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Preface

Biological and biomedical researches are increasingly driven by experimental
techniques that challenge our ability to analyze, process, and extract meaningful
knowledge from the underlying data. The impressive capabilities of next-generation
sequencing technologies, together with novel and ever-evolving distinct types of
omics data technologies, have put an increasingly complex set of challenges for the
growing fields of bioinformatics and computational biology. To address the mul-
tiple related tasks, for instance in biological modeling, there is the need to, more
than ever, create multidisciplinary networks of collaborators, spanning computer
scientists, mathematicians, biologists, doctors, and many others.

The International Conference on Practical Applications of Computational
Biology & Bioinformatics (PACBB) is an annual international meeting dedicated to
emerging and challenging applied research in bioinformatics and computational
biology. Building on the success of previous events, the 11th edition of PACBB
Conference will be held on June 21–23, 2017, in the Polytechnic of Porto, Porto
(Portugal). In this occasion, special issues will be published by the Interdisciplinary
Sciences-Computational Life Sciences, Journal of Integrative Bioinformatics,
Neurocomputing, Journal of Computer Methods and Programs in Biomedicine,
Knowledge and Information Systems: An International Journal covering extended
versions of selected articles.

This volume gathers the accepted contributions for the 11th edition of the
PACBB Conference after being reviewed by different reviewers, from an interna-
tional committee from 13 countries. PACBB’17 technical program includes 39
papers of 61 submissions spanning many different subfields in bioinformatics and
computational biology.

Therefore, this event will strongly promote the interaction of researchers from
diverse fields and distinct international research groups. The scientific content will
be challenging and will promote the improvement of the valuable work that is being
carried out by the participants. In addition, it will promote the education of young
scientists, in a postgraduate level, in an interdisciplinary field.

We would like to thank all the contributing authors and sponsors, as well as the
members of the Program Committee and the Organizing Committee for their hard
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and highly valuable work and support. Their effort has helped to contribute to the
success of the PACBB’17 event. PACBB’17 would not exist without your
assistance.

Mohd Saberi Mohamad
Miguel P. Rocha
Juan F. De Paz

PACBB’17 Programme Co-chairs
Tiago Pinto

Florentino Fdez-Riverola
PACBB’17 Organizing Co-chairs
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S2P: A Desktop Application for Fast and Easy
Processing of 2D-Gel and MALDI-Based Mass

Spectrometry Protein Data

Hugo López-Fernández1,2,3(✉), Jose E. Araújo3, Daniel Glez-Peña1,2,
Miguel Reboiro-Jato1,2, Florentino Fdez-Riverola1,2, and José L. Capelo-Martínez3

1 ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Universidad de Vigo,
Campus Universitario As Lagoas s/n, 32004 Ourense, Spain

{hlfernandez,dgpena,mrjato,riverola}@uvigo.es
2 CINBIO - Centro de Investigaciones Biomédicas, University of Vigo,

Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
3 UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{jeduardoaraujo,jlcapelom}@bioscopegroup.org

Abstract. 2D-gel electrophoresis is widely used in combination with MALDI-
TOF mass spectrometry in order to analyse the proteome of biological samples.
It can be used to discover proteins that are differentially expressed between two
groups (e.g. two disease conditions) obtaining thus a set of potential biomarkers.
Biomarker discovery requires a lot of data processing in order to prepare data for
analysis or in order to merge data from different sources. This kind of work is
usually done manually, being highly time consuming and distracting the operator
or researcher from other important tasks. Moreover, doing this repetitive process
in a non-automated, handling-based manner is error-prone, affecting reliability
and reproducibility. To overcome these drawbacks, the S2P, an AIBench based
desktop multiplatform application, has been specifically created to process 2D-
gel and MALDI-mass spectrometry protein identification-based data in a
computer-aided manner. S2P is open source and free to all users at http://www.
sing-group.org/s2p.

Keywords: Protein identification · Data processing · Bioinformatics tools · Open
source · 2D-gel · MALDI-TOF-MS · Protein data · Mascot identifications

1 Introduction

2D-gel electrophoresis and mass spectrometry using matrix assisted laser desorption
ionization coupled to time of flight analysers, MALDI-TOF-MS, are widely used in
conjunction in order to perform proteome analysis [1, 2]. In brief, while the comparison
of 2D-gels allows obtaining a set of differentially expressed spots, MALDI-TOF-MS
allows to identify the proteins separated in such spots.

© Springer International Publishing AG 2017
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The scientific community is particularly interested in the challenging task of finding
proteins that can be used to differentiate different conditions of health with the aim to
aid in diagnosis, prognosis and new targeted therapies development [3–5]. In order to
find such proteins, known as biomarkers, a typical experimental workflow combining
2D-gel and MALDI-TOF-MS can involve the following steps: (i) separation of the
proteins present in a complex proteome; (ii) comparing the 2D-gels across samples to
obtain the spots that were found expressed differentially; (iii) excising such spots and
treating them for protein identification; (iv) linking the protein identifications to the 2D-
gel spots; and (v) performing different types of data analysis to find out the potential
biomarkers. Such workflow generates a large amount of data, which need to be processed
before it can be properly analysed. A considerable part of the aforementioned data
processing is usually carried out manually by laboratory researchers (e.g. using text
editors and Excel). However, doing this repetitive process in a non-automated way
presents important drawbacks: it is time consuming, it is error-prone, and it tends to lack
reliability and reproducibility.

To overcome the aforementioned drawbacks we have developed the S2P software
application (http://www.sing-group.org/s2p/), a free software that aims to help
researchers overcoming these tedious but necessary data processing steps.

S2P has been created with two main goals in mind: to improve reproducibility and
to save time. Nowadays, lack of reproducibility is a growing concern in science [6] and
the S2P software aims to improve reproducibility by avoiding human errors due to
manual data processing. For instance, this issue has been particularly important in recent
genomics bioinformatics, where it has been demonstrated that gene name errors are
widespread in the scientific literature due to the use of Excel [7, 8]. Through its user-
friendly GUI interface, S2P dramatically reduces the time that researchers need to invest
in order to get data ready for analysis. The usefulness of S2P is illustrated by a case
study experiment that aims to establish a biomarker-based method to allow better diag‐
nosis and monitoring of patients with bladder cancer.

The rest of the paper is structured as follows. Section 2 presents the case study and
the most relevant implementation details. Section 3 reviews the results, showing how
to use S2P to process the case study dataset. Finally, Sect. 4 concludes the paper and
outlines future research work.

2 Materials and Methods

2.1 Case Study

As a case study, a dataset composed by 14 patients plus 1 healthy group of 6 individuals
was used. Plasma samples from 7 anonymous patients diagnosed with bladder cancer,
7 anonymous patients diagnosed with lower urinary tract symptoms (LUTS) and 6
healthy individuals were collected following standard procedures. Both patients and
healthy volunteers were informed about the project and their consent was obtained in
written form. The local ethics committee approved the study. This experiment was
developed as a proof of concept to differentiate bladder cancer from LUTS.

2 H. López-Fernández et al.
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Once in the laboratory, the samples were centrifuged, and then the supernatant was
withdrawn, aliquoted and stored at –80 °C until analysis. Most abundant proteins
(MAPs) in plasma can mask or interfere with the detection of proteins belonging to the
low-abundance protein fraction [9]. To avoid this problem, protein equalization from
plasma samples was performed with dithiothreitol, DTT, according to the protocol
described by Warder et al. [10] with minor modifications as described by Fernández
et al. [11] and Araújo et al. [12–14]. This process was performed with five replicates for
each patient. Then, the total protein content was determined using a Bradford protein
assay [15].

Two dimensional gel electrophoresis separation was carried out by duplicate for each
patient and for the healthy pool. Then, 2D-gels obtained for each patient and the pool
of healthy volunteers were compared using the Progenesis SameSpots software v4.0
(NonLinear Dynamics) to find out the differentially expressed proteins. All spots of
interest were excised and subjected to in-gel protein(s) digestion and then to protein
fingerprint identification by mass spectrometry using MALDI-TOF-MS [16]. Finally,
S2P was used to process the spots data (i.e. differentially expressed spots) obtained with
the SameSpots software as well as to analyze them along with the protein identifications
obtained from Mascot.

2.2 Implementation

S2P v1.0.0 is implemented in Java and it was constructed using the AIBench framework
[17], which has been demonstrated to be suitable for rapid development of scientific
applications [18, 19]. The Graphical User Interface (GUI) was constructed in Java Swing
using freely available extensions such as SwingX or GC4S. S2P also makes use of several
well-established open-source libraries such as JFreeChart, charts4j, iText and the
Apache Commons Mathematics library.

The source code of the project is freely available at https://github.com/sing-
group/S2P under a GNU GPL 3.0 License (http://www.gnu.org/copyleft/gpl.html). It is
divided into three modules: (i) core, which contains the default implementation API, (ii)
gui, which contains several reusable GUI components, and (iii) aibench, which contains
a GUI application based on the AIBench framework.

3 Results and Discussion

With the goal of showing the main features of S2P as well as its usefulness to analyse
real data, this section shows how it has been used to process and analyse the case study
data presented.

Figure 1 illustrates the five main steps where S2P was used through the experiments:
(1) to merge the SameSpots report into a single table where all samples can be compared;
(2) to design the MALDI plate; (3) to load and filter the Mascot identifications; (4) to
link the Mascot identifications with their corresponding spots using the MALDI plate;
and (5) to examine and analyse spots data along with Mascot identifications. All data
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needed to reproduce the steps explained below is available at http://www.sing-
group.org/s2p/tutorial.html, along with a detailed quick-start tutorial that guides users
using S2P for the first time.

Fig. 1. Schematic S2P flow diagram.

The case study dataset was composed by 7 anonymous patients diagnosed with
bladder cancer, 7 anonymous patients diagnosed with lower urinary tract symptoms
(LUTS) and 6 healthy individuals that were pooled. The Progenesis SameSpots software
was used to compare the 2D-gels corresponding to each individual against the health
pool’s 2D-gels to obtain the differentially expressed spots. These results were exported
using the “Export report” option of SameSpots, which creates one HTML file per
comparison (i.e. 14 files in this case). S2P was then used to parse and merge these reports
into a single table with samples in columns and spots in rows (Step 1 of Fig. 1). This
table was exported into a comma-separated values (CSV) file that can be easily reopen
with S2P as well as external applications such as Excel, LibreOffice or R.

Then, these differentially expressed spots were first treated and then analysed
through MALDI-TOF MS in order to identify their protein content. To do that, a dedi‐
cated sample treatment is done [16] and the pool of peptides obtained is spotted twice
into a MALDI plate, which is then introduced into the MALDI apparatus for analysis.
Usually, researchers fill a sheet with the position of the spots in the plate so that they
can trace back where each spot was placed. This is important to know which spot is
associated to each MALDI spectrum and, therefore, to know which Mascot identifica‐
tions are associated to each spot. However, keeping a unique handwritten copy of this
key information is risky as it can be lost or mislead and, most likely, it will be no way

4 H. López-Fernández et al.

http://www.sing-group.org/s2p/tutorial.html
http://www.sing-group.org/s2p/tutorial.html


to recover this information. For these two reasons, S2P incorporates a MALDI plate
editor that allows the storage of digital copies of experiments’ plates as well as print
them into PDF files (Step 2 of Fig. 1). S2P also allows to automatically filling the plate
using a set of previously loaded spots (Step 1 of Fig. 1), allowing the user to define
parameters such as matrix dimensions (i.e. number of rows and columns) or the number
of replicates of each spot. In our case study, S2P was used to create the MALDI plate
and to obtain a printed copy of it that is used to guide the experimental work.

Once the MALDI-TOF MS analysis was done, the MALDI-based spectra of the
digested protein(s) were submitted to Mascot in order to identify the proteins. Then,
they were exported into a HTML file that was loaded into S2P in order to remove dupli‐
cated entries and exclude identifications with a Mascot score under 56 (Step 3 of Fig. 1).
This processed list of Mascot identifications was exported into a CSV file so that it can
be directly loaded into S2P later or used in other applications (e.g. Excel). Then, these
Mascot identifications integrated with the spots data using the MALDI plate (Step 4 of
Fig. 1) to know which identifications are associated with each spot.

Finally (Step 5 of Fig. 1), S2P allows an integrated analysis of the spots data and the
Mascot identifications (Fig. 2). In the context of our case study, this option was firstly
used to try to identify potential biomarkers of the two conditions of interest. When the
healthy pool was compared with the bladder cancer patients, four differentially expressed
spots present in at least 5 of 7 bladder cancer patients (Fig. 3A) were found. The corre‐
sponding proteins were: (i) Serum albumin (Spot Number [SN] = 137), (ii) Gelsolin
(SN = 137), (iii) Fibrinogen gamma chain (SN = 337), (iv) Ig alpha-1 chain C region
(SN = 360), (v) Ig alpha-2 chain C region (SN = 360) and (vi) Haptoglobin (SN = 266).
When the healthy pool was compared with the LUTS patients, we found five differen‐
tially expressed spots that were present in at least 4 of 7 LUTS patients (Fig. 3B). The
associated proteins were the following: (i) CD5 antigen-like (SN = 244), (ii) Heparin
cofactor 2 (SN = 175 and SN = 190), (iii) Hemopexin (SN = 175), (iv) Serum albumin
(SN = 192 and SN = 190) and (v) Inter-alpha-trypsin inhibitor heavy chain H4 (SN = 88).

Fig. 2. Screenshot of the S2P integrated analysis window.
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Fig. 3. Heat maps showing the differentially expressed spots.

As it can be seen in Fig. 3, a small set of candidate biomarkers was identified that
can be associated to each disease. Due to this reason, a complementary approach was
experimented: exporting all spots data from Samespots instead of exporting only those
spots that were differentially expressed when each individual and the healthy pool were
compared. This way, we used S2P to process these new dataset (analogously to step 1)
and then to find spots whose average value were statistically different between bladder
cancer and LUTS patients. Following this strategy, 40 differentially expressed spots (i.e.
having t-test p-values corrected using Benjamini-Hochberg less than 0.05) between
bladder cancer and LUTS were found, 27 of which have protein identifications associ‐
ated (corresponding to 14 unique proteins). This also allowed us to compare the distri‐
bution of the expression values of each condition using box plots. For instance, Fig. 4
shows the box plots of the two spots identified in Fig. 3 that are differentially expressed
between bladder cancer and LUTS patients. This information must be carefully
analysed, but the usefulness of S2P to fast and accurate process and analyse data is thus
proven.

Finally, it is important to remark that doing the steps described above manually took
more than two weeks of handling. Now, with the help of S2P this data processing time

Fig. 4. Box plots of the differentially expressed spots.
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has been dramatically reduced to a few minutes. Moreover, S2P offers the additional
data analysis features shown that also allow researchers saving a lot of their valuable
time.

4 Conclusions

S2P (http://www.sing-group.org/s2p/) is freely distributed under license GPLv3,
providing a friendly graphical user interface designed to allow researchers saving time
in data processing tasks related to 2D-gel electrophoresis and MALDI mass spectrom‐
etry protein identification-based data. The usefulness of S2P has been demonstrated by
its application to a real experiment, where it notably speed up data processing as well
as it improves experiment reproducibility and reliability. S2P is open to further exten‐
sions and we are currently developing support for more types of datasets.
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Abstract. This article studies the time evolution of multi-enzyme path-
ways. The non-linearity of the problem coupled with the infinite dimen-
sionality of the time-dependent input usually results in a rather laborious
optimization. Here we discuss how the optimization of the input enzyme
concentrations might be efficiently reduced to a calculation of reachable
sets. Under some general conditions, the original system has star-shaped
reachable sets that can be derived by solving a partial differential equa-
tion. This method allows a thorough study and optimization of quite
sophisticated enzymatic pathways with non-linear dynamics and possi-
ble inhibition. Moreover, optimal control synthesis based on reachable
sets can be implemented and was tested on several simulated examples.

Keywords: Enzyme kinetics, Optimal control, Synthetic biology,
Metabolic networks, Non-linear dynamics

1 Introduction

1.1 Multi-Enzyme Pathways

In this paper, we consider a set of chemical reactions catalysed by several
enzymes. Such reactions take place inside cells and are also used in synthetic
biology, e.g. in manufacturing of chemical compounds, biodegradation, medi-
cine, etc. Currently, there are large databases of enzymes based on which path-
ways can be constructed to turn given substrates into desired products [1]. The
enzyme kinetic optimisation of these processes is high on the agenda as it may
lead to a substantial economy of time and consumables. Such optimisation may
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also provide insights into the evolution of cells since some studies suggest that
optimal pathways are evolutionarily advantageous and can be predicted based
on the genetic information of living cells [2].

We consider an n-step chemical reaction in which the state variables are
the concentrations of metabolites produced and consumed in the course of the
reaction:

S
E0−−→ M1

E2−−→ . . .
En−2−−−→ Mn−2

En−1−−−→ P.

The control here are the concentrations of enzymes Ei, the sum of which is
limited from above. We will prove that under some general assumptions about
the rate equations, one can expect the set of all the possible states of such
systems to be star-shaped at any point in time. As a result, an optimisation of
the pathway using star-shaped reachable sets [3] can be implemented to obtain
the maximum concentration of the final product and the corresponding optimal
profile of enzymes.

1.2 Mathematical Setup

For a pathway consisting of n consecutive steps, we will use the following nota-
tions: ei is the concentration of the enzyme responsible for step i; xi is the
metabolite concentration; fi(x, t), x = (x1, . . . , xn), is the reaction rate per unit
of the enzyme concentration ei. We assume that fi includes all the individual
kinetic parameters such as kcat and KM and may depend on the concentrations
of all the metabolites involved (e.g., systems with cross-inhibition are included).
Moreover, the dependence of all the variables on t is implied in all the cases
below, but we will omit this explicit notation for the sake of simplicity. In prac-
tice, all the rates fi are non-linear, which significantly complicates any treatment
of such systems.

According to enzyme kinetics, the time evolution of a multi-enzyme system
over the time t ∈ [0, T ] can be described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = e0f0(x ) − e1f1(x ),
ẋ2 = e1f1(x ) − e2f2(x ),
. . .
ẋn−1 = en−2fn−2(x ) − en−1fn−1(x ),
ẋn = en−1fn−1(x ).

(1)

In order to make sure that none of the concentrations becomes negative, we
will require that for any metabolite i the rate fi−1 is non-negative and fi is
non-positive at xi = 0. In other words, metabolite i is not consumed when its
concentration is already zero.

We will consider the following control set:

e ∈ E =

{

(e0, . . . , en−1)

∣
∣
∣
∣
∣
ei ≥ 0, i = 0..n − 1,

n−1∑

i=0

ei ≤ Emax

}

,

which indicates that at any moment in time the total enzyme concentration
must not exceed a certain predefined value Emax. This limitation, for example,
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describes limited resources of a cell that force it to choose which enzyme to
produce or maintain at any point in time.

As far as the starting points are concerned, we will consider the following
two most wide-spread frameworks: (A) all xi(0) = 0 and f0 ≥ 0 (there is a con-
stant supply of the initial substrate); or (B) the initial concentration x1(0) = 1,
xi(0) = 0 for i = 2..n, and f0 ≡ 0 (the first metabolite is the initial substrate
being consumed in the course of the reaction).

Finally, we will assume that the standard existence and uniqueness results
hold for the solutions to (1) over the whole relevant time interval for any mea-
surable input ē ∈ E [4,5], which is usually the case in enzyme kinetics since the
state vector denotes real concentrations limited from above and below. We will
provide some examples of such systems in the following sections.

1.3 Optimal Control

In this framework, several objectives for optimal control are possible. Usually,
one is interested in maximizing the final product, which can be formulated either
as the minimization of the transition time tf to drive xn to some predefined
level [6] or by maximizing xn at a fixed point in time [7]. Other definitions of the
transition time are also possible [8–10]. Moreover, a multi-objective optimization
problem can also occur [11]. For the sake of simplicity, we will be considering
the maximization of the final product at a given point in time although more
general target functions can also be used (see below).

There are two main groups of methods commonly used to find optimal solu-
tions: the so-called direct and indirect methods. The former usually imply a
transformation of the original problem into non-linear programming by time-
discretization and approximation of the control variables either alone or together
with the states (for a comprehensive review see [11]). The advantages include a
great variety of solvers, a general applicability, and an intuitive implementation.
Nonetheless, these methods require some preliminary proof of the existence and
stability of the solution. Moreover, global optima finders are much more com-
putationally expensive than local ones, and due to the innate infinite dimen-
sionality, the costs of refining the grid are high. Finally, if the target function is
changed, e.g. to account for other metabolites, the entire calculation has to be
repeated.

The indirect methods suggest analytical treatment of the problem, e.g., by
using Pontryagin’s maximum principle [2,6,9,10]. The main advantages include
a more comprehensive analysis of the system behaviour and simpler numerical
methods. However, Pontryagin’s maximum principle is only a necessary condi-
tion, and the exact analytical solutions are usually difficult to obtain even in
the case of simple linear systems. The proof of a global maximum is again com-
plicated, and any change of the model, e.g. addition of cross-inhibition, may
completely invalidate the analysis.

In this article, we suggest an alternative indirect method based on exact
reachable sets [12,13], i.e. the states of a multi-enzyme system reachable from
the initial point for all the possible enzyme profiles. While this method is more
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computationally intensive than the maximum principle, it provides the time-
evolution of the system in full since all the possible states are analysed. This
allows for some flexibility in choosing the target functional after the calculation
of reachable sets. Optimal control synthesis may be implemented in various ways
once the sets are calculated, and the global optimality is implied automatically.
No change to the model will require any qualitative re-analysis. Moreover, geo-
metric state constraints may be taken into account, which extends the applica-
bility of the method to, e.g. the problems with metabolite constraints due to
metabolite toxicity. Finally, given some relatively broad assumptions about the
reaction rates, the reachable sets are star-shaped, which reduces the problem
dimensionality by one and enhances its computational efficiency and applicabil-
ity. The summary table comparing the approaches mentioned above is given in
the Supplement (table S1).

2 Star-Shaped Reachable Sets

We will now briefly define reachable sets and their applications to optimization,
provide the evolution theorems for star-shaped sets, and formulate the main
theoretical result for the systems in question.

2.1 Reachable Sets and Optimization

Reachable sets provide an important tool for the analysis of the time evolution
of systems as they demonstrate how systems might behave given every possible
control input. In order to demonstrate a general idea, consider the following
differential inclusion:

ẋ ∈ F (t,x ), x (t0) ∈ X0, t ∈ T = [t0, t1], (2)

where X0 is a compact subset of Rn and F is a continuous multivalued map from
T ×Rn to compact convex subsets of Rn. For instance, (1) can be formulated in
the above terms if one takes the union of the right-hand side of the equations over
e ∈ E. This differential equation generates a bundle of trajectories; consequently,
its behaviour may be translated into that of the bundle. Let the reachable set X[t]
be the set of all possible states of the system at time t. The intuitive strategy to
find X[t] by inserting different values from F (t,x ) may work only if an explicit
analytical solution is available, which is hardly ever the case even for linear
systems. However, under some general assumptions on F, the reachable set can
be found as the solution to an evolutionary equation [14]. While this equation
is usually difficult to solve, a great variety of methods has been developed to
calculate such sets [12,13,15].

In this paper, we will use the fact that under some general assumptions (see
the Supplement), inclusion 2 has reachable sets that are star-shaped [16,17], i.e.
they are compact, and for any λ ∈ [0, 1] the set λX[t] ⊆ X[t]. Such sets are
uniquely defined by their radial function:

r(l , t) = r(l |X[t]) = max{λ ≥ 0 : λl ∈ X[t]}
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that is the viscosity solution to the following partial differential equation on an
n-dimensional sphere Sn :

∂r

∂t
= ρ

(

−∂sr

∂l
+ rl

∣
∣
∣
∣
1
r
F (t, rl)

)

, (3)

where ρ(l |F ) = sup{∑i liyi|y ∈ F} is the support function. This result, together
with viscosity methods [18,19], provides a powerful tool for an exact calculation
of reachable sets, e.g. for multi-enzyme reactions as demonstrated below.

As soon as one calculates the reachable set X[t], the optimal solution to
maximizing xn at time T is tantamount to finding the point in X[T ] with the
maximal value of coordinate xn. In general, any target function dependent only
on the final metabolite concentrations can be used since given X[T ], the initial
optimal control problem turns into a relatively simple optimization of the func-
tion over the set X[T ]. And once the optimal point has been found, one may
apply control synthesis strategies to find the control profile that will lead the
system to this optimum [3].

2.2 Star-Shaped Sets Generated by Multi-Enzyme Pathway

We will now apply the results of the previous subsection to the multi-enzyme
systems (1) for initial conditions (A), i.e. some constant supply of the substrate,
and (B), in which the first substrate is being consumed without any supply. The
direct adaptation of Assumption S to (1) leads to the following results:

Proposition 1. Suppose for system (1) with initial condition (A) the rate func-
tions fi(x) are Lipschitz-continuous with the constant independent of t. If for any
λ ∈ (0, 1] and x : fi(λx) �= 0 ⇒ 0 ≤ λfi(x)/fi(λx) ≤ 1, the radial function of the
reachability set r(l, t) = r(l|X[t]) is the pointwise limit of rε(l, t) for any l ∈ Sn

and t ∈ [0, T ], where rε(l, t) is the viscosity solution to the following equation on
Sn × [0, T ] :

∂rε

∂t
= Emax max

i

{

fi(rεl)
(

1
rε

(
∂srε

∂li
− ∂srε

∂li+1

)

− li + li+1

)}

,

rε(l, 0) = ε → +0.

(here for i = 0 symbols ∂sr/∂li and li should be omitted).

As far as initial condition (B) is concerned, we will replace the coordinate x1

with x∗
1 = x1 − 1. If in addition to the above we require that fi is non-negative

and non-decreasing in x1, the following holds:

Corollary 1. Suppose for (1) the initial concentration x1(0) = 1, xi(0) = 0 for
i = 2..n, and f0 ≡ 0. Moreover, suppose that in addition to the requirements of
Proposition 1 on fi, the fi that depend on x1 are non-negative and non-decreasing
in x1. Then for (1) with the new coordinate x∗

1 = x1 − 1 Proposition 1 holds.

The proofs of the statements above are given in the Supplement.
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2.3 Examples

Here we will list the examples of (1) relevant to the enzyme kinetics, for which
Proposition 1 holds:

1. Linear mass-action kinetics fi(x ) = kixi;
2. Michaelis-Menten kinetics: fi(x ) = kixi/(Ki + xi), with substrate inhibition:

fi(x ) = kixi/(Ki + xi + Nix
2
i ), or with cross-inhibition: fi(x ) = kixi/(Ki +∑

j Nijxj);
3. Power law fi(x ) = kix

c
i with c ∈ (0, 1);

All the above functions may be present in any combination, thereby providing
a significant flexibility for the model selection.

Moreover, the same enzyme can be used in different steps if the following
additional requirement holds: for any enzyme e used in several reactions the
value λfi(x )/fi(λx ) is independent of i for the respective i′s. This will be the
case, e.g. in Michaelis-Menten kinetics since the free enzyme, and consequently,
the denominator of fi, will be the same across the respective i′s. Reversible
reactions are also covered. In other cases when the star-shapedness cannot be
guaranteed, one may still use general reachable set methods [13], albeit forgoing
the advantage of the reduced dimensionality.

We will now proceed to several examples.

Example 1. The first example is a three-metabolite scheme with a constant sup-
ply of substrate zero, and it demonstrates the standard bang-bang optimal profile
[2,9,10] (Fig. 1):

{
ẋ1 = 0.1x0

1+x0
e0 − 0.1x1

0.1+x1
e1,

ẋ2 = 0.1x1
0.1+x1

e1.
, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (4)

This switching between the two regimes stems from the intuitive fact that the
rate of the reaction is increasing with the increase in x1. As a result, the optimal
strategy is to accumulate x1 first and then to switch to production of x2.

Example 2. The second example is a modification of the previous case with a
substrate inhibition of enzyme e1 (Fig. 2):

{
ẋ1 = 0.1x0

1+x0
e0 − 0.1x1

0.1+x1+5x2
1
e1,

ẋ2 = 0.1x1
0.1+x1+5x2

1
e1.

, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (5)

Now, the simple accumulation of x1 will not yield an optimal solution; due to
the inhibition, the reaction rate would decrease for large values of x1. Hence, e1
should be switched on earlier and not to its maximal value as can be seen from
the optimal control synthesis in Fig. 2.
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Fig. 1. The reachable tube of Example 1 (left) and the synthesized optimal control
(right). The red line is the synthesized trajectory from the point with the maximal coor-
dinate x2 backward in time. The green line is the trajectory from the origin calculated
with the filtered optimal control. The calculation time on a regular desktop was 7 s.

Fig. 2. The reachable tube of Example 2 (left) and the synthesized optimal control
(right). The red line is the synthesized trajectory from the point with the maximal coor-
dinate x2 backward in time. The green line is the trajectory from the origin calculated
with the filtered optimal control. The calculation time on a regular desktop was 7 s.

Fig. 3. The reachable set of Example 3 at t = 1 (left) and the synthesized optimal
control (right). The red line is the synthesized trajectory from the point with the
maximal coordinate x3 backward in time. The green line is the trajectory from the
origin calculated with the filtered optimal control. The calculation time on a regular
desktop was 57 s.
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Example 3. Finally, we will also consider a three-dimensional example to demon-
strate the calculability of the method (Fig. 3):

⎧
⎨

⎩

ẋ1 = x0
1+x0

e0 − 2x1
2+x1

e1,

ẋ2 = 2x1
2+x1

e1 − 3x2
1+x2

e2.

ẋ3 = 3x2
1+x2

e2.

, t ∈ [0, 1], x0 ≡ 1, Emax = 10. (6)

In general, the curse of dimensionality leads to a significant increase in compu-
tational costs as the dimensionality of x increases, in contrast to direct methods
that are sensitive to the dimensionality of the control vector. The star-shaped
sets partially alleviate the problem by reducing the dimensionality by one, which
is why a two-dimensional grid was used in this example. Thus, the calculations
for systems with up to 5–6 state variables can be performed on a regular desk-
top in a reasonable time. Otherwise, approximation techniques, e.g., ellipsoidal
calculus [12] or zonotopes [15], might be used.

3 Conclusions

In this work, we studied a multi-enzyme optimization problem. We demonstrated
that under some general assumptions, the reachable sets of such a problem are
star-shaped. Further, we constructed reachable sets using their radial function
that is a viscosity solution to a certain partial differential equation. By doing
so, we were able to visualize the time-evolution of the system given all possi-
ble enzyme profiles. Once calculated, the reachability tube provides means for
optimal control synthesis. Finally, we considered several examples that verified
results obtained by other authors using different techniques as well as provided
some new insights into the behavior of more sophisticated multi-enzyme path-
ways, e.g. the ones with inhibition.
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Abstract. When changes at few amino acid sites are the target of selection,
adaptive amino acid changes in protein sequences can be identified using
maximum-likelihood methods based on models of codon substitution (such as
codeml). Such methods have been used numerous times using a variety of
different organisms but the time needed to collect the data and prepare the input
files means that tens or a couple of hundred coding regions are usually analyzed.
Nevertheless, the recent availability of flexible and ease to use computer appli‐
cations to collect the relevant data (such as BDBM), and infer positively selected
amino acid sites (such as ADOPS) means that the whole process is easier and
quicker than before, but the lack of a batch option in ADOPS, here reported, still
precluded the analysis of hundreds or thousands of sequence files. Given the
interest and possibility of running such large scale projects, we also developed a
database where ADOPS projects can be stored. Therefore, here we also present
B+ that is both a data repository and a convenient interface to look at the infor‐
mation contained in ADOPS projects without the need to download and unzip the
corresponding ADOPS project file. The ADOPS projects available at B+ can also
be downloaded, unzipped, and opened using the ADOPS graphical interface. The
availability of such a database ensures results repeatability, promotes data reuse
with significant savings on the time needed for preparing datasets, and allows
further exploration of the data contained in ADOPS projects effortlessly.
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1 Introduction

Amino acid changes in protein sequences can be adaptive, and when changes at few
amino acid sites are the target of selection they can be detected using maximum-likeli‐
hood methods based on models of codon substitution [1–3]. This approach has been
applied numerous times to infer positively selected amino acid sites, such as at inter‐
leukin-3 (IL3), a protein associated with brain volume variation in general human popu‐
lations [4], at formyl peptide receptors in mammals [5], at scorpion sodium channel
toxins [6], at the Mimulus plant CENH3 protein [7], at the oyster Crassostrea gigas
peptidoglycan recognition proteins [8], at host immune response genes [9, 10], the
envelope glycoprotein of dengue viruses [11], the attachment glycoprotein of respiratory
syncytial virus [12], measles virus haemagglutinin [13], influenza B virus hemagglutinin
[14], HIV proteins [15], hemagglutinin-neuraminidase protein of Newcastle disease
virus [16], Trypanosoma brucei proteins [17], at the vertebrate skeletal muscle sodium
channel protein [18], at the p53 protein [19], the fruitless protein in Anastrepha fruit
flies [20], CC chemokine receptor proteins [21], or at the proteins encoded by plant genes
that are involved in gametophytic self-incompatibility specificity determination [22–
25] to name just a few. Recently, it has been argued that pharma and biotech industries
can successfully use the knowledge generated by such approach to tackle real-life prob‐
lems [26].

Although maximum-likelihood methods based on models of codon substitution have
been widely used to infer positively selected amino acid sites, the size of the average
project is still relatively small mainly due to the time needed to collect the relevant
coding sequences and prepare input files for the different software applications. The
recent availability of computer applications such as BDBM (http://www.sing-group.org/
BDBM/) greatly eases the preparation of large data sets. Moreover, the availability of
the ADOPS [27] computer application allowed running in an automated way all the steps
needed to infer positively selected amino acid sites, starting from a FASTA file with
non-aligned coding sequences, but the lack of a batch option in this application still
meant that it was not practical to run thousands of sequence files.

Here, we report the implementation of a batch option in the ADOPS software [27]
that allows users to easily run large scale analyses involving thousands of genes, using
moderate computer resources. Given this improvement, making ADOPS projects (espe‐
cially large scale projects) available to the research community was the next logical step.
Therefore, here we also present B+ (http://bpositive.i3s.up.pt/), a database that has been
specifically designed to store and show the information contained in ADOPS project
files. Although a database dedicated to positive selection inferences at the codon level
has been published [28] it is dedicated to a specific group of organisms, and the possi‐
bility of reusing data is not as easy as with B+ and ADOPS. Both large and small ADOPS
datasets can be submitted to B+ (as compressed tar.gz files) along with a description
containing the details about how the project was performed. At present, the B+ database
hosts the “Closely related Drosophila data set (2016)” that provides ADOPS projects
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for 19652 Drosophila transcripts, 14.6% of which show signs of positive selection (1200
genes), although curated analyses must now be performed to validate these results.

2 ADOPS Batch Mode

Multiple instances of the ADOPS graphical user interface (GUI) can be launched simul‐
taneously and thus multiple parallel processing of ADOPS projects is possible as long
as enough memory is available, the required memory being dependent on the number
of sequences used in the project and the total number of individual projects to be run.
A single ADOPS batch project with 50 individual projects each with an average of 10
sequences per individual project runs in about 1–2 days. This means that even with
limited computational power it is possible to run about 100 individual projects every
two days.

In order to launch the new batch option implemented in ADOPS, the user launches
the GUI and chooses the ‘Create Batch Project’ option under the ‘Project’ menu
(Fig. 1). Then, the user gives the name and location of the folder that will contain the
individual ADOPS project files. The base configuration can be changed at this time but
if none is specified the default configuration stored in the ‘system.conf’ file will be used.
Finally, the user selects the FASTA files that will be used for the experiments and a new
window is launched, showing the status of each individual ADOPS project (Fig. 1). The
name of the experiment of each individual project will be named “batch”.

Fig. 1. The ‘Create Batch Project’ option.
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3 B+ Database Implementation

The B+ database is both a data repository and a convenient interface to browse the
information contained in each ADOPS project interactively, without the need to down‐
load and unzip the corresponding ADOPS project. Thus, B+ allows the exploration of
the data contained in ADOPS projects effortlessly.

B+ has been developed using the Laravel framework (https://laravel.com/) for web
development. For a richer user interface, the Bootstrap framework (http://getboot‐
strap.com/) and the jQuery library (https://jquery.com/) have also been used. Figure 2
details the architecture of the B+ database and Fig. 3 shows the user interface.

Fig. 2. Data architecture of the integration of ADOPS and other technological solutions in the
development of the B+ repository. The MySQL technology allows the integration of the ADOPS
results in order to allow through PHP programming its web availability.

B+ repository is divided into three visualization levels, flowing from the general to
the detail. The first level is a broad data view introducing each dataset available under
the platform, the second is a tabular view showing the content of each dataset and finally
an individual download link with access to a detailed view of the selected record. The
default view has a table arrangement of ten rows per page that can be refreshed using
the “Number of entries” field. The search is provided at the right top corner of the
interface and it is executed in the Database on the server side to provide maximum
performance. The pagination is also handled in the server side to minimize the transfer
of unnecessary data to the client. The search matches full and partial words using name
and description fields of the database. The detailed view of each record is structured in
a tabular view. The first tab is a viewer for positively selected amino acid sites that can
be configured dynamically to match user preferences. It also allows downloading a PDF
or PNG file with the result. Another tab that includes a viewer is the so called “Tree
View”. Using PhyD3 JavaScript library (https://phyd3.bits.vib.be/), shows a phylogram
for each tree available in the record. It can be also configured and the result can be
downloaded in PNG or SVG formats. Figure 3 details the full information on a specific
record including several different datasets views. B+ repository is available at http://
bpositive.i3s.up.pt/ and its source code is publicly available at https://github.com/sing-
group/bpositive, under a GNU GPL 3.0 Open Source License (http://www.gnu.org/
copyleft/gpl.html).
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The first large scale data set available at B+ is the “Closely related Drosophila data
set (2016)”. In brief, ADOPS projects for 19652 Drosophila transcripts were generated
(the details on how the sequence data was obtained and the analyses performed is
provided at the B+ database under the project description), 14.6% of which show signs
of positive selection (1200 genes), although human curated analyses must now be
performed to validate these automatic inferences.

While ADOPS is intended to be a flexible and easy to use pipeline aimed at making
robust inferences on positively selected amino acid sites, the information contained in
the B+ database may serve many other purposes. For instance, since a Bayesian phylo‐
genetic tree is always generated and the corresponding NEWICK tree file saved, a robust
tree for the relationship of the species analyzed using applications such as CLANN [29]
that allows the construction of supertrees from partially overlapping species datasets
can be easily performed. Moreover, ADOPS projects always provide the nucleotide and
protein sequences in FASTA format (aligned and non-aligned) that can be used for many
other types of analyses. It should be noted that the “notes.txt” (the information is shown
in the notes tab) file under the folder with the name of the ADOPS experiment is a
convenient way to store plain text results obtained with additional software applications
and that may help the user with the interpretation of the data.

The ADOPS projects available at B+ can be downloaded, unzipped, and opened
using the ADOPS GUI. Therefore, the availability of such a database ensures the results
repeatability, promotes data reuse with significant savings on the time needed for
preparing datasets, and allows further exploration of the data contained in ADOPS
projects effortlessly. In the new ADOPS version, there is also an option for adding new

Fig. 3. Screenshot of the B+ database. All ADOPS projects tabs can be viewed in the
B+ repository after selecting the gene/transcript of interest.
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sequences to a given project, a tool that is certainly useful when not all the sequences
that a given researcher needs are contained in the original ADOPS project.

4 Conclusion

The ADOPS batch option allows running hundreds or even thousands of projects in a
short period of time without human intervention. B+ is both a data repository and a
convenient interface to look at the information contained in ADOPS projects. The
ADOPS projects can be downloaded, unzipped, and opened using the ADOPS GUI
(https://www.sing-group.org/ADOPS/). Therefore, researchers can repeat the analyses,
reuse the sequence and phylogenetic trees data, and make novel analyses without losing
time on input file preparation. B+ currently holds a large dataset but more will be soon
available. Furthermore, the research community is welcome to contribute with other
projects as well, even with small datasets. B+ will increase the repeatability of published
analyses on the inference of positively selected amino acid sites, as well as making article
reading more interactive.
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Abstract. The present paper aims to analyze and explore the ROC632
package, specifying its main characteristics and functions. More specifi-
cally, the goal of this study is the evaluation of the effectiveness of the
package and its strengths and weaknesses. This package was created in
order to overcome the lack of information concerning incomplete time-to-
event data, adapting the 0.632+ bootstrap estimator for the evaluation
of time dependent ROC curves. By applying this package to a specific
dataset (DLBCLpatients), it becomes possible to assess tangible data,
determining if it is able to analyze complete and incomplete data effi-
ciently and without bias.

Keywords: ROC632 package · 0.632+ bootstrap · ROC curves

1 Introduction

The ROC632 package is a R package currently available in version 0.6. It was cre-
ated by Yohann Foucher and it was first published in December 27th of 2013 [5]
on CRAN repository.

This package was created in order to overcome the lack of information con-
cerning incomplete time-to-event data (in this case, patient death [5]), adapt-
ing the 0.632+ bootstrap estimator for the evaluation of time dependent ROC
curves, where the results do not depend on the incidence of the event [6].

This package allows estimation of prognostic capacity of microarray data and
it relies on four main functions: ROC, AUC, boot.ROC and boot.ROCt [5,6].

The information listed above was adapted from [5,6] and further details about
the features in which this package is based can be found in Sects. 1.1, 1.2 and 1.3.

1.1 ROC Curves

A ROC curve is a plot used to evaluate the relationship between sensitivity and
one minus specificity (false positive rate (FPR)) [2,4,9].

Thus, sensitivity, or true positive rate, is the proportion of true positives (TP),
i.e., the correctly classified positives divided by the true positives plus those who
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should be classified as such (FN) [2–4,9,10]. In medical terms, sensitivity can also
be perceived as the ability to identify diseased patients from a given sample [2].

Similarly, specificity, or true negative rate, is the proportion of correctly clas-
sified negatives (true negatives - TN) from all the expected negatives [2–4,9,10],
which can also be interpreted as the capacity to disregard all healthy individuals
from a given sample [2]. Specificity can be formulated as TN/(TN +FP ), from
which we can obtain the false positive rate: FPR = 1 − specificity.

Accuracy, which is a key parameter for any test, [2–4,13] is the number of
correctly classified objects out of all the given objects [13], i.e., the proportion of
true positives and true negatives (correctly classified elements) in a sample [2–4],
which implies that test accuracy is measured by sensitivity and specificity [2].

1.2 Area Under the ROC Curve

The most common and most important index able to attain the essential features
of a ROC curve is the Area Under the ROC Curve (AUC) [4,9,10], which reduces
it to a single scalar value [3,10]. The AUC can be computed by the trapezoidal
method [3,9,10].

The value of the AUC ranges from 0 to 1, because it belongs to the unit
square [3,4]. The ideal value for the AUC is 1 [2], meaning that every positive
scored higher that every negative [4]; inversely, an AUC of 0 means that every
negative scored higher than every positive and that the test has no accuracy [2,4]
and thus should be discarded. Despite starting at 0, one should only consider
AUC values ranging from 0.5 to 1, because the diagonal line (see Sect. 1.1) has
an area of 0.5 [3].

Accuracy can also be estimated through the AUC: a test with an AUC value
below 0.5 has no accuracy, between 0.5 and 0.7 has low accuracy, ranging from
0.7 to 0.9 has moderate accuracy and above 0.9 has high accuracy, emphasizing
that “the greater the AUC, the better the test” [2,3].

1.3 The Bootstrap Method

Finding a method for validating predictive models and obtaining an unbiased
performance has been a target of discussion by multiple authors [11], [16].
Although there are several approaches to estimate the error rate of a predic-
tion rule, such as the jackknife (leave-one-out) method and cross-validation, the
bootstrap method has been considered the most efficient throughout the years,
as it is capable of directly assessing the variability, returns higher accuracy and it
is able to calculate the variance of a point estimate of prediction error [1,14,15].

The bootstrap method separates the available data into two sets: the training
set, which is used to obtain a predictive model and the test set, used to eval-
uate its performance [4,5,8], [16]. It draws random instances with replacement
(resampling) from the original dataset, which means that some sets can be used
multiple times and some might not be used at all, although, typically, eventually
all the data will be selected at least once [10,14,15].
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The 0.632 bootstrap estimator, or 0.632 bootstrap resampling variable, evalu-
ates independent data, estimated on a per-subject basis [1,14].

However, since this method can still be biased, another estimator, the 0.632+
estimator, was created to improve it [1,14,15].

2 Materials and Methods

This paper focused mainly on the exploration of the ROC632 package, using the
DLBCL dataset, created by Rosenwald et al. [12]. The DLBCLpatients dataset
and the DLBCLgenes matrix concern, respectively, 240 patients affected by a
diffuse large b-cell lymphoma (DLBCL) treated with anthracycline based ther-
apy and their clinical information, based on the scientific discoveries made by
Rosenwald [12].

The assessment of the boot.ROC function, which builds a model relying on
logistic regression with lasso penalty and deals only with complete data, con-
sisted on varying parameters, that is, assigning different values to its arguments,
namely the lasso penalty (lambda1 – tuning parameter) and/or the number of
bootstrap iterations (N.boot) and, in the cases where lambda was NULL, the fold
for cross-validation (fold.cv). Then, the significance of the difference between the
apparent, cross-validation, 0.632 and 0.632+ bootstrap curves for each condition
was estimated. The study of the boot.ROCt function, which is capable of dealing
with censored data and draws a model by applying the Cox model with lasso
penalty, included the process listed for the first function and the modification of
the prognostic limit for which the variable is evaluated (pro.time argument).

Both functions return a vector (Coef ) with the regression coefficients
obtained in the logistic or Cox model with lasso penalty (boot.ROC and
boot.ROCt, respectively). These coefficients were used to determine the signifi-
cant features for each result (those whose coefficient is nonzero), which could be
related to the emergence of this type of lymphoma.

Since the ROC632 package does not calculate the standard error of the AUC,
three functions were added to enable comparison between them. The first func-
tion calculates the standard error of a given curve, the second function deter-
mines the z score of two compared curves and the third function estimates the
p value of the difference between the curves.
1 "st_error" = function (A) {
2 Q1 = A / (2 - A)
3 Q2 = (2 * A ^2) / (1 + A)
4 sqrt((A*(1-A)+(ndead -1)*(Q1-A^2)+(nalive -1)*(Q2-A^2))/(ndead*nalive))
5 }
6 "z" = function(A1, A2, se1 , se2) (A1 -A2)/sqrt(se1^2 + se2^2)
7 "pval" = function(z) {
8 if (z < 0) p = 2*pnorm(z,lower.tail = T )
9 else p = 2*pnorm(z,lower.tail = F)

10 return (p)
11 }

R Script 1.1. Standard Error; Z Score and P value Functions
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3 Results and Discussion

3.1 Evaluation of the boot.ROC Function

As mentioned in Sect. 2, the boot.ROC function constructs a lasso penalized
model for complete data according to a scoring system using logistic regression
and estimates the resulting traditional four curves: apparent, cross-validation,
0.632 and 0.632+. The produced results depend on patient survival.

The boot.ROC function returns a list with 10 elements. Coef is a replica of
Model@penalized, that is, the regression coefficients for the penalized co-variables
(features and status). Signature is the score for each patient, obtained by the
sum of the regression (Coef ) multiplied by the values of the features. Lambda is
the value of the lasso penalty and AUC is the mean of the area under the curve
for the four estimators. This function also generates 4 important data frames
for the false positive and false negative rates (obtained from the ROC function’s
argument cut.values): ROC.Apparent for the apparent estimator, ROC.CV for
the cross-validation estimator, ROC.632 for the 0.632 bootstrap estimator and
ROC.632p for the 0.632+ bootstrap estimator (these data frames generate each
point of the traditional curve). The last element is Model, which is a penfit object
with 15 elements (see reference [8] for details).

The evaluation of this function consisted of varying the values of its argu-
ments, specifically assessing its performance by assigning different values to the
lasso penalty (lambda1 ), ranging from three fixed values – 10, 15 and 20 – to
variable lambda values (lambda1 = NULL) while increasing the number of boot-
strap iterations (N.boot) from 2, 50 and 100 to 1000. The precision argument
(generates the points for each curve) remained constant throughout the process,
set as a vector of 4 values (0.05, 0.35, 0.65 and 0.95).

Fixed LambdaValues. It was verified that there were no significant alterations
in the curves by altering the number of bootstrap iterations within the same tun-
ing parameter (lambda). As such, only the two extreme values (2 and 1000 iter-
ations) were included in Fig. 1. This similarity, however, was not verified for the
different lasso penalties. For 2 bootstrap iterations, there were significant fluctua-
tions between the apparent curves for a lasso penalty of 10 and 15 (p < 0.002) and
10 and 20 (p < 0.0003). For 1000 bootstrap iterations, there were also significant
changes for the apparent curves between the 10 and 20 lasso penalties (p < 0.01).

For the three fixed lambdas, it was found that increasing the lasso penalty
decreased the range of values present in the signature, that regardless of the
tuning parameter more patients were assigned a negative than a positive score
and that the signature was invariable with the increasing bootstrap iterations
within the same lambda.

The significant features were identified by matching the unique ID in
Rosenwald’s NEJM 13Web 13Fig1data dataset (available at http://llmpp.nih.
gov/DLBCL) to the nonzero coefficients obtained in each result. For lasso penal-
ties of 10, 15 and 20, 42, 24 and 10 significant features were found, respectively.
For the latter case, according to the NCBI database and publications [7], the 10

http://llmpp.nih.gov/DLBCL
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features are well-known overexpression transcriptional factors, genes or cell types
related to the diffuse large-b-cell or other similar types of lymphoma, while the
results for the other lambdas included hypothetical proteins and other non-cancer
related genes. These results indicate that increasing the lasso penalty renders
higher accuracy in highlighting risk factors (high influence on patient survival).

Lastly, it was ascertained that the number of bootstrap iterations had no
influence in the level of fit (log likelihood) of the produced model. However,
this level was directly proportional to the lasso penalty (tuning parameter of 20
produced the best results), which implies that a higher lasso penalty could be
linked to a higher accuracy in determining risk factors and patient survival.

Fig. 1. ROC curves for a fixed tuning parameter of 10 (boot.ROC function).
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Variable Lambda Values. In this subsection, the boot.ROC function’s argu-
ment lambda1 was set to NULL, which means that the value for the lasso
penalty is generated by cross-validation by re-estimating the tuning parameter
and selecting features at each bootstrap iteration. The fold for cross-validation
was set to 5 (default), 10 and 20 and the number of bootstrap iterations was
increased from 2 to 10.

Figure 2(a) demonstrates the results with higher test accuracy (higher AUC
values) attained for the variable lasso penalty, found for the 5-fold at 2 bootstrap
iterations (with a lesser overestimation of the apparent curve). Figure 2(b) shows
the calculated signature for this fold, with values ranging from −1.008426 to
0.5911469 (narrower range than the observed for the fixed lambdas).

The level of fit of the model (Log likelihood) had increasingly negative values
for the 20, 10 and 5 cross-validation folds, which implies that there is better
adjustment for smaller folds.

The significant feature search for the variable lambdas yielded highly specific
matches, revealing features that are all characteristic of the diffuse large b-cell
lymphoma signature [7,11,12] and a better performance than the observed for
the fixed lambda values. For 2 and 10 bootstrap iterations, 4 significant features
were acquired, from which three are coincident with the ones found for the fixed
20 lasso penalty.

Fig. 2. Produced curves and signature for a variable tuning parameter (5-fold).

3.2 Assessment of the boot.ROCt Function

The boot.ROCt function constructs a lasso penalized model using the Cox’s pro-
portional hazards model, given a calculated signature (see Sect. 2 for details) and
estimates the corresponding time-dependent curve. Since this function is capable
of dealing with censored data, the argument status from the boot.ROC function
is replaced by the binary argument failure, where 0 means right-censoring and
1 implies the event (in this case, death) took place. Right-censoring, for the
newDLBCLpatients dataset, since the maximum follow up time is 21.8 years, is
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Fig. 3. Time dependent ROC curves for variable (a) and fixed (b) tuning parameters.

perceived as the patient leaving the study before that time period or surviving
after it [5,6,10].

This function returns a list similar to the one described in Subsect. 3.1. The
assessment of the boot.ROCt function included the process listed for the boot.ROC
function, while varying the maximum prognostic time (pro.time) for which each
variable is evaluated (from 1 to 16 years) and changing the lasso penalty (lambda1 )
from variable to fixed (15). The proportion of nearest neighbors (prop) was kept
constant at a value of 0.02 during the course of the study and only 2 bootstrap
iterations (N.boot) were considered.

Figure 3 illustrates the performance of the four estimators for right-censored
data (Apparent, Cross-Validation, 0.632 and 0.632+) by varying the argument
pro.time from 1 to 16 years, according to a variable lasso penalty.

Using the functions described in Sect. 2, there were significant differences
(p < 0.05) between the curves for fixed and variable penalties: in the apparent
curve, for prognostic times of 9 and 14 years, in the cross-validation curve and
in the 0.632+ bootstrap curve, for 3 and 12 years. These differences are due to
the small number of observations for those specific years, leading the model to
under- or overestimate those values depending on the used approach.

The most negative log likelihood (−812.4193) and lowest number of signifi-
cant features (which ranged from 4 to 32) for the variable penalty were found
for a prognostic time of eleven years, which means that those particular mod-
els were the most accurate in predicting patient outcome. For the fixed lambda
value of 15, independently of the prognostic time, a log likelihood of −739.6779
was achieved and 68 relevant genes were found, indicating low reliability.

4 Conclusions

From the results described throughout Sect. 3, the strengths and weaknesses of
the ROC632 package could be highlighted and, independently of the condition
or the function in use, some patterns in the outcomes were identified.

The most significant disadvantages of this package are that it does not cal-
culate the standard error for the estimated curves, forcing the user to calculate
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it using an additional method and that the number of patients assigned to the
training and test sets is not explicitly shown in the results.

The apparent curve seemed to be overly optimistic and the cross-validation
curve considerably pessimistic. These results were expected, since these curves
only represent the training and test sets, respectively. The 0.632 and 0.632+
bootstrap curves had an overall similar performance, with marginally lower val-
ues for latter, since the 0.632+ estimator’s performance depends on the amount
of overfitting, whereas the former has a constant weight [1,14,15]. Hence, the
0.632+ estimator provided the best results with the least variance (similar results
within the same condition – fixed or variable lambda) and bias (no over- or
underestimation) and it should thus be used in future analysis.

Finally, the signature created was able to create an overall efficient prognosis
for up to 10 years, being capable of attributing a higher score to patients who
survived the longest (and were still alive). However, since most patients had died
after that time point (only 26 patients had survived), the predictions for longer
timeframes were considerably erroneous, with patients who had survived having
the same score as patients who did not. Hence, although this scoring system
could be highly accurate for well documented data, with as many observations
possible, it isn’t advised for small datasets where the data is overly repetitive in
some cases and missing in others and the number of examples is limited.
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Abstract. In modern molecular biology the most commonly used method to
distinct proteins present in complex sample is two-dimensional gel electropho‐
resis. Unfortunately, the quality of the gel image is reduced by the presence of
non-linear background signal, spikes, streaks and other artefacts. The main
components of gel image are protein spots. To properly distinguish spots, mostly
in overlapping regions, mixture modeling can be performed. Due to many signal
impurities the estimation of model parameters is inadequate. In this study, by
using two fragments of real gel image and a set of synthetic data, three background
correction methods with four image filtering methods were collated and the
quality of spot detection based on mixture modeling was checked. The presented
results prove that efficient modeling of 2D gel electrophoresis images must be
preceded by proper background correction and noise filtering. A two-step Otsu
algorithm was the best method for removing background signal. There was no
single favorite from filtering methods, but using 2D matched filtering leads to
good results despite the background correction method used.

Keywords: 2D gel electrophoresis · Image filtering · Mixture modeling

1 Introduction

Proteomics is a branch of science that attempts to characterize proteins, compare varia‐
tions in their expression levels between phenotypes, study their interactions with other
proteins and identify their functional roles. 2D gel electrophoresis (2DGE) is a meas‐
urement technique commonly used in proteomics for separation of proteins in a complex
sample, finding post-translational modifications or discovering protein biomarkers by
analyzing series of samples [1]. The basic principle of the technique is to separate
proteins based on their weight and pH gradient. A result of measuring single sample is
a grayscale image with light background and dark spots. The intensity of each spot
represents the amount of the protein in the analyzed sample. In a single gel there may
be even thousands of protein spots visible, so the automatic analysis of gel image is
necessary. Despite that 2DGE is a very popular technique, there are evident drawbacks.
The overall quality of the gel image suffers due to artefacts, inhomogeneous background

© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7_5



and high level of noise. Also, the proteins with similar molecular properties can form
streaks or clusters in which spots are hardly identifiable.

Methods for detecting spots in gel image can be grouped into three categories: local
maximum methods, segmentation methods and model-based approaches. Among the
last group of methods the interesting technique is mixture modeling that enables
detecting spots that are hidden in the clusters of overlapping spots [2, 3]. Fitting the
mixture model allows for achieving higher sensitivity in detecting spots and better
overall performance of the spot detection than using local maximum or segmentation
methods [2]. Signal modeling is robust to small pixel intensity variations, thus providing
consistent and reliable spot quantity estimates [3]. A single spot shape is the most
commonly approximated by Gaussian normal distribution [4]. A serious problem in
mixture modeling is that real data are often contaminated, so the estimation of the model
parameters for proper modeling may be unsuccessful. To correctly identify true spots
and prevent the identification of artefacts as spots using Gaussian mixture modeling, the
signal processing must be performed at first.

The background signal in gel image is not uniform, but consists of local regions of
elevated pixel-intensities. The simplest method is to find global or local minima in the
image and set a constant threshold value e.g. based on image intensity histogram [5].
Other approach is to approximate the background using a polynomial function. Iterative
polynomial fitting preserves too elevated estimate of the background surface [6]. The
commonly used method, called the ‘rolling ball’ algorithm, uses a circular disc as a
structural element in the morphological opening operation [7]. It is a very efficient solu‐
tion, but it fails to remove streaks from the image. Rapid, random changes in the intensity
of neighboring image pixels and random artefacts can be reduced by the process called
filtering. In conventional filters used in 2DGE a window of predefined size is placed at
each pixel in the image and the value of this pixel is then determined by some relationship
or function with respect to the surrounding pixels defined by the window [8, 9]. Adaptive
filters are constructed to smooth images similar to linear filters, but at the same time
preserve significant discontinuities. A more sophisticated denoising methods are based
on the wavelet transformation [10].

The aim of this paper is to prove that proper background correction and noise filtering
can improve the quality of detection of protein spots in 2DGE when Gaussian mixture
modeling is used. Two fragments of real dataset and a set of synthetic images were
examined. Three background correction methods were collated with four image filtering
methods and the sensitivity plus the false discovery rate (FDR) of spot detection were
calculated. Also, goodness of fit of the mixture model was checked.

2 Materials and Methods

2.1 Data

There are no properly annotated 2D gel images of full human proteome freely available.
Some efforts were done by Raman et al. [11], but the annotation data are stored as a low-
quality PNG image, so it is hard to distinguish spots in the overlapping regions. Thus
two fragments (Fig. 1) of real gel image given by Raman et al. [11] were chosen and the
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existing annotation of true spots was improved by manual inspection of the image. First
fragment (size – 93 × 91 pixels) is called R1 in the following text and it contains 51
annotated spots. In R1 the background signal has low intensity compared to spots inten‐
sity and there are no streaks visible. Second fragment (size – 97 × 118 pixels) is called
R2 in the following text and it contains 44 true spots. In R2 the background signal has
higher intensity than in R1 and the streaks are observed.

Fig. 1. Two fragments of real 2D gel image (R1 and R2) and an example of synthetic data (S).

The synthetic data were created based on the models of 2DGE image background,
additive noise, streaks and true spots, proposed in [2]. Background and noise model
parameters were estimated using the real gel image from Raman et al. [11]. A spot model
is based on diffusion principles observed in 2D gel electrophoresis [4]. The spread of
each spot is calculated based on its intensity. Synthetic dataset is called S in the following
text. It contains 100 gel images (size – 100 × 100) with 50 spots each. An example of
the synthetic gel image is presented in Fig. 1.

2.2 Processing Methods

Three methods for removing background signal were implemented and compared. Iter‐
ative polynomial fitting (IPF) [6] is performed for each line separately in horizontal and
vertical direction. First, a polynomial curve is fitted to the signal values and the signal
above the curve is removed. Next, a new approximation is performed and the method
is repeated until convergence. The background is a mean value from all fits. A polyno‐
mial degree of 4 is used in this study. In rolling ball algorithm (RB) [7] a circular disc
with size larger than the largest spot in the image is used as a structural element in the
operation of morphological opening. A disc radius equal to 15 was used for processing
all images within the study. Two-step Otsu thresholding (OTSU) [5] searches for the
optimal separation of the histogram into two groups based on statistical measures of
between and within variances. The threshold is identified first by searching for the
overall threshold based on the full histogram and then the thresholding procedure is
applied only to the intensity values lower than the first threshold.

Four methods for noise filtering were implemented and compared. In median filtering
(MEDF) [8] a window of predefined size is placed at each pixel in the image and the
signal value is averaged by calculating median intensity of the neighborhood pixels. The
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size of the moving window is varied from 3 × 3 to 9 × 9. In median modified Wiener
filter (MMWF) [9] a window of predefined size is placed at each pixel in the image and
a local kernel median around each pixel is calculated, that includes local image variance,
to estimate new value. The size of the moving window is varied from 3 × 3 to 9 × 9. In
2D matched filtering (2DMF) histogram of image intensity is first divided into over‐
lapping fragments using Otsu thresholding. Then, in each fragment 2D matched filtering
using Gaussian function is performed. The size and the standard deviation of Gaussian
function is found adaptively by using Peak signal-to-noise ratio measure. The number
of fragments was varied from 2 to 20 and the overlap from 0 to 20%. 2D Wavelet
denoising (WD) [10] is performed in the wavelet domain and ensures efficient elimina‐
tion of noise, without deteriorating the significant high frequency features. Decompo‐
sition was made using the two-dimensional wavelet basis function and the soft-thresh‐
olding policy was applied. A MATLAB implementation of all processing methods and
all datasets analyzed in the study are available to freely download along with the
2DGMMgel software from the following website: http://zaed.aei.polsl.pl/index.php/pl/
oprogramowanie-zaed.

2.3 Gaussian Mixture Modeling

In 2DGE the most commonly used spot model is a Gaussian function. This choice is
inspired by the 3D shape of the spot and by general considerations on diffusion processes
following gel image creation. To efficiently estimate parameters of several dozen
components of the model a modified version of expectation-maximization (EM) algo‐
rithm was proposed [2]. Initial conditions for EM were set to true peak positions and
spread. To provide regularization of the model Bayesian information criterion [12] was
used for estimating the final number of model components in backward elimination
scheme. An example of background correction, filtering and Gaussian mixture modeling
of real gel image R2 is presented in Fig. 2.

Fig. 2. Result of background correction (left), noise filtering (middle) and Gaussian mixture
modeling (right) using IPF and 2DMF methods on R2 dataset.

3 Results and Discussion

Three methods for background correction and four methods for image filtering were
collated to check if they can improve the results of Gaussian mixture modeling of gel
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image. Also, the performance indices for the case where no method was used, either to
correct background or remove noise, were calculated. In total, twenty different pre-
processing scenarios were competed within the study.

3.1 Spot Detection Performance

Comparison of different methods using real and synthetic datasets was provided by
calculating three measures of spot detection quality. Sensitivity is the number of true
spots detected divided by the number of all true spots in the image. False discovery rate
(FDR) is the number of detected spots that do not correspond to true spots divided by
the number of all detected spots. F1 is the harmonic mean of 1-FDR and sensitivity.
Higher values of F1 score shows better performance of the method. F1 is also used to
optimize parameters of all methods and the best results are presented.

Table 1. Results of spot detection in two fragments of real image (R1 and R2). First column –
background correction method used, second column – filtering method used.

Back. corr. Filtering F1 Sensitivity FDR
R1 R2 R1 R2 R1 R2

None None 0,760 0,674 0,745 0,659 0,224 0,310
IPF 0,720 0,795 0,706 0,795 0,265 0,205
RB 0,792 0,750 0,784 0,750 0,200 0,250
OTSU 0,990 0,884 0,980 0,864 0,000 0,095
None MEDF 0,720 0,674 0,706 0,659 0,265 0,310
IPF 0,720 0,828 0,706 0,818 0,265 0,163
RB 0,760 0,805 0,745 0,795 0,224 0,186
OTSU 0,980 0,847 0,961 0,818 0,000 0,122
None MMWF 0,720 0,674 0,706 0,659 0,265 0,310
IPF 0,700 0,805 0,686 0,795 0,286 0,186
RB 0,760 0,800 0,745 0,773 0,224 0,171
OTSU 0,960 0,847 0,941 0,818 0,020 0,122
None 2DMF 0,887 0,837 0,843 0,818 0,065 0,143
IPF 0,920 0,955 0,902 0,955 0,061 0,045
RB 0,878 0,864 0,843 0,864 0,085 0,136
OTSU 0,926 0,966 0,863 0,955 0,000 0,023
None WD 0,840 0,674 0,824 0,659 0,143 0,310
IPF 0,780 0,828 0,765 0,818 0,204 0,163
RB 0,812 0,805 0,804 0,795 0,180 0,186
Otsu 0,990 0,874 0,980 0,864 0,000 0,116

In R1 the number of estimated spot locations ranged from 44 to 50 (the number of
true spots equals to 51), while in R2 from 41 to 44 (the number of true spots equals to
44). Results of spot detection in real images are presented in Table 1. The maximum
value of F1 in R1 dataset was achieved after using OTSU method connected with no
filtering or filtering by the wavelet decomposition. The maximum sensitivity was
obtained for the same pairs of methods. Four combinations of methods gave no false
positives in R1, namely OTSU + None, OTSU + MEDF, OTSU + 2DMF and
OTSU + WD. In R2 the best overall performance was obtained after using OTSU
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method connected with 2DMF filtering. The maximum sensitivity was given for
IPF + 2DMF and OTSU + 2DMF. Only one spot was falsely detected after using
OTSU + 2DMF combination. For each method an average F1 score can be calculated
to show its robustness. In such comparison, from background correction methods, OTSU
gave the highest average F1 score and from filtering methods, 2DMF gave the best result.
These outcomes are the same for R1 and R2 datasets.

Fig. 3. Results of spot detection in synthetic data. The error bars indicate 95% confidence
intervals.

By generating 100 synthetic images it was possible to calculate the indices of spot
detection quality with 95% confidence intervals (Fig. 3). The maximum average F1 score
was obtained for OTSU background correction and MEDF filtering, but the result is
statistically not better than the one obtained by the following pairs of methods:
OTSU + None, OTSU + MMWF, OTSU + WD. The highest sensitivity was obtained
for the same methods. The lowest FDR was acquired after using the following methods:
OTSU + None, OTSU + MMWF, IPF + 2DMF and OTSU + WD. From background
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correction methods using OTSU leads to the highest average F1 score. From filtering
methods MMWF gave the highest F1 score. 2DMF leads to lower FDR despite the
background correction method used, but also lower sensitivity, in comparison to other
filtering methods.

3.2 Goodness of Model Fit

Bayesian information criterion [12] was used to measure how well a mixture model is
fitted to data after image processing (Fig. 4). The index takes into account both the
statistical goodness of fit and the number of parameters that have to be estimated by
imposing a penalty for increasing the number of parameters. The model with the lowest
BIC is preferred. The best fit was obtained after using OTSU background correction and
2DMF filtering. Among background removal methods, using OTSU gave the best
results. Comparing filtering methods, using 2DMF gave the best fit. The result is not
surprising, since 2DMF uses the same Gaussian shape to perform image filtering as the
probability distribution function used in the mixture model.

Fig. 4. Goodness of model fit to synthetic images after different processing methods.

4 Conclusions

Using two fragments of real gel image and artificially created dataset it was shown that
background correction and noise filtering are necessary to improve the quality of protein
spots detection in 2DGE when using Gaussian mixture modeling. A background correc‐
tion method based on global OTSU thresholding gave the best results in all analyses,
but since the comparison was performed on fragments of gel images, results for whole
gel image may be different. The most universal method for image filtering, that also
guarantees the best model fit and low FDR level, was 2DMF. According to an overall
performance of spot detection there was no single favorite from compared filtering
methods.
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Abstract. Understanding of biological processes, associated to disease
or pharmacological action for example, requires the analysis of large
amounts of interconnected information. Protein interaction networks
form part of this puzzle, and extracting this information from the scien-
tific literature is an important but challenging task.

In this work, we present a supervised classification approach for identi-
fying and ranking literature documents that contain information regard-
ing protein interactions. We studied the use of word embedding together
with simple chunking features, and show that the combination of these
features with baseline bag-of-words can lead to similar or even improved
results when compared to the use of features based on deep linguistic
parsing. When applied to the BioCreative III Article Classification Task
dataset, our approach achieves an area under the precision-recall curve
of 0.70 and a Matthew’s correlation coefficient of 0.56.

Keywords: Protein-protein interactions · Literature retrieval ·Machine
learning · Word embeddings

1 Introduction

The identification of protein-protein interactions (PPIs) is of utmost importance
for biomedicine, since the understanding of disease, pharmacological and other
processes requires the analysis of networks formed by these relations. Several
databases maintain manually curated protein-protein interaction data but, since
the primary source for identifying PPIs is the scientific literature, keeping these
databases up-to-date is a demanding and expensive task. Therefore, the use
of named-entity recognition (NER) and relation extraction methods in assisted
curation workflows has been evaluated, and shown to expedite this work [6,14].
Even when information extraction methods is not applied, document prioriti-
zation or triage is a required step, in order to obtain articles that have more
likelihood of containing information.

Several works have addressed the problem of document prioritization for
protein-protein interactions. Sumoela and Andrade [13] proposed a classifica-
tion and ranking model to evaluate the entire MEDLINE database, the largest
c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 6
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repository of scientific literature in the life sciences, with respect to any topic of
interest. Their method is based on selecting words that commonly convey mean-
ing, namely nouns, verbs, and adjectives, and relies on the different frequencies of
these discriminating words between a set of relevant articles and a reference set.
This approach is also behind the MedlineRanker web-service [4], which allows to
retrieve a list of articles ranked by similarity to a training set defined by the user.
One possibility, as referred by the authors, is to use a list of document identifiers
obtained from a PPI database, therefore getting as result other articles related
to that same topic. Marcotte et al. [9] proposed a log likelihood scoring function
to identify articles discussing PPIs, using a feature set composed of 83 discrim-
inating words selected from a training set of 260 MEDLINE abstracts involving
yeast proteins. They reported an accuracy of 77%, with a recall around 55%,
when articles with a log likelihood score of 5 or higher were selected.

Retrieval and extraction of PPI related information has been a major focus
of recent shared evaluations in the biomedical domain, namely in the BioCre-
ative challenges. Lan et al. [8] compared the use of Bag-of-Words (BoW), inter-
action trigger words and protein Named Entities (NEs) features in a Support
Vector Machine (SVM) classifier, applied to the BioCreative-II PPI task data.
Their best result, when using a single classifier, was obtained with a feature set
containing BoW features and protein NEs co-occurring with interaction trig-
ger words (F-score of 77%). Abi-Haidar et al. [1] tested three classifiers in the
same data set: SVM, Variable Trigonometric Threshold classifier (VTT), and a
nearest neighbor classifier with singular value decomposition (SVD) applied for
feature selection. They reported a top F-score of 78% using the VTT classifier
with a feature set of 650 discriminating words. The latest PPI Article Classifica-
tion Task (ACT), part of the BioCreative III Challenge (BC-III), counted with
52 submissions from ten participating teams [7]. Most teams applied some sort
of machine learning technique, the best results being obtained using Support
Vector Machines, Maximum Entropy or Large Margin classifiers. The top per-
forming teams used various levels of lexical analysis, including Part-of-Speech
(PoS) tagging and Named Entity Recognition (NER), and the best team overall
also used dependency parsing to extract the textual features used for classifica-
tion. Additionally, various teams used the manually assigned MeSH terms, which
are indexing terms that provide information regarding the article’s subject. The
best AUC iP/R (area under the interpolated precision-recall curve) was 0.680
and the highest MCC (Matthew’s correlation coefficient) was 0.553, with an
accuracy of 89.2% and an F-score of 61.4% [5]. This lower result, as compared
to results obtained on the BC II dataset, reflects the highly unbalanced nature
of the test set used (15% positive documents), which represents more closely the
real scenario.

In this work, we evaluated the use of word embedding features, together
with simple chunking features, for prioritization of MEDLINE articles containing
protein-protein interaction information. We follow a classification based ranking
approach, in which the class probabilities obtained from the classifier are used
for ranking the results, and show that classifiers trained with such distributional
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and shallow parsing features can achieve state-of-the-art results, without the use
of dependency parsing or indexing terms. The paper is organized as follows: the
next section describes the methods and data used, followed by the presentation
of results, and finally the conclusions.

2 Methods

This section describes the data and methods used. Text processing and classifica-
tion tasks were implemented in Python, using the Scikit-learn machine-learning
library scikit-learn and the Natural Language Toolkit [2]. Neji [3], a framework
for biomedical concept recognition, was used for identifying protein mentions
and for writing the annotated documents in CoNLL format. Word embedding
models were obtained with the gensim framework [11].

2.1 Data

We used the dataset from the BioCreative III protein-protein interaction, article
classification task (ACT) [7]. This corpus is composed of manually annotated
MEDLINE abstracts, containing 2280 documents in the training set, 4000 in the
development set, and 6000 in the test set. The training set has the same number
of positive and negative examples, while the development and test sets are highly
unbalanced, with around 15–17% positive examples, which reflects the expected
real scenario.

2.2 Feature Extraction

We compared the use of various features, starting with the common token n-
grams, with n varying between 1 and 5. These bag-of-words (BoW) features
encode common words or phrases used to express protein interactions, for exam-
ple ‘interacts with’, ‘affects’, or ‘binds’. The different frequencies of these words
in PPI articles versus non-PPI articles is sufficient to learn a classifier with rea-
sonable results. We applied simple tokenization and stopwords filtering, using
the MEDLINE stop list, before extracting the n-grams.

Protein-protein interactions, and relations in general, are commonly refer-
enced by particular linguistic constructions. To model this linguistic information,
we chose to use chunking instead of deeper linguistic parsing, to evaluate if a sim-
pler and less computationally demanding approach could lead to good results.
To extract the patterns, we first identified protein mentions using Neji1, and
encoded the results in CoNLL format, including the chunking information. Pro-
tein mentions were identified through a conditional-random fields (CRF) model
trained on the BioCreative II gene mention recognition corpus [12]. We then iter-
ated through the chunks to obtain the sequence of tags and words representing
each sentence. In this process, we applied the following transformations: (a) if a

1 Available from https://github.com/BMDSoftware/neji.
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protein entity was matched for any token in a noun-phrase (NP), the tag would
be replaced by a placeholder PTN, otherwise the NP tag would be used; (b) for
verb-phrases, we replaced each word in the phrase by its lemma, using NLTK’s
WordNet lemmatizer, and produced the sequence of lemmas, rather than the
tag VP. Using lemmas allows combining different lexical variations in the same
grammatical pattern, leading to better generalization, while keeping linguistic
information regarding the verbs used in the sentences. We then extracted n-
gram features from these sequences. For example, the sentence “Here, we show
that Schizosaccharomyces pombe CHD remodellers, the Hrp1 and Hrp3 paralogs
physically interact with the histone chaperone Nap1.” (PMID 17510629), can be
represented as

Here , [we]/NP [show]/VP that [Schizosaccharomyces pombe CHD

remodellers ]/NP, [the Hrp1/PTN and Hrp3/PTN paralogs ]/NP

physically [interact ]/VP with [the histone/PTN chaperone/PTN

Nap1/PTN]/NP.

where NP represents a noun-phrase, VP a verb-phrase, and PTN identifies tokens
that were recognized as protein entities. The corresponding pattern extracted for
this sentence is NP show NP PTN interact PTN.

We also evaluated the use of word embedding vectors as global features for
the classification. We used gensim’s implementation of word2vec [10] to create
a model for 12 million abstracts from MEDLINE for the years 2000 to 2015,
containing around 600 thousand distinct words. We used a window of 100 and
a vector size of 500 for these experiments.

When using embedding vectors for classification, it is usual to sum or average
the vectors of the words that appear in the text. This however does not take
into consideration prior information available in a supervised setting, as in this
case. We therefore used a weighted average of the word vectors, using as weights
the coefficients of a linear regression between the term-document matrix and the
label of each document in the training set. Preliminary cross-validation results
on the training set showed that this weighting produced better results than
the unweighted average, or the sum of vectors. Similarly, preliminary validation
also showed that the best results were obtained by representing the words in
the term-document matrix by their term-frequency inverse-document-frequency
(tf-ifd) weight, rather than raw counts, log frequency, or idf alone.

We compared different weighted combinations of these features, which were
normalized to unit norm before being encoded on a single feature vector.

2.3 Document Classification

Different classifiers were considered, namely logistic regression (LR), passive-
aggressive (PA), Ridge classifier (RC), and linear support-vector machine with
stochastic gradient descent (SGD) learning. We applied grid search through
cross-validation on the training set, to select the n-grams to use for the BoW
and chunking features and to select the best combination of feature weights.
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3 Results

Table 1 shows the 5-fold cross validation results on the training set, comparing
the best parameters identified for each classifier. The best results for each clas-
sifier were obtained by combining the three types of features, with a weight of
1.0 for the BoW features, and varying between 0.5 and 0.75 for the chunking
and WE features. In terms of n-grams, the results were mixed. The LR classifier

Table 1. 5-fold cross validation accuracy on the training set. BoW: bag-of-word fea-
tures; NLP: NER and chunking features; WE: word embedding features.

Features Classifier

PA LR RC SGD

BoW 0.860 0.856 0.861 0.857

BoW+NLP 0.870 0.864 0.867 0.870

BoW+WE 0.867 0.865 0.869 0.868

NLP+WE 0.864 0.867 0.867 0.870

BoW+NLP+WE 0.873 0.871 0.874 0.875

Table 2. Evaluation results on the test set. BoW: bag-of-word features; NLP: NER
and chunking features; WE: word embedding features. AUC: Area under the curve;
Acc: Accuracy; MCC: Matthew’s correlation coefficient; P@Full R: Precision at full
recall.

Model Features Metrics

AUC Acc. MCC P @ Full R

PA BoW 0.664 0.872 0.533 0.157

BoW+NLP 0.687 0.879 0.549 0.157

BoW+NLP+WE 0.689 0.884 0.558 0.183

+0.025 +0.012 +0.025 +0.026

LR BoW 0.642 0.881 0.512 0.161

BoW+NLP 0.677 0.884 0.532 0.159

BoW+NLP+WE 0.700 0.885 0.562 0.165

+0.058 +0.004 +0.050 +0.004

RC BoW 0.660 0.871 0.518 0.156

BoW+NLP 0.684 0.882 0.556 0.154

BoW+NLP+WE 0.691 0.881 0.560 0.162

+0.031 +0.010 +0.042 +0.006

SGD BoW 0.643 0.886 0.493 0.153

BoW+NLP 0.674 0.891 0.533 0.152

BoW+NLP+WE 0.686 0.883 0.540 0.163

+0.043 −0.003 +0.047 +0.010
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produced better results with only 1-gram BoW features and 2-gram chunking
features, and achieved similar results with 1-gram for both types of features,
while for the remaining classifiers better results were obtained with 3- or 4-gram
chunking features and 2- or 3-gram BoW features.

Table 2 shows the results obtained on the test set of the BioCreative III
article classification task, illustrating the improvements provided by the chunking
and word embedding features. Comparing to the current state-of-the-art results,
reported in the official BioCreative task, our results show an improvement in
terms of area under the precision-recall curve (0.700 vs. 0.680) and of Matthew’s
correlation coefficient (0.562 vs. 0.551), without the use of dependency parsing
or document indexing features.

4 Conclusions

We present results for the prioritization of scientific articles containing informa-
tion regarding protein-protein interactions, following a classification based rank-
ing approach. We evaluated the use of simple patterns extracted from shallow
linguistic parsing (chunking), together with results from named entity recogni-
tion, and the use of word embedding features. Our results show that both feature
types improve the classification and ranking performance over the BoW base-
line features, and over current state-of-the-art results, which rely on linguistic
parsing features.

A current limitation of this work is that we have not considered full texts of
the articles, where most PPI information is available, and which could improve
the classification performance. Also, MEDLINE abstracts are manually indexed
with terms from the MeSH vocabulary and previous works have used this infor-
mation, showing that these terms are informative regarding PPI document pri-
oritization. Although we expect that our ranking results could also be improved
with this information, not requiring it allows the classifier to be effectively
applied to recently published articles that have not yet been indexed.
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Abstract. In the bioinformatics and clinical research areas, microarray tech‐
nology has been widely used to distinguish a cancer dataset between normal and
tumour samples. However, the high dimensionality of gene expression data
affects the classification accuracy of an experiment. Thus, feature selection is
needed to select informative genes and remove non-informative genes. Some of
the feature selection methods, yet, ignore the interaction between genes. There‐
fore, the similar genes are clustered together and dissimilar genes are clustered
in other groups. Hence, to provide a higher classification accuracy, this research
proposed k-means clustering and infinite feature selection for identifying infor‐
mative genes in the selected subset. This research has been applied to colorectal
cancer and small round blue cell tumors datasets. Eventually, this research
successfully obtained higher classification accuracy than the previous work.

Keywords: Gene expression data · K-means clustering · Infinite feature
selection · Cancer classification · Small round blue cell tumors · Informative
genes · Artificial intelligence
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1 Introduction

The advent of microarray technology has benefited researchers in conducting large-scale
experiments on thousands of genes by analyzing the variation of interactions among
genes. In line with that, the biological datasets, such as cancer datasets, have been
increasing rapidly despite the various biological experiments being conducted. The
biological dataset can be considered as a high dimensional data since it consists of thou‐
sands of genes. Particularly, in cancer detection, despite thousands of genes, merely a
small subset of genes, known as informative genes, is correlated with the respective
diseases [15]. Besides, the physicians and other related researchers faced problems in
accurately determining the disease.

Therefore, machine learning (ML) methods have been applied in analyzing and
classifying gene expression data into different subclasses [17]. The ability of machine
learning methods to efficiently discover and identify patterns and relationships among
genes has made it a popular tool among researchers [13]. Before applying the ML
methods, genes expression data, which consists of several genes and different types of
samples, will be pre-processed by removing noise, missing or duplicated genes [7, 8].
The preprocessing of gene expression data including normalization will improve the
accuracy and quality of the results. Clustering is applied in order to find the interaction
among genes [3]. The selection of a clustering technique can control the behavior of a
grouped data [7, 8]. Prior to the classification techniques, feature selection or gene
selection has been considered as a de facto in reducing the data dimensionality as well
[4, 7, 8].

As mentioned earlier, the genes that associate with a specific disease are consist of
a small subset of genes which is known as informative genes. Therefore, feature selection
is used to identify the important and related informative genes for the classification,
while removing non-informative and redundant genes [16].

Based on method conducted in [9], we proposed k-means clustering with infinite
feature selection in colorectal cancer (CRC) and small round blue cell tumors (SRBCT)
datasets. K-means clustering and silhouette width are used to split and validate the clus‐
ters. Then, the selected sub-clusters are analyzed using infinite feature selection to select
the informative genes. Lastly, the informative genes are used to train a classifier using
linear Support Vector Machine (SVM) to obtain the accuracy. The differences between
the proposed method and previous method [9] is shown in Table 1.

Table 1. Comparative table showing differences between previous and proposed method.

Methods Garzón and González
[9]

K-means clustering
with infinite feature
selection

Statnikov [20]

Clustering Agnes K-means clustering –
Clustering validation Silhouette width –
Feature selection Signal-to-noise (S2 N) Infinite feature

selection
–

Classification Stratified ten-fold cross validation
Classifier Linear SVM K-nearest neighbors
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The rest of the paper is organized as follows. Datasets and methods used are
described in Sect. 2. Section 3 provides the results of our proposed method and compar‐
ison with previous researches. The conclusion of the research is presented in Sect. 4.

2 Materials and Methods

2.1 Datasets and Tools

The datasets used in this research were colorectal cancer (CRC) and small round blue
cell tumors (SRBCT). CRC dataset is obtained from http://genomics-pubsprinceton.edu/
oncology/affydata/index.html [1, 9, 16]. The gene expression values of data are normal‐
ized based on z-scores over all samples to a mean zero and variance one [9]. This gene
expression data consists of 2000 genes and 62 samples. It comprises of 40 tumour
samples and 22 normal samples. The SRBCT dataset can be downloaded at http://
research.nhgri.nih.gov/microarray/Supplement/ [12, 16]. This dataset contains 2303
genes and 40 samples. There are 29 Ewing sarcoma (EWS) and 11 Burkitt lymphoma
(BL) samples [12].

Clustering and feature selection are performed using MATLAB 2014b, while
Feature Selection Library (FSLib) is applied for selecting informative genes [18]. Mean‐
while, the classification task is run in R version 3.3.2.

2.2 Centroid Clustering Analysis (CCA-I)

This stage performs centroid clustering analysis of the target dataset. The input of this
stage is the list of genes from gene expression data and the output is the number of k
clusters. Centroid clustering based on k-means [14] was chosen to cluster the list of
genes. This technique used k-means for partitioning the genes into k number of clusters.
Each sample in gene expression data is assigned to a cluster by minimizing the distance
between each gene and the mean location of its assigned cluster. Unlike hierarchical
clustering, centroid based clustering using k-means give good result in shorter time on
a large dataset [5]. However, in k-means, the number of k cluster need to be determined
beforehand. In order to find the best k cluster from target dataset and avoiding local
minima, k-means is run several iterations [21]. In this work, k-means was run 50 itera‐
tions, which each iteration corresponds to the different number of k. The result for 50
iterations is passed to the next stage for cluster validation.

2.3 Clustering Validation (CV-II)

The result from k-means clustering was validated by using silhouette analysis [19]. In
this stage, there are two steps. The first step is to validate the best number of k by
obtaining mean silhouette value from each of k. The mean silhouette values represent
the uniform separation of genes. The highest mean silhouette is chosen as the best k to
be used in the second step. The second step runs k-means again with the best k number
of clusters. Then, a silhouette graph is plotted to observe which cluster has a larger
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silhouette value. Finally, all genes belong to the best cluster are selected for feature
selection in the next stage.

2.4 Feature Selection (FS-III)

Selecting informative genes in unsupervised learning scenario is a challenging problem,
due to the absence of classes to guide the classification. The main purpose of this stage
is to select informative genes in the subset. The output of this stage is the list of infor‐
mative genes. Filter based feature selection using Infinite Feature Selection (Inf-FS)
algorithm is applied [18]. To apply Inf-FS, each gene is represented as a node in the
graph while the relationship between them are shown as weighted edges. Each node is
assigned an l length number of genes. The path with highest centrality scores was
selected, as it consists of more informative genes against other paths. Next, each of the
informative genes is assigned a score (weight), where the genes with the highest score
are selected for classification.

2.5 Classification (C-IV)

Classification is the last process of this research, which is to evaluate the classification
performance based on the selected genes obtained from the previous stages. Linear
Support Vector Machine (SVM) is used as a classifier to train and test the datasets [6].
Stratified ten-fold cross validation is applied to assess the accuracy of classification on
the selected gene subset. To do the comparison with Garzón and González [9], this
research also needs the same classification evaluation. To show the relationship between
genes and cancers, the lists of genes are further validated using a Google Scholar liter‐
ature search (https://scholar.google.com/) [10].

3 Results and Discussion

This section discusses the classification results in terms of accuracy and number of
selected genes in the subset.

3.1 Accuracy and Number of the Selected Genes in the Subset

The result achieved from stage I (CCA-I) and stage 2 (CV-II) are shown in Figs. 1 and
2, respectively. Figure 1 depicts the mean silhouette values obtained for each number
of k. It should be noted that the k-means ran with a different number of k, starting from
2 until 50. Based on the figure, mean silhouette values have a peak at k equals to 2, which
can be indicated that the distribution of this dataset may truly be partition into two
groups.
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Fig. 1. Mean silhouette value obtained from each of k from k-mean clustering. The highest mean
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Fig. 2. Silhouette plot based on 2 clusters from k-means clustering.

Silhouette plot in Fig. 2 depicts the silhouette values for each of the clusters. Based
on the figure, the biggest number of genes in the first cluster having a larger silhouette
value. This indicates that the cluster is separated from the neighboring cluster. Mean‐
while, the second cluster contains fewer genes with low silhouette values and a few
genes with negative values. For CRC dataset, 1419 genes in cluster one and 581 genes
in cluster two. For SRBCT dataset, 1093 genes in cluster one and 1210 genes in cluster
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two. Genes in cluster one of CRC and cluster two of SRBCT datasets are selected as the
input for feature selection (FS-III) stage.

In stage 3, the Inf-FS algorithm returns the ranked number of genes based on weight
scores for 1419 genes for CRC and 1210 genes for SRBCT datasets. From the ranking,
merely 50 and 45 genes are selected as the informative genes for CRC and SRBCT
datasets, respectively.

Table 2 shows the comparative table between previous method [9] and proposed
method based on CRC and SRBCT datasets. For CRC dataset, the proposed method has
a higher classification accuracy compared to the previous method. Nonetheless, the
proposed method obtained a lesser number of informative genes than the previous
method. K-means clustering was a good method for recognizing the hidden patterns
from datasets, although it was not often used for classification problems [11, 22]. With
the effort of the Inf-FS algorithm, it has performed effectively in ranking the informative
genes [18]. Thus, a small subset of selected genes can be used to build classifiers with
a very high classification rate [2]. However, work in [20] provides a higher classification
accuracy compared with the proposed method, as they did not select any genes and
directly conducted the classification task.

Table 2. Comparative table showing accuracy and number of informative genes in the subset.

Datasets Methods Accuracy (%) Number of informative
genes in the subset

CRC Garzón and González [9] 88.710 76
Proposed Method (K-
means clustering with
Inf-FS)

Mean: 89.434
Best: 90.178

50

SRBCT Proposed Method (K-
means clustering with
Inf-FS)

Mean: 72.750
Best: 74.375

45

Statnikov [20] 86.90 2308

Note: Bold: The best results.

3.2 List of the Selected Genes

From the previous stage (FS-III and C-IV), 50 and 45 informative genes were obtained
from CRC and SRBCT datasets, respectively. These selected genes are further validated
for identifying the gene markers. Hence, 15 and 11 informative genes are validated as
CRC and SRBCT gene markers. The full list of informative genes can be found at the
following link: https://drive.google.com/open?id=0B_G_-pnPRD1CeXVKeEJfbEJ‐
XYms

4 Conclusion

Classification on gene expression of patient samples has much focused in cancer diag‐
nosis and treatment. This paper has presented a proposed method using K-means
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clustering and infinite feature selection. To deal with the high dimensionality of data
and low classification accuracy, this proposed method can identify informative genes
with biological insights. Based on the experimental results of this research, the proposed
method has higher classification accuracy compared with the previous work [9]. Hence,
this proposed method has successfully identified 26 gene markers for CRC and SRBCT.
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Abstract. Accurate cancer classification and responses to treatment are impor‐
tant in clinical cancer research since cancer acts as a family of gene-based
diseases. Microarray technology has widely developed to measure gene expres‐
sion level changes under normal and experimental conditions. Normally, gene
expression data are high dimensional and characterized by small sample sizes.
Thus, feature selection is needed to find the smallest number of informative genes
and improve the classification accuracy and the biological interpretability results.
Due to some feature selection methods neglect the interactions among genes, thus,
clustering is used to group the similar genes together. Besides, the quality of the
selected data can determine the effectiveness of the classifiers. This research
proposed clustering and feature selection approaches to classify the gene expres‐
sion data of colorectal cancer. Subsequently, a feature selection approach based
on centroid clustering provide higher classification accuracy compared with other
approaches.
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1 Introduction

The dimensionality of biological datasets, such as cancer datasets, has been increasing
rapidly. The high dimensional of biological datasets has hindered the process of tran‐
scribing structural information into functional genomics [19]. Hence, considering the
complexity and combinatorial problem of codifying the biological data, it has resulted
in the emergence of microarray technology [24]. The existence of microarray has
enabled the researchers in biology and chemistry to acquire information and under‐
standing about the genes expression profile in a parallel-large-scale way [3]. However,
in the cancer diagnosis study, the chances of accurately predict a patient having a cancer
is low. Owing to the fact that biological data consists of thousands of genes, merely a
small subset of genes, known as informative genes, are correlated with the respective
diseases [23, 29]. Therefore, machine learning methods which can characterize and
identify normal and tumor data, have been applied to the gene expression data by
analyzing and classifying into different subclasses [6, 25]. Besides, feature selection
does not consider the structure among the features, unlike clustering which can cluster
the similar features into the same cluster [12].

Presently, several of the techniques in clustering, feature selection, and classification
have been applied to the gene expression data [10]. Work in [13] proposed Recursive
Feature Elimination (RFE) in selecting the informative genes of colorectal cancer and
successfully obtained 98% accuracy with only 4 informative genes. A hybrid method,
GASVM-II is proposed in [23] for selecting the informative genes and improving the
classification accuracy. Meanwhile, combination clustering techniques; hierarchical
clustering and self-organizing maps have been proposed in [4]. The quality of the
selected data can determine the effectiveness of a classifier. An appropriate classifier is
important to effectively derive reliable information from data and improve the classifi‐
cation accuracies [21].

Since Garzόn and González [11] has performed well in classification using clustering
and feature selection, we proposed to test different methods for clustering, feature selec‐
tion, and classifiers in colorectal cancer (CRC) dataset. Together, we have proposed four
methods. The differences between previous and proposed methods are represented in
Table 1.

Table 1. Differences between previous and proposed methods.

Methods Garzón and
González [11]

Proposed Method
(1)

Proposed Method
(2)

Proposed Method
(3)

Proposed Method
(4)

Clustering Agnes K-Means
clustering

Agglomerative
hierarchical
clustering

Agnes

Clustering
validation

Silhouette width

Feature selection Signal-to-noise
(S2N)

Infinite feature
selection (Inf-FS)

Correlation-based feature selection (CFS) with forward
search

Classification Stratified ten-fold cross validation
Classifier Linear SVM Naïve Bayes
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The distribution of the paper is organized as follows. Section 2 describes the methods
and dataset. In Sect. 3, the results and comparison of our proposed method with previous
studies. Section 4 provides the conclusion of this research.

2 Material and Methods

This section describes the details of dataset and methods used in this research.

2.1 Dataset and Tools

The dataset used in this research is colorectal cancer (CRC). This dataset is gene expres‐
sion data. The gene expression values of data are normalized based on z-scores over all
samples to a mean zero and variance one [11]. The CRC dataset is available to download
at http://genomics-pubs.princeton.edu/oncology/affydata/index.html [2, 11, 24]. The
CRC dataset was analyzed with an Affymetrix oligonucleotide array [2]. It consists of
2000 genes and 62 samples of classes whereby there are 40 tumor samples and 22 normal
samples [2, 11].

For clustering methods, both k-means and agglomerative hierarchical clustering are
performed in MATLAB 2014b. R package cluster is used for Agnes clustering. Infinite
feature selection (Inf-FS) library in MATLAB is used for feature selection. Another
feature selection, namely Correlation-based Feature Selection (CFS) with forward
search, can be found at R package Biocomb. All the classification tasks are used in R
version 3.3.2.

2.2 Clustering

Clustering has been proven effective in the medical area which has inherently overlap‐
ping information [20]. Agglomerative hierarchical clustering, Agnes (Agglomerative
Nesting), and k-means clustering are used for clustering the similar genes, in this
research. Clustering can be categorized into agglomerative and divisive. Agglomerative
hierarchical clustering and Agnes belong to agglomerative, while k-means clustering
belongs to divisive. The details of these methods are further described as follows.

Agglomerative hierarchical clustering is a bottom-up clustering method where each
cluster has sub-clusters [1, 9]. It starts with each point (or genes) as a cluster. The nearest
pair of clusters will be agglomerates (merged) together into one cluster. This step is
repeated until merely left one big cluster. In agglomerative hierarchical clustering, the
similarity between clusters is denoted as the measured distance between clusters [9].

Agnes clustering method places genes into a cluster and constructs the distance
matrix using Euclidean distance [1, 11, 17]. Then, the clusters are merged together with
an unweighted pair-group average method and repeated until the favour number of
cluster is achieved [1].

K-means method is based on centroid clustering [18]. It computes the distance
between gene expression data and cluster centre. Then, it assigns a gene to its closest
cluster centre. Finally, it moves each centre to the mean of its assigned gene [33]. To
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find the best k, k-means was run 50 times and mean silhouette values are obtained for
each k. Therefore, the clusters of genes from Sect. 2.2 are further validated in Sect. 2.3.

2.3 Clustering Validation

The gene clusters obtained were further validated using Silhouette width. Silhouette
width values measure the degree of confidence for each gene clusters [15, 27]. The well-
clustered genes have values nearly to +1, whereas the poorly clustered genes have values
nearly to −1 [15, 27]. One way of choosing the appropriate number of clusters (k) is to
select the k value with larger Silhouette width value [15].

For k-means clustering, each cluster is validated using the silhouette value analysis.
After the best k is found, the silhouette plot is used to determine which cluster has better
silhouette value [30]. In this plot, the higher number of genes in the respective cluster
is selected for the gene selection stage.

Thus, the best clusters for every clustering method with the largest values of Silhou‐
ette width are further used for feature selection (in Sect. 2.4).

2.4 Feature Selection

Feature selection is useful to select informative genes and remove non-informative
genes, in order to reduce the high dimensionality of data and provide higher classification
accuracy [5].

Correlation-based feature selection (CFS) with forward search acts as a filter method
of feature selection. CFS evaluates a subset of genes with the individual predictive ability
of each gene and the degree of redundancy between genes [14, 31].

Regarding infinite feature selection (Inf-FS) [26], all individual genes from the
cluster are ranked based on a path among gene distributions. Then, the number of genes
based on ranking is chosen to test the classification accuracy.

Hence, the classification performance of the selected gene subsets obtained from
Sect. 2.4 will be further evaluated in Sect. 2.5.

2.5 Classification

Classification is used to train and test the data that obtained from feature selection (in
Sect. 2.4). In this research, Naïve Bayes and linear support vector machine (SVM) are
used as a classifier to demonstrate the advantages and disadvantages of feature selection
[31]. Stratified ten-fold cross validation is used in this research to evaluate the perform‐
ance of classifiers, in order to assess the accuracy of the experiments [7, 28].

3 Results and Discussion

This section discusses the classification results in terms of accuracy and number of the
selected genes in the subset. Table 2 shows the comparative table between previous
method [11] and proposed methods based on the CRC dataset.
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Table 2. Comparative table showing accuracy and number of informative genes in the subset.

Method Accuracy (%) Number of informative genes
Garzón and González [11] 88.710 76
Proposed Method (1) Mean: 89.434

Best: 90.178
50

Proposed Method (2) Mean: 79.282
Best: 80.353

10

Proposed Method (3) Mean: 82.019
Best: 82.138

26

Proposed Method (4) Mean: 83.347
Best: 85.788

26

Note: Bold: The best results. Proposed Method (1): k-means clustering with Inf-FS, Proposed Method (2): Agglomerative
hierarchical clustering with CFS (forward search), Proposed Method (3): Agnes with CFS (forward search), Proposed Method
(4): Agnes with CFS (forward search) (classifier: Naïve Bayes).

K-means clustering and Inf-FS (Proposed Method 1) has the highest classification
accuracy among the methods. K-means clustering is an unsupervised learning algorithm,
but it was a good method for recognizing the hidden patterns from the dataset [16, 33].
Inf-FS can effectively and correctly rank the most informative genes to gain more
biological insights [26]. Hence, Inf-FS can perform the ranking step in an unsupervised
manner [26] that related to the k-means clustering. Agglomerative hierarchical clus‐
tering and CFS with forward search (Proposed Method 2) provides the lowest accuracy.
Agglomerative hierarchical clustering does not guarantee that, within dendrogram, the
similarity is maximized [8]. However, k-means clustering is also one of the improved
methods of agglomerative hierarchical clustering, which intended to improve the clus‐
tering quality. Hence, k-means clustering tends to be faster and produce inferior results
compared with agglomerative hierarchical clustering [8]. The classification accuracy of
CFS with forward search and Naïve Bayes (Proposed Method 4) is better than CFS with
forward search and linear SVM (Proposed Method 3). This is because CFS with forward
search is normally used with Naïve Bayes to detect dependencies immediately [31].

Finally, the list of informative genes in the best subsets for CRC dataset has been
included as supplementary and available at the following link: https://drive.google.com/
drive/folders/0B_G_-pnPRD1CanhBMWVQRXRwc0k.

4 Conclusion

Cancer classification has been improved to provide useful information based on the
ability of microarray technology [10]. There is also a need for a more accurate classifi‐
cation and diagnosis of cancer, which can help the cancer patients having earlier treat‐
ment and therapies. This research aims to identify the most informative gene subset and
to provide a more accurate cancer classification by comparing different approaches of
clustering and feature selection. This research has proposed four different approaches
of clustering and feature selection to use for classification task in colorectal cancer.
Among the proposed methods, the first proposed method based on k-means clustering
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and infinite feature selection (Inf-FS) has provided the highest classification accuracy.
Besides, k-means clustering has been succeeded in providing a good clustering result
[18] and Inf-FS has also performed effectively in a high ranking on the informative genes
[26]. Hence, linear SVM has applied to the method. SVM is efficient in separating the
classes linearly [22] and mapping the given training set in a possibly high-dimensional
feature space [32].
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Abstract. Biomedical literature is composed of an ever increasing num-
ber of publications in natural language. Patents are a relevant fraction
of those, being important sources of information due to all the curated
data from the granting process. However, their unstructured data turns
the search of information a challenging task. To surpass that, Biomedical
text mining (BioTM) creates methodologies to search and structure that
data. Several BioTM techniques can be applied to patents. From those,
Information Retrieval is the process where relevant data is obtained from
collections of documents. In this work, a patent pipeline was developed
and integrated into @Note2, an open-source computational framework
for BioTM. This integration allows to run further BioTM tools over the
patent documents, including Information Extraction processes as Named
Entity Recognition or Relation Extraction.

Keywords: Biomedical text mining · Patents · Information retrieval
task · PDF to text conversion · @Note2

1 Introduction

Huge amounts of information are generated every day. In the life sciences, the
number of publications, reports and patents available on databases is increasing
considerably [1,2]. Patents are validated documents representing the intellectual
property rights of an invention, being important sources of information due to
their novelty nature, with exclusive data that is not published in other scientific
literature [3,4]. So, exploring them is critical to understand several biological
fields [3,5]. However, the access to these documents is limited. There are some
systems able to extract some patent sections. This is the case with SureChEMBL,
a tool that searches for chemicals and their structure on patents [6].

Patent documents are available in numerous databases. Those which have
grant protection only for specific countries can be used for localized searches. For
general-purpose searches, worldwide databases with patents with international
protection are a more viable option. The j-PlatPat from Japan Patent Office
(JPO) or PatFT from the United States Patent and Trademark Office (USPTO)
are databases included in the former group, while the PATENTSCOPE from
c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 9
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World Intellectual Property Organization (WIPO) or esp@cenet from European
Patent Office (EPO) are included in the latter [4].

For instance, the WIPO database has 2.7 million patents registered only in
2014 [7–9]. Since these large amounts of data are available in an unstructured
nature without annotations about the text structure and available entities, the
search and extraction of relevant information is a difficult and time-consuming
task, impossible to be done manually [7]. To exploit these data, automating that
process, the Biomedical Text Mining (BioTM) field emerged [10]. It is based
on different knowledge areas such as statistics, artificial intelligence or manage-
ment science, combined with text analytic components as Information Retrieval
(IR), Information Extraction (IE) or Natural Language Processing (NLP) [11].
From these, IR allows to obtain relevant information resources (e.g. papers or
patents) from an extensive collection of documents, and IE allows the extraction
of pertinent information from these documents [12].

To apply BioTM techniques, text files are usually the input. However, patent
documents are typically accessed in Portable Document Format (PDF) files,
coming from encrypted image files, usually BMP, TIFF, PNG or GIF. So, the
conversion of these files into machine-coded, readable, editable and searchable
data is mandatory. For that, methods as Optical Character Recognition (OCR)
are used [13]. The process can be summarized in two main processes: character
extraction, where learned patterns are applied to delimit words or individual
letters; and character recognition, where words are identified [14].

Several BioTM platforms has been developed by the scientific community.
@Note21, developed by the University of Minho and the SilicoLife company
is among these efforts. As a Java multi-platform BioTM Workbench, @Note2
uses a relational database and is based on a plug-in architecture, allowing the
development of new tools/methodologies in the BioTM field [15].

Structurally, @Note2 is organized into core libraries and user interface tools.
The core libraries are organized in three main functional modules: the Publi-
cation Manager Module (PMM), which can search documents on online repos-
itories (IR Search process) and download their respective full-text documents
(IR Crawling process); the Corpora Module (CM), responsible for corpora man-
agement, creating and applying IE processes to them with a manual curation
system; and the Resources Module (RM), which allows the management of lexi-
cal resources to be used in IE processes. The user interface tools allow a simples
interaction with the user to configure and use @Note2’s functionalities [15].

Here, the objective was to develop a pipeline, a new plug-in to @Note2, able
to make patent data amenable to be searched and used as an information source
for the IE processes already available in @Note2 and BioTM in general.

2 Patent Pipeline Development

The patent pipeline can be organized into four different tasks. It can search for
patent IDs, retrieve patent metadata, download the published patent PDF file,
1 http://anote-project.org/.

http://anote-project.org/
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and, finally, apply PDF to text conversion methodologies to those files. Each task
was structured into a module with specific inputs and outputs. Thus, sources
to search and retrieve patent IDs, to search for metadata about each patent
and to return the patent file(s) in PDF format were configured as components of
the search sources module, metainformation sources module and retrieval sources
module, respectively. The used PDF to text conversion methodologies were orga-
nized in the PDF conversion module (Fig. 1).

Fig. 1. Summary of the designed patent pipeline (numbers represent the process flow).

To get any result using the first three modules, specific access keys resulting
from the services registration are required to get access to servers and retrieve the
requested data. To start the search process, input keyword(s) are required, which
may be biomedical entities as chemicals, genes, diseases, among others. These
keywords are then processed by the search sources module. Into this module,
two popular search engines (the Custom Search API from Google and the Bing
Search API from Microsoft) and the Open Patent Services (OPS) web services
API from EPO were used. The two first were configured to retrieve patent IDs
from Google Patents, with around 87 millions of patents from 17 countries [16].
The result is the union of the patent IDs returned by all components.

The metainformation sources module returns the invention title, authors,
publication date, a link to a patent database entry (if available) and the abstract
to each patent. When available, the description and claims are also extracted.
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To avoid repetitions, the patent family is extracted and only one ID is used to
retrieve metadata, being the others saved as external references. That data is
then stored into query, a data structure from @Note2 to save the document infor-
mation (Fig. 2). Two different services were configured: the PATENTSCOPE web
service API from WIPO and the OPS web service API from EPO.

Fig. 2. Creation and update process for query and corpus data structures. The numbers
represent the modules of the pipeline and their flow. The orange query data field
represents the update process of the original query, while the orange corpus data field
represents the field that turns the corpus into a different data structure.

The retrieval sources module returns the patent PDF files, saving their path
into the query (Fig. 2). This module uses the same APIs from the previous with
different configurations. Both metainformation and PDF retrieval modules use a
sequential architecture. The first takes all the patents, while the next components
receive only the ones that did not get any result. That process is repeated until
all patents are processed or all components were used.

The PDF conversion module takes all the files from the previous module,
extracting their text. As shown in Fig. 2, this allows the creation of a corpus,
allowing to run IE methods, for instance, NER or RE. In this module, alongside
with Apache PDFBox library (already implemented on @Note2) it was con-
figured the Tess4J, version 3.2.1 (developed by Quan Nguyen) implementing
Tesseract, an OCR algorithm from Google, and also a hybrid method combining
these two methodologies. The Apache PDFBox allows to extract the Unicode
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text available on PDF documents. The hybrid method allows a previous PDF
treatment, improving their quality to be processed by Tess4J system.

On @Note2, patent handling features were inserted in different core libraries.
The patent ID search and metadata retrieval were added as new IR Search
processes called “Patent Search”, while the patent PDF file download was added
as a new IR Crawling process, and the new PDF to text conversion methods were
put into the Corpora Module as a pre-processing method (Fig. 3).

Fig. 3. @Note2 structure with patent pipeline implementations. The orange boxes
represent the new components added.

3 Results

The pipeline is materialized by a plug-in allowing patent search in Google Patents
and esp@cenet repositories. A graphical interface was made to set @Note2 Pref-
erences where credentials can be saved. The main wizard includes two steps
(Fig. 4): the keywords and the query name input pane; and the configurations
pane, where the previous defined configurations can be edited (Fig. 5).

To test the system, data from the 1000 patents with the longest abstracts
from the BioCreative V CHEMDNER task were used (IDs, titles and abstracts).
The abstract was tokenized and compared with the tokens from our PDF to
text conversion. In this comparison, we used the Smith-Waterman algorithm, a
Dynamic Programming algorithm to evaluate the matches. This allows calculat-
ing performance metrics as precision, recall and F1 values (based on the number
of tokens that match exactly on the texts). Alongside the accuracy calculation,
it is possible infer the amount of conversion errors, as well as verify the number
of documents correctly downloaded.

Complete metadata were extracted for 917 patents (91,7%). From the remain-
ing 83, 76 were filled partially. Then, also 993 patent PDF files were correctly
obtained (99,3%). For both processes, the success rate was limited due to repos-
itories coverage and to restrictions imposed by the use of free credentials.
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Fig. 4. @Note2 Patent Search plug-in. The pipeline uses input keywords, the query
name and configurations provided by the user or by @Note2 settings to search for
patent IDs and to download patent metadata.

Fig. 5. @Note2 Patent Search GUI. (a) panel for @Note2 preferences; (b) and (c) Steps
1 and 2 from the Patent Search Wizard, respectively.
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From the PDF to text evaluation (Fig. 6), the precision values showed a small
variance being high in all documents (mean around 95%), while recall values were
higher than 80% for 75% of all documents. However, 94 documents returned a
recall value under 10% representing old patents (some patents before the 1970s)
with only some drawings and a brief description, being the full text data absent.
As expected, this led to a high standard deviation (around 30%) which can
be also explained by the presence of a high number of chemical structures or
formulas that are omitted in the BioCreative task abstract text or simply are
converted to noise. The F1 measure summarizes the system capacity to transform
most of the PDF files into readable text. Since some patent files have more than
200 pages, to process 1000 patents, the whole pipeline took around 3 days using
a PC with an i7 960 @ 3.2 GHz processor and 16 GB of RAM.

Fig. 6. Boxplots for the evaluation metrics of the PDF to text conversion process. The
mean and standard deviation are given in bold.

4 Conclusions

Recently, patents have been a target for BioTM techniques since they are a great
source of information for many fields. Based on @Note2, IR Search and Crawling
processes were designed and implemented, allowing the search and retrieval of
patent information and respective documents. Also, new improvements were
made to the @Note2 PDF to text conversion system. Testing these processes
with a set of 1000 patents from a BioCreative V task shows that nearly all PDFs
were correctly downloaded with respective metadata. Using the new PDF to text
system on that documents, we got around 85% of F-score.

The main innovation of this work was the creation of new IR processes applied
to patents surpassing common problems related to searching and retrieving those
documents, allowing also the posterior implementation of several IE techniques
to those texts. Since @Note2 is an open-source software, this framework opens
doors to the community to take advantage of all sections from the published
patents with biological relevance more easily and without the need to expend
large amounts of time browsing several databases. To @Note2, the integration
of these tools allows developing an extensive set of text mining pipelines over
patents, which were only possible for scientific articles so far.
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Some improvements can still be made, namely reducing the processing time
and adding new components in each module using the designed architecture.
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Abstract. People usually are aware of the privacy risks of publish-
ing photos online, but these risks are less evident when sharing human
genomes. Modern photos and sequenced genomes are both digital rep-
resentations of real lives. They contain private information that may
compromise people’s privacy, and still, their highest value is most of
times achieved only when sharing them with others. In this work, we
present an analogy between the privacy aspects of sharing photos and
sharing genomes, which clarifies the privacy risks in the latter to the
general public. Additionally, we illustrate an alternative informed model
to share genomic data according to the privacy-sensitivity level of each
portion. This article is a call to arms for a collaborative work between
geneticists and security experts to build more effective methods to sys-
tematically protect privacy, whilst promoting the accessibility and shar-
ing of genomes.

Keywords: Privacy · Data sharing · Biology and genetics

1 Introduction

We live in a world plenty of connected devices and services that stimulate and
simplify data sharing, which promote the acceptance of exposure risks. Nowa-
days, the general public recognizes several privacy risks in sharing photos on the
Internet. This was promoted by the public widespread dissemination of some
information leakages that caused severe privacy harms, which made users start
to demand more privacy guarantees to continue sharing their data on online
platforms [14].

Solutions for photo sharing already faced several privacy-related conflicts
and policies changes, and life sciences can learn from them. An analogy between
sharing photos and genomes may increase people’s awareness on privacy risks
and contributes to avoid future leakages that could damage people’s willingness
c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 10
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to share genomic data. We emphasize that this comparison is reasonable since
sequenced genomes and modern photos are digitized records of real lives. Both
contain private information that may compromise people’s privacy, and most of
the times, their highest value is only achieved when shared with others.

Human genome is privacy sensitive since it contains personal information,
and researchers need the access to large collections of genomes to accelerate
medical breakthroughs. The ethical appeal for disclosure stimulates altruistic
individuals to donate biological samples for medical and genomic research. How-
ever, this point of view must coexist with the ethical discussion on the risks
to donors’ privacy and encourage the development of secure models to share
genomic data [1].

Privacy and data sharing are not mutually exclusive. Properly discussing and
defending privacy encourages the responsible data sharing and extends donors’
engagement and trust in researches. Recent publications corroborate with the
ideas that clearly informing donors about the privacy risks of their choices does
not affect negatively their willingness in donating samples [12], and that there
is a need for balancing data access and privacy in genomics [19].

In this article, we propose an analogy between privacy aspects of sharing
photos and sharing genomes, which contributes to clarify the privacy risks in
the latter. Additionally, we illustrate possible advances in sharing genomes with
an alternative informed model to share genomic data according to the privacy-
sensitivity of their portions. These two contributions promote the accessibility
and sharing of human genomes, whilst advocates their responsible management
considering the privacy of sample donors.

2 An Analogy Between Sharing Photos and Sharing
Genomes

We defined an analogy by comparing the similarities and features of the processes
of sharing photos and sharing genomes, which is based on the following aspects:

– Some portions of data are more privacy-sensitive than others.
– One’s data may affect the privacy of others.
– Systematically detecting the privacy-sensitive portions of data is feasible.
– After classifying the portions, decide how to share them.
– The impact of data sharing is unpredictable.

On each topic, we first describe it from the perspective of sharing photos and
then we present the analogy on how does it apply in sharing human genomes.
Note the present analogy is non-exhaustive since further discussions from the
community may identify other similarities in the future.

2.1 Some Portions of Data Are More Privacy-Sensitive Than
Others

Some elements in photos (e.g., faces and places) may disclose sensitive informa-
tion about the people that own or are depicted in them, such as identity, ancestry,
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health, behavior, preference, possession, and location. Similarly, genomes contain
portions of sequences that contain more critical information (e.g., predisposition
to a disease, parental correlation) about their donors and their relatives [15].
Authors of recent publications managed to compromise donors’ privacy by tar-
geting specific portions of human genomes, such as short-tandem repeats [7],
disease-related genes [16], and genomic variations [8]. These elements may dis-
close information, for example, related to identity, ancestry, and health.

2.2 One’s Data May Affect the Privacy of Others

Photos portraying other individuals may compromise their privacy, as well as
photos containing elements related to controversial topics may affect the privacy
and safety of owners’ relatives (e.g., [10]). In human genomes, some information
is hereditary (e.g., Y chromosome from father to son), and thus compromising
the privacy of one subject genome can also affect his relatives [15].

2.3 Systematically Detecting the Privacy-Sensitive Portions of Data
Is Feasible

Detecting the privacy-sensitive elements in photos includes recognising faces [9],
activities [17], texts [11], signs and other location-specific elements [6]. Recently,
we proposed a method that detects the privacy-sensitive portions of human
genomes by comparing small DNA portions against a knowledge database of
privacy-sensitive genomic sequences [5]. In both cases (photos and genomes),
the detection compares small elements against large databases of known pat-
terns. Although those detection methods contribute to privacy protection by
differentiating sensitive information, the challenges remain mostly in building
comprehensive knowledge databases and querying them efficiently.

2.4 After Classifying the Portions, Decide How to Share Them

Regarding photo sharing there are two distinct options: (1) enable the share if
the person concludes it does not compromise his/her privacy nor the privacy of
others, and (2) share a portion of the photo, which the person believes it does not
compromise anyone’s privacy, while keeping private or obfuscating the remain-
ing sensitive portions for the general public. Excluding these two options there
is always the possibility to not share the photo. Recent publications proposed
alternative informed models to share photos considering the privacy-sensitivity
of their portions [9,18]. Similar to photos, every human genome contains some
privacy-sensitive portions. We advocate that sharing certain portions of data is
more attractive than sharing nothing, and those privacy-sensitive portions may
still be shared in a controlled way (e.g., using the cryptographic methods dis-
cussed in [15]). In the next section, we propose an alternative informed model
to share genomic data considering the privacy-sensitivity of their portions.
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2.5 The Impact of Data Sharing Is Unpredictable

Sharing photos may have an immediate impact in the lives of a small number of
people related or depicted on them. However, the global impact of a shared photo
is unpredictable. For instance, a photo can be considered meaningful to history
independently from depicting everyday-life or epic moments. Additionally, sev-
eral quotidian applications we use rely on common user-contributed content, as
well as some news we read depend on participatory journalism. The contribution
of sharing each data is little, but all these incremental collaborations have a huge
impact. The same happens with human genomic data, where the highest value
of photos and genomes is most of times achieved only when sharing them with
others. The individual altruism in contributing to medical and genomic studies
has an extreme importance on the breakthroughs in health-related areas.

3 An Informed Model to Share Genomic Data

With all the previously mentioned aspects in mind, we call attention to the
opportunities a hybrid solution can bring to balance data access and privacy of
genomic data [5,19]. Our proposal is to use the referred detection method [5],
as mentioned in Sect. 2.3, to identify and differentiate the privacy-sensitive
sequences of human genomes from the remaining portions. This enables one to
keep the small privacy-sensitive portions (i.e., less than 12%, conservatively [5])
of human genomes under a strict access control list, and make the remaining
portions directly accessible to researchers and projects, according to the rights
defined at their registry in the data repository. The completeness of this method
evidences that there is already a large body of knowledge on the privacy sen-
sitiveness of human genomes and that the discovery of novel privacy-sensitive
sequences is unlikely using current methods (e.g., [7,8,16]). In this section, we
introduce this model and its main internal components, as well as place it in the
ecosystem and describe our vision on how should players interact with it.

3.1 Players and Interactions with the Model

There are four main players in the ecosystem of genomic data sharing. Sample
donors donate biological material to a sample manager and inform their prefer-
ences on data sharing (if any). Sample managers receive, manipulate, sequence,
store, and provide these biological specimens and their resulting data. Research
projects are study proposals, encompasses one or more researchers, and have
well-defined goals that require access to data associated with specific samples.
Researchers are entities within projects that consume data from the storage
system according to donors preferences and other permission rules. Auditors are
stakeholders (e.g., governments, investors, donors, and data managers) that want
to verify when and which researchers accessed specific data sets.

Donors fill consent forms at their registry to comply with regulations and
to inform their preferences on data sharing. Donors should be free to customize
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their informed preferences to state they want to automatically participate in
projects related to specific topics (i.e., a blanket consent). They should also
inform they want to contribute with their samples to additional specific projects
they sympathize with (i.e., opt-in). Additionally, donors could delegate the deci-
sion of participating in which projects to data controllers acting on behalf of
groups of individuals. Exceptionally, donors could separately forbid the use of
the non-sensitive portions of their genomes by specific projects they disagree, or
may require to re-categorise some non-sensitive portions as privacy-sensitive (i.e.,
opt-out). The per-project opt-out dissuades an eventual retraction of all genomes
from the platform if an isolated misuse happens [4]. When a donor dies, the shar-
ing preferences may become open or be kept the same, while his/her relatives
gain the ability to explicitly customize them.

In the envisioned model, researchers should register themselves in the sys-
tem and propose projects that are approved in the same way and with the same
responsibilities it is currently done in biobanks and other repositories. Projects
(i.e., groups of researchers) may start working with all non-sensitive sequences
immediately, must wait for a short period to start using the automatically autho-
rised privacy-sensitive portions, and have the option to request access to the
privacy-sensitive portions of other genomes of interest. The utility of sequenced
data is kept intact to authorised researchers in this model, which complements
other approaches from the literature (e.g., [2]).

3.2 Internal Components

This data sharing model can be adapted to different legal, geographic, and orga-
nizational regulations. Additionally, this model, as depicted in Fig. 1, is com-
pletely independent of the protocols and technologies necessary to implement it.
In the following, we describe four components that are of extreme importance
to this model, but others can be integrated to them if needed in the future.

Evolution Module. The knowledge database from the DNA privacy detec-
tor can be automatically updated to address future attacks as new privacy-
sensitive sequences are identified [5]. Thus, the detection method is generic and
evolvable—i.e., it does not become outdated since public databases can be auto-
matically tracked for updates as they evolve. An evolution module in this system
architecture should allow the stored data sets to be re-analyzed at any moment
and attested again for their privacy-sensitivity. As soon as a new privacy-sensitive
sequence is identified, the data sets updated, access rules are adapted accord-
ingly, and the access history is logged for future inquiries.

Storage. Storage components should retain and provide the large amount
of genomic data coming from life-sciences institutions. Storage infrastructures
encompass several options from private data centers to public clouds. Data from
human genomes in the envisioned model is stored according to the privacy-
sensitivity of its portions. The privacy-sensitive portions of human genomes must
be stored in infrastructures with appropriate levels of security and dependabil-
ity, while the non-sensitive ones can stored in more affordable infrastructures.
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Fig. 1. Overview of the hybrid data sharing model. This model considers that genomes
have their privacy-sensitive portions differentiated∗ from the remaining ones.

Noticeable, this hybrid model improves the cost efficiency of any storage system
since it reduces the percentage of data requiring strong security and dependability
premises.

The level of security and dependability depend on the use of encryption,
information dispersal, data replication, etc. Choosing the best fit is orthogonal
to this model and depends also on the legal constraints defined by regulators
from the region of the sample manager. Restrictive regulations may impede
sending data to infrastructures in other countries, while less restrictive ones
may allow the use of standard encryption and public clouds. For instance, the
storage solution from the BiobankCloud project already considers this range of
options and provides data storage in private repositories, in single public clouds,
and in multiple clouds (i.e., a cloud-of-clouds) [3].

Access Control. Access control establishes a differential access to users,
accordingly to their roles and analysis. An access control solution should verify
and permit researchers to access the different portions of the genomes they are
allowed to. Additionally, the access control complements the evolution module
by automatically updating the lists and rules according to the data sets’ version.

There are three main factors to authenticate an access request: something the
user knows (e.g., a password), has (e.g., a token), or is (e.g., biometrics). Com-
binations of them can be used to increase the difficulty for an illegitimate user
having access to a resource. For instance, the BiobankCloud platform [3] requires
each user to authenticate with his/her password and an one-time password gen-
erated using a mobile phone or a Yubikey. Additionally, cryptographic solutions
complement access control mechanisms since an attacker that circumvents the
access control does not obtain the data in clear.

Auditability. Auditability is the relative ease of auditing a system or an envi-
ronment, acts as a deterrent measure, and complements preventive ones, such
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as security, dependability, and privacy-protection. An auditability component
should enable stakeholders to assess at any moment exactly who accessed what
data in a chronological order. Auditors should access only some metadata about
the files, the access logs, and access control rules—i.e., they do not need to access
the whole data sets of genomic data. The auditability component complements
the evolution module by allowing the detection of who has read previous versions
of a data set that was re-analyzed because it could contain previously unknown
privacy-sensitive sequences. Accountability supplements auditability by ensur-
ing all actors and actions performed on the data have been persistently recorded
as evidence [13]. The system must keep an indelible tamper-proof track of data
accessed by researchers, in order to detect, analyze, and sanction misuses.

4 Final Remarks

In this work, we presented an analogy between privacy aspects of sharing photos
and sharing genomes, and proposed an informed model to share genomic data
according to the privacy-sensitivity of their portions. The analogy contributes to
advancing the privacy-perception in sharing genomes by comparing it to some
well-known examples and threats from sharing photos. The informed model moti-
vates the discussion of novel solutions for sharing genomic data considering their
privacy-sensitivity.

Notwithstanding, there are many open questions (related to this model and
the problems identified in the analogy) that deserve further investigation and
discussion within the community, namely:

– How to provide this data sharing model without incurring in unreasonable
increased management effort?

– How can public clouds be securely used in this model to reduce the costs of
creating and maintaining private storage infrastructures (e.g., in biobanks)?

– Which additional type of genomic data, beyond those discussed in [5], can be
considered privacy-sensitive and should thus be detected?

– There are methods that associate genomic information and photographic
records (e.g., selecting individuals in a database using the association between
specific SNPs and the probability of an individual having brown or blue
eyes [20]). Understanding the impact of those associations on subjects’ pri-
vacy may contribute for more complete protection methods.

Currently, there is a great investment to advance from conventional to precision
medicine, which can succeed only if we embrace genomic data sharing in a secure
and controlled environment. This article is a call to arms for geneticists and
security experts, to work together and build better and more effective methods
to systematically protect privacy, whilst improving the accessibility and sharing
of genomic data. Our model can even be accommodated in a linked data or
beacon service perspective, sharing sensitive data only means that we need to
be aware of what and how we share to make it safe and useful for everyone.
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Abstract. Tinnitus is an annoying ringing in the ears, in varying shades
and intensities. Tinnitus can affect a patient’s overall health and social
well-being (e.g., sleep problems, trouble concentrating, anxiety, depres-
sion and inability to work). Usually, the diagnostic procedure of tinni-
tus passes through three steps, i.e., audiological examination, psychoa-
coustic measurement, and disability evaluation. All steps are performed
by physicians, by using dedicated hardware/software and administering
questionnaires. The paper reports on the results of a one-year running
project whose aim is to directly support patients in such a diagnostic
procedure, and in particular on an Android app that controls an ad-hoc
developed device and automate both the execution of the audiometric
examinations and the administration of the questionnaires that measure
the disability induced by the tinnitus.

Keywords: Tinnitus · App · Audiometry · Acufenometry

1 Introduction

Tinnitus is known to be a complex of annoying ringing/buzzing/hissing in the
ears, in varying shades and intensities [1]. Recent statistics about epidemiology
of tinnitus reports on a minimum prevalence of 6% and a maximum of 28–30%
[2–5]. It may cause sleep problems, trouble concentrating, ongoing depression
and inability to work [6,7] and therefore affecting a patient’s overall health and
social well-being [8,9]. Usually, the diagnostic procedure is performed by physi-
cians – by using dedicated hardware/software and administering questionnaires –
and takes place in terms of accurate audiological examinations, psychoacoustic
measurements of tinnitus, and evaluations of disability. The paper reports on
(part of) the results of a one-year running project whose aim is to directly sup-
port patients with tinnitus in such a diagnostic procedure. The project resulted
in the development of an hardware device that executes (a part of) the audi-
ological and psychoacoustic examinations needed to diagnose tinnitus, and an

c© Springer International Publishing AG 2017
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Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 11
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ad-hoc developed app that controls the device and automates both the execution
of the examinations and the administration of the questionnaires that measure
the disability induced by tinnitus. The paper mainly focuses on the app devel-
opment and evaluation, whereas a short description of the device is given for
completeness.

Fig. 1. Project concept

The novelty of our project with respect to
the available literature is twofold: (i) it directly
addresses patients instead of health profession-
als and (ii) provides an integrated tool able
to perform the audiological and psychoacoustic
measurements as well as the evaluation of dis-
ability. It is worth remarking that devices con-
trolled by apps are not common and only
available to physicians (see, e.g., [10,11] for
devices concerning the audiological examina-
tion), while apps are instead available though
not including many features needed for a thor-
ough diagnostic procedure (i.e., they include
only a simplified audiological examination without the psychoacoustic measures
or the evaluation of disability). Figure 1 summarizes the main concept of the
project. The paper is organized as follows. Section 2 introduces the necessary
background on tinnitus, i.e., the audiological and psychoacoustic examinations,
the questionnaires for measuring the impact of tinnitus in different aspect of
quality of life. Section 3 briefly describes the ad-hoc developed hardware device.
Section 4 – the main contribution of the paper – discusses the app and how the
automated examinations are implemented. Section 5 reports on an experiment
concerning the quality of the automated reporting procedure. Finally, Sect. 6
ends the paper with a discussion on the future work.

2 Background

2.1 Audiometry

A Pure Tone Audiometry (PTA) is the procedure that uses pure tones – sounds
having a single specific frequency – to assess an individual’s hearing [12]. The gen-
eral procedure for a pure tone audiometry goes as follows. The patient is instructed
to listen carefully for a beeping sound (pure tone): when heard, even if very softly,
he/she is asked to raise his or her hand. Pure tones are then presented to the
patient, initially at an intensity level that it is assumed can be heard quite well.
After the patient demonstrates a good understanding of the task, the intensity
(loudness) of the tone is decreased in 10 to 15 dB steps, until the patient no longer
responds. The intensity is then raised in 5 dB steps, decreased again and increased
again in 5 dB steps, until the patient responds. The lowest audible intensity is
then defined as the patient’s threshold for the particular frequency. This method is
described as the “modified Hughson-Westlake ascending-descending paradigm”.
This routine is repeated for all test frequencies in one ear, then again in the other
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ear. Such a procedure then establishes a threshold curve for each ear called audio-
gram. Depending on the transducer through which the stimuli is presented, the
audiometry can be either air-conducted or bone-conducted. An air conducted sig-
nal is defined as a sound wave travelling through air. This mode of signal pre-
sentation assesses the entire auditory system: the outer ear, ear canal, tympanic
membrane, middle ear system, cochlea, auditory nerve, auditory brainstem, and
auditory cortex. A deficit in one or more of these areas may result in a measurable
hearing loss when testing via air conduction. Thus, when a hearing loss is mea-
sured during air conduction, further tests become necessary to determine which
part(s) of the auditory system are dysfunctional. If there is any degree of hear-
ing loss measured at any frequency in either ear, bone conduction pure tone test-
ing must be performed [13]. Bone conduction pure tone testing stimulates the
cochlea directly, bypassing the outer and middle ear. This type of testing is used
to determine whether a hearing loss measured via air conduction is reflective of
a cochlear/neural deficit or an outer or middle ear dysfunction. If bone conduc-
tion pure tone thresholds agree with air conduction thresholds, the loss is deter-
mined to be related to the cochlea or higher neural processes and is termed “sen-
sorineural”. If, on the other hand, bone conduction thresholds are better than air
conduction thresholds, a “conductive” hearing loss is present. If bone conduction
thresholds indicate a hearing loss but one which is less severe than by air con-
duction thresholds, the loss is termed a “mixed” hearing loss, i.e., there is both a
sensorineural and a conductive component.

2.2 Acufenometry

Acufenometry aims at determining the frequency and intensity of the tinnitus,
by asking the patient to compare the frequency of a test-sound (i.e., a pure tone)
with that of the tinnitus. The procedure for acufenometry goes as follows. Two
tones are presented alternately to both ears so that each tone is heard 4–5 times;
the frequency is increased or decreased until the patient finds out the one closest
to the tinnitus. A pure tone at the previously identified frequency is firstly sent
to the other side ear. Then, the intensity is increased by 5 dB until the patient
hears it. In this way the “threshold of perception” of a signal is established and
taken as the reference level of 0 dB. By increasing now the intensity by 5 dB
steps, the patient is asked to report when the sound level completely masks the
tinnitus. The frequency and intensity reported in such a way by the patient
represent the result of the acufenometry.

2.3 Questionnaires

– Pittsburgh Sleep Quality Index (PSQI). The Pittsburgh Sleep Quality Index
(PSQI) is a self-administered questionnaire which assesses sleep quality and
disturbances over a 1-month time interval [14]. It is made up nineteen indi-
vidual items that measure the subjective sleep quality, sleep latency, sleep
duration, habitual sleep efficiency, sleep disturbances, use of sleep medica-
tion, and daytime dysfunction over the last month. A complex procedure
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results in a score: if it is ≤5, a good sleep quality is detected; if it is >5, a
poor sleep quality is instead revealed;

– Khalfa Hyperacusis Questionnaire. The Khalfa Hyperacusis Questionnaire is
a tested and validated tool for hyperacusis. It is made up of 14 questions,
each with four possible answers (i.e., “no”, “rarely”, “often” and “always”).
The scoring procedure yields to a total score: if greater than 28, it is a severe
hyperacusis; if greater than 16, it is a mild hyperacusis; in the remaining case,
the result is normal [15];

– Tinnitus Handicap Inventory (THI). The Tinnitus Handicap Inventory (THI)
[16] self-administered questionnaire evaluates the impact of tinnitus on the
quality of life. It is made up of 25 questions, each with 3 possible answers
(i.e., “no”, “sometimes” and “yes”). According to the score, it identifies five
different grades of disorder, i.e., very slight tinnitus, mild tinnitus, moderate
tinnitus, severe tinnitus and catastrophic tinnitus.

3 The Device

During the project we designed and developed a device responsible for generat-
ing a pure tone associated to the audiometry and acufenometry processes. The
hardware device is connected as a peripheral to the patient’s smartphone by
using the USB On-The-Go (OTG) connection, where the smartphone assumes
the role of power supplier (OTG A-device) and the developed hardware assumes
the role of power consumer (OTG B-device). This means that the device does
not need its own battery, which is itself a cost-reducing benefit, but still main-
tains its characteristic of mobile device. The device receives from the app the
frequency and the intensity of the sound to be emitted, and whether the sound
should be sent via air or bone conduction. As a consequence, the device gener-
ates the pure-tone at the required frequency and intensity, and send it to the
required transceiver allocated in an integrated earphone. For more information
about the device, you can refer to [17].

4 The App

The app is available for smartphones and tablets running Android 4.4 and above.
It is written in Java using Android Studio, and is available for download at http://
vittorini.univaq.it/tinnitus/. The app includes the functionalities needed for the
clinical evaluation described in Sect. 2, takes advantage of the device described in
Sect. 3 to implement the automated audiometry (Subsect. 4.1) and acufenometry
(Subsect. 4.2), and finally proposes and automatically scores the questionnaires
for sleep quality, hyperacusis and the impact of tinnitus in life (Subsect. 4.3).

4.1 Automated Audiometry with Reporting

The app implements the Hughson-Westlake process described in Subsect. 2.1, for
both air and bone conduction audiometry, with the following two exceptions:
(i) the patient touches a button placed in the centre of the smartphone when

http://vittorini.univaq.it/tinnitus/
http://vittorini.univaq.it/tinnitus/
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he/she hears the sound, instead of raising an hand; (ii) the decrement/increment of
intensity is not performed1. The process returns a matrix of intensities, i.e., when
the patient heard the sound, for both ears, for both ways (i.e., air and bone), for
all investigated frequencies, that is given in input to an automated audiometric
reporting procedure. Such an automated audiometric reporting procedure works
as follows. Initially, for both ears and all investigated frequencies, recalls the inten-
sities reported for both air and bone conduction. Then, it deduces:

– Type of problem. The decision concerning the type of problem is almost
straightforward. According to [18] and as briefly reported in Subsect. 2.1:
if both intensities are below 25 dB, there is no hearing loss; else, if bone con-
duction is worse than air conduction, there is an error in the audiometry; if
bone conduction agrees with air conduction (i.e., the difference is <20 dB)
then the problem is considered sensorineural; else the problem is considered
conductive.

– Severity of problem. The severity of the hearing loss is deduced in terms
of the thresholds defined in [18], i.e., [25, 40) = mild, [40, 70) = medium,
[70, 90) = serious, ≥90 = severe.

Fig. 2. Snapshots of an audiometry in progress (left)
and of an audiogram with the automated reporting
(right)

Given the above, the auto-
mated procedure sums up
all such information in
terms of frequencies ranges,
i.e., low/medium/high fre-
quencies. Therefore, a sum-
mative interpretation of
the phenomenon (for each
ear) is given. Firstly, if
all severities are normal,
the algorithm concludes
that the audiometry (for
that ear) is normal. Oth-
erwise, if all types are sen-
sorineural, then the ear has
a sensorineural problem; if
all types are conductive,
then the ear has a conduc-
tive problem; otherwise,
the problem is a mixed one.
Figures 2(a, b) show the
interfaces for executing the
audiometry (on the centre

1 Such a step is present in the Hughson-Westlake process so to ensure that the intensity
level reported by a patient was actual and that the patient was not “cheating” to the
physician. In our case, since the app is autonomously used by a patient, this step was
considered unnecessary.
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the button that the patient has to press to signal that he/she heard a sound; on
the bottom the progresses of the audiometry) and for showing the results (on
the top the automated reporting; on the bottom the audiogram).

4.2 Automated Acufenometry

The app implements the acufenometry described in Subsect. 2.2, without detect-
ing the “threshold of perception” level. Figure 3 shows on the left the interface
used to perform the acufenometry: the switches placed on the top can be used
to select which ear has the tinnitus, the horizontal/vertical arrows change the
frequency/intensity of the tinnitus, while the central button can be tapped to
confirm that the emitted sound actually resembles the tinnitus.

4.3 Questionnaires

Fig. 3. Snapshots of (a) an audiometry in progress,
(b) an audiogram with the automated reporting, (c) an
acufenometry in progress, (d) the PSQI questionnaire

The PSQI, Khalfa and
THI questionnaires are
implemented and auto-
matically scored in the
app. A simple ad-hoc
XML document defines
and enable the app to
show the questionnaires.
The document allows to
define the possible vari-
able types used in the
questionnaire, as a spe-
cialization of numeric,
time and categoric types,
and the list of questions
placed in the question-
naire, their types and
if required or optional.
The automated scoring is
instead performed by an
ad-hoc class. For exam-
ple, Fig. 3 shows on the
right the PSQI ques-
tionnaire (in Italian lan-
guage) as proposed by the app.

5 Results

The quality of the automated audiometric reporting procedure was evaluated
by comparing it with human reporting. In particular, we selected the audiome-
tries performed on patients with tinnitus in the “Otorinolaringoiatria” ward of
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the Hospital of L’Aquila (Italy), during the period October, 2013 – July, 2016.
The archive consisted of a total of 89 audiometries: 3 conductive, 11 mixed, 55
sensorineural, the remaining 20 did not highlighted any hearing loss. Given that
conductive and mixed audiometries were not very frequent, the sample we used
for the comparison was made up of all conductive and mixed audiometries, plus
a 20% sample of the sensorineural ones (i.e., other 11 audiometries). Accord-
ingly, a total of 25 audiometries were used for the comparison. The results show
that all the automated audiometric reporting are correct, few of them were even
more detailed than the human ones. Besides that, a possible improvement in the
automated reporting came out: an audiometry showing a problem only for one
frequency is usually reported as an “acoustic hole”. Since such a wording is not
provided by the app, it might be added in the next release.

A usability testing was also carried out. The choice of performing one type
of usability evaluation over another has to be established in relation to the
stage of the project, what to evaluate, the available experts, as well as the time
constraints and the available resources of the project [19]. Since our project is in
its first release, coherently with the state of the art, we decided to perform (i) an
heuristic evaluation to generate the initial number of potential usability problems
[19]. For it, we decided to ask to one usability expert to generate the initial
number of potential usability problems. The expert used a check-list specifically
designed to evaluate mobile interfaces, that reuses 69% of literature heuristics,
the rest deriving from best-practices and recommendations for mobile interfaces
[20]. For space constraints, we report only the main results, i.e., the app already
has a good usability, but we should (i) add a clear back/undo button, (ii) more
clearly show the goals of each functionality (i.e., audiometry, acufenometry and
questionnaires), (iii) implement a font scaling feature2, (iv) add a search facility,
even if it may be not necessary given the shallow navigational structure.

6 Discussion and Future Work

The paper presented a new device and app regarding the self-management of
tinnitus, with a specific focus on the app and the automated audiometry and
reporting. As for the automated reporting, the results showed that the app is
correctly able to summarize the results of an audiometry without mistakes. How-
ever, the contribution discussed in the paper represent only part of the work
produced during the project, and more work is planned for the next months.

In particular, it is worth reporting on the next usability testing steps, since
giving the device and app directly to patients requires a careful investigation
about whether the system can be proficiently used by the patients or not. After
revising the app with respect to the suggestions coming from the expert, we
will inquire primary stakeholders, i.e., patients. We aim at gathering quantita-
tive data through the following metrics: (i) Single Ease Question (SEQ) [21],
(ii) Expectation Measure (EM) [22], and (iii) SUS [23]. As known, the first two
metrics are used to understand the user experience in performing specific tasks,
2 The font size may be too narrow for some users (especially elderly) if not scalable.
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while the latter regards a general view on the usability. In particular, the SEQ
is a 5-point rating scale metric that is used to assess how a task was found
easy/difficult to accomplish by users. The higher the value of the response, the
easier the task is. We will ask patients to rate the three tasks of: (T1) perform-
ing an audiometry, (T2) performing an acufenometry, and (T3) completing a
questionnaire. The EM is instead a measure of comparing the results of the SEQ
with how easy or difficult the user thought a task was going to be. So, before the
users actually did any of the tasks, we will ask patients to rate how easy/difficult
they expect each of the tasks to be, based simply on their understanding of the
tasks. Finally, the SUS is a reliable tool for measuring usability, consisting of
a 10 item questionnaire with five response options per item. It can be used to
evaluate a wide variety of products and services, including mobile apps. The
tool rates a system with a score ranging from 0 to 100. The higher the score, the
more usable the system is.
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Abstract. Large amounts of information are systematically generated
throughout the course of scientific research and progress. In our case, observa-
tions representing the Portuguese population within the central-southern region
of Portugal were collected throughout various foetal autopsy procedures. Ges-
tational age (GA) and measured distances and weights of numerous anthropo-
metric features and organs, respectively, were recorded per singleton (24
variables in total). This work seeks to elaborate on the accuracy of different foetal
parameters in terms of GA estimation, making use of principal component
analysis (PCA) and regression techniques. We created a dataset of 450 foetuses,
ranging from 13 to 42 weeks of age, to compute both PCA and regression
models. Initial exploratory analysis shed light onto which variables are most
explanatory in terms of foetal development, and are thus most likely suitable for
predictive rolls. We produced clusters of models, based on coefficient of deter-
mination (R2) values, by comparing the squared sum of residuals between models
(significance level a = 0.05). Models comprised of linear combinations of dif-
ferent variables exhibited significantly higher values of R2 (p-value � 0.05)
when compared to single variable models. Across all regressions, crown-heel
length (CHL), crown-rump length (CRL), and foot length (FL) are constantly
present within the cluster of best predictors of gestational age. Depending on the
type of regression analysis applied, body weight (Body), hand length (HL) also
fall onto the same category.

Keywords: Foetopathology � Foetus � Prediction � Estimate � Gestational age �
Crown-rump length � Crown-heel length � Foot length

1 Introduction

Performing rigorous estimations of gestational age is invaluable for correct diagnosis
and optimum treatment of disease during the neonatal period. GA prediction is an
essential tool for parental counselling and to plan for appropriate perinatal care. It is
also a prime requisite for foetal autopsy, particularly in situations of criminal abortion,
alleged infanticide, and medically-terminated pregnancies. Previous peer-reviewed
studies have elaborated on the accuracy of different foetal parameters in gestational age
prediction [1], particularly head circumference (HC), HL, FL, CRL, and CHL [2, 5].
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Model analysis and hypothesis tests may help determine not only how different mea-
surements and weights are linked to foetal developmental age, but also which variables
might be classified and ordered in terms of their predictive capabilities.

In regards to anthropometric data analytics, other published papers often approach
the validity of different measured variables for conceptual age estimation [6, 10], and
the quantitative standards of those measurements for foetal and neo-natal autopsy [11].
Regression analysis and model fitting are widely accepted and used in this field of
work, hence being viewed as reliable tools for knowledge production [12]. Other
relevant publications may also be found, discussing the relationship between different
methods of analysis and discriminating regression properties, enabling model valida-
tion for subsequent selection [13, 14]. Currently, the application of analytical and
statistical methods for the evaluation of information is accomplished with the use of
data manipulative software [15, 16]. For these computer programs to be beneficial,
however, all data must be made digitally available. Without a proper data frame,
analysis of data becomes tedious and/or unfeasible.

Based on foetal autopsy records, we created a dataset of 450 individuals, each
comprised of 24 foetal parameters. PCA produced results indicating CHL, CRL, and
FL variables as the most explanatory in terms of total data variance. By comparing
regressions models, Body and HL parameters were also found to be significantly viable
measurements for GA estimation. Background information regarding related work is
discussed in Sect. 2. The following section describes the methodological approaches
used, while Sect. 4 presents the results of said methods. Discussion of obtained results
and final remarks pertain to the 5th and final Section of this paper.

2 Case Study

For several years, the foetopathology department of Hospital de Egas Moniz, has been
conducting the analysis and evaluation of foetal mortality cases pertaining to the
central-southern region of Portugal. Each foetal autopsy produces a physical report file
containing, amongst other relevant medical information, measurements and weights of
the foetus. Whenever a foetopathology instance is concluded, the file is then archived
within a dossier. This type of information processing and storage does not permit direct
access to harboured values in more than a few cases at a time. Reports are regarded
independently of each other, making any data study laborious and time-consuming.

To address this challenge, we developed a database representing foetal autopsy
records. Each report had to be manually inserted, due to discrepancies of cursive
between files, excluding the use of optical character recognition (OCR) software.
A total of 450 individuals between the ages of 13 and 42 inclusive were inserted into
the database.
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3 Methods

Given the format of each autopsy report file in this work, a database was constructed
and algorithms to store, retrieve, and manipulate information were devised. Python was
applied as the programming language for these tasks mainly due to its extensive
libraries and packages, notably the SQLite3, NumPy, and SciPy modules [17, 19].
IBM’s SPSS software [20] was also utilized due to its inbuilt statistical applications,
concretely PCA and variable selection algorithms for multiple linear regression.

3.1 Data Structure

24 quantitative variables were selected to represent each foetal autopsy case. Retrieved
according to autopsy protocol, the extensive list of recorded foetal parameters follows:
GA, CHL, CRL, HC, chest circumference (CC), abdominal circumference (AC), FL,
HL, middle finger length (MFL), intercommissural distance (ID), philtrum length (PL),
inner canthal distance (ICD), outer canthal distance (OCD), left palpebral fissure width
(LPFW), right palpebral fissure width (RPFW), left ear length (LEL), right ear length
(REL), body, kidneys, thymus, spleen, liver, lungs, and adrenals. Paired organs are
represented by their combined weight. Units comprise of week (GA), centimetre
(distances and lengths), and gram (organ and body weights). Additionally, GA values
consist of observed occurrences, reported throughout every case file, and not mere
value estimations.

3.2 Initial Exploration and Modelling

SPSS was used to conduct the initial PCA, which would provide foresight onto pos-
sible outcomes of successive regression models. Computed extraction communalities,
loadings, explained variance per component, and adequacy parameters were conse-
quently inspected. Computation of multiple linear regression models was performed
through the same IBM software. GA was selected as the dependent variable, while the
remaining 23 features were used as predictors. All available regression algorithms for
variable selection (Enter, Stepwise, Remove, Backward, and Forward) were utilized
and their outputs taken into consideration. Models were selected based on statistically
significant coefficient values (a = 0.05), as well as Durbin-Watson and R2 values.
Standardized and un-standardized b-weights were also a point of interest for later
model comparison. In total, 5 different kth degree polynomial regression functions were
fit onto each of the 23 variables, for k 2 {1, 2, 3, 4, 5}. Each variable dataset consisted
of pairs of variable-age points, where each pair represents the gestational age and
recorded variable value of a singleton foetus. The NumPy module polyfit() function
was used to output each single variable model. R2 and estimated parameter values were
recorded for all regressions presenting a significant p-value for the null hypothesis that
the estimated coefficients are equal to zero.

94 A. Barata et al.



3.3 Model Comparison

Regression models were compared based on each model’s proportion of variance in the
dependent variable predictable by the independent variable. The F-statistic was
selected and computed using the squared sum of residuals (SSR) and degrees of
freedom of the models being compared [21]. A significance level of a = 0.05 was
established. The SciPy module stats.f.cdf() function was used to compute p-values.
Each multiple linear regression model was compared to all other multiple and poly-
nomial models. Polynomial models were compared to other polynomial models if and
only if both models pertained to the same polynomial degree. The resulting p-values
were stored for later interpretation.

4 Results

4.1 Principal Component Analysis

For our dataset, the Kaiser-Meyer-Olkin (KMO) index for sampling adequacy had a
value of 0.973 while the p-value corresponding to the v2-statistic associated with
Bartlett’s test of homoscedasticity was below 5 � 10−4. PCA produced only one
significant component (eigenvalue � 1) explaining 93.486% of total data variance.
Communality and loading values for all variables are shown below (Table 1).

4.2 Multiple Linear Regression Models

Across all variable selection methods for regression, outputs presenting models with
non-significant variable coefficients were excluded (Enter and Remove). The Backward

Table 1. Communality and loading values per variable. Darker shades representing lower
values. Table spliced due to size constraints.

Communality Loading Communality Loading

CRL 0.963 0.981 Kidneys 0.804 0.897

CHL 0.956 0.978 Lungs 0.800 0.894

FL 0.946 0.972 RPFW 0.800 0.894

GA 0.937 0.968 LPFW 0.781 0.884

HC 0.931 0.965 ICD 0.743 0.862

Body 0.925 0.962 Spleen 0.695 0.834

REL 0.924 0.961 Adrenals 0.694 0.833

LEL 0.918 0.958 Thymus 0.679 0.824

AC 0.908 0.953 PL 0.651 0.807

OCD 0.897 0.947 CC 0.572 0.756

MFL 0.872 0.934 HL 0.460 0.678

Liver 0.847 0.921 ID 0.406 0.637

Anthropometric Data Analytics: A Portuguese Case Study 95



selection algorithm was discarded for presenting the same output as the Forward
approach, while yielding a Durbin-Watson statistic further away from 2. Stepwise and
Forward algorithms produced models with Durbin-Watson values of 1.961 and 1.958,
respectively, and similar coefficients of determination (R2 � 0.953). Both regressions
share 5 retained variables, one exclusive variable each. Only statistically significant
variable coefficients are present in either model (p-value � 0.05) (Table 2).

4.3 Polynomial Regression Models

A collection of 115 single variable-based models for GA estimation were generated, 5
different degree polynomial regressions for each of the 23 independent variables. All
models were retained after checking the statistical significance of each model’s esti-
mated parameters (p-value � 0.05). R2 values were stored for model comparison
(Table 3).

Table 2. Standardized b-weights and variables selected by each regression algorithm method.

Body FL CHL CRL REL Lungs Adrenals

Stepwise 0.402 0.310 0.266 - 0.157 -0.070 -0.087

Forward 0.384 0.384 - 0.199 0.163 -0.069 -0.083

Table 3. R2 values computed for all polynomial regressions. Polynomial degrees are
represented by numbers 1 through 5, for each variable-derived model. Darker shades representing
lower values. Table spliced due to size constraints.

1 2 3 4 5

CHL 0.931 0.942 0.943 0.943 0.944 1 2 3 4 5

FL 0.927 0.940 0.942 0.945 0.945 Liver 0.759 0.840 0.842 0.843 0.843

Body 0.868 0.937 0.942 0.942 0.942 OCD 0.834 0.835 0.854 0.857 0.860

CRL 0.931 0.936 0.938 0.940 0.940 Lungs 0.720 0.808 0.813 0.814 0.816

HL 0.410 0.917 0.930 0.934 0.936 Spleen 0.623 0.791 0.833 0.847 0.849

HC 0.896 0.911 0.914 0.916 0.917 RPFW 0.730 0.759 0.800 0.803 0.809

REL 0.893 0.902 0.904 0.907 0.907 Thymus 0.608 0.756 0.816 0.820 0.820

LEL 0.885 0.891 0.895 0.896 0.896 LPFW 0.711 0.738 0.777 0.779 0.784

Kidneys 0.734 0.876 0.877 0.881 0.881 ICD 0.710 0.726 0.742 0.750 0.751

CC 0.503 0.871 0.883 0.898 0.899 ID 0.363 0.715 0.722 0.777 0.787

MFL 0.849 0.864 0.917 0.917 0.920 Adrenals 0.589 0.681 0.689 0.691 0.692

AC 0.840 0.840 0.852 0.853 0.857 PL 0.595 0.598 0.606 0.606 0.608
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4.4 Comparison and Clustering

In terms of multiple linear regression, both previously selected models exhibited no
statistically significant difference between them. In contrast, when either model was
compared to any of the 115 polynomial regression models, a recurring p-value � 0.05
was systematically observed.

By clustering models presenting no significant difference between other variable
models, and creating different variable clusters based on statistical evidence for
divergence, a goodness of fit hierarchy was established. CHL, CRL, and FL were the
only single parameter-based regressions to be present in the top tier throughout all
polynomial degrees. The hierarchical dissimilarities were most evident between 1st

degree polynomial regressions and the remaining polynomial degree models.
Notably, body weight was placed alongside CHL, CRL, and FL as best GA esti-

mators for any polynomial degree � 2; HL was also classified in such terms for any
polynomial degree � 3. Generally, linear measurements outperformed weights in
estimating GA. In addition, PCA and 1st degree polynomial clustering output the same
variable hierarchy in terms of communality/loading values and R2.

The following tables represent the outcome of polynomial regression clustering.
Due to hierarchical ambiguity and/or redundancy, 3rd and 4th degree polynomial
regression models were not included. Lower R2 model clusters were also excluded due
to size limitations (Tables 4, 5 and 6).

Table 4. 1st degree polynomial regression goodness of fit clusters and ordered R2. Darker
shades representing lower values. Only top predictive variable clusters are present. Clusters are
represented by boxes. Parameters in bold indicate cluster centre(s). For example, while AC and
OCD models (first cluster centres) are statistically indistinguishable from MFL and one another,
both have a significantly worse fit when compared to any other given model; MFL (second
cluster centre) is statistically identical to Body, and both AC and OCD models, and significantly
different from every other model.

0.931 CRL

0.931 CHL

0.927 FL

0.896 HC HC

0.893 REL REL

0.885 LEL LEL LEL

0.868 Body Body Body

0.849 MFL MFL MFL

0.840 AC AC

0.834 OCD OCD
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5 Discussion and Final Remarks

In our case of 450 foetal autopsy cases, findings suggest that across all variables, CHL,
CRL, and FL are the most appropriate candidate foetal parameters for GA estimation.
For any degree of polynomial regression, these variables were always displayed within

Table 5. 2nd degree polynomial regression goodness of fit clusters and ordered R2. Darker
shades representing lower values. Only top predictive variable clusters are present. Clusters are
represented by boxes. Parameters in bold indicate cluster centre(s). Comparatively to the previous
table, Body is now indistinguishable from any of the top 4 predictors.

0.942 CHL

0.940 FL

0.937 Body

0.936 CRL

0.917 HL HL

0.911 HC HC HC

0.902 REL REL REL

0.891 LEL LEL LEL

0.876 Kidneys Kidneys Kidneys Kidneys

0.871 CC CC CC

0.864 MFL MFL MFL

Table 6. 5th degree polynomial regression goodness of fit clusters and ordered R2. Darker
shades representing lower values. Only top predictive variable clusters are present. Clusters are
represented by boxes. Parameters in bold indicate cluster centre(s). Comparatively to the previous
table, HL is now indistinguishable from any of the top 5 predictors.

0.945 FL

0.944 CHL

0.942 Body

0.940 CRL

0.936 HL

0.920 MFL MFL

0.917 HC HC

0.907 REL REL REL REL

0.899 CC CC CC

0.896 LEL LEL LEL LEL

0.881 Kidneys Kidneys
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the significantly highest R2 cluster. The same variables were also selected by multiple
linear regression, exhibiting positive standardized b-weights � 0.199 (ascendingly
ordered CRL, CHL, and FL), and presented the highest PCA communality and loading
values. Body weight, HC, HL, and ear length are also noteworthy candidate variables
for either presenting high PCA communality and loading values, or having significantly
meaningful b and/or R2 values.

Accurately estimating foetal gestational age is essential for pregnancy management.
As a further matter, GA estimation during autopsy procedures is key in assessing legal
and criminal abortion cases. During these events, the estimation of gestational age
depends on the foetal parameters used. Measurements of various foetal anthropometric
features are frequently used for this purpose. Consistent with previously published
work, CHL, CRL, and FL are found to be the most reliable sources of information for
estimating developmental age. In cases where such measurements are impossible to
obtain, other foetal features can be utilized (albeit less reliable) such as HL, HC, body
weight, and ear length.

As our database evolves, and different foetal features are recorded, different studies
can emerge. By analysing features such as cause of death and family background, in
association with measurements and weights, machine learning algorithms can be
executed to create a pathology prediction tool. This approach would be useful for early
diagnosis of disease, aiding professionals and family in taking the appropriate action.
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Abstract. Cell dynamics is intrinsically concurrent, since many differ-
ent biochemical reactions might take place simultaneously in a cell. Pro-
ductive symbolic mathematical models of cell biology can be developed
by modeling such biochemical reactions with rewrite rules. Analyses and
predictions of biological facts can be obtained from such models. The
authors have previously published several approaches for searching along
cellular signaling networks. In this paper, we introduce a novel reverse
inference system by applying narrowing techniques. Moreover, we pro-
pose a new general architecture which allows an extendible set of tools
for direct and reverse inference by using rewriting logic.

Keywords: Symbolic systems biology · Signal transduction · Pathway
logic · Rewriting logic · Maude · Narrowing

1 Symbolic Systems Biology

Symbolic systems biology pursues to explore biological processes as whole sys-
tems instead of small and independent elements. The objective is to define formal
models closer to the biologists mindsets [22]. It is equally important to be able to
compute with, analyze and reason about these networks of biomolecular inter-
actions at multiple levels of detail. Such models may suggest new insights and
understanding of complex biological mechanisms.
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A computational analysis of cellular signaling networks has been presented
by several models to simulate, as close as possible, responses to specific stim-
uli [1,23]. Symbolic models provide a language which allows us to represent sys-
tem states and change mechanisms such as reactions. These languages provide
a well-defined semantics and different analysis tools based on this underlying
semantics.

Executable models are a natural way for modeling processes [16,17]. An
executable model defines system states and rules specifying the manners in which
the state may progress and change along time. This can be seen as the simulation
of the system behavior. Moreover, characteristics of processes can be established
in connected logical languages and verified using formal analysis tools. From the
definition of a model, we can define specific system configurations and carry out
many kinds of analysis: forward simulation, forward and backward search, model
checking, and meta analysis.

Biological interactions can be handled with rule-based modeling in a nat-
ural way. In addition, the underlying combinatorial complexity and rule-
based systems can cover all the important subjects for these biological inter-
actions [10,11]. Some relevant rule-based modeling approaches are Pathway
Logic [8,9], Kappa [7], and BioNet-Gen [2]. A more detailed description of Path-
way Logic will be given below in Sect. 3.

The rest of the paper is organized as follows: we show the main characteristics
of rewriting logic and Pathway Logic in Sects. 2 and 3. Some abbreviated notes
of the modeling of signal transduction networks with rewriting logic is presented
in Sect. 4. The use of meta-level and reflexion in the rewriting logic is described
in Sect. 5, which also includes our contribution for reverse inference in signaling
pathways. Finally, Sect. 6 presents some conclusions and the future work.

2 Rewriting Logic

Rewriting logic constitutes a logic of change or becoming [13]. It facilitates users
to specify the dynamic features of systems in a general meaning. It can deal in
a natural manner with states and with highly nondeterministic concurrent com-
putations. Rewriting logic has good properties as a flexible and general semantic
framework for giving semantics to a broad spectrum of languages and models of
concurrency [14].

A theory in rewriting logic consists of an equational theory, that allows the
user to specify sorts, constructors and function symbols, and equality between
terms. Rewriting logic extends this equational theory by incorporating the notion
of rewrite rules, which depict transitions between states.

The deduction rules of rewriting logic facilitates us a sound reasoning about
which general concurrent transitions are possible in a system satisfying such a
description. From a computational point of view, each rewriting step can be seen
as a parallel local transition in a concurrent system. From a logical point of view,
each rewriting step is a logical entailment in a formal system.

Rewriting logic is efficiently implemented in Maude [4,5]. Maude is a high-level
declarative language and high-performance system which supports equational and
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rewriting logic computation for a wide range of applications. In the case of Maude,
the underlying equational theory is membership equational logic [3]. In this equa-
tional logic, the user can provide equations and define membership axioms stating
the members of a sort.

Maude provides several analysis tools for rewrite theories: rewrite computa-
tion, breadth-first search, linear temporal logic model checking, inductive theo-
rem prover, and many others. Using these features, it is possible to study how
our system behaves, to check whether it is possible to reach a certain state from
an initial one, and analyze if our system verifies some temporal properties.

The design of Maude has good characteristics in aspects of simplicity, perfor-
mance, and expressiveness. A very wide range of applications should be naturally
expressible with Maude. Besides this generality in expressing both determinis-
tic and nondeterministic computations, additional expressiveness is gained by
the following features: equational pattern matching, user-definable syntax and
data, types, subtypes, and partiality, generic types and modules, and support
for objects.

3 Pathway Logic

The idea of Pathway Logic is to develop executable formal models of biomole-
cular processes [8,9,19]. Using the Maude system, formal executable models of
processes can be represented and analyzed.

A Pathway Logic model consists of a specification of an initial state and
a collection of rules together with the underlying data type specifications. An
initial state contains cell components and locations. A collection of rules forms
a knowledge base. Such executable models reflect the possible ways a system
can evolve. Logical inference and analysis techniques can: (1) simulate possible
ways a system could evolve, (2) build pathways in response to queries, and (3)
think logically about dynamic assembly of complexes, cascading transmission of
signals, feedback-loops, cross talk between subsystems, and larger pathways.

Pathway Logic system has been used to curate models of signal transduction,
protease signaling in bacteria, metabolic processes in mycobacterium tubercu-
losis, glycosylation pathways, and response of the immune system to a generic
pathogen [15,21].

The Pathway Logic Assistant is an application that facilitates an interactive
visual representation of Pathway Logic models [20]. Graphs show nodes for model
rules and components, and edges which connect reactant components to rules
and rules to product components. Using Petri nets, the Pathway Logic Assistant
provides interactively algorithms for answering reachability queries. In this way,
the results are displayed naturally for biologists.

Pathway Logic Assistant can define the path graph of a given initial state
from an executable model. Its nodes are the reachable states. Its rules connect
these nodes. Paths correspond to possible ways a system can evolve. An execution
strategy selects a specific path of the possible solutions.
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4 Modeling Cellular Signaling Networks with Rewriting
Logic

We briefly describe in this section the Maude specification of Pathway Logic
and how to use it. In the next section we will show how to manipulate this
specification to perform different analyses. First, data types like proteins, amino
acids, and genes are defined as Maude sorts, while functions on these sorts are
defined by means of ops. For example, we define constants for amino acids as:

sorts Protein AminoAcid Gene.

ops A C T Y S K P N L M V I F D E R H Q W G : -> AminoAcid [ctor].

where the attribute ctor indicates that these constants are constructors. Rela-
tions between sorts are stated by means of subsorts. For example, we can indicate
that amino acids are a particular case of proteins as:

subsort AminoAcid < Protein.

Given a multi-set (a Soup) of elements like the proteins, amino acids, and
genes above, we define Locations to specify the elements in different places of
the cell, like the nucleus or the cytoplasm:

op {_|_} : LocName Soup -> Location [ctor format (n d d d d d)].

Finally, dishes are defined as wrappers of Soup, which in this case are not
isolated elements but different locations:

op PD : Soup -> Dish [ctor].

Chemical reactions are defined on sets of locations by means of rewrite rules
(with syntax rl), that stand for transitions in a concurrent system. For example,
we can say that if Bleomycin is found on the outside of the cell (location XOut)
and we can observe the chromatin (location CHR), then DNA strand break (DSB)
will appear in the chromatin:

rl [1770.DSB.irt.Bleomycin] : {XOut | xout Bleomycin} {CHR | chr}

=> {XOut | xout Bleomycin} {CHR | chr DSB}.

where the variables xout and chr stand for any other element that might appear
in the corresponding location. Now, we can use the rew command to ask Maude
to apply rules and check the reachable states from particular dishes. The fol-
lowing example shows the result after applying 5 rewrite steps to an initial dish
with Bleomycin outside the cell, the protein H2ax in the chromatin, an empty
set of elements in the plasma membrane (CLm), no elements stuck to the inside
of the plasma membrane (CLi), no elements in the cytoplasm (CLc), and some
extra elements in the nucleus (NUc):
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rew [5] PD({XOut | Bleomycin}{CHR | H2ax}{CLm | empty}{CLi | empty}

{CLc | empty}{NUc | Tip60 Atm Chek2 Prkdc}).

result Dish: PD({CLm | empty}{CLi | empty}{XOut | Bleomycin}{CLc | empty}

{NUc | Atm Chek2 [Prkdc - phos(T 2609) phos(S 2056)] [Tip60 - act]}

{CHR | DSB [H2ax - phos(S 140)]})

It is easy to see that, among the elements in the result we have DSB and phos-
phorus bound to H2ax in the chromatin.

However, since several different rules can be applied to the same dish to
obtain different results, the rew command does not provide much information.
To solve this problem Maude provides the search command, which performs a
breadth-first search looking for the pattern given in the command. For example,
we can check whether a dish without DSB and Bleomycin is reachable from the
one above in 10 steps as:

search [1,10] PD({XOut | Bleomycin}{CHR | H2ax}{CLm | empty}{CLi | empty}

{CLc | empty}{NUc | Tip60 Atm Chek2 Prkdc})

=>* PD({XOut | empty}{CHR | H2ax} S:Soup).

No solution

where the variable S:Soup abstracts the rest of elements, which are not relevant
in this case, and the search option =>* stands for zero or more steps. Maude
indicates that there are not reachable states which fulfill this condition.

5 Beyond Maude Commands: Reverse Inference

Rewriting logic is reflective [6], which means that it can be faithfully interpreted
in itself. Maude efficiently implements reflection in the META-LEVEL module [5]
[Chap. 14], that provides functions for moving up and down modules and terms,
for manipulating modules, and for executing terms at the metalevel. Hence, using
the metalevel it is not only possible to perform the rewrite and search shown in
the previous section (by means of metaRewrite and metaSearch, respectively),
but also reason on the results. In this way, we implemented a general function
that searches for all the common terms in multiple searches [18], hence describing
how the subsequent searches modify the results.

Full Maude [5] [Part II] is an extension of Maude created in Maude itself.
Full Maude offers an even more powerful module algebra than the one provided
in Core Maude, It includes special features for parsing Maude modules. An
explicit own module database, combined with the meta-level features, allows us
to introduce, remove, modify, and analyze the modules defined by the user. The
syntax of existing features can be changed. New kinds of modules and commands
can be incorporated.

Full Maude is built on top of the Loop Mode [5] [Chap. 17], which provides a
mechanism to read the modules and commands introduced by the user, and to
show him the results generated by these commands. These properties facilitate
the creation of further extensions, either for extra syntactic constructs, like the
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Maude strategy language [12], or new commands, like the narrowing search
currently available for symbolic execution [4] [Chap. 16].

Thus far, the analysis performed in Pathway Logic has been restricted to
those commands available in Core Maude.1 In [18], we presented a mechanism
for going beyond these commands by implementing a function that used Maude
metalevel for (i) applying the metaSearch command for finding all the possible
solutions and (ii) traversing these solutions, keeping those terms that are equal
and abstracting (i.e. using a new constant that stands for no similarities) those
terms that are different. The main drawback of this function is that it is defined
ad-hoc for our analyses, and hence the user must meta-represent the module,
the initial term, and the pattern and the condition in the command and, once
the result is shown, take it down to see the similarities.

Building up on this idea, in [15] we implemented a new function for using
narrowing. Narrowing is a generalization of term rewriting that allows to execute
terms with variables by replacing pattern matching by unification, for some
unconditional rewriting logic theories without memberships and that is available
in Full Maude. That is, while the standard search command in Core Maude
allows the user to perform forward search as shown in Sect. 4, narrowing allows
the user to perform searches starting from terms with variables as:

rew [1] PD({XOut | S:Soup} {CHR | P:Protein})

~>* PD({XOut | S:Soup} {CHR | DSB H2ax}).

Solution 1

S:Soup --> Bleomycin

P:Protein --> H2ax

The possible symptoms leading to the final state are thus studied, while the
standard search just gives us the possible outcomes from particular initial states.
However, as indicated above, narrowing can only be used under certain require-
ments: all the operators must have a particular set of attributes (e.g. associative
but not commutative operators cannot be used), rules must be unconditional,
and all of them must be declared at the top (in our case the top operator is the
one for Dish, PD). Although the current implementation of Pathway Logic fulfills
the first two requirements, it fails to fulfill the third one, as shown for the rule
in Sect. 4. For this reason, and given that the structure for dishes is fixed, it is
possible to implement a function at the meta-level that modifies the rules in the
modules and uses the modified module into the metaNarrowSearch command.
However, the architecture underlying this function was again ad-hoc and was
difficult to allow further modifications.

This is why we have developed a general architecture that allows new com-
mands in an easy and scalable way. We have defined a PLE-SYNTAX module
(from Pathway Logic Extended) where new commands can easily be defined.

1 The Pathway Logic Assistant allows the user to perform more complex analyses by
combining different formalisms, but within the rewriting logic it is also restricted
to Core Maude. Hence, our extension would also improve the range of analyses
supported by the PLA.
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In particular, we can add the top command for transforming the rules in
a given module to the top or common for computing similarities. Then, the
PLE-COMMAND-PROCESSING module is expected to import all those modules defin-
ing the behavior of the commands above. Then the user must define a func-
tion for parsing each command and returning the expected result. Next, the
PLE-DATABASE-HANDLING module is in charge of defining rewrite rules for con-
trolling the interaction between the user and the Loop. Each command in the
syntax should have one or more rules that will use the parsing commands
in the PLE-COMMAND-PROCESSING and update the current state of the loop.
Finally, the PLE module deals with the I/O attributes in the loop, consuming
the input from the user and showing the results generated by the rules in the
PLE-DATABASE-HANDLING module. This structure is available at https://github.
com/ariesco/pathway.

We give a glimpse of our code below. The function rule2Top is in charge of
defining the terms of each rule at the top. The first equation indicates that, if the
terms are defined at the level of locations (checked by extracting the type from
the meta-reduced term, to make sure we get the least one) instead of dishes,
then we use the auxiliary function encapsulateLocs to transform it. Otherwise
(indicated by the owise attribute) the rule is defined at the top and we return
the same function:

op rule2Top : Module Rule -> Rule.

ceq rule2Top(M, rl T => T’ [AtS] .) = rl NT => NT’ [AtS].

if getType(metaReduce(M, T)) == ’Locations /\

NT := encapsulateLocs(M, T) /\

NT’ := encapsulateLocs(M, T’) .

eq rule2Top(M, R) = R [owise] .

The auxiliary function encapsulateLocs just returns the term obtained by
normalizing the dish where a variable for matching all possible locations has
been added:

op encapsulateLocs : Module Term -> Term.

eq encapsulateLocs(M, T) = getTerm(metaNormalize(M,

’PD[’__[T, ’L@#:Locations]])).

6 Conclusions

The growth of genomic sequence information combined with technological
advances in the analysis of global gene expression has revolutionized research
in biology and biomedicine [17]. Various models for the computational analy-
sis of cellular signaling networks have been proposed to simulate responses to
specific stimuli [23]. Symbolic models are based on formalisms that provide a
language to represent the states of a system; mechanisms to model their changes
and tools for analysis based on computational or logical inference.

https://github.com/ariesco/pathway
https://github.com/ariesco/pathway
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Pathway Logic [19] formalizes models that molecular biologists can use to
think about signaling pathways and their behavior, allowing them to computa-
tionally formulate questions about their dynamics and outcomes. Pathway Logic
is based on rewriting logic and Maude. Rewriting logic procedures are power-
ful symbolic methods that can be applied in order to understand naturally the
dynamics of complex biological systems. As a consequence of the reflexion of
rewriting logic [6], an important feature of Maude is its metalevel, that allows
us to manipulate Maude modules and terms as standard data [5].

In this work we reveal the application of a rewriting logic procedure based in
logic language Maude to the dynamic modeling of biological signaling pathways.
On the one hand, our system allows us to perform reverse inference. By using
narrowing, we can obtain the initial states that reach to desired final states. On
the other hand, we propose a general structure which can be used as basis for
further commands, like extensions for dealing with strategies or adding stochastic
information for the rules. In conclusion, we travel through complex and dynamic
cellular signaling processes by using a logical system.
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logic. In: Abate, A., Safránek, D. (eds.) Hybrid Systems Biology - Fourth Interna-
tional Workshop, HSB 2015, Madrid, Spain, 4–5 September 2015. Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9271, pp. 226–245. Springer (2015)
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Abstract. Foot temperature monitoring is of great importance in dia-
betic patients, as they are prone to complications such as peripheral
neuropathy and vascular insufficiency. In recent years, the study of dif-
ferent non-invasive procedures to monitor healthy indicators is growing,
due to the advances in mobile devices, micro-sensors, and also wireless
sensors. The health monitoring systems are used by medical staff and
also by patients when they are out of the hospital, in their personal envi-
ronment. This paper presents a preliminary work to identify the specific
points on the feet where the temperature sensors should be positioned.
We have developed an statistical analysis of the data obtained by a ther-
mal camera from healthy people.

Keywords: Wearable · Foot temperature · Statistical analysis

1 Introduction

The study of wearable Sensor-Based Systems for health monitoring, known as
Wearable Health-Monitoring Systems (WHMS) is getting more importance in
the industry, the medical specialists, and the scientific and research community
in recent years [14]. Motivated by the increase in health expenditures and because
of the recent technological advances in miniature biosensor devices, health mon-
itoring systems can play a significant role in reducing hospitalization, excessive
work load on the medical staff, the time of consultation, waiting lists, etc. There
is a need to monitor patients health status while they are out of the hospital.

The monitoring of physiological parameters like blood pressure, heart rate,
body and skin temperature, oxygen saturation, respiration rate, electrocardio-
gram, etc. is done by bio-micro-sensors or wearable medical systems that may
c© Springer International Publishing AG 2017
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include a huge amount of components: sensors, wearable materials, smart tex-
tiles, actuators, power supplies, wireless communication modules and links, con-
trol and processing units, interface for the user, software, and advanced algo-
rithms for data extracting and decision making [14].

Diabetic disease is one of the most important health problems, both because
of its extraordinary frequency and because of its enormous socio-economic reper-
cussions. One of the most feared problems, as it affects the quality of life of
diabetic patients, is the appearance of ulcers in their feet, as a sequel to two of
the most common chronic complications of this disease: peripheral neuropathy
and vascular insufficiency. The combination of these factors, neuropathy and
angiopathy, together with the high risk of infection and the intrinsic and extrin-
sic pressures due to bone malformations in the feet, are the final triggers of the
diabetic foot. To be more precise, peripherical neuropathy is the most important
risk factor that could develop foot ulcers in diabetic patients [5].

The prevalence of ulcers varies according to sex, age and population from
2.4% to 5.6%. It has been estimated that at least 15% of diabetics will suffer
from foot ulcerations during their lifetime. It is also estimated that about 85%
of diabetics suffering from amputations have previously had an ulcer [9].

World Health Organization estimates that the prevalence of Diabetes Mel-
litus (DM) at the start of the twenty-first century was 2.1% of the world’s po-
pulation. That is, about 125 million people. The foot temperature monitoring
can significantly limit the rates of re-ulceration in diabetes, as the use of simple
temperature measurement devices, like thermometers, serves as prevention tools,
helping patients identify potentially damaging limbs inflammation ([2,10,11]).
The combination of routine measurements and the use of thermal techniques
may improve the quality of research in diabetes and facilitate the detection,
monitoring and control of diabetic foot problems [4]. To avoid limbs damages,
we consider the possibility of a prototype as a smart sock that will contain se-
veral sensors to take a more real temperature data. These sensors will be placed
into the sock plants. The proposed device is of a wearable sensor-based system
for foot temperature monitoring capable of continuously or intermittently mea-
suring the foot temperature of the patient at one or more locations of the foot.
That device will be possible using smart textiles (also known as electronic or
e-textiles), i.e. “textiles that can detect and react to stimuli and conditions of
the environment, as well as mechanical, thermal, chemical, electrical or magnetic
stimuli” [6]. It is therefore the physical integration of an intelligent system with
a textile substrate is a system to monitor physiological signals.

2 Wearable Systems for Foot Temperature Monitoring

Systems that monitor health can be classified into 3 categories [3]: Remote
health monitoring systems (RHMS) are those with remote access or those that
can send data to or from a remote location; mobile health monitoring systems
(MHMS) refer to mobile phones, PDAs, handheld devices, etc.; wearable health-
monitoring systems (WHMS), as the name implies, these are devices that can be
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worn and used by patients and which consist of WHMS, RHMS and/or MHMS.
When sensors become integrated into a garment or complement are called wear-
ables, a term that is also used to refer to garments and accessories that have
integrated sensors. Thus, these are the ones that give rise to intelligent fabrics,
smart-textiles or e-textiles.

These devices must meet certain strict medical criteria and operate under
ergonomic constraints and significant hardware limitations. Research in this area
focuses mainly on producing clothing with features that contribute to improve
or facilitate the lives of its users.

There are certain professions in which the worker must be very active and
danger-prone, such as soldiers, firefighters, police personnel, miners, divers or
astronauts in space. Considering the mobility and vulnerability, it is important
to monitor the health status and the geo-location of the workers to ensure the
completion of the assigned work. For this reason, there has been a significant
change in the development of clothing as the introduction of sensors into the
clothing worn by staff. A wearable physiological monitoring system consists of a
garment with embedded sensors, data acquisition and processing hardware with
the required embedded software, and a remote monitoring station to study the
health of the wearer.

Conventional sensors and medical instruments can not be used as wearable
applications of physiological monitoring, since they are difficult to carry for long
periods, and they cause discomfort to the wearer. Thus, the gels used on the
electrodes cause irritation when they dry out or when are used for a long time.
In addition, the contact resistance between the electrode and the skin changes
over time, thereby degrading the quality of the signal obtained. In conventional
monitoring systems there are many cables for the acquisition of physiological
signals and the system is too bulky to be used in wearable applications [13].

Many wearable physiological monitoring systems have been developed: a
wristband that is a wearable monitoring and medical alert system for high
cardiac-respiratory patients [1]. To perform an electrocardiogram (ECG) and
measure blood pressure requires the attention of the subject. Vital parameters
are not transmitted continuously. A new and discreet wearable, multi-parameter
system was developed as an ambulatory physiological monitoring system for
space and earth applications called BodyGuard, which had the ability to conti-
nuously record the 2-lead ECG readings, the respiratory rate through impedance
plethysmography, cardiac rhythm, hemoglobin oxygen saturation, body or ambi-
ent temperature, etc. [12]. The Georgia Tech intelligent T-shirt known as Geor-
gia Tech Wearable Motherboard (GTWM) was characterized by a wearable mo-
therboard that incorporated numerous vital parameters into clothing and could
be easily and comfortably worn by soldiers ([8,15]), but it used conventional elec-
trodes to perform the ECG, which became corrupted with noise during move-
ment of the subject. In addition, it did not perform stress measures, which is
considered a vital measure.

In addition to other similar wearables, fabric-based wearable systems have
also been used, such as the MagIC (Maglietta Interattiva Computerizzata), which
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measured cardiorespiratory and movement signals in patients with heart pro-
blems. The MagicIC system was tested on subjects who moved freely, whether
at home, at work, while driving or riding a bicycle, and also in microgravity con-
ditions during a parabolic flight. Preliminary results showed good signal quality
over most periods when measurements were taken and a correct identification of
arrhythmia events and correct estimation of mean heart rate [7].

Therapeutic footwear, to monitor foot skin temperatures, were suggested
in [5] to prevent foot ulcers in at-risk patients with diabetes. Several authors
suggest that the identification of temperature asymmetries could be consider as
important factor to identify early signs of disease ([17,18]). Recently a team at
the University of Manchester has developed a system that measures temperature
in diabetic feet to study the etiology of diabetic foot ulcerations [16]. A insole
with the temperature sensors is connected to the myRIO, which records the
temperature measurements and stores them in a USB.

3 Statistical Data Analysis

The collected data studied in this paper come from the thermal indices, taken
to 70 healthy people, in the sole and the dorsal of the right and left foot as
indicated in Fig. 1.

Fig. 1. Position indices.

The plant and dorsal areas correspond to the same position, except for the
number one that is only in the sole: (1) heel, (2) medial midfoot, (3) lateral mid-
foot, (4) first metatarsal head, (5) central metatarsal heads, (6) fifth metatarsal
head, (7) first finger, (8) central fingers, (9) fifth finger. The data were taken
with a thermal FLIR E60bx camera that take images with the following charac-
teristics: Resolution: 320 × 240 pixels; total pixels: 76,800; thermal sensitivity:
< 0.045 ◦C; accuracy: ±2 ◦C or ±2% of reading; temperature range: −4 ◦F to
+248 ◦F (−20 ◦C to +120 ◦C). The thermal images obtained with a thermo-
graphic should be interpreted from the different materials and circumstances
that influence the temperature readings. Some of those factors are the thermal
conductivity, the reflection and the emissivity. Emissivity is the efficiency with
which an object emits infrared radiation. This is highly dependent on material
properties. It is essential to set the right emissivity in the camera. In other case
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the temperature measurements will not be correct. The FLIR thermal imaging
cameras have predefined emissivity settings for lots of materials, and the rest
can be found in an emissivity table. The right emissivity setting for human skin
is around 0.97. There are six key requirements that should be evaluated to work
with a infrared camera: The camera resolution or image quality (a resolution of
320 × 240 or 640 × 480 pixels deliver superior image quality), the thermal sensi-
tivity (the difference in temperatures that can detect), the accuracy (the margin
of error within which the camera will operate, the current industry standard
for accuracy is ±2% / ±2 ◦C), the camera functions (emissivity and reflected
temperature values), the software, and the training demands.

We initially had establish different points for taking temperature measures:
9 indices for the foot’s sole and 8 for the dorsal part, of course, on both feet. We
call them with IJK, being I = P (Sole) or I = D (Dorsal); J = D (Right) or J =
I (Left). K takes values from 1 to 9 according to the index concerned (e.g. PD1
is the index of the right foot plant corresponding to the heel).

There is a correlation higher than 0.8 between the plantar and dorsal indexes
at the same position, so it should therefore be sufficient to consider one or the
other. In our case we have analyzed only the plantar.

We started with a basic statistical study of the collected data, which it has
been calculated the mean value (mean), standard deviation (sd), typical error (se
mean), interquartile rate (IQR), coefficient of variation (cv), skewness, kurtosis,
and the quartiles. Figure 2 represents the different Box Plot from all the data
from the right and left soles, and right and left dorsal feet.
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Indices of the Right Dorsal Foot, from 2 to 9
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Indices of the Left Dorsal Foot, from 2 to 9

Fig. 2. Different Box Plot from collected data.
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Fig. 3. Indices heat map combined with a dendogram.

Some basic statistical analysis shows that the coefficient of variation is small
in all cases. The higher values (10 %) correspond to the data on the fingers. The
standard errors for the mean (se mean), IQR, and sd, practically in all cases the
greatest value corresponds to the index 7 (big toe), followed by the 8 and 9 (the
other fingers). So maybe the finger data should not be used to extrapolate the
results. The lower errors correspond to indices 3 and 2 (central part of the foot),
as well as the lower IQR and sd. It is necessary to take into account that the
diabetic people have special sensitivity in the toes, reason why it is necessary to
try to improve the taking of measures in them.

In our study we are going to place a series of sensors in a sock in order
to take measurements of temperatures in different places of the feet. With the
arrangement of the clusters given by a dendogram we can get an idea of where
to put them.

We use a heat map combined with a dendogram (Fig. 3), which is a way of
grouping items based on distance or similarity between them. As a result of the
cluster calculation, the rows of the heat map are rearranged to correspond with
it. This order give us a idea of where to put the sensors in the sock. In all cases
the first ones that are joined are the indices 5 and 6 and these with the 4 (except
in the left plant that are 4-5 and then 6). The following are 8 and 9 and these
two with 7 (except for the left dorsal that are 7-8 and then 9). In the plant the
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indices 1-3 are joined, and the same occurs in the dorsal for 2-3. As can be seen,
index 2 (medial midfoot) is the most important of the plant.

4 Conclusions and Further Work

We have analyzed the data collected from healthy individuals. This temperature
data was gathered with the help of a thermal camera. We have recorded temper-
ature data from different points of feet, as feet could be affected by peripheral
neuropathy and autonomic neuropathy in diabetic patients.

We are developing a prototype inside a sock that will contains several sensors
to take a more real temperature. As these sensors will be placed into the sock
plants, we have focused our analysis in the data from the sole. From the result
of the dendogram, and thinking about 4 sensors, these would be place in the
medial midfoot (index 2); the fingers (indices 7, 8, and 9); between the heel and
the medial lateral midfoot (indices 1 and 3); and in the metatarsal heads (indices
4, 5, and 6).

It is necessary to take into account what the sensors are going to be use for.
Although the dendogram (in Fig. 3) shows the medial midfoot index is the most
important of the plant, we will have to make decisions about the best position
for the sensors depending on the needs of the patients. Furthermore, the data
from positions 7, 8, and 9 (fingers) are those with the highest values for the
typical error of the mean and for the standard deviation.

At the moment we are analyzing data from a control group. We want to
examine some factors that may affect the study of foot temperature, since our
ultimate goal is to obtain models for diabetic patients.
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Abstract. This paper demonstrates capability of detecting strong synthetic
benchmark feature interactions in a set of mixed categorical and continuous
variables using a modified version of Monte Carlo Feature Selection algorithm.
MCFS’s original way of detecting feature interactions relying on the analysis of
structure of trained decision trees is compared with our modified approach
consisting of a series of variable permutations combined with a decomposition
of feature total effect to main effect and interaction effects. A comparison with
unmodified MCFS, which by default handles only classification problems using
C4.5 decision trees, shows that the new approach is slightly more robust. Fur-
thermore, the decomposition approach is flexible by allowing to plug in different
types of models to MCFS. This opens a way to handle high-throughput
supervised feature selection and interaction mining problems for classification,
regression and censored survival decision vector.

Keywords: Feature selection � Feature interaction � Dimensionality reduction �
Classification � Decision trees � RandomForests � Random forests � Extremely
randomized trees � Monte carlo feature selection

1 Background

In data analysis, the effort is often put on the sheer volume of analyzed data, which is
usually caused by the number of collected observations. On the other hand, the data
provided by high throughput biological experiments is characterized by feature to
observation imbalance. For classical RNA microarrays, the number of features is
usually several thousand. By increasing the resolution and measuring the expression of
individual transcripts through RNA-sequencing, it is possible to increase the number of
features to hundreds of thousands. The benefit of this increase of resolution is assessed
by projects like [1]. Analyzing genomic data like Single Nucleotide Polymorphisms
(SNP), Copy Number Variations or Methylation Sites can provide a number of features
in the magnitude of several million. Unfortunately, this increase of number of variables
is not followed by an increase of the number of observations, which usually does not
exceed few thousand, even for the largest initiatives [2].

High dimensionality of the collected data combined with low number of obser-
vations is a cause of large amount of False Discoveries (FD) and low repeatability of
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findings. One approach to assuring reliable results would be to perform statistical tests
for each variable, and correct the results for multiple testing. More liberal procedures
[3, 4] than the conservative Bonferroni correction [5] would be necessary to provide
enough power for high-dimensional scenarios. This approach would however suffer
from ignoring feature interactions. When dealing with mixed categorical, discrete and
continuous variables, comparing p-values from different types of tests could also lead
to introducing a bias in favor of certain classes of variables.

An alternative is to use machine learning based methods. In the simplest scenario,
Sequential Feature Selection methods may be used. Its usefulness for high dimensional
data is however questionable. One solution for this problem are ensemble methods
providing a level of randomization for selecting feature groups in order to test multiple
feature combinations, limit overfitting, and allow weaker features to work without the
influence of stronger ones. A well-known example is the RandomForests [6] algorithm.
Although primarily a classification algorithm, it provides a set of feature importance
metrics. It has been successfully used for SNP data, and is able to capture the added
value of feature interactions, however the ability of detecting the interactions is
decreasing when the number of features increases [7]. Attempts to extend these metrics
to report on pairs of features were made by Bureau et al. [8]. These metrics capture the
combined total effects of two features rather than the interaction effect however.

Monte Carlo Feature Selection (MCFS) [9] is a decision tree based supervised
feature selection algorithm designed to provide a human-readable list of features. Its
subsequent versions [10, 11] have been enhanced with the ability to provide an explicit
list of feature interactions for the purpose of visualizing them in the form of ‘Interaction
Networks’.

MCFS is available as the ‘rmcfs’ R package. As MCFS can be easily parallelized,
the package allows for running the computations using multiple threads on a single
machine. For larger datasets, or when running permutation tests in order to assess
statistical significance, it is however worth to extend the level of parallelism beyond a
single machine. Such implementation was recently successfully created in our team
[12]. It is characterized by almost linear speedup when increasing the number of
processors and has been successfully tested in systems as large as 192 cores. It is not
ready for official release yet, however an evaluation version can be obtained from us
upon request.

2 Research Goal

MCFS is a powerful and scalable algorithm for feature selection and interaction
mining. It has however some fields for extension, as well as potential drawbacks. It is
relying on decision trees, or more specifically on feature importance and interaction
strength metrics calculated using C4.5 trees. This limits the range of feature selection
problems to classification ones, like finding networks of features impacting binary
survivability (death/life). Interested in the possibility of performing feature selection
and interaction mining in high throughput datasets with continuous or censored sur-
vival time decision vector, we have developed a feature importance decomposition
methodology that can be used with multiple model metrics like Weighted Accuracy,
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Mean Absolute Error or Concordance Index. Our implementation of MCFS [12] has
been modified to include these metrics. As a preliminary comparison study, it has been
compared with original MCFS in an area which both approaches can handle, that is a
categorical decision vector. Achieving at least as good results as the original MCFS
opens the way to generalization.

While feature selection in high-dimensional datasets is an extensively investigated
area, there are – to our best knowledge – no state of the art methods aimed at providing
an explicit list of interactions allowing to create a human readable interaction graph.
This makes MCFS generalization attempt a potentially fruitful endeavor.

3 Materials

As the objective of the study was to examine the impact of the chosen interaction
detecting approach, the data must have been known and predictable. All the tests have
been performed using synthetic data - six types of interacting as well as independent
features have been prepared. They are presented in Fig. 1. All of the features are
designed for a two-level classification problem with equal number of observations for
each class, so that they can be analyzed together in a single dataset. The features are
generated randomly using either normal distribution or uniform distribution. Features
generated using uniform distribution are also present in categorical variants. Cate-
gorical versions of the features do not assume ordering of levels.

In addition to the strong benchmarking features, there are also two types of noise
modeled. Continuous noise features are generated from standardized normal distribu-
tion, while discrete noise features from uniform discrete distribution with 3 levels.

The features were utilized to populate two datasets – A and B. A represents an
unlikely scenario of a dataset composed entirely of interacting features. It is composed
of 14 variables: 4 numerical and 3 categorical pairs of variables over 1000 observa-
tions. It is designed to test how each one of the feature-pairs scores in comparison to
others in an easy scenario. Dataset B is more realistic. It contains all the interacting
features (14), features from univariate distributions (2) and noise variables (9984). The
presence of noise combined with the competition of strong features makes the dis-
covery of interdependent features much more difficult.

4 Methods

Through this section, we will be referring to feature total effects, main effects and
interaction effects. Total effect represents the overall usefulness of a feature in the
presence of all the other features in a dataset. Main effect represents the strength of a
feature alone. Interaction effect represents the added value of using two features
together. A dataset of n features contains n different total effects, n main effects and
n
2

� �
¼ n2�n

2 interaction effects. Only second order interactions are considered.

Features and feature interactions are mined using the methodology of MCFS [9,
11]. The feature space is sampled s times for m features. Each feature subspace is then
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split into a training and test set t times. A classifier is trained on the training set. The
classifier, test set and training set can then all three serve to calculate partial scores of
total effect and interaction effect. This is where our modifications are introduced.

Our way of calculating the total effect is almost the same as the basic method for
calculating feature importance in RandomForests. Feature i is being permuted in the
test set a number of times. The difference between the model score (weighted accuracy
for classification) for the unpermuted dataset and the average weighted accuracy for
permuted sets is being reported as the total effect of feature i. Our decomposition idea is
that we consider the total effect of feature i to be the sum of the feature’s main effect
and all the interactions with other features.

total effecti ¼ main effecti þ
Xj¼1::m;j6¼i

j
interaction effecti;j ð1Þ

Form features,m equations of type (1) can be drawn. There are howeverm unknown

main effects and ðm
2
Þ unknown interaction effects, so the system is obviously lacking

information. A solution for providing the missing information is to systematically

Fig. 1. The classes of features used in the study. Name of each feature consists of three parts.
The first part informs whether the feature is designed as a single variable or a pair of interacting
variables. Single features are plotted using probability density plots, pairs of interacting variables
are visualized with scatter plots. The second part of feature name represents the nature of the
feature – whether it is a numerical feature, or categorical one. The third part is the actual name of
the feature. The ‘dominant’, ‘recessive’ and ‘chessboard’ features are also present in categorical
variants.
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perform permutations of all
m
2

� �
pairs of features together, thus providing the missing

m
2

� �
Eq. (2). Permuting two features together impacts their both main effects, inter-

action between them, and all the interactions with all the other features.

total effecti;k ¼ main effecti þmain effectk þ interaction effecti;k

þ
Xj¼1::m;j6¼i;j 6¼k

j
interaction effecti;j þ

Xj¼1::m;j6¼i;j6¼k

j
interaction effectk;j

ð2Þ

The number of equations can be reduced by considering only the feature pairs with
both features having measured total effects significantly greater than 0. This method
would work ideally for classifiers exploiting all the interactions of all the features in a
dataset. In our scenario, each classifier works on a subset of feature space and doesn’t
exploit all the possible interactions, so the collected interaction effects are underesti-
mated. They are a valuable source of information however.

Final total effect and interaction effect scores are obtained by summing partial
results obtained from all s*t classifiers.

5 Results and Discussion

The original metrics of Draminski et al. obtained through decision tree structure
analysis are called Relative Importance (RI) and Inter-Dependency (ID). For result
comparison, we interpret RI as total effect, and ID as interaction effect. In the under-
lying section they are collectively referred to as white-box metrics (wb), contrary to our
black-box metrics (bb) not requiring an analysis of the tree structure. While wb is tied
to C4.5 decision trees, bb can work with any model.

For each configuration from Table 1, metrics were normalized by dividing by the
highest scoring feature or feature pair. Results from dataset A are shown in Fig. 2
through a parallel coordinates plot. Upper subplot shows total effects, while the lower
one the value of interaction effect between the features.

For the new metrics (bb-*), score for categorical feature interaction effects (dashed
line) is always higher than that for continuous feature interaction effects (full line). This
is reasonable, as splits on categorical features leave less space for error than binary
splits on continuous ones (for the tested features). However, for the old metrics (wb-*),
the continuous features and feature interactions have much higher scores than the
categorical versions, especially when tree pruning is disabled (wb-C45-none). This is
because the continuous features allow for growing larger decision trees, which biases
the original structure dependent metrics. For all wb and most bb, numerical total effects
have higher scores than categorical analogs. This may signal a bias in both approaches,
however the difference is smaller for bb.

Last two axes show how the feature interaction detectability is impacted when
further randomization is introduced through RandomForests and Extremely Random-
ized trees [13]. The ‘bivariate.cont.gaussians’ interaction is now on the top. An
explanation is that an optimal decision tree classifier created using this feature (Fig. 1)
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requires the first split to have little information gain. As result, it has to be forced
through limited split options or randomization.

Three configurations were chosen for dataset B – the white-box metrics with C4.5
pruning, black-box metrics with unpruned C4.5 trees, and black-box metrics with
RandomForests. Results are presented in Fig. 3.

Similarly as with dataset A, the discrete feature interactions are scored above their
continuous analogs by the black-box metrics. There are however two major differences.
First of all, the ‘bivariate.cont.gaussians’ interaction was not detected at all by any of
the approaches. An explanation is the size of the feature sub-space – with 500 features
to choose from, there is little chance that a random split unlocking the correct split
sequence would be made. Secondly, the detectability of strong continuous feature

Table 1. Configurations of the experiments. In each case, 20000 feature samples were drawn,
and 5 training-test splits were made for each one of them.

Dataset Features f. smp. size (m) Classifier Tree pruning Metrics

A 14 2 C4.5 0.25 white-box
A 14 2 C4.5 training set white-box
A 14 2 C4.5 none white-box
A 14 2 C4.5 0.25 black-box
A 14 2 C4.5 training set black-box
A 14 2 C4.5 none black-box
A 14 2 RandomForests none black-box
A 14 2 ERT [15] none black-box
B 10000 500 C4.5 0.25 white-box
B 10000 500 C4.5 none black-box
B 10000 500 RandomForests none black-box

Fig. 2. Dataset A: Comparison of normalized feature total effect and interaction effect scores.
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interaction (bivariate.cont.chessboard) has dramatically dropped with respect to its
categorical analog for RandomForests classifier, suggesting that introducing a second
level of feature space randomization may be harmful.

One final improvement over the original metrics – not shown on the plots – is the
number of unexpected interactions reported by the algorithm. For dataset B analyzed
with wb-C45-025, only 43% of the sum of interaction effects of all significant inter-
actions (alpha = 0.05, validated through permutation testing) is coming from the
designed interactions. This proportion rises up to 68% for wb-C45-none.

6 Conclusion

Moving the insights from artificial benchmark data to real-life problems should be
made with caution. Synthetic results can however provide valuable hints about the
behavior of algorithm for predictable data. The study confirms the ability of original
MCFS to detect features and feature interactions in high-dimensional datasets. The
original method is however – at least under certain configurations – vulnerable to bias
created by overfitted decision trees. Our proposed solution is to introduce feature total
effect and interaction effect metrics relying purely on classification accuracy shifts.
Initial results seem promising, as the new approach is less vulnerable to overgrown
decision trees, provides fewer false interactions and may allow to extend the algorithm
and software to regression and censored survival time modeling.

All in all, the detectability of feature interactions both for the ‘black-box’ and
‘white-box’ approach strongly depends on the main effects of the features. Strongly
interacting features without main effect component have little chance of being dis-
covered – partially because of the greedy nature of decision tree training, but mainly
because of the speed at which the interaction space grows.
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Fig. 3. Dataset B: Comparison of normalized feature total effect and interaction effect scores.
Legend analogous to Fig. 2, green lines represent features from univariate distributions.
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Abstract. In this work we describe a new methodology to improve pre-
dictive capabilities of dynamic models when parameters differ in orders
of magnitude. The main idea is to normalise the model unknown parame-
ters before solving the classical problem of optimal experimental design
based on the Fisher information matrix. The normalisation improves the
relative confidence intervals of the estimated parameters and the con-
ditioning of the Fisher matrix, especially for those criteria aiming to
decorrelate the model parameters. Using the so-called core predictions,
we show how the new approach improves the final model predictive capa-
bilities in two terms: predictions are closer to the real dynamics and with
better confidence intervals.

We illustrate the concepts using two toy examples linear and non-
linear in their parameters. Finally we test the performance of the nor-
malisation in a model simulating the bacterial SOS response. This path-
way remains of main relevance to work towards a predictive model of
antimicrobial resistance.

Keywords: Normalisation · Fisher Information Matrix (FIM) · Rela-
tive parameter confidence intervals · Core predictions · Optimal Exper-
imental Design (OED) · Bacterial SOS response

1 Introduction

Predictive capabilities of models in computational biology largely depend on
the confidence we have on their parameters. Usually there is a large number
of non-measurable parameters that have to be estimated fitting the model to
experimental data. In most cases only a limited number of components in the
network can be measured, the system may only be stimulated in very specific
ways, the number of sampling times is usually limited and the experimental
data are subject to substantial experimental noise [2,3]. As a consequence the
confidence intervals of the parameters are too large to make useful predictions
or even infinite.

Optimal Experimental design (OED) methodologies therefore become essen-
tial to find which experiments are more informative. They are currently being
exploited in different areas in computational biology, mainly in systems biology

c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 16
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[14,18] and in pharmacokinetics [8]. The idea is to formulate an optimisation
problem to find the best decision variables (such as sampling times or stimuli
profiles) to maximise the quantity and quality of information using the Fisher
Information Matrix (FIM).

The main challenge is that parameters in computational biology usually dif-
fer in several orders of magnitude. For example protein degradation rates are
typically several orders of magnitude lower than Michaelis-Menten constants.
As a consequence the FIM is ill-conditioned [1,6] and parameters with small
values have too wide confidence intervals to make useful predictions.

To address this challenge we propose to normalise the parameter models
before optimising the experiments. The new normalised FIM has a better con-
dition number and the optimal experiments will focus on decreasing the relative
confidence intervals of the parameters instead of their absolute confidence inter-
vals. The improvement in the predictive capabilities of the model is analysed
using the so-called model core predictions [5]. They are used to assess how the
parameter uncertainty is translated to the model predictions with and without
the proposed normalisation.

This work starts describing the theory of optimal experimental design based
on the fisher information matrix in Sect. 2 and the proposed normalisation in
Sect. 3. We will use a simple toy example (linear in the parameters) to illus-
trate the ideas behind these two sections. Section 4 describes the concept of core
prediction and shows the improvement in predictive capabilities for another toy
example (non-linear in the parameters) when using the normalisation. Finally
in Sect. 5 we explore the performance of the normalisation in the context of a
regulatory network describing main features of bacteria SOS response. For the
sake of simplicity, elements of vectors and matrices are denoted with subindexes
and vectors and matrices are denoted with same symbol as their elements and
with all vectors being column vectors.

2 Classical Theory for Optimal Design of Experiments
Based on the Fisher Information Matrix

The objective is to minimize the uncertainty of the estimated parameters by
designing the most informative experiments. The Optimal Experimental Design
(OED) problem may be mathematically formulated as a general dynamic optimi-
sation problem searching for the manipulable variables (such as time-dependent
stimuli, initial experimental conditions, experiment durations, sensor locations,
sampling times and type of measurements) that maximize information. In this
way the OED problem is formulated with maximum generality allowing for the
sequential or parallel design of several experiments.

2.1 The Fisher Information Matrix and the Hyperellipsoid
of Information

The Fisher Information Matrix (FIM) is the standard measure for the amount
of information that an observable carries about an unknown parameter.
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In computational biology the usual observables are discrete dynamic variables
that depend on the unknown vector of parameters θ = [θ1, . . . , θnθ

] ∈ IRnθ .
Assume that each measurement is a random variable with normal distribution
xk ∼ N(x̄k, σ2) and mean obtained with a deterministic model x̄k = Mk(θ, u, v)
that depends on the stimuli u(t) ∈ IRnu and other decision variables v ∈ IRnv such
as sampling times, sensor locations, initial conditions and experiment duration.

The FIM is defined as the variance of the score where Jml is the negative
log-likelihood function [12] with nk being the total number of sampling times:

F (θ, u, v) = E

{(
∂Jml

∂θ

) (
∂Jml

∂θ

)T
}

Jml = − ln p(x; θ, u, v) =
nk

2
ln 2π +

nk

2
ln σ2 − 1

2σ2

nk∑
n=1

(xk − Mk(θ, u, v))2.

The FIM determines a quadric, typically a hyperellipsoid in the parameter
space. This hyperellipsoid represents the quantity and quality of information of
the selected experiments. The largest and the more spherical the information
hyperellipsoid defined by the FIM, the better the experimental design. Different
scalar functions of the FIM are formulated (JOED) being the following the most
common [13]:

D criterion (JD = max Det[F ]) maximises the volume of the informa-
tion hyperellipsoid no matter its shape. The higher its value the smaller the
expected parameter uncertainty for the parameter estimates. A criterion
(JA = max trace[F ]) maximises the arithmetic mean of the hyperellipsoid semi-
axes. E criterion (JE = max λmin[F ])maximises the minimum semi-axis of
the information hyperellipsoid, therefore offering a compromise between D and
Emod. Modified E criterion (JEmod = min λmax[F ]

λmin[F ] ) minimises the relation-
ship between the longest and shortest semi-axes of the information hyperellip-
soid, i.e., improves the eccentricity of the hyperellipsoid. This criterion is quite
appealing as the global optimal solution corresponds with JEmod = 1, meaning
that the uncertainty of the parameter estimates is equally distributed.

In general D and A are good criteria to improve overall information and
Emod to decorrelate parameters. If the objective is to optimise a compromise
between improving information and parameter decorrelation, E criterion is the
best option. We should stress that this criterion is non-differentiable and requires
the use of appropriate global optimisers [20].

The optimal experimental design (OED) problem may be formulated as a
general dynamic optimisation problem as follows:

Calculate the time-variable stimuli u(t) and other decision variables v (such
as experiment duration, type of measure, initial conditions, sampling times and
sensor positions) so as to optimise a scalar measure of the FIM JOED = φ(F ).

The experimental design may be subject to algebraic constraints related to
experimental limitations in the manipulable dynamic variables uL(t) ≤ u(t) ≤
uU (t) and in the rest of decision variables vL ≤ v ≤ vU [10], where superscripts
L and U represent lower and upper bound respectively.
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Parameter estimation and optimal experimental design problems in compu-
tational biology require advanced numerical techniques. In this work we used
AMIGO2 (Advanced Model Identification using Global Optimization), a multi-
platform toolbox implemented in Matlab which covers parameter estimation
but also sensitivity analysis and experimental design [4]. From the set of numer-
ical methods offered in the toolbox, we selected the global optimizer based on
scatter search (eSS, Enhanced Scatter Search) method [7]. It can optimise non-
differentiable functions and it is very efficient and robust in finding the best
parameter values and experimental designs. In addition, the model simulator
CVODES [11] was selected to solve the model and calculate the Fisher Infor-
mation Matrix. The optimisation of the FIM is approached using the so called
control vector parametrisation approach (CVP), which transforms the original
infinite dimension optimisation problem into a non-linear programming problem
(NLP) whose solution requires the use of adequate optimisation methods.

2.2 The Covariance Matrix and the Hyperellipsoid of Uncertainty

If the Fisher information matrix represents the hyperellipsoid of information,
its inverse is a hyperellipsoid that gives a sense of the confidence or uncertainty
region. The Crammér-Rao inequality [21] establishes that the covariance matrix
C is greater or equal than the inverse of the Fisher Information Matrix for the
case that the estimator is asymptotically unbiased. Therefore the FIM is used
to calculate a lower bound of the covariance matrix C ≥ F−1.

The confidence intervals of a parameter may be calculated based also on this

Crammér-Rao bound. The confidence intervals are θ∗
i ± tγα/2

√
C̃i,i considering

the student’s t-distribution tγα/2 with γ being the number of degrees of freedom
and (1−α)100% the selected confidence interval. The correlation matrix can be
also calculated from the covariance matrix

(
Crij = Cij√

CiiCij

)
.

The likelihood function of non-linear models in their parameters depends on
the value of the parameters (see Example 2), and the necessary conditions for the
Crammér-Rao inequality are only satisfied (see [21] and [12] for details) around
the optimum: C >= F−1(θ∗). Nevertheless the objective of the optimal experi-
mental design is to estimate the optimum set of parameters itself. Therefore the
following iterative procedure is proposed in the literature:

1. Estimate the parameters θ0 using the available information (literature or
non-optimal experiments)

2. Find the optimal set of experiments using F (θ0)
3. Re-estimate the parameters θ1

4. Find the new set of optimal experiments using F (θ1)
5. Repeat steps 3 and 4 until θi−1 � θi

If the starting point θ0 is sufficiently close to the optimum (θ∗) or F (θ) is suffi-
ciently smooth, this iterative procedure will find the optimum set of parameters
(θi = θ∗).
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Example 1: A system of two uncoupled dynamics with degradation.
We illustrate the ideas behind the classical optimal experimental design using
the following simple example:

∅ k∗
1=10−−−−→ x1 ∅ k∗

2=1−−−→ x2

being x1 and x2 the dynamic variables and k1 and k2 the unknown reaction
velocities. Contrary to common models in computational biology, this model is
linear in their parameters [21] when considering mass action. It has the following
simple analytical solution x1(t) = −k1t1 + x0

1 x2(t) = −k2t2 + x0
2, where x0

1

and x0
2 are the initial conditions at t = 0.

We use optimal experimental design to determine the best sampling times
assuming we only take one measurement per dynamic variable. For a deeper
discussion on the relevance of optimising the sampling times, we advise the
reading of Kutalik work [15]. We assume Gaussian noise with same standard
deviation σ for all measurements to calculate the FIM:

x̄ = M(θ, t1, t2) = [−k1t1 + x0
1,−k2t2 + x0

2], F =

(
t12

σ2 0
0 t22

σ2

)

If we impose a maximum bound on the sampling times: t1 ≤ 5 ∈ IR+, t2 ≤
10 ∈ IR+, it is trivial to see how optimal samplings [t∗1, t

∗
2] in the sense of criteria

D and A are these maximum bounds ([5, 10]). The optimal sampling times for
the remaining criteria have several solutions with best value of the cost function
JOED. For all t∗1 = 5, t∗2 >= 5 sampling times are optimal in the sense of E and
for all t∗1 = t∗2 in the sense of Emod.

Finally we show in Table 1 the confidence intervals and condition number
(equivalent to JEmod criterion) for some optimal sampling times assuming σ = 1
and tγα/2 = 1.96. To stress that these results refer to absolute values of the
confidence intervals we also calculate the relative confidence intervals.

Table 1. Optimal sampling times, FIM condition number and uncertainty ellipsoid
semi-axes in Example 1 for the different criteria

Criteria Optimum FIM condition number Confidence intervals

[t∗
1, t

∗
2] Absolute Relative Absolute Relative

D [5,10] 2.0 5.0 [0.39,0.196] [0.039,0.196]

A [5,10] 2.0 5.0 [0.39,0.196] [0.039,0.196]

Emod [4,4] 1.0 10 [0.49,0.49] [0.049,0.49]

E [5,6] 1.2 8.33 [0.39,0.33] [0.039,0.33]
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3 Optimal Experimental Design Based
on the Normalised FIM

FIM confidence intervals refers to the absolute value of the parameters. The clas-
sical approach, described in previous section, minimizes the confidence hyper-
ellipsoid considering that all parameters have the same relevance, even if their
values have different orders of magnitude. However, in general terms, same con-
fidence intervals are considered best for parameters with larger values than for
smaller parameters. See for example confidence intervals for Emod in Table 1
(k1 = 10± 0.49 and k2 = 1± 0.49). If we can only improve the confidence of one
parameter, it is natural to focus on k2, but with classical OED both have the
same confidence and will be treated equally.

Moreover the optimisation of experiments has numerical problems because
the FIM is ill-conditioned. Parameters in systems biology usually differ in orders
of magnitude and therefore also the score functions (∂Jml

∂θ ) that define the FIM.
In order to both, focus on relative confidence intervals and scaling the FIM

to avoid numerical problems, we propose the following normalization: Consider
the available best estimation of the parameters θi, the Fisher information matrix
is calculated using the following reparametrised model Mnorm

k (θ/θi, u, v). In the
literature procedure described in Sect. 2.2, as i increases, the value of the unknown
parameters θ∗ will tend to a all-ones vector.

We should note that for complex biological systems we need an estimation of
the unknown parameters even if we do not use the normalisation. As discussed
previously, the FIM depends on the parameters and has to be evaluated close to
the optimum. The only case where that is not a requirement is for models linear
in their parameters (such as Example 1) that are not common in biology. We
use Example 1 to illustrate the effect of the normalisation, for a more detailed
discussion see [10].

Example 1: A system of two uncoupled dynamics with degradation.
Let us calculate for Example 1 the optimal experimental design that minimised
the relative confidence intervals and compare the results with those obtained in

Table 1. The normalised FIM reads Fnorm =

(
100t21

σ2 0
0 t22

σ2

)
.

In general for uncoupled models linear in their parameters Fnorm

(diagθi)2 = F . For this class of simple systems D is not affected by the normal-
isation and A is affected only if there are bounds or penalisation on the decision
variables. We should stress that this is only a tendency for nonlinear models,
but not a rule.

Contrary, the criteria focusing on decorrelating parameters (E and Emod)
are affected by the normalisation. Assuming same bounds for the sampling times
and σ = 1, best sampling times for E are now t2 = 10,∀t1 >= 1 and for Emod
are all sampling times satisfying 10t1 = t2. Table 2 shows the results obtained
with the normalised FIM.
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Table 2. Optimal sampling times, FIM condition number and uncertainty ellipsoid
semi-axes in Example 1 for the different criteria using the normalisation. With the
new approach we improve the confidence intervals of the smallest parameter k2 at the
expenses of the largest one k1 in Emod and E.

Criteria Optimum FIM condition number Confidence intervals of [k1, k2]

[t∗
1, t

∗
2] Absolute Relative Absolute Relative

D [5,10] 2.0 5.0 [0.39,0.196] [0.039,0.196]

A [5,10] 2.0 5.0 [0.39,0.196] [0.039,0.196]

Emod [1,10] 10 1 [1.96,0.196] [0.196,0.196]

E [2,10] 5.0 2.0 [0.98,0.196] [0.098,0.196]

4 Model Predictive Capabilities with and Without
the Normalised FIM

We propose the use of the so-called core prediction to asses the predictive capa-
bilities of the model fitted using the optimal experiments with and without
the normalisation. The normalisation prioritises the minimisation of the relative
confidence hyperellipsoid, resulting also in FIM with better condition number.
However, it is not trivial for non-linear models how this affects to the confidence
of the model predictions.

Core predictions is a standard method in systems biology to test predictive
capabilities of complex models subject to uncertainty [5]. Detailed description of
the method used here can be found in [9] where we explored the performance of
a microbiological model after optimal experimental design using the D criterion.
The idea is to compute the range of possible solutions corresponding to different
realizations of the parameter statistics given by the confidence intervals before
the OED and model fitting.

In the context of this work we will consider a uniform distribution between
the bounds of the confidence intervals θ∗

i ± tγα/2

√
C̃i,i and calculate 300 different

realizations. Figures with core predictions will show the mean of the predictions
and a coloured area defined by x̄ ± σx where σx is now the standard deviation
of the prediction at each time calculated from the different realizations.

Example 2: simple metabolic pathway using mass action. To assess the
performance of the normalisation, we calculate the core predictions in a sim-
ple model non-linear in its parameters. Assume that we can only measure two
dynamic variables in a pathway of three compounds with the following reactions:

x1
k∗
1=0.1−−−−→ x2

k∗
2=1−−−→ x3

k∗
3=1−−−→ ∅

the objective is to find which dynamic variable to measure to maximise the
information of the experiment. For the formulation of the OED problem we will
define the model measurements as x̄ = wM(θ, t1, t2) = w[x1(t), x2(t), x3(t)] with
standard deviation 1% of the maximum value of the observable and where w is
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a 3-dimensional vector that can take value 1 if the variable is observable or 0
otherwise. Sampling times here are considered fixed (t = [0.0, 2.5, 5.0, 7.5, 10.0])
and therefore there are only three possible solutions: w = [1, 1, 0], w = [1, 0, 1]
and w = [0, 1, 1]. All criteria, except A that may give solutions with singular
FIM [10], will tend to measure x3 as it is the only possible observable with
information about k3. Otherwise the problem is structurally no identifiable.

D criterion is not affected by the normalisation and selects to measure
[x1, x3]. Remaining criteria select to measure [x1, x2]. When using the normali-
sation all criteria coincides with D and considers that the optimum is to measure
[x1, x3]. First two columns in Fig. 1 show the core predictions for Emod with and
without normalisation. As expected, x1 confidence is better for Emod and x2 for
normalised Emod, while x3 is good in both cases. Attending to the overall per-
formance, normalised Emod produced the best results in terms of smaller core
predictions. Last columns in Fig. 1 show how the correlation matrix for Emod
also improves with the normalisation.

Fig. 1. First three subfigures show model dynamics and core predictions obtained with
Emod with and without normalisation. Last subfigures show the improvement in the
correlation matrix with the normalisation

5 Case Study: SOS Response in Escherichia Coli

Antimicrobial resistance is a threat to our health and economy that is expected
to scale much faster than our ability to design new drugs. Martinez’s work [17]
stresses the importance of designing quantitative models to predict antimicrobial
resistance using systems biology tools. The SOS response is one of the main
mechanisms related with antimicrobial resistance. This pathway modulates the
acquisition of bacterial mutations under DNA damage by different stressors. The
response to this damage is to upregulate the production of protein recA that
inactivates the transcriptional repressor LexA. Under normal conditions LexA
represses the transcription of several genes involved in DNA damage repair,
including recA. Therefore lexA and recA are the centre of the SOS response
connected in a double-negative mixed feedback loop [19].

For our study we have used the deterministic version of that feedback loop
(MODEL2937159804) in the biomodels repository [16]. Shimoni observed [19]
that the model presents practical identifiability problems for the considered
experiments, with different values of the parameters reproducing same results.
To reproduce basal state in Fig. 2 [19], we will set the stimuli that increase the
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production of recA and lexA to fR = 0.5 and fL = 1 obtaining the following
parameters (cR = 0.5500, cL = 0.0099, gR = 0.0332, gL = 0.0196, gmL = 0.0160,
gmR = 0.0011, deR = 0.0864, demR = 0.0007, sL = 0.0309, demL = 0.0002,
deL = 0.2965, sR = 0.0113, cp = 0.0006). For reproducing the plateau of strongest
damage the stimulus increases the production of recA changes to fR = 1.5.

The objective in this work is to find the best experiment in terms of best
experimental duration (tf ∈ [10000, 15000]), best four observables and best 5-
steps profile for fR ∈ [0.5, 1.5]. We consider 20 equidistant sampling times with
Gaussian noise and relative standard deviation 0.5% with respect to the maxi-
mum value of the observable.

Optimal experimental designs (data not shown here) are different for each
criteria and are affected considerable by the normalisation except for the
D-criterion, where differences are slight modifications on the switching times of
the optimal stimulus. Figure 2 shows the core predictions of all dynamic variables
for the remaining criteria with and without normalisation. For these predictions
we simulate the model at different levels of the stimuli fR in a experiment of
125000 s. Results show how predictions improve in most cases when using the
normalised FIM in two senses: the mean of the predictions is closer to the model
dynamics and the uncertainty (coloured areas) are smaller. Note however that
some exceptions may occur. This is the case for example in the prediction of
state R using the A criterion, where predictions are similar but the confidence
is best using the non-normalised FIM.

Fig. 2. Core predictions for A, Emod and E criteria with conventional FIM (red) and
normalised FIM (blue). Black lines represent the model dynamics with θ∗ and red and
blue lines represent the mean of the core predictions (x̄) with coloured areas being
x̄ ± σx. Core predictions of the D-criterion, not depicted here, are similar to E with
the normalisation

6 Conclusions

We propose a new formulation of the Optimal Experimental Design where the
model parameters are normalised before defining the FIM. The new approach
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searches for the minimum relative confidence intervals and improves the condi-
tioning of the FIM avoiding numerical problems in the optimisation. Obtained
optimal experimental designs change when using the normalisation, especially
for those criteria focused on decorrelating parameters.

To test how the new approach improves the predictive capabilities of the
models we use the core-predictions. They are a measure of the confidence in
the predictions given the confidence in the parameters. We tested the normali-
sation in two examples, including the SOS pathway relevant to work towards a
predictive model of antimicrobial resistance.

Results show how the normalisation provides more informative experiments
and better model predictions than the classical approach for optimal experimen-
tal design.
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Abstract. Determining the severity and potential aggressiveness of
breast cancer is an important step in the determination of the treatment
options for a patient. Mitosis activity is one of the main components in
breast cancer severity grading. Currently, mitosis counting is a laborious,
prone to processing errors, done manually by a pathologist.

This paper presents a novel approach for automatic mitosis detection,
where promising candidates are selected from a superpixel segmentation
of the image and classified using an ensemble classifier created from a
selection from a pool of different color spaces, different features vector.

Keywords: Medical image · Mitosis detection · Ensemble classifier ·
Superpixels

1 Introduction

One of the main biomarkers of breast cancer patients’ prognosis is the visual
assessment of the tumour tissue; how closely it resembles to normal tissue in
microscope images. On this assessment, the mitosis count, the number of dividing
cells in the image, appears as a strong prognosticator for tumour aggressiveness
and severity [1]. However, manual mitosis counting is a tedious, time consum-
ing process burdened by human bias directly related to the massive size of the
histopathology images and the high variability of the mitotic occurrences. Auto-
matic detection of mitotic nuclei could reduce pathologist labour and provide a
more consistent result, improving the quality of the diagnosis.

Currently, automatic mitosis detection methods can be divided into hand-
crafted features based methods and deep convolutional neural networks (CNN).

Hand crafted features based methods relays on specific morphological, sta-
tistical or textural characteristics of the mitosis for automatic detection, both
pixel-wise [2] or area-wise [3]. Hand-crafted features based methods, in the same
way as non-automatic mitosis detection, suffer from the variability in texture
and morphology associated to mitotic appearances.
c© Springer International Publishing AG 2017
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Deep convolutional neural networks (CNN), multi-layer neural networks that
learn a bank of convolutional filters at each layer can find feature patterns that
are difficult to describe using hand-crafted features, but training and testing
CNNs is computationally demanding and time-consuming. Even thougth, there
are multiples CNN approaches to mitosis detection using a pixel-wise classifier
as [4] or the hybrid ensemble in [5]. In any case mitosis detection in breast cancer
histology images remains as an open problem.

In this study, carried using the TUPAC16 challenge mitoses auxiliary dataset
[6], we propose a method based on the use of a superpixels segmentation as a
tool to isolate and select mitotic candidates, and the capabilities of an ensemble
created from a pool of classifiers trained with different features vector defined in
four color spaces for the creation of a simple ensemble for mitosis detection.

The rest of the paper is organized as follows: Sect. 2 describes the proposed
framework for mitosis detection. Experimental results are presented in Sect. 3.
Finally, the concluding remarks with future work are given in Sect. 4.

2 Materials and Methods

We approach the problem of mitosis detection in a general image segment classi-
fication sense, where the candidate object resulting from an image segmentation
are tagged as mitosis/non-mitosis. The classification is performed by a fixed rule
combination of a number of classifiers selected from a pool of twelve, each of
them trained from three different vector sets of features (color statistics, his-
togram and histon) obtained from differents color space representations of the
image (RGB, LAB, HSV and HE). Our method follows the typical structure
of hand crafted features approaches: image pre-processing, candidates selection,
feature extraction, classifier construction and detection; as can be seen in Fig. 1.

2.1 Image Pre-processing

One of the main difficulties in histopathology image analysis is variability. Tis-
sue structures in breast histopathology images are commonly highlighted using
a combination of hematoxylin (H) and eosing (E) stains. In the stained images,
nuclear and cytoplasm regions appear as hues of blue and purple, while extra-
cellular material tends towards gradations of pink. Nevertheless, inconsistencies
in staining preparation of histology slides could make it difficult to perform any
analysis, such as mitosis detection. In order normalize its appearance and to sep-
arate hematoxylin and eosing stains, images are preprocessed using the principal
component analisys based method presented in [7].

2.2 Candidate Selection Through Superpixel Image Segmentation

Mitosis candidate selection begins with the segmentation (over-segmentation) of
the normalized histopathology RGB image using superpixels.
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Fig. 1. Work-flow for the proposed mitosis detection method

A superpixel, first exposed in the works on binary classifiers by Ren and
Malik in [8], is defined as a perceptually uniform region in the image. The idea
behind the superpixels arises from the fact that the division of an image in pixels
is not really a natural division, but simply an artefact of the device that captures
the images. Superpixels segmentation results in an image over-segmentation com-
posed by small, closely spectral related areas, a set of convenient primitives from
which local image features are computed. There are many different techniques
to generate superpixels, but we will focus on the use of SLIC (see [9]), an adap-
tation of a k-means clustering approach that takes in account not only spatial
proximity but also local intensity similitude in the image.

Mitosis counting is usually performed in image regions corresponding to an
area of 2 mm2 (5657 × 5657 pixels). Depending on the features present in the
region and its complexity, a superpixel segmentation (for a sampling interval
of 25 pixels, chosen to isolate most of the mitosis in a unique superpixel) could
produce approximately 80.000 segments. In order to select promising candidates,
we take advantage on the appearance of the mitotics figures as a darker or
hyperchromatic objects. To accentuate differences between possible mitotic pre-
classification candidates and the background, the normalized RGB images are
transformed into an image called blue ratio image representation [10], in which
a pixel with a high blue intensity relative to its red and green components is
given a higher value. For each superpixel, its mean blue ratio value is computed,
and those within the higher 5 percentile are selected as pre-classification mitotic
candidates. Figure 2 illustrates the stages of candidate selection process.
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Fig. 2. Segment candidates selection process. Detail of the original normalized image
(left) with its corresponding superpixel segmentation overlayed, associate blue-ratio
image (center) and mitosis candidates (right)

2.3 Feature Extraction

Different color spaces express different properties relevant to color texture analy-
sis. Despite the multiple studies related to this area no single color space can
be defined as well suited for characterization of all textures. In order to obtain
vector features as relevant as possible, we will train classifiers using a set of
different color spaces. From the normalized RGB image, we obtain the hue sat-
uration value, (HSV) and Lab color spaces representation. These images (RGB,
HSV and Lab) and the composite created from the grayscaled eosing and hema-
toxylin stains (HE) are the components from which features are extracted.

For each candidate, features are calculated at superpixel level; additionally,
as the surroundings of a mitosis are also relevant in mitosis detection (a mitotic
cell usually presents features as an ill-defined nuclear membrane, protrusions
around the edges and different staining on the cytoplasm), the feature vector of
each candidate contains the mean of the features of the segments surrounding
the candidate, as show in Fig. 3. Three sets of features are proposed:

Fig. 3. Mitotic occurrences with the mitotic segment (reddish hues) and the associate
surrounding segments highlighted (greenish hues)

Segment Color Statistic and Morphological Features. From the pixel
intensity information of the color channels of an image, the mean, variance,
skewness, kurtosis, maximum, minimum and its quartiles are extracted for each
candidate segment. From the segment binary representation, we compute four
morphological features, area, roundness, elongation and perimeter. This results
in a vector of 60 statistical for the tree channels image (30 for the segment and
30 for the surroundings) and 42 for the HE composite.
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Segment Histogram. Despite its simplicity, histograms perform adequately as
input for classifiers in tasks as image indexing and retrieval as shown in [11]. In
this work, the histogram of each color band in a candidate segment is calculated
and used as part of a feature vector. In order to reduce inter-image variability,
the number of bins is reduced to 32. The result histogram feature vector is
composed by 192 characteristics in the tree channels image (96 for the segment
and 96 for the surroundings) and 128 in the case of the HE composite image.

Segment Histon. A histon (see [12]) is a contour plotted on the top of any of
the existing histograms of the components of the image. It exploits the corre-
lation among the neighbouring pixels in the same spectral plane as well as the
other spectral planes. In an histon, the collection of all points falling under a
similar colour sphere of a predefined radius, the similarity threshold or expanse,
E, belongs to a single bin in a histogram. For every intensity value g in the base
histogram, the number of points encapsulated in the similar colour sphere is
evaluated and added to the value in the histogram. The definition of an histon,
in an image I(x, y, s) of size M ×N , where s represent the spectral planes in the
image, is given as:

Hsi =
N∑

x=1

M∑

y=1

(1 + S (x, y)) δ (I (x, y, si) − g) 0 ≤ g ≤ L − 1 and si ∈ Sp (1)

where δ (·) is the Kronecker delta, L is the total number of intensity levels in
each of the spectral components (therefore, δ (I (x, y, si) − g) is a definition of a
histogram) and S (x, y) is a similarity function based on the distance measure
as the sum of spectral distances of the planes s1, · · · si,∈ Sp that compose the
image in any pixel (x, y) of a neighbourhood of sizes.

As we are extracting not the general histon of an image, but a set of segment-
based local histons, the global similarity threshold, E, is substituted by a set
of local similarity thresholds, corresponding to the mean standard deviation of
the spectral planes in the image for each segment. The histon feature vectors,
calculated from the previous histograms, encore 192 characteristics (128 in the
case of the HE composite).

2.4 Classifier Training

Extracted features result in large dimensional spaces. Taking that into account,
Random Forests has been selected to train the classifiers, as it can handle high
dimensional data by building a large number of trees using only a subset of
features, and is considered one of the most accurate classifiers. In order to reduce
the classification bias produced as a result of class imbalance between non-mitotic
and mitotic segment, first we down-sample the number of non-mitotic segments
in the training dataset, then oversample the mitotic candidates applying the
Synthetic Minority Oversampling Technique (SMOTE) [13]. Should be noted
that using SMOTE for oversampling represents a trade-off between precision
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and recall, the increase in true positives associated to a better balanced training
set represents an increment in false positives too.

The combination of feature vectors and diferent color space images produces
a pool of 12 classifiers. Unfortunately, just combining the outputs of those clas-
sifiers could result in a degradation in the final accuracy of the ensemble, as is
discussed in [14]. Its theoretical framework shows that, hypothetically, using the
same number of classifiers as the class labels gives the highest accuracy, proved
that those classifiers are independent component classifiers, but this condition
could not be easily achieved in real cases, making determining the ideal number
of classifiers a complex matter. Classifier selection is based on the conclusions
in [15]; classifiers should make uncorrelated errors with respect to one another.
As we expect errors mainly in the form of false positives, the least correlated
classifiers, using the Kendall rank correlation coefficient ([16]), from the pool of
classifiers are chosen to form the ensemble. Classifiers are combinned using the
maximum estimated confidence criteria (see [17]).

Fig. 4. Some examples of mitosis classification. True positives outlined in green, false
positives outlined in red and false negatives with no outline.

3 Results and Discussion

This method is trained and evaluated using the TUPAC16 dataset, released for
the MICCAI’16 Grand Challenge on Mitosis Assessment. The training dataset,
consists of images from 73 breast cancer cases from different pathology centers,
23 taken by an Aperio ScanScope XT, and 50 form a Leica SCN400 (×40 magni-
fication, spatial resolution of 0.25 µm/pixel). Two expert pathologists annotated
the locations of mitotic figures independently. The coincidences between pathol-
ogists were taken as ground truth objects and discrepancies were presented to a
panel of an additional two observers, who made the final decision. The testing
dataset consists of images from 34 breast cancer cases taken by a Leica SCN400.
Segmentation in done with our own implementation of SLIC on MATLAB, class
imbalance mitigation and classification is performed using WEKA.

Evaluation follows the guidelines used in the challenge. A detection will be
considered a true positive only if its distance to a ground truth location is less
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than 7.5 μm (30 pixels). If multiple detections are within the 30 pixels radios of
a single ground truth, they are counted as a one true positive.

Empirical testing suggest an ensemble of four classifiers as the combination
that produce better results. Should be noted that a small percentage (globally,
between 5%-8% in our tests) of mitosis, usually ill defined mitosis in its late
stages on over-stained images, could be lost in the candidate selection process
(Fig. 4).

Table 1. Evaluation results for a validation subset of 10 cases (C.) of the TUPAC16
mitoses detection challenge, showing the real number of mitoses in the case (NM.)
the number of true positives (TP), false positives(FP), false negatives (FN), and the
prediction (Pr), recall (Re) and F-measures (Fm) values.

C. NM TP FP FN Pr Re Fm

27 3 1 9 2 0.1 0.33 0.15

28 1 0 25 1 0 0 -

29 2 1 4 1 0.2 0.5 0.28

31 6 2 32 4 0.05 0.33 0.1

49 7 6 12 1 0.33 0.85 0.48

C. NM TP FP FN Pr Re Fm

52 27 12 15 7 0.63 0.44 0.52

56 2 1 9 1 0.1 0.5 0.16

64 19 7 17 12 0.29 0.36 0.32

67 63 41 28 22 0.61 0.65 0.63

73 5 3 10 2 0.23 0.6 0.33

Table 1 shows the result of a validation subset of ten cases (mean F-measure
0.29) selected from the TUPAC16 training set (case numbers reference the cor-
responding patient in the TUPAC16 training set). The results include the effect
of losing mitosis in the candidate selection process. As can be seen, the perfor-
mance of the proposed method largely vary between cases. It should be noted
that low performance in the classifier appears associated with a high number
of false positives rather than low recall values. Results of the TUPAC16 can be
seen in [6] (Task 3). (Evaluation with the testing TUPAC16 dataset is currently
ongoing).

4 Conclusion and Future Work

In this paper, an automated mitosis detection method based on a multi-color
space, multi-feature ensemble of classifiers has been proposed. Promising candi-
dates are selected from a superpixel segmentation of the image. The classification
is performed by an ensemble created from a selection from a pool of classifiers
trained from three different feature vector extracted from four color spaces.

Despite its straightforward nature the proposed method shows promising
results as the modular structure of an ensemble classifier means that any
improvement in the individual classifiers, the classifier selection or the classi-
fier combination step will affect positively to the final outcome. We expect to
continue this line of research, both to improve results in general and to under-
stand the significant differences in performance between cases.
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Abstract. Introducing the high-throughput measurement methods into molec‐
ular biology was a trigger to develop the algorithms for searching disorders in
complex signalling systems, like pathways or gene ontologies. In recent years,
there appeared many new solutions, but the results obtained with these techniques
are ambiguous. In this work, five different algorithms for pathway enrichment
analysis were compared using six microarray datasets covering cases with the
same disease. The number of enriched pathways at different significance level
and false positive rate of finding enrichment pathways was estimated, and repro‐
ducibility of obtained results between datasets was checked. The best perform‐
ance was obtained for PLAGE method. However, taking into consideration the
biological knowledge about analyzed disease condition, many findings may be
false positives. Out of the other methods GSVA algorithm gave the most repro‐
ducible results across tested datasets, which was also validated in biological
repositories. Similarly, good outcomes were given by GSEA method. ORA and
PADOG gave poor sensitivity and reproducibility, which stand in contrary to
previous research.

Keywords: Functional enrichment · Gene set analysis · Pathway analysis ·
Reproducibility

1 Introduction

Since the high-throughput methods were introduced into molecular biology, differen‐
tially expressed genes (DEGs) for various traits and diseases were massively detected
and investigated. Some of the most commonly used measurement techniques are micro‐
arrays and next-generation sequencing (NGS) methods which can show hundreds or
thousands of DEGs. Given the large number of detected genes it is hard to individually
interpret and validate them, so methods which can show more complex relation between
genes were developed. In the literature, they are known as enrichment or overrepresen‐
tation methods, and their main goal is to find specific collections of genes (gene sets,
GSs) in which disorders caused by DEGs are observed and analyzed by statistical inves‐
tigation. The GSs are defined mostly as the KEGG pathways [1], Gene Ontologies [2]
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or MSigDB [3] collections. Nowadays, almost every molecular biology study based on
high-throughput data looks for significant gene sets, starting from the investigation of
microRNAs [4] to complex system biology approach [5]. The methods of enrichment/
overrepresentation allow researchers to explain the observed processes or to perform
validation of computationally derived results.

Through the years many algorithms of enrichment/overrepresentation analysis were
proposed. They can be divided into three categories known as generations. First one is
known as Over-Representation Analysis (ORA) generation [6]. The idea of ORA is
simple and based on contingency tables constructed on proportions between DEGs and
non-DEGs in given gene set. Even though the ORA method is simple there are two
serious drawbacks. First, the information about the strength of phenotypes differentia‐
tion is lost by gene binarization (features in gene sets are represented only as DEGs or
non-DEGs). Secondly, the assumption of signal independence in the enrichment test is
not satisfied in most of the cases. To overcome these problems, the second generation
of enrichment methods was proposed, known as Functional Class Sorting (FCS). These
methods use an information about all investigated genes and sort them according to some
metric. Further, the information from gene level is transformed to gene set level by
process specific to each algorithm and statistical significance of each gene set is estab‐
lished. The newest, third generation is known as Pathway Topology (PT)-based
approach. The idea of methods assigned to the last generation is comparable to FCS
methods, however, they use the pathway structure to compute gene set enrichment
statistics.

Several comparison studies of gene set enrichment methods were performed. In [7]
they compared methods of first and second generation by assessment of sensitivity,
prioritization and specificity. In [8] they concentrated on third generation methods and
proposed an assessment score which combines pathway detection level and false posi‐
tive estimation. In [9] they compared influence of ranking metrics in Gene Set Enrich‐
ment Analysis (GSEA) method to the outcome. In the presented work selected first and
second generation methods are compared in terms of the number of enriched pathways
at different significance level, false positive rate estimation and reproducibility of the
results.

2 Material

In the presented study six microarray datasets were used. The datasets were down‐
loaded from GEO database [10] (GEO IDs: GSE14762, GSE781, GSE6344,
GSE15641, GSE14994, GSE11024). All of them are based on the investigation of
gene expression for healthy controls and patients with the same type of cancer - clear
cell Renal Cell Carcinoma (ccRCC). The following datasets were previously used in
[8] as large collection of one specific disease among other available. The sample size
of each dataset is as follows: 21, 17, 20, 55, 30 and 22. All data were normalized using
RMA algorithm, and the gene duplicates were removed by keeping the probeset with
the smallest p-value. The normality of expression distribution and homogeneity of
expression variance were checked using Lilliefors and F test. To define gene sets the
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KEGG pathway list was used. It was obtained via the KEGGREST Bioconductor
package giving 299 different gene sets [1].

3 Methods

3.1 Gene Set Enrichment Algorithms

Five different algorithms for detection of overrepresented/enriched pathways were
intensely analyzed. First one is the Overrepresentation Analysis (ORA) [6], in which
for each gene set the contingency table is constructed from the number of DEGs and
non-DEGs. Then, hypergeometric test with chi-square distribution is used to establish
significance of the gene set. Next algorithm is the Gene Set Enrichment Analysis
(GSEA) [3], which is the most commonly used method. The GSEA method tests if the
distribution of the gene ranks in the gene set differs from a uniform distribution by
weighted Kolmogorov-Smirnov test. As a ranking metric, the Baumgartner-Weiss-
Schindler statistic was used [11], which was highlighted as one of the best metric [9].
The next two methods at first summarize the expression of genes within the same
pathway for every sample into single value. The Gene Set Variation Analysis (GSVA)
[12] estimates the expression distribution over the sample by non-parametric kernel
distribution, which allows to get common scale of expression profiles. Next, it calculates
the Kolmogorov-Smirnov-like statistic to get a summary score. Pathway Level Analysis
of Gene Expression (PLAGE) [13] method standardizes expressions by z-score calcu‐
lation and then performs the singular value decomposition (SVD). Next, the first right-
singular vector of coefficients (similar to the first component in PCA) is taken as the
summary score. The final p-value of pathway enrichment for both methods is calculated
by performing two-sample t-test with unequal variances (Welch approximation) on
summarized data. The last method is Pathway Analysis with Down-weighting of Over‐
lapping Genes (PADOG) [14]. The main idea of PADOG is to calculate weights for
each gene to separate the genes appearing in a few gene sets, versus genes that appear
in many gene sets. Further, the gene set score is calculated as the mean of absolute values
of weighted moderated gene t-scores.

Table 1. Initial settings for all algorithms used in the study.

Method Permutations Gene set size filtration Gene ranking metric
GSEA 1000 <15 genes & >500 genes BWS
GSVA NA <15 genes & >500 genes NA
ORA NA NA Welch-test p-values
PADOG 1000 <15 genes internal metric
PLAGE NA <15 genes & >500 genes NA

Those five algorithms were chosen due to the following reasons. GSEA and ORA
are the most commonly used methods. PADOG and PLAGE were shown to be the one
of the most sensitive and specific algorithms in [7] and GSVA was selected as an alter‐
native to PLAGE method. Except ORA, all algorithms are classified as self-contained
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methods and perform sample permutation to obtain a score for each gene set [15]. The
starting parameters for each algorithm are presented in Table 1.

3.2 Computational Experiment Scheme

The number of analyzed KEGG pathways was reduced due to internal filtration of each
algorithm. The number of significantly enriched KEGG pathways was established based
on the gene set score given from individual methods and Bonferroni multiple testing
correction (to give the most conservative estimation). As the same disease was investi‐
gated in each dataset, the algorithm that detects similar pathways in every dataset is
thought to give reproducible results. The pathways detected across five or six datasets
were further validated by the literature study. To estimate the false positive rate, the
original phenotypes for each dataset were permuted, creating 50 independent data
collections. Using the new datasets, the level of detected pathways was checked and
compared to the expected one. Finally, to compare all methods the score proposed by
Jaakkola and Elo (JE score) was calculated [8]. In general, the JE measure checks the
ratio between weighted number of pathways detected for multiple datasets and the
average number of estimated false positives. JE score is calculated as:

JE score (method) =
1000

W(n −

⌈
n

2

⌉
+ 1)2

⎡
⎢⎢⎢⎢⎣

∑n
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⌈n

2
⌉ 𝛽(method, h) ∗ (h −

⌈
n

2

⌉
+ 1)2

(𝛼(method) + 1)2

⎤
⎥⎥⎥⎥⎦

(1)

where n is the total number of analyzed datasets, β is the number of significant gene sets
under h datasets, α represents the average estimated false positive rate and W is the total
number of analyzed gene sets. The higher value of the JE score means that the more
reproducible results and low false positive rate are provided by the algorithm.

4 Results and Discussion

At first stage, all analyzed datasets were checked for expression signal normality and
homogeneity of variance. For all six, the non-normal distributions and non-homogenous
variances were observed for majority of genes. It implies the usage of non-parametric
method for gene ranking in GSEA and for finding DEGs in ORA. The number of inves‐
tigated KEGG pathways was reduced to common level that was set by each algorithm
(from 299 to 192). The statistically significant pathways were estimated at 0.05 signif‐
icance level using gene set score from each method and Bonferroni correction for
multiple testing was performed. Results of finding enriched pathways are presented in
Table 2. Since all datasets analyze the same type of cancer (ccRCC) it is expected that
the algorithms should give similar results for each investigated dataset. PLAGE algo‐
rithm detected the largest number of KEGGs common across five and six datasets
(52.61% of analyzed pathways). GSVA and GSEA algorithms gave the smaller number
of common pathways: 7.81% and 3.64%, respectively. ORA and PADOG did not find
any significant pathways shared by at least 5 datasets. It shows their weakness in
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reproducibility of the results. To support those findings and include false positive esti‐
mation, the Jaakkola and Elo score was calculated and the results are presented in
Table 3.

Table 2. Results of finding common enriched pathways across tested datasets.

Method GSEA PADOG PLAGE GSVA ORA
Total 192
not significant 116 185 0 79 175
% 60.42% 96.35% 0.00% 41.15% 91.15%
in 1 dataset 38 5 3 27 5
% 19.79% 2.60% 1.56% 14.06% 2.60%
in 2 datasets 14 1 6 23 4
% 7.29% 0.52% 3.13% 11.98% 2.08%
in 3 datasets 9 1 21 24 6
% 4.69% 0.52% 10.94% 12.50% 3.13%
in 4 datasets 8 0 61 24 2
% 4.17% 0.00% 31.77% 12.50% 1.04%
in 5 datasets 3 0 78 11 0
% 1.56% 0.00% 40.63% 5.73% 0.00%
in 6 datasets 4 0 23 4 0
% 2.08% 0.00% 11.98% 2.08% 0.00%

Table 3. Results of calculating Jaakkola and Elo score (the higher the better).

GSEA PADOG PLAGE GSVA ORA
JE score 42.20 0.32 434.57 92.12 4.56

The best JE score was obtained by PLAGE, which gave the largest number of
significant pathways and low false positive ratio. As in previous comparison, next top
algorithms are GSVA and GSEA. They gave comparable results, however, the GSVA
algorithm showed higher JE score due to the larger number of KEGGs common across
several datasets. Second to last was ORA algorithm and the weakest one was PADOG
method. These results are partially in opposite to the one obtained in [7], where PLAGE
and PADOG showed high sensitivity and specificity of finding target pathways and ORA
was also distinguished. From this group, in this study only PLAGE gave reproducible
results across several datasets. Furthermore, GSVA and GSEA algorithms seem to be
more reproducible compared to PADOG and ORA.

The PLAGE method gave much better results in comparison to other algorithms, but
the number of enriched pathways looks overestimated. In Fig. 1 the average percent of
significantly enriched/overrepresented gene sets is presented for different significance
level. PLAGE gave very low p-values for almost all gene sets. It indicated nearly 80%
of the gene sets as relevant, even for the significance level established by the most
conservative Bonferroni multiple testing correction method. Such huge percent of
enriched pathways suggest that most of the analyzed gene sets are related to the
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investigated disease. From the biological point of view the difference in gene expression
between healthy and cancer patients occurs in at most 10% of genes [16], so the number
of enriched pathways cannot be as high as PLAGE showed. Thus, it can be concluded
that results of PLAGE method are overestimated. In contrary, PLAGE has an acceptable
level of false positives (Fig. 1 – second row).

Fig. 1. Results for detecting significant gene sets across various thresholds. First row represents
percent of significant pathway by average for each algorithm in linear (left figure) and logarithmic
scale (right figure). Second row present false positive estimation.

The common outcomes for GSVA and GSEA can be the result of similar method‐
ology: both use the Kolmogorov-Smirnov-like statistics. The idea of PLAGE and GSVA
are similar, however, the singular value decomposition used in PLAGE leads to over‐
estimation of results. The poor results given by PADOG can be caused by non-normal
distribution of the expression data. The algorithm itself uses the moderated t-test to
evaluate gene level statistic. Similar reason for weaker outcomes can be stated for ORA,
where Welch approximation of t-test was used.

If we discard PLAGE due to a possible overestimation of enrichment p-values,
GSVA and GSEA algorithms can be pointed as those, which give the most reproducible
results across all datasets. Also, they gave an acceptable level of false positives. The
KEGG pathways detected across five and six datasets by GSVA (15 gene stets) and
GSEA (7 gene sets) were further investigated by literature search (Fig. 2).
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Fig. 2. Venn diagram presenting the number of detected gene sets across five and six datasets by
GSVA and GSEA algorithms (created in eulerAPE software [17]).

First, four pathways detected by both algorithms were removed, and only pathways
specific to given method were investigated. In case of results given by GSEA algorithm,
only one pathway (Propanoate metabolism pathway) was previously reported as related
to ccRCC [18–20]. The two remaining pathways were not associated with ccRCC
(Staphylococcus aureus infection, Phagosome), which gave 33% validity level. For
GSVA algorithm, there were two pathways evidently connected with cancer disease
(DNA replication and p53 signaling pathway). Three other pathways were previously
associated with ccRCC: Systemic lupus erythematosus [21], Type I diabetes mellitus
[19] and Toll-like receptor signaling pathway [22]. This shows that GSVA algorithm
can give not only reproducible results but also appropriate in a biological sense (45% of
pathways previously reported to ccRCC). Nevertheless, all presented findings are based
on one collection of datasets for ccRCC disease. This fact can affect the obtained results,
thus study on other large collection of datasets devoted to different trait should be
performed.

5 Conclusions

The comprehensive comparison of five algorithms for detection of pathway disorders
was performed. It was shown that PLAGE method detects most pathways as associated
with the investigated trait, which may indicate an overestimation. So, there is still a need
to find a new measure for gene set analysis results, that favours reproducibility but gives
penalty for overestimation of the results. GSVA algorithm can be highlighted for very
reproducible results and keeping an acceptable level of false positives. The weakest
results were obtained by ORA and PADOG. Those findings show that not only high
sensitivity and specificity of enrichment algorithms should be taking into consideration
like in [7] but also reproducibility of the results.
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Abstract. Predicting progression from a stage of Mild Cognitive Impairment to
Alzheimer’s disease is a major pursuit in current dementia research. As a result,
many prognostic models have emerged with the goal of supporting clinical deci‐
sions. Despite the efforts, the lack of a reliable assessment of the uncertainty of
each prediction has hampered its application in practise. It is paramount for clini‐
cians to know how much they can rely upon the prediction made for a given
patient, in order to adjust treatments to the patient based on that information. In
this exploratory study, we evaluated the Conformal Prediction approach on the
task of making predictions with precise levels of confidence. Conformal predic‐
tion showed promising results. Using high confidence levels have the drawback
of leaving a large number of MCI patients without prognostic (the classifier is not
confident enough to give a single class). When using forced predictions,
conformal predictors achieved classification performances as good as standard
classifiers, with the advantage of complementing each prediction with a confi‐
dence value.

Keywords: Conformal predictors · Confidence estimation · Mild cognitive
impairment · Alzheimer’s disease · Prognostic prediction

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease, causing cognitive impairment,
with devastating effect on patients and their families, and a huge socio-economic impact
in modern societies. Nowadays, more than 30 million people suffer from AD worldwide
and its prevalence is expected to triple by 2050 [1]. Mild Cognitive Impairment (MCI)
is considered as a transitive stage between healthy aging and dementia [1], suggesting
these patients as a group of singular interest to follow-up studies and interventions. In
this context, studying the predictive value of MCI for the progression to dementia is a
major challenge in current dementia research [2, 3].
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Machine learning is at the core of many recent advances in dementia-related research
[4]. By following different approaches and using different types of data, researchers have
sought for robust prognostic models, to guide clinical decisions, by means of a medical
decision support system to be used in clinical settings. This system would predict the
most likely prognostic for a new MCI patient based on the past history of a cohort of
patients with known diagnostics. If the prediction is trustworthy, clinicians then use it
to timely adjust the treatment and medical appointments, and administer more effective
treatments [3, 5]. Despite the advances made in prognostic prediction of MCI patients,
the lack of an indication about the confidence of each prediction have hampered its
practical applicability. For clinicians, it is paramount to know how much they can trust
on the prognostic predicted for a new patient, in order to pursue with treatments relied
on that information [6, 7]. Assessing the classifier’s performance in single examples
(patients) is also useful in ensemble applications [7]. The standard assessment metrics
used to evaluate the average performance on an independent dataset (as the accuracy)
are not suitable to these problems, as we want to assess the reliability in the classification
of each individual patient.

Conformal Prediction (CP) has been proposed to tackle this problem [8, 9]. It predicts
the class that makes the new example (patient) more “conform” to the training set, with
precise confidence levels. A confidence level of 0.9, for instance, means that the
conformal predictors commit a maximum of 10% of errors. This approach has been used
in disease-related problems [10, 11]. In this study, we apply the conformal prediction
framework to the prognostic problem of MCI-to-AD conversion. To our knowledge,
this was not explored to date. In this exploratory study, we aimed to evaluate how accu‐
rate and reliable are the predictions given by the CP framework.

2 Conformal Prediction

We introduce the idea behind the conformal prediction framework. For a more formal
description we refer to [8, 9]. Let us assume that we are given a training set
{(x1, y1),… , (x

n−1, y
n−1)}, where x

i
∈ X is a vector of attributes and y

i
∈ Y  is the class

label (assuming a binary classification problem). Given a new test example (x
n
) we aim

to predict its class. Intuitively, we assign each class y
n
∈ Y to x

n
, at a time, and then we

evaluate how “strange” or “non-conform” the example (x
n
, y

n
) is in comparison with the

training set. We assume that the most likely class label conforms better with the training
set. A non-conformity measure, to assess the strangeness of the test example, must be
extracted from the underlying classifier. To evaluate how different x

n
 is from the training

set, we compare its non-conformity score with those of the remaining training examples
x

j
, j = 1,… , n − 1, using the p-value function (distinct from the p-value from statistics):
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where 𝛼
n
 is the non-conformity score of x

n
, assuming it is assigned to the class label

y
n
. If the p-value is small, then the test example (x

n
, y

n
) is non-conforming, since few
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examples (x
i
, y

i
) had a higher non-conformity score when compared with 𝛼

n
. On the other

hand, if the p-value is large, x
n
 is very conforming, since most of the examples (x

i
, y

i
)

had a higher non-conformity score when compared with 𝛼
n
.

For a given significance level 𝜀, Conformal Predictors (CPs) output a prediction
region, T𝜀: set of all classes with p

(
𝛼

n

)
> 𝜀, contrarily to the single predictions given

by standard classifiers. These prediction regions have a guaranteed error rate. This means
that the frequency of errors (fraction of true values outside T𝜀) does not exceed 𝜀, at a
confidence level 1 − 𝜀. The error rate is guaranteed under the randomness assumption,
which states that the examples are independently drawn from the same distribution (this
property is called validity) [8]. Prediction regions may therefore comprise more than
one class (uncertain prediction), any class (empty prediction) or a single class (certain
prediction). Multiple predictions are not mistakes but a reflection that the classifier was
not confident enough to predict a certain class. The smaller the prediction region, the
more efficient the conformal predictor [8].

Alternatively, we may force the conformal predictors to output a single prediction,
predicting the class with the highest p-value (forced prediction), at the cost of losing the
guaranteed confidence level. The highest p-value is the credibility of the prediction while
its confidence is given by the complement to 1 of the second highest p-value.

Conformal prediction may be used in the transductive or in the inductive setting.
When transductive framework is used, the training set is enriched with the test
example, and the underlying classifier is updated. Non-conformity scores are then
computed, for all the training examples. This process is repeated for all class labels
y ∈ Y . A new prediction is therefore based on all the training examples. For large
datasets, this is computationally very demanding. This led to the emergence of induc‐
tive learning [12, 13]. When inductive is used, the training set {(x1, y1),… , (x

n−1, y
n−1)}

is divided into the proper training set {(x1, y1),… , (x
m

, y
m
)} and the calibration set

{(x
m+1, y

m+1),… , (x
n−1, y

n−1)}, where m < n − 1. The proper training set is used to
derive the prediction rule, by training the underlying classifier. This prediction rule is
then used to classify the examples of the calibration set and the test example. Non-
conformity scores are only computed with the examples of the calibration set.

Mondrian conformal prediction is a variant of CP that deals with imbalanced datasets
[8]. When the number of examples of a given class is significantly larger than those of
the other class, most errors are putatively from the minority class, limiting the applica‐
bility of these predictions. Mondrian conformal prediction applies CPs separately to
each label class. The p-value is thus computed by comparing the non-conformity score
of the test example against only training examples of the same class as the current
hypothesis y

n
:
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3 Methods

3.1 Data

Participants were selected from a revised version of the Cognitive Complaints Cohort
(CCC) [2]. This is a prospective study conducted at the Faculty of Medicine of Lisbon
to investigate the progression to dementia in subjects with cognitive complaints. It is
based on an extensive neuropsychological evaluation at one of the participating insti‐
tutions (Laboratory of Language Studies, Santa Maria Hospital, and a Memory Clinic,
both in Lisbon, and the Neurology Department, University Hospital in Coimbra). The
neuropsychological battery was validated in the Portuguese population and assesses
different cognitive domains, such as memory and reasoning (BLAD [14]). In total, 90
variables covering clinical, demographic and neuropsychological data were used, whose
description may be found in [2]. In this study, we selected patients diagnosed with MCI
at baseline, who had at least one follow-up appointment and were followed for at least
3 years. The dataset comprised 160 (57%) patients who converted to dementia (positive
class: converter MCI, denoted cMCI) while 122 (43%) did not convert throughout the
study (negative class: stable MCI, denoted sMCI).

3.2 Conformal Prediction Framework

Given that the dataset under study does not have high dimensionality, we decided to use
the Transductive Conformal Prediction framework. In addition, despite the minor imbal‐
ance of classes, we decided to study how Mondrian CP would perform in our case study.
We tested four significance levels (𝜀 = {0.10, 0.15, 0.20, 0.30}). The dataset was
randomly split (keeping class proportions) in training set (60%) and test set (40%).
Correlation-based feature selection was run on the training set, in order to select relevant
features. The classification approach was implemented in Java using WEKA’s func‐
tionalities (version 3.8.0).

Nonconformity measures. We used k-Nearest Neighbors (kNN, k set to 3) and Naïve
Bayes as underlying classifiers along with the non-conformity measures described in
Table 1. We decided to use Naïve Bayes since, in previous experiments, it outperformed
other commonly used classifiers (such as SVMs, Decision Trees and Random Forests)
in the MCI-to-dementia conversion problem [15]. We also used kNN since it is widely
used in conformal prediction studies [12, 16].

Table 1. Non-conformity measures for the classifiers used in this study.

Classifier Non-conformity
measure

Comment

kNN ∑k

j≠i:yj=yi

d(x
j
, x

i
)

∑k

j≠i:yj≠yi

d(x
j
, x

i
)

Sum of the distances to the k nearest neighbors

Naïve Bayes − log p
(
y

i
= c|x

i

)
p is the posterior probability estimated by Naïve Bayes
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4 Results and Discussion

For each significance level 𝜀 , conformal predictors may produce multiple prediction
regions: (1) a single class (the p-value is smaller than 𝜀 for one of the classes, Certain
prediction), (2) two classes (the p-value of both classes is larger than ε, Uncertain
prediction), (3) no class (the p-value of both classes is smaller than ε, Empty prediction).
One patient is thus classified as cMCI (or sMCI) if and only if cMCI (or sMCI) is the
only label in the prediction region.

According to the validity property of CPs the prediction error rate (when the predic‐
tion region does not contain the real class) is not larger than the predefined significance
level 𝜀 > 0. The CPs used in this study proved to be valid, as illustrated in Table 2
(rightmost column). When there are no Empty predictions, the error rate is the ratio of
the number of certain but wrong predictions (“cMCI predicted sMCI” and “sMCI
predicted cMCI”) to the total number of cMCI and sMCI examples. The validity was
verified across all the experiments. However, due to space limitations, we reported only
the results obtained with the Transductive CP.

Table 2. Predictions obtained with Transductive CP framework using Naive Bayes (NB) and k-
Nearest Neighbors (kNN, k set to 3) with different significance levels.

Significance cMCI
pred
cMCI

cMCI
pred
sMCI

sMCI
pred
sMCI

sMCI
pred
cMCI

Empty Uncertain Error
Rate

0.10 NB 5 0 7 0 0 100 0.018
kNN 4 0 0 1 0 109 0.009

0.15 NB 13 1 11 2 0 87 0.026
kNN 9 1 1 1 0 102 0.018

0.20 NB 17 1 15 2 0 79 0.026
kNN 13 1 5 1 0 92 0.035

0.30 NB 23 3 20 3 0 65 0.052
kNN 21 1 14 7 0 71 0.070

The implemented conformal predictors have been proven to be always valid [8, 17],
theoretically or empirically (depending on the CPs settings). As such, researchers’
attempts have been focused on improving their efficiency (prediction regions’ size) [17].
Regarding the prognostic problem under study, we aim to train a CP to output a certain
prognostic prediction (the patient will or will not evolve to dementia), with a known
confidence level, in order to support the clinician’s decision. A conformal predictor that
outputs mostly uncertain predictions hampers its clinical applicability.

The efficiency varies with the significance level as illustrated in Table 2 and in
Fig. 1. The size of the prediction region increases (number of multiple predictions
increases) as the significance level decreases. This means that for a smaller significance
level a certain and putatively correct prediction (sMCI or cMCI) might be then predicted
as uncertain, since both p-values are then larger than the actual 𝜀. Contrarily, for a higher
significance level, it may happen that a certain prediction becomes an Empty prediction
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(both p-values < 𝜀). As illustrated in Table 2, when we reduce the significance level
from 0.3 to 0.1 (using the CP Naïve Bayes) the number of uncertain prediction raises
from 65 to 100, although the number of wrong certain predictions drops to 0. In Fig. 1
we may also observe that the number of certain predictions increases with the signifi‐
cance level. Being more confident has therefore the cost of having a less efficient CP,
in the sense that it outputs a larger number of uncertain predictions. Depending on the
problem where the model will be applied, we should find a trade-off between the number
of error allowed (significance level) and the number of certain predictions obtained.

Fig. 1. Classification performance and proportion of certain predictions obtained with conformal
prediction framework using Naïve Bayes and k-Nearest Neighbors (kNN, k = 3) as underlying
classifiers and different settings (Transductive and Mondrian Transductive) in function of the
significance level (𝜀 = {0.10, 0.15, 0.20, 0.30}). Only certain predictions were used to compute
the evaluation metrics (accuracy, sensitivity and specificity).

Since we were interested in evaluating how CPs performed on making predictions
for individual examples, we calculated the accuracy, sensitivity and specificity of each
prediction obtained with the test set (considering only certain predictions). The results
are presented in Fig. 1. The accuracy is sometimes inferior to what was expected given
the percentage of errors allowed by conformal predictors (validity property). This
happens because we are not considering the “correct predictions” when both classes
belong to the predictions region (uncertain predictions). The number of certain predic‐
tions obtained with the transductive CP (NB and kNN) was low, despite having good
performances (accuracy around 0.80). Moreover, these classifiers seem to have more
difficulty to predict non-converting patients (sMCI), evidenced by the smaller specificity
values. This was attenuated by using Mondrian learning. Besides enhancing the specif‐
icity, Mondrian CPs also outputted a larger number of certain predictions, even for small
significance level values. As an example, Mondrian CP with Naïve Bayes achieved good

160 T. Pereira et al.



performances for a high level of confidence (𝜀 = 0.1, Accuracy = 0.84, Sensi‐
tivity = 0.75, Specificity = 0.91, 70% of certain predictions).

Regarding the prognostic problem, since we want to minimize classification errors
while providing prognosis for as many patients as possible, a good trade-off is to use
mondrian transductive conformal prediction along with low values of significance
(𝜀 = 0.1 or 𝜀 = 0.15).

Although CPs have been designed with the purpose of providing prediction regions
with guaranteed error rate, we can force them to always give a single forced prediction.
After the p-value assignment, we predict the class with the highest p-value. However,
we should bear in mind that by doing this, we lose the guaranteed validity. We can,
however, compute the credibility (highest p-value) and confidence (complement to 1 of
the second highest p-value) of each prediction, as mentioned in Sect. 2. We did this
experiment in order to compare CPs with standard classifiers. According to the results
(Table 3), conformal predictors performs as good, or even better, as the standard clas‐
sifiers, especially when using the kNN classifier.

Table 3. Results obtained with standard classifiers (NB and kNN) and with Conformal Predictors
with forced predictions.

NB CP-NB kNN CP-kNN
Transductive Mondrian

transductive
Transductive Mondrian

transductive
Acc. 0.737 0.728 0.746 0.675 0.737 0.746
Sens. 0.740 0.740 0.740 0.360 0.800 0.760
Spec. 0.737 0.719 0.737 0.922 0.688 0.734

Fig. 2. Proportion of correct and wrong predictions predicted within three intervals of credibility
(CP framework) or posterior probability (Naïve Bayes).

Since the posterior probabilities given by the Naïve Bayes classifier may be indica‐
tive of the quality of each prediction, we compared this measure with its equivalent on
CP, the credibility (Fig. 2). More specifically, we evaluated how many correct and wrong
predictions had low, moderate or high values of credibility together with the posterior
probabilities. Most posterior probabilities were higher than 0.85, for both correctly and
incorrectly classified instances. NB thus lacks of discriminative power to assess the
trustworthiness of individual predictions, since both correct and wrong predictions have,
indiscriminately, high values of posterior probabilities. On the other side, CPs produce
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only 12% of errors with credibility superior to 0.85. Credibility values of correct predic‐
tions may be used to stratify patients regarding the “certainty” on their conversion risk,
allowing the clinicians to adjust the treatments accordingly.

5 Conclusions

This paper presents an application of Conformal Prediction to the prognostic problem
of conversion from MCI to AD, in a real-world dataset. The main purpose was to inspect
whether CPs produced trustworthy predictions for a given patient. This information is
paramount in the clinical practice.

Conformal predictors output prediction regions, containing the correct class within
a precise level of confidence. High confidence levels have the advantage of guaranteeing
a minor number of errors, but they limit considerably the number of certain predictions,
and so, the number of patients with prognostic. Although this effect was attenuated by
using Mondrian learning, further work should be carried out to improve their efficiency.
When using forced predictions, conformal prediction proved to be a valuable frame‐
work, performing as good as standard classifiers and, complementing each prediction
with credibility and confidence values.

In the clinical practice, clinicians may use CPs in a first step to reveal the set of
patients with prognostic prediction with guaranteed error (prediction regions). Forced
predictions may then be made for those patients with uncertain predictions. Despite not
having a guaranteed validity, it gives clinicians insight of their prediction’s reliability.
Clinicians can then prescribe more specific exams for those patients to whom the model
produced less confident predictions.
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Abstract. G protein-coupled receptors are eukaryotic cell membrane
proteins with a key role as extracellular signal transmitters. While
GPCRs embrace a wide and heterogeneous super-family of proteins, our
interest in this study is in its Class C, of great relevance to pharmacology.
The scarcity of knowledge about their full 3-D crystal structure makes
the use of their primary amino acid sequences important for analysis. In
this paper, we systematically analyze whether segments of the receptor
sequences are able to discriminate between the different class C GPCR
subtypes according to their topological location on the extracellular,
transmembrane or intracellular domain. For this, we build on previous
research that showed that the use of the extracellular N-terminus domain
on its own for this classification task did only entail a minor decrease in
subtype discrimination when compared to the complete sequence. We
use Support Vector Machine-based classification models to assess the
subtype discriminating power of the topological segments.

Keywords: G-protein coupled receptors · Pharmaco-proteomics · Seg-
mentation · Support vector machines

1 Introduction

G protein-coupled receptors (GPCRs) are proteins located in the eukaryotic
cell membrane. This location determines their role in transmitting extracellular
signals to the interior of the cell. Such key physiological role makes them a
prevalent drug target in pharmacological research [1].

The current study does not cover the whole GPCR super-family, but specif-
ically its class C [2] (defined according to the IUPHAR1 convention). Members
1 http://www.iuphar.org.
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of this class are relevant to the investigation of therapies for neurological dis-
eases [3]. Despite recent impressive advances in the discovery of GPCR crystal
structures [4], the information about tertiary and quaternary structure is very
limited in the case of class C GPCRs [5,6]. In consequence, the information of
the primary amino acid sequences of class C GPCRs (in this case well known
and available from publicly accessible databases) is often analyzed as of the
investigation of receptor functionality.

In previous research, the discrimination between the seven defined subtypes
of class C GPCRs was investigated using supervised classification approaches.
Experiments revealed a relatively high level of differentiation between the sub-
types, but also a clear upper threshold to classification accuracy. This research
was carried out both using transformations based on the physicochemical prop-
erties of the amino acids [7] and on short n-gram features [8]. It is important to
note that these prior investigations used the complete and unaligned amino acid
sequence of the receptors.

The GPCRs have different structural domains, including, amongst others,
a seven-helix transmembrane (7TM) domain and an extracellular domain. In
the case of class C, they include a large domain in the extracellular part of the
receptor (N-terminus), which is built by the Venus Flytrap (VFT) and a cystein
rich domain (CRD) connecting both in many of their subtypes [9]. Recently, we
investigated whether the extracellular N-terminus domain of the sequences suf-
ficed to discriminate between class C GPCR subtypes [10], and concluded that,
even if the use of the N-terminus did not suffice to completely retain the subtype
discrimination capabilities of the whole sequence, the decrease in classification
performance was rather small.

In the current paper, we build on these preliminary results and provide a
systematic analysis of the subtype discrimination capabilities of the complete
set of different topological locations in the class C sequences (in extracellular,
transmembrane and intracellular domains), including their combinations. We
compare this with the performance of the complete sequence.

The remainder of the paper is organized as follows: the data analyzed in this
study are briefly described in Sect. 2. This is followed in Sect. 3 by the description
of the Support Vector Machine (SVM)-based classification strategy, the methods
of sequential data transformation, the criteria for partition of the sequence in
domains and sub-domains and, finally, the metrics used for performance eval-
uation. Experimental results are next presented and discussed and a few final
conclusions of the study are outlined.

2 Materials

The data analyzed in our study was extracted from the GPCRdb [11] data-
base system for GPCRs. This is part of the GPCR Consortium2, which is an
industry-academia partnership. GPCRdb divides the GPCR superfamily into

2 URL: http://gpcrconsortium.org.

http://gpcrconsortium.org
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five major families according to IUPHAR and, as explained in the introduction,
we only focus here on class C [2,12], for their relevance in pharmacoproteomics.
Class C of GPCRs is in turn subdivided into seven main subtypes: Metabotropic
Glutamate (MG) receptors, Calcium sensing (CS), GABA-B (GB), Vomeronasal
(VN), Pheromone (Ph), Odorant (Od) and Taste (Ta). The analyzed data set
from version 11.3.4, as of March 2011, comprises a total of 1,510 sequences from
the seven subtypes. The current work restricts the analysis to the subset of 1,252
sequences that have information of the complete 7-TM domain. Table 1 shows
the distribution of sequences per subtype both for the original data set and for
the data set comprising only sequences with complete 7-TM structure.

Table 1. Number of sequences in the original data set and in the subset with complete
7-TM structure.

Class C subtype � sequ. original dataset � sequ. complete 7-TM structure

MG 351 282

CS 48 45

GB 208 156

VN 344 293

Ph 392 323

Od 102 90

Ta 65 62

1510 1252

3 Methods

3.1 Supervised Classification Techniques

In the reported experiments, we first used several supervised models for the clas-
sification of the alignment-free amino acid sequences into the seven class C GPCR
subtypes. The results obtained with the complete sequences were first used to
decide which classifier to select for the remaining analyses. The comparison was
carried out using similar classifiers to those already used in previous research [7],
namely SVM [13], Random Forest (RF) [14] and Näıve Bayes (NB) [15].

The results for all classifiers were obtained applying 5-fold cross validation
(5-CV) using stratification for folder creation. In the case of the SVM, the svm-
Lib implementation [16] was used with a one-vs-one classification approach and
applying a nonlinear kernel, namely the radial basis function (RBF) kernel:
K(xi, xj) = e(−γ||xi−xj ||). The use of the RBF kernel requires the setting of two
parameters, the error penalty parameter C and the γ parameter of the kernel,
through a grid search.
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3.2 Alignment Free Transformations

Prior to the creation of classification models, the class C sequences of vary-
ing length had to be transformed into fixed size representations. In proteomics
research, transformations based on the physicochemical properties of the amino
acids are often used [17,18], but also transformations that draw inspiration from
the field of symbolic language analysis, which treat sequences as text from a 20
amino acid alphabet. In the latter, the occurrence of short “words” also known
as n-grams is usually investigated [19]. In this study, we followed this approach
and calculated the relative frequency of occurrence of n-grams of sizes 1 and 2,
which we call the AA and Digram transformations, respectively. This n-gram-
based transformations yielded good classification results in previous research
when the complete sequence of the original data set was analyzed [8]. Here, we
calculated not only the frequencies of AA and Digram for all sequence segments
under study (called appended frequencies), but also the accumulated frequencies,
which are calculated as the occurrence of AA or Digram in all the segments
under study divided by the sum of the lengths of these segments (Fig. 1).

3.3 Topological Segmentation

As explained in the introduction, class C GPCRs, being transmembrane pro-
teins, have a common complex structure: An extracellular domain comprising
the N-terminus and 3 extracellular loops (EL), the 7TM and an intracellular
domain built by three intracellular loops (IL) and the C-terminus. According
to this segmentation, the entire sequences consists of 15 segments, which were
detected using the transmembrane detection tool Phobius [20]. Table 2 shows
some statistics for the lengths (in number of amino acids) of these segments.

Fig. 1. Graphical representation of the common structure of GPCRs.
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Table 2. Statistical information concerning the length of the segments.

Segment Max Min Mean StDev

Complete sequence 1,768 250 861.7 181

N-terminus 1,502 6 532.2 148.3

EL1 329 5 11.6 10.4

EL2 70 5 27 10.4

EL3 31 5 9 3.9

TM1 34 16 24.7 1.9

TM2 31 17 21.8 1.7

TM3 34 17 23.5 2.3

TM4 33 18 22.3 2.9

TM5 34 17 23.5 2.3

TM6 27 17 21.3 1.3

TM7 31 16 23.6 1.6

IL1 567 6 17 39.9

IL2 69 11 18.9 4.2

IL3 85 6 11.9 3.3

C-terminus 1,044 0 73 113

3.4 Metrics

The quality of the multi-class models was evaluated using the classification accu-
racy, which is the proportion of correctly classified receptors, and the Matthews
correlation coefficient (MCC), which is, in principle, more robust when experi-
ments involve unbalanced classes.

4 Experiments

4.1 Comparison of Classifiers

As explained in Sect. 3.1, a first batch of experiments with complete sequences
was performed to select a classifier. The results in Table 3 reveal that the SVM
outperforms RF and NB both for the AA and Digram transformations. In con-
sequence, SVM was used in the remaining experiments.

4.2 Experiments with Topological Sequence Segments

The SVM experiments with the different topological segments and their combi-
nations are reported next. Table 4 corresponds to segments in the extracellular
domain; Table 5 to the 7TM and Table 6 to the four intracellular regions IL1, IL2
and IL3 and the C-terminus; Table 7, in turn, shows the classification results for
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Table 3. Classification results for the entire sequence. Best results in bold.

Classifier AA Digram

Size Accuracy MCC Size Accuracy MCC

SVM 20 0.873 0.838 400 0.934 0.917

RF 20 0.726 0.657 400 0.724 0.656

NB 20 0.703 0.625 400 0.834 0.792

Table 4. Classification results for the extracellular segments. Best results in bold.

Segments AA Digram

Size Accuracy MCC Size Accuracy MCC

N-terminus 20 0.835 0.792 400 0.920 0.901

EL1 20 0.842 0.802 390 0.831 0.786

EL2 20 0.839 0.798 386 0.861 0.825

EL3 20 0.825 0.779 327 0.816 0.769

All EL appended freq 60 0.873 0.839 1103 0.880 0.873

All EL accum. freq 20 0.845 0.804 398 0.875 0.844

(Nterm + EL) appended freq 80 0.904 0.878 1502 0.912 0.889

(Nterm + EL) accum. freq 20 0.849 0.808 400 0.921 0.901

Table 5. Classification results for the transmembrane segments. Best results in bold.

Segments AA Digram

Size Accuracy MCC Size Accuracy MCC

TM1 20 0.794 0.741 321 0.823 0.778

TM2 20 0.850 0.809 298 0.847 0.806

TM3 20 0.866 0.829 290 0.878 0.846

TM4 20 0.822 0.776 320 0.860 0.822

TM5 20 0.859 0.818 293 0.856 0.817

TM6 20 0.836 0.794 262 0.848 0.810

TM7 20 0.808 0.755 281 0.843 0.801

TM appended frequency 140 0.900 0.873 2066 0.900 0.873

TM accumulated frequency 20 0.879 0.847 384 0.894 0.864

the N-terminus combined with the 7TM region. For each experiment the table
shows the name of the segments under study, the size of the feature set and the
classification performance as measured by accuracy and MCC.
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Table 6. Classification results for the intracellular segments. Best results in bold.

Segments AA Digram

Size Accuracy MCC Size Accuracy MCC

IL1 20 0.825 0.777 398 0.795 0.739

IL2 20 0.853 0.815 388 0.872 0.837

IL3 20 0.857 0.817 304 0.834 0.789

C-terminus 20 0.793 0.740 400 0.805 0.753

(IL+ C-terminus) append. freq 80 0.906 0.880 1490 0.895 0.874

(IL + C-terminus) accum. freq 20 0.837 0.795 400 0.885 0.854

Table 7. Classification results for the N-terminus concatenated with the 7TM regions.
Best results in bold.

Segments AA Digram

Size Accuracy MCC Size Accuracy MCC

Appended frequency 160 0.919 0.897 2467 0.915 0.889

Accumulated frequency 20 0.866 0.830 400 0.928 0.909

4.3 Discussion

The experimental results reported in the previous section show, as we might
come to expect, an increasing deterioration of classification as we remove more
parts of the sequence. Note though that this performance never drops below 0.75
(neither in accuracy nor in MCC), even for very small segments, and rarely below
0.8. This indicates a remarkable preservation of the discriminability throughout
the sequence.

The best classification in our experiments using the entire sequences was
found for the Digram representation with an accuracy of 0.934 and MCC of
0.917. The N-terminus by itself or in combination with the extracellular loops
(see Table 4) drops little more than a percentage point, both in accuracy and
MCC, when compared with the entire sequence for the Digram transformation.
Note that the combination of the N-terminus with the 7TM also yields similar
results (see Table 7). The classification results of the extracellular loops, trans-
membrane and intracellular segments are less accurate than those of the complete
sequence or the N-terminus. In general, the combination of topologically-alike
segments outperforms the classification results of single segments (with the afore-
mentioned exception of the N-terminus). It is noteworthy that some very small
segments such as IL2, EL2, TM3 and TM4 (some of them including on average
no more than 2.2% of the sequence) barely drop more than 6% in classification
performance as compared with the best results.

The Digram transformation provided overall the best results but with inter-
esting exceptions: the 7TM regions, and the IL + C-terminus for the appended
frequencies. Also interestingly, the appended frequencies yielded their better
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results with the AA transformation, whereas the accumulated frequencies did it
for Digram.

5 Conclusions

Preliminary research hinted the potential use of separated domains of complete
class C GPCR sequences as the basis for subtype classification. In this study,
we have carried out a systematic analysis of the performance of each of the indi-
vidual sequence segments and some of their combinations. None of them yields
better classification than the complete sequence, but the extracellular domain,
the combination of the N-terminus and 7TM and, to some extent, the intracel-
lular domain have all performed almost as well as the entire sequence. This, by
itself, allows us to focus our work on the most discriminative segments. Future
research should involve feature selection starting from these separate regions as
a way to discover specific motifs with subtype discriminative capabilities.

Acknowledgments. This research was partially funded by the Spanish MINECO
TIN2016-79576-R and SAF2014-58396-R project.
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Abstract. The huge amount of genomic and transcriptomic data obtained to
characterize human diversity can also be exploited to indirectly gather informa‐
tion on the human microbiome. Here we present the pipeline QmihR designed to
identify and quantify the abundance of known microbiome communities and to
search for new/rare pathogenic species in RNA-seq datasets. We applied QmihR
to 36 RNA-seq tumor tissue samples from Ukrainian gastric carcinoma patients
available in TCGA, in order to characterize their microbiome and check for effi‐
ciency of the pipeline. The microbes present in the samples were in accordance
to published data in other European datasets, and the independent BLAST eval‐
uation of microbiome-aligned reads confirmed that the assigned species presented
the highest BLAST match-hits. QmihR is available at GitHub (https://github.com/
Pereira-lab/QmihR).

Keywords: Microbiome · RNA-seq data · Identification · Quantification

1 Introduction

A mutualist symbiotic relationship between microbes and their animal hosts has been
estimated to occur for at least the last 500 million years [1]. A big impulse on our
knowledge on the ‘normal’ human microbiome is being contributed by large scale
studies such as the Human Microbiome Project (HMP) [2] and MetaHIT [3]. Major
findings of HMP [4] indicated an overall high diversity of community members, heter‐
ogeneous in terms of within host versus between host ratio diversities, and ethnicity was
amongst one of the strongest associations with microbiome. An intact microbial
community is essential for a healthy development of the host [5], and several changes
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to the microbiome are beginning to be described as associated with complex diseases,
such as cancer [6, 7].

Initially, most studies of microbial communities depended on the sequencing of the
gene coding the bacterial and archaea 16s rRNA, but the paradigm shift in sequencing
technologies is also changing this analyses. Efforts have been applied to complete
sequence the microbiome directly [8], and the huge amount of human-focused omics
data (for e.g., international consortia such The Cancer Genome Atlas (TCGA) [9] and
Genotype-Tissue Expression project (GTEx) [10]) has the potential to indirectly
contribute information on the human microbiome [11]. In fact, it has been already shown
[11] that human whole genome/exome (WGS/WES) and transcriptome sequences
(RNA-seq) contain human-unmapped reads that match bacteria, viruses and fungi that
colonize/infect the individuals. However, a technical challenge is that a large number
of short reads cannot be uniquely mapped to a specific location at one genome, mapping
instead to multiple locations at one or related genomes, influencing the bacterial abun‐
dance classification. This issue must be taken into account in the development of efficient
pipelines, which can incorporate probabilistic methods that attribute these reads to the
most abundant species already identified through unique-location mapping reads (such
as RSEM [12]).

In this paper, we describe a pipeline to characterize the microbiome inferred from
human-focused RNA-seq data, designed to perform a reliable classification of bacterial
abundance. We assess its efficiency through a real TCGA RNA-seq dataset collected in
36 Ukrainian patients from gastric carcinoma. This dataset was selected as it can be
compared with published information of the gut microbiome in European individuals,
inferred from traditional techniques of 16s rRNA sequencing [13].

2 Description of the Pipeline

We designed a pipeline (Fig. 1) aiming to best characterize known microbiome commun‐
ities, despite also allowing to collect reads that can be processed in BLAST for identi‐
fication of new/uncommon pathogenic species. Currently, the most common micro‐
biome species occurring in various human habitats are well characterize, rendering more
efficient to design pipelines that search first for a reference panel of microbial species,
and allow identification of the subset of unmapped non-human reads. HMP is a good
departing database to construct these reference panels per location in the human body.

QmihR begins by trimming of reads using Trimmomatic [14]. It checks if: (1) the
mean of two consecutive bases is below 20 Phred; and (2) the resulting read is smaller
than 40 bases. This pre-processing step removes adapters and low quality reads,
following the best practices for accurate RNA-seq expression estimates [15]. Even when
using the pipeline in already indexed non-human mapped reads, we advise to perform
this trimming as in our experience there are still low-quality reads classified as
unmapped.

Then the global alignment of the reads against the bacterial reference database is
made with Bowtie2 [16] and quantification of bacterial genera is performed through
RSEM [17]. This tool takes a probabilistic approach to the quantification of reads in
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cases of multi-mapping, and avoids discarding all reads that would multi-map in diverse
species, conducting to a more real solution. A previous publication [18] has shown that
RSEM presents the higher accuracy amongst probabilistic algorithms, guiding our
choice. RSEM produces as output counts of mapped reads per gene belonging to a
species (giving an indication of the most expressed genes). The pipeline takes the counts
of the various genes within a species and aggregates them to produce counts of reads
aligned per species, which are then normalized by the library size for the mapped reads
against the bacterial reference database, as indicated in the Eq. (1).

normalizedcounts =
counts gene

∑
all reads mapped to database

× 106 (1)

3 Application to a TCGA RNA-seq Dataset

The original human-unmapped raw RNA-seq reads obtained in tumor tissue from 36
Ukrainians patients of gastric carcinomas were found in the TCGA Genomic Data
Commons repository (https://gdc.cancer.gov/). The microbe reference panel used
contains 194 bacterial whole genomes (one representative strain per species) collected
from NCBI following the species identified by the HMP [2] in the gastrointestinal tract.

Fig. 1. Scheme of the QmihR pipeline.
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QmihR reported that the microbiome in the cohort (Fig. 2) is dominated by the genera
Bacillus and Pseudomonas (around 21% and 17%, respectively), then Escherichia and
Enterobacter (10–15%). The class I carcinogen Helicobacter reaches 3% overall
frequency in Ukraine. This microbiome diversity is in accordance to published data in
other European cohorts [3].

Fig. 2. Overall microbiome abundance in gastric tumor samples from Ukraine (n = 36). Only
genera that passed a threshold of 1% of mean abundance are displayed in the graph, otherwise
they are summed together in a class denominated as “other”.

Fig. 3. Comparison of hit-species/genera matches between QmihR and BLAST for all microbe-
aligned reads in the 36 gastric tumor samples from Ukraine.
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In order to double-check the assignment of microbe species, we run the total amount
of QmihR-assigned reads in BLAST (database downloaded on 3th February 2017, and
curated for excluding sequences from uncultured species). In the Ukrainian dataset
(Fig. 3), in around 82% of the reads the species identified in QmihR would also be on
the list of top hits provided by BLAST, and the value raises to 88% when limiting to the
genus level. We also took a closer look into the two samples with poorer results, and
confirmed in BLAST that some read-pairs would align with an identity of 97–100% in
the forward and 93–100% identity in the reverse in the QmihR-assigned species.

4 Benchmarking

QmihR took in average 30 min per sample to calculate the microbiome abundance, based
on the reference microbe panel provided (mean 14 Gb of raw un-mapped reads in fastq
format), when using an Intel Core i7-4700 2.4 GHz with 8 cores and 16 Gb of RAM. It
is a fast and efficient tool that may be used in human microbiome inference from RNA-
seq, in health and disease conditions.

To run the full set of unmapped reads in BLAST tool would take weeks. Even the
test of running the QmihR-mapped reads in bacteria took between 2 and 8 h per sample

5 Conclusions

QmihR is a fast and efficient tool that may be used in human microbiome inference from
RNA-seq, both in health and disease conditions. To our best knowledge, this is the first
pipeline for quantification of the microbiome (bacterial) from RNA-seq data. A similar
pipeline was developed to infer viral infection in RNA-seq TCGA samples [19], a case-
study that presents, nevertheless, some differences to the situation analyzed here. Viral
genomes are smaller than bacterial ones and the genes detected in the RNA-seq are the
ones important for the infection and display low homology between species. In the
bacteria, the reads detected in RNA-seq are mostly from rRNA genes (higher than 90%;
similarly to the human genes), which display certain similarity between species, gener‐
ating the multi-location read problem.
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Abstract. Alzheimer’s disease is becoming a global epidemic. Its impact is
devastating for patients’, their families and the economy. As such, it is important
to build good prognostic models that can predict conversion to dementia so that
treatment measures could be taken. In this work, we applied a genetic algorithm
to choose the most relevant neuropsychological and demographic features for
prognostic prediction. The results show improvements over other feature selec‐
tion methods, with our model being able to predict conversion to dementia with
AUC and sensitivity of 88% . Moreover, we found that with only 7 features it is
possible to achieve good classification results. These results could help physicians
to adjust treatment and select which exams should be performed regularly to
increase efficiency in clinical practice.

Keywords: Mild cognitive impairment · Alzheimer’s disease · Prognostic
prediction · Neuropsychological tests · Genetic algorithm

1 Introduction

Alzheimer’s disease (AD) accounts for 60 to 80% of all cases of dementia [1]. It affects
5.4 million Americans nowadays and an expected 13.8 million by 2050 [2], mainly due
to population shifting to older ages. These numbers represent not only a true global
epidemic, but also a huge socio-economic burden [3]. The problem is even greater
considering the fact that low and middle income countries will have the most increase
in numbers of these patients [3].

Mild Cognitive Impairment (MCI) is a condition in which patients have cognitive
complaints not affecting their ability to perform daily tasks [4]. It is a common disorder,
affecting 15 to 20% of people older than 65 [4]. These patients are more likely to develop
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AD. Reliably predicting MCI to AD conversion could help physicians taking decisions
about their patients’ treatment or selecting, among them, those who could be included in
clinical trials for new possible treatments.

Since no treatment is available to revert or reduce brain damage caused by AD, it is
critical to understand AD and its progression, not only to guide clinical decisions and
managing patients and families’ expectations, but to develop new effective treatments.
Thus, understanding AD’s biomarkers, correctly identifying patients in the disease
spectrum and predicting patients’ decline is of maximum importance.

In this work, we used GA for feature selection in MCI to AD prognosis. Our goal is
to (1) improve the classification results of current prognostic models and (2) find a small
feature set highly predictive of conversion. This will be accomplished using data from
a large national database. We also compare our approach with other FS methods and
discuss the most chosen features by the GA. Our future goal is to apply this knowledge
to choose which biomarkers should be gathered regularly to save time, resources and to
better predict converting patients.

The paper is organized as follows: Sect. 2 presents related work; Sect. 3 presents the
database used as well as the main technique employed to the classification task; Sect. 4
discusses the results and provides a comparison with alternative procedures; and
Sect. 5 concludes and presents future work.

2 Related Work

2.1 Predicting Conversion to AD Using Neuropsychological Tests

Neuropsychological tests (NPTs) are commonly used to classify dementia patients [5].
They test patients in multiple cognitive domains such as episodic memory, learning and
language. Common NPTs include the California Verbal Learning Test (CVLT) [6], the
Alzheimer’s Disease Assessment Scale – cognitive subscale (ADAS-Cog) [7] and the
Mini-Mental State Examination (MMSE) [8].

Among AD’s biomarkers, NPTs have revealed the best results in predicting
converting patients. Silva et al. [5] showed that a Linear Discriminant Analysis (LDA)
model constituted by Digit Span backward, Semantic Fluency, Logical Memory (imme‐
diate recall), and Forgetting Index is able to predict conversion from MCI to AD, in a 5
years’ time period, with high values of accuracy, specificity and sensitivity (around
80%). In another study, Chapman et al. [9] predicted conversion using 17 common NPTs
with Principal Component Analysis (PCA) followed by discriminant analysis of those
components. Good accuracy (84%), sensitivity (86%) and specificity (83%) were
reported, although their dataset was fairly small (43 patients). Lee et al. [10] also showed
the prognostic power of these inexpensive and non-invasive tests that can be conducted
in any environment.

2.2 Genetic Algorithms in Alzheimer’s Disease Prognostic Tasks

When building prognostic models for AD, feature selection (FS) methods are usually
applied, searching for a subset of features highly predictive of conversion. Such task is
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important not only to increase the predictive power of these models, but also to gather
insight about which NPTs are more important as biomarkers. These results can then
guide physicians in choosing the best test battery to apply to their patients.

In this context, genetic algorithms (GAs) can be useful since they are particularly
suitable for large, complex or poorly understood feature sets, as the GAs demonstrates
fast convergence to nearly-optimal solutions [11]. Moreover, their optimization proce‐
dure can be directed to any measure of interest, such as higher accuracy or lower number
of features used to train the classification model, leading to better predictive models
using a fraction of the initial feature set.

In AD, GAs have been used to select the most relevant features in diagnostic and
prognostic tasks using blood-based biomarkers [12] and MRI data [13]. To our knowl‐
edge, this analysis was not sufficiently applied to NPTs. We found only one study [14],
with promising results in prognosis but using data of only 77 patients.

3 Methods

3.1 The Cognitive Complaints Cohort

The Cognitive Complaints Cohort (CCC) [5] is a study conducted at the Faculty of
Medicine of Lisbon in partnership with Laboratory of Language Studies (Santa Maria
Hospital), Memoclínica and the Neurology Department of Coimbra’s University
Hospital. Its goal is to investigate AD progression in patients with cognitive complaints.
All participants are evaluated through a neuropsychological battery validated for the
Portuguese population (BLAD [15]). This includes the MMSE, CVLT, Logical Memory
and Clock Drawing tests. Age and years of formal education were also gathered from
these patients. Z-Scores, data corrected by age and education, were used when available.
In total, 58 features are associated with this dataset.

To predict MCI to AD conversion, we chose patients diagnosed with MCI at their
baseline assessments, and asked whether they converted to dementia within 3 years. We
excluded reverting patients, that is patients that reverted from MCI to normal cognition
and from AD to MCI. This is usually the method employed, as reversion is clearly
unexpected [16] and can be related to errors in diagnosis such as the presence, at the
time of evaluation, of diseases other than AD. The final dataset includes 282 patients,
including 122 converting, and 160 non-converting MCI patients.

3.2 Genetic Algorithm and Naïve Bayes

We implemented a GA using MATLAB’s Global Optimization Toolbox aimed at
selecting a subset of features to be trained with Naïve Bayes from Weka software [17].
This classifier was chosen as it was the one presenting the best results. Figure 1 depicts
the learning architecture defined in this work. The parameters presented were defined
through experimentation, maximizing the predicting ability of the trained models, as
well as accounting for solutions with low number of features.
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Fig. 1. Architecture of the genetic algorithm implemented for feature selection.

The GA starts by generating (through a uniform distribution) an initial population
of 50 binary individuals coded as strings. Each of these is a solution to the FS problem.
They are composed of a sequence of 1s and 0s with a length of 58 (the total number of
features in the dataset) where each 1 indicates that a given feature should be used in the
classification task. Thus, the total number of possible solutions is 258.

These individuals are then tested for their fitness: the solutions are trained with Naïve
Bayes (through a 5-fold cross-validation learning process) and tested for their predictive
ability. We tested the GA with two different fitness functions. First, we defined the
individuals’ fitness as their area under the ROC curve (AUC). Such experiment is labeled
“Test 1” (T1). Then, to obtain solutions with low number of features, we altered the
fitness function to reward small solutions (T2). This fitness function (minimized by
MATLAB toolbox) is presented in (1).

fitness = (1 − AUC) + 𝜌

(
nind∕ntotal

)
(1)

Where ntotal and nind define the total and the individual’s selected features, respec‐
tively. The value ρ determines the importance being attributed to small solutions. We
defined ρ as 0.35, leading to a good compromise between classification results and a low
number of features. This value was chosen empirically.

A selection procedure is then used to determine the next generation’s parents. We
chose selection by tournament (of size 2), to avoid early convergence of the GA that
leads to poor solutions [14]. This procedure repeatedly selects 2 random individuals
from the population and chooses the one with the highest fitness.

Next, reproduction by single-point crossover combines the selected parents to create
new individuals. It first selects one of the binary sites, creating a new individual from
the first parent’s features up to that site and the rest from the other parent. Through
experimentation, we defined that 60% and 80%, for T1 and T2 respectively, of the next
generation’s population should be created using crossover. Also, we selected the 5%
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best solutions (elite individuals) to continue to the next generation, ensuring the contin‐
uation of the best fitted individuals. The remaining 15% for T1, or 35% for T2, of the
next generation’s population is then created by mutating the parents. We defined a
mutation rate of 3% for T1 and 6% for T2.

After creating the next generation, the algorithm starts another cycle by re-computing
the fitness of each individual. When the total number of 150 generations is reached (value
defined through experimentation, maximizing classification results while minimizing
classification training time), the algorithm stops and chooses the best fitted individual.
It then computes its final classification results through a 5-fold cross validation procedure
averaged 100 times.

4 Results and Discussion

4.1 Feature Selection Using a Genetic Algorithm

The accuracy of the baseline model (without using FS) to predict MCI to AD conversion
within 3 years was 76.47%. This result is accompanied by an AUC of 0.84, sensitivity
of 0.79 and specificity of 0.74. Using the GA, the results improved as shown in
Tables 2 and 3 for the first (T1) and second (T2) tests, respectively.

We tested several methods implemented in Weka: CfsSubsetEval is an implemen‐
tation of Hall’s work [18], measuring the predictive power of each feature while mini‐
mizing the redundancy between them; CorrelationAttributeEval and InfoGain measure
the Person’s correlation between features and the class, and the worth of an attribute by
its information gain with respect to the class, respectively.

Table 1 shows that the FS methods implemented in Weka had modest improvements
over the baseline model. A small increase in sensitivity and specificity is achieved, using
less than half the features of the original set.

Table 1. MCI to AD prognostic prediction using various FS methods implemented in Weka.
Baseline results are presented for reference.

Method AUC Accuracy Sensitivity Specificity # features
Baseline 0.84 76.47% 0.79 0.74 58
CfsSubsetEval 0.84 77.57% 0.82 0.74 19
CorrelationAttri
buteEval

0.85 77.46% 0.81 0.75 16

InfoGain 0.85 77.84% 0.81 0.76 20

On the other hand, GA solutions show substantial improvements over the baseline
and other FS methods. Some simulations present improvements between 6 to 8 percent
points in accuracy, with high values of specificity and sensitivity. They also improve
previous results using the same database [5]. Moreover, the results presented have a
higher value of AUC and are tested in a bigger set of patients than another work [14]
using GAs and NPTs for MCI to AD prognostic prediction.
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Some heterogeneity is present in the GA solutions, which can be advantageous
depending on the classification objective. In particular, high values of sensitivity are
preferred in prognostic tasks, as the cost of misclassifying a converter is usually higher
than predicting conversion in a non-converting patient. This solution can be found in
simulation 36 (Table 2). Simulation 20 also presents high values of sensitivity, but a
more balanced specificity. Solutions with balanced measures (simulation 3) and higher
values of specificity (simulation 23) are also presented.

Table 2. MCI to AD prognostic prediction for T1 using GA as feature selection. These results
are computed through 50 simulations. The last row presents the average of such results.

Simulation AUC Accuracy Sensitivity Specificity # features
#3 0.87 82.94% 0.84 0.83 23
#20 0.88 82.95% 0.86 0.81 25
#23 0.87 83.81% 0.83 0.85 24
#36 0.87 81.95% 0.88 0.77 21
Average 0.87 81.95% 0.84 0.80 25

Table 3 shows T2’s results, when a bonus for solutions using less features is used in
the fitness function. These models use a third of the features of the earlier GA solutions,
with minor compromises in terms of their predictive ability. We show that it is possible
to build useful models with only a small subset of the original features, while increasing
the prognostic classification results when compared with the baseline and other FS
methods. Simulations 3, 8, 16, 29 and 30 reached the same solution after 150 generations,
with high sensitivity and using only 7 features.

Table 3. GA results (50 simulations) for MCI to AD prognostic prediction using AUC as the
fitness function and a bonus for small feature set solutions.

Simulation AUC Accuracy Sensitivity Specificity # features
#3,8,16,29,
30

0.87 81.56% 0.85 0.79 7

#39 0.87 82.15% 0.86 0.79 8
#4 0.88 82.26% 0.80 0.84 8
#36 0.87 80.99% 0.81 0.81 6
Average 0.86 80.83% 0.82 0.80 8

An exhaustive search performed on the 8 most selected features by the GA showed
that it was possible to obtain similar results to the ones presented by other FS methods
(Table 1) using a minimum of 4 features, although such compromise in classification
power does not have advantages compared to similar solutions presented in Table 3.

4.2 Features Selected by the Genetic Algorithm

Both T1 and T2 showed a similar pattern regarding the most and least chosen features.
The most selected features are related to conceptual thinking (proverbs exercise and
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abstract reasoning), short-term memory (word recall exercise), verbal semantic fluency
and non-associated learning cognitive domains.

In T1, age and a proverb exercise were selected in all simulations. Interestingly, age
and education level were not amongst the top 10 features in T2, probably because most
NPTs are z-scores of the original features corrected by these measures. Some of the most
selected features, as those related to semantic fluency and short-term memory, are in
accordance with previous work [5]. But this study may have revealed an important role
of conceptual thinking degradation in predicting converting patients.

On the least selected features, the memory domain is also present, but related to
episodic memory. This set is also dominated with depression scales and measures of
sustained and divided attention and visuo-motor processing speed. Interestingly, MMSE
scores were not selected as the most predictive features as happened in other studies [14].
In fact, MMSE [19] has been shown to be a poor predictor of conversion in later stages
of AD and was not selected in any simulation for T2.

5 Conclusions and Future Work

Prognostic prediction from MCI to AD is key to tackle its global epidemic. Good clas‐
sification models, predicting MCI to AD conversion within a time-window of interest
should help physicians managing their patients’ progression and prescribing new
possible treatments. Moreover, more efficiency could be achieved if only a handful of
measures are necessary to perform such prediction.

In this work we showed how to use a genetic algorithm to optimize the features used
by the model. The proposed approach was able to find a very small subset of features,
highly predictive of conversion, and superior to other common FS methods using only
7 features. It was able to predict converting patients with an accuracy of 81.56%, specif‐
icity of 0.79 and sensitivity of 0.85. The sensitivity is particularly important due to the
importance of predicting conversion in true converting patients. Our analysis, while
reinforcing the roles of semantic fluency and short-term memory degradation in AD,
shows a possible role of conceptual thinking deterioration.

The results are promising, but further work should be done to explore the way in
which the most selected features by the GA should be combined, in practice, to achieve
the best prognostic and efficiency results in the clinic. Moreover, these results should
be validated with a different database, such as ADNI [20]. The difference between the
sets of NPTs data available in both datasets will increase the challenge of comparing
the models. Finally, prognostic tasks in earlier phases of the disease, such as predicting
conversion from normal cognition to MCI should also be explored. Further insight could
be gained by comparing the most predictive features between such task and the one
presented in this work.
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Abstract. Finding new statistical approaches to high throughput data analysis
is a very hot topic nowadays. Such a data needs dedicated methods and algo-
rithms of analysis due to huge number of features, but often also due to a small
number of samples. Methylation data are also very special, because of depen-
dencies between features and their neighbourhood. There is a need to find a
novel, data driven algorithm for these data owing to big variety of distributions
data sets. Purpose of this method is detection of regions with different levels of
demethylation. From the biological point of view, the most important genome
regions are TSS (transcription start site) regions. Hypermethylation of these part
of a gene leads to repression and thus stop the gene expression. This phe-
nomenon often happens in cancer disease and impairs a number of molecular
processes in the cell. The proposed algorithm is performed for AML patients
data in comparison to healthy control. By combination of statistics methods and
mathematical modelling together, it enables detection of demethylated regions
or DNA and their classification as low, medium or high demethylated.

Keywords: DNA methylation � Epigenetics � Acute Myeloid Leukaemia �
Gaussian mixture model � Mathematical modelling � Robust estimator

1 Background

Methylation is an epigenetic process which controls the mechanism of transcription. It
is based on changing cytosine to 5-methylcytosine in CpG sites of genome. Cytosine
must be followed by guanine in a DNA strand [1]. In cancer diseases, because of
alterations in DNA methylation, expression of tumour suppressor genes can be stopped
and protooncogenes transcription can be increased [2].

There are several analysis methods which can be used to compare two sets of
methylation data (case-control study). The simplest bases of parametric statistical tests
for mean equality as t-Student test. They detect demethylated CpG sites of genome.
Demethylated region is defined by the amount of demethylated CpG sites in the region.
An example can be methyAnalysis algorithm [3]. More advanced methods take into
account the neighbourhood of CpG sites. One of such algorithms is an A-clustering
algorithm [4]. Another interesting algorithm, Bump-hunting method [5] aims at doing
peak detection across a genome. The last mentioned method is Probe Lasso [6], which
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defines kernels with specific size, determined by density of CpG sites in the examined
region. Presented work aims at proposing a new method, which does not use predefined
cut-off levels of demethylation but is data-driven due to big variety of distributions data
sets. It enables not demethylated regions to be checked but also to be categorised as
low, medium or high demethylated.

2 Materials

The data set used in the presented study is free accessible and was downloaded from
GEO database (GSE63409) [7]. The data were normalized with minfi package [8]. The
data set consisted of 14 samples of CD34 + 38- cells from AML patients and 5 samples
of hematopoietic stem cells from healthy donors, so in total 19 samples. The data were
collected in the Illumina Infinium450 k microarray experiment [9]. As a result, they got
methylation level for 485 512 CpG sites of human genome. Methylation level is
defined as methylated signal to sum of methylated and unmethylated signals ratio and it
is called Beta value. Beta value must range from 0 to 1, where 0 means no methylation
and 1 means full methylation [10] (Fig. 1).

Using Illumina annotation system, each CpG site is assigned to i.a. chromosome
number, locus, its sequence, RefGene Name and RefGene Accession (if it belongs to
the gene region), RefGene Group, Relation to CpG Island and Regulatory Feature
Group. The whole genome is divided into several regions according to the gene
structure. It consists of intergenic, TSS, 5’UTR, 1stExon, Body and 3’UTR regions,
which form RefGene Groups. The whole genome is also divided into groups according
to the density of CpG sites. The regions with the highest density are called CpG
Islands, then are Shore, Shelf and Open sea [9].

3 Methods

3.1 Set Difference Estimation

The first step of analysis is to estimate the difference between the AMLs and control.
Because of non-normality of data distribution, robust estimator of shift is

Fig. 1. Histogram of Beta-value in HSC and AML cells.
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Hodges-Lehmann statistic (HL) [11]. HL statistic is calculated for distance between
AML patients and control. For two sets of data with N1 and N2 elements, a new set,
containing N1 � N2 elements, is created. One element comes from each pair from set 1
and set 2 and equals difference of pair of values. The applied estimator is the median of
N1 � N2 differences.

di j ¼ xi � yj; i 2 1::N1ð Þ; j 2 1::N2ð Þ
HL ¼ median dð Þ ð1Þ

where:

• d is set of distances between each pair of set 1 and set 2
• xi is i-th element of set 1
• yj is j-th element of set 2
• N1 and N2 is set 1 size (number of AML samples) and set 2 size (number of healthy

samples) respectively

The above procedure is carried out for each CpG site.

3.2 Gaussian Mixture Modelling

The second step of described method is decomposition of distribution of values of
Hodges Lehmann statistic into Gaussian components. Let f(x) denote the probability
density function corresponding to the analyzed signal x. The Gaussian mixture
decomposition model (GMM) of f(x) is:

f xð Þ ¼
XK

k¼1
akfk x; lk; rkð Þ;

XK

k¼1
ak ¼ 1: ð2Þ

where:

• K is the number of Gaussian components,
• ak are non-negative component weights,
• fk is the probability density function of a normal distribution (N(lk, rk)) of the k-th

component,
• lk, rk are k-th Gaussian component mean and standard deviation, respectively.

The Gaussian mixture model is fitted to HL statistic’s distribution by using the
method of maximization of the log-likelihood function (3).

log L ¼
XN

n¼1
ln
XK

k¼1
akfk xn; lk; rkð Þ ð3Þ

where:

• N is the total number of elements in modeled vector.
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The expectation maximization (EM) algorithm [12] for recursive maximization of
the likelihood function was applied. The initial values of decomposition parameters are
randomly generated.

For finding the best number of Gaussian components, the algorithm was performed
for different values of K (K = 2..12). Bayesian information criterion (4) (BIC) [13] was
used for each examined K:

BIC ¼ �2 log Lþ 3K � 1ð Þ logN ð4Þ

Minimal value of BIC indicates what number of Gaussian components is the best to
create the model.

Finding Gaussian components marks off subpopulations of HL statistic, hence
enables categorization of CpG sites as low, medium or high demethylated.

According to the maximum probability rule [14], cut-off levels based on Gaussian
components were detected. Cut-off levels are determined by intersection points of
probability density functions of components.

3.3 Statistical Tests

For each CpG site a statistical comparison between AML patients and healthy donors
was performed. Because data do not come from normal distribution, the applied test
was Mann-Whitney U-test [15]. In a basic approach, the tested null hypothesis said that
the difference between AMLs and control equals 0. In the modified situation the null
hypothesis was defined by the found cut-offs. Such a method enables statistically
significant detection of low, medium and high demethylated CpG sites of genome.

3.4 P-value Integration

Array annotation provided by Illumina let us indicate CpG sites belonging to regions
which play a crucial role in gene expression control. Hypermethylation of TSS regions
led to repression. In order to learn if TSS region of a particular gene was statistically
demethylated, p-value integration was performed. Stouffer’s method for p-value inte-
gration [16] was applied for CpG sites belonging to particular TSS regions. Each
gene’s TSS region was consider as demethylated by comparison integrated p-value
with integrated significance level. Integrated significance level is based on number of
CpG sites in particular TSS region. Z-value, which is basis to compute integrated
p-value can be computed according to (5).

Z�
Pk

i¼1 Ziffiffiffi
k

p ð5Þ

where:

• Zi = Ф−1(1 − pi),
• pi is the p-value for the i-th hypothesis test,
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• Ф is the standard normal cumulative distribution function,
• k is number of integrated p-values.

4 Results and Discussion

After Gaussian decomposition of HL statistic’s distribution, several Gaussian com-
ponents were found (Fig. 2):

Most of differences between AML cells and control cells happens in the “right side”
of distribution, so for the examined situation, hypermethylation processes are more
common than hypomethylation processes. It is possible to distinguish several levels of
upmethylation, but it is impossible for downmethylation. Levels of demethylation can
be called (just) demethylated, medium or high demethylated and high demethylated.
Three the most important components (with highest weight and lowest standard
deviations) describe three subpopulations of HL distance, hence three levels of
demethylation (Fig. 3).

The first step of testing consisted of checking if CpG sites were just up- or
downmethylated. For this purpose null hypothesis was equal to 0. For each CpG site, it
was examined whether HL statistic was significantly lower or greater than 0. The next
step was to check if particular CpG site was medium or high upmethylated. For these
approaches cut-off levels found according to Gaussian decomposition were used as null
hypotheses (Table 1).

Because of one-tailed test, significance level equals 2.5%. In basic approach, with
null hypothesis equal to 0, much more CpG sites were detected as upmethylated than as
downmethylated. It happens in whole genome as well as in TSS regions. About a half
of upmethylated CpG sites are medium or high upmethylated. Part of them are only
high upmethylated (Table 2).

Fig. 2. (A) Histogram of HL distance with PDFs of components from GMM decomposition,
(B) parameters of model components
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Fig. 3. Cut-off levels found according to maximum probability rule

Table 1. Number of demethylated probes for each tasted case

AML
downmethylated

AML
upmethylated

AML medium or
high
upmethylated

AML high
upmethylated

Test type Left-tailed Right-tailed
Threshold 0 0 0.0096 0.0372
Probes within whole genome
# significantly
demethylated
probes

15 260 84 073 47 659 17 317

% of 485 512
probes

3.14% 17.32% 9.82% 3.57%

Probes within TSS region only
# significantly
demethylated
probes

3 772 20 354 10 034 3 982

% of 140 003
probes

2.69% 14.54% 7.17% 2.84%

Table 2. Number of demethylated TSS regions according to p-value integration

AMLs
downmethylated

AML
upmethylated

AML medium
or high
upmethylated

AML high
upmethylated

Test type Left-tailed Right-tailed
Threshold 0 0 0.0096 0.0372
# significantly
demethylated
gene’s TSS regions

106 1 088 474 122

% of 21 227 0.50% 5.13% 2.23% 0.57%
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More gene’s TSS regions were high upmethylated than just downmethylated. TSS
region with highest demethylation comes from NNAT gene. NNAT gene was
described as trancsriptionally silenced because of hypermethylation in pedriatric AML
[17]. It confirms the thesis that hypermethylation of TSS gene regions causes repres-
sion (Fig. 4).

5 Conclusions

Novel methylation data analysis method for efficient detection of demethylated DNA
regions was proposed. In contrary to standard approaches, the developed algorithm is
data driven and does not use a priori assumed cut-off thresholds. Such approach enables
detecting of demethylated CpG sites of genome independently of initial methylation
level in examined data and their distribution. It trades on Gaussian components which
characterize subpopulation of demethylation level. Modified null hypotheses in U
Mann-Whitney-Wilcoxon test enables to check whether particular CpG site is greater
or lower not only than 0, but another thresholds. Hence, proposed method gives a
possibility to classify CpG sites as low, medium or high demethylated. Due to p-value
integration enables to conclude about particular gene TSS regions demethylation.
Found upmethylated genes were successfully confirmed at literature and thereby val-
idated the algorithm. Evaluation of proposed method by comparison with existing
approaches needs extended study which will be part of further work.
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Abstract. Scientific research is increasingly dependent on publicly
available information and data sharing. So far, the best practices to
ensure that data is accessible and shareable has been to deposit it in
public repositories. However, these repositories often fail to implement
mechanisms that measure data quality, which could lead to improving
the discoverability of existing data, and contribute to its future inte-
gration. In light of this, we present Metadata Analyser, a tool that mea-
sures metadata quality. It assesses the quality of metadata by considering
the proportion of terms actually linked to ontology concepts, as well as
the specificity of the terms used in the metadata. Metadata Analyser
applied to Metabolights, a real-world repository of metabolomics data,
and results show that the tool successfully implements the proposed mea-
sures, that there is indeed a lack of effort in the annotation task, and that
our tool can be used to improve this situation. Metadata Analyser’s fron-
tend is available at http://masterweb-metadataanalyser.rhcloud.com.

Keywords: Metadata quality · Data sharing · Ontologies · Specificity ·
Coverage

1 Introduction

A significant portion of scientific research has recently become producer and
consumer of large volumes of data, from multiple sources and in various for-
mats [3]. In this scenario, data sharing takes an important role in the success
of any scientific endeavour, as it allows scientific advances to “stand on the
shoulders” of previous works, either performed by the authors themselves or by
other teams [5]. This can only happen if data is properly integrated (i.e. cate-
gorized and organized in meaningful groups that reflect the data’s similarities
and differences), which enables information to be retrieved automatically [1].
However, ensuring data integration is a non-trivial task, sometimes regarded as
non-scientific, and costly both in terms of human and time resources. Thus, it
tends to be postponed, or even neglected.

The goals of this work are thus threefold: (i) to propose two measures of
metadata quality, (ii) to implement a tool that is able to evaluate these mea-
sures in a public repository, and (iii) to show that these measures are valid and
significant in a real-world scientific repository.
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2 Materials and Methods

We propose two measures of metadata quality: (i) the proportion of annota-
tions in the metadata file that link to an ontology concept, and (ii) the average
specificity of those ontology concepts.

The dependence on a notion of ontology is justified because ontologies are
regarded by the biomedical community as standard representations of knowl-
edge [6]. An ontology can be thought of as a graph that connects nodes (the
relevant concepts) with edges (the relations between the concepts). For example,
CHEBI contains statements about small molecules such as “carbon dioxide is-a
greenhouse gas” and “glucose is-a carbohydrate”. On the one hand, relying on
ontologies allows us to base our measures in community-approved knowledge; on
the other hand, an ontology concept is unambiguous, traceable, and represents
a quantum of information that can be shared between the scientific community
without potential for misinterpretation, enabling and enhancing data sharing.

2.1 Term Coverage

Usually, metadata files contain a mixture of ontology concepts and natural lan-
guage terms. Since data sharing relies on the ability to find and retrieve infor-
mation with automatic tools, ensuring that metadata is expressed as reference
to ontology concepts improves its potential for being found in the future.

The first measure of metadata quality, therefore, is term coverage. It is the
ratio between the number of annotations that refer to ontology concepts and the
total number of annotations in the metadata file.

2.2 Semantic Specificity

Each ontology concept contains a certain amount of information, which can be
measured by its specificity. More specific concepts have a higher information
content and thus contribute with more specific knowledge to the metadata file.
As such, we propose semantic specificity, a measure that reflects the average
specificity of the concepts in the metadata file.

For a given concept, we consider the path from itself up to the root of the
ontology and all the paths from itself down to the leaves of the tree. Let T =
{t1, t2, · · · , tn} be the set of ontology concepts found in a metadata file. For
each t in T , its specificity Sconcept(t) is computed as

Sconcept(t) =
A(t)

A(t) + D(t)
(1)

where A(t) is the number of ascendant concepts up from t and D(t) is the average
distance between t and all its leaf descendants, measured in number of edges.
Concepts with low specificity are located at the top of the tree (near the root).
A non-specific annotation contains small amounts of knowledge and is a weak
descriptor of the contents of the resource: a more specific descendant concept
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would be a better descriptor, since it would provide a more specific semantics
to the resource and thus increase its potential for future integration. Concepts
with high specificity are located near the leaves of the ontology, and correspond
to informative annotations.

In order to determine the semantic specificity of an annotated resource, we
average the specificity of the concepts in its metadata.

2.3 Motivation for the Measures

The two measures presented reflect the quality of the metadata associated with
a resource. On the one hand, high coverage by ontology concepts in a resource’s
metadata file reflects a greater amount of computationally meaningful knowledge
provided about that resource. On the other hand, as demonstrated above, the
highest the specificity value of a concept, the better it is in describing the content
of the resource. Therefore, high values for these measures enhance the meaning
and discoverability of the data to those who wish to use it.

2.4 Metadata Analyser Architecture

To automatically evaluate the quality of a metadata file based on the quality
measures described previously, we designed an architecture to analyse and eval-
uate the metadata file contents, Metadata Analyser. This is a modular architec-
ture that can be adapted to other domains. For example, one module is respon-
sible for reading Metabolights metadata files (see “Case Study” below), and
another for computing the quality measures. Both modules can be exchanged by
other ones, specific to other repositories or designed to compute other measures.

The tool is composed of the following layers:

1. An interface layer that interacts with the user by requesting a metadata
file, informing the user on the analysis progress, and outputting the result.

2. An application layer that analyses the metadata file and evaluates the
annotations found therein.

3. A data layer that holds the ontologies in local databases.
4. A web API layer that connects the interface layer to the application layer,

coded in commonly used web technologies.

Source code is available at https://github.com/lasigeBioTM/MetadataAnalyser.

3 Case Study

To evaluate our work, we applied Metadata Analyser to Metabolights, a database
of metabolomics experiments [4,9]. Metabolomics is the study of the chemical
processes that occur in life-related contexts, usually within a cell or in its sur-
roundings. This data often refers to a large number of scientific domains, as it
can be cross-species and cross-technique, while covering metabolite structures,
biological roles, locations and concentrations, as well as experimental factors.

https://github.com/lasigeBioTM/MetadataAnalyser
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Metabolights stores metadata associated with the actual data describing the
information in each resource. For example, the metadata of the resource called
“LCMS analysis of seven apple varieties with a leaking chromatographic col-
umn” claims that the data was collected through “liquid chromatography” and
“mass spectroscopy”, and that the study factors include “Sample type”, “Apple
number”, etc.1. These pieces of metadata are collected (by the researcher or the
curator) using the ISA-tools software suite [8]; in particular, metadata is saved in
the ISA-TAB format, which has the built-in ability to refer to ontology concepts.
At the moment of this study, the repository had 161 resources.

This repository has been developed and maintained by the EBI since 2012,
and is therefore a relatively recent addition to the panorama of knowledge stores
in the biomedical domain. Its use of ontology concepts in the metadata files has
been advocated since the beginning, since Metabolights has always recommended
its users to prepare and submit the data with that possibility in mind.

Our evaluation consisted of three steps: we first evaluated the measures on
all the resources of the Metabolights database, then manually evaluated the
results obtained in a selection of resources, and finally performed an evaluation
of the metadata quality before and after a curation step performed by a team of
metabolomics experts.

3.1 Metadata Quality in Metabolights

From the 161 resources, 6 did not contain any ontology annotation, i.e. the
semantic specificity was 0.0. The average coverage was 0.25. Only 9 resources
show a coverage of 0.40 or higher. The average semantic specificity was 0.81.
Histograms of distributions are shown in Fig. 1. From these distributions, we can
see that more effort is put into the semantic characterization of the resources
than into making sure the terms are actually from a reference ontology.

Discarding the 6 resources with no ontology annotation, a small negative
correlation was found between the two measures (see Fig. 2), with a Pearson
correlation coefficient of −0.28 (corresponding to a p-value of 5.1 × 10−4). This
trend is only slightly negative, at best, even if statistically significant. Nonethe-
less, we argue that this may be related to the fact that the tasks of (i) looking
for the most specific concept to use in the annotation and (ii) finding all the
locations in the metadata file where an ontology concept can be used take time
and thus cannot both be performed perfectly given time constraints.

The most relevant conclusion is that the semantic annotation of metadata
describing the Metabolights resources is still far from the desired state of affairs.

3.2 Manual Evaluation of the Measures

To validate the correctness of the implementation, we randomly selected
6 resources and calculated the two quality measures manually. Results were
compared both with a manual verification as well as with a previous work [7].

1 See www.ebi.ac.uk/metabolights/MTBLS99.

www.ebi.ac.uk/metabolights/MTBLS99
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Fig. 1. The histograms of the distribution for the two measures of metadata quality
in Metabolights. On the left, the distribution for term coverage; on the right, the
distribution for semantic specificity.

Fig. 2. The correlation between the term coverage and semantic specificity of all the
metadata files for all resources in Metabolights.

The previous work computes the same results based on a web API that can be
used to query biomedical ontologies (BioPortal). The metadata quality measures
for the present work, the previous work and the manual validation are presented
for the selected resources in Table 1.

These results show that values from the Metadata Analyser are close to the
ones obtained from a manual computation. The only significant difference is
that in two of the resources the term coverage is lower for our tool. This reduced
amount of ontology concepts found in the metadata file leads to an artificial
increase in the semantic specificity since the concepts that were exclusively found
in the manual validation are non-specific. This limitation in our methodology
is due to the fact that not all ontologies used to annotate the resources were
included in the local database (e.g. one of the concepts used in MTLBS166 is
from MeSH, but since Metadata Analyser did not include it in the database, it
failed to compute a semantic specificity for the concept).
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Table 1. Results from the manual validation

Resource Manual results This work Previous work

Semantic Term Semantic Term Semantic Term

specificity coverage specificity coverage specificity coverage

MTBLS1 0.89 0.30 0.88 0.30 0.00 0.00

MTBLS36 0.96 0.17 0.96 0.17 0.00 0.00

MTBLS88 0.75 0.31 0.75 0.31 0.69 0.75

MTBLS110 0.84 0.28 0.91 0.14 0.87 0.50

MTBLS137 0.94 0.20 0.94 0.20 0.87 0.37

MTBLS166 0.60 0.23 1.00 0.14 0.00 0.54

The results from the previous study show a small semantic specificity value
compared with the manual validation. They also present higher values of term
coverage because that study uses a different algorithm to compute it. Finally,
given that the previous work relies on a service over the web and that our
methodology uses a local knowledge base, it is unsurprising to notice that
Metadata Analyser is faster. In fact, it computes the results, on average, more
than 10,000 times faster than the previous work (results not shown).

3.3 Evolution of Metadata Quality

To study the effect of an expert-driven curation process, we applied our measures
of metadata quality to consecutive versions of three resources in the repository.
The development team of Metabolights provided the pre- and post-curation ver-
sions of the resources MTBLS286, MTBLS287 and MTBLS288. The numbers
for these three resources are presented in Table 2.

There are three general differences between the pre- and post-curation
process. First, we notice an increase in the number of annotations, from 9 to 16
in each of the three resources. Furthermore, even though there are more anno-
tations, we observe an increase in the amount of annotations that make use of
ontology concepts, since the term coverage measure increases from an average

Table 2. Results from the pre- and post-curation analysis. N is the number of anno-
tations that refer to ontology concepts.

Resource Pre-curation Post-curation

Semantic Term N Semantic Term N

specificity coverage specificity coverage

MTBLS286 0.00 0.00 9 0.96 0.25 16

MTBLS287 0.92 0.22 9 0.96 0.25 16

MTBLS288 0.92 0.22 9 0.87 0.25 16
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of 0.15 to an average of 0.25. Finally, we also observe a mild increase in speci-
ficity. These three facts suggest that curators are able to increase the amount
of machine-readable metadata that is available for each resource as well as its
information content, measured by the semantic specificity. This experiment sug-
gests that our measures do indeed capture a notion of metadata quality, since
both experienced an increase after being handled by curation experts.

It is interesting to notice that the resources MTBLS287 and MTBLS288
already presented high values of semantic specificity prior to curation (higher
than the full repository average), which means expert-driven curation could not
improve then by much. That the curation process did not significantly alter them
suggests that the annotation from the authors was already of high quality.

4 Discussion

There is an increasing usage of linked data techniques in Life and Health Sciences
and many of them using biomedical ontologies, however to enhance their impact
and value they need to produce high quality semantic descriptions of the data [2].

This work proposes two measures of metadata quality: (i) semantic speci-
ficity, which measures the average specificity of the ontology concepts referred
to in the metadata and (ii) term coverage, which measures the proportion of
annotations associated with actual ontology concepts. Based on them, we devel-
oped Metadata Analyser, an application that assesses metadata quality. It was
evaluated by comparing its results both with a manual evaluation and a previous
tool: results suggest that our measure corresponds to the expectations for meta-
data quality, as they increase after an expert-driven curation process. The tool
is also significantly faster than the previously presented one and more accurate.

The major conclusion is that the two proposed measures can effectively mea-
sure the effort put into the semantic annotation of digital resources. This includes
the annotation of a resource’s metadata with explicit references to concepts from
ontologies accepted by the community as machine-readable, standard represen-
tations of a domain of knowledge.

The results obtained from the Metabolights case study confirm the problem
that motivated the creation of this tool, as we observe a weak term coverage
(average of 0.25) and we hope it can be applied in existing repositories as a way
to provide users feedback on their metadata quality, as well as motivating the
general scientific community to increase their annotation efforts, so that we can,
as a whole, spend more effort in ensuring proper data integration.

4.1 Helping with Scarce Semantic Integration

One possible cause behind the poor state of affairs in semantic annotation is
of social nature, rather than technical [3]: metadata files are usually compiled
by the authors of the data, who (i) may not know the ontologies that contain
the concepts they need, (ii) do not fully know the structure of the ontologies in
order to perform annotation with the appropriate specific terms, (iii) lack the



204 B. Inácio et al.

proper skills to carry on the annotation process because of the technical difficul-
ties associated with this task, (iv) do not consider data sharing to be relevant,
or (v) consider that the cost of ensuring proper semantic integration outweighs
the benefits. The apparent correlation between specificity and coverage shown
in Fig. 2 shows that a general effort exists to ensure specific concepts are used
in the metadata, but not to ensure that ontology concepts are used through-
out the metadata files, which suggests that indeed the perceived benefits may
not significantly counterbalance the time costs of doing so. Without mandatory
high quality metadata publication, it becomes difficult or even impossible to cre-
ate automatic information retrieval mechanisms that can handle these author-
created metadata files. While the short-term solution is to leverage on curators
to help increase metadata quality, in a long-term scenario we wish to empower
data creators with a means to measure the quality of their metadata, who would
then use this feedback to improve metadata quality and thus the integration
potential of the data.

Acknowledgments. This work was supported by FCT through funding of the
LaSIGE Research Unit, ref. UID/CEC/00408/2013. We thank the EBI team in charge
of the development and maintenance of Metabolights for their support in this study.
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Maguire, E., González Beltrán, A., Rocca-Serra, P., Sansone, S., Steinbeck, C.: The
metabolights repository: curation challenges in metabolomics. In: Database 2013
(2013). http://dx.doi.org/10.1093/database/bat029

http://dx.doi.org/10.1093/nar/gks1004
http://dx.doi.org/10.1093/nar/gks1004
http://www.imi.europa.eu/sites/default/files/uploads/documents/IMI2Call9/IMI2_Call9_TopicsText.pdf
http://www.imi.europa.eu/sites/default/files/uploads/documents/IMI2Call9/IMI2_Call9_TopicsText.pdf
http://www.imi.europa.eu/sites/default/files/uploads/documents/IMI2Call9/IMI2_Call9_TopicsText.pdf
http://arxiv.org/abs/1604.07997
http://dx.doi.org/10.1093/database/bat029


Vascular Contraction Model Based
on Multi-agent Systems

J.A. Rincon1(B), Guerra-Ojeda Sol2(B), V. Julian1(B), and C. Carrascosa1(B)
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Abstract. This paper presents a first approximation to the simulation
of vascular smooth muscle cell following an agent-based simulation app-
roach. This simulation incorporates mathematical models that describe
the behaviour of these cells, which are used by the agents in order to
emulate vascular contraction. A first tool, implemented in Netlogo, is
provided to allow the performance of the proposed simulation.

Keywords: Multi-agent system · Agent-based simulation · Vascular
simulation

1 Introduction

Vascular tone is the vessel’s property of increasing (vasocontriction) or decreas-
ing (vasorelaxation) the tension of its walls in response to a given stimulus.
Vascular tone is regulated by the simultaneous influence of intravascular vasoac-
tive substances (hormones and platelet derivatives), neurotransmitters and the
production of vasoactive substances released by the endothelium [1,2]. The walls
of the blood vessels are arranged in three concentric layers: intima, media, and
adventitia. The intimal layer, also called endothelium, is the layer located in the
lumen of the vessel and is composed of a monolayer of endothelial cells (EC). The
ECs are flat and elongated and release numerous vasoactive compounds such as
superoxide anion (O2−), thromboxane A2 (TXA2) and endothelin-1 (ET-1) [3].
The media consists of vascular smooth muscle cells (VSMC) and are organized
into fiber bundles concentrically layered. VSMC are responsible for maintaining
vasomotor tone [4]. The adventitial is the outer layer of the vascular wall and is
formed by dense fibroelastic tissue, without smooth muscle cells, surrounded by
connective tissue with fibroblasts and macrophages. The adventitia grants the
vascular wall stability and transport nutrients to SMC [5].

The study of vascular tone modulation is important to understand and pre-
dict the response of the vascular system in a physiological and pathological
environment. Traditionally, in the study of vascular reactivity the tissue-organ

c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 25
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bath methodology is used. Tissue-organ baths are used for in vitro dose-response
experiments to investigate the physiology and pharmacology of tissue prepara-
tions. For these experiments vascular tissue is extracted from animal models
and it can be easily subject to controlled changes in oxygen availability or drug
administration.

In biomedical research the use of animal-based experimental processes is very
common. However, the use of experimental animals has involved some ethical
issues in the scientific community. For this reason, the new paradigm proposed
in biomedical research aims to change animal-based experimental processes to
a combination of in vitro cell-based experimental processes and computational
model (in silico models).

The relationship between chemical activation and mechanical response in
the vascular network is a complex system and the simulation with computa-
tional models requires a multi-scale simulation [6] that is able to reproduce this
behaviour. Multi-scale simulation allows dynamic interaction simulation at the
molecular, cellular and tissue level of biological systems. This type of simula-
tion can use a continuous or discrete approach. In biological systems there are
microscopic elements such as molecules or cells that interact with each other in a
cooperative or competitive way. To model the behaviour of these elements a dis-
crete approach, such as that offered by agent-based modelling (ABM) is the best
option. ABM is based on intelligent autonomous entities or agents. Agents are
able to perceive, act and communicate behaviours. These characteristics make
ABM the most used technique to perform this type of multi-scale simulations.

Thus, the purpose of this work is to present a first approach of a tool for
a biological simulation following a multi-agent system approach. The proposed
tool will focus on the simulation of a vascular contraction model that is able to
predict the generation of contraction force in response to a chemical stimulus in
a VSMC.

The rest of this paper is structured as follows: Sect. 2 presents the problem
description; Sect. 3 shows the previous works regarding vascular cell models and
ABM simulations; Sect. 4 presents the model for the simulation of VSMC sim-
ulation using multi agent-systems; and, finally, Sect. 5 presents the conclusions
and future work.

2 Problem Description

The increase and decrease of calcium concentration [Ca2+] are the main mecha-
nisms that cause contraction and relaxation of vascular smooth muscle and con-
sequent regulation of vascular tone. Contraction in vascular smooth muscle cells
occurs by increasing the concentration of intracellular calcium [Ca2+]i by Ca2+

influx through channels of the cellular plasma membrane and/or its release from
its intracellular deposits (e.g., from the sarcoplasmic reticulum (SR)). After this
increase, Ca2+ binds to the 4 binding sites of calmodulin (CM) producing the
calcium-calmodulin complex (CaCM) and actives the myosin light chain kinase
(MLCK). Once activated, MLCK induces phosphorylation of the serine at posi-
tion 19 of the light chain (20 kD) of myosin (MLC20). This phosphorylation
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allows the actin binding and the activation of myosin ATPase, which leads to
cross-bridge formation between both proteins and the development of the active
force necessary to produce the contraction.

Under physiological conditions an increase in [Ca2+]i may lead to coupling
excitation-contraction in smooth muscle, and this can occur by two mechanisms:
Electro-mechanical coupling or pharmaco-mechanical coupling. Both mecha-
nisms can occur simultaneously in a cell, acting individually or both at the
same time. In fact, both mechanisms are not independent and there is usu-
ally a two-way interaction between them. During electro-mechanical coupling
the membrane potential of the VSMC change. The resting potential of these
cells ranges from −50 to −60 mV. When these values become less negative
(depolarization) the voltage operated calcium channels (VOCC) are activated
leading to Ca2+ influx and [Ca2+]i increase. On the other hand, pharmaco-
mechanical coupling is based on the binding of a contractile agonist to a receptor
causing an increase in [Ca2+]i without a previous change in membrane poten-
tial. Although, these changes in membrane potential may occur secondary. Sev-
eral mechanisms of pharmaco-mechanical coupling have been proposed. Agonist
binding to a G-protein coupled receptor is the most important. This mechanism
involves phosphatidylinositol cascade activation producing increase of Inositol-
(1,4,5)-triphosphate (IP3) levels. The IP3 releases Ca2+ from the SR producing
an increase in [Ca2+]i.

3 Related Work

Over the last few years, we have seen different approaches related to biological
simulation. These approaches is focused on how to model systems, tissue or cell
behaviours and the most common tool used are the multi-agent system. Multi-
agent systems are an artificial intelligent tool which define a group of entities
with the capability of perception, cognition and actuation. These special features
make agents the most adequate tool in this type of simulations. The biological
simulation using multi-agent systems is used to understand the complexity of
biological systems. The integration of biomedical and computational research has
facilitated the modelling and simulation of biological complex units as cancer
cells [7], heart cells [8] and others [9]. Based on these models it is possible,
for example, to simulate the cell permeability and assess the pharmacological
action of some drugs in the gastrointestinal tract. [10,11]. Similarly, while we find
models that simulate intracellular absorption process, we also find models that
simulate drug clearance. Drug metabolism and clearance determines the drug
effectivity and it can be simulated since a low clearance in some circumstance
can compensate low intestinal absorption [12].

On the other hand, in vascular biology, we can find models focused on simu-
lating the mechanical behaviour of vascular walls and how some drugs can affect
it. These models incorporate a mathematical approach describing the behaviour
of vascular smooth muscle cell it includes the interaction. Furthermore, we can
find that these models include the interaction to vasoactive compounds or ion
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channels, as calcium (Ca2+) and potassium (K+), involved in cellular home-
ostasis.

In all in all theses models is notorious the use of computational models.
However, artificial intelligent (AI) techniques are also used in some cases. For
example, Stephen Johnson [13] used artificial neural networks (ANN) for describ-
ing plasma protein binding (ppb) models based on literature data. In another
work, Nathan McElroy (Penn State) presented an aqueous solubility model using
genetic algorithms and simulated annealing to select the most useful subset of
descriptors [14].

Nevertheless, the use of multi-agent systems in this kind of simulation is not
very common, since designers do not have adequate tools to model and simulate
biological systems. In our opinion, and after analyzing previous works, the use
of multi-agent systems in these simulations provides to the designer the capacity
to define very interesting concepts such as behaviours, norms, roles and also to
be the container of other needed AI techniques. According to this, next section
presents our proposal of a biological simulation based on multi-agent systems.

4 Simulation of Vascular Cells Based on Multi
Agent-Systems

This sections presents an agent-based simulation model which incorporates AI
tools and biological mathematical models. The presented model aims to give
a first approximation to a vascular cell simulation tool, using the A&A [15]
methodology. In recent years, the use of multi-agent systems has increased as
a simulation tool. This is mainly due to the ability of this tool to incorporate
behaviors, as well as to serve as a container for other AI tools useful in this type
of simulations. On the other hand, the incorporation of other useful concepts
such as the artifact, presented in the meta-model of agents and artifacts (A&A),
allows the designer to easily differentiate between intelligent agents and objects
of the environment. This model allows to perform a clear separation of entities in
this type of simulations, since, not all the entities that interact with each other
must have an intelligent behavior. In some cases, these artifacts are simply tools
used by the agents to interact with the environment.

Our model is centred in the cells located in the arterial smooth muscle, which
is responsible for vasoconstriction and vasodilation. Due to the complexity of
these simulations, this paper will focus especially on vasocontriction through
Electrochemical and chemomechanical interaction. These interactions have been
studied in depth by Murtada et al. [16] and Yang J. et al. [17]. They intro-
duced electrical, chemical, and mechanical phenomena in their models, driven
by calcium, in order to predict the force generation in a VSMC.

The Fig. 1 shows a general view of the agent simulating a cell. This agent
is based on BDI architecture (desires, beliefs, and intentions) incorporating two
types of behaviours. The first one is related to the selection of the mechanism
that will excite the cell and vasoconstriction occurs. Therfore two sub-behaviours
are established: electro-mechanical coupling and pharmaco-mechanical coupling.
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Fig. 1. General view of agent cell components

– Pharmaco-mechanical coupling. This behavior is activated when the
agent perceives a vasoactive substance (VS). As a consequence, the agent
activates the virtual sarcoplasmic reticulum (RSV). This activation creates
the Artifact Ca2+ + within the agent triggering the behavior of vasocon-
striction.

– Electro-mechanical coupling. This behavior is triggered when the
Artifact Ca2+ + entry is required inside the Cell Agent. This activation
occurs when the artifact VOCC Artifact is used inside the environment
(extra-cellular medium). This artifact makes the environment less negative
than the interior of the agent producing a depolarization that allows the
Artifact Ca2+ + to enter the agent and produce a vasoconstriction. To deter-
mine the depolarization levels, the agent perceives the levels of Artifact K by
using the equation of Nernst (Eq. 1) and takes the decision to use the envi-
ronment Artifact Ca2+ + and performs the vasoconstriction. Equation 1 is
described as:

Veq =
RT

zF
· [X]o

[X]i
(1)

Where, Veq is the equilibrium potential (Nernst potential) for a given ion.
It is common to use the ion symbol as a subscript to denote the equilibrium
potential for that ion (e.g., VK, VNa, VCl, VCa, etc.). If only one ionic species
is present in the system and channels for only the ionic species are present
(and open), Veq will also be the membrane potential (Vm). Units for Veq. are
Volts. However, the equilibrium potential is typically reported as millivolts
(mV). R is the universal gas constant and is equal to 8.314J.K − 1.mol − 1
(Joules per Kelvin per mole). T is the temperature in Kelvin (K = ◦C +
273.15). z is the valence of the ionic species. F is the Faraday’s constant and is
equal to 96.485 C.mol-1 (Coulombs per mole). [X]out is the concentration of
the ionic species X in the extra-cellular fluid.Concentration unit must match
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with [X]in. [X]in is the concentration of the ionic species X in the intra-
cellular fluid. In this case the concentration unit must match with [X]out.
Concentrations units are milimolar (mM).

The second behavior performs the mechanical response. The activation is
done through a Behaviour Selector (BhS). This selector allows the agent to
determine what kind of sub-behaviors activate in each situation.

The proposed model has been divided into the representation of the envi-
ronment (the extra-cellular medium) and a set of entities (including agents and
artifacts) that interact with the environment and among them. Specifically, the
components of the proposed model are the following:

– Medium or Environment: Is the space where our agents perform their
interactions. It simulates the extra-cellular conditions where the cell is sub-
jected to chemical stimuli like vasoactive substances modelled as artifacts.

– VS Artifact: This artifact will simulate the vasoactive substances that are
coupled to receptor-dependent calcium channels to perform the pharmaco-
logical activation. To simulate vasoconstriction, this artifact will mimic the
coupling of phenilefrine (Phe) to an alpha1 adrenergic receptor. Activation
of adrenergic alpha 1 receptors results in the release of intra-cellular calcium
from the SR and the opening of receptor-dependent calcium channels thus
increasing [Ca2+]i, and generating mechanical response.

– Ion-Calcium Artifact: This artifact models the Ion Calcium which is the
primary signal responsible for activation of vasocontriction mechanism. This
artifact can be found within the environment (in the middle) or can be
released by the VSMC through the SR. Activation of VSMC contractile
response requires that [Ca2+i ] increase.

– VOCC Artifact: This artifact will simulate changes in membrane poten-
tial. This artifact makes environment less negative as occur when potassium
chloride blocks K+ channels and opens VOCC by producing a membrane
depolarization and causing Ca2++ influx.

– Agent Cell: This agent is in charge of modelling the VSMC, allowing to
simulate the interaction of the VS Artifact, VOCC Artifact and Ion-Calcium
artifact. This interaction will produce a mechanical response, that in this case
will be vasoconstriction, by incorporating the previously described behaviors.

Figure 2 shows a first approximation of the simulation interface. This was
done using the NetLogo tool1. In the interface the user can modify the number
of agents (VSMC) to build the blood vessel. These agents are red color circles. In
turn, the user can determine the number of the different artifacts. e.g. the yellow
circles are VOCC Artifacts, the green ones are Ion-Calcium Artifacts and the
blue ones are VS Artifacts. The result of the simulation is the force generated by
VSMC and is represented as tension-time relationship. MiliNewtons (mN) are
tension units and minutes (min) are time units.

1 https://ccl.northwestern.edu/netlogo/.

https://ccl.northwestern.edu/netlogo/
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Fig. 2. Example of the Netlogo simulation.

5 Conclusions and Future Work

This paper presents a new tool for the simulation of vascular smooth muscle
cells modulating vasoconstriction and vasodilation mechanisms. The proposed
tool has been designed as an agent-based simulation and it is especially focused
on simulating vasoconstriction mechanism. VSMC have been modelled as agents
which interact with the environment through different elements modelled as
artifacts. The designed agents incorporate some mathematical models taken from
other studies exploring how smooth muscle responds to electrical or mechanical
forcing. Moreover, we have implemented a prototype of the proposed system
using the Netlogo tool. At this moment, we are evaluating the implementation
of the model against real data.
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Abstract. Epigenetics can be defined as changes in the genome that are inherited
during cell division, but without direct modification of the DNA sequence. These
genomic changes are supported by three major epigenetic mechanisms: DNA
methylation, histone modification and small RNAs. Different epigenetic marks
function regulate gene transcription, some of them when altered can trigger
various diseases such as cancer. This work is focus on the epigenetic signals in
the human genome, studding the dependency between the nucleotide word
context and the occurrence of epigenomic marking. We based our study on histone
epigenomes available in the NIH Roadmap Epigenomics Mapping Consortium
database that contains various types of cells and various types of tissues. We
compared genomic contexts of epigenetic marking among chromosomes and
among epigenomes. We included a control scenario, the DNA sequence regions
without epigenetic marking. We identified significant differences between context
occurrence of control and epigenetic regions. The genomic words in epigenetic
marking regions present significant association with chromosome and histone
modification type.

Keywords: Epigenome · Histone modification · Epigenetic marking · Genome
context · Data analysis

1 Introduction

Epigenetics is one of the most promising and intriguing areas of genetics. It is the science
that studies the interaction between gene regulation, i.e. how genes are expressed, and
its surrounding environment without involving changes in the DNA sequence level,
which may still persist in future generations [1–3]. The inheritance of epigenetic marks
from mother to daughter cells is crucial for the maintenance of a cell differentiation state
and could be propagated by various epigenetic mechanisms, such as, DNA methylation,
histone modifications and replacement of histone variants. The cell differentiation is a
natural event in every organism, which involves no alteration of DNA sequence.
However, all cells in an organism share the same genome (except B lymphocytes), each
cell type has different kinds of epigenetic signatures, and each has a cell-type specific
epigenome [1–3]. In other words, epigenetic has to do with changing the whole genome
regulatory activity and this can be resumed in the epigenome, which is a kind of map
that overlays the map of the genome, with epigenetic means that turn on or off genes,
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increasing or reducing its activity. The epigenome can be studied through genomics and
an important note is that epigenome is not static as the genome, it can be dynamic,
influenced by environmental factors and extracellular stimuli, and change rapidly in
response to these factors [4, 5].

Epigenetics can be regulated by three mechanisms: DNA methylation, histone
modification and small RNAs. In this essay, we have studied epigenetic signals presented
in the human genome, focusing mainly on the epigenetic regulation related to histone
modification. Its importance will be described as follows.

Histone modifications and chromatin structure: The DNA is wrapped around two
copies of each of the four core histone proteins H3, H4, H2B, and H2A, to form the
nucleosome which is the fundamental repeating unit of chromatin [6–8]. The chromatin
will be necessary for efficient packaging of the DNA into the nucleus of the cell.
However, when DNA is compacted into the chromatin, its accessibility becomes greatly
limited, it serves as a mechanism by which the cell protects DNA from external damage
but it also regulates DNA mediated processes, such as transcription, DNA replication,
DNA repair and chromosome segregation [6–8].

So, these histone proteins can influence chromatin organization and regulate many
DNA-templated processes, through their chemical modification patterns (acetylation,
methylation, sumoylation, and ubiquitylation) [6, 9]. Changes on the histone modifica‐
tion status may be associated with active or inactive chromatin. In addition, the combi‐
natorial nature of various histone modifications occurring at different times during
development, and at specific sites within histones, provides additional levels of regula‐
tion and complexity to the epigenome [8]. However, from these modifications can exert
some biological effects, and how the addition or removal of many of these modifications
is regulated, is still unclear.

The work presented in this paper studied the epigenetic signals of the human genome:
the dependence between the context and the occurrence of epigenetic marking, chro‐
mosome and histone type; the identification of specific contexts related to epigenomic
modification of a specific chromosome or histone.

2 Materials and Methods

We used the NIH Roadmap Epigenomics Mapping Consortium database that was
designed, in 2008, to store human epigenomic data in order to encourage research [6,
10]. This database contains data for 31 histones modifications H2AZ, H2AK5ac,
H2AK9ac, H2BK5ac, H2BK12ac, H2BK15ac, H2BK20ac, H2BK120ac, H3H4ac,
H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me2, H3K14ac,
H3K18ac, H3K23ac, H3K23me2, H3K27ac, H3K27me3, H3K36me3, H3K56ac,
H3K79me1, H3K79me2, H3T11ph, H4K5ac, H4K8ac, H4K12ac, H4K20me1,
H4K91ac.

The epigenome files contain the sites of epigenomic marking (start and end positions)
relative to the reference genome (GRCh37), defining the epigenetic regions. The word
(k-mers) counts are obtained by DNA segment regions. The sequences are classified in
two subgroups:
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Control regions. All regions without epigenetic marking were used as control,
consisting of 43916 fragments. The control regions are represented by 19369407 nucleo‐
tides, has 5619417 A nucleotides; 5625109 T nucleotides; 4063926 C nucleotides; and
4060955 G nucleotides.

Epigenomic regions. All regions with at least one epigenetic marking. If two fragments
present intersection then we join them into one. Epigenomic regions are represented by
11325056856 nucleotides, has 1672399545 A nucleotides; 1674863703 T nucleotides;
1157288962 C nucleotides; and 1157976218 G nucleotides.

The word context analysis was subdivided essentially in three subanalysis: a global
analysis comparing the control and epigenomic regions; a chromosome comparison; and
a histone comparison.

We use standard statistical procedures: t-test, chi-square test, Cohen’s d, Cramer’s V,
residual analysis and hierarchical clustering methods. To obtain k-mer (k = 1, 2, 3, 4)
counts and perform the statistical analysis we use R software.

3 Results

Control and epigenomic regions analysis. In word context, the control and epige‐
nomic regions present significant differences with low effect size difference, for the word
lengths under analysis (k = 1,…,4). The comparison was performed with chi-square test
(p-values < 0.001) and complemented with the Cramer’s V (0.001 < V < 0.01).

Fig. 1. Boxplot of C + G content for control and epigenomic samples. Both regions have several
outlier fragments with similar median values, but the set of control regions presents high values
dispersion.
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It is know that the human genome has regions of high C + G content, alternating
with regions of low C + G content. To rule out the hypothesis that the C + G contents
could be marking the occurrence of epigenetic marking, we explore the differences
between CG relative frequencies of control and epigenomic regions. Figure 1, show the
CG relative frequency for the epigenomic and the control subset, where the differences
between the two groups are globally low. We also applied the t-test and we concluded
the C + G content in the two groups of sequences presents significant differences (p-
value < 0.001). Through the Cohen’s d, we concluded that the size effect of C + G
content of our analysis is very small (d = 0.039). Thus, we classified the C + G bias
between the two groups as negligible.

Chromosomes analysis. In this analysis, we wanted to evaluate if the genomic context
associated with the occurrence of epigenetic marking is homogeneous, among chromo‐
somes. For this, we applied the chi-square test and the Cramer’s V value (Table 1).

Fig. 2. Heatmap of chromosomes vs nucleotides, for epigenomic regions. Three chromosomes
clusters were formed, two of which have strong nucleotides preferences (for A/T or G/C, respec‐
tively) and another cluster with more similar nucleotide preferences.

Table 1. Chi-square test to evaluate the homogeneity between chromosomes for epigenomic
regions word context. X2 - chi-square test; df - degrees of freedom; V - Cramer’s V association
measure; N - the sample size. *p-value is < 0.001.

Parameters X2 df p-value V N
Nucleotide 10063000 69 * 0.0243 11325056856
Dinucleotide 22290000 345 * 0.0161 11324685040
Trinucleotide 34156000 1449 * 0.0161 11324313240
Tetranucleo‐
tide

46218000 5865 * 0.0188 11323941448

For nucleotide, dinucleotide, trinucleotide and tetranucleotide contexts, we
concluded that there was a significant heterogeneity between chromosomes. Taking into
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account the residuals values and the hierarchical analysis, we identified specific k-mers
that were able to differentiate the human chromosomes taking into account the epige‐
nomic regions context.

For example, in the nucleotide context, through a residual analysis we can observe
that there are identical profiles in various chromosomes, with similar nucleotides pref‐
erence (see Fig. 2). Table 2 presents in simultaneous the trinucleotide words and chro‐
mosomes with the highest residual values (>20) identifying specific preferred genomic
contexts.

Table 2. Identification most favored genomic contexts in some chromosomes.

Chromosome with favored genomic contexts Identify specific genomic contexts in some
chromosomes

Chr3; Chr4; Chr5; Chr6; Chr13; ChrX TAT; ATA
Chr16; Chr17; Chr19; Chr20; Chr22 GGG; CCC; GCC; GGC

Histone modifications analysis. This analysis was performed in order to compare the
word context between different histone modification types. Specific contexts are asso‐
ciated with specific histone modification (p-value < 0.005, qui-square test).

For example, in the trinucleotide context, we concluded from the analysis of residues
that each modifications has specific preferences. Table 3 presents in simultaneous the
trinucleotide words and histones with the highest residual values (>20).

Table 3. Identify specific genomic contexts in histone modifications.

Histone modifications Identify specific genomic contexts
H2AZ; H2AK5ac; H2BK5ac; H2Bk15ac;
H3K4ac: H3K4me1; H3K4me2: K3K4me3;
H3K9ac; H3K9me3; H3K23ac; H3K27ac;
H3K27me3; H3K36me3; H3K79me1; H3K79me2

TTA and TAA

H2AK9ac GGG; GCC; GGC
H2BK12ac; H2BK20ac; H3K14ac; H3K18ac;
H3K56ac; H4K8ac

GCT; CTC

H2BK120ac TTA; TAA; CTC; GCT
H3K9me1 AGG; GCT; CTG; CCT
H3K23me2 AGG; CTC; GCT
H3T11ph GCT
H4K5ac GCT; CTC;TTA
H4K12ac GGG; GGC; CCC; GCC
H4K20me1 CAG; CAC; AGG; CTC; GCT
H4K91ac GCT; CTT; AGG
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4 Discussion

In this study we globally study the human epigenome, and the main objective was to
identify motifs that could be associated with histone modification to further understand
the relationship between DNA sequences and the occurrence of epigenetic marking.

Through heatmaps and the hierarchical clustering analysis, we could identify specific
genomic contexts associated to each histone modification. One of the strongest contexts
was TTA and TAA trinucleotides that are present mainly in regions of H2 and H3 histone
modification, for both acetylation and methylation. However, there are other histone
modifications that have other enriched motifs, as shown in the results. So, with these
results, it may be possible to predict the occurrence of a modification from the nucleotide
context of the region. Our epigenomic data is obtained from healthy cells, so with these
profiles and the identification of the words with the greatest effect on the modifications,
a comparison should be made between healthy and unhealthy cells and evaluate what
differentiates them. It was also possible to create groups according to the type of histones
(H2, H3 and H4) and the type of modification (acetylation or methylation) [6, 8, 9].
Curiously, it was observed two distinct groups: one including transcription-activating
histone modifications (normally acetylations) and other including transcription-inacti‐
vating ones (normally methylation).

The trinucleotide and tetranucleotides contexts were the most informative ones
differentiate chromosomes and histones. From the results, we can speculate that
increasing the word size of contexts, more information and conclusions could be
addressed. Because the computational complexity, we did not study higher word length,
which is a limitation of this analysis.
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Abstract. Thanks to the rapid advances in sequencing technologies,
genomic data is now being produced at an unprecedented rate. To adapt
to this growth, several algorithms and paradigm shifts have been pro-
posed to increase the throughput of the classical DNA workflow, e.g. by
relying on the cloud to perform CPU intensive operations. However, the
scientific community raised an alarm due to the possible privacy-related
attacks that can be executed on genomic data. In this paper we review
the state of the art in cloud-based alignment algorithms that have been
developed for performance. We then present several privacy-preserving
mechanisms that have been, or could be, used to align reads at an incre-
mental performance cost. We finally argue for the use of risk analysis
throughout the DNA workflow, to strike a balance between performance
and protection of data.

Keywords: Read alignment · Cloud computing · Genomic data privacy

1 Introduction

Genome sequencing evolved at an unprecedented rate with the advances of Next-
Generation Sequencing (NGS) technologies. These new technologies allowed the
sequencing costs to fall down to less than $1000 per genome, the machines
throughput to increase from MB to TB of raw data produced per day, and the
development of optimized parallelized procedures [19]. Medicine and biomed-
ical research are benefiting from this evolution and started including sequenced
data in their workflows [5]. However, to produce more comprehensive analysis
using the large amount of NGS data generated, clinical and research entities
faced new technical challenges. Indeed, they now have to share data and col-
laborate to improve the quality of their studies and the development of larger
datasets [13].

Going further than traditional sharing schemes, domain experts established
the e-biobanking vision [4], which calls for multi-research environment models
and architectures facilitating the sharing of data. However, biomedical data (e.g.
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genomic sequences, medical reports, diseases information) is sensitive, as it is
unique for each person and reveals information about herself and her relatives
(e.g., predispositions to diseases). Therefore, a collaborative environment needs
not only to enable the storage, the access and the analysis of biomedical data,
but also be secure and reliable. Developing such an environment still remains a
challenge.

As this integrated environment does not yet exist, scientists mostly relied on
clouds to store and analyse sequencing data, due to their data sharing platform
and improved computing schemes. However, the question remains on their ability
to store and exploit genomes without breaking privacy policies. Despite the best
efforts of cloud providers, the challenge is now set to accurately determine a
threshold between the privacy and the openness of genomic data [23].

In this paper, we focus on the first step of the DNA analysis workflow —
read alignment — which finds the location of a sequenced portion of DNA or
RNA in a reference sequence. Section 2 summarizes the privacy-related features
of genomic data, and describes the privacy attacks that have been presented in
the literature, highlighting the importance of protecting genomic data. Section 3
describes cloud-based alignment algorithms which first emerged in response to
the fast growth of sequenced data, highlighting their lack of consideration for
privacy. Section 4 introduces the more costly algorithms that have been devel-
oped with privacy in mind. Finally, Sect. 5 gives some final remarks for the
development of genomic data protective cloud environments, and argues for a
risk-scale analysis that would be both practical and efficient. Section 6 concludes
this paper.

2 Privacy Attacks on Genomic Data

Protecting genomic data is a non-trivial task, due to its many specificities which
have been exploited in recent attacks. The attacks performed in order to obtain
private information from genomic data all rely on one or several of the following
characteristics.
Long-lived and static data. Genomic data stays sensitive at least as long
as her owner lives, and contains particular properties, which make standard
encryption mechanisms insufficient to protect it on the long term. Furthermore,
once the privacy of genomic data has been compromised, there is no way to
recover it, as the genome of a subject evolves very slightly during her life.
Hereditary information. Genomic information is transmitted from generation
to generation. Thus, privacy leaks also affect the relatives of a victim.
Revealing diseases risk. Hereditary diseases are embedded in genes. The pos-
session of even parts of a person’s genome makes it possible to infer about her/his
risk to develop certain disease. This information can lead to discrimination, for
example, an employer might not offer a job to someone suffering from a chronic
disease, or a health insurance could be denied to a person whose genome revealed
a high risk to develop a disease. The same can occur with mortgage, if a person
has a disease which decreases her lifespan.
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Revealing personal response to medicines and risks to diseases.
Prospects of personalized medicine show the benefits of using genomic infor-
mation to adapt a patient’s treatment to his particular expected reactions to it.
However, this information could also be used for less glorious goals, since know-
ing the patient’s reaction to a set of medicines can expose potential weaknesses.
Prone to manipulation. Ongoing research led to the belief that in the near
future it will be possible to artificially recreate the DNA of any sequenced sub-
ject. As DNA samples are now used in forensics investigation to study crime
scenes, artificial DNA samples could be introduced to influence investigations.
This practice would compromise the ongoing investigations, by obfuscating any
potential result or worse, lead to a wrong accusation.

In practice, the approach that has been followed by the existing platforms
or services that work on genomic data until now has been a reactive one:
data is made available and once a new attack is discovered, sensitive data is
removed from public access. Several privacy-related attacks have been studied
and described in the literature, we summarize them here.
Identification attacks are performed to determine the relation between the
DNA profile of an individual and a data set. Taking as example a disease study
case, an identification attack would reveal if a person is in the case or control
data set, therefore breaking the privacy policies. Such an attack would typically
reveal that a subject has a given disease [11].
Identity tracing attacks use records of genetic information and personal pub-
lished information, which is available, for example, on genealogical databases
(Ancestry1), diseases studies databases (DisGenet2), and surnames databases
(e.g. Surname Navigator3). In the past, those databases reacted to reported
attacks — such as the one determining Dr. Watson’s APOE gene status [18]
or the one using identification by surname inference [10] — by removing the
detailed information used for the concerned attack from the database.
Recovery attacks determine a subject’s sensitive genomic sequences using sta-
tistics and frequency information combined with released sensitive data (e.g.
single nucleotide polymorphisms). Once the sequence is known, the attacker can
use this information to launch the two previously mentioned attacks [25].

These attacks alerted the research community and the databases administra-
tors of the possible data privacy threats. However, they cannot protect genomic
data against future unknown attacks, as an attacker could collect and save data,
and run an attack on it once it has been made public. Therefore, several privacy-
preserving approaches to handle genomic data have appeared, which propose to
protect data preventively.

In the next section, we discuss the existing cloud-based alignment solutions
that the scientific community has adopted in order to leverage their high through-
put, and we study them from a privacy-related point of view.

1 Ancestry – https://www.ancestry.com.
2 DisGeNet – http://www.disgenet.org.
3 Surname Navigator – http://www.surnamenavigator.org.
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3 Alignment in the Cloud

Aligning reads to a reference genome is one of the most important steps,
and the first, of the sequencing analysis workflow that ultimately leads to
genomic insights. Due to the throughput of NGS technologies and computa-
tional resources of research centers being unable to follow it, reads alignment is
now often a bottleneck [21] and traditional algorithms, like BLAST [2] cannot
be used as is. Hence, researchers started to offload the alignment of reads to
cloud providers. Clouds are scalable computing infrastructures that allow users
to adapt the resources they use to each of their analysis. These infrastructures
allow users to benefit from their important computational power and storage
space provided on demand through a simple internet connection, and at a man-
ageable cost.

Several popular alignment tools have been adapted to run in clouds using
Hadoop’s MapReduce to execute code in parallel (Cloud-MAQ [22], Cloud-
BLAST [15]). MapReduce’s performance can be affected by the large amounts of
data that has to be uploaded in the cloud, before executing the processing step.
In addition, this data transfer increases cloud storage costs and causes increased
latencies. This main limitation of MapReduce algorithms can be partly addressed
using stream processing engines, which have also been explored in combination
with alignment algorithms. Kienzler et al. [14] proposed a stream-based sequence
analysis approach where the transfer step is replaced by data streaming, thus
avoiding the huge amount of data transfer. Even though streaming approaches
improved performance, since they apply data compression and decompression,
read alignment remains computationally intensive and time consuming.

Although cloud processing improves performance and provides more storage
space, it poses security concerns. A cloud infrastructure is controlled by a Cloud
Service Provider (CSP), which does not provide the users full control over their
own data. Additionally, CSPs can copy, transfer and store the data into multiple-
locations (for fault-tolerance or economic reasons), and do not guarantee that the
data cannot be accessed by the CSP or an intruder [20]. Thus, researchers need
to consider a cloud as an untrusted, and possibly insecure, environment. To deal
with genomic data on clouds, researchers and CSPs should discuss and adapt
the privacy policies (eg. data control, security, confidentiality, transferring) to
guarantee data protection [8].

Cloud computing offers the best solution in terms of modularity concerning
computational power and costs to analyse large quantities of data. However, the
algorithms described in this section require the client to upload his data into
the cloud, where it is treated in plain text (i.e., without using any encryption
mechanism). Considering that the user-cloud communications are made via inter-
net, where communications could be intercepted and genomic data decrypted,
given enough time, and the trust we give to the cloud provider, using such an
infrastructure presents privacy issues which need to be addressed.
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4 Privacy-Preserving Alignment in the Cloud

Privacy-preserving methods for execution in the cloud can involve cryptographic
or non-cryptographic mechanisms and client-CSP agreements that must be fol-
lowed. Both, client and CSP need to be aware of the sensitivity of biomedical
data to ensure the adequate privacy protection [1]. In this section, we introduce
the current privacy-preserving methods that could be applied to biomedical data,
and then present real-life applications of these mechanisms.

The non-cryptographic techniques include data anonymization, the control
of accesses, and privacy agreements.
Data anonymization consists in removing the personal information (e.g. name,
surname, birth data, address, age) to avoid direct associations between genomes
and their donors. Some portions of genomes have been considered privacy-critical
information as well [10], which raises the challenge of identifying such genomic
portions.
Access control consists in specifying who is allowed to access the data, often
with different access levels, to limit and track its usages. For example, a medical
center may have access to the disease genes of a patient and another research
unit would only have access to the genes related to a particular disease under
investigation [9].
Privacy agreements are signed documents specifying that a donor grants
access to his data. All the entities (e.g. donor, researcher, medical institution)
that can access the data sign the agreement, and it is assumed that all the
concerned parties are trustworthy. Historically, privacy agreements were the
first privacy-preserving technique developed around genomic data. However, the
necessary uses of untrusted machines and communications links render privacy
agreements unable to fully protect data.

These three methods are considered insufficient to protect genomic data
alone, however it is believed that when combined with cryptographic privacy-
preserving techniques they increase the protection of sensitive data [9]. Cryp-
tographic techniques provide high privacy guarantees to very specific scenarios.
However, the scientific community has been working towards extending their
range of applicability to study genomic data.
Keyed-hash functions convert clear-text to hashes and combine them with a
secret key. This technique however relies on the assumption that the key is never
stolen, since in that case all the data would be accessible [6]. In addition, this
approach does not allow direct collaboration between multiple entities.
Differential privacy introduces randomness to the input of a function in order
to protect its privacy-sensitive features. Intuitively, the output of a function must
not vary much whether an individual is part of the study or not. The main issue
of this technique is to control the amount of randomness introduced in human
genomes, so that studies can produce meaningful results [17,23].
Garbled circuits are a cryptographic technique for two-party secure compu-
tation. This technique allows a user to send his data to a receiver (e.g. cloud
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service) to make some computations and receive back the final output. During
this process, neither the input nor intermediate values are revealed [3].

Lastly, homomorphic encryption schemes have been explored as a security
method for genomic data. These schemes allow a computation to be executed
on encrypted data, and its result to be decrypted, therefore providing insight on
the plaintext data. However, their performance is currently unsatisfactory and
it only allows a limited number of operations [3].

Several privacy-preserving cloud alignment solutions have been recently pub-
lished. Those solutions rely on hybrid clouds environments where the most sensi-
tive data computations are performed on a private cloud and the less sensitive is
processed on a public cloud [24]. Some solutions apply keyed-hash functions on
the sensitive data and then send the hash-values to the cloud [6]. Homomorphic
encryption has also been applied on other steps of the analysis of genomic data,
e.g. for disease susceptibility tests [16]. However, these examples still present
some limitations: the most CPU intensive task (i.e., the extend step) has to be
performed in the private cloud; the need of an efficient and reliable sensitive data
classifier; the use of hash algorithms that may be broken before the expiration
of the genomic data they protect.

5 Towards a Differentiated Protection of Genomic Data

Several privacy-preserving methods have been developed, however their limited
usability stills cannot address all the different issues found in the workflow analy-
ses steps. In this section, we describe how classifying the sensitivity of genomic
data would contribute to a thorough use of the potential of existing algorithms,
at the best possible cost.
Enabling technologies. A filtering approach that classifies reads as embedding
sensitive or non-sensitive information has been described in [7]. Adding this fil-
tering step would allow the reduction of data encryption costs by encrypting
only the critical information and improve the data usability, while ensuring the
protection of genomic data. In addition, the level of sensitivity of reads could be
determined according to the attack power it provides to an attacker through a
risk-analysis study. Doing so, however, requires further work. We are convinced
that such approaches will be developed in the future, and now present the ben-
efits they would bring to different stages of the DNA workflow.
Privacy-preserving alignment can be obtained in mainly two ways: rely on
plaintext conventional algorithms in a secure environment (e.g. local computer,
private cloud) [14,22], or protect data through cryptographic methods. In the
former there is always a risk for an adversary to get access to the machines, and
therefore to the sensitive data. The second solution can be too costly or even
unpractical since encryption makes data unavailable for some operations [3,12].
Classifying data into sensitivity levels would allow both approaches to be com-
bined, globally improving performance, as the more-costly algorithms would be
applied only to the most sensitive data, while improving the performance of the
low-sensitivity reads.
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Storage security requires long-term protection techniques. The most sensitive
data could be stored in highly restricted and protected areas, while less sensitive
data could be stored encrypted on the cloud. Splitting data and differentiating
the way it is stored based on its sensitivity would reduce the storage costs as the
most secure environments are usually more costly.
Release of and access to sensitive data require an extensive understanding
of genomic data privacy breaches. For a privacy protective data release it is,
of course, necessary to hide all the unique individual information (e.g. names,
address, genes) [25]. Differentiating the sensitivity of genomic data would allow
more data to be released to scientists, while the most sensitive one would still
be protected. Data aggregation was also purposed as a secure solution for data
release, however it remains in a early stage of understanding and application. For
example, a human genome contains around 10 million single nucleotide polymor-
phisms (SNPs), and therefore a secure aggregate of full genomes would have to
involve more than 80 millions of subjects [25] (≈1.15% of the world population).

6 Conclusion

The migration of read alignments to the clouds and the parallelization of the
process using MapReduce, have greatly improved the performance of this essen-
tial step of the DNA workflow. However, these solutions require data to be
manipulated in plain-text in the cloud, which poses privacy concerns, which
were highlighted by the genomic privacy attacks reported in the last years. As
researchers became more aware of those data vulnerabilities, the last years saw
the development of privacy-preserving solutions to replace the typical alignment
algorithms, which are deprived of privacy measures. Until now, it seems that
privacy protection and performance are inversely related, since the improvement
of one leads to the decrease of the other. Thus, the golden question is how to
provide data privacy protection while taking advantage of the storage and com-
putational power that cloud environments provide. Accurately determining the
level of sensitivity of genomic information seems to be a way to go to benefit
entirely for the broad range of algorithmic, storage and access solutions that have
been developed. Such a secure cloud environment for biomedical data analysis
is still an open challenge.
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Abstract. In this paper, we propose a computational approach to quan-
tify inverted repeats. This is important, because it is known that the
presence of inverted repeats in genomic data may be associated to cer-
tain chromosomal rearrangements. First, we present a reference-based
relative compression method, which employs statistical characteristics of
the genomic data. Then, for determining the similarity between genomic
sequences, we use the normalized relative compression measure, which is
light-weight regarding computational time and memory. Testing this app-
roach on various species, including human, chimpanzee, gorilla, chicken,
turkey and archaea genomes, we unveil unreported results that may sup-
port several evolution insights.

Keywords: Inverted repeats · Relative compression · Finite-context
model · Reference-based compression · Chromosomal rearrangement

1 Introduction

With increasing rise in the production of genomic data, our scientific knowledge
of genome sequence information is continuously being updated. Along with this,
there are challenges regarding storage, processing and transmission of this data
deluge, as well. Compression is a solution to address these challenges. Heretofore,
several methods have been proposed for this purpose [1–4].

Genomic sequences have specific properties, such as the presence of inverted
repeats (IR) [5]. IRs are sub-sequences of genomic sequences which are reversed
and complemented copies of some other sub-sequences [6]. They may play an
important role in chromosomal rearrangements [7]. The compression methods,
aside from providing more efficient storage, processing and transmission, can
also help investigating the properties of IRs.

To investigate the properties of the IRs in DNA data, a measure is required.
For this purpose, different measures have been proposed, such as normalized
compression distance [8], normalized conditional compression distance [9,10] and
normalized relative compression [11]. These measures rely on the notion of Kol-
mogorov complexity [12], which is the length of a shortest binary program that
computes a binary string of finite length in a universal Turing machine and
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halts [13]. In this paper, we use the normalized relative compression, given by
NRC (x, y) = C(x‖y)

|x| log2 |B| , where C(x‖y) denotes the relative compression of x

based on y, which is the size of the compressed version of a string x given exclu-
sively the information contained in a string y, |x| denotes the size of x, and |B|
denotes the alphabet size [11].

The rest of this paper is organized as follows: In Sect. 2, we present a
reference-based relative compression method for quantifying IRs. The key idea
of this reference-based compression is to build a model based on a reference
sequence, then freeze the model and compress a target sequence, based on that
model. In Sect. 3, we test this method on various datasets, both by considering
and not considering IRs. Then, we use compact heatmaps to compare the results.
Finally, in Sect. 4, we draw some conclusions.

2 Method

A finite-context model (FCM) relies on the Markov property, i.e., it employs the
k > 0 most recent symbols (context-order size k) of the information source, to
estimate the probability of the next symbol [14]. Denoting the k most recent
symbols as xn

n−k+1 = xn−k+1 · · · xn, the probability estimates P (xn+1|xn
n−k+1)

are calculated based on the number of symbols which are accumulated while the
information source is being processed. Therefore, we have

P (s|xn
n−k+1) =

C(s|xn
n−k+1) + α

C(xn
n−k+1) + α |B| , (1)

in which |B| denotes the size of alphabet B = {s1, s2, . . . , s|B|}, containing
the objects of interest. Heretofore, the alphabet {A,C,G, T} has been considered
for DNA data [15]; We consider the ‘N ’ symbol, as well. Therefore, we have B =
{A,C,G, T,N} and |B| = 5. Also, in Eq. (1), C(s|xn

n−k+1) represents the number
of times that symbol s ∈ B has been found in the past, considering xn

n−k+1 as the
conditioning context. We have C(xn

n−k+1) =
∑

a∈B C(a|xn
n−k+1), which denotes

the total number of events occurred within context xn
n−k+1. Parameter α allows

balancing between the maximum likelihood estimator and a uniform distribution.
For large number of events, n, the estimator behaves as a maximum likelihood
estimator. Also, when α = 1, Eq. (1) turns out to be the Laplace estimator [16].

After the first n symbols of x are processed, the per symbol information
content average, which is provided by an order-k FCM, is given by

Hk,n = − 1
n

n∑

i=1

log2 PR(xi|xi−1
i−k) bpb, (2)

in which PR is the probability regarding the reference sequence, and also “bpb”
stands for bits per base. The upper bound of the bpb for sequences of five symbols
(A, C, G, T and N) is log2 5 = 2.32. This value is obtained in a situation where
the symbols are independent and equally likely. Note that the smaller the value of
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bpb is, the better the model is [17]. The values of NRC are obtained by dividing
Hk,n by log2 of the alphabet size (in this case, 2.32). Note that 0 < NRC ≤ 1 and
that the closer its value is to zero, the better the sequence can be compressed
using the reference.

We have implemented the method, using C++ language, and provided a
command-line tool, Phoenix [18], which can be applied to any genomic sequence,
in FASTA or bare sequence (ACGTN ) format. Along with Phoenix, a set of bash
scripts were written for downloading, installing and running Phoenix, as well as
plotting the results in an automatic way. It is worth mentioning that Phoenix is a
complementary tool to SMASH [16], since it allows to indicate, in a compact map,
which possible rearrangements, of IR type, need to be looked by SMASH. Besides,
it offers the possibility to have a metric to quantify the overall inversions.

3 Results

In order to test the reference-based relative FCM method, we employed genomes
with different species origins and lengths, in FASTA format (see Table 1). The
tests were carried out on a server with 16-core 2.13 GHz Intel� Xeon� CPU
E7320 and with 256 GB of RAM. For all datasets, the parameters α and context-
order size associated with our method, were set to 0.01 and 20, respectively. The
results can be replicated using the Phoenix [18] and GOOSE [19] softwares.

Table 1. Target and reference genomic sequence datasets [18].

Target Scientific name Abbr File Reference File

genome size (GB) genome size (GB)

Human Homo sapiens HS 3.3 Chimpanzee 3.3

Chimpanzee Pan troglodytes PT 3.3 Human 3.3

Gorilla Gorilla gorilla GG 4.4 Human 3.3

Chicken Gallus gallus GGA 1.3 Turkey 1.2

Turkey Meleagris gallopavo MGA 1.2 Chicken 1.3

Archaea Archaea A 0.5 Archaea 0.5

Hereinafter, the notation X.i refers to chromosome i of sequence X. Moreover,
notations MT, UL, UP, AL and LG refer to mitochondrial DNA, unlocalized
sequence, unplaced sequence, alternate locus and a linkage group, which is not
assigned to a chromosome, associated with different sequences.

In Fig. 1, the heatmaps of the NRC values, regarding the compression of
human and chimpanzee chromosomes, are plotted, in an all to all scheme.
Squares show how much similar the reference and target sequences are. The less
the NRC value is, the more similar the corresponding chromosomes are, since
less bits per base are used for their relative compression. Figure 1a and b show
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Fig. 1. NRC values obtained by compression of human and chimpanzee chromosomes.
(a) left: IRs not applied (IR= 0), right: IRs applied (IR= 1) [reference: HS, target: PT],
(b) left: IR= 0, right: IR= 1 [ref.: PT, tar.: HS], (c) the difference in NRCs between
applying and not applying IRs (NRCIR=0 − NRCIR=1) [ref.: HS, tar.: PT] and (d) the
difference between NRCs [ref.: PT, tar.: HS].

NRC values with and without considering IRs. As can be seen, there is higher
similarity between reference and target chromosomes with the same numbers,
rather than others, except for HS.2, HS.MT, HS.UL and HS.UP related to PT.2A
& PT.2B, PT.MT, PT.UL and PT.UP, respectively. Also, HS.AL is not similar
to any PT chromosome. Note HS.2 (related to PT.2A & PT.2B) is presumed to
contain an ancestral chromosome fusion [20]. HS.Y (as a target) is highly corre-
lated to PT.X, since they had possibly exchanged information in recombination
processes [21].
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Figure 1c and d show the difference in NRC between considering and not
considering IRs in the compression. The larger the difference of NRC values for
two sequences is, the more similar those sequences are when considering IRs, and,
consequently, possibly the higher the probability of chromosomal rearrangement
would be. As can be seen, chromosomes 4, 5, 12, 17 and 18 of HS and PT have
more similarity than others, when considering IRs. This conforms with the results
reported in [22,23], in which pericentric inversions were detected by fluorescence
in situ hybridization (FISH) analysis. Also, HS.Y and PT.Y are correlated, which
conforms to [24]. Additionally, we have found a high correlation between HS.MT
and PT.UP (as the reference), when considering IRs.

Fig. 2. NRC results concerned with compression of gorilla using human chromosomes
as the reference. (a) left: IR= 0, right: IR= 1 and (b) the difference between NRCs.

The NRC results regarding compression of gorilla chromosomes, using human
as the reference, are shown in Fig. 2. Considering IRs, a similarity between GG.17
and HS.5 is seen, which is justified by a chromosomal translocation [9,16,25].
Moreover, GG.2B and HS.2 are similar, either with or without considering IRs.
Surprisingly, however, there is a remarkable difference between considering and
not considering IRs in the compression of GG.2A using HS.2 as reference. Thus,
these two chromosomes are similar, only when IRs are considered.

In Fig. 3, the NRC results regarding the compression of chicken and turkey
chromosomes are plotted. Many different similarities, such as in chromosomes
3 & 2, 6 & 8, 8 & 10, 11 & 13 and 18 & 20 of GGA and MGA is seen, which were
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Fig. 3. NRC values associated with the compression of chicken and turkey chromo-
somes. (a) left: IR= 0, right: IR= 1 [ref.: GGA, tar.: MGA], (b) left: IR= 0, right: IR= 1
[ref.: MGA, tar.: GGA], (c) the difference between NRCs [ref.: GGA, tar.: MGA] and
(d) the difference between NRCs [ref.: MGA, tar.: GGA].

reported in [26] as chromosomal rearrangements. Moreover, we found similarities
between MGA.W and GGA.1 & GGA.UL as well as GGA.W and MGA.1 &
MGA.Z & MGA.UP. Additionally, we found that MGA.27 and GGA.25, as well
as GGA.32 and MGA.UP, are highly similar, when IRs are considered.
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Fig. 4. NRC values obtained by compression of archaea using archaea chromosomes as
the reference. (a) left: IR= 0, right: IR= 1 and (b) the difference between NRCs.

Figure 4 shows the results associated with the compression of archaea chromo-
somes, using archaea as the reference. The highest similarities are seen between
different strains of the same archaeon, for example, 227, CM1 and MS strains
regarding Methanosarcina barkeri archaeon. We have found remarkable differ-
ences between considering and not considering IRs in the compression of the
followings: for Methanosarcina barkeri archaeon, Fusaro & Wiesmoor, MS &
227 and MS & CM1, for Methanosarcina mazei archaeon, S-6 & Goe1, Goe1
& SarPi and Goe1 & WWM610, for Sulfolobus islandicus archaeon, L.D.8.5
& Y.N.15.51, L.S.2.15 & Y.N.15.51 and Y.G.57.14 & Y.N.15.51. It is worth
mentioning that because of high similarities between different strains of the same
archaeon, the plots in Fig. 4 are approximately symmetric.
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4 Conclusions

One of properties of genomic sequences is the presence of inverted repeats, which
are reversed and complemented copies of some sub-sequences of the genomic
sequences. It is known that they may play an important role in certain genomic
rearrangements. To quantify IRs, the similarity between genomic sequences needs
to be determined. A common biological approach, FISH, is a time-consuming
and expensive method. In this paper, we employed an affordable computational
approach, relying on reference-based relative compression, to quantify IRs.

We tested the proposed approach on several genomic datasets from various
species (14 GB of data). We found some sequences are more similar to each other
when IRs are considered in the compression process. This raises the possibility to
detect chromosomal rearrangements. The results obtained conform to the results
that were attained in previous works, using the expensive FISH approach as well
as computational approaches, but we also unveiled undocumented ones.
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Abstract. Feature/Gene selection is a major research area in the study
of gene expression data, generally dealing with classification tasks of dis-
eases or subtype of diseases and identification of biomarkers related to
a type of disease. In such a context, this paper proposes an ensemble
approach of gene selection for classification tasks from gene expression
datasets. This proposal provides a four-staged approach of gene filtering.
Each stage performs a different gene filtering task, such as: data process-
ing, noise removing, gene selection ensemble and application of wrapper
methods to reach the end result, a small subset of informative genes.
Our proposal has been assessed on two different datasets of the same
disease (Pancreatic ductal adenocarcinoma) for which, good results have
been achieved in comparison with other gene selection methods. Hence,
the proposed strategy has proven its reliability with respect to other
approaches.

Keywords: DNA-microarray · Gene expression data · Feature/Gene
selection · Ensemble method · Wrapper method · Filter method

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types
of cancer [1], with a five-year survival rate of 8% [2]. It is usually asymptomatic
in early stages which makes early detection difficult and contributes to low sur-
vival. In addition, the chemotherapeutic drugs available are not very effective in
PDAC. The latter has been associated with the dynamic relation between the
tumor cells and the stroma [3]. PDAC originates as a consequence of the succes-
sive accumulation of mutations which affect different oncogenes and tumor sup-
pressors. These genes usually play an important role in key signaling pathways.
Among them are RAS, AKT, CDKN2A, TP53, DPC4, among others affected
by punctual mutations or allelic loss [4,5].

c© Springer International Publishing AG 2017
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Another particular feature of PDAC is its resistance to drugs, this is because
of the desmoplastic stroma which constitutes a protective barrier against drugs.
Today, many therapies focus on targeting the stroma, but there is little improve-
ment in overall survival and high toxicity associated. Moreover, the complete
ablation of the stroma enhances tumor progression, so current research aims
to develop a stromal targeted therapy which aims to maintain an equilibrium
between stroma abundance and complete depletion [2]. Regarding diagnosis,
most common methods such as tomography, magnetic resonance image (MRI)
and endoscopic ultrasonography (EUS) are not able to detect injuries produced
by PDAC in early stages. Due to this limitation, research on diagnosis and PDAC
treatment is mainly focused on the identification of new biomarkers based on
differential expression analysis. Thus, the search for biomarkers is critical for the
early and accurate diagnosis of PDAC, aiming to increase lifespan.

Feature/Gene selection has received a lot of attention in Bioinformatics, and
many approaches for reducing dimensionality and selecting biomarkers have been
proposed [6–8]. However, the wide range of existing techniques has resulted in
different results, making it difficult to apply the gained knowledge to clinical
practice. Gene selection methods have been divided into four categories: filters,
wrappers, embedded and ensemble [6,7,9]. Filter methods determine the relevance
of features by ranking them on the basis of statistical criteria whereas wrappers
use a classifier to determine feature sets with high discrimination power. Similar
to wrappers, embedded methods are based on learning methods but allowing to
interact with them, which decreases the runtime taken by wrappers. Meanwhile,
ensembles are the most recent among feature selection methods and merge dif-
ferent strategies to face instability problems presented by other methods due to
data perturbations.

In consequence with the above, this paper proposes a hybrid technique oper-
ating as an ensemble approach for gene selection. The goal is to select biomarkers
for PDAC diagnosis (classification tasks) by combining results from different gene
selection methods to face information loss and provide a unified and coherent
biomarker subset. This challenge is justified since obtaining a set of informative
genes from PDAC is a complex task because PDAC is a particularly unstable
and variable cancer from the genomic point of view [10].

2 An Ensemble Approach for Gene Selection

This section explains the main features of our gene selection approach, which con-
sists of four linked stages, each developing a different gene filtering process until
reaching an informative gene subset. In general sense, the first stage (Stage-I)
prepares the data for the following stages, while Stage-II is responsible for remov-
ing noise presented in the data (genes considered noise). Meanwhile, Stage-III
represents an ensemble of different gene selection methods applied to the input
dataset. The result of this stage, a gene set, is passed to Stage-IV, which carries
out a wrapper-based gene filtering to achieve an informative gene subset as an
end result. The four stages above have been displayed in the flowchart given in
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Fig. 1. Flowchart representing different stages of the gene selection process of the
GSEM method: data preprocessing, noise removing, gene selection ensemble and finally,
gene filtering with two wrapper strategies.

Fig. 1. In the following subsections, we are going to describe in detail each stage
shown in this figure, which builds the proposed method.

2.1 Data Preprocessing: Stage-I

In this stage, a raw dataset is given as input by the user for its processing.
This implies that several processes such as, data transformation, missing value
estimation and data cleaning will be run if needed. Thus, this stage is in charge of
preparing data for the next stages, which are that actually perform the filtering
process. At the end of this stage, a new dataset is returned to Stage-II.
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2.2 Noise Removing Methods: Stage-II

As its name suggests, this stage is responsible for removing noise in the data. This
process involves two gene filter methods to reach such a propose. By applying the
Mann-Whitney test to the input dataset as the first filter method, we will have
a gene significance test, relating genes to the studied disease. Mann-Whitney is
a widely used test in differential gene expression analysis [11]. Besides that, this
test is nonparametric and states a null hypothesis by relating samples to the
same population whereas the alternative hypothesis relates samples to different
populations [12]. Thus, once this test is applied, genes with p-value under 0.01 are
filtered out towards the next filter method, S2N. Note that such genes are who
reject the null hypothesis and in consequence, they have the greatest statistical
significance.

On the other hand, S2N (Signal-to-Noise, [13,14]) performs a second noise
filtering from the input data and computes the statistic that determines the
correlation of each gene with respect to both tissue sample classes given in the
dataset. Thus, the most positive values are more correlated with the positive
class whereas the most negative values are more correlated with the negative
class. Hence, a determined number of genes is selected for each class based on
a threshold and finally passed to the next stage. Once both methods have been
applied, the resulting dataset is assumed as noise-free and the gene selection
processes can be run.

2.3 Gene Selection Ensemble: Stage-III

This stage acts as an ensemble of gene selection methods by combining solu-
tions of different methods in a single gene set. The idea consists of individually
applying each gene selection method and merge their results by running the
union operation (in mathematical terms) between them. Therefore, the gene set
resulting from this operation (which we call Union-set) will have all genes found
by each of different applied methods. Hence, it would be desirable to find a gene
combination from such a Union-set, being representative for the remaining genes
and optimizing the classification process of the study disease. Another important
factor in this stage is that new gene selection methods can be included to the
list of existing ones to improve the results.

Once Union-set has been achieved, it is necessary to run some strategy able
to find a small gene subset from Union-set whose genes maximize the accuracy
of the classifier used to identify tissue samples from the input dataset. This is
the goal of the following stage.

2.4 Two Wrapper Strategies: Stage-IV

This stage is in charge of finding a small gene subset from Union-set, whose
genes maximize the accuracy of a determined classifier. To deal with this prob-
lem, we have developed two greedy strategies acting as wrapper methods, which
involve, on the one hand, a gene removing strategy and on the other hand, a
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gene addition strategy. Both strategies share the same classifier to maximize its
accuracy and the strategy whose gene subset reaches the best accuracy across
the presented classifier is the winner. The gene subset of the winner strategy will
be the subset of informative genes end. The operation mode developed by both
strategies (which we call WM1 and WM2) is presented as follows:

– Gene removing strategy WM1: This strategy takes as input the Union-set set
and a classifier. In each step, it deletes a gene from Union-set to evaluate the
accuracy of the remaining genes. If the accuracy of the classifier is greater than
or equal to the accuracy of the previous Union-set, then such a deleted gene
is not significant for classification and it is permanently removed from Union-
set. The new Union-set replaces the previous one. The process is repeated
for the resulting Union-set by selecting (deleting) a new gene until all genes
have been selected. Note that if a deleted gene decreases the accuracy of the
classifier, then it is returned back to the set (because it is important for the
classifier) to select another gene. As a final result, a small gene subset where
no gene can be removed is returned.

– Gene addition strategy WM2: The Union-set set and a classifier are also the
input to this method. The strategy applied in this method performs in reverse
sense to WM1. It starts from choosing a single gene from Union-set in such
a way that maximizes the accuracy of the input classifier. Such a gene is
added to an empty set (which we call NG) and removed from Union-set. The
process above is repeated by adding another gene from the remaining genes
of Union-set to NG in such a way that, the accuracy of the new NG is greater
than the accuracy of the previous NG across the classifier. The strategy above
continues until no more genes can be added to NG, i.e., any other gene added
to NG decreases the accuracy of the input classifier. Finally, NG is returned
as an informative gene subset.

3 Case Study

This case study outlines two Pancreas datasets (Pancreatic ductal adenocarci-
noma, PDAC), which we call PDAC#1 and PDAC#2. Our proposal is applied
to both datasets and the results are compared with respect to the individual
ones reached by each gene selection method used in the ensemble. The goal of
this case study is to evaluate the significance of the genes found by our pro-
posal in classification tasks from PDAC#1 and extend such results to another
dataset of the same disease (in this case, PDAC#2) in order to assess the gen-
erality of the results of the current approach. The latter deals with evaluating
in PDAC#2, the same genes discovered by GSEM (Fig. 1) from PDAC#1. We
want to assess how the accuracy of the such a gene subset chosen in PDAC#2 is
decreased, since PDAC#2 presents features very different to PDAC#1, as will
be seen later. The same process above with GSEM is also applied to each gene
selection method used in GSEM and the results on PDAC#2 are compared with
respect to GSEM.
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3.1 Datasets

As previously explained, two datasets of Pancreatic ductal adenocarcinoma
(PDAC) have been used in the experiments. The first dataset, PDAC#1, comes
from the NCBI public repository and available at http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE15471. PDAC#1 is a 39-paired tumor and non-
tumor tissue samples dataset, for a total of 78 samples against 54675 gene probes.
The second dataset is PDAC#2, which has been selected from the same chip
model as PDAC#1 but with different features since it comes from a different
source. PDAC#2 consists of 25 tumor tissue samples and 7 normal tissue sam-
ples, for a total of 32 samples against 54675 gene probes. This dataset also comes
from the NCBI public repository at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE32676.

3.2 Results on PDAC#1

Once the case study has been described, we are going to show the results reached
in each stage after applying the approach given in Fig. 1, that is:

1. Stage-I: After applying the data processing to the raw dataset with 54675
gene probes given as input, a new dataset is returned with 54623 probes.

2. Stage-II: After applying the Mann-whitney test, ranking the dataset in
ascending order for the p-value of each gene probe and selecting those gene
probes whose p-value < 0.01, we have achieved an output dataset with 36751
probes to be passed to the next filter method, S2N. This method assigns sig-
nificance values related to the class (positive or negative class) of each gene.
From the value range of each class the middle-point is computed and then,
genes with both, the most positive and negative values above the middle-
point in each class are chosen. In this case, a new subset with 1094 probes is
taken out.

3. Stage-III: This stage applies a set of gene selection methods to the input data
(1094 probes) and computes the union of the gene sets found by each method
to form Union-set. In this case, the methods used by GSEM to select gene
subsets are: kofnGA [15], Boruta [16], propOverlap [17], SDA [18], Spikeslab
[19] and SubLasso [20]. The individual results of this methods on PDAC#1
have been listed in Part-A of Table 1. This table shows the name of the method
applied, number of genes found and the accuracy evaluated on a Support
Vector Machine (SVM) as the classifier (stratified 10-fold cross-validation has
been applied). Then, after applying the union of results, a new dataset with
100 gene probes is obtained and identified as Union-set. Part-B in Table 1
shows the accuracy reached by Union-set through the SVM classifier.

4. Stage-IV: This stage uses a SVM classifier for the two defined wrapper meth-
ods in order to reduce the number of genes given in the input dataset (with
100 gene probes) and increase the accuracy of this classifier. At the end of
this stage, the selected gene subset is one whose wrapper method reaches the
best accuracy. Part-B in Table 1 lists the results achieved by WM1 and WM2

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15471
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15471
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32676
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32676
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Table 1. Comparative table of the gene selection methods applied to PDAC#1 by the
GSEM method. Part-A shows, the used methods with the number of genes found and
its accuracy for a SVM classifier. Part-B shows the results reached by stages III and
IV of GSEM.

Part Method Number of genes SVM-Accuracy (%)

A KofnGA 20 94.87

Boruta 27 91.02

propOverlap 30 92.31

SDA 40 93.59

Spikeslab 23 92.31

SubLasso 11 96.15

Union-set 100 93.59

B WM1 6 94.87

WM2 3 96.15

in this stage. As shown, WM2 and SubLasso reached the best accuracy. How-
ever, WM2 achieved the best accuracy with only 3 genes whereas SubLasso
made it with 11 genes. Thus, our strategy is able to find a minimal gene subset
from the results of other methods by increasing the accuracy of classification.
Hence, GSEM improves the results of other methods. Reinforcing everything
explained here, Fig. 2 presents a global view of the whole gene filtering process
involved in each stage of GSEM. This figure shows the reduction progress, by
stages, of the gene number from PDAC#1 until reaching the final result: 3
genes through WM2 in Stage-IV.

3.3 Assessing the Results from PDAC#1 in PDAC#2

As previously explained, one of the goals of this case study is to evaluate the
decrease in accuracy of the genes discovered from the PDAC#1 dataset when
they are selected from the PDAC#2 dataset, which represents the same type of
cancer. This test will give us an appreciation of the universality of our results.
Table 2 lists the results for this test, where Part-A and Part-B show the accuracy
reached by the genes selected from PDAC#2, which have been discovered from
PDAC#1 in Table 1. Part-C in Table 2 shows the results reached by WM1 and
WM2 when they were applied to Union-set (with 76 probes) in this table for
PDAC#2. Finally, note that the number of genes given in this table for Part-A
and Part-B is not the same as the one given in Table 1. This is because PDAC#2
has genes whose expression values are constant for almost all samples. Those
genes have been removed from this dataset due to they do not contribute to the
classification process.
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Fig. 2. Chart summarizing the gene filtering process involved in each stage and the
remaining number of genes when the processes of each stage in GSEM are applied to
PDAC#1.

Table 2. Comparative table of gene selection methods for PDAC#2. The genes discov-
ered by the methods given in Table 1 for PDAC#1, have been selected from PDAC#2.
Part-A and Part-B measures the accuracy of such gene sets of PDAC#2 by using a
SVM classifier whereas Part-C measures the accuracy of the genes found after applying
WM1 and WM2 to Union-set given in Part-B of this table.

Part Method Number of genes SVM-Accuracy (%)

A KofnGA 14 78.12

Boruta 25 78.12

propOverlap 28 78.12

SDA 25 78.12

Spikeslab 19 75

SubLasso 6 75

B Union-set 76 78.12

WM1 5 75

WM2 1 78.12

C WM1 1 78.12

WM2 5 96.88

3.4 Result Discussion

As for the results given from PDAC#1 in Table 1, the Union-set accuracy given
in Part-B performed as an intermediate value from the accuracy given by the six
methods applied. Both gene subsets given by WM1 and WM2 (with 3 and 6 genes)
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showed the same accuracy as those of kofnGA and SubLasso respectively. This is
because they probably use a small common subset of high relevance genes for
classification. That is, only few genes are used to classify, so redundancy is
successfully removed from the data by our proposal, which has found 3 genes
with high accuracy.

As expected in the results listed from PDAC#2 in Table 2 (Part-A and Part-
B), all methods suffered a decrease of their accuracy. This should be related to
that on one hand, the classes of PDAC#2 are very unbalanced (25 tumor samples
vs. 7 normal samples) and on the other hand, many of genes discovered by the
methods given in Table 1 have been removed from the results given in Table 2,
since such genes have constant values in their expression levels for PDAC#2.
Then, taking into account the problems above, we have that the accuracy reached
in Part-A and Part-B in Table 2 is not low. Moreover, Part-C of this table shows
that the result of applying WM2 to Union-set given in Part-B, improved the
accuracy to 96.88% only using 5 genes. This proves that Union-set given in both
tables at least contains a minimal subset of significant genes that maximizes
the classification task. Such minimal subsets have been found by our proposal,
GSEM.

4 Conclusions

The goal of this paper has been to provide an ensemble method for gene selec-
tion from DNA-microarray data. Our proposal has been divided into four stages
which have been explained throughout of this paper. To assess the proposed
approach, we have used a case study with two datasets of the same disease, pan-
creatic ductal adenocarcinoma (PDAC). The goal of this study has been to eval-
uate and compare the results of our proposal with other methods in classification
tasks from one of the datasets and generalize such results to the other dataset.
In consequence with the above, our approach showed its reliability with respect
to the other methods and that its results can be extended to other datasets of
the same disease. Finally, by way of future work, our approach will be tested on
RNA-seq expression data in addition to analyzing the pathway context of the
selected genes.
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for feature selection in gene expression microarray analysis. IEEE/ACM Trans.
Comput. Biol. Bioinform. 9(4) 1106–1118 (2012)

14. Berrar, D.P., Dubitzky, W., Granzow, M.: A Practical Approach to Microarray
Data Analysis. Kluwer Academic Publishers, New York (2003)

15. Wolters, M.: A genetic algorithm for selection of fixed-size subsets with application
to design problems. J. Stat. Softw. 68(1), 1–18 (2015)

16. Kursa, M., Rudnicki, W.: Feature selection with the Boruta package. J. Stat. Softw.
36(11), 1–13 (2010)

17. Mahmoud, O., Harrison, A., Perperoglou, A., Gul, A., Khan, Z., Metodiev,
M., Lausen, B.: A feature selection method for classification within functional
genomics experiments based on the proportional overlapping score. BMC Bioin-
form. 15(274), 1–20 (2014)

http://dx.doi.org/10.14201/ADCAIJ201543110


An Ensemble Approach for Gene Selection in Gene Expression Data 247

18. Ahdesmaki, A., Strimmer, K.: Feature selection in omics prediction problems using
CAT scores and false non-discovery rate control. Ann. Appl. Stat. 4, 503–519 (2010)

19. Ishwaran, H., Rao, J.: Spike and slab variable selection: frequentist and bayesian
strategies. Ann. Stat. 33(2), 730–773 (2005)

20. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
modelsvia coordinate descent. J. Stat. Softw. 33(1), 1–22 (2008). http://www.
stanford.edu/∼hastie/Papers/glmnet.pdf

http://www.stanford.edu/~hastie/Papers/glmnet.pdf
http://www.stanford.edu/~hastie/Papers/glmnet.pdf


Dissimilar Symmetric Word Pairs
in the Human Genome

Ana Helena Tavares1(B), Jakob Raymaekers2, Peter J. Rousseeuw2,
Raquel M. Silva3,4, Carlos A.C. Bastos4,5, Armando Pinho4,5, Paula Brito6,

and Vera Afreixo1,3,4

1 Department of Mathematics and CIDMA, University of Aveiro, Aveiro, Portugal
ahtavares@ua.pt

2 Department of Mathematics, KU Leuven, Leuven, Belgium
3 Department of Medical Sciences and iBiMED, University of Aveiro,

Aveiro, Portugal
4 IEETA, University of Aveiro, Aveiro, Portugal
5 DETI, University of Aveiro, Aveiro, Portugal

6 FEP and LIAAD - INESC TEC, University of Porto, Porto, Portugal

Abstract. In this work we explore the dissimilarity between symmetric
word pairs, by comparing the inter-word distance distribution of a word
to that of its reversed complement. We propose a new measure of dissim-
ilarity between such distributions. Since symmetric pairs with different
patterns could point to evolutionary features, we search for the pairs
with the most dissimilar behaviour. We focus our study on the complete
human genome and its repeat-masked version.
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1 Introduction

Chargaff’s second parity rule states that within a single strand of DNA the num-
ber of complementary nucleotides is similar [6]. An extension of this rule says that
the frequency of an oligonucleotide should be similar to that of its reversed com-
plement (the word obtained by reversing its letters and interchanging A–T and
C–G). This phenomenon is known as single strand symmetry. Several authors
discuss the prevalence of Chargaff’s second parity rule (e.g., [1–4]). Various lines
of research are being explored in an attempt to explain its cause. One approach
postulates that the phenomenon would be an original feature of the primordial
genome, the most primitive nucleic acid genome, and the maintenance of strand
symmetry would rely on evolution mechanisms [11].

The similarity between the number of occurrences of symmetric word pairs in
one strand of DNA can be verified using frequency analysis. However, two words
with the same frequency in a sequence may exhibit very distinct distributions

c© Springer International Publishing AG 2017
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Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 30
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along that sequence. This leads to the natural question how both words are
distributed along the DNA sequence. Are their distributions similar?

If we constrain a random generator of sequences to respect single strand
symmetry (e.g., using a high-order Markov process), it is expected that the
distance distribution of a word be similar to that of its reversed complement. A
reasonable hypothesis is that the distance distribution of symmetric pairs should
usually be similar, and that strong deviations may have a biological origin.

As the word length increases, more unexpected patterns may be observed in
the inter-word distance distributions, which may result in increased dissimilarity
between symmetric pairs. The similarity between distance distributions of sym-
metric word pairs of length k ≤ 5 was studied in [10]. For such short words the
dissimilarity between symmetric pairs was basically negligible.

This work focuses on the dissimilarity between distance distributions of sym-
metric pairs of length k = 7 in the human genome. We propose a new dissimilar-
ity measure between such distributions, based on the gap between the locations
of their peaks and the difference between the sizes of these peaks.

The paper is organized as follows. In Sect. 2 we introduce a new dissimilarity
measure between distributions based on their peaks. Section 3 then identifies
and investigates the symmetric word pairs with the most dissimilar distance
distributions, and Sect. 4 concludes.

2 Methods

2.1 Materials

In this study, we used the complete genome assembly (GRCh38.p2) downloaded
from the website of the National Center for Biotechnology Information. We
also investigate how well our results hold up in a masked sequence, which
excludes major known classes of repeats [8]. We used pre-masked data, available
from UCSG Genome Browser (http://genome.ucsc.edu/index.html), in which
the repeats determined by Repeat Masker [9] and Tandem Repeats Finder [5]
are replaced by N’s. The chromosomes were processed as separate sequences and
non-ACGT symbols were used as sequence separators. Distance distributions of
words were generated using the C language. We programmed the new dissimi-
larity measures (1) to (3) in the R language used for our statistical analysis.

2.2 Inter-word Distance Distribution

A genomic word (or oligonucleotide) w is a subsequence in the nucleotide alpha-
bet A = {A,C,G, T}. Words of length k are elements of Ak. The inter-word
distance sequences are defined as the lags between the positions of the first sym-
bol of consecutive occurrences of that word. For instance, in the DNA segment
ACGTCGATCCGTGCG CG, the inter-CG distance sequence is (3, 5, 4, 2).

The inter-w distance distribution (or simply distance distribution of w) gives
the relative frequency of each inter-w distance and is denoted by fw.

http://genome.ucsc.edu/index.html
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2.3 Dissimilarity Measure

The distance distributions may present several peaks, i.e., distances with fre-
quencies much higher than the global tendency of the distribution. In general,
the strongest peaks occur at short distances, whereas peaks at longer distances
have lower frequencies. Looking only for the highest frequencies would not cap-
ture such local maxima. In what follows we will take that effect into account.

Identifying Peaks. To determine peaks we slide a window of fixed width h
along the domain of the distribution. In each such interval of width h we average
the absolute values of the differences between successive frequencies, and call
the result the (average) size of the peak on that interval. The peak’s location is
defined as the midpoint of the interval. The strongest peak is then determined
by the interval with the highest size. For the second strongest peak we only
consider intervals that do not overlap with the first one, and so on.

Dissimilarity Between Peaks. To measure the dissimilarity between two
peaks p1 and p2 of the same distribution we consider the difference between
their sizes and between their locations. We will use the following measure:

d1(p1, p2) =
( |l1 − l2|

R
+ 1

) ( |v1 − v2|
v

+ 1
)

− 1 (1)

where l1 denotes the location and v1 denotes the size of peak p1 (and similarly
for p2). Note that we standardize |l1 − l2| by the range R of the domain of the
distribution, and |v1 − v2| by the size v of its strongest peak. In general, the
dissimilarity given by Eq. (1) increases with both the location difference and the
size difference. If the peaks have the same location the dissimilarity is reduced
to a relative size difference |v1 − v2|/v ≤ 1, and if they have the same size it is
reduced to a relative location difference |l1 − l2|/R ≤ 1. When p1 = p2 Eq. (1)
becomes 0, and in general it takes values between 0 and 3.

Now consider two different words w and w̄ and let fw and f w̄ be their distance
distributions, defined on the same domain with length R. Let pw

i = (li, vi) and
pw̄

j = (l̄j , v̄j) be peaks in each. To measure the dissimilarity between these peaks
we propose to use

d2(pw
i , pw̄

j ) =
( |li − l̄j |

R
+ 1

)( |vi − v̄j |
min{v, v̄} + 1

)
− 1 (2)

where v and v̄ are the highest peak sizes observed in each distribution. The
denominator min{v, v̄} yields a high dissimilarity when one distribution has
strong peaks and the other doesn’t.

Note that (2) satisfies the semimetric property: it reduces to zero when the
two peaks have the same location and size, and is symmetric and non-negative.
This makes it quite effective. When fw = f w̄ it reduces to Eq. (1).
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Dissimilarity Between Distributions. To measure the dissimilarity between
two distributions we compare their n strongest peaks, for fixed n. We propose

d(fw, f w̄) = min
π∈Pn

{
n∑

i=1

d2(pw
i , pw̄

π(i)) } (3)

where π is a permutation of the indices i = 1, . . . , n meaning that π(i) is the
new position of the i-th element. The minimum is over the set Pn of all such
permutations. The proposed measure (3) depends on n, the number of peaks
considered, and on the bandwidth h used in the peak search. Note that (3) is a
semimetric too.

3 Results and Discussion

There are 47=16384 distinct genomic words of length k = 7, corresponding to
8192 symmetric word pairs. We restrict our distance distributions from k + 1 to
1000 (some distances from 1 to k may be absent due to the word structure). The
dissimilarity measure (3) between distance distributions is computed with band-
width h = 5 and the n = 3 strongest peaks (for n = 4, . . . , 7 we obtained similar
results in much higher computation time). Our bandwidth choice h = 5 is a com-
promise which combines peaks that lie close together without oversmoothing the
distribution.

Some words w of length k = 7 have a distance distribution with low total
absolute frequency Sw, so in our analysis we exclude symmetric pairs in which
at least one word has Sw below the first quartile of S = {Sw : w ∈ Ak}.

3.1 Complete Genome Assembly

In the complete genome this first quartile is 1498, so we exclude the symmetric
pairs with min{Sw, Sw̄} ≤ 1498 (see Table 1) and measure the dissimilarity (3)
in the remaining 6054 symmetric pairs. Let D be the set formed by these 6054
dissimilarity values.

We then automatically select the symmetric pairs with dissimilarity under
0.129, the 10th percentile of D, and those above 12.638, its 90th percentile.

The symmetric pairs with low values of (3) have very similar distributions.
For some words this dissimilarity is surprisingly low in spite of their distributions
having some strong peaks, which are almost the same in the distribution of their
reversed complement, as illustrated in Fig. 1(a)–(d). This also suggests that the
dissimilarity measure (3) achieves its intended purpose.

The symmetric pairs with high dissimilarity are usually formed by one distri-
bution with strong peak(s) and another displaying low variability or small peaks.
Figures 1(e)–(f) show the distance distributions for two symmetric pairs discov-
ered by our procedure. Especially the distance pattern of w = CACAGGC is
noteworthy. It shows several peaks whose size goes up, which is a very unusual
behavior in distance distributions between words.
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Table 1. Sum of distance frequencies Sw, their maximal ratio max{Sw/Sw̄} in a
symmetric pair, and dissimilarity d(fw, f w̄) inside a symmetric pair, for the complete
genome and the masked genome. Results are given for all 8192 symmetric pairs and
for those with min{Sw, Sw̄} above its first quartile.

Complete sequence Masked sequence

All pairs 6054 pairs All pairs 6075 pairs

Sw max{Sw

Sw̄ } d(fw, f w̄) max{Sw

Sw̄ } Sw max{Sw

Sw̄ } d(fw, f w̄) max{Sw

Sw̄ }
Min 10 1.000 0.003 1.000 3 1.000 0.032 1.000

Q1 1498 1.012 0.350 1.009 546 1.015 0.507 1.011

Med 11850 1.037 0.915 1.022 2771 1.039 0.832 1.026

Q3 28510 1.165 2.936 1.075 6265 1.112 1.471 1.055

Max 927376 86.74 178.7 83.29 277460 14.64 21.19 2.041
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Fig. 1. Inter-word distance distributions of some reversed complements, fw and f w̄,
with low dissimilarity values: 0.036 (a), 0.003 (b), 0.058 (c), 0.116 (d); and with high
dissimilarity values: 178.749 (e), 51.767 (f). Sequence: complete human genome.
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3.2 Masked Genome Assembly

To reduce the effect of repetitive sequences in the original genome assembly, we
also analyse a masked version of the genome. All distributions and measures in
this subsection are from the masked sequence.

Masking the genome sequence affects the shape of the distance distributions.
Several strong peaks observed in the complete genome are eliminated by mask-
ing. For example, the distance distribution of w = CACAGGC (Fig. 1(f)) loses
the four strong peaks in the masked sequence (not shown).

We repeat the previous procedure in the masked sequence, to detect sym-
metric pairs whose distance distributions have very similar or very dissimilar
patterns. The first quartile of S = {Sw : w ∈ Ak} becomes 546, so we exclude
the pairs for which min{Sw, Sw̄} ≤ 546, leaving D with 6075 pairs (see Table 1).

As before we automatically select the symmetric pairs with dissimilarity
below the 10th percentile of D (0.328), and those with dissimilarity above the
90th percentile of D (2.454). The pairs with lowest dissimilarity may be divided
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Fig. 2. Inter-word distance distributions of some reversed complements with low dis-
similarity values: 0.032 (a), 0.125 (b), 0.144 (c); and with high dissimilarity values:
11.744 (d), 11.310 (e), 6.486 (f). Sequence: masked human genome.
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in two groups: those for which both distributions have strong peaks at short dis-
tances, and those whose distributions look like exponential curves without strong
peaks. These patterns are illustrated in Fig. 2(a)–(c). Interestingly, the unusual
pattern of w = ATCATCG in the complete sequence (Fig. 1(d)) remains in the
masked sequence (see Fig. 2(b)).

Symmetric pairs with high dissimilarity usually have one distribution with
one or more strong peaks at short distances (<200) whereas the other has low
variability. Some very dissimilar pairs are shown in Fig. 2(d)–(f).

To investigate whether an association exists between dissimilar reversed com-
plements and functional DNA elements, we perform an annotation analysis for
the 15 most dissimilar symmetric pairs. For each such pair we list the word with
the strongest peaks. Then we look for the ‘favoured’ distance(s), i.e. those where
the strongest peak(s) are located. These peaks are often concentrated in one
chromosome rather than being spread over the entire genome sequence. Table 2
lists the chromosome in which the favoured distances are most pronounced, for
each of the 15 pairs. The positions of the words occurring at that distance from
each other are recorded. Then, we retrieve annotations within these genomic
coordinates from UCSC GENCODE v24 (August 2015) [7]. Interestingly, the
words we obtained that are located on chromosome 13 all fall within the gene
LINC01043 (long intergenic non-protein coding RNA 1043) and all of our words
on chromosome 1 are contained in the gene TTC34 (tetratricopeptide repeat
domain 34). These results suggest that the most dissimilar distributions may be
related to repetitive regions associated with RNA or protein structure.

A deeper investigation into the biological meaning of these words is necessary
to investigate whether the observed dissimilarities reflect the selective evolution-
ary process of the DNA sequence.

Table 2. The 15 most dissimilar symmetric pairs with k = 7, characterized by their
word with the strongest peaks. The chromosome on which these peaks are prominent
is listed. Masked sequence.

Chromosome 13 1 4 3 8

Word w ACCATTC GGTAAGC AGCATCT GTTGGTA TGGTATG GCTTACT

CTTCAGG TAAGCAT GAGCATC TGGTAGA

GACCATT TCAGGAT TGAGCAT

TCCTTCA TTCAGGA

4 Conclusions

We propose a new dissimilarity measure between distance distributions, based
on discrepancies between their peaks. Here we use it to evaluate the dissimilarity
between reversed complements.

In the complete human genome, we confirm the expected existence of many
symmetric pairs with low dissimilarity, both in word frequency and in distance
distribution. Even an irregular distribution with strong peaks is often very
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similar to that of its reversed complement. However, our main interest lies in
using the proposed dissimilarity measure to detect symmetric pairs with highly
distinct distributions. In such cases, one of the distance distributions typically
has well defined peaks and the other has low variability.

We also investigate how well our results hold up in the masked sequence,
which excludes major known classes of repeats. Even though masking generally
reduces the dissimilarity between distributions of symmetric pairs, there remain
quite a few word pairs with high dissimilarity, which in our study was mainly
localized on a specific chromosome and even a specific gene. A question worth
investigating is to what extent the high dissimilarities may be linked to evolu-
tionary processes, that are not the result of recent local DNA block expansions.
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Abstract. The identification of the atoms which change their posi-
tion in chemical reactions is an important knowledge within the field
of Metabolic Engineering. This can lead to new advances at different
levels from the reconstruction of metabolic networks to the classification
of chemical reactions, through the identification of the atomic changes
inside a reaction. The Atom Mapping approach was initially developed
in the 1960s, but recently suffered important advances, being used in
diverse biological and biotechnological studies. The main methodologies
used for atom mapping are the Maximum Common Substructure and the
Linear Optimization methods, which both require computational know-
how and powerful resources to run the underlying tools.

In this work, we assessed a number of previously implemented atom
mapping frameworks, and built a framework able of managing the dif-
ferent data inputs and outputs, as well as the mapping process provided
by each of these third-party tools. We evaluated the admissibility of the
calculated atom maps from different algorithms, also assessing if with
different approaches we were capable of returning equivalent atom maps
for the same chemical reaction.

Keywords: Metabolic engineering · Chemical reactions · Atom map-
ping algorithms · Open-source software · Maximum common structure

1 Introduction

Cell metabolism is composed of chemical reactions which are catalysed by
enzymes responsible for transforming the nutrients uptaken by the cell into
energy and cellular building blocks. When needed, the cell uses its anabolic
pathways to produce essential macromolecules, from energy and cellular build-
ing blocks, maintaining its regular behaviour [1].

Glimpsing the cells as industrial factories, the raw materials prices persistent
climbing, and the reduction of their reserves, take researchers to build models
which help to understand and optimize cellular systems (such as genetically

c© Springer International Publishing AG 2017
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altered microorganisms) to produce native and non-native high-value indus-
trial compounds like biofuels, antibiotics or aminoacids [2,3]. These approaches,
largely applied in industry, help Metabolic Engineering to solve problems like
tracing metabolic pathways from a metabolite A to a metabolite B [4], analysing
the conservation of metabolites in metabolic networks [5], calculating all possible
paths inside a metabolic network, from the initial to the goal atom, classifying
chemical reactions (e.g. assigning EC numbers to enzymes) [6] or identifying
which atoms are preserved.

All these applications have a common approach, crucial to accomplishing
their goals: in a chemical reaction, performing the matching of its reactants’ and
products’ atoms. This correspondence, called Atom Mapping, allows a correct
atom trace of the desired reaction, identifying what are the changes between the
reactants and products. Atom Mapping assigns a different index (integer num-
ber) to each atom from the reactions’ substrates and tries to map these atoms
onto the products, thus assigning them the same index. With this information,
it is possible to determine what are the changes performed by a reaction (catal-
ysed by specific enzymes). In other words, the atom mapping procedure identifies
which are the broken/formed bonds or which bond’s change their order [7].

The atom mapping approach allows diverse uses and applications, for
instance, in the reconstruction of metabolic networks, which represents the atom
level of the pathways, it will improve understanding of the metabolic network [8].
Atom mapping can also be used to do consistency checking of pathways [4], to
analyse the conservation ratios of atoms in a reaction [5] and to classify chemi-
cal reactions based on their chemical transformation [6]. Also, to optimise drug
design, it is necessary to predict which atoms, from the candidate drug, change
during the chemical reaction. It may also be used to deduce the relevant path-
ways of a certain metabolite or a particular drug [9].

With this work, we aim to study strategies to collect atom mappings from
databases, by analysing reaction databases and build a framework to extract
atom mapping information; analyse methods for automatic atom mapping of
reactions, by automatically extract atom mappings from published atom map-
ping software (API’s); and evaluate comparison metrics of atom mapping,
namely, evaluate against atom mapping from databases and other atom mapping
algorithms.

Here, the comparison of four algorithms within four different frameworks
was performed to verify the differences between each other, in terms of valid and
equivalent maps assignment.

2 Methods

2.1 Data

A biological database was chosen to build our set of reactions, namely MetaCyc,
from where 11575 reactions were collected, in which more than 90% had an
associated atom map. The set contains balanced, not balanced, incomplete and
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elemental reactions, with the objective of obtaining the most complete sample
possible.

2.2 Algorithms

The group of tools and algorithms selected to perform the atom mapping process
will be briefly described. Note that these tools use a combination of different
algorithms to obtain their results.

MetaCyc. The atom mappings collected from the MetaCyc database [10] were
calculated using the Minimum Weighted Edit-Distance metric (MWED) [11].
It uses a Mixed-Integer Linear Programming (MILP) approach, that identifies
which bonds have more tendency to react. MWED finds multiple optimal maps,
but with the particularity of having less symmetric maps, due to the introduction
of bond weights which represent the tendency of a bond to break. Within the
reactions, bonds can be broken, formed or change their type (e.g. single to dou-
ble). The cost of a transformation is calculated taking into account the weights
assigned to the bonds involved in the bond breaking/forming/changing process.
The sum of the costs of all the changes in the chemical reaction results in the
weight-edit distance of the reaction. This process only handles fully balanced
biochemical reactions (reactions with the same number of atoms on both sides).

AutoMapper. AutoMapper performs the atom mapping based on Maximum
Common Structure (MCS) and MILP algorithms. It provides some options on
the mapping style: Complete: where all atoms are mapped; Changing : as the
name indicates, only maps the atoms that have their bonds modified; Matching :
only maps the atoms which do not have any bond modified.

Reaction Decoder Tool. The Reaction Decoder Tool (RDT) [12] calculates
the atom maps for balanced and unbalanced reactions using MCS and MILP
algorithms. It uses the Chemistry Development Kit (CDK) [13], a cheminformat-
ics framework which offers diverse functionalities in molecular informatics (e.g.
input/output features for SMILES or RXN files, rendering chemical structures,
modelling, building chemical graphs - isomorphism checker or MCS searchers,
fingerprinting or Nuclear Magnetic Resonance prediction, etc.).

ICMap. ICMap maps and determines the reaction’s centres based on MCS and
MILP approaches. Some chemical rules are applied to help the MILP approach
finding the best possible map (e.g. breaking/forming hetero-atoms bonds are
preferable to carbon-carbon bonds). It has some restrictions on the mapping
process: it has a limit on the number of molecules in the reaction (no more than
15 on each side), on the molecules’ size (no more than 100 non-hydrogen atoms)
and on single atom mapping (single atoms without non-hydrogen bonds e.g.
Phosphor or Sulphur). The ICMap cannot map a reaction in which all chemical
bonds were broken and remade.
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2.3 AtomMapper Framework

To ensure that the four algorithms followed the same analysis pipeline, it was
implemented a framework, called AtomMapper Framework (AMF). AMF is
100% developed in JavaTM and joins different algorithms of atom mapping into
a single program. It allows users to map their chemical reactions with different
approaches and verify if their atom maps are equivalent or not.

AMF is also implemented as an abstraction that provides generic function-
alities, which can be specified with the addition of new code. It is an universal,
reusable software environment, which facilitates the development of additional
applications. AMF defines which functions the user should implement (interface
classes) and releases users of thinking in low-level details. It is especially useful
for users wanting to test their own tools and algorithms, once it is easy to add
new methods following the existing interfaces.

Figure 1 illustrates the two main step of the atom mapping process. On A
the reading process and on B the atom mapping.

Fig. 1. Schematic representation of the AMF implementation philosophy. (A) It shows
the reading of different types of input files to build a collection of reactions. (B) It
represents the implementation needed to handle with each different algorithm input
and output.
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3 Results and Discussion

This section presents the results of the evaluation of different atom mapper
algorithms. To do so, the Metacyc database was chosen as the reactions main
set. It is constituted by 11575 different reactions, of which 10870 are already
mapped, meaning that 705 reactions did not have a valid atom map on the
Metacyc database.

It is important to differentiate a valid mapped reaction and an equivalent
mapped reaction. A valid mapped reaction is a reaction where all atoms are
assigned with a continuous numeration in both left and right sides, as well as both
sides have the same elementary composition. An equivalent mapped reaction is a
reaction for which different algorithms assigned the same atom linkage between
left and right sides, i.e. all atoms in the right pair to the same atom in the left
in both results, ignoring the individual numbers assigned to each atom (in one
algorithm a right-left atom pair can have one label, while in the other algorithm
the same pair has a different label, but they are the same pair).

The validation step will filter the reactions which have complete and plau-
sible atom maps. This highlights the reactions for which their atom maps are
comparable.

The first analysis of the mapping process was to consider the mappings pro-
vided by the four algorithms, checking the number of valid maps defined for each
reaction. A total of 604 reactions were not mapped by any of the used atom map-
ping algorithms. This way, the number of admissible reactions decreased to 10971
valid reactions. Adding to this, the number of reactions with one or two valid
maps was 1603, which is significantly lower when it is compared to the 9368
reactions with at least three valid maps. This indicates that over 80% of the
reactions had three or four algorithms which were capable of assigning a valid
map.

In terms of percentages, Metacyc presents 99.1%, AutoMapper 83.6%, RDT
99.8% and ICMap 40.9% of the whole set of reactions with at least one valid
atom map. We can verify that the ICMap algorithm had the lowest percentage
of valid maps, followed by AutoMapper algorithm, Metacyc database and RDT
algorithm.

After analysing the behaviour of each individual algorithm, it was found that
the MetaCyc and the RDT algorithms presented a similar number of reactions
with valid maps assigned. The AutoMapper also presented a similar number,
concerning the reactions with three and four valid atom maps, although, it did
not have the same concordance with reactions containing one or two valid atom
maps. About the ICMap, the numbers do not show very promising results, as
its number of valid atom maps was less than half of the total reactions analysed
and the concordance with the remaining algorithms was almost restricted to the
reactions with four valid atom maps.

Figure 2A shows a Venn diagram with the intersection of the four sets of
valid maps computed by each algorithm, assessing the reactions where pairs of
algorithms are able to produce valid maps. Furthermore, the sum of all numbers
of each oval form, gives the total number of valid reactions from each algorithm.



262 N. Osório et al.

Fig. 2. Venn diagram showing the relations between the atom maps produced by the
four algorithms: Metacyc, AutoMapper, RDT and ICMap sets, showing the intersection
of reactions where each algorithm produced maps. (A) Counting of valid reactions,
where intersections will show reactions where both algorithms produced valid maps;
(B) Each intersection represents the number of reactions with equivalent atom maps
assigned by the different algorithms. In both cases, if all numbers from an oval are
added, it will represent the number of valid reactions on each set.

The four algorithms assign the same 4184 reactions as valid, corresponding
to 38.1% of all reactions with at least one valid atom map (i.e. 10971 reactions).
Nevertheless, if the ICMap algorithm is not considered in the analysis, the per-
centage of valid reactions raises from 38.1% to 82.7%, which represents 9072
reactions with three valid atom maps each. So, it may be admissible to say that
the ICMap is pulling the number of common valid reactions down.

Having in mind that all analyses made so far do not imply that two valid
maps, assigned to the same reaction, are equivalent, it is now time to check
this. Considering all reactions from each set, and getting their atom maps, the
comparison approach was performed to evaluate the atom maps equivalence.

Figure 2B shows the same representation from Fig. 2A, but now describing
the comparison process. It represents the intersection of the four sets, and each
intersection shows the number of reactions with equivalent maps between both
algorithms. The intersection of the MetaCyc with the AutoMapper sets repre-
sents 9079 reactions with equivalent maps, which means 82.8%. The intersection
of the AutoMapper with the RDT sets represents 9148 reactions, 83.4%, while
4479 reactions (40.8%) had equivalent atom maps calculated with the RDT and
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the ICMap algorithms. Note that all percentages were calculated considering the
10971 reactions with at least one valid atom map.

When the intersection of more than two algorithms was analysed, the number
of equivalent reactions tends reduce. The intersection of MetaCyc, AutoMapper
and RDT represents 9062 reactions with three equivalent atom maps (82.6% of
the valid reactions), still an interesting number. If it is now analysed the inter-
section of AutoMapper, RDT and ICMap, it joins 4197 reactions with three
equivalent atom maps, with 38.3% of reactions. Finally, it was performed the
intersection of all algorithms, and obtained 4183 reactions (38.1%), which were
assigned with four equivalent atom maps for all analysed algorithms. Comparing
the equivalence values with the ones from the validation, it is visible the high
correlation between them. The ICMap was the algorithm with the lower per-
centage of valid atom maps. However, it was not significant in the comparison
process, once it presented a similar percentage of equivalent atom maps.

Additionally, as referred before, 705 reactions did not have an atom map
from the Metacyc database. Having into account that there are 604 reactions
where none of the algorithms could provide a valid atom map, only 101 have the
potential to have an atom map assigned by the remaining three algorithms. It
was found that 14 reactions of those were assigned with four valid maps, all with
four equivalent atom maps, which is a very interesting starting point to add new
atom maps to the Metacyc database.

4 Conclusions

AMF enables the scientific community to explore the atom mapping process as
well as, due its extensibility properties, be the base block to support additional
implementation of atom mapping algorithms and comparison methods. It was
shown that the studied algorithms had different behaviours: in the attribution
of valid atom maps to this biological reactions set, they scaled from nearly 40%
(ICMap) to almost 95% (RDT) of valid maps. However, despite this behaviour
on the validation process, all algorithms, on the comparison step, had presented
similar percentages of equivalent maps. Concerning the number of reactions
which had four valid atom maps in the validation process, the majority had
their atom maps considered equivalent, which proves the good precision of all
tested algorithms. This may indicate that the atom mapping algorithms could
assign different numbers to the atoms, but the matching of the left with the
right reaction sides shows they are equivalent. The algorithms also had different
techniques to assign the atom maps, which indicates that despite the theoretical
differences, the result is somehow similar.
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Abstract. Referential compression is one of the fundamental operations
for storing and analyzing DNA data. The models that incorporate rel-
ative compression, a special case of referential compression, are being
steadily improved, namely those which are based on Markov models. In
this paper, we propose a new model, the substitutional tolerant Markov
model (STMM), which can be used in cooperation with regular Markov
models to improve compression efficiency. We assessed its impact on syn-
thetic and real DNA sequences, showing a substantial improvement in
compression, while only slightly increasing the computation time. In par-
ticular, it shows high efficiency in modeling species that have split less
than 40 million years ago.

Keywords: Markov models · Tolerant Markov models · Relative com-
pression · Genomic sequences

1 Introduction

Several applications in bioinformatics require the compression of a string, x,
given other string, y. This is the case when one needs to analyze or store com-
pactly as possible the data [1–6]. The information in y can be used together
with that on x or alone. In the so called conditional approach [7,8], the com-
pressor can explore the information that is contained in y, as well as that from
x (assuming causality), according to

C(x|y) =
|x|∑

i=1

− log2 P (xi|xi−1
1 , y), (1)

where |x| is the size of x and xi is ith element of x. So, for example, x5
3 is a

substring of x composed by x3, x4 and x5.
The relative approach [6,9–14], C(x‖y), assumes that information comes

exclusively from y, according to

C(x‖y) =
|x|∑

i=1

− log2 P (xi|xi−1
i−π, y), (2)

c© Springer International Publishing AG 2017
F. Fdez-Riverola et al. (eds.), 11th International Conference on Practical
Applications of Computational Biology & Bioinformatics, Advances in Intelligent
Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 32



266 D. Pratas et al.

where i − π is the allowed size of elements from x that can be used in order to
search for regularities in y. For i ≤ π we assume a uniform distribution.

In order to calculate the probabilities of Eq. 2, we need data models that
describe y efficiently. Both Ziv-Merhav dictionary-based models [9,13,15] and
Markov models [5,14,16,17] have been successfully used in diverse data type
applications. However, for DNA sequences, Markov models proved to be more
efficient [6].

Markov models (MMs), also known as finite-context models (FCMs), are
statistical models. A MM of an information source assigns probability estimates
to the symbols of an alphabet, Θ, according to a conditioning context computed
over a finite and fixed number, k, of past outcomes (order-k MM) [18]. At element
i, these conditioning outcomes are represented by xi−1

i−k+1 = xi−k+1, . . . , xi−1. A
non relative MM can store each outcome of the past in memory, while a MM
working in relative mode can only store the outcomes seen in y. The number
of conditioning states of the model in DNA sequences is 4k. The cooperation
between MM of different orders has proved to be a more efficient solution for
representing DNA sequences, instead of competition [19].

High order MM, typically with k ≥ 13, proved to be one of the most impor-
tant models for DNA sequence representation [20], as well as to address other
applications [21–23]. However, when substitutional mutations occur between two
identical sequences, high order MM fall short to represent the data. This happens
because, if, for example, we use an order-20 MM and we have a probability of
one random substitution for each 20 bases, the probability that the same context
is seen again is low. The DNA data between close species is frequently of this
nature, because they share a common ancestral. Moreover, the distinct majority
of the editions in the DNA sequences are of substitutional nature.

Aware of these characteristics, we have recently proposed a preliminary app-
roach to deal with substitutional mutations in DNA sequences [6]. In this paper,
we consolidate the concept of substitutional tolerant Markov models (STMM)
and we apply them to the relative compression case. After, we measure its impact
on synthetic genomic data, exploring some characteristics of compressing the ele-
ments from a reverse order, as well as some combinations between both. Finally,
we show some comparative results between whole genomes.

2 Substitutional Tolerant Markov Model (STMM)

A substitutional tolerant Markov model (STMM) is a probabilistic-algorithmic
finite-context model. It assigns probabilities according to a conditioning context
that considers the last symbol, from the sequence to occur, as the most probable,
given the occurrences stored in the memory, such as those from y, instead of the
true occurring symbol.

For a symbol s ∈ Θ, the estimator of a STMM, working in relative mode, is
given by

P (s|x′i−1
i−k, y) =

N(s|x′i−1
i−k, y) + α

N(x′i−1
i−k, y) + α|Θ| , (3)
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where function N accounts for the memory counts regarding the model and x′

is a copy of x, edited according to

x′
i = argmax

∀s∈Θ
P (s|x′i−1

i−k, y). (4)

The parameter α allows balancing between the maximum likelihood estima-
tor and a uniform distribution. For deeper orders, α should be generally lower
than one.

When a STMM (relative or non-relative model) is cooperating with any other
model, besides being probabilistic, can also be algorithmic, because they can be
switched on or off given its performance, according to a threshold, t, defined
before the computation.

Both relative and non-relative modes work with a threshold, t, that enables
or disables the model according to the number of times that the context has
been seen. Listing 1.1. describes the process for enabling or disabling a STMM.

Listing 1.1. Algorithm of a STMM, described in C language, with comments.

1: int GetBestId(int *array){
2: int x, best = 0, maximum = array [0];
3: for(x = 1 ; x < N_SYMBOLS ; ++x) // N_SYMBOLS = 4 (bases)
4: if(array[x] > maximum ){
5: maximum = array[x];
6: best = x;
7: }
8: return best; // RETURN THE HIGHEST ELEMENT POSITION OF AN ARRAY
9: }

10:
11: void Fail(Model *M){ // ACTION FOR FAIL
12: int x, fails = 0;
13: for(x = 0 ; x < M->k ; ++x) // USING HISTORY COUNT
14: if(M->history[x] != 0) // THE NUMBER OF FAILS
15: ++fails;
16: if(fails > M->threshold) // FAILS MORE THAN THRESHOLD ?
17: M->on = 0; // SET STMM OFF
18: else // OTHERWISE
19: ShiftBuffer(M->history , M->k, 1); // ADD ONE FAIL
20: }
21:
22: void Hit(Model *M){ // ACTION FOR HIT (SUCCESS)
23: ShiftBuffer(M->history , M->k, 0); // ADD ONE HIT
24: }
25:
26: void CorrectSTMM(Model *M, PModel *P, int sym){
27: int best = 0;
28: if(M->on == 0){ // IF IS OFF
29: M->on = 1; // TURNS STMM ON
30: memset(M->history , 0, M->k);
31: }
32: else{ // ELSE IF IS ON
33: if((best = GetBestId(P->freqs) == sym){ // IF BEST ID = SYM
34: Hit(M); // CALL HIT FUNCTION
35: }
36: else{ // OTHERWISE
37: Fail(M); // CALL FAIL FUNCTION
38: M->seq ->buf[M->seq ->idx] = best; // UPDATE NEW SYMBOL
39: }
40: }
41: UpdateCBuffer(M->seq); // UPDATE SEQUENCE BUFFER
42: }



268 D. Pratas et al.

The threshold, t, is set at the beginning of the computation. We also
need a Boolean cache-array (history) to store the past k hits/fails. For exam-
ple, consider that k = 7 and that c0 = CACGTCA is the current context.
Also, consider that the number of past symbol occurrences following c0 was
A = 1,C = 0,G = 0,T = 0. If the symbol that is being compressed is
G (contradicting the probabilistic model), a MM would have as next context
c1 = ACGTCAG. However, the STMM would use a c′

1, taking into account the
most probable outcome and, hence, c′

1 = ACGTCAA. Therefore, the next prob-
abilistic model would be dependent on the past context assumed to be seen and,
hence, it assumes that the symbol that was compressed is A.

3 Results

For producing the results, we have used synthetic and real data. The synthetic
data made available a controlled comprehension of the STMMs, while the real
data shown the characteristics that are also not controlled. The materials to
replicate both results on synthetic and real data are available, under GPL v3
license, at the repository https://github.com/pratas/STMM. All experiments
were run on Ubuntu Linux v16.04 LTS, with gcc v5.3.1, using only one Intel
Core i7-6700K 3.4 GHz CPU, 32 GB of RAM and a solid-state hard drive.

3.1 Synthetic Data

In Fig. 1 we have simulated a sequence y with 200 bases, copied y to x and
inserted edits in several positions of x, specifically at positions 50, 100, 102, 150,
152 and 154. Then we have compressed x relatively to y, assuming the order
of each element of x as x1, x2, ..., x|x| as right direction, x|x|, ..., x2, x1 as left
direction and the minimum complexities of both directions as min.

As it can be seen, the cooperation between MMs and STMMs led to a much
better approximation of the data. While the MMs can not address efficiently the
data after a substitution occurs, between a period of time that seems related with
the k-size, the cooperation between MMs and STMMs address them efficiently,
having an almost strict decay to a low complexity value.

In Fig. 2 we have simulated a sequence y. Then, we have made 12 copies,
for each one applied some degree of random substitutional mutations, and con-
catenated all into a final sequence, called x. Then we have compressed, using
C(xi‖y), and plotted it. As it can be seen, with 7.5% of substitutional muta-
tions the cooperation of only MMs reaches the average of 1 BPB (bits per base),
while the cooperation between MMs and STMMs reaches the same BPB only at
15% of substitutional mutations.

3.2 Real Data

We have used two eagle whole genomes in non-assembled mode, namely White-
tailed eagle (Haliaeetus albicilla, 1.14 GB, 26X) and Bald eagle (Haliaeetus leu-
cocephalus, 1.26 GB, 88X), from [24]. We have also used the reference genomes of

https://github.com/pratas/STMM
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Fig. 1. Relative compression using a cooperative set of MMs (left plot) and a cooper-
ative set of MMs and STMMs (right plot). The compression direction is included for
right and left, as well as the minimum (min) between both for each elements. The data
is synthetic. The length is in bytes (B). The experiment can be replicated using the
script runSmallBidirection.sh, from the repository described in this paper.

Fig. 2. Relative compression using a cooperative set of MMs (left plot) and a cooper-
ative set of MMs and STMMs (right plot). The synthetic data has been copied from
y, creating multiple concatenated x’s. For each 100k of data (bottom axis), a substi-
tution mutation rate has been applied (top axis). Besides normal, the legend shows
the computation of min and max. These are the minimum (min) and maximum (max)
functions of each element processed in left and right directions. The length is in mega
bytes (M). The experiment can be replicated using the script runRelativeBidirection.sh,
from the repository described in this paper.

human, chimpanzee, gorilla, orangutan, and marmoset from the NCBI. We have
used a setup of 4 MMs in cooperation with order-k of {4, 6, 13, 20} and the α of,
respectively, {1, 1, 0.5, 0.005}. Only one STMM was used with k = 20, α = 0.5
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Fig. 3. Compression improvement and compression time added between the relative
compression using a cooperative set of MMs and a cooperative set of MMs and STMMs.
Percentages are given by STMMbytes/MMbytes×100 for compression improvement and
MMminutes/STMMminutes × 100 for time added.

and t = 5. The experiment can be replicated using the script runBirds.sh and
runPrimates.sh.

As can be seen in Fig. 3, to compress the Bald eagle relatively to White-
tailed eagle, using only a cooperation between MMs, we needed 31, 561, 247
bytes. Adding the cooperation of the STMMs, we reached 34, 864, 683 bytes,
which is around 10% of improvement, using the same RAM memory (13.8 GB)
and around 10% more computational time. These species are believed to have
diverged ≈1 million years ago (mya) [25].

As can be seen in Fig. 3, to compress a chimpanzee relatively to a human
genome, using only a cooperation between MMs, we needed 274, 450, 972 bytes
and near 80 min. Adding the cooperation of the STMMs we were able to spend
only 210, 691, 987 bytes, which is around 23% of improvement, using the same
RAM memory (26.3 GB) and around more 22.5% of computational time. The
human and chimpanzee lineages are believed to have diverged ≈3–4.5 mya [26].

To compress a gorilla relatively to a human genome, using only a cooper-
ation between MMs, we needed 262, 271, 376 bytes. Adding the cooperation of
the STMMs we were able to spend only 199, 204, 749 bytes, which is around 24%
of improvement, using the same RAM memory (26.3 GB) and around 19.8%
more computational time. The human and gorilla lineages are believed to have
diverged before ≈5–9 mya [26].

To compress a orangutan relatively to a human genome, using only a coopera-
tion between MMs, we needed 418, 481, 411 bytes. Adding the cooperation of the
STMMs we were able to spend only 299, 316, 387 bytes, which is around 28.5% of
improvement, using the same RAM memory (26.3 GB) and around 19.2% more
computational time. The human and orangutan lineages are believed to have
diverged before 10 mya [26].
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Finally, to compress a marmoset relatively to a human genome, using only
a cooperation between MMs, we needed 562, 916, 901 bytes. Adding the coop-
eration of the STMMs we were able to spend only 488, 238, 361 bytes, which
is around 13.3% of improvement, using the same RAM memory (26.3 GB) and
around 18.8% more computational time. The human and marmoset lineages are
believed to have diverged around ≈40 mya [27].

4 Conclusions

In this paper, we have proposed a new model for relative compression of DNA
sequences—the substitutional tolerant Markov model (STMM). We have shown
that it addresses efficiently some degree of substitutional mutations, being a
model efficient to use between species that divergence less than 40 million years
ago, such as between some primates or eagles. The time added by the model to
the compressor is affordable, given the compression improvement—for example,
between human and orangutan is around 28.5%. This model is, therefore, a
strong candidate to be used in ancient DNA analysis, namely because of the
high substitutional mutation rates of the data.
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Abstract. There is a growing need for automatic extraction of informa-
tion and knowledge from the increasing amount of biomedical and clini-
cal data produced, namely in textual form. Natural language processing
comes in this direction, helping in tasks such as information extraction
and information retrieval. Word sense disambiguation is an important
part of this process, being responsible for assigning the proper concept
to an ambiguous term.

In this paper, we present results from machine learning and
knowledge-based algorithms applied to biomedical word sense disam-
biguation. For the supervised machine learning algorithms we used word
embeddings, calculated from the full MEDLINE literature database, as
global features and compare the results to the use of local unigram and
bigram features.

For the knowledge-based method we represented the textual defini-
tions of biomedical concepts from the UMLS database as word embed-
ding vectors, and combined this with concept associations derived from
the MeSH term co-occurrences.

Both the machine learning and the knowledge-based results indicate
that word embeddings are informative and improve the biomedical word
disambiguation accuracy. Applied to the reference MSH WSD data set,
our knowledge-based approach achieves 85.1% disambiguation accuracy,
which is higher than some previously proposed approaches that do not
use machine-learning strategies.

Keywords: Biomedical word sense disambiguation · Word embeddings

1 Introduction

Large volumes of biomedical data are produced every day, and this is accompa-
nied by an increasing amount of textual data, mostly in the form of scientific
publications. In order to efficiently treat and interpret these data it is necessary
to create tools that automatically do this job, reducing the human efforts. This
led to the application of text mining methods for extracting information from
the literature and linking that to repositories of biomedical data [1].

c© Springer International Publishing AG 2017
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Systems and Computing 616, DOI 10.1007/978-3-319-60816-7 33



274 R. Antunes and S. Matos

Word Sense Disambiguation (WSD), an important subtask of Natural Lan-
guage Processing (NLP) [2], is a challenging task that consists of finding the
correct sense of an ambiguous term. Usually, this is achieved using the surround-
ing context of the term. Currently, there are mainly two distinct approaches for
WSD, those based on Machine Learning (ML) algorithms and the ones based on
knowledge sources. The ML approaches can follow supervised, semi-supervised
or unsupervised algorithms, with supervised classification approaches currently
offering the best results, achieving macro and micro accuracy around 96% on
the MSH WSD data set using a Support Vector Machine (SVM) classifier [3].

Knowledge-based approaches to WSD have also attracted large interest, as
these approaches are usually less dependent on training data, which may lead
to better generalization when compared to supervised learning algorithms. The
use of multiple knowledge databases brings benefits to the problem of concept
disambiguation [4]. WordNet [5] is a large knowledge database of the English
language that has been extensively applied for word sense disambiguation [2]. In
the case of biomedical texts, the largest and most relevant knowledge database is
the Unified Medical Language System (UMLS) [6], which offers a rich integrated
metathesaurus and semantic network for the biomedical domain. In this work
we used the Medical Subject Headings (MeSH), a hierarchically-organized bio-
medical vocabulary resource used by the MEDLINE database to index scientific
publications, and which is part of the UMLS metathesaurus.

Word embeddings [7] is a recent technique that consists in deriving vector
representations of the words within an unlabelled corpus. These vectors can be
used for different NLP tasks, namely for the disambiguation process. We used
them as global features in the ML classification problem. In our case, these
features showed to be almost as effective as local features, such as unigrams and
bigrams. Also, we made use of the word embeddings in our knowledge-based
approach to represent concepts, and the textual context of ambiguous words, as
embedded vectors that can be directly compared. In [3], the authors present a
work on supervised biomedical word sense disambiguation applied to the MSH
WSD data set, exploring the combination of unigrams as local features and
word embeddings as global features. Other approaches using word embeddings
for word sense disambiguation have also been proposed by Wu et al. [8], and
Taghipour and Ng [9].

In this work, we applied knowledge-based methods and machine learning
techniques to the MSH WSD data set in order to measure the WSD accura-
cies. The UMLS database were used to extract textual definitions of biomedical
concepts. Also, we used the co-occurrences of the MeSH descriptors1 to derive
concept-concept associations between. The ML classifiers used in this experi-
ment were the decision tree, the k-nearest neighbours, and the linear SVM with
stochastic gradient descent. Textual data from the MEDLINE database were
used to generate the word embeddings, which were used in the machine learning
and knowledge-based approaches.

1 https://ii.nlm.nih.gov/MRCOC.shtml.
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2 Methods

2.1 The MSH WSD Data Set

The MSH WSD data set was automatically generated using the UMLS metathe-
saurus and MEDLINE citations [10]. The data consist of scientific abstracts, each
with one ambiguous term identified and mapped to the correct sense. It contains
203 ambiguous terms with a total of 423 distinct senses. Most terms (189) have
only two different meanings, 12 terms have three different meanings, and the
remaining 2 terms have four and five different meanings. The dataset contains
around 37 thousand abstracts, each representing an ambiguity example for a
term, therefore averaging 187 ambiguity examples per ambiguous term.

Since we extracted textual definitions and MeSH relations from the UMLS
database, not all concepts of the MSH WSD data set were present. Thus, a
minor part containing 12 terms2 of the MSH WSD data set were not used for
this disambiguation task. All the presented results do not include these terms.

2.2 Machine Learning

For each ambiguous term, we applied 5-fold cross-validation to subdivide the cor-
responding abstracts for training and testing the model. A bag-of-words model
was used to represent the texts, with local features acquired from the context,
namely unigrams and bigrams, with tf-idf weighting. We also applied supervised
ML algorithms using word embedding vectors, calculated from the full MED-
LINE, as global features. A list of 364 stopwords obtained from the UMLS repos-
itory was used to filter out very frequent words in the corpus. All these tasks were
implemented using the framework Scikit-learn [11], a machine-learning library
for the Python programming language. Word embedding models were obtained
with the Word2Vec [7] implementation in the Gensim framework [12].

We tested three machine learning classifiers: decision tree classifier, k-nearest
neighbours, and linear SVM with stochastic gradient descent. The local features
used were unigrams and bigrams, and the global features used were the word
embeddings from the full MEDLINE.

The word embedding models were calculated with PubMed articles, which
are specific to biomedical domain, from the full MEDLINE. Around 20 million
abstracts corresponding to the years 1900 to 2015 were used, containing around
800 thousand distinct words. We trained six models, with windows of five, twenty
and fifty words and for feature vectors of sizes 100 and 300. Each abstract,
instance of the MSH WSD data set, was represented by the weighted average
of the embedding vectors of the containing words, with the tf-idf value of each
word used as weight.

2 Terms not considered: Ca; CNS; Crown; DBA; FAS; Gamma-Interferon; Hybridiza-
tion; ITP; PCP; Plaque; Pneumocystis; Semen.
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2.3 Knowledge-Based

We developed a knowledge-based method to choose the most related concepts
from a text and which was applied in the disambiguation task. From the UMLS
database we extracted all the available concept textual definitions. Additionally,
we used the co-occurrence counts of MeSH terms in MEDLINE articles3 to cal-
culate the normalized Pointwise Mutual Information (nPMI) as an association
metric between all pairs of MeSH terms. Since the MSH WSD data set uses
UMLS Concept Unique Identifiers (CUIs) to identify the distinct term senses,
we used the MeSH to CUI mapping in UMLS to translate these MeSH term
associations to (UMLS) concept-concept associations.

We used the same word embedding models as described above for the machine
learning approach. Each specific CUI was represented as an embedding vector
calculated as the tf-idf weighted average of the words in the concept definition,
therefore mapping each concept to an high-dimensional vector. Using the same
approach we were able to calculate an embedding vector for each abstract in the
MSH WSD data set. Thus, it was possible to infer the most related sense for an
ambiguous term by measuring the cosine similarity between its textual context
and each possible UMLS concept, selecting the most similar one.

Additionally, we extended this document-concept similarity score using the
concept associations obtained from the MeSH co-occurrences, as shown in Eq. 1.

score(CUI) =
1
N

∑

j

nPMI(CUI,CUIj) · CS(t,CUIj) (1)

According to Eq. 1, for each possible CUI of an ambiguous target term is
assigned a score given by the average of the cosine similarities between the term
context vector t and the concept vector of all the concepts CUIj , weighted
by the concept association score nPMI(CUI,CUIj). Each considered CUI has
a nPMI value equal to a unit in relation to himself. As before, the concept with
highest score is selected as the correct sense for the ambiguous term.

3 Results

Table 1 shows that the state-of-the-art results for this problem can be almost
reproduced using simple word-based features. It is also noticeable that bigram

Table 1. Accuracies using local features. Results shown are the average across five
folds. U: Unigrams; B: Bigrams; DT: Decision Tree; kNN: k-Nearest Neighbour (k=5);
SVM: linear Support Vector Machine with stochastic gradient descent.

U B U+B

DT 0.903 0.862 0.901

kNN 0.913 0.918 0.924

SVM 0.947 0.931 0.946

3 https://ii.nlm.nih.gov/MRCOC.shtml.
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features contribute only slightly to the results, and unigram features alone
achieve almost as good if not better results than the combination of unigram
and bigrams. Also, comparing these results with Table 2, one can observe that
word embedding features alone allow obtaining results that are very close to the
best results obtained with unigram features.

With the machine learning classifiers the highest accuracy, 94.7%, was
obtained with unigram features alone, using the support vector machine lin-
ear classifier. On the other hand, using only global features the accuracies were
similar, and the highest accuracy, 94.0%, was also obtained using the support
vector machine classifier.

In Table 3 the knowledge-based results are presented. One can see that these
results are only about 10% below the machine learnings results, since it is a more
generalized method that do not use train data from the data set to predict the
correct meanings. We applied a threshold to the concept association nPMI score,
in order to filter the associated concepts that contribute to the final score for a

Table 2. Accuracies using word embedding models from the full MEDLINE as global
features. S: Size; W: Window; DT: Decision Tree; kNN: k-Nearest Neighbour (k=5);
SVM: linear Support Vector Machine with stochastic gradient descent.

S100 S300

W5 W20 W50 W5 W20 W50

DT 0.907 0.909 0.909 0.910 0.911 0.909

kNN 0.931 0.933 0.933 0.931 0.931 0.931

SVM 0.931 0.934 0.937 0.934 0.938 0.940

Table 3. Accuracies using the CUI definitions, the CUI relations from the UMLS and
word embeddings from the full MEDLINE. CS: cosine similarity between term context
vector and concept vector only; nPMI ≥ thresh: cosine similarity plus related concepts
with a nPMI value higher than the threshold; S: Size; W: Window; nPMI: normalized
Pontwise Mutual Information.

S100 S300

W5 W20 W50 W5 W20 W50

CS 0.800 0.812 0.813 0.799 0.811 0.810

nPMI ≥ 0.9 0.799 0.812 0.813 0.799 0.811 0.809

nPMI ≥ 0.8 0.799 0.812 0.813 0.799 0.812 0.810

nPMI ≥ 0.7 0.797 0.811 0.813 0.798 0.811 0.809

nPMI ≥ 0.6 0.783 0.798 0.799 0.785 0.797 0.795

nPMI ≥ 0.5 0.789 0.803 0.805 0.790 0.802 0.798

nPMI ≥ 0.4 0.816 0.829 0.831 0.817 0.826 0.826

nPMI ≥ 0.3 0.835 0.849 0.851 0.835 0.846 0.844

nPMI ≥ 0.2 0.827 0.842 0.844 0.826 0.838 0.837
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CUI (see Eq. 1). A smaller value for the nPMI threshold means that more related
concepts contribute to the final score, and the results show that using more
related concepts, and not only the ones with stronger association score, improves
the disambiguation accuracy. The highest accuracy, 85.1%, was obtained with a
nPMI threshold of 0.30 using the word embedding model with a size vector of
100 and a window of 50 words.

4 Conclusions

As has been previously shown, machine learning algorithms outperform the
knowledge-based algorithms in biomedical word sense disambiguation. However,
the latter have the advantage of being directly applied to any ambiguous term,
since they do not rely on training data. Our approach achieves a robust disam-
biguation performance that is on par with the best methods that do not use anno-
tated data in a supervised setting, and slightly above the results obtained with
the Automatic Extracted Corpus (AEC) [10], which can be applied to obtain
training data from MEDLINE to create the disambiguation classifiers on-the-fly,
therefore reducing the need for pre-compiled training data. Tulkens [13] obtained
a disambiguation accuracy of 84% with a knowledge-based method applied to
the same data set using word embeddings from BioASQ corpora. In a recent
work, Sabbir et al. [14] combined a knowledge-approach with neural concept
embeddings and distant supervision, achieving an accuracy of 92%.

One of the limitations of our approach is that not all UMLS concepts have
rich definitions. Also, some concepts of the MSH WSD data are not present in
the UMLS database, leading to an incapacity of disambiguation. As future work,
we will investigate ways of overcoming this by constructing concept vectors from
associated MEDLINE texts.
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Abstract. Cassava genotypes (Manihot esculenta Crantz) with high pro-vitamin
A activity have been identified as a strategy to reduce the prevalence of deficiency
of this vitamin. The color variability of cassava roots, which can vary from white
to red, is related to the presence of several carotenoid pigments. The present study
has shown how CIELAB color measurement on cassava roots tissue can be used
as a non-destructive and very fast technique to quantify the levels of carotenoids
in cassava root samples, avoiding the use of more expensive analytical techniques
for compound quantification, such as UV-visible spectrophotometry and the
HPLC. For this, we used machine learning techniques, associating the colori‐
metric data (CIELAB) with the data obtained by UV-vis and HPLC, to obtain
models of prediction of carotenoids for this type of biomass. Best values of R2

(above 90%) were observed for the predictive variable TCC determined by UV-
vis spectrophotometry. When we tested the machine learning models using the
CIELAB values as inputs, for the total carotenoids contents quantified by HPLC,
the Partial Least Squares (PLS), Support Vector Machines, and Elastic Net
models presented the best values of R2 (above 40%) and Root-Mean-Square Error
(RMSE). For the carotenoid quantification by UV-vis spectrophotometry, R2

(around 60%) and RMSE values (around 6.5) are more satisfactory. Ridge regres‐
sion and Elastic Network showed the best results. It can be concluded that the use
colorimetric technique (CIELAB) associated with UV-vis/HPLC and statistical
techniques of prognostic analysis through machine learning can predict the
content of total carotenoids in these samples, with good precision and accuracy.

Keywords: Chemometrics · Descriptive models · Machine learning · Cassava
genotypes · Carotenoids · HPLC · UV-vis
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1 Introduction

Carotenoids refer to the most important natural pigments, being found in all photosyn‐
thetic organisms, with colors varying between yellow and dark-red. One of the most
important trait of carotenoids is their physiological function as vitamin A precursors to
animals [1]. Vitamin A deficiency is a leading cause of morbidity and mortality, espe‐
cially in young children and pregnant and lactating women. Food-based interventions
focused on alleviating vitamin A deficiency in susceptible populations have advantages
over supplementation and fortification programs, especially in rural areas, because they
can provide a sustainable source of a variety of nutrients and other phytochemicals
without the recurring transport and administration costs of these other methods [2]. It is
estimated that among all known carotenoids, about 50 can act as precursors of vitamin
A in mammals. However, only α-carotene, β-carotene, γ-carotene, and β-cryptoxanthin
are common in fruits and vegetables [3]. Cassava genotypes with high contents of pro-
vitamin A carotenoids have been identified as a strategy to reduce the prevalence of
deficiency of this vitamin [4].

The cassava crops are characterized by the color variability of their roots, which can
vary from white to red. The color is related to the presence of several carotenoid
pigments, their associations and contents [5]. However, the possibility of adopting the
color of roots as an indirect criterion for selection of higher carotene content is ques‐
tionable, since color is a characteristic of difficult visual evaluation.

In order to standardize color measurements, the CIE (Commission Internationale de
L’Eclairage) recommended the use of the CIE L* a* b* or CIELAB color scale. It is
currently the most used system for quantitative color description of an object, due to its
uniformity, ease of acquisition, and very low cost technique [6].

Chemical extraction followed by the identification and quantification of carotenoid
pigments, especially by UV-vis spectrophotometry and high performance liquid chro‐
matography (HPLC) are very accurate, but extremely expensive, also requiring a long
time for the analysis. The CIELAB color measurement is a non-destructive and very
fast technique, which allows to obtain a series of parameters, in a few seconds. Thereby,
it facilitates performing measurement in the field, avoiding the degradation of these
compounds in consequence of their chemical extraction, for instance.

The aim of this work is to validate a quantification method for carotenoid contents
in roots of M. esculenta from colorimetric data using the CIE L* a* b* system, assuming
that the statistical techniques of prognostic analysis, as well as machine learning, can
correlate colorimetric data easily obtained in the field, with the contents obtained through
traditional techniques, e.g., UV-vis spectrophotometry and HPLC and, from this,
construct prediction models of carotenoids content for cassava roots. This study applies
analytical techniques and bioinformatics tools to detect genotypes of M. esculenta with
high levels of carotenoids. In addition, it provides tools that can support the plant-
breeding program at Epagri (Agricultural Research Company and Rural Extension of
the State of Santa Catarina- http://www.epagri.sc.gov.br/) that aims to obtain genotypes
with high levels of pro-vitamin A carotenoids and superior nutritional traits.
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2 Materials and Methods

Roots of fifty genotypes of M. esculenta (2015/2016 season) from the EPAGRI’s germ‐
plasm bank (Urussanga Experimental Station, 28º31′18′′S, 49º19 ′03′′W, Santa Catarina,
southern Brazil) were used in this study due to their economic and social importance.

Carotenoids were extracted from fresh roots as described by Rodriguez-Amaya &
Kimura (2004) [7]. The absorbances of the organosolvent extracts were recorded on an UV-
vis spectrophotometer (Gold Spectrum lab 53 UV-Vis spectrophotometer, BEL photonics,
Brazil) over a spectral window from 200 to 700 ƞm. Aliquots (10 μl) of the extracts were
also injected into a liquid chromatograph (LC-10A Shimadzu) system equipped with a C18
reversed-phase column (Vydac 201TP54, 250 mm × 4.6 mm, 5 μm Ø, 35°C) coupled to a
pre-column (C18 Vydac 201TP54, 30 mm × 4.6 mm, 5 μm Ø) and a spectrophotometric
detector (450 nm). Methanol: acetonitrile (90: 10, v/v) was used for elution at a rate of
1 ml/min.

The color attributes of the roots samples were measured by a colorimeter (CR-400,
Minolta, Japan) immediately after harvest and the results were expressed according to
the CIELAB color space scale [4]. Three readings were performed at different sites in
fifty samples. Data were collected, summarized, and submitted to analysis of variance
(ANOVA) followed by the post-hoc Tukey’s test (p < 0.05) for mean comparison.
Spectrophotometric data and the amounts of the target carotenoids determined by HPLC
were treated using multivariate statistical analysis and chemometrics techniques,
supported by scripts written in R language (v. 3.3.1) [8]. Additionally, we used prog‐
nostic tools through machine learning techniques, associating the colorimetric data
(CIELAB) with the data obtained by UV-vis and HPLC, to obtain models of prediction
of carotenoids for this type of biomass and technique.

The data analysis was supported and structured using the R specmine package [9]
developed by our research team for metabolomics studies that includes a number of
machine learning methods implemented through the package caret [10]. In supplemen‐
tary material, provided in http://darwin.di.uminho.pt/pacbb2017/cassava-carotenoids,
we include the data analysis reports automatically generated from the R scripts using
the features provided by R Markdown, as well as the respective data and metadata files.
This allows fully understanding and reproducing the computational experiments.

3 Results and Discussion

The values of the carotenoid quantification through UV-vis spectrophotometry and
HPLC are given in the metadata of the dataset. The roots white-colored pulp presented
the lowest concentrations of total carotenoids (values from 0.57 μg.g−1), while highest
concentrations were observed in genotypes with pigmented pulp (yellow and red) roots,
i.e., 54.93 μg.g−1. These results are consistent with data reported in the literature that
observe a positive relation between the color of the root pulp and the total content of
those pigments [11, 12]. The contents of the major carotenoid compounds, trans-β-
carotene and cis-β-carotene, ranged from 1.82 to 42.82 μg.g−1 for trans-β-carotene and
1.19 to 28.86 μg.g−1 for cis-β-carotene.
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The visual interpretation of the sample’s location in the CIELAB’ space is enough
to verify which samples have higher levels of carotenoids [13]. Figure 1 shows the
samples location according to the color of roots, in the CIE L* a* b* plane. Samples
105, 119 and 125 (Fig. 1 - ellipse I) contain the highest levels of total carotenoid. The
sample 74, due to its reddish color, was represented in the CIELAB space on the positive
axis (Fig. 1 - ellipse IV), mostly due to its lycopene contents, which confer reddish
coloration to the roots [14]. Samples with lower amounts of carotenoids (123, 27, 05,
AO47) shown values of b* closer to zero (ellipse III), while those with medium contents
were grouped in a* negative and b* positive (ellipse II).

Fig. 1. Location of the cassava samples in the CIE L* a* b* plane according to their root pulp
colors. The a* value characterizes the coloration in the regions of red (+a*) to green (−a*). The
b*, value b* indicates coloring in the range of yellow (+b*) to blue (−b*). The L indicates the
luminosity, varying from white (L = 100) to black (L = 0).

The next step of this work was to correlate the colorimetric data obtainable in the
field (CIELAB) with the contents found by traditional techniques, e.g., UV-vis spec‐
trophotometry and HPLC, through statistical techniques of prognostic analysis such as
machine learning. From this, we constructed a set of carotenoid concentration predictive
regression models for this type of biomass using the information from the samples’ color
values and the UV-vis spectra.

The specmine package provides a number of functions to train, use, and evaluate
machine learning methods, being mostly based in the R package caret [10], covering
both classification and regression methods. In addition, there are functions to evaluate
the importance of each variable in the models. A list of possible models and tunable
parameters can be seen in https://topepo.github.io/caret/available-models.html.
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The implemented functions enable executing model training and can be used to
predict new data posteriorly. Also, it is possible to optimize a set of model parameters
testing a set of possible values and evaluating those according to the selected validation
method and metric errors. The CIELAB data were considered as continuous variables.
In this way, regression-derived statistical data mining models (5-fold cross-validation
repeated 10 times, testing all models with feature selection with 80, 60, and 40% data
filtering) were used, such as Least Absolute Shrinkage and Selection Operator (Lasso)
[15], Ridge Regression [16], Elastic Net Regression (Enet) [17], Decision Trees/Randon
Forest (RF) [18], Partial Least Squares (PLS), Artificial Neural Net (NNs), and Support
Vector Machines (SVMs). These validation methods are available to estimate the metric
errors, and usually the decision is based on simple criteria based on the residual values.
The chosen evaluation metrics to compare model performance were the Root-Mean-
Square Error (RMSE) and the coefficient of determination (R2), since they explicitly
show how much the model predictions deviate, on average, from the actual values in
the dataset.

Table 1 shows the performance values of a set of machine learning regression models
(RMSE and R2) associating UV-vis scanning spectrophotometry in the typical region
of fingerprint for carotenoids (400–500 nm) as inputs, with the total carotenoids contents
determined by HPLC (TCC HPLC), total carotenoids contents determined by UV-vis
spectrophotometry (Lambert-Beer formula), and the majoritarian carotenoid found in
cassava roots (trans-β-carotene), each predicted as an output in distinct experiments
using the different methods (details are given in the reports in supplementary materials).

It can be verified that the best R2 values (>90%) were observed for the predictive
variable TCC, determined by UV-vis spectrophotometry. These values were higher than
the predictive variables trans-β-carotene (best model with R2 47%) and total carotenoids
contents determined by HPLC (with values of R2 around 60%). This is expected, since
they are methodologies that employ the same physical phenomenon of detection of
compounds (absorbance). When observed the values of variable importance in this
analysis (supplementary material), it can be detected that the wavelength at 450 nm
(precisely the wavelength that is used for the quantification of β-carotene through the
Lambert-Beer formula) was the most prevalent. This result is important because it attests
to the robustness of the models in predicting the contents of these compounds in these
samples.

Then we tested the machine learning models using the CIELAB values as inputs,
with the same outputs as before. For the total carotenoids contents quantified by HPLC,
the Partial Least Squares (PLS), Support Vector Machines (kernlab), and Elastic Net
models presented the best values of R2 and lower values of RMSE (Table 2). It can be
verified that these values are smaller than when the inputs are the UV-vis (400–500 nm)
data (Table 1). This is due to the fact that the colorimetric and chromatographic tech‐
niques are different in their physicochemical bases, and the UV-vis data has many more
variables measured.
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Table 1. Performance values (RMSE and R2) associating UV-vis scanning spectrophotometry
(400–500 nm) with the total carotenoids contents determined by HPLC (TCC HPLC), total
carotenoids contents determined by Lambert-Beer formula (TCC Spectrophotometry), and the
majoritarian carotenoids of cassava roots samples (trans-β-carotene).

UV-vis. 400–500 nm
TCC Spectrophotometry TCC HPLC trans-β-carotene
RMSE R2 RMSE R2 RMSE R2

Partial Least
Squares
(simpls)

3.492 0.920 5.789 0.572 4.309 0.362

Support Vector
Machines
(e1071)

3.709 0.931 5.844 0.597 4.218 0.399

PLS
(widekernelpls
)

3.732 0.923 5.779 0.570 4.324 0.453

Random Forest 3.768 0.948 7.275 0.359 5.753 0.239
Elastic Net 3.793 0.918 5.934 0.634 4.191 0.412
Partial Least
Squares (pls)

3.800 0.952 5.643 0.597 4.265 0.470

Ridge
Regression
(w/FS)

3.855 0.947 5.880 0.603 4.159 0.356

Ridge
Regression

3.877 0.928 7.282 0.616 4.407 0.316

SVM (kernlab) 3.928 0.940 5.907 0.589 4.230 0.466
PLS (kernelpls) 4.096 0.896 5.878 0.566 4.211 0.422
Linear
Regression
(Stepwise)

4.158 0.919 8.341 0.526 6.135 0.206

Linear
Regression
(Forward)

4.178 0.888 8.783 0.471 5.142 0.311

Linear
Regression
(Backwards)

4.392 0.871 6.373 0.522 5.355 0.278

K-Nearest
Neighbors

4.732 0.922 6.277 0.445 4.597 0.224

Lasso 5.207 0.817 17.508 0.249 16.145 0.189
Conditional
Inference RF

6.713 0.791 6.806 0.558 4.703 0.369

Conditional
Inference Tree

7.363 0.711 6.916 0.480 4.894 0.288

Decision Trees 7.582 0.683 6.795 0.473 5.189 0.053

When the CIELAB values were used to predict the values of carotenoid contents by
UV-vis spectrophotometry, R2 and RMSE values were more satisfactory. Ridge regres‐
sion and Elastic Network showed the best results. Observing the importance of the vari‐
ables in the prediction (supplementary material), it can be verified that the values of b*
were more relevant. In the CIELAB space, the value b* indicates coloration in the range
from yellow (+b*) to blue (−b*), an important finding since most carotenoids confer
yellowish pigmentation in foods, associating their pro-vitamin A activity.
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These results are very promising because they enable CIELAB technique as an
alternative for measuring carotenoids in cassava roots to the use of more expensive
analytical techniques such as UV-vis spectrophotometry and HPLC. Thus, it has been
shown that the concomitant use of UV-vis and color (CIELAB) techniques with statis‐
tical techniques of prognostic analysis (i.e., machine learning) can predict the content
of total carotenoids in cassava roots, with good precision and accuracy and low metrical
error.

Table 2. Performance values (RMSE and R2) associating CIELAB colorimetric data with the
total carotenoids contents determined by Lambert-Beer formula (TCC Spectrophotometry), total
carotenoids contents determined by HPLC (TCC HPLC), and the content of the majoritarian
carotenoid found in cassava roots samples (trans-β-carotene).

CIELAB Data
TCC Spectrophotometry TCC HPLC trans-β-carotene
RMSE R2 RMSE R2 RMSE R2

Partial Least
Squares
(simpls)

7.043 0.543 6.789 0.414 4.781 0.194

Support Vector
Machines
(e1071)

7.136 0.500 6.645 0.380 4.800 0.155

PLS
(widekernelpls
)

6.771 0.541 6.696 0.396 4.857 0.170

Random Forest 7.280 0.448 7.571 0.293 5.393 0.149
Elastic Net 6.515 0.573 6.534 0.412 4.690 0.212
Partial Least
Squares (pls)

7.085 0.538 6.622 0.394 4.859 0.164

Ridge
Regression
(w/FS)

6.469 0.608 6.653 0.389 4.951 0.238

Ridge
Regression

6.497 0.590 6.584 0.421 4.848 0.238

SVM (kernlab) 6.919 0.528 6.534 0.366 4.745 0.201
Partial Least
Squares
(kernelpls)

6.865 0.540 6.756 0.431 4.815 0.162

Linear
Regression

6.651 0.558 6.749 0.400 4.945 0.220

K-Nearest
Neighbors

7.267 0.525 7.278 0.256 4.956 0.153

Lasso 6.757 0.575 6.669 0.411 4.793 0.182
Conditional
Inference RF

8.021 0.454 6.930 0.408 4.782 0.223

Conditional
Inference Tree

9.636 0.339 7.307 0.384 4.929 0.130

Decision Trees 9.737 0.316 7.641 0.353 5.000 0.297
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4 Conclusions

The present study has shown how CIELAB color measurement can be used as a fast and
non-destructive method to calibrate for the total carotenoid content of cassava genotypes
roots with acceptable prediction error. In addition, the information obtained by coupling
the analysis of pro-vitamin A biochemical markers to bioinformatics tools helps
supporting the rational design of biochemically-assisted breeding programs of M. escu‐
lenta, that aims to obtain cultivars with high levels of pro-vitamin A carotenoids and
superior nutritional traits.
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Abstract. Banana (Musa sp.) has received wide interest in popular and scientific
medicine because of its rich composition in bioactive metabolites, e.g., phenolic
compounds, found in interesting concentrations in its peel. Banana peel is a
residue that is under-exploited by the industry. Thus, with the intention to give a
destination to this by-product towards health care or cosmetics industries, we
evaluated its aqueous extract (AE) as a source of bioactive phenolic compounds,
aiming at to apply them in future studies of biological activities. For that, in this
study samples of banana peels were chemically profiled throughout the year to
identify the best harvest time of those biomasses regarding their phenolic compo‐
sition. In this sense, we used additional information on the chemical heterogeneity
of the samples determined by the seasoning, through a set of analytical and
climatic data to elaborate chemometric models, supported by bioinformatics
tools. Through PCA and HCA analyzes, it was detected that low temperatures;
normally observed in winter; strongly modulate the banana metabolism, leading
to increased amounts of phenolic compounds, and improving the antioxidant
activity of the banana peel AE. The samples collected during the months of winter
showed a similar profile and a relatively high concentration of phenolic
compounds with potential for future studies of biological activities.

Keywords: Banana · Musa sp. · Peels · Phenolic compounds · Antioxidant
activity · Spectrophotometry · Chemometrics · Seasonality · Metabolic profile

1 Introduction

Banana (Musa sp.) is an edible fruit grown in tropical and subtropical regions with
seasonal chemical variation in its pulp and peel composition due to the effect of climatic
factors, e.g., rainfall and temperature [1]. In Brazil, one of the largest banana producers
worldwide [2], the peel is the main by-product of the banana industrial processing,
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accounting for approximately 38% of the total weight of the fruit. This residual biomass
is considered a waste with low economical value [3]. Studies have shown that banana
is a good source of carbohydrates, mostly starch, minerals, vitamin B6, natural antiox‐
idants [4, 5], as well as carotenoids and biogenic amines [6].

In the last few decades, banana has been evaluated by scientific and medicinal inter‐
ests as an important source of bioactive compounds, such as flavonoids, anthocyanins,
condensed tannins, and biogenic amines. These compounds have been extensively docu‐
mented for their actions in promoting health in the reduction of chronic diseases, e.g.,
cancer, cardiovascular dysfunction, and muscular degeneration [4], besides the antibacte‐
rial, antiulcerogenic, antihypertensive antidiabetic, and antioxidant activities [7].

Phenolic compounds are secondary metabolites responsible for several of these
therapeutic properties, mainly due to their antioxidant potential, and obtained in inter‐
esting concentrations in banana peels [3]. In local and traditional Brazilian medicine,
the banana peel has a useful history to promote the healing of wounds mainly by burns
when used topically [6], assigning an interesting destination to this residual biomass.
Thus, our group aims to recover the phenolic compounds from the banana peel and
confer a use to this residue. In this study, we determined the chemical profiles of AEs
of banana peels collected over the year to better understand their seasonal heterogeneity.
For that, we used a set of analytical and climatic data to build chemometric models,
supported by bioinformatics tools. By applying multivariate statistical techniques (prin‐
cipal component analysis - PCA and hierarchical clustering analysis - HCA), we inves‐
tigated the influence of climatic variables and their relation with biosynthesis of phenolic
compounds and their antioxidant activity in samples of banana peel, collected over the
seasons in the Santa Catarina State, southern Brazil. This strategy aims to obtain addi‐
tional information about the biochemical heterogeneity of the samples caused by the
seasonality, in order to select the best samples for future studies of biological activities,
also driving eventual technological usage.

2 Materials and Methods

2.1 Banana Samples and Processing of Plant Material

Samples of banana peels (Musa sp., cv. Prata Anã) were monthly collected (February
2015 to January 2016) from an orchard agroecologically managed, and provided by the
Agricultural Research and Rural Extension Company of Santa Catarina (EPAGRI -
Criciúma County, 28º40′39′′ S, 49º22′11′′ W, Santa Catarina State, southern Brazil).
The banana samples were sanitized in running water and dried with a paper towel. Then,
the fruit peels were manually removed and dried in an oven (45 °C), with air flow, until
constant weight. The dry biomass was packed in polyethylene bags and stored at −20 °C.
Dried banana peels samples (0.5 g) were added of 7.5 ml distilled water and incubated
(water bath, 37 °C, 30 min), followed by centrifuging and recovering of the supernatant
as the aqueous extract (AE) according to Pereira (2014) [8].
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2.2 Spectrophotometric Analysis

The AE’s chemical profiles were determined through UV-Vis scanning spectrophotom‐
etry (Gold Spectrum lab 53 UV-Vis spectrophotometer, BEL photonics, Brazil) over a
spectral window of 200 to 800 nm (1 nm resolution/data point). The content of total
phenolic compounds was determined according to Randhir, Shetty and Shetty (2002)
[9], while the total flavonoids amounts followed the methodology proposed by Woisky
and Salatino (1998) [10]. The ability of the AE’s to scavenge the 1, 1-diphenyl-2-
picrylhydrazyl (DPPH) free radical was determined based on the method of Ribeiro et al.
(2008) [11].

2.3 Statistical and Chemometric Analysis

Data were collected, summarized, and submitted to analysis of variance (ANOVA)
followed by the post-hoc Tukey’s test (p < 0.05) for mean comparison. All procedures
were performed in triplicate, in three independent experiments (n = 9). The processing
of the spectrophotometric profile considered the definition of the spectral window of
interest (200–800 nm), baseline correction, normalization, and optimization of the
signal/noise ratio (smoothing). The processed data set was subjected to multivariate
statistical analysis, by applying principal component analysis (PCA) and clustering
methods, as well as predictive machine learning tools. All analyses were supported by
scripts written in the R language using tools developed by our research group (the spec‐
mine package) [12] and some functions from the packages Chemospec [13], HyperSpec
[14], and ggplot2. All R scripts, raw data, and additional chemometric analysis are
available in supplementary material, in http://darwin.di.uminho.pt/pacbb2017/banana-
peels, as well as the data analysis report automatically generated from the R scripts using
the features provided by R Markdown. This allows anyone to fully reproduce and docu‐
ment the experiments.

3 Results and Discussion

Phenolic compounds are secondary metabolites found in plants with important biolog‐
ical activities. We propose to recover these compounds by producing AE's of banana
peels collected over the seasons, to select the best sample for future biological assays.
Initially, biochemical (total contents of phenolic compounds and flavonoids, and the
inhibition activity of the DPPH radical) and spectrophotometric (absorbance at λ = 200–
800 nm) assays were done, followed by chemometric analysis.

Initial exploratory analysis, with simple descriptive statistics and boxplots of the main
variables, indicated differences, namely in the total phenolics and flavonoids concentra‐
tions, which appear to be higher in the winter samples. By performing a linear regression
relating phenolic and flavonoid contents and climatic factors, the results indicated that
lower temperatures increased the amounts of total phenolics and flavonoids in banana
peels. This trend was clearer for the total phenolics (mg gallic acid equivalent/g dry peels;
i.e., mg GAEq/g), where for the minimum temperature (°C) (Fig. 1) the variance explained
(R2 = 0,702) is over 70%, with a quite low p-value (4 × 10−4).
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Fig. 1. Linear regression overlapping the data points (sample/month) of the variables total
phenolic compounds (mg GAEq/g) vs. minimum temperature (°C). R2 (0,702) is above 70%.

Further, the Pearson correlations for the dataset were calculated, corroborating the
previous findings, where a significant relationship (r = −0.854) between the minimum
temperature and the total phenolic compounds was detected (Fig. 2). In a similar stat‐
istical approach, the variables air moisture, total rainfall, and insolation (amount of solar
energy/cm2/min) did not show significant relationship with the biochemical variables.

Fig. 2. Pearson correlation between biochemical and climatic variables. The correlation increases
in blue and decreases in red.

In a second stage, the UV-Vis dataset (λ = 200–800 nm) of the AE's was pre-
processed, where an offset correction and smoothing were applied. All the spectral
profiles (λ = 200–800 nm) of AE's showed absorbances unity (Au) in the spectral
window typical of phenolics (λ = 280–320 nm), indicating that the extraction system
was able to recover the secondary metabolites from the residual biomass. In addition,
the spectral profiles were similar, suggesting a homogeneous chemical composition
among samples over the seasons (Fig. 3).

292 S. Lopes et al.



Fig. 3. UV-Vis spectroscopic profiles (λ = 200–800 nm - Au) of 12 representative samples of
aqueous extracts of banana peels, collected during the seasons of 2015 (summer, fall, winter and
spring) and 2016 (summer) in southern Brazil.

Further, PCA of the spectroscopic profiles, an unsupervised multivariate statistical
technique, revealed a clear seasoning effect on the grouping of samples. PC1 (58.1%)
and PC2 (37.3%) comprised 95.4% of the total variance of the dataset, making possible
to explain the data variability with a few latent orthogonal variables. Overall, the results
showed a certain degree of discrimination among the samples over the seasons regarding
their chemical composition (Fig. 4).

Fig. 4. Score scatter plot of the UV-Vis spectral data (λ = 200–800 nm) on the PC1 and PC2
axes of samples (n = 108) of aqueous extracts of banana peels. Each set of points of the same
coloration represents a season.

In a follow-up experiment, hierarchical cluster analysis (HCA) was applied to the
spectroscopic dataset and a better sample discrimination seems to be found in compar‐
ison to PCA. Again, the findings revealed that unsupervised methods end up merging
the data into a pattern that fits well into the natural groups in the sample season
(Fig. 5).
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Fig. 5. Hierarchical cluster analysis (HCA) of the UV-Vis absorbances (λ = 200–800 nm) of
aqueous extracts of banana peels.

Since phenolic compounds are usually the majoritarian ones in AE's of banana peels,
we further performed PCA and HCA aiming at to extract additional information corre‐
lating the seasonality with the maximum absorption of peaks of those secondary metab‐
olites (λ = 280–320 nm). In the PCA, PC1 (96.9%) and PC2 (2.8%) explained 99.7% of
the total variance of the data set, but an improved sample discrimination regarding the
full spectroscopic dataset (λ = 200–800 nm) was not achieved.

Thus, HCA using the same spectral dataset was done affording a better discrimi‐
nation (Fig. 6). From the root, the first split separates the MAR/2015 samples (fall
season) from the remaining, which corroborates the biochemical assays where the
lowest amounts of secondary metabolites were found. Navigating the tree down‐
wards, the samples from the second group are clustered by similarity in 3 groups,
which have a majority of winter, summer and spring samples in each. Winter samples
are grouped integrally, giving a similarity between the JUN/15, JUL/15 and AUG/15

Fig. 6. Hierarchical cluster analysis of the UV-Vis absorbance region of phenolic compounds
(λ = 280–320 nm) of crude aqueous extract of banana peels.
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samples with respect to the spectral region of interest. In the right, we can see a
cluster that mixes summer, autumn, and spring samples.

4 Conclusions

The analytical approach employed in this work, supported by bioinformatics tools,
allowed a better understanding of the chemical variability of the banana peels collected
during seasons associated to the climatic factors. Low temperatures typically found in
the winter were determinant to modulate the banana metabolism for the production of
increased amounts of phenolic compounds, also improving the antioxidant activity of
AE's. Thus, PCA and HCA demonstrated a discrimination of samples collected in the
winter as promising for future biological studies. Besides, HCA allowed identifying
autumn-collected samples, i.e., MAR/2015, which showed reduced amounts of bioac‐
tive secondary metabolites.
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Abstract. Rice (Oryza sativa L.) is one of the most produced and consumed
cereals worldwide and has its importance highlighted mainly in developing coun‐
tries, where it plays a strategic economic and social role. Due to the importance
of rice in the diet, its composition and nutritional characteristics are directly
related to the health of the population. In the rice production systems, some
climatic factors are determinants for the good performance of the crop, inducing
the biosynthesis of primary and secondary metabolites. The present study deter‐
mined the metabolic profiles through UV-visible spectrophotometry of leaf
samples of three rice cultivars (Marques – white, Ônix – black, and Rubi – red
pericarp) throughout the rice’s vegetative stages in two experimental times, from
September to December 2015 and from January to April 2016. Solar radiation
was recorded along the experimental period. To the organosolvent extracts of leaf
samples, UV-vis spectrophotometric techniques were applied and the quantitative
results of certain metabolites, e.g., chlorophylls, carotenoids, phenolics, flavo‐
noids, and sugars, as well the antioxidant activity, which were analyzed by
chemometrics tools. The results showed that biochemical parameters carotenoids,
chlorophylls and sugars are more affected by the intensity of the radiation do que
as variáveis phenolics, flavonoids and these alterations may be detected through
statistical analysis of biochemical concentrations and UV-vis spectra.

Keywords: Rice · Spectroscopy · Metabolic profiles · Statistical models · UV-
vis spectrophotometry

1 Introduction

Rice (Oryza sativa L.) is one of the most produced and consumed cereals in the world,
being socially and economically important mostly in developing countries [1]. Due to
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the importance of rice in the diet, its composition and nutritional characteristics are
directly related to the health of the population. This cereal is capable of supplying 20%
of energy and 15% of the daily need of an adult’s protein, as well as containing vitamins,
lipids, minerals, phosphorus, calcium, and iron [2].

In Brazil, where the annual consumption is on average 25 kg/inhabitant [3], the
southern region accounts for most of the national rice production [4]. In the state of
Santa Catarina, the guarantee of the economic viability of the pre-germinated rice crop
results from relevant technologies developed by public research and rural extension
efforts, notably based on the actions of the Agricultural Research and Extension
Company of Santa Catarina (EPAGRI). Two new cultivars of rice were introduced by
EPAGRI, with peculiar characteristics that, besides the nutritional attributes of the
traditional grains (white), are characterized by the accumulation in the pericarp of
pigments of great nutraceutical importance [5, 6]. Thus, the cultivars Rubi (red pericarp)
and Ônix (black pericarp) are considered special due to the coloring of the grains, attrib‐
uted to the presence of compounds beneficial to health [7, 8]. In the production, climatic
factors, isolated or in association, are determinants for the good performance of the rice
culture [9] and production of primary and secondary metabolites. In this sense, two
important factors are the temperature and the average insolation over the growth stages
of the plants [10].

The present study determined the metabolic profiles of leaf samples of three rice
varieties developed by EPAGRI along the vegetative stage in two periods: (i) September
to December 2015 (spring – summer, southern Brazil) and (ii) January to April 2016
(summer – autumn). Insolation, i.e., the amount of solar energy/cm2/min reaching the
leaf surface, has been daily measured over the experimental period and was further
correlated with the metabolic profiles through chemometrics tools. The biochemical and
climatic datasets were further related aiming to build statistical models to better under‐
stand the regulatory effect of the solar radiation on the O. sativa secondary metabolism.
For that, spectrophotometric techniques were adopted, since the UV-vis spectropho‐
tometry allows the rapid and low cost acquisition of qualitative and quantitative data
from the plant metabolism whose contents can be altered in response to external stimuli.
To the biochemical dataset, bioinformatics tools developed by our research group were
applied, using multivariate statistical techniques as further described.

2 Materials and Methods

2.1 Biological Material

In a greenhouse at EPAGRI, Itajaí Experimental Station (26°57′57′′S and 48°48′′01′W,
southern Brazil), pre-germinated rice seeds of three varieties were sown: Rubi (red
pericarp), Onyx (black pericarp), and Marques (white pericarp) in two periods: (i)
September to December-2015 and (ii) January to April-2016. Along the vegetative stage
of the plants, samples of adult leaves were collected in regular intervals (3) and taken
to the laboratory for the biochemical analyzes.
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The radiation data for the studied period were provided by the Information Center
for Environmental Resources and Hydrometeorology of Santa Catarina (CIRAM/
EPAGRI).

2.2 Biochemical Analyzes - Total Phenolic and Flavonoid Compounds and
Antioxidant Activity (DPPH Assay)

Samples of rice leaves (1 g, fresh weight, n = 4) were macerated in crucible with liquid
N2 and added of 5 V methyl alcohol (MeOH). The organosolvent extract was recovered
by filtration on cellulose filter under vacuum, followed by the biochemical analyzes.
The total content of phenolic compounds was determined by the Folim-Ciocalteau
colorimetric method [11], recording the absorbance of the reactions in an UV-visible
spectrophotometer (Gold Spectrum lab 53 UV-Vis spectrophotometer, BEL photonics,
Brazil) at λ = 750 ηm.

To determine the total flavonoid contents, the methodology described by Zacarias
et al. (2007) was adopted, with modifications. An aliquot of 0.5 mL of the MeOH extract
was added to 0.5 mL of methanolic aluminum chloride solution (2% w/v) and to 2.5 mL
analytical standard ethanol. After one hour of incubation, the absorbance was measured
at 420 ηm. The results were expressed as mg of quercetin per g of dry mass.

The reduction potential of the DPPH radical by the MeOH extracts of the leaf samples
was determined as described by Kim et al. (2002). To that end, the absorbance of a DPPH
methanolic solution (1 mM in 80% methanol) was measured at wavelength 530 nm. The
DPPH-methanolic extract mixture was incubated for 30 min in the dark and the antiox‐
idant reaction measured at 530 ηm.

2.3 Extraction and Quantification of Total Chlorophylls and Carotenoids

Rice leaf samples (100 mg, fresh weight, n = 4) were incubated in a water bath at 65° C
with 7 mL dimethylsulfoxide (DMSO) for two hours. The extract was recovered by
filtration and the final volume adjusted to 10 mL with DMSO (Hiscox & Israelstam,
1979). The absorbance values at λ = 480, 649, and 665 ηm were obtained through an
UV-vis spectrophotometer (Gold Spectrum lab 53 UV-Vis spectrophotometer, BEL
photonics, Brazil). For purpose of calculation of the amounts of chlorophylls a and b,
the Wellburn formulas (1994) were used, being the data expressed as mg/g dry mass.

2.4 Extraction and Quantification of Total Soluble Sugars

The extraction of soluble sugars was done as proposed by Shannon (1968). The rice leaf
samples (100 mg, fresh weight, n = 4) were crushed in liquid nitrogen and macerated in
MCW solution (methanol: chloroform: water, 12:5:3, v/v/v). Total soluble sugars were
measured according to Umbreit & Burris (1964). The absorbance readings were taken at
630 ηm in an UV-vis spectrophotometer (UV-2000A, Instrutherm). The content of total
soluble sugars was calculated from the standard glucose curve (1 to 200 μg mL−1,
y = 0.008x, r2 = 0.99). The results were expressed as mg glucose per g dry mass.
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2.5 UV-Visible Scanning Spectrophotometry

DMSO extracts of leaf samples were UV-vis scanned (Gold Spectrum lab 53 UV-Vis
spectrophotometer, BEL photonics, Brazil) in their absorbances over the spectral
window (λ = 480 – 665 ηm). The data set was exported as a.csv file format for further
chemometrics analysis.

2.6 Statistical and Chemometric Analysis

The biochemical and UV-vis data sets of the leaf extracts investigated were processed
considering the respective wavelengths of interest. Further, the data matrix was exported
as a.csv format file and subjected to univariate and multivariate statistical analysis, using
principal component analysis (PCA). PCA can help one to extract relevant features from
a given dataset, minimizing the redundant information and characterizing the relation‐
ship between the variables studied.

For that, scripts were written in R language using tools defined by our research group,
through the specmine package, and some functions from the packages Chemospec [11]
and HyperSpec [12]. The scripts, raw data, and chemometrics analysis are available in
supplementary material, at http://darwin.di.uminho.pt/pacbb2017/rice-cultivars. The
report of analysis generated from the scripts provided by the R Markdown is also avail‐
able at this site, allowing the computational experiments details to be analysed in detail
and fully reproducible.

3 Results and Discussion

The results from the spectroscopic and biochemical analyzes of the primary (sugars)
and secondary (chlorophylls, carotenoids, phenolic compounds, and flavonoids) metab‐
olites, as well as the antioxidant activity allowed identifying discrepancies of leaf’s
metabolic profiles of the three varieties investigated regarding the effect of accumulated
solar radiation and the average daily radiation over each experimental interval studied,
i.e., September to December-2015 and January to April-2016.

The one-way analysis of variance (ANOVA) of the biochemical data revealed
discrepancies (p < 0.05) among the rice varieties, mostly for the contents of phenolic
and flavonoid compounds, followed by the antioxidant activity (DPPH assay), sugars,
and chlorophylls. On the other hand, the rice genotypes do not differ significantly in
their carotenoids concentrations over the years (see report in supplementary material for
the details).

For radiation data, linear regression analysis was performed first starting with the
mean daily radiation, and then considering their accumulated values. The most visible
effects occurred in the variables carotenoids, chlorophyll, and soluble sugars, followed
by DPPH Inhibition. For carotenoids, the R2 values show that over one third of the
variance can be explained by the radiation levels (regression analysis results are avail‐
able in supplementary material). The phenolics and flavonoids showed high p-values,
thus do not seem to be affected by the radiation levels.
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In a follow-up experiment, PCA was applied to the biochemical data aiming to
discriminate the rice genotypes. PCA shows that mostly of the data set variability
(65.6%) has been explained by the first two principal components.

In this analysis, the variables contents of sugars, phenolics, and flavonoids, as well
as the inhibition (%) of DPPH are in line with PC1, whereas chlorophylls and carotenoids
spread over the PC2 axis. The results revealed a clear separation of the genotypes
according to their metabolic profiles. Ônix samples grouped in PC1+/PC2+, influenced
by the higher concentration of sugar. On the other hand, Rubi genotype grouped in
PC1− due to their higher amounts of chlorophylls, carotenoids, phenolic compounds
and higher inhibition activity of the DPPH radical. The Marques variety was found
between the groups of the other two cultivars at PC1+ and PC2− (Fig. 1).

Fig. 1. Resulting bi-plot of the PCA results (PC1-39.3% and PC2-26.3%) showing the
quantitative data variables (carotenoids, chlorophylls, phenolics, flavonoids, and inhibition of
DPPH radical) in red, and the different scores of the samples (the reference is given in black for
each sample).

In order to obtain a better understanding of the data dispersion (rice harvest seasons
in southern Brazil), the results of the PCA were further analysed, considering the effects
of the years of collection on those variables (Fig. 2A). The most of the 2016-collected
samples grouped in PC2−, as the opposite has been detected for the samples collected
in 2015. In a second approach, PCA results were interpreted aiming to correlated them
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with the rice genotypes. Interestingly, as already seen above, PCA showed marked
discrimination between Ônix (black pericarp, PC1+) and Rubi (red pericarp, PC1−)
genotypes over the PC1 axis, while Marques (white pericarp) appears to be intermediate
(Fig. 2B).

Fig. 2. Principal component analysis scoring scatter plots showing the effects of the year of
collection on the biochemical variables of rice leaves (A) and among the rice varieties Marques,
Ônix, and Rubi (B).

Fig. 3. UV-vis spectrophotometric profiles (λ = 480 − 665 ηm, DMSO) of leaf samples of rices
genotypes. A – years 2015 and 2016. B – cultivars Marques, Onix, and Rubi.

Regarding the UV-vis spectroscopic profiles (λ = 480 – 665 ηm), a general vision
to the class and contents of secondary metabolites is allowed, also revealing differences
resulting from the genotypes and harvest times. All the studied samples showed intensive
absorbance signals in the corresponding wavelengths of chlorophylls, carotenoids, and
anthocyanins, with higher peaks for the 2016-harvest samples (Fig. 3A). Among the rice
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genotypes, higher amounts were found in the Rubi leaf samples, followed by Ônix and
Marques (Fig. 3B).

Taking into account the similarity of the UV-vis profiles among the samples and the
eventual occurrence of redundant information, PCA was adopted again as a data reduc‐
tion technique, in order to extract latent information from the spectroscopic data set.
Again, the UV-vis spectral profile of 2015-collected samples seems to differ from that
of 2016-collected ones (Fig. 4A), as a less clear separation has been found for the rice
genotypes through the spectroscopic data set (Fig. 4B).

Fig. 4. Principal component analysis scores scatter plots (principal components 1 and 2) of the
spectral data set (UV-vis, λ = 480 − 665 ηm, DMSO extract) colored according to the year (2015-
and 2016-collected samples) (A) and to the rice genotypes Marques, Onix and Rubi.

4 Conclusions

In rice cultivation, climatic factors such as temperature and levels of solar radiation are
determinant for the yield of the crop. Biochemical parameters may reflect possible
physiological changes, e.g., energetic and metabolic gains of plants throughout the crop
cycle. The results obtained from the biochemical and UV-vis spectroscopic analyzes
revealed the influence of the solar radiation on the metabolic profiles of the rice cultivars
investigated.

For example, higher levels of chlorophyll, carotenoids, and sugars, important
compounds associated to the photosynthetic apparatus, were shown in the 2016 harvest,
when the solar radiation accumulated was larger than that found in 2015. Additionally,
the rice genotypes respond differently to the insolation as noted for their discrepant
secondary metabolites composition over the years. The chemometrics approach adopted
allowed us to better discriminate the genotypes behavior over the years, by applying
unsupervised multivariate statistical methods to the biochemical and UV-vis spectro‐
scopic dataset. Taken together, the PCA findings suggest that different compounds may
be used for building statistic monitoring models to better understand the rice genotypes
answers to the solar radiation over the harvesting times in southern Brazil.
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Abstract. NGS (next-generation sequencing) is bringing the need to
efficiently handle large volumes of patient data, maintaining privacy laws,
such as those with secure protocols that ensure patients DNA confi-
dentiality. Although there are multiple file representations for genomic
data, the FASTA format is perhaps the most used and popular. As far
as we know, FASTA encryption is being addressed with general pur-
pose encryption methods, without exploring a compact representation.
In this paper, we propose Cryfa, a new fast encryption method to store
securely FASTA files in a compact form. The main differences between
a general encryption approach and Cryfa are the reduction of storage,
up to approximately three times, without compromising security, and
the possibility of integration with pipelines. The core of the encryp-
tion method uses a symmetric approach, the AES (Advanced Encryp-
tion Standard). Cryfa implementation is freely available, under license
GPLv3, at https://github.com/pratas/cryfa.

Keywords: FASTA encryption · AES · Cryptography · Compression ·
DNA sequences

1 Introduction

The emergence and advances in the next-generation sequencing (NGS) provided
a way to access genome information, at a nucleotide level, namely to identify and
study evolutionary events, as well as alterations for clinical purposes [1]. The sen-
sitivity of the data shows the importance for efficiently preserve confidentiality,
namely through privacy protocols and methods, such as cryptography [2].

A DNA sequence is a succession of letters, with four possible outcomes
(A,C,G,T), that indicate the order and nature of nucleotides within a DNA
chemical chain. The process of unveiling the chain is known as DNA sequencing.
This process can be seen as a capture of small pieces from a huge puzzle with lots
of repeated, changed and missing pieces. Therefore, to obtain a complete species
sequence, several stages must first be applied, such as the assembly, causing the
insertion of several errors or unknown symbols in the final sequences. Unknown
symbols are usually represented by ‘N’ symbols.
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The representation of DNA sequences for storage and analysis purposes is
usually set on a specific file format: FASTA. The FASTA files usually contain
DNA sequences in an assembled or pre-assembled state. Explicitly, the FASTA
format is a text-based format for representing two information streams: DNA
sequences and headers. The headers stand for sequence names and comments
that precede the sequences. An example of a hypothetical FASTA file is given
in Fig. 1.

Fig. 1. Example of a hypothetical FASTA file content.

As it can be seen in Fig. 1, the headers always begin with a ‘>’ character
followed by some description and with a ‘\n’ character at the end (new line). The
DNA sequences are usually restricted to the alphabet {A,C,G,T,N}, although
very rarely, there are other symbols, such as {\n,H,M,P,R,T,X,Y,a,c,g,t,n,m}.

Mainly, the compression of FASTA files has been addressed by Deliminate
[3], BIND [4], MFCompress [5], LEON [6] and MetaCRAM [7], where for only
DNA sequences by XM [8] and GECO [9]. For a state-of-the-art in FASTA
and DNA sequence compressors see [10]. Although a compressor efficiency is
dependent on the nature of the data, it seems that for FASTA files Deliminate
[3] and MFCompress [5] are consistently more efficient. On the other hand, for
encrypting the FASTA files, up to our knowledge, there is not a specific method.
Actually, FASTA encryption is being addressed with general purpose encryption
methods.

In this paper, we consider the challenge of compacting and encrypting FASTA
files using a fixed-block transformation followed by AES (Advanced Encryption
Standard) a symmetric system with 128 bits. The AES, a variant of the Rijndael
cipher [11], is based on a design principle known as a substitution-permutation
network, a combination of both substitution and permutation. The AES operates
on a 4× 4 order matrix of bytes. The key size used for an AES cipher specifies the
number of repetitions of transformation rounds that convert the plaintext into
the ciphertext. The number of cycles of repetition is 10 cycles for 128-bit keys,
12 cycles for 192-bit keys and 14 cycles for 256-bit keys. For longer bit keys,
the computation time needed is larger. As such, since the size of the files to
encrypt is already large, we opted to use a 128-bit key. Nevertheless, we provide
an implementation with an easy way to change to 256-bits.
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The AES requires a separate 128-bit round key block for each round plus one
more. An initial round is required, where each byte of the matrix is combined
with a block of the round key using bitwise xor. Then it starts the phase of
rounds, having the operations: sub bytes, a non-linear substitution where each
byte is replaced by another giving a lookup table; shift rows, a circular shift given
a certain number of steps of the last three rows of the matrix; mix columns, a
mixing operation, combining the four bytes in each column; add round key, the
subkey is combined with the matrix. After the corresponding number of cycles
being applied, it uses a final round, applying the sub bytes, shift rows and add
round key operations.

Some attacks are known, such as those based on brute-force, simple key
schedule [12], side-channel attacks [13] - encryption after compression [14], among
others. Nevertheless, with a proper methodology set, the best known attacks on
AES-128 bits need billions of years using current hardware.

Specifically, our purpose is to compress, as efficiently as possible, and encrypt,
as secure as possible, the FASTA files using efficient computational times. Since
we are dealing with large files, should we compress the data after encryption? No,
because the purpose of an AES encryption is to distribute the data uniformly,
therefore it is useless. However, should we compress the data before encryption?
This was believed to be true, until the appearance of a new type of attacks.
This kind of attacks, such as CRIME and BREACH, explore the variable size of
the encrypted text [15], given by its redundancy, to deduce the key. They had,
for example, a huge impact on SSL/TLS applications [16]. On the AES, they
can be used to reduce the time in a brute-force attack, as well as to estimate
sequence redundancy. Therefore, in this paper we use a fixed size compaction,
independently from its redundancy, to reduce the size of the representability
of the DNA sequences and, then, encrypt them. We call compaction and not
compression because we are reducing the storage without exploring redundancies
of the data or else we would, as explained before, put the security of the files
in risk.

The rest of the paper is organized as follows. In the next Sect. 2 we describe
the method. In Sect. 3, we show the computational time needed and the improve-
ment regarding space, comparing with a general purpose encryption and specific
FASTA compressors. Finally, in Sect. 4 we make some conclusions.

2 Method

We have used the human GRC reference genome (build 37) in FASTA format
to study the patterns of distribution of the existing characters. Figure 2 depicts
these patterns, where we can see the symbols A,C,G,N,T and \n with higher
large proportions relatively to the others. Therefore, we are able to explore these
characteristics in the method.

Accordingly, in the following subsections, we describe the method used and
how we have implemented it in a computational tool.
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Fig. 2. Patterns of distribution of the complete assembled human genome (GRCv37)
stored as a FASTA file. The scale gives the number of occurrences for each symbol in
a logarithmic format. The S1 stands for 106, while S2 for 1010. The blank place stands
for a space (ASCII number 10).

2.1 Description

The core of the method involves several transformations of the data before the
encryption, in order to reduce the file size. According to Fig. 3, the FASTA file
is split into two streams, the headers and the DNA sequences. Then, the DNA
sequences are transformed into packed sequences, that we further will explain.
Finally, the streams are joined and the encryption is applied.

The packing transformation is applied to each triplet of DNA bases, where
each one is converted into a number contained in the interval [0; 63 − 1], giving
the alphabet {A,C,G,T,N,X}. Any symbol outside the alphabet is mapped into
an ‘X’. After the numerical attribution, for each symbol that was mapped into
an ‘X’, it is used an extra byte to describe which symbol was (given its ASCII
representation). Since these are not frequent symbols, the output will have a
small penalty according to its length.

Fig. 3. Diagram showing the FASTA transformation phases (split, pack and join)
before encryption.
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Fig. 4. Packing transformation for an exemplifying set of triplets of DNA bases. The
characters outside {A,C,G,T,N,X} are transformed in X and, for each, an extra byte
is spend to represent the character is ASCII mode.

Figure 4 shows and example of a DNA sequence being packed. It shows that
the sequence, instead of using 264 bits for representation (33 symbols× 8 bits),
needed only 136 bits (11 triplets× 8 bits + 6 extra× 8 bits). Notice that in this
example the compaction factor was approximately two. The reason is that we
have concentrated the infrequent symbols only for the example. Usually, these
symbols are rare as it can be seen in Fig. 2. Therefore, asymptotically, the method
has approximately a compaction factor of three.

Finally, the encryption is held, using AES-128 bits. For the purpose, a pass-
word is set (by the user) and hashed into a numerical value between [0; 264 − 1].
The initialization of the matrix is also set pseudo-randomly according to a dif-
ferent hash function, given by a seed that provides from the password. Then, the
encryption rounds starts, according to the phases described in the introduction.
The final output is the encrypted text.

The decryption process is done using the reverse process, given its symmetric
property. Briefly, the text is decrypted and, then, the unpacking is done using
the reverse mapping of Fig. 4. As such, each number representing the triplet is
converted to the three bases. If there are at least one X in each triplet, the corre-
sponding characters will be read in order to disambiguate the original character.

2.2 Implementation

We have implemented the method in a fully automatic command line tool
(Cryfa), written in C++ language, for multiple operating systems. The tool uses
Crypto++, a free C++ library class for the cryptography AES scheme (https://
www.cryptopp.com/). The tool can be applied to any FASTA file.

Cryfa writes the output data to standard output for a direct integration with
bioinformatic analysis systems. Currently, the password is set by reading it from
a file. Mainly, because interactive loading can be problematic in a pipeline and
set the password as a command argument can be dangerous given the history
of commands loading. Nevertheless, optimization of a more secure way will be a
subject of further studies.

Cryfa can be downloaded, under GPLv3 license (free for research purposes),
at https://github.com/pratas/cryfa.

https://www.cryptopp.com/
https://www.cryptopp.com/
https://github.com/pratas/cryfa
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3 Results

We have used two state-of-the-art FASTA compressors, Deliminate [3] and
MFCompress [5], to compare the number of the bits and time need to repre-
sent several FASTA files. The FASTA files used are all the human GRC refer-
ence chromosomes (build 37) from NCBI [17], totaling approximately 3 GB of
data. We have included a script, available at https://raw.githubusercontent.com/
pratas/cryfa/master/scripts/run.sh, that allows replicating the results under a
Linux OS.

Fig. 5. Number of bytes needed for MFCompress, Deliminate and Cryfa methods to
store each human chromosome. The original file size is included as a reference and it
can be seen as an approximation of the number of bytes needed by a general purpose
encryption method.

The Fig. 5 shows the number of bytes needed to represent each chromosome
(FASTA file) according to different methods. We are able to see that MFCom-
press and Deliminate use fewer bits for storage than Cryfa. However, when com-
pared with the original file size, Cryfa is relatively near state-of-the-art compres-
sors. Notice that MFCompress and Deliminate do not encrypt the data. General
purpose encryption methods represent the files with approximately the same size
as the original size, given its uniform distribution randomization, therefore these
values represent general purpose encryption without compaction.

The Fig. 6 shows the time needed for the mentioned methods to run on all
chromosomes. As it can be seen, Cryfa is the second fastest method. Moreover,
both MFCompress and Deliminate used parallelization, while Cryfa ran in a
single core CPU. Furthermore, Cryfa, besides compaction, also encrypts the
FASTA files, showing very fast running times.

Consider now that we would have information that a collection of bacteria,
such as Escherichia coli, was sequenced and encrypted in different files accord-
ing to an AES cipher. If we would apply a variable-size compression, for exam-
ple using MFCompress to explore the redundancy of the data, and after an
encryption, we would have a clue of what would be the most redundant/complex

https://raw.githubusercontent.com/pratas/cryfa/master/scripts/run.sh
https://raw.githubusercontent.com/pratas/cryfa/master/scripts/run.sh
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Fig. 6. Time needed for MFCompress, Deliminate and Cryfa methods to store each
human chromosome. Time values are in seconds.

sequences. As such, we would have access to the content properties (an indica-
tion) without decryption. With the method that we present here, this does not
happen, given its fixed block size compaction and, hence, we are not able to
know the complexity of the files without decryption.

4 Conclusions

In order to preserve the confidentiality of DNA sequences, specifically FASTA
files, we have proposed a method to encrypt efficiently the data. The public
available implementation, Cryfa, compacts each triplet of DNA bases into one
character, using a fixed block size packing, then it uses AES symmetric encryp-
tion. When compared with general encryption tools, it allows reducing the stor-
age approximately three times, without creating security problems, such as those
derived from compression before encryption. On the other hand, we have shown
that, regarding compression, relatively to its original storage size it is not far
from FASTA state-of-the-art compression methods. Moreover, it uses very fast
processing times.

Low-data complexity has been explored in AES attacks [18]. Therefore, in
future works, we will uniformly permute the plaintext, before encryption, to
transform the plaintext into high-complexity data. Moreover, we will extend
Cryfa to FASTQ files.
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Abstract. This paper presents an investigation into a novel approach for an
automated universal colourimetric test by chromaticity analysis. This work partic‐
ularly focuses on how a well-adjusted harmony between computational
complexity and biochemical analysis can reduce the associated cost and unlock
the limit on conventional chemical practice. The proposed research goal encom‐
passes the potential to the criteria- anytime anywhere access, low cost, rapid
detection, better sensitivity, specificity and accuracy. Our method includes
obtaining the amount of colour change for each instance by delta E calculation.
The system can provide the result in any ambient condition from the trajectory
of colour change using Euclidean distance in LAB colour space. The strategy is
verified on plasmonic ELISA based diagnosis of tuberculosis (TB). TB detection
by plasmonic ELISA is a challenging, demanding and a time-consuming diag‐
nosis. Completing the computation in real time, we circumvent the obstacle liber‐
ating the TB diagnosis in less than 15 min.

Keywords: Colourimetric test · Plasmonic ELISA · TB test · Chromatic
analysis · Delta E

1 Introduction

The colourimetric test provides a decisive analysis for the present elements or concen‐
tration of chemical compound facilitated by a colour agent. The procedure can be inclu‐
sive or exclusive of the enzyme. When it comes to colourimetric assays for medical
diagnosis, a wide range of rapid, visual readout, quantitative detection, low cost and
robust system have been utilised in the literature [1, 2].

For quantification of colourimetric test, Yetisen et al. (2014) developed a cross plat‐
form smartphone application featuring interphone repeatability to quantify the concen‐
tration of glucose, protein, pH, replacing the requirement of spectrometer and microplate
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reader [3]. The capturing process starts with calibration at given lighting condition
followed by user input of sensor type, target analyte, unit of concentration and number
of data points. Sample image of corresponding test zone is processed utilising electro‐
magnetic radiation from coloured zone, concentration of the analyte and corresponding
value on screen is returned, the image is transformed and the result is produced from
measured value vs. calibration curve and at last the information is required to
synchronise

The scope of colourimetric analysis is certainly not limited to health domain. The
recent approaches for different applications include Rapid Diagnostic Test (RDT) to
promote point-of-care (POC), opto-mechanical reader, paper based and Digital holo‐
graphic microscopy (DHM) on the mobile platform with geo-tagging facility, hardware
based colourimetric sensor array for medical diagnosis, molecular biology, detection of
elements and monitoring environmental factors (such as air and water quality) [1, 4–6].
Shen et al. (2012) presented the potential of smartphone based colourimetric tests, not
to eradicate the conventional method, but to provide portable, transferable, immediate,
low-cost diagnosis to huge population with limited access [7]. They compensated
ambient lighting environment and formed the calibration curve of concentration from
the chromaticity value to measure pH. They envisioned their colour conversion analysis
techniques to be useful to any POC diagnosis with colourimetric response, even for
florescence data.

The colourimetric analysis is not a new concept. The wide-range of its application
is clearly evident from the above discussion. With the recent advancement of mobile
phone camera and demand for POC [8], there is a need for an one-size-fits-all approach
to perform an automated universal colourimetric test with economic and technical feasi‐
bility, at anywhere and anytime. This work includes such an approach with a case study
of TB test. However, this work does not focus on fluorescence test and ultraviolet (UV)
method.

2 Literature Review

Globally, TB is one of the leading causes of death. In 2015, 35% of the HIV positive
people died due to TB [9]. In the same year, 10.4 million reported to suffer from TB and
TB was fatal to 17% of them. The Sustainable Development Goals (SDGs) for 2030
includes ‘End TB strategy’ to diminish the global epidemic of TB [10]. TB can be cured;
due to in time adequate treatment 49 million deaths were prevented within 2000–2015.
Several approaches exist for TB test either being expensive, time consuming or inef‐
fectual. The conventional methods include sputum smear microscopy, which can take
up to three days, rapid molecular tests (WHO recommended Xpert® MTB/RIF assay
takes up to two hours [11]); culture methods taking up to 12 weeks. UK Visas and
Immigration uses radiometric method for TB screening [12]. UK National Health
Service (NHS) conducts chest X-ray, blood test and tuberculin skin test for different
diagnosis of TB [13]. There are also lateral flow tests (LFTs) to diagnose TB.

Tsai et al. (2013) strategised a colourimetric sensing using unmodified gold nano‐
particles (AuNps) and single-stranded detection oligonucleotides for TB test [14]. A
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smartphone was utilised to collect the multiple detection results of colour variation from
the concentration on cellulose paper and transmit to the cloud. The result showed, 2.6 nM
tuberculosis mycobacterium could be detected by this method. The turnaround time was
1 h, after DNA extraction from the patient. The smartphone was used in here as a data
sharing media, the RGB value was analysed by Java based open source software, Image
J. Osman et al. (2010) proposed a tuberculosis bacilli detection technique from the tissue
sample by Ziehl-Neelsen staining method [15]. The prepared sample image from optical
microscope was segmented by moving k-mean clustering for tuberculosis bacilli extrac‐
tion. Both RGB and C-Y colour were utilised to acquire a robust and improved segmen‐
tation under various staining condition. The hybrid multilayered perceptron network
(HMLP) selected the feature among the geometrical features of Zernike moments to
detect tuberculosis bacilli. The result showed 98.0%, 100% and 96.19% of accuracy,
sensitivity and specificity respectively to find the class of definite and possible TB.

The challenging part of TB test is to acquire the required of sensitivity and specif‐
icity. Moreover, it has to be cost-effective for long-term post-treatment monitoring
and infected population in developing countries. The World Health Organization
(WHO) also prefers diagnostic tools which are inexpensive, disposable and easy-to-
use [16, 17]. However, the smart devices are yet to earn its reputability for colouri‐
metric analysis for its constraint on quantitative measurements [7]. The degree of
freedom is limited by system provided small colour change and insufficiency of RGB
intensity value. Like any other colour image processing, mitigating the impact of
lighting condition in colourimetric analysis of diagnostic assays is to blame for cell
phones not reaching its full potential. Contrariwise, the quest of providing properly
distinguishable colour, complexity of chemical method might be minimised by a
powerful algorithm for colour detection. Incorporation of mobile phone can not only
facilitate easy and automatic colour detection but can also enable disease decision
using machine learning techniques. Thus, this paper focuses on the algorithm to elim‐
inate the dependency on lighting environment and superior camera.

3 Methodology

3.1 Plasmonic ELISA Test and Experimental Setup

Colourimetric analysis using plasmonic nanoparticles (NPs) are well utilised in the field
of medicine and environmental monitoring by various accessories [18]. A batch of 96-
well plates went through series of processes as illustrated in Fig. 1 for automatic diag‐
nosis of TB based on plasmonic ELISA [19]. Three separate experiments were
conducted on three sample plates (P1, P2, P3) and all of the experiments were recorded.
There were 31 samples in total- 24 in P1, 1 in P2 and 6 in P3. Each column of P1 varies
in concentration. The videos were recorded using iPhone 7 plus (12 MP, wide-angle: ƒ/
1.8 aperture, telephoto: ƒ/2.8 aperture) and iPhone 4 (5 MP).
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Fig. 1. Stepwise plasmonic ELISA based TB test

3.2 Image Processing and Chromatic Analysis

For chromatic analysis, the colour difference is measured by delta E (ΔE), to be specific
CIE76. With known colour space coordinates, the International Commission on Illu‐
mination (CIE) 1976 formula delivers the colour difference. It was the first formula to
provide ΔE in LAB.

In LAB colour space, if 
(
L∗

1, a∗

1, b∗

1

)
 and 

(
L∗

2, a∗

2, b∗

2

)
 are two colour coordinates at

t1 and t2 s respectively, then colour difference is given by the following formulae [20],

ΔE∗

ab
=
√
{(L∗

2 − L∗

1)
2 + (a∗

2 − a∗

1)
2 + (b∗

2 − b∗

1)
2} (1)

During the complete reaction taking t seconds, the instances (S) of the reaction is
divided in ti time interval. If the ambient condition is consistent for the total test time
(for each S), the impact of lighting environment will have a negligible significance on
the system. Thus, the TB testing method can be implemented anywhere anytime. Later,
a high pass filter is applied on the calculated colour difference for each instance.

S = {1, 2,… , N}, S ∈ Z (2)

ΔE(S)∗
ab
> JND, whereΔE(S)∗

ab
=
√
(ΔL∗2 + Δa∗2 + Δb∗2) (3)

maximum amount of colour change at any instant, 𝛼 = max(ΔE(S)
∗

ab
) (4)

An imperative parameter for ∆E calculation is the just-noticeable difference (JND)
or differential threshold. According to experimental psychology, “it is the amount some‐
thing must be changed for a difference to be noticeable, detectable at least half the time’’.
As an intuitive value, some suggested ΔE to be 1.0, but a widely acceptable value is 2.3
[21, 22].

The objective of this experiment is to explore the time response on colour change.
Primarily, the instantaneous time to attain maximum ΔE was calculated. The colour

316 M. Hoque Tania et al.



difference can be calculated for other colour spaces as well. However, a validation is
required for the colour space coordinates (L*, a*, b*) with classified labels. For concen‐
tration based quantitative and semi-quantitative colourimetric analysis, the transition
should be linear, which can be further interpreted with the statistical model. In case of
colour transformation based studies e.g. TB test, the transition phase is non-linear, where
the number of transition phase,

ϕ = {0, 1, 2,… , N}, whereϕ ∈ Z∗, Z∗
= {0} ∪ Z+. Z+denotes positive integer. (5)

4 Experimental Results and Discussion

The total TB test was conducted in 845.4 s. The video was converted from MOV to
JPEG based images taking time interval (ti) as 0.0332 (every frame), 1, 5, 10, 20 and
50 s. The analysis can be performed by direct video acquisition as well. As the procedure
relies on the difference, not the (x, y, z) values itself, both of the phone camera played
adequate role. Thus, the dependency on high configuration camera can be avoided. All
of the sample plate contained only one class. For sample plate containing mixture of
positive and negative specimen, one would require to perform another simple step split‐
ting the wells in separate images.

For P1 with ti = 10 s, the total number of images, f(S) = 84. Eliminating the number
of images where the wells were being filled, number of images become 58. From Fig. 2,
the change of colour is visible; however, data interpretation and quantification with
precision is difficult. The amount of colour change (ΔE) is evident for each instance in
Fig. 3(a). As a result, ΔE eased the shortcoming of naked eye. In this experiment, the
sample began to turn into blue colour at 7.67 min (Fig. 2(b)). The colour change strongly
continued for next ten seconds; the transition is evident at 7.83 min as well (Fig. 3(c)).
However, α is achieved at 11.33 min, when the sample was turning into pink- which
implies, rest of the experiment can be excluded. It can be stated with certainty that the
time response analysis is capable of salvaging minimum 2.67 min (19% of the total time)
of the full experiment time. It is almost impossible to visualise the transition from S = 68
to S = 73 (Fig. 2(d–i)) with naked eye, let alone quantification. Thus, Eq. (1) is utilised
(Fig. 3(a)). From Fig. 3(b), it can be observed that ϕ = 2. A hypothetical line is drawn
for TB positive test for better illustration of the observation. Δϕ is the time taken for the
specimen to turn from blue to pink. Equation (5) helps to realise the time response of
Eq. (1) (Fig. 3(b)). Equation (3) was implemented for better visualization of Eq. (5).
Equation (5) can be written for plasmonic ELISA based TB test as-

ϕTB =

{
1, TB − ve

2, TB + ve
, whereϕTB ≠ f(α) (6)
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(a) S= 46; 
7.50min;

ΔE=0.4003

(b) S= 47; 
7.67min;

ΔE= 8.9025

(c) S= 48; 
7.83min;

ΔE= 7.2441

(d) S= 68;
11.167min;
ΔE= 0.2793

(e) S= 69;
11.33min;

ΔE=11.6616

(f) S=70;
11.50min;           

ΔE=10.5856

(g) S= 71;
11.67min;

ΔE= 5.8642

(h) S=72;
11.83min;

ΔE= 7.4725

(i) S= 73;
12.00min;

ΔE= 0.1381

Fig. 2. Progress of TB test at various instances (S) in LAB colour space (P = 1 and ti = 10 s).
∆E = Colour difference. The images were taken with iPhone 7 plus

Fig. 3. Time response analysis for P = 1 and ti = 10 s. (a) ΔE(S)∗
ab

 and (b) Progression of colour
change with respect to time, where ΔE(S)∗

ab
> JND

The result followed the pattern of Fig. 3(b) at various lighting condition. The
impact of Eq. (4) was found insignificant on the pattern. Varying ti, it was observed
that transition is smoother for lower ti. However, taking ti < 1 s is irrational as the
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ELISA test becomes more time consuming without providing any useful new infor‐
mation. The result showed consistency when the plasmonic ELISA test was repeated.
It was also observed with naked eye that higher concentration provides faster result.

5 Conclusion

In this work, we have presented a novel approach to perform colourimetric tests by
analysing chromaticity. We calculated ΔE during the course of the colourimetric test to
attain the colour change at each intense and tracked how ΔE progressed over the time.
Intense investigation of time response revealed that the test result can be specified with
more feasibility by tracking the colour transition, instead of colour detection or clus‐
tering.

We have tested and verified our method on plasmonic ELISA based TB test. For
AuNP TB negative, the final colour output is pink, and for TB positive there is another
intermediate colour transition to blue. The conventional method is either time
consuming, expensive or not efficient. We have demonstrated that the TB test time can
be decreased - after defining α, taking even less than the original diagnosis time. It took
less than 15 min from filling up the well to get the TB result, whereas conventional
method takes few hours to few days. The computation was completed in ~34 s. As the
system works on the difference of colours in LAB space with time variation, the depend‐
ency on camera quality was reduced. The work being independent of lighting environ‐
ment is another paramount advantage. This method is implacable to a wide range of
colourimetric examinations. The chemical kinetics can be also considered as the poten‐
tial field of application.

This computerised automatic analysis increase the flexibility and freedom of choice
concerning biochemical components, lowering the complexity to it. The presented
method enhanced the accessibility, accuracy and precision of colourimetric test,
compensating the limitation of naked eye, with reduced cost and time. This technique
is going to be employed on mobile enable platforms, followed by clinical testing and
validation, to make the system POC prone.
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Abstract. Banana peels are a source of important bioactive compounds,
such as phenolics, carotenoids, biogenic amines, among others. For indus-
trial usage of that by-product, a certain homogeneity of its chemi-
cal composition is claimed, a trait affected by the effect of (a)bioatic
ecological factors. In this sense, this study aimed to investigate the
banana peels chemical composition, to get insights on eventual metabolic
changes caused by the seasons, in southern Brazil. For this purpose,
a Nuclear Magnetic Resonance (NMR)-based metabolic profiling strat-
egy was adopted, followed by chemometrics analysis, using the specmine
package for the R environment. The obtained results show that the dif-
ferent seasons can, in fact, influence the metabolic composition, namely
the levels of metabolites extracted from the bananas peels. The ana-
lytical approach herein adopted, i.e., NMR-based metabolomics coupled
to chemometrics analysis, seems to enable identifying the chemical het-
erogeneity of banana peels over the harvest seasons, allowing obtaining
standardized extracts for further technological purposes of usage.

Keywords: Nuclear Magnetic Resonance · Chemometrics · Banana

1 Introduction

In a worldwide scenario, Brazil is traditionally known as an important banana
producer. Banana peel represents about 30% of the fruit and is the main residual
biomass (by-product) of the processing industry. Such a by-product has an envi-
ronmental significance, since it is a rich source of nutrients (e.g. nitrogen and

c© Springer International Publishing AG 2017
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phosphorus) which could lead to imbalances in soil and aquatic environments
[1]. On the other hand, the use of banana peel for industrial purposes depends
on its chemical composition, a trait strongly affected by, e.g., climatic factors,
orchard manage practices, genotype, and harvest time.

Banana is well recognized as source of important bioactive compounds, such
as phenolics (gallic acid and derivatives [2]), carotenoids (β-carotene and xan-
thophylls [3]), anthocyanins (delphinidin and cyanidin [4]), biogenic amines
(DOPA and L-DOPA [5]), catechins (gallocatechin and epigallocatechnin [6]),
and sterols and triterpenes (β-sitosterol, stigmasterol, campesterol, and 24-
methylene cycloartanol [7]). Besides, for industrial purposes, large amounts of
banana peels must be provided, with homogeneous chemical composition, guar-
anteeing a continuous furnishment of raw material of high quality.

Thus, this study investigated the banana peel’s chemical composition over the
seasons, aiming to gain insights regarding eventual metabolic changes occurring
along the harvest times of that fruit in southern Brazil. For that, a typical
NMR-based metabolic profiling strategy coupled to chemometrics tools has been
adopted, where the data analysis workflow includes both univariate (analysis
of variance) and multivariate (principal component analysis and hierarchical
clustering) statistical analysis.

2 Materials and Methods

Chemicals: Ultra-pure water was obtained through a reverse-osmosis system
(Permution E-10, Curitiba, Brazil). The deuterated solvent D2O was purchased
from TediaBrazil (Rio de Janeiro, Brazil) and 3-trimethylsilyl propionic-2, 2,
3, 3-d4 acid sodium salt (98 atom % D - TSP) and deuterium chloride solution
(35 wt. % in D2O, 99 atom % D) were obtained from Sigma-Aldrich (Saint Louis,
MO, USA).

Samples: Thirteen banana peels samples were collected from an agro-ecologically
managed orchard, in Biguaçú County (27◦ 29′ 39′′ S; 48◦ 39′ 20′′ W, alti-
tude 2 m), Santa Catarina State, southern Brazil). Three in the autumn
(March, April, and May-2011), four in winter (June-2011, July-2010/2011, and
August 2011WI), five in spring (September 2010/2011, October 2010/2011, and
November-2010), and one in summer (February-2011). The producing region is
characterized for well-marked seasons. The sampled biomass was collected from
ripe fruits, showing a yellow color throughout the peel, dried at 45 ◦C until con-
stant weight and crushed in a mortar and pestle, using liquid N2. Further aqueous
extracts (AEs) of the banana peels were obtained as described by Pereira, (2014)
[8] and lyophilized.

1D-NMR spectroscopy - spectrum acquisition parameters: Lyophilized AEs were
added of 700 uL D2O, containing 0.024 g % of 3-trimethylsilyl propionic-2, 2, 3, 3-
d4 acid sodium salt (98 atom % D - TSP) as internal standard, vortexed (3x), and
centrifuged (4000 rpm/10 min), followed by recovering the supernatant (650 uL)
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and transferring it to 5 mm-NMR tubes. The pH of the samples was adjusted
to 3.45 with a deuterium chloride solution (35 wt. % in D2O, 99 atom % D).
The unidimensional NMR spectra (1H-NMR) were recorded in a Varian Inova
500 MHz NMR spectrometer and the chemical shifts (δ, ppm) were referenced
to the TSP peak at δ(1H) 0.00 ppm. Data acquisition used a Dell workstation
and the VNMRJ software, running on Windows 7 platform. Briefly, 1H-NMR
spectra acquisition parameters were as follows: 300 K, no spinning, spectral
window 5995.7 Hz, acquisition time 4 s, complex points 32983, scans 32, steady
state 4, receiver gain 10, relaxation delay 6 s, observe pulse 8.18 us at a power
compression 59/0.98, mixing time 100 ms for saturation of water (δ = 4.87 ppm,
Watergate pulse), and digital resolution ±0.08657Hz.

NMR Data Processing: The 1H-NMR spectra were processed using the
ACD/NMR processor software (Advanced Chemistry Development, release 12.0)
consisting of zero filling, Fourier transforming the 32 K data points, and automat-
ically phased (Ph0 and Ph1). The baseline was manually corrected and all spec-
tra referenced to the internal standard (TSP, d1H0.00 ppm). The spectroscopy
information of interest was exported as a .csv file containing a matrix with the
chemical shifts (1H pmm) and a peak intensity list. Typical resonance regions
of the water and internal standard (TSP) signals removed from the dataset for
further analysis. Further, each 1H-NMR spectrum was processed using a rou-
tine implemented in the R language through the package specmine [9]. Peak
alignment grouped proximal peaks together according to their position using
a moving window of 0.03 ppm. Peaks of the same group were aligned to their
median positions across all samples. Also, missing value imputation was done
filling with a constant value of 0.0005, and data pre-processing contemplated log
transformation and auto-scaling.

Chemometrics: The metadata taken into account was, as previously stated, the
seasons. However, as it was only possible to obtain one sample for the summer,
only 3 seasons were considered for the purpose of data analysis. The seasons were
assigned as follows: the samples from September 2010/2011, October 2010/2011,
and November-2010 were considered spring; the February, March, April, and
May-2011 samples were considered summer/autumn and, finally, the June-2011,
July-2010/2011, and August 2011 samples were considered winter.

The analysis of the obtained data was performed using the specmine package,
as above, for the R environment [10]. The pipeline used for the data analysis
started with one-way analysis of variance (ANOVA), to test the difference in
means between the metadata groups for each one of the variables.

Then, multivariate statistical analysis was performed, starting with hierarchi-
cal clustering, using an euclidean distance between samples, followed by Principal
Components Analysis (PCA).

The data used in the analysis, together with the reports generated using R
Markdown are all given in supplementary material available in the URL: http://
darwin.di.uminho.pt/pacbb2017/banana-nmr. This allows for the results to be
understood in detail and fully reproducible.

http://darwin.di.uminho.pt/pacbb2017/banana-nmr
http://darwin.di.uminho.pt/pacbb2017/banana-nmr
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3 Results

The spectral profiles obtained for each sample showed that the samples have,
approximately, the same peaks along the different samples.

In Fig. 1, we show the mean 1H-NMR spectra of the samples from each of
the different seasons considered. The report in supplementary material has all
the samples represented.

Fig. 1. 1H-NMR mean spectra plots for each season, obtained from the mean of the
different samples plots for each season: A - Spring season. B - Summer/autumn season.
C - Winter season.

Although the peaks seem not to vary across the different samples and, there-
fore, the seasons, the intensity of the peaks seems to slightly vary from season
to season. This could mean that, despite having the same metabolites across
samples, the concentrations of such metabolites vary from season to season.

The result for the hierarchical clustering can be observed in Fig. 2. It was
possible to group the samples according to the metadata quite well. The samples
from the autumn group were very close, except the sample from July 2011, that
was more close to the samples from May 2011 (summer/autumn) and September
2011 (spring).

On the other hand, the other three winter samples seem to be closer to the
samples from April 2011 (summer/autumn) and October 2011 (spring). Further-
more, the spring samples were also fairly well grouped, with the exception of the
already mentioned samples from April 2011 and October 2011. It is noteworthy
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Fig. 2. Dendrogram plot of the result of the hierarchical clustering, with euclidean
distance between samples. Spring samples are in black, Summer/Autumn samples in
red and Winter samples in green.

that these differences inside each season may be due to months that were hot-
ter or colder than what is usual. Finally, the summer/autumn samples were, in
general, very close to the spring samples.

The best results regarding ANOVA, i.e., the peaks whose corrected p-values
were below 0.1, are present in the Table 1. The p-values were corrected by using
the False Discovery Rate (FDR) method.

Table 1. ANOVA results for the peaks with the best corrected p-values (FDR method),
also showing the pair of samples groups that were significantly different in terms of
means for each peak.

Peaks FDR Tukey result

1.89 0.08090303 Spring-Winter; Sum/Aut-Winter; Sum/Aut-Spring

4.01 0.08090303 Spring-Winter; Sum/Aut-Winter

4.05 0.08090303 Spring-Winter; Sum/Aut-Winter

It is possible to realize that there were few peaks with low p-values. As it
could be somewhat expected by observing the dendrogram plot in Fig. 2, all
the three peaks with low p-values had means significantly different between the
groups spring and winter, and summer/autumn and winter, as they were the
group of samples that were further grouped in the dendrogram. In only one peak,
significant differences in the means were observed regarding the summer/autumn
and spring groups, as it was quite expected, due to the fact that they seemed
very close in the dendrogram plot. The identified peaks occurs in the aliphatic
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(1.89 ppm) and anomeric (4.01 and 4.05 ppm) regions of the 1H-NMR spectrum,
but, as such, do not allow further metabolite identification.

Finally, the results regarding the PCA analysis, present in Figs. 3 and 4,
showed that the first principal component is able to explain more than 20% of
the data variability, thus allowing to distinguish the groups winter and spring
from summer/autumn. The next two components are able to explain, each one,
more than 10% of the data variability, leading to an accumulative explanation
of more than 50% of the data variability. The second component seems to be
able to distinguish the groups spring and summer/autumn from winter, and the
third component the groups winter and summer/autumn from spring.

Fig. 3. PCA results.

Fig. 4. Screeplot of the PCA results.
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4 Conclusions

All the results showed that it is possible to distinguish the banana’s peel
metabolic composition according to the seasons, mostly due to the peak intensity.
This distinction is more noticeable in the winter and summer/autumn groups, as
were the ones that were better grouped in the cluster analysis and showed more
significant differences in means regarding the ANOVA analysis. Furthermore, the
PCA analysis revealed that it is only necessary 3 principal components to explain
more than 50% of the data variability. This shows that the different conditions
of the seasons can influence the composition of the banana’s peel, addressing the
need of further studies as ones aims at to explore the potential of banana peel as
source of bioactive compounds of interest of health and cosmetics industries, for
instance. The NMR-based metabolomic analytical strategy herein shown seems
to be capable of identifying the chemical heterogeneity of banana peels over the
harvest seasons, allowing obtaining standardized extracts for further industrial
applications.
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