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PREFACE 
 
 
In this book, the electron–phonon interactions in the charged molecular 

systems such as polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes are discussed. We estimated the electron–phonon coupling 
constants and the frequencies of the vibronic active modes playing an essential 
role in the electron–phonon interactions in order to discuss how CH–CF, CC–BN, 
and CC–CN substitutions are closely related to the essential characteristics of the 
electron–phonon interactions in these molecules by comparing the calculated 
results for charged polyacenes with those for charged B, N-substituted polyacenes 
and polycyanodienes, respectively. The C–C stretching modes around 1500 cm-

1strongly couple to the highest occupied molecular orbitals (HOMO), and the 
lowest frequency modes and the C–C stretching modes around 1500 cm–1 strongly 
couple to the lowest unoccupied molecular orbitals (LUMO) in polyacenes. The 
C–C stretching modes around 1500 cm -1strongly couple to the HOMO and 
LUMO in polyfluoroacenes. The B–N stretching modes around 1500 cm -1 

strongly couple to the HOMO and LUMO in B, N-substituted polyacenes. The C–
C and C–N stretching modes around 1500 cm-1 strongly couple to the HOMO and 
LUMO in polycyanodienes. The total electron–phonon coupling constants for the 
monocations (lHOMO) and monoanions ( lLUMO ) decrease with an increase in 
molecular size in polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes. In general, we can expect that monocations and monoanions, in 
which number of carriers per atom is larger, affords larger value. The CH–CF, 
CC–BN, and CC–CN atomic substitutions are effective way to seek for larger 
lHOMO values, and the CH–CF and CC–CN atomic substitutions are effective way 
to seek for larger lLUMO values in polyacenes. The logarithmically averaged 
phonon frequencies (ωln ) which measure the frequencies of the vibronic active 
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modes playing an essential role in the electron–phonon interactions for the 
monocations (ωln,HOMO ) and monoanions (ωln,LUMO ) in polyacenes, 
polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes are 
investigated. The ω ln,HOMO values decrease with an increase in molecular size in 
polyacenes, polyfluoroacenes, and polycyanodienes, and the ωln,LUMO  values 
decrease with an increase in molecular size in polyacenes, polyfluoroacenes, B, 
N-substituted polyacenes, and polycyanodienes. We can expect that in the 
hydrocarbon molecular systems, the ωln  values would basically decrease by 
substituting hydrogen atoms by heavier atoms. This can be understood from the 
fact that the frequencies of all vibronic active modes in polyacenes downshift by 
H–F substitution. However, considering that the ωln  value for the LUMO rather 
localized on carbon atoms in large sized polyfluoroacenes becomes larger by H–F 
substitution, we can expect that the ωln  value for a molecular orbital localized on 
carbon atoms has a possibility to increase by substituting hydrogen atoms by 
heavier atoms if the phase patterns of the molecular orbital do not significantly 
change by such atomic substitution. Therefore, the detailed properties of the 
vibrational modes and the electronic structures as well as the molecular weights 
are closely related to the frequencies of the vibronic active modes playing an 
important role in the electron–phonon interactions in the monoanions of 
polyfluoroacenes. 

 
 
 
 
 



 

 

 
 
 
 
 
 
 

Chapter I 
 
 
 

INTRODUCTION 
 
 
In modern physics and chemistry, the effects of vibronic interactions [1] and 

electron–phonon interactions [1–3] in molecules and crystals have been an 
important topic. Analysis of vibronic interaction [1–3] is important for the 
prediction of electronic control of nuclear motions in degenerate electronic 
systems. Application of vibronic interaction theory covers a large variety of 
research fields such as spectroscopy,[4] instability of molecular structure, 
electrical conductivity,[5] and superconductivity.[5, 6] Vibronic interactions in 
discrete molecules can be viewed as the coupling between frontier orbitals and 
molecular vibrations, while those in solids are the coupling between free electrons 
near the Fermi level and acoustic phonons. There is a close analogy between 
them. 

Electron–phonon coupling [1–3] is the consensus mechanism for attractive 
electron–electron interactions in the Bardeen–Cooper–Schrieffer (BCS) theory of 
superconductivity.[5,6] Since Little’s proposal for a possible molecular 
superconductor based on exciton mechanism,7 the superconductivity of molecular 
systems has been extensively investigated. Although such a unique mechanism 
has not yet been established, advances in design and synthesis of molecular 
systems have yielded a lot of BEDT-TTF-type organic superconductors, [8, 9] 
where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene. An inverse isotope 
effect due to substituting hydrogen by deuterium in organic superconductivity was 
observed by Saito et al.[10] Goddard et al. proposed that the mechanism for 
superconductivity of BEDT–TTF type organic molecules involves the coupling of 
charge transfer to the boat deformation mode.[11] It was found that the alkali-
doped A3C60 complexes [12] exhibit superconducting transition temperatures (Tcs) 
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of more than 30 K (Ref. [13]) and 40 K under pressure.[14] In superconductivity 
in alkali-doped fullerenes,15 pure intramolecular Raman-active modes have been 
suggested to be important in a BCS-type [6] strong coupling scenario. 

It was proposed that the electron–phonon interactions dominate the charge 
transport in the crystals of naphthalene (C10H8) (2a), anthracene (3a), tetracene 
(4a), and pentacene (5a).[16–18] Interestingly, from a theoretical viewpoint, 
possible superconductivity of polyacene has been proposed.[19,20] Saito et 
al.[10] observed an inverse isotope effect due to substituting hydrogen by 
deuterium in organic superconductivity. It is important to consider how 
intramolecular or intermolecular vibrations play a role in the occurrence of 
superconductivity. If the intermolecular vibrations are important, the phonon-
frequency dependence of the transition temperature appears in the prefactor 
through Debye frequency in the formula for the superconducting transition 
temperatures (Tcs) in the Bardeen–Cooper–Schrieffer (BCS) theory so that the 
normal isotope effects are expected. If the intramolecular vibrations are 
important, the phonon-frequency dependence appears in the denominator of the 
expression for the electron–phonon coupling constant so that the inverse isotope 
effect can be expected in some cases. From the inverse isotope effect on 
deuterium substitution observed by Saito et al.,[10] we expect that such inverse 
isotope effects can be widely observed in molecular organic superconductors. 
The origin of such inverse isotope effects in organic superconductors has not yet 
been fully elucidated. Shortly after the discovery of superconductivity in 
palladium hydrides,[21] an isotope effect in Tc was found by Stritzker and 
Buckel.[22] The Tc of Pd-D was higher than that of Pd-H,[23] contrary to the 
expectations from a simple BCS theory After that, an even larger inverse 
isotope effect for Pd-T was measured by Schirber et al.[24] 

In previous work, we have analyzed the vibronic interactions and estimated 
possible Tcs in the monocations of polyacenes based on the hypothesis that the 
vibronic interactions between the intramolecular vibrations and the highest 
occupied molecular orbitals (HOMO) play an essential role in the occurrence of 
superconductivity in positively charged nanosized molecular systems.[25] On 
the basis of an experimental study of ionization spectra using the high-
resolution gas-phase photoelectron spectroscopy, the electron–phonon 
interactions in the positively charged polyacenes were well studied recently.[26] 
Our predicted frequencies for the vibrational modes which play an essential role 
in the electron–phonon interactions [25] as well as the predicted total electron–
phonon coupling constants [25] are in excellent agreement with those obtained 
from the experimental research.[26] 
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In this book, we discuss the electron–phonon interactions in the charged 
molecular systems such as polyacenes such as C6H6 (1a), C10H8 (2a), C14H10 
(3a), C18H12 (4a), and C22H14 (5a),[25] polyfluoroacenes such as C6F6 (1fa), 
C10F8 (2fa), C14F10 (3fa), C18F12 (4fa), and C22F14 (5fa),[27] B, N-substituted 
polyacenes such as B3N3H6 (1bn), B5N5H8 (2bn), B7N7H10 (3bn),[28] and 
polycyanodienes such as C4N2H6 (1cn), C6N4H8 (2cn), C8N6H10 (3cn), and 
C10N8H12 (4cn)[29] (Scheme 1). We will estimate the electron–phonon coupling 
constants and the frequencies of the vibronic active modes playing an essential 
role in the electron–phonon interactions. These physical values are essential to 
discuss the several physical phenomena such as intramolecular electrical 
conductivity, intermolecular charge transfer, attractive electron–electron 
interactions and Bose–Einstein condensation, and superconductivity, which will 
be discussed in detail in the next review article. 

Motivated by the possible inverse isotope effects in Pd-H, Pd-D, and Pd-T 
superconductivity [21–24] and organic superconductivity observed by Saito et 
al.,[10] we discuss how the H–F substitution are closely related to the essential 
characteristics of the electron–phonon interactions in these molecules by 
comparing the calculated results for charged polyacenes with those for charged 
polyfluoroacenes, since fluorine atoms are much heavier than D and T atoms, and 
the phase patterns of the frontier orbitals such as the HOMO and LUMO are not 
expected to be significantly changed. Furthermore, we discuss how C–BN and C–
N substitutions are closely related to the essential characteristics of the electron–
phonon interactions in these molecules by comparing the calculated results for 
charged polyacenes with those for charged B, N-substituted polyacenes and 
polycyanodienes, respectively. We can expect that the characteristics of electron–
phonon interactions are significantly changed by such atomic substitutions 
because of electronegativity perturbation30 in polyacenes. These physical values 
are essential to discuss the several physical phenomena such as intramolecular 
electrical conductivity, intermolecular charge transfer, attractive electron–electron 
interactions and Bose–Einstein condensation, and superconductivity, which will 
be discussed in detail in the next review article. 



 

 

 
 
 
 
 
 

Chapter II 
 
 
 

THEORETICAL BACKGROUND 
 
 
We describe the theoretical background for the vibronic coupling in 

polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. 
We will use small letters for “one-electron orbital symmetries” and capital letters 
for symmetries of both “electronic” and “vibrational” states, as usual. The 
vibronic matrix element, Exy r,Q( ) ,[1–3] is given by  

 

Exy r,Q( ) = εxy r,Q( ) – ε xy r,0( )
=

∂εxy
∂Qα

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

α
∑

0
Qα +

1
2

∂2εxy
∂Qα ∂Qβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α ,β
∑

0

Qα Qβ

 (1) 
 

where ε xy r,Q( ) is defined as 

 
ε xy r,Q( )= φx h r,Q( )φ y  (2) 
 
Here, h r,Q( )  is the Hamiltonian of one-electron orbital energy, and φ x  and φ y  

are one-electron wave functions. r  and Q  signify the whole set of coordinates of 
the electrons and nuclei, respectively. What we see in the first term on the right-
hand side of Eq. (1) is the linear orbital vibronic coupling constant.  

We discuss a theoretical background for the orbital vibronic interactions in 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. 
The potential energy for the neutral ground state, negatively and positively 
charged electronic states in polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes are shown in Figure 1. Here, we take a one-
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electron approximation into account; the vibronic coupling constants of the 
vibrational modes to the electronic states in the monoanions and cations of 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes 
are defined as a sum of orbital vibronic coupling constants from all the occupied 
orbitals, [1(a)] 

 

gelectronic state = gi
i

occupied
∑

. (3) 

εm HOMO(1)
E2g( ) ε m HOMO 2( )

E2g( )

QE2gεm

ε ε

ε

QAgm

εm HOMO
Ag( )

εm HOMO 1( )
A1g( ) εm HOMO 2( )

A1g( )

QA1gm

ε εm HOMO 1( )
A1g( ) εm HOMO 2( )

A1g( )

QA1gm

(b) The monocations of 1a, 1fa, and 1bn

(c) The monocations of D2h symmetric polyacenes, polyfluoroacenes, and polycyanodienes, an
C2v symmetric B, N-substituted polyacenes

(a) Ground states in neutral polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes

 

Figure 1. Potential energy for the neutral ground state and positively charged electronic 
states in polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. 
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Considering the one-electron approximation and that the first derivatives of 
the total energy vanish in the ground state at the equilibrium structure in neutral 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes 

(i.e., gneutral = gi
i

HOMO
∑ = 0 ) (Figure 1 (a)), and one electron must be injected into 

(removed from) the LUMO (HOMO) to generate the monoanions (monocations), 
the vibronic coupling constants of the totally symmetric vibrational modes to the 
electronic states of the monoanions and cations of polyacenes, polyfluoroacenes, 
B, N-substituted polyacenes, and polycyanodienes can be defined by Eqs. (4) and 
(5), respectively, 

 
gmonoanion ωm( )= gLUMO ω m( ), (4) 
 
gmonocation ωm( )= gHOMO ωm( ). (5) 

A. Vibronic Interactions between the Twofold Degenerate 
Frontier Orbitals and the E2g Vibrational Modes In 
Benzene 

Benzene (1a) has the twofold degenerate HOMO and LUMO due to its high D6h 
symmetry. The symmetry labels of the HOMO and LUMO are e1g and e2u, 
respectively. Now we take two approximations into account in Eq. (1). First, we 
ignore the nondiagonal matrix elements containing the quadratic vibronic 
constants; only the terms of type Qα

2  are taken into account. Second, we focus 
upon the diagonal processes; we consider the direct product of the orbital 
symmetries, which can be reduced as 

 
e1g × e1g = e2u × e2u = A1g + A2g + E2g. (6) 
 
Thus, the A1g and E2g modes can linearly couple to the e1g HOMO and e2u 

LUMO. The numbers of the A1g and E2g modes are 2 and 4, respectively. We must 
consider multimode problems, but in the limit of linear vibronic coupling we can 
treat each twofold degenerate set of modes (mode index m as shown below) 
independently.[1] 

Let us first consider the orbital vibronic coupling of the twofold degenerate 
e1g HOMO to the E2g vibrational mode. Taking two approximations mentioned 
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above and Eq. (1) into account, the two energy sheets of the e1g HOMO that can 
couple to the mth E2g vibrational mode are given in the form of Eq. (7), where 
QE2gγm  is the vibrational normal coordinate belonging to row γ  of the vibrational 

mode of the irreducible representation E2g: 
 

εmxy
E2g( ) QE2 gθm,QE2gεm( ) 

=
1
2

KE2gm
γ
∑ QE2gγm

2 δxy + e1g x  HOMO
∂h

∂QE2gγm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g y HOMO
γ
∑ QE2gγm

 
m = 1,2,. .., 4( )  (7) 

 
Here, γ  takes two vibrational states θ  and ε . The first term on the right-hand 

side of Eq. (7) is the elastic term, and 
e1g x  HOMO

∂h
∂QE2gγm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g y HOMO
 in the 

second term corresponds to the linear orbital vibronic coupling constant, which is 
a good measure of the interaction between the vibration labeled by γ  in the mth 
mode of the irreducible representation E2g and the molecular orbitals labeled by x  
and y  in the irreducible representation e1g. According to the Wigner–Eckart 
theorem, [1] we can rewrite the second term on the right-hand side of Eq. (7) 
using the Clebsch–Gordan coefficients and we obtain the vibronic coupling 
matrix1 as 

 

ε E2gm = Am
–QE2 gεm QE2gθm
QE2 gθm QE2 gεm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

, (8) 
 

where Am  corresponds to the reduced matrix element for the mth mode of 
vibration: 

 

Am = e1g  HOMO
∂h

∂QE2 gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g HOMO

 (9) 
 
Am  depends on the irreducible representation and not on rows. Using Eq. (8), 

Eq. (7) can be transformed into Eq. (10): 
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εm
E2g( ) QE2 gθm,QE2 gεm( )=

1
2

KE2gm QE2gθm
2 + QE2 gεm

2( )1 0
0 1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+ Am

–QE2g εm QE2 gθm
QE2 gθm QE2gεm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 
  (10) 
 
Now we consider one member of the twofold degenerate vibrational mode. 

For example, when we consider only the QE2gεm  mode (QE2gθm = 0 ), the energy 

sheets of the molecular orbital in row ε  of the mth mode become 
 

εm
E2g( ) QE2gεm( )=

1
2

KE2gmQE2gεm
2 1 0

0 1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+ Am

–QE2gεm 0
0 QE2gεm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (11) 
 
This has already been diagonalized, and the energy sheets of the molecular 

orbital (HOMO (1) and HOMO (2)) in row ε  cut by the plane QE2gθm = 0  become 

 

εm  HOMO 1( )
E2g( ) QE2gεm( )=

1
2

KE2gmQE2 gεm
2 + AmQE2gεm  (12) 

 
and 

εm  HOMO 2( )
E2g( ) QE2 gεm( )=

1
2

KE2gmQE2gεm
2 – AmQE2gεm  (13) 

 
QE2gθm = 0 . (14) 
 
These are illustrated in Figure 1. Only the cases where the quadratic vibronic 

constants are positive are shown as examples here. We see from this illustration 
that the E2g modes lift the degeneracy of the twofold degenerate orbitals. The 
dimensionless diagonal linear orbital vibronic coupling constants of the e1g 
HOMO for its mth mode is defined by Eq. (15). 

 

  

ge1g  HOMO ωm( )=
1
Oωm

e1g  HOMO
∂h

∂qE2 gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g  HOMO

 (15) 
 
In these equations, qE2gm  is the dimensionless normal coordinate [31] defined 

by 
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qE2gm = ωm /OQE2 gm  (16) 
 
Similar discussions can be made in the vibronic interactions between the E2g 

modes and the e2u LUMO, and the dimensionless diagonal linear orbital vibronic 
coupling constants of the e2u LUMO for the mth mode is defined by 

 

  

ge2u  LUMO ωm( )=
1
Oωm

e2u  LUMO
∂h

∂qE2 gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e2u  LUMO

 (17) 

B. Vibronic Interactions between the Twofold Degenerate 
Frontier Orbitals and the A1g Vibrational Modes in 
Benzene 

In this case, the two energy sheets of the molecular orbitals are given in the form: 
 

εm
A1g( ) QA1gm( )=

1
2

KA1gmQA1gm
2 1 0

0 1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+ Bm

QA1gm 0
0 QA1 gm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (18) 
 

where Bm  corresponds to the reduced matrix element written as 
 

Bm = e1g HOMO
∂h

∂QA1gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g  HOMO

 (19) 
 
This has already been diagonalized, and the energy sheets of the molecular 

orbital (HOMO (1) and HOMO (2)) become 
 

εm  HOMO 1( )
A1g( ) QA1gm( )= εm HOMO 2( )

A1g( ) QA1gm( )=
1
2

KA1gmQA1gm
2 + BmQA1 gm

 (20) 
 
These are illustrated in Figure 1. We can see from this illustration that the A1g 

modes do not lift the degeneracy of the twofold degenerate orbitals. The 
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dimensionless diagonal linear orbital vibronic coupling constants of the e1g 
HOMO for its mth mode is defined by Eq. (21), 

 

  

ge1g  HOMO ωm( )=
1
Oωm

e1g  HOMO
∂h

∂qA1gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g  HOMO

 (21) 
 
In this equation, qA1gm  is the dimensionless normal coordinate [31] of the mth 

mode defined by using the normal coordinate QA1 gm  as 

 

  
qA1gm = ω m /OQA1gm  (22) 
 
In a similar way, the dimensionless diagonal linear orbital vibronic coupling 

constants of the e2u LUMO for the mth mode is defined by Eq. (23),  
 

  

ge2u  LUMO ωm( )=
1
Oωm

e2u  LUMO
∂h

∂qA1gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e2u LUMO

 (23) 

C. Vibronic Interactions between the Nondegenerate 
Frontier Orbitals and the Ag Vibrational Modes in 
Polyacenes 

Let us look into orbital vibronic coupling in polyacenes that have D2h geometries, 
and the nondegenerate HOMOs and LUMOs, the symmetry labels of the HOMOs 
(LUMOs) of 2a, 4a, and 6a being au (b1g) and those of 3a and 5a being b2g (b3u). 
Thus, the direct product of the HOMOs (LUMOs) symmetries can be reduced as 

 
au × au = b2g × b2g = b1g × b1g = b3u × b3u = Ag  (24) 
 
Therefore, the totally symmetric Ag modes of vibration couple to the HOMOs 

(LUMOs). The numbers of the Ag vibrational modes are 9, 12, 15, 18, and 21 for 
2a, 3a, 4a, 5a, and 6a, respectively. The symmetry labels of nondegenerate 
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frontier orbitals of these polyacenes are abbreviated as “a” in the following 
discussion. 

The energy sheet of the HOMO is given in the form: 
 

εm  HOMO
Ag( ) QAgm( )=

1
2

KAgmQAgm
2 + CmQAgm  (25) 

 
where Cm  corresponds to the reduced matrix element written as 

 

Cm = a HOMO
∂h

∂QAgm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

a HOMO

 (26) 
 
This is illustrated in Figure 1. The dimensionless diagonal linear orbital 

vibronic coupling constants of the HOMO for its mth mode is defined by Eq. (27), 
 

  

ga HOMO ωm( )=
1
Oω m

a HOMO
∂h

∂qAgm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

a HOMO

 (27) 
 
In this equation, qAgm  is the dimensionless normal coordinate [31] of the mth 

mode defined by using the normal coordinate QAgm  as 

 

  
qAgm = ωm /OQAgm  (28) 
 
In a similar way, the dimensionless diagonal linear orbital vibronic coupling 

constant of the LUMO for the mth Ag mode is defined by Eq. (29), 
 

  

ga LUMO ωm( )=
1
Oω m

a LUMO
∂h

∂qAgm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

a LUMO

 (29) 
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D. Vibronic Interactions in Polyfluoroacenes, B, N-
Substituted Polyacenes, and Polycyanodienes 

Similar discussions can be made in the monocations and anions of 
polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. The 
numbers of vibronic active modes are 6, 9, 12, 15, 18, and 21 for 1fa, 2fa, 3fa, 4fa, 
5fa, and 6fa, respectively, those are 11, 17, and 23 for 1bn, 2bn, and 3bn, 
respectively, and those are 5, 7, 9, and 11 for 1cn, 2cn, 3cn, and 4cn, respectively. 





 

 

 
 
 
 
 
 
Chapter III 
 
 
 

ELECTRON–PHONON COUPLING CONSTANTS 
FOR THE CHARGED ELECTRONIC STATES 

OF POLYACENES, POLYFLUOROACENES, B,  
N-SUBSTITUTED POLYACENES, AND 

POLYCYANODIENES 
 
 
Let us next discuss the total electron–phonon coupling constants (ltotal ) in the 

monocation and monoanion crystals. Since the ltotal  is the sum of the electron–
phonon coupling constants originating from both intramolecular vibrations (lintra ) 
and intermolecular vibrations (linter ), the ltotal  is defined as 

 
ltotal = lintra + linter . (30) 
 
However, it should be noted that the intramolecular orbital interactions are 

much stronger than the intermolecular orbital interactions. Therefore, it is 
rational that the lintra  values are much larger than the linter  values in molecular 
systems. In fact, it is considered by several researchers that the contribution 
from the intramolecular modes in molecular systems is decisive in the pairing 
process in the superconductivity in doped C60. [15,32] For example, it was 
reported that the lintra  values are much larger than the linter  values in K3C60 and 
Rb3C60 ( lintra ≥ 10linter ). [32] Furthermore, it has also been shown from a neutron-
scattering investigation [33] that the electron–libration intramolecular-mode 
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coupling is small in alkali-metal-doped C60. Therefore, we consider only 
intramolecular electron–phonon coupling in this study. The ltotal  value for the 
charged and excited electronic states can be defined as 

 
ltotal ≈ lintra = lLUMO  (for the electronic state of the monoanion), 
 (31) 
 
= lHOMO (for the electronic state of the monocation), 
 (32) 
 
In the previous section, the vibronic interactions in free polyacenes, 

polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes were 
discussed. We can derive the ltotal  by using the vibronic coupling constants 
defined in the previous section as follows. As described above, since polyacenes, 
polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes would 
consist of strongly bonded molecules arranged on a lattice with weak van der 
Waals intermolecular bonds, we can derive the dimensionless electron–phonon 
coupling constant λ  in a similar way as in theory in previous research. [15,25,27–
29] We use a standard expression for λ , [15,25,27–29] 

 
λ =

2
N 0( )

1
2ωm ,q

2
k,k ′
∑

m ,q
∑ hk ,k′ m,q( )2

δ Ek( )δ Ek′( )
, (33) 

 
where ωm ,q  is the vibrational frequency for the mth phonon mode of wave 
vector q ; hk,k ′  is the corresponding electron–phonon matrix element between 
the electronic states of wave vectors k  and k ′ ; Ek  and Ek ′  are the corresponding 
energies measured from the Fermi level (original point in Figure 1 (b)) of 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes; N 0( )  is the total density of states (DOS) at the Fermi level per 
spin. The charged electronic states in polyacenes, polyfluoroacenes, B, N-
substituted polyacenes, and polycyanodienes are essentially composed of the 
charged electronic states at the equilibrium structures of the ground states in 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes and we can write in the form of Bloch sum: 

 
ψ k( ) =

1
N

c k( )
R
∑ eikRφ R

 (34) 
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where R  denotes the cell position; N  is the number of molecules in the crystal; φ R  
is wave function which denotes the charged electronic states at the equilibrium 
structures of the ground state of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes at the cell position R . If we neglect the 
intermolecular electron–lattice coupling, hk,k ′  can be reduced to 

 

hk,k ′ m,q( ) = ψ k( )h ψ k′( )
=

1
N

c *
R
∑ k( )c k ′( )ei k–k ′( )RhR,R m,q( )

 (35) 
 

where hR,R  is the intramolecular coupling matrix and  
 
hR,R m,q( ) = φR h φ R  (36) 
 
For the one-phonon mode with wave vector q , this term takes the following 

form: 
 
hR,R m,q( ) = 1 / N( )eiqRh00m  (37) 
 
We insert Eq. (37) in Eq. (35) taking the condition k ′ = k – q into account to 

get 
 
hkk–q =

1
N

h00mc * k( )c k – q( )
 (38) 

 
We now proceed to calculate λ  by inserting Eq. (38) in Eq. (33) considering 

that ωm ,q  is independent of q . We then obtain 
 

λ =
2

N 0( )
1

2ωm,q
2

m
∑

k ,k–q
∑ h00mh00m *

N
c * k( )c k( )c * k – q( )c k – q( )δ Ek( )δ Ek–q( )

 (39) 
 
The partial DOS per molecule at the Fermi level of polyacenes, 

polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes, n 0( ) can be 
rewritten as 
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n 0( ) = 1 / N( ) c * k( )c k( )
k
∑ δ Ek( )

 (40) 
 
We can derive Eq. (41) from Eqs. (39) and (40) using n 0( ) = N 0( ) / N , 
 
λ =

2
n 0( )

1
2ωm

2
m
∑ h00mh00m * n 0( )2

 (41) 
 

where n 0( ) is now the DOS per spin and per molecule.  

A. Twofold Degenerate Electronic States of The 
Monocations of Monoanions of Benzene, 
Hexafluorobenzene, and Borazine 

Here, for example, let us consider twofold degenerate electronic states such as the 
monocation of benzene, In such a case, we can assume that nνν′ 0( ) =

1
2

n 0( )δνν′
, λ  

takes the form of Eq. (42): 
 

λ =
n 0( )

4
h00m

2

ω m
2

m
∑

 (42) 
where  
 

h00m = hE2gm ′  (43) 
 
Here hE2gm ′  is the derivative matrix of the vibronic coupling matrix, hE2gm , 

derived by Eq. (45) with respect to the mode amplitude, QE2gγm , as 

 

hE2gm ′ =
∂

∂QE2gγm
Am

–QE2gεm QE2gθm
QE2gθm QE2gεm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

∂
∂QE2gγm

hE2gm
 (44) 

 
where 
 

hE2gm = Am
–QE2 gεm QE2 gθm
QE2 gθm QE2 gεm

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (45) 
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and Am  is the reduced matrix element and is the slope in the original point (i.e., 
equilibrium structures of the ground states of 1a (QE2gεm = QE2 gθm = 0 )) on the 

potential energy surface of the charged electronic state along each vibrational 
mode (Figure 1 (b)), and is defined as 

 

Am = e1g  HOMO
∂h

∂QE2 gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

e1g HOMO

 (46) 
 
Since h00m

2 = 4 Am
2 , one can rewrite Eq. (42) as 

 

λ = n 0( ) Am
2

ωm
2

m
∑

 (47) 
 
Using Eqs. (15) and (32), and after some simple transformations, we finally 

get the relation between the nondimensional electron–phonon coupling constant 
λ , and the intramolecular vibronic coupling constant, ge1g  HOMO ωm( ), as 

 
λ = λ m

m
∑

, λ m = n 0( )le1g  HOMO ωm( ), (48) 

where le1g HOMO ωm( ) is the electron–phonon coupling constant defined as 

 

  
le1g HOMO ωm( )= ge1g  HOMO

2 ωm( )Oωm , (m = 1,2,3,4 ). (49) 
 
In a similar way, the le1g HOMO ωm( ) for the A1g vibronic active modes can be 

defined as 
 

  
le1g HOMO ωm( )=

1
2

ge1g HOMO
2 ωm( )Oωm , (m = 5,6 ). (50) 

 
In a similar way, le2 u LUMO ωm( ) for the monoanion of benzene can be defined 

as 
 

  
le2 u LUMO ωm( )= ge2u  LUMO

2 ωm( )Oωm , (m = 1,2,3,4 ). (51) 
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le2u LUMO ωm( )=

1
2

ge2u LUMO
2 ω m( )Oω m , (m = 5,6 ). (52) 

 
Similar discussions can be made in the monocations and monoanions of 1fa 

and 1bn.  

B. Nondegenerate Electronic Systems of Polyacenes, 
Polyfluoroacenes, B, N-Substituted Polyacenes, and 
Polycyanodienes 

In a similar way, by using Eq. (41), the lHOMO ωm( ) and lLUMO ωm( ) for the 
nondegenerate electronic states in the monocations and monoanions of 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes 
can be defined as 

 

  lHOMO ωm( )= gHOMO
2 ωm( )Oω m , (53) 

 

  lLUMO ωm( )= gLUMO
2 ω m( )Oω m . (54) 



 

 

 
 
 
 
 
 

Chapter IV 
 
 
 

OPTIMIZED STRUCTURES 

A. Benzene and Polyacenes 

The structures of neutral 1a and polyacenes were optimized under D6h and D2h 
symmetries, respectively, using the hybrid Hartree–Fock (HF)/density-functional-
theory (DFT) method of Becke [34] and Lee, Yang, and Parr [35] (B3LYP) and 
the 6-31G* basis set. [36] GAUSSIAN 98 program package [37] was used for our 
theoretical analyses. This level of theory is, in our experience, sufficient for 
reasonable descriptions of the geometric, electronic, and vibrational structures of 
hydrocarbons. An optimized D6h structure of 1a and D2h structures of polyacenes 
are shown in Figure 2. These structures were confirmed to be a minimum on each 
potential energy surface from vibrational analyses. We can see that in the D6h 
structure of 1a there is no bond alternation and all C–C bond lengths are 
approximately 1.4 Å. In the D2h structure of 2a, there is a distinct variation in the 
C–C distances. This result can be understood in view of the orbital patterns of the 
HOMO. Selected vibronic active modes and the phase patterns of the HOMOs 
and LUMOs of the neutral molecules under consideration are shown in Figure 3. 
We can see from this figure that the atomic orbitals between two neighboring C2a 
and C3a atoms are combined in phase and thus form a strong π-bonding in the 
HOMO of 2a. On the other hand, the HOMO contributes nonbonding interactions 
between C1a and C1b atoms and between C1a and C2a atoms, and an antibonding 
interaction between C3a and C3b atoms. This is the reason why the C2a–C3a bond is 
much shorter (1.377 Å) than any other C–C bond (1.417–1.434 Å). Similar 
discussions can be made in 3a, 4a, 5a, and 6a; the C–C bond distances between 
two neighboring carbon atoms whose atomic orbitals are combined in phase (out 
of phase) are short (long). 
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Figure 2. Optimized structures of the neutral polyacenes, polyfluoroacenes, B, N-
substituted polyacenes, and polycyanodienes. 
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B. Polyfluoroacenes 

Hexafluorobenzene (C6F6) (1fa) has been well studied for a long time. [38–
53] 1a and 1fa have nearly the same polarizations and polarizability anisotropies. 
[50] As well as being similar in molecular geometry and shape, 1a and 1fa have 
similar physical properties. [51] Their electric quadruple moments are roughly 
equal in magnitude but opposite in sign. [52,53] In recent review, [54] the study 
of Jahn–Teller and pseudo-Jahn–Teller effects in various molecular systems 
including the monoanion [55] and cation [56,57] of 1fa are well summarized. 

The structures of neutral 1fa was optimized under D6h symmetry, and 2fa, 
3fa, 4fa, and 5fa were optimized under D2h symmetry. According to our 
calculations, the energy differences between the HOMO and LUMO of 1fa, 
2fa, 3fa, 4fa, and 5fa are 6.52, 4.56, 3.35, 2.57, and 2.03 eV, respectively, and 
those of 1a, 2a, 3a, 4a, and 5a are 6.80, 4.83, 3.59, 2.78, and 2.21 eV, 
respectively. Therefore, the HOMO–LUMO gaps in polyfluoroacenes are 
slightly smaller than those in polyacenes. This can be understood in view of 
the orbital patterns of the HOMO and LUMO in these molecules. We can see 
from Figure 3 that the phase patterns of the LUMO of polyfluoroacenes are 
not significantly different from those of polyacenes. The phase patterns of the 
LUMO in carbon framework of polyfluoroacenes are similar to those of 
polyacenes in that the LUMO of polyfluoroacenes is rather localized on 
carbon framework and the electron density on fluorine atoms is low, and the 
LUMO of polyacenes is completely localized on carbon atoms. The phase 
patterns of the HOMO in carbon framework of polyfluoroacenes are also 
similar to those of polyacenes. However, the HOMO of polyfluoroacenes is 
delocalized and the electron density on fluorine atoms is not small, while the 
HOMO of polyacenes is completely localized on carbon atoms. The atomic 
orbitals between two neighboring carbon and fluorine atoms are combined out 
of phase in the HOMO in polyfluoroacenes. Therefore, the HOMO is slightly 
destabilized in energy measured from the LUMO in polyfluoroacenes by H–F 
substitution. This is the reason why the energy difference between the HOMO 
and LUMO in polyfluoroacenes is slightly smaller than that in polyacenes. 

Let us look into optimized structures of polyfluoroacenes. We can see 
from Figure 2 that the calculated C–C distances in 1fa are 1.394 Å. There is a 
distinct variation in the C–C distances in polyfluoroacenes. This result is 
reasonable in view of the HOMOs.The C–C distances between two 
neighboring carbon atoms whose atomic orbitals are combined in phase (out  
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Figure 3. The phase patterns of the HOMO and LUMO and selected vibronic active modes 
in polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. 
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of phase) in the HOMOs of polyfluoroacenes are short (long). It should be 
noted that the C–C distances in polyfluoroacenes are similar to those in 
polyacenes; most of the C–C bond lengths differences between polyacenes and 
polyfluoroacenes are smaller than 0.003 Å. Only the d4 value difference 
between 2a and 2fa, d5 value difference between 3a and 3fa, d7 value 
difference between 4a and 4fa, and d8 value difference between 5a and 5fa are 
somewhat large (0.007–0.009 Å). Therefore, carbon framework structures in 
polyfluoroacenes are not significantly different from those in polyacenes as a 
consequence of H–F substitution. 

C. B, N-Substituted Polyacenes 

Substitution of carbon with boron and nitrogen have been carried out, 
producing totally substituted boron nitride nanotubes (BN-NTs). [58] Many 
researchers have studied and compared the structure of these new boron–nitrogen-
containing fullerenes and nanotubes with that of carbon nanotubes (C-NTs). [59–
73] A large number of molecular boron–nitrogen compounds have been prepared. 
[74–79] Because borazine (B3N3H6) (1bn) is both isoelectronic and isosteric with 
1a, it is a very interesting compound. Stock and Pohland [80] first reported 
formation of borazine 1bn from the thermolysis (200 ˚C) of the addition complex 
[H2B(NH2)2

+][BH4
–], [81] formulated in 1926 as B2N6·2NH3. Laubengayer and co-

workers [82] studied the gas-phase pyrolysis of 1bn in greater detail, and they 
proposed the intermediate formation of a naphthalene analogue, B5N5H8 (2bn). 

The structure of neutral “inorganic benzene”, B3N3H6 (1bn) was optimized 
under D3h symmetry, and “inorganic-” naphthalene (B5N5H8) (2bn) and 
anthracene (B7N7H10) (3bn) were optimized under C2v symmetry. According to 
our calculations, the energy difference between the HOMO and the LUMO of 
1bn (8.27 eV) is larger than that of 1a (6.80 eV). Furthermore, that of 2bn 
(7.12 eV) is larger than that of 2a (4.83 eV), and that of 3bn (6.68 eV) is 
larger than that of 3a (3.59 eV). This can be understood as follows. The 
degenerate 1a levels have not been split apart in energy but the HOMO 
contains more nitrogen character than boron character while opposite is true 
for the LUMO.[30] This is a result clearly in keeping with an electronegativity 
perturbation on 1a. [30] Due to the electronegativity perturbation, the HOMO 
(LUMO) of 1bn is stabilized (destabilized) in energy with respect to the 
HOMO (LUMO) of 1a. This is the reason why the HOMO–LUMO gap is 
larger in 1bn than in 1a. Similar discussions can be made in 2bn and 3bn. Let 
us next look into optimized structure of 1bn. We can see from Figure 2 that 
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the calculated B–N, B–H, and N–H distances in 1bn are 1.431, 1.200, and 
1.010 Å, respectively, and those determined from experimental method [83] 
are 1.44, 1.20, and 1.02 Å, respectively. Therefore, the structure optimized at 
the B3LYP/6-31G* level of theory is in excellent agreement with that 
determined from the experimental method. There is a distinct variation in the 
B–N distances in 2bn and 3bn. This result is reasonable in view of the 
HOMOs shown in Figure 3. The B–N distances between two neighboring B 
and N atoms whose atomic orbitals are combined in phase (out of phase) in 
the HOMOs of 2bn and 3bn are short (long). It should be noted that the B–N 
distance (1.431 Å) in 1bn is larger than the C–C distance (1.397 Å) in 1a, but 
smaller than the B–N single bond distance (1.60 Å). Therefore, it can be said 
that each B–N bond in 1bn acquires double bond character. Similar discussion 
can be made in 2bn and 3bn; all B–N bonds in 2bn and 3bn are longer than all 
C–C bonds in 2a and 3a, but smaller than 1.6 Å. 

D. Polycyanodienes 

We can expect that in the monocations of polycyanodienes, the electron–
phonon interactions become much stronger than in the monocations of polyacenes 
because the strong σ-orbital interactions as well as the π-orbital interactions 
between two neighboring atoms in the HOMO are significant, [84] and because 
the HOMO is delocalized and the electron density on hydrogen atoms as well as 
on carbon and nitrogen atoms is high in the HOMO of polycyanodienes. We call 
this system “σ-conjugated momocations”. 

The structures of polycyanodienes were optimized under D2h symmetry. 
According to our calculations, the energy differences between the HOMO and 
LUMO of 1cn, 2cn, 3cn, and 4cn are 5.16, 3.97, 3.19, and 2.68 eV, 
respectively. Therefore, the HOMO–LUMO gaps in polycyanodienes are 
slightly smaller than those in polyacenes. 

 



 

 

 
 
 
 
 
 

Chapter V 
 
 
 

ELECTRON–PHONON COUPLING CONSTANTS 

A. The Monocations and Monoanions of Benzene and 
Polyacenes 

We next carried out vibrational analyses of 1a and polyacenes at the 
B3LYP/6-31G* level. Agreement with experiment is excellent for the 
vibrational frequencies, calculated wave numbers of 1a being accurate within 
a range of 2.5–4 %. Since the conventional Hartree–Fock method 
overestimates molecular vibrational frequencies by typically 10 %, this hybrid 
DFT method appears to be very useful for vibrational analyses. We next 
calculated first-order derivatives at this equilibrium structure on each orbital 
energy surface by distorting the molecule along the A1g and E2g modes of 1a 
and the Ag modes of polyacenes. In these calculations, the step size of the 
normal-mode displacements was taken to be in the order of 10–1. What we 
obtained from the first-order derivatives are the dimensionless diagonal linear 
orbital vibronic coupling constants gHOMO ωm( ) and gLUMO ωm( ). We can 
estimate the electron–phonon coupling constants lHOMO ωm( ) and lLUMO ωm( ) 
from the dimensionless diagonal linear orbital vibronic coupling constants by 
using Eqs. (49)–(54). The calculated electron–phonon coupling constants in 
the monocatins and anions of 1a and polyacenes are shown in Figures 4 and 5, 
respectively. 

Let us next take a look at the electron–phonon coupling of the A1g and E2g 
vibrational modes to the e1g HOMO in 1a. E2g modes of 1a are classified into a 
C–C–C in-plane bending (622 cm–1), a C–H in-plane bending (1208 cm–1), a 
C–C stretching (1656 cm–1), and a C–H stretching (3184 cm–1). Figure 4 
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demonstrates that the E2g vibrational modes of 622 and 1656 cm–1 strongly 
couple to the e1g HOMO in 1a. This can be understood in view of the orbital 
patterns of the e2u LUMO and vibrational modes of 1a. When 1a is distorted 
along this E2g mode toward the direction as shown in Figure 3, the antibonding 
(bonding) interactions between C1b and C1c in the HOMO (a) (HOMO (b)) 
become strong, and the bonding interactions between C1a and C1b and between 
C1c and C1d in the HOMO (a) become weak. Therefore, the HOMO (a) 
(HOMO (b)) is significantly destabilized (stabilized) in energy. On the other 
hand, when 1a is distorted toward the opposite direction along the arrow of 
this mode, the HOMO (a) (HOMO (b)) is significantly stabilized 
(destabilized) in energy. This is the reason why the E2g mode of 1656 cm–1 
strongly couples to the e1g HOMO in 1a. Figure 4 demonstrates that the C–C 
stretching Ag modes of 1417 and 1630 cm–1 strongly couple to the HOMO in 
2a. When 2a is distorted along the Ag mode of 1417 cm–1 toward the direction 
as shown in Figure 3, the antibonding interactions between C3a and C3b in the 
HOMO become strong, and the bonding interactions between C2a and C3a and 
between C2b and C3b become weak. 

Therefore, the HOMO of 2a is significantly destabilized in energy. On the 
other hand, when 2a is distorted toward the opposite direction, the HOMO is 
significantly stabilized in energy. This is the reason why the C–C stretching Ag 
mode of 1417 cm–1 strongly couples to the HOMO. In a similar way, the C–C 
stretching Ag mode of 1630 cm–1 strongly couples to the HOMO. In the two 
frequency modes, the displacements of carbon atoms are very large compared 
with any other Ag mode of 2a, and the HOMO is completely localized on carbon 
atoms. It is rational that a frequency mode in which normal displacements are 
large for atoms where there exists considerable orbital amplitude can strongly 
couple to the molecular orbital. Identical discussions can be made in 3a, 4a, 5a, 
and 6a; the C–C stretching Ag modes around 1500 cm–1 and the lowest frequency 
Ag mode strongly couple to the HOMOs. 

Let us take a look at the electron–phonon coupling of the A1g and E2g 
vibrational modes to the e2u LUMO in 1a. We can see from Figure 5 that the E2g 
mode of 1656 cm–1 strongly couples to the e2u LUMO in 1a. This can be also 
understood in view of the phase patterns of the e2u LUMO and vibrational modes 
of 1a. Figure 5 demonstrates that the C–C stretching Ag modes of 1417 and 1630 
cm–1 strongly couple to the b1g LUMO. In the two frequency modes, the 
displacements of carbon atoms are very large compared with any other Ag mode 
of 2a, and the b1g LUMO is completely localized on carbon atoms. It is rational 
that a frequency mode in which normal displacements are large for atoms where  
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Figure 4. Electron–phonon coupling constants for the monocations of polyacenes. 

there exists considerable orbital amplitude can strongly couple to the molecular 
orbital. Identical discussions can be made in 3a, 4a, 5a, and 6a; the C–C stretching 
Ag modes around 1500 cm–1 and the lowest frequency Ag mode strongly couple to 
the LUMOs. The C–C stretching Ag modes around 1500 cm–1 strongly couple to 
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the HOMOs as well as to the LUMOs in polyacenes. But it should be noted that 
the lowest frequency modes as well as the C–C stretching modes strongly couple 
to the LUMO in polyacenes, while the only C–C stretching modes strongly couple 
to the HOMO in polyacenes. 
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Figure 5. Electron–phonon coupling constants for the monoanions of polyacenes. 
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B. Polyfluoroacenes 

1. Monocations 

We carried out vibrational analyses of polyfluoroacenes at the B3LYP/6-
31G* level of theory. There are four E2g modes in 1fa (C–C–F in-plane bending 
mode of 259 cm–1; C–C–C in-plane bending mode of 444 cm–1; C–F stretching 
mode of 1192 cm–1; C–C stretching mode of 1687 cm–1). There are four E2g 
vibrational modes in 1a (C–C–C in-plane bending mode of 622 cm–1; C–C–H in-
plane bending mode of 1208 cm–1; C–C stretching mode of 1656 cm–1; C–H 
stretching mode of 3184 cm–1). Therefore, the frequencies for the C–C–H in-plane 
bending mode (1208 cm–1) and for the C–H stretching mode (3184 cm–1) in 1a are 
much larger than those for the C–C–F in-plane bending mode (259 cm–1) and for 
the C–F stretching mode (1192 cm–1) in 1fa, respectively, as expected. 
Furthermore, the frequency for the C–C–C in-plane bending mode (622 cm–1) in 
1a is larger than that (444 cm–1) in 1fa. The frequency for the C–C stretching 
mode (1656 cm–1) in 1a is similar to that (1687 cm–1) in 1fa. 

The calculated electron–phonon coupling constants in the monocations and 
monoanions of 1fa, 2fa, 3fa, 4fa, and 5fa are shown in Figures 6 and 7, 
respectively. We can see from Figure 6 that the C–C stretching E2g mode of 1687 
cm–1 can strongly couple to the e1g HOMO in 1fa. This can be understood in view 
of the phase patterns of the HOMO in 1fa. The reduced mass for the E2g mode of 
1687 cm–1 is 12.05, and the displacements of carbon atoms are much larger than 
those of fluorine atoms in the mode. 

When 1fa is distorted along the E2g mode of 1687 cm–1 toward the same 
direction as shown in Figure 3, the antibonding (bonding) interactions between 
two neighboring carbon atoms in the HOMO (a) (HOMO (b)) become 
significantly stronger, and the bonding interactions between two neighboring 
carbon atoms in the HOMO (a) become significantly weaker, and thus the HOMO 
(a) (HOMO (b)) is significantly destabilized (stabilized) in energy by such a 
distortion. This is the reason why the E2g mode of 1687 cm–1 the most strongly 
couples to the e1g HOMO in 1fa. 
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Figure 6. Electron–phonon coupling constants for the monocations of polyfluoroacenes. 

We can see from Figure 6 that the A1g mode of 1530 cm–1 can very strongly 
couple to the e1g HOMO in 1fa. This can be understood as follows. When 1fa is 
distorted along the A1g mode of 1530 cm–1, the bonding interactions between two 
neighboring carbon atoms become significantly weaker, and the antibonding 
interactions between two neighboring carbon and fluorine atoms in the e1g HOMO 
become significantly stronger, and thus the e1g HOMO is significantly  
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Figure 7. Electron–phonon coupling constants for the monoanions of polyfluoroacenes. 

destabilized in energy by such a distortion in 1fa. This is the reason why the A1g 
mode of 1530 cm–1 can strongly couple to the e1g HOMO in 1fa. The A1g mode of 
567 cm–1 much less strongly couples to the e1g HOMO than the A1g mode of 1530 
cm–1 in 1fa. This can be understood as follows. When 1fa is distorted along the 
A1g mode of 567 cm–1, the bonding interactions between two neighboring carbon 
atoms and the antibonding interactions between two neighboring carbon and 
fluorine atoms in the e1g HOMO become weaker. Since such weakened effects of 
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bonding and antibonding interactions are compensated by each other, the e1g 
HOMO is slightly stabilized in energy by such a distortion in 1fa. This is the 
reason why the A1g mode of 567 cm–1 much less strongly couples to the e1g 
HOMO than the A1g mode of 1530 cm–1 in 1fa. 

We can see from Figure 6 that the C–C stretching Ag mode of 1666 cm–1 the 
most strongly couples to the HOMO in 2fa. This can be understood as follows. 
When 2fa is distorted along the Ag mode of 1666 cm–1, the bonding and 
antibonding interactions between two neighboring carbon atoms become 
significantly stronger and weaker, respectively, and the antibonding interactions 
between two neighboring carbon and fluorine atoms in the HOMO in 2fa become 
weaker. Therefore, the HOMO is significantly stabilized in energy by such a 
distortion in 2fa. This is the reason why the Ag mode of 1666 cm–1 can the most 
strongly couple to the HOMO in 2fa. In a similar way, the Ag modes of 514 and 
1552 cm–1 also strongly couple to the HOMO in 2fa. Similar discussions can be 
made in 3fa, 4fa, and 5fa; the low frequency mode around 500 cm–1, the high 
frequency modes around 1200 cm–1, and the frequency modes around 1600 cm–1 
afford large electron–phonon coupling constants in the monocations of 
polyfluoroacenes. 

2. Monoanions 

Let us first look into the electron–phonon interactions between the E2g 
modes and the e2u LUMO in 1fa. We can see from this figure that the C–C 
stretching E2g mode of 1687 cm–1 can strongly couple to the e2u LUMO in 1fa. 
This can be understood in view of the phase patterns of the LUMO in 1fa. When 
1fa is distorted along the E2g mode of 1687 cm–1 toward the same direction as 
shown in Figure 3, the bonding (antibonding) interactions between two 
neighboring carbon atoms in the LUMO (a) become stronger (weaker), 
therefore, the LUMO (a) is significantly stabilized in energy. In a similar way, 
the antibonding interactions between two neighboring carbon atoms in the 
LUMO (b) become stronger by such a distortion, therefore, the LUMO (b) is 
significantly destabilized in energy. This is the reason why the E2g mode of 
1687 cm–1 can strongly couple to the e2u LUMO in 1fa. In addition to this mode, 
the C–F stretching E2g mode of 1192 cm–1 can strongly couple to the e2u LUMO, 
but the E2g modes of 259 and 444 cm–1 hardly couple to it. This can be 
understood as follows. The reduced masses for the E2g modes of 1192 and 1687 
cm–1 are 13.69 and 12.05, respectively, therefore, the displacements of carbon 
atoms are much larger than those of fluorine atoms in these modes. On the other 
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hand, the reduced masses for the E2g modes of 259 and 444 cm–1 are 18.62 and 
16.08, respectively, and therefore, the displacements of fluorine atoms are more 
dominant than those of carbon atoms in these modes. Since the e2u LUMO is 
rather localized on carbon atoms, it is reasonable that a frequency mode in 
which normal displacements of carbon atoms are large (small), can strongly 
(weakly) couple to the e2u LUMO. This is the reason why the E2g modes of 1192 
and 1687 cm–1 can strongly couple to the e2u LUMO, while the E2g modes of 
259 and 444 cm–1 hardly couple to it. 

Let us next look into the electron–phonon interactions between the A1g modes 
and the e2u LUMO in 1fa. We can see from Figure 7 that the A1g mode of 567 cm–

1 much more strongly couples to the e2u LUMO than the A1g mode of 1530 cm–1 in 
1fa. This can be understood as follows. When 1fa is distorted along the A1g mode 
of 567 cm–1, the antibonding interactions between two neighboring carbon atoms, 
and between two neighboring carbon and fluorine atoms, both in the LUMO (a) 
and LUMO (b), become weaker. Therefore, both the LUMO (a) and LUMO (b) 
are significantly stabilized in energy by such a distortion. When 1fa is distorted 
along the A1g mode of 1530 cm–1, the antibonding interactions between two 
neighboring carbon atoms, and between two neighboring carbon and fluorine 
atoms, become weaker and stronger, respectively, both in the LUMO (a) and 
LUMO (b). Since such strengthened and weakened effects of antibonding 
interactions are compensated by each other, the A1g mode of 1530 cm–1 less 
strongly couples to the e2u LUMO than the A1g mode of 567 cm–1. 

Let us next look into the electron–phonon interactions between the Ag 
modes and the b1g LUMO in 2fa. We can see from Figure 7 that the C–C 
stretching Ag mode of 1402 cm–1 much more strongly couples to the LUMO 
than the other modes in 2fa. This can be understood as follows. The reduced 
mass for the Ag mode of 1402 cm–1 is 12.11, therefore, the displacements of 
carbon atoms are much larger than those of fluorine atoms in the mode. When 
2fa is distorted along the Ag mode of 1402 cm–1, the bonding (antibonding) 
interactions between two neighboring carbon atoms become stronger (weaker), 
and the antibonding interactions between two neighboring carbon and fluorine 
atoms in the LUMO become weaker. Therefore, the LUMO is significantly 
stabilized in energy by such a distortion. This is the reason why the Ag mode of 
1402 cm–1 strongly couples to the LUMO in 2fa. We can see from Figure 7 that 
the Ag modes of 1271 and 1552 cm–1 also somewhat strongly couple to the 
LUMO in 2fa. This can be understood as follows. When 2fa is distorted along 
the Ag mode of 1552 cm–1, the bonding interactions between C(3) and C(4) 
atoms, and between C(8) and C(9) atoms, become stronger, and the antibonding 
interactions between C(3) and F(12) atoms, between C(4) and F(13) atoms, 
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between C(8) and F(16) atoms, and between C(9) and F(17) atoms, in the 
LUMO, become weaker. Therefore, the LUMO is stabilized in energy by such a 
distortion. This is the reason why the Ag mode of 1552 cm–1 also somewhat 
strongly couples to the LUMO in 2fa. But it should be noted that the 
antibonding interactions between C(2) and C(3) atoms, between C(4) and C(5) 
atoms, between C(7) and C(8) atoms, and between C(9) and C(10) atoms in the 
LUMO, become slightly stronger, and thus the LUMO would be slightly 
destabilized in energy by such an effect. The destabilization effect and the 
stabilization effect described above are compensated by each other, the LUMO 
is slightly stabilized in energy by such a distortion. This is the reason why the 
Ag mode of 1552 cm–1 much less strongly couples to the LUMO than the Ag 
mode of 1402 cm–1 even though both Ag modes are C–C stretching modes and 
the reduced mass for the Ag mode of 1552 cm–1 is similar to that for the Ag mode 
of 1402 cm–1. When 2fa is distorted along the C–F stretching Ag mode of 1271 
cm–1, the antibonding interactions between C(2) and F(11) atoms, between C(5) 
and F(14) atoms, between C(7) and F(15) atoms, and between C(10) and F(18) 
atoms in the LUMO, become stronger, therefore, the LUMO is destabilized in 
energy by such a distortion. But there are not significant changes in the 
strengths of the orbital interactions between two neighboring carbon atoms in 
the mode, and thus the C–F stretching Ag mode of 1271 cm–1 much less strongly 
couples to the LUMO than the C–C stretching Ag mode of 1402 cm–1 in 2fa. 
Similar discussions can be made in 3fa, 4fa, and 5fa; the C–C stretching Ag 
modes of 1401, 1389, and 1379 cm–1 the most strongly couple to the LUMO in 
3fa, 4fa, and 5fa, respectively. 

Let us next compare the calculated results in polyfluoroacenes with those in 
polyacenes. As in case of the monoanion of 1fa, the C–C stretching E2g mode of 
1656 cm–1 affords the largest electron–phonon coupling constant (193 meV) in 
the monoanion of 1a. But it should be noted that the C–C stretching E2g mode of 
1687 cm–1 in the monoanion of 1fa affords a larger electron–phonon coupling 
constant (223 meV) than the C–C stretching E2g mode of 1656 cm–1 in the 
monoanion of 1a. This can be understood as follows. The reduced mass for the 
E2g mode of 1656 cm–1 in 1a is 5.32, and therefore, the displacements of 
hydrogen atoms as well as those of carbon atoms are large in the mode. On the 
other hand, the reduced mass for the E2g mode of 1687 cm–1 in 1fa is 12.05, and 
thus, the displacements of carbon atoms are very large and those of fluorine 
atoms are very small in the mode. The LUMO is completely localized on carbon 
atoms in 1a, and is rather localized on carbon atoms in 1fa. Therefore, it is 
rational that the E2g mode of 1687 cm–1 in 1fa in which the displacements of 
carbon atoms are larger, more strongly couples to the LUMO localized on 
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carbon atoms than the E2g mode of 1656 cm–1 in 1a in which the displacements 
of carbon atoms are smaller. 

Similar discussions can be made in 2fa, 3fa, 4fa, and 5fa; the C–C stretching 
modes afford larger electron–phonon coupling constants in the monoanions of 
2fa, 3fa, 4fa, and 5fa than in the monoanions of 2a, 3a, 4a, and 5a, respectively. 
This is because the displacements of carbon atoms in the modes are larger in 2fa, 
3fa, 4fa, and 5fa than those in 2a, 3a, 4a, and 5a, respectively, and the orbital 
patterns of the LUMO in polyacenes hardly change by H–F substitution. 

It should be noted that the C–C stretching modes around 1500 cm–1 and the 
low frequency modes, less and more, respectively, strongly couple to the LUMO 
with an increase in molecular size in polyacenes, while the low frequency modes 
as well as the C–C stretching modes around 1500 cm–1 less strongly couple to the 
LUMO with an increase in molecular size in polyfluoroacenes. 

It should be noted that the A1g mode of 567 cm–1 (1530 cm–1) much more 
(less) strongly couples to the e2u LUMO than to the e1g HOMO in 1fa. This can 
be understood as follows. When 1fa is distorted along the A1g mode of 567 cm–1, 
the antibonding interactions between two neighboring carbon atoms and 
between two neighboring carbon and fluorine atoms in the e2u LUMO in 1fa 
become significantly weaker, and thus the e2u LUMO is significantly stabilized 
in energy, while the energy level of the e1g HOMO does not significantly change 
by such a distortion because the weakened effects of bonding and antibonding 
interactions are compensated by each other, as described above. This is the 
reason why the A1g mode of 567 cm–1 much more strongly couples to the e2u 
LUMO than to the e1g HOMO in 1fa. When 1fa is distorted along the A1g mode 
of 1530 cm–1, the antibonding interactions between two neighboring carbon 
atoms and between two neighboring carbon and fluorine atoms in the e2u LUMO 
in 1fa become weaker and stronger, respectively. Since such weakened and 
strengthened effects of antibonding interactions are compensated by each other, 
the e2u LUMO in 1fa is slightly destabilized in energy by such a distortion. On 
the other hand, such a compensation does not occur in the electron–phonon 
interactions between the e1g HOMO and the A1g mode of 1530 cm–1, as 
described above. This is the reason why the A1g mode of 1530 cm–1 much more 
strongly couples to the e1g HOMO than to the e2u LUMO in 1fa. But it should be 
noted that the high frequency E2g modes of 1192 and 1687 cm–1 (the low 
frequency E2g modes of 259 and 444 cm–1) much more (less) strongly couple to 
the e2u LUMO than to the e1g HOMO in 1fa. This can be understood as follows. 
The reduced masses for the high frequency E2g modes of 1192 and 1687 cm–1 
are 13.69 and 12.05, respectively, and thus the displacements of carbon atoms 
are much larger than those of fluorine atoms in these modes in 1fa, while those 
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for the low frequency E2g modes of 259 and 444 cm–1 are 18.62 and 16.08, 
respectively, and thus the displacements of fluorine atoms are larger than those 
of carbon atoms in these modes in 1fa. The e2u LUMO is rather localized on 
carbon atoms and in which the electron density on fluorine atoms are low, on 
the other hand, the e1g HOMO is delocalized and in which the electron density 
on fluorine atoms are as high as those on carbon atoms in 1fa. It is rational that 
the higher (lower) frequency E2g modes, in which the displacements of carbon 
(fluorine) atoms are very large, more (less) strongly couple to the e2u LUMO 
rather localized on carbon atoms than to the delocalized e1g HOMO in 1fa. This 
is the reason why the high frequency E2g modes of 1192 and 1687 cm–1 (the low 
frequency E2g modes of 259 and 444 cm–1) much more (less) strongly couple to 
the e2u LUMO than to the e1g HOMO in 1fa. 

It should be noted that the Ag mode of 1666 cm–1 (1402 cm–1) much more 
(less) strongly couples to the HOMO than to the LUMO in 2fa. This can be 
understood as follows. When 2fa is distorted along the Ag mode of 1666 cm–1, 
the bonding and antibonding interactions between two neighboring carbon 
atoms in the LUMO in 2fa become weaker and stronger, respectively, and thus 
the LUMO would be destabilized in energy by such a distortion. On the other 
hand, the antibonding interactions between two neighboring carbon and fluorine 
atoms in the LUMO in 2fa become weaker, and thus the LUMO would be 
stabilized in energy by such a distortion. Since such destabilization and 
stabilization effects are compensated by each other, the LUMO is slightly 
destabilized in energy by such a distortion in 2fa. Such a compensation does not 
occur in the electron–phonon interactions between the Ag mode of 1666 cm–1 
and the HOMO in 2fa, and thus the Ag mode of 1666 cm–1 much more strongly 
couples to the HOMO than to the LUMO in 2fa. In a similar way, such a 
compensation occurs (does not occur) in the electron–phonon interactions 
between the Ag mode of 1402 cm–1 and the HOMO (LUMO), and thus the 
energy level of the LUMO much more significantly changes than that of the 
HOMO by such a distortion in 2fa. This is the reason why the Ag mode of 1402 
cm–1 can much more strongly couple to the LUMO than to the HOMO in 2fa. 
That is, the significant phase patterns difference between the HOMO, in which 
the atomic orbitals between two neighboring carbon atoms are mainly combined 
in phase and those between two neighboring carbon and fluorine atoms are 
combined out of phase, and the LUMO, in which the atomic orbitals between 
two neighboring carbon atoms and between two neighboring carbon and 
fluorine atoms are combined out of phase, is the main reason why the 
vibrational modes which play an essential role in the electron–phonon 
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interactions in the monocations are significantly different from those in the 
monoanions in 2fa. 

In a similar way, we can rationalize in view of the phase patterns of the 
HOMO and LUMO the calculated results that the frequency modes lower than 
500 cm–1 and the high frequency modes around 1400 cm–1 much more strongly 
couple to the LUMO than to the HOMO in 2fa, 3fa, 4fa, and 5fa, on the other 
hand, the frequency modes around 500 cm–1 and the frequency modes around 
1600 cm–1 much more strongly couple to the HOMO than to the LUMO in 2fa, 
3fa, 4fa, and 5fa. 

C. B, N-Substituted Polyacenes 

1. Monocations 

There are five kinds of E´ vibrational modes in 1bn (B–N–B or N–B–N in-
plane bending mode of 520 cm–1; B–N–H or N–B–H in-plane bending modes of 
951 and 1073 cm–1; B–N stretching modes of 1399 and 1492 cm–1; B–H 
stretching mode of 2625 cm–1; N–H stretching mode of 3640 cm–1). The 
frequencies of the vibrational modes in B, N-substituted polyacene-series are 
slightly lower than those in polyacene-series. For example, the frequencies of the 
B–N stretching modes of 1399 and 1492 cm–1 in 1bn are lower than that of the C–
C stretching mode of 1656 cm–1 in 1a. This can be understood as follows. The B–
N bonds in 1bn are longer than the C–C bonds in 1a. In general, the frequency of 
the stretching mode between two neighboring atoms whose bond lengths are 
larger, is lower. The C–H (1.087 Å) bond lengths in 1a lie between the N–H 
(1.010 Å) and B–H (1.200 Å) bond lengths in 1bn, and the frequency for the C–H 
(3184 cm–1) stretching mode in 1a also lies between those for the N–H (3640 cm–

1) and B–H (2625 cm–1) stretching modes in 1bn. 
The calculated electron–phonon coupling constants in the monocations and 

monoanions of 1bn, 2bn, and 3bn are shown in Figure 8. We can see from Figure 
3 that the HOMO and LUMO in B, N-substituted polyacene-series are rather 
localized on N and B atoms, respectively, due to the electronegativity perturbation 
on polyacene-series. We can see from Figure 8 that the B–N stretching E´ mode 
of 1492 cm–1 can strongly couple to the e´ HOMO in 1bn. This can be understood 
in view of phase patterns of the HOMO in 1bn. When 1bn is distorted along the 
E´ mode of 1492 cm–1 toward the same direction as shown in Figure 3, the 
bonding (antibonding) interactions between two neighboring B and N atoms in the 
HOMO (a) become stronger (weaker), therefore, the HOMO (a) is significantly 
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stabilized in energy. In a similar way, the bonding interactions between two 
neighboring B and N atoms in the HOMO (b) become weaker by such a 
distortion, therefore, the HOMO (b) is significantly destabilized in energy. This is 
the reason why the E´ mode of 1492 cm–1 can strongly couple to the e´ HOMO in 
1bn. In addition to this mode, the E´ modes of 520 and 1399 cm–1 and the A1´ 
mode of 949 cm–1 can also couple to the e´ HOMO in 1bn. But it should be noted 
that the E´ mode of 1399 cm–1 much less strongly couples to the e´ HOMO than 
the E´ mode of 1492 cm–1 even though both vibrational modes are the B–N 
stretching modes. This can be understood as follows. The reduced mass for the E´ 
mode of 1399 cm–1 is 1.89, while that for the E´ mode of 1492 cm–1 is 4.93, and 
thus the displacements of B and N atoms are larger in the E´ mode of 1492 cm–1 
than in the E´ mode of 1399 cm–1. The e´ HOMO is, on the other hand, localized 
on B and N atoms. It is rational that a frequency mode in which the displacements 
of B and N atoms are important, more strongly couples to the e´ HOMO localized 
on B and N atoms. This is the reason why the E´ mode of 1399 cm–1 much less 
strongly couples to the e´ HOMO than the E´ mode of 1492 cm–1 in 1bn. It should 
be noted that the B–H stretching E´ mode of 2636 cm–1 somewhat couples to the 
e´ HOMO in 1bn. Considering that the electron density on boron and hydrogen 
atoms in the e´ HOMO is not high, such electron–phonon coupling constant for 
the E´ mode of 2636 cm–1 is rather large. 

Let us next look into the electron–phonon coupling in the monocations of 2bn 
and 3bn. We can see from Figure 8 that the B–N stretching A1 mode of 1486 cm–1 
can strongly couple to the HOMO in 2bn. Furthermore, the B–N stretching A1 
modes of 1480 and 1528 cm–1 strongly couple to the HOMO in 3bn. It should be 
noted that the electron–phonon coupling constants for the low frequency modes 
decrease with an increase in molecular size from the monocations of 1bn to 3bn 
more rapidly than those for the B–N stretching modes around 1500 cm–1. 

Let us next compare the calculated results for the monocations of B, N-
substituted polyacenes with those for the monocations of polyacenes. We can see 
from Figure 8 that as in the monocation of 1bn, both the low frequency modes and 
the C–C stretching modes around 1500 cm–1 afford large electron–phonon 
coupling constants in the monocation of 1a. But in the monocations of large size 
of polyacenes such as 2a and 3a, only the C–C stretching modes around 1500 cm–

1 afford large electron–phonon coupling constants, and the electron–phonon 
coupling constants for the C–C stretching modes around 1500 cm–1 decrease with 
an increase in molecular size from the monocations of 2a to 6a. 
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Figure 8. Electron–phonon coupling constants for the monocations and monoanions of B, 
N-substituted polyacenes. 

2. Monoanions 

We can see from Figure 8 that the B–N stretching E´ mode of 1492 cm–1 can 
strongly couple to the e´ LUMO in 1bn. This can be understood in view of the 
phase patterns of the LUMO in 1bn. When 1bn is distorted by the E´ mode of 
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1492 cm–1 toward the same direction as shown in Figure 3, the bonding 
(antibonding) interactions between two neighboring B and N atoms in the LUMO 
(a) become weaker (stronger), therefore, the LUMO (a) is significantly 
destabilized in energy. In a similar way, the antibonding interactions between two 
neighboring B and N atoms in the LUMO (b) become weaker by such a distortion, 
therefore, the LUMO (b) is significantly stabilized in energy. That is the reason 
why the E´ mode of 1492 cm–1 can strongly couple to the e´ LUMO in 1bn. In 
addition to this mode, the E´ mode of 1073 cm–1 and the A1´ mode of 949 cm–1 
can also couple to the e´ LUMO in 1bn. But it should be noted that the B–N 
stretching E´ mode of 1399 cm–1 hardly couples to the e´ LUMO in 1bn. This can 
be understood as follows. When 1bn is distorted by the E´ mode of 1399 cm–1 
toward the same direction as shown in Figure 3, the bonding (antibonding) 
interaction between N(1) and B(2) becomes stronger, while the bonding 
(antibonding) interaction between B(3) and N(3) becomes weaker in the LUMO 
(a) (LUMO (b)). Since such changes in the strengths of orbital interactions are 
compensated by each other, the energy levels of the LUMO (a) and LUMO (b) are 
not significantly changed by such a distortion. That is the reason why the B–N 
stretching E´ mode of 1399 cm–1 hardly couples to the e´ LUMO in 1bn. Let us 
next look into the electron–phonon coupling in the monoanions of 2bn and 3bn. 
We can see from Figure 8 that the lowest frequency A1 modes of 327 and 447 cm–

1 and the B–N stretching mode of 1486 cm–1 can strongly couple to the a2 LUMO 
in 2bn. Furthermore, the lowest frequency A1 modes of 212 and 345 cm–1 and the 
B–N stretching A1 mode of 1480 cm–1 can strongly couple to the b1 LUMO in 
3bn. It should be noted that the B–N stretching modes around 1500 cm–1 and the 
low frequency modes, less and more, respectively, strongly couple to the LUMO 
with an increase in molecular size from 1bn to 3bn. 

Let us next compare the calculated results for the monocations with those for 
the monoanions [74] in B, N-substituted polyacenes. As described above, the 
HOMO and LUMO in B, N-substituted polyacene-series are rather localized on N 
and B atoms, respectively, due to the electronegativity perturbation on polyacene-
series. Therefore, significant vibronic interactions character differences between 
the monoanions and cations in B, N-substituted polyacene-series can be expected. 
As can be seen from Figure 8, both the low frequency modes and the B–N 
stretching modes around 1500 cm–1 afford large electron–phonon coupling 
constants in the monoanions and cations in B, N-substituted polyacenes. The low 
frequency modes play more important role in the electron–phonon interactions in 
the monocation than in the monoanion in 1bn. But the electron–phonon coupling 
constants for the low frequency modes decrease more rapidly with an increase in 
molecular size than those for the B–N stretching modes around 1500 cm–1 in the 
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monocations of B, N-substituted polyacene-series. Therefore, the B–N stretching 
modes would play more important role in the electron–phonon interactions than 
the low frequency modes even in the large size of the monocations of B, N-
substituted polyacenes. But the B–N stretching modes around 1500 cm–1 and the 
low frequency modes, less and more, respectively, strongly couple to the LUMO 
with an increase in molecular size from 1bn to 3bn. Therefore, the higher 
frequency modes would play an essential role in the electron–phonon interactions 
in the large size of the monocations, while the lower frequency modes play such a 
role in the large size of the monoanions in B, N-substituted polyacenes. This 
difference may come from the phase patterns difference between the HOMO and 
LUMO due to electronegativity perturbation on polyacene-series. 

We can therefore conclude in this section that the lower frequency modes 
play an important role in the electron–phonon interactions in large size of the 
negatively charged polyacene-series and B, N-substituted polyacene-series, while 
the higher frequency modes such as B–N stretching modes around 1500 cm–1 play 
such a role in the positively charged polyacene-series and B, N-substituted 
polyacene-series. 

D. Polycyanodienes 

1. Monocations 

The calculated electron–phonon coupling constants in the monocations of 
2cn, 3cn, and 4cn are shown in Figure 9. Let us next look into the electron–
phonon interactions between the ag HOMO and the Ag modes in 2cn. We can see 
from Figure 9 that the Ag mode of 1597 cm–1 the most strongly couples to the ag 
HOMO in 2cn. This can be understood in view of the phase patterns of the 
HOMO in 2cn. When 2cn is distorted along the Ag mode of 1597 cm–1 toward the 
same direction as shown in Figure 3, the bonding interactions between C(3) and 
C(4) atoms in the HOMO become weaker, and the antibonding interactions 
between N(2) and C(3) atoms become stronger. Furthermore, the characteristics of 
the bonding and antibonding interactions between two neighboring carbon and 
hydrogen atoms in the HOMO become less and more, respectively, significant. 

Therefore, the ag HOMO is significantly destabilized in energy by such a 
distortion. This is the reason why the Ag mode of 1597 cm–1 the most strongly 
couples to the ag HOMO in 2cn. In addition to this, the lowest frequency Ag mode 
of 555 cm–1 affords large electron–phonon coupling constant in the monocation of 
2cn. When 2cn is distorted along the Ag mode of 555 cm–1, the characteristics of 
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the antibonding interactions between N(2) and C(3) atoms become more 
significant, and the bonding interactions between two neighboring carbon and 
hydrogen atoms in the HOMO become weaker. Therefore, the ag HOMO is 
significantly destabilized in energy by such a distortion. This is the reason why 
the Ag mode of 555 cm–1 affords large electron–phonon coupling constant in the 
monocation of 2cn. Similar discussions can be made in 3cn and 4cn; the C–C and 
C–N stretching modes around 1500 cm–1 and the lowest frequency modes strongly 
couple to the HOMO. 
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Figure 9. Electron–phonon coupling constants for the monocations of polycyanodienes. 

2. Monoanions 

The calculated electron–phonon coupling constants in the monoanions of 1cn, 
2cn, 3cn, and 4cn are shown in Figure 10. Let us first look into the electron–
phonon interactions between the Ag modes and the b3u LUMO in 1cn. We can see 
from Figure 10 that the Ag mode of 1713 cm–1 can the most strongly couple to the 
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b3u LUMO in 1cn. When 1cn is distorted along the Ag mode of 1713 cm–1 toward 
the same direction as shown in Figure 3, the bonding interactions between two 
neighboring carbon atoms in the b3u LUMO become stronger, and the antibonding 
interactions between two neighboring carbon and nitrogen atoms become weaker, 
and thus the b3u LUMO is significantly stabilized in energy. This is the reason 
why the Ag mode of 1713 cm–1 can the most strongly couple to the b3u LUMO in 
1cn. The Ag mode of 1035 cm–1 also strongly couples to the b3u LUMO in 1cn. 
When 1cn is distorted along the Ag mode of 1035 cm–1, the antibonding 
interactions between two neighboring carbon and nitrogen atoms in the b3u 
LUMO become significantly weaker, and thus the b3u LUMO is significantly 
stabilized in energy by such a distortion. On the other hand, the bonding 
interactions between two neighboring carbon atoms become also slightly weaker 
by such a distortion, the b3u LUMO would be slightly destabilized in energy. Such 
stabilized and destabilized effects are compensated by each other. Therefore, the 
Ag mode of 1035 cm–1 affords slightly smaller electron–phonon coupling constant 
than the Ag mode of 1713 cm–1 in the monoanion of 1cn. Furthermore, the Ag 
mode of 623 cm–1 also somewhat strongly couples to the b3u LUMO in 1cn. The 
reduced masses for the Ag modes of 623, 1035 and 1713 cm–1 are large, and are 
8.80, 7.53 and 5.97, respectively, in 1cn. Therefore, the displacements of carbon 
and nitrogen are large in these modes. It is rational that the Ag modes of 623, 
1035, and 1713 cm–1, in which the displacements of carbon and nitrogen atoms 
are larger, can strongly couple to the b3u LUMO localized on carbon and nitrogen 
atoms. On the other hand, the reduced masses for the Ag modes of 1252 and 3200 
cm–1 are 1.11 and 1.10, respectively. It is rational that the Ag modes of 1252 and 
3200 cm–1 in which the displacements of carbon and nitrogen atoms are small 
cannot strongly couple to the b3u LUMO localized on carbon and nitrogen atoms. 
This is the reason why the Ag modes of 623, 1035, and 1713 cm–1 can more 
strongly couple to the b3u LUMO than the Ag modes of 1252 and 3200 cm–1 in 
1cn. 

Let us look into the electron–phonon interactions between the Ag modes and 
the b1g LUMO in 2cn. We can see from Figure 10 that the Ag mode of 1597 cm–1 
strongly couples to the b1g LUMO in 2cn. This can be understood as follows. 
When 2cn is distorted along the Ag mode of 1597 cm–1, the bonding interactions 
between two neighboring carbon atoms in the b1g LUMO become significantly 
weaker, and the antibonding interactions between two neighboring carbon and 
nitrogen atoms become significantly stronger, and thus the b1g LUMO is 
significantly destabilized in energy by such a distortion in 2cn. This is the 
reason why the Ag mode of 1597 cm–1 can strongly couple to the b1g LUMO in 
2cn. The Ag mode of 1436 cm–1 can also strongly couple to the b1g LUMO in 



Takashi Kato 

 

46 

2cn. When 2cn is distorted along the Ag mode of 1436 cm–1, the antibonding 
interactions between two neighboring carbon and nitrogen atoms in the b1g 
LUMO in 2cn become stronger, and thus the b1g LUMO is significantly 
destabilized in energy by such a distortion in 2cn. 

 

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500

C
ou

pl
in

g 
co

ns
ta

nt
 (m

eV
)

Frequency (cm –1 )

C
ou

pl
in

g 
co

ns
ta

nt
 (m

eV
)

Frequency (cm –1 )

C
ou

pl
in

g 
co

ns
ta

nt
 (m

eV
)

Frequency (cm –1 )

C
ou

pl
in

g 
co

ns
ta

nt
 (m

eV
)

Frequency (cm –1 )

1cn– 2cn–

3cn– 4cn–

 

Figure 10. Electron–phonon coupling constants for the monoanions of polycyanodienes. 

This is the reason why the Ag mode of 1436 cm–1 strongly couples to the b1g 
LUMO in 2cn. Apart from the C–H stretching Ag mode of 3187 cm–1, the 
electron–phonon coupling constant increases with an increase in frequency in 
2cn. In the low frequency modes, which have similar characteristics to those of 
acoustic mode of phonon in solids, all atoms move toward the similar direction. 
Therefore, the orbital interactions between two neighboring atoms do not 
significantly change when 2cn is distorted along the low frequency Ag modes. 
This is the reason why the electron–phonon coupling decreases with a decrease 
in frequency in 2cn. The C–H stretching mode of 3187 cm–1 hardly couples to 
the b1g LUMO in 2cn. The reduced mass for the Ag mode of 3187 cm–1 is 1.10, 
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and in which the displacements of carbon and nitrogen atoms are very small. 
The b1g LUMO is localized on carbon and nitrogen atoms in 2cn. It is rational 
that the Ag mode of 3187 cm–1, in which the displacements of carbon and 
nitrogen atoms are very small, hardly couples to the b1g LUMO localized on 
carbon and nitrogen atoms in 2cn. Similar discussions can be made in the 
monoanions of 3cn and 4cn; the C–C stretching modes around 1500 cm–1 can 
strongly couple to the LUMO. 

E. Summary 

In this chapter, we investigated the electron–phonon interactions in the 
monocations and monoanions of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. The C–C stretching modes around 1500 cm–1 
strongly couple to the HOMO, and the lowest frequency modes and the C–C 
stretching modes around 1500 cm–1 strongly couple to the LUMO in polyacenes. 
The C–C stretching modes around 1500 cm–1 strongly couple to the HOMO and 
LUMO in polyfluoroacenes. The B–N stretching modes around 1500 cm–1 
strongly couple to the HOMO and LUMO in B, N-substituted polyacenes. The C–
C and C–N stretching modes around 1500 cm–1 strongly couple to the HOMO and 
LUMO in polycyanodienes. 





 

 

 
 
 
 
 
 

Chapter VI 
 
 
 

TOTAL ELECTRON–PHONON COUPLING 
CONSTANTS 

A. Polyacenes and Polyfluoroacenes 

1. Monocations 

Let us next discuss the total electron–phonon coupling constants in the 
monocations ( lHOMO) of polyfluoroacenes, and compare the calculated results for 
polyfluoroacenes with those for polyacenes. The lHOMO values for 1a and 1fa are 
defined as 

 

  
lHOMO = lHOMO

m=1

6
∑ ω m( )= gHOMO

2

m=1

4
∑ ωm( )Oωm +

1
2

gHOMO
2

m=5

6
∑ ωm( )Oωm

 (55) 
 

and those for polyacenes and polyfluoroacenes (2fa–5fa and 2fa–5fa) are defined 
as 

 

  
lHOMO = lHOMO

m
∑ ωm( )= gHOMO

2

m
∑ ωm( )Oωm

 (56) 
 
The calculated total electron–phonon coupling constants (lLUMO  and lHOMO) 

in the monoanions and cations of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes are shown in Figure 11. The lHOMO values are 
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estimated to be 0.418, 0.399, 0.301, 0.255, and 0.222 eV for 1fa, 2fa, 3fa, 4fa, and 
5fa, respectively, and those are estimated to be 0.244, 0.173, 0.130, 0.107, and 
0.094 eV for 1a, 2a, 3a, 4a, and 5a, respectively. Therefore, the lHOMO values 
decrease with an increase in molecular size in both polyacenes and 
polyfluoroacenes. This can be understood as follows. The electron density per 
atom in the HOMO becomes lower with an increase in molecular size, and the 
orbital interactions between two adjacent atoms become weaker with an increase 
in number of atoms in polyacenes and polyfluoroacenes. Therefore, strengths of 
the orbital interactions between two adjacent atoms less significantly change with 
an increase in number of atoms when these monocations are distorted along the 
C–C stretching modes around 1500 cm–1 playing an essential role in the electron–
phonon interactions. This is the reason why the lHOMO value decreases with an 
increase in number of atoms. Therefore, in general, we can expect that a 
monocation, in which number of carriers per atom is larger, affords larger lHOMO 
value. 

The lHOMO values for polyfluoroacenes are much larger than those for 
polyacenes. This can be understood as follows. For example, let us compare the 
calculated results for 2fa with those for 2a. The reduced masses of the C–C 
stretching Ag modes of 1445 and 1610 cm–1 in 2a, which afford large electron–
phonon coupling constants in the monocation of 2a, are 9.68 and 7.19, 
respectively, and thus the displacements of carbon atoms are not very large in 
these vibrational modes. On the other hand, the reduced masses of the C–C 
stretching modes of 1552 and 1666 cm–1 in 2fa, which afford large electron–
phonon coupling constants in the monocation of 2fa, are 12.45 and 12.10, 
respectively, and thus the displacements of carbon atoms are very large in these 
vibrational modes. It is rational that the C–C stretching modes around 1500 cm–1, 
in which the displacements of carbon atoms are larger in 2fa, can more strongly 
couple to the HOMO, in which the electron density on carbon atoms are very 
high, than the C–C stretching modes around 1500 cm–1, in which the 
displacements of carbon atoms are smaller in 2a. Furthermore, the low frequency 
mode of 514 cm–1 affords much larger electron–phonon coupling constant in the 
monocation of 2fa than the low frequency modes around 500 cm–1 in the 
monocation of 2a. Similar discussion can be made in 3fa, 4fa, and 5fa. 

Therefore, we can conclude that the larger values of the electron–phonon 
coupling constants for the C–C stretching modes around 1500 cm–1 in the 
monocations of polyfluoroacenes than those in the monocations of polyacenes due 
to the larger displacements of carbon atoms in the C–C stretching modes in 
polyfluoroacenes than those in polyacenes, and the larger values of the electron–
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phonon coupling constants for the low frequency modes around 500 cm–1 in the 
monocations of polyfluoroacenes than those in the monocations of polyacenes, are 
the main reason why the lHOMO values for polyfluoroacenes are much larger than 
those for polyacenes. 
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Figure 11. Total electron–phonon coupling constants for the monocations and monoanions 
of polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. The 
opened circles, triangles, squares, and diamonds represent the lHOMO values for 
polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes, 
respectively, and the closed circles, triangles, squares, and diamonds represent the lLUMO  
values for polyacenes, polyfluoroacenes, B, N-substituted polyacenes, and 
polycyanodienes, respectively. 

2. Monoanions 

Let us next discuss the total electron–phonon coupling constants in the 
monoanions ( lLUMO ) of polyfluoroacenes, and compare the calculated results for 
polyfluoroacenes with those for polyacenes. The lLUMO  value for 1fa is defined as 

 



Takashi Kato 

 

52 

  
lLUMO = lLUMO

m=1

6
∑ ω m( )= gLUMO

2

m=1

4
∑ ωm( )Oωm +

1
2

gLUMO
2

m=5

6
∑ ωm( )Oωm

 (57) 
 

and that for polyfluoroacenes (2fa–5fa) is defined as 
 

  
lLUMO = lLUMO

m
∑ ωm( )= gLUMO

2

m
∑ ωm( )Oωm

 (58) 
 
The lLUMO  values are estimated to be 0.475, 0.473, 0.350, 0.273, and 0.215 

eV for 1fa, 2fa, 3fa, 4fa, and 5fa, respectively, while those are estimated to be 
0.322, 0.255, 0.186, 0.154, and 0.127 eV for 1a, 2a, 3a, 4a, and 5a, respectively. 
Therefore, the lLUMO  values decrease with an increase in molecular size in both 
polyacenes and polyfluoroacenes. 

The lLUMO  values for polyfluoroacenes are much larger than those for 
polyacenes. This can be understood as follows. As described above, the LUMOs 
of polyfluoroacenes are rather localized on carbon atoms, and those of polyacenes 
are completely localized on carbon atoms. And the displacements of carbon atoms 
in the C–C stretching modes around 1500 cm–1 in polyfluoroacenes become larger 
than those in polyacenes as a consequence of H–F substitution in polyacenes. That 
is, by substituting hydrogen atoms by heavier atoms which have the highest 
electronegativity in every element, fluorine atoms, the displacements of carbon 
atoms become significantly larger in the C–C stretching modes, while the 
electronic structure in the LUMO hardly changes. Therefore, the C–C stretching 
modes around 1500 cm–1 in polyfluoroacenes more strongly couple to the LUMO 
localized on carbon atoms than those in polyacenes. This is the main reason why 
the lLUMO  values for polyfluoroacenes are much larger than those for polyacenes. 
The lLUMO  value for polyfluoroacenes decreases with an increase in molecular 
size more rapidly than that for polyacenes, and the lLUMO  values difference 
between polyacenes and polyfluoroacenes decreases with an increase in molecular 
size. This is because the ratio of the number of fluorine atoms to that of carbon 
atoms becomes smaller from 1fa to 5fa, and the effects of H–F substitution 
become less important in this order. 

Let us next compare the calculated results for the monocations with those for 
the monoanions in polyfluoroacenes. The lLUMO  values are larger than the lHOMO 
values in 1fa, 2fa, 3fa, and 4fa. This can be understood as follows. The C–C 
stretching modes around 1500 cm–1, in which the displacements of carbon atoms 
are very large, can more strongly couples to the LUMO rather localized on carbon 
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atoms than to the delocalized HOMO in polyfluoroacenes. This is the reason why 
the electron–phonon coupling constants for the C–C stretching Ag modes around 
1400 cm–1 in the monoanions are larger than those for the C–C stretching Ag 
modes around 1600 cm–1 in the monocations in polyfluoroacenes, and the reason 
why the lLUMO  values are larger than the lHOMO values in 1fa, 2fa, 3fa, and 4fa. 
But it should be noted that the LUMOl  value decreases with an increase in 
molecular size more rapidly than the lHOMO value in polyfluoroacenes, and the 
lLUMO  value is slightly smaller than the lHOMO value in 5fa. 

The lHOMO and lLUMO  values for polyfluoroacene with D2h geometry would 
converge and be estimated by extrapolation in Figure 11 to be 0.074 and 0.009 
eV, respectively, assuming that the lHOMO and lLUMO  values are approximately 
inversely proportional to the number of carbon atoms in each series. 

The lHOMO value is estimated to be much larger than the lLUMO  value in 
polyfluoroacene ( N → ∞ ), even though the lHOMO value is smaller than the lLUMO  
value in small size of polyfluoroacenes such as 2fa, 3fa, and 4fa. That is, the 
lHOMO values decrease with an increase in molecular size less rapidly than the 
lLUMO  values in polyfluoroacenes. This is because the electron–phonon coupling 
constants originating from the C–C stretching modes around 1500 cm–1 decrease 
with an increase in molecular size more rapidly in the monoanions than in the 
monocations in polyfluoroacenes. The strengths of the orbital interactions 
between two neighboring carbon atoms in the HOMO and LUMO significantly 
change when polyfluoroacenes are distorted along the C–C stretching modes 
around 1500 cm–1, and thus the C–C stretching modes around 1500 cm–1 can 
strongly couple to the HOMO and LUMO in polyfluoroacenes. Strengths of such 
orbital interactions in the HOMO become weaker with an increase in molecular 
size less rapidly than those in the LUMO in polyfluoroacenes because the electron 
density on carbon atoms in the LUMO rather localized on carbon atoms decrease 
with an increase in molecular size more rapidly than those in the delocalized 
HOMO in polyfluoroacenes. This is the reason why the electron–phonon coupling 
constants originating from the C–C stretching modes around 1500 cm–1 decrease 
with an increase in molecular size more rapidly in the monoanions than in the 
monocations in polyfluoroacenes, and the reason why the lHOMO values decrease 
with an increase in molecular size less rapidly than the lLUMO  values in 
polyfluoroacenes. 

The total electron–phonon coupling constants were estimated to be 0.322, 
0.254, 0.186, 0.154, 0.127, and 0.106 eV (0.244, 0.173, 0.130, 0.107, 0.094, and 
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0.079 eV) in the monoanions (monocations) of 1a, 2a, 3a, 4a, 5a, and 6a, 
respectively. Therefore, the electron–phonon coupling constants decrease with an 
increase in molecular size. Figures 4 and 5 demonstrate that the electron–phonon 
coupling originating from the C–C stretching modes of 1400–1600 cm–1 becomes 
weaker as the molecular size becomes larger from 1a to 6a. Thus, the C–C 
stretching modes should play an important role in the electron–phonon coupling 
in the monoanions and cations of 1a and polyacenes. The total electron–phonon 
coupling constants in the monocations of polyacenes (lHOMO) are smaller than 
those in the monoanions ( lLUMO ). This is because the lowest frequency mode, 
which plays an important role in the electron–phonon coupling in the monoanions 
of polyacenes, does not play a role in the electron–phonon coupling in the 
monocations. 

B. B, N-Substituted Polyacenes 

The lHOMO for 1bn is defined as 
 

  
lHOMO = lHOMO ωm( )

m=1

11
∑ = gHOMO

2 ωm( )Oωm
m=1

7
∑ +

1
2

gHOMO
2 ωm( )Oωm

m=8

11
∑

 (59) 
 
That for 2bn is defined as 
 

  
lHOMO = lHOMO ωm( )

m=1

17
∑ = gHOMO

2 ωm( )Oωm
m=1

17
∑

 (60) 
 

and that for 3bn is defined as 
 

  
lHOMO = lHOMO ωm( )

m=1

23
∑ = gHOMO

2 ωm( )Oωm
m=1

23
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 (61) 
 
The lLUMO  for 1bn is defined as 
 

  
lLUMO = lLUMO ω m( )
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That for 2bn is defined as 
 

  
lLUMO = lLUMO ω m( )

m=1

17
∑ = gLUMO

2 ωm( )Oωm
m=1

17
∑

 (63) 
 

and that for 3bn is defined as 
 

  
lLUMO = lLUMO ω m( )

m=1

23
∑ = gLUMO

2 ωm( )Oωm
m=1

23
∑

 (64) 
 
The lHOMO (lLUMO ) values are estimated to be 0.357, 0.209, and 0.182 eV 

(0.340, 0.237, and 0.203 eV) for 1bn, 2bn, and 3bn, respectively, while those are 
estimated to be 0.244, 0.173, and 0.130 eV (0.322, 0.254, and 0.186 eV) for 1a, 
2a, and 3a, respectively. Therefore, both the lHOMO and lLUMO  values decrease 
with an increase in molecular size in B, N-substituted polyacene-series as well as 
in polyacene-series. 

The lLUMO values are much larger than the lHOMO values in polyacene-series, 
while the lHOMO values are similar to the lLUMO  values in B, N-substituted 
polyacene-series. This can be understood as follows. The low frequency modes as 
well as the C–C stretching modes around 1500 cm–1 afford electron–phonon 
coupling constants in the monoanions of polyacenes, while only the C–C 
stretching modes around 1500 cm–1 afford large electron–phonon coupling 
constants in the monocations of polyacenes except for 1a. Furthermore, the C–C 
stretching modes around 1500 cm–1 and the low frequency modes, less and more, 
respectively, strongly couple to the LUMO, while the C–C stretching modes 
around 1500 cm–1 less strongly couple to the HOMO with an increase in 
molecular size in polyacene-series. The electron–phonon coupling originating 
from the low frequency modes in the monoanions is the main reason why the 
lLUMO  values are much larger than the lHOMO values in polyacene-series. Let us 
next look into B, N-substituted polyacene-series. The B–N stretching modes 
around 1500 cm–1 as well as the low frequency modes afford large electron–
phonon coupling constants both in the monoanions and cations of B, N-
substituted polyacene-series. The B–N stretching modes around 1500 cm–1 and 
the low frequency modes, less and more, respectively, strongly couple to the 
LUMO with an increase in molecular size, while the low frequency modes much 
less strongly couple to the HOMO than the B–N stretching modes around 1500 
cm–1 with an increase in molecular size in B, N-substituted polyacene-series. Even 
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though the low and high frequency modes afford large electron–phonon coupling 
constants in the monoanions and cations in B, N-substituted polyacene-series, 
respectively, there are not significant differences between the lLUMO and lHOMO 
values. This is the reason why the lLUMO  values are similar to the lHOMO values in 
B, N-substituted polyacene-series. 

We can see from Figure 11 that the lHOMO values for B, N-substituted 
polyacenes are larger than those for polyacenes, and can expect that those for the 
large size of B, N-substituted polyacene-series are larger than those for the large 
size of polyacene-series. The lHOMO values for B, N-substituted polyacene 
( N → ∞ ) and polyacene ( N → ∞ ) are estimated to be 0.096 and 0.036 eV, 
respectively, assuming that the lHOMO is approximately inversely proportional to 
the number of C, B, and N atoms in each series.65 This can be understood as 
follows. For example, let us compare the HOMO of 3bn with that of 3a. We can 
see from Figure 3 that the HOMO of 3a is rather localized on C(1), C(3), C(5), 
C(8), C(10) and C(12) atoms which are located at the edge of the carbon 
framework, and the electron density on other carbon atoms is very low. Therefore, 
the HOMO of 3a has a non-bonding character and the orbital interactions between 
two neighboring carbon atoms are not so large. Such a non-bonding character in 
the HOMO becomes more significant with an increase in molecular size in 
polyacene-series. This is the reason why the lHOMO values decrease with an 
increase in molecular size in polyacene-series. Let us next look into 3bn. Because 
of the electronegativity perturbation on 3a, the HOMO of 3bn is stabilized in 
energy with respect to the HOMO of 3a, and the electron density on N(7), N(9), 
N(11), and N(13) atoms in 3bn is higher than that on C(7), C(9), C(11), and C(13) 
atoms in 3a, respectively. Therefore, orbital interactions between N(7) and B(8), 
between B(8) and N(9), between N(9) and B(10), between B(10) and N(11), 
between N(11) and B(12), and between B(12) and N(13) atoms in the HOMO of 
3bn, are stronger than those between two neighboring carbon atoms in the HOMO 
of 3a. This is the reason why the lHOMO value for 3bn is larger than that for 3a. In 
a similar way, the large size of B, N-substituted polyacene-series would have 
larger lHOMO values than the large size of polyacene-series. We can therefore 
conclude that because of the strong orbital interactions between B and N atoms in 
the HOMO in B, N-substituted polyacene-series as a consequence of the 
electronegativity perturbation on polyacene-series, the lHOMO values for B, N-
substituted polyacene-series would become larger than those for polyacene-series. 
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C. Polycyanodienes 

1. Monocations 

Let us next discuss the total electron–phonon coupling constants in the 
monocations (lHOMO) of polycyanodienes, and compare the calculated results for 
polycyanodienes with those for polyacenes. The lHOMO values for 
polycyanodienes are defined as 

 

  
lHOMO = lHOMO

m
∑ ωm( )= gHOMO

2

m
∑ ωm( )Oωm

 (65) 
 
The lHOMO values are estimated to be 0.558, 0.464, and 0.378 eV for 2cn, 

3cn, and 4cn, respectively. Those were estimated to be 0.173, 0.130, and 0.107 eV 
for 2a, 3a, and 4a, respectively. Therefore, the lHOMO values decrease with an 
increase in molecular size in the monocations of polycyanodienes as well as in the 
monocations of polyacenes. The lHOMO values for polycyanodienes are much 
larger than those for polyacenes. This can be understood as follows. The HOMO 
of polyacenes is localized on edge part of carbon atoms, and thus the nonbonding 
characteristics are significant in the HOMO of polyacenes. Therefore, the energy 
levels of the HOMO in polyacenes do not significantly change even if polyacenes 
are distorted along the C–C stretching modes around 1500 cm–1 playing an 
essential role in the electron–phonon interactions. As in case of the HOMO of 
polyacenes, the HOMO of polycyanodienes are also somewhat localized on edge 
part of nitrogen atoms. On the other hand, the σ orbital interactions as well as the 
π orbital interactions are significant in the HOMO of polycyanodienes. Therefore, 
orbital interactions between two neighboring atoms are much stronger in the 
HOMO of polycyanodienes than in the HOMO of polyacenes. Furthermore, while 
the HOMO of polyacenes are completely localized on carbon atoms, the HOMO 
of polycyanodienes are delocalized, and the electron density on hydrogen atoms 
as well as that on carbon and nitrogen atoms in the HOMO of polycyanodienes is 
high. Therefore, the strengths of the orbital interactions between two neighboring 
carbon and hydrogen atoms are significantly changed by distortions by vibronic 
active modes. This is the reason why the lHOMO values for σ-conjugated 
polycyanodienes are much larger than those for π-conjugated polyacenes. In 
summary, the strong σ orbital interactions between two neighboring carbon atoms 
and two neighboring carbon and nitrogen atoms and the orbital interactions 
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between two neighboring carbon and hydrogen atoms in the HOMO of 
polycyanodienes are the main reason why the lHOMO values for σ-conjugated 
polycyanodienes are much larger than those for π-conjugated polyacenes. 

Let us next estimate the lHOMO values for polycyanodienes ( N → ∞ ) with D2h 
geometry. Assuming that the lHOMO values for polycyanodienes with D2h 
geometry are approximately inversely proportional to the number of carbon and 
nitrogen atoms in each series, as suggested in previous research, [21] the lHOMO 
value for polycyanodiene ( N → ∞ ) is estimated to be 0.167 eV. The lHOMO value 
for polyacene ( N → ∞ ) with D2h geometry is estimated to be 0.027 eV. Therefore, 
the lHOMO values for polycyanodienes ( N → ∞ ) are estimated to be much larger 
than those for polyacenes ( N → ∞ ). Strong σ orbital interactions between two 
neighboring atoms and the orbital interactions between two neighboring carbon 
and hydrogen atoms in the HOMO of polycyanodienes are the main reason why 
the lHOMO values for σ-conjugated polycyanodienes are much larger than those 
for π-conjugated polyacenes. 

2. Monoanions 

Let us next discuss the total electron–phonon coupling constants in the 
monoanions ( lLUMO ) of polycyanodienes, and compare the calculated results for 
polycyanodienes with those for polyacenes. The lLUMO  values for 
polycyanodienes are defined as 

 
lLUMO = lLUMO ω m( )

m
∑

  
= gLUMO

2 ωm( )
m
∑ Oωm

, (66) 
 
The lLUMO  values are estimated to be 0.478, 0.338, 0.275, and 0.240 eV for 

1cn, 2cn, 3cn, and 4cn, respectively, while those are estimated to be 0.322, 0.255, 
0.186, and 0.154 eV for 1a, 2a, 3a, and 4a, respectively, and those are estimated to 
be 0.340, 0.237, and 0.203 eV for 1bn, 2bn, and 3bn, respectively. Therefore, the 
lLUMO  values decrease with an increase in molecular size in polyacenes, B, N-
substituted polyacenes, and polycyanodienes. 

The lLUMO values for polycyanodienes are much larger than those for 
polyacenes. This can be understood in view of the phase patterns of the LUMO in 
polyacenes and polycyanodienes. The LUMOs of polyacenes are rather localized 
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on carbon atoms located at the edge part of carbon framework. Therefore, non-
bonding characteristic is significant in the LUMOs in polyacenes. On the other 
hand, the LUMO of polycyanodienes is delocalized, and the electron density on 
carbon atoms as well as on nitrogen atoms located at the edge part of CN 
framework is high in the LUMO in polycyanodienes. Therefore, the orbital 
interactions between two neighboring atoms in the LUMO in polycyanodienes are 
stronger than those in the LUMO in polyacenes. This is the reason why the lLUMO  
values for polycyanodienes are much larger than those for polyacenes. Let us next 
discuss why the LUMOs of polyacenes are rather localized on carbon atoms 
located at the edge part of carbon framework, while those of polycyanodienes are 
delocalized, and the electron density on carbon atoms as well as on nitrogen atoms 
is high in the LUMO in polycyanodienes. In general, due to electronegativity 
perturbation, [30] the π bonding orbitals are weighted more heavily on the atoms 
which are more electronegative, and the π antibonding orbitals weighted more 
heavily on the atoms which is less electronegative. As described above, the 
LUMO are rather localized on carbon atoms which are located at the edge part of 
carbon framework in polyacenes. In polycyanodienes, carbon atoms with high 
electron density in the LUMO, located at the edge part of carbon framework of 
polyacenes, are substituted by nitrogen atoms with the higher electronegativity. 
Therefore, the electron density on nitrogen atoms in the LUMO in 
polycyanodienes is lower than that on carbon atoms located at the edge part of 
carbon framework in the LUMO of polyacenes, and the electron density on 
carbon atoms which are not located at the edge part of CN framework in the 
LUMO in polycyanodienes is higher than that on carbon atoms which are not 
located at the edge part of carbon framework in the LUMO in polyacenes. This is 
the reason why the LUMOs of polyacenes are rather localized on carbon atoms 
located at the edge part of carbon framework, while those of polycyanodienes are 
delocalized, and the electron density on carbon atoms as well as on nitrogen atoms 
is high in polycyanodienes. 

Let us next estimate the lLUMO  values for polycyanodienes ( N → ∞ ) with D2h 
geometry. Assuming that the lLUMO  values for polycyanodienes with D2h 
geometry are approximately inversely proportional to the number of carbon and 
nitrogen atoms in each series, as suggested before, the lLUMO  value for 
polycyanodiene ( N → ∞ ) is estimated to be 0.122 eV. The lLUMO  value for 
polyacene ( N → ∞ ) with D2h geometry was estimated to be 0.019 eV. 

In summary, the lLUMO  values for polycyanodienes are estimated to be much 
larger than those for polyacenes. Therefore, the orbital patterns difference 
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between the LUMO localized on carbon atoms located at the edge part of carbon 
framework in polyacenes and the delocalized LUMO in polycyanodienes due to 
electronegativity perturbation, is the main reason why the lLUMO  values for 
polycyanodienes are much larger than those for polyacenes with D2h geometry. 

D. Summary 

In this chapter, we estimated the total electron–phonon coupling constants in 
the monocations and monoanions of polyacenes, polyfluoroacenes, B, N-
substituted polyacenes, and polycyanodienes. The lHOMO and lLUMO  values 
decrease with an increase in molecular size in polyacenes, polyfluoroacenes, B, 
N-substituted polyacenes, and polycyanodienes. Electron density per atom in the 
HOMO becomes lower with an increase in molecular size, and the orbital 
interactions between two adjacent atoms become weaker with an increase in 
number of atoms in polyacenes, polyfluoroacenes, B, N-substituted polyacenes, 
and polycyanodienes. Therefore, strengths of the orbital interactions between two 
adjacent atoms less significantly change with an increase in number of atoms 
when the monocations and monoanions are distorted along the C–C stretching 
modes around 1500 cm–1 playing an essential role in the electron–phonon 
interactions. This is the reason why the lHOMO value decreases with an increase in 
number of atoms. Therefore, in general, we can expect that monocations and 
monoanions, in which number of carriers per atom is larger, affords larger lHOMO 
value. The lHOMO and lLUMO  values for polyfluoroacenes are larger than those for 
polyacenes. Larger values of the electron–phonon coupling constants for the C–C 
stretching modes around 1500 cm–1 in the monocations and monoanions of 
polyfluoroacenes than those in the monocations and monoanions of polyacenes 
due to the larger displacements of carbon atoms in the C–C stretching modes in 
polyfluoroacenes than those in polyacenes, are main reason why the lHOMO and 

lLUMO  values for polyfluoroacenes are much larger than those for polyacenes. The 
lHOMO values for B, N-substituted polyacenes are larger than those for polyacenes. 
The lLUMO  values for B, N-substituted polyacenes are similar to those for 
polyacenes. The lLUMO  values are larger than the lHOMO values in polyacenes, 
polyfluoroacenes, and B, N-substituted polyacenes. Therefore, electron doping 
rather than hole doping is more effective way to seek for large electron–phonon 
coupling constants in polyacenes, polyfluoroacenes, and B, N-substituted 
polyacenes. Both the lHOMO and lLUMO values for polycyanodienes are larger than 
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those for polyacenes. Therefore, CH–CF, CC–BN, and CC–CN atomic 
substitutions are effective way to seek for large lHOMO and lLUMO  values in 
polyacenes. The orbital patterns difference between the LUMO localized on 
carbon atoms located at the edge part of carbon framework in polyacenes and the 
delocalized LUMO in polycyanodienes due to electronegativity perturbation, is 
the main reason why the lLUMO  values for polycyanodienes are much larger than 
those for polyacenes. Strong σ orbital interactions between two neighboring 
carbon atoms and two neighboring carbon and nitrogen atoms and the orbital 
interactions between two neighboring carbon and hydrogen atoms in the HOMO 
of polycyanodienes are the main reason why the lHOMO values for σ-conjugated 
polycyanodienes are much larger than those for π-conjugated polyacenes. The 
lHOMO values are larger than the lLUMO  values in polycyanodienes. Strong σ 
orbital interactions between two neighboring carbon atoms and two neighboring 
carbon and nitrogen atoms and the orbital interactions between two neighboring 
carbon and hydrogen atoms in the HOMO and the weak π orbital interactions 
between two neighboring carbon atoms and two neighboring carbon and nitrogen 
atoms in the LUMO of polycyanodienes, are the main reason why the lHOMO 
values are larger than the lLUMO  values in polycyanodienes. 

 





 

 

 
 
 
 
 
 

Chapter VII 
 
 
 

THE LOGARITHMICALLY AVERAGED PHONON 
FREQUENCIES 

 
 
Let us next look into the logarithmically averaged phonon frequencies ωln  for 

the monocations (ωln,HOMO) and monoanions (ωln,LUMO) of polyacenes, 
polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes which 
measure the frequency of the vibrational modes which play an important role in 
the electron–phonon interactions. The ωln,HOMO values are defined by 

 

ωln,HOMO = exp
lHOMO ωm( )lnω m

lHOMOm
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭  (67) 

 
and the ωln,LUMO values are defined by 

 

ωln,LUMO = exp
lLUMO ωm( )lnω m

lLUMOm
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭  (68) 

 
The logarithmically averaged phonon frequencies for the monoanions 

(ωln,LUMO) and cations of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes as a function of molecular weight Mw  are 
shown in Figure 12. 
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A. Polyacenes and Polyfluoroacenes 

1. Monocations 

The ωln,HOMO values are estimated to be 1060, 1303, 1341, 1305, and 1270 
cm–1 for 1fa, 2fa, 3fa, 4fa, and 5fa, respectively, and those are estimated to be 
1164, 1521, 1501, 1450, and 1359 cm–1 for 1a, 2a, 3a, 4a, and 5a, respectively. 
Therefore, the ωln,HOMO values decrease with an increase in molecular size in 
polyacenes (from 2a to 5a) and polyfluoroacenes (from 2fa to 5fa). This is in 
qualitatively agreement with a tendency in conventional superconductors; light 
masses will lead to higher values of ωln . 
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Figure 12. Logarithmically averaged phonon frequencies versus molecular weights in the 
monocations and monoanions of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. The opened circles, triangles, squares, and diamonds 
represent the ωln,HOMO  values for polyacenes, polyfluoroacenes, B, N-substituted 

polyacenes, and polycyanodienes, respectively, and the closed circles, triangles, squares, 
and diamonds represent the ωln,LUMO  values for polyacenes, polyfluoroacenes, B, N-

substituted polyacenes, and polycyanodienes, respectively. 
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The ωln,HOMO  values for polyfluoroacenes become smaller than those for 
polyacenes by H–F substitution in polyacenes. This can be understood as follows. 
The frequencies of the vibronic active modes in polyfluoroacenes are much 
smaller than those in polyacenes, as expected. Furthermore, the low frequency 
mode around 500 cm–1 as well as the C–C stretching modes around 1500 cm–1 can 
strongly couple to the HOMO in polyfluoroacenes, while only the C–C stretching 
modes around 1500 cm–1 can strongly couple to the HOMO in polyacenes. This is 
the reason why the ωln,HOMO values for polyacenes are larger than those for 
polyfluoroacenes. 

2. Monoanions 

Let us next look into the logarithmically averaged phonon frequencies ωln  for 
the monoanions of polyfluoroacenes. The ωln,LUMO values are estimated to be 
1112, 1070, 1005, 972, and 1003 cm–1 for 1fa, 2fa, 3fa, 4fa, and 5fa, respectively, 
and those are estimated to be 1390, 1212, 1023, 926, and 869 cm–1 for 1a, 2a, 3a, 
4a, and 5a, respectively. Therefore, the ωln,LUMO values for polyacenes and 
polyfluoroacenes decrease with an increase in molecular size. This is in 
qualitatively agreement with a tendency in conventional superconductors; light 
mass will lead to higher values of ωln . But it should be noted that the ωln,LUMO 
values for polyfluoroacenes decrease with an increase in molecular size less 
rapidly than those for polyacenes. This can be understood as follows. In the 
monoanions of polyacenes, the high frequency modes and the low frequency 
modes, less and more, respectively, strongly couple to the LUMO with an 
increase in molecular size, and thus, the ωln,LUMO values significantly decrease 
with an increase in molecular size. In the monoanions of polyfluoroacenes, on the 
other hand, the low frequency modes as well as the high frequency modes less 
strongly couple to the LUMO with an increase in molecular size, and thus, the 
ωln,LUMO values slightly decrease with an increase in molecular size. The 

ωln,LUMO values for 1fa, 2fa, and 3fa become smaller than those for 1a, 2a, and 3a, 
respectively, by H–F substitution in polyacenes. However, considering the large 
Mw  values difference between 1fa ( Mw = 186) and 1a ( Mw = 78), between 2fa 
( Mw = 272) and 2a ( Mw = 128), and between 3fa ( Mw = 358) and 3a ( Mw = 178), the 

ωln,LUMO values difference between polyacenes and polyfluoroacenes is not large. 
This can be understood as follows. Even though the frequencies of all vibronic 
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active modes in polyfluoroacenes are much smaller than those in polyacenes, the 
displacements of hydrogen and fluorine atoms do not play an essential role in the 
electron–phonon interactions in the monoanions of polyacenes and 
polyfluoroacenes, respectively, because the LUMOs are localized on carbon 
atoms and the electron density on hydrogen and fluorine atoms are very small in 
polyacenes and polyfluoroacenes, respectively. This is the reason why the 
ωln,LUMO values difference between polyacenes and polyfluoroacenes is not large 
even though the Mw  values difference between them is large. Furthermore, the 

ωln,LUMO values for 4fa and 5fa are larger than those for 4a and 5a even though 
the Mw  values for 4fa ( Mw = 444 ) and 5fa ( Mw = 530) are much larger than those 
for 4a ( Mw = 228) and 5a ( Mw = 278), respectively. This is because the low 
frequency modes as well as the C–C stretching modes around 1500 cm–1 strongly 
couple to the LUMO in 4a and 5a, while the C–C stretching modes around 1500 
cm–1 much more strongly couple to the LUMO than the low frequency modes in 
4fa and 5fa. 

We can expect that in the hydrocarbon molecular systems, the ωln  values 
would basically decrease by substituting hydrogen atoms by heavier atoms. This 
can be understood from the fact that the frequencies of all vibronic active modes 
in polyacenes downshift by H–F substitution. However, considering that the ωln  
value for the LUMO rather localized on carbon atoms in 4fa and 5fa becomes 
larger by H–F substitution, we can expect that the ωln  value for a molecular 
orbital localized on carbon atoms has a possibility to increase by substituting 
hydrogen atoms by heavier atoms if the orbital patterns of the molecular orbital do 
not significantly change by such substitution. Therefore, the detailed properties of 
the vibrational modes and the electronic structures as well as the molecular 
weights are closely related to the frequencies of the vibrational modes which play 
an important role in the electron–phonon interactions in the monoanions of 
polyfluoroacenes. 

The ωln,HOMO  values are larger than the ωln,LUMO values in polyfluoroacenes. 
This can be understood as follows. The frequency modes lower than 500 cm–1 and 
the high frequency modes around 1400 cm–1 much more strongly couple to the 
LUMO than to the HOMO in 2fa, 3fa, 4fa, and 5fa, while the frequency modes 
around 500 cm–1 and the frequency modes around 1600 cm–1 much more strongly 
couple to the HOMO than to the LUMO in 2fa, 3fa, 4fa, and 5fa. In particular, the 
C–C stretching modes around 1600 cm–1 the most strongly couple to the HOMO, 
while the C–C stretching modes around 1400 cm–1 the most strongly couple to the 
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LUMO in 2fa, 3fa, 4fa, and 5fa. This is the reason why the ωln,HOMO values are 
larger than the ωln,LUMO values in polyfluoroacenes. As described above, the 
significant phase patterns difference between the HOMO and the LUMO is the 
main reason why the vibrational modes which play an essential role in the 
electron–phonon interactions in the monocations are significantly different from 
those in the monoanions in 2fa, 3fa, 4fa, and 5fa. Therefore, the detailed 
properties of the vibrational modes and the electronic structures as well as the 
molecular weights are closely related to the frequencies of the vibrational modes 
which play an important role in the electron–phonon interactions in charged 
polyfluoroacenes. 

B. B, N-Substituted Polyacenes 

The ωln,HOMO  (ωln,LUMO) values are estimated to be 1154, 1268, and 1337 
cm–1 (1273, 737, and 449 cm–1) for 1bn, 2bn, and 3bn, respectively. Therefore, the 
ωln,HOMO  and ωln,LUMO values, increase and significantly decrease, respectively, 
with an increase in molecular size from 1bn to 3bn. As in polyacene-series, the 
ωln,HOMO  values are larger than the ωln,LUMO values in large size of B, N-
substituted polyacene-series. And as in 1a, the ωln,LUMO value is slightly larger 
than the ωln,HOMO value in 1bn. 

Let us next compare the calculated results for B, N-substituted polyacene-
series with those for polyacene-series. The differences between the ωln,HOMO and 

ωln,LUMO values become larger with an increase in molecular size in B, N-
substituted polyacene-series, while those in polyacene-series hardly change. This 
can be understood as follows. Let us first look into polyacene-series. [64] The C–
C stretching modes around 1500 cm–1 and the low frequency modes strongly 
couple to the LUMO, and less and more, respectively, strongly couple to the 
LUMO with an increase in molecular size in polyacene-series. On the other hand, 
the C–C stretching modes around 1500 cm–1 strongly couple to the HOMO, and 
less strongly couple to the HOMO with an increase in molecular size in 
polyacene-series. Therefore, both the ωln,LUMO and ωln,HOMO values decrease 
with an increase in molecular size, and the difference between the ωln,HOMO and 

ωln,LUMO values hardly changes in polyacene-series. Let us next look into B, N-
substituted polyacene-series. The B–N stretching modes around 1500 cm–1 and 
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the low frequency modes strongly couple to the LUMO, and less and more, 
respectively, strongly couple to the LUMO with an increase in molecular size in 
B, N-substituted polyacene-series. On the other hand, the B–N stretching modes 
around 1500 cm–1 and the low frequency modes strongly couple to the HOMO, 
and the low frequency modes much less strongly couple to the HOMO than the 
B–N stretching modes around 1500 cm–1 with an increase in molecular size in B, 
N-substituted polyacene-series. This is the reason why the ωln,HOMO and ωln,LUMO 
values, increase and significantly decrease, respectively, with an increase in 
molecular size from 1bn to 3bn, and the reason why the differences between the 
ωln,HOMO  and ωln,LUMO values significantly increase with an increase in molecular 
size in B, N-substituted polyacene-series. Such different properties in the 
ωln,HOMO  and ωln,LUMO values between polyacene-series and B, N-substituted 
polyacene-series may come from the electronegativity perturbation on polyacene-
series. 

The ωln,HOMO values for polyacene-series are larger than those for B, N-
substituted polyacene-series. This is because only the C–C stretching modes 
around 1500 cm–1 play an essential role in the electron–phonon interactions in 
polyacene-series, while the low frequency modes as well as the B–N stretching 
modes around 1500 cm–1 play an important role in the electron–phonon 
interactions in B, N-substituted polyacene-series. The results for the ωln,HOMO  
values in B, N-substituted polyacene-series are not in agreement with a tendency 
in solids, as described above. That is, the electronic structures rather than the 
molecular weights are closely related to the frequencies of the vibrational modes 
which play an important role in the electron–phonon interactions in the 
monocations of B, N-substituted polyacene-series. The ωln,HOMO  value increases 
with an increase in molecular size from 1a to 2a, but the ωln,HOMO value slightly 
decreases with an increase in molecular size from 2a to 6a. On the other hand, the 
ωln,HOMO  values for B, N-substituted polyacene-series increase with an increase in 
molecular size from 1bn to 3bn. But from analogy with the calculated results for 
polyacene-series, the ωln,HOMO values may begin to decrease at the finite size of 
B, N-substituted polyacene-series, according to the general tendency in solids; 
light mass will lead to higher values of ωln . 
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C. Polycyanodienes 

The ωln,HOMO  values are estimated to be 1015, 1002, and 1009 cm–1 in 2cn, 
3cn, and 4cn, respectively. Those are estimated to be 1521, 1501, and 1450 cm–1 
in 2a, 3a, and 4a, respectively. Therefore, the ωln,HOMO values do not significantly 
change with an increase in molecular size in polycyanodienes. Furthermore, the 
ωln,HOMO  values for polycyanodienes are smaller than those for polyacenes. 

The ωln,LUMO values are estimated to be 1179, 1381, 1242, and 1150 cm–1 for 
1cn, 2cn, 3cn, and 4cn, respectively, and those are estimated to be 1390, 1212, 
1023, and 926 cm–1 for 1a, 2a, 3a, and 4a, respectively. Therefore, apart from 1cn, 
the ωln,LUMO values for polyacenes and polycyanodienes decrease with an 
increase in molecular weights. This is in qualitative agreement with a tendency; 
light mass will lead to higher values of ωln . But it should be noted that the 

ωln,LUMO values for polycyanodienes with D2h geometry are larger than those for 
polyacenes with D2h geometry. As described above, the LUMO of polyacenes is 
rather localized on carbon atoms located at the edge part of carbon framework in 
polyacenes, and thus the non-bonding characteristics are significant. Therefore, 
the orbital interactions between two neighboring carbon atoms are weak. On the 
other hand, due to electronegativity perturbation, the LUMO of polycyanodienes 
is delocalized, and the electron density on carbon atoms as well as on nitrogen 
atoms located at the edge part of CN framework is high, and thus the orbital 
interactions between two neighboring carbon and nitrogen atoms and between two 
neighboring carbon atoms in the LUMO are strong. This is the reason why the C–
N and C–C stretching modes around 1500 cm–1 in the monoanions of 
polycyanodienes afford larger electron–phonon coupling constants than the C–C 
stretching modes around 1500 cm–1 in the monoanions of polyacenes, and the 
reason why the ωln,LUMO values for polycyanodienes are larger than those for 
polyacenes. Therefore, the orbital patterns difference between the delocalized 
LUMO in polycyanodienes and the LUMO localized on carbon atoms located at 
the edge part of carbon framework in polyacenes is the main reason why the 
lLUMO  and ωln,LUMO for polycyanodienes are larger than those for polyacenes. 
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D. Summary 

In this chapter, we investigated the logarithmically averaged phonon 
frequencies which measure the frequencies of the vibronic active modes playing 
an essential role in the electron–phonon interactions in polyacenes, 
polyfluoroacenes, B, N-substituted polyacenes, and polycyanodienes. The 
ωln,HOMO  and ωln,LUMO values decrease with an increase in molecular size in 
polyacenes and polyfluoroacenes. This is in qualitative agreement with a tendency 
in conventional superconductors; light mass will lead to higher values of ωln . The 

ωln,HOMO  values for polyfluoroacenes become smaller than those for polyacenes 
by H–F substitutions. The ωln,LUMO values for polyfluoroacenes decrease with an 
increase in molecular size less rapidly than those for polyacenes. The ωln,LUMO 
values for 1fa, 2fa, and 3fa become smaller than those for 1a, 2a, and 3a, by H–F 
substitutions. However, considering the large Mw  values difference between 1fa 
and 1a, 2a and 2fa, and 3a and 3fa, the ωln,LUMO values difference between 
polyacenes and polyfluoroacenes is not large. Furthermore, the ωln,LUMO values 
for 4fa and 5fa are larger than those for 4a and 5a even though the Mw  values for 
4fa and 5fa are larger than those for 4a and 5a, respectively. We can expect that in 
the hydrocarbon molecular systems, the ωln  values would basically decrease by 
substituting hydrogen atoms by heavier atoms. This can be understood from the 
fact that the frequencies of all vibronic active modes in polyacenes downshift by 
H–F substitution. However, considering that the ωln  value for the LUMO rather 
localized on carbon atoms in 4fa and 5fa becomes larger by H–F substitution, we 
can expect that the ωln  value for a molecular orbital localized on carbon atoms 
has a possibility to increase by substituting hydrogen atoms by heavier atoms if 
the phase patterns of the molecular orbital do not significantly change by such 
atomic substitution. Therefore, the detailed properties of the vibrational modes 
and the electronic structures as well as the molecular weights are closely related to 
the frequencies of the vibronic active modes playing an important role in the 
electron–phonon interactions in the monoanions of polyfluoroacenes. The 
ωln,HOMO  values are larger than the ωln,LUMO values in polyfluoroacenes. The 
significant phase patterns difference between the HOMO and LUMO is the main 
reason why the frequencies of vibronic active modes playing an essential role in 
the electron–phonon interactions in the monocations are significantly different 
from those in the monoanions in 2fa, 3fa, 4fa, and 5fa. Therefore, the detailed 
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properties of the vibrational modes and the electronic states as well as the 
molecular weights are closely related to the frequencies of the vibronic active 
modes playing an important role in the electron–phonon interactions in charged 
polyfluoroacenes. The ωln,HOMO and ωln,LUMO values, increase and significantly 
decrease, respectively, with an increase in molecular size in B, N-substituted 
polyacenes. As in polyacenes, the ωln,HOMO  values are larger than the ωln,LUMO 
values in large size of B, N-substituted polyacenes. As in 1a, the ωln,HOMO value 
is slightly larger than the ωln,LUMO value in 1bn. The differences between the 

ωln,HOMO  and ωln,LUMO values become larger with an increase in molecular size in 
B, N-substituted polyacenes, while those in polyacenes hardly change. Such 
different properties in the ωln,HOMO  and ωln,LUMO values between polyacenes and 
B, N-substituted polyacenes may come from the electronegativity perturbation on 
polyacenes. The ωln,HOMO values for polyacenes are larger than those for B, N-
substituted polyacenes. The results for the ωln,HOMO  values in B, N-substituted 
polyacenes are not in agreement with a tendency in solids, as described above. 
That is, the electronic structures rather than the molecular weights are closely 
related to the frequencies of the vibrational modes playing an important role in the 
electron–phonon interactions in the monocations of B, N-substituted polyacenes. 
The ωln,HOMO  values do not significantly change with an increase in molecular 
size in polycyanodienes. Furthermore, the ωln,HOMO values for polycyanodienes 
are smaller than those for polyacenes. Apart from 1cn, the ωln,LUMO values for 
polyacenes and polycyanodienes decrease with an increase in molecular weights. 
The ωln,LUMO values for D2h symmetric polycyanodienes are larger than those for 
D2h symmetric polyacenes. The phase patterns difference between the delocalized 
LUMO in polycyanodienes and LUMO localized on carbon atoms located at the 
edge part of carbon framework in polyacenes is the main reason why the ωln,LUMO 
values for polycyanodienes are larger than those for polyacenes. 

 





 

 

 
 
 
 
 
 

Chapter VIII 
 
 
 

CONCLUDING REMARKS 
 
 
In this book, we discussed the electron–phonon interactions in the charged 

molecular systems such as polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. We estimated the electron–phonon coupling 
constants and the frequencies of the vibronic active modes playing an essential 
role in the electron–phonon interactions. These physical values are essential to 
discuss several physical phenomena such as intramolecular electrical 
conductivity, intermolecular charge transfer, attractive electron–electron 
interactions and Bose–Einstien condensation, and superconductivity, which will 
be discussed in detail in the next review article. Motivated by the possible inverse 
isotope effects in Pd-H, Pd-D, and Pd-T superconductivity, and organic 
superconductivity observed by Saito et al., we discussed how the H–F substitution 
are closely related to the essential characteristics of the electron–phonon 
interactions in these molecules by comparing the calculated results for charged 
polyacenes with those for charged polyfluoroacenes, since fluorine atoms are 
much heavier than D and T atoms, and the phase patterns of the frontier orbitals 
such as the HOMO and LUMO are not expected to be significantly changed. 
Furthermore, we discuss how CC–BN and CC–CN substitutions are closely 
related to the essential characteristics of the electron–phonon interactions in these 
molecules by comparing the calculated results for charged polyacenes with those 
for charged B, N-substituted polyacenes and polycyanodienes, respectively. These 
physical values are essential to discuss the several physical phenomena such as 
intramolecular electrical conductivity, intermolecular charge transfer, attractive 
electron–electron interactions and Bose–Einstien condensation, and 
superconductivity, which will be discussed in detail in the next review article. 
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In this review article, we investigated the electron–phonon interactions in the 
monocations and monoanions of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. The C–C stretching modes around 1500 cm–1 
strongly couple to the HOMO, and the lowest frequency modes and the C–C 
stretching modes around 1500 cm–1 strongly couple to the LUMO in polyacenes. 
The C–C stretching modes around 1500 cm–1 strongly couple to the HOMO and 
LUMO in polyfluoroacenes. The B–N stretching modes around 1500 cm–1 
strongly couple to the HOMO and LUMO in B, N-substituted polyacenes. The C–
C and C–N stretching modes around 1500 cm–1 strongly couple to the HOMO and 
LUMO in polycyanodienes. 

We estimated the total electron–phonon coupling constants in the 
monocations and monoanions of polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. The lHOMO and lLUMO  values decrease with an 
increase in molecular size in polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. In general, we can expect that monocations and 
monoanions, in which number of carriers per atom is larger, affords larger lHOMO 
value. The lHOMO and lLUMO  values for polyfluoroacenes are larger than those for 
polyacenes. The lHOMO values for B, N-substituted polyacenes are larger than 
those for polyacenes. The lLUMO  values for B, N-substituted polyacenes are 
similar to those for polyacenes. The lLUMO  values are larger than the lHOMO values 
in polyacenes, polyfluoroacenes, and B, N-substituted polyacenes. Therefore, 
electron doping rather than hole doping is more effective way to seek for large 
electron–phonon coupling constants in polyacenes, polyfluoroacenes, and B, N-
substituted polyacenes. Both the lHOMO and lLUMO  values for polycyanodienes are 
larger than those for polyacenes. Therefore, CH–CF, CC–BN, and CC–CN atomic 
substitutions are effective way to seek for large lHOMO and lLUMO  values in 
polyacenes. The orbital patterns difference between the LUMO localized on 
carbon atoms located at the edge part of carbon framework in polyacenes and the 
delocalized LUMO in polycyanodienes due to electronegativity perturbation, is 
the main reason why the lLUMO  values for polycyanodienes are much larger than 
those for polyacenes. Strong σ orbital interactions between two neighboring 
carbon atoms and two neighboring carbon and nitrogen atoms and the orbital 
interactions between two neighboring carbon and hydrogen atoms in the HOMO 
of polycyanodienes are the main reason why the lHOMO values for σ-conjugated 
polycyanodienes are much larger than those for π-conjugated polyacenes. The 
lHOMO values are larger than the lLUMO  values in polycyanodienes. Strong σ 
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orbital interactions between two neighboring carbon atoms and two neighboring 
carbon and nitrogen atoms and the orbital interactions between two neighboring 
carbon and hydrogen atoms in the HOMO and the weak π orbital interactions 
between two neighboring carbon atoms and two neighboring carbon and nitrogen 
atoms in the LUMO of polycyanodienes, are the main reason why the lHOMO 
values are larger than the lLUMO  values in polycyanodienes. 

We also investigated the logarithmically averaged phonon frequencies which 
measure the frequencies of the vibronic active modes playing an essential role in the 
electron–phonon interactions in polyacenes, polyfluoroacenes, B, N-substituted 
polyacenes, and polycyanodienes. The ωln,HOMO  and ωln,LUMO values decrease with 
an increase in molecular size in polyacenes and polyfluoroacenes. This is in 
qualitative agreement with a tendency in conventional superconductors; light mass 
will lead to higher values of ωln . The ωln,HOMO  values for polyfluoroacenes become 
smaller than those for polyacenes by H–F substitutions. The ωln,LUMO values for 
polyfluoroacenes decrease with an increase in molecular size less rapidly than those 
for polyacenes. The ωln,LUMO values for 1fa, 2fa, and 3fa become smaller than those 
for 1a, 2a, and 3a, by H–F substitutions. However, considering the large Mw  values 
difference between 1fa and 1a, 2a and 2fa, and 3a and 3fa, the ωln,LUMO values 
difference between polyacenes and polyfluoroacenes is not large. Furthermore, the 
ωln,LUMO values for 4fa and 5fa are larger than those for 4a and 5a even though the 

Mw  values for 4fa and 5fa are larger than those for 4a and 5a, respectively. We can 
expect that in the hydrocarbon molecular systems, the ωln  values would basically 
decrease by substituting hydrogen atoms by heavier atoms. This can be understood 
from the fact that the frequencies of all vibronic active modes in polyacenes 
downshift by H–F substitution. However, considering that the ωln  value for the 
LUMO rather localized on carbon atoms in 4fa and 5fa becomes larger by H–F 
substitution, we can expect that the ωln  value for a molecular orbital localized on 
carbon atoms has a possibility to increase by substituting hydrogen atoms by 
heavier atoms if the phase patterns of the molecular orbital do not significantly 
change by such atomic substitution. Therefore, the detailed properties of the 
vibrational modes and the electronic structures as well as the molecular weights are 
closely related to the frequencies of the vibronic active modes playing an important 
role in the electron–phonon interactions in the monoanions of polyfluoroacenes. 
The ωln,HOMO values are larger than the ωln,LUMO values in polyfluoroacenes. The 
significant phase patterns difference between the HOMO and LUMO is the main 
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reason why the frequencies of vibronic active modes playing an essential role in the 
electron–phonon interactions in the monocations are significantly different from 
those in the monoanions in 2fa, 3fa, 4fa, and 5fa. Therefore, the detailed properties 
of the vibrational modes and the electronic states as well as the molecular weights 
are closely related to the frequencies of the vibronic active modes playing an 
important role in the electron–phonon interactions in charged polyfluoroacenes. The 
ωln,HOMO  and ωln,LUMO values, increase and significantly decrease, respectively, 
with an increase in molecular size in B, N-substituted polyacenes. As in polyacenes, 
the ωln,HOMO values are larger than the ωln,LUMO values in large size of B, N-
substituted polyacenes. As in 1a, the ωln,HOMO value is slightly larger than the 

ωln,LUMO value in 1bn. The differences between the ωln,HOMO and ωln,LUMO values 
become larger with an increase in molecular size in B, N-substituted polyacenes, 
while those in polyacenes hardly change. Such different properties in the ωln,HOMO  
and ωln,LUMO values between polyacenes and B, N-substituted polyacenes may 
come from the electronegativity perturbation on polyacenes. The ωln,HOMO values 
for polyacenes are larger than those for B, N-substituted polyacenes. The results for 
the ωln,HOMO  values in B, N-substituted polyacenes are not in agreement with a 
tendency in solids, as described above. That is, the electronic structures rather than 
the molecular weights are closely related to the frequencies of the vibrational modes 
playing an important role in the electron–phonon interactions in the monocations of 
B, N-substituted polyacenes. The ωln,HOMO values do not significantly change with 
an increase in molecular size in polycyanodienes. Furthermore, the ωln,HOMO values 
for polycyanodienes are smaller than those for polyacenes. Apart from 1cn, the 
ωln,LUMO values for polyacenes and polycyanodienes decrease with an increase in 
molecular weights. The ωln,LUMO values for D2h symmetric polycyanodienes are 
larger than those for D2h symmetric polyacenes. The phase patterns difference 
between the delocalized LUMO in polycyanodienes and LUMO localized on carbon 
atoms located at the edge part of carbon framework in polyacenes is the main reason 
why the ωln,LUMO values for polycyanodienes are larger than those for polyacenes. 

In summary, CH–CF, CC–BN, and CC–CN atomic substitutions are effective 
way to seek for larger lHOMO values, and CH–CF and CC–CN atomic 
substitutions are effective way to seek for larger lLUMO  values in polyacenes.
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