 7 397 7

bi 397 17 397 7 7

Table 6.1. The Example Used in Lemma 6.2.

operations of any job are performed continuously without waiting on or
between the machines (Remark 6.1 and Appendix B). Note that the sch-
edule given by the Gilmore-Gomory algorithm is optimal if the shortest
processing time on M ′

1 is concurrent with that on M ′
2, the second short-

est processing time on M ′
1 is concurrent with that on M ′

2, and so on. For
example, processing times e2 and f1 are concurrent in Figure 6.1, as are
e3 and f2. If we use CRM sequence π2, the part schedule {1, 2, 3, 4, 5}
satisfies this rule and is therefore optimal. From Lemma 6.1, the time
to produce the parts in an MPS using schedule σ under CRM sequence
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π2 is

T2(σ) =
n∑

i=1

T 2
2σ(i)σ(i+1)

= nρ +
n∑

i=1

max{ν, b′σ(i), a
′
σ(i+1)}

= 180 + 400 + 40 + 400 + 40 + 40

= 1100.

The use of a combination of different robot move sequences (π1−2, π2, π2,

π2−1, π1) in the two-machine flowshop using the same part schedule is
illustrated in Figure 6.1. The part schedule is optimal for this combi-
nation, where part P1 is processed under sequence π1−2, parts P2 and
P3 under sequence π2, part P4 under sequence π2−1, and part P5 under
sequence π1.

� �

P1 P2 P3 P4 P5 P1

880

π1−2 π2 π2 π2−1 π1 π1−2

e1 = 10

f1 = 400

e2 = 400

f2 = 40

e3 = 10

f3 = 400

e4 = 400

f4 = 10 f5 = 10

e5 = 10 e1 = 10M ′
1

M ′
2

Figure 6.1. Combining Robot Move Sequences in Lemma 6.2.

The length of each operation is shown by its eσ(i) or fσ(i) value, and
the contribution of the unavoidable robot travel time (i.e., nρ = 5(36) =
180) is ignored in Figure 6.1. Note that fσ(i) = max{ν, b′σ(i)} if part Pσ(i)

is processed by sequence π2 or sequence π1−2; otherwise fσ(i) = b′σ(i). By
adding in the travel time, we obtain a total cycle time of 880 + 180 =
1060. Intuitively, we have taken advantage of the fact that some parts
are suitable for processing under π1 and others under π2. This completes
the proof of Lemma 6.2.

Remark 6.2 The procedure used by Sethi et al. [142] for this problem
involves fixing the robot move sequence to π1 and solving for the optimal
part schedule, repeating this process for π2, and then comparing the two
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cycle times thus generated. Lemma 6.2 shows that the cycle time can be
improved by using both sequences π1 and π2 in the repetitive produc-
tion of an MPS. A further improvement for the above example can be
achieved by using sequence π2−1 for part P2 and sequence π1−2 for part
P3. The cycle time then becomes 870 + 180 = 1050. This demonstrates
that an optimal solution may need more than one transition from π1 to
π2, and vice versa, in RF2|(free,A,MP,cyclic-n)|μ. Kise et al. [99] study
the makespan version of the part scheduling problem under an Auto-
mated Guided Vehicle (AGV) cycle equivalent to π2. Their problem is
equivalent to RF2|(free,A, CRM(π2))|Cmax, and they describe an O(n3)
algorithm, where n is the number of jobs to be processed.

We now describe an algorithm, MinCycle, due to Hall et al. [75], that
jointly optimizes the robot move sequence and the part schedule for
problem RF2|(free,A,MP,cyclic-n)|μ. The idea behind the algorithm is
as follows: MinCycle begins with an arbitrary part schedule using robot
move sequence π1 (Step 1) and by finding an optimal part schedule (from
the Gilmore-Gomory algorithm) using robot move sequence π2 (Step 4).
It then compares their cycle times (in Step 2 of Subroutine GG). Between
these two extreme solutions are many other solutions that use a mix of
different robot move sequences; these are investigated in Step 5. In
this step, the algorithm enumerates, in time O(n3), ways of setting q of
the a′ψ(i) values and q of the b

′
i values to a large number H, where q =

1, . . . , t, t = min{|{i : a′i < ν}|, |{i : b′i < ν}|}, H = nρ+
∑n

i=1(a
′
i+b′i)+1,

and the permutation ψ places the ai’s in ascending order. In Step 5, the
(q − 1) smallest a′ψ(i)’s and the (q − 1) smallest b′i’s are set to H. It
remains to set one a′ψ(i) value and one b′i value to H; all such possible
assignments are examined. This requires time O(n2) for a fixed q. Each
assignment of the q H’s corresponds to a partition of the MPS into four
subsets – B1, B2, B12, and B21 – consisting of parts produced using
robot move sequences π1, π2, π1−2, and π2−1, respectively. If a part Pi

has both a′i and b′i set to H, then that part belongs to B1. If only a′i
(resp., b′i) is set to H, then that part belongs to B12, (resp., B21). If
neither a′i nor b′i is set to H, then that part belongs to B2. For each
assignment of the q H’s, Subroutine GG is called to solve the equivalent
F2|no-wait|Ct problem. Following an optimality test (Step 2 of GG), the
smallest cycle time C∗, and corresponding schedule σ∗ with partitions
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B1, B2, B12, and B21 obtained from Steps 1, 4, and 5, are recorded as
an optimal solution.

Note that since H is large, Subroutine GG provides a schedule in
which each a′i set to H is processed on M ′

1 concurrently with a b′j set
to H on M ′

2. This pairing in GG means that the processing times cor-
responding to these two H values, ei and fj , can be represented in the
schedule as two consecutive blocks similar to f4 and e5 in Figure 6.1.
Therefore, in any schedule, the sequence π1 or π2−1 is followed by either
π1 or π1−2. Similarly, the sequence π2 or π1−2 is always followed by ei-
ther π2 or π2−1. Step 2 of Subroutine GG calculates the actual cycle time
of each partition defined by the assignment of the H values in Step 5 of
MinCycle. The algorithm of Hall et al. [75] for RF2|(free,A,MP,cyclic-
n)|μ now follows.

Algorithm MinCycle
Step 0: Given ai, bi, 1 ≤ i ≤ n, δ1, δ2, δ3, η, and ε1, . . . , ε6,

B1 = {P1, . . . , Pn}, B2 = B12 = B21 = ∅,
ρ = ε3 + ε4 + 2δ2,
ν = 2

∑3
i=1 δi + ε1 + ε2 + ε5 + ε6 − 2η.

Step 1: a′i = ai + ε1 + ε2 + 2δ1 − η, i = 1, . . . , n,
b′i = bi + ε5 + ε6 + 2δ3 − η, i = 1, . . . , n,
σ∗ = {1, . . . , n},
C∗ = nρ +

∑n
i=1(a

′
i + b′i),

H = C∗ + 1,
Y = 0, q = 0.

Step 2: Number the parts so that b′i ≤ . . . ≤ b′n.
Find an ordering ψ of the parts such that a′ψ(1) ≤ . . . ≤ a′ψ(n).

Step 3: t = min{|{i : a′i < ν}|, |{i : b′i < ν}|}.
Step 4: Call GG(a′i, b

′
i, 1 ≤ i ≤ n).

Step 5: For q = 1, . . . , t:
Y =

∑q−1
i=1 (a′ψ(i) + b′i),

a′ψ(i) = H, b′i = H, i = 1, . . . , q − 1,
For h, j = q, . . . , n:

Wa = a′ψ(h),Wb = b′j ,
a′ψ(h) = H, b′j = H,
Y = Y + Wa + Wb,
Call GG(a′i, b

′
i, 1 ≤ i ≤ n),
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a′ψ(h) = Wa, b
′
j = Wb,

Y = Y − Wa − Wb.
End

End

Subroutine GG(a′i, b
′
i, 1 ≤ i ≤ n)

Step 1: ei a′i, fi = max{ν, b′i}, i = 1, . . . , n.

Apply the Gilmore-Gomory algorithm to the
instance {ei, fi}, i = 1, . . . , n.

Let σ denote the optimal part schedule, and C denote
its value.

Step 2: If C + nρ − qH + Y < C∗, then
C∗ = C + nρ − qH + Y, σ∗ = σ,
B1 = {Pi : a′i = H} ∩ {Pi : b′i = H},
B12 = {Pi : a′i = H}\{Pi : b′i = H},
B21 = {Pi : b′i = H}\{Pi : a′i = H},
B2 = {P1, . . . , Pn}\{B1 ∪ B12 ∪ B21}.

End If

To prove the optimality of MinCycle, several preliminary results are
required.

Lemma 6.3 In any feasible solution for RF2|(free,A, MP,cyclic-n)|μ, we
have |B12| = |B21|.

Proof. In general, any feasible solution is a cyclic production of an MPS
in a schedule in which each part is produced using one of the following
robot move sequences: π1, π2, π1−2, and π2−1. Note that sequence π1−2

must be preceded by π1 or π2−1, and followed by π2 or π2−1. Since the
schedule is cyclic, it follows that the number of transitions from π1 into
π2 (using π1−2) must equal the number of transitions from π2 into π1

(using π2−1).

Lemma 6.4 Algorithm MinCycle evaluates all solutions in which |B1 ∪
B12| = |B1 ∪ B21| = q, where q = 0 if the solution is found in Step 4,
and 1 ≤ q ≤ t if the solution is found in Step 5 and the q − 1 smallest
a′i (resp., b′i) values are associated with the parts in B1 ∪ B12 (resp.,
B1 ∪ B21).
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Proof. The proof follows from Steps 4 and 5 of MinCycle and Step 2 of
Subroutine GG.

Lemma 6.5 For any real numbers v, w, x ≥ 0 with w ≥ v,
max{x, v} + w ≥ max{x,w} + v.

Proof. max{x,w} = max{x, v + (w − v)} ≤ max{x, v} + (w − v).

Theorem 6.1 Algorithm MinCycle finds an optimal solution to RF2|
(free,A,MP,cyclic-n)|μ in time O(n4).

Proof. The first part of the proof shows that for given subsets B1, B2,
B12, and B21, MinCycle finds an optimal part schedule σ whose cycle
time is denoted by Tσ. As we will observe later, during the execution of
this schedule, the robot may switch between robot move sequences π1

and π2. We write the cycle time as Tσ = nρ +
∑n

i=1 dσ(i)σ(i+1), where
we define dσ(n)σ(n+1) = dσ(n)σ(1),

Tσ = nρ +
n∑

i=1

Vσ(i)σ(i+1) +
n∑

i=1

Wσ(i)σ(i+1),

dσ(i)σ(i+1) = Vσ(i)σ(i+1) =

⎧
⎪⎨

⎪⎩

b
′
σ(i) + a

′
σ(i+1) if π1 is used for the

pair (Pσ(i),Pσ(i+1));
0 otherwise,

dσ(i)σ(i+1) = Wσ(i)σ(i+1) =

⎧
⎪⎨

⎪⎩

max{ν, b
′
σ(i), a

′
σ(i+1)} if π2 is used for the

pair (Pσ(i),Pσ(i+1));
0 otherwise.

For these definitions, π1 is used for the pair (Pσ(i), Pσ(i+1)) if and only
if Pσ(i) ∈ B1 ∪ B21 and Pσ(i+1) ∈ B1 ∪ B12. A similar characterization
holds for π2. Since nρ is a constant, the above problem is equivalent to
that of minimizing

T̄σ =
n∑

i=1

Vσ(i)σ(i+1) +
n∑

i=1

Wσ(i)σ(i+1).

Let Y =
∑

Pi∈B1∪B12
a′i +

∑
Pi∈B1∪B21

b′i. Then letting b′σ(i) = a′σ(i+1) =
H, whenever Vσ(i)σ(i+1) = b′σ(i) + a′σ(i+1), gives

T̂σ =
n∑

i=1

max{fσ(i), eσ(i+1)},
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where fσ(j) =max{ν, b′σ(j)} and eσ(j) = a′σ(j), j = 1, . . . , n. It remains

to show that the schedule that minimizes T̂σ also minimizes Tσ. To
see this, note that since H is a large value, each a′i set to H on M ′

1 is
concurrent with a b′i set to H on M ′

2 in any optimal solution. Thus,
qH ≤ T̂σ∗ < (q + 1)H. Step 2 of Subroutine GG ignores schedules σ for
which T̂σ ≥ (q+1)H, since the optimal solution can be found elsewhere.
Thus, in σ∗, no part in B12 can immediately precede a part in B1 or
B12, since this would imply that T̂σ ≥ (q + 1)H. Similarly, no part in
B21 can immediately precede a part in B2 or B21 in σ∗. Therefore, if
T̂σ < (q + 1)H, we have

T̂σ = Tσ − nρ + qH − Y,

and the two problems are equivalent under this condition.
The second part of the proof shows that the partitions of the parts

into subsets B1, B2, B12, and B21 considered by MinCycle contain an op-
timal schedule. To characterize such partitions, let (ρ∗, σ∗) represent an
optimal solution consisting of a partition ρ∗ of the parts into B1, B2, B12,
and B21 and a part schedule σ∗. We make use of two claims.

Claim 1. If a′σ∗(i+1) + b′σ∗(i) < ν, then dσ∗(i)σ∗(i+1) = Vσ∗(i)σ∗(i+1),
and if a′σ∗(i+1) + b′σ∗(i) ≥ ν, then dσ∗(i)σ∗(i+1) = Wσ∗(i)σ∗(i+1).
Proof of Claim 1. Assume that there exist parts Pσ∗(i) and Pσ∗(i+1)

such that

dσ∗(i)σ∗(i+1) = Wσ∗(i)σ∗(i+1),

a′σ∗(i+1) + b′σ∗(i) < ν = max{ν, b′σ∗(i), a
′
σ∗(i+1)} = Wσ∗(i)σ∗(i+1).

Now, if we form a new solution (π′, σ∗) by setting dσ∗(i)σ∗(i+1) =
Vσ∗(i)σ∗(i+1) = b′σ∗(i) + a′σ∗(i+1), we find a new cycle time Tπ′σ∗ satis-
fying Tπ′σ∗ −Tπ∗σ∗ = b′σ∗(i) +a′σ∗(i+1)−ν. This implies Tπ′σ∗ < Tπ∗σ∗ ,
thus contradicting the optimality of (π∗, σ∗). Note that the change
from π∗ to π′ alters the robot move sequences for parts Pσ∗(i) and
Pσ∗(i+1). The proof of the second part is similar.

Claim 2. If there exists an optimal solution (π∗, σ∗) with |B1∪B12| =
|B1 ∪ B21| = q, then there exists an optimal solution satisfying the
following two additional conditions:
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(a) The (q − 1) smallest a′i values are associated with parts in B1 or
B12. Thus, dσ∗(i−1)σ∗(i) = Vσ∗(i−1)σ∗(i) = b′σ∗(i−1) + a′σ∗(i).

(b) The (q − 1) smallest b′i values are associated with parts in B1 or
B21. Thus, dσ∗(i)σ∗(i+1) = Vσ∗(i)σ∗(i+1) = b′σ∗(i) + a′σ∗(i+1).

Proof of Claim 2. For condition (a), assume that in (π∗, σ∗), part
Pσ∗(j) ∈ B2 ∪ B21, where a′σ∗(j) is one of the (q − 1) smallest a′i
values. It follows that there exist parts Pσ∗(u), Pσ∗(v) ∈ B1 ∪ B12

such that a′σ∗(u), a
′
σ∗(v) ≥ a′σ∗(j). Without loss of generality, let σ∗ =

{Pσ∗(j), σ
∗
ju, Pσ∗(u), σ

∗
uv, Pσ∗(v), σ

∗
vj}, where

σ∗
ju = {Pσ∗(j+1), Pσ∗(j+2), . . . , Pσ∗(u−2), Pσ∗(u−1)}

denotes a partial schedule of jobs in between the jth and uth positions
of σ∗, as in Figure 6.2. Since parts Pσ∗(u), Pσ∗(v) ∈ B1 ∪ B12, it
follows that parts Pσ∗(u−1), Pσ∗(v−1) ∈ B1 ∪B21. Similarly, since part
Pσ∗(j) ∈ B2 ∪ B21, it follows that part Pσ∗(j−1) ∈ B2 ∪ B12. Thus we
can write

dσ∗(j−1)σ∗(j) = max{ν, b′σ∗(j−1), a
′
σ∗(j)},

dσ∗(u−1)σ∗(u) = b′σ∗(u−1) + a′σ∗(u),

dσ∗(v−1)σ∗(v) = b′σ∗(v−1) + a′σ∗(v).

As shown in Figure 6.3, let (π′, σ′) be another solution with σ′ =
{Pσ∗(u), σ

∗
uv, Pσ∗(j), σ

∗
ju, Pσ∗(v), σ

∗
vj}. In σ′, all parts belong to the

same subsets as in σ∗ with the following exceptions: Pσ∗(j) ∈ B1∪B12

and Pσ∗(u) ∈ B2 ∪ B21. Thus in σ′, we have

dσ∗(j−1)σ∗(u) = max{ν, b′σ∗(j−1), a
′
σ∗(u)},

dσ∗(v−1)σ∗(j) = b′σ∗(v−1) + a′σ∗(j),

dσ∗(u−1)σ∗(v) = b′σ∗(u−1) + a′σ∗(v).
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Comparing the cycle times of the two solutions, we have from
Lemma 6.5,

Tπ′σ′ − Tπ∗σ∗ = max{ν, a′σ∗(u), b
′
σ∗(j−1)} + b′σ∗(v−1) + a′σ∗(j)

+ b′σ∗(u−1) + a′σ∗(v) − max{ν, a′σ∗(j), b
′
σ∗(j−1)}

− b′σ∗(u−1) − a′σ∗(u) − b′σ∗(v−1) − a′σ∗(v)

= max{ν, a′σ∗(u), b
′
σ∗(j−1)} + a′σ∗(j)

− max{ν, a′σ∗(j), b
′
σ∗(j−1)} − a′σ∗(u)

≤ 0,

It follows that, without increasing the cycle time, we can repeat such
changes until condition (a) is satisfied.

The proof for condition (b) is similar due to the following symmetry
in the schedule. If we interchange the role of M ′

1 and M ′
2 and consider

any schedule in the reverse direction, we find an equivalent schedule
where b′i (resp., a′i) is the processing time on M ′

1 (resp., M ′
2).

4L + X 4L + X

3L + X 3L + X

M ′
1

M ′
2

Figure 6.2. Partition π∗ and Schedule σ∗ = {Pσ∗(j), σ
∗
ju, Pσ∗(u), σ

∗
uv, Pσ∗(v), σ

∗
vj} in

Condition (a) of Theorem 6.1.

4L + X 4L + X

3L + X 3L + X

M ′
1

M ′
2

Figure 6.3. Partition π
′

and Schedule σ′ = {Pσ∗(u), σ
∗
uv, Pσ∗(j), σ

∗
ju, Pσ∗(v), σ

∗
vj} in

Condition (a) of Theorem 6.1.

We are now able to prove the theorem. Steps 4 and 5 of MinCycle
consider different values of q. If an optimal solution exists for a given
value of q, Lemma 6.3 and Claim 2 define conditions present in at least
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one optimal solution. Lemma 6.4 proves that all possible partitions of
the parts using those conditions are examined in Step 4 for q = 0 and
in Step 5 for 1 ≤ q ≤ t. It follows from Claim 1 and the definition
of t in Step 3 that the assignment of a value of H to any processing
time of a part with index greater than t will not improve the cycle time.
Thus, there exists an optimal solution with 0 ≤ q ≤ t. Finally, given
any partition, the first part of the proof establishes that Subroutine GG
finds an optimal part schedule.

The dominant step in MinCycle is Step 5, where the indices h, j,
and q are all O(n). The number of calls of Subroutine GG is, therefore,
O(n3). Lawler et al. [103] point out that Step 1 of Subroutine GG can be
implemented in time O(n log n). However, the parts have already been
ordered in Step 4 of MinCycle. Consequently, in Step 5, we only need
to order the jobs whose processing times are set to a value of H. Since
all such jobs have to appear at the end of the ordering in an arbitrary
subschedule, the Gilmore-Gomory algorithm can be implemented in time
O(n). Step 2 of Subroutine GG also runs in time O(n). Thus, the
overall time complexity of MinCycle is O(n4). This completes the proof
of Theorem 6.1.

Algorithm MinCycle (Hall et al. [75]) has also been implemented in
a two-machine robotic cell at the Manufacturing Systems Laboratory of
the Industrial Engineering Department of the University of Toronto. The
details of this implementation are provided by Chan and Lau [29]. Aneja
and Kamoun [7] improve the complexity of MinCycle to O(n log n). We
refer to this algorithm as Improved MinCycle.

6.3 Scheduling Multiple Part-Types in
Three-Machine Cells

In this section, we study the problem of scheduling multiple part-
types in a three-machine robotic cell under CRM sequences (problem
RF3|(free, A,MP,CRM)|μ). CRM sequences are easy to understand and
implement, and are therefore the focus of our attention here. We show in
Section 6.3.2 that the optimal part scheduling problems associated with
four of the six CRM sequences are polynomially solvable. The recogni-
tion version of the part scheduling problem is strongly NP-complete for
the other two CRM sequences (Section 6.5). However, we do identify
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several special cases for which the problem is polynomially solvable. The
issue of convergence to a steady state is discussed in Section 6.4.

6.3.1 Cycle Time Derivations
Following Hall et al. [75], we now present the derivation of cycle times

for CRM sequences π1,3, π2,3, . . . , π6,3, in RF3|(free,A,MP,CRM)|μ, start-
ing from a convenient state in each case. Recall that T h

jσ(i)σ(i+1) denotes
the time between the loading of part Pσ(i) on machine Mh and the load-
ing of part Pσ(i+1) on machine Mh using CRM sequence πj,3, where
h ∈ {1, 2, 3} and j ∈ {1, . . . , 6}.

Starting from the initial state E = (Ω, ∅, ∅,M−
1 ), where the robot has

just loaded part Pσ(i) onto M1 and where machines M2 and M3 are free,
we can derive the following expression for π1,3:

T 1
1σ(i)σ(i+1) = α1 + aσ(i) + bσ(i) + cσ(i),

where α1 = 2
∑4

i=1 δi +
∑8

i=1 εi − 3η. We obtain

T1(σ) =
n∑

i=1

T 1
1σ(i+1)σ(i+2) = nα1 +

n∑

i=1

(ai + bi + ci).

Starting from the initial state E = (∅,Ω,Ω,M−
2 ), where the robot

has just loaded part Pσ(i) onto machine M2, M3 is occupied with part
Pσ(i−1), and M1 is free, we can derive the following expression for π2,3:

T 2
2σ(i)σ(i+1) =

8∑

i=1

εi + 2δ1 + 4δ2 + 4δ3 + 2δ4 − 4η + wi+1
1 + wi

2 + wi−1
3 ,

where

wi+1
1 = max{0, a2σ(i+1) − β2 − wi

2},
wi

2 = max{0, b2σ(i) − β2 − wi−1
3 },

wi−1
3 = max{0, c2σ(i−1) − β2 − wi

1},

β2 =
8∑

i=1

εi + 2δ1 + 2δ2 + 2δ3 + 2δ4 − 3η.
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Substituting for wi+1
1 and wi

2, we obtain

T2(σ) =
n∑

i=1

T 2
2σ(i)σ(i+1)

= nα2 +
n∑

i=1

max{β2, a2σ(i+1), b2σ(i) − wi−1
3 } +

n∑

i=1

wi−1
3

wi−1
3 = max{0, c2σ(i−1) − max{β2, a2σ(i) − max{0, b2σ(i−1)

− β2 − wi−2
3 }}},

where b2σ(n+1) = b2σ(1), a2σ(n+1) = a2σ(1), a2σ(n+2) = a2σ(2),

α2 = 2δ2 + 2δ3 − η,

a2σ(i) = aσ(i) +
4∑

i=1

εi +
8∑

i=7

εi + 2δ1 + 2δ4 − 2η,

b2σ(i) = bσ(i) +
6∑

i=3

εi

c2σ(i) = cσ(i) +
2∑

i=1

εi +
8∑

i=5

εi + 2δ1 + 2δ4 − 2η.

Starting from the initial state E = (∅, ∅,Ω,M−
3 ), where the robot has

just loaded part Pσ(i) onto machine M3 and where M1 and M2 are free,
we can derive the following expression for π3,3:

T 3
3σ(i)σ(i+1) = aσ(i+1) + 2δ1 + 2δ2 + 4δ3 + 2δ4 +

8∑

i=1

εi − 3η

+ wi+1
2 + wi

3, where

wi+1
2 = max{0, bσ(i+1) − 2δ3 − 2δ4 − ε7 − ε8 + η − wi

3},
wi

3 = max{0, cσ(i) − aσ(i+1) − 2δ1 − 2δ2 − 2δ3 − ε1 − ε2

−ε3 − ε4 + 2η}.

This then implies

T 3
3σ(i)σ(i+1) = α3 + max{β3 + aσ(i+1), b3σ(i+1) + aσ(i+1), c3σ(i)},where
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α3 = 2δ3 + ε5 + ε6 − η,

β3 = 2δ1 + 2δ2 + 2δ3 + 2δ4 + ε1 + ε2 + ε3 + ε4 + ε7 + ε8 − 2η,

b3σ(i) = bσ(i) + 2δ1 + 2δ2 + ε1 + ε2 + ε3 + ε4 − η,

c3σ(i) = cσ(i) + 2δ4 + ε7 + ε8.

We thus obtain the cycle time T3(σ) as

T3(σ) =
n∑

i=1

T 3
3σ(i)σ(i+1)

= nα3 +
n∑

i=1

max{β3 + aσ(i+1), b3σ(i+1) + aσ(i+1), c3σ(i)}.

Starting from the initial state E = (∅, ∅,Ω,M−
3 ), where the robot has

just loaded part Pσ(i) onto machine M3 and where M1 and M2 are free,
we can derive the following expression for π4,3:

T 3
4σ(i)σ(i+1) = bσ(i+1) + 2δ1 + 4δ2 + 4δ3 + 2δ4 +

8∑

i=1

εi − 5η

+ wi+1
1 + wi

3, where

wi+1
1 = max{0, aσ(i+1) − wi

3 − 2δ2 − 2δ3 − 2δ4 − ε7 − ε8 + 3η},
wi

3 = max{0, cσ(i) − 2δ1 − 2δ2 − 2δ3 − ε1 − ε2 + 3η}.

This gives

T 3
4σ(i)σ(i+1) = α4 + bσ(i+1) + max{β4, c4σ(i), a4σ(i+1)}, where

α4 = 2δ2 + 2δ3 + ε3 + ε4 + ε5 + ε6 − 2η,

β4 = 2δ1 + 2δ2 + 2δ3 + 2δ4 + ε1 + ε2 + ε7 + ε8 − 3η,

a4σ(i) = aσ(i) + 2δ1 + ε1 + ε2,

c4σ(i) = cσ(i) + 2δ4 + ε7 + ε8.

Thus, we obtain the cycle time T4(σ) as

T4(σ) =
n∑

i=1

T 3
4σ(i)σ(i+1) = nα4 +

n∑

i=1

bi +
n∑

i=1

max{β4, c4σ(i), a4σ(i+1)}.

Starting from the initial state E = (∅,Ω, ∅,M−
2 ), where the robot has

just loaded part Pσ(i) onto machine M2 and where M1 and M3 are free,
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we can derive the following expression for π5,3:

T 2
5σ(i)σ(i+1) = cσ(i) + 2δ1 + 4δ2 + 2δ3 + 2δ4 +

8∑

i=1

εi − 3η + wi+1
1 + wi

2,

where

wi+1
1 = max{0, aσ(i+1) − wi

2 − 2δ2 − 2δ3 − 2δ4 − ε5 − ε6

− ε7 − ε8 + 2η − cσ(i)},
wi

2 = max{0, bσ(i) − 2δ1 − 2δ2 − ε1 − ε2 + η}.

This gives

T 2
5σ(i)σ(i+1) = α5 + max{β5 + cσ(i), b5σ(i) + cσ(i), a5σ(i+1)}, where

α5 = 2δ2 + ε3 + ε4 − η,

β5 = 2δ1 + 2δ2 + 2δ3 + 2δ4 + ε1 + ε2 + ε5 + ε6 + ε7 + ε8 − 2η,

a5σ(i) = aσ(i) + 2δ1 + ε1 + ε2,

b5σ(i) = bσ(i) + 2δ3 + 2δ4 + ε5 + ε6 + ε7 + ε8 − η.

Thus, we obtain the cycle time T5(σ) as

T5(σ) =
n∑

i=1

T 2
5σ(i)σ(i+1) = nα5+

n∑

i=1

max{β5+cσ(i), b5σ(i)+cσ(i), a5σ(i+1)}.

Starting from the initial state E = (Ω,Ω,Ω,M−
1 ), where the robot has

just loaded part Pσ(i) onto machine M1 and where M2 and M3 are oc-
cupied by parts Pσ(i−1) and Pσ(i−2), respectively, we can derive the fol-
lowing expression for π6,3:

T 1
6σ(i)σ(i+1) =

8∑

i=1

εi + 2δ1 + 4δ2 + 4δ3 + 2δ4 − 4η + wi
1 + wi−1

2 + wi−2
3 ,

where

wi
1 = max{0, a6σ(i) − β6 − wi−1

2 − wi−2
3 },

wi−1
2 = max{0, b6σ(i−1) − β6 − wi−2

3 },
wi−2

3 = max{0, c6σ(i−2) − β6 − wi−1
1 }.
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Substituting for wi
1, w

i−1
2 and wi−2

3 , we obtain

T6(σ) =
n∑

i=1

T 1
6σ(i)σ(i+1)

= nα6 +
n∑

i=1

max{β6, c6σ(i−2) − wi−1
1 , b6σ(i−1), a6σ(i)},

where

wi−1
1 = max{0, a6σ(i−1) − max{β6, b6σ(i−2), c6σ(i−3) − wi−2

1 }},

α6 = 0; β6 = 2δ1 + 4δ2 + 4δ3 + 2δ4 +
8∑

i=1

εi − 4η;

a6σ(i) = aσ(i) + 2δ1 + 2δ2 +
4∑

i=1

εi − η,

b6σ(i) = bσ(i) + 2δ2 + 2δ3 +
6∑

i=3

εi − η,

c6σ(i) = cσ(i) + 2δ3 + 2δ4 +
8∑

i=5

εi − η.

6.3.2 Efficiently Solvable Special Cases
We now study the cycle time minimization problem under CRM se-

quences π1, π3, π4, and π5. Whenever appropriate, we let aσ(n+1) = aσ(1)

and aσ(n+2) = aσ(2); similar definitions hold for bσ(n+1), bσ(n+2), cσ(n+1),
and cσ(n+2). We also let wn+1

i = w1
i for i = 1, 2, 3.

Theorem 6.2 Problem RF3|(free,A,MP,CRM(π1))|μ can be solved triv-
ially.

Proof. From Section 6.3.1, we have

T1(σ) =
n∑

i=1

T 1
1σ(i)σ(i+1) = nα1 +

n∑

i=1

(ai + bi + ci).

Clearly, T1(σ) depends only on ai, bi, ci, 1 ≤ i ≤ n, α1 and n, and is
independent of the schedule of parts.

In Theorems 6.3, 6.4, and 6.5, we show that the cycle time of the part
scheduling problem under CRM sequences π3, π4, and π5, respectively,
can be expressed in the form C +

∑n
i=1 max{eσ(i+1), fσ(i)} for some con-
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stant C. A schedule that minimizes the cycle time can then be obtained
in time O(n log n) by the Gilmore-Gomory algorithm (See Appendix B).

Theorem 6.3 Problem RF3|(free,A,MP,CRM(π3))|μ can be solved op-
timally in time O(n log n).

Proof. From Section 6.3.1 we have

T 3
3σ(i)σ(i+1) = α3 + max{β3 + aσ(i+1), b3σ(i+1) + aσ(i+1), c3σ(i)}.

Letting e3σ(i) = max{β3 + aσ(i), b3σ(i) + aσ(i)}, we have

T3(σ) =
n∑

i=1

T 3
3σ(i)σ(i+1) = nα3 +

n∑

i=1

max{e3σ(i+1), c3σ(i)}.

Theorem 6.4 Problem RF3|(free,A,MP,CRM(π4))|μ can be solved op-
timally in time O(n log n).

Proof. From Section 6.3.1, we have

T 3
4σ(i)σ(i+1) = α4 + bσ(i+1) + max{β4, c4σ(i), a4σ(i+1)}.

Letting e4σ(i) = max{β4, a4σ(i)}, we have

T4(σ) =
n∑

i=1

T 3
4σ(i)σ(i+1) = nα4 +

n∑

i=1

bσ(i) +
n∑

i=1

max{e4σ(i+1), c4σ(i)}.

Theorem 6.5 Problem RF3|(free,A,MP,CRM(π5))|μ can be solved op-
timally in time O(n log n).

Proof. From Section 6.3.1, we have

T 2
5σ(i)σ(i+1) = α5 + max{β5 + cσ(i), b5σ(i) + cσ(i), a5σ(i+1)}.

Letting f5σ(i) = max{β5 + cσ(i), b5σ(i) + cσ(i)}, we have

T5(σ) =
n∑

i=1

T 2
5σ(i)σ(i+1) = nα5 +

n∑

i=1

max{a5σ(i+1), f5σ(i)}.
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To derive conditions under which problem RF3|(free,A, MP, CRM)|μ
is polynomially solvable, we need the following preliminary results. We
begin by characterizing the cycle time for parts Pσ(1), . . . , Pσ(n), under
CRM sequence π2, where σ denotes a schedule of the parts.

Lemma 6.6 The cycle time in RF3|(free,A,MP,CRM(π2))|μ for the pro-
duction of n parts in schedule σ under CRM sequence π2 is given by

T2(σ) = nα2 +
n∑

i=1

max{β2, a2σ(i+2), b2σ(i+1) − wi
3} +

n∑

i=1

wi
3,

where

wi
3 = max{0, c2σ(i) − max{β2, a2σ(i+1) − max{0, b2σ(i) − β2 − wi−1

3 }}}.

Proof. See Section 6.3.1.

Remark 6.3 When δi = δ, i = 1, . . . , 4, εi = ε, i = 1, . . . , 8, and η = 0,
the cycle time in RF3|(free,A,MP,CRM(π2))|μ can be obtained from
Lemma 6.6 as follows:

T2(σ) = nα + T̄σ, where

T̄σ =
n∑

i=1

max{β, aσ(i+2) +
β

2
, bσ(i+1) − wi

3} +
n∑

i=1

wi
3,

wi
3 = max{0, cσ(i) − max{β

2
, aσ(i+1) − max{0, bσ(i) − β − wi−1

3 }}}.

In the definition of wi
3, α = 4δ + 4ε and β = 8δ + 4ε.

We next characterize the production cycle time for CRM sequence π6.

Lemma 6.7 The cycle time in RF3|(free,A,MP,CRM(π6))|μ for the pro-
duction of n parts in schedule σ under CRM sequence π6 is given by

T6(σ) = nα6 +
n∑

i=1

max{β6, c6σ(i) − wi+1
1 , b6σ(i+1), a6σ(i+2)},

where

wi+1
1 = max{0, a6σ(i+1) − max{β6, b6σ(i), c6σ(i−1) − wi

1}}.
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Proof. See Section 6.3.1.

Remark 6.4 When δi = δ, i = 1, . . . , 4, εi = ε, i = 1, . . . , 8, and η = 0,
the cycle time in RF3|(free,A,MP,CRM(π6))|μ can be obtained from
Lemma 6.7 as follows:

T6(σ) = nα + T̄σ, where

T̄σ =
n∑

i=1

max{β, cσ(i) − wi+1
1 , bσ(i+1), aσ(i+2)},

wi+1
1 = max{0, aσ(i+1) − max{β, bσ(i), cσ(i−1) − wi

1}}.

In the definition of wi+1
1 , α = 4δ + 4ε and β = 8δ + 4ε.

Lemma 6.8 In RF3|(free,A,MP,CRM)|μ,

min{T2(σ), T6(σ)} ≥ n(2δ1 + 4δ2 + 4δ3 + 2δ4 +
8∑

i=1

εi − 4η).

Proof. Using π2 as described in Section 6.3.1,

T2(σ) ≥ n(α2 + β2) = n(2δ1 + 4δ2 + 4δ3 + 2δ4 +
8∑

i=1

εi − 4η).

Similarly, using π6 as described in Section 6.3.1,

T6(σ) ≥ n(α6 + β6) = n(2δ1 + 4δ2 + 4δ3 + 2δ4 +
8∑

i=1

εi − 4η).

It follows from Theorems 6.2, 6.3, 6.4, and 6.5 that problem RF3|(free,
A,MP,CRM)|μ is polynomially solvable in two situations. The first of
these occurs when the data are such that the best schedules under π2

and π6 can be found in polynomial time. The second situation occurs
when the cycle time provided by the best schedule under π2 or π6 cannot
be optimal. In the theorem that follows, condition A corresponds to the
first situation, and conditions B through E to the second.

Theorem 6.6 Problem RF3|(free,A,MP,CRM)μ can be solved opti-
mally in time O(n log n) under any of the conditions A, B, C, D, or E
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below:

A : δi = δ, i = 0, . . . , 4; εi = ε, i = 1, . . . , 8; η = 0;

ci ≤ 4δ + 2ε, i = 1, . . . , n.

B :
n∑

i=1

(ai + bi + ci) ≤ n(2δ2 + 2δ3 − η).

C1 : ai ≤ 2δ2 − η, i = 1, . . . , n.

C2 : bi ≤ 2δ3 + 2δ4 + ε7 + ε8 − η, i = 1, . . . , n.

C3 : ci ≤ 2δ1 + 4δ2 + 2δ3 + ε1 + ε2 + ε3 + ε4 − 3η, i = 1, . . . , n.

D1 : ai ≤ 2δ2 + 2δ3 + 2δ4 + ε7 + ε8 − 3η, i = 1, . . . , n.

D2 : bi ≤ η, i = 1, . . . , n.

D3 : ci ≤ 2δ1 + 2δ2 + 2δ3 + ε1 + ε2 − 3η, i = 1, . . . , n.

E1 : ai ≤ 2δ2 + 4δ3 + 2δ4 + ε5 + ε6 + ε7 + ε8 − 3η, i = 1, . . . , n.

E2 : bi ≤ 2δ1 + 2δ2 + ε1 + ε2 − η, i = 1, . . . , n.

E3 : ci ≤ 2δ3 − η, i = 1, . . . , n.

Proof. Consider each condition A through E in turn.

A: From Remark 6.3 and the conditions in A, we have T2(σ) =
n(4δ + 4ε) +

∑n
i=1 max{fσ(i), bσ(i+1)}, where fσ(i) = max{aσ(i+2) +

4δ + 2ε, 8δ + 4ε}. It now follows that the part scheduling problem
can be solved by the Gilmore-Gomory algorithm in time O(n log n).
Similarly, from Remark 6.4 and the conditions in A, we have T6(σ) =
n(4δ+4ε)+

∑n
i=1 max{8δ+4ε, bσ(i+1), aσ(i+2)}, with the same result.

It then follows from Theorems 6.2, 6.3, 6.4, and 6.5 that the optimal
part schedules under all six CRM sequences can be found, and their
cycle times compared, in time O(n log n).

B: T1(σ) =
∑n

i=1(ai + bi + ci) + n(2
∑4

i=1 δi +
∑8

i=1 εi − 3η) ≤ n(2δ2

+ 2δ3 − η) + n(2
∑4

i=1 δi +
∑8

i=1 εi − 3η) from condition B, and
T1(σ) ≤ min{T2(σ), T6(σ)} from Lemma 6.8.

C: From Theorem 6.3 and Lemma 6.8,
T3(σ) =

∑n
i=1 max{α3+β3+aσ(i+1), α3+b3σ(i+1)+aσ(i+1), α3+c3σ(i)}

≤
∑n

i=1 max{(2δ3 + ε5 + ε6 − η) + (2δ1 + 2δ2 + 2δ3 + 2δ4 + ε1 + ε2
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+ ε3 + ε4 + ε7 + ε8 − 2η) + (2δ2 − η), (2δ3 + ε5 + ε6 − η) + (2δ3 + 2δ4

+ ε7 + ε8 − η + 2δ1 + 2δ2 + ε1 + ε2 + ε3 + ε4 − η) + (2δ2 − η), (2δ3 + ε5

+ ε6 − η) + (2δ1 + 4δ2 + 2δ3 + ε1 + ε2 + ε3 + ε4 − 3η + 2δ4 + ε7 + ε8)}
=

∑n
i=1 max{2δ1 + 4δ2 + 4δ3 + 2δ4 +

∑8
i=1 εi − 4η, 2δ1 + 4δ2 + 4δ3 +

2δ4 +
∑8

i=1 εi − 4η, 2δ1 + 4δ2 + 4δ3 + 2δ4 +
∑8

i=1 εi − 4η}
≤ min{T2(σ), T6(σ)}.

D: The proof is similar to part C except that we now use Theorem 6.4.

E: The proof is similar to part C except that we now use Theorem 6.5.

Remark 6.5 The results in Theorem 6.6 provide considerable intuition
about tradeoffs between different CRM sequences. Specifically, each of
the conditions in Theorem 6.6 suggests that if processing times are short
relative to robot travel times, then it is better to wait at a machine while
it is processing as CRM sequences π1, π3, π4, and π5 do, rather than to
load the part and move elsewhere as CRM sequences π2 and π6 do.

In Section 6.5, we show that the decision versions of the part scheduling
problems under CRM sequences π2 and π6 are strongly NP-complete.

6.4 Steady-State Analyses
Note that all the results in this book relate to the performance of

robotic cells operating in a steady state. Thus, a question to be asked is
whether the cell must be initialized into its steady state. Alternatively,
what happens if it starts from a state that does not occur in its steady
state cycle? We show here that a three-machine cell reaches a steady
state in a number of cycles that is bounded by a function of the cell
data. Similar results can be proved for larger cells, and this section’s
results can easily be applied to cells producing identical parts. Usually
the production of parts begins from an initial state EI , where the cell
is empty and the robot is at I ready to pick up a part. We first show
how a cell converges to a steady state starting from state EI under
CRM sequences π1, . . . , π6 in RF3. It is easy to see that the following
remark concerning a steady state for cells processing multiple part-types
is consistent with the definition in Chapter 3.
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Remark 6.6 If the cell operates in a steady state then the waiting times
of the robot, for each part on each machine, are identical for each MPS.

In CRM sequences π1, π3, π4, and π5, there is a state E∗
q in which the

robot has just completed the loading of a part onto machine Mq and all
other machines are free. In π1, that machine can be M1,M2, or M3; in
π3, the machine is M3; in π4, the machine can be M2 or M3; and in π5

the machine is M2. In every case, E∗
q can be reached from the state EI

within the production of one MPS. Therefore, the process of convergence
to a steady state is very simple in these four CRM sequences. For the
same reason, CRM sequences π1 and π2 in RF2 converge to a steady
state within the production of one MPS from the initial starting state
EI .

Remark 6.7 In RF3, the state E∗
q effectively decomposes production

into separate MPSs in cycles based on CRM sequences π1, π3, π4, and
π5. Thus, a single MPS may be analyzed by itself. This is one of the
properties that makes the part scheduling problem using these CRM
sequences solvable in polynomial time, as discussed in Section 6.3.2.

The process of convergence to a steady state using CRM sequences π2

and π6 remains to be considered.

6.4.1 Reaching Steady State for
the Sequence CRM(π2)

We first analyze CRM sequence π2 for which the cycle time expression
is derived in Lemma 6.6. First, we need two preliminary results.

Lemma 6.9 Let w1
3, . . . , w

n
3 and w

′1
3 , . . . , w

′n
3 denote two feasible vectors

of waiting times in π2, where

wi+1
3 = max{0, c2σ(i+1)

− max{β2, a2σ(i+2) − max{0, b2σ(i+1) − wi
3 − β2}}},

w
′i+1
3 = max{0, c2σ(i+1)

− max{β2, a2σ(i+2) − max{0, b2σ(i+1) − w
′i
3 − β2}}}.

If wi
3 ≤ w

′i
3 , then w

′i+1
3 ≤ wi+1

3 and wi+2
3 ≤ w

′i+2
3 .

Proof. Since w
′i
3 ≥ wi

3, max{0, b2σ(i+1) − w
′i
3 − β2} ≤ max{0, b2σ(i+1)

− wi
3 − β2}. This implies that max{β2, a2σ(i+2) − max{0, b2σ(i+1) −
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w
′i
3 − β2}} ≥ max{β2, a2σ(i+2) − max{0, b2σ(i+1) − wi

3 − β2}}. Thus,
max{0, c2σ(i+1) − max{β2, a2σ(i+2) − max{0, b2σ(i+1) − w

′i
3 − β2}}} ≤

max{0, c2σ(i+1) − max{β2, a2σ(i+2) − max{0, b2σ(i+1) − wi
3 − β2}}}. We

therefore have w
′i+1
3 ≤ wi+1

3 . The second part of the proof follows from
the first part by setting i = i + 1.

Owing to the behavior of the waiting times wi
3 in Lemma 6.9, we

need the following lemma to define a steady state for the MPS cycle
corresponding to CRM(π2).

Lemma 6.10 For n even, the MPS cycle with CRM(π2) consisting of a
single MPS defines a steady state. However, for n odd, two MPSs may
be required to define a steady state for the MPS cycle with CRM(π2).

Proof. Let wi
j(q) denote the waiting time of the robot at machine

Mj for part Pσ(i) in the qth iteration of the cycle. If n is even, it
is clear from the recursive relations for wi

3(q) and Lemma 6.9 that if
wi

3(q) ≤ w
′i
3 (q), then wi

3(q + 1) ≤ w
′i
3 (q + 1). Thus, a cycle containing

one MPS is sufficient to define a steady state. If n is odd, it is similarly
clear that if wi

3(q) ≤ w
′i
3 (q), then wi

3(q + 1) ≥ w
′i
3 (q + 1). However,

wi
3(q + 2) ≤ w

′i
3 (q + 2). Therefore, two MPSs may be required to define

a steady state.

Example 6.1 n = 3; a2σ(1) = 5, b2σ(1) = 3, c2σ(1) = 7; a2σ(2) = 6, b2σ(2)

= 8, c2σ(2) = 8; a2σ(3) = 8, b2σ(3) = 7, c2σ(3) = 4, where σ = (P1, P2, P3),
and β2 = 1.

Consider the schedule σ = (P1, P2, P3). The steady-state waiting
times at machine M3 for the first, second, and third MPSs are computed
as follows:

For the first MPS, starting with w3
3(0) = 0,

w1
3(1) =max{0, c2σ(1)−max{β2, a2σ(2)−max{0, b2σ(1)−β2−w3

3(0)}}} = 3,
w2

3(1) =max{0, c2σ(2)−max{β2, a2σ(3)−max{0, b2σ(2)−β2−w1
3(1)}}} = 4,

w3
3(1) =max{0, c2σ(3)−max{β2, a2σ(1)−max{0, b2σ(3)−β2−w2

3(1)}}} = 1.

For the second MPS,
w1

3(2) =max{0, c2σ(1)−max{β2, a2σ(2)−max{0, b2σ(1)−β2−w3
3(1)}}} = 2,

w2
3(2) =max{0, c2σ(2)−max{β2, a2σ(3)−max{0, b2σ(2)−β2−w1

3(2)}}} = 5,
w3

3(2) =max{0, c2σ(3)−max{β2, a2σ(1)−max{0, b2σ(3)−β2−w2
3(2)}}} = 0.

For the third MPS,
w1

3(3) =max{0, c2σ(1)−max{β2, a2σ(2)−max{0, b2σ(1)−β2−w3
3(2)}}} = 3,
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w2
3(3) =max{0, c2σ(2)−max{β2, a2σ(3)−max{0, b2σ(2)−β2−w1

3(3)}}} = 4,
w3

3(3) =max{0, c2σ(3)−max{β2, a2σ(1)−max{0, b2σ(3)−β2−w2
3(3)}}} = 1.

Note that the first set of waiting times of parts at M3 in the first
MPS is different from that in the second MPS and is equal to that in
the third MPS. Therefore, it is necessary in this case to include two
MPSs to define a cycle in a steady state.

In view of Lemma 6.10, we let v denote the number of parts in a cycle,
where v = 2n if n is odd and v = n if n is even. For n odd, a given
part schedule σ means a schedule of 2n parts in which the first n parts
corresponding to an MPS have the same order as the last n parts. Thus,
we renumber the parts in a cycle as Pσ(1), . . . , Pσ(n), Pσ(n+1), . . . , Pσ(2n),
where Pσ(i) and Pσ(n+i) are the same part type for 1 ≤ i ≤ n.

The idea behind the algorithm is as follows. If there exists a steady-
state solution that satisfies certain lower and upper bounds on the wait-
ing times, then the recursive expressions for wi

3 in Lemma 6.6 can be
greatly simplified, and one such solution is found in Step 1. Alterna-
tively, at least one of the lower or upper bound is violated, in which
case one waiting time value is fixed, and such a solution is found in Step
2. The algorithm consists of a series of tests that check which of these
conditions is satisfied.

Algorithm FindTime2

Input: α2, β2 and a2σ(j), b2σ(j), c2σ(j), j = 1, . . . , n.

Step 1: LBi = max{0, b2σ(i+1) − a2σ(i+2)}, i = 1, . . . , v.

UBi = min{b2σ(i+1) − β2, c2σ(i+1) + b2σ(i+1) − a2σ(i+2) − β2}, i = 1, . . . , v.

Test1: If UBi < 0 for some i, 1 ≤ i ≤ v, then go to Step 2.

Test2: If LBi > UBi for some i, 1 ≤ i ≤ v, then go to Step 2.

Wait(i) = LBi, i = 1, . . . , v.

Test3:

For j = 1, . . . , v, do

wj
3 = Wait(j).

wj+i
3 = c2σ(j+i) − a2σ(j+i+1) + b2σ(j+i) − β2 − wj+i−1

3 , i = 1, . . . , v.

If wj
3 = wj+v

3 and LBi ≤ wj+i
3 ≤ UBi, i = 1, . . . , v, then

v
n
T2(σ) = vα2 +

∑v
i=1(a2σ(i) + b2σ(i) + c2σ(i) − β2)/2.

Terminate.

End If

End

Set Wait(i) = UBi, i = 1, . . . , v, and repeat Test3.
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Step 2: Wait(i) =max{0, c2σ(i)−max{β2, a2σ(i+1)}}, i = 1, . . . , v.

Test4:

For j = 1, . . . , v, do

wj
3 = Wait(j).

For i = 1, . . . , v, find

wj+i
3 = max{0, x} where

x = c2σ(j+i)−max{β2, a2σ(j+i+1)−max{0, b2σ(j+i) − wj+i−1
3 − β2}}.

If wj
3= wj+v

3 , then
v
n
T2(σ) = vα2 +

∑v
i=1max{β2, b2σ(i+1) − wi

3, a2σ(i+2)}+
∑v

i=1 wi
3.

Terminate.

End If

End

Set Wait(i) = max{0, c2σ(i) − β2}, i = 1, . . . , v, and repeat Test4.

Set Wait(i) = 0, i = 1, . . . , v, and repeat Test4.

To discuss the optimality of FindTime2, we need the following prelimi-
nary results.

Lemma 6.11 If there exists a feasible MPS cycle with CRM(π2) using
part schedule σ and having cycle time T2(σ), and if in this cycle (a) wi

3 =
c2σ(i)−a2σ(i+1)+b2σ(i)−β2−wi−1

3 and (b) LBi ≤ wi
3 ≤ UBi, i = 1, . . . , v,

in steady state, then there exist either one or two feasible MPS cycles
with CRM(π2) that have cycle time T2(σ) and (i) LBi ≤ wi

3 ≤ UBi, i =
1, . . . , v, where wh

3 = LBh or wh
3 = UBh in one cycle, and (ii) wj

3 = LBj

or wj
3 = UBj in the other cycle (if it exists) for some 1 ≤ h, j ≤ v.

Proof. Let w1
3, . . . , w

v
3 denote a feasible vector of waiting times using

part schedule σ, and let Δ1 =min1≤i≤v{w1
3 −LB1, UB2 −w2

3, . . . , wv−1
3

− LBv−1, UBv −wv
3}, h =argmin1≤i≤n{w1

3 −LB1, UB2 −w2
3, . . . , w

v−1
3

− LBv−1, UBv−wv
3}. Let x1 = w1

3−Δ1, x2 = w2
3+Δ1, . . ., xv−1 = wv−1

3

− Δ1, xv = wv
3 + Δ1. The new vector of waiting times xi, i = 1, . . . , v,

also satisfies the equations in the lemma, and we have xh = LBh or
xh = UBh, depending on whether h is odd or even. Similarly, let
Δ2 = min1≤i≤v{UB1−w1

3, w
2
3−LB2, . . . , UBv−1−wv−1

3 , wv
3−LBv}, j =

argmin1≤i≤n{UB1 − w1
3, w

2
3 − LB2, . . . , UBv−1 − wv−1

3 , wv
3 − LBv}. Let

y1 = w1
3 +Δ2, y2 = w2

3 −Δ2, . . ., yv−1 = wv−1
3 +Δ2, yv = wv

3 −Δ2. The
new vector of waiting times yi, i = 1, . . . , v, also satisfies the equations
in the lemma, and we have xj = LBj or xj = UBj , as above. Since
T2(σ) is independent of wi

3, i = 1, . . . , v, under the conditions stated in
the lemma, T2(σ) is unchanged.
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Remark 6.8 If wi
3 = xi, i = 1, . . . , v, and wi

3 = yi, i = 1, . . . , v, are
the solutions from two feasible cycles that satisfy the conditions of
Lemma 6.11, then xi �= yi, i = 1, . . . , v. Without loss of general-
ity, assume that x1 < y1. Then there exists an η > 0 such that
y1 = x1 + η, y2 = x2 − η, . . ., yv−1 = xv−1 + η, and yv = xv − η,
where η = min1≤i≤n{UB1 −x1, x2 −LB2, . . . , UBv−1 −xv−1, xv −LBv}
is also a feasible solution. All the solutions in between xi and yi,
i = 1, . . . , v, satisfy wi

3 = c2σ(i) − a2σ(i+1) + b2σ(i) − β2 − wi−1
3 and

LBi ≤ wi
3 ≤ UBi, i = 1, . . . , v. Thus, an infinite number of solu-

tions with the same cycle time exists in this case. We note that Step 1
finds only one solution, which is xi or yi, i = 1, . . . , v. However, given
xi, i = 1, . . . , v, it is easy to determine yi, and vice versa. If there exists
only one feasible solution, then η = 0 and xi = yi, i = 1, . . . , v.

Lemma 6.12 There cannot exist both a feasible vector of waiting times
found under the conditions of Step 1 of FindTime2 with cycle time T̄ and
a feasible vector of waiting times found under the conditions of Step 2
of FindTime2 with cycle time T̂ , where T̄ �= T̂ .

Proof. Suppose that a feasible vector of waiting times wi
3 = xi, i =

1, . . . , v, is found in Step 1, and another feasible vector of waiting times
wi

3 = zi, i = 1, . . . , v, is found in Step 2. Note that xi,i = 1, . . . , v,
satisfies the conditions of Step 1. Let yi,i = 1, . . . , v, be another feasible
vector of waiting times that satisfies the conditions of Step 1. If there
exists some j, 1 ≤ j ≤ v, where xj = zj , then from Lemma 6.6, xi =
zi, i = 1, . . . , v. Thus xi �= zi and yi �= zi, i = 1, . . . , v. Without loss of
generality, we may assume that x1 < y1. Thus, we have three cases: (1)
x1 < z1 < y1, (2) x1 > z1, and (3) z1 > y1. If x1 < z1 < y1, then LBi <

zi < UBi, i = 1, . . . , v, and zi, i = 1, . . . , v, cannot be found in Step 2
as claimed. If x1 > z1, then from Lemma 6.11 we may assume without
loss of generality that xh = LBh or xh = UBh. If xh = LBh, then
zh < LBh, and from Lemma 6.6, xh+1 = zh+1, which is a contradiction.
If xh = UBh, then zh > UBh, and from Lemma 6.6, again we have
xh+1 = zh+1, which is a contradiction. Similarly, if z1 > y1, then from
Lemma 6.11 we may assume without loss of generality that yj = LBj

or yj = UBj . If yj = LBj , then zj < LBj and, from Lemma 6.6,
yj+1 = zj+1, which is a contradiction. If yj = UBj , then zj > UBj and,
from Lemma 6.6, we have yj+1 = zj+1, which is a contradiction.
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Initialization of MPS cycle with CRM(π2): There are two different
ways in which the MPS cycle with CRM(π2) can be initialized from the
state EI in RF3|(free,A,MP, CRM(π2))|μ. Let wi

j(0) denote the waiting
time of the robot at machine Mj for part Pσ(i) in the initialization step.

(a) Initialization INA2, starting with part Pσ(i): pick up Pσ(i) (ε1), move
to M1 (δ1), load Pσ(i) onto M1 (ε2), wait at M1 (wi

1(0) = aσ(i)), unload
Pσ(i) from M1 (ε3), move to M2 (δ2), load Pσ(i) onto M2 (ε4), move to
I (δ1 + δ2 − η), pick up Pσ(i+1) (ε1), move to M1 (δ1), load Pσ(i+1) onto
M1 (ε2), move to M2 (δ2), wait (if necessary) at M2 (wi

2(0)), unload
Pσ(i) from M2 (ε5), move to M3 (δ3), load Pσ(i) onto M3 (ε6), move to
M1 (δ2+δ3−η), wait (if necessary) at M1 (wi+1

1 (0)), unload Pσ(i+1) from
M1 (ε3), move to M2 (δ2), and load Pσ(i+1) onto M2 (ε4). At this point,
the MPS cycle with CRM(π2) starts from the state E = (∅,Ω,Ω,M−

2 ).
The waiting time equations corresponding to initialization INA2 are

as follows:

wi
1(0) = aσ(i),

wi
2(0) = max{0, bσ(i) − 2δ1 − 2δ2 − ε1 − ε2 + η},

wi+1
1 (0) = max{0, aσ(i+1) − wi

2(0) − 2δ2 − 2δ3 − ε5 − ε6 + η},
wi

3(0) = max{0, cσ(i) − wi+1
1 (0) − 2δ2 − 2δ3 − ε3 − ε4 + η},

The waiting time equations corresponding to the qth iteration of the
MPS cycle with CRM(π2) are as follows:

wj
3(q) = max{0, c2σ(j) − max{β2, a2σ(j+1)

− max{0, b2σ(j) − β2 − wj−1
3 (q − 1)}}}, j = i + 1,

wj
3(q) = max{0, c2σ(j) − max{β2, a2σ(j+1)

− max{0, b2σ(j) − β2 − wj−1
3 (q)}}}, j = i + 2, . . . , i + v,

where wi
j(q) denotes the waiting time of the robot at machine Mj for

part Pσ(i) in the qth cycle, q ≥ 1, wj+v
3 (q) = wj

3(q), j = 1, . . . , v, and
Pσ(i) is the first part produced, starting from EI .

(b) Initialization INB2, starting with part Pσ(i): pick up Pσ(i) (ε1), move
to M1 (δ1), load Pσ(i) onto M1 (ε2), wait at M1 (wi

1(0) = aσ(i)), unload
Pσ(i) from M1 (ε3), move to M2 (δ2), load Pσ(i) onto M2 (ε4), wait at
M2 (wi

2(0) = bσ(i)), unload Pσ(i) from M2 (ε5), move to M3 (δ3), load
Pσ(i) onto M3 (ε6), move to I (δ1+δ2+δ3−2η), pick up Pσ(i+1) (ε1), move
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to M1 (δ1), load Pσ(i+1) onto M1 (ε2), wait at M1 (wi+1
1 (0) = aσ(i+1)),

unload Pσ(i+1) from M1 (ε3), move to M2 (δ2), and load Pσ(i+1) onto
M2 (ε4). At this point, the MPS cycle with CRM(π2) starts from the
state E = (∅,Ω,Ω,M−

2 ).
The waiting time equations corresponding to initialization INB2 are

as follows: wi
1(0) = aσ(i), w

i
2(0) = bσ(i), w

i+1
1 (0) = aσ(i+1), and wi

3(0) =
max{0, cσ(i) − wi+1

1 (0) − 2δ1 − 2δ2 − 2δ3 − ε1 − ε2 − ε3 − ε4 + 2η}. The
waiting time equations corresponding to the qth iteration of the MPS
cycle with CRM(π2) are as follows:

wj
3(q) = max{0, c2σ(j) − max{β2, a2σ(j+1)

− max{0, b2σ(j) − β2 − wj−1
3 (q − 1)}}}, j = i + 1,

wj
3(q) = max{0, c2σ(j) − max{β2, a2σ(j+1)

− max{0, b2σ(j) − β2 − wj−1
3 (q)}}}, j = i + 2, . . . , i + v,

where q = 1, 2, . . . , and wj+v
3 (q) = wj

3(q), j = 1, . . . , v.
The system can be initialized in two different ways, INA2 and INB2,

and in each case there are n different possible parts in σ to start with.
Thus, there are 2n possible ways to initialize the system. The following
theorem uses one of them to provide an upper bound on the number of
MPS cycles needed to reach a steady state.

Theorem 6.7 Starting from the state EI and using part schedule σ,
the cell in RF3|(free,A,MP,CRM(π2))|μ will go through at most max{1,
min1≤i≤v{si}} cycles before reaching a steady state, where si = c2σ(i)

− max{β2, a2σ(i+1) − max{0, b2σ(i+1) − β2}}, i = 1, 2, . . . , v, and this
bound is attainable.

Proof. Assume, without loss of generality, that all the parameters are
integers. The waiting time equations in Lemma 6.6 show that once the
same value of wi

3 occurs in two consecutive cycles for some i, 1 ≤ i ≤ v,
a steady state has been reached. An induction argument, based on
Lemma 6.9, shows that wi

3(q) monotonically increases or decreases as q

increases, until a steady state is reached. We have wi
3 = 0 if si ≤ 0 for

some i, 1 ≤ i ≤ v. In this case, the system reaches a steady state in
the first cycle. On the other hand, we have 0 ≤ wi

3 ≤ si if si > 0 for
i = 1, . . . , v. In this case, it takes at most min1≤i≤v{si} number of cycles
before the system reaches a steady state.
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Example 6.2 n = 4; εi = 0, i = 1, . . . , 8; δi = 0, i = 1, . . . , 4; η = 0;β2 =
0. We let a2σ(1) = X, b2σ(1) = X, c2σ(1) = X; a2σ(2) = X, b2σ(2) =
X, c2σ(2) = X + 1; a2σ(3) = X, b2σ(3) = X, c2σ(3) = X; and a2σ(4) =
X, b2σ(4) = X, c2σ(4) = X, where σ = (P1, P2, P3, P4) and X > 0 is an
integer. We use initialization INA2, starting with part Pσ(1) in schedule
σ. Then, we have

w1
1(0) = aσ(1) = X,

w1
2(0) = max{0, b2σ(1) − 2δ1 − 2δ2 − ε1 − ε2 + η} = X,

w2
1(0) = max{0, a2σ(2) − w1

2(0) − 2δ2 − 2δ3 − ε5 − ε6 + η} = 0,

w1
3(0) = max{0, c2σ(1) − w2

1(0) − 2δ2 − 2δ3 − ε3 − ε4 + η} = X,

w2
3(1) = max{0, c2σ(2) − max{β2, a2σ(3)

− max{0, b2σ(2) − β2 − w1
3(0)}}} = 1,

w3
3(1) = max{0, c2σ(3) − max{β2, a2σ(4)

− max{0, b2σ(3) − β2 − w2
3(1)}}} = X − 1,

w4
3(1) = max{0, c2σ(4) − max{β2, a2σ(1)

− max{0, b2σ(4) − β2 − w3
3(1)}}} = 1,

w1
3(1) = max{0, c2σ(1) − max{β2, a2σ(2)

− max{0, b2σ(1) − β2 − w4
3(1)}}} = X − 1,

w2
3(2) = max{0, c2σ(2) − max{β2, a2σ(3)

− max{0, b2σ(2) − β2 − w1
3(1)}}} = 2,

w3
3(2) = max{0, c2σ(3) − max{β2, a2σ(4)

− max{0, b2σ(3) − β2 − w2
3(2)}}} = X − 2,

w4
3(2) = max{0, c2σ(4) − max{β2, a2σ(1)

− max{0, b2σ(4) − β2 − w3
3(2)}}} = 2,

w1
3(2) = max{0, c2σ(1) − max{β2, a2σ(2)

− max{0, b2σ(1) − β2 − w4
3(2)}}} = X − 2.

Thus, w2
3(q) (resp., w4

3(q)) keeps increasing by one time unit per MPS
cycle until it reaches X + 1 (resp., X), at which time a steady state has
also been reached. In this case, it takes X cycles to reach a steady state.
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6.4.2 Reaching Steady State for
the Sequence CRM(π6)

We first analyze CRM sequence π6 for which the cycle time expression
is derived in Lemma 6.7. We start with the following preliminary result.

Lemma 6.13 Let w1
1, . . . , w

n
1 , and w

′1
1 , . . . , w

′n
1 , denote two feasible vec-

tors of waiting times in π6, where wi+1
1 = max{0, a6σ(i+1) − max{β6,

b6σ(i), c6σ(i−1) − wi
1}} and w

′i+1
1 = max{0, a6σ(i+1) − max{β6, b6σ(i),

c6σ(i−1) − w
′i
1 }}. If wi

1 ≤ w
′i
1 , then wi+1

1 ≤ w
′i+1
1 .

Proof. The proof is similar to that of Lemma 6.9.

Remark 6.9 It follows from Lemma 6.13 that, whether n is even or odd,
the MPS cycle with CRM(π6) consisting of a single MPS is sufficient to
define a steady state.

We now show how the cycle time T6(σ) can be calculated in polyno-
mial time for a given part schedule σ (Hall et al. [76]). The following
algorithm delivers the correct waiting times and cycle time for the MPS
cycle with CRM(π6).

Algorithm FindTime6

Input: α6, β6 and a6σ(j), b6σ(j), c6σ(j), j = 1, . . . , n.

Step 1: LBi = max{0, c6σ(i−1) − a6σ(i+1)}, i = 1, . . . , n,

UBi = min{c6σ(i−1) − β6, c6σ(i−1) − b6σ(i)}, i = 1, . . . , n,

Test1: if UBi < 0 for any i = 1, . . . , n, then go to Step 2.

Test2: if LBi > UBi for any i = 1, . . . , n, then go to Step 2,

Wait(i) = LBi, i = 1, . . . , n.

Test3:

For j = 1, . . . , n, do

wj
1 = Wait(j),

wj+i
1 = a6σ(j+i) − c6σ(j+i−2) + wj+i−1

1 , i = 1, . . . , n,

If wj
1 = wj+n

1 and LBi ≤ wj+i
1 ≤ UBi, i = 1, . . . , n, then

T6(σ) = nα6 +
∑n

i=1 a6i,

Terminate.

End If

End

Step 2: Wait(i) = max{0, a6σ(i)−max{β6, b6σ(i−1)}}, i = 1, . . . , n.

Test4 :

For j = 1, . . . , n do

wj
1 = Wait(j),
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For i = 1, . . . , n, find

wj+i
1 = max{0, a6σ(j+i) − max{β6, b6σ(j+i−1), c6σ(j+i−2) − wj+i−1

1 }},
If wj

1 = wj+n
1 , then

T6(σ) = nα6 +
∑n

i=1 max{β6, c6σ(i) − wi+1
1 , b6σ(i+1), a6σ(i+2)},

Terminate.

End If

End

Set Wait(i) = 0, i = 1, . . . , n, and repeat Test4.

To discuss the optimality of FindTime6, we need the following prelimi-
nary results.

Lemma 6.14 If there exists a feasible MPS cycle with CRM(π6) using
part schedule σ and having cycle time T6(σ) in which (a) wi

1 = a6σ(i) −
c6σ(i−2) + wi−1

1 and (b) LBi ≤ wi
1 ≤ UBi, i = 1, . . . , n, in steady state,

then there exist either one or two feasible MPS cycles with CRM(π6)
that have cycle time T6(σ) and (i) LBi ≤ wi

1 ≤ UBi, i = 1, . . . , n, where
wh

1 = LBh in the first cycle, and (ii) wj
1 = UBj in the second cycle (if

it exists) for some 1 ≤ h, j ≤ n.

Proof. Let w1
1, . . . , w

n
1 , denote a feasible vector of waiting times using

part schedule σ. Let Δ1 = min1≤i≤n{wi
1 − LBi}, h = argmin1≤i≤n{wi

1

− LBi}, and let xi = wi
1 − Δ1, i = 1, . . . , n. The new vector of waiting

times xi, i = 1, . . . , n, also satisfies the equations in the lemma and xh =
LBh. Similarly, let Δ2 =min1≤i≤n{UBi−wi

1} and j =argmin1≤i≤n{UBi

−wi
1}. Let yi = wi

1 + Δ2, i = 1, . . . , n. The new vector of waiting times
yi, i = 1, . . . , n, also satisfies the equations in the lemma and yj = UBj .
Since T6(σ) is independent of wi

1, i = 1, . . . , n, under the conditions stated
in the lemma, T6(σ) is unchanged.

Remark 6.10 If wi
1 = xi, i = 1, . . . , n, and wi

1 = yi, i = 1, . . . , n,
are the solutions from two feasible cycles that satisfy the conditions of
Lemma 6.14, then xi �= yi,i = 1, . . . , n, and there exists a ξ > 0 such that
yi = xi+ξ, where ξ = min1≤i≤n{UBi−xi}. All the solutions wi

1 = xi+Δ,
i = 1, . . . , n, with 0 ≤ Δ ≤ ξ, satisfy wi

1 = a6σ(i) − c6σ(i−2) + wi−1
1 and

LBi ≤ wi
1 ≤ UBi, i = 1, . . . , n. Thus, an infinite number of solutions

with the same cycle time exist in this case. We note that Step 1 finds
only one solution xi, i = 1, . . . , n. However, in view of yi = xi + ξ, if xi

is given, then yi, i = 1, . . . , n, can easily be determined. If there exists
only one feasible solution, then ξ = 0 and xi = yi, i = 1, . . . , n.
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Lemma 6.15 There cannot exist two distinct feasible vectors of waiting
times, one under the conditions of Step 1 and the other under the condi-
tions of Step 2 of FindTime6, such that their corresponding cycle times
are unequal.

Proof. Suppose a feasible vector of waiting times wi
1 = xi, i = 1, . . . , n,

is found in Step 1, and another feasible vector of waiting times wi
1 =

zi, i = 1, . . . , n, is found in Step 2. Note that xi,i = 1, . . . , n, satisfies
the conditions of Step 1. Let yi, i = 1, . . . , n, be another feasible vector of
waiting times that satisfies the conditions of Step 1. If there exists some
j, 1 ≤ j ≤ n, where xj = zj , then from Lemma 6.7, xi = zi, i = 1, . . . , n.
Thus, xi �= zi and yi �= zi, i = 1, . . . , n. From Lemma 6.13 we have
three cases: (1) xi < zi < yi, i = 1, . . . , n, (2) xi > zi, i = 1, . . . , n,
and (3) zi > yi, i = 1, . . . , n. If xi < zi < yi, i = 1, . . . , n, then
LBi < zi < UBi, i = 1, . . . , n. Thus, zi, i = 1, . . . , n, cannot be found
in Step 2 as claimed. If xi > zi, i = 1, . . . , n, then from Lemma 6.14 we
may assume, without loss of generality, that xh = LBh. If xh = LBh,
then zh < LBh, and from Lemma 6.7, xh+1 = zh+1, which provides a
contradiction. Similarly, if zi > yi, i = 1, . . . , n, then from Lemma 6.14,
we may assume without loss of generality that yj = UBj . If yj = UBj ,
then zj > UBj , and from Lemma 6.7, yj+1 = zj+1, which provides a
contradiction.

Initialization of an MPS cycle with CRM(π6): There are two dif-
ferent ways in which an MPS cycle with CRM(π6) can be initialized
from the state EI in RF3|(free,A,MP, CRM(π6))|μ:

(a) Initialization INA6, starting with part Pσ(i): pick up Pσ(i) (ε1), move
to M1 (δ1), load Pσ(i) onto M1 (ε2), wait at M1 (wi

1(0) = aσ(i)), unload
Pσ(i) from M1 (ε3), move to M2 (δ2), load Pσ(i) onto M2 (ε4), move to
I (δ1 + δ2 − η), pick up Pσ(i+1) (ε1), move to M1 (δ1), load Pσ(i+1) onto
M1 (ε2), move to M2 (δ2), wait (if necessary) at M2 (wi

2(0)), unload
Pσ(i) from M2 (ε5), move to M3 (δ3), load Pσ(i) onto M3 (ε6), move to
M1 (δ2 + δ3 − η), wait (if necessary) at M1 (wi+1

1 (0)), unload Pσ(i+1)

from M1 (ε3), move to M2 (δ2), load Pσ(i+1) onto M2 (ε4), move to
I (δ1 + δ2 − η), pick up Pσ(i+2) (ε1), move to M1 (δ1), and load Pσ(i+2)

onto M1 (ε2). At this point, the MPS cycle with CRM(π6) starts from
the state E = (Ω,Ω,Ω,M−

1 ).
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The waiting time equations corresponding to initialization INA6 are
as follows:

wi
1(0) = aσ(i),

wi
2(0) = max{0, bσ(i) − 2δ1 − 2δ2 − ε1 − ε2 + η},

wi+1
1 (0) = max{0, aσ(i+1) − wi

2(0) − 2δ2 − 2δ3 − ε5 − ε6 + η}.

The waiting time equations corresponding to the qth iteration of the
MPS cycle for CRM(π6) are

wj
1(q) = max{0, a6σ(j) − max{β6, b6σ(j−1), c6σ(j−2)

− wj−1
1 (q − 1)}}, j = i + 2,

wj
1(q) = max{0, a6σ(j) − max{β6, b6σ(j−1), c6σ(j−2)

− wj−1
1 (q)}}, j = i + 3, . . . , i + n + 1,

where wj+n
3 (q) = wj

3(q), j = 1, . . . , n.
(b) Initialization INB6, starting with part Pσ(i): pick up Pσ(i) (ε1), move
to M1 (δ1), load Pσ(i) onto M1 (ε2), wait at M1 (wi

1(0) = aσ(i)), unload
Pσ(i) from M1 (ε3), move to M2 (δ2), load Pσ(i) onto M2 (ε4), wait at
M2 (wi

2(0) = bσ(i)), unload Pσ(i) from M2 (ε5), move to M3 (δ3), load
Pσ(i) onto M3 (ε6), move to I (δ1+δ2+δ3−2η), pick up Pσ(i+1) (ε1), move
to M1 (δ1), load Pσ(i+1) onto M1 (ε2), wait at M1 (wi+1

1 (0) = aσ(i+1)),
unload Pσ(i+1) from M1 (ε3), move to M2 (δ2), load Pσ(i+1) onto M2 (ε4),
move to I (δ1 + δ2 − η), pick up Pσ(i+2) (ε1), move to M1 (δ1), and load
Pσ(i+2) onto M1 (ε2). At this point, the MPS cycle with CRM(π6)
starts from the state E = (Ω,Ω,Ω,M−

1 ). The waiting time equations
corresponding to initialization INB6 are as follows:

wi
1(0) = aσ(i);w

i
2(0) = bσ(i);w

i+1
1 (0) = aσ(i+1),

wi
3(0) = max{0, cσ(i) − aσ(i+1) − 4δ1 − 4δ2 − 2δ3

− 2ε1 − 2ε2 − ε3 − ε4 + 4η},
wi+1

2 (1) = max{0, bσ(i+1) − wi
3(0) − 2δ1 − 2δ2 − 2δ3 − 2δ4

− ε1 − ε2 − ε7 − ε8 + 3η},
wi+2

1 (1) = max{0, aσ(i+2) − wi
3(0) − wi+1

2 (1) − 2δ2

− 4δ3 − 2δ4 − ε5 − ε6 − ε7 − ε8 + 3η}.
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The waiting time equations corresponding to the qth iteration of the
MPS cycle for CRM(π6) are

wj
1(q) = max{0, a6σ(j) − max{β6, b6σ(j−1), c6σ(j−2)

− wj−1
1 (q − 1)}}, j = i + 3,

wj
1(q) = max{0, a6σ(j) − max{β6, b6σ(j−1), c6σ(j−2)

− wj−1
1 (q)}}, j = i + 4, . . . , i + n + 2,

where wj+n
3 (q) = wj

3(q), j = 1, . . . , n. The main result for the conver-
gence of the MPS cycle with CRM(π6) to a steady state follows.

Theorem 6.8 Starting from the state EI and using part schedule σ,
the cell in RF3|(free,A,MP,CRM(π6))|μ will go through at most max{1,
min1≤i≤n{si}} cycles before reaching a steady state, where si = a6σ(i) −
max{β6, b6σ(i−1)}, i = 1, . . . , n. Furthermore, this bound is attainable.

Proof. The proof is similar to that of Theorem 6.7.

In this section, we have shown that an RF3 cell operating under CRM
sequences π1, π3, π4, and π5 reaches a steady state within the production
of one MPS, if it starts from an empty cell EI with the robot at I ready
to pick up a part. If the cell starts from EI and uses CRM sequence π2

or π6, then it converges to a steady state in a number of cycles that is
bounded by a function of the cell data. Note that for the MPS cycle with
CRM(π2) (resp., CRM(π6)), the bound derived in Theorem 6.7 (resp.,
Theorem 6.8) is also valid for the cell starting from any other state.
Similarly, it is easy to show that MPS cycles under CRM sequences
π1, π3, π4, and π5 reach a steady state starting from any other state
within the production of at most three MPSs.

6.4.3 A Practical Guide to Initializing
Robotic Cells

Here we give a practical method for initializing the cell in RF3|(free,A,
MP, CRM(π2))|μ (resp., RF3|(free,A,MP, CRM(π6))|μ). In the previ-
ous subsection, we saw that there are 2n possible ways to initialize each
of these cells. The following algorithm, Start, selects the initialization
that brings the cell to a steady state in the minimum number of MPS
cycle iterations. Let hi

j denote the robot waiting time for part Pi on
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machine M3 (resp., M1) in the first cycle, using the jth initialization,
i = 1, . . . , v, j = 1, . . . , 2n, where v is the number of parts required
to define a cycle in a steady state. The steps shown in italics refer
to FindTime2 (resp., FindTime6) in Section 6.4. Let xi, i = 1, . . . , v,
denote the solution found in Step 1, and zi, i = 1, . . . , v, denote the
solution found in Step 2. Note that xi,i = 1, . . . , v, satisfies the condi-
tions in Lemma 6.11 (resp., Lemma 6.14). Let yi,i = 1, . . . , v, denote
another feasible vector of waiting times that satisfies the conditions of
Lemma 6.11 (resp., Lemma 6.14). Given xi,i = 1, . . . , v, it is easy to
determine yi,i = 1, . . . , v. See Remark 6.8 (resp., Remark 6.10).

Algorithm Start
Input: wi

3 (resp., wi
1),LBi, UBi, i = 1, . . . , n, xi, yi, zi, i = 1, . . . , v.

Step 1: Calculate h1
j , j = 1, . . . , 2n.

Step 2: If there exists a Step 1 solution (in FindTime2), then
For j = 1, . . . , 2n, do

If x1 ≤ h1
j ≤ y1, then ξj = 0.

If y1 < h1
j , then ξj = h1

j − y1.
If x1 > h1

j , then ξj = x1 − h1
j .

End
End If

Step 3: If there exists a Step 2 solution (in FindTime2), then
For j = 1, . . . , 2n, do

If z1 ≥ h1
j , then ξj = z1 − h1

j .
If z1 < h1

j , then ξj = h1
j − z1.

End
End If

Step 4: Use initialization j, where j = argmin1≤i≤2n{ξj}.
Terminate.

It follows from Lemma 6.12 (resp., Lemma 6.15) that either Step 2
or Step 3 of Start is used. In Start, ξj measures the difference between
the waiting time of the robot for the first part in a given schedule using
initialization j and the corresponding steady-state waiting time for that
part. We note that since waiting times always increase or decrease by a
constant in each cycle when the cell is not in a steady state, the initiali-
zation j that minimizes ξj brings the cell to a steady state faster than
that by other initializations. Algorithm Start, which provides a guide
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to initializing the cell, is very useful for practitioners who would like to
bring a three-machine cell operating under an CRM(π2) or CRM(π6)
to a steady state as fast as possible. This algorithm can be generalized
to cells with m ≥ 3 machines operating under MPS cycles that do not
have an E∗

q state at any machine Mq. Note that for MPS cycles that
have an E∗

q state, the steady state can be achieved within one cycle, as
discussed at the start of Section 6.4 and also by Hall et al. [75].

6.5 Intractable Cycles for Three-Machine Cells
In this section, we show that the recognition version of the optimal

part scheduling problems in the MPS cycles corresponding to CRM(π2)
and CRM(π6) are strongly NP-complete. Recall that in the other four
cycles, the optimal part schedule can be found in polynomial time.

6.5.1 MPS Cycles with the Sequence CRM(π2)

We now show that Problem RF3|(free, A, MP, CRM(π2))|μ is strongly
NP-hard.

Theorem 6.9 The recognition version of RF3|(free,A,MP,CRM(π2))|μ
is in the class NP.

Proof. We need to prove that FindTime2 finds the steady-state value
of T2(σ) for a given part schedule σ in polynomial time. We consider
two cases for the vector of waiting times wi

3, i = 1, . . . , v, where we let
a2σ(v+1) = a2σ(1) and a2σ(v+2) = a2σ(2); b2σ(v+1), b2σ(v+2), c2σ(v+1), and
c2σ(v+2) are defined similarly.

Case 1. wi
3 ≤ b2σ(i+1) − β2, wi

3 ≥ b2σ(i+1) − a2σ(i+2), and wi
3 ≤

c2σ(i+1) − a2σ(i+2) + b2σ(i+1) − β2, i = 1, . . . , v.

These three constraints define a lower bound LBi
1 and two upper

bounds UBi
1 and UBi

2 on wi
3, i = 1, . . . , v; thus, max{0, LBi

1} =
LBi ≤ wi

3 ≤ UBi = min{UBi
1, UBi

2}. From Lemma 6.11, if a solution
is found in Step 1, then there exists a job j such that wj

3 = LBj or
wj

3 = UBj . Any solution found in Step 1 has cycle time v
nT2(σ) =

vα2 +
∑v

i=1 a2σ(i)+
∑v

i=1 wi
3, where

∑v
i=1 wi

3 =
∑v

i=1(c2σ(i) + b2σ(i) −
a2σ(i+1) − β2)/2. Thus, v

nT2(σ) = vα2 +
∑v

i=1(a2σ(i) + b2σ(i) + c2σ(i) −
β2)/2. Step 1 finds one possible solution of this type.
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Case 2. Alternatively, at least one of the above constraints is not
satisfied for some part j, 1 ≤ j ≤ v. We consider three subcases:

(a) Case 2A. If wj
3 > b2σ(j+1) − β2, then

wj+1
3 = max{0, c2σ(j+1) − max{β2, a2σ(j+2)}}.

(b) Case 2B. Similarly, if wj
3 < b2σ(j+1) − a2σ(j+2), then

wj+1
3 = max{0, c2σ(j+1) − β2}.

(c) Case 2C. Similarly, if wj
3 > c2σ(j+1) − a2σ(j+2) + b2σ(j+1) − β2,

then wj+1
3 = 0.

Since at least one waiting time value is fixed in Step 2, the solution is
unique if it is found there. Step 2 considers all possible solutions of each
type.

Lemma 6.12 and that the conditions of Cases 1 and 2 are exhaustive
imply that FindTime2 finds the steady-state solution. Steps 1 and 2
each require time O(n2).

We next show that the problem of finding the best part schedule to be
processed in the MPS cycle with CRM(π2) is NP-complete. Consider
the following problem, which is known (Garey and Johnson [57]) to be
strongly NP-complete.

Numerical Matching with Target Sums (NMTS): Let X =
{x1, . . . , xs}, Y = {y1, . . . , ys}, and Z = {z1, . . . , zs} be sets of posi-
tive integers. Does there exist a partition of Y ∪ Z into disjoint subsets
τ1, . . . , τs, such that τi contains one element yji from Y and one element
z�i

from Z, and xi = yji + z�i
, for i = 1, . . . , s?

As part of this definition, we assume that if a Numerical Matching
with Target Sums exists, then xj = yj + zj , j = 1, . . . , s. We further
assume without loss of generality that s is even.

Given an arbitrary instance of NMTS, consider the following instance,
referred to as Q1, of the robotic cell scheduling problem: v = n = 3s, k =
3, and part set J = {Jx

j , 1 ≤ j ≤ s} ∪ {Jy
j , 1 ≤ j ≤ s} ∪ {Jz

j , 1 ≤ j ≤ s}.
Let

ax
j = L + xj − β/2, bx

j = 3L, cx
j = β/2, j = 1, . . . , s,

ay
j = 3L − β/2, by

j = 2L, cy
j = X − yj + β/2, j = 1, . . . , s,

az
j = 2L − β/2, bz

j = L + X + zj , cz
j = β/2, j = 1, . . . , s,
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where ar
j (resp., br

j , c
r
j) denotes the processing time of part j of type

r on machine M1 (resp., M2,M3), r ∈ {x, y, z}, j = 1, . . . , s; X =
∑s

j=1 xj ;L = 3sX; εi = ε = X/12, i = 1, . . . , 8; δi = δ = X/12, i =
1, . . . , 4; η = 0; β = 8δ + 4ε. Note that D = 6sL + sX + Z denotes
the threshold cycle time, where Z =

∑s
j=1 zj . We also let Y =

∑s
j=1 yj ,

where X = Y + Z, and define T̂σ = T̄σ −
∑3s

i=1 wi
3.

Remark 6.11 Let Q1 be an instance of RF3|(free,A,MP,CRM(π2))|μ
in which δi = δ, i = 1, . . . , 4; εi = ε, i = 1, . . . , 8; and η = 0. From
Lemma 6.6, the cycle time for the production of n parts under CRM(π2)
for this instance is given by T2(σ) = nα + T̄σ, where α = 4δ + 4ε,

T̄σ =
n∑

i=1

max{β, aσ(i+2) + β/2, bσ(i+1) − wi
3} +

n∑

i=1

wi
3,

wi
3 = max{0, cσ(i) − max{β/2, aσ(i+1) − max{0, bσ(i) − β − wi−1

3 }}}.

Lemma 6.16 When the 3s parts of Q1 are processed in the schedule

σ = [Jx
1 , Jy

1 , Jz
1 , Jx

2 , Jy
2 , Jz

2 , . . . , Jx
s , Jy

s , Jz
s ],

the robot waiting times at M3 are given by wi
3 = X−yq for i = 2+3(q−

1), 1 ≤ q ≤ s, and wi
3 = 0 otherwise. Therefore,

∑3s
i=1 wi

3 = sX − Y .

Proof. Consider three cases:

Case 1. i = 3 + 3(q − 1), 1 ≤ q ≤ s. From Remark 6.11, wi
3 =

max{0, cσ(i) − max{β/2, aσ(i+1) − max{0, bσ(i) − β − wi−1
3 }}}. Note

that part Jσ(i) is of type Jz. Substituting the value of cσ(i) = β/2 in
the equation for wi

3, we have

wi
3 = max{0, β/2−max{β/2, aσ(i+1)−max{0, bσ(i)−β−wi−1

3 }}} = 0.

Case 2. i = 1 + 3(q − 1), 1 ≤ q ≤ s. Here, part Jσ(i) is of type Jx.
Substituting the value of cσ(i) = β/2 in the equation for wi

3, we have

wi
3 = max{0, β/2−max{β/2, aσ(i+1)−max{0, bσ(i)−β−wi−1

3 }}} = 0.

Case 3. i = 2 + 3(q − 1), 1 ≤ q ≤ s. From Case 2, we know that
wi−1

3 = 0. Since parts Jσ(i) and Jσ(i+1) are, respectively, of type Jy
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and Jz, by substituting the values of aσ(i+1), bσ(i), and cσ(i) in the
equation for wi

3, we get

wi
3 = max{0,X − yq + β/2 − max{β/2, 2L − β/2

−max{0, 2L − β − wi−1
3 }}},

= max{0,X − yq + β/2 − max{β/2, 2L − β/2 − 2L + β}},
= max{0,X − yq} = X − yq.

Thus,
∑3s

i=1 wi
3 = sX − Y .

Note that from Lemma 6.16, bσ(i+1) − wi
3 can be expressed as:

bσ(i+1) − wi
3 = bσ(i+1) − (X − yq) for i = 2 + 3(q − 1), 1 ≤ q ≤ s, and

bσ(i+1) − wi
3 = bσ(i+1) otherwise.

Let fσ(i) = max{β, bσ(i) − wi−1
3 } and eσ(i) = aσ(i) + β/2. Then, from

Remark 6.11, T2(σ) − nα = T̄σ =
∑3s

i=1 max{fσ(i), eσ(i+1)} + sX − Y.

Thus, T̂σ = T̄σ −
∑3s

i=1 wi
3 =

∑3s
i=1max{fσ(i), eσ(i+1)}. The expression

∑3s
i=1 max{fσ(i), eσ(i+1)} can be interpreted as the cycle time in a two-

machine flowshop producing 3s jobs, where the processing times of job
i on the first machine M ′

1 and on the second machine M ′
2 are ei and fi,

respectively. The exact formulation follows:

Processing time of Jx type jobs:
eq (Jx

q ) = L + xq, 1 ≤ q ≤ s (on machine M ′
1),

fq (Jx
q ) = 3L−wi−1

3 , 1 ≤ q ≤ s (on machine M ′
2, where Jx

q is scheduled
in the ith position).

Processing time of Jy type jobs:
eq (Jy

q ) = 3L, 1 ≤ q ≤ s (on machine M ′
1),

fq (Jy
q ) = 2L−wi−1

3 , 1 ≤ q ≤ s (on machine M ′
2, where Jy

q is scheduled
in the ith position).

Processing time of Jz type jobs:
eq (Jz

q ) = 2L, 1 ≤ q ≤ s (on machine M ′
1),

eq (Jz
q ) = L + X + zq − wi−1

3 , 1 ≤ q ≤ s (on machine M ′
2, where Jz

q

is scheduled in the ith position).

Note that since wi
3 depends on the parts scheduled both before and

after the part scheduled in the ith position, this problem has schedule-
dependent processing times.
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Theorem 6.10 The recognition version of RF3|(free,A,MP,CRM(π2))|
μ is strongly NP-complete.

Proof. The proof is by reduction from Numerical Matching with Target
Sums (NMTS). One can easily verify that the entire construction of Q1

from an arbitrary instance of NMTS is polynomially bounded. From
Theorem 6.9, we need only show that there exists a schedule σ for the
part set J with cycle time T̄σ ≤ D if and only if there exists a solution
to NMTS.
(⇒) By Lemma 6.16, the schedule σ, shown in Figure 6.4, has cycle time
T̂σ = 6sL + X ⇒ T̄σ = 6sL + X +

∑3s
i=1 wi

3 = 6sL + sX + Z = D.

· · ·

· · ·L + x1 3L 2L

L + y1 + z1 3L 2L

L + xs 3L 2L

L + ys + zs 3L 2L

M ′
1

M ′
2

Figure 6.4. A Schedule with T̂σ = 6sL + X.

(⇐) Suppose there exists a schedule σ0 for J such that T̄σ0(J) ≤ D.
Then we show that σ0 must take the form of σ. That is, if the first
job is chosen without loss of generality to be Jx

1 , then the next three
jobs have to be of Jy, Jz, and Jx type, respectively, and so on. The
basic idea of the proof is to decompose the expression for T̄σ into two
components. The first component is

∑3s
i=1 wi

3. The second component is
T̂σ =

∑3s
i=1 max{fσ(i), eσ(i+1)}. Then, by finding a lower bound on the

first component, we can find the optimal schedule whose contribution to
the second component cannot exceed D minus that lower bound. To do
so, we prove six facts about σ0.

Fact 1. In σ0, 0 ≤
∑3s

i=1 wi
3 ≤ sX − Y .

It is clear from Remark 6.11 that wi
3 ≤ max{0, cσ(i) −β/2}. From the

definition of Q1, cσ(i) takes either the value β/2 or the value X − yq +
β/2 ≥ β/2. Thus, 0 ≤ wi

3 ≤ X − yq ⇒
∑3s

i=1 wi
3 ≤ sX − Y .

Fact 2. In σ0, the idle time on M ′
1 or M ′

2 cannot be more than (sX−Y ).
The total processing time of jobs on M ′

1 is 6sL + X, and since T̄σ0 ≤
6sL + sX + Z, the total allowable idle time on M ′

1 is at most (6sL +
sX + Z) − (6sL + X) = sX + Z − X = sX − Y . Similarly, the total
processing time of jobs on M ′

2 is (6sL+sX +Z−
∑3s

i=1 wi
3). Using Fact 1
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and T̄σ0 ≤6sL + sX + Z, the total allowable idle time on M ′
2 is at most

(6sL + sX + Z) − (6sL + sX + Z −
∑3s

i=1 wi
3) =

∑3s
i=1 wi

3 ≤ sX − Y .

Fact 3. In σ0, a Jy type job follows job Jx
1 .

If a Jx type job follows job Jx
1 , the idle time on M ′

1 will be at least
(3L − wi

3) − (L + x2) = 6sX − x2 − wi
3, as shown in Figure 6.5. Since

6sX−x2−wi
3 ≥ 4sX+Y > sX−Y , this contradicts Fact 2. Similarly, if

a Jz type job follows job Jx
1 , an idle time of (3L−wi

3)−2L = 3sX−wi
3 >

sX −Y occurs on M
′
1, as shown in Figure 6.6, which contradicts Fact 2.

L + x1 L + x2

3L − wi
3 3L − wi+1

3

M ′
1

M ′
2

Figure 6.5. Idle Time on M ′
1 if Job Jx Follows Jx

1 .

L + x1 2L

3L − wi
3 L + X + z1 − wi+1

3

M ′
1

M ′
2

Figure 6.6. Idle Time on M ′
1 if Job Jz Follows Jx

1 .

Fact 4. In σ0, a Jz type job follows the job schedule [Jx
1 , Jy

1 ].
If a Jx type job follows job Jy

1 , the idle time on M ′
1 will be at least

(2L − wi+1
3 ) − (L + x2) = 3sX − x2 − wi+1

3 > sX − Y , as shown in
Figure 6.7, which contradicts Fact 2. Similarly, if a Jy type job follows
job Jy

1 , an idle time of at least 3L−(2L−wi+1
3 ) ≥ 3sX > sX−Y occurs

on M ′
2, as shown in Figure 6.8, which contradicts Fact 2.

L + x1 3L

3L − wi
3 2L − wi+1

3

L + x2

3L − wi+2
3

M ′
1

M ′
2

Figure 6.7. Idle Time on M ′
1 if Job Jx Follows Jy

1 .

Fact 5. In σ0, a Jx type job follows the job schedule [Jx
1 , Jy

1 , Jz
1 ].
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L + x1 3L

3L − wi
3 2L − wi+1

3

3L

2L − wi+2
3

M ′
1

M ′
2

Figure 6.8. Idle Time on M ′
2 if Job Jy Follows Jy

1 .

If a Jy type job follows the job schedule [Jx
1 , Jy

1 , Jz
1 ], the idle time on

M ′
2 will be at least 3L − (L + X + z1 − wi+2

3 ) ≥ 4sX > sX − Y , as
shown in Figure 6.9, which contradicts Fact 2. Similarly, if a Jz type
job follows the job schedule [Jx

1 , Jy
1 , Jz

1 ], the idle time on M ′
2 will be at

least 2L− (L+X +z1−wi+2
3 ) ≥ sX > sX−Y , as shown in Figure 6.10,

which contradicts Fact 2.

L + x1 3L

3L − wi
3 2L − wi+1

3

2L

L + X + z1 − w
i+2
3

3L

2L − w
i+3
3

M ′
1

M ′
2

Figure 6.9. Idle Time on M ′
2 if Job Jy Follows Jz

1 .

L + x1 3L

3L − wi
3 2L − wi+1

3

2L

L + X + z1 − w
i+2
3

2L

L + X + z2 − w
i+3
3

M ′
1

M ′
2

Figure 6.10. Idle Time on M ′
2 if Job Jz Follows Jz

1 .

Fact 6. There is no idle time on machine M ′
1 in schedule σ0.

Using an induction argument based on Facts 3, 4, and 5, we can
show that the jobs are scheduled in the following order: [Jx

1 , Jy
1 ,Jz

1 , Jx
2 ,

Jy
2 ,Jz

2 ,. . . ,Jx
s , Jy

s , Jz
s ], as shown in Figure 6.4. From Lemma 6.16, we

have
∑3s

i=1 wi
3 = sX − Y . Now, T̄σ = T̂σ + sX − Y ≤ 6sL + sX + Z ⇒

T̂σ ≤ 6sL + X, which is the total processing time needed on machine
M ′

1.
If yji+z�i

> xi for some i, 1 ≤ i ≤ s, then idle time of length (yji+z�i
−

xi) > 0 occurs on M ′
1, as shown in Figure 6.11, which contradicts Fact 6.

Thus, yji + z�i
≤ xi, i = 1, . . . , s, and since

∑s
i=1(yji + z�i

) =
∑s

i=1 xi,
we have yji + z�i

= xi, i = 1, . . . , s, which implies the existence of an
NMTS.
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3L 2L

2L L + yji + zji

L + xi

3L

M ′
1

M ′
2

Figure 6.11. Idle Time on M ′
1 if xi < yji + zji .

6.5.2 MPS Cycles with the Sequence CRM(π6)

We now show that Problem RF3|(free,A,MP,CRM(π6))|μ is strongly
NP-hard.

Theorem 6.11 The recognition version of RF3|(free,A,MP,CRM(π6))|
μ is in the class NP.

Proof. We need to prove that FindTime6 finds the steady-state value
of T6(σ) for a given part schedule σ in polynomial time. We consider
two cases for the vector of waiting times wi

1, i = 1, . . . , n, where we let
a6σ(n+1) = a6σ(1), a6σ(n+2) = a6σ(2), and similarly for b6σ(n+1), b6σ(n+2),
c6σ(n+1) and c6σ(n+2).

Case 1. wi
1 ≤ c6σ(i−1) − β6,wi

1 ≤ c6σ(i−1) − b6σ(i), wi
1 ≥ c6σ(i−1) −

a6σ(i+1), i = 1, . . . , n.
These three constraints define a lower bound LBi

1, and two upper
bounds UBi

1 and UBi
2 on wi

1, i = 1, . . . , n. Thus, max{0, LBi
1} =

LBi ≤ wi
1 ≤ UBi = min{UBi

1, UBi
2}. From Lemma 6.14, if a solution

is found in Step 1, then there exists a job j such that wj
1 = LBj . Any

solution found in Step 1 has cycle time T6(σ) = nα6 +
∑n

i=1 a6σ(i).
Step 1 finds one possible solution of this type.

Case 2. Alternatively, at least one of the above constraints is not
satisfied for some part j, 1 ≤ j ≤ n. We consider two subcases.

(a) Case 2A. If wj
1 > min{c6σ(j−1) − β6, c6σ(j−1) − b6σ(j)},

then wj+1
1 = max{0, a6σ(j+1) − max{β6, b6σ(j)}}.

(b) Case 2B. Similarly, if wj
1 < c6σ(j−1) − a6σ(j+1), then wj+1

1 = 0.

Since at least one waiting time value is fixed in Step 2, the solution is
unique if it is found there. Step 2 considers all possible solutions of each
type in Cases 2A and 2B.
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Lemma 6.15 and that the conditions of Cases 1 and 2 are exhaustive
imply that FindTime6 finds the steady-state solution. Steps 1 and 2
each require time O(n2).

We next show that the problem of finding the best part schedule to
be processed in an MPS cycle with CRM(π6) is NP-complete.

Given an arbitrary instance of NMTS, consider the following instance,
referred to as Q2, of the robotic cell scheduling problem RF3|(free,A,MP,
CRM(π6))|μ with n = 4s, k = 4, and part set J = {Jw

j |1 ≤ j ≤
s} ∪ {Jx

j |1 ≤ j ≤ s} ∪ {Jy
j |1 ≤ j ≤ s} ∪ {Jz

j |1 ≤ j ≤ s}. Let

ay
j = 4L + X, by

j = 3L + X, cy
j = 2L + yj , j = 1, . . . , s,

az
j = 3L + X, bz

j = 2L, cz
j = L + 2X + zj , j = 1, . . . , s,

aw
j = 2L + X, bw

j = L, cw
j = 4L + X, j = 1, . . . , s,

ax
j = L + X + xj , bx

j = 4L + X, cx
j = 3L + X, j = 1, . . . , s,

where ar
j , b

r
j and cr

j denote the processing times of part j of type r on
machines M1,M2, and M3, respectively, r ∈ {w, x, y, z}, j = 1, . . . , s;
X =

∑s
j=1 xj ;L = 3sX. We let εi = ε = X/6, i = 1, . . . , 8; δi = δ =

X/6, i = 1, . . . , 4; η = 0;D = 10sL + 4sX + X.

Remark 6.12 Q2 is an instance of RF3|(free,A,MP,CRM(π6))|μ with
δi = δ, εi = ε, and η = 0. From Lemma 6.7, the cycle time for the
production of n parts under CRM π6 for this instance is given by T6(σ) =
nα + T̄σ, where α = 4δ + 4ε, β = 8δ + 4ε,

T̄σ =
n∑

i=1

max{β, cσ(i) − wi+1
1 , bσ(i+1), aσ(i+2)},

wi+1
1 = max{0, aσ(i+1) − max{β, bσ(i), cσ(i−1) − wi

1}}.

Lemma 6.17 When the 4s parts of Q2 are processed in the schedule

σ = [Jy
1 , Jz

1 , Jw
1 , Jx

1 , Jy
2 , Jz

2 , Jw
2 , Jx

2 , . . . , Jy
s , Jz

s , Jw
s , Jx

s ],

the robot waiting times at M1 are given by
wi

1 = X − yj , i = 3 + 4(j − 1), 1 ≤ j ≤ s, and
wi

1 = 0 otherwise.
Proof. Consider four cases.
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Case 1. i = 1 + 4(j − 1), 1 ≤ j ≤ s.
From Remark 6.12, wi

1 = max{0, aσ(i) − max{β, bσ(i−1), cσ(i−2) −
wi−1

1 }}, where Jσ(i) is of type Jy, Jσ(i−1) is of type Jx, and Jσ(i−2)

is of type Jw. Thus, wi
1 = max{0, 4L + X − max{2X, 4L + X, 4L +

X − wi−1
1 }} = 0.

Case 2. i = 2 + 4(j − 1), 1 ≤ j ≤ s.
Here Jσ(i) is of type Jz, Jσ(i−1) is of type Jy, and Jσ(i−2) is of type Jx.
Using the fact that wi−1

1 = 0 from Case 1, we have wi
1 = max{0, 3L+

X − max{2X, 3L + X, 3L + X}} = 0.

Case 3. i = 3 + 4(j − 1), 1 ≤ j ≤ s.
In this case, Jσ(i) is of type Jw, Jσ(i−1) is of type Jz, and Jσ(i−2) is of
type Jy. Since wi−1

1 = 0 from Case 2, we have wi
1 = max{0, aσ(i) −

max{β, bσ(i−1), cσ(i−2)}} = max{0, 2L+X−max{2X, 2L, 2L+yj}} =
max{0, 2L + X − (2L + yj)} = X − yj .

Case 4. i = 4 + 4(j − 1), 1 ≤ j ≤ s.
Here Jσ(i) is of type Jx, Jσ(i−1) is of type Jw, and Jσ(i−2) is of type
Jz. From Case 3, wi−1

1 = X − yj ; therefore, wi
1 = max{0, L + X +

xj − max{2X,L,L + 2X + zj − (X − yj}} = max{0, L + X + xj −
(L + X + zj + yj)} = max{0, xj − yj − zj} = 0.

Theorem 6.12 The recognition version of RF3|(free,A,MP,CRM(π6))|
μ is strongly NP-complete.

Proof. It is easy to see that the construction of Q2 from an arbitrary
instance of NMTS is polynomially bounded. From Theorem 6.11, we
need only show that there exists a schedule σ for the part set J with
T̄σ ≤ D if and only if there exists a solution to NMTS.
(⇒) We may think of T̄σ as the cycle time in a flowshop with three
machines (M ′

1,M
′
2,M

′
3) and schedule-dependent processing times. In

this flowshop the processing time of job σ(i) on M ′
3 depends on the

waiting time wi+1
1 , which in turn depends on wi

1 and the processing
times of jobs Jσ(i+1), Jσ(i), and Jσ(i−1) on M ′

1,M
′
2 and M ′

3, respectively.
Using Lemma 6.17, the schedule σ shown in Figure 6.12 has T̄σ = 10sL+
4sX + X = D.
(⇐) Suppose there exists a schedule σ0 such that T̄σ0(J) ≤ D. We first
prove that σ0 must take the form of σ. Since the schedule is cyclic, we
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· · ·

· · ·

· · ·

4L + X

4L + X

4L + X

3L + X

3L + X

3L + X

2L + y1

2L

2L + X

L + X + y1 + z1

L

L + X + x1

3L + X

3L + X

3L + X

2L + ys

2L

2L + X

L + X + ys + zs

L

L + X + xsM ′
1

M ′
2

M ′
3

Figure 6.12. A Schedule with T̄σ = D.

may assume without loss of generality that the first job in σ0 is Jy
1 . We

then prove that the next four jobs in σ0 must be of types Jz, Jw, Jx and
Jy, in that order; prove the same for the next four jobs; and so on until
all 4s jobs in J have been scheduled. To do so, we prove five facts about
σ0.

Fact 1. There is no idle time on machine M ′
1 in schedule σ0.

This follows since the total job processing time on M ′
1 equals D.

Fact 2. The total idle time on machine M ′
2 is at most (2s + 1)X.

This follows since the total job processing time on M ′
2 equals 10sL +

2sX = D − (2s + 1)X.
Fact 3. In σ0, a Jz type job follows job Jy

1 .
If a Jy type job follows job Jy

1 , then the idle time on M ′
2 will be at

least L = 3sX > (2s + 1)X (see Figure 6.13), which contradicts Fact 2.

4L + X 4L + X

3L + X 3L + X

M ′
1

M ′
2

Figure 6.13. Idle Time on M ′
2 if Job Jy Follows Jy

1 .

Alternatively, if a Jw (resp., Jx) type job follows job Jy
1 , then an idle

time is created on M ′
1, as shown in Figure 6.14 (resp., 6.15), which

contradicts Fact 1.
Fact 4. In σ0, a Jw type job follows the job schedule [Jy

1 , Jz
1 ].

If a Jy (resp., Jz) type job follows job Jz
1 , then the idle time on M ′

2

will be at least 2L+X > (2s+1)X (resp., at least L+X > (2s+1)X),
as shown in Figure 6.16 (resp., Figure 6.17), which contradicts Fact 2.



242 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

4L + X 2L + X

3L + X L

M ′
1

M ′
2

Figure 6.14. Idle Time on M ′
1 if Job Jw Follows Jy

1 .

4L + X

3L + X

L + X + x1

4L + X

M ′
1

M ′
2

Figure 6.15. Idle Time on M ′
1 if Job Jx Follows Jy

1 .

On the other hand, if a Jx type job follows Jz
1 , an idle time is created

on Machine M ′
1, as shown in Figure 6.18, which contradicts Fact 1.

4L + X

3L + X

3L + X 4L + X

2L 3L + X

M ′
1

M ′
2

Figure 6.16. Idle Time on M ′
2 if Job Jy Follows Jz

1 .

4L + X

3L + X

3L + X 3L + X

2L 2L

M ′
1

M ′
2

Figure 6.17. Idle Time on M ′
2 if Job Jz Follows Jz

1 .

Fact 5. In σ0, the schedule [Jy
1 , Jz

1 , Jw
1 ] is followed by a Jx type job, and

then by a Jy type job.
If any job except a Jx type job follows job Jw

1 , then the total idle time
on machine M ′

2 will exceed L > (2s + 1)X, as shown in Figures 6.19,
6.20, and 6.21, which contradicts Fact 2. Similarly, if any job except a
Jy type job follows the schedule [Jy

1 , Jz
1 , Jw

1 , Jx
1 ], an idle time of at least



Multiple-Part-Type Production: Single-Gripper Robots 243

4L + X 3L + X

3L + X

L + X + x1

2L 4L + X

M ′
1

M ′
2

Figure 6.18. Idle Time on M ′
1 if Job Jx Follows Jz

1 .

L > 0 is created on machine M ′
1, as shown in Figures 6.22, 6.23, and

6.24, which contradicts Fact 1.

4L + X

3L + X

3L + X 2L + X

2L

4L + X

L 3L + X

M ′
1

M ′
2

Figure 6.19. Idle Time on M ′
2 if Job Jy Follows Jw

1 .

4L + X

3L + X

3L + X 2L + X

2L

3L + X

L 2L

M ′
1

M ′
2

Figure 6.20. Idle Time on M ′
2 if Job Jz Follows Jw

1 .

4L + X

3L + X

3L + X 2L + X

2L

2L + X

L L

M ′
1

M ′
2

Figure 6.21. Idle Time on M ′
2 if Job Jw Follows Jw

1 .
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4L + X

3L + X

3L + X 2L + X

2L

L + X + x1

L

3L + X

4L + X 2L

M ′
1

M ′
2

Figure 6.22. Idle Time on M ′
1 if Job Jz Follows Jx

1 .

4L + X

3L + X

3L + X 2L + X

2L

L + X + x1

L

2L + X

4L + X L

M ′
1

M ′
2

Figure 6.23. Idle Time on M ′
1 if Job Jw Follows Jx

1 .

4L + X

3L + X

3L + X 2L + X

2L

L + X + x1

L

L + X + x2

4L + X 4L + X

M ′
1

M ′
2

Figure 6.24. Idle Time on M ′
1 if Job Jx Follows Jx

1 .

An induction argument using Facts 1 to 5 can be used to show that
schedule σ0 has the form of schedule σ. Finally, if yji +z�i

> xi for some
i, 1 ≤ i ≤ s, then an idle time of length (yji + z�i

− xi) > 0 is created on
machine M ′

1, as shown in Figure 6.25, which contradicts Fact 1.

4L + X

3L + X

3L + X 2L + X

2L

2L + yji−1

L + X + xi

L

L + X + yji
+ zji

4L + X

4L + X

4L + X

3L + X

3L + X

M ′
1

M ′
2

M ′
3

Figure 6.25. Idle Time on M ′
1 if xi < yji + zji .

Thus, yji +z�i
≤ xi, i = 1, . . . , s. Furthermore, since

∑s
i=1(yji +z�i

) =
∑s

i=1 xi, we have yji + z�i
= xi, i = 1, . . . , s, which implies the existence

of an NMTS.

6.5.3 Complexity of Three-Machine Robotic Cells
We show that finding an optimal MPS cycle among the cycles defined

using the CRM sequences π1, . . . , π6 is strongly NP-hard. Here we use
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the expressions for the cycle time developed for the CRM sequences
π1, . . . , π6 in Section 6.3.1. We study the problem of minimizing cycle
time without restricting to any specific CRM sequence or even to the
class of CRM sequences. We show that the problem is strongly NP-hard
in either case.

Theorem 6.13 The recognition version of RF3|(free,A,MP,CRM)|μ is
strongly NP-complete.

Proof. From Theorem 6.12, it suffices to show that the MPS cycle with
CRM(π6) is the only cycle that can give T̄σ ≤ D = 10sL+4sX +X for
instance Q2. For notational convenience, we let the processing times
of the 4s parts in Q2 be denoted as ai, bi, ci, 1 ≤ i ≤ 4s, on ma-
chines M ′

1,M
′
2, and M ′

3, respectively. Then D =
∑4s

i=1 ai = 10sL +
4sX + X. Let aσ(4s+1) = aσ(1), aσ(4s+2) = aσ(2), and similarly for
bσ(4s+1), bσ(4s+2), cσ(4s+1), and cσ(4s+2). We make the following obser-
vations.

1. From Theorem 6.2, T̄1(σ) =
∑4s

i=1(ai + bi + ci) > 30sL > D.

2. From Remark 6.11, T̄2(σ) =
∑4s

i=1max{β, aσ(i+2) + β/2, bσ(i+1) −wi
3},

where wi
3 ≥ 0 ⇒ T̄2(σ) ≥

∑4s
i=1 aσ(i+2) + 2sβ > D.

3. From Theorem 6.3, T̄3(σ) ≥
∑4s

i=1max{β3+aσ(i), b3σ(i)+aσ(i), c3σ(i)} ≥
4sβ3 +

∑4s
i=1 aσ(i) > D.

4. From Theorem 6.4, T̄4(σ) ≥
∑4s

i=1 bσ(i)+
∑4s

i=1max{β4, a4σ(i), c4σ(i)} >
∑4s

i=1 a4σ(i) >
∑4s

i=1 aσ(i) = D.

5. From Theorem 6.5, T̄5(σ) ≥
∑4s

i=1max{a5σ(i+1), β5 + cσ(i), b5σ(i) +
cσ(i)} ≥

∑4s
i=1 a5σ(i) >

∑4s
i=1 aσ(i) = D.

To conclude this section, we consider a more general problem in which
an MPS cycle is not restricted to be a cycle formed by a CRM sequence.
Thus, combinations of sequences π1, . . . , π6, are permitted.

Theorem 6.14 The recognition version of RF3|(free,A,MP,cyclic-n)|μ
is strongly NP-complete.

Proof. As shown in Figure 6.12, the MPS cycle with CRM(π6) achieves
the optimal cycle time of 4sα + D for problem instance Q2. Since
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∑4n
i=1 ai = D in instance Q2, whenever a part finishes processing on

machine M ′
1, it must be replaced by another as soon as possible, i.e., in

α time. Equivalently, the robot must perform the following operations
with times shown: unload (ε), move to M ′

2 (δ), load (ε), move to I (2δ),
pick up a new part (ε), move to M ′

1 (δ), and load (ε). This sequence of
moves takes time α = 4δ +4ε = 4X/3. We now show that the use of any
multi-unit robot move cycle will create a larger cycle time. The multi-
unit cycles can be formed by a combination of sequences π1, . . . , π6. More
precisely, we show that any combination other than π6 will increase the
cycle time for the problem instance Q2.

Under π1, the robot waits at M ′
2 and M ′

3 before returning to M ′
1,

which takes time more than 3L > 4X/3.

Under π2, the robot unloads (ε), moves to M ′
2 (δ), loads (ε), moves to

M ′
3 (δ), unloads (ε), moves to O (δ), drops the part (ε), moves to I (4δ),

picks up a new part (ε), moves to M ′
1 (δ), and loads (ε), for a total time

of 8δ + 6ε = 14X/6 > 4X/3.

Under π3, the robot unloads (ε), moves to M ′
2 (δ), loads (ε), moves

to M ′
3 (δ), unloads (ε), moves to O (δ), drops the part (ε), moves to

M ′
2 (2δ), unloads (ε), moves to M ′

3 (δ), loads (ε), moves to I (3δ), picks
up a new part (ε), moves to M ′

1 (δ), and loads (ε), for a total time of
10δ + 8ε = 18X/6 > 4X/3 time.

Under π4, the robot waits at M ′
2 before returning to M ′

1, which takes
at least L units of time with L > 4X/3.

Let J
′
o and Jo denote the jobs that are processed concurrently on

machines M
′
1 and M

′
3, respectively, in an optimal schedule. Then (J

′
o,

Jo) must be one of the following pairs of jobs: (Jy, Jw), (Jz, Jx),(Jw,
Jy) or (Jx, Jz), as in Figure 6.12. This is because if any other pair of
jobs is processed concurrently on machines M

′
1 and M

′
3, then T

′
σ > D.

Under π5, immediately after loading a part on M ′
1, the robot moves

to M ′
2 (δ), unloads a part (ε) (let the part be Jo), moves to M ′

3 (δ),
loads (ε), waits at M ′

3 (co = processing time of Jo on M ′
3), unloads (ε),

moves to O (δ), drops the part (ε), moves to M ′
1 (3δ), for a total time

of co + 6δ + 4ε. Note that in an optimal schedule, whenever a part fin-
ishes processing on machine M

′
1, it must be removed immediately. Thus,

the following inequality must hold: co + 6δ + 4ε ≤ c
′
o, where c

′
o is the

processing time of job J
′
o on M

′
1. We now show that this inequality does
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not hold in the four cases listed above.
Case 1. (J

′
o, Jo) = (Jy,Jw). Here c

′
o = 4L + X, co = 4L + X ⇒ co + 6δ

+ 4ε > c
′
o.

Case 2. (J
′
o, Jo) = (Jz,Jx). Here c

′
o = 3L + X, co = 3L + X ⇒ co + 6δ

+ 4ε > c
′
o.

Case 3. (J
′
o, Jo) = (Jw,Jy). Here c

′
o = 2L + X, co = 2L + yi ⇒ co + 6δ

+ 4ε > c
′
o, since δ=ε = X/6.

Case 4. (J
′
o, Jo) = (Jx,Jz). Here c

′
o = L + X + xi, co = L + 2X + zj ⇒

co + 6δ + 4ε > c
′
o.

We have therefore shown that any use of MPS cycles with CRM se-
quences π1, . . . , π5 alone or in combination with π6 implies that T ′

σ > D.
Thus, the MPS cycle with CRM(π6) is optimal for instance Q2, and the
result follows from Theorem 6.12.

6.6 Scheduling Multiple Part-Types
in Large Cells

Because of the interdependence of the robot’s waiting times at the dif-
ferent machines, the expression for the cycle time is often recursive. The
complexity of the part scheduling problem RFm|(free,A, MP,CRM)|μ
typically increases with the number of non-zero partial waiting times
in the cycle. Following this observation, Sriskandarajah et al. [147] de-
velop criteria to assess the complexity of the part scheduling problem in
larger (m ≥ 4) cells. Each MPS cycle is placed into one of four classes
contingent on these criteria, which are based on the amount and the
locations of the robot’s partial waiting in the 1-unit sequence on which
the CRM sequence is predicated, and whether the cell reaches a state
Ēq for some q ∈ {2, . . . ,m}; Ēq is the state in which all machines except
Mq are free, the robot has just completed loading a part onto Mq, and
the robot is about to move to the input hopper I to perform activity A0

(compare this to the definition of state E∗
q in Section 6.4). Since we are

dealing with larger cells, we now denote the processing time of part i on
machine Mj by pi,j .

Because we are only considering CRM sequences, if an MPS cycle
reaches state Ēq for some q, then this will be the state of the cell each
time a new part enters the cell. Therefore, there are never more than two
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parts in the cell at any given time. This implies that the time elapsed
during the interval between any two consecutive occurrences of Ēq can
be expressed in terms of the machines’ processing times on the two parts
in the cell during this interval and a constant that represents the time for
the robot’s actions (movement, load/unload). Hence, the problem can
be analyzed as a traveling salesman problem (TSP): each part is a city,
and the distance between a pair of cities is the duration of the interval
between the corresponding consecutive occurrences of Ēq. Specifically,
the distance between cities j and k is the time of the interval between
the loading of part j onto Mq and the loading of part k onto Mq. Thus,
in this case, finding an optimal MPS cycle is equivalent to finding an
optimal TSP tour.

Recall that a CRM sequence CRM(πg,m) is a robot move sequence
in an m-machine cell in which a 1-unit robot move sequence πg,m is
repeated exactly n times in succession, where n is the number of parts
to be produced in an MPS cycle. Also, not all 1-unit sequences have
the same number of partial waiting times. For example, a 1-unit robot
move sequence in which the robot loads and then stays with a part during
processing at each machine will have no partial waiting times, but all
other 1-unit robot move sequences will have at least one partial waiting
time. Let N denote the total number of partial waiting times in a 1-unit
robot move sequence. We let N i (respectively, Nj) denote the number
of partial waiting times on machines M1, . . . ,Mi (resp., Mj , . . . ,Mm) in
a given robot move sequence, where i ≤ m and j ≥ 1. It follows that
N = Nm = N1 denotes the total number of partial waiting times in a
robot move sequence.

To prove some of the results of this section requires using an alter-
native notation for robot movements. The unloading of machine Mi

is designated by M+
i , and the loading of machine Mi is designated by

M−
i . One can think of M+

i as indicating that a part is added to the
robot, whereas M−

i indicates that a part is subtracted from the robot.
Cycles in an m-machine cell are typically specified by a collection of
M−

i symbols, with M+
m at the beginning and at the end. For example,

π6,3 = {M+
3 ,M−

3 ,M−
2 ,M−

1 ,M+
3 }. 1-unit cycles are defined in Chapter 3

and Appendix A.
Sriskandarajah et al. [147] classify the MPS cycles defined using CRM

sequences in an m-machine cell, for m ≥ 2, according to the tractability
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of their associated part scheduling problems. More specifically, MPS
cycles formed using sequences CRM(πg,m) are classified as follows:

Class U : schedule independent (trivially solvable).

Class V : TSP models.

Class W : strongly NP-hard, but do not have a natural TSP structure
(in the sense defined later in Section 6.6.3).

Class V can be further divided into two subclasses:

Class V 1: TSP special cases (solvable in polynomial time using the
Gilmore-Gomory algorithm)

Class V 2: strongly NP-hard TSP models.

Sections 6.6.1–6.6.4 examine these classes in turn. The main result
of our analysis is Theorem 6.15 (Section 6.6.5). Before we begin our
analysis, we define several easily verifiable conditions (C1–C3) on a CRM
sequence. As we will prove, these conditions determine the complexity
of the part scheduling problem associated with a CRM sequence.
C1: N = 0.
C2a: N = 2.
C2b: A partial waiting occurs either at machine M1 or at Mm, or both.
C3: The cycle reaches state Ēq at machine Mq, where 1 < q ≤ m.

The following discussion is needed to clarify the relationships between
Classes U, V 1, V 2, and W and Conditions C1–C3. Clearly, Condition C1
is incompatible with either Condition C2a or Condition C2b. Since the
definition of Ēq implies that N ≥ 1, Condition C1 is incompatible with
Condition C3. Finally, as will be shown in Corollary 6.1, Condition C2a
implies Condition C3. These relationships are illustrated in Table 6.2,
where infeasible combinations of conditions are omitted. Note that the
three (resp., two) columns for Class V 2 (resp., W ) represent the different
conditions under which this class of cycles occurs. As will be discussed
in the proof of Lemma 6.29, there are no robot move sequences in which
N = 1.

It should be noted that MPS cycles formed by π1,2 and π1,3 are U -
cycles with N = 0. Cycles formed using π2,2, π3,3, π4,3 and π5,3 are V 1-
cycles, since they contain an Ēq state, N = 2, and one of the partial wait-
ing occurs either on the first machine or on the last machine. However,
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the cycles formed by CRM(π2,3) and CRM(π6,3) are W -cycles, since
they do not contain an Ēq state and N > 2. The MPS cycles formed by
the following 1-unit move sequences are V 2-cycles in a four-machine cell:
π9,4 = (A0, A1, A3, A4, A2) = (M+

4 ,M−
3 ,M−

1 ,M−
2 ,M−

4 ,M+
4 ) and π10,4 =

(A0, A3, A1, A4, A2) = (M+
4 , M−

3 ,M−
1 ,M−

4 ,M−
2 ,M+

4 ). The reader may
verify the following property for V -cycles: At most two parts may be
present in the cell at any given time. This property leads to tractable
TSP models for these cycles. The reader may also verify the following
property for W -cycles: At least three or more parts may be present in
the cell at some point in time. This property makes the problem more
difficult, and leads to a strongly NP-hard classification.

Class U V 1 V 2 V 2 V 2 W W

C1 Yes No No No No No No

C2a No Yes Yes No No No No

C2b No Yes No Yes No Yes No

C3 No Yes Yes Yes Yes No No

Table 6.2. Classes of MPS Cycles with CRM Sequences.

6.6.1 Class U : Schedule Independent Problems
We begin with a preliminary result.

Lemma 6.18 In any CRM sequence that satisfies Condition C1 in an
m-machine cell, at most one part is in the cell at any point in time.

Proof. If N = 0, then when the robot is about to pick up a part Pσ(j)

at I, the cell must be in state EI , where all machines are free. Since the
robot move sequence repeats after one unit, there must also be a point
in time at which all machines are free and the robot is about to pick
up part Pσ(j+1) at I. Thus, part Pσ(j) must leave the cell before part
Pσ(j+1) enters.

This leads to the following result.

Lemma 6.19 The optimal part schedule in an m-machine cell can be
found trivially in a CRM sequence that satisfies Condition C1.

Proof. It follows from Lemma 6.18 that in a CRM sequence with N = 0,
the cycle time can be written as the sum of the processing times of the
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parts plus the sum of movement times of the robot. Since both are
independent of the part schedule, all part schedules provide the same
cycle time. It also follows from Lemma 6.18 that there is exactly one
U -cycle in an m-machine cell, since the robot waits at every machine
while a part is being processed.

The U -cycle is an MPS cycle formed by CRM(π1,m), where π1,m=(A0,

A1, A2, . . . , Am) = {M+
m,M−

1 ,M−
2 , . . . ,M−

m,M+
m}. Notations for 1-unit

cycles are given in Chapter 3.

6.6.2 Class V 1: Special Cases of the TSP
We show that if a robot move sequence satisfies Conditions C2a and

C2b, then the associated part scheduling problem can be formulated
as a special case of the TSP, and solved using the Gilmore-Gomory
algorithm. The MPS cycles formed by robot move sequences that satisfy
these conditions are called V 1-cycles.

Lemma 6.20 The optimal part schedule in an m-machine cell can be
found in time O(n log n) in the (2m − 3) MPS cycles that satisfy Con-
ditions C2a and C2b.

Proof. In MPS cycles, the associated CRM sequences satisfying the
lemma’s conditions have waiting times at the following machines: (M1,

M2), . . . , (M1,Mm), (M2,Mm), . . . , (Mm−1,Mm). Thus, there are 2m−
3 such MPS cycles.

For each of the two cases below, the cycle time for CRM(πj,m) can
be written as Tj(σ) =

∑n
i=1 T h

jσ(i)σ(i+1), where
∑n

i=1 T h
jσ(i)σ(i+1) = Z +

∑n
i=1 max{eσ(i+1), fσ(i)} for some constant Z, and where we let σ(n +

1) = σ(1). The two parameters eσ(i) and fσ(i) can be associated with
city i in the TSP, where the distance between cities i and i + 1 is
max{eσ(i+1), fσ(i)}. An instance of the TSP with this distance matrix
can be solved by the Gilmore-Gomory algorithm (Remark 6.1 and Ap-
pendix B).

Case 1. There is a waiting time at machine M1 and at Ms for some
2 ≤ s ≤ m.

If there is not an Ēs state at machine Ms, then the robot must move to
M1 after loading Ms. In this case, since N = 2, two parts will eventually
be on Ms simultaneously, which is not possible. Thus, the MPS cycle
reaches an Es state at Ms. Starting from that state with part Pσ(i) at Ms,
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cycle πh includes the following activities: move to I (
∑s

q=1 δq−(s−1)η),
pick up a new part Pσ(i+1) (ε1), move to M1 (δ1), load Pσ(i+1) onto M1

(ε2), move from M1 to Ms (
∑s

q=2 δq −(s−2)η), wait (if necessary) at Ms

(wi
s), unload Pσ(i) from Ms (ε2s+1), move to Ms+1 (δs+1), load Pσ(i) onto

Ms+1 (ε2s+2), wait at Ms+1 (pσ(i),s+1), unload (ε2s+3), . . ., drop Pσ(i) at
O (ε2m+2), move to M1 (

∑m+1
q=2 δq − (m−1)η), wait (if necessary) at M1

(wi+1
1 ), unload Pσ(i+1) from M1 (ε3), move to M2 (δ2), load Pσ(i+1) onto

M2 (ε4), wait at M2 (pσ(i+1),2), . . ., and load Pσ(i+1) on Ms (ε2s). Thus,

T s
hσ(i)σ(i+1) =

2m+2∑

q=1

εq + 2
m+1∑

q=1

δq + 2
s∑

q=2

δq − mη − 2sη + 4η

+
s−1∑

t=2

pσ(i+1),t +
m∑

t=s+1

pσ(i),t + wi+1
1 + wi

s, where

wi+1
1 = max{0, pσ(i+1),1 − 2

m+1∑

q=2

δq + (m + s − 3)η −
2m+2∑

q=2s+1

εq

−
m∑

t=s+1

pσ(i),t − wi
s}, and

wi
s = max{0, pσ(i),s − 2

s∑

q=1

δq + (2s − 3)η − ε1 − ε2}.

Substituting for wi+1
1 , we obtain

T s
hσ(i)σ(i+1) =

∑2s
q=1 εq+2

∑s
q=1 δq+2(s−1)δ0 −sη + η +

∑s−1
t=2 pσ(i+1),t+

max {2
∑m+1

q=2 δq − (m + s − 3)η+
∑2m+2

q=2s+1 εq +
∑m

t=s+1 pσ(i),t + wi
s,

pσ(i+1),1}. Letting eσ(i+1) = pσ(i+1),1 and fσ(i) = 2
∑m+1

q=2 δq − (m +
s − 3)η+

∑2m+2
q=2s+1 εq +

∑m
t=s+1 pσ(i),t + wi

s, we obtain the desired form.

Case 2. There is a waiting time at machine Ms for some 1 ≤ s ≤ m − 1
and at Mm.

The proof that the cycle reaches an Ēm state at machine Mm is similar
to that for Ms in Case 1. Starting from that state with part Pσ(i) at Mm,
cycle πj includes the following activities: move to I (

∑m
q=1 δq−(m−1)η),

pick up a new part Pσ(i+1) (ε1), move to M1 (δ1), load Pσ(i+1) onto M1

(ε2), wait at M1 (pσ(i+1),1), . . ., load Pσ(i+1) on Ms (ε2s), move from Ms

to Mm (
∑m

q=s+1 δq − (m − s − 1)η), wait (if necessary) at Mm (wi
m),

unload (ε2m+1), move to O (δm+1), drop Pσ(i) at O (ε2m+2), move to
Ms (

∑m+1
q=s+1 δq − (m − s)η), wait (if necessary) at Ms (wi+1

s ), unload
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(ε2s+1), move to Ms+1 (δs+1), load Pσ(i+1) onto Ms+1 (ε2s+2), wait at
Ms+1 (pσ(i+1),s+1), . . . , and load Pσ(i+1) on Mm (ε2m). Thus, we have

Tm
jσ(i)σ(i+1) =

∑2m+2
q=1 εq+ 2

∑m+1
q=1 δq +2

∑m
q=s+1 δq +(−3m+ 2s +2)η

+ wi
m+ wi+1

s +
∑s−1

t=1 pσ(i+1),t +
∑m−1

t=s+1 pσ(i+1),t, where

wi
m = max {0, pσ(i),m −

∑2s
q=1 εq − 2

∑m
q=1 δq −

∑s−1
t=1 pσ(i+1),t + (2m −

s − 2)η},

wi+1
s = max {0, pσ(i+1),s− 2

∑m+1
q=s+1 δq −ε2m+1− ε2m+2 − wi

m+ (2m −
2s − 1)η}.

Substituting for wi+1
s , and then for wi

m, we obtain

Tm
jσ(i)σ(i+1) =

2m∑

q=1

εq + 2
m∑

q=1

δq − mη + η +
m−1∑

t=s+1

pσ(i+1),t +

max{2
m+1∑

q=s+1

δq + ε2m+1 + ε2m+2 − (2m − 2s − 1)η +

s−1∑

t=1

pσ(i+1),t, pσ(i+1),s +
s−1∑

t=1

pσ(i+1),t, pσ(i),m − (
2s∑

q=1

εq +

2
m∑

q=1

δq − (2m − s − 2)η) + (2
m+1∑

q=s+1

δq + ε2m+1 +

ε2m+2 − (2m − 2s − 1)η)}.

Letting eσ(i+1) = max {2
∑m+1

q=s+1 δq +ε2m+1+ ε2m+2− (2m − 2s − 1)η
+

∑s−1
t=1 pσ(i+1),t, pσ(i+1),s +

∑s−1
t=1 pσ(i+1),t} and fσ(i)=pσ(i),m −

∑2s
q=1 εq

+ε2m+1+ ε2m+2− 2
∑m

q=1 δq + 2
∑m+1

q=s+1 δq +(s − 1)η, we obtain the
desired form.

Finally, we note that the Gilmore-Gomory algorithm can be imple-
mented in time O(n log n) (Appendix B).

6.6.3 Class V 2: NP-Hard TSP Problems
MPS cycles belonging to this class are called V 2-cycles. The asso-

ciated CRM sequences in these cycles satisfy Condition C3, but not
both Conditions C2a and C2b. We will show that in V 2-cycles the part
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scheduling problems associated with these CRM sequences are strongly
NP-hard. However, each of these problems can be formulated as a TSP,
which provides significant computational advantages as a result of the
numerous optimal and heuristic approaches available for that problem
(see e.g., Lawler et al. [103], Gutin and Punnen [73]). For example, the
heuristic developed by Gendreau et al. [65] can routinely solve a TSP of
up to 300 cities (equivalently here, parts) to within 5% of optimality.

Before presenting the following result, we need a definition. It follows
from the theory of computational complexity (see e.g., Garey and John-
son [57]) that if the TSP can be solved in polynomial time, then so can
an NP-complete part scheduling problem of the type considered here.
However, such a solution may require a chain of elaborate formulations
and transformations that might be difficult to implement. Our definition
that follows is both more restrictive and more practical. We say that a
part scheduling problem can be formulated as a TSP if and only if the
contribution to the cycle time from processing part Pσ(i) immediately
before part Pσ(i+1) is independent of the data for all other jobs.

Lemma 6.21 For any MPS cycle and the associated CRM sequence
which does not satisfy Condition C1 in an m-machine cell, the asso-
ciated part scheduling problem can be formulated as a TSP if and only
if there is some q, 1 < q ≤ m, for which the MPS cycle reaches state Ēq

at machine Mq.

Proof. We consider each part of the lemma in turn.
(⇒) Assume that the MPS cycle reaches state Ēq at machine Mq. Let Zi

(resp., Zi+1) denote the time at which the robot loads part Pσ(i) (resp.,
part Pσ(i+1)) on Mq. Thus, part Pσ(i−1) must have left machine Mm by
time Zi, and part Pσ(i+2) must not have reached machine M1 by time
Zi+1. Consequently, Zi+1 − Zi is independent of the processing times
of parts other than Pσ(i) and Pσ(i+1). It follows that Zi+1 − Zi can be
interpreted as the distance from city i to city (i + 1) in a formulation of
the TSP.
(⇐) Consider an MPS cycle that does not satisfy Condition C1. Since
state Ēq is never reached when part Pσ(i) is loaded on any machine
Mq, either part Pσ(i−1) or part Pσ(i+1) is on machine Mj for some j,
1 ≤ j ≤ m. In the first case, the remaining processing times in the cell
at time Zi+1 are not, in general, the same as the remaining processing
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times in the cell at time Zi, because they depend on the processing
times of parts Pσ(i−1), Pσ(i), and Pσ(i+1). In the second case, a similar
argument applies for parts Pσ(i), Pσ(i+1), and Pσ(i+2). In either case, we
cannot write Zi+1−Zi only as a function of the processing times of parts
Pσ(i) and Pσ(i+1), as required by our definition of a TSP formulation.

Lemma 6.21 shows that the part scheduling problem associated with
any MPS cycle satisfying Condition C3 can be formulated as a TSP. We
will compute the number of such cycles in an m-machine cell. To do so,
we need the preliminary results given in the two lemmas that follow.

Lemma 6.22 In an m-machine cell, there exists an MPS cycle that does
not satisfy Condition C1 and that reaches state Ēq for some q, 1 < q ≤ m

if and only if there are N q−1 waiting times on machines M1, . . . ,Mq−1,
one on machine Mq, and N q−1 − 1 on machines Mq+1, . . . ,Mm, where
N q−1 ∈ {1, . . . , �m/2�}.

Proof. Consider an arbitrary MPS cycle π that reaches state Ēq at
machine Mq and that has N ≥ 1. By definition of Ēq, there is a waiting
time at Mq. Also by definition of Ēq, the robotic cell reaches state Ēq

with the robot at machine Mq in a cycle if and only if the following five
events occur in the order shown:
E1: The robot loads part Pσ(i) onto Mq.
E2: The robot loads part Pσ(i+1) onto M1.
E3: The robot drops part Pσ(i) at O.
E4: The robot loads part Pσ(i+1) onto Mq.
E5: The robot loads part Pσ(i+2) onto M1.
We consider each part of the lemma in turn.

(⇐) We consider an MPS cycle that does not satisfy Condition C1. If
parts Pσ(i) and Pσ(i+2) are on two of machines M1, . . . ,Mm, at any time
during this cycle, then Event E5 will precede Event E3. Therefore, a
necessary condition to reach state Ēq at Mq is that there is never more
than one other part on machines M1, . . . ,Mm, simultaneously with part
Pσ(i+1). We consider two cases.

Case 1. Nq+1 ≥ N q−1. Consider the cell immediately after Event E1.
From Sethi et al. [142], as discussed in Chapter 3, there are m activ-
ities – the loadings on machines M1, . . . ,Mq−1,Mq+1, . . . ,Mm, and an
unloading from machine Mm – between Event E1 and Event E4. Since
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Event E3 must precede Event E4, part Pσ(i) must be advanced at least
m − q + 1 times during those m activities. Since only parts Pσ(i) and
Pσ(i+1) are on machines M1, . . . ,Mm, Pσ(i) is advanced N q−1 times from
the machines, among M1, . . . ,Mq−1, that have waiting times, not from
machine Mq that has a waiting time, and m − q −Nq+1 times from the
machines, among Mq+1, . . . ,Mm, that do not have waiting times. Thus,
N q−1 + (m − q −Nq+1) ≥ m − q + 1, which is a contradiction.

Case 2. Nq+1 ≤ N q−1 − 2. Since it is necessary for Event E4 to precede
Event E5, Pσ(i+1) must be advanced at least q − 1 times during the m

activities between Event E2 and Event E5. Since only parts Pσ(i) and
Pσ(i+1) are on machines M1, . . . ,Mm, Pσ(i+1) is advanced q −N q−1 − 1
times from the machines among M1, . . . ,Mq−1 that do not have waiting
times, once from machine Mq that has a waiting time, and Nq+1 times
from the machines among Mq+1, . . . ,Mm that have waiting times. Thus,
(q −N q−1 − 1) + 1 + Nq+1 ≥ q − 1, which is a contradiction.

It therefore follows that Nq+1 = N q−1 − 1, and the total number of
waiting times is 1 + N q−1 + Nq+1 = 2N q−1. Thus, N is even. Since
there is a waiting time at Mq, it follows that N q−1 ≥ 1. Finally, since
the number of waiting times cannot exceed the number of machines, it
follows that N q−1 ≤ �m/2�.
(⇒) It follows from the above discussion that if Nq+1 = N q−1 − 1, then
events E1-E5 will occur in the specified order. Therefore, the robotic
cell will reach state Ēq.

Corollary 6.1 Condition C2a implies Condition C3.

Proof. It follows immediately from the (⇒) part of Lemma 6.22 that
if an MPS cycle satisfies Condition C2a with waiting times at machines
Ms and Mq, where 1 ≤ s < q ≤ m, then the cycle reaches state Ēq at
machine Mq.

It is interesting to note that the converse of Corollary 6.1 is not
true (see Table 6.2). For example, MPS cycles with CRM(π9,4) and
CRM(π10,4) have an Ēq state, and thus satisfy Condition C3, but have
N = 4, which does not satisfy Condition C2a.

Lemma 6.23 For a given selection of N waiting times, N ≥ 2 and N
even, in an m-machine cell, there is exactly one MPS cycle that reaches
state Ēq at machine Mq, where 1 < q ≤ m.
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Proof. First, note that the condition in the lemma implies that the
conditions in Lemma 6.22 are satisfied at machine Mq for some q, 1 <

q ≤ m. Therefore, it follows from the (⇒) part of Lemma 6.22 that there
exists at least one MPS cycle satisfying the condition in the lemma.

As discussed in Section 6.3, an MPS cycle with a CRM sequence in
an m-machine cell is uniquely characterized by its sequence of (m + 1)
activities. Therefore, it is sufficient to show that a given selection of N
waiting times among the m machines uniquely determines a sequence
of these activities. Assume that there are two distinct MPS cycles, π

and π′, which both reach state Ēq with the robot having just completed
loading part Pσ(i) onto machine Mq, 1 < q ≤ m, and which have waiting
times on the same subset of machines. We prove that π and π′ are
identical by induction on the number of robot moves after Ēq.

By definition of Ēq, the robot next picks up part Pσ(i+1) and loads it
onto M1 in both cycles π and π′. For the basis of the induction proof, if
M1 has a waiting time in π and π′, then the second robot activity after
Ēq in both cycles is to load part Pσ(i) onto machine Mq+1, where we let
Mm+1 = O. Otherwise, the second robot activity after Ēq in both cycles
is to load part Pσ(i+1) onto machine M2. Thus, the states of the cell are
identical in π and π′ after two activities. For the induction hypothesis,
we assume that the states of the cell are identical in π and π′ after t,
2 ≤ t ≤ m, robot activities following Ēq. During activity t+1, when the
robot loads a part (Pσ(i) or Pσ(i+1)), it either waits during its processing
(in both π and π′) or unloads a part from another machine. It follows,
from the discussion in the (⇐) part of Lemma 6.22 that there is at most
one other part (Pσ(i+1) or Pσ(i)) on any machine. Moreover, from the
induction hypothesis, that part is on the same machine in π and π′.
Thus, activity t + 1 is identical in π and π′ for t + 1 ≤ m + 1. When
t + 1 = m + 1, the cycle reaches the same Ēq state in π and π′, and the
above arguments can be repeated for subsequent parts. It follows that
π and π′ are identical.

We have shown in Lemma 6.22 that MPS cycles, based on CRM se-
quences that reach state Ēq with the robot at Mq, have a specific number
of waiting times at the machines before and after Mq in the cell. From
Lemma 6.23, any selection of these waiting times among the m machines
defines exactly one MPS cycle that satisfies Condition C3. The following
result shows how many such cycles there are.
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Lemma 6.24 In an m-machine cell, the number of MPS cycles which
do not satisfy Condition C1 and in which the associated part scheduling
problem can be formulated as a TSP is

�m
2

∑

t=1

(
m

2t

)

.

Proof. It follows from Lemma 6.21 and the proof of Lemma 6.22 that
in any MPS cycle formed by a CRM sequence that does not satisfy
Condition C1 and that has an associated part scheduling problem that
can be formulated as a TSP, N is even and N ≥ 2. Thus, N = 2t
for some t ∈ {1, . . . , �m/2�}. It follows from Lemma 6.23 that for each
possible value of t the number of MPS cycles is

(
m

2t

)

,

from which the result follows.

It is important to note that the (2m − 3) V 1-cycles discussed in
Lemma 6.20 are included in this number.

We now consider the complexity of part scheduling problems asso-
ciated with V 2-cycles. Hall et al. [75] show that the part scheduling
problem corresponding to the MPS cycle with CRM(π1,3) is schedule
independent. Furthermore, they show that the part scheduling prob-
lems corresponding to the MPS cycles with CRM(π3,3), CRM(π4,3),
and CRM(π5,3) are solvable in polynomial time. These cycles satisfy
Conditions C2a and C2b and therefore belong to Class V 1. The part
scheduling problems corresponding to the MPS cycles with CRM(π2,3)
and CRM(π6,3) do not satisfy Condition C3, and therefore they be-
long to Class W . Thus, there are no V 2-cycles in a three-machine cell.
For this reason it is necessary to study four-machine cells to identify a
pattern for larger cells.

In a four-machine cell there are seven MPS cycles that belong to
Class V . These are MPS cycles with CRM(π4,4), CRM(π9,4), CRM

(π10,4), CRM(π11,4), CRM(π13,4), CRM(π14,4), and CRM(π17,4), as
described in Appendix A. Note that since they satisfy Conditions C2a
and C2b, the MPS cycles with CRM(π4,4), CRM(π11,4), CRM(π13,4),
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CRM(π14,4), and CRM(π17,4) are V 1-cycles. We show in this section
that the part scheduling problems in V 2-cycles with CRM(π9,4) and
CRM(π10,4) are strongly NP-hard. All the hardness results in this sec-
tion are proved for the special case δi = δ for i = 0, . . . ,m+1, εi = ε for
i = 1, . . . , 2m + 2, and η = 0.

The cycle time for the production of n parts in schedule σ under
the MPS cycle with CRM(π9,4) is derived as follows: T 3

9σ(i)σ(i+1) =
12δ + 10ε + aσ(i+1) + dσ(i) + wi+1

2 + wi
3, where wi+1

2 = max{0, bσ(i+1) −
dσ(i) − wi

3 − 6δ − 4ε} and wi
3 = max{0, cσ(i) − aσ(i+1) − 6δ − 4ε}. Since

wi+1
2 = max{0, bσ(i+1) − dσ(i) − wi

3 − 6δ − 4ε}, we have

wi+1
2 + wi

3 = max{0, cσ(i) − aσ(i+1) − 6δ − 4ε, bσ(i+1) − dσ(i) − 6δ − 4ε}.

Therefore, T9(σ) =
∑n

i=1 T 3
9σ(i)σ(i+1), where T 3

9σ(i)σ(i+1) = max{a′σ(i+1) +
d′σ(i), c

′
σ(i)+d′σ(i), a

′
σ(i+1)+b′σ(i+1)}, a′i = ai+6δ+5ε, b′i = bi+ε, c′i = ci+ε

and d′i = di + 6δ + 5ε. This gives

T 3
9σ(i)σ(i+1) = a′σ(i+1) + d′σ(i) + max{0, c′σ(i) − a′σ(i+1), b

′
σ(i+1) − d′σ(i)}.

Note that the distance between cities (parts) i and (i + 1) depends only
on the parameters of those cities. Thus, we have the required TSP for-
mulation.

Lemma 6.25 The part scheduling problem corresponding to an MPS cy-
cle with CRM(π9,4) is strongly NP-hard.

Proof. The proof is by reduction from the classical scheduling problem
F3|no-wait|Ct. Röck [136] shows that the cycle time minimization prob-
lem is strongly NP-hard. For more details, the reader may refer to the
paper on no-wait scheduling by Hall and Sriskandarajah [77]. Let ei, fi,
and gi denote the processing time of job i on the first, second, and third
machine, respectively, in the three-machine no-wait flowshop. In the
three-machine no-wait flowshop, the cycle time Ct(σ) for the production
of n jobs in schedule σ can be written as follows: Ct(σ) =

∑n
i=1 hσ(i)σ(i+1),

where hσ(i)σ(i+1) = max{eσ(i)+fσ(i)−eσ(i+1), eσ(i)+fσ(i)+gσ(i)−eσ(i+1)−
fσ(i+1), eσ(i)} (see Appendix B.2 for details). Simplifying, we have

hσ(i)σ(i+1) = eσ(i) +fσ(i)−eσ(i+1) +max{0, gσ(i)−fσ(i+1), eσ(i+1)−fσ(i)}.
Now, if we set a′i = fi, b′i = ei, c′i = gi, and d′i = fi, it is clear that
minimizing T9(σ) is equivalent to minimizing Ct(σ).
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The cycle time for the production of n parts in schedule σ under
the MPS cycle with CRM(π10,4) is derived as follows: T 3

10σ(i)σ(i+1) =
λ + γ + wi+1

1 + wi+1
2 + wi

3 + wi
4, where wi+1

1 = max{0, aσ(i+1) − wi
3 −

λ}, wi+1
2 = max{0, bσ(i+1) − wi

4 − λ}, wi
3 = max{0, cσ(i) − λ}, wi

4 =
max{0, dσ(i) − wi+1

1 − λ}, λ = 6δ + 2ε, and γ = 12δ + 8ε. Therefore,

T10(σ) =
n∑

i=1

T 3
10σ(i)σ(i+1) = n(λ + γ) +

n∑

i=1

(wi+1
1 + wi+1

2 + wi
3 + wi

4).

It is easy to see that

wi+1
2 + wi

4 + wi+1
1 + wi

3 = max{0, cσ(i) − λ, bσ(i+1) − λ, bσ(i+1) + cσ(i)

−2λ, aσ(i+1) − λ, aσ(i+1) + bσ(i+1) − 2λ, dσ(i) − λ, cσ(i) + dσ(i) − 2λ}.

Lemma 6.26 The part scheduling problem in an MPS cycle with CRM

(π10,4) is strongly NP-hard.

Proof. The proof is by reduction from problem F3|no-wait|Ct, and is
similar to that of Lemma 6.25. By setting ai = ei + λ, bi = fi + λ,
ci = fi + λ and di = gi + λ, we have T 3

10σ(i)σ(i+1) = λ + γ + fσ(i) +
fσ(i+1) + max{0, eσ(i+1) − fσ(i), gσ(i) − fσ(i+1)}. Thus, minimizing T10(σ)

is equivalent to minimizing Ct(σ).

The following two results relate the complexity of part scheduling
problems in cells with m machines to that in larger cells. We consider
two cases. The first case requires that N < m + 1 in the larger cell, and
is studied in Lemma 6.27. The second case requires that N = m + 2 in
the larger cell, and is studied in Lemma 6.28.

Lemma 6.27 If the part scheduling problems associated with all V 2-
cycles in an m-machine cell, m ≥ 4, are strongly NP-hard, then the part
scheduling problems associated with all V 2-cycles which have N < m+1
in an (m + 1)-machine cell are strongly NP-hard.

Proof. Consider an arbitrary V 2-cycle with CRM(πg,m+1), where the
cycle πg,m+1 has N < m+1 waiting times in an (m+1)-machine cell, m ≥
4. Let Mj1 , . . . ,MjN denote the machines at which πg,m+1 has waiting
times. Note that if N = 2, then 2 ≤ j1, j2 ≤ m, since otherwise the
MPS cycle with CRM(πg,m+1) would be a V 1-cycle. As in Appendix A,
let πg,m+1 = {M+

m+1, . . . ,M
−
p ,M−

q ,M−
r , . . . ,M+

m+1}.
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Since N < m + 1, there exists a machine Mq in πg,m+1, where
q ∈ {1, . . . ,m + 1}\{j1, . . . , jN }, without a waiting time. If N = 2,
then since m + 1 ≥ 5, there exists a machine Mq, q �= 1, q �= m + 1,
satisfying the above condition. Since the robot stays with the part be-
tween loading it on Mq and unloading it, we have r = q + 1. Thus,
M−

r−2 occurs between M+
m+1 and M−

p in πg,m+1. We remove M−
q from

πg,m+1 to obtain πg,m = {M+
m+1, . . . ,M

−
p ,M−

r , . . . ,M+
m+1}. We use πg,m

in constructing an appropriate sequence for an m-machine cell.

Consider an m-machine cell containing machines M1, . . . ,Mq−1, Mq+1,

. . . , Mm+1, in which Mq+1, . . . ,Mm+1 are reindexed as Mq, . . . ,Mm, re-
spectively. As a result of this reindexing, if N = 2, then 2 ≤ j1, j2 ≤
m − 1. Let πh,m denote a robot move sequence in that cell in which
the machines are loaded in the same sequence as in πg,m. From Sethi et
al. [142], that cycle is unique. First, we show that the MPS cycle with
CRM(πh,m) is a feasible V 2-cycle. Let Ms denote a machine at which
an Ēs state occurs in πg,m+1. Since there is no waiting time at Mq, it
follows that s �= q. Since Mr is empty and Mr−2 is occupied by a part
(where we let M0 = I) when activity M−

p is performed in πg,m+1, activ-
ity M−

r can be performed immediately after M−
p in πg,m. Thus, the MPS

cycle with CRM(πg,m) is a feasible cycle in which an Es state occurs at
Ms. Since πh,m has the same sequence of machine loadings as πg,m, it
is also feasible and it reaches the state Es at the machine corresponding
to machine Ms. Note that πh,m and πg,m+1 have the same number of
waiting times. Since (i) πh,m has an Es state and (ii) 2 ≤ j1, j2 ≤ m− 1
if N = 2, the MPS cycle with CRM(πh,m) is a V 2-cycle.

Using the condition in the statement of the lemma, we can prove the
strong NP-hardness of the part scheduling problem in the MPS cycle
with CRM(πg,m+1) by reduction from that associated with the MPS
cycle with CRM(πh,m). In any cycle in an (m + 1)-machine cell, the
cycle time C can be written as C = Z + W , where Z is a constant and
W is the total robot waiting time. Since Z is a constant, minimizing
C is equivalent to minimizing W . Given an arbitrary instance of the
part scheduling problem in the MPS cycle with CRM(πh,m), using data
p′i,j , i = 1, . . . , n, j = 1, . . . ,m, δ′, ε′, and the total robot waiting time
W ′, we construct an instance of the part scheduling problem in the MPS
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cycle with CRM(πg,m+1) as follows:

pi,j = p′i,j + Δj , i = 1, . . . , n, j = 1, . . . , q − 1;

pi,q = 0, i = 1, . . . , n;

pi,j = p′i,j−1 + Δj , i = 1, . . . , n, j = q + 1, . . . ,m + 1;

δ = δ′;

ε = ε′;

W = W ′,

where Δj denotes the difference between the sum of the total travel
time and the loading and unloading times from the loading of a part on
Mj until the robot returns to Mj in the (m + 1)-machine cell, and the
corresponding total time in the m-machine cell. Note that Δj can be
found in time O(m) for j = 1, . . . ,m; therefore the above construction
requires polynomial time.

We show that the robot waiting time at a machine (except Mq) for
a part Pσ(i) in πg,m+1 is equal to the waiting time at the correspond-
ing machine for that part in πh,m. Let the waiting time for part Pσ(i)

at Mj in πg,m+1 be wi
j = max{0, pσ(i),j − tij − W i

j}, where tij is the to-
tal robot activity (travel, loading and unloading) time from the loading
of part Pσ(i) on Mj until the robot returns to Mj , and W i

j is the to-
tal robot waiting time on all the machines during this interval. The
waiting time w′i

j′ on the corresponding machine Mj′ in πh,m is given by
w′i

j′ = max{0, p′σ(i),j′ − t′ij′ − W ′i
j′}, where the definitions of t′ij′ and W ′i

j′

are analogous to those of tij and W i
j , respectively. The definition of q

and that πh,m and πg,m+1 have the same sequence of machine loadings
imply that the waiting time for each part is zero at Mq in πg,m+1. Thus,
the number of robot waiting times in W ′i

j′ is the same as in W i
j . Now,

since tij = t′ij′ +Δj from the definition of Δj and pσ(i),j = p′σ(i),j′ +Δj by
construction, we have W ′i

j′ = W i
j and wi

j = w′i
j′ . Thus, the part schedul-

ing problems in MPS cycles with CRM(πg,m+1) and CRM(πh,m) are
equivalent.

Lemma 6.28 If the part scheduling problems associated with all V 2-
cycles which have N = m in an m-machine cell, m ≥ 4, are strongly
NP-hard, then the part scheduling problems associated with all V 2-cycles



Multiple-Part-Type Production: Single-Gripper Robots 263

which have N = m+2 in an (m+2)-machine cell are strongly NP-hard.

Proof. From the proof of Lemma 6.22, N is even in all V 2-cycles.
Therefore, we may assume that m is even. From Lemma 6.23, there
is a unique V 2-cycle in which N = m in an m-machine cell, where m

is even. Using data p′i,j , i = 1, . . . , n, j = 1, . . . ,m, δ′, ε′, and C ′, its
cycle time Th(σ) can be developed as follows: πh,m = {M−

m/2+1, M−
1 ,

M−
m/2+2, M−

2 , . . . , M−
m/2+j ,M

−
j , . . . , M−

m, M−
m/2, M+

m, M−
m/2+1}. This

gives T
m/2+1
hσ(i)σ(i+1) = (m+2)2

2 δ′ +(2m+2)ε′ +wi+1
1 + · · ·+wi+1

m/2 +wi
m/2+1 +

· · ·+wi
m, where wi+1

j = max{0, p′σ(i+1),j −wi
m/2+j − (m+2)δ′−2ε′}, j =

1, . . . ,m/2;wi
m/2+1 = max{0, p′σ(i),m/2+1 − (m + 2)δ′ − 2ε′}. For j =

1, . . . ,m/2−1, wi
m/2+j+1 = max{0, p′σ(i),m/2+j+1−wi+1

j −(m+2)δ′−2ε′}.
Therefore,

T
m/2+1
h(σ) =

n∑

i=1

T
m/2+1
hσ(i)σ(i+1)

= n[
(m + 2)2

2
δ′ + (2m + 2)ε′]

+
n∑

i=1

(wi+1
1 + · · · + wi+1

m/2 + wi
m/2+1 + · · · + wi

m).

Given an arbitrary instance of the above part scheduling problem in an
m-machine cell, we construct an instance of the equivalent problem in
an (m + 2)-machine cell as follows:

pi,1 = 0, i = 1, . . . , n;

pi,j+1 = p′i,j , i = 1, . . . , n, j = 1, . . . ,m/2;

pi,m/2+2 = 0, i = 1, . . . , n;

pi,m/2+j+2 = p′i,j , i = 1, . . . , n, j = 1, . . . ,m/2;

δ = (m + 2)δ′/(m + 4);

ε = ε′;

C = C ′ + (m + 2)δ′ + 4ε′.

The cycle time expression for the unique V 2-cycle with N = m+2 in an
(m+2)-machine cell, where (m+2) is even, can be developed as follows:
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T
m/2+2
hσ(i)σ(i+1) = (m+4)2

2 δ+(2m+6)ε+wi+1
1 + · · ·+wi+1

m/2+1 +wi
m/2+2 + · · ·+

wi
m+2, where wi+1

j = max{0, pσ(i+1),j −wi
m/2+j+1−(m+4)δ−2ε}, j =

1, . . . ,m/2+1; wi
m/2+2 = max{0, pσ(i),m/2+2−(m+4)δ−2ε}; wi

m/2+j+2 =
max{0, pσ(i),m/2+j+2 − wi+1

j − (m + 4)δ − 2ε}, j = 1, . . . ,m/2.

It is easy to verify that the part scheduling problem associated with
the unique V 2-cycle in which N = m in the m-machine cell is equivalent
to that associated with the unique V 2-cycle in which N = m + 2 in the
(m + 2)-machine cell.

6.6.4 Class W : NP-Hard Non-TSP Problems
We show that if a CRM sequence satisfies neither Condition C1 nor

Condition C3, in which case we call the corresponding MPS cycle a W -
cycle, then the part scheduling problem associated with that cycle is
strongly NP-hard. In this kind of cycle, the robot frequently leaves a
part to be processed at a machine to perform other activities in the cell.
This creates many waiting times and, more importantly, those waiting
times are recursive.

It is interesting to note that there is no analog of Lemma 6.23 for
W -cycles. That is, the same selection of N waiting times can appear
in more than one W -cycle. For example, the W -cycles with CRM(π2,3)
and CRM(π6,3), as described in Section 6.3.1, both have waiting times
on all the machines in a three-machine cell.

Hall et al. [76] show that the part scheduling problems in MPS cycles
with CRM(π2,3) and CRM(π6,3) are strongly NP-hard (Section 6.5).
The following two results relate the complexity of part scheduling prob-
lems in cells with m machines to that in larger cells. We consider two
cases. The first case, which requires that N < m+1 in the larger cell, is
studied in Lemma 6.29. The second case, which requires that N = m+1
in the larger cell, is studied in Lemma 6.30.

Lemma 6.29 If the part scheduling problems associated with all W -
cycles in an m-machine cell, m ≥ 3, are strongly NP-hard, then the part
scheduling problems associated with all W -cycles which have N < m+1
in an (m + 1)-machine cell are strongly NP-hard.

Proof. First, consider the case N = 1. Here the robot leaves a part,
after loading it, only at one machine Mq. Since the robot remains with
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the part at all other machines, it can never return and pick up the part
at Mq. Consequently, there are no CRM sequences in which N = 1.
The contrapositive of Corollary 6.1 implies that there is no W -cycle
in which N = 2. We therefore consider an arbitrary W -cycle with
CRM(πg,m+1), where πg,m+1 has N waiting times, 3 ≤ N < m +
1, in an (m + 1)-machine cell with m ≥ 3. Let Mj1 , . . . ,MjN de-
note the machines at which πg,m+1 has waiting times. Let πg,m+1 =
{M+

m+1, . . . ,M
−
p ,M−

q ,M−
r , . . . ,M+

m+1}. Since N < m + 1, there exists
a machine Mq in πg,m+1 without a waiting time, where q ∈ {1, . . . ,m +
1} \ {j1, . . . , jN }. Since the robot stays with the part between loading
it on Mq and unloading it, we must have r = q + 1. Thus, M−

r−2 will
occur between M+

m+1 and M−
p in πg,m+1. We remove M−

q from πg,m+1

to obtain sequence πg,m = {M+
m+1, . . . ,M

−
p ,M−

r , . . . ,M+
m+1}.

Now consider an m-machine cell containing machines M1, . . . ,Mq−1,

Mq+1, . . . ,Mm+1, in which Mq+1, . . . ,Mm+1 are re-indexed as Mq, . . . ,

Mm, respectively. Let πh,m denote the unique sequence in that cell in
which the machines are loaded in the same sequence as in πg,m. First, we
show that the MPS cycle with CRM(πh,m) is a feasible W -cycle. Since
the MPS cycle with CRM(πg,m+1) is a W -cycle, it does not contain an
Ēq state for any Mq. Since Mr is empty and Mr−2 is occupied by a part
(where we let M0 = I) when activity M−

p is performed in πg,m+1, M−
r

can be performed immediately after M−
p in πg,m. Thus, the MPS cycle

with CRM(πg,m) is a feasible cycle which does not contain the state
Ēq for any Mq, since the sequence of machine loadings on the available
machines is the same as in πg,m+1. Therefore, at each machine loading
in πg,m, there is at least one other machine which is occupied by a part.
Since πh,m has the same sequence of machine loadings as πg,m, it is also
feasible and does not contain an Ēq state for any Mq. Note that πh,m

and πg,m+1 have the same number of waiting times. Since πh,m does not
contain an Ēq state, an MPS cycle with CRM(πh,m) is a W -cycle.

The remainder of the proof is similar to that of Lemma 6.27.

Lemma 6.30 If the part scheduling problems associated with all W -
cycles which have N = m in an m-machine cell, m ≥ 3, are strongly
NP-hard, then the part scheduling problems associated with all W -cycles
which have N = m+1 in an (m+1)-machine cell are strongly NP-hard.
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Proof. Consider an arbitrary W -cycle with CRM(πg,m+1) in an (m+1)-
machine cell. The cycle belongs to one of of the following two types:

Type A: πg,m+1 contains the sequence of machine loadings M−
i ,M−

1 ,

M−
i+1 for some 2 ≤ i ≤ m + 1, where we let M−

m+2 = M+
m+1.

Type B: Otherwise.

We first consider an arbitrary Type B cycle πg,m+1 = {M+
m+1, . . . ,M

−
p ,

M−
1 , M−

r , . . . ,M+
m+1}, where r �= p + 1. We let q = 1 and remove

M−
1 from sequence πg,m+1 to obtain sequence πg,m = {M+

m+1, . . ., M−
p ,

M−
r , . . ., M+

m+1}. Now consider an m-machine cell containing machines
M2, . . . ,Mm+1, in which those machines are re-indexed as M1, . . . ,Mm,
respectively. Let πh,m denote the unique sequence in that cell in which
the machines are loaded in the same sequence as in πg,m and N = m.
Thus, πh,m = {M+

m, . . . , M−
p−1, M−

r−1, . . . , M+
m}. Since removing M−

1

from πg,m+1 will not create a sequence of the form {. . . ,M−
i ,M−

i+1, . . .}
(where we let M−

m+1 = M+
m), for some 1 ≤ i ≤ m, it follows that N = m

in πh,m. Since machine Mr−1 is occupied by a part and machine Mr

is free when machine Mp is loaded in πg,m+1, activity M−
r can be per-

formed immediately after M−
p in πg,m. Thus, πg,m is a feasible sequence.

Since πh,m has the same sequence of machine loadings as πg,m, it follows
that πh,m is also a feasible sequence. As in the proof of Lemma 6.29,
πh,m does not contain an Ēq state for any Mq and is thus a W -cycle with
N = m.

Consider an arbitrary cycle of Type A in an m′ machine cell, where
m′ ≥ 4. We consider two subtypes, which we denote by A1 and A2.
Type A1: m′ = 4.

Here we let m + 1 = 4 and provide a transformation to a cell with
m = 3 machines. From Appendix A, when m + 1 = 4, there are only
two W -cycles with the following CRM sequences:
π20,4 = {M+

4 , M−
4 , M−

2 , M−
1 , M−

3 , M+
4 },

π22,4 = {M+
4 , M−

3 , M−
2 , M−

4 , M−
1 , M+

4 }.
Let πg,m+1 : {M+

m+1, . . . , M−
p , M−

i , M−
1 , M−

i+1, M−
r , . . . , M+

m+1} be a
CRM sequence of the W -cycle in this class. The following transformation
obtains a feasible MPS cycle with N = m in an m-machine cell. Let
q = i. Thus, q = 2 in π20,4 and q = 4 in π22,4. We remove M−

q from
sequence πg,m+1 and interchange the positions of M−

q+1 and M−
1 (where

we let M−
m+2 = M+

m+1 in π22,4). Then the following sequence is obtained:
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πg,m : {M+
m+1, . . . , M−

p , M−
i+1, M−

1 , M−
r , . . . , M+

m+1}. Now consider an
m-machine cell containing machines M1, . . . ,Mq−1,Mq+1, . . . ,Mm+1 in
which Mq+1, . . . ,Mm+1 are re-indexed as Mq, . . . ,Mm, respectively. Let
πh,m denote the unique sequence in that cell in which the machines are
loaded in the same sequence as in πg,m. When activity M−

p is performed
in πg,m+1, the following conditions must be satisfied. First, machines
Mi and Mi+1 must be free. Second, machine Mi−1 must be occupied
by a part. Also, by definition of πg,m+1, p �= i − 1. Finally, note that
in both π20,4 and π22,4 we have r �= 2. Under these conditions, the
machine loading sequence {M−

p ,M−
i+1,M

−
1 ,M−

r } is feasible in πg,m, and
thus πg,m is a feasible sequence. Furthermore, since it has the same
sequence of machine loadings as πg,m, the sequence πh,m is also feasible.
As above, πh,m does not contain an Ēq state for any Mq, and is thus a
W -cycle with N = m. Using the above transformation and the following
construction, MPS cycles with CRM(π6,3) and CRM(π2,3) are reducible
to MPS cycles with CRM(π20,4) and CRM(π22,4), respectively.

Consider an arbitrary instance of the part scheduling problem of Type
A1 or Type B associated with an MPS cycle with CRM(πh,m). Using
data p′i,j , i = 1, . . . , n, j = 1, . . . ,m, δ′, and ε′, and the total robot wait-
ing time W ′, we construct an instance of the part scheduling problem
associated with an MPS cycle with CRM(πg,m+1) as follows:

pi,j = p′i,j + Δj , i = 1, . . . , n, j = 1, . . . , q − 1;

pi,q = 0, i = 1, . . . , n;

pi,j = p′i,j−1 + Δj , i = 1, . . . , n, j = q + 1, . . . ,m + 1;

δ = δ′;

ε = ε′;

W = W ′,

where Δj is defined in the proof of Lemma 6.27.
The remainder of the proof is similar to that of Lemma 6.27.

Type A2: m′ > 4.

Here we let m + 2 = m′ and provide a transformation to a cell with
m machines. Let πg,m+2 : {M+

m+2, . . . , M−
p , M−

i , M−
1 , M−

i+1, M−
r ,

. . . , M+
m+2}. By definition, p �= i − 1 and r �= i + 2. Here, we need

the following transformation to obtain a feasible cycle with N = m in
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the m-machine cell. Let q = i. We remove M−
i and M−

1 from sequence
πg,m+2 to obtain πg,m = {M+

m+2, . . . , M−
p , M−

i+1, M−
r , . . . , M+

m+2}. Con-
sider an m-machine cell with machines M2, . . . ,Mq−1,Mq+1, . . . ,Mm+2,
in which M2, . . . ,Mq−1 are re-indexed as M1, . . . ,Mq−2, respectively,
and Mq+1, . . . ,Mm+2 are re-indexed as Mq−1, . . . ,Mm, respectively. Let
πh,m denote the unique sequence in that cell in which the machines are
loaded in the same sequence as in πg,m. When activity M−

p is performed
in πg,m+2, the following conditions must be satisfied. First, machines
Mi and Mi+1 must be free. Second, machine Mi−1 must be occupied by
a part. Under these conditions, activity M−

i+1 can be performed imme-
diately after M−

p in πg,m; thus πg,m is a feasible sequence. Furthermore,
since it has the same sequence of machine loadings as πg,m, the sequence
πh,m is also feasible. As above, πh,m does not contain an Ēq state for any
Mq. Thus, an MPS cycle with CRM(πh,m) is a W -cycle with N = m.

Consider an arbitrary instance of the part scheduling problem of Type
A2 associated with the MPS cycle with CRM(πh,m). Using data p′i,j , i =
1, . . . , n, j = 1, . . . ,m, δ′, and ε′, and the total robot waiting time W ′,
we construct an instance of the part scheduling problem associated with
the MPS cycle with CRM(πg,m+2) as follows:

pi,1 = 0, i = 1, . . . , n;

pi,j = p′i,j + Δj , i = 1, . . . , n, j = 2, . . . , q − 1;

pi,q = 0, i = 1, . . . , n;

pi,j = p′i,j−1 + Δj , i = 1, . . . , n, j = q + 1, . . . ,m + 2;

δ = δ′;

ε = ε′;

W = W ′,

where Δj is defined in the proof of Lemma 6.27.
The remainder of the proof is similar to that of Lemma 6.27.

6.6.5 Overview
The main result of our analysis now follows.

Theorem 6.15 In an m-machine robotic cell with m ≥ 4, there are m!
CRM sequences. Out of these
a. one U -cycle defines a trivially solvable part scheduling problem,
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b. (2m− 3) V 1-cycles define a part scheduling problem which is solvable
in time O(n log n),
c. �m

2 �∑

t=1

(
m

2t

)

− 2m + 3

V 2-cycles define part scheduling problems that can be formulated as TSPs
and that are strongly NP-hard, and
d.

m! − 1 −
�m

2 �∑

t=1

(
m

2t

)

W -cycles define part scheduling problems that, in general, cannot be for-
mulated as TSPs (in the sense defined in Section 6.6.3) and that are
strongly NP-hard.

Proof. Sethi et al. [142] show that there are m! 1-unit robot move se-
quences in an m-machine cell (Chapter 3, Appendix A).
a. Follows from Lemma 6.19.
b. Follows from Lemma 6.20.
c. The (⇒) part of Lemma 6.21 shows that the associated part schedul-
ing problems can each be formulated as a TSP. The proof of NP-hardness
is by induction on m. Lemmas 6.25 and 6.26 provide the basis for m = 4.
Lemma 6.27 provides the induction step for N < m + 1. Since by as-
sumption there exists a V 2-cycle with N = m, and since from the proof
of Lemma 6.22 N is even in all V 2-cycles, there are no V 2-cycles with
N = m + 1. Lemma 6.28 provides the induction step for N = m + 2.
The number of cycles follows from Lemmas 6.20 and 6.24.
d. The lack of a TSP formulation follows from the (⇐) part of
Lemma 6.21. The proof of NP-hardness is by induction on m. Sec-
tion 6.5 provides the basis for m = 3. Lemma 6.29 provides the induc-
tion step for N < m + 1. Lemma 6.30 provides the induction step for
N = m+1. The number of cycles follows from the formula for the total
number of cycles in Sethi et al. [142] and from the earlier parts of the
theorem.

Note that Sethi et al. [142] (resp., Hall et al. [75, 76]) resolve the com-
plexity of the part scheduling problems associated with the two (resp.,
six) CRM sequences in a two- (resp., three-) machine cell (Sections 6.2,
6.3.2, and 6.5). Therefore, those results and Theorem 6.15 resolve the
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complexity of the part scheduling problems associated with all CRM se-
quences in any cell. It is interesting to note, as discussed in Section 6.6.3,
that there are no V 2-cycles in cells with fewer than four machines. This
is the reason why the basis of the induction proof uses m = 4 in part c
and m = 3 in part d of Theorem 6.15.

As an illustration of Theorem 6.15, for the m! = 24 robot move se-
quences in a four-machine cell (Appendix A), one U -cycle has an asso-
ciated part scheduling problem that is schedule independent; seven V -
cycles have associated part scheduling problems that can be formulated
as TSPs (of these, five are V 1-cycles that are solvable by the Gilmore-
Gomory algorithm and the remaining two are strongly NP-hard V 2-
cycles); and 16 W -cycles have strongly NP-hard associated part schedul-
ing problems without a natural TSP structure (in the sense defined in
Section 6.6.3).

Finally, it is interesting to note that the recognition versions of the
part scheduling problems associated with the NP-hard V 2- and W -cycles
are in the class NP, since given a part schedule, both the cycle time and
the robot waiting times can be calculated using linear programming.

6.7 Heuristics for Three-Machine Problems

For three machine cells, this section designs and tests simple heuristics
for those part scheduling problems (corresponding to CRM sequences)
that are intractable. This then enables us to develop a heuristic for
a completely general three-machine cell (Section 6.7.4). Extensions of
these ideas to larger cells are provided in Section 6.8.

6.7.1 A Heuristic Under the Sequence CRM(π2)

We develop a heuristic for problem RF3|(free,A,MP,CRM(π2))|μ. We
showed in Section 6.4 that for n even, the MPS cycle with CRM(π2)
consisting of a single MPS defines a steady state. However, for n odd,
two MPS cycles are needed to define a steady state. Consequently, we let
v denote the number of parts in a cycle in a steady state, where v = 2n if
n is odd and v = n if n is even. For n odd, a given part schedule σ means
a schedule of 2n parts in which the first n parts corresponding to an MPS
have the same order as the last n parts. Given σ, let T̄2(σ) (resp., T2(σ))
denote the average cycle time for the production of v (resp., n) parts
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under the MPS cycle with CRM(π2). Note that T2(σ) = n
v T̄2(σ). We now

propose a heuristic for this problem. The idea behind the procedure is
developed from the following cycle time expression, which is derived in
detail in Section 6.3.1:

T̄2(σ) =
v∑

i=1

T 2
2σ(i+1)σ(i+2)

= vα2 +
v∑

i=1

max{β2, a2σ(i+2), b2σ(i+1) − wi
3} +

v∑

i=1

wi
3,

where wi
3 =max{0, c2σ(i)−max{β2, a2σ(i+1)−max{0, b2σ(i)−β2−wi−1

3 }}},
b2σ(v+1) = b2σ(1), a2σ(v+1) = a2σ(1), a2σ(v+2) = a2σ(2), α2 = 2δ2 +2δ3−η,
β2 =

∑8
i=1 εi + 2δ1 + 2δ2 + 2δ3 + 2δ4 − 3η, a2σ(i) = aσ(i) +

∑4
i=1 εi +

∑8
i=7 εi + 2δ1 + 2δ4 − 2η, b2σ(i) = bσ(i) +

∑6
i=3 εi, and c2σ(i) = cσ(i) +

∑2
i=1 εi +

∑8
i=5 εi + 2δ1 + 2δ4 − 2η.

For v = 2n, since the schedule of the first n parts is the same as
the last n parts, the heuristic considers only the schedule of the first
n parts. Note that if wi

3 = 0 for i = 1, . . . , v, then T̄2(σ) = vα2 +
∑v

i=1 max{β2, a2σ(i+2), b2σ(i+1)}. The application of the Gilmore-Gomo-
ry algorithm in Step 2 of the following heuristic usually provides a good
solution when the values of wi

3 are either zero or very small. Alter-
natively, if wi

3 = c2σ(i) − β2 for i = 1, . . . , v, then T̄2(σ) = vα2 +
∑v

i=1 max{β2 + wi
3, a2σ(i+2) + wi

3, b2σ(i+1)}. In this case, the application
of the Gilmore-Gomory algorithm in Step 3 (ignoring the a2σ(i+2) + wi

3

term in the expression for T̄2(σ)) usually provides a good solution. Fi-
nally, Step 3 compares the two solutions and selects the one with the
smaller cycle time.

Heuristic MPS(π2)cycle
Step 0: Given ai, bi, ci, 1 ≤ i ≤ n, δ1, . . . , δ4, ε1, . . . , ε8, and η.

α2 = 2δ2 + 2δ3 − η,
β2 =

∑8
i=1 εi + 2

∑4
i=0 δi − 3η.

Step 1: For i = 1, . . . , n, find the following:
a2i = ai + ε1 + ε2 + ε3 + ε4 + ε7 + ε8 + 2δ1 + 2δ4 − 2η,

b2i = bi + ε3 + ε4 + ε5 + ε6,
c2i = ci + ε1 + ε2 + ε5 + ε6 + ε7 + ε8 + 2δ1 + 2δ4 − 2η.

Step 2: ei = a2i, fi =max{β2, b2i}, i = 1, . . . , n.
Apply the Gilmore-Gomory algorithm to the
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instance {ei, fi}, i = 1, . . . , n, obtain the part schedule σ, and
calculate T2(σ). If T2(σ) < Zh, then Zh =T2(σ), σ

∗ = σ.
Step 3: ei = b2i, fi =max{β2, c2i}, i = 1, . . . , n.

Apply the Gilmore-Gomory algorithm to the
instance {ei, fi}, i = 1, . . . , n, obtain the part schedule σ′, and
calculate T2(σ′). If T2(σ′) < Zh, then Zh = T2(σ), σ

∗ = σ′.
Terminate.

We now develop a mixed integer programming formulation for the prob-
lem. We use this formulation to test the performance of the heuristic.
From Hall et al. [75],

T̄2(σ) = v(α2 + β2) +
3∑

q=1

v∑

i=1

wi
q,

where wi+2
1 =max{0, a2σ(i+2)−wi+1

2 −β2}, wi+1
2 =max{0, b2σ(i+1)−wi

3−
β2}, wi

3 =max{0, c2σ(i) − wi+1
1 − β2}, and v(α2 + β2) is constant for a

given problem instance.
Based on these equations, we can write a formulation associated with

RF3|(free,A,MP,CRM(π2))|μ as the following mixed integer program-
ming problem (MIP2):

min
∑3

q=1

∑v
i=1 wi

q

subject to:
∑n

j=1 Xij = 1, i = 1, . . . , n,
∑n

i=1 Xij = 1, j = 1, . . . , n,
Xij = Xi+n,j+n, i = 1, . . . , n, j = 1, . . . , n,
wi

1 ≥
∑n

j=1 a2jXij − β2 − wi−1
2 , i = 2, . . . , v + 1,

wi
2 ≥

∑n
j=1 b2jXij − β2 − wi−1

3 , i = 2, . . . , v + 1,
wi

3 ≥
∑n

j=1 c2jXij − β2 − wi+1
1 , i = 1, . . . , v,

wi
q ≥ 0, i = 1, . . . , v, q = 1, 2, 3,

Xij ∈ {0, 1}, i = 1, . . . , v, j = 1, . . . , v.

Here Xij = 1 if job j is scheduled in the ith position of the schedule
σ and Xij = 0 otherwise, i = 1, . . . , v, j = 1, . . . , v. Also, in the above
formulation, we let w1

1 = wv+1
1 and w1

2 = wv+1
2 , and when v = 2n we let

a2j = a2,j+n, b2j = b2,j+n and c2j = c2,j+n, j = 1, . . . , n. The third set of
constraints is not relevant when v = n.
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6.7.2 A Heuristic Under the Sequence CRM(π6)

We develop a heuristic for problem RF3|(free,A,MP,CRM(π6))|μ.
Note that, whether n is even or odd, the MPS cycle with CRM(π6)
consisting of a single MPS is sufficient to define a steady state (Sec-
tion 6.4). The procedure is based on the following cycle time expression
derived in Section 6.3.1:

T6(σ) =
n∑

i=1

T 1
6σ(i+1)σ(i+2)

= nα6 +
n∑

i=1

max{β6, c6σ(i) − wi+1
1 , b6σ(i+1), a6σ(i+2)},

where wi+1
1 = max{0, a6σ(i+1) − max{β6, b6σ(i), c6σ(i−1) − wi

1}}, α6 = 0,
β6 = 2δ1 + 4δ2 + 4δ3 + 2δ4 +

∑8
i=1 εi − 4η, a6σ(i) = aσ(i) + 2δ1 + 2δ2 +

∑4
i=1 εi − η, b6σ(i) = bσ(i) + 2δ2 + 2δ3 +

∑6
i=3 εi − η, and c6σ(i) = cσ(i) +

2δ3 + 2δ4 +
∑8

i=5 εi − η.
Note that T6(σ) = nα6 +

∑n
i=1 max{β6, c6σ(i) − wi

1, b6σ(i+1), a6σ(i+2)}.
The use of the Gilmore-Gomory algorithm in Step 2 (ignoring the c6σ(i)−
wi+1

1 term in T6(σ)) usually provides a good solution when the values of
wi

1 are large compared to the values of ci. Step 3 usually provides a
good solution when the values of wi

1 are relatively small. Finally, Step 3
compares the two solutions and selects the one with the smaller cycle
time.

Heuristic MPS(π6)cycle
Step 0: Given ai, bi, ci, 1 ≤ i ≤ n, δ1, . . . , δ4, ε1, . . . , ε8, and η.

α6 = 0,
β6 = 2δ1 + 4δ2 + 4δ3 + 2δ4 +

∑8
i=1 εi − 4η.

Step 1: a6i = ai + ε1 + ε2 + ε3 + ε4 + 2δ1 + 2δ2 − η, i = 1, . . . , n,
b6i = bi + ε3 + ε4 + ε5 + ε6 + 2δ2 + 2δ3 − η, i = 1, . . . , n,
c6i = ci + ε5 + ε6 + ε7 + ε8 + 2δ3 + 2δ4 − η, i = 1, . . . , n.

Step 2: ei = a6i, fi =max{β6, b6i}, i = 1, . . . , n.
Apply the Gilmore-Gomory algorithm to the
instance {ei, fi}, i = 1, . . . , n, obtain the part schedule σ, and
calculate T6(σ). If T6(σ) < Zh, then Zh =T6(σ), σ

∗ = σ.
Step 3: ei = b6i, fi =max{β6, c6i}, i = 1, . . . , n.

Apply the Gilmore-Gomory algorithm to the
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instance {ei, fi}, i = 1, . . . , n, obtain the part schedule σ′, and
calculate T6(σ′). If T6(σ′) < Zh, then Zh = T6(σ′), σ

∗ = σ′.
Terminate.

We now develop a mixed integer programming formulation for prob-
lem RF3|(free,A,MP,CRM(π6))|μ in order to test the performance of
the heuristic. Given a part schedule σ, the cycle time for the produc-
tion of n parts under the MPS cycle with CRM(π6) is given by (see
Section 6.3.1)

T6(σ) = n(α6 + β6) +
3∑

q=1

n∑

i=1

wi
q,

where wi+2
1 =max{0, a6σ(i+2)−β6−wi+1

2 −wi
3}, wi+1

2 =max{0, b6σ(i+1)−
β6−wi

3}, and wi
3 =max{0, c6σ(i)−β6−wi+1

1 }. Note that n(α6+β6) is con-
stant for a given problem instance. Based on these, we can formulate
RF3|(free,A,MP,CRM(π6))|μ as the following mixed integer program-
ming problem (MIP6):

min
∑3

q=1

∑n
i=1 wi

q

subject to:
∑n

j=1 Xij = 1, i = 1, . . . , n,
∑n

i=1 Xij = 1, j = 1, . . . , n,
wi

1 ≥
∑n

j=1 a6jXij − β6 − wi−1
2 − wi−2

3 , i = 3, . . . , n + 2,
wi

2 ≥
∑n

j=1 b6jXij − β6 − wi−1
3 , i = 2, . . . , n + 1,

wi
3 ≥

∑n
j=1 c6jXij − β6 − wi+1

1 , i = 1, . . . , n,
wi

q ≥ 0, q = 1, 2, 3, i = 1, . . . , n,
Xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n.

Here Xij = 1 if job j scheduled in the ith position of the schedule σ

and Xij = 0 otherwise, i = 1, . . . , n, j = 1, . . . , n. Also, in the above
formulation, we let w1

1 = wn+1
1 , w2

1 = wn+2
1 , and w1

2 = wn+1
2 .

6.7.3 Computational Testing
MIP2 and MIP6 were solved optimally using CPLEX. We consider the

following data as fixed: εi = 1.0, i = 1, . . . , 8, δi = 4.0, i = 1, . . . , 4, and
η=0. Thus, a2σ(i) = aσ(i) + 22.0, b2σ(i) = bσ(i) + 4.0, c2σ(i) = cσ(i) + 22.0,
a6σ(i) = aσ(i) + 20.0, b6σ(i) = bσ(i) + 20.0, and c6σ(i) = cσ(i) + 20.0. The
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processing times were integers between 0 and 100 generated uniformly
and independently. Thus, pmax = 100 is the maximum possible process-
ing time on a machine.

Let Cq (resp., Cq
H) denote the cycle time delivered by MIP2 or MIP6

(resp., MPS(π2)cycle or MPS(π6)cycle) for instance q. Table 6.3 com-
pares the performance of MPS(π2)cycle and MIP2 on 150 randomly
generated instances of the problem. The fourth column, Opt., shows
the number of optimal solutions (out of 50) found by MPS(π2)cycle
in each row. The next two columns show the mean relative percent-
age error (MRPE) and worst (i.e., maximum) relative percentage error
(WRPE), respectively, of MPS(π2)cycle over the 50 problem instances
in each row. These are defined as MRPE = 100

∑50
q=1(C

q
H − Cq)/50Cq

and WRPE = 100max1≤q≤50{(Cq
H − Cq)/Cq}.

Tables 6.3 and 6.4 compare the performance of MPS(π2)cycle and
MPS(π6)cycle with the optimal solutions obtained by solving MIP2 and
MIP6, respectively. The fifth column shows the mean relative percent-
age error (MRPE1), compared to the MIP2 solution in Table 6.3, or
the MIP6 solution in Table 6.4, averaged over all 50 instances in each
row. The sixth column, MRPE2, shows this average calculated only over
instances where an optimal solution was not found. The next column,
WRPE, shows the worst relative percentage error found among the 50
instances in each row. As the size of the problem instance increases, the
number of optimal solutions found by the heuristic decreases and the
mean relative percentage error increases at a modest rate. It is interest-
ing to note, however, that the worst relative percentage error shows no
evidence of a similar behavior.

n pmax No. Opt. MRPE1 MRPE2 WRPE

5 100 50 18 2.528 3.950 10.884

7 100 50 2 4.792 4.991 13.808

10 100 50 0 5.539 5.539 10.729

Table 6.3. Performance of MPS(π2)cycle vs. MIP2.
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n pmax No. Opt. MRPE1 MRPE2 WRPE

5 100 50 30 1.686 4.215 12.266

7 100 50 9 3.854 4.700 11.796

10 100 50 4 4.405 4.788 11.334

Table 6.4. Performance of MPS(π6)cycle vs. MIP6.

6.7.4 Heuristics for General Three-Machine
Problems

The problem studied here is a general three-machine robotic cell
(RF3|(free,A,MP,cyclic-n)|μ). Thus, an optimal solution is identified
over all possible robot move sequences. In Section 6.5, we showed that
the recognition version of this problem is strongly NP-complete. Con-
sequently, it is unlikely that we can find an optimal solution, even for
instances of modest sizes. However, we provide a reasonably effective
heuristic. Recall that the six 1-unit robot move sequences, π1, . . . , π6,
that are available in this cell define a part scheduling problem that we
already know how to solve, either optimally by the results of Hall et
al. [75] or heuristically using MPS(π2)cycle and MPS(π6)cycle. We be-
gin by identifying fast (polynomial-time) heuristics for the part schedul-
ing problem in two MPS cycles, each of which has a robot move sequence
which is composed of three 1-unit sequences. To do so, we provide
new formulations for these problems. The robot move sequences used
are combinations of the 1-unit sequences for which the part schedul-
ing problem is efficiently solvable, as discussed in Section 6.3.2. Let
RM(π1, π3, π4) denote the robot move sequence in an MPS that com-
bines 1-unit sequences π1, π3, and π4. Note that the MPS cycle obtained
in the following theorems may be given by a non-CRM sequence.

Theorem 6.16 Problem RF3|(free,A,MP,RM(π1, π3, π4))|μ can be for-
mulated as a TSP (in the sense defined in Section 6.6.3).

Proof. Note that E = (∅, ∅,Ω,M−
3 ) is a common state to each of

the sequences π1, π3, and π4. Starting from this common state, where
machines M1 and M2 are free and the robot has just completed the
loading of part Pσ(i) onto M3, the robot has three ways in which it can
produce a single part and return to the same state. These consist of
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following one of the three robot move sequences π1, π3, or π4. The
derivation of the following results is similar to that in Section 6.3.1, but
uses different starting states.

If π1 is used, we have

T 3
1σ(i)σ(i+1) = α1 + cσ(i) + aσ(i+1) + bσ(i+1),

where α1 = 2
∑4

i=1 δi +
∑8

i=1 εi − 3η.
Alternatively, if π3 is used, we have

T 3
3σ(i)σ(i+1) = α3 + max{β3 + aσ(i+1), b3σ(i+1), aσ(i+1), c3σ(i)},

where α3 = 2δ3+ε5+ε6−η, β3 = 2
∑4

i=1 δi+
∑4

i=1 εi+ε7+ε8−2η, b3σ(i) =
bσ(i) + 2δ1 + 2δ2 +

∑4
i=1 εi − η, and c3σ(i) = cσ(i) + 2δ4 + ε7 + ε8.

Finally, if π4 is used, we have

T 3
4σ(i)σ(i+1) = α4 + bσ(i+1) + max{β4, c4σ(i), a4σ(i+1)},

where α4 = 2δ2+2δ3+ε3+ε4+ε5+ε6−2η, β4 = 2δ1+2δ2+2δ3+2δ4+ε1+
ε2+ε7+ε8−3η, a4σ(i) = aσ(i)+2δ1+ε1+ε2, and c4σ(i) = cσ(i)+2δ4+ε7+ε8.

Thus, the cycle time expression becomes

Tσ =
n∑

i=1

hσ(i)σ(i+1),

where hσ(i)σ(i+1) =min{T 3
1σ(i)σ(i+1), T

3
3σ(i)σ(i+1), T

3
4σ(i)σ(i+1)} can be in-

terpreted as the distance between city i to city (i + 1) in a traveling
salesman problem.

We next consider problem RF3|(free,A,MP,RM(π1, π4, π5))|μ.

Theorem 6.17 Problem RF3|(free,A,MP,RM(π1, π4, π5))|μ can be for-
mulated as a TSP (in the sense defined in Section 6.6.3).

Proof. Note that E = (∅,Ω, ∅,M−
2 ) is a common state to each of

the sequences π1, π4, and π5. Starting from this common state, where
machines M1 and M3 are free and the robot has just completed the
loading of part Pσ(i) onto M2, the robot has three ways in which it can
produce a single part and return to the same initial state. These consist
of following one of the three sequences π1, π4, or π5. The following
results can be developed as in Section 6.3.1.
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If π1 or π4 is used, we have an expression similar to that in the proof
of Theorem 6.16, i.e.,

T 2
1σ(i)σ(i+1) = α1 + bσ(i) + cσ(i) + aσ(i+1),

T 2
4σ(i)σ(i+1) = α4 + bσ(i) + max{β4, c4σ(i), a4σ(i+1)}.

Alternatively, if π5 is used, we have

T 2
5σ(i)σ(i+1) = α5 + max{β5 + cσ(i), b5σ(i) + cσ(i), a5σ(i+1)},

where α5 = 2δ2 + ε3 + ε4 − η, β5 = 2δ1 + 2δ2 + 2δ3 + 2δ4 + ε1 + ε2 + ε5 +
ε6 + ε7 + ε8 − 2η, a5σ(i) = aσ(i) + 2δ1 + ε1 + ε2, and b5σ(i) = bσ(i) + 2δ3 +
2δ4 + ε5 + ε6 + ε7 + ε8 − η.

Thus, the cycle time expression becomes

Tσ =
n∑

i=1

hσ(i)σ(i+1),

where hσ(i)σ(i+1) =min{T 2
1σ(i)σ(i+1), T

2
4σ(i)σ(i+1), T

2
5σ(i)σ(i+1)}.

For RF3|(free,A,MP, RM(π1, π4, π5))|μ, it is trivial to find the best
robot move sequence for a given schedule σ of parts at the input hopper
I. Each consecutive pair of parts Pσ(i) and Pσ(i+1) is processed using
the quickest of the sequences π1, π4, and π5.

To solve both of the above asymmetric traveling salesman problems, a
computationally effective heuristic GENIUS, described by Gendreau et
al. [65], was used. We now summarize the heuristic for RF3|(free,A,MP,
cyclic-n)|μ. It uses the solution procedures described earlier for all six
1-unit sequences, as well as heuristic solutions to the traveling salesman
problems defined by the cycles in the proofs of Theorems 6.16 and 6.17.
The smallest cycle time delivered by any of these is chosen. The heuristic
thus solves the problem over robot move sequences that generate part
scheduling problems which are polynomially solvable or have an effective
heuristic. The steps of the heuristic are as follows.
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Heuristic ThreeCell

Step 1: Use the algorithms in Section 6.3.2 to solve RF3|(free,A,MP,
CRM (π1))|μ (resp., RF3|(free,A,MP, CRM(π3))|μ, RF3|(free,A, MP,
CRM(π4))|μ, RF3|(free,A,MP,CRM(π5))|μ). Let σ1 (resp., σ3, σ4, σ5)
denote the associated part schedule and C1 (resp., C3, C4, C5) represent
its cycle time.
Step 2: Use heuristic MPS(π2)cycle for RF3|(free,A,MP,CRM(π2))|μ,
and heuristic MPS(π6)cycle for RF3|(free,A,MP,CRM(π6))|μ. Let σ2

(resp., σ6) denote the associated part schedule and C2 (resp., C6) repre-
sent its cycle time.
Step 3: Use GENIUS to solve RF3|(free,A,MP,RM(π1, π3, π4))|μ and
RF3|(free,A,MP,RM(π1, π4, π5))|μ. Let σ′ (resp., σ′′) denote the asso-
ciated part schedule and C ′ (resp., C ′′) represent its cycle time.
Step 4: Compare the cycle times and select the best schedule. That is,
find C∗ = min{C1, C2, C3, C4, C5, C6, C

′, C ′′}, and its associated robot
move sequence and part schedule. Terminate.

To assess its performance, ThreeCell was tested on randomly gener-
ated problems. The instances were generated using the following four
data sets:
data1: εi = 1.0, i = 1, . . . , 8; δi = 4.0, i = 1, . . . , 4; η = 0.0. The process-
ing times are integers between 20 and 100 generated uniformly and in-
dependently.
data2: εi, δi, η are the same as in data1, and the processing times are
integers between 10 and 50 generated uniformly and independently.
data3: εi, δi, η are the same as in data1, and the processing times are
integers between 0 and 10 generated uniformly and independently.
data4: εi, δi, η are the same as in data1, and the processing times are
integers between 0 and 5 generated uniformly and independently.

The performance of ThreeCell was tested against a lower bound on
the optimal cycle time computed as follows.

Procedure LBCT3(ai, bi, ci, i = 1, . . . , n; δ1, δ2, δ3, δ4, η)
Step 1: Call MinCycle(ai, bi, i = 1, . . . , n; δ1, δ2, δ3, η),

LB1 = C∗,
Call MinCycle(bi, ci, i = 1, . . . , n; δ2, δ3, δ4, η),
LB2 = C∗,
LB3 =

∑n
i=1 ai + n(ε1 + ε2 + ε3 + ε4 + 2δ1 + 2δ2 − η),
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LB4 =
∑n

i=1 bi + n(ε3 + ε4 + ε5 + ε6 + 2δ2 + 2δ3 − η),
LB5 =

∑n
i=1 ci + n(ε5 + ε6 + ε7 + ε8 + 2δ3 + 2δ4 − η),

LB6 = nα1 +
∑n

i=1 min{(ai + bi + ci), (min2≤j≤3{δj}
+ min{ai + bi, ai + ci, bi + ci}), min2≤j≤3{2δj}
+ min{ai, bi, ci}),min2≤j≤3{3δj})}.

Step 2: LB = max{LB1, LB2, LB3, LB4, LB5, LB6}.

In LBCT3, LB1 (resp., LB2) is the cycle time delivered by MinCycle(ai,
bi, i = 1, . . . , n; δ1, δ2, δ3, η) (resp., MinCycle(bi, ci, i = 1, . . . , n; δ2,
δ3, δ4, η)). LB3, LB4, and LB5 are the processing times of parts at
M1, M2, and M3, respectively, plus the minimum robot activity times
necessary to load a new part onto the machine (resp., M1, M2, or M3)
after completion of the previous part on the same machine. Similarly,
LB6 is another lower bound on the optimal cycle time (see Kamoun et
al. [90] for a proof).

The results of testing ThreeCell against LBCT3 on 200 random in-
stances generated using data1 (resp., data2, data3, data4) appear in
Table 6.5 (resp., Tables 6.6, 6.7, 6.8). Much of the information there
follows the format of Tables 6.3 and 6.4; pmin and pmax denote the
lower and upper intervals of the range of processing times, respectively.
In addition, column 7 (resp., 8, 9) shows O6 (resp., O′, O′′), the number
of instances for which the best cycle time found is given by C6 (resp.,
C ′, C ′′). When the robot activity times are small compared to process-
ing times, as is the case in data1 and data2, sequence π6 dominates.
However, when robot activity times are large compared to processing
times, as in data3 and data4, the two MPS cycles composed of three 1-
unit sequences provide better solutions. Heuristic solutions are typically
closer to our lower bound in the latter case.

n pmin pmax No. MRPE WRPE O6 O′ O′′

5 20 100 50 4.258 11.264 50 0 0

10 20 100 50 8.647 14.167 50 0 0

20 20 100 50 10.616 16.726 50 0 0

50 20 100 50 12.651 17.040 50 0 0

Table 6.5. Performance of ThreeCell vs. LBCT3 Using data1.
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n pmin pmax No. MRPE WRPE O6 O′ O′′

5 10 50 50 8.981 14.179 50 0 0

10 10 50 50 11.384 14.760 50 0 0

20 10 50 50 12.804 14.943 50 0 0

50 10 50 50 14.697 16.615 50 0 0

Table 6.6. Performance of ThreeCell vs. LBCT3 Using data2.

n pmin pmax No. MRPE WRPE O6 O′ O′′

5 0 10 50 2.568 5.998 0 25 25

10 0 10 50 2.763 5.158 0 24 26

20 0 10 50 2.752 4.137 0 26 24

50 0 10 50 3.152 3.998 0 28 22

Table 6.7. Performance of ThreeCell vs. LBCT3 Using data3.

n pmin pmax No. MRPE WRPE O6 O′ O′′

5 0 5 50 0.000 0.000 0 50 50

10 0 5 50 0.000 0.000 0 50 50

20 0 5 50 0.000 0.000 0 50 50

50 0 5 50 0.000 0.000 0 50 50

Table 6.8. Performance of ThreeCell vs. LBCT3 using data4.

6.8 Heuristics for Large Cells
There are exactly m! potentially optimal 1-unit robot move sequences

πj,m, j = 1, . . . ,m!, in an m-machine cell. Section 6.6 classifies the MPS
cycles formed by these CRM sequences according to the complexity of
their associated part scheduling problems as follows:
Class U : Schedule independent (i.e., trivially solvable).
Class V : Problems that can be formulated as a TSP.
Class W : Unary NP-hard, but do not have a natural TSP structure (in
the sense defined in Section 6.6.3).

We now illustrate how one can extend the ideas in heuristic ThreeCell
to a four-machine cell. A similar extension is also possible for cells with
more than four machines.
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Given a W -cycle, the following heuristic usually finds a good approxi-
mate solution.
Heuristic Wcycle
Step 1: Set j = 1 and m = 4.
Step 2: Set the processing times of all the parts on Mj equal to zero.
Consider the resulting cycle in a three-machine cell. The part schedul-
ing problem can be solved heuristically, if it is either CRM(π2,3) or
CRM(π6,3). Otherwise, it can be solved optimally in polynomial time.
Let σj and Cj , respectively, denote the part schedule and the corre-
sponding cycle time.
Step 3: Set j = j + 1. If j ≤ m, then go to Step 2.
Step 4: Output the heuristic cycle time C∗ = min1≤j≤m{Cj} and the
corresponding part schedule, σ∗. Terminate.

We now identify the MPS cycles in a four-machine cell in which the
part scheduling problem can be formulated as a TSP. These cycles are
combinations of the 1-unit robot move sequences for which the part
scheduling problem can be formulated as a TSP.

Theorem 6.18 Problem RF4|(free,A,MP,RM(π1, π4, π11, π14))|μ can
be formulated as a TSP (in the sense defined in Section 6.6.3).

Proof. Note that E = (∅, ∅, ∅,Ω,M−
4 ) is a state common to robot move

sequences π1,4, π4,4, π11,4, and π14,4. Starting from E, where machines
M1, M2, and M3 are free and the robot has just completed the loading of
part Pσ(i) on M4, the robot follows one of the four robot move sequences
π1,4, π4,4, π11,4, or π14,4.

The expressions for the times T 4
1σ(i)σ(i+1), T 4

4σ(i)σ(i+1), T 4
11σ(i)σ(i+1),

and T 4
14σ(i)σ(i+1) can be derived similarly to those in Section 6.3.1. Thus,

the cycle time expression becomes

Tσ =
n∑

i=1

hσ(i)σ(i+1),

where

hσ(i)σ(i+1) = min{T 4
1σ(i)σ(i+1), T

4
4σ(i)σ(i+1), T

4
11σ(i)σ(i+1), T

4
14σ(i)σ(i+1)}

can be interpreted as the distance between city i to city (i+1) in a TSP
formulation. Two similar results now follow.
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Theorem 6.19 Problem RF4|(free,A,MP,RM(π1, π13, π14, π17))|μ
can be formulated as a TSP, where
hσ(i)σ(i+1) = min{T 2

1σ(i)σ(i+1), T
2
13σ(i)σ(i+1), T

2
14σ(i)σ(i+1), T

2
17σ(i)σ(i+1)}.

Proof. The proof is similar to that of Theorem 6.18.

Theorem 6.20 Problem RF4|(free,A,MP,RM(π1, π9, π10, π11, π13,
π14))|μ can be formulated as a TSP, where hσ(i)σ(i+1) = min{T 3

1σ(i)σ(i+1),

T 3
9σ(i)σ(i+1), T 3

10σ(i)σ(i+1), T 3
11σ(i)σ(i+1), T

3
13σ(i)σ(i+1), T

3
14σ(i)σ(i+1)}.

Proof. The proof is similar to that of Theorem 6.18.

Remark 6.13 The part scheduling problems associated with any U -
or V -cycle can be formulated as a TSP (in the sense defined in Sec-
tion 6.6.3). All U - and V -cycles have an E∗

q state in which the robot
has just completed the loading of a part onto machine Mq and all other
machines are free. In a U -cycle, an E∗

q state occurs at each machine Mq,
1 ≤ q ≤ m, but in any V -cycle, it occurs at one or more machines from
M2, . . . ,Mm. To formulate an MPS cycle with combined 1-unit robot
move sequences as a TSP, each 1-unit sequence must have an E∗

q state on
the same machine Mq. We are interested in identifying maximal feasible
MPS cycles, i.e., those that allow as many combined 1-unit sequences
as possible, since they offer the greatest number of scheduling options
and thus dominate MPS cycles formed by CRM sequences associated
with the individual 1-unit sequences. It is easy to see that there exists
at least one V -cycle with an E∗

q state at any machine Mq, 2 ≤ q ≤ m.
The U -cycle can be combined with these V -cycles to create an MPS
cycle with E∗

q at any machine Mq, 2 ≤ q ≤ m. Since there are m − 1
such machines, there are m − 1 maximal combined cycles with a TSP
formulation in an m-machine robotic cell.

We now summarize our heuristic for RF4|(free,A,MP,cyclic-n)|μ. It uses
the solution procedures described earlier for all 24 1-unit sequences as
well as heuristic solutions to the TSPs in Theorems 6.18, 6.19, and 6.20.
The smallest cycle time is chosen. Thus, as before, we solve the problem
over robot move sequences that generate part scheduling problems that
are polynomially solvable or have an effective heuristic.
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Heuristic FourCell

Step 1: Let C1 denote the cycle time of any part schedule for the U -
cycle.
Step 2: Use the Gilmore-Gomory algorithm to solve the part scheduling
problems for all V 1-cycles. Let C2 denote the minimum cycle time.
Step 3: Use heuristic GENIUS by Gendreau et al. [65] to solve the part
scheduling problems for all V 2-cycles. Let C3 denote the minimum cycle
time.
Step 4: Use heuristic W cycle to solve the part scheduling problems for
all W -cycles. Let C4 denote the minimum cycle time.
Step 5: Use heuristic GENIUS to solve the problems defined in Theo-
rems 6.18, 6.19, and 6.20. Let C5 denote the minimum cycle time.
Step 6: Find C∗ = min{C1, C2, C3, C4, C5}, and its associated robot
move sequence and part schedule. Terminate.

The performance of FourCell can be tested against a lower bound on
the optimal cycle time computed using a procedure similar to LBCT3.
The development of heuristic FourCell from heuristic ThreeCell may be
seen as an induction step. The results of Section 6.6 provide a complete
complexity mapping for cells of any size and an understanding of how
robot move sequences proliferate when an extra machine is added to
the cell. By using this understanding, as illustrated above, Heuristic
FourCell can be extended to cells with any number of machines.

6.9 The Cell Design Problem

The cell design problem involves organizing several machines into
cells which are arranged in a serial production process with interme-
diate buffers. This is a Linked-Cell Manufacturing System, or L-CMS.
The major components of an L-CMS are the cells that are served either
by human operators or by robots. In discussing an L-CMS, Black and
Schroer [13] state: “The next generation of American factories (the fac-
tories with a future) will be designed with manufacturing and assembly
cells linked together with a pull system for material and information
control.” The following example is taken from Miller and Walker [122]:
“Massey Ferguson, the agricultural equipment manufacturer, installed a
flexible automation system to link together eight stand-alone chuckers,
shapers and shavers. The company chose Unimate robots after learn-
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ing that special loaders (special purpose automation) would cost more
in time and money than robots. . . . The advantages of the system are
at least 25% more productivity over the long term, as compared to a
manual method, and flexibility – it can be changed over rapidly to ac-
commodate four different sizes of pinion gears.” In this example, Massey
Ferguson used three robots to divide the eight machines into three cells,
as in Figure 6.26.

We consider two cell design problems that underlie the robot move
sequence and part scheduling issues considered earlier in this chapter.
The solution procedures use algorithms discussed earlier in this chapter.
In the first problem, we study how to divide the machines into cells that
will operate efficiently. In the second problem, we allow the existence of
finite capacity buffers, which may permit some rescheduling of parts be-
tween the cells. We then consider the problem of designing the smallest
possible buffers that allow the cycle time for the entire manufacturing
process to be minimum.

6.9.1 Forming Cells
Considered by itself, the cell formation problem is similar to the clas-

sical assembly line balancing problem (Hillier and Boling [84], Dar-El
and Rubinovitch [43]), for which a variety of effective procedures are
available. In the line balancing problem, a set of tasks with precedence
relations are assigned to a certain number of workstations such that the
maximum work load assigned to a workstation is minimized. In the
cell formation problem, machines with linear precedence relations are
assigned to cells so that the maximum cycle time of a cell is minimized,
subject to the constraint that the number of machines assigned to a cell
is bounded. This bound is equal to the maximum number of machines
that the robot can serve in a cell. For a given cell design problem, the
number of cells is fixed and is equal to the number of robots. The cell
formation problem is much more complicated because the cycle time of
a cell depends on robot move sequence and part scheduling issues that
must be addressed simultaneously. Thus, it is unlikely that optimal so-
lutions to the overall problem can be found for data sets of industrial
size. This suggests the use of heuristic methods.
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To illustrate, we propose two such procedures that effectively parti-
tion the machines into two and three-machine cells. These procedures
use Improved MinCycle (Section 6.2) and ThreeCell (Section 6.7.4) as
subroutines. Let Γ denote the set of all possible partitions of the ma-
chines into two-machine and three-machine cells. For forming large cells,
methods that schedule robotic cells with four or more machines (see Sec-
tion 6.8) can also be used in the procedures below.

We now describe the heuristic CellDesign1 where the chosen partition
ρ∗, the part schedule in each cell σ∗, and the robot move sequence in
each cell are found by heuristically minimizing the cycle time of each cell
individually. This procedure is appropriate when complete rescheduling
of parts between the cells is possible. This may require large buffers
between the cells.

Procedure CellDesign1
Step 1: T ∗ = ∞.
Step 2: For each partition ρ ∈ Γ, do

Let h2 (resp., h3) denote the number of RF2

(resp., RF3) cells in ρ.
Using MinCycle, solve the h2 RF2 cells for σi

with cycle times Ti, i = 1, . . . , h2.
Using ThreeCell, solve the h3 RF3 cells for σi

with cycle times Ti, i=h2 + 1, . . . , h2 + h3.
T̄ =max1≤i≤h2+h3{Ti}.
If T̄ < T ∗, then

σ∗ = (σ1, . . . , σh2+h3).
T ∗ = T̄ .
ρ∗ = ρ.

End If
End
Terminate.

Procedure CellDesign2, which follows, is suitable when no reschedul-
ing of parts between the cells is possible. For each candidate partition
and common part schedule, the best cycle time for each cell is obtained
among all the robot move sequences for which the part scheduling prob-
lem is efficiently solvable (i.e., heuristic ThreeCell is used for m = 3;
algorithm Improved Mincycle is used for m = 2). The schedule that
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minimizes the largest cycle time of any cell, and thus minimizes the cy-
cle time of the L-CMS, is a solution to the problem for a given partition.
The partition chosen is the one that provides the minimum cycle time for
the L-CMS. It is important to note that while CellDesign1 is used for a
less constrained problem than CellDesign2, it may produce a larger cycle
time since both procedures offer approximate solutions. The example in
Section 6.9.3 illustrates this point.

Procedure CellDesign2
Step 1: T ∗ = ∞.
Step 2: For each partition ρ ∈ Γ, do

Let h2 (resp., h3) denote the number of RF2

(resp., RF3) cells in ρ.
Let h3 denote the number of RF3 cells in ρ.
Using MinCycle, solve the h2 RF2 cells for σi

with cycle times Ti, i = 1, . . . , h2.
Using ThreeCell, solve the h3 RF3 cells for σi

with cycle times Ti, i = h2 + 1, . . . , h2 + h3.
For i = 1, . . . , h2 + h3, do

Solve all the cells using part schedule σi,
giving cycle time T̂j , j = 1, . . . , h2 + h3.
T̄ =max1≤j≤h2+h3{T̂j}.
If T̄ < T ∗, then

σ∗ = σi.
T ∗ = T̄ .
ρ∗ = ρ.

End If
End

End

6.9.2 Buffer Design
If all the buffer capacities between the cells are large enough to resched-

ule and to feed cells without any starvation at the input of each cell, then
the part scheduling problem is solved for each of the R cells by finding
(locally) optimal schedules σ1, . . . , σR, and the corresponding robot move
sequences.
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We now consider the case where rescheduling of parts between the
cells is not possible. If σ1 = σ2 = · · · = σR, then this common schedule
is optimal for the overall problem. Otherwise, CellDesign2 solves the
overall problem R number of times by imposing on all the cells the
schedule σi, i = 1, . . . , R, and obtaining a best robot move sequence for
each cell for each fixed σi. This procedure requires making tradeoffs in
the part scheduling problem in one cell so as not to enter another cell
with a part schedule that would generate a poor performance in that
cell. The schedule σ∗ found by CellDesign2 is a feasible solution to the
problem where rescheduling is not allowed. To avoid unnecessary buffer
build up, which is expensive in inventory holding cost, it is important
to equalize the cycle time at all the cells. This can be achieved, for
example, by increasing the values of the robot travel times in those cells
that have a cycle time smaller than the maximum cycle time (T ∗).

Even assuming that no rescheduling of parts between the cells is pos-
sible, a buffer may still be needed between the cells. This could happen
if the cell data differ between two consecutive cells such that the interval
between the instants at which two parts leave a cell is different from the
interval between the instants at which they enter the next cell. We illus-
trate how by taking this into account, the required buffer sizes between
the cells can be determined.

The following procedure finds the smallest buffer sizes between the
cells that allow the cycle time for the overall problem to equal T ∗. The
basic idea of the procedure is to find the starting and completion times
of parts by considering each cell independently and using the completion
time of the first part P1 in σ∗ as a time reference (Step 1). Since the
completion time of a part at one cell can be greater than the starting time
of the same part in the next cell, we may need to delay the starting times
of parts in later cells to avoid starvation at the cell input, at the expense
of increasing the buffer size (Step 2). We form a set fs = {fs1, . . . , fs2n}
that contains completion times and start times of all jobs in σ∗ in the
two adjacent cells q and q + 1, respectively, for 1 ≤ q ≤ R− 1. First, we
schedule the elements of fs in nondecreasing order. We then check each
element in that order to see whether it is a completion time in cell q or
a start time in cell q + 1. If the entry is a completion time, we increase
the buffer size by one unit, otherwise we decrease it by one unit. In the
former case, we check if we have reached a new maximum value for the
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buffer size (Step 3). We use the following notation:
ftσ(i)(q): the time the part scheduled in position i leaves cell q,
stσ(i)(q): the time the part scheduled in position i enters cell q,
maxbo(q): the maximum size of the buffer located between cells q and
q + 1,
bo: buffer counter,
T 0

σ(i)σ(i+1): the time between the pick up of part Pσ(i) and the pick up
of part Pσ(i+1) at I, using a robot move sequence,
Tm+1

σ(i)σ(i+1): the time between the drop off of part Pσ(i) and the drop off
of part Pσ(i+1) at O, using a robot move sequence.

We will specify the robot move sequence when the cycle time expres-
sions are developed for T 0

σ(i−1)σ(i) and Tm+1
σ(i−1)σ(i) for each cell. They

are required for the following procedure and are derived below. The
following procedure illustrates the determination of the buffer size re-
quirement between cell q and cell q + 1, for q = 1. The procedure for
q = 2, . . . , R − 1, is similar.

Derivation of T 0
σ(i−1)σ(i), T m+1

σ(i−1)σ(i) for Procedure Buffersize

Case 1. If cell q includes three machines, we have following subcases:

Case 1.1. If sequence CRM(π1) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = +α1 + aσ(i) + bσ(i) + cσ(i), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = +α1 + aσ(i−1) + bσ(i−1) + cσ(i−1), i = 2, . . . , n.

Case 1.2. If sequence CRM(π2) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = α2 + β2 + wi

2(q) + wi+1
1 (q) + wi

3(q), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = α2 + β2 + wi−2

2 (q) + wi−1
1 (q) + wi−2

3 (q), i = 2, . . . , n.

Case 1.3. If sequence CRM(π3) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = α3 + β3 + wi

2(q) + aσ(i+1) + wi
3(q), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = α3 + β3 + aσ(i−1) + wi−2

3 (q) + wi−1
2 (q), i = 2, . . . , n.

Case 1.4. If sequence CRM(π4) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = α4 + β4 + wi

1(q) + bσ(i) + wi
3(q), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = α4 + β4 + wi−2

3 (q) + wi−1
1 (q) + bσ(i−1), i = 2, . . . , n.

Case 1.5. If sequence CRM(π5) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = α5 + β5 + wi

1(q) + wi
2(q) + cσ(i), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = α5 + β5 + wi−2

2 (q) + cσ(i−2) + wi−1
1 (q), i = 2, . . . , n.

Case 1.6. If sequence CRM(π6) is used in cell q, then

T m+1
σ(i−1)σ(i)(q) = α6 + β6 + wi

2(q) + wi+1
1 (q) + wi

3(q), i = 2, . . . , n,

T 0
σ(i−1)σ(i)(q) = α6 + β6 + wi−3

3 (q) + wi−2
2 (q) + wi−1

1 (q), i = 2, . . . , n.

Case 1.7. If an MPS cycle with RM(π1, π3, π4) is used, then since analytical

expressions are not available, use a deterministic simulation

routine to find times T m+1
σ(i−1)σ(i)(q) and T 0

σ(i−1)σ(i)(q).
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Case 1.8. If an MPS cycle with RM(π1, π4, π5) is used, then since analytical

expressions are not available, use a deterministic simulation

routine to find times T m+1
σ(i−1)σ(i)(q) and T 0

σ(i−1)σ(i)(q).

Case 2. If cell q includes two machines using RM(π1, π2) (Section 6.2), we have the

following subcases:

Case 2.1. a′
σ(i) + b′σ(i−1) ≥ μ and a′

σ(i+1) + b′σ(i) ≥ μ

T m+1
σ(i−1)σ(i)(q) = ρ + μ + wi

1(q) + wi
2(q), i = 2, . . . , n.

Case 2.2. a′
σ(i−1) + b′σ(i−2) ≥ μ and a′

σ(i) + b′σ(i−1) ≥ μ

T 0
σ(i−1)σ(i)(q) = ρ + max{μ, b′σ(i−2), a

′
σ(i−1)}.

Case 2.3. a′
σ(i) + b′σ(i−1) ≤ μ and a′

σ(i+1) + b′σ(i) ≤ μ

T m+1
σ(i−1)σ(i)(q) = ρ + a′

σ(i) + b′σ(i), i = 2, . . . , n.

Case 2.4. a′
σ(i−1) + b′σ(i−2) ≤ μ and a′

σ(i) + b′σ(i−1) ≤ μ

T 0
σ(i−1)σ(i)(q) = ρ + a′

σ(i−1) + b′σ(i−1).

Case 2.5. a′
σ(i) + b′σ(i−1) ≥ μ and a′

σ(i+1) + b′σ(i) ≤ μ

T m+1
σ(i−1)σ(i)(q) = 2δ2 + 2δ3 + ε3 + ε4 + ε5 + ε6 − η + wi

1(q) + bσ(i),

i = 2, . . . , n.

Case 2.6. a′
σ(i−1) + b′σ(i−2) ≥ μ and a′

σ(i) + b′σ(i−1) ≤ μ

T 0
σ(i−1)σ(i)(q) = 2δ1 + 4δ2 + 4δ3 + ε1 + ε2 + ε3 + ε4 + 2ε5 + 2ε6 -

3η + wi
1(q) + wi−1

2 (q) + bσ(i), i = 2, . . . , n.

Case 2.7. a′
σ(i) + b′σ(i−1) ≤ μ and a′

σ(i+1) + b′σ(i) ≥ μ

T m+1
σ(i−1)σ(i)(q) = 4δ1 + 4δ2 + 2δ3 + 2ε1 + 2ε2 + ε3 + ε4 + ε5 + ε6.

−3η + wi
2(q) + aσ(i), i = 2, . . . , n

Case 2.8. a′
σ(i−1) + b′σ(i−2) ≤ μ and a′

σ(i) + b′σ(i−1) ≥ μ

T 0
σ(i−1)σ(i)(q) = 2δ1 + 2δ2 + ε1 + ε2 + ε3 + ε4 − η + aσ(i),

i = 2, . . . , n.

Procedure Buffersize

Step 1: For q = 1 do

ftσ(1)(q) = 0, stσ(1)(q + 1) = 0,

ftσ(i)(q) = ftσ(i−1)(q) + T m+1
σ(i−1)σ(i),

stσ(i)(q + 1) = stσ(i−1)(q + 1) + T 0
σ(i−1)σ(i),

If ftσ(i)(q) ≤ stσ(i)(q + 1), i = 1, . . . , n, then go to Step 3.

End

Step 2: If there exists a part i such that ftσ(i)(q) > stσ(i)(q + 1), then

Find max1≤i≤n{ftσ(i)(q) − stσ(i)(q + 1)},
For j = 1, . . . , n do

stσ(j)(q + 1) = stσ(j)(q + 1) + max1≤i≤n{ftσ(i)(q) − stσ(i)(q + 1)}.
End

End If

Step 3: ft = {ftσ(1)(q), . . . , ftσ(n)(q)}, st = {stσ(1)(q + 1), . . . , stσ(n)(q + 1)},
fsl = ftσ(l)(q), l = 1, . . . , n,

fsn+l = stσ(l)(q + 1), l = 1, . . . , n,
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Reindex such that fs1 ≤ . . . ≤ fs2n, and j = 1, i = 1, bo = 0, maxbo(r) = 0,

For l = 1, . . . , 2n, do

If fsl = ftσ(j)(q), then

bo = bo + 1, j = j + 1.

End If

If bo > maxbo(q), then

maxbo(r) = bo.

End If

If fsl = stσ(i)(q + 1), then

bo = bo − 1, i = i + 1.

End If

End

A similar procedure can be developed for CellDesign1, where a dif-
ferent schedule is used in each of the cells. The starting times and
completion times are computed for each part-type in the same order in
which the parts are produced in the cell. However, the starting times of
parts in cell q + 1 are delayed by max

1≤s≤k,1≤u≤rs

{fts,u(q) − sts,u(q + 1)},
where fts,u(q) (resp., sts,u(q)) denotes the time at which the uth part
of type Ps enters (resp., leaves) cell q, s = 1, . . . , k, u = 1, . . . , rs.

6.9.3 An Example
Using a randomly generated problem instance, we demonstrate how

the above heuristics can be applied to obtain a good cell design. Consider
the problem of designing an L-CMS that uses eight machines to process
six part-types. The processing times and production ratios of these parts
are given in Table 6.9. In this example, as described by Hall et al. [75],
we assume that three robots are available to organize the machines into
three cells in which the travel time between any two consecutive locations
(of machines or buffers) equals δ, i.e., δi = δ. The data for the robots are
as follows: εi = 1.0, δi = 2.0, i = 1, . . . , 8, η = 0.0. We assume that the
limited reach of the robots restricts the number of machines in any cell
to be no more than three. Therefore, there are only three possible ways
of partitioning the machines into three cells: ρ1 = (2, 3, 3), ρ2 = (3, 2, 3),
and ρ3 = (3, 3, 2), where ρ1 = (h, i, j) denotes a partition in which an
h-machine cell is followed by an i-machine cell, and then by a j-machine
cell.
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Part-Type M1 M2 M3 M4 M5 M6 M7 M8 ri

P1 10 3 2 4 2 18 35 37 12

P2 50 18 38 8 30 16 27 19 1

P3 35 16 9 39 29 23 20 13 26

P4 33 19 10 14 10 29 20 19 1

P5 1 8 2 23 31 35 17 15 7

P6 5 20 6 30 21 14 7 11 4

Table 6.9. An Instance of the Cell Design Problem with m = 8 and k = 6.

We use algorithms Improved Mincycle and ThreeCell to find cycle
times for each cell, assuming that we allow complete rescheduling be-
tween the cells. That is, there exists between each consecutive pair of
cells a buffer of capacity large enough to feed the cells without starva-
tion. The solution delivered by CellDesign1 is ρ2 in Table 6.10 and has a
cycle time of 2083, which represents an improvement of 7.1% and 6.7%
over the cycle times of partitions ρ1 and ρ3, respectively. The solution
delivered by CellDesign2 is an optimal solution to the above cell design
problem, and it has the same partition, ρ2, in Table 6.11. However, the
cycle time has decreased to 2082 because of the change in the schedule
of parts in Cell 1, which is no longer the bottleneck cell. The improve-
ment of the cycle time in this case over other partitions or schedules
ranges from 1.4% to 14.8%. To obtain the appropriate buffer design, it
is essential to equalize the cycle times of Cells 1 and 3 to 2082. This
can be achieved by using δ1 = 2.1667 in Cell 1, δ1 = 2.5527 in Cell 3,
and keeping the values of all other δi unchanged. The necessary buffer
capacities required between Cells 1 and 2 and between Cells 2 and 3
delivered by Buffersize are 7 parts for both buffers.

6.9.4 Computational Testing
Procedures CellDesign1 and CellDesign2 were tested on randomly

generated problems. The performance of these procedures was com-
pared against a lower bound on the optimal cycle time which was found
using the following procedure. Recall that ai (resp., bi, ci) denotes the
processing time of part i on machine M1 (resp., M2,M3) for the cell
design problem, i = 1, . . . , n.



294 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Cell Partition Cell Sequence used Cycle time

1 π1, π2 1859.0

ρ1=(2,3,3) 2 π6 2230.0

3 π6 2043.0

1 π6 2083.0

ρ2=(3,2,3) 2 π1, π2 2082.0

3 π6 2043.0

1 π6 2083.0

ρ3=(3,3,2) 2 π6 2222.0

3 π1, π2 1796.0

Table 6.10. Results for CellDesign1 on the Example in Table 6.9.

Procedure LBCD(ai, bi, ci, i = 1, . . . , n, δ1, δ2, δ3, δ4, η)
Step 1: For each partition ρ ∈ Γ, do

For r = 1, . . . , R, do
If cell r is a two-machine cell, then

Call MinCycle(ai, bi, i = 1, . . . , n, δ1, δ2, δ3, η),
LB(r) = C∗.

End If
If cell r is a three-machine cell, then

Call LBCT3(ai, bi, ci, i = 1, . . . , n, δ1, δ2, δ3, δ4, η),
LB(r) = LB.

End If
End
LBρ = max1≤r≤R{LB(r)}.

End
Step 2: LB

′
= minρ∈Γ{LBρ}.

The results of testing CellDesign1 (resp., CellDesign2) on 10 randomly
generated problem instances each from data1, data2, data3, and data4
appear in Table 6.12 (resp., Table 6.13). As in Section 6.9.3, we have
eight machines that are being divided into three cells. Much of the
information follows the format of Tables 6.3 and 6.4. In addition, in
column 5 (resp., column 6) we provide MRPI (resp., HRPI), the mean
relative percentage improvement (resp., the highest relative percentage
improvement), computed over the 10 instances, relative to the cycle time
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of the worst partition and schedule considered in the procedure. Since
the errors shown in Tables 6.12 and 6.13 are computed relative to a
lower bound, the actual heuristic performance relative to the optimal
cycle time may be better than that suggested by the values shown here.
The schedules obtained in CellDesign1 and CellDesign2 may be improved
further by employing a neighborhood search.

We conclude this chapter with a brief discussion of the results for
multiple-part scheduling problems in no-wait robotic cells. For m = 2

Cell Partition Optimized Cell Cell Sequence used Cycle time

1 π1, π2 1859.0

ρ1=(2,3,3) 1 2 π6 2390.0

3 π6 2083.0

1 π1, π2 1922.0

ρ1=(2,3,3) 2 2 π6 2230.0

3 π6 2040.0

1 π1, π2 1913.0

ρ1=(2,3,3) 3 2 π6 2249.0

3 π6 2043.0

1 π6 2083.0

ρ2=(3,2,3) 1 2 π1, π2 2134.0

3 π6 2032.0

1 π6 2065.0

ρ2=(3,2,3) 2 2 π1, π2 2082.0

3 π6 2040.0

1 π6 2068.0

ρ2=(3,2,3) 3 2 π1, π2 2111.0

3 π6 2043.0

1 π6 2083.0

ρ3=(3,3,2) 1 2 π6 2252.0

3 π1, π2 1812.0

1 π6 2065.0

ρ3=(3,3,2) 2 2 π6 2222.0

3 π1, π2 1802.0

1 π6 2065.0

ρ3=(3,3,2) 3 2 π6 2252.0

3 π1, π2 1796.0

Table 6.11. Results for CellDesign2 on the Example in Table 6.9.
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n Data Set No. MRPE WRPE MRPI HRPI

50 data1 10 13.551 16.489 1.583 3.996

50 data2 10 15.381 17.115 1.314 3.056

50 data3 10 3.409 4.383 0.217 1.038

50 data4 10 0.000 0.000 0.581 1.266

Table 6.12. Performance of CellDesign1 vs. LBCD.

n Data Set No. MRPE WRPE MRPI HRPI

50 data1 10 16.470 18.763 5.695 9.111

50 data2 10 16.045 16.961 2.925 3.769

50 data3 10 3.660 4.541 1.645 2.672

50 data4 10 0.000 0.000 0.581 1.266

Table 6.13. Performance of CellDesign2 vs. LBCD.

(problem RF2|(no-wait,E,MP,CRM)|μ), the part scheduling problem in
an MPS cycle with CRM(π2) can be solved using the Gilmore-Gomory
algorithm (Agnetis [2]). For m = 3, the part scheduling problem in
an MPS cycle with CRM(π1) is trivial. The part scheduling prob-
lems in MPS cycles with CRM(π3), CRM(π4), and CRM(π5) can be
solved by the Gilmore-Gomory algorithm, and those with CRM(π2) and
CRM(π6) are strongly NP-hard (Agnetis and Pacciarelli [3]). These are
further elaborated in Chapter 9.



Chapter 7

MULTIPLE-PART-TYPE PRODUCTION:
DUAL-GRIPPER ROBOTS

We examine robotic cells with dual-gripper robots that process lots
containing different types of parts. We use notation and many of the
concepts defined in Chapters 4 and 6. As in Chapter 4, we consider addi-
tive travel-time cells that are circular with the input (I) and output (O)
buffers at a common location. We focus on obtaining an optimal MPS
cycle within a class of robot move sequences, called CRM sequences
(Chapter 6). In Section 7.1, we show how to derive, for a given part
schedule, the cycle time expressions for CRM sequences. We show that
for a two-machine robotic cell there exist 13 potentially optimal robot
move sequences. Section 7.2 is devoted to the complexity status of the
problem. We prove that the general problem of multiple-part scheduling
in a two-machine robotic cell served by a dual-gripper robot is strongly
NP-hard. In particular, we demonstrate that the recognition versions
of the part scheduling problem for six of the 13 potentially optimal ro-
bot move sequences are strongly NP-complete. For the remaining seven
sequences, an optimal part schedule can be found in polynomial time.
In Section 7.3, we consider a special case of the problem for which we
identify a robot move sequence that delivers the minimal MPS cycle
time. This variant arises often in practice and reflects possibly the most
common case in real-world robotic systems. We develop a heuristic for
the six NP-hard problems in Section 7.4. The worst-case performance
bound of the heuristic is established in Section 7.4.1. In Section 7.5, we
propose a heuristic to solve the general problem in a two-machine robotic
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cell and discuss some computational experience. In Section 7.6, we do a
comparative computational study to quantify the productivity improve-
ment effected by a dual-gripper cell over a single-gripper cell. Section 7.7
solves the general m-machine problem by extending the heuristic for the
two-machine problem and evaluates its performance.

As in Chapter 4, the times associated with the robot movements are
as follows:

δ: The time taken by the robot to travel between two consecutive
machines Mj−1 and Mj , 1 ≤ j ≤ m + 1. The robot travel time be-
tween locations x and y via the shortest route is denoted by 	(x, y).
Thus, the travel-time of the robot from Mi to Mj is 	(Mi,Mj) =
	(Mj ,Mi) = δ × min {|i − j|,m + 1 − |i − j|}. For example, in a
seven-machine cell, 	(I/O,M1) = δ, 	(M1,M3) = 2δ, 	(M1,M7) = 2δ,
	(M3, I/O) = 3δ, 	(M5,M2) = 3δ, etc.

ε: The time taken by the robot to pick up/drop off a part at I/O or the
time taken by the robot to load/unload a part onto/from a machine.

θ: The gripper switching time. We assume that the time required for
the dual-gripper robot to reposition its grippers while traveling from
one machine to another (i.e., when there are two successive operations
executed on different machines and requiring different grippers) does
not exceed travel time of the robot between the machines. To put it
formally, let θ̄ be the time taken by a robot to switch its grippers while
traveling between machines. For all the problems considered in this
chapter, we assume that θ̄ ≤ δ. As in Chapter 4, the adequateness of
this assumption is governed primarily by its practical relevance.

We first focus on the problem of scheduling multiple part-types in
a two-machine robotic cell (m = 2). The objective of scheduling the
robotic cell under consideration is to find an MPS cycle with the mini-
mum cycle time. This requires a simultaneous determination of a part
schedule and a move sequence. In this chapter we focus on CRM se-
quences. We have two reasons to consider CRM sequences: first, they
are the easiest to implement and control, and second, (as will be seen
later) efficient cyclic solutions can be found for the part scheduling prob-
lem under CRM sequences.
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We now present the notation used for our analysis of two-machine
cells:

P = {P1, . . . , Pn}: a set of parts to be processed.

ak, bk: the processing times of part Pk on machines M1 and M2, respec-
tively. For cells with three or more machines, the processing time of
part Pk on machine Mj is denoted by pk,j .

σ = (σ(1), . . . , σ(n)): the schedule of parts of an MPS, with σ(i) = k

denoting that the ith part in the schedule σ is Pk.

aσ(j) (resp., bσ(j)) : the processing time of the jth part on machine M1

(resp., M2) in schedule σ.

R−
i (j, 0) (or R−

i (0, j)), i = 1, 2, 3, and j = 0, 1, 2, 3: the state in which
the robot has just finished loading a part onto Mi and has a part that
requires processing next on some machine Mj ; j = 0 (state R−

i (0, 0))
denotes that the robot does not hold any part.

R+
i (j, k), i = 1, 2, 3, j = 0, 1, 2, 3, and k = 0, 1, 2, 3: the state in
which the robot has just finished unloading a part from Mi, and
now holds parts that require processing next on machines Mj and
Mk, respectively; j = 0 (resp., k = 0) denotes that the robot has
only a part intended for Mk (resp., Mj). Note that either j = i + 1
or k = i + 1, and that j = k = 0 cannot occur.

Cu,v: vth 1-unit cycle under Case u, u = 1, 2, 3, 4 (see Chapter 4).

Su,v: The CRM sequence constructed from Cu,v (See Section 7.1).

T σ
u,v: The cycle time of an MPS cycle under the CRM sequence Su,v

subject to a part schedule σ = (σ(1), σ(2), . . . , σ(n)).

T σ
u,v = T

hσ(1)σ(2)
u,v +T

hσ(2)σ(3)
u,v + . . .+T

hσ(n)σ(1)
u,v , where T

hσ(i)σ(i+1)
u,v is the

elapsed time between the following two successive events in the MPS
cycle under the CRM sequence Su,v and the part schedule σ: (i) the
robot has just completed unloading part Pσ(i) from Mh, (ii) the robot
has just completed unloading part Pσ(i+1) from Mh, 0 ≤ h ≤ m + 1.

wi
j = wi

j(u, v;σ): The waiting time of the robot at machine Mj before
unloading part Pσ(i) from Mj for the MPS cycle corresponding to
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Su,v and σ. Our notation suppresses the dependence of wi
j on Su,v

and σ, since this dependence will be clear from the context.

T ∗
u,v: The optimal value of the cycle time T σ

u,v over the set of all possible
part schedules σ. Thus, for any schedule σ = (σ(1), σ(2), . . . , σ(n)),
we have T σ

u,v ≥ T ∗
u,v.

σ∗
u,v: A permutation that delivers the optimal value of T ∗

u,v, i.e., T ∗
u,v =

T
σ∗

u,v
u,v .

7.1 Two-Machine Cells: Undominated CRM
Sequences

We limit our search for a solution of RF 2
2 |(free,A,MP,cyclic-n)|μ to

CRM sequences. To achieve this, we identify undominated CRM se-
quences by showing that it is sufficient to consider only these cycles in
our search for optimality. To define CRM sequences more precisely, we
need to specify all 1-unit cycles defined in terms of robot move sequences.
Note that 1-unit cycles are defined in the context of single-part-type pro-
duction.

In our approach to construct CRM sequences, we are concerned with
robot move sequences associated with 1-unit cycles. A 1-unit cycle can
be specified by a sequence of the robotic cell states as described in Chap-
ter 4, e.g., the cycle C3,10 = {R+

2 (3, 2), R−
2 (3, 0), R−

3 (0, 0), R+
3 (1, 0),

R+
1 (1, 2), R−

1 (0, 2)}. Since this sequence of states uniquely defines the
required robot move sequence, we shall also use the notation C3,10 to de-
note the robot move sequence associated with the cycle. We denote by
Su,v the CRM sequence obtained from the 1-unit robot move sequence
Cu,v. Recall that a CRM sequence is a concatenation of n identical 1-
unit robot move sequences. That is, Su,v is a robot move sequence in
which the sequence Cu,v is repeated exactly n times in succession. For
example, when n = 3, we can write

S3,10 = {C3,10, C3,10, C3,10}, or

S3,10 = {R+
2 (3, 2), R−

2 (3, 0), R−
3 (0, 0), R+

3 (1, 0), R+
1 (1, 2), R−

1 (0, 2),

R+
2 (3, 2), R−

2 (3, 0), R−
3 (0, 0), R+

3 (1, 0), R+
1 (1, 2), R−

1 (0, 2),

R+
2 (3, 2), R−

2 (3, 0), R−
3 (0, 0), R+

3 (1, 0), R+
1 (1, 2), R−

1 (0, 2)}.
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Note that for MPS production in a two-machine robotic cell, there are
52 possible CRM sequences corresponding to the 52 1-unit robot move
cycles described in Chapter 4. Let S0 = {Su,v, for all u and v} denote
the set of all 52 CRM sequences. Our first task is to demonstrate that
in the search for an optimal solution to RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ, it
is possible to eliminate all but 13 of the 52 CRM sequences. For each
of the 52 sequences, we first provide an expression to evaluate the cycle
time subject to a given part schedule σ.

The purpose here is to find an optimal solution, consisting of a CRM
sequence Su∗,v∗ from S0 and a part schedule σ∗, that has the minimum
cycle time. That is, T σ∗

u∗,v∗ ≤ T σ
u,v for each σ and each Su,v ∈ S0. We

now illustrate the derivation of the cycle time T σ
3,10. As the production

of MPS parts is cyclic, we define

aσ(n+i) = aσ(i), bσ(n+i) = bσ(i),

wn+i
j = wi

j for i = 1, . . . , n, j = 1, 2. (7.1)

Lemma 7.1 In RF 2
2 |(free,A,MP,S3,10)|μ, the cycle time of an MPS cy-

cle for a schedule σ is

T σ
3,10 = 2nε + nθ +

n∑

i=1

max{aσ(i+1) − wi−1
2 , bσ(i), α}, (7.2)

where
wi

2 = max{0, bσ(i) − max{α, aσ(i+1) − wi−1
2 }} (7.3)

and α = 3δ + 4ε + θ.

Proof. Recall that the cycle time T σ
u,v can be expressed as

T σ
u,v = T hσ(1)σ(2)

u,v + T hσ(2)σ(3)
u,v + . . . + T hσ(n)σ(1)

u,v ,

where the expression for T
hσ(i)σ(i+1)
u,v , the time elapsed between the un-

loading of part Pσ(i) and the next unloading of part Pσ(i+1) at Mh, can
be derived by adding the robot activity times between those two events
in an MPS cycle corresponding to Su,v and σ. Below, we demonstrate
this procedure for T

2σ(i)σ(i+1)
3,10 .

Begin in the state R+
2 (3, 2): the robot has just unloaded part Pσ(i)

from M2 and holds another part Pσ(i+1) to be processed on M2; part
Pσ(i+2) is being processed at M1. The robot switches to the other gripper
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(θ), loads part Pσ(i+1) at M2 (ε), moves to I/O (δ), drops off Pσ(i) at
I/O (ε), picks up Pσ(i+3) at I/O (ε), moves to M1 (δ), waits for Pσ(i+2)

to be finished at M1 (wi+2
1 ), unloads Pσ(i+2) from M1 (ε), switches to

the other gripper (θ), loads Pσ(i+3) at M1 (ε), moves to M2 (δ), waits
for Pσ(i+1) to be finished at M2 (wi+1

2 ), and unloads Pσ(i+1) from M2

(ε). Thus,
T

2σ(i)σ(i+1)
3,10 = 3δ + 6ε + 2θ + wi+2

1 + wi+1
2 ,

where

wi+2
1 = max{0, aσ(i+2) − 3δ − 4ε − θ − wi

2},
wi+1

2 = max{0, bσ(i+1) − 3δ − 4ε − θ − wi+2
1 }.

By simplifying the above two expressions for waiting times, we obtain

wi+1
1 = max{0, aσ(i+1) − max{α, bσ(i−1) − wi

1}},
wi

2 = max{0, bσ(i) − max{α, aσ(i+1) − wi−1
2 }}.

By substituting wi+2
1 + wi+1

2 into the expression for T
2σ(i)σ(i+1)
3,10 and by

using the steady-state conditions (7.1), the required expression for the
cycle time T σ

3,10 =
∑n

i=1 T
2σ(i)σ(i+1)
3,10 can be derived.

Following a similar procedure, we derive the cycle time expressions
for all CRM sequences corresponding to Cases 1–3 (see Chapter 4), and
present them in Tables 7.1–7.3. As discussed in Chapter 4, Case 4 need
not be considered because the two cycles belonging to this case are equiv-
alent to two cycles in Case 1. A CRM sequence Su1,v1 is said to be
dominated by another CRM sequence Su2,v2 , if T σ

u1,v1
≥ T σ

u2,v2
for each

part schedule σ. The last column in each of Tables 7.1–7.3 presents the
dominance relations. We note that there are only 13 undominated CRM
sequences (labeled as UD). Thus, in our search for optimality, we may
restrict our analysis to only the set S of these 13 CRM sequences. Thus,

S = {S1,1, S1,4, S1,13, S1,14, S1,15, S3,3, S3,4, S3,5, S3,6, S3,9,

S3,10, S3,11, S3,16}.
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7.2 Two-Machine Cells: Complexity
In this section we focus on the computational complexity of RF 2

2 |(free,
A,MP,Su,v ∈ S)|μ. We prove that the recognition version of the part
scheduling problem subject to a given CRM sequence is strongly NP-
complete when Su,v ∈ S̃ = {S3,4, S3,5, S3,6, S3,9, S3,10, S3,16} . For the
remaining seven sequences in S, an optimal part schedule can be found
in polynomial time.

We first observe that the family S̃ contains those undominated CRM
sequences for which the cycle time expressions (see Table 7.3) involve
the recursive calculations of robot waiting times. We first consider the
problem of calculating robot waiting times subject to a given part sch-
edule σ and a robot move sequence Su,v ∈S̃, and derive a set of useful
results for this problem via linear programming. We then show that for
a given part schedule σ, the cycle time T σ

u,v for an MPS cycle process-
ing under the CRM sequence Su,v ∈ S̃ can be calculated in polynomial
time. This is not obvious because of the recursive expressions for wi

2

in the corresponding cycle time expressions (Table 7.3). We then prove
that the recognition version of the part scheduling problem under any
CRM sequence Su,v ∈ S̃ is strongly NP-complete.

7.2.1 Cycle Time Calculation
In the proof of Lemma 7.1, we derived expressions to calculate the

robot waiting times for MPS parts processed under the CRM sequence
S3,10. Following the same procedure, one may easily obtain the cycle
time expressions for the remaining sequences in the set S̃.

Given a sequence Su,v ∈ S̃, define the values Zu,v, γa
u,v, and γb

u,v as in
Table 7.4. It is then easy to verify that for RF 2

2 |(free,A,MP,Su,v∈S̃)|μ,
the calculation of the cycle time T σ

u,v of MPS production in a given part
schedule σ admits the following formulation:

T σ
u,v = Zu,v +

n∑

i=1

(wi
1 + wi

2), (7.4)

wi
1 = max{0, aσ(i) − γa

u,v − wi−2
2 }, i = 1, . . . , n, (7.5)

wi
2 = max{0, bσ(i) − γb

u,v − wi+1
1 }, i = 1, . . . , n, (7.6)

wi
1 = wi±n

1 , wi
2 = wi±n

2 , i = 1, . . . , n. (7.7)
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We then note that equations (7.5) and (7.6) can be combined into a
set of 2n equations of the following form:

xi = max{0, βi − xi+1}, i = 1, . . . , 2n,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x2i−1 = wn+1−i
1 , x2i = wn−1−i

2 , i = 1, . . . , n,

β2i−1 = aσ(n+1−i) − γa
u,v, i = 1, . . . , n,

β2i = bσ(n−1−i) − γb
u,v, i = 1, . . . , n,

xi = xi±2n; βi = βi±2n, i = 1, . . . , 2n,

aσ(i) = aσ(i±n), bσ(i) = bσ(i±n), i = 1, . . . , n,

wi
1 = wi±n

1 , wi
2 = wi±n

2 , i = 1, . . . , n.

(7.8)

Consequently, expression (7.4) translates into T σ
u,v = Zu,v +

∑2n
i=1 xi. Let

r = 2n. The problem (7.5)-(7.7) of finding robot waiting times can then
be reformulated as follows:

Problem P1: Given a vector β ∈ Rr, find a vector x ∈ Rr satisfying
the following conditions:

xi = max{0, βi − xi+1}, i = 1, . . . , r, (7.9)

xr+i = xi, βr+i = βi.

Because the xi’s in equations (7.9) are nested, the issue of the existence
of a solution to Problem P1 must be examined. Consider the following
problem:

Problem P2 : Given a vector β ∈ Rr,find vectors x, s ∈ Rrsuch that

CRM Su,v Zu,v γa
u,v γb

u,v

S3,4 6nε + 4nδ + nθ 4ε + 4δ 2ε + 2δ + θ

S3,5 6nε + 6nδ 3ε + 4δ 3ε + 4δ

S3,6 6nε + 5nδ + nθ 4ε + 5δ 3ε + 3δ + θ

S3,9 6nε + 5nδ + nθ 3ε + 3δ + θ 4ε + 5δ

S3,10 6nε + 3nδ + 2nθ 4ε + 3δ + θ 4ε + 3δ + θ

S3,16 6nε + 4nδ + nθ 2ε + 2δ + θ 4ε + 4δ

Table 7.4. The Values of Zu,v, γa
u,v, and γb

u,v for a Given CRM Sequence Su,v ∈ S̃.
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xi + xi+1 − si = βi, i = 1, . . . , r, (7.10)

xi ≥ 0, si ≥ 0, i = 1, . . . , r, (7.11)

xisi = 0, i = 1, . . . , r, (7.12)

xr+i = xi, sr+i = si, βr+i = βi.

In Lemma 7.2, we establish the connection between Problems P1 and
P2.

Lemma 7.2 Let β ∈ Rr be any given vector. The vector x0 ∈ Rr is a
solution to Problem P1 iff the pair of vectors x0, s0 ∈ Rr is a solution
to Problem P2.

Proof. If part: Let x0
i , s0

i , i = 1, . . . , r, be a solution to Problem P2.
We aim to show that x0

i , i = 1, . . . , r, is a solution to Problem P1. We
have two possible cases: x0

i > 0 and x0
i = 0. Suppose that for some i, we

have x0
i > 0. Then, by (7.12) we have s0

i = 0, which by (7.10) implies
βi −x0

i+1 = x0
i . Since x0

i > 0, we obtain max{0, βi −x0
i+1} = βi −x0

i+1 =
x0

i , and thus condition (7.9) holds. Consider now the case when x0
i = 0,

for some i. Then from (7.10)–(7.11), we have s0
i = x0

i+1 − βi ≥ 0.
Therefore, βi − x0

i+1 ≤ 0, and so max{0, βi − x0
i+1} = 0. Thus, we have

x0
i = max{0, βi − x0

i+1}, and condition (7.9) holds.
Only if part : Assume that x0

i , i = 1, . . . , r, is a solution to Problem P1.
We define so

i = xo
i + xo

i+1 − βi, i = 1, . . . , r, and prove that x0
i , s0

i ,
i = 1, . . . , r, solve Problem P2. By (7.9), xo

i ≥ 0 and xo
i + xo

i+1 ≥ βi,
for all i. The second inequality yields so

i ≥ 0, and thus the conditions
(7.10)–(7.11) are met. It then remains to be shown that x0

i , s0
i , i =

1, . . . , r, satisfy (7.12). If for some i, so
i = 0, then (7.12) obviously holds

for the pair x0
i , s0

i . Suppose that so
i > 0 for some i. We then have

xo
i + xo

i+1 − βi > 0. This implies xo
i > βi − xo

i+1, which in turn yields
xo

i = 0, and so (7.12) holds.
Lemma 7.2 can be used now to show that Problem P1 has a solution.

Lemma 7.3 There always exists a solution to Problem P1.

Proof. Problem P2 can be rewritten as the following Linear Com-
plementarity Problem (LCP): Given a vector β ∈ Rr and a matrix
A ∈ Rr×r, find vectors x, s ∈ Rr such that

Ax − Is = β, (7.13)
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x ≥ 0, s ≥ 0, (7.14)

x′s = 0, (7.15)

where x′ is the transpose of x and

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
0 1 1 ·· 0 0
0 0 1 ·· 0 0

·· ·· ·· ··
0 0 0 ·· 1 1
1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.16)

This matrix A = (ai,j)r×r satisfies the following property:

ai,j ≥ 0 for all i, j = 1, . . . , r, and ai,i > 0 for all i = 1, . . . , r, (7.17)

which characterizes a class of matrices for which LCPs are known to
have solutions (Cottle et al. [37]). Thus, by Lemma 7.2, Problem P1 has
a solution.

The following lemma is used in the development of a polynomial-time
algorithm to find a solution to Problem P1.

Lemma 7.4 When r is even, Problem P1 has a solution with at least
one xi = 0.

Proof. When r is even, the matrix A given by (7.16) is a singular
matrix with rank (r − 1). Thus, there exists a solution (xo,so) for LCP
Problem P2 with at least one xo

i = 0. The result now follows from
Lemma 7.2.

For RF 2
2 |(free,A, MP,Su,v∈S̃)|μ, we now present a polynomial-time

algorithm that finds the cycle time
(
T σ

u,v

)
and the corresponding robot

waiting times (wi
1, wi

2, i = 1, . . . , n) for each Su,v∈S̃ and a given part
schedule σ. The idea behind the algorithm is as follows. We have proven
in Lemma 7.4 that a solution exists with at least one zero robot waiting
time. A steady-state solution can then be found by setting robot wait
times (each of 2n, in the worst case) to be equal to zero and checking
whether it produces a steady state cyclic solution satisfying condition
(7.9).
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Algorithm RobotWait

Input: A CRM sequence Su,v ∈ S̃ and a part schedule
σ = (σ(1), σ(2), . . . , σ(n)) of parts Pk ∈ P.

Output: Waiting times wi
1 and wi

2, i = 1, . . . , n, and the cycle time
T σ

u,v.

Step 1: Find values of Zu,v, γa
u,v, and γb

u,v defined in Table 7.4.

For i = 1, . . . , n: set β2i−1 = aσ(n+1−i) − γa
u,v and β2i = bσ(n−1−i) −

γb
u,v. Set j = 1.

Step 2: Set xj = 0.

For i = j − 1, . . . , 1: find xi = max{0, βi − xi+1}.
If j �= 2n, then find x2n = max{0, β2n − x1}.
For i = 2n − 1, . . . , j + 1: find xi = max{0, βi − xi+1}.

Step 3: If j = 2n, then set x∗ = max{0, β2n − x1}; otherwise set x∗ =
max{0, βj − xj+1}

Step 4: If x∗ = 0, then calculate T σ
u,v = Zu,v +

∑2n
i=1 xi and find

wn+1−i
1 = x2i−1 and wn−1−i

2 = x2i for i = 1, . . . , n, and Stop.
Otherwise set j = j + 1, and go to Step 2.

The running time of algorithm RobotWait is O(n2).
We next formulate a linear program to calculate cycle time T σ

u,v and
show how it is related to Problem P1. This LP formulation is also used in
Section 7.3 to prove the dominance of a particular robot move sequence
for practically relevant special cases.

Problem P3:

min
r∑

i=1

xi (7.18)

s.t. xi + xi+1 ≥ βi, i = 1, . . . , r, (7.19)

xi ≥ 0, i = 1, . . . , r, (7.20)

xr+1 = x1, βr+1 = β1.

Note that the solution to P3 is also a practically implementable steady-
state solution for our robotic system. For the cycle time computation,
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Crama et al. [39] provide an O(n2) algorithm based on the cyclic PERT
approach as an alternative to the above LP approach.

Lemma 7.5 Every solution to Problem P1 is a solution to Problem P3.

Proof. Let x0 ∈ Rr be a solution to Problem P1. It is trivial to verify
that x0 satisfies constraints (7.19)–(7.20), so we are only left to prove
that x0 achieves the minimum of the objective function (7.18).

We start with the obvious lower bound on the value of
∑r

i=1 xi

in (7.18). Let x∗
i , i = 1, . . . , r, be a solution to Problem P3. Con-

straints (7.19)–(7.20) imply that

r∑

i=1

x∗
i ≥

r∑

i=1

βi

2
. (7.21)

By Lemma 7.2, the pair of vectors x0 and s0, with s0 defined by (7.10),
gives a solution to Problem P2. Clearly, if all so

i = 0, i = 1, . . . , r,
we have that 2

∑r
i=1 x0

i =
∑r

i=1 βi (by (7.10)), and the lemma’s claim
follows immediately due to (7.21). Hence, we only need to consider the
case when there is at least one s0

i of strictly positive value. Thus, from
now on we assume that there exists at least one s0

i , i ∈ {1, . . . , r}, such
that s0

i > 0. Consider the dual of Problem P3.

Problem P4:

max
r∑

i=1

βiyi (7.22)

s.t. yi + yi−1 ≤ 1, i = 1, . . . , r, (7.23)

yi ≥ 0, i = 1, . . . , r, (7.24)

y0 = yr.

To prove the claim of the lemma, it is sufficient to find a vector yo ∈ Rr

satisfying conditions (7.23)–(7.24) for which the following relation holds:

r∑

i=1

βiy
0
i =

r∑

i=1

x0
i . (7.25)

Let I ⊆ {1, 2, . . . , r} be the set of all indices i such that s0
i > 0 (i.e.,

s0
i > 0 for i ∈ I, and s0

i = 0 for i /∈ I). Let I = {i1, i2, . . . , i�} and
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i1 < i2 < . . . < i�. For the sake of notational simplicity, we will give
the proof for the case when i� = r. Due to the cyclic nature of problem,
the latter assumption can always be realized by setting x0

i+r−i�
= x0

i ,
i = 1, . . . , i�, and x0

i−i�
= x0

i , i = i� + 1, . . . , r, and working with new
variables x0

i instead of x0
i .

Given a set I, we define i0 = 0 and find the values kj , j = 1, . . . , 	, as
follows

kj =
⌈

ij − ij−1 − 1
2

⌉

.

Furthermore, we define the sets of indexes Kj = {ij−1 + 1, ij−1 + 3, . . . ,
ij−1 + 2kj − 1}, j = 1, . . . , 	, and K = K1 ∪ K2 ∪ . . . ∪ K�. We are now
ready to introduce a vector y0 which is a solution to Problem P4.

We define the vector y0 ∈ Rr as follows. For j ∈ {1, . . . , r} we set
y0

i = 1 if i ∈ K, and y0
i = 0 otherwise. The condition (7.24) is then

satisfied. Furthermore, by construction of sets Kj , j = 1, . . . , 	, the set
K does not contain any two consecutive indices i and i + 1, and, hence,
the condition (7.23) is met. For each i ∈ I, we have s0

i > 0, so x0
i = 0.

Additionally, for each y0
i = 1 we have s0

i = 0, which yields x0
i +x0

i+1 = βi

for each i ∈ K (by (7.10)). Moreover, by construction of set K, all non-
zero x0

i are included into the set of equalities
{
x0

i + x0
i+1 = βi

}
i∈K

. With
no two consecutive indices i and i+1 being included into set K, we thus
obtain

r∑

i=1

βiy
0
i =

∑

i∈K

βiy
0
i =

∑

i∈K

(
x0

i + x0
i+1

)
=

r∑

i=1

x0
i .

Hence the relation (7.25) is established. This completes the proof.

Remark 7.1 The converse of Lemma 7.5 is not always true. For exam-
ple, if r = 4, β1 = 4, β2 = 6, β3 = 3, β4 = 2, a solution to Problem P3
is x1 = 0, x2 = 4, x3 = 2, and x4 = 2, which is not a solution to
Problem P1.

7.2.2 Strong NP-Completeness Results
Algorithm RobotWait always finds a solution for steady-state robot

waiting times in polynomial time. This implies the following result.

Theorem 7.1 The recognition version of the RF 2
2 |(free,A,MP,Su,v ∈

S̃)|μ part scheduling problem is in the class NP.
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The theorem below establishes that the problem of finding an optimal
part schedule in a two-machine dual-gripper robotic cell is intractable.

Theorem 7.2 The recognition version of the RF 2
2 |(free,A,MP,S3,10)|μ

part scheduling problem is strongly NP-complete.

Proof. The proof is similar to the NP-completeness results shown in
Hall et al. [76] and in Chapter 6. The reduction is from Numerical
Matching with Target Sums (NMTS) (see Chapter 6).

Given an arbitrary instance of NMTS, consider the following instance
of the problem: The MPS consists of three types of parts, where each
type consists of s parts: P = {Pxi, Pyi, P zi|1 ≤ i ≤ s} and n = 3s.
The processing times for part Pxi on M1 and M2 are K and 2K + xi,
respectively; for part Pyi they are K and 2K − yi, respectively, and for
part Pzi they are 3K + zi and K, respectively, for i = 1, . . . , s, where
K = X. It is also assumed that X = Y + Z, where X =

∑
xi, Y =

∑
yi, and Z =

∑
zi. The system parameters are δ = K/3, ε = 0, and

θ = 0. The decision problem can be stated as follows: “Does there exist
a schedule with cycle time Ct ≤ D = 5sK + X − Y ?”.
Let α = 3δ +4ε+ θ. Note that α = K and K > yi, K > xi, i = 1, . . . , s.
(⇒) Suppose that a solution to NMTS exists. Consider the following
MPS schedule σ=[Py1, Px1, P z1, Py2, Px2, P z2, . . . , Pys, Pxs, P zs].
The Gantt chart for this schedule can be viewed as concurrently process-
ing parts on three machines, as shown in Figure 7.1, where the processing
times of the parts on the three machines, denoted M

′
0, M

′
1, and M

′
2, are

given. Note that M
′
0,M

′
1, and M

′
2 are equivalent to the robot, M1, and

M2, respectively, in the robotic cell.
Also note that the processing times on M

′
1 are a function of wi

2. From
Lemma 7.1, we have w1

2 = max{0, 2K − y1 −max{K,K − w3s
2 }} =

max{0,K − y1} = K − y1, w2
2 = 0, w3

2 = 0, w4
2 = K − y2, w

5
2 = 0, w6

2 =
0, . . . , w3s−2

2 = K − ys, w
3s−1
2 = 0, and w3s

2 = 0. By substituting these
values of waiting times into the processing times, we get the processing
times on M

′
2 (Figure 7.2). Hence, the cycle time Ct = s(2K)−

∑s
i=1 yi +

s(2K) +
∑s

i=1 xi + s(K) = 5sK + X − Y .
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i = 4

2K + x2

2K + z2 + y2

α = K
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′
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′
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′
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Figure 7.2. Sequence . . . , Py1, Px1, P z1, Py2, Px2, P z2, . . .

(⇐) Suppose there exists an MPS schedule σ0 such that Ct ≤ D. We
now show that σ0 is concatenation of s subschedules as follows: σ0 =
{ρ1, ρ2, . . . , ρs}, where ρk = [Pyt, Pxu, P zv] or ρk = [Pxu, Pyt, P zv],
k = 1, . . . , s. Furthermore, if Ct ≤ D, then there must exist a solution to
NMTS. To do so, we present and prove a series of facts about schedule σ0.
Fact 1. Machine M2 is busy processing parts throughout schedule σ0.

The total processing time of all the parts on M2 in an MPS cycle is
5sK + X − Y . Since D = 5sK + X − Y , any idle time on M2 implies
that Ct > D.
Fact 2. In σ0, max1≤i≤3s{wi

2} ≤ K + max1≤i≤s{xi}.
From Lemma 7.1, wi

2 = max{0, bσ(i) − max{3δ + 4ε + θ, aσ(i+1) −
wi−1

2 }}. Therefore, max1≤i≤3s{wi
2} ≤ max1≤i≤3s{bσ(i)} − 3δ − 4ε − θ =

2K + max1≤i≤s{xi} − 3δ − 4ε − θ = K + max1≤i≤s{xi}.
Fact 3. σ0 is concatenation of s subschedules as follows: σ0 = {ρ1, ρ2, . . . ,

ρs}, where ρk = [Pyt, Pxu, P zv] or ρk = [Pxu, Pyt, P zv], k = 1, . . . , s.
Without loss of generality, we may assume that the third part sched-

uled is Pz1. We need to show that the previous two parts scheduled
immediately before Pz1 are Pxi, Pyi or Pyi, Pxi. To prove Fact 3, we
establish that the following 5 cases of subschedules are not possible in
schedule σ0.
Case 1. [Pzi, Pz1]: An idle time of at least K + z1 − max1≤i≤s{xi}
occurs on M ′

2 (see Figure 7.3), contradicting Fact 1.
Case 2. [Pyi, Pyk, P z1]: An idle time of z1 + yi + yk occurs on M ′

2 (see
Figure 7.4), contradicting Fact 1.
Case 3. [Pzi, Pxi, P z1]: An idle time of K + z1 − xi occurs on M ′

2 (see
Figure 7.5), contradicting Fact 1.
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K h̄
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≥ 2K + z1 − (K + max1≤i≤s{xi}) since w1
2 ≤ K + max1≤i≤s{xi} from Fact 2

≥ K + z1 − max1≤i≤s{xi} > 0.

M
′
0

M
′
1

M
′
2

Figure 7.3. Subschedule . . . , P zi, P z1, . . .
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Figure 7.4. Subschedule . . . , Pyi, Pyk, P z1, . . .
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2
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Figure 7.5. Subschedule . . . , P zi, Pxi, P z1, . . .

Case 4. [Pzi, Pyk, P z1]: An idle time of K + z1 + yk occurs on M ′
2

(see Figure 7.6), contradicting Fact 1. Therefore, the remaining possible
subschedules are [Pxi, Pxk, P z1], [Pyi, Pxi, P z1], and [Pxi, Pyi, P z1].
Case 5. [Pxi, Pxk, P z1]: There exists at least one [Pyi, Pyk, P z1] sub-
schedule, contradicting Case 2 above.
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Figure 7.6. Subschedule . . . , P zi, Pyk, P z1, . . .

Therefore, σ0 must take the following form: σ0 = {ρ1, ρ2, . . . , ρs},
where ρk = [Pyt, Pxu, P zv] or ρk = [Pxu, Pyt, P zv], k = 1, . . . , s. This
proves Fact 3. Furthermore, in these two subschedules (see Figures 7.7
and 7.8), if xi < yi + z1, then an idle time of z1 + yi − xi occurs on M ′

2,
contradicting Fact 1. If xi > yi + z1, then there exists an index r such
that xr < yhr + zir . Hence an idle time of zir + yhr − xr > 0 occurs
on M ′

2, contradicting Fact 1. Therefore, xr = yhr + zir for r = 1, . . . , s.
Thus, there exists a solution to NMTS.
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K
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2 + yi

= z1 + yi − xi > 0.

M
′
0

M
′
1

M
′
2

Figure 7.7. Subschedule . . . , Pxi, Pyi, P z1, . . .

Theorem 7.3 For each Su,v ∈ {S3,4, S3,5, S3,6, S3,9, S3,16}, the recogni-
tion version of the part scheduling problem RF 2

2 |(free,A,MP,Su,v)|μ is
strongly NP-complete.

Proof. By Theorem 7.2, the part scheduling problem associated with
the CRM sequence S3,10 is NP-complete. This problem is reducible to a
part scheduling problem associated with any Su,v ∈ {S3,4, S3,5, S3,6, S3,9,
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S3,16}, since the cycle time expression for each such problem takes the
following form: T σ

u,v =
∑n

i=1 max{t1, aσ(i+2) + t2−wi
2, bσ(i+1) + t3}, wi

2 =
max{0, bσ(i) −max{z1, aσ(i+1) + z2 −wi−1

2 }}, where t1, t2, t3, z1, and z2

are constants (see Table 7.3).

2K − yi

K − w3s
2

α = K

i = 1

2K + xi h̄

3K + z1 − w1
2

α = K

i = 2

K

aσ(4) − w2
2

α = K

i = 3

w1
2 = max{0, 2K − yi − max{K, K − w3s

2 }} = K − yi

⇒ h̄ = 3K + z1 − w1
2 − 2K − xi

= K + z1 − xi − w1
2

= z1 + yi − xi > 0.
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′
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′
2

Figure 7.8. Subschedule . . . , Pyi, Pxi, P z1, . . .

7.2.3 Polynomially Solvable Problems
In the previous section, we showed that RF 2

2 |(free,A,MP,Su,v)|μ is in-
tractable for 6 out of the 13 undominated CRM sequences in S. Here, we
demonstrate that the part scheduling problems RF 2

2 |(free, A,MP,Su,v)|μ
associated with the remaining seven undominated CRM sequences admit
an efficient solution.

Theorem 7.4 For RF 2
2 |(free,A,MP,S1,13)|μ, every part schedule σ is

optimal.

Proof. From Table 7.1, the cycle time for the CRM sequence S1,13 is
equal to

∑n
i=1(3δ + 6ε + aσ(i) + bσ(i)), which is independent of σ. Thus,

every part schedule σ is optimal.

Theorem 7.5 For Su,v ∈ {S1,1, S1,4, S1,14, S1,15, S3,3, S3,11}, RF 2
2 |(free,

A,MP,Su,v)|μ can be solved in time O(n log n).

Proof. From Tables 7.1 and 7.3, the cycle time expression for each
Su,v ∈ {S1,1, S1,4, S1,14, S1,15, S3,3, S3,11} has the following common for-
mat:

∑n
i=1max{t1, aσ(i+1) + t2, bσ(i) + t3}, where t1, t2, and t3 are con-

stants. Thus, each of these problems can be reduced to a problem of the
form

min
σ

(
n∑

i=1

max{eσ(i+1), fσ(i)}
)

,
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which can be solved optimally in time O(n log n) by the Gilmore-Gomory
algorithm (see Appendix B).

Table 7.5 summarizes the results of this section.

7.3 Analyzing Two-Machine Cells with Small
Gripper Switch Times

In this section, we consider a special case of a two-machine robotic
cell with a dual-gripper robot in which the value of the gripper switch
time θ is small relative to other problem parameters. For most robotic
cells in practice, θ is quite small in comparison to processing times and
robot move time; that is,

θ ≤ min
{

δ, min
i∈N

ai,min
i∈N

bi

}

. (7.26)

In this case, we identify a CRM sequence that gives the smallest cycle
time for RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ.

Theorem 7.6 For RF 2
2 |(free,A,MP,Su,v ∈ S0)|μ under condition (7.26),

the CRM sequence S3,10 delivers an optimal solution, i.e., the bound

T ∗
3,10 ≤ T ∗

u,v (7.27)

holds true for any CRM sequence Su,v.

Proof. Recall that S = {S1,1, S1,4, S1,13, S1,14, S1,15, S3,3, S3,11, S3,4, S3,5,

S3,6, S3,9, S3,10, S3,16} is the set of all 13 undominated CRM sequences for
the part scheduling problem RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ. We prove the
theorem by showing that T ∗

3,10 ≤ T ∗
u,v for any CRM sequence Su,v ∈ S.

Namely, we will demonstrate that for any sequence Su,v ∈ S \ {S3,10},
the following is true: if σ∗

u,v is a permutation that delivers the optimal
value of T ∗

u,v for Su,v ∈ S \ {S3,10}, then

T ∗
u,v = T

σ∗
u,v

u,v ≥ T
σ∗

u,v

3,10 ≥ T ∗
3,10. (7.28)
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Let S1 = {S1,1, S1,4, S1,13, S1,14, S1,15, S3,3, S3,11} and S2 = {S3,4, S3,5,

S3,6, S3,9, S3,16}; thus, S = S1∪S2∪{S3,10}. We split the discussion into
two cases. In Case 1, we consider only the sequences from set S1 and
show that bound (7.28) is satisfied for any CRM sequence Su,v ∈ S1. In
Case 2, we derive an analogous result for sequences from set S2.

Case 1. We prove that bound (7.28) holds for any CRM sequence Su,v

from set S1. Clearly, to prove the validity of (7.28), it is enough to
show that T σ

u,v ≥ T σ
3,10, Su,v ∈ S1, for each schedule σ of parts. This

inequality can be easily established by a straightforward comparison
of the expression for T σ

u,v for each CRM sequence Su,v ∈ S1 with the
expression for T σ

3,10.
We use the expression for estimating the value of T σ

3,10 as given by
(7.2)-(7.3). By exploiting the fact that wi

2 ≥ 0, we obtain

T σ
3,10 ≤

n∑

i=1

max{6ε + 3δ + 2θ, aσ(i+1) + 2ε + θ, bσ(i) + 2ε + θ}. (7.29)

In Table 7.6, for each CRM sequence Su,v ∈ S1, we present the expression
for T σ

u,v paired with the bound on T σ
3,10 obtained from (7.29). It is

straightforward to check that our claim holds under condition (7.26).
Case 2. We now move to set S2. As in Case 1, we show that bound
(7.28) holds for each CRM sequence Su,v ∈ S2. The proof is based on an
LP formulation of the problem of calculating the value of T σ

u,v subject
to a given part schedule σ. For any CRM sequence Su,v ∈ S2 ∪ S3,10,
given a part schedule σ, we can calculate the value of T σ

u,v by solving the
corresponding LP problem of the form (7.18)–(7.20) (see Section 7.2).
In particular, for the CRM sequence S3,10 we have

minT σ
3,10 = 6nε + 3nδ + 2nθ +

n∑

i=1

(
wi

1 + wi
2

)
(7.30)

s.t. wi
1 + wi−2

2 ≥ aσ(i) − 4ε − 3δ − θ, (7.31)

wi+1
1 + wi

2 ≥ bσ(i) − 4ε − 3δ − θ, (7.32)

wi
1, w

i
2 ≥ 0, i = 1, . . . , n. (7.33)

The proof is accomplished by considering sequences from set S2 one by
one and comparing the corresponding value of T ∗

u,v = T
σ∗

u,v
u,v with T

σ∗
u,v

3,10 .
The argument goes as follows.
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CRM Cycle Time

S1,1

T σ
1,1 = 3nε + 2nδ +

∑n
i=1 max{3ε + 3δ, aσ(i+1) + 2ε + δ, bσ(i)}

T σ
3,10 ≤ 3nε + 2nδ +

∑n
i=1 max{3ε + δ + 2θ,

aσ(i+1) + θ − (ε + 2δ), bσ(i) + θ − (ε + 2δ)}

S1,4

T σ
1,4 = 4nε + 2nδ +

∑n
i=1 max{aσ(i+1), bσ(i) + 2ε + 2δ}

T σ
3,10 ≤ 4nε + 2nδ +

∑n
i=1 max{2ε + δ + 2θ,

aσ(i+1) + θ − (2ε + 2δ), bσ(i) + θ − (2ε + 2δ)}

S1,13

T σ
1,13 = 6nε + 3nδ +

∑n
i=1(aσ(i+1) + bσ(i))

T σ
3,10 ≤ 6nε + 3nδ +

∑n
i=1 max{2θ,

aσ(i+1) + θ − (4ε + 3δ), bσ(i) + θ − (4ε + 3δ)}

S1,14
T σ

1,14 = 2nε + nθ +
∑n

i=1 max{aσ(i+1), bσ(i) + 4ε + 3δ}
T σ

3,10 ≤ 2nε + nθ +
∑n

i=1 max{4ε + 3δ + θ, aσ(i+1), bσ(i)}

S1,15

T σ
1,15 = 3nε + 2nδ +

∑n
i=1 max{3ε + 3δ, aσ(i+1), bσ(i) + 2ε + δ}

T σ
3,10 ≤ 3nε + 2nδ +

∑n
i=1 max{3ε + δ + 2θ,

aσ(i+1) + θ − (ε + 2δ), bσ(i) + θ − (ε + 2δ)}

S3,3

T σ
3,3 = 4nε + 2nδ +

∑n
i=1 max{aσ(i+1) + 2ε + 2δ, bσ(i)}

T σ
3,10 ≤ 4nε + 2nδ +

∑n
i=1 max{2ε + δ + 2θ,

aσ(i+1) + θ − (2ε + 2δ), bσ(i) + θ − (2ε + 2δ)}

S3,11
T σ

3,11 = 2nε + nθ +
∑n

i=1 max{aσ(i+1) + 4ε + 3δ, bσ(i)}
T σ

3,10 ≤ 2nε + nθ +
∑n

i=1 max{4ε + 3δ + θ, aσ(i+1), bσ(i)}

Table 7.6. Cycle-Time Expressions used in Case 1 of Theorem 7.6.

Let Su,v be a particular CRM sequence from set S2. For this particular
sequence, let σ∗ stand for an optimal part schedule σ∗

u,v. Given an
optimal schedule σ∗, we denote by wi

1, wi
2, i = 1, . . . , n, the solution to

the LP problem (7.18)–(7.20) of finding the value T σ∗
u,v. That is,

T ∗
u,v = T σ∗

u,v = Zu,v +
n∑

i=1

(
wi

1 + wi
2

)
.

Next, given the values wi
1, wi

2, i = 1, . . . , n, we define new values w
i
1 and

w
i
2 that are guaranteed to satisfy the inequality constraints (7.31)–(7.33)

in the LP problem (7.30)–(7.33) for estimating the value T σ∗
3,10. Namely,

one must have

w
i
1 + w

i−2
2 ≥ aσ∗(i) − 4ε − 3δ − θ, (7.34)

w
i+1
1 + w

i
2 ≥ bσ∗(i) − 4ε − 3δ − θ, (7.35)

w
i
1, w

i
2 ≥ 0, i = 1, . . . , n. (7.36)
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Given the schedule σ∗, let xi
1, xi

2, i = 1, . . . , n, be the solution to the LP
problem (7.30)–(7.33) of finding the value T σ∗

3,10. That is,

T σ∗
3,10 = 6nε + 3nδ + 2nθ +

n∑

i=1

(
xi

1 + xi
2

)
.

Since the values of w
i
1 and w

i
2 satisfy the LP constraints (7.31)–(7.33),

we have
n∑

i=1

(
w

i
1 + w

i
2

)
≥

n∑

i=1

(
xi

1 + xi
2

)
. (7.37)

Hence,

T ∗
3,10 ≤ T σ∗

3,10 ≤ 6nε + 3nδ + 2nθ +
n∑

i=1

(
w

i
1 + w

i
2

)
. (7.38)

Moreover, the values of w
i
1 and w

i
2 are defined in such a way that the

following requirement holds:

6nε+3nδ+2nθ+
n∑

i=1

(
w

i
1 + w

i
2

)
= Zu,v +

n∑

i=1

(
wi

1 + wi
2

)
= T σ∗

u,v. (7.39)

Then, (7.28) follows from (7.38) and (7.39). As an example, we show
how this argument works for the CRM sequence S3,4. An LP formulation
of the problem of calculating the value of T σ

3,4 subject to a given schedule
σ follows:

min T σ
3,4 = 6nε + 4nδ + nθ +

n∑

i=1

(
wi

1 + wi
2

)

s.t. wi
1 + wi−2

2 ≥ aσ(i) − 4ε − 4δ,

wi+1
1 + wi

2 ≥ bσ(i) − 2ε − 2δ − θ,

wi
1, w

i
2 ≥ 0, i = 1, . . . , n.

Let wi
1, wi

2, i = 1, . . . , n, be a solution to the above LP problem, so
that

T ∗
3,4 = T σ∗

3,4 = 6nε + 4nδ + nθ +
n∑

i=1

(
wi

1 + wi
2

)
, (7.40)

wi
1 + wi−2

2 ≥ aσ∗(i) − 4ε − 4δ, wi+1
1 + wi

2 ≥ bσ∗(i) − 2ε − 2δ − θ,

wi
1, w

i
2 ≥ 0, i = 1, . . . , n. (7.41)
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We define the values of w
i
1 and w

i
2 as follows:

w
i
1 = wi

1 + δ − θ; w
i
2 = wi

2.

From (7.41), we obtain

w
i
1 + w

i−2
2 = wi

1 + δ − θ + wi−2
2 ≥ aσ∗(i) − 4ε − 3δ − θ,

w
i+1
1 + w

i
2 = wi+1

1 + δ − θ + wi
2 ≥ bσ∗(i) − 2ε − δ − 2θ.

Thus, for the values of w
i
1 and w

i
2, the inequality constraints (7.34)–

(7.36) in the LP problem of estimating the value T σ∗
3,10 are satisfied as

a result of (7.26). Hence, we have (7.37), and then (7.38). Finally, we
derive

n∑

i=1

(
w

i
1 + w

i
2

)
=

n∑

i=1

(
wi

1 + δ − θ + wi
2

)
= nδ − nθ +

n∑

i=1

(
wi

1 + wi
2

)
,

and then

6nε+3nδ+2nθ+
n∑

i=1

(
w

i
1 + w

i
2

)
= 6nε+4nδ+nθ+

n∑

i=1

(
wi

1 + wi
2

)
= T σ∗

3,4.

Thus, (7.39) holds, and so does the desired bound (7.28).

CRM

Su,v S3,4 S3,5 S3,6 S3,9 S3,16

w
i
1 wi

1 + δ − θ wi
1 + 3δ − 2θ wi

1 + 2δ − θ wi
1 + 2δ − θ wi

1 + δ − θ

w
i
2 wi

2 wi
2 wi

2 wi
2 wi

2

Table 7.7. Robot Waiting Times.

The proof for other sequences from set S2 is analogous. The values
of Zu,v, γa

u,v, and γb
u,v for all the remaining sequences Su,v ∈ S2 in the

corresponding LP problem of finding the value T σ
u,v are as given in Ta-

ble 7.4. The transformation to derive the values w
i
1 and w

i
2 from wi

1 and
wi

2, respectively, is defined in Table 7.7.

7.4 A Heuristic for Specific CRM Sequences
As shown in Section 7.2, the part scheduling problems RF 2

2 |(free,A,
MP, Su,v)|μ associated with the CRM sequences Su,v ∈ S̃ = {S3,4, S3,5,
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S3,6, S3,9, S3,10, S3,16} are strongly NP-hard. Below we describe a heuris-
tic procedure to solve these problems. Note that the root cause of the
intractability of these problems is the presence of the robot waiting-time
terms wi

2, i = 1, 2, . . . , n, in their cycle time expressions (see Table 7.5).
The idea behind the heuristic is easy to explain: by ignoring the wi

2-
terms in the cycle time expressions, we can reduce the problem to a
special case of the traveling salesman problem that is solvable by the
Gilmore-Gomory algorithm. The part schedule thus obtained is used as
a heuristic solution to the original problem.

Given a robot move sequence Su,v ∈ S̃, define the values Zu,v, γa
u,v,

and γb
u,v as in Table 7.4. Furthermore, given parts processing times ak

and bk, Pk ∈ P, define the values ak and bk as follows:

ak = max
{
0, ak − γa

u,v

}
, bk = max

{
0, bk − γb

u,v

}
, Pk ∈ P. (7.42)

Algorithm Hard-CRM

Input: An instance of RF 2
2 |(free,A,MP,Su,v)|μ with a specified Su,v ∈

S̃, where S̃ = {S3,4, S3,5, S3,6, S3,9, S3,10, S3,16}.

Output: A schedule ρ∗ = (ρ∗(1), ρ∗(2), . . . , ρ∗(n)) of parts Pk ∈ P and
T ρ∗

u,v.

Step 1: Find values γa
u,v and γb

u,v defined in Table 7.4.

For each part Pk ∈ P, find values ak = max
{
0, ak − γa

u,v

}
, bk =

max
{
0, bk − γb

u,v

}
.

Step 2: Use the Gilmore-Gomory algorithm to obtain a schedule ρ∗ that
minimizes the function

∑
i max

{
aρ∗(i+1), bρ∗(i)

}
. Find T ρ∗

u,v. Stop.

The running time of algorithm Hard-CRM is O(n log n). In the next
section, we show that the worst-case bound of algorithm Hard-CRM is
3/2. This suggests that the heuristic is a promising tool for a good
approximate solution. Later, in Section 7.5, we use Hard-CRM to de-
vise an approximation algorithm for the general problem over all CRM
sequences.

7.4.1 A Performance Bound for Heuristic
Hard-CRM

In this section, we derive a performance bound for algorithm Hard-
CRM. The expressions for the cycle time of an MPS cycle in a two-
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machine dual-gripper robotic cell, subject to a given part schedule σ =
(σ(1), . . . , σ(n)) and a specified robot move sequence, were derived in
Section 7.2. Below we present such expressions for Sq,r ∈ S̃ = {S3,4,
S3,5, S3,6, S3,9, S3,10, S3,16} unified under a generalized framework. It is
then an easy exercise to verify that for RF 2

2 |(free,A,MP, Sq,r ∈ S̃)|Ct,
the cycle time T σ

q,r for part schedule σ admits a representation of the
general form (see Section 7.2, (7.4)–(7.7)). For simplicity, we use ui, vi

for w1
i , w2

i , respectively:

T σ
q,r = Zq,r +

n∑

i=1

{ui + vi} , (7.43)

ui = max
{
0, aσ(i) − vi−2

}
, vi = max

{
0, bσ(i) − ui+1

}
,

ui = ui±n, vi = vi±n. (7.44)

By simple algebraic transformations, the expressions (7.43)-(7.44) can
be modified as

T σ
q,r = Zq,r +

n∑

i=1

max
{
aσ(i+2) − vi, bσ(i+1)

}
, (7.45)

vi = max
{
0, bσ(i) − max

{
0, aσ(i+1) − vi−1

}}
, vi = vi±n. (7.46)

Note that the cycle time T σ
q,r consists of the robot activity time Zq,r

(load, unload, move, and switch times of the robot) and robot wait times
ui, vi at machines M1, M2, respectively, before parts are unloaded from
those machines. Moreover, γa

q,r (resp., γb
q,r) denotes the robot activity

time between the moment the robot loads a part on M1 (resp., M2) and
the moment it returns to M1 (resp., M2) to unload the part.

The formulation given in (7.43) and (7.44) is easily modified to yield
the formulation given below in Lemma 7.6.

Lemma 7.6 For RF 2
2 |(free,A,MP,Sq,r ∈ S̃)|μ, the problem of calculating

the value of T σ
q,r subject to a given schedule σ of parts admits the following

LP formulation:

min T σ
q,r = Zq,r +

n∑

i=1

(ui + vi) (7.47)
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s.t. ui + vi−2 ≥ aσ(i), i = 1, . . . , n, (7.48)

ui+1 + vi ≥ bσ(i), i = 1, . . . , n, (7.49)

ui, vi ≥ 0, ui = ui±n, vi = vi±n. (7.50)

Proof. The proof follows from (7.43) and (7.44).
We are now ready to prove the results that are required to establish

a bound for algorithm Hard-CRM. In what follows, we exploit known
results from no-wait flow shop scheduling. More precisely, we relate
our problem to F2|no-wait|Ct. The latter problem has as input a set
of n jobs, with each job i associated with two numerical parameters
ai and bi. The objective is to find a job schedule ρ that minimizes
∑n

i=1 max
{
aρ(i+1), bρ(i)

}
. Problem F2|no-wait|Ct is known to be solvable

in time O(n log n) by the Gilmore-Gomory algorithm (see Appendix B).
Our main result in this section is a proof that for RF 2

2 |(free,A,MP,
Sq,r ∈ S̃)|μ, algorithm Hard-CRM finds an approximate solution that
is at most 3/2 times the optimal value. Theorem 7.7 establishes the
connection between F2|no-wait|Ct and RF 2

2 |(free,A,MP, Sq,r ∈ S̃)|μ.

Theorem 7.7 For any schedule σ of parts, RF 2
2 |(free,A,MP,Sq,r ∈ S̃)|μ

has a schedule ρ such that

n∑

i=1

max
{
aρ(i+1), bρ(i)

}
≤ 3

2
(
T σ

q,r − Zq,r

)
.

Proof. Let σ = (σ(1), σ(2), . . . , σ(n)) , n ≥ 3, be an arbitrary sch-
edule of parts. By re-indexing if necessary, we may assume without loss
of generality that σ(i) = i, i = 1, . . . , n, so that

σ = (1, 2, . . . , n) . (7.51)

Furthermore, for the sake of simplicity, in what follows we will use the
notation

∑
to denote

∑n
i=1, unless explicitly stated otherwise.

Given the schedule σ, let {ui}i=1,...,n, {vi}i=1,...,n be any feasible so-
lution of LP problem (7.47)–(7.50), with T σ

u being the corresponding
value of the objective function (7.47). Thus, we aim to prove that there
always exists a schedule ρ such that

∑
max

{
aρ(i+1), bρ(i)

}
≤ 3

2

∑
(ui + vi). (7.52)
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We note that the constraints (7.48)–(7.49) of the LP, if rewritten subject
to (7.51), take the form

ui + vi−2 ≥ ai, i = 1, . . . , n, (7.53)

ui+1 + vi ≥ bi, i = 1, . . . , n. (7.54)

Furthermore, the inequalities (7.53)–(7.54) immediately yield the fol-
lowing relationships, which we will exploit later in the proof:

vi + max {ui+1, ui+2} ≥ max
{
ai+2, bi

}
, (7.55)

vi + min {ui+1, ui+2} ≥ min
{
ai+2, bi

}
, (7.56)

ui+1 + max {vi−1, vi} ≥ max
{
ai+1, bi

}
, (7.57)

ui+1 + min {vi−1, vi} ≥ min
{
ai+1, bi

}
. (7.58)

We then obtain (using (7.57))
∑

(ui + vi) =
∑

ui +
∑

max {vi−1, vi} +
∑

min {vi−1, vi} −
∑

vi

≥
∑

max
{
ai+1, bi

}
+

∑
min {vi−1, vi} −

∑
vi.

Hence,
∑

max
{
ai+1, bi

}
≤

∑
ui + 2

∑
vi −

∑
min {vi−1, vi} .

If
∑

vi−
∑

min {vi−1, vi} ≤ 1
2

∑
(ui + vi) , then we set ρ = σ, and (7.52)

is satisfied. Thus, in the remainder of the proof, we assume that

1
2

∑
vi >

1
2

∑
ui +

∑
min {vi−1, vi} . (7.59)

Furthermore, we obtain (from (7.55))
∑

(ui + vi) =
∑

vi +
∑

max {ui−1, ui} +
∑

min {ui−1, ui} −
∑

ui

≥
∑

max
{
ai+2, bi

}
+

∑
min {ui−1, ui} −

∑
ui.

Hence,
∑

max
{
ai+2, bi

}
≤ 2

∑
ui +

∑
vi −

∑
min {ui−1, ui} .

In view of (7.59), this leads to
∑

max
{
ai+2, bi

}
<

3
2

∑
(ui + vi) −

∑
min {ui−1, ui}

−
∑

min {vi−1, vi} . (7.60)
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For the remainder of the proof, we distinguish between two cases de-
pending on the value of n.

Case 1. n is odd: In this case, we set ρ = (σ(1), σ(3), . . . , σ(n), σ(2),
σ(4), . . . , σ(n − 1)) so that

∑
max

{
aρ(i+1), bρ(i)

}
=

∑
max

{
ai+2, bi

}
,

and the result follows immediately from (7.60).

Case 2. n is even, i.e., n = 2k, k ≥ 2: In contrast to Case 1, we face the
situation in which the function

∑
max

{
ai+2, bi

}
cannot be immediately

associated with the desired schedule ρ. Let I = {1, 3, . . . , n − 1} and
J = {2, 4, . . . , n}. Furthermore, let ϕ and ψ be the subschedules of
the jobs defined, respectively, on the sets I and J :

ϕ = (1, 3, . . . , n − 1) , ψ = (2, 4, . . . , n) .

We then have

∑
max

{
ai+2, bi

}
=

k∑

i=1

max
{
aϕ(i+1), bϕ(i)

}
+

k∑

i=1

max
{
aψ(i+1), bψ(i)

}
.

(7.61)
We now aim to combine these two subschedules ϕ and ψ to obtain the
resulting schedule ρ that delivers the bound (7.52). More precisely, we
will identify two indices x and y, where x ∈ I, y ∈ J , and construct the
desired schedule ρ by joining ϕ and ψ as follows:

ρ = (1, 3, . . . , x, y + 2, y + 4, . . . , n, 2, 4, . . . , y, x + 2,

x + 4, . . . , n − 1). (7.62)

We denote by Δ the amount by which the cost of ρ exceeds
∑

max
{
ai+2, bi

}
, i.e.,

∑
max

{
aρ(i+1), bρ(i)

}
=

∑
max

{
ai+2, bi

}
+ Δ. (7.63)
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Taking into account the structure of the schedule ρ given by (7.62), the
latter relation yields (using (7.61)

Δ =
∑

max
{
aρ(i+1), bρ(i)

}
−

∑
max

{
ai+2, bi

}

=
∑

max
{
aρ(i+1), bρ(i)

}
−

(
k∑

i=1

max
{
aϕ(i+1), bϕ(i)

}

+
k∑

i=1

max
{
aψ(i+1), bψ(i)

}
)

= max
{
ax+2, by

}
+ max

{
ay+2, bx

}

−max
{
ax+2, bx

}
− max

{
ay+2, by

}
,

so that

Δ = max
{
ax+2, by

}
+max

{
ay+2, bx

}
−max

{
ax+2, bx

}
−max

{
ay+2, by

}
.

(7.64)
The above relations are illustrated in Figure 7.9.

(a) (b)
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Figure 7.9. (a) Subschedules ϕ and ψ (b) Sequence ρ.

The remainder of the proof is split into two cases.
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Case 2.1. Suppose there exists a pair of indices i and j, i ∈ I, j ∈ J ,
such that

min
{
max{ai+2, bi}, max{aj+2, bj}

}
≥ max{min{ai+2, bi},

min{aj+2, bj}}. (7.65)

In this case, we identify x ∈ I and y ∈ J , for which (7.65) holds with
i = x and j = y, and construct the schedule ρ as specified by (7.62).
The condition (7.65) yields

max
{
ax+2, by

}
+ max

{
ay+2, bx

}
≤ max

{
ax+2, bx

}
+ max

{
ay+2, by

}
.

Thus, by (7.64), we obtain Δ ≤ 0. Combining Δ ≤ 0 with (7.60) and
(7.63), we derive directly the desired bound (7.52).

Case 2.2. Suppose the condition (7.65) does not hold for any pair of
indices i and j, i ∈ I, j ∈ J . This implies that

min{max{ai+2, bi}, max{aj+2, bj}} < max{min{ai+2, bi},
min{aj+2, bj}}, (7.66)

for any pair of indices i and j, i ∈ I, j ∈ J .
By reindexing (or renaming the sets I and J), we may further assume,

without loss of generality, that

min
i∈I

{
min

{
ai+2, bi

}}
> min

i∈J

{
min

{
ai+2, bi

}}
. (7.67)

We may then identify indices x and y, x ∈ I, y ∈ J , such that

min
{
ax+2, bx

}
= min

i∈I

{
min

{
ai+2, bi

}}
, (7.68)

max
{
ay+2, by

}
=

max
i∈J

{
max

{
ai+2, bi

} ∣
∣max

{
ai+2, bi

}
< min

{
ax+2, bx

}}
. (7.69)

We note that due to (7.66) and (7.67), such indices x and y, x ∈ I,
y ∈ J , always exist. Having identified the indices x and y specified by
(7.68) and (7.69), we form the schedule ρ as defined by (7.62).

From (7.69), we have max
{
ax+2, by

}
= ax+2 and max

{
ay+2, bx

}
= bx.

Combining the latter with (7.64) yields Δ = ax+2+bx−max
{
ax+2, bx

}
−

max
{
ay+2, by

}
, or, equivalently,

Δ = min
{
ax+2, bx

}
− max

{
ay+2, by

}
. (7.70)
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We will now prove that the theorem holds for the schedule ρ. The proof
is by contradiction.

Suppose that (7.52) does not hold. By (7.63), this implies

∑
max

{
ai+2, bi

}
+ Δ >

3
2

∑
(ui + vi) . (7.71)

We then derive

Δ >
3
2

∑
ui +

1
2

∑
vi +

(∑
vi −

∑
max

{
ai+2, bi

})

≥ 3
2

∑
ui +

1
2

∑
vi −

∑
max {ui, ui+1} [by (7.55)]

= −1
2

∑
ui +

1
2

∑
vi +

∑
min {ui, ui+1}

>
∑

min {vi, vi+1} +
∑

min {ui, ui+1} . [by (7.59)]

Thus, we have

Δ >
∑

min {vi, vi+1} +
∑

min {ui, ui+1} . (7.72)

Combining (7.72) with (7.70), we get
∑

min {vi, vi+1} +
∑

min {ui, ui+1}

< min
{
ax+2, bx

}
− max

{
ay+2, by

}

≤ min
{
ax+2, bx

}

= min
i∈I

{
min

{
ai+2, bi

}}
[by (7.68)]

≤ min
i∈I

{vi + min {ui+1, ui+2}} [by (7.56)]

≤ min
i∈I

vi +
∑

min {ui, ui+1} .

Therefore, we obtain
∑

min {vi, vi+1} < min
i∈I

vi. (7.73)

(7.73) implies that for any index i ∈ I, one must have min {vi−1, vi} =
vi−1, as well as min {vi, vi+1} = vi+1. Consequently,

∑
min {vi, vi+1} =

∑

i∈I

min {vi−1, vi} +
∑

i∈I

min {vi, vi+1}

= 2
∑

i∈J

vi. (7.74)



Multiple-Part-Type Production: Dual-Gripper Robots 333

Hence, (7.72) yields

Δ >
∑

min {vi, vi+1} +
∑

min {ui, ui+1}

= 2
∑

i∈J

vi +
∑

min {ui, ui+1} [by (7.74)]

≥
∑

i∈J

vi +
∑

i∈J

min {ui+1, ui+2}

≥
∑

i∈J

min
{
ai+2, bi

}
≥ max

i∈J

{
min

{
ai+2, bi

}}
. [by (7.56)]

Combining the above result with (7.70), we obtain

max
i∈J

{
min

{
ai+2, bi

}}
< Δ = min

{
ax+2, bx

}
− max

{
ay+2, by

}

≤ min
{
ax+2, bx

}
= min

i∈I

{
min

{
ai+2, bi

}}
.

[by (7.68)]

Thus, we have

min
i∈I

{
min

{
ai+2, bi

}}
> max

i∈J

{
min

{
ai+2, bi

}}
.

It then follows from (7.66) that for any pair of indices i and j, i ∈ I,
j ∈ J , one must have min

{
ai+2, bi

}
> max

{
aj+2, bj

}
. Therefore, by

(7.69),
max

{
ay+2, by

}
= max

i∈J

{
max

{
ai+2, bi

}}
, (7.75)

and, therefore,

Δ = min
{
ax+2, bx

}
− max

{
ay+2, by

}
[by (7.70)]

≤ min
i∈I

{
min

{
ai+2, bi

}}
− max

i∈J

{
max

{
ai+2, bi

}}
[by (7.68), (7.75)]

≤ 1
k

∑

i∈I

min
{
ai+2, bi

}
− 1

k

∑

i∈J

max
{
ai+2, bi

}
.

Thus, we have

Δ ≤ 1
k

∑

i∈I

min
{
ai+2, bi

}
− 1

k

∑

i∈J

max
{
ai+2, bi

}
. (7.76)

Using the previously obtained relations, we then derive

3
2

∑
(ui + vi) <

∑
max

{
ai+2, bi

}
+ Δ [by (7.71)]
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≤
∑

max
{
ai+2, bi

}
+

1
k

∑

i∈I

min
{
ai+2, bi

}
− 1

k

∑

i∈J

max
{
ai+2, bi

}

[by (7.76)]

=
k − 1

k

∑
max

{
ai+2, bi

}
+

1
k

∑
max

{
ai+2, bi

}

+
1
k

∑

i∈I

min
{
ai+2, bi

}
− 1

k

∑

i∈J

max
{
ai+2, bi

}

=
k − 1

k

∑
max

{
ai+2, bi

}
+

1
k

∑

i∈I

max
{
ai+2, bi

}

+
1
k

∑

i∈I

min
{
ai+2, bi

}

=
k − 1

k

∑
max

{
ai+2, bi

}
+

1
k

∑

i∈I

(
ai+2 + bi

)

≤ k − 1
k

∑
(vi + max {ui+1, ui+2}) +

1
k

∑

i∈I

(2vi + ui+1 + ui+2)

[by (7.53), (7.54), (7.55)]

=
k − 1

k

∑
vi +

2
k

∑

i∈I

vi +
k − 1

k

∑
max {ui+1, ui+2} +

1
k

∑
ui

≤
(

k − 1
k

+
2
k

)∑
vi +

(
2 (k − 1)

k
+

1
k

)∑
ui

=
k + 1

k

∑
vi +

2k − 1
k

∑
ui.

Combining the head and the tail of the latter chain of inequalities, we
obtain

k − 2
2k

∑
vi <

k − 2
2k

∑
ui.

This is a contradiction to (7.59) and n even with n = 2k, k ≥ 2, which
completes the proof.

We now provide a numerical example to illustrate algorithm Hard-
CRM.

Example 7.1 Consider an instance of RF 2
2 |(free,A,MP, Sq,r ∈ S̃ )|μ.

Let Sq,r = S3,10, and let an MPS consist of five parts, i.e., n = 5 and
P = {P1, P2, P3, P4, P5}. Furthermore, let θ = 1, ε = 2, and δ = 3. The
processing times ak and bk of parts Pk ∈ P are given in Table 7.8.
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We illustrate the steps of algorithm Hard-CRM for this data. For
S3,10, we find the values of Z3,10 , γa

3,10, and γb
3,10, as defined in Table 7.4:

Z3,10 = 6nε + 3nδ + 2nθ = 115,

γa
3,10 = γb

3,10 = 4ε + 3δ + θ = 18.

Step 1: Using equation (7.42), we calculate ak = max{0, ak−γa
3,10} and

bk = max{0, bk − γb
3,10}, Pk ∈ P, as shown in Table 7.9.

k 1 2 3 4 5

ak 27 24 26 22 20

bk 21 23 23 24 25

Table 7.8. Processing Times of Parts in P = {P1, P2, P3, P4, P5}.

Step 2: We use the Gilmore-Gomory algorithm to find a schedule ρ∗

that minimizes the functional
∑5

i=1 max{aρ(i+1), bρ(i)}. The algorithm
starts by finding a simple matching of parameters ak and bk, as shown
in Table 7.10, by sequencing them in non-decreasing order: b1 ≤ b2 ≤
b3 ≤ b4 ≤ b5 and aρ(1) ≤ aρ(2) ≤ aρ(3) ≤ aρ(4) ≤ aρ(5).

k 1 2 3 4 5

ak 9 6 8 4 2

bk 3 5 5 6 7

Table 7.9. Values of ak and bk, k = 1, . . . , 5.

A TSP tour is constructed from Table 7.10 by pairing city k (origin)
with city ρ(k) (destination), k = 1, . . . , 5. If we obtain a valid tour
straight away, the algorithm stops. Otherwise there are subtours, and
further work is required. The latter is our case as we have two subtours:

Subtour 1: 1 → 5 → 1,
Subtour 2: 2 → 4 → 3 → 2;

see Figure 7.10(a).
The total tour length equals to max{2, 3}+ max{4, 5}+ max{6, 5}+

max{8, 6} + max{9, 7} = 31. The algorithm then performs subtour
patching with the minimum cost; see Appendix B or Pinedo [132] for de-
tails. The resulting tour is 1 → 5 → 3 → 2 → 4 → 1, so ρ∗ = (1, 5, 3, 2, 4);
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k 1 2 3 4 5

bk 3 5 5 6 7

aρ(k) 2 4 6 8 9

ρ(k) 5 4 2 3 1

Table 7.10. A Matching of Parameters ak and bk.

(a) (b)Two subtours Subtours are patched
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Figure 7.10. Subtour Patching.

see Figure 7.10(b). Note that the tour length is max{9, 6}+max{2, 3}+
max{8, 7}+max{6, 5}+max{4, 5} = 31, i.e., a valid tour is formed with-
out any additional cost. We now calculate the cycle time for the part
schedule ρ∗. We set σ = ρ∗ = (1, 5, 3, 2, 4). Algorithm RobotWait in
Section 7.2 can be used to solve the system of equations given in (7.44).
A solution is v1 = v4 = 1, v2 = v3 = v5 = 0. Using (7.45), we obtain

T σ
3,10 = Z3,10 +

5∑

i−1

max{aσ(i+2) − vi, bσ(i+1)} = 115 + 29 = 144.

The theorem below states a guarantee on the worst-case performance of
algorithm Hard-CRM.

Theorem 7.8 For RF 2
2 |(free,A,MP, Sq,r ∈ S̃ )|μ, let ρ∗ = (ρ∗(1), ρ∗(2),

. . . , ρ∗(n)) be the schedule of parts Pi ∈ P, found by algorithm Hard-
CRM. Then the cycle time T ρ∗

q,r for MPS production for the schedule ρ∗
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satisfies

T ρ∗
q,r ≤ 3

2
T ∗

q,r, (7.77)

where T ∗
q,r is the optimal cycle time. The bound 3

2T ∗
q,r is tight.

Proof. Clearly, the theorem holds for n = 2. Thus, consider n ≥ 3. Let
σ∗ = (σ∗(1), σ∗(2), . . . , σ∗(n)) be an optimal solution to RF 2

2 |(free,A,MP,
Sq,r ∈ S̃ )|μ, i.e.,

T ∗
q,r = T σ∗

q,r . (7.78)

By Theorem 7.7, there always exists a schedule ρ such that

n∑

i=1

max
{
aρ(i+1), bρ(i)

}
≤ 3

2

(
T σ∗

q,r − Zq,r

)
. (7.79)

Furthermore, with ρ∗ being a schedule which minimizes
∑n

i=1 max
{
aρ(i+1), bρ(i)

}
, we have

n∑

i=1

max
{
aρ∗(i+1), bρ∗(i)

}
≤

n∑

i=1

max
{
aρ(i+1), bρ(i)

}
(7.80)

for any part schedule ρ. Hence, by (7.78)–(7.80), we have

n∑

i=1

max
{
aρ∗(i+1), bρ∗(i)

}
≤ 3

2
(
T ∗

q,r − Zq,r

)
. (7.81)

From (7.45), we have the following bound on the value of T ρ∗
q,r, subject

to a given schedule ρ∗ of parts:

T ρ∗
q,r ≤ Zq,r +

n∑

i=1

max{aρ∗(i+1), bρ∗(i)}. (7.82)

Combining (7.81) and (7.82) immediately yields the desired bound (7.77).
To see that the bound is tight, consider the following instance of

RF 2
2 |(free,A,MP, Sq,r ∈ S̃ )|μ. Let ε = δ = θ = 0. There are four parts

Pi ∈ P, i = 1, 2, 3, 4, with the following values of ai and bi: a1 = b1 = M ;
a2 = b2 = M ; a3 = b3 = 0; a4 = b4 = 0. As ε = δ = θ = 0,
we have Zq,r = γa

q,r = γb
q,r = 0, as well as ai = ai and bi = bi, i =

1, 2, 3, 4. A schedule which minimizes
∑4

i=1 max
{
aρ(i+1), bρ(i)

}
is ρ∗ =

(1, 2, 3, 4). For this schedule T ρ∗
q,r = 3M (a solution for the corresponding

LP problem (7.47)–(7.50) is given by u1 = u2 = u3 = M and u4 = 0,
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vi = 0 , i = 1, 2, 3, 4). On the other hand, the optimum here is delivered
by the schedule ρOPT = (1, 3, 2, 4) with T ρOPT

q,r = 2M (a solution for the
corresponding LP problem (7.47)–(7.50) is given by v1 = v2 = M and
v3 = v4 = 0, ui = 0, i = 1, 2, 3, 4). Hence, the bound is 3M/2M = 3/2.
We remark that this example can be easily transformed to one with non-
zero numeric data by setting a3 = b3 = a4 = b4 = α, with α satisfying
M >> α, and by assigning sufficiently small values to ε, δ, and θ such
that Zq,r is small relative to the corresponding processing times. The
bound then approaches 3/2 as M goes to infinity.

Remark 7.2 Note that the Gilmore-Gomory algorithm finds an op-
timal solution to F2|no-wait|Ct with no missing operations, i.e., the
zero processing times are treated as positive but negligibly small val-
ues so that the processing route remains the same for all jobs. For
RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ, the robot move sequence (CRM sequence)
is generated by a 1-unit robot move sequence, which is executed repeat-
edly and identically. The identical execution of robot move operations
for all parts directly implies the same processing route for all parts,
and, therefore, the adequacy of the no-missing-operations assumption
as implied by the Gilmore-Gomory algorithm.

We further observe that algorithm Hard-CRM suggests a heuristic pro-
cedure to solve RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ. From the results in Sec-
tion 7.2 concerning our search for an optimal solution for the latter prob-
lem, we may restrict our attention to the MPS cycles based on 13 CRM
sequences. For 7 out of these 13 cycles, the corresponding part schedul-
ing problems admit an efficient solution, whereas each of the remaining
six cycles generates a strongly NP-hard part-scheduling problem that
can be solved approximately by algorithm Hard-CRM. By solving each
of the polynomially solvable problems optimally and each of the NP-hard
ones approximately, and then choosing the best solution among the 13
obtained, we find a solution to the general RF 2

2 |(free,A,MP,Su,v ∈ S0)|μ
problem that is at most 3/2 times the optimal value. Thus, Theorem
7.8 implies

Corollary 7.1 For RF 2
2 |(free,A,MP,Su,v ∈ S0)|μ, an O(n log n) algo-

rithm based on Hard-CRM provides a worst-case bound of 3/2.
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7.5 A Heuristic for Two-Machine Cells
We propose the following heuristic to solve RF 2

2 |(free,A,MP,Su,v ∈
S0)|μ over all CRM sequences.

Heuristic TwoCell

Input: An instance of RF 2
2 |(free,A,MP,Su,v ∈ S0)|μ.

Output: A schedule σu,v of parts Pk ∈ P, the CRM sequence Su,v, and
the cycle time T

σu,v
u,v of MPS processing in schedule σu,v under the

CRM sequence Su,v.

Step 1: Form an arbitrary schedule σ of parts. Calculate C1 = 6nε +
3nδ +

∑n
i=1 (ai + bi): the cycle time for RF 2

2 |(free,A,MP,S1,13)|μ.

Step 2: Let S ′ = {S1,1, S1,4, S1,14, S1,15, S3,3, S3,11}. Use the Gilmore-
Gomory algorithm to solve RF 2

2 |(free,A,MP,Su,v)|μ for each CRM
sequence Su,v ∈ S ′. Denote by σu,v the obtained part schedule corre-
sponding to Su,v. Find C2 = minSu,v∈S′ T

σu,v
u,v .

Step 3: Use algorithm Hard-CRM to solve RF 2
2 |(free,A,MP,Su,v)|μ for

each Su,v ∈ S̃. Denote by σu,v the obtained part schedule correspond-
ing to Su,v ∈ S̃. Find C3 = min

Su,v∈S̃ T
σu,v
u,v .

Step 4: Find Ch = min{C1, C2, C3}. Output Ch and the corresponding
Su,v and σu,v. Stop.

The heuristic was tested on randomly generated problems. Our choice
of data to test the performance of the heuristic satisfies condition (7.26).
We generated random problem data under types I1, I2, I3, and I4, as
follows:
I1: The processing times are chosen randomly from U [1, 5].
I2: The processing times are chosen randomly from U [1, 15].
I3: The processing times are chosen randomly from U [1, 25].
I4: The processing times are chosen randomly from U [1, 50].

Furthermore, for all problem instances, we set ε = 1.0, δ = 3.0, and
θ = 0.25. Because of the difficulty in finding optimal solutions to the
problem, we tested the performance of TwoCell against a lower bound
on the optimal cycle time computed as follows. (Note that the validity
of this bound is governed by condition (7.26)).
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Procedure LBCT(ai, bi, i = 1, . . . , n, δ, , ε, θ)
Step 1: LB1 =

∑n
i=1 max{3δ + 6ε + 2θ, bi + θ + 2ε}.

Step 2: LB2 =
∑n

i=1 max{3δ + 6ε + 2θ, ai + θ + 2ε}.
Step 3: LB =max{LB1, LB2}. Stop.

Computer runs, each consisting of five problem instances, were carried
out. Let fk be the cycle time obtained by TwoCell for the kth problem
in a run, and let f∗

k be the lower bound from LBCT for the kth problem.
Let

ek =
fk − f∗

k

f∗
k

100, e =
5∑

k=1

ek

5
,

	 = min
1≤k≤5

{ek}, and u = max
1≤k≤5

{ek}.

Each row in Table 7.11 corresponds to the results of five instances. The
third, fourth, and fifth columns show the minimum, the mean, and the
maximum relative percentage error, respectively, for the heuristic. On
average, TwoCell performs well with respect to the lower bound. We
note that the mean relative errors are all less than 10%. The smallest and
the largest relative errors observed were 0.0% and 14.69%, respectively,
over all the 80 instances reported in Table 7.11.

7.6 Comparison of Productivity: Single-Gripper
Vs. Dual-Gripper Cells

In this section, we consider algorithms to solve the problem of schedul-
ing an MPS in two-machine robotic cells with single-gripper and with
dual-gripper robots. This allows us to assess the improvement in pro-
ductivity effected by the use of a dual gripper over a single gripper. Hall
et al. [75] solve the two-machine robotic cell problem with single grip-
per: RF 1

2 |(free,A,MP, cyclic-n)|μ. They show that the problem here is
one of deciding on the parts to process under the sequences S1,13 and
S1,18, which are the only possible sequences in the single-gripper case.
They devise an O(n4) algorithm, MinCycle, which solves the problem
optimally. Aneja and Kamoun [7] modify their algorithm and reduce
the time complexity to O(n log n). Algorithm MinCycle is described in
Chapter 6.

Algorithms TwoCell and MinCycle were tested on randomly generated
problems under the instance types I1, I2, I3, and I4, described above.
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n Instance � e u

10 I1 0.0 0.0 0.0

15 I1 0.0 0.0 0.0

25 I1 0.0 0.0 0.0

50 I1 0.0 0.0 0.0

10 I2 0.00 0.57 0.96

15 I2 0.00 0.06 0.32

25 I2 0.00 0.37 0.70

50 I2 0.32 0.54 0.77

10 I3 0.75 3.17 6.53

15 I3 0.00 3.93 6.79

25 I3 3.60 4.75 6.61

50 I3 3.04 5.82 8.01

10 I4 0.65 5.72 13.10

15 I4 2.24 7.11 10.46

25 I4 1.99 9.83 14.69

50 I4 5.64 10.01 13.16

Table 7.11. Performance Evaluation of Heuristic TwoCell.

Computer runs, each consisting of five instances, were carried out. Let
fd

k be the dual-gripper cycle time obtained by heuristic TwoCell for
the kth problem in a run, and let f s

k be the single-gripper cycle time
obtained by algorithm MinCycle for the kth problem. Let

hk =
f s

k − fd
k

f s
k

100, h =
5∑

k=1

hk

5

	h = min
1≤k≤5

{hk}, and uh = max
1≤k≤5

{hk}.

Table 7.12 compares the cycle times obtained for single-gripper and dual-
gripper cells. Each row in Table 7.12 corresponds to the results of five
instances. The third, fourth, and fifth columns show the minimum,
the mean, and the maximum relative percentage improvements, respec-
tively, for the dual-gripper cell with respect to the single-gripper cell.
The results of computational experiments indicate that, on average, a
dual-gripper cell provides a significant productivity improvement over
a single-gripper cell. Note that the mean relative improvements are all
above 18%. The smallest and the largest relative improvements observed
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were 14.25% and 36.64%, respectively, over all 80 problems reported in
Table 7.12.

n Instance �h h uh

10 I1 20.10 23.76 26.89

15 I1 23.01 23.32 23.77

25 I1 21.72 24.11 26.47

50 I1 23.12 23.87 24.24

10 I2 33.23 34.37 36.64

15 I2 31.96 33.56 34.75

25 I2 30.89 32.48 34.11

50 I2 32.77 33.43 33.77

10 I3 26.08 31.10 35.61

15 I3 26.54 30.63 32.38

25 I3 28.96 30.06 30.77

50 I3 28.51 29.44 31.08

10 I4 17.59 21.75 25.18

15 I4 18.97 21.04 24.49

25 I4 14.25 18.57 24.43

50 I4 14.83 17.55 21.10

Table 7.12. Productivity Comparison of Dual Vs. Single Gripper Robot Cells.

7.7 An Extension to m-Machine Robotic Cells
In this section we address problem RF 2

m|(free,A,MP,cyclic-n)|μ for
m ≥ 2. Drobouchevitch et al. [50] show that for single-part-type pro-
duction in a dual-gripper cell, the number of 1-unit cycles increases with
the number of machines at a much faster rate than that for a single-
gripper cell. Consequently, as m increases, the dual-gripper problem is,
in general, much more complex than that for a single-gripper. Further-
more, in multiple-part-type production, the scheduling of parts adds to
the complexity.

For RF 2
m|(free,A,MP,cyclic-n)|μ, let pr,j denote the processing time of

part Pr on machine Mj . Of special interest is the variant of the problem
with small gripper switching time, i.e.,

θ ≤ min{δ, min
r,j

pr,j}. (7.83)



Multiple-Part-Type Production: Dual-Gripper Robots 343

Drobouchevitch et al. [50] proved that an m-machine analogue of the
1-unit cycle C3,10, referred to as Cd

m, is optimal for single-part-type pro-
duction in an m-machine dual-gripper cell (RF 2

m|(free,A,cyclic-1)|μ) un-
der condition (7.83). The cycle Cd

m is a straightforward extension of
cycle C3,10 to the m-machine case, and can be described as follows (See
Chapter 4):

Cycle Cd
m

Step 1: Pick up a part Pi+m from Input device at I/O.

Step 2: For k from 1 to m:

Go to machine Mk. If necessary, wait for a part Pi+m−k on Mk to
complete processing.

Unload a part from Mk.

Switch gripper.

Load a part onto Mk.

Step 3: Go to I/O; drop a part Pi onto Output buffer.

The purpose here is to solve RF 2
m|(free,A,MP,S ∈ Sm

0 )|μ in the class
of all CRM sequences S ∈ Sm

0 , where Sm
0 consists of all CRM sequences

associated with 1-unit cycles for m-machine cells.
In Section 7.3 we showed that for RF 2

m|(free,A,MP,Su,v ∈ S0)|μ under
condition (7.83), the CRM sequence S3,10 provides an optimal solution
when m = 2. We also showed (in Section 4.4) that Cd

m is optimal for
single-part-type cells (RF 2

m|(free,A,cyclic-1)|μ) under condition (7.83).
These results have not been extended for m-machine cells with multiple
part-types. However, the results from Sections 7.3 and 7.4.1 suggest
that for RF 2

m|(free,A,MP,S ∈ Sm
0 )|μ under condition (7.83), the CRM

sequence (denoted as Sd
m) obtained by concatenating n identical Cd

m

sequences is a promising candidate to consider. Lemma 7.7 provides the
cycle time expression for the CRM sequence Sd

m.

Lemma 7.7 For RF 2
m|(free,A,MP,Sd

m)|μ, the cycle time of an MPS cy-
cle in a schedule σ is T σ

3,10 =
∑n

i=1 T
mσ(i)σ(i+1)
3,10 , where

T
mσ(i)σ(i+1)
3,10 = (m + 1)δ + 2(m + 1)ε + mθ +

m∑

k=1

wi+m+1−k
k , (7.84)
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and for j = 1, . . . ,m,

wi−j+1
j = max

{

0, pσ(i+1−j),j − (m + 1)δ − 2mε − (m − 1)θ

−
m∑

k=j+1

wi−k
k −

j−1∑

k=1

wi−k+1
k

⎫
⎬

⎭
. (7.85)

Since the part scheduling problem for RF 2
m|(free,A,MP,Sd

m)|μ is NP-
complete in the strong sense for m = 2, research has focused on the
design of good heuristics. It is an attractive research goal to investigate
the possibility of extending the results from Sections 7.4 and 7.5 to the
case of an m-machine cell. One interesting option to consider is the appli-
cation of the proposed heuristic procedure for RF 2

2 |(free,A,MP,S3,10)|μ
to solve an m-machine instance by relaxing the latter to obtain an arti-
ficial two-machine problem. Our heuristic, referred to as MCell, for m-
machine cells is as follows: Given an instance of RF 2

m|(free,A,MP,Sd
m)|μ,

we form (m − 1) artificial RF 2
2 |(free,A,MP,S3,10)|μ instances by setting

pnew
i,j = 0, j = 1, 2, . . . k − 1, k + 2, k + 3, . . .m, i ∈ P;

pnew
i,j = pi,j , j = k, k + 1, i ∈ P,

and varying k from 1 to m − 1. The new processing times pnew
i,j are

then incorporated into the expressions (7.84)–(7.85). As a result, we
have (m − 1) problems, all equivalent to RF 2

2 |(free,A,MP,S3,10)|μ, that
are solved approximately by algorithm Hard-CRM of Section 7.4 (with
some proper tuning of values ak = max

{
0, ak − γa

u,v

}
and bk = max{0,

bk − γb
u,v} in the function

∑
max

{
aσ(i+1), bσ(i)

}
to be minimized by the

Gilmore-Gomory algorithm, subject to problem data). Note that the
condition of preserving the original processing times of the parts on two
successive machines is required to adequately relax the m-machine prob-
lem to the corresponding two-machine problem under the CRM sequence
S3,10. By solving each of (m − 1) artificial problems approximately, we
obtain (m−1) part schedules. We then calculate the cycle time for each
of these schedules for RF 2

m|(free,A,MP,Sd
m)|μ. The part schedule that

delivers the smallest cycle time determines the final solution.
Heuristic MCell was tested on randomly generated problems under in-

stance types I1, I2, I3, and I4, as described in Section 7.5. In particular,
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condition (7.83) is valid for all instances generated for the computational
experiments. The performance of the heuristic was tested against a lower
bound on the optimal cycle time obtained as follows.

Lemma 7.8 For RF 2
m|(free,A,MP,S ∈ Sm

0 )|μ under condition (7.83),
the cycle time T (S) of any CRM sequence S has a lower bound LBm:

T (S) ≥ LBm = max
1≤j≤m

{
n∑

r=1

max{pr,j + θ + 2ε,

(m + 1)δ + 2(m + 1)ε + mθ}
}

. (7.86)

Proof. Let S be the CRM sequence constructed from an arbitrary
1-unit robot move cycle C. Let Mk be an arbitrary machine. We prove
the lemma by demonstrating that

T (S) ≥
n∑

r=1

max {pr,k + θ + 2ε, (m + 1)δ + 2(m + 1)ε + mθ} . (7.87)

Let σ = (σ(1), σ(2), ..., σ(n)) be a schedule of parts, and let us consider
a complete execution of CRM sequence S. Let t1 and t2, t1 < t2, be any
two successive instants in time when machine Mk starts processing of a
part σ(1), so that t1 + T (S) = t2. Note that the CRM sequence S is
a concatenation of n copies of C. We denote by Ci the ith copy of C,
whose execution starts at the moment just after part σ(i) is loaded onto
machine Mk and ends at the moment when the next part σ(i+1) in the
schedule is just loaded onto the same machine. We denote by T (Ci) the
time taken by a complete execution of Ci. Thus, T (S) =

∑n
i=1 T (Ci).

To prove (7.87), it suffices to show that

T (Ci) ≥ max
{
pσ(i),k + θ + 2ε, (m + 1)δ + 2(m + 1)ε + mθ

}
.

Consider an execution of Ci. Recall that M−
j and M+

j , 0 ≤ j ≤ m,
denote operations “load machine Mj” and “unload machine Mj”, re-
spectively. Let O− = ∪0≤j≤mM−

j and O+ = ∪0≤j≤mM+
j . The ro-

bot move sequence for Ci can then be defined by a sequence ω =
(
O1, O2, ..., O2(m+1)

)
, where Oj ∈ O− ∪ O+, Oj1 �= Oj2 for any j1 �= j2,

and O2(m+1) = M−
k .

For Ci, let τi be the time taken by a partial execution of Ci from the
moment when the robot is just starting to unload machine Mk (operation
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M+
k ) until the moment when the robot just finishes loading machine

Mk (operation M−
k ) . Obviously, T (Ci) ≥ τi + pσ(i),k. Furthermore,

if M−
k immediately follows M+

k in the ω operation, then τi = 2ε + θ.
Otherwise, there is at least one operation executed after operation M+

k

and before operation M−
k . Since such an operation is executed on another

machine rather than on Mk, it requires the robot to travel from Mk

to that machine. Hence, τi ≥ 2ε + δ ≥ 2ε + θ by (7.83). Therefore,
T (Ci) ≥ pσ(i),k + θ + 2ε.

Thus, what is left to show is that

T (Ci) ≥ (m + 1)δ + 2(m + 1)ε + mθ. (7.88)

Given the sequence ω =
(
O1, O2, ..., O2(m+1)

)
associated with Ci, by a

contribution Δ(Oj) of a particular operation Oj to T (Ci), we mean the
time taken by a partial execution of Ci from the moment when the robot
has just completed operation Oj−1 to the moment when it is about to
start the execution of operation Oj . We then have

T (Ci) = 2(m + 1)ε +
2(m+1)∑

j=1

Δ(Oj). (7.89)

We first observe that Δ(M−
0 )+Δ(M+

0 ) ≥ δ, since the execution of at
least one of operations M−

0 and M+
0 necessarily contributes (to T (Ci))

the robot travel time between some machine and I/O. Consider now op-
erations Oj ∈ {O− ∪ O+}

∖{
M−

0 ,M+
0

}
. If two consecutive operations

Oj−1 and Oj are executed on the same machine M�, then the contri-
bution Δ(Oj) is equal to θ if Oj−1 = M+

� and Oj = M−
� , or to part

processing time pr,� ≥ θ (by (7.83)) if Oj−1 = M−
� and Oj = M+

� .
Clearly, the total number γ of such operations Oj for which Oj−1 is ex-
ecuted on the same machine is at most m. On the other hand, if two
consecutive operations Oj−1 and Oj are executed on different machines,
then the contribution Δ(Oj) includes the robot travel time between the
machines on which these operations are executed, so it is at least δ. The
total number of such operations Oj for which Oj−1 is executed on a dif-
ferent machine is equal to 2m−γ ≥ m. By (7.83), (m − γ) δ ≥ (m − γ) θ,
and so we have
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2(m+1)∑

j=1

Δ(Oj) ≥ δ + γθ + (2m − γ) δ ≥ mθ + (m + 1) δ.

Combining this relation with (7.89) yields (7.88).
As before, computer runs, each consisting of 10 instances, were carried

out on randomly generated data under types I1, I2, I3, and I4. The
performance of heuristic MCell was compared with the lower bound
LBm established in Lemma 7.8. Each row in Table 7.13 corresponds
to a summary of the results for 10 instances. Table 7.13 has the same

n Ii m = 3 m = 5 m = 8

� e u � e u � e u

10 I3 0.00 2.42 4.48 0.00 0.00 0.00 0.00 0.00 0.00

15 I3 0.45 2.35 4.56 0.00 0.00 0.00 0.00 0.00 0.00

25 I3 0.44 2.90 4.22 0.00 0.00 0.00 0.00 0.00 0.00

50 I3 2.84 3.59 4.33 0.00 0.00 0.00 0.00 0.00 0.00

10 I4 0.51 7.46 17.45 1.03 5.15 14.66 0.26 0.90 1.83

15 I4 2.24 10.65 16.83 2.72 7.09 12.69 0.59 1.33 2.37

25 I4 5.48 10.89 17.00 7.06 10.57 13.52 0.86 1.35 2.00

50 I4 10.35 13.73 16.16 8.85 12.33 16.26 1.15 1.78 2.25

Table 7.13. Performance Evaluation of Heuristic MCell.

format as Table 7.11. For example, the third, fourth, and fifth columns
show the minimum, the mean and the maximum relative percentage
error, respectively, for the three-machine case (m = 3). On average,
heuristic MCell performed well with respect to the lower bound. Note
that the mean relative errors are all less than 14%. The smallest and
the largest relative errors observed were 0% and 17.45%, respectively,
over all the 80 problems reported in Table 7.13. The relative errors
are 0% for all the instances tested under types I1 and I2, so they are
not reported in Table 7.13. In general, relative errors are small for
instances with smaller part processing times (instances I1 and I2). The
relative error grows as the part processing times increase (I3 and I4). For
instances under I1 and I2, the term of LBm that gives the total robot
activity time ((m + 1)δ + 2(m + 1)ε + mθ) dominates the processing
time term (pr,j + θ + 2ε). Consequently, under I1 and I2 the optimal
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solutions are closer to LBm. On the other hand, under I3 and I4 the part
processing time term dominates the total robot activity time. Moreover,
the optimal solution depends on the robot move sequence as well as the
part schedule. Given that the lower bound LBm does not take into
account part scheduling, the error estimates under I4 in Table 7.13 may
not be as large as they appear to be. Thus, the performance of MCell
might be better than that indicated in Table 7.13. Note that as the
number of machines increases, the relative error decreases; again, the
term (m + 1)δ + 2(m + 1)ε + mθ may dominate in LBm.



Chapter 8

MULTIPLE-ROBOT CELLS

Two early studies of systems with multiple robots focus on cells that
are not flowshops: the robots move to different workstations to perform
a variety of assembly functions for different parts by using different tools;
conflicts arise over the tools used and the paths traveled. Maimon and
Nof [118] discuss enumerative algorithms that determine how high-level
decisions such as work allocation, cooperation, and the robots’ routes
of travel are made by the control computer during operations. Nof and
Hannah [126] analyze how productivity is affected by different types of
cooperation among the robots and by the level of resource sharing by
the robots.

In Chapter 9, we shall discuss how Kats and Levner [97] address the
multiple robot scheduling problem in no-wait cells. A previous work
by the same authors [95] proposes an algorithm to find the minimum
number of robots needed to meet a given throughput. However, the
algorithm allows for different robots to move along the same path, i.e.,
to travel the same cycle. This scheme may be suitable for a system with
automated guided vehicles or with computer-controlled hoists, but in
most robotic cells there is insufficient space for such movements by the
robots.

This chapter summarizes the work of Geismar et al. [64] that ad-
dresses the problem of scheduling a robotic cell with parallel machines
and multiple robots working concurrently in a free-pickup cell produc-
ing a single part-type. In terms of the classification of Chapter 2, the
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problem addressed here is RFm,r|(free,E,cyclic-k)|μ. We begin with the
physical description of cells with multiple robots (Section 8.1). An ex-
tension of LCM cycles (Chapter 5) is analyzed (Sections 8.2 and 8.3),
and then compared to a heuristic dispatching method (Section 8.4) used
by a Dallas-area semiconductor equipment manufacturer by using soft-
ware simulation and simulated data for cells with Euclidean travel-time
(Sections 8.5 and 8.6).

8.1 Physical Description of a Multiple-Robot Cell

The r robots in the cell are denoted R1, R2,. . . , Rr. Before processing
begins, each robot is assigned stages to load and to unload. Let Rj be
the set of indices of stages unloaded by robot Rj , j = 1, . . . , r; i.e.,
Rj , and only Rj , performs activities Ai, i ∈ Rj . There are specifically
designated shared stages whose machines perform a processing function
just like any other stage, but each shared stage is loaded by one robot
and unloaded by another. The set of indices for these shared stages is
denoted Q.

For example, a Dallas-area semiconductor equipment manufacturer
has produced a cell that has 18 stages, some of which have parallel
machines. The machines are housed in modules that resemble racks
used for computer hardware. Each module contains the machines of one
stage. The machines of a particular stage are stacked atop one another
(see Figure 8.1(a)). This simplifies programming a robot’s movements
because the horizontal (x, y) coordinates of the machines of a particular
stage are all the same. Only the vertical (z) coordinate changes for
different machines of the same stage. Some modules contain only one
machine (mi = 1), but the one-stage-per-module design allows machines
to be added to stages with minimal disruption to the layout or to the
programming of the robots. These modules are arranged in a horseshoe
configuration (see Figure 8.1(b)).

This cell also contains three robots (R1, R2, R3) that transfer the sili-
con wafers between the various stages. Each robot is assigned specific
stages whose machines it loads or unloads. These assignments are de-
termined by the cell’s configuration: its long, narrow shape limits the
modules (hence the stages) that each robot can reach. Therefore, the
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robots’ assignments are fixed input parameters to the robot scheduling
problem.

A wafer begins processing when robot R1 unloads it from the in-
put device and loads it onto some machine in stage 1. After stage 1
processing, R1 unloads the wafer and loads it onto a machine in stage 2.
Robot R2 unloads it (stage 2 is a shared stage) and successively loads
it onto machines in stages 3, 4, and 5. Robot R3 unloads the wafer
(stage 5 is shared) and successively loads it onto stages 6, 7, 8, 9, 10,
and 11. R2 unloads stage 11 (stage 11 is shared) and transfers the wafer
through stages 12, 13, and 14, before loading it onto some machine of the
shared stage 15. Robot R1 unloads stage 15, carries the wafer through
stages 16, 17, and 18, and then places the completed wafer into the
output device. Hence, for this cell, R1 = {0, 1, 15, 16, 17, 18}, R2 =
{2, 3, 4, 11, 12, 13, 14}, R3 = {5, 6, 7, 8, 9, 10}, and Q = {2, 5, 11, 15}.

The total floor space covered by a robot’s movements is called its
envelope. The cell is designed so that the envelopes of the robots intersect
only in small areas around each of the modules containing the shared
stages. To ensure that two robots do not collide in one of these four
areas, a time buffer β is specified. If robot Rk is loading or unloading
a machine in stage i, i ∈ Q, then robot Rj , j �= k, cannot move to any
machine in stage i until Rk has completed its operation and β time units
have passed.

This non-collision policy is implemented by using a token τi for each
shared stage i ∈ Q. Before moving to a machine in a shared stage,
robot Rj must first allocate the stage’s token. If the token is currently
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Robot R2 Robot R3
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Figure 8.1. (a) Module Containing the Machines of a Stage. (b) Three-Robot Cell

with 18 Stages.
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held by another robot Rk, then Rj waits at its current location until the
token is released by Rk. Token τi is released by Rk β time units after
the completion of its operation (loading or unloading) at a machine in
stage i. When loading a machine in stage i, Rj ’s sequence of actions is
(1) unload a machine in stage i − 1, (2) allocate token τi, (3) move to a
machine in stage i, and (4) load that machine in stage i. The actions of
releasing a currently held token or of allocating a free token are assumed
to require zero time, since they are computer instructions.

8.2 Cycles in Multiple-Robot Cells
Unlike a single-robot cell, the operations of an r-robot cell cannot be

accurately represented by a single cycle of robot moves. Rather, each
robot has its own repeated sequence of moves that it executes concur-
rently with those of the other robots. In an r-robot cell, a cycle is
defined to be the combination of these r repeated sequences. For ro-
bot Rj , its repeated sequence will contain activities Aiγη, where i ∈ Rj ,
γ ∈ {a, . . . , α(mi)}, η ∈ {a, . . . , α(mi+1)}. As an example, the definition
of πD (Chapter 3) for a multi-robot cell is as follows.

Definition 8.1 In an r-robot cell with one machine in each stage, the
cyclic solution (or cycle) πD is the collection of the r repeated sequences
πj

D = (Aij1
, Aij2

, . . . , Aij|Rj |
), j = 1, . . . , r; Rj = {ij1 , ij2 , . . . , ij|Rj |

}, and

the sequence ij1 , ij2 , . . . , ij|Rj |
is decreasing. Furthermore, ∪r

j=1Rj =
{0, 1, . . . ,m} and Rj ∩Rk = ∅, 1 ≤ j ≤ k ≤ r.

For the three-robot cell of Figure 8.1(b), if each stage has only one ma-
chine, then π1

D = (A18, A17, A16, A15, A1, A0), π2
D = (A14, A13, A12, A11,

A4, A3, A2), and π3
D = (A10, A9, A8, A7, A6, A5).

To define the throughput of a cycle in the multi-robot cell, consider
the three-robot cell of Figure 8.1(b). Observe that the rate at which R1

places parts into the output device must equal the long-term average
rate that R1 unloads parts from stage 15. This value in turn equals the
rates for R2’s loading of stage 15 and its unloading of stage 11, which, of
course, equals the rate at which R3 loads stage 11. Hence, if each robot’s
throughput is defined as the long-term average number of parts placed
into its last stage (R1’s placement of parts into O, R2’s placement into
stage 15, and R3’s into stage 11) per unit time, then the robots have
equal throughput, which is then the cell’s throughput.
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Therefore, the synchronization of the robots is similar to the synchro-
nization of tasks on an assembly line: cycle time is determined by the
slowest worker. If robot Rj requires less time to complete its repeated
sequence than does an adjacent robot Rk, then Rj will be forced to wait
at one of the stages shared by these two robots. Rj will either wait for
a machine in a shared stage to complete processing so that it can be
unloaded, or Rj will wait at another shared stage for Rk to unload a
machine so that Rj can reload it. It is these types of waiting that cause
unbalanced robots to have equal throughput.

Cycle πLD of Chapter 5 can be extended to an r-robot cell with mi ≥ 1
machines in stage i, i ∈ M . Like πD, πLD is a collection of r repeated
sequences. Furthermore, in πLD each robot visits stages in the same
order as it does in πD. In contrast to Rj , let R̄j be the set of all stages
whose machines are loaded by Rj , j = 1, . . . , r. In πLD, in each instance
of its repeated sequence, the number of times that robot Rj unloads
each stage i ∈ Rj and loads each stage i ∈ R̄j is λj , the least common
multiple (LCM) of the number of machines in each of those stages either
loaded or unloaded by Rj . Thus, λj = LCMi∈Rj∪R̄j

[mi].
The repeated sequence for robot Rj in cycle πLD can be viewed as λj

blocks, each with |Rj | activities. In each of the blocks, the first index
of the activities (indicating the unloaded stage) follow the decreasing
sequence of πD, i.e., ij1 , ij2 , . . . , ij|Rj |

. The second and third indices
(indicating the machines that are unloaded and loaded) are ordered so
that each machine is loaded immediately after it is unloaded (activity
Ai−1,φγ , for some φ ∈ {a, . . . , α(mi−1)}, immediately follows Aiγη for
i �∈ Q, for some η ∈ {a, . . . , α(mi+1)}), and the machines of each stage
are loaded cyclically and unloaded in the same order. This implies that
for each stage i ∈ R̄j , each of its machines is loaded λj/mi times. In
the example cell, if m5 = 4, m6 = 3, m7 = 2, m8 = m9 = m10 = 1, and
m11 = 6, then λ3 = 12 and the repeated sequence for robot R3 is

π3
LD = (A10∗a, A9∗∗, A8∗∗, A7a∗, A6aa, A5aa,

A10∗b, A9∗∗, A8∗∗, A7b∗, A6bb, A5bb,

A10∗c, A9∗∗, A8∗∗, A7a∗, A6ca, A5cc,

A10∗d, A9∗∗, A8∗∗, A7b∗, A6ab, A5da,

A10∗e, A9∗∗, A8∗∗, A7a∗, A6ba, A5ab,

A10∗f , A9∗∗, A8∗∗, A7b∗, A6cb, A5bc,

A10∗a, A9∗∗, A8∗∗, A7a∗, A6aa, A5ca,
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A10∗b, A9∗∗, A8∗∗, A7b∗, A6bb, A5db,

A10∗c, A9∗∗, A8∗∗, A7a∗, A6ca, A5ac,

A10∗d, A9∗∗, A8∗∗, A7b∗, A6ab, A5ba,

A10∗e, A9∗∗, A8∗∗, A7a∗, A6ba, A5cb,

A10∗f , A9∗∗, A8∗∗, A7b∗, A6cb, A5dc).

πLD is the collection of the r repeated sequences πj
LD, j = 1, . . . , r. In

keeping with the definition of a cycle (Chapter 3), πLD completes when
the cell returns to its state at the beginning of πLD. Hence, cycle πLD

produces λ = LCM1≤j≤r[λj ] parts, and in one complete πLD cycle, πj
LD

is performed λ/λj times.

8.3 Cycle Times
The one-stage-per-module design implies that a robot’s travel time

between two machines Miγ and Mjη is independent of the values of
γ ∈ {a, . . . , α(mi)} and η ∈ {a, . . . , α(mj)}: the time required for a
vertical movement is small in comparison to that for horizontal move-
ment. Hence, the only specification needed is that of the travel times
δij between stages i and j, 0 ≤ i, j ≤ m + 1. The only restrictions on
these travel times are that they are symmetric (δij = δji) and satisfy the
triangle inequality (δij + δjk ≥ δik). This leads to a lower bound for the
per unit cycle time.

Theorem 8.1 In a robotic cell with parallel machines, r robots, and a
fixed assignment of stages to robots, we have the following lower bound
for the per unit cycle time:

T (π)
k

≥ max

⎧
⎨

⎩
max
1≤j≤r

⎧
⎨

⎩

∑

i∈Rj

(δi,i+1 + 2ε)+

∑

i∈Rj\Q
min{pi, min

h∈R̄j

δhi} +
∑

i∈Rj∩(Q∪{0})
min
h∈R̄j

δhi

⎫
⎬

⎭
,

max
i
∈Q

{
pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε

mi

}

,

max
i∈Q

{
pi + 2ε + β + δi−1,i

mi

}}

,

where k is the number of units produced by one iteration of cycle π.
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Proof. Consider the first argument. For each part produced, each
robot Rj performs an activity that unloads a machine in stage i, ∀i ∈ Rj .
Activity Aiγη requires time δi,i+1 + 2ε: Rj unloads machine Miγ (time
ε), travels to Mi+1,η (time δi,i+1), and loads Mi+1,η (time ε). Before
unloading a non-shared machine in stage i, a robot can wait for that
machine’s entire processing (time pi) or move to that machine (at least
minh∈R̄j

δhi). Before unloading a shared machine or the input device, a
robot moves to that machine or device.

The second argument is the minimum time required to complete a
cycle if a robot waits at a non-shared machine. The time between two
loadings of machine Miγ requires at minimum Miγ ’s processing (pi),
unloading the part (ε), traveling to some machine in stage i + 1 (δi,i+1),
loading the part onto that machine (ε), traveling to some machine in
stage i − 1 (δi+1,i−1), unloading a part from that machine (ε), traveling
to Miγ (δi−1,i), and loading the part onto Miγ (ε). In a k-unit cycle,
the mi machines in stage i are loaded a total of k times. Therefore, the
minimum cycle time is achieved by loading each machine in stage i k/mi

times, which leads to the per unit cycle time of the second argument.
The minimum time between successive loadings of shared machine

Miγ is pi + 2ε + β + δi−1,i, obtained as follows. pi time units after Miγ

is loaded by robot Rj , robot Rk unloads the part (requiring time ε).
β time units after unloading the part from Miγ , Rk releases token τi.
Hence, pi + ε + β time units after its previous loading of Miγ , robot Rj

acquires τi . Once Rj has been allocated τi, Rj can transport the part it
has unloaded from some machine in stage i − 1 to Miγ (δi−1,i) and load
Miγ (ε). Dividing by mi yields the required lower bound on the per unit
cycle time.

The LCM cycle πLD reloads each machine as soon as possible after
unloading it. It is, therefore, reasonable to expect this cycle to be opti-
mal under certain conditions. We first derive the cycle time of πLD. The
lower bound on the per unit cycle time, established in Theorem 8.1, then
helps us identify conditions under which πLD is optimal. We provide two
such conditions in Corollaries 8.1 and 8.2.

The expression for the per unit cycle time of πLD has an argument
that represents each robot’s per unit cycle time if it never waits at a
machine and arguments that represent each robot’s per unit cycle time
if one waits at either non-shared or shared machines. Recall that in πLD,
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robot Rj , j = 1, . . . , r, travels the sequence of stages ij1 , ij2 , . . . , ijRj
,

where ij1 > ij2 > · · · > ij|Rj |
.

Theorem 8.2 The per unit cycle time for πLD is

T (πLD)
λ

=max

⎧
⎨

⎩
max
1≤j≤r

⎧
⎨

⎩

|Rj |∑

k=1

(δijk
,ijk

+1 + δijk
+1,ijk+1

+ 2ε)

⎫
⎬

⎭
,

max
i
∈Q

{
pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε

mi

}

,

max
i∈Q

{
pi + 2ε + β + δi−1,i

mi

}}

, (8.1)

where ij,|Rj |+1 = ij1 and λ = LCM1≤j≤r[λj ].

Proof. Activity Aijk
γη includes the unloading of machine Mijk

γ (ε),
moving to machine Mijk

+1,η (δijk
,ijk

+1), and loading Mijk
+1,η (ε). Imme-

diately after performing activity Aijk
γη, robot Rj travels to stage ijk+1

(δijk
+1,ijk+1

) to begin its next activity. The first argument of (8.1) rep-
resents the time for Rj to serve each stage ijk

, k = 1, . . . , |Rj |, exactly
once.

If robot Rj waits before it unloads machine Miγ , i �∈ Q, then the
time between successive unloadings of Miγ is pi + δi,i+1 + δi+1,i−1 +
δi−1,i + 4ε (it follows the same actions as those described in the proof
of Theorem 8.1). The mi machines of stage i are unloaded cyclically, so
in the time between successive unloadings of Miγ , the number of parts
produced is mi. Hence, the per unit cycle time for Rj is (pi + δi,i+1 +
δi+1,i−1 + δi−1,i + 4ε)/mi.

If robot Rj waits before it unloads a machine Miγ , i ∈ Q, then the
time between successive unloadings of Miγ is pi +2ε+β + δi−1,i. Hence,
the per unit cycle time for Rj is (pi + 2ε + β + δi−1,i)/mi.
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Corollary 8.1 For a robotic cell with parallel machines, r robots, and
a fixed assignment of stages to robots, πLD is optimal if

max
{

max
i
∈Q

{
pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε

mi

}

,

max
i∈Q

{
pi + 2ε + β + δi−1,i

mi

}}

≥

max
1≤j≤r

⎧
⎨

⎩

|Rj |∑

k=1

(δijk
,ijk

+1 + δijk
+1,ijk+1

+ 2ε)

⎫
⎬

⎭
.

Proof. The proof follows from Theorem 8.1 and Theorem 8.2.

Corollary 8.2 For a robotic cell with parallel machines, r robots, con-
stant travel-time δ, and a fixed assignment of stages to robots, πLD is
optimal if pi ≥ δ, i = 1, . . . ,m.

Proof. Corollary 8.1 implies that we need only to consider the case
for which

T (πLD)
λ

= 2 max
1≤j≤r

|Rj |(δ + ε).

From Theorem 8.1, if pi ≥ δ,∀i, then

T (π)
k

≥ max
1≤j≤r

{|Rj |(δ + 2ε) + |Rj \ Q|δ +

|Rj ∩ (Q ∪ {0}|δ} = 2 max
1≤j≤r

|Rj |(δ + ε),

for all k-unit cycles π. Hence, πLD is optimal.

8.4 Scheduling by a Heuristic Dispatching Rule
The semiconductor equipment manufacturer mentioned in Section 8.1

currently uses a scheduling policy called Longest Waiting Pair (LWP).
This is a heuristic dispatching scheme in which a centralized control
computer determines each robot’s next action at the completion of that
robot’s current action. Hence, it specifies only one activity at a time.
This contrasts with cycles such as πLD, in which all robot actions are
specified before the cell’s processing begins.

The Longest Waiting Pair policy is implemented as follows for a cell
with one machine at each stage. For each part that has completed pro-
cessing on its current machine, the control computer tracks how long
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that part has been waiting to be unloaded. For each empty machine,
the control computer tracks how long that machine has been waiting
for its next part. The waiting time of each part is added to the waiting
time of its destination machine. The pair with the largest sum of waiting
times when the corresponding robot completes an action is designated
the longest waiting pair, and the robot’s next action is to move that part
to its destination machine.

This scheme can be formalized for a cell with mi ≥ 1 machines at
stage i ∈ M as follows. For each machine Mih, let cih be the time at
which machine Mih completes the processing of its current part, i ∈ M ,
h ∈ {a, . . . , α(mi)}. When Mih is unloaded, cih is set to ∞; c0 = 0
throughout all processing. Let ci = mina≤h≤α(mi){cih}. Let uih be the
time at which Mih is unloaded, i ∈ M , h ∈ {a, . . . , α(mi)}. When
Mih is loaded, uih is set to ∞; um+1 = 0 throughout all processing.
Let ui = mina≤h≤α(mi){uih}. When robot Rj completes an action, let
i′ ∈ Rj be a value for which ci +ui+1 is minimal. In the case of ties, the
stage furthest downstream, i.e., with the largest index, is chosen. Robot
Rj unloads a machine in stage i′ for which ci′h is minimal (break ties
arbitrarily), takes that part to a machine in stage i′ +1 for which ui′+1,h

is minimal (break ties arbitrarily), and loads that machine.

8.5 Computational Results

Simulations were used (Geismar et al. [64]) to compare the perfor-
mance of the Longest Waiting Pair (LWP) robot scheduling scheme to
πLD for the 18-stage robotic cell with parallel machines and three ro-
bots described in Section 8.1. They were run for each of three different
configurations of the 18-stage cell. The configurations have different
sets of values for the number of parallel machines mi at each stage,
i = 1, . . . , 18. For each configuration, simulations were run for fifteen
different data sets. Within each set are 100 problem instances, each of
which consists of the processing times for each of the 18 stages. For a
given data set, each stage’s 100 processing times were generated as re-
alizations of a normal random variable with a fixed mean and standard
deviation. The different data sets were created by varying the parame-
ters − five sets of means with three sets of standard deviations for each
mean.
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For each configuration, five different sets of means were generated
as follows: the first set is called the primary means (PM). Other sets
were created by taking one-half of each mean (PM*0.5), 80% of each
(PM*0.8), 120% of each (PM*1.2), and 150% of each mean (PM*1.5).
For each set of means, three different sets of standard deviations were
used. In the first, second, and third, respectively, the standard deviation
of each stage’s processing time was one-half, one-fourth, and one-eighth
of that stage’s mean. A simulation run using LWP was made for each
problem instance.

For each of the 15 data sets of each configuration, the average of the
percentage improvement realized from using πLD rather than LWP was
computed. These values are presented in Table 8.1. When interpret-

Std. Means (%)

Cnfg. Devs. PM*0.5 PM*0.80 PM PM*1.2 PM*1.5

mean/2 7.34 4.81 3.12 2.73 2.49

1 mean/4 9.62 4.94 3.89 3.88 2.44

mean/8 10.85 5.67 4.03 2.99 2.62

mean/2 8.75 12.74 10.53 7.72 5.89

2 mean/4 7.21 12.74 12.30 10.69 7.75

mean/8 6.69 9.53 12.62 9.49 6.96

mean/2 11.04 9.73 8.29 6.45 5.75

3 mean/4 13.33 9.04 6.37 5.58 4.16

mean/8 18.05 9.19 7.01 5.66 4.55

Table 8.1. Average Improvements from Using πLD Instead of LWP.

ing these data, we should note that the condition of Corollary 8.1 is
satisfied (and, hence, πLD is optimal) in 87% of the problem instances.
Table 8.2 compares the per-unit cycle times of LWP and πLD to the
lower bound of Theorem 8.1. These results testify to the quality of
this cycle by demonstrating its optimality for a variety of instances.
An example in which πLD does not achieve this lower bound occurs in
Configuration 2, PM*0.5: T (πLD)/λ = 33, but the lower bound of The-
orem 8.1 is T (π)/k ≥ 28,∀π. It is not known if a k-unit cycle π∗ for
which T (π∗)/k < 33 exists, nor has it been proven that one does not
exist.
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πLD LWP

Process Per-unit cycle time % above % above

Cnfg. times lwrbnd πLD LWP lwrbnd lwrbnd

PM*0.5 47 47 51 0.00% 8.51%

PM*0.8 71 71 74 0.00% 4.23%

1 PM 87 87 90 0.00% 3.45%

PM*1.2 103 103 106 0.00% 2.91%

PM*1.5 127 127 130 0.00% 2.36%

PM*0.5 28 33 34 17.86% 21.43%

PM*0.8 30 33 39.47 10.00% 31.57%

2 PM 36 36 52 0.00% 44.44%

PM*1.2 42 42 64 0.00% 52.38%

PM*1.5 51 51 68 0.00% 33.33%

PM*0.5 40 40 46.96 0.00% 17.40%

PM*0.8 60 60 67.75 0.00% 12.92%

3 PM 73 73 80.5 0.00% 10.27%

PM*1.2 86 86 93.97 0.00% 9.27%

PM*1.5 106 106 110 0.00% 3.77%

Table 8.2. Comparison of Per-Unit Cycle-Times for LWP and πLD to the Lower

Bound of Theorem 8.1.

πLD’s superiority can in part be attributed to it being a predefined sch-
edule. In the instances for which it is known to be optimal (T (πLD)/λ =
(pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε)/mi, i �∈ Q, or T (πLD)/λ = (pi + 2ε +
β + δi−1,i)/mi, i ∈ Q), the appropriate robot Rj , j ∈ {1, . . . , r}, is wait-
ing at machine Miγ , γ ∈ {a, . . . , α(mi)}, when it completes processing
at time tiγ . Thus, Rj can unload Miγ at time tiγ . Under the LWP
schedule, Rj is never waiting at Miγ when it completes processing. At
best, at time tiγ , Rj will begin to travel to Miγ for unloading. Thus, the
earliest that Rj can unload Miγ is at time tiγ + δhi, h ∈ R̄j . Hence, if
the condition of Corollary 8.1 is satisfied, then

T (LWP )
k

− δhi ≥
T (πLD)

λ
, h ∈ R̄j , j ∈ {1, . . . , r}.

For cases in which the condition of Corollary 8.1 is not satisfied, the
robot is never waiting at a machine when it completes processing for
either schedule. Consider, however, that in the simulations, we have
pi > δjk, i = 1, . . . , 18, 0 ≤ j, k ≤ 19. Therefore, by Corollary 8.2, if
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this were a constant travel-time cell, then πLD would be optimal. Since
the travel-time metric is a generalization of constant travel-time, and
the range of values for travel times is small in the simulations, it is not
surprising that πLD works well also in these instances.

8.6 Applying an LCM Cycle to Implemented
Cells

Simulations were also run using both the Longest Waiting Pair (LWP)
schedule and the LCM cycle πLD for four cells that are already being used
in industry. Each cell has three robots, and the number of stages in the
cells varies from 10 to 15. In two of the cells, physical constraints require
that there be a stage that is used only to transfer a part from robot R2

to robot R1 before robot R1 places the part into the output device. This
stage is modeled just like the other stages, but its machines’ processing
times are zero. Another difference in these implementations is the travel
times of the robots: traveling between two machines takes longer with a
part than without one. This is done to protect the parts, and is modeled
by choosing appropriate values for the loading and unloading times.

For these four cells, the percentage improvement in throughput gained
from using πLD rather than LWP ranged from 6.23% to 12.02%, with an
average of 9.1%. In only one cell (Cell 1) did πLD achieve the lower bound
of Theorem 8.1 by satisfying the conditions of Corollary 8.1. The largest
deviation from this lower bound was 9.05% for Cell 2. Interestingly, this
is also the cell for which πLD showed the greatest improvement over
LWP, which also suggests that the lower bound may not be achievable
in this case. At present it is not known if there is a sequence that is more
efficient for this cell. A summary of these results is given in Table 8.3.

Percentage Percentage πLD

Number improvement is above

Cell of stages πLD v. LWP lower bound

0 11 9.26 1.49

1 10 6.23 0.00

2 14 12.02 9.05

3 15 8.88 7.11

Table 8.3. Comparison of πLD to LWP for Implemented Cells.



Chapter 9

NO-WAIT AND INTERVAL
ROBOTIC CELLS

Most of the discussion in the previous chapters has been for free-
pickup cells. Cells with two other pickup criteria have been investigated
in the literature – no-wait cells and interval cells (see Chapter 2). This
chapter briefly discusses cyclic production in these cells. In Section 9.1,
we discuss no-wait cells. Section 9.2 summarizes the research for interval
cells.

9.1 No-Wait Robotic Cells

In no-wait cells, a part must be removed from machine Mi, i ∈ M ,
and transferred to machine Mi+1 as soon as Mi completes processing
that part. Such conditions are commonly seen in steel manufacturing or
plastic molding, where the raw material must maintain a certain temper-
ature, or in food canning to ensure freshness (Hall and Sriskandarajah
[77]). Examples of no-wait cells also include chemical processing tank
lines, such as those used for manufacturing printed circuit boards or
airplane wings (Song et al. [145]). We first consider cells producing a
single part-type and then discuss multiple-part-type production.

Consider problem RFm|(no-wait,E,cyclic-1)|μ. To satisfy the no-wait
constraint, the robot must be available at each machine by the time
that machine completes its processing of a part. More formally, each
part is unloaded from machine Mi (i.e., activity Ai begins) exactly Zi

time units after it enters the cell, where Zi =
∑i

k=1(pk + δk−1,k + 2ε),
i = 1, . . . ,m. Hence, a schedule is completely determined by the input
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times of the parts. These input times must be carefully selected to ensure
feasibility for a cycle; in no-wait cells, the assumption of always using
active schedules (Chapter 3) does not apply. In fact, under the no-wait
constraint there are certain cells for which a particular 1-unit cycle has
no feasible schedule. For example, consider a three-machine cell running
cycle π4 = (A0, A3, A1, A2). After loading M1, the robot must travel to
M3 (which requires time δ13), perform A3 (δ34 + 2ε), and return to M1

(δ41) by the time M1 finishes processing. If p1 < δ13 + δ34 + δ41 + 2ε,
then π4 is infeasible for this cell.

The no-wait constraint has been exploited to create a polynomial-
time algorithm to find an optimal solution for RFm|(no-wait,E,cyclic-
1)|μ. We present this algorithm, developed by Levner et al. [111]. The
approach is commonly referred to as a sieve method or a prohibited in-
tervals approach. We later look at its extensions to 2-unit cycles, to
cells processing two part-types, and to multiple-robot cells, and then at
other results for processing multiple part-types. We know of no studies
of no-wait cells with parallel machines or dual-gripper robots.

Because the cycle time T in a 1-unit cycle is the length of the interval
between successive parts entering the cell, the definition of Zi implies
that Yi = Zi (mod T ) is the time that passes from the start of the
cycle until activity Ai begins. Hence, each feasible value of T implies a
particular cycle.

Example 9.1 Let m = 4, p = (18, 24, 15, 18), δi,j = 1 for 0 ≤ i < j ≤ 4,
ε = .5. These data imply Z0 = 0, Z1 = 20, Z2 = 46, Z3 = 63, and
Z4 = 83. If T = 33, then Y0 = 0, Y1 = 20, Y2 = 13, Y3 = 30, and
Y4 = 17; so cycle (A0, A2, A4, A1, A3) has cycle time T = 33. Figure 9.1
presents a Gantt chart for this example in which each row represents a
part’s schedule, each segment represents processing on a machine, and
the circled activities comprise one iteration of the cycle.

For any given no-wait cell, our task is to find the smallest feasible 1-
unit cycle time T ∗ and a cycle that achieves this time. We start by
considering constraints imposed by the robot’s movement times.

For a cycle to be feasible, the interval between the starting times of
a cycle’s consecutive activities Ai and Aj must be large enough for the
robot to perform its required actions (δi,i+1 +2ε+ δi+1,j). Therefore, for
any pair of indices (i, j) such that 0 ≤ j < i ≤ m, the triangle inequality
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Part 1

Part 2

Part 3

A0 A1 A2 A3 A4

A0 A1 A2 A3 A4

A0 A1 A2 A3 A4
T = 33

Figure 9.1. Gantt Chart for Cycle (A0, A2, A4, A1, A3) in Example 9.1.

implies that

either Yj ≥ Yi + δi,i+1 + δi+1,j + 2ε,

or Yj ≤ Yi − δj,j+1 − δj+1,i − 2ε.

From the definition of Yi, we have Yi = Zi − siT for some integer
si ∈ [0,m − 1]. Hence, the above pair of inequalities becomes

either (si − sj)T ≥ Zi − Zj + δi,i+1 + δi+1,j + 2ε,

or (si − sj)T ≤ Zi − Zj − δj,j+1 − δj+1,i − 2ε.

The right-hand side of each inequality in this pair contains known data.
On the left-hand side is the unknown T . Although the values of si and sj

are uniquely determined by any triple (Zi, Zj , T ), note that this exclusive
disjunction of inequalities must hold true for all values of (si − sj) ∈
[0,m−1], because the cycle is repeated ad infinitum. Thus, we have the
following extended system of alternative inequalities in which the only
unknown is T :

T ≥ Zi − Zj + δi,i+1 + δi+1,j + 2ε, or

T ≤ Zi − Zj − δj,j+1 − δj+1,i − 2ε;

2T ≥ Zi − Zj + δi,i+1 + δi+1,j + 2ε, or

2T ≤ Zi − Zj − δj,j+1 − δj+1,i − 2ε;
...

(m − 1)T ≥ Zi − Zj + δi,i+1 + δi+1,j + 2ε, or

(m − 1)T ≤ Zi − Zj − δj,j+1 − δj+1,i − 2ε;

∀(i, j) such that 0 ≤ j < i ≤ m.

There are (m − 1)m(m + 1)/2 pairs of alternative inequalities. Each
pair defines an open interval into which T cannot fall. This leads directly
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to an algorithm for finding an optimum cycle time and a corresponding
cycle.

Algorithm No-Wait

Step 1: Let

T ′
ij = Zi − Zj − δj,j+1 − δj+1,i − 2ε,

T ′′
ij = Zi − Zj + δi,i+1 + δi+1,j + 2ε,

∀(i, j) such that 0 ≤ j < i ≤ m.

Step 2: Define

Ik = [0, max
1≤i≤m

{pi+ δi,i+1+ δi+1,i−1 + δi−1,i + 4ε}) ∪
{(

T ′
ij

k
,
T ′′

ij

k

)

: 0 ≤ j < i ≤ m

}

,

for k = 1, . . . ,m − 1.

Step 3: For each k = 1, . . . ,m − 1, sort the intervals of Ik in non-
decreasing order of their left endpoints, merging the intersecting in-
tervals.

Step 4: Construct the ordered set I = I1 ∪ I2 ∪ · · · ∪ Im−1, merging the
intersecting intervals.

Step 5: Choose the right end of the first interval in I. This value is T ∗,
the minimum feasible cycle time.

Step 6: Compute Yi = Zi mod T ∗, i = 0, . . . ,m. Arrange the Yi’s in
ascending order to determine an optimal cycle.

Example 9.2 Recall the data for Example 9.1: m = 4, p = (18, 24, 15,
18), δi,j = 1 for 0 ≤ i < j ≤ 4, ε = .5, so Z0 = 0, Z1 = 20, Z2 = 46,
Z3 = 63, and Z4 = 83. First find the end points for the forbidden
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intervals:
T ′

01 = 17, T ′
02 = 43, T ′

03 = 60, T ′
04 = 80

T ′′
01 = 23, T ′′

02 = 49, T ′′
03 = 66, T ′′

04 = 86
T ′

12 = 23, T ′
13 = 40, T ′

14 = 60
T ′′

12 = 29, T ′′
13 = 46, T ′′

14 = 66
T ′

23 = 14, T ′
24 = 34

T ′′
23 = 20, T ′′

24 = 40
T ′

34 = 17
T ′′

34 = 23

Next, define and combine the intervals:

I1 = {[0, 29), (34, 40), (40, 49), (60, 66)}
I2 = {[0, 29), (30, 33)}, I3 = {[0, 29)}, so

I = {[0, 29), (30, 33), (34, 40), (40, 49), (60, 66)},

and T ∗ = 29. Hence, Y0 = 0, Y1 = 20, Y2 = 17, Y3 = 5, and Y4 = 25; so
cycle (A0, A3, A2, A1, A4) is an optimal cycle with cycle time T ∗ = 29.

Theorem 9.1 Algorithm No-Wait finds an optimal 1-unit cycle and its
cycle time in a no-wait cell in time O(m3 log m)(Levner et al. [111]).

Proof. That algorithm No-Wait finds an optimum 1-unit cycle and
its cycle time follows directly from the preceding discussion. We now
consider its complexity step by step. In Step 1, there can be at most
m(m + 1)/2 values each for T ′

ij and T ′′
ij . Hence, Step 1 is O(m2) and

Step 2 is O(m3). Sorting m(m + 1)/2 intervals can be performed in
O(m2 log m), so Step 3 is O(m3 log m). For Step 4, observe that merg-
ing two sets of size k is O(k). We first pairwise merge Ii and Ii+1 for
i = 1, 3, . . . ,m − 1, which requires time (m/2)O(m2) = O(m3). We
now have m/2 sets of at most 2m2 intervals each. Pairwise merging
these is (m/4)O(m2) = O(m3). It follows that each successive pairwise
merge will be O(m3), and there will be O(log m) rounds of merges, so
Step 4 is O(m3 log m). Step 5 is O(1), and Step 6 is O(m log m). Hence,
Algorithm No-Wait is O(m3 log m).

Kats and Levner [97] adapt this algorithm to find an optimal 1-unit
cycle in a no-wait cell with multiple robots. The implementation is
very similar to that of the single robot case and, hence, has the same
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complexity. By using a similar set of alternative inequalities, Agnetis [2]
shows that for m = 3, an optimal cycle produces either one unit or two
units and provides a constant-time algorithm to find such an optimal
cycle. Agnetis’ conjecture, that for an m-machine no-wait cell there
exists an optimal cycle that produces m−1 or fewer units, remains open.
However, this has been proven for certain cases in balanced (pi = p,∀i)
no-wait cells (Mangione et al. [119]). The corresponding statement for
free-pickup cells with either an additive or a constant travel-time metric
is invalid (Brauner [17]).

Che et al. [31] solve RFm|(no-wait,E,cyclic-2)|μ with an extension of
algorithm No-Wait that has time complexity O(m8 log m). This algo-
rithm is a refined version of an earlier geometric algorithm due to Levner
et al. [112]. The complexity is much greater because there are forbidden
intervals both for the cycle time T and for T1, where parts are introduced
to the cell at times 0, T1, T, T +T1, 2T, 2T +T1, . . . , and because the for-
bidden intervals for T1 depend on the value of T . A recent improvement
by Chu [34] results in a O(m5 log m) algorithm. Chen et al. [30] propose
a branch-and-bound algorithm for RFm|(interval,E,cyclic-k)|μ. Two al-
gorithms for a general k-unit cycle (k ≥ 2) are each exponential in
k. Kats et al. [98] develop a sieve-based algorithm with time complexity
O(m3knk), where n = Zm+1+δm+1,0−maxi{pi+δi−1,i+δi,i+1+δi+1,i−1+
4ε} is the size of the range of feasible values for the length of a 1-unit
cycle. Che et al. [30] develop a branch-and-bound procedure in which
each node is solved by a linear program that is equivalent to the cycle
time evaluation problem in a bi-valued graph. Unlike sieve-based algo-
rithms, this approach does not require integer data, and may produce
non-integer cycle times. Its time complexity is O(k2m6+3k(k−1)/2).

Studies of cells producing multiple part-types consider only CRM
(Chapter 6) sequences. The algorithm of Che et al. [31] finds the best
2-unit cycle for two different part-types if the MPS is (P1, P2). For
a general MPS and m = 2, Agnetis [2] shows that the part scheduling
problem can be solved using the Gilmore-Gomory algorithm. For m = 3,
Agnetis and Pacciarelli [3] show that the part scheduling problem for the
CRM sequence with π1 = (A0, A1, A2, A3) is trivial and that an optimal
part schedule for the CRM sequence with π4 = (A0, A3, A1, A2) can be
found by the Gilmore-Gomory algorithm. Whether or not a feasible part
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schedule exists for the CRM sequences with π3 = (A0, A1, A3, A2) and
π5 = (A0, A2, A3, A1) can be determined via the Gilmore-Gomory algo-
rithm. However, the complexity of finding an optimal part schedule is
an open problem. For MPS cycles corresponding to the CRM sequences
with π2 = (A0, A2, A1, A3) and π6 = (A0, A3, A2, A1), the problem of
finding a feasible part schedule is strongly NP-complete (Agnetis and
Pacciarelli [3]).

9.2 Interval Pick-up Robotic Cells

In interval robotic cells, each stage has a specific interval of time − a
processing time window − for which a part can be processed on that
stage. This problem, also referred to as the hoist scheduling problem,
often arises in electroplating and chemical industries. In the United
States, there are more than 4,000 electroplating manufacturers who pro-
duce various industrial connectors, printed circuit boards, and switches
used in telecommunications hardware (Lee at al. [105]). In typical elec-
troplating applications, printed circuit boards are to be placed in a series
of tanks with different solvents. Each tank has a specific interval of time
for which a board can remain immersed in it.

In general, if [ai, bi] is the processing time window at machine Mi, i ∈
M , then the interval-pickup criterion requires that a part be processed
for ai time units on machine Mi, and that it be transferred to machine
Mi+1 within (bi − ai) time units after its completion of processing on
Mi.

To our knowledge, all the studies performed thus far are for inter-
val cells producing a single part-type. Problem RFm|(interval,E,cyclic-
1)|μ is strongly NP-hard (Livshits et al. [115], Crama and van de Klun-
dert [41]). Since the free-pickup criterion is a special case of the interval-
pickup criterion, this also follows from a result of Brauner et al. [24] that
establishes the strong NP-hardness of RFm|(free,E,cyclic-1)|μ. It has to
be noted, however, that the techniques used for proving these results are
explicitly limited to the determination of an optimal l-unit cycle. Hence,
the complexity of determining an optimal cyclic solution (i.e., problem
RFm|(interval,E,cyclic-k)|μ) remains open, as no optimal sequence may
be given by a l-unit cycle. We now briefly review the literature on so-
lution methods for the interval robotic cell problem and closely related
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variants. Problem RFm|(interval,E,cyclic-1)|μ, together with a linear
programming formulation of the cycle time subproblem, was introduced
independently by Livshits et al. [115] and by Phillips and Unger [130].
Phillips and Unger [130] formulate the problem as an integer linear pro-
gram and report on results from using a commercial software package.
Kats [93], Lei and Wang [108], Armstrong et al. [5], Shapiro and Nut-
tle [144], and Chen et al. [33] propose branch-and-bound procedures for
interval cells and various extensions. Rochat [134] solves the problem
using a genetic algorithm.

As in free-pickup cells, a natural question for interval cells is whether
an optimal 1-unit cycle is superior to every nontrivial k-unit cycle, k ≥ 2.
Using a real-world example with 12 machines, Lei and Wang [108] show
that the throughput of an optimal 2-unit cyclic solution is strictly better
than that of an optimal 1-unit cyclic solution. Song et al. [145] and Kats
et al. [98] report similar findings. A brief summary of known results for
both no-wait and interval cells is given in Table 9.1. For interval cells,

Problem Complexity Solution

Status Approach

Algorithm Type References

RFm|(no-wait,E,cyclic-1)|μ O(m3 log m) Sieve [111]

[111] Method

RFm|(no-wait,E,cyclic-2)|μ O(m8 log m) Sieve [33]

[33] Method

RFm|(no-wait,E,cyclic-k)|μ Open Branch-and- [30]

Bound

RFm|(interval,E,cyclic-1)|μ Strongly NP-hard Branch-and- [5, 33, 93]

[115, 41] Bound [108, 144]

RFm|(interval,E,cyclic-k)|μ Open Branch-and- [145]

Bound

Table 9.1. Summary of Results for No-Wait and Interval Cells.

the complexity status of obtaining an optimum cyclic solution under the
Euclidean travel-time metric (i.e., RFm|(interval,E,cyclic-k)|μ) remains
open since all such solutions could potentially come from k-unit cycles,
k ≥ 2. A similar observation applies to no-wait cells as well.



Chapter 10

OPEN PROBLEMS

We now summarize some open problems in the field of robotic cell
sequencing and scheduling.

10.1 Simple Robotic Cells
As mentioned in Chapter 2, at least nine different types of simple ro-

botic cells with single-gripper robots have been studied in the literature,
depending on the pickup criterion (no-wait, interval, or free-pickup) and
the travel-time metric (additive, constant, or Euclidean). Recall our dis-
cussion of Chapter 3 where the cell was presented as a dynamic system
completely described by a finite set F of feasible states. Furthermore,
by definition, a k-unit cycle has k(m + 1) distinct states. It follows that
an upper bound on the number of parts produced by any throughput
maximizing cycle is

ω =
|F|

(m + 1)
.

Let Ck, k = 1, ..., ω, denote the class of all k-unit cycles. Then a k-unit
cycle C∗

k with T (C∗
k) = minCk∈Ck

T (Ck) can be executed indefinitely
to obtain a k-unit cyclic solution with maximum throughput. A cyclic
solution with the cycle time T (C∗) = mink=1,...,ω T (C∗

k) then maximizes
the throughput over all cyclic solutions.

Thus, from an algorithmic point of view, the following problems be-
come relevant for such cells:
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1. Problems k-OPT: For additive (resp., constant, Euclidean) travel-
time cells, obtain algorithms to find an optimal k-unit cycle for a
given k, where 1 ≤ k ≤ ω.

2. Problem OPT: For additive (resp., constant, Euclidean) travel-
time cells, obtain an algorithm to find a k-unit cycle that maximizes
throughput over all cyclic solutions.

For each of the nine types of cells, the complexity of Problem k-OPT
has been resolved for k = 1 (see Chapter 3). We start our discussion of
specific open problems by mentioning the following two points.

First, we would like to emphasize the need for efficient and easy-to-
implement algorithms for solving these problems. Since the number
of cyclic solutions is finite, a complete enumeration of such solutions
(or any other method that requires enumerating a prohibitively large
search space) will provide a valid answer to these problems. How-
ever, such methods do not provide a satisfactory resolution as they
cannot be implemented in practice within reasonable time. In terms
of computational complexity, we either want to obtain a polynomial-
time algorithm for a problem or to show that it is NP-hard. While
demonstrating that a problem is NP-hard does not completely rule
out solution methods that solve instances of reasonable size to opti-
mality, the use of heuristics to obtain approximate solutions becomes
much more acceptable in such a case.

Second, note that the most significant among these problems is Prob-
lem OPT, the problem of obtaining a cyclic schedule with maximum
throughput. While solving Problems k-OPT, k = 1, 2, ..., ω, auto-
matically solves Problem OPT, it may not be necessary to do so.
Indeed, for all the special cases in which problem OPT has been
solved, the result follows without analyzing the individual problems
k-OPT, k = 1, 2, ..., ω. Over the past decade, a significant amount of
research in the scheduling of robotic cells has, directly or indirectly,
focused on answering these two problems.

For free-pickup cells with the additive and constant travel-time met-
rics, no algorithmic results are available for Problems k-OPT, k ≥ 2.
However, we do know that these problems are relevant, since examples
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exhibiting the throughput of an optimal 2-unit cycle to be strictly better
than the throughput of an optimal 1-unit cycle have been constructed.
In other words, there exist instances of cells in which T (C∗

2) < T (C∗
1).

For additive travel-time (resp., constant travel-time) cells, Brauner and
Finke [18, 22] (resp., Dawande et al. [45]) showed such instances (see
Chapter 3). For interval robotic cells, problems RFm|(interval,A,cyclic-
1)|μ and RFm|(interval,E, cyclic-1)|μ are NP-hard (Crama and van de
Klundert [41]). No results have been published for interval cells with con-
stant travel time. For Euclidean no-wait cells, polynomial algorithms to
find an optimal 1-unit cycle (problem RFm|(no-wait,E,cyclic-1)|μ) and
an optimal 2-unit cycle (problem RFm|(no-wait,E,cyclic-2)|μ) have been
developed (Levner et al. [111], Che et al. [31], Chu [34]).

For Problem OPT, two different types of results are available: (i)
those that solve the problem under specific conditions on the problem
data, and (ii) those that provide a bound on the optimal throughput
in terms of the throughput of an optimal 1-unit cycle. Under different
conditions on the problem data, several results use the following two-step
procedure to solve Problem OPT.

1 Obtain an upper bound on the maximum throughput over all cyclic
solutions. For a k-unit cycle Ck, this is typically done by estimat-
ing a lower bound on the per-unit cycle time T (Ck)/k. Here, the
analysis uses quantities such as the minimum number of robot moves
involved, the number of loadings and unloadings, and the minimum
total processing time required.

2 Provide a cyclic solution that achieves the upper bound (derived in
Step 1 above) on the throughput, thus establishing its optimality.

Examples of such results are Lemmas 3.4 and 3.6 and Corollary 3.7,
which establish the optimality of the 1-unit cycle πD = (A0, Am, Am−1,
. . . , A1) over all k-unit cycles.

The second type of results for Problem OPT estimate the gap between
the throughput of an optimal cyclic solution and an optimal 1-unit cyclic
solution. There are at least two reasons that motivate the estimation of
this gap. (i) On the one hand, if the gap is very small, it can be used
to devise new search methods that start with an optimal 1-unit solution
and seek to improve its throughput by local search. Here, the hope is
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that the small gap can be closed by a structured, limited search leading
to an efficient algorithm. On the other hand, a large gap indicates that
fundamentally new methods (from those employed for finding an optimal
1-unit cycle) are likely to be required to obtain an optimal cyclic solution.
(ii) The gap is useful to assess the benefit of an optimal cyclic solution
over that of an optimal 1-unit cyclic solution. This can be a significant
insight, especially in practice. For additive cells, Crama and van de
Klundert [40] show that the throughput of an optimal 1-unit cycle is at
least 1/2 times that of an optimal cyclic solution. Geismar et al. [60, 62]
improved this ratio first to 2/3, and then to 7/10. For constant (resp.,
Euclidean) cells, the best known ratio is 2/3 (resp., 1/4) (Geismar et
al. [60]; see Chapter 3). For Eucliean cells, algorithm ECell (Chapter 3)
offers a 1-unit cycle that has a performance guarantee of 2/3q, where
q is the ratio of the largest inter-machine travel time to the smallest.
Clearly, these performance guarantees are too weak to pursue the local
search mentioned in (i) above. However, it is important to note that
none of these ratios has been shown to be tight. That is, for none of the
classes of cells has it been shown that the above bounds are the largest
possible for the ratio of the throughput of an optimal 1-unit cycle to the
throughput of an optimal cyclic solution. Thus, a precise estimation of
the gap remains open for the various classes of cells.

Another direction that has not been extensively explored is that of
using mathematical programming formulations. Here, the idea is to
express the problem of maximizing throughput of a cyclic solution as
either a linear program or an efficient integer linear program (e.g., one
in which the constraint matrix is totally unimodular; see e.g., Nemhauser
and Wolsey [125]). For a given k-unit cyclic solution, the computation
of its cycle time (and, hence, its throughput) can indeed be expressed as
a linear program (Kumar [101], Kumar et al. [102]). However, attempts
to formulate the problem of searching over all k-unit cyclic solutions
have been unsuccessful so far.

We mention two other problems that have not been addressed in the
literature, but might be helpful in understanding the structure of cyclic
solutions in robotic cells.

It is not known whether the maximum throughput of a cell over the
class of k-unit cycles is an increasing function of k, k ≥ 1. For exam-
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ple, it is not known if the maximum throughput over all 3-unit cycles
is at least as large as that over all 2-unit cycles. Indeed, nothing is
known about the behavior of the maximum throughput with respect
to k. However, if we define Problem ≤k-OPT as that of determin-
ing a throughput maximizing cyclic solution over all l-unit cycles,
1 ≤ l ≤ k, then it follows immediately that the throughput of an
optimal solution of ≤k-OPT is a non-decreasing function of k. How-
ever, there are no results on the rate of change of this increase. For
instance, if the increase is decreasing in k (i.e., diminishing marginal
increase), it might be reasonable to expect that Problem OPT at-
tains its optimal at a relatively small value of k. For example, for
Euclidean no-wait cells, Agnetis [2] has conjectured that an optimum
cyclic solution is achieved by a k-unit cycle with k < m. Mangione
et al. [119] prove this conjecture for certain balanced (pi = p,∀i) and
regular additive no-wait cells. However, this property does not hold
for free-pickup cells with either an additive or a constant travel-time
metric (Brauner [17]).

The dominance of cyclic solutions and most of the algorithmic results
for robotic cells assume that all cell data is rational. This is a reason-
able assumption in practice, and it greatly reduces the state space of
the cell. Results for arbitrary real data, while not necessary for prac-
tical applications, seem to be much more challenging mathematically,
and none are available in the literature.

Table 10.1 summarizes the complexity status of throughput optimiza-
tion problems in simple robotic cells.

Problems RFm|(*,*,cyclic-k)|μ
travel-time metric → Additive Constant Euclidean

pickup criterion ↓
Free k = 1 [P] k = 1 [P] [NP-hard, k ≥ 1]

[open, k ≥ 2] [open, k ≥ 2]

No-wait k = 1, 2 [P] k = 1, 2 [P] k = 1, 2 [P]

[open, k ≥ 3] [open, k ≥ 3] [open, k ≥ 3]

Interval [NP-hard, k ≥ 1] [open, k ≥ 1] [NP-hard, k ≥ 1]

Table 10.1. Complexity Status of Simple Robotic Cell Problems.
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10.2 Simple Robotic Cells with Multiple Part
Types

We saw in Chapter 6 that two subproblems arise for multiple-part-
type cells: part scheduling and robot move sequencing. Given a robot
move sequence, finding an optimal part schedule is NP-hard for m ≥ 3.
The complementary problem of finding an optimal robot move sequence
given a part schedule has not been studied for m ≥ 3.

For cells that process multiple part-types with m ≥ 3, all results in
Chapter 6 concern CRM sequences (problem RFm|(free,A,MP,CRM)|μ).
There has been no research on finding an optimal part schedule for a
non-CRM MPS robot move sequence (problem RFm|(free,A,MP,cyclic-
k)|μ) for m ≥ 3. Such results will provide insight into how close an
optimal MPS cycle formed by a CRM sequence is to an optimal MPS
cyclic solution. This problem, however, is a generalization of the optimal
k-unit cycle problem, which is also open.

10.3 Robotic Cells with Parallel Machines

The optimal cyclic solution has been found only for a special case (pi ≥
δ,∀i) in free-pickup constant travel-time cells with parallel machines
(see Chapter 5). No studies have been published that address more
general free-pickup constant travel-time cells or any free-pickup cells
with additive travel times.

For cases in which finding an optimal robot move sequence in a simple
robotic cell is known to be NP-hard (problems RFm |(free,E,cyclic-k)|μ,
RFm|(interval,E,cyclic-k)|μ, and RFm|(interval,A,cyclic-k)|μ), the prob-
lems for cells with parallel machines are, of course, NP-hard. Finding
efficient approximation algorithms remains an open question for these
cases.

As discussed in Chapter 9, the problem of finding an optimal 1-unit
cycle in no-wait simple robotic cells is polynomially solvable. We know
of no work that addresses no-wait robotic cells with parallel machines
(problem RFm(m1,m2, . . . ,mm)|(no-wait,*,cyclic-k)|μ).

Finding an optimal schedule for processing multiple part-types in ro-
botic cells with parallel machines (for any travel-time or pickup scheme
(problem RFm(m1,m2, . . . ,mm)| (*,*,MP,cyclic-k)|μ)) is also a gener-
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alization of the optimal k-unit cycle problem. Hence, it is currently an
open question.

10.4 Stochastic Data

Throughout our discussion, we have assumed a deterministic setting,
i.e., the processing times of the parts on the machines, the inter-machine
travel times for the robot(s), and the loading and unloading times are all
assumed to be known. Under the additional assumption of rationality of
this data, a robotic cell is essentially a finite-state dynamic system. For
maximizing the throughput of the cell, it is not necessary to consider
“wasteful” robot actions such as unnecessary waiting at a location or
moving to a location without performing at least one of the loading or
unloading operations. Also, it is sufficient to define decisions regarding
the robot’s moves only at those epochs when the robot has just finished
loading or unloading a part at a machine. It follows that it is sufficient
to consider the cell’s states at these epochs. As discussed in Chapter 2,
a stochastic setting will typically require a continuous state space and
continuous decision making over time. Ad-hoc dispatching schemes, such
as the longest waiting pair scheme described in Chapter 8, are applicable
in the stochastic setting; no mathematical analysis of such schemes is
available.

Another issue concerns random failures of processing machines. Some
manufacturers use parallel machines to provide redundancy. However,
the following question remains largely open. Given each machine’s rate
of failure, the distribution of each machine’s service and repair times,
each machine’s cost, and the distribution of each machine’s processing
time, what is the economically optimal number of machines to have
at each stage? Such a calculation should also formulate the economic
impact of improved throughput, i.e., cycle time comparison is a subprob-
lem to the problem of finding an optimal number of redundant machines.
Suri [150] provides some guidelines for addressing such questions.

10.5 Dual-Gripper Robots

Cyclic solutions for cells with a dual-gripper robot have not been stud-
ied for Euclidean travel-time (problem RF 2

m|(*,E,cyclic-k)|μ), interval
cells (problems RF 2

m|(interval,*, cyclic-k)|μ), and no-wait cells (prob-
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lems RF 2
m|(no-wait,*,cyclic-k)|μ). It would also be interesting to ex-

amine the use of dual-gripper robots in cells with multiple robots and
parallel machines. Such a study could be based on the results in Geismar
et al. [64].

10.6 Flexible Robotic Cells
Recent work has studied robotic cells that are open shops, rather than

flowshops. In these cells, the operations can be performed in any order,
and each machine can be configured to perform any of the operations.
Geismar et al. [63] show that for m = 3 and m = 4, the largest produc-
tivity gain that can be realized by changing the assignment of operations
to machines is 142

7%. It is unknown whether this upper bound holds for
m ≥ 5.

10.7 Implementation Issues
We discuss two issues: the optimal use of local material handling de-

vices, and the economic and performance trade-offs concerning schedules
that revisit machines.

10.7.1 Using Local Material Handling Devices
Local material handling devices (LMHDs) can be used to increase

throughput if the robot is the bottleneck. An LMHD transports a part
from stage j to stage j + 1, j = 1, . . . ,m − 1, independently of the ro-
bot. If individual stages of a cell have buffers, then such devices can
also be used to move completed parts from a machine to its buffer (see
Section 4.8). If LMHDs are used in cells with parallel machines, then
mj = mj+1, and each machine of stage j is linked to a unique machine of
stage j + 1. Furthermore, no stage can be linked to two stages: if stage j

is linked to stage j + 1, then stage j − 1 is not linked to stage j, and
stage j + 1 is not linked to stage j + 2. There are additional physical
constraints (e.g., machine sizes, cell layout) which limit the number of
links in a particular cell. For ease of exposition, for the remainder of
this section we describe only a simple robotic cell.

LMHDs increase throughput by transferring a completed part as soon
as possible and by reducing the robot’s workload. If stages j and j +
1 are linked, then the robot never performs activity Aj (unload Mj ,
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transport the part to Mj+1, load Mj+1). In a simple cell with only
one LMHD link (from Mj to Mj+1), a 1-unit cycle is very similar to
a 1-unit cycle for a cell with m − 1 machines; it contains m activities
{A0, . . . , Aj−1, Aj+1, . . . , Am}, and there are (m − 1)! possible cycles.

When the robot arrives at Mj to load a part, the linked pair of
machines is either empty or contains one part. If the robot loads an
empty pair, then the cell’s operations and the calculations of its waiting
times and cycle time are identical to those of an (m − 1)-machine cell
in which machine M∗

j is loaded and unloaded from different ports and
p∗j = pj + pj+1 + yj , where yj is the time required for the LMHD to
transfer the part from Mj to Mj+1. If the pair has one part when the
robot arrives to load Mj , then Mj may still be processing the previous
part. In this case, the robot must wait for Mj to complete processing
and for the LMHD to transfer that part to Mj+1.

Another waiting time occurs if Mj completes processing, only to find
Mj+1 still occupied. In this case, the LMHD cannot transfer the part
until the robot unloads Mj+1. Thus, a completed part waits on Mj until
Mj+1 is unloaded.

Kumar et al. [102] use simulation, linear programming, and genetic
algorithms to demonstrate how LMHDs can improve throughput for a
particular company’s robotic cell. To our knowledge, there has been
no general theoretical analysis to establish an optimal cycle for such an
implementation or to determine the conditions which most favor that
two machines be joined by an LMHD.

10.7.2 Revisiting Machines

Thus far, we have discussed techniques to improve throughput. We
now examine a way to reduce cost without degrading throughput, i.e.,
to improve the performance-to-cost ratio.

In semiconductor manufacturing, certain stages, e.g., bake and chill,
are repeated. If the machine that performs the bake at stage α also
performs a bake of the same duration at stage β, an m-machine process
can be performed by m − 1 machines. This could provide significant
savings in capital investment.
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Figure 10.1. Machine Revisitation Sequence Using Load Lock for Intermediate Stor-

age. Numbers Correspond to the Order of Robot Moves. Arcs 2, 4, 6, 8, 9, and 10

Represent Robot Moves with a Part.

To maintain throughput while reducing the number of machines, the
processing time of the revisited machine Mα must be less than one half of
the cell’s other processing times: pα ≤ mini
=α pi/2. Furthermore, since
a revisiting sequence requires more robot movements, δ and ε should be
relatively small in comparison to max1≤i≤m pi, e.g., max1≤i≤m pi + 3δ +
4ε ≥ 2(m + 1)(δ + ε) in a constant travel-time cell.
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Figure 10.2. Machine Revisitation Sequence Without Using Load Lock for Interme-

diate Storage. Numbers Correspond to the Order of Robot Moves. Arcs 1, 3, 5, 6,

and 7 Represent Robot Moves with a Part.
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Perkinson et al. [129] implement such a revisiting scheme in a three-
machine cell that is used for a four-stage process (problem RF4|(free,C,
cyclic-1)|μ). The load lock (combined Input/Output device) is used as
a buffer to store partially completed parts before their second visit to
M1 for processing stage 4. Their scheme, shown in Figure 10.1, is based
on πD (each machine is reloaded as soon as possible after it is unloaded)
and has cycle time:

Tc(π1) = max{p1 + 10δ + 12ε, 2p1 + 5δ + 8ε, p2 + 3δ + 4ε, p3 + 3δ + 4ε}.

A particular implementation may not allow the use of the load lock as a
buffer. It is still possible to revisit a machine in this case. An example
of such a sequence is shown in Figure 10.2. Its cycle time is

Tc(π2) = max
{

p1 + 8δ + 10ε, 2p1 + 5δ + 8ε, p1 + p2 + 5δ + 8ε,

p3 + 3δ + 4ε,
2p1 + p2 + p3 + 5δ + 10ε

2

}

.

To our knowledge, there has been no thorough analysis of revisitation
schemes to determine general guidelines or to evaluate the trade-off be-
tween performance and cost.



Appendix A

A.1 1-Unit Cycles

Sethi et al. [142] define 1-unit cycles in the context of single-part-
type production and prove that there are exactly m! potentially optimal
1-unit cycles in an m machine cell ((problem RFm|(free,A,MP,cyclic-
1)|μ),). Here we discuss how to develop these cycles for m = 2, 3, and
4. In such a cell, we define m + 1 basic activities as follows:

M−
i : Load a part on machine Mi, i = 1, . . . ,m.

M+
m: Unload a finished part from machine Mm.

This appendix provides a brief tutorial on how to interpret a robot
move cycle composed of these basic activities. A convenient point from
which to begin the interpretation is with the unloading of a part from the
last machine Mm, denoted by M+

m. Note that M+
m implies that the next

action of the robot is M−
m+1, i.e., the robot moves to the output device O

to drop the completed part. Consider the sequence ξ of basic activities
from one occurrence of M+

m to the next such occurrence. Within ξ,
there must be exactly one occurrence of each activity M−

1 ,M−
2 . . . ,M−

m.
The machines that are occupied by parts at the time when M+

m occurs
can be determined as follows. For i = 1, . . . ,m − 1, machine Mi is
occupied by a part when M+

m occurs if and only if M−
i+1 precedes M−

i

in ξ. This interpretation provides a starting point for the cycle. Since
exactly which machines are occupied is known, the sequence of basic
activities following M+

m uniquely determines the ordering of loading and
unloading of the machines and, thus, also the robot movements between
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activities. Examples for two- and three-machine robotic cells are given
below.

Note that every basic activity must be carried out exactly once in a 1-
unit cycle. Moreover, any two consecutive activities uniquely determine
the robot moves between those activities. Therefore, a cycle can be
uniquely described by a permutation of the above m + 1 activities. The
following are the 1-unit robot move cycles for m = 2.

A.1.1 1-Unit Cycles in Classical Notation
We describe 1-unit cycles for m = 2, 3, and 4, using the classical

notation used by Sethi et al. [142].

π1,2 = {M+
2 ,M−

1 ,M−
2 ,M+

2 } π2,2 = {M+
2 ,M−

2 ,M−
1 ,M+

2 }.

We now interpret these two cycles. In cycle π1,2, we observe that
following M+

2 , activity M−
2 does not precede M−

1 . Therefore, we know
that machine M1 is free when M+

2 occurs. By contrast, in cycle π2,2,
activity M−

2 precedes M−
1 . Therefore, we know that machine M1 is

occupied by a part when M+
2 occurs.

The six robot moves cycles for m = 3 can be developed from the above
two cycles by first replacing the starting and ending activities by M+

3 ,
as shown below.

1. {M+
3 ,M−

1 ,M−
2 ,M+

3 }
2. {M+

3 ,M−
2 ,M−

1 ,M+
3 }.

Each of the last two cycles generates three cycles in a three machine cell,
depending upon where the M−

3 activity is inserted, thus creating a total
of six cycles:

π1,3 = {M+
3 ,M−

1 ,M−
2 ,M−

3 ,M+
3 } π2,3 = {M+

3 ,M−
1 ,M−

3 ,M−
2 ,M+

3 }
π3,3 = {M+

3 ,M−
3 ,M−

1 ,M−
2 ,M+

3 } π4,3 = {M+
3 ,M−

2 ,M−
3 ,M−

1 ,M+
3 }

π5,3 = {M+
3 ,M−

2 ,M−
1 ,M−

3 ,M+
3 } π6,3 = {M+

3 ,M−
3 ,M−

2 ,M−
1 ,M+

3 }.

We briefly interpret two examples of these cycles. In cycle π5,3, since
M−

2 precedes M−
1 , machine M1 must be occupied by a part when M+

3

occurs; also, since M−
3 does not precedes M−

2 , machine M2 must be free
at that time. In cycle π6,3, since M−

3 precedes M−
2 , machine M2 must

be occupied by a part when M+
3 occurs; also, since M−

2 precedes M−
1 ,

machine M1 must be occupied by a part at that time.
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Each of the above three machine cycles generates four cycles in a four
machine cell, depending upon where the M−

4 activity is inserted, thereby
creating a total of 24 cycles, as shown below.
π1,4 = {M+

4 , M−
1 , M−

2 , M−
3 , M−

4 , M+
4 }, π2,4 = {M+

4 , M−
1 , M−

2 , M−
4 , M−

3 , M+
4 },

π3,4 = {M+
4 , M−

1 , M−
4 , M−

2 , M−
3 , M+

4 }, π4,4 = {M+
4 , M−

4 , M−
1 , M−

2 , M−
3 , M+

4 },
π5,4 = {M+

4 , M−
1 , M−

3 , M−
2 , M−

4 , M+
4 }, π6,4 = {M+

4 , M−
1 , M−

3 , M−
4 , M−

2 , M+
4 },

π7,4 = {M+
4 , M−

1 , M−
4 , M−

3 , M−
2 , M+

4 }, π8,4 = {M+
4 , M−

4 , M−
1 , M−

3 , M−
2 , M+

4 },
π9,4 = {M+

4 , M−
3 , M−

1 , M−
2 , M−

4 , M+
4 }, π10,4 = {M+

4 , M−
3 , M−

1 , M−
4 , M−

2 , M+
4 },

π11,4 = {M+
4 , M−

3 , M−
4 , M−

1 , M−
2 , M+

4 }, π12,4 = {M+
4 , M−

4 , M−
3 , M−

1 , M−
2 , M+

4 },
π13,4 = {M+

4 , M−
2 , M−

3 , M−
1 , M−

4 , M+
4 }, π14,4 = {M+

4 , M−
2 , M−

3 , M−
4 , M−

1 , M+
4 },

π15,4 = {M+
4 , M−

2 , M−
4 , M−

3 , M−
1 , M+

4 }, π16,4 = {M+
4 , M−

4 , M−
2 , M−

3 , M−
1 , M+

4 },
π17,4 = {M+

4 , M−
2 , M−

1 , M−
3 , M−

4 , M+
4 }, π18,4 = {M+

4 , M−
2 , M−

1 , M−
4 , M−

3 , M+
4 },

π19,4 = {M+
4 , M−

2 , M−
4 , M−

1 , M−
3 , M+

4 }, π20,4 = {M+
4 , M−

4 , M−
2 , M−

1 , M−
3 , M+

4 },
π21,4 = {M+

4 , M−
3 , M−

2 , M−
1 , M−

4 , M+
4 }, π22,4 = {M+

4 , M−
3 , M−

2 , M−
4 , M−

1 , M+
4 },

π23,4 = {M+
4 , M−

3 , M−
4 , M−

2 , M−
1 , M+

4 }, π24,4 = {M+
4 , M−

4 , M−
3 , M−

2 , M−
1 , M+

4 }.

The second index in πi,j will be omitted when it is clear from the context.

A.1.2 1-Unit Cycles in Activity Notation
We now describe 1-unit cycles for m = 2, 3, and 4, using the more pop-

ular activity notation. Recall from Chapter 2 that activity Ai represents
the following:

The robot unloads a part from Mi.

The robot travels from Mi to Mi+1.

The robot loads this part onto Mi+1.

The sequence of actions (M−
2 M−

4 M−
5 ) is represented as (A1A3A4). Since

a part must be processed on all m machines and then placed into the
output buffer, one instance of each of the m+1 activities A0, A1, . . . , Am

is required to produce a part. Then,

π1,2 = {A0, A1, A2} π2,2 = {A0, A2, A1}.

π1,3 = {A0, A1, A2, A3} π2,3 = {A0, A2, A1, A3}
π3,3 = {A0, A1, A3, A2} π4,3 = {A0, A3, A1, A2}
π5,3 = {A0, A2, A3, A1} π6,3 = {A0, A3, A2, A1}.

π1,4 = {A0, A1, A2, A3, A4} π2,4 = {A0, A1, A3, A2, A4}
π3,4 = {A0, A3, A1, A2, A4} π4,4 = {A0, A1, A2, A4, A3}
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π5,4 = {A0, A2, A1, A3, A4} π6,4 = {A0, A2, A3, A1, A4}
π7,4 = {A0, A3, A2, A1, A4} π8,4 = {A0, A2, A1, A4, A3}
π9,4 = {A0, A1, A3, A4, A2} π10,4 = {A0, A3, A1, A4, A2}
π11,4 = {A0, A1, A4, A2, A3} π12,4 = {A0, A1, A4, A3, A2}
π13,4 = {A0, A3, A4, A1, A2} π14,4 = {A0, A4, A1, A2, A3}
π15,4 = {A0, A4, A1, A3, A2} π16,4 = {A0, A4, A3, A1, A2}
π17,4 = {A0, A2, A3, A4, A1} π18,4 = {A0, A3, A2, A4, A1}
π19,4 = {A0, A2, A4, A1, A3} π20,4 = {A0, A2, A4, A3, A1}
π21,4 = {A0, A3, A4, A2, A1} π22,4 = {A0, A4, A2, A1, A3}
π23,4 = {A0, A4, A2, A3, A1} π24,4 = {A0, A4, A3, A2, A1}.

The second index in πi,j is typically omitted when it is clear from the
context.



Appendix B

B.1 The Gilmore-Gomory Algorithm for the TSP

The Gilmore-Gomory algorithm [67] solves a special case of the trav-
eling salesman problem (TSP) in polynomial time. In this special case,
each city i, i = 1, ..., n, is associated with two numerical parameters ei

and fi, and the cost (distance) of traveling from city i to city j is given by
hij = max{ej , fi}. The objective is to find a tour ψ (i.e., a permutation
of the cities) that minimizes the total cost

∑n
i=1 max

{
eψ(i+1), fψ(i)

}
.

The classical two-machine no-wait flowshop problem, denoted F2|no-
wait|Ct, can be formulated as a TSP with the same cost structure and
can be solved in time O(n log n) by the Gilmore-Gomory [67] algorithm.
Several O(n log n) implementations of this algorithm are available; see,
for example, Lawler et al. [103] and Vairatarakis [152]. In this appendix
we describe the steps of the Gilmore-Gomory algorithm and illustrate
them with a simple example. We first present a brief introduction to
Problem F2|no-wait|Ct, as this problem is closely related to several ro-
botic cell problems discussed in this book. One simple implementation
of the Gilmore-Gomory algorithm is then illustrated.

B.1.1 The Two-Machine No-Wait Flowshop
Problem

In no-wait flowshops, each job must be processed from start to finish
without any interruption on or between the machines. In F2|no-wait|Ct,
job Jj , j = 1, 2, ..., n, in a minimal-part-set (MPS) is processed first on
machine M

′
1 for ej time units and then immediately processed on the
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2 2

2 2

6 8

7 7

M ′
1

M ′
2

J1 J2 J3 J1

� �
Cycle time, Ct = 17

J1 J2 J3 J1

Figure B.1. A No-Wait Schedule in a Two-Machine Flowshop Corresponding to the

Sequence ψ = {1, 2, 3}.

second machine M
′
2 for fj time units. An MPS is processed repetitively

every Ct units of time. The objective is to find a sequence ψ of the
jobs that minimizes the cycle time Ct. To illustrate, consider an MPS
of three jobs J1, J2, and J3; their processing times on M

′
1 and M

′
2 are

as follows: e1 = 2, f1 = 7; e2 = 6, f2 = 2; e3 = 8, f3 = 2. Figure B.1
shows a Gantt chart of the no-wait schedule that produces this MPS in
the job sequence (J1, J2, J3); that is, ψ(i) = i, i = 1, 2, 3. This schedule
has a cycle time of 17. Because of the no-wait constraint, job J2 cannot
start immediately after the completion of J1 on M

′
1.

B.1.2 Formulating a TSP
To formulate Problem F2|no-wait|Ct as a TSP, we define inter-city

distances hij , 1 ≤ i, j ≤ n, i �= j, as follows. Conceptually, we can let the
next “cycle” begin and end with job J1 (Figure B.2). The distance hij

between cities i and j for the corresponding TSP is defined as the time
between the start time of job Ji on M

′
2 and the start of job Jj on M

′
2.

Thus,

hij = max{ej , fi}.

The cycle time Ct may now be expressed as

Ct =
∑n

i=1 hψ(i),ψ(i+1),

where we let eψ(n+1) = eψ(1), since we need a cyclic schedule.
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e1 e2 e3

f1 f2 f3
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2

J1 J2 J3

ek ek+1

fk fk+1

� �

� �Ct

hk,k+1

Jk Jk+1

en

fn

e1

f1

Jn J1

Figure B.2. Formulating F2|no-wait|Ct as a TSP.

Thus, by expressing the elapsed time between the start of two succes-
sive jobs Ji and Jj on the second machine M

′
2 as the distance between

cities i to j, the no-wait problem F2|no-wait|Ct can be converted to a
TSP (see Figure B.2). The Gilmore-Gomory algorithm solves the TSP
under this special distance matrix in time O(n log n). The intuition be-
hind the algorithm is that, ideally, the shortest processing time on the
first machine should be concurrent with that on the second machine;
similarly for the second shortest processing times on the two machines,
and so on. If this is possible, we clearly have an optimal tour. If not,
we have subtours. In the latter case, an optimal subtour-patching pro-
cedure moves the current schedule towards feasibility at minimum cost.
We provide the algorithm in the next subsection; this procedure is also
described in Kabadi [87] and Pinedo [132].

B.1.3 The Gilmore-Gomory Algorithm
Step 1: Sort fj , j = 1, 2, ..., n, in non-decreasing order and re-number

the jobs so that with the new numbering fj ≤ fj+1, j = 1, 2, ..., n−1.

Step 2: For p = 1, ..., n, let φ(p) denote the index of the pth smallest
element of the set {ej ; j = 1, ..., n} in the new numbering of Step 1.
It follows that eφ(j) ≤ eφ(j+1), j = 1, 2, ..., n − 1.

Step 3: Compute the cost of arcs (j, j +1), j = 1, 2, ..., n−1 as follows:

cj,j+1 = max{0, {min(fj+1, eφ(j+1)) − max(fj , eφ(j))}}.
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Step 4: Construct an undirected graph with n nodes and arcs (j, φ(j)),
j = 1, 2, ..., n.

Step 5: If the current graph has only one component, go to Step 7.
Otherwise, select the smallest value cj,j+1 such that j is in one com-
ponent and j + 1 in another. In the case of tie for smallest, choose
arbitrarily.

Step 6: Add an undirected arc (j, j + 1) to the graph, where j is the
index selected in Step 5. Return to Step 5.

Step 7: Divide the arcs added in Step 6 into two groups. Arcs (j, j +1)
for which fj ≤ eφ(j) are included in Group 1, while arcs with fj >

eφ(j) are included in Group 2.

Step 8: Let there be r arcs in Group 1. Let ji, i = 1, ..., r, be such that
ji is the ith largest index such that arc (ji, ji + 1) is in Group 1.

Step 9: Let there be k arcs in Group 2. Let ti, i = 1, ..., k, be such that
ti is the ith smallest index such that arc (ti, ti + 1) is in Group 2.

Step 10: For an arc (p, q) in Group 1 or Group 2, let αp,q be defined
as follows: αp,q(p) = q, αp,q(q) = p and αp,q(j) = j, if j �= p, q. The
minimal cycle time is obtained by following the jth job by the job
ψ∗(j) = φ(v), where v, computed recursively, equals

αj1,j1+1(αj2,j2+1 . . . (αjr,jr+1(αt1,t1+1(αt2,t2+1 . . . (αtk,tk+1(j))...)))...).

Example B.1 Consider the eight-job problem given in Table B.1; j is
the job number; ej and fj are the processing times on machines M

′
1 and

M
′
2, respectively.

j ej fj j ej fj

1 2 10 5 8 6

2 12 9 6 17 22

3 16 23 7 4 12

4 1 5 8 20 12

Table B.1. Jobs and Their Processing Times.
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After sorting fj ’s in non-decreasing order and re-numbering the jobs,
we obtain Table B.2 (Step 1).

j Renamed jobs fj ej j Renamed jobs fj ej

1 J1 5 1 5 J5 12 4

2 J2 6 8 6 J6 12 20

3 J3 9 12 7 J7 22 17

4 J4 10 2 8 J8 23 16

Table B.2. Jobs Sorted in Non-decreasing Order of fj , j = 1, ..., n (Step 1).

Sorting the entries in column ej of Table B.2 in non-decreasing order,
we get column eφ(j) in Table B.3. Column φ(j) gives the correspond-
ing job number of ej ’s in Table B.2. Next, we calculate the maximum
and minimum of columns fj and eφ(j) for each j. Using these and
the equation in Step 3 of the Gilmore-Gomory algorithm, we calculate
the costs cj,j+1 (Table B.3).

j fj eφ(j) φ(j) max{fj , eφ(j)} min{fj , eφ(j)} cj,j+1

1 5 1 1 5 1 0

2 6 2 4 6 2 0

3 9 4 5 9 4 0

4 10 8 2 10 8 2

5 12 12 3 12 12 0

6 12 16 8 16 12 1

7 22 17 7 22 17 0

8 23 20 6 23 20 -

Table B.3. Computation of the Arc-Costs cj,j+1, j = 1, ..., n − 1 (Step 3).

Next, we construct a undirected graph (Figure B.3) with nodes cor-
responding to job numbers j = 1 to 8. By referring to columns j

and φ(j) of Table B.3, we draw the undirected edges j-φ(j) on the
graph (Step 4). Thus, we obtain edges (2, 4), (3, 5), and (6, 8) in
Figure B.3.

The graph in Figure B.3 has five components. Node 1 is in the first
component, nodes 2 and 4 are in the second component, nodes 3 and
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5 are in the third component, nodes 6 and 8 are in in the fourth
component, and node 7 is in the fifth component.

1 2 3 4 5 6 7 8
c12 = 0 c23 = 0

c34 = 0

c45 = 2

c56 = 0

c67 = 1

c78 = 0

Figure B.3. Undirected Graph with Five Components (Step 4).

Except edges (4, 5) and (6, 7), all other edges have a cost of zero.
We, therefore, add undirected arcs (1, 2), (2, 3), (5, 6), and (7, 8) to
the graph to obtain a single-component graph (Figure B.4). Steps 5
and 6 are now complete. Figure B.4 shows the final result.

1 2 3 4 5 6 7 8

Figure B.4. A Single-Component Graph (Steps 5-6).

An inspection of Table B.3 shows that the condition fj ≤ eφ(j) is
satisfied only by the arc (5, 6) (Step 7). Hence, from Step 7, we
obtain two groups: Group 1 containing the arc (5, 6), and Group 2
containing arcs (1, 2), (2, 3), and (7, 8).

Group 1 Group 2
fj ≤ eφ(j) fj > eφ(j)

(5,6) (1,2) (2,3) (7,8)
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Next, we execute Steps 8 and 9. The largest index j1 such that arc
(j1, j1 + 1) is still in Group 1 is 5; so, j1 = 5. The smallest index t1
such that arc (t1, t1 + 1) is in Group 2 is 1; thus, t1 = 1. Similarly,
t2 = 2 and t3 = 7.

To obtain the index of the job following job j, we apply the permu-
tation ψ∗(j) = φ(α5,6(α1,2(α2,3(α7,8(j))))). For example, for j = 1,
ψ∗(1) = φ(α5,6(α1,2(α2,3(α7,8(1))))) = φ(2) = 4 (see Table B.3).
Thus, job 4 follows job 1; the other computations can be done in a
similar manner. An optimal job sequence (J1, J4, J2, J5, J8, J7, J6,
J3) can be obtained from the pairs (j, ψ∗(j)) in Table B.4.

j ψ∗(j) = φ(α5,6(α1,2(α2,3(α7,8(j)))))

1 4

2 5

3 1

4 2

5 8

6 3

7 6

8 7

Table B.4. An Optimal Job Sequence.

The Gantt chart in Figure B.5 gives the optimal makespan for this
sequence. Note that the cycle time Ct = 103. For solving F2|no-
wait|Cmax, we introduce an artificial job J0 with e0 = 0 and f0 = 0,
and re-run the above algorithm. In this case, we obtain the same job
sequence with Cmax = 104.

5 10 6 12 23 22 12 9

1 2 8 4 16 17 20 12 1

0 5 15 21 33 37 60 82 94 103
� �

Cycle time=Ct = 103

M ′
1

M ′
2

J1 J4 J2 J5 J8 J7 J6 J3 J1

Figure B.5. A Gantt Chart for the Optimal Sequence.
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B.2 The Three-Machine No-Wait Flowshop
Problem as a TSP

In F3|no-wait|Ct, job Jj , j = 1, 2, ..., n, in a minimal-part-set (MPS)
is processed first on machine M

′
1 for ej time units, then immediately

processed on the second machine M
′
2 for fj time units and then imme-

diately on the third machine M
′
3 for gj time units. An MPS is processed

repetitively every Ct units of time. The objective is find a sequence ψ of
the jobs that minimizes the cycle time Ct. The schedule corresponding
to ψ(i) = i, i = 1, 2, ..., n, is shown in Figure B.6.

To formulate this problem as a TSP, we define inter-city distances
hij , 1 ≤ i, j ≤ n, i �= j, as follows. The distance hij between cities i and
j for the corresponding TSP is defined as the time between the start
time of job Ji on M

′
1 and the start of job Jj on M

′
1. Thus,

hij = max{ei, ei + fi − ej , ei + fi + gi − ej − fj}.

The cycle time Ct may now be expressed as

Ct =
∑n

i=1 hψ(i),ψ(i+1),

where we let eψ(n+1) = eψ(1) and fψ(n+1) = fψ(1), since we need a cyclic
schedule.

M ′
3

M ′
2

M ′
1 e1

f1

e2

g1

f2

g2

ek

fk

ek+1

gk

fk+1

gk+1

en

fn

� �hk,k+1

� �Ct

e1

f1

g1gn

J1 J2 Jk Jk+1 Jn J1

Figure B.6. Formulating F3|no-wait|Ct as a TSP.
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International Journal of Flexible Manufacturing Systems, 4, 331–358.
Copyright c©1992 by Springer, 233 Spring St., New York, NY 10013,
USA.

“A Survey of Machine Scheduling Problems with Blocking and No-
Wait in Process” by Hall, N.G. and Sriskandarajah, C., Operations Re-
search, 44, 3, 510–525. Copyright c©1996 by the Institute for Operations
Research and the Management Sciences, 901 Elkridge Landing Rd., Suite
400, Linthicum, MD 21090-2909, USA.

“Sequencing of Robot Activities and Parts in Two-Machine Robotic
Cells” by Logendran, R. and Sriskandarajah, C., International Journal
of Production Research, 34, 12, 3447–3463. Copyright c©1996 by Taylor
& Francis Ltd, 4 Park Square, Milton Park, Abingdon OX14 4RN, UK,
http://www.tandf.co.uk/journals.

“Scheduling in Robotic Cells: Classification, Two and Three Machine
Cells” by Hall, N.G., Kamoun, H. and Sriskandarajah, C., Operations
Research, 45, 421–439. Copyright c©1997 by the Institute for Operations



410 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Research and the Management Sciences, 901 Elkridge Landing Road,
Suite 400, Linthicum, MD 21090-2909, USA.

“Scheduling in Robotic Cells: Complexity and Steady State Analysis”
by Hall, N.G., Kamoun, H. and Sriskandarajah, C., European Journal
of Operational Research, 109, 43–63. Copyright c©1998 by Elsevier, PO
Box 800, Oxford OX5 1DX, UK.

“Scheduling Large Robotic Cells without Buffers” by Sriskandarajah,
C., Hall, N.G. and Kamoun, H., Annals of Operations Research, 76,
287–321. Copyright c©1998 by Springer, 233 Spring St., New York, NY
10013, USA.

“Scheduling in Robotic Cells: Heuristics and Cell Design” by Kamoun,
H., Hall, N.G. and Sriskandarajah, C., Operations Research, 47, 821–
835. Copyright c©1999 by the Institute for Operations Research and the
Management Sciences, 901 Elkridge Landing Road, Suite 400, Linthicum,
MD 21090-2909, USA.

“Scheduling in Dual Gripper Robotic Cells for Productivity Gains”
by Sethi, S.P., Sidney, J. and Sriskandarajah, C., IEEE Transactions
on Robotics and Automation, 17, 324–341. Copyright c©2001 by The
Institute of electrical and Electronics Engineers (IEEE), 445 Hoes Lane,
Piscataway, NJ 08855-1331, USA.

“On Throughput Maximization in Constant Travel-Time Robotic
Cells” by Dawande, M., Sriskandarajah, C. and Sethi, S.P., Manufactur-
ing & Service Operations Management, 4, 4, 296–312. Copyright c©2002
the Institute for Operations Research and the Management Sciences, 901
Elkridge Landing Rd., Suite 400, Linthicum, MD 21090-2909, USA.

“Increasing Throughput for Robotic Cells with Parallel Machines and
Multiple Robots” by Geismar, H.N., Srikandarajah, C. and Ramanan,
N., IEEE Transactions on Automation Science and Engineering, 1, 1,
84–89. Copyright c©2004 by The Institute of Electrical and Electronics
Engineers (IEEE), 445 Hoes Lane, Piscataway, NJ 08855-1331, USA.



Copyright permission 411

“Robotic Cells with Parallel Machines: Throughput Maximization
in Constant Travel-Time Cells” by Geismar, H.N., Dawande, M. and
Sriskandarajah, C., Journal of Scheduling, 7, 375–395. Copyright c©2004
by Springer, 233 Spring St., New York, NY 10013, USA.

“Scheduling Multiple Parts in a Robotic Cell Served by a Dual Grip-
per Robot” by Sriskandarajah, C., Drobouchevitch, I.G., Sethi, S.P.
and Chandrasekaran, R., Operations Research, 52, 65–82. Copyright
c©2004 by the Institute for Operations Research and the Management
Sciences, 901 Elkridge Landing Road, Suite 400, Linthicum, MD 21090-
2909, USA.

“Scheduling Multiple Parts in Two-Machine Dual Gripper Robotic
Cell: Heuristic Algorithm and Performance Guarantee” by Drobouchevi-
tch, I.G., Sethi, S.P., Sidney, J. and Sriskandarajah, C., International
Journal of Operations and Quantitative Management, 10, 4, 297–314.
Copyright c©2004 by AIMS International, 12010 Sunrise Way, Houston,
TX 77065, USA.

“Approximation Algorithms for k-Unit Cyclic Solutions in Robotic
Cells” by Geismar, H.N., Dawande, M. and Sriskandarajah, C., European
Journal of Operational Research, 162, 291–309. Copyright c©2005 by
Elsevier, PO Box 800, Oxford OX5 1DX, UK.

“Dominance of Cyclic Solutions and Challenges in the Scheduling of
Robotic Cells” by Dawande, M., Geismar, H.N. and Sethi, S.P., SIAM
Review, 47, 4, 709-721. Copyright c©2005 by Society for Industrial and
Applied Mathematics, 3600 University City Science Center, Philadel-
phia, PA 19104-2688, USA.

“Minimizing Cycle Time in Large Robotic Cells” by Kumar, S., Ra-
manan, N. and Sriskandarajah, C., IIE Transactions, 37, 2, 123-136.
Copyright c©2005 by Springer, 233 Spring St., New York, NY 10013,
USA.

“Sequencing and Scheduling in Robotic Cells: Recent Developments”
by Dawande, M., Geismar, H.N., Sethi, S.P. and Sriskandarajah, C.,



412 THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

Journal of Scheduling, 8, 387-426. Copyright c©2005 by Springer, 233
Spring St., New York, NY 10013, USA.

“Throughput Optimization in Constant Travel-Time Dual Gripper
Robotic Cells with Parallel Machines” by Geismar, H.N., Dawande, M.
and Sriskandarajah, C., Production and Operations Management, 15, 2,
311-328. Copyright c©2006 by Production and Operations Management
Society, 2601 N. Floyd Rd., Richardson, TX 75080, USA.

“Scheduling Dual Gripper Robotic Cell: One-Unit Cycles” by Drobou-
chevitch, I.G., Sethi, S.P. and Srikandarajah, C.,European Journal of
Operational Research, 171, 598–631. Copyright c©2006 by Elsevier, PO
Box 800, Oxford OX5 1DX, UK.

“A 10
7 -Approximation Algorithm for an Optimum Cyclic Solution in

Additive Travel-Time Robotic Cells” by Geismar, H.N., Dawande, M.
and Sriskandarajah, C., IIE Transactions, 39, 2. Copyright c©2007 by
Taylor & Francis Group, LLC, 325 Chestnut Street, Suite 800, Philadel-
phia, PA 19106, USA, http://www.taylorandfrancis.com.



Index

Abadi I.N.K., 9

Active sequence, 34

Activity

definition, 26, 154

sequence, 27, 32

k-unit, 32

base permutation, 158

feasible, 32

infinite, 33

optimal, 33

run, 74

steady state, 33

throughput, 33

Adams M.J., 6

Additive travel-time cell, 18, 21

Agnetis A., 11, 296, 368–369, 375
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