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Foreword

Admittedly, the notion “intelligence or intelligent computing” has been around us
for several decades, implicitly indicating any non-conventional methods of solving
complex system problems such as expert systems and intelligent control techniques
that mimic human skill and replace human operators for automation. Various kinds
of intelligent methods have been suggested, phenomenological or ontological, and
we have been witnessing quite successful applications. On the other hand, “Soft
Computing Techniques” is the concept coined by Lotfi Zadeh, referring to “a set of
approaches of computing which parallels the remarkable ability of the human mind
to reason and learn in an environment of uncertainty, imprecision and partial truth.”
Such a notion is well contrasted with the conventional binary logic based hard com-
puting and has been effectively utilized with the guiding principle of “exploiting
the tolerance for uncertainty, imprecision and partial truth to achieve tractability, ro-
bustness and low solution cost.” The soft computing techniques are often employed
as the technical entities in a tool box with tools being FL, ANN, Rough Set, GA etc.
Based on one’s intuition and experience, an engineer can build and realize human-
like systems by smartly mixing proper technical tools effectively and efficiently in a
wide range of fields. For some time, the soft computing techniques are also referred
to as intelligent computing tools.

Though these intelligent and soft computing techniques have been found to be
very effective in describing and handling relatively simple human-related systems,
we find that the existing theories and related conceptual foundations on soft and in-
telligent techniques need to be further improved and advanced to cope with the very
complex nature of “human,” the crux of the human in the loop system. We observe
that the characteristics of “human”, in view of human robot interaction, for exam-
ple, is time varying, inconsistent, high dimensional, susceptive to noise, ambiguous,
subjective and local. In particular, we find that the notion of “approximation” needs
to be made more precise as we use those soft computing tools in a mixed way.
One of the powerful directions is suggested by those scholars working on “quan-
titative logic.” As a logic that is more mathematical than verbal, the quantitative
logic combines the mathematical logic and the probability computation in a way to
provide a graded approach to many-valued propositional logic and predicate logic
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systems as well explained in a seminal paper by G. J. Wang and H. J. Zhou in Infor-
mation Sciences. I am very glad to learn that this edited volume is intended to in-
clude research results on quantitative logic and other theoretical studies on soft com-
puting, especially including several important theoretical expeditions by renowned
scholars such as G. J.Wang and H. J. Zhou, E. P. Klement, R. Mesiar and E. Pap,
V. Novak, I. Perfilieva, W. K. Ho, D. S. Zhao and W. S. Wee, Paul P. Wang and
C. H. Hsieh, etc.

It has been my honor to review of the volume and comment on this important
contribution to the area of intelligent and soft computing. I am very sure that this
edition will be a valuable addition to your list of references.

Z. Zenn Bien, Ph.D.
Chaired Professor

School of Electrical and Computer Engineering
UNIST, Korea



Preface

This book is the proceedings of the 2nd International Conference on Quantitative
Logic and Soft Computing (QL & SC 2010) from Oct. 22-25, 2010 in Xiamen,
China. The conference proceedings is published by Springer-Verlag (Advances in
Intelligent and Soft Computing, ISSN: 1867-5662).

This year, we have received more than 165 submissions. Each paper has under-
gone a rigorous review process. Only high-quality papers are included. The 2nd In-
ternational Conference on Quantitative Logic and Soft Computing (QL & SC 2010),
built on the success of previous conferences, the QL & QS 2009 (Shanghai, China),
is a major symposium for scientists, engineers and practitioners in China to present
their updated results, ideas, developments and applications in all areas of quanti-
tative logic and soft computing. It aims to strengthen relations between industry
research laboratories and universities, and to create a primary symposium for world
scientists in quantitative logic and soft computing fields as follows:

1) Quantitative Logic.
2) Fuzzy Sets and Systems.
3) Soft Computing.

This book contains 83 papers, divided into five main parts:
In Section I, we have 7 papers on “Keynote Speakers”.
In Section II, we have 24 papers on “Quantitative Logic”.
In Section III, we have 25 papers on “Fuzzy Sets and Systems”.
In Section IV, we have 27 papers on “Soft Computing”.
In addition to the large number of submissions, we are blessed with the presence

of seven renowned keynote speakers and several distinguished panelists and we shall
organize workshops.

On behalf of the Organizing Committee, we appreciate Jimei University and
Shanxi Normal University in China, and International Fuzzy Mathematics Institute
in USA. We are grateful to the supports coming from the international magazines
published by Springer-Verlag GmbH. We are showing gratitude to the members of
the Organizing Committee and the Program Committee for their hard work. We wish
to express our heartfelt appreciation to the keynote and panel speakers, workshop
organizers, session chairs, reviewers, and students. In particular, we are thankful to
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the sponsors of the conference, namely, Xiamen Ropeok Science and Technology
Co., Ltd, Xiamen Smart Technology Development Co., Ltd, Xiamen Feihua En-
vironment Protective Material Co., Ltd., ChinaSoft International Limited and Pay
Seng Koon Mathematics Science Activities Fund. Meanwhile, we thank the pub-
lisher, Springer, for publishing the QL & SC 2010 proceedings as J. Advances in
Intelligent and Soft Computing (AISC). Finally, we appreciated all the authors and
participants for their great contributions that made this conference possible and all
the hard work worthwhile.

October 2010
Xiamen, P.R. China Bing-yuan Cao

Guo-jun Wang
Shui-li Chen
Si-zong Guo
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Abstract. A growing proportion of the aged in population provokes shortage of 
caregivers and restructuring of living spaces. One of the most promising solutions 
is to provide with a smart home environment that ensures independence of users. 
In this paper, we first call attention to the fact that a learning capability of human 
behavior patterns can play a central role in adequate functioning of such systems. 
Specifically, we give an overview of important related studies to illustrate how a 
variety of learning functions can be successfully incorporated into the smart home 
environment. We then present our approaches towards the issues of life-long 
learning and non-supervised learning, which are considered essential aspects of a 
smart home system. The two learning schemes are shown to be satisfactory in 
facilitating independent living over different time scales and with less human 
intervention. Finally, we mention about a prospective model of a future smart 
home.  

Keywords: learning, life-long learning, non-supervised learning, human behavior 
patterns, smart home. 

1   Introduction 

According to the statistical bureau reports of Asian, European, and US [1-4], the 
rate of the aged population has dramatically increased. For example, the expected 
rate amounts to more than 25 percent in Korea, Japan, and Germany, and 20 per-
cent in US, England, and France. The proportion of the aged is growing world-
wide, and it is expected that this will be tripled by 2050 [5].  We are concerned 
about this situation because this may unfold shortage of caregivers and living 
spaces. Note that the elderly suffers from the problem of degenerated motor func-
tions which lead social isolation with affective disorders. To be more specific, the 
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proportion of the aged in Korea is expected to be tripled by 2030, whereas the 
social capability to support them will be doubled [2]. The world population bulle-
tin has reported that “Old-age dependency ratio” (number of people 65 or older 
over number of people ages 20 to 64) is expected to be doubled by 2045 [5]. As a 
result, the percentage of the worldwide population over the age 65 will be doubled 
within three decades; 7.4% in the year 2005 will become 15.2% in the year 2045. 

It appears from the population reports that our society will suffer from the lack 
of young people who are capable of supporting older people. This problem has 
long been tackled by many social groups as well as researchers in the field of 
robotics. As a feasible solution of particular interest, the robotic approaches have 
been coupled with the smart home technologies so as to successfully substitute 
human caregivers with some automated service agents. 

Table 1. List of Well-known Smart Homes 

 
Name Nation 

Level of 
Intelligence 

Web/ 
related works 

1 Adaptive House USA 3 (1)/[7] 
2 Aware Home USA 1 (2) 
3 Ceit Living Lab Austria 1 (3) 
4 Cogknow Europe-wide 1 (4) 
5 community computing Korea 1 (5)/[8] 
6 Context visualization Korea 1 -/[9] 
7 Context-aware unified remocon Korea 1 (6)/[10] 
8 DLF SmartHome UK 1 (7) 
9 Domotics EU 2 (8)/[11] 
10 DOMUS Canada 1 (9)/[12] 
11 Easyliving Room USA 1 -/[13] 
12 Futurelife Haus Swiss 1 (10) 
13 Gator Tech Smart House USA 1 (11)/[14] 
14 Global Village initiative Worldwide 1 (12) 
15 Home Control Center  Finland 1 (13) 
16 Home Depot Smart Home USA 3 (14) 
17 Home Network Korea 1 (15)/[15] 
18 Human Space Korea 1 (16) 
19 ICT-ADI Worldwide 3 (17) 
20 In-HAM Home Lab Belgium 1 (18) 
21 Inhaus-Zentrum in Duisburg Germany 1 (19) 
22 Intelligent Sweet Home Korea 3 (20)/[16] 
23 Intelligent Workplace  USA 1 (21) 
24 IR remocon module-based Smart Home Korea 1 -/[17] 
25 IR-based User Detection System Korea 1 -/[18] 
26 Kompetenzzentrum Smart Environments Germany 1 (22) 
27 Living Tomorrow in Amsterdam Belgium 1 (23) 
28 MARC smart home USA 1 (24)/[19] 
29 Microsoft Home USA 1 (25) 
30 Millennium Homes UK 1 (26)/[20] 
31 MIT house_n USA 1 (27) 
32 MIT smart city USA 1 (28) 
33 NUADU Europewide 1 (29) 



Learning Structure of Human Behavior Patterns in a Smart Home System 3
 

Table 1. (continued) 

34 OSGi based Intelligent Home Korea 1 -/[21] 
35 Robotic Room Japan 3 (30) 
36 Sentient Computing UK 1 (31)/[22] 
37 SerCHo Showroom Germany 1 (32) 
38 Service Differentiation Korea 1 (33)/[23] 
39 Smart Medical Home USA 1 (34) 
40 Smartest Home Netherlands 2 (35) 
41 SmartHOME Germany 1 (36) 
42 STARhome Singapore 2 (37) 
43 Steward Robot Korea 1 (38)/[24] 
44 Telegerontology Spain 1 (39) 
45 The Intelligent Dormitory 2 (iSpace2) UK 3 (40)/[25] 
46 The Smart SoftWareHouse Swiss 3 (41)/[26] 
47 Toyota Dream House PAPI Japan 1 (42) 
48 TRON Intelligent House Japan 1 (42) 
49 ubiHome Korea 2 (43)/[27] 
50 Welfare Techno House Japan 2 (44)/[28] 
51 ZUMA USA 1 (45) 

(The names are listed in the alphabetical order. The references and the website address are indi-
cated by brackets and parentheses, respectively. The website addresses are listed in the Appen-
dix. Each smart home is labeled with ‘level of intelligence’ that indicates whether or not 
equipped with computational intelligence and/or learning capability for human behavior  
patterns.) 

We have examined many smart homes available in the literature/web and have 
listed in Table 1 those studies on well-developed smart homes. In our survey study, 
we have noted with special interest that its realization with advanced intelligence 
has become an issue of common interest worldwide and that the learning capability 
is considered an important function in many recent developments of home for the 
elderly, as opposed to an initial concept that mere addition and arrangement of 
various smart gadgets and devices for home would suffice. In order to pursue this 
perspective, we take a notion of “level of intelligence” into consideration. The level 
1 refers to the case where no particular techniques of computational intelligence are 
considered in the home development, with the level 2 referring to the case where 
some computational intelligence techniques are introduced for understanding of 
human behavior patterns, and the level 3 indicates the case where some form of 
learning or adaptation for human behavior patterns is incorporated. From the table, 
it can be seen that the majority of the systems (i.e., 39 out of 51 cases) do not pos-
sess any notable function of intelligence; they are merely designed to react to the 
user’s request or to execute a preprogrammed procedure. On the other hand, we 
find only seven smart homes have been implemented with some functions of adap-
tation or learning of the user’s behavior patterns. Recall that most of the contents of 
the proactive services require understanding of human minds and intention, some 
of which are possible through observation and analysis of human behaviors and 
gestures. Therefore, in this paper we have put a great deal of emphasis on realiza-
tion of the learning capability for human behavior patterns as the most important 
factor of the automated service agents in a smart home. 
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This paper thus begins with an overview of studies that successfully cover the 
top-ic of human behavior pattern learning (Section 2). We then present in Section 3 
our two approaches toward the issues of life-long learning and non-supervised 
action sequence learning which we think are central for a smart home with a proac-
tive service capability. We then show that these capabilities are satisfactory to 
facilitate independent living over a variety of time scales and with less human in-
tervention. Finally, we give several remarks on a prospective smart home under 
consideration at UNIST. 

2   Understanding of Human Behavior Patterns in a Smart 
Home Environment 

According to an up-to-date brain theory based on the free energy minimization 
principle [29], the first task in a brain’s work flow is to build up a recognition 
model, i.e., to obtain a probability distribution of ‘causes’[30] given a set of  
observations. 

The same principle can be applied to the smart home system. The first step to-
wards learning is to recognize human behavior patterns, and then know their 
‘causes’. It is a necessary process because various activities of a user give rise to a 
multitude of changes in the environment; for example, one of the changes could be 
a change in the position of an object, a change in temperature, or even a change in 
a state of human subject. They are called ‘evidences’ or observations. In a smart 
home environment, what the home management system would do first is to collect 
these evidences, which can be thought of as ‘samples’ from the system’s point of 
view. All these samples that the system has as evidences are considered to arise 
from putative causes. The next step is then to get a model of causes, which is often 
referred to as an inference process, a recognizer, or a classifier. An overview on 
these two processes is given next. 

2.1   Activity Recognition and Its Applications 

A typical operational task of a smart home is to simply detect or recognize activi-
ties of users to provide a proactive service or to monitor them for the purpose of 
health care. In [31], the location information of a user accumulated over time is 
used for estimation. More examples deal with the issue of activity monitoring. In 
[31], a data mining technique has been applied for detection of frequent trajectory 
activity patterns. In [32], a clustering analysis of human activity patterns is done to 
detect, visualize, and interpret human activities. In [33], a Bayesian network dis-
covers relationships between sensor signals and observed human activities. Note 
that recognition of a user’s activity patterns can be applied to various systems, 
including an adaptive phone profile control system [34] or a system that character-
izes behavioral patterns of Alzheimer’s disease patients [35]. 

The fore-mentioned activity recognition capability serves to predict the user’s 
next actions [36]. For example, in [37] is presented a prediction system of re-
quested resources by learning the collective resource allocations and navigation 
patterns of users. Moreover, it can be easily conceived that information of the 
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user’s activity patterns can incorporate an individual preference or the circum-
stances. In the concept “Ubiquitous Robotic Companion”[38,39], the system has 
been designed to recommend appropriate services by taking the circumstances and 
a user preference into account. 

Another line of studies is to utilize the patterns of a user’s behavior to augment 
some functions of E-learning systems; this study reveals that an interactive and 
data-driven approach is crucial for effective education. In the proposed education 
supporter [40], a simple rule is used to analyze habits of learning. In [41], an adap-
tive learning sequence prediction method has been applied to a ubiquitous e-
learning system. In [42], throughout a dynamic assessment the authors have found 
multiple features that are believed to motivate learners. In addition, adaptation and 
lifelong learning issues have been raised. For example, in [43], the system pro-
vides an adaptive learning contents based on learner’s preference and contextual 
environment. Kay has presented a lifelong user model [44] that can support per-
sonalized lifelong learning. 

2.2   Understanding of Irregular Behavior Patterns 

Performance of an activity recognition system is often unsatisfactory, for which 
many argue that the origin of this problematic situation lies in irregularity of hu-
man behavior patterns; for this reason, many researchers have suspected that ap-
plications of conventional rule bases or statistical models may not cope with this 
difficulty. In support of this claim, we give an overview of those studies that deal 
with putative causes of irregularity in human behavior patterns. 

Two factors of uncertainty and emotion are paid particular attention for the ir-
regularity issue. A study in [45] deals with the problem of learning and predicting 
inhabitants’ activities under uncertainty and the presence of incomplete data. An-
other study has asserted that an emotion is an utterly important factor that influ-
ences user’s decision making process [46]; this perspective brings about a success-
ful recommender system. 

The second approach focuses on understanding of exceptional activities, as ex-
emplified in [47]. In [48], a model capable of detecting abnormality in user behav-
ior patterns has been proposed and applied to an access card system. In [49], a 
learning and prediction model of health vitals of a resident has been suggested; the 
proposed model utilized information of exceptional activities to provide a precau-
tion to the residents. In [50], a comprehensive analysis has been conducted using 
22 users' activity recordings in an assisted living environment. By modeling cir-
cadian activity rhythms and observing the deviations in those patterns, the pro-
posed system provides a successful warning service for caregivers. 

3   Life-Long and Non-supervised Learning of Human Behavior 
Patterns in a Smart Home Environment 

We find that most of the previous studies illustrated in Section 2 do not take two 
important issues into consideration: (1) learning over a variety of time scales (i.e., 
time scalability) and (2) learning without intervention (i.e., unsupervised learning 
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capability) [51]. In response to these problems, we have suggested a Life-long 
learning framework [52] and a non-supervised learning framework [53], which is 
intended to adaptively incorporate changing patterns of a user over long time and 
provide a fully automated process of learning sequential actions, respectively. 

3.1   Life-Long Learning of Human Behavior Patterns 

Since a user’s behavior patterns tend to change over time, a system built and im-
plemented a long while ago would not perform satisfactorily in the future time. 
One possible solution may be preserving previously learned knowledge as long as 
it does not contradict the current task [54]. A particular concern is, however, that 
we do not know how fast/slow or how frequently the changes occur. In order for 
the system to learn and adapt to a user’s behavior patterns that change over time, 
one is required to deal with time-varying and non-stationary targets [52] such as 
bio signals, gestures, or moving motions. 

The proposed learning framework has been carefully designed in a way that the 
inductive and the deductive learning process are streamlined. This yields the two-
way information flow diagram as shown in Fig. 1 in which one process engages 
with the other via PFRB (Probabilistic Fuzzy Rule Base [55]) and CDS (Context 
Description Set); PFRB refers to the learning model with parameterized rules, and 
CDS refers to the context of an environment which might change over time. In the 
inductive learning process, the parameters of PFRB and CDS are updated induc-
tively by pairs of I/O data and by environment data. In the deductive learning 
process, the system prunes some of the rules that are determined to be unnecessary 
and grafts new rules to reflect a change in an environment. 

Interestingly enough, one can find some analogy between the proposed process 
and a unified brain theory (recently published in Nature [29]) that accounts for 
human actions, perception, and learning. In the free-energy principle, an iterative 
optimization occurs throughout a two-way process that includes development of 
recognition model by a bottom-up process [56] and development of a generative  

 

 

Fig. 1. Mechanism of Learning Process [52] 
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Fig. 2. Memory Subsystem Architecture [52] 

model by a top-down process [56]. This can be likened to a two-way process with 
inductive learning and deductive learning for the following two reasons: (i) Opti-
mization of one model is conducted given the other model iteratively, and (ii) 
Deductive learning brings about models of ‘causes’ and their parameters are opti-
mized in the inductive learning process. 

Another interesting characteristic of the proposed learning framework is inclu-
sion of memory subsystems. This consists of three units hierarchically: (i) DM 
(Data Memory) with a STM (Short-Term Memory) function, (ii) FM (Feature 
Memory) with a mid-term memory function, and (iii) RM (Relation Memory) with 
a LTM (Long-Term Memory) function. The very first place where the incoming 
information is stored is DM with STM. Next, neuronal activities (or say data in 
FM) may arise from the information in STM and finally be passed to the deeper 
layer called RM. This chain process is likened to the role of Hippocampus in hu-
man brain [57]. 

It is interesting to note by analogy that the proposed learning framework seems 
well to reflect possible action flow of some memory processes in a human brain. 

3.2   Non-supervised Learning of Human Behavior Patterns 

Human behavior patterns can be very complex [58-60] in the sense that the corre-
sponding learning process often could be hampered by unplanned or unscheduled 
actions. Moreover, an automatic discovery of those patterns is required to give a 
support to people with disabilities or with mental problems such as mild dementia. 

The proposed non-supervised learning framework [53] resolves these problems 
by integrating agglomerative clustering technique and uncertainty-based sequence 
learning method. The algorithm first starts to discover a meaningful structure of 
behavior pattern data. In particular, it finds local clusters and then finds optimal 
partitions of clusters such that they maximize the proposed cluster validity index. 
Second, by applying Fuzzy-state Q-learning algorithm (FSQL) the system learns 
action sequences on the basis of the partition sets discovered in the previous process. 

Fig. 3 illustrates how the system learns and process some action patterns of a 
user. We provide a quote from our paper published in [53]: 

Example [53].  Referring to Fig. 3, suppose that our task is to program a service robot that takes 
care of a user named “George”. If the states that the robot observes can be defined by “drinking 
coffee”, “watching TV”, and “having a meal”, then the corresponding action would be inter-
preted as “serving coffee”, “turning on TV”, and “serving a meal”, respectively. Next, suppose 
that each state lies in the space of time and temperature; then George’s patterns of behavior can 
be described in the two dimensional space. By applying AIBFC, we get categorized action sets of 
George’s behavioral pattern, such as “When cold morning, George usually drinks coffee.”, 
“When cold afternoon, George likes to watch television.”, “When hot morning, George likes to 
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watch television.”, and “When hot evening, George usually enjoy a meal.” Next, from the habits 
obtained from George, we are able to make a relation among them. Indeed, this will enable the 
robot to predict what George wants next, based on the previous actions and the corresponding 
values of certainty. As a consequence, serving coffee at 15:00 under a temperature of 5 degree 
Centigrade can be quantified as the linear combination of “serving coffee on cold morning with 
certainty level of 0.2”, “serving coffee on cold afternoon with certainty level of 0.7”, “serving 
coffee on hot morning with certainty level of 0.02”, and “serving coffee on hot afternoon with 
certainty level of 0.08”. 

This study partly shares the view of the Helmholtz machine [56] in that it con-
structs the model of ‘cause’ [29] (i.e., “recognition model” [56]) given the obser-
vations. It can be seen from this perspective that our non-supervised learning 
framework provides an automatic process of developing a sequence recognition 
model whose underlying structure is optimal in terms of class-separability. 

 

Fig. 3. Example of Action Sequence Prediction Mechanism [53] 

In our subsequent study, our learning framework has been applied to a human 
behavior suggestion system for memory impaired persons [61]. Based on the re-
port that regular daily life can alleviate symptoms of a memory loss, we have 
introduced a new feature called “averaged frequency” that accounts for how fre-
quently a user tends to take a certain kind of actions. It turns out that our non-
supervised learning framework that makes use of the averaged frequency feature 
successfully improves performance of the human behavior suggestion system. 

4   Remarks on a Future Smart Home System for the Aged and 
the Disabled 

It is well-known that a prospective smart home for older persons and persons with 
physical disabilities should be able to provide human-robot interaction and hu-
man-friendly services [6], as mentioned in many studies [62]. The future smart 
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home will include human-centered technologies where important technological 
components should provide human-friendly interaction with the user [6]. 

There are several research groups focusing on this issue such as Human Friendly 
Systems Research Group at Intelligent Systems Institute AIST, Japan and our Hu-
man-friendly Welfare-Robotic System Engineering Research Center (HWRS-ERC) 
at KAIST, Korea. The smart home system at HWRS-ERC (see Fig. 4) provides a 
Bluetooth-based health monitoring module, a hand-gesture recognition module, a 
walking assistance, an intelligent wheelchair, a robot coordinator, and a communi-
cation server in a way that their cooperation ensure an daily living without care-
giver’s help. 

The main feature we have intended to incorporate into the system is a Human-
Robot Interaction (HRI) with human-friendliness (see Fig. 5). Taking the physical 
difficulties of the aged and the disabled into account, we claim that the two utterly 
important features of HRI are non-supervised and lifelong learning capability. A 
non-supervised learning capability can bring less intervention, thereby facilitating 
autonomous adaptation in ‘space’. Equally important is a lifelong learning capa-
bility; this enables the system to process information of long-term behavior pat-
terns, thereby facilitating autonomous adaptation in ‘time’. 

The two approaches of life-long learning and non-supervised learning are ex-
pected to be nicely fused in a future smart home. The home system would first 
undergo a non-supervised learning of human behavior patterns and, as this learn-
ing process continues, the accumulated information would be effectively folded by 
the life-long learning process (a bottom-up process with a blend of inductive 
learning and deductive learning) while the prediction could be made by unfolding 
this information (a top-down process). The system that continuously goes through 
this learning and prediction process would finally develop an internal user model, 
which we call “robotic clone.” 

Note that there has been a paradigm shift in a smart home research for the past 
two decades. In the near future, the notion of ‘smart environment’ spans a range 
from a “home” to a “village” or a “city”. The project on “global village” [65] 
serves to illustrate how the system provides large-scale integrated services for 
dependant people. In this new type of a smart home environment, a living space is  

 

 

Fig. 4. Intelligent Sweet Home at KAIST [63,64] 
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Fig. 5. Smart home with human-friendly service capability [6] 

not limited to a single house. On the contrary, it spans a multitude of houses and 
facilities relevant to the user. This raises rather complex issues, such as seamless 
information hand-over and adaptation in changing environment. In such complex 
and dynamic environment, the above-mentioned two types of learning capabilities 
would have a critical role. 

5   Conclusion 

In the paper, an overview of smart home studies is given with particular attention 
to learning functions of human behavior patterns and to the fact that the learning 
functions can be successfully incorporated into a smart home system. The poten-
tial problem in these studies, however, is that most of current smart home systems 
cannot cope with learning of behavior patterns over a variety of time scales while 
with minimum human intervention. As effective remedies, a life-long learning 
framework and a non-supervised learning framework have been suggested. First, 
the previously suggested life-long learning framework combines the inductive and 
the deductive learning process, which resemble development of a recognition 
model via continual top-down and bottom-up processes in a human cortex. Fur-
thermore, the framework becomes more effective by introducing short-term and 
long-term memory whose presence and functions have been biologically verified. 
Second, the non-supervised learning framework brings the special type of a recog-
nition model that learns sequential information. Note that the framework is suit-
able for an automatic service for the elderly and the disabled because the underly-
ing process is gone through with less human intervention. 

The future smart environment will span a range from a home to a village. 
Accordingly, seamless information hand-over and adaptation in changing 
environment will be pertinent to provision of large-scale integrated services. In 
such cases, the above-mentioned two types of learning capabilities can provide 
more effective solutions. 
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Abstract. This paper reports some novel approach on linguistic logic with our 
intention to realize CWW, Computing With Words, via a simple example which 
consists of only five words. As a by product, this simple example of the linguistic 
logical system may serve as a mathematical model which modeling the degree of 
truthfulness in daily usage. The five words set of a linguistic variable modeling the 
degree of truthfulness are; true, nearly true, undecided, nearly false and false. We 
subjectively choose trapezoidal fuzzy numbers as our linguistic truth values in order 
to model our linguistic logic system. Firstly, some natural operations and linguistic 
logic operators are defined to suit our objective of developing a closed linguistic 
variable set. Then the computation of linguistic truth values for this linguistic 
logical system is developed in order to facilitate us to perform the linguistic 
inferences. Properties of these natural operations can be derived accordingly. It is 
perhaps quite rewarding to see numerous linguistic truth relations defined on a 
single linguistic truth set and linguistic implications ended up with numerous 
linguistic truth tables. In addition, the linguistic inferences of generalized modus 
ponens and generalized tollens determined by linguistic compositional rules based 
on the linguistic truth relation and some natural operations are introduced. The 
simple examples of the linguistic inferences of the various generalized tautologies 
are illustrated. Finally, we have proved via a simple dictionary that a closed and self 
consistent linguistic logical system indeed can be constructed and it is possible to 
move a chunk of information as modeled by a fuzzy set to a higher level according 
to the theory of semiotics. These results have shown some promise in realizing the 
appealing theory of CWW. 

Keywords：Linguistic logic; fuzzy number; representation, ordering & ranking of 
fuzzy sets; natural operators; approximated reasoning; computing with words; fuzzy 
relation; semiotics; semantics; truthfulness modeling.  



18 P.P. Wang and C.H. Hsieh
 

1   Introduction 

Truth is a matter of degree, according to Lotfi A. Zadeh [17]. In fuzzy logic, 
everything is or allowed to be a matter of degree. Furthermore, in fuzzy logic 
degrees of truth are allowed to be fuzzy. This paper is intended to investigate a 
somewhat limited notion about the issue of truthfulness and hope to develop some 
pragmatist theory which has utility value in real life situation. However, the 
proposed modeling as well as the investigation of the properties of this model may 
also lead to demonstrate the novel applications of the concept of the 'linguistic 
variables' and its associated CWW, Computing With Words. 

In recent years, we have witnessed a somewhat rapid growth, both in terms of the 
quality and the quantity of the theories and applications, of the fuzzy methodology 
and fuzzy logic. On the application front, the consumer electronics products, 
industrial control processes, bio-medical instrumentations, intelligent information 
systems, operations research, decision support systems, etc. the progress is quite 
prominently displayed in front of us. On the theoretical front, we also have observed 
its impact extended to the basic scientific issues in the sciences of mathematics, 
physics & chemistry, as well as the biological sciences.  

We must say that one important milestone in the technological breakthrough is 
the development of the concept of the "linguistic variables" modeling by Lotfi A. 
Zadeh in his 1973 paper [13]. In this paper, Zadeh's intention is to make the use of 
'word', modeled by a fuzzy set, as the basic building block from which a sentence, a 
paragraph and, eventually, a language can be built upon. Fuzzy logic, more general 
than the set theoretic multi-valued logic, will have linguistic variables assuming 
certain 'linguistic truth value' and our paper is intended to propose those linguistic 
truth values in order to begin the task of constructing a specific language capable of 
modeling the degree of truthfulness concept.  

We propose a very simple language L1 of which there are only five elements, two 
crispy elements false and true, and three remaining elements represented by fuzzy 
sets, nearly true, undecided, and nearly false. Even though L1 is very simple, but this 
language can easily be generalized, if necessary, for some other applications. We 
would like, however, to stress that a more generalized Language Lg can be as 
designated as follows; 

 Lg={li, i=1, 2,..., m} where m is a finite positive integer,  

and, li≠lj, for all i≠j , li belongs to Lg and lj also belongs to Lg. 

The reason for an even very limited language to be very significant can be seen 
as far back in history as 300 B.C., the master classic "The Hsiao Ching", the most 
elemental social and religious concept of Chinese people, has been intentionally 
written using as a small set of words as possible [19]. In fact,it is intended to be used 
for a five years old child only. 
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Language Lg is called linguistic logic, LL, because it is an uncertain logical 
system of which the linguistic truthfulness value itself is a fuzzy set [14]. In [14], 
the frame work, the shell, of so called CWW, Computing With Words, has been 
established by Zadeh. In fact, it is also true that CWW is, ultimately, the goal and 
the realization of the fuzzy logic theory itself. Further more, CWW is necessarily to 
require the consideration of the truth and the deep understanding of the human 
cognitive science. As it turns out, this simple example of language L1 also answers 
the issue of the modeling of truthfulness from philosophical viewpoint [17]. 

The acronym LL has been used to represent the nomenclature of linguistic logic, 
which is an uncertain logical system, where the truth values are fuzzy subsets with 
unit interval designated by the linguistic labels such as true, nearly true, undecided, 
nearly false, etc. The study has shown that the linguistic truth set of LL, Lg, can be 
generated by a context-free grammar [16], with a semantic rule providing a means 
of computing the meaning of each linguistic truth value in Lg as a fuzzy subset over 
[0,1] closed interval. 

We also observe that LL in general is not closed under the classical logical 
operations of negation, conjunction, disjunction as well as implication. The result of 
a natural logical operation on linguistic truth values in Lg would require, in general, 
a so called linguistic approximation of some linguistic truth value. In fact, Rescher 
[12] has listed three distinguished features for linguistic logic as follows; (i) The 
rule of inference whose validity is only approximate rather than being exact. (ii) 
Linguistic truth values expressed in linguistic terms would necessarily depend upon 
the semantic meaning associated with the primary truth value such as true or false, 
as well as their modifiers nearly, about, more or less, etc. (iii) The truth tables now 
become imprecise truth tables! This is due to the difference in linguistic logic as 
compared with those of classical logical systems such as Aristotelian logic [10], 
inductive logic [7], and multiple valued logic with set valued truth-values. 

With recent tremendous advance in brain research, it has become very clear that 
much of the human reasoning is approximate and vague in nature, rather than in precise 
manner. Approximate reasoning [16] can be viewed as a process of finding the 
approximated solution of a system of relational assignment equation, mathematically 
speaking. This process can be equationed as a compositional rule of inference of which 
modus ponens is only a special case. A characteristic feature of approximate reasoning 
is the uncertainty and nonuniqueness of consequents of imprecise premises. Simple 
example of linguistic approximate reasoning is: x is true; if x is true, then y is true; 
therefore y is true, where x, y, and true are linguistic words or statements of linguistic 
logic system. There were considerable and visible research progress on the issue of how 
to handle so called the compositional rule of inference for the linguistic conditional 
inference during the decades of 1970's and 1980's [12]. Lotfi Zadeh & George Klir led 
the discussion, with Mizumoto (1979), Baldwin and Pilsworth (1980), and Hans 
Zimmermann (1982) all contributed to the discussion by proposing different variations 
of solving the problem [13]. 

The breakthrough, or a great leap forward, occurred in 1979 when Zadeh 
introduced the concept of so-called 'approximate reasoning'. The impact of this 
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introduction has been proven to be very significant in several fronts of handling the 
vagueness information, among other applications, the decision making as well as 
industrial process control, to name only a couple here [13]. Importance to solving 
our problem on hand is the representation of the propositions statements by 
assigning the fuzzy sets as truth value to linguistic variables. We are fully aware of 
the rules of inference as in classical logic are based upon various tautologies such as 
modus ponens, modus tollens, and the hypothetical syllogism. These rules of 
inference are now generalized within the framework of the linguistic logic in order 
to introduce the concept of so-called ‘approximate reasoning’ [13]. 

The main tools of reasoning used in the traditional logic are the tautologies [18], 
to name one example here, such as the modus ponens. If x and y are propositions 
(crisp defined), then (x ∧ (x ⇒ y)) ⇒ y or 

 

Premise                    x is true 

 Implication              If x, then y 

 Conclusion               y is true 

 
Lotfi Zadeh further pointed out in 1973 [16] that the classical modus ponens can 

indeed logically extended to now popular ‘generalized modus ponens’ in the similar 
way as that of the crisp propositions being generalized to the linguistic logic 
propositions. 

For example, let A, A’, B, B’ be linguistic logic propositions. Then the 
generalized modus ponens can be expressed by 

 
 Premise                 A’ 

 Implication           If A, then B 

 Conclusion           B’ 

 
One may translate the above symbolic example to a real world example such as 

follows [18]: 
 

                               Premise                     This tomato is very red. 

 Implication If a tomato is red, then the tomato is ripe. 

 Conclusion This tomato is very ripe. 

 
In addition, the operation of the classical approximated reasoning may also be 

extended to the linguistic approximated reasoning in similar manner as that of the 
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modus ponens being extended to the generalized modus ponens. Actually, Lotfi 
Zadeh also suggested the use of the compositional rule of inference for the linguistic 
rule of inference as a operational device in 1973 [16]. For the above example of 
generalized modus ponens, the compositional rule of inference can be obtained by 

 B’ (y) = sup min [A’ (x), R (x, y)], 

                   x∈A 

where for all y ∈ Y, and R (x, y), x ∈ X, y ∈ Y be fuzzy relation in X × Y. 

In this juncture, it is perhaps important to reflect the philosophy of the fuzzy 
methodology in particular and, for that matter, all the methodologies involving 
mathematics of uncertainty in general. When we deal with a situation involving 
vagueness information, we are handling a chunk of data, say, a fuzzy set, and we are 
operating this chunk of data. Ultimately, the operation of the defuzzification can not 
be avoided, just a matter of when are you required to do it. It is also worthy to note 
that there is no unique way to perform such a defuzzification, nor the types of 
defuzzification options are quite open and sometimes quite subjective. In 
approximated reasoning operation, the defuzzification process, once accomplished, 
the results can be very rewarding. In CWW, Computing With Words, the 
defuzzification operation is also a necessary process in order to achieve, as we shall 
see, our main goal.  

Hsieh proposed [6], in 2008, a minimum function, min, and a maximum 
function, max, via an ordering function, in order to obtain an ordering number for 
each linguistic truth value in a linguistic truth set. Hsieh also used the ranking fuzzy 
numbers method aiming at obtaining minimum linguistic truth value and maximum 
linguistic truth value between two linguistic truth values. We feel it is a good idea to 
extend the previous results to designate a new minimum function, MIN, and the 
new maximum function, MAX, now to the n linguistic truthfulness instead of just 
two. Furthermore, a new useful ORDER function, for the purpose of getting an 
order number of the linguistic truth value via a decreasing linguistic truth set, is also 
proposed in this paper. In addition, a linguistic complement function, CMP, for the 
objective of finding the complementary linguistic truth value of a linguistic truth 
value is also presented in this paper. We accomplish this by using the concept of the 
decreasing linguistic truth set, an increasing linguistic truth set, as well as the 
ORDER function just mentioned above. 

Without losing of any generality, we have decided to choose the trapezoidal 
fuzzy number for representing linguistic truth values in the course of linguistic logic 
discussion. We also take the liberty of choosing some specific linguistic truth values 
in a linguistic truth set. GMIR, Graded Mean Integration Representation method of 
Chen et al. [2-5] has been adopted as our method of defuzzification in this paper. So 
far as the GMIR approach is concerned, they use the important degree of each 
corner point of the support set of a fuzzy number. It is interesting to note that some 
so called natural operations of the linguistic logic are defined making the use of the 
above mentioned MIN, MAX, and CMP functions, in order to compute linguistic 
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truth values. We thought this is quite a novelty. Furthermore, a linguistic truth 
relation determined by a linguistic implication defined on a single linguistic truth 
set and the IF−THEN natural operation on conditional linguistic proposition such as 
“If s, then t” is proposed. Moreover, linguistic approximate reasoning under 
generalized modus ponens and generalized modus tollens are introduced by using a 
linguistic truth relation and some natural operations of linguistic logic. 

In the following, representing and ranking of linguistic truth values in linguistic 
logic by using Graded Mean Integration Representation method are discussed. 
MIN, MAX, ORDER, and CMP functions are introduced. AND, OR, NOT, and 
IF−THEN natural operations of linguistic logic defined on the above functions of 
MIN, MAX, ORDER, and CMP are introduced. Some properties of natural 
operations are derived, and are used for computing with linguistic truth values in 
second section. In third section, linguistic truth relation (LTR) determined by a 
linguistic implication is introduced. In fourth section, the compositional rules of 
linguistic approximate reasoning and its simple examples are considered. 
Concluding remarks are discussed in final section. 

2   Linguistic Logic 

This paper is aimed at two goals; to present a model handling the issue of 
truthfulness which has a great deal of applications, and to advance the research on 
CWW, of which the principle of semiotics can be instrumental in implementation of 
the CWW. The centrality of the above two goals, however, is the development of so 
called 'linguistic logic'. This section in intended to document the details which 
ultimately leads to discover and to establish the ‘linguistic logic’ as a respective 
logical system at higher level as compared with the conventional logic system. 
Surprisingly, at least for a somewhat well constructed and simple minded CWW 
operations, we are able to build all essential properties about this linguistic logic. 
Since the discipline of logic is to study the methodology and the principle of 
reasoning in all possible form [9], conventional logic must deal with the 
propositions that are either true or false and nothing in between. Consequently, the 
degree of truthfulness evidently can not be modeled, this is one of the main 
motivation for this very investigation and, as it turns out, would take the principle of 
semiotics by moving a chunk of information to a higher level, namely the linguistic 
logic to accomplish our goal. This is what we shall develop in this section II. In 
addition, as we shall see, the generalized negation will be much more interesting as 
we move to a higher plane! In other words, the conventional logic's negation 
obviously is much more simpler.  

The very notion of CWW, inevitably must invoke linguistic principle and natural 
language theory. No surprise, as we just mentioned, the even more fundamental 
semiotics theory turns out to be very helpful in our development of this section 
which ,to say the least, will test the feasibility of much more difficult task required 
for CWW from the input-output system's viewpoint. We hope this paper is a good 
first step!  
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2.1   Representations for Linguistic Truth Value 

In the course of developing our proposed theory on modeling with the truthfulness 
concept, we must invoke another concept of fuzzy number in the domain of the 
mathematics of uncertainty. Kaufman [8] gives the definition of a fuzzy number that 
a fuzzy number in R is a fuzzy subset of R that is convex and normal. Thus a fuzzy 
number can be considered as a generalization of the interval of confidence. 
Furthermore, a fuzzy number is more or less a subjective datum and it is a valuation, 
rather then a measure as per probability theory. More developments on the theory of 
the fuzzy number can be found, as represented by the works of Dubios and Prade in 
their articles and books [12, 13]. 

One successful application of the concept of linguistic variable can be found in 
the work of Carlsson et al. [1], of which they demonstrated the appealing of using 
linguistic variables in daily management tasks. The real reason behind this success, 
however, is the ability of this approach can indeed handle the vagueness and 
uncertainty which exist in so many places. Furthermore, it is the fuzzy set theory 
which provides a mathematical modeling in order to achieve what we set out to 
accomplish [19]. A linguistic variable in this paper can be regarded as a variable 
whose value is a fuzzy number or a variable whose value is defined in linguistic 
term. 

The truth table in Boolean logic or classical logic can be constructed with ease 
because there are finite numbers of entries. Unfortunately, the truth table can not be 
constructed in general, unless other constraints are imposed upon [18], for the case 
of linguistic logic. Theoretically speaking, there are infinitive entries for linguistic 
logic's truth table of any logical operator. Should we impose the constraint on the 
truth value to be finite number of the fuzzy subsets such as true, nearly truth, 
undecided, nearly false and false, then we will be able to show it is possible to 
construct a truth table for linguistic logic as well. Zadeh has suggested a somewhat 
simplified model for the issue of the degree of truthfulness in 1973 [14], of which he 
has chosen a set of linguistic variables true, false, undecided and unknown for the 
purpose of modeling the degree of the truthfulness. Zadeh's proposal, even though 
quite appealing from the philosophical point of view, but quite difficult when we try 
to model using the mathematics of uncertainty. This is the main reason a different 
set of linguistic variables are proposed here to further the computing with words 
applications.  

Next step of the realization task would be the selection of fuzzy sets for modeling 
our linguistic variables. We have chosen judiciously the trapezoidal fuzzy numbers 
through out this paper because they all satisfy the basic characteristics to be a 
normal fuzzy number. 

Let L be the set with m elements of the truthfulness linguistic variables li, where 
m is a positive integer,   

                                               L = {li, i = 1, 2, …, m}.                                           (1) 
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In addition li is represented by a trapezoidal fuzzy number, and li ≠ lj, for all i ≠ j, 
li and lj ∈ L. 

Furthermore, as mentioned above, we have judiciously chosen L1={true, nearly 
true, undecided, nearly false, false}. The five trapezoidal fuzzy sets have their four 
corners (a1, a2, a3, a4) as follows: true = (1, 1, 1, 1), nearly true = (0.6, 0.7, 0.9, 1), 
undecided = (0.3, 0.4, 0.6, 0.7), nearly false = (0, 0.1, 0.3, 0.4), false = (0, 0, 0, 0). 
All these five fuzzy sets are shown in Fig.1.  

 

   false     nearly false        undecided       nearly true     true

 1            

  0     0.1        0.3   0.4        0.6   0.7        0.9    1     x  

Fig. 1. The linguistic truth values in L1 are represented as trapezoidal fuzzy numbers. 

GMIR, Graded Mean Integration Representation, method was introduced by 
Chen et al. GMIR is based on the integral value of graded mean h-level of a 
generalized fuzzy number to represent a fuzzy number. The philosophy behind this 
proposed method is to adopt the grade as the degree of each point of the support set 
of a fuzzy number. Suppose li is the linguistic value represented by a trapezoidal 
fuzzy number with corner values (a1, a2, a3, a4), then according to GMIR method, 
the representation of li, P(li) can be evaluated by equation (2). 

                                              P(li) = 6
 a2a2a a 4321 +++ .                                              (2) 

Note that equation (2) is consistent for all L1, including the linguistic truth value 
'true' and 'false' with corners values (0,0,0,0) and (1,1,1,1).  

2.2   MIN and MAX Operators of Linguistic Truth Values 

Since the ordering is an important concept in mathematics, we also need this 
ordering information in real world application. This has motivated Chen et al to 
introduce GMIR for ranking fuzzy numbers. Suppose order of l1 and l2 are such, l1 ≥ 
l2, then we can find P(l1) ≥ P(l2) via equation (2). This allows us to find the ranking 
of fuzzy numbers, i.e., their ordering using equation (2). Hence, the defuzzification 
process can then be accomplished [3]. 
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For example, we can get the representation of each linguistic truth value in the 
above L1 by equation (2) respectively as follows. 

 
 P(true ) = 1, P(nearly true) = 0.8, P(undecided) = 0.5, P(nearly false) = 0.2, 
and P(false) = 0. 

Based on the above results, we can find that the ranking order of linguistic truth 
values in L1 as fellows;  

 true > nearly true > undecided > nearly false > false. 

In this section, suppose MIN is denoted as a minimum function, in which we can 
get a minimum linguistic truth value as determined by representations of n 
linguistic truth values by using equation (2), and be expressed as  

                                           lmin = MIN [lj, j = 1, 2, …., n],                                   (3) 

where lmin ∈ {lj, j = 1, 2, …., n} is the minimum linguistic truth value when P (lmin) ≤ 
P (lj), for all lj, j = 1, 2, …., n.  

For example, the minimum linguistic truth value of four linguistic truth values, 
false, nearly false, true, and false, can be obtained, likewise, as follows; 

  lmin = MIN [false, nearly false, true, false]  

= false.  

In addition, in order to find maximum linguistic truth value from n linguistic 
truth values, a maximum function, MAX, is determined by representations of n 
linguistic truth values, and be expressed as 

                                         lmax = MAX [lj, j = 1, 2, …., n],                                    (4) 

where lmax ∈ {lj, j = 1, 2, …., n} is maximum linguistic truth value when P (lmax) ≥ P 
(lj), for all lj, j = 1, 2, …., n.  

For example, the maximum linguistic truth value of five linguistic truth values, 
nearly true, nearly false, true, false, and undecided, can be found, likewise, as 
follows; 

  lmax = MAX [nearly true, nearly false, true, false, undecided]  

= true.  

2.3   Natural Operators for Linguistic Logic 

At this point, we introduce three important linguistic logic operators. It is perhaps 
rewarding to see that the extension of the concept of three operators from classical 
Boolean Logic to those of the linguistic logic. By doing so, we are extending the 
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known classical results to a whole level up! The flavor of semiotic concept hence is 
realized via judiciously chosen constraints in this modeling of the truthfulness. It is 
perhaps interesting to see in the future whether the extension can be even raised up 
yet to another whole level? In this section, assume that a, b, be two linguistic truth 
values in L. Some natural operators of linguistic logic, linguistic logical operators, 
are introduced as follows.  

2.3.1   Natural Operator AND 

Suppose symbol ∧ be denoted to AND natural operation in which it is a binary 
operation, then AND operation of a and b, a AND b or a ∧ b, is given by using the 
above MIN function, equation (3), as follows 

                                                a ∧ b = MIN [a, b].                                            (5) 

For a, b in L1, linguistic truth table of a ∧ b can be obtained by equation (5), and the 

results are summarized in the following Table 1. 

Table 1. The linguistic truth table of a AND b (a ∧ b) 

                   b  

a               

true nearly true undecided nearly false false 

true true nearly true undecided nearly false false 
nearly true nearly true nearly true undecided nearly false false 
undecided undecided undecided undecided nearly false false 
nearly false nearly 

false 
nearly false nearly 

false 
nearly false false 

false false false false false false 

2.3.2   Natural Operator OR 

OR linguistic logical operation, linguistic logical union, of two linguistic truth 
values by using the above MAX function is described in this subsection. Suppose 
symbol ∨ be presented to OR natural operation, then OR natural operation of a and 
b, a OR b or a ∨ b, is given by using the above MAX function as follows; 

                                         a ∨ b = MAX [a, b].                                              (6) 

For a, b in L1, linguistic truth table of a ∨ b can be obtained by equation (6), and the 
results are summarized in the following Table 2. 
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Table 2. The linguistic truth table of a OR b ( a ∨ b) 

a             
b

  true 
nearly 
true 

undecided
nearly 
false 

false 

true true true true true true 
nearly true true nearly 

true 
nearly 
true 

nearly 
true 

nearly true 

undecided true nearly 
true 

undecided undecided undecided 

nearly false true nearly 
true 

undecided nearly 
false 

nearly false 

false true nearly 
true 

undecided nearly 
false 

false 

2.3.3   Natural Operator NOT 

The third operator NOT is somewhat more involved. In order to achieve our 
objective, we must define two novel two-tuples set of which the first tuple is 
linguistic truth variable and the second tuple is its associated ordering index. The 
first such 2-tuples set is a decreasing 2-tuples set, DL, which is shown as follows; 

                                           DL = {( li, i), i = 1, 2, …, m},                                      (7) 

where i is corresponded order number of li in (li, i), i = 1, 2, …, m, and P (li) > P (li+1), 
i = 1, 2, …, m − 1. 

For example, 2-tuples decreasing set for linguistic truth set L1 can now be 
expressed as follows; 

 DL1 = {(true, 1), (nearly true, 2), (undecided, 3), (about false, 4), (false, 5)}. 

Similarly, we can definite the 2-tuples increasing set GL accordingly in the 
following manner; 

                                             GL = {(li, i), i = 1, 2, …, m},                                 (8) 

where i is the corresponded order number of li in (li, i), i = 1, 2, …, m, and P (li) < P 
(li+1), i = 1, 2, …, m − 1. 

For example, the increasing linguistic truth set in terms the degree of the 
truthfulness can be expressed in the following equation. Note that the ordering of 
the ranking reflects increasing and the degree of truthfulness also is increasing.  

 GL1 = {(false, 1), (nearly false, 2), (undecided, 3), (nearly true, 4), (true, 5)}. 

An ordering function, ORDER, is also defined for the purpose of finding the 
correct order of the truth value, say a, as follows:  

k = ORDER (a, DL),                                         (9) 

where k is order number of a in (a, k), and (a, k) ∈ DL. 
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We also define the linguistic complement function, CMP, with the assistance of a 
triple valuation equation .The complement linguistic truth of a can then be 
determined with the help of all three equations (7) ~ (9).  

 Moreover, linguistic complement function, CMP, in which can get complement 
linguistic truth value of linguistic truth value, by using both of the above DL and GL 

set, and ORDER function, equations (7) ~ (9) respectively, is defined as 

                                           a  = CMP (a, DL, GL),                                        (10) 

where a  is complement linguistic truth value of a in L, ( a , k) ∈ GL when  

k = ORDER (a, DL) and a ∈ L.  

For example, assume a  is linguistic complement truth value of a = true in L1, 
then a  can be obtained by using equation (10) on the above DL1 and GL1 as 

 a  = CMP (true, DL1, GL1) = false.                                         

In the following, NOT linguistic logic operation defined by the above CMP 
function is introduced. Suppose symbol ∼ be denoted to NOT natural operation, 
then NOT natural operation of a, NOT a or ∼ a, is expressed as 

                                        ∼ a = CMP (a, DL, GL),                                         (11) 

where a in L. 

For a in L1, we can now complete the linguistic truth table of ∼ a as shown in 
Table 3. 

Table 3. The linguistic truth table of NOT a (∼ a) 

a
 

∼ a 
true false 
nearly true nearly false 
undecided undecided 
nearly false nearly true 
false true 

2.3.4   Natural Operator IF-THEN 

In this section, we introduce IF−THEN linguistic logical operation by using the 
above NOT and OR natural operations. Suppose symbol → be presented to 
IF−THEN natural operation, then IF a THEN b, a → b, is given by 

a → b = ∼ a ∨ b.                                                (12) 
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By the above a → b based on L1, because of the possible combination of a and b 
has 16 items, then we only give the simple part of linguistic truth table of a → b as 
shown in Table 4. 

Table 4. The simple part of linguistic truth table of IF a THEN b (a → b) 

a b ∼ a a → b (∼ a ∨ b) 
true true false true 
true nearly true false nearly true 
true undecided false undecided 
true nearly false false nearly false 
true false false false 

. 

. 
. 
. 

. 

. 
. 
. 

false true true true 
false nearly true true true 
false undecided true true 
false nearly false true true 
false false true true 

Now we have established all four tables as show above. Not surprisingly, we are 
able to find an example which literally moving a novel logically system a whole 
level upward. Hence we can also claim this is indeed is a closed system, or so called 
'grounding' in semiotics jargon.  

2.3.5    Properties of Natural Operations 

In this section, we are able to establish some interesting properties paralleling those 
of classical logic. Only some limited and obvious properties of natural logical 
operations are presented as follows:  

Some properties of our above proposed natural operations are discussed as 
follows. 

1)  a = ∼ (∼ a).                                                                                          (13) 

2)  ∼ (a ∧ b) = ∼ a ∨ ∼ b.                                                                          (14) 

3)  ∼ (a ∨ b) = ∼ a ∧ ∼ b.                                                                          (15) 

4)  (a ∧ b) ∧ c = a ∧ ( b ∧ c).                                                                    (16) 

5)  (a ∨ b) ∨ c = a ∨ (b ∨ c).                                                                     (17) 

6)  (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c).                                                            (18) 

7)  (a ∨ b) ∧ c = (a ∧ c) ∨ ( b ∧ c).                                                           (19) 

By invoking above 4 tables, it is easy to establish more tables as shown in the 
following two tables. Obviously, more, much more truth tables for natural logical 
operations are possible!  
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First, we prove 1) a = ∼ (∼ a) by using the above NOT natural operation, equation 
(11). The linguistic truth table of ∼ (∼ a) is summarized in Table 5. 

Table 5. The linguistic truth table of ∼ (∼ a) 

a ∼ a ∼ (∼ a) 
true false true 
nearly true nearly false nearly true 
undecided undecided undecided 
nearly false nearly true nearly false 
false true false 

Based on the above results in Table 5, we can see that a = ∼ (∼ a), that is, property 
1) is proved. 

Second, property 2) ∼ (a ∧ b) = ∼ a ∨ ∼ b is proved by using the above linguistic 
logical operations of AND, OR, and NOT, equation (5), (6), and (11) respectively. 
Here, we only give the simple part of linguistic truth table of ∼ (a ∧ b) and ∼ a ∨ ∼ b. 
Some results of natural operations are summarized in Table 6. 

By the results in Table 6, we can see that ∼ (a ∧ b) = ∼ a ∨ ∼ b, that is, Property 2) 
is proved. 

Similarly, properties 3) ~ 7) can also be proved by our presented natural 
operations and its linguistic truth tables. 

3   Linguistic Truth Relation by a Linguistic Implication 

3.1   Linguistic Logic Propositions 

With the development of the linguistic logic's truth tables and their properties, now is the 
time for us to move on to develop more theory pertinent to potential applications. By 
doing so, we are in a position to explore the possibility of embarking the important issue 
of CWW, Computing With Words. The fundamental difference between classical 
propositions and linguistic logic propositions is in the range of their truth values. While 
each classical proposition is required to be either true or false, the truth or falsity of 
linguistic logic proposition is a linguistic truth value.  

In this section, we have chosen three simple linguistic logic propositions for 
closer examination; 

1. linguistic logic propositions, 
2. conditional linguistic logic propositions, 
3. compound linguistic logic propositions. 
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Table 6. The linguistic truth table of ∼ (a ∧ b) and ∼ a ∨ ∼ b 

a b ∼ a ∼ b a ∧ b ∼ (a ∧ b) ∼ a ∨ ∼ b 
true true false false true false false 
true nearly true false nearly false nearly true nearly false nearly false 
true undecided false undecided undecided undecided undecided 
true nearly false false nearly true nearly false nearly true nearly true 
true false false true false true true 

. . . . . . . 

. . . . . . . 
false true true false false true true 
false nearly true true nearly false false true true 
false undecided true undecided false true true 
false nearly false true nearly true false true true 
false false true true false true true 

The canonical form of linguistic logic propositions of the first type, p1, is expressed 
by the statement [9] 

 p1: ℵ is F,                                                     (20) 

where ℵ is a variable that takes values n from some universal set N, and F is 
linguistic set on N that represents a linguistic predicate, such as tall, low, expensive, 
and so on. Given a particular value ℵ (say, n), this value belongs to F with 
membership grade F (n). This membership grade is then interpreted as the degree of 
truth, T (p1), of linguistic logic proposition p1. That is, 

  T (p1) = F (n),                                                  (21) 

for each given particular value n of variable ℵ in linguistic proposition p1. This 
means that T is in effect a linguistic truth set, which assigns the membership grade F 
(n) to each value n of variable ℵ. 

To illustrate the introduced concepts, let ℵ be the temperature and give a 
membership function represented, in a given context, the predicate high. Then, 
assuming that all relevant measurement specifications regarding the temperature 
are given, the corresponding linguistic logic proposition, p1, is expressed by the 
statement  

p1:  temperature is high. 

The degree of truth, T (p1), depends on the actual value of the temperature and on 
the given definition of the predicate high. 

In addition, we consider the second type by the canonical form  

 p2:  If x is a, then y is b,                                         (22) 
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where x, y are linguistic logic propositions of the above first type, whose values are 
in L. The degree of truth, T(p2), can be considered by using the IF−THEN linguistic 
logic operation in equation (12) as 

 T(p2) = ∼ a ∨ b,                                                (23) 

where a, b are the degrees of truth of x, y, respectively, and a, b, and T (p2) ∈ L. 
For example, let p2 be a conditional linguistic logic proposition as  

 p2:  If temperature is high is about true, then weather is hot is true, 

then linguistic truth value of p2 in L1, T(p2), is true by using natural operations of 
NOT (~) and OR (∨) in equation (23). 

Furthermore, assume q and r are linguistic logic propositions or conditional 
linguistic logic propositions, the compound linguistic logic proposition of the third 
type, p3, is discussed by the canonical form as following. 

 p3:  q ∗r,                                                      (24) 

where ∗ denotes a linguistic logic operation, for example, AND (equation (5)), OR 
(equation (6)), and so on. The degree of truth, T(p3), can be defined as 

 T (p3) = T (q) ∗ T (r), 

where T(q), T(r) are the degree of truth of q and r, respectively, and T(q), T(r), and T 
(p3) ∈ L. 

For example, let q, r be two linguistic logic propositions as  

 q: tomato is small, 

 r: orange is large. 

Then, the some examples of compound linguistic logic propositions by using the 
above q and r can be expressed by 

 p31:  tomato is small AND orange is large, 

 p32:  tomato is small OR orange is large, 

3.2   Linguistic Implication 

The logic operation of implication is the back bone for approximate reasoning for 
linguistic logic implication just like that of the classical logic approximated 
reasoning. In general, linguistic implication, η, is a function of the form  

 η : L × L → L, 

which for any possible truth values s, t of given linguistic logic propositions x, y, 
respectively, defines the truth value, η (s, t), of the conditional linguistic proposition 
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“if x, then y.” This function should be an extension of the classical implication, x → 
y, from the restricted domain {0, 1} to the full domain [0, 1] of linguistic truth 
values in linguistic logic.  

In classical logic [9], where s, t ∈ {0, 1}, η can be defined in several distinct 
forms. While these forms are equivalent in classical logic, their extensions to 
linguistic logic are not equivalent and result in distinct classes of linguistic 
implications. This fact makes the concept of linguistic implication somewhat 
complicated.  

One method to evaluate the implication operation, in classical logic implication, 
is through the operations of its equivalence such as follows;  

 η (s, t) = s ∨ t, 

where η (s, t) is the truth value of the classical conditional proposition “If s, then t”, 
for all s, t ∈ {0, 1}. This function should be an extension of the classical 
implication, s → t, from the restricted domain {0, 1} to the full domain [0, 1] of 
linguistic truth values in linguistic logic.  

We discover the best way to generalize the implication in linguistic logic 
implication is to use the same equivalence. In this paper, we interpret the 
disjunction and negation as a linguistic logic union and linguistic logic 
complement, respectively. This results in defining η (a, b) in linguistic logic by the 
equation 

                                               η (a, b) = ∼ a ∨ b,                                              (25) 

where a, b are variables whose values are in L, and ∨ and ∼ denote OR natural 
operation in equation (6) and NOT natural operation in equation (11), respectively. 

For example, assume that η (a, b) = ∼ a ∨ b be a linguistic implication defined on 
L1 × L1 in which a and b are in L1. Then, the results of η (a, b) are shown in Table 7. 

Table 7. The results of η (a, b) = ∼ a ∨ b 

a                  b true nearly true undecided nearly false false 
true true nearly true undecided nearly false false 
nearly true true nearly true undecided nearly false nearly false 
undecided true nearly true undecided undecided undecided 
nearly false true nearly true nearly true nearly true nearly true 
false true true true true true 

 
The above linguistic implication is obtained by generalized the implication 

operator of classical logic as mentioned above. It is quite amazing that Table 7 
reduces to the same entries as that of the classical logic implications should we 
limited a and b to only truth values to only to true and false! Identifying various 
properties of the classical implication and generalizing them appropriately leads to 
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the following properties, which are viewed as reasonable axioms of our above 
linguistic implication, η (a, b). 

 
Axiom 1.  a1 ≤ b2 implies η (a1, b) ≥ η (a2, b) (monotonicity in first argument). 
Axiom 2.  b1 ≤ b2 implies η (a, b1) ≥ η (a, b2) (monotonicity in second argument). 
Axiom 3.  η (false, b) = true (dominance of falsity). 
Axiom 4.  η (true, b) = b (neutrality of truth). 
Axiom 5.  η (a1, η (a2, b)) ≥ η (a2, η (a1, b)) (exchange property). 
Axiom 6.  η is a continuous function (continuity). 

3.3   Linguistic Truth Relation 

A crisp relation represents the presence or absence of association, interaction or 
interconnectedness between the elements of two or more sets. The concept can be 
generalized to allow for various degree or strengths of association or interaction 
between elements. Degrees of association can be represented by membership grades 
in a fuzzy relation in the same way as degrees of set membership are represented in 
the fuzzy set. 

In fact, just as the crisp set can be viewed as a restricted case of the more general 
fuzzy set concept, the crisp relation can be considered to be a restricted case of the 
fuzzy relation.  Fuzzy relations are fuzzy subsets of X × Y, that is, mappings from X 
→ Y. It has been studied by a number of authors, in particular by Zadeh, Kaufmann, 
and Rosenfeld. Applications of fuzzy relations are widespread and important.  

Binary relations have a special significance among n-dimensional relations since 
they are, in some sense, generalized mathematical functions. Contrary to function 
from X to Y, binary relation R(X, Y) may assign to each element of X two or more 
elements of Y.  

In addition to defining a binary fuzzy relation that exists between two different 
fuzzy sets, it is also possible to define a fuzzy binary relation among the elements of 
a single fuzzy set X. A binary fuzzy relation of this type can be denoted by R(X, X) 
or R(X

2
) and is a subset of X × X = X

2
. 

Ordinary fuzzy binary relations (with the valuation set [0, 1]) can obviously be 
extended to binary linguistic logic relations (with a linguistic truth set) in the same 
way as fuzzy sets are extended to linguistic truth sets.  

In the following, the binary linguistic truth relation defined on a linguistic 
implication will be discussed on linguistic condition propositions. Let LTR (a, b), η 
(a, b) be linguistic truth relation and linguistic implication defined on L × L where a, 
b are variables whose values are in L, respectively. 

Then the linguistic truth relation based on the linguistic implication can be 
determined for a, b ∈ L by the equation  

                                             LTR (a, b) = η (a, b).                                         (26) 

From equation (26) and the results of the above η (a, b) in Table 7, we can see 
that LTR is irreflexive, asymmetric, and nontransitive. 
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3.4   Linguistic Approximated Reasoning [LAR] 

It is important to recall our original assumption at very outset to be a very limited set 
of words for our language. Further assumption by choosing the fuzzy sets 
judiciously allow this language to be a close set in the sense there are five words 
exactly. Hence, we have a well grounded semiotics system with only finite words. 
Also, we are able to construct a well behaved linguistic logic system at the first 
place. Natural language in general, in the sense of Noam Chomsky's theory, the 
words can be infinitive and with a grammar. CWW or Fuzzy Logic with limited 
words already finds realization or practical usage in industry [11] at present. Hence 
this very limited linguistic logic system with only five words may play a very useful 
role as a model for truthfulness may have its niche in application in the real world. 

In this section, we will restrict our consideration to generalized modus ponens 
and generalized modus tollens. For a generalized modus ponens case, we first 
introduce linguistic approximation reasoning under conditional linguistic logic 
propositions by using the above linguistic truth relation, equation (26), and some 
natural operations of linguistic logic. 

For example, let x, y be linguistic logic propositions, and a, b, a’, b’ be linguistic 
truth values in L. Then the generalized modus ponens can be expressed by 

 Premise  x is a’ 

 Implication If x is a, then y is b 

 Conclusion y is b’ 

Assume that conditional linguistic proposition p of the form is given by 

 p:  If x is a , then y is b, 

where x, y be linguistic logic propositions, a and b be the linguistic truth values of x 
and y in L, respectively. Let the form “x is a’,” be a premise, and we then want to 
make a conclusion in the form “y is b’,” for a’, b’ ∈ L. 

Assume that LTR is a linguistic truth relation defined on L × L, and determined 
by the linguistic implication in equation (26), then if LTR and a’ are given, we can 
obtain b’ by compositional rule of linguistic inference as 

                                           b’ = MIN (a’, LTR (a, b)),                                   (27) 

where MIN is a minimum function in equation (3). 
In this linguistic inference, we can see that the generalized modus ponens 

becomes the classical modus ponens when the linguistic truth set is crisp, L = {true, 
false}. 

For example, assume that conditional linguistic proposition “If x is a, then y is b” 
is given, where a = true and b = true in L1. Then, given a premise expressed by the 
linguistic proposition “x is a’,” where a’ = nearly true, we want to use the 
generalized modus ponens to derive a conclusion in the form “y is b’.” 
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By equation (26) and the results of the linguistic implication, η (a, b) in the 
above Table 7, the linguistic truth relation LTR defined on L1 × L1 can be obtained. 
Then, b’ can be obtained by the compositional rule of linguistic inference in 
equation (27),  

 b’ = MIN (nearly true, LTR (true, true)) 

 = MIN (nearly true, true) 

 = nearly true.  

In addition, another linguistic inference rule, which is a generalized modus 
tollens, is expressed by the form 

 
 Premise  y is b’ 

 Implication If x is a, then y is b 

 Conclusion x is a’ 
 
Then, compositional rule of linguistic inference of this type can be given 

 a’ = MIN (b’, LTR (a, b)).                                        (28) 

In this linguistic inference, we can see that the generalized modus ponens 
becomes the classical modus ponens when the linguistic truth set is crisp, L = {true, 
false}. 

For example, assume that conditional linguistic proposition “If x is a, then y is b” 
is given, where a = true and b = true in L1. Then, given a premise expressed by the 
linguistic proposition “y is b’,” where b’ = false, we want to use the generalized 
modus ponens to derive a conclusion in the form “x is a’.” 

By the same above way, a’ can be obtained by the compositional rule of 
linguistic inference in equation (28),  

 a’ = MIN (false, LTR (a, b)) 

 = MIN (false, true) 

    = false. 

Once again, we would like to stress the reason the approximated reasoning can 
be carried out neatly and orderly in this paper is due to our restricted and closed 
system of a set of finite words of 5 in our dictionary. The approximated reasoning in 
the wide sense necessarily is expected to deal to many uncertainty situation of 
which the system is expected to handle new words and new situation. Natural 
language inevitably must be evolutionary! So called CWW, in general is expected 
to perform difficulty situation under uncertainty environment to be robust. As one 
can surmise, it is a long way to achieve these noble goals. 
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4   Concluding Remarks 

The work presented in this paper has been motivated primarily by Zadeh's idea of 
linguistic variables intended to provide rigorous mathematical modeling of natural 
language, approximated reasoning and CWW, Computing With Words [15-16, 
18-19]. We must understand the magnitude of influence should these idea can 
indeed be successfully being carried out with huge potential applications in 
biological science, social science and the like [16, 19]. The potential of possible 
applications of these theory, especially the approximated reasoning in decision 
making, which in term in the areas such as the managements, operations research 
and system engineering [1, 15] indeed can be immensely important! 

The immediately goals of this paper have been two folds: (i) The modeling of 
truthfulness which is badly needed in pragmatic applications. (ii) To test the idea of 
semiotics by moving the handling of a chunk of information to a higher level by 
way of fuzzy set concept. We feel we have achieved our objective with a somewhat 
limited assumed model with only five words. In the meantime, some already 
published works, [2, 4, 5], have facilitated our further applications of their results. 
Specifically, we have accomplished the following three subgoals: (i) Some natural 
operations based on computing with linguistic truth values are used to process 
linguistic approximate reasoning and linguistic logic. (ii) The linguistic truth 
relation determined by the linguistic implication whose some axioms are viewed as 
reasonable properties is irreflexive, asymmetric, and nontransitive. (iii) The simple 
linguistic compositional rules applied to the linguistic inferences of generalized 
modus ponens and generalized modus tollens on conditional linguistic propositions, 
equation (27) and (28) respectively, are defined on the linguistic truth relation and 
some natural operations. 

CWW is a huge and ambitious goal which obviously will take forever long 
period of time to reach a satisfactory results because it inevitably will involve the 
same struggle as those natural language and linguistic researchers have had done 
over the centuries long endeavor! Semantics issues alone would a huge obstacle to 
overcome. The novel challenge here is to have CWW operate like a specialized 
computer with natural language inputs and outputs. 

The realistic immediate future research would be the linguistic inference of 
generalized hypothetical syllogism which is an interesting research topic to explore. 
In that capacity, linguistic logic ought to be studied via the compound linguistic 
truth relations. After we have accomplished these immediate goals, then the power 
of CWW as applied to business decision making, management with humanistic 
flavor artificial intelligence, even the natural language applications to social 
sciences such as law, income tax return, etc. can be seen. When that day come, the 
significance of the urging in further development of the mathematics of uncertainty 
will be transparently clear. 
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(vertical representation [50] of F), the probability P̃(F) was defined by the standard
Lebesgue integral

P̃(F) =
∫

X
µF dP. (1)

This concept, which has been investigated extensively and generalized in [5, 6, 7,
30, 32, 34], has some limitations because of the (σ-)additivity of the underlying
probability measure P.

In [66], the horizontal representation [50] by means of the level sets (Ft)t∈[0,1] of
a fuzzy subset F of X , where

Ft = {x ∈ X | µF(x) ≥ t}, (2)

and the Sugeno integral based on some continuous monotone set function (see (4)
below) were used to measure the fuzzy set F . It was shown (see, e.g., [4, 11, 19,
23, 49, 53, 55]) that this approach can be extended to rather general monotone set
functions.

The situation is similar for the Choquet integral (see (3) below) [4, 10, 19, 62,
69, 70] which is based on not necessarily additive measures (capacities) and on
level sets of the integrand. Moreover, the Choquet integral covers also the classical
Lebesgue integral. As a consequence, the probability of a fuzzy event (1) can also
be obtained using a Choquet integral. A horizontal approach to integration can also
be found in [40, Chapter 4], leading again to the Choquet integral.

For both the Choquet and the Sugeno integral, the horizontal representation (2) of
a fuzzy subset F of X can be readily extended to arbitrary non-negative measurable
functions. Moreover, this horizontal approach gives some freedom in the choice of
the character of the underlying measure. On the other hand, the Choquet integral is
based on the standard arithmetic operations addition and multiplication, implying
the comonotone additivity for each Choquet integral-based aggregation. Since the
Sugeno integral is based on the lattice operations join and meet, the corresponding
aggregation is necessarily join- and meet-homogeneous. However, not all aggrega-
tion processes in engineering and social choice are comonotone additive or join-
or meet-homogeneous. If such aggregations should be done by some integral, other
types of integral different from the Choquet and the Sugeno integral should be at
hand.

Here we survey the concept of universal integrals acting on the interval [0,∞] and
generalizing both the Choquet and the Sugeno integral, which were inspired by the
horizontal approach to integration (for more details see [38]). These integrals can
be defined on an arbitrary measurable space (X ,A), they are based on an arbitrary
monotone measure m : A → [0,∞], and they can be applied to arbitrary measurable
functions f : X → [0,∞] using their level sets.

For us, a monotone measure m on a measurable space (X ,A) is a function
m : A → [0,∞] satisfying m( /0) = 0, m(X) > 0, and m(A) ≤ m(B) whenever A ⊆ B.
Note that a monotone measure is not necessarily (σ-)additive. This concept goes
back to M. Sugeno [66] (where also the continuity of the measures was required).
To be precise, normed monotone measures on (X ,A), i.e., monotone measures



A Nonlinear Integral Which Generalizes Both the Choquet and the Sugeno Integral 41

satisfying m(X) = 1, are also called fuzzy measures [19, 66, 70, 71] or capaci-
ties [19] or (monotone) games [2, 7], depending on the context. Measurable func-
tions from X to [0,1] can be considered as (membership functions of) fuzzy events
in (X ,A) [29, 30, 31, 66, 70, 75]. Accordingly, Sugeno and Choquet integrals on the
scale [0,1] are often called fuzzy integrals [19, 47] (see also [37]). Extensions of
these integrals to functions whose range is a bipolar scale (e.g., the interval [−1,1]
or the whole real line R) exist (see, e.g., [16]).

Sugeno and Choquet integrals proved to be useful in several applications (for an
overview see [17]), notably in some problems of game theory and multicriteria deci-
sion making, where the score vectors describing the single alternatives are modeled
by fuzzy subsets of the set of all criteria, and the monotone measures quantify the
weight of sets of criteria [13,15,19,22,57,58,73]. Other applications concern aggre-
gation operators [9, 42, 43] as well as pattern recognition and classification [20, 28]
and information theory [41]. A particularly popular example of a Sugeno integral
is the so-called Hirsch index (h-index) [68] which measures the cumulative impact
of a researcher’s output by looking at the amount of citation his or her work has
received.

The fact that both the Sugeno and the Choquet integral are in a close relationship
to aggregation functions is well-known. To give a recent example, in [21] the authors
write about the Sugeno and the Choquet integral:

“Their mathematical properties as aggregation functions have been studied
extensively [. . . ], and it is known that many classical aggregation functions
are particular cases of these so-called fuzzy integrals, e.g., the weighted
arithmetic mean, ordered weighted averages (OWA), weighted minimum
and maximum, etc.”

2 Universal Integrals

For a fixed measurable space (X ,A), i.e., a non-empty set X equipped with a σ-
algebra A , recall that a function f : X → [0,∞] is called A-measurable if, for each
B ∈ B([0,∞]), the σ-algebra of Borel subsets of [0,∞], the preimage f−1(B) is an
element of A . We shall use the following notions:

Definition 1. Let (X ,A) be a measurable space.

(i) F (X ,A) denotes the set of all A-measurable functions f : X → [0,∞];
(ii) for each number a ∈ ]0,∞], M (X ,A)

a denotes the set of all monotone measures
satisfying m(X) = a, and we put

M (X ,A) =
⋃

a∈]0,∞]

M (X ,A)
a .

Each non-decreasing function H : F (X ,A) → [0,∞] with H(0) = 0 is called an ag-
gregation function on F (X ,A) (compare [9,18], in particular [8]). Which aggregation
function “deserves” to be called an integral, this is a classical and still controversial
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question. We give three examples of such functions which are known and used as
integrals.

The Choquet [10], Sugeno [66] and Shilkret [61] integrals (see also [4, 54]), re-
spectively, are given, for any measurable space (X ,A), for any measurable function
f ∈ F (X ,A) and for any monotone measure m ∈ M (X ,A), by

Ch(m, f ) =
∫ ∞

0
m({ f ≥ t})dt, (3)

Su(m, f ) = sup{min(t,m({ f ≥ t})) | t ∈ [0,∞]}, (4)

Sh(m, f ) = sup{t ·m({ f ≥ t}) | t ∈ [0,∞]}, (5)

where the convention 0 ·∞= 0 is adopted whenever necessary.
Independently of whatever measurable space (X ,A) is actually chosen, all these

integrals map M (X ,A)×F (X ,A) into [0,∞] and, fixing an arbitrary m ∈ M (X ,A), they
are aggregation functions on F (X ,A). Moreover, fixing an arbitrary f ∈ F (X ,A), they
are non-decreasing functions from M (X ,A) into [0,∞].

Let S be the class of all measurable spaces, and put

D[0,∞] =
⋃

(X ,A)∈S

M (X ,A)×F (X ,A).

Each of the integrals mentioned in (3)–(5) maps D[0,∞] into [0,∞] and is non-
decreasing in each coordinate.

For the definition of our integral we shall need a pseudo-multiplication (men-
tioned first in [67]). Note that pseudo-multiplications, in general, are neither asso-
ciative nor commutative.

A function ⊗ : [0,∞]2 → [0,∞] is called a pseudo-multiplication if it satisfies the
following properties:

(i) ⊗ is non-decreasing in each component, i.e., for all a1,a2,b1,b2 ∈ [0,∞] with
a1 ≤ a2 and b1 ≤ b2 we have a1 ⊗b1 ≤ a2 ⊗b2;

(ii) 0 is an annihilator of ⊗, i.e., for all a ∈ [0,∞] we have a⊗0 = 0⊗a = 0;
(iii)⊗ has a neutral element different from 0, i.e., there exists an e ∈ ]0,∞] such that,

for all a ∈ [0,∞], we have a⊗ e = e⊗a = a.

All three integrals mentioned in (3)–(5) fulfill the equality I(m1, f1) = I(m2, f2)
whenever the pairs (m1, f1),(m2, f2) ∈ D[0,∞] satisfy, for all t ∈ ]0,∞],

m1({ f1 ≥ t}) = m2({ f2 ≥ t}). (6)

Therefore, the following equivalence relation on the class D[0,∞] makes sense in our

context: two pairs (m1, f1)∈M (X1,A1)×F (X1,A1) and (m2, f2)∈M (X2,A2)×F (X2,A2)

are called integral equivalent (in symbols (m1, f1) ∼ (m2, f2)) if they satisfy prop-
erty (6).

The integrals given in (3)–(5) do not distinguish between integral equivalent
pairs. This observation has motivated us to take the indistinguishability of integral
equivalent pairs as an axiom for our integrals.
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We also require universality of the integral, in the sense that it can be defined
on any measurable space (X ,A). Therefore we will use the name universal integral
in what follows. Summarizing, this led to the following axiomatic approach for
universal integrals:

Definition 2. A function I : D[0,∞] → [0,∞] is called a universal integral if the fol-
lowing axioms hold:

(I1) For any measurable space (X ,A), the restriction of the function I to M (X ,A) ×
F (X ,A) is non-decreasing in each coordinate;

(I2) there exists a pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] such that for all (m,c ·
1A) ∈ D[0,∞]

I(m,c ·1A) = c⊗m(A);

(I3) for all integral equivalent pairs (m1, f1), (m2, f2) ∈ D[0,∞] we have

I(m1, f1) = I(m2, f2).

The following observations are immediate consequences of Definition 2. In partic-
ular, axioms (I1)–(I3) have rather natural interpretations.

(i) All three integrals mentioned in (3)–(5) are universal integrals in the sense of
Definition 2; the underlying pseudo-multiplication ⊗ is the standard product
(with neutral element 1) in the case of the Choquet and the Shilkret integral,
while ⊗ is the minimum (with neutral element ∞) for the Sugeno integral.

(ii) Axiom (I1) simply requires the integral not to decrease if the integrand and/or
the underlying monotone measure are replaced by a greater one.

(iii) Axiom (I2) is a kind of “truth functionality” (as it is known in propositional
logic) adopted to the case of integrals: it means that for a function c · 1A : X →
[0,∞] (where 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise), the integral of c ·1A

only depends on the two numbers c and m(A) and not on the underlying space
(X ,A).
The fact that e is a left neutral element of ⊗ allows us to reconstruct the under-
lying monotone measure m from I via m(A) = I(m,e ·1A). That e is also a right
neutral element of⊗ implies that I is idempotent in the sense that I(m,c ·1X ) = c,
regardless of the measurable space (X ,A) ∈ S and the monotone measure m un-
der consideration.

(iv)Finally, axiom (I3) guarantees that the integral does not distinguish between
integral equivalent pairs.

(v) Due to axiom (I3), for each universal integral I and for each pair (m, f ) ∈ D[0,∞],

the value I(m, f ) depends only on the function h(m, f ) : ]0,∞] → [0,∞] given by

h(m, f )(x) = m({ f ≥ x}).

Note that, for each (m, f ) ∈ D[0,∞], the function h(m, f ) is non-increasing and thus
Borel measurable.

Denote by H the subset of all non-increasing functions from F (]0,∞],B(]0,∞]). The
proof of the following characterization can be found in [38].
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Proposition 1. A function I : D[0,∞] → [0,∞] is a universal integral related to some
pseudo-multiplication ⊗ if and only if there is a function J : H → [0,∞] satisfying
the following conditions:

(J1) J is non-decreasing;
(J2) J(d ·1]0,c]) = c⊗d for all c,d ∈ [0,∞] ;
(J3) I(m, f ) = J(h(m, f )) for all (m, f ) ∈ D[0,∞].

An approach to universal integrals similar to Proposition 1 can be traced back
to [64], compare also [36]. The following is an abstract example of a universal in-
tegral (which is neither of the Choquet nor Sugeno nor Shilkret type) and illustrates
the interrelationship between the functions I, ⊗, and J: let I : D[0,∞] → [0,∞] be
given by

I(m, f ) = sup
{

t·m({ f≥t})
t+m({ f≥t})

∣∣∣ t ∈ ]0,∞]
}
.

Then I is a universal integral. Moreover, we have

I(m,c ·1A) = c·m(A)
c+m(A) ,

i.e., the underlying pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] (with neutral ele-
ment ∞) is given by a⊗b = a·b

a+b , and the function J : H → [0,∞] by

J(h) = sup
{

t·h(t)
t+h(t)

∣∣∣ t ∈ ]0,∞]
}
.

Note that this universal integral is neither comonotone additive nor join- nor meet-
homogeneous.

All considerations above can be isomorphically transformed, replacing the inter-
val [0,∞] (which was chosen here because of its generality) by an interval [0,b] with
b ∈ ]0,∞[ (compare the approach described in [4]). When restricting our considera-
tion to the interval [0,1] (i.e., b = 1), an interesting model for subjective evaluation
proposed in [26] is based on a kind of integral which covers both the Choquet and
the Sugeno integral. This integral is known as Imaoka integral and it fits into our
framework of universal integrals as given in Definition 2, and the corresponding
pseudo-multiplication ⊗ is a member of the Frank family of t-norms [14].

3 A Construction Method

For a given pseudo-multiplication ⊗ on [0,∞] , we suppose the existence of a
pseudo-addition ⊕ : [0,∞]2 → [0,∞] which is continuous, associative, non-decrea-
sing and has 0 as neutral element (then the commutativity of ⊕ follows, see [35]),
and which is left-distributive with respect to ⊗, i.e., for all a,b,c ∈ [0,∞] we have
(a⊕b)⊗ c = (a⊗ c)⊕ (b⊗ c). The pair (⊕,⊗) is then called an integral operation
pair.

Note that similar operations for the construction of an integral were considered in
[25,52,67], but for the vertical representation of functions. Therefore, these integrals
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are limited to ⊕-additive measures only, and they do not fit into our framework of
universal integrals.

For each measurable space (X ,A) and for each simple function s ∈ F (X ,A), i.e.,
s has finite range Ran(s) = {a1,a2, . . . ,an} where a1 < a2 < · · · < an, using the
notations Ai = {s ≥ ai}, a0 = 0, and bi = inf{c ∈ [0,∞] | ai−1 ⊕ c = ai} we have the
following unique representation:

s =
n⊕

i=1

bi ·1Ai . (7)

We denote the set of all simple functions in F (X ,A) by F (X ,A)
simple .

Using representation (7) for a function s ∈ F (X ,A)
simple , note that the continuity of ⊕

implies that ai−1⊕bi = ai for each i ∈ {1, . . . ,n}. By induction and the associativity
of ⊕ we get, for each j ∈ {1, . . . ,n− 1} and r ∈ {1, . . . ,n− j}, a j−1 ⊕ b j ⊕ ·· · ⊕
b j+r = a j+r, and the monotonicity and the continuity of ⊕ imply

b j ⊕·· ·⊕b j+r = inf{c ∈ [0,∞] | a j−1 ⊕ c = a j+r}.

In analogy to the Lebesgue integral, for each measurable space (X ,A) and for

each monotone measure m on (X ,A) let Isimple
⊕,⊗ : M (X ,A) ×F (X ,A)

simple → [0,∞] be the
function given by

Isimple
⊕,⊗

(
m,

n⊕
i=1

bi ·1Ai

)
=

n⊕
i=1

bi ⊗m(Ai). (8)

Note that for a simple function s ∈ F (X ,A)
simple there can be several representations

s =
k⊕

j=1

c j ·1Cj ,

where all c j are nonnegative and the measurable sets C1, . . . ,Ck form a (not necessar-
ily strictly) decreasing chain. Such representations are called comonotone represen-
tations since the functions c1 ·1C1 , . . . ,ck ·1Ck are pairwise comonotone. A comono-
tone representation (7) has a minimal number of summands. Because of [4], for each
comonotone representation of s and for each monotone measure m ∈ M X ,A we get

k⊕
j=1

c j ⊗m(Cj) =
n⊕

i=1

bi ⊗m(Ai).

This fact implies the monotonicity of Isimple
⊕,⊗ on F (X ,A)

simple .

If the underlying set X is finite (e.g., a set of criteria), then each f ∈ F (X ,A)

is simple and, therefore, Isimple
⊕,⊗ is a well-defined universal integral in this context.

Note that this is the case in the majority of applications in engineering and social
choice. The following proposition discusses the general case, introducing a universal
integral on an arbitrary measurable space (X ,A); its proof can be found in [38].
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Proposition 2. Let (⊕,⊗) be an arbitrary integral operation pair. The function
I⊕,⊗ : D[0,∞] → [0,∞] given by

I⊕,⊗(m, f ) = sup{Isimple
⊕,⊗ (µ,s) | (µ,s) ∈ D[0,∞],s simple,h(µ,s) ≤ h(m, f )} (9)

is a universal integral which is an extension of Isimple
⊕,⊗ in (8).

Note that the Choquet-like integrals in [46] are special cases of universal integrals
of the type I⊕,⊗, with (⊕,⊗) being an appropriate integral operation pair. Here are
some more observations based on Proposition 2:

(i) For each pseudo-multiplication ⊗ on [0,∞] , the pair (sup,⊗) is an integral op-
eration pair and we have Isup,⊗ = I⊗ (implying Su = Isup,Min).

(ii) The Choquet integral is related to the pair (+,Prod), i.e., Ch = I+,Prod.

(iii)For each p ∈ ]0,∞[, let us define the pseudo-addition +p : [0,∞]2 → [0,∞] by

a +p b = (ap + bp)1/p .

The pair (+p,Prod) is an integral operation pair, and we have

I+p,Prod(m, f ) = (Ch(mp, f p))1/p ,

i.e., I+p,Prod can be derived from the Choquet integral Ch (although by a non-
standard transformation applying the function x �→ xp to both arguments of the
pair (m, f )). Obviously, I+p,Prod is neither join- nor meet-homogeneous, and it
is comonotone additive if and only if p = 1.

(iv)If the pseudo-multiplication satisfies the two mild continuity assumptions (CRB)
and (CLZ) in [56] then Theorem 3(b) in [56] shows that the only pseudo-
additions are the maximum or a strict t-conorm on [0,∞] (observe that in equa-
tion (59) on page 407 in [56] the name of the condition should be (Z) rather
than (C)). This non-trivial result also shows that the left-distributivity assump-
tion restricts the pseudo-additions and pseudo-multiplications on finite, i.e.,
bounded intervals, since with the usual multiplication as pseudo-multiplicaton
and the restricted addition (on finite intervals) as pseudo-addition we have no
left-distributivity (see [56, Example 1]).

4 Restriction to the Unit Interval

For monotone measures m ∈ M (X ,A)
1 (i.e., satisfying m(X) = 1) and functions f ∈

F (X ,A) satisfying Ran( f ) ⊆ [0,1] (in which case we shall write shortly f ∈ F (X ,A)
[0,1] ),

the known universal integrals are related to pseudo-multiplications ⊗ with neutral
element 1. In such a case the restriction of a universal integral to the class

D[0,1] =
⋃

(X ,A)∈S

M (X ,A)
1 ×F (X ,A)

[0,1]

will be called a universal integral on the scale [0,1] or simply a fuzzy integral.
Observe that, in this case, only the restriction of the pseudo-multiplication ⊗ to
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[0,1]2 (again denoted by ⊗) is exploited, which is also called a semicopula or a
conjunctor or a t-seminorm.

Recall that a semicopula (also called a conjunctor or a t-seminorm) [3, 12, 65] is
a binary operation ⊗ : [0,1]2 → [0,1] which is non-decreasing in both components,
has 1 as neutral element and satisfies a⊗b ≤ min(a,b) for all (a,b) ∈ [0,1]2.

If, moreover, the pseudo-multiplication⊗ : [0,1]2 → [0,1] is associative and com-
mutative, then it is called a triangular norm (t-norm for short, see [45, 59] and
also [1, 35, 60]). The four prototypical t-norms are

(i) TM, i.e., the restriction of Min to [0,1]2, which is the greatest semicopula and
the background of the original Sugeno integral as introduced in [66];

(ii) TP, i.e., the restriction of Prod to [0,1]2, background of the original Shilkret
integral as introduced in [61] and of the Choquet integral on the scale [0,1];

(iii) TL given by TL(a,b) = max(a + b−1,0) (Łukasiewicz t-norm);
(iv) TD given by TD(a,b) = 0 if (a,b) ∈ [0,1[2 and TD(a,b) = a ·b otherwise, which

is the smallest semicopula (drastic product).

Other important special semicopulas are the copulas introduced in [63] (see also [1,
51]), which are joint distribution functions restricted to [0,1]2 of two-dimensional
random vectors whose marginals are uniformly distributed on [0,1]. In the set of
semicopulas, copulas C are characterized by the 2-increasing property, i.e., for all
0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1 we have C(a,c)+C(b,d)−C(b,c)−C(a,d) ≥ 0.
Observe that the left-hand side of this inequality is just the probability of the rect-
angle [a,b]× [c,d] related to the two-dimensional probability distribution described
by the copula C.

Of the four prototypical t-norms mentioned above, only TD is not a copula, the
others characterize three special cases of stochastic dependence of the marginal ran-
dom variables [51, 60]: TM describes total positive dependence, TP independence,
and TL total negative dependence.

All constructions concerning universal integrals on the [0,∞] scale based on a
fixed pseudo-multiplication on [0,∞] can be applied also to universal integrals on
the [0,1] scale, starting from a fixed semicopula. As an example, the smallest and
the greatest universal integral I� and I� on the [0,1] scale related to the semicopula
� are given by, respectively:

I�(m, f ) = sup{t � m({ f ≥ t}) | t ∈ [0,1]},
I�(m, f ) = essupm f � sup{m({ f ≥ t}) | t ∈ ]0,1]}.

Note that, for a fixed strict t-norm T , the corresponding universal integral IT is
the so-called Sugeno-Weber integral [72]. Moreover, for a general semicopula T ,
the corresponding universal integral I� was called a seminormed integral in [65].
Note that for each semicopula � which is different from the minimum, the result-
ing universal integral I� is join-homogeneous, but neither meet-homogeneous nor
comonotone additive.
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Table 1. Special universal integrals

Integrals on [0,∞] Corresponding universal integral

Sugeno integral [66] IMin

Choquet integral [10] I+,Prod

Shilkret integral [61] IProd

Choquet-like integral [46] I⊕,⊗ [(⊕,⊗) appropriate integral operation pair]

Integrals on [0,1]

Sugeno-Weber integral [72] IT [T strict t-norm]

seminormed integral [65] I� [� semicopula]

Imaoka integral [26, 27] KC [C Frank copula]

Sugeno integral [66] KTM

Choquet integral [10] KTP

opposite Sugeno integral [26, 27] KTL

The fact that copulas are special semicopulas allows us to give another con-
struction of universal integrals, following the computation of the standard expected
value in probability theory and inspired by [26, 27] (compare also [36]) (for a proof
see [38]):

Proposition 3. Let C : [0,1]2 → [0,1] be a copula and define KC : D[0,1] → [0,1] by

KC(m, f ) = PC({(x,y) ∈ ]0,1]2 | y < m({ f ≥ x})}), (10)

where PC is the probability measure on B([0,1]2) induced by C, i.e., for all (a,b) ∈
[0,1]2 we have PC(]0,a[× ]0,b[) = C(a,b). Then KC is a universal integral on the
scale [0,1].

Let us conclude this survey with some remarks about copula-based integrals on [0,1]
(for more properties of discrete integrals of this type see [33]):

(i) The universal integral KTP on [0,1] is just the Choquet integral on [0,1]. The
copula TP indicates that in this case the values of the underlying monotone mea-
sure and of the integrand act independently from each other. In particular, if
m(A) > 0 and ft = t ·1A then KTP(m, ft) is strictly increasing in t. On the other
hand, KTM is exactly the Sugeno integral as introduced in [66]. The copulas TM
and TL indicate maximal positive and maximal negative dependence between the
values of the underlying monotone measure and of the integrand, respectively.
As a consequence, for m, A and ft as above, KTM(m, ft) is strictly increasing in t
only if t < m(A), while KTL(m, ft) is strictly increasing in t only if t > 1−m(A).

(ii) If X is a finite set, i.e., if X = {1,2, . . . ,n} with n ∈ N and A = 2X , each func-

tion f ∈ F (X ,A)
[0,1] corresponds to the n-tuple ( f (1), f (2), . . . , f (n)) ∈ [0,1]n. Let

σ be a permutation of X with f (σ(1)) ≤ f (σ(2)) ≤ ·· · ≤ f (σ(n)), and put
Ai = {σ(i), . . . ,σ(n)}. Then, using the conventions An+1 = /0 and f (σ(0)) = 0,
we obtain two equivalent expressions for KC(m, f ), namely,
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KC(m, f ) =
n

∑
i=1

(C( f (σ(i)),m(Ai))−C( f (σ(i)),m(Ai+1)))

=
n

∑
i=1

(C( f (σ(i)),m(Ai))−C( f (σ(i−1)),m(Ai))).

It is possible to introduce universal integrals on an arbitrary fixed scale [0,e] with
e ∈ ]0,∞], considering, for a fixed measurable space (X ,A), monotone measures in

M (X ,A)
e and functions f ∈ F (X ,A) with Ran( f ) ⊆ [0,e], and working with a pseudo-

multiplication ⊗ with neutral element e (in fact, only the restriction of ⊗ to [0,e]2 is
needed). However, for each universal integral U[0,e] on [0,e] there exists a universal
integral I on the scale [0,1] such that:

U[0,e](m, f ) =

⎧⎪⎪⎨⎪⎪⎩
e · I(m

e ,
f
e ) if e < ∞,

I
(

m
m+1 ,

f
f+1

)
1−I
(

m
m+1 ,

f
f+1

) if e = ∞.
(11)

Conversely, if I is a universal integral on the scale [0,1] then U[0,e] constructed
via (11) is a universal integral on [0,e].

If we start with I = KTM (i.e., with the Sugeno integral on the scale [0,1]), then
formula (11) always leads to the Sugeno integral Su[0,e], due to the fact that the
restriction of Min to [0,e]2 has neutral element e. On the other hand, if I = KTP

(i.e., the Choquet integral on the scale [0,1]), then formula (11) leads to a universal
integral which is different from the Choquet integral on [0,e], whenever e �= 1.

References

1. Alsina, C., Frank, M.J., Schweizer, B.: Associative functions: Triangular norms and cop-
ulas. World Scientific, Singapore (2006)

2. Aumann, R.J., Shapley, L.S.: Values of Non-Atomic Games. Princeton University Press,
Princeton (1974)

3. Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and de-
pendence for exchangeable lifetimes. J. Multivariate Anal. 93, 313–339 (2005)

4. Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap
[54], pp. 1329–1379 (2002)

5. Butnariu, D.: Additive fuzzy measures and integrals. I. J. Math. Anal. Appl. 93, 436–452
(1983)

6. Butnariu, D., Klement, E.P.: Triangular norm-based measures and their Markov kernel
representation. J. Math. Anal. Appl. 162, 111–143 (1991)

7. Butnariu, D., Klement, E.P.: Triangular Norm-Based Measures and Games with Fuzzy
Coalitions. Kluwer Academic Publishers, Dordrecht (1993)
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Abstract. In this paper, we deal with the fuzzy type theory (FTT) — a
higher-order fuzzy logic. There are several kinds of this logic depending on
the chosen structure of truth values. Higher-order (fuzzy) logic is still not fully
appreciated despite its high explicative power. Our goal is to point out several
great virtues of it to convince the reader that this logic is worth of studying
and has a potential for many applications. After brief presentation of the main
algebraic structures of truth values convenient for FTT, we discuss several
virtues of the latter, namely: (1) FTT has a simple and highly uniform syntax,
(2) Semantics of FTT is based on a small collection of well-established ideas,
(3) FTT is a highly expressive logic and (4) There are practical extensions
of FTT that can be effectively implemented.

Keywords: Residuated lattice, EQ-algebra, mathematical fuzzy logic, fuzzy
type theory, evaluative linguistic expressions, intermediate quantifiers.

1 Introduction

Mathematical fuzzy logic is a well established formal tool which can be ap-
plied in modeling of human reasoning affected by the vagueness phenomenon.
The latter is captured via degree theoretical approach. Besides various kinds
of propositional and first-order calculi, also higher-order fuzzy logic calculi
have been developed. In analogy with classical logic they are called fuzzy type
theories (FTT).

Fuzzy type theory, which is a generalization of classical type theory (cf.
[1]), was introduced by V. Novák in [18]. The generalization consists espe-
cially in replacement of the axiom stating “there are just two truth values”
by a sequence of axioms characterizing the structure of the algebra of truth
values. This is a lattice with several additional properties. The fundamen-
tal class of algebras of truth values is formed by MTL-algebras which are
prelinear residuated lattices. Another very general class of algebras especially
convenient as the algebras of truth values for FTT is formed by EQ-algebras
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



54 V. Novák

which are lower semilattices with top element, the operation of fuzzy equality
and a binary operation of fusion.

The syntax of FTT is generalization of the classical lambda-calculus, which
differs from the classical one by definition of additional special connectives,
and by logical axioms. The fundamental connective in FTT is that of a fuzzy
equality ≡, which is interpreted by a reflexive, symmetric and ⊗-transitive bi-
nary fuzzy relation (⊗ is the fusion operation). The generalized completeness
theorem has been proved for all kinds of FTT (for the details see [17, 18, 24]).

Why should type theory be made fuzzy? The FTT provides model of some
deep manifestations of the vagueness phenomenon (including higher order
vagueness). Furthermore, semantics of concepts and natural language ex-
pressions is formalized using TT. Hence, replacing it by FTT could enable to
include vagueness in the developed models of natural language semantics and
bring the formal theory of commonsense reasoning closer to the human way
of thinking. Other interesting application is to establish foundations of the
whole “fuzzy” mathematics which has been initiated as a special program by
P. Cintula and L. Běhounek in [2]. The expressive power of FTT makes all
these tasks easier.

In [6], W. Farmer discussed seven virtues of classical simple type theory
(STT), namely:

(i) STT has a simple and highly uniform syntax.
(ii) The semantics of STT is based on a small collection of well-established

ideas.
(iii) STT is a highly expressive logic.
(iv) STT admits categorical theories of infinite structures.
(v) There is a simple, elegant, and powerful proof system for STT.
(vi) Techniques of first-order model theory can be applied to STT; distinc-

tion between standard and nonstandard models is illuminated.
(vii) There are practical extensions of STT that can be effectively imple-

mented.

In this paper, we will provide a brief overview of fuzzy type theories and
demonstrate that they share the virtues of STT. Namely, we will show that
virtues (i)–(iii) and (vii) are also those of FTT while virtues (iv)–(vi) are
quite specific and might have different meaning for FTT.

2 Truth Values for FTT

The basic structure of truth values in fuzzy logics is that of residuated lattice
that is integral, commutative, bounded, residuated lattice

L = 〈L,∨,∧,⊗,→,0,1〉 (1)
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such that L = 〈L,∨,∧,0,1〉 is a lattice with 0,1, 〈L,⊗,1〉 is a commutative
monoid and the following adjunction property holds:

a⊗ b ≤ c iff a ≤ b → c.

(note that this is algebraic formulation of the rule of modus ponens).
Further assumed properties of algebras of truth degrees are the following:

(i) prelinearity (a → b) ∨ (b → a) = 1,
(ii) divisibility a⊗ (a → b) = a ∧ b,
(iii) double negation ¬¬a = a.

We distinguish the following classes of special residuated lattices:

(i) MTL-algebra is a residuated lattice with prelinearity.
(ii) IMTL-algebra is a residuated lattice with prelinearity and double nega-

tion.
(iii) BL-algebra is a residuated lattice with prelinearity and divisibility.
(iv) MV-algebra is a residuated lattice with prelinearity, divisibility and dou-

ble negation.

For FTT, it is important to consider the also the delta operation which, in
case that L is linearly ordered, has the following definition1:

Δ(a) =

{
1 if a = 1,
0 otherwise.

(2)

A very general class of algebras especially convenient as the algebras of
truth values for FTT is formed by EQ-algebras. These are algebras

E = 〈E,∧,⊗,∼,1〉

of type (2, 2, 2, 0), where

(E1) 〈E,∧〉 is a ∧-semilattice with the top element 1,
(E2) 〈L,⊗,1〉 is a commutative monoid and ⊗ is isotone w.r.t. ≤ (a ≤ b iff

a ∧ b = a),
(E3) a ∼ a = 1, (reflexivity)
(E4) ((a ∧ b) ∼ c) ⊗ (d ∼ a) ≤ c ∼ (d ∧ b), (substitution)2.
(E5) (a ∼ b) ⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d), (congruence)
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a, (monotonicity)
(E7) a⊗ b ≤ a ∼ b. (boundedness)

1 The Δ-operation is, in general, determined by 6 special properties. For the de-
tails, see [9, 18, 24].

2 This property corresponds to the Leibniz rule of indiscernibility of identicals.



56 V. Novák

The following are special definitions in EQ-algebras:

(i) ã = a ∼ 1.
(ii) a → b = (a ∧ b) ∼ a. (implication)
(iii) The multiplication ⊗ is →-isotone if

a → b = 1 implies a⊗ c → b ⊗ c = 1.

(iv) If E contains 0 then ¬a = a ∼ 0. (negation)
(v) a ↔ b = (a → b) ∧ (b → a). (biimplication)
(vi) a

◦↔ b = (a → b) ⊗ (b → a). (weak biimplication)

The basic properties of EQ-algebras are summarized in the following theorem:

Theorem 1. (a) a ∼ b = b ∼ a, (symmetry)
(b) (a ∼ b) ⊗ (b ∼ c) ≤ (a ∼ c), (transitivity)
(c) (a → b) ⊗ (b → c) ≤ a → c, (transitivity of implication)
(d) If a ≤ b → c, then a⊗ b ≤ c̃. (semi-adjunction)

An EQ-algebra is:

(i) separated if a ∼ b = 1 iff a = b.
(ii) good if a ∼ 1 = a,
(iii) spanned if 0̃ = 0,
(iv) involutive if ¬¬a = a, (IEQ-algebra)
(v) residuated if (a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a,
(vi) complete if it is ∧-semilattice complete,
(vii) �EQ-algebra if it is lattice ordered and the following is fulfiled:

(E10) ((a ∨ b) ∼ c) ⊗ (d ∼ a) ≤ ((d ∨ b) ∼ c).

All structures of truth values considered in FTT must contain also the delta
operation (2). It should be noted that each residuated lattice gives rise to an
EQ-algebra but there are EQ-algebras which are not residuated.

3 Virtues of Fuzzy Type Theory

3.1 Virtue 1: FTT has a Simple and Highly Uniform Syntax

The syntax of FTT is a slight generalization of the syntax of classical type
theory — the λ-calculus — where the latter has been introduced by A. Church
in [3]. Therefore, this virtue is in FTT fully appreciated too.

Types and formulas

A type is a symbol using which various kinds of formulas are characterized.
The set of types Types is constructed recursively from the elementary types
o (truth values) and ε (objects):
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(i) ε, o ∈ Types,
(ii) If α, β ∈ Types then (αβ) ∈ Types3.

The language J of FTT consists of variables and constants of specific types.
Formulas are defined as follows:

(i) If xα ∈ J is a variable then xα is a formula of type α.
(ii) If cα ∈ J is a constant then cα is a formula of type α.
(iii) If Bβα and Aα are formulas then (BβαAα) is a formula of type β.
(iv) If Aβ is a formula and xα ∈ J a variable then λxα Aβ is a formula of

type βα4.

Formulas Ao are propositions. To reduce the burden of subscripts we some-
times write A ∈ Formα to express that A is a formula of type α and then
omit the subscript α at A.

Fuzzy equality

This is the crucial concept in FTT and has important role in the interpreta-
tion (see below). In syntax, it is determined by a special formula (constant)

E(oα)α.

Then, the fuzzy equality is defined by

≡ := λxαλyα(E(oα)α yα)xα.

We write (xo ≡ yo) instead of (≡ yo)xo. Similarly we write (Aα ≡ Bα). Note
that these are formulas of type o.

Logical axioms of IMTL-FTT

The structure of truth values is an IMTLΔ-algebra. Furthermore, we defined
several special formulas, for example representation of truth and falsity:

� := (λxo xo ≡ λxo xo) ⊥ := (λxo xo ≡ λxo�).

Moreover, all connectives in FTT are formulas, e.g.

¬¬¬ := λxo(⊥ ≡ xo), (negation)
⇒⇒⇒ := λxo(λyo((xo ∧∧∧ yo) ≡ xo)). (implication)

There are more axioms in FTT than in classical TT because it is necessary
to characterize the structure of truth values. Below, we list axioms of IMTL-
FTT where the structure of truth values forms an IMTLΔ-algebra.
3 The types are alternatively also written as α → β instead of βα. This makes,

however, formulas too long and poorly arranged.
4 Alternatively, it is possible to write A:α instead of Aα. In various papers, formulas

are also called lambda terms.
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Fundamental axioms

(FT1) ΔΔΔ(xα ≡ yα) ⇒⇒⇒ (fβα xα ≡ fβα yα)
(FT21) (∀xα)(fβα xα ≡ gβα xα) ⇒⇒⇒ (fβα ≡ gβα)
(FT22) (fβα ≡ gβα) ⇒⇒⇒ (fβα xα ≡ gβα xα)
(FT3) (λxαBβ)Aα ≡ Cβ

where Cβ is obtained from Bβ by replacing all free occurrences of xα
in it by Aα, provided that Aα is substitutable to Bβ for xα (lambda
conversion).

(FT4) (xε ≡ yε) ⇒⇒⇒ ((yε ≡ zε) ⇒⇒⇒ (xε ≡ zε))

Equivalence axioms

(FT6) (xo ≡ yo) ≡ ((xo ⇒⇒⇒ yo)∧∧∧ (yo ⇒⇒⇒ xo))
(FT7) (Ao ≡ �) ≡ Ao

Implication axioms

(FT8) (Ao ⇒⇒⇒ Bo) ⇒⇒⇒ ((Bo ⇒⇒⇒ Co) ⇒⇒⇒ (Ao ⇒⇒⇒ Co))
(FT9) (Ao ⇒⇒⇒ (Bo ⇒⇒⇒ Co)) ≡ (Bo ⇒⇒⇒ (Ao ⇒⇒⇒ Co))

(FT10) ((Ao ⇒⇒⇒ Bo) ⇒⇒⇒ Co) ⇒⇒⇒ (((Bo ⇒⇒⇒ Ao) ⇒⇒⇒ Co) ⇒⇒⇒ Co)
(FT11) (¬¬¬Bo ⇒⇒⇒ ¬¬¬Ao) ≡ (Ao ⇒⇒⇒ Bo)

Conjunction axioms

(FT12) Ao ∧∧∧Bo ≡ Bo ∧∧∧Ao

(FT13) Ao ∧∧∧Bo ⇒⇒⇒ Ao

(FT14) (Ao ∧∧∧Bo)∧∧∧ Co ≡ Ao ∧∧∧ (Bo ∧∧∧ Co)

Delta axioms

(FT5) (goo(ΔΔΔxo)∧∧∧ goo(¬¬¬ΔΔΔxo)) ≡ (∀yo)goo(ΔΔΔyo)
(FT15) ΔΔΔ(Ao ∧∧∧Bo) ≡ΔΔΔAo ∧∧∧ΔΔΔBo

(FT16) ΔΔΔ(Ao ∨∨∨Bo) ⇒⇒⇒ ΔΔΔAo ∨∨∨ΔΔΔBo

Predicate axioms

(FT17) (∀xα)(Ao ⇒⇒⇒ Bo) ⇒⇒⇒ (Ao ⇒⇒⇒ (∀xα)Bo) xα is not free in Ao

Axiom of descriptions

(FT18) ιε(oε)(E(oε)ε yε) ≡ yε

This axiom enables to reach elements of fuzzy sets. It corresponds to the
defuzzification operation in fuzzy set theory. Its meaning is schematically
depicted in the picture above.
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Inference rules and provability

(Rule R) Let Aα ≡ A′
α and B ∈ Formo. Then infer B′ where B′ comes

form B by replacing one occurrence of Aα, which is not preceded
by λ, by A′

α.
(Rule (N)) Let Ao ∈ Formo be a formula. Then from Ao infer ΔΔΔAo.

Note that the rule (R) is the same as in classical TT. On the other hand the
rules of modus ponens and generalization are derived in FTT. A theory T
of FTT is a set of formulas of type o. The provability T � Ao is defined as
usual.

Theorem 2 (Deduction theorem). Let T be a theory, Ao ∈ Formo a for-
mula. Then

T ∪ {Ao} � Bo iff T �ΔΔΔAo ⇒⇒⇒ Bo

holds for every formula Bo ∈ Formo.

3.2 Virtue 2: Semantics of FTT Is Based on a Small Collection
of Well-Established Ideas

In FTT, the algebra of truth values should be one of the following:

1. A complete linearly ordered IMTLΔ-algebra,
2. linearly ordered �LukasiewiczΔ-algebra,
3. linearly ordered BLΔ-algebra,
4. linearly ordered EQΔ-algebra or IEQΔ-algebra.

General frame

The semantics of FTT is defined with respect to the general frame

M = 〈{Mα,�α| α ∈ Types},EΔ〉

where EΔ is the algebra of truth values (one of the above ones) and each type
α is assigned a set Mα together with a fuzzy equality

�α: Mα ×Mα −→ L.

The sets are constructed as follows:

(i) Mo is the set of truth values (support of the algebra EΔ),
(ii) Mε is some (non-empty) set,
(iii) Mβα ⊆ MMα

β ,
(iv) Moo ∪M(oo)o is closed w.r.t. operations on truth values,
(v) �α is a fuzzy equality on Mα:

(a) �o is ∼ (or ↔),
(b) �ε is given explicitly,
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(c) [h �βα h′] =
∧

m∈Mα

[h(m) �β h′(m)], h, h′ : Mα −→ Mβ.

The general frame can be schematically depicted as follows:

(Mo = {a | a ∈ L},↔) (Mε = {u | ϕ(u)},=ε)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Moo ⊆ {goo | goo : Mo −→ Mo}, =oo)

(Moε⊆{foε |foε : Mε−→Mo}, =oε)
(Mεε ⊆ {fεε | fεε : Mε −→ Mε}, =εε), . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Mβα ⊆ {fβα | fβα : Mα −→ Mβ},=βα)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

Interpretation of formulas

Each formula of type α is in the general frame assigned and element from the
set of the same type, i.e.,

M (Aβα) ∈ Mβα.

It is important to assure that the interpretation of formulas must preserve
the fuzzy equality.

Example 1.

• M (Ao) ∈ L is a truth value,
• M (Aoε) is a fuzzy set in Mε,
• M (A(oε)ε) is a fuzzy relation on Mε,
• M (A(oo)ε) is a fuzzy set of type 2,
• M (Aεε) is a function on objects.

A model of T is a frame M in which all special axioms of T are true in the
degree 1. A formula Ao is true in T , T |= Ao, if it is true in the degree 1 in
all models of T .

Theorem 3 (Completeness).

(a) A theory T of IMTL-FTT is consistent iff it has a general model M .
(b) For every theory T of IMTL-FTT and a formula Ao

T � Ao iff T |= Ao.

A scheme of the main kinds of fuzzy type theories is depicted in Figure 1.
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-FTT

IMTL-FTT

IEQ-FTT

BL-FTT

Resid-EQ-FTT = MTL-FTT

Basic-EQ-FTT

STT

Fig. 1. A scheme of the main kinds of fuzzy type theory

3.3 Virtue 3: FTT Is a Highly Expressive Logic

We argue that FTT is a powerful logic using which it is possible to express
important manifestations of the vagueness phenomenon. Recall from [20] that
vagueness raises when trying to group together objects carrying a certain
property ϕ. We form an actualized grouping of objects

X = {o | ϕ(o)}.

Then we can distinguish typical objects having ϕ as well as those not hav-
ing it, and borderline objects for which it is unclear whether they have the
property ϕ. Moreover, we also encounter imperceptible gradual change of
the property ϕ from its presence to its non-presence. This is the continuity
which is typical feature of vagueness. We argue that the most distinguished
mathematical model of vagueness is provided by fuzzy logic. The mathema-
tization is based on introduction of a numerical measure of the truth that a
particular object has a property in concern. We claim that all essential prop-
erties of vague predicates are formally expressible in FTT and so, they have
a many-valued model.

One of very popular models of vagueness is the supervaluation theory (cf.
[12]). According to it, a sentence is precise if it is precise under any possible
precisification. The theory thus introduces the following concepts: a proposi-
tion A is supertrue if it is true under any truth valuation and we can write
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D(A). It is superfalse if it is false under any truth valuation. Otherwise it is
undefined and we can write I(A).

These concepts can be easily expressed inside FTT. Namely, the ΔΔΔ connec-
tive corresponds to D-operator and behaves accordingly. For example A � C
implies �ΔΔΔA ⇒⇒⇒ C as well as ¬¬¬C � ¬¬¬ΔΔΔA is provable in FTT. We can further
introduce the following special unary connectives:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo),

Then the following holds in any model M :

M (Υzo) = 1 iff z0 > 0.

Similarly, we can also introduce the connective characterizing general truth
value:

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨¬¬¬zo) ≡ λzo · ¬¬¬ΔΔΔzo ∧∧∧¬¬¬ΔΔΔ¬¬¬zo).
Then in any model M ,

M (Υ̂ zo) = 1 iff 1 > z0 > 0.

The Υ̂ corresponds to the I-operator above. Then a property is vague if it
has typical positive, negative, and also borderline cases. Thus, for example,
Aoα is vague if there are elements xα, for which � ΔΔΔ(Axα), elements yα, for
which �ΔΔΔ¬¬¬(Ayα) and elements zα, for which � Υ̂ (Azα).

Sorites paradox

Properties should be characterized using possible worlds. Namely, they lead
to different truth values in different possible worlds but remain unchanged
with respect to all of them. Thus, a property is in general characterized by
an intension which is a function from the set of all possible worlds into a set
of extensions.

A specific property is that of “being a heap”. Instead of “possible world”
we will speak about context. The context for heaps can be modeled as a
function

w : [0, 1] −→ Mε,
w(0) = vL, (left bound)

w(0.5) = vS , (central point)
w(1) = vR, (right bound)

for some set Mα of elements. The points vL, vR, vS represent a left and right
bounds, and a middle point respectively. The situation is graphically depicted
in Figure 2. The context is interpretation of a formula wεo of FTT. We can
also introduce x ∈ w as a short for the formula (∃to)ΔΔΔ(x ≡ wto)

Using this concept, we can solve the sorites (heap) paradox5 more realis-
tic. Let FN ∈ Form(oα)(αo) be a formula characterizing heaps. Namely, the
5 One grain does not make a heap. Adding one grain to what is not yet a heap

does not make a heap. Consequently, there are no heaps.
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Fig. 2. Graphical representation of a possible context for heaps where vL = 0,
vS = 4, vR = 10. In the left part lay all small values, all medium values are
distributed around the middle point, and all big (large) values lay in the right part
of the scale.

formula FNwn expresses “n stones in a context w ∈ Formαo do not form a
heap”. The following theorem addresses the sorites paradox and demonstrates
that it is fully compatible with FTT and does not lead to contradiction.

Theorem 4. (a) � (∀w)(FN w 0)
(0 stones do not form a heap in any context)

(b) � (∀w)(∀n)(n ∈ w&&&ΔΔΔ(w 0.5 ≤ n) ⇒⇒⇒ ¬¬¬FNw n)
(whatever number n ≥ w 0.5 of stones forms a heap)

(c) � (∀w)(∃m)(m ∈ w&&&0 < m&&& Υ̂ (FNwm))
(there is a borderline number m of stones “partially” forming a heap)

(d) � (∀w)¬¬¬(∃n)(n ∈ w&&&ΔΔΔFNw n&&&ΔΔΔ¬¬¬FNw (n + 1))
(in any context, there is no number n of stones surely not forming a heap
such that n + 1 surely forms a heap)

(e) � (∀w)(∀n)(n ∈ w ⇒⇒⇒ (FNwn ⇒⇒⇒ ·(n ≈w n + 1) ⇒⇒⇒ FNw(n + 1)))
(if n of stones does not form a heap then it is almost true that n+ 1 also
does not form it)

A syntactical proof of this theorem can be found in [22].

3.4 Virtue 4: There Are Practical Extensions of FTT That Can
be Effectively Implemented

Formal theory of the meaning of evaluative linguistic expressions

The considered extensions of FTT are special formal theories, the models of
which constitute models of the meaning of some special linguistic expressions.
The most important among them is a formal theory of the, so called, evalua-
tive linguistic expressions. These are expressions which occur very frequently
in natural language. Examples of them are the expressions small, medium,
big, twenty five, roughly one hundred, very short, more or less strong, not
very tall, about twenty five, roughly small or medium, very roughly strong,
weight is small, pressure is very high, extremely rich person. Their meaning
is a fundamental bearer of the vagueness phenomenon and a consequence of
the indiscernibility between objects where the indiscernibility is modeled by
a fuzzy equality.
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There is a formal theory of the meaning of evaluative expressions developed
in [22]. The meaning is characterized using a special fuzzy equality “∼”. The
theory has altogether 11 special axioms, for example

(EV7) ΔΔΔ((t ⇒⇒⇒ u)&&&(u⇒⇒⇒ z)) ⇒⇒⇒ ·t ∼ z ⇒⇒⇒ t ∼ u,
(EV8) t ≡ t′ &&& z ≡ z′ ⇒⇒⇒ ·t ∼ z ⇒⇒⇒ t′ ∼ z′

(t, t′, u, z, z′ ∈ Formo). The linguistic expressions with full meaning can be,
in general, taken as names of intensions which are functions from the set
of all possible worlds (in case of evaluative expressions, it is the set of all
contexts) into a set of extensions. Intensions of evaluative expressions which
are functions W −→ F (w([0, 1]))6 are schematically depicted in Figure 3.
It is relatively easy to express both intensions and extensions using formal

Fig. 3. Scheme of intensions of some evaluative expressions “very small, small,
roughly small, medium, big”

means of FTT. The concrete models can also be constructed. Note that the
latter can be then applied in straightforward way and so, this theory becomes
very practical.

Theorem 5. The theory of evaluative linguistic expressions is consistent.

It is also possible to show that this theory addresses the sorites paradox
with respect to the meaning of the evaluative expressions. For example, when
replacing “heap” by “very small heap”, etc., the paradox remains classically
the same but, again, it is fully compatible with our theory and does not lead
to contradiction. It is also formally prove that in each context there is no last
6 F (U) is a set of all fuzzy sets on U .
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surely small x and no first surely big x which is a typical feature of vague
properties. This statement can formally be expressed as follows.

Theorem 6

TEv � (∀w)¬¬¬(∃x)(∀y)(ΔΔΔ(Sm ννν)wx&&&(x <w y ⇒⇒⇒ΔΔΔ¬¬¬(Sm ννν)wy)),

TEv � (∀w)¬¬¬(∃x)(∀y)(ΔΔΔ(Bi ννν)wx&&&(y <w x⇒⇒⇒ΔΔΔ¬¬¬(Bi ννν)wy)).

Formal theory of fuzzy IF-THEN rules and linguistic descriptions

The theory of fuzzy IF-THEN rules belongs to the most successful theories
developed in fuzzy logic and it has a lot of practical applications. Recall that
the former are rules of the form

IF X is A THEN Y is B, (3)

where ‘X is A ’, ‘Y is B’ are evaluative predications. A (finite) set of such
rules is called linguistic description. We can distinguish two basic approaches
to the way how linguistic descriptions can be construed: relational and logi-
cal/linguistic.

The relational approach assumes some chosen formal system of predicate
fuzzy logic. Then, certain first-order formulas A(x), B(x) are assigned to the
evaluative predications ‘X is A ’, ‘Y is B’, respectively, and interpreted in a
suitable formal model. Although the surface form of the rules (3) is linguistic,
they are not treated in this way. The whole linguistic description is construed
as a fuzzy relation resulting from the interpretation of one of two normal
forms: disjunctive and conjunctive (see, e.g., the book [8], and many other
publications). This approach has been well-elaborated inside predicate BL-
fuzzy logic in [9, Chapter 7] and [4, 29, 30, 31], and also inside fuzzy logic
with evaluated syntax in [28, Chapters 5,6]. Let us emphasize that this way of
interpretation of fuzzy IF-THEN rules was developed for the approximation
of functions rather than as a model of human reasoning.

Observe, however, that rules (3) can be taken as sentences of natural lan-
guage. Hence, by the logical/linguistic approach, rules (3) are construed as
genuine conditional clauses of natural language and the linguistic description
is taken as a text characterizing some situation, strategy of behavior, control
of some process, etc. The goal is to mimic the way how people understand
natural language. Using FTT, we can construct a formal theory which in-
cludes the theory TEv of evaluative expressions so that the intension of each
rule (3) can be constructed:

Int(R) := λw λw′ · λxλy · EvA wx⇒⇒⇒ EvC w′y (4)

where w,w′ are contexts of the antecedent and consequent of (3), respectively,
EvA is intension of the antecedent and EvC intension of the consequent.
The linguistic description is interpreted as a set of intensions (4) (see [21,
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25] for the details). When considering a suitable model, we obtain a formal
interpretation of (4) as a function that assigns to each pair of contexts w,w′ ∈
W a fuzzy relation among objects. It is important to realize that in this case,
we introduce a consistent model of the context and provide a general rule
how extension can be constructed in every context.

This way of interpretation requires a special inference procedure called
perception-based logical deduction (see [19, 27]). The main idea is to consider
the linguistic description as a specific text, which has a topic (what we are
speaking about) and focus (what is the new information — for the detailed
linguistic analysis of these concepts, see, e.g., [10]). Each rule is understood
as vague local information about existing relation between X and Y . The
procedure can distinguish among the rules and if some observation is given, to
derive a conclusion which is in accordance with the human way of reasoning.

Formal theory of intermediate quantifiers

Generalized quantifiers occur quite often in natural language. Recall that
these are words such as most, a lot of, many, a few, a great deal of, a large
part of, etc.. A general theory of generalized quantifiers was initiated by A.
Mostowski in [15] and further elaborated by P. Lindström, D. Westerst̊ahl, E.
L. Keenan, J. Barwise, R. Cooper ([13, 14, 34, 32]). Generalized quantifiers
were introduced into fuzzy logic by L. A. Zadeh [35] and further elaborated
by P. Hájek [9, Chapter 8], I. Glöckner [7], M. Holčapek and A. Dvořák [5, 11]
and by a few other people.

The class of intermediate quantifiers has been introduced and analyzed in
detail in [33]. Examples of them are many, a lot of, most, almost all, etc. The
main idea of how their semantics can be captured is the following: Intermedi-
ate quantifiers refer to elements taken from a class that is “smaller” than the
original universe in a specific way. Namely, they are classical quantifiers “for
all” or “exists” taken over a class of elements that is determined using an ap-
propriate evaluative expression. Classical logic has no substantiation for why
and how the range of quantification should be made smaller. In fuzzy logic,
we can apply the theory of evaluative linguistic expressions as follows (for
the details, see [23]). Let the formula Ev represent an evaluative predication
and μ a formula representing measure of fuzzy sets. Then we define

(Q∀
Ev xα)(Boα, Aoα) := (∃zoα)((ΔΔΔ(zoα ⊆ Boα)&&&(∀xα)(zoα xα ⇒⇒⇒ Aoαxα))

∧∧∧ Ev((μBoα)zoα)), (5)

(Q∃
Ev xα)(Boα, Aoα) := (∃zoα)((ΔΔΔ(zoα ⊆ Boα)&&&(∃xα)(zoα xα ∧∧∧Aoαxα))

∧∧∧ Ev((μBoα)zoα)). (6)

Interpretation of (5) is the following: there is a fuzzy set zoα of objects having
the property Boα, the size of which (determined by the measure μ) is char-
acterized by the evaluative expression Ev , and all these objects also have the
property Aoα. The interpretation of (6) is similar. The property is here, for
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simplicity, represented by a fuzzy set. However, it is also possible to intro-
duce possible worlds. Note that these quantifiers belong to the wide class of
generalized quantifiers [14, 32, 34], which in fuzzy logic have been introduced
also in [5, 7, 9, 11, 26].

The theory also includes classical quantifiers. Furthermore, special natural
language quantifiers can be specified, e.g., by the following formulas:

Most := Q∀
V ery big Many := Q∀

Big

Several := Q∀
Small Some := Q∃

Small

In [33], altogether total of 105 generalized syllogisms were informally in-
troduced (including the basic Aristotelian syllogisms). All of them are valid
also in this theory (see [16]), for example:

ATK-I:

All M are Y
Most X are M
Many X are Y

PKI-III:

Almost all M are Y
Many M are X
Some X are Y

4 Conclusion

This paper addresses the fuzzy type theory which is the higher-order fuzzy
logic. There are several kinds of this logic depending on the chosen structure
of truth values. The higher-order (fuzzy) logic is still not fully appreciated
despite its high explicative power. Our goal is to point out several important
virtues of it to convince the reader that this logic is worth of studying and
also using.

The main discussed virtues were the following: (1) FTT has a simple and
highly uniform syntax; (2) Semantics of FTT is based on a small collection
of well-established ideas; (3) FTT is a highly expressive logic; (4) There are
practical extensions of FTT that can be effectively implemented.
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Abstract. We introduce a notion of an idempotent semilinear space and
consider two systems of linear-like equations. These systems are equivalent
to systems of fuzzy relation equations with sup-∗ and inf-→ compositions.
Moreover, because the two types of systems of linear-like equations are dual
according to this theory, it is sufficient to investigate only one system.
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1 Introduction

The aim of this paper is twofold: first, to aid in the formalization and unifica-
tion of tools and methods used in the theory of fuzzy relation equations, and
second, to propose a generalization of the theory of linear spaces. As is known
from the extant literature, there are at least two types of systems of fuzzy
relation equations that differ in types of composition [1, 2, 3, 4]. However,
results about the solvability and the structure of solution sets for both types
of composition are, in some sense, dual. Additionally, there is a profound
theory of linear spaces wherein the problem of determining the solvability
of systems of linear equations is entirely solved. Thus, our motivation was
to find a proper generalization of the theory of linear spaces that can also
serve as a theoretical platform for the analysis of systems of fuzzy relation
equations.

In this paper, we will show that the theory of Galois connections can
be successfully used in explaining the above mentioned duality and char-
acterizing the solvability. In more details, if solvability is connected with a
characterization of the vectors on the right-hand sides, then there exists a
Galois connection between a set of admissible right-hand sides and a set
of solutions. Moreover, on the basis of this theory, two types of systems of
linear-like equations are dual, and thus it suffices to study only one of them.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 71–79.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



72 I. Perfilieva

2 Idempotent Semilinear Spaces

We recall that a linear (vector) space is a special case of a module over a
ring, i.e., a linear space is a unitary module over a field [5]. In this paper,
we will be dealing with a unitary semimodule over a commutative semiring
[6, 7], which will be called a semilinear space. Moreover, our semilinear space
will be an idempotent structure with respect to its main operation.

Definition 1. Let R = (R,+, ·, 0, 1) be a commutative semiring and V =
(V,+, 0̄) a commutative monoid. We say that V is a (left) semilinear space
over R if an external (left) multiplication λ : x̄ �→ λx̄ is defined, where λ ∈ R
and x̄ ∈ V . Moreover, the following mutual properties are fulfilled for all
x̄, ȳ ∈ V and λ, μ ∈ R:

(SLS1) λ(x̄ + ȳ) = λx̄ + λȳ,
(SLS2) (λ + μ)x̄ = λx̄ + μx̄,
(SLS3) (λ · μ)x̄ = λ(μx̄),
(SLS4) 1x̄ = x̄,
(SLS5) λ0̄ = 0̄.

When R is clear from the context, we will shorten “left semilinear space over
R” to “semilinear space.” Elements of a semilinear space will be distinguished
by an overline.

Example 1. Let R = (R,+, ·, 0, 1) be a commutative semiring. Let Rn (n ≥ 1)
be the set of n-dimensional vectors whose components are elements of R, i.e.
Rn = {x̄ = (x1, . . . , xn) | x1 ∈ R, . . . , xn ∈ R}. Let 0̄ = (0, . . . , 0) and

x̄ + ȳ = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Then, Rn = (Rn,+, 0̄) is a commutative monoid. For any λ ∈ R, external
multiplication λx̄ is defined by

λx̄ = λ(x1, . . . , xn) = (λ · x1, . . . , λ · xn).

Then, Rn is a semilinear space over R.

Semilinear space Rn, n ≥ 1, (see Example 1) will be called vectorial semilin-
ear space over R.

Definition 2. Semilinear space V over R is called idempotent if the opera-
tions + in both V and R are idempotent.

Let V = (V,+, 0̄) be an idempotent semilinear space. Then

x̄ ≤ ȳ ⇐⇒ x̄ + ȳ = ȳ, (1)

is the natural order on V . Therefore, (V,≤) is a bounded ∨-semilattice where
x̄ ∨ ȳ = x̄ + ȳ = sup{x̄, ȳ}, and 0̄ is a bottom element.
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It may happen (see Example 2 below) that two idempotent semilinear
spaces V1 = (V,+1, 0̄1) and V2 = (V,+2, 0̄2) with the same support V deter-
mine dual (or reverse) natural orders ≤1 and ≤2 on V , i.e.,

x̄ ≤1 ȳ ⇐⇒ ȳ ≤2 x̄.

In this case, ≤2 is simply denoted ≥1 or ≤d
1. With respect to ≤1, (V2,≥1)

is a ∧-semilattice where x̄ ∧ ȳ = x̄ +2 ȳ = inf{x̄, ȳ}. We will call V1 a ∨-
semilinear space, and V2 a ∧-semilinear space. Moreover, if V1 and V2 are
idempotent semilinear spaces over the same semiring, then we will call them
dual. It is easy to see that for dual semilinear spaces, the Principle of Duality
for ordered sets holds true.

Example 2. Let L = (L,∨,∧, ∗,→, 0, 1) be an integral, residuated, commuta-
tive l-monoid and L∨ = (L,∨, ∗, 0, 1) a commutative ∨-semiring. Ln (n ≥ 1)
is a set of n-dimensional vectors as in Example 1.

1. Ln∨ = (Ln,∨, 0̄) is an idempotent commutative monoid, where 0̄ =
(0, . . . , 0) ∈ Ln, and for any x̄, ȳ ∈ Ln,

x̄ ∨ ȳ = (x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , xn ∨ yn).

The order on Ln∨ is determined by ∨ so that x̄ ≤ ȳ if and only if x1 ≤
y1, . . . , xn ≤ yn. For any λ ∈ L, external multiplication λx̄ is defined by

λx̄ = λ(x1, . . . , xn) = (λ ∗ x1, . . . , λ ∗ xn).

Ln∨ with external multiplication λ : x̄ �→ λx̄ is an (idempotent) ∨-semilinear
space over L∨.

2. Ln∧ = (Ln,∧, 1̄) is an idempotent commutative monoid where 1̄ =
(1, . . . , 1) ∈ Ln, and for any x̄, ȳ ∈ Ln,

(x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn).

The natural order on Ln∧ is determined by ∧, and this ordering is dual to
≤, which was introduced on Ln in case 1 above. We will denote the natural
order on Ln∧ by ≤d, so that x̄ ≤d ȳ if and only if x̄ ≥ ȳ . Alternatively,
x̄ ≤d ȳ if and only if x1 ≥ y1, . . . , xn ≥ yn. For any λ ∈ L, let us define
external multiplication λ�x̄ by

λ�(x1, . . . , xn) = (λ → x1, . . . , λ → xn).

Ln∧ with the external multiplication λ : x̄ �→ λ�x̄ is an (idempotent) ∧-
semilinear space over L∨.

∨-semilinear space Ln∨ and ∧-semilinear space Ln∧ are dual.
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2.1 Galois Connections in Semilinear Spaces

Let us recall that a Galois connection between two ordered sets (A,≤) and
(B,≤) is a pair (h, g) of antitone mappings h : A → B and g : B → A such
that h ◦ g ≥ idA and g ◦h ≥ idB (◦ denotes the composition of two mappings
so that, e.g., for all x ∈ A, (h ◦ g)(x) = g(h(x))).

In this section, we will show that two dual idempotent semilinear spaces
can be connected by various Galois connections.

Theorem 1. Let Lm∨ , m ≥ 1, be a ∨-semilinear space and Ln∧, n ≥ 1, a
∧-semilinear space, both over L∨ (see Example 2). Let ≤ and ≤d be natural
orders on Lm∨ and Ln∧ respectively. Then

(i) for each λ ∈ L, mappings x̄ �→ λx̄ and ȳ �→ λ�ȳ establish a Galois
connection between (Ln∨,≤) and (Ln∧,≤d),

(ii) for each n × m matrix A ∈ Ln×m with transpose A∗, mappings hA :
Lm → Ln and gA∗ : Ln → Lm given by

hA(x̄)i = ai1 ∗ x1 ∨ · · · ∨ aim ∗ xm, i = 1, . . . , n, (2)

and

gA∗(ȳ)j = (a1j → y1) ∧ · · · ∧ (anj → yn), j = 1, . . . ,m, (3)

establish a Galois connection between (Lm∨ ,≤) and (Ln∧,≤d).

Throughout this paper, let L = 〈L,∨,∧, ∗,→, 0, 1〉 be an integral, residuated,
commutative l-monoid (a residuated lattice), U a non-empty set and LU a set
of L-valued functions on U . Fuzzy subsets of U are identified with L-valued
functions on U (membership functions).

3 Systems of Fuzzy Relation Equations and Their
Semilinear Analogs

Let U and V be two universes (not necessary different), Ai ∈ LU , Bi ∈ LV ar-
bitrarily chosen fuzzy subsets of respective universes, and R ∈ LU×V a fuzzy
subset of U×V . This last item is called a fuzzy relation. Lattice operations ∨
and ∧ are used for the union and intersection of fuzzy sets, respectively. Two
other binary operations ∗,→ of L are used for compositions—binary oper-
ations on LU×V . We will consider two of them: sup-∗ -composition, usually
denoted ◦, and inf-→composition usually denoted �. The first was intro-
duced by L. Zadeh [8] and the second by W. Bandler and L. Kohout [9]. We
will demonstrate definitions of both compositions on particular examples of
set-relation compositions A ◦R and A � R, where A ∈ LU and R ∈ LU×V :

(A ◦R)(v) =
∨
u∈U

(A(u) ∗R(u, v)),

(A � R)(v) =
∧
u∈U

(A(u) → R(u, v)).
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Remark 1. Let us remark that both compositions can be considered as set-set
compositions where R is assumed to be replaced by a fuzzy set. They are used
in this reduced form later in instances of systems of fuzzy relation equations.

By a system of fuzzy relation equations with sup-*-composition, we mean the
following system of equations

Ai ◦R = Bi, or
∨
u∈U

(Ai(u) ∗R(u, v)) = Bi(v), 1 ≤ i ≤ n, (4)

considered with respect to unknown fuzzy relation R ∈ LU×V . Its counterpart
is a system of fuzzy relation equations with inf-→composition

Aj � R = Dj , or
∧
u∈U

(Aj(u) → R(u, v)) = Dj(v), 1 ≤ j ≤ m, (5)

also considered with respect to unknown R ∈ LU×V . System (4) and its
potential solutions are well investigated in the literature (see e.g. [1, 2, 10,
11, 12, 13, 14, 15]). On the other hand, investigations of the solvability of (5)
are not so intensive (see [2, 4, 16]).

4 Systems of Equations in Semilinear Spaces Lm
∨ and

Ln
∧

4.1 System of Equations in Semilinear Space Lm
∨

Let Lm∨ , with m ≥ 1, be a ∨-semilinear space over L∨, and Ln∧, with n ≥ 1,
be a ∧-semilinear space over L∨. Let n × m matrix A = (aij), vector b̄ =
(b1, . . . , bn) ∈ Ln, and vector d̄ = (b1, . . . , dm) ∈ Lm have components from
L. The systems of equations

a11 ∗ x1 ∨ · · · ∨ a1m ∗ xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . (6)
an1 ∗ x1 ∨ · · · ∨ anm ∗ xm = bn,

and

(a11 → y1) ∧ · · · ∧ (an1 → yn) = d1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)
(a1m → y1) ∧ · · · ∧ (anm → yn) = dm,

are considered with respect to unknown vectors x̄ = (x1 . . . , xm) ∈ Lm and
ȳ = (y1 . . . , yn) ∈ Ln. By (2) and (3), systems (6) and (7) can be respectively
represented as follows:
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hA(x̄) = b̄.

and
gA∗(ȳ) = d̄.

It is easily seen that system (6) is an instance of (4) specified by U =
{u1, . . . , um}, V = {v1, . . . , vn}, fixed v ∈ V , and Ai(uj) = aij , Bi(v) = bi,
R(uj, v) = xj . Similarly, system (7) is an instance of (5) specified by
U = {u1, . . . , un}, V = {v1, . . . , vm}, fixed v ∈ V , and Ai(uj) = aji,
Di(v) = di, R(uj , v) = yj .

4.2 Solvability in Terms of Galois Connection

Below, we will give results regarding solvability and the solutions of systems
(6) and (7) represented as:

Ax̄ = b̄, (hA(x̄) = b̄),
A∗�ȳ = d̄, (gA∗(ȳ) = d̄),

where mappings hA, gA∗ establish a Galois connection between dually ordered
spaces (Lm∨ ,≤) and (Ln∧,≤d). Therefore, any result about the solvability of
one system has its dual counterpart, which can be obtained by

• replacing hA by gA∗ , and vice versa,
• replacing ≤ by ≥, and vice versa,
• replacing ∨ by ∧, and vice versa.

For the reader’s convenience, we will formulate both dual results about the
solvability and the solutions of systems (6) and (7).

Theorem 2. Let A be a given matrix, and hA and gA∗ establish a Galois
connection between semilinear spaces Lm∨ and Ln∧. Then,

(i) System (6) is solvable if and only if b̄ is a closed element of Ln∧ with
respect to the closure operator gA∗ ◦ hA, or if and only if

b̄ = hA(gA∗(b̄)) = A(A∗�b̄). (8)

(ii) System (7) is solvable if and only if d̄ is a closed element of Lm∨ with
respect to the closure operator hA ◦ gA∗, or if and only if

d̄ = gA∗(hA(d̄)) = A∗�(Ad̄). (9)

Remark 2. By (8), the right-hand side vector b̄ ∈ Ln of a solvable system (6)
is a fixed point of the closure operator gA∗ ◦ hA determined by the matrix
of coefficients A. Similarly by (9), the right-hand side vector d̄ ∈ Lm of a
solvable system (7) is a fixed point of the closure operator hA ◦ gA∗ .
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Remark 3. By Theorem 1, A(A∗�ȳ) ≤ ȳ so that the operator gA∗ ◦ hA is a
closure in Ln∧ ordered by the dual ordering ≤d. In general, a closure operator
in a dually ordered space is called an opening operator with respect to the
reverse, i.e., genuine, ordering ≤. We will not, however, use this term.

Corollary 1. Let the conditions of Theorem 2 be fulfilled. Then,

(i) b̄ is a fixed point of gA∗ ◦hA if and only if there exists x̄ ∈ Lm such that
hA(x̄) = b̄, or Ax̄ = b̄.

(ii) d̄ is a fixed point of hA ◦ gA∗ if and only if there exists ȳ ∈ Ln such that
gA∗(ȳ) = d̄, or A∗�ȳ = d̄.

Corollary 2. Let the conditions of Theorem 2 be fulfilled. Then,

(i) for each x̄ ∈ Lm, A(A∗�Ax̄) = Ax̄,
(ii) for each ȳ ∈ Ln, A∗�A(A∗�ȳ) = A∗�ȳ.

Theorem 3. Let A be a given matrix, gA∗ ◦ hA a closure operator on Ln∧,
hA ◦ gA∗ a closure operator on Lm∨ . Then,

(i) the set cl∗A(Ln) of fixed points of gA∗ ◦ hA is a semilinear subspace of
Ln∨.

(ii) the set clA(Lm) of fixed points of hA ◦ gA∗ is a semilinear subspace of
Lm∧ .

Theorem 4. Let systems (6) and (7) be specified by n × m matrix A and
vectors b̄ ∈ Ln, d̄ ∈ Lm, respectively. Then,

(i) if b̄ is a fixed point of gA∗ ◦ hA, then gA∗(b̄) = A∗�b̄ is a solution of
system (6),

(ii) if d̄ is a fixed point of hA ◦ gA∗, then hA(d̄) = Ad̄ is a solution of system
(7).

Theorem 5. Let systems (6) and (7) be specified by n × m matrix A and
vectors b̄ ∈ Ln, d̄ ∈ Lm, respectively. Then,

(i) hA restricted to the set of fixed points clA(Lm) is a bijection between
clA(Lm) and cl∗A(Ln),

(ii) gA∗ restricted to the set of fixed points cl∗A(Ln) is a bijection between
cl∗A(Ln) and clA(Lm),

(iii) restriction gA∗ |cl∗A(Ln) is inverse of the restriction hA|clA(Lm).

Let ≡hA be an equivalence relation on Lm∨ such that

x̄1 ≡hA x̄2 ⇐⇒ A(x̄1) = A(x̄2).

Similarly, let ≡gA∗ be an equivalence relation on Ln∧ such that

ȳ1 ≡gA∗ ȳ2 ⇐⇒ A∗�ȳ1 = A∗�ȳ2.

Define [x̄]≡hA
as an equivalence class of x̄ with respect to ≡hA , and [ȳ]≡gA∗

an equivalence class of ȳ with respect to ≡gA∗ .
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Lemma 1. Let A be a n×m matrix. Then,

(i) For all x̄ ∈ Lm, [x̄]≡hA
= [A∗�Ax̄]≡hA

, where A∗�Ax̄ ∈ clA(Lm) is a
fixed point of hA ◦ gA∗ .

(ii) For all ȳ ∈ Ln, [ȳ]≡gA∗ = [A(A∗�ȳ)]≡gA∗ , where A(A∗�ȳ) ∈ cl∗A(Ln)
is a fixed point of gA∗ ◦ hA.

Theorem 6. Let systems (6) and (7) be specified by n × m matrix A and
vectors b̄ ∈ Ln, d̄ ∈ Lm, respectively. Then,

(i) [A∗�b̄]≡hA
is a set of solutions of (6) with the righthand side given by

b̄, i.e.,
x̄ ∈ [A∗�b̄]≡hA

⇔ Ax̄ = b̄.

Moreover, A∗�b̄ ∈ clA(Lm), and A∗�b̄ is the greatest element in
[A∗�b̄].

(ii) [Ad̄]≡gA∗ is a set of solutions of (7) with the righthand side given by d̄,
i.e.

ȳ ∈ [Ad̄]≡gA∗ ⇔ A∗�ȳ = d̄.

Moreover, Ad̄ ∈ cl∗A(Ln), and Ad̄ is the least element in [Ad̄].

5 Conclusion

In this paper, we showed that the theory of semilinear spaces and Galois
connections can be successfully used in characterizing the solvability and
solutions sets of systems of linear-like equations. The solvability is charac-
terized by the relationship between vectors of right-hand sides and solutions.
Moreover, because two types of systems of linear-like equations are shown to
be dual on the basis of this theory, only one of them was investigated.
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Abstract. Quantitative logic mainly provides a quantitative approach to
evaluating the degree of truth of a formula in a system of many-valued logic.
Based on the fundamental notion of truth degree, one can introduce the
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1 Introduction

Classical two-valued logic is inadequate to face the essential vagueness of hu-
man reasoning which is approximate rather than precise in nature, although
it fits quite well to mathematical reasoning. The main logical approach to
treating with the concepts of vagueness and uncertainty is to establish sys-
tems of many-valued logic by accepting more truth values than the classical
ones 1 and 0 only [1]. But logicians have not achieved an agreement on how
to intuitively interpret these (additional) truth values. Rosser and Turquette
[2] chose a subset D+ of the set W of all truth values whose elements are
called designated truth values to code degrees of truth of propositions, and
another subset D− of antidesignated truth values to code degrees of falsity.
Of course one supposes that 1 ∈ D+, 0 ∈ D− and D+ ∩ D− = ∅. Having
the designated and antidesignated truth values of a system of many-valued
logic one then has an almost standard way to generalize the notions of tau-
tology and of contradiction in classical logic. A formula A of the language of
a system of propositional many-valued logic is a tautology iff its truth value
always is a designated one under any valuation, and a formula B is a contra-
diction iff its truth value always is antidesignated. But, in modern systems
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of many-valued logic, logicians usually choose 1 as the only designated truth
value and 0 as the only antidesignated one [3-5]. It seems a little unreason-
able that one uses only the classical truth values to code degrees of truth of
propositions in a system of many-valued logic. Pavelka [6] abstracted propo-
sitions of �Lukasiewicz [0, 1]-valued logic to a fuzzy set with truth values as
their membership degrees, and Novák et al [7] further extended this theory.
However, this approach does not yet solve the problem which truth values
code degrees of truth.

In order to consider additional truth values for generalizing the notion of
tautology in classical logic, Wang [8] introduced the theory of Σ-(α-tautology)
in a system of many-valued logic. More precisely, let α be a real number in the
open-closed unit interval (0, 1], Σ a subset of the set Ω of all valuations, and
A a proposition. Then A is called a Σ-(α-tautology) (resp. Σ-(α+-tautology))
if v(A) ≥ α (resp. v(A) > α) for all v ∈ Σ, and a Σ-(α-tautology) A is said
to be attainable if there exists v ∈ Σ such that v(A) = α. In particular,
a Σ-(α-tautology) A is called a Σ-tautology if α = 1, and A is called an
α-tautology if Σ = Ω. By duality, one can introduce the notion of Σ-(α-
contradiction). Many interesting results have been obtained. For example,
in the formal deductive system L∗ (equivalently, in the nilpotent minimum
logic), there are exactly three classes of α-tautologies, namely, tautologies
(i.e., 1-tautologies), (1

2 )+-tautologies and 1
2 -tautologies, and in �Lukasiewicz

[0, 1]-valued propositional logic, there exists attainable r-tautology for every
rational number r ∈ (0, 1]. For more details one can also consult [9,10]. It
is by evaluating the lower bound of truth values a proposition can take that
this method generalized the notion of tautology. This seems too rough for
classification of α-tautologies in L∗, and even for an α-tautology A, it is fully
possible that there is a valuation u such that u(A) ≥ α + ε for some positive
number ε small enough. This fact shows that α cannot actually measure the
exact degree of truth of an α-tautology. Does there exist an effective way to
measure the degrees of truth of formulas in systems of many-valued logic? It
is interesting that an exact method for coding degrees of truth of formulas
was first proposed in classical propositional logic by measuring the size of
models of propositions [11]. We call the crucial notion truth degree in the
present paper. Then the notion of truth degree of propositions in standard
complete fuzzy propositional logics was proposed by the Lebesgue integral
of truth functions [12]. Thus we established the theory of truth degrees of
propositions in logic systems where the truth value sets jumped from {0, 1}
to [0, 1]. In order to harmoniously fill in the gap of theories of truth degree
between classical and fuzzy logic systems, Wang et al [13] extended this
notion to n-valued �Lukasiewicz propositional logic such that the truth degree
function in n-valued case converges into the one in fuzzy case as n turns
into infinity. Hence, the harmonious theory of truth degree of propositions
in many-valued propositional logics was successfully established. This idea
has also been extended to modal logic [14] and to first-order predicate logic
[15]. Based on the fundamental notion of truth degree, one can introduce,
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in a very natural way, the notions of similarity degree and of pseudo-metric
between propositions to establish approximate reasoning theory, and one can
also propose an effective way to measure degrees of consistency of theories.
We call such a new branch of research Quantitative Logic. The aim of the
paper is to provide a survey of Quantitative Logic, covering its basic results
and recent developments.

2 Truth Degrees of Formulas

In this section we recall the notion of truth degree in proper order in classical
propositional logic, in n-valued propositional logic, and in fuzzy propositional
logic. We assume in this paper that the truth value sets of n-valued proposi-
tional logics are the sets of rational numbers between 0 and 1 of the form

Wn = {0, 1
n− 1

, · · · , n− 2
n− 1

, 1}.

Even if we have defined the notion of truth degree in any standard complete
many-valued propositional logic, we shall restrict ourselves to �Lukasiewicz
logic �L, Gödel logic G, product logic Π and the formal deductive system L∗,
and their n-valued extensions �Ln, Gn, Πn and L∗

n.
In order to better understand the definition of truth degree we should first

recall a fundamental theorem concerning the infinite dimensional product of
measure spaces [16].

Theorem 1. Let (Xk,Ak, μk) be a sequence of probability measure spaces.
Then there exists a unique product probability measure μ on the σ-algebra A
of X =

∞∏
k=1

Xk, which is generated by all the sets of the form A1×· · ·×Am×

Xm+1×Xm+2 ×· · · with Ak ∈ Ak, k = 1, 2, · · · ,m and m ∈ N , such that, for
each measurable set of the kind E ×Xm+1 ×Xm+2 × · · · ,

μ(E ×Xm+1 ×Xm+2 × · · ·) = (μ1 × · · · × μm)(E). (1)

In the case of E = A1 × · · · × Am with Ak ∈ Ak for any k = 1, 2, · · · ,m,
one has

μ(E×
∞∏

k=m+1

Xk) = (μ1×· · ·×μm)(E) = μ1(A1)×μ2(A2)×· · ·×μm(Am). (2)

2.1 Truth Degrees of Propositions in Classical Logic

Definition 1. Let Xk = W2 = {0, 1},Ak = P(Xk), and μk the uniform

probability measure on Xk for all k = 1, 2, · · · . Let X =
∞∏
k=1

Xk(i.e., X =

Ω2 the set of all valuations), A the σ-algebra generated by A1,A2, · · · as in
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Theorem 1, and μ the unique product probability measure on A generated by
μ1, μ2, · · · . Define, for every proposition A in classical propositional logic,

τ2(A) = μ(A−1(1)), (3)

where A−1(1) stands for the set {v ∈ Ω2|v(A) = 1} of models of A, then
τ2(A) is called the truth degree of A.

For each proposition A = A(pi1 , · · · , pim), it is not difficult to check by
(2) that τ2(A) = 1

2m | Ā−1(1) |, where Ā means the truth function (more
precisely, Boolean function) represented by A and the symbol |E| stands
for the cardinal of E. This is just the expression given in the survey pa-
per [17]. This expression is helpful to the calculation of (3). For example,
τ2(p) = τ2(q) = 1

2 , τ2(p∨ q) = τ2(p → q) = 3
4 and τ2(p1 ∨ · · · ∨ pm) = 1− 1

2m .
Among interesting properties of τ2(A) we select the following:

Proposition 1. Let A,B be propositions. Then:
(i) A is a tautology iff τ2(A) = 1,
(ii) A is a contradiction iff τ2(A) = 0,
(iii) τ2(¬A) = 1 − τ2(A),
(iv) τ2(A) + τ2(B) = τ2(A ∨B) + τ2(A ∧B),
(v) τ2(B) ≥ τ2(A) + τ2(A → B) − 1,
(vi) τ2(A) + τ2(A → B) = τ2(B) + τ2(B → A).

Let
H2 = {τ2(A) | A is a proposition}.

Then we have:

Theorem 2. ([11]) H2 = { k
2m | k = 0, 1, · · · , 2m;m = 1, 2, · · ·}.

2.2 Truth Degrees of Propositions in n-Valued Logics

Definition 2. Let Xk = Wn, Ak = P(Xk) and μk be the uniform probability

measure on Xk for all k = 1, 2, · · ·, and let X =
∞∏
k=1

Xk = Ωn (the set of all

valuations), A the σ-algebra generated by A1,A2, · · · and μ the unique product
probability measure on A as in Theorem 1. Define, for every proposition A
is a system of n-valued logic,

τn(A) =
n−1∑
i=0

i

n− 1
μ(A−1(

i

n− 1
)), (4)

where A−1( i
n−1 ) stands for the set of i

n−1 -models of A, i.e., A−1( i
n−1 ) =

{v ∈ Ωn | v(A) = i
n−1} for all i = 0, 1, · · · , n − 1. Then τn(A) is called the

truth degree of A.
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It is clear that τn(A) = τ2(A), defined by (3), for every A in the case of n = 2.

Moreover, one can also check by (2) that τn(A) = 1
nm

n−1∑
i=0

i
n−1 | Ā−1( i

n−1 ) |

as given in [17] if A contains m atomic propositions, where Ā is the truth
function induced by A.

It is easy to check that Proposition 1 still holds in the commonly used
systems of n-valued propositional logic such as �Ln, Gn, Πn and L∗

n except
the item (vi).

2.3 Truth Degrees of Propositions in Fuzzy Propositional Logic

In [0,1]-valued logics, the integral of truth functions can be employed to
measure degrees of truth of the corresponding propositions [12].

Definition 3. Let A = A(pi1 , · · · , pim) be a proposition in a fuzzy logic, and
Ā = Ā(xi1 , · · · , xim) the induced truth function. Then the Lebesgue integral
of Ā on [0, 1]m:

τ∞(A) =
∫

[0,1]
Ā(xi1 , · · · , xim)dxi1 · · · dxim (5)

is called the (integrated) truth degree of A.

For detailed properties of τ∞ one can consult [12,3]. What we are interested
in here is the relationship between the truth degree functions τn and τ∞ when
n turns into infinity. The following limit theorem obtained in [13] gives us a
positive answer.

Theorem 3. For every proposition A in �Lukasiewicz logic, one has

lim
n→∞

τn(A) = τ∞(A). (6)

Indeed, the idea behind the proof of Theorem 3 can also be extended to Gödel
logic, product logic and the logic L∗, that is, the (6) holds also truth in these
mentioned logics, see, e.g., [18].

2.4 Recent Developments

In Quantitative Logic, it is easy to check that τ2(p) = τn(p) = τ∞(p) = 1
2 for

all basic events p. This situation contradicts with the actual fact in our real
life that the probabilities of different basic events may be greatly different.
Keeping this in mind, Wang and Hui [19] introduced the notion of random
truth degree of propositions in classical logic.

Definition 4. Let D = (P1, P2, · · ·) be a sequence of real numbers in (0,1),
x = (x1, x2, · · ·) ∈ Ω2 a valuation. ∀k = 1, 2, · · · , let Qxk

k = Pk if xk = 1 and
Qxk

k = 1 − Pk if xk = 0, and define
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τD(A) = Σ{Qx1
1 × · · · ×Qxn

n | (x1, · · · , xn) ∈ Ā−1(1)} (7)

for every proposition A = A(pi1 , · · · , pim), where n = max{i1, · · · , im}. Then
τD(A) is called D-random truth degree of A.

Only from the definition of (7) one cannot see the distinction and relationship
between τD(A) and τ2(A), but it actually randomizes the τ2(A). In fact, for
each coordinate Pk in D, Pk decides a probability measure μk on Xk = {0, 1}
with μk({1}) = Pk = Q1

k and μk({0}) = 1 − Pk = Q0
k. Let μ be the unique

product probability measure on Ω2 = X =
∞∏
k=1

Xk generated by μk’s, and it

is easy to check that
τD(A) = μ(A−1(1)). (8)

It follows from (8) and (3) that τD(A) and τ2(A) are defined in the same way,
which are both based on the product probability measure μ on the truth value
set Ω2 except that the μ in (8) is not necessarily uniform. In particular, if
the probability measures μ1, μ2, · · · induced by the sequence D in (8) are
all uniform, then it is obvious that τD(A) = τ2(A). But (8) still requires
μ to be a product probability measure, and hence μ is independent, i.e.,
τD(p ∧ q) = τD(p) × τD(q) for two different atomic propositions. This result
is also unacceptable in particular applications. To overcome the difficulties
the second author introduced in [20] the notion of probabilistic truth degree
of propositions in classical logic by means of a Borel probability measure on
Ω2 (which is not necessarily uniform or independent), which can bring τ2(A)
and τD(A) as special cases into a unified framework. The idea can also be
extended to systems of many-valued logic, see [21,22].

In the following, we assume that Xk = W2 = {0, 1} be the discrete topo-
logical space endowed with the usual topology, and hence that Ω2 = X =
∞∏
k=1

Xk = 2ω be the usual product topological space.

Definition 5. Let μ be a Borel probability measure on the product topological
space Ω2 = 2ω, and define

τμ(A) = μ(A−1(1)) (9)

for every proposition A in classical logic. Then τμ(A) is called the μ-
probabilistic truth degree of A.

Remark 1. (i) Without loss of generality, we assume now that every propo-
sition we are dealing with is built up from the first m atomic propositions
p1, · · · , pm for some m. Let A = A(p1, · · · , pm) be a proposition, and μ a Borel
probability measure on Ω2. If define μ(m) : P({0, 1}m) → [0, 1] by

μ(m)(E) = μ(E ×
∞∏

k=m+1

Xk), E ∈ P({0, 1}m), (10)
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then μ(m) is a probability measure on the finite set P({0, 1}m) and τμ(A) =
μ(m)(Ā−1(1)).

(ii) Let A = A(p1, · · · , pm) be a proposition and μ a product probabil-
ity measure on Ω2 generated by some probability measures μk on Xk =
{0, 1}(k = 1, 2, · · ·). Then one has

τμ(A) = μ(m)(Ā−1(1)) = (μ1 × · · · × μm)(Ā−1(1))
= Σ{μ1({x1}) × · · · × μm({xm}) | (x1, · · · , xm) ∈ Ā−1(1)}
= τD(A),

where D = (P1, P2, · · ·) and Pk = μk({1}) for all k = 1, 2, · · · . Thus the
random truth degree of formulas in (8) is only a special case of μ- probabilistic
truth degree of formulas in (9) in the case where the μ is a product probability
measure. In particular, if each μk is uniform, then τμ(A) = Σ{ 1

2 × · · · × 1
2 |

(x1, · · · , xm) ∈ Ā−1(1)} = 1
2m | Ā−1(1) |= τ2(A).

(iii) Every valuation v ∈ Ω2 is a probabilistic truth degree function in the
sense of Definition 5 where the involved Borel probability measure μ satisfies
μ(E) = 1 if v ∈ E and otherwise μ(E) = 0.

It is easy to check that Proposition 1 is true for finitely-atomic Borel prob-
ability measures μ, i.e., μ(m)({(x1, · · · , xm)}) �= 0 for every (x1, · · · , xm) ∈
{0, 1}m and for every m ∈ N. For every Borel probability measure μ on Ω2,
one can also define Hμ = {τμ(A) | A is a proposition} and show that:

Theorem 4. ([22])(i) Hμ = {μ(m)(E) | E ⊆ {0, 1}m,m ∈ N},
(ii) If μ is non-atomic, then Hμ is dense in [0,1],
(iii) If μ is generated by uniform probability measures as in Definition 1,

then Hμ = H2 = { k
2m | k = 0, 1, · · · , 2m,m = 1, 2, · · ·}.

The truth degree functions defined by (3)–(5) and(7)–(9) can be used to
introduce the graded versions of the notions of logical equivalence and of
(semantic) entailment. In the following let us limit ourselves to the truth
degree function τμ in (9).

3 Similarity Degrees between Propositions

Definition 6. Let μ be a Borel probability measure on Ω2, and A,B two
propositions. Define

ξμ(A,B) = τμ((A → B) ∧ (B → A)), (11)

the ξμ(A,B) is called the μ-similarity degree between A and B.

Clearly, the μ-similarity degree between logically equivalent propositions A
and B is equal to 1, i.e., ξμ(A,B) = 1 whenever A and B are logically
equivalent. Conversely, if the μ is finitely-atomic, then one can check that
ξμ(A,B) = 1 is sufficient for logical equivalence between A and B. Then one
has the following:
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Proposition 2. Let A,B and C be arbitrary propositions. Then:
(i) ξμ(A,B) = ξμ(B,A);
(ii) ξμ(A,B) + ξμ(B,C) ≤ ξμ(A,C) + 1;
(iii) ξμ(A,B) = 1 + τμ(A ∧B) − τμ(A ∨B);
(iv) ξμ(A,B) + ξμ(A,¬B) = 1;
(v) If μ is finitely-atomic, then

ξμ(A,B) = 1 iff A and B are logically equivalent.

(vi) If μ is finitely-atomic, then
ξμ(A,B) = 0 iff one of A and B is a tautology and the other is a contra-

diction.

By virtue of the items (i) and (ii) of Proposition 2, one can introduce a
pseudo-metric on the set F (S) of all propositions.

Definition 7. Let μ be a Borel probability measure on Ω2, and A and B
propositions. Define

ρμ(A,B) = 1 − ξμ(A,B). (12)

Then, by Proposition 2(i) and (ii), ρμ is a pseudo-metric on F (S).

The pseudo-metric space (F (S), ρμ) has the following properties:

Theorem 5. ([22]) (i) If μ is non-atomic, then (F (S), ρμ) has no isolated
points,

(ii) For every Borel probability measure μ on Ω2, logical connectives ¬,∨,∧
and → are all uniformly continuous with respect to ρμ.

4 Entailment Degrees of Propositions from Theories

As mentioned above, the truth degree function (9) can be used to grade the
notion of semantic entailment.

Let Γ be a theory and A a proposition in classical logic. Assume first that Γ
semantically entails A, then, by the strong completeness theorem of classical
logic, Γ syntactically entails A. It follows from the deduction theorem that
there exists a finite sequence of propositions from Γ , say A1, · · · , Am, such
that A1 ∧ · · · ∧ Am → A is a theorem. And consequently, one has τμ(A1 ∧
· · · ∧ Am → A) = 1. The inverse argument is also true provided that the μ
is finitely atomic. From the above analysis, in order to determine whether a
given proposition A is a semantic consequence of a theory Γ, it suffices to
calculate the truth degrees τμ(A1∧· · ·∧Am → A) of all possible propositions
of the form A1 ∧ · · · ∧Am → A with A1, · · · , Am ∈ Γ. Taking infinite theories
into account, we use the supremum of truth degrees of these propositions
to measure the degree of entailment of A from Γ . This idea is made more
precisely by the following definition.
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Definition 8. Let Γ be a theory and A a proposition in classical logic. Let μ
be a Borel probability measure on Ω2. Then

Entailμ(Γ,A) = sup{τμ(A1∧· · ·∧Am → A) | A1, · · · , Am ∈ Γ,m ∈ N} (13)

is called the μ-entailment degree of A from Γ.

Example 1. Let μ be the product probability measure given in Definition 1.
Find Entailμ(Γ,A), where

(i) Γ = {p}, A = q,
(ii) Γ = {p2, p3, · · ·}, A = p1.

Solution 1. (i) By (12) and (13), Entailμ(Γ,A) = τ2(p → q) = 1
22 |

p → q−1(1) |= 3
4 .

(ii)
Entailμ(Γ,A) = sup{τ2(p2 ∧ · · · ∧ pm → p1) | m ∈ N}

= sup{ 2m−1
2m | m ∈ N}

= 1.

This shows that A is a semantic consequence of Γ in the degree 1, but not a
semantic consequence of Γ in its original sense.

Recall that a theory is said to be inconsistent if the contradiction 0̄ is its
consequence. Hence Entailμ(Γ, 0̄) is an ideal index to measure the degree
of inconsistency of Γ. Perhaps this hints the idea that one may define the
consistency degree of Γ to be 1-Entailμ(Γ, 0̄), but this idea has a shortcoming
that it could not distinguish consistent theories with Entailμ(Γ, 0̄) = 1 from
inconsistent ones as shown by Example 1(ii). So one has to slightly revise it.

Definition 9. Let Γ be a theory in classical logic. Define

Consistμ(Γ ) = 1 − 1
2
Entailμ(Γ, 0̄)(1 + iμ(Γ ))

where iμ(Γ ) = [max{1 − τμ(A1 ∧ · · · ∧ Am) | A1, · · · , Am ∈ Γ}]. Then
Consistμ(Γ ) is called the μ-consistency degree of Γ.

One can then prove the following:

Theorem 6. Let Γ be a theory, and μ a finitely atomic Borel probability
measure on Ω2. Then:

(i) Γ is inconsistent iff Consistμ(Γ ) = 0,
(ii) Γ is consistent iff 1

2 ≤ Consistμ(Γ ) ≤ 1,
(iii) Γ is consistent and Entailμ(Γ ) = 1 iff Consistμ(Γ ) = 1

2 .

For more results about consistency degrees of theories one can consult [23].
It is interesting that the function Entailμ in (12) is closely related to the

pseudo-metric function ρμ in (11).
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Theorem 7. (i) Entailμ(Γ, 0̄) = divμ(Γ ), where divμ(Γ ) = sup{ρμ(A,B) |
A,B ∈ D(Γ )}.

(ii) ρμ(A,D(Γ )) + Entailμ(Γ,A) = 1.

Proof. (i) divμ(Γ ) = sup{ρμ(A,B) | A,B ∈ D(Γ )} = 1 − inf{ξμ(A,B) |
A,B ∈ D(Γ )}. Since ξμ(A,B) ≥ τμ(A ∧ B) = ξμ(T,A ∧ B) where T is a
tautology, one then has divμ(Γ ) = 1 − inf{ξμ(T,A ∧ B) | A,B ∈ D(Γ )} =
1− inf{τμ(A∧B) | A,B ∈ D(Γ )} = 1− inf{τμ(A1∧· · ·∧Am) | A1, · · · , Am ∈
Γ} = Entailμ(Γ, 0̄).

(ii)

ρμ(A,D(Γ )) = inf{ρμ(A,B) | B ∈ D(Γ )}
≤ inf{ρμ(A,A ∨B) | B ∈ D(Γ )}
= inf{1 − τμ((A → A ∨B) ∧ (A ∨B → A)) | B ∈ D(Γ )}
= inf{1 − τμ(B → A) | B ∈ D(Γ )}.

On the other hand,

ρμ(A,D(Γ )) = inf{ρμ(A,B) | B ∈ D(Γ )}
= 1 − sup{ξμ(A,B) | B ∈ D(Γ )}
= 1 − sup{τμ((A → B) ∧ (B → A)) | B ∈ D(Γ )}
≥ 1 − sup{τμ(B → A) | B ∈ D(Γ )}.

This shows that ρμ(A,D(Γ )) = 1 − sup{τμ(B → A) | B ∈ D(Γ )}. It is
obvious that sup{τμ(B → A) | B ∈ D(Γ )} = sup{τμ(A1 ∧ · · · ∧ Am → A) |
A1, · · · , Am ∈ Γ} = Entailμ(Γ,A). Thus (ii) is true.
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Abstract. By extending Ershov’s notion of a d-space from topological spaces
to net convergence spaces, this paper details the d-completion of certain net
convergence structures which are rich enough to support it. In particular,
it is demonstrated that spaces which are embeddable into d-spaces which
have iterated limits admit d-completions. The main result reported herein
generalizes an existing procedure for d-completion of T0 spaces.
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1 Introduction

A directed subset D of a partially ordered set P is a non-empty set for which
any finite subset F ⊆ D has an upper bound in D. Being an obvious general-
ization of chains, directed sets capture succinctly the essence of convergence
of sequences in general topology. Indeed, one can traced back to works like
[9], where directed sets, together with nets, were used to determine topolo-
gies. Riding on its special affinity to convergence, directed sets were soon
used to model phenomenon of approximations in computation. Consequently,
partial orders which support the existence of suprema (in a way, viewed as
limit points) of such sets emerge to become a salient notion in topology, do-
main theory and denotational semantics. These structures are called directed
complete posets, abbreviated by dcpo’s, have now become well-known in the
community of theoretical computer science (particularly, programming se-
mantics). One of the most important appearance of this concept is in the
definition of the famous Scott topology invented by D.S. Scott in the late
1960’s: “A subset U of a partially ordered set is open if it is upper and is
inaccessible by directed suprema.” (See [3,5].)

Valued as an indispensable condition of completeness in partial orders, it
sparked off an active line of research for order theorists to provide ‘canoni-
cal’ dcpo-completions in the event that a poset fails to be directed-complete.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 93–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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For instance, the pioneering work of G. Markowsky [8] details a procedure of
dcpo-completion via chains. Directedness and directed-completeness contin-
ued their pervasion from the realm of posets to that of T0 spaces – the key
link here being the specialization order of the underlying topology: x �τ y
if and only if x ∈ cl({y}), where cl is the closure operator with respect to
the topology τ . Along this topological line of development, O. Wyler [12]
and Y.L. Ershov [2] had already studied extensively the d-spaces which are
topological spaces behaving like dcpo’s (i.e., directed complete with respect
to the specialization order and in which the limit points of directed subsets
are exactly their suprema). In particular, Ershov showed that every T0 space
X has its d-completion (i.e., a universal completion parallel to that of dcpo-
completions for posets) – the smallest ambient d-space into which X can be
embedded. The inverse limits construction employed by [8] and [2] is essen-
tially a ‘bottom-up’ approach. Later, a ‘top-down’ approach was carried out
in recent works of T. Fan and D. Zhao [14], and that of K. Keimel and J.D.
Lawson [6], exploiting a new topology called D-topology.

In this paper, we proceed to investigate the existence of d-completion for
a net convergence space, which is one of the structures that generalizes topo-
logical spaces. More precisely, we introduce a suitable notion of d-space in the
context of net convergence spaces and show that there exists a certain class
C of (net) convergence spaces whose structures are rich enough to admit (the
corresponding) d-completions. It turns out that such a class C contains all T0
topological spaces, thus generalizing the existing results of d-completions of
T0 topologies spaces and dcpo-completions of posets.

The subsequent structure of this paper is as follows. Section 2 sets the ap-
propriate categorical stage to facilitate many kinds of completions that will
take place in the present context of convergence spaces, and this is supported
by a few well-known examples. Section 3 then ushers in the notion of conver-
gence space and its related constructs. Niceness conditions form the subject
of discourse in Section 4; and spaces in which iterated limits exist for Section
5. These concepts, as it turns out, will be exploited in the development of
the theory of d-spaces in the context of net convergence structures in Section
6. This section then culminates with the main theorem which states some
sufficiency condition for the existence of d-completions with respect to the
definition of d-spaces which we had stated in preceding section.

2 Universal K-Fications in Topological Categories

Our main study centers around the several universal K-fications in the cate-
gory of net convergence spaces. We choose to carry out this programme within
the convenient framework of topological categories in the sense of [11]. The
notion of a concrete category is an essential one with regards to this choice.

By a concrete category we mean a category C whose objects are structured
sets, i.e., pairs (X, ξ) where X is a set and ξ is a C-structure on X , whose
morphisms f : (X, ξ)−→(Y, η) are suitable maps between X and Y and whose
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composition law is the usual composition of maps – in other words: a category
C together with a faithful (forgetful) functor U : C → Set where Set denotes
the category of sets and maps.

Definition 2.1. A concrete category C is called topological if it satisfies the
following conditions:

1. Existence of initial structures:
For any set X and any family (Xi, ξi)i∈I of C-objects Xi’s indexed by I
and mappings ξi : X → Xi each indexed by I, there exists a unique C-
structure (X, ξ) which is initial with respect to (X, fi, (Xi, ξi), I), i.e.,
such that for any C-object (Y, η) a map g : (Y, η)−→(X, ξ) is a C-
morphism if and only if for every i ∈ I the composite map fi ◦ g :
(Y, η)−→(Xi, ξi) is a C-morphism.

2. Fibre-smallness:
For any set X, the C-fibre of X, i.e., the class of all C-structures on X,
is a set.

3. Terminal separator property:
For any set X with cardinality one, there exists precisely one C-structure
on X.

The concept of a full reflective subcategory allows one to deal with, in
a coherent manner, different kinds of completions which we are about to
embark on.

Definition 2.2. A full subcategory K of a category C is called reflective if
the inclusion functor Incl has a left adjoint R, which then is called a reflector.

Equivalently, this is realized in the following way: For each C-object C, there
exists a K-object C̃ and a C-morphism rC : C−→C̃ such that for each K-
object D and each C-morphism f : C−→D, there is a unique K-morphism
f : C̃−→D such that

f ◦ rC = f.

We call the object C̃ the K-modification of C and the universal C-morphism
rC : C−→C̃ the (universal) reflection. Several subcategories K of the topo-
logical categories we consider in this paper are crucially of the following two
kinds:

Definition 2.3. A bireflective subcategory K of a category C is a reflective
subcategory in which for each C-object C the reflection rC : C−→C̃ is a
bimorphism, i.e., it is both a monomorphism and an epimorphism.

Definition 2.4. A full subcategoryK of a category C is said to be isomorphism-
closed if for any C-object C and any K-object K, whenever C is isomorphic to
K then C is itself a K-object.
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The reason for singling out these kinds of subcategories is that:

Theorem 2.5.(Theorem 2.2.12,[11])
Every bireflective and isomorphism-closed subcategory K of a topological

category C is topological.

The above theorem comes handy in ensuring the existence of initial structures
for certain subcategories of net convergence spaces we are considering in this
paper.

3 Net Convergence Spaces

In this section, we introduce our main character – net convergence spaces. A
pre-ordered set I (i.e., one with a reflexive and transitive relation �) is said
to be directed if for every pair i1, i2 ∈ I, there is always an i3 ∈ I such that
i1, i2 � i3. A net in a set X is a mapping from a directed pre-order I to X . If
we need to be more explicit about the elements of a net, we use the notation
(xi)i∈I . Otherwise, we use Greek letters μ, ν. In particular, for any pre-order
I and any fixed element x ∈ X , the constant net (x) : I → X, i �→ x is a
net in X . For any directed subset D of a partially ordered set P (poset, for
short), D defines a net (xd)d∈D where xd := d for each d ∈ D. Given a set
X , we use Ψ(X) to denote the set of all nets in X .

Throughout our discussion, we make a more than casual use of the phrase
‘eventually’ in the following sense: If P (x) is a property of the elements x ∈ X ,
we say that P (xj) holds eventually in a net (xj)j∈J if there is a j0 ∈ J such
that ϕ(xk) holds whenever k � j0.

We say that (xi)i∈I is a subnet of (yj)j∈J , denoted by (xi)i∈I ≤ (yj)j∈J , if

∀j0 ∈ J, ∃i0 ∈ I, ∀i � i0, xi ∈ T
(yj)
j0

.

Here, T (yj)
j0

denotes the set {yj | j � j0} and is called the jth
0 -tail of the net

(yj)j∈J . Equivalently, (xi)i∈I is a subnet of (yj)j∈J if and only if for each
j ∈ J , the net (xi)i∈I is eventually in the jth-tail of (yj)j∈J . Then ≤ is a
pre-order on Ψ(X) which will be called the subnet pre-order.

Remark 3.1
(1) In the literature of net convergence structures, there are different defi-

nitions of a subnet. In particular, Kelley in [7] defines (xi)i∈I to be a subnet
of (yj)j∈J if and only if there is a mapping h : I → J such that

1. xi = yh(i) for all i ∈ I, and
2. for each j ∈ J , there is i0 ∈ I such that whenever i � i0 then h(i) � j.

Several authors, such as [1], consider additionally that h is monotone. Our
version, adopted from [10], is less general but yet natural enough to crucially
allow the safe passage of certain arguments regarding subnets where other
competing versions fail.

(2) Note that we may have two distinct nets μ1 and μ2 which are subnet of
each other. We will call a net μ a proper subnet of net ν if μ ≤ ν and ν �≤ μ.
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Definition 3.2. A net is called an ultranet if it has no proper subnet.

In other words, it is minimal with respect to the subnet pre-order. More
precisely, a net ν is an ultranet if for any subnet ν′ of ν, ν is also a subnet of
ν′. Given a net μ in a set X , by the Hausdorff maximality principle, there is
always an ultranet ν which is a subnet of μ. The abridged version of saying
this is that ν is an ‘ultra-subnet ’ of μ.

Example 3.3. Every constant net (x) is an ultranet since for every subnet
(yj)j∈J of (x), it holds that (x) is eventually in the ith-tail of (yj)j∈I as all
of the yj’s are actually x.

Proposition 3.4. The following conditions are equivalent for a net (xi)i∈I
in a set X.

(i) (xi)i∈I is an ultranet.
(ii) For any subset E of X, (xi)i∈I is eventually in either E or X\E.
(iii) For any subsets A and B, if (xi)i∈I is eventually in A∪B then (xi)i∈I

is either eventually in A or in B.

Proof. (i) =⇒ (ii): Suppose not. Then for each i ∈ I, there exist i1, i2 �
i ∈ I such that xi1 ∈ E and xi2 ∈ X\E. This gives rise to a proper subnet of
(xi)i∈I whose elements are respectively in E. However, this contradicts the
assumption that E has no proper subnets.

(ii) =⇒ (iii): Consider X = A ∪ B with no loss of generality and set
E = A. Then X\E = B\A. Applying (ii), the net (xi)i∈I will eventually be
in E or in X\E. Equivalently, the net is eventually in A or in B\A. Thus the
net is eventually in A or in B.

(iii) =⇒ (i): Suppose that (xi)i∈I has a proper subnet (yj)j∈J . We assume,
without lose of generality, that it is not true that (xi)i∈ is in A = {yj | j ∈ J}
eventually. Then B = {xi | i ∈ I}\A �= ∅. Since (xi)i∈I is in A∪B eventually
and not in A eventually, by (iii), the net (xi)i∈I is in B eventually. Assume
that T

(xi)
i0

⊆ B holds for some i0 ∈ I. Then (yj)j∈J is in T
(xi)
i0

, and hence in
B eventually. But this is not possible because all y′j are in A and A is disjoint
from B. This contradiction shows that (xi)i∈I must be an ultranet.

Having explained what nets are, we are ready for the following.

Definition 3.5. By a net convergence space, we mean a pair (X,→) where
X is a non-empty set and → a relation between the set Ψ(X) and X, i.e.,
→⊆ Ψ(X) ×X such that the following axioms are satisfied:

1. (CONSTANT NET)
For every x ∈ X, we always have (x) → x.

2. (SUBNET)
If (yj)j∈J ≤ (xi)i∈I and (xi)i∈I → x, then (yj)j∈J → x.

We write (xi)i∈I → x for ((xi)i∈I , x) ∈→. Where there might be convergence
structures derived from an existing one on a same set X, we always use →X

to denote the original one.
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A function f : (X,→X)−→(Y,→Y ) between net convergence spaces is said to
be continuous if (xi)i∈I →X x implies (f(xi))i∈I →Y f(x). NConv denotes
the category of net convergence spaces and continuous functions. A special
kind of continuous map which is crucial in our theory of D-completion de-
serves special mention:

Definition 3.6. A pre-embedding of a convergence space X to another Y is
a continuous mapping e : X−→Y such that

(xi)i∈I →X x ⇐⇒ (e(xi))i∈I →Y e(x).

An embedding is an injective pre-embedding.

A convergence space (X,→) is said to be T0 if for every x, y ∈ X , the
following holds:

(x) → y ∧ (y) → x ⇐⇒ x = y.

A few pathological examples must now be in place.

Example 3.7

1. If (X, τ) is a topological space, then (X,→τ ) is a convergence space, where
(xi)i∈I →τ x if and only if the net (xi)i∈I converges to x in the topological
sense, i.e., for every open set U of (X, τ), x ∈ U implies that xi ∈ U
eventually. Such a convergence space is called a topological convergence
space. Denote by Ω the Sierpinski space, i.e., {0, 1}. Ω is the convergence
space in which every net (xi)i∈I converges to 0 and (xi)i∈I → 1 if and
only if xi = 1 eventually. Then clearly (Ω,→) is topological.

2. Let P be a poset. Define (xi)i∈I →d x if and only if there is a directed
subset D ⊆ P such that

⊔
D � x and for each d ∈ D, xi � d eventually.

It is straightforward to verify that (P,→d) is a convergence space. In [13],
it is shown that P is topological if and only if P is a continuous poset.
In general, let M be a collection of subsets of poset P such that {x} ∈ M
for each x ∈ P . Define (xi) →M x if and only if there is A ∈ M such
that
⊔

A � x and xi � a eventually for each a ∈ A. Then (X,→M) is a
convergence space.

3. Let (X, τ) be a topological space and �τ be the specialization order on
X (i.e., x �τ y iff x ∈ cl({y})). Define (xi)i∈I →c x if and only if
x ∈ cl(

⋃
k∈I T

(xi)↓
k), where A↓ := {y ∈ X | ∀a ∈ A.y � a}. Note that

A↓ is in fact the set of all lower bounds of A in X. Then (X,→c) is a
convergence space, first defined in [4] for dcpos with their Scott topology.

4. A pre-metric space is a pair (X, ρ), where X is a non-empty set and
ρ : X × X−→[0,∞) is a function satisfying ρ(x, x) = 0 for all x ∈ X.
Now define (xi)i∈I → x if (ρ(xi, x))i∈I converges to 0. Then (X,→) is a
convergence space.

5. On R2 define (xi, yi)i∈I →1 (x, y) iff (xi)i∈I converges to x in R. Then
(R2,→1) is a convergence space. In general, if f : X−→Y is a mapping
from a set X into a topological space Y , we define (xi)i∈I →f x, for
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net (xi)i∈I and element x in X, if (f(xi))i∈I converges to f(x). Then
(X,→f ) is a convergence space.

6. For any poset P and a net (xi)i∈I in P , define (xi)i∈I →D x if there is a
directed subset E ⊆ P such that

⊔
E = x and for each e ∈ E, xi ∈ E∩ ↑ e

eventually. Then (P,→D) is a convergence space.

Readers who are familiar with the theory of filter convergence would have
realized the glaring similarities between the definitions of filter convergence
spaces and net convergence spaces. In fact, one can show that there is a
categorical adjunction between them. A given net (xi)i∈I in X canonically
induces a filter in X , denoted by [(xi)i∈I ], defined by

[(xi)i∈I ] = {A ⊆ X | ∃i0 ∈ I.A ⊇ T
(xi)
i0

}.

In other words, [(xi)i∈I ] is the filter generated by the filter base consisting of
the tails of (xi)i∈I .

Remark 3.8. With this notation, it is easy to see that (xi)i∈I ≤ (yj)j∈J if
and only if [(yj)j∈J ] ⊆ [(xi)i∈I ].

Conversely, a given filter F on X induces a canonical net F̂ defined as follows.
Define IF := {(a,A) | (a ∈ A)∧(A ∈ F)} and impose the following pre-order:

(a, F ) ≤ (b,G) ⇐⇒ G ⊆ F.

The canonical net in X induced by the filter F is given by the mapping:

F̂ : IF−→X, (a,A) �→ a.

Denote the set of all filters on X by Φ(X) and order it by the sub-filter order
≤ (in fact, it is the reverse inclusion). Experts in Galois connections would
immediately recognize the adjunction of pre-orders between Φ(X) and Ψ(X),
i.e.,

αX : Φ(X) → Ψ(X), F → F̂
is left adjoint to

βX : Ψ(X) → Φ(X), (xi)i∈I → [(xi)i∈I ].

Such a pair of adjoint maps, natural in X , is in fact an e-p (embedding-
projection) pair, i.e., αX ◦βX ≤ idΨ(X) & βX ◦αX = idΦ(X). It can be shown
that such e-p pairs induce a categorical adjunction between the category of
filter convergence spaces FConv and that of net convergence spaces NConv,
i.e., FConv � NConv. At the moment of writing, it is not known to the
authors whether these two categories are equivalent.

Given any function f : X → Y , one can define f+ : Ψ(X) → Ψ(Y ) by

f+(xi)i∈I := (f(xi))i∈I

and also f− : Ψ(Y ) → Ψ(X) as follows:



100 W.K. Ho, D.-s. Zhao, and W.S. Wee

f−(yj)j∈J := αX ◦ [f−1(T (yj)
j ) | j ∈ J ].

Here, [f−1(T (yj)
j ) | j ∈ J ] denotes the filter generated by the filter base

{f−1(T (yj)
j ) | j ∈ J}. For any (xi)i∈I ∈ Ψ(X) and any (yj)j∈J ∈ Ψ(Y ),

f+((xi)i∈I) ≤ (yj)j∈J ⇐⇒ (xi)i∈I ≤ f−((yj)j∈J ). This can be justified as
follows:

f+((xi)i∈I) ≤ (yj)j∈J
⇐⇒ (f(xi))i∈I ≤ (yj)j∈J

⇐⇒ ∀j ∈ J.∃i0 ∈ I.T
(f(xi))
i0

⊆ T
(yj)
j

⇐⇒ ∀j ∈ J.∃i0 ∈ I.f(T (xi)
i0

) ⊆ T
(yj)
j

⇐⇒ ∀j ∈ J.∃i0 ∈ I.T
(xi)
i0

⊆ f−1(T (yj)
j )

⇐⇒ (xi)i∈I ≤ f−((yj)j∈J ).

NConv admits both initial and terminal structures for any given family
of mappings. Hence products and coproducts of any collection of spaces exist.
All of these properties are not surprising, thanks to the fact that NConv is
a topological category.

The existence of initial structures guarantees the existence of subspaces.
More precisely, a subspace X0 of a space X is a subset of X equipped with the
initial structure with respect to the set inclusion ι : X0 ↪→ X . In particular,
that (X0,→X0) is a subspace of (X,→X) is equivalent to having:

(xi)i∈I →X0 x ⇐⇒ (xi)i∈I →X x.

Of course, every subspace of a topological convergence space is topological.
Crucially, the category NConv also admits exponentials. Given two spaces

X and Y , let [X → Y ] be the set of all continuous mappings from X to Y .
For a net (fi)i∈I in [X → Y ] and a f ∈ [X → Y ], define (fi)i∈I → f iff for
any (xk)k∈K →X x, one has

(fi)i∈I · (xk)k∈K → f(x),

where (fi)i∈I · (xk)k∈K is defined to be the net (fi(xk))(i,k)∈I×K . It turns out
that ([X → Y ],→) is a net convergence space, which we call the function
space from X to Y . Further to the existence of products and exponentials,
one of course expects nothing less than the fact that NConv is a cartesian
closed category. This is one of the major reasons why convergence spaces are
considered in preference to topological spaces since it is well known that the
category of topological spaces is not Cartesian closed.

Regarding function spaces, the following property is frequently used.

Proposition 3.9. Let X and Y be convergence spaces. Then Y is homeo-
morphic to a subspace of [X → Y ].
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Proof. Define k : Y−→[X → Y ] by k(y) = y, the constant mapping x → y.
Clearly, each k(y) is in [X → Y ] and k is injective. To show that k is a
continuous map from Y to [X → Y ], suppose (yj)j∈J →Y y. We aim to show
that (k(yj))j∈J →[X→Y ] k(y). To achieve this, take any (xi)i∈I →X x. Now
for each (j, i) ∈ J × I, the term (k(yj))(xi) = yj(xi) = yj . But (yj)j∈J →Y y
by our supposition. So (k(yj)(xi))(j,i)∈J×I →Y y = y(x). This is, of course,
equivalent to saying (k(yj))j∈J →[X→Y ] k(y).

To show that k is an embedding, suppose the net (yj)j∈J in Y is such that
(k(yj))j∈J →[X→Y ] k(y). Now apply the net (k(yj))j∈J to the constant net
(x) which, we know, always converges to x in X . Thus by the definition of
the convergence structure on [X → Y ], it follows that

(k(yj))j∈J (x) = (yj(x))j∈J = (yj)j∈J →Y k(y)(x) = y.

We conclude that (yj)j∈J →Y y which implies that k is an embedding.

In what follows, by a (convergence) space we shall always mean a net conver-
gence space unless otherwise stated. Given a space (X,→), there is a induced
topology on X , making X to be a topological space denoted by TX := (X, τ→)
and is defined as follows: A subset U ∈ τ→ if for any net (xi)i∈I in X ,
(xi)i∈I → x and x ∈ U always imply that xi ∈ U eventually.

It is straightforward to check that τ is indeed a topology on X . Moreover,
if (xi)i∈I → x, then (xi)i∈I converges to x topologically. For any poset P ,
the induced topology on (P,→d) is the Scott topology(U ⊆ P is Scott open
iff U =↑ U and if D ⊆ P is a directed set with

⊔
D ∈ U then D ∩ U �= ∅).

Such an induced topology can be viewed in terms of categorical adjunc-
tions. Denoting the category of topological spaces by Top, one has the fol-
lowing sequence of adjunctions:

Top � FConv � NConv.

In this perspective, one can see T as the right adjunction of the composition
of adjunctions. Consequently, one views net convergence space as a gener-
alization of filter convergence space inasmuch as filter convergence space is
that of topological space.

Given a topological space (X, τ), the specialization order on X is the par-
tial order �τ (or � for short) defined by x �τ y iff x ∈ cl({y}). For a
convergence space (X,→), we call the specialization order of (X, τ→) the
specialization order of (X,→).

Remark 3.10

1. Every continuous map f : (X,→X)−→(Y,→Y ) is also continuous with
respect to the induced topology and hence monotone with respect to the
specialization order.

2. If Y is a topological space and X is a subspace of Y , then the specialization
order on X coincides with the restricted order of that on Y , that is, x � x′

holds in X if and only if x � x′ holds in Y .
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Just before we end this section, we want to make record of the following
simple but useful result.

Proposition 3.11. Every reflective subcategory of NConv whose reflector
is the identity is isomorphism-closed.

Proof. Let idX : X → X̃ be the reflector on a convergence space (X,→X).
Given any K-object Y which is isomorphic to X via a homeomorphism f :
X−→Y , one can extend it to a unique continuous mapping whose underlying
map is again f : X̃−→Y . Thus for any convergent net (xi)i∈I →X̃ x, it
follows from the continuity of f : X̃−→Y that (f(xi))i∈I →Y f(x). Passing
this convergence through the continuous map f−1 : Y−→X , one immediately
has (xi)i∈I →X x. Since X̃ is coarser than X , it follows that →X=→X̃ . Thus
(X,→X) is an object in K.

4 Niceness Conditions

Niceness is a salient aspect of net convergence spaces. Various niceness con-
ditions, introduced in this section, correspond to existing one for filter con-
vergence structures already considered by R. Heckmann in [4].

In the following, the order on a convergence space refers to the specializa-
tion order unless otherwise stated.

Definition 4.1. A space (X,→) is up-nice if whenever (xi)i∈I → x and
(yj)j∈J is a net that satisfies the following condition (†):

∀i0 ∈ I.∃j0 ∈ J.∀j � j0.yj ∈↑ T
(xi)
i0

. (†)

then (yj)j∈J → x.
A space is down-nice if (xi)i∈I → x and y � x then (xi)i∈I → y. A space is

order-nice if it is both up-nice and down-nice. The objects of order-nice spaces
and morphisms of continuous maps together constitute a full subcategory of
convergence space which is denoted by OnConv.

Example 4.2

1. Every topological convergence space is order-nice.
2. For any poset P , the space (P,→d) is order-nice.
3. For a poset P , in general, the space (P,→D) mentioned in Example 3.7(6)

is neither up-nice nor down-nice.

Theorem 4.3. For a given space (X,→), define a coarser space N(X) as
follows:

(xi)i∈I →N(X) x ⇐⇒ ∃(zk)k∈K ∈ Ψ(X).∀k0 ∈ K.∃i0 ∈ I.∀i � i0.xi ∈↑ T
(zk)
k0

(‡)

and (zk)k∈K → z for some z � x. Then N(X) carries the finest order-nice
convergence structure on the same set which is coarser than X.
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Proof. We now verify that N(X) is an order-nice convergence space in stages:

1. From the definition of →N(X), it’s clear that if (xi)i∈I → x then
(xi)i∈I →N(X) x. Thus the CONSTANT NET axiom is satisfied.

2. Assume that (xi)i∈I →N(X) x and (yj)j∈J ≤ (xi)i∈I . We want to show
that (yj)j∈I →N(X) x. Since (xi)i∈I →N(X) x, one has a net (zk)k∈K
which satisfies the above condition (‡) at one’s disposal. Now for each
k0 ∈ K, one can find i0 ∈ I such that whenever i � i0 it holds that
xi ∈↑ T

(zk)
k0

. Corresponding to this i0, there is j0 ∈ J such that whenever

j � j0 we have yj ∈ T
(xi)
i0

. Consequently, this means that if j � j0 then
yj ∈↑ T

(zk)
k0

. Thus (yj)j∈J →N(X) x.
3. We show now that N(X) is an order-nice space. That N(X) is down-nice

follows trivially from the transitivity of �. It suffices to show that it is
up-nice. For that purpose, suppose that (xi)i∈I →N(X) x and (yj)j∈J
is a net that satisfies (†). We aim to show that (yj)j∈J →N(X) x, i.e.,
there is a net (zk)k∈K satisfying the property that for each k0 ∈ K, there
exists j0 ∈ J such that whenever j � j0 one has yj ∈↑ T

(zk)
k0

. Since
(xi)i∈I →N(X) x, there is already a net (zk)k∈K such that

∀k0 ∈ K.∃i0 ∈ I.∀i � i0.xi ∈↑ T
(zk)
k0

and (zk)k∈K → z with z � x. Because of (†), for such an i0 ∈ I, one can
find j0 ∈ J such that whenever j � j0 then yj � xi′ for some i′ � i0. Now
since i′ � i0, it follows that xi′ � zk′ for some k′ � k0. Consequently,
this means that for each k0 ∈ K, one can find j0 ∈ J such that whenever
j � j0 then yj � zk′ with k′ � k0, i.e., yj ∈↑ T

(zk)
k0

.
4. Finally, we show that N(X) carries the finest convergence structure on

the same set X which is coarser than X . Suppose that (X,→′) is order-
nice and coarser than (X,→). We want to show that N(X) is finer than
(X,→′). To this end, assume that (xi)i∈I →N(X) x. By definition, there
exists (zk)k∈K such that for each k0 ∈ K there exists i0 ∈ I such that
whenever i � i0 we have xi ∈↑ T

(zk)
k0

and and (zk)k∈K → z for some
z � x. Since (X,→′) is coarser than (X,→) and (X,→′) is down-nice,
it follows that (zk)k∈K →′ x. Since (X,→′) is up-nice, it follows that
(xi)i∈I →′ x by definition. Thus we can conclude that N(X) is finer than
(X,→′) and the proof is complete.

Definition 4.4. For a given space (X,→), we define N(X) to be the order-
nice modification of X.

Proposition 4.5. OnConv is a bireflective and isomorphism-closed subcat-
egory of NConv.

Proof. We extend N to a functor, assigning to each convergence space X its
order-nice modification N(X) and leaving each continuous map f : X → Y as
it is. That f : (X,→N(X)) −→ (Y,→N(Y )) is continuous follows from the fact
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that f is monotone. Clearly, the identity mapping idX : X → N(X) is contin-
uous. We aim to show that for each order-nice space (Y,→Y ) and continuous
mapping f : (X,→X)−→(Y,→Y ), the same mapping f is also a continuous
mapping from (X,→N(X)) to (Y,→Y ). To this end, let (xi)i∈I →N(X) x. By
definition, there is a net (zk)k∈K →X z for some z � x such that

∀k0 ∈ K.∃i0 ∈ I.∀i � i0.xi ∈↑ T
(zk)
k0

.

Since f : X−→Y is continuous, we have (f(zk))k∈K →Y f(z). Also f being
continuous is monotone with respect to the specialization order so that f(z) �
f(x). Moreover, for each k0 ∈ K, there is i0 ∈ I such that whenever i � i0

we have f(xi) ∈↑ T
(f(zk))
k0

. But Y is up-nice so that one can now conclude
that (f(xi))i∈I →Y f(z). Since f(z) � f(x) and Y is down-nice, we have
that (f(xi))i∈I →Y f(x) as desired.

Lastly, since the reflector is the identity, it follows from Proposition 3.11
that OnConv is isomorphism-closed.

The above proposition, together with Theorem 2.5, establishes the following
fact:

Corollary 4.6. Let {Xi | i ∈ I} be a family of order-nice (resp. up-nice,
down-nice) spaces and X a convergence space which carries the initial conver-
gence structure with respect to a collection of functions {fi : X → Xi | i ∈ I}.
Then X is order-nice (resp. up-nice, down-nice). In particular, all subspaces
and products of order-nice (resp. up-nice, down-nice) spaces are themselves
order-nice (resp. up-nice, down-nice).

Proposition 4.7. Let X and Y be convergence spaces. Then the following
are equivalent:

(i) Y is order-nice (resp. up-nice, down-nice).
(ii) [X → Y ] is order-nice (resp. up-nice, down-nice).

Proof. We prove the above only for up-niceness. Down-niceness is similar.
(i) =⇒ (ii): Suppose that (fi)i∈I →[X→Y ] f and there is a net (gj)j∈J such
that

∀i0 ∈ I.∃j0 ∈ J.∀j � j0.gj ∈↑ T
(fi)
i0

.

We want to show that (gj)j∈J →[X→Y ] f . To achieve this, take an arbitrary
(xk)k∈K →X x. Since (fi)i∈I →[X→Y ] f , it follows that (fi(xk))(i,k)∈I×K →Y

f(x). By the continuity of fi and gj, and their monotonicity, it follows that

∀k0 ∈ K.∀i0 ∈ I.∃j0 ∈ J.∀j � j0.gj(xk) ∈↑ T
(fi(xk))
(i0,k0) .

So this means that

∀(i0, k0) ∈ I ×K.∃(j0, k0) ∈ J ×K.∀(j, k) � (j0, k0).gj(xk) ∈↑ T
(fi(xk))
(i0,k0) .
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Now we appeal to the up-niceness of Y to conclude that
(gj(xk))(j,k)∈J×K →Y f(x). Thus (gj)j∈J →[X→Y ] f .
(ii) =⇒ (i): Since Y may be regarded as a subspace of the order-nice space
[X → Y ], it immediately follows from Proposition 3.9 that Y is up-nice.

Corollary 4.8. For any space X, the space ΩX := [X → Ω] is always
order-nice (resp. up-nice, down-nice).

Theorem 4.9. OnConv is a Cartesian closed category.

Proof. Because (1) the subcategory OnConv is closed under products and
function spaces formed in NConv, and (2) the mappings are the same un-
der the reflector N , the result then follows immediately from the Cartesian
closedness of NConv.

5 Iterated-Limit Spaces

Kelley [7] characterized all topological convergence spaces to be exactly those
convergence spaces which satisfy the following axioms:

1. (ITERATED LIMIT) A space (X,→) satisfies the ITERATED LIMIT
(IL for short) axiom, if (xi)i∈I → x and (xi,j)j∈J(i) → xi for each i ∈ I,
then (xi,f(i))(i,f)∈I×M → x, where M = Πi∈IJ(i) is a product of directed
sets.

2. (DIVERGENCE) If (xi)i∈I �→ x, then (xi)i∈I has a subnet (yj)j∈J no
subnet (zk)k∈K of which ever has (zk)k∈K → x.

In this section, we study the properties of spaces which satisfy the ITER-
ATED LIMIT (IL, for short) axiom. We call such spaces IL spaces.

Remark 5.1. It follows immediately that every topological space is an IL
space.

Proposition 5.2

1. Let {Xi | i ∈ I} be a family of IL spaces and X a convergence space
which carries the initial convergence structure with respect to a collection
of functions {fi : X → Xi | i ∈ I}. Then X is an IL space. In particular,
all subspaces and products of IL spaces are themselves IL spaces.

2. Every retract of an IL space is an IL space.

Proof. For (1), let (xk)k∈K →X x with respect to the initial convergence and
suppose for each k ∈ K, there is a directed set J(k) such that (xk,j)j∈J(k) →X

xk. We want to show that (xk,g)(k,g)∈K×M →X x where M =
∏
k∈K J(k).

This means that we have to show that for each i ∈ I, it holds that

(fi(xk,g(k)))(k,g)∈K×M →Xi fi(x).
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Because for each k ∈ K it holds that (xk,j)j∈J(k) →X xk, it holds that for
each k ∈ K and for each i ∈ I, one has (fi(xk,j))j∈J(k) →Xi fi(xk). Since Xi’s
are all IL spaces, this implies that for each i ∈ I, the following convergence
holds:

(fi(xk,g(k)))(k,g)∈K×M →Xi fi(x)

where M =
∏
k∈K J(k), as desired.

For (2), assume that that f : Y−→X, g : X → Y are continuous maps
such that f ◦ g = idX and Y is an IL space. We proceed to show that X is
also an IL space. For that purpose, assume that (xi)i∈I →X x and for each
i ∈ I, there is a directed set J(i) such that (xj,i)j∈J(i) →X xi. Since g is
continuous, one has for each i ∈ I that (g(xj,i))j∈J(i) →Y g(xi). As Y is an
IL space, it follows that (g(xi,f(i)))(i,f)∈I×M →Y g(x) where M =

∏
i∈I J(i).

Now the proof will be complete by applying the continuous f to this net and
then invoking the fact that f ◦ g = idX . Thus X is an IL space.

6 d-Spaces

For any net (xi)i∈I in a space (X,→), denote

lim(xi)i∈I = {x ∈ X : (xi)i∈I → x}.

Definition 6.1. A convergence space (X,→) is called a d-space if

1. it is order-nice and T0,
2. for any directed subset (xi)i∈I of X, x =

⊔
i∈I xi exists and (xi)i∈I → x,

and
3. for every net (xi)i∈I , the limit set lim(xi)i∈I is closed under directed

suprema.

Example 6.2

1. A topological space is a d-space if and only if it is a monotone convergence
space.

2. For each poset P , (P,→D) is a d-space if and only if (P,→d) is a d-space,
and in turn, if and only if P is a dcpo.

Proposition 6.3

1. If X is a d-space, then every closed set F of X is closed under taking
supremum of directed sets.

2. If X is a d-space and f : X−→Y is a continuous mapping, then for any
directed set D of X,

f(
⊔

D) =
⊔

f(D).

3. d-space is stable under retract.
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4. Let X and Y be convergence spaces. Then [X → Y ] is a d-space if and
only if Y is a d-space. In particular, ΩX is a d-space for any convergence
space X.

5. The product of any collection of d-spaces is again a d-space.

Proof. 1. This follows from that every directed subset, as a net, converges
to its supremum.

2. For any directed set D ⊆ X , x =
⊔

D exists. Since f is monotone, it
follows that f(

⊔
D) is an upper bound of f(D). If y ∈ Y is an upper

bound of f(D), then D ⊆ f−1(↓ y). However, ↓ y = cl({y}) is a closed
set, thus by part one,

⊔
D ∈ f−1(↓ y) and thus f(

⊔
D) ≤ y. Hence

f(
⊔

D) =
⊔

f(D).
3. Let s : X−→Y and r : Y−→X be continuous mappings, where r ◦ s =

idX , X is a convergence space and Y a d-space. Since order-niceness
has already been shown to be stable under retracts and trivially X is
T0, it remains to show that the convergence criteria are satisfied. Given
any directed net (xi)i∈I we wish to show that the supremum of {xi :
i ∈ I} exists and (xi)i∈I →X x. Owing to the fact that Y is a d-space,
it follows that the directed net s(xi)i∈I →Y y, where y =

⊔
s(xi)i∈I .

Then by 2, r(y) =
⊔
{r(s(xi)) : i ∈ I} = {xi : i ∈ I}. Also (xi)i∈I =

(r(s(xi)))i∈I →X r(y). That lim(xi)i∈I is closed under directed sups
follows from the continuity of r and s and the fact that for any directed
set D of X ,

⊔
D = r(

⊔
s(D)) proved just now.

4. It’s easily shown that [X → Y ] is T0. By virtue of (3) and Proposition 3.9,
it suffices to prove the sufficiency condition. So assume that Y is a d-space.
Let (fi)i∈I be a directed family in [X → Y ]. We propose that the function

f : X −→ Y, f(x) =
⊔
i∈I

fi(x)

is the supremum of (fi)i∈I . Firstly, f is well-defined since (fi)i∈I is di-
rected with respect to the pointwise order and Y is a d-space so that
the directed set {fi(x) | i ∈ I} in Y has a supremum. Next, we show
that f is continuous. For any net (xk)k∈K in X which converges to x,
we aim to prove that (f(xk))k∈K →Y f(x). Notice that f(xk) � fi(xk)
for each i ∈ I so that by the order-niceness of Y and the continuity of
the fi’s, one has (f(xk))k∈K →Y fi(x). Since lim(f(xk))k∈K is closed
under directed suprema, it holds that (f(xk))k∈K →Y

⊔
k∈K fk(x), i.e.,

(f(xk))k∈K →Y f(x). Thus f is continuous. That f is indeed the supre-
mum of the continuous mappings fi’s is obvious. Following the definition
of the convergence in [X → Y ] one can also verify straight forwardly
that for any net (hi)i∈I in [X → Y ], lim(hi)i∈I is closed under directed
suprema. Thus [X → Y ] is a d-space.

5. We just show the second condition of d-space is satisfied by product of
d-spaces. Let (mj)j∈J be a directed family in

∏
i∈I Xi where Xi’s are d-

spaces. Then for each i ∈ I, the image of the i-th projection (πi(mj))j∈J
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is a directed family in Xi since πi is continuous. So
⊔
j∈J πi(mj) exists

as Xi is a d-space. By putting xi :=
⊔
j∈J πi(mj) and define the net

x = (xi)i∈I , then one clearly has
⊔
j∈J mj = x and (mj)j∈J → x.

Theorem 6.4. The category of d-spaces is Cartesian closed.

A subspace X0 of a space X is called a d-base of X if for any x ∈ X , there
is a directed family {yi}i∈I ⊆ X0, such that (yi)i∈I →X x =

⊔
{yi : i ∈ I}.

Central to the theory of D-completion of convergence spaces is the follow-
ing fundamental lemma.

Lemma 6.5. Let X be an order-nice space satisfying the IL axiom and X0
be a d-base of X. Then every continuous mapping f0 from the subspace X0
into a d-space Y has a unique continuous extension f on X.

Proof. For each x ∈ X , let (yi)i∈I be a directed family in X0 such that
(yi)i∈I →X

⊔
i∈I yi = x. Define f(x) :=

⊔
i∈I f0(yi). It is not clear whether

f is well-defined, let alone continuous. So we must first prove that f is well-
defined. To do this, we take any two directed nets (yi)i∈I and (zk)k∈K in X0
such that (yi)i∈I →X

⊔
i∈I yi = x and (zk)k∈K →X

⊔
k∈K zk = x. We shall

show that ⊔
i∈I

f0(yi) =
⊔
k∈K

f0(zk).

Now since (yi)i∈I →X x and x � zk for each k ∈ K, so (yi)i∈I →X zk
for each k ∈ K by the down-niceness of X . Then by the continuity of
f0 : X0−→Y , we have (f0(yi))i∈I →Y f0(zk) for each k ∈ K and hence
the set {f0(zk) | k ∈ K} ⊆ limY (f0(yi))i∈I . As the latter set is Scott-closed
(since Y is a d-space), it follows that

⊔
k∈K f0(zk) ∈ limY (f0(yi))i∈I . So

(f0(yi))i∈I →Y

⊔
k∈K f0(zk). Also

⊔
i∈I f0(yi) � f0(yi), the constant net

(
⊔
i∈I f0(yi)) →Y

⊔
k∈K f0(zk) by the up-niceness of Y . Similarly, the con-

stant net (
⊔
k∈K f0(zk)) →Y

⊔
i∈I f0(yi). Because Y is a T0-space, we have

that
⊔
i∈I f0(yi) =

⊔
k∈K f0(zk) as desired. So f is well-defined.

We now show that f is continuous. Let (xk)k∈K →X x. We want to show
that (f(xk))k∈K →Y f(x). Since X0 is a d-base for X , it follows that

1. for each k ∈ K, there exists a directed net (ykj )j∈J(k) →X

⊔
j∈J(k) y

k
j =

xk, and
2. there is a directed net (yj)j∈J →X

⊔
j∈J yj = x.

It is enough to show that f(xk) � f0(yj) eventually for each j ∈ J , relying on
the up-niceness of Y . For this purpose, we suppose that there exists j0 ∈ J
such that for all k′ ∈ K, there is k ∈ K with k � k′ such that f(xk) �� f0(yj0).
Then f0(yj0) belongs to the open set Y \ ↓ f(xk) = Y \ ↓

⊔
j∈J(k) f0(ykj ).

Since X is an IL space, it follows that (ykg (k))(k,g)∈K×M →X x where M =∏
i∈I J(i). Then by the down-niceness of X , this net will converge to yj0 . In-

voking the continuity of f0, it follows that (f0(ykg (k)))(k,g)∈K×M →Y f0(yj0).
Because Y \ ↓

⊔
j∈J(k) f0(ykj ) is an open set, one deduces that f0(ykg(k)) is in
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the same open set eventually, implying that f0(ykg(k)) ��
⊔
j∈J(k) f0(ykj ) for

some g, which is impossible. So the proof is completed.

Definition 6.6. Given a space (X,→), a D-completion of (X,→) is a pair
(Y, η) where Y is a d-space and η : X−→Y is a continuous mapping such that
for each continuous mapping f : X−→Z into a d-space Z there is a unique
continuous mapping f̂ : Y−→Z such that f = f̂ ◦ η.

By [2,6], every T0 topological space has a D-completion. In [14], every poset
has a dcpo-completion. Our main concern in this section is which net con-
vergence spaces, apart from the topological ones, have a D-completions.

Theorem 6.7. If X can be embedded into a IL d-space, then X has a D-
completion.

Proof. For the sake of convenience, we assume X is a subspace of an IL
d-space Y . For each subspace A of Y , define

d(A) = {y ∈ Y | ∃ a directed family xi ⊆ A.(xi)i∈I →Y

⊔
i∈I

xi = y}.

Now for each ordinal α, we define a subset Xα by transfinite induction as
follows:

X1 = d(X), Xβ+1 = d(Xβ) and Xα =
⋃
γ<α

Xγ if α is a limit ordinal.

By the usual ordinal reason, there is a smallest ordinal α satisfying the
equation

Xα+1 = Xα.

For any continuous mapping g : X−→Z from X into a d-space Z, there
is a unique extension of g over X1 by virtue of Lemma 6.7. By transfinite
induction, it follows that f has a unique continuous extension over Xα.

Since every T0 topological space is embedded into some ΩM (c.f. Lemma II-
3.4 of [3]), where Ω is the Sierpinski space and since Ω is clearly a d-space,
so we have:

Corollary 6.8. Every T0 topological space has a D-completion which is also
topological.

7 Conclusion

In this paper, we have suggested a way of generalizing the concept of a d-
space from topological spaces to net convergence spaces. In addition, we have
obtained a sufficient condition that translates to a particular class of net con-
vergence spaces that admits a d-completion to exist for each member of this
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class. Crucially, this class of net convergence spaces contains as members all
T0 topological spaces, and thus we have generalized existing results concern-
ing d-completions of T0-spaces and dcpo-completions of posets. However, the
authors have not justified at the moment of writing whether such a class of
net convergence spaces properly contains the category of T0 spaces. Thus any
future works leading from here must crucially include the construction of an
example of a non-topological net convergence space which can be embedded
into an d-space which has all iterated limits.
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Abstract. Based on the concept of the R0-algebra, the present paper intro-
duces the definition of the modal R0-algebra by adding a new unary operator
�, corresponding to modalities of the modal logic. By use of modal R0-
algebras, semantic and syntactic frameworks are constructed, respectively,
for logic system ML∗, the modal R0-algebra-valued modal logic system. It
is pointed out that the semantics of system ML∗ generalizes the semantics
of both the classical modal logic and the [0, 1]-valued modal logic. The main
result of the paper is the completeness theorem of system ML∗.
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1 Introduction

The formalism of modal logic and its proof technique, one of the most efficient
tools for knowledge representation and reasoning about discrete dynamic sys-
tems, plays a significant role in artificial intelligence and computer science
[1, 2]. Several systems with various kinds of modal operators have been con-
structed [3, 4, 5, 6], and corresponding applications have been found and
researched in fuzzy concept analysis and other important realms [7, 8]. Mean-
while, by taking into account the numerical calculation for mathematical logic
in order to grade the concepts of truth values for formulas, [9, 10, 11, 12] have
proposed the theory of quantitative logic, and this quantitative approach has
been considered in the classical modal logic [12]. Besides, by generalizing the
classical Kripke models, the semantics of [0, 1]-valued modal logic has been
introduced [13, 14, 15].

It is worth noting that there are limitations in [4], although it has proved
several completeness theorems. There the Kripke models have the form
K = (W, e,A) where A is required as a chain, and the logic is only avail-
able for the generalization of the modal logic system S5, for the sake of
corresponding modalities � and ♦ in the modal logic to universal quantifier
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∀ and existential quantifier ∃, respectively, in the predicate logic containing
only one variable. In order to modify these limitations, the present paper
intends to construct a Kripke model not limited to totally-ordered ones and
a logic system available not only for the generalization of S5. Based on the
concept of the R0-algebra, the definition of the modal R0-algebra (briefly,
MR0-algebra) is introduced by adding a new unary operator �, correspond-
ing to modalities of the modal logic. Considering complete MR0-algebras as
valuation fields, the paper proposes the concept of the MR0-modal model and
constructs the semantics in the class of MR0-modal models. It is pointed out
that this semantics generalizes the semantics of both the classical modal logic
and the [0, 1]-valued modal logic. Meanwhile, the MR0-algebra-valued modal
logic system ML∗ is constructed, and the completeness theorem of system
ML∗ is obtained, i.e., a modal formula is a theorem in ML∗ if and only if it
is MR0-valid.

2 Preliminaries

The language of the classical modal logic [1, 3] is generated by the form
below:

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | ♦ϕ, p ∈ Φ,

where Φ is the set of propositional variables, ⊥ denotes the contradiction,
and

�ϕ is ¬♦¬ϕ,
ϕ ∧ ψ is ¬(¬ϕ ∨ ¬ψ),
ϕ → ψ is ¬ϕ ∨ ψ.
The set of all classical modal formulas is denoted by Form(♦, Φ).

Definition 1. ([3]) A Kripke model for the classical modal logic (briefly,
classical model) is a triple M = (W,R, V ), where W is a nonempty set of
possible worlds, R ⊂ W ×W is a binary relation on W , V : Φ −→ P(W ) is
a mapping, where P(W ) is the power set of W .

Let ϕ ∈Form(♦, Φ), w ∈ W . The world w satisfying ϕ, denoted by M, w |=
ϕ, can be recursively defined as follows:

i) M, w |= p if and only if w ∈ V (p), p ∈ Φ.
ii) M, w |= ⊥ never holds.
iii) M, w |= ¬ϕ if and only if M, w |= ϕ does not hold.
iv) M, w |= ϕ ∨ ψ if and only if M, w |= ϕ or M, w |= ψ.
v) M, w |= ♦ϕ if and only if ∃u ∈ W, (w, u) ∈ R s.t. M, u |= ϕ.

Definition 2. ([3]) Let ϕ ∈Form(♦, Φ). Say that ϕ is valid if M, w |= ϕ
holds for every classical model M = (W,R, V ) and for every world w ∈ W .

Proposition 1. ([3]) Let M = (W,R, V ) be a classical model. And define

V (ϕ) = {w ∈ W | M, w |= ϕ}, ϕ ∈ Form(♦, Φ),



Modal R0-Algebra-Valued Modal Logic System ML∗ 113

then
i) V (¬ϕ) = W − V (ϕ);
ii) V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ);
iii) V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ);
iv) V (ϕ → ψ) = (W − V (ϕ)) ∪ V (ψ);
v) V (♦ϕ) = {w ∈ W | R[w] ∩ V (ϕ) �= ∅},

where R[w] = {u ∈ W | (w, u) ∈ R}.

3 Modal R0-Algebras

Definition 3. ([9]) Let L be an algebra of type (∨,∧, ′,→), where ′ is a
unary operator, ∨,∧ and → are binary operators. (L,∨,∧, ′,→) is called
an R0-algebra if there is a partial order ≤ such that (L,≤, 1) is a bounded
distributive lattice with the greatest element 1, ∨ and ∧ are the supremum
and infimum operators, respectively, with respect to ≤, ′ is an order-reversing
involution, and the following conditions hold for every a, b, c ∈ L:

(m1) a′ → b′ = b → a.
(m2) 1 → a = a, a → a = 1.
(m3) b → c ≤ (a → b) → (a → c).
(m4) a → (b → c) = b → (a → c).
(m5) a → b ∨ c = (a → b) ∨ (a → c), a → b ∧ c = (a → b) ∧ (a → c).
(m6) (a → b) ∨ ((a → b) → a′ ∨ b) = 1.

Definition 4. Let L = L(∨,∧, ′,→) be an R0-algebra and � be a unary
operator on L. (L,∨,∧, ′,→,�) is called a modal R0-algebra, MR0-algebra
in brief, if the following conditions hold for every a, b ∈ L:

(m7) �(a → b) ≤ �a → �b.
(m8) �1 = 1.

Example 1. (i) Let L = ({0, 1},∨,∧, ′) be a {0, 1}-Boole algebra. Then L is
obviously a bounded distributive lattice. Define

a → b = a′ ∨ b, a, b ∈ L,

then it can be proved that L = ({0, 1},∨,∧, ′,→) satisfies the conditions
(m1)-(m6) above and consequently becomes an R0-algebra. Furthermore, if
we define a unary operator � on L satisfying the conditions (m7) and (m8),
e.g., �0 = �1 = 1, then L = ({0, 1},∨,∧, ′,→,�) will become an MR0-
algebra.

(ii) Let L = [0, 1] and ∨,∧ be the supremum and infimum operators,
respectively, with respect to the usual order on the real line. Then it is obvious
that L is a bounded distributive lattice. Define

a′ = 1 − a,

a → b =
{

1, a ≤ b,
(1 − a) ∨ b, a > b,
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where a, b ∈ L, then ′ becomes an order-reversing involution on L, and → the
R0-implication operator [9] on L. It can be proved that L = ([0, 1],∨,∧, ′,→)
satisfies the conditions (m1)-(m6) and consequently becomes an R0-algebra.
Furthermore, if we define a unary operator � on L satisfying the conditions
(m7) and (m8), e.g.,

�a =
{

0, a ≤ 1
2 ,

a, a > 1
2 ,

then L = ([0, 1],∨,∧, ′,→,�) will become an MR0-algebra.

Proposition 2. Let L = L(∨,∧, ′,→,�) be a complete MR0-algebra. Then
the following conditions hold for every a, b, c ∈ L and Q ⊆ L:

(i) a′ = a → 0.
(ii) a → b = 1 if and only if a ≤ b.
(iii) a → (b → a ∧ b) = 1.
(iv) If b ≤ c, then a → b ≤ a → c; If a ≤ b, then b → c ≤ a → c.
(v) a ∨ b → c = (a → c) ∧ (b → c), a ∧ b → c = (a → c) ∨ (b → c).
(vi) (∨a∈Q a)′ = ∧a∈Q a′, (∧a∈Q a)′ = ∨a∈Q a′.

4 The MR0-Algebra-Valued Modal Logic System ML∗

4.1 Semantics of System ML∗

The language of the MR0-algebra-valued modal logic system ML∗ is gener-
ated by the form

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ♦ϕ, p ∈ Φ,

where Φ is the set of propositional variables, ⊥ denotes the contradiction,
and

�ϕ is ¬♦¬ϕ,
ϕ ∧ ψ is ¬(¬ϕ ∨ ¬ψ).
The set of all modal formulas of ML∗ is denoted by F(Φ).

Note that, F(Φ) is different from Form(♦, Φ), the set of all classical modal
formulas, since ϕ → ψ and ¬ϕ∨ψ are two distinct formulas in F(Φ). However,
these two formulas are equal to each other in Form(♦, Φ).

Definition 5. A Kripke model for the MR0-algebra-valued modal logic is a
quadruple M= (W,R, e, L), where W is a nonempty set of possible worlds,
L = L(∨,∧, ′,→,�) is a complete MR0-algebra, R : W × W −→ L is
an L-valued binary relation on W , and e is a mapping e : W × Φ −→ L
assigning to each variable in Φ a truth value belonging to L. L is said to be a
valuation field, and e a valuation mapping. Besides, a Kripke model for the
MR0-algebra-valued modal logic can be briefly called an MR0-modal model.
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Definition 6. Let M= (W,R, e, L) be an MR0-modal model. The valuation
mapping e can be uniquely extended to a mapping ē : W × F(Φ) −→ L
satisfying that:

ē(w,¬ϕ) = ē(w,ϕ)′,

ē(w,ϕ ∨ ψ) = ē(w,ϕ) ∨ ē(w,ψ),

ē(w,ϕ → ψ) = ē(w,ϕ) → ē(w,ψ),

ē(w,♦ϕ) = ∨{ē(u, ϕ)| R(w, u) �= 0, u ∈ W},
where w ∈ W , ϕ, ψ ∈ F(Φ).

Although the mappings e and ē are different, there will be no confusion
between them, and so we will use the same notation e for both in the following.

It is not difficult to infer from Proposition 2 and Definition 6 that.

Corollary 1. Let M= (W,R, e, L) be an MR0-modal model, w ∈ W , ϕ ∈
F(Φ). Then

e(w,ϕ ∧ ψ) = e(w,ϕ) ∧ e(w,ψ),

e(w,�ϕ) = ∧{e(u, ϕ)| R(w, u) �= 0, u ∈ W}.

Example 2. Suppose that the valuation field L = ({0, 1},∨,∧, ′,→,�) is
the MR0-algebra defined in Example 1(i), then L is obviously complete. Let
W �= ∅ be a set, R : W × W −→ {0, 1}, and e : W × Φ −→ {0, 1}, then
M= (W,R, e, {0, 1}) becomes an MR0-modal model. We omit {0, 1} in the
model M, and denote it by M= (W,R, e). Note that, here the relation R has
become a classical binary relation on W , i.e., R ⊂ W ×W . Therefore, the set
W of possible worlds and binary relation R in the model M= (W,R, e) are
same with the ones in the classical models. The difference lies in the valuation
mappings between these two kinds of models, since the valuation mapping in
the classical models is the mapping V : Φ −→ P(W ).

Meanwhile, if M = (W,R, V ) is a classical model, then the mapping V :
Φ −→ P(W ) can induce a mapping V ∗ : W × Φ −→ {0, 1} by:

V ∗(w, p) =
{

1, w ∈ V (p),
0, w /∈ V (p).

It can be proved that the mappings V and V ∗, after extending following
Proposition 1 and Definition 6, respectively, satisfy that

V ∗(w,ϕ) = 1 iff w ∈ V (ϕ) iff M, w |= ϕ, w ∈ W,ϕ ∈ Form(♦, Φ).

Therefore, despite of the difference between their definitions, the mappings
V and V ∗ can be considered to be same in nature.

In addition, it can be seen that the valuation mapping e : W ×Φ −→ {0, 1}
in the MR0-modal model above is actually in accordance with the mapping
V ∗ : W ×Φ −→ {0, 1}, as well as the mapping V , consequently. In this sense,
we can see that the MR0-modal model M= (W,R, e) above actually becomes
a classical model. As a result, the semantics of the MR0-algebra-valued modal
logic is the generalization of the semantics of the classical modal logic.
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Example 3. Suppose that the valuation field L = ([0, 1],∨,∧, ′,→,�) is the
MR0-algebra defined in Example 1(ii), then L is obviously complete. Let
W �= ∅ be a set, R : W ×W −→ [0, 1] be a fuzzy binary relation on W , and
e : W×Φ −→ [0, 1], then M= (W,R, e, [0, 1]) becomes an MR0-modal model.

Meanwhile, by considering the unit interval [0, 1] as a valuation field, [13]
has proposed the semantics of the [0, 1]-valued modal logic(also called fuzzy
modal propositional logic in [13]), whose model is a triple k = (U,R, I),
where U is a nonempty set of possible worlds, R : U × U −→ [0, 1] is a fuzzy
binary relation on U , I : U × S −→ [0, 1] is a mapping, where S is the set
of propositional variables. Note that, this model is actually in accordance
with the MR0-modal model M= (W,R, e, [0, 1]) above, without considering
the difference in their notations. As a result, the semantics of the MR0-
algebra-valued modal logic is also the generalization of the semantics of the
[0, 1]-valued modal logic.

Definition 7. Let ϕ ∈F(Φ). Say that ϕ is MR0-valid if e(w,ϕ) = 1 holds for
every MR0-modal model M= (W,R, e, L) and for every world w ∈ W .

4.2 Syntactics of System ML∗

The axioms and inference rules for the system ML∗ are as follows:
• Axioms:

(M1) ϕ → (ψ → ϕ ∧ ψ)
(M2) (¬ϕ → ¬ψ) → (ψ → ϕ)
(M3) (ϕ → (ψ → γ)) → (ψ → (ϕ → γ))
(M4) (ψ → γ) → ((ϕ → ψ) → (ϕ → γ))
(M5) ϕ → ¬¬ϕ
(M6) ϕ → ϕ ∨ ψ
(M7) ϕ ∨ ψ → ψ ∨ ϕ
(M8) (ϕ → γ) ∧ (ψ → γ) → (ϕ ∨ ψ → γ)
(M9) (ϕ ∧ ψ → γ) → (ϕ → γ) ∨ (ψ → γ)

(M10) (ϕ → ψ) ∨ ((ϕ → ψ) → ¬ϕ ∨ ψ)
(K) �(ϕ → ψ) → (�ϕ → �ψ)
(⊥) ⊥ → ♦⊥

• Inference rules:
Modus Ponens: from ϕ and ϕ → ψ infer ψ.
Necessitation: from ϕ infer �ϕ.

Remark 1. Note that, axioms (M1)-(M10) of ML∗ are actually the substitu-
tion instances [3] of axioms (L∗1)-(L∗10) of the system L∗ proposed in [9].
Consequently, it can be inferred that a theorem in L∗ is also a theorem in
ML∗. However, the two axioms (K) and (⊥), related to the modality �, of
ML∗ are not necessary to be theorems of L∗. As a result, the MR0-algebra-
valued modal logic system above is called the modal L∗ system, briefly de-
noted by ML∗.
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Meanwhile, it is indicated in [3] that the set of axioms for the classical
modal logic system K includes the formula (K) and all the modal tautolo-
gies(see [3]), i.e., the substitution instances of theorems from the classical
two-valued propositional logic system L [9]. It can be proved that the axioms
(M1)-(M9) in ML∗ are all modal tautologies in K, and consequently are the-
orems of K. However, the axiom (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ)) of
K, also the substitution instance of the axiom (L2) from L, is not necessary
to be a theorem of ML∗.

Proposition 3. In the system ML∗,
(i) Hypothetical Syllogism holds, i.e., from ϕ → ψ and ψ → γ infer ϕ → γ.
(ii) ϕ → ϕ and (ϕ → ψ) → (¬ψ → ¬ϕ) are theorems.
(iii) If ϕ and ψ are theorems, then ϕ ∧ ψ is also a theorem.
(iv) If ϕ → ψ and γ → χ are theorems, then ϕ ∨ γ → ψ ∨ χ is also a

theorem;
If ϕ → γ and ψ → γ are theorems, then ϕ ∨ ψ → γ is also a theorem.

Proposition 4. (Soundness theorem of ML∗) The theorems in ML∗ are all
MR0-valid.

Proof. First of all, we prove that all the inference rules of ML∗ preserve
MR0-validity of formulas:

Suppose that ϕ and ϕ → ψ are MR0-valid, then e(w,ϕ) = e(w,ϕ → ψ) = 1
holds for every MR0-modal model M = (W,R, e, L) and for every w ∈ W .
Therefore e(w,ϕ → ψ) = e(w,ϕ) → e(w,ψ) = 1, and by Proposition 2(ii) we
can infer that 1 = e(w,ϕ) ≤ e(w,ψ), i.e., e(w,ψ) = 1. Since the model M
and the world w are arbitrary, then ψ is MR0-valid.

Suppose that ϕ is MR0-valid, then e(w,ϕ) = 1 holds for every MR0-modal
model M= (W,R, e, L) and for every w ∈ W . Therefore, in the condition
that "w = {u ∈ W | R(w, u) �= 0} �= ∅, we can obtain e(u, ϕ) = 1 holds for
every u ∈ "w, and consequently e(w,�ϕ) = ∧u∈�w e(u, ϕ) = 1. If "w = ∅,
then it is obvious that e(w,�ϕ) = ∧∅ = 1 holds. Since the model M and the
world w are arbitrary, then �ϕ is MR0-valid.

From above, we can conclude that MP and Necessitation all preserve MR0-
validity. In addition, it is not difficult to prove by Proposition 2 that all the
axioms in ML∗ are MR0-valid. Since all the theorems of ML∗ can be deducted
from axioms by inference rules within finite steps, hence they are MR0-valid.
The proof is completed.

4.3 Completeness of System ML∗

In ML∗, the provable equivalence relation on F(Φ), denoted by ∼, can be
defined in the usual way, i.e., ϕ ∼ ψ if and only if ϕ → ψ and ψ → ϕ are
theorems of ML∗.

Proposition 5. The provable equivalence relation ∼ is a congruence relation
[16] on F(Φ) of type (¬,∨,→,�).
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Proof. Firstly, it can be easily proved by Proposition 3(i)(ii) that ∼ is an
equivalence relation on F(Φ), and we further prove that ∼ is also a congruence
relation on F(Φ) of type (¬,∨,→,�) as follows:

(i) Let ϕ ∼ ψ, then ϕ → ψ is a theorem. It follows from Proposition 3(ii)
and MP that ¬ψ → ¬ϕ is a theorem. The other direction implication is given
by a similar argument. Therefore ¬ϕ ∼ ¬ψ.

(ii) Let ϕ ∼ ψ and γ ∼ χ, then ϕ → ψ and γ → χ are theorems. By
Proposition 3(iv), ϕ ∨ γ → ψ ∨ χ is a theorem. Similarly, it can be proved
that ψ ∨ χ → ϕ ∨ γ is also a theorem. Hence ϕ ∨ γ ∼ ψ ∨ χ.

(iii) Let ϕ ∼ ψ and γ ∼ χ, then γ → χ is a theorem. It follows from
(M4) and MP that (ϕ → γ) → (ϕ → χ) is a theorem. Similarly, we obtain
(¬χ → ¬ϕ) → (¬χ → ¬ψ) is a theorem from ¬ϕ ∼ ¬ψ. Then it follows
from (M2) and Proposition 3(ii) by HS twice that (ϕ → χ) → (ψ → χ) is a
theorem. Again by HS, we obtain (ϕ → γ) → (ψ → χ) is a theorem. The other
direction implication is given by a similar argument. Hence, ϕ → γ ∼ ψ → χ.

(iv) Let ϕ ∼ ψ, then ϕ → ψ is a theorem. It follows from Necessitation
that �(ϕ → ψ) is a theorem. Then by (K) and MP, we obtain �ϕ → �ψ is a
theorem. Similarly, we can prove the other direction implication. Therefore,
�ϕ ∼ �ψ. The proof is completed.

Since the provable equivalence relation ∼ is a congruence relation on F(Φ) of
type (¬,∨,→,�), then we obtain a quotient class of F(Φ) by ∼, denoted by
F , and it can be inferred that F , with the operations inherited from F(Φ),
is an algebra of type (¬,∨,→,�). The elements of F are denoted by [ϕ]
(ϕ ∈ F(Φ)), where [ϕ] = {ψ ∈ F(Φ)| ϕ ∼ ψ}.

Proposition 6. The quotient algebra F= F(Φ)/ ∼ is an MR0-algebra, in
which the partial order ≤ is defined by

[ϕ] ≤ [ψ] if and only if ϕ → ψ is a theorem, (1)

and the operators ¬,∨,→,� on F are defined by

¬[ϕ] = [¬ϕ], [ϕ] ∨ [ψ] = [ϕ ∨ ψ], [ϕ] → [ψ] = [ϕ → ψ], �[ϕ] = [�ϕ]. (2)

Proof. It is easy to prove that ≤ defined in (1) is well-defined and indeed a
partial order on F . Since the provable equivalence relation ∼ is a congruence
relation on F(Φ) of type (¬,∨,→,�), then the operators ¬,→,� defined in
(2) are well-defined, and it is trifles to prove that ¬ is an order-reversing
involution on F .

Besides, since ϕ → ϕ∨ψ and ψ → ϕ∨ψ are theorems, we obtain that [ϕ∨ψ]
is an upper bound of {[ϕ], [ψ]} w.r.t. ≤. Let [γ] be an arbitrary upper bound
of {[ϕ], [ψ]}, then ϕ → γ and ψ → γ are theorems by (1), and consequently
ϕ ∨ ψ → γ is a theorem by Proposition 3(iv). Hence [ϕ ∨ ψ] ≤ [γ], which
indicates that [ϕ ∨ ψ] is just the supremum of {[ϕ], [ψ]} w.r.t. ≤. Thus the
operator ∨ defined in (2) is also well-defined.
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Let � be a theorem in F(Φ), then it can be proved that ϕ → � is a theorem
for every ϕ ∈F(Φ), and hence [ϕ] ≤ [�]. This shows that [�] is the greatest
element of F , i.e., 1. Similarly, [⊥] is the smallest element of F , i.e., 0.

Lastly, it follows from Proposition 3 and (2) that the quotient algebra F
satisfies the conditions (m1)-(m8) in Definition 3 and 4, and consequently is
an MR0-algebra. The proof is completed.

Theorem 1. (Completeness theorem of ML∗) Let ϕ ∈F(Φ). ϕ is a theorem
of ML∗ if and only if ϕ is MR0-valid.

Proof. By Proposition 4, it suffices to prove that all MR0-valid formulas are
theorems of ML∗.

Assume that ϕ is MR0-valid. Then an MR0-modal model M= (W,R, e, L)
can be defined as follows:

Let W �= ∅ be a set, the valuation field L be the quotient algebra
F =F(Φ)/ ∼, R : W × W −→F be an F -valued binary relation on W ,
and the valuation mapping e : W × Φ −→F be defined by

e(w, p) = [p], p ∈ Φ,w ∈ W.

It follows from (2) that the valuation mapping e, after extending following
Definition 6, satisfies that

e(w,ϕ) = [ϕ], ϕ ∈ F(Φ), w ∈ W.

Since ϕ is MR0-valid, then for the MR0-modal model M= (W,R, e, L) defined
above and ∀w ∈ W , e(w,ϕ) = [ϕ] = 1 = [�] holds, where � is a theorem of
ML∗. As a result, ϕ is a theorem of ML∗, and the proof is complete.

5 Conclusions

In the present paper, the definition of the modal R0-algebra (briefly, MR0-
algebra) is introduced first of all, based on the concept of the R0-algebra, by
adding a new unary operator �, corresponding to modalities of the modal
logic. Secondly, by considering the complete MR0-algebra as a valuation field,
the paper proposes the concept of the MR0-modal model and constructs the
semantics in the class of MR0-modal models. It is pointed out that this se-
mantics generalizes the semantics of both the classical modal logic and the
[0, 1]-valued modal logic. Lastly, the MR0-algebra-valued modal logic sys-
tem ML∗ is constructed, and the completeness theorem of system ML∗ is
obtained. Note that, various modal models can be defined as the valuation
fields change, and different semantic and syntactic frameworks can be con-
structed in correspondence, which will be investigated in a forthcoming paper.
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Abstract. Cirquent calculus is a recent approach to proof theory, whose char-
acteristic feature is being based on circuit-style structures (called cirquents)
instead of the traditional formulas or sequents. In this paper we prove the
deduction theorem for the symmetric version of cirquent calculus, and show
that the derivation in the deduction theorem will be at most polynomially
longer than the proof of implication, and vice versa.
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1 Introduction

Cirquent calculus, introduced by G.Japaridze [1, 10], is a new proof-theoretic
and semantic framework, whose characteristic feature is being based on
circuit-style structures (called cirquents), as opposed to the traditional for-
mulas or sequents. Among its advantages are higher efficiency and greater
expressiveness. Classical logic is just a special, conservative fragment of the
logic in the form of cirquent calculus, obtained by considering only circuits
(different from the one in [7] where the “circuit” refers to the structure of de-
ductions), i.e., cirquents where multiple identical-label ports are not allowed.
Actually, [1] borrows many ideas and techniques from the calculus of struc-
tures [2, 3, 8, 9], especially deep inference that modify cirquents at any level
rather than only around the root as is the case in sequent calculus. It elab-
orated a deep cirquent calculus system CL8 for computability logic [4, 5, 6]
and discussed some possible variations of CL8, including a symmetric system
CL8S. But the properties of CL8S were not dissected.

The rules of CL8 consist of restructuring rules and main rules. The main
rules include coupling, weakening, and pulldown. The restructuring rules
include deepening (flattening), globalization (localization), and lengthening
(shortening), where each rule comes in two versions: one for • and one for
◦. So, altogether there are 12 restructuring rules and 3 main rules. System
CL8S is a fully symmetric version of CL8, obtained by adding to the latter

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 121–126.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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the duals (defined later) of the main rules: cocoupling, coweakening, and cop-
ulldown. The top-down symmetry of CL8S generates a number of interesting
effects, some similar to those enjoyed by natural deduction systems. In this
paper we show one such effect, i.e. deduction theorem. And we give a more
strong result that the derivation (resp. proof) will be at most polynomially
longer than the proof (resp. derivation).

Throughout the rest of this paper, unless otherwise specified, by a “rule” or
a “derivation” etc. we mean one of the system CL8S. The reader is assumed
to be familiar with the terminology, conventions and rules of CL8S that we
will not reproduce.

2 Definition

Definition 1. The dual of a conjunctive gate is a disjunctive gate, and vice
verse.

Definition 2. The dual of a rule is obtained by interchanging premise with
conclusion and conjunctive gates with disjunctive gates.

Definition 3. The dual of a derivation is obtained by turning it upside down
and replacing each rule and each gate by its dual, respectively.

Definition 4. The size |A| of a cirquent A is the number of both ports and
gates occurring in it.

Definition 5. The size | " | of a derivation " is the number of both ports
and gates occurring in it.

Definition 6. A rule is strong admissible if, whenever a cirquent B follows
from a cirquent A by that rule, there is also a derivation of B from A.

3 Deduction Theorem

Extending the rule of (atomic) coupling from ports P , ¬P to any cirquents
A, ¬A, we obtain the following rule called general coupling.

◦
Θ

A ¬A

��•
Θ

As we will see, general coupling is strong admissible, which can be achieved
by inductively replacing an application of it by applications on smaller
cirquents.

Lemma 1. The rule of general coupling is strong admissible, and reducing it
to atomic coupling increases derivation sizes only polynomially.
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◦
Θ

◦�
Θ

◦� ◦
deepening (twice)

¬B B C ¬C

�� ��• •�� ��

Θ

◦

general coupling (twice)

¬B B C ¬C

��
�����
���• •�� ��

Θ

◦

weakening (twice)

lengthening
¬B B C ¬C

��
�����
���• •�� ��

Θ

◦
•

pulldown (twice)
¬B ¬C

�� ��• •

Θ

◦
•

B C
�����

shortening (twice)
¬B ¬C

�� ��

Θ

◦
•

B C
�����

deepening
B C ¬B ¬C

�� ��• ◦�� ��

Θ

•

Fig. 1. A derivation that replacing an application of general coupling by applica-
tions on smaller cirquents

Proof. We make an induction on the structure of A. The cases when A is a
childless gate or an atom are trivial: in the former case the derivation consists
of one application of lengthening and one application of deepening, and in
the latter case the application of general coupling is also an application of
atomic coupling. We only have to consider the case when A = B∨C, with the
case when A = B ∧ C being similar. We apply the induction hypothesis on
the derivation, as shown in Figure 1. Obviously the length of the derivation is
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O(n), and so its size is O(n2), where n = |A|. Thus reducing general coupling
to atomic one increases derivation sizes only polynomially. #$

By taking the dual of general coupling, we obtain the following rule called
general cocoupling whose strong admissibility is an immediate result from
daulising the derivation of Lemma 1.

•
Θ

A ¬A

��◦
Θ

Lemma 2. The rule of general cocoupling is strong admissible, and reducing
it to atomic cocoupling increases derivation sizes only polynomially.

We now see that one can easily move back and forth between a derivation
and a proof of the corresponding implication via the deduction theorem:

Theorem 1. (Deduction Theorem) Let A, B be two cirquents. There is
a derivation of B from A if and only if there is a proof of A → B. And the
derivation (resp. proof) will be at most polynomially longer than the proof
(resp. derivation).

Proof. (⇒:) The cirquent A → B is the abbreviation of ¬A∨B. Assume that
there is a derivation of B from A. Then a proof of ¬A∨B can be constructed
by the following steps. Firstly, applying general coupling, we proceed from
the axiom ◦ to the circuit

¬A A

��• .

Secondly, duplicating the existing derivation of B from A, we continue pro-
ceeding from the cirquent above to the circuit

¬A B

��• .

By Lemma 1, applying general coupling increases derivation sizes only poly-
nomially. So such a proof of ¬A∨B is at most polynomially longer than the
derivation of B from A.

(⇐:) Assume that there is a proof of ¬A ∨ B. we construct, top-down,
a derivation of B from A, as shown in Figure 2. The vertical dots in Fig-
ure 2 stand for the duplication of the existing proof of ¬A ∨ B. Obviously
the length difference between this derivation and the proof of ¬A ∨ B is de-
termined by the length of the derivation " which is the result of reducing
general cocoupling to atomic version of this rule. By Lemma 2, the length
of " is polynomial, and therefore, such a derivation of B from A is at most
polynomially longer than the proof of ¬A ∨B. #$
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A lengthening
A

◦
deepening

A

◦�
◦

...

A

¬A B

��•�
�

�
�◦ lengthening

A

¬A B

��•�
�

�
�◦
• pulldown

A ¬A
• B
��

�
�

�
�◦
• shortening

A ¬A
B

�
� �◦

•
general cocoupling

• B
� �•

flattening
B

•
shortening

B

Fig. 2. A derivation of B from A

4 Conclusion

In this paper we prove the deduction theorem for the symmetric system CL8S
of cirquent calculus, and give a more strong result that the derivation in the
deduction theorem will be at most polynomially longer than the proof of im-
plication, and vice versa.
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2. Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos Verlag
Press (2004)



126 W.-y. Xu and S.-y. Liu

3. Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM
Transactions on Computational Logic 10, 1–34 (2009)

4. Japaridze, G.: Introduction to computability logic. Annals of Pure and Applied
Logic 123, 1–99 (2003)

5. Japaridze, G.: Computability logic: a formal theory of interaction. In: Inter-
active Computation: The New Paradigm, pp. 183–223. Springer, Heidelberg
(2006)

6. Japaridze, G.: In the beginning was game semantics. In: Games: Unifying Logic,
Language, and Philosophy, pp. 249–350. Springer, Heidelberg (2009)

7. Gordeev, L., Haeusler, E.H., da Costa, V.G.: Proof compressions with circuit-
structured substitutions. Journal of Mathematical Sciences 158, 645–658 (2009)

8. Guglielmi, A., Strassburger, L.: Non-commutativity and MELL in the calcu-
lus of structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 54–68. Springer, Heidelberg (2001)

9. Guglielmi, A.: A system of interaction and structure. ACM Transactions on
Computational Logic 8, 1–64 (2007)

10. Japaridze, G.: Introduction to cirquent calculus and abstract resorce semantics.
Journal of Logic and Computation 16, 489–532 (2006)

11. Gentzen, G.: Investigations into logical deduction. American Philosophical
Quartly 1, 288–306 (1964)



Equilateral Polygons in Classical Logic Metric
Space

Ming-Di Hu

Institute of Mathematics, Shaanxi Normal University, Xi’an 710062, China
e-mail: humingdiwww@163.com
Department of Mathematics, Ankang College, Ankang 725000, China

Abstract. In the present paper, it is proved that some special graphs, such
as equilateral polygons and right triangles, exist in the classical logic metric
space. In addition, there are no equilateral triangles, length of whose lines
is more than or equal to 2

3 , while the ones, length of whose lines can be
arbitrarily close to 2

3 or zero, do exist in the classical logic metric space.
Lastly, it constructs an isometric reflexion transform, which can preserve the
characters of the equilateral triangles, on the Lindenbaum algebra.

Keywords: Classical logic metric space, Equilateral triangle, Lindenbaum
algebra, Reflexive transform.

1 Introduction

Mathematical logic, a subject of studying the form reasoning [1], offers
approaches and methods of how to infer the conclusions from the known
premises. This logic reasoning has been generally used in the artificial intel-
ligence and related disciplines [2-5] and widely applied in many fields such
as logic programming, automatic theorem proving, non-monotone logic and
knowledge reasoning etc, which forms the theoretical basis for the modern
computer science [6]. On the one hand, the characteristics of mathematical
logic lie in formalization and symbolization, and focuses on form reasoning
and strictly proving. On the other hand, the computational mathematics has
the characteristics of flexibility and relaxation. In order to promote the appli-
cation scope of mathematical logic, numerical calculation was introduced to
the mathematical logic, by grading some basic concept, and the quantitative
logic [2] was established by the second author of this paper. At the same
time, the theory of logic metric space was established, and several approxi-
mate reasoning models were studied in this logic metric space. However, as
to the structure of logic metric space, there are not many results yet, except
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some logical topology characterizations given in [7] and topology characteri-
zations of the sets of great harmony theories in propositional logic obtained in
[8-10]. It can be said that the characteristics or properties of the logic metric
space itself were still not very clear. In the reference [11], the structure of the
logic metric space was discussed from a special angel, and it was proved that
there exists a kind of reflexive transforms ϕ to be homomorphism mappings
in the logic metric space, which can keep the logic equivalent relationship un-
changed. Especially, ϕ∗ , which can be naturally derived from ϕ , is a reflexive
and isometric transform in the Lindenbaum algebra and a self-isomorphism.
Furthermore, the characteristics and general form of the fixed points were
obtained in the reference [11]. Based on the above, it is proved that in logic
metric spaces there exist equilateral polygons and right triangles,etc. , and
that the reflexive transform ϕ∗ keeps equilateral polygons unchanged since
ϕ∗ is not only the self-isomorphism transform but also a isometric transform.

2 Basic Concepts

Definition 2.1. ([2]) Let S be a countable set p1, p2, p3, · · · of propositional
variables, and F (S) be the free algebra of type (¬,∨,→) generated by S, where
¬ is a unary operator, and ∨, → are binary operators on S. Members of S
are called atoms and those of F (S) are called well-formed formulas (wff’s for
short) or propositions.

Suppose that {0, 1} is the simplest Boolean algebra, and for every a, b ∈
{0, 1}

¬a = 1 − a, a ∨ b = max{a, b}, a → b = 1 iff a ≤ b (1)

where a∧ b = ¬(¬a∨¬b), then {0, 1} is also a free algebra of type (¬,∨,→).

Definition 2.2. ([2]) Suppose that A = A(p1, p2, · · · , pn) is a well-formed
formula containing n atoms p1, p2, · · · , pn. Let pi be replaced by xi, (i =
1, 2, · · · , n), and the operators ¬,∨,→ followed from (1), then we obtain a
Boolean function fA : {0, 1}n → {0, 1}, which is called the Boolean function
induced by A. And call N(f)

2n the truth degree of the formula A, written as
τ(A), (where N(f) = |f−1(1)|, please refer to [12]). In addition, define

ξ(A,B) = τ((A → B) ∧ (B → A)), A,B ∈ F (S), (2)

and call ξ(A,B) the similarity degree between A and B.
Besides, define

ρ(A,B) = 1 − ξ(A,B), A,B ∈ F (S), (3)

then ρ is a pseudo-metric on F (S) and call (F (S), ρ) a logic metric space.
It is proved in [2] that ξ(A,B) = 1 ( or ρ(A,B) = 0 ) if and only if A ≈ B,

(i.e., A and B are logically equivalent.).
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Remark 2.1. (i) The definition of the truth degree of formula is not its
original definition in the reference [2], but they are equivalent according to
the reference [12].

(ii) The indexes of atoms in formula A are unnecessarily from 1 to n
continually, but we suppose that the maximal index is n, and let B = A ∨
(p1∧¬p1∨· · ·∨(pn∧¬pn). Then B and A are logically equivalent, meanwhile
the indexes of atoms in formula B continue from 1 to n, and the Boolean
function induced by A can also be written as f(x1, · · · , xn). So, we always
suppose that the indexes of atoms in formula A are continuous from 1 to n
in the following context when the maximal index of all atoms of the formula
A is n.

(iii) ρ(A,B) = 0 when A and B is similar (i.e., ξ(A,B) = 1), but A and B
may be different formulas at the mean time. From this, (F (S), ρ) is not a met-
ric space and only is a pseudo metric space. However, ρ induces a real metric
ρ∗, also written as ρ, in Lindenbaum quotient algebra [F (S)] = F (S)/ ≈ in
a natural way, and ([F (S), ρ]) is a metric space,so we call ([F (S), ρ]) as the
classical logical metric space.

Definition 2.3. ([11]) Suppose that S = {P1, P2, · · ·} is the set of all atomic
formulas, and F (S) is the set of all Classical propositional logic formulas.
Define ϕ : F (S) → F (S) as following:

Suppose A = f(P1, P2, · · · pn) ∈ F (S), let ϕ(A) = f(¬P1,¬P2, · · · ,¬pn).
We call this transformation a reflection transformation.

Theorem 2.1. ([11]) ϕ : F (S) → F (S) is a homomorphism transform.

Theorem 2.2. ([11]) Assume that A is logically equivalent with B, then ϕ(A)
is logically equivalent with ϕ(B) too.

Definition 2.4. ([8]) Suppose that (F (S), ρ) is a logical metric space, let
ρ∗([A], [B]) = ρ(A,B), A,B ∈ F (S).

Then ([F (S)], ρ∗) is a real metric space,also written as ([F (S)], ρ) briefly.

Definition 2.5. ([11]) Suppose that ϕ : F (S) → F (S) is a reflexive transform
on F (S) ,let

ϕ∗([A]) = [ϕ(A)], A ∈ F (S). (4)

We call ϕ∗ as a reflexive transform on [F (S)] too.

Theorem 2.3. ([11]) ϕ∗ : [F (S)] → [F (S)] is an automorphism transfor-
mation in the Lindenbaum algebras.

Definition 2.6. ([11]) Suppose that (M,d) is a metric space, f : M → M
is a transform on M . If

d(f(x), f(y)) = d(x, y), x, y ∈ M, (5)

then we call f as a isometric transform on M .
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Theorem 2.4. ([11]) ϕ∗ : ([F (S)], ρ) → ([F (S)], ρ) is a isometric transform.

3 Equilateral Polygons on the Classical Logic Metric
Space

In this section, the existence of equilateral polygons were discussed. From
the issue, we obtain the conclusions that the reflexive transform ϕ∗ keep
the especial relationship of the lines and the angles unchanged. Hereinafter,
though we discussed all issues in the classical logic metric space ([F (S)], ρ),
there are no differences of the relationships of measure between the classical
logic metric space ([F (S)], ρ) and the logical metric space (F (S), ρ). To fa-
cilitate the writing, we note the equivalence classes [A] as A in the text below.

Theorem 3.1. There must be some equilateral triangles on the classical log-
ical metric space ([F (S)], ρ), but there are no any equilateral triangles, the
length of whose lines is longer than 2

3 .

Proof. In the logical metric space ([F (S)], ρ), we let A = p,B = q, C = r.
According to the Equations (2), (3), we have

ρ(A,B) = ρ(A,C) = ρ(C,B) =
1
2
. (6)

That is to say the triangle ABC is an equilateral triangle, the length of whose
lines is equal to 1

2 . Therefore there must be some equilateral triangles on the
logical metric space ([F (S)], ρ).

Secondly, suppose that there exists an equilateral triangle, the length of
whose lines is longer than 2

3 , namely, ρ(A,B) > 2
3 , ρ(A,C) > 2

3 , ρ(C,B) > 2
3 ,

then

ξ(A,B) <
1
3
, ξ(A,C) <

1
3
, ξ(C,B) <

1
3
. (7)

Such as the note (2) above, it may be assumed that A,B, and C contain same
n atomics such as p1, p2, · · · , pn. They induce three Boolean functions with n
variables, and the three functions are noted as fA and fB or fC , respectively.
Now, we have the fact that the similarity degree between arbitrary two for-
mulas of A,B, and C is less than 1

3 while the sequence pairs (x1, x2, · · · , xn)
is given any value in {0, 1}n. In another words, there are less than 1

3 values
that make the equality fA = fB hold, and so do the equalities fA = fC and
fC = fB. Therefore, there must be at least one value v in {0, 1}n making the
following three inequalities hold at the same time:

fA �= fB, fA �= fC , fC �= fB. (8)

In fact, fA, fB and fC can be zero or one, so it is impossible that the three
inequalities hold at the same time. Contradictions!
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Theorem 3.2.There is not any equilateral triangle, the length of whose lines
is equal to 2

3 on the logical metric space ([F (S)], ρ).

Proof. Suppose that there exists an equilateral triangle "ABC, the length
of whose lines is equal to 2

3 , namely,ρ(A,B) = ρ(A,C) = ρ(C,B) = 2
3 ,then

ξ(A,B) = 1
3 .

According to the equality (2), we have

ξ(A,B) = τ((A → B) ∧ (B → A)) =
1
3
. (9)

The equality is impossible to hold, because the set of truth degree of all
formulas in F (S) is as following H = { k

2n |k = 0, 1, · · · , 2n;n = 1, 2, }. (Please
refer to the proposition 9.1.1 in the reference [2]). If the equality (9) holds,
then there exists an integer k such that the equality k

3k = k
2n holds, namely,

k = 2n

3 . However, this integer k only equals every integer from 0 to 2n.
Contradictions.

Theorem 3.3. Suppose that ε is a positive number arbitrary given, then there
exist some equilateral triangles, the length of whose lines is less than ε on the
classical logical metric space ([F (S)], ρ).

Proof. let
A = p1∧p2∧· · ·∧pn, B = q1∧q2∧· · ·∧qn, C = r1∧r2∧· · ·∧rn.

Then, from the equality (2) we have

ξ(A,B) = τ((A → B) ∧ (B → A)) =
(2n − 1)2 + 1

22n . (10)

It is easy to prove that (2n−1)2+1
22n → 1 when n → ∞, namely, for any given

positive number ε, there exists a positive integer N such that when n > N ,
ρ(A,B) < ε.

Similarly, we also have
ρ(A,C) = (2n−)2+1

22n < ε, ρ(A,C) = (2n−)2+1
22n < ε.

That is to say, there exist some equilateral triangles the length of whose lines
is less to ε on the classical logical metric space.

Corollary 3.1. There must be some equilateral polygons on the classical
logical metric space ([F (S)], ρ), and the length of their lines is arbitrarily
close to zero.

Proof. It is proved by the way which is similar to Theorem 3.1 and
Theorem 3.3.

Theorem 3.4. There exists a right triangle on the classical logical metric
space ([F (S)], ρ).



132 M.-D. Hu

Proof. Let
A = p1∧p2, B = p1∨p2, C = A = p3∧p4.

According to the equalities (2), (3) we have
ξ(A,B) = 4

8 , ξ(A,C) = 5
8 , ξ(C,B) = 3

8 ;
then

ρ(A,B) = 4
8 , ρ(A,C) = 3

8 , ρ(C,B) = 5
8 .

It is clear to see that "ABC is a right triangle since it satisfies the
Pythagorean theorem.

Lemma 3.1. For any natural number k, 22k + 2 can be divisible by 3, and
the following equality holds.

22k = 2 × 22k + 2
3

+ (
22k + 2

3
− 2). (11)

Proof. It is proved using mathematical induction. The equality 22n+2 = 3×2
holds when n equals 1, so this proposition holds. Now suppose that this
proposition holds when n is k − 1 ( k is arbitrary natural number), namely,
there exists a positive integer h1 such that the equality 22(k−1) + 2 = 3 × h1
holds. Therefore, from the equality as following:

22k + 2 = 22(k−1) × 22 + 2 = (3h1 − 2)× 4 + 2 = 12h1 − 6 = 3× (4h1 − 2).
We have that this proposition holds for k. It is clear to see the proposition
holds for any natural number k, namely,22k + 2 can be divisible by 3. And,
it is easy to prove that the equality (11) holds.

Theorem 3.5. For any positive number ε which can be arbitrarily close to
zero, there exists an equilateral triangle on the classical logical metric space
([F (S)], ρ), the length of whose lines is between 2

3 − ε and 2
3 .

Proof. For an arbitrary ε > 0, let k be large enough so that 2
3×22k < ε. Now

we argue the Boolean function fA(x1, x2, · · · , xn) and fB(x1, x2, · · · , xn) or
fC(x1, x2, · · · , xn) with n = 2k variables, where (x1, x2, · · · , x2k) ∈ {0, 1}2k.
We make the self-variable of vectors arranged according to lexicographic se-
quence. Firstly, let all vectors equal zero, namely, let fA(x1, x2, · · · , x2k) ≡ 0,
so we have a formula A(p1, p2, · · · , p2k) which is 0̄. Secondly, we change a
part of values of the Boolean function above, that is to say, let these vectors
with lexicographic sequence equal to zero from the first to the 22k+2

3 ’th, the
others equal to one, because the number 22k+2

3 is positive integer according
to Lemma 3.6. So, we obtain the second Boolean function fB(x1, x2, · · · , x2k)
and the formula B(p1, p2, · · · , p2k) with 2k atoms which is corresponding
to the second Boolean. Thirdly, let these sequent vectors equal zero from
22k+2

3 ’th to 2× 22k+2
3 +1’th, and the others equal 1, so we obtain also the third

Boolean function fC(x1, x2, · · · , x2k) and the third formula C(p1, p2, · · · , p2k)
with 2k atoms which is corresponding to the third Boolean function. By
the equality (2)and (3) , as well as the construction of these above Boolean
functions, it is not difficult to test as following:
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1
3 < ξ(A,B) = ξ(B,C) = ξ(C,A) = 1

3 + 2
3+22k < 1

3 + ε,
namely,

2
3 > ρ(A,B) = ρ(B,C) = ρ(C,A) = 2

3 − 2
3+22k > 2

3 −
ε. So this proposition is proved.

Corollary 3.2.For any positive number ε which can be arbitrarily close to
zero, there exist numerous equilateral triangles on the classical logical metric
space ([F (S)], ρ), the length of whose lines is between 2

3 − ε and 2
3 .

Proof. We can see from the proof of Theorem 3.7 that there exist nu-
merous k which satisfies the condition 2

3+22k < ε, therefore, we can draw
many equilateral triangles like above according to the way of the proof of
Theorem 3.7.

4 The Characters of the Equidistant Transform on the
Space of ([F (S)], ρ)

Theorem 4.1. The isometric transform ϕ∗ preserves the shape of equilateral
triangles on the classical logical metric space ([F (S)], ρ).

Proof. Suppose that "ABC is an equilateral triangle, from the definition of
reflective transform we have

ϕ∗(A) = A′, ϕ∗(B) = B′, ϕ∗(C) = C′,
then the triangle "A′B′C′ have the following character according to
Theorem 2.10,

ρ(A′, B′) = ρ(ϕ∗(A), ϕ∗(B)) = ρ(A,B).
In the same way, we have ρ(A′, C′) = ρ(A,C), ρ(B′, C′) = ρ(B,C), there-

fore, so is "A′B′C′. Because a triangle can decide a plane and equal lines
make relative angles equal, the isometric transform preserves the shape of
every equilateral triangle on ([F (S)], ρ).

It is easy to obtain the following corollary by Theorem 2.10 and Corollary 3.4.

Corollary 4.1. The isometric transform preserves the length of lines of every
equilateral polygon on ([F (S)], ρ), but the shape of any equilateral polygon is
not necessarily preserved by this isometric transform.

Theorem 4.2. The isometric transform can preserve the shape of every
right triangle on the metric space ([F (S)], ρ).

Proof. It can be proved similarly to Theorem 4.1, only using the character
of the isometric transform ϕ∗ .

5 Conclusion

We discussed the structure of some logic metric spaces from a special angle in
the reference [11], and it is proved that there is a reflexive transform ϕ in the
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classical logic metric space, which is a homomorphic mapping and makes the
logic of equivalence relation unchanged. And, ϕ∗ is a reflexive transform of
Lindenbaum algebra derived from ϕ, which is an automorphic and isometric
transform of Lindenbaum algebra. Besides, the general form of fixed points
can be obtained by studying the features of fixed points. In this paper, on
the basis of above paper, it is further proved that there exist some special
graphics such as equilateral triangles and polygons et. on the logic metric
space. And it is also proved that an isometric ϕ∗ in Lindenbaum algebras
can preserve the shape of every equilateral triangle and the length of lines of
every equilateral polygon. We will discuss the other issues of reflection trans-
form furthermore in the next paper, for example, how to discuss and seek the
structure of classical logic metric space, and how to discuss the result in the
Lukasiewicz system or Ro system, etc.
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Abstract. In this paper, a reflexive transformation ϕ on F (S) in the logic
system L∗ is proposed, which is an automorphism of F (S). It is proved that
the concepts of truth degree, similarity degree and pseudo-distance are remain
under the reflexive transformation ϕ. Moreover, three different approximate
reasoning patterns are introduced in the system L∗, and it is also proved that
for any A ∈ F (S) and Γ ⊂ F (S), A is an approximate conclusion of Γ if and
only if ϕ(A) is an approximate conclusion of ϕ(Γ ) in the sense of any one
of the three patterns. Finally, the properties of reflexive transformation are
investigated and relation of fixed points in classical logic system L and those
in L∗ are studied.

Keywords: Logic system L∗, reflexive transformation, pseudo-distance, ap-
proximate reasoning, fixed point.

1 Introduction

Mathematical logic is a subject dealing with formalized reasoning, in which
the methods on inferring the desirable conclusion from the known premise
are studied. This kind of logic reasoning has been widely applied in artifi-
cial intelligence and related topics [1-5]. The logic system L∗ is proposed by
the second author of this paper, in which the completeness theorem holds,
i.e., the syntax and the semantics are in perfect harmony. Additionally, the
concepts of similarity degree and pseudo-distance are also given in L∗, and
several kinds of approximate reasoning are proposed. Until now, a relatively
complete and mature quantitative logic has been formed [1]. The symboliza-
tion and formalization of mathematical logic and the numerical computation
of computational mathematics are connected in quantitative logic. It enables
mathematical logic to have some kind of flexibility and thus extends the scope
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of possible applications [1,6-14]. In paper [15], the reflexive transformation is
introduced in classical logic metric space, which enriches the theory of quan-
titative logic. In this paper, we aim to extend this result to the environment
of fuzzy logic system L∗ and a reflexive transformation ϕ is introduced in
the logic system L∗. It has been proved that the concepts of truth degree,
similarity degree and pseudo-distance enjoy the following properties under
the transformation ϕ:
τR∞(A) = τR∞(ϕ(A)), ξR(A, B) = ξR(ϕ(A), ϕ(B)), ρR(A,B) = ρR(ϕ(A), ϕ(B)).

Moreover,three different approximate reasoning patterns are introduced in
system L∗. And it is proved that for any A ∈ F (S) and Γ ⊂ F (S), A is an
approximate conclusion of Γ if and only if ϕ(A) is that of ϕ(Γ ) under the
proposed reasoning patterns. Finally, the properties of the reflexive transfor-
mation ϕ∗

2 on [F ] in logic system L∗ are investigated and the relationship of
fixed points in L and those in L∗ is studied.

2 Preliminaries

Definition 1. ([1]) Let S = {p1, p2, · · ·}, and F (S) be a free algebra of type
(¬,∨,→) generated by S. Each member of F (S) is called a formula (also
called proposition) of L∗, and each member of S is called an atomic formula
(atomic proposition) of L∗.

Definition 2. ([1]) Let υ : F (S) → [0, 1] be a mapping from the set F (S)
of all formulas of L∗ into the R0−unit interval [0, 1]. υ is called a valuation
of F (S) in the R0−unit interval [0, 1](briefly, valuation) if υ is a homomor-
phism of type (¬,∨,→), i.e. υ(¬A) = ¬υ(A), υ(A ∨ B) = υ(A) ∨ υ(B) =
max{υ(A), υ(B)}, υ(A → B) = υ(A) → υ(B) = R0(υ(A), υ(B)).

The set of all valuations of F (S) will be denoted by Ω̄.

Definition 3. ([1]) Let A,B ∈ F (S).
(i)A is called a tautology, denoted by |= A, if υ(A) = 1 for every υ ∈ Ω̄. A is
called a contradiction , if υ(A) = 0 for every υ ∈ Ω̄.
(ii)A and B are said to be logically equivalent, in symbols, A ≈ B, if υ(A) =
υ(B) for every υ ∈ Ω̄.

Definition 4. ([1]) Let A(p1, · · · , pn) be a formula containing n atomic
propositions p1, · · · , pn by using the logical connectives ¬,∨ and →, and
(x1, · · · , xn) ∈ [0, 1]n. Substitute xi for pi in A(i = 1, · · · , n), and keep the logi-
cal connectives in A unchanged but explaining them as the corresponding oper-
ations defined by ¬x1 = 1−x1, x1∨x2 = max{x1, x2}, x1 → x2 = R0(x1, x2).
Then we get a n−ray function Ā(x1, · · · , xn), called the R0 function induced
by A.

Definition 5. ([1]) Let A,B ∈ F (S). A and B are said to be provably equiv-
alent, denoted by A ∼ B, if both A → B and B → A are theorems.

Theorem 1. ([1])(Completeness theorem of L∗) Let A ∈ F (S). Then A is a
theorem in L∗ if and only if A is a tautology, i.e. � A if and only if |= A.
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3 Reflexive Transformation

Definition 6. ([1]) Let S = {p1, p2, · · ·} be a set of all atomic formulas, and
F (S) be a set of all formulas of L∗. A mapping ϕ : F (S) → F (S) is called a
reflexive transformation of F (S), if ∀A ∈ F (S), let A = A(p1, · · · , pn), then
ϕ(A) = A(¬p1, · · · ,¬pn).

Theorem 2. The reflexive transformation ϕ : F (S) → F (S) is an automor-
phism of F (S).

Proof. Let A = A(p1, · · · , pn) ∈ F (S), B = B(q1, · · · , qm) ∈ F (S), then
ϕ(¬A) = ϕ(¬A(p1, · · · , pn)) = ¬A(¬p1, · · · ,¬pn) = ¬ϕ(A), ϕ(A ∨ B) =
ϕ(A(p1, · · · , pn) ∨ B(q1, · · · , qm)) = A(¬p1, · · · ,¬pn) ∨ B(¬q1, · · · ,¬qm) =
ϕ(A) ∨ ϕ(B), ϕ(A → B) = ϕ(A(p1, · · · , pn) → B(q1, · · · , qm)) =
A(¬p1, · · · ,¬pn) → B(¬q1, · · · ,¬qm) = ϕ(A) → ϕ(B).

Hence ϕ is a homomorphism of F (S).
∀C,D ∈ F (S), if ϕ(C) = ϕ(D) = E(p1, · · · , pt), then C = D =

E(¬p1, · · · ,¬pt). Hence ϕ is an injection.
∀E(p1, · · · , pt) ∈ F (S), there exists E(¬p1, · · · ,¬pt) ∈ F (S), such that

ϕ(E(¬p1,
· · · ,¬pt)) = E. Hence ϕ is a surjection.

Therefore the reflexive transformation ϕ is an automorphism of F (S).

Theorem 3. If A and B are logically equivalent, then ϕ(A) and ϕ(B) are
logically equivalent.

Proof. Assume that A and B are logically equivalent. Let A =
A(p1, · · · , pn), B = B(p1, · · · , pn).Ā, B̄ are R0 functions induced by A and B
respectively. For any valuation υ ∈ [0, 1]n, there exists a valuation μ = 1−υ ∈
[0, 1]n such that Ā(μ(p1), · · · , μ(pn)) = μ(A) = μ(B) = B̄(μ(p1), · · · , μ(pn)),
Moreover, since ϕ(A) = A(¬p1, · · · ,¬pn), ϕ(B) = B(¬p1, · · · ,¬pn), then
υ(ϕ(A)) = Ā(υ(¬p1), · · · , υ(¬pn)) = Ā(1 − υ(p1), · · · , 1 − υ(pn)) =
Ā(μ(p1), · · · , μ(pn)) = B̄(μ(p1), · · · , μ(pn)) = B̄(1 − υ(p1), · · · , 1 − υ(pn)) =
B̄(υ(¬p1), · · · , υ(¬pn)) = υ(ϕ(B)).

And hence ϕ(A) and ϕ(B) are logically equivalent due to the arbitrariness
of υ.

Corollary 1. If A and B are provably equivalent, then ϕ(A) and ϕ(B) are
also provably equivalent.

Theorem 4. Let A ∈ F (S).
(i)A is a tautology if and only if ϕ(A) is a tautology.
(ii)A is a contradiction if and only if ϕ(A) is a contradiction.

Proof. (i) Assume that A = A(p1, · · · , pn).Since A is a tautology, for any
valuation υ ∈ [0, 1]n, there exists a valuation μ = 1 − υ ∈ [0, 1]n such
that μ(A) = Ā(μ(p1), · · · , μ(pn)) = 1. Since ϕ(A) = A(¬p1, · · · ,¬pn), then
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υ(ϕ(A)) = Ā(1−υ(p1), · · · , 1−υ(pn)) = Ā(μ(p1), · · · , μ(pn)) = 1. And there-
fore ϕ(A)is a tautology due to the arbitrariness of υ.

Notice that ϕ(ϕ(A)) = A. Hence, if ϕ(A) is a tautology, then A is a
tautology.
The proof of (ii) is similar to (i), and hence is omitted here.

Corollary 2. Let A ∈ F (S), A is a theorem if and only if ϕ(A) is a theorem.

4 Truth Degree, Similarity Degree and
Ppseudo-Distance of L∗ under the Reflexive
Transformation ϕ

Definition 7. ([1]) Let A = A(p1, · · · , pn) be a formula containing n atomic
formulas p1, · · · , pn in L∗. Define

τR∞(A) =
∫ 1

0
· · ·
∫ 1

0
Ā∞(x1, · · · , xn)dx1 · · · dxn, (1)

τR∞(A)is called the integrated truth degree of A in L∗, where Ā∞ : [0, 1]n →
[0, 1] is a function induced by A in the usual way.

Proposition 1. ∀A ∈ F (S), let ϕ be the reflexive transformation of F (S) as
defined in Definition 6, then

τR∞(A) = τR∞(ϕ(A)). (2)

Proof. ∀A ∈ F (S), assume that A = A(p1, · · · , pn), then
τR∞(A) =

∫ 1
0 · · ·
∫ 1
0 Ā∞(x1, · · · , xn)dx1 · · · dxn.

Since ϕ(A) = A(¬p1, · · · ,¬pn), then
τR∞(ϕ(A)) =

∫ 1
0 · · ·
∫ 1
0 Ā∞(1 − x1, · · · , 1 − xn)dx1 · · ·dxn =

(−1)n
∫ 1
0 · · ·
∫ 1
0 Ā∞(1 − x1, · · · , 1 − xn)d(1 − x1) · · · (1 −

dxn) = (−1)n
∫ 0
1 · · ·
∫ 0
1 Ā∞(y1, · · · , yn)dy1 · · · dyn =∫ 1

0 · · ·
∫ 1
0 Ā∞(y1, · · · , yn)dy1 · · · dyn = τR∞(A).

Definition 8. ([1]) In L∗, let A,B ∈ F (S). Define

ξR(A,B) = τR∞((A → B) ∧ (B → A)), (3)

ξR(A,B) is called the similarity degree between A and B.

Proposition 2. In L∗, ∀A,B ∈ F (S), let ϕ be the reflexive transformation
of F (S) as defined in Definition 6. Then

ξR(A,B) = ξR(ϕ(A), ϕ(B)) (4)
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Proof. We have from Proposition 1 that,
τR∞((A → B) ∧ (B → A)) = τR∞(ϕ((A → B) ∧ (B → A))),

i.e.,
τR∞((A → B) ∧ (B → A)) = τR∞((ϕ(A) → ϕ(B)) ∧ (ϕ(B) → ϕ(A))).

Hence ξR(A,B) = ξR(ϕ(A), ϕ(B)).

Definition 9. ([1]) In L∗, a function ρR : F (S)×F (S) → [0, 1] is defined as
following:

ρR(A,B) = 1 − ξR(A,B), A,B ∈ F (S). (5)

Then ρR is a pseudo-metric on F (S), called the natural pseudo-metric (some-
times simply called pseudo-metric) on F (S) in L∗.

Proposition 3. In L∗, ∀A,B ∈ F (S), let ϕ be the reflexive transformation
of F (S) as defined in Definition 6, then

ρR(A,B) = ρR(ϕ(A), ϕ(B)). (6)

The proof of Proposition 3 follows immediately from Proposition 2 and Def-
inition 9, and hence is omitted here.

5 Approximate Reasoning of L∗ under the Reflexive
Transformation ϕ

Definition 10. Γ ⊂ F (S), let ϕ be the reflexive transformation of F (S) as
defined in Definition 6. Define

ϕ(Γ ) = {ϕ(A)|A ∈ Γ}. (7)

Theorem 5. Γ ⊂ F (S), let ϕ be the reflexive transformation of F (S) as
defined in Definition 6. Then A ∈ D(Γ ) if and only if ϕ(A) ∈ D(ϕ(Γ )).

Proof. ∀A ∈ D(Γ ), i.e. there exists a finite sequence of formulas A1, · · · , An =
A such that for each i with 1 ≤ i ≤ n, either Ai is a theorem of L∗, or Ai ∈ Γ ,
or there exist j, k < i such that Ai follows from Aj and Ak by MP.

If Ai is a theorem of L∗, then we have from Corollary 1 that ϕ(A) is
theorem.

If Ai ∈ Γ , then ϕ(Ai) ∈ ϕ(Γ ).
If there exist j, k < i such that Ai follows from Aj and Ak by MP. Without

loss of generality, we assume that Ak = Aj → Ai, then ϕ(Aj), ϕ(Ak) =
ϕ(Aj → Ai) = ϕ(Aj) → ϕ(Ai) ∈ ϕ(Γ ), and ϕ(Ai)can be obtained by MP.
i.e. ϕ(Ai) ∈ D(ϕ(Γ )). Therefore ϕ(A) ∈ D(ϕ(Γ )).

For the converse direction, it can be proved immediately by using
ϕ(ϕ(A)) = A.

Remark 1. From Theorem 5, if A is a conclusion of Γ , then ϕ(A) is a con-
clusion of ϕ(Γ ). In converse, if ϕ(A) is a conclusion of ϕ(Γ ), then A is a
conclusion of Γ .
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Example 1. Let Γ = {p2,¬p1 → ¬p2}, then ¬p1 ∈ D(ϕ(Γ )).

Proof. (1)¬p1 → ¬p2 (Γ )
(2)(¬p1 → ¬p2) → (p2 → p1) (L∗2)
(3)p2 → p1 (1)(2)MP
(4)p2 (Γ )
(5)p1 (1)(2)MP
Hence p1 ∈ D(Γ ). From Theorem 5, we have ¬p1 ∈ D(ϕ(Γ )).

Definition 11. ([1]) In L∗, let Γ ⊂ F (S), B ∈ F (S), ε > 0. If

ρR(B,D(Γ )) < ε, (8)

then B is called a conclusion of Γ of I-type with error less than ε, denoted
by B ∈ D1

L∗,ε(Γ ).

Proposition 4. In L∗, assume that Γ ⊂ F (S), B ∈ F (S), ε > 0. Let ϕ be
the reflexive transformation of F (S) as defined in Definition 6. Then B ∈
D1
L∗,ε(Γ ) if and only if ϕ(B) ∈ D1

L∗,ε(ϕ(Γ )).

Proof. B ∈ D1
L∗,ε(Γ ) ⇐⇒ ρR(B,D(Γ )) < ε ⇐⇒ There exists A ∈ D(Γ )

such that ρR(A,B) < ε ⇐⇒ There exists ϕ(A) ∈ D(ϕ(Γ )) such that
ρR(ϕ(A), ϕ(B)) < ε ⇐⇒ ϕ(B) ∈ D1

L∗,ε(ϕ(Γ )).

Definition 12. ([1]) In L∗, let Γ ⊂ F (S), B ∈ F (S), ε > 0. If

1 − sup{τR∞(A → B)|A ∈ D(Γ )} < ε, (9)

then B is called a conclusion of Γ of II-type with error less than ε, denoted
by B ∈ D2

L∗,ε(Γ ).

Proposition 5. In L∗, assume that Γ ⊂ F (S), B ∈ F (S), ε > 0. Let ϕ be
the reflexive transformation of F (S) as defined in Definition 6. Then B ∈
D2
L∗,ε(Γ ) if and only if ϕ(B) ∈ D2

L∗,ε(ϕ(Γ )).

Definition 13. ([1]) In L∗, let Γ ⊂ F (S), B ∈ F (S), ε > 0. If

inf{H(D(Γ ), D(Σ))|Σ ⊂ F (S), B ∈ D(Σ)} < ε, (10)

then B is called a conclusion of Γ of III-type with error less than ε, denoted
by B ∈ D3

L∗,ε(Γ ).

Proposition 6. In L∗, assume that Γ ⊂ F (S), B ∈ F (S), ε > 0. Let ϕ be
the reflexive transformation of F (S) as defined in Definition 6. Then B ∈
D3
L∗,ε(Γ ) if and only if ϕ(B) ∈ D3

L∗,ε(ϕ(Γ )).

Proof. ∀Σ ⊂ F (S), B ∈ D(Σ) ⇐⇒ ϕ(B) ∈ D(ϕ(Σ)).
Hence, inf{H(D(Γ ), D(Σ))|Σ ⊂ F (S), B ∈ D(Σ)} < ε ⇐⇒
inf{H(D(ϕ(Γ )), D(ϕ(Σ)))|ϕ(Σ) ⊂ F (S), ϕ(B) ∈ D(ϕ(Σ))} < ε. Let
ϕ(Σ) = Σ1, then

B ∈ D3
L∗,ε(Γ ) ⇐⇒ inf{H(D(Γ ), D(Σ))|Σ ⊂ F (S), B ∈ D(Σ)} < ε ⇐⇒

inf{H(D(ϕ(Γ )), D(Σ1))|Σ1 ⊂ F (S), ϕ(B) ∈ D(Σ1)} < ε ⇐⇒ ϕ(B) ∈
D3
L∗,ε(ϕ(Γ )).



Reflexive Transformation in L∗-Logic Metric Space 141

6 Reflexive Transformation ϕ∗ on L∗−Lindenbaum
Algebra and Its Properties

Definition 14. ([16])Let F (S) be the free algebra of the type (¬,∨,→) gen-
erated by the set of atomic formulae S = {p1, · · · , pn, · · ·}, and ≈ be the
logical equivalence relation on F (S), then ≈ is a congruence relation of type
(¬,∨,→). And F (S)/ ≈ is called L∗−Lindenbaum algebra, denoted by [F ].
∀A ∈ F (S), the congruence class of A is denoted by [A].

Definition 15. ([17])Let (F (S), ρ) be the logic metric space. Define

ρ∗([A], [B]) = ρ(A,B), A,B ∈ F (S). (11)

Then ([F ], ρ∗) is a metric space.

Definition 16. ([15])Let ϕ be the reflexive transformation of F (S) as defined
in Definition 6. Define

ϕ∗([A]) = [ϕ(A)], A ∈ F (S). (12)

Then ϕ∗ is called a reflexive transformation of [F ].

Proposition 7. ϕ∗ : [F ] → [F ] is an automorphism of L∗−Lindenbaum
algebra.

Proposition 8. ϕ∗ : [F ] → [F ] is an isometric transformation of ([F ], ρ∗).

Theorem 6. Let 1̄, 0̄ be the tautology and contradiction of F (S) respectively.
Then [1̄] and [0̄] are fixed points of ϕ∗.

Proof. Since 1̄ is a tautology of F (S), then ϕ(1̄) is a tautology of F (S). Hence
ϕ(1̄) ≈ 1̄, i.e. [ϕ(1̄)] = [1̄]. And hence ϕ∗([1̄]) = [ϕ(1̄)] = [1̄], which shows
that [1̄] is a fixed point of ϕ∗.

Similarly, we can prove that [0̄] is also a fixed point of ϕ∗.

Theorem 7. Let ϕ be the reflexive transformation of F (S) as defined in Def-
inition 6. ∀A ∈ F (S), [A] ∨ ϕ∗([A]) and [A] ∧ ϕ∗([A]) are fixed points of ϕ∗.

Proof. Since ϕ∗ : [F ] → [F ] is an automorphism of [F ] and ϕ∗(ϕ∗([A])) = [A],
then
ϕ∗([A]∨ϕ∗([A])) = ϕ∗([A])∨ϕ∗(ϕ∗([A])) = ϕ∗([A])∨ [A] = [A]∨ϕ∗([A]) and
ϕ∗([A] ∧ ϕ∗([A])) = ϕ∗([A]) ∧ ϕ∗(ϕ∗([A])) = ϕ∗([A]) ∧ [A] = [A] ∧ ϕ∗([A])
Hence [A] ∨ ϕ∗([A]) and [A] ∧ ϕ∗([A]) are fixed points of ϕ∗.

Remark 2. In classical logic L, the quotient algebra F (S)/ ≈ is a Boole al-
gebra, which is also called Lindenbaum algebra and denoted by [F (S)]. If
ϕ∗ is a reflexive transformation of [F (S)] and [B] is a fixed point of ϕ∗,
then there exists a formula A ∈ F (S) ([A]is not a fixed point of ϕ∗ ) such
that [B] = [A] ∨ ϕ∗([A]) or [B] = [A] ∧ ϕ∗([A]) (Theorem 6 in paper[15]).
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However, this conclusion is not valid in [F ]. For example, let B = p1 → p1,
then B is a tautology of F (S) and therefore [B] is a fixed point of ϕ∗. But
p1 ∨¬p1 and p1 ∧¬p1 are not tautologies, therefore [B] �= [p1]∨ ϕ∗([p1]) and
[B] �= [p1] ∧ ϕ∗([p1]).

Theorem 8. Let ϕ∗
1 be a reflexive transformation of [F (S)], and ϕ∗

2 a reflex-
ive transformation of [F ]. ∀A ∈ F (S), if [A] is a fixed point of ϕ∗

2, then [A]
is also a fixed point of ϕ∗

1. Conversely, if [A] is a fixed point of ϕ∗
1, then there

exists a formula B ∈ F (S) such that A ≈ B holds in classical logic, and in
addition, [B] is a fixed point of ϕ∗

2.

Proof. ∀A ∈ F (S), if [A] is a fixed point of ϕ∗
2, then ϕ∗

2([A]) = [A]. Hence
[ϕ(A)] = [A]. i.e. ϕ(A) ≈ A in the logic system L∗. Therefore ϕ(A) ≈ A
holds in classical logic system L, which immediately entails that ϕ∗

1([A]) =
[ϕ(A)] = [A]. i.e., [A] is a fixed point of ϕ∗

1.
Conversely, if [A] is a fixed point of ϕ∗

1, then there exists a formula A1 ∈
F (S) such that [A] = [A1] ∨ ϕ∗

1([A1]) = [A1 ∨ ϕ(A1)]. Let B = A1 ∨ ϕ(A1),
it can be easily verified that A ≈ B and ϕ∗

2([B]) = ϕ∗
2([A1 ∨ ϕ(A1)]) =

[ϕ(A1 ∨ ϕ(A1))] = [A1 ∨ ϕ(A1)] = [B]. Hence [B] is a fixed point of ϕ∗
2.

Remark 3. In classical logic L, let ϕ∗
1 be a reflexive transformation of [F (S)],

and Γ1 be a set of all fixed points of ϕ∗
1. In L∗, let ϕ∗

2 be a reflexive transfor-
mation of [F ], and Γ2 be a set of all fixed points of ϕ∗

2. From Theorem 8, we
have ‖[Γ1]‖ ≤ ‖[Γ2]‖ (‖[Γ ]‖ is the cardinal number of set [Γ ]).

Proposition 9. Let ϕ∗
1 be a reflexive transformation of [F (S)], and ϕ∗

2 be a
reflexive transformation of [F ]. Then the fixed points of ϕ∗

1 ( or ϕ∗
2 ) exist in

pair.

Proof. Let [A1] be a fixed point of ϕ∗
1. Then ϕ(A1) ≈ A1, hence ¬ϕ(A1) ≈

¬A1. Since ϕ is a homomorphism of F (S), then ϕ(¬A1) ≈ ¬A1. Hence [¬A1]
is fixed point of ϕ∗

1. i.e. The fixed points of ϕ∗
1 exist in pair.

Similarly, we can show that the fixed points of ϕ∗
2 exist in pair.

Theorem 9. In classical logic L, let ϕ∗
1 be a reflexive transformation of

[F (S)], [Γ1] be a set of all fixed points of ϕ∗
1, then [Γ1] contains countably

many fixed points.

Proof. Assume that [Γ1] contains a finite number of fixed points. From
Proposition 9, we know that the fixed points of ϕ∗

1 exist in pair. Ex-
cept [1̄], [0̄], [Γ1] contains an even number of fixed points, denoted by
[A1], · · · , [An], [¬A1], · · · , [¬An], and there exist at least two different eval-
uations ῡ1, ῡ2 such that ῡ1(Ai) = ῡ2(Ai) = 1(i = 1, · · · , n)(This is true,
if not, we can exchange [Ai] and [¬Ai]). Then there exists an evaluation υ
such that υ(A1) = · · · = υ(An) = 1, υ(¬A1) = · · · = υ(¬An) = 0, and an
evaluation υi different from υ such that υi(Ai) = 1(i = 1, · · · , n).

Let B = A1∧· · ·∧An. Then υ(B) = 1. Since Ai(i = 1, · · · , n) is not a tautol-
ogy, then B is neither a contradiction nor a tautology. Since υ(¬A1) = · · · =
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υ(¬An) = 0, then each ¬Ai(i = 1, · · · , n)is not logically equivalent with B.
Since there exists an evaluation υi different from υ such that υi(Ai) = 1(i =
1, · · · , n), there exists a natural number j(j �= i) such that υi(Aj) = 0(if not,
then υi(A1) = · · · = υi(An) = 1, υi(¬A1) = · · · = υi(¬An) = 0, hence υi =
υ), which implies that υi(B) = 0 and therefore each Ai(i = 1, · · · , n) is not
logically equivalent to B. Hence [B] �= [1̄], [0̄], [A1], · · · , [An], [¬A1], · · · , [¬An],
and ϕ∗

1([B]) = [ϕ(A1∧· · ·∧An)] = [ϕ(A1)∧· · ·∧ϕ(An)] = [A1∧· · ·∧An] = [B].
i.e., [B]is a fixed point of ϕ∗

1, which contradicts the assumption. Therefore
[Γ1] contains countably many fixed points.

Corollary 3. In logic L∗, let ϕ∗
2 be a reflexive transformation of [F ], [Γ2]be

a set of all fixed points of ϕ∗
2, then [Γ2] contains countably many fixed points.

7 Conclusion

In this paper, a reflexive transformation ϕ in the logic system L∗ is initially
proposed, and then three different approximate reasoning patterns in system
L∗ are studied. It is proved that for any A ∈ F (S) and Γ ⊂ F (S), A is an
approximate conclusion of Γ if and only if ϕ(A) is that of ϕ(Γ ) with the
same error. Finally, the cardinal numbers of the sets of fixed points [Γ1], [Γ2]
are computed.
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Abstract. The present paper mainly concerns the quantitative analysis of
rough logic PRL [1], which is a propositional logic system for rough sets
with pre-rough algebra semantics. The concepts of rough(upper, lower) truth
degrees on the set of logic formulas in PRL are initially introduced. Then,
by grading the rough equality relations, the concepts of rough(upper, lower)
similarity degrees are proposed. Finally, three different pseudo-metrics on the
set of logic formulas in PRL are obtained, and the corresponding approxi-
mate reasoning mechanisms reflecting the idea of rough approximations are
established.

Keywords: Rough(upper, lower) truth degree, Rough(upper, lower) similar-
ity degree, Rough(upper, lower) pseudo-metric, Approximate reasoning.

1 Introduction

Rough set theory [2, 3] is proposed by Pawlak to account for the definability
of a concept in terms of some elementary ones in an approximation space.
It captures and formalizes the basic phenomenon of information granulation.
The finer the granulation is, the more concepts are definable in it. For those
concepts not definable in an approximation space, the lower and upper ap-
proximations for them can be defined. In recent years, as an effective tool
in extracting knowledge from data tables, rough set theory has been widely
applied in intelligent data analysis, decision making, machine learning and
other related fields [4, 5, 6].

As is well known, set theory and logic systems are strongly coupled in
the development of modern logic. Since the inception of rough set theory,
many scholars have been trying to establish some rough logics correspond-
ing to rough set semantics. The notion of rough logic was initially proposed
by Pawlak in [7], in which five rough values, i.e., true, false, roughly true,
roughly false and roughly inconsistent were also introduced. This work was
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subsequently followed by E. Ortowska and Vakarelov in a sequence of papers
[8, 9, 10]. There are of course other research works along this research line.
For instance, those reported in [1,11,12,13,14,15,16]. Among these research
works, PRL [1], a formal logic system corresponding to pre-rough algebra,
serves as an interesting formalization of rough sets in the sense that it in-
cludes axioms and inference rules, and moreover, it is sound and complete
with respect to rough set semantics.

The language of PRL consists of propositional variables(also called atomic
formulas) p1, p2, · · · , pn, · · · , and three primitive logical connectives ⇁, # and
L. The set of all the logic formulas in PRL is denoted by F (S), which can be
formed in the usual manner.

In PRL, three additional logic connectives $, M and → are defined as
follows: ∀A,B ∈ F (S),

A $B =⇁ (⇁ A# ⇁ B), (1)

MA =⇁ L ⇁ A, (2)

A → B = (⇁ LA $ LB) ∧ (⇁ MA $MB). (3)

A model [16] for PRL (or PRL-model for short) is of the form M = (U,R, v),
where the departure from the S5-semantics lies in the meaning function v
with respect to the connectives of conjunction #. For A,B ∈ F (S),

v(A #B) = v(A) # v(B), (4)

where v(A)#v(B) = (v(A)∩v(B))∪(v(A)∩R̄(v(B))∩(R̄(v(A)∩v(B))c)) with
R̄, ∩ and c denoting the rough upper approximator [2, 3], usual set-theoretical
intersection and set-theoretical complement, respectively.

Definition of truth of a formula A in a model remain the same. Note that
for X,Y ⊆ U,X # Y does not coincide with X ∩ Y generally, except one of
X,Y is an exact set in the approximation space (U,R). It is also observed
that PRL is complete with respect to all these models.

Given two logic formulas p and q, we see that p → p is always true and ⇁
(p → p) is always false. Hence we can conclude that p → p is the good formula
and the ⇁ (p → p) is the bad one. Then one natural question arises: what are
the goodness of p#q and ⇁ p → Lq? Until now, several ways(see [17-19]) have
been proposed to solve this problem in several commonly used propositional
logic systems. However, seen from the viewpoint of rough set theory, these
mentioned methods have their own shortcomings because they don’t embody
the idea of rough approximations. Take the rough formula p$ ⇁ p as an
example. It is not difficult to see that p$ ⇁ p is not always true in each PRL-
model M = (U,R, v), and therefore, its truth degree under previous method
in [17,18,19] is strictly less than 1. However, from the viewpoint of rough set
theory, it still can be treated as the good formula, because p$ ⇁ p is roughly
true in each PRL-model M = (U,R, v) in the sense of R̄(v(p$ ⇁ p)) = U,
in other words, every object x ∈ U is “possibly” contained in v(p$ ⇁ p) in
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each Kripke model M = (U,R, v). Due to this, we need other more plausible
measures to evaluate the rough truth degree of formulas in PRL.

In this paper, to evaluate the rough goodness of logic formulas in rough
logic PRL, the concepts rough(upper, lower) truth degree are introduced on
the set of logic formulas in PRL. Then, based on these fundamental concepts,
the concepts of rough(upper, lower) similarity degree are also proposed and
their basic properties are investigated. Finally, three different pseudo-metrics
are introduced on the set of logic formulas and the corresponding approximate
reasoning mechanisms are established.

2 Pre-rough Algebra and Pre-rough Logic PRL

Let’s briefly review the basic notions of rough set theory initially proposed
by Pawlak [2, 3].

Definition 1. An approximation is a tuple AS = (U,R), where U is a non-
empty set, also called the universe of discourse, R is an equivalence relation
on U , representing indiscernibility at the object level.

Definition 2. Let AS = (U,R) be an approximation space defined as above.
For any set X ⊆ U, if X is a union of some equivalence classes produced by
R, then we call X a definable set, and otherwise, a rough set. As for rough
set X, two definable sets are employed to approximate it from above and from
below, respectively. They are

X = {x ∈ U |[x]∩ ⊆ X}, (5)

X = {x|[x] ∩X �= ∅}, (6)

where [x] denotes the equivalence block containing x.

Then we call X(X) rough upper(lower) approximation of X . We will note
that X is a definable set if and only if X = X, and therefore, we also treat
definable sets as special cases of rough sets.

Definition 3. A structure P= (P,≤,#,$,⇁,L,→, 0, 1) is a pre-rough alge-
bra, if and only if

1) (P,≤,#,$,→, 0, 1) is a bounded distributive lattice with least element 0
and largest element 1,

2) ⇁⇁ a = a,
3) ⇁ (a $ b) =⇁ a# ⇁ b,
4) La ≤ a,
5) L(a # b) = La # Lb,
6) LLa = La,
7) L1 = 1,
8) MLa = La,
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9) ⇁ La $ La = 1,
10) L(a $ b) = La $ Lb,
11) La ≤ Lb,Ma ≤ Mb imply a ≤ b,
12) a → b = (⇁ La $ Lb) # (⇁ Ma $Mb).

Example 1. Let 3 = ({0, 1
2 , 1},≤,#,$,⇁,L,→, 0, 1), where ≤ is the usual

order on real numbers, i.e., 0 ≤ 1
2 ≤ 1, # and $ are maximum and minimum,

respectively. In addition, ⇁ 0 = 1,⇁ 1
2 = 1

2 ,⇁ 1 = 0, L0 = L 1
2 = 0, L1 = 1.

Then it can be easily checked that 3 is a pre-rough algebra, and also a smallest
non-trival pre-rough algebra.

Example 2. Assume that AS = (U,R) is an approximation space, and
P = {(X,X)|X ⊆ U}. Define operations $,#,⇁,L on P as follows:
∀(X,X), (Y , Y ) ∈ P,

(X,X) $ (Y , Y )) = (X ∪ Y ,X ∪ Y ), (7)

(X,X) # (Y , Y )) = (X ∩ Y ,X ∩ Y ), (8)

⇁ (X,X) = (⇁ X,⇁ X), (9)

L(X,X) = (X,X). (10)

It can be easily checked that P is closed under the above operations, and
moreover, (P,$,#,⇁,L, (∅, ∅), (U,U)) forms a pre-rough algebra.

Definition 4. The axioms of PRL consist of the formulas of the following
form:

1) A → A,
2) ⇁⇁ A → A,
3) A →⇁⇁ A,
4) A #B → A,
5)A #B → B #A,
6) A # (B $ C) → (A #B) $ (A # C),
7) (A #B) $ (A # C) → A # (B $ C),
8) LA → A,
9) L(A #B) → LA # LB,
10) LA # LB → L(A #B),
11) LA → LLA,
12) MLA → LA,
13) L(A $B) → LA $ LB.
The inference rules are as follows:
1) MP rule: {A,A → B} � B,
2) HS rule: {A → B,B → C} � A → C,
3) {A} � B → A,
4) {A → B} �⇁ B →⇁ A,
5) {A → B,A → C} � A → B # C,
6) {A → B,B → A,C → D,D → C} � (A → C) → (B → D),
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7) {A → B} � LA → LB,
8) {A} � LA,
9) {LA → LB,MA → MB} � A → B.

The syntactic notions in PRL, such as theorem and Γ -consequece can be
defined in a similar way as in commonly used propositional logic. Here we
still use the same denoting symbols such as � A, Γ � A, etc.

As in the case of S5, a model for PRL (or briefly PRL-model) is of the
form M = (U,R, v), where the departure from the S5-semantics lies in the
definition of the meaning function v with respect to connectives of conjunction
# and implication → . For any A,B ∈ F (S),

v(A #B) = v(A) # v(B), (11)

v(A → B) = v((⇁ LA $ LB) # (⇁ MA $MB)). (12)

Definition of truth of any formula in M = (U,R, v) remains the same: this
is if and only if v(A) = U. It may then be noticed that → reflects the rough
inclusion: a formula A → B is true in M = (U,R, v) provided v(A) is roughly
included in v(B). Furthermore, #/$ are operations that reduce to ordinary
set intersection/union only when working on definable sets.

A is valid(denoted by |= A) if and only if A is true in each PRL-model.
PRL is observed to be complete with respect to the above Kriple semantics.

That is,

Theorem 1. � A if and only if |= A.

3 Rough(Upper, Lower) Truth Degrees of Rough
Formulas

Presented below is the quantitative theory of rough logic PRL in any given
model. As shown below, our discussion is based on finite PRL-models.

Definition 5. Let A ∈ F (S) and M= (U,R, v) be a finite PRL-model. Define

τM(A) =
|v(A)|
|U | , (13)

τ̄M(A) =
|v(A)|
|U | , (14)

τM(A) =
|v(A)|
|U | . (15)

Then we call τM(A), τ̄M(A) and τM(A) the rough truth degree, rough upper
truth degree and rough lower truth degree, respectively, in the given PRL-
model M= (U,R, v).
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Example 3. Let M= (U,R, v) be a PRL-model, where U = {1, 2, 3, 4, 5},
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)} and v(p) =
{1, 3}, v(q) = {2, 5}. Compute the rough truth degree, rough upper truth
degree and rough lower truth degree of p # q.

Solution: τM(p # q) = |v(p�q)|
|U| = |v(p)�v(q)|

|U| =
|(v(p)∩v(q))∪(v(p)∩v(q)∩v(p)∩v(q)c

)|
|U| = |{1,3}∩{1,2,5}|

5 = 1
5 .

τ̄M(p # q) = |v(p�q)|
|U| = |v(p)∩v(q)|

|U| = |{1,2,3,4}∩{1,2,5}|
5 = 2

5 .

τM(p # q) =
|v(p�q)|

|U| =
|(v(p)∩v(q)|

|U| = |∅|
5 = 0.

The concepts of rough(upper,lower) truth degrees enjoy the following
properties.

Proposition 1. Let M= (U,R, v) be a finite PRL-model, and τM(τ̄M, τM)
be the rough(upper, lower) truth degree mappings defined as in (13-15). Then
∀A,B ∈ F (S),

1) 0 ≤ τM(A) ≤ τM(A) ≤ τ̄M(A) ≤ 1.
2) τM(A) = 1 if and only if v(A) = U, i.e., A is true in the PRL-model

M= (U,R, v).
τ̄M(A) = 1 if and only if v(A) = U, i.e., v(A) is roughly true in M=

(U,R, v).
3) τM(⇁ A) = 1 − τM(A), τ̄M(⇁ A) = 1 − τM(A).
4) τ̄RM(A) = τ̄RM(B) if and only if v(A) = v(B),
τRM(A) = τRM(B) if and only if v(A) = v(B).
5) � A → B implies that τ̄M(A) ≤ τ̄M(B) and τM(A) ≤ τM(B);
� A ↔ B implies that τ̄M(A) = τ̄M(B), τM(A) = τM(B).

Definition 6. Let A ∈ F (S) and M= (U,R, v) be a finite PRL-model. Define

ξM(A,B) = τM((A → B) # (A → B)), (16)

ξ̄M(A,B) = τM((MA → MB) # (MB → MA)), (17)

ξM(A,B) = τM((LA → LB) # (LB → LA)). (18)

Then we call ξM(A,B), ξ̄M(A,B) and ξM(A,B) the rough similarity degree,
the rough upper similarity degree and the rough lower similarity degree between
A and B, respectively, in the PRL-model M= (U,R, v), and we also call ξM,
ξ̄M and ξM the rough similarity degree mapping, rough upper similarity degree
mapping and rough lower similarity degree mapping, respectively.

Rough(upper, lower) similarity degree mappings enjoy the following
properties.

Proposition 2. Let M= (U,R, v) be a finite PRL-model, and ξM(ξ̄M, ξM)
be the rough(upper, lower) truth degree mappings defined as above. Then
∀A,B ∈ F (S),



A Quantitative Analysis of Rough Logic 151

1) 0 ≤ ξM(A,B), ξ̄M(A,B), ξM(A,B) ≤ 1.

2)ξM(A,B) = ξM(B,A), ξ̄RM(A,B) = ξ̄RM(B,A), ξRM(A,B) = ξRM(B,A).
3) ξ̄RM(A,B) = ξRM(MA,MB), ξRM(A,B) = ξRM(LA,LB).
4) ξ̄RM(A,B) = 1 if and only if v(A) = v(B),
ξRM(A,B) = 1 if and only if v(A) = v(B),
ξM(A,B) = 1 if and only if v(A) = v(B), v(A) = v(B).
5)� A ↔ B entails that ξ̄RM(A,B) = ξRM(A,B) = ξM(A,B) = 1.

Proof. 1), 2) and 3) are evident from the definition of rough(upper, lower)
truth degrees.

4) ξ̄RM(A,B) = 1 ⇔ τM((MA → MB) # (MB → MA)) = 1
⇔ |v((MA→MB)�(MB→MA))|

|U| = 1

⇔ |(v(MA)c∪v(MB))∩(v(MB)c∪v(MA))|
|U| = 1

⇔ (v(MA)c ∪ v(MB)) ∩ (v(MB)c ∪ v(MA)) = U

⇔ (v(A)
c ∪ v(B)) ∩ (v(B)

c ∪ v(A)) = U

⇔ v(A) ⊆ v(B), v(B) ⊆ v(A)
⇔ v(A) = v(B).

The other two conclusions can be proved in a similar way, and hence are
omitted here.

5) If � A ↔ B, then we have from Theorem 1 that in the given PRL-
model M= (U,R, v), v(A ↔ B) = v((A → B) # (B → A)) = U , i.e.,
(v(A)c ∪ v(B))∩ (v(A)

c ∪ v(B))∩ (v(B)c ∪ v(A))∩ (v(B)
c ∪ v(A)) = U, which

immediately entails that v(A) = v(B), v(A) = v(B).

By introducing a pseudo-metric on the set of logic formulae in PRL, one
can establish the corresponding approximate reasoning mechanism by means
of the pseudo-metric. As shown below, such pseudo-metrics are induced by
rough (upper, lower) similarities.

Definition 7. Let M= (U,R, v) be a finite Kripke model. Define three non-
negative mappings ρM, ρ̄M, ρM : F (S) × F (S) −→ [0, 1] as follows:

ρM(A,B) = 1 − ξRM(A,B), (19)

ρ̄M(A,B) = 1 − ξ̄RM(A,B), (20)

ρM(A,B) = 1 − ξRM(A,B). (21)

The following proposition states that the above defined mappings, i.e.,
ρM, ρ̄M, ρM : F (S) × F (S) −→ [0, 1], are pseudo-metrics on the set of logic
formulae in PRL.

Proposition 3. Let M= (U,R, v) be a finite Kripke model and ρM, ρ̄M, ρM
be the three nonnegative mappings defined above. Then ∀A,B,C ∈ F (S),
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1) ρM(A,A) = ρ̄M(A,A) = ρM(A,A) = 0,
2) ρM(A,B) = ρM(B,A), ρ̄M(A,B) = ρ̄M(B,A), ρM(A,B) = ρM(B,A),
3) ρM(A,C) ≤ ρM(A,B) + ρM(B,C),

ρ̄M(A,C) ≤ ρ̄M(A,B) + ρ̄M(B,C),
ρM(A,C) ≤ ρM(A,B) + ρM(B,C).

Proof. Both 1) and 2) are clear from the definition.
3) In what follows, we aim to show that ρRM(A,C) ≤ ρRM(A,B)+ρRM(B,C),

i.e.,

1 − |v((A → C) # (C → A))|
|U |

≤ 1 − |v((A → B) # (B → A))|
|U | + 1 − |v((B → C) # (C → B))|

|U | . (22)

Let E = v((A → C)#(C → A)), F = v((A → B)#(B → A)), G = v((B →
C) # (C → B)).

Then, to prove (22), i.e., |U − E| ≤ |U − F | + |U −G|, it suffices to show
that F ∩G ⊆ E.

It can be easily checked that
E = (v(A)c ∪ v(C)) ∩ (v(A)

c ∪ v(C)) ∩ (v(C)c ∪ v(A)) ∩ (v(C)
c ∪ v(A)),

F = (v(A)c ∪ v(B)) ∩ (v(A)
c ∪ v(B)) ∩ (v(B)c ∪ v(A)) ∩ (v(B)

c ∪ v(A)),

G = (v(B)c ∪ v(C)) ∩ (v(B)
c ∪ v(C)) ∩ (v(C)c ∪ v(B)) ∩ (v(C)

c ∪ v(B)).

Denote by Ei, Fi, Gi(i = 1, 2, 3, 4) the ith subset of E,F and G, respectively,
from left to right.

∀x ∈ F ∩ G, then x ∈ Fi, Gi(i = 1, 2, 3, 4). There are two cases to be
considered below:

Case 1. If x ∈ v(B), then we have from x ∈ G1 that x ∈ v(C), which yields
x ∈ E1. We can also obtain x ∈ E2 because of v(C) ⊆ v(C). Furthermore,
we have from x ∈ F3 that x ∈ v(A), whence x ∈ E3 and x ∈ E4 immediately
follow. Hence x ∈ E1 ∩ E2 ∩ E3 ∩E4 = E.

Case 2. If x∈̄v(B), then there are still two subcases to consider.
If x ∈ v(B), then we have from x ∈ F1 that x ∈ v(A)c, which entails

x ∈ E1.
Similarly, we can obtain x ∈ v(C) from x ∈ G2, which implies that x ∈ E2.

Moreover, it follows from x ∈ G3 that x ∈ v(C)c, and therefore x ∈ E3. Also,
x ∈ F4 implies x ∈ v(A), which entails x ∈ E4. And hence x ∈ E1∩E2∩E3∩
E4 = E.

If x∈̄v(B), then we obtain x ∈ v(A)c from x ∈ F1, which yields x ∈ E1.
Similarly, we can prove that x ∈ E2, x ∈ E3 and x ∈ E4 by x ∈ F2, x ∈ G3

and x ∈ G4, respectively. Hence x ∈ E1 ∩ E2 ∩ E3 ∩E4 = E.
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This completes the proof of F ∩G ⊆ E, whence U−E ⊆ (U−F )∪(U−G)
immediately follows, which entails that |U − E| ≤ |(U − F ) ∪ (U − G)| ≤
|U − F | + |U −G|.

On account of Proposition 3, we will call ρRM, ρ̄RM and ρRM the rough pseudo-
metric, rough upper pseudo-metric and rough lower pseudo-lower metric, re-
spectively in the sequel.

In what follows, we aim to define the concepts of (n)-rough truth degree,
(n)-rough upper truth degree and (n)-rough lower truth degree, respectively,
by collecting all the finite PRL-models indistinguishable to the given formula
(explained below) but not in some given PRL-model, and hence it shows more
rationality.

Specifically, we will consider the class of PRL-model M= (U,R, v) satis-
fying |U | = n below. Particularly, we will only consider the subclass(denoted
by Mn) of the PRL-models M= (U,R, v) satisfying U = {1, 2, · · · , n}. More-
over, for any formula A(p1, · · · , pn) ∈ F (S) and M1= (U,R1, v1), M2=
(U,R2, v2) ∈ Mn, we say that M1 and M2 are indistinguishable with respect
to A(p1, · · · , pm) if and only if R1 = R2 and v1(pi) = v2(pi), i = 1, 2, · · · ,m.
We denote by Mn,A(or briefly Mn if it is clear from the context) the set of
PRL-models indistinguishable to A.

Definition 8. ∀A ∈ F (S), define

τRn (A) =
Σ{τRM(A)|M ∈ Mn,A}

|Mn,A|
, (23)

τRn (A) =
Σ{τRM(A)|M ∈ Mn,A}

|Mn,A|
, (24)

τRn (A) =
Σ{τRM(A)|M ∈ Mn,A}

|Mn,A|
, (25)

then we call τRn (A), τRn (A), τRn (A) the (n)-rough truth degree, (n)-rough upper
truth degree and (n)-rough lower truth degree, respectively.

Example 4. Compute the (3)-rough upper truth degree τ̄3(p) and (3)-rough
lower truth degree τ3(p) of p.

Solution: ∀M= (U,R, v) ∈ M3, to compute τ̄3(p), τ3(p), we need to consider
all the cases of R and v. It can be easily checked that there are five equivalence
relations on the set {{1, 2, 3} in total, they are

R1 = {(1, 1), (2, 2), (3, 3)}, R2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)},
R3 = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}, R4 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)},
R5 = U × U. v(p),

which runs over the powerset of U , has 23 = 8 possible cases. They are
V1 = {∅}, V2 = {1}, V3 = {2}, V4 = {3}, V5 = {1, 2}, V6 = {1, 3}, V7 =
{2, 3}, V8 = {1, 2, 3}. We denote by Mi,j the PRL-model corresponding to
Ri, Vj(1 ≤ i ≤ 5, 1 ≤ j ≤ 8), i.e., Mi,j = (U,Ri, Vj) below. Then
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Σ{τ̄M(p) | M ∈ M1,j, 1 ≤ j ≤ 8} = 0 + 1
3 + 1

3 + 1
3 + 2

3 + 2
3 + 2

3 + 1 = 4,
Σ{τM(p) | M ∈ M1,j , 1 ≤ j ≤ 8} = 0 + 1

3 + 1
3 + 1

3 + 2
3 + 2

3 + 2
3 + 1 = 4,

Σ{τ̄M(p) | M ∈ M2,j, 1 ≤ j ≤ 8} = 0 + 2
3 + 2

3 + 1
3 + 2

3 + 3
3 + 3

3 + 3
3 = 16

3 ,
Σ{τM(p) | M ∈ M2,j , 1 ≤ j ≤ 8} = 0 + 0 + 0 + 1

3 + 2
3 + 0 + 0 + 3

3 = 2.
Similarly, we obtain
Σ{τ̄M(p) | M ∈ M3,j , 1 ≤ j ≤ 8} = 16

3
, Σ{τM(p) | M ∈ M3,j , 1 ≤ j ≤ 8} = 2,

Σ{τ̄M(p) | M ∈ M4,j , 1 ≤ j ≤ 8} = 16
3

, Σ{τM(p) | M ∈ M4,j , 1 ≤ j ≤ 8} = 2,

Σ{τ̄M(p) | M ∈ M5,j , 1 ≤ j ≤ 8} = 7, Σ{τM(p) | M ∈ M5,j , 1 ≤ j ≤ 8} = 1.

And hence, τ̄3(p) = 1
|M3|Σ{τ̄M(p) | M ∈ M3} = 4+3× 16

3 +7
40 = 27

40 ,

τ3(p) = 1
|M3|Σ{τM(p) | M ∈ M3} = 4+3×2+1

40 = 11
40 .

Definition 9. ∀A,B ∈ F (S), define

ξn(A,B) = τn((A → B) # (B → A)), (26)

ξ̄n(A,B) = τn((MA → MB) # (MB → MA)), (27)

ξ
n
(A,B) = τn((LA → LB) # (LB → LA)), (28)

then we call ξRn (A,B), ξ̄Rn (A,B), ξR
n
(A,B) the (n)-rough similarity degree,

(n)-rough upper similarity degree and (n)-rough lower similarity degree be-
tween A and B, respectively.

Definition 10. ∀A,B ∈ F (S), define three nonnegative functions ρn, ρn, ρn :
F (S) × F (S) −→ [0, 1] as follows:

ρn(A,B) = 1 − ξn(A,B), (29)

ρn(A,B) = 1 − ξ̄n(A,B), (30)

ρ
n
(A,B) = 1 − ξ

n
(A,B). (31)

Proposition 4. ρn, ρn, ρn are pseudo-metrics on the set of logic formulae in
PRL.

Proof. It follows immediately from Proposition 3 and Definition 10.

On basis of those pseudo-metrics proposed as above, three different approx-
imate reasoning mechanisms reflecting the idea of rough approximation are
presented below.

Definition 11. Let Γ ⊆ F (S), ε > 0. If ρn(A,D(Γ )) < ε, then we say that
A is a rough approximate consequence of Γ with error less than ε.

Similarly, if ρ̄n(A,D(Γ )) < ε, then we call A the rough upper consequence
of Γ with error less than ε, and if ρ

n
(A,D(Γ )) < ε, then we call A the rough

lower consequence of Γ with error less than ε.
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4 Concluding Remarks

A quantitative analysis of the rough logic PRL is given in this paper. By
grading the concepts of rough truth, the concepts of rough(upper, lower)
truth degrees are initially introduced on the set of rough formulas in PRL.
Then, based on the fundamental concept of rough truth degree, rough(upper,
lower) similarity degrees are also proposed and some of their basic properties
are investigated. Finally, three different pseudo-metrics are introduced on
the set of formulas in PRL, and the corresponding approximate reasoning
mechanisms reflecting the idea of rough approximations are established.
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Abstract. The theory of association rules is an issue in recent years since
it has been successfully applied in a wide range of domains, and removing
redundant formula in a propositional theory is another issue, but development
of the two theory seems independently. In this paper, the mutual relationship
between them are investigated by introducing the formal context (ΩΓ , Γ, I),
then the theory of ε-reduction of finite theory Γ in two-valued propositional
logic is proposed. By introducing the association rules to the formal context
(ΩΓ , Γ, I), judgment theorems of ε-consistent theorems are examined, and
two approaches to explore ε-reduction are presented.

Keywords: Formal context,association rules, consistent degree, ε-reduction.

1 Introduction

A knowledge base is redundant if it contains parts that can be removed
without reducing the information it carries. Removing redundant clause in a
formula and redundant formula in a propositional theory are important for
some reasons. Firstly, it has some computational advantage in some cases.
Moreover, simplifying a formula or theory leads to representation of the same
knowledge that is easier to understand, as a large amount of redundancy may
obscure the meaning of the represented knowledge. The redundant part of
a knowledge base can instead be the core of the knowledge it represents.
They are so important that check redundancy of propositional formula and
propositional theory are focus these years. The complexity of some problems
related to the redundancy of propositional CNF formulae, Horn formulae and
Non-monotonic reasoning are studied in [1,2,3], and redundancy of proposi-
tional theory in L∗ system are studied in [4], all this studies from a pure
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logic standpoint. Re.[5] re-consider the redundancy of finite propositional
theory Γ in two-valued propositional logic by means of concept lattice and
obtains many interesting results. Let D(Γ ) be the set of all Γ conclusions.
We called Γ0 ⊆ Γ is a reduction of Γ if D(Γ0) = D(Γ ) and for any A ∈ Γ0,
D(Γ ) �= D(Γ0) \ {A}, it means that Γ0 is the minimal irredundant subset
of Γ .

Data mining has been extensively addressed for last years as the com-
putational part of Knowledge Discovery in Databases (KDD), specially the
problem of discovering association rules. Its aim is to exhibit relationships
be- tween item-sets(sets of binary attributes) in large databases. Associa-
tion rules have been successfully applied in a wide range of domains, among
which marketing decision support, diagnosis and medical research support,
geographical and statistical data, etc. And various approaches to mining as-
sociation rules have been proposed[6,7,8].

As we know, in propositional logic, a theory is consistent or inconsistent,
there is no intermediate situations, i.e. the concept of consistency of a theory
is crisp rather than fuzzy. In order to distinguish two consistent sets Γ and
Σ, the concept of consistency degree is introduced in [9,10]. Let δ(Γ ) stands
for the consistent degree of Γ . In this sense, the way of which elimination
redundancy in finite propositional theory in [4] is to explore Γ0 ⊆ Γ such
that δ(Γ0) = δ(Γ ). We can observe that if we eliminate different formula
from Γ0, δ(Γ0 \ {A}) may changes. The purpose of this paper is trying to
give methods to explore the minimal subset of Γ whose consistent degree
is within the consistent degree of Γ plus an error ε. More detail, we firstly
give the definition of ε-reduction of theory Γ at the given error ε, then give
judgment theorems of ε-reduction of theory Γ and some properties by using
the association rules, two methods to explore the ε-reduction and examples
are given in Section 4,and Section 5 is conclusion.

2 ε-Reduction of Theory

A formal context (G,M, I) is consists of two sets G and M and a relation
I between G and M . The elements of G are called objects and elements
of M are called the attributes of the context. In order to express that an
object g is in the relation I with an attribute m. we write gIm. And for
A ⊆ G,B ⊆ M , define the operators f(A) = {m ∈ M | gIm for all g ∈ A}
and h(B) = {g ∈ G | gIm for all m ∈ B}.

An implication between attributes (in M) is a pair of subsets of the at-
tribute set M . It is denoted by P → Q, where P is the premise and Q is
conclusion.

Definition 1. (Will.R[11]) A subset T ⊆ M respects an implication P → Q
if P � T or Q ⊆ T . T respects a set L of implications if T respects every single
implication in L. P → Q holds in a set {T1, T2, · · ·} of subsets if each of the
subsets Ti respects the implication P → Q. P → Q hods in a context (G,M, I)
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if it holds in the system of object intents. In this case, we also say that P → Q
is an implication of the context (G,M, I). P is the premise of Q.

Theorem 1. (Will.R[11]) An implication P → Q holds in a context (G,M, I)
if and only if Q ⊆ fh(Q).

What attribute implications represent are deterministic. However, noises and
uncertainties are prevailing in realistic domains. It is a must to introduce
possibility and probability into knowledge. In addition, to make the discovery
knowledge statistically signicant, it is also prerequisite that the knowledge
should be support by enough instances (or objects). Therewithal, association
rules emerged[6].

Definition 2. With respect to the support threshold θ and confidence thresh-
old ϕ, P → Q is an association rule holding in context (G,M, I), if it satisfies
| h(P ∪Q) |≥| G | ×θ and h(P∪Q)

h(P ) ≥ ϕ.

In two-valued propositional logic, Given a theory Γ = {A1, A2, · · · , An} ⊂
F (S) contains m-different atomic formulas of S, assume there are
p1, p2, · · · , pm. Let ΩΓ = {v ∈ Ω|there exists Ai ∈ Γ such that v(Ai) =
1, v(pm+k) = 0, k = 1, 2, · · ·}, then the element of ΩΓ is the form as
(v(p1), v(p2), · · · , v(pm)) and |ΩΓ | ≤ 2m. For any vi ∈ ΩΓ , Aj ∈ Γ ,define
viIAj if and only if vi(Aj) = 1, then (ΩΓ , Γ, I) forms a formal context, we
call the formal context is induced by Γ .

Definition 3. (Li [5] ) Let Γ ⊆ F (S) be finite, in formal context (ΩΓ , Γ, I),
P ⊆ ΩΓ , Q ⊆ Γ . Define the operators f(P ) = {A ∈ Γ |vIA for all v ∈ P}
and h(Q) = {v ∈ ΩΓ |vIA for all A ∈ Q}.

From Definition 3, we can prove the following result.

Theorem 2. (Li [5] ) The operators f and h satisfy a galois connection
between ΩΓ and Γ , i.e. P, P1, P2 ⊆ ΩΓ , Q,Q1, Q2 ⊆ Γ , we have following
properties:

(i) if P1 ⊆ P2 then f(P1) ⊇ f(P2);
(ii) P ⊆ hf(P );
(iii) if Q1 ⊆ Q2 then h(Q1) ⊇ h(Q2);
(iv) Q ⊆ fh(Q).

We immediately deduce the following results by the definition of (ΩΓ , Γ, I).

Theorem 3. Given a theory Γ = {A1, A2, · · · , An} ⊂ F (S), Γ is consistent
if and only if there exists v ∈ ΩΓ , such that v(Γ ) = ∧{v(Ai)|Ai ∈ Γ} = 1,
i.e. in the formal context (ΩΓ , Γ, I), h(Γ ) �= ∅.

Theorem 4. Given a theory Γ = {A1, A2, · · · , An} ⊂ F (S), A ∈ F (S), if
Γ � A, then Γ → {A} holds in the formal context (ΩΓ∪{A}, Γ ∪{A}, IΓ∪{A}).
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In order to distinguish two consistent sets Γ and
∑

in two-valued proposi-
tional logic, the truth degree of a formula and consistency degree are intro-
duced in [9,10].

Definition 4. (Wang [10,12] ) Let A(p1, p2, · · · , pn) be a formula in L and

τ(A) =
|A−1

(1)|
2n

.

Then τ(A) is called the truth degree of A, whereA
−1

(1) is the total of valua-
tions which satisfies v(A) = 1.

Definition 5. (Wang [9] ) Let Γ = {A1, A2, · · · , An} ⊂ F (S). Define

δ(Γ ) = 1 − τ(A1 ∧A2 ∧ · · · ∧An → 0),

then δ(Γ ) is called the consistency degree of Γ .

Remark 1. (i) If Γ0 ⊆ Γ , then δ(Γ0) ≥ δ(Γ ). Given a theory Γ =
{A1, A2, · · · , An} ⊂ F (S) contains m-different atomic formulas of S, as-
sume there are p1, p2, · · · , pm. Obviously, for any Ai ∈ Γ , τ(Ai) ∈ { k

2m |k =
1, 2, · · · , 2m} and so is δ(Γ ).

(ii) By Definition 4 and Definition 5, we can observe that in if A ∈ Γ

and Γ is finite, then τ(A) = |h({A})|
|ΩΓ | and δ(Γ ) = |h(Γ )|

|ΩΓ | with respect to the
formal context (ΩΓ , Γ, I).

Let Γ ⊆ F (S). As mentioned above, ε-reduction of theory Γ is to find the
minimal theory Γ0 ⊆ Γ satisfies that δ(Γ0) − δ(Γ ) ≤ ε. we introduce the
definition of ε-reduction of theory Γ as follows:

Definition 6. Let Γ0 ⊆ Γ ⊂ F (S). We say that Γ0 is a ε-consistent set of
theory Γ if δ(Γ0) − δ(Γ ) ≤ ε. Moreover, if for any A ∈ Γ0, δ(Γ0 − {A}) −
δ(Γ ) > ε, then Γ0 is called a ε-reduction of theory Γ , denote by Γε.

δ(Γ ) ∈ { k
2m |k = 1, 2, · · · , 2m} if Γ contains m-different atomic formulas of

S, and Γ0 ⊆ Γ , so δ(Γ0) − δ(Γ ) ∈ { k
2m |k = 1, 2, · · · , 2m}, thus we can only

discuss the ε ∈ { k
2m |k = 1, 2, · · · , 2m}.

Definition 7. Suppose that Γ is a theory, the set {Γεi|Γεi is a ε-
reduction,i ∈ I} (I is an index set) includes all of the ε-reduction of theory
Γ , the theory Γ is divided into 3 parts with respect to the error ε:

(i) necessary formula A: A ∈
⋂
i∈I

Γεi;

(ii) useful formula B: B ∈
⋃
i∈I

Γεi −
⋂
i∈I

Γεi;

(iii) useless formula C: C ∈ Γ −
⋃
i∈I

Γεi.

Theorem 5. The ε-reduction exists for any finite theory Γ at a given error ε.
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Proof. Let Γ be a finite theory. If for any A ∈ Γ , δ(Γ − {A}) − δ(Γ ) >
0, then Γ itself is a 0-reduction. If there is a formula A ∈ Γ such that
δ(Γ − {A}) − δ(Γ ) = 0, then we study Γ0 = Γ − {A}, Further, if for any
B ∈ Γ0, δ(Γ0 − {B}) − δ(Γ0) > 0, then Γ0 is a 0-reduction, otherwise we
study Γ0 − {B}. Repeating the above process, we can find one 0-reduction
because Γ is finite. So 0-reduction of Γ must exist. Thus ε-reduction exists
by Definition 6.

3 Judgment of ε-Reduction of Theory Γ and Some
Properties

As mentioned above, Γ0 ⊆ Γ is a ε-reduction if and only if: Γ0 is a ε-consistent
set and Γ0 \ {A} is not a ε-consistent set for any A ∈ Γ0. So we only need to
give the judgment theory of ε-consistent set.

Theorem 6. Γ0 ⊆ Γ , Γ0 is a ε-consistent set if and only if Γ0 → Γ \ Γ0 is
hold in context (ΩΓ , Γ, I) with respect to the confidence threshold δ(Γ )

δ(Γ )+ε .

Proof. Necessity. Because Γ0 is a ε-consistent set, it is easy to see that
δ(Γ0) ≤ δ(Γ )+ε, that is to say, |h(Γ0)|

|ΩΓ | ≤ δ(Γ )+ε. Since Γ0 ⊆ Γ , h(Γ0) ⊇ h(Γ )

by Theorem 2, thus |h(Γ0∪Γ\Γ0)|
|h(Γ0)| = |h(Γ )|

|h(Γ0)| =
|h(Γ )|
|ΩΓ |

|h(Γ0)|
|ΩΓ |

= δ(Γ )
δ(Γ0)

≥ δ(Γ )
δ(Γ )+ε . We

conclude that Γ0 → Γ \ Γ0 is hold in context (ΩΓ , Γ, I) with respect to the
confidence threshold δ(Γ )

δ(Γ )+ε .
Sufficiency. Suppose that Γ0 → Γ \Γ0 is hold in context (ΩΓ , Γ, I) with re-

spect to the confidence threshold δ(Γ )
δ(Γ )+ε ,

|h(Γ0∪Γ\Γ0)|
|h(Γ0)| ≥ δ(Γ )

δ(Γ )+ε by Definition

2, i.e. |h(Γ )|
|h(Γ0)| =

|h(Γ )|
|ΩΓ |

|h(Γ0)|
|ΩΓ |

= δ(Γ )
δ(Γ0) ≥ δ(Γ )

δ(Γ )+ε , so δ(Γ0) ≤ δ(Γ ) + ε, We conclude

that Γ0 is a ε-consistent set by Definition 6.

Theorem 7. Let Γ0 ⊆ Γ and Γ0 is a ε-consistent set of Γ . Γ0 is a ε-
reduction if and only if for any A ∈ Γ0, Γ0 \ {A} → {A} is not hold with
respect to the confidence threshold ϕ = 1.

Proof. Γ0 is a ε-reduction, if and only if for any A ∈ Γ0, Γ0 \ {A} is not
a ε-consistent set, if and only if δ(Γ0 \ {A}) − δ(Γ ) > ε, i.e. δ(Γ0 \ {A}) −
δ(Γ0) + δ(Γ0) − δ(Γ ) > ε, since Γ0 is a ε-consistent set, δ(Γ0) − δ(Γ ) ≤ ε,
then δ(Γ0 \ {A}) − δ(Γ0) > 0, if and only if |h(Γ0\{A})|

ΩΓ
− |h(Γ0|

ΩΓ
> 0, if and

only if |h(Γ0)|
|h(Γ0\{A})| < 1, we have complete the proof.

Theorem 8. Let Γ1 ⊆ Γ0 ⊆ Γ and ε1 ≤ ε2, Γ0 is a ε1-reduction of Γ .
Then Γ1 is a ε2-consistent set of Γ if and only if Γ1 is a ε2-reduction of Γ .

Proof. The sufficiency is obviously, we have to prove the necessity. Suppose
that Γ1 is a ε2-consistent set of Γ , for any A ∈ Γ1 ⊆ Γ0, Γ0\{A} → {A} is not
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hold with respect to the confidence threshold ϕ = 1 by Γ0 is a ε1-reduction
of Γ . Since Γ1 ⊆ Γ0 and h(Γ1) ⊇ h(Γ0), h(Γ1 \ {A}) ⊇ h(Γ0 \ {A}). Suppose
that Γ1 \ {A} → {A} is hold with respect to the confidence threshold ϕ = 1,
then h(Γ1 \ {A}) ⊆ h({A}). So h(Γ0 \ {A}) ⊆ h(Γ1 \ {A}) ⊆ h({A}), thus
Γ0 \ {A} → {A} is hold with respect to the confidence threshold ϕ = 1, it is
a contradiction and we have proved the conclusion.

Theorem 9. Let Γ1 ⊆ Γ0 ⊆ Γ , Γ0 is a ε1-reduction of Γ , Γ1 is a ε2-
reduction of Γ0. Then Γ1 is a ε1 + ε2-reduction of Γ .

Proof. Since Γ0 is a ε1-reduction of Γ , then δ(Γ0) − δ(Γ ) ≤ ε1, that
is |h(Γ0)|−|h(Γ )|

|ΩΓ | ≤ ε1.
|h(Γ1)|−|h(Γ0)|

|ΩΓ | ≤ ε2 by the similarly way. Thus
|h(Γ1)|−|h(Γ )|

|ΩΓ | ≤ ε1 + ε2, that is to say δ(Γ1) − δ(Γ ) ≤ ε1 + ε2, so Γ1 is a
ε1 + ε2-reduction of Γ .

Suppose that Γ is a theory, the set {Γεi|Γεi is a ε-reductioni ∈ I}(I is an
index set) includes all of the ε-reduction of theory Γ . From Definition 7 and
Theorem 6, The following theorem is easily obtained and the proof is omitted.

Theorem 10. A ∈
⋂
i∈I

Γεi is a necessary formula if and only if Γ \ {A} →

{A} is not hold with respect to the confidence threshold ϕ = δ(Γ )
δ(Γ )+ε .

Corollary 1.
⋂
i∈I

Γεi is a ε-reduction if and only if there if only one ε-

reduction.

Corollary 2. Suppose A,B ∈ Γ , if A ∈
⋂
i∈I

Γεi and the confidence threshold

of {A} → {B} is ϕ = 1,then B is an useless formula.

4 Methods to Explore the ε-Reduction

In this section, two methods of exploring ε-reduction will be given based on
the Theorems 6-10 in Section 3.

From Theorem 6 and Theorem 7, in order to explore the ε-reduction of Γ ,
we can obtain a method as follows:

(i) Given a theory Γ = {A1, A2, · · · , An} ⊂ F (S) contains m-different
atomic formulas of S, calculate the (ΩΓ , Γ, I) by rules of two-valued logic.

We only need to explore the association rules at the given confidence
threshold ϕ = δ(Γ )

δ(Γ )+ε that satisfy the following rules:
(ii) Find the subset Γ0 satisfy Γ0 → Γ \ Γ0 is hold with respect to the

confidence threshold ϕ = δ(Γ )
δ(Γ )+ε .

(iii) For any A ∈ Γ0, Γ0 \ {A} → {A} is not hold with respect to the
confidence threshold ϕ = 1.
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Table 1. Formal context (ΩΓ , Γ, I) of Example 1

I A1 A2 A3 A4 A5 A6

v(0,0,0) 0 1 0 1 0 1
v(1,0,0) 1 1 1 1 0 1
v(0,1,0) 0 0 0 0 1 0
v(0,0,1) 0 1 1 1 1 1
v(1,1,0) 1 0 0 0 1 1
v(1,0,1) 1 1 1 1 1 1
v(0,1,1) 0 1 1 0 0 0
v(1,1,1) 1 1 1 0 0 0

Example 1. Let Γ = {p1, p1 → p2, (p1 → p2) → p3,¬p2, (¬p2 → p3)∧ (p3 →
¬p2), p2 → p1 ∧ p3} = {A1, A2, · · · , A6}. Then formal context (ΩΓ , Γ, I) is
shown in table 1, and δ(Γ ) = 1

8 by Definition 5.
If ε = 0(confidence thresholdϕ = 1), the association rules satisfies (ii) and

(iii) as follows:
{A1, A2, A5} → {A3, A4, A6},
{A1, A3, A5} → {A2, A4, A6},
{A1, A4, A5} → {A2, A3, A6},

thus, 0-reduction of Γ are {A1, A2, A5},{A1, A3, A5} and {A1, A4, A5}, on
this condition A1, A5 are necessary formulas , A2, A3, A4 are useful formulas
and A6 is useless formula.

If ε = 1
8 (confidence thresholdϕ = 1

2 ), the association rules satisfies (ii) and
(iii) as follows:

{A1, A5} → {A2, A3, A4, A6},
{A3, A5} → {A1, A2, A4, A6},
{A1, A4} → {A2, A3, A5, A6},
{A2, A5} → {A1, A3, A4, A6},
{A4, A5} → {A1, A2, A3, A6},

thus, 1
8 -reduction of Γ are {A1, A5},{A3, A5}, {A1, A4}, {A2, A5} and

{A4, A5},on this condition there is no necessary formula , A1, A2, A3, A4, A5
are useful formulas and A6 is useless formula.

If ε = 2
8 (confidence thresholdϕ = 1

3 ), the association rules satisfies (ii) and
(iii) as follows:

{A1, A2} → {A3, A4, A5, A6},
{A1, A3} → {A2, A4, A5, A6},
{A1, A6} → {A2, A3, A4, A5},
{A3, A4} → {A1, A2, A5, A6},
{A3, A6} → {A1, A2, A4, A5},

thus, 2
8 -reduction of Γ are {A1, A2},{A1, A3} , {A1, A6}, {A3, A4} and

{A3, A6},on this condition there is no necessary formula , A1, A2, A3, A4, A6
are useful formulas and A5 is useless formula.

By similarly way, we can find ε-reductions when ε even larger.
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From Theorem 9 and Theorem 10, we can obtain an other way to explore
a ε-reduction of Γ as follows:

(i) Given a theory Γ = {A1, A2, · · · , An} ⊂ F (S) contains m-different
atomic formulas of S, calculate the (ΩΓ , Γ, I) by rules of two valued logic.

(ii) Let Γ0 = Γ . Suppose the confidence threshold of Γ0 \ {A1} → {A1}
is θ1, if δ(Γ0)

θ1
− δ(Γ0) ≥ ε, that is to say A1 ∈ Γ0 is not a necessary formula

of Γ0 with the error ε, then let Γ1 = Γ0 \ {A1}, else Γ1 = Γ0. For A2 ∈ Γ1
and A2 �= A1, suppose the confidence threshold of Γ1 \ {A2} → {A2} is θ2, if
δ(Γ0)
θ1

− δ(Γ0) + δ(Γ1)
θ2

− δ(Γ1) ≥ ε, that is to say A2 ∈ Γ1 is not a necessary

formula of Γ1 with the error ε− δ(Γ0)
θ1

+ δ(Γ ) , then let Γ2 = Γ1 \ {A2}, else
Γ2 = Γ1. And so on, we can get a theory Γi satisfies that every formula in Γi
is necessary formula of Γi with the error of ε− δ(Γ0)

θ1
− δ(Γ1)

θ2
− · · · − δ(Γi−1)

θi
+

δ(Γ1)+ δ(Γ2)+ · · ·+ δ(Γi−1) since Γ is finite. The Γi is exactly a ε-reduction
of Γ .

Example 2. Let us take the formal context (ΩΓ , Γ, I) described as Table 1
as an example.

If ε = 1
8 , then confidence threshold ϕ = 1

2 . Γ0 = Γ , A1 is not a nec-
essary formula of Γ0 with the error 1

8 since the confidence threshold of

{A2, A3, A4, A5, A6} → {A1} is 1
2 and δ(Γ0)

θ1
− δ(Γ0) =

1
8
1
2
− 1

8 = 1
8 = ε,

then Γ1 = Γ0 \ {A1}. Since ε − δ(Γ0)
θ1

+ δ(Γ0) = 0, we have to eliminate the
unnecessary formulas in Γ1 with the error 0 step by step. Since the confi-
dence threshold of {A3, A4, A5, A6} → {A2} is 1, then Γ2 = Γ1 \ {A2}. In
a similar vein, A3 is not a necessary formula of Γ2 with the error of 0, so
Γ3 = Γ2 \ {A3}. Since the confidence threshold of {A5, A6} → {A4} is 2

3
and so {A4} is a necessary formula of Γ3 with the error 0, so Γ4 = Γ3. The
confidence threshold of {A4, A6} → {A5} is 1

3 and so {A5} is a necessary
formula of Γ4 with the error 0, so Γ5 = Γ4. A6 is not a necessary formula of
Γ5 with the error 0. Thus Γ6 = Γ5 \ {A6} = {A4, A5} is a 1

8−reduction of Γ .

Remark 2. From the context, we know that whether a formula is an neces-
sary or not depends on the error ε, but the transitivity dose not hold. That is,
a necessary formula with respect to a large error is not necessarily a necessary
formula with respect to a small error and similarly, an useful formula with
respect to a large error is not necessarily an useful formula with respect to a
small error and so is useless formula. We can observe the fact in Example 1.

5 Conclusion

In this paper, the mutual relationship between association rules and theory
reduction are investigated by introducing the formal context (ΩΓ , Γ, I), then
the theory of ε-reduction of the finite theory Γ in two valued propositional
logic is proposed, and we divided the theory Γ into 3 parts with respect
to the error ε: necessary formula, useful formula and useless formula. By
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introducing the association rules to the formal context (ΩΓ , Γ, I), judgment
theorems of ε-consistent theorems are examined, and two approaches to
explore ε-reduction are presented. In the present paper, it seems that
just the confidence threshold is considered, the fact is that the support
threshold is determined at the given theory Γ ,i.e. support threshold of
Γ0 → Γ \ Γ0 is θ = |h(Γ )|

ΩΓ
= δ(Γ ). The ε-reduction of n-valued systems and

continuous-valued system is an interesting and important problems and we
consider those problems in other papers.
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Abstract. In this paper, first, a new family TLΠGN(q,p), q ∈ [−1, 1], P ∈
(−∞,+∞) of left -continuous t-norms are presented; and then its resid-
ual family ILΠGN(q,p), q ∈ [−1, 1], P ∈ (−∞,+∞) of implication operators
are given; finally, a generic form of Triple I methods based on the family
ILΠGN(q,p) of implication operators in fuzzy reasoning is expressed.

Keywords: Fuzzy reasoning, left-continuous t-norm, implication operator,
Triple I method.

1 Introduction

Triangular norms (briefly t-norms) are an indispensable tool in the interpre-
tations of the conjunction in fuzzy logics [1] and the intersection of fuzzy
sets [2,3]. They also play an important role in decision making [4], statistics
analysis [5,6], the theories of non-additive measures [7,8], cooperative games
[9] and the solutions of well-known functional equations [10]. In particular, in
CRI method of fuzzy reasoning presented by Zádeh [2,3] and Triple I method
of fuzzy reasoning presented by Wang [11,12,13], reasoning results nearly
relate to t-norms and implication operators.

It is well known that fuzzy modus ponens (briefly, FMP) and fuzzy modus
tolens (briefly, FMT) can be

for a given ruleA → B and inputA∗ calculate B∗, {1}
for a given ruleA → B and inputB∗calculate A∗, {2}

respectively, where A,A∗ ∈ F (X) (the set of all fuzzy subsets on universe
X ) and B,B∗ ∈ F (Y ) (the set of al l fuzzy subsets on universe Y ). At
present, the most widespread mean of solving such problem is Zadeh’s CRI
(Compositional Rule of Inference) method proposed in 1973 [3]. The method
on FMP translates A(x) → B(y) into a fuzzy binary relation R(A(x), B(y))
and combines A∗ and R(A(x), B(y)), that is:

B∗(y) = sup
x∈X

{A∗(x) ∗ R(A(x), B(y))} , y ∈ Y, (1)

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 167–175.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



168 X.-f. Zhang

where ∗ is a composite operation. Based on point of view of logic Wang [3]
has proposed the triple I (the abbreviation of triple implications) method of
solving the FMP (FMT) problems as follows:

Definition 1. ([11,12]) Let X,Y be nonempty sets. F (X), F (Y ) denote the
family of all fuzzy subsets of X and Y respectively. Given fuzzy sets A(x) ∈
F (X), B(y) ∈ F (y), A∗(x) ∈ F (X)(B∗(y) ∈ F (Y )) Then the methods of
seeking the minimum fuzzy set B∗(y) ∈ F (Y )(A∗(x) ∈ F (X), such that

(A(x) ⇒ B(y)) ⇒ (A∗(x) ⇒ B∗(y))

has maximum( minimum)possible value, for any x ∈ X and y ∈ Y, is said
to be Triple I (Triple I for short) method for FMP ( FMT), where ⇒ is
an implication and the B∗(y)(A∗(x)) is called the solution of Triple I for
FMP (FMT). If ⇒ is the residual implication generated by a left-continuous
t-norm, then solution of Triple I for FMP ( FMT) is given by the following
formulas.

Theorem 1. ([11-13]) Let the operator I in FMP {1} is the residual impli-
cation I generated by a left-continuous t-norm ∗. Then the triple I solution
on FMP is

B∗(y) = sup
x∈X

{A∗(x) ∗ I(A(x), B(y))} , y ∈ Y (2)

Theorem 2. ([11-13]) Let the operator I in FMT {2} is the residual impli-
cation I generated by a left-continuous t-norm ∗. Then the triple I solution
on FMT is

A∗(y) = inf
x∈X

{I(I(A(x), B(y), B∗(y))} , x ∈ X (3)

In CRI method or Triple I method of fuzzy reasoning, reasoning result
based on different implications are popularly different. Their difference are
often very great. Therefore, people use implication operators with param-
eter (or family of implication operators ) in fuzzy reasoning to reduce the
reasoning error. These papers [5-8] have given some family of implication
operators. The paper again proposes a new family of t-norms denoted by
TLΠGN(q,p), q ∈ [−1, 1], P ∈ (−∞,+∞) and its residual the family of im-
plications operators denoted by ILΠGN(q,p), q ∈ [−1, 1], P ∈ (−∞,+∞). It
contains all excellent implication operators: Lukasiewicz implication operator,
Godel implication operator, NM implication operator and product implica-
tion operator. Finally, a generic form of Triple I methods based on the family
ILΠGN(q,p) of implication operators is expressed.

2 Preliminaries

Definition 2. ([1]) A t-norm ∗ is a binary operation on [0, 1] (i.e., ∗ :
[0, 1]2 → [0, 1]) satisfying the following conditions :
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(i) ∗ is commutative, i.e., for all x, y ∈ [0, 1], (x ∗ y) = y ∗ x;
(ii) ∗ is associative, i.e., for all x, y, z ∈ [0, 1], (x ∗ y) ∗ z = x ∗ (y ∗ z);
(iii) ∗ is non-decreasing in both arguments, i.e., for all x, y, z ∈ [0, 1],

y ≤ z implies x ∗ y ≤ x ∗ z, y ≤ z implies y ∗ x ≤ z ∗ x;
(iv) x ∗ 1 = x, for all x ∈ [0, 1].

The above t-norm is also denoted by T (x, y), (x, y) ∈ [0, 1].
A binary operation ⇒ on [0, 1] is called the residual implication of t-norm

∗, if x ∗ y ≤ z if and only if x ≤ y ⇒ z, for all x, y, z ∈ [0, 1]. The residual
implication of t-norm ∗ is denoted by ⇒∗ .

Lukasiewicz t-norm ∗Lu and its residual implication ⇒Lu:

x ∗Lu y = (x + y − 1) ∨ 0, x, y,∈ [0, 1], (4)

x ⇒Lu y = (1 − x + y) ∧ 1, x, y,∈ [0, 1]. (5)

Gödel t-norm ∗G and its residual implication ⇒G:

x ∗G y = x ∧ y, x, y,∈ [0, 1], (6)

x ⇒G y =
{

1, if x ≤ y, x, y ∈ [0, 1],
y, if x > y, x, y ∈ [0, 1]. (7)

Product t-norm ∗Π and its residual implication ⇒Π :

x ∗Π y = x× y, x, y,∈ [0, 1], (8)

x ⇒Π y =

{
1, if x ≤ y, x, y ∈ [0, 1],
y

x
, if x > y, x, y ∈ [0, 1]. (9)

NM t-norm ∗NM and its residual implication ⇒NM :

x ∗NM y =
{

x ∧ y, if x + y > 1, x, y ∈ [0, 1],
0, if x + y ≤ 1, x, y ∈ [0, 1], (10)

x ⇒NM y =
{

1, if x ≤ y, x, y ∈ [0, 1],
(1 − x) ∨ y, if x > y, x, y ∈ [0, 1]. (11)

3 Family TLΠGN(q,p) of t-Norms and Its Residual
Family ILΠGN(q,p) of Implication Operators

Theorem 3. For any q ∈ [−1, 1], P ∈ (−∞,+∞), the binary operation ∗(q,p)
satisfying

x ∗(q,p) y =

{
lim
t→p

(xt + yt − q)
1
t ∩ x ∩ y, xp + yp > |q| and xy �= 0,

0 , otherwise,

(x, y) ∈ [0, 1] × [0, 1] are left- continuous t-norms.
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Proof. We only prove the cases of q ∈ [0, 1], P ∈ (0,∞) since similarly as it
we can prove other cases.

According to the definition of t-norm, we should verify that, for any q ∈
[0, 1], P ∈ (0,∞), the binary operation ∗(q,p) ( simple written as ∗ in the
following) hold the following properties.

(i) x ∗ y = y ∗ x, for all (x, y) ∈ [0, 1]× [0, 1] ;
(ii) ∗ is non-decreasing for all (x, y) ∈ [0, 1] × [0, 1];
(iii)x ∗ 1 = x, for all x ∈ [0, 1] ;
(iv) (x ∗ y) ∗ z = x ∗ (y ∗ z), for all x, y, z.
It is easy to verify the properties (i)-(iii). In the following we only prove

the property (iv), i.e., the binary operation ∗ is associative.
1) Assume xp + yp > q, xp + zp > q, yp + zp > q.
If xp > q, yp > q, zp > q, then

(x ∗ y) ∗ z = x ∩ y ∩ z, x ∗ (y ∗ z) = x ∩ y ∩ z.

If xp ≤ q, yp > q, zp > q, then

(x ∗ y) ∗ z = x ∗ z = x, x ∗ (y ∗ z) = x ∗ (y ∩ z) = x ∩ (y ∩ z) = x.

If xp ≤ q, yp ≤ q, zp > q, then

(x ∗ y) ∗ z = (xp + yp − q)
1
p ∗ z = (xp + yp − q)

1
p ∩ z = (xp + yp − q)

1
p ,

x ∗ (y ∗ z) = x ∗ y = (xp + yp − q)
1
p .

If xp ≤ q, yp > q, zp ≤ q, then

(x ∗ y) ∗ z = a ∗ c = (xp + cp − q)
1
p ,

x ∗ (y ∗ z) = x ∗ z = (xp + zp − q)
1
p .

If xp ≤ q, yp ≤ q, zp ≤ q, then

x ∗ y ∗ z = (xp + yp − q)
1
p ∗ z = (xp + yp + zp − 2q)

1
p ,

x ∗ (y ∗ z) = x ∗ (yp + zp − q)
1
p = (xp + yp + zp − 2q)

1
p .

2) Assume xp + yp ≤ q. Then x ∗ y ∗ z = 0 ∗ z = 0, x ∗ (y ∗ z) ≤ x ∗ (b ∗ 1) =
x ∗ y = 0. So

x ∗ y ∗ z = x ∗ (y ∗ z) = 0.

Similarly, we can prove the cases of xp + zp ≤ q and zp + zp ≤ q.
Therefore these binary operations ∗ are all t-norms.
Next, we prove that for any q ∈ [0, 1] , P ∈ (0,∞), the operators ∗ are left-

continuous, i.e., ∀x ∈ [0, 1], x ∗ (∪E) = ∪(x ∗ E), where E = {e|0 ≤ e < d},
∪E = Sup{e|0 ≤ e < d} = d, (∪Ep) = Sup{ep|0 ≤ e < d} = dp.

In fact, 1) When xp+dp ≤ q, it follows from x∗(∪E) = 0 that xp+ep ≤ q,
for any e ∈ E. Hence x ∗ e = 0. Thus ∪(x ∗ E) = 0.
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2) When xp + dp > q, it follows from ∗ and ∩ are all monotone that

x ∗ d = (xp + dp − q)
1
p ∩ x ∩ d = (xp + (∪E)p − q)

1
p ∩ (x ∩ (∪E),

∪(xp + Ep − q)
1
p ∩ [∪(x ∩ E)] = ∪[(xp + Ep − q)

1
p ∩ (x ∩ E)]

= ∪[(xp + Ep − q)
1
p ∩ x ∩ E] = ∪[(xp + Ep − q)

1
p ∩ x ∩ E] = ∪(x ∗ E),

where x∩E and x ∗E are the shortening of {x ∩ e|e ∈ E} and {x ∗ e|e ∈ E},
respectively.

Therefore, for any q ∈ [0, 1], P ∈ (0,∞), ∗(q,p) are left-continuous t-norms.
In conclusion, for any q ∈ [−1, 1], p ∈ (−∞,+∞), ∗(q,p) (i.e., T(q,p)(x, y) )

are left -continuous t-norms.

Note that when (q, p) = (1, 1), (q, p) = (0, 1), (q, p) = (−1, 1), (q, p) = (1, 0),

T(q,p)(x, y) =

{
lim
t→p

(xt + yt − q)
1
t ∩ x ∩ y, xp + yp > |q| and xy �= 0

0, otherwise,

(x, y) ∈ [0, 1] × [0, 1] are t-norms TL , TG, TNM and TΠ , respectively. Thus,
t-norms in Theorem 3 are denoted by ∗LΠGN(q,p)(x, y), (x, y) ∈ [0, 1] or
TLΠGN(q,p)(x, y), (x, y) ∈ [0, 1], and the following definition is given.

Definition 3. The set {TLΠGN(q,p)(x, y), (x, y) ∈ [0, 1]|(q, p) ∈ [−1, 1] ×
(−∞,+∞)} is called the family of t-norms. We use symbol TLΠGN(q,p)(x, y),
(x, y) ∈ [0, 1], (q, p) ∈ [−1, 1] × (−∞,+∞), or briefly TLΠGN(q,p), to denote
it.

Note that the class of t-norm

TLΠGN(q,p)(x, y) =
{

x ∧ y, xp + yp > |q|
0, xp + yp ≤ |q| , (x, y) ∈ [0, 1]× [0, 1],

(q, p) ∈ [−1, 0]× (0,∞) is denoted by TGN(q,p);
the class of t-norm

T(q,p)(x, y) =

⎧⎨⎩
x ∧ y, xp > q oryp > q

(xp + yp − q)
1
p , xp ≤ q andyp ≤ q

}
xp + yp > q,

0, xp + yp ≤ q,

(x, y) ∈ [0, 1] × [0, 1], (q, p) ∈ [0, 1] × (0,∞), is denoted by TLG(q,p);

when (q, p) ∈ [−1, 1]× (−∞, 0) T(q,p)(x, y) =
{

(xp + yp − q)
1
p , xy �= 0

0, xy = 0,
when q ∈ [−1, 1), p = 0, x ∗(q,p) y = x ∧ y; when q = 1, p = 0, x ∗(q,p) y = xy.

Theorem 4. The residual implications ⇒(q,p) of TLΠGN(q,p), (q, p) ∈ [−1, 1]×
(−∞,+∞) is given by
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x⇒(q,p)y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x ≤ y

(1 − f + fy) ∨ lim
t→p

((|q| − xt) ∨ 0)
1
|t| f, q − xp + yp ≤ 0, x > y

lim
t→p+

(q − xt + yt)
1
t ∨ fy ∨ lim

t→p
((|q| − xt) ∨ 0)

1
|t| f, q − xp + yp > 0, x > y,

where f =
{

1, p ≥ 0
0, p < 0 , stipulate that t = 0, 0t = 0

1
t = 0.

Note that for TLΠGN(q,p), when (q, p) ∈ [−1, 0]× (0,∞), we have

T(q,p)(x, y) =
{

1, x ≤ y

y ∨ ((|q| − xp) ∨ 0)
1
p , x > y

, (x, y) ∈ [0, 1]× [0, 1];

when (q, p) ∈ [0, 1]× (0,∞), we have

T(q,p)(x, y) =

⎧⎨⎩
1, x ≤ y
y, xp > q

(q − xp + yp)
1
p , xp ≤ q

}
, x > y

, (x, y) ∈ [0, 1]× [0, 1];

when (q, p) ∈ [−1, 1]× (−∞, 0), we have

T(q,p)(x, y) =
{

1, x ≤ y or q − xp + yp ≤ 0
(q − xp + yp)

1
p , otherwise

, (x, y) ∈ [0, 1] × [0, 1];

when q ∈ [−1, 1), p = 0, we have

T(q,p)(x, y) =
{

1, x ≤ y
y, x > y

, (x, y) ∈ [0, 1] × [0, 1];

when q = 1, p = 0, we have

T(q,p)(x, y) =
{

1, x ≤ y
y
x , x > y

, (x, y) ∈ [0, 1] × [0, 1].

Proof. T(q,p)(x, y) is simply written as ⇒ . By x ⇒ y = sup{z|x ∗ z ≤ y} [1]
we have the following.

1) Assumex ≤ y. Thenx∗z ≤ x ≤ y. Hencex ⇒ y = sup{z|0 ≤ z ≤ 1} = 1.
2) Assume x > y. If (q, p) ∈ [−1, 0]× (0,∞), then

x ⇒ y = sup{z|x ∗ z ≤ y}
= sup {z|xp + zp ≤ |q| , 0 ≤ y} ∨ sup {z|xp + zp ≤ |q| , x ∧ z ≤ y}
= [(|q| − xp) ∨ 0]

1
p ∨ y;

if (q, p) ∈ [0, 1]× (0,∞), then
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x ⇒ y = sup{z|x ∗ z ≤ y}
= sup {z|xp + zp ≤ q, 0 ≤ y} ∨ sup {z|xp > q, x ∧ z ≤ y}
∨ sup{z|xp + zp > q, xp < q, (xp + zp − q)

1
p < y}

=
{

y, xp > q

(q − xp + yp)
1
p , xp ≤ q;

if (q, p) ∈ [−1, 1]× (0,∞), then

x ⇒ y = sup{z|x ∗ z ≤ y}
= sup {z|xz = 0, 0 ≤ y} ∨ sup

{
z|xz �= 0, (xp + zp − q)

1
p ≤ y
}

=
{

1, q − xp + yp ≤ 0
(q − xp + yp)

1
p , otherwise.

.

For the case of q ∈ [−1, 1), p = 0 or q = 1, p = 0, the conclusions of the
theorem are evident.

The theorem is proved.

The implications in Theorem 3.2 are denoted by ⇒LΠGN(q,p) (x, y), (x, y) ∈
[0, 1] or ILΠGN(q,p)(x, y), (x, y) ∈ [0, 1], and the following definition are given.

Definition 4. The set {ILΠGN(q,p)(q,p)(x, y), (x, y) ∈ [0, 1]|(q, p) ∈ [−1, 1] ×
(−∞,+∞)} is called the residual family of implication operators of
TLΠGN(q,p), and it is denoted by ILΠGN(q,p), (q, p) ∈ [−1, 1] × (−∞,+∞),
or briefly ILΠGN(q,p).

4 Triple I Method on FMP (FMT) Based on the
Family I(q,p) − LΠGN of Implication Operators

Theorem 5. The sustaining solution B∗(y) of triple I based on ILΠGN(q,p)
on FMP model is given by

B∗(y) = sup
x∈X

A∗(x)∗LΠGN(q,p)(ILΠGN(q,p)(A(x), B(y))

= sup
(A∗(x))p+Ip(A(x),B(y))>|q|
xy �=0

{ lim
t→p

((A∗(x))t + ILΠGN(q,p)
t(A(x), B(y)) − q)

1
t

∧A∗(x) ∧ ILΠGN(q,p)(A(x), B(y))},
= sup

(A∗(x))p+IpLΠGN(q,p)(A(x),B(y))>|q|
xy �=0

{ lim
t→p

((A∗(x))t + ILΠGN(q,p)
t(A(x), B(y)) − q)

1
t

∧A∗(x) ∧ ILΠGN(q,p)(A(x), B(y))},
y ∈ Y.

Proof. From these papers [11-13] if implication I has residual left-continuous
t-norm ∗, then the minimum fuzzy set B∗(y) ∈ F (Y ) in triple I sustaining
method on FMP model by

B∗(y) = sup
x∈X

{A∗(x) ∗LΠGN(q,p) ILΠGN(q,p)(A(x), B(y))}, y ∈ Y,
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we easily gained

B∗(y) = sup
(A∗(x))p+IpLΠGN(q,p)(A(x),B(y))>|q|
xy �=0

{ lim
t→p

((A∗(x))t + ILΠGN(q,p)
t(A(x), B(y)) − q)

1
t

∧A∗(x) ∧ ILΠGN(q,p)(A(x), B(y))}, y ∈ Y.

Theorem 6. The sustaining solution A∗(y) of triple I based on ILΠGN(q,p)
on FMT model is given by

A∗(x) = inf
x∈X

{
ILΠGN(q,p)(ILΠGN(q,p)(A(x),B(y)), B∗(y))} ,

= inf
ILΠGN(q,p)(A(x),B(y))>B∗(y)

{
ILΠGN(q,p)(ILΠGN(q,p)(A(x),B(y)), B∗(y))} , x ∈ X

Proof. It is early to prove the theorem from the paper [13].

5 Conclusion and Expectation

The paper mainly gives the family of t-norms ∗LΠGN(q,p) satisfying

x∗LΠGN(q,p)y =

⎧⎨⎩ lim
t→p

(xt + yt − q)
1
t ∩ x ∩ y, xp + yp > |q|, xy 
= 0

0, otherwise
, (x, y) ∈ [0, 1]×[0, 1]

(where q ∈ [−1, 1], p ∈ (−∞,+∞)), the residual family ⇒LΠGN(q,p) of impli-
cation operators of ∗LΠGN(q,p) as follows satisfies that

x⇒LΠGN(q,p)y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, x ≤ y

(1 − f + f.y) ∨ lim
t→p

((|q| − xt) ∨ 0)
1
|t| f, q − xp + yp ≤ 0, x > y

lim
t→p+

(q − xt + yt)
1
t ∨ f.y ∨ lim

t→p
((|q| − xt) ∨ 0)

1
|t| f, q − xp + yp > 0, x > y

(where t = 0, 0t = 0
1
t = 0), and solution of triple I method based on this

family of implication operators as follows:

B∗(y) = sup
(A∗(x))p+IpLΠGN(q,p)(A(x),B(y))>|q|
xy �=0

{ lim
t→p

((A∗(x))t + ILΠGN(q,p)
t(A(x), B(y)) − q)

1
t

∧A∗(x) ∧ ILΠGN(q,p)(A(x), B(y))}, y ∈ Y

and

A∗(x) = inf
ILΠGN(q,p)(A(x),B(y))>B∗ (y)

{
ILΠGN(q,p)(ILΠGN(q,p)(A(x),B(y)), B∗(y))} , x ∈ X.

The above conclusions have important significance since on the one hand it
affords many new implication operators; on the other hand it is convenient
to optimize implication operator in fuzzy reasoning by the a uniform form.
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3. Zádeh, L.A.: Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. Syst. Man Cyber. 3, 28–44 (1973)
4. Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Deci-

sion Support. Kluwer Academic Publishers, Dordrecht (1994)
5. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334

(1960)
6. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York

(1983)
7. Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci., USA 8, 535–537 (1942)
8. Klement, E.P., Weber, S.: Generalized measures. Fuzzy Sets and Systems 40,

375–394 (1991)
9. Butnariu, D., Klement, E.P.: Triangular Norm-Based Measures and Games

with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht (1993)
10. Frank, M.J.: On the simultaneous associativity of F (x, y) and x + y − F (x, y).

Aequationes Math. 19, 194–226 (1979)
11. Wang, G.J.: Fully implicational triple I method for fuzzy reasoning. Sci. China

(Ser. E) 29, 43–53 (1999) (in Chinese)
12. Wang, G.J.: Introduction to mathematical logic and resolution principle, 2nd

edn. Science Press, Beijing (2009)
13. Pei, D.W.: Unified full implication algorithms of fuzzy reasoning. Information

Sciences 178, 520–530 (2008)
14. Jeneia, S., Montagnab, F.: Ageneral method for constructing left-continuous

t-norms. Fuzzy Sets and Systems 136, 263–282 (2003)
15. Whalen, T.: Parameterized R-implications. Fuzzy sets and systems 134, 231–

281 (2003)
16. Zhang, X.H., He, H.C., Xu, Y.: Fuzzy logic system of based on Schweizer-Sklar

T-norm. Sci. China (Ser. E) 35, 1314–1326 (2006) (in Chinese)
17. Zhang, X.F., Meng, G.W., Zhang, A.Y.: The Families of Implication Operators

and Their Application. Chinese Journal of Computers 30, 448–453 (2007) (in
Chinese)



B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 177–185. 
springerlink.com                                                     © Springer-Verlag Berlin Heidelberg 2010 
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Abstract. In this paper, we consider the properties of normal R0 algebras and the 
relationship between normal R0 algebras and other algebras. We also discuss the 
filters of normal R0 algebras. We get that in a R0 algebra, the following conditions 
are equivalent : F is an implicative filter of L; F is a positive implicative filter of L; F 
is a Boolean filter of L. And F is a filter if and only if F is a fantastic filter. 

Keywords: Normal R0 algebra, BL algebra, Boolean algebra, MV algebra, Filter. 

1   Introduction 

With the development of mathematics and computer science, non-classical logic 
has been extensively studied. So far, many-valued logic has become an important 
part of non-classical logic. In order to research the logical system whose proposi-
tional value is given in a lattice from the sematic viewpoint, Xu [1] proposed the 
concept of lattice implication algebras and discussed some of their properties.  Xu 
and Qin [2] introduced the notion of implicative filters in a lattice implication 
algebra. BL algebras have been invented by P. Hajek [3] in order to provide an 
algebraic proof of the completeness theorem of “Basic Logic” (BL ,for short ) . It 
is arisen from the continuous triangular norms, familiar in the fuzzy logic frame-
work. Filters in BL algebras are also defined. R0 algebras have been introduced by 
Wang [4] in order to provide an algebraic proof of the completeness theorem of a 
formal deductive system. Pei [5] studied the filters of R0 algebras. Note that R0 
algebras are different from BL algebras because the identity ( )x y x x y∧ = ⊗ →  
holds in BL algebras, and does not hold in R0 algebras. R0 algebras are also dif-
ferent from lattice implication algebras because the identity 
( ) ( )x y y y x x→ → = → →  holds in lattice implication algebras and does not hold in 
R0 algebras. In these algebras, all kinds of filters such as implicative filters, posi-
tive implicative filters, fantastic filters, Boolean filters are introduced. Corre-
sponding properties are discussed. In recent years, a great deal of literature has 
been produced on the theory of filters and fuzzy filters. In [6], fantastic filters are 
introduced into R0 algebras. In [7], it is proved that if F is a normal MP-filter of 

R0 algebra L, then L / F∼  is a normal R0 algebra. Based on this, in this paper, we 

discuss the properties of normal R0 algebras and study the relationship between 
normal R0 algebras and other algebras. 
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2   Preliminaries 

Definition 2.1. [4] Let L be a bounded distributive lattice with order-reversing 
involution ¬  and a binary operation→ . (L; ; ;¬ ∨ → ) is called a R0 algebra if it 
satisfies the following axioms: 
 
(1)  x y y x¬ →¬ = → , 
(2)  1 , 1x x x x→ = → = , 
(3)  ( ) ( )y z x y x z→ ≤ → → → , 
(4)  ( ) ( )x y z y x z→ → = → → , 
(5)  ( ) ( ) ( )x y z x y x z→ ∨ = → ∨ → , 
(6)  ( ) (( ) ) 1x y x y x y→ ∨ → →¬ ∨ = . 

Let L be a R0 algebra. Define ( )x y x y⊗ = ¬ →¬ , for any ,x y∈L. It is proved that 
(L, , , , ,0,1∧ ∨ ⊗ → ) is a residual lattice.  
 
Definition 2.2. [8] By an NM-algebra is meant a structure (L, , , , ,0,1)∨ ∧ ⊗ → of type 
(2, 2, 2, 2, 0, 0) such that for all , ,x y z∈L, 
 
(1) (L, , ,∧ ∨ 0,1 ) is a bounded lattice, 

(2) (L, ,1⊗ ) is a monoid, 

(3) x y z⊗ ≤  iff  x y z≤ → , 

(4) ( ) ( ) 1x y y x→ ∨ → = , 
(5) (( ) 0) (( ) ( )) 1x y x y x y⊗ → ∨ ∧ → ⊗ = , 
(6) ( 0) 0x x→ → = . 
 
In [9], Pei proved that R0-algebras and NM-algebras are the same algebraic 
structures. 
 
Example 2.1. [4]  Let L= [0, 1]. For any ,x y∈L, we define: 

min{ , }x y x y∧ = , max{ , }x y x y∨ = , 
1

1 ,
x y

x x x y
x y x y

≤⎧
¬ = − → = ⎨¬ ∨ >⎩

, 

Then (L;¬ ;∨ ;→ ) is a R0 algebra. 
In what follows, L will denote a R0 algebra, unless otherwise specified. 
 
Lemma 2.1. [4]  For any ,x y∈L, the following properties hold: 

 
(1) 0 1, 0 , 1, 1 1,x x x x x x→ = → = ¬ → = → =  
(2) x y≤  implies , ,y z x z z x z y→ ≤ → → ≤ →  
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(3) ( ) ( )x y y z x z→ ≤ → → → , 
(4) (( ) )x y y y x y→ → → = → , 
(5) ( ) ( ) ( ),x y z x y x z→ ∧ = → ∧ →  
(6) ( ) ( ) ( ),x y z x z y z∨ → = → ∧ →  
(7) ( ) ( ) ( ),x y z x z y z∧ → = → ∨ →  

(8) x y≤ if and only if 1,x y→ =  

(9) (( ) ) (( ) )x y x y y y x x∨ = → → ∧ → → . 
 
Definition 2.3. [3] A BL algebra is an algebra (L, , , , ,0,1∧ ∨ ⊗ → ) with four binary 

operations  , , ,∧ ∨ ⊗ → , and two constants 0,1 such that: 

 
(1)  (L; ; ;∧ ∨ 0; 1) is a bounded lattice, 

(2)  (L;⊗ ; 1) is a commutative monoid, 

(3)  ⊗  and → form an adjoint pair, i.e., 

x y z⊗ ≤ iff x y z≤ → , for all , ,x y z∈L, 

(4) ( )x y x x y∧ = ⊗ → , 
(5) ( ) ( ) 1x y y x→ ∨ → = . 
 
A BL algebra is called an MV algebra if  

( ) ( )y x x x y y→ → = → → ,  for all ,x y∈L. 

Definition 2.4.[7] A R0-algebra L is called a normal R0-algebra if it satisfies: 

( ) ( )y x x x y y→ → = → → ,  for all ,x y∈L. 

3   The Existence of Normal R0 Algebras and Their Properties  

Definition 3.1 [5]. A non-empty subset F of a R0-algebra L is called a filter of L if 
it satisfies: 
 
(F1) 1∈F; 
(F2) x∈F and x y→ ∈F imply y∈F for all ,x y∈L. 

 
Definition 3.2. A non-empty subset F of a R0-algebra L is said to be a fantastic 
filter of L if it satisfies:(F1) and (F3) : 
 

( )z y x→ → ∈F and z∈F imply (( ) )x y y x→ → → ∈F for all , ,x y z∈L. 
 

The following example shows that the fantastic filters  of R0 algebras exist. 
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Example 3.1. [7] Let L be the chain {0, , ,a b c ,1} with Cayley tables as follows:  

 

Define ∨  operations and ∧ operations on L by x ∨ y  = max{ , }x y  and 
min{ , }x y x y∧ =  for all ,x y∈L. By routine calculation , we can obtain that L is a 

R0-algebra and F = {c, 1} is a normal MP-filter of  L . 
 
Theorem 3.1. [7] Let F be a filter of a R0 algebra L. Then F is a normal MP- 

filter if and only if L/ F∼  is a normal R0 algebra. 

In [6], normal MP-filters are called fantastic filters. 

By Theorem 3.1 , we get in example3.1, L/ F∼ ={[1] ,[ ] ,[0] }F F Fb  is a normal R0 

algebra. This shows the existence of normal R0 algebras. 
 
Theorem 3.2. In each normal R0 algebra, the following relations hold, for all 

, ,x y z∈L, 
 
(1) ( ) ( )x y y x x x y y∨ = → → = → →  
(2) ( )x y x x y∧ = ⊗ →  
(3) (( ) )x y y x y x→ → → = →  
 
Proof. (1)    Since  

(( ) ) (( ) )x y y x x x y y∨ = → → ∧ → →  

and  

( )y x x→ → ( )x y y= → → , 

we have  

( ) ( )x y y x x x y y∨ = → → = → → . 

(2) Since  

( ) ( ( ))x x y x x y⊗ → =¬ →¬ → , 

we need to show  

( )x x y→¬ → = ( )x y¬ ∧ , 
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that is  

( )x x y x y→¬ → = ¬ ∨¬ . 

By (1), we have 

( ) ( )x y y x x x x y¬ ∨¬ = ¬ →¬ →¬ = →¬ → . 

The proof is complete. 
(3) By Lemma 2.1, we have  

( ) ((( ) )y x x y y x→ → → → → (( ) ) (( ) )x y y y x x= → → → → → =1,  

hence  

(( ) )y x x y y x→ ≤ → → → . 

Conversely, 

((( ) ) ) ( ) (( ) )x y y x y x y x y y→ → → → → ≥ → → → ( ) ( ) ( ) 1 1x y y y x y= → → → = → → =  

Therefore  

(( ) )y x x y y x→ ≥ → → → . 

The proof is complete. 
By the properties of R0 algebras and Theorem 3.2, we have 

 
Theorem 3.3.   Every normal R0 algebra is a MV algebra. 
 
Corollary 3.1.   Every normal R0 algebra is a BL algebra. 
 
Theorem 3.4.   Every Boolean algebra is a normal R0 algebra. 
 
Proof.   Firstly, we have that every Boolean algebra L is a R0 algebra[4].Secondly, 
in [4], define x y x y′→ = ∨ , therefore  

( ) ( )x y y x y y x y y′ ′ ′→ → = ∨ → = ∨ ∨  
( ) ( ) ( ) ( ) 1x y y x y y y x y x y′ ′= ∧ ∨ = ∨ ∧ ∨ = ∨ ∧ = ∨ . 

Similarly, we have 

( )y x x x y→ → = ∨ . 

Hence  

( ) ( )x y y y y x→ → = → → . 

It is showed that every Boolean algebra is a normal R0 algebra. 
 
Corollary 3.2.   Every Boolean algebra is a MV algebra. 
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Lemma 3.1. In a normal R0 algebra, the following conditions are equivalent: for 
all ,x y∈L, 

 
(1)  ( )x y x x→ → =  
(2)  0x x∧¬ =  where 0x x¬ = →  
(3)  1x x∨ ¬ =  
(4)  x x x= ¬ →  
 
Proof.  (1 3⇒ )  By (1), 

( 0)x x x→ → = , 

we have  

( ) 1x x x x x x x∨ ¬ = ¬ → → = → = . 

( 3 4⇒ )  Since  

1,x x∨¬ =  

we have  

( ) 1,x x x¬ → → =  

hence  

.x x x¬ → ≤  

And 

,x x x≤ ¬ →  

therefore  

x x x= ¬ → . 

( 4 1⇒ ) By Lemma 2.1, 

(( ) ) ( ) ( ) 1x x y x x y x x→ → → = → → → = , 

hence  

( ) .x x y x≤ → →  

By Lemma 2.1, we have  

0x y x→ ≥ → , 
( ) ( 0)x y x x x→ → ≤ → → , (( ) ) (( 0) ) 1x y x x x x x x x→ → → ≥ → → → = → = , 

therefore 

( )x y x x→ → ≤ . 

 



The Properties of Normal R_0 Algebras 183
 

Hence  

( )x y x x→ → = . 

( 2 3⇔ ) 0x x∧¬ =  if and only if ( ) 1x x¬ ∧¬ =  if and only if 1x x¬ ∨ = . 
 
Theorem 3.5. Let L is a normal R0 algebra, L is a Boolean algebra if and only if 
( )x y x x→ → = , for all ,x y∈L. 
 
Proof.  It is clear. 

4   The Filters of Normal R0 Algebras 

In a normal R0 algebra, we can introduce the notions of filters, implicative filters, 
positive implicative filters, Boolean filters, fantastic filters. 
 
Definition 4.1. Let L be a normal R0 algebra. A subset F of L is called a filter of L 
if it satisfies: (F1) and (F2). 
 
Definition 4.2. Let L be a normal R0 algebra. A subset F of L is called an implica-
tive filter if it satisfies: 
 
(F1) and (F4): ( )x y z→ → ∈F and x y→ ∈F imply x z→ ∈F.  
 
Definition 4.3. Let L be a normal R0 algebra. A subset F of L is called a Boolean 
filter if x x∨¬ ∈F for all x∈L. 
 
Definition 4.4. Let L be a normal R0 algebra. A subset F of L is called a positive 
implicative filter if it satisfies: 
(F1) and (F5): (( ) )x y z y→ → → ∈F and ∈x F imply y ∈F, for all , ,x y z∈L. 

 
Definition 4.5. A non-empty subset F of an R0-algebra L is said to be a fantastic 
filter of L if it satisfies: (F1) and (F3) . 
 
Theorem 4.1. In a R0 algebra, the following conditions are equivalent: 
 
(1)   F is an implicative filter of  L; 
(2)  F is a positive implicative filter of  L; 
(3)  F is a Boolean filter of  L. 
 
Corollary  4.1. In a normal R0 algebra, the following conditions are equivalent: 
 
(1)  F is an implicative filter of  L; 
(2)  F is a positive implicative filter of  L; 
(3)  F is a Boolean filter of  L. 
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Theorem 4.2. Let L be a normal R0 algebra. F is a filter of L if and only if F is a 
fantastic filter of L. 
 
Proof.  Let  

,z ∈→ xz F. 

Since 

∈→=→→ xzxz )1( F 

and F is a fantastic filter, then 

)1)1(( →→x ∈=→ xx F, 

this shows that F is a filter. 
Conversely, let F is a filter and  

( )z x y→ → ∈F, z∈F. 

Then  

x y→ ∈F. 

By Theorem3.2, we have  

(( ) )y x x y→ → → ∈F. 

The proof is complete. 

5   Conclusion 

We discuss the properties of normal R0 algebras ,study the relationship between 
normal R0 algebras and other algebras such as MV algebras, Boolean algebras, 
BL algebras .We introduce the notion of filters, implicative filters, positive impli-
cative filters, fantastic filters into normal R0 algebras. We get that in a normal R0 
algebra, the following conditions are equivalent: F is an implicative filter of L; F 
is a positive implicative filter of L; F is a Boolean filter of L; and F is a filter if 
and only if F is a fantastic filter. 
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Abstract. The concept of the truth degree of a formula is the crucial tool and
the building block in quantitative logic. So how to compute the truth degree of
a formula efficiently is a principal question in this subject. This paper aims at
bringing an optimal method for doing this job. Firstly, characterizations of the
concept of truth degree are made with concepts from soft constraint theory.
Particularly, two soft constraint systems are proposed such that formulas
can be taken as soft constraints over them. Then by exploiting the algebraic
properties of both constraint systems and n-valued propositional systems,
it is shown that different soft constraint systems plays different roles in the
computation of truth degree of formulas. An optimal method named splitting
algorithm for computing truth degrees of formulas is proposed.

Keywords: Truth Degree, Quantitative Logic, Soft Constraint, Model Count-
ing, Constraint Solving, Splitting Algorithm.

1 Introduction

In the real world, not every question can be answered by just yes or no. For
instance, when a student has one leg in the classroom with the other out,
then is the student in the classroom? Zadeh [1] proposed the idea of fuzzy
sets by which the classical concept of set is fuzzified. That is: every element
of the domain is associated a degree belong to [0,1], which characterizes the
extent to which this element can be regarded as an element of the set. We
call this method a graded approach. Now we can answer the question above:
if most of the body is in the classroom, then maybe we can say that this
student is in the classroom with 90 percent.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 187–198.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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The using of graded approach is an important and useful tool in uncertainty-
based reasoning and also some other subjects. For instances, (1) Pavelka [2]
achieved wonderful results on fuzzy logic by grading the inferencing rules and
the proof process with lattice value. (2) The solution of classical satisfaction
problems(CSPs) is to find the values of variables such that all constraints
are satisfied. However, in daily life, people may have different preferences
for different choice. By using a graded approach, soft constraint satisfaction
problems (SCSPs)have been proposed to characterize constraint models with
criteria such as preferences, costs or priorities by Bistarelli [3]. SCSP is more
representable and complicated that CSP.

In this paper, we want to investigate another research work which provide
a graded approach to propositional logic. It is well known that mathemat-
ical logic is the formalized theory with the character of symbolization and
it lays stresses on formal deduction rather than on numerical computation.
On the contrary, numerical computation aims to solve various computing
problems by means of possible methods such as interpolation, iteration, dif-
ference, probability estimation, etc., and numerical computation pays close
attention to problem-solving as well as to error estimation but seldom uses
formal deduction. Hence, mathematical logic and numerical computation are
two branches of mathematics miles apart. A new branch quantitative logic,
which is the result of combining together mathematical logic and probability
computation, has been proposed by Wang [4-5].

Wang [4-5] proposed the concept of the degree of the truth in the frame-
work of so called many-valued propositional logic systems with the intention
of measuring to what extent a given formula is true. Such a concept can in-
deed induce, in a very natural way, the degree of the similarity as well as to
induce a pseudo-metric among formulas as the graded version of the notion
of the logical equivalence. The basic properties of such induced logic metric
space hence are investigated. What’s more, different concepts of the degree of
the divergence and the degree of the consistency in order to grade the extent
of the consistency of a logic theory were given. To the end, all the basic logic
notions are graded. Lastly, three patterns of approximate reasoning so far as
the many-valued propositional logic systems are proposed . Since this theory
has touched upon several key concepts of similarity, comparison, measure-
ments, etc. in information theory, the theory may have profound impact in
contemporary information technology. In addition, quantitative logic can be
regarded as a highly representative example of mathematics of uncertainty
capable of handling vagueness.

In recent years many researchers have made contributions to quantitative
logic: Zhou [6] discussed the consistency degree of theories in quantitative
logic; Han [7] proposed the concept of conditional truth degree in classical
logic based on the idea of conditional probability; Wang, et.al[8] brought
randomized theory truth degree into quantitative logic; Zhang [9] pointed
out a syntactic graded method of two-valued propositional logic formulas. A
concept of absolute truth of formulas in n-valued Lukasiewicz propositional
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logic was introduced by [10]; Wang, et al [11] developed the theory of quan-
titative logic into modal logic; Han [12-13] discussed the problems of error
accumulation and convergency theory in quantitative logic.

The concept of the truth degree of a formula is the crucial tool and the
building block in quantitative logic. All the concepts in quantitative logic is
based on the concept of truth degree of formulas. Theoretically, the truth
degrees of formulas are well-defined. Particularly, it is easy to show that the
computation of the truth degree of a formula in classical logic is equivalent
to counting the models of this formula. But in general the given definition
does not yield a practical algorithm to compute these degrees. As far as the
authors know, none of the progresses in quantitative logic so far concerns how
to compute the truth degree of a formula in efficient ways. We think that this
is an obstacle to the development of quantitative logic. Nevertheless, there
do exist optimal methods in other research fields that can be borrowed for
computing the truth degree of formulas. A number of different techniques
for model counting have been proposed over the last few years. For example,
Relsat by Bayardo [14] extends systematic SAT solvers for model counting
and uses component analysis for efficiency, Cachet by Sang et al, [15] adds
caching schemes to this approach, c2d by Darwiche [16] converts formulas to
the dDNNF form which yields the model count as a byproduct, ApproxCount
by Wei and Selman [17] and Sample Count by Gomes, et al [18] exploit sam-
pling techniques for estimating the count, MBound by Gomes, et al, [19] relies
on the properties of random parity or xor constraints to produce estimates
with correctness guarantees, and the recently introduced Sample Minisat by
Gogate and Dechter [20] uses sampling of the backtrack free search space
of systematic SAT solvers. BPCount and MiniCount by Kroc [21] provdes
useful information even on structure loopy formulas. Samer and Szeider [22]
brought in algorithms based on tree-decomposition of graphs associated with
the given CNF formula, in particular primal, dual, and incidence graphs.
Favier, et al [23] propose to adapt BTD for solving the CSP problem(thus
also for SAT problem.

However, this paper’s contribution is not just an easy shifting, i.e., we
don’t make just a list of the algorithms already exists. Since we think that
the methods already existed lay emphasis on how to compute but lack of
concerning about the underlying essence: why how. In order to make up this
deficiency, we start from the underlying algebraic property of the correspond-
ing systems. Then based on this property, we propose a splitting algorithm
by which the truth degree of a propositional formula can be presented in a
mathematical expression rather than a program.

The remainder of this paper is organized as follows. Section 2 introduces
the basic theory needed in this paper including quantitative logic, soft con-
straint system. In Section 3, we make characterizations of the concept of truth
degree with concepts from soft constraint systems and an algorithm named
splitting algorithm is proposed. Section 4 is the conclusion and discussion
part.
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2 Preliminaries

In this section, we first present a brief introduction on the concepts of truth
degree of a formula in n-valued propositional logic systems. Then the theory
of soft constraint satisfaction problems (SCSPs) is also briefly reviewed.

2.1 The Concept of Ttruth Degree of Formulas (Wang [4-5])

In this subsection, we assume that readers are familiar with the common
n-valued propositional logic systems: classical logic L, �Lukasiewicz n-valued
system �Ln, L ∗

n [5], Gödel n-valued system Gn and Product n-valued system∏
n. S is the set of axiomatic formulas, and F (S) is the set of all formulas.

Wn = {0, 1/(n−1), · · · , (n−2)/(n−1), 1} is the corresponding valuation do-
main, recall that Wn is an algebra of type (¬,∨,→). For example, in system
�Ln, → means the �Lukarsiwicz implication operator →L. In n-valued proposi-
tional logic, we write A⊗B to represent the formula ¬(A → ¬B), the seman-
tics of ⊗ corresponds to the t-norm ⊗L, ⊗o, ⊗G, ⊗π. Let A = A(p1, · · · , pm)
be a formula. By substituting x1, · · · , xm for p1, · · · , pm, respectively, and
interpreting the logical connectives ¬,∨,→ as the corresponding operations
¬,∨,→ on Wn, we then obtain an m-ary function Ā(x1, · · · , xm) : Wm

n → W ,
called the truth function induced by A.

Definition 1. (Truth degree) Let A = A(p1, · · · , pm) be a formula containing
m atomic formulas p1, · · · , pm in a certain n-valued propositional system, and
let Ā be the truth function induced by A. Define

τn(A) =
1
nm

n−1∑
i=1

i

n− 1
| Ā−1(

i

n− 1
) |,

where |E| denotes the number of elements of the set E. τn(A) is called the
degree of the truth of A in the n-valued system. Particularly, in the case of
n = 2,

τ2(A) =
| Ā−1(1) |

2m
.

There are several kinds of the concept of truth degree. For example, a concept
of absolute truth of the latter in n-valued �Lukasiewicz propositional logic was
introduced in [10].

Definition 2. (Absolute Truth Degree) Let A = A(p1, · · · , pm) be a formula
containing m atomic formulas p1, · · · , pm in a certain n-valued propositional
system, and let Ā be the truth function induced by A. Define the absolute
truth degree of A, denoted by θn(A), as follows:

θn(A) =
1
nm

| Ā−1(1) | .
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2.2 Soft Constraint Satisfaction Problems (SCSPs)

The framework of soft constraint satisfaction problems is based on a semiring
structure, where the set of the semiring specifies the values to be associated
with each tuple of values of the variable domain, and the two semiring op-
erations +,× model constraint projection and combination respectively. We
call a tuple S = (A,+,×, 0, 1) a semiring, if A is a set containing different
elements 0 and 1, and +,× are operations on S satisfying the following prop-
erties: + is associative and commutative with identity 0, × is associative with
identity 1 and null element 0, (i.e., for all a ∈ S, a × 0 = 0 × a = 0), and
× distributes over +, i.e., for all a, b, c ∈ S, a × (b + c) = (a + b) × (a + c)
and (b + c) × a = (b + a) × (c + a). A c-semiring is a semiring such that +
is idempotent (i.e., for all a ∈ S, a + a = a), × is commutative, and 1 is the
absorbing element of +.

Example 1. (i) Let R+ be the set of nonnegative real numbers, +,× are the
natural addition and multiplication operations. Then < R+,+,×, 0, 1 > is
a semiring. This semiring is often used to count numbers or computing the
sum of a certain set of real numbers. Note that < R+,+,×, 0, 1 > is not a
c-semiring.

(ii) The algebraic structure ([0, 1],∨,⊗, 0, 1) is a c-semiring, where ⊗ means
a t-norm on [0, 1].

Definition 3. (Soft Constraint Systems) Suppose S =< A,+,×, 0, 1 > is a
semiring. V is a set of variables. The frames of variables are same, denoted by
D. We call the tuple CS =< S,D, V > a soft constraint system. A constraint
c is a pair < def, con >, where

(1) con ⊆ V , it is called the type of the constraint;
(2) def : Dk → A (where k is the cardinality of con)is called the value of

the constraint.

Definition 4. (Combination Operation) Given a soft constraint system
CS =< S,D, V >, where S =< A,+,×, 0, 1 >, and two constraints
c1 =< def1, con1 > and c2 =< def2, con2 > over CS, their combination,
written as c1 ⊗ c2, is the constraint c =< def, con > with

con = con1 ∪ con2,

def(t) = def1(t ↓concon1
) × def2(t ↓concon2

), t ∈ D|con|.

Definition 5. (Projection Operation) Given a soft constraint system CS =<
S,D, V >, where S =< A,+,×, 0, 1 >, and a constraint c =< def, con >
over CS, and a set I of variables, the projection of c over I, written as c ⇓I ,
is the constraint c =< def ′, con′ > over CS with

con′ = I ∩ con,

def ′(t′) =
∑

{t|t↓con
I∩con=t′}

def(t), t′ ∈ D|con′|.
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Definition 6. (SCSP Problem and its solution) Given a constraint system
CS =< S,D, V >, where S =< A,+,×, 0, 1 >, a constraint problem over
CS is a pair P =< C, con >, where C is a set of constraints over CS and
con ⊆ V . The solution of P is defined as the constraint (⊗C) ⇓con, denoted
by Sol(P ).

Definition 7. (Best level of consistency) Given a constraint system CS =<
S,D, V >, where S =< A,+,×, 0, 1 >, a constraint problem over CS is
a pair P =< C, con > over CS =< S,D, V > define blevel(P ) ∈ S by
< blevel(P ), ∅ >= (⊗C) ⇓ ∅.

Theorem 1. Given a constraint system CS =< S,D, V >, where S =<
A,+,×, 0, 1 >, and a constraint problem P =< C, con >, where C contains
two constraints c1 =< def1, con1 > and c2 =< def2, con2 >,if con1 ∩ con2 ⊆
con ⊆ con1 ∪ con2, then we have

(c1⊗c2) ⇓con= c1 ⇓con∩con1 ⊗c2 ⇓con∩con2 .

For the lack of space, we omit the proof here.

3 A Splitting Algorithm for Computing the Truth
Degree of Formulas in Quantitative Logic

3.1 Characterizations of “Truth Degree” with Concepts from
Constraint Theory

Let S be the semiring < R+,+,×, 0, 1 >, V is the set of atomic propositions,
and D = Wn. Then we get a soft constraint system < R+, D, V > with re-
spect to the underlying n-valued propositional logic systems. Similarly, when
take the semiring as ([0, 1],∨,⊗, 0, 1), where ⊗ corresponds to the underlying
t-norm in the semantics of the n-valued propositional logic systems, D,V
remain the same, we can get another soft constraint system< [0, 1], D, V >.
We will show that different soft constraint system has different effect on the
computation problem in Ql.

Suppose A = A(p1, · · · , pm) be a formula in F (S) containing m atomic for-
mulas p1, · · · , pm, i.e., var(A) = {p1, ..., pm} and let Ā be the truth functions
induced by A, then:

Proposition 1. (i) A can be taken as a constraint of the soft constraint
system< R+,+,×, 0, 1 >(or < [0, 1], D, V > ), denoted by cA =<
defA, conA >, where defA = Ā, conA = var(A).

(ii) Suppose Γ be a theory (i.e., a set of formulas)in F (S), then we can take
Γ as a set of constraints. In this paper, we call cA a propositional constraint
induced by A.

Proposition 2. Let cA, cB be two propositional constraints induced by A,B
over the constraint system < [0, 1], D, V >. Then the definition function
defA⊗B of cA⊗B is equal to defA ⊗ defB.
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Proposition 3. Let cA be a propositional constraint induced by A over the
constraint system < R+, D, V >. Consider the soft constraint problem P =<
{cA}, con >, where con ⊆ var(A), then ∀ t ∈ Ωcon, cA ⇓con(t) counts the
cardinality of the set {Ā(t

′
)|t′ ∈ ΩconA , t

′ ↓conA
con = t}.

Proposition 4. Let cA be a propositional constraint induced by A over the
constraint system < [0, 1], D, V >. Consider the soft constraint problem
P =< {cA}, con >, then cA ⇓ con(t) is the maximal(best) value of the set
{Ā(t

′
)|t′ ∈ ΩconA , t

′ ↓conA
con = t}.

Corollary 1. Let cA be a propositional constraint induced by A over the
constraint system < R+,+,×, 0, 1 >. Consider the soft constraint problem
P =< {cA}, ∅ > then

τn(A) =
1
nm

blevel(P ).

Corollary 2. Let cA be a propositional constraint induced by A over the
constraint system < [0, 1], D, V >. Consider the soft constraint problem
P =< {cA}, ∅ >, then blevel(P ) is the maximal(best) value that Ā can take.

3.2 A Splitting Algorithm for Computing the Truth Degree of
Formulas in Quantitative Logic

The principal question in computing the truth degree of formulas in quanti-
tative logic is to find an optimal method by which this job can be done with
less time complexity rather than by directly using the definition.

Lemma 1. Let cA, cB be two propositional constraints induced by A,B over
the constraint system < R+,+,×, 0, 1 >(or< [0, 1], D, V >). If conA∩conB ⊆
con ⊆ conA ∪ conB, then we have

(cA ⊗ cB) ⇓ con = cA ⇓ (con ∩ conA) ⊗ cB ⇓ (con ∩ conB).

Lemma 2. Let cA be a propositional constraint induced by A over the con-
straint system < R+,+,×, 0, 1 >(or< [0, 1], D, V >). If con1 ⊆ con2 ⊆ conA,
then we have

cA ⇓ con1 = (cA ⇓ con2) ⇓ con1.

Lemma 3. In the classical propositional logic, suppose A is a formula equiv-
alent to B ∧C. Let cB, cC and cB∧C be the propositional constraints induced
by B,C, and B ∧ C over the constraint system < R+,+,×, 0, 1 >, then we
have cB∧C = cB⊗cC, i.e., ∀t ∈ ΩconB∪conC , cB∧C(t) = cB(t ↓ conB)×cC(t ↓
conC).

Theorem 2. In the classical propositional logic, suppose A is a formula
equivalent to B ∧ C. Let cB, cC and cB∧C be the propositional constraints



194 B.-h. Han and Y-m. Li

induced by B,C, and B ∧C over the constraint system < R+,+,×, 0, 1 >. If
conB ∩ conC ⊆ con ⊆ conB ∪ conC , then

τn(A) = n−|conB∪conC| ×∑
t∈Ωcon

cB ⇓ con ∩ conB(t ↓ con ∩ conB) × cC ⇓ con ∩ conC(t ↓ con ∩ conC).

Proof. By the Definition 1, Proposition 1, we know

τn(A) = n−|conB∪conC | ×
∑

t′∈ΩconB∪conC

B ∧ C(t
′
).

With Lemma 2, it is easy to show that∑
t′∈ΩconB∪conC

B ∧C(t
′
) =
∑

t∈Ωcon

∑
s∈ΩconB∪conC−con

B ∧ C(t, s).

According to Definition 5,∑
t∈Ωcon

∑
s∈ΩconB∪conC−con

B ∧ C(t, s) =
∑

t∈Ωcon

cB⊗C ⇓ con(t).

By Lemma 3,∑
t∈Ωcon

cB⊗C ⇓ con(t) =
∑

t∈Ωcon

(cB ⊗ cC) ⇓ con(t).

We learn from Lemma 1 and Definition 5 that∑
t∈Ωcon

(cB ⊗ cC) ⇓ con(t) =
∑

t∈Ωcon

(cB ⇓ con ∩ conB ⊗ cC ⇓ con ∩ conC)(t)

=
∑

t∈Ω|con|

cB ⇓ con∩ conB(t ↓ con∩ conB)× cC ⇓ con∩ conC(t ↓ con∩ conC).

This completes the proof.

Definition 8. Suppose Γ = {A1, · · · , An}, con ⊆ S, then a partition
{Γ1, · · · , Γm} of Γ is said to be a con-partition if ∀i, j, i �= j, we have

d(⊗Γi) ∩ d(⊗Γj) ⊆ t.

Definition 9. Under the assumptions of Definition 8,
(i)a con-partition {Γ1, · · · , Γm} of Γ is said to be binary if m = 2;
(ii)a con-partition {Γ1, · · · , Γm} of Γ is said to be final if ∀i = 1, · · · ,m,

there exists no t-partition of Γi.
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Theorem 3. (splitting algorithm)In the classical propositional logic, sup-
pose A is a formula equivalent to B = A1 ∧ A2 ∧ · · · ∧ Am. Let Γ =
{A1, · · · , An}, con ⊆ S, and {Γ1, · · · , Γm} is a con-partition of Γ . Denote
cΓi as the propositional constraint induced by ⊗Γi over the constraint system
< R+,+,×, 0, 1 >,i = 1, 2, · · · ,m. Then

τ2(A) = 2−|conB| ×
∑

t∈Ωcon

(
m∏
i=1

cΓi ⇓con∩con⊗Γi
(t ↓concon∩con⊗Γi

)).

Since the t-norm corresponding to the n-valued propositional logic
∏

is ⊗π,
i.e., the product t-norm. We have

Theorem 4. In the n-valued propositional logic system
∏

, suppose A is a
formula equivalent to B = A1⊗A2⊗· · ·⊗Am. Let Γ = {A1, · · · , An}, con ⊆ S,
and {Γ1, · · · , Γm} is a con-partition of Γ . Denote cΓi as the propositional
constraint induced by ⊗Γi over the constraint system < R+,+,×, 0, 1 >,i =
1, 2, · · · ,m. Then

τn(A) = n−|conB| ×
∑

t∈Ωcon

(
m∏
i=1

cΓi ⇓con∩con⊗Γi
(t ↓concon∩con⊗Γi

)).

Example 2. Suppose A = (p1∨¬p2∨¬p5)∧(¬p1∨p6)∧(p2∨¬p3)∧(p3∨¬p4)∧
(p4∨p5∨¬p6), let con = {p2, p4, p5, p6}, denote the propositional constraints
(induced by these five clauses ) by c1, c2, c3, c4, c5 respectively, then

(c1∧c2∧c3∧c4∧c5) ⇓ {p2, p4, p5, p6} = (c1∧c2) ⇓ {p2, p5, p6}×(c3∧c4) ⇓ {p2, p4}×c5.

Thus
τ2(A) = 2−6 ×

∑
(p2,p4,p5,p6)

N(p2, p4, p5, p6).

where N(p2, p4, p5, p6) = c5(p4, p5, p6) ×
∑

p1∈{0,1}(c1(p1, p2, p5) ×
c2(p1, p6)) ×

∑
p3∈{0,1}(c3(p2, p5, p3) × c4(p3, p4)). At last we get τ2(A) =

12
64 = 0.1875.

Remark 1. We should point out that the Theorem 3 does not work in n-
valued propositional logic systems such as the Ln, L ∗

n , and Gn when n ≥ 3.
The underlying essence is that these t-norms corresponding with these logic
systems we have just listed above can’t be extended to operations on the set
of nonnegative real numbers, and no mention the distributivity of t-norms
over the natural addition operation +. The Theorem 4 shows us that the n-
valued propositional logic system

∏
is an exception. This is simply because

the corresponding t-norm is the natural product operation ×. Obviously ×
is distributive over the natural addition operation +.

As a matter of fact, in many-valued propositional logic systems, ev-
ery formula can induce a soft constraint over the soft constraint sys-
tem < [0, 1], D, V >. The addition operation in the underlying semirng
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< [0, 1],∨,⊗, 0, 1 > is ∨ rather than the natural addition operation on real
numbers. Thus this kind of semiring can not be used to count the sum of
a certain set of nonnegative numbers. However, the soft constraint system
< [0, 1], D, V > with the underlying semirng < [0, 1],∨,⊗, 0, 1 > has its es-
pecially advantages. It can be used to compute maximal value that a formula
can take semantically. This is an important and interesting question in SCSP
problems.

Similarly, in n-valued propositional logic, take the underlying semiring as
< [0, 1], D, V >. We can compute the best value of a given formula as follows.

Theorem 5. In the n-valued propositional logic, suppose A is a formula
equivalent to B = A1 ⊗ A2 ⊗ · · · ⊗ Am. Let Γ = {A1, · · · , An}, con ⊆ S,
and {Γ1, · · · , Γm} is a con-partition of Γ . Denote cΓi as the propositional
constraint induced by ⊗Γi over the constraint system < [0, 1], D, V >,i =
1, 2, · · · ,m. Then the best value of the formula A is equal to blevel(<
{cB}, ∅ >) as follows:

blevel(< {cB}, ∅ >) =
∨

t∈Ωcon

(⊗m
i=1cΓi ⇓con∩con⊗Γi

(t ↓concon∩con⊗Γi
)).

Define a function α : [0, 1] → {0, 1} such that f(a) = 1 if and only if a = 1.
Then a propositional constraint cA induced by formula A can be naturally
changed to a constraint α(cA) over the constraint system < R+, D, V >,
where D = Wm

n ,m = |conA|. Theorem 3 can be changed to compute the
absolute value of formulas in the n-valued propositional logic systems.

Theorem 6. In the n-valued propositional logic, suppose A is a formula
equivalent to B = A1 ⊗ A2 ⊗ · · · ⊗ Am. Let Γ = {A1, · · · , An}, con ⊆ S,
and {Γ1, · · · , Γm} is a con-partition of Γ . Denote cΓi as the propositional
constraint induced by ⊗Γi over the constraint system < [0, 1], D, V >,i =
1, 2, · · · ,m. Then the absolute value θn(A) of the formula A is:

θn(A) = n−|conB| ×
∑

t∈Ωcon

(
m∏
i=1

α(cΓi) ⇓con∩conAi
(t ↓concon∩con⊗Γi

)).

4 Conclusion

We should say that our splitting method is not suitable always. For example,
in n-valued �Lukasiewicz system, our method can not be used to compute the
truth degree defined in Definition 1. And even in classical logic, for the kind
of formulas A1 ∧ · · · ∧ An with d(Ai) equal,i = 1, ..., n, our method can not
be used any longer.
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Abstract. Three different types of approximate reasoning patterns are proposed in 
D-logic metric space and it is proved that they are equivalent to each other. 

Keywords: D- truth degree, D-logic metric space, approximate reasoning. 

1   Introduction 

The probability logic emerged from the 70’s of the 20th century (see [1-5]), where 
uncertainty of premises were considered, and uncertainty degree of the conclusion 
had been deducted in [1] by using the Kolmogorov axioms[6]. It is remarkable that 
the theory proposed in [1] is developed by means of individual cases while the 
probability of one and the same formula varies in different effective inferences, 
and only a few (mostly two or three) formulas are involved in premises of effec-
tive inferences, therefore the theory proposed in [1] seems to be locally but not 
globally. 

On the other hand, a global quantified logic theory is proposed in [7-8] where 
logic concepts are graded into different levels so as to try to establish a bridge 
between artificial intelligence and numerical computation (see [9-14]), this can be 
thought of as continuation and development of the idea of [15-16]. In quantified 
logic every atomic formula has the same truth degree 0.5, i.e.，has the same un-

certainty degree 0.5, and any two formulas with the same shape, say, 21 qq → and 

43 qq → , have the same truth degree. This is not consistent with corresponding 

problems in the real world. In fact, a simple proposition in the real world is true or 
not, or in what extent it is true is uncertain. Hence, to follow the way of probabil-
istic AI and develop a probabilistic style quantified logic is certainly a beneficial 
task. In view of the above analysis, the paper [17] proposes the concept of 
D-randomized truth degree of formulas by employing a random number sequence, 
and proves that the set of values of D-randomized truth degree of formulas has no 
isolated point in [0,1]. Moreover, the paper [17] introduces the concept of 
D-similarity degree between formulas, and establishes a D- logic metric space 
without any isolated points, and points out that quantified logic and most of its 
results can be considered special cases of the new setting. Following above 
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conclusions, the present paper proposed three different types of approximate rea-
soning patterns in D-logic metric space and proved that they are equivalent to each 
other. 

Both truth degree of formulas in quantified logic and D-randomized truth de-
gree of formulas in D- logic metric space are used to reflect the truth probability 
of propositions, and hence there is a natural link between the theories of D-logic 
metric spaces and probability logic. 

2   Preliminaries 

Definition 2.1 [17] Suppose that 10,),,(,},2,1{ 21 <<== nPPP "" DN   

),2,1( "=n ,then D is called a random sequence in )1,0( . 

Let },,{ 21 "qqS = be the set of atomic formulas (for distinguishing the 

symbol of atomic formulas from the symbol of random number sPn′ , we use sqn′  

to express atomic formulas), )(SF  be the free algebra of type ),( →¬ generated 

by S , the elements of )(SF  are formulas.  

Definition 2.2[17] Suppose that )(),,( 1 SFqqAA n ∈= " , then A  derives 

an n-ary Boolean function }1,0{}1,0{: →n
Af as follows  

n
nxx }1,0{),,( 1 ∈=∀ "α , substitutes kx for kq in 

),,1)(,,( 1 nkqqA n "" = and keeps the logic connectives ¬ and →  un-

changed and explains them by kk xx −=¬ 1  and lklk xxxx ∨−=→ )1( re-

spectively, then ),,( 1 nA xxf "  is the result of the substitution . Af  is said to be 

induced by A . 

Definition 2.3[17] Let ),,( 21 "PP=D be a random sequence in )1,0( . 

n
nxx }1,0{),,( 1 ∈=∀ "α , let  

nQQ ××= "1)(αϕ , 

where kk PQ =  when 1=kx , and kk PQ −=1  when ),,1(0 nkxk "== ，

then we have a mapping 

)1,0(}1,0{: →nϕ , 

called D-randomized mapping of .}1,0{ n  
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It is not difficult to verify that 

.1}}1,0{|)({ =∈Σ nααϕ  

Definition 2.4[17]  Suppose that ),(),,( 1 SFqqAA n ∈= "  let 

)},1(|)({])([),1(][ 11 −− ∈Σ== AA fAfA ααϕμ  

and use )(ADτ  to denote ]).([Aμ  Then call )(ADτ  D-randomized truth de-

gree, briefly, D-truth degree of .A  

It is obvious that D-randomized truth degree will turn into truth degree pro-

posed in [7] and [10] in case ).,2,1(
2

1 "== kPk  

 

Theorem 2.1[17]  Suppose that D),(SFA∈  is a random sequence in (0,1), 

then A  is a tautology iff ,1)( =ADτ  and A  is a contradiction iff .0)( =ADτ  

 

Proposition 2.1[17]  Suppose that )(, SFBA ∈ , then 

).()()()( BABABA DDDD ∧−+=∨ ττττ  

 

Definition 2.5[17] Let D be a random sequence in (0,1), let 

).(,)),()((),( SFBAABBABA DD ∈→∧→=τξ  

Then call ),( BADξ D-similarity degree between A  and B . 

 

Theorem 2.2[17]  Let D be a random sequence in (0,1), and ).(,, SFCBA ∈  

Then  

(i) BA ≈  iff .1),( =BADξ  

(ii) ).,(1),(),( CACBBA DDD ξξξ +≤+  

 

Proposition 2.2[17]  Let D be a random sequence in (0,1), let  

),(,),,(1),( SFBABABA DD ∈−= ξρ  

Then Dρ  is a pseudo-metric on ),(SF called D-logic pseudo-metric. Moreover, 

)),(( DSF ρ  is called D-logic metric space, which contains no isolated point. 
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Remark 1. Proposition 2.2 shows that Dρ  is a reasonable pseudo-metric on 

),(SF   because every formula in )),(( DSF ρ  can be approximated by a se-

quence of formulas and this makes it possible to establish an approximate reason-
ing theory on. 

3   Approximate Reasoning in Randomized Quantified Logic  

The three different types of approximate reasoning patterns are proposed in paper 
[17], but if the three conditions are equivalent to each other ? The question is not 
answer in paper [17]. The present paper will answer it. 
 
Definition 3.1[17].  Let D be a random sequence in (0,1) and Γ be a logic theory 

in D-logic metric space )),(( DSF ρ , let  

)}.(,|),(sup{)( Γ∈=Γ DBABAdiv DD ρ  

Then )(ΓDdiv  is said to be the divergent degree of ΓΓ,  is said to be totally 

divergent if ,1)( =ΓDdiv  where )(ΓD  is the set of all Γ  conclusions. 

 
Definition 3.2[17]. Let D be a random sequence in (0,1), 
 .0),(),( >∈⊂Γ εSFASF  
 

(i) If ,)}(|),(inf{ ερ <Γ∈DBBAD  

then A  is said to be a type-I conclusion of Γ  with error less than ε , and de-

noted ).(, Γ∈ 1
DDA ε  

(ii) If ετ <Γ∈→− )}(|)(sup{1 DBABD , 

then A  is said to be a type-II conclusion of Γ  with error less than ε , and de-

noted ).(2
, Γ∈ DDA ε  

(iii) If   ,}|),(|))(),((inf{ ε<−Σ⊂ΣΣΓ ASFDDH  

then  A  is said to be a type-III conclusion of Γ  with error less than ε , and de-

noted ),(3
, Γ∈ DDA ε  where H  is the Hausdorff metric on }{)(( ∅−SFP . 

 
Proposition 3.1[17] Let D be a random sequence in (0,1),  

.0),(),( >∈⊂Γ εSFASF  If ).(1
, Γ∈ DDA ε  Then ).(2

, Γ∈ DDA ε  

Using the following lemma we can proved that if ( )2
, DA Dε∈ Γ , 

then ( )1
, DA Dε∈ Γ ． 
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Lemma 3.1.  Let D be a random sequence in (0,1), ( )F SΓ ⊂ , ( )A F S∈ ，

( )1B D∈ Γ ， [ ]0,1 .α ∈ if ( )1D B Aτ α→ = ，then there exists ( )2B D∈ Γ such 

that ( ) ( )( )2 2D B A A Bτ α→ ∧ → = ． 

 

Proof. It followed from ( )1B D∈ Γ ，├ 1 1B B A→ ∨ and the inference rule 

modus ponens (MP for short) that ( )1B A D∨ ∈ Γ ．let 2 1B B A= ∨ . Then 

( ) ( )( )

( )

2 2

2 2

2 2

2

1 1

2 2

1
( ) ( )

1 1

1 1 1 1

1 1 1

1

{ ( ) | (1)},

{ ( ) | (1) (1)}

{ ( ) | ( (1) (1)) ( (0) (0))}

{ ( ) ( ) ( )}

{ ( ) | (0) ( (1) (1))}

D

B A A B

B A A B

B A B A

B A

B B A

D

B A A B

f

f f

f f f f

f f

f f f

B A

τ

ϕ α α

ϕ α α

ϕ α α

ϕ α α α

ϕ α α

τ α

−
→ ∧ →

− −
→ →

− − − −

− − −

→ ∧ →

= Σ ∈

= Σ ∈ ∩

= Σ ∈ ∩ ∪ ∩

= Σ =

= Σ ∈ ∪ ∩

= → =
 

Theorem 3.1.  Let D be a random sequence in (0,1), ( )F SΓ ⊂ ， ( )A F S∈ ，

0ε > ，if ( )2
, DA Dε∈ Γ . Then ( )1

, DA Dε∈ Γ .  

Proof. Suppose that ( )2
, DA Dε∈ Γ ，then  

( ) ( ){ }1 sup D B A B Dτ ε− → ∈ Γ < ， 

it follows from Lemma 3.1， if ( )1B D∈ Γ and ( )1D B Aτ α→ = ， then there 

exists ( )2B D∈ Γ ，such that ( ) ( )( )2 2D B A A Bτ α→ ∧ → = ．therefore 

( ) ( )( ) ( ){ } ( ) ( ){ }2 2 2 1 1sup supD DB A A B B D B A B Dτ τ→ ∧ → ∈ Γ ≥ → ∈ Γ . 

It equals to 

( ) ( )( ) ( ){ } ( ) ( ){ }2 2 2 1 11 sup 1 supD DB A A B B D B A B Dτ τ− → ∧ → ∈ Γ ≤ − → ∈ Γ . 

Thus 

( ) ( )( ) ( ){ }2 2 21 sup D B A A B B Dτ ε− → ∧ → ∈ Γ < , 

then ( ) ( ){ }inf ,D A B B Dρ ε∈ Γ < ，obviously ( )1
, DA Dε∈ Γ . 
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Corollary 3.1.  Let D be a random sequence in (0,1), ( )F SΓ ⊂ ， ( )A F S∈ ，

0ε > ， ( )1
, DA Dε∈ Γ  iff ( )2

, DA Dε∈ Γ . 

 
Proposition 3.2[17]. Let D be a random sequence in (0,1), 

0),(),( >∈⊂Γ εSFASF . If ),(3
, Γ∈ DDA ε  then ).(1

, Γ∈ DDA ε  
 

Theorem 3.2.   Let D be a random sequence in (0,1), ( )F SΓ ⊂ ， ( )A F S∈ ，

0ε > ，if ( )1
, DA Dε∈ Γ . Then ( )3

, DA Dε∈ Γ . 

 

Proof. (i) Let { }AΣ = Γ∪ , ( )B D∗ ∈ Γ , for every ( )B D∈ Γ . There exists 

( )A D∗ ∈ Σ (let A B∗ ∗= ) satisfies ( ) ( ), 0 ,D DB A A Bρ ρ∗ ∗ = ≤ . It follows from 

the definition of metric and infimum that ( )( ) ( )( ), ,D DB D A Dρ ρ∗ Σ ≤ Γ  

holds for every ( )B D∗ ∈ Γ . That is to say 

( ) ( )( ) ( )( ) ( ){ } ( )( )1 , sup , , .D DH D D B D B D A Dρ ρ ε∗ ∗Γ Σ = Σ ∈ Γ ≤ Γ <
 

(ii) Similarly let { }AΣ = Γ∪ , ( )A D∗ ∈ Σ , for every ( )B D∈ Γ , there ex-

ists { }
1 2
, , , ,

ki i iB B B ⊂ Γ" such that { }
1 2
, , ,

ki i iB B B" ├ B . There also ex-

ists { }
1 2
, , ,

mj j jB B B ⊂ Γ" , such that { }
1 2
, , , ,

mj j jB B B A" ├ A∗ .Let 

kmB A B∗ ∗= ∨ , where
1 1k mkm i i j jB B B B B= ∧ ∧ ∧ ∧ ∧" " .  It is obvi-

ously ( )B D∗ ∈ Γ and 

( ) ( )( )
1

( ) ( )

1 1

1 1 1 1

{ ( ) | (1)},

{ ( ) | (1) (1)}

{ ( ) | ( (1) (1)) ( (0) (0))}

{ ( ) ( ) ( )}.

D

A B B A

A B B A

A B B A

A B

A B B A

f

f f

f f f f

f f

τ

ϕ α α

ϕ α α

ϕ α α

ϕ α α α

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

−
→ ∧ →

− −
→ →

− − − −

→ ∧ →

= Σ ∈

= Σ ∈ ∩

= Σ ∈ ∩ ∪ ∩

= Σ =
 

When ( ) ( ) 0A Bf fα α= = ， it follows from├ kmB B→ that ( ) 0
kmBf α = ，

then ( ) ( )
A B

f fα α∗ ∗=
； when ( ) ( ) 1A Bf fα α= = ， if ( ) 0

kmBf α =
，

then ( ) ( )
A B

f fα α∗ ∗= ;if ( ) 1
kmBf α = ， it follows from├ kmA B A∗∧ → ，
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that ( ) 1
A

f α∗ = ， since kmB A B∗ ∗= ∨ ， hence ( ) ( )
A B

f fα α∗ ∗= , therefore 

( ) ( ), ,D DA B A Bρ ρ∗ ∗ ≤ .
 

This proves ( )( ) ( )( ), ,D DA D A Dρ ρ∗ Γ ≤ Γ holds for every ( )A D∗ ∈ Σ , that is 

to say 

( ) ( )( ) ( )( ) ( ){ }2 , sup , ( , ( )) .D DH D D A D A D A Dρ ρ ε∗ ∗Γ Σ = Γ ∈ Σ ≤ Γ <  

Following from (i) and (ii) it is obviously that ( ) ( )( ),H D D εΓ Σ < , This 

completes the proof. 
 

Corollary 3.2. Let D be a random sequence in (0,1), ( )F SΓ ⊂ ， ( )A F S∈ ，

0ε > ， ( )1
, DA Dε∈ Γ  iff ( )3

, DA Dε∈ Γ ． 

 
The following conclusion can be obtained from above propositions and theorems:  

 
Conclusion 3.1. The three conditions given in Definition 3.3 are equivalent to 
each other. 

3   Conclusion 

Based on a random sequence in (0,1), the present paper proposes three different 
types of approximate reasoning patterns, and proves they are equivalent to each 
other. more detailed properties will be discussed henceforth. 
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Abstract. The modal logic, as a decidable fragment of predict logic, not
only solved the paradox of material implication thoroughly, but also have
important properties. The present paper defines the standard model and the
interval-valued truth degree of modal formulas after analyzing the idea of
possible world. Then the harmonious theorem is proved, that is, the interval-
value truth degree of formulas without modal operators degenerate into a
point and the value is just equal to its Borel truth degree.

Keywords: Modal logic, modal operator, Borel probability measure, interval-
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1 Introduction

On the perspective of classical logic, the truth of a proposition is either true or
false. Further, we will discover that all propositions of either true or false can be
divided into two kinds: one kind is inevitable, and the other is accidental. If we
look the necessity and possibility as a relationship between propositions and
their truth value, and give this kind of propositions containing above necessity
and possibility a new name modal propositions, then the classical proposition
logic cannot include the modal propositions, obviously. Consequently, the ef-
fectiveness of reasoning between modal propositions can not be reacted. There-
fore, we need a new logic system, it is just the modal logic [1 − 3]. In order to
formalize the above modal propositions, we employ a new modal operator [4, 5]
to analysis the relations between these concepts. Because that modal theory is
based on the idea of possible world of Leibniz [6, 7], the truth value of modal
propositions is associated with a greater space consisting of possible worlds, as
world or time or theory or computing state, etc.
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The modal logic, as a decidable fragment of predict logic, not only solved
the paradox of material implication thoroughly, but also have many impor-
tant properties, for example, satisfiability and strong completeness. There-
fore, modal logic has a good prospect of applications [8 − 12] and much ne-
cessity to research.

The reference [13] has already discussed the truth theory of modal for-
mulas, there, it defined n-truth degree using even probability measure on
domain, which only contain n different possible world.

2 Preliminaries

In this section, we give a brief introduction on the semantic theory of classical
propositional logic L, classical modal logic K and the Borel truth degree of
a classical formulas without modal operators.

Definition 1. ([14]) Let S = {p1, p2, p3, · · ·} be a countable set of atoms or
propositional variables. The set of the well formed formulas denoted by F (S)
is the (¬,∨,→)-type free algebra generated by the S .

Definition 2. ([14]) Classical propositional logic system L has three axioms
and a inference rule as follows:

Axioms:
(1) ϕ → (ψ → ϕ);
(2) ϕ → (ψ → χ) → ((ϕ → χ) → (ψ → χ));
(3) (¬ϕ → ¬ψ) → (ψ → ϕ);

where ϕ, ψ, χ ∈ F (S).
Inference rule: Modus Ponens (shorted by MP).

Definition 3. ([14]) L − proof is a finite sequence of modal formulas
ϕ1, ϕ2, · · · , ϕn satisfying that ∀i ≤ n, ϕi is either the axiom of the logic
system L, or ∃j, k(j, k < i), s.t. ϕi is obtained by using MP rule w.r.t. ϕk
and ϕj . In this condition, we call ϕn is L-theorem denoted by �L ϕ.

Definition 4. ([14]) Let B = {{0, 1},¬,∨,→} be a Boole algebra, a valuation
v is a homomorphism from F (S) to {0, 1}. The set of all valuations is denoted
by Ω. As a result, we could prove that Ω = 2ω = {0, 1}ω.

Definition 5. ([14]) Let ϕ ∈ F (S). ϕ is a tautology if and only if ∀v ∈ Ω,
v(ϕ) = 1.

Definition 6. ([15]) Let Xk = {0, 1}(k ∈ N) be the discrete topology
spaces, that is, ∀k ∈ N , Tk = P({0, 1}) = {∅, {0}, {1}, {0, 1}}). Sup-

pose Ω = {0, 1}ω =
∞∏
k=1

Xk be the product topological space, whose topol-

ogy T is generated by the topology base U , which is family of subsets
{A1×· · ·×Am×Xm+1×Xm+2×· · · | Ak ∈ Tk, k = 1, 2, · · · ,m,m = 1, 2, · · ·},
then (Ω, T ) is called the valuation space.
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Definition 7. ([15]) A Borel probability measure on valuation space Ω is the
probability measure on the B(Ω), which is set of all Borel set of topology space

Ω. Then we obtain that μ(∅) = 0,μ(Ω) = 1, and μ(
∞⋃
k=1

Ek) =
∞∑
k=1

Ek, where

Ek ∈ B(Ω), if i �= j, then Ei ∪Ej = ∅,i, j, k = 1, 2, · · ·.
Form the reference [16], we could find that B(Ω) is the σ-algebra generated

by the topology base U .

Definition 8. ([15]) Let ϕ ∈ F (S). μ be the Borel probability measure on the
valuation space Ω, define that

τμ(ϕ) = μ(ϕ−1(1))

the μ−probability truth degree of the formula ϕ.

Definition 9. ([17]) The language of the classical modal logic [1, 3] is gener-
ated by the form below:

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | 'ϕ, p ∈ Φ

where Φ is the set of propositional variables, ⊥ denotes the contradiction, and
�ϕ = ¬ ' ¬ϕ,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
ϕ → ψ = ¬ϕ ∨ ψ.

The set of modal formulas is denoted by Form(Φ, ').

Remark 1. In this paper, we want to discuss the truth degree of the modal
formulas, here we suppose all of the atoms is countable, i.e., Φ ⊆ S. Un-
der this premise, the modal formulas set Form(S, ') is the biggest one, and
F (S) ⊆ Form(S, '). In the present paper, we will construct the theory on
the Form(S, ').

Definition 10. ([17]) A Kripke model for the classical modal logic (or classi-
cal model) is a triple M = (W,R, V ), where W is a nonempty set of possible
worlds, R ⊆ W ×W is a binary relationship on W , and V : Φ → P(W ) is a
valuation, where P(W ) is the power set of W .

Definition 11. ([17]) Let ϕ ∈ Form(Φ, '), M = (W,R, V ) be a Kripke
model, w ∈ W . The world w satisfying ϕ, denoted by M,w |= ϕ, can be
recursively defined as follows:

(i) M,w |= p if and only if w ∈ V (p), p ∈ Φ.
(ii) M,w |= ⊥ never hold.
(iii) M,w |= ¬ϕ if and only if M,w |= ϕ does not hold.
(iv) M,w |= ϕ ∨ ψ if and only if M,w |= ϕ or M,w |= ψ.
(v) M,w |= 'ϕ if and only if ∃u ∈ W, s.t. (w, u) ∈ R and M,u |= ϕ.
Further, modal formulas ϕ is valid if and only if M,w |= ϕ holds for every

classical model M = (W,R, V ) and every world w ∈ W .
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Proposition 1. ([17]) Let M = (W,R, V ) be a Kripke model, and define

V (ϕ) = {w ∈ W | M,w |= ϕ}, ϕ ∈ Form(Φ, ')

then
(i) V (¬ϕ) = W − V (ϕ);
(ii) V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ);
(iii) V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ);
(iv) V (ϕ → ψ) = (W − V (ϕ)) ∪ V (ψ);
(v) V ('ϕ) = {w ∈ W | R[w] ∩ V (ϕ) �= ∅};

where R[w] = {u ∈ W | (w, u) ∈ R}.

Definition 12. ([17]) The classical modal logic system K has the following
axioms:

(1) ϕ → (ψ → ϕ);
(2) ϕ → (ψ → χ) → ((ϕ → χ) → (ψ → χ));
(3) (¬ϕ → ¬ψ) → (ψ → ϕ);

(K) �(ϕ → ψ) → (�ϕ → �ψ).
Modal logic system K has two rules of inference:

(1) MP;
(2) Necessitation : from ϕ infer �ϕ.

Definition 13. ([17]) K − proof is a finite sequence of modal formulas
ϕ1, ϕ2, · · · , ϕn satisfying that ∀i ≤ n, ϕi either is the axiom of the system
K, or ∃j(j < i),s.t. ϕi is the formulas after ϕj using necessity rule, or
∃j, k(j, k < i), s.t. ϕi is obtained by ϕk and ϕj using MP rule, then we
call ϕn is K-theorem, denoted by �K ϕ.

Theorem 1. ([14, 17]) Classical propositional logic system L and classical
modal logic K are both complete. That is:

(1) ∀ϕ ∈ F (S), ϕ is the tautology if and only if it is a L-theorem.
(2) ∀ϕ ∈ Form(S, '), ϕ is the valid if and only if it is a K-theorem.

3 The Interval-Valued Truth Degree

3.1 The Standard Model

In this section, we will analysis the idea of possible world firstly. In order to
characterize the truth degree of a formula, at which level a formula becomes
true, we will continue the used idea. For a fix formula ϕ, at the beginning, we
must find all of the possible worlds, in which ϕ is satisfiable. Then we denote
this possible worlds set by V (ϕ). Next, we intend to measure this set using
measure theory on some probability measure space.

The situation of the set V (ϕ) is influenced by the Kripke model M, V (ϕ)
will change if any factor of the M changes. Meanwhile, the concept of the
model is basic and flexible in the theory of the modal logic. For example, let
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M0 = (W,R, V ), W0 = {w1, w2, · · ·}, V0(p1) = {w1}, V0(p2) = {w2}, and ∀i ∈
{3, 4, · · ·}, V0(pi) = ∅. Then we could find that only possible worlds w1 and
w2 is different to atoms p1 and p2 in the sense of satisfiability, and the others
are the same w.r.t. all atoms in the sense of satisfiability. Obviously, this
model M0 is inadequate and incomplete, for the reason of laking other various
possible worlds, like w0 which satisfying ∀i ∈ N,w0 ∈ V (pi). Therefore, the
set V (ϕ) under this kind of model can not involve all of the situations in
which ϕ is true, the measure of this V (ϕ) could not performance the truth
degree of the ϕ consequently.

Form above analysis, we need a kind of special model, which involve all
possible worlds (i.e., possible situations). On the other hand, modal formulas
in modal language are generated by the countable atoms. We look the atoms
as not-subdividable constructing factors of possible worlds, then this special
model should involve all situations of satisfiability of all atoms.

Definition 14. Let M = (W,R, V ) be a Kripke model. The valuation V
induce a function V ∗ : W × S → {0, 1} by

V ∗(w, p) = 1 if and only if w ∈ V (p),

V ∗(w, p) = 0 if and only if w �∈ V (p).

Definition 15. Let M = (W,R, V ) be a Kripke model. Define a sequence of
the binary relations Rv, R1, R2, · · · on W as follows:

wRV u if and only if ∀i ∈ N, V ∗(w, pi) = V ∗(u, pi),
∀n ∈ N

wRnu if and only if ∀i ∈ {1, 2, · · · , n}, V ∗(w, pi) = V ∗(u, pi).

If wRV u, then possible worlds w and u are not diacritical.

Definition 16. (Standard Model) Let M = (W,R, V ) be a model. If

W ∼= W/RV

and |W | = |2ω|, then M is a standard model. We denote the set of all standard
models by M∗.

Proposition 2. Let M be a standard model. Then M ∼= Ω, and the isomor-
phic mapping f works like below:

f(w) = (V ∗(w, p1), V ∗(w, p2), · · ·)
Corollary 1. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be both standard
models. Then the possible worlds sets are isomorphic, i.e.,

W1 ∼= W2.

There is no difficult to prove that all of the standard models are the same (in
the sense of the isomorphism) except the binary relations between the possible
worlds.
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3.2 The Interval-Valued Truth Degree

Suppose Φ = S, then we could get the relation F (S) ⊆ Form(Φ, '). Therefore,
the truth degree of the modal formulas without modal operators in present
paper should be identical to the above Borel truth degree(Definition 8).

Definition 17. Let M = (W,R, V ) be a standard model, W be a product
topological space (see Proposition 2), μ be a probability measure on W . Then
the Borel probability measure space is (W,B(W ), μ), where B is the set of all
Borel sets.

A new problem is following. For a given standard model M , a Borel proba-
bility measure μ, a formula ϕ, the set V (ϕ) is not necessary to be measurable,
i.e., under some conditions, V (ϕ) �∈ B(W ). The way solving this problem is
that we find two sequences of Borel-measurable sets to close the set V (ϕ)
form inner and outer respectively.

Definition 18. Let M = (W,R, V ) be a standard model, A ⊆ W , Rn(A) and
Rn(A) are upper and lower approximates of A under relation Rn respectively.
Then we call {Rn(A)}∞n=1 and {Rn(A)}∞n=1 upper and lower approximate
sequences of A under model M respectively.

Proposition 3. Let M be a standard model, μ be a Borel probability measure
on W , A ⊆ W . Then

∀n ∈ N, Rn(A), Rn(A) ∈ B(W ),

and further
lim
n

μ(Rn(A)) ≤ lim
n

μ(Rn(A)).

Proof. (i) Prove that ∀n ∈ N , ∀B ⊆ W/Rn, B is Borel measurable.
Since ∀n ∈ N , W/Rn is finite. The elements W/Rn are all equivalence

classes and the closed sets in product topology space W , then every element
is Borel measurable. Further, every subset of this finite set W/Rn is Borel
measurable.

(ii) Prove that ∀A ⊆ W , the sequence {Rn(A)}∞n=1 is monotone increasing
and {Rn(A)}∞n=1 is monotone decreasing. It is sufficient to prove that ∀A ⊆
W , ∀n ∈ N , Rn(A) ⊆ Rn+1(A) and Rn+1(A) ⊆ Rn(A) both hold.

10 ∀w ∈ Rn(A), we get [w]n ⊆ A. Because that [w]n+1 ⊆ [w]n, then we
obtain [w]n+1 ⊆ [w]n ⊆ A, i.e., w ∈ Rn+1(A), so Rn(A) ⊆ Rn+1(A) holds.

20 ∀w ∈ Rn+1(A), we get [w]n+1 ∩ A �= ∅. Since [w]n+1 ⊆ [w]n, then we
can get [w]n+1 ∩ A ⊆ [w]n ∩ A, then [w]n ∩ A �= ∅holds, i.e., w ∈ Rn(A), so
Rn+1(A) ⊆ Rn(A) holds.

(iii) Form above (i) and (ii), we has proved that the sequence μ(Rn(A)) is
bounded and monotone increasing and μ(Rn(A)) is bounded and monotone
decreasing, so the limits of them are both existent. Further, since ∀n ∈ N ,
Rn(A) ⊆ A ⊆ Rn(A), we get the conclusion lim

n
μ(Rn(A)) ≤ lim

n
μ(Rn(A)).



The Interval-Valued Truth Degree Theory of the Modal Formulas 213

Definition 19. Let M be a standard model, μ be a Borel probability measure
on W , ϕ ∈ Form(S, '). Define

τμ,M (ϕ) = [lim
n

μ(Rn(A)), lim
n

μ(Rn(A))]

the interval-valued truth degree of ϕ in model M and Borel probability
measure μ.

When there is no confusion caused, the lower mark μ and M of τμ,M (ϕ)
could be omitted. Denote lim

n
μ(Rn(A)) by τ∗(ϕ) and lim

n
μ(Rn(A)) by τ∗(ϕ)

shortly, then τ(ϕ) = [τ∗(ϕ), τ∗(ϕ)].

3.3 The Harmonious Theorem

Theorem 2. (Harmonious Theorem) Let ϕ ∈ F (S), ∀M ∈ M∗, μ be a
Borel probability measure on W , then

τμ,M (ϕ) = τμ(ϕ).

Proof. (i) Firstly, we prove that ∀ϕ ∈ F (S), ∀M ∈ M∗, there has τ∗(ϕ) =
τ∗(ϕ), i.e., lim

n
μ(Rn(A)) = lim

n
μ(Rn(A)).

Since ϕ ∈ F (S), ϕ is a classical propositional formula. Suppose there
are k different atoms p1, p2, · · · , pk included in ϕ, then V (ϕ) is related
with sets V (p1), V (p2), · · · , V (pk). More detail, V (ϕ) is generated by
V (p1), V (p2), · · · , V (pk) from the operations like intersection, union and com-
plement. Form the Corollary 1, the standard model are isomorphic, then
∀M ∈ M∗, V (p1), V (p2), · · · , V (pk) are always the same, consequently, V (ϕ)
are the same.

On the other hand, ϕ consisting finite (k) different atoms, then it is easily
to obtain

V (ϕ) = Rk(V (ϕ)) = Rk(V (ϕ)) ∈ B(W )

and when l ≥ k, above equation still holds, i.e.,

V (ϕ) = Rl(V (ϕ)) = Rl(V (ϕ)) ∈ B(W ),

then
μ(V (ϕ)) = μRl(V (ϕ)) = μRl(V (ϕ)), (l ≥ k)

computing the limits, we get

μ(V (ϕ)) = τ∗(ϕ) = τ∗(ϕ).

(ii) If we look formulas as mappings ϕ : W → {0, 1}, it works like

ϕ(w) = 1 if and only if w |= ϕ

form above (i), we get ∀M ∈ M∗, V (ϕ) = ϕ−1(1) holds. Therefore,

μ(ϕ−1(1)) = μ(V (ϕ)) = τ∗(ϕ) = τ∗(ϕ),

the proof is completed.
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Abstract. An extension of a triangular norm (t-norm for short) called t-
seminorm is discussed in this paper. Firstly, we introduce the concept of
t-seminorms on a complete lattice. Then, we discuss two kinds of residual
implications of t-seminorms, and give the equivalent conditions for infinitely
∨−distributive t-seminorms. Furthermore, we define two classes of induced
operators of implications on a complete lattice and give the conditions such
that they are t-seminorms or infinitely ∧−distributive t-seminorms in their
second variables. We also propose another method inducing t-seminorms by
implications and another method inducing implications by t-seminorms and
involutive negations on a complete lattice.

Keywords: Fuzzy Connective, t-seminorm, Implication, Infinitely
∨−distributive, Infinitely ∧-distributive, Closure Operator.

1 Introduction

In fuzzy logics, the set of truth values of fuzzy propositions is modelled by
unit interval [0,1] and the truth function for a conjunction connective is usu-
ally taken as a triangular norm (t-norm for short) on [0,1] which is monotone,
associative, commutative and has neutral element 1 (see [1]). But the t-norms
are inadequate to deal with natural interpretations of linguistic words since
the axioms of t-norms are quite strong. For instance, when we say “ she is
very beautiful but stupid”, this is not equivalent to “she is very beautiful and
stupid”. It is in fact “ she is very beautiful & stupid” in such a way that & is
not a commutative connective but “ and ” is the common commutative con-
junctions (see [2]). In order to interpret the non-commutative conjunctions,
Flondor et al. [3] introduced non-commutative t-norms by throwing away
the axiom of commutativity of t-norms and used them to construct pseudo-
BL-algebras and weak- pseudo-BL-algebras (i.e., pseudo-MTL-algebras [4]).
About another axiom of t-norms, i.e. associativity, as underlined in [5,6], for

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 215–225.
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example, “if one works with binary conjunctions and there is no need to
extend them for three or more arguments, as happens e.g. in the inference
pattern called generalized modus ponens, associativity of the conjunction
is an unnecessarily restrictive condition”. So, we can obtain another binary
truth function for conjunctions by removing the axiom of associativity from
the the axioms of non-commutative t-norms, called semi-copula [7,8] (also
called t-seminorms [9]). On basis of removing the commutative and asso-
ciative axioms, Fodor [10,11] proposed weak t-norms on [0,1] and discussed
the relations between weak t-norms and implications. Noticing that the QL-
implications on [0,1] can not be induced by weak t-norms on [0,1], Wang
and Yu [12] generalized the notion of weak t-norms and introduced pseudo-
t-norm on a complete Brouwerian lattice L. Further, the relation between
the pseudo-t-norms and implications on L was discussed in [12]. Since Wang
and Yu’s pseudo-t-norms are non-commutative, as the discussion in [3], they
should correspond two kinds of residual operators, we call them left and right
residual operators respectively. But we find that the left residual operator of
a pseudo-t-norm is not an implication in general. So we consider to add condi-
tions T (x, 1) = x(∀x ∈ L) and that T is nondecreasing in its first variable for
Wang and Yu’s pseudo-t-norm T , i.e., we slightly strengthen the conditions of
Fodor’s weak t-norms by replacing the condition T (x, 1) ≤ x by T (x, 1) = x
for any x ∈ [0, 1]. Thus, we just obtain the definition of t-seminorms in [9].

2 Adjoint Mappings on a Complete Lattice

In this section, we briefly recall the definition of adjoint mappings and discuss
some of the properties for our usage.

Definition 2.1.([13]) Let X and Y be two posets, the mappings f : X → Y
and g : Y → X be non-decreasing. We call f is a left adjoint mapping of g, or
g is a right adjoint mapping of f , and write f � g, if the following adjuntion
condition holds for all x ∈ X and y ∈ Y :

f(x) ≤ y if and only if x ≤ g(y)

Proposition 2.1.([13]) Let X and Y be posets, the mappings f : X → Y
and g : Y → X be non-decreasing.

(i) f � g if and only if x ≤ g ◦ f(x), f ◦ g(x) ≤ y for all x ∈ X, y ∈ Y .
(ii) if f � g, then f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Proposition 2.2.([13]) Suppose that X and Y are complete lattices, then
the following properties hold:

(i) An non-decreasing f : X → Y has a right adjoint mapping if and only
if f is infinitely ∨−distributive, i.e., f(sup

z∈Z
z) = sup

z∈Z
f(z), where Z is any

nonempty subset of X.
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(ii) An non-decreasing g: Y → X has a left adjoint mapping if and only
if g is infinitely ∧−distributive, i.e., g( inf

z∈Z
z) = inf

z∈Z
g(z), where Z is any

nonempty subset of Y .

Definition 2.2.([13]) Let X be a poset and mapping t : X → X non-
decreasing. We call t a closure operator if the following hold:

(i) x ≤ t(x) for all x ∈ X;
(ii) t ◦ t = t.

Definition 2.3.([14]) Let X be a complete lattice. (L, t) is called an infer-
ence system if t : X → X is a closure operator.

Proposition 2.3.([13]) Let X be a poset and mapping t : X → X non-
decreasing. Then t is a closure operator if and only if there exists a poset Y
and two non-decreasing mappings f : X → Y and g: Y → X such that f � g
and t = g ◦ f .

From Proposition 2.3, we know that if we take X = Y = L (a complete
lattice) and for any fixed a ∈ L, f(x) = T (a, x), g(x) = I(a, x) for any x ∈ L,
where T is a t-norm on L such that (T, I) forms an adjoint couple on L, then
t : L → L, i.e., t(x) = I(a, T (a, x)) for any x ∈ L is a closure operator, and
hence (L, t) forms an inference system.

Definition 2.4. Let X and Y be complete lattices, h : X → Y . We define
fh : Y → X and gh : Y → X as follows:

fh(y) = inf{t ∈ X | y ≤ h(t)}, ∀y ∈ Y. (2.1)

gh(y) = sup{t ∈ X | h(t) ≤ y}, ∀y ∈ Y. (2.2)

We can easily obtain the following results from Proposition 2.3.

Theorem 2.1. Suppose that X and Y are two complete lattices, h : X →
Y is a non-decreasing mapping and fh, gh are defined by (2.1) and (2.2)
respectively.

(i) h is infinitely ∨−distributive if and only if h � gh;
(ii) h is infinitely ∧−distributive if and only if fh � h.

Theorem 2.2. Suppose that X and Y are two complete lattices, h : X →
Y is a non-decreasing mapping and fh, gh are defined by (2.1) and (2.2)
respectvely.

(i) h is infinitely ∨−distributive if and only if gh(y) =
max{t ∈ X | h(t) ≤ y}, ∀y ∈ Y ;

(ii) h is infinitely ∧−distributive if and only if fh(y) =
min{t ∈ X | y ≤ h(t)}, ∀y ∈ Y.
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Proof. We use the same notation ≤ to denote the partial orders in X
and Y .

(i) If h is infinitely ∨−distributive, then it follows from Theorem 2.1
that h � gh. So, for any y ∈ Y , gh(y) ≤ gh(y) follows that h(gh(y)) ≤
y, i.e., gh(y) ∈ {t ∈ X | h(t) ≤ y}. Therefore, gh(y) = max{t ∈ X | h(t) ≤ y}.

Conversely, suppose that gh(y) = max{t ∈ X | h(t) ≤ y} holds for any
y ∈ Y . We need to prove h(sup

z∈Z
z) = sup

z∈Z
h(z) for any nonempty subset Z

of X .
Observe firstly that from the monotonicity of h ,we always have h(sup

z∈Z
z) ≥

sup
z∈Z

h(z).

Let b = h(sup
z∈Z

z). This implies that h(z) ≤ b for any z ∈ Z. Therefore,

z ∈ {t ∈ X | h(t) ≤ b} for every z ∈ Z, and consequently z ≤ gh(b)
for every z ∈ Z. Thus, sup

z∈Z
z ≤ gh(b). From the monotonicity of h, we get

h(sup
z∈Z

z) ≤ h(gh(b)) ≤ b = sup
z∈Z

h(z). So we obtain h(sup
z∈Z

z) = sup
z∈Z

h(z).

(ii) Similar to the proof of (i).
The following are the straight conclusions of Proposition 2.3 and

Theorem 2.1.

Theorem 2.3. Let X and Y be two complete lattices. Suppose that h : X →
Y is a non-decreasing and fh, gh are defined by (2.1) and (2.2) respectively.

(i) If h is infinitely ∨−distributive, then t1 = gh ◦ h is a closure operator
on X and hence (X, t1) forms an inference system.

(ii) If h is infinitely ∧−distributive, then t2 = h ◦ fh is a closure operator
on Y and hence (Y, t2) forms an inference system.

3 T-Seminorms and Their Residual Implications

In the following, we always use L to denote a complete lattice with the
maximal element 1 and minimal element 0.

Definition 3.1. A binary operation I on L is an implication if it satisfies:
(i) I(1, y) = y and I(0, y) = 1 for any y ∈ L;
(ii) I is non-increasing in its first and non-decreasing in its second variable.

Remark 3.1. The above definition of implications on L is different from
the one in [13], where there is no the condition: I is non-increasing in its
first variable.

Form Definition 3.1, we know I(x, 1) = 1 for any x ∈ L since
I(x, 1) ≥ I(1, 1) = 1.

Definition 3.2. (Fodor [10,11]) A function f : [0, 1]2 −→ [0, 1] is called a
weak t-norm if it satisfies the following conditions:
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(i) T (x, 1) ≤ x, T (1, y) = y for any x, y ∈ [0, 1];
(ii) T (x1, y1) ≤ T (x2, y2) if x1 ≤ x2 and y1 ≤ y2 for any x1, x2, y1, y2 ∈

[0, 1].
Wang and Yu [12] point out that Fodor’s definition of weak t-norms

on [0,1] can be easily extended to a general complete Brouwerian lattice.
Noticing that general QL–implication on [0,1] cannot be induced by weak
t-norms on [0,1] (see [10]), Wang and Yu [12] generalized the notion of weak
t-norms to the following form.

Definition 3.3. (Wang and Yu[12]) A binary operation T on L is called a
pseudo-t-norm if it satisfies the following conditions:

(i) T (1, x) = x, T (0, y) = 0 for any x, y ∈ L;
(ii) y ≤ z implies T (x, y) ≤ T (x, z) for all x, y, z ∈ L.

Remark 3.2. There are two kinds of residual operations for a pseudo-t-
norm or for a weak t-norm, but one of them is not an implication on L
in general. In fact, let T be a pseudo-t-norm or a weak t-norm on L, we
cannot determine the value of sup{t ∈ L | T (t, 1) ≤ y} since T (t, 1) cannot
be determined for a given t ∈ L. This means that for the residual operator IT
of T , we cannot judge if IT (1, y) = y holds for any y ∈ L. This fact impels
us to generalize the notions of pseudo-t-norms and weak t-norms as follows.

Definition 3.4. A binary operation T on L is called a triangular seminorm
(briefly t-seminorm) if it satisfies the following conditions:

(i) T (1, x) = T (x, 1) = x for all x ∈ L;
(ii) T is non-decreasing in each variable.
It is clear from above definition that T (x, 0) = T (0, x) = 0 and

TD(x, y) ≤ T (x, y) ≤ TM (x, y) for any x, y ∈ L, where TD(x, y) = min(x, y)
if max(x, y) = 1, TD(x, y) = 0 otherwise, and TM (x, y) = min(x, y) ([15]).
Moreover, any t-seminorm on L must be a weak t-norm and hence a pseudo-
t-norm on L. A t-seminorm on L is a t-norm only when it is commutative
and associative.

Definition 3.5. Let T be a t-seminorm on L. The following I1T and I2T :
L2 → L are said to be type-1 and type-2 residual operators respectively, for
any x, y ∈ L,

I1T (x, y) = sup{t ∈ L | T (t, x) ≤ y}, (3.1)

I2T (x, y) = sup{t ∈ L | T (x, t) ≤ y}. (3.2)

Obviously, I1T = I2T when t-seminorm T is commutative. It is easy to verify
that type-1 and type-2 residual operators of t-seminorm T on L are impli-
cations on L. Moreover, if T1 and T2 are comparable t-seminorms on L such
that T1 ≤ T2, then I1T1 ≥ I1T2 and I2T1 ≥ I2T2 .
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For a given y ∈ L, if we write h(x) = T (y, x) for all x ∈ L, then h is a
non-decreasing mapping on L and I2T corresponds to formula (2.2). The
following are the straight results of Proposition 2.1, Theorems 2.1 and 2.2.

Theorem 3.1. Let T be a t-seminorm on L. Then the following statements
are equivalent:

(i) T is infinitely ∨−distributive in its second variable;
(ii) For any fixed x ∈ L, T (x, ·) � I2T (x, ·), i.e., T (x, y) ≤ z if and only if

y ≤ I2T (x, z) for any y, z ∈ L;
(iii) y ≤ I2T (x, T (x, y)), T (x, I2T (x, y)) ≤ y for all x, y ∈ L;
(iv) I2T (x, y) = max{t ∈ L | T (x, t) ≤ y} for any x, y ∈ L.
The equivalentness about (i), (ii) and (iv) in Theorem 3.1 is same as the

result for pseudo-t-norms given by Wang and Yu in [12].
From Proposition 2.2, Theorems 2.3 and 3.1, we can get the following

results.

Theorem 3.2. Let T be a t-seminorm on L and satisfy infinitely
∨−distributive law in its second variable. Then

(i) T (x, I2T (x, T (x, y))) = T (x, y), I2T (x, T (x, I2T (x, y))) = I2T (x, y) for
all x, y ∈ L.

(ii) For any given y ∈ L, the mapping t : L → L defined by t(x) =
I2T (y, T (y, x)) is a closure operator on L , and hence (L, t) forms an inference
system.

Theorem 3.2 (i) is Wang and Yu’s result for pseudo-t-norm T (see Theorem
4.3 in [13]).

For any t-seminorm T on L, if we define T ′ : L2 → L by T ′(x, y) = T (y, x)
for any x, y ∈ L, then it is clear that T ′ is also a t-seminorm on L. So we
know I1T = I2T ′ . Therefore, we can get from Theorems 3.1 and 3.2 the
following corresponding results associated to the type-1 residual implications.

Theorem 3.3. Let T be a t-seminorm on L. Then the following statements
are equivalent:

(i) T is infinitely ∨−distributive in its first variable;
(ii) For any given y ∈ L, T (·, y) � I1T (y, ·), i.e., T (x, y) ≤ z if and only if

x ≤ I1T (y, z) for all x, z ∈ L;
(iii) y ≤ I1T (x, T (y, x)), T (I1T (x, y), x) ≤ y for any x, y ∈ L;
(iv) I1T (x, y) = max{t ∈ L | T (t, x) ≤ y} for any x, y ∈ L.

Theorem 3.4. Let T be a t-seminorm on L and satisfy infinitely
∨−distributive law in its first variable. Then

(i) T (I1T (y, T (x, y)), y) = T (x, y), I1T (x, T (I1T (x, y), x)) = I1T (x, y) for
any x, y ∈ L;

(ii) For any given y ∈ L, the mapping t : L → L defined by
t(x) = I1T (y, T (x, y)) is a closure operator on L , and hence (L, t)
forms an inference system.
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Theorem 3.5. Let T be a t-seminorm on L and infinitely ∨−distributive
in its two variables. Then I1T and I2T satisfy

(OP) IiT (x, y) = 1 if and only if x ≤ y for all x, y ∈ L, i = 1, 2;
(I∧) IiT is infinitely ∧−distributive in its second variable, i = 1, 2.

Proof. (OP) It follows from Theorem 3.3 that for any x, y ∈ L, x ≤ y if and
only if T (1, x) ≤ y if and only if 1 ≤ I1T (x, y) if and only if I1T (x, y) = 1
The proof for the case of I2T is similar.

(I∧) For any x ∈ L, and any subset Y of L, if Y = ∅, then I1T (x, inf
y∈Y

y) =

I1T (x, 1) = 1 = inf
y∈Y

I1T (x, y) since inf ∅ = 1; if Y �= ∅, then we have

I1T (x, inf
y∈Y

y) = sup{t ∈ L | T (t, x) ≤ inf
y∈Y

y}
= sup{t ∈ L | ∀y ∈ Y, T (t, x) ≤ y} = sup{t ∈ L | ∀y ∈ Y, t ≤ I1T (x, y)}
= sup{t ∈ L | t ≤ inf

y∈Y
I1T (x, y)} = inf

y∈Y
I1T (x, y).

The proof for the case of I2T is similar.

4 T-Seminorms Induced by Implications on a
Complete Lattice

In this section, we discuss the t-seminorms induced by implications on a
complete lattice.

Definition 4.1. Let I : L2 → L be an implication. We define the induced
operators T1I and T2I from I as follows, for any x, y ∈ L,

T1I(x, y) = inf{t ∈ L | x ≤ I(y, t)}. (4.1)

T2I(x, y) = inf{t ∈ L | y ≤ I(x, t)}. (4.2)

Obviously, T1I = T2I holds if I satisfies x ≤ I(y, z) iff y ≤ I(x, z) for any
x, y, z ∈ L.

Remark 4.1. (i) The T1I and T2I defined by (4.1) and (4.2) are two well
defined operators, i.e., the appropriate sets in (4.1) and (4.2) are non-empty
since I(x, 1) = 1 for any x ∈ L.

(ii) It is worthwhile to mention that T1I and T2I defined by the above are
not necessarily t-seminorms. For instance, if we take I(x, y) = 1−x+xy for
all x, y ∈ [0, 1] (Reichenbach implication), then for any x > 0, by (4.1) and
(4.2), we obtain that T1I(1, x) = 1 �= x and T2I(x, 1) = 1 �= x. These facts
mean that I1T and I2T are not t-seminorms.

We now give the conditions such that T1I and T2I are t-seminorms.
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Theorem 4.1. Assume that I is an implication on L and satisfies (OP):
I(x, y) = 1 if and only if x ≤ y for any x, y ∈ L. Then T1I and T2I defined
by (4.1) and (4.2) are t-seminorms on L .
Proof. Since I is an implication on L and satisfies (OP), we get by (4.1) that
for any x ∈ L,

T1I(1, x) = inf{t ∈ L | 1 ≤ I(x, t)} = inf{t ∈ L | x ≤ t} = x,

T1I(x, 1) inf{t ∈ L | x ≤ I(1, t)} = inf{t ∈ L | x ≤ t} = x.

For any x1, x2, y1, y2 ∈ L and x1 ≤ x2, y1 ≤ y2, since y1 ≤ y2 implies
I(y2, t) ≤ I(y1, t) for any t ∈ L, we have x1 ≤ x2 ≤ I(y2, t) ≤ I(y1, t), i.e., t ∈
{t ∈ L | x1 ≤ I(y1, t)}, if t ∈ {t ∈ L | x2 ≤ I(y2, t)}. This means that
{t ∈ L | x2 ≤ I(y2, t)} ⊆ {t ∈ L | x1 ≤ I(y1, t)}. So we get inf{t ∈ L | x1 ≤
I(y1, t)} ≤ inf{t ∈ L | x2 ≤ I(y2, t)}, i.e., T1I(x1, y1) ≤ T1I(x2, y2) when
x1 ≤ x2 and y1 ≤ y2.

Therefore, T1I is a t-seminorm. The proof for T2I is similar to the above.
For any fixed x ∈ L, by taking h(y) = I(x, y) for all y ∈ L, we obtain the

following straight results of Proposition 2.1 and Theorems 2.1 and 2.2.

Theorem 4.2. Let I be an implication on L. Then the following statements
are equivalent:

(I∧) I is infinitely ∧−distributive in its second variable;
(i) for any fixed y ∈ L, T1I(·, y) � I(y, ·);
(ii) x ≤ I(y, T1I(x, y)), T1I(I(y, x), y) ≤ x for any x, y ∈ L;
(iii) T1I(x, y) = min{t ∈ L | x ≤ I(y, t)} for any x, y ∈ L.

Theorem 4.3. Let I be an implication on L. Then the following statements
are equivalent:

(I∧) I is infinitely ∧−distributive in its second variable;
(i) For any fixed x ∈ L, T2I(x, ·) � I(x, ·);
(ii) y ≤ I(x, T2I(x, y)), T2I(x, I(x, y)) ≤ y for any x, y ∈ L;
(iii) T2I(x, y) = min{t ∈ L | y ≤ I(x, t)} for any x, y ∈ L.
From Proposition 2.2 and Theorems 4.2, 4.3 and 2.3 we can get the

following results.

Theorem 4.4. Let I be an implication on L satisfying infinitely
∧−distributive law in its second variable. Then

(i) T1I(I(y, T1I(x, y)), y) = T1I(x, y), I(y, T1I(I(y, x), y)) = I(y, x) for
any x, y ∈ L;

(ii) T2I(x, I(x, T2I(x, y))) = T2I(x, y), I(x, T2I(x, I(x, y))) = I(x, y) for
any x, y ∈ L;

(iii) For any fixed y ∈ L, the mapping t1, t2 : L → L defined by t1(x) =
I(y, T1I(x, y)) and t2(x) = I(y, T2I(y, x)) for all x ∈ L are closure operators
on L and hence (L, t1) and (L, t1) form two inference systems.
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We now give the conditons such that T1I and T2I are t-seminorms and they
are infinitely ∨−distributive respectively in its first and in its second variable.

Theorem 4.5. Let I be an implication on L and satisfy (OP) and (I∧).
Then T1I defined by (4.1) and T2I defined by (4.2) are t-seminorms satisfying
infinitely ∨−distributive law respectively in its first and in its second variable.
Moreover, I = I1T1I = I2T2I .
Proof. First, it follows from Theorem 4.1 that T1I and T2I are t-seminorms
on L under the assumptions. We now prove that T1I and T2I are infinitely
∨−distributive respectively in its first and in its second variable.

From Theorem 4.2 we know T1I(·, y) � I(y, ·) for any fixed y ∈ L. Since
implication I satisfies I∧, so we have, for any y ∈ L and any subset X of L,

T1I(sup
x∈X

x, y) = inf{t ∈ L | sup
x∈X

x ≤ I(y, t)}

= inf{t ∈ L | ∀x ∈ X,x ≤ I(y, t)}
= inf{t ∈ L | ∀x ∈ X,T1I(x, y) ≤ t}
= inf{t ∈ L | sup

x∈X
T1I(x, y) ≤ t}

= sup
x∈X

T1I(x, y).

The proof for the case of T2I is similar.
In the sequel, we consider I1T1I and I2T2I . By means of Theorems 3.1 and

3.3, we have, for any x, y ∈ L,

I1T1I (x, y) = sup{t ∈ L | T1I(t, x) ≤ y} = sup{t ∈ L | t ≤ I(x, y)} = I(x, y)

I2T2I (x, y) = sup{t ∈ L | T2I(x, t) ≤ y} = sup{t ∈ L | t ≤ I(x, y)} = I(x, y)

So we obtain I1T1I = I2T2I = I if implication I satisfies (OP) and (I∧).
Summarize the results in Theorems 3.5 and 4.5, we get the following

theorem.

Theorem 4.6. Let T be a t-seminorm on L.
(i) If T is infinitely ∨−distributive in its first variable, then I1T satisfies

(OP) and (I∧), and T = T1I1T . Conversely, if implication I on L satisfies
(OP) and (I∧), then T1I is infinitely ∨−distributive in its first variable, and
I = I1T1I .

(ii) If T is infinitely ∨−distributive in its second variable, then I2T satisfies
(OP) and (I∧), and T = T2I2T . Conversely, if implication I on L satisfy
(OP) and (I∧), then T2I is infinitely ∨−distributive in its second variable,
and I = I2T2I .
Proof. We only need to prove T = T1I1T in (i) and T = T2I2T in (ii), since
the others are all the results in Theorems 3.5 and 4.5. We only prove the first
equation since the proof for another is similar.

It follows from Theorems 3.3 that for any x, y ∈ L,

T1I1T (x, y) = inf{t ∈ L | x ≤ I1T (y, t)}
= inf{t ∈ L | T (x, y) ≤ t} = T (x, y).



224 H.-w. Liu and P.-j. Xue

We now propose another method inducing t-seminorms from implications
on L and another method inducing implications from t-seminorms and
involuative negations on L.

Theorem 4.7. (i) Let I be an implication on L and the negation NI : L → L
defined by: NI(x) = I(x, 0) for any x ∈ L is involuative. Then the mapping
T : L2 → L defined by

T (x, y) = NI(I(x,NI(y))), x, y ∈ L (4.3)

is a t-seminorm on L.
(ii) Let T be a t-seminorm on L and N an involuative negation on L.

Then I : L2 −→ L defined by

I(x, y) = N(T (x,N(y))), x, y ∈ L (4.4)

is an implication on L.
Proof (i) First of all, it follows from (4.3) we know that T is non-decreasing
in both variables. For any x ∈ L, by (4.3) we get

T (x, 1) = NI(I(x,NI(1))) = NI(I(x, 0)) = x,

T (1, x) = NI(I(1, NI(x))) = NI(NI(x)) = x.

(ii) From (4.4) we know that I is non-increasing in its first variable and
non-decreasing in its second variable. For any y ∈ L , we have by (4.4) that

I(1, y) = N(T (1, N(y))) = N(N(y)) = y.

I(0, y) = N(T (0, N(y))) = N(0)) = 1.

5 Conclusion

In this paper, we have introduced the definition of t-seminorms on a complete
lattice, and defined two types of residual operators of t-seminorms. We have
pointed out that the residual operators of t-seminorms are all implications on
a complete lattice and their properties have been discussed. The equivalent
conditions of t-seminorms satisfying infinitely ∨–distributive law respectively
in its first and in its second variable have been given. For an implication I
on a complete lattice, we have defined its two kinds of induced operators
T1I and T2I and given the conditions such that T1I and T2I are t-seminorms
and the conditions such that T1I(T2I) is a t-seminorm satisfying infinitely
∨−distributive law in its first (second) variable. The equivalent conditions
for the implications satisfying infinitely ∧−distributive law in its second
variable have also been given. We have also proposed another method inducing
t-seminorms from implications and another method inducing implications
from t-seminorms and involutive negations on a complete lattice. In our future
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study, we will generalize this work to the case of uninorms on a complete
lattice. We will define semi-uninorms and further define and discuss their
residual operators. These works will bring benefit for approximate reasoning,
information aggregation and other application areas.
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Abstract. The reversibility of fuzzy inference methods is an important crite-
rion to judge the effect of implication operators matching inference methods.
Only the implication operators perfectly match inference methods can fuzzy
reasoning have good effect. Furthermore, a fuzzy inference method satisfying
reversibility is consistent with the classical boolean logic calculus. In this pa-
per, first the properties of �Lukasiewicz and Goguen implication operators are
investigated, then necessary and sufficient conditions of reversibility of Triple
I Method for FMP and FMT based on them are proved respectively.

Keywords: Triple I Method; Reversibility, �Lukasiewicz implication, Goguen
implication, FMT (Fuzzy Modus Ponens), FMT (Fuzzy Modus Tollens).

1 Introduction

The methods of fuzzy reasoning play important roles in the design and anal-
ysis of fuzzy control and expert systems. FMP (Fuzzy Modus Ponens) and
FMT (Fuzzy Modus Tollens) problems are two most important inference
models for fuzzy reasoning:

FMP : Given A → B (rule) and A∗ (input), to compute B∗(output), (1)

FMT : Given A → B (rule) and B∗ (input), to compute A∗(output). (2)

Where A,A∗ ∈ F (X) (the set of all fuzzy subsets of universe X) and B,B∗ ∈
F (Y ) (the set of all fuzzy subsets of universe Y ). Zadeh proposed CRI [2]
(Compositional Rule of Inference) method for FMP problem in 1973. After
that, many research have been done both theoretically and practically. For
improving the CRI method, Wang proposed a new method of fuzzy inference
called Triple I (the abbreviation for triple implication) Method in [3,4]. The
basic principle is
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(A(x) → B(y)) → (A∗(x) → B∗(y)) (3)

should take its maximum whenever x ∈ X and y ∈ Y .
In [5, 6] the unified form of triple I method was formulated based on all

left-continuous t-norms and their residuum. In [5, 12, 13, 14, 15] reversibility
of triple I method were investigated on the account of that a method of fuzzy
inference is consistent if it has reversibility (for FMP, reversibility means B∗

should be B if A∗ = A. for FMT, it means A∗ should returns to A if B∗ = B).
In these papers, some sufficient conditions of Triple I method for FMP and
FMT were obtained based on various triangular norms and fuzzy implication
operators.

In the present paper, we investigate the properties of �Lukasiewicz t-norm
and its residuum, and explore the triple I method based on them. Then we
give sufficient and necessary conditions of reversibility of triple I methods for
FMP and FMT methods and examine their connection with the conclusions
of previous literatures.

2 Preliminaries

Although there are Triple I Method based on other fuzzy implications and
Triple I Method whose three implication operators in (3) may be different,
the unified form of Triple I Method formulated in [5, 6] employs same impli-
cation operator in (3). And the implication operators it employs is regular
implication operators, i.e., the residuum of left-continuous t-norms on which
we won’t emphasize in the present paper.

PRINCIPLE OF TRIPLE I FOR FMP (See [3].)The FMP conclu-
sion B∗ of (1) is the smallest fuzzy subset of Y which maximize (3).

Theorem 1. (Triple I Method for FMP)(See [5].) Suppose the impli-
cation operator → in FMP (1) is regular,then the FMP conclusion of (1)
satisfying the PRINCIPLE OF TRIPLE I FOR FMP is

B∗(y) = sup
x∈X

{A∗(x) ⊗ (A(x) → B(y))}, y ∈ Y. (4)

where ⊗ is the t-norm residuated to →.

PRINCIPLE OF TRIPLE I FOR FMT (See [3].)The FMT conclu-
sion A∗ of (2) is the greatest fuzzy subset of X which maximize (3).

Theorem 2. (Triple I Method for FMT)(See [6].) Suppose the impli-
cation operator → in FMT (2) is regular,then the FMT conclusion of (2)
satisfying the PRINCIPLE OF TRIPLE I FOR FMT can be expressed as
follows

A∗(y) = inf
y∈Y

{(A(x) → B(y)) → B∗(y)}, x ∈ X. (5)
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The most fundamental deduction rule in logic is modus ponens, it says that
if A → B and A are given, then B follows. Accordingly, it is very natural to
require the FMP conclusion B∗ in (1) should return to B if the input A∗ is A.
Similarily, the FMT conclusion A∗ in (2) should return to A if the input B∗

is B.
There is a sufficient condition of reversibility of Triple I Method for FMP

in [5].

Theorem 3. The Triple I Method for FMP is reversible for normal input,
i.e., if the fuzzy subset A∗ in (1) and (4) equals to A and A is a normal fuzzy
subset of X, then B∗ equals to B, where R is a regular implication operator.

There also is a sufficient condition of reversibility of Triple I Method for
FMT in [5].

Theorem 4. ( [5]) The Triple I Method for FMT is reversible for co-normal
input, i.e., if the fuzzy subset B∗ in (2) and (5) equals to B and B′ is a normal
fuzzy subset of Y , then A∗ equals to A, where R is a normal implication
operator. A normal implication operator is a regular one who satisfies a′ →
b′ = b → a where a′ = 1 − a, b′ = 1 − b, a, b ∈ [0, 1].

3 Reversibility of Triple I Method

Firstly, we give the �Lukasiewicz Implication operator and t-norm together
with their properties we need in this paper. Below,

a⊗�L b = (a + b− 1) ∨ 0, a →�L b = (1 − a + b) ∧ 1, where a, b, c ∈ [0, 1].

are the �Lukasiewicz t-norm and implication operator. They satisfy the fol-
lowing properties:

a⊗�L (a →�L b) = a ∧ b, (a →�L b) →�L b = a ∨ b, a, b ∈ [0, 1]. (6)

Theorem 5. The Triple I Method for FMP based on �Lukasiewicz Implication
is reversible if and only if

sup
x∈X

{A(x)} ≥ sup
y∈Y

{B(y)}. (7)

Proof. Suppose the triple I method for FMP based on �Lukasiewicz Implica-
tion is reversible, then the fuzzy subset A∗ in (4) equals A when B∗ equals B,
i.e.,

B∗(y) = sup
x∈X

{A(x) ⊗�L (A(x) →�L B(y))} = B(y), y ∈ Y. (8)
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It follows the properties of (6) and (8) that

sup
x∈X

{A(x) ⊗�L (A(x) →�L B(y))}

= sup
x∈X

{A(x) ∧B(y)}

= sup
x∈X

{A(x)} ∧B(y)

= B(y), y ∈ Y.

Therefore
sup
x∈X

{A(x)} ≥ sup
y∈Y

{B(y)}.

Conversely, suppose (7) holds, then

sup
x∈X

{A(x)} ≥ B(y), y ∈ Y. (9)

Again, by the properties of (6), it follows from the Triple I Method for FMP
and (9) that

B∗(y) = sup
x∈X

{A∗(x) ⊗�L (A(x) →�L B(y))}

= sup
x∈X

{A(x) ⊗�L (A(x) →�L B(y))}

= sup
x∈X

{A(x) ∧B(y)}

= sup
x∈X

{A(x)} ∧B(y)

= B(y)

holds for any y ∈ Y if A∗ = A (i.e., B∗ returns to B if A∗ = A), i.e.,
reversible.

This theorem gives a sufficient and necessary condition of Triple I Method
for FMP based on �Lukasiewicz Implication. In the following theorem we give
a sufficient and necessary condition of Triple I Method for FMT based on the
same operator.

Theorem 6. The Triple I Method for FMT based on �Lukasiewicz Implication
is reversible if and only if

inf
x∈X

{A(x)} ≥ inf
y∈Y

{B(y)}. (10)

Proof. Suppose the fuzzy subset B∗ equals to B when A∗ equals A (re-
versible), i.e.,

A∗(y) = inf
y∈Y

{(A(x) →�L B(y)) →�L B(y)} = A(x), x ∈ X. (11)
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It follows property in (6) that

inf
y∈Y

{(A(x) →�L B(y)) →�L B(y)} = inf
y∈Y

{A(x) ∨B(y)}, x ∈ X. (12)

From (11) and (12) we get

A(x) = inf
y∈Y

{A(x) ∨B(y)} = inf
y∈Y

{A(x)} ∨B(y), x ∈ X.

Therefore
inf
x∈X

{A(x)} ≥ inf
y∈Y

{B(y)}.

Conversely, suppose (10) holds, then for any x ∈ X,A(x) ≥ inf
y∈Y

{B(y)}.
When B∗ = B, by the Triple I Method for FMT and property of →�L, we
have

A∗(x) = inf
y∈Y

{(A(x) →�L B∗(y)) →�L B∗(y)}

= inf
y∈Y

{(A(x) →�L B(y)) →�L B(y)}

= inf
y∈Y

{A(x) ∨B(y)}

= A(x) ∨ inf
y∈Y

{B(y)}

= A(x), x ∈ X,

i.e., A∗ returns to A. The Triple I Method for FMT based on �Lukasiewicz
implication is reversible.

Remark 1. The equation in (6), theorem 5 and 6 will still hold if the
�Lukasiewicz implication is replaced by the Goguen implication (the related
�Lukasiewicz t-norm will be replaced by product t-norm correspondingly). The
proof is analogous and we will not repeat it.

4 Conclusion

The conclusion about reversibility in [5] are based on all regular implication
operator, i.e., residuum of left-continuous t-norms. In [12, 13, 14, 15], suffi-
cient conditions of reversibility of Triple I Method were proved based on
some specified fuzzy implication. We give two sufficient and necessary con-
ditions of Triple I Method in this paper. This is a further, and at the same
time restricted to �Lukasiewicz and Goguen implications, development of pre-
vious literatures. We will continue our investigation in reversibility of Triple
I Method based on other implication operators in later research.
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Abstract. If there is a probability distribution on the valuation domain
[0, 1] of logic formulas, the concept of random valuation is introduced, and
it is showed that every logic formula determines correspondingly a random
function over a probability space. The concept of truth degree of a logic
formula, similarity degree and pseudo-metric among two logic formulas are
introduced, and it is proved that the truth degree set of all logic formulas
and the random logic pseudo-metric space have not isolated point. Based on
random truth degree theory three diverse approximate reasoning ways are
proposed.

Keywords: Probability space; logic formula; random valuation; random
truth degree; random logic pseudo-metric; approximate reasoning.

1 Introduction

Artificial Intelligence, which put emphasis on formalized logic deduction,
plays important roles in the subject areas such as logic programming, auto-
matic theorem proving and knowledge reasoning, etc. While numerical com-
puting seems to be completely different and far from the formal deduction
method. Hence how to combine these two opposite methods is an attractive
research problem. In dealing with combination of logic deduction with prob-
abilistic computing, graded method of logic deduction is extensively used.
Because it realized to be the exact means featuring human thinking of which
logic deduction and numerical estimation are naturally mixed [1-7]. For ex-
ample, ref. [6] proposed a thoroughly graded theory of logic deduction where
numerical calculations were used throughout the paper, and ref. [7] proposed
a graded method of logic deduction based on the concept of similarities where
two nice complete theorems were proved in purely formalized ways.

Quantitative logic, proposed by Wang, link up the artificial intelligence and
the theories of numerical computing by grading the logic concepts [8-13]. The
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graded idea and method in quantitative logic followed and developed the cor-
responding method in ref. [5-7], and proposed different theories of approxi-
mate reasoning both in two valued logic, many valued logic and continuous
valued logic of which the concepts of truth degree of formulas and pseudo-
metric among formulas was constructed. In grading logic concepts in quan-
titative logic they base on a hidden fact that an atomic formula takes every
value in valued domain is equal possible, from the view of probability, there
is an equal probability distribution on valued domain and then every atomic
formula q determines correspondingly an evenly distribution random variable.
This equal possibility of atomic formula valued in valuation space seems to be
in conflict with the randomness of atomic formula valued, and hence it also is
the flaw of quantitative logic that take no account of randomness.

The rest of this paper is organized as follows. Section 2 illustrates that
every logic formula determines correspondingly a random function. In Section
3, the concept of random truth degree is introduced. Section 4 establishes
a logic pseudo-metric space. Section 5 presents three diverse approximate
reasoning ways. Section 6 concludes the study.

2 Random Function Derived from Logic Formulas

Suppose that ξ is a random variable from a probability space (Θ, P0) to the
unit interval I = [0, 1], then its distribution function Fξ(x) has the following
form: when x ≤ 0, Fξ(x) = 0; and x ≥ 1, Fξ(x) = 1. Hence the distribu-
tion function Fξ(x) determines another probability measure space (I, B, Pξ):
∀B ∈ B, Pξ(B) = P0({ω | ξ(ω) ∈ B}), where B be the Borel set family in the
unit interval [0, 1] (see ref. [14]).

Definition 1. ([14]) Let (In, Bn, Pn) = (I, B, Pξ), n = 1, 2, · · ·, I∞ =
∞∏
n=1

In. Then
∞∏
n=1

Bn generates a σ−algebra A on I∞, and there exists a

unique probability measure on A such that for any measurable subset E of
m∏
n=1

In,

P (E ×
∞∏

n=m+1

In) = (P1 × · · · × Pm)(E), m = 1, 2, · · · .

P is called the product measure on I∞. In the following, we also denote I∞

by Ω, and the probability measurable space (Ω, A, P ) will often be abbreviated
to Ω.

Suppose that ¬, ∨, → are independent logic connectives, S = {q1, q2, · · ·}
and F (S) is the free algebra of type (¬, ∨, →) generated by S, i.e., F (S) is
the set consisting of all logic formulas, define on I three operations as follows:
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¬x = 1 − x, x ∨ y = max{x, y}, x → y = R(x, y), x, y ∈ I ,

where R : I2 → I is an implication operator. Then I becomes an algebra
of type (¬, ∨, →). If there is a probability distribution on I, i.e., there is
a random variable from a probability space to I, then I is called a random
unit interval. A random valuation v of F (S) into a random unit interval I
is a homomorphism ν : F (S) → I of type (¬, ∨, →), ν(A) is the random
valuation of A w.r.t. ν. The set consisting of all random valuations of F (S)
is denoted by Ω(R).

A random valuation ν : F (S) → I is uniquely decided by its restriction
on S; in other words, every mapping ν0 : S → I can uniquely be extended
to be a random valuation because F (S) is a free algebra generated by S,
i.e., if ν(qk) = νk(k = 1, 2, · · ·), then v = (ν1, ν2, · · ·) ∈ Ω. Conversely,
if v = (ν1, ν2, · · ·) ∈ Ω, then there exists a unique ν ∈ Ω(R) such that
ν(qk) = νk(k = 1, 2, · · ·). This shows that ϕ : Ω(R) → Ω, ϕ(ν) = v is a
bijection. Hence the probability P on Ω can be transferred into Ω(R) by
means of ϕ, i.e., P ∗(Σ) = P (ϕ(Σ)) for any Σ ⊆ Ω(R), where ϕ(Σ) is desired
a P -measurable set, i.e., ϕ(Σ) ∈ A, ϕ is called the measured mapping of Ω(R)
and its inverse mapping is denoted by ϕ−1. We employ A∗ denote the set
family of inverse image of all sets in A under mapping ϕ, i.e., A∗ = {Σ |Σ ⊆
Ω(R), ϕ(Σ) ∈ A}. Thus (Ω(R), A∗, P ∗) is also a probability measure space,
and the computing with respect to P ∗ can be transferred into the computing
with respect to P via equation P ∗(Σ) = P (ϕ(Σ)).

Let A ∈ F (S) and ξ be a random variable from a probability space (Θ, P0)
to the unit interval I. Then A uniquely defines a random function Aξ : Ω → I
as follows:

Aξ(v) = ϕ−1(v)(A) = ν(A), v ∈ Ω .

In particular, every atomic formula qi (i = 1, 2, · · ·) determines a random
variable over (Ω, A, P ), which is denoted by ξi (i = 1, 2, · · ·). These random
variables are mutually independent and has the same distribution with ξ. If
A = A(qi1 , · · · , qit) is a formula consisting of t atomic formulas, then because
of v(qij )(1 ≤ j ≤ t) taking any value in I, Aξ(·) is really a t variable function
Aξ(ξi1 , · · · , ξit) on It, and the way Aξ(ξi1 , · · · , ξit) acts on ξi1 , · · · , ξit in I
through ¬, ∨, → is the same as the way acts on qi1 , · · · , qit in F (S) through
¬, ∨, →. For example, if A = ¬q1 ∨ q2 → q3, then Aξ(ξ1, ξ2, ξ3) = R(1 −
ξ1, ξ2, ξ3).

3 Random Truth Degree of Logic Formulas

Definition 2. Suppose that ξ is a random variable from a probability space
(Θ, P0) to the unit interval I and its distribution function is Fξ(x). Let A =
A(qi1 , · · · , qit) ∈ F (S) and "t = [0, 1]t. Then

τ (R)
ξ

(A) =
∫
Ω(R)

Aξ(ν)dP ∗ =
∫
Ω

Aξ(v)dP
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=
∫
�t

Aξ(xi1 , · · · , xit)dFξ(xi1 ) · · · dFξ(xit)

is called the random truth of formula A w.r.t. the random variable ξ and the
implication operator R. τ (R)

ξ
(A) may be abbreviated to τ(A) if no confusion

arises.

Remark 1. (1) The random truth τ (R)
ξ

(A) of A is really the mathematical
expectation of random function Aξ.

(2) If ξ is an evenly distributed random variable on I, then the random
truth degree τ (R)

ξ
(A) of A degenerate into the integral truth degree of A in

ref. [3,9].
(3) If ξ is an equal probability distributed random variable on

{0, 1
n−1 , · · · ,

n−2
n−1 , 1} and the implication operator is RLu, then the random

truth degree τ (R)
ξ

(A) of A degenerate into the n-valued truth degree of A in
ref.[10], and when n = 2 it exactly is the truth degree of two valued logic in
ref. [11,12].

(4) If ξ has the following probability distribution on {0, 1
n−1 , · · · ,

n−2
n−1 , 1}:

P ({ξ = 0}) = n−1
n , P ({ξ = 1

n−1}) = · · · = P ({ξ = n−2
n−1}) = 0, P ({ξ = 1}) =

1
n−1 , and the implication operator is RLu, then the random truth degree
τ (R)

ξ
(A) of A degenerate into the n-valued truth degree of A in ref. [13].

In the following we only consider the implication operator RLu.

Example 1. Let A = q1, B = q1 → q2, C = q1 ∧ q2 ∧ q3.
(1) Suppose that ξ has two-point distribution: P ({ξ = 1}) = 0.4,

P ({ξ = 0}) = 0.6. Computer the truth degree of A, B, C.
(2) Suppose that η has the following probability density function:

f(x) =
{

2x , 0 ≤ x ≤ 1,
0 , otherwise .

Computer the truth degree of A, B, C.

Solution 1. (1) The distribution of Aξ as follows: P ({Aξ = 1}) = P ({ξ =

1}) = 0.4, P (Aξ = 0) = 0.6. Hence τ
ξ
(A) =

1∑
i=0

i× P ({Aξ = i}) = 0.4 .

The distribution of Bξ as follows: P ({Bξ(ξ1, ξ2) = 1}) = P ({ξ1 → ξ2 =
1}) = P ({ξ1 = 0})P ({ξ2 = 0}) + P ({ξ1 = 0})P ({ξ2 = 1}) + P ({ξ1 =
1})P ({ξ2 = 1}) = 0.6 × 0.6 + 0.6 × 0.4 + 0.4 × 0.4 = 0.76, P ({Bξ(ξ1, ξ2) =
0}) = P ({ξ1 → ξ2 = 0}) = P ({ξ1 = 1})P ({ξ2 = 0}) = 0.4 × 0.6 = 0.24.

Hence τξ(B) =
1∑
i=0

i× P ({Bξ(ξ1, ξ2) = i}) = 0.76 .

The distribution of Cξ as follows: P ({Cξ(ξ1, ξ2, ξ3) = 1}) = P ({ξ1 ∧ ξ2 ∧
ξ3 = 1}) = P ({ξ1 = 1})P ({ξ2 = 1})P ({ξ3 = 1}) = 0.4 × 0.4 × 0.4 = 0.064,
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P ({Bξ(ξ1, ξ2, ξ3) = 0}) = 1 − P ({Bξ(ξ1, ξ2, ξ3) = 1}) = 1 − 0.064 = 0.936.

Hence τξ(C) =
1∑
i=0

i× P ({Cξ(ξ1, ξ2, ξ3) = i}) = 0.064 .

(2) The distribution function of η is

Fη(x) =
∫ x

−∞
f(t)dt =

⎧⎨⎩
x2 , 0 ≤ x ≤ 1,
0 , x < 0,
1 , x > 1,

τη(A) =
∫
�1

Aη(x1)dFη(x1) =
∫ 1

0
x1dFη(x1) =

∫ 1

0
x1dx1 =

2
3

.

Denote "(1)
2 = {(x1, x2) | 0 ≤ x1, x2 ≤ 1, x1 ≥ x2}, "(2)

2 = {(x1, x2) | 0 ≤
x1, x2 ≤ 1, x1 < x2}. Then

τη(B) =
∫

2

Bη(x1, x2)dFη(x1)dFη(x2) =
∫

2

((1−x1+x2)∧1)f(x1)f(x2)dx1dx2

=
∫
�(2)

2

2x1 ·2x2dx1dx2+
∫
�(1)

2

(1−x1+x2)·2x1 ·2x2dx1dx2

= 4
∫ 1

0
dx2

∫ x2

0
x1x2dx1+4

∫ 1

0
dx1

∫ x2

0
(1−x1+x2)x1x2dx2 =

1
2

+
11
30

=
13
15

.

Denote "(1)
3 = {(x1, x2, x3) | 0 ≤ x1, x2, x3 ≤ 1, x1 ≥ x2 ≥ x3}. Then

τη(C) =
∫
�2

Cη(x1, x2, x3)dFη(x1)dFη(x2)dFη(x3)

=
∫
�3

(x1 ∧ x2 ∧ x3)f(x1)f(x2)f(x3)dx1dx2dx3

= 8
∫
�3

(x1 ∧ x2 ∧ x3)x1x2x3dx1dx2dx3 = 8 × 4
∫
�(1)

3

x1x2x
2
3dx1dx2dx3

= 32
∫ 1

0
dx1

∫ x1

0
dx2

∫ x2

0
x1x2x

2
3dx3 =

32
105

.

Proposition 1. If A ∈ F (S) is a tautology, then τ(A) = 1.

Proof. Suppose that A = A(qi1 , · · · , qit) is a tautology. Then Aξ(v) = 1 for
all v ∈ Ω, and hence τ(A) =

∫
Ω Aξ(v)dP = 1.

Proposition 2. Let A ∈ F (S). Then τ(¬A) = 1 − τ(A).

Proposition 3. Let A,B ∈ F (S). Then τ(A∨B) = τ(A)+ τ(B)− τ(A∧B).
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Proof. Since Aξ ∨ Bξ = Aξ + Bξ − Aξ ∧ Bξ. we know that the conclusion
holds.

Lemma 1. Suppose that distribution function Fξ(x) of ξ is a same order or
lower order infinitesimal with xα for some α > 0 when x → 0. Then ∀ε > 0,
there is A ∈ F (S) such that 0 < τ(A) < ε.

Proof. Since the value domain of ξ is [0,1], lim
xi→0

Fξ(xi) = lim
xi→−∞

Fξ(xi) = 0.

Let At = q1 ∧ · · · ∧ qt, where qi ∈ S and qi �= qj(i, j = 1, · · · , t) when i �= j.
Obviously τ(A) > 0. In the following we prove that

lim
t→∞

τ(At) = lim
t→∞

τ(q1 ∧ · · · ∧ qt) = 0 ,

then τ(A) < ε. In fact, denote

δt = {(x1, · · · , xt) ∈ "t |xi > (
1
t
)

α
2 , i = 1, · · · , t} ,

then x1 ∧ · · · ∧ xt ≤ (1
t )

α
2 on "t − δt. Thus

τ(q1 ∧ · · · ∧ qt) =
∫
�t

x1 ∧ · · · ∧ xtdFξ(ωt)

=
∫
�t−δt

x1 ∧ · · · ∧ xtdFξ(ωt) +
∫
δt

x1 ∧ · · · ∧ xtdFξ(ωt)

≤ (
1
t
)

α
2 + (1 − Fξ((

1
t
)

α
2 ))t .

Because lim
t→∞

(
1
t
)

α
2 = 0 and Fξ(x) is a same order or lower order infinitesimal

with xα(α > 0) when x → 0, lim
t→∞

Fξ((1
t )

α
2 )

(1
t )

α
2

equals to finite valued or ∞. It

follows from

(1 − Fξ((
1
t
)

α
2 ))t = {[1 − Fξ((

1
t
)

α
2 )]

1

F (( 1
t
)

α
2 ) }

Fξ(( 1
t
)

α
2 )

( 1
t
)

α
2

·t
α
2

and lim
t→∞

(1 − 1
t
)t =

1
e

that lim
t→∞

(1 − Fξ((
1
t
)

α
2 ))t = 0. Therefore we can

conclude the conclusion on basis of the above integration inequality.

Lemma 2. If there is 0 < r < 1 such that Fξ(x) > r when x sufficiently
small, then for ε > 0 there is A ∈ F (S) such that 0 < τ(A) < ε.

Proof. Taking t0 ∈ N and 1
t0

< ε
2 . Let At = q1 ∧ · · · ∧ qt, where qi ∈ S and

qi �= qj(i, j = 1, · · · , t) when i �= j. Obviously τ(At) > 0. Denote
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δt0 = {(x1, · · · , xt) ∈ "t |xi >
1
t0

, i = 1, · · · , t} ,

then x1 ∧ · · · ∧ xt ≤
1
t0

on "t − δt0 . Hence

τ(q1 ∧ · · · ∧ qt) =
∫
�t

x1 ∧ · · · ∧ xtdF (ωt)

=
∫
�t−δt0

x1 ∧ · · · ∧ xtdFξ(ωt) +
∫
δt0

x1 ∧ · · · ∧xtdFξ(ωt) ≤
1
t0

+
∫
δt0

dFξ(ωt)

=
1
t0

+ (1−Fξ(
1
t0

)) · (1−Fξ(
1
t0

)) · · · · · (1−Fξ(
1
t0

)) ≤ 1
t0

+ (1− r)t .

Since 0 < r < 1, there is t1 such that (1 − r)t < ε
2 as t > t1. Taking

t = max{t0, t1}, then A = At is a desired formulas.

Theorem 1. Suppose that distribution function F (x) of ξ satisfies the con-
dition of Lemma 1 or 2 and A = A(qi1 , · · · , qit) ∈ F (S). Then for any ε > 0,
there is a formulas B ∈ F (S) such that 0 < |τ(A) − τ(B)| < ε.

Proof. Taking m > max{i1, · · · , it}, it follows from Lemma 1 or 2 that there
is C = C(l) = qm+1 ∧ · · · ∧ qm+l such that 0 < τ(C) < ε. If τ(A) = 0, then
taking B = C(l) and we have |τ(A) − τ(B)| < ε. If τ(A) = 1, then taking
B = ¬C and we have τ(B) = 1− τ(C) �= τ(A) and |τ(A)− τ(B)| < ε. Hence
it is no hurt to assume that 0 < τ(A) < 1. In this case, if τ(A) > 1− ε, then
taking a tautology B and we have 0 < |τ(A)−τ(B)| < ε. If 0 < τ(A) ≤ 1−ε,
then taking B = ¬A → C(l) and we have

Bξ = RLu(1 −Aξ, Cξ) = (Aξ + Cξ) ∧ 1 ≥ Aξ .

Thus

τ(B) =
∫
Ω

BξdP ≤
∫
Ω

(Aξ + Cξ)dP =
∫
Ω

AξdP +
∫
Ω

CξdP = τ(A) + τ(C) .

Therefore
|τ(A) − τ(B)| = τ(B) − τ(A) ≤ τ(C) < ε .

In the following we prove that τ(A) �= τ(B).
In fact, since 0 < τ(A) ≤ 1 − ε we know that P{v : Aξ < 1} ≥ ε. From

0 < τ(C) < ε we also know that P{v : Cξ > 0} > 0. Then it follows from
that Aξ(ξi1 , · · · , ξit) and Cξ(ξm+1, · · · , ξm+l) are independent that

P{v : Aξ < 1, Cξ > 0} = P{v : Aξ < 1} · P{v : Cξ > 0} > 0 .

Because Bξ = (Aξ + Cξ) ∧ 1 > Aξ on set {v : Aξ < 1, Cξ > 0}, we have
τ(A) < τ(B).
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4 Similarity Degree and Pseudo-metric among
Formulas

Definition 3. Suppose that ξ is a random variable from a probability space
(Θ, P0) to the unit interval I and A, B ∈ F (S). Define

μ(R)
ξ

(A, B) = τ (R)
ξ

((A → B) ∧ (B → A)) .

Then μ(R)
ξ

(A, B) is called the random similarity degree of A and B based on
the random variable ξ and the implication operator R. μ(R)

ξ
(A, B) may be

abbreviated to μ(A, B) if no confusion arises.

Theorem 2. Let A, B, C ∈ F (S). Then
(1) If A ≈ B then μ(A, B) = 1.
(2) μ(A, B) + μ(B, C) ≤ 1 + μ(A, C).

Proof. (1) is obviously.
(2) Denote f(x, y) = R(x, y)∧R(y, x), then f(a, c) ≥ f(a, b)+f(b, c)−1.

Hence

μ(A, C) =
∫
Ω

f(Aξ, Cξ)dP ≥
∫
Ω

[f(Aξ, Bξ) + f(Bξ, Cξ) − 1]dP

=
∫
Ω

f(Aξ, Bξ)dP +
∫
Ω

f(Bξ, Cξ)dP − 1 = μ(A, B) + μ(B, C) − 1 .

Theorem 3. Suppose that ξ is a random variable from a probability space
(Θ, P0) to the unit interval I and A, B ∈ F (S). Define

ρ(R)
ξ

(A, B) = 1 − μ(R)
ξ

(A, B) .

Then ρ(R)
ξ

is the pseudo-metric on F (S). (F (S), ρ(R)
ξ

) is called the ran-
dom pseudo-metric based on random variable ξ and implication operator R.
ρ(R)

ξ
(A, B) may be abbreviated to ρ(A, B) if no confusion arises.

Proof. It follows from Definition 3 and Theorem 2 that ρ(R)
ξ

is the pseudo-
metric on F (S).

Theorem 4. Suppose that ξ is a random variable from a probability space
(Θ, P0) to the unit interval I. If R = RLu, then

ρ(A, B) =
∫
Ω

|Aξ(v) −Bξ(v)|dP .

Proof. The proof of this theorem is checked simple.
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Example 2. Let A = q1, B = ¬q1 → q2, Taking random variable ξ, η as in Ex-
ample 1 and implication operator R = RLu. Computing ρ

ξ
(A, B), ρ

η
(A, B).

Solution 2. Note that

(q1 → (¬q1 → q2)) ∧ ((¬q1 → q2) → q1) ≈ (¬q2 → q1) → q1 ≈ ¬q2 ∨ q1 .

Similar to Example 1, we obtain by computing

μ
ξ
(A, B) = τ

η
(¬q2 ∨ q1) = 0.76 ,

μ
η
(A, B) = τ

η
(¬q2 ∨ q1) =

∫
�2

((1 − x2) ∨ x1))x1x2dx1dx2 = 0.5 ,

ρ
ξ
(A, B) = 1 − μ

ξ
(A, B) = 1 − 0.76 = 0.24 ,

ρ
η
(A, B) = 1 − μ

η
(A, B) = 0.5 .

Theorem 5. Suppose that distribution function F (x) of ξ satisfies the con-
dition of Theorem 1 and A = A(qi1 , · · · , qit) ∈ F (S). Then for any ε > 0,
there is a formula B ∈ F (S) such that

0 < ρ(A, B) < ε .

Proof. Taking m > max{i1, · · · , it}, there is C = C(l) = qm+1 ∧ · · · ∧ qm+l
such that 0 < τ(C) < ε by Theorem 1. If τ(A) = 1, then we take B = ¬C
and

ρ(A, B) =
∫
Ω

|1 − (1 − Cξ)|dP =
∫
ω

ξm+1 ∧ · · · ∧ ξm+ldP = τ(C) < ε .

If τ(A) < 1, then we take B = ¬A → C and

ρ(A, B) =
∫
ω

|Aξ −RLu(1 − Aξ, Cξ)|dP =
∫
ω

|Aξ − (Aξ + Cξ) ∧ 1|dP

≤
∫
ω

|(Aξ + Cξ) −Aξ|dP =
∫
ω

CξdP = τ(C) < ε .

Similar to the proof of τ(A) �= τ(B) in Theorem 1, we can prove that
ρ(A, B) > 0.

5 Approximation Reasoning Based on Truth Degrees

In this section, we provide three approximate reasoning ways based on the
random truth degrees.
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Definition 4. Suppose that ξ is a random variable from a probability space
(Θ, P0) to the unit interval I, Γ ⊂ F (S), A ∈ F (S).

(i) If there are finite formulas {B1, · · · , Bn} ⊆ Γ and N ⊆ Ω, P (N) = 0

such that ∀v ∈ Ω − N ,
n⊗
i=1

(Bi)ξ(v) → Aξ(v) = 1, where
n⊗
i=1

(Bi)ξ(v) =

(B1)ξ(v) ⊗ · · · ⊗ (Bn)ξ(v), then we call A is an a.e. conclusion of Γ . In
particular, if Γ = ∅, then we call A is an a.e. theorem.

(ii) If ∀ε > 0, δ > 0, there are finite formulas {B1, · · · , Bn} ⊆ Γ such that

P ({v :
n⊗
i=1

(Bi)ξ(v)−Aξ(v) ≥ ε}) < δ, then we call A is a conclusion of Γ in

probability. In particular, if Γ = ∅, then we call A is a theorem in probability.
(iii) If ∀ε > 0 there are finite formulas {B1, · · · , Bn} ⊆ Γ such that

τ(B1& · · ·&Bn → A) > 1 − ε, then we call A is a conclusion of Γ in truth
degree. In particular, if Γ = ∅, then we call A is a theorem in truth degree.

Remark 2. In Lukasiewicz logic system, if Γ = {B1, · · · , Bn} is finite and A
is a conclusion of Γ (see ref. [2,4]), then ∀ν ∈ Ω(R), ν(B1) ⊗ · · · ⊗ ν(Bn) →

ν(A) = 1 by ref. [4] Section 8.4 Exercise 1,4. Hence ∀v ∈ Ω,
n⊗
i=1

(Bi)ξ(v) →

Aξ(v) = 1. This shows that A is an a.e. conclusion of Γ .

Theorem 6. If A is an a.e. conclusion of Γ , then A is a conclusion of Γ in
probability.

Proof. Since A is an a.e. conclusion of Γ , there are formulas {B1, · · · , Bn} ⊆

Γ and N ⊆ Ω, P (N) = 0 such that {v :
n⊗
i=1

(Bi)ξ(v) → Aξ(v) �= 1} ⊆

N . Taking monotone decreasing sequence {εk} and lim
k→∞

εk = 0, then {v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥ εk} is monotone increasing and

lim
k→∞

{v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥ εk} = {v :
n⊗
i=1

(Bi)ξ(v) → Aξ(v) �= 1} .

By the continuity of probability we have that

lim
k→∞

P ({v :
n⊗

i=1

(Bi)ξ(v) − Aξ(v) ≥ εk}) = P ({v :
n⊗

i=1

(Bi)ξ(v) → Aξ(v) �= 1}) = 0 .

Hence for any δ > 0 there is K1 > 0 such that

P ({v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥ εk}) < δ



Random Truth Theory of Proposition Logic and Its Application 243

as k > K1. On the other hand, for any ε > 0 there is also K2 > 0 such that
εk < ε as k > K2. Thus if we take K = max{K1, K2} then

P ({v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥ ε}) ≤ P ({v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥ εk}) < δ

as k > K. This proves Theorem 6.

Theorem 7. If A is a conclusion of Γ in probability, then A is a conclusion
of Γ in truth degree.

Proof. For any ε > 0, by the assumption that A is a conclusion of Γ in
probability, there are finite formulas {B1, · · · , Bn} ⊆ Γ such that

P ({v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥
ε

2
}) <

ε

2
.

In the following we denote Ω1 = {v :
n⊗
i=1

(Bi)ξ(v) −Aξ(v) ≥
ε

2
}. Hence

τ(B1& · · ·&Bn → A) =
∫
Ω

[(1−
n⊗
i=1

(Bi)ξ(v)+Aξ(v))∧1]dP

=
∫
Ω1

(1−
n⊗
i=1

(Bi)ξ(v)+Aξ(v))dP +
∫
Ω−Ω1

[(1−
n⊗
i=1

(Bi)ξ(v)+Aξ(v))∧1]dP

≥
∫
Ω−Ω1

(1− ε

2
)dP = (1− ε

2
)P (Ω−Ω1) ≥ (1− ε

2
)2 = 1−ε+

ε2

4
≥ 1−ε .

This proves that A is a conclusion of Γ in truth degree.

6 Conclusion

In this paper, by investigating the valuation of logic formulas under the
circumstances that there is a probability distribution on the valued domain
of logic formulas, we extend the concepts of truth degree, similarity degree
and pseudo-metric in quantitative logic to random truth degree, random
similarity degree and random pseudo-metric respectively. It is proved that
the truth degree set of all logic formulas and the random logic pseudo-metric
space have not isolated point. Three diverse approximate reasoning ways are
proposed based on random truth degree. The study of this paper and the
further works may provide a more flexible logic reasoning theory in artificial
intelligence.
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science and technology innovative research team in higher educational institutions
of Hunan Province.
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Abstract. Soft set theory is a newly emerging mathematical approach to
vagueness. However, it seems that there is no existing research devoted to
the discussion of applying soft sets to approximate reasoning. This paper
aims to initiate an approximate reasoning scheme based on soft set theory.
We consider proposition logic in the framework of a given soft set. By taking
parameters of the underlying soft set as atomic formulas, the concept of (well-
formed) formulas over a soft set is defined in a natural way. The semantic
meaning of formulas is then given by taking objects of the underlying soft set
as valuation functions. We propose the notion of decision soft sets and define
decision rules as implicative type of formulas in decision soft sets. Motivated
by basic ideas from quantitative logic, we also introduce several measures
and preorders to evaluate the soundness of formulas and decision rules in
soft sets. Moreover, an interesting example is presented to illustrate all the
new concepts and the basic ideas initiated here.

Keywords: Soft Set, approximate reasoning, truth degree, quantitative logic.

1 Introduction

Complex problems involving various vagueness are pervasive in many areas
of modern technology. These practical problems arise in such diverse areas
as economics, engineering, environmental science, social science, and medi-
cal science among others. While a wide range of mathematical disciplines like
probability theory, fuzzy set theory [1], rough set theory [2] and interval math-
ematics [3] are useful mathematical approaches to dealing with vagueness and
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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uncertainty, each of them has its advantages as well as inherent limitations.
One major weakness shared by these theories is possibly the inadequacy of
the parametrization tool of the theory [4].

In 1999, Molodtsov [4] initiated soft set theory as a new mathematical
tool for dealing with uncertainty, which seems to be free from the inher-
ent difficulties affecting existing methods. The theory of soft sets has po-
tential applications in various fields like the smoothness of functions, game
theory, operations research, Riemann integration, Perron integration, prob-
ability theory, and measurement theory [4, 5]. Although soft set theory and
its applications has been very active research topic in recent years, we find
there is no existing research devoted to the discussion of applying soft sets
to approximate reasoning.

Quantitative logic [6] establishes an interesting connection between math-
ematical logic and numerical computation. The basic idea of quantitative
logic is to provide a graded approach to propositional logic. In this paper,
motivated by basic ideas from quantitative logic we consider proposition logic
in the framework of a given soft set and propose some measures to evaluate
the soundness of formulas over a soft set. This naturally gives rise to a new
approach to approximate reasoning, which is mainly based on soft set theory
and quantitative logic. Moreover, we give some fresh ideas to soft set based
decision making by introducing decision rules in soft sets and focusing on the
rule induction of decision soft sets.

2 Preliminaries

2.1 The Degree of the Truth of Formulas (By Wang and
Zhou [6])

As a first step to grade some important logic concepts, we need to measure to
what extent a given formula is true. This motivates us to consider the degree
of the truth of formulas in propositional logic systems.

We assume that the reader is familiar with the rudiments of some com-
monly used propositional logic systems like classical two-valued logic system
L, �Lukasiewicz many-valued propositional logic systems �Ln and �Luk, Gödel
and Goguen propositional logic systems G and Π, and the R0 type many-
valued propositional logic systems L ∗

n . For more detail the reader is referred
to [6].

Let F (S) be the set of all formulas generated by axiomatic formulas in S,
and let W be a valuation domain. We know that F (S) is a free algebra of
type (¬,∨,→). Suppose that A = A(p1, · · · , pm) is a formula built up from
the atomic formulas p1, · · · , pm using the logical connectives ¬, ∨ and →. If
we substitute xi for pi (i ∈ [m] = {1, 2, · · · ,m}) and interpret the logical
connectives as the corresponding operations on W , we can obtain an m-ary
function Ā(x1, · · · , xm) : Wm → W , called the truth function induced by A.
Using truth functions the degree of the truth of formulas can be defined as
follows.
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Definition 1. ([6]) Let A = A(p1, · · · , pm) be a formula containing m atomic
formulas p1, · · · , pm in a n-valued propositional logic system, and let Ā be the
truth function induced by A. Define

τn(A) =
1
nm

n−1∑
i=1

i

n− 1
| Ā−1(

i

n− 1
) |,

where | · | denotes the cardinality of a set. τn(A) is called the degree of the
truth of A in the n-valued system.

Notice that in the case of n = 2, we have

τ2(A) =
| Ā−1(1) |

2m
. (1)

In this case, the associated valuation domain is W = {0, 1}. Each 0-1 vector
(x1, · · · , xm) ∈ Wm naturally induces a valuation v : F (S) → {0, 1} given
by v(pi) = xi for i ∈ [m], and v(pk) = 0 for other atomic formulas pk. The
quantity τ2(A) expresses the general possibility for the formula A to be true
in classical two-valued logic system L. Hence it is natural and reasonable to
call τ2(A) the degree of the truth of A. Also it is clear that A is a tautology
(contradiction) if and only if τ2(A) = 1 (τ2(A) = 0). Hence we can say that
the notion of the degree of the truth is the result of grading the notion of
tautology.

2.2 Soft Set Theory (By Molodtsov [4])

Let us introduce now the notion of soft sets which is a newly-emerging math-
ematical approach to vagueness.

Let U be an initial universe of objects and EU (simply denoted by E) the
set of parameters in relation to the objects in U . In this study we restrict
our discussion to the case that both U and E are nonempty finite sets. By
parameters we usually mean attributes, characteristics, or properties of the
objects in U . Let P(U) denote the power set of U .

Definition 2. ([7]) A pair S = (F,A) is called a soft set over U , where
A ⊆ E and F : A → P(U) is a set-valued mapping.

Roughly speaking we can say that soft sets are crisp sets determined by
parameters. In other words, a soft set over U is a parameterized family of
subsets of the universe U . The absence of any restrictions on the approximate
description in soft set theory makes this theory very convenient and easily
applicable in practice. We may use any suitable parametrization—with the
help of words and sentences, real numbers, functions, mappings, etc.

Definition 3. ([8]) A soft set S = (F,A) over U is said to be full if⋃
a∈A F (a) = U . A full soft set S = (F,A) over U is called a covering soft

set if F (a) �= ∅, ∀a ∈ A.
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Definition 4. Let (F,A) and (G,B) be two soft sets over U. Then (G,B)
is called a soft subset of (F,A), denoted by (G,B) ⊆ (F,A), if B ⊆ A and
G (b) ⊆ F (b) for all b ∈ B.

It is worth noting that rough sets and soft sets are distinct but closely re-
lated mathematical approaches to vagueness. First one can observe the strong
connection between information systems and soft sets.

Definition 5. ([9]) An information system (or a knowledge representation
system) is a pair I = (U,A) of non-empty finite sets U and A, where U is a
set of objects and A is a set of attributes; each attribute a ∈ A is a function
a : U → Va, where Va is the set of values (called domain) of attribute a.

Let S = (F,A) be a soft set over U . If U and A are both non-empty finite
sets, then S could induce an information system I = (U,A) in a natural way.
In fact, for any attribute a ∈ A, one can define a function a : U → Va = {0, 1}
by

a(x) =
{

1, if x ∈ F (a),
0, otherwise.

Therefore every soft set may be considered as an information system. This
justifies the tabular representation of soft sets widely used in the literature
(e.g., see the soft set tables used in what follows). Conversely, it is worth
noting that soft sets can also be applied to represent information systems.
Let I = (U,A) be an information system. Taking B =

⋃
a∈A{a}×Va, as the

parameter set, then a soft set (F,B) can be defined by setting

F (a, v) = {x ∈ U : a(x) = v},

where a ∈ A and v ∈ Va. By the above discussion, it is easy to see that
once given a soft set S = (F,A) over U , we obtain an information system
I = (U,A) corresponding to the soft set S, whence we shall be able to
construct rough approximations and discuss Pawlak’s rough sets based on
the Pawlak approximation space (U,R) induced by the information system
I .

Moreover, it is interesting to find that Pawlak’s rough set model may be
considered as a special case of Molodtsov’s soft sets. To see this, suppose that
(U,R) is a Pawlak approximation space and X ⊆ U . Let R(X) = (R∗X,R∗X)
be the rough set of X with respect to R. Consider two predicates p1(x), p2(x),
which mean “[x]R ⊆ X” and “[x]R ∩ X �= ∅”, respectively. The predicates
p1(x), p2(x) may be treated as elements of a parameter set; that is, E =
{p1(x), p2(x)}. Then we can define a set-valued mapping

F : E → P(U), pi(x) �→ F (pi(x)) = {x ∈ U : pi(x) },

where i = 1, 2. It follows that the rough set R(X) may be considered a soft
set (F,E) with the following representation
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(F,E) = {(p1(x), R∗X), (p2(x), R∗X)}.

Here we conclude that in rough set theory vague concepts can be interpreted
in two different ways, namely the lower and upper approximations; in soft
set theory, however, we may interpret a vague concept in a wide variety of
distinct ways according to different parameters.

3 Approximate Reasoning Based on Soft Sets

3.1 Formulas over a Soft Set

Let S = (F,A) be a soft set over U . Sometimes we distinguish in S a partition
of A into two classes C,D ⊆ A of parameters, called condition and decision
(action) parameters, respectively. The tuple S = (F,C,D) is then called a
decision soft set over U . The soft sets SC = (F,C) and SD = (F,D) are
called the condition soft subset and the decision soft subset of S, respectively.

Definition 6. (Formulas over a soft set) Let S = (F,A) be a soft set over
U . Then each parameter a ∈ A is called an atomic formula over S. A finite
combination of atomic formulas connected by the logical connectives is a (well-
formed ) formula (also called proposition) over the soft set S = (F,A).

The set of all formulas over a soft set S is denoted by F (S). Note that
different logical connectives might be chosen for different propositional logic
systems. For instance, if we use the logical connectives ¬,∧,→, then F (S)
is a free algebra generated by A as follows:

• A ⊆ F (S);
• If ϕ ∈ F (S), then ¬ϕ ∈ F (S);
• If ϕ, ψ ∈ F (S), then ϕ ∧ ψ, ϕ → ψ ∈ F (S);
• Every formula in F (S) is generated by above rules.

We say that formulas in F (S) are well-formed since they are built properly
up from parameters (i.e. atomic formulas) by using certain logical connectives
according to the given rules.

For a decision soft set S = (F,C,D) formulas from F (SC) and F (SD)
are sometimes called condition and decision formulas, respectively.

3.2 Valuation and Semantic Interpretation of Formulas

Recall that in propositional logic a valuation is a homomorphism from the
free algebra of all formulas into a specific algebra called the valuation domain.
The semantics of a propositional logic system provides an effective approach
towards evaluating the soundness of formulas by using valuations.

Let us now consider valuation and semantic interpretation of formulas in
the framework soft set theory. Given a soft set S = (F,A) over a universe
U , we immediately obtain a set of objects, i.e., VS =

⋃
a∈A F (a). For the
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sake of convenience we always assume in what follows that the soft set under
our consideration is a full one; hence we have VS = U . Now for any object
u ∈ U , it is an interesting observation that object u induces a valuation νu
for formulas over the soft set S = (F,A). Specifically, νu : F (S) → {0, 1} is
uniquely determined by its actions on all the parameters:

νu(a) = χF (a)(u), ∀a ∈ A,

where χ(·) denotes the characteristic function of a set.
Given an object u ∈ U and a formula ϕ ∈ F (S), we say that u satisfies the

formula ϕ in the soft set S = (F,A), denoted u �S ϕ, if νu(ϕ) = 1. By ‖ϕ‖S
we denote the semantic interpretation (meaning) of the formula ϕ ∈ F (S),
which is defined by

‖ϕ‖S = {u ∈ U : νu(ϕ) = 1}.

Then it follows that u �S ϕ if and only if u ∈ ‖ϕ‖S. The following result is
easily obtained from the above definitions.

Proposition 1. Let S = (F,A) be a soft set over U . We have the following:

(1) ‖a‖S = F (a), ∀a ∈ A;

(2) ‖¬ϕ‖S = U − ‖ϕ‖S, ∀ϕ ∈ F (S);

(3) ‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S, ∀ϕ, ψ ∈ F (S);

(4) ‖ϕ ∨ ψ‖S = ‖ϕ‖S ∪ ‖ψ‖S, ∀ϕ, ψ ∈ F (S);

(5) ‖ϕ → ψ‖S = ‖¬ϕ ∨ ψ‖S = (U − ‖ϕ‖S) ∪ ‖ψ‖S, ∀ϕ, ψ ∈ F (S).

3.3 Evaluate the Soundness of Formulas

As was mentioned above, the notion of the degree of the truth of formulas
plays a fundamental role in quantitative logic. In a similar fashion, we shall
introduce below some useful notions to evaluate the soundness of formulas
over a given soft set.

Definition 7. (Basic soft truth degree) Let S = (F,A) be a soft set over U
and ϕ ∈ F (S). The basic soft truth degree of ϕ is defined by

βS(ϕ) =
1
|U |
∑
u∈U

νu(ϕ) (2)

where | · | denotes the cardinality of the set.

It is easy to see that 0 ≤ βS(ϕ) ≤ 1 for all ϕ ∈ F (S). Also we have βS(ϕ) = 0
(resp. βS(ϕ) = 1) if and only if ‖ϕ‖S = ∅ (resp. ‖ϕ‖S = U). Note also that
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both βS(·) and τ2(·) can be viewed as “voting models”. The truth degree is
then expressed exactly by the support rate of the given formula.

The major difference between βS(·) and τ2(·) lies in the fact that for βS(·)
referees are just objects in U whose “attitude” is specified by the soft set
S = (F,A), while for τ2(·) referees are all 0-1 vectors (x1, · · · , xm) ∈ {0, 1}m
without any further restriction. In other words, τ2(·) depends only on the
structure of the propositional logic system; the basic soft truth degree βS(·),
however, depends also on the structure of the soft set. Hence for a given
formula ϕ ∈ F (S′), we may have βS′(ϕ) �= βS(ϕ) even if S′ is a soft subset
of S.

From the above discussion we know that soundness of a formula can not
only be graded but also be viewed as a concept relative to the universe of
discourse. This point is reasonable as we know that “theory of everything”
is still a dream for us and we must restrict to a certain universe when apply
some “known truth” in real-world applications.

3.4 Decision Rules

Maji et al. initiated the application of soft sets to decision making problems
in [10]. It is worth noting that the soft set based decision making in the sense
of Maji et al. [10] is actually a question concerning the selection of optimal
alternatives. Almost all other research in this direction is restricted to the
discussion of this issue.

The notion of choice values is of vital importance in coping with these
decision making problems since choice values express the number of good
attributes possessed by an object. It follows that the optimal decision is just
to select the object with the maximum choice value.

On the other hand we should know that the most important thing for
decision making (in a more general sense) is to induce useful decision rules
from some “training samples”. These decision rules will be used in decision
support, inference, knowledge discovery, prediction and some related areas in
artificial intelligence.

Let S = (F,C,D) be a decision soft set over U . A decision rule in S is
any formula of the form ϕ → ψ, where ϕ ∈ F (SC) and ψ ∈ F (SD). The
condition formula ϕ and the decision formula ψ are also referred to as the
predecessor and the successor of the decision rule ϕ → ψ.

A decision rule ϕ → ψ is absolutely true in S if ‖ϕ‖S ⊆ ‖ψ‖S . Since a
decision rule is still a formula over a decision soft set S = (F,C,D), we can
also measure its truth degree by using the concept of basic soft truth degrees
introduced above.

Proposition 2. Given a decision soft set S = (F,C,D) over U and a deci-
sion rule ϕ → ψ in S, we have that ϕ → ψ is absolutely true if and only if
βS(ϕ → ψ) = 1.

Proof. Assume that the decision rule ϕ → ψ is absolutely true in S, i.e.,
‖ϕ‖S ⊆ ‖ψ‖S. By Proposition 1, we know that
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‖ϕ → ψ‖S = ‖¬ϕ ∨ ψ‖S = (U − ‖ϕ‖S) ∪ ‖ψ‖S.

But we also have U − ‖ϕ‖S ⊇ U − ‖ψ‖S since ‖ϕ‖S ⊆ ‖ψ‖S. Hence ‖ϕ →
ψ‖S = U , and so we deduce that βS(ϕ → ψ) = 1.

Conversely, if βS(ϕ → ψ) = 1 then ‖ϕ → ψ‖S = U . Now let u ∈ ‖ϕ‖S ,
i.e., νu(ϕ) = 1. It follows that νu(ψ) = 1 since we know that νu(ϕ → ψ) = 1
holds for all u ∈ U . This says that ‖ϕ‖S ⊆ ‖ψ‖S as required. #$

Notice that a decision rule ϕ → ψ in S with ‖ϕ‖S = ∅ is always absolutely
true. This is valid in logical sense but not very reasonable for practical needs.
In fact we usually take rules of this type as pseudo ones in practice. So one
can sometimes measure the truth degree of a decision rule ϕ → ψ in S by
introducing the following inclusion measure of ‖ϕ‖S in ‖ψ‖S.

Definition 8. (Conditional soft truth degree) Given a decision soft set S =
(F,C,D) over U and a decision rule ϕ → ψ in S with βS(ϕ) �= 0. The
conditional soft truth degree of ϕ → ψ is defined by

γS(ϕ → ψ) =
βS(ϕ ∧ ψ)

βS(ϕ)
. (3)

Proposition 3. Given a decision soft set S = (F,C,D) over U and a deci-
sion rule ϕ → ψ in S with βS(ϕ) �= 0. We have that ϕ → ψ is absolutely true
if and only if γS(ϕ → ψ) = 1.

Proof. By Proposition 1, we have ‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S . Thus

γS(ϕ → ψ) = 1 ⇔ ‖ϕ‖S ∩ ‖ψ‖S = ‖ϕ‖S ⇔ ‖ϕ‖S ⊆ ‖ψ‖S.

This completes the proof. #$

The conditional soft truth degree defined above can also be interpreted as
the conditional probability that the successor ψ is true given the predecessor
ϕ. As an alternative way to evaluate the soundness of decision rules we may
use the following measure.

Definition 9. (Product soft truth degree) Given a decision soft set S =
(F,C,D) over U and a decision rule ϕ → ψ in S. The product soft truth
degree of ϕ → ψ is defined by

$S(ϕ → ψ) = βS(ϕ → ψ) · βS(ϕ ∧ ψ). (4)

It should be noted that the product soft truth degree is a more strict measure
for evaluating the soundness of decision rules since it can be used to exclude
those pseudo absolutely true rules. Specifically, for any decision rule ϕ → ψ
in S with ‖ϕ‖S = ∅, we have βS(ϕ ∧ ψ) = 0 even if βS(ϕ → ψ) = 1; hence
finally we obtain that $S(ϕ → ψ) = 0 in this case.
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Proposition 4. Given a decision soft set S = (F,C,D) over U and a
decision rule ϕ → ψ in S. If ϕ → ψ is absolutely true, then we have
$S(ϕ → ψ) = βS(ϕ).

Proof. Assume that the decision rule ϕ → ψ is absolutely true in S, i.e.,
‖ϕ‖S ⊆ ‖ψ‖S. By Proposition 1, ‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S . Thus we deduce
that ‖ϕ ∧ ψ‖S = ‖ϕ‖S , whence βS(ϕ ∧ ψ) = βS(ϕ). Note also that βS(ϕ →
ψ) = 1 by Proposition 2. Hence it follows that

$S(ϕ → ψ) = 1 · βS(ϕ).

This completes the proof.

3.5 Rule Evaluation

After rule induction we need to compare different rules extracted from the
data of the given soft set so as to find the most useful decision rules. Next,
we shall introduce some preorders for comparing decision rules.

Definition 10. (Basic rule preorder) Given a decision soft set S = (F,C,D)
over U . For decision rules ϕ → ψ and ϕ′ → ψ′ in S, we define

ϕ → ψ (β ϕ′ → ψ′ ⇔ (βS(ϕ → ψ), βS(ϕ)) �l (βS(ϕ′ → ψ′), βS(ϕ′)),

called the basic rule preorder on S. Here �l denotes the lexicographical order
on I2.

We say that the decision rule ϕ′ → ψ′ is better than ϕ → ψ (with respect to
the basic rule preorder (β) if ϕ → ψ (β ϕ′ → ψ′ holds.

Definition 11. (Product rule preorder) Let S = (F,C,D) be a decision soft
set over U . For decision rules ϕ → ψ and ϕ′ → ψ′ in S, we define

ϕ → ψ (� ϕ′ → ψ′ ⇔ ($S(ϕ → ψ), βS(ϕ)) �l ($S(ϕ′ → ψ′), βS(ϕ′)),

called the product rule preorder on S.

Note that the conditional rule preorder (γ can also be defined in an expected
way for rules ϕ → ψ and ϕ′ → ψ′ such that βS(ϕ) �= 0 and βS(ϕ′) �= 0. By the
above preorders, decision rules are estimated according to two aspects; one
concerns the degree of applicability of the rule, and the other is associated
with the soundness of the rule.

Definition 12. (Atomic rule) Let S = (F,C,D) be a decision soft set over
U . A decision rule ϕ → ψ in S is called an atomic rule if ϕ ∈ C and ψ ∈ D.
The set of all atomic rules in the soft set S is denoted by RA(S).

We say that an atomic rule ϕ → ψ is B-optimal (resp. C-optimal, P-optimal )
if it is maximal in RA(S) with respect to the rule preorder (β (resp. (γ ,
(�).
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4 An Illustrative Example

Here we present an interesting example to illustrate all the new concepts
initiated in this study.

Suppose that there are six houses under our consideration, namely the
universe U = {h1, h2, h3, h4, h5, h6}, and the condition parameter set C =
{e1, e2, e3, e4}, where ei respectively stand for “beautiful ”, “modern”, “cheap”
and “in green surroundings”. Assume that the decision parameter set D =
{d}, where d means “attractive”. All the information available on these houses
can be characterized by a decision soft set S = (F,C,D), with its tabular
representation shown in Table 1.

Table 1. A decision soft set S = (F, C, D)

House e1 e2 e3 e4 d

h1 1 1 1 1 1
h2 0 0 1 0 0
h3 1 1 0 0 0
h4 1 0 1 1 1
h5 0 0 1 0 1
h6 1 0 0 1 1

It is easy to see the semantic meaning of an atomic formula. For instance,
we have ‖e1‖S = F (e1), which says that the set of “beautiful houses” is
{h1, h3, h4, h6}. Similarly, we can see from ‖e1 ∧ e3‖S = F (e1) ∩ F (e3) that
h1 and h4 are “beautiful and cheap houses”. In general, ‖ϕ‖S will define the
meaning of the formula ϕ in the setting of the soft set S.

Now we consider how to induce useful decision rules in S. For the sake of
convenience, we shall only consider some “simple” decision rules, particularly,
the atomic rules so that we could concentrate on illustrating our basic ideas.
First we calculate the basic soft truth degrees of the atomic rules. We obtain
that βS(ei → d) = 5/6 (i = 1, 2, 3) and βS(e4 → d) = 1. For conditional soft
truth degrees of these atomic rules, we have γS(ei → d) = 3/4 (i = 1, 3),
γS(e2 → d) = 1/2 and γS(e4 → d) = 1. Also we can see βS(ei ∧ d) = 1/2
(i = 1, 3), βS(e2∧d) = 1/6 and βS(e4∧d) = 1/2. Thus by easy calculation we
know the product soft truth degrees of these atomic rules, namely $S(ei →
d) = 5/12 (i = 1, 3), $S(e2 → d) = 5/36 and $S(e4 → d) = βS(e4 ∧ d) = 1/2.

Next let us compare the above atomic rules by using the rule preorders.
Note that βS(ei) = 2/3 (i = 1, 3), βS(e2) = 1/3 and βS(e4) = 1/2. Thus
e4 → d is the B-optimal, C-optimal and P-optimal decision rule. We can con-
clude that “in green surroundings” is the most important aspect to determine
whether a house is “attractive”, according to what we have learned from the
collected data.
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5 Conclusion

We have established in this study a preliminary version of the theory of
approximate reasoning based on soft sets. The basic ideas of the proposed
scheme was motivated by quantitative logic. We also contributed to soft set
based decision making by introducing decision rules in soft sets and focusing
on inducing useful rules in decision making. As future work, connections be-
tween soft sets and non-classical logic could be explored.
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Abstract. Left-continuity of t-norms on the unit interval [0, 1] is equivalent
to the property of sup-preserving, but this equivalence does not hold for t-
norms on the general complete lattice. In this paper, we initially introduce
a special kind of the complete lattice–metric lattice. Based on the theory of
directed partial order set, we prove that a t-norm on the metric lattice is
left(right)-continuous if and only if it preserves direct sups(infs).

Keywords: T-norm, metric lattice, left(Right)-continuity, direct-sup(inf)-
preserving.

1 Introduction

An important notion in fuzzy set theory is that of triangular norms which
were introduced by Schweizer and Sklar in the framework of probabilistic
metric spaces[1]. The condition of their left-continuity is crucial in almost all
such fields, in particular in fuzzy logic, where this property makes it possi-
ble to evaluate the implication by the residuum of the conjunction. On the
unit interval, the ”sup-preserving” is used to describe the ”left-continuity”
of t-norm, that is, a left-continuous t-norm ⊗ on the unit interval [0, 1] is
equivalent to the property of sup-preserving(or ⊗ satisfies the residuation
principle[2]), but this is no longer true for t-norms on the general complete
lattice and a strict counter-example was constructed in [3]. Does there ex-
ists any interrelations between left-continuity and sup-preserving property
for t-norms on the certain kind of complete lattice? The present paper is to
give a positive answer to this question. we initially introduce a special kind
of complete lattice–metric lattice, then we prove that a t-norm ⊗ on a met-
ric lattice is left-continuous if and only if ⊗ preserves direct sups, and ⊗ is
right-continuous if and only if ⊗ preserves direct infs.
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2 Preliminaries

Definition 1. ([5]) Let (L,≤) be a partial order set, D be a non-empty subset
of L. If ∀a, b ∈ D, there exists c ∈ D such that a ≤ c and b ≤ c, then D is
said to be an upper directed set; if exists c ∈ D such that c ≤ a and c ≤ b,
then D is said to be a lower directed set.

Definition 2. ([5]) Let D be a directed set, L be a non-empty set, the map-
ping S : D �−→ X is said to be the net of L.

Specially, let L be a complete lattice, then we give the concept of up-
per(lower) limit points(or convergence points) of a net of L as follows:

Definition 3. Let L be a complete lattice, ρ be a metric on L, a ∈ L and
S : D �−→ L be a net,

(i) suppose that D is an upper directed set, if ∀ε > 0, there exists n0 ∈ D
such that ρ(n, a) < ε whenever n ∈ D and n ≥ n0, then we say S is upper
limited to a(or S is upper convergent to a);

(ii) suppose that D is a lower directed set, if ∀ε > 0, there exists n0 ∈ D
such that ρ(n, a) < ε whenever n ∈ D and n ≤ n0, then we say S is lower
limited to a(or S is lower convergent to a).

Then we introduce the definition of a metric lattice.

Definition 4. Let L be a complete lattice, ′ be an order reversing involution
on L, ρ be a metric on L such that

(i) max{ρ(b, c), ρ(a, b)} ≤ ρ(a, c), whenever a ≤ b ≤ c;
(ii) Let S : D �−→ L be a net where D is an upper directed set on L and

SupD = a(a ∈ L), then S be upper convergent to a.
Then L is said to be a metric lattice.

Example 1. (i) Let L = [0, 1]2, ρ be an Euclidean metric on L, (a
′
, b

′
) =

(1 − a, 1 − b) where (a, b) ∈ [0, 1]2, then L is a metric lattice.
(ii) Let L = [0, 1

2 ] ∪ {1}, ρ and ′ are the same to (i), then L is not a
metric lattice. In fact, it can be easily checked that L is an upper directed
set and SupL = 1. Let S : L �−→ L is an identity map on L, then S be a net
of L, however S be not upper convergent to 1.

In the following, we assume that L is a metric lattice, ′ be an order revers-
ing involution, and 1, 0 are the largest element and the least element of L,
respectively.

Definition 5. ([1,6])A triangular norm T (briefly t-norm)on L is a binary
operator which is commutative, associative, monotone and has the neutral
element 1.

For the sake of convenience, we use a ⊗ b instead of T (a, b), then ⊗ is a
t-norm on L if the following conditions are satisfied:
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(i) a⊗ b = b⊗ a;
(ii) (a⊗ b) ⊗ c = a⊗ (b ⊗ c);
(iii) if b ≤ c, then a⊗ b ≤ a⊗ c;
(iv) a⊗ 1 = a,
where a, b, c ∈ L.

Definition 6. ([3]) Let ⊗ be a t-norm on L.
(i) If for every non-empty subset A of L,

a⊗ sup{z|z ∈ A} = sup{a⊗ z|z ∈ A}, a ∈ L, (1)

then we say ⊗ is sup-preserving, or ⊗ preserves sups;
(ii) If for every non-empty subset A of L,

a⊗ inf{z|z ∈ A} = inf{a⊗ z|z ∈ A}, a ∈ L, (2)

then we say ⊗ is inf-preserving, or ⊗ preserves infs;
(iii) If the equation (1)((2)) holds for upper(lower)directed set A, then

we say that ⊗ preserves direct sups(infs) (briefly, ⊗ preserves dsups(dinfs)).

Definition 7. Let ⊗ be a t-norm on L, then D = {x ∈ L|x ≤ β, β ∈ L} and
D0 = {a⊗ x|x ∈ D, a ∈ L} are two upper directed sets of L, hence there are
two nets of L, one is S : D �−→ L and the other is S0 : D0 �−→ L. If we have
S0 is upper(lower) limited to a⊗β whenever S being upper(lower) convergent
to β, then ⊗ is called left(right)-continuous.

3 A Necessary and Sufficient Condition for t-Norms on
L Being Left(right)-Continuous

The following theorem show that left-continuous is equivalent to dsup-
preserving for t-norms on the metric lattice.

Theorem 1. Let ⊗ be a t-norm on L, then ⊗ is left-continuous if and only
if ⊗ preserves dsups.

Proof. Suppose that ⊗ is left-continuous, D is an upper directed subset of
L, S : D �−→ L be a net, β = supD and

a⊗ β �= sup{a⊗ z|z ∈ D}. (3)

Let
α = sup{a⊗ z|z ∈ D}. (4)

By the monotonicity of ⊗ and β = supD, we have α < a⊗ β. Hence

ρ(α, a⊗ β) = δ > 0. (5)

Assume that x, y ∈ D, then there exists z ∈ D such that x ≤ z and y ≤ z,
hence a⊗x ≤ a⊗z and a⊗y ≤ a⊗z, and {a⊗z|z ∈ D} is an upper directed
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subset of L. Let D0 = {a ⊗ z|z ∈ D}, then it follows from (4) that the net
S0 : D0 �−→ L be upper convergent to α, hence for ε = δ

2 > 0, there exists
a⊗ z0 ∈ D0, z0 ∈ D such that

ρ(a⊗ z1, α) <
δ

2
.

when a⊗ z1 ∈ D0 and a⊗ z1 ≥ a⊗ z0.
Owning to supD = β, S is convergent to β. By the left-continuity of ⊗ it

follows that S0 is limited to a⊗β. Then for ε = δ
2 > 0, there exists a⊗y0 ∈ D0

such that
ρ(a⊗ y1, a⊗ β) <

δ

2
where a⊗ y1 ∈ D0 and a⊗ y1 ≥ a⊗ y0.

Since D is upper directed there exists x ∈ D such that z1 ≤ x, y1 ≤ x.
Then it follows from (4) that a⊗ z1 ≤ a⊗ x ≤ α, hence we obtain

ρ(a⊗ x, α) ≤ ρ(a⊗ z1, α) <
δ

2
.

Moreover, since x ∈ D, β = supD, we obtain x ≤ β and a⊗y1 ≤ a⊗x ≤ a⊗β,
then we have

ρ(a⊗ x, a⊗ β) ≤ ρ(a⊗ y1, a⊗ β) <
δ

2
.

Therefore

ρ(α, a⊗ β) ≤ ρ(α, a⊗ x) + ρ(a⊗ x, a⊗ β) <
δ

2
+

δ

2
= δ.

This contradicts (5). Hence (3) does not hold and ⊗ is dsup-preserving.
Conversely, suppose that ⊗ is dsup-preserving on L, we are to prove that

⊗ is left-continuous on L. Let

D = {x ∈ L|x ≤ β, β ∈ L}, D0 = {a⊗ x|x ∈ D, a ∈ L}
then S : D �−→ L and S0 : D0 �−→ L are two nets of L. we only need to prove
that S0 is upper limited to a⊗ β whenever S being upper convergent to β.

It is clear that β is an upper bound of D. Suppose that α is the other
upper bound of D, then β ≤ α because β ∈ D, that is, supD = β. Since ⊗ is
dsup-preserving it follows that

a⊗ β = a⊗ sup{x ∈ L|x ≤ β} = sup{a⊗ x|x ∈ D} = supD0.

Then D0 be upper convergent to a⊗ β. This proves that ⊗ is left-continuous
on L.

Note that ”′” be an order reversing involution on L, then we can prove
the following corollary which gives the necessary and sufficient condition of
a t-norm ⊗ on the metric lattice being right-continuous by the completely
dual approach.

Corollary 1. Let ⊗ be a t-norm on L, then ⊗ is right-continuous if and only
if ⊗ preserves dinfs.
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4 Conclusion

In the present paper, the concept of metric lattice are initially introduced.
Then, based on the theory of directed partial order set we give a necessary and
sufficient condition for t-norms on metric lattice being left(right)-continuous.
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Abstract. The propositional calculus formal deductive system UL�
h∈(0,1] for

0-level universal AND operator with projection operator has been built up. In
this paper, according to the propositional system, a predicate calculus formal
deductive system ∀UL�

h∈(0,1] for 0-level universal AND operator with projec-

tion operator is built up. The completeness theorem of system ∀UL�
h∈(0,1] are

given. So it shows that the Semantic and Syntactic of system ∀UL�
h∈(0,1] are

harmony.

Keywords: Universal logic, fuzzy logic, predicate calculus, axiomatization.

1 Introduction

How to deal with various uncertainties and evolution problems have been
critical issues for further development of AI. The well-developed mathemat-
ical logic is too rigid and it can only solve certainty problems. It is the new
challenge for logics to make mathematical logic more flexible and to con-
tain various uncertainties and evolution. Therefore, non-classical logic and
modern logic develop rapidly, for example fuzzy logic and universal logic.

In recent years considerable progress has been made in logical foundations
of fuzzy logic, especially for the logic based on t-norm and its residua (See
[1-11]). Some well-known logic systems have been built up, such as the basic
logic (BL)[1,3] introduced by Hajek; the monoidal t-norm based logic (MTL)[2]

introduced by Esteva and Godo; a formal deductive system L∗ introduced by
Wang (see [7-11]), and so on. Moreover the completeness of the above logical
systems have been proven.

Universal logic[12] was proposed by Huacan He, which thinks that all things
in the world are correlative, that is, they are either mutually exclusive or mu-
tually consistent, and we call this kind of relation generalized correlation. Any
two propositions have generalized correlation. The degree of general corre-
lation can be described quantitatively by the coefficient of the generalized
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correlation h ∈ [0, 1]: If we define the h of operator T (a, b) as the ratio be-
tween the volume of T (a, b) and the volume of maximal operator, then h = 1
means the maximal attractive state; h = 0.75 means independency correla-
tive state; h = 0.5 means neutral state; h = 0 means maximal exclusive state.
The 0-level universal AND operators and 0-level universal IMPLICATION
operators are defined as:

0-level universal AND operators are mapping T : [0, 1] × [0, 1] → [0, 1],
T (x, y, h) = Γ 1[(xm + ym − 1)1/m], which is usually denoted by ∧h; the real
number m has relation with the coefficient of generalized correlation h as:

m = (3 − 4h)/(4h(1 − h)) (1)

h ∈ [0, 1],m ∈ R. And Γ 1[x] denotes x is restricted in [0, 1], if x > 1 then its
value will be 1, if x < 0, its value will be 0.

0-level universal IMPLICATION operators are mapping I : [0, 1]× [0, 1] →
[0, 1], I(x, y, h) = ite{1|x ≤ y; 0|m ≤ 0 and y = 0; Γ 1[(1 − xm + ym)1/m]},
which is usually denoted by ⇒h. In the above the equation with m and h is
the same as (1).

The formal systems of propositional universal logic have been studied in
[13-18]. In [18], the soundness of predicate calculus formal deductive systems
∀UL�

h∈(0,1] has been studied. In this paper, we focus on the completeness of

predicate formal system ∀UL�
h∈(0,1].

The paper is organized as follows. After this introduction, Section 2 we will
give the predicate calculus formal deductive system ∀UL�

h∈(0,1] and introduce

its soundness theorem. In Section 3 the completeness of system ∀UL�
h∈(0,1]

will be proved. Some extension logic systems of ∀UL�
h∈(0,1] are introduced in

Section 4. The final section offers the conclusion.

2 Predicate Formal System ∀UL�
h∈(0,1]

In this section, we will introduce some basis definition and important results
of System ∀UL�

h∈(0,1] have obtained in [18],
First-order language J consists of symbols set and generation rules:
The symbols set of J consist of as following:
(1) Object variables: x, y, z, x1, y1, z1, x2, y2, z2, · · ·;
(2) Object constants: a, b, c, a1, b1, c1,, Truth constants: 0, 1;
(3) Predicate symbols: P,Q,R, P1, Q1, R1, · · ·;
(4) Connectives: &,→,";
(5) Quantifiers: ∀(universal quantifier), ∃(existential quantifier);
(6) Auxiliary symbols: (, ),,.
The symbols in (1)-(3) are called non-logical symbols of language J . The

object variables and object constants of J are called terms. The set of all ob-
ject constants is denoted by Var(J), The set of all object variables is denoted
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by Const(J), The set of all terms is denoted by Term(J). If P is n-ary pred-
icate symbol, t1, t2, · · · , tn are terms, then P (t1, t2, · · · , tn) is called atomic
formula.

The formula set of J is generated by the following three rules in finite
times:

(i) If P is atomic formula, then P ∈ J ;
(ii) If P,Q ∈ J , then P&Q,P → Q,"P ∈ J ;
(iii) If P ∈ J , and x ∈ Var(J), then (∀x)P, (∃x)P ∈ J .
The formulas of J can be denoted by ϕ, φ, ψ, ϕ1, φ1, ψ1, · · ·. Further con-

nectives are defined as following:
ϕ ∧ ψ is ϕ&(ϕ → ψ), ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ (ψ → ϕ) → ϕ),
¬ϕ is ϕ → 0, ϕ ≡ ψ is (ϕ → ψ)&(ψ → ϕ).

Definition 1. The axioms and deduction rules of predicate formal system
∀UL�

h∈(0,1] as following:

(i)The following formulas are axioms of ∀UL�
h∈(0,1]:

(U1) (ϕ → ψ) → ((ψ → χ)(ϕ → χ))
(U2) (ϕ&ψ) → ϕ
(U3) (ϕ&ψ) → (ψ&ϕ)
(U4) ϕ&(ϕ → ψ) → (ψ&(ψ → ϕ))
(U5) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(U6) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))
(U7) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(U8) 0 → ϕ
(U9) (ϕ → ϕ&ψ) → ((ϕ → 0) ∨ ψ ∨ ((ϕ → ϕ&ϕ) ∧ (ψ → ψ&ψ)))

(U10) "ϕ ∨ ¬"ϕ
(U11) "(ϕ ∨ ψ) → ("ϕ ∨"ψ)
(U12) "ϕ → ϕ
(U13) "ϕ → ""ϕ
(U14) "(ϕ → ψ) → ("ϕ → "ψ)
(U15) (∀x)ϕ(x) → ϕ(t) (t substitutable for x in ϕ(x))
(U16) ϕ(t) → (∃x)ϕ(x)(t substitutable for x in ϕ(x))
(U17) (∀x)(χ → ϕ) → (χ → (∀x)ϕ)(x is not free in χ)
(U18) (∀x)(ϕ → χ) → ((∃x)ϕ → χ)(x is not free in χ)
(U19) (∀x)(ϕ ∨ χ) → ((∀x)ϕ ∨ χ)(x is not free in χ)

Deduction rules of ∀UL�
h∈(0,1] are: Modus Ponens(MP):from ϕ,ϕ → ψ

infer ψ; Necessitation: from ϕ infer "ϕ; Generalization: from ϕ infer (∀x)ϕ.

The meaning of “t substitutable for x in ϕ(x)” and “x is not free in χ” in the
above definition have the same meaning in the classical first-order predicate
logic, moreover, we can define the concepts such as proof, theorem, theory,
deduction from a theory T , T -consequence in the system ∀UL�

h∈(0,1]. T � ϕ

denotes that ϕ is provable in the theory T . � ϕ denotes that ϕ is a theorem
of system ∀UL�

h∈(0,1]. Let Thm(∀UL�
h∈(0,1]) = {ϕ ∈ J | � ϕ},Ded(T ) = {ϕ ∈



266 Y.-c. Ma and H. Liu

J |T � ϕ}. Being the axioms of propositional system UL�
h∈(0,1] are in predicate

system ∀UL�
h∈(0,1], then the theorems in ULh∈(0,1] are theorems in ∀ULh∈(0,1].

According the similar proof in [1,15,16] we can get the following lemmas.

Lemma 1. The hypothetical syllogism holds in ∀UL�
h∈(0,1], i.e. let Γ = {ϕ →

ψ, ψ → χ}, then Γ � ϕ → χ.

Lemma 2. ∀UL�
h∈(0,1] proves:

(1) ϕ → ϕ; (2) ϕ → (ψ → ϕ);
(3) (ϕ → ψ) → ((ϕ → γ) → (ψ → γ));
(4)(ϕ&(ϕ → ψ)) → ψ; (5) Δϕ ≡ Δϕ&Δϕ.

Lemma 3. If T = {ϕ → ψ, χ → γ}, then T � (ϕ&χ) → (ψ&γ).

In order to prove the soundness of predicate system ∀UL�
h∈(0,1], we should

introduce the following definitions.

Definition 2([1]). A BL-algebra is an algebra L = (L,∩,∪, ∗,⇒, 0, 1) with
four binary operations and two constants such that

1. (L,∩,∪, 0, 1) is a lattice with the greatest element 1 and the least element
0 (with respect to the lattice ordering ≤),

2. (L, ∗, 1) is a commutative semigroup with the unit element 1, i.e. ∗ is
commutative, associative and 1 ∗ x = x for all x,

3. the conditions (i) z ≤ (x ⇒ y) iff x ∗ z ≤ y; (ii) x∩ y = x ∗ (x ⇒ y); (iii)
(x ⇒ y) ∪ (y ⇒ x) = 1 hold for all x, y, z.

Definition 3([16]). A �LΠG algebra is a BL-algebra in which the identity
(x ⇒ x ∗ y) ⇒ ((x ⇒ 0) ∪ y ∪ ((x ⇒ x ∗ x) ∩ (y ⇒ y ∗ y))) = 1 is valid.

Definition 4([15]). A �LΠG�-algebra is a structure L =< L, ∗,
⇒,∩,∪, 0, 1," > which is a �LΠG-algebra expanded by an unary operation
" in which the following formulas are true:

"x ∪ ("x ⇒ 0) = 1; "(x ∪ y) ≤ "x ∪"y; "x ≤ x;
"x ≤ ""x; ("x) ∗ ("(x ⇒ y)) ≤ "y; "1 = 1.

Let J is first-order predicate language, L is linearly ordered �LΠG� algebra,
M = (M, (rP )P , (mc)c) is called a L-evaluation for first-order predicate lan-
guage J , which M is non-empty domain, according to each n-ary predicate
P and object constant c, rP is L-fuzzy n-ary relation: rP : Mn → L, mc is
an element of M.

Definition 5. Let J be predicate language, M is L-evaluation of J , x is object
variable, P ∈ J .

(i) A mapping V : Term(J) → M is called M-evaluation, if for each
c ∈Const (J), v(c) = mc;

(ii)Two M-evaluation v, v′ are called equal denoted by v ≡x v′ if for each
y ∈ Var(J)\{x}, there is v(y) = v′(y).
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(iii) The value of a term given by M, v is defined by: ‖x‖M,v =
v(x); ‖c‖M,v = mc. We define the truth value ‖ϕ‖L

M,v of a formula ϕ as
following. Clearly, ∗,⇒," denote the operations of L.

‖P (t1, t2, · · · , tn)‖L
M,v = rP (‖t1‖M,v , · · · , ‖tn‖M,v)

‖ϕ → ψ‖L
M,v = ‖ϕ‖L

M,v ⇒ ‖ψ‖L
M,v

‖ϕ&ψ‖L
M,v = ‖ϕ‖L

M,v ∗ ‖ψ‖
L
M,v∥∥0∥∥LM,v

= 0;
∥∥1∥∥LM,v

= 1

‖Δϕ‖L
M,v = Δ ‖ϕ‖L

M,v

‖(∀x)ϕ‖L
M,v = inf{‖ϕ‖L

M,v′ | v ≡x v′}
‖(∃x)ϕ‖L

M,v = sup{‖ϕ‖L
M,v′ | v ≡x v′}

In order to the above definitions are reasonable, the infimum/supremum
should exist in the sense of L. So the structure M is L-safe if all the needed
infima and suprema exist, i.e. ‖ϕ‖L

M,v is defined for all ϕ, v.

Definition 6. Let ϕ ∈ J , M be a safe L-structure for J .
(i) The truth value of ϕ in M is ‖ϕ‖L

M = inf{‖ϕ‖L
M,v | v M − evaluation}.

(ii) A formula ϕ of a language J is an L-tautology if ‖ϕ‖L
M = 1L for each

safe L-structure M. i.e. ‖ϕ‖L
M,v = 1 for each safe L-structure M and each

M-valuation of object variables.

Remark 1. For each h ∈ (0, 1], ([0, 1],∧h,⇒h,min,max, 0, 1,") is a linearly
ordered �LΠG�-algebra. So the predicate system ∀UL�

h∈(0,1] can be consid-
ered the axiomatization for 0-level universal AND operator with projection
operator.

Definition 7. Let T be a theory, L be a linearly ordered �LΠG�-algebra and
M a safe L-structure for the language of T . M is an L-model of T if all
axioms of T are 1L−true in M, i.e. ‖ϕ‖ = 1L in each ϕ ∈ T .

Definition 8. Let T be a theory, L be a linearly ordered �LΠG�-algebra and
M a safe L-structure for the language of T . M is an L-model of T if all
axioms of T are 1L−true in M, i.e. ‖ϕ‖ = 1L in each ϕ ∈ T .

Theorem 1. (Soundness ) Let L is linearly ordered �LΠG�-algebra and ϕ is
a formula in J , if � ϕ, then ϕ is L-tautology, i.e. ‖ϕ‖L

M = 1L.

Theorem 2. (Strong Soundness ) Let T be a theory, L is linearly ordered
�LΠG�-algebra and ϕ is a formula in J , if T � ϕ (ϕ is provable in T ), then
‖ϕ‖L

M = 1L for each linearly ordered �LΠG�-algebra L and each L-model
M of T .

Theorem 3. (Deduction Theorem) Let T be a theory, ϕ, ψ are closed for-
mulas. Then (T ∪ {ϕ}) � ψ iff T � Δϕ → ψ.
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3 Completeness of ∀UL�
h∈(0,1]

Definition 9. Let T be a theory on ∀UL�
h∈(0,1].

(1) T is consistent if there is a formula ϕ unprovable in T .
(2) T is complete if for each pair ϕ, ψ of closed formula, T � (ϕ → ψ) or

T � (ψ → ϕ).
(3) T is Henkin if for each closed formula of the form (∀x)ϕ(x) unprovable

in T there is a constant c in the language of T such that ϕ(c) is unprovable.

Lemma 4. T is inconsistent iff T � 0.

Lemma 5. T is complete iff for each pair ϕ, ψ of closed formulas if T � ϕ∨ψ,
then T proves ϕ or T proves ψ.

Proof. Sufficiency: For each pair ϕ, ψ of closed formulas, being (ϕ → ψ) ∨
(ψ → ϕ) is theorem in ∀UL�

h∈(0,1], so T � (ϕ → ψ)∨(ψ → ϕ), thus T � (ϕ →
ψ) or T � (ψ → ϕ). Thus T is complete. Necessity: assume T is complete
and T � ϕ∨ψ, Either T � ϕ → ψ and then T � (ϕ∨ψ) → ψ, thus T � ψ, or
T � ψ → ϕ and then similarly T � ϕ.

Definition 10. Let T be a theory, the set of all closed formulas over
∀UL�

h∈(0,1] is denoted by F c(∀UL�
h∈(0,1]). The definition of relation ∼T on

F c(∀UL�
h∈(0,1]) is: ϕ ∼T ψ iff T � ϕ → ψ, T � ψ → ϕ.

Obviously, ∼T is equivalent relation on F c(∀UL�
h∈(0,1]), and holds on &,

→,". So the quotient algebra [F ]T = F c(∀UL�
h∈(0,1])/ ∼T= {[ϕ]T |ϕ ∈

F c(∀UL�
h∈(0,1])} of F c(∀UL�

h∈(0,1]) about ∼T is �LΠG� algebra, in which,

[ϕ]T = {ψ ∈ F c(∀UL�
h∈(0,1]) |ψ ∼T ϕ}, the partial order ≤ on [F ]T is

[ϕ]T ≤ [ψ]T iff T � ϕ → ψ.

Lemma 6. (1) If T is complete then [F ]T is linearly ordered.
(2) If T is Henkin then for each formula ϕ(x) with just one free variable

x, [(∀x)ϕ]T = infc[ϕ(c)]T , [(∃x)ϕ]T = supc[ϕ(c)]T , in which c running over
all constants of T .

Proof. (1) is obvious since [ϕ]T ≤ [ψ]T iff T � ϕ → ψ.
(2) Clearly, [(∀x)ϕ(x)]T ≤ infc[ϕ(c)]T for each c, thus [(∀x)ϕ(x)]T ≤

infc[ϕ(c)]T . To prove that [(∀x)ϕ(x)]T is the infimum of all [ϕ(c)]T , as-
sume [γ]T ≤ [ϕ(c)]T for each c, we have to prove [γ]T ≤ [(∀x)ϕ(x)]T (which
means that [(∀x)ϕ(x)]T is the greatest lower bound of all [ϕ(c)]T ). But if
[γ]T � [(∀x)ϕ(x)]T then T /� γ → (∀x)ϕ(x), thus T /� (∀x)(γ → ϕ(x)). So
by the henkin property, there is a constant c such that T /� γ → ϕ(c), thus
[γ]T � [ϕ(c)]T , a contradiction.

Similarly, [ϕ(c)]T ≤ [(∃x)ϕ(x)]T for each c. Assume [ϕ(c)]T ≤ [γ]T for
each c, we prove [(∃x)ϕ]T ≤ [γ]T . Indeed, if [(∃x)ϕ]T � [γ]T then T /�
(∃x)ϕ(x) → γ, thus T /� (∀x)(ϕ(x) → γ) and for some c, T /� ϕ(c) → γ, thus
[ϕ(c)]T � [γ]T , a contradiction. This completes the proof.
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Lemma 7. For each theory T and each closed formula α, if T � α then there
is a complete Henkin supertheory T̂ of T such that T̂ � α.

Proof. First observe that if T ′ is an extension of T , T ′ � α, and (ϕ, ψ) is a pair
of closed formulas then either (T ′ ∪ {ϕ → ψ}) /� α or (T ′ ∪ {ψ → ϕ}) /� α.
This is proved easily using the deduction theorem(Theorem 3). Indeed, if
T ′, {ϕ → ψ} � α and T ′, {ψ → ϕ} � α, then T ′ � Δ(ϕ → ψ) → α, T ′ �
Δ(ψ → ϕ) → α, so T ′ � Δ(ϕ → ψ) ∨ Δ(ψ → ϕ) → α, thus T ′ � α, a
contradiction.

Put T ′′ = T ′ ∪ {ϕ → ψ} in the former case and T ′′ = T ′ ∪ {ψ → ϕ} in the
latter, T ′′ is the extension of T ′ deciding (ϕ, ψ) and keeping α unprovable.

We shall construct T̂ in countably many stages. First extend the language
J of T to J ′ adding new constants c0, c1, c2, · · ·. In the construction we have to
decide each pair (ϕ, ψ) of closed J ′-formulas and ensure the Henkin property
for each closed J ′-formula of the form (∀x)χ(x). These are countably many
tasks and may be enumerated by natural numbers(e.g. in even steps we shall
decide all pair (ϕ, ψ), in odd ones process all formulas (∀x)χ(x)—or take any
other enumeration).

Put T0 = T and α0 = α, then T0 /� α0. Assume Tn, αn have been con-
structed such that Tn extends T0, Tn � α → αn, Tn /� αn; we construct
Tn+1, αn+1 in such a way that Tn � α → αn+1, Tn+1 /� αn+1 and Tn+1 fulfils
the n-th task.

Case 1 n−th task is deciding (ϕ, ψ). Let Tn+1 be extension of Tn deciding
(ϕ, ψ) and keeping αn unprovable; put αn+1 = αn.

Case 2 n−th task is processing (∀x)χ(x). First let c be one of the new
constant not occurring in Tn.

Subcase(a) Tn /� αn ∨ χ(c), thus Tn /� (∀x)χ(x). Put Tn+1 = Tn, αn+1 =
αn ∨ χ(c).

Subcase(b) Tn � αn ∨ χ(c), thus Tn � αn ∨ χ(x) by the standard ar-
gument(in the proof of αn ∨ χ(c) replace c by a new variable x through-
out). Hence Tn � (∀x)(αn ∨ χ(x)) and using axiom (U17) for the first
time, Tn � αn ∨ (∀x)χ(x). Thus Tn ∪ {(∀x)χ(x) → αn} � αn so that
Tn ∪ {αn → (∀x)χ(x)} /� αn, Tn ∪ {αn → (∀x)χ(x)} � (∀x)χ(x) does not
prove αn but it does prove (∀x)χ(x). Thus put Tn+1 = Tn∪{αn → (∀x)χ(x)}
and αn+1 = αn.

Now let T̂ be the union of all Tn. Then clearly T̂ is complete and T̂ �
α(since for all n, T̂ � α). We show that T̂ is Henkin. Let T̂ /� (∀x)χ(x) and
let (∀x)χ(x) be processed in step n. Then Tn+1 /� (∀x)χ(x), Tn+1 /� αn+1, thus
subcase (a) applies and T̂ � αn+1, αn+1 being αn ∨ χ(c). Hence T̂ /� χ(c).
This completes the proof.

Lemma 8. For each complete Henkin theory T and each closed formula α
unprovable in T there is a linearly ordered �LΠG�-algebra L and L-model
M of T such that ‖α‖L

M < 1L.

Proof. Take M be the set of all constants of the language of T , mc = c
for each such constant. Let L be the lattice of classes of T -equivalent closed
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formulas, i.e. put [ϕ]T = {ψ|T � ϕ ≡ ψ}, [ϕ]T ∗ [ψ]T = [ϕ&ψ]T , [ϕ]T ⇒
[ψ]T = [ϕ → ψ]T . So L is a linearly ordered �LΠG�-algebra(since T � ϕ → ψ
or T � ψ → ϕ for each pair (ϕ, ψ)).

For each predicate P of arity n, let rP (c1, · · · , cn) = [P (c1, · · · , cn)]T , this
completes the definition of M. It remains to prove ‖α‖L

M = [α]T for each closed
formula ϕ. Then for each axiom ϕ of T we have ‖ϕ‖L

M = [ϕ]T = [1]T = 1L,
but ‖α‖L

M = [α]T �= [1]T = 1L. For atomic closed formula ϕ the claim follows
by definition; the induction step for connectives is obvious. We handle the
quantifiers. Let

(∀x)ϕ(x), (∃x)ϕ(x) be closed, then by the induction hypothesis,
‖(∀x)ϕ(x)‖L

M = infc ‖ϕ(c)‖L
M = infc[ϕ(c)]T = [(∀x)ϕ(x)]T

‖(∃x)ϕ(x)‖L
M = supc ‖ϕ(c)‖L

M = supc[ϕ(c)]T = [(∃x)ϕ(x)]T
Here we use lemma and the fact that in our M, each element c of M is the

meaning of a constant (namely itself); this gives ‖(∀x)ϕ(x)‖L
M = infc ‖ϕ(c)‖L

M
and the dual for ∃.

Using the above lemmas, we can get the following completeness theorem.

Theorem 4. (Completeness) For predicate calculus system ∀UL�
h∈(0,1], T is

a theory, ϕ is a formula, T � ϕ iff for each linearly ordered �LΠG�-algebra
L and each safe L-model M of T , ‖ϕ‖L

M = 1L.

4 Some Extension Logics of ∀UL�
h∈(0,1]

According to the same method for h ∈ (0, 1] in propositional system, we can
also build up the predicate calculus formal deductive systems ∀UL�

h∈(0,1),

∀UL�
h∈[0.75,1] and ∀UL�

h∈(0,0.75)∪1 if we fix h ∈ (0, 1), h ∈ [0.75, 1] and h ∈
(0, 0.75) ∪ 1 respectively in the predicate calculus language J .

Definition 11. Axioms of the the system ∀UL�
h∈(0,1) are those of ∀UL�

h∈(0,1]
plus

(�LΠ) (ϕ → (ϕ&ψ)) → ((ϕ → 0) ∨ ψ).
Deduction rules of ∀UL�

h∈(0,1) are modus ponens:from ϕ,ϕ → ψ infer ψ,
necessitation: from ϕ infer "ϕ, and generalization: from ϕ infer (∀x)ϕ.

Definition 12. Axioms of the the system ∀UL�
h∈[0.75,1] are those of

∀UL�
h∈(0,1] plus

(ΠG) (ϕ ∧ (ϕ → 0)) → 0.
Deduction rules of ∀UL�

h∈[0.75,1] are modus ponens:from ϕ,ϕ → ψ infer ψ,
necessitation: from ϕ infer "ϕ, and generalization: from ϕ infer (∀x)ϕ.

Definition 13. Axioms of the the system ∀UL�
h∈(0,0.75)∪1 are those of

∀UL�
h∈(0,1] plus
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(�LG) (((ϕ → 0) → 0) → ϕ) ∨ (ϕ → (ϕ&ϕ)).
Deduction rules of ∀UL�

h∈(0,0.75)∪1 are modus ponens:from ϕ,ϕ → ψ infer
ψ, necessitation: from ϕ infer "ϕ, and generalization: from ϕ infer (∀x)ϕ.

�LΠ�-algebras are �LΠG�-algebras satisfying: (ϕ → (ϕ&ψ)) → ((ϕ → 0) ∨
ψ) = 1. ΠG�-algebras are �LΠG�-algebras satisfying ϕ ∧ (ϕ → 0) = 0.
�LG�-algebras are �LΠG�-algebras satisfying (((ϕ → 0) → 0) → ϕ) ∨ (ϕ →
(ϕ&ϕ)) = 1.

Remark 2. For each h ∈ (0, 1), ([0, 1],∧h,⇒h,min,max, 0, 1,") is a linearly
ordered �LΠ�-algebra. For each h ∈ [0.75, 1], ([0, 1],∧h,⇒h,min,max, 0, 1,")
is a linearly ordered ΠG�-algebra. For each h ∈ (0, 0.75) ∪ 1, ([0, 1],∧h,⇒h

,min,max, 0, 1,") is a linearly ordered �LG�-algebra. So the predicate system
∀UL�

h∈(0,1), ∀UL
�
h∈[0.75,1] and ∀UL�

h∈(0,0.75)∪1 can be considered the axiomati-
zation for 0-level universal AND operator with projection operator according
to h ∈ (0, 1), h ∈ [0.75, 1] and h ∈ (0, 0.75) ∪ 1.

Theorem 5. (Completeness)For predicate calculus system ∀UL�
h∈(0,1), T is

a theory, ϕ is a formula, T � ϕ iff for each linearly ordered �LΠ�-algebra L
and each safe L-model M of T , ‖ϕ‖L

M = 1L.

Theorem 6. (Completeness) For predicate calculus system ∀UL�
h∈[0.75,1], T

is a theory, ϕ is a formula, T � ϕ iff for each linearly ordered ΠG�-algebra
L and each safe L-model M of T , ‖ϕ‖L

M = 1L.

Theorem 7. (Completeness) For predicate calculus system ∀UL�
h∈(0,0.75)∪1,

T is a theory, ϕ is a formula, T � ϕ iff for each linearly ordered �LG�-algebra
L and each safe L-model M of T , ‖ϕ‖L

M = 1L.

5 Conclusion

In this paper a predicate calculus formal deductive system ∀UL�
h∈(0,1]

according to the propositional system UL�
h∈(0,1] for 0-level universal AND

operator is introduced. We prove the system UL�
h∈(0,1] is complete. The

completeness of some extension logics of ∀UL�
h∈(0,1] are also given. The

following work for us is to study the axiomatization for universal logic in
other cases.
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Abstract. The theory of the quasi-truth degrees of predicate formulae is a
preliminary test of quantitative predicate logic. Corresponding to quantita-
tive propositional logic, we know that it’s just a beginning. In this paper, we
continue the research of the measurement in predicate logic.We propose the
concept of the degree of the quasi-similarity and logically quasi-equivalent re-
lation between formulae, and study some important reasonable results. More-
over, the pseudo-metric ρ on the set F of formulae is naturally induced, and
we prove that the operators ∨,∧ and → are all continuous on the logic metric
space (F , ρ). The paper further riches the theory of quantitative predicate
logic, and provides a basic framework for the approximate reasoning in pred-
icate logic.

Keywords: Quantitative predicate logic, approximate reasoning,
quasi-similarity degree, pseudo-metric.

1 Introduction

It is well known that the distinguished features of the subject of the math-
ematical logic are symbolization and formalization that endow this subject
with a special style completely different from the style of computation math-
ematics.In fact,the former lays stresses on formal deduction, while the latter
attaches importance to numerical calculation;the former puts emphasis on
rigid proof,while the latter tolerates approximate computation.It seems that
there exists an invisible separation wall between them.

In 2009, Wang [1] proposed quantitative logic which combined the mathe-
matical logic and the computation mathematics to provide a graded approach
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to mathematical logic.Quantitative logic is composed of quantitative propo-
sitional logic and quantitative predicate logic,and the elementary theories of
quantitative propositional logic include five parts: the degree of the truth
of formulae,the degree of the similarity between formulae,logic metric space
(F (S), ρ),theory of the approximate reasoning in F (S),the degree of the con-
sistency of theories.

There are many researches on quantitative propositional logic up to
now([1-6]), while it’s a close blanket in the case of quantitative predicate
logic. It’s because of the complexity of the interpretations of the first-order
language that we find it hard to define the truth degrees of first-order formu-
lae,which is the base theory of quantitative logic. Then, can we only consider
the interpretations with finite domain in some approximate sense? It’s a pity
that the answer is ”No”. Hilbert ever gave the following formula A∗:

(∃x) P (x, x) ∨ (∃x) (∃y) (∃z) (P (x, y) ∧ P (y, z) ∧ ¬P (x, z)) ∨ (∃x) (∀y)¬P (y, x) .

Here A∗ is true w.r.t. any interpretation with finite domain, but there exists
an interpretation with a infinite domain w.r.t. which A∗ is false([7]). Even so,
if a formula is true w.r.t. any interpretation with a finite domain, it’s certainly
a good formula to some extent. In this way, the authors proposed the degree
of the quasi-truth of the first-order formula to measure approximately its
truth degree in [8].

However, it’s only a beginning of quantitative predicate logic. In this paper,
we will furthermore study the elementary theories of quantitative predicate
logic in this viewpoint. Concretely, we recall some basic theories of the quasi-
truth degrees of formulae as a preliminary part in section 2. In section 3, we
propose the definition of the degree of the quasi-similarity between formulae,
and study some important properties. Moreover, we propose the concept of
logically quasi-equivalent relation between formulae to discuss some further
algebraic properties. In section 4, a kind of pseudo-metric on the set F of
formulae is given, and we prove that the operations such as ¬,→,∨, and ∧ are
all continuous on the metric space (F , ρ). Based on the pseudo-metric on the
set F of formulae, we can make further studies on the theory of approximate
reasoning. We leave this part of development to subsequent work.Section 5
is the conclusion.

2 Preliminaries

2.1 Basic Concepts and Symbols in the Present Paper

A first order language L has the following as its alphabet of symbols:(i)
variables x1, x2, · · ·; (ii) some individual constants c1, c2, · · ·;(iii) some pred-
icate letters P,Q,R,· · ·;(iv) some function letters f, g, h, · · ·;(v) the punctua-
tion symbols ”(”,”)” and ”,”;(vi) the connectives ¬ and →;(vii) the universal
quantifier ∀; (viii) the existential quantifier ∃, which is an abbreviation of
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¬∀¬(see, e.g. [9]). In the present paper, we agree on the assumption that
there is no function symbols in the alphabet, which is adopted in, for ex-
ample, Refs. [10,11] etc. Then x1, x2, · · · and c1, c2, · · · are called terms. An
atomic formula has the form P (t1, · · · , tk) where P is a predicate letter of ar-
ity k and t1, · · · , tk are terms. A well-formed formula(briefly wff or first-order
formula, or simply formula) of L is defined by:(i) Each atomic formula of L
is a formula. (ii) If A and B are formulae of L, then so are ¬A,A → B and
(∀xi)A. (iii) The set of formulae of L is generated as in (i) and (ii). The set
of all formulae of L will be denoted by F .

An interpretation I = (I, (rP )P , (mc)c) (or, 0,1-structure called by Hájek
in [11]) is a triplet where I is a nonempty set, called the domain of I, for each
predicate letter P of arity k, rP is a relation of arity k on I, i.e., rP ⊆ Ik, and
for each individual constant c, there exists a unique corresponding element
mc in I. A valuation v of L in I is a mapping from the set T of terms to I
satisfying v(c) = mc and v(xn) ∈ I(n = 1, 2, · · ·). A valuation v in I is said
to satisfy a formula A ∈ F if it can be shown inductively to do so under the
following four conditions: (i) v satisfies the atomic formula P (t1, t2, · · · , tk) if
rP (t1, t2, · · · , tk) is true in I, i.e., (v(t1), v(t2), · · · , v(tk)) ∈ rP . (ii) v satisfies
¬B if v does not satisfy B. (iii) v satisfies B → C if v satisfies ¬B or v
satisfies C. (iv) v satisfies (∀xi)B if every valuation v

′
which is i-equivalent

to v satisfies B, where v
′

is i-equivalent to v iff v
′
(xn) = v(xn) whenever

n �= i. The set of all valuations in I is denoted by ΩI. Assume that A ∈ F
and v ∈ ΩI, then we use ‖A‖I,v = 1 to denote that v satisfies A and use
‖A‖I,v = 0 to denote that v doesn’t satisfy A. If ‖A‖I,v = 1 holds for all
v ∈ ΩI, then we say that A is true in I, denoted by ‖A‖I = 1. If A is true in
every interpretation I, then we say that A is logically valid.

2.2 The Degree of the Quasi-truth of Formulae

Definition 1. ([12]) Suppose that (Xn,An, μn) is a probabilistic measure
space where μn is a probability measure on Xn, and An is the family consisting

of all μn-measurable subsets of Xn(n = 1, 2, · · ·). Assume that X =
∞∏
n=1

Xn,

then
∞∏
n=1

An generates on X a σ-algebra A, and there exists on X a unique

measure μ such that (i)A is the family of all μ-measurable subsets of X;

(ii)E ×
∞∏

n=m+1
Xn is μ-measurable and

μ(E ×
∞∏

n=m+1

Xn) = (μ1 × μ2 × · · · × μm)(E),m = 1, 2, · · · (1)

whenever E is a measurable subset of
m∏
n=1

Xn. μ is called the infinite product

of μ1, μ2, · · ·. The probability measure space (X,A, μ) will often be simplified
as X.
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Suppose that I ∈ If , Xn = I, μn is the evenly distributed probability

measure on Xn. Let XI =
∞∏
n=1

Xn and μI be the infinite product of μ1, μ2, · · ·.

Suppose that υ ∈ ΩI, then υ is decided by its restriction υ|S on the set
S = {x1, x2, · · ·} of variables because (mc)c in I is fixed. Assume that υ(xk) =
υk(k = 1, 2, · · ·), then v = (υ1, υ2, · · ·) ∈ XI. Conversely, assume that v =
(υ1, υ2, · · ·) ∈ XI, then there exists a unique υ ∈ ΩI such that υ(xk) = υk(k =
1, 2, · · ·). Hence ϕ : ΩI → XI is a bijection where ϕ(υ) = v.

Definition 2. ([8]) Suppose that I ∈ If and A ∈ F . Define [A]I and τI(A)
as follows respectively

[A]I = {v ∈ XI|v ∈ ΩI, ‖A‖I,v = 1}, τI(A) = μI([A]I), (2)

then τI(A) is called the relative truth degree of A in I.

Definition 3. ([8]) Suppose that A ∈ F . Define τ(A) as follows:

τ(A) =
sup{τI(A)|I ∈ If} + inf{τI(A)|I ∈ If}

2
(3)

then τ(A) is called the degree of the quasi-truth of A.

Remark 1. The above degree is just an average truth degree of A, and we
can obtain other measurement through dealing with all the relative truth
degrees of A in other ways, e.g. weighting method. We leave this work in the
consequent paper.

Proposition 1. Suppose that A,B ∈ F .
(i) 0 ≤ τ(A) ≤ 1;
(ii) τ(A) + τ(¬A) = 1;
(iii) τ(A ∧B) ≤ τ(A) ∧ τ(B);
(iv) τ(A) ∨ τ(B) ≤ τ(A ∨B).

Theorem 1. ([8]) Suppose that A,B ∈ F , B is a prenex normal form, and
A is logically equivalent to B. If B contains no quantifiers, or the quantifiers
in B are all universal or all existential, then
(i) A is logically efficient if and only if τ(A) = 1;
(ii) A is a contradiction if and only if τ(A) = 0.

Remark 2. It is easy to verify that if A is logically valid then τ(A) = 1, and if
A is a contradiction, then τ(A) = 0, where no extra conditions are required.

Theorem 2. ([8]) Suppose that A,B,C ∈ F .
(i) If τ(A) ≥ α, τ(A → B) ≥ β, then τ(B) ≥ α + β − 1;
(ii) If τ(A → B) ≥ α, τ(B → C) ≥ β, then τ(A → C) ≥ α + β − 1.

Theorem 3. ([8]) Suppose that A ∈ F .
(i) τ((∀x)A) ≤ τ(A);
(ii) τ(A) = 1 if and only if τ((∀x)A) = 1.
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Remark 3. From Theorem 2 and Theorem 3, we know that MP rule,HS rule
and the Generalization rule all conserve the property that the degree of the
quasi-truth equals to 1.

In [13], Wang proved that the following theorem held, and it shows us that
it’s feasible to reason approximately on the set F of all the formulae based
on the degrees of the quasi-truth of formulae.

Theorem 4. The set of all the degrees of the quasi-truth of formulae is dense
in [0,1].

3 The Degree of the Quasi-similarity between Formulae

3.1 The Relative Degree of the Similarity between Formulae

Definition 4. Suppose that I ∈ If , and A,B ∈ F . Define ξI(A,B) as
follows:

ξI(A,B) = τI((A → B) ∧ (B → A)). (4)

then ξI(A,B) is called the relative degree of the similarity between A and B
in I.

Proposition 2. Suppose that I ∈ If , and A,B ∈ F .
(i) 0 ≤ ξI(A,B) ≤ 1;
(ii) ξI(A,B) = μI({v ∈ XI|v ∈ ΩI, ‖ A ‖I,v=‖ B ‖I,v});
(iii) ξI(A,B) + ξI(A,¬B) = 1.

Proposition 3. Suppose that I ∈ If , and A,B,C,D ∈ F .
(i) ξI(A,B) + ξI(B,C) ≤ 1 + ξI(A,C);
(ii) ξI(A,C) + ξI(B,D) ≤ 1 + ξI(A → B,C → D);
(iii) ξI(A, (∀x)A) = τI(A → (∀x)A).

Proof. (i) According to the fact that μ(Y ∪ Z) = μ(Y ) + μ(Z) − μ(Y ∩ Z),
we can prove (i) easily.

(ii) Let
G1 = {v ∈ XI|v ∈ ΩI, ‖A‖I,v = ‖C‖I,v},

G2 = {v ∈ XI|v ∈ ΩI, ‖B‖I,v = ‖D‖I,v},

G3 = {v ∈ XI|v ∈ ΩI, ‖A → B‖I,v = ‖C → D‖I,v},

then it’s clear that G1 ∩G2 ⊆ G3, and G1 ∪G2 ⊆ XI. So we have

ξI(A,C) + ξI(B,D) = μI(G1) + μI(G2)
= μI(G1 ∪G2) + μI(G1 ∩G2)
≤ μI(X) + μI(G3)
= 1 + ξI(A → B,C → D).
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(iii) Because the formula (∀x)A → A is logically efficient, we can easily
prove that τI((A → (∀x)A) ∧ ((∀x)A → A)) = τI(A → (∀x)A) holds for
every finite interpretation I.Thus we have ξI(A, (∀x)A) = τI(A → (∀x)A)
from (4).

Corollary 1. For any A,B ∈ F and I ∈ If , if ξI(A,B) = ξI(B,C) = 1,
then ξI(A,C) = 1.

3.2 The Degree of the Quasi-similarity between Formulae

Based on the the relative degree of the similarity between formulae,we can
define the degree of the quasi-similarity between formulae as follows:

Definition 5. Suppose that A,B ∈ F ,Define ξ(A,B) as follows:

ξ(A,B) =
sup{ξI(A,B)|I ∈ If} + inf{ξI(A,B)|I ∈ If}

2
. (5)

then ξ(A,B) is called the degree of the quasi-similarity between A and B.

Example 1. Calculate the quasi-similarity degree between P (x) and (∀x)P (x).

Solution. For any interpretation I = (I, (rP )P , (mc)c) in If , it follows from
Proposition 3(iii) and (2) that

ξI(P (x), (∀x)P (x)) = τI0(P (x) → (∀x)P (x))
= μI{v ∈ XI|v ∈ ΩI, ‖P (x) → (∀x)P (x)‖I,v = 1}
= 1 − μI{v ∈ XI|v ∈ ΩI, ‖P (x)‖I,v = 1, ‖(∀x)P (x)‖I,v = 0}.

So we have that

ξI(P (x), (∀x)P (x)) =

{
1 , if rP = I or ∅,

1 − |rP |
|I| , otherwise.

Thus it’s clear that

sup{ξI(P (x), (∀x)P (x))|I ∈ If} = 1.

On the other hand, for any positive integer n, construct an interpreta-
tion In = (In, (rP,n)P , (mc)c) such that |In| = n and |rP,n| = n − 1.
Then for the sequence {In}∞n=1 of interpretations, lim

n→∞
|rP,n|
|I| = 1. So we

have that inf{ξI(P (x), (∀x)P (x))|I ∈ If} = 0. It follows from (5) that
ξ(P (x), (∀x)P (x)) = 1

2 .

Proposition 4. Suppose that A,B ∈ F .
(i) 0 ≤ ξ(A,B) ≤ 1;
(ii) ξ(A,B) = 1 if and only if ∀I ∈ If , ∀v ∈ ΩI, ‖A‖I,v = ‖B‖I,v;
(iii) ξ(A,B) = τ((A → B) ∧ (B → A));
(iv) ξ(A,B) ≤ τ(A → B) ∧ τ(B → A).
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Theorem 5. Suppose that A,B ∈ F .
(i) ξ(A,A) = 1; ξ(A,¬A) = 0;
(ii) ξ(A,B) = ξ(B,A);
(iii) ξ(A,B) + ξ(A,¬B) = 1.

Lemma 1. For any A,B ∈ F , there exists a finite interpretation I ∈ If ,
such that ξI(A,B) ∈ {0, 1}.

Proof. Let I = (I, (rP )P , (mc)c) ∈ If , where rP = Ik for any predicate letter
P of arity k. Then either ‖(A → B) ∧ (B → A)‖I,v = 1 holds for every
valuation v in ΩI, or ‖(A → B) ∧ (B → A)‖I,v = 0 holds for every valuation
v in ΩI, and hence it follows from (2) and (4) that either ξI(A,B) = 1 or
ξI(A,B) = 0, i.e., ξI(A,B) ∈ {0, 1}.

Theorem 6. Suppose that A,B,C,D ∈ F .
(i) ξ(A,B) + ξ(B,C) ≤ 1 + ξ(A,C);
(ii) ξ(A,C) + ξ(B,D) ≤ 1 + ξ(A → B,C → D);
(iii) ξ(A, (∀x)A) = τ(A → (∀x)A).

Proof. Construct an interpretation I0 in If such that rP = I0
k in I0 holds

for every predicate symbol P of arity k.
(i) It’s clear that we have ξI0(A,B) ∈ {0, 1}, and ξI0(B,C) ∈ {0, 1}.
1© If ξI0(A,B) = 1, and ξI0(B,C) = 1, then ξI0(A,C) = 1 holds according

to Corollary 1. It follows from (5) that

inf{ξI(A,B)|I ∈ If} = 2ξ(A,B) − 1, (6)

inf{ξI(B,C)|I ∈ If} = 2ξ(B,C) − 1. (7)

From (6),(7) and Proposition 3(i), we have

inf{ξI(A,C)|I ∈ If} ≥ inf{ξI(A,B) + ξI(B,C) − 1|I ∈ If}
≥ inf{ξI(A,B)|I ∈ If} + inf{ξI(B,C)|I ∈ If} − 1
= 2ξ(A,B) + 2ξ(B,C) − 3.

Therefore we have

ξ(A,C) = sup{ξI(A,C)|I∈If}+inf{ξI(A,C)|I∈If}
2

= 1+inf{ξI(A,C)|I∈If}
2

≥ 1+2ξ(A,B)+2ξ(B,C)−3
2

= ξ(A,B) + ξ(B,C) − 1.

2© If ξI0(A,B) = 1 and ξI0(B,C) = 0, it’s clear that ξI0(A,C) = 0
according to Proposition 2(ii). It follows from (5) that

inf{ξI(A,B)|I ∈ If} = 2ξ(A,B) − 1, (8)

sup{ξI(B,C)|I ∈ If} = 2ξ(B,C) (9)
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From (8),(9) and Proposition 3(i), we have

sup{ξI(A,C)|I ∈ If} ≥ sup{ξI(A,B) + ξI(B,C) − 1|I ∈ If}
≥ sup{2ξ(A,B) − 1 + ξI(B,C) − 1|I ∈ If}
= 2ξ(A,B) − 2 + sup{ξI(B,C)|I ∈ If}
= 2ξ(A,B) + 2ξ(B,C) − 2

Therefore we have

ξ(A,C) = sup{ξI(A,C)|I∈If}+inf{ξI(A,C)|I∈If}
2

= sup{ξI(A,C)|I∈If}+0
2

≥ 2ξ(A,B)+2ξ(B,C)−2+0
2

= ξ(A,B) + ξ(B,C) − 1.

3© If ξI0(A,B) = 0,and ξI0(B,C) = 1, then the conclusion can be proved
similarly to 2©.

4© If ξI0(A,B) = ξI0(B,C) = 0, then ξ(A,B) ≤ 1
2 and ξ(B,C) ≤ 1

2 hold
according to (5). So we have ξ(A,C) ≥ 0 = 1

2 + 1
2 −1 ≥ ξ(A,B)+ξ(B,C)−1.

(ii) Similar to (i), we have ξI0(A,C) ∈ {0, 1}, ξI0(B,D) ∈ {0, 1} and
ξI0(A → B,C → D) ∈ {0, 1}.

1© If ξI0(A,C) = 1 and ξI0(B,D) = 1, then ξI0(A → B,C → D) = 1,
then it follows from (5) and Proposition 3(ii) that

ξ(A,C) + ξ(B,D) = 1+inf{ξI(A,C)|I∈If}
2 + 1+inf{ξI(B,D)|I∈If}

2
= 1 + inf{ξI(A,C)|I∈If}+inf{ξI(B,D)|I∈If}

2
≤ 1 + inf{ξI(A,C)+ξI(B,D)|I∈If}

2
≤ 1 + inf{1+ξI(A→B,C→D)|I∈If}

2
= 1 + 1+inf{ξI(A→B,C→D)|I∈If}

2
= 1 + ξ(A → B,C → D).

2© If ξI0(A,C) = 1, ξI0(B,D) = 0, and ξI0(A → B,C → D) = 0, then it
follows from (5) and Proposition 3(ii) that

ξ(A,C) + ξ(B,D) = 1+inf{ξI(A,C)|I∈If}
2 + sup{ξI(B,D)|I∈If}+0

2
= 1

2 + inf{ξI(A,C)|I∈If}+sup{ξI(B,D)|I∈If}
2

≤ 1
2 + sup{ξI(B,D)+inf{ξI(A,C)|I∈If}|I∈If}

2
≤ 1

2 + sup{ξI(A,C)+ξI(B,D)|I∈If}
2

≤ 1
2 + sup{1+ξI(A→B,C→D)}

2
= 1 + sup{ξI(A→B,C→D)|I∈If}+0

2
= 1 + ξ(A → B,C → D).

3© If ξI0(A,C) = 0, ξI0(B,D) = 1, and ξI0(A → B,C → D) = 0, the
conclusion can be proved similarly to 2©.

4© If ξI0(A,C) = 1, ξI0(B,D) = 0, and ξI0(A → B,C → D) = 1, then it’s
clear from (5) that ξ(A,C) ≤ 1, ξ(B,D) ≤ 1

2 , and ξ(A → B,C → D) ≥ 1
2 .

So we have ξ(A,C) + ξ(B,D) ≤ 1 + 1
2 ≤ 1 + ξ(A → B,C → D).
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5© If ξI0(A,C) = 0, ξI0(B,D) = 1, and ξI0(A → B,C → D) = 1, we can
prove the conclusion similarly to 4©.

6© If ξI0(A,C) = 0, ξI0(B,D) = 0, then we have easily that ξ(A,C) ≤
1
2 , ξ(B,D) ≤ 1

2 . So it’s clear that ξ(A,C)+ξ(B,D) ≤ 1
2 + 1

2 = 1 ≤ 1+ξ(A →
B,C → D).

(iii) It can be easily proved from Proposition 3(iii) and (5).

Corollary 2. For any A,B,C ∈ F , if ξ(A,B) = ξ(B,C) = 1, then
ξ(A,C) = 1.

3.3 Logically Quasi-equivalent Relation between Formulae

Definition 6. Suppose that A,B ∈ F . If A → B and B → A are both true
formulae in every finite interpretation, we say that A and B are logically
quasi-equivalent, denoted by A ≈q B.

Theorem 7. Suppose that A,B ∈ F . If A ≈q B, then τ(A) = τ(B); but not
vice versa.

Proof. According to Definition 6, we have that ‖A‖I,v = ‖B‖I,v holds for
every finite interpretation I and every valuation v ∈ ΩI. Thus it follows from
(2) and (3) that τ(A) = τ(B).

But the inverse proposition doesn’t hold. For example: Let A = P (x) and
B = Q(x). It can be easily proved that τ(A) = τ(B) = 1

2 from (3), while
A ≈q B doesn’t hold.

Remark 4. Even so, if we denote the contradiction by 0 and the logically
efficient formula by 1, then for any A ∈ F , A ≈q 0 if and only if τ(A) = 0,
and A ≈q 1 if and only if τ(A) = 1. In fact, we can prove the following
theorem:

Theorem 8. Suppose that A,B ∈ F .
(i) A ≈q B if and only if ξ(A,B) = 1;
(ii) A ≈q ¬B if and only if ξ(A,B) = 0;
(iii) ”≈q” is an equivalence relation on F .

Remark 5. By the equivalence relation ≈q, we can partition the set F of
formulae into some equivalent classes.In fact,the classification according to
the quasi-equivalence relation is not perfect because the logically efficient
formulae fall into the same category with the true formulae in any finite
interpretations, but we know that the two formulae are different.Even so,
according to Theorem 7, this kind of classification is more precise than that
by the degrees of the quasi-truth of formulae. Moreover, owing to the density
of the distribution of quasi-truth degrees of formulae, the classification is
quite accurate.

Remark 6. Furthermore, we can define the operators such as ∨,∧,→ and ′ on
these equivalent classes, and discuss the algebraic properties, which are our
consequent work.
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4 The Pseudo-metric on the Set F of Formulae

Let ξ : F −→ F be the quasi-similarity degree function defined as (5). Define

ρ(A,B) = 1 − ξ(A,B), A,B ∈ F . (10)

It then follows from Theorem 6(i) that

ρ(A,B) + ρ(B,C) ≥ ρ(A,C), A,B,C ∈ F .

Moreover, ρ(A,A) = 0 and ρ(A,B) = ρ(B,A) clearly hold, hence ρ is a
pseudo-metric on F .

Definition 7. According to (10), define ρ : F × F −→[0,1], then ρ is a
pseudo-metric on F . (F , ρ) is called a logic metric space.

As an immediate consequence of Theorem 1 and Theorem 5, we have:

Theorem 9. Suppose that A,B ∈ F .
(i) ρ(A,B) = 0 if and only if A ≈q B; ρ(A,B) = 1 if and only if A ≈q ¬B;
(ii) ρ(A,B) + ρ(A,¬B) = 1;
(iii) ρ(A, 0̄) = τ(A), where 0̄ refers to the set of formulae whose quasi-truth
degrees are all equal to 0.

Theorem 10. Suppose that An, A ∈ F , n=1,2,· · ·. If lim
n→∞

ρ(An, A) = 0,

then lim
n→∞

ρ(¬An,¬A) = 0.

Proof. It follows from Theorem 9 that ρ(¬An,¬A) = 1−ρ(¬An, A) = 1−(1−
ρ(An, A)) = ρ(An, A). So we have that lim

n→∞
ρ(¬An,¬A) = lim

n→∞
ρ(An, A) = 0.

Theorem 11. Suppose that An, A,Bn, B ∈ F , n=1,2,· · ·. If lim
n→∞

ρ (An, A) =

0, lim
n→∞

ρ (Bn, B) = 0, then lim
n→∞

ρ(An → Bn, A → B) = 0.

Proof. It follows from (10) and Theorem 6(ii) that

0 ≤ ρ(An → Bn, A → B) = 1 − ξ(An → Bn, A → B)
≤ 1 − (ξ(An, A) + ξ(Bn, B) − 1)
= 1 − (1 − ρ(An, A) + 1 − ρ(Bn, B) − 1)
= ρ(An, A) + ρ(Bn, B) −→ 0.

So we have lim
n→∞

ρ(An → Bn, A → B) = 0.

Corollary 3. The binary operators ∨ and ∧ are both continuous on (F , ρ).

Remark 7. In fact, the above theorems tell us that the unary operator ¬ and
the binary operators →,∨,∧ are all continuous on (F , ρ).
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5 Conclusion

The elementary theory of quantitative logic include five parts:the truth de-
grees of formulae, the similarity degree between formulae, logic metric space,
theory of approximate reasoning, the degree of consistency of theories. Due
to the complexity of the interpretations of the first-order language, we con-
sider the case of truth degree in predicate logic from the viewpoint of all the
finite interpretations.Based on the given definition of the quasi-truth degrees
of formulae, the degree of the quasi-similarity between formulae is defined,
which sequentially induces a pseudo-metric on F . Thus a basic framework
for approximate reasoning on F is provided. In the case of the approximate
reasoning on F and the degree of consistency of theories, we will present our
results in another paper.
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Abstract. The concept of conditional truth degrees of logic theories is
proposed in two-valued propositional logic system L in the present pa-
per, and this concept is generalized from individual to collective. The con-
cept of divergence degree can be simplified thereby. Moreover, the relation
η(Γ | Σ) = 1

2 (1 + τ(Γ | Σ)) between conditional truth degree and condi-
tional consistency degree of a given logic theory Γ w.r.t. Σ is obtained when
Γ is consistent. Finally, theories Γ1 and Γ2 are divided into six categories,
in which the relation of Σ-truth degrees,as well as Σ-consistency degrees
and Σ-divergency degrees of logic theories Γ1, Γ2 and Γ1 ∪Γ2 are compared,
respectively.

Keywords: Σ-truth degree of a logic theory, Σ-consistency degree, Σ-
divergency degree, finite, countable.

1 Introduction

As is well known,symbolization and formalization are the essential charac-
teristics of mathematical logic,which is quite distinct from computational
mathematics. The former lays stress on formal deduction and rigorous argu-
ment,while the later concerns with numerical computation and permits ap-
proximate solving.In two-valued propositional logic L,the concept of truth
degree of propositional formulas of mainly characteristics with numerical
computation has been proposed in references [1] and [2]. Professor Wang
Guojun established the theory of quantitative logic [3] by grading the basic
concepts in propositional logics,which was a bridge between artificial intelli-
gence and computational mathematics.In quantitative logic,the concepts of
truth degree of formulas was given,moreover,the similarity degree between
two formulas and pseudo-metric among formulas were proposed.From then
on,there are a series of research results in quantitative logic. However,all
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these results [4-13] are obtained based only on truth degree of formulas,not
considering truth degree among formulas.Based on this, the concept of truth
degrees of logic theories is proposed firstly in reference [14],and this concept is
generalized from individual to collective.On the basis of truth degrees of logic
theories and the theory of conditional probability,the concept of conditional
truth degrees of logic theories is introduced in two-valued propositional logic
system L, which is generalized from individual to collective. The concept of
conditional divergency degree can be simplified thereby. Relations between
Σ-truth degree, Σ-consistency degree and Σ-divergency degree of a given
logic theory is discussed. Moreover, relations of Σ-truth degrees, as well as
Σ-consistency degrees and Σ-divergency degrees of logic theories Γ1, Γ2 and
Γ1 ∪ Γ2 are compared in two-valued logic system L.

2 Preliminaries

This paper will mainly discuss the two-valued propositional logic systems
L,and the corresponding algebra of which is Boolean-algebra.The lattice is
L = {0, 1}. The implication operator and the corresponding t-norm in which
defined as follows:

RB(x, y) = 0 iff x = 1, y = 0; x ∗ y = 1 iff x = y = 1, x, y ∈ {0, 1}.

Let S = {p1, p2, · · ·} be a countable set, F (S) is the free algebra of type
(¬,→) generated by S,where ¬ is a unary operator and → is binary opera-
tor. Elements of F (S) are called propositions or formulas and that of S are
called atomic propositions or atomic formulas.

Definition 2.1 [15]. In logic system L, let A = A(p1, · · · , pn) be logic for-
mula,then the truth degree of A is defined by

τ(A) =
|A−1|

2n
;

Definition 2.2 [14]. Let Γ ⊆ F (S),then

τ(Γ ) = inf{τ(A) | A ∈ D(Γ )}

is called the truth degree of the logic theory Γ .

Definition 2.3 [4]. In logic system L, let A ∈ F (S), Σ ⊆ F (S), Σ =
{B1, B2, · · · , Bn}. Denote ∧Σ = B1 ∧ B2 ∧ · · · ∧ Bn. If τ(∧Σ) > 0, then
conditional truth degree of A w.r.t. Σ is defined by

τ(A | Σ) =
τ(A ∧ (∧Σ))

τ(∧Σ)
,

Σ-truth degree of A for short.
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In the following, suppose that Σ ⊆ F (S), Σ = {B1, B2, · · · , Bn} and
τ(∧Σ) > 0.

Definition 2.4 [4, 14]. In logic system L, let A,B ∈ F (S), Γ,Σ ⊆ F (S),then
(i) the conditional similarity degree between formulas A and B w.r.t. Σ is

defined by
ξΣ(A,B) = τ((A → B) ∧ (B → A) | Σ),

Σ-similarity degree between A and B for short;
(ii) the conditional logical pseudo-distance on F (S) w.r.t. Σ is defined by

ρΣ(A,B) = 1 − ξΣ(A,B),

Σ-logical pseudo-distance on F (S) for short;
(iii) the conditional divergency degree of a logic theory Γ w.r.t. Σ is defined

by
div(Γ | Σ) = sup{ρΣ(A,B) | A,B ∈ D(Γ )},

Σ-divergency degree of Γ for short;
(iv) the conditional consistency degree of a logic theory Γ w.r.t. Σ is defined

by

η(Γ | Σ) = 1 − 1
2
div(Γ | Σ)(1 + i(Γ )),

Σ-consistency degree of Γ for short.

3 Conditional Truth Degrees of Theories

Definition 3.1. In logic system L, let Γ,Σ ⊆ F (S),then the conditional
truth degree of the logic theory Γ w.r.t. Σ is defined by

τ(Γ | Σ) = inf{τ(A | Σ) | A ∈ D(Γ )},

Σ-truth degree of a theory for short.

Proposition 3.1. In logic system L, let Γ,Σ ⊆ F (S),then the relation
betweenΣ-truth degree and Σ-divergency degree of the theory Γ is given as
following

div(Γ | Σ) = 1 − τ(Γ | Σ).

Proof. On the one hand, suppose that A,B ∈ D(Γ ),then A ∧ B ∈
D(Γ ).From � A ∧B ∧ (∧Σ) → (A → B) ∧ (B → A) ∧ (∧Σ) we see that

τ(A ∧B ∧ (∧Σ)) ≤ τ((A → B) ∧ (B → A) ∧ (∧Σ)). (3.1)

Then divide both sides of (3.1) by τ(∧Σ) and we have from Definition 3.1
that τ(A ∧ B | Σ) ≤ τ((A → B) ∧ (B → A) | Σ), therefore ρΣ(A,B) =
1 − τ((A → B) ∧ (B → A) | Σ) ≤ 1 − τ(A ∧B | Σ). Thus
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div(Γ | Σ) = sup{ρΣ(A,B) | A,B ∈ D(Γ )}
≤ sup{1 − τ(A ∧B | Σ) | A ∧B ∈ D(Γ )}
= 1 − inf{τ(A ∧B | Σ) | A ∧B ∈ D(Γ )}
≤ 1 − inf{τ(C | Σ) | C ∈ D(Γ )}
= 1 − τ(Γ | Σ).

On the other hand, let C ∈ D(Γ ),for any theorem T of D(Γ ) we
haveρΣ(T,C) = 1 − τ(C | Σ),therefore

1 − τ(Γ | Σ) = 1 − inf{τ(C | Σ) | C ∈ D(Γ )}
= sup{1 − τ(C | Σ) | T,C ∈ D(Γ )}
= sup{ρΣ(T,C) | T,C ∈ D(Γ )}
≤ sup{ρΣ(A,B) | A,B ∈ D(Γ )}
= div(Γ | Σ).

Hence div(Γ | Σ) = 1 − τ(Γ | Σ).

Proposition 3.1 points out that Σ-divergent degrees of a theory can skip the
intermediate link, which is the Σ-similarity degree of a theory, and directly
defined by the Σ-truth degree of a theory.The concept of Σ-divergency de-
gree of a theory can be simplified thereby.

Proposition 3.2. In logic system L, let Γ,Σ ⊆ F (S),then
(i) τ(Γ | Σ) = τ(A1 ∧A2 ∧ · · · ∧Al | Σ) when Γ = {A1, A2, · · · , Al} finite;
(ii) τ(Γ | Σ) = lim

l−→∞
τ(A1∧A2∧· · ·∧Al | Σ) when Γ = {A1, A2, · · · , Al, · · ·}

is countable.

Proof. (i) Take any C ∈ D(Γ ), then we have � A1 ∧ · · · ∧Al → C. Therefore
� A1 ∧ · · · ∧Al ∧ (∧Σ) → C ∧ (∧Σ),thus

τ(A1 ∧ · · · ∧Al ∧ (∧Σ)) ≤ τ(C ∧ (∧Σ)), (3.2)

Then divide both sides of (3.2) by τ(∧Σ) and we have from Definition 3.1
that

τ(A1 ∧ · · · ∧Al | Σ) ≤ τ(C | Σ).

Moreover,A1∧· · ·∧Al ∈ D(Γ ),for arbitrariness of C we see that A1∧· · ·∧Al

is the formula in D(Γ ) with the least Σ-truth degree. Therefore inf{τ(C |
Σ) | C ∈ D(Γ )} = τ(A1 ∧ · · · ∧Al | Σ),that is,

τ(Γ | Σ) = τ(A1 ∧A2 ∧ · · · ∧Al | Σ).

(ii) Take any C ∈ D(Γ ), then ∃l ∈ N such that � A1 ∧ · · · ∧ Al → C.
Therefore � A1 ∧ · · · ∧Al ∧ (∧Σ) → C ∧ (∧Σ),thus τ(A1 ∧ · · · ∧Al ∧ (∧Σ)) ≤
τ(C∧(∧Σ)).Denote ∧Σ = B1∧· · ·∧Bn. Since the function A1∧· · ·∧Al∧(∧Σ)
is monotonic decreasing and A1 ∧ · · · ∧ Al ∧ (∧Σ) ∈ D(Γ ), we have that
A1 ∧ · · · ∧Al ∧ (∧Σ) is the smaller formula sequences in D(Γ ). Thus

inf{τ(C ∧ (∧Σ)) | C ∈ D(Γ )} = lim
l−→∞

τ(A1 ∧ · · · ∧Al ∧ (∧Σ)). (3.3)
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Then divide both sides of (3.3) by τ(∧Σ) and we have from Definition 3.1
that

τ(Γ | Σ) = lim
l−→∞

τ(A1 ∧ · · · ∧Al | Σ).

From Proposition 3.1 and Definition 2.4(iv) we have the following Proportion:

Proposition 3.3. In logic system L, let Γ,Σ ⊆ F (S) and i(Γ ) = 0,then
(i) if Γ = {A1, A2, · · · , Al} is finite,then

η(Γ | Σ) =
1
2
(1 + τ(Γ | Σ)) =

1
2
(1 + τ(A1 ∧A2 ∧ · · · ∧Al | Σ));

(ii) if Γ = {A1, A2, · · · , Al, · · ·} is countable,then

η(Γ | Σ) =
1
2
(1 + τ(Γ | Σ)) =

1
2
(1 + lim

l−→∞
τ(A1 ∧A2 ∧ · · · ∧Al | Σ)).

3.1 Relations of Σ-Truth Degrees, as well as Σ-Consistency
Degrees and Σ-Divergency Degrees of Logic Theories

Proposition 4.1. In logic system L, let Γ,Σ ⊆ F (S),then

τ(Γ1 ∪ Γ2 | Σ) ≤ τ(Γi | Σ) ≤ τ(Γ1 ∩ Γ2 | Σ), (i = 1, 2).

Proof. From Definition 3.1 we see that the more members of theories the less
truth degrees of them, therefore Proposition 4.1 holds.

Proposition 4.2. In logic system L, let Γ,Σ ⊆ F (S) and i(Γ1) = i(Γ2) = 0,
then

(i) τ(Γ1 ∪ Γ2 | Σ) ≤ τ(Γ1 | Σ) + τ(Γ2 | Σ);
(ii) div(Γ1 ∪ Γ2 | Σ) ≥div(Γ1 | Σ)+div(Γ2 | Σ) − 1;
(iii) η(Γ1 ∪ Γ2 | Σ) ≤ η(Γ1 | Σ) + η(Γ2 | Σ) − 1

2 .

Proof. (i) can be directly verified from Proposition 4.1.
(ii) From Proposition 3.1 and Proposition 4.2(i) we can obtain that

div(Γ1 ∪ Γ2 | Σ) = 1 − τ(Γ1 ∪ Γ2 | Σ)
≥ 1 − τ(Γ1 | Σ) − τ(Γ2 | Σ)
= 1 − τ(Γ1 | Σ) + 1 − τ(Γ2 | Σ) − 1
= div(Γ1 | Σ) + div(Γ2 | Σ) − 1.

(iii) 10 If i(Γ1 ∪ Γ2) = 0, then it follows from Proposition 3.3 and Propo-
sition 4.2(i) that

η(Γ1 ∪ Γ2 | Σ) = 1
2 (1 + τ(Γ1 ∪ Γ2 | Σ))

≤ 1
2 (1 + τ(Γ1 | Σ) + τ(Γ2 | Σ))

= 1
2 (1 + τ(Γ1 | Σ)) + 1

2 (1 + τ(Γ2 | Σ)) − 1
2

= η(Γ1 | Σ) + η(Γ2 | Σ) − 1
2 .



290 X.-n. Gao and G.-j. Wang

20 If i(Γ1 ∪ Γ2) = 1, then η(Γ1 ∪ Γ2 | Σ) = 0. Since i(Γ1) = i(Γ2) = 0,
both Γ1 and Γ2 are consistency, thus 1

2 ≤ η(Γi | Σ) ≤ 1(i = 1, 2). Hence
η(Γ1 ∪ Γ2 | Σ) = 0 ≤ η(Γ1 | Σ) + η(Γ2 | Σ) − 1

2 .
Therefore, the conclusion follows from 10 and 20.

Proposition 4.2 points out that the fuzzy relations of Σ-truth degrees, as
well as Σ-consistency degrees and Σ-divergency degrees of logic theories Γ1,
Γ2 and Γ1 ∪ Γ2. There is a question whether the exact relations of that can
be obtained? In two-valued propositional logic system L, for a kind of the-
ories Γ1 and Γ2, we see that the exact relations of Σ-truth degrees, as well
as Σ-consistency degrees and Σ-divergency degrees of logic theories Γ1,Γ2
and Γ1 ∪Γ2. In the following contents, we declare that different alphabets or
identical alphabet but different suffixes are distinct formulas.

Proposition 4.3. In logic system L, let Σ,Γ1, Γ2 ⊆ F (S), r, α, β ∈ [0, 1],
and τ(∧Σ) = r, τ(Γ1 | Σ) = α, τ(Γ2 | Σ) = β,then the following statements
hold

(i) if Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2},
Γ2 = {A1, · · · , Am1 , C1, · · · , Cl},then

τ(Γ1 ∪ Γ2 | Σ) = α + β − f1(l)
r(f1(l) + g1(l))

.

Where f1(l) = |A ∧ (B ∨ C) ∧ (∧Σ)
−1

(1)|, g1(l) =
|A ∧ (B ∨ C) ∧ (∧Σ)

−1
(0)|, A = A1 ∧ · · · ∧ Am1 , B = B1 ∧ · · · ∧ Bm2 , C =

C1 ∧ · · · ∧ Cl. In the following, A,B and C of (ii)−(iv) are the same as (i).
(ii) If Γ1 = {B1, · · · , Bm2},Γ2 = {C1, · · · , Cl},then

τ(Γ1 ∪ Γ2 | Σ) = α + β − f2(l)
r(f2(l) + g2(l))

.

Where f2(l) = |(B ∨C) ∧ (∧Σ)
−1

(1)|, g2(l) = |(B ∨ C) ∧ (∧Σ)
−1

(0)|.
(iii) If Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2}, Γ2 =

{A1, · · · , Am1 , C1, · · · , Cl, · · ·},then

τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f1(l)
r(f1(l) + g1(l))

.

Where f1(l) and g1(l) are the same as (i).
(iv) If Γ1 = {B1, · · · , Bm2}, Γ2 = {C1, · · · , Cl, · · ·},then

τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f2(l)
r(f2(l) + g2(l))

.

Where f2(l) and g2(l) are the same as (ii).
(v) If Γ1 = {A1, · · · , Am1 , B1, B3, · · · , B2l−1, · · ·},

Γ2 = {A1, · · · , Am1 , B2, B4, · · · ,
B2l, · · ·},then
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τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f3(l)
r(f3(l) + g3(l))

.

Where f3(l) = |A ∧ (B ∨ C) ∧ (∧Σ)
−1

(1)|, g3(l) =
|A ∧ (B ∨ C) ∧ (∧Σ)

−1
(0)|, A = A1∧· · ·∧Am1 , B = B1∧B3∧· · ·∧B2l−1, C =

B2 ∧B4 ∧ · · · ∧B2l.
(vi) If Γ1 = {B1, B3, · · · , B2l−1, · · ·}, Γ2 = {B2, B4, · · · , B2l, · · ·},then

τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f4(l)
r(f4(l) + g4(l))

.

Where f4(l) = |(B ∨ C) ∧ (∧Σ)
−1

(1)|, g4(l) = |(B ∨ C) ∧ (∧Σ)
−1

(0)|, B and
C are the same as (v).

Proof. We limit ourselves to the proof of (i),(iii) and (v). Without loss of
generality,we can assume the following formulas contain the same atomic
formula.

(i) Let A = A1∧· · · ∧Am1 , B = B1∧· · · ∧Bm2 , C = C1∧· · ·∧Cl.It follows
from Proposition 3.2 that

τ(Γ1 | Σ) = τ(A | Σ) = α, τ(Γ2 | Σ) = τ(A | Σ) = β.

τ(Γ1 ∪ Γ2 | Σ) = τ((A ∧B) ∧ (A ∧ C) | Σ)
= τ(A ∧B | Σ) + τ(A ∧ C | Σ) − τ((A ∧B) ∨ (A ∧ C) | Σ)
= α + β − τ(A ∧ (B ∨ C) | Σ)
= α + β − τ(A∧(B∨C)∧(∧Σ))

τ(∧Σ)

= α + β − τ(A∧(B∨C)∧(∧Σ))
r .

(4.1)
Suppose that A ∧ (B ∨ C) ∧ (∧Σ) is A∧(B∨C)∧(∧Σ)-induced Boolean func-
tion. Equations A ∧ (B ∨ C) ∧ (∧Σ) = 1 and A ∧ (B ∨ C) ∧ (∧Σ) = 0 have
f1(l) = |A ∧ (B ∨ C) ∧ (∧Σ)

−1
(1)| and g1(l) = |A ∧ (B ∨ C) ∧ (∧Σ)

−1
(0)|

solutions, respectively. Therefore,

τ(A ∧ (B ∨ C) ∧ (∧Σ)) =
f1(l)

f1(l) + g1(l)
. (4.2)

Hence it follows from (4.1) and (4.2) that

τ(Γ1 ∪ Γ2 | Σ) = α + β − f1(l)
r(f1(l) + g1(l))

.

(iii) Let A = A1 ∧ · · · ∧ Am1 , B = B1 ∧ · · · ∧ Bm2 , C = C1 ∧ · · · ∧ Cl. It
follows from Proposition 3.2 that

τ(Γ1 | Σ) = τ(A | Σ) = α, τ(Γ2 | Σ) = lim
l−→∞

τ(A | Σ) = β.
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τ (Γ1 ∪ Γ2 | Σ) = lim
l−→∞

τ ((A ∧ B) ∧ (A ∧ C) | Σ)

= lim
l−→∞

[τ (A ∧ B | Σ) + τ (A ∧ C | Σ) − τ ((A ∧ B) ∨ (A ∧ C) | Σ)]

= τ (A ∧ B | Σ) + lim
l−→∞

τ (A ∧ C | Σ) − lim
l−→∞

τ (A ∧ (B ∨ C) | Σ)

= α + β − lim
l−→∞

τ(A∧(B∨C)∧(∧Σ))
τ(∧Σ)

= α + β − lim
l−→∞

τ(A∧(B∨C)∧(∧Σ))
r

.

(4.3)

Hence it follows from (4.2) and (4.3) that

τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f1(l)
r(f1(l) + g1(l))

.

(v) Let A = A1 ∧ · · · ∧Am1 , B = B1 ∧B3 ∧ · · · ∧B2l−1, C = B2 ∧B4 ∧ · · ·∧
B2l.It follows from Proposition 3.2 that

τ(Γ1 | Σ) = lim
l−→∞

τ(A | Σ) = α, τ(Γ2 | Σ) = lim
l−→∞

τ(A | Σ) = β.

τ(Γ1 ∪ Γ2 | Σ) = lim
l−→∞

τ((A ∧ B) ∧ (A ∧ C) | Σ)

= lim
l−→∞

[τ(A ∧ B | Σ) + τ(A ∧ C | Σ) − τ((A ∧ B) ∨ (A ∧ C) | Σ)]

= lim
l−→∞

τ(A ∧ B | Σ) + lim
l−→∞

τ(A ∧ C | Σ) − lim
l−→∞

τ(A ∧ (B ∨ C) | Σ)

= α + β − lim
l−→∞

τ(A∧(B∨C)∧(∧Σ))
τ(∧Σ)

= α + β − lim
l−→∞

τ(A∧(B∨C)∧(∧Σ))
r

(4.4)

Suppose that A ∧ (B ∨ C) ∧ (∧Σ) is A∧(B∨C)∧(∧Σ)-induced Boolean func-
tion. Equations A ∧ (B ∨ C) ∧ (∧Σ) = 1 and A ∧ (B ∨ C) ∧ (∧Σ) = 0 have
f3(l) = |A ∧ (B ∨ C) ∧ (∧Σ)

−1
(1)| and g3(l) = |A ∧ (B ∨ C) ∧ (∧Σ)

−1
(0)|

solutions, respectively. Therefore,

τ(A ∧ (B ∨ C) ∧ (∧Σ)) =
f3(l)

f3(l) + g3(l)
. (4.5)

Hence it follows from (4.4) and (4.5) that

τ(Γ1 ∪ Γ2 | Σ) = α + β − lim
l−→∞

f3(l)
r(f3(l) + g3(l))

.

Proposition 4.4. In logic system L,Σ,Γ1, Γ2 ⊆ F (S), r, α, β ∈ [0, 1], and
τ(∧Σ) = r, div(Γ1 | Σ) = α, div(Γ2 | Σ) = β, then the following statements
hold

(i) If Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2},
Γ2 = {A1, · · · , Am1 , C1, · · · , Cl},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 +
f1(l)

r(f1(l) + g1(l))
.
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Where f1(l) and g1(l) are the same as Proposition 4.3(i).
(ii) If Γ1 = {B1, · · · , Bm2},Γ2 = {C1, · · · , Cl},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 +
f2(l)

r(f2(l) + g2(l))
.

Where f2(l) and g2(l) are the same as Proposition 4.3(ii).
(iii) If Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2},

Γ2 = {A1, · · · , Am1 , C1, · · · , Cl, · · ·},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 + lim
l−→∞

f1(l)
r(f1(l) + g1(l))

.

Where g1(l) are the same as Proposition 4.3(iii).
(iv) If Γ1 = {B1, · · · , Bm2}, Γ2 = {C1, · · · , Cl, · · ·},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 + lim
l−→∞

f2(l)
r(f2(l) + g2(l))

.

Where f2(l) and g2(l) are the same as Proposition 4.3(iv).
(v) If Γ1 = {A1, · · · , Am1 , B1, B3, · · · , B2l−1, · · ·},

Γ2 = {A1, · · · , Am1 , B2, B4, · · · ,
B2l, · · ·},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 + lim
l−→∞

f3(l)
r(f3(l) + g3(l))

.

Where f3(l) and g3(l) are the same as Proposition 4.3(v).
(vi) If Γ1 = {B1, B3, · · · , B2l−1, · · ·}, Γ2 = {B2, B4, · · · , B2l, · · ·},then

div(Γ1 ∪ Γ2 | Σ) = α + β − 1 + lim
l−→∞

f4(l)
r(f4(l) + g4(l))

.

Where f4(l) and g4(l) are the same as Proposition 4.3(vi).

Proof. We limit ourselves to the proof of (iii) From Proposition 3.1 and
Proposition 4.3(iii) we see that

div(Γ1 | Σ) = 1 − τ(Γ1 | Σ) = α, div(Γ2 | Σ) = 1 − τ(Γ2 | Σ) = β,

div(Γ1 ∪ Γ2 | Σ) = 1 − τ(Γ1 ∪ Γ2 | Σ)
= 1 − τ(Γ1 | Σ) − τ(Γ2 | Σ) + lim

l−→∞
f1(l)

r(f1(l)+g1(l))

= α + β − 1 + lim
l−→∞

f1(l)
r(f1(l)+g1(l)) .

Proposition 4.5. In logic system L, let Σ,Γ1, Γ2 ⊆ F (S), r, α, β ∈ [0, 1],
and τ(∧Σ) = r, η(Γ1 | Σ) = α, η(Γ2 | Σ) = β, i(Γ1) = i(Γ2) = i(Γ1∪Γ2) = 0,
then the following statements hold:
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(i) If Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2},
Γ2 = {A1, · · · , Am1 , C1, · · · , Cl},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− f1(l)

2r(f1(l) + g1(l))
.

Where f1(l) and g1(l) are the same as Proposition 4.3(i).
(ii) If Γ1 = {B1, · · · , Bm2},Γ2 = {C1, · · · , Cl},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− f2(l)

2r(f2(l) + g2(l))
.

Where f2(l) and g2(l) are the same as Proposition 4.3(ii).
(iii) If Γ1 = {A1, · · · , Am1 , B1, · · · , Bm2},

Γ2 = {A1, · · · , Am1 , C1, · · · , Cl, · · ·},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− lim

l−→∞

f1(l)
2r(f1(l) + g1(l))

.

Where g1(l) are the same as Proposition 4.3(iii).
(iv) If Γ1 = {B1, · · · , Bm2},Γ2 = {C1, · · · , Cl, · · ·},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− lim

l−→∞

f2(l)
2r(f2(l) + g2(l))

.

Where f2(l) and g2(l) are the same as Proposition 4.3(iv).
(v) If Γ1 = {A1, · · · , Am1 , B1, B3, · · · , B2l−1, · · ·},

Γ2 = {A1, · · · , Am1 , B2, B4, · · · ,
B2l, · · ·},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− lim

l−→∞

f3(l)
2r(f3(l) + g3(l))

.

Where f3(l) and g3(l) are the same as Proposition 4.3(v).
(vi) If Γ1 = {B1, B3, · · · , B2l−1, · · ·}, Γ2 = {B2, B4, · · · , B2l, · · ·},then

η(Γ1 ∪ Γ2 | Σ) = α + β − 1
2
− lim

l−→∞

f4(l)
2r(f4(l) + g4(l))

.

Where f4(l) and g4(l) are the same as Proposition 4.3(vi).

Proof. We limit ourselves to the proof of (v). From Proposition 3.3 we see
that

η(Γ1 | Σ) =
1
2
(1 + τ(Γ1 | Σ)) = α, η(Γ2 | Σ) =

1
2
(1 + τ(Γ2 | Σ)) = β,

therefore
τ(Γ1 | Σ) = 2α− 1, τ(Γ2 | Σ) = 2β − 1.
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Hence it follows from Proposition 3.3 and Proposition 4.3(v) that

η(Γ1 ∪ Γ2 | Σ) = 1
2 (1 + τ(Γ1 ∪ Γ2 | Σ))

= 1
2 (1 + τ(Γ1 | Σ) + τ(Γ2 | Σ) − lim

l−→∞
f3(l)

r(f3(l)+g3(l)) )

= 1
2 (1 + 2α− 1 + 2β − 1 − lim

l−→∞
f3(l)

r(f3(l)+g3(l)) )

= α + β − 1
2 − lim

l−→∞
f3(l)

2r(f3(l)+g3(l)) .

4 Conclusion

In the present paper, the concept of conditional truth degrees of logic
theories is introduced in two-valued propositional logic system L, which
is generalized from individual to collective. The concept of conditional
divergency degree can be simplified thereby. Relations between Σ-truth
degree, Σ-consistency degree and Σ-divergency degree of a given logic theory
is discussed. Finally, relations of Σ-truth degrees, as well as Σ-consistency
degrees and Σ-divergency degrees of logic theories Γ1, Γ2 and Γ1 ∪ Γ2
are compared in the logic system L. Whether the concept of conditional
truth degrees of logic theories is introduced in logic systems L∗,�Lukasiewicz
and Gödel? Moreover,whether relations of Σ-truth degrees, as well as
Σ-consistency degrees and Σ-divergency degrees of logic theories Γ1, Γ2
and Γ1∪Γ2 are compared in these logic systems ? We will study in the future.
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1 Introduction

In recent years, motivated by both theory and application, the study of t-
norm-based logic systems and the corresponding pseudo-logic systems has
been become a greater focus in the field of logic (cf. [2]-[15]). Here, t-norm-
based logical investigations were first to the corresponding algebraic investi-
gations, and in the case of pseudo-logic systems, algebraic development was
first to the corresponding logical development. The notion of NM -algebras
was introduced by Esteva and Godo [3] from the views of the left-continuous
t-norms and their residua. In [15], Wang proposed the notion of R0-algebras.
Pei [14] proved that R0-algebras and NM -algebras are the same algebraic
structures. In [8], Liu et al. introduced the notion of positive implication R0-
algebras. In this paper, the notion of positive implication MP -filters (briefly,
PIMP -filters) in R0-algebras is introduced. The characteristic properties
and extension property of PIMP -filters are obtained. Finally, the positive
implicative R0-algebra is completely described by its PIMP -filters.

2 Preliminaries

By an R0-algebra is meant a bounded distributive lattice (M,∨,∧, 0, 1) with
order-reversing involution ” ′ ” and a binary operation ”→” satisfying the
following axioms:

(R1) a′ → b′ = b → a,
(R2) 1 → a = a,
(R3) b → c ≤ (a → b) → (a → c),
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(R4) a → (b → c) = b → (a → c),
(R5) a → (b ∨ c) = (a → b) ∨ (a → c),
(R6) (a → b) ∨ ((a → b) → (a′ ∨ b)) = 1,

for all a, b, c ∈ M .

In an R0-algebra, the following hold:

(1) 0 → a = 1, a → 0 = a′, a → a = 1 and a → 1 = 1,
(2) a ≤ b implies b → c ≤ a → c and c → a ≤ c → b,
(3) a → b ≤ (b → c) → (a → c),
(4) ((a → b) → b) → b = a → b,
(5) a → (b ∧ c) = (a → b) ∧ (a → c),
(6) (a ∨ b) → c = (a → c) ∧ (b → c),
(7) (a ∧ b) → c = (a → c) ∨ (b → c),
(8) a ≤ b if and only if a → b = 1.

A subset F of an R0-algebra M is called an MP -filter of M if it satisfies

(F1) 1 ∈ F ,
(F2) x ∈ F and x → y ∈ F imply y ∈ F for all x, y ∈ M .

An R0-algebra M is called a positive implication R0-algebra [8] if it satisfies
for all x, y ∈ M ,

x → (y → z) ≤ (x → y) → (x → z).

3 PIMP -Filters

Definition 1. A subset F of an R0-algebra M is said to be a positive impli-
cation MP -filter (briefly, PIMP -filter) of M if it satisfies (F1) and

(F3) x → (y → z) ∈ F and x → y ∈ F imply x → z ∈ F for all x, y, z ∈ M .

The relation between PIMP -filters and MP -filters in an R0-algebra is as
follows:

Proposition 1. A PIMP-filter is an MP-filter, but the converse is not true.

Proof. Assume that F is a PIMP -filter. If x ∈ F and x → y ∈ F , then
1 → x ∈ F and 1 → (x → y) ∈ F . By (F3), 1 → y = y ∈ F . Hence (F2)
holds. Combining with (F1), F is an MP -filter. The last part is shown by
the following example.

Example 1. Let W = [0, 1]. For any a, b ∈ [0, 1], define a′ = 1 − a, a ∨ b =
max{a, b}, a ∧ b = min{a, b} and

a → b =
{

1, a ≤ b,
a′ ∨ b, otherwise.
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Then W is an R0-algebra, which is called R0 unit interval [15]. F = {1} is
an MP -filter of W , but is not a PIMP -filter because: 0.3 → (0.6 → 0.2) =
1 ∈ {1} and 0.3 → 0.6 = 1 ∈ {1}, but 0.3 → 0.2 = 0.7 /∈ {1}. The proof is
complete.

Next, we investigate the characterizations of PIMP -filters in R0-algebras.

Theorem 1. If F is an MP-filter of an R0-algebra M, then the following are
equivalent:

(i) F is a PIMP-filter of M,
(ii) x → (x → y) ∈ F implies x → y ∈ F for all x, y ∈ M ,
(iii) x → (y → z) ∈ F implies (x → y) → (x → z) ∈ F for all x, y, z ∈ M ,
(iv) u → (x → (y → z)) ∈ F and u ∈ F imply (x → y) → (x → z) ∈ F

for all x, y, z, u ∈ M ,
(v) z → (x → (x → y)) ∈ F and z ∈ F imply x → y ∈ F for all

x, y, z ∈ M .

Proof. (i)⇒(ii). Let F be a MP -filter of an R0-algebra M and x → (x →
y) ∈ F . Since x → x = 1 ∈ F , by (F3) we have x → y ∈ F .

(ii)⇒(iii). Let x → (y → z) ∈ F . Since x → (x → ((x → y) → z)) = x →
((x → y) → (x → z)) ≥ x → (y → z) ∈ F , we have x → (x → ((x → y) →
z)) ∈ F . By (ii) x → ((x → y) → z) ∈ F , i.e., (x → y) → (x → z) ∈ F .

(iii)⇒(iv). Trivial.
(iv)⇒(v). If z → (x → (x → y)) ∈ F and z ∈ F , by (iv) we have

(x → x) → (x → y) ∈ F . That is x → y ∈ F .
(v)⇒(i). Let x → (y → z) ∈ F and x → y ∈ F . Since (x → y) → (x →

(x → z)) ≥ y → (x → z) = x → (y → z) ∈ F , (x → y) → (x → (x → z)) ∈
F . It follows from (v) that x → z ∈ F . The proof is complete.

Theorem 2. Let F be an MP-filter of an R0-algebra M. Then F is a PIMP-
filter of M if and only if for any t ∈ M , the subset Ft = {x ∈ M : t → x ∈ F}
is a MP-filter of M.

Proof. Assume that for any t ∈ M , Ft is an MP -filter of M . Let x → (x →
y) ∈ F . Then x → y ∈ Fx. Since x ∈ Fx we have y ∈ Fx, and so x → y ∈ F .
By Theorem 1 (ii), F is a PIMP -filter of M .

Conversely, let F is a PIMP -filter of M and x ∈ Ft, x → y ∈ Ft. Then
t → x ∈ F and t → (x → y) ∈ F . Since (t → (x → y)) → (t → (t → y)) =
(x → (t → y)) → (t → (t → y)) ≥ t → x, we obtain t → (t → y) ∈ F . By
Theorem 1 (ii), t → y ∈ F , and so y ∈ Ft. Hence Ft is an MP -filter of M ,
completing the proof.

Corollary 1. Let F be a PIMP-filter of an R0-algebra M. For any t ∈ M ,
Ft = {x ∈ M : t → x ∈ F} is the least MP-filter of M containing F and t.

Proof. By Theorem 2, Ft is an MP -filter of M . Clearly F ⊆ Ft and t ∈ Ft.
If H is an MP -filter containing F and t, then for any x ∈ Ft we have t →
x ∈ F ⊆ H . It follows that x ∈ H as t ∈ H . Hence Ft ⊆ H , completing the
proof.
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Corollary 2. Let M be an R0-algebra such that {1} is a PIMP-filter. For
any a ∈ M , Ua = {x ∈ M : a ≤ x} is the least MP-filter of M containing a.

The extension property of PIMP -filters in an R0-algebra is given by the
following:

Proposition 2. Let F and H be two MP-filters of an R0-algebra M with
F ⊆ H. If F is a PIMP-filter of M, then so is H.

Proof. Suppose that F is a PIMP -filter of M and x → (x → y) ∈ H for
all x, y ∈ M . Putting t = x → (x → y), then x → (x → (t → y)) = t →
(x → (x → y)) = 1 ∈ F . By Theorem 1 (ii), x → (t → y) ∈ F ⊆ H . That
is t → (x → y) ∈ H . Thus x → y ∈ H as H is an MP -filter. Hence H is a
PIMP -filter of M . This completes the proof.

Proposition 3 ([8]). If M is an R0-algebra, then the following are equiva-
lent:

(i) M is a positive implication R0-algebra,
(ii) x → y ≥ x → (x → y),
(iii) x → (y → z) ≤ (x → y) → (x → z),
(iv) x → (y → z) = (x → y) → (x → z).

Proposition 4 ([8]). Let M be an R0-algebra. Then the following are equiv-
alent:

(i) M is a positive implication R0-algebra,
(ii) x ≤ u implies u → (x → y) = x → y,
(iii) x ≤ u implies u → (y → z) = (x → y) → (x → z),
(iv) x ≤ y → z implies x → y ≤ x → z,
(v) x ≤ x → y implies x ≤ y.

Finally, we characterize the positive implication R0-algebras by its PIMP -
filters.

Theorem 3. Let M be an R0-algebra. The following are equivalent:
(i) M is a positive implication R0-algebra,
(ii) every MP-filter of M is a PIMP-filter,
(iii) The unit MP-filter {1} of M is a PIMP-filter,
(iv) for all t ∈ M , Ut = {x ∈ M : t ≤ x} is a MP-filter,
(v) for all MP-filter F of M and all t ∈ M , Ft = {x ∈ M : t → x ∈ F} is

an MP-filter.

Proof. (i)⇒(ii). It follows directly from Proposition 3 (iii) and Theorem 1
(ii).

(ii)⇒(iii). Trivial.
(iii)⇒(iv). For any t ∈ M and x → y ∈ Ut, x ∈ Ut, we have t → x = 1 ∈

{1} and t → (x → y) = 1 ∈ {1}. Analogous to the proof of Theorem 2, we
can obtain t → (t → y) = 1 ∈ {1}. By Theorem 1 (ii) t → y ∈ {1}, which
means that y ∈ Ut. Hence Ut is an MP -filter.
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(iv)⇒(i). Let x ≤ x → y. Then x → y ∈ Ux. Since Ux is an MP -filter and
x ∈ Ux, we have y ∈ Ux. That is x ≤ y. By Proposition 4 (iv), M is a positive
implication R0-algebra.

(i)⇒(v). For any MP -filter F of M and all t ∈ M , it follows from M is a
positive implication R0-algebra and (ii) that F is a PIMP -filter of M . By
Theorem 2, Ft is an MP -filter of M .

(v)⇒(iii). Let x → (x → y) ∈ {1} and B = {u ∈ M : x → u ∈ {1}}.
By the hypothesis B is an MP -filter. Since x → y ∈ B and x ∈ B we have
y ∈ B, i.e., x → y ∈ {1}. Hence {1} is a PIMP -filter as Theorem 1 (ii). The
proof is complete.

Let F be a MP -filter of an R0-algebra M . For any x, y ∈ M , define a binary
relation ∼ on M by

x ∼ y if and only if x → y ∈ F and y → x ∈ F.
Then ∼ is a congruence relation on M . Let Cx = {y ∈ M | y ∼ x} and
M/F = {Cx | x ∈ M}. Then (M/F ;∨;∧;→; ′ ;C0;C1) is a quotient R0-
algebra, where
Cx ∨ Cy = Cx∨y, Cx ∧ Cy = Cx∧y, Cx → Cy = Cx→y, (Cx)′ = Cx′ .

Corollary 3. Let F be an MP-filter of an R0-algebra M. Then F is a PIMP-
filter if and only if M/F is a positive implication R0-algebra.

Proof. Suppose that F is a PIMP -filter of M . Now we show that unit MP -
filter {C1} of M/F is a PIMP -filter. If Cx → (Cx → Cy) ∈ {C1}, i.e.,
Cx→(x→y) = C1. Hence 1 → (x → (x → y)) ∈ F , i.e., x → (x → y) ∈ F .
By Theorem 1 (ii) x → y ∈ F , i.e., 1 → (x → y) ∈ F . On the other hand,
(x → y) → 1 = 1 ∈ F . Hence Cx→y = C1, i.e., Cx → Cy ∈ {C1}. Thus M/F
is a positive implication R0-algebra by Theorem 3 (iii).

Conversely, if M/F is a positive implication R0-algebra, by Theorem 3 (iii)
{C1} is a PIMP -filter. Let x → (x → y) ∈ F , i.e., 1 → (x → (x → y)) ∈ F .
Since (x → (x → y)) → 1 ∈ F , we have Cx→(x→y) = C1 ∈ {C1}, i.e., Cx →
((Cx → Cy) ∈ {C1}. Hence Cx → Cy ∈ {C1}. It means that x → y ∈ F .
Therefore F is a PIMP -filter of M . The proof is complete.

Summarizing Theorem 3, Propositions 3, 4 and Corollary 3, we have the
following corollary.

Corollary 4. Let M be an R0-algebra. Then the following are equivalent:

(1◦) M is a positive implication R0-algebra,
(2◦) x → y ≥ x → (x → y),
(3◦) x → (y → z) ≤ (x → y) → (x → z),
(4◦) x → (y → z) = (x → y) → (x → z),
(5◦) x ≤ u implies u → (x → y) = x → y,
(6◦) x ≤ u implies u → (y → z) = (x → y) → (x → z),
(7◦) x ≤ y → z implies x → y ≤ x → z,
(8◦) x ≤ x → y implies x ≤ y,
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(9◦) every MP-filter of M is a PIMP-filter,
(10◦) The unit MP-filter {1} of M is a PIMP-filter,
(11◦) for all t ∈ M , Ut = {x ∈ M : t ≤ x} is an MP-filter,
(12◦) for all MP-filter F of M and all t ∈ M , Ft = {x ∈ M : t → x ∈ F}

is an MP-filter,
(13◦) for all MP-filter F of M, M/F is a positive implication R0-algebra.
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1 Introduction

At present, the study of formula truth degree based on the grading idea has
been a hot topic in some common logic systems, such as classical two-valued
propositional logic[1, 2, 3], many-valued propositional logic[4, 5, 6], predicate
logic[7], fuzzy propositional logic[8, 2], model logic[9]. Moreover, based on
the truth degree of formula, many new concepts, such as consistent degree
of theory Γ [10, 11, 12], resemblance degree between two formulae[13], are
proposed. Quantitative logic proposed in [14] based on these results initiate
a new theory about fuzzy logic.

The relative study[15, 16] of Gödel logic have been done and some good
results have been developed. However, [2] points out that Gödel system are
not suitable to establish fuzzy logic based on the strong negation operator.
The present paper try to establish quantitative logic theory in Gödel system
through modifying negation operator.

2 Preliminaries

Let S = {p1, p2, · · ·} be a countable set and ⇁ and → be unary and binary
logic connectives respectively. Write F (S) be the free algebra of type (⇁,→)
generated by S.Elements of F (S) are called propositions or formulae and that
of S are called atomic propositions or atomic formulas.

Define a binary operator → on [0, 1] as follows:

a → b =
{

1, a ≤ b
b, a > b

(1)
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Then → is called Gödel implication operator. Otherwise, define a unary op-
erator ⇁ and two binary ones ∨ and ∧ on [0, 1] as follows:

⇁ a = 1 − a, a ∨ b = max{a, b}, a ∧ b = min{a, b}. (2)

Obviously,

a ∨ b =⇁ (⇁ a∧ ⇁ b), a ∧ b =⇁ (⇁ a∨ ⇁ b).

A mapping v from F (S) to unit interval [0, 1] is said to be a valuation if v
is a homomorphism of type (⇁,∨,→), i.e.,v(⇁ A) =⇁ v(A), v(A ∨ B) =
v(A) ∨ v(B), v(A → B) = v(A) → v(B). The set of all valuations of F (S) is
denoted by Ω. A formula A is called a tautology, denoted by |= A, if v(A) = 1
for all valuations v. Conversely, it is called a contradiction if v(A) = 0 for all
valuations v. A and B are said to be logic equivalent, denoted by A ≈ B, if
v(A) = v(B) holds for all valuation v.

Suppose that A(p1, p2, · · · , pm) ∈ F (S) and p1, p2, · · · , pm are atomic for-
mulas included in A. Then a McNaughton function[17] A : [0, 1]m → [0, 1]
induced by A is defined as follows: Substitute xik for pik in A(k = 1, · · · ,m)
and keep the logic connectives in A unchanged but explain them as (1) and (2).

Let v ∈ Ω and A(p1, p2, · · · , pm) ∈ F (S), then v(A(p1, p2, · · · , pm)) =
A(v(p1), v(p2), · · · , v(pm)).

3 Truth Degree of Formulas in Gödel Logic System

[2, 8] gives the definition of integral truth degree in continue valued logic
system. We apply it to Gödel system as follows.

Definition 1. Let A(p1, p2, · · · , pm) be a formula composed of m atomic
propositions. Define

τ(A) =
∫

[0,1]m
A(x1, x2, · · · , xm)dx1dx2 · · · dxm. (3)

Then τ(A) is called the truth degree of formula A.

Theorem 1. Suppose that A,B ∈ F (S) in Gödel logic system, then we have
the following properties.

(1) If A is a tautology, then τ(A) = 1;
(2) If A is a contradiction, then τ(A) = 0.
(3) If A ≈ B, then τ(A) = τ(B).
(4) τ(⇁ A) = 1 − τ(A).
(5) If A is a tautology, then τ(A → B) = τ(B), τ(B → A) = 1.
(6) τ(A ∨B) + τ(A ∧B) = τ(A) + τ(B).
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Proof. (6) is proved as follows, others can be verified easily.
It is easy to verify a ∨ b + a ∧ b = a + b for all a, b ∈ [0, 1]. Suppose that

both A and B consist of same atomic formulas p1, p2, · · · , pm. Then

τ(A ∨B) + τ(A ∧B) =
∫
[0,1]m A ∨B(x1, · · · , xm)dx1 · · · dxm

+
∫
[0,1]m A ∧B(x1, · · · , xm)dx1 · · ·dxm

=
∫
[0,1]m [A ∨B(x1, · · · , xm)

+A ∧B(x1, · · · , xm)]dx1 · · · dxm
=
∫
[0,1]m [A(x1, · · · , xm) + B(x1, · · · , xm)]dx1 · · · dxm

=
∫
[0,1]m A(x1, · · · , xm)dx1 · · ·dxm

+
∫
[0,1]m B(x1, · · · , xm)dx1 · · · dxm

= τ(A) + τ(B).

Remark 1. Theorem1(1)through (3) are not sufficient. The counter-example
for (1) is given as follows.

Consider the formula A = ((p1 → p2) → p2)∨ ((p2 → p1) → p1). It is easy
to obtain the function A induced by A.

A(x1, x2) =
{

x1, x1 = x2
1, others.

Obviously, τ(A) =
∫ 1
0

∫ 1
0 A(x1, x2)dx1dx2 = 1, while A is not a tautology.

Theorem 2. Suppose that A,B ∈ F (S) in Gödel logic system and α, β ∈
[0, 1], then we have the following properties.

(1)(MP-rule for truth degree) If τ(A) ≥ α, τ(A → B) ≥ β, then τ(B) ≥
(α + β − 1) ∨ 0.

(2)(HS-rule for truth degree) If τ(A → B) ≥ α, τ(B → C) ≥ β, then
τ(A → C) ≥ (α + β − 1) ∨ 0.

Proof. It is easy to verify b ≥ a+(a → b)−1 and a → c ≥ (a → b)+(b → c)−1
for all a, b, c ∈ [0, 1]. Suppose that A,B and C consist of same atomic formulas
p1, p2, · · · , pm. Then

τ(B) =
∫
[0,1]m B(x1, · · · , xm)dx1 · · ·dxm

≥
∫
[0,1]m [A(x1, · · · , xm)

+A(x1, · · · , xm) → B(x1, · · · , xm) − 1]dx1 · · · dxm
=
∫
[0,1]m A(x1, · · · , xm)dx1 · · · dxm

+
∫
[0,1]m A → B(x1, · · · , xm)dx1 · · ·dxm −

∫
[0,1]m 1dx1 · · ·dxm

= τ(A) + τ(A → B) − 1
≥ α + β − 1.

Thus (1) holds.
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τ (A → C) =
∫
[0,1]m A → C(x1, · · · , xm)dx1 · · · dxm

=
∫
[0,1]m [A(x1, · · · , xm) → C(x1, · · · , xm)]dx1 · · · dxm

≥ ∫[0,1]m [A(x1, · · · , xm) → B(x1, · · · , xm)
+B(x1, · · · , xm) → C(x1, · · · , xm) − 1]dx1 · · · dxm

=
∫
[0,1]m A → B(x1, · · · , xm)dx1 · · · dxm

+
∫
[0,1]m B → C(x1, · · · , xm)dx1 · · · dxm − ∫[0,1]m 1dx1 · · · dxm

= τ (A → B) + τ (B → C) − 1
≥ α + β − 1.

Thus (2) holds.

Corollary 1. Suppose that A,B,C ∈ F (S), then we have the following prop-
erties.

(1) τ(A) + τ(A → B) ≤ τ(B) + 1.
(2) τ(A → B) + τ(B → C) ≤ τ(A → C) + 1.
(3) If τ(A) = 1, τ(A → B) = 1, then τ(B) = 1.
(4) If τ(A → B) = 1, τ(B → C) = 1, then τ(A → C) = 1.
(5) If |= A → B, then τ(A) ≤ τ(B).

4 Resemblance Degree between Formulas in Gödel
Logic System

[2, 8] gives the definition of resemblance degree in some logic systems. We
apply it to Gödel system as follows.

Definition 2. Suppose that A,B ∈ F (S). Define

ξ(A,B) = τ((A → B) ∧ (B → A)). (4)

Then ξ(A,B) is called the resemblance degree between Formulas A and B.

Theorem 3. Suppose that A,B,C ∈ F (S) in Gödel logic system, then we
have the following properties.

(1) If A is a tautology, then ξ(A,B) = τ(B).
(2) If one of A and B is a tautology and other is a contradiction, then

ξ(A,B) = 0.
(3) If A ≈ B, then ξ(A,B) = 1.
(4) ξ(A,B) + ξ(B,C) ≤ ξ(A,C) + 1.

Proof. (4) is proved as follows, others can be verified easily.
It is easy to verify (a → b)∧ (b → a) + (b → c)∧ (c → b) ≤ (a → c)∧ (c →

a) + 1 for all a, b, c ∈ [0, 1]. Suppose that A,B and C consist of same atomic
formulas p1, p2, · · · , pm. Then
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ξ(A, B) + ξ(B, C) =
∫
[0,1]m (A → B) ∧ (B → A)(x1, · · · , xm)dx1 · · · dxm

+
∫
[0,1]m (B → C) ∧ (C → B)(x1, · · · , xm)dx1 · · · dxm

=
∫
[0,1]m [(A → B) ∧ (B → A)

+(B → C) ∧ (C → B)]dx1 · · · dxm
≤ ∫[0,1]m [(A → C) ∧ (C → A) + 1]dx1 · · · dxm

=
∫
[0,1]m (A → C) ∧ (C → A)(x1, · · · , xm)dx1 · · · dxm + 1

= ξ(A, C) + 1.

5 Pseudo-metric between Formulas in Gödel Logic
System

Define a function ρ : F (S) × F (S) → [0, 1] as follows

ρ(A,B) = 1 − ξ(A,B). (5)

Then by Theorem 3, we have following properties.
(1) ρ(A,A) = 0.
(2) ρ(A,B) = ρ(B,A).
(3) ρ(A,B) + ρ(B,C) = 1 − ξ(A,B) + 1 − ξ(B,C)

= 1 − (ξ(A,B) + ξ(B,C) − 1)
≥ 1 − ξ(A,C)
= ρ(A,C).

Therefore, ρ : F (S) × F (S) → [0, 1] is a pseudo-metric on F (S).

Theorem 4. Suppose that A,B ∈ F (S) in Gödel logic system, then we have
the following properties.

(1) If A ≈ B, then ρ(A,B) = 0.
(2) If one of A and B is a tautology and other is a contradiction, then

ρ(A,B) = 1.
(3) If A is a tautology, then ρ(A,B) = 1 − τ(B).
(4) ρ(A, 0) ≥ τ(A), where 0 denotes any contradiction.

Proof. (4) is proved as follows, others can be verified easily.
ρ(A, 0) = 1 − ξ(A, 0)

= 1 − τ ((A → 0) ∧ (0 → A))
= 1 − ∫[0,1]m (A → 0) ∧ (0 → A)(x1, · · · , xm)dx1 · · · dxm

= 1 − ∫[0,1]m(A(x1, · · · , xm) → 0) ∧ (0 → A(x1, · · · , xm))dx1 · · · dxm

= 1 − ∫[0,1]m A(x1, · · · , xm) → 0dx1 · · · dxm

= 1 − ∫[0,1]m A → 0(x1, · · · , xm)dx1 · · · dxm

= 1 − τ (A → 0).

By Corollary 1, we have

τ(A) + τ(A → 0) ≤ τ(0) + 1 = 1.
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i.e.,
1 − τ(A → 0) ≥ τ(A).

Therefore,ρ(A, 0) ≥ τ(A).

Remark 2. The equal relation in Theorem4(4) are not necessary to hold. The
counter-example is given as follows.

Consider the formula A = (p1 → p2)∨ p1. It is easy to obtain the function
A induced by A and A → 0 induced by A → 0 bellow.

A(x1, x2) =
{

x1, x1 > x2
1, x1 ≤ x2

Considering the fact A(x1, x2) > 0 for all x1, x2 ∈ [0, 1], we have

A → 0(x1, x2) = A(x1, x2) → 0 = 0.

Obviously, τ(A) =
∫ 1
0

∫ 1
0 A(x1, x2)dx1dx2 < 1, while ρ(A, 0) = 1 − τ((A →

0) ∧ (0 → A)) = 1 − τ(A → 0) = 1 −
∫ 1
0

∫ 1
0 A → 0(x1, x2)dx1dx2 = 1. i.e.,

ρ(A, 0) �= τ(A).
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Abstract. In modal logic systems S4 and S5, some semantics equivalent
theorems on various classes of models are proved. Main results are: (1) A
formula is S4 (S5)-theorem if and only if it is globally true in any finite
models of S4 (S5); (2) A formula is S4-theorem if and only if it is globally
true in all finite topological models; (3) As a corollary of (2), Question 9.1.66
in [4] is affirmatively answered; (4) A formula is S5-theorem if and only if it
is globally true in the class FCOT of finite topological models with open sets
being closed.

Keywords: Modal logic, model, topological model, filtration, globally true.

1 Introduction

Like classical propositional logic [1], the study of modal logic [2, 3, 4] can be
divided into two aspects of syntax and semantics. From the aspect of syntax,
modal logic is just a logic system added some modal connectives to classic
propositional logic. Different modal logic systems can be obtained by adding
some appropriate modal connectives, axioms and rules of inference. However,
it becomes more complicated when we compare classical propositional logic
and modal logic from semantics. The key point is that interpretations (assign-
ments) of propositional logic involve only one possible world (that is, actual
world), while since modal logic includes modal connectives, interpretations
(assignments) of modal logic involve a lot of possible worlds. So, even in some
fairly simple modal logic systems such as basic modal logic system K and
its extensions S4 and S5, there are also some basic problems about their
semantics to be solved, for example [4, Question 9.1.66].

It is well known that in semantics of modal logic, one can define different
concepts of models in terms of different mathematical structures. Typical
models are defined by relational structures [2, 3, 4]. A kind of topological
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models given by Mckinsey and tarski in [5] using topological structures. Prac-
tically, different classes of models have their advantages and disadvantages.
Obviously, finite relational models and some special finite topological mod-
els are most convenient ones. So in this paper we have the purpose to make
more linkages of relational models and some special topological models, and
meanwhile give equivalences of some classes of (finite) models. As a corollary,
Question 9.1.66 in [4] mentioned above is affirmatively answered.

2 Preliminaries

For a set W , we use ℘(W ) to denote the power set of W . For the non-explicitly
stated notions please refer to [2, 6, 7].

A binary relation R on a set W is called
(i) reflexive if xRx for all x ∈ W ;
(ii) symmetric if xRy implies yRx for all x, y ∈ W ;
(iii) transitive if xRy and yRz implies xRz for all x, y, z ∈ W .

A preorder on W is a relation which is both reflexive and transitive. An
equivalence relation is a reflexive, symmetric and transitive relation. If R
is an equivalent relation, we use [x]R to denote an equivalent class of R
containing x.

Definition 2.1 [2]. The basic modal language is defined using a set of propo-
sition letters (or proposition symbols or proposition variables) Φ whose ele-
ments are usually denoted p, q, r, and so on, and a unary modal operator ♦
(diamond). The well formed formulas ϕ of basic modal language are given by
the rule

ϕ ::= p | ¬ϕ | ⊥ | ϕ1 ∨ ϕ2 | ♦ϕ,

where p ranges over elements of Φ. This definition means that a formula
is either a proposition letter, the propositional constant falsum (bottom),
a negated formula, a disjunction of formulas, or a formula prefixed by a
diamond. The set of all formulas is denoted by Form(♦, Φ).

Definition 2.2 [2]. A model for the basic modal language is a triple M =
(W,R, V ), where W is a non-empty set, R is a binary relation on W and V
is a function assigning to each proposition letter p in Φ a subset V (p) of W .
The function V is called a valuation.

Definition 2.3 [2, 4]. Suppose w is a state in a model M = (W,R, V ). Then
we inductively define the notion of a formula ϕ being satisfied (or true) in M
at state w as follows:

(i) M,w |= p iff w ∈ V (p), where p ∈ Φ,
(ii) M,w |= ⊥ never,
(iii) M,w |= ¬ϕ iff not M,w |= ϕ,
(iv) M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ,
(v) M,w |= ♦ϕ iff for some u ∈ W with wRu we have M,u |= ϕ.
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A formula ϕ is globally or universally true in a model M (notation: M |= ϕ)
if it is satisfied at all states in M (that is, if M,w |= ϕ, for all w ∈ W ). A
formula ϕ is valid (notation: |= ϕ) if it is globally true for all models M .

Definition 2.4 [2]. A set of formulas Σ is closed under subformulas (or
subformula closed) if for all formulas ϕ, ψ ∈ Form(♦, Φ),

(i) ϕ ∨ ψ ∈ Σ ⇒ ϕ ∈ Σ and ψ ∈ Σ,
(ii) ¬ϕ ∈ Σ ⇒ ϕ ∈ Σ,
(iii) ♦ϕ ∈ Σ ⇒ ϕ ∈ Σ.

Definition 2.5 [3]. A set of formulas Σ(ϕ) ⊆ Form(♦, Φ) is called a sub-
formula set generated by ϕ, if it satisfies the following four conditions:

(i) if ϕ ∈ Φ, then Σ(ϕ) = {ϕ},
(ii) if ϕ = ψ1 ∨ ψ2, then Σ(ϕ) = {ψ1 ∨ ψ2} ∪Σ(ψ1) ∪Σ(ψ2),
(iii) if ϕ = ¬ψ, then Σ(ϕ) = {¬ψ} ∪Σ(ψ),
(iv) if ϕ = ♦ψ, then Σ(ϕ) = {♦ψ} ∪Σ(ψ).

Remark 2.1. It is easy to show that Σ(ϕ) is subformula closed and finite
for all ϕ ∈ Form(♦, Φ).

Definition 2.6 [2, 3]. Let M = (W,R, V ) be a model and Σ a subformula
closed set of formulas. Let ≡Σ be the relation on the states of M defined by:

w ≡Σ v iff for all ϕ ∈ Σ, (M,w |= ϕ iff M, v |= ϕ).

Note that ≡Σ is an equivalence relation. We denote the equivalence class of
a state w of M with respect to ≡Σ by |w|Σ , or simply by |w| if no confusion
will arise.

Let WΣ = {|w|Σ : w ∈ W}. Suppose Mf
Σ is any model (W f , Rf , V f ) such

that:
(i) W f = WΣ ,
(ii) If wRv then |w|Rf |v|,
(iii) If |w|Rf |v| then for all ♦ϕ ∈ Σ, if M, v |= ϕ then M,w |= ♦ϕ,
(iv) V f (p) = {|w| : M,w |= p}, for all proposition letters p in Σ,

then Mf
Σ is called a filtration of M through Σ.

Proposition 2.1 [2]. Let Σ be a finite subformula closed set of basic modal
formulas. For any model M , if Mf is a filtration of M through a subformula
closed set Σ, then Mf contains at most 2CardΣ states.

Theorem 2.1 [2, 3]. Consider the basic modal language. Let Mf =
(WΣ , Rf , V f ) be a filtration of M through a subformula close set Σ. Then
for all formulas ϕ ∈ Σ, and all states w in M , we have that M,w |= ϕ iff
Mf , |w| |= ϕ.

3 Finite Models of Systems S4 and S5

It is well known that different modal logic systems can be obtained by taking
appropriate restrictions on binary relations R in models M = (W,R, V ) of
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basic modal language. If the relations R are chosen to be preorders, then
one gets the model class of the modal logic system S4. This model class is
also written as S4. Similarly, if the relations R are chosen to be equivalent
relations, then one gets the model class S5 of the modal logic system S5.
Precisely,

S4 = {M = (W,R, V ) : R is a preorder on W},
S5 = {M = (W,R, V ) : R is an equivalent relation on W}.

Definition 3.1 [4]. A formula ϕ is S4-valid (resp., S5-valid), written |=S4 ϕ
(resp., |=S5 ϕ), if it is globally true in the sense of Definition 2.3 for all models
M ∈ S4 (resp., M ∈ S5).

By the completeness of S4 and S5 (i.e., �S4 ϕ ⇔|=S4 ϕ and �S5 ϕ ⇔|=S5 ϕ)
established in [4, Theorem 9.1.48 and Theorem 9.1.71], we know that the set
of all S4-valid formulas is equal to the set of all S4-theorems and that the set
of all S5-valid formulas is equal to the set of all S5-theorems. The following
two theorems show that when we choose the model classes of finite models
for S4 and S5, we also have similar equivalences.

Theorem 3.1. Let ϕ ∈ Form(♦, Φ). Then

|=FS4 ϕ ⇔ |=S4 ϕ, (1)

where FS4 = {M = (W,R, V ) ∈ S4 : W is a finite set}.

Proof. ⇐: Trivial.
⇒: For each model M ∈ S4, construct a model Mf = (WΣ(ϕ), R

t, V f ),
where WΣ(ϕ) and V f are defined by Definition 2.6 and Rt is defined as follows:
for all |w|, |v| ∈ WΣ(ϕ),

|w|Rt|v| ⇔ ∀♦ψ ∈ Σ(ϕ), if M, v |= ψ ∨♦ψ, then M,w |= ♦ψ. (2)

Firstly, we show that Rt satisfies Definition 2.6 (ii) (iii) and thus Mf is indeed
a filtration of M through Σ(ϕ).

To verify Definition 2.6 (ii), suppose wRv. For all ♦ψ ∈ Σ(ϕ), if M, v |=
ψ∨♦ψ, then M, v |= ψ or M, v |= ♦ψ. When M, v |= ψ, we have M,w |= ♦ψ
by wRv. When v |= ♦ψ, there exists v′ such that vRv′ and M, v′ |= ψ. Since
R is transitive, we have wRv′ and M,w |= ♦ψ. So, |w|Rt|v| and Definition 2.6
(ii) holds.

To verify Definition 2.6 (iii), suppose |w|Rt|v|. For all ♦ψ ∈ Σ(ϕ),
if M, v |= ψ, then v |= ψ ∨ ♦ψ and w |= ♦ψ by (2). So, Definition 2.6
(iii) holds.

Secondly, we show that Rt is reflexive and transitive. In fact, for all |w| ∈
WΣ(ϕ), since R is reflexive, we have |w|Rt|w|. This means that Rt is reflexive.
To show the transitivity of Rt, suppose |w|Rt|u| and |u|Rt|v|. For all ♦ψ ∈
Σ(ϕ), if M, v |= ψ ∨ ♦ψ, then M,u |= ♦ψ and M,w |= ♦ψ by (2). So we
have |w|Rt|v| by (2) again. This means that Rt is also transitive.
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Now, we can conclude that Mf ∈ FS4 by Remark 2.1 and Proposition 2.1.
Then by Theorem 2.1, we have M |= ϕ ⇔ Mf |= ϕ. Since M ∈ S4 is
arbitrary, we have |=FS4 ϕ ⇒|=S4 ϕ, as desired.

Theorem 3.2. Let ϕ ∈ Form(♦, Φ). Then

|=FS5 ϕ ⇔ |=S5 ϕ, (3)

where FS5 = {M = (W,R, V ) ∈ S5 : W is a finite set}.

Proof. ⇐: Trivial.
⇒: For each model M ∈ S5, construct a model Mf = (WΣ(ϕ), R

e, V f ),
where WΣ(ϕ) and V f are defined by Definition 2.6 and Re is defined as follows:
for all |w|, |v| ∈ WΣ(ϕ), |w|Re|v| iff the following two conditions are satisfied:

∀♦ψ ∈ Σ(ϕ) : (M, v |= ψ ∨♦ψ) ⇒ (M,w |= ♦ψ), (4)

∀♦ψ ∈ Σ(ϕ) : (M,w |= ♦ψ) ⇒ (M, v |= ♦ψ). (5)

Firstly, we show that Re satisfies Definition 2.6 (ii) (iii) and thus Mf is indeed
a filtration of M through Σ(ϕ).

To verify Definition 2.6 (ii), suppose wRv. On the one hand, for all ♦ψ ∈
Σ(ϕ), if M, v |= ψ ∨♦ψ, then M, v |= ψ or M, v |= ♦ψ. When M, v |= ψ, we
have M,w |= ♦ψ by wRv. When M, v |= ♦ψ, there exists v′ such that vRv′

and M, v′ |= ψ. Since R is transitive, we have wRv′, and then M,w |= ♦ψ.
On the other hand, for all ♦ψ ∈ Σ(ϕ), if M,w |= ♦ψ, then there exists w′

such that wRw′ and M,w′ |= ψ. By the symmetry of R, we have vRw, and
then by the transitivity of R, we have vRw′, hence M, v |= ♦ψ. So, |w|Re|v|
and Definition 2.6 (ii) is verified.

To verify Definition 2.6 (iii), suppose |w|Rt|v|. For all ♦ψ ∈ Σ(ϕ),
if M, v |= ψ, then M, v |= ψ ∨ ♦ψ, and then M,w |= ♦ψ by (4). Thus,
Definition 2.6 (iii) is verified.

Secondly, we show that Re is reflexive, transitive and symmetric. In fact,
for all |w| ∈ WΣ(ϕ), since R is reflexive, we have |w|Re|w|. This means that
Re is reflexive. To show the transitivity of Re, suppose |w|Re|u| and |u|Re|v|.
On the one hand, for all ♦ψ ∈ Σ(ϕ), if M, v |= ψ∨♦ψ, then M,u |= ♦ψ, and
M,w |= ♦ψ by (4). On the other hand, for all ♦ψ ∈ Σ(ϕ), if w |= ♦ψ, then
u |= ♦ψ, and v |= ♦ψ by (5). So we have |w|Re|v| by the definition of Re. This
means that Re is transitive. To show the symmetry of Re, suppose |w|Re|v|.
For all ♦ψ ∈ Σ(ϕ). On the one hand, if M,w |= ψ ∨♦ψ, then M,w |= ψ or
M,w |= ♦ψ, and then M,w |= ♦ψ. So we have that M, v |= ♦ψ by (5). On
the other hand, if M, v |= ♦ψ, then M, v |= ψ ∨ ♦ψ, and then M,w |= ♦ψ.
So we have |v|Re|w|.

Now, we can conclude that Mf ∈ FS5 by Remark 2.1 and Proposition 2.1.
Then by Theorem 2.1, we have M |= ϕ ⇔ Mf |= ϕ. Since M ∈ S5 is
arbitrary, we have |=FS5 ϕ ⇒|=S5 ϕ, as desired.
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4 Finite Topological Models of System S4 and S5

Definition 4.1. A topological model for the basic model language is a triple
M = (W, T , V ), where W is a non-empty set, T is a topology on W and V
is a function assigning to each proposition letter p in Φ a subset V (p) of W .
The function V is called a valuation.

It is easy to see that topological models are special minimal models in the
sense of [3, Definition 7.1] defined by special mappings.

Definition 4.2. Suppose w is a state in a topological model M = (W, T , V ).
Then we inductively define the notion of a formula ϕ being satisfied (or true)
in M at state w as follows:

(i) M,w |=T p iff w ∈ V (p), p ∈ Φ.
(ii) M,w |=T ⊥ never.
(iii) M,w |=T ¬ϕ iff not M,w |=T ϕ.
(iv) M,w |=T ϕ ∨ ψ iff M,w |=T ϕ or M,w |=T ψ.
(v) M,w |=T ♦ϕ iff for any open neighborhood U of w, there exists u ∈ U

such that M,u |=T ϕ.
A formula ϕ is globally or universally true in a topological model M (no-

tation: M |=T ϕ) if it is satisfied at all states in M (that is, if M,w |=T ϕ
for all w ∈ W ). A formula ϕ is topologically valid (notation: |=T ϕ) if it is
globally true for all topological models M .

Remark 4.1. It is easy to verify that the concepts of globally true and topo-
logically valid formulas in Definition 4.2 are equivalent to the corresponding
concepts in [4, Definition 9.1.49]. Moreover, by [4, Th.9.1.53 and Th.9.1.58],
the topological soundness and topological completeness of system S4, we can
conclude that a formula is S4-theorem if and only if this formula is S4-valid
if and only if the formula is topologically valid, namely,

�S4 ϕ ⇔ |=S4 ϕ ⇔ |=T ϕ, ϕ ∈ Form(♦, Φ). (6)

Let TM be the class of all topological models and M = (W, T , V ) ∈ TM .
Then M is called an Alexandrov topological model if T is an Alexandrov
topology. The class of all Alexandrov topological models is denoted by AT .
If W is a finite set, then M = (W, T , V ) is called a finite topological model.
The class of all finite topological models is denoted by FT . A formula
ϕ ∈Form(♦, Φ) is called Alexandrov topologically valid (notation: |=AT ϕ)
if M |=T ϕ for all M ∈ AT . Similarly, we can define the concept of finite
topologically valid formulas (notation: |=FT ϕ).

It is well know that for any finite topological space (W, T ), T is closed
under arbitrary intersections and is an Alexandrov topology. So we have

|=T ϕ ⇒ |=AT ϕ ⇒ |=FT ϕ, ϕ ∈ Form(♦, Φ). (7)
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Lemma 4.1. Let W be a non-empty set, R a binary relation on W .
(i) If R is a preorder, then α(R) = {A ⊆ W : ∀x, y ∈ W,xRy ∧ x ∈ A ⇒

y ∈ A} is an Alexandrov topology on W .
(ii) If R is an equivalence relation, then T (R) = {A ⊆ W : [x]R ⊆ A, for

all x in A} is a topology on W with every open set being also closed.
(iii) If T is a topology on W , then R(T ) = {(x, y) ∈ W ×W : Cl({x}) =

Cl({y})} is an equivalence relation.

Proof. (i) By [4, Remark 9.1.62].
(ii) It is easy to verify T (R) is a topology on W . Moreover if A ∈ T (R)

and x ∈Cl(A), then we have [x]R ∩ A �= ∅. Then there is a y ∈ W such that
xRy and y ∈ A. Thus x ∈ [y]R ⊆ A, hence A =Cl(A). So every open set is
also closed with respect to T (R).

(iii) Directed verification.

Theorem 4.1. Let ϕ ∈Form(♦, Φ). Then ϕ is an S4−theorem if and only if
ϕ is finite topologically valid, namely,

�S4 ϕ ⇔ |=FT ϕ, ∀ ϕ ∈ Form(♦, Φ). (8)

Proof. ⇒: By (6) and (7).
⇐: By (1), it suffices to show that

|=FT ϕ ⇒|=FS4 ϕ, ∀ ϕ ∈ Form(♦, Φ). (9)

For each model M = (W,R, V ) ∈ FS4, we can get a topological model Mα =
(W,α(R), V ), where α(R) is defined as in Lemma 4.1(i). It is clear that Mα =
(W,α(R), V ) ∈ FT .

We claim that for all w ∈ W and ϕ ∈ Form(♦, Φ),

M,w |= ϕ ⇔ Mα, w |=T ϕ. (10)

We prove this claim inductively with respect to the complexity of ϕ. If ϕ =
p ∈ Φ, then

M,w |= p ⇔ w ∈ V (p) ⇔ Mα, w |=T p. (11)

Suppose that (10) is true for formulas with the number of connectives not
more than k. Then, for formula ϕ with k + 1 connectives, we prove that (10)
is also true. We divide the proof into the following three cases: (a) ϕ = ¬ψ,
(b) ϕ = ψ1 ∨ ψ2 and (c) ϕ = ♦ψ.

For case (a), we have
M,w |= ¬ψ ⇔ not M,w |= ψ

⇔ not Mα, w |=T ψ (by the assumption of induction)
⇔ Mα, w |=T ¬ψ.

For case (b), we have
M,w |= ψ1 ∨ ψ2 ⇔ M,w |= ψ1 or M,w |= ψ2
⇔ Mα, w |=T ψ1 or Mα, w |=T ψ2 (by the assumption of induction)

⇔ Mα, w |=T ψ1 ∨ ψ2.
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For case (c), we have
M,w |= ♦ψ ⇔ there is u ∈ W such that wRu and M,u |= ψ

⇔ for all open neighborhood U of w in (W,α(R)), there is u ∈ U
such that Mα, u |=T ψ (by the assumption of induction)

⇔ Mα, w |=T ♦ψ.
So, by principle of induction, (10) is true for all w ∈ W and ϕ ∈Form(♦, Φ).

Then by the arbitrariness of M ∈ FS4, we conclude that (9) is true.

Theorem 4.2. For all ϕ ∈ Form(♦, Φ), we have

�S4 ϕ ⇔ |=S4 ϕ ⇔ |=T ϕ ⇔ |=AT ϕ ⇔ |=FT ϕ. (12)

Proof. It follows immediately from (6), (7) and (8).

Remark 4.2. Question 9.1.66 in [4] now is affirmatively answered by
Theorem 4.2.

Next we pass to consider finite models in system S5. Set FCOT =
{(W, T , V ) ∈ FT : A is closed for all A ∈ T }. For every M = (W, T , V ) ∈
FCOT , we can get a model MR = (W,R(T ), V ) ∈ FS5, where R(T ) is
defined as in Lemma 4.1(iii).

Theorem 4.3. Let ϕ ∈Form(♦, Φ). Then ϕ is a S5−theorem if and only if
ϕ is globally true in all topological models M ∈ FCOT , namely,

�S5 ϕ ⇔|=FCOT ϕ, ∀ ϕ ∈ Form(♦, Φ).

Proof. ⇒: By Theorem 3.2 and [4, Theorem 9.1.71], the completeness of
system S5, it suffices to show that |=FS5 ϕ ⇒|=FCOT ϕ.

If M = (W, T , V ) ∈ FCOT , then the model MR = (W,R(T ), V ) ∈ FS5.
We claim that for all w ∈ W and ϕ ∈ Form(♦, Φ)

M,w |=T ϕ ⇔ MR, w |= ϕ. (13)

We prove this claim inductively with respect to the complexity of ϕ. If ϕ =
p ∈ Φ, then

M,w |=T p ⇔ w ∈ V (p) ⇔ MR, w |= p.

Suppose that (13) is true for formulas with the number of connectives not
more than k. Then, for formula ϕ with k + 1 connectives, we prove that (13)
is also true. We divide the proof into the following three cases: (a) ϕ = ¬ψ,
(b) ϕ = ψ1 ∨ ψ2 and (c) ϕ = ♦ψ. For case (a) and case (b), the proves are
similar to the corresponding cases in the proof of Theorem 4.1 and omitted.

For case (c), we have
M,w |=T ♦ψ ⇔ for all open neighborhood U of w in (W, T ), there is

u ∈ U such that M,u |=T ψ
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⇔ for the smallest open neighborhood V of w in(W, T ), there is
v ∈ V such that M, v |=T ψ

⇔ there is v ∈ W such that wR(T )v andMR, v |= ψ
(by the assumption of induction)

⇔ MR, w |= ♦ψ.
So (13) is true for all w ∈ W and ϕ ∈Form(♦, Φ). Thus |=FS5 ϕ ⇒|=FCOT

ϕ.

⇐: By Theorem 3.2, it suffices to prove that |=FCOT ϕ ⇒|=FS5 ϕ.
For each model M = (W,R, V ) ∈ FS5, since R is an equivalent relation

on W , we see that MT = (W, T (R), V ) ∈ FCOT , where T (R) is defined as
in Lemma 4.1(ii).

It is a routine work to show by induction with respect to the complexity
of ϕ that MT , w |=T ϕ ⇔ M,w |= ϕ. So |=FCOT ϕ ⇒|=FS5 ϕ, as desired.
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Abstract. More equalities and inequalities about (n) truth degrees are de-
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1 Introduction

Rosser and Turquetter [1] in 1952 posed the idea of distinguishing credi-
ble degrees of logic formulas. To complete this idea, Pavelka posed a logic
theory to stratify fully in the frame of lattice valued propositional logic [2].
Since 90’s of last century, various stratified logic concepts have been studied
and developed and many results have been obtained [3]-[10]. Based on mean
probability, Wang in [4] firstly posed the concept of truth degrees of logic
formulas and the theory of logic metric spaces in classical logic systems. And
the theory of quantitative logic [9]-[10] formed step by step. The establishing
of quantitative logic makes it come true to stratify logic concepts. Quantita-
tive logic also combines symbolic logic and numerical computing, as well as
approximate computing in computational mathematics together, broadening
application areas of formal logic. Recently, Wang and Duan in [11] posed
the concepts of (n) truth degrees in basic modal logic system K in terms of
finite semantical models. They also defined modal logic metric spaces and
gave some theory of approximate reasoning. Based on [11], we in this paper
will deduce more equalities and inequalities about (n) truth degrees and give
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more properties of pseudo metric in basic modal logic systems K. Some new
results about (n) truth degrees and pseudo distance in temporal logic will also
be obtained. Simple proves of continuities of modal logic operators in the (n)
modal logic metric space are given. We also study divergence in modal logic
metric spaces and prove the equivalence of three given approximate reasoning
theories.

2 Preliminaries

Modal logic [12] is an extension of classical logic by adding some modal
operators and axioms related to modal operators. Semantics of basic modal
logic are given in terms of Kripke semantical models [13]. The non-explicitly
stated notions and symbols in this paper, please refer to [11, 15].

Definition 2.1 [14]. Let ' be a unary modal operator, Φ a set of atomic
propositions. '-type modal formulas are constructed as following:

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | 'ϕ, p ∈ Φ,

i.e., (i) ∀p ∈ Φ, p is a '-type modal formulas;
(ii) ⊥ is a '-type modal formulas (⊥ represents the refusion formulas);
(iii) If ϕ,ϕ1, ϕ2 are '-type modal formulas, then ¬ϕ, 'ϕ and ϕ1 ∨ ϕ2 are

also '-type modal formulas.

We use Form (', Φ) to denote the set of '-type modal formulas based on Φ
and � to denote the dual modal operator of ', ϕ ∧ ψ denotes ¬(¬ϕ ∨ ¬ψ),
and ϕ → ψ denotes ¬ϕ ∨ ψ, and �ϕ = ¬ ' ¬ϕ.

Definition 2.2 [14]. Modal logic system K is consisting of
(i) Formulas: all the '-type modal formulas in Form(', Φ).
(ii) Axioms:
1o All the tautologies in two-valued propositional logic based on Φ and ¬⊥;
2o distributive axioms: �(p → q) → (�p → �q), p, q ∈ Φ.
(iii) Inference Rules :
1o MP-rules: from ϕ and ϕ → ψ one can deduce ψ;
2o Generalization Rules: from ϕ one can deduce �ϕ;
3o Uniformly substitutions: namely, if ϕ = f(p1 · · · pn) and

h : Φ →Form(', Φ) is a map, then from ϕ one
can deduce f(h(p1) · · ·h(pn)), (p1, · · · , pn ∈ Φ).

It follows from distributive axioms and uniformly substitutions that �(ϕ →
ψ) → (�ϕ → �ψ).

If ϕ is a theorem in K, then we write that �K ϕ, or briefly � ϕ. When
� ϕ → ψ and � ψ → ϕ hold, we say that ϕ and ψ are provable equivalent,
written ϕ ∼ ψ.
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Definition 2.3 [15]. Let Γ ⊆Form(', Φ), ϕ ∈Form(', Φ). Then Γ is called a
theory. If Γ is non-empty and there are ψ1, · · · , ψn ∈ Γ such that � ψ1∧· · ·∧
ψn → ϕ, then we say that ϕ can be deduced by Γ , or ϕ is a Γ -conclusion,
written Γ � ϕ. We use D(Γ ) to denote the set of all Γ -conclusion.

Definition 2.4 [14]. A model for basic modal logic system K is a triple M =
(W,R, V ), where W is a non-empty set, R is a binary relation on W (i.e.,
R ⊆ W × W ), and V : Φ → ℘(W ) (the power set of W ) is a map called an
evaluation.

Definition 2.5 [14]. Let M = (W,R, V ) be a model for basic modal logic
system K, w ∈ W and ϕ ∈Form(', Φ). We define inductively that ϕ is true
at the point w of the model M or w satisfies ϕ, written M,w |= ϕ, as follows:

(i) M,w |= p iff w ∈ V (p), P ∈ Φ,
(ii) M,w |= ⊥ never holds,
(iii) M,w |= ¬ϕ iff M,w |= ϕ not hold,
(iv) M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ,
(v) M,w |= 'ϕ iff there are u ∈ W such that Rw,u and M,u |= ϕ, where

Rw,u means that (w, u) ∈ R.

If ∀w ∈ W , M,w |= ϕ holds, then we say that ϕ is globally true in M ,
written M |= ϕ. If for all M of models for K, M |= ϕ holds, then we say ϕ
is a valid formula, written |= ϕ. When |= ϕ → ψ and |= ψ → ϕ hold, we say
ϕ and ψ are logic equivalent, written ϕ ≈ ψ.

Let ϕ ∈Form(', Φ). Then the construction of ϕ evolves only finite atomic
propositions. So, we assume that Φ is a finite set and consider only finite
models for K in the sequel. For a finite model M = (W,R, V ), if |W | = n,
then we take Wn = {1, 2, · · · , n} as a standard domain, and the set of all the
finite models (Wn, R, V ) based on Wn is also a finite one, and written briefly
Mn (note: it is related to Φ). And we write Mf = ∪∞

n=1Mn.

Definition 2.6 [11]. Let ϕ ∈Form(', Φ).
(i) Let M = (W,R, V ) ∈ Mf . Define the truth degree τM (ϕ) of ϕ with

respect to M as follows: τM (ϕ) = μ({w ∈ W | M,w |= ϕ}) or τM (ϕ) =
μ(V (ϕ)), (V (ϕ) = {w ∈ W | M,w |= ϕ}), where μ is the mean probabilistic
measure on finite set W .

(ii) The (n) truth degree τn(ϕ) of ϕ is defined as follows:

τn(ϕ) =
1

|Mn|
∑

{τM (ϕ) | M ∈ Mn}.

Remark 2.1.(The invariant property of the (n) truth degree) Above summa-
tion is a finite one and exists. In addition, if one adds some atomic propo-
sitions to Φ, then the (n) truth degree of the same formula is unchanged.
Precisely, if ϕ ∈Form(', Φ) and Φ0 ⊇ Φ is finite, then

τn(ϕ) =
1

|Mn(Φ0)|
∑

{τM (ϕ) | M ∈ Mn(Φ0)}.
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This means that Definition 2.6 is meaningful. So, if necessary or for sake
of conveniences, one can add/deduct some finite atomic propositions to Φ
to guarantee meaningfulness of matters in question and leave the (n) truth
degree of the same formula unchanged.

Definition 2.7 [11]. Let M = (W,R, V ),
W = {1, 2, · · · , n}, ϕ, ψ ∈Form(', Φ). Set

ξn(ϕ, ψ) = τn((ϕ → ψ) ∧ (ψ → ϕ)).

We say that ξn(ϕ, ψ) is the (n) similarity of ϕ and ψ.

Lemma 2.1 [11]. Let ϕ, ψ ∈Form(', Φ). Then
(i) V (¬ϕ) = W − V (ϕ). (ii) V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
(iii) V (ϕ∧ψ) = V (ϕ)∩V (ψ), (iv) V (ϕ → ψ) = (W−V (ϕ))∪V (ψ),
(v) V ('ϕ) = {w ∈ W | R[w] ∩ V (ϕ) �= ∅}, where R[w] = {u ∈ W | Rw,u}.

Lemma 2.2 [11]. Let ϕ, ψ ∈Form(', Φ). Then ∀ n = 1, 2, · · ·,
(i) 0 ≤ τn(ϕ) ≤ 1, (ii) τn(ϕ) + τn(¬ϕ) = 1,
(iii) If |= ϕ, then τn(ϕ) = 1, (iv) If ϕ ∼ ψ, then τn(ϕ) = τn(ψ).

Lemma 2.3 [11]. Let ϕ, ψ, ϕ1, ϕ2, ϕ3 ∈Form(', Φ), α, β ∈ [0, 1]. Then
(i) τn(ϕ ∨ ψ) + τn(ϕ ∧ ψ) = τn(ϕ) + τn(ψ),
(ii) If τn(ϕ) ≥ α, τn(ϕ → ψ) ≥ β, then τn(ψ) ≥ α + β − 1,
(iii) If τn(ϕ1 → ϕ2) ≥ α, τn(ϕ2 → ϕ3) ≥ β, then τn(ϕ1 → ϕ3) ≥ α+β−1.

Lemma 2.4 [11]. Let ϕ, ψ, ϕ1, ϕ2, ϕ3 ∈Form(', Φ). Then
(i) if ϕ ∼ ψ, then ξn(ϕ, ψ) = 1,
(i) ξn(ϕ1, ϕ2) + ξn(ϕ2, ϕ3) ≤ 1 + ξn(ϕ1, ϕ3).

Lemma 2.5 [11]. Let ϕ, ψ ∈Form(', Φ), define ρn: Form(', Φ)2 → [0, 1],
such that.

ρn(ϕ, ψ) = 1 − ξn(ϕ, ψ).

Then ρn is a pseudo distance on Form(', Φ), and (Form(', Φ), ρn) is called
an (n) modal logic metric space.

Temporal logic is a special modal logic and modal operator ' has the following
meaning, 'p means that p holds in some occasions of future, and �p means
that p holds in every occasion of future. For a finite model M = (W,R, V ) of
temporal logic with W = {1, 2, · · · , n}, binary relation R is a chain. So, we
can choose R = {(w, u) | w, u ∈ Wn = {1, 2, · · · , n}, w ≤ u}. We use Mn,R to
denote the set of such temporal models. Define the (n) truth degree τn,R(ϕ)
of ϕ w. r. t. Mn,R such that

τn,R(ϕ) =
1

|Mn,R|
∑

{τM (ϕ) | M ∈ Mn,R}.
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Lemma 2.6 [11]. Let p ∈ Φ. Then, for all n = 1, 2, · · · we have
(i) τn,R(�p) = 2

n − 1
n2n−1 ,

(ii) τn,R('p) = 1 − 2
n + 1

n2n−1 ,
(iii) τn,R('p ∧ p) = 1

2 − 1
n + 1

n2n ,
(iv) τn,R('p ∧ �p) = 1

n − 1
n2n−1 .

3 The (n) Truth Degree of a Modal Formula

Proposition 3.1. Let ϕ, ψ, ϕ1, ϕ2, ϕ3 ∈Form(', Φ). Then ∀ n = 1, 2, · · ·,
(i) τn(ϕ → ψ) = τn(ϕ ∧ ψ) − τn(ϕ) + 1,
(ii) τn(ϕ1 → (ϕ2∨ϕ3))+τn(ϕ1 → (ϕ2∧ϕ3)) = τn(ϕ1 → ϕ2)+τn(ϕ1 → ϕ3),
(iii) τn(ϕ1 ∨ϕ2 → ϕ3) + τn(ϕ1 ∧ϕ2 → ϕ3) = τn(ϕ1 → ϕ3) + τn(ϕ2 → ϕ3),
(iv) τn(ϕ1 ∨ ϕ2 → ϕ1 ∧ ϕ2) = τn(ϕ1 → ϕ2) + τn(ϕ2 → ϕ1) − 1.

Proof. (i) By Lemma 2.3(i), we have that τn(ϕ → ψ) + τn(ϕ) = τn(¬ϕ ∨
ψ) + τn(ϕ) = τn(¬ϕ ∨ ψ ∨ ϕ) + τn((¬ϕ ∨ ψ) ∧ ϕ) = 1 + τn(ϕ ∧ ψ). So,
τn(ϕ → ψ) = τn(ϕ ∧ ψ) − τn(ϕ) + 1.

(ii) It follows from (i) that
τn(ϕ1 → ϕ2 ∨ ϕ3) + τn(ϕ1 → ϕ2 ∧ ϕ3)

= τn(ϕ1 ∧ (ϕ2 ∨ ϕ3)) − τn(ϕ1) + 1 + τn(ϕ1 ∧ ϕ2 ∧ ϕ3) − τn(ϕ1) + 1
= τn((ϕ1 ∧ ϕ2)∨ (ϕ1 ∧ ϕ3)) + τn((ϕ1 ∧ϕ2)∧ (ϕ1 ∧ ϕ3))− 2τn(ϕ1) + 2
= τn(ϕ1 ∧ ϕ2) + τn(ϕ1 ∧ ϕ3) − 2τn(ϕ1) + 2
= τn(ϕ1 → ϕ2) + τn(ϕ1 → ϕ3).

The proof of (iii) is similar to that of (ii).
(iv) τn(ϕ1 ∨ ϕ2 → ϕ1 ∧ ϕ2)

= τn((ϕ1 ∨ ϕ2) ∧ (ϕ1 ∧ ϕ2)) − τn(ϕ1 ∨ ϕ2) + 1
= 2τn(ϕ1 ∧ ϕ2) − τn(ϕ1) − (ϕ2) + 1
= τn(ϕ1 → ϕ2) + τn(ϕ2 → ϕ1) − 1.

By 3.1 (i), we can pithily prove Lemmas 2.3 (ii), (iii) and 2.4 (ii).
A proof of Lemma 2.3 (ii): τn(ψ) ≥ τn(ϕ ∧ ψ) = τn(ϕ → ψ) + τn(ϕ) − 1.
A proof of Lemma 2.3 (iii): τn(ϕ1 → ϕ2) + τn(ϕ2 → ϕ3) − 1

= τn(ϕ1 ∧ ϕ2) + τn(ϕ2 ∧ ϕ3) − τn(ϕ1) − τn(ϕ2) + 1
= τn((ϕ1 ∨ ϕ3) ∧ ϕ2) + τn(ϕ1 ∧ ϕ2 ∧ ϕ3) − τn(ϕ1) − τn(ϕ2) + 1
≤ τn(ϕ1 ∧ ϕ2 ∧ ϕ3) − τn(ϕ1) + 1
≤ τn(ϕ1 ∧ ϕ3) − τn(ϕ1) + 1
= τn(ϕ1 → ϕ3).

A proof of Lemma 2.4(ii): Since τn((ϕ1 → ϕ2) ∨ (ϕ2 → ϕ1)) = τn((¬ϕ1 ∨
ϕ2) ∨ (¬ϕ2 ∨ ϕ1)) = 1, we have that

ξn(ϕ1, ϕ2) + ξn(ϕ2, ϕ3)
= τn((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)) + τn((ϕ2 → ϕ3) ∧ (ϕ3 → ϕ2))
= τn(ϕ1 → ϕ2) + τn(ϕ2 → ϕ1) − 1 + τn(ϕ2 → ϕ3) + τn(ϕ3 → ϕ2) − 1
= [τn(ϕ1 → ϕ2)+τn(ϕ2 → ϕ3)−1]+[τn(ϕ3 → ϕ2)+τn(ϕ2 → ϕ1)−1].

By Lemma 2.3 (iii) we have that
ξn(ϕ1, ϕ2) + ξn(ϕ2, ϕ3) ≤ τn(ϕ1 → ϕ3) + τn(ϕ3 → ϕ1) = 1 + ξn(ϕ1, ϕ3).
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Proposition 3.2. Let ϕ1, ϕ2, ϕ3 ∈Form(', Φ), α, β ∈ [0, 1]. Then ∀ n =
1, 2, · · ·,

(i) if τn(ϕ1 → ϕ2) ≥ α, τn(ϕ1 → ϕ3) ≥ β, then τn(ϕ1 → ϕ2 ∧ ϕ3) ≥
α + β − 1, τn(ϕ1 → ϕ2 ∨ ϕ3) ≥ α + β − 1;

(ii) if τn(ϕ1 → ϕ3) ≥ α, τn(ϕ2 → ϕ3) ≥ β, then τn(ϕ1 ∧ ϕ2 → ϕ3) ≥
α + β − 1, τn(ϕ1 ∨ ϕ2 → ϕ3) ≥ α + β − 1.

Proof. (i) τn(ϕ1 → ϕ2∧ϕ3) = τn(¬ϕ1∨(ϕ2∧ϕ3)) = τn(¬ϕ1∨ϕ2)+τn(¬ϕ1∨
ϕ3)−τn(¬ϕ1∨ϕ2)∧(¬ϕ1∨ϕ3) ≥ τn(ϕ1 → ϕ2)+τn(ϕ1 → ϕ3)−1 = α+β−1.

Similar arguments can prove that τn(ϕ1 → ϕ2 ∨ ϕ3) ≥ α + β − 1 and (ii).

Proposition 3.3. Let p ∈ Φ. Then in temporal logic, for all n = 1, 2, · · · we
have

τn,R(�p ∧ p) =
3
2n

− 1
n2n−1 .

Proof. Since the formula only evolves an atomic proposition p, we can take
Φ = {p}, and it is easy to see that the cardinality |Mn,R| = 2n. Thus,
V (�p ∧ p) = V (�p) ∩ V (p) = {w ∈ Wn | ∀u ∈ Wn with w < u one has
u ∈ V (P )} ∩ V (P ).

(i) If V (�p) = {n}, then V (P ) does not contain n and V (�p ∧ p) =
V (�p) ∩ V (p) = ∅.

(ii) If V (�p) =↑ k (2 ≤ k ≤ n − 1), then V (p) has 2k−1 possible choices
and maxV (p) = n. So,

V (�p∧p) = V (�p)∩V (p) = {n, n−1, · · · , k} and μ(V (�p∧p)) = n−k+1
n .

(iii) If V (�p) = W , then V (p) has only two choices and maxV (p) = n. So
μ(V (�p∧ p)) = 1 and τn,R(�p∧ p) = 1

|Mn,R|
∑

{τM (�p∧ p) | M ∈ Mn,R} =
1
2n (
∑n−1

k=2
n−k+1

n 2k−1 + 2) = 3
2n − 1

n2n−1 .

Proposition 3.4. Let p ∈ Φ. Then in temporal logic, for all n = 1, 2, · · ·,
(i) τn,R(p → �p) = 1

2 + 3
2n − 1

n2n−1 ,
(ii) τn,R(�p → p) = 1 − 1

2n ,
(iii) τn,R(p → 'p) = 1 − 1

n + 1
n2n ,

(iv) τn,R('p → p) = 1
2 + 1

n − 1
n2n ,

(v) τn,R(�p → 'p) = 1 − 1
n ,

(vi)τn,R('p → �p) = 3
n − 1

n2n−2 .

Proof. (i) By Lemma 2.5 and Propositions 3.1(i)and 3.3 we have that

τn,R(p → �p) = τn,R(p∧�p)−τn,R(p)+1 =
3
2n

− 1
n2n−1

− 1
2

+1 =
1
2

+
3
2n

− 1
n2n−1

.

Similar argument can prove (ii)-(vi).
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4 Metric Spaces of (n) Modal Logic

Proposition 4.1. Let ϕ1, ϕ2,∈Form(', Φ). Then ∀ n = 1, 2, · · · we have
(i) ρn(ϕ1, ϕ2) = 2−τn(ϕ1 → ϕ2)−τn(ϕ2 → ϕ1) = τn(ϕ1∨ϕ2)−τn(ϕ1∧ϕ2),
(ii) ρn(¬ϕ1,¬ϕ2) = ρn(ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2) = ρn(ϕ1 → ϕ2, ϕ2 → ϕ1) =

ρn(ϕ1, ϕ2).

Proof. (i) ρn(ϕ1, ϕ2) = 1− τn((ϕ1 → ϕ2)∧ (ϕ2 → ϕ1)) = 1− τn(ϕ1 → ϕ2)−
τn(ϕ2 → ϕ1)+τn((ϕ1 → ϕ2)∨(ϕ2 → ϕ1)) = 2−τn(ϕ1 → ϕ2)−τn(ϕ2 → ϕ1).
By Prop 3.1(i),

ρn(ϕ1, ϕ2) = 2−2τn(ϕ1∧ϕ2)+τn(ϕ1)+τn(ϕ2)−2 = τn(ϕ1∨ϕ2)−τn(ϕ1∧ϕ2).

(ii) ρn(¬ϕ1,¬ϕ2) = 2− τn(¬ϕ1 → ¬ϕ2)− τn(¬ϕ2 → ¬ϕ1) = 2− τn(ϕ2 →
ϕ1) − τn(ϕ1 → ϕ2) = ρn(ϕ1, ϕ2).

ρn(ϕ1∨ϕ2, ϕ1∧ϕ2) = τn((ϕ1∨ϕ2)∨(ϕ1∧ϕ2))−τn((ϕ1∨ϕ2)∧(ϕ1∧ϕ2)) =
τn(ϕ1 ∨ ϕ2) − τn(ϕ1 ∧ ϕ2) = ρn(ϕ1, ϕ2).

ρn(ϕ1 → ϕ2, ϕ1 → ϕ2) = τn((ϕ1 → ϕ2) ∨ (ϕ2 → ϕ1)) − τn((ϕ1 → ϕ2) ∧
(ϕ2 → ϕ1)) = 1 − τn((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)) = ρn(ϕ1, ϕ2).

By Propositions 4.1(ii) and 3.4, one has the following corollary immdiately.

Corollary 4.1. If p ∈ Φ, then in temporal logic, for all n = 1, 2, · · · we have
that

(i) ρn,R(p → �p,�p → p) = ρn,R(p ∨ �p, p ∧ �p) = ρn,R(¬p,¬�p)
= ρn,R(p,�p) = 1

2 − 1
n + 1

n2n−1 ,
(ii) ρn,R(p → 'p, 'p → p) = ρn,R(p ∨ 'p, p ∧ 'p) = ρn,R(¬p,¬ ' p)

= ρn,R(p, 'p) = 1
2 ,

(iii) ρn,R('p → �p,�p → 'p) = ρn,R('p∨�p, 'p∧�p) = ρn,R(¬' p,¬�p)
= ρn,R('p,�p) = 1 − 2

n + 1
n2n−2 .

Proposition 4.2. Let ϕ1, ϕ2,∈Form(', Φ). Then ∀ n = 1, 2, · · · we have
(i) ρn(ϕ1 ∧ ϕ2, ϕ1) = 1 − τn(ϕ1 → ϕ2),
(ii) ρn(ϕ1 ∨ ϕ2, ϕ1) = 1 − τn(ϕ2 → ϕ1),
(iii) ρn(ϕ1 → ϕ2, ϕ1) = 1 − τn(ϕ1 ∧ ϕ2),
(iv) ρn(ϕ1 → ϕ2, ϕ2) = 1 − τn(ϕ1 ∨ ϕ2),
(v) ρn(ϕ1 → ϕ2, ϕ1 ∨ ϕ2) = 1 − τn(ϕ2),
(vi) ρn(ϕ1 → ϕ2, ϕ1 ∧ ϕ2) = 1 − τn(ϕ1).

Proof. We prove (i), (iii) and (v) only. The other items can be similarly
proved.

(i) ρn(ϕ1∧ϕ2, ϕ1) = 2−τn(ϕ1∧ϕ2 → ϕ1)−τn(ϕ1 → ϕ1∧ϕ2) = 1−τn(ϕ1 →
ϕ2).

(iii) ρn(ϕ1 → ϕ2, ϕ1) = τn((ϕ1 → ϕ2) ∨ ϕ1) − τn((ϕ1 → ϕ2) ∧ ϕ1) =
τn(¬ϕ1 ∨ ϕ2 ∨ ϕ1) − τn((¬ϕ1 ∨ ϕ2) ∧ ϕ1) = 1 − τn(ϕ1 ∧ ϕ2).

(v) ρn(ϕ1 → ϕ2, ϕ1 ∨ ϕ2) = τn((ϕ1 → ϕ2) ∨ (ϕ1 ∨ ϕ2)) − τn((ϕ1 →
ϕ2)∧(ϕ1∨ϕ2)) = τn(¬ϕ1∨ϕ2∨ϕ1∨ϕ2)−τn((¬ϕ1∨ϕ2)∧(ϕ1∨ϕ2)) = 1−τn(ϕ2).
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Proposition 4.3. Let ϕ1, ϕ2, ϕ3 ∈Form(', Φ). Then
(i) ρn(ϕ1 ∨ ϕ3, ϕ2 ∨ ϕ3) ≤ ρn(ϕ1, ϕ2),
(ii) ρn(ϕ1 ∧ ϕ3, ϕ2 ∧ ϕ3) ≤ ρn(ϕ1, ϕ2),
(iii) ρn(ϕ1 → ϕ3, ϕ2 → ϕ3) ≤ ρn(ϕ1, ϕ2),
(iv) ρn(ϕ3 → ϕ1, ϕ3 → ϕ2) ≤ ρn(ϕ1, ϕ2).

Proof. (i) ρn(ϕ1 ∨ ϕ3, ϕ2 ∨ ϕ3)
= 2 − τn((ϕ1 ∨ ϕ3) → (ϕ2 ∨ ϕ3)) − τn((ϕ2 ∨ ϕ3) → (ϕ1 ∨ ϕ3))
= 2 − 2τn((ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)) + τn(ϕ1 ∨ ϕ3) + τn(ϕ2 ∨ ϕ3) − 2
= −2τn((ϕ1∧ϕ2)∨ϕ3)+τn(ϕ1)+τn(ϕ2)+2τn(ϕ3)−τn(ϕ1∧ϕ3)−τn(ϕ2∧ϕ3)
= τn(ϕ1)+τn(ϕ2)−2τn(ϕ1∧ϕ2)−τn(ϕ1∧ϕ3)−τn(ϕ2∧ϕ3)+2τn(ϕ1∧ϕ2∧ϕ3)
≤ τn(ϕ1) + τn(ϕ2) − 2τn(ϕ1 ∧ ϕ2)
= τn(ϕ1 ∨ ϕ2) − τn(ϕ1 ∧ ϕ2)
= ρn(ϕ1, ϕ2).
Similar arguments can prove(ii) and (iii).
(iv) ρn(ϕ3 → ϕ1, ϕ3 → ϕ2) = 2− τn((ϕ3 → ϕ1) → (ϕ3 → ϕ2))− τn((ϕ3 →

ϕ2) → (ϕ3 → ϕ1)).
Note that τn((ϕ1 → ϕ2) → ((ϕ3 → ϕ1) → (ϕ3 → ϕ2))) = 1. By

Lemma 2.3 (ii), we have
τn((ϕ3 → ϕ1) → (ϕ3 → ϕ2)) ≥ τn((ϕ1 → ϕ2),
τn((ϕ3 → ϕ2) → (ϕ3 → ϕ1)) ≥ τn((ϕ2 → ϕ1),

So, ρn(ϕ3 → ϕ1, ϕ3 → ϕ2) ≤ 2 − τn(ϕ1 → ϕ2) − τn(ϕ2 → ϕ1) = ρn(ϕ1, ϕ2).

Proposition 4.4. Let ϕ1, ϕ2, ϕ3, ϕ4 ∈Form(', Φ). Then ∀ n = 1, 2, · · · we
have

(i) ρn(ϕ1 ∨ ϕ2, ϕ3 ∨ ϕ4) ≤ ρn(ϕ1, ϕ3) + ρn(ϕ2, ϕ4).
(ii) ρn(ϕ1 ∧ ϕ2, ϕ3 ∧ ϕ4) ≤ ρn(ϕ1, ϕ3) + ρn(ϕ2, ϕ4).
(iii) ρn(ϕ1 → ϕ2, ϕ3 → ϕ4) ≤ ρn(ϕ1, ϕ3) + ρn(ϕ2, ϕ4).

Proof. (i) ρn(ϕ1 ∨ ϕ2, ϕ3 ∨ ϕ4) = 1 − ξn(ϕ1 ∨ ϕ2, ϕ3 ∨ ϕ4)
≤ 2 − ξn(ϕ1 ∨ ϕ2, ϕ2 ∨ ϕ3) − ξn(ϕ2 ∨ ϕ3, ϕ3 ∨ ϕ4)
= ρn(ϕ1 ∨ ϕ2, ϕ2 ∨ ϕ3) + ρn(ϕ2 ∨ ϕ3, ϕ3 ∨ ϕ4) ≤ ρn(ϕ1, ϕ3) + ρn(ϕ2, ϕ4).
Similar arguments can proof (ii) and (iii).

By Propositions 4.1(ii) and 4.4, one has immediately the following theorem
on the continuities of modal operators in modal logic metric spaces.

Theorem 4.1. In modal logic metric spaces (Form(', Φ), ρn), unary operator
“¬” and binary operators “∨”, “∧” and “→” are all continuous w.r.t. ρn.

Definition 4.1. Let Γ ⊆Form(', Φ). Set
divn(Γ ) =sup{ρn(ϕ, ψ) | ϕ, ψ ∈ D(Γ )}.

We call divn(Γ ) the divergent degree of theory Γ . When divn(Γ ) = 1 we call
Γ to be fully divergent.

Theorem 4.2 Let Γ = {ϕ1, · · · , ϕm} ⊆Form(', Φ). Then
divn(Γ ) = 1 − τn(ϕ1 ∧ · · · ∧ ϕm).
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Proof. For all ψ ∈ D(Γ ), by Definition 2.3, we have � (ϕ1 ∧ · · · ∧ ϕm) → ψ.
It follows from Lemma 2.3 (ii) that

τn(ψ) ≥ τn(ϕ1∧· · ·∧ϕm)+τn((ϕ1∧· · ·∧ϕm) → ψ)−1 = τn(ϕ1∧· · ·∧ϕm).
By the arbitrariness of ψ we know that among formulas in D(Γ ), ϕ1 ∧ · · · ∧
ϕm ∈ D(Γ ) has the smallest truth degree.

By Proposition 4.1(i), ρn(ϕ, ψ) = τn(ϕ∨ψ)− τn(ϕ∧ψ). Taking ϕ to be a
theorem, we have τn(ϕ∨ψ) = 1, τn(ϕ∧ψ) = τn(ψ). So, sup{ρn(ϕ, ψ) | ϕ, ψ ∈
D(Γ )} = 1−min{τn(ψ) | ψ ∈ D(Γ )}, hence divn(Γ ) = 1− τn(ϕ1 ∧ · · · ∧ϕm).

By Theorem 4.2, if Γ =Form(', Φ), then Γ is fully divergent.

Definition 4.2 [11] . Let Γ ⊆Form(', Φ), ϕ ∈Form(', Φ) and ε > 0.
(i) If ρn(ϕ,D(Γ )) =inf{ρn(ϕ, ψ) | ψ ∈ D(Γ )} < ε, then we call ϕ a Γ

conclusion of type-I by error less than ε, written ϕ ∈ D(Γ, I, ε).
(ii) If 1-sup{τn(ψ → ϕ)|ψ ∈ D(Γ )} < ε, then we call ϕ a Γ conclusion of

type-II by error less than ε, written ϕ ∈ D(Γ, II, ε).
(iii) If inf{H(D(Γ ), D(Σ)) | Σ ⊆ Form(', Φ), Σ � ϕ} < ε, where H is

Hausdorff distance on (Form(', Φ), ρn), then we call ϕ a Γ conclusion of
type-III by error less than ε, written ϕ ∈ D(Γ, III, ε).

Lemma 4.1 [11] . Let Γ ⊆Form(', Φ), ϕ ∈Form(', Φ), ε > 0. Then ϕ ∈
D(Γ, I, ε) iff ϕ ∈ D(Γ, II, ε).

Lemma 4.2 [11] . Let Γ ⊆Form(', Φ), ϕ ∈Form(', Φ) and ε > 0. If ϕ ∈
D(Γ, III, ε), then ϕ ∈ D(Γ, I, ε).

Theorem 4.3. Let Γ ⊆Form(', Φ), ϕ ∈Form(', Φ) and ε > 0. If ϕ ∈
D(Γ, I, ε), then ϕ ∈ D(Γ, III, ε).

Proof. If ϕ ∈ D(Γ, I, ε), then ρn(ϕ,D(Γ )) < ε. Let Σ′ = Γ ∪ {ϕ}. Then
Σ′ ⊆Form(', Φ), Σ′ � ϕ, D(Γ ) ⊆ D(Σ′).

Firstly, we prove H∗(D(Γ ), D(Σ′)) < ε. For all ψ ∈ D(Γ ) we have
ρn(ψ,D(Σ′)) = 0. So H∗(D(Γ ), D(Σ′)) = sup{ρn(ψ,D(Σ′) | ψ ∈ D(Γ )} =
0 < ε. Secondly we prove H∗(D(Σ′), D(Γ )) < ε. For all ϕ′ ∈ D(Σ′), if
ψ ∈ D(Γ ), then there is {ψ1, · · · , ψj} ⊆ Γ such that � ψ1 ∧· · · ∧ψj ∧ϕ → ϕ′.
Set ψ∗ = ψ ∧ ψ1 ∧ · · · ∧ ψj . Then � ψ∗ → ψ, � ψ∗ ∧ ϕ → ϕ′. Set also
ψ′ = ψ∗ ∨ ϕ′. Then � ψ∗ → ψ′. It follows from ψ∗ ∈ D(Γ ) and MP-rules
that ψ′ ∈ D(Γ ). By Proposition 4.2(ii) we have

ρn(ϕ′, ψ′) = ρn(ϕ′, ψ∗ ∨ ϕ′) = 1 − τn(ψ∗ → ϕ′),
1−τn(ψ∗ → ϕ′) ≤ 1−τn(ψ∗ → ψ∗∧ϕ) = 1−τn(ψ∗ → ϕ) ≤ 1−τn(ψ → ϕ),
ρn(ϕ′, ψ′) ≤ 1 − τn(ψ → ϕ) ≤ 1 − τn((ψ → ϕ) ∧ (ϕ → ψ)) = ρn(ϕ, ψ).

Thus ρn(ϕ′, D(Γ )) ≤ ρn(ϕ,D(Γ )) and H∗(D(Σ′), D(Γ )) =
sup{ρn(ϕ′, D(Γ ) | ϕ′ ∈ D(Σ′)} ≤ ρn(ϕ,D(Γ )) < ε.

To sum up above, we see that H(D(Γ ), D(Σ′)) < ε and

inf{H(D(Γ ), D(Σ)) | Σ ⊆ Form(', Φ), Σ � ϕ} ≤ H(D(Γ ), D(Σ′)) < ε.

So, ϕ ∈ D(Γ, III, ε).
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By Theorem 4.3 and Lemmas 4.1 and 4.2, it is easy to see that the three
theories of of approximate reasoning schemes in Definition 4.2 are equivalent.
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Abstract. The study of formula truth degree based on the grading idea
has been a hot topic in some common logic systems, such as classical two-
valued propositional logic, many-valued propositional logic, predicate logic,
fuzzy propositional logic and model logic. So far, almost all definitions of
truth degree are given on the unit interval [0, 1] whose structures are seldom
considered. This paper try to define formula truth degree on MV-algebra,
a bounded distributive lattice, as lattice-valued truth degree. Besides profit
from plenty inherent properties of MV-algebra and its generalization of unit
interval [0, 1], lattice-valued truth degree discussed as follows may contribute
to establishing truth degree theory about lattice-valued proposition logic.

Keywords: Lattice-valued truth degree, lattice-valued proposition logic,
MV-algebra, �Lukasiewicz propositional fuzzy logic.

1 Introduction

At present, the study of formula truth degree based on the grading idea has
been a hot topic in some common logic systems, such as classical two-valued
propositional logic [1-2], many-valued propositional logic [3-5], predicate logic
[6], fuzzy propositional logic [7,2], model logic [8]. Moreover, based on the
truth degree of formula, many new theories, say consistent degree of theory
Γ [9-11], resemblance degree between two formulae [12], are proposed. It can
be seen from this that formula truth degree plays an important role in the
quantitative logic [13], whose basic concept is very truth degree. Otherwise
[14] and [15] try to give a standard of the fine truth degree of formula.

So far, almost all definitions of truth degree are given on the unit inter-
val [0, 1] whose structures are seldom considered. This paper try to define
formula truth degree on MV-algebra [16], a bounded distributive lattice, as
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lattice-valued truth degree. Otherwise, [17-18] propose lattice-valued propo-
sition logic base on the lattice implication algebra [19], and [20] proves that
lattice implication algebra and MV-algebra are the equivalent algebra sys-
tem. Therefore, Besides profit from plenty inherent properties of MV-algebra
and its generalization of unit interval [0, 1], lattice-valued truth degree dis-
cussed as follows can be imitated to establish truth degree theory about
lattice-valued proposition logic.

2 Preliminaries

Let S = {p1, p2, · · · } be a countable set, and ⇁ and → be unary and bi-
nary logic connectives respectively. Write F (S) be the free algebra of type
(⇁,→) generated by S.Elements of F (S) are called propositions or formulae.
In �Lukasiewicz propositional fuzzy logic (briefly, �Luk), there are four axiom
schemes as follows:

(Lu1) A → (B → A).
(Lu2) (A → B) → ((B → C) → (A → C)).
(Lu3) ((A → B) → B) → ((B → A) → A).
(Lu4) (⇁ A →⇁ B) → (B → A).

The deduction rule in �Luk is Modus Ponens (briefly, MP), i.e., B can be
deduced from A and A → B. Suppose that Γ ⊂ F (S) and A ∈ F (S), then A
is a Γ -conclusion if A can be deduced from Γ and preceding axioms by using
MP within finite steps, and denoted by Γ � A. In case Γ = ∅, Γ � A can be
abbreviated as � A and A is called a theorem of �Luk.On the contrary, A is
called a refutable formula if ⇁ A is a theorem. It is said that A and B are
provably equivalent and denoted by A ∼ B if both � A → B and � B → A
hold. The new connectives ∧, ∨, ⊕ and ⊗ are usually introduced in �Luk as
follows

A ∨B = (A → B) → B, A ∧B =⇁ (⇁ A∨ ⇁ B),
A⊕B =⇁ A → B,A⊗B =⇁ (⇁ A⊕ ⇁ B).

(1)

MV-algebra theory [16], which possesses many good properties, is the algebra
theory matching with �Lukasiewicz logic system. Following is its simplified
definition.

Definition 1. [2] (X,⊕,′ , 0) is called MV-algebra, if the following conditions
are satisfied:

(i) (X,⊕, 0) is a commutative semigroup.
(ii) x⊕ 0′ = 0′.
(iii) (x′)′ = x.
(iv) (x′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x.

Define relation ≤ as x ≤ y if and only if x′ ⊕ y = 0′, then (X,≤) becomes a
bounded distributive lattice and

x ∨ y = (x′ ⊕ y)′ ⊕ y, x ∧ y = (x′ ∨ y′)′, x, y ∈ X. (2)
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Otherwise, define two binary operations ⊗ and → as follows

x⊗ y = (x′ ⊕ y′)′, x → y = x′ ⊕ y. (3)

Remark 1. The symbol →,∨,∧,⊕ and ⊗ in equation (1) are the logic connec-
tives in �Luk, while the ones in equation (2) and (3) are the binary operators
on MV-algebra. It isn’t confusing although no distinction are made between
them. So no differentiation is required.

3 Lattice-Valued Truth Degree

Following discussions are confined to �Lukasiewicz propositional fuzzy logic
�Luk.

Definition 2. Let L be a MV-algebra. Then τ : F (S) → L is called a lattice-
valued truth degree on L, briefly L-valued truth degree, if the following con-
ditions are satisfied:

(i) If � A, then τ(A) = 1, A ∈ F (S).
(ii) τ(⇁ A) = (τ(A))′, A ∈ F (S).
(iii) τ(A ⊕B) ⊕ τ(A ⊗B) = τ(A) ⊕ τ(B), A,B ∈ F (S).

In following, Symbol L denotes some MV-algebra and τ denotes a lattice-
valued truth degree on L except for extra illumination.

Considering the fact that ⇁ (A⊕B) ∼⇁ A⊗ ⇁ B, ⇁ (A⊗B) ∼⇁ A⊕ ⇁
B, ∀A,B ∈ F (S), and (x⊕ y)′ = x′⊗ y′, (x⊗ y)′ = x′⊕ y′, ∀x, y ∈ L, we have
following equivalent characterization of L-valued truth degree.

Theorem 1. τ : F (S) → L is L-valued truth degree, if and only if the fol-
lowing conditions are satisfied for any A,B ∈ F (S):

(i) If � A, then τ(A) = 1.
(ii) τ(⇁ A) = (τ(A))′.
(iii) τ(A ⊕B) ⊗ τ(A ⊗B) = τ(A) ⊗ τ(B).

There are same truth degree for provably equivalent formulae, following re-
sults show that they have same L-valued truth degree.

Theorem 2. Suppose that A,B ∈ F (S).
(i) If � A → B, then τ(A) ≤ τ(B).
(ii) If A ∼ B, then τ(A) = τ(B).

Proof. (i) If � A → B, then �⇁ A⊕B,thus τ(⇁ A⊕B) = 1. It is concluded
from Definition 2 that

τ (A)′⊕τ (B) = τ (⇁ A)⊕τ (B) = τ (⇁ A⊕B)⊕τ (⇁ A⊗B) = 1⊕τ (⇁ A⊗B) = 1.

Therefore,τ(A) ≤ τ(B).
(ii) is the result of (i).
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Taking advantage of preceding results and Definition 2, it is easy to verify
following relations.

Proposition 1. Following relations hold in �Luk.
(i) τ(A) ⊗ τ(B) ≤ τ(A⊗B) ≤ τ(A ∧B)

≤ τ(A) ∧ τ(B) ≤ τ(A) ∨ τ(B)
≤ τ(A ∨B) ≤ τ(A⊕B) ≤ τ(A) ⊕ τ(B).

(ii) Furthermore,
n⊗
i=1

τ(Ai) ≤ τ(
n⊗
i=1

Ai) ≤ τ(
n∧
i=1

Ai)

≤
n∧
i=1

τ(Ai) ≤
n∨
i=1

τ(Ai)

≤ τ(
n∨
i=1

Ai) ≤ τ(
n⊕
i=1

Ai) ≤
n⊕
i=1

τ(Ai).

Corollary 1. Suppose that Ai ∈ F (S), i = 1, 2, · · · , n. Then
(i) τ(A1 ⊗A2 ⊗ · · · ⊗An) = 1 if and only if τ(Ai) = 1, i = 1, 2, · · · , n.
(ii) τ(A1 ∧A2 ∧ · · · ∧An) = 1 if and only if τ(Ai) = 1, i = 1, 2, · · · , n.

Proposition 2. Suppose that Ai ∈ F (S), i = 1, 2, · · · , n. Then
(i) τ(A1 ⊕A2 ⊕ · · · ⊕An) = 0 if and only if τ(Ai) = 0, i = 1, 2, · · · , n.
(ii) τ(A1 ∨A2 ∨ · · · ∨An) = 0 if and only if τ(Ai) = 0, i = 1, 2, · · · , n.

Corollary 2. Suppose that Ai ∈ F (S), i = 1, 2, · · · , n. k1, k2, · · · , kn ∈ N.
Then

(i) τ(Ak1
1 ⊗Ak2

2 ⊗ · · · ⊗Akn
n ) = 1 if and only if τ(Ai) = 1, i = 1, 2, · · · , n.

(ii) τ(k1A1⊕k2A2⊕· · ·⊕knAn) = 0 if and only if τ(Ai) = 0, i = 1, 2, · · · , n.
where Aki

i = Ai ⊗ Ai ⊗ · · · ⊗Ai︸ ︷︷ ︸
ki

, kiAi = Ai ⊕Ai ⊕ · · · ⊕Ai︸ ︷︷ ︸
ki

.

In �Luk weak deduction theorem[21] holds, i.e., if Γ ∪ {A} � B, then there
exists k ∈ N, such that Γ � Ak → B, where Ak = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸

k

.

By weak deduction theorem and preceding results, it is easy to verify
following theorem.

Theorem 3. Let Γ ⊂ F (S) be a theory. If ∀A ∈ Γ, τ(A) = 1, then ∀B ∈
D(Γ ), τ(B) = 1.

Following results are obvious.

Proposition 3. Suppose that A,B ∈ F (S).
(i) If A is a refutable formula,i.e., �⇁ A, then τ(A) = 0.
(ii) τ(A) ⊕ τ(⇁ A) = 1, τ(A) ⊗ τ(⇁ A) = 0.
(iii) If τ(A → B) = 1, then τ(A) ≤ τ(B).
(iv) τ(A → B) ≤ τ(A) → τ(B).

Now gives out representations of ∧ and ∨ under L-valued truth degree.
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Theorem 4. Suppose that A,B ∈ F (S). Then

τ(A ∧B) = τ(A) ⊗ τ(A → B). (4)

Proof. Considering the fact that A ⊕ (A → B) ∼⇁ A → (⇁ B →⇁ A) is a
theorem, we have τ(A⊕ (A → B)) = 1. Then by Theorem 1

τ(A) ⊗ τ(A → B) = τ(A ⊕ (A → B)) ⊗ τ(A⊗ (A → B))
= τ(A ⊗ (A → B))
= τ(A ∧B).

Corollary 3. Suppose that A,B ∈ F (S). Then

τ(A ∨B) = τ(A → B) → τ(B). (5)

Followings are form of L-valued truth degree under inference rules MP and
HS.

Proposition 4. Suppose that A,B ∈ F (S).
(i) If τ(A) ≥ α, τ(A → B) ≥ β, then τ(B) ≥ α⊗ β.
(ii) If τ(A → B) ≥ α, τ(B → C) ≥ β, then τ(A → C) ≥ α⊗ β.

Proof. (i) If τ(A) ≥ α, τ(A → B) ≥ β, then it is obtained that τ(B) ≥
τ(A ∧ B) = τ(A) ⊗ τ(A → B) ≥ α ⊗ β from � (A ∧ B) → B and equation
(4).

(ii) is the direct result of (i).

Corollary 4. Suppose that A,B ∈ F (S).
(i) If τ(A) = 1, τ(A → B) = 1, then τ(B) = 1.
(ii) If τ(A → B) = 1, τ(B → C) = 1, then τ(A → C) = 1.

Proposition 5. Suppose that A,B ∈ F (S). Then
(i) τ(A ∨B) ⊗ τ(A ∧B) = τ(A) ⊗ τ(B).
(ii) τ(A ∨B) ⊕ τ(A ∧B) = τ(A) ⊕ τ(B).

Proof. (i) It is easy to verify that B ∼ (A → B) ∧ B holds in �Luk. It is
inferred from equations (4) and (5) that

τ(A ∨B) ⊗ τ(A ∧B) = (τ(A → B) → τ(B)) ⊗ (τ(A) ⊗ τ(A → B))
= τ(A) ⊗ [τ(A → B) ⊗ (τ(A → B) → τ(B))]
= τ(A) ⊗ τ((A → B) ∧B)
= τ(A) ⊗ τ(B).

(ii) is the direct result of (i).

Proposition 6. Suppose that A,B ∈ F (S). Then

τ(A) ⊗ τ(A → B) = τ(B) ⊗ τ(B → A). (6)

Proposition 7. Suppose that A,B ∈ F (S). Then

τ(A → B) → τ(B) = τ(B → A) → τ(A). (7)
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Finally, two examples of L-valued truth degree are given as follows.

Example 1. Let L = [F ] be a Lindenbaum algebra of �Luk. Then L is a MV-
algebra [2]. ∀A ∈ F (S), put τ(A) = [A]. Then it is easy to verify that τ is a
truth degree on L in �Luk.

Example 2. Let L be a MV-algebra. Put υ : F (S) → L, and υ(⇁ A) =
(υ(A))′, υ(A → B) = υ(A) → υ(B). Then it is easy to verify that υ is a truth
degree on L in �Luk.

4 Conclusion

In this study, lattice-valued truth degree of formula is proposed in �Lukasiewicz
propositional fuzzy logic �Luk. Based on special properties of MV-algebra, it is
easy to apply present method to lattice-valued proposition logic. Otherwise,
lattice-valued consistent degree, lattice-valued resemblance degree between
two formulae and so on can be studied based on lattice-valued truth degree.
And other logic systems, such as propositional fuzzy logic L∗, are also con-
sidered similarly.

Acknowledgements. The paper is supported by the Natural Science Foundation
of Fujian Province of China (A0810014).
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Abstract. In this paper, we established decomposition theorems and repre-
sentation theorems of interval-valued intuitionistic fuzzy sets(IVIFS) by use
of cut sets of interval-valued intuitionistic fuzzy sets. We have shown that
each kind of cut sets corresponds to two kinds of decomposition theorems
and representation theorems, thus eight kinds of decomposition theorems
and representation theorems on interval-valued intuitionistic fuzzy sets are
obtained, respectively. These results provide a fundamental theory for the
research of interval-valued intuitionistic fuzzy sets.

Keywords: Interval-valued intuitionistic fuzzy set (IVIFS), cut set, decom-
position theorem, representation theorem.

1 Introduction

Since the concept of fuzzy sets is introduced by Zadeh in 1965 [1], the theories
of fuzzy sets and fuzzy systems are developed rapidly. As is well known,
the cut set of fuzzy sets is an important concept in theory of fuzzy sets
and systems, which plays an significant role in fuzzy topology [2,3], fuzzy
algebra [4,5], fuzzy measure and fuzzy analysis [6-10], fuzzy optimization
and decision making [11,12], fuzzy reasoning [13,14], fuzzy logic [15], and so
on. The cut sets are the bridge connecting the fuzzy sets and classical sets.
Based on it, the decomposition theorems and representation theorems can
be established [16]. The cut sets on fuzzy sets are described in [17] by using
the neighborhood relations between fuzzy point and fuzzy set. It is pointed
that there are four kinds of definition of cut sets on fuzzy sets, each of which
has similar properties. Also, the decomposition theorems and representation
theorems can be established based on each kind of cut set. In [18],the interval-
valued level cut sets of Zadeh fuzzy sets are presented and the decomposition
theorems and representation theorems based on the interval-valued level cut
sets are established.
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With the development of the theory on fuzzy sets, Goguen introduced L-
fuzzy sets as an extension of Zadeh fuzzy sets in 1967[19]. Since then, many
L-fuzzy sets are put forward, such as interval-valued fuzzy sets [20], intu-
itionistic fuzzy sets [21], interval-valued intuitionistic fuzzy sets [22],three-
dimensional fuzzy sets[23] ,n-dimensional fuzzy sets[24] and type-2 fuzzy sets
[25], and so on. Four new kind of cut sets of intuitionistic fuzzy sets are
defined as 3-valued fuzzy sets and the decomposition theorems and represen-
tation theorems are established in [26]. In [27], the cut sets on interval-valued
intutionistic fuzzy sets are defined as 5-valued fuzzy sets and we have shown
that the cut sets of interval-valued intuitionistic fuzzy sets have similar prop-
erties with the cut sets of fuzzy sets and intuitionistic fuzzy sets. In [28],
the theory of intuitionistic fuzzy subgroup is estabilished by use of the cut
sets of intuitionistic fuzzy sets presented in [26]. However , the decomposition
theorems and representation theorems of interval-valued intuitionistic fuzzy
sets based on these cut sets have not been obtained so far.

In this paper, by use of the concept of cut sets of interval-valued intu-
itionistic fuzzy sets, we established decomposition theorems and represen-
tation theorems of interval-valued intuitionistic fuzzy sets. The rest of this
paper is organized as follows: we first provide the preliminaries in section 2.
In section 3 and section 4, we establish eight kinds of decomposition theo-
rems and representation theorems on interval-valued intuitionistic fuzzy sets
respectively.

2 Preliminary

Definition 1. [22] Let X be a set and MA ⊂ [0, 1], NA ⊂ [0.1] be two closed
intervals. If supMA(x)+supNA(x) ≤ 1, ∀x ∈ X, then A = (X,MA, NA) is
called an interval-valued intuitionistic fuzzy sets over X. We let IVIF(X)
denote the set of interval-valued intuitionistic fuzzy sets over X.

Let MA(x) = [μ−
A(x), μ+

A(x)], NA(x) = [ν−
A (x), ν+

A (x)]. Then A can be de-
noted as A = (X, [μ−

A(x), μ+
A(x)], [ν−

A (x), ν+
A (x)]), where 0 ≤ μ+

A(x)+ν+
A (x) ≤

1, ∀x ∈ X.
For A,B,At(t ∈ T ) ∈ IVIF(X), x ∈ X , we set:

(1) A ⊂ B ⇔ μ−
A(x) ≤ μ−

B(x), μ+
A(x) ≤ μ+

B(x) and ν−
A (x) ≥ ν−

B (x), ν+
A (x) ≥

ν+
B (x), ∀x ∈ X.
(2) ∪

t∈T
At = C = (X, [μ−

C(x), μ+
C(x)], [ν−

C (x), ν+
C (x)]), where μ−

C(x) =

∨
t∈T

μ−
At

(x), μ+
C(x) = ∨

t∈T
μ+
At

(x), ν−
C (x) = ∧

t∈T
ν−
At

(x), ν+
C (x) = ∧

t∈T
ν+
At

(x).

(3) ∩
t∈T

At = D = (X, [μ−
D(x), μ+

D(x)], [ν−
D(x), ν+

D(x)]), where μ−
D(x) =

∧
t∈T

μ−
At

(x), μ+
D(x) = ∧

t∈T
μ+
At

(x), ν−
D(x) = ∨

t∈T
ν−
At

(x), ν+
D(x) = ∨

t∈T
ν+
At

(x).

(4) Ac = (X, [ν−
A (x), ν+

A (x)], [μ−
A(x), μ+

A(x)]).
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The definitions of cut sets on interval-valued intuitionistic fuzzy sets are
given as follows:

Let A = (X, [μ−
A(x), μ+

A(x)], [ν−
A (x), ν+

A (x)]) ∈ IVIF(X), λ ∈ [0, 1].

Definition 2. [27] (1) If

Aλ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, μ−

A(x) ≥ λ,
3
4 , μ−

A(x) < λ ≤ μ+
A(x),

1
2 , μ+

A(x) < λ ≤ 1 − ν+
A (x),

1
4 , 1 − ν+

A (x) < λ ≤ 1 − ν−
A (x),

0, λ > 1 − ν−
A (x),

Aλ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, μ−

A(x) > λ,
3
4 , μ−

A(x) ≤ λ < μ+
A(x),

1
2 , μ+

A(x) ≤ λ < 1 − ν+
A (x),

1
4 , 1 − ν+

A (x) ≤ λ < 1 − ν−
A (x),

0, λ ≥ 1 − ν−
A (x),

then Aλ and Aλ are called λ−upper cut set and λ−strong upper cut set of A
respectively.
(2) If

Aλ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, ν−

A (x) ≥ λ,
3
4 , ν−

A (x) < λ ≤ ν+
A (x),

1
2 , ν+

A (x) < λ ≤ 1 − μ+
A(x),

1
4 , 1 − μ+

A(x) < λ ≤ 1 − μ−
A(x),

0, λ > 1 − μ−
A(x),

Aλ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, ν−

A (x) > λ,
3
4 , ν

−
A (x) ≤ λ < ν+

A (x),
1
2 , ν

+
A (x) ≤ λ < 1 − μ+

A(x),
1
4 , 1 − μ+

A(x) ≤ λ < 1 − μ−
A(x),

0, λ ≥ 1 − μ−
A(x),

then Aλ and Aλ are called λ−lower cut set and λ−strong lower cut set of A
respectively.
(3) If

A[λ](x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, λ + μ−

A(x) ≥ 1,
3
4 , μ−

A(x) < 1 − λ ≤ μ+
A(x),

1
2 , μ+

A(x) < 1 − λ ≤ 1 − ν+
A (x),

1
4 , ν−

A (x) ≤ λ < ν+
A (x),

0, ν−
A (x) > λ,

A[λ](x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, λ + μ−

A(x) > 1,
3
4 , μ

−
A(x) ≤ 1 − λ < μ+

A(x),
1
2 , μ

+
A(x) ≤ 1 − λ < 1 − ν+

A (x),
1
4 , ν

−
A (x) < λ ≤ ν+

A (x),
0, ν−

A (x) ≥ λ.
then A[λ] and A[λ] are called λ−upper Q-cut set and λ−strong upper Q-cut
set of A respectively.
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(4) If

A[λ](x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, λ + ν−

A (x) ≥ 1,
3
4 , ν−

A (x) < 1 − λ ≤ ν+
A (x),

1
2 , ν+

A (x) < 1 − λ ≤ 1 − μ+
A(x),

1
4 , μ−

A(x) ≤ λ < μ+
A(x),

0, μ−
A(x) > λ,

A[λ](x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, λ + ν−

A (x) > 1,
3
4 , ν−

A (x) ≤ 1 − λ < ν+
A (x),

1
2 , ν+

A (x) ≤ 1 − λ < 1 − μ+
A(x),

1
4 , μ−

A(x) < λ ≤ μ+
A(x),

0, μ−
A(x) ≥ λ,

then A[λ] and A[λ] are called λ−lower Q-cut set and λ−strong lower Q- cut
set of A respectively.

Let A,B,At(t ∈ T ) ∈ IVIF(X), λ, λt(t ∈ T ) ∈ [0, 1], a =
∧
t∈T

λt, b =
∨
t∈T

λt,

then we have the following properties:

Property 1. [27] (1) Aλ ⊂ Aλ; A ⊂ B ⇒ Aλ ⊂ Bλ, Aλ ⊂ Bλ;
(2) λ1 < λ2 ⇒ Aλ1 ⊃ Aλ2 , Aλ1 ⊃ Aλ2 , Aλ1 ⊃ Aλ2 .
(3) (A ∪B)λ = Aλ ∪Bλ, (A ∪B)λ = Aλ ∪Bλ,

(A ∩B)λ = Aλ ∩Bλ, (A ∩B)λ = Aλ ∩Bλ.
(4) (Ac)λ = (A1−λ)c, (Ac)λ = (A1−λ)c.
(5) (
⋃
t∈T

At)λ ⊃
⋃
t∈T

(At)λ, (
⋃
t∈T

At)λ =
⋃
t∈T

(At)λ,

(
⋂
t∈T

At)λ =
⋂
t∈T

(At)λ, (
⋂
t∈T

At)λ ⊂
⋂
t∈T

(At)λ;

(6)
⋃
t∈T

Aλt ⊂ Aa,
⋂
t∈T

Aλt = Ab,
⋃
t∈T

Aλt = Aa,
⋂
t∈T

Aλt ⊃ Ab;

(7) A1 = ∅, A0 = X .

Property 2. [27] (1) Aλ ⊂ Aλ;A ⊂ B ⇒ Bλ ⊂ Aλ, Bλ ⊂ Aλ;
(2) λ1 < λ2 ⇒ Aλ1 ⊃ Aλ2 , Aλ1 ⊃ Aλ2 , Aλ2 ⊃ Aλ1 ;
(3) (A ∪B)λ = Aλ ∩Bλ, (A ∪B)λ = Aλ ∩Bλ,

(A ∩B)λ = Aλ ∪Bλ, (A ∩B)λ = Aλ ∪Bλ;
(4) (Ac)λ = (A1−λ)c, (Ac)λ = (A1−λ)c;
(5) (
⋃
t∈T

At)λ =
⋂
t∈T

(At)λ, (
⋃
t∈T

At)λ ⊂
⋂
t∈T

(At)λ,

(
⋂
t∈T

At)λ ⊃
⋃
t∈T

(At)λ, (
⋂
t∈T

At)λ =
⋃
t∈T

(At)λ;

(6)
⋃
t∈T

Aλt ⊂ Aa,
⋂
t∈T

Aλt = Ab,
⋃
t∈T

Aλt = Aa,
⋂
t∈T

Aλt ⊃ Ab;

(7) A0 = ∅, A1 = X .

Property 3. [27] (1) A[λ] ⊂ A[λ];A ⊂ B ⇒ A[λ] ⊂ B[λ], A[λ] ⊂ B[λ];
(2) λ1 < λ2 ⇒ A[λ1] ⊂ A[λ2], A[λ1] ⊂ A[λ2], A[λ1] ⊂ A[λ2];
(3) (A ∪B)[λ] = A[λ] ∪B[λ], (A ∪B)[λ] = A[λ] ∪B[λ],

(A ∩B)[λ] = A[λ] ∩B[λ], (A ∩B)[λ] = A[λ] ∩B[λ];
(4) (Ac)[λ] = (A[1−λ])c, (Ac)[λ] = (A[1−λ])c;
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(5) (
⋃
t∈T

At)[λ] ⊃
⋃
t∈T

(At)[λ], (
⋃
t∈T

At)[λ] =
⋃
t∈T

(At)[λ],

(
⋂
t∈T

At)[λ] =
⋂
t∈T

(At)[λ], (
⋂
t∈T

At)[λ] ⊂
⋂
t∈T

(At)[λ];

(6)
⋃
t∈T

A[λt] ⊂ A[b],
⋂
t∈T

A[λt] = A[a],
⋃
t∈T

A[λt] = A[b],
⋂
t∈T

A[λt] ⊃ A[a];

(7) A[0] = ∅, A[1] = X .

Property 4. [27] (1) A[λ] ⊂ A[λ]; A ⊂ B ⇒ B[λ] ⊂ A[λ], B[λ] ⊂ A[λ];
(2) λ1 < λ2 ⇒ A[λ1] ⊂ A[λ2], A[λ1] ⊂ A[λ2], A[λ1] ⊂ A[λ2];
(3) (A ∪B)[λ] = A[λ] ∩B[λ], (A ∪B)[λ] = A[λ] ∩B[λ],

(A ∩B)[λ] = A[λ] ∪B[λ], (A ∩B)[λ] = A[λ] ∪B[λ];
(4) (Ac)[λ] = (A[1−λ])c, (Ac)[λ] = (A[1−λ])c;
(5) (
⋃
t∈T

At)[λ] =
⋂
t∈T

(At)[λ], (
⋃
t∈T

At)[λ] ⊂
⋂
t∈T

(At)[λ],

(
⋂
t∈T

At)[λ] ⊃
⋃
t∈T

(At)[λ], (
⋂
t∈T

At)[λ] =
⋃
t∈T

(At)[λ];

(6)
⋃
t∈T

A[λt] ⊂ A[b],
⋂
t∈T

A[λt] = A[a],
⋃
t∈T

A[λt] = A[b],
⋂
t∈T

A[λt] ⊃ A[a];

(7) A[1] = ∅, A[0] = X .

3 Decomposition Theorems

Let 5X = {f |f : X → {0, 1
4 ,

1
2 ,

3
4 , 1} is a mapping}, We give the following

definition:

Definition 3. Let mappings fi : [0, 1] × 5X → IVIF(X) (λ,A) �→
fi(λ,A)(i = 1, 2, · · · , 8) and

f1(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([0, 0], [1, 1]), A(x) = 0,
([0, 0], [1 − λ, 1]), A(x) = 1

4 ,
([0, 0], [1 − λ, 1 − λ]), A(x) = 1

2 ,
([0, λ], [1 − λ, 1 − λ]), A(x) = 3

4 ,
([λ, λ], [1 − λ, 1 − λ]), A(x) = 1,

f2(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([λ, λ], [1 − λ, 1 − λ]), A(x) = 0,
([λ, λ], [0, 1 − λ]), A(x) = 1

4 ,
([λ, λ], [0, 0]), A(x) = 1

2 ,
([λ, 1], [0, 0]), A(x) = 3

4 ,
([1, 1], [0, 0]), A(x) = 1,

f3(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([1 − λ, 1 − λ], [λ, λ]), A(x) = 0,
([0, 1 − λ], [λ, λ]), A(x) = 1

4 ,
([0, 0], [λ, λ]), A(x) = 1

2 ,
([0, 0], [λ, 1]), A(x) = 3

4 ,
([0, 0], [1, 1]), A(x) = 1,
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f4(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([1, 1], [0, 0]), A(x) = 0,
([1 − λ, 1], [0, 0]), A(x) = 1

4 ,
([1 − λ, 1 − λ], [0, 0]), A(x) = 1

2 ,
([1 − λ, 1 − λ], [0, λ]), A(x) = 3

4 ,
([1 − λ, 1 − λ], [λ, λ]), A(x) = 1,

f5(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([0, 0], [1, 1]), A(x) = 0,
([0, 0], [λ, 1]), A(x) = 1

4 ,
([0, 0], [λ, λ]), A(x) = 1

2 ,
([0, 1 − λ], [λ, λ]), A(x) = 3

4 ,
([1 − λ, 1 − λ], [λ, λ]), A(x) = 1,

f6(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([1 − λ, 1 − λ], [λ, λ]), A(x) = 0,
([1 − λ, 1 − λ], [0, λ]), A(x) = 1

4 ,
([1 − λ, 1 − λ], [0, 0]), A(x) = 1

2 ,
([1 − λ, 1], [0, 0]), A(x) = 3

4 ,
([1, 1], [0, 0]), A(x) = 1,

f7(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([λ, λ], [1 − λ, 1 − λ]), A(x) = 0,
([0, λ], [1 − λ, 1 − λ]), A(x) = 1

4 ,
([0, 0], [1 − λ, 1 − λ]), A(x) = 1

2 ,
([0, 0], [1 − λ, 1]), A(x) = 3

4 ,
([0, 0], [1, 1]), A(x) = 1,

,

f8(λ,A)(x) ==

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
([1, 1], [0, 0]), A(x) = 0,
([λ, 1], [0, 0]), A(x) = 1

4 ,
([λ, λ], [0, 0]), A(x) = 1

2 ,
([λ, λ], [0, 1 − λ]), A(x) = 3

4 ,
([λ, λ], [1 − λ, 1 − λ]), A(x) = 1.

Then we have the following decomposition theorems.

Theorem 1. Let A ∈ IVIF(X). Then
(1) A =

⋃
λ∈[0,1]

f1(λ,Aλ) =
⋂

λ∈[0,1]
f2(λ,Aλ);

(2) A =
⋃

λ∈[0,1]
f1(λ,Aλ) =

⋂
λ∈[0,1]

f2(λ,Aλ).

(3) If the mapping H : [0, 1] → 5X satisfies Aλ ⊂ H(λ) ⊂ Aλ, then
(i) A =

⋃
λ∈[0,1]

f1(λ,H(λ)) =
⋂

λ∈[0,1]
f2(λ,H(λ));

(ii) λ1 < λ2 ⇒ H(λ1) ⊃ H(λ2); (iii) Aλ =
⋂
α<λ

H(α), Aλ =
⋃
α>λ

H(α).

Proof. (1) (
⋃

λ∈[0,1]
f1(λ,Aλ))(x) =

∨
λ∈[0,1]

f1(λ,Aλ)(x) = ([∨{λ|Aλ(x) =

1},∨{λ|Aλ(x) ≥ 3
4}], [∧{1 − λ|Aλ(x) ≥ 1

4},∧{1 − λ|Aλ(x) ≥ 1
2}]).

Since ∨{λ|Aλ(x) = 1} = ∨{λ|μ−
A(x) ≥ λ} = μ−

A(x), ∨{λ|Aλ(x) ≥
3
4} = ∨{λ|μ+

A(x) ≥ λ} = μ+
A(x), ∧{1 − λ|Aλ(x) ≥ 1

4} = ∧{1 − λ|1 −
ν−
A (x) ≥ λ} = ∧{1 − λ|1 − λ ≥ ν−

A (x)} = ν−
A (x), ∧{1 − λ|Aλ(x) ≥

1
2} = ∧{1 − λ|1 − ν+

A (x) ≥ λ} = ∧{1 − λ|1 − λ ≥ ν+
A (x)} = ν+

A (x),
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so (
⋃

λ∈[0,1]
f1(λ,Aλ))(x) = ([μ−

A(x), μ+
A(x)], [ν−

A (x), ν+
A (x)]) = A(x). Thus,

A = (
⋃

λ∈[0,1]
f1(λ,Aλ)).

Similarly, (
⋂

λ∈[0,1]
f2(λ,Aλ))(x) =

∧
λ∈[0,1]

f2(λ,Aλ)(x) = ([∧{λ|Aλ(x) ≤
3
4},∧{λ|Aλ(x) ≤ 1

2}], [∨{1 − λ|Aλ(x) = 0},∨{1− λ|Aλ(x) ≤ 1
4}]).

Since ∧{λ|Aλ(x) ≤ 3
4} = ∧{λ|μ−

A(x) < λ} = μ−
A(x), ∧{λ|Aλ(x) ≤ 1

2} =
∧{λ|μ+

A(x) < λ} = μ+
A(x), ∨{1− λ|Aλ(x) = 0} = ∨{1 − λ‖λ > 1 − ν−

A (x)} =
∨{1 − λ|ν−

A (x) > 1 − λ} = ν−
A (x), ∨{1 − λ|Aλ(x) ≤ 1

4} = ∨{1 − λ|λ >

1 − ν+
A (x)} = ∨{1 − λ|ν+

A (x) > 1 − λ} = ν+
A (x), so (

⋂
λ∈[0,1]

f2(λ,Aλ))(x) =

([μ−
A(x), μ+

A(x)], [ν−
A (x), ν+

A (x)]) = A(x). Thus, A = (
⋂

λ∈[0,1]
f2(λ,Aλ)).

Proof of (2) is similar.
(3) (i) By Aλ ⊂ H(λ) ⊂ Aλ, we have that
f1(λ,Aλ) ⊂ f1(λ,H(λ)) ⊂ f1(λ,Aλ), f2(λ,Aλ) ⊂ f2(λ,H(λ)) ⊂

f2(λ,Aλ).
Thus A =

⋃
λ∈[0,1]

f1(λ,Aλ) ⊂
⋃

λ∈[0,1]
f1(λ,H(λ)) ⊂

⋃
λ∈[0,1]

f1(λ,Aλ) = A,

A =
⋂

λ∈[0,1]
f2(λ,Aλ) ⊂

⋂
λ∈[0,1]

f2(λ,H(λ)) ⊂
⋂

λ∈[0,1]
f2(λ,Aλ) = A.

Therefore, A =
⋃

λ∈[0,1]
f1(λ,H(λ)) =

⋂
λ∈[0,1]

f2(λ,H(λ)).

(ii) λ1 < λ2 ⇒ H(λ1) ⊃ Aλ1 ⊃ Aλ2 ⊃ H(λ2).
(iii) α < λ ⇒ H(α) ⊃ Aα ⊃ Aλ ⇒

⋂
α>λ

H(α) ⊃ Aλ.

Since Aλ =
⋂
α>λ

Aα ⊃
⋂
α>λ

H(α) ⊃ Aλ ⊃ Aλ, so Aλ =
⋂
α<λ

H(α).

Similarly, Aλ =
⋃
α>λ

H(α).

Remark 1. (1) From Theorem 1, we know that the decomposition theorems
of interval-valued intuitionistic fuzzy sets based on upper cut sets have been
established.

(2) If f1(λ,A) and f2(λ,A) are denoted as λA and λ ◦A respectively, then
we have that A =

⋃
λ∈[0,1]

λA =
⋂

λ∈[0,1]
λ ◦ A, which are consistent with the

normal decomposition theorems of Zadeh fuzzy sets and intuitionistic fuzzy
sets[17, 26].

Similarly, we have the following theorems:

Theorem 2. Let A ∈ IVIF(X). Then

(1) A =
⋃

λ∈[0,1]
f3(λ,Aλ) =

⋂
λ∈[0,1]

f4(λ,Aλ);

(2) A =
⋃

λ∈[0,1]
f3(λ,Aλ) =

⋂
λ∈[0,1]

f4(λ,Aλ);

(3) If the mapping H : [0, 1] → 5X satisfies Aλ ⊂ H(λ) ⊂ Aλ,then
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(i) A =
⋃

λ∈[0,1]
f3(λ,H(λ)) =

⋂
λ∈[0,1]

f4(λ,H(λ));

(ii) λ1 < λ2 ⇒ H(λ1) ⊂ H(λ2); (iii) Aλ =
⋂
α<λ

H(α), Aλ =
⋃
α>λ

H(α).

Theorem 3. Let A ∈ IVIF(X). Then
(1) A =

⋃
λ∈[0,1]

f5(λ,A[λ]) =
⋂

λ∈[0,1]
f6(λ,A[λ]);

(2)) A =
⋃

λ∈[0,1]
f5(λ,A[λ]) =

⋂
λ∈[0,1]

f6(λ,A[λ]);

(3) If the mapping H : [0, 1] → 5X satisfies A[λ] ⊂ H(λ) ⊂ A[λ], then
(i) A =

⋃
λ∈[0,1]

f5(λ,H(λ)) =
⋂

λ∈[0,1]
f6(λ,H(λ));

(ii) λ1 < λ2 ⇒ H(λ1) ⊂ H(λ2); (iii) A[λ] =
⋂
α>λ

H(α), A[λ] =
⋃
α<λ

H(α).

Theorem 4. Let A ∈ IVIF(X). Then
(1) A =

⋃
λ∈[0,1]

f7(λ,A[λ]) =
⋂

λ∈[0,1]
f8(λ,A[λ]);

(2) A =
⋃

λ∈[0,1]
f7(λ,A[λ]) =

⋂
λ∈[0,1]

f8(λ,A[λ]);

(3) If the mapping H : [0, 1] → 5X satisfies A[λ] ⊂ H(λ) ⊂ A[λ], then
(i) A =

⋃
λ∈[0,1]

f7(λ,H(λ)) =
⋂

λ∈[0,1]
f8(λ,H(λ));

(ii) λ1 < λ2 ⇒ H(λ1) ⊃ H(λ2); (iii) A[λ] =
⋂
α>λ

H(α), A[λ] =
⋃
α<λ

H(α).

4 Representation Theorems

Definition 4. Let H : [0, 1] → 5X be a mapping,
(1) If (λ1 < λ2 ⇒ H(λ1) ⊃ H(λ2)), then H is called inverse order nested set
over X; (2) If (λ1 < λ2 ⇒ H(λ1) ⊂ H(λ2)), then H is called a order nested
set over X.

For example, H1(λ) = Aλ and H2(λ) = A[λ] are inverse order nested set over
X ; H3(λ) = Aλ and H4(λ) = A[λ] are order nested set over X .

Let U(X) and V(X) be sets of inverse order nested set over X and order
nested set over X , respectively. We set operations in U(X) as follows:

(a) H1 ⊂ H2 ⇔ H1(λ) ⊂ H2(λ), ∀λ ∈ [0.1]; (b) (
⋃
t∈T

Ht)(λ) =
⋃
t∈T

Ht(λ);

(c) (
⋂
t∈T

Ht)(λ) =
⋂
t∈T

Ht(λ); (d) (Hc)(λ) = (H(1 − λ))c,

then (U(X),
⋃
,
⋂
, C) is a De Morgan algebra. Similarly, we set operations in

V(X) as follows:
(a) H1 ⊂ H2 ⇔ H1(λ) ⊃ H2(λ), ∀λ ∈ [0.1]; (b) (

⋃
t∈T

Ht)(λ) =
⋂
t∈T

Ht(λ);

(c) (
⋂
t∈T

Ht)(λ) =
⋃
t∈T

Ht(λ); (d) (Hc)(λ) = (H(1 − λ))c,

then (V(X),
⋃
,
⋂
, C) is also a De Morgan algebra.
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Let the mappings Ti : U(X) → IVIF(X)(i = 1, 2, 7, 8) satisfy:

Ti(H) =
⋃

λ∈[0,1]
fi(λ,H(λ)) (i = 1, 7), Ti(H) =

⋂
λ∈[0,1]

fi(λ,H(λ)) (i = 2, 8).

Similarly, let the mappings Ti : V(X) → IVIF(X)(i = 3, 4, 5, 6) satisfy:
Ti(H) =

⋃
λ∈[0,1]

fi(λ,H(λ)) (i = 3, 5), Ti(H) =
⋂

λ∈[0,1]
fi(λ,H(λ)) (i = 4, 6).

Then we have the following representation theorems:

Theorem 5. (1) T1(H) = T2(H); (2) T1(T2) is surjection ;
(3) T1(

⋃
t∈T

Ht) =
⋃
t∈T

T1(Ht), T1(
⋂
t∈T

Ht) =
⋂
t∈T

T1(Ht), T1(Hc) =

(T1(H))c.

Proof. :(1) Let A = T1(H), then
μ−
A(x) = ∨{λ|H(λ)(x) = 1}, μ+

A(x) = ∨{λ|H(λ)(x) ≥ 3
4},

ν−
A (x) = ∧{1 − λ|H(λ)(x) ≥ 1

4}, ν
+
A (x) = ∧{1 − λ|H(λ)(x) ≥ 1

2}.
We first show that T1(H)λ ⊂ H(λ) ⊂ T1(H)λ.
In fact, when H(λ)(x) = 1, we have that μ−

A(x) ≥ λ, then T1(H)λ = 1.
When H(λ)(x) = 3

4 , we have that μ+
A(x) ≥ λ, then T1(H)λ ≥ 3

4 .
When H(λ)(x) = 1

2 , we have that ν+
A (x) ≤ 1 − λ, then T1(H)λ ≥ 1

2 .
When H(λ)(x) = 1

4 , we have that ν−
A (x) ≤ 1 − λ, then T1(H)λ ≥ 1

4 .
Since H(λ), T1(H)λ ∈ 5X , so H(λ) ⊂ T1(H)λ.
On the other hand, T1(H)λ = 1 ⇒ μ−

A(x) > λ ⇒ ∃α > λ,H(α)(x) =
1 ⇒ H(λ)(x) ≥ H(α)(x) = 1 ⇒ H(λ)(x) = 1; T1(H)λ = 3

4 ⇒
μ+
A(x) > λ ⇒ ∃α > λ,H(α)(x) ≥ 3

4 ⇒ H(λ)(x) ≥ H(α)(x) ≥ 3
4 ;

T1(H)λ = 1
2 ⇒ 1 − ν+

A (x) > λ ⇒ ν+
A (x) < 1 − λ ⇒ ∃α, 1 − α <

1 − λ,H(α)(x) ≥ 1
2 ⇒ ∃α > λ,H(λ)(x) ≥ H(α)(x) ≥ 1

2 ; T1(H)λ =
1
4 ⇒ 1 − ν−

A (x) > λ ⇒ ν−
A (x) < 1 − λ ⇒ ∃α, 1 − α < 1 − λ,H(α)(x) ≥

1
4 ⇒ ∃α > λ,H(λ)(x) ≥ H(α)(x) ≥ 1

4 . Since H(λ), T1(H)λ ∈ 5X , so
H(λ) ⊃ T1(H)λ. Therefore, T1(H)λ ⊂ H(λ) ⊂ T1(H)λ. By Theorem 1,
we have that T1(H) =

⋃
λ∈[0,1]

f1(λ,H(λ)) =
⋂

λ∈[0,1]
f2(λ,H(λ)) = T2(H).

(2) Let A ∈ IVIF(X) and H(λ) = Aλ. Then T1(H) = A.
(3) By Theorem 1, we have that T1(H)λ =

⋂
α<λ

H(α), T1(H)λ =
⋃
α>λ

H(α).

Thus, T1(
⋃
t∈T

Ht)λ =
⋃
α>λ

(
⋃
t∈T

Ht)(α) =
⋃
α>λ

⋃
t∈T

Ht(α) =
⋃
t∈T

⋃
α>λ

Ht(α) =

(
⋃
t∈T

(T1(Ht))λ = (
⋃
t∈T

T1(Ht))λ. By Theorem 1, we have that T1(
⋃
t∈T

Ht) =⋃
t∈T

T1(Ht).

Similarly, T1(
⋂
t∈T

Ht)λ =
⋂
α<λ

(
⋂
t∈T

Ht)(α) =
⋂
α<λ

⋂
t∈T

Ht(α) =
⋂
t∈T

⋂
α<λ

Ht(α) =⋂
t∈T

(T1(Ht))λ = (
⋂
t∈T

T1(Ht))λ; T1(Hc)λ =
⋂
α<λ

Hc(α) =
⋂
α<λ

(H(1 − α))c =

(
⋃

1−α>1−λ
H(1 − α))c = (

⋃
α>1−λ

H(α))c = (T1(H)1−λ)c = ((T1(H))c)λ. By

Theorem 1, we have that T1(
⋂
t∈T

Ht) =
⋂
t∈T

T1(Ht), T1(Hc) = (T1(H))c.
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Similarly, we have

Theorem 6. (1) T3(H) = T4(H); (2) T3(T4) is surjection;
(3) T3(

⋃
t∈T

Ht) =
⋃
t∈T

T3(Ht),T3(
⋂
t∈T

Ht) =
⋂
t∈T

T3(Ht),T3(Hc) = (T3(H))c.

Theorem 7. (1) T5(H) = T6(H); (2) T5(T6) is surjection;
(3) T5(

⋃
t∈T

Ht) =
⋂
t∈T

T5(Ht),T5(
⋂
t∈T

Ht) =
⋃
t∈T

T5(Ht),T5(Hc) = (T5(H))c.

Theorem 8. (1) T7(H) = T8(H); (2) T7(T8) is surjection;
(3) T7(

⋃
t∈T

Ht) =
⋂
t∈T

T7(Ht),T7(
⋂
t∈T

Ht) =
⋃
t∈T

T7(Ht),T7(Hc) = (T7(H))c.

Remark 2. From Theorem 5-Theorem 8 we have known that the repre-
sentation theorems of interval-valued intuitionistic fuzzy sets have been
established.
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Abstract. In this note, we shall further investigate approximation property
of regular fuzzy neural network (RFNN). It is shown that any fuzzy-valued
measurable function can be approximated by four-layer RFNN in the sense
of Sugeno integral norm for finite weakly null-additive fuzzy measure on R.
The previous result obtained by Li et al is improved.

Keywords: Fuzzy measure, Lusin’s theorem, Approximation, Regular fuzzy
neural network.

1 Introduction

In neural network theory, the learning ability of a neural network is closely
related to its approximating capabilities, so it is important and interesting to
study the approximation properties of neural networks. The studies on this
matter were undertaken by many authors and a great number of important
results were obtained ([1, 4, 12] etc). The similar approximation problems in
fuzzy environment were investigated by Buckley [2, 3], P. Liu [8, 9] and other
authors. In [9] Liu proved that continuous fuzzy-valued function can be closely
approximated by a class of regular fuzzy neural networks (RFNNs) with real
input and fuzzy-valued output. In this note, by using Lusin’s theorem on fuzzy
measure space, we show that such RFNNs is pan-approximator for fuzzy-
valued measurable function. That is, any fuzzy-valued measurable function
can be approximated by the four-layer RFNNs in the sense of Sugeno integral
norm for the finite weakly null-additive measure on R. The previous result
we obtained in [7] is improved.

2 Preliminaries

We suppose that (X, ρ) is a metric space, and that O and C are the classes
of all open and closed sets in (X, ρ), respectively, and B is Borel σ-algebra
on X , i.e., it is the smallest σ-algebra containing O.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 351–358.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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A set function μ : B → [0,+∞] is called weakly null-additive ([13]), if
μ(E ∪F ) = 0 whenever E,F ∈ B and μ(E) = μ(F ) = 0; subadditive ([11]), if
for any E,F ∈ B we have μ(E ∪ F ) ≤ μ(E) + μ(F ).

Obviously, the subadditivity of μ implies weak null-additivity.
A set function μ : B → [0,+∞] is called a fuzzy measure, if it satisfies the

following properties:
(FM1) μ(∅) = 0;
(FM2) A ⊂ B implies μ(A) ≤ μ(B) (monotonicity);
(FM3) A1 ⊂ A2 ⊂ · · · implies limn→∞ μ(An) = μ (

⋃∞
n=1 An) (continuity

from below);
(FM4) A1 ⊃ A2 ⊃ · · · , and there exists n0 with μ(An0) < +∞ imply

lim
n→∞

μ(An) = μ

( ∞⋂
n=1

An

)
(continuity from above).

When μ is a fuzzy measure, the triple (X,B, μ) is called a fuzzy measure
space.

In this paper, we always assume that μ is a finite fuzzy measure on B.
Consider a nonnegative real-valued measurable function f on A and the

Sugeno integral of f on A with respect to μ, which is denoted by

(S)
∫
A

f dμ �
∨

0≤α<+∞
[α ∧ μ(A ∩ Fα)] ,

where Fα = {x : f(x) ≥ α}.

Lemma 2.1 ([6]). μ is weakly null-additive if and only if for any ε > 0
and any double sequence {A(k)

n | n ≥ 1, k ≥ 1} ⊂ B satisfying A
(k)
n ↘

Dn (k → ∞), μ(Dn) = 0, n = 1, 2, . . ., there exists a subsequence {A(kn)
n } of

{A(k)
n | n ≥ 1, k ≥ 1} such that

μ

( ∞⋃
n=1

A(kn)
n

)
< ε (k1 < k2 < . . .).

Theorem 2.1 (Lusin’s theorem [6]). Let (X, ρ) be metric space and μ be
weakly null-additive fuzzy measure on B. If f is a real-valued measurable
function on E ∈ B, then, for every ε > 0, there exists a closed subset Fε ∈ B
such that f is continuous on Fε and μ(E − Fε) < ε.

3 Approximation in Fuzzy Mean by Regular Fuzzy
Neural Networks

In this section, we study an approximation property of the four-layer RFNNs
to fuzzy-valued measurable function in the sense of Sugeno integral norm for
fuzzy measure on R.
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Let F0(R) be the set of all bounded fuzzy numbers, i.e., for Ã ∈ F0(R),
the following conditions hold:

(i) ∀ α ∈ (0, 1], Ãα � {x ∈ R | Ã(x) ≥ α} is the closed interval of R;
(ii) Supp(Ã) � {x ∈ R | Ã(x) > 0} ⊂ R is a bounded set;
(iii){x ∈ R | Ã(x) = 1} �= ∅.
For simplicity, supp(Ã) is also written as Ã0. Obviously, Ã0 is a bounded and
closed interval of R. For Ã ∈ F0(R), let Ãα = [a−α , a

+
α ] for each α ∈ [0, 1] and

we denote
|Ã| �

∨
α∈[0,1]

(|a−α | ∨ |a+
α |).

Proposition 3.1 ([9]). Assume Ã, Ã1, Ã2 ∈ F0(R), and W̃i, Ṽi ∈ F0(R)(i =
1, 2, · · · , n). Then

(1) D(Ã · Ã1, Ã · Ã2) ≤ |Ã| ·D(Ã1, Ã2),
(2) D(

∑n
i=1 W̃i,

∑n
i=1 Ṽi) ≤

∑n
i=1 D(W̃i, Ṽi).

For Ã, B̃ ∈ F0(R), define metric d(Ã, B̃) between Ã and B̃ by

d(Ã, B̃) � sup
α∈[0,1]

dH(Ãα, B̃α),

where dH means Hausdorff metric: for A,B ⊂ R,

dH(A,B) � max
{

sup
x∈A

inf
y∈B

(|x− y|), sup
y∈B

inf
x∈A

(|x− y|)
}

.

It is known that (F0(R), d) is a completely separable metric space ([5]).
Let T be a measurable set in R, (T,B∩T, μ) finite fuzzy measure space with

weak null-additivity. Let L(T ) denote the set of all fuzzy-valued measurable
function

F̃ : T → F0(R).

For any F̃1, F̃2 ∈ L(T ), d(F̃1, F̃2) is measurable function on (T,B ∩ T ), we
will write a fuzzy integral norm as

"S(F̃1, F̃2) � (S)
∫
T

d(F̃1, F̃2)dμ.

Proposition 3.2. Let F̃1, F̃2, F̃3 ∈ L(T ). Then

"S(F̃1, F̃3) ≤ 2("S(F̃1, F̃2) + "S(F̃2, F̃3)).

Proof. It is similar to the proof of Proposition 3.2 in [7].

Definition 3.1 ([9]). A fuzzy-valued function Φ̃ : T → F0(R) is called a
fuzzy-valued simple function, if there exist Ã1, Ã2, . . . , Ãm ∈ F0(R), such
that ∀ x ∈ T ,
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Φ̃(x) =
m∑
k=1

χTk
(x) · Ãk,

where Tk ∈ B ∩ T (k = 1, 2, . . . ,m), Ti ∩ Tj = ∅ (i �= j) and T =
⋃m
k=1 Tk,

χTk
(x) is the characteristic function of the set Tk.

Denotes S(T ) the set of all fuzzy-valued simple functions, then S(T ) ⊂ L(T ).

Proposition 3.3. Let μ be a finite, weakly null-additive fuzzy measure on
Rn. If F̃ ∈ L(T ), then for every ε > 0, there exists Φ̃ε ∈ S(T ) such that

"S(F̃ , Φ̃ε) < ε.

Proof. By using weak null-additivity of μ, it is similar to the proof of Propo-
sition 3.2.

Define

H[σ] �

⎧⎨⎩H̃
∣∣∣∣ H̃(x) =

n∑
i=1

W̃i ·

⎛⎝ m∑
j=1

Ṽij · σ(x · Ũj + Θ̃j)

⎞⎠⎫⎬⎭ ,

where σ is a given extended function of σ : R → R (bounded, continuous and
nonconstant), and x ∈ R, W̃i, Ṽij , Ũj , Θ̃j ∈ F0(R).

For any H̃ ∈ H[σ], H̃ is a four-layer feedforward RFNN with activation
function σ, threshold vector (Θ̃1, . . . , Θ̃m) in the first hidden layer(cf. [9]).

Restricting fuzzy numbers Ṽij , Ũj , Θ̃j ∈ F0(R), respectively, to be real
numbers vij , uj, θj ∈ R, we obtain the subset H0[σ] of H[σ]:

H0[σ] �

⎧⎨⎩H̃
∣∣∣∣ H̃(x) =

n∑
i=1

W̃i ·

⎛⎝ m∑
j=1

vij · σ(x · uj + θj)

⎞⎠⎫⎬⎭ .

Definition 3.2

(1) H0[σ] is call the pan-approximator of S(T ) in the sense of "S, if ∀ Φ̃ ∈
S(T ), ∀ ε > 0, there exists H̃ε ∈ H0[σ] such that

"S(Φ̃, H̃ε) < ε.

(2) For F̃ ∈ L(T ), H[σ] is call the pan-approximator for F̃ in the sense of
"S, if ∀ ε > 0, there exists H̃ε ∈ H[σ] such that

"S(F̃ , H̃ε) < ε.

By using Lusin’s theorem (Theorem 2.1), Proposition 3.2 and 3.3 we can
obtain the main result in this paper, which is stated in the following.
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Theorem 3.1. Let (T,B∩T, μ) be fuzzy measure space and μ be finite weakly
null-additive fuzzy measure. Then,

(1) H0[σ] is the pan-approximator of S(T ) in the sense of "S.
(2) H[σ] is the pan-approximator for F̃ in the sense of "S.

Proof. By using the conclusion of (1) and Proposition 3.3 we can obtain (2).
Now we only prove (1).

Suppose that Φ̃(x) is a fuzzy-valued simple function, i.e.,

Φ̃(x) =
m∑
k=1

χTk
(x) · Ãk (x ∈ T ).

For arbitrarily given ε > 0, applying Theorem 2.1 (Lusin’s theorem) to each
real measurable function χTk

(x), for every fixed k (1 ≤ k ≤ m), there exists
closed set Fk ∈ B ∩ T such that

Fk ⊂ Lk and μ(Lk − Fk) <
ε

2m

and χTk
(x) is continuous on Fk. Therefore, for every k there exist a Tauber-

Wiener function σ and pk ∈ N, v
′
k1, v

′
k2, · · · , v

′
kpk

, θ
′
k1, θ

′
k2, · · · , θ

′
kpk

∈ R, and
w

′
k1,w

′
k2, · · · ,w

′
kpk

∈ Rn such that∣∣∣∣ χTk
(x) −

pk∑
j=1

v
′
kj · σ(〈w′

kj , x〉 + θ
′
kj)
∣∣∣∣< ε

2
∑m

k=1 |Ãk|
(x ∈ Lk).

(We can assume
∑m

k=1 |Ãk| �= 0, without any loss of generality). Denote
L =
⋂m
k=1 Lk, then T = L ∪ (T − L). By Lemma 2.1, we have

μ(T − L) = μ(
m⋃
k=1

(T − Lk)) ≤
m∑
k=1

μ(T − Lk) <
ε

2
.

We take β1 = 0, βk =
∑k−1

i=1 pi, k = 2, · · · ,m, and p =
∑m

k=1 pk. For
k = 1, 2, · · · ,m, j = 1, 2, · · · , p, we denote

vkj =

{
v

′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

θkj =

{
θ
′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

wkj =

{
w

′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

then, for any k ∈ {1, 2, · · · ,m}, we have
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p∑
j=1

vij · σ(〈wkj , x〉 + θkj) =
pk∑
j=1

v
′
ij · σ(〈w

′
kj , x〉 + θ

′
kj).

Define

H̃(x) =
m∑
k=1

Ãk ·

⎛⎝ p∑
j=1

vkj · σ(〈wkj , x〉 + θkj)

⎞⎠ ,

then H̃ ∈ H0[σ].

In the following we prove "S(H̃, Φ̃) < ε.
Denote Bkj = vkj · σ(〈wkj , x〉 + θkj) and B

′
kj = v

′
ij · σ(〈w′

kj , x〉 + θ
′
kj). By

using Proposition 3.1 and noting μ(T − L) < ε/2, we have

"S(H̃, Φ̃) = (S)
∫
T

d(H̃, Φ̃)dμ =
∨

0≤α<+∞

[
α ∧ μ(T ∩ (d(H̃, Φ̃))α)

]

=
∨

0≤α<+∞

⎡⎣α ∧ μ

⎛⎝T ∩

⎛⎝d( m∑
k=1

Ãk ·
p∑

j=1

Bkj ,

m∑
k=1

χTk
(x) · Ãk)

⎞⎠
α

⎞⎠⎤⎦

≤
∨

0≤α<+∞

⎡⎣α ∧ μ

⎛⎝(L ∪ (T − L)) ∩

⎛⎝ m∑
k=1

|Ãk| · d(
p∑

j=1

Bkj , χTk
(x))

⎞⎠
α

⎞⎠⎤⎦
≤
∨

0≤α<+∞

[
α ∧ μ

(
L ∩
(

m∑
k=1

|Ãk| · d(
p∑

k=1

Bkj , χTk
(x))

)
α

)]

+
∨

0≤α<+∞

[
α ∧ μ

(
(T − L) ∩

(
m∑
k=1

|Ãk| · d(
p∑

k=1

Bkj , χTk
(x))

)
α

)]

≤
∨

0≤α<+∞

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
p∑

j=1

Bkj − χTk
(x)|

⎞⎠
α

⎞⎠⎤⎦
+
∨

0≤α<+∞
[α ∧ μ ((T − L))]

≤
∨

0≤α<+∞

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)|

⎞⎠
α

⎞⎠⎤⎦+
ε

2
.

Now we estimate the first part in the above formula. If x ∈ L, then for every
k = 1, 2, · · · ,m, we have x ∈ Lk, hence
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∣∣∣∣ χTk
(x) −

pk∑
j=1

v
′
kj · σ(〈w′

kj , x〉 + θ
′
kj)
∣∣∣∣< ε

2
∑m

k=1 |Ãk|
,

for every k = 1, 2, · · · ,m. That is, for x ∈ L,

m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)| < ε

2
.

Therefore,

∨
0≤α<+∞

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)|

⎞⎠
α

⎞⎠⎤⎦

=
∨

α∈[0, ε
2 ]

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)|

⎞⎠
α

⎞⎠⎤⎦

+
∨

α∈[ ε
2 ,∞)

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)|

⎞⎠
α

⎞⎠⎤⎦

=
∨

α∈[0, ε
2 ]

⎡⎣α ∧ μ

⎛⎝L ∩

⎛⎝ m∑
k=1

|Ãk| · |
pk∑
j=1

B
′
kj − χTk

(x)|

⎞⎠
α

⎞⎠⎤⎦
≤ ε

2
.

Thus, we obtain "S(H̃, Φ̃) < ε. The proof of (1) now is complete.
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Abstract. Fuzzy divergence describes the difference between two fuzzy sets.
Based on Tsallis relative entropy, two classes of fuzzy divergence are proposed
in this paper. Using the point of view of f -divergence proposed by Csiszar, the
properties of the two classes of fuzzy divergence are discussed. The notable
feature of the two classes of fuzzy divergence is that they are both σ-distance
measures, thus new fuzzy entropy formulas can be induced by these fuzzy
divergences.

Keywords: Fuzzy divergence; Tsallis relative entropy; Distance measure;
Fuzzy entropy.

1 Introduction

In order to measure the difference between two fuzzy sets, Bhandari et al [1,2]
introduced fuzzy divergence using logarithm operation, they also gave an ap-
plication to image segmentation. Another fuzzy divergence using exponential
operation was proposed by us [3] and an application to image segmentation
was given by Charia and Ray [4].

Within the framework of multifractal, the quantity that is normally scaled
is pqi , where pi is the probability associated with an event and q ∈ R. Tsallis
used this quantity to generalize the Shannon entropy in information theory,
and presented the Tsallis entropy[5]. Since then, Tsallis entropy has been
widely studied and applied in a variety of substantive areas. In this paper,
two new classes of divergence are proposed to measure the difference between
two fuzzy sets as the extension of the Tsallis entropy in fuzzy cases. In view
of the f -divergence proposed by Csiszar [6], we study properties of the pre-
sented fuzzy divergences which take χ2−divergences as special cases. As an
application, we state some ways for the fuzzy entropies [7] generated by the
two Tsallis fuzzy divergences.
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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2 Entropy and Distance Measure

In this section, we first introduce the concepts of the fuzzy set theory.
Throughout this paper, R+ = [0,∞).

Definition 1. Let X be an universe, a fuzzy set A defined on X is given by
A = {(x, μA(x))|x ∈ X}, where the mapping μA : X −→ [0, 1] is called the
membership function. Acis the complement of A, i.e. μAc(x) = 1 − μA(x),
∀x ∈ X.

Now let F (X) denote the set of all fuzzy subsets on X . Let P (X) denote the
set of all crisp sets on X . [a] is the fuzzy set on X for which μ[a](x) = a,
∀x ∈ X(0 ≤ a ≤ 1).

Definition 2. A fuzzy set A∗ is called a sharpening of A, if μA∗(x) ≥ μA(x)
when μA(x) ≥ 1

2 , and μA∗(x) ≤ μA(x) when μA(x) < 1
2 .

Definition 3. ∀A ∈ F (X), crisp sets Anear, Afar ∈ P (X), are defined as

μAnear (x) =
{

1, μA(x) ≥ 1
2 ,

0, μA(x) < 1
2 ,

μAfar
(x) =
{

0, μA(x) ≥ 1
2 ,

1, μA(x) < 1
2 .

In fuzzy set theory, fuzzy entropy [7] is a very basic concept to measure the
fuzziness of a fuzzy set.

Definition 4. The mapping e : F (X) −→ R+ is called an entropy on F (X)
if e has the following properties:

1) e(G) = 0,∀G ∈ P (X);
2) e([ 12 ]) = maxA∈F (X) e(A);
3) e(A∗) ≤ e(A) for any sharpening A∗ of A;
4) e(A) ≤ e(Ac), ∀A ∈ F (X).

Definition 5. Let e be an entropy on F (X). e is called a σ−entropy on F (X)
if e(A) = e(A ∩G) + e(A ∩Gc), ∀G ∈ P (X).

Definition 6. The mapping d : F (X) × F (X) −→ R+ is called a distance
measure on F (X) if d has the following properties:

1) d(A,B) = d(B,A),∀A,B ∈ F (X);
2) d(A,A) = 0,∀A ∈ F (X);
3) d(G,Gc) = maxA,B∈F (X) d(A,B),∀G ∈ P (X);
4) If A ⊆ B ⊆ C , then d(A,B) ≤ d(A,C) and d(B,C) ≤ d(A,C).

Definition 7. Let d be a distance measure on F (X). d is called a σ−distance
measure on F (X) if ∀A,B ∈ F (X) and ∀G ∈ P (X), we have

d(A,B) = d(A ∩G,B ∩G) + d(A ∩Gc, B ∩Gc).

In [7] and [9], it had shown that d(A,B) = d(A∩B,A∪B), d(A,B)+d(A,C) =
d(A,B ∩ C) + d(A,B ∪ C) if is a σ−distance measure.
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Let e be an entropy, e is called a normalized entropy if 0 ≤ e(A) ≤ 1.
Let d be a distance measure, d is called a normalized distance measure if

0 ≤ d(A,B) ≤ 1. ∀G ∈ P (X), 1
2G is defined by μ 1

2G
(x) =
{ 1

2 , x ∈ G
0, x ∈ Gc . We

had proved:

Theorem 1. Let d be a σ−distance measure on F (X). If d satisfies the fol-
lowing properties

1)d(1
2G, [0]) = d(1

2G,G), ∀G ∈ P (X);
2)d(Ac, Bc) = d(A,B),∀A,B ∈ F (X),

then e(A) = d(A,Anear)
d(A,Afar) and e(A) = d(A,Anear) + 1− d(A,Afar) are normal-

ized entropies.

3 Fuzzy Divergence Based on Tsallis Relative Entropy

In this section, two classes of fuzzy divergence based on Tsallis entropy form
are proposed. The properties of the proposed fuzzy divergences are discussed.
And then we research the relationships between fuzzy divergence and entropy,
distance measure.

In the field of the statistical physics, the Tsallis entropy [10] is defined as
following:

Sq(X) = Σxp(x)q lnq p(x),

where lnqp(x) ≡ (x1−q − 1)/(1 − q) for any non-negative real number q and
x, and p(x) ≡ p(X = x)is the probability distribution of the given random
variable X . We easily find that the Tsallis entropy converges to the Shannon
entropy as q → 1.

Let Δn = {P = (p1, p2, · · · , pn)|pi > 0, Σn
i=1pi = 1}, n ≥ 2 be the set of

complete finite discrete probability distributions. ∀P,Q ∈ Δn, Tsallis relative
entropy is defined as:

Kq(P ‖ Q) = −
n∑
i=1

pi lnq
qi
pi

=
1

q − 1

n∑
i=1

pi((
qi
pi

)1−q − 1), q > 0, q �= 1. (1)

When q = 2, Eq. (1) is the χ2−divergence:

χ2(P ‖ Q) =
n∑
i=1

(pi − qi)2

qi
= K2(P ‖ Q).

In the next section, we will introduce the Tsallis fuzzy divergences as the
extension of the Tsallis relative entropy, and show their properties.

3.1 The Novel Tsallis Fuzzy Divergences

Let X = {x1, x2, . . . , xn} be an universe and A,B ∈ F (X). Then the fuzzy
information in favor of A against B is defined as
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K1q(A,B) =
1

q − 1

n∑
i=1

μA(xi)[(
μA(xi)
μB(xi)

)q−1 − 1], q > 0, q �= 1.

So we can define the divergence between two fuzzy sets by

Kq(A,B) = K1q(A,B) + K1q(Ac, Bc).

Note that the above formula does not include the crisp set, in order to account
for this, two modified expression for Kq(A,B) are shown

K
′
q(A,B) =

1
q − 1

n∑
i=1

(
(1 + μA(xi))q

(1 + μB(xi))q−1 +
(2 − μA(xi))q

(2 − μB(xi))q−1 − 1),

K
′′
q (A,B)=

1
q − 1

n∑
i=1

(
2q−1μqA(xi)

(μA(xi) + μB(xi))q−1 +
2q−1(1 − μA(xi))q

(2 − μA(xi) − μB(xi))q−1−1).

However, we observe that K
′
q(A,B) �= K

′
q(B,A) and K

′′
q (A,B) �= K

′′
q (B,A).

Therefore, two symmetric measures are defined as follows

D1(A,B) = K
′
q(A,B) + K

′
q(B,A), q > 0, q �= 1, (2)

D2(A,B) = K
′′
q (A,B) + K

′′
q (B,A), q > 0, q �= 1. (3)

3.2 The Properties of the Tsallis Fuzzy Divergences

Now we discuss the properties of the D1(A,B) and D2(A,B). For this, we
introduce the following lemma.

Given a convex function f : [0,∞) → R, the f−divergence measure intro-
duced by Csiszar [6] is given by

Cf (p, q) =
n∑
i=1

qif(
pi
qi

), p, q ∈ Rn
+.

For Cf (p, q), Csiszar and Korner [11] showed the following two lemmas.

Lemma 1. (Joint convexity) Let f : [0,∞) → R be convex function. Then
Cf (p, q) is jointly convex in p and q, where p, q ∈ Rn

+.

Lemma 2. (Jensen’s inequality) Let f : [0,∞) → R be convex function,
∀p, q ∈ Rn

+ with Pn = Σn
i=1pi > 0, Qn = Σn

i=1qi > 0. We have the inequality

Cf (p, q) ≥ Qnf(
Pn
Qn

).

The equality sign holds if and only if

p1

q1
=

p2

q2
= . . . =

pn
qn

.
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In particular, ∀P,Q ∈ Δn, we have Cf (P‖Q) � Cf (P,Q) ≥ f(1), with
equality if and only if P = Q.

In view of the above lemmas, we can state the properties of D1(A,B). Let
p = (1 + μB(xi), 2 − μB(xi), 1 + μA(xi), 2 − μA(xi)),
q = (1 + μA(xi), 2 − μA(xi), 1 + μB(xi), 2 − μB(xi)).
For xi in D1(A,B), we have

D1(A,B;xi) =
1

q − 1
((

(1 + μA(xi))q

(1 + μB(xi))q−1 +
(2 − μA(xi))q

(2 − μB(xi))q−1 − 1)

+(
(1 + μB(xi))q

(1 + μA(xi))q−1 +
(2 − μB(xi))q

(2 − μA(xi))q−1 − 1))

=
4∑

j=1

qjf(
pj
qj

),

where the function f1 : [0,∞) → R is defined by f1(t) = 1
q−1 (t1−q − 1

3 ), q >

0, q �= 1. On account of f
′′
1 (t) = qt−q−1 ≥ 0 and Lemma 1, D1(A,B;xi) is

jointly convex in p and q. According to Lemma 2, we have

D1(A,B;xi) ≥ Qnf(
Pn
Qn

) = 6f(1) =
4

q − 1
,

equality sign holds if and only if

p1

q1
=

p2

q2
=

p3

q3
=

p4

q4
, i.e., μA(xi) = μB(xi).

The above conclusion shows that the minimum of D1(A,B;xi) is 4
α−1 (�= 0).

In order to make the minimum of D1(A,B) be 0, a modified expression
D′

1(A,B) is shown

D′
1(A,B) =

1
q − 1

(
n∑
i=1

(
(1 + μA(xi))q

(1 + μB(xi))q−1 +
(2 − μA(xi))q

(2 − μB(xi))q−1 − 3)

+
n∑
i=1

(
(1 + μB(xi))q

(1 + μA(xi))q−1 +
(2 − μB(xi))q

(2 − μA(xi))q−1 − 3)), q > 0, q �= 1.

In the following we will give a complete proof for the conclusion that D′
1(A,B)

is a σ−distance measure, although part results had been stated in [1,2].

Lemma 3. Let f : [0, 1]2 → R+ satisfies ∀(x, y) ∈ [0, 1]2, f(x, y) = f(y, x)
and f(x, y) = f(1 − x, 1 − y), then f(x, y) ≤ f(x, z) if and only if f(y, z) ≤
f(x, z) for 0 ≤ x ≤ y ≤ z ≤ 1.

For stating the properties of D′
1(A,B;xi), we present a function f(x, y) as

follows.
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Lemma 4. ∀x, y ∈ [0, 1], let

f(x, y) =
1

q − 1
(

(1 + x)q

(1 + y)q−1 +
(1 + y)q

(1 + x)q−1 +
(2 − x)q

(2 − y)q−1 +
(2 − y)q

(2 − x)q−1 − 6).

If 0 ≤ x ≤ y ≤ z ≤ 1, then f(x, y) ≤ f(x, z) and f(y, z) ≤ f(x, z).

Proof. For f , we can get directly that ∀(x, y) ∈ [0, 1]2, f(x, y) = f(y, x) and
f(x, y) = f(1 − x, 1 − y).

Suppose x ≤ y, then

(2 − x)
(2 − y)

≥ 1 ≥ (1 + x)
(1 + y)

,
(2 − y)
(2 − x)

≤ 1 ≤ (1 + y)
(1 + x)

.

We have

fy(x, y) = [(
2 − x

2 − y
)q − (

1 + x

1 + y
)q] +

q

q − 1
[(

1 + y

1 + x
)q−1 − (

2 − y

2 − x
)q−1].

The function xq(x ≥ 0) is a monotonically increasing function for q > 0 and
q �= 1, so we have

(
2 − x

2 − y
)q − (

1 + x

1 + y
)q ≥ 0.

When q > 1, then q − 1 > 0 and xq−1(x ≥ 0) is a monotonically increasing
function. We have

q

q − 1
[(

1 + y

1 + x
)q−1 − (

2 − y

2 − x
)q−1] ≥ 0.

When 0 < q < 1, then q − 1 < 0 and xq−1(x ≥ 0) is a monotonically
decreasing function. We have

q

q − 1
[(

1 + y

1 + x
)q−1 − (

2 − y

2 − x
)q−1] ≥ 0.

Therefore, f(x, y) is a monotonically increasing function on y for x ≤ y. So
we have f(x, y) ≤ f(x, z) for 0 ≤ x ≤ y ≤ z ≤ 1. According to Lemma 3,
we can obtain f(y, z) ≤ f(x, z). Thus, the proof is complete.

Theorem 2. ∀A,B,C ∈ F (X), the divergence measure D′
1(A,B) satisfies

the following properties
1) D′

1(A,B) ≥ 0, D′
1(A,B) = 0 if and only if A = B;

2) ∀G ∈ P (X), D′
1(G,Gc) = maxA,B∈F (X) D

′
1(A,B) = 2n

q−1 (2q+21−q−3);
3) D′

1(A,B) = D′
1(B,A);

4) D′
1(A,B) = D′

1(Ac, Bc);
5) If A ⊆ B ⊆ C, then D′

1(A,B) ≤ D′
1(A,C) and D′

1(B,C) ≤ D′
1(A,C);

6) D′
1([

1
2 ], [1]) = D′

1([
1
2 ], [0]).
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Proof. According to Lemma 1 and Lemma 2, we get 1). According to
Lemma 3 and Lemma 4, we get 2) and 5). Obviously, we obtain 3), 4)
and 6).

According to Theorem 2, we know that D′
1(A,B) is a distance measure,

and we have the following conclusion.

Theorem 3. D′
1(A,B) is a σ−distance measure.

Let
D

′
1(A,B) =

q − 1
2n(2q + 21−q − 3)

D′
1(A,B).

Then D
′
1(A,B) is a normal distance measure. According to Theorem 2, we

have

Proposition 1. D
′
1(A,B) has the following properties:

1)D
′
1([

1
2 ]G, [1]) = D

′
1([

1
2 ]G, [0]), ∀G ∈ P (X);

2)D
′
1(A,B) = D

′
1(A

c, Bc), ∀A,B ∈ F (X).

By Proposition 1, Theorem 1 and Theorem 2, we get

e(A) =
D

′
1(A,Anear)

D
′
1(A,Afar)

and
e(A) = D

′
1(A,Anear) + 1 −D

′
1(A,Afar)

are fuzzy entropies.
For D2(A,B), we can define a function h : [0, 1]2 → R+ by

h(x, y) =
2q−1

q − 1
[

xq

(x + y)q−1 +
(1 − x)q

(2 − x− y)q−1

+
yq

(x + y)q−1 +
(1 − y)q

(2 − x− y)q−1 − 22−q].

We can also prove that h(x, y) has the following property.

Lemma 5. If 0 ≤ x ≤ y ≤ z ≤ 1, then h(x, y) ≤ h(x, z) and h(y, z) ≤
h(x, z).

Proof. Suppose x ≤ y, we have

hy(x, y) = 2q−1[(
1 − x

2 − x− y
)q − (

x

x + y
)q] + 2q−1[(

q

q − 1
(

y

x + y
)q−1

−(
y

x + y
)q) − (

q

q − 1
(

1 − y

2 − x− y
)q−1 − (

1 − y

2 − x− y
)q)].
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By x ≤ y, we get
1 − x

2 − x− y
≥ x

x + y
.

The function xq(x ≥ 0)is a monotonically increasing function for q > 0 and
q �= 1, we have

2q−1[(
1 − x

2 − x− y
)q − (

x

x + y
)q] ≥ 0.

LetH(x) = q
q−1x

q−1−xq forx ∈ [0, 1].AccordingH ′(x) = qxq−2(1−x) ≥ 0,
we know that H(x) is a monotonically increasing function. By

0 ≤ 1 − x

2 − x− y
≤ x

x + y
≤ 1,

we get

q

q − 1
(

y

x + y
)q−1 − (

y

x + y
)q ≥ q

q − 1
(

1 − y

2 − x− y
)q−1 − (

1 − y

2 − x− y
)q.

So we have

2q−1[(
q

q − 1
(

y

x + y
)q−1 − (

y

x + y
)q) − (

q

q − 1
(

1 − y

2 − x − y
)q−1 − (

1 − y

2 − x − y
)q)] ≥ 0.

When x ≤ y, we have hy(x, y) ≥ 0. So h(x, y) is a monotonically increasing
function on y, i.e., h(x, y) ≤ h(x, z) for 0 ≤ x ≤ y ≤ z ≤ 1. By Lemma 3,
we have h(y, z) ≤ h(x, z).

Theorem 4. ∀A,B,C ∈ F (X), the divergence measure D2(A,B) satisfies
the following properties

1) D2(A,B) ≥ 0, D2(A,B) = 0 if and only if A = B;
2) ∀G ∈ P (X), D2(G,Gc) = maxA,B∈F (X) D2(A,B) = 2n

q−1 (21−q − 1);
3) D2(A,B) = D2(B,A);
4) D2(A,B) = D2(Ac, Bc);
5) If A ⊆ B ⊆ C, then D2(A,B) ≤ D2(A,C) and D2(B,C) ≤ D2(A,C);
6) D2([12 ], [1]) = D2([12 ], [0]).

Proof. For xi in D2(A,B) , we have

D2(A, B; xi) =
1

q − 1
((

2q−1μq
A(xi)

(μA(xi) + μB(xi))q−1
+

2q−1(1 − μA(xi))q

(2 − μA(xi) − μB(xi))q−1
− 1)

+(
2q−1μq

B(xi)
(μA(xi) + μB(xi))q−1

+
2q−1(1 − μB(xi))q

(2 − μB(xi) − μA(xi))q−1
− 1)).

Given

p = (
μA(xi) + μB(xi)

2
,
2 − μA(xi) − μB(xi)

2
), q = (μA(xi), 1 − μA(xi),
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then we have

K′′
q (A,B; xi) =

1
q − 1

(
2q−1μq

A(xi)
(μA(xi) + μB(xi))q−1

+
2q−1(1 − μA(xi))q

(2 − μA(xi) − μB(xi))q−1
− 1)

=
2∑

j=1

qjg1(
pj

qj
),

where the function g1 : [0,∞) → R is defined by g1(t) = 1
q−1 (t1−q − 1), q > 0

and q �= 1. According to g
′′
1 (t) = qt−q−1 ≥ 0 and Lemma 1, we know

that K ′′
q (A,B;xi) is jointly convex in p and q. By Lemma 2, we have

K ′′
q (A,B;xi) ≥ g(1) = 0, equality sign holds if and only if

p1

q1
=

p2

q2
, i.e., μA(xi) = μB(xi).

Given

p = (
μA(xi) + μB(xi)

2
,
2 − μA(xi) − μB(xi)

2
), q = (μB(xi), 1 − μB(xi),

we know that K ′′
q (B,A;xi) is jointly convex in p and q, and K ′′

q (B,A;xi) ≥
g1(1) = 0, equality sign holds if and only if μA(xi) = μB(xi).

Therefore, D2(A,B;xi) ≥ 0 for any xi ∈ X , D2(A,B;xi) = 0 if and only
if μA(xi) = μB(xi). And we obtain 1).

According to Lemma 5, we have 2) and 5). Obviously, we get 3), 4)
and 6).

According to Theorem 4, we know that D2(A,B) is a distance measure,
and we have the following conclusion.

Theorem 5. D2(A,B) is a σ−distance measure.

Let
D2(A,B) =

q − 1
2n(21−q − 1)

D2(A,B),

then D2(A,B) is a normal distance measure. According to Theorem 2, we
have

Proposition 2. D2(A,B) has the following properties:
1)D2([12 ]G, [1]) = D2([12 ]G, [0]), ∀G ∈ P (X);
2)D2(A,B) = D2(Ac, Bc), ∀A,B ∈ F (X).

Therefore

e(A) =
D2(A,Anear)
D2(A,Afar)

and
e(A) = D2(A,Anear) + 1 −D2(A,Afar)

are fuzzy entropies.
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4 Conclusion

Distance measure is a basic concept in fuzzy set theory. Based on Tsallis rela-
tive entropy, two new classes of fuzzy divergence measure are proposed in this
paper. The properties of the proposed divergence measures are discussed. we
show that the proposed divergence measures are σ−distance measures. By
the two σ−distance measures, we can induce some new fuzzy entropy. In this
paper, we discuss the fuzzy divergence with parameter. Considering fuzzy
divergences had been used in image segmentation, in the next work, we will
apply the proposed distance measure, more clearly σ−distance measure, to
image segmentation or other areas.
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Strong-II Nβ-Compactness in L-Topological
Spaces
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Abstract. The notion of Strong-II Nβ-compactness is introduced for a
complete distributive De Morgan algebra. The strong-II Nβ-compactness
implies strong-I Nβ-compactness, hence it also implies Nβ-compactness,
S∗-compactness and Lowen’s fuzzy compactness. But it is different from
semi-compactness. When L = [0, 1], strong-II Nβ-compactness is equivalent
to semi-compactness.

Keywords: L-topology, semi-open βa-cover; semi-open strong βa-cover,
Strong-II Nβ-compactness.

1 Introduction

In [8,9], Shi introduced the S*-compactness and Nβ-compactness in
L-topological spaces, where L is a complete distributive De Morgan al-
gebra. The Nβ-compactness implies S*-compactness, and S*-compactness
implies Lowen’s fuzzy compactness[7]. In [5], we introduced the strong-I
Nβ-compactness in L-topological spaces. The strong-I Nβ-compactness im-
plies Nβ-compactness.

In this paper, a new compactness is introduced in L-topological spaces
by means of semi-open βa-cover and semi-open strong βa-cover, which is
called strong-II Nβ-compactness, where L is a complete distributive De Mor-
gan algebra. The strong-II Nβ-compactness implies strong-I Nβ-compactness.
But it is different from semi-compactness. When L = [0, 1], the strong-II
Nβ-compactness is equivalent to semi-compactness.

2 Preliminaries

Throughout this paper, (L,∨,∧,′ ) is a complete De Morgan algebra, X a
nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X.
The smallest element and the largest element in LX are denoted by 0 and

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 369–374.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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1. The set of nonunit prime elements[6,11] in L is denoted by P (L). The set
of nonzero co-prime elements[6,11] in L is denoted by M(L). The greatest
minimal family[6,11] of a ∈ L is denoted by β(a). An L-topological space
denotes L-ts for short. Let (X, δ) be an L-ts and A ∈ LX . Then A is called
a semi-open set[1] (strongly semi-open set[2]) iff there is a B ∈ δ such that
B ≤ A ≤ B− (B ≤ A ≤ B−o), and A is called a semi-closed set[1] (strongly
semi-closed set[2]) iff there is a B ∈ δ′ such that Bo ≤ A ≤ B (Bo− ≤ A ≤ B),
where Bo and B− are the interior and closure of B, respectively. SO(LX)
and SC(LX) denote the family of semi-open sets and family of semi-closed
sets of an L-ts (X, δ), respectively.

Definition 1. ([5]) Let (X, δ) be an L-ts, a ∈ M(L) and A ∈ LX. A family
μ ⊆ LX of strongly semi-open sets is called an SSO-βa-cover of A if for any
x ∈ X with a �∈ β(A′(x)), there exists a B ∈ μ such that a ∈ β(B(x)). μ is
called an SSSO − βa-cover of A if a ∈ β(

∧
x∈X

(A′(x) ∨
∨
B∈μ

B(x))).

Definition 2. ([5]) Let (X, δ) be an L-ts and A ∈ LX. Then A is called
strong-I Nβ-compact if for any a ∈ M(L), each SSO − βa-cover of A has
a finite subfamily which is an SSSO − βa-cover of A. (X, δ) is said to be
strong-I Nβ-compact if 1X is strong-I Nβ-compact.

Lemma 1. ([9]). Let L be a complete Heyting algebra, f : X → Y be a map
and f→

L : LX → LY is the extension of f . Then for any family ψ ⊆ LY ,∨
y∈Y

(f→
L (A)(y) ∧

∧
B∈ψ

B(y)) =
∨
x∈X

(A(x) ∧
∧
B∈ψ

f→
L (B)(x)).

3 Strong-II Nβ-Compactness

Definition 3. Let (X, δ) be an L-ts, a ∈ M(L) and A ∈ LX. A family μ ⊆
SO(LX) is called a semi-open βa-cover of A if for any x ∈ X with a �∈
β(A′(x)), there exists a B ∈ μ such that a ∈ β(B(x)). μ is called a semi-open
strong βa-cover of A if a ∈ β(

∧
x∈X

(A′(x) ∨
∨
B∈μ

B(x))).

Definition 4. Let (X, δ) be an L-ts and A ∈ LX . Then A is called strong-II
Nβ-compact if for any a ∈ M(L), each semi-open βa-cover of A has a finite
subfamily which is a semi-open strong βa-cover of A. (X, δ) is said to be
strong-II Nβ-compact if 1X is strong-II Nβ-compact.

Theorem 1. If A is strong-II Nβ-compact and B is semi-closed, then A∧B
is strong-II Nβ-compact.

Proof. Suppose that μ is a semi-open βa-cover of A ∧ B. Then μ ∪ {B′} is
a semi-open βa-cover of A. By strong-II Nβ-compact of A, we know that
μ ∪ {B′} has a finite subfamily ν which is a semi-open strong βa-cover of A.
Then ν \{B′} is a semi-open strong βa-cover of A∧B. This shows that A∧B
is strong-II Nβ-compact.
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Theorem 2. If A and B are strong-II Nβ-compact in (X, δ), then A ∨ B is
strong-II Nβ-compact.

Proof. This can be easily proved by Definition 4.

Definition 5. Let (X, δ) and (Y, τ) be two L-ts’s. A mapping f : (X, δ) −→
(Y, τ) is called:

(1) Irresolute [2] iff f←
L (B) is semi-open in (X, δ) for each semi-open set

B in (Y, τ).
(2) Semi-continuous[1] iff f←

L (B) is semi-open in (X, δ) for each B ∈ τ .
(3) Weakly irresolute iff f←

L (B) is semi-open in (X, δ) for each strongly
semi-open set B in (Y, τ).

Theorem 3. If A is strong-II Nβ-compact in (X, δ) and f : (X, δ) −→ (Y, τ)
is irresolute, then f(A) is strong-II Nβ-compact in (Y, τ).

Proof. Let μ ⊂ SO(LY ) be a semi-open βa-cover of f→
L (A). Then for any

y ∈ Y , we have that
a ∈ β((f→

L (A))′(y) ∨
∨
B∈μ

B(y)).

Hence for any x ∈ X , it follows that
a ∈ β(A′(x) ∨

∨
B∈μ

f←
L B(x)).

This shows that f←
L (μ) = {f←

L (B) : B ∈ μ} is a semi-open βa-cover of A.
By strong-II Nβ-compactness of A, we know that μ has a finite subfamily ν
such that f←

L (ν) = {f←
L (B) : B ∈ ν} is a semi-open strong βa-cover of A. By

the following equation we can obtain that ν is a semi-open strong βa-cover
of f→

L (A).∧
y∈Y

((f→
L (A))′(y) ∨

∨
B∈ν

B(y))

=
∧
y∈Y

((
∧

x∈f−1(y)
(A′)(x)) ∨

∨
B∈ν

B(y))

=
∧
y∈Y

(
∧

x∈f−1(y)
(A′(x) ∨

∨
B∈ν

B(f(x))))

=
∧
y∈Y

∧
x∈f−1(y)

(A′(x) ∨
∨
B∈ν

f←
L (B)(x))

=
∧
x∈X

(A′(x) ∨
∨
B∈ν

f←
L (B)(x)).

Therefore f→
L (A) is strong-II Nβ-compact.

Theorem 4. If A is strong-II Nβ-compact in (X, δ) and f : (X, δ) −→ (Y, τ)
is semi-continuous, then f(A) is Nβ-compact in (Y, τ).

Proof. By using definitions of Nβ-compact and semi-continuous this is similar
to the Theorem 3.

Theorem 5. If A is strong-II Nβ-compact in (X, δ) and f : (X, δ) −→ (Y, τ)
is weakly irresolute, then f(A) is strong-I Nβ-compact in (Y, τ).
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Proof. Let μ ⊆ LX de a family of strongly semi-open sets, and μ be an SSO-
βa-cover of f→

L (A). Then for any y ∈ Y , we have that a ∈ β((f→
L (A))′(y) ∨∨

B∈μ
B(y)). Hence for any x ∈ X , it follows that a ∈ β(A′(x) ∨

∨
B∈μ

f←
L B(x)).

This shows that f←
L (μ) = {f←

L (B) : B ∈ μ} is a semi-open βa-cover of A. By
strong-II Nβ-compactness of A, we know that μ has a finite subfamily ν such
that f←

L (ν) = {f←
L (B) : B ∈ ν} is a semi-open strong βa-cover of A. Since∧

y∈Y
((f→

L (A))′(y) ∨
∨
B∈ν

B(y)) =
∧
y∈Y

((
∧

x∈f−1(y)
(A′)(x)) ∨

∨
B∈ν

B(y))

=
∧
y∈Y

(
∧

x∈f−1(y)
(A′(x)∨

∨
B∈ν

B(f(x))))=
∧
y∈Y

∧
x∈f−1(y)

(A′(x)∨
∨
B∈ν

f←
L (B)(x))

=
∧
x∈X

(A′(x) ∨
∨
B∈ν

f←
L (B)(x)).

ν is an SSSO−βa-cover of f→
L (A). Therefore f→

L (A) is strong-I Nβ-compact.

Remark 1. The product L-ts (X, δ) of a family {(Xt, δt)}t∈T of strong-II Nβ-
compact L-ts is not necessarily strong-II Nβ-compact, whether T is a finite
set or not. This can be seen from the Remark 3.8 and the Example 3.9 in [5]
and the following Corollary 1.

4 Relations between Strong-II Nβ-Compactness and
Other Compactness

It is obvious that μ is a semi-open βa-cover of A iff for any x ∈ X , it follows
that a ∈ β(A′(x)∨

∨
B∈μB(x)). Hence a semi-open strong βa-cover of A is a

semi-open βa-cover of A. And a semi-open strong βa-cover of A is an SSSO−
βa-cover[5] of A, a semi-open βa-cover of A is an SSO − βa-cover[5] of A.
When L = [0, 1], μ is a semi-open βa-cover of A iff μ′ is an a′−semi−remote
neighborhood family[4] of A. μ is a semi-open strong βa-cover of A iff μ′ is
an (a′)− − semi− remote neighborhood family[4] of A. From above, we can
obtain the following corollaries.

Corollary 1. The strong-II Nβ-compactness implies strong-I Nβ-
compactness, hence it also implies Nβ-compactness, S∗-compactness
and fuzzy compactness.

Corollary 2. When L = [0, 1], strong-II Nβ-compactness is equivalent to
semi-compactness.

We can easily prove the following two theorems by the Definition 4.

Theorem 6. If (X, δ) is a regular L-ts(i.e. it satisfies B− = B for any B ∈
δ), then an L-set A ∈ LX is strong-II Nβ-compact iff A is strong-I Nβ-
compact iff A is Nβ-compact.

Theorem 7. If for any a, b ∈ L, and β(a ∧ b) = β(a) ∩ β(b), then an L-set
with a finite support is strong-II Nβ-compact.
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Remark 2. (1) In general, the semi-compactness need not imply strong-II Nβ-
compactness. This can be seen from the Example 1.

(2) The strong-I Nβ-compactness need not imply strong-II Nβ-
compactness.

(3) In general, if β(a∧b) �= β(a)∩β(b), then an L-set with a finite support
need not be strong-II Nβ-compact. This can be seen from the Example 1.

Example 1. Let X = {x, y} and L = [0, 1/5] ∪ {a, b} ∪ [4/5, 1], where a, b are
incomparable and a ∧ b = 1/5, a ∨ b = 4/5. For each e ∈ L with e �= a, b,
define e′ = 1 − e, and a′ = b, b′ = a. Then L is a completely distributive De
Morgan algebra, and

M(L) = (0, 1/5] ∪ {a, b} ∪ (4/5, 1],
β(a ∧ b) = β(1/5) = [0, 1/5) �= [0, 1/5] = β(a) ∩ β(b).

Take δ = {0X , A, 1X}, where A(x) = a,A(y) = b. Then (X, δ) is an L-ts.
Let μ = {A} ⊂ SO(LX). For each D < A and D �= 0X , we easily obtain
that D �∈ SO(LX), so μ has two subfamily ∅ and μ. Let c = 1/5. Obviously
c ∈ β(A(x)) and c ∈ β(A(y)), this shows that μ is a semi-open βc-cover of
1X . But for any ν ⊂ μ we have that

c �∈ β([
∨
B∈ν

B(x)] ∧ [
∨
B∈ν

B(y)]).

i.e., any subfamily of μ is not a semi-open strong βc-cover of 1X . Therefore
(X, δ) is not strong-II Nβ-compact. But we have that (X, δ) is semi-compact
by the Corollary 3.2 and Corollary 5.5 in [4].
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Abstract. For K-harmonic means(KHM) clustering algorithm and its generalized 
form: KHMP. clustering algorithm, fuzzy c-means clustering algorithm (FCM) and 
its generalized form: GFCMP clustering algorithms, the relations between KHM 
and FCM, KHMP and GFCMP are studied. By using the reformulation of the 
GFCMP, the facts that KHMP is a special case of FCMP as fuzzy parameter m is 2 
and parameter p is greater than 2, and KHM is FCM as fuzzy parameter m is 2 are 
revealed. By using the theory of Robust Statistics, the performances of FCMP 
under different parameter p is studied and the conclusions are obtained: GFCMp is 
sensitive to noise when parameter p is greater than 1; it  is robust to noise when p 
is less than 1. Experimental results show the correctness of our analysis. 

Keywords: Hard c-means clustering, Fuzzy c-means clustering, K-harmonic 
means clustering. 

1   Introduction 

Clustering analysis is an important branch in unsupervised pattern recognition. 
HCM [1] is one of the few most classical ones among the many clustering 
algorithms and it has gotten popular attention from scholars [2,3]. Considering 
HCM can not make full use of information of category, Bezdek proposed FCM 
clustering algorithm [4]. FCM had shown better performance over HCM in real 
application. However, FCM also has many drawbacks: there are almost equal 
numbers of data points in the clusters, almost no data points have a membership 
value of 1 and FCM is sensitive to noise. Therefore, many extensions to the FCM 
algorithm have been proposed in the literatures [5-7], Yu summarized all kinds of 
extensions of the FCM and proposed generalization of FCM [3,7]. 

Recently, As a improvement of HCM, KHM [8] and its generalized form: 
KHMp [9] are proposed by Zhang capturing widely attention [10-13]. Compared 
with HCM, The most advantage of KHM is it enhance the robustness of algorithm 
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to initialization. KHMP is the generalized form of KHM as the Euclidean norm is 
generalized as the pth power (p≥2) of the Euclidean norm in its objective function. 
Compared with KHM, The performance of KHMp is further highlighted. Based on 
the KHMP, Hamerly [10] presented two variants of KHMp and compared them 
with HCM, FCM and gaussian mixture model based on EM (Expectation 
Maximization) algorithm. However, Hamerly’s work is experimental in nature and 
lack rigorous theoretical analysis. Recently, inspired by KHMp, Nock [11] 
borrowed the idea of boost in supervised classification and apply it in clustering 
and proposed general weighting clustering algorithm. However, Nock did not 
analyse the substance of KHMp further. Other scholars [12-13] only generalized or 
applied KHMP directly and could not give analysis on KHMP theoretically. 

KHMP is really a new algorithm? FCM and KHMp (KHM is concluded in) are 
improvements of HCM from different points of view, what relationship is between 
them? The main contribution of the paper is to answer theses questions . The 
remainder of this paper is organized as follows. In Section 2, FCM and KHMP 
clustering algorithms are reviewed. In Section 3, the generalization of FCM: 
GFCMP is focused on and the reformulation of GFCMP is present. Consequently, a 
conclusion is arrived: KHM and KHMP are not new clustering algorithms, that is, 
KHMP is a special case of GFCMP as fuzzy parameter m is 2 and parameter p is 
greater than 2 and KHM is FCM as fuzzy parameter m is 2. Then the robust 
properties of GFCMP and the effects of the parameter p are analysed. In Section 4, 
some numerical examples are used to show the robustness of GFCMP when p is no 
more than 1. Finally, the conclusions are made in Section 5. 

2   FCM and KHMp 

2.1   FCM 

For given data set , , ,{ }1 2X x x xn= " in Euclidean space k\ , the objective 

function of   FCM can be written as follows 

               FCM

2
( , )

1 1

n c
mJ U V u x vij i j

i j
= −
= =
∑ ∑    ,                                          (1) 

where 1
1

c
uij

j
=

=
∑ ,1 i n≤ ≤ , [ ]0,1uij ∈ , 0

1

n
nij

i
u< <

=
∑ ,1 i n≤ ≤ ,1 j c≤ ≤ . The 

necessary conditions for minimizing FCM ( , )J U V are the following update 

equations: 

                      
1

2 1
1( )

2
1

uij
c x vi j m

x vl i l

=
−

−
−=

∑

    ,                                              (2) 
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1

1

i

i

n
mu x v xi j ij

iv j n
mu x vi lj

i

−
==

−
=

∑

∑
  ,                                                   (3) 

FCM minimize the FCM ( , )J U V by alternately updating equations (2) and (3). 

Different from HCM, FCM adopt soft learning rule, viz. winner-takes-more, the 
soft learning rule mitigate the dependence of algorithm on initialization and FCM 
has better property of being robust to initialization.  

2.2   KHM and KHMP 

KHM and KHMP are two clustering algorithms proposed by Zhang [8,9] 

successively, KHMP is the general form of KHM, KHM is a particular case of 
KHMP as parameter p is 2. The object function of KHMP is expressed as: 

             
pKHM ( )

11

1

n c
J V

c
i

p
j x vi j

=
=

= −

∑
∑

  ,                                         (4) 

KHMP can be solved by using the fixed-point iterative method [11]. KHMP is 
seemly a new clustering algorithm, however, it will be pointed out in Section 3, 
KHMP is only a special case of a kind of generalized FCM and KHM is a special 
case of FCM. 

3   The Relationship between General FCM(GFCMP) and KHMp 

and the Analysis on Robustness Property of GFCMP 

3.1   General FCM: GFCMP 

In 2005, Yu[7] presented general form of generalized FCM clustering algorithm: 
GFCM. The object function of GFCM is  

GFCM ( , ) ( ( , )) ( ( , ))0
1 1 1

cn c
mJ U V u d x v d v vj i j j tij ci j t

γρ ρ=
= = =

−∑ ∑ ∑    ,            (6) 

where
1

c
u fij i

j
=

=
∑ for 0fi ≥ , ( )xjρ is a continuous function 

of x∈ [0, )+∞ satisfying its derivative ( ) 0xjρ′ > for all [0, )x∈ +∞ and 0γ ≥ . 
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Setting 1fi = , ( )
p

x xjρ = , 0γ = , ( , )d x v x vi ji j = − ,  a simple form of 

GFCM: GFCMP can be obtained. The object function of GFCMP is  

GFCMp
( , )

1 1

n c pmJ U V u x vi jij
i j
= −
= =
∑ ∑        .                            (7) 

By Lagrange multiplier, the necessary conditions for a minimum of 

GFCMp
( , )J U V  can be obtained as follows: 

1
1

1( )
1

uij p
c x vi j m

px vl i l

=
−

−
−=

∑

    ,                                        (8) 

              

2

1

2

1

n pmu x v xi j iij
iv j n pmu x vi jij

i

−
−

==
−

−
=

∑

∑
   .                                       (9) 

The iteration with update equations (8) and (9 ) is called the GFCMp algorithm. 

3.2   The Reformulation of GFCMP 

For FCM, Substituting (2) into (1), a equivalent objective function 
with FCM ( , )J U V can be obtained as follows: 

           RFCM (
2 11 1( ) ( ) )

1 1

n c
m mJ V x vi j

i j

− −= −
= =
∑ ∑  .                                 (10) 

This conclusion is obtained by Hathaway as The Reformation Theorem[14]. In 
fact, the conclusion in Reformation Theorem can be generalized as Corollary as 
bellow, one can demonstrate it by similar means to theorem above, so only the 
conclusion is given here. 

 
Corollary: Substituting (8) into (7), a new objective function of GFCMp can be 
obtained as follows 

pRGFCM ( 11 1min ( ) ( ) )
1 1

n c p m mJ V x vi j
i j

= − −−
= =
∑ ∑          .               (11) 
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Let B is an open subset of ckℜ , V∗ satisfying 0
P

x vi
∗− > ( 1, 2, , )i n= " . 

Then 
 

(1) ( , )U V∗ ∗ globally minimizes GFCMp
( , )J U V  if and only if V ∗ globally minimizes 

RGFCMP
( )J V ; 

(2) ( , )U V∗ ∗  locally minimizes GFCMp
( , )J U V  if and only if V∗ locally minimizes 

RGFCMp
( )J V . 

 
In (11), setting m to 2, a new objective function can be gotten as following form: 

pRGFCM
1( )

11
1

n
J V c

i p
j x vi j

=
=

= −

∑
∑

    .                                        (12) 

Comparing equation (12) with equation (4), it can be seen that equation (12) is 
equivalent to equation (4) except for the constant c. Therefore, KHMP and KHM 
are not new clustering algorithms, KHMP is in fact a special case of GFCMP as 
fuzzy parameter m is 2 and parameter p is greater than 2, and KHM is FCM as 
fuzzy parameter m is 2. In[9], Zhang pointed out KHM is more robust to the 
initialization than HCM, but he did not give a interpretation theoretically. Based 
on the analysis above, it is known that because KHM adapt soft learning rule, so it 
is more robust to the initialization than HCM. 

3.3  Analysis on the Robust Property of GFCMP for Different Value of 
Parameter p 

In this Section, the property of GFCMP for different value of parameter p is 
analyzed and KHMP is further analysed from the GFCMP point of view. For 
simplicity, only the situation fuzzy parameter m is 2 is considered here. In this 
case, By the equation in (9), the expression of cluster center of GFCMP can be 
obtained as follows: 

22

1
22

1

n p
u x v xij i j i

iv j n p
u x vij i j

i

−
−

== −
−

=

∑

∑
    ,                                     (13) 

where 
2p

x vi j
−

− can be thought as a weighting function of ix  and it can be 

known  
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(1)  When 2p = ,
2

1
p

x vi j
−

− = , equations in (13) will degenerate into the 

formula of the cluster center of FCM; (2)  When 

2p > ,
2

lim
x vi j

p
x vi j− →∞

−
− =∞ ; (3)  When 2p < , 

2
lim 0

x vi j

p
x vi j− →∞

−
− = . 

According to the fact in (2), it can be known compared with FCM, KHMP 

（GFCMP when the value of parameter p is more then 2）add a weighting 
function to data point , the weighting function is large when data point is far away 
from the cluster center, namely the data points locating the margin of class can 
obtain larger weighting value so that these data points can get more attention from 
the algorithm and their accuracy of clustering can be guaranteed as much as 
possible when algorithm is running. However, since the outlier is far away from 
cluster centers, the larger the value of p is, the larger the influence of the outlier is 
on cluster centers, then the algorithm is sensitive to outlier; the smaller the value 
of p is, the influence of the outlier is weaker, then the algorithm is robust to 
outlier. This fact can be explained rigorously from the Robust Statistics point of 
view. Let [ , , , ]1 2x x xn" be observed data set and θ is an unknown parameter to be 

estimated, According to the theory of Robust Statistics [15], an M-estimator of 
θ is generated by minimizing the form 

( , )
1

n
xi

i
ρ θ

=
∑                                                           (14) 

where ρ is an arbitrary function that can measure the loss of xi and θ . In a 

location estimate, the form of ( )
1

n
xi

i
ρ θ−

=
∑ can be adopted and the M-estimator 

ofθ is generated by solving the equation 

( ) 0
1

n
xi

i
ϕ θ− =

=
∑   ,                                                  (15) 

where
( )

( )
xixi

ρ θ
ϕ θ

θ

∂ −
− =

∂
. If ( )xρ θ− is taken as

2
x θ− , the M-estimator is 

the sample mean. In the M-estimator, the relative inf1uence of individual 
observations toward the value of an estimate is close to the character ofϕ used. 

Ifϕ is unbounded, the inf1uence of outlier and noise on estimate is larger, the 

estimate is not accurate; Ifϕ is bounded, the inf1uence of outlier and noise to 

estimate is smaller, the estimate is accurate. If ( )xρ θ− is taken as
p

x θ− , 



Some Notes on K-Harmonic Means Clustering Algorithm 381
 

the ϕ is 
2

( ) ( )
p

x p x xϕ θ θ θ
−

− = − − − . Then (1) 

If 1p < ,
1

lim ( ) lim 0
p

x p x
x x

ϕ θ θ
−

− − =
→∞ →∞

= , namely,ϕ is bounded;  

(2)  If 1p = , lim ( )x p
x

ϕ θ− =
→∞

, ϕ is also bounded; (3)  

If 1p > , lim ( )x
x

ϕ θ−
→∞

= ∞ ,ϕ is unbounded.  

The object function of GFCMP can be rewritten as  

pGFCM
2( , )

1 1

c n p
J U V u x vij i j

j i

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
−

= =
∑ ∑     .                         (16) 

The part 2

1

n p
u x vij i j

i

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
−

=
∑  in the right side of equation (16) can be thought 

as an M-estimator of cluster center v j , and [ , , , ]1 2x x xN" is observed data 

set, ( )xρ θ−
p

x θ= − is loss function, 2uij is weighting function. Based on the 

analysis above, when 1p ≤ , GFCMP would be show better performance of robust 

to outlier and noise; when 1p > , GFCMP would be more sensitive to outlier and 

noise. Therefore, From the Robust Statistics point of view, GFCMP with 
parameter p no more than 1 is not sensitive to outlier and noise. 

4   Numerical Experiments and Analysis 

In order to analyse the property of GFCMP, some experiments on two synthetic 
data sets and two real data sets are carried out in this section. In all experiment, 
m is set to 2. In [9], the value of p is selected as 3.5. When p is 2, GFCMP is just 
FCM, so, three representative values of  p: 2, 3.5 and 1 are selected, corresponding 
algorithms are denoted as FCM, KHMP and GFCM1. we also compare GFCMP 
with the Alternative fuzzy c-means(AFCM) clustering algorithm[5], which is 
proposed by Wu based on Robust Statistics to improving the robustness of FCM. 
The iterations were stopped as soon as the Frobenius norm in a successive pair of 
U matrices is less than 10-5. 

Synthetic Data 1 

Synthetic data 1 consists of two classes strip data points shown as in Figure.1, 
denoted as data1. The cluster results of FCM, KHMP, GFCM1 and AFCM for 
data1 are shown in Fig.1 (a), Fig.1 (b), Fig.1 (c) and Fig.1 (d), respectively. FCM  
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Fig. 1. Clustering results for FCM, KHMP, GFCM1 and AFCM with data1 

has some misclassified data points. KHMP and GFCM1 both can classify the two 
clusters correctly. But we have to point out that the principles of them are not the 
same. Based on the analysis in section 3.3, it can be seen that KHMP classify the 
data1 correctly by enhancing the separation between the clusters, however, 
GFCM1 weaken the influence of the data points located at the margin and can also 
cluster the data1 correctly. AFCM also show robustness to data1 and cluster data1 
correctly, but the cluster centers have the deviation on some degree. 

Synthetic Data 2 

Synthetic2 consists of data1 with 50 Gaussian noise data points, denoted as data2. 
The cluster results of FCM, KHMP, GFCM1 and AFCM for data3 are shown in 
Fig.2 (a), Fig.2 (b), Fig.2 (c) and Fig.2 (d) respectively. FCM and KHMP is 
sensitive to noise and can not cluster the data2 correctly, however, RGFCM1 and 
AFCM show robustness to noise and both can cluster the data2 correctly. The 
cluster centers of GFCM1 are relatively accurate and the cluster centers of AFCM 
have the deviation on some degree. 

 
 

Real world data 
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Fig. 2. Clustering results of FCM, KHMP, GFCM1 and AFCM for data2 

Real world data 

Iris and Wine both are retrieved from the UCI repository of machine learning 
databases[16] and their properties are listed in table1. The total error counts of the 
four clustering algorithms using the two datasets are shown in table 2.  
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Table 1. Dataset Descriptions 

 Size of dataset 
Number of 
dimensions 

Number of clusters 

Iris 150 4 3 

Wine 178 13 3 

Table 2. Clustering results for FCM, KHMP, GFCM1 and AFCM with data1 

 FCM KHMP GFCM1 AFCM 
Iris 16 16 11 11 

Wine 56 72 50 54 

Based on the table 2, it can be known that for the Iris data, the total error counts 
for FCM and KHM both are 16, however, the total error counts for GFCM1 and 
AFCM is only 11. Therefore, for the Iris data, FCMP and AFCM show superior 
performance over FCM and KHM. For the Wine data, The total error counts for 
FCM, KHMP, GFCM1 and AFCM are respectively 56, 72, 50 and 54. GFCM1 
shows the best clustering performance in these four clustering algorithms. To sum 
up above analysis, due to the complication of real data sets, robust clustering 
algorithm can obtain good performance. According to the experiment results 
above, it can be known that GFCM1 has superior performance over other three 
clustering algorithms. 

5   Conclusion 

KHM clustering algorithm and KHMP clustering algorithm obtain widely 
attention, but it have been shown that KHM and KHMP are not new clustering 
algorithms. By using the reformulation of the GFCMP, it is pointed out that KHMP 
is a special case of GFCMP as fuzzy parameter m is 2 and parameter p is greater 
than 2, and KHM is FCM when fuzzy parameter m is 2. Additionally, the 
performances of GFCMP with different parameter p are analysized and the 
conclusion has been obtained that as parameter p is greater than 1, GFCMp would 
be sensitive to outlier and noise; when p is no greater than 1, GFCMp would be 
robust to outlier and noise. The performance of GFCMp is depand on the choice of 
parameter p, how to adaptively choose parameter p is future work to be do. 
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Abstract. In this paper,firstly, we introduce the fuzzy annihilator A∗ of a
fuzzy set A and its properties are obtained. Secondly, the fuzzy prime filter
of lattice H implication algebras are studied by using the fuzzy annihila-
tor. Finally, we obtain that FPF (LH), the set of all fuzzy prime filter of a
lattice H implication algebra, is a bounded lattice with an order-reversing
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1 Introduction

Many-valued logic, a great extension and development of classical logic, has
always been a crucial direction in non-classical logic. In order to research
the many-valued logical system whose propositional value is given in a gen-
eral lattice, in 1993, Xu firstly established the lattice implication algebra
by combining lattice and implication algebra, and investigated many useful
structures [1],[2],[3],[4]. Xu and Qin proposed the lattice H implication alge-
bras (LHIA for short) and investigated its properties[5]. Lattice implication
algebra provided the foundation to establish the corresponding logical system
from the algebraic viewpoint. For the general development of lattice impli-
cation algebras, the filter theory plays an important role. Meanwhile, filter
plays an important role in automated reasoning and approximated reasoning
based on lattice implication algebra, too, for example, J. Ma, et al. proposed
filter-based resolution principle[8]. Xu and Qin [6]introduced the notions of
filter and implicative filter in a lattice implication algebra, and investigated
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their properties[21],[22]. Y.B.Jun and other scholars studied several filters in
lattice implication algebras [14],[15],[16] [19],[20],[21],[22]. Xu and Qin inves-
tigated prime filters of lattice H implication algebras[23].

The concept of fuzzy set was introduced by Zadeh (1965). Since then this
idea has been applied to other algebraic structures such as groups, semi-
groups, rings, modules, vector spaces and topologies. Xu and Qin[2] applied
the concept of fuzzy set to lattice implication algebras, they applied the con-
cept of fuzzy sets to lattice implication algebras and proposed the notions
of fuzzy filters and fuzzy implicative filters[3]. Later on, some scholars in-
troduced related fuzzy filter such as fuzzy (positive) implication filter, fuzzy
fantastic filter and investigated some properties[9],[10],[11],[12],[17],[18],[22].
This logical algebra has been extensively investigated by several researchers,
and many elegant results are obtained, collected in the monograph[4].

In this paper, as an extension of fuzzy filters theory in lattice implication
algebras, we further study the fuzzy filters of lattice H implication algebras.
In Section 2, we list some preliminaries, which are useful to development this
topic in other sections. In section 3, we first introduce fuzzy annihilator of
fuzzy set and investigate its properties; the properties of fuzzy prime filter
on lattice H lattice implication algebras are investigated and obtain that
FPF (LH), the set of all fuzzy prime filter of a lattice H implication algebra,
is a bounded lattice with an order-reversing involution ∗.

In this paper denote L as lattice (resp. lattice H) implication algebra
(L,∨,∧,′ ,→, O, I).

2 Preliminaries

Definition 1. [1] Let (L,∨,∧, O, I) be a bounded lattice with an order-
reversing involution ′. The greatest element I and the smallest element O,
and

→: L× L −→ L

be a mapping. L = (L,∨,∧,′ ,→, O, I) is called a lattice implication algebra
if the following conditions hold for any x, y, z ∈ L:

(I1) x → (y → z) = y → (x → z);
(I2) x → x = I;
(I3) x → y = y

′ → x
′
;

(I4) x → y = y → x = I implies x = y;
(I5) (x → y) → y = (y → x) → x;
(l1) (x ∨ y) → z = (x → z) ∧ (y → z);
(l2) (x ∧ y) → z = (x → z) ∨ (y → z).

Theorem 1. [4] Let L be a lattice implication algebra. Then for any x, y, z ∈
L, the following conclusions hold:

(1) if I → x = I, then x = I;
(2) I → x = x and x → O = x′;
(3) O → x = I and x → I = I;
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(4) (x → y) → ((y → z) → (x → z)) = I;
(5) (x → y) ∨ (y → x) = I;
(6) if x ≤ y, then x → z ≥ y → z and z → x ≤ z → y;
(7) x ≤ y if and only if x → y = I;
(8) (z → x) → (z → y) = (x ∧ z) → y = (x → z) → (x → y);
(9)x → (y ∨ z) = (y → z) → (x → z);
(10) x ∨ y = (x → y) → y;
(11) x ∨ y = I if and only if x → y = y.

Definition 2. [5] A lattice implication algebra L is called a lattice H impli-
cation algebra, if for any x, y, z ∈ L

(x ∨ y) ∨ ((x ∧ y) → z) = I.

Theorem 2. [4] Let L be a lattice implication algebra. Then following state-
ments are equivalent:

(1) L be a lattice H implication algebra;
(2) For any x, y ∈ L, x → (x → y) = x → y;
(3) For any x, y, z ∈ L, x → (y → z) = (x → y) → (x → z);
(4) For any x, y, z ∈ L, x → (y → z) = (x ∧ y) → z;
(5) For any x, y ∈ L, (x → y) → x = x;
(6) For any x ∈ L, x ∨ x

′
= I.

In lattice implication algebras, Define the binary operation ⊗ as follows: for
any x, y ∈ L, x ⊗ y = (x → y

′
)
′
. Some properties of operation ⊗ are in

reference[4].
A fuzzy set in L is a functionA : L → [0, 1]. For a fuzzy set A in L and

t ∈ [0, 1], the set At = {x ∈ L|A(x) ≥ t} is called the level subset of A. For
any fuzzy sets A and B in L , we define A ⊆ B if and only if A(x) ≤ B(x)
for any x ∈ L; (A ∩B)(x) = min{A(x), B(x)} for any x ∈ L.

Definition 3. [2] Let A be a fuzzy set of a lattice implication algebra L .
Then A is called a fuzzy filter of L if, for any x, y ∈ L

(1) A(I) ≥ A(x);
(2) A(y) ≥ min{A(x → y), A(x)}.

Theorem 3. [22] Let A be a fuzzy subset of L. Then A is a fuzzy filter if and
only if , for any x, y, z ∈ L, x → (y → z) = I implies min{A(x), A(y)} ≤
A(z).

Definition 4. [24] A fuzzy filter A of L is said to be fuzzy prime if it is
non-constant and A(x ∨ y) = A(x) ∨A(y) for any x, y ∈ L.

3 Fuzzy Prime Filters of LHIA

In reference[4], put Fa = {x ∈ L|x ∨ a = I, a ∈ L}, then Fa is a filter of L .
Let A be a fuzzy set of L . Define a new fuzzy set as follow:
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A∗(x) = 1 − inf{A(y)|y ∈ Fx} (1)

for any x ∈ L. A∗ is called fuzzy annihilator of A.

Lemma 1. Let A and B be two fuzzy sets of a lattice implication algebra L .
Then the following statements are hold:

(1) A∗(I) ≥ A∗(x) for any x ∈ L;
(2) If x ≤ y, then A∗(x) ≤ A∗(y);
(3) If A ⊆ B, then B∗ ⊆ A∗.

Proof. (1) For any x ∈ L, we have x ∨ I = I.

A∗(I) = 1 − inf{A(y)|y ∈ FI} = 1 − inf{A(y)|y ∈ L}
≥ 1 − inf{A(y)|y ∈ Fx} = A∗(x).

(2) Let z ∈ Fx. Then z ∨ x = I. Since x ≤ y, so y ∨ z = I, hence z ∈ Fy .
It follows that

{z ∈ L|z ∈ Fx} ⊆ {z ∈ L|z ∈ Fy}.

Therefore,

A∗(x) = 1 − inf{A(z) ∈ L|z ∈ Fx} ≤ 1 − inf{A(z) ∈ L|z ∈ Fy} = A∗(y).

(3) Since A ⊆ B, then inf{A(z)|z ∈ Fx} ≤ inf{B(z)|z ∈ Fx}. I follows
that

A∗(x) = 1 − inf{A(z)|z ∈ Fx} ≥ 1 − inf{B(z)|z ∈ Fx} = B∗(x).

Hence, B∗ ⊆ A∗.

Theorem 4. Let L be a lattice H implication algebra and A be a fuzzy filter
of L . Then (A∗)∗ = A.

Proof. Let A be a fuzzy filter of L . For any x ∈ L, we have:

(A∗)∗(x) = 1 − inf{A∗(y)|y ∈ Fx}
= 1 − inf{1− inf{A(z)|z ∈ Fy}|y ∈ Fx}
= supy∈Fx{1 − (1 − inf{A(z)|z ∈ Fy})}
= supy∈Fx{inf{A(z)|z ∈ Fy}}
≥ inf{A(z)|z ∈ Fx′ }.

Since z ∈ Fx′ , then z ∨ x
′
= I, that is, (z → x

′
) → x

′
= I. It follows that

(z → x
′
) → x

′
= (z → x

′
) → (x → O)

= x → (z
′ → O) = x → z = I.
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That is, x ≤ z. Since A is a fuzzy filter of L , it follows that A(x) ≤ A(z) for
any z ∈ Fx′ . Therefore

(A∗)∗(x) ≥ inf{A(z)|z ∈ Fx′ } = A(x).

That is, (A∗)∗ ⊇ A.
On the other hand, for any x ∈ L,

(A∗)∗(x) = 1 − inf{A∗(y)|y ∈ Fx}
= 1 − inf{1− inf{A(z)|z ∈ Fy}|y ∈ Fx}
≤ 1 − inf{1−A(x)|y ∈ Fx} = A(x),

that is, (A∗)∗ ⊆ A. Therefore A∗)∗ = A.

Lemma 2. [24] Let A be a fuzzy filter of L . Then A is a constant fuzzy set
if and only if A(I) = A(O).

Lemma 3. [24] Let A be a non-constant fuzzy filter of L . Then the following
are equivalent:

(1) A is a fuzzy prime filter of L ,
(2) for all x, y ∈ L, if A(x∨y) = A(I), then A(x) = A(I) or A(y) = A(I),
(3) for all x, y ∈ L, A(x → y) = A(I) or A(y → x) = A(I).

Lemma 4. Let A be a fuzzy prime filter of a lattice implication algebra L .
Then LA := {x ∈ L|A(x) = A(I)} is a prime filter of L .

Proof. Suppose that A is a fuzzy prime filter of L . By Corollary 3.6 in[4],
we have LA is a filter.

Since A is non-constant, LA is proper. Let x ∨ y ∈ LA for any x, y ∈ L.
Then A(I) = A(x ∨ y) = A(x) ∨ A(y). Hence A(x) = A(I) or A(y) = A(I).
This means that x ∈ LA or y ∈ LA. Therefore, LA is prime.

Conversely, assume that LA is a prime filter of L . Since LA is proper, A is
non-constant. As (x → y) ∨ (y → x) = I for any x, y ∈ L. Then x → y ∈ LA
or y → x ∈ LA. That is, A(x → y) = A(I) or A(y → x) = A(I). So A is a
fuzzy prime filter of L .

Lemma 5. [4] Let L be a lattice implication algebra. Then [x)∩ [y) = [x∨y)
for any x, y ∈ L.

Theorem 5. Let A be a fuzzy prime filter of a lattice H implication algebra
L . Then

A∗(x) =
{

1 −A(O), if x ∈ LA,
1 −A(I), if otherwise.

(2)

Proof. Suppose that A is a fuzzy prime filter. If x /∈ LA. Since y ∨ x = I for
any y ∈ Fx. Thus A(I) = A(x∨y). It follows that A(x) = A(I) or A(y) = A(I)
by Lemma 3. Since x /∈ LA, so A(x) �= A(I), hence A(y) = A(I). Therefore,
A∗(x) = 1 − inf{A(y)|y ∈ Fx} = 1 −A(I).
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If x ∈ LA, and A is non-constant, then A(x) = A(I) �= A(O). By the
hypothesis, A is a fuzzy filter of L , so A(O) ≥ min{A(x), A(x → O)} and A
is order-preserving, it follows that A(O) = min{A(x), A(x → O)} = A(x

′
).

On the other hand, L is a lattice H implication algebra, then x ∨ x
′
= I

for any x ∈ L. That is, x
′ ∈ Fx. Since A(O) = A(x

′
) ≤ A(y) for any y ∈ L.

Therefore, A∗(x) = 1 − inf{A(y)|y ∈ Fx} = 1 −A(x
′
) = 1 −A(O).

Lemma 6. [4] Let A be a fuzzy set of L and A �= ∅. Then A is a fuzzy filter
of L if and only if for any t ∈ [0, 1], At is a filter of L when At �= ∅.

Lemma 7. [4] Let L be a lattice implication algebra, J is a proper filter of
L . Then the following statements are equivalent:

(1) J is irreducible;
(2) [a) ∩ [b) ⊆ J implies a ∈ J or b ∈ J for any a, b ∈ L;
(3) J is prime.

Theorem 6. Let A be a fuzzy prime filter of a lattice H implication algebra
L . Then so does A∗.

Proof. Let A be a fuzzy prime filter of a lattice H implication algebra. Now
we need to prove that A∗

t �= ∅ is a filter of L for any t ∈ [0, 1].
Since A∗(I) ≥ A∗(x) for any x ∈ L, then, for any t ∈ [0, 1] and x ∈ A∗

t ,
we have A∗(I) ≥ t. That is I ∈ A∗

t . Let x, x → y ∈ A∗
t , then A∗(x) ≥ t and

A∗(x → y) ≥ t. That is,

A∗(x) = 1 − inf{A(z)|z ∈ Fx} ≥ t,

A∗(x) = 1 − inf{A(z)|z ∈ Fx→y} ≥ t,

then,

inf{A(z)|z ∈ Fx} ≤ 1 − t,

inf{A(z)|z ∈ Fx→y} ≤ 1 − t.

Therefore, for any ε > 0, there exists z1 ∈ Fx and z2 ∈ Fx→y such that
A(z1) ≤ 1 − t + ε and A(z2) ≤ 1 − t + ε.

Since z1 ∈ Fx and z2 ∈ Fx→y , so x → z1 = z1 and (x → y) → z2 = z2. It
follows that

(x → y) → (z1 ∨ z2) = (x → y) → ((z1 → z2) → z2)
= (z1 → z2) → ((x → y) → z2)
= (z1 → z2) → z2 = z1 ∨ z2,

that is, z1 ∨ z2 ∈ Fx→y. Since x → z1 = z1, so

x → (z1 ∨ z2) = x → ((z2 → z1) → z1)
= (z2 → z1) → (x → z1)
= (z2 → z1) → z1 = z1 ∨ z2,
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that is, z1 ∨ z2 ∈ Fx. And so

z1 ∨ z2 = (x → y) → (z1 ∨ z2)
= (x → y) → (x → (z1 ∨ z2))
= x → (y → (z1 ∨ z2))
= y → (x → (z1 ∨ z2))
= y → (z1 ∨ z2).

That is, z1 ∨ z2 ∈ Fy.
Since A is a fuzzy prime filter of L , we have that A(z1 ∨ z2) = A(z1) ∨

A(z2) ≤ 1 − t + ε. Hence, inf{A(z)|z ∈ Fy} ≤ A(z1 ∨ z2) ≤ 1 − t + ε. It
follows that A∗(y) = 1 − inf{A(z)|z ∈ Fy} ≥ t − ε. By the arbitrariness of
ε, we have that A∗(y) ≥ t, that is, y ∈ A∗

t . Therefore, by Lemma 6, A∗
t is a

filter of L . It follows that A∗ is a fuzzy filter of L .
Now, we need to prove A∗ is prime, that is, to prove A∗(x ∨ y) = A∗(x) ∨

A∗(y) for any x, y ∈ L.
Case (a): If x ∨ y ∈ LA, then A∗(x ∨ y) = 1 − A(O) by Theorem 5.

Since LA is a prime filter, so [x ∨ y) ⊆ LA. By Lemma 2, it follows that
[x ∨ y) = [x) ∩ [y) ⊆ LA. For LA is prime, so x ∈ LA or y ∈ LA. Therefore,
A∗(x) = 1 − A(O) = A∗(x ∨ y) or A∗(x) = 1 − A(O) = A∗(x ∨ y). And so
A∗(x ∨ y) = A∗(x) ∨A∗(y).

Case (b): If x ∨ y /∈ LA, then x /∈ LA and y /∈ LA for LA is a prime filter
of L , it follows that A∗(x) = 1 − A(I) = A∗(y). Therefore A∗(x ∨ y) =
A∗(x) ∨A∗(y).

Sum up above, A∗ is a fuzzy prime filter of L .

Lemma 8. Let A and B are non-constant fuzzy filter of a lattice H implica-
tion algebra L . Then A∗, A ∩B and A ∪B are non-constant.

Proof. From Theorem 4, we have that (A∗)∗ = A. If A is constant, then
A(x) = c(c is constant) for any x ∈ L. Since

A(x) = (A∗)∗(x)
= 1 − inf{A∗(y)|y ∈ Fx}
= 1 − inf{c|y ∈ Fx} = 1 − c,

that is, A is constant, contradiction. Therefore A∗ is a constant.
Since A and B are non-constant, then there exist x, y ∈ L such that

A(x) < A(I) and B(y) < A(I). Without loss of generality, we can assume
that B(y) ≤ A(x). It follows that

(A ∩B)(I) = min{A(I), B(I)}
> min{A(x), B(y)}
= B(y) ≥ min{A(y), B(y)} = (A ∩B)(y).

That is, A ∩B is non-constant.
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Since A and B are non-constant fuzzy filter of a lattice H implication
algebra L , then (A∗)∗ = A and (B∗)∗ = B. As A ∩B ⊆ A,B, by Lemma 1,
we have (A ∩B)∗ ⊇ A∗ and(A ∩B)∗ ⊇ B∗, then (A ∩B)∗ ⊇ A∗ ∪B∗.

On the other hand, A∗, B∗ ⊆ A∗ ∪B∗, so (A∗ ∪B∗)∗ ⊆ (A∗)∗, (B∗)∗, then
(A∗ ∪B∗)∗ ⊆ (A∗)∗ ∩ (B∗)∗ = A∩B. And so (A∩B)∗ ⊆ A∗ ∪B∗. It follows
that (A ∩ B)∗ = A∗ ∪B∗. Therefore, A ∪ B = (A∗)∗ ∪ (B∗)∗ = (A∗ ∩ B∗)∗.
It follows that A ∪B is non-constant.

Theorem 7. Let A and B are fuzzy prime filter of a lattice H implication
algebra L . Then A ∩B and A ∪B are also fuzzy prime filter of L .

Proof. We only to prove that A ∪ B is a fuzzy prime filter of L . From the
proof of Lemma 8, we have that A∪B = (A∗∩B∗)∗. Since A and B are fuzzy
prime filters, so A∗, B∗ are fuzzy prime filters by Theorem 6. Then A∗ ∩B∗

is fuzzy prime. By Theorem 6 again, we have (A∗ ∩ B∗)∗ = A ∪ B is fuzzy
prime.

Denote FPF (LH) by the set of all fuzzy prime filter of a lattice H implication
algebra. From Lemma 1, Theorem 4, and Theorem 7, we have:

Theorem 8. (FPF (LH);∪,∩, ) is a bounded lattice with an order-reversing
involution ∗.

4 Conclusion

In order to research the many-valued logical system whose propositional value
is given in a lattice, Xu and Qin initiated the concept of lattice H implica-
tion algebras. Hence for development of this many-valued logical system, it
is needed to make clear the structure of lattice implication algebras. It is
well known that to investigate the structure of an algebraic system, the fil-
ters with special properties play an important role. In this paper, we first
introduced fuzzy annihilator of fuzzy set and investigated its properties; the
properties of fuzzy prime filter on lattice H lattice implication algebras are
investigated and obtain that FPF (LH), the set of all fuzzy prime filter of
a lattice H implication algebra, is a bounded lattice with an order-reversing
involution ∗.
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Abstract. In this paper, we discuss four numerical characteristics of intuitionistic 
fuzzy sets. These numerical characteristics include distance, similarity measure, 
inclusion measure and entropy of intuitionistic fuzzy sets. By constructing the 
corresponding formulas, we show that any one numerical characteristic of four can 
be expressed by any other numerical characteristic. Thus some direct connections 
between these numerical characteristics are set up. 

Keywords: Intuitionistic fuzzy set; Distance; Similarity measure; Inclusion 
measure; Entropy. 

1   Introduction 

Since fuzzy set theory is proposed by Zadeh in 1965, some theories and methods have 
be proposed for processing uncertainty and imprecise. In them two theories are notable: 
intuitionistic fuzzy set (IFS) theory proposed by Atanasov [1] and interval-valued fuzzy 
set theory. Deschrijver and Kerre [5] constructed an isomorphic mapping between 
IVFSs and IFSs in 2003. Although there are compact interconnect between them, 
IVFSs and IFSs represent different information and have different semantics: IVFSs 
focus on the uncertainty of membership function, but IFSs emphasize the relationship 
between membership function and non-membership function.  

Four numerical characteristics including distance, similarity measure, inclusion 
measure and entropy are important research objects in fuzzy set theory. Wang [8] 
proposed the concept of the similarity measure. Moreover it has been used to many 
areas such as cluster analysis, image processing, approximate reasoning, fuzzy 
control, etc. Inclusion measure of fuzzy sets are used to describe the degree of a 
fuzzy set be included by another fuzzy set. Zadeh [11] defined the concept of the 
inclusion measure of fuzzy set, and proposed a crisp relationship of the inclusion 
measure，which is either been included or been not included. Obviously this 
definition violates the characteristic of fuzzy set theory. After that many axiomatic 
definitions of inclusion measure of fuzzy sets were given in the literature. These 
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definitions revealed some essential properties of inclusion measure. Zadeh [11] also 
proposed the concept of fuzzy entropy which is used to describe the degree of 
fuzziness of fuzzy sets. Then some researchers investigated it with the different 
ways. For example, Burillo [2], Szmidt [7], Zhang [14], etc. gave different 
axiomatic definitions of entropy of intuitionistic fuzzy sets, respectively. However, 
axiomatic definitions of the entropy of intuitionistic fuzzy sets proposed by Szmidt 
[7] and of the interval-valued fuzzy sets proposed by Zeng [12] essentially are the 
same. 

Zeng [12] extended the concepts of distance, similarity measure, inclusion 
measure and entropy to interval-valued fuzzy set theory, discussed the relationship 
between these numerical characteristics, and got some interesting conclusions. This 
article will extend these concepts to intuitionistic fuzzy set theory, research the 
relationship among them. 

2   Preliminaries 

In this section we briefly review basic knowledge of intuitionistic fuzzy sets and 
propose some new concepts of numerical characteristics of intuitionistic fuzzy sets. 
 
Definition 1[1]. Suppose X is the universe, then an intuitionistic fuzzy set A  in X  
is given by: { , ( ), ( ) | }A AA x x x x Xμ ν= < > ∈ , where the maps 

: [0,1],A Xμ → : [0,1]A Xν → satisfy the condition: 0 ( ) ( ) 1, .A Ax x x Xμ ν≤ + ≤ ∀ ∈  
( )A xμ and ( )A xν  are called the membership and non-membership degrees of x to 

the intuitionistic fuzzy set A  respectively. 
An intuitionistic fuzzy set A can be simply denoted: , ( ), ( )A AA x x xμ ν=< > .Obviously, 

a classical fuzzy sets A is an intuitionistic fuzzy set: , ( ),1 ( )A AA x x xμ μ=< − > . 
In this paper, we use S to denote the set of all intuitionistic fuzzy sets in X . 

Bustince and Burillo [4] showed that vague sets and intuitionistic fuzzy sets are the 

same extensions of fuzzy sets.  
The inclusion relationship (⊆ ) and operations of complement ( cA ), union 

( A B∪ ), intersection ( A B∩ ) of intuitionistic fuzzy sets are defined as follows 
(see [12]): 

Suppose A and B are intuitionistic fuzzy sets in X . 

(1)  We say that B includes A , denote A B⊆ , if x X∀ ∈ , ( ) ( ), ( ) ( )A B A Bx x x xμ μ ν ν≤ ≥ . 

(2) , ( ), ( )c
A AA x x xν μ=< >  is called the complement of A .  

(3) ( ) ( ), (1 ( )) (1 ( ))A A A BA B x x x x xμ μ ν ν∪ =< ∨ − ∧ − >, . 

(4) ( ) ( ), (1 ( )) (1 ( ))A A A BA B x x x x xμ μ ν ν∩ =< ∧ − ∨ − >, . 
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Next we introduce axiomatic definitions of distance, similarity measure, inclusion 
measure and entropy of intuitionistic fuzzy sets. 

 

Definition 2[7].  A real function E : S→[0,1] is called an entropy of S, if E satisfies 

the following conditions: 

(E1) E A( )=0  iff A  is a crisp sets; ( ) ( )A AE A x xμ ν⇔ =（E2)  ( ) =1 ;  

(E3) E A E B≤( ) ( ) if A is less fuzzy than B , i.e. ( ) ( ) ( ) ( ),A B A Bx x x xμ μ ν ν≤ ≥and for  

( ) ( ) ( ) ( ) ( ) ( ), ( ) ( )B B A B A B B Bx x x x x x x xμ ν μ μ ν ν μ ν≤ ≥ ≤ ≥， and f or ; cE A E A（E4)  ( ) = ( ) . 

According to the concept of similarity of interval-valued fuzzy sets from the 
literature [12], similarly, we can give the concepts of the similarity of intuitionistic 
fuzzy sets. 

 

Definition 3. A real function S : S×S→[0,1] is called a similarity measure of S, 

if S satisfies the following conditions: 

(S1)  ( , ) 0cS A A = if A is a crisp set;  (S2) ( , ) 1S A B A B= ⇔ = ;  

(S3) ( , )= ( , )S A B S B A ; (S4) For all , ,A B C ∈S , if A B C⊆ ⊆ ,  then 

S A C S A B S A C S B C≤ ≤( , ) ( , ) , ( , ) ( , ) . 

Obviously, the axiomatic definition of similarity measure of intuitionistic fuzzy sets 
is extended from fuzzy set theory. Particularly, if intuitionistic fuzzy sets A and B 
are fuzzy sets, then ( , )S A B  is a similarity measure of fuzzy sets. 

According to the concept of include measure of the interval-valued fuzzy sets 
from [3] and [12], we can propose the concepts of the include measure of 
intuitionistic fuzzy sets. 

 

Definition 4. A real function I : S×S→[0,1] is called an inclusion measure of 

intuitionistic fuzzy sets, if I satisfies the following conditions: 

 

I X ∅( I 1)  ( , ) =0;   I A B A B⇔ ⊆( I 2)  ( , ) =1 ;  

(I3) For all , ,A B C ∈S , if A B C⊆ ⊆ , then I C A I B A I C A I C B≤ ≤( , ) ( , ) , ( , ) ( , ) . 

 
According to Definition 3, we are able to define distances of intuitionistic fuzzy 

sets. 
 

Definition 5. A real function d : S×S→[0,1] is called a distance of intuitionistic 

fuzzy sets, if d satisfies the following conditions: 
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(D1) ( cd A A, ) =1, if A  is a crisp set; d A B A B⇔( D2)  ( , ) =0 = ;   

 

 For all , ,A B C ∈S , if A B C⊆ ⊆ , then 

.d A C A B d A C d A B≥ ≥( , ) d( , ) , ( , ) ( , )  

3   The Relationship among Four Numerical Characteristics 

We construct a distance formula satisfies (D1-D4): 

1 1

1
( ( ) ( ) (1 ( )) (1 ( ))

2

n

A i B i A i B ii
d A B x x x x

n
μ μ ν ν

=
= − + − − −∑( , )  (1) 

According to this distance, we can get the following inclusion measure: 

1 1

1
( , ) 1 ( ( ) ( ) ( ) (1 ( )) (1 ( )) (1 ( ))

2

n

A i A i B i A i A i B ii
I A B x x x x x x

n
μ μ μ ν ν ν

=
= − − ∧ + − − − ∧ −∑ (2) 

Similarity, similarity measure can be got: 

1 11

1
( , ) 1 ( ( ) ( ) (1 ( )) (1 ( )) 1

2

n

A i B i A i B ii
S A B x x x x d A B

n
μ μ ν ν

=
= − − + − − − = −∑ ( , ) . (3)  

However, the entropy of S is difficult to be expressed directly by the distance of S, 
therefore we will use the following work to complete that the distance of S express 
the entropy of S. 

According to the above formula, we have  

 

Property 1 

1 1( , ) ( , );c cS A B S A B=( 1)  1 1( , ) ( );S A B S A B A B= ∩ ∪( 2)  ,  

1 1 1 1( , ) ( ( , ) (S A A B S A B S A A B S B A B∪ = ∩ ⇔ ∩ = ∪( 3)  B, ) , ) .  

Then, we discuss whether other similarity measures satisfy these three properties. 
Select several groups of similarity in [6] are given as following examples. 
 

Example 1 

2
1

1
( , ) 1 | ( ) ( ) | ,

n
pp

A Bp
i

S A B m i m i
n =

= − −∑ ( ) ( 1 ) / 2, , .C C i C im i x x A B Cμ ν= + − ∈( ) ( )  

 



Numerical Characteristics of Intuitionistic Fuzzy Sets 399
 

Example 2 

3
1

1
( , ) 1 ( ( ) ( ))

n
pp

tAB fABp
i

S A B i i
n =

= − Φ −Φ∑ , ( ) | | /2,tAB A i B ii x xμ μΦ = −( ) ( )  

( ) | (1 1 |fAB A i B ii x xν νΦ = − −( )/2-( ( )/ 2)
. 

Example 3 

4 1 2
1

1
( , ) 1 ( ( ) ( ))

n
pp

s sp
i

S A B i i
n =

= − Φ −Φ∑ , ( ) | ( ) ( ) | /2,1,2sn An Bni m i m i nΦ = − ∈ ,  

1( ) ( ( )), ,C C i Cm i x m i A B Cμ= + ∈( ) , 2 ( ) ( ), ,C C i C im i x x A B Cμ ν= ∈( ) +1- ( ) . 

The distances correspond to above similarity measures are the following: 

2 3
1 1

4 1 2
1

1 1
| ( ) ( ) | , ( ( ) ( ))

1
( ( ) ( )) ,

n n
p pp p

A B tAB fABp p
i i

n
pp

s sp
i

d m i m i d i i
n n

d i i
n

= =

=

= − = Φ −Φ

= Φ −Φ

∑ ∑

∑
 

It is not difficult to verify that 3S and 4S satisfy three conditions in Property 1. 
However, 

2 ( , )S A B ≠ ( )S A B A B∩ ∪, , but 2 2( , ) (S A A B S B A B∪ = ∩, ) . This 
shows that not all the similarity measures satisfy these three properties, and 
Properties (2) and (3) can not be expressed by each other. 

The above-mentioned similarity measures are of form ( , )S A B = 1- ( , )d A B . 
Generally we can get following corollary. 

Corollary 1. The above-mentioned ( 1,3, 4)id i = satisfies the following 
properties: 

2 2 2 2

( , ) ( , ) ( , ) ( )

( , ) ( ( , ) (

( , ) ( ) ( , ) (

c c
i i i i

i i i i

d A B d A B d A B d A B A B

d A A B d B A B d A A B d B A B

A B A B A B but d A A d A

= = ∩ ∪

∪ = ∩ ⇔ ∩ = ∪
≠ ∩ ∪ ∪ = ∩

( 1)  ( 2)  ,

( 3)  , ) , )

, , ) .    d d B B B

 

Next, we discuss the relationships among the distance, the similarity measure, the 
inclusion measure, and the Entropy of intuitionistic fuzzy sets. 

Theorem 1. Suppose d and S  are a distance and a similarity measure of 
intuitionistic fuzzy sets, respectively, then for A∈S, 

' ( ''A A A AE A S x x E A d x xμ ν μ ν( ) = ( ) , ( ) ) , ( ) =1- ( ( ) , ( ) )     

are entropies of intuitionistic fuzzy set A . 
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Proof. It is simple to prove E1, E2, E4. To save space, we just to prove E3. 

(E3) For all ix X∈ , i =1, 2, . . . , n , if
B i B ix xμ ν≤( ) ( ) , i.e., 

A i B ix xμ μ≤( ) ( )  and
A i B ix xν ν≥( ) ( ) . 

Then 
A i B i B i A ix x x xμ μ ν ν≤ ≤ ≤( ) ( ) ( ) ( ) . So by (S3) we have 

, , ,A i A i A i B i B i B iS x x S x x S x xμ ν μ ν μ ν≤ ≤( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) .i.e., ' 'E A E B≤( ) ( ) .  

Similarly, if
B i B ix xμ ν≥( ) ( ) , i.e.,

A i B ix xμ μ≥( ) ( )  and 
A i B ix xν ν≤( ) ( ) , 

then 
A i B i B i A ix x x xμ μ ν ν≥ ≥ ≥( ) ( ) ( ) ( ) . By (S3) we have,  

, , ,A i A i A i B i B i B iS x x S x x S x xμ ν μ ν μ ν≤ ≤( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) . 

Namely, we have ' 'E A E B≤( ) ( ) . 

If 
A A A AS x x x xμ ν μ ν=( ( ) , ( ) ) 1- d( ( ) , ( ) ) , ' ''E A E A( ) = ( ) , ''E A( )  is also an 

entropy of intuitionistic fuzzy set A . 

Hence, we complete the proof of Theorem 1. 

 

Corollary 2. Suppose d and S  are a distance and a similarity measure of 

intuitionistic fuzzy sets, respectively, for A∈S, then 

''' '''' 1c cE A E AS A A d A A= −( ) = ( , ) and ( ) ( , )    

are entropies of intuitionistic fuzzy set A . 

 

The proof of this conclusion is similar to the proof of Theorem 1. 

According to Definitions 4 and 5, we have the following conclusion. 
 
Theorem 2. Suppose that S is a similarity measure of intuitionistic fuzzy sets, then 
for ,A B ∈  S, 'I A B S A A B∩( , ) = ( , )  and ''I A B S B A B∪( , ) = ( , )  are inclusion measures 
of intuitionistic fuzzy sets A and B . 
 
Proof. Firstly, we prove that 'I A B S A A B∩( , ) = ( , )  is an inclusion measure of 

intuitionistic fuzzy sets A  and B . 

It’s simple to prove I1, I2, so we just to prove I3. 

(I3) If A B C⊆ ⊆ ，then 

' 'I C A S C C A S C A I B A S B B A S B A∩ ∩( , )= ( , )= ( , ) , ( , ) = ( , )= ( , )  
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According to the definition of similarity measure of intuitionistic fuzzy sets, we 

have ' 'I C A I B A≤( , ) ( , ) . Similarly, we have ' 'I C A I C B≤( , ) ( , ) . 

Similarly, we can prove that ''I A B S B A B∪( , ) = ( , )  is also an inclusion measure 

of intuitionistic fuzzy sets A  and B . 

Hence, we complete the proof of Theorem 2. 

 

Theorem 3. Suppose that I is an inclusion measure of intuitionistic fuzzy sets, for 

A∈  S, then ( )= ( , ) ( , )c cE A I A A I A A∧  is an entropy of intuitionistic fuzzy set A . 

Proof. It is simple to prove E1, E2, E4. To save space, we just to prove E3.. 

 
(E3)

ix X i∀ ∈ （ =1, 2, . . . , n） , if ( ) ( )B i B ix xμ ν≤ , i.e., ( ) ( )A i B ix xμ μ≤  and 

( ) ( )A i B ix xν ν≥ . Then we have, ( ) ( ) ( ) ( )A i B i B i A ix x x xμ μ ν ν≤ ≤ ≤ ,and 

- ( ) 1- ( ) 1- ( ) 1- ( )A i B i B i A ix x x xν ν μ μ≤ ≤ ≤1 . 

Hence we get c cA B B A⊆ ⊆ ⊆ . Then by (I3) we have 

( c c cI A A I B A I B B≤ ≤, ) ( , ) ( , ) , c c cI A A I A B I B B≤ ≤( , ) ( , ) ( , ) . 

In other words, we have ( )= , ( , ) , ( , )c c c cE I A A I A A I B BA I B B E B∧ ≤ ∧ ≤( ) ( ) ( ) . 

Similarly, if ( ) ( )B i B ix xμ ν≥ , we can obtain ( ) ( )E A E B≤ , too. 

Hence, we complete the proof of Theorem 3. 

In the highlight of Theorem 2, Corollary 3 and Theorem 3, we can get 

c c c c cE A I A A I A A S A A A S A A A∧ ∩ ∧ ∩( ) = ( , ) ( , ) = ( , ) ( , ) . 

We know that the distance and the similarity measure of intuitionistic fuzzy sets 
are dual concepts, thus, we can use the distance to define the similarity measure of 
intuitionistic fuzzy sets. According to the relationship between the similarity 
measure and the distance of intuitionistic fuzzy sets which based on Hausdorff 
distance, we have 

Theorem 4. Given a real function f : [0,1]→[0,1]. If f  is a strictly monotone 

decreasing function, and d  is a distance of intuitionistic fuzzy sets, then for all A , 

B∈ S, f f

f f

d A B
S A B

( ( , ) ) - ( 1)
( , ) =

( 0) - ( 1)
 is a similarity measure of intuitionistic fuzzy 

sets A and B . 
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From D1-D4 we can easily prove that S A B( , ) satisfies S1-S4.  
Now, our major problem is how to select a useful and reasonable f . In fact, the 

function ( ) 1f x x= −  is such a simple and useful function. 
It is well known that an exponential operation is highly useful in dealing with 

similarity relations, Shannon entropy in cluster analysis and other areas. We 

therefore choose the function xf x e−( ) = , then a similarity measure 

between A and B is defined as follows: 
1

1

d A B

e

e e
S A B

e

− −

−

( , ) -
( , ) =

1-
 

On the other hand, we may choose ( ) 1/ (1 )f x x= + , then a similarity 

measure between A and B is defined as follows: =c

d A B
S A B

d A B

1- ( , )
( , )

1+ ( , )
. 

If we choose pf x d A B p≤ ∞( ) =1- ( , ) ( 1 < ) , then a similarity measure 

between 

A and B is defined as: p
pS A B d A B（ , ）=1- ( , ) . 

Next, we discuss what properties 
e c pS A B S A B S A B( , )， ( , )， （ , ）and their 

corresponding distance satisfy. 

Theorem 5. If 
e cS A B S A B( , )， ( , ) and

pS A B（ , ）satisfy Property 1(1-3), then the 

corresponding d A B( , )  satisfy Corollary 1(1-3). 

Proof.  For
1

1

d A B

e

e e
S A B

e

− −

−

( , ) -
( , ) =

1-
, 1 1ln ed A B e S A B e− −( , ) =- ( ( 1- ) ( , ) + )  at axis 

( [0,1], [0,1]ed A B S A B∈ ∈( , ) ( , ) )  with 
eS A B( , )  is an isomorphism; For 

=cS A B( , ) d A B

d A B

1- ( , )
1+ ( , )

， =2/( ) 1cd A B S A B( , ) ( , ) +1 -   

at axis ( [0,1]d A B ∈( , ) , 
cS A B( , ) [0, 1]∈ )  with 

cS A B( , )  is an isomorphism; 

For p
pS A B d A B（ , ）=1- ( , )  , 
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= 1p
pd A B S A B−( , ) （ , ） 

at axis d A B( ( , ) [0,1], [0,1]pS A B∈ ∈（ , ） )  with
pS A B（ , ）is an isomorphism.  

The four numerical characteristics of intuitionistic fuzzy sets include distance, 

similarity measure, inclusion measure and entropy, above theorems and corollaries 

show that E  can be expressed by I or S , I can be expressed by S , 

and S and d can be expressed by each other as Fig.1. 

 

Fig. 1. Relation figure of four numerical characteristics 

As Fig. 1, in order to achieve the four numerical characteristics can be expressed 
each other, we need a formula which can express S by E . 

For the problem about S be expressed by E , by Theorem 2 in [13], we define 
A , B ∈  S for all x X∈ , define ( , )T A B : 

( , ) (1+ min(| ( ) ( ) |, | ( ) ( ) |)) / 2T A B A B A Bx x x xμ μ μ ν ν= − − , 

( , ) (1 max(| ( ) ( ) |, | ( ) ( ) |)) / 2T A B A B A Bν μ μ ν ν= − − −x x x x , 

( , )T A B ∈  S is obvious, then we have the following theorem.  

Theorem 6. Suppose E  is an entropy of intuitionistic fuzzy sets, for ,A B∈  S, then 
(( ), )) ( ,S E T AA BB =  is a similarity measure of intuitionistic fuzzy sets A and B . 

This proof is similar with that of Theorem 2 in [13]. 

4   Conclusion 

Considering the importance of numerical characteristics such as similarity 
measures, inclusion measures, entropies and distances of intuitionistic fuzzy sets, in 
this paper, we introduced an axiomatic definition of distances of intuitionistic fuzzy 
sets base on the axiomatic definition of the similarity measures. Our results show 
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that the similarity measures, inclusion measures and entropies of intuitionistic fuzzy 
sets can be expressed by a distance of intuitionistic fuzzy sets. Furthermore, our 
results show that any one of the four numerical characteristics of intuitionistic fuzzy 
sets can be expressed by any other. 

 We believe that based on the obtained results in this paper, four numerical 
characteristics can be applied to more fields such as pattern recognition, image 
processing, approximate reasoning, fuzzy control, and so on. 
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Abstract. To make a synchronized multi-hop cluster-tree network suitable for QoS 
support in WSNs, this paper unveils the applications of cluster-tree topology and 
proposes scheduling mechanisms approach based on time division. In this 
approach, time is divided into beacon frames and superframe duration that can be 
sent during the inactive period of its neighbor coordinators. Each coordinator 
transmits its beacon frame at the starting time Beacon_Tx_Offset,which is required 
to be different from that of its neighbor coordinators’ and of its father coordinators’. 
This approach requires that when waken up, a coordinator should be active, so is its 
father node. The feasibility of this proposal has been exactly demonstrated through 
an experimental test platform based on an implementation of IEEE 802.15.4/Zigbee 
protocols built by ourselves. 

Keywords: Zigbee, Cluster-tree, Superframe,Time Division, Synchronization. 

1   Introduction 

15.4b Workgroup [1] has been trying to improve IEEE 802.15.4 ,and to avoid 
beacon frame’s collision , it has put forward some basic methods to be discussed, 
which may be adopted in the coming standard expansion. The first method is 
beacons’ single-period method, in which we can set a time window at the beginning 
of the superframe that can be transmitted as a beacon frame. The second method is 
based on time division, in which the beacon frame of a special cluster is suggested 
to be transmitted when the other clusters are inactive. However, how to avoid 
beacon frames’ collision is not presented. 

2   Problem Discription 

In cluster-tree networks of zigbee, beacon frame is used to synchronize every 
cluster, so if one node is within two ZCs communication range,  collision of beacon 
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frames sent by the two ZCs may occur, which can result in failure of 
synchronization between this node and its father node. 

Fig. 1 shows us a IEEE 802.15.4/Zigbee network containing N coordinators 

( ){ } Niiii BISDZR ≤≤= 1, , which can produce periodic beacon frames according 

to iSO and iBO . iSD  and iBI  stands for iZR ’s superframe duration and 

beacon interval respectively. The question is how to organize the beacon frames of 
the different coordinators to avoid their collision with other beacons or data frames 
by the method of time division. Obviously, we can transfer beacon frames by a 
continuous sequence, with which collisions between both direct and indirect 
neighbor coordinators can be avoided. Furthermore, beacon frames mustn’t be 
transmitted in any superframe duration of other coordinators. Because each SD 
begins from beacon frame, beacon frame’s scheduling returns to superframe 
scheduling. This problem is about non-priority scheduling of a group of periodic 
tasks, the time taken by which is individual to superframe continuing time, and its 
period is equal to BI. Accordingly, beacon is used to divide superframe duration 
when superframe schedule is running. 

 

Fig. 1. Cluster-tree topological model 

Two cases of superframe scheduling will be discussed later. Firstly, cases of 
constant SD (BOs may be different with each other ); secondly, we extend 
conclusions of constant SD to cases of different SD.    

We will discuss the two cases of superframe scheduling. Firstly, BOs are 
different; secondly, we can extend the conclusion to cases with different superframe 
duration.   
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3   Beacon Frame Scheduling Mechanisms for the Time Division 
Approach   

3.1  Superframe Duration Scheduling algorithm for the Time Division 
Approach 

In case of equal superframe durations, the superframe scheduling problem is 
somewhat similar to the pinwheel scheduling problem presented in [2-4]. The 
pinwheel problem consists in finding for a set of positive integer a cyclic schedule 

of indices ( )nj ,,2,1 "∈ such that there is at least one index j within any interval 

of ja slots. By analogy to our problem, given a set of beacon 

intervals ( )NBIBIA ,,1 "= , the problem is to find a cyclic schedule of 

superframe durations such that there is at least one iSD in each iBI . In addition to 

the pinwheel problem, the distance between two consecutive instances of iSD must 

be equal to iBI . In this paper, we propose a general result for the scheduling 

problem for different and equal superframe durations. 
The definition of a set MC  is:  

{ }
⎪⎩

⎪
⎨
⎧

≤<

=
=

∑ .11 by  divisibleexactly  is 

,,,1

iij

n

M
aaajwheni

aaAA
C

，，

"
 (1) 

If a circular schedule exists, the least period will be the least common multiple of 
all the set’s members, which can be mathematically described as: 

( ) ( )i
Ni

n aaaaLCM
≤≤

=
1

21 max,,, " . 

 
Proof. The proof is made by contradiction. Assume that a cyclic schedule exists for 

an instance ∈A □M of the pinwheel problem. Since iaji ⇒<∀  divide ja  , 

the ji <∀  it exists an integer ijk  such that iijj aka ⋅=  (harmonic integers). 

Then, we have ( ) ( )i
Ni

n aaaaLCM
≤≤

=
1

21 max,,, " . 

Assume that the minimum cycle length is different from 

( )naaaLCM ,,, 21 " . Then, since ( )naaaLCM ,,, 21 "  is not a cycle length, 

it exists a time slot n  that contains ia  such that the 

( )( )thnaaaLCMn ,,, 21 "+ time slot does not contain ia . Since 

( )naaaLCM ,,, 21 "  is a multiple of ia , it directly implies that the set is not 

schedulable, which is absurd. 
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Therefore, to perform the scheduling operation of inconstant SD and BI 
superframe sequence, we put forward Superframe Duration Scheduling(SDS) 
algorithm, according to which we can produce a schedule list of schedulable 
superframe sequence. The algorithm is also applicable to constant period 
superframe sequence. 

The necessary condition of a network with N coordinators 

( ){ } Niiii BISDZR ≤≤= 1,  whose iSD  are different is 

1
11

≤=∑∑
==

N

i i

i
N

i
i BI

SD
DC  (2) 

Define superframe duration  

( ) ( )in BO

Ni

bobobo
maj LCMBI 2max2,,2,2

1

21

≤≤
== " , known as major cycle, 

while the least BI is known as minor cycle. 
The idea of the SDS algorithm is the following: 

 

(1) Describe the set of beacon frame intervals as { } Ni
BOiA ≤≤= 12

.
 

(2) The minimum beacon interval min2min
BOBI = is calculated. 

(3) Sequence the members of A in the increasing order of iBO . 

(4) If ( )ji BIBI = , then 

(5) If ( )ji SDSD ≥ , put iBI  precede to jBI ; 

(6) Or else put jBI  precede to iBI ; 

(7) Divide majBI  by ( ) NiiSD <<1min  into n slot time;  

(8) For (each element i  in A ), do { 
(9) Search the first retrievable slot time whose length is iSD ; 

(10) Write(i) write down  the retrievable slot time; 
(11) Repeat. 
(12) If (write (i)=false). 
(13) Then return (“not schedulable”). 
(14) Until(reaching the end of the major cycle)}. 
(15) Return(“schedule terminates”). 

3.2   Superframe Duration Scheduling with Coordinator Grouping 

Here, we extend time division method to optimum superframe scheduling algorithm 
of large-scale network. Results show that some coordinators are so far away from 
each other that their transmitting ranges don’t overlap, they can transmit beacons 
simultaneously without direct or indirect beacon frame collision. 
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C0C1 C2

C0 C1 C2

C3

C3PAN  Coordinator

Zigbee  End  Device

Zigbee  Router

Parent-to-child
Relationship

 

Fig. 2. The geographic distribution of the nodes in the network 

To illustrate this method intuitively, we take an example as Fig. 2, which has 
shown us a distributive network, whose parameters are listed in Table 1 (SD is a 
unit of time). 

Table 1. Example of PAN configuration 

Coordinator S
O 

B
O 

S
D 

BI 

C0 0 1 1 2 
C1 0 1 1 2 
C2 0 1 1 2 
C3 0 1 2 

 
 
Fig. 2 demonstrates that collisions among beacons from C0, C1 and C2 occur 

because of the transmitting range of C0 and that of C1 and C2 overlap. According to 
the above formula, the four coordinators cannot perform superframe duration 
schedule because the total duty cycle is bigger than 1 ( )15.15.05.05.0 >=++ . 

However, because C1, C2 and C3 is neither direct nor indirect neighbour (their 
transmitting range doesn’t overlap), they can send beacon frame simultaneously. 
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Thus, we allow C1, C2 and C3 send beacon frame simultaneously, C0 follows 
behind. In this case, beacon frame collision will not occur and this group of 
coordinators becomes schedulable, as shown in Fig. 3. 

 

Fig. 3.  Superframe duration scheduling with coordinator grouping 

The common method of node group’s sending beacon frame simultaneously is 
described as follows: supposed each coordinator’s transmission range is a circle 
whose radius is r. The nonoverlapping of two coordinators means the distance 
between them is at least 2·r, and the simultaneously sending beacon frames is 
allowed by the two coordinators. When the vertex indicates coordinator, arris 
indicates the line of the length more than 2·r  used to connect  two coordinators, we 
need to consider vertex coloration in graphics [5-6], whose algorithm can be 
realized in PAN coordinator. Proposed the position of all the coordinators in the 
network is known, and they are split up into groups, the information of which is 
returned to nodes. After vertex coloration is carried out, the coordinators with the 
same color and in the same group can send beacon frame at the same time as all the 
coordinators in the same group. 

The advantage of the grouping policy is: a schedule for the group of coordinators 
whose duty cycle is greater than 1(as in the above example). 

4   Implementation Introduction 

Factually, superframe scheduling algorithm (without coordinators’ grouping) can 
be easily realized by modifying IEEE 802.15.4 somewhat. When a new coordinator 
has joined in the network, it sends superframe structure regulations(BO and SO) in 
single-hop form to PAN coordinator, which call the above algorithm to analyze the 
whole coordinator group’s schedule ability(containing the new one’s). If the 
algorithm can produce a valid schedule list, the new coordinator will be allowed to 
send beacon frame. Simultaneously, the new schedule list is returned to all the 
nodes by beacon frame. Then, all the coordinators update their offset, referring to 
which beacon frame is sent. What we should pay attention to is a coordinator’s 
offset is decided in reference to its father coordinator’s beacon transmission time. 
And if a valid is not produced by the algorithm, the corresponding coordinator will 
not be allowed to send beacon frame. 
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5   Conclusion 

In this paper, according to improve IEEE 802.15.4/Zigbee cluster-tree standard, we 
propose superframe scheduling algorithm, which arrange superframe time sequence 
of different coordinators judging by SO and BO in non-overlap mode. At the same 
time, we point out the method could be improved by dividing coordinators into 
groups, which would increase complexity when carried out. 

An important step in this method is understanding the extension structure’s 
complexity of cluster tree in IEEE 802.15.4/Zigbee WPANs and finding a method 
of expansion. Presently, these methods are run and tested on the experiment 
platform, and the protocol stack’s basic functions of IEEE 802.15.4/Zigbee have 
been realized [7]. 

Acknowledgements. This project is supported by the Scientific and Technological Research 
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Discovery of S-Rough Decision Law and Its Relation 
Metric 
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Abstract. For dynamic decision-making system law mining, by using two direc-
tion S-rough decision model, this paper presents the concepts of two direction S-
rough decision law, and F -law decision relation metric; by using these concepts, 
this paper proposes characteristic theorem of F -rough decision law relation 
metric, dependence theorem of F -rough decision law relation metric, the princi-
ple of F -rough decision law discovery and gives the application of F -rough 
decision law in profit risk decision analysis. 

Keywords: Function two direction S-rough sets, F -decision rough law, rough 
decision law relation metric, the discovery principle of F -rough decision law. 

1   Introduction 

Many decision-making systems, such as economic decision-making system, manage- 
ment and decision-making system are always interfered by the interior factors, or the 
exterior factors, which makes the decision-making factors in the decision-making sets 
change, getting more or less, and the dynamic change of the sets must cause the dy-
namic change of the decision-making. As a result, the sequence decision-making 

0 0 0 0( (1), (2), , ( )),u u u u n= " which is gotten by the decision-making system dealing 

with some sequence event A0=(a0 (1), a0 (2), …, a0 (n)) is changed to 
( (1), (2), ,u u u′ ′ ′= "  ( )),u n′  moreover 0 0( , ( ) ( ), {1,2, , }),u u k u k u k k n u′ ′ ′≠ ∃ ≠ ∈ "   

deviates from the given 0.u This fact indicate that there is a relation between 

u′ and 0.u Assume that the sequence decision-making ( (1), (2), , ( )),i i i iu u u u n= "  

which is gotten by the decision-making system dealing with some sequence event 
Ai= (ai(1), ai(2), …, ai(n)) is a discrete law, then the sequence decision-making 
family gotten by the decision-making system dealing with sequence event set 
A={A1, A2,…, Am} make up of an uncertain decision-making discrete law set or 
discrete function set * { | ( (1), (2),i i i iQ u u u u= =  , ( )), 1,2, , }.iu n i m=" " The at-

tributes are supplemented or deleted from the decision attribute set α is equal to 
that the decision factors in the decision factor set getting more or less. Obviously, 
if we treat the disturbance to the interior or the exterior factors of the  
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decision-making system as the decision factors deleting or supplementing to the 
decision factor set *α of decision law set * ,Q and the decision law can compose to 
different decision law equivalence class according to the different characteristics of 
the decision factors or decision attributes, then this process can be abstracted to a 
phenomenon in function two direction S-rough sets [1-10]: the attribute setα of 
function equivalence class [ ]u is underF - disturbance, then the elements in func-

tion equivalence class [ ]u are supplemented or deleted. This fact is consistent to 

the characteristic of function two direction S-rough sets. Based on this fact, people 
wonder that if we can study the decision law of the dynamic decision-making sys-
tem by using the law characteristic and the dynamic characteristic of function two 
direction S-rough sets [1-10], and to know the relationship among the decision 
laws, as well as using the relations to adjust and control the decision-making of the 
system.  

The main results of this paper is that giving the decision law and its existence, 
( , )f f -decision law generation,F -decision rough law generation and its charac-

ter-ristics, ( , )f f -decision law relation metric theorem, and F -rough decision 
law relation  metric theorem , discussing the discovery principle of F -rough 
decision law and giving the applications. 

2   Two Direction S-Rough Decision 

Let two direction S-sets X* be a decision factors (target) set of a decision event a, 

1 2{ , , , }nD d d d= " be decision-making countermeasure set. ( )*x
ju is decision on 

countermeasure jd of * *( ) ( , ) ( ),X R X°= F or called the lower decision of counter-

measure jd ; ( )* [0,1],x
ju ∈  moreover 

2

( )* ( )* ( )* ( )* ( )* ( )* ( )*

1 1

1 / (1 ( ( )) / ( ( )) )
p

x x x x p x x x p
j i i ij i ij i

i i

u w g r w r b
σ σ

= =

⎧ ⎫= + − −⎨ ⎬
⎩ ⎭
∑ ∑           (1) 

Where ( )* ( )* ( )* ( )*1, 2, , ; , , ,x x x x
ij i i ij n r g b w= " is the target superior degree, maximum 

superior degree, minimum superior degree, target weigh and of the ith decision 

factor of jd with respect to *( )X , and ( )*

1

1x
i

i

w
σ

=

=∑ . 

By using (1), the lower decision set of event a is obtained, moreover 

( )* ( )* ( )*
1 2{ , , , }x x x

nu u u"                          (2) 

( )*y
ju is rough decision on countermeasure jd of * *( ) ( , ) ( ),Y R X= DF  or called the 

upper decision of counter- measure jd with respect to *( )Y ; ( )* [0,1],y
ju ∈  more-

over 



Discovery of S-Rough Decision Law and Its Relation Metric 415
 

2

( )* ( )* ( )* ( )* ( )* ( )* ( )*

1 1

1/ (1 ( ( )) / ( ( )) )
p

y y y y p y y y p
j i i ij i ij i

i i

u w g r w r b
τ τ

= =

⎧ ⎫= + − −⎨ ⎬
⎩ ⎭
∑ ∑         (3) 

By using (3), the upper decision set of event a is obtained, moreover 

( )* ( )* ( )*
1 2{ , , , }y y y

nu u u"                           (4) 

Assume that sorting sequence on (2), (4): 

( )* ( )* ( )*
1 2

x x x
nu u u≤ ≤ ≤"                                                (5) 

( )* ( )* ( )*
1 2

y y y
nu u u≤ ≤ ≤"                                                (6) 

Two direction S-rough decision set of event a is obtained from (5),(6), more-
over 

( )* ( )* ( )* ( )* ( )* ( )*
1 1 2 2{( , ), ( , ), ( , )}x y x y x y

n nu u u u u u"                                (7) 

Where ( )* ( )*( , )x y
j ju u is a rough decision of X*. sequence (7) can be used in 

choosing decision-making. 
The following result can be obtained easily. 
 

Theorem 1.  If decision factors (target) sets * *
p qX X≠ of event a, then Rough deci-

sion of * *,p qX X fulfill 
( )* ( )* ( )* ( )*( , ) ( , )x y x y
p p q qu u u u≠                                            (8) 

 

Theorem 2.  If rough decision ( )* ( )*( , )x y
j ju u of  X* fulfill 

( )* ( )*x y
j ju u= ,                                                      (9) 

then                                        * *( , ) ( ) ( , ) ( )R X R X°
° =F F                                  (10) 

More concepts of function S-rough sets and S-rough decision can be found in 
[1-4]. 

Base on two direction S-rough decision, the discussion aboutF -rough decision 
law relation is given in section 3. 

3   Decision Law Generation and F -Decision Law Relation 
Metric  

According to section 2, two direction S-rough decision set of sequence event Ai= 
(ai(1), ai(2), …, ai(n)) can be obtained, moreover  

( )* ( )* ( )* ( )* ( )* ( )*
1 1 2 2{( , ), ( , ), , ( , )}x y x y x y

i i i i in inu u u u u u"                               (11) 

Where ( )* ( )*( , )x y
ij iju u is two direction S-rough decision of event aij,  j=1, 2, …, n. 
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Definition 1. ( , )i iu u  is called two direction S-rough decision law that is gener-

ated by the sequence event Ai= (ai(1), ai(2), …, ai(n)), for short two direction S-
rough decision law of Ai , moreover 

( )* ( )* ( )* ( )* ( )* ( )*
1 1 2 2( , ) (( ), ( ), , ( , ))x y x y x y

i i i i i i in inu u u u u u u u= "                          (12) 

Where ,i iu u are the lower decision law and the upper decision law of ( , )i iu u , 

respectively; or called the lower decision law and the upper decision law of Ai, 
respectively. ( )* ( )*( , )x y

ij iju u is two direction S-rough decision of event aij,  

j=1, 2, …, n. 
According to Definition 1, it follows: event set A={A1, A2, …, Am} generates the 

two direction S-rough decision set * {( , ) | 1,2, , }i iQ u u i m= = " , the two direction 

S-lower decision law set * { | 1,2, , },iQ u i m= = " and the two direction S-upper 

decision law set * { | 1,2, , }.iQ u j m= = " Obviously, With a common attribute set 

of the whole decision on law constitutes decision law equivalence class 1[ ] { ,u u=  

2 , , };mu u" And the attributes are supplemented or deleted from the decision at-

tribute setα is equal to that the decision factors in the decision factor set *X getting 
more or less. When the attributes are supplemented or deleted from the decision 
attribute set α , the decision law equivalence class [ ]u ′with changed attribute set 

α  can be obtained.  
 

Definition 2. Decision law ( , )

1 2[ ] { , , , }f fu u u uλ= " is called the ( , )f f -decision law 

of decision law 1 2[ ] { , , ,u u u= "  };mu if the attribute set ( , )f fα of ( , )[ ] f fu  and the 

attribute set α of [ ]u satisfy   
( , ) { | ( ) , } { | , ( ) }f f

t t t t s s s sffα α α β α α β α α α α α β α= = ∈ ∈ − ∈ = ∈∪    (13) 
( , ) ( , ) ( , ) ( , )( (1), (2), , ( ))f f f f f f f fu x x x n= " and ( (1), (2),u x x=    , ( ))x n" are called 

the composition of ( , )[ ] f fu and [ ]u  respectively, if  

( , ) ( , )( ) ,f f f fx k u∀ ∈ ( , )

1

( ) ( )f f
i

i

x k x k
λ

=

=∑                            (14) 

1

( ) , ( ) ( )
m

j
j

x k u x k x k
=

∀ ∈ =∑ , 1, 2, ,k n= " .                        (15) 

Where
( , )[ ] , ( (1), (2), , ( )), 1, 2 [ ], ( (1), (2), ,, , ;f f

i i i i i j j j j
u u u x x x n i u u u x xλ∀ ∈ = = ∀ ∈ =" ""

( )), 1, 2 ( ) , 1, 2, ,, , , ; , ( ) , , ( )
j j t t t s s sx n x t tj m n ffβ α β α α α α α β∈ == ∈ = ∈ ∈ = ∈"" \  

1 2, , , { , , , },s t rVα β β α α α α∈ = "  V is the attribute universe.  
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Definition 3. The decision law pair which is composed of [ ]u − and [ ]u −  

( [ ] ,[ ] )u u −
−                                                        (16) 

is called rough decision law generated from function two direction S-rough sets, 
rough decision law ( [ ] ,[ ] )u u −

− for short.  

 
Definition 4. TheF - decision law pair which is composed   of [ ]u F and [ ]u F  

( [ ] ,[ ] )u u F

F                                                      (17) 

is called F -rough decision law generated from ( [ ] ,u − [ ] )u − , F -rough decision 

law ( [ ] ,[ ] )u u F

F  for short. 

Where[ ]u F is the -F decision law of [ ] ,u − and  
( , ) *[ ] ( , ) ( )[ ] ,f f

i iu R Qu = = D∪ FF F  *[ ] [ ] ( , ) ( )i iu u R Q− = = F D∪ ; [ ]u F is the -F deci-

sion law of [ ] ,u − and 
( , )[ ] [ ] f f

j ju u= ∪ 　F  *( , ) ( ) ,R Q= D FF *[ ] [ ] ( , ) ( )j ju u R Q− == D∪ 　 F [1-6].  

 
Definition 5. Let ( , )[ ] f f

i
u be the ( , )f f -decision law of 0[ ] ,u  ( , )

0( ( ), ( ))f f

i
u k u kμ  is 

called the decision law relation coefficient of ( , )[ ] f f
iu 　 with respect to 0[ ]u 　at point 

k , if  

( , )

0 0, 0, 0,
, ,

( ( ), ( )) maxΔ ( ) / Δ ( ) maxΔ ( )f f

i i i i
i k i k

u k u k k k kμ ρ ρ= +              (18) 

where 1,2, , 1k n= −" .  

0, 0, 0,Δ ( ) ( ) ( )
i i i

k S k S k= +　  , 0, 0, 0,( ) | ( 1) ( ) |
i i i

S k P k P k= + −            (19) 

 
0, 0, 0, 0,

0, 2 2

0, 0, 0, 0, 0, 0,

(1 / 2) (| ( 1) ( ) |), ( 1) ( ) 0
( )

| ( 1) | | ( ) | /2(| ( 1) ( ) |), ( 1) ( ) 0

i i i i

i

i i i i i i

P k P k P k P k
S k

P k P k P k P k P k P k

⋅ + + + ≥
=

+ + + − + <

⎧⎪
⎨
⎪⎩ 　

   (20)

0, 0( ) ( ) ( )
i i

P k x k x k= −                                           (21) 

(0,1]ρ ∈ is the detached coefficient of ( , )[ ] f f

i
u about 0[ ]u , 

( , ) ( , ) ( , )( (1), (2), ,f f f f f f

i i i
u x x= "  ( , ) ( ))f f

i
x n , 

0 0 0( (1), (2),u x x= 0 ( ))x n" , ( , )

0( ), ( )f f

i
x k x k ∈\ . 

 

Definition 6. ( , )
0( , )f f

iu uγ is called the decision law relation metric of decision law 
( , )[ ] f f

i
u 　 with respect to decision law 0[ ]u 　, if 

1
( , ) ( , )

0 0
1

( , ) (1 / ) ( ( ), ( ))
n

f f f f

i i
k

u u n u k u kγ μ
−

=

= ⋅∑                          (22) 
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Definition 7. Let ( [ ]([ ] , )uu F
F be the -F decision law of 

[ ] ( ( ( ), ( )),( ,[ ] ),u u k u ku μ−
−− F   ( ( ), ( )))u k u kμ −F and ( ( , ), ( , ))u u u uγ γ −

−
F

F are called 

the decision law relation coefficient and the decision law relation metric of 
[ ]([ ] , )uu F

F  about [ ]([ ] , )uu −
− at point k , respectively. 

Where ( , )u uF
F is the composition of [ ]([ ] , )uu F

F ; the structure of ( ( ),u kμ F  

( )),u k−  ( ( ), ( ))u k u kμ −F , ( , )u uγ −F  and ( , )u uγ −F are the same as the forms of 

(18) and (22) , respectively. By definitions 1-7, the following fact can be obtained. 
 

Theorem 3. (Characteristic theorem of ( , )f f -decision law metric). If 
( , )

0( , )f f

i
u uγ  is the ( , )f f -decision law relation metric of ( , )[ ] f f

i
u 　  with respect to 

0[ ]u , then  

 
1D Regularity. ( , )

00 ( , ) 1f f

i
u uγ< ≤ ; 

2D Symmetry. ( , ) ( , )

1 0 0 1( , ) ( , )f f f fu u u uγ γ= ;    

3D Non-uniformity. ( , ) ( , )

0 0( , ) ( , ), 2f f f f

k k
u u u u kγ γ≠ > . 

 

Proof.1D By (19), it follows 0,Δ ( ) 0; , ,
i

k i k≥ ∀ by (22), there is ( , )
00 ( , ) 1.f f

iu uγ< ≤  
1

( , ) ( , ) ( , ) ( , )

0 0 0
1

( , ) 1 ( ( ), ( )) 1, 0 ( ( ), ( )) 1 ( ( ),
n

f f f f f f f f

i i i i
k

u u u k u k n u k u k u kγ μ μ μ
−

=

= ⇔ = − < ≤ ⇔∑ 　

0, 0,0 1 Δ ( ) 0 ( ) 0( ))
i i

k S ku k = ⇔ = ⇔ = and

0,

( , ) ( , )
0 0( ) 0 ( ) ( ) .

i

f f f f
i iS k u k u k u u= ⇔ ⇔ =＝  

2D If ( , )
1 0{ , },f fu u u= then there must be 0, 0,1 1,0

,
max ( ) max ( ) max ( )

i
i k k k

k k kΔ = Δ = Δ =  

,0
,

max ( )i
i k

kΔ in (4), so ( , ) ( , )
1 0 0 1( , ) ( , ).f f f fu u u uγ γ=  3D If  

( , ) ( , ){ | 1, 2, , ;f f f f
ju u j m= = "  2},m > since 0,

,
maxΔ ( )

j
j k

k　 ,0
,

maxΔ ( ),
j

j k
k≠ then there 

must be 3D . 
 
Theorem 4. (Characteristic theorem of -F decision law relation metric). If 
( ( , )

i
u uγ −F , ,( , )iu uγ −F ) is the -F decision law relation metric of ,([ ] [ ], )

i i
u uF

F with 

respect to ([ ] ,u − [ ] )u − , then  

 
1D Regularity. 0 ( , ) 1

i
u uγ −< ≤F , ,0 ( , ) 1

i
u uγ −< ≤F ;  

2D Symmetry. 1 1( , ) ( , )u u u uγ γ− −=F F , ,1 ,1( , ) ( , )u u u uγ γ− −=F F  

3D Non-uniformity. ( , ) ( , ),
k k

u u u uγ γ− −≠F F
, ,( , ) ( , ), 2
k k

u u u u kγ γ− −≠ >F F .  

 
Theorem 4 can be proved in a similar way as shown theorem 3 and it is omitted. 
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4   Relation Metric and the Discovery of F -Rough Decision 
Laws  

Definition 8. The band composed of rough decision law ( [ ] ,[ ] )u u −
− is called 

rough decision law band, moreover 

  BAND{ , }D D−
−                                                   (23) 

,D D−
− are called the lower boundary and upper  boundary of BAND{ , }D D−

−  

respectively . 
The band composed of F -rough decision laws ( [ ] ,[ ] )u u F

F  is called F -rough 

decision laws band, moreover 

BAND{ , }D DF

F                                                 (24) 

,D DF

F are called the lower boundary and upper  boundary of BAND{ , }D DF

F  

respectively. Where ,D u D u− −
− −= = ; ,D u D u= =F F

F F .  

 
Definition 9. TheF -decision law relation coefficient pair composed of ( ( ),u kμ F  

( ))u k− and ( ( ), ( ))u k u kμ −F , 

( ( ( ), ( )), ( ( ), ( )))u k u k u k u kμ μ −
−

F

F                                    (25) 

is called theF -rough decision law relation coefficients of ([ ] ,[ ] )u u F

F with re-

spect to ( [ ] ,[ ] )u u −
− at point k . 

 
Definition 10. The F - rough decision law relation metric pair composed of 

( , )u uγ −F  and ( , )u uγ −F ,   

       ( ( , )u uγ −F , ( , )u uγ −F )                                          (26) 

is called theF -rough decision law relation metric of ( [ ] [ ] ),u u F

F with respect to 

( [ ] ,[ ] )u u −
− . 

By definitions 6-10, the following fact can be obtained.  
 

Theorem 7. (Dependence theorem of F -rough decision law relation metric). Let 

, ,([ ] ,[ ] ) ([ ] ,[ ] )
i i j j

u u u uF F

F F， beF -rough decision law respectively; 

 ,( , )( , ),
i i

α αα α −
−

F

F  and ,( , )
j j

α αF

F  be the attribute sets of ,([ ] ,[ ] )
i i

u u F

F ,  

( [ ] ,[ ] ),u u −
−   ,([ ] ,[ ] )

i i
u u F

F  and ,([ ] ,[ ] )
j j

u u F

F respectively, 

if                                        ( , )α α −
− ⇒ ,( , )

i i
α αF

F ⇒ ,( , )
j j

α αF

F                          (27) 

then                                 , ,( , ) ( , )
j i

u u u uγ γ− −≤F F , ( , ) ( , )
j i

u u u uγ γ− −≤F F                 (28) 
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Where ( [ ] ,[ ] )u u −
− is rough decision law; ,u u−− are the composition of  [ ]u −  and 

[ ]u −  respectively; and , , ,
i j i j

α α α α⇒ ⇒F F

F F ,  are written  as 

, ,( , ) ( , )
i i j j

α α α α⇒F F

F F . 

 
Proof. Since , , ,

i j
α α α− ⇒ ⇒F F namely , , ,

i j
α α α− ⊆ ⊆F F , ,[ ] [ ] [ ]

j i
u u u −⊆ ⊆F F  As-

sume that , ,, ,i ju u u− F F  are the composition of [ ] ,u −  ,[ ]
i

u F and ,[ ]
j

u F respectively, 

obviously, there is , , , ,, {1, 2, , }, ( ) ( ) ( );
j i j i

u u u n x x xλ λ λ λ− −≤ ∀ ∈ ≤ ≤≤ "F F F F  

,( ) , ( )
i

x u xλ λ− −∈ ∈F  , .juF  namely By (18)-(22), it follows , ,( ) ( , ),,
j i

u u u uγ γ− −≤F F  

namely where u− is the composition of 

[ ] ,u − and ( (1), (2), , ( )), 1, 2, , .( ) ,u x x x n nx λλ− − − − −= =∈" "\  ( , )
j

u uγ −F  ( , )
i

u uγ −⇒ F  

can be proved in a similar way as shown  and it is omitted. 
 
Corollary 1. Let , ,([ ] ,[ ] ), ([ ] ,[ ] )

i i j j
u u u uF F

F F be F -rough decision law generated 

from ([ ] ,[ ] )u u −
− respectively; ,( , ), ( , )

i i
α α α α−
−

F

F , and ,( , )
j j

α αF

F be attribute sets of 

( [ ] ,u −  [ ] )u − , ,([ ] ,[ ] )
i i

u u F

F , ,([ ] ,[ ] )
j j

u u F

F respectively, if 

       , ,( , ) ( , ) ( , )
j j i i

α α α α α α −
−⇒ ⇒F F

F F ,                                  (29) 

 then                       , ,( , ) ( , )
i j

u u u uγ γ− −≤F F ,  ( , ) ( , )
i j

u u u uγ γ− −≤F F    .                  (30) 

Corollary 1 can be proved in a similar way as theorem 7 and it is omitted. 
 

Theorem 8. (The invariance theorem of F -rough decision law relation metric) 
Let ,([ ] ,[ ] )

i i
u u F

F and ,([ ] ,[ ] )
j j

u u F

F  be F -rough decision law; 

,( , )
i i

α αF

F and ,( , )
j j

α αF

F   be the attribute sets of ,([ ] ,[ ] )
i i

u u F

F and ,([ ] ,[ ] )
j j

u u F

F re-

spectively, and ,( , )
j jα α ≠F

F  ,( , );
i i

α αF

F  if 

,, , ( ) , ( ), , , , ,
i i pi f ff f F f f F

γ λ λ γλ α α α β α α βα α ′ ∈ ′ ′∃ = ∈ =′ ′∈ ∈ ∈ ∈F

FF  , ,
i

αF  

,
, , ( ) ,

ii q i p p
fγ αβ α β α β α′ ′∈ ∈ = ∈

F

F F ( ) ,
q q i

f β α α′ ′= ∈ F  moreover  

, ,
{ | ( ) } { | ( ) }

j i p p p
f fλ λ λα α α β α α α β= = − =∪

F F
               (31) 

{ | ( ) } { | ( ) }
j i q q q

f fγ γ γα α α β α α α β′ ′ ′ ′= = − =∪F F                 (32) 

then                            , ,( , ) ( , )i ju u u uγ γ− −=F F , ( , ) ( , )
i j

u u u uγ γ− −=F F .               (33)

  
Proof. Since , ,i jα α≠F F , then , ,[ ] [ ] ;

i j
u u≠F F Since 

, ( ), , ,
i

ff F f F λ λα α α∃ ∈ =∈ ∈ F  , , ,, ( ), ,
i p i p p i

fλβ α β α β α α∈∈ =∈F F F more-

over , , { | ( ) } { |
j i p p p

f λα α α β α α= = −∪F F     ( ) },f λ λα β= so ,[ ]
i

u F and ,[ ]
j

u F have the 

same attribute, , ,[ ] [ ]
i j

u u=F F , namely ,iu =F  , ;juF  by (18) -(22),  it follows 
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, ,( , ) ( , )i ju u u uγ γ− −=F F . ( , ) ( , )
i j

u u u uγ γ− −=F F  can be proved in a similar way as 

shown (24) and it is omitted.  
 
Theorem 9. Let , ,( , ), ( , )

i i j j
α α α αF F

F F and ,( , )k kα αF
F be attribute sets ofF -rough 

decision law , ,([ ] ,[ ] ), ([ ] ,[ ] )
i i j ju u u uF

F

F
F and ,([ ] ,[ ] )

k k
u u F

F  which are generated 

from ( [ ] ,[ ] )u u −
− , moreover 

, , ,( , ) ( , ) ( , )
i i j j k k

α α α α α α⇒ ⇒F F F

F F F                           (34)  

Then ,BAND{ , }
t t

D DF

F composed of ,([ ] ,[ ] )
t t

u u F

F generate 

,BAND{ , }
k i

D DF

F                                                (35) 

,BAND{ , }
t t

D DF

F  is sub-bands of ,BAND{ , }
k i

D DF

F , Where , ,t i j k= . 

By theorems 7-9 and corollary 1, it follows:  

The principle of F -rough decision law discovery 
If there is ,([ ] ,[ ] )

k k
u u F

F in ,{([ ] ,[ ] ) | 1, 2, , },
i i

u u i m=F

F "  and its F -rough decision 

law relation metric ,( ( , ),
k

u uγ −F ( , ))
k

u uγ −F  satisfies                                            

       , ,
1

( , ) max( ( , ))
m

i
i

u u u uλγ γ− −
=

=F F , 
1

( , ) max( ( , ))
m

i
i

u u u uλγ γ− −

=
=F F                       (36) 

then -F rough decision law ,([ ] ,[ ] )
k k

u u F

F  is discovered in 

,{([ ] ,[ ] ) | 1, 2, , }
i i

u u i m=F

F " .  

5   The Application of F -Rough Decision Law 

In order to facilitate discussion and without losing generality, let 

1 2[ ] { , },[ ]u u u u −
− = =  1 2 3 4 ,1 1 5 1 1 3 4 5 ,2 2 6{ , , , };[ ] { , },[ ] { , , , };[ ] { , },u u u u u u u u u u u u u u u= = =F

F F
 

2 2 3 4 6[ ] { , , , };u u u u u=F the origin- al data of 1 6u u∼ are omitted. The attribute set of 

( [ ] ,[ ] )u u −
− is 1 2 3 4 1 2 3( { , , , }, { , , }),α α α α α α α α α−

− = =  the attribute set of ,1 1([ ] ,[ ] )u u F

F  

is ,1 1 2 3 5 1 1 2 5( { , , , } { , , }),α α α α α α α α α= =F

F and the attribute set of ,2 2([ ] ,[ ] )u u F

F is 

,2 1 2 4 6 2( { , , },,α α α α α α= F

F  1 2 6{ , , });α α α= the names of attribute sets 1 6α α∼ are 

omitted. ,1 ,2,u uF F and u− are the composition of ,1 ,2[ ] ,[ ]u uF F and [ ]u −  respectively; 

1 ,uF
2uF and u−  are respectively the composition of 1 2[ ] ,[ ]u uF F  and [ ] .u −  The stan-

dardized values of ,1 ,2,u uF F and u−  can be found in table 1. The original data (The 

data of k>6 are omitted) ,1,uF  ,2uF and u− which have been standardized won’t 
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affect the analysis of approach given by the example. The example l in this section 
is from the profit risk analysis of investment system. 

By (18)-(22), table 2 and table 3 can be obtained. ρ is the detached coefficient 

and 1ρ = ; by (19), table 5 can be obtained, since 0, 0,2
,

maxΔ ( ) Δ (3) 1.7810.
i

i k
k = =  By 

shown in table 4. By (22), we can obtain: ,1( , ) 0.7140,u uγ − =F  ,2( , ) 0.6562.u uγ − =F  

Similarly to the former computational process, by the standardized data of 

1 2, ,u u u−F F and (18)-(22), it follows: 1( , ) 0.6735,u uγ − =F   2( , ) 0.5641.u uγ − =F   

The standardized data and computational process of 1 2,u uF F  and u− are omit-

ted. We can obtain the F -rough decision law relation metric 

,1 1( ( , ), ( (0.7140,, ))u u u uγ γ−
− =F

F   ,2 20.6735), ( ( , ), ( 0.5641), ))u u u uγ γ−
− =F

F respec-

tively, so that 2,2 ,1 ( ,( , ) ( , ), uu u u u γγ γ− −≤ F

F F   
21 () ( , ), , )uu u u uγγ− − −≤ ≤FF

1( , ),u uγ −F  

namely ,2 2 ,1 1( ( , ), ( , )) ( ( , ), ( , )).u u u u u u u uγ γ γ γ− −
− −≤F F

F F   According to the discussion 

above, We can  conclude that F -rough decision law ,1([ ] ,u F  1[ ] )u F is closer to 

rough decision law ( [ ] ,[ ] )u u −
− than F -rough decision law ,2 2([ ] ,[ ] )u u F

F . If the 

profit decision law which is denoted by F -rough decision law ,1 1([ ] ,[ ] )u u F

F has 

little profit risk. This conclusion is affirmed in the profit risk decision analysis of 
real investment system;F -rough decision law ,1 1([ ] ,[ ] )u u F

F can be discovered in 

,1 1{([ ] ,[ ] ),u u F

F  ,2 2([ ] ,[ ] )}u u F

F . 

Table 1. The Discrete Standardized Data ofF -decision Law ,1 ,2,u uF F  and u− . 

k 1 2 3 4 5 6 … 

u−  1.0000 1.5176 1.7602 2.4567 3.6105 4.7536 … 

,1uF  1.0000 1.7642 1.6946 2.9034 3.2642 5.4370 … 

,2uF  1.0000 1.9126 1.8253 2.0648 3.8553 4.2916 … 

 

Table 2. The Values Distribution of 
0, 0,

( ), ( )
i i

P k S k , 1, 2; 1 ~ 6,i k= = " . 

k 1 2 3 4 5 6 … 

0,1
( )P k  0 0.2466 0.0656 0.4467 0.3463 0.6834 … 

0, 2
( )P k  0 0.3950 0.0651 0.3919 0.2448 0.4620 … 

0,1
( )S k  0.2466 0.3122 0.5123 0.7930 1.0297 — … 

0 , 2
( )S k  0.3950 0.3299 0.4570 0.6367 0.7068 — … 

"—"in table 2 means that there is no data. 
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Table 3.  The Value Distribution of 
0,

( ), 1, 2; 1 ~ 6,
i

S k i k= = " . 

k 1 2 3 4 5 6 … 

0,1
( )S k  0.1233 0.1043 0.1990 0.2014 0.2850 — … 

0 , 2
( )S k  0. 1975  0.2300 0.1727 0.1677 0.1934 — … 

Table 4.  The Value Distribution of 
0,

Δ ( ), 1, 2; 1 ~ 6,
i

k i k= = " . 

k 1 2 3 4 5 6 … 

0,1
Δ ( )k  0.3699 0.4165 0.7113 0.9944 0.6983 — … 

0,2Δ ( )k  0.5925 0.5600 0.6297 0.8044 0.9002 — … 

Table 5. The Value Distribution of ,( ( ), ( ))
i

u k u kμ −F , 1, 2 1 ~ 6,; ki == "  

Where 
1 2,1 ,2,( ( ), ( )) ( ( ), ( ))u k u k u k u kμ μ μ μ− −= =F F . 

6   Conclusions 

Which has dynamic characteristic and decision law characteristic is an important 
approach to seek (or mine) the unknown decision law in system, and it has an 
application of a good future. By using function two direction S-rough sets, this 
paper presents the discussion of F -rough decision law and application. Rough 
decision law comes from such a background: in economic decision-making sys-
tem, profit decision analysis curve (decision analysis law) shouldn’t be indicated 
by just one, but by two curves (they compose the rough decision law), since the 
curve is fluctuating for it is always attacked by the attribute ( the variation of the 
investment situation) and then it forms two curves which are called the minimum 
profit decision analysis law and the top gain decision analysis law; this fact is just 
included in the lower approximation *( , ) ( )R QF D and the upper approximation 

*( , ) ( )R QF D of function two direction S-rough sets. Function S-rough sets devel-
ops the research of Z. Pawlak rough sets theory [11] and its application. 
 

 

 

k  1 2 3 4 5 6 … 

1μ  0.8280 0.8105 0.7146 0.6417 0.5753 — … 

2μ  0.6893 0.7013 0.6762 0.6204 0.5936 — … 
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Abstract. In this paper, the operation � and the concept of �-ideals of (reg-
ular) residuated lattices are introduced. Some characterization theorems for
�-ideals of (regular) residuated lattices are given. Representation theorems
about �-ideals which are generated by non-empty subsets of regular residu-
ated lattices are obtained. For the set of all �-ideals of a (regular) residuated
lattice, an adjunction pair is defined. It is proved that the lattice of all �-
ideals in a regular residuated lattice with the adjunction and the set-inclusion
order is a complete Heyting algebra (i.e., a frame) and an algebraic lattice,
which thus gives a new distributive residuated lattice.

Keywords: Residuated lattice; �-ideal; algebraic lattice; frame.

1 Introduction

With the developments of mathematics and computer science, non-classical
mathematical logic has become a formal tool for artificial intelligence to deal
with uncertainty information. One of important branch of non-classical math-
ematical logic is to study logic algebra systems. Results in this area not only
promoted the development of non-classical mathematical logic, but also en-
riched the contents of algebra [1, 2]. Among various logic algebra systems,
residuated lattices introduced by Pavelka are important ones and are reason-
able extensions of Heyting algebras. Based on the �Lukasiewicz axiom system,
Pavelka introduced the theory of residuated lattices into the studies of non-
classical mathematical logic, established a kind of logic construction, and
solved the completeness problem of �Lukasiewicz axiom system[3]. Residu-
ated lattices have been considered a kind of idealistic algebras in the the-
ory of non-classical mathematical logic. It is worthy of noting that various
logic algebras based on different implication operators, such as MV-algebras,
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BL-algebras, R0-algebras and lattice implication algebras, etc., are special
residuated lattices[4, 5]. Thus, it is meaningful to deeply study properties of
residuated lattices.

Ideals play important roles in studying various reasoning systems and logic
algebras. Properties of types of ideals in logic algebras have been actively
and deeply studied[6]−[11]. In this paper, the concepts of the operation �
and �-ideals of residuated lattices are introduced and properties and char-
acterizations of them are discussed. For the set of all �-ideals of a (regular)
residuated lattice, an adjunction pair is defined. It is proved that the lattice
of all �-ideals on a regular residuated lattice with the adjunction and the set-
inclusion order is an algebraic lattice and a complete Heyting algebra (i.e., a
frame). A new distributive residuated lattice is thus induced.

2 Basic Notions and Related Results

We in this section recall some basic notions and related results needed in the
sequel. The non-explicitly stated notions on posets and domain theory, please
refer to [12].

Definition 2.1 [1]. Let P be a poset. The two binary operations ⊗ and → on
P are said to be adjoint to each other, if they satisfy the following conditions
(1)–(3):

(1) ⊗ : P × P → P is isotone;
(2) →: P × P → P is antitone in the first variable and isotone in the

second variable;
(3) a⊗ b ≤ c if and only if a ≤ b → c, for all a, b, c ∈ P .

And (⊗,→) is called an adjoint pair on P .

Definition 2.2 [3, 13]. A structure L = (L;≤,⊗,→, 0, 1) is called a residu-
ated lattice if the following conditions satisfied.

(1) (L,≤) is a bounded lattice, 0 is the smallest element and 1 is the great-
est element of L, respectively;

(2) (L,⊗, 1) is a commutative semigroup with unit element 1;
(3) (⊗,→) is an adjoint pair on L.

Lemma 2.1 [13]. Let L be a residuated lattice. Then for all a, b, c ∈ L we
have

(R1) a ≤ b → a⊗ b or a ∧ (b → a⊗ b) = a;
(R2) a ≤ b if and only if a → b = 1;
(R3) (a → b) ⊗ a ≤ b or ((a → b) ⊗ a) ∨ b = b;
(R4) 1 → a = a;
(R5) (a ∨ b) ⊗ c = (a⊗ c) ∨ (b⊗ c);
(R6) a⊗ b ≤ a ∧ b;
(R7) b → c ≤ (a → b) → (a → c);
(R8) a ≤ b → c if and only if b ≤ a → c;
(R9) a → (b → c) = b → (a → c);
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(R10) a → b ≤ a⊗ c → b⊗ c;
(R11) a⊗ b → c = a → (b → c);
(R12) a → b ≤ (b → c) → (a → c);
(R13) a → (b → a) = 1;
(R14) a → b ≤ a ∧ c → b ∧ c;
(R15) a → b ≤ a ∨ c → b ∨ c.

Definition 2.3 [13]. Let L be a residuated lattice. Define on L the unary
operation ¬ : L → L such that ¬a = a → 0 for any a ∈ L. Then ¬ is called
the pseudo-complement operator of L. And we call L a regular residuated
lattice if ¬¬a = a for any a ∈ L.

Remark 2.1. For a residuated lattice L and ∀a, b, c ∈ L, it is easy to show
that

(1) ¬0 = 1, ¬1 = 0;
(2) a ≤ ¬a and ¬¬¬a = ¬a;
(3) a ≤ b implies ¬b ≤ ¬a.

Lemma 2.2 [13]. For a regular residuated lattice L and ∀a, b, c ∈ L we have
(RR1) ¬a → ¬b = b → a and a → ¬b = b → ¬a and ¬a → b = ¬b → a;
(RR2) a⊗ b = ¬(a → ¬b) and a → b = ¬(a⊗ ¬b);
(RR3) a⊗ ¬a = 0;
(RR4) ¬a → (a → b) = 1.

3 The �-Operation and �-Ideals in Residuated
Lattices

We in this section introduce the operations ⊕ and � on a residuated lat-
tice L and discuss their properties. Then define �-ideals of a residuated
lattice L.

Definition 3.1. Let L be a residuated lattice. Binary operations ⊕ and �
on L are defined as following: a⊕ b = ¬a → b and a� b = ¬(a → b), for all
a, b ∈ L.

Lemma 3.1. Let L be a regular residuated lattice. Then for all a, b, c ∈ L we
have

(RR5) 0 � a = 0 and a� 0 = a;
(RR6) (a� b) � c = (a� c) � b;
(RR7) a ≤ b if and only if a� b = 0, in particular, a� a = 0;
(RR8) If a ≤ b, then a� c ≤ b� c and c� b ≤ c� a;
(RR9) a� (a� (a� b)) = a� b;
(RR10) (a ∧ c) � (b ∧ c) ≤ a� b;
(RR11) a⊕ b = b⊕ a and (a⊕ b) ⊕ c = a⊕ (b⊕ c);
(RR12) (c⊕ a) � (c⊕ b) ≤ a� b;
(RR13) a ≤ b implies a⊕ c ≤ b⊕ c;



428 C.-h. Liu and L.-s. Xu

(RR14) (a ∧ b) ⊕ c = (a⊕ c) ∧ (b⊕ c) and (a ∨ b) � c = (a� c) ∨ (b� c);
(RR15) c� (a⊕ b) = (c� b) � a;
(RR16) a ∧ (b ⊕ c) ≤ (a ∧ b) ⊕ (a ∧ c);
(RR17) a⊕ b ≥ a ∨ b.

Proof. (RR5): 0� a = ¬(0 → a) = ¬1 = 0 and a� 0 = ¬(a → 0) = ¬¬a = a.
(RR6): By (RR1), (RR9) and the regular property of L we have that

(a� b) � c = ¬(¬(a → b) → c) = ¬(¬c → ¬¬(a → b))
= ¬(¬c → (¬b → ¬a))
= ¬(¬b → (¬c → ¬a))
= ¬(¬(a → c) → b) = (a� c) � b.

(RR7): By (R8) we have a ≤ b ⇔ a → b = 1 ⇔ ¬(a → b) = ¬1 = 0 ⇔
a� b = 0.

(RR8): Assume a ≤ b, then by Definition 2.1(2) we have that b → c ≤
a → c, thus (b → c) → (a → c) = 1. Combine this with (RR1) we obtain
that (a � c) → (b � c) = ¬(a → c) → ¬(b → c) = (b → c) → (a → c) = 1.
Using (R8) again we have that a � c ≤ b � c. Similarly, we can obtain that
c� b ≤ c� a.

(RR9): On one hand, since (a� (a� (a� b))) � (a� b) = (a� (a� b)) �
(a� (a� b)) = 0, by (RR6) and (RR7), we have that a� (a� (a� b)) ≤ a� b.
On the other hand, since (a� (a� b)) � b = (a� b)� (a� b) = 0, by (RR7)
we have a� (a� b) ≤ b, and a� (a� (a� b)) ≥ a� b by (RR8). To sum up
the above two hands, we know (RR9) holds.

(RR10): By (R14) and Remark 2.1(3) we have that (a ∧ c) � (b ∧ c) =
¬(a ∧ c → b ∧ c) ≤ ¬(a → b) = a� b.

(RR11): It is immediately follows from the definition of ⊕ and (RR1).
(RR12): It follows from (R7) that (c⊕a)� (c⊕ b) = ¬((¬c → a) → (¬c →

b)) ≤ ¬(a → b) = a� b.
(RR13): Assume a ≤ b. Then a� b = 0 by (RR7). Since (a⊕ c)� (b⊕ c) ≤

a � b by (RR11) and (RR12), we have that (a ⊕ c) � (b ⊕ c) = 0, hence
a⊕ c ≤ b⊕ c.

(RR14): By (R5), (RR1), (RR2) and the regular property of L we obtain
that

(a ∧ b) ⊕ c = ¬(a ∧ b) → ¬¬c = ¬(¬(a ∧ b) ⊗ ¬c)
= ¬((¬a ∨ ¬b) ⊗ ¬c) = ¬((¬a⊗ ¬c) ∨ (¬b ⊗ ¬c))
= ¬(¬a⊗ ¬c) ∧ ¬(¬b ⊗ ¬c) = ¬¬(¬a → c) ∧ ¬¬(¬b → c)
= (a⊕ c) ∧ (b ⊕ c).

By (RR2) we have that x� y = x⊗ ¬y for all x, y ∈ L. It follows from (R5)
that

(a ∨ b) � c = (a ∨ b) ⊗ ¬c = (a⊗ ¬c) ∨ (b ⊗ ¬c) = (a� c) ∨ (b � c).

So, the two equations in (RR14) hold.
(RR15): By (R9) and (RR1) we have that

c� (a⊕ b) = ¬(c → (¬a → b)) = ¬(¬a → (c → b))
= ¬(¬(c → b) → a) = ¬((c � b) → a) = (c� b) � a.
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(RR16): Since by (RR5), (RR6), (RR7) and (RR15) that
a ∧ (b ⊕ c)) � (a⊕ (b ∧ c)) = ((a ∧ (b ⊕ c)) � (b ∧ c)) � a[by (RR15)]
= ((a ∧ (b⊕ c)) � a) � (b ∧ c)[by (RR6)]
= 0 � (b ∧ c)[by (RR7)]
= 0, [by (RR5)]

we can obtain that a ∧ (b ⊕ c) ≤ a ⊕ (b ∧ c). Combine this with (RR14) we
have that

(a ∧ b) ⊕ (a ∧ c) = (b⊕ c) ∧ (a⊕ c) ∧ (a⊕ b) ∧ (a⊕ a)
= (a⊕ (b ∧ c)) ∧ (b⊕ c) ∧ (a⊕ a)
≥ (a ∧ (b⊕ c)) ∧ (b⊕ c) ∧ a
= a ∧ (b ⊕ c).

So, (RR16) holds.
(RR17): By Definition 2.1(2) we have that a ⊕ b = ¬a → b ≥ ¬a → 0 =

¬¬a = a. And by (RR11) we have that a⊕ b ≥ b. So, a⊕ b ≥ a ∨ b.

Definition 3.2. Let L be a residuated lattice. A nonempty subset I of L is
called a �-ideal of L if it satisfies the following conditions:

(I1) 0 ∈ I;
(I2) If y ∈ I and x� y ∈ I, then x ∈ I, for all x, y ∈ L.

The set of all �-ideals of L is denoted by �I(L).

Remark 3.1. (1) Let L be a residuated lattice. It is easy to checked that
{0}, L ∈ �I(L). If I is a non-empty family of �-ideals of L, Then ∩I is also
a �-ideal of L.

(2) Let L be a regular residuated lattice, I ∈ �I(L) and a, b ∈ L. If a ≤ b
and b ∈ I, then a ∈ I, i.e., any �-ideals of L is a down set. In fact, if a ≤ b,
then a� b = 0 ∈ I by (RR5), hence a ∈ I by b ∈ I.

(3) Let L be a regular residuated lattice and I ∈ �I(L). Then I is right
�-closed with elements of L. In fact, assume that a ∈ I, x ∈ L. Since (a �
x) � a = (a � a) � x = 0 � x = 0 ∈ I, by (RR6), it follows from I ∈ �I(L)
and a ∈ I that a� x ∈ I.

(4) Let L be a regular residuated lattice and I ∈ �I(L). Then I is closed
with binary ∨. In fact, assume a, b ∈ I, then by (RR14) and (3) we have that
(a ∨ b) � a = (a� a) ∨ (b � a) = b� a ∈ I. So, a ∨ b ∈ I by I ∈ �I(L).

Theorem 3.1. Let L be a regular residuated lattice and I a nonempty subset
of L. Then I ∈ �I(L) if and only if I is a down set and closed with operation
⊕.

Proof. ⇐ Since I is a down set, we know that 0 ∈ I. Assume a ∈ L, b ∈ I
and a� b ∈ I, then it follows from the closedness of I with operation ⊕ that
b⊕ (a� b) ∈ I. By (RR1), (R2), (R9) and the regular property of L we have
that

a → (b⊕ (a� b)) = a → (¬b → ¬(a → b)) = a → ((a → b) → b) = (a → b) → (a → b) = 1.

This shows that a ≤ b⊕ (a� b). Since I is a down set and b⊕ (a� b) ∈ I, we
obtain that a ∈ I and I ∈ �I(L).
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⇒ Assume I ∈ �I(L). Then I is a down set by Remark 3.1(2). Now we
show that I is closed with operation ⊕. In fact, for all a, b ∈ I, by (RR1),
(R9) and the regular property of L we can obtain that

((a⊕ b) � b) � a = ¬(¬((a ⊕ b) → b) → a)
= ¬(¬a → ((a⊕ b) → b)) = ¬((a⊕ b) → (¬a → b))
= ¬((a⊕ b) → (a⊕ b)) = ¬1 = 0 ∈ I ∈ �I(L).

So, a⊕ b ∈ I for a, b ∈ I by Definition 3.2. So, I is closed with operation ⊕.

The following Corollary is immediate by Theorem 3.1 and (RR17). But the
converse may not be true and Example 4.1 serves as a counterexample.

Corollary 3.1. Every �-ideal of a regular residuated lattice is an ordinary
ideal.

4 Generated �-Ideals by a Nonempty Subset

Definition 4.1. Let L be a regular residuated lattice and A a nonempty
subset of L. The least �-ideal containing A is called the �-ideal generated by
A, denoted by 〈A〉.

It is obvious that 〈A〉 =
⋂

I∈�I(L),A⊂I
I and A ⊂ 〈A〉. If I ∈ �I(L), then

〈I〉 = I.

Theorem 4.1. If A is a nonempty subset of a regular residuated lattice L,
then
〈A〉 = {x ∈ L|(· · · ((x�a1)�a2)�· · ·)�an = 0, ∃ a1, a2, · · · , an ∈ A and n ∈
N}

= {x ∈ L|x ≤ a1 ⊕ a2 ⊕ · · · ⊕ an, ∃ a1, a2, · · · , an ∈ A and n ∈ N}.

Proof. For the sake of convenience, let

B = {x ∈ L|(· · · ((x�a1)�a2)�· · ·)�an = 0, ∃ a1, a2, · · · , an ∈ A and n ∈ N}

and

C = {x ∈ L|x ≤ a1 ⊕ a2 ⊕ · · · ⊕ an, ∃ a1, a2, · · · , an ∈ A and n ∈ N}.

Firstly, we show that B = 〈A〉. Obviously, A ⊂ B and 0 ∈ B. Now assume
y ∈ B and x�y ∈ B. Then there exist a1, a2, · · · , an ∈ A and b1, b2, · · · , bm ∈
A such that

(· · · ((y�a1)�a2)�· · ·)�an = 0 and (· · · (((x�y)�b1)�b2)�· · ·)�bm = 0.

Thus by (RR6) and (RR7) we have that (· · · ((x� b1) � b2) � · · ·) � bm ≤ y,
hence

0 = (· · · ((y � a1) � a2) � · · ·) � an
≥ (· · · ((((· · · ((x � b1) � b2) � · · ·) � bm) � a1) � a2) � · · ·) � an

by (RR8). Thus x ∈ B by the definition of B. So, B ∈ �I(L) and 〈A〉 ⊂ B.
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Since for any z ∈ B, there exists some c1, c2, · · · , ck ∈ A ⊂ 〈A〉 such that
(· · · ((z � c1) � c2) � · · ·) � ck = 0,

we have that z ∈ 〈A〉 by 〈A〉 ∈ �I(L). Thus B ⊂ 〈A〉. Therefore B = 〈A〉.
Secondly, we show that B = C. By (RR7) we have that x ≤ a1⊕a2⊕· · ·⊕an

if and only if x�(a1⊕a2⊕· · ·⊕an) = 0, and by (RR8) we have that x�(a1⊕
a2⊕· · ·⊕an) = (x�a1)�(a2⊕· · ·⊕an) = · · · = (· · · ((x�a1)�a2)�· · ·)�an.
Thus, by the definitions of the sets B and C we have that B = C.

Theorem 4.2. Let L be a regular residuated lattice and {Ai} a directed fam-
ily of subsets of L. Then 〈

⋃
Ai〉 =
⋃
〈Ai〉. Therefore the union of any directed

family of �-ideals of L is also a �-ideal.

Proof. It is sufficient to show that
⋃
〈Ai〉 is a �-ideals of L. Obviously, by

the directed property of {Ai} and Theorem 3.1 we have
⋃
〈Ai〉 ∈ �I(L).

Example 4.1. Let L = {0, a, b, c, d, 1} and Hasse diagram of L is given as
Fig. 4.1. Operators → and ⊗ of L are defined in Table 4.1 and Table 4.2,
respectively. Operators ¬,� and ⊕ are defined in Table 4.3, Table 4.4and
Table 4.5, respectively as following:

Table 4.1. Def. of → Table 4.2. Def. of →

�

�� ��� �

� �

�
�� ��
�

�
�

1

0

a b

d c

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

Fig. 4.1 Hasse Diag. of L

Table 4.3. Def. of ¬ Table 4.4. Def. of � Table 4.5 Def. of ⊕

x ¬x
0 1
a c
b d
c a
d b
1 0

� 0 a b c d 1
0 0 0 0 0 0 0
a a 0 d a d 0
b b c 0 d c 0
c c c 0 0 c 0
d d 0 0 d 0 0
1 1 c d a b 0

⊕ 0 a b c d 1
0 0 a b c d 1
a a a 1 1 a 1
b b 1 1 b 1 1
c c 1 b c b 1
d d a 1 b a 1
1 1 1 1 1 1 1

Then (L,→,⊗)is a regular residuated lattice. It is easy to check that I =
{0, c} ∈ �I(L). Since A = {0, a} is not a down set, we know that A �∈ �I(L)
and 〈A〉 = {0, a, d} is the generated �-ideal by A. It is also easy to know that
the principal ideal ↓ b of L is not a �-ideal, for b ⊕ d = 1 �∈↓ b. As a matter
of fact, L has only four �-ideals.
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5 The �-Ideal Lattice of a Regular Residuated Lattice

Theorem 5.1. Let L be a regular residuated lattice. Then (�I(L),⊂) is a
distributive complete lattice. And directed sups are set-unions.

Proof. Obviously, (�I(L),⊂) is a poset, {0} is the smallest element and L
is the greatest element of �I(L), respectively. By remark 3.1(1) we know
that the infimum of any family of �-ideals is just the set-join of the family.
So, any subset of poset (�I(L),⊂) has a infimum, hence (�I(L),⊂) is a
complete lattice. In particular, for all A,B ∈ �I(L), it is easy to show that
A ∧ B = A ∩ B is the infimum of A and B, and A ∨ B = 〈A ∪ B〉 is the
supremum of A and B. By Theorem 4.2 we know that the union of any
directed family of �-ideals of L is also a �-ideal which is just the supremum
of that family. That is to say, directed sups in (�I(L),⊂) are just set-unions.

Now we show that distributive laws hold. Since (�I(L),⊂) is a lattice, it
is sufficient to show that ∀A,B,C ∈ �I(L), A∧ (B ∨C) = (A∧B)∨ (A∧C).
Obviously, A ∧ (B ∨C) ⊃ (A ∧B) ∨ (A ∧C) and we only need to show that
A ∧ (B ∨ C) ⊂ (A ∧ B) ∨ (A ∧ C). In fact, assume x ∈ A ∧ (B ∨ C). Then
x ∈ A and x ∈ B ∨ C. There exists some z1, z2, · · · , zn ∈ B ∪ C such that
x ≤ z1 ⊕ z2 ⊕ · · · ⊕ zn by Theorem 4.1. And by (RR16) we have that

x = x ∧ (z1 ⊕ z2 ⊕ · · · ⊕ zn) ≤ (x ∧ z1) ⊕ (x ∧ z2) ⊕ · · · ⊕ (x ∧ zn).

Since A,B,C are down sets, we can obtain that
x ∧ zi ∈ (A ∩B) ∪ (A ∩ C) = (A ∧B) ∪ (A ∧ C), i = 1, 2, · · · , n.

So by Theorem 4.1 we have x ∈ (A ∧ B) ∨ (A ∧ C) and A ∧ (B ∨ C) ⊂
(A∧B)∨ (A∧C). Thus A∧ (B ∨C) = (A∧B)∨ (A∧C), finishing the proof.

Theorem 5.2. Let L be a regular residuated lattice and A,B ∈ �I(L). Define
A ⊗ B = A ∧ B and A → B = {x ∈ L| a ∧ x ∈ B for all a ∈ A}. Then
(�I(L),⊗,→) is a residuated lattice.

Proof. Obviously, A ⊗ B ∈ �I(L) and (�I(L),⊗, L) is a commutative semi-
group with unital element L. By Theorem 5.1 we know that (�I(L),⊂) is
a bounded lattice. In order to prove that (�I(L),⊗,→) is a residuated lat-
tice, it is sufficient to show that (⊗,→) is an adjoint pair on �I(L) in the
sense of Definition 2.1. At first, we prove that A → B ∈ �I(L). In fact, since
∀a ∈ A, a ∧ 0 = 0 ∈ B, we have that 0 ∈ A → B. Assume y ∈ A → B
and x ≤ y. Then a ∧ y ∈ B and a ∧ x ≤ a ∧ y for all a ∈ A. Thus by that
B ∈ �I(L) is a down set we can obtain that a∧ x ∈ B and x ∈ A → B. This
means that A → B is a down set. Suppose that x, y ∈ A → B, then a∧x ∈ B
and a ∧ y ∈ B for any a ∈ A. It follows from B ∈ �I(L) and Theorem 3.1
that (a ∧ x) ⊕ (a ∧ y) ∈ B. Thus by (RR16) and B is a down set we have
a ∧ (x⊕ y) ∈ B and x⊕ y ∈ A → B. This means that A → B is closed with
⊕. Therefore A → B ∈ �I(L) by Theorem 3.1.

It is obvious that ⊗ = ∧ is isotone and A ⊂ B implies B → C ⊂ A → C
and C → A ⊂ C → B for all A,B,C ∈ �I(L). Now we prove that ∀A,B,C ∈
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�I(L), A⊗B ⊂ C if and only if A ⊂ B → C. In fact, suppose that A⊗B ⊂ C
and x ∈ A, then b ∧ x ≤ x and b ∧ x ≤ b for any b ∈ B. Since A and B are
down sets we have that b ∧ x ∈ A ∧ B = A ⊗ B ⊂ C, x ∈ B → C, and
A ⊂ B → C. Conversely, suppose A ⊂ B → C and x ∈ A ⊗ B = A ∧ B.
Then x ∈ B → C and b ∧ x ∈ C for any b ∈ B Put b = x we have that
x = x ∧ x ∈ C and A⊗ B ⊂ C. This means that (⊗,→) is a adjoint pair on
�I(L). Therefore (�I(L),⊗,→) is a residuated lattice.

Corollary 5.1. Let L be a regular residuated lattice. Then (�I(L),⊂) is a
complete Heyting algebra (which is also called a frame).

Proof. It is clear by Theorem 5.2 and Lemma 0-3.16 in [12]. In addition,
we know indirectly that (�I(L),⊂) satisfies the infinite distributive law by
Corollary 5.1.

Corollary 5.2. For a regular residuated lattice L, (�I(L),⊂) is an algebraic
lattice.

Proof. The notion of algebraic lattices, please refer to [12]. By Theorem 5.1 we
know that (�I(L),⊂) is a complete lattice and the directed sups in (�I(L),⊂)
are just set-unions. So it is easy to prove that the generated �-ideal 〈a〉 is a
compact element of (�I(L),⊂) for any a ∈ L. Thus by Corollary 3.1 we have
that for any A ∈ �I(L), A =

⋃
{〈a〉|a ∈ A} is a directed union of compact

elements. This show that every element of �I(L) is a directed union of some
compact elements. Thus (�I(L),⊂) is an algebraic lattice.
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Abstract. As the development of broadband network, E-government and
informatization,the Mobile Intelligent Service System(MISS ) is widely used
in various fields. In practical applications, people find that the intelligence
and security of MISS is very important. For the Asian Games will be held in
Guangzhou in 2010, and the existing hotel service doesn’t have unified service
system, this paper designs and develops a fuzzy MISS .In this system, we use
the fuzzy set to express data structures, use the fuzzy hierarchy synthetic
evaluating model to assess hotel levels, and use the fuzzy cluster analysis
method to provide each kind of tourists with different types of hotels . Finally
,we conduct it in evaluating and selecting hotels in tourism, and the result
shows that the proposed system is secure, convenient and effective.

Keywords: Mobile intelligent service system,fuzzy set, fuzzy synthetic eval-
uation model, fuzzy cluster.

1 Introduction

In 2010, the Asian Games will be held in Guangzhou. This will be the great-
est meeting that Guangzhou convenes throughout history, and this is also a
very good opportunity for Guangzhou to promote its international reputation
.Then, tourists coming from all over the world will swarm into Guangzhou, so
the tourists’ living life will be very important. But, the existing hotel service
in Guangzhou doesn’t have an unified system, tourists only be able to query
the hotel and transact needed services separately, which is quite troublesome
for external tourists who are not familiar with local hotel resources. Accord-
ing to Guangzhou existing service condition, tourists will dial 114 hot line to
query the hotels for their communication methods or address, then make a
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call to the corresponding hotel to query in details or transact services, and
it will be quite inconvenient. What’s worse, in the period of Asian Games,
public hot lines as well as hotel hot lines may have a high possibility to be-
come busier because tourists dial frequently. As a result, the consulting is
even more difficult. So it is quite significant to study and develop a MISS
for Guangzhou Asian Games(GAG),and build up a germ of urban resource
overall planning system. This will enable tourists to connect to a public ser-
vice platform to get information about all the hotels in Guangzhou in the
shortest time. Now, we make a study of this problem.

2 Data Structures of Fuzzy MISS

To improve the running efficiency, this system takes logical tree as the data
structures of hotel target system. The input and output stream are organized
in linear table form during the communication between query sides and the
server. The descriptions are shown in the flowing.

2.1 Logical Tree Data Structures

To accelerate the retrieval speed and improve inquire efficiency, we use tree
data structure to organize and manage hotel target system (see Fig. 1).

2.2 Logical Linear Table Data Structures

In the course of communication between query clients and the server , the
input and output data stream are organized in logical linear table ,which are
split by using two separating characters: ” : ” and ” * ”. The information

Fig. 1. Logical tree structure
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Fig. 2. Logical linear table structure

is divided into elemental unit, in logic, these elemental units form linear
table(Fig.2). Concretely, MES ∗ record1 ∗ record2 ∗ · · · · · · ∗ recordn may be
divided into Information[0], Information[1], ......Information [n-1].

According to fuzzy hierarchy synthetic evaluating model in reference [1],
B = A ◦R. And here

A =
a1

u1
+

a2

u2
+ · · · + am

um
(0 ≤ ai ≤ 1)

is a fuzzy subset on factor field U = {u1, u2, · · · · · · , um}.

B =
b1
v1

+
b2
v2

+ · · · + bm
vm

(0 ≤ bj ≤ 1)

is a fuzzy subset on evaluating field V = {v1, v2, · · · · · · , vm} . R =⎡⎢⎢⎣
r11 r12 · · · r1n
r21 r22 · · · r2n
· · · · · · · · · · · ·
rm1 rm2 · rmn

⎤⎥⎥⎦ is a fuzzy relation between U = {u1, u2, · · · · · · , um} and

V = {v1, v2, · · · · · · , vm}, and B = A ◦ R is the Fuzzy synthetic evaluating
result. As for the problem of choosing hotel in Guangzhou, we analyzed each
policy factor (here is target)on factor field and obtained the fuzzy subset on
factor field.Then we established the fuzzy relation evaluating matrix R be-
tween the factor field and the evaluation field, and by B = A ◦ R ,we can
obtain the requested hotel level of each kind of tourist, and use the fuzzy
clustering method to provide different levels of hotels for each kind of tourist
to choose from, so that it can help tourists make optimized choice while
selecting hotels [2,3,4].

3 The Technical Architecture of the System

3.1 The Technical Architecture and Implemented Functions of
the System

We chose Apache 2.2.10 for Web Server and Ubuntu 8.10 for Operate System.
Apache is one of the most popular Web Server, it has fast and stable per-
formance characteristics, and it can construct a server with quite stable and
strong performance with Linux because of its perfect support for Linux. And
we chose Java for core developing language. The Java version we adopted
is the latest version of J2SE 6u11. We used JSP to develop user’s Wap or
Web query client and used Eclipse 3.4.1 to develop user’s GUI, and chose
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MySQL-5.0.22 for database server. Eclipse is today the most powerful Java
integrated development environment (IDE), which integrated the function of
prepare, compile, debug, running into one. And it has been in hot pursuit
of numerous programmers, and Eclipse’s SWT and JFace almost completely
solved the problem that Java’s AWT and Swing is in the inability to GUI
development. So we use Eclipse to develop the hotel update client and the
User Query Client. MySQL which has small size, high speed and low cost, has
been widely used in the Java development, and MySQL is almost considered
as the best partner in Eclipse’s database application Development.

The System Architecture using hybrid structure with B/S model and C/S
model, which is based on the decision to meet the demand characteristics of
the various components of the system, it is flexible to satisfy the needs of
the various parts. Because the performance of mobile phone can not compare
with PC, the query procedures in the user query client must as simple as
possible to meet the speed requirements. So we selected JSP for the develop-
ment technology, and use web query to achieve the query function. And the
hotel update client and Query Server and Management Server need a strong
performance, so we used Java and Eclipse technology to develop. These tech-
nologies together build a powerful application platform.

Namely, we used the technology which makes up of Linux and Apache,
MySQL, JSP, Java, Eclipse inthe system design process.

3.2 The Constructions of the System

This system is constructed by four parts (Fig. 3), and the details are shown
as follows.

Fig. 3. The construction of the system

3.2.1 User Client

This part is developed with JSP that it is the technology which is selected to
use based on the limited performance of mobile, with smart and fast response
characteristics. When want to query hotel information and transact hotel
business, Tourists can connect to the User Query Client by phone through
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GPRS. Enter the relevant search keyword and click query button, Tourists
will be able to get the required information, such as the hotel’s location,
near the traffic condition, distance away from the game site, hotel occupancy
and favorable things, etc. And after logging in and passing validation, user
can also directly transact hotel business like room booking and hotel taxi
reservation through the query page.

3.2.2 Query Server

Query Server is developed with Java. When it is started, it is in a listen-
ing state all the time to wait for the user client requests. Once receiving
request from user client, it will query the hotel information database which
is connected by JDBC-MySQL driver with the user’s keyword, and return
the result set to user client in time. When user is using the query function,
it is no need to logging in and verify, and the keyword and information will
be sent to Query Server Expressly. But when user need to handle business,
Query Server would demand user of logging in and verify user’s password
and personal information with password algorithm which is referenced above
this section before allowing user to handle corresponding business. After user
handle business, Query Server would communicate with Management Server
to submit related information to Management Server, and wait hotel side to
confirm and administer.

3.2.3 Hotel Client

This part is developed with Java and Eclipse technology. The Graphics User
Interface (GUI) is developed with Eclipse. With this client, hotel user can
manage Management Server’s data and update the hotel information and
occupancy information to let server keep the latest hotel information. In ad-
dition, hotel user can administer the reservation business user applied. Once
the hotel side confirms the business, Hotel Client would send the administered
information to Management Server, and tic the business item with complete
mark from the queue waiting to be transacted. And hotel side can get the
user’s personal information according to information that user submitted.
During this period, Hotel Client and Management Server will communicate,
and return the result to the user. This process is not real-time, hotel side can
not administer immediately after user submit the request. Hotel side is not
likely to assign a worker to monitor the business through the Hotel Client
in 24 hours. So, there will be a certain lag. It is believed that a good hotel
would standardize the time to administer business in a certain time interval.

3.2.4 Management Server

This part is also developed with Java and Eclipse technology. It has friendly
GUI. Management Server use multi-threading technology that allows mul-
tiple users to manage at the same time. But at the same time, it does not
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allow multiple user log on the same account and modify the same hotel’s
data for administer the same hotel’s business. It is set to prevent confusion.
Management Server will listen service port after started. Whenever receives
a connection from hotel users, the server will open a new thread to verify the
user’s information, this process somewhat similar to handshake agreement.
After verified, the hotel user can update data and process business through
Management Server. Management Server can be set up to limit the number
of users to log on to keep the server from network congestion and protect the
server. Besides, the server has a log function to record event happening on the
server running time. When a user tries to connect to the server, it will record
automatically. When a user log on or log off, it will record the user’s name,
IP, log time. When the server is shut down, it will record the time. All of the
log will save to the log file. Recording log is conducive to the management
of maintenance and monitor the server’s status, and unexpected events can
be processed in a timely manner. After hotel user updates the hotel data,
Management Server will communicate with Query Server in time to send the
result updated to the Query Server, and let the tourist easy to get latest ho-
tel information. In addition, after hotel user processed tourist’s application,
Management Server also communicates with Query Server to let it notifies
the user about the application result of operation.

The 1st line in Fig.3 reflects the relation between User Client and Query
Server. User Client send query request and business request to Query Server,
and Query Server returns the query result and business result to User Client.
They use Socket to communicate.

The 2nd line in Fig.3 shows the process of communication between Hotel
Client and Management Server. Hotel Client send connection request infor-
mation to Management Sever, the server opens a new connection thread after
received the request and send the verification information to the client. Then
the client sends name and password processed to the server to be verified in
turn after received the above information. And then the server searches the
database to match the user information received first. If exist, it would verify
the password, otherwise interrupt their connection and destruct the thread
for the client. If user’s name is matched, it will enter the link of verifying pass-
word. The client processes password and sends it to the server to verify after
received the request information for password. And the next is synchronous
verification. The sever test whether multiple users are using the same ac-
count or whether multiple users are modifying the hotel information in the
same time. If none of the above two conditions happening, the server will
send authentication information to client, allow hotel user to update hotel
information and administer business and every user’s action will be recorded
to the server log file.

The 3rd line in Fig.3 shows communication process between Management
Server and Query Server. The two servers use and manage its own local
databases. The database that Management Server uses is for account man-
agement and hotel management. And the database Query Server uses is hotel
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information database. Only when the tourist user submits application or hotel
user administers business, these two databases transform their data. Remain
time, they perform their respective roles. In the above three data transmis-
sion process, the information sender firstly transfers the information to cipher.
And then package input stream and output stream, transfer information to
UTF format string, so that the information has strong compatibility, receiver
is not easy to receive garbled information.

4 The Security of Fuzzy MISS

The security of the proposed system is a major consideration [5]. To ensure
the security of the hotel evaluation and selection process that leads to an in-
stant booking of specific hotels for individual tourists, several specific features
are designed in implementing a cryptographic algorithm in the proposed sys-
tems. These features include (a) determining the elliptic curve cryptographic
procedure [6], (b) adopting space coordinates (X,Y, Z) for representing the
points on elliptic curve, (c) defining CPK and IPA [7],(d) developing signa-
ture verification scheme [5], and finally (d) designing an encryption scheme
[8]. These features are briefly discussed in the following.

The elliptic curve cryptographic system is based base on the elliptic curve
discrete logarithm [9]. Some specific attack algorithms are adopted for the
special type’s elliptic curve discrete logarithm. For example, a SSSA attack
algorithm is used for addressing an abnormal elliptic curve. The Pohlig-
Hellman algorithm is used for calculating the elliptic curve discrete loga-
rithm to attack if the rank of elliptic curves has no big prime number fac-
tor. To enhance the running speed of mobile platform, the widely used fa-
mous NID X9 62 prime192v1 elliptic curve parameter group in Open SSL is
adopted.

This system use CPK2.0 compose public key infrastructure. It has several
advantages including (a) ability to add a system random factor as random
private key for avoiding the user collusion cracking potential safety hazard
of private key matrix. (b) use of a CA storage center The use of the system
is different from the existing mode of public-key systems Public Key In-
frastructure. A new public-key management model based on Identity-based
Public-key Authentication technology (IPA) is adopted for overcoming the
shortcomings of PKI which used in mobile electronic terminal.

Digital signature is a signature method to a message in electronic form. It’s
some number of strings that any other person can not be forged. This special
series digital is an authenticity to prove the signature. In the electronic infor-
mation transmission process, the adoption of digital signatures can achieve
the same effect as traditional handwritten signature. To achieve compatibility
with the PC platform, especially for compatible with the famous OpenSSL,
the Elliptic Curve Digital Signature Algorithm (ECDSA) [8] is used.

An encryption scheme using digital envelope technology is developed in
the proposed system for making the system run faster and secure. Digital
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envelope is a practice application of public-key cryptosystem. It uses encryp-
tion technology to ensure that only the specific recipient can read the contents
of communications with high security [10-12].

5 The Implementing Scheme of Fuzzy MISS

In this system, we use the comparative concrete Fuzzy Set to make knowl-
edge representation of the hotel information and use the Fuzzy Hierarchy
Synthetic Evaluating Model to assess hotel level of each kind of traveler,
finally we use the Fuzzy Cluster Analysis method to provide each kind of
traveler with different types of hotels to choose. This system is simple, fast,
reliable and secure; users can easily query and transact hotel businesses by
using telephones or other communication facilities. So, it plays a positive
role in solving the tourist’s traveling life problems, and it promotes the de-
velopment of Guangzhou electronics and information industry as well as the
M-Commerce. So,we developed the Mobile Intelligent Hotel Service System.

5.1 Client Connects Server

When client apples for query request, system writes CLIENT :
+IPADDRESS+KEY WORDSinto the input stream automatically . And
IPADDRESS is client’s IP address; KEYWORDS is composed of two
parts, and the form is:

operationprompt : SQLlanguage : .

And here, operation prompt expresses the type of the request which is put
forward by client. All of the operation prompts established in the system are
as follows: (see Table 1)

Table 1. Operations

SEND Users send message to hotel
SELECTHOTEL Search hotels and complete the simple search at first
SELECTCLIENT Search orders and return the order information of clients
ORDER Order hotel and create the order
QUIT break off the connection

The SQL language is created automatically according to user’s operation
by the system. Each part of the information which is written into the input
stream is separated by ”:”, so that it is convenient for server procedure to
separate and process.
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5.2 Server Returns to Client

After accepting the request of client, server make corresponding processing
according to the information which is written in the input stream by client ,
and return the record set after retrieving the database . The server returns
records to client in a specific form , and the concrete form are as follows:

MES ∗ record1 ∗ record2 ∗ · · · · · · ∗ recordn,

and here MES∗ is information head, recordi is information of record i
which is inquired according to the user’s request. The form of recordi is:
Data1 : Data2 : Data3 : . . . . . .Datam, and here Datai returns the concrete
information of a certain aspect of hotels or orders.

Each part is separated by “ : ”, therefore it is convenient for client proce-
dure to separate with nextToken(), then system uses friendly, natural, and
beautiful interface to present the inquired information.

5.3 The Data Stream between Inquiry Client and Server

The data stream in Query Server and between servers is using the multi-
threaded concurrent collaboration and Socket programming in order to
achieve efficient transmission.

(1) Multi-threaded Concurrent Collaboration
Multi-thread programming can cause the procedure having two or more

than two concurrent implementation of clues, such as multiple people co-
operate to complete a task in daily work, which can improve procedures
in response performance and increase the efficiency of resource use in many
cases. In this system, the Management Server is on the use of multi-threading
technology. When a user applies to connect the server, the server will create
a thread to execute verification steps in order and allow user to operate the
data after user passed the verification. This practice will enable the server
has the ability to process the number of request and improve the server’s
operational efficiency.

(2) Socket Programming
The core of the traditional C/S model network program is that transferring

information between client and server through the network connection. Some-
times the transferring data is called message. And TCP Socket connection is
generally used between client and server. The following is the communication
of client and server (see Fig 4).

The specific process of communication are as follows:
1) Server start monitoring procedures, listen to the specified monitor port,

and wait to receive client connection requests.
2) Client program starts and requests to connect with the server specified

port.
3) Both client and server open two streams after a successful connection,

then the client input stream is connected to the server output stream, and
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Fig. 4. Communication model

the server input stream is connected to the client output stream. They can
have two-way communication after the connection of two sides’ stream has
established.

4) The connection between client and server will be disconnected after
communication was completed.

6 Conclusion

1. The system can solve the problem of tourists’ living life during Asian
Games to a great extent, which enable tourists to query relate information
easily and make ideal decisions. Therefore, it is a true MISS system.

2. This system uses cipher algorithm, so, the software are encrypted. Con-
sequently, it is a true safe system.

3. In view of the certain limitation of realizing encryption and decryption
on PC just using software, specially the slow processing speed on PC, it has
not been able to meet the application need well in the large-scale system.
so this plan selects the hardware method, in application, it may obtain fast
performance speed, thus enhances overall system’s performance.

4. Further study on this system can be done, such as improving the ef-
ficiency of Elliptic Curve algorithm, developing more useful IC card-CPU
card, to improve this MISS system to make it a set of very popular MISS
which holds the suitable share in the market.

5. This system belongs to a new development direction of electronic
commerce— M-Commerce. It has enormous market prospect and devel-
opment potential in the development of the electronic commerce economy
in our country . This project makes great contributes to promoting the
development of our country’s informatization. If it can get further study, it
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is sure that our country’s informatization construction will be taken to a
new stair. At the same time,it will also solve the problems of GAG in 2010.
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Abstract. This paper introduces a new algorithm for Takagi -Sugeno (T-S)
fuzzy modeling based on particle swarm optimization. Compared the stan-
dard particle swarm optimization, in the proposed algorithm a mixed code is
adopted to represent a solution. Binary codes represent the structure of T-S
fuzzy model, and real values represent corresponding parameters. Numerical
simulations show the effectiveness of the proposed algorithm.

Keywords: Particle swarm optimization; T-S fuzzy model; fuzzy rules.

1 Introduction

Fuzzy systems have become an active research area in recent years. Several
fuzzy model designs have been proposed including knowledge-driven mod-
eling and data-driven modeling. Compared to knowledge-driven modeling,
data-driven fuzzy modeling has been applied to many fields, such as pattern
recognition, data mining, classification, prediction, and process control, and
etc [1-5]. Generally speaking, the so-called data-driven fuzzy modeling is just
an optimization process in determining the structure and the parameter of a
fuzzy system via sample data.

Fuzzy system identification is one of the main approaches of fuzzy system
modeling. The accuracy of fuzzy system model relate to the result of fuzzy
system identification. In this paper, an algorithm based on Particle Swarm
Optimization (PSO) is proposed to optimize Takagi-Sugeno (T-S) model, in
the proposed algorithm we adopted a binary value vector and a real values
vector to represent a solution, and used the different equation to update the
different parameters. Satisfactory results through experiments are obtained.

The rest of this paper is organized as follows: The T-S model is intro-
duced in Section 2. The proposed algorithm is described in Section 3. The
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simulation and experimental results are presented in Section 4. Finally, con-
cluding remarks are given in Section 5.

2 T-S Model

Takagi-Sugeno (T-S) model is a fuzzy system proposed by Takagi and Sugeno
in 1985[6]. As a method of data-driven modeling, it has been successfully used
in a wide variety of applications. In the model the ith fuzzy rule have the
form

Ri : x1 is Ai1, ..., xn is Ain then yi = ci0 + ci1xi1 + ... + cinxn (1)

where n is the number of input variables.i = 1 . . . r ,and r is the number
of if-then rules. Aij is the antecedent fuzzy set of the ith rule. yi is the
consequence of the ith if-then rule .cij(i = 1 . . . r; j = 1 . . .n) is real number.
Then by using center of gravity method for defuzzification, we can represent
the T-S system as:

y =

r∑
i=1

yi
n∏
j=1

μAij(xi)

r∑
i=1

n∏
j=1

μAij(xi)
. (2)

3 Pruning Algorithm

3.1 PSO

Particle Swarm Optimization (PSO) is an optimization algorithm proposed
by Kennedy and Eberhart in 1995 [7,8]. It is easy to be understood and
realized and has been applied in many optimization problems [9-11]. PSO
originated from the research of food hunting behaviors of birds. Each swarm
of PSO can be considered as a point in the solution space. If the scale of swarm
is N, then the position of the i − th(i = 1, 2 . . .N) particle is expressed as
Xi . The ”best” position passed by the particle is expressed as pBest[i]. The
speed is expressed with Vi. The index of the position of the ”best” particle of
the swarm is expressed with g. Therefore, swarm i will update it’s own speed
and position according to the following equations:

Vi = wVi + c1rand()(pbest[i] −Xi) + c2Rand()(pbest[g] −Xi), (3)

Xi = Xi + Vi, (4)

where c1 and c2 are two positive constants, rand() and Rand() are two ran-
dom numbers within the range [0, 1], and w is the inertia weight. The equa-
tions consist of three parts. The first part is the former speed of the swarm,
which shows the present state of the swarm; the second part is the cognition
modal, which expresses the thought is the cognition modal, which expresses
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the thought of the swarm itself; the third part is the social modal. The three
parts together determine the space searching ability. The first part has the
ability to balance the whole and search a local part. The second part causes
the swarm to have a strong ability to search the whole and avoid local min-
imum. The third part reflects the information sharing among the swarms.
Under the influence of the three parts, the swarm can reach an effective and
best position.

3.2 Description of the Algorithm

The pruning algorithm based on PSO is formed of two phases. In the first
phase, we use n dimensional real-valued vector to represent a solution, as
shown in follows:

X = (x1, x2, ..., xn), (5)

where n is the number of all the real-valued parameters, it include the param-
eters of membership functions and consequence parameters cij(i = 1 . . . r; j =
1 . . .n).

The following functions have been used for evaluation of PSO.

F (x) =
1∑

K

(O − T )2
, (6)

where K is the number of sample, T is the teacher signal, and O is the output.
The real-valued parameters update it’s own speed and position according

to the PSO. Compared with the consequence parameter, the optimization of
membership functions only adjusts a little; therefore, the parameters of mem-
bership functions update it’s speed and position according to the following
equations:

Vi = wVi + c1rand()(pbest[i] −Xi) + c2Rand()(pbest[g] −Xi), (7)

Xi = Xi + c3G(Vi), (8)

where c3 is a positive constant, c3 << 1,function G(x) showed as follows:

F (x) =
1 − exp(−x)
1 + exp(−x)

. (9)

Thus if x > 0, then c3 ∗G(X)is in (0,1) otherwise c3 ∗G(X) is in (-1,0).
If the fixed precision is achieved, then go to the second phase. In the second

phase, we use a mixed vector to represent a solution, as shown in follows:

X = (e1, e2, ..., er, x1, x2, ..., xm), (10)

where r is numbers of fuzzy rules, and ei(i = 1 . . . r) is 0 or 1, if the value of the
ei is 1, then the corresponding fuzzy rule is enabled, otherwise it is disabled;
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m is numbers of consequence parameters, and xi(i = 1 . . .m) represents the
corresponding cij(i = 1 . . . r; j = 1 . . .n).

First random select a ei and update it according to the discrete PSO [12] .
In addition, when the value of the ei is 0, that is to say, the rule is redundant,
the corresponding xi is disabled, so consequence parameters xi(i = 1 . . .m)
update it’s speed and position according to the following equations:

Vid = eid(wVid+c1rand()(pbest[id]−Xid)+c2Rand()(pbest[gd]−Xid)), (11)

Xid = Xid + Vid. (12)

If the fixed precision is achieved, then stop and cut the fuzzy rule that the
corresponding ei is 0. Initialize the particle swarm again, and loop the process
until it achieves the termination condition, we will obtain a near-optimal
structure of T-S model in the end.

3.3 The Execution of the Algorithm

The algorithm:
1. Initialize the particle swarm: Designate the population size N, generate

speed Vi and position Xi of each particle randomly, and let k=0; Evaluate
the fitness of each particle.

2. Update the parameters of membership functions and the other real-
valued parameters.

3. Evaluate the fitness of each particle.
4. If the fixed precision is achieved then go to 5 otherwise go to 2.
5. Random select a ei to update.
6. Update the binary parameters ei of each particle according to the dis-

crete PSO .
7. Update consequence parameters.
8. If the pruning condition is achieved then go to 9, otherwise go to 6.
9. Pick the best particle to cut the redundant fuzzy rule.
10. If the termination condition is achieved then stop, otherwise go to 5.

4 Numerical Simulations

We used the proposed algorithm to the Mackey-Glass time series, which is
generated by the following time-delay differential equation [13]:

dx(t)
dt

=
0.2x(t− 17)

1 + x10(t− 17)
. (13)

In our simulations we have considered x(t− 1), x(t− 2)andx(t− 3) as inputs
to predict x(t).we set the initial condition is: x(0) = 0.64 and generated a
sample of 1000 points, The first 500 points were used as training data, and
the last 500 points as test data to validate the model’s performance.
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In our algorithm we used 3 fuzzy sets for each input, and the Gaussian
membership function is used for each fuzzy subset. The parameters of the
PSO are these: learning rate c1 = c2 = 2, c3 = 0.005, inertia weight is taken
from 0.9 to 0.2 with a linear decreasing rate. The population of particles was
set to 60.Before the execution of the algorithm the T-S model has 27 fuzzy
rules. The comparative results between the model in this paper and other
models are summarized in Table 1.

Table 1. Comparative results

Model Number of inputs Rules RMSE

T-Sekouras[13] 4 6 0.0041
ANFIS [14] 4 16 0.0016

KUKOLJ[15] 4 9 0.0061
WANG[16] 9 121 0.01

OUR MODEL 3 12 0.0034

The results in table1 have proved that the proposed pruning algorithm is
applicable and efficient.

5 Conclusion

Fuzzy system identification includes structure identification and parameters
identification. Based on the standard PSO, the proposed pruning algorithm
can obtain a near-optimal T-S model. The numerical experiments indicate
the effectiveness of the algorithm.
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Abstract. In this paper, the closed-set-latticefication of join-semilattices,
a new approach that the join-semilattice becomes the closed-set lattice, is
introduced. Moreover, by means of it, the structure of inverse limits in CL,
the category of closed-set lattices, is given.
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1 Definitions and Preliminaries

Let L be a complete lattice, and Copr(L) the set of nonzero co-prime elements
of L. If Copr(L) is a ∨-generating set of L (i.e. for each x ∈ L, there exists a
subset Bx ⊂ Copr(L) such that x =

∨
Bx), then we call L a closed-set lattice.

It can be proved ([2,8]) that a complete lattice L is a closed-set lattice if and
only if it is isomorphic to the lattice (J ′,⊂) of closed sets of a topological
space (X,J ) (J ′ = {X − V | V ∈ J } is called a closed topology on X), or
equivalently, Lop is a spatial locale [7]. The category of closed-set lattices and
mappings which preserves arbitrary unions and nonzero co-prime elements is
denoted by CL.

Limits theory is an important part in category theory, and inverse lim-
its and direct limits play an important role in limits theory. Therefore the
structures of inverse limits and direct limits have caused interests widely.
For example, inverse limits of the categories of locales Loc and topological
molecular lattice TML were studied ([3,11]), direct limits of the categories
of spatial locales SLoc and meet-continuous lattice were discussed ([4, 6]),
and the limits structure of molecular lattice category was given ([10]). In [9],
we have studied some categorical properties of CL. As the continuation of
[9], we mainly study the structures of inverse limits of category CL in this
paper.

We define a relation ' on closed-set lattices (L,≤) by putting

a ' b ⇐⇒ a ≤ c ≤ b for some c ∈ Copr(L).
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Then it can be easily verified that ' is approximating and satisfies interpola-
tion property, and x ' x if and only if x ∈ Copr(L).

Lemma 1. [9] Suppose that L1 and L2 are closed-set lattices, and f : L1 −→
L2 a ∨-preserving mapping (consequently, f has a right adjoint f∗ : L2 −→
L1, see [2]). Then the following statements are equivalent:

(1) f is a CL-morphism;
(2) f preserves relation ';
(3) f∗ preserves finite unions (particularly, f∗(0) = 0).

2 The Closed-Set-Latticefies of Join-Semilattice

Let L be a join-semilattice. We write ⇓ a = {b ∈ L∗ | b ≤ a}, where
L∗ = Copr(L). Let B = {∪a∈F ⇓a | F is a finite subset of L} and L̃ be the
family of all lower sets A of (L∗,≤) satisfying:

(∗) If a ∈ L∗ and A �⊂ P (for each P ∈ B(a)), then a ∈ A,
where B(a) = {P ∈ B | a �∈ P}.

It is easy to verify that ⇓a ∈ L̃ for every a ∈ L.

Lemma 2. (L̃,⊂) is a complete lattice, and for any family {Aj}j∈J ⊂ L̃,∧
j∈J Aj =

⋂
j∈J Aj and

∨
j∈J Aj

(∗∗)
= {a ∈ L∗ | ∀P ∈ B(a),

⋃
j∈J Aj �⊂ P}.

Proof. Let B =
⋂
j∈J Aj and a ∈ L∗. If, for each P ∈ B(a), B �⊂ P , then

Aj �⊂ P for every j ∈ J . Since Aj (∀j ∈ J) satisfies condition (∗), a ∈ Aj

which implies that a ∈ B. Therefore B satisfies condition (∗), and it follows
that B ∈ L̃ and

∧
j∈J Aj = B. As L∗ is the greatest element of (L̃,⊂), (L̃,⊂)

is a complete lattice.
Denote the right of equality (∗∗) by A. Obviously, A is a lower set in

(L∗,≤). Next, suppose that a ∈ L∗ and A �⊂ P for every P ∈ B(a). We will
show that a ∈ A. Assume that a �∈ A. By the definition of A,

⋃
j∈J Aj ⊂

P0 for some P0 ∈ B(a). As A �⊂ P0, there exists a y ∈ A − P0. We have⋃
j∈J Aj �⊂ P0 by the definition of A again. This is a contradiction. Hence

a ∈ A, which means that A satisfies condition (∗) and thus A ∈ L̃. Finally,
suppose that B ∈ L̃ satisfying Aj ⊂ B for each j ∈ J . We will show that
A ⊂ B (accordingly, A =

∨
j∈J Aj). Since B ∈ L̃, it suffices by condition (∗)

to show that B �⊂ P for each a ∈ A and each P ∈ B(a). By the definition of
A,
⋃
j∈J Aj �⊂ P , particularly B �⊂ P . This completes the proof of Lemma 2.

Lemma 3. (L̃,⊂) is a distributive lattice.

Proof. Let A, B, C ∈ L̃ and x ∈ A∩ (B ∨C). It suffices to show x ∈ B ∪C.
Assume that x �∈ B and x �∈ C. As B and C satisfy condition (∗), there exist
P1 ∈ B(x) and P2 ∈ B(x) such that B ⊂ P1 and C ⊂ P2. Let P = P1 ∪ P2.
Then P ∈ B(x) and B ∪C ⊂ P . By the definition of B ∨C, x �∈ B ∨C. This
is a contradiction.
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Corollary 1. If A is a finite subset of L̃, then
∨
A =
⋃
A.

Lemma 4. Denote N = {⇓a | a ∈ L∗}, then N ⊂ Copr(L̃) and N is the
∨-generating set of L̃.

Proof. Suppose that ⇓a ⊂ A1 ∨ A2 but ⇓a �⊂ A1 and ⇓a �⊂ A2, where
a ∈ L∗ and A1, A2 ∈ L̃. Therefore a �∈ A1 and a �∈ A2 which implies that
a �∈ A1∪A2 = A1∨A2. This contradicts the ⇓a ⊂ A1∨A2. Then ⇓a ∈ Copr(L̃).
For every P ∈ L̃, we have

∨
a∈P ⇓a ⊂ P =

⋃
a∈P ⇓a ⊂

∨
a∈P ⇓a. Hence N is

the ∨-generating set of L̃.

By the definition of closed-set lattice and above lemmas, we have the following
theorem:

Theorem 1. (L̃,⊂) is a closed-set lattice.

We call that (L̃,⊂) is the closed-set-latticefies of join-semilattice (L,≤).

3 Inverse Limits of Category CL

We refer to [1] for some categorical notions.
Let {Ai, fij , I} be an inverse system of closed-set lattices. We denote

by
∏
i∈I Ai the direct products of {Ai | i ∈ I}. Let A = {x = {xi}i∈I ∈∏

i∈I Ai | ∀i, j ∈ I, i ≤ j, we have fij(xi) = xj}. Then, for every x ∈
A, πj(x) = fij ◦ πi(x), where i ≤ j and πi is a projection.

It is easy to verify the following lemma:

Lemma 5. (A,≤) is a complete lattice, and for any family {xs}s∈S ⊂ A,∨
As∈S

xs =
∨
s∈S xs,

∧
As∈S

xs =
∨
{t | t ≤ xs and t ∈ A}, where ≤ is the

point-wise order,
∨
A is the unions in A and

∨
is the unions in

∏
i∈I Ai.

Obviously, hi = πi|A : A −→ Ai preserves arbitrary unions, and thus h∗
i :

Ai −→ A preserves arbitrary intersections, where h∗
i is the right adjoint of

hi.
By the closed-set-latticefies of join-semilattice A, we have the following

theorem:

Theorem 2. (Ã,⊂) is a closed-set lattice, and for any family {Pj}j∈J ⊂
Ã,
∧
j∈J Pj =

⋂
j∈J Pj and

∨
j∈J Pj = {a = {ai}i∈I ∈ A∗ | ∀P ∈

B(a),
⋃
j∈J Pj �⊂ P}, where A∗ = {a = {ai}i∈I | a ∈ A and ai ∈

Copr(Ai)}, ⇓a = {b | b ≤ a and b ∈ A∗} (a ∈ A), and B = {∪a∈F ⇓ a | F is
the finite subset of A}. Ã is the family of all lower sets of (A∗,≤) satisfying

(∗) If a ∈ A∗ and B �⊂ P (for each P ∈ B(a)), then a ∈ B, where ≤ is the
point-wise order and B(a) = {P ∈ B | a �∈ P}.
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If A∗ = ∅, then Ã = {∅}. It is easy to verify the following theorem:

Theorem 3. {Ã, pi|i∈I} is the inverse limits of the inverse system
{Ai, fij , I}, where pi : Ã −→ Ai is defined by pi(∅) = 0Ai (∀i ∈ I).

In the following, we will consider the condition of A∗ �= ∅.

Lemma 6. Let g : A −→ Ã is defined by g(a) =⇓a (∀a ∈ A), then g preserves
arbitrary intersections.

Proof. For any family {as}s∈S ⊂ A, it is easy to see ⇓ (
∧
As∈S

as) ⊂
⋂
s∈S ⇓

as. Conversely, if a ∈
⋂
s∈S ⇓as, then a ≤ as for each s ∈ S. By the definition

of
∧
A, we have a ≤

∧
As∈S

as. So a ∈⇓ (
∧
As∈S

as), and thus
⋂
s∈S ⇓as =⇓

(
∧
As∈S

as). This completes the proof of Lemma 6.

Theorem 4. {Ã, pi|i∈I} is the inverse limits of the inverse system
{Ai, fij , I}, where pi = hi ◦ g∗ and g∗ is the left adjoint of g.

Proof. Step 1. {Ã, pi|i∈I} is the natural source of the inverse system
{Ai, fij , I}.

Firstly, pi is a CL-morphism. Since hi, g∗ preserve arbitrary unions, pi (i ∈
I) preserves arbitrary unions. For any family {bt}t∈T ⊂ Ai, ⇓h∗

i (∨t∈T bt) =
∨t∈T ⇓ h∗

i (bt), where T is the finite subset. In fact, if x ∈⇓h∗
i (∨t∈T bt), then

x ∈ A∗ and x ≤ h∗
i (∨t∈T bt). Hence hi(x) ≤ hi ◦ h∗

i (∨t∈T bt) ≤ ∨t∈T bt,
and thus exists t ∈ T such that hi(x) ≤ bt. This implies x ≤ h∗

i (bt) and
x ∈ ∨t∈T ⇓h∗

i (bt). Obviously, ⇓h∗
i (∨t∈T bt) ⊃ ∨t∈T ⇓h∗

i (bt), which means ⇓
h∗
i (∨t∈T bt) = ∨t∈T ⇓h∗

i (bt). This follows that p∗i (∨t∈T bt) = g◦h∗
i (∨t∈T bt) =⇓

h∗
i (∨t∈T bt) = ∨t∈T ⇓h∗

i (bt) = ∨t∈T p∗i (bt). Hence p∗i preserves finite unions.
Secondly, pj = fij ◦pj (i ≤ j). In fact, fij ◦pi = fij ◦hi ◦ g∗ = hj ◦ g∗ = pj .
Step 2. Assume that {B, qi|i∈I} is also a natural source of the inverse

system {Ai, fij , I}, we will prove that there exists a unique CL-morphism
f : B −→ Ã such that qi = pi ◦ f (∀i ∈ I).

Existence. As {B, qi|i∈I} is the natural source of the inverse system
{Ai, fij , I}, fij ◦ qi(b) = qj(b) (b ∈ B, i, j ∈ I, and i ≤ j). It implies
that {qi(b)}i∈I ∈ A. Let f ′(b) =⇓ {qi(b)}i∈I , then f ′ : B −→ Ã is a mapping.
Again, let f(a) =

∨
s∈S f ′(s) =

∨
s∈S ⇓ {qi(b)}i∈I , where S = {s | s ≤ a and

s ∈ Copr(B)}. Then f : B −→ Ã is a mapping.
Firstly, qi = pi ◦ f . For each s ∈ S, g∗(⇓ {qi(s)}i∈I) = {qi(s)}i∈I by

g∗(⇓ {qi(s)}i∈I) =
∧
A{c ∈ A |⇓ {qi(s)}i∈I ⊂⇓ c} and {qi(s)}i∈I ∈ A∗.

Hence pi ◦ f(a) = pi(
∨
s∈S ⇓ {qi(s)}i∈I) =

∨
s∈S hi{qi(s)}i∈I =

∨
s∈S qi(s) =

qi(
∨
s∈S s) = qi(a).

Secondly, f is a CL-morphism. Obviously, f preserves finite unions. For
any family {bm}m∈M ⊂ B, it suffice to show

∨
t∈T f ′(t) =

∨
s∈S f ′(s), where

T = {t | t ≤
∨
m∈M bm and t ∈ Copr(B)}, S = {s | s ≤ bm for some m ∈ M

and s ∈ Copr(B)}. Clearly,
∨
t∈T f ′(t) ⊃

∨
s∈S f ′(s). Let t ∈ T , we will show
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that {qi(t)}i∈I ∈
∨
s∈S f ′(s), which implies

∨
t∈T f ′(t) =

∨
s∈S f ′(s). Assume

that t0 ∈ T and {qi(t0)}i∈I �∈
∨
s∈S f ′(s). Then exists a P = ∪d∈D ⇓d ∈

B({qi(t0)i∈I}) such that ∪s∈Sf ′(s) ⊂ P (and thus ∨s∈Sf ′(s) ⊂ P ), where D
is a finite subset of A. We consider the following three cases:

Case 1. |D| = 0, where |D| is the cardinality of D. Then P = ∅ = S, and
thus
∨
t∈T f ′(t) =

∨
s∈S f ′(s).

Case 2. |D| = 1, i.e. P =⇓d for some d = {di}i∈I ∈ A. {qi(t0)}i∈I �∈
P implies qj(t0) �≤ dj for some j ∈ I. As qj(t0) ≤ qj(

∨
T ) = qj(

∨
S) =∨

s∈S qj(s),
∨
s∈S qj(s) �≤ dj . Then qj(s0) �≤ dj for some s0 ∈ S. It follows

that f ′(s0) �⊂ P . This is a contradiction because
⋃
s∈S f ′(s) ⊂ P .

Case 3. |D| ≥ 2. For simplicity, we only consider the case |D| = 2, i.e.
P =⇓c∪ ⇓d, where c = {ci}i∈I �= d = {di}i∈I and c, d ∈ A. As

∨
s∈S f ′(s) ⊂ P

and f ′(s) ∈ Copr(Ã) (∀s ∈ S), f ′(s) ⊂⇓c or f ′(s) ⊂⇓d (∀s ∈ S). Let
S1 = {s ∈ S | f ′(s) ⊂⇓c}, S2 = {s ∈ S | f ′(s) ⊂⇓d}, x =

∨
S1 and y =

∨
S2.

Then S = S1 ∪ S2 and
∨

S = x ∨ y. First, we show f(x) ⊂⇓c . Suppose
that f(x) �⊂⇓c, then f ′(r) =⇓{qi(r)}i∈I �⊂⇓c for some r ∈↓x ∩ Copr(B) since
Copr(L) is a ∨-generating set of B. It follows that qj(r) �≤ cj for some j ∈ I,
and thus

∨
s∈S1

qj(s) = qj(x) �≤ cj and qj(s0) �≤ cj for some s0 ∈ S1. Hence
f ′(s0) �⊂⇓c, which contradicts to the definition of S1. Therefore f(x) ⊂⇓c.
Analogously, f(y) ⊂⇓d. Then

∨
t∈T f ′(t) = f(

∨
T ) = f(x∨y) = f(x)∨f(y) =

f(x) ∪ f(y) ⊂⇓c∪ ⇓d = P . This contradicts to {qi(t0)}i∈I �∈ P.
For every b ∈ Copr(B), f(b) = f ′(b) = {qi(b)}i∈I . Then f preserves

nonzero co-prime elements, and thus f is a CL-morphism.

Uniqueness. Let h : B −→ Ã also be a CL-morphism such that pi ◦ h =
qi (∀i ∈ I). Then h(a) =

∨
b∈N h(b), where N = {b ∈ Copr(B) | b ≤ a}.

By pi ◦ h(b) = qi(b) and the definition of pi, g∗ ◦ h(b) = {qi(b)}i∈I . Then
h(b) ≤ g({qi(b)}i∈I) = f ′(b), and thus h(a) ≤ f(a). On the other hand,
we will show {qi(b)}i∈I ∈ h(b) (∀b ∈ N), which implies f(a) = h(a). By
the condition (∗), there exists a P = ∪d∈D ⇓d ∈ B({qi(b)i∈I}) such that
{qi(b)}i∈I �∈ P but h(b) ⊂ P . We consider the following three cases:

Case 1. |D| = 0, where |D| is the cardinality of D. Then P = ∅ and a = 0,
and thus h(a) = f(a).

Case 2. |D| = 1, i.e. P =⇓d for some d = {di}i∈I ∈ A. Then qj(b) �≤ dj
for some j ∈ I. That is pj ◦ h(b) �≤ dj . By the definition of pj , g∗ ◦ h(b) �≤ d.
It follows h(b) �⊂ g(d) = P . This is a contradiction because h(b) ⊂ P .

Case 3. |D| ≥ 2. For simplicity, we only consider the case |D| = 2, i.e.
P =⇓c∪ ⇓d, where c = {ci}i∈I �= d = {di}i∈I and c, d ∈ B. Similar to
the proof of Case 2, we can prove h(b) �⊂⇓c and h(b) �⊂⇓d. Because of
b ∈ Copr(B), h(b) �⊂⇓c∪ ⇓d = P . This is a contradiction because h(b) ⊂ P .

Acknowledgements. This paper is supported by the Foundation of Shaanxi
Province (Grant No. 2009JK452) and the Foundation of XPU (Grant No. 09XG10).



458 H.-y. Li

References
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Relative Density Weights Based Fuzzy C-Means 
Clustering Algorithms  

Jin-hua Chen and Xiao-yun Chen  
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Abstract. Fuzzy C-means (FCM) clustering algorithm tries to get the 
memberships of each sample to each Cluster by optimizing an objective function, 
and then assign each of the samples to an appropriate class. The Fuzzy C-means 
algorithm doesn’t fit for clusters with different sizes and different densities, and it 
is sensitive to noise and anomaly. We present two improved fuzzy c-means 
algorithms, Clusters-Independent Relative Density Weights based Fuzzy C-means 
(CIRDWFCM) and Clusters-Dependent Relative Density Weights based Fuzzy 
C-means (CDRDWFCM), according to the various roles of different samples in 
clustering. Several experiments of them are done on four datasets from UCI and 
UCR. Experimental results shows that this two presented algorithms can increase 
the similarity or decrease the iterations to some extent, and get better clustering 
results and improve the clustering quality.  

Keywords: Cluster Analysis, Fuzzy C-means, Fuzzy Pseudo-partition, Relative 
Density Weights, Cluster Similarity. 

1   Introduction 

Cluster analysis [1] is the work of assigning a set of unlabeled samples into 
several different groups (called clusters) in some way, so that samples in the same 
group are similar as much as possible. At present, cluster analysis has been widely 
used in many practical problems in real life, such as image processing, 
information retrieval, data analysis, pattern recognition, data mining etc. Whether 
the purpose of clustering is understanding or application, cluster analysis is 
occupying a very important position. Sometimes, cluster analysis is a good 
beginning of other purposes of analysis. The clustering results can be used in data 
preprocessing, data classification, anomaly detection. Considering whether we 
have the demand to assign each sample to a certain class strictly and accurately, 
cluster analysis can be divided into hard clustering and fuzzy clustering [2]. The 
traditional methods of cluster analysis are the former, that is, hard clustering and 
they have an either-or feature. Objective things mostly have some fuzzy nature, 
for there is not a clear boundary between properties of things and they are not 
either-or, so cluster analysis methods use the expression of uncertainty, which is 
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more suitable for the nature of objective reality and more objectively reflect the 
real world. Thus, in-depth study and exploration of the fuzzy clustering has 
become the main content of cluster analysis researching. Fuzzy C-means (FCM) 
clustering algorithm wins the most wide application and research in fuzzy 
clustering.  

FCM algorithm, which introduces the fuzzy set theory and fuzzy logic into the 
K-means, is in fact the fuzzy version of the traditional K-means clustering 
algorithm. The adopted term, fuzzy pseudo-partition, reflects the degree of each 
sample belonging to each cluster (called membership). Although the calculating 
intensity is slightly higher, there are many issues in FCM, which are the same with 
those existing in K-means [3]. These problems are: A, the clustering results and 
the convergence rate are greatly influenced by the initial value, which may easily 
result in a local optimal solution, especially when the number of clusters is bigger; 
B, when it comes to non-spherical clusters, clusters of different sizes and clusters 
with greatly difference in density, it shows a low performance; C, it is sensitive to 
noise and outliers.  

To solve the problems B and C pointed out in the above, according to the 
various roles of different samples in clustering, we add an appropriate weighting 
factor in the convergence process using the relative density weights. According 
the weighting factor is dependent or independent on a particular cluster, two 
relative density weights based fuzzy c-means clustering algorithms are presented, 
which are Clusters-Independent Relative Density Weights based Fuzzy C-means 
(CIRDWFCM) and Clusters-Dependent Relative Density Weights based Fuzzy C-
means (CDRDWFCM).  

2   Fuzzy C-Means (FCM) Algorithms 

Let X={X1, X2, ⋅⋅⋅ , Xm} be the sample set, so that X contains m samples. It 
assumes that the number of cluster q is known a priori, where q is a positive 
integer bigger than 1. U is the fuzzy matrix with q rows and m columns, where 
element Uki represents the membership of the ith sample belonging to the kth 
cluster, so U is also called membership matrix. Moreover, p is the fuzziness index.  

Let the objective function of FCM O(U,C) be the error sum of squares [3], as 
follows:  

∑∑
= =

=
m

i

q

k
ik

p
ki dUCUO

1 1

2),(  (1)

where C is a set of q cluster centers, Ck means the kth cluster center (or centroid), 
dik is the distance between the ith sample and the kth cluster center. The FCM 
clustering of sample set X is to minimizes the objective function O(U,C) with the 
constraint that the sum of membership of each sample Xi { i =1, 2, ⋅⋅⋅ , m} 
belonging to all clusters equals 1.  

By minimizing the objective function O(U,C) using the Lagrange multiplier 
method [4], as we adopt the following updating equations used in [3] for U and C.  
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The detailed steps of FCM are described as follows:  
 
Step 1: Appoint the fuzzy index p, and determine the initial fuzzy pseudo-

partition, that is to initialize the membership matrix U;  
Step 2: Update all cluster centers Ck {k = 1, 2, ⋅⋅⋅ , q} according to the fuzzy 

pseudo-partition U and equation (3), and then recalculate the fuzzy pseudo-
partition U using equation (2);  

Step 3: Repeat Step 2, until each cluster centroid does not change any more or 
change of each centroid is less than a given threshold.  
 
In the algorithm steps described in the above, the loop termination condition in 
Step 3 can be replaced as that the change of the objective function O(U,C) or the 
change of error is no longer greater than a appointed threshold, or the changes of 
absolute value of all elements in the membership matrix are all less than a given 
threshold. For each sample Xi, it has q memberships correspond to q clusters. We 
finally assign the sample Xi to the cluster membership of which is the greatest.  

3   Relative Density Weights Based Fuzzy C-Means Clustering 
Algorithms  

Aiming at solving the mentioned problems of FCM, Jin-Liang Chen et al. propose 
an improved method in [5]. Considering the various roles of different samples in 
clustering, they add an appropriate weighting factor in the convergence process of 
clustering. Their weighting factor depends on the distance between each pair of 
samples, so it is an invariant. A.H. Hadjahmadi et al. consider changing weights 
based method in [6] behind the idea in [5]. Their weighting factor is not an 
invariant, because it is changed as the clusters changed during the convergence 
process. Both the weighting factor in [5] and [6] take only the distance measure 
into account, without considering the relative density around each sample, and 
thus can not commendably reflect the importance of a sample towards each cluster 
or its importance for clustering. Therefore, considering the relationship of relative 
density among samples and clusters and according to whether the weighting factor 
is variable during the clustering process, we propose two improved method of 
FCM, Clusters-Independent Relative Density Weights based Fuzzy C-means 
(CIRDWFCM) algorithm and Clusters-Dependent Relative Density Weights 
based Fuzzy C-means (CDRDWFCM) algorithm.  
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3.1   Clusters-Independent Relative Density Weights Based Fuzzy C-Means 
(CIRDWFCM) Clustering Algorithm  

We use a fixed value W obtained before clustering process, not during the 
convergence process, to measure the importance of each sample. W is independent 
of each cluster, that is, in every iteration, W is never changed. The m weights 
{Wi}, i = 1, ⋅⋅⋅, m corresponding to m samples {Xi}, i = 1, ⋅⋅⋅, m in sample set X, 
make up of a one-dimensional matrix W, which we call weighting factor matrix.  

According to W, we modify the objective function O(U,C), like [5], into the 
following equation:  

∑∑
= =

=
m

i

q

k
ik

p
kii dUWCUO

1 1

2),(  (4)

The Lagrange multiplier method [4][5] is used to minimize the objective 
function O(U,C) and then derive a new optimal solution of U and C. U has the 
same shape as is shown in equation (2), while C is determined by the updating 
equation (5) which is used in [5].  
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Behind ideas based on relative density, we use the relative density around each 
sample to weigh the importance of a sample for clustering, that is, weight of each 
sample is determined by its relative density. Firstly, we give three definitions as 
follows:  

 
Definition 1. t-Neighbor Set of sample x  
In sample set X, the t-Neighbor Set of sample x, denoted as N(x, t), is a set of 
samples meeting the following two conditions:  

 
(1) N(x, t) contains at least t samples;  
(2) Let d_max be the maximum distance between samples in N (x, t) and sample 

x. Then there are at most t-1 samples, distance between each of which and x is less 
than d_max.  

 
Definition 2. t-Neighbor Density of sample x  
In sample set X, let N(x, t) be the t-Neighbor Set of sample x defined by Definition 
1. We define the t-Neighbor Density of sample x, which is denoted as ),( txρ , as 

the inverse average distance[3] between all samples in N(x, t) and sample x, that 
is  

1

),(

|),(|

),(
),(

−

∈

⎥
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⎢
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⎣
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=
∑

txN

yxd
tx txNyρ  (6)
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where N(x,t) is the t-Neighbor Set of sample x, y is one of the samples in N(x,t), 
d(x,y) is the distance between sample x and sample y, and |N(x,t)| is the number of 
samples in N(x,t).  
 
Definition 3. t-Neighbor Relative Density of sample x  
In sample set X, the t-Neighbor Relative Density of sample x, denoted as 

),(_ txργ , is defined by the following formula based on Definition 1 and 

Definition 2:  

∑ ∈

=
),(

|),(|/),(

),(
),(_

txNy
txNty

tx
tx

ρ
ρργ  (7)

where N(x,t) is the t-Neighbor Set of sample x, y is one of the samples in N(x,t), 
|N(x,t)| is the number of samples in N(x,t) and ),( txρ  and ),( tyρ  are 

respectively the t-Neighbor Density of sample x and y.  
Based on the definition above, we can determine each element Wi in weighting 

factor matrix W as follows:  

),(_ tXW ii ργ=  (8)

where Xi is the ith sample of sample set X, t is a control parameter, which shows 
that we adopt t-Neighbor Relative Density.  

3.2  Clusters-Dependent Relative Density Weights Based Fuzzy C-Means 
(CIRDWFCM) Clustering Algorithm  

In CDRDWFCM, we also add a weighting factor W to the objective function. 
Unlike the CIRDWFCM, here the weighting factor matrix W is not an invariant 
and is not derived before the clustering process, but is variable during the 
clustering process. W is a q rows and m columns matrix, where each element is 
related to a specific cluster and element Wki represents the influence factor of the 
ith sample to the kth cluster.  

Adding this type of weights, the CDRDWFCM algorithm aims to minimize the 
following objective function according to [6]:  
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Due to the dependence of weighting factor on specific clusters and each weight 
is no more independent of each cluster center, to minimize O (U, C) becomes very 
complex. For simplicity of calculation, we approximatively use the assumption 
that the partial derivative of weight to cluster centroid equals 0. Then, based on 
this assumption, using the Lagrange multiplier method [4], we adopt the updating 
equations used in [6] for U and C: 
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Considering the idea of relative density again, we give a new weight W which 
is not only related to the sample itself, but also related to the specific cluster. Each 
element of W, Wki, is computed as follows:  

)},(_),,(max{

)},(_),,(min{

tCavgtX

tCavgtX
W

ki

ki
ki ρρ

ρρ=  (12)

where Ck is the kth cluster center (or centroid), t is a control parameter, which 

shows that we adopt t-Neighbor Relative Density, ),( tX iρ  and ),( tCkρ  are 

respectively the t-Neighbor Density of sample Xi and Ck, and ),(_ tCavg kρ  

equals the average t-Neighbor Density of all samples in t-Neighbor Set of sample 
Ck.  

Weighting factor defined in equation (12) considers both the local density around 
each sample itself and the local density around each cluster center, and then determine 
the importance (weight) of one sample to one cluster by the two densities.  

4   Experimental Results and Analysis  

We analyze the ability of CIRDWFCM and CDRDWFCM by comparison with 
other related algorithms. This experiment adopts two real data sets from UCI 
Machine Learning Repository [7][5] and two real data sets from UCR Time Series 
Data Mining Archive [8].  

4.1   Experimental Data Descriptions  

The four data sets adopted in this experiment are Iris and sonar from UCI, and 
Lighting2 and Gun_point from UCR. They are all real data sets, and the last two 
are time series data sets, as is shown in Table 1.  

Table 1. Experimental Data Descriptions 

Data sets Iris sonar Lighting2 Gun_point 
Samples Number 150 208 60 50 

Attributes Number 4 60   
Series Length   637 150 

Classes Number 3 3 2 2 
Distribution 50+50+50 97+111 20+40 24+26 
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4.2   Clustering Results Evaluation  

In [9], T.W. Liao proposes a method to evaluate the clustering results, which 
adopt the index called cluster similarity measure. The greater the cluster similarity 
measure is, the better the clustering quality is. Let k and q respectively be the real 
number of classes and the number of clusters in clustering results. Let G and C be 
the set of k ground truth clusters and the set of q clusters obtained by a clustering 
method respectively. The similarity between the sth real cluster and the tth 
obtained cluster is defined as  

||||

||
2),(

ts

ts
ts CG

CG
CGSimilarity

+
∩×=  (13)[9]

where | ⋅ | denotes the cardinality of the elements in the set.  
The final cluster similarity measure of a clustering result is defined as equation 

(14).  
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4.3   Experimental Results and Analysis  

In order to analyze the clustering ability of the proposed algorithms, we compare 
them with the FCM and DWFCM algorithms. The experiment need to set a 
parameter t, here we assume it as 1/3 of the average number of samples for all 
clusters. For comparison, we adopt the cluster similarity measure as the clustering 
results evaluation index, do the experiment repeatedly for 10 times and then fetch 
the best results as shown in Table 2.  

Table 2. Comparison of Clustering Results 

Data sets Iris sonar Lighting2 Gun_point 
Iterations Number 17 51 71 10 

FCM 
Cluster Similarity 0.886109 0.552792 0.534349 0.557166 
Iterations Number 12 47 73 9 

DWFCM 
Cluster Similarity 0.885741 0.552792 0.534349 0.557166 
Iterations Number 11 19 16 7 

CIRDWFCM 
Cluster Similarity 0.892948 0.552874 0.534349 0.557166 
Iterations Number 15 96 46 9 

CDRDWFCM
Cluster Similarity 0.898775 0.557651 0.558035 0.575758 

 
 

From Table 2, we see: (1) For data sets Iris and sonar, CIRDWFCM and 
CDRDWFCM cause the greater cluster similarity compared to FCM and DWFCM; 
(2) For the other two data sets, CDRDWFCM still has a cluster similarity greater 
than that FCM and DWFCM have, and the number of iterations CIRDWFCM 
needed is obviously less than FCM and DWFCM, although CIRDWFCM doesn’t 
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produce a higher cluster similarity. Therefore, the proposed algorithms can get 
greater cluster similarity or reduce the number of iterations, that’s to say, they can 
improve the clustering performance. Compared to FCM and DWFCM, the proposed 
algorithms show better clustering performance.  

5   Conclusions 

The traditional Fuzzy C-means (FCM) clustering algorithm has some problems. 
Aiming at improving it, in this paper, we propose two algorithms CIRDWFCM 
and CDRDWFCM based on the idea of weighting factor and the concept of 
relative density. The experimental results show that the proposed methods have 
the stronger clustering ability.  
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Abstract. This paper generalize the Lowen functor based on a complete
lattice with an approximating relation (with the property of interpolation).
It is shown that, on any completely distributive lattice, the Lowen functor
ωL can not only defined by �≤ relation, but also by the way below relation -
and the wedge below relation �.

Keywords: Lowen functor; completely distributive lattice; way-below rela-
tion; wedge-below relation.

1 Introduction

The Lowen functors (ω, ι) were introduced by Lowen [8] in order to study the
relations between the category of topological spaces Top and the category
of fuzzy topological spaces [0,1]-Top. Later, several authors extended this
adjunction to completely distributive lattices [7, 9] and even to complete
lattices [4, 5].

Let (X,T ) be a topological space and L a completely distributive com-
plete lattice. A ∈ LX is called a lower semicontinuous function w.r.t. T if for
any a ∈ L, ιa(A) = {x ∈ X | A(x) �≤ a} ∈ T . The family of all lower semi-
continuous functions w.r.t. T is denoted by ωL(T ), which forms a stratified
L-topology on X . It’s easy to see that A ∈ LX is lower semicontinuous iff
A : (X,T ) −→ (L, ν(L)) is continuous, where ν(L), generated by the subbasis
{L\ ↓ a| a ∈ L}, is called the upper topology on L.

Lowen’s original definition is the case L = [0, 1]. Now, let’s focus on the
lattice [0,1]. Obviously, [0,1] is a completely distributive lattice and thus is
also a continuous lattice. The binary relation “less than <” is exactly the
way below relation and the wedge below relation on [0,1], both of which are
approximating relations (with the property of interpolation). It’s natural to
ask that,
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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For a completely distributive lattice L, can we generalize the Lowen functor
by means of way below relation or wedge relation? or Can the Lowen functors
be characterized by the wedge relation and/or by the way below relation?

The aim of this paper is to generalize Lowen functors based on a com-
plete lattice with an approximating relation (with the property of interpo-
lation) and then study the special cases for the way-blow and wedge-below
relations.

2 Preliminaries

In this paper, a lattice is always assumed to be complete.
The set of all L-topologies on a set X is a complete lattice under partial

order of inclusion. For all S ⊆ LX , 〈〈S〉〉 denotes the least L-topology that
contains S, called the L-topology generated by S.

An element a ∈ L is called co-prime if for any b, c ∈ L, a ≤ b ∨ c implies
a ≤ b or a ≤ c. The set of all non-zero co-prime elements of L is denoted by
J(L).

For any a, b ∈ L, a is said to be way below (resp., wedge below) b, in
symbols a - b (resp., a � b), if for any directed subset (resp., any subset)
D ⊆ L, b ≤

∨
D always implies a ≤ d for some d ∈ D. Put ⇑ a = {x ∈ L| x -

a} (resp., β(a) = {x ∈ L| x�a}) for each a ∈ L. L is called continuous (resp.,
completely distributive) iff for any a ∈ L, a =

∨
⇑ a (resp., x =

∨
β(a)).

The Scott topology σ(L) on a continuous lattice L is the topology generated
by the basis {⇑ a| a ∈ L}, the corresponding topological space is denoted by
Σ(L).

The completely distributive law is described as:
(CD)

∧
j∈J

∨
Aj =
∨
{
∧
j∈J

ϕ(j)| ϕ ∈
∏
j∈J

Aj}

for arbitrary Aj ⊆ L and arbitrary index set J .
A complete lattice L is a completely distributive iff it satisfies the com-

pletely distributive law.

Lemma 1. Let L be a completely distributive lattice. Then
(1) for any a ∈ L, a =

∨
β(a) = β∗(a), where β∗(a) = β(a) ∩ J(L);

(2) for any a ∈ J(L), b ∈ L, a - b iff a � b;
(3) ν(L) = σ(L).

L is called a frame if it satisfies the following infinitely distributive law:
(ID) a ∧ (

∨
B) =
∨
b∈B

(a ∧ b)

for any a ∈ L and B ⊆ L.
A continuous frame L is a continuous lattice as well as a frame. It’s easy

to see that a completely distributive lattice is a continuous frame.
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3 ≺-Lower Semicontinuous Functions

Suppose that ≺ a binary relation on L which is less than ≤, i.e., for any
a, b ∈ L, a ≺ b always implies a ≤ b. For any A ∈ LX and any a ∈ L, define
ι≺a (A) = {x ∈ X | a ≺ A(x)}.

Theorem 1. For any A ∈ LX , A =
∨
a∈L

a ∧ χι≺a (A).

Obviously, A ≥
∨
a∈L

a ∧ χι≺a (A). Conversely, for any x ∈ X and a ≺ A(x), we

have a ∧ χι≺a (A)(x) ≥ a.
Let (X,T ) be a topological space. A ∈ LX is called a ≺-lower semi-

continuous function w.r.t. (X,T ) iff for any a ∈ L, ι≺a (A) ∈ T . The family
of all ≺-lower semi-continuous functions w.r.t. (X,T ) is denoted by ω≺

L (T ).
Obviously, on [0,1], a lower semi-continuous function is a <-lower semi-
continuous function.

Theorem 2. Each ≺-lower semicontinuous function is a lower semicontin-
uous function.

Trivial since ≺ is approximating, ≺⊆≤ and ιa(A) =
⋃
b�≤a

ι≺b (A).

Theorem 3. (1) For any a ∈ L, U ∈ T, a ∧ χU ⊆ ω≺
L (T ).

(2) ω≺
L (T ) ⊆ 〈〈{a ∧ χU | a ∈ L, U ∈ T }〉〉.

(1) Let a ∈ L, A ∈ T . For any b ∈ L, if b ≺ a then ι≺b (a ∧ χA) = A ∈ T
and if b �≺ a then ι≺b (a ∧ χA) = ∅ ∈ T .

(2) Let A ∈ LX be a ≺-lower semicontinuous function w.r.t. (X,T ). Then
∀a ∈ L, ι≺a (A) ∈ T and by Lemma 1, A =

∨
a∈L

a ∧ χι≺a (A).

Corollary 1. {a ∧ χA| a ∈ L, A ∈ T } is a subbase of 〈〈ω≺
L (T )〉〉. If L is a

frame, then {a ∧ χA| a ∈ L, A ∈ T } is a base. Thus 〈〈ω≺
L (T )〉〉 is a fixed

(stratified) L-topology on X.

Theorem 4. ω≺
L : Top −→ SL-Top, (X,T ) �→ (X, 〈〈ω≺

L (T )〉〉), is a functor

For any a ∈ L, let ↑≺ a = {x ∈ L| x ≺ a} and σ≺(L) denote the (crisp)
topology on X generated by the subbasis {↑≺ a| a ∈ L}.

Theorem 5. A ∈ ω≺
L (T ) iff A : (X,T ) −→ (L, σ≺(L)) is continuous.

Trivial since A−1(↑≺ a) = ι≺a (A).

Corollary 2. If L is a continuous lattice, then A ∈ ω�
L (T ) iff A : (X,T ) −→

(L, σ(L)) is continuous.

Theorem 6. (Warner [11]) For a continuous frame L, the family of all con-
tinuous functions from (X,T ) to (L, σ(L)) is an L-topology on X.
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Corollary 3. Let L be a continuous frame. Then ω�
L (T ) already forms the

L-topology on X.

Corollary 4. If L is completely distributive, then A ∈ LX is lower semicon-
tinuous iff A is --lower semicontinuous, i.e., ωL = ω�

L .

As a corollary of Theorem 2, we have.

Corollary 5. If L is completely distributive, then ω�
L (T ) ⊆ ωL(T ).

Lemma 2. [1] ω�
L (T ) ⊆ ω�

L (T ).

We only need to show that ι�a (A) =
⋃

b∈↑a∩J(L)
ι�b (A). For any x ∈ ι�a (A), we

have a�A(x) and then a ≤ b for some b ∈ β∗(A(x)). Then b ∈↑ a∩J(L) and
b - A(x), x ∈ ι�b (A). Conversely, for any b ∈↑ a∩ J(L) and any x ∈ ι�b (A),
we have a ≤ b � A(x) since b ∈ J(L). Hence a � A(x) and x ∈ ι�a (A).

Corollary 6. ω�
L = ω�

L = ωL.

4 ωL = ω�
L for Distributive Continuous Lattices

A complete lattice L is called a continuous frame if L is both a frame and a
continuous lattice.

In this section, L always denotes a completely distributive lattice.

Theorem 7. {⇑ a| a ∈ M(L)} forms a subbasis of σ(L), where ⇑=↑�.

For any U ∈ σ(L) and any u ∈ U , there exists v ∈ U such that v - u
since every completely distributive lattice is a continuous lattice. Since v =∨
{x ∈ M(L)| x ≤ v} ∈ U , there exits x1, · · · , xn ∈ M(L)∩ ↓ v such that

x1∨· · ·∨xn ∈ U . It’s easy to show that u ∈⇑ x1∩· · · ∩ ⇑ xn =⇑ (x1∨· · ·∨xn) ⊆
U . Hence {⇑ a| a ∈ M(L)}.

Theorem 8. [11] A ∈ ωL(T ) iff A : (X,T ) −→ (L, σ(L)) is continuous.

=⇒ For any a ∈ M(L), we only need to show that A−1(⇑ a) = ι∨ L\↑a(A).
In fact, for any x ∈ A−1(⇑ a), we have a - A(x). If A(x) ≤

∨
L\ ↑ a,

then a ≤ d for some d ∈ L\ ↑ a (L\ ↑ a is an upper directed set), which
is a contradiction. Thus A(x) �≤

∨
L\ ↑ a and x ∈ ι∨ L\↑a(A). Conversely,

suppose that x ∈ ι∨ L\↑a(A), then A(x) �≤
∨

L\ ↑ a. Let D be a upper
directed set and A(x) ≤

∨
D, then

∨
D �≤
∨

L\ ↑ a and there exist d ∈
D such that d �≤

∨
L\ ↑ a. It follows that a ≤ d. Thus a - A(x) and

x ∈ A−1(⇑ a).
⇐= For any a ∈ L, ιa(A) = A−1(L\ ↓ a) ∈ T .
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1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories.
Wiley, New York (1990)

2. Gierz, G., et al.: Continuous Lattices and Domains. Cambridge University
Press, Cambridge (2003)
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Remote Sensing Image Classification Based on Fuzzy 
Entropy Triple I Algorithm 
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Abstract. By analyzing the principle of the supervised classification algorithms, 
traditional supervised algorithms are either much single for its collected sample, 
which makes various features from different classes can’t be fully characterized, or 
much larger for its collected sample block, which makes little practical sense and 
not very good for the results of classification, although including kinds of feature 
information in the same class. Combining with algorithm of fuzzy entropy triple I, a 
new classification algorithm of fuzzy entropy triple I based on multi-sample 
collections is proposed. It is used in ground objects classification and water area 
extraction of remote sensing image. The results of experiments show that the new 
algorithm has higher precision, lower false accept rate and false reject rate, and 
stronger applicability. 

Keywords: Remote sensing image, minimum distance discrimination method, 
Bayes algorithm, fuzzy entropy triple I algorithm.  

1   Introduction 

With the rapid development of remote sensing technology, remote sensing image has 
also been widely used. For example, detailed investigation in use on country's land, 
cover type identification of land, and classifications are all around the object to the 
use of remote sensing images. Currently, there are two main types of classification 
algorithms: supervised classification and unsupervised classification. Supervised 
algorithm includes minimum distance criterion, Fisher linear discrimination, Bayes 
algorithm, k-nearest neighbor discrimination law etc [1]. However, in these 
algorithms, collected sample is either single, which does not contain all the 
characteristics information of the class, or very large block, which makes little 
significance in the practical application. If the color of heterogeneous is similar, the 
traditional supervised criterion can not distinguish them. All in all, the results of 
classification in traditional supervised algorithms are faulty. These problems are due 
to deficiencies in the algorithm themselves, it either brings a lot of wrong numeracy 
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or lends severe rejection phenomenon, which makes the classification results are not 
very good.   

Based on the truth that human eye is color sensitive and well capable of 
distinguishing, and remote sensing image includes rich feature information. Aiming 
at the flaws of traditional supervised algorithms, a new criterion of fuzzy entropy 
triple I algorithm based on multi-sample collections is proposed and applied into 
ground objects classification and water area extraction. Compared to the minimum 
distance discrimination method and the traditional Bayes criterion, this algorithm 
can improve the classification performance and accuracy.   

2   Minimum Distance Discrimination Method  

Minimum distance classification is a simple supervised method, which has known 
the determinate location parameters of surface features in the spectrum space, and 
then the element is fallen into the model which has the minimum distance by 
defining it to the center of each pattern class. Based on different definitions of 
distance, we can get a variety of specific methods. Commonly, many methods are 
based on Euclidean distance, Mahalanobis distance and so on [1]; The common 
points can be stated as: assuming the data has m  bands, and n classes are described 
by standard samples 1 2, , nw w w" , according to the principle of minimum distance 
classification, the distance of the identified element x  to the ith  class can be 
defined as follows: 

( ) ( ) ( ) ( 1,2,..., )T
i i iD x x x u x u i n= − − = ， (1) 

1( ) ( ) ( ) ( 1, 2, , )T

i i i i

D x x u x u i n−= − ∑ − = "  ， (2) 

(Eq.(1) and (2) are Euclidean distance, Mahalanobis distance, separately[2]), iu  is 
the mean vector of the ith  class, and i∑  is the covariance matrix of overall 
distribution. Classification criterion is as following: 

( ) ( )
i i j j

D p D p< ，
i

i j p w∀ ≠ ⇒ ∈ . 

From the above, we can see that the calculation of classifier based on the 
minimum Euclidean distance is very simple. But in general, the accuracy of 
classification depends on the number of classes and the dispersion of various types. 
When the models are much more and some kind of spectral spreading is large, the 
results are not ideal. Although classifications based on the minimum Mahalanobis 
distance, taking into account the characteristics of the distribution sample, all kinds 
of general covariance matrix are often difficult to be prevised. 

Figure 1(b) is the assorted result of figure 1.(a) based on minimum Euclidean 
distance. Apparently, there are many scattered grasses in figure 1(b), which should 
be classified in the class of grass. And in order to prevent the trivial in an unit class 
and overcome the uncertainty of general covariance matrix in classification based 
on minimum Mahalanobis distance, the Bayes discrimination [3] is introduced into  
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                          (a)                                                              (b) 

Fig. 1. (a) Original RGB image; (b) the result of grass based on Euclidean distance 

the RGB image classification. Taking advantage of the sample’s variance matrix 
instead of the one of the corresponding class makes a better overall effect. 

3   Traditional Bayes Criterion 

The basic idea of Bayes discrimination method is [1]: the prior probability of each 
model class should be predetermined before sampling. Then make an amendment to 
prior knowledge by using the collected samples to get a posterior probability. 
Finally, assort the unknown samples based on posterior probability. Discriminant 
analysis on the ideas of Bayes classification, we get Bayes criterion.  

If Bayes discrimination is used for image classification, first of all, the prior 
probability ( )

i

p w  of model iw  should be determined by experienced experts. Then 
amend the prior probability by using selected samples, and calculate the 
class-conditional probability density function ( | )ip x w  of unknown element x . For 
a two types of pattern classification problem, Bayes criterion based on minimum 
error rate as follows: for element x  to be identified, if the probability belongs to 
pattern class 1w  is greater than it belongs to 2w , we consider that x  belongs to 1w , 
otherwise x  belongs to 2w . That is, if 

1 2

( | ) ( | )p w x p w x> , 1x w∈ , on the contrary, 

2x w∈ . 
By the knowledge of probability: ( , ) ( | ) ( )p x y p x y p y= , we know the Bayesian 

formula: 

( | ) ( )
( | )

( )
i i

i

p x w p w
p w x

p x
= . (3) 

Among Eq.(3), ( | )ip x w  is the class conditional probability density of x  under class 

iw . In the Bayes algorithm, we get different results through selecting distinct 
probability density function. Generally, the Gaussian probability density functions 
(PDF) is the most interested. The n -dimensional Gaussian density function (PDF) 
calculated as follows: 
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1 1
2

/2 1/2

[( ) ( )]1
( | )

(2 ) | |

T
j j j

j n
j

x m C x m
p x w e

Cπ

−− − −
= , (4) 

where, jC and jm  are covariance matrix and mean vector separately of the family 
class of models ( 1, 2, , )jw j c= " , | |jC  is the determinant of jC . jm  and jC  are 
obtained by the followings: 

1

1 j

j jk
kj

N
m w

N =

= ∑  ，
1

1
( )( )

1

jN
T

j jk j jk j
kj

C w m w m
N =

= − −
− ∑ , (5) 

jN  represents the number of sample corresponding to the model class jw ,and 
jkw  

is the kth  sample of pattern class jw . Thus, the criterion of traditional Bayes 
discrimination method can also be written as: 

If 1 1 2 2( | ) ( ) ( | ) ( )p x w p w p x w p w> , then 1x w∈ ; otherwise, 2x w∈ . 

However, Bayes discrimination chooses a single sample also, there is no good to 
show similar features which exist differences in this situation. And coupling with 
the subjective determination of the pattern’s prior probability, the result of Bayes 
criterion in the overall classification is better, but there still has some unnecessary 
defects and contains a lot of wrong identification number. In order to overcome the 
shortcomings of traditional supervised algorithm and improve the accuracy, this 
paper does a further improvement based on the Bayes discrimination and proposes 
fuzzy entropy triple I algorithm. 

4   Fuzzy Entropy Triple I Algorithm 

4.1   The Basic Idea of Fuzzy Reasoning 

In classical propositional operations, we assume that A  and B  are any two 
propositions (or formulas), the expression “ If A Then B ” can be written as A B→ , 
then using MP  rule, and in the case of knowing A  and A B→ , we can get B . This 
reasoning process can be written in the following form: 

known     A→B 

            and given     A                                                     (6) 

 receive        B. 

But in Eq.(6)，where the second line of A  is different the one which is in the first 
row of the containing type " A B→ ",that is, if we replace the second line of A  with 

*A ,we will get the following inference: 

known     A→B 

and given    A*                                                      (7) 

 receive        B*, 
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where, A  is different from *A . From the point of view of classical logic, Eq.(7) is a 
pathetic question and can’t be answered, because *A  is not A , and all of *, ,A B A are 
pure forms of symbols. In the case of giving practical meanings to *, ,A B A and thus 
can be considered the operations of *, ,A B A  as well as whether *A  and A  are similar 
or not, it is possible to give the solution to *B [4]. That's fuzzy reasoning to solve 
problems. In 1973, L.A.Zadeh proposed CRI algorithm to solve these problems, the 
form of the computation is: 

* *( ) sup[ ( ) ( , )]
x X

B y A x R x y
∈

= ∧  

          *sup[ ( ) ( ( ), ( ))]Z
x X

A x R A x B y
∈

= ∧ . 

Promptly, * *( ) sup{ ( ) [ '( ) ( ( ) ( ))]}
x X

B y A x A x A x B y
∈

= ∧ ∨ ∧ , y Y∈ , where *,A A  and *,B B  
are non-empty sets of fuzzy sets ,X Y separately. And ( ( ), ( ))ZR A x B y  is Zadeh 
implication operator. 

Fuzzy reasoning can also have a more general form: 

   known     A1→C1 

…… 

             An→Cn 

and given    A*                                                           (8) 

 receive         C*, 

where n  is the number of inference rules, and we can use the CRI approach to 
solve *B  also, specific process please see [4]. 

4.2   Fuzzy Entropy Triple I Algorithm 

In many forms of fuzzy inference, we consider the most basic form of reasoning 
FMP (promptly Eq.(7)), and assume sets *, ( )A A F X∈ , *, ( )B B F Y∈ , that is the 
propositions are represented as Fuzzy Sets. CRI method uses only once conversion 
in reasoning process, it doesn’t consider there would have relationships between 

* *A B→  and A B→  while giving *A  to seek *B , but simply letting *A  and R  
complex (compositional rule) to obtain *B . Through analyzing the characteristics 
of CRI algorithm, professor Wang proposed the triple I fuzzy algorithm [4]:  

Set X  and Y  are two non-empty sets, and knowing *, ( )A A F X∈ , *, ( )B B F Y∈ , 
then *B ,  which makes the next calculation obtain maximum value for all x X∈  and 
y Y∈ , is the smallest fuzzy set of ( )F Y  

* *( ( ) ( )) ( ( ) ( ))A x B y A x B y→ → → . (9) 
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On this basis, [5] uses the fuzzy entropy[6] to measure the fuzzy degree of the 
results of fuzzy reasoning. For solving the problem likes FMP, a new algorithm of 
fuzzy reasoning--fuzzy entropy triple I algorithm, is proposed:  

Assume X  and Y  are two non-empty collections, and giving *, ( )A A F X∈ ，

*, ( )B B F Y∈ , then the output *B  of Eq.(7) which makes Eq.(9) obtain maximum 
value , is the fuzzy set of which has greatest fuzzy entropy. [7] introduced a variety 
of fuzzy implication operators on fuzzy entropy three-I algorithm, and gives a 
detailed solving formula. Through remote sensing data as well as traditional 
supervised algorithm, this paper combines Bayesian probability with minimum 
distance to establish fuzzy inference rules. Implication ( , ) (1 ) 1R a b a b= − + ∧  is 
adopted, and the solution of the fuzzy entropy triple I described as [7]: 

* *
0

1
( ) sup{ ( ( ), ( )) ( ) 1} ,

2yx E

B y R A x B y A x y Y
∈

= + − ∨ ∈  (10) 

and 

*{ | ( ( ), ( )) ( ) 1}.yE x X R A x B y A x= ∈ + >  (11) 

At target-pattern classification, we can joint the multi sample blocks’ data in similar 
class to pursue higher accuracy in results based on fuzzy reasoning which can be 
amended n  inference rules. In real terrain classification, at first, we can view the 
remote sensing image as a fuzzy set [8], and calculate the mean vector ijM  and 
covariance matrix ijC  of the collected sample (which can be seen as fuzzy subsets 
of the whole image) in model class using Eq.(5), where i  means the ith  
model-class and j  expresses the jth  sample-plate of the ith  model-class. And 
then define the distance ( )ijD x  which obtained by the gray-scale vector of element 
x  and the sample mean vector (both have to be normalized) as a membership of x  
corresponds to the pattern class [2]. Similarly, ( )ijP x  is easy calculated by Eq.(4), 
and it can be seen as a membership also. Thus, the use of information of the 
elements u  in the sample block, we can calculate ( )ijD u  and ( )ijP u . Now, it 
determines a fuzzy inference rule: if the distance of a certain element u  to ijM  is 

( )ijD u , then the probability of which attaches to the corresponding model-class is 
( )ijP u . Hence, if the gray-scale vector of be identified element x  has given, we can 

get ( )ijP x , and then use the fuzzy entropy triple I algorithm and Eq.(10) to solve 
*( )ijP x . Finally, combine the obtained *( )ijP x ( 1, 2,3, )ij m= " , where im  is the samples 

number of the ith  corresponding model class) of all the sample blocks of similar 
class, and obtain the probability *( )iP x  of the identifying element x  attach to each 
pattern class ( 1, 2,3 )i N= " , N  is the number of pattern class) by using 
Kleene-Dienes implication operator. At last, classify the target patterns according to 
the following criterion: 

If * * * *
1 2max{ ( ), ( ), , ( )} ( )N kP P x P x P x P x= =" , x  will be determined to belong to the kth  

class. 
By the above, we can get the inference rules about classification of recognition 

image: 
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known     1 1( ) ( )i iD u P u→  

          …… 

( ) ( )
i iim imD u P u→  

and given     * ( )ijD x                                       (12) 

receive           *( )ijP x    , 

where im  is the number of samples corresponds to the ith  class, ( )ijD u  is the 
distance for element u  to the jth  sample of ith  class, ( )ijP u  is the probability. 

If we divide the identified image into c  categories, the details of the new 
algorithm are described as follows: 

 
Step 1. Calculate the mean vector ijm  and covariance matrix ijC  of each sample 

by Eq.(5). 
Step 2. Using the following equation to compute the Euclidean distance * ( )ijD x  

between the unknown elements x  and ijm ; 

( ) ( ) ( ) ( 1, 2, , )T
ij ij ijD x x x m x m i n= − − = " .   

Step 3. Calculate ( )ijD u  and ( )ijP u  of the element u  in sample block according to 
Eq.(5). 

 Step 4. Integrating the results by steps (2) and (3), derive from yE  which 
satisfies the previous conditions by Eq.(11). And then calculate the probability 

*( )ijP x of the unknown element x  belongs to the pattern class which corresponds to 
the sample block.  

Step 5. In accordance with the principle of maximum membership, getting the 
probability *( )iP x  for x  belonging to each pattern class; 

* * * *
1 2( ) max{ ( ), ( ), , ( )}

ii i i imP x P x P x P x= " . 
Step 6. For the probability *( )iP x , assort the identified elements on the basis of 

the criteria of identification. 

5   Experimental Results 

In order to test the validity and applicability of the new algorithm, images which are 
got by low-altitude remote sensing system from Xiamen Passenger Station are used 
(image resolution 700×585). Next the comparison of the results’ accuracy is 
finished among minimum distance criterion, traditional Bayes algorithm and the 
new algorithm respectively. And compares the results’ accuracy of minimum 
distance criterion and traditional Bayes algorithm with the new algorithm 
respectively. 
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Experiment 1. Using minimum distance criterion, traditional Bayesian criterion 
and fuzzy entropy triple I algorithm respectively to get the water area in figure 3(a), 
and figure 3(b),(c) is the result of water area (where the white area shall be water) 
for minimum distance criterion and traditional Bayes algorithm respectively, figure 
3(d) is the new algorithm’s results. Through table 1, we have a conclusion that the 
new algorithm reduces the false consciousness number of assorting result better, 
which showing it has a good performance against false knowledge. 

    

(a)                                                        (b) 

    

(c)                                                       （d） 

Fig. 3. The result of the proposed algorithm was compared to the other methods: (a) original 

RGB image; (b) the result of water area by using minimum distance discrimination; (c) the 

result of traditional Bayes algorithm; (d) the result of the water region by using the fuzzy entropy 

triple I algorithm;  

Table 1. The accuracy of different methods 

Methods Area 1 Area 2 Area 3 Area 4 Area 5 Accuracy 

The minimum distance 
criterion 

0.0078
0.0604 0.2700 0.7599 0.4387 0.2954 

Traditional Bayes 
algorithm 

0.8000
0.8320 0.9231 0.9615 0.9529 0.8910 

The new algorithm 0.9934 0.9976 0.9927 1.0000 0.9520 0.9881 
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Experiment 2. Using minimum distance criterion, traditional Bayes criterion 
and fuzzy entropy triple I algorithm respectively to get the buildings in figure 4(a), 
and figure 4(b),(c) and (d) are the results. The new algorithm can get very good 
results from table 2. Thus, assorting in different colors, the new algorithm has better 
applicability. 

   

(a)                                                         （b） 

   

                          (c)                                                              (d) 

Fig. 4. The results on buildings of the three algorithms: (a) original RGB image; From (b) to 
(d): result of minimum distance discrimination method, traditional Bayes algorithm and 
fuzzy entropy triple I algorithm. 

Table 2.  The accuracy of different algorithms 

Algorithms Area 1 Area 2 Area 3 Area 4 Accuracy 
The minimum 

distance criterion 
0.0056 

0.0482 0.9658 0.7990 0.5753 

Traditional 
Bayes algorithm 

0.0881 
0.0138 0.9025 1.0000 0.6592 

The new 
algorithm 

0.5381 
0.6284 0.9475 1.0000 0.8444 
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6   Conclusion 

This paper proposes fuzzy entropy triple I algorithm, which has a combination of 
minimum distance theory and Bayesian probability theory, and shows good 
performance. Directly assorting the remote sensing images to high-resolution true 
color (RGB), the new algorithm can overcome the defect of collecting a single 
sample on the minimum distance discrimination method and traditional Bayes 
algorithm. The results of experiments show that the new algorithm for classification 
has higher precision, lower false accept rate and false reject rate, and stronger 
applicability for overcoming the limitations of traditional Bayes discrimination. 

Of course, this algorithm can’t recognize heterogeneous which has the same 
color, so that it needs to be further done with texture discrimination knowledge, this 
article is no longer considered because of limitations. 
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Abstract. The problems of fuzzy reasoning reverse triple-I are proposed
in n-valued propositional logic �Ln and Ln

∗ .And truth degree formalized
solutions for reverse triple-I problems are proved. Therefore, formal reasoning
system of reverse triple-I method comes into being in n-valued systems �Ln
and Ln

∗.The work in the present paper lays a logical foundation for reverse
triple-I methods of fuzzy reasoning.

Keywords: Truth degree, Reverse triple-I problems, Truth degree formalized
solutions.

1 Introduction

It is well know that, fuzzy control has widely been applied to many indus-
try and scientific research fields. Fuzzy inference is the key part of fuzzy
control. Early in 1973,Compositional Rule of Inference (CRI) method was
instituted by Zadeh1.Then, CRI method was widely used in fuzzy control.
As Wang pointed out, CRI method lacks solid logic foundation, moreover,
Wang proposed well-know Triple I algorithm by combining fuzzy logic and
fuzzy inference to solve the problem of fuzzy modus Ponens(FMP) 2.Since
then, a variety of research papers related to Wang’s monograph have been
published such as [5-9].One of these is Song and Wu’s work9,they proposed
Reverse triple I method from how to design fuzzy reasoning ruler. It’s ba-
sic idea can be summarized as follows:For A ∈ F (X),B ∈ F (Y ),and
A∗ ∈ F (X)(B∗ ∈ F (Y )),its purpose is to seek a maximum B∗ ∈ F (Y )(a
minimum A∗ ∈ F (X)) such that (A∗(x) → B∗(y)) → (A(x) → B(y)) has the
maximal possible value whenever x ∈ X and y ∈ Y ,where F (X) and F (Y )
denote, respectively, the collections of all fuzzy subsets of X and Y .Diverse
monographs related to Reverse triple I method had been accomplished10-12.
Noticed that, the present paper is related to, but different from the above
mentioned works. It aims to institute formal reasoning system of reverse triple

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 483–490.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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I problems. As Wang pointed out in[7], Gödel system and product system are
not suitable for establishing fuzzy logic. So, the formal version in the present
paper is considered only in n-valued systems �Ln and Ln

∗.

2 Preliminaries

2.1 n-Valued Logic Systems: �Ln and Ln
∗

The set of formulas is a free algebra of the type (¬,∨,→),where S={p1,p2,. . .}
is a set of atomic formulas,¬is an unary operation,∨ and → are binary oper-
ations. n-valued propositional logic systems �Ln and Ln

∗ are got by confining
[0,1] to n-valued Ln = {0, 1

n−1 , . . . ,
n−2
n−1} respectively in �Lukasiewicz and L∗

systems. A homomorphism v : F (S) → Ln of type (¬,∨,→) is called a valu-
ation of �Ln or Ln

∗. The set of all valuations in �Ln and Ln
∗ will be denoted

by Ω(Ln) and Ωn respectively[7]. We will denote them all by Ω(Ln) in the
present paper for convenience sake. MV-algebra and R0 -algebra are respec-
tive the corresponding algebraic system of formal systems (briefly �Luk) and
L∗. We know a⊗ b = (a → b′)′ and a⊕ b = a′ → b either in MV-algebra or in
R0-algebra M, where ⊗ and ⊕ are t-norm and t-remain norm [7], ′ is defined
by a′ = 1 − a, a, b ∈ M .

We use →L,⊗L and ⊕L to note �Luk implication operator, corresponding
t-norm and t-remain norm in MV-algebra, and →0,⊗0 and ⊕0 to note R0
implication operator, corresponding t-norm and t-remain norm in R0-algebra,
then we have [7]:

(1) In MV-algebra:
a →L b = (a′ + b) ∧ 1, a⊗L b = (a + b− 1) ∨ 0, a⊕L b = (a + b) ∧ 0.
(2) In R0 -algebra:

a →0 b =
{

1, a ≤ b
a′ ∨ b, a > b

, a⊗0 b =
{

a ∧ b, a + b > 1
0, a + b ≤ 1 ,

a⊕0 b =
{

1, a + b ≥ 1
a ∨ b, a + b < 1

Let A,B ∈ F (S). Define
A⊗B = ¬(A → ¬B), A⊕B = ¬A → B.

Then it is easily to check that: A⊗B = ¬(¬A⊕¬B); A⊕B = ¬(¬A⊗¬B).
Obviously, the next lemma is easy to verify:

Lemma 2.1.1. Let A,B ∈ F (S).
(1) If v ∈ Ωn, then v(A⊗B) = v(A) ⊗0 v(B), v(A ⊕B) = v(A) ⊕0 v(B).
(2) If v ∈ Ω(Ln), then v(A⊗B) = v(A)⊗L v(B), v(A⊕B) = v(A)⊕L v(B).

Moreover, if v(A) = v(B)for all v ∈ Ωn, then A and B are called logically
equivalent, denoted as A ≈ B[7].

2.2 About the Theory of Truth Degree

Let A(p1, p2, . . . , pm) be a formula containing m atoms formula p1, p2, . . . , pm.
Then A lead to a function Ā(x1, x2, . . . , xm), which is obtained by connecting
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the variables x1, x2, . . . , xm in [0,1] with the operators ¬,∨, and → on [0,1]
in the same way as A is constructed from p1, p2, . . . , pm.

Definition 2.2.1[7]. Let A(p1, p2, . . . , pm) be a formula containing m atoms
formula p1, p2, . . . , pm in n-valued system �Ln (or Ln

∗). Then the truth degree
of A is defined by

τ(A) = 1
nm

∑n−1
i=1

i
n−1 | ¯A−1( i

n−1 ) |,
where | ¯A−1( i

n−1 ) | is the number of elements in the set ¯A−1( i
n−1 ).

Lemma 2.2.2[7]. Let A,B ∈ F (S). Then
(1) A is a tautology iff τ(A) = 1; A is a contradiction iff τ(A) = 0.
(2) If A ≈ B, then τ(A) = τ(B).

The next lemma is easily to prove:

Lemma 2.2.3. (1) If v(A) ≤ v(B) for ∀v ∈ Ω(n), then τ(A) ≤ τ(B).
(2) If there exists v0 ∈ Ω(n), v0(A) < 1, then τ(A) < 1.
(3) If v(A) ≥ α for ∀v ∈ Ω(n), then τ(A) ≥ α.

We denote tautologies by 1̄, and contradictions by 0̄.
There are some symbols, ideals and results immediately used in the present

paper, please refer to [7].

3 Formalized Solutions for Problems of Reverse
Triple I

Definition 3.1. Let A,B ∈ F (S). Define

A ≤ B iff v(A) ≤ v(B) for ∀v ∈ Ω(n),

then (F (S),≤) is a set of pre-order on F (S), and we call B is larger than A.

Problem 1 Reverse Triple IMP Let A,B,A∗ ∈ F (S), A → B and A∗

be given. Then B∗ ∈ F (S) is the largest formula of (F (S),≤), which lead
τ((A∗ → B∗) → (A → B)) to the maximum.

Problem 2 Reverse Triple IMT Let A,B,B∗ ∈ F (S), A → B and B∗

be given. Then A∗ ∈ F (S) is the smallest formula of (F (S),≤), which lead
τ((A∗ → B∗) → (A → B)) to the maximum.

The problems of Reverse Triple IMP and Reverse Triple IMT are all called
Reverse Triple I problems.

Remark 1. It is clearly that, B∗(A∗) in problem 1 (problem 2) is the formu-
las, which lead the truth degree τ((A∗ → B∗) → (A → B)) to the maximum.
That is, the solutions of problem 1 (problem 2) are sought under the theory
of truth degree. Therefore, we call B∗(A∗) truth degree formalized solutions.
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Remark 2. Obviously, if A → B is a tautology i.e., v(A → B) = 1 for
∀v ∈ Ω(n), then τ((A∗ → B∗) → (A → B)) ≡ 1. Furthemore truth degree
formalized solutions of problem 1 is B∗ ≡ 1̄ and truth degree formalized
solutions of problem 2 is A∗ ≡ 0̄. In an ordinarly way, we only consider
formalized solutions in the case of τ(A → B) < 1, τ(B∗) < 1 and τ(B∗) > 0.

If we don’t emphasize specially in the following part, “→” notes either →0
or →L, ⊗ and ⊕ is similarly.

Lemma 3.2. In formal systems �Ln or Ln
∗, τ((A∗ → B∗) → (A → B)) ≤

τ(A∗ ⊕ (A → B), where A,A∗, B,B∗ ∈ F (S).

Proof. Owing to ∀v ∈ Ω(n), v(A∗ → 0̄) ≤ v(A∗ → B∗), so v((A∗ → B∗) →
(A → B)) = v(A∗ → B∗) → (A → B) ≤ v(A∗ → 0̄) → v(A → B).

In formal system �Ln, v(A∗ → 0̄) → v(A → B) = (v(A∗) → 0) → v(A →
B) = v′(A∗) ∧ 1 → v(A → B) = v(¬A∗ → (A → B)) = v(A∗ ⊕ (A → B)).

In formal system Ln
∗, v(A∗ → 0̄) → v(A → B) = v′(A∗) ∨ 0 → v(A →

B) = v(A∗ ⊕ (A → B)).
Thus in �Ln and Ln

∗, v((A∗ → B∗) → (A → B)) ≤ v(A∗ ⊕ (A → B)) for
∀v ∈ Ω(n). Furthermore, τ((A∗ → B∗) → (A → B)) ≤ τ(A∗ ⊕ (A → B).

Remark 3. Lemma 3.2 tell us that in formal systems �Ln and Ln
∗, if

A∗, A → B are given, then the maximum value of τ((A∗ → B∗) → (A → B))
is the truth degree of the formula A∗ ⊕ (A → B).

Proposition 3.3. Let A,B,A∗ ∈ F (S). If v(A∗) + v(A → B) ≥ 1 for
∀v ∈ Ω(n), then the truth degree formalized solutions of Reverse triple IMP
are B∗ ≈ A∗ ⊗ (A → B), which satisfies τ((A∗ → B∗) → (A → B)) = 1.

Proof. It follows from the condition of this proposition that ∀v ∈ Ω(n),
v(A∗ ⊕ (A → B)) = v(A∗) ⊕ v(A → B) = v′(A∗) → v(A → B). No-
tice that v′(A∗) ≤ v(A → B), thus v′(A∗) → v(A → B) = 1,that is,
v(A∗ ⊕ (A → B)) = 1. Hence ∀v ∈ Ω(n),v(A∗ ⊕ (A → B)) = 1, there-
fore τ((A∗ ⊕ (A → B)) = 1, it follows from Lemma 3.2 that the maximum
value of τ((A∗ → B∗) → (A → B)) is 1.

(1) Firsterly, we prove that B∗ satisfies τ((A∗ → B∗) → (A → B)) = 1.
In fact, it follows from B∗ ≈ A∗ ⊗ (A → B) that ∀v ∈ Ω(n), v(B∗) ≤
v(A∗), v(B∗) ≤ v(A → B). Notice that v′(A∗) ≤ v(A → B), then.

Case 1. If → is →0, then it follows from v(A∗) → v(B∗) = v′(A∗)∨ v(B∗) ≤
v(A → B) that (v(A∗) → v(B∗)) → v(A → B) = 1, hence v((A∗ → B∗) →
(A → B)) = 1,so τ((A∗ → B∗) → (A → B)) = 1.

Case 2. If → is →L, then v(B∗) ≤ v(B∗) = v(A∗ ⊗ (A → B)) = v(A∗) ⊗L

v(A → B). It follows from v(A∗)+ v(A → B) ≥ 1 that v(A∗)⊗L v(A → B) =
(v(A∗)+v(A → B)−1)∨0 = v(A∗)+v(A → B)−1, that is, v(B∗) ≤ v(A∗)+
v(A → B) − 1, so v(A → B) ≥ 1 − v(A∗) + v(B∗) = (v′(A∗) + v(B∗)) ∧ 1 =
v(A∗) →L v(B∗), hence ∀v ∈ Ω(n), v((A∗ → B∗) → (A → B)) = (v(A∗) →
v(B∗)) → v(A → B) = 1, that is τ((A∗ → B∗) → (A → B)) = 1.
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(2) Next, we will prove that B∗ is the largest formula satisfying τ((A∗ →
B∗) → (A → B)) = 1. Suppose that C∗ ∈ F (S), and B∗ < C∗, then
A∗ ⊗ (A → B) < C∗. Furthermore ∀v ∈ Ω(n), v(A∗) ⊗ v(A → B) = v(A∗ ⊗
(A → B)) < v(C∗) therefore v(A → B) < v(A∗) → v(C∗), hence τ((A∗ →
B∗) → (A → B)) < 1.

Remark 4. Let’s suppose that ∃v0 ∈ Ω(n), v0(A∗) + v0(A → B) < 1.Then
in formal system �Ln, we have v0(A∗ ⊕ (A → B)) = v0(A∗) ⊕L v0(A → B) =
(v0(A∗) + v0(A → B)) ∧ 0 ≤ v0(A∗) + v0(A → B) < 1.

And in formal system L∗
n, v0(A∗ ⊕ (A → B)) = v0(A∗) ⊕0 v0(A →

B) = v0(A∗) ∨ v0(A → B) < 1. Hence τ((A∗ → B∗) → (A → B)) ≤
τ(A∗ ⊕ (A → B)) < 1. That is, there is not a B∗ ∈ F (S), which satisfies
τ((A∗ → B∗) → (A → B)) = 1. Hence the conclusion of proposition 3.3
is not found. That is, the condition ∀v ∈ Ω(n), v(A∗) + v(A → B) ≥ 1 in
proposition 3.3 is sufficient and necessary. We have

Proposition 3.4. In L∗
n system, let A,B,A∗ ∈ F (S). If v(A∗) + v(A →

B) < 1 and v(A∗) > 1
2 for ∀v ∈ Ωn, then the truth degree formalized solutions

of Reverse triple IMP are B∗ ≈ A∗ ∧ ¬A∗, which satisfies τ((A∗ → B∗) →
(A → B)) = τ(A∗).

Proof. It follows from the condition in this proposition that ∀v ∈ Ωn, v(A∗⊕
(A → B) = v(¬A∗ → (A → B)) = v′(A∗) →0 v(A → B) = v(A∗) ∨ v(A →
B). Notice that v(A∗) > 1

2 ,then v(A → B) < 1
2 , so v(A∗ ⊕ (A → B)) =

v(A∗) ∨ v(A → B) = v(A∗). Hence A∗ ⊕ (A → B) ≈ A∗. It follows from
Lemma 2.2.2 that τ(A∗ ⊕ (A → B)) = τ(A∗). Then it follows from Lemma
3.2 that the maximum value of τ((A∗ → B∗) → (A → B)) is τ(A∗).

(1) We first prove that B∗ satisfies τ((A∗ → B∗) → (A → B)) = τ(A∗).
We have ∀v ∈ Ωn, v((A∗ → B∗) → (A → B)) = v(A∗ → (A∗ ∧ ¬A∗)) →
v(A → B) = v′(A∗)∨(v(A∗)∧v′(A∗)) → v(A → B) = v′(A∗) → v(A → B) =
v(A∗) ∨ v(A → B) = v(A∗). Then (A∗ → (A∗ ∧ ¬A∗)) → (A → B) ≈ A∗. It
is easy to know that τ((A∗ → (A∗ ∧ ¬A∗)) → (A → B)) = τ(A∗).

(2) Next, we will prove that B∗ is the largest formula. Suppose C∗ ∈
F (S), B∗ < C∗, that is A∗ ∧ ¬A∗ < C∗, then ∀v ∈ Ωn, v(A∗) ∧ v′(A∗) <
v(C∗). Hence v((A∗ → C∗) → (A → B)) = (v(A∗) → v(C∗)) → v(A →
B) < (v(A∗) → v(A∗) ∧ v′(A∗)) → v(A → B) = v′(A∗) → v(A → B) =
v(A∗) ∨ v(A → B) = v(A∗). It follows from Lemma 2.2.3 that τ((A∗ →
C∗) → (A → B)) < τ(A∗), so B∗ ≈ A∗ ∧ ¬A∗ is the largest formula that
satisfies τ((A∗ → B∗) → (A → B)) = τ(A∗).

Remark 5. From ∀v ∈ Ωn, v(A∗) > 1
2 we know τ(A∗) > 1

2 . So it is ratio-
nal for this proposition supposing this condition because of belief beyond half
principle.

As you know,we only consider system L
∗
n in Proposition 3.4, but how to

�Ln system?
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Proposition 3.5. In �Ln system, let A,A∗, B ∈ F (S). If v(A∗) + v(A →
B) < 1 for ∀v ∈ Ω(Ln), then the truth degree formalized solutions of Reverse
triple IMP are B∗ ≡ 0̄.

Proof. We have from Lemma 3.2 that the maximum value of τ((A∗ → B∗) →
(A → B)) is τ(A∗ ⊕ (A → B)). Notice that, in the condition of ∀v ∈ Ω(Ln)
one hand, v((A∗ → B∗) → (A → B)) = (v(A∗) → v(B∗)) → v(A →
B) = (v′(A∗) + v(B∗)) ∧ 1 → v(A → B) = ((v′(A∗) + v(B∗)) → v(A →
B)) ∨ v(A → B) = (v(A∗) + v(A → B) − v(B∗)) ∨ v(A → B). On the other
hand,v(A∗ ⊕ (A → B)) = v(¬A∗ → (A → B)) = v′(A∗) → v(A → B) =
(v(A∗) + v(A → B)) ∧ 1 = v(A∗) + v(A → B).

Suppose that τ((A∗ → B∗) → (A → B)) can get the maximum value,
then at least one of the following two conditions holds:

(1) v(A∗) + v(A → B) − v(B∗) = v(A∗) + v(A → B).
v(A → B) = v(A∗) + v(A → B).
(2) We have from (1) that v(B∗) = 0, then B∗ ≡ 0̄. And from (2) we know

v(A∗) = 0, which is not consistent with our preceding supposition. Then
Proposition 3.2.4 holds.

We will discuss Reverse triple IMT in the following part.

Proposition 3.6. Let A,B∗, B ∈ F (S). If v(B∗) ≤ v(A → B) for ∀v ∈
Ω(n), then the truth degree formalized solutions of Reverse triple IMT are
A∗ ≈ B∗ ⊕ ¬(A → B), which satisfies

τ((A∗ → B∗) → (A → B)) = 1.

Proof. (1) We first prove that A∗ ≈ B∗⊕¬(A → B) satisfies τ((A∗ → B∗) →
(A → B)) = 1.

Case 1. In formal system �Ln.
Notice that v(A∗) = v(B∗)⊕ v′(A → B) = v′(B∗) → v′(A → B) = v(A →

B) → v(B∗),we have ∀v ∈ Ω(Ln), v((A∗ → B∗) → (A → B)) = (v(A∗) →
v(B∗)) → v(A → B) = ((v(A → B) → v(B∗)) → v(B∗)) → v(A → B) =
v(A → B) ∨ v(B∗) → v(A → B). It follows from v(B∗) ≤ v(A → B) that we
know the value of the above equality is equal to 1.

Case 2. In formal system L∗
n.

Notice that ∀v ∈ Ωn, v((A∗ → B∗) → (A → B)) = (v(A∗) → v(B∗)) →
v(A → B) = v′(A∗) ∨ v(B∗) → v(A → B), then from v′(A∗) ≤ v(A →
B), v(B∗) ≤ v(A → B) we know v((A∗ → B∗) → (A → B)) = 1. Hence
A∗ ≈ B∗ ⊕ ¬(A → B) satisfies τ((A∗ → B∗) → (A → B)) = 1.

(2) Next we will prove that A∗ is the least formula. It is easy to verify that
(A∗ → B∗) → (A → B) ≈ (¬B∗ → ¬A∗) → (A → B). (*)

Notice that v(B∗) ≤ v(A → B) for ∀v ∈ Ω(n) then v(¬B∗)+v(A → B) ≥ 1.
From Proposition 3.3, we know that ¬A∗ ≈ ¬B∗ ⊗ (A → B) is the largest
formula satisfying τ((A∗ → B∗) → (A → B)) = 1. Therefore, A∗ ≈ B∗ ⊕
¬(A → B) is the least formula satisfying τ((A∗ → B∗) → (A → B)) = 1.
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Proposition 3.7. In formal system L∗
n, let A,B∗, B ∈ F (S). If v(B∗) >

v(A → B) and v(B∗) < 1
2 for ∀v ∈ Ωn, then the truth degree formalized

solutions of Reverse triple IMT are A∗ ≈ B∗ ∨ ¬B∗, which satisfies

τ((A∗ → B∗) → (A → B)) = 1 − τ(B∗).

Proof. From (A∗ → B∗) → (A → B) ≈ (¬B∗ → ¬A∗) → (A → B),
we know τ((A∗ → B∗) → (A → B)) = τ((¬B∗ → ¬A∗) → (A → B)).
Notice the conditions, we have ∀v ∈ Ωn, v(¬B∗) + v(A → B) < 1 and
v(¬B∗) > 1

2 , then it follows from Proposition 3.4 that the maximum value of
τ((A∗ → B∗) → (A → B)) is τ(¬B∗) = 1 − τ(B∗). It is easy to know that
A∗ ≈ B∗∨¬B∗ satisfies τ((A∗ → B∗) → (A → B)) = 1− τ(B∗). In addition,
we know τ((A∗ → B∗) → (A → B)) = τ((¬B∗ → ¬A∗) → (A → B)) =
1 − τ(B∗), where the largest formula is ¬A∗ ≈ ¬B∗ ∧ ¬(¬B∗) = ¬B∗ ∧B∗,
from Proposition 3.4 that the least formula is A∗ ≈ B∗ ∨ ¬B∗.

Remark 6. Similar to proposition 3.3, the condition v(B∗) ≤ v(A → B) for
∀v ∈ Ω(n) in Proposition 3.6 is sufficient and necessary.

Remark 7. The remainders notice that in proposition 3.2.6,there is a con-
dition of v(B∗) < 1

2 for ∀v ∈ Ωn, here B∗ is later part of A∗ → B∗.From the
result A∗ ≈ B∗ ∨ ¬B∗,we know that v(A∗) > 1

2 for ∀v ∈ Ωn so the condition
is reasonable.

It is easy to verify the following proposition.

Proposition 3.8. Let A,B∗, B ∈ F (S). In formal system �Ln, if v(B∗) >
v(A → B) for ∀v ∈ Ω(Ln), then the truth degree formalized solutions of
Reverse triple IMT are A∗ ≡ 1̄.

4 Conclusion

In Reverse triple I method provides a new and valid way for how to design
more reasonable fuzzy reasoning regular. In the present paper, the problems
of fuzzy reasoning reverse triple I are defined. Then, based on the thought
of graded, we discuss reverse triple IMP and reverse triple IMT. The truth
degree formalized solutions of reverse triple I are given. The graded method
presented in the present paper lead the algorithgmic realization of solution.
It is easy to verify that, our conclusions can be, in a sense, brought into line
with Song’s reverse triple I method. Therefore, the present paper lays a log-
ical foundation for reverse triple I methods of fuzzy reasoning.
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Abstract. The concept of L-extremally disconnected spaces is introduced
and investigated in this paper, which is the generalization of the concept
of fuzzy extremally disconnected spaces due to Ghosh. In L-extremally dis-
connected spaces, it is proved that the concepts of semi-open, pre-open and
alpha-open sets are uniform. We will also show that two theorems are incor-
rect in Ghosh’s [1] article by the counterexample.

Keywords: L-topological space, extremally disconnected space, pre-open
set, semi-pre-open set.

1 Introduction and Preliminaries

In 1992, Ghosh generalized the notion of extremally disconnected spaces to
fuzzy topological spaces(see, [1]). In [8], Park and Lee introduced and stud-
ied the notion of fuzzy extremally disconnected spaces in fuzzy bitopological
spaces. In this paper, we define the concept of L-extremally disconnected
spaces and discuss its properties using the semi-open (semi-closed), pre-
open(pre-closed) and α-open (α-closed). Using counterexamples shows that
some results in [1] are false.

Throughout this paper, L denotes a completely distributive lattice with
order-reversing involution ′. X denotes a nonempty set, LX denotes the sets
of all L-sets on X , while (LX , δ) denotes an L-fuzzy topological space (briefly,
L-space). The elements in δ are called L-open sets(briefly, open sets) and the
elements in δ′ = {B | B′ ∈ δ} are called L-closed sets(briefly, closed sets).
An element a of L is said to be ∨-irreducible or a molecule if a ≤ b ∨ c im-
plies that a ≤ b or a ≤ c, where b, c ∈ L. The set consisting of all nonzero
∨-irreducible elements of L will be denoted by M , and the set consisting
of all nonzero ∨-irreducible elements of LX will be denoted by M(LX),

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 491–498.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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i.e., M(LX) = {xα|x ∈ X,α ∈ M}. A−, A◦ and A′ will denote the clo-
sure, the interior and the pseudo-complement of A ∈ LX , respectively. Let
η(xα) = {P ∈ δ′|xα �≤ P} and the elements in η(xα) are said to be R-
neighborhoods of xα[9]. A ∈ LX is called regular open[2] (semi-closed [3]) sets
iff A = A−◦ ( there exists an open set B ∈ δ such that B ≤ A ≤ B−). If A is a
regular open ( semi-open) set, then A′ is called regular closed (semi-open) set.
All regular open, regular closed, semi-open and semi-closed sets are denoted
by Ro(LX), Rc(LX), So(LX) and Sc(LX), respectively. Let A ∈ LX . Then
A−
θ =
∧
{C ∈ δ′|A ≤ C◦}, A−

δ =
∧
{C ∈ Ro(LX)|A ≤ C} and A−

s =
∧
{C ∈

Sc(LX)|A ≤ C} are called the θ- closure[4, 6], δ-closure[2, 5] and S-closure[3],
respectively. It is obvious that A ≤ A−

s ≤ A− ≤ A−
δ ≤ A−

θ .

Theorem 1.1. Let (LX , δ)be L-space and xα ∈M(LX). Then
(1)[9] xα ∈ A− iff for each P ∈ η(xα), A �≤ P .
(2)[3] xα ∈ A−

s iff for each P ∈ Sη(xα), A �≤ P .
(3)[4] xα ≤ A−

θ iff for each P ∈ η(xα), A �≤ P ◦.
(4)[5] xα ∈ A−

δ iff for each P ∈ δη(xα), A �≤ P .

2 Some Properties of α-open, Pre-open and
Semi-pre-open Sets

In this section, we discuss the concepts of generalized open (closed) sets in
L-spaces. Some nice results of these generalized open (closed) are obtained.

Definition 2.1. Let (LX , δ)be an L-space and A ∈ LX.
(1) A is called pre-open (semi-pre-open) iff A ≤ A−◦ (A ≤ A−◦−).

The family of all pre-open (semi-per-open)sets will be denoted by Po(LX)
(Spo(LX)).

(2) A is called pre-closed (semi-pre-closed) iff A◦− ≤ A (A◦−◦ ≤ A).
The family of all pre-closed (semi-pre-closed) sets will be denoted by Pc(LX)
(Spc(LX)).

(3) A is called α-open if A ≤ A◦−◦ for each A ∈ LX .
(4) A is called α-closed if A−◦− ≤ A for each A ∈ LX.
αo(LX) and αc(LX) will denote the families of all α-open (α-closed) sets

in (LX , δ), respectively.
(5) A−

p =
∧
{D ∈ Pc(LX)|A ≤ D} (A−

sp =
∧
{D ∈ Spc(LX)|A ≤ D}).

(6) B◦
p =
∨
{G ∈ Po(LX)|G ≤ B} (B◦

sp =
∨
{G ∈ Spo(LX)| G ≤ B}).

(7) A−
α=
∧
{D ∈ αc(LX)|A ≤ D}, A◦

α =
∨
{G ∈ αo(LX)|G ≤ A}.

Let (LX , δ)be an L-space and xα ∈ M(LX). We write sη(xα) = {P ∈
Sc(LX)|A �≤ P}, pη(xα) = {Q ∈ Pc(LX)|A �≤ Q}, spη(xα) = {Q ∈
Spc(LX)|A �≤ Q} and αη(xα) = {P ∈ αc(LX)|A �≤ P}, respectively.
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Remark 2.1. Every open set is α-open and every α-open set is a semi-open
as well as pre-open set.

Theorem 2.1. Let (LX , δ)be an L-space. Then
(1) (A◦

s)
− = (A−)−s = A− and (A◦)◦s = (A◦

s)
◦ = A◦ for each A ∈ LX .

(2) A−◦ ≤ A−
s and (A−

s )◦ = A−◦ for each A ∈ LX.
(3) A◦

s ≤ A◦− and (A◦
s)

− = A◦− for each A ∈ LX .

Proof. One can easily check that (1) and (2). We only prove (3). Since A−
s is

a semi-closed set, there exists C ∈ δ′ such that C◦ ≤ A ≤ C, which implies
C◦ ≤ A−

s ≤ A− ≤ C. Thus we have C◦ ≤ A−◦ ≤ C◦ and C◦ ≤ A−
s . So

C◦ = A−◦ ≤ A−
s is proved. It is clear that A−◦ ≤ (A−

s )◦ because A−◦ ≤ A−
s

which was just proved. From A−
s ≤ A−, we get (A−

s )◦ ≤ A−◦ and hence
(A−

s )◦ = A−◦.

Theorem 2.2. Let (LX , δ)be an L-space. Then
(1) A ∈ Sc(LX) iff A◦ = A−◦ for any A ∈ LX .
(2) A ∈ So(LX) iff A− = A◦− for any A ∈ LX .

Proof. (1) We first prove that A ∈ Sc(LX) iff A−◦ ≤ A. In fact, suppose that
A is in Sc(LX). Then A−◦ ≤ A−

s = A because A = A−
s is semi-closed by

Theorem 2.1(2). Conversely, assume that A−◦ ≤ A, then A−◦ ≤ A ≤ A−. we
write C = A−, then C is a closed set in (LX , δ)and satisfying C◦ ≤ A ≤ C.
Consequently, A ∈ Sc(LX). From A−◦ ≤ A, we get A−◦ ≤ A◦. On the other
hand, it is obvious that A◦ ≤ A−◦ and hence A◦ = A−◦. Conversely, let
A◦ = A−◦. Since A◦ ≤ A, thus we have A−◦ ≤ A. Consequently, A is a
semi-closed set, i.e., A ∈ Sc(LX).

(2) Follows from (1).

Theorem 2.3. Let (LX , δ)be an L-space. Then
(1) A ∈ Po(LX) iff A−

s = A−◦.
(2) A ∈ Po(LX) iff A−

s is a regular open set.
(3) Ro(LX)=Po(LX)

⋂
Sc(LX).

Proof. (1) If A ∈ Po(LX), then A ≤ A−◦ by Definition 2.1, which im-
plies A−

s ≤ (A−◦)−s . Since A−◦ is semi-closed, thus A−
s ≤ A−◦ and hence

A−
s = A−◦ by Theorem 2.1(2). Conversely, it is clear.

(2) It follows from (1).
(3) Let A ∈ Po(LX)

⋂
Sc(LX). Then A = A−

s = A−◦ and so A ∈ Ro(LX)
by (1). Conversely, if A ∈ Ro(LX), then A = A−◦. We have A ≤ A−◦

and A ≥ A−◦ which implies A◦ ≥ A−◦. So, A ∈ Po(LX)
⋂

Sc(LX) by
Theorem 2.2.

Theorem 2.4. Let (LX , δ)be an L-space. Then the following conditions are
equivalent:
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(1) A is an α-open set.
(2) There exists an open set B such that B ≤ A ≤ B−◦.
(3) There exists a closed set Q such that Q◦− ≤ A′ ≤ Q.
(4) A′ is an α-closed set.

Proof. It is clear that (1) ⇐⇒ (4) and (2) ⇐⇒ (3). Now, we need prove only
(1) ⇐⇒ (2). Let A be α-open. Then A ≤ A◦−◦. We write B = A◦, then
B ≤ A ≤ B−◦. Conversely, if there exists B ∈ δ such that B ≤ A ≤ B−◦. We
have B− ≤ A◦− by B ≤ A◦ and hence A ≤ B−◦ ≤ A◦−◦. Consequently, A is
α-open.

Theorem 2.5. Let (LX , δ)be an L-space and A ∈ LX . Then
(1) A is α-open iff A is both semi-open and pre-open.
(2) A is α-closed iff A is both semi-closed and per-closed.

Proof. (1) If A is α-open, then A ≤ A◦−◦ ≤ A◦− as well as A ≤ A−◦. So A
is semi-open and pre-open. Conversely, if A is pre-open and semi-open, i.e.,
A ≤ A−◦ as well as A ≤ A◦−, then A− ≤ A◦− and that A−◦ ≤ A−, which
implies A ≤ A−◦ ≤ A◦−◦. This shows that A ≤ A◦−◦ and hence A is α-open.

(2) A is α-closed, iff A′ is α-open, iff A′ is pre-open and semi-open, iff A
is pre-closed and semi-closed.

Corollary 2.1. Let (LX , δ)be an L-space. Then
(1) A ∈ αo(LX) iff A− = A◦− and A ≤ A−◦.
(2) A ∈ αc(LX) iff A◦ = A− ◦ and A◦− ≤ A.
(3) αo(LX)=Po(LX)

⋂
So(LX).

(4) αc(LX)=Pc(LX)
⋂

Sc(LX).

3 L-Extremally Disconnected Spaces

In this section, we generalize the notion of fuzzy extremally disconnected
spaces to L-spaces and investigate its properties. We will show that A− = A−

s

and A− = A−
θ etc., for equivalent conditions of extremally disconnected

spaces are incorrect.

Definition 3.1.An L-space (LX , δ)is called L-extremally disconnected, if the
closure of every open set is open.

The following proposition is obvious.

Proposition 3.1. In an L-space (LX , δ), the following conditions are equiv-
alent:

(1) (LX , δ) is L-extremally disconnected.
(2) Every regular closed set is open.
(3) ∀A ∈ δ , A− ≤ A−◦.
(4) ∀B ∈ δ′, B◦− ≤ B◦.
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Theorem 3.1. Let (LX , δ) be an L-extremally disconnected space. Then
A−
θ = (A−

θ )−θ for every A ∈ LX.

Proof. For arbitrary xα ∈ M(LX) and xα �≤ A−
θ , then there exists P ∈ η(xα)

such that A ≤ P ◦. Since P is closed and (LX , δ) is extremally disconnected,
P ◦− ≤ P ◦. Thus we have A− ≤ P ◦− ≤ P ◦ and A−

θ ≤ (A−)−θ ≤ (P ◦)−θ =
P ◦− ≤ P ◦. This shows that xα �≤ (A−

θ )−θ and hence A−
θ = (A−

θ )−θ .

Theorem 3.2. An (LX , δ) is L-extremally disconnected iff for each A,B ∈ δ
with A ≤ B′, then A− ≤ B′◦.

Proof. Let A and B be open sets with A ≤ B′. Since B′ is closed, by A ≤ B′,
we have A− ≤ B′. Notice that A− is open because (LX , δ) is An L-extremally
disconnected space, thus A− = A−◦ ≤ B′◦. Conversely, assume that the con-
dition of theorem holds. For each A ∈ δ, we write B = A′◦, then B ∈ δ
and A ≤ A− = B′. This proves that A− ≤ B′◦ = A−◦. So (LX , δ) is An
L-extremally disconnected space by Proposition 3.1.

Lemma 3.1. If (LX , δ) is L-extremally disconnected, then A− = A−
s for all

A ∈ So(LX).

Proof. For every A ∈ So(LX), we need only prove that A− ≤ A−
s . Let

xα �≤ A−
s and xα ∈ M(LX). Then there exists Q ∈ Sη(xα) such that A ≤ Q.

Since Q is a semi-closed set, there exists closed set P such that P ◦ ≤ Q ≤ P .
By hypothesis, (LX , δ) is L-extremally disconnected, P ◦− ≤ P ◦ by Proposi-
tion 3.1, and hence P ◦− ∈ η(xα). Since A is semi-open, A− = A◦−. By A ≤ Q
and P ◦ ≤ Q ≤ P , we get A ≤ A− ≤ A◦− ≤ Q◦− ≤ P ◦−. So, xα �≤ A−. This
proves that A− ≤ A−

s and hence A− = A−
s .

Remark 3.1. A− = A−
s for all A ∈ So(LX) only is necessary condition

of fuzzy extremally disconnected space, but it is not sufficient condition. So,
Theorem 5 in [1] is erroneous. We have the following counterexample.

Example 3.1. Let L = X = [0, 1]. Fuzzy sets A and B are defined as follows:

A(x) = 0.7 , B(x) = 0.3 for all x ∈ X,

δ = {0, 1, B}.

Then (LX , δ) is fuzzy topological space. One easy seen B− = B′ = A. It is
clear that B ≤ A ≤ B− and A− = A−

s , so A is semi-open. But (LX , δ) is
not fuzzy extremally disconnected space because A− = A′ is not an open set
in (LX , δ).
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Since every semi-open set is semi-pre-open set, by Example 3.1, Theorem
12 is also false in [1].

Lemma 3.2. In an L-space (LX , δ), A− = A−
δ for all A ∈ So(LX).

Proof. If xα �≤ A−
δ and xα ∈ M(LX), then there exists P ∈ δη(xα) such

that A ≤ P . Since P is regular closed and A semi-open set, P = P ◦− and
A− = A◦−. Thus we have A ≤ A− = A◦− ≤ P ◦− = P , which shows that
xα �≤ A− and hence A−

δ ≤ A−. On the other hand, A− ≤ A−
δ is obvious and

so A− = A−
δ .

From Theorem 2.2, Lemma 3.1 and Lemma 3.2, the following results are
obvious.

Theorem 3.3. Let (LX , δ) be an L-st. Then the following conditions are
equivalent:

(1) (LX , δ) is An L-extremally disconnected space.
(2) A− is open for every A ∈ So(LX).
(3) A−

δ is open for every A ∈ So (LX).
(4) A−

s is open for every A ∈ So(LX).
(5) A− is open for every A ∈ So(LX).
(6) A◦ is closed for every A ∈ Sc(LX).

Theorem 3.4. Let (LX , δ)is an L-space. For each A ∈ Po(LX). Then

A− = A−
δ = A−

θ .

Proof. It is obvious that A− ≤ A−
δ ≤ A−

θ for each A ∈ Po(LX). Thus it re-
mains to show that A−

θ ≤ A−. Now, suppose that xα �≤ A− (xα ∈ M(LX)).
Then there exists P ∈ η(xα)such that A ≤ P , which means that A− ≤ P
and A−◦ ≤ P ◦. Since A is pre-open, by Definition 2.1, A ≤ A−◦ ≤ P ◦ and
so, xα �≤ A−

θ . Thus we have proved A−
θ ≤ A−.

Lemma 3.3. Let (LX , δ) be an L-space. Then A− = A−
δ for every A ∈

Spo(LX).

Proof. To prove this, it is sufficient to prove that A−
δ ≤ A− for every A ∈

Spo(LX). Now, let xα ∈ M(LX) and xα �≤ A−. Then there exists P ∈ η(xα)
such that A ≤ P , which implies A−◦− ≤ P ◦−. Since P ◦− ≤ P , P ◦− is
a regular closed set and A ∈ Spo(LX), thus we have P ◦− ∈ δη(xα) and
A ≤ A− = A−◦− ≤ P ◦−. So, xα �≤ A−

δ . This proves that A−
δ ≤ A− and

hence A− = A−
δ .

By Theorem 3.3, Lemma 3.9 and Lemma 3.3, it is obvious that the following
theorem.
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Theorem 3.5. In an (LX , δ), then the following conditions are equivalent:

(1) (LX , δ) is L-extremally disconnected.
(2) A− is open for every A ∈ Spo(LX).
(3) A−

δ is open for every A ∈ Spo(LX).
(4) A−

θ is open for every A ∈ Po(LX).
(5) A− is open for every A ∈Po(LX).

Theorem 3.6. An (LX , δ) is L-extremally disconnected iff So(LX) ⊂ αo(LX).

Proof. Let A ∈ So(LX). Then exists Q ∈ δ such that Q ≤ A ≤ Q−. Since
(LX , δ) is L-extremally disconnected, Q− ∈ δ. Thus we get Q ≤ A ≤ Q−◦

and hence A ∈ αo(LX) by Theorem 2.4. Conversely, let A be arbitrary reg-
ular closed set. Then A ∈ So(LX) and by hypothesis, A ∈ αo(LX). Thus
we have A ≤ A◦−◦ ≤ A−◦ and A = A−◦ because A is closed. Consequently,
(LX , δ) is L-extremally disconnected by Proposition 3.1.

Theorem 3.7. An L-space (LX , δ) is L-extremally disconnected iff So(LX) ⊂
Po(LX).

Proof. It is similar with the proof of Theorem 3.6.

Since αo(LX) ⊂ Po(LX) and αo(LX) ⊂ So(LX), we have:

Corollary 3.1.In an L-space (LX , δ), the following statements are equivalent:

(1) (LX , δ) is An L-extremally disconnected space.
(2) αo(LX)= Po(LX).
(3) αo(LX)= So(LX).
(4) So(LX)= Po(LX).

Definition 3.2. [3] Let f : (LX , δ)−→ (LY1 , δ1)be an order homomorphism.

(1) f is called semi-continuous if f−1(B) ∈ So(LX) for each B ∈ δ1.
(2) f is called irresolute if f−1(B) ∈ So(LX) for each B ∈ So(LX).
(3) f is called almost open if f(A) ∈ δ1 for each A ∈ So(LX).

Theorem 3.8. If f : (LX , δ) −→ (LY1 , δ1) is almost open as well as semi-
continuous, then f(B) ∈ Po(LY1 ) for every B ∈ Po(LX).

Proof. Suppose that B is in Po(LX), then f(B) ≤ f(B−
s ) ≤ (f(B))− by

Theorem1.1 in [3]. Thus we have B−
s ∈ Ro(LX) and f(B−

s ) ∈ Po(LX) because
f is almost open. Since (f(B−

s ))−s = (f(B−
s ))−◦ by Theorem 2.3, (f(B))−s ≤

(f(B−
s ))−s = (f(B−

s ))−◦ ≤ (f(B))−. By f(B) ≤ f(B−
s ) ≤ (f(B))−, we

get (f(B))−◦ ≤ (f(B−
s ))−◦ ≤ (f(B))−◦ and hence (f(B))−◦ = (f(B−

s ))−◦.
This shows that f(B) ≤ (f(B))−s ≤ (f(B−

s ))−◦ = (f(B))−◦ and so f(B) ∈
Po(LX).
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Lemma 3.4. If f : (LX , δ) −→ (LY1 , δ1) is almost open as well as semi-
continuous, then f is irresolute.

Proof. Assume that A ∈ Sc(LY1 ), then A−◦ ≤ A. Since f is semi-continuous,
f−1(A−) ∈ Sc(LX). Thus it is obvious by Theorem 2.2, (f−1(A−))−◦ =
(f−1(A−))◦ because f−1(A−) is semi-closed. Since f is also almost open,

f((f−1(A−))◦) ≤ (ff−1(A−))◦ ≤ A−◦ ≤ A,

which implies (f−1(A−))◦ ≤ f−1(A). Moreover, (f−1(A))−◦ ≤
(f−1(A−))−◦ = (f−1(A−))◦, so we get (f−1(A))−◦ ≤ f−1(A) and
hence f−1(A) ∈ Sc(LX). This shows that f is irresolute.

Theorem 3.9. Let f : (LX , δ) −→ (LY1 , δ1) be almost open surjection as
well as semi-continuous. If (LX , δ) is L-extremally disconnected, then so is
(LY1 , δ1).

Proof. Let A be arbitrary semi-open in (LY1 , δ1). Since f is semi-continuous
and almost open, f−1(A) is irresolute by Lemma 3.4, so that f−1(A) is semi-
open. By Theorem 3.6, we have f−1(A) ∈ Po(LX). Since f is semi-continuous
and almost open surjection, A = ff−1(A) ∈ Po(LX) by Theorem 3.8. This
proves So(LX) ⊂ Po(LX), and so (LY1 , δ1) is an L-extremally disconnected
space by Theorem 3.6.
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Abstract. Establish the cities multi-level logistics distribution center in the region   to 
improve the flow efficiency and economic benefits, enhance regional competitiveness, 
promote the rational allocation of regional resources and effective use has an important 
role. This article use fuzzy clustering analysis method to study. First discusses the 
preparations of fuzzy clustering analysis. includes the  construction of influence 
Factors indicator system, determine the factor weight set, quantify  the  value of  level 
2 indicators, calculate the value of level 1 indicators, etc. Then study the fuzzy 
clustering analysis method and steps, including data standardization, the establishment 
of fuzzy relations, fuzzy clustering, etc. Finally, through a specific location planning 
instance to illustrate the whole process of cluster analysis. The results show that, the 
method of fuzzy cluster analysis Provide a scientific method to the regional city multi-
level logistics distribution center location plan, but in the practical application also 
needs integrated more factors to make a final decision. 

Keywords: City logistics centre, region multi-level logistics distribution, location 
plan, fuzzy cluster analysis. 

1   Introduction 

Regional economy is the economic union which combined by the factors, such as 
natural, economic, ethnic, cultural traditions and social development, is the 
Specialization of social economic activities and cooperation reflected in the space. 
Regional logistics and regional economy is the interdependent unity, is the main 
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elements of the regional economy [1]. Regional logistics as an important part of 
the regional economic activity, is the strong pillars of playing the regional 
function, also is the leading force of the formation and development of regional 
economic system. In the region, establish the cities multi-level logistics 
distribution center is playing an active promoting role ,such as in improving 
production and circulation efficiency and economic benefits, reflecting the 
reasonable allocation of regional resources and effective utilization,  improving 
competitiveness in regional markets and changing the distribution of 
manufacturing enterprises and production mode. 

Clustering is the process that according to the similarity of things to distinguish 
between and classify the process, cluster analysis is using mathematical method to 
study and deal with the classification of the given object [2]. Application of 
ordinary mathematical methods to the classification of clustering method known 
as ordinary cluster analysis, also called hard classifying, each object to be 
identified should be strictly divided into a class, this classification marked clearly. 
Actually, most objects have intermediary in nature and generic respect, application 
of fuzzy mathematical methods to analyze the cluster analysis known as the fuzzy 
cluster analysis, also called soft division, fuzzy set theory provide  powerful 
analysis tools to this soft classifying, people began to use  fuzzy approach to 
process the clustering problem. In the Research field of logistics, fuzzy cluster 
analysis has been applied to product classification, logistics performance 
measurement, logistics facilities location, etc. City is the core carrier of the 
regional logistics, the commodity distribution and processing center, is the 
application object of the clustering. Through the comparison of the conditions on 
the horizontal inter-city, establish the hierarchy, determine the level of logistics 
center, form the regional Multi-level distribution center network. 

2   Fuzzy Clustering Analysis Preparation  

Preparing influence factors and data value for the cluster analysis. The Preparation 
process includes the construction of influence factors indicator system and data 
value of each index. When the indicator system is in multi-level, need to establish 
the factors weight set of each level, through the weight set calculating the lowest 
level indicator data up to the higher level, until 1uantization to the 1 Level 
indicator. The present study build 2 level index system, just need calculating the 2 
level index data up to the 1 level index data by the weight set. 

A.  Construction of Influence Factors Indicator System  

The city logistics distribution center location is an integrated decision-making 
problem which involve many influence factors, in the location process all factors 
have the influence in different degrees, only consider the integration of all factors 
can make the urban logistics distribution center location decisions in a more 
rational and more scientific. Generally, when make the city distribution center 
location decision should major consider the center construction economic factors, 
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social factors, infrastructure, natural environment and business environment, etc. 
The references [3-5] has already studied the city distribution center location 
influence factors index system in depth. Based on summarizing these studies, 
combined with the experience of writers and experts, summarize the influence 
Factors indicator system as showed in Table 1. 

Table 1. City logistics distribution centre location influence factors indicator system 

target 
 layer 

criteria layer 
(level 1 indicators) 

index layer 
(level 2 indicators) 

land prices                         u11  
construction costs              u12  
transport costs                   u13  

economic 
factors 

U1 operational costs               u14  
industrial policy                u21  
human resources               u22  
environmental protection  u23  

social factors 
U2 

resident attitudes               u24  
road traffic                        u31  
circumstances condition   u32  
public facilities                 u33  

infrastructure 
U3 

waste disposal                   u34  
weather conditions            u41  
geological conditions        u42  
hydrological conditions    u43  

natural 
environment 

U4 topography conditions      u44  
competitors                       u51  
market demand                 u52  
service level                      u53  

Optimal  
location 
for city 
logistics 
distri-
bution 
centre 
Plan 

 
U 

business 
environment 

U5 product features                u54  
 
 

B.  Determine the Weight Factors Set 

In the influence factors indicator system, the degrees of each factor weight is 
different. To show the importance of each factor, each factor ui should be given 
appropriate weight wi. the set formed by the weights is called the factor weights 
set, short called the weights set. 

The level 1 indicators weights set expressed as: 

),,,( 21 nWWWW "= .                                                         (1) 

In the last formula, n is the number of the level 1 indicators. 
The level 2 indicators weights set expressed as: 

),,,( 21 imiii wwwW "=  .                                                         (2) 
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In the last formula ),2,1( ni "= express the level 1 indicators, m express the 
quantity of level 2 indicators corresponding to the appropriate level 1 indicators. 

C.  Quantify the Level 2 Indicators 

The set formed by the various evaluation results of evaluation objects, expressed 
as [6]: 

},,,{ 21 nvvvV "= .                                                           (3) 

Based on integrated considering all influence factors, get the optimal evaluation 
results from the evaluation set.  

To each influence factors of level 2 indicators, determine the membership 
degree of the evaluation object relative to the evaluation set elements. Need to 
establish fuzzy mapping [6] from U to )(VF : 

∑
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=+++=
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m

j j

ij

m

imii

iii

v

r

v

r

v

r

v

r

ufuUuVFUf

12

2

1

1

~
)(|,),(:

"
.                                              (4) 

In this formula ijr express the membership that iu belongs to jv . 

Membership, is also called membership function or fuzzy relation coefficient, 
is the key to describe the object fuzziness. Membership function is the objective 
measure of the subjective factors for the fuzzy object, on being given time trying 
to minimize the influence of subjective factors, furthest reflect the fuzzy objective 
characteristics. Commonly used methods are fuzzy statistical method, dualistic 
contrast compositor method, distribution method, etc. 

Express the results of quantifying the level 2 indicators: 

),,( 21 imiii rrrR "= .                                                        (5) 

D.  Calculate the Level 1 Indicators 

According to level 2 indicators value and weight [8], calculate the level 1 
indicators. The value of the level 1 indicator is obtained by the weighted 
calculation many level 2 indicators of it’s, expressed as following formula: 

T
imiiimii

T
i

T
ii rrrwwwRWc ),,(),,,( 2121 "" •=•= .                                     (6) 

On the previous formula ic express the i-th level 1 indicator, the value of i and j 

value ibid. 
Level 1 indicators value can express by matrix: 
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nj

nj

m

i

cccc
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cccc
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C

C
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(7)
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On the previous formula ),2,1( mi "= , m express the distribution centre location 
number; ),2,1( nj "= , n express the level 1 indicators number; ijc express the j-th 

level 1 value indicator value of the i-th distribution centre. 

3   Fuzzy Clustering Analysis Procedure 

Fuzzy cluster analysis procedure can be summarized as: data standardization, 
fuzzy relations establishment, fuzzy clustering [6][7]. 

A.  Data Standardization 

In practical problems, the different data may have different dimension, to make 
different dimensions of data can be compared, and the data need proper 
transformation.  

Set the clustering object as nAAA ,,, 21 " , },,,{ 21 nAAAU "= is the simple set, 

considerations factors (or called sample indicator) are mBBB ,,, 21 " , Ai can be 

described by m data, set the data corresponding to Ai is ),,,( 21 imii xxx ′′′ " ),2,1( mi "= , 

can measure the n data ),,,( 21 nkkk xxx " ),2,1( mk "=  to Bk. The data standardization 

formulas as follows: 

k

kik
ik S

xx
x

′−′
=′′ .                                                         (8) 

On the previous formula, kx ′ is the average value of the k-th indicator is: 

∑ ′=′
=

n

i
ikk x

n
x

1

1 ,                                                        (9) 

kS is the standard deviation of the k-th indicator is:  

mk

ni
xx

n
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n

i
kikk ,,2,1
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1

1

2

"
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=
=

∑ ′−′=
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.                                       (10) 

After the conversion, the average value of each variable is 0, the standard 
deviation is 1, and can eliminate the influence of dimension, but not necessarily in 
interval [0,1]. According to the requirements of fuzzy matrix, the data should be 
compressed in closed interval [0, 1], use extreme transformation formula: 

kk

kik
ik xx

xx
x

minmax

min

′′−′′
′′−′′= .                                                  (11) 

On the previous formula, kxmin′′ is the minimum of kx ′′ ; kxmax′′  is the maximum of kx ′′ . 

After the conversion of extreme value, there is 10 ≤≤ ikx , get the standard 

array ),,,( 21 imii xxx " ),2,1( ni "= . 
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B. Fuzzy Relations Establishment 
 
Fuzzy relations establishment is also called calibration, is calculated the similarity 
coefficient ijr   ),2,1,( nji "= between the object classification, to be similar to the 

matrix nnijrR ×= )( , is fuzzy relations. 

Set universe of discourse },,,{ 21 nAAAU "= , each factor of the universe of 
discourse is a sample, each sample is m-dimensional vector, ),,,( 21 imii xxx " , there 
are many methods to calculate the ijr . There are three methods most commonly 
used as follows: 

 
(1)  Arithmetic average of the minimum method 

∑ +

∑ ∧
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.                                                 (12) 

(2)  Geometric  average of  minimization method 
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(2)  Correlation coefficient method 
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On the previous formula, ∑=
=

m

k
iki x

m
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m
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C.  Fuzzy Clustering 

According to the calibration established the fuzzy matrix R . Generally speaking, 
its nature is reflexivity and symmetry, and does not satisfy transitivity, just a fuzzy 
similarity matrix, only if R  is a fuzzy equivalence matrix to cluster, so R  need to 
be transformed into equivalence fuzzy matrix R . 

About the equivalence fuzzy matrix, there is Theorem 1 in [7]: Set R  is a 
reflexive and symmetric relations of },,,{ 21 nAAAU "= , that R  is n*n fuzzy 

similarity matrix,  then there exists a minimum natural number )( nkk ≤ , make 
kR as a fuzzy similarity matrix, and constant presence kw RR =  to the natural 

number which is greater than k. kR is called the transitive closure matrix of R , 
marked as )(Rt . 

According to the previous theorem, the n*n fuzzy similarity matrix R can be 
transformed into equivalence fuzzy matrix )(Rt  by the transitive closure. From the 

fuzzy matrix R , demand in turn squared: "→→→ 42 RRR , when appear 
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kkk RRR =• the first time, shows kR has the nature of transfer, kR is the transitive 
closure which is the demand of )(Rt .  

After the R  is transformed into equivalence matrix kR , do interception on the 
appropriate limit value, to obtain the required classification. 

4   Planning Instance 

A region is formed by 5 cities, such as X1, X2, X3, X4, X5, establishing a logistics 
centre in each city. According to the different influence factors, to establish the 
different level logistics centre, preliminary decision to establish the level 1 and 
level 2 logistics centre, level 1 provide the service to level 2. determine the 
logistics centre level classification with the fuzzy cluster analysis method. 

A.  Quantify the Value of Level 2 Indicators 
According to the method of quantifying the value of level 2 indicators, the 

result is expressed as  Table 2: 
B.  Calculate the Value of  Level 1 Indicator 
According to the part of the index weight that is given in the references [3-5], 

combined with the experience of writers and experts, use AHP to determine the 
value of weight as follows: 

 
)10.0,38.0,20.0,32.0(),,,( 141312111 == aaaaA , 

)11.0,15.0,41.0,33.0(),,,( 242322212 == aaaaA , 

)10.0,42.0,16.0,32.0(),,,( 343332313 == aaaaA , 

)35.0,18.0,22.0,25.0(),,,( 444342414 == aaaaA , 

)22.0,07.0,41.0,30.0(),,,( 545352515 == aaaaA . 

 
According to the formula (6), the value of  level 1 indicator is as follows: 

 
C. Data Standardization and the Establishment of  Fuzzy Relations 
 
According to the formulas (8), (9), (10), (11), after making the data 
standardization, according to Formula (12), the establishment of fuzzy relations as 
follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

163.077.077.077.0

63.0163.063.063.0

77.063.0185.092.0

77.063.085.0185.0

77.063.092.085.01

R . 
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Table 2. Quantify the value of level 2 indicators 

level 2 indicators symbol X1 X2 X3 X4 X5

land prices  u11 76 63 68 72 88
construction costs  u12 60 56 82 49 64
transport costs  u13 69 76 84 65 73
operational costs  u14 57 64 73 56 63
industrial policy  u21 85 87 79 92 90
human resources  u22 65 74 71 86 39
environmental protection u23 38 45 61 58 47
resident attitudes  u24 52 56 85 90 73
road traffic  u31 56 67 38 91 76
circumstances condition  u32 80 62 71 88 35
public facilities u33 71 58 38 82 49
waste disposal u34 36 81 62 75 45
weather conditions u41 28 72 58 87 71
geological conditions u42 65 71 92 80 69
hydrological conditions u43 66 61 57 56 58
topography conditions  u44 73 54 71 96 54
competitors  u51 57 49 41 51 56
market demand  u52 78 79 65 86 75
service level  u53 46 48 49 71 35
product features  u54 37 91 82 67 48

Table 3. The value of Level 1 indicators 

level 1 indicators symbol X1 X2 X3 X4 X5

economic factors  U1 68 66 77 63 75
social factors   U2 68 71 73 84 37
Infrastructure   U3 64 63 45 85 55
natural environment U4 58 63 69 83 62
business environment U5 60 70 60 70 60

 
 

D.  Fuzzy Cluster 

To the fuzzy relation R in 4.4, by ),,2,1(1 nirii "==  know that R is reflexive; by 

),,2,1,( njirr jiij "==  know that R is symmetry. According to theorem 1, R is 

fuzzy equivalence matrix. 
 

1)  When 1≥λ  
Only diagonal elements to be equal or greater than 1, so all the diagonal 

elements to be transformed into 1, other elements to be transformed into 0, 
become a unit matrix, divided into 5 categories: {X1},{X2},{X3},{X4},{X5}, each 
element is a class, and it is the most detailed classification. 
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2)  When 92.0≥λ  
The element which is less than 0.92 to be transformed into 0, and the one which 

is greater than 0.92 to be transformed into 1, divided into 4 categories: {X1, X3}, 
{X2},{X4},{X5}. 

3)  When 85.0≥λ  
There are 3 categories: {X1, X2, X3}, {X4}, {X5}. 
4)  When 77.0≥λ  
There are 2 categories: {X1, X2, X3, X5}, {X4}. 
5)   When 63.0≥λ  
There is only 1 category: {X1, X2, X3, X4, X5}, it is crudest category. 
The fuzzy clustering map based on the previous fuzzy clustering, is expressed 

as figure 1. 

0.85

0.63

X1 XSX2 X3 X4

0.77

1

0.92

interception
standards

 

Fig. 1.  Fuzzy clustering map  

According to the result of category, when 77.0=λ , the alternative distribution 
centre address is divided into two categories, accordingly, we can get the initial 
location program of the region multi-level logistics distribution centre , that is 
planning the {X4} as level 1 distribution centre, planning {X1, X2, X3, X5} as level 
2 distribution centre, constitute a 2-levels distribution network. 

5   Conclusion 

The logistics centre location planning is the most important issue of the overall 
construction and development of the regional logistics network, the fuzzy 
clustering method is a scientific and practical method to solve the problem. The 
classification of the city logistics centre can promote the rational layout of the 
distribution logistics network, this rationality should not only adapt the current 
regional economic development, but also to adapt to future development needs. 
the fuzzy clustering emphasis on quantitative description, however, in practice, 
some influence factors can not be included in the indicators system to quantify, 
therefore, the results obtained by this method only as an important basis for 
decision making, the final result, still need be integrated more factors to make the 
final decision. 
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Abstract.Applying the majorized method of fuzzy transformation and fuzzy 
integral, this paper discusses theoretically and pragmatically about how to make 
Fuzzy optimal multidimensional synthetical decision and analyzes its reliability, 
provides the optimal mathematical model of Fuzzy optimal multidimensional 
synthetical decision, promotes the expertise of synthetical decision and widens its 
application in fields of natural science and social science. This paper provides optimal 
decision for scientific management of teaching quality, reasonable employment flow 
of college graduates, modernized medical diagnosis and other complicated cases, 
which proves that the method this paper proposes is an ideal decision making 
approach that ensures a satisfactory result once it has been put into practice. 

Keywords: Optimal multidimensional synthetical decision, majorized model, 
fuzzy transformation, fuzzy integral, possibility measure, strong law of large 
numbers, reliability analysis.  

1   Introduction 

With the development of modern science, its emphasis now shifts more and more 
rapidly from the research on the definite object by the method of analysis to the 
research on the indefinite object by the method of synthesis. After every concrete 
science has the typical phenomenon of either-or in its own sphere fully studied, it is 
now engaged in enlarging scope sphere and is ready to make the research on 
the untypical phenomenon of both-and. The trend of the penetrating between the 
different natural science, between the different social science, and between 
the social science and natural science appears apparently with the time going by. 
The former branch-bound line is broken and the frontier science springs up. The 
fuzzy mathematics appearing in 1960’s is a great breakthrough in the prolongation 
of mathematics research. 

We can use fuzzy mathematics to study the fuzzy phenomenon in the objective 
world, so the limitation of the tradition mathematics has been smoothed away and many 
problems which can not be solved by tradition mathematics have been solved. And 
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fuzzy mathematics applies a good situation to the mathematicization of natural science, 
social science, system science, idea science and body science. In recent years, many 
achievements concerning the fuzzy mathematics have appeared, but fuzzy decision 
theory is now in its childhood. So this article tries to conduct the research on the best 
fuzzy multidimensional synthetical decision and enlarge the sphere in which the best 
fuzzy multidimensional synthetical decision can be applied [1]. 

2   Research on BFMSD 

Many systems in the world are influenced by many factors as well as have many 
aims, this is so-called “Multidimensional Synthetical Decision”. Generally, a 
decision problem is always coupled with fuzziness, randomness and experience 
characteristics. 

So it is common to adopt the fuzzy synthetical decision. The following would lay 
the emphasis on this problem. 

In order to evaluate something synthetically, we must pay attention to the 
following three factors: 

 
(1) Collection of elements },,,{ 21 nuuuU "=

iu  shows the factor that has to be 

considered by something; 
(2) Decision collection },,,{ 21 mvvvV "=

iv  shows the stage of decision;  
(3) Single elements decision, it is a fuzzy mapping from .VU → According to 

the fuzzy mapping law, a fuzzy mapping 

~
f  can decide a fuzzy relation R

~ ~
f , it 

can be expressed by a fuzzy matrix 
mn

MR ×∈
~

. So 
~
R  can be considered as a 

fuzzy transformation from .VU →   
Thus an evaluation space （U,V,

~
R ）may make up a model of synthetical 

evaluation. 
Suppose a fuzzy subset in U,  

~
A ),,,( 21 naaa "= , in which ia  represents the weighted number and it 

satisfies 

∑
=

=
n

i
ia

1

.1  

In the given fuzzy transformation 
~
R  and factor weight 

~
A，we can get a fuzzy 

subset from the fuzzy relations compositive operation, that is:  

~
A D

~
R =

~
B mlM ×∈ ,  

where 
~
Bμ = )},()({
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vuu RA
Uu

RA μμμ ∧∨=
∈D . 
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The aforementioned is a mathematical model of fuzzy snythetical evaluation. In 
fact, the fuzzy snythetical evaluation is using the known original image（weight 
matrix）and mapping （one-factor evaluation matrix）to get the result of synthetical 
evaluations. 

In additional, we can use fuzzy integrate to form a sort of the model of the 
synthetical evaluation. 

Suppose },,,{ 21 nuuuU "=  is a collection consisting of n factors. )(UP  is  

U′s preparing field. We have the given fuzzy vector on U,  

),,,( 21 nmmmM "= . 

expresses  the “chief factor”.  It is actually the leaders′ evaluations on the 
importance of n factors. 

For each state on U, there is an )(UFH ∈ ,  

),,,( 21 nhhhH "= . 

H about “chief factor”—M′s synthetical evaluation is: 

∫u uH )( )()(
1

kk

n

k
mhMH ∧∨==•∏ =

DD . 

The aforementioned possibility measure and fuzzy integral theory solve the 
rationality of the evaluation model [2]. 

In order to avoid the above model’s defects caused by omitting the subimportant 
factor, we can pretreat the evaluation. For example, we can give a bottom line to 
every factor’s satisfactory degree, when one object’s satisfactory degree is below 
the standard, we can drive the object off the evaluation. Today, fuzzy N—integrate 
enlarges operator sphere of fuzzy integrate, and on the base of ( ∧∨, ) some new 

operators appear. 
We can use every sort of synthetical evaluation models resulting from different 

fuzzy integrate to deal with some different practical questions. 
Suppose the fuzzy Vector M which stands for the possibility measures is fixed. 

There are m evaluators to evaluate the given object a individually, then 

)(),,,( 21 UFhhhH jnjjj ∈= " , 

stands for the satisfactory evaluation on α  of Evaluator Number j, .,,2,1 mj "=  
And to the fixed factor Uui ∈ , 

miimiiii huHhuHhuH === )(,,)(,)( 2211 "  

can be considered as sample value whose volume is resulting from mother body 

iU . iU  stands for the random variable of the objective evaluation of α  on factor 

iu . If you consider the social evaluation on iu  true, then the aforementioned 

abstraction is reasonable. From the strong law of large number in probability theory 
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1)(
1

lim
1

=
⎭
⎬
⎫

⎩
⎨
⎧

=∑
=∞→

m

j
iij

m
huH

m
p , (1)

ih  is the mathematical expectation of the random variable 1iU  which stands for the 

social evaluation on the base of social outlook on value. If we let i run from 1 to n, 
then we get )(UFH ∈ , 

),,,( 21 nhhhH "= , 

stands the social evaluation of the satisfaction on α . We can not get H directly, 
but we can get the sample value 

mHHH ,,, 21 "  mentioned above and then we have 

1
1

lim
1

=
⎭
⎬
⎫

⎩
⎨
⎧

=∑
=∞→

m

j
j

m
HH

m
p . (2) 

According to the convergence theorem of fuzzy integrate series to the fuzzy 
integrate function H, ,,2,1, "=nH n  on the finite field U, if 

HH n
m

=
∞→

lim , 

then we can get  

∏∫∫ ∏ •=•
∞→

)()()()(lim
UU n

m
uHuH DD . (3) 

That’s to say 000 ,)()( EMHuHE
U

=•= ∫ ∏D  is the social synthetical 

evaluation to α . For the same reason, MHuHE jU jj DD =•= ∫ ∏ )()( is the 

synthetical evaluation of the evaluator number i on .,,2,1, mj "=α  
Combining (2) with (3), we get  

1)()()()(
1

lim
1

=
⎭
⎬
⎫

⎩
⎨
⎧

•=•∫ ∑ ∏ ∫ ∏
=∞→ U

m

j
Uj

m
uHuH

m
P DD . (4) 

In other words, when m is very big, according to probability 1 

∫ ∑ ∏
=

=•
U

m

j
j EuH

m 1
0)()(

1 D . (5) 

Attention, the fuzzy integral doesn’t fit the common addition of function to the 
distributive (aw) thus, in general, we say  

∑∫ ∏ ∫ ∑ ∏
= =

•≠•
m

j
U U

m

j
jj uH

m
uH

m 1 1

)()(
1

)()(
1 DD , 
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That is to say, we cannot use ∑
=

m

j
jE

m 1

1 to evaluate 0E . 

We call jE the individual evaluation, ,,,2,1 mj "= and call 0E the group 

evaluation true value, while ∫ ∑ ∏
=

•
U

m

j
j uH

m 1

)()(
1 D  is called a group evaluation 

whose volume is m, we write it down as )(ˆ mE . )(ˆ mE  as an approximation of 0E , is 

fairer than any other iE  [3-5]. 

3   Application Examples  

We use the fuzzy multidimensional synthetical decision and the sampling 
quantitative analysis to dissect the graduates’ test paper in the class of 1985 and 
then have a comprehensive understanding of the student’ standard of knowledge 
and capability. In this way, we can find out the factors interfering in the education 
quality and provide the best decision for a scientific education. 

We have taken two steps to conduct the investigation: 
 
(1) Set up an expert group, analyse the test paper and establish a fuzzy relation 

model. 

Suppose the test paper },,,,{ 21 nuuuU "=  among  these , iu (i=1,2,…,m) 

represent test questions. Then we suppose again the investigated “knowledge” and 

“capability” is },,,,,,{ 121 nkk vvvvvV "" += , in which iv (i=1,2,…,k) is the 

needed knowledge sample (such as mathematical analysis, higher algebra,  

probability theory,  function of a complex variable, etc.) , iv  (j=k+1,k+2,…n) is the 

investigated capability (such as capability of operation and application). In order to 
have a wide investigation on the true level of students’ practical “knowledge” and 
“capability”, every question in the test paper should be included in 

nkk vvvvv ,,,,,, 121 "" + . 
Now we invite some good teachers to analyse the test paper and to set up a fuzzy 

velation )(),,,(
~~

2
~
1

~
VUFrrrR n ×∈= "  from U to V.  

Suppose the “catalogue of test paper” in test paper U is: 

== },,,{ 4321 uuuuU {filling blanks, answer questions, calculation, 

testimony}. 
The catalogue of knowledge in test paper U is: 

},,,,,,{ 76543211 vvvvvvvV = = {mathematical analysis, higher algebra, 

analytical geometry, function of a complex variable, probability theory, higher 
geometry, modern algebra}. 
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The catalogue of capability in test paper U is: 

== },,,{ 43212 ssssV {notion, operation, application, logic} 

Through the experts’ evaluation, we can set up a fuzzy relation matrix
~
1R  and 

~
2R from U to V1 and to V2: 

⎢
⎢
⎢
⎢

⎣

⎡

=

16.012.020.024.0

1.020.015.030.0

013.013.027.0

2.020.010.025.0

~
1

　　　　　　

　　　　　　

　　　　　　　

　　　　　

R  

0

10.0

27.0

10.0

 

16.0

05.0

20.0

0

  

⎥
⎥
⎥
⎥

⎦

⎤

12.0

10.0

0

15.0

　

　

　

, 

⎢
⎢
⎢
⎢

⎣

⎡

=

　　　　　

　　　　

　　　　

　　　　

028.020.0

20.045.025.0

27.020.040.0

20.030.040.0

~
1R  

⎥
⎥
⎥
⎥

⎦

⎤

52.0

10.0

13.0

10.0

. 

In order to get the best effect of the synthetical decision, we must pay attention to 
science of paper U. It means that every examination question in paper U should 
reflect the students’ “knowledge” and “capability” level correctly, at the same time  
the experts are needed to analyse the paper correctly and rationally. 

(2) We must understand the students’ standard of knowledge and ability by 
means of the sampling analysis of the students’ paper. Only in this way can we offer 
the best decision to the improvement of the teaching quality and scientific 
administration in the future. 

Let us suppose a hundred-mark system and suppose the full marks of every 

question are ).100(,,,,
1

21 ∑
=

=
m

i
im qqqq "  

Now we can also suppose that the inspected object is group of 

,,,{ 21 "xxX =  }ax  and ix  indicates a single student. The mark in question j 

of ix  is ,,2,1( "=iaij },,,2,1, mja "=  then 
maijaA ×= )(  will be a common 

matrix. 

Let line No. j of A be divided by jq . A will be changed into fuzzy matrix  

maijaA ×= )(
~

, in which ),,2,1,,,2,1(
~

mjai
q

a
a

i

ij
ij "" === , 

the preceding paragraph tells us that 
~
A  is the fuzzy relation from X to U, i. •e ,  

∈
~
A  F )( UX ×

[6]
. 
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Write fuzzy transformation ,)(
~~~

naijbBRA ×==D　  and 
~
B  is the fuzzy relation 

from X to V: =
~
B F )( VX × , in it inii bbb ,,, 21 " ，bin indicate the result of the 

inspected ix ,  that is , the real knowledge and ability level of ix . 
We must see that if Line No j of 

~
R  is all nought. Line No j of 

~
B  is also nought 

no matter what 
~
A  is. Thus we can’t investigate the condition about iV  of  the 

students from 
~
B . So a good set of paper U needs 

~
B  to satisfy 

.1
1

=∨
= ij

i
x  

To sum up, we can sample and inspect five pieces of paper from the students in 

the Class of 1985. Suppose },,,,{ 54321 xxxxxX = , and ix  indicates a single 

student. The fuzzy relation matrix of the mark that the single student i makes in 
Type j is: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

44.080.067.085.0

40.063.080.080.0

48.050.087.060.0

60.073.053.080.0

80.088.080.090.0

　　　　　　

　　　　　　

　　　　　　

　　　　　　

　　　　　　

A . 

Normalize 
~
A , and we will get: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

16.029.024.031.0

16.024.030.030.0

20.020.036.024.0

23.027.020.030.0

24.026.024.026.0

　　　　　　

　　　　　　

　　　　　　

　　　　　　

　　　　　　

A
 

and  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′=

15.020.024.020.020.015.029.0

15.020.027.020.020.016.027.0

15.020.027.020.020.020.027.0

15.020.020.020.020.020.027.0

15.020.024.020.020.020.026.0

~
1

~~
1

　　　　　　　　　　　　

　　　　　　　　　　　　

　　　　　　　　　　　　

　　　　　　　　　　　　

　　　　　　　　　　　　

RAB D , 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′=

16.024.030.031.0

16.027.030.030.0

20.027.024.036.0

23.020.030.030.0

24.024.026.026.0

~
2

~~
2

　　　　　　

　　　　　　

　　　　　　

　　　　　　

　　　　　　

RAB D , 

thus we can investigate the knowledge and ability level of the students x1, x2, x3, 
x4, x5. 

For example, in order to inspect the “ability” of student x3, in 
~
2B  

,20.0}20.0,27.0,24.0,36.0min{

,36.0}20.0,27.0,24.0,36.0max{

=
=

　　　

　　　  

We can see that student x3 grasps the fundamental concept well, but his logic 
inference ability is quite poor. 

The average value of every element of 
~
2B  is : 

）　　　（ 198.0,244.0,28.0,36.0 . 

From above we can see that the student grasps fundamental concept well, but his 
logical inference ability is poor. So we must give special attention to he training of 
the logic inference ability in our future teaching. 

The job assignment of the college is rather complicated, which touches upon a lot 
of objects and factors. How to use the talented persons rationally is the crux in the 
job assignment. So the author has applied the fuzzy multidimensional synthetical 
decision method to change the qualitative analysis of the job assignment of the 
graduates into quantative analysis, which shows a better mathematical model of the 
job assignment and offers a reliable scientific basis. 

The fuzzy multidimensional synthetical decision can be widely used in every 
field in natural science and social science [7]. For example, the consultative system 
of the medical experts and the computer interrogation, which marks the 
modernization in medical diagnosis, is an excellent achievement in scientific 
research that combines the fuzzy multidimensional synthetical decision with 
practice. The fundamental procedure in diagnosis is: 

 
(symptom)               (diagnosis)              (diagnosis) 
(patient)

~
A (symptom) 

~
R (patient)  

~
B

import                experts system               export  

The main model: 

The experts’ experience in treating or curing the patients 
→mathematicism→computer study→feedback revision →consultative system of 
experts →computer interrogation. 
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It is not difficult to realize “the sensor interrogating” with the help of the fuzzy 
transformation and computers. In fact, in China, the fuzzy mathematical model that 
Doctor Guang Youbo uses to cure liver diseases has been made into the software of 
the expert system, and the computer interrogation has been realized successfully. 

4   Conclusion 

The best fuzzy multidimensional synthetical decision is an optimization. This 
method is often used in solving the problem with multiple targets and factors, which 
is difficult to evaluate, but it can be settled by the fuzzy transformation [8]. If we 
can program the computer and realize the automation of the evaluation, the effect 
will be better. In addition, if we can choose the proper factors 1 2, ,... nu u u  and show 

the weighted numbers of every factor, and if those who take part in evaluation 
possess representative and practical experience, there is a great significance to 
improve the effect of the fuzzy multidimensional synthetical decision. 
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Abstract. An Lω -space is view as a fuzzy topology space containing various
closure operators. In this paper, some new notions of the first and the sec-
ond ωθ -countability are introduced in an Lω -space. Some basic properties
of them are respectively given. For example, the first and the second ωθ-
countability are both hereditary property, countable multiplicative property
and invariant property under (ω1, ω2)θ -homomorphism.

Keywords: Lω-space, ωθ -open set, ωθR-neighborhood base, the first ωθ-
countable space, the second ωθ-countable space, ωθ-base.

1 Introduction

The countability theory is one of the most important theories in topology.
In 1988, Wang introduced the concept of R-neighborhood and established
the countability theory in an L-fuzzy topology space [1]. In 2002, Chen and
Dong further generalized the above notions and established an L-fuzzy order-
preserving operator space [2], then the ω-countability [3], the ω-connectedness
[4] and the ω-separation [5] were given respectively. In this paper, we will
enrich the countability theory. We will present two new countable spaces
which is called the first ωθ-countable space and the second ωθ-countable
space and discuss their properties.

2 Preliminary Concepts and Notations

Throughout this paper, L denotes a fuzzy lattice, i.e., a completely distribu-
tive lattice with order-reversing involution ”′”. An element a of L is said to
be ∨-irreducible (or a molecule) [1] if a ≤ b ∨ c implies that a ≤ b or a ≤ c,
where b, c ∈ L. The set consisting of all nonzero ∨-irreducible elements of L
will be denoted by M , and the greatest element and the least element of L
will be denoted by 1 and 0, respectively. For each non-empty crisp set X , LX

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 519–526.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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denotes all L-fuzzy sets on X and with value in L, M∗(LX) denotes the set
of all molecules, i.e., nonzero ∨-irreducible L-fuzzy points [6] in LX , and the
constant L-fuzzy set taking on the constant values 1 and 0 at each x in X
will be denoted by 1X and 0X , respectively.

Definition 1. [2,4] Let X be a non-empty crisp set.
(a)An operator ω : LX → LX is called an ω-operator if (1) ω(1X) = 1X;

(2) For each A,B ∈ LX , if A ≤ B, then ω(A) ≤ ω(B); (3) For each A ∈ LX,
A ≤ ω(A).

(b) An L-set A ∈ LX is called an ω-set if A = ω(A).
(c) Put Ω = {A ∈ LX | A = ω(A)}, and we will call the pair (LX , Ω) an

L-fuzzy order-preserving operator space,or an Lω-space.

Definition 2. [2,4] Let (LX , Ω) be an Lω -space, P ∈ LX and xα ∈
M∗(LX). If there exists a Q ∈ Ω, such that xα �≤ Q and P ≤ Q, we will call
P an ωR-neighborhood of xα . We will denote by ωη(xα) the collection of all
ωR-neighborhoods of xα

Definition 3. [7] Let (LX , Ω) be an Lω-space, A ∈ LX , and xα ∈ M∗(LX).
If A �≤ P for each P ∈ ωη(xα), then we will call xα an ω-adherence point of
A. We will call the union of all ω-adherence points of A the ω-closure of A,
and will denote by ωcl(A). If A = ωcl(A), then we will call A an ω-closed
set. If A is an ω-closed set, then we will call A′ an ω-open set. If Q = ωcl(Q)
and xα �≤ Q, then Q is said to be an ω-closed R-neighborhood (briefly, ωCR-
neighborhood) of xα. We will denote by ωη−(xα) the collection of all ωCR-
neighborhoods of xα.

Definition 4. [2,4] Let (LX , Ω) be an Lω-space, A ∈ LX . Put ωint(A) =
∨{B ∈ LX |B ≤ A and B is an ω-open set in LX}. We will call ωint(A) the
ω-interior of A. Obviously, A is an ω-open set if and only if A = ωint(A) .

Definition 5. Let (LX , Ω) be an Lω-space, P ∈ LX and xα ∈ M∗(LX).
If there exists a Q ∈ Ω such that xα �≤ ωint(Q) and P ≤ Q,we will call
P an ωθR-neighborhood of xα. We will denote by ωθη(xα) the collection of
all ωθR-neighborhood of xα. If A �≤ ωint(P ) for each P ∈ ωη(xα), then we
will call xα an ωθ-adherence point of A. We will call the union of all ωθ-
adherence points of A the ωθ-closure of A, and will denote by ωθcl(A). If
A = ωθcl(A), then we will call A an ωθ-closed set. If A is an ωθ-closed set,
then we will call A′ an ωθ-open set. Let ωθo(LX) be the union of all ωθ-open
sets. If Q ∈ (LX) is an ωθ-closed set and xα �≤ ωint(Q), then Q is said to
be an ωθ-closed R-neighborhood (briefly, ωθCR-neighborhood) of xα. We will
denote by ωθη−(xα) the collection of all ωθCR-neighborhood of xα.

It is obvious that an ω-adherence point of A is an ωθ-adherence point of A, an
ωR-neighborhood ( ω-closed R-neighborhood) of xαis an ωθR-neighborhood
(ωθ-closed R-neighborhood) of xα.
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Definition 6. Let (LX , Ω) be an Lω-space, e ∈ M∗(LX), β ⊂ ωθo(LX),
μ ⊂ ωθη−(e).

1) If for each G ∈ ωθo(LX), there exists a subfamily ϕ of β such that
G = ∨{B|B ∈ ϕ}, then β is called an ωθ-base of (LX , Ω);

2) For each γ ⊂ ωθo(LX), if the family of all intersection of finite elements
in γ is an ωθ-base of (LX , Ω), then γ is called an ωθ-subbase of (LX , Ω);

3) If for each P ∈ ωθη−(e), there exists a Q ∈ μ such thatP ≤ Q, then μ
is called an ωθR-neighborhood-base of e.

3 The Second ωθ-Countable Space

In this section, the second ωθ-countable space and some properties are intro-
duced, including hereditary property, countable multiplicative property and
invariant property under (ω1, ω2)θ-homomorphism.

Definition 7. Let (LX , Ω) be an Lω-space. (LX , Ω) is called the second ωθ-
countability space, briefly, ωθC2-space, if there is a countable ωθ-base in
(LX , Ω).

Theorem 1. Let (LXi

i , Ωi)(i = 1, 2) be two Lω-spaces and f : (LX1
1 , Ω1) →

(LX2
2 , Ω2) be (ω1, ω2)θ-continuous and (ω1, ω2)θ-open surjective order homo-

morphism. If (LX1
1 , Ω1) is an ω1θC2-space, then (LX2

2 , Ω2) is an ω2θC2-space.

Proof. Suppose that B is an ω2θ-open set in (LX2
2 , Ω2). Then f−1(B) is an

ω1θ-open set in (LX1
1 , Ω1) according to the (ω1, ω2)θ-continuity of f . Since

(LX1
1 , Ω1) is an ω1θC2-space, there exists a countable ω1θ-base β in (LX1

1 , Ω1)
, such that f−1(B) can be represented by the union of some members of β,
that is, there exists a subfamily ϕ of β such that f−1(B) = ∨{A|A ∈ ϕ}. Then
B = ∨{f(A)|A ∈ ϕ} holds because f is surjective. However f is (ω1, ω2)θ-
open, then f(A)is an ω2θ-open set in (LX2

2 , Ω2). Put γ = {f(A)|A ∈ β},
then γ is an ω2θ-base in (LX2

2 , Ω2) . Since β is countable, γ is also countable.
Hence, γ is the countable base in (LX2

2 , Ω2) , that is, (LX2
2 , Ω2) is an ω2θC2-

space.

Preceding theorem shows that the second ωθ-countability is homomorphism.

Definition 8. [3] Let (LX , Ω) be an Lω-space, Y be a nonempty subset of
X and Ω|Y = {A|Y |A ∈ Ω}, where A|Y is the restriction of A on Y , i.e.,
for each y ∈ Y,A|Y (y) = A(y), then (LY , Ω|Y ) is called an ω-subspace of
(LX , Ω).

Theorem 2. Let (LY , Ω|Y ) be an ω-subspace of Lω-space (LX , Ω). Then the
following statements hold.

1) If G is an ωθ-closed set of (LX , Ω), then G|Y is an ωθ-closed set of
(LY , Ω|Y );

2) If H is an ωθ-closed set of (LY , Ω|Y ), then there exists an ωθ-closed
set G of (LX , Ω), such that G|Y = H;
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3) If E is an ωθ-open set of (LX , Ω), then E|Y is an ωθ-open set of
(LY , Ω|Y );

4) If F is an ωθ-open set of (LY , Ω|Y ), then there exists an ωθ-open set
E of (LX , Ω), such that E|Y = F .

Proof. 1) Let G be an ωθ-closed set of (LX , Ω), e ∈ M∗(LY ) and e ≤
ωθcl(G|Y ), then for each P ∈ ωθη(e), there exists a Q ∈ Ω, such that
P ≤ Q|Y , e �≤ ωint(Q|Y ), and G|Y �≤ ωint(Q|Y ). According to Theorem
1 on [8], we have G �≤ ωint(Q), e∗ �≤ ωint(Q) and P ∗ ≤ Q, i.e.,P ∗ ∈ ωθη(e∗),
and e∗ ≤ ωθcl(G), where e∗ and P ∗ stand for the extension of e and P in X
respectively. Because G is an ωθ-closed set, we get e∗ ≤ G and e ≤ G|Y , that
is, G|Y is an ωθ-closed set of (LY , Ω|Y ).

2)Let H be an ωθ-closed set of (LY , Ω|Y ), then H = (ωθcl(H∗))|Y . In fact,
if e ≤ H , then e∗ ≤ H∗ ≤ ωθcl(H∗), hence e ≤ (ωθcl(H∗))|Y . Conversely,
if e ≤ (ωθcl(H∗))|Y , then e∗ ≤ ωθcl(H∗), and for each P ≤ ωθη(e), P ∗ ≤
ωθη(e∗), hence H∗ �≤ ωint(P ∗). According to Theorem 1 on [8], we have
H �≤ ωint(P ), hence e ≤ ωθcl(H) = H , H = (ωθcl(H∗))|Y . According to
Theorem 2.1 on [2], we know that ωθcl(H∗) is an ωθ -closed set of (LX , Ω).

For each E ∈ LX , E′|Y = (E|Y )′, we know that 3) and 4) are true by 1)
and 2) respectively.

Theorem 3. Let (LY , Ω|Y ) be an ω-subspace of Lω-space (LX , Ω). Then the
following statements hold.

1) If β is an ωθ-base of (LX , Ω), then β|Y is an ωθ-base of (LY , Ω|Y );
2) If γ is an ωθ-subbase of (LX , Ω), then γ|Y is an ωθ-subbase of (LY , Ω|Y ).

Proof. 1) Let H be an ωθ-open set of (LY , Ω|Y ), then according to Theorem
3.2, there exists an ωθ-open set G of (LX , Ω), such that G|Y = H . Since
β is an ωθ-base of (LX , Ω), there exists a subfamily ϕ of β such that G =
∨{B|B ∈ ϕ}. According to Theorem 2.7.2 on [1], G|Y = (∨{B|B ∈ ϕ})|Y =
∨{B|Y |B ∈ ϕ}. Since ϕ|Y = {B|Y |B ∈ ϕ} ⊂ β|Y , β|Y is an ωθ-base of
(LY , Ω|Y ).

2) Let β0 be the union of all intersection of finite elements in γ|Y , i.e.,
β0 = ∧{St|Y |t ∈ T, St ∈ γ, T is a finite index set}, then ∧{St|Y |t ∈ T } =
(∧{St|t ∈ T })|Y [1]. Let β = ∧{St|t ∈ T, St ∈ γ, T is an finite index set }.
Since γ is an ωθ-subbase of (LX , Ω), β is an ωθ-base of (LX , Ω) and β0 = β|Y ,
hence β0 is an ωθ-base of (LY , Ω|Y ) and γ|Y is an ωθ-subbase of (LY , Ω|Y ).

Theorem 4. Let (LY , Ω|Y ) be an ω-subspace of Lω-space (LX , Ω). If (LX , Ω)
is an ωθC2-space, then (LY , Ω|Y ) is also an ωθC2-space.

Proof. Let β be the countable ωθ-base of (LX , Ω), then β|Y is the countable
ωθ-base of (LY , Ω|Y ) according to Theorem 3.3, that is to say, (LY , Ω|Y ) is
also an ωθC2-space.
Preceding theorem shows that the second ωθ-countability is hereditary.

Theorem 5. Suppose that {(LXt , Ωt)|t ∈ T } is a class of a countable number
of Lωt-space and (LX , Ω) is their product space. Then the following results
hold.
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1) If ∀t ∈ T, (LXt , Ωt) is an ωtθC2-space, then (LX , Ω) is an ωθC2-space;
2) If (LX , Ω) is an ωθC2-space, and ∀t ∈ T, (LXt , Ωt) is a stratified space,

then ∀t ∈ T, (LXt , Ωt) is an ωtθC2-space.

Proof. 1) Put β = {
∏

Bt|Bt ∈ βt, t ∈ T }, where βt is the countable ωtθ-base
of (LXt , Ωt). According to the countability of T and βt, we know that β is
the countable ωθ-base of (LX , Ω). Hence, (LX , Ω) is an ωtθC2-space.

2)Suppose that (LX , Ω) is an ωθC2-space and ∀t ∈ T, (LXt , Ωt) a strat-
ified space. Obviously, the projective mapping Pt : LX → LXt is (ω, ωt)θ-
continuous and (ω, ωt)θ-open surjective order homomorphism. According to
Theorem 3.1,(LXt , Ωt) is an ωtθC2-space.

Preceding theorem shows that the second ωθ-countability is countable
multiplicative.

4 The First ωθ-Countable Space

In this section, the first ωθ-countable space and some properties are intro-
duced, including hereditary property, countable multiplicative property and
invariant property under (ω1, ω2)θ-homomorphism.

Definition 9. Let (LX , Ω) be an Lω-space. If for any e ∈ M∗(LX), there
exists a countable ωθR-neighborhood base μ(e), then we call (LX , Ω) the first
ωθ- countable space, briefly, ωθC1-space.

Theorem 6. ωθC2-space must be ωθC1-space.

Proof. Suppose that (LX , Ω) is an ωθC2-space, then there exists a countable
ωθ-base β. For any e ∈ M∗(LX), put μ(e) = {Q ∈ β′|e �≤ Q}, where Q is the
ωθCR-neighborhood of e. Then μ(e) is a countable ωθR-neighborhood base
of e. Hence (LX , Ω) is an ωθC1-space.

Theorem 7. Let (LXi

i , Ωi)(i = 1, 2) be two Lω-spaces and f : (LX1
1 , Ω1) →

(LX2
2 , Ω2) be (ω1, ω2)θ-continuous and closed one-to-one surjective order ho-

momorphism. If (LX1
1 , Ω1) is an ω1θC1-space, then (LX2

2 , Ω2) is an ω2θC1-
space.

Proof. Suppose that d ∈ M∗(LX2
2 ), then there exists a e ∈ M∗(LX1

1 ) , such
that f(e) = d. Let Q ∈ ω2θη

−(d). According to the (ω1, ω2)θ-continuity of f ,
we have f−1(Q) ∈ ω1θη

−(e). Since (LX1
1 , Ω1) is an ω1θC1-space, there exists

a countable ω1θR- neighborhood base μ(e) of e. Then there exists a P ∈ μ(e),
such that f−1(Q) ≤ P , i.e.,Q ≤ f(P ). Hence from e �≤ P , we have f(e) �≤
f(P ). Since f is (ω1, ω2)θ-closed order homomorphism, f(P ) ∈ ω2θη

−(d).
Put ν(d) = {f(P )|P ∈ μ(e)}, then ν(d) is a countable ω2θR-neighborhood
base of d. Hence, (LX2

2 , Ω2) is an ω2θC1-space. Preceding theorem shows that
the first ωθ-countability is homomorphism.

Theorem 8. Let (LY , Ω|Y ) be an ω-subspace of Lω-space (LX , Ω). If (LX , Ω)
is an ωθC1-space, then (LY , Ω|Y ) is also an ωθC1-space.
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Proof. Put e ∈ M∗(LY ), P ∈ ωθη−(e). According to Theorem 3.2, we have
P ∈ ωθη−(e∗)|Y , i.e., there exists a Q ∈ ωθη−(e∗), such that P = Q|Y .
Since (LX , Ω) is an ωθC1-space, there exists a countable ωθR-neighborhood
base μ(e∗) of e∗, such that G ∈ μ(e∗) and Q ≤ G. Put ν(e) = μ(e∗)|Y ,
then we have G|Y ∈ ν(e) such that P ≤ G|Y , hence ν(e) is a countable
ωθR-neighborhood base of e, that is, (LY , Ω|Y ) is also an ωθC1-space.

Preceding theorem shows that the first ωθ-countability is hereditary.

Theorem 9. Suppose that (LX , Ω) is an ωθC1-space, then for any e ∈
M∗(LX), there exists a countable ωθR-neighborhood base of e, μ∗(e) =
{P1, P2, · · ·}, satisfying that P1 ≤ P2 ≤ · · ·.

Proof. Since (LX , Ω) is an ωθC1-space, for any e ∈ M∗(LX), there exists
a countable ωθR-neighborhood base of e, μ(e) = {Q1, Q2, · · ·}. Put Pn =
Q1 ∨Q2 ∨ · · ·Qn(n = 1, 2, · · ·), then ∀G ∈ ωθη−(e), there exists a Qt ∈ μ(e),
such that G ≤ Qt, hence there exists a n, such that G ≤ Pn. For any Qi ∈
μ(e), e �≤ ωint(Qi). Since Pn = Q1 ∨ Q2 ∨ · · ·Qn(n = 1, 2, · · ·) are ωθ-closed
sets, e �≤ ωint(Pn), Pn ∈ ωθη−(e)(n = 1, 2, · · ·). Hence μ∗(e) = {P1, P2, · · ·}
is ωθR-neighborhood base of e, satisfying that P1 ≤ P2 ≤ · · ·.

Definition 10. [9] Let (LX , Ω) be an Lω-space, xα ∈ M∗(LX) and N =
{N(n) ∈ M∗(LX)|n ∈ D} is a molecular net in LX . If ∀P ∈ ωη−(xα), there
exists a m ∈ D, such that N(n) �≤ ωint(P ) whenever n ≥ m. i.e., N(n) is
not in P eventually, then xα is said to be an ωθ-limit point of N , or called
that Nωθ-converges to xα.

Theorem 10. Suppose that (LX , Ω) is an ωθC1-space, A ∈ LX and e ∈
M∗(LX), then e ≤ ωθcl(A) if and only if e is the ωθ-limit point of some
molecular sequence S = {S(n)|n ∈ N} of A.

Proof. Let e ≤ ωθcl(A). According to Theorem 4.4, there exists a countable
ωθR-neighborhood base of e, μ∗(e) = {P1, P2, · · ·}, satisfying that P1 ≤ P2 ≤
· · ·, and ∀n ∈ N,A �≤ ωint(Pn). Hence there exists a molecule S(n) ≤ A,
such that S(n) �≤ ωint(Pn). Put S = {S(n)|n ∈ N}, then ∀Q ∈ ωθη−(e),
there exists a Pn ∈ μ∗(e), such that Q ≤ Pn and S(n) �≤ ωint(Q), hence e is
an ωθ-limit point of S.

Conversely, let S = {S(n)|n ∈ N} be a molecular sequence of A which
ωθ-limit point is e, then ∀Q ∈ ωθη−(e), there exists a m ∈ N , such that
S(n) �≤ ωint(Q) whenever n ≥ m, hence A �≤ ωint(Q). This means that e is
an ωθ-adherence point of A, i.e., e ≤ ωθcl(A).

Theorem 11. Suppose that (LX1
1 , Ω1) is an ω1θC1-space, (LX2

2 , Ω2) is any
Lω2-space, and f : (LX1

1 , Ω1) → (LX2
2 , Ω2) is any order homomorphism. Then

f is (ω1, ω2)θ-continuous at a molecule e ∈ M∗(LX1
1 ) if and only if f(S) is

the molecular sequence that ω2θ-converges to f(e) in LX2
2 , whenever S is the

molecular sequence that ω1θ-converges to e in LX1
1 .
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Proof. Suppose that f is (ω1, ω2)θ-continuous at a molecule e ∈ M∗(LX1
1 ),

S = {S(n)|n ∈ N} is the molecular sequence that ω1θ-converges to e in LX1
1 ,

Q ∈ ω2θη
−(f(e)), then f−1(Q) ∈ ω1θη

−(e). Hence there exists a m ∈ N ,
such that S(n) �≤ ωint(f−1(Q)) whenever n ≥ m, i.e., f(S(n)) �≤ ωint(Q).
That is to say, f(S) = {f(S(n))|n ∈ N} is the molecular sequence that
ω2θ-converges to f(e) in LX2

2 .
Conversely, if f is not (ω1, ω2)θ-continuous at e ∈ M∗(LX1

1 ), then there
exists a Q ∈ ω2θη

−(f(e)), such that f−1(Q) �∈ ω1θη
−(e). Since (LX1

1 , Ω1)
is an ω1θC1-space, there exists a countable ω1θR- neighborhood base of e,
μ∗(e) = {P1, P2, · · ·}, satisfying that P1 ≤ P2 ≤ · · · and f−1(Q) �≤ ωint(Pn).
Hence there exists a molecule S(n) ≤ f−1(Q) and S(n) �≤ ωint(Pn). Put
S = {S(n)|n ∈ N}, then S is the molecular sequence that ω1θ-converges
to e in f−1(Q). Notice that S(n) ≤ f−1(Q), we have f(S(n)) ≤ Q, this
means that f(e) is not the ω2θ-limit point of the molecular sequence f(S) =
{f(S(n))|n ∈ N}.

Theorem 12. Suppose that {(LXt , Ωt)|t ∈ T } is a class of a countable num-
ber of ωtθC1-space and (LX , Ω) is their product space, then (LX , Ω) is also
an ωθC1-space.

Proof. Let x = {xt}t∈T is any point of X,α ∈ M , then xα ∈ M∗(LX) and
∀t ∈ T, (xt)α ∈ M∗(LXt). Since ∀t ∈ T, (LXt , Ωt) is an ωtθC1-space, for
any (xt)α, there exists a countable ωtθR-neighborhood base μt. Put μ =
{∨(P−1

t (At))|At ∈ μt, t ∈ S, S is a finite subset of T }, where Pt : LX → LXt

is a projective order homomorphism mapping. According to the countability
of T , we know that μ is countable in LX . Now we prove that μ is an ωθR-
neighborhood base of xα.

In fact, by the continuity of Pt, we know that ∀t ∈ T, (P−1
t (At)) ∈

ωθcl(LX). Since μt is an ωtθR- neighborhood base of (xt)α and At ∈ μt, α �≤
ωint(At(xt)), P−1

t (At(x)) = At(Pt(x)) = At(xt), i.e. α �≤ ωint(P−1
t (At(x))),

or ∀t ∈ S, (P−1
t (At)) ∈ ωθη−(xα). Notice that S is a finite set (∨(P−1

t (At))|t ∈
S) ∈ ωθη−(xα). Let Q be an ωθCR-neighborhood of xα, then according to
the Theorem 16 on [10] and β = {∧(P−1

t (St))|St ∈ ωθo(LXt), t ∈ F, F is a
finite subset of T } is an ωθ-base of (LX , Ω), we know that xα is an ωθCR-
neighborhood formed by H = ∨{(P−1

k (Bk))|k ∈ K}, such that H ≥ Q, where
K is a finite subset of T and ∀k ∈ K,Bk is an ωtθ-closed set of (LXt , Ωt).
Since H is an ωθCR-neighborhood of xα, we know that Bk is an ωtθCR-
neighborhood of (xt)α. Because μk is an ωkθCR-neighborhood of (xk)α, there
exists a Ak ∈ μk such that Ak ≥ Bk, hence ∨{(P−1

k (Ak))|k ∈ K} ∈ μ and
∨{(P−1

k (Ak))|k ∈ K} ≥ H ≥ Q. This means that μ is an ωθR-neighborhood
base of xα. Hence, (LX , Ω) is also an ωθC1-space.

Preceding theorem shows that the first ωθ-countability is countable
multiplicative.
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5 Conclusion

In this paper, starting with the concepts which are called an ω-operator and
an Lω-space, we introduce the concepts of ωθ-open set, ωθR-neighborhood
base, the first ωθ-countable space, the second ωθ-countable space, discuss
their basic properties, such as the first and the second ωθ- countable space
are both hereditary property, countable multiplicative property and invari-
ant property under (ω1, ω2)θ-homomorphism. All the discussions will offer a
theoretical foundation in fuzzy operator.
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Using Two-Level Fuzzy Pattern Recognition in the 
Classification of Convex Quadrilateral 
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Abstract. This paper is devoted to the classification of convex quadrilateral by 
using fuzzy pattern recognition. Based on the principle of threshold and maximum 
membership, the two-level fuzzy pattern recognition is applied to solve this 
problem and a new model of membership function and the corresponding 
algorithms are given. We shall see that the obtained membership is advantageous 
for the recognition, and the final adjustment is reasonable. Moreover, the results 
obtained in this paper may be valuable and significant for the automatic recognition 
in some practical applications.  

Keywords: Fuzzy pattern recognition, convex quadrilateral, membership function, 
threshold principle, maximum membership principle, algorithm.  

1   Introduction 

In the viewpoint of mathematics, convex quadrilateral contains trapezoidal, 
parallelogram and non-typical quadrangle in terms of the parallelism of the opposite 
sides in theory. The trapezoid divides into the isosceles trapezoid, the right-angle 
trapezoid and the atypical trapezoid according to its sizes of base angles. The 
parallelogram divides into rectangle, diamond, square and the atypical parallelogram 
according to its interior angle and the relation between the neighboring sides. Convex 
quadrilateral is widely used in various designs, such as circuit diagram, mechanical 
drawing, building plans, geographic information, process diagram, etc.. The automatic 
recognition is valuable for the application in areas. For example, the trapezoid is usual 
in the realistic craft. The cross section of the dovetail slot in machining is isosceles 
trapezoid. For factors in process, the two base angles are impossible to be just right, 
which involves the precise of the craft and the measuring system. They are thought to be 
quality in permissible variation, and unqualified if surpasses this scope. When we make 
the computer recognize the diagram of the across section of the dovetail slot the result 
must be “the wrong diagram”. However such trapezoidal chart is practical. It is realistic 
and valuable that how to distinguish the isosceles trapezoid and the right angle trapezoid 
in production. The similar parallelogram recognition examples can be seen everywhere. 
                                                           
* Corresponding author. 
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It is necessary to regard them as fuzzy conception when carries on the pattern 
recognition. In 1976, it has been suggested to identify graphics by the fuzzy way [1-13], 
mainly on the triangular fuzzy pattern recognition (FPR). However, to the authors’ 
knowledge, there are few relevant academic results for the identification of convex 
quadrilateral. 

The main purpose of this paper is to improve the existing fuzzy graph 
identification model for the classification of convex quadrilateral. The rest of this 
paper is organized as follows: in Section 2, we will give some auxiliary definitions 
and basic formulas. In Section 3, we firstly describe how to conduct the two-level 
FPR, and then we shall establish a new model of membership function for FPR. In 
Section 4, we put forward the algorithms, and in Section 5, we give some examples 
to illustrate the applications of our abstract results. Finally, some concluding 
remarks are discussed.   

2   Some Auxiliary Definitions and Basic Formulas 

Definition 2.1. (Maximum Membership Principle). Let U be the domain of 
discourse. Denote A as one of the fuzzy pattern included in U. nuuu ,,, 21 "  are 
belonged to U and nuuu ,,, 21 " are the objects to be identified. If ( ) =iuA  

( ) ( ) ( ){ }nuAuAuA ,,,max 21 " , then iu  is recognized to be belonged to A .  
 

Definition 2.2. (Threshold Principle). Let U be the domain of discourse. Denote 

PAAA ,,, 21 "  as the fuzzy pattern included in U. Denote λ as a membership, λ is 
belonged to ( ]1,0 . u is belonged toU and u  is one of the objects to be identified. If 

( ) ( ) ( ){ } ,,,,max 21 λ<uAuAuA p"  we refuse recognition, and find the reason; if 
( ) ( ) ( ){ } ,,,,max 21 λ≥uAuAuA p"  and there are k entries of fuzzy pattern ( ),1 uAi  

( ) ( )uAuA iki ,,2 " , which are greater than or equal to ,λ  identifying that u  is 
belonged to ∩

k

j
ijA

1=
. 

 
Definition 2.3. (The Two-level FPR). Let nuuu ,,, 21 "  be the objects to be 
identified. nuuu ,,, 21 "  are belonged to U. Denote ( )piAi ,,2,1 "=  as the p entries 
of genre included in U. iA  is one of the genre, which includes q entries of 
classification marked to ( )qjpiAij "" ,2,1,,,2,1 == . Using the threshold principle 
and maximum membership principle, identifying that iu  belongs to iA , then 
repeating again in the genre of iA , and recognizing iu  belongs to ijA .  
 
Definition 2.1-2.3 are classical, which can be found in many books and papers 
(e.g.[2-4]). 

3   The Two-Level FPR for Convex Quadrilateral 

In order to use the method of two-level FPR to solve the recognition classification 
of convex quadrilateral, we divide the discussion into five steps in the following. 
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3.1   Electing the Characteristics of the Objects  

In the all of factors about ,u  elect the significant factors of the objects, which will 
be identified. Measuring their specific data, and then writing the index vector of the 
object recognition performance, we mark ( )muuuu ,,, 21 "= . For the Convex 
quadrilateral ABCD, it is determined by the four interior angles and the adjacent 
edge of the equivalence. Also the adjacent edge of the equivalence can be 
determined by recognizing the triangle ABC for its isosceles, so we elect the 
characteristics by the four interior angles, the angle BAC and  angle BCA, which is 
marked by ( )BCABACDCBAu ∠∠= ,,,,, ．  

3.2   Constructing the Membership Function of the First-Level FPR [5-6]  

Constructing membership function is the keystone and difficult points. Because 
fuzzy pattern is the fuzzy sets of discourse domain, then constructing the 
membership function of fuzzy pattern is constructing membership function of fuzzy 
sets. 

Let the four interior angles of convex quadrilateral to be marked by angle A, 
angle B, angle C and angle D. They determine the characters of convex 
quadrilateral, which contains the trapezoid, the parallelogram and the atypical 
quadrilateral. So let the discourse domain to be all of the convex quadrilateral, 
namely ( ){ }°<<°°=+++= 180,,,0,360,,, DCBADCBADCBAU . Using the fuzzy 
sets TA , PA and AQA to denote the trapezoid, the parallelogram and the atypical 
quadrilateral. Since the genre of trapezoid, parallelogram and atypical quadrilateral 
is determined by the parallel of the two groups of subtense, which is equal to the 
complementary of the adjacent angles, and notice that if one group of subtense of 
convex quadrilateral is parallel and another is not parallel, it is belonged to 
trapezoid; if two groups of subtense are both parallel, it is belonged to 
parallelogram,  the membership functions of fuzzy sets AQPT AAA ,,  are constructed 
in the following.  

}{

⎪
⎪

⎩

⎪
⎪

⎨

⎧

°=+=+

°
°−+°−+

−

=
,180

,

,0

,
90

180,180min
1

CBBA

others
CBBA

AT

 
(1) 

{ }
°

°−+°−+
−=

180

180,180max
1

CBBA
AP , (2) 

( ) ( )PTAQ AAA −∧−= 11 . (3) 
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3.3   Judgments of the First-Level FPR [7-9]  

To solve the first-level FPR for convex quadrilateral, the corresponding 
membership function of the three genre should be computed. Using the given 
threshold 1λ  and maximum membership principle to recognize, chalk up the result, 
which is one of the trapezoid, parallelogram or atypical quadrilateral. If it is 
belonged to the trapezoid or parallelogram, the two-level FPR will be applied; if it is 
belonged to the atypical quadrilateral, FPR will be stopped, and the result will be 
marked by atypical quadrilateral. 

3.4   Constructing the Membership Function of the Two-Level FPR 

3.4.1   The Genre of Trapezoid [10-11]  

When the convex quadrilateral is recognized to trapezoid under the first-level FPR, 
recognizing the isosceles, right-angled and atypical of the trapezoid is 
indispensable. Using the fuzzy sets ,ITA RTA and ATA to denote the isosceles 
trapezoid, right-angled trapezoid and atypical trapezoid. Because the class of 
isosceles, right-angled and atypical of the trapezoid is determined by the addend or 
minus of the degree and the right-angled of the base angle,  their membership 
functions are constructed in the following. 

{ } }

{ } ,180180

,180180

,

,

180

,min
1

180

,min
1

°−+≤°−+

°−+>°−+

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

°

−−
−

°

−−
−

=
CBBA

CBBA

CBDA

DCBA

AIT

 
(4) 

{ }
°

°−°−°−°−
−=

90

90,90,90,90min
1

DCBA
ART , (5) 

)1()1( RTITAT AAA −∧−= ． (6) 

 

3.4.2   The Genre of Parallelogram  

When the convex quadrilateral is recognized to parallelogram under the first-level 
FPR, recognizing the rectangle, diamond, square and atypical of the parallelogram 
is determined by recognizing the triangle ABC for its isosceles. Using the fuzzy sets 

APSPDPRP AAAA ,,, to denote the rectangle, diamond, square and atypical 
Parallelogram. The four membership functions are constructed in the following. 
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{ }
°

°−°−°−°−
−=

90

90,90,90,90max
1
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3.5   Judgments of the Two-Level FPR  

To solve the two-level FPR for convex quadrilateral, when the convex quadrilateral 
is recognized to trapezoid under the first-level, for recognizing the isosceles, 
right-angled and atypical of the trapezoid, the corresponding membership function 
of the three class should be computed. Using the given threshold 2λ  and maximum 
membership principle to recognize, chalk up the result. 

When the convex quadrilateral is recognized to parallelogram under the 
first-level, the corresponding membership function of the four classes of 
parallelogram should be computed. Using the given threshold 2λ  and maximum 
membership principle to recognize, chalk up the result. 

4   The Algorithms 

The four interior angles of the convex quadrilateral are angle A, angle B, angle C 
and angle D. They determine the characters of convex quadrilateral, which contains 
the trapezoid, the parallelogram and the atypical quadrilateral. When the first-level 
FPR identifying the convex quadrilateral is a parallelogram, based on recognizing 
its four interior angles and the angle BAC, angle BCA, according to recognize the 
triangle ABC, we can completely determine the classification of the convex 
quadrilateral. The basic algorithm steps of the two-level FPR for convex 
quadrilateral are summarized in the following. 

Algorithm statement 

Step 1: For a given convex quadrilateral ABCD, recognizing its four interior 
angles and the angle BAC, angle BCA;  

Step 2: Enter into the first-level FPR, compute PT AA ,  and AQA ;  
Step 3: Compare the { }PT AA ,max  and 1λ , if { } 1,max λ≥PT AA , then go to the 

next step; if { } 1,max λ<PT AA , then go to Step 18;  
Step 4: Compare the TA  and PA , if PT AA > , it comes to the next step; if 

PT AA ≤ , then go to Step 8; 
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Step 5:  Enter into the two-level FPR, compute RTIT AA ,  and ATA ;  
Step 6: Compare the { }RTIT AA ,max  and 2λ , if { } 2,max λ≥RTIT AA , then go on; 

if { } 2,max λ<RTIT AA , then go to Step 13;  
Step 7: Compare the ITA  and RTA , if RTIT AA > , then go to the Step 11; if 

RTIT AA ≤ , then go to Step 12;  
Step 8:  Enter into the two-level FPR, compute the SPDPRP AAA ,,  and APA ;  
Step 9: Compare { }SPDPRP AAA ,,max  and 2λ , if { } 2,,max λ≥SPDPRP AAA , then 

it continues; if { } 2,,max λ<SPDPRP AAA , then go to Step 17;  
Step 10: Compare the DPRP AA ,  and SPA , if SPDPRP AAA => , then go to the step 

14; if SPRPDP AAA => , then go to Step 15; if SPRPDP AAA => , then go to Step 16; 
Step 11: Stop, output: convex quadrilateral ABCD is belonged to Isosceles 

Trapezoid.  
Step 12: Stop, output: convex quadrilateral ABCD is belonged to Right-angled 

Trapezoid. 
Step 13: Stop, output: convex quadrilateral ABCD is belonged to Atypical 

Trapezoid.  
Step 14: Stop, output: convex quadrilateral ABCD is belonged to Rectangle.  
Step 15: Stop, output: convex quadrilateral ABCD is belonged to Diamond.  
Step 16: Stop, output: convex quadrilateral ABCD is belonged to Square.  
Step 17: Stop, output: the quadrilateral ABCD is belonged to Atypical 

Parallelogram.  
Step 18: Stop, output: the quadrilateral ABCD is belonged to Atypical 

Quadrilateral. 

5   The Analysis of Numerical Experiments and Results 

There are ten numerical examples. Their index vectors are given in the following.  
 

( );10,30,98,37,140,851 °°°°°°=u        ( )°°°°°°= 57,63,59,116,60,1252u ; 

( );102,8,115,160,70,153 °°°°°°=u        ( )°°°°°°= 15,25,45,37,140,1384u ;    

( );18,20,117,36,142,655 °°°°°°=u     ( )°°°°°°= 56,33,89,94,91,866u ; 

( );43,47,87,96,90,877 °°°°°°=u       ( )°°°°°°= 40,80,59,117,60,1248u ; 
( )°°°°°°= 14,25,97,36,141,869u ;                             ( )°°°°°°= 52,53,74,101,75,11010u .  

 
Let 1λ  be equal to 0.8, and let 2λ  be equal to 0.9. 

The following table summarizes the computational results on the above ten 
examples. In the table TA , PA , AQA , ITA , RTA , ATA , RPA , DPA , SPA  and APA  denote the 
degree of membership functions. The results show that our algorithm can globally 
solve the two-level FPR for the convex quadrilateral effectively. 
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Table 1. Comparison of recognizing results 

No. 1 2 TA PA AQA ITA RTA ATA RPA DPA SPA APA Result

1 0.8 0.9 0.9667 0.7500 0.0333 0.6944 0.9444 0.0556 RT

2 0.8 0.9 0.9556 0.9722 0.0278 0.6111 0.9000 0.6111 0.1000 DP

3 0.8 0.9 0.4444 0.4722 0.5278 AQ

4 0.8 0.9 0.9667 0.4556 0.0333 0.9889 0.5000 0.0111 IT

5 0.8 0.9 0.9778 0.8500 0.0222 0.5722 0.7222 0.2778 AT

6 0.8 0.9 0.9667 0.9722 0.0278 0.9556 0.6167 0.6167 0.0444 RP

7 0.8 0.9 0.9667 0.9667 0.0333 0.9333 0.9333 0.9333 0.0667 SP

8 0.8 0.9 0.9667 0.9778 0.0222 0.6222 0.3333 0.3333 0.3778 AP

9 0.8 0.9 0.9667 0.7389 0.0333 0.6944 0.9556 0.0444 RT

10 0.8 0.9 0.9556 0.9722 0.0278 0.7778 0.9833 0.7778 0.0167 DP
 

6   Conclusion  

This paper puts forward a more effective model of membership function, and gives 
the algorithms for the model of two-level FPR, analyzes the rationality and superior 
of the two-level FPR in the practical application of circle diagram, craft chart and so 
on. However, it is needed further research for progressive, advantage of the 
membership function and the abstained data is fuzzy convex interval, trapezoid 
fuzzy number [12-13], as well as polygons and other irregular shapes recognition. 
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Abstract. In this paper, Moore-Smith ωθ-convergence theory of molecular nets and 
ideals in an ω-molecular lattice are established. By means of the ωθ-convergence 
theory, some important characterizations with respective to the ωθ-closed element 
and weakly (ω1, ω2)-continuous generalized order-homomorphisms are obtained.  

Keywords: Fuzzy lattice, molecular net, ideal, generalized order-homomorphism, 
ωθ-convergence. 

1   Introduction 

The theory of topological molecular lattices, which is a generalization of fuzzy 
topology, was presented by Wang [8]. In order to unify various closure operators 
such as θ-closure operator [1], δ-closure operator [7], σ-closure operator [2] etc. in 
topological molecular lattices, a generalized molecular lattice which call an 
ω-molecular lattice was introduced by Chen [3]. Since then, a series of profound 
research works have been launched [4-6]. In this paper, we shall further enrich and 
consummate Moore-Smith convergence theory in ω-molecular lattices, and 
establish the Moore–Smith ωθ-convergence theory in ω-molecular lattices.  

2   Preliminaries 

Throughout the paper, L, L1 and L2 denote fuzzy lattices, while M, M1 and M2 denote 
the sets consisting of all molecules, i. e., nonzero ∨-irreducible elements in L, L1 

and L2 respectively. 0 and 1 are the least and the greatest element of L respectively.  

Definition 2.1. [9] Let L be a complete lattice, e∈L, B⊂L. B is called a minimal 
family of e if B≠∅ and  

(i)  supB= e; 

(ii) ∀A⊂L, supA ≥ e implies that ∀x∈B, there exists y∈A such that y ≥ x. 
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According to Hutton [8], in a completely distributive lattice, each element e∈L has 
a greatest minimal family which will be denoted by β(e). For each e∈M, 
β*(e)=β(e)∩M is a minimal family of e and is said to be the standard minimal 
family of e. 

 

Definition 2.2. [3] Let L be a fuzzy lattices.  

(i)  An operator ω: L→L is said to be an ω-operator if (1) ∀ A, B∈L and A≤B, 
ω(A)≤ω(B); (2) ∀A∈L, A≤ω(A).  

(ii)  An element A∈L is called an ω-element if ω(A)=A.  

(iii) Put Ω={A∈L|ω(A)=A}, and call the pair (L,Ω) an ω-molecular lattice (briefly 
ω-ML) .  

Definition 2.3. [3] Let (L,Ω) be an ω-ML, P∈L and e∈M. If there exists Q∈Ω such 
that e≤/ Q and P≤Q, then call P an ωR-neighborhood of e. The collection of all 
ωR-neighborhoods of e is denoted by ωη(e).  

Definition 2.4. [3] Let (L,Ω) be an ω-ML, A∈L and e∈M. If A ≤/ P for each 
P∈ωη(e). Then e is said to be an ω-adherence point of A, and the union of all 
ω-adherence points of A is said to be the ω-closure of A, and is denoted by ωcl(A). If 
A=ωcl(A), then call A an ω-closed element in L. If A is an ω-closed element, then 
we say that A′ is an ω-open element. If P=ωcl(P) and e≤/ P, then P is said to be an 
ω-closed R-neighborhood (briefly, ωCR-neighborhood of e), and the collection of 
all ωCR-neighborhoods of e is denoted by ωη−(e). 

Definition 2.5. [3] Let (L,Ω) be an ω-ML, A∈L and ωint(A)=∨{B∈L⎪ B≤ A and B 
is an ω-open element}. We call ωint(A) the ω-interior of A. Obviously, A is ω-open 
if and only if A =ωint(A).  

Definition 2.6. [5] Let (L,Ω) be an ω-ML, N a molecular net in L and e∈M. Then: 

(i) e is said to be an ω-limit point of N, or N ω-converges to e, in symbols, N→ωe, 

if N is eventually not in P for each P∈ωη⎯(e). The union of all ω-limit  points of 
N will be denoted by ω-limN. 
(ii) e is said to be an ω-cluster point of N, or N ω-accumulates to e, in symbols, N 
∝ωe, if N is frequently not in P for each P∈ωη⎯(e). The union of all ω-cluster 
points of N will be denoted by ω-adN. 

Proposition 2.1 [9] Let L be a completely distributive lattice. Then each element of 
L is a union of some ∨-irreducible elements. 
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3   ωθ-Convergence of Molecular Nets on ω-MLs 

In this section, we shall present some concepts of ωθ-convergence of molecular 
nets in an ω-ML, and discuss their properties. 

Definition 3.1. Let (L,Ω) be an ω-ML, N a molecular net in L and e∈M. Then: 

(ii) e is said to be an ωθ-limit point of N, or N ωθ-converges to e, in symbols,         
N→ωθe, if N is eventually not in ωint(P) for each P∈ωη⎯(e). The union of all 

ωθ-limit points of N will be denoted by ωθ-limN. 
(ii) e is said to be an ωθ-cluster point of N, or N ωθ-accumulates to e, in symbols, 

N ∝ωθe, if N is frequently not in ωint(P) for each P∈ωη⎯(e). The union of all 
ωθ-cluster points of N will be denoted by ωθ-adN. 

Theorem 3.1. Let (L,Ω) be an ω-ML, e∈M and let N be a molecular net in L. Then: 
(1) N→ωθe if and only if N→ωθb for each b∈β*(e); 
(2) N ∝ωθe if and only if I∝ωθb for each b∈β*(e). 

Proof. (1) Suppose that N→ωθe and b∈β*(e). Then b≤ e. Hence P∈ωη⎯(e) for 
P∈ωη⎯(b), and hence N is eventually not in ωint(P) for each P∈ωη⎯(b) by N→ωθe. 
Conversely, assume that N→ωθb for each b∈β*(e). If e is not an ωθ-limit point of 
N, then there exists P∈ωη⎯(e) such that N is frequently in ωint(P). Since 
e=supβ*(e), there is d∈β*(e) with d≤/ P, that is, P∈ωη⎯(d). This means that d is not 
an ωθ-limit point of N. Hence, the sufficiency is proved. 

(2) Similar to the proof of (1). 

Theorem 3.2. Let (L,Ω) be an ω-ML, e∈ M and let N be a molecular net in L. Then: 

(1) N→ωθe if and only if e≤ωθ-limN; 
(2) N∝ωθe if and only if e≤ωθ-adN; 
(3) ωθ-limN≤ωθ-adN. 

Proof. We only check (1), the proofs of (2) and (3) are omitted. If N→ωθe, then 
e≤ωθ-limN by the definition of ωθ-limN. Conversely, if e≤ωθ-limN, then for each 
b∈β*(e), there exists an ωθ-limit point d of N with b≤d by virtue of the fact that 
e=supβ*(e) and the definition of ωθ-limN. Since P∈ωη⎯(d) for P∈ωη⎯(b), N is 
eventually not in ωint(P) by N→ωθd. Consequently, N→ωθe according to 
Theorem 3.1. 

Definition 3.2. Let (L,Ω) be an ω-ML, A∈L and e∈M. If A≤/ ωint(P) for each 
P∈ωη(e), then e is said to be an ωθ-adherence point of A, and the union of all 
ωθ-adherence points of A is said to be the ωθ-closure of A, and is denoted by 
ωθcl(A). If A=ωθcl(A), then call A an ωθ-closed element in L. If A is an ωθ-closed 
element, then we say that A′ is an ωθ-open element.  
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Theorem 3.3. Let (L,Ω) be an ω-ML, A∈L and e∈ M. Then e is an ωθ-adherence 

point of A if and only if there is a molecular net N in A such that N→ωθe. 

Proof. If e is an ωθ-adherence point of A, then according to Definition 3.2, 
A≤/ ωint(P) for each P∈ωη⎯(e). Taking N={N(P)∈A⎪ A≤/ ωint(P), P∈ωη⎯(e)}, 
then N is a molecular net in A because ωη⎯(e) is a directed set and N→ωθe. 
Conversely, if there is a molecular net N={N(n)⎪ n∈D} in A such that N→ωθe, then 
N is eventually not in ωint(P) for each P∈ωη⎯(e). Because N(n)∈A for each n∈D, 
A≤/ ωint(P) for each P∈ωη⎯(e). This implies that e is an ωθ-adherence point of A. 

Theorem 3.4. Let N={N(n)⎪ n∈D} be a molecular net in (L,Ω), e∈M and N→ωθe. 

Then T→ωθe for each subnet T of N.   

Proof. Assume that T={T(m)⎪ m∈E} is a subnet of N. By the definition of subnet, 

there exists a mapping R: E→D satisfying the following conditions: (1) ∀ m∈E, 

T(m)= N(R(m)); (2) ∀ n0∈D, there exists m0∈E such that R(m) ≥ n0 whenever m ≥ 

m0. Since N→ωθe, for each P∈ωη⎯(e) we can choose n0∈D such that N(n)≤/ ωint(P) 

whenever n≥ n0. According to (2), there exists m0∈E satisfying R(m) ≥ n0 as m ≥ m0. 

Hence T(m)= N(R(m))≤/ ωint(P) for each P∈ωη⎯(e). This shows that T→ωθe. 

Theorem 3.5. Let N be a molecular net in (L,Ω) and e∈M. Then e is an ωθ-cluster 

point of N if and only if there exists a subnet T of N which e is an ωθ-limit 

point of T.   

Proof. Assume that e is an ωθ-cluster point of N={N(n)⎪ n∈D}. By Definition 
3.1(ii), N is frequently not in ωint(P) for each P∈ωη⎯(e), i.e., there exists m∈E 
such that m ≥ n and N(m)≤/ ωint(P) for each n∈D. Write m=R(n,P) and E={R(n,P)⎪ 
(n, P) ∈D×ωη⎯(e)}. Define a binary relation “≤” in E as follows: ∀ R(n1,P1), 
R(n2,P2) ∈E, 

R(n1,P1) ≤R(n2,P2) if and only if n1≤ n2 and P1≤P2. 

Then E is a directed set about the relation “≤”. Taking T(m)=N(R(n,P)), one can 

easily see that  T={T(m)⎪ m∈E } is a subnet of N and e is an ωθ-limit point of T.       

Conversely, suppose that T={T(m)⎪ m∈E}is a subnet of N and that e is an 
ωθ-limit point of T. According to the definition of subnet, there exists a mapping R: 
E→D and m0∈E such that R(m) ≥ n0 whenever m ≥ m0 for each n0∈D. Since e is an 
ωθ-limit point of T, there is m1∈E such that T(m)≤/ ωint(P) as m ≥ m1 for each 
P∈ωη⎯(e). Since E is a directed set, we can choose m2∈E with m2≥ m0 and m2≥m1, 
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thus T(m2) ≤/ ωint(P) and R(m2) ≥ n0. Taking n=R(m2), then n∈D and 
N(n)=N(R(m2))≤/ ωint(P) for each P∈ωη⎯(e). Hence, e is an ωθ-cluster point of N. 

Theorem 3.6. Let (L,Ω) be an ω-ML and A∈L. Then A is an ωθ-closed element if 

and only if for each molecular net N in A, ωθ-limN ≤A. 

Proof. Let A be an ωθ-closed element and N a molecular net in A. If e≤ωθ-limN, 
then e is an ωθ-adherence point of A according to Theorem 3.3, that is, 
e≤ωθcl(A)=A. Therefore, ωθ-limN≤ A by the arbitrariness of e in ωθ-limN. 
Conversely, if e≤ωθcl(A), then there exists a molecular net N in A satisfying 
e≤ωθ-limN by Theorem 3.3 and Theorem 3.2. Hence e≤ωθ-limN ≤ A in line with 
the sufficient condition. This means that ωθcl(A) ≤ A, i.e., A is ωθ-closed. 

Theorem 3.7. If N be a molecular net in (L,Ω). Then ωθ-limN andωθ-adN are 

both ω-closed elements in (L,Ω).  

Proof. For each e∈M, if e≤ωcl(ω-limN), then ωθ-limN≤/ P for each P∈ωη⎯(e) by 
Definition 2.4. With reference to Proposition 2.1 we can choose a molecule 
b≤ωθ-limN with b ≤/ P, i.e., P∈ωη⎯(b). Consequently, N is eventually not in 
ωint(P) for each P∈ωη⎯(e) by b≤ωθ-limN. This shows that e≤ωθ-limN, and thus 
ωcl(ωθ-limN)≤ωθ-limN by the arbitrariness of e in ωcl(ωθ-limN). On the other 
hand, ωθ-limN≤ωcl(ωθ-limN) by Theorem 2.5 in [3]. Therefore, ωθ-limN is 
ω-closed. 

Similarly, for each e≤ωcl(ωθ-adN) we have ωθ-adN≤/ P for each P∈ωη⎯(e) by 
Definition 2.4, that is, there is a molecule d≤ωθ-adN with d≤/ P, i.e., P∈ωη⎯(d). 
Hence, N is frequently not in ωint(P) for each P∈ωη⎯(e) in accordance with 
d≤ωθ-adN, and thus e≤ωθ-adN. So, ωcl(ωθ-adN)≤ωθ-adN by the arbitrariness of 
e in ωcl(ωθ-adN). It implies that ωθ-adN is also an ω-closed element in (L,Ω).  

4   ωθ-Convergence of Ideals on ω-MLs 

In this section, we shall present some concepts of ωθ-convergence of ideals in an 
ω-ML, and discuss their properties.  

Definition 4.1. Let (L,Ω) be an ω-ML, I an ideal in L and e∈M. Then: 

(i) e is said to be an ωθ-limit point of I, or I ωθ-converges to e, in symbols, I→ωθe, 
if ωint(P)∈I for each P∈ωη⎯(e). The union of all ωθ-limit points of I will be 
denoted by ωθ-limI. 
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(ii) e is said to be an ωθ-cluster point of I, or I ωθ-accumulates to e, in symbols, 
I∝ωθe, if B∨ωint(P)≠1 for each P∈ωη⎯(e) and each B∈I. The union of all 
ωθ-cluster points of I will be denoted by ωθ-adI. 

Similar to the ωθ-convergence of molecular nets, we can obtain the following 
results for ωθ-convergence of ideals. 

Theorem 4.1. Let (L,Ω) be an ω-ML, e∈M and let I be an ideal in L. Then: 

(1) I→ωθe if and only if I→ωθb for each b∈β*(e); 
(2) I ∝ωθe if and only if I∝ωθb for each b∈β*(e). 

Theorem 4.2. Let (L,Ω) be an ω-ML, e∈ M and let I be an ideal in L. Then: 

(1) I →ωθe if and only if e≤ωθ-limI; 
(2) I ∝ωθe if and only if e≤ωθ-adI; 
(3) ωθ-limI ≤ωθ-adI. 

Theorem 4.3. Suppose that I1 and I2 are two ideals in an ω-ML (L,Ω) which I1⊂I2. 
Then: 

(1) if e is an ωθ-limit point of I1, then e is also an ωθ-limit point of I2; 

(2) if e is an ωθ-cluster point of I2, then e is also an ωθ-cluster point of I1. 

Theorem 4.4. Let (L,Ω) be an ω-ML, A∈L and e∈ M. Then e is an ωθ-adherence 

point of A if and only if there is an ideal I in L which A∉I and I→ωθe. 

Theorem 4.5. Let I be an ideal in an ω-ML (L,Ω) and e∈M. Then e is an ωθ-cluster 

point of I if and only if there exists an ideal I1 in L such that I⊂I1 and e is an 

ωθ-limit point of I1.   

Theorem 4.6. Let (L,Ω) be an ω-ML and A∈L. Then A is an ωθ-closed element if 

and only if for each ideal I in L such that A∉I and ωθ-limI ≤A. 

Theorem 4.7. If I be an ideal in an ω-ML (L,Ω), then ωθ-limI andωθ-adI are both 

ω-closed elements in (L,Ω).  

Theorem 4.8. Let I be a maximal ideal in an ω-ML (L,Ω). Then ωθ-limI=ωθ-adI. 
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5   The Relationships between ωθ-Convergence of Molecular Nets 
and Ideals 

In this section, we shall discuss the relationships between ωθ-convergence of 
molecular nets and ideals in ω-MLs. 

Definition 5.1. [10] Let I be an ideal in an ω-ML (L,Ω) and D(I)={(b,B)⎪ b∈M, 
B∈I and b≤/ B}. In D(I), define a binary relation “≤”as follows: ∀ (b1,B1), (b2, 
B2)∈D(I), (b1, B1) ≤ (b2, B2) if and only if B1 ≤ B2. Obviously D(I) is a directed set 
equipped with the relation. Take N(I)={N(I) (b, B)=b⎪(b, B)∈ D(I)}. Then N(I) 
is a molecular net in L, we call N(I) the molecular net induced by I. 

Theorem 5.1. Let I be an ideal in an ω-ML (L,Ω). Then:  

(1) I→ωθe if and only if N(I)→ ωθe; 

(2) I∝ωθe if and only if N(I)∝ωθe. 

Proof. (1) If I→ωθe, then ωint(P)∈I for each P∈ωη⎯(e) and hence (e, P)∈D(I). 
According to Definition 5.1, P ≤ B for each (b, B)∈D(I) and (e, P) ≤ (b, B). 
Therefore, N(I) (b, B)≤/ ωint(P) by N(I)(b, B)≤/ B. This means that e is an ωθ-limit 
point of N(I). Conversely, if N(I)→ ωθe, then there exists an element (a, A)∈D(I) 
such that N(I)(b, B) ≤/ ωint(P) whenever (a, A)≤(b, B) for each P∈ωη⎯(e) in 
accordance with Definition 3.1. Specially, choose A=B, we have N(I)(b, 
A)≤/ ωint(P) from N(I)(b, A)≤/ A, i.e., ωint(P)≤A. Since I is a lower set, ωint(P)∈I 
by A∈I. Consequently, e is an ωθ-limit point of I. 

(2) Assume I∝ωθe, in line with Definition 4.1, B∨ωint(P)≠1 for each 
P∈ωη⎯(e) and each B∈I. From Proposition 2.1 we can take a molecule b∈M with 
b≤/ B∨ωint(P), thus (b, B)∈D(I) and N(I)(b, B)≤/ ωint(P). It shows that N(I) is 
frequently not in ωint(P) for each P∈ωη⎯(e), i.e., N(I)∝ωθe. Conversely, if 
N(I)∝ωθe, then there is an element (a, A)∈D(I) with (b, B)≤(a, A) such that N(I)(a, 
A)≤/ ωint(P) for each P∈ωη⎯(e) and each(b, B)∈D(I). Since B ≤ A and a≤/ A, we 
know that a≤/ B, and so B∨ωint(P)≠1. It is implies that e is an ωθ-cluster point of I, 
that is, I∝ωθe. 

Definition 5.2. [10] Let N be a molecular net in (L,Ω) and I(N)={B∈L⎪N 
is eventually not in B}. Then I(N) is an ideal in L, we call I(N) the ideal induced 
by N. 

Theorem 5.2. Let N be a molecular net in an ω-ML (L,Ω). Then:  

(1) N→ωθe if and only if I(N)→ ωθe; 
(2) if N∝ωθe, then I(N)∝ωθe. 
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Proof. (1) If N→ωθe, then N is eventually not in ωint(P) for each P∈ωη⎯(e), and 
then ωint(P)∈I(N) by Definition 5.2. Hence, I(N)→ ωθe. Conversely, assume that 
I(N)→ ωθe. Then ωint(P)∈I(N) for each P∈ωη⎯(e), i.e., N is eventually not in 
ωint(P) for each P∈ωη⎯(e). Therefore N→ωθe. 

(2) If N∝ωθe, then N is frequently not in ωint(P) for each P∈ωη⎯(e). According 
to Definition 5.2, N is eventually not in B for each B∈I(N). This implies that N is 
frequently not in B∨ωint(P) for each B∈I(N) and each P∈ωη⎯(e), that is, 
B∨ωint(P)≠1. Hence I(N)∝ ωθe from Definition 4.1. 

6   Some Applications of ωθ-Convergence Theory in ω-MLs 

In this section, we shall give some characterizations of weak (ω1,ω2)-continuity of 
generalized order-homomorphisms by means of ωθ-convergence theory of 
molecular nets and ideals. 

Definition 6.1. Let (Li,Ωi) be an ωi-ML (i=1, 2) and f:L1→L2 a generalized 

order-homomorphism (briefly, GOH[8]). 

(i)  f is called weakly (ω1, ω2)-continuous if f(ω1cl(B))≤ ω2θclf (A) for each A∈L1. 
(ii)  f is called weakly (ω1, ω2)-continuous at e∈M1 if ω1cl(f−1(ω2int(Q)))∈ω1η−(e) 

for each Q ∈ω2η− (f (e)).  
 

Obviously, f is weakly (ω1,ω2)-continuous if and only if for each e∈M1, f is 
weakly (ω1,ω2)-continuous at e. 

Theorem 6.1. Let f be a GOH from an ω1-ML (L1,Ω1) into an ω2-ML (L2,Ω2). Then 
f is weakly (ω1,ω2)-continuous if and only if for every molecular net N in L1, f 
(ω1-limN) ≤ ω2θ-lim f(N). 

 

Proof. Assume that f is weakly (ω1,ω2)-continuous, N={N(n)⎪ n∈D} is a molecular 
net in L1, and d≤f (ω1-limN). Then f(N)={f (N(n))∣n∈D} is a molecular net in L2 
and ω1cl(f−1(ω2int(Q)))∈ω1η−(e) for each Q∈ω2η−(f (e)). In accordance with the 
definition of GOH, there is a molecule e∈M1 satisfying d= f(e) and e≤ω1-limN. 
Hence there exists n0∈D such that N(n)≤/ ω1cl(f−1(ω2int(Q))) whenever n≥n0. Since 
N(n) ≤/ ω1cl(f−1(ω2int(Q))) implies N(n) ≤/ f−1(ω2int(Q)), f (N(n)) ≤/ ω2int(Q). This 
shows f(e) is an ω2-limit point of f (N), i.e., d≤ ω2θ-lim f(N). Therefore, f 
(ω1-limN)≤ ω2θ-lim f(N) by randomicity of d in f (ω1-limN).    

Conversely, if f is not weakly (ω1,ω2)-continuous, then there is an element A in L1 
such that f(ω1cl(A))≤/ ω2θcl(f(A)). From Proposition 2.1, we can choose e∈M1, e≤ 
ω1cl(A) and f(e)≤ f(ω1cl(A)), but f(e)≤/ ω2θcl(f(A)). There exists a molecular net N 
in A such that e is an ω1-limit point of N from Theorem 3.4. Hence f(e) is an 
ω2-limit point of f(N), where f(N)={f (N(n))∣n∈D} is a molecular net in f(A), and 
hence f(e)≤ω2θ-lim f(N) by the hypothesis of sufficiency. Since ω2θcl(f(A)) is 
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ω2-closed, f(e) ≤ω2-lim f(N)≤ω2θcl(f(A)) by Theorem 3.6. It is a contradiction with 
f(e)≤/ ω2θcl(f(A)). Therefore f is weakly (ω1,ω2)-continuous.  

 

Theorem 6.2. Let f be a GOH from an ω1-ML (L1 ,Ω1) into an ω2-ML (L2 ,Ω2). Then 
f is weakly (ω1,ω2)-continuous if and only if for every ideal I in L1, f (ω1-limI) ≤ 

ω2-lim(f (I′))′. 

Proof. It follows from Definition 4.1 and Theorem 4.4. 

7   Conclusion 

In this paper, we establish the Moore–Smith ωθ-convergence theory of molecular 
nets and ideals in ω-MLs. As an application, we obtain some characterizations of 
weak (ω1, ω2)-continuity of generalized order-homomorphisms by means of the 
ωθ-convergence theory of molecular nets and ideals in ω-MLs. 
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Abstract. In this paper, relations between order-preserving operators and closure 
operators in Lω-spaces are explored. A necessary and sufficient condition about 
closure operators is obtained. Some properties about Lω-quotient spaces and Lω-
product spaces are given. 

Keywords: Lω-spaces, ω-set, ω-closed set, order-preserving operator, 
Lω-quotient space, Lω-product space. 

1   Introduction 

The concept of L-fuzzy order-preserving operator spaces (briefly, Lω-spaces) is 
presented in [2]. In this paper, we explore relations between order-preserving 
operator and closure operator in Lω- spaces, and obtain some properties about Lω-
spaces, quotient spaces and Lω-product spaces. 

 
Definition 1.1. [2]  Let L be a fuzzy lattice, X be a non-empty crisp set. An L-fuzzy 
operator ω:LX

→LX is order-preserving , briefly said to be an Lω-operator  if 

(1) , XA B L∀ ∈  and A B≤ , ( ) ( )A Bω ω≤ . 

(2) XA L∀ ∈ , ( )A Aω≤ . 

Put { ( )}XA L A AωΩ = ∈ = , we call the pair ( , )XL Ω  an Lω-space. If Q∈Ω , then 

call Q  an ω -set in ( , )XL Ω . 
 

Definition 1.2. [2] Let ( , )XL Ω be an Lω-space, XP L∈ and *( )Xx M L
α
∈ . If there 

exists Q∈Ω such that P Q≤  and x
α
≰ Q , then call P  an ω R-neighborhood of 

x
α

. The collection of all ω R-neighborhoods of x
α

 is denoted by ( )x
α

ωη . 

 
Definition 1.3. [2] Let ( , )XL Ω be an Lω-space, XA L∈ and *( )Xx M L

α
∈ . If 

( )P x
α

ωη∀ ∈ , we have A ≰ P , then we call x
α

 an ω -adherence point of A . The 

union of allω -adherence points of A  is said to be the ω -closure of A , and is 
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denoted by ω-cl(A). If A=ω-cl(A), then we call A  an ω -closed set in ( , )XL Ω , and 

call A  an ω -open set in ( , )XL Ω . The operator ω-cl: X XL L→ is said to be the ω -

closure operator in ( , )XL Ω . If P is an ω --closed set and x
α
≰ P , then call P an 

ω -closed R-neighborhood of x
α

. The collection of all ω -closed R-neighborhoods 

of x
α

 is denoted by ( )x
α

ωη − . 

2   Some Properties of ω-Sets 

The following theorem is obvious. 

Theorem 2.1. Let ( , )XL Ω  be an Lω-space. The closure operator in ( , )XL Ω  is 
an order-preserving operator. 

Theorem 2.2. Let ( , )XL Ω be an Lω-space and XA L∈ . Then ω (A)≤ω-cl(A). 
 
Proof. Grant that x

α
 is a molecule and ( )x A

α
ω≤ . ( )P x

α
ωη∀ ∈ , there exists 

Q∈Ω  such that P Q≤  and x
α
≰Q , thus ( )Aω ≰Q . We say A≰ P . Otherwise, 

A P≤ , we have ( ) ( )A Pω ω≤ . Since ( ) ( )P Q Qω ω≤ = , we have ( )A Qω ≤ . It is in 

contradiction with ( )Aω ≰Q . Consequently A≰ P . This shows that x
α

is an ω -

adherence point of A . Therefore ω (A)≤ω-cl(A). 
 

Theorem 2.3. Let ( , )XL Ω be an Lω-space and XA L∈ . Then A  is an ω -set  if 
and only if A  is  an ω -closed set. 
 
Proof. Assume that A is an ω -closed set. By Definition 1.3, A = ω-cl(A). 
According to Theorem2.2, we have ( )A Aω≤ ≤ ω-cl(A). Hence ( )A Aω= , i.e., 
A∈Ω . 

Conversely, assume that A  is an ω -set and  that x
α

 be an ω -adherence point 

of A  , i.e., x
α
≤ ω-cl(A). We assert that x A

α
≤ . In fact, if x

α
≰ A , then A  is an 

ω -R-neighborhood of x
α

 since A∈Ω . Therefore, ( )P x
α

ωη∀ ∈ , A ≰ P . 

Specially, A ≰ A . This is impossible. Consequently, each ω -adherence point 
of A must be in A . In other words, if ω-cl(A) A≤ , then ω-cl(A)=A, and then A is 
anω -closed set according to definition 1.3. 

It is easy to verify the following theorem. 
 

Theorem 2.4. 0
X

 is an ω -set in ( , )XL Ω . 

 
Theorem 2.5. Let ( , )XL Ω be an Lω-space and T be an index set. If 

i
a ∈Ω  for 

each t T∈ , then tt T
A

∈
∧ ∈Ω . 
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Proof. Let tt T
A B

∈
∧ = . Suppose - ( )x cl B

α
ω≤ . In other words, x

α
 is anω -adherence 

point of B. Then we have B≰ P  for ( )P x
α

ωη∀ ∈ . Hence At≰ P  for each t T∈ . 

This means that x
α

is an ω -adherence point of At. Therefore, - ( )
t

x cl A
α

ω≤ . We 

can get - ( )
t t

A cl Aω=  with the hypothesis of 
t

A ∈Ω . Hence x
α
≤ At for each t T∈ , 

i.e., tt T
x A B
α ∈
≤ ∧ = . Thus - ( )cl B Bω ≤ , it implies that B is an ω -closed set . 

Consequently, tt T
A

∈
∧ ∈Ω  by theorem 2.3. 

 
Theorem 2.6. Let ( , )XL Ω be an Lω-space. If A∈Ω  and B∈Ω , then A B∨ ∈Ω . 

Proof. If A∈Ω  and B∈Ω , then - ( )A cl Aω=  and - ( )B cl Bω=  by Theorem 2.3. 
We have - ( ) - ( ) - ( )A B cl A cl B cl A Bω ω ω∨ = ∨ = ∨ . Hence, A B∨ is anω -closed set, 
and hence A B∨ ∈Ω  by Theorem 2.3. 

 
Theorem 2.7. ( )x

α
ωη −  is an ideal base in XL . 

Proof. Obviously, 1 ( )
X

x
α

ω η −∈ . Assume that 
1

( )Q x
α

ωη −∈ and 

2
( )Q x

α
ωη −∈ . Then x

α
≰

1
Q  and x

α
≰

2
Q .We assert that x

α
≰

1 2
Q Q∨  because 

x
α

 is a molecule. Hence 
1 2

( )Q Q x
α

ωη −∨ ∈ . This shows that ( )x
α

ωη − is a 

directed set. Therefore ( )x
α

ωη − is an ideal base in XL . 

 Similar to preceding theorem, it is easy to verify the following result. 
 

Theorem 2.8. ( )x
α

ωη  is an ideal in XL . 

 
Theorem 2.9. Let ( , )XL Ω be an Lω-space, and { }XA L A′ ′Ω = ∈ ∈Ω . Then 

( , )XL ′Ω  is an L-topological space. 
 
Proof. we need to prove the following statements. 
 

(1) 1
x

′∈Ω , 0
X
∈ ′Ω . We can easily verify that 1

X
∈ ′Ω  by Theorem 2.4. 

According to Definition 1.1 and 1
X
∈ Ω , 0

X
∈ ′Ω . 

(2) Intersection of finite sets in ′Ω  is in ′Ω . We can easily get the result from 
Theorem 2.6. 

(3) Union of arbitrary sets in ′Ω  is in ′Ω . The statement holds in accordance 
with theorem 2.5. 

Therefore ( , )XL ′Ω  is an L-topological space on LX. So ( , )XL Ω is an L- 
cotopological space on X . 

 
Theorem 2.10. Let ( , )XL Ω be an Lω-space and A∈ LX

. Then ω-cl(A)=ω(A) if 
and only if  ( )Aω is an ω -set. 
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Proof. Assume that ω-cl(A)=ω(A). Then ω-cl(ω-cl(A))=ω-cl(ω(A)). Since ω-cl(ω-
cl(A))=ω-cl(A), we can get ω-cl(ω(A))=ω-cl(A)=ω(A). This shows that ω(A) is an 
ω -closed set. Therefore, ω(A) is an ω -set. Conversely, assume that ω(A) is an ω -

set, x
α

is a molecule and x
α
≤ ω-cl(A). Then for ( )P x

α
ωη∀ ∈ , we have A≰ P . 

We assert that x
α
≤ ω(A). Otherwise, x

α
≰ω(A). Since ω(A) is an ω -set, we can 

get ( ) ( )A x
α

ω ωη∈ . Hence , A≰ω(A) which contradicts Definition 1.1. Therefore, 

ω-cl(A) ≤ ω(A). Thus ω-cl(A)=ω(A). 
 

Theorem 2.11. Let ( , )XL Ω be an Lω-space, A  ∈ XL and B ∈ XL . Then  
- ( ) - ( ) - ( )cl A B cl A cl Bω ω ω∨ = ∨ . 

 
Proof. We can get - ( ) - ( ) - ( )cl A cl B cl A Bω ω ω∨ ≤ ∨  from Theorem2.1. On the other 
hand, for each molecule - ( )x cl A B

α
ω≤ ∨ , we assert that - ( ) - ( )x cl A cl B

α
ω ω≤ ∨ . 

Otherwise, Suppose that x
α
≰ - ( ) - ( )cl A cl Bω ω∨ . Then x

α
≰ - ( )cl Aω  

and x
α
≰ - ( )cl Bω . Hence there exist 

1
( )P x

α
ωη∈  and 

2
( )P x

α
ωη∈  satisfying 

1
A P≤  

and 
2

B P≤ . Obviously, 
1 2

A B P P∨ ≤ ∨  and 
1 2

( )P P x
α

ωη∨ ∈ . Thus x
α

is not anω -

adherence point of A B∨ . It is in contradiction with the hypothesis that 
- ( )x cl A B

α
ω≤ ∨ . Hence, for each molecule - ( )x cl A B

α
ω≤ ∨ , we have 

- ( ) - ( )x cl A cl B
α
ω ω≤ ∨ , i.e. - ( ) - ( ) - ( )cl A B cl A cl Bω ω ω∨ ≤ ∨ . Consequently, 

- ( ) - ( ) - ( )cl A B cl A cl Bω ω ω∨ = ∨ . 
 

Theorem 2.12. Let ( , )XL Ω be an Lω-space and A ∈ XL . Then 

- ( ) { , }Xcl A B L B A Bω = ∧ ∈ ∈Ω ≤ . 

 
Proof. Since - ( - ( )) - ( )cl cl A cl Aω ω ω= , we get that ω - ( )cl A  is an ω -closed set. In 
the light of Theorem2.3, - ( )cl Aω  is an ω -set. If B is an ω -set and A ≤ B , then 

- ( )cl A Bω ≤ . Thus - ( ) { , }Xcl A B L B A Bω ≤ ∧ ∈ ∈Ω ≤ . On the other hand, 

- ( )A cl Aω≤ , and - ( )cl Aω  is an ω-set. Hence - ( )cl Aω = { , }XB L B A B∧ ∈ ∈Ω ≤ . 

 
Theorem 2.13. Let L be a fuzzy lattice, X be a non-empty crisp set. An operator 

: X XL Lω → , if  
 

(1) , XA B L∀ ∈  and A B≤ , ω(A) ≤ ω(B); 

(2) ∀ A∈  LX,A ≤ ω(A); 
(3) ω(ω(A))=ω(A). 

 
Then { ( )}XA L A Aδ ω′ ′= ∈ =  is an L-topology on X . Moreover, XA L∀ ∈ , 

( ) { , }XA B L B A Bω δ′= ∧ ∈ ∈ ≤ , i.e. ω  is a closure operator. 
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Proof. ω(0X)=0X follows from Theorem 2.4, and δ is an L-topology on X by 
Theorem 2.9. We can verify ω(A∨B)=ω(A)∨ω(B) by Theorem 2.10 and 2.11. By 
Theorem 2.12 and by Theorem 2.1.10 in [1] under conditions (2) and (3), we can 
verify that theorem 2.13 holds. 

3   Quotient Space and Its Properties 

Definition 3.1. Let (L1
X,Ω1) be an Lω-space, L2 an fuzzy lattice, Y a non-empty 

crisp set, f:L1
X →L2

Y is an order-epimorphism and 1
2 2 1

{ ( ) }YB L f B−Ω = ∈ ∈Ω . We 

call the L2ω-space (L2
Y,Ω2) is the quotient space of (L1

X,Ω1) about f. f is quotient 
order-homomorphism from  (L1

X,Ω1) to  (L2
Y,Ω2). 

Let Ω2′={B′∈L1
X ⏐f−1(B)∈Ω1}.We can easily verify Ω2′ is an L-topology on 

L2
Y, and Ω2′ is the finest topology on which f is continuous. 
 

Theorem 3.1. Let (L2
Y,Ω2) be the quotient space of (L1

X,Ω1) about the order- 
epimorphism f, and (L3

Z,Ω3) be  an L3ω-space,  g:L2
Y→L3

Z be an order-
homomorphism. g is continuous if and only if  the composite order-homomorphism 
gof:L1

X→ L3
Z  is continuous. 

 
Proof. Since f is quotient order-homomorphism and continuous order-homomor- 
phism. Hence if g:L2

Y→L3
Z is continuous, then we can easily get the composite 

order-homomorphism gof:L1
X→L3

Z is continuous.  
On the other hand, if the composite order-homomorphism gof:L1

X→ L3
Z is 

continuous, then 1

1
( ) ( )g f A− ∈ΩD  for 

3
A∀ ∈Ω , i.e. 1 1

1
( ( ))f g A− − ∈Ω . We get 

1

2
( )g A− ∈Ω  by the definition of 

2
Ω . Consequently, g:L2

Y→L3
Z  is continuous. 

 
Theorem 3.2. Let 

1 1
( , )XL Ω  and 

2 2
( , )yL Ω  be both order-preserving operator 

spaces, 
1 2

: X Yf L L→ is continuous order-epimorphism. If f is closed (open) order-

homomorphism, then f is quotient order-homomorphism.  
 
Proof. Let Ω2={B∈L1

X ⏐f−1(B)∈Ω1}. Assume that f is closed order-
homomorphism. We only need to prove that 

2
Ω = Ω .  

If 
2

B∈Ω , then we have 1

1
( )f B Q− ∈  by the definition of 

2
Ω . Since f is closed 

order-homomorphism, so we have 1( )ff B− ∈Ω . Since f is full, we have 
1( )ff B B− = . Thus B∈Ω . 

If B∈Ω , then we have 1

1
( )f B− ∈Ω  by continuity of f. We can get 

2
B∈Ω  by 

the definition of 
2

Ω . 

Consequently, 
2

Ω = Ω , and f is quotient order-homomorphism. 

In the same way , we can get f is quotient order-homomorphism if f is open 
order-homomorphism.  
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Theorem 3.3. Let (L1
X,Ω1) and (L2

Y,Ω2) be both order-preserving operator 
spaces, f :L1

X→L2
Y be a faithful and full and continuous order-homomorphism. f is 

closed if and only if f  is  the quotient order-homomorphism. 
 

Proof. Assume that f  is closed order-homomorphism. We can easily get f is the 
quotient order-homomorphism from theorem3.2. Now, consider the case that f is 
the quotient order-homomorphism. For each 

1
B∈Ω , since f faithful, we have 

1 ( )f f B B− = , hence 1

1
( )f f B− ∈Ω . We can get

2
( )f B ∈Ω  by the definition of 

2
Ω . 

Consequently, f is closed. 

4   Product Space and Its Properties 

Definition 4.1. Let {( , )}tX

t t T
L

∈
Ω be a collection of Lω-spaces, T  a nonempty 

index set,
tt T

X X
∈

= Π  the direct product of  nonempty crisp sets { }
t

X . The Zadeh’s 

type function : t
XX

t
P L L→ is induced by the usual projective mapping Pt: X→Xt. 

We also call the : t
XX

t
P L L→  projective mapping. Let 1{ ( ) ' , }

t t t t
P A A t Tγ −= ∈Ω ∈ , 

then γ is subbase of 'Ω . 'Ω  generated by γ  is L-topology on XL . We call 

( , )XL Ω  the product space of {( , )}tX

t t T
L

∈
Ω . 

 
Definition 4.2. Let (LX,Ω) be an ω-space. If each LF-set [ ]λ  which is constant 

value λ  for Lλ∀ ∈  is an Lω-closed set, then we call  (LX,Ω) a stratified ω-space. 
 

Theorem 4.1. Let (LX,Ω) be the product space of {( , )}tX

t t T
L

∈
Ω . The projective m

apping : tXX

t
P L L→ is continuous order homomorphism  for t T∀ ∈ . 

 
Proof. Since : tXX

t
P L L→ is an  Zadeh’s type function induced by the projective 

mapping :
t t

P X X→ , hence it is order homomorphism. Since 1( ) '
t t

P A γ− ∈ ⊆ Ω  

for arbitrary 
t t

A ′∈Ω , we have 1( )
t t

P A− ′∈Ω , therefore the projective mapping 

: tXX

t
P L L→ is continuous. 

 
Theorem 4.2. Let (LX,Ω) be the product space of {( , )}tX

t t T
L

∈
Ω . If ( , )XL τ

τΩ  is a 

stratified Lω-space for some Tτ ∈ , then the projective mapping : XXP L L τ
τ → is 

open order homomorphism . 
 
Proof. Let 1 ( ){ ( ) ' , 2 }T

t t t tt S
P A A Sβ −

∈
= ∧ ∈Ω ∈ , where )2 T（ represents the set 

composed of all nonempty finite intersection of T, then β  composes base of 
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'Ω .Let 1{ ( ) ' }
t t t tt S

A P A A−

∈
= ∧ ∈Ω  for arbitrary  member A in  base β, we assert that Pt 

A is an ω-open set in XL τ , therefore the projective mapping : XXP L L τ
τ → is open 

order homomorphism . 
If { }S τ= , then 1( ) 'A P A

τ τ
γ−= ∈ ⊆ Ω  where A

τ τ
′ ∈Ω . Since Pt A=A, therefore Pt 

A is an ω-open set in XL τ . 
Let x X∈ , ( )P x a

τ
= , 1 1( ) ( )( ) { ( )( )} ( ( ))

t t t t t tt S t S t S
A x P A x P A x A P x− −

∈ ∈ ∈
= ∧ = ∧ = ∧ . If Sτ ∉ , 

then ( )A x  is not relational to a . Since ( ) { ( ) ( ) }
x X

P A a A x P x a
τ τ∈

= ∨ = , therefore Pt 

A(a) is not relational to a . This shows that ( )P A
τ

 is constant value. We can easily 

get that ( )P A
τ

 is an ω-open set because ( , )XL τ
τ

Ω  is a stratified Lω-space. 

If Sτ ∈  and { }S τ−  nonempty, we denote 1

{ }
{ ( ) ' }

t t t tt S
B P A A

τ
−

∈ −
= ∧ ∈Ω , then Pt 

B is an ω-open set in XL τ , and 1( )A P A B
τ τ
−= ∧  is an ω-open set. 

t
a X∀ ∈ , 

1( ) { ( ) }( )P A a P P A B a
τ τ τ τ

−= ∧  
1{{ ( ) }( ) ( ) }P A B x P x a x X

τ τ τ
−= ∨ ∧ = ∈，

1{ ( )( ) ( ) ( ) , }P A x B x P x a x X
τ τ τ
−∨ ∧ = ∈  

{ ( ) ( ) ( ) , }A a B x P x a x Xτ τ= ∨ ∧ = ∈  

( ) { ( ) ( ) , }A a B x P x a x Xτ τ= ∧ ∨ = ∈  

( ) ( )A a P B a
τ τ

= ∧ ( )( )A P B a
τ τ

= ∧ , 

this shows that Pt A =At∧ Pt B.  Both At and Pt B are ω-open sets in XL τ , therefore 
Pt A is an ω-open set in XL τ . 

Consequently, the projective mapping : XXP L L τ
τ

→ is an open order 

homomorphism. 
Lastly, it is easy to verify the following result. 
 

Theorem 4.3. Let ( , )XL Ω be the product space of {( , )}tX

t t T
L

∈
Ω , 

1
( , )YL μ  an L-

topological space, and 
1

: Y Xf L L→  an order homomorphism. Then f is 

continuous if and only  if  Ptof  is continuous for t T∀ ∈ . 
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Self-adaptive Fuzzy PID Controller for Airborne 
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Abstract. Airborne three-axis pan-tilt is one key equipment of Low-altitude Un-
manned Aerial Vehicle Photogrammetry System (LUAVPS). In order to improve 
the control precision of the pan tilt, a self-adaptive fuzzy PID controller is pro-
posed, combining traditional PID control and Fuzzy control technology. This PID 
controller can adaptively complete PID parameters adjustment, realizing pan-tilt 
self stabilization. Simulation results show that this fuzzy PID controller has high 
stable state precision and small hysteresis quality, pan-tilt control precision of 
LUAVPS can be fully fulfilled. 

Keywords: Self-adaptive fuzzy PID, pan-tilt control, UAV, low-altitude 
photogrammetry. 

1   Introduction 

According to “Topographic Map Aerial Photogrammetry Standard”, the camera 
primary optical axis must keep vertical, and the row or column direction of image 
plane must point to north at the photo moment. All the exterior angle orientation 
parameters must almost equal to zero. But during the photo taking process, UAV’s 
pitch, yaw and roll angel are changing momentarily because of the change of wind 
direction, power and flight path. So a self-stabilization pan-tilt is needed between 
the UAV and camera to keep the exterior angle orientation parameters almost 
equal to zero. 

Three-axis self stabilization pan-tilt is a steady output system, it’s a nonlinear 
system. PID control and Fuzzy control are all efficient tools to settle nonlinear 
system control. A good pan-tilt must have small steady state error and short delay 
time, but steady-state error and delay time are two contradictions in one system. 
When steady state is good, delay time maybe long. On the contrary, when delay 
time is short, the steady state maybe worse.  

Conventional PID controller has better steady state, but long delay time, fuzzy 
controller has worse steady state but short delay time[1-2]. According to this, a 
self-adaptive fuzz PID controller is presented, which combining the advantage of 
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PID controller and Fuzzy controller, and the performance of the UAV’s pan-tilt 
system is improved. 

2   Design and Realization of Fuzzy PID Controller 

2.1   Three Axis Self-Stabilization Pan-tilt 

This pan-tilt is controlled by three channel controllers, each channel controller 
controls one axis to keep three exterior angel orientation parameters of photo-
grammetry coordinate system close to zero which caused by UAV’s pitch, yaw 
and roll. The camera’s state during flying is obtained by the gyroscope. The whole 
pan-tilt control process is to keep the image exterior orientation parameters close 
to zero by adjusting the three channel controllers. Figure.1 shows the control prin-
ciple of UAV’s pan-tilt system. 

 

Fig. 1. Control principle of UAV’s pan-tilt system 

Because three channel controllers have the same control requirement, just one 
channel controller is discussed in this paper.  

2.2   Traditional PID Control 

The basic formula of PID controller is as follows [3-5]: 

( ) ( ) ( ) ( )
]

1
[

0
1
∫ ++=

t

DP dt

tde
Tdtte

T
teKtu  (1)

in which 
P

K is the proportional gain, 1T is the integrate constant, DT is the derivate 

constant, )(tu  is the analog control variable, )(te is the control error.  
This control method is based on the precise model of the controlled object, the 

method is simple, practical and easy to realize, and it’s always used in time invari-
ant systems. There are several short comes is practice: 

 
1) Practice system always complex, nonlinear, time variability and incomplete-
ness, so it’s hard to acquire the precise math model; 
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2) Pointing to the practical systems, harsh linear hypothesis is always needed, but 
these assumptions always don’t match the actual system;  
3) Actual control systems are always complex, and the traditional control task 
demand is low, facing complex control task, PID controller could do nothing. 
 
Under the influence of noise and load perturbation, UAV pan-tilt system process 
parameter even model structure will change along time and working conditions. 
It’s very difficult to find a group of appropriate PID parameter to suit the system’s 
wide scope regulation. This requires the PID parameter adjusting process doesn't 
depend on the system’s mathematic model, and the PID parameters can realize 
self adjustment. 

2.3   Traditional Fuzzy Control 

In practical project, a complex control system may obtain satisfy control effect by 
an experienced operator. This shows that if the human mind can be simulated by a 
controller, complex systems control can be realized, this results the fuzzy control.  

Fuzzy control is one intelligent control method which based on fuzzy set the-
ory, fuzzy language variable and fuzzy logic inference. We will not introduce 
Fuzzy logic in detail; it can be seen in [9]. It imitates human’s behavior of fuzzy 
reasoning and decision making process. First, the operator or expert’s experience 
is compiled into fuzzy rules, and then real-time signal from the sensor is changed 
to fuzzy signal, the fuzzy signal as the input of fuzzy rules, fuzzy reasoning is 
accomplished, the reasoning output is added in the operator. Figure 2 shows the 
basic theory. 

 
 

 
 
 
 
 
 
 
 

Fig. 2. Fuzzy control basic theory 

Fuzzy control is suitable to industrial processes and large system control, the 
more difficult of the establishment of the control system’s mathematical model, 
the better its superiority over other control methods will be reflected. 

Fuzzy control theory has several characters: 

1) Fuzzy control doesn’t need the object’s precise model; 
2) Fuzzy control is an intelligent method reflecting human’s wisdom which 

can be easily accepted; 
3) Fuzzy control is robust and adaptive. 
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But comparing to the traditional control theory, fuzzy control is still developing, 
its theory and method are not perfect, even seems immature. Because it’s a non-
linear control method, rule explosion problem exists, so the control table or the 
control analytical formula can’t be too large or complex. Fuzzy control system is 
actually a non-linear P or PD control method, static error exists in theory without 
imports in integrates mechanism. When the control rule structure and coverage is 
improper, or the selection of proportional factor or quantitative factor is improper, 
the system apt to produce vibrates, especially when the central language variable 
range is improper. 

2.4   Structure and Adjusting Principle of Fuzzy PID Controller 

PID controller and fuzzy controller both have its limitation in reality, several im-
proved PID controllers are developed, but the complex control task remain can’t 
be fully fulfilled. The inconvenience of fuzzy control method which caused by its 
nonlinear limits its application in various control tasks.  

In this paper, pointing to the shortcomings of  the traditional PID controller and 
fuzzy control, fuzzy control and conventional PID control are combined, A PID 

parameter self adjusting controller is designed, PK , IK and DK  are adjusted on 

real-time according to the change and change rate of the exterior orientation pa-
rameters. The input variation is the exterior angle orientation parameter ϕ  and its 

change rate cϕ , the output is the three parameters of the PID controller. In order to 

fulfill the self adjusting requirement ofϕ  and cϕ , the three PID controller pa-

rameters are changed online using the fuzzy control rules, and this composed the 
fuzzy PID controller. As shown in figure 3. 

 

Fig. 3. Fuzzy PID controller 

From figure 3 we can find that this controller is composed with traditional PID 
controller, fuzzy reasoning and its parameters. Fuzzy reasoning and parameter 

refinement is a fuzzy controller in reality. Its input is ϕ  and cϕ  and the output is 

the three PID parameters PK , IK and DK .  
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The realization thought is to find the fuzzy relation between  

PK , IK , DK andϕ , cϕ .During flight ϕ  and cϕ are detected continually to ful-

fill the requirement ofϕ  and cϕ  to the control parameters in different time. 

Considering the pan-tilt’s stability, response speed, stable accuracy and the PID 

parameters function between each other. To different ϕ  and cϕ , self adjusting 

requirement of the controlled process to PK , IK , DK  can be concluded as bellow 

[6-8]: 
 

1）When ϕ  is large,  PK must be bigger so to speed up system response speed. 

At the same time in order to avoid control effect exceeding permitted extent, 

when ϕ  changed with time and differential oversaturation appears, DK must be 

small. IK  should equal to zero to avoid large overcontrol of system response. 

2）When ϕ  and cϕ are middle, PK  should be a little smaller, so to acquire 

small over-control, IK should be appropriate, the value of DK has big influence 

to system response, its value should be middle so to guarantee system response 

speed. 

3）When ϕ  is small or almost equal to zero, PK  and IK should be increased to 

keep system stability. Considering system anti-interference performance, DK is 

very important to avoid system oscillation near the set value. When cϕ  is small, 

DK  should be a little bigger. When cϕ  is big, DK  should be a little smaller. 

When cϕ   is big, PK  should be small, IK  should be big. 

3   Establishment of Membership Function and Fuzzy Control 
Rules  

The system input are ϕ  and cϕ , their fuzzy language value has seven grades, 

denote as{ , , , , , , }NB NM NS ZE PS PM PB  .The output fuzzy language value has 

four grades, denote as { , , , }Z S M B . All the input membership functions are 

gaussmf, outputs are trimf. Membership function ofϕ is shown in figure 4.  

Discourse domain of ϕ  is [ 180, 180]− +  , cϕ is [ 100, 100]− +  , PK , IK , DK  is 

[0,150] , [0,5] , [0,15] .The fuzzy control rules are established according self 

adjusting rules in 2.4 and real pan-tilt control experience. As shown in table 1, The 

first rule is to say when ϕ  is NB and cϕ is also NB  , PK  is B, IK  is Z, DK  is 

S, other rules are all the same.  
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Fig. 4. Member function of ϕ  

Table 1. Fuzzy control rules 

ϕ
 

cϕ  NB NM NS ZE PS PM PB 

NB BZS BSM MMZ MBS SMZ SSM ZZS 

NM BZM MSM MBS SBZ SBS ZSM ZZM 

NS BZB MZB SMS ZBS SMS SZB BZB 

ZE BZB SZB ZBS ZBZ ZBS SZB BZB 

PS BZB SZB SBS ZBS SBS MZB BZB 

PM ZZM ZSM SMS SBZ MMS MSM BZM 

PB ZZS ZSM SMZ MBZ MMZ BZM BZS 

4   System Simulation and Analysis  

According to the simulation model which established above, simulation analysis is 
carried on, the transfer function of the simulation object is:  

4
( )

( 2.5)
G s

s s
=

+
 (2)

Add step signal 1 to fuzzy control system, through adjusting the PID parameters 
starting value many times and revises the fuzzy rule repeatedly, satisfying re-
sponse curves are obtained, Figure 5 is traditional PID and the fuzzy PID control-
ler system's step response curve. It can be find that, the fuzzy PID function output 
surpasses the traditional PID function greatly, and non-overshoot control has 
realized. 
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Fig. 5. Step response curves 

5   Conclusion 

Based on the analysis of LUAVPS pan-tilt, a pan-tilt fuzzy PID controller is de-
signed combining traditional PID control theory and fuzzy theory. Simulation 
experiment result shows that this PID controller can achieve no overshoot control, 
and maintain traditional PID controller advantage; Especially has a strong adapta-
bility and good robustness when object parameters or structure changes. 
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ω-Convergence Theory of Filters in ω-Molecular 
Lattices 
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Abstract. In this paper, an ω-convergence theory of filters in an ω-molecular lat-
tice is established. By means of the ω-convergence theory, some important charac-
terizations with respective to the ω-closed sets and (ω1, ω2)-continuous general-
ized order-homomorphisms are obtained. Moreover, the mutual relationships 
among ω-convergence of molecular nets, ω-convergence of ideals and ω-
convergence of filters are given in ω-molecular lattices. 

Keywords: Fuzzy lattice, ω-molecular lattice, filter, ideal, fuzzy mapping,  
ω-convergence. 

1   Introduction 

The Moore-Smith convergence theory in topological molecular lattices was first 
introduced by Wang [1]. Since then, many convergence theories, such as θ-
convergence theory [2], δ-convergence theory [9], N-convergence theory [3], SR-
convergence theory [4], σ-convergence theory [5], and so on [2-5,9], were pre-
sented by means of multifarious closure operators. In order to unify various con-
vergence theories, a generalized molecular lattice which called the ω-molecular 
lattices was introduced [6-8]. In this paper, an ω-convergence theory of filters in 
ω-molecular lattices. 

Throughout the paper, L denotes a fuzzy lattice while M denotes the set consist-
ing of all molecules [1], i. e., nonzero ∨-irreducible elements in L. 0 and 1 are the 
least and the greatest element of L respectively.  

Definition 1.1. [1] Let L be a complete lattice. e∈L, B⊂L. B is called a minimal 
family of e if B ≠∅  and  

(i)  supB= e; 
(ii)  ∀A⊂L, supA ≥ e implies that ∀x∈B, there exists a y∈A such that y ≥ x. 
 
According to Hutton [19], in a completely distributive lattice, each element e∈L 
has a greatest minimal family which will be denoted by β(e). For each e∈M, 
β*(e)=β(e)∩M is a minimal family of e and is said to be the standard minimal 
family of e. 
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Definition 1.2. [6] Let L be a molecular lattice. 

(i)  An operator ω : L→L is said to be an ω-operator if (1)  ∀ A , B∈L and A ≤ B; 
(2) ∀ A∈L, A ≤ ω (A). 

(ii)  An element A∈L is called an ω-set if ω(A)=A. 
(iii)  Put Ω={ A∈L⎪ω (A)=A }, and call the pair (L, Ω) an ω-molecular lattice. 

 
Definition 1.3. [6] Let (L, Ω) be an ω- molecular lattice, A∈L and e∈M. If there 
exists Q∈Ω such that e≤/ Q and P ≤Q, then call P an ωR-neighborhood of e. The 
collection of all ωR-neighborhoods of e is denoted by ωη(e). 

 
Definition 1.4. [6] Let (L, Ω) be an ω-molecular lattice, A∈L and e∈M. If A≤/ P 
for each P∈ωη(e), then α is said to be an ω-adherence point of A, and the union 
of all ω-adherence points of A is called the ω-closure of A, and denoted by ωcl(A). 
If A=ωcl(A), then call A an ω-closed element. If A is an ω-closed element, then we 
say that A′ is an ω-open element. If P=ωcl(P) and e≤/ P, then P is said to be an ω-
closed R-neighborhood (briefly, ωCR-neighborhood) of e, and the collection of all 
ωCR-neighborhoods of e is denoted by ωη⎯(e).  

 
Definition 1.5. [6] Let (L,Ω) be an ω-molecular lattice, A∈L and ωint(A)=∨{ 
B∈L ⎪ B ≤ A and B is an ω-open element in L }. We call ωint(A) the ω-interior of 
A. Obviously, A is ω-open if and only if A =ωint(A). 

 
Proposition 1.1 [23] Let L be a completely distributive lattice. Then each element 
of L is a union of ∨-irreducible elements. 

2   ω-Convergence of Filters 

In this section, we shall present the concepts of ωQ-neighborhoods (resp. ωOQ-
neighborhoods) of a molecule and ω-convergence of a filter in an ω-molecular lat-
tice, and discuss their properties. 
 
Definition 2.1. Let (L, Ω) be an ω-molecular lattice, B∈L and e∈M. If there is an 
ω-open element G such that e≤/ G′ and G≤B, then we say that B (resp. G) is an 
ωQ-neighborhood (resp. ωOQ-neighborhood) of e, and the collection of all ωQ-
neighborhoods (resp. ωOQ-neighborhoods) of e is denoted by ωμ(e) (resp. 
ωμo(e)). 
 
Evidently, every ωQ-neighborhood (resp. ωOQ-neighborhood) of e is a Q-
neighborhood (resp. open Q-neighborhood) of e when ω is the fuzzy closure op-
erator, and B (resp. G) is an ωQ-neighborhood (resp. ωOQ-neighborhood) of e if 
and only if B′ (resp. G′) is an ωR-neighborhood (resp. ωCR-neighborhood) of e. 
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Definition 2.2. Let (L, Ω) be an ω-molecular lattice, e∈M and let F  be a filter in 
L. Then: 

(i)   e is said to be an ω-limit point of F, or F ω-converges to e, in symbols, F→ωe, 

if ωμo(e)⊂F. The union of all ω-limit points of F will be denoted by ω-limF. 
(ii)  e is said to be an ω-cluster point of F, or F ω-accumulates to e, in sym-

bols,F∝ωe, if F∧ G≠0 for each G∈ωμo(e) and each F∈F. The union of all 
ω-cluster points of F will be denoted by ω-adF. 

 
Theorem 2.1. Let (L, Ω) be anω-molecular lattice, e∈ M and let F be a filter in L. 
Then: 

(1) F→ωe if and only if F→ωb for each b∈β*(e); 
(2) F∝ωe if and only if F∝ωb for each b∈β*(e); 
(3) F∝ωe if and only if e≤ωcl(F) for each F∈F. 
 
Proof. (1) Suppose that F→ωe, b∈β*(e) and G∈ωμo(b). Then G∈ωμo(e) because 
of the fact that b≤/ G′ and b≤e, and hence G∈F by  F→ωe. Conversely, if e is not 
an ω-limit point of F, then there exists G∈ωμo(e) such that G∉ F. Since e=β*(e), 
there is b∈β*(e) with G∈ωμo(b). This means that b is not an ω-limit point of F. 
Hence, the sufficiency is proved. 
  (2) Similar to the proof of (1). 

  (3) Let F∝ωe. Then F∧G≠0 for each G∈ωμo(e) and each F∈F by Definition 
2.2(2), equivalently, F ≤/ G′ for each G′∈ωη⎯(e) and each F∈F. Therefore, 
e≤ωcl(F) for each F∈F. Conversely, if e≤ωcl(F) for each F∈F, then F≤/ G′ for 

each G′∈ωη⎯(e) by Definition 2.4., in other words, F∧G≠0 for each G∈ωμo(e). 
Consequently, F∝ωe by arbitrariness of F in F. 
 
Proposition 2.1. Let (L, Ω) be an ω-molecular lattice, b, d∈M, and let F be a fil-
ter in L. Then: 

(1) if F→ωd and b ≤ d, then F→ωb; 
(2) if F ∝ω d and b ≤ d, then F∝ωb. 
 
Proof. (1) Let F→ωd and b ≤ d. Then G∈ωμo(d) for each G∈ωμo(b), and thus G∈F. 

This implies that ωμo(b)⊂F, hence F→ωb. 
(2) Similar to the proof of (1). 

  
Theorem 3.2. Let (LX, Ω) be an ω-molecular lattice, e∈M, and let F be a filter in 
L. Then: 

(1) F→ωe if and only if e≤ω-limF; 
(2) F∝ωe if and only if e≤ω-adF; 
(3) ω-limF ≤ω-adF. 
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Proof. (1) If F→ωe, then e≤ω-limF by the definition of ω-limF. Conversely, if 
e≤ω-limF, then for each b∈β*(e), there exists an ω-limit point d of F  with b≤d by 
virtue of the fact that e=supβ*(e) and the definition of ω-limF. Consequently, 
F→ωe according to Proposition 2.1 and Theorem 2.1. 

(2) Similar to the proof of (1). 
(3) Let e≤ω-limF. Then F→ωe by (1). In accordance with Definition 2.2(i), we 

know that G∈F for each G∈ωμo(e). Therefore, F∧G≠0 for each G∈ωμo(e) and 
each F∈F by the definition of filter, thus e≤ω-adF in the light of Definition 2.2(ii) 
and (2). 
 
Proposition 2.2. Suppose that F1 and F2 are two filters in an ω-molecular lattice 
(L, Ω), which F2 is finer than F1 (i.e., F1⊂F2) and e∈M. Then: 

(1) if e is an ω-limit point of F1, then e is also an ω-limit point of F2; 
(2) if e is an ω-cluster point of F2, then e is also an ω-cluster point of F1. 

 
Proof. (1) If e is an ω-limit point of F1, then μo(e)⊂F1. Since F1⊂F2, μo(e)⊂F2. 
Therefore, e is an ω-limit point of F2. 

(2) Let F2 ω-accumulates to e. Then for each G∈ωμo(e) and each F∈F2 we have 
F∧G≠0, specially, for each F∈F1, F∧G≠0 by virtue of F1⊂F2. Hence, F1 ω-
accumulates to e. 

 
Theorem 2.3. Let F be a  filter in an Lω-space (L, Ω) and e∈M. Then e is an ω-
cluster point of F  if and only if there exists a filter F* which is finer than F such 
that e is an ω-limit point of F*.   

 
Proof. Assume that e is an ω-cluster point of F. By Definition 2.2(ii), F∧G≠0 for 
each G∈ωμo(e) and each F∈F. Write F*={H∈LX ⎪ F∧G≤ H for each G∈ωμo(e) 
and each F∈F }; then F* is a filter which is finer than F, and G∈F* for each 
G∈ωμo(e). This implies that e is an ω-limit point of F*.  

Conversely, suppose that F* is a filter which is finer than F, and F*ω-converges 
to e. According to Definition 2.2(i), for each G∈ωμo(e) we have G∈F*, hence F∧
G∈F* for each F∈F* and each G∈ωμo(e), and hence F∧G≠0 by the definition of 
filter. This shows that e is an ω-cluster point of F.  

 
Theorem 2.4. Let (L, Ω) be an ω-molecular lattice, A∈L and e∈M. Then the fol-
lowing conditions are equivalent: 

(1) e is an ω-adherence point of A; 
(2) there exists a filter F with A∈F  such that e is an ω-limit point of F; 
(3) there exists a filter F with A∈F  such that e is an ω-cluster point of F. 

 
Proof. (1)⇒(2): Suppose that e is an ω-adherence point of A; then A∧G≠0 for 
each G∈ωμo(e). Let  
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F ={F∈L ⎪there exists G∈ωμo(e) with A∧G ≤ F }. 

One can easily see that F is a filter with A∈F and ωμo(e)⊂F , i.e., e is an 
ω-limit point of F. 

(2)⇒(3): If there exists a filter F with A∈F  such that e is an ω-limit point 
of F, then A∧G≠0 by A∧G∈F for each G∈ωμo(e), and thus e is an ω-cluster 
point of F. 

(3)⇒(1): If there exists a filter F with A∈F  such that e is an ω-cluster point of 
F, then A∧G≠0 for each G∈ωμo(e), in other words, A≤/ G′ for each G′∈ωη⎯(e). 
Consequently, e is an ω-adherence point of A.  

 
Theorem 2.5. Let (L, Ω) be an Lω-space and A∈L. Then the following conditions 
are equivalent: 

(1) A is an ω-closed element; 
(2) for each filter F containing A as an element in L, ω-limF ≤ A; 
(3) for each filter F containing A as an element in L, ω-adF ≤ A. 

 
Proof. (1)⇒(2): Suppose that A is an ω-closed element, F is a filter containing A as 
an element, and e∈M. If e≤ω-limF. Then e≤ωcl(A)=A in line with Theorem 2.4. 
Therefore, ω-limF ≤ A. 

(2)⇒(3): It follows from (2) and Theorem 2.2(3). 
(3)⇒(1): Assume that ω-adF ≤ A for each filter F containing A as an element 

and e≤ωcl(A). Then by Theorem 2.4 we know that e≤ω-adF ≤ A. This means that 
ωcl(A) ≤ A, i.e., A is ω-closed. 

 
Theorem 2.6. If F be a filter in an ω-molecular lattice (L, Ω), then ω-limF andω-
adF are both ω-closed sets in (L, Ω).  

 
Proof. For each e∈M, if e≤ωcl(ω-limF), then ω-limF ≤/ G for each G′∈ωμo(e),. 
With reference to Proposition 1.1 we can choose a molecule b≤ω-limF such that 
b≤/ G, thus G′∈ωμo(b). Consequently, G′∈F by b≤ω-limF. This shows that e≤ω-
limF, and thus ωcl(ω-limF) ≤ω-limF. On the other hand, ω-limF ≤ωcl(ω-limF) by 
Theorem 2.5 in [6]. 

Similarly, we can easily verify that ω-adF is also an ω-closed element in (L, Ω).  
 

Definition 2.3. Let (L, Ω) be an ω-molecular lattice, e∈M, and let F0 be a filter 
base in L. Then: 

(i)   e is said to be an ω-limit point of F0, or F0 ω-converges to e, in symbols, F0 

→ωe, if F→ωe  where F is the filter generated by F0, i.e.,  
F={F∈L⎪there exists H∈F0 such that H ≤ F }.  

The union of all ω-limit points of F0 will be denoted by ω-limF 0. 
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(ii)  e is said to be an ω-cluster point of F0, or F0 ω-accumulates to e, in symbols, 
F0∝ωe, if F∝ωe where F is the filter generated by F0. The union of all ω-
cluster points of F0 will be denoted by ω-adF0. 

 
Theorem 2.7. Let F0 be a filter base in an ω-molecular lattice e (L, Ω) and e∈M. 
Then: 
 
(1) F0 →ωe if and only if everyωOQ-neighborhood of e contains a member of F0; 
(2) F0 ∝ωe if and only if everyωOQ-neighborhood of e intersects all member of 

F0.  
 
Proof. It follows straightforward from Definition 2.2 and Definition 2.3. 

3   Some Applications of ω-Convergence of Filters 

In this section, we shall give some characterizations of (ω1,ω2)-continuous order-
homomorphisms and ω-separations by means of ω-convergence theory of filters. 

 
Definition 3.1. [7] Let f be an order-homomorphism from an ω1-molecular lattice 
(L1, Ω1) into an ω2-molecular lattice (L2, Ω2). Then: 

(i) f  is called (ω1,ω2)-continuous if f−1(B)∈ω1O(L1) for each B∈ω2O(L2); 
(ii) f is called (ω1,ω2)-continuous at e∈M if f−1(B)∈ω1η⎯(e) for each B∈ω2η⎯(f 

(e)). 
 

Theorem 3.1. [7] Let f be an order-homomorphism from an ω1-molecular lattice 
(L1, Ω1) into an ω2-molecular lattice (L2, Ω2). Then f is (ω1,ω2)-continuous if and 
only if for every e∈M,  f is (ω1,ω2)-continuous at e.  

 
Theorem 3.2. Let f be an order-homomorphism from an ω1- molecular lattice (L1, 
Ω1) into an ω2- molecular lattice (L2, Ω2), and e∈M. Then f is (ω1,ω2)-continuous 
at e if and only if f−1(B)∈ω1μo(e) for each B∈ω2μo(f (e). 

 
Proof. Since B∈ω2μo(f (e)) if and only if B′∈ω2η⎯(f (e)), and f−1(B)∈ω1μo(e) if and 
only if f−1(B′)∈ω1η⎯(e), the proof is obvious by Definition 3.1(ii). 

 
Theorem 3.3. Let f be an order-homomorphism from an ω1- molecular lattice (L, 
Ω1) into an ω2- molecular lattice (L2, Ω2). Then f is (ω1,ω2)-continuous if and only 
if for every filter base F0 in (L1, Ω1) and the filter base   f (F0)={ f (F)⎪ F∈F0} in 
(L2, Ω2) we have f (ω1-limF0) ≤ ω2-lim f (F0). 

 
Proof. Suppose that f is (ω1,ω2)-continuous, F0 is an filter base in (L1, Ω1) and f 
(F0)={ f (F)⎪ F∈F0} is the filter base in (L2, Ω2). Then for each molecule d≤ f (ω1-
limF0), there exists a molecule e≤ω-limF0 with d= f (e). We affirm that d≤ω2-limf 
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(F0). In fact, for each B∈ω2η⎯(f (e)) we have f−1(B)∈ω1η⎯(e) being the continuity 
of f, in other words, for each B′∈ω2μo(f (e)) we have f−1(B′)∈ω1μo(e). Hence, there 
exists a member F∈F0 such that F≤ f−1(B′), i.e., f (F) ≤ B′ according to Theorem 
2.7. This means that d≤ω2-limf (F0). 

Conversely, assume that the condition of the theorem holds. If f is not (ω1,ω2)-
continuous,  then there exists an ω2-closed element B in (L2, Ω2) such that 
f−1(B)≠ω1cl(f−1(B)), i.e., there is a molecule e≤ω2cl(f−1(B)) with e ≤/ f−1(B) by 
Proposition 1.1. Hence, we can choose a filter base F0 in (LX, Ω1) which contains 
f−1(B) as member such that e is an ω-limit point of F0  in the light of Theorem 2.7, 
and thus f(e)≤f(ω1-limF0)≤ω 2-limf(F0) according to the assumption. Since B is ω2-
closed, f(e)≤ B according to Theorem 2.5. This contradicts e≤/ f−1(B). Therefore, f 
is (ω1,ω2)-continuous. 

 
Theorem 3.4. An Lω-space (L, Ω) is an ωT2 space if and only if every filter in (L, 
Ω) has at most one ω-limit point.. 

 
Proof. Assume that (L, Ω) is an ωT2 space and F is a filter in (L, Ω). If e and d are 
two disjoint ω-limit points of F, then there exist G∈ωη⎯(e) and H∈ωη⎯(d) such 
that G∨H=1, in other words, there exist G′∈ωμo(e) and H′∈ωμo(d) such that 
G′∧H′=0. Hence, G′∧H′∉F, i.e., either G′∉F or H′∉F. This contradicts that e and 
d are both ω-limit points of F. Therefore, the necessity is proved. 

Conversely, if (L, Ω) is not ωT2, then there are e, d∈M with e≠d, such that for 
each G∈ωμo(e) and each H∈ωμo(d) satisfying G′∨H′≠1, equivalently, G∧H≠0. 
Let F={F∈L⎪G∧H≤F, G∈ωμo(e) and H∈ωμo(d)}. Obviously, ωμo(e)⊂F and 
ωμo(d)⊂F, thus e and d are disjoint ω-limit points of F. This implies that the suf-
ficiency holds. 
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Abstract. With the applications of topological upgrading [1], some problems
of upgrading mathematical structure to its power set have caused wide con-
cerns. This paper studies the upgrading from group structure to its power set
and gives the definition, examples and ways of construction of power groups,
then shows the relationship between power groups and common groups and
characterized power groups by common groups, and obtains a series of con-
structive conclusions and achieves many breakthroughs of upgrading a group
to its power set.
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1 Introduction

Professor Wang Peizhuang [1] raised the problem of topological upgrading in
1981 and obtained a series of systematic theoretical results and applications
[2-9]. Hypergroup which is raised by H.S.Wall [10] has important applica-
tions in theoretical physics including quantum mechanics and string theory
[11,12], thus this kind of upgrading of mathematical structure has caused
wide concern over the recent years [13-21]. This paper studies the upgrading
from group structure to its power set. By applying the principle of extension
and set valued mapping to classic algebra, it obtains a new kind of algebraic
structure named power group, gives several examples and the ways of con-
struction of power groups, and shows different kinds of relationship between
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power groups and common groups. Finally, in the last part of this paper we
studies the general structure, quasi-order structure, homomorphism and iso-
morphism of power groups, obtains a series of constructive conclusions and
achieves many breakthroughs of upgrading a group to its power set. This
research will be introduced concretely and the conclusions will be presented
in detail in the following.

2 Definitions and Constructions of Power Group

Here in this paper we always assemble that G denotes a group, let P0(G) �
P(G)\{φ},P(G) denotes the power set of G. Now we define an algebraic
operation on P0(G):

AB � {ab|a ∈ A, b ∈ B}. (1)

Obviously P0(G) forms a semigroup with respect to composition (1), and it
contains e which is the identity of G.

Definition 2.1. Let G ⊂ P0(G) be a non-empty class of sets. If G forms a
group with respect to the operation defined by (1), then we say G is a power
group of G whose identity is E . Especially, we say G is a regular power group
of G iff e ∈ E.

Notice that E2 = E, so it’s easy to see that E is a subgroup of G. What’s
more, the quotient group is a particular case of power group, its identity is a
normal group of group G.

Theorem 2.1. If G is a power group of G,∀A ∈ G , denote |A| to be the
number of elements which A contains, then

1)(∀A ∈ G)(|A| = |E|);
2)(∀A,B ∈ G)(A ∩B �= φ ⇒ |A ∩B| = |E|).

Proof. 1) On one hand,AE = A ⇒ (∀a ∈ A)(aE ⊂ AE = A) ⇒ |E| =
|aE| ≤ A;on the other hand, A−1A = E ⇒ (∀b ∈ A−1)(bA ⊂ A−1A = E) ⇒
|A| = |bA| ≤ |E|).

2) First,|A∩B| ≤ |A| = |E|;then c ∈ A∩B ⇒ cE ⊂ A∩B ⇒ |E| = |cE| ≤
|A ∩B|.

Considering that E is a subgroup of G, this question comes naturally as
follows

Is it possible to construct a power group of G using a subsemigroup S
of group G when S = E? We studied this problem and got an affirmative
answer, which we list as follows.

Suppose S is a subgroup of G,∀a, b ∈ G,if ∃h ∈ S,s.t. a = bh, then we say
a is congruent to b right-semi-modulo S, denoted by

a
.= b(r − semodS). (2)
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It’s easy to verify that .= is a transitive relation, what’s more, .= satisfies
self-opposite (therefore .=is a similar relation) iff e ∈ S. Now for ∀a ∈ G, let

aS � {b ∈ G|b .= a(r − semodS)}, (3)

it’s obvious that aS = {ah|h ∈ S}. We call aS to be the left quasi-coset of
S. Similarly, we can get the concept of right quasi-coset of S, denoted by Sa.
We call Sa a quasi-coset iff ∀a ∈ G,Sa = aS.

Remark,a ∈ aS is not valid generously. For example, set G to be the
addictive group of real numbers, make S = (0,+∞), then S is a subsemigroup
of G, but ∀a ∈ G, a �∈ a+S = (a,+∞), if strengthen the constraint conditions
of S, then we have this conclusion:e ∈ S ⇒ (∀a ∈ G)(a ∈ aS);otherwise
(∃a ∈ G)(a ∈ aS) ⇒ e ∈ S.

Theorem 2.2. Suppose H is a subgroup of G,S ⊂ G which satisfies S2 = S.If
S is a quasi-coset of H, which means (∀a ∈ H)aS = Sa, then G � {aS|a ∈
H} is a power group of G and E = S.

Proof. Define a mapping as f : H → G, a �→ aS,it’s obvious that f is a
surjection. Notice that f(ab) = (ab)S = (ab)S2 = a(bS)S = a(Sb)S =
(aS)(bS) = f(a)f(b),so H and G are homomorphic which means H ∼ G,
thus G is a group. In addition, from f(e) = eS = S, we get S = E.

This theorem shows that once a certain sort of subsemigroup S of G is given,
we can construct a power group G on G using a of subsemigroup H of G ,
and S = E. What’s more, we have H ∼ G . Thus we solve the problem given
previously.

Remark 1: For H ∼ G ,so H/kerf ∼= G , this means that the power group
G formed in this way must be isomorphic to a quotient group of a certain
subgroup of G.

Remark 2: It’s easy to see that S2 = S ⇒ S is a semigroup, but the in-
verse proposition is not valid. For example, set G to be the addictive group
(R,+), S = [1,+∞),then S is a subsemigroup of G,but S+S = [2,+∞) �= S.
But if we let e ∈ S, then S2 = S ⇔ S is a subsemigroup of G.

Example 2.1. Let G be the multiplicative group of positive real numbers.
Make E = [1,+∞) and H to be the set of all the rational numbers in G ,
they satisfy condition 2, thus G = {aE|a ∈ H} is a power group of G . It’s
obvious that G = {[a,+∞)|a ∈ H}. Let f : H → G, a �→ [a,+∞),then H ∼= G.

Example 2.2. Let G be the addictive group of all real numbers. Make E =
(0,+∞) and H to be the set of all integers, then G = {n + E|n ∈ H} is
a power group of G, and H ∼= G. It’s worth noting that 0 �∈ E , and the
elements of G forms a countable chain:

· · · ⊃ (−2,+∞) ⊃ (−1,+∞) ⊃ E ⊃ (1,+∞) ⊃ (2,+∞) ⊃ · · · .
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Example 2.3. Let (G,+,≥) be a addictive group with semi order, and G �
{[a, b]|a, b ∈ G} in which [a, b] � {c ∈ G|a ≥ c ≥ b}.Define an algebraic
operation ”+” on G as:

[a1, b1] + [a2, b2] � [a1 + a2, b1 + b2]

it’s easy to see that G is a power group of G,and E = [0] � {0} . In addition,
the mappingf : G → G, [a, b] �→ a, h : G → G, [a, b] �→ b are both epimor-
phism. Obviously, ker f = {[0, b]|b ∈ G}, ker h = {[a, 0]|a ∈ G}, therefore
G
/
ker f ∼= G ∼= ker f ∼= ker h ∼= G

/
ker f .

3 Relationship between Power Groups and Common
Groups

This section mainly studies the relationship between power groups and com-
mon groups. To simplify the statement, we first employ some notions and
brief introductions:

Definition 3.1. Let G be a power group of G . Denote G∗ �
⋃
{A|A ∈

G}, G0 � {a ∈ G∗|a−1 ∈ G∗}.

Theorem 3.1. 1) G∗ is a subsemigroup of G;
2) G0 �= ∅ ⇔ e ∈ G0;
3) G0 �= ∅ ⇔ G0 is a subsemigroup of G

Proof. 1)a, b ∈ G∗ ⇒ (∃A,B ∈ G)(a ∈ A, b ∈ B) ⇒ ab ∈ AB ⊂ G∗.
2) The conclusion is obvious.
3) On one hand, from G0 is a subsemigroup of G it’s easy to see that

G0 �= ∅; on another hand, a, b ∈ G0 ⇒ a−1, b−1 ∈ G∗ ⇒ (ab−1)−1 = ba−1 ∈
G∗ ⇒ G0 is a subsemigroup of G.

Theorem 3.2. Let G be a regular power group of G. If G0 ⊂ H ⊂ G∗, then
H is a subgroup of G ⇔ H = G0.

Proof. Suppose H is a subgroup of G, if H �= G0,let a ∈ H\G0, then a−1 ∈
H ⊂ G∗, so a ∈ G0, contradiction occurred, so H = G0. On another hand, if
H = G0, then from theorem 3.1(3) we know H is a subgroup of G.

Definition 3.2. Suppose G is a power group of G,A−1 is the inverse of
A,A� = {x−1|x ∈ A} is called the inverse set of A,if ∀A ∈ G, A−1 = A�,
then we say G is a power group whose inverse and inverse set are uniform,
which can be called ’uniform power group’ for short.

Theorem 3.3. If power group G is uniform, then G∗ �
⋃
{A|A ∈ G} is a

subgroup of G.

Proof. ∀a, b ∈ G∗, ∃A,B ∈ G,s.t.a ∈ A, b ∈ B.So ab−1 ∈ AA� = AB−1 ∈
G,that is ab−1 ∈ G∗,thus G∗ forms a subgroup of G.
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Theorem 3.4. G is a uniform power group ⇔ the identity E is a subgroup
of G.

Proof. ” ⇒ ” G is uniform ⇒ E−1 = E� ⇒ (∀a, b ∈ E)(ab−1 ∈ E • E� =
E • E−1 = E) ⇒ E ≤ G.” ⇐ ”E ≤ G ⇒ (∀a ∈ A)(aE = A = Ea). Now we
want A−1 = A�.

(i)∀a ∈ A−1,for A−1A = E,and e ∈ E,so ∃b ∈ A−1, b
′ ∈ A,s.t.bb

′
= e,so

b1 = b−1 ∈ A.And A−1 = bE ⇒ (∃c ∈ E)(a = bc) ⇒ (a−1 = c−1b−1eEA =
A) ⇒ (a ∈ A� that is A−1 ⊆ A�).

(ii) (∀a ∈ A�) ⇒ (a−1 ∈ A),and (AA−1 = E)−1 ⇒ (∃b ∈ A−1)a−1b =
e ⇒ a = b ∈ A−1,that is a−1 ⊇ A�,so from all above, we get A−1 = A�.

Corollary 3.1. The classic quotient group G/N is an uniform power group.

Proof. For N � G, and N is the identity of G/N , so from theorem 3.4 the
conclusion follows consequently.

Theorem 3.5. If G is a power group of G and e ∈ A ∈ G,then A−1 ⊂ E ⊂ A.

Proof. For e ∈ A and A = AE = ({e} ∪ A\{e})E = E ∪ (A\{e})E,so
E ⊂ A,and E = AA−1 = [E ∪ (A\E)]A−1 = A−1 ∪ (A\E)A−1,so A−1 ⊂
E,A−1 ⊂ E ⊂ A.

Theorem 3.6. If G is a finite group, and e ∈ A ∈ G,then A−1 = E = A.

Proof. For G is finite, so A,E are both finite, from theorem 3.5 we know
A−1 ⊂ E ⊂ A,and |A| = |A−1| ≤ |E|,thus A−1 = E = A.

Remark: it’s very important to require G to be a finite group in this the-
orem, or else the conclusion does not hold. We can give an example that
satisfy theorem 3.5 but does not comply with theorem 3.6: Let G be the real
numbers addictive group, let E = (0,+∞) and H be the set of all integers,
then G = {n + E|n ∈ H} is a power group of G, and E can be verified to
be the identity, and H ∼= G,but 0 ∈ (−1,+∞) = A ∈ G,and 0 �∈ E,so of
course A−1 = E = A does not hold. From the relationship of the elements
of G : · · · ⊃ (−2,+∞) ⊃ (−1,+∞) ⊃ E ⊃ (1,+∞) ⊃ (2,+∞) ⊃ · · ·, we can
tell that theorem 3.5 is satisfied.

Theorem 3.7. If G is a finite group and G is a uniform power group of
G,then ∀A ∈ G,if A �= E indicate that e �∈ A,then A forms a subgroup of G.

Proof. For G is a finite group, and e ∈ A,so A−1 = E = A,and for G is
a uniform power group, so E forms a subgroup of G , therefore A forms a
subgroup of G.

Prove up. This is a short path to verify if A forms a subgroup of G.
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Theorem 3.8. Suppose G is a finite group, then the necessary condition for
a subset G of the power set P(G) forms a power group is ∀A ∈ G, A �= E ⇒
e �∈ A.

The proof can be obtained directly from theorem 3.6.
This theorem claims that if G forms a power group of G , then there exists

at most one element E ∈ G which contains the identity e of G. There are no
other elements that contains e except for E .

Corollary 3.2. Suppose G is a finite group, if G ⊂ P(G) contains two
sets A,B both of which contains e, then G is not able to form a power group
of G.

4 Characterization of Power Groups by Common
Groups

Suppose G is a group,N is a normal group of G,G/N is a quotient group,
and we use G|P (N) to denote the restriction of G on P (N). In this section,
we discuss G,N and the relationship between G/N and the corresponding
power group, then we will get the characterization of power groups by com-
mon groups.

Theorem 4.1. Suppose G is a group,N is a subgroup of G,G is one of the
power groups of G, the identity is denoted by E , if E ⊂ N ,then G|P (N)
forms an power group of N so it’s a subgroup of G.

Proof. (i) ∀A,B ∈ G|P (N),we have A • B ∈ G,and for A ⊂ N,B ⊂ N ⇒
A •B ⊂ N ⊂ A •B ∈ P (N),thus A •B ∈ G|P (N).

(ii) ∀B ∈ G|P (N),there exists B−1 ∈ G|P (N) s.t.BB−1 = E,so ∀b′ ∈
B−1, b ∈ B ⊂ N, ∃h ∈ E ⊂ N ,s.t.b

′
b = h ⇒ b

′
= hb−1 ∈ N ⇒ B−1 ⊂ N ⇒

B−1 ∈ G|P (N).
From (i),(ii) we know that G|P (N) is a power group of N , and it is

consequently a subgroup of G.

Theorem 4.2. Suppose G is a group, N is a normal group of G,G is a power
group of G,E ⊂ N ,then

(i) G|P (N) is a power group of N , so it’s also a subgroup of G.
(ii) G|P (N) is a normal subgroup of G.

Proof. (i) is a direct corollary of theorem 4.1.
(ii) ∀A ∈ G, ∀H ∈ G|P (N) , we only need to show that AHA−1 ∈ G|P (N).

∵ AHA−1 ⊂ ANA−1 = NAA−1 = NE ⊂ N,∴ AHA−1 ∈ P (N).And
∵ AHA−1 ∈ G,∴ AHA−1 ∈ G|P (N),∴ G|P (N) is a normal subgroup of G.

Theorem 4.3. Suppose G is a group, N is a normal group of G, then given
any power group G on G, there is a certain subset of the power set of G/N .
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ϕ(G/N) = {A
′
|A

′
∈ P (G/N), A

′
= {aN |a ∈ A ∈ G}},

and there exists an epimorphism f between G and ϕ(G/N), thus ϕ(G/N)
is a group whose identity is {aN |a ∈ E} ,the inverse of {aN |a ∈ A} is
{a|a ∈ A−1},and G/ker f ∼= ϕ(G/N).

Proof. Let f : G → ϕ(G/N), A �→ f(A) = {aN |a ∈ A},then f(AB) =
{cN |c ∈ AB} , it’s obvious that f is a surjection; for f(A) • f(B) = {aN |a ∈
A} • {bN |b ∈ B} = {abN |a ∈ A, b ∈ B} ,and so f(A)f(B) ⊆ f(AB).And
for ∀cN ∈ f(AB), we have c ∈ AB ⇒ (∃a ∈ A, b ∈ B)(c = ab) ⇒ (cN ∈
f(A)f(B)) ⇒ f(A) • f(B) ⊇ f(AB), f(A)f(B) = f(AB) ,thus f is an epi-
morphism. Additionally, {aN |a ∈ E} is the identity, and it’s obvious that the
inverse of {aN |a ∈ A} is {aN |a ∈ A−1}, it’s unnecessary to go into details.

Theorem 4.4. Suppose G is a group, N is its subgroup, if E ⊂ N then

G/G|P (N) ∼= ϕ(G/N).

Proof. From theorem 4.3 we can get:G/ker f ∼= ϕ(G/N) , thus we just need
to prove G|P (N) = ker f .

(i) ∀A = ker f, f(A) = {aN |a ∈ A} = {cN |c ∈ E} = f(E),so ∀a ∈
A, ∃b ∈ E,s.t. aN = bN ⇒ (∃n1, n2 ∈ N)(an1 = bn2) ⇒ a = bn1n

−1
2 ,so b ∈

E ⊂ N,n2n
−1
1 ∈ N ,so a ∈ N ⇒ A ∈ G|P (N) ⇒ ker f ⊆ G|P (N).(ii)∀A ∈

G|P (N),then A ⊆ N ,so f(A) = {aN |a ∈ A} = {aN |a ∈ EA} = {aN |a =
ba1 ∈ EA, b ∈ E, a1 ∈ A}={ba1N |b ∈ E, a1 ∈ A} = {bN |b ∈ E} = f(E),so
G|P (N) = ker f ,thus G|P (N) = ker f , which means G/G|P (N) ∼= ϕ(G/N).

Notice that the condition that E ⊂ N is quite important here, from this
proof we can tell that G|P (N) forms a normal subgroup of G , therefore (ii)
of theorem 4.2 can be viewed as a corollary of this theorem.

Theorem 4.5. If ϕ(G/N) = {A′ |A′
= {aN |a ∈ A,A ∈ P (G)}} forms a

power group of G/N ,let A∗ =
⋃
{aN/aN ∈ A

′},G∗ = {A∗/A
′ ∈ ϕ(G/N)},

then G∗ is a power group of G, and ϕ(G/N) ∼= G∗.

Proof. (i) Let f∗ : ϕ(G/N) → G, A′ �→ A∗,then it’s obvious that f is a surjec-
tion from ϕ(G/N) to G∗ . Now we want to show that f is a homomorphism
which means f∗(A

′ •B
′
) = f∗(A

′
)f∗(B

′
).

For f∗(A
′
) = A∗, f∗(B

′
) = B∗, so we just need to have f∗(A

′ • B
′
) =

A∗ •B∗ which is proved as follows:
(1) ∀y ∈ f∗(A

′
B

′
) =
⋃
{dN |dN ∈ A

′ •B′}, ∃doN = aN • bN ∈ A
′
B

′
,while

aN ∈ A
′
, bN ∈ B

′
,s.t. y ∈ doN = aN • bN ,∴ ∃x ∈ aN, y ∈ bN s.t. y = xy ∈

A∗B∗,which means f∗(A
′ •B′

) ⊆ A∗ •B∗.(2) ∀xy ∈ A∗ •B∗, ∃aN ∈ A
′
, bN ∈

B
′
,s.t.x ∈ aN, y ∈ bN ,∴ x • y ∈ aN • bN = abN ∈ A

′ • B
′ ∈ ϕ(G/N) ⇒

xy ∈ f∗(A
′ •B′

). From (1) (2) above we know f∗(A
′ •B′

) = f∗(A
′
)f∗(B

′
).So

ϕ(G/N) ∼ G∗, it certainly forms a power group of G.
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(ii)Now we show that f∗ is an injection.If A
′ �= B

′
, then we may assume

∃aN ∈ A
′
,but aN �∈ B

′
and ∵ a ∈ aN ⇒ a ∈ A∗, from these we assert that

a �∈ B∗,otherwise a ∈ bN ∈ B
′ ⇒ aN = bN ∈ B

′
,contradiction occurred.∴

A∗ �= B∗,which means ϕ(G/N) ∼= G∗.

This theorem shows that some sort of G/N ′s power group ϕ(G/N) can be
isomorphic to some certain type of G′s power group G and G can be related
to some subgroups of G, thus this theorem is the one which joins the three
aspects together. What’s more, from some points of view, theorem 4.3 and
theorem 4.6 have a similar sense to the fundamental theorem of isomorphism
of classic algebra.

5 Structures of Power Groups

First, we consider the inverse proposition of 2.2: suppose G is a power group
of G, does there exist a subgroup of G named H ,s.t. G = {aE|a ∈ H}?

Theorem 5.1. Suppose G is a power group of G, if E is a subgroup of G,then
G = {aE|a ∈ G∗} and G∗ is a subgroup of G.

Proof. ∀A ∈ G,choose a ∈ A, then aE ⊂ AE = A.Now we prove aE = A.If
not, there must be b ∈ A\aE , we can show that a−1b �∈ E.For if a−1b =
c ∈ E,then b = ac ∈ aE,this leads to a contradiction for it’s mentioned
before that b ∈ A\aE.Let d ∈ A−1,then da, db ∈ A−1A = E,so a−1b =
a−1(d−1d)b(da)−1(db) ∈ E(for E is a subgroup), this goes against the fact
that a−1b �∈ E.Thus aE = A,that is G ⊂ {aE|a ∈ G∗}.Otherwise,∀a ∈
G∗, ∃A ∈ G,s.t. a ∈ A,so aE = A ∈ G, {aE|a ∈ G∗} ⊂ G.Then we will prove
that G∗ is a subgroup of G.

∀a ∈ G∗, ∃a ∈ G,let a ∈ A, notice that e ∈ E and AA−1 = E,so ∃b ∈
A, b−1 ∈ A−1 s.t. bb−1 = e. Then from A = bE we know that ∃c ∈ E,s.t. a =
bc ,so a−1 = (bc)−1 = c−1b−1 ∈ EA−1 = A−1 ⊂ G∗.And from theorem 3.1 1)
we know that G∗ ≤ G,∀x ∈ A−1,A−1 = xE = a−1(ax)E, ax ∈ AA−1 = E,so
A−1 = a−1E ⇒ a−1 ∈ A−1 ,that is A−1 ∈ G∗.

Under the condition of this theorem, we have three corollaries listed below
1)E is a normal subgroup of G∗;2) G∗ = G0;3)G = G∗/E.
In addition, there are three special cases listed below:
1)G is a periodic group ⇒ G = G∗/E;2) E is finite ⇒ G = G∗/E;3)G is

finite ⇒ G = G∗/E.
Theorem 5.1 answered the problem raised at the beginning of this section

affirmatively under the condition that E is a subgroup, but this condition
is so strong that G is strengthened to a quotient group G∗/E. Now we will
loosen the constraint conditions and mainly consider the construction of reg-
ular groups.
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Definition 5.1. Set S to be a monoid of G (the subsemigroup which contains
the identity of G),H is a subgroup of G, we call S the normal subsemigroup
of G with respect to H, if (∀a ∈ H)(aS = Sa). Especially, when H = G, we
can say that S is a normal group of G.

If G is a regular power group of G, we can guess that E is a regular
subsemigroup of some kind of subgroup of G.

Suppose G is a power group of G, ∀A ∈ G,let A � {a ∈ A, a−1 ∈ A−1}
which is called the kernel of A. Set G �

⋃
{A|A ∈ G}, it’s easy to verify this

two properties:1)e ∈ E ⇒ (∀A ∈ G)(A �= ∅);Otherwise (∃A ∈ G)(A �= ∅) ⇒
e ∈ E; 2) G �= ∅ ⇔ e ∈ E.

Theorem 5.2. If G is the regular power group of G, then G is a subgroup of
G0 and G = {aE|a ∈ G}.
Proof. ∀a, b ∈ G, ∃A,B ∈ G, choose a ∈ A, b ∈ B,then ab−1 ∈ AB−1 =
C ∈ G. Notice that (ab−1)−1 = ba−1 ∈ BA−1 = C−1,so ab−1 ∈ C ⊂ G
which means G is a subgroup of G0. What else, ∀A ∈ G,for G is regular,
so A �= ∅,choose a ∈ A ,we have aE = A. In fact, b ∈ A �→ b = eb =
(aa−1)b = a(a−1b) ∈ a(A−1A) = aE,so A ⊂ aE;for aE ⊂ AE = A,so
A = aE,thus G ⊂ {aE|a ∈ G} .Otherwise,∀a ∈ G, ∃A ∈ G,let A = aE , that
is {aE|a ∈ G} ⊂ G.

Under the conditions of theorem 5.2, we have direct corollariesE is a normal
subsemigroup of G and E is a normal subgroup of G.

Theorem 5.2 answered the question raised in this section under the condi-
tion that G is regular, next we will describe the construction of power group
in more details.

Definition 5.2. If E is a normal subsemigroup of G with respect to H, denote
H |E � {aE|a ∈ H}, then H |E is a regular power group of G, called a quasi
quotient group of H with respect of E. Especially, when H = G, call G|E a
quotient group of G(with respect to E).

According to this definition, theorem 5.2 means that if G is regular, the
G must be some quasi quotient group of G with respect to E: G = G|E. We
may say that G|E and G

/
E are isomorphic.

Theorem 5.3. If G is a regular power group of G, then G
/
E ∼= G|E.

Proof. Let f : G → G
/
E, a �→ aE. It’s easy to see that f is an epimorphism,

thus G/ker f ∼= G|E, now we want to prove that ker f = E.∵ a ∈ ker f ⇒
a = ae ∈ aE = E ⇒ (∃b ∈ E)(ab = e) ⇒ a−1 = b ∈ E ⇒ a ∈ E, in addition,
notice that the proof of theorem 5.2 shows the fact that (∀A ∈ G)(a ∈ A ⇒
aE = A = Ea), thus a ∈ E ⇒ aE = E ⇒ a ∈ ker f .

This theorem makes it clear what the structure of power group G is like:
G = G|E ∼= G

/
E. Let us study the structure of G/E.Suppose G is a power

group of G, and G � {A|A ∈ G}.
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Theorem 5.4. If G is a regular power group of G, then G = G
/
E.

Proof. A ∈ G ⇒ (∀a ∈ A)(A = aE) ⇒ (∀a ∈ A)(A = aE), next we want
to show aE ∼= aE.For x ∈ aE ⇒ (∃h ∈ E)(x = ah) ⇒ h−1 = x−1a ∈
(aE)−1A = A−1A = E ⇒ h ∈ E ⇒ x = ah ∈ aE.Otherwise,x ∈ aE ⇒
(∃h ∈ E)(x = ah) ⇒ x−1 = h−1a−1 ∈ Ea−1 = a−1E = (aE)−1 ⇒ x ∈ aE.
In a word, aE = aE,this conclusion indicates that G ⊂ G/E.On another
hand, ∀aE ∈ G

/
E,for a ∈ G,then ∃A ∈ G,s.t.a ∈ A,thus A = aE = aE,

which means G
/
E ⊂ G.

6 Conclusion

Since Prof. Wang Peizhuang raised the problem of topological upgrading and
obtained a series of systematic theoretical results and applications, and hy-
pergroup which was raised by H.S.Wall had a great number of important
applications in theoretical physics including quantum mechanics and string
theory, this kind of upgrading of mathematical structure had become espe-
cially important. This paper studies this problem, namely the upgrading from
group structure to its power set. In specific, we give the definition, examples
and ways of construction of power groups, then show the relationship be-
tween power groups and common groups and characterized power groups by
common groups and obtain a series of constructive conclusions. So for, the
breakthroughs of upgrading a group to its power set have been achieved.
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Abstract. P-sets (packet sets) which come from finite general sets have new math-
ematic structure. Introduced to dynamic characteristic, P-sets are composed of 
internal P-sets FX  (internal packet set FX ) and outer P-sets FX  (outer packet 
sets FX ). P-sets have dynamic characteristics. Based on P-sets, the concepts of 
internal-data circle, outer-data circle and data circle theorem are given. By these 
results, the dynamic data restore theorem, dynamic data restore guideline and 
dynamic data restore-identification are given. Applications in dynamic data analy-
sis-identification are proposed. P-sets can be used in many fields. 

Keywords: P-sets, dynamic characteristic, internal-outer data circle, data restore, 
data restore theorem, data circle theorem, applications. 

1   Introduction 

Data transmission system of computer (Perspective identification system of com-
puter) often appears the phenomenon as this: the data which system normally 
outputs is 1 2{ , ,m x x=  , }qx" .If internal parameters of information transmission 

module network change (module device is aging, failure), data m changes into 

1 2{ , , , }, ,F
pm x x x p q= <" or data m changes into 1 2{ , , , }, ,F

rm x x x q r= <"  the perform-

ance of system state is that : the former, some data in m has been lost ( m has lost 
many data elements ix ), the latter, some data has been added to m  ( m has been 

supplemented by some data elements jx ), the output given by system is “a chaotic 

image distortion”. The abnormal state of system is similar to the characteristic of 
P-sets. This phenomenon has been commonplace, the theoretical understanding of 
this phenomenon is given, we can not find the results of such research in the exist-
ing international and domestic literature, how many results the phenomenon has 
hidden in the end?  

Refs. [1,2] proposed P-sets and the structure of P-sets was given. P-sets are a 
set pair which are composed of internal P-sets FX  (internal packet sets FX ) and 
outer P-sets FX  (outer packet sets FX ), or ( , )F FX X are P-sets. P-sets have dynamic 
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characteristic [1-9]. Based on the structure of P-sets and dynamic characteristic, 
the paper gives discussion. Having a theoretical understanding of the nature about 
this phenomenon is the subject of this paper. 

By using P-sets, the concepts of internal data-circle and outer data-circle are 
given, Based on these concepts, data restore guideline and data restore-
identification theorem are proposed. Finally application is given. It is important to 
understand the “pathological” nature of data transmission network. P-sets are new 
theory and method to study the dynamic information system.  

For the convenience of discussion and accepting the results of this paper easily 
while keeping the contents integral, the structure of P-sets is simply introduced to 
section 1 as the theory basis of the discussion of this paper. The more concepts and 
applications of P-sets can be found in Refs. [1-9]. 

2   P-Sets and Its Set Pair Structure 

Assumption 1. X  is  a  finite general set on U , U is  a  finite element universe, 

V  is  a  finite attribute universe. 
Given a general set 1 2{ , , , }mX x x x= " U⊂ , and 1 2{ , , , }k Vα α α α= ⊂"  is attribute 

set of X , FX  is called internal packet sets of X , called internal P-sets for short, 
moreover  

                                              FX X X −= − ,                                                         (1) 

X −  is called F -element deleted set of X , moreover 

                              { | , ( ) , }X x x X f x u X f F− = ∈ = ∈ ∈ ,                                          (2) 

if  the attribute set  Fα  of  FX  satisfies 

                               { | ( ) , }F f f Fα α α β α α′ ′= = ∈ ∈∪ ,                                            (3) 

where , , ,FX V f Fφ β β α≠ ∈ ∈ ∈  turns β  into ( )f β α′= α∈ . 
Given a general set 1 2{ , , , }mX x x x U= ⊂" , and 1 2{ , , , }k Vα α α α= ⊂"  is attribute 

set of X , FX  is called outer packet sets of X , called outer P-sets for short, more-
over 

                                         FX X X += ∪ ,                                                               (4) 

X +  is called F -element supplemented set, moreover 

                               { | , , ( ) , }X u u U u X f u x X f F+ ′= ∈ ∈ ∈ ∈ ∈ ,                                (5) 

if  the attribute set Fα  of FX  satisfies 

                             { | ( ) , }F
i i if f Fα α β α β α= − = ∈ ∈ ,                                            (6) 

where , ,F
i f Fα φ α α≠ ∈ ∈  turns iα  into ( )i if α β α= ∈ . 
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The set pair which are composed of internal P-sets FX  and outer P-sets  FX  are 
called P-sets (packet sets) generated by general set X , called P-sets for short, 
moreover  

                                               ( , )F FX X ,                                                              (7) 

where general set X  is ground set of ( , )F FX X . 
As P-sets have dynamic characteristic, the general representation of P-sets is: 

                                         {( , ) | I, J}F F
i jX X i j∈ ∈ ,                                                    (8)   

where I , J are index sets, formula (8) is the representation of set pair family of P-sets. 
In Fig. 1, X U⊂  is a finite general set on 

1 2{ , , , } , F

qX x x x X= " is internal P-sets of 

, FX U X⊂ =  
1 2{ , , , }, , F

p Xx x x p q≤" is outer P-sets of 
1 2

, { , , , }, ,F

r
X U X x x x q r⊂ = ≤" ( , )F FX X  

is P-sets. FX is expressed in thick line, X is expressed in thin line, FX is expressed 
in dashed line. 
 

 

 

 
   

     

 

 

 

 

Fig. 1. Shows intuitive graphical representation of P-sets 

Important Description on the structure and concepts of P-sets        
       

1 .D  For the convenience and without misunderstanding, formula (7) only uses 
one of many set pairs to express P-sets.  

2 .D 1 2 1 2{ , , , } , { , , , }m nF f f f F f f f= =" " are element transfer families, ,f F f F∈ ∈  
are element transfers, ,f F f F∈ ∈ are given functions (function is a transformation 
or mapping). The characteristic of f F∈ is that , ,u U u X f F∈ ∈ ∈  
changes u into ( ) ,f u x X′= ∈  or , ,V f Fβ β α∈ ∈ ∈ changes β  into ( )f β α α′= ∈ , the 
characteristic of f F∈ is that ,x X∈  f F∈  changes x  into ( ) ,f x u X= ∈  
or ,iα α∈ f F∈ changes iα into ( )i if α β α= ∈ . 

3 .D The characteristic of formula (3) is similar to the structure of 1T T= + , 
1T T= +  has dynamic characteristic, it is the same with formula (3), 

{ | ( ) , }f f Fα β α α′ ′= ∈ ∈ means the set composed of new elements added 
to ,{ | ( ) , }f f Fα α β α α′ ′= ∈ ∈ and α which has not been supplemented by elements 
satisfy  that { | ( ) , }f f Fα β α α α φ′ ′= ∈ ∈ =∩ . 

XFX

FX
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4 .D The dynamic characteristic of formula (4) is that formulae (4) and (5) can be 
denoted by a common equation as follow: 

{ | , , ( ) , }FX X u u U u X f u x X f F′= ∈ ∈ = ∈ ∈∪ .                  (9) 

There is 1 1 1 1, , ( ) ,u U u X f u x X′∈ ∈ = ∈ formula (9) changes into  

1 { | , ,FX X u u U u X= ∈ ∈∪  
1 1( ) , } { } { , }.f u x X f F X x X x′ ′ ′= ∈ ∈ = =∪ Suppose that

1 ,FX X= tak-
ing

2 3 2 3 2, , , , ( )u u U u u X f u∈ ∈ 2 3 3, ( ) ,x X f u x X′ ′= ∈ = ∈ formula (9) changes into 

2 1 { | , , ( ) ,F FX X u u U u X f u x X f′= ∈ ∈ = ∈ ∈∪ 2 3 1 2 3 1 2 3} { , } { , } { , } { , , , }F X x x X x x x X x x x′ ′ ′ ′ ′ ′ ′ ′= = =∪ ∪ .Sup
pose that 

2 ,FX X= taking
4 4; ;u U u X∈ ∈  4 4( ) ,f u x X′= ∈ formula (9) changes into 

3 2 2{ | , , ( ) , }F F FX X u u U u X f u x X f F X′= ∈ ∈ = ∈ ∈ =∪ 4 1 2 3 4 1 2 3{ } { , } { } { } { , }Fx X x x x X x x x′ ′ ′ ′ ′ ′ ′= =∪ ∪ ∪ ∪ ∪ ∪

4 1 2 3 4{ } { , , , , },x X x x x x′ ′ ′ ′ ′= and so on , then there is 1 2 3 ,F F FX X X⊂ ⊂  or, 
card 1( )FX 2card( )FX≤ 3card( ),FX≤ card=cardinal number. Outer P-sets FX are larger. 
Formula (9) is  similar to the characteristic of 1T T= + . 

5 .D In formulae (1)-(3), some elements are deleted from X , X generates internal 
P-sets FX , it is the same with that the attribute set α of X is supplemented by 
some elements,α generates ,F Fα α α⊂ .Or, if 1 2,F Fα α are attribute sets of 1 ,FX 2

FX re-
spectively, or 1 2

F Fα α⊆ ,then 2 1
F FX X⊆ . { | ( ) , }f f Fα β α α′ ′= ∈ ∈ in formula (3) is not 

attribute set of X −  which is composed of elements deleted from X , the denotation 
of X − is formula (2). 

Based on formulae (1)-(7), there is relation between P-sets ( , )F FX X and general 
set X . 

Theorem 1. If F F φ= = , then P-sets ( , )F FX X  and general set X satisfy 

 
( , )F F

F F
X X X= =∅ = .                                              (10) 

 

Proof.  If F φ= , then formula (2) changes into { | , ( ) , } ,X x x X f x u X f F φ− = ∈ = ∈ ∈ =  

formula (1) changes into ,FX X X X−= − = If ,F φ= then formula (5) changes 

into { |X u+ =  , , ( ) , } ,u U u X f u x X f F φ′∈ ∈ = ∈ ∈ = formula (4) changes 

into .FX X X X+= =∪ P-sets ( , )F FX X  change into X , then there is formula (10). 
Formula (10) proposes that under the condition of F F φ= = , P-

sets ( , )F FX X turn back to “origin” of general set , in other words, P-sets have lost 
dynamic characteristics, actually, P-sets ( , )F FX X  are general sets X . 

Theorem 2. If F F φ= = , the set pair family of P-sets {( , ) | I, J}F F
i jX X i j∈ ∈ and 

general set X satisfy: 

{( , ) | I, J}F F
i j F F

X X i j X= =∅∈ ∈ = .                                       (11) 
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Formula (11) proposes that under the condition of F F φ= = , each F
iX , F

jX  turns 
back to “origin” of general set , or {( , ) | I, J}F F

i jX X i j∈ ∈  turns back to “origin” of 
general set . The proof of theorem 2 is similar to theorem 1, so the proof is 
omitted. 

3   Internal-Outer Data Circle and Dynamic Data Restore  

Assumption 2. , ,FX X and FX , in section 1 are denoted by , ,Fm m and Fm ,respec-

tively, or, , ,F Fm X m X= = and F Fm X= , in order to avoid confusion and misunder-

standing. 

Definition 1. Fm is called F -data generated by data m ,if                             

1 2{ , , , }F
pm x x x= " ,                                           (12)       

F
ix m∀ ∈ is called data element of Fm . 

Definition 2. Fm  is called F -data generated by data m ,if 

                                                 1 2{ , , , }F
rm x x x= " ,                                            (13) 

F
jx m∀ ∈  is called data element of Fm , 

where 1 2{ , , , },qm x x x= " ,p r  in formulae (11), (12) satisfy  that .p q r≤ ≤ , , Np q r +∈ . 

 

Definition 3. Fy is called characteristic value set of Fm , if 

1 2{ , , , }F
py y y y= " ,                                          (14) 

Fy  is called characteristic value set of Fm , if 

1 2{ , , }F
ry y y y= "  ,                                         (15) 

where F
ky y∀ ∈ is characteristic value of data element F

kx m∈  ( the value of kx , or, 

the value of kx  that system outputs), Fy yλ∀ ∈  is characteristic value of data ele-

ment Fx mλ ∈ , , Rky yλ ∈ , R is real number set. 

 

Definition 4. γO is called data unit circle which considers coordinate origin O as 

the center and considers ρ as the radius ,called data  circle for short, if  

                                                  || || || ||y yρ = ,                                                (16) 

where 2 2 2 1 2
1 2|| || ( )qy y y y= + + +"  is 2-Norm of vector 1 2( , , , )T

qy y y y= "  generated by 

characteristic value set 1 2 1 2{ , , , }, { , , , }q qy y y y y y y y= =" " is characteristic value set 

of data 1 2{ , , , }qm x x x= " . 
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Definition 5. FO  is called F -data circle which considers coordinate origin O as 

the center and considers Fρ as the radius, if 

|| || || ||F Fy yρ = ,                                          (17) 

where 2 2 2 1 2
1 2|| || ( )F

py y y y= + + +"  is 2-Norm of vector 1 2( , , , )F T
py y y y= " , Fy is vector 

generated by formula (14). 

 
Definition 6.  FO is called F -data circle which considers coordinate origin O as 
the center and considers Fρ as the radius , if 

|| || || ||F Fy yρ = ,                                           (18) 

where 2 2 2 1 2
1 2|| || ( )F

ry y y y= + + +"  is 2-Norm of vector 1 2( , , , )F T
ry y y y= " , Fy  is vector 

generated by formula (15). 
Obviously, Fm in formula (12) comes from data m which has lost some data 

elements ix , Fm in formula (13) comes from data m which has been supplemented 
by some data elements jx , formulae (12) and (13) are two states of phenomenon 
given by the introduction, and they are the “sick out” of system. By definitions 1-
6, we can get that: 

 

Theorem 3 (Data circle theorem of steady data).  If the output ,km mλ  are the 

data which system w  outputs when at time ,k  Tλ ∈ , k λ≠ ,and they satisfy  

UNI{ , }km mλ ,                                            (19) 

then the data circle kO generated by km and λO  generated by mλ coincide ,or  

                                                 k λ=O O ,                                                           (20) 

where UNI=unidentification[1,2]. 

We can get the proof easily, so the proof of theorem 3 is omitted, or it can be 

obtained from Fig. 2 straightforwardly. 

 

Corollary 1. If the output of system w is steady, then the output tm  of system w at 

any time t  constitutes data circle O . 

 

Theorem 4 (Data circle internal-concentric circle theorem). If the output of 

system w is F -data Fm , the data circle FO generated by Fm is internal-concentric 

circle of O , or  

                                                  F ⊂O O ,                                                         (21) 

where“ ⊂ ”denotes that FO is in data circle O . 
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In fact, from formulae (14), (17) and (16), we can get that 1 2 1 2{ , , , } { , , ,F
pm x x x x x= ⊆" "  

} , || || || || || || || ||F F
qx m y y y yρ ρ= = ≤ = , or 0 1Fρ ρ< ≤ = , so there is formula (21) . 

 

Theorem 5 (Data circle outer-concentric circle theorem). If the output of system 

w is F -data Fm , the data circle FO  generated by Fm  is outer-concentric circle of 

data circle O , or  

                                            F⊂O O ,                                                               (22) 

where“ ⊂ ”denotes that FO is out of  data circle O . 

Using definitions 1-6, theorems 3-5 and corollary 1,we can get that：  

 

Proposition 1. The data of system w outputs at time k T∈ constitutes F -data circle 
FO , at time k T∈ system w has lost data, and vice versa. 

 

Proposition 2. The data of system w outputs  at time Tλ ∈ constitutes F -data 

circle ,FO  at time Tλ ∈ the output of system w occurs data intrusion (Interfere  

data comes into system ), and vice versa. 

 

Theorem 6 ( F -data restore theorem). The necessary and sufficient condition of 

the data Fm which system w outputs being restored into m is that the attribute 

set Fα of data Fm  and the attribute setα  of data m satisfy 

( { | , ( ) })F F F
i i i ifα α α α α β α α φ− ∈ = ∈ − = .                               (23) 

 

Proof. In important description 5D of section 1: If  F F
j iX X⊆ , the attribute set F

iα of 
F
iX  and the attribute set F

jα of F
jX satisfy that ;F F

i jα α⊆ or, if card( ) card( )F F
j iX X≤ , 

there is card( ) card( )F F
i jα α≤ ,card=cardinal number. 1 .D  As Fm is F -data of m , 

Fm m⊆ ,the attribute set Fα of Fm  and the attribute setα of m satisfy that Fα α⊆ . If 
Fm is restored into m , or Fm m= , Fm has the same attribute set with .m Obviously, 

there is attribute difference set { | , ( ) },F F F
i i i ifα α α α α β α∇ = ∈ = ∈ Fα∇ being deleted 

from Fα makes there is formula ( Fα −  { | , ( ) })F F
i i i ifα α α α β α α φ∈ = ∈ − = , then 

Fm m= . 2 .D If there is ( { | , ( )F F
i i i ifα α α α α β− ∈ = ∈  }) ( )F F Fα α α α α φ− = −∇ − = , 

or, F Fα α α−∇ = , there must be ,F Fm m m= is restored into m . 

 

Theorem 7 ( F -data restore theorem). The necessary and sufficient condition of 

the data Fm  which system w  outputs being restored into m is that the attribute 

set Fα of data Fm and the attribute set α of data m satisfy  
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( { | , , ( ) })F F F
i i i i iV fα β β β α β α α α φ′∈ ∈ = ∈ − =∪ .                    (24) 

The proof is similar to theorem 6, so it is omitted. 

 
Theorem 8 ( F -Data restore-identification-Theorem). If F -data circle FO and 
data circleO of m satisfy 

F =O O ,                                                    (25) 

then data Fm which constitutes F -data circle FO is restored into data m  which 
constitutes data circleO , moreover 

                                                     UNI{ , }Fm m .                                               (26) 

 
Theorem 9 ( F -Data restore-identification-Theorem). If F -data circle FO and 
data circle O of m satisfy 

F =O O ,                                                     (27) 

then data Fm which constitutes F -data circle FO is restored into data m  which 
constitutes data circleO , moreover 

UNI{ , }Fm m .                                               (28) 

Theorems 8, 9, can be obtained from theorems 6, 7 directly, so the proof is 
omitted. 

F -data and F -data Restore guideline 

If the output data m of system w at time t T∈ generates a data unit circleO , the 
difference data ,Fm∇  FmΔ  satisfy 

                                                 F Fm m φ∇ −Δ = ,                                              (29) 

where ,F F F Fm m m m m m∇ = − Δ = − . 
The guideline points out that the output data m of system w at time t T∈ does not 

exist data losing and data invasion. 
By using the results in section 2, section 3 gives application of internal-outer 

data circle in data identification about dynamic output of system. 

4   Data Identification of System State and Its Application 

Example of this section is from computer vision identification system, data of the 
example is from raw data which is processed through the technical means, it does 
not affect the analysis of results .For simple and without losing generality, the 
example only gives F - data and application of F  - data circle in data identifica-
tion system state, the block diagram of system is omitted. Vision identification 
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system w  of computer has seven data-output terminals, its output data at time 
,t t k T+ ∈  is included in Table 1： 

Table  1. The output value  
1 7~y y of system w at ,t t k T+ ∈  

y  1y  2y  3y  4y  5y  6y  7y  

t
y  1.63 1.78 1.06 1.43 1.81 1.94 1.09 
F
t ky + 1.63 1.78 - 1.43 - 1.94 - 

 

where 1 2 3 4 5 6 7{ , , , , , , }ty y y y y y y y= in table 1 is characteristic value set which is com-
posed of output value of data 1 2 3 4 5 6 7{ , , , , , , }m x x x x x x x=  at time t∈ T , 

1 2 4 6{ , , , }F
t ky y y y y+ = is characteristic value set which is composed of output value of 

data 1{ ,Fm x= 2 4 6, , }x x x at time t k T+ ∈ , “-” denotes “air data”. 

Based on Table 1 and formula (17) in section 2 we can get 
|| || || || 3.41 4.15F Fy yρ = = 0.76 1,= <  or || || || || 1.F y yρ ρ< = = By definitions 4, 5, F -

data circle FO generated by Fm and  data circle O  generated by m satisfy 
F ⊂O O .Using theorem 4, we get that FO is internal-concentric circle of O . 

On-line Query and Confirm of System w  
 

The integral circuit (RC circuit) which is connected with 3 5 7, ,x x x  in identifica-
tion module network changes into “short circuit”, so, it makes 3 5 7 0y y y= = = . The 
results given in Table 1 are confirmed on-line. Repair network is startup in sys-
tem w , the output of system w is normal, it meets F -data restore guideline. In 
Fig.2 data circle O is an intermediate circle, F -data circle FO is an internal con-
centric circle of , FO O is indicated by the thick solid line. F -data circle FO is an 
outer concentric circle of  , FO O  is indicated by the thick solid line. 1ρ =  is the 
radius of , 1Fρ <O  is the radius of , 1F Fρ >O  is the radius of FO .  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Shows the intuitive graphical representation of data circleO , F - data circle FO , 
and F - data circle FO  
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5   Discussion 

The paper makes use of the structure and characteristics of P-sets to give the con-
cepts of internal-data circle and outer-data circle. By using these concepts, from a 
theoretical point of view we recognize the nature of pathological output and use 
example to prove the usefulness of the results in this paper. P-sets are new theory 
and new method to study the dynamic information system. 

P-sets can give research on the problems about application, the new results are: 

•  Characteristic of Information Hiding and its application  
•  Characteristic of Information Memory and its application  
•  Characteristic of Information Inheritance and its application  
•  Characteristic of Information Variation and its application  
•  Characteristic of Information Restore and its application  
•  Characteristic of Information Law Generation and its application  
•  Characteristic of  Information Image Separation-hiding and its application  
•  Characteristic of Information Re-combination and its application  
•  Characteristic of  Information Dependence Discovery and its application 

Acknowledgements. This work was supported by the Foundation of Educational 
Department of Fujian Province, China (Grant No.JA09151, JB08177). 

References 

1. Shi, K.Q.: P-sets and its applications. An International Journal Advances in Systems 
Science and Application 9(2), 209–219 (2009) 

2. Shi, K.Q.: P-sets. Journal of Shandong University (Natural Science) 43(11), 77–84 
(2008) (in Chinese) 

3. Shi, K.Q., Zhang, L.: Internal P-sets and data outer-recovery. Journal of Shandong 
University (Natural Science) 44(4), 8–14 (2009) (in Chinese) 

4. Li, Y.Y.: Generation and Recovery of F-distortion Data. Journal of Jishou University 
(Natural Science) 31(3), 59-72 (2010) (in Chinese)  

5. Yu, X.Q.: Identification and filtering of P-sets. Journal of Shandong University (Natu-
ral Science) 45(1), 94–98 (2010) (in Chinese) 

6. Yu, X.Q.: Area characteristic of P-sets. Journal of Shandong University (Natural Sci-
ence) 45(2), 99–102 (2010) (in Chinese) 

7. Zhang, F., Chen, P., Zhang, L.: P-separation of P-sets and its applications. Journal of 
Shandong University (Natural Science) 45(3), 71–75 (2010) (in Chinese) 

8. Shi K.Q., Li X.H.: Camouflaged information identification and its applications. An In-
ternational Journal Advances in Systems Science and Applications, 10(2),   
157-167(2010) 

 



P-Sets and Applications of Internal-Outer Data Circle 591
 

9. Lin H.K., Li Y.Y.: P-sets and its P-separation theorems. An International Journal Ad-
vances in Systems Science and Applications, 10(2), 209-215(2010) 

10. Shi, K.Q.: Two direction S-rough sets. International Journal of Fuzzy Mathematics 2, 
335–349 (2005) 

11. Shi, K.Q., Yao, B.X.: Function S-rough sets and systems law identification. Sciences 
in China (F) 51(5), 499–510 (2008) 
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Abstract. In this paper, we establish sufficient conditions for simplifying
the checking that an isolated equilibrium point of autonomous neural net-
work is exponentially stable. Meanwhile, these conditions are generalized to
convergent properties of all equilibrium points of arbitrary order neural net-
work in an open region of the state space. The explicit lower bound on the
exponential convergence rate to an equilibrium point is also estimated.

Keywords: Neural networks, arbitrary order, equilibrium, exponential
convergence.

1 Introduction

It is well known that traditional neural networks with first-order synaptic
connections may encounter inevitable difficulties, i.e., these models are shown
to have limitations such as limited capacity when used in pattern recognition
problems and the case of optimization problems that can be solved using
such models are also limited [1-2]. By incorporating arbitrary order synaptic
connectivity into neural networks, authors in [1] proposed the following neural
system:

ẋi(t) = −ai(xi)

[
bi(xi) +

L∑
k=1,i∈Ik

ck
mi(k)
di(xi)

∏
j∈Ik

d
mj(k)
j (xj)

]
, i = 1, · · · , N.(1)

It is shown that high-order networks may improve dramatically their storage
capacity in some degree and would increase the class of optimization prob-
lems that can be solved using neural networks [1-3]. Due to the advantage of
high-order synaptic connectivity, there have been considerable works about
stability analysis of high-order neural networks in the literature (e.g., see [4-
8]). However, from existing reports, we can notice that most of the existing
works of high-order neural networks [1-2], [4-8] have only fucus on the unique

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 593–601.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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equilibrium, periodic solution or almost periodic solution and their global at-
tractivity; Seldom have been done for local stability and convergent estimate
of arbitrary order neural networks. It is worth for us to further investigate
convergent properties of of arbitrary order neural networks in local regions
of state space.

2 Preliminaries

Consider the following autonomous differential equation

ẋ = F (x), (2)

where x ∈ RN . A constant vector x∗ ∈ RN is said to be an equilibrium point
of (2) if and only if F (x∗) = 0. Denote |x| = max

i∈N
|xi| by the Euclidean norm

of a vector x ∈ RN .

Definition 1. The equilibrium point x∗ of (2) is said to be stable if there
exists a constant δ(ε) > 0 such that for every t > 0 and |x(0) − x∗| < δ(ε),
we have |x(t)−x∗| < ε. The equilibrium point x∗ is unstable if it’s not stable.

Definition 2. The equilibrium point x∗ of (2) is said to be locally exponen-
tially stable if it’s stable and there exist M > 0, λ > 0 and a neighborhood
O(x∗) such that |x(t) − x∗| ≤ M |x(0) − x∗|e−λt ∀t > 0, where x(0) ∈ O(x∗).

Theorem 1. ([9]) Let x∗ be an isolated equilibrium point of (2). If all the
eigenvalues of Jacobian matrix DF (x∗) have negative real parts, then x∗ is
asymptotically stable. If at least one eigenvalue has a positive real part, x∗ is
unstable.

Theorem 2. ([10]) All the eigenvalue of a matrix C = (cij)N×N ∈ RN×N lie
within the union of disks, in the complex plane, with centres cii, i = 1, 2, · · ·N
and radii

ri =
N∑

j=1j �=i
|cij |, i = 1, 2, · · ·N.

Now consider the following general neural network

x
′
i(t) = −Fi(xi(t)) + Gi(x1(t), x2(t), · · · , xN (t)) + Ii, (3)

where i ∈ N := {1, 2, · · · , N}. Obviously, (3) includes many Hopfield-type
neural networks [6,13] as its special cases.

Lemma 1. ([14]) Let x∗ = (x∗
1, x

∗
2, · · · , x∗

N )T ∈ RN be an isolated equilibrium
point of (3). If
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F
′
i (x

∗
i ) >

N∑
j=1

∣∣∣∂Gi(x∗)
∂xj

∣∣∣, i = 1, 2, · · · , N, (4)

then x∗ is locally exponentially stable and there exist B > 0, δ > 0 and a
neighborhood O(x∗) such that

|x(t) − x∗| ≤ B|x(0) − x∗|e−δt, ∀t > 0

where x(0) ∈ O(x∗) and the convergent rate

δ ≥ min
i∈N

{
F

′
i (x

∗
i ) −

N∑
j=1

∣∣∣∂Gi(x∗)
∂xj

∣∣∣}.

Example 1. Consider Hopfield neural network with two neurons:{
ẋ1(t) = −a1x1 + t11g1(x1) + t12g2(x2) + I1,
ẋ2(t) = −a2x2 + t21g1(x1) + t22g2(x2) + I2.

(5)

Take gi(x) ≡ tanh(x), i = 1, 2. Design a1 = 1
ρ + |t11|g

′
1(x∗

1) + |t12|g
′
2(x∗

2) and
a2 = 1

ρ + |t21|g
′
1(x

∗
1) + |t22|g

′
2(x

∗
2), where ρ > 0 and x∗ = (x∗

1, x
∗
2)
T ∈ R2 is an

isolated equilibrium point of (5). Then from Lemma 1, we can easily check
that x∗ is locally exponentially stable and the lower bound of exponential
convergent rate is 1

ρ .

3 Main Results

Consider the following arbitrary order networks [1]:

ẋi(t) = −Fi(xi(t)) +
L∑
j=1

∏
k∈Ij

wk
ij

[
gk(xk(t))

]dk(j)
+ Ii, i = 1, 2, · · · , N, (6)

where {I1, I2, · · · , IL} is a collection of L not-ordered subsets of N , dk(j) is
a nonnegative integer, gk(·) is an activation function. Obviously, system (6)
is a general high-order neural networks including [6] as its special cases. We
make the following basic assumptions, k = 1, 2, · · · , N :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−gk(x) = gk(−x), gk(0) = 0, 0 < F
′
k(x) < ∞,

0 < g
′
k(x) < g

′
k(0), xg

′′
k (x) < 0 for x ∈ R/{0},

lim
x→−∞

gk(x) = ǧk, lim
x→+∞

gk(x) = ĝk.

Let x∗ be an equilibrium point of (6), i.e.,
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Fi(x∗
i ) =

L∑
j=1

∏
k∈Ij

wk
ij

[
gk(x∗

k)
]dk(j)

+ Ii, i = 1, 2, · · · , N.

Due to the strict monotonicity of Fi(·), we get

x∗
i = F−1

i

⎛⎝ L∑
j=1

∏
k∈Ij

wk
ij

[
gk(x∗

k)
]dk(j)

+ Ii

⎞⎠ , i = 1, 2, · · · , N

which leads to |x∗
i | ≤ F−1

i (
∑L

j=1 |wk
ij |
∏
k∈Ij

(g�
k)
dk(j) + |Ii|), where g�

k =
max{|ǧk|, ĝk}, i, k = 1, 2, · · · , N . Hence, all equilibrium points of (6) lie in
Vω := V 1

ω × V 2
ω × · · · × V N

ω , where

V i
ω :=

⎧⎨⎩x ∈ R

∣∣∣∣∣|x| ≤ F−1
i

(
L∑
j=1

∏
k∈Ij

|wk
ij |(g

�
k)
dk(j) + |Ii|

)⎫⎬⎭ , i = 1, 2, · · · , N.

For convenience of discussing stability of all equilibrium points in an open
region of the state space, we define

H(υ) =
{
x ∈ RN

∣∣∣|gk(xk)| ≥ υk, k = 1, 2, · · · , N
}
,

where the constant vector υ satisfies with υ = (υ1, υ2, · · · , υN )T > 0 and
H(υ) ∩ Vω �= ∅. Due to the monotonicity of gk(·), there exists a unique
αk > 0 such that gk(αk) = υk and gk(−αk) = −υk, i.e., αk = g−1

k (υk), k =
1, 2, · · · , N . Moreover, if |xk| ≥ αk for k = 1, 2, · · · , N , then |gk(xk)| ≥ υk.
Hence, H(υ) is the union of 2N disjoint regions:

H(υ) =
2N⋃
k=1

Ω(ξ(k)),

where

Ω(ξ(k)) =

{
x ∈ RN

∣∣∣|xi| ≥ αi, xiξ
(k)
i > 0, i = 1, 2, · · · , N

}
, ξ(k) ∈

{
− 1, +1

}N

.

Theorem 3. Let x∗ is an equilibrium point of (6) located in H(υ). If

F
′
i (x

∗
i ) >

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�||gj(x∗
j )|dj(�)−1dj(�)

×
∏

k∈I	/{j}
|wk

i�||gk(x∗
k)|dk(�)

]
g

′
j

(
g−1
j (υj)
)
, i = 1, 2, · · · , N (7)

then x∗ is locally exponentially stable. Moreover, a lower bound of exponential
convergence rate associated with x∗ is given as
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δ ≥ min
i

{
F

′
i (x

∗
i ) −

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�||gj(x
∗
j )|dj(�)−1dj(�)

×
∏

k∈I	/{j}
|wk

i�||gk(x∗
k)|dk(�)

]
g

′
j

(
g−1
j (υj)
)}

.

Proof. From the definition of gk(·), it follows that

g
′
i(u) < g

′
i(v) if |u| > |v|

and
g

′
i(xi) ≤ g

′
i(αi) = g

′
i(g

−1
i (υi)) if x ∈ Ω(ξ(k)),

where i = 1, 2, · · · , N , k = 1, 2, · · · , 2N . Hence, if x∗ is an isolated equilibrium
point located in Ω(ξ(k)), then g

′
i(x

∗
i ) ≤ g

′
i(g

−1
i (υi)), i = 1, 2, · · · , N. From

Lemma 1, if

F
′
i (x

∗
i ) >

N∑
j=1

{
L∑

�=1,I	∩{j}�=∅
|wj

i�|dj(�)g
′
j(x

∗
j )|gj(x∗

j )|dj(�)−1

×
∏

k∈I	/{j}
|wk

i�||gk(x∗
k)|dk(�)

}
(8)

holds for each i ∈ N , then x∗ is locally exponentially stable. Obviously, (7)
always implies (8) holds. Moreover, the lower bound of exponential conver-
gence δ can be estimated as

min
i

{
F

′
i (x

∗
i ) −

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�||gj(x∗
j )|dj(�)−1dj(�)

×
∏

k∈I	/{j}
|wk

i�||gk(x∗
k)|dk(�)

]
g

′
j

(
g−1
j (υj)
)}

.

Since all the equilibrium points lie in Vω , it’s easy for us to have the
following corollary:

Corollary 1. Let x∗ is an equilibrium point of (6) located in H(υ). If

F
′
i (x

∗
i ) >

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�|
(

sup
v∈V j

ω

|gj(v)|
)dj(�)−1

dj(�)

×
∏

k∈I	/{j}
|wk

i�|
(

sup
v∈V k

ω

|gk(v)|
)dk(�)
]
g

′
j

(
g−1
j (υj)
)
,

where i = 1, 2, · · · , N , then x∗ is locally exponentially stable. Moreover, a
lower bound of exponential convergence rate δ is given as
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δ ≥ min
i

⎧⎨⎩F ′
i (x

∗
i ) −

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�|
(

sup
v∈V j

ω

|gj(v)|
)dj(�)−1

× dj(�)
∏

k∈I	/{j}
|wk

i�|
(

sup
v∈V k

ω

|gk(v)|
)dk(�)
]
g

′
j

(
g−1
j (υj)
)⎫⎬⎭ .

Corollary 2. Let x∗ is an equilibrium point of (6). If

F
′
i (x

∗
i ) = sup

v∈R
F

′
i (v) >

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�|(g
�
j)
dj(�)−1dj(�)

×
∏

k∈I	/{j}
|wk

i�|(g
�
k)
dk(�)

]
g

′
j(0), (9)

then x∗ is a unique equilibrium of (6) which is globally exponentially stable.
δ can be estimated by

δ ≥ min
i

{
sup
v∈R

F
′
i (v) −

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
|wj

i�|(g
�
j)
dj(�)−1dj(�)

×
∏

k∈I	/{j}
|wk

i�|(g
�
k)
dk(�)

]
g

′
j(0)

}
.

Proof. From Corollary 1, we know that it’s sufficient for us to verify the
uniqueness of equilibrium point of (6). Suppose that there exist two equilib-
rium points x∗, x∗∗ of (6). Then from (6), we have

Fi(x∗
i ) − Fi(x∗∗

i )=
L∑
�=1

∏
k∈I	

wk
i�(gk(x

∗
k))

dk(�) −
L∑
�=1

∏
k∈I	

wk
i�(gk(x

∗∗
k ))dk(�).

where i = 1, 2, · · · , N . From the Lagrange mean value theorem, it follows that

F
′
i (ξi)|x∗

i − x∗∗
i | ≤

N∑
j=1

[
L∑

�=1,I	∩{j}�=∅
dj(�)(g

�
j)
dj(�)−1|wj

i�|

×
∏

k∈I	/{j}
|wk

i�|(g
�
k)
dk(�)

]
g

′
j(ξ

�
j)|x∗

j − x∗∗
j |

which lead to

|x∗ − x∗∗| ≤ max
i∈N

{∑N
j=1

[∑L
�=1,I	∩{j}�=∅ dj(�)(g

�
j)
dj(�)−1

sup
v∈R

F
′
i (v)

× |wj
i�|
∏

k∈I	/{j}
|wk

i�|(g
�
k)
dk(�)

]
g

′
j(0)

}
|x∗ − x∗∗|,
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where ξi lies between x∗
i and x∗∗

i , ξ�j lies between x∗
j and x∗∗

j , i, j ∈ N ,
� = 1, 2, · · · , L. It follows from (9) that x∗ = x∗∗.

Remark 1. Few works have been done for the local stability for arbitrary
order neural networks. Our results not only provide simple criteria to check
convergence of each equilibrium point of (6) but also provide an effective
approach to estimate the location and convergence rate of equilibrium points
in state space.

Example 2. Consider Hopfield-type neural network with second-order
connections:

x
′
i(t) = −aixi +

3∑
j=1

∏
k∈Ij

wk
ij

(
gk(xk)
)dk(j)

+ Ji, i = 1, 2 (10)

where

a1 = a2 = 1, d1(1) = d2(2) = 1, d1(3) = d2(3) = 2,
w1

11 = 4, w2
12 = 0, w1

13 = 1, w2
13 = 0.2, J1 = 0.5,

w1
21 = 0, w2

22 = 4, w1
23 = 0.2, w2

23 = 1, J2 = 0.4,
I1 = {1}, I2 = {2}, I3 = {1, 2}, g1(x) = g2(x) = g(x) = tanh(x).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
The phase view of four equilibrium points of second order neural networks

o
2

o
1

o
4

o
3

Fig. 1. The convergence of four equilibria of second order neural networks (10)
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It is easy for us to get Vω = [−4.7, 4.7] × [−4.6, 4.6], α = (α1, α2)T =
(1.32, 1.32)T , υ = (υ1, υ2)T = (0.8668, 0.8668)T , H(υ) =

⋃4
k=1 Ω(ξ(k)) and

Ω(ξ(k)) =

{
x ∈ R2
∣∣∣|xi| ≥ 1.32, xiξ

(k)
i > 0, i = 1, 2

}
, ξ(k) ∈

{
− 1,+1

}2
.

From computer numerical simulations, we can check that there exist four
equilibrium points

o1 = (4.699, 4.599)T , o2 = (−3.695, 4.199)T ,
o3 = (−3.29,−3.392)T , o4 = (4.299,−3.796)T .

By simple checking assumptions in Theorem 3, the four equilibrium points
of (10) are local exponentially stable. The exponential convergent rate δ can
also be estimated. For their phase view and the convergent dynamics of these
equilibrium points, we can refer to Fig. 1.
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Abstract. Empirical Orthogonal Functions (EOF) and Artificial Neural Network 
(ANN) are performed for investigating and predicting interannual variability in 
nearshore topographic field around the Yellow River Delta. EOF and ANN are 
particularly effective at reproducing the observed topographic features around 
either modern or historical river mouths where the nearshore topography has ex-
perienced significantly intense interannual changes during the last thirty decades. 
In general, the coastal land around the modern river mouths has extended toward 
the sea and the seafloor has been elevated due to accumulation of a large amount 
of sediment transported by the modern Yellow River. On the other hand, the coast 
and the seafloor around the historical river mouths have been eroded quickly by 
tidal current, waves and storms due to lack of sediment supply. The observed 
spatial patterns of nearshore topography are well captured qualitatively and quan-
titatively by dominant eigenvectors of EOF. The EOF principal components indi-
cating temporal variation in dominant eigenvectors are effectively fitted and  
predicted by using the observed river-related data as the input to ANN. The topog-
raphic fields either for the “missing” years or for the “future” years can then be 
estimated by linear combination of fixed dominant eigenvectors and fitted princi-
pal components. As a result, the fitting and predicting errors reach as low as 2.9% 
and 5.6%, respectively. 

Keywords: EOF, ANN, interannual variability, nearshore topography, the yellow 
river delta. 

1   Introduction 

Nearshore topography, especially around the large rivers, usually experiences 
significant changes over temporal scales of days to decades and over spatial scales 
of meters to hundreds of kilometers due to sediment transport controlled mainly 
by river flow, tidal current, waves, storms, and precipitation. The understanding 
and prediction of nearshore topographic development are important for coastal 
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management and hydrodynamic simulation and prediction at the nearshore sea. 
The Yellow River, famous for a large amount of sediment discharge and frequent 
changes in the position of river channel and river mouth, leads to quick and in-
tense variations in nearshore topography around the historical and modern river 
mouths. The relationship between the Yellow River input and variations in the 
coastal line [1-3], delta area [4], small-scale topography [5-7] has been studied a 
lot. However, little attention has been focused on quantitatively exploring interan-
nual variability in nearshore topography around the whole Yellow River Delta and 
over decades. In order to acquire effective description and efficient prediction of 
topographic variation on large scales, a large number of multiyear bathymetry data 
at thousands of geographic points need to be simplified and the nonlinear relation-
ship between the bathymetry data and the influencing factors need to be specified. 
Thus we come up with combination and application of EOF and ANN as an ap-
propriate approach to solve this problem. 

The central idea of EOF is to reduce dimensionality of the large data set interre-
lated in space and time but still to retain dominant variations of the data set by a 
few orthogonal functions. The structure of orthogonal functions is determined by 
the original data set and is not assumed a priori function form.  Each of the or-
thogonal functions takes a certain proportion of total variability of the data set. 
The orthogonal functions with larger proportions can be seen as dominant func-
tions containing the most information of the data set.  In fact, each of the orthogo-
nal functions can be represented by linear combination of an eigenvector and a 
principal component. The eigenvector indicates spatial pattern of the data set and 
can be used to identify physical meaning and relative influencing factors. The 
principal component suggests temporal variation in the corresponding spatial 
pattern. Thus the spatial and temporal information of a data set with a large num-
ber of variables can be efficiently represented by a few eigenvectors and principal 
components. EOF analysis was originally developed for meteorological applica-
tion to data fields such as atmospheric pressure [8], precipitation [9], and sea 
surface temperature [10]. EOF was then introduced by coastal geologists and 
engineers into geomorphologic studies as an effective analytical tool to identify 
spatial and temporal patterns of beach topographic variability based on large data 
sets of beach profile surveys [11-14]. 

However, EOF itself can not be used to fit and predict temporal variability re-
lated with other influencing factors. ANN, known as a nonlinear analytical tool 
[15-16], has been applied to various areas [17-20] for processing and predicting 
nonlinear relationships. Thus ANN can be used in this study to identify and pre-
dict temporal variability of topographic field nonlinearly influenced by the factors 
like river parameters. Combination of advantages of EOF and ANN is capable of 
providing insights in characterization and prediction of spatial and temporal vari-
ability of large data sets. 

The organization of this study is as follows. Section 2 describes the origin of 
the data sets and the methods of EOF and ANN. Section 3 describes the results of 
EOF analysis and the dominant patterns. Section 4 shows application of EOF and 
ANN in fitting and predicting topographic field. Section 5 is summary and 
conclusions. 
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2   Data and Methods 

The bathymetry at the nearshore sea of the Yellow River Delta is measured in 
field surveys on an annual basis. The monitored area is about 6100 km2, covering 
the sea located between N 37º22’24” and N 38º22’23”, E 118º28’34” and E 
119º25’31”. Sixteen-year bathymetry data are used in this study, starting at 1976 
and ending at 2000. The data at 1979, 1981-1984, 1995, 1997 are missed due to 
historical reasons. However, the results of the analysis have not shown obvious 
sensitivity to the missing data at in-between years. Annual river discharge and 
sediment discharge during 1976-2000 are involved in the analysis. The river-
related data are obtained from observations at Lijin, a hydrologic station located at 
the lower reach of the Yellow River. In addition, interannual change in the direc-
tion of the river mouth is also considered in the analysis. The time series of river 
direction are obtained from interpretation of annual satellite images. 

The bathymetry data are firstly interpolated into a uniform spatial grid through 
Kriging method. Each grid cell has the size of 1km×1km. The depth at each grid 
point represents one variable, which is assigned a sixteen-year time series. Each 
value in a time series can be seen as a sample of a certain variable. The mean 
value has been removed from the time series of each variable before further EOF 
analysis. The de-meaned data are then put into one matrix X with p rows and n 
columns. Each number in a row indicates a depth value at a grid point. Each num-
ber in a column represents a depth value at a certain year. Our goal is to decom-
pose X (p×n) into the product of a matrix V (p×p) containing spatial vectors and a 
matrix Y (p×n) containing temporal vectors. The vectors in V and Y are orthogo-
nal. In the following discussion, we will call spatial vectors as eigenvectors and 
temporal vectors as principal components. 

npppnp YVX ××× = .               (1) 

Alternatively, an observation ijx at a grid point i and a certain year j can be written 

as 

pjipjijikj

p

k
ikij yvyvyvyvx +++==∑

=

...2211
1

.              (2) 

The above goal can be achieved by eigen-decomposition of the covariance matrix 
XX’ (p×p). 

mm eeXX λ=' ,               (3) 

whereλis an eigenvalue, em is an eigenvector. There should be p eigenvalues and 
p corresponding eigenvectors. Then the covariance matrix can be rewritten as: 

'' VVXX Λ= ,                    (4) 

where Λ is the diagonal matrix containing all eigenvalues ordered by the magni-
tude of λ, V is the matrix containing all corresponding eigenvectors of XX’. 
Vectors of V are orthogonal: 
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IVVVV == '' ,               (5) 

where I is a unit matrix. 
If we assume that 

XVY '= .                (6) 

Then we can testify that 

Λ=Λ== VVVVVXXVYY ''''' .              (7) 

So vectors of Y are orthogonal. Now both V and Y can be calculated from (4) and 
(6). 

If the product of the first m (m<p) spatial vectors and the first m temporal vec-

tors is seen as an estimate ijx̂  of the original data set, the total error can be esti-

mated by Q: 

2

1 1

ˆ( )  
p n

ij ij
i j

Q x x
= =

= −∑∑ ,                                       (8) 

where  

It can also be derived that Q is the sum of the last p-m eigenvalues of XX’: 

1 1 1

.                                                  (9)
p p m

k k k
k m k k

Q λ λ λ
= + = =

= = −∑ ∑ ∑  

The sum of square values of the original data set S is: 

2

1 1 1 1

' '  .                                          (10)
p pn n

ij j j k
i j j k

S x y V Vy λ
= = = =

= = =∑∑ ∑ ∑  

Thus the extent to which the first m eigenvectors and principal components can 
restore the original data set can be conveniently represented by the ratio of the 
sum of the first m eigenvalues to the sum of all eigenvalues: 

.1)(

1

1

∑

∑

=

==−= p

k
k

m

k
k

S

Q
mG

λ

λ
                                (11) 

It should also be noted that total number of variables is usually in reality much 
larger than that of samples, i.e. p >> n. Eigen-decomposition of X’X (n x n) is 
much easier than that of XX’ (p x p) due to much smaller dimension of X’X. It 
can be testified in linear algebra that the first m eigenvalues of X’X and XX’ are 
the same and their eigenvectors have the relationship as follows: 

nn
m

pp
m eXe ⋅= − 2/1λ ,                                          (12) 

∑
=

=
m

k
kjikij yvx

1

ˆ
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where pp
me and nn

me are the eigenvectors of XX’ and X’X, respectively. Thus it is 

more efficient to calculate the eigenvalues and eigenvectors of X’X at first when p 
is larger than n. Then the eigenvectors of XX’ can be easily obtained through (12). 

A typical artificial neural network includes input layer, hidden layers, and out-
put layer. Each layer is related with adjacent layers through weights and functions. 
The back-propagation algorithm, associated with supervised error-correction 
learning rule, is commonly used in training of ANN. The weights of the network 
are iteratively updated to approach the minimum of the error which is passed 
backward during training. The ANN in this study is built with one input layer with 
six input parameters, one hidden layer with three neurons, and one output layer 
with three output parameters. The six input parameters include: the annual river 
discharge, the annually-averaged accumulated river discharge, the annual sedi-
ment discharge, the annually-averaged accumulated sediment discharge, the aver-
aged sediment concentration, and the direction of the river mouth. The three 
output parameters are the first three principal components from the EOF analysis. 
Log-Sigmoid activation functions are used for the hidden layer. Pureline functions 
are used for the output layer. The neural network with prescribed structure can be 
trained by using known input and output data. Appropriate weights are then de-
termined through back-propagation error-correction algorithm. Once it has been 
trained completely, the neural network can be used to fit and predict output pa-
rameters if new input data are provided. Specific realization of this method is 
through MATLAB Neural Network Toolbox. 

3   Spatial Pattern of Eigenvectors 

From the EOF analysis, 92% of variation in topographic data can be restored by 
the first three eigenvectors and principal components. Study can now be focused 
on the first three eigenvectors rather than a large number of variables. 

The first eigenvector contribute 79% to the total variance. Its spatial pattern is 
shown in Fig.1(a). Positive values of the first eigenvector have one local maxi-
mum center and are located around the modern Yellow River mouths. Negative 
values with three local minimum centers are related with the historical Yellow 
River mouths. The values close to zero distribute through outside sea, suggesting 
little interannual variation in submarine topography in these areas. In comparison, 
the difference in bathymetry data between 1976 and 1999 is shown in Fig.1(c). 
Positive values indicate deposition and elevation of sea floor. Negative values 
suggest erosion and sinking of sea floor. We can see clearly that deposition and 
erosion around the modern and historical Yellow River mouths matches very well 
with the spatial pattern of the first eigenvector. 

Deposition and erosion around the Yellow River Delta is highly correlated with 
changes in sediment supply from the Yellow River [1, 4, 6]. From January 1964 to 
May 1976, the Yellow River went northward and trifurcated at the northern edge 
of the delta. A large amount of river sediment quickly accumulated near the river 
mouths and formed three centers of deposition with steep submarine slope. Since 
May 1976, the Yellow River have been running approximately eastward with  
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Fig. 1. Spatial pattern of: (a) the first eigenvector; (b) the second eigenvector; (c) deposition 
and erosion between 1976 and 1999 

slight swing between the southeast and the northeast. The deposition center also 
moves to the modern river mouths. The old deposition centers are subject to quick 
erosion by ocean tides and waves due to lack of river sediment supply.  

The second and third eigenvectors contribute to total variance with 10% and 
3% respectively. All other eigenvectors contribute even less, representing small 
minor perturbations. Fig.1(b) shows spatial pattern of the second eigenvector. 
Topographic variation represented by the second eigenvector occurs mainly 
around the modern Yellow River mouths where submarine slope is further modi-
fied on the basis of first-eigenvector-represented topography in the direction of 
river-mouth extending. It should be noted that the lower ~20km reach of the mod-
ern Yellow River was artificially changed on a small scale from the direction 
toward the southeast to the direction toward the northeast in June, 1996. This 
change in river orientation is clearly shown by the second eigenvector which var-
ies mainly in the directions of the southeast and northeast. The third eigenvector 
also modifies the submarine topography around the modern Yellow River mouths, 
which will not be discussed here for brief. But we can conclude that interannual 
variation in topography related to the modern river mouths is much more compli-
cated and intense than that of the historical river mouths, and thus needs to be 
represented by more eigenvectors. 

4   Fitting and Predicting Topographic Field 

Principal components of EOF are actually temporal weights on spatial eigenvec-
tors, representing different response of main features in different time. As dis-
cussed above, the first eigenvector shows sea floor erosion around the historical 
river mouths and deposition around the modern river mouths on a large spatial 
scale. The first principal component shows a decreasing trend of interannual varia-
tion (see Fig.2(a)), suggesting that the rate of either deposition or erosion also  
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Fig. 2. Temporal variation of: (a) the first principal component; (b) the second principal 
component; (c) sediment discharge; (d) river mouth orientation 

have decreased since 1976. Both erosion and deposition are related with the 
amount of sediment supply from the Yellow River. The time series of annual 
sediment discharge show in general a descending tendency (see Fig.2(c)). Since 
sediment amount in preceding years also have an effect on topographic variation 
in current year, it is summed up and annually averaged. The calculation result is 
defined as an annual mean of accumulated sediment discharge. The correlation 
coefficient between the first principal component and the annual mean of accumu-
lated sediment discharge is as high as 0.92. From Table 1, we can see that the first 
principal component is also highly correlated with water discharge. Thus water 
and sediment supply from the Yellow River can be seen as dominant factors influ-
encing topographic variation. 

The second principal component decreases from 1976 to 1988 and then in-
creases from 1988 to 2000. It may indicate that change in river mouth orientation 
(see Fig.2(d)) affects submarine topography in certain directions. The second prin-
cipal component is negatively correlated with the river mouth orientation with 
correlation coefficient of -0.82. Thus river mouth orientation is also an important 
topographic influencing factor. The third principal component which is not shown 
here for brief has significant correlation with the annual sediment concentration 
which is an indicator of the ratio between water discharge and sediment discharge. 
This suggests that the water-sediment ratio also affects some details of topographic  
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Table 1. Correlation coefficients between principal components and river parameters 

River Parameters First PC Second PC Third PC 
Annual water discharge 0.64 -0.22 0.29 

Annual mean of accumulated water 0.79 -0.10 0.17 

Annual sediment discharge 0.63 -0.11 0.23 

Annual mean of accumulated sediment 0.93 -0.07 0.21 

Annual sediment concentration 0.13 -0.06 0.50 

River mouth orientation 0.29 -0.82 -0.17 

 
variation. Different combination of river parameters has different relationship with 
principal components. Thus temporal variability in topography nonlinearly corre-
lates with river input, which will be further specified by using ANN in the next 
discussion. 

The artificial neural network discussed in section 2 is now utilized as a nonlinear 
modeling system to estimate the relationship between river parameters and principal 
components. In order to verify the EOF-ANN modeling system, we designed two 
experiments. One experiment is for fitting topographic field in the missing years. The 
other is for predicting topographic field in the future years. In the first experiment, we 
use the fifteen-year bathymetry data from 1976 to 2000 excluding 1992 for EOF 
analysis. We then train ANN by using river-related data as input and the first three 
principal components as output. Three values of principal component for 1992 can be 
estimated by trained ANN if the river data of 1992 are provided. The products of the 
principal component values and the corresponding eigenvectors can be summed up 
and added with the mean bathymetry to estimate the bathymetry in 1992. Comparison 
between observational values and model-estimated values indicates that they are con-
sistent with each other very well (see Fig.3(a)). The mean error of all grid points is as 
low as 2.9%. Thus EOF combined with ANN is an effective tool to fit the bathymetry 
data in the missing years. 
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Fig. 3. Comparison between observational topographic contours and: (a) fitted topographic 
contours in 1992; (b) predicted topographic contours in 1999; (c) predicted topographic 
contours in 2000. Solid lines are observed; dashed lines are fitted or predicted. 



Analyzing and Predicting Interannual Variability in Nearshore Topographic Field  611
 

In the second experiment, the fourteen-year bathymetry data from 1976 to 1998 
are used for EOF and ANN analysis. The bathymetry data of 1999 and 2000 are 
then predicted by using the same procedures as the first experiment. The results 
are shown in Fig.3(b) and Fig.3(c). The mean error of prediction for 1999 and 
2000 is 5.6%, and 11.9% respectively. Prediction of topographic field is generally 
accurate, but not as good as fitting experiment. Actually forecast of realistic vari-
ables is always harder than hindcast of realistic variables in natural sciences. In 
addition, nearshore prediction is better than off-shore. The errors are mainly re-
lated with the depth values located at the northeast corner of the study area, where 
interannual topographic variation may be rarely affected by water and sediment 
supply from the Yellow River. More precise prediction of off-shore topography 
needs specification of other influencing factors like currents and waves, which 
should be discussed in future study. 

5   Summary and Conclusion 

We have applied EOF to analyze the characteristics of spatial and temporal 
variation in submarine topography in the nearshore sea of the Yellow River Delta. 
EOF not only simplifies a large amount of variables into a few eigenvectors but 
also captures the dominant features of spatial and temporal variation in 
topographic data. The first eigenvector represents the processes of deposition and 
erosion in the nearshore sea around the modern and historical river mouths, which 
is mainly controlled by water and sediment supply from the Yellow River. The 
second eigenvector shows the effects of river mouth orientation on topographic 
variation around the modern river mouths. ANN is built as an effective nonlinear 
tool to evaluate the relationship between river input and principal components. 
EOF, in combination with ANN, is effectively used for fitting and predicting 
topographic field in the missing years and future years. Application of EOF and 
ANN model can also be extended to simplification, fitting and prediction of other 
large data sets featured by spatial and temporal variability. 
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Abstract. P -set is a set pair, which is composed of the internal and outer
packet set together, and it has dynamic characteristics. Based on the the-
ory of P -set, several concepts, such as f -model, the generation of f -t order
unilateral dynamic model and so on are proposed; order relation theorem of
f -unilateral dynamic model and dynamic separation theorem are put forward.
The dynamic characteristic of f -model depends on the attribute supplement
on α. Using those discussions, the generation principle of f -model and its
application are given in the end.

Keywords: P -set, f -model, f -model Theorem, Unilateral Dynamic
Characteristic.

1 Introduction

The prerequisite for all kinds of decision-making is that all information in-
dexes are accurately predicted, but usually an information system is a dy-
namic and complex system in which there exist non-linear, time-variability
and uncertainty, it is very difficult to predict those indexes accurately. In
practice, people often use different mathematical models to predict kinds of
information indexes. In 2008, Prof. Shi introduced dynamic characteristic
into the general set (Cantor set) X , improved it and originated Packet sets
(X F̄ , XF ), written as P -set. P -set is a set pair, which is composed by internal
and outer packet sets, and it has dynamic characteristics. Using the simple
facts and the features of P -set, several concepts, such as f -model, the genera-
tion of f -t order unilateral dynamic model and so on, are proposed; the order
relation theorem of f -unilateral dynamic model and dynamic separation the-
orem are put forward. The dynamic characteristic of f -model depends on
the attribute supplement on α. Using those discussions, the generation prin-
ciple of f -model and its application are given in the end. The discussion in
paper shows that P -set theory [1,2] is an important theory in the research
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of dynamic information system in analysis, modeling, forecasting, decision-
making and control. Modeling to dynamic information system by P -set is a
new research direction.

In order to facilitate the discussion, and to accept the following results
easily and also to maintain the integrity of this article, the P -set and its
structure is simply introduced into the next section as theoretical basis and
preliminary.

2 P -Set and Its Structure

Assumption: X is a finite general set on U , U is a finite element universe
and V is a finite attribute universe.

Definition 2.1. Given a general set X = {x1, x2, · · · , xm} ⊂ U , and α =
{α1, α2, · · · , αk} ⊂ V is the attribute set of X, X F̄ is called internal packet
sets of X, called internal P -set for short, moreover

X F̄ = X −X−, (1)

and X− is called F̄ -element deleted set of X, moreover

X− = {x|x ∈ X, f̄(x) = u∈̄X, f̄ ∈ F̄}, (2)

if the attribute set αF of X F̄ satisfies

αF = α ∪ {α′|f(β) = α′ ∈ α, f ∈ F}, (3)

where β ∈ V, β∈̄α, f ∈ F turns β into f(β) = α′ ∈ α.

Definition 2.2. Given a general set X = {x1, x2, · · · , xm} ⊂ U , and α =
{α1, α2, · · · , αk} ⊂ V is the attribute set of X, XF is called outer packet sets
of X, called outer P -set for short, moreover

XF = X ∪X+, (4)

and X+ is called F -element supplemented set, moreover

X+ = {u|u ∈ U, u∈̄X, f(u) ∈ x′ ∈ X, f ∈ F}, (5)

if the attribute set αF̄ of XF satisfies

αF̄ = α− {βi|f̄(αi) = βi, f̄ ∈ F̄}, (6)

where αi ∈ α, f̄ ∈ F̄ turns αi into f̄(αi) = βi∈̄α.

Definition 2.3. The set pair which is composed of internal P -set X F̄ and
outer P -set XF is called P -set (packet sets) generated by the general set X,
called P -set for short, written as
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(X F̄ , XF ), (7)

where the general set X is called the ground set of (X F̄ , XF ).

Direct explanation of the name of P -set
Since the existence of element transfer f̄ ∈ F̄ , the element number of general
set X in (6) decreases, X generates X F̄ , and X F̄ is packed in X . Since the
existence of element transfer f ∈ F , the element number of general set X in
(9) increases, X generates XF , and XF is packed outside X . X F̄ and XF are
in the state of moving. X F̄ packed in X and XF packed outside X together
compose P -set (X F̄ , XF ).

The generation principle of P -sets
While some elements in general set X are transferred out of X , and
some out of the set X are transferred intoX , the general set X gener-
ates P -set (X F̄ , XF ), which has dynamic characteristic. The existence of
(X F̄ ,XF )depends on X , but it has no relation to how many elements are
transferred out of X or into X .

3 f -Model and Generation of f -t Order Unilateral
Dynamic Model

Definition 3.1. Given a subset X = {x1, x2, · · · , xm} of U , and
every element xi in X has characteristic data sequences x

(0)
i =

(x(0)(1)i, x(0)(2)i, · · · , x(0)(n)i), ∀x(0)(k)i ∈ R+, k = 1, 2, · · · , n. x(0) is called
the broken line model generated by X, if

x(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)), (8)

and for any k, x(0)(k) satisfies

x(0)(k) =
k∑
j=1

m∑
i=1

x(0)(j)i, (9)

here x(0)(k) is the feature value of X at the point k = 1, 2, · · · , n,
x(0)(k) ∈ R+. Obviously, x(0) has the increasing feature.

Definition 3.2. p(k) is called f -model generated by X, if

p(k) = (1 − ea)(x(0)(1) − c

a
)e−ak, (10)

here a and c are parameters to be determined, seen Refs.[3,4].

Definition 3.3. Given a subset X = {x1, x2, · · · , xm} of U and the sub-
set X F̄ = {x1, x2, · · · , xt} of X, t ∈ N+, t < m, and every element xi in
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X F̄ has characteristic data sequences x
(0)
i = (x(0)(1)i, x(0)(2)i, · · · , x(0)(n)i),

∀x(0)(k)i ∈ R+, k = 1, 2, · · · , n. y(0) is called the t order unilateral dynamic
broken line model generated by X, if

y(0) =
(
x(0)(1), x(0)(2), · · · , x(0)(n)

)
, (11)

and for any k, x(0)(k) satisfies

x(0)(k) =
k∑
j=1

t∑
i=1

x(0)(j)i, (12)

here y(0) is the feature value of X F̄ at point k = 1, 2, · · · , n. x(0)(k) ∈ R+.
y(0) has the increasing feature.

Definition 3.4. p(k)f is called f - t order unilateral dynamic model, if

p(k)f =
(
1 − eb
)(

x(0)(1) − d

b

)
e−bk, (13)

where α = {α1, α2, · · · , αλ} is the attribute set of X and ∃β∈̄α,
f(β) = αλ+1 ∈ α; αf = α ∪ {f(β)}={α1, α2, · · · , αλ, αλ+1} is the at-
tribute set of X F̄ . p(k)f is the f -model generated by X F̄ . b and d are the
parameters to be determined, seen Refs.[3, 4].

Definition 3.5. f -model p(k)f generated by X F̄ is the f -source model gen-
erated by X, written as p(k)∗, if

card(X F̄ ) = 1, (14)

here card(X)=m, m > 1. Obviously, X has m f -source models.
By definitions 3.1-3.5, the following propositions can be obtained.

Proposition 3.1. If α and αf are attribute sets of X and X F̄ respectively,
then

card(α) ≤ card(αf ). (15)

Proposition 3.2. p(k)f and p(k) have the same model feature, vice versa.

Proposition 3.3. f -source model p(k)∗ satisfies

p(k)∗ ≤ p(k)f . (16)

Proposition 3.4. The f -t order unilateral dynamic model p(k)f satisfies

p(k)f ≤ p(k). (17)
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Theorem 3.1. (The existence theorem of f -model) If X =
{x1, x2, · · · , xm} ⊂ U and each element xi has characteristic data se-
quences x

(0)
i = (x(0)(1)i, x(0)(2)i, · · · , x(0)(n)i), ∀x(0)(k)i ∈ R+, k =

1, 2, · · · , n, and x(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)), for any k, x(0)(k) =∑k
j=1
∑t

i=1 x(0)(j)i, then there exists the f -model generated by X.
It can be directly gotten from Refs [3,4], so its proof is omitted here.
From theorem 3.1, we can easily obtain the following two theorems.

Theorem 3.2. (The existence theorem of f -t order unilateral dynamic
model) if X F̄ ⊆ X , then the necessary and sufficient condition of the exis-
tence of p(k)f is that

card(X) ≥ 1. (18)

Theorem 3.3. (The existence theorem of f -source model) if p(k)∗ is the f -
source model of X, then the necessary and sufficient condition of the existence
of p(k)∗ is that

card(X ∩X F̄ ) = 1. (19)

The proofs can be directly obtained from above theorems and definition, so
they are omitted.

Theorem 3.4. (The order relation theorem of f -unilateral dynamic model)
Let π =

{
P (k)fj |j = 1, · · · , t

}
be the family composed of f -unilateral dynamic

model of P (k)f , and let αfj be the attribute set of P (k)fj . If

α ⊆ αf1 ⊆ αf2 ⊆ · · · ⊆ αft , (20)

then
P (k)ft ≤ P (k)ft−1 ≤ · · · ≤ P (k)f1 ≤ P (k), (21)

here α is the attribute set of X .
The proof can be obtained from properties of P -set, so omitted here.

Theorem 3.5. (The dynamic separation theorem of f -model) If P (k) is the
f -model generated by X , then P (k) can be separated into a finite number of
f -unilateral dynamic models P (k)fj , and their attribute sets satisfy

α ⊆ αFj . (22)

Discovery principle of f-unilateral dynamic model
The attribute sets of f -unilateral dynamic model P (k)fj satisfy αfj ⊆ αfk ,
then f -unilateral dynamic model P (k)fk which has the attribute set αfk can
be discovered in P (k)fj , and its existence has nothing to do with the size of
card(αfj ), α

f
j �= ∅.
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4 Application in Information System Prediction

Assumption: For simplification, but also without loss of generality, we sup-
pose that the subset X is {x1, x2, x3 , x4}. X is the subsystem of the economic
information system N, its attribute set is α, α = {α1, α2, α3, α4}, the specific
meaning of each αi is omitted here. x(0)

j is the characteristic value sequence
of xj in some interval, j = 1, 2, 3, 4, it is shown in the following table.

Table 1. The state values of the subsystem [u]

x(0)(1)i x(0)(2)i x(0)(3)i x(0)(4)i x(0)(5)i

x
(0)
1 2.15 2.06 2.02 2.45 2.90

x
(0)
2 2.78 3.03 3.08 2.92 2.31

x
(0)
3 3.01 2.87 2.59 2.35 3.08

x
(0)
4 2.08 1.98 3.01 3.23 3.07

Using x(0)(k) =
∑k

j=1
∑4

i=1 x
(0)(j)i, k = 1, 2, 3, 4, we can get the broken

line model:

x(0) = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5)) (23)
= (10.02, 19.96, 30.66, 41.61, 52.97).

Using data generation theory [3] and parametric equation, we obtain a gen-
erated model P (k), moreover,

P (k) = (1 − ea)(x(0)(1) − c

a
)e−ak = 9.6622e0.04171k. (24)

The above model (24) can be as a model of the subsystem of economic infor-
mation system N in an interval at the time of the attribute set α unchanged,
in other words, the motion state law [5-7] shown by the subsystem is the
expression (24), we can use this expression predict the law of the subsystem
at some interval.

In fact, the running status of economic system is changeable, some un-
known attribute β∈̄α attacks the attribute set α, in other words, some
risk attributes break into α, i.e., β1, β2∈̄α, f(β1) = αi, f(β2) = αj and
moreover f(β1), f(β2) ∈ α. α changes into αf = α ∪ {f(β1), f(β2)} =
{α1, α2, α3, α4, αi, αj}, the attribute invasion cause the changes of f -model.
Actually, f -unilateral dynamic model appears at this moment, we have to
use this f -unilateral dynamic model, when we forecast running law of the
economy. If there exist the attacked risk attribute, then α changes into
αf , i.e., αf = α ∪ {f(β)} = {α1, α2, α3, α4, αi, αj}. Under this condition,
X = X F̄ = {x2, x4}, the characteristic data of X F̄ is shown in Table 2,
where, i = 2, 4.
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Table 2. The state values of the subsystem [u]f

x(0)(1)i x(0)(2)i x(0)(3)i x(0)(4)i x(0)(5)i

x
(0)
2 2.78 3.03 3.08 2.92 2.31

x
(0)
4 2.08 1.98 3.01 3.23 3.07

Using the data in Table 2 and referring to the calculation process of the
generated model P (k), we obtain f - unilateral dynamic model of X , that is
f - model P (k)f of X F̄ ,

p(k)f = (1 − eb)(x(0)(1) − d

b
)e−bk = 5.3886e0.01938k. (25)

The expression (25) tell us that we estimate running status of the system
when the attribute invasion took place, we have to use f -unilateral dynamic
model.

5 Conclusion

Refs [1, 2] originated Packet sets theory, which has the dynamic charac-
teristic. P -set gives a theoretical support for searching the motion system
model. The function on [a, b] is just a model on [a, b] . P -set improved the
general set and P -set is the generalization of the general set. Using P -set
theory, this paper gives the research of changes of system state model in
the case of attribute F - attack, and gives applications. The application
presented in this paper just show how to predict and how to deal with some
special cases in venture capital system and economic information system,
the other problems can also be dealt with by P -set theory, we will give more
discussions in other papers.
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Abstract. This paper presents a fuzzy association rules mining algorithm by using 
nonlinear particle swarm optimization (NPSO) to determine appropriate fuzzy 
membership functions that cover the domains of quantitative attributes. Experi-
ments conducted on the United States census demonstrated the feasibility and the 
efficiency of the proposed. 

Keywords: Fuzzy association rule, particle swarm optimization, data mining. 

1   Introduction 

Data mining is a methodology for the extraction of new knowledge from data. In 
many applications of data mining technology, applying association rules are the 
most broadly discussed method. Early research in this field (such as Apriori) con-
centrated on Boolean association rules. Since real-world applications usually con-
sist of quantitative values, the extraction of quantitative association rules have 
been regarded meaningful and crucial. Former quantitative association rule mining 
algorithm used discrete intervals to cover quantitative attribute. Nevertheless, 
intervals may not be concise and meaningful enough for human to obtain nontriv-
ial knowledge. Since the comprehensibility of fuzzy rules by human users is a 
criterion in designing a fuzzy rule-based system, fuzzy rules with linguistic inter-
pretation deals with “the boundary problem” naturally and can be introduced into 
data mining [1]. 

Some works have recently been done on the use of fuzzy sets in discovering as-
sociation rules for quantitative attributes e.g. [2-5]. However, fuzzy sets usually 
determined by domain experts in existing approaches. This is not realistic because 
it is subjective and extremely hard for experts to specify fuzzy sets in a dynamic 
environment. In order to handle this problem, GA-based methods are employed in 
[6-8] to derive the fuzzy sets from given transactions. In [9], a 2-tuples linguistic 
representation model was introduced to fuzzy rules representation. On the concept 
of 2-tuples linguistic representation, [10] introduced a GA-based approach to 2-
tuples fuzzy association rules. 
                                                           
* Corresponding author. 



622 G.-r. cai, S.-z. Li, and S.-l. Chen
 

It is well known that particle swarm optimization [11] is a population-based 
global optimization method based on a simple simulation of bird flocking or fish 
schooling behavior. The significant performances of PSO have been broadly dis-
cussed. Therefore, in this paper, we present a new fuzzy data mining algorithm for 
extracting both fuzzy association rules and MFs from quantitative transactions by 
means of particle swarm optimization. In this approach, the search space provided 
by the 2-tuples linguistic representation helps the particles to obtain appropriate 
MFs, which may extract more comprehensive fuzzy rules. 

The rest of this paper is organized as follows. The concepts of 2-tuples fuzzy 
association rule are introduced in Section 2. In Section 3, we focus on the coding 
strategy of PSO and the definition of the fitness function. Section 4 depicts the 
algorithm of the proposed method. Finally, we consider some data from the United 
States census in year 2000 and conduct some experiments to test our approach. 

2   Preliminaries: The 2-Tuples Fuzzy Association Rule 

2.1   The Definition of Fuzzy Association Rule 

A fuzzy association rule can be expressed as follows: 

IF 1 2{ }pX x x x= ， ，. . .，  is 1 2{ }pA f f f= ， ，. . .， ,  

THEN 1 2{ }pY y y y= ， ，. . .，  is 1 2{ }pB g g g= ， ，. . .， , 

simplify as A B⇒ ,where X and Y are disjoint sets of attributes, i.e., X Attr⊂ , 

Y Attr⊂ , X Y∩ = ∅ ; if  and ig are fuzzy sets that relate to attribute  ix  and iy  

respectively. 1 2{ }mAttr a a a= ， ，. . .， denotes all attributes (items). The fuzzy 

support and confidence are given as follows: 
 
Definition 1. [12] Let ( , )i is isA a f=  be an fuzzy item, where isa Attr∈ , if  is a 

fuzzy set of isa ,(i=1,2,…,k), then we call P = 1 2 ... kA A A∧ ∧ ∧  a fuzzy itemset.  

 
Definition 2.  [12] For any transaction it =(id, < 1 2, ,...,i i imt t t >), the support of 

iA in it  can be defined as: ( , )i is A t = min{ ( ) | ( , ), 1,2,..., }is i i is isf t A a f i kμ = = . 

Where 1 2{ }nT t t t= ， ，. . .，  is a database of transactions, it  represents the i th 

transaction.   

Then we call 
( , )

( , )
| |

i

i
t T

s P t

P T
T

σ ∈=
∑

 
the fuzzy support of  P  . 

 
Definition 3. [12] Define the fuzzy confidence of rule A B⇒  in database T  be: 

( , )
( , )

( , )

A B T
A B T

A T

σϕ
σ
∧

⇒ = , where A and B are both itemsets. 
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Definition 4. [12] Define i frequent itemset as L =  1 2{ ... |iA A A∧ ∧ ∧  
1 2( ... , )iA A A Tσ ∧ ∧ ∧  min}σ≥ , where minσ is the specified minimum fuzzy support. 

Explicitly, each frequent itemset iL (i ≥2) can be used to deriving association 

rules ( )iL S S− ⇒ , for each iS L⊂ .Therefore, the problem of mining all fuzzy 

association rules converts into generating all frequent itemsets, which support and 
confidence are greater than user-specified.   

2.2   The 2-Tuples Linguistic Representation 

The 2-tuples linguistic representation scheme [9] introduces a new model for rule 
representation based on the concept of symbolic translation. The symbolic transla-
tion of a linguistic term is a number with in the interval [−0.5, 0.5) that expresses 
the domain of a linguistic term when it is moving between its two lateral linguistic 
term. Suppose a set of linguistic terms U representing a fuzzy partition. Formally, 
we have the pair as ( ,  ), where  ,  [ 0.5,  0.5)i i i if f Uα α∈ ∈ − . 

For example, consider a simple problem with five linguistic terms in the attrib-
ute “age” {Very young, Young, Middle, Old, Very old}. Fig. 1 depicts the five 
fuzzy sets in “age”. Fig. 2 shows the symbolic translation of a linguistic term rep-
resented by the pair (S, −0.2). Moreover, we can use more comprehensive linguis-
tic term such as“a bit smaller than Old”to replace  (S, −0.2). 
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Fig. 1. Five triangle fuzzy sets in attribute 
“age” 
 

Fig. 2. An example of 2-tuples linguistic 
representation in “age” 
 

 

Based on the concept, 2-tuples association rule in the following way:  

If Age is (Middle, 0.3) then Weight is (High, −0.1). 
In other words, the rule can be express as more comprehensive one: 
If Age is (higher than Middle) then Weight is (a bit smaller than High). 
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3   NPSO-Based Method to Obtain the Membership Functions 

3.1   Nonlinear Particle Swarm Optimization (NPSO) 

As a population-based evolutionary algorithm, PSO [11] is initialized with a popu-
lation of candidate solutions and the activities of the population are guided by 
some behavior rules. For example, let Xi(t)= (xi1(t), xi2(t), …, xiD(t)) ( xid(t)∈ 

[-xdmax, xdmax]) be the location of the ith particle in the tth generation, where xdmax is 
the boundary of the dth search space for a given problem. The location of the best 
fitness achieved so far by the ith particle is denoted as pi(t) and the index of the 
global best fitness by the whole population, as pg(t). The velocity of ith particle is 
Vi(t)= (vi1(t), vi2(t), …, viD(t)), where vid is in [-vdmax, vdmax] and vdmax is the maximal 
speed of dth dimension. The velocity and position update equations of the ith 
particle are given as follows: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))                              (1)id id id id gd idv t w v t c r p x t c r p x t+ = ⋅ + − + −  

( 1) ( ) ( 1)                                                                             (2)id id idx t x t v t+ = + +  

where i=1,. . . , n and d=1,. . . , D. w, c1, c2 ≥ 0. w is the inertia weight, c1 and c2 
the acceleration coefficients, and r1 and r2 are randomly generated in the range  
[0, 1]. 

It is well known that a suitable value for the inertia weight provides a balance 
between the global and local exploration ability of the swarm. Base on the concept 
of decrease strategy [13, 14], a nonlinear inertia weight adaptation strategy was 
proposed in [15], which chooses lower value of w during the early iterations and 
maintains higher value of w than linear model. Experiment results demonstrated 
that nonlinear strategy enables particles to search the solution space more aggres-
sively to look for “better areas”, thus will avoid local optimum effectively.  

The proposed adaptation of w(t) is given as follows: 

max

max

max
1

max

max

( ) ( )2
(1 ) ,

2 2 2
( )                                   (3)

2( ) ( )2(1 ) ,      
2 2

initial final initial finalr

initial finalr
final

w w w w itert
t

iter
w t iter

t w w iter
w t

iter

+ −⎧
− + ≤⎪

⎪⎪= ⎨
−⎪ −

⎪ − + >
⎪⎩

 

where itermax is the maximum number of iterations, t the iteration generation and 
r>1 is the nonlinear modulation index.  

Fig.3 shows the inertia weight variations with iterations for different values of 
r. In [15], we proved that a choice of r within [2-3] is normally satisfactory. 

3.2   MFs Codification 

In this paper, a real coding scheme is considered. We used membership functions 
in triangular shape because it is in general the most appropriate shape and the most 
widely used in fuzzy systems. Since the main task is to determine the appropriate 
setting of every fuzzy sets, each particle is a vector of real numbers with size n ∗m  
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Fig. 3. Nonlinear model of inertia weight 

(n items with m linguistic terms per item). As a result, every particle has the fol-
lowing form: 

 
(c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm), where cij∈[-0.5, 0.5), i=1, 2, …n, j=1, 
2, …, m. 
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Fig. 4. Example of coding scheme 

Fig 4 depicts an example of correspondence between a particle and it’s associ-
ated MFs. Obviously, each particle is related to a series of fuzzy sets of itemsets. 
In order to include expert knowledge, the initial pool contains a particle that hav-
ing all dimensions with value‘0.0’, and the other particles generated randomly in 
[−0.5, 0.5). 
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3.3   Fitness Evaluation 

To evaluate a determined particle we will use the fitness functions defined in [10]: 

1

( , )

( )                                                        (4)
( )

P L

P T

f x
suitability x

σ
∈=
∑

 

where suitability(x ) represents the shape suitability of the MFs from x, The suit-
ability of the set of MFs in x is defined as: 

1 1 1

( , )
( ) ( [max(2 ,  1) 1] 1)                         (5)

n m m
ki kj

k i j ki

overlap R R
suitability x

spanR= = =

= − +∑ ∑∑  

where Rkj is the ith fuzzy set in the kth attribute, the overlap(Rki, Rkj) is the overlap 
length of Rki and Rkj, spanRki is the span of Rki and m denote the number of MFs 
for the ith attribute. 

From the definition of the fitness function, the overlap factor represents the 
overlap ratio of the MFs for an item and the suitability factor can reduce the 
occurrence of redundant or separate shape of MFs. In other words, particles with 
higher fitness value can generate more appropriate fuzzy sets than lower ones. 

4   Algorithm 

Step1. Input training data, randomly initialize n particles and randomize the posi-
tions and velocities for entire population. Record the global best location 
pg of the population and the local best locations pi of the ith particle.; 

Step2. Evaluate the fitness value of the ith particle through Eq.(4). If (f(xi)) < 
(f(pi)), set pi=xi as the so far best position of the ith particle. If (f(xi)) < 
(f(pg)), set pg=xi as the so far best position of the population; 

Step3. Calculate the inertia weight through Eq.(3). Update the position and veloc-
ity of particles according to Eq.(1)and Eq.(2) (i=1,2, …, n); 

Step4. Repeat Step2 and Step3 until Max number of generation or best solution; 
Step5. Construct membership functions according to the best particle, extract all 

frequent itemsets and generate fuzzy association rules according to the al-
gorithm proposed in [11]. 

5   Experiment Results 

In this paper, the experiments conducted on 5,000 records from the United States 
census in the year 2000. We select 10 quantitative attributes from the database and 
five fuzzy sets have been defined for each attribute. As a matter of convenience, 
the proposed method, the GA approach [10], the conventional algorithm [11] are 
denoted as method ‘A’, ‘B’ , ‘C’, respectively.  
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5.1   Parameter Settings  

(1) In the proposed method, c1 = c2 = 2; the population of particles is set as 40; 
winitial=0.95, wfinal=0.4, r=2.5.  

(2) In method B, the population of GA is 50. The crossover and mutation probabil-
ity is decreased linearly, where maxcp =0.8, mincp =0.05, maxmp =0.5, 

minmp =0.005.  

(3) The number of iterations (PSO and GA) is set as 2000 and algorithms are im-
plemented for 100 runs.  

5.2   Results and Discussions 

The analyses are taken with four statistical parameters (average fitness values, 
suitability, the number of large 1-itemsets and the number of interesting rules) for 
each method. Table 1 presents the results obtained by three different methods, 
where Fit for the fitness value, L1 for the sum of the fuzzy support of the large 1-
itemsets and Suit for the suitability. From the results listed in Table 1, it is ob-
served that the proposed method achieved the best fitness value of searching over 
different minimum support. Fig 5 shows the average fitness values along with 
different numbers of evaluations for Method A and B. The number of large 1-
itemsets point out that the proposed method is better than method B.  

Table 1. Results obtained by three different strategies 

Sup Proposed approach Method B Method C 
 Fit Suit L1 Fit Suit L1 Fit Suit L1 

0.2 0.96 11.3 19 0.76 17.9 19 0.89 10.0 18 
0.5 0.68 12.5 13 0.40 16.1 8 0.54 10.0 6 
0.7 0.51 12.9 9 0.23 15.3 6 0.16 10.0 2 
0.9 0.19 10.0 2 0.08 14.2 1 0.00 10.0 0 
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Fig. 5. The average fitness values along with different numbers of evaluations 
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Fig. 6. Numbers of large 1-itemsets obtained for different minimum support 
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Fig. 7. Numbers of interesting rules obtained for different minimum support 

 
Fig 6 and Fig 7 depict the number of large 1-itemsets and fuzzy association 

rules obtained by the different approaches. From these figures we can highlight 
that the proposed approach extracts the best number of fuzzy association rules for 
every minimum support. Moreover, although the derived number of fuzzy associa-
tion rules decreased along with the increase of the minimum confidence value, the 
proposed method extracts about twice as fuzzy association rules as other ap-
proaches with all the values of the minimum support. 

Some of the determined interesting fuzzy association rules are shown as below: 
IF Age of person is (a bit higher than Old) AND education degree is (a bit 

smaller than High) THEN the number of persons in family is very low. 
IF annual income of person is (a bit smaller than Very High) AND educational 

level is low THEN marital status is divorced. 
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6   Conclusion  

In this paper, a new method is proposed to extract fuzzy association rules by using 
NPSO. The main task of PSO is to construct the appropriate fuzzy sets that cover 
the domain of quantitative attribute. The experiment results show that the pro-
posed approach produces meaningful results and has reasonable efficiency. That 
is, NPSO-based approach can extract more interesting fuzzy association rules and 
large 1-itemsets than former methods. 
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Abstract. The aim of this paper is to develop further the fuzzy filter theory
of general residuated lattices. Mainly, we introduce the concept of (∈̄, ∈̄ ∨ q̄)-
fuzzy regular filters in general residuated lattices, and derive some of their
characterizations. Moreover, we discuss some relations between (∈̄, ∈̄ ∨ q̄)-
fuzzy regular filters and several other special (∈̄, ∈̄ ∨ q̄)-fuzzy filters.

Keywords: Residuated lattice, (Fuzzy) filter, (∈̄, ∈̄ ∨ q̄)-fuzzy (implicative,
positive implicative, fantastic and regular) filter.

1 Introduction

Residuated lattices, introduced by Dilworth and Ward in [1], are very ba-
sic algebraic structures among algebras associated with logical systems. In
fact, many algebras have been proposed as the semantical systems of logical
systems, for example, Boolean algebras, MV-algebras, BL-algebras, lattice
implication algebras, MTL-algebras, NM-algebras and R0-algebras, etc., and
they are all particular cases of residuated lattices. In addition, filter theory
plays an important role in studying the interior structures of these algebras
and the completeness of the corresponding logical systems. Therefore, it is
meaningful to establish the filter theory of general residuated lattices for
studying the common properties of the above mentioned algebras.

In [15], Y. Q. Zhu and Y. Xu extensively and profoundly discussed filters
and fuzzy filters in general residuated lattices, including some special types
of them. The aim of this paper is to develop further the fuzzy filter theory of
general residuated lattices. We mainly introduce the concept of (∈̄, ∈̄ ∨ q̄))-
fuzzy regular filters, which is a new type of the generalized fuzzy filters, and
discuss some relative properties.
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2 Preliminaries

In this section, we recall some basic definitions and results which will be
frequently used in the following and we shall not cite them every time they
are used.

Definition 1 ([1,2]). A residuated lattice is an algebraic structure L =
(L,∧,∨,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following axioms:

(C1) (L,∧,∨, 0, 1) is a bounded lattice.
(C2) (L,⊗, 1) is commutative semigroup (with the unit element 1).
(C3) (⊗,→) is an adjoint pair.

In a residuated lattice L, for any x ∈ L, we inductively define x1 = x, xk+1 =
xk ⊗ x, k ∈ N ; x′ = x → 0, and x′′ = (x′)′, etc.

Proposition 1 ([2,10]). In each residuated lattice L, the following properties
hold for all x, y, z ∈ L :

(P1) (x⊗ y) → z = x → (y → z). (P2) z ≤ x → y ⇔ z ⊗ x ≤ y.
(P3) x ≤ y ⇔ z ⊗ x ≤ z ⊗ y. (P4) x → (y → z) = y → (x → z).
(P5) x ≤ y ⇒ z → x ≤ z → y. (P6) x ≤ y ⇒ y → z ≤ x → z, y′ ≤ x′.
(P7) y → z ≤ (x → y) → (x → z). (P8) y → x ≤ (x → z) → (y → z).
(P9) 1 → x = x, x → x = 1. (P10) y → x ≤ x′ → y′.
(P11) x ≤ y ⇔ x → y = 1. (P12) 0′ = 1, 1′ = 0, x′ = x′′′, x ≤ x′′.

For the regular residuated lattices, MTL-algebras, BL-algebras, MV-algebras
(lattice implication algebras) and NM-algebras (R0-algebras) etc., their defi-
nitions can be found in [2,11,15].

Definition 2 ([12]). A fuzzy set F of the set X is a function F : X → [0, 1],
and U(F ; t) := {x ∈ X | F (x) ≥ t} is called a level subset of F for t ∈ [0, 1].

For the concepts of (fuzzy) filters, (fuzzy) implicative (positive implicative,
fantastic and regular) filters and the relative results, readers may refer to
[15].

Proposition 2 ([15]). Let L be a residuated lattice, F a (fuzzy) subset of L.
Then F is an (a fuzzy) implicative filter if and only if it is both a (fuzzy)
positive implicative filter and a (fuzzy) fantastic/regular filter.

We assume that the reader is acquainted with [7,8,15]; we shall refer to them
all the time, and also shall use freely the concepts and terminologies appeared
in [7,8,15].

In this paper, let L denote a residuated lattice unless otherwise specified.

3 (∈̄, ∈̄ ∨ q̄)-Fuzzy Filters of Residuated Lattices

In this section, we enumerate some relative results on (∈̄, ∈̄ ∨ q̄)-fuzzy filters
obtained in some particular classes of residuated lattices, which still hold in
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general residuated lattices. Also, we will give some new results on (∈̄, ∈̄ ∨ q̄)-
fuzzy filters.

In [7,8], Ma and Zhan et al. introduced (∈̄, ∈̄ ∨ q̄)-fuzzy filters and some
special types in BL-algebras (R0-algebras, respectively), obtained some useful
results. We find that some of these results (including their proofs) are also
the same available for general residuated lattices. Naturally, we could regard
them as a part of the (∈̄, ∈̄ ∨ q̄)-fuzzy filter theory of general residuated
lattices. In order to need in the following studying, we only enumerate some
relative results.

Let x ∈ L and t ∈ [0, 1]. A fuzzy set of L with the form

U(x; t) : L → [0, 1], U(x; t)(y) =
{

1, if y = x
0, otherwise

is said to be a fuzzy point with support x and value t.
A fuzzy point U(x; t) is said to belong to (respectively, be quasi-coincident

with) a fuzzy set F , written as U(x; t) ∈ F (respectively, U(x; t)qF ) if F (x) ≥
t (respectively, F (x)+ t > 1). If U(x; t) ∈ F or (respectively, and) U(x; t)qF ,
then we write U(x; t) ∈ ∨qF (respectively, U(x; t) ∈ ∧qF ). The symbol ∈ ∨q
means that ∈ ∨q does not hold (see [7,8,9]).

Definition 3 ([7,8]). A fuzzy set F of L is said to be an (∈̄, ∈̄∨ q̄)-fuzzy filter
of L if for all t, r ∈ [0, 1] and x, y ∈ L,
(G1) U(x⊗ y; min{t, r})∈F implies U(x; t)∈ ∨ qF or U(y; r)∈ ∨ qF.
(G2) U(y; r)∈F implies U(x; r)∈ ∨ qF with x ≤ y.

Theorem 1 ([7,8]). The conditions (G1) and (G2) in Definition 3, respec-
tively, are equivalent to the following conditions:
(G3) max{F (x⊗ y), 0.5} ≥ min{F (x), F (y)}, ∀x, y ∈ L.
(G4) max{F (y), 0.5} ≥ F (x) with x ≤ y.

Theorem 2. A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L if and only
if the following conditions are satisfied:
(G5) max{F (1), 0.5} ≥ F (x), ∀x ∈ L.
(G6) max{F (y), 0.5} ≥ min{F (x), F (x → y)}, ∀x, y ∈ L.

Proof. Necessity: assume that F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L and let
x, y ∈ L. Then F satisfies the conditions (G3) and (G4) in Theorem 1. First,
taking y = 1 in (G4), we have that the condition (G5) holds. Next, we show F
satisfies (G6). In fact, since x ≤ (x → y) → y, we have that x⊗ (x → y) ≤ y,
and so it follows from (G4) that max{F (y), 0.5} ≥ F (x⊗(x → y)). Naturally,
we have that max{F (y), 0.5} ≥ 0.5. Consequently, by (G3) we deduce that

max{F (y), 0.5} ≥ max{F (x⊗ (x → y)), 0.5} ≥ min{F (x), F (x → y)},

which proves that (G6) holds.
Sufficiency: assume that F satisfies the conditions (G5) and (G6). First,

we prove that F satisfies (G4). Let ∀x, y ∈ L be such that x ≤ y.
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Then x → y = 1, and so it follows from (G6) that max{F (y), 0.5} ≥
min{F (x), F (x → y)} = min{F (x), F (1)}. Naturally, we have that
max{F (y), 0.5} ≥ 0.5. Thus, by (G5) we see that

max{F (y), 0.5} ≥ max{min{F (x), F (1)}, 0.5}
≥ min{F (x),max{F (1), 0.5}} = F (x). (1)

This proves that F satisfies (G4). Now we show F satisfies (G3). For all
x, y ∈ L, since x → (y → (x ⊗ y)) = (x ⊗ y) → (x ⊗ y) = 1, we have that
x ≤ y → (x⊗y), and so it follows from (G4) that max{F (y → (x⊗y)), 0.5} ≥
F (x). Naturally, we have that max{F (x⊗ y), 0.5} ≥ 0.5. On the other hand,
by (G6) we have that max{F (x ⊗ y), 0.5} ≥ min{F (y), F (y → (x ⊗ y))}.
Summing up the above results, we have that

max{F (x⊗ y), 0.5} ≥ max{min{F (y), F (y → (x⊗ y))}, 0.5}
≥ min{F (y),max{F (y → (x⊗ y)), 0.5}}
≥ min{F (y), F (x)}.

(2)

This proves that F satisfies (G3). Hence, F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L
by Theorem 1.

Theorem 3. A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L if and only
if it satisfies the following condition:

(GF) x ≤ y → z ⇒ max{F (z), 0.5} ≥ min{F (x), F (y)}, ∀x, y, z ∈ L.

Proof. Suppose that F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L. Let x, y, z ∈ L
be such that x ≤ y → z. Then, by (G4) and (G6), we have max{F (y →
z), 0.5} ≥ F (x) and max{F (z), 0.5} ≥ min{F (y), F (y → z)}. Obviously,
max{F (z), 0.5} ≥ 0.5. Summing up the above results, we have that

max{F (z), 0.5} ≥ max{min{F (y), F (y → z)}, 0.5}
≥ min{F (y),max{F (y → z), 0.5}}
≥ min{F (y), F (x)}.

(3)

This proves that F satisfies the condition (GF).
Conversely, suppose that F satisfies the condition (GF). Since x ≤ x → 1

for all x ∈ L, it follows from (GF) that max{F (1), 0.5} ≥ min{F (x), F (x)} =
F (x). This shows that (G5) holds. On the other hand, since x → y ≤ x → y
for all x, y ∈ L, it follows from (GF) that max{F (y), 0.5} ≥ min{F (x →
y), F (x)}. This proves that (G6) holds. Hence F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter
of L by Theorem 2.

Definition 4 ([7,8]). Let F be an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L, and x, y, z ∈ L.
(i) F is called an (∈̄, ∈̄ ∨ q̄)-fuzzy implicative filter of L if it satisfies

(G7) max{F (x → z), 0.5} ≥ min{F (x → (z′ → y)), F (y → z)}.
(ii) F is called an (∈̄, ∈̄∨q̄)-fuzzy positive implicative filter of L if it satisfies

(G8) max{F (x → z), 0.5} ≥ min{F (x → (y → z)), F (x → y)}.
(iii) F is called an (∈̄, ∈̄ ∨ q̄)-fuzzy fantastic filter of L if it satisfies

(G9) max{F (((x → y) → y) → x), 0.5} ≥ min{F (z → (y → x)), F (z)}.
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Notation 1. In a residuated lattice L, every fuzzy (implicative, positive
implicative, fantastic) filter F of L is an (∈̄, ∈̄∨ q̄)-fuzzy (implicative, positive
implicative, fantastic) filter, but the converses do not hold, respectively. The
relevant examples can be found in [7,8]. However, if F (x) ≥ 0.5 for all x ∈ L,
then the converses hold, respectively.

Theorem 4 ([7,8]). A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy (resp., implica-
tive, positive implicative, fantastic) filter of L if and only if every non-empty
level subset U(F ; t) is itself a (resp.,(an) implicative, positive implicative,
fantastic) filter of L for all t ∈ (0.5, 1].

4 (∈̄, ∈̄ ∨ q̄)-Fuzzy Regular Filters

In this section, we introduce the concept of (∈̄, ∈̄ ∨ q̄)-fuzzy regular filters of
residuated lattices and investigate some of their properties.

Definition 5. An (∈̄, ∈̄ ∨ q̄)-fuzzy filter F of L is called an (∈̄, ∈̄ ∨ q̄)-fuzzy
regular filter of L, if it satisfies the following condition:
(GFR) max{F (x′′ → x), 0.5} ≥ F (1), ∀x ∈ L.

Notation 2. In general residuated lattices, (∈̄, ∈̄ ∨ q̄)-fuzzy regular filters
exist, and also an (∈̄, ∈̄∨ q̄)-fuzzy filter may not be an (∈̄, ∈̄∨ q̄)-fuzzy regular
filter. The relevant examples can be found in [7,8].

Proposition 3 (Extension property). Let F1 and F2 be (∈̄, ∈̄∨q̄)-fuzzy filters
of L with F1 ≤ F2 and F1(1) = F2(1). If F1 is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular
filter of L, then so is F2.

Proof. It is an immediate consequence of Definition 5.

Theorem 5. In a residuated lattice L, the following assertions hold:

(1) Every fuzzy regular filter is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter.
(2) If F is an (∈̄, ∈̄∨ q̄)-fuzzy regular filters with F (1) ≥ 0.5, then F is indeed
a fuzzy regular filter.

Proof. It is an immediate consequence of Definition 5 and ([15], Definition
5.11).

Notation 3. The converse of Theorem 5(1) does not hold. In fact, an (∈̄, ∈̄∨
q̄)-fuzzy regular filter may not be a fuzzy regular filter, even may not be a
fuzzy filter. The relevant examples can be found in [7,8].

Now we describe some characterizations of (∈̄, ∈̄ ∨ q̄)-fuzzy regular filters
in residuated lattices.

Theorem 6. Let F be an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L. Then the following
assertions are equivalent:

(GR1) F is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L.
(GR2) max{F (y → x), 0.5} ≥ F (x′ → y′), ∀x, y ∈ L.
(GR3) max{F (y′ → x), 0.5} ≥ F (x′ → y), ∀x, y ∈ L.
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Proof. (GR1)⇒ (GR2). Suppose that F is an (∈̄, ∈̄∨ q̄)-fuzzy regular filter of
L. Then F satisfies the condition (GFR). For all x, y ∈ L, using Proposition
1, we have that x′ → y′ ≤ y′′ → x′′ ≤ y → x′′, and so the following inequality
holds:

x′′ → x ≤ (y → x′′) → (y → x) ≤ (x′ → y′) → (y → x).

Thus, by (GF) in Theorem 3 we have that

max{F (y → x), 0.5} ≥ min{F (x′ → y′), F (x′′ → x)}.

This and max{F (y → x), 0.5} ≥ 0.5 imply that

max{F (y → x), 0.5} ≥ max{min{F (x′ → y′), F (x′′ → x)}, 0.5}
≥ min{F (x′ → y′),max{F (x′′ → x), 0.5}}
≥ min{F (x′ → y′), F (1)} (by (GRF)).

(4)

Similarly, we further obtain that

max{F (y → x), 0.5} ≥ max{min{F (x′ → y′), F (1)}, 0.5}
≥ min{F (x′ → y′),max{F (1), 0.5}}
= F (x′ → y′) (by (G5)).

(5)

This shows that (GR2) holds.
(GR2)⇒ (GR1). Suppose that F satisfies the condition (GR2) and let

x ∈ L. Since x′′′ = x′, we have that x′ → (x′′)′ = x′ → x′′′ = 1, and so
F (x′ → (x′′)′) = F (1). Thus, by the condition (GR2) we obtain that

max{F (x′′ → x), 0.5} ≥ F (x′ → x′′′) = F (1).

Therefore F is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L by Definition 5.
(GR1)⇒ (GR3). Suppose that F is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L

and let x, y ∈ L. Using Proposition 1, we have that x′ → y ≤ y′ → x′′, and
so we have the following inequality:

x′′ → x ≤ (y′ → x′′) → (y′ → x) ≤ (x′ → y) → (y′ → x).

Thus, according to the methods of proving ((GR1)⇒ (GR2)), we can obtain
that (GR3): max{F (y′ → x), 0.5} ≥ F (x′ → y) for all x, y ∈ L.

(GR3)⇒ (GR1). Suppose that F satisfies the condition (GR3). Since x′ →
x′ = 1 for all x ∈ L, it following form (GR3) that

max{F (x′′ → x), 0.5} ≥ F (x′ → x′) = F (1).

Hence F is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L by Definition 5.

Theorem 7. A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L if
and only if it satisfies
(G5) max{F (1), 0.5} ≥ F (x), ∀x ∈ L.
(GR4) max{F (y′ → x), 0.5} ≥ min{F (z → (x′ → y)), F (z)}, ∀x, y, z ∈ L.
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Proof. Suppose that F is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L. Then F is an
(∈̄, ∈̄ ∨ q̄)-fuzzy filter of L, and so the condition (G5) holds by Theorem 2.
Now we show that F satisfies (GR4). In fact, by Theorem 2 we see that for
any x, y, z ∈ L,

max{F (x′ → y), 0.5} ≥ min{F (z → (x′ → y)), F (z)}.

Next, by Theorem 6 we have that max{F (y′ → x), 0.5} ≥ F (x′ → y), and
obviously max{F (y′ → x), 0.5} ≥ 0.5. Consequently, we deduce that

max{F (y′ → x), 0.5} ≥ max{F (x′ → y), 0.5}
≥ min{F (z → (x′ → y)), F (z)}. (6)

This proves that F satisfies (GR4).
Conversely, suppose that a fuzzy set F satisfies conditions (G5) and (GR4).

First, taking z = 1 in (GR4), we have that

max{F (y′ → x), 0.5} ≥ min{F (x′ → y), F (1)}.

This and max{F (y′ → x), 0.5} ≥ 0.5 deduce that

max{F (y′ → x), 0.5} ≥ max{min{F (x′ → y), F (1)}, 0.5}
≥ min{F (x′ → y),max{F (1), 0.5}}
= F (x′ → y) (by (G5)).

(7)

Thus, we show that F satisfies (GR3). Next, we show F satisfies (G6). Let
x, y ∈ L. Since x → y = x → (1 → y) = x → (0′ → y), it follows from (GR4)
that

max{F (y′′), 0.5} = max{F (y′ → 0), 0.5}
≥ min{F (x → (0′ → y)), F (x)}. (8)

That is,
max{F (y′′), 0.5} ≥ min{F (x → y), F (x)}. (9)

Similarly, since y′′ = 1 → (y′ → 0), it follows from (GR4) that

max{F (y), 0.5} = max{F (1 → y), 0.5} ≥ min{F (1 → (y′ → 0)), F (1)},

i.e.,
max{F (y), 0.5} ≥ min{F (y′′), F (1)}. (10)

Obviously, we have that

max{F (y), 0.5} ≥ 0.5. (11)

Thus, it follows from (10) and (11) that

max{F (y), 0.5} ≥ max{min{F (y′′), F (1)}, 0.5}
≥ min{F (y′′),max{F (1), 0.5}}. (12)
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By (G5) and (11), we obtain that max{F (y), 0.5} ≥ F (y′′), and so that

max{F (y), 0.5} ≥ max{F (y′′), 0.5}. (13)

Summing up the above (9) and (13), we prove that F satisfies condition (G6).
Hence, F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L by Theorem 2, and also it is an
(∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L by Theorem 6 ((GR1)⇔ (GR3)).

Theorem 8. A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L if
and only if it satisfies
(G5) max{F (1), 0.5} ≥ F (x), ∀x ∈ L.
(GR5) max{F (y → x), 0.5} ≥ min{F (z → (x′ → y′)), F (z)}, ∀x, y, z ∈ L.

Proof. It is similar to the proof of Theorem 7.

By using the level regular filters, we can characterize (∈̄, ∈̄ ∨ q̄)-fuzzy regular
filters as follows:

Theorem 9. A fuzzy set F of L is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L if
and only if every non-empty level subset U(F ; t) is a regular filter of L for
any t ∈ (0.5, 1].

Proof. Let F be an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter of L and t ∈ (0.5, 1]. Then
U(F ; t) is a filter of L by Theorem 4. For all x, y ∈ L, if x′ → y′ ∈ U(F ; t),
then F (x′ → y′) ≥ t. According to Theorem 6 ((GR1)⇒ (GR2)), we have
that max{F (y → x), 0.5} ≥ F (x′ → y′) ≥ t. However, since t > 0.5, it follows
that F (y → x) ≥ t, that is, y → x ∈ U(F ; t). Thus, U(F ; t) is a regular filter
of L by ([15], Theorem 5.3).

Conversely, if F is a fuzzy set of L such that U(F ; t)(�= ∅) is a regular filter
of L for all t ∈ (0.5, 1], then F is an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L by Theorem 4,
and so that (G5) holds. In order to prove that F is an (∈̄, ∈̄∨ q̄)-fuzzy regular
filter of L, now we need only to show that F satisfies (GR2) by Theorem 6.
If not, then there exist x, y ∈ L such that max{F (y → x), 0.5} < F (x′ → y′).
Letting t0 = F (x′ → y′), then we immediately see that 0.5 < t0 ≤ 1 and
F (y → x) < t0. This leads to x′ → y′ ∈ U(F ; t0) but y → x /∈ U(F ; t0), so
that U(F ; t0) is not a regular filter of L by ([15], Theorem 5.3). However, this
is a contradiction. Hence (GR2) holds, and F is indeed an (∈̄, ∈̄ ∨ q̄)-fuzzy
regular filter of L.

5 Relations among Some Generalized Fuzzy Filters

In this section, we discuss the relations among special types of (∈̄, ∈̄∨ q̄)-fuzzy
filters in general residuated lattices.

Ma and Zhan et al. established the relations among (∈̄, ∈̄∨q̄)-fuzzy implica-
tive (positive implicative, fantastic) filters in BL-algebras and R0-algebras,
respectively. Some important results were respectively obtained in [7,8], in
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particular, it is proved that an (∈̄, ∈̄ ∨ q̄)-fuzzy filter is an (∈̄, ∈̄ ∨ q̄)-fuzzy
implicative filter if and only if it is both an (∈̄, ∈̄ ∨ q̄)-fuzzy positive implica-
tive filter and an (∈̄, ∈̄ ∨ q̄)-fuzzy fantastic filter in BL-algebras. However, by
using the characterizations on level filters of these special (∈̄, ∈̄ ∨ q̄)-fuzzy
filters, we can easily see that the same results also hold in general residuated
lattices.

Theorem 10. In a residuated lattice L, an (∈̄, ∈̄ ∨ q̄)-fuzzy filter of L is an
(∈̄, ∈̄ ∨ q̄)-fuzzy implicative filter if and only if it is both an (∈̄, ∈̄ ∨ q̄)-fuzzy
positive implicative filter and an (∈̄, ∈̄ ∨ q̄)-fuzzy fantastic filter.

Proof. It is a straightforward result of Theorem 4 and Proposition 2.

However, in a residuated lattice, an (∈̄, ∈̄∨ q̄)-fuzzy positive implicative filter
or an (∈̄, ∈̄∨q̄)-fuzzy fantastic filter may not be an (∈̄, ∈̄∨q̄)-fuzzy implicative
filter. The relevant examples can be found in [7,8].

In the following, we mainly discuss the relations between (∈̄, ∈̄ ∨ q̄)-fuzzy
regular filters and the other special (∈̄, ∈̄∨q̄)-fuzzy filters in general residuated
lattices. Our results are all similar to the cases of ordinary filters, and they
can respectively be obtained from the corresponding results about ordinary
filters, by using the characterizations on level subsets.

Theorem 11. In residuated lattice L, every an (∈̄, ∈̄∨q̄)-fuzzy fantastic filter
is an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter.

Proof. It is an immediate consequence of Theorem 4, Theorem 9 and ([15],
Theorem 7.11).

Notation 4. In a residuated lattice L, an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter may
not be an (∈̄, ∈̄ ∨ q̄)-fuzzy fantastic filter. That is, the converse of Theorem
11 does not hold.

Similarly, we have the following:

Theorem 12. In a BL-algebra L, (∈̄, ∈̄∨ q̄)-fuzzy fantastic filters and (∈̄, ∈̄∨
q̄)-fuzzy regular filters are equivalent.

Proof. It is an immediate consequence of Theorem 4, Theorem 9 and ([15],
Theorem 7.12).

Theorem 13. Let L be a residuated lattice, F a fuzzy set of L. Then F is an
(∈̄, ∈̄ ∨ q̄)-fuzzy implicative filter if and only if it is both an (∈̄, ∈̄ ∨ q̄)-fuzzy
positive implicative filter and an (∈̄, ∈̄ ∨ q̄)-fuzzy regular filter.

Proof. It is an immediate consequence of Theorem 4, Theorem 9 and Propo-
sition 2.
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On the Interpolation by Entire Function of the
Exponential Type
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Abstract. By introducing the difference polynomial operator P ( 1
2hΔh), we

obtain a kind of double-periodic entire (0, P ( 1
2hΔh)) interpolation on equidis-

tant nodes. we establish some equivalent conditions and give the explicit
forms of some interpolation functions on the lacunary interpolation problem.
The convergence of the interpolation operators is discussed.

Keywords: Difference polynomial operator, entire function, lacunary inter-
polation, convergence.

1 Introduction

Let Bp
σ(1 ≤ p ≤ +∞, σ > 0) denote the set of all entire functions f (on the

complex plane C ) of exponential type σ(i.e. |f(z)| ≤ Meσ|y|, z = x + iy ∈
C,M is a positive constant) which f ∈ Lp(R) when restricted to R.

For a positive integer m, let P (t) =
m∑
j=0

cjt
j (cj ∈ R, j = 0, 1, ...,m) is a real

coefficient algebraic polynomial, P (D) (D = d
dx ) is a differential polynomial

operator educed by P (t).
For f ∈ C2π, 0 < |h| < π

2σ , let

Δ0
hf(x) = f(x),

Δhf(x) = Δ1
hf(x) = f(x + h) − f(x− h),

· · · · · · · · ·
Δn
hf(x) = Δ(Δn−1

h f(x)) =
n∑

k=0
(−1)kcknf(x + (n− 2k)h), (n ∈ Z, n ≥ 2).

For the above-mentioned real coefficient algebraic polynomial P (t), we call

P (
1
2h

Δh) =
m∑
j=0

cj
1

(2h)j
Δj
h

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 641–649.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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is a difference polynomial operator educed by P (t) . Naturally, if f has deriva-
tive of m orders then

lim
h→0+

P (
1
2h

Δh)f(x) = P (D)f(x).

The literature [1] studies entire (0, P (D)) interpolation problems. The
literature [2] discusses so-called double-periodic entire (0,m) interpolation
problems and gets a similar conclusion as same as literature [1]. But,these
interpolation problems all require the interpolated function with derivative of
some orders. it can’t be applied to the situation where in the node the inter-
polated function is not differentiable. Therefore its applicability is limited. So,
the literature [3] uses high-order difference alternative to high-order derivative
and studies trigonometric polynomial (0,m) lacunary interpolation problems.
Followed by the literature [4] studies the exponential type entire function of
similar problems. The purpose of this paper is to follow the literature [1]
what is used in Fourier analysis methods and Poisson summation formula,
On the basis of the literature [2] ,we will discuss the so-called double-periodic
entire (0, P ( 1

2hΔh)) interpolation problems at equidistant nodes xk,σ = kπ
σ

(k ∈ Z, σ > 0) through using the difference polynomial operator P ( 1
2hΔh) in

place of m-order differential operator Dm.

2 Interpolation Problem and Its Main Conclusion

Our problems are:

(P1) For any two given sets of complex {αk} and {βk} (k ∈ Z), which satis-
fying
∑
k∈Z

|αk| < +∞,
∑
k∈Z

|βk| < +∞, whether or not there exists exponential

type entire function R(x) ∈ B2
σ satisfying the condition:

R(x2k) = αk, (P (
1
2h

Δh)R)(x2k+1) = βk, xk = xk,σ =
kπ

σ
, k ∈ Z. (1)

or equivalent to, whether or not there exists exponential type entire function
A(x), B(x) ∈ B2

σ, satisfying the condition:⎧⎨⎩
A(x2k) = (P ( 1

2hΔh)B)(x2k+1) = δ0,k,
B(x2k) = (P ( 1

2hΔh)A)(x2k+1) = 0, k ∈ Z, (2)
xk = kπ

σ , k ∈ Z,

where δ0,0 = 1, δ0,k = 0 as k ∈ Z \ {0}.
(P2) If f(x) is a bounded function on the real axis, setting

(Rσf)(x) =
∑
k∈Z

f(x2k)A(x − x2k) +
∑
k∈Z

βkB(x − x2k), where A(x), B(x) ∈

B2
σ satisfying condition (2), whether the interpolation operator (Rσf)(x) is

convergent.
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In order to prove our main results, we need following lemmas.
Let f ∈ L1(R), if we denote the fourier transformation of the f by f̂ , then

f̂(x) =
1√
2π

∫
R

f(t)e−itxdt, x ∈ R.

Lemma 1. If P ( 1
2hΔh) is defined as above, f(x) ∈ B2

σ, then

(P (
1
2h

Δh)f)∧(t) = P (
isinht

h
)f∧(t).

It is easy to prove the lemma, omitted in this proof.

Lemma 2. For j = 1, 2, 3, · · · and any real number t, we obtain

Δj
hcostx = 2jsinjhtcos(tx +

jπ

2
), Δj

hsintx = 2jsinjhtsin(tx +
jπ

2
).

Proof. It is easy to get the conclusion of the lemma by using mathematical
induction.

Theorem 1. (i) If P (t) is a even real coefficient algebraic polynomial, P (0) =
0, and P ( isinhth ) �= 0, t ∈ (0, σ], then A(x), B(x) ∈ B2

σ satisfy condition (2)
if and only if A(x), B(x) respectively have the following form :

A(x) =
2
σ

∫ σ

0

P ((isinh(σ − t))/h)
P ((isinht)/h) + P ((isinh(σ − t))/h)

costxdt, (3)

B(x) =
2
σ

∫ σ

0

cost(x − x1)
P ((isinht)/h) + P ((isinh(σ − t))/h)

dt, (4)

Further, R(x) ∈ B2
σ satisfies the condition (1) if and only if

R(x) =
∑
k∈Z

αkA(x−x2k)+
∑
k∈Z

βkB(x−x2k). (5)

(ii)If P (t) is a odd real coefficient algebraic polynomial, P ( isinhth ) �= 0, t ∈
(0, σ], then in B2

σ there don’t exist entire functions A(x) and B(x) satisfying
condition (2).

Proof. If A(x) and B(x) satisfy condition (2), let A(x) and (P ( 1
2hΔh)A)(x)

respectively replace U(x) of the Theorem 2.2 which is in literature [1] and
the Lemma 3 which is in literature [2], by Lemma 2.1, we get:⎧⎪⎪⎨⎪⎪⎩

A∧(t) + A∧(t + σ) =
√

2π
σ

, a.e. t ∈ (−σ, 0),
A∧(t) + A∧(t − σ) =

√
2π
σ

, a.e. t ∈ (0, σ), (6)
P ((isinht)/h)A∧(t) − P ((isinh(t + σ))/h)A∧(t + σ) = 0, a.e. t ∈ (−σ, 0),
P ((isinht)/h)A∧(t) − P ((isinh(t − σ))/h)A∧(t − σ) = 0, a.e. t ∈ (0, σ).
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Through solving the equation group (6), we have

A∧(t) =
√

2π
σ

P ((isinh(σ − |t|))/h)
P ((isinht)/h) + P ((isinh(σ − |t|))/h)

, a.e. t ∈ (−σ, σ).

Since A(x) ∈ B2
σ, A(x) = 1√

2π

∫
R A∧(t)eitxdt, so

A(x) =
2
σ

∫ σ

0

P ((isinh(σ − t))/h)
P ((isinht)/h) + P ((isinh(σ − t))/h)

costxdt.

Let B(x) and (P ( 1
2hΔh)B)(x) replace V (x) of the Theorem 2.3 which is in

literature [1] and U(x) of the Lemma 2 which is in literature [2] respectively,
according to Lemma 1, using as above similar method, we can get formula
(4).

Contrary, if A(x) is given by (3), then

A(x2k) =
2
σ

∫ σ

0

P ((isinh(σ − t))/h)
P ((isinht)/h) + P ((isinh(σ − t))/h)

costx2kdt. (7)

Through appropriate variable substitution, we can get

A(x2k) =
2
σ

∫ σ

0

P ((isinht)/h)
P ((isinht)/h) + P ((isinh(σ − t))/h)

costx2kdt. (8)

Through (7) and (8), we have A(x2k) = 1
σ

∫ σ
0 costx2kdt = δ0,k, k ∈ Z.

For j, q, s ∈ N, let

Dj(x) := (−1)j
∫ σ

0

((isinh(σ − t))/h)2j(sinht)2j

P ((isinht)/h) + P ((isinh(σ − t))/h)
costxdt,

Eq,s(x) := (− 1
h2 )s
∫ σ

0

((isinh(σ − t))/h)2q(sinht)2q+2s

P ((isinht)/h) + P ((isinh(σ − t))/h)
costxdt

+
∫ σ

0

((isinh(σ − t))/h)2q+2s(sinht)2q

P ((isinht)/h) + P ((isinh(σ − t))/h)
costxdt.

By appropriate variable substitution, we have Dj(x2k+1) = 0,
Eq,s(x2k+1) = 0.

By Lemma 2, we can get P ( 1
2hΔh) is a linear combination of various items

which are shape such as Dj(x) and Eq,s(x)(j, q, s ∈ N). As Dj(x2k+1) =
0, Eq,s(x2k+1) = 0, (j, q, s ∈ N), so (P ( 1

2hΔh)A)(x2k+1) = 0, k ∈ Z.
Similary, we have B(x2k) = 0, (P ( 1

2hΔh)B)(x2k+1) = δ0,k , k ∈ Z.
Let R(x) ∈ B2

σ satisfies the condition (1), we write G(x) = R(x) −
[
∑
k∈Z

αkA(x−x2k)+
∑
k∈Z

βkB(x−x2k)], then G(x2k) = 0, (P ( 1
2hΔh)G)(x2k+1) =

0, k ∈ Z.
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As G(x) ∈ B2
σ, so

G(x) =
1√
2π

∫ σ

−σ
G∧(t)eitxdt, (P (

1
2h

Δh)G)(x)

=
1√
2π

∫ σ

−σ
P (

isinht

h
)G∧(t)eitxdt, x ∈ R.

Let G(x) and (P ( 1
2hΔh)G)(x) replace V (x) of the Theorem 2.3 which is in

literature [1] and U(x) of the Lemma 3 which is in literature [2] respectively,
according to Lemma 1, we get:⎧⎪⎪⎨⎪⎪⎩

G∧(t) + G∧(t + σ) = 0, a.e. t ∈ (−σ, 0),
G∧(t) + G∧(t − σ) = 0, a.e. t ∈ (0, σ), (9)
P ((isinht)/h)G∧(t) − P ((isinh(t + σ))/h)G∧(t + σ) = 0, a.e. t ∈ (−σ, 0),
P ((isinht)/h)G∧(t) − P ((isinh(t − σ))/h)G∧(t − σ) = 0, a.e. t ∈ (0, σ).

Through solving the equation group (9), we have G∧(t) = 0, a.e. t ∈
(−σ, σ), so G(x) = 0, x ∈ R.

i.e. R(x) =
∑
k∈Z

αkA(x − x2k) +
∑
k∈Z

βkB(x− x2k).

If P (t) is a odd real coefficient algebraic polynomial, P ( isinhth ) �= 0, t ∈
(0, σ], from as above proof, we know in B2

σ there don’t exsit entire functions
A(x) and B(x) satisfying condition (2). We now complete the proof of the
theorem 1.

Lemma 3. ([5], [6]) (Poisson Summation Formula).
Let (i) g ∈ L1(R)

⋂
AC(R) or (ii) g ∈ L1(R)

⋂
C(R) with g∧ ∈

L1(R)
⋂

AC(R), then for any β > 0, we have

∑
k∈Z

g(βk) =
√

2π
β

∑
k∈Z

g∧(
2kπ
β

),

where AC(R) is the set of all absolutely continuous function f on the R, C(R)
is the space of all uniformly continuous and bounded functions on the R.

Lemma 4. If P (t) satisfies the condition of the Theorem 2.3, A(x) and B(x)
are given by formula (3) and (4) respectively, then ‖A‖1 = O(σ−1), ‖B‖r ≤
c2σ

− 1
r |P ( isinhσh )|−1, ∀ r > 1, where constant c2 > 0 is independ on σ.

Proof. Setting

ϕσ(t) =
P ((isinh(σ − t))/h)

P ((isinht)/h) + P ((isinh(σ − t))/h)
,

then ϕσ(σ) = 0, ϕ′
σ(σ) = 0.
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Integrating by parts twice , we get

A(x) =
2
σ

∫ σ

0
ϕσ(t)costxdt =

2
σ

∫ σ

0

1 − costx

x2 ϕ′′
σ(t)dt. (10)

By a proper computing , we can find a constant c > 0, such that |ϕ′′
σ(t)| ≤

c σ−2, (t > 0).
By appropriate variable substitution, we have,∫

R

1 − costx

tx2 dx =
∫
R

1 − cosu

u2 du < +∞, (t > 0).

Hence, we obtain

‖A‖1 =
∫
R

|A(x)|dx ≤ 2σ−1
∫ σ

0
tc0cσ

−2dt = O(σ−1),

where c0 =
∫
R

1−cosu
u2 du.

Setting

ψσ(t) =
1

P ((isinht)/h) + P ((isinh(σ − t))/h)
− 1

P ((isinhσ)/h)
.

by P (0) = 0, we have ψσ(0) = ψσ(σ) = 0.
Integrating by parts twice, we get

B(x + x1) =
2sinσx

σxP ((isinhσ)/h)
+

2
σx2 (cosσx− 1)ψ′

σ(σ)

+
2
σ

∫ σ

0

1 − costx

x2 ψ′′
σ(t)dt = B1 + B2 + B3.

By a proper computing , we can find a constant c1 > 0, such that

|ψ′
σ(σ)| ≤ c1σ

−1

|P ((isinhσ)/h)| , |ψ′′
σ(t)| ≤ c1σ

−2

|P ((isinhσ)/h)| .

As
∫
R
| sinuu |rdu < +∞ (∀ r > 1), by Hölder-Minkowski inequality, we can

get
‖B1‖r = O(σ− 1

r |P ((isinhσ)/h)|−1), ∀ r > 1;

‖B2‖r = O(σ− 1
r |P ((isinhσ)/h)|−1), ∀ r ≥ 1;

‖B3‖r = O(σ− 1
r |P ((isinhσ)/h)|−1), ∀ r ≥ 1.

So, ‖B‖r = O(σ− 1
r |P ((isinhσ)/h)|−1).

Lemma 5. Let A(x) is given by formula (3). Then
(i)
∑
k∈Z

A(x− x2k) ≡ 1; (ii)
∑

|x−x2k|>δ
|A(x− x2k)| ≤ c3(1 + δ)δ−2σ−1,

where c3 > 0 is a proper constant and δ is any positive number.
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Proof. (i) For a fixed x ∈ R, let gx(u) = A(x − u), u ∈ R, by literature [5],
we have A∧(y) = 0 as |y| > σ, and

[gx]∧(y) =
1√
2π

∫
R

A(x − u)e−iyudu

=

{ √
2π
σ

P ((isinh(σ−|y|))/h)
P ((isinhy)/h)+P ((isinh(σ−|y|))/h)e

−ixy, if |y| < σ,

0, if |y| ≥ σ.

By Lemma 4 and A(x) ∈ B2
σ, we have gx ∈ L1(R)

⋂
AC(R), by Lemma 3,

we have ∑
k∈Z

A(x − x2k) =
∑
k∈Z

gx(
2kπ
σ

) =
σ√
2π

[gx]∧(0) = 1.

(ii) For any δ > 0, by formula (10), we get

A(x) =
2
σ

∫ σ

0

1 − costx

x2 ϕ′′
σ(t)dt,

∑
|x−x2k|>δ

|A(x− x2k)| ≤ (
2
σ

∫ σ

0
|ϕ′′
σ(t)|dt)

∑
|x−x2k|>δ

|x− x2k|−2

= O(σ−2)
∑

|x−x2k|>δ
|x− x2k|−2,

from

2πσ−1
∑

|x−x2k|>δ
|x− x2k|−2 ≤ 4πδ−2σ−1 + 2

∫ +∞

0
u−2du

= 4πδ−2σ−1 + 2δ−1 ≤ 2(1 + δ)δ−2, (σ ≥ 2π),

we have ∑
|x−x2k|>δ

|A(x − x2k)| ≤ c3(1 + δ)δ−2σ−1.

Theorem 2. Let P (t) satisfies the conditions of Theorem 1. f(x) is a bounded
function on the real axis R, if (Rσf)(x) =

∑
k∈Z

f(x2k)A(x−x2k)+
∑
k∈Z

βkB(x−

x2k), where A(x) and B(x) are given by formula (3) and (4) respectively, and
(
∑
k∈Z

|βk|s)
1
s = o(σ

1
r −1|P ( isinhσh )|), for some real number s > 1, 1

r + 1
s = 1,

then (Rσf)(x) converges to f(x) at each continuity point x of f(x) as σ → ∞.
Further, if f(x) is a bounded and uniformly continuous function on real axis
R, then (Rσf)(x) converges uniformly to f(x).

Proof. By Lemma 4, we have A(x) ∈ B1
σ, by the nature of the entire function

of exponential type (see literature [5]), we get
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k∈Z

|A(x− x2k)| ≤ (1 + σ)‖A‖1 ≤ (1 + σ)σ−1c4 ≤ 2c4, (σ ≥ 1, c4 > 0

is a constant),

(
∑
k∈Z

|B(x−x2k)|r) 1
r ≤ (1+σ)‖B‖r ≤ 2σ‖B‖r ≤ 2c2σ

1− 1
r |P ((isinhσ)/h)|−1, σ ≥ 1.

Let x is a point of continuity of f(x), then for any ε > 0, there exists
δ = δ(x, ε) > 0, such that |f(x) − f(t)| < ε when |t− x| ≤ δ, then

|f(x) − (Rσf)(x)| ≤
∑
k∈Z

|f(x) − f(x2k)||A(x− x2k)| +
∑
k∈Z

|βkB(x − x2k)| ≤

(
∑

|x−x2k|≤δ
+
∑

|x−x2k|>δ
)|f(x) − f(x2k)||A(x − x2k)| +

∑
k∈Z

|βkB(x− x2k)| ≤

2c4ε + O((1 + δ)δ−2σ−1) + o(1). (σ ≥ 2π).

At this we obtain the proof of the first part of the theorem. As to the
second part of the theorem, as f(x) is uniformly continuous on real axis R,
then δ stated as above may be chosen such that it is independent of x. Thus,
we can see that (Rσf)(x) converges uniformly to f(x) as σ → ∞.
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Abstract. The problem of circuit partitioning is a key phase in the physical design 
of VLSI. In this paper, we propose a multi-objective discrete PSO (DPSO) algo-
rithm for the problem of VLSI partitioning. Moreover, a new strategy of heuristic 
local search is employed to accelerate the convergence. The main target of this 
multi-objective problem is optimizing the minimum cut and timing performance 
(delay) while area balance is taken as a constraint. The fitness function of pheno-
type sharing is used to evaluate solution by both pareto dominance and neighbor-
hood density. The experimental results on ISCAS89 benchmarks are performed to 
validate the proposed algorithm. Compared with genetic algorithm (GA) and Tabu 
Search (TS) in literature [4], the proposed algorithm could obtain more markedly 
better solutions for bipartition problem.  

Keywords: VLSI, Physical design, Partitioning, Multi-objective, Discrete PSO.  

1   Introduction 

Today, physical design is the most time consuming part in VLSI design flow, it also 
contains several stages. First of them is circuit partitioning whose results will be used 
directly in placement, routine and other stages of physical design. The most important 
objective of partitioning is to minimize the interconnections among the subdomains 
(cut-size). With current trends, partitioning with multi-objective which includes power, 
timing performance and area, in addition to minimum cut is in vogue. This work ad-
dresses the problem of VLSI circuit partitioning with the objective of minimizing 
delay and cut-size while considering the area balance constraint.  

Circuit bipartition problem with the objective of minimum cut-size has been 
proved to be NP-hard [1]. For years many algorithms have been applied to solve 
multi-objective partitioning problem. According to the category of optimal method, 
these techniques are mainly classified into exact heuristic methods [2-3] and sto-
chastic search methods which include TS algorithm [4], genetic algorithm [4-5], 
evolution algorithm [6-7] and so on. However, the shortages of low efficiency and 
                                                           
* Corresponding author. 
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local optimum are universal existence on exact heuristic algorithms and most of the 
iterative improvement algorithms also have the problem of poor convergence accu-
racy and low evolution velocity [8].  

As a swarm-based evolutionary method, PSO seems particularly suitable for 
multi-objective optimization mainly because of its high evolution velocity which 
the algorithm presents for single-objective [9]. Aiming at the aspects concerned 
above, we propose an effective algorithm based on DPSO to solve the multi-
objective optimization in circuit bipartition. In order to overcome the shortage of 
DPSO algorithm that lacks the capacity of local search [10], an iterative refine-
ment strategy based on fiduccia and mattheyses (FM) [11] is used to further im-
prove cut-size objective of each particle. Moreover, local search for improving 
delay objective is also added while iterating. To decide the global best, a fitness 
value with phenotype sharing is defined, thus a non-dominance solution with 
lower neighborhood density would be selected [12].  

The remainder of the paper is organized as follows. In the next section, the 
mathematical model of the multi-objective partitioning problem is formulated. 
Section III presents the proposed algorithm for partitioning problem in detail. 
Section IV summarizes the results obtained on the ISCAS89 benchmarks. Section 
V offers concluding remarks followed by acknowledgement.  

2   Problem Description 

Generally, a circuit can have multi-pin connections (nets) apart from two-pin and 
therefore it is better to represent it by a hypergraph ),( EVH , in which V={v1 ,v2 

,…,vn} is a set of nodes (e.g., standard cells or gate) and E={e1 ,e2 ,…,em} is a set 
of hyperedges (e.g., nets). A net is a subset of nodes which are electrically con-
nected by a signal. Considering the circuit which contains n nodes and m nets, the 
partitioning is to assign the n nodes to a specified number of subsets k (k=2 in this 
paper) satisfying prescribed properties.  
 
Cut-size objective.  If subsets are denoted by V1, V2,…, Vk, the objective of cut-
size can be written as follows:  

             ))}()(,|{(
1 1
∑ ∑
= +=

≠∩≠∩∈
k

a

k

ab
ba VeVeEeeMinimize φφ ∩ .                  (1) 

This paper solves the problem of circuit bipartition.  
 

Delay objective. The exact wire length can not estimate in circuit partitioning 
phase, therefore we used a simple path delay model in this paper [13]. It also can be 
extended much exactly if necessary.  

In order to deal with a signal path, let P=(vp1 ,vp2 ,…,vpl) be a directed path from 
vp1 to vpl, if vp1, vpl is sequential nodes (or FF nodes) and vpj(2≤j≤l-1) is combina-
tional nodes, P is a FF-FF path. If we assume that PI denotes the set of primary 
inputs, and PO denotes the set of primary outputs. For purposes of path timing 
analysis we treat the nodes of PI, PO, and FF as the end points of timing paths, i.e., 
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the circuit delay is the longest combinational path (critical path) delay from any FF 
or PI output to any FF or PO input. We generically refer to timing paths as FF-FF 
paths [2]. A path-cut number of path P, denoted h(P), is the number of directed-
edge cut which are included in the path P. The delay of a FF-FF path P can be writ-
ten as follows:  

                     ∑
∈

×++=
Pvvv

incwiregate

kji

dPhkjdidpd
,,

)()),()(()( ,                      (2) 

where dgate(i) denotes the delay of node vi, dwire(j,k) denotes the delay of wire  
e(vj ,vk), dinc denotes the delay increment of directed-edge cut. Then the objective 
of timing performance can be formally described as:  

                  Minimize  ),()),((_ EVHPPdMaxd pathcritical ∈= .            (3) 

Area balance constraint. This paper solves the problem of circuit bipartition and 
the area of all cells is assumed identical. Then the area balance constraint is given 
below:  

                   )2,1(
2

)1(
2

)1( =×+≤≤×− i
S

S
S

i ϕϕ ,                            (4) 

where )10( <<ϕϕ  denotes the area balance tolerance, S denotes the total area of 

all the cells in the circuit, Si is the area of cells in partition Vi. 

3   Proposed Algorithm 

A multi-objective algorithm based on DPSO and local search strategy is now proposed 
for solving the circuit bipartition problem where the 2-tuple of objective defined above 
in Section 2, are minimized while considering the area balance constraint.  

3.1   Encoding Scheme 

This paper uses the scheme of 0-1 encoding for circuit bipartition problem. A 
particle is a feasible solution in circuit bipartition. Considering the circuit which 
contains n modules, a particle is a 0-1 array of n modules. For example, the parti-
cle i at time t can be represented by ),...,,( 21

t
in

t
i

t
i

t
i xxxX = , where gene t

ikx  is 0 or 

1. When t
ikx  value is 0, the corresponding module k is allocated to partition V0, 

otherwise the corresponding module k is allocated to partition V1. 

3.2   Crossover and Mutation 

Considering the problem with 0-1 encoding scheme, here we use the uniform 
crossover and random two-point exchange mutation operators.  

Nowadays, there are many crossover operators for 0-1 encoding scheme. In or-
der to have a complete and uniform search process, uniform crossover operator is 
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used in this paper. DPSO is different from GA, there is only a new particle gener-
ated from crossover operator in DPSO for ensuring the population size remains 
unchanged. The number of genes ccount which are selected from guiding particle 
for offspring in crossover operation is determined by the product of total modules 
n and cratio. According to parameter ccount, randomly generating a 0-1 shield-array 
which satisfying the area balance constraint is the main step of this crossover 
operation. The cratio in this paper was set as 0.25.  

Exchange mutation is a kind of mutation method, which is often used in many 
problems. Implementation of random two-point exchange mutation is described 
as: when two random exchange points are selected from a particle to be operated, 
an exchange between their corresponding modules will be made. In circuit biparti-
tion problem, in order to avoid the invalid mutation, two random exchange mod-
ules must be located in different partitions of solution array.  

3.3   DPSO Algorithm 

This paper employs the new discrete position updating method [14] based on ge-
netic operation for reference and proposes a DPSO algorithm for circuit bipartition 
problem. Position updating can be defined as follows:  

                  )),,((( 111
11223

−−−⊕⊕⊕= t
i

t
i

t
i

t
i GPXFcFcFwX ,                  (5) 

where w is inertia weight, c1 and c2 are acceleration constants.  
In the model, the position updating of particles consists of three sections therein-

after, where r1, r2, r3 are random numbers on interval [0, 1) and F1, F2 denote the 
crossover operation of particles.  

 
1. This section reflects the cognitive personal experience of particles:  
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where c1 denotes the crossover probability of particles and personal best solution.  
2. This section reflects cooperative global experience of particles:  
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where c2 denotes the crossover probability of particles and global best solution.  
3. This section reflects the velocity of particles:  
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where F3 denotes the mutation operation of particles, w denotes the mutation prob-
ability. 
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3.4   Local Search 

Though the PSO has proved to be a global optimization algorithm, the DPSO used 
in this paper also lacks the capacity of local search [10]. In order to overcome the 
shortage concerned above, an iterative refinement strategy based on FM [11] is 
used to further improve cut-size objective of each particle. Moreover, local search 
for improving delay objective is also added while iterating. The local search proc-
ess of particles consists of two sections thereinafter.  
 

1. Local Search for reducing Cut-size of Particles  
The approach which was presented by FM is an effective classical method for 

reducing cut-size in circuit partitioning problem. This section of local search em-
ploys the local migration strategy based on FM iterative heuristic for reference.  

Definition 1.  As to the module i in circuit, The gain g(i) which is the number of 
nets by which the cut-size would decrease if module i was to be moved from its 
subset to another is defined as:  

                                          g(i)=FS(i)-TE(i),                                                (9) 

where FS(i) denotes the number of nets connected to module i and not connected to 
any other module in subset which contains module i, TE(i) denoted the number of 
nets that are connected to module i and not crossing the cut.  

As to the particles which have updated the position by DPSO, the detail of the 
procedure is given bellow (L1=0 is initialized, L1max is the termination condition).  

 
Step 1. Calculate the gain g(i) of each modules according to (9);  
Step 2. Select the module k with a maximum gain gmax from all modules while 

considering the area balance constraint (4);  
Step 3. If gmax>0, move the module k from its subset to another; L1=L1+1;  
Step 4. If L1 ≥L1max is satisfied, go to Step 5(next section of local search); oth-

erwise, go to Step 1.  
 
Considering the time complexity of the algorithm and the effect of local migration 
strategy for reducing cut-size, the termination condition L1max in this paper was set 
as 2.  

2. Local Search for reducing Delay of Particles  
This part introduces the local search for improving delay objective.  

 

Fig. 1. Example of a FF-FF path P’ 
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Definition 2.  As to the FF-FF path P=(vp1 ,vp2 ,…,vpl) in circuit, the h(vpi) denotes 
the difference value of directed- edge cut in P by module vpi was to be moved from 
its subset to another, the value range of h(vpi) is {-2,-1,0,1,2}. For example, a FF-
FF path P’ in circuit is shown in figure 1. Then, the difference value h(vpj)(1≤j≤7) 
of all modules in P’ are respectively {-1,0,0,-2,0,2,1}.  

As to the particles which have updated the position by local search for reducing 
cut-size, the detail of the procedure is given bellow.  

Step 5. Calculate the difference value h(vpi) of critical path modules;  
Step 6. Select the module k with a minimum difference value hmin from all 

modules while considering the area balance constraint (4);  
Step 7. If hmin≤0, move the module k from its subset to another. 

3.5   Multi-objective Approach 

To make a decision, a selection method is necessary, which should promote the 
swarm flying towards the real pareto front and distributing along the front as uni-
formly as possible. The fitness function of phenotype sharing defined in [12] is 
applied, in which a particle is evaluated by both pareto dominance and neighbor-
hood density. For a global best position, a non-dominated solution with lower 
fitness value is selected. While iterating, a set A1 contains non-dominated solu-
tions with lowest fitness value in current swarm is maintained where a global best 
solution should be selected to affect the swarm flying and a set of non-dominated 
solutions A2 is also maintained which is used to store non-dominated solutions 
generated in the whole search process. In particular, if several solutions have the 
same fitness value, we choose a random one. The detail of the fitness function is 
given below.  
 

Definition 3. As to particle xi and xj, the distance of the objective k is:  

                               )()( jkikijk xfxfdf −= .                                              (10) 

Therefore, the objective distance of particle xi and xj is given as:  

                                  ijmijijij dfdfdffd +++= ...21 ,                                 (11) 

where m is the dimension of the objective.  
 
Definition 4. The number D(i) which particle i is dominated is defined as follows:  

                                     ∑=
=

p

j
jindiD

1
),()( ,                                                    (12) 

where p is the population size, and nd(i,j) is 1 if particle i dominates particle j and 
0 otherwise.  
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Definition 5. The function of phenotype sharing is defined as follows:  
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where sσ denotes the sharing parameter.  

Definition 6. The neighbor density measure of particle i is defined as follows:  

              ∑=
=

p

j
ijfdshiN

1
)()( ,                                                       (14) 

where p denotes the population size.  
 
Definition 7. The fitness function of particle i is:  

                              βα ))(1())(1()( iNiDiF +×+= ,                             (15) 

where α and β are nonlinear parameters. 

3.6   Algorithm Description 

The details of algorithm are described as follows (the sets A1, A2 are defined in 
section 3.5):  
 

Step 1: Load circuit net-list data and initialize the parameters of the algorithm;  
Step 2: Randomly initialize population, calculate cut-size, delay and fitness 

value of each particle;  
Step 3: Update personal best solution of each particle and the set A1; randomly 

select a guide particle from A1;  
Step 4: Adjust the position and velocity of each particle according to (5)-(8);  
Step 5: Update the position of each particle by local search mentioned in 

section 3.4;  
Step 6: Calculate cut-size, delay and fitness value of each particle;  
Step 7: Update the set A2; if termination condition is satisfied, go to step 8; oth-

erwise, go to step 3;  
Step 8: Stop the algorithm and regard the set A2 as the final solution.  

4   Experimental Results 

The experiments were run on a PC (1 CPU, 2.00GHz, 1.00GB RAM, Windows 
XP) and all the algorithms in experiments implemented in MATLAB. We tested 
the algorithms on the layouts of 4 sequential circuits in ISCAS89 benchmarks. 
The circuit parameters are summarized in Table 1. Generally, the FF-FF paths in 
sequential circuits are much more than that in combinational circuits. In order to 
save the storage space and run time of program, the FF-FF paths whose length is 
more than a certain threshold only be treated in this paper. The parameters of  
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Table 1. Specification of the benchmarks 

Circuits #Cells(including 
PI/PO) 

#Nets #FF #Inverters #FF-FF paths 

s298 142 136 14 44 145 

s820 331 312 5 33 492 

s953 463 440 29 84 1156 

s1238 554 540 18 80 3559 

 
 

 
 
 
delay model were set as follows: dwire=0.5, dinc=10, for gate delay, if node vi is 
inverter, dgate(i)=1; if node vi is PI, PO or FF, dgate(i)=0; else dgate(i)=2.  

In order to validate the proposed algorithm, we compared it with the GA method 
[4] and the TS method [4] with area balance constraint ( 2.0=ϕ ). These two compared 

methods applied weighted sum approach to optimize the objectives, thus they obtained 
only one solution for a run. The parameters in the proposed algorithm were given as 
follows: population size p was 50, c1 decreased linearly from 0.6 to 0.3, c2 increased 

Fig. 2. Pareto  front on circuit s298 Fig. 3. Pareto front on circuit s820 

Fig. 4. Pareto  front on circuit s953 Fig. 5. Pareto front on circuit s1238 



A Multi-objective Algorithm Based on Discrete PSO for VLSI Partitioning Problem 659
 

linearly from 0.2 to 0.4, w set to be 0.6, the maximum number of generations was 
3000. The sharing parameters 1

sσ  and 2
sσ  were both set to be 2. The nonlinear pa-

rameters α and β were set to be 5 and 1, respectively. The best results of all three 
algorithms in 10 runs on each circuit are shown in Fig. 2-5. 

From Fig. 2-5, as a direct representation, we can find that the pareto fronts of 
proposed algorithm in all 4 tested circuits dominated the GA and TS meth-
ods.Moreover, our algorithm is able to provide several feasible solutions for parti-
tioning while other two algorithms only give out one.  

To have a clearer view, we select three solutions uniformly from pareto fronts of 
each circuit. The exactly comparison of experimental results among three algo-
rithms is shown in Table 2. H means the number of directed-edge cuts which are 
included in the critical path of solution. From the results, it is clear that the solu-
tions of the proposed algorithm are all markedly better than that obtained from TS 
[4] and GA [4] methods among cut-size, delay and the directed-edge cut objectives. 

Table 2. Comparison of experimental results(C=Cut-size, D=Delay, H=h(Pcritical_path)) 

Our algorithm TS[4] GA[4] Circuit 
C D H C D H C D H 

6 30.5 1 
10 28 1 s298 
15 22 1 

16 30.5 1 17 30.5 1 

26 43.5 2 
27 41 2 s820 
36 37.5 2 

46 43.5 2 45 43.5 2 

48 53.5 3 
61 52 3 s953 
73 47.5 2 

83 59 4 99 66 5 

48 71 3 
56 65 2 s1238 
64 60 2 

102 70.5 3 104 77 3 

5   Conclusion 

In this paper, a multi-objective algorithm based on DPSO for VLSI circuit biparti-
tion problem was proposed. In iterative process of DPSO, two heuristic local 
search strategies are used to further improve cut-size and delay objective of each 
particle, respectively. Experimental results on ISCAS89 benchmark circuits veri-
fied the feasibility and high-efficiency of the proposed algorithm by comparison 
with GA [4] and TS [4]. The future work will focus on multilevel partitioning 
problem by using the DPSO algorithm. 
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Abstract. P-sets are a set pair which are composed of internal P-sets FX and 
outer P-sets FX . P-sets have dynamic characteristics. By using internal P-sets and 
deleted sets, the concepts of F -compressed data and F -redundant data are pro-
posed. A data pair which is (( ) , ( ) )Fx x −  for data processing is proposed. Using it, 
some theorems are given such as the separation theorem, the generation theorems, 
recovery theorems about F -compressed data and F -redundant data. The meas-
ures about F -compressed degree, F -redundant degree and F -recovery degree 
are given. Finally, the application is provided about the system of typhoon pre-
warning and search- rescue.  

Keywords: P-sets, F -compressed data, F -redundant data, data generation, data 
recovery, F -data measure,  application. 

1   Introduction 

In the computer data processing, data often requires to be compressed. Regardless 
of which method is used to compress data, the aim is to eliminate redundant data. 
Can we adopt a new mathematical model to understand the phenomenon of com-
pressed data so as to obtain the theoretical characteristics and some new results? 
Can we apply this new mathematical theory and method to discuss the generation 
and recovery of compressed data and redundant data? In the literature which can 
be seen, no one gives these discussions. 

In fact, some data elements 1 2, , ,p p qx x x+ + ⋅ ⋅ ⋅  are deleted from data 1 2( ) { , ,x x x=  

qx, }⋅ ⋅ ⋅ , then x( )  changes into 1 2( ) { , , , }F
px x x x= ⋅ ⋅ ⋅ , p q≤ ; this is equivalent to com-

pressing data x( )  to get data elements 1 2, , , px x x⋅ ⋅ ⋅ , thus compressed data 

1 2( ) { , ,Fx x x= , }px⋅ ⋅ ⋅ ,

Fx x( ) ( )⊆  is generated. On the other hand, 1 2, , ,p p qx x x+ + ⋅ ⋅ ⋅  are 
redundant data elements with respect to compressed data Fx( ) , they generate redun-
dant data 1 2( ) { , , , }p p qx x x x−

+ += ⋅ ⋅ ⋅ . Fx( )  and x( )−  compose F -data pair Fx x(( ) ,( ) )− . 
That x( )  is compressed and changed into compressed data Fx( )  is similar to the dy-
namic characteristics of P-sets (Packet sets)[1-2] created by Professor Kaiquan Shi in 
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2008. It is an interesting and important finding. In addition, there is no discussion and 
application on the deleted sets of  X  in the applied literatures of P-sets. Based on the 
theory of P-sets, the concepts of F -compressed data and F -redundant data are pro-
posed in this paper. Using data pair Fx x(( ) ,( ) )− , the generation and recovery of  
F -compressed data and F -redundant data are discussed.  

For the convenience of discussion, where P-sets structure, the dynamic charac-
teristics and dependence are introduced into Section 2 for this paper as the theo-
retical preparation of discussion. 

2   Prerequisites 

Assumption 1. X  is  a  finite general set on U , U is  a  finite element universe, 
V  is  a  finite attribute universe. 
 
Given a general set 1 2{ , , , }mX x x x= " U⊂ , and 1 2{ , , , }k Vα α α α= ⊂"  is attribute 
set of X , FX  is called internal packet sets of X , called internal P-sets for short, 
moreover  

                                               FX X X −= − ,                                                          (1) 

X −  is called F -element deleted set of X , moreover 

                                 X x x X f x u X f F{ | , ( ) , }− = ∈ = ∈ ∈ ,                                      (2) 

if  the attribute set  Fα  of  FX  satisfies 

                                   F f f F{ | ( ) , }α α α β α α′ ′= = ∈ ∈∪ ,                                       (3) 

where FX V f F, , ,φ β β α≠ ∈ ∈ ∈  turns β  into f ( )β α′= α∈ . 
Given a general set 1 2 mX x x x U{ , , , }= ⊂" , and 1 2 k V{ , , , }α α α α= ⊂"  is attribute set 
of X , FX  is called outer packet sets of X , called outer P-sets for short, moreover 

                                               FX X X += ∪ ,                                                          (4) 

X +  is called F -element supplemented set, moreover 

                            X u u U u X f u x X f F{ | , , ( ) , }+ ′= ∈ ∈ ∈ ∈ ∈ ,                                 (5) 

if  the attribute set Fα  of FX  satisfies 

                                   F
i i if f F{ | ( ) , }α α β α β α= − = ∈ ∈ ,                                     (6) 

where F
i f F, ,α φ α α≠ ∈ ∈  turns iα  into i if ( )α β α= ∈ . 

The set pair which are composed of internal P-sets FX  and outer P-sets  FX  
are called P-sets (packet sets) generated by general set X , called P-sets for short, 
and it is expressed as the  

                                                    F FX X( , ) ,                                                         (7) 

where general set X  is the ground set of  F FX X( , ) . 
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It is should be pointed out here: 

1Di  The dynamic characteristic of formulas (1) - (6) is similar to the structure of 

T T 1= +  in the computer.  

2Di  1 2 m 1 2 nF f f f F f f f{ , , , } , { , , , }= =" " are element transfer families [1-9, 

10-12], f ∈ F f F, ∈  are element transfers[1-9,10-12], f F f F,∈ ∈  are given 

functions.  

3Di  P-sets have dynamic characteristics. P-sets are set pair family composed by 

some set pairs. Moreover 

                                               F F
i jX X i j{( , ) | I, J}∈ ∈ ,                                            (8)   

where I, J are index sets, formula (8) is the representation of set pair family of  

P-sets. 

4Di  Internal P-sets have characteristic of one-directional dependence[3].If 

1 2,F Fα α are attribute sets of 1 2,F FX X  respectively, moreover 1 2
F Fα α⊆ , then there is 

2 1
F FX X⊆ , 1

FX one-directionally depends on 2
FX , moreover 

                                                      2 1
F FX X⇒ ,                                                    (9) 

"⇒ " in formula (9) comes from mathematical logic and reasoning, " ⇒ " is equiva-
lent to "⊆ ". 

3 The Generation-Recovery of F -Compressed Data and  
F -Redundant Data 

Assumption 1. In order to discuss easily, the finite general sets FX XX, , −  in section 
2 are expressed by x( ) , Fx( ) , x( )−  respectively, or, x X( ) = , F Fx X( ) = , x X( )− −= . 
 
Assumption 2.  The general form of data pair sequence is expressed by 

F
i ix x(( ) ,( ) )− . Specially, the initial states of F -compressed data and F -redundant 

data are ( ) ( )Fx x=D , x( ) φ− =D . 

 
Definition 1. 1 2( ) { , , , }qx x x x U= ⋅ ⋅ ⋅ ⊂  is called data on U , ix x( )∈  is called data 
element of data x( ) , 1,2, ,i= q⋅ ⋅ ⋅ ;  if  x( )  has  attribute  set α , moreover 

                                           1 2{ , , , }kα α α α= ⋅ ⋅ ⋅ .                                                      (10) 

Definition 2. 1 2( ) { , , , }F
px x x x U= ⋅ ⋅ ⋅ ⊂  is called F -compressed data of data x( ) , 

moreover 
                                               Fx x x( ) ( ) ( )−= − ,                                                    (11) 

1 2( ) { , , , }p p qx x x x U−
+ += ⋅ ⋅ ⋅ ⊂  is  called F -redundant data of data x( ) , moreover 
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                             x x x x f x x x f F( ) { | ( ), ( ) ( ), }− ′= ∈ = ∈ ∈ ,                                (12) 

if  the attribute set Fα of  Fx( )  and attribute set α  of  x( )   satisfy 

                                    F f f F{ | ( ) , }α α α β α α′ ′= = ∈ ∈∪ ,                                  (13) 

where V p q, ,β β α∈ ∈ < ; p q, N+∈ . 

 
Definition 3. Fx x(( ) ,( ) )−  is called F -compressed-redundant data pair of data 

x( ) , if  Fx( )  is F -compressed  data  of  data x( ) , x( )−  is F -redundant data  of 
data x( ) . 

By formulas (1)-(3) and definitions 1-3, we get that:                 

      
Definition 4. F

nx( )   is called the n  level of  F -compressed data of data x( ) , nx( )−   
is called the n  level of  F -redundant data of data x( ) , if  F

nx( )  and nx( )−  are ob-
tained from attribute set α  of  x( )  supplemented by attributes at the n  time, satisfy 

                                             F F F F
n n1 2 1α α α α α−⊆ ⊆ ⋅⋅⋅ ⊆ ⊆ .                                     (14) 

Using definitions 1-4 and discussions in section 2, we get that: 
 

Theorem 1.  (The separation theorem of F -compressed data and F -redundant 
data)  If attribute set α  of data x( )  is supplemented by some attribute thus 
changes into Fα , and Fα α⊆ , then F -compressed data Fx( )  and F -redundant 
data x( )−  generated by data x( )  satisfy 

                                                     Fx x x( ) ( ) ( )− = − .                                             (15) 

The proof can be obtained from definition 2.It is omitted. 
From formula (11)  in definition 2 and formula (15) in theorem 1, we can get 

that: 

 
Proposition 1. F -compressed data Fx( )  and F -redundant data x( )−  of data x( )  

are  separated and discovered  to each other. 

 

Corollary 1.   If  F φ= , then Fx x( ) ( )= ; and vice versa. 
Where 1 2{ , , , }nF f f f⋅ ⋅ ⋅=  is element transfer family, if F∈ , {1,2, , }i n∈ ⋅⋅ ⋅ . 

In fact, F φ= , then x x x x f x x( ) { | ( ), ( )− ′= ∈ = x f F( ), } φ∈ ∈ = ; Based on 

theorem 1, ( ) ( ) ( ) ( )Fx x x x−= − = . 

 

Corollary 2. If  Fx( )  and x( )−  are F -compressed data and F -redundant data of  
data x( )  respectively, moreover 

                                                    Fx x( ) ( ) φ− =∩ .                                             (16) 

The proof can be obtained from theorem 1.It is omitted. 
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By formula (16), we get: 

 
Corollary 3. If  Fx( )  and x( )−  are F -compressed data and F -redundant data of 
data x( )  respectively, then 

                                                 (DE{ ) ( }I )Fx x −
, ,                                                (17) 

where IDE =identification [1-2]. 

 

Theorem 2 (Existence theorem of F -compressed data and F -redundant data).  
Suppose α  is attribute set of data  x( ) ,  if there exists attribute set *α , moreover 

*α , α  satisfy 

                                                       *α α φ− ≠ ,                                                     (18) 

then there exists data *x( )  and x( )D , *x( )   is F -compressed data of x( ) , x( )D   is 
F -redundant data of x( ) .Where *x( )  has attribute  set *α . 
 
Proof. As *α α φ− ≠ , then *α α⊆ . Based on formulas (1)-(3), there is: being sup-
plemented by some attributes, α  changes into *α . Because α , *α  are attribute sets 
of x( )  and *x( )  respectively, by definitions 1 and 2, there is: *x x( ) ( )⊆ , *x( )  is data 
of x( ) , * Fx x( ) ( )= . So *x( )  exists. Suppose Fx x x( ) ( ) ( )= −D , then Fx( ) = x x( ) ( )− D . 
By definition 2, then x( )D  is F -redundant data of x( ) , x( ) =D x( )− . So x( )D  exists. 
 
Theorem 3 (Generation theorem of F -compressed-redundant data pair sequence).  If 
attribute set α  of  x( )  is supplemented by attributes for n times, the attribute sets 
sequence of α  obtained from it satisfy that: F

1α α⊆ ⊆ F F F F
i n n2 1α α α α−⋅ ⋅⋅ ⊆ ⋅ ⋅⋅ ⊆ ⊆ , then 

data x( )  generates F -compressed-redundant data pair sequence F
i ix x(( ) ,( ) )− ; more-

over F
ix( )  satisfies  

                                 F F F F F
n n ix x x x x x1 2 1( ) ( ) ( ) ( ) ( ) ( )−⊆ ⋅ ⋅⋅ ⊆ ⋅ ⋅⋅ ⊆ ⊆ ⊆ ,                         (19) 

where i n1,2, ,= ⋅ ⋅ ⋅ .  

 

Proof.  When i 1= , the attribute set α  of  x( )  is supplemented by attributes to get 

attribute set F
1α , F

1α α⊆ ; By definitions 1-3, we get F -compressed data Fx 1( )  
and F -redundant data x 1( )−  of x( ) .Meanwhile F -compressed-redundant data 
pair Fx x1 1(( ) ,( ) )−  is generated, moreover  Fx x1( ) ( )⊆ . Apparently, formula (19) is 
established. Suppose when i n 1= − , the conclusion is established, moreover they 
satisfy F F F F F

n n ix x x x x x1 2 2 1( ) ( ) ( ) ( ) ( ) ( )− −⊆ ⋅ ⋅⋅ ⊆ ⋅ ⋅⋅ ⊆ ⊆ ⊆ .When i n= ,adding attributes 
to attribute set F

n 1α −  of data F
nx 1( ) − , there is: F

nα , F
n 1α −

F
nα⊆ . Based on definitions  

1-3, F
nx( )  and nx( )−  generated by data F

nx 1( ) −  are F -compressed data F
nx( )  and 

F -redundant data nx( )−  of F
nx 1( ) −  respectively, F

n nx x(( ) ,( ) )−  is F -compressed-
redundant data pair of data F

nx 1( ) − , moreover  F F
n nx x 1( ) ( ) −⊆ . Apparently, formula 

(19) is established. By the mathematical induction, the theorem can be proved. 
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Corollary 4. If F
ix( )  is the i  level of  F -compressed data generated by data x( ) , 

then 1( )F
ix −  one-directionally depends on F

ix( ) , or 

                                                       1( ) ( )F F
i ix x −⇒ ,                                                 (20) 

where  i n1,2, ,= ⋅ ⋅ ⋅ . Specially, when i 1= , data x( )  one-directionally depends on 
F -compressed data  Fx( ) , or 

                                                          Fx x( ) ( )⇒ ,                                                 (21) 

where  Fx x( ) ( )= D , F Fx x 1( ) ( )= . 

Corollary 4 can be obtained from formula (19) in theorem 3, one-direction de-
pendence characteristic of  P-sets and formula (9) directly, the proof is omitted. 

 

Corollary 5.  If F
ix( )  is the i  level of F -compressed data generated by data x( ) , 

then 

                                                        F F
i ix x 1I ( ) ( ) }DE{ −， ,                                           (22) 

where i n1,2, ,= ⋅ ⋅ ⋅ . Specially, when i 1= , data x( )  and F -compressed data Fx( )  
satisfy 

                                                          ( ) )D { }I E (， Fx x ,                                             (23) 

where Fx x( ) ( )= D , F Fx x 1( ) ( )= . 

Corollary 5 can be directly obtained from formulas (19),(21) .The  proof  is 
omitted. 

 

Theorem 4.  (Attribute recovery theorem of F -compressed data)  The necessary 
and sufficient condition of  F -compressed data Fx( )  being restored to data x( )  
is that attribute set Fα  of  Fx( )  and attribute set α  of  x( )  satisfy 

                                 F F F
ii i if f F{ | , ( ) , }α β α α α β α α− = ∈ ∈ =∈ .                        (24) 

Proof. 1 .D  By definitions 1,2, Fx x( ) ( )⊆ , then Fα α⊆ . Apparently, there exists dif-
ference attribute set between Fα and α , F F

i i
F

i i f f{ | , ( ) ,β α α α β αα = ∈∇ = ∈ F }∈ . 
If Fx( )  is restored to x( ) , or Fx( ) = x( ) , then Fx( )  and x( )  have common attrib-
ute set, or Fα∇  is deleted from Fα , then there is formula (24). 2 .D  
If |{ , ( )F

i i
F

ifβ α αα α∇ = ∈  , }F
i f Fβ α= ∈ ∈  is deleted from Fα , or 

F F F
ii i if f F{ | , ( ) , }α β α α α β α α− = ∈ ∈ =∈ ,then Fx( )  and x( )  have common attrib-

ute set , then Fx x( ) ( )= . So Fx( )   is restored  to x( ) . 
 

Theorem 5.  (Recovery theorem of attribute of F -compressed data sequence)  
 In the sequence of  F -compressed data F

ix( ) , the necessary and sufficient condi-
tion of F

ix( )  being restored to data ( )F
ix
-1
 is: the attribute set F

iα  of  F
ix( )  and 

attribute set 1
F
iα −  of  1( )F

ix −  satisfy 
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                                  1{ | , ( ) , }F F F F
i i j jj j i if f Fα β α α α β α α −∈− = ∈ ∈ = .                    (25) 

where , 1, ,1i n n= − ⋅ ⋅ ⋅ . 

The proof is similar to the proof of theorem 4.It is omitted. 

By theorem 4,5, we get: 

 

Proposition 2. Deleting redundant attributes of F -compressed data, the data is 
restored; and vice versa. 
 
Theorem 6. (Recovery theorem of data element of F -compressed data)  The 
necessary and sufficient condition of  F -compressed data  Fx( )  being restored to 
data x( )  is that there exists transfer function f F∈ and  Fx( ) , x( )  satisfy 

                  i i i
F

i
F F

ix x x x x x f x x x f F x( ) { | ( ) ( ) , ( ) ( ) , } ( ),− ′= ∈ ∈ =∈ ∈∪ .                 (26) 

Proof. Suppose that data 1 2( ) { , , , }qx x x x= ⋅ ⋅ ⋅  is compressed to F -compressed data 

1 2( ) { , , , }F
px x x x= ⋅ ⋅ ⋅ , then there exists transfer function f F∈ , making F -

redundant data 1 2( ) { , , , } { | ( ), ( ) ( ), }p p q i i i ix x x x x x x f x x x f F−
+ + ′= ⋅ ⋅ ⋅ = ∈ = ∈ ∈ . 1 .D  If 

Fx( )  is restored to data x( ) , then Fx x( ) ( )= . By theorem 4, the attribute set Fα of 
Fx( )  and attribute set α  of x( )  satisfy formula (24), or deleting attributes from 

Fα  to get formula (24), then adding data element ix  to Fx( )  to get  Fx x( ) ( )= . By 
definitions 1,2, ix x( )−∈ . So, there exists transfer function f F∈ ,making formula 
(26). 2 .D If there exists transfer function f F∈ , it satisfies formula (26), or, add-
ing { ( )| , ( )i

F
i ix x x x x−∈ ∈ , F

iif x x x f F( ) ( ) , }′= ∈ ∈  to Fx( ) , then Fx( ) = x( ) , or 
Fx( )  is restored to x( ) . 

 

Theorem 7.  (Recovery theorem of data element F -compressed data sequence)  
The necessary and sufficient condition of  F

ix( )  being restored to F
ix 1( ) −  in the 

sequence of F -compressed data sequence F
ix( )  is: there exists transfer function 

if F∈ , F
ix( )  and 1( )F

ix −  satisfy 

               k
F F F

k k
F

i i i k i i ikx x x x x x f x x x f F x 1( ) { | ( ) ( ) , ( ) ( ) , } ( ),− −∈ = ∈ ∈ =∈ ′∪ ,              (27)  

where  i n n, 1, ,1= − ⋅ ⋅ ⋅ . 
 

The proof is similar to the proof  of  theorem 6.It is omitted. 
Theorems 5, 7, can be expanded to recovery between non-adjacent F -

compressed data F
jx( )  and F

ix( ) . 
From definition 4, theorems 3, 5, 7, there is a fact as this: F -compression and 

F -recovery are two opposite processes. Starting from the data x( ) ,  
F -compression proceeds step by step, until the compressed data is obtained and 
satisfies formula (19). Starting from the highest compressed data, F -recovery 
proceeds step by step, until the data is obtained. But it can to be restored in leap-
frog. The discussion about data recovery degree is in section 4. 
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4   Measures of F -Compressed Data and F -Redundant Data 

Definition 1. F
jξ  is called F -compressed degree of F -compressed data ( )F

jx  
with respect to data ( )F

ix , called F -compressed degree of data ( )F
jx  for short, if  

                                           card(( ) ) / card(( ) )F F F
j j ix xξ = ,                                      (28) 

where  card=cardinal number.  

 

Definition 2. F
jψ  is called F -redundant degree of F -redundant data ( ) jx −  with 

respect to F -compressed data ( )F
ix , called F -redundant degree of  ( ) jx −  for 

short, if  

                                              card(( ) ) / card(( ) )F F
j j ix xψ −= .                                     (29) 

 
Definition 3. F

jζ  is called F -recovery degree of F -compressed data  ( )F
jx  with 

respect to data ( )F
ix , called F -recovery degree of data ( )F

jx  for short, if 

                                             card(( ) ) / card(( ) )F F F
j i jζ α α= ,                                     (30) 

where ( )F
iα , ( )F

jα  are attribute sets of data ( )F
ix  and data ( )F

jx  respectively. 
By formulas (28) and (29), we can easily get: 

 
Theorem 1. (Relation theorem of F -compressed degree and F -redundant de-
gree)  If F

iξ  and F
iψ  are F -compressed degree and F -redundant degree of F -

compressed data  1( )F
ix −   respectively, then 

                                                           + 1F F
i iξ ψ = ,                                               (31) 

where  , 1, ,1i n n= − ⋅ ⋅ ⋅ . 

In fact, By definitions 1,2, 1 1card(( ) ) / card(( ) ) card(( ) ) / card(( ) )F F F F F
i i i i i ix x x xξ ψ −

− −+ = +  

1 1 1(card(( ) ) card(( ) )) / card(( ) ) card(( ) ) / card(( ) ) 1F F F F
i i i i ix x x x x−

− − −= + = = . 
By definition 3, we get : 

 
Theorem 2. (Compressed data recovery theorem of F -recovery degree) In the 
sequence of F -compressed data for data x( ) , the necessary and sufficient condi-
tion of ( )F

jx  restored to data ( )F
ix  is: F -recovery degree of ( )F

jx  with respect to 
( )F

ix  satisfies  1F
jζ = . 

In fact, ( )F
jx  can be restored to ( )F

ix , if and only if there is: deleting redundant 
attributes from attribute set F

jα  of ( )F
jx  to make F

jα  and attribute set F
iα  of  ( )F

ix  
satisfy: F F F F

j j kk kk j if f F{ | , ( ) , }α β α α α β α α= ∈ ∈ =∈− , or i
F
j

Fα α= . From formula 
(30), there is F

i= card(( ) ) / card(( ) )F F
j jζ α α = 1 .  

 
Corollary 1. The F -recovery degree of data ( )F

jx  with respect to data ( )F
ix  the 

bigger, the recovery effect of  ( )F
jx   the better, and vice versa.  
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5  Application of F -Compressed Data and F -Redundant Data 
in Communication  System 

Assumption 1. 1 2{ , , , }qy y y y= ⋅ ⋅ ⋅   is characteristic value set of data 1 2( ) { , ,x x x=  

qx, }⋅ ⋅ ⋅ . For simplicity, not misleading, in this section, y  is called data; 1
Fy , 1y−  are 

F -compressed data and F -redundant data of y  respectively; 2
Fy , 2y−  are F -

compressed data and F -redundant data of  1
Fy  respectively; specially, 

Fy y=D , y φ− =D  are  initial values  of  compressed  data  and redundant  data  of  y .  
The example of this section comes from experimental data sample of Natural 

Science Foundation of Fujian ( No.2009J01294). 

Table 1. Redundant data y-

o
, y-

1
, y-

2
 in the transmission of data 

y  y
1
 2y  3y  y

4
 y

5
 y

6
 y

7
 y

8
 

y-

o
 - - - - - - - - 

y-

1
 - 1.53 1.12 - 1.28 - - - 

2y-
 - - - 1.37 - 1.91 1.34 - 

Table 2. Compressed data Fy
o

, Fy
1

, Fy
2

 in the transmission of data 

y  y
1
 2y  3y  y

4
 y

5
 y

6
 y

7
 y

8
 

Fy y
o
=  1.62 1.53 1.12 1.37 1.28 1.91 1.34 1.47 

1
Fy  1.62 - - 1.37 - 1.91 1.34 1.47 

2
Fy  1.62 - - - - - - 1.47 

In table 1, table 2, the data is from raw data which is processed through the 
technical means on the typhoon pre-warning and search-rescue system. It does not 
affect the analysis of results. In table 1, 2, "-" means "null data", data 1 2{ , ,y y y=  

3 4 5 6 7 8, , , , , }y y y y y y is initial data of the system transmission, Fy y=D and y φ− =D  are 
initial states of F -compressed data and F -redundant data before data y  is com-
pressed. Adding attributes to attribute set α  of y  to get 1

Fα , deleting redundant 
data 1y− = 2 3 5, }{ ,y y y  from y , thus compressed data 41 1 6 7 8{ , , , , }F y y y y yy =  is ob-
tained. Adding attributes to attribute set 1

Fα of 1
Fy  to get 2

Fα , deleting redundant 
data 42 6 7{ , , }yy y y− =  from 1

Fy , the compressed data 82 1{ , }F y yy =  of 1
Fy  is obtained, 

moreover 2 1
F Fy y y⊆ ⊆ . By formula (22), 2

Fy , 1
Fy , y  can be identified ; By formula 

(20), y  one-directionally depends on 1
Fy , 1

Fy  one-directionally depends on 2
Fy , or 

2 1
F Fy y y⇒ ⇒ . Redundant data 1y− , 2y−  and compressed data 1

Fy , 2
Fy  satisfy  for-

mula (15) in theorem 1 for section 3. 
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Using theorems 5,4, if the redundant attributes in 2
Fα , 1

Fα  are deleted, then there 
is  (25); or if the redundant data is supplemented , then there is formula (27). So 
data 2

Fy  is restored to data 1
Fy , data 1

Fy  is restored to data y . The compressed 
degrees of 1

Fy  and 2
Fy  are 0.625 and 0.4 respectively; the redundant degrees of 1

Fy  
and 2

Fy  are 0.375 and 0.6 respectively. They satisfy formula (31) in theorem 1 for 
section 4. In our research project “The study of typhoon pre-warning and search-
rescue system based on  GPS/3G/GIS on the sea in Ningde ”, the interrelated ap-
plications of F -compressed data and F -redundant data have been confirmed in 
both data compression collected by sensor and data recovery by base station.  

6   Discussion 

The paper uses deleted sets and internal P-sets of P-sets to study redundant data 
and compressed data in data processing. The concepts of F -compressed data and 
F -redundant data are given. Compressed-redundant data pair Fx x(( ) ,( ) )−  is  
obtained. 

Using dynamic characteristic of P-sets, the dynamic compressed data sequence 
and dynamic redundant data sequence are obtained. In the process of generation 
and recovery of F -compressed data, the generation and recovery of F -redundant 
data have been resolved because F -compressed data and F -redundant data are 
complementary each other. In addition, the compressed data sequence one-
directionally depends on each other sequentially and can be identified. In the exist-
ing literatures, this paper applies firstly the deleted sets of P-sets to discuss the 
redundant data in compressing data, so that the applications of  P-sets are ex-
panded. In fact, the supplemented sets of P-sets can also be applied to discuss the 
redundant data in data expansion to get more results. From the discussion, we can 
see: P-sets are a mathematical tool and method to study dynamic information sys-
tem; P-sets have great potential and space of application in the fields  which  have 
dynamic  characteristics. 
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Abstract. This paper, by using Hausdorff calculus theory, decomposes farther a 
singular continuous distribution function into a sum of a series of  absolute 
continuous distribution functions in different levels with respect to the Hausdorff 
measures and a singular continuous distribution function with respect to the 
Hausdorff measures. Consequently, it gives a more accurate decomposition 
formula for the distribution functions. 
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1   Introduction 

A real function F  is called a distribution function, if F  is a right continuous 
monotone increasing function, and satisfies ( ) 0F −∞ =  and ( ) 1F +∞ = . Chung K. L. 
gives in [1]. 

 
Theorem 1. Every distribution function F  can be expressed as a convex 

combination of a discrete function dF , an absolute continuous function acF , and a 

singular continuous distribution function sF , i.e. 

1 2 3d ac sF F F Fα α α= + + , 

where 1 2 3 1α α α+ + = , 1 0α > , 2 0α > , 3 0α > , and this decomposition is uniform. 

In this paper, by using Hausdorff calculus theory, we decompose farther the 
singular continuous distribution function into a sum of a series of absolute 
continuous distribution functions in different levels with respect to the Hausdorff 
measures and a singular continuous distribution function with respect to the 
Hausdorff measure, and then gives a more accurate decomposition formula for the 
distribution functions. 
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2   Basic Concepts 

We assume that the readers are familiar with the definition and the properties of 
the Hausdroff measure, otherwise the details can be found in [2] and [3]. In this 
paper, we always assume the set ( , )E ⊂ −∞ +∞ . 

A sequence of open intervals { }iI  is said to be a cover of E , if i iE I⊂ ∪ ; let 

0δ > , { }iI  is said to be a δ − cover of E  if 0 iI δ< ≤  for each i . 

Let 0 1s< ≤ . The s − dimensional Hausdorff measure is defined as 

0 0
( ) lim inf

i

ss
i

I i
E I

δ δ→ < ≤
= ΣH , 

where the infimum is taken over all δ − cover of E . 

It is easily seen that 1 =H L , the Lebesgue measure, when 1s = . 

A set E  is called a s − set, if E  is s −H measurable and ( )s E< < +∞0 H . 
A collection of sets V  is called a Vitali class for E , if for each x E∈  and 

0δ > , there exists V ∈V  with x V∈ and 0 V δ< ≤ . 

 

Theorem 2.  Let ( , )E ⊂ −∞ +∞ be s −H measurable, 0 1s< ≤ , and let { }I=V  be a 
Vitali class of closed intervals of E , then we may select a countable or finite 
sequence of non-overlapping intervals { }iI  from V , such that either 

( \ ) 0s
i iE I =∪H  or i iIΣ = ∞ . Further, if ( )s E < ∞H , then, for given 0ε > , we 

may also require that ( )
ss

i iE I ε≤ Σ +H . 

Let F  be a collection of increasing right continuous functions on ( , )−∞ +∞ , 
F ∈F , and 0 1s< ≤ . 

The upper s-derivate of function F  at ( , )x∈ −∞ +∞  is defined by 

0 ,

( )
( ) lim sups

s
x I I

F I
D F x

Iδ δ→ ∈ <
= ,  

where I  is an interval. When 1s = , it is the ordinary upper derivate of F at x , 
and denote it by ( )DF x . 

A function F ∈F  is said to be absolute continuous with respect to sH , or 
s AC−H  for short, if for any 0ε >  there is a number 0η >  so that for any 

sequence of closed intervals { }iI , ( )i iF I εΣ <  whenever 
s

i iI ηΣ < . When 1s = , 

F  is Lebesgue absolute continuous, or AC−L  for short. 

Obviously, if F is t AC−H  and 0 1s t< < ≤ , then F  is s AC−H , and the 
contrary is not. 

A function F ∈F  is said to be singular with respect to sH , or s −H singular 

for short,  if 0F ≡/ , and there is a set ( , )E ⊂ −∞ +∞  with ( ) 0s E =H  so that for each 
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cx E∈  we have ( ) 0sD F x = . Especially, when 1s = , F is Lebesgue singular, or 
−L  singular for short.  

Let ( , )E ⊂ −∞ +∞  be an s − set, f a function of s −H measurable non-negative 
on E . Then the Hausdorff integral of f over E  is defined to be 

d sup ( )s s
i iE i

f v E= Σ∫ H H ,  

where the supremum is taken over all finite sequence { }iE  of disjoint 
s −H measurable sets with i iE E= ∪ , and for each i , inf{ ( ) : }i iv f x x E= ∈ . 

Especially, when 1s = , it is Lebesgue integral, write it as d
E

f∫ L  (see [7]) . 

Hausdorff integral has the basic properties as usual Lebesgue integral dose, for 

example, d s

E
f∫ H is s AC−H on E . 

Let F ∈F , the increment of F over an interval ( ,  )I u v=  or 
[ ,  ] ( ,  )u v ⊂ −∞ +∞ is the difference ( ) ( )F v F u− . We often write it as ( )F I  or 

( ,  )F v u . For ( , )E ⊂ −∞ +∞ , define the total variational of F on E as 

*( ) inf ( )i
i

F E F I= Σ ,  

where the infimum is taken over all covers { }iI of E . We can easily verify that 
*( )F I  ( )F I= for any interval I . 

3   Main Results 

In this section, we will restrict F ∈F , ( , )E ⊂ −∞ +∞ , and 0 1s< ≤ . 
 

Lemma 1.  [6] Let  ( , )E ⊂ −∞ +∞  be an s − set. 

 

(i)  If there is 0c >  so that ( )sD F x c≤ for each x E∈ , then * ( )F E ( )sc E≤ H ; 

(ii) If there is 0c > so that ( )sD F x c≥  for each x E∈ , then * ( )F E ( )sc E≥ H ; 

(iii)  If ( ) 0sD F x =  for all x E∈ , then * ( ) 0F E = ; 

(iv)  If { : ( ) }sE x E D F x∞ = ∈ = +∞ , then ( ) 0s E∞ =H .                                           □ 

 
Lemma 2.  [6]. Let ( , )E ⊂ −∞ +∞  be an s − set, then we have 

*( \ ) d s
sE

F E E D F∞ = ∫ H , 

where { : ( ) }sE x E D F x∞ = ∈ = +∞ .                                                                            □ 
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Theorem 3. Suppose that F  is an 0s −H singular continuous distribution function 

( 00 1s< ≤ ). Let 0 11 0ns s s≥ > > > >" , 1
1{ : ( ) }is

i iE x E D F x =−
−= ∈ ∞ , 1,2, , 1i n= +" , 

and iE  an is − set, 1,2, ,i n= " , where 0 ( , )E = −∞ ∞ , then we have the 

decomposition 

1

1

n

i i
i

F Fα
+

=
= Σ , 

1

1
1

n

i
i
α

+

=
Σ = , 0iα > , 1,2, , 1i n= +" , 

where iF  is an is AC−H  distribution function with 1

( , ]
( ) di i

i

s s
i i x E

F x D Fα −

−∞ ∩
= ∫ H , 

1,2,i =  ,n" , 1nF +  is an ns −H singular continuous distribution function. 

 
Proof.   Let 

* { : ( ) }is
i iE x E D F x <= ∈ ∞ , 0,1, ,i n= " . 

Then *
1 1i i iE E E− −= ∪ , 1,2, , 1i n= +" , * *

i jE E φ∩ =  ( i j≠ ), *
0 0 1

n
i i nE E E= += ∪∪ . Write 

* *( ) (( , ] )i iG x F x E= −∞ ∩ , 0,1, ,i n= " , 

and 

*
1 1( ) (( , ] )n nG x F x E+ += −∞ ∩ , 

then 

1

0

n

i
i

F G
+

=
= Σ . 

By Lemma 2, we have 

* *

( , ]
( ) (( , ] ) di i

i

s s
i i x E

G x F x E D F
−∞ ∩

= −∞ ∩ = ∫ H ,  

and iG  is is AC−H , 0,1, ,i n= " . By Lemma 1(iv), we see that 1( ) 0ns
nE + =H , 

and then 1nG +  is of ns −H singular. Furthermore, since F  and iG （ 0,1, ,i n= " ）

are all continuous, so 1nG +  is also continuous. 

Notice that F  is 0s −H singular, we see that there is ( , )D ⊂ −∞ ∞ , which 

satisfying 0 ( ) 0s D =H , such that 0 ( ) 0sD F x =  for all cx D∈ , therefore we have 

0 0
0 ( , ]
( ) d 0s s

x
G x D F

−∞
= ≡∫ H . 

Evidently, since ( ) 0isD F x ≥  for any ix E∈ , 1,2, ,i n= " , we see that each iG  

( 1,2,i =  ,n" ) is monotone increasing. Therefore, it follows from 

*

1 1 1
( ) ( ') ([ ', ] )

n n n
*

i i i
i i i

G x G x F x x E
= = =
Σ − Σ = Σ ∩  
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*

1
([ ', ] ) ([ ', ]) ( ) ( ')

n
* *

i
i

F x x E F x x F x F x
=

= ∩ ≤ = −∪  

that 

1 1 1 1
( ) ( ') [ ( ) ( ')] [ ( ) ( ')] 0

n n

n n i i
i i

G x G x F x F x G x G x+ + = =
− = − − Σ − Σ ≥ , 

i.e. 1nG +  is also monotone increasing. 

Forthermore, since ( ) 0F −∞ =  and ( ) 1F ∞ = , we have 0 1iG≤ ≤  for each 1,2,i =  

, 1n +" . Let 0 ( ) 1iG< ∞ <  for each  1,2,i = , 1n +" , write ( )i iGα = ∞  and let 

1( ) ( )i i iF x G xα −= , ( , )x∈ −∞ ∞ , 1,2,i = , 1n +" , 

then for each 1,2,i = ,n" , iF  is an is AC−H distribution function with 

1

( , ]
( ) di i

i

s s
i i x E

F x D Fα −

−∞ ∩
= ∫ H , 

at the same time 1nF +  is an ns −H singular continuous distribution function, and we 

have 

1

1

n

i i
i

F Fα
+

=
= Σ , 

where 1 1
1 1 ( ) ( ) 1n n

i i i iG Fα+ +
= =Σ = Σ ∞ = ∞ = , 0iα > , 1,2,i = , 1n +" , and the theorem 

follows.                                                                                                                     □ 
Since the Theorem 3, the Theorem 1 can be improved as following: 
 

Theorem 4.  Every distribution function F  can be expressed as a convex 
combination of a discrete distribution function, an absolute continuous 
distribution function, a series of absolute continuous distribution functions in 
different levels with respect to the Hausdorff measures, and a singular continuous 
distribution function with respect to the Hausdorff measures. That is, if 

0 11 0ns s s= > > > >" , 0 ( , )E = −∞ ∞ , such that 1
1{ : ( ) }is

i iE x E D F x =−
−= ∈ ∞ , 

1,2,i = , 1n +" , and iE  is an is − set, 1,2,i = ,n" , then we have the 

decomposition formula 

1

0

n

d d i i
i

F F Fα α
+

=
= + Σ , 

1

0
1

n

d i
i

α α
+

=
+ Σ = , 0dα > , 0iα > , 0,1,2,i = , 1n +" , 

where dF  is a discrete distribution function, 0F  is an AC−L  distribution 

function, iF  with 1

( , ]
( ) di i

i

s s
i i x E

F x D Fα −

−∞ ∩
= ∫ H  is an is AC−H  distribution function 

, 1,2,i = ,n" , and 1nF +  is an ns −H singular continuous distribution function. 
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4   An Example  

Here we give a decomposition example of the singular continuous distribution 
function. 

Firstly, we construct a Cantor sets 1E and a Cantor-like set 2E : 

By separating the unite closed interval [0,1]  into three parts with equal length 

1 3  marked as [ 3,( 1) 3]i i iΔ = + , 0,1,2i = , and removing the middle open interval 

1
oΔ , it leaves two closed intervals 0Δ  and 2Δ . Similarly, for each 1 {0,2}λ ∈ , by 

removing the middle open interval 
11

o
λΔ  from 

1λ
Δ , leaves two closed intervals

10λΔ  

and 
1 2λΔ . Carrying on this procedure, we obtain a sequence of open intervals 

1 11n

o
λ λ −

Δ "  ( 0,2iλ = ) and a sequence of closed intervals 
1 nλ λΔ "  ( 0,2iλ = ). Write 

11
0,or2

1,2, ,

n
in

i n

E λ λ
λ =
=

= Δ "

"

∩ ∪ ,  

it is easily to see that each 1x E∈  can be expressed as 

1
3 i

i
i

x λ
∞

−

=
= Σ , 0,  or 2iλ = . 

The set 2E  is constructed as follows: by separating the unite closed interval 

[0,1]  into five parts with equal length 1 5  marked as [ 5,( 1) 5]i i iΔ = + , 

0,1,2,3,4i = , and removing two open intervals 
1

o
θΔ , 1 1,3θ = , it leaves three closed 

intervals 
1ε

Δ , 1 0,2,4ε = . Similarly, for each 1 {0,2,4}ε ∈ , by removing two open 

intervals 
1 2

o
ε θΔ  from 

1ε
Δ , 2 1,3θ = , leaves three closed intervals 

1 2ε εΔ , 2 0,2,4ε = . 

Carrying on this procedure, we obtain a sequence of open intervals 
1 1n n

o
ε ε θ−

Δ "  

( 0,2,4iε = ; 1,3nθ = ) and a sequence of closed intervals 
1 nε εΔ "  ( 0,2,4iε = ). Write  

12
0,2,4

1,2, ,

n
in

i n

E ε ε
ε =
=

= Δ "

"

∩ ∪ , 

we see that each 2x E∈  can be expressed as  

1
5 i

i
i

x ε
∞

−

=
= Σ , 0,2,  or 4iε = . 

It is easily to check that 1 0mE =  and 2 0mE = , but 1
1( ) 1s E =H  and 2

2( ) 1s E =H , 

where 

1 1dim log 2 log3 0.630929753s E= = �H , 

2 2dim log3 log5 0.682606194s E= = �H . 

Secondly, we define two functions 1 2,  :[0,1] ( , )F F → −∞ ∞ as follows 
1

1 11

1
( )

2 2

n
i

i ni
F x

λ−

−=
= Σ + ,        

1 11n

ox λ λ −
∈Δ " , 0,2iλ = , 

11 2
i

ii

λ∞

−=
= Σ ,               111 3

i
ii

x E
λ∞

−=
= Σ ∈ , 0,2iλ = , 
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0= ,                 0x ≤ , 
1= ,                      1x ≥ ; 

1

2 1

1 1
( )

2 3 3

n
i
i ni

F x
ε−

=
= Σ + ,       

1 11n

ox ε ε −
∈Δ " , 0,2,4iε = , 

1

1

1 2

2 3 3

n
i
i ni

ε−
=

= Σ + ,       
1 13n

ox ε ε −
∈Δ " , 0,2,4iε = ,

 

1

1

2 3
i
ii

ε∞
=

= Σ ,              21 5
i
ii

x E
ε∞

=
= Σ ∈ , 0,2,4iε = , 

0= ,                 0x ≤ , 
1= ,                     1x ≥ . 

Let 

1 2

1 1
( ) ( ) ( )

2 2
F x F x F x= + . 

We see that ( ) 0F −∞ = , ( ) 1F ∞ = . It is easily to check that 1F  and 2F  are all 

monotone increasing continuous in ( , )−∞ ∞ , and 

( ) 0iDF x = , [0,1] \ ix E∈ , 1,2i = , 

thus F  is also monotone increasing continuous in ( , )−∞ ∞ , and ( ) 0DF x = , [0,1]x∈  

1 2\( )E E∪ . Therefore F  is a singular continuous distribution function in ( , )−∞ ∞ . 

Further -more, it can be proved that 

( ) 1is
iD F x = , ix E∈ , 1,2i = , 

therefore iF  is is AC−H  in ( , )−∞ ∞  respectively, 1,2i = . It follows that the 

singular continuous distribution function F  can be expressed as a convex 

combination of the 1s AC−H  distribution function 1F  and the 
2s AC−H distribution function 2F . 

Thirdly, we will only show that 2
2 ( ) 1sD F x =  for 2x E∈ , where 2 log3 log5s = , 

and for convenience, will omit the index 2. 

Let x E∈ . Then x  can be expressed as 1 5 i
i ix ε∞ −
== Σ , where 0,2,4iε = , 

1,2,i = " , and then 
1 n

x ε ε∈Δ "  for each positive integer n . By the fact 

1

1

( ) 3
1

(5 )
n

n

n

s n s

F ε ε

ε ε

−

−

Δ
= =

Δ
"

"

, 

we see that ( ) 1sD F x ≥  for x E∈ . 

In order to prove the inequality ( ) 1sD F x ≤  for x E∈ , let [ , ]x I u v∈ = , we might 
as well assume that ,u v E∈ , otherwise we can appropriately reduce I  and this 

will not reduce  ( )
s

F I I , therefore 5 i
i n iI v u α∞ −
== − = Σ  where 0,2,  or 4nα = , 

0, 2,  or  4iα = ± ±  for all 1i n≥ + , and 

1
( ) ( ) ( )

2 3
i

i n i
F I F v F u

α∞
== − = Σ . 
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We shall only show that 

1
5 2 3

s

i i
i ii n i n

α α∞ ∞

= =

⎛ ⎞Σ ≥ Σ⎜ ⎟
⎝ ⎠

.                                                      (1) 

By the fact that the continuity of the power function sx , it suffices to show that 

1
5 2 3

sn p n p
i i
i ii n i n

α α+ +

= =

⎛ ⎞Σ ≥ Σ⎜ ⎟
⎝ ⎠

                                                      (2) 

holds for all nonnegative integer p  and 5 0n p i
i n iα
+ −
=Σ ≥ . We shall prove (2) by 

induction. 
In the first place, let 0p = , it is obvious that (2) holds when 0nα = ; moreover, 

if 2nα =  or 4nα = , the inequality (2) holds, respectively, by the fact that 

   
2 2 1 1 2
5 3 3 2 3

s s

n n n n

⎛ ⎞ = > = ⋅⎜ ⎟
⎝ ⎠

, and 
4 4 2.57 1 4
5 3 3 2 3

s s

n n n n

⎛ ⎞ = > > ⋅⎜ ⎟
⎝ ⎠

.               (3) 

In the next place, suppose that the inequality (2) holds for 1p − . To obtain the 
inequality (2) for p , we will only to show that 

1

1
5 2 3 5

s sn p n p
i n i
i n ii n i n

α α α+ +

= = +

⎛ ⎞ ⎛ ⎞Σ ≥ ⋅ + Σ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                            (4) 

When 0nα = , notice that 1 5 5 0n p i n p i
i n i i n iα α+ − + −
= + =Σ = Σ ≥ , the inequality (2) holds by 

the hypothesis of the induction. Moreover, when 2nα =  or 4nα = , if 

1 5 0n p i
i n iα
+ −
= +Σ ≥ , consider the function 

1
( )

5 2 3

s
sn n

n n
g y y y

α α⎛ ⎞= + − ⋅ −⎜ ⎟
⎝ ⎠

, [0,5 ]ny −∈ . 

Since 

11
1 1'( ) 1 0

5 5

ss
s sn

n n
n

y
g y s y sy sy

y

α
α

−−
− −

−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= + − = − <⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
, [0,5 ]ny −∈ , 

we see that ( )g y  is decreasing on [0,5 ]n− , notice that 1 5 5n p i n
i n iα
+ − −
= +Σ ≤ , we have 

1( 5 ) (5 )n p i n
i n ig gα+ − −
= +Σ ≥

1 1 1
5 5 2 3 5

s s

n n
n n n n

α α⎛ ⎞ ⎛ ⎞= + − ⋅ − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

( ) ( )1 1
2 1 2

2 3
s

n nn
α α⎡ ⎤= ⋅ + − +⎣ ⎦  
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( )

( )

1 1
2 2.116 2 2 ,    when 2,

2 3 0
1 1

2 3 4 2 ,           when 4,
2 3

nn

nn

α

α

⎧ ⎫⋅ ⋅ − + =⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪≥ ≥⎨ ⎬
⎪ ⎪⋅ ⋅ − + =⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

 

and by (3), we have 

1 1 1
(0) 0

5 2 3 3 2

s
sn n

n nn n n
g

α α α α⎛ ⎞ ⎛ ⎞= − ⋅ = − >⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, 

it follows that ( ) 0g y ≥ for all [0,5 ]ny −∈ , and (4) holds whenever 1 5 0n p i
i n iα
+ −
= +Σ ≥ . If 

1 5 0n p i
i n iα
+ −
= +Σ ≤ , in the same way, (4) can be easily proved by considering the 

function 

1
( )

5 2 3

s
sn n

n n
g y y y

α α⎛ ⎞= − − ⋅ +⎜ ⎟
⎝ ⎠

, [0,5 ]ny −∈ . 

Consequently, the inequality (2) holds for all p  and we get ( ) 1sD F x ≤  for 
x E∈ .  
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Algorithm Based on Chaos Method 
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Abstract. Artificial glowworm swarm optimization (GSO) algorithm can effec-
tively capture all local maxima of the multi-modal function, but it exist some 
shortcomings for searching the global optimal solution, such as the slow conver-
gence speed, easily falling into the local optimum value, the low computational 
accuracy and success rate of convergence. According to the chaotic motion with 
randomness, ergodicity and intrinsic regularity, this paper proposes an improved 
artificial GSO algorithm based on the chaos optimization mechanism, which 
adopts the chaotic method to locally optimize the better points that are searched by 
GSO algorithm. Finally, the experimental results based on the six typical functions 
shows that the improved algorithm has good convergence efficiency, high conver-
gence precision, and better capability of global search and local optimization.  

Keywords: Artificial glowworm swarm optimization, chaos method, function 
optimization.  

1   Introduction 

In many scientific areas and engineering computation areas, most of problems that 
people encounter can be attributed to objective optimization problem. Optimiza-
tion technique based on mathematics is an applied technology for obtaining the 
optimal solution or satisfactory solution of a variety of engineering problems. 
With the wide application of electronic computer, optimization technique gets the 
rapid development and has long been a focus for researchers all the time. How-
ever, practical engineering problems have many characteristics such as large-
scale, strong constraint, nonlinear, multi- minimal, multi-objective, the difficulty 
of modeling and so on, so it is difficult to be solved by some traditional gradient-
based algorithms that are sensitive to the initial value and the analytical properties 
of the functions. In recent years, with the rapid development of computational 
intelligence theory and technology, people has proposed a variety of social bionic 
evolution algorithms which don’t depend on the initial value and the analytical 
nature of the objective function, including genetic algorithm (GA) that simulated 
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natural selection and genetic mechanisms in the biological world, ant colony algo-
rithm (ACA) that simulated foraging behavior of ant colony, particle swarm opti-
mization (PSO) algorithm that simulated predatory behavior of bird flock and so 
on. These algorithms are simple and are also implemented easily. In addition, they 
have strong robustness and easily integrate with other algorithms. For solving 
many complex optimization problems, they have been demonstrated their excel-
lent performance and great development potential. 

In 2009, artificial glowworm swarm optimization (GSO) algorithm that is pro-
posed by Krishnanand  K. N. and Ghose, D who are Indian scholars is a relatively 
new swarm intelligence optimization algorithm [1]. GSO can capture all local 
maxima of the multi-modal function and is globally convergent, but the local 
search ability of GSO is poor, which makes it own deficiencies such as slow con-
vergence speed, easily falling into the local optimum value, low computational 
accuracy and success rate of convergence when GSO is used to solve global opti-
mization problems. However, chaotic motions are random, ergodic and regular, in 
order to solve the problems as mentioned above, this paper integrates chaos 
method into GSO, that is to say, chaos method carries out the local search in the 
satisfactory solution domains that are obtained by GSO, which makes the algo-
rithm get more accurate solution. Finally, the experimental results based on the six 
typical functions show that the improved algorithm has better capability of global 
convergence and local optimization. It is a feasible and effective method for solv-
ing function optimization problems. 

2   The Basic GSO 

GSO algorithm that simulated foraging behavior of glowworm swarm in nature is 
introduced as a new computational intelligence model. The algorithm is based on 
the following principles: the glowworms communicate with each other by releas-
ing Lucifer in and the environment, each glowworm just gives its response to the 
surrounding local environment that is determined by its dynamic decision domain.  

Consider the n-dimensional unconstrained function optimization problem: 

)(max xf                                                                          (1) 

. .s t x S∈  . 

If the problem is min ( )f x  . .s t x S∈ , we suppose ( ) ( )g x f x= − and will 

change it into max ( )g x . Where 1:  f S R→ , nx R∈ , 
1

[ , ]
n

i i
i

S a b
=

=∏  is the search space 

and i ia b< . Assume that the solution of problem (1) is existent, in other words, the 

global optimum value max ( )f x  is existent, and the set of the global optimum 

points M  is non-empty. The mathematical model of GSO is described as follows: 
Assume that (1) ( 2 ) ( )( ) [ ( ), ( ), , ( )]n

i i i ix t x t x t x t= " represents the current location 

of the i -th glowworm, where t is the iteration counter. ( ) ( )j
ix t  denote the j -th 

component of the location of the i -th glowworm at the t -th iteration ( )f x is fitness 
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evaluation function, ( )il t expresses luciferin value of the i -th glowworm at the  

t -th iteration. All the glowworms start with the same luciferin value 0l , their luci-

ferin values get updated based on the objective fitness values at their initial posi-
tions before they start moving, and the luciferin value update equation is  
expressed as follows: 

( ) (1 ) ( 1) ( ( ))i i il t l t f x tρ γ= − − + ,                                                (2) 

where [0,1]ρ ∈ is the ratio of luciferin vaporization, (1 )ρ− represents the reflec-

tion of the cumulative goodness of the path followed by the glowworms in their 
current luciferin values γ  scales the function fitness values. ( )i

dr t  represents the 

dynamic decision domain of the i -th glowworm at the t -th iteration, which is 

bounded above by a circular sensor range (0 )i
s d sr r r< ≤ . During the course of the 

movement, ( )i
dr t is updated according to the following equation:  

( 1) min{ ,max{0, ( ) ( ( ) )}}i i
d s d t ir t r r t n N tβ+ = + − ,                        (3) 

where β denotes the rate of change of the neighbourhood range, tn is the neighbor-

hood threshold, which indirectly controls the number of neighbours of each glow-
worm. ( )iN t is the set of neighbours of the i -th glowworm at the t -th iteration, 

which consists of those glowworms that have a relatively higher luciferin value 
and that are located within a dynamic decision domain ( )i

dr t . That is to say 

( ) { : ( ) ( ) ( ); ( ) ( )}i
i j i d i jN t j x t x t r t l t l t= − < < ,                              (4) 

where x
G

 is the norm of x
G

. 

When the i -th glowworm is moving, it need decide direction of movement in 
accordance with luciferin values of glowworms in its set of 
neighbours. ( )ijP t represents probability of movement of the i -th glowworm mov-

ing toward the j -th glowworm in its set of neighbours at the t -th iteration, and it 

is computed on the basis of the following equation: 

( )

( ) ( )
( )

( ) ( )
i

j i
ij

k i
k N t

l t l t
P t

l t l t
∈

−
=

−∑
.                                                            (5) 

According to probability ( )ijP t and roulette method, the i -th glowworm selects 

the j -th glowworm and moves toward it. Suppose that s is step-size of the move-

ment, ( 1)ix t + is calculated based on the following equation [1]: 

( ) ( )
( 1) ( )

( ) ( )
j i

i i

j i

x t x t
x t x t s

x t x t

⎛ ⎞−
⎜ ⎟+ = +
⎜ ⎟−⎝ ⎠

.                                            (6)   
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3   Chaos Method 

A. Definition of Chaos 
 
Chaos is a common nonlinear phenomenon whose action is complex. It looks like 
a chaotic process of change, in fact it contains the internal law. Chaos optimiza-
tion method is regarded as a novel optimization technique. In recent years, it has 
attracted wide attention from academia and engineering, and has been applied in 
science and engineering practice. According to chaotic variables with randomness, 
ergodicity and intrinsic regularity, the optimal variables of a given optimization 
function are linearly mapped to the chaotic variables in the interval [0, 1], and its 
search process corresponds to the traversal process in the chaotic orbit, which 
makes the search process with the ability to escape the local optimum value and 
may eventually obtain the global optimum solution or satisfactory solution.  

In this paper, the logistic equation is used to produce chaos serials, which can 
be expressed by:  

                  1 (1 )k k kx x xμ+ = ⋅ −  , 00 1x≤ ≤ ,                                                    (7) 

where μ  is control parameter, kx is variable, 0,1,2,k = ⋅⋅ ⋅ . Although equation (7) 

is deterministic, it is easy to prove that when 4μ =  and 0 {0,0.25,0.5,0.75,1}x ∉ , 

equation (7) is totally in chaos state. That is to say, if we select any n  initial val-
ues with slight difference, we will obtain n chaotic variables with different trajec-
tories [2]. In order to better describe the algorithm, we take 4μ =  in the following 

discussion.  
 
B. Implementation of Chaos Method 

 
Let the optimization problem that chaos method deals with be the functional opti-
mization problem max ( )f X  and 1 2[ , , , ]nX x x x= "  be the optimized variable, 

k denotes chaotic variables iterating mark, K is the maximum number of chaos 

iterations, ( )
1 2[ , , , ]k k k k

nX x x x= " represents the variable that is searched by chaos 

method at the k -th iteration, k
jx  denotes the j -th component of ( )kX , (0)X is ini-

tial value. Let *X be the current optimal variable and *( )f X be the current optimal 

value. The procedure of chaos method can be summarized as follows [3]:  
 

Step 1. Initialization: let 0k = , ( ) (0)kX X= , * (0)X X= , * (0)( ) ( )f X f X= , ac-

cording to equation (8), the optimal variables ( 1,2, , )k
jx j n= ⋅⋅ ⋅  are mapped to the 

chaotic variables k
jcx  in the interval [0, 1]:  

                min,

max, min,

k
j jk

j
j j

x x
cx

x x

−
=

−
 , 1, 2, ,j n= ⋅⋅ ⋅ ,                                                   (8) 
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where max, jx and min, jx denote upper bound and lower bound of the j -th-

dimensional variable respectively. 
Step 2. According to k

jcx , equation (9) is used to compute the chaotic variables 
1k

jcx +  at the ( 1)k + -th iteration:  

       1 4 (1 )k k k
j j jcx cx cx+ = − , 1, 2, ,j n= ⋅⋅ ⋅ .                                                          (9) 

Step 3. According to equation (10), the chaotic variable 1k
jcx +  is changed into 

the optimal variable 1k
jx + :  

1 1
min, max, min,( )k k

j j j j jx x cx x x+ += + − , 1, 2, ,j n= ⋅⋅ ⋅ .                         (10) 

Step 4. According to the new optimal variables 1k
jx + , 1, 2, ,j n= ⋅⋅ ⋅ , calculate the 

objective function value 1( )kf X + .  

Step 5. If 1 *( ) ( )kf X f X+ > , then *X and *( )f X will be updated by 1kX +  and 
1( )kf X + , or else, *X  and *( )f X will not be updated. 

Step 6. If the maximum number of iterations is met, then stop the 
iteration, *X is the optimal variable and *( )f X is the optimal value; or else, let 

1k k= + , go back to Step 2. 

4   GSO with Chaotic Local Search (CLS-GSO) 

A. Combination Strategy   
 
GSO with chaotic local search (CLS-GSO) is proposed. In CLS-GSO, chaos 
method as a local search operator is embedded into GSO, that is to say, during the 
course of each iteration, firstly, GSO implements the global search, then chaos 
method implements the local search within the given number of steps for the 
glowworms whose current fitness values are better than the average fitness value, 
which leads the swarm to the direction of the optimal solution. For this reason, 
CLS-GSO avoids the weakness of GSO. That is to say, CLS-GSO doesn’t easily 
fall into the local optimum value, which ensures global convergence and local 
ergodicity of the algorithm. In addition, CLS-GSO has better convergence effi-
ciency and higher precision. It is easier to escape the local optimum value.     
 
B. Implementation Process 

Let
1
[ , ]

n

j j
j

S a b
=

= Π and j ja b< be the search space of the optimization problem, 

(1) (2) ( )( ) [ ( ), ( ), , ( )]n
i i i ix t x t x t x t= "  represents the current location of the i -th glow-

worm at the t -th iteration. ( )f x is fitness evaluation function, ( )i
dr t represents the 

dynamic decision domain of the i -th glowworm at the t -th iteration, which is 
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bounded above by a circular sensor range (0 )i
s d sr r r< ≤ . ( )il t  expresses the luci-

ferin value of the i -th glowworm at the t -th iteration.  Suppose that the number of 
glowworms is N . The procedure of CLS-GSO can be described as follows:  
 

Step 1. Initialization: All the glowworms start with the same luciferin value 0l , 

that is to say, let 0(0)il l= . 1t = , here, t denotes the mark of GSO iteration. Initial-

ize the location of each glowworm in the search space. Calculate the fitness value 
of each glowworm. Initialize the current optimal location *X and the current op-
timal value *( )f X according to the fitness values.  

Step 2. Implement GSO for all the glowworms: 
 

(1) Update the luciferin value ( )il t  of each glowworm according to (2); 

(2) For each glowworm, calculate ( )iN t and ( )ijP t  according to (4) and (5); 

(3) For each glowworm, according to ( )ijP t and roulette method, select the j -th 

glowworm in ( )iN t and move toward it; Let s be step-size of the movement, calcu-

late  ( 1)ix t +  according to (6); if ( 1)i jx t a+ < , then let ( 1)i jx t a+ = ; 

if ( 1)i jx t b+ > , then let ( 1)i jx t b+ = ;                        

(4) For each glowworm, calculate ( 1)i
dr t + according to (3).  

Step 3. Calculate the current fitness values ( ( ))if x t of all the glowworms and 

the current average fitness value avgf , find the best glowworm of the current 

swarm with the best fitness value according to ( ( ))if x t . If its fitness value is bet-

ter than ( )f X ∗ , then X ∗ and ( )f X ∗ will be updated by the location and the fitness 

value of the current best glowworm.  
Step 4.  Implement chaotic local search: Find the glowworms whose current fit-

ness values are better than avgf , for these glowworms, according to part 3.2, im-

plement chaotic local search in their search space 

( ) ( )
1 2

1
[ ( ) ( ) ( ), ( ) ( ) ( )]

n
j i j j i j

i d i i d i
j

x t r t r t x t r t r t
=
Π − ∗ + ∗ , where 1 ( )j

ir t  and  2 ( )j
ir t  are two 

random numbers which are produced by the i -th glowworm at the j -th time at 

the t -th iteration and which are uniformly distributed in the interval [0, 1]. Calcu-
late the current fitness values of these glowworms, find the best glowworm with 
the best fitness value according to the current fitness values. If its fitness value is 
better than ( )f X ∗ , then X ∗ and ( )f X ∗ will be updated by the location and the 

fitness value of the current best glowworm.  
Step 5. If the maximum number of iterations is met, then stop the iteration, *X  

is the optimal location and *( )f X is the optimal value; or else, let 1t t= + , go 

back to Step 2. 
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5   Simulation Experiments 

A.  Experimental Environment 

The GSO and the CLS-GSO are coded in MATLAB R2009a and implemented on 
2.61GHz CPU machine with 768MB RAM under Windows XP platform.  
Algorithm parameters of CLS-GSO and GSO are set as follows: the size of the 
glowworm swarm is fixed to be 50N = , the maximum number of iterations is 
fixed to be 200M = , the maximum number of chaos iterations is set to 10K = , 
the ratio of luciferin vaporization is set to 0.4ρ = , the scale of the fitness values 

is set to 0.6γ = , the rate of change of the neighbourhood range is set to 0.08β = , 

the neighbourhood threshold is set to 5tn = , step-size of the movement is set to 

0.03s = , the initial luciferin value is set to 0 5l = . For all the functions, the circu-

lar sensor range and the initial dynamic decision domain of the glowworms are all 
considered to be uniform and are set to 2.048, 2π ,50, 2, 10, 3 respectively.  
 
B. The Test Function 
 
To evaluate the performance of CLS-GSO, the following six typical functions are 
selected for test in this paper. The dimensions of all the functions are 2.  
 

(1) De Jong:  2 F  2 2 2
1 1 2 1min ( ) 100( ) (1 )f x x x x= − + −  

where 1 22.048 , 2.048x x− ≤ ≤ , the optimal value is 0, the best position is (1, 1).  

(2) Eggcrate:    2 2 2 2
2 1 2 1 2min ( ) 25(sin sin )f x x x x x= + + +  

where 1 22 , 2x xπ π− ≤ ≤ , the optimal value is 0, the best position is (0, 0). 

(3) Bohachevsky 2 :    2 2
3 1 2 1 2min ( ) 2 0.3cos(3 )cos(4 ) 0.3f x x x x xπ π= + − +  

where 1 250 , 50x x− ≤ ≤ , the optimal value is 0, the best position is (0, 0). 

(4) GP-Goldstein-Price (n=2)  

2 2 2
4 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

min ( ) [1 ( 1) (19 14 3 14 6 3 ]

            [30 (2 3 ) (18 32 12 48 36 27 ]

f x x x x x x x x x

x x x x x x x x

= + + + − + − + + ×

+ − − + + − +
 

where 1 22 , 2x x− ≤ ≤ , the optimal value is 3, the best position is (0, -1). 

(5) BR-Branin (n=2)  

2 2
5 2 1 1 12

5.1 5 1
min ( ) ( 6) 10(1 )cos 10

84
f x x x x x

π ππ
= − + − + − +  

where 1 25 10,  0 15x x− ≤ ≤ ≤ ≤ , the optimal value is 0.398, the best positions are   

(-3.142, 12.275), (3.142, 2.275) and (9.425, 2.425). 
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(6) Six-hump Camel Back Function 
4

2 2 2 21
6 1 1 1 2 2 2min ( ) (4 2.1 ) ( 4 4 )

3

x
f x x x x x x x= − + + + − + , 

where 1 23 3,  2 2x x− ≤ ≤ − ≤ ≤ , the optimal value is -1.0316, the best positions 

are  (-0.0898, 0.7126) and (0.0898, -0.7126). 
 

C. Simulation Results 

To compare CLS-GSO with GSO for optimization capabilities of different func-
tions, take the following test methods: each algorithm is executed independently 
fifty times. The quality of the solution that is recorded in Table 1 is measured by 
the maximum function value, the minimum function value and the mean function 
value out of fifty runs. A run is regarded as a successful run if the optimal value 
found in that run lies within 3.5% accuracy of the true optimal value of that func-
tion, then the minimum number of function evaluations which is used for that run 
is recorded. The success rate and the average number of effective evaluation that 
are recorded in Table 2 are computed by the expressions ( 50) 100%vN ×  and 

1

vN

i v
i

n N
=
∑ , where vN  represents the number of successful runs out of 50 runs, 

in represents the minimum number of function evaluations which is used for 

the i -th successful run in Reference [3]. 

Table 1. Performance comparison of CLS-GSO and GSO for the functions 

Func
tions 

Algo-
rithm 

Maximum function 
value 

Minimum function 
value 

Mean function value 

ClS-GSO 8.692331644111955e-005 4.832300149727935e-008 
1.231525336414898e-
005 

1f  
GSO 0.069481924769146 4.925366751172589e-007 0.004032977301367 

CLS-GSO 1.970845834088319e-004 7.756711847019891e-007 
5.405170175742343e-
005 

2f  
GSO 9.491759231967500 2.067894686945386e-006 3.052060957702222 

CLS-GSO 9.562394052475831e-005 7.145132524533082e-008 
1.690480489850654e-
005 

3f  
GSO 3.316878967525414e+002 0.449028280143957 69.637174935101157 

CLS-GSO 3.003547934688247 3.000005168972215 3.000768079543359 

4f  
GSO 30.003584179725888 3.000016161631907 4.316462849776215 

CLS-GSO 0.397889282098395 0.397887358167974 0.397887755543500 

5f  
GSO 0.419160313915976 0.397887374761043 0.398558422206538 

CLS-GSO -1.031597429075861 -1.031628437195717 -1.031621810175573 

6f  
GSO -1.017941715400425 -1.031627972793364 -1.031336297851895 
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Table 2. Performance comparison of CLS-GSO and GSO for the functions  

Func-
tions 

Algorithm Success rate Average number of effec-
tive evaluation 

Standard deviation 

CLS-GSO 100% 2.840000000000000 2.092046889472704e-005 

1f  

GSO 98% 44.306122448979593 0.011158177292723 

CLS-GSO 100% 8.039999999999999 4.901008295353951e-005 

2f  
GSO 60% 1.203000000000000e+002 4.425144460663793 

CLS-GSO 100% 37.979999999999997 2.103242121873257e-005 

3f  
GSO 0 N/A 67.934702139203452 

CLS-GSO 100% 4.180000000000000 7.915828045939991e-004 

4f  
GSO 94% 49.382978723404257 5.551762042395289 

CLS-GSO 100% 6.260000000000000 4.819530491829576e-007 

5f  GSO 98% 1.096938775510204e+002 0.003152674520322 

CLS-GSO 100% 1.680000000000000 7.448846883942019e-006 

6f  
GSO 100% 29.440000000000001 0.001933155828244 
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Fig. 1. Evolution curve of the function 1f  Fig. 2. Evolution curve of the function 2f  
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Fig. 3. Evolution curve of the function 3f  Fig. 4. Evolution curve of the function 4f  
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Fig. 5. Evolution curve of the function 5f  Fig. 6. Evolution curve of the function 6f  

 

D. Analyses of Results 

From Table 1, it is observed that CLS-GSO gives a better quality of solutions as 
compared to GSO, that is to say, for all the functions, the maximum function 
value, the minimum function value and the mean function value that are obtained 
by CLS-GSO are better than those that are obtained by GSO from fifty runs. From 
Table 2, it is observed that CLS-GSO solved all the functions with 100% success 
rate. However, GSO only solved 6f with 100% success rate, for the other func-

tions, GSO didn’t solve them with 100% success rate. In particular, the success 
rate of GSO solving 3f  is 0, in other words, GSO could not solve 3f  at all. In 

addition, for all the functions, the average number of effective evaluation that is 
used by CLS-GSO is less than of GSO.  

From evolution curves of all the functions, it is observed that the convergence 
speed of CLS-GSO is faster obviously than GSO finding the global optimal solution.  

6   Conclusion 

In this paper, CLS-GSO for function optimization is presented. It combines cha-
otic search strategy with GSO, which effectively coordinates the relationship be-
tween global search and local search of GSO and which makes GSO not easily fall 
into the local optimal value. Simulation results show that CLS-GSO outperforms 
GSO in terms of efficiency, precision, success rate of convergence and reliability. 
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Abstract. We once proposed four metric criteria for the multi-dimensional
software trustworthiness such as monotonicity, acceleration, sensitivity and
substitutivity, and presented two metric models based on theses criteria. Both
the substitutivity among critical attributes are 1 and that among non-critical
attributes are either 1 or 0 in our two models. In fact the substitutivity be-
tween different critical attributes or that between different non-critical at-
tributes should be different. In order to deal with this problem, in this paper
we partition critical attributes into several groups. The substitutivity be-
tween attributes within the same group are identical, and the substitutivity
between attributes belong to different groups are not the same.

Keywords: Trustworthy software, trustworthy metric, multi-dimensional
trustworthiness measurement.

1 Introduction

With the increasing demands on software functions, the softwares have been
playing an ever-increasing role in our life, the scale and the complexity of the
software are getting larger and larger, and environments for software develop-
ment and running have transited from static closeness to dynamical openness,
which leads to a variety of uncertainty factors [1]. Therefore some problems
often arise as the softwares work, so how to ensure high trustworthiness of
the softwares in the development and operation has become an important
research on the theory and technology of software [2]. One of the core scien-
tific problems in constructing trustworthy softwares is how to measure the
trustworthiness of the software [1].

Software trustworthiness, as a new concept, is based on such attributes of
software as the accuracy, reliability, safety, timeliness, integrity, availability,
predictability, survival, controllability, and many other concepts. There is no
common explanation about software trustworthiness up to now, however it is

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 695–705.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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widely considered that software trustworthiness can be characterized by many
attributes [3-13]. We will not discuss the specific attributes which influence
the software trustworthiness in this paper. We believe that there are many
attributes referred to trustworthy attributes here that influence the software
trustworthiness, and the trustworthy attributes should contain some or all of
the quality attributes, including correctness, reliability, safety and so on. The
attributes are not completely orthogonal, for example both quality criterion
sets of quality factors correctness and reliability which trustworthy softwares
must have contain consistency in McCall model [14]. Therefore substitutivity
is likely to happen between attributes. The substitutivity of attributes is to
describe the event that we can keep the software trustworthiness through the
decreasing one attribute value and increasing the other attribute value for
different users. Since different trustworthy attributes have different contribu-
tions to trustworthiness, we classified trustworthy attributes into two classes:
critical and non-critical attributes [6]. Critical attributes are the attributes
that a trustworthy software must have, such as reliability, correctness etc..
If any critical attribute value is less than the threshold decided by software,
we think this software is not trustworthy. Because different softwares pro-
vide different purposes, some softwares may have other attributes except the
critical attributes, such as maintainability, portability and so on. We refer to
these attributes as non-critical.

Most methods compute the software trustworthiness or software quality by
weight sum. In paper [6], we have proved that the weight sum model is not
very suitable from the view of substitutivity, since the attributes in this model
can completely substitute each other, which is inconsistent with the actual
situation. In order to get a appropriate model, we proposed two models in
papers [6] and [7] in turn. Both the substitutivity among critical attributes are
1 and that among non-critical attributes are either 1 or 0 in the models prosed
in [6] and [7]. In fact the substitutivity between different critical attributes
or between different non-critical attributes should be different. In order to
deal with this problem, in this paper we partition critical attributes into
several groups. The substitutivity between attributes within the same group
are identical, and the substitutivity between attributes belong to different
groups are not the same.

The paper is organized as follows. In section 2 we describe metric crite-
ria for the multi-dimensional software trustworthiness proposed in [6]. We
introduce the improved metric model for software trustworthiness based on
partition in section 3. We give a small example in section 4 and in the last
section we make the conclusion.

2 Criteria for Trustworthiness

With the same symbols as in reference [6], we suppose that y1, · · · , ym are
critical attributes and ym+1, · · · , ym+s are non-critical attributes (m+s = n),
and these values are the degree of these attributes of the software. Let T
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be a metric function w.r.t. y1, · · · , ym+s for the trustworthiness of software.
Inspiring from the research results of mathematical modeling in economics,
ecology and the environment (see, [15]), we proposed the following metric
criteria for the multi-dimensional software trustworthiness in [6]:

(1) Monotonicity
It means that the metric function T is monotonically increase with respect
to each yi. That is, the increment of one attribute leads to the increase of the
trustworthiness. Thus, we have

∂T/∂yi ≥ 0.

(2) Acceleration
Acceleration describes the changing rate of an attribute. Under the case of the
increase of only one attribute yi and keeping of constant for other attributes
yj , j �= i, the efficiency of using the attribute yi decreases. That means that

∂2T/∂2yi ≤ 0.

(3) Sensitivity
Sensitivity of T about the i-th attribute is the ratio of trustworthiness mea-
surement percentage increase to the percentage increase of i-th attribute yi
expenditure. This sensitivity is ∂T

∂yi

yi

T defined as:

∂T

∂yi

yi
T

= lim
�yi→0

�T
T

�yi

yi

.

The minimal critical attribute is more sensitive to T compared with its rela-
tive importance.
(4) Substitutivity
Substitutivity of yi and yj means that we can change their attribute values
and do not change the trustworthy degree of a software. The elasticity of
attribute substitution is equal to the percentage variation of the ratio of yi
and yj divided by the percentage variation of the ratio of dyi and dyj :

σij =
d(yi/yj)
d(hij)

× hij
yi/yj

, 1 ≤ i, j ≤ m + s, i �= j, (1)

where

hij = −∂T/∂yj
∂T/∂yi

=
dyi
dyj

1 ≤ i, j ≤ m + s, i �= j.

We use σij to express the difficulty of the substitution between the yi and
yj attributes. Clearly σij satisfies 0 ≤ σij ≤ ∞. The bigger σij is, the easier
substitution between the yi and yj is. The attributes yi and yj are completely
replaceable at σij = ∞ and they are not replaceable at σij = 0.
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3 A Metric Model for Trustworthiness of Softwares
Based on Partition

Both the substitutivity between critical attributes are 1 and that between
non-critical attributes are either 1 or 0 in the models prosed in [6] and [7]. In
fact the substitutivity between different critical attributes or that between
different non-critical attributes should be different. In order to deal with
this problem, inspired by the two-level constant-elasticity-of-substitution pro-
duction function presented in [16], in this paper we partition critical at-
tributes into several groups. The substitutivity between attributes within
the same group are identical, and the substitutivity between attributes be-
long to different groups are different. We partition {1, 2, · · ·m} into S subsets
{N1, N2, · · · , NS} and the correspondingly critical attributes into S groups
{y(1), · · · , y(S)} with yi ∈ y(s) if i ∈ Ns. The criterion for partitioning is
that the critical attributes with same substitutivity are put in one group.
To distinguish the importance between critical and non-critical attributes,
we use α and β to denote the proportion of critical and non-critical at-
tributes, respectively. We require that α + β = 1 and that α always is
greater than β, i.e. α > 0.5 > β. The critical attribute groups are pro-

portioned into α(s), 1 ≤ s ≤ S with
S∑
s=1

α(s) = 1. All critical attributes

within sth (1 ≤ s ≤ S) group are proportioned into α
(s)
i , i ∈ Ns which sat-

isfy
∑
i∈Ns

α
(s)
i = 1. Similarly, we proportion all non-critical attributes into

βm+1, · · · , βm+s with
m+s∑
i=m+1

βi = 1. Denote the s with min
1≤s≤S

{y(s)} by min.

For simplicity we set y(min) = min
1≤i≤m

{y(s)}.

Definition 1. The Metric Model for Trustworthiness of Softwares based on
Partition is⎧⎪⎪⎨⎪⎪⎩

T =
10
11

(
y(min)

10
)
ε

y(1)αα
(1)

· · · y(S)αα
(S)

+
10
11

y
ββm+1
m+1 · · · yββm+s

m+s ,

y(s) = (
∑
Ns

α
(s)
i yi

−ρs)−
1
ρ s , 1 ≤ s ≤ S,

(2)

where 0 ≤ ε ≤ 1−α(min) is used to control the influence of the critical attribute
group with the minimum value which is called the minimum critical attribute
group on the trustworthiness of the software, the bigger ε, the greater is the
influence. −1 ≤ ρs < 0 (1 ≤ s ≤ S) is a parameter related to substitutivity
between attributes, the bigger ρs, the more difficult is the substitutivity between
attributes.

Claim (1). T is a monotonically increase function.

Proof. Because
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂y(s)
=

⎧⎪⎪⎨⎪⎪⎩
10

11
αα(s)(

y(min)

10
)

ε

y(1)αα(1)

· · · y(s)αα(s)−1 · · · y(S)αα(S)

s 
= min

10

11
(α(min) + ε)(

y(min)

10
)

ε

y(1)αα(1)

· · · y(s)αα(s)−1 · · · y(S)αα(S)

s = min

∂y(s)

∂yi
=

⎧⎪⎨⎪⎩
α

(s)
i (
∑
Ns

α
(s)
i yi

−ρs)
− 1

ρs
−1

yi
−ρs−1 i ∈ Ns

0 i /∈ Ns

∂T

∂yi
=

10

11
ββiy

ββm+1
m+1 · · · yββi−1

i · · · yββm+s
m+s m + 1 ≤ i ≤ m + s

Then
∂T

∂yi
≥ 0, 1 ≤ i ≤ m + s.

i.e. T is monotonically increasing for each yi, 1 ≤ i ≤ m + s. �

Claim (2). If 1 ≤ yi ≤ 10 for all i (1 ≤ i ≤ m + s), then 1 ≤ T ≤ 10.

Proof. Because for 1 ≤ i ≤ m + s, 1 ≤ s ≤ S

1 ≤ yi ≤ 10 and
∂y(s)

∂yi
≥ 0

then we can deserve

1 = (
∑
Ns

α
(s)
i 1−ρs)−

1
ρ s ≤ y(s) = (

∑
Ns

α
(s)
i yi

−ρs)−
1
ρ s ≤ (
∑
Ns

α
(s)
i 10−ρs)−

1
ρ s = 10

By the definition of T and

∂T

∂y(s) ≥ 0, 1 ≤ s ≤ S

we have that
10
11

(
1
10

)
ε

+
10
11

≤ T ≤ 10
11

10α +
10
11

10β .

Substituting 0 ≤ ε ≤ 1 in the above inequality, we obtain

1 ≤ 10
11

(
1
10

)
ε

+
10
11

≤ T .

Let z =
10
11

10α +
10
11

10β . Because of α + β = 1 and α > 0.5 > β, it follows
that

∂z

∂α
=

10 ln10
11

(10α − 101−α) =
10 ln 10

11
102α − 10

10α
> 0.

So, z is monotonically increasing for α. Thus z ≤ 10, i.e., T ≤ 10. �

Claim (3). T satisfies the acceleration criterion.
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Proof. For 1 ≤ i ≤ m

∂2T

∂2yi
=

∂2T

∂2y(s)

(
∂y(s)

∂yi

)2

+
∂T

∂y(s)

∂2y(s)

∂2yi

By taking the derivative, we deserve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2T

∂2y(s)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10

11
αα(s)(αα(s) − 1)(

y(min)

10
)

ε

y(1)αα(1)

· · · y(s)αα(s)−2 · · · y(S)αα(S)

s 
= min

10

11
(α(min) + ε)(α(min) + ε − 1)(

y(min)

10
)

ε

y(1)αα(1)

· · ·

· · · y(s)αα(s)−2 · · · y(S)αα(S)

s = min

∂2y(s)

∂2yi
=

⎧⎪⎨⎪⎩
− α

(s)
i (1 + ρs)(

∑
Ns

α
(s)
i yi

−ρs)
− 1

ρs
−2

yi
−ρs−2(

∑
Ns,j �=i

α
(s)
j yj

−ρs) i ∈ Ns

0 i /∈ Ns

Since 0 ≤ α, α(s), α
(s)
i , α(min) + ε ≤ 1 and 0 ≤ 1 + ρs < 1, from the above

expression, we can deserve

∂2T

∂2y(s) ≤ 0,
∂2y(s)

∂2yi
≤ 0, 1 ≤ i ≤ m.

Therefore
∂2T

∂2yi
≤ 0, 1 ≤ i ≤ m

For m + 1 ≤ i ≤ m + s

∂2T

∂2yi
=

10
11

βi(βi − 1)yβm+1
m+1 · · · yβi−2

i · · · yβm+s

m+s ≤ 0.

Because
0 ≤ β, βi ≤ 1, m + 1 ≤ i ≤ m + s.

Therefore
∂2T

∂2yi
≤ 0, m + 1 ≤ i ≤ m + s.

�

Claim (4). T is sensitive to all attributes.

Proof. Notice that for 1 ≤ i ≤ m
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∂T

∂yi

yi
T

=
∂T

∂y(s)

∂y(s)

∂yi

yi
T

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10αα(s)α
(s)
i

11T
(
y(min)

10
)
ε

y(1)αα
(1)

· · · y(s)αα
(s)+ρs · · · y(S)αα

(S)

y−ρs

i

i ∈ Ns, s �= min,

10α(α(min) + ε)α(min)
i

11T
(
y(min)

10
)
ε

y(1)αα
(1)

· · ·

· · · y(s)αα
(min)+ρmin · · · y(S)αα

(S)

y−ρmin
i

i ∈ Nmin

and for m + 1 ≤ i ≤ m + s

∂T

∂yi

yi
T

=
10T
11

ββiy
ββm+1
m+1 · · · yββi

i · · · yββm+s

m+s

which means that T is sensitive to all attributes. The minimal critical at-
tribute affects on the whole trustworthy degree more than other attributes
by adding of ε. �

Claim (5). T has the substitutivity between attributes.

Proof. We first consider the substitutivity between attributes within the same
critical attribute group i.e. i, j ∈ Ns, 1 ≤ s ≤ S

σij =
1

1 + ρs

which means that the substitutivity between attributes within the same crit-
ical attribute group are identical.

It is easy to get that the substitutivity between critical attribute groups
are 1.

For the case of non-critical attributes, we have

σij = 1, m + 1 ≤ i, j ≤ m + s, i �= j.

Now let us consider the substitutivity between attributes which belong to
different non-minimal critical attribute groups i.e. i ∈ Ns, j ∈ Nr, r �= s, r �=
min, s �= min. By computation, we have

σij =
c + d

ac + bd
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 1 + ρs − ρsα
(s)
i [
∑
Ns

α
(s)
i yi

−ρs ]−1yi
−ρs

b = 1 + ρr − ρrα
(r)
j [
∑
Nr

α
(r)
i yi

−ρr ]−1yj
−ρr

c = α(r)α
(r)
j (
∑
Nr

α
(r)
i yi

−ρr )−1yj
−ρr

d = α(s)α
(s)
i (
∑
Ns

α
(s)
i yi

−ρs)−1yi
−ρs

Similarity, for the substitutivity between attribute which belongs to non-
minimal critical attribute group and that in minimal critical attribute group
i.e. i ∈ Ns, j ∈ Nr, s = min, we have

σij =
c + d

ac + bd

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 1 + ρs − ρsα
(s)
i [
∑
Ns

α
(s)
i yi

−ρs ]−1yi
−ρs

b = 1 + ρr − ρrα
(r)
j [
∑
Nr

α
(r)
i yi

−ρr ]−1yj
−ρr

c = α(r)α
(r)
j (
∑
Nr

α
(r)
i yi

−ρr )−1yj
−ρr

d = (α(s) + ε)α(s)
i (
∑
Ns

α
(s)
i yi

−ρs)−1yi
−ρs

About the substitutivity between critical and non-critical attributes, we
have the following results. Firstly, for the substitutivity between attribute
in non-minimal critical attribute group and non-critical attribute i.e. i ∈
Ns,m + 1 ≤ j ≤ n, s �= min

σij =
c + d

ac + bd

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a = 1 + ρs − (αα(s) + ρs)α
(s)
i y(s)ρs

yi
−ρs

b = 1 − ββj

c = ββjy
ββm+1
m+1 · · · yββj

j · · · yββn
n

d = αα(s)α
(s)
i (

y(min)

10
)
ε

y(1)αα
(1)

· · · y(s)αα
(s)+ρs · · · y(S)αα

(S)

y−ρs

i

Secondly, for the substitutivity between attribute in minimal critical at-
tribute group and non-critical attribute i.e. i ∈ Ns,m + 1 ≤ j ≤ n, s = min



Another Metric Model for Trustworthiness of Softwares 703

σij =
c + d

ac + bd

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a = 1 + ρs − [α(α(s) + ε) + ρs]α
(s)
i y(s)ρs

yi
−ρs

b = 1 − ββj

c = ββjy
ββm+1
m+1 · · · yββj

j · · · yββn
n

d = α(α(s) + ε)(
y(min)

10
)
ε

y(1)αα
(1)

· · · y(s)αα
(s)+ρs · · · y(S)αα

(S)

y−ρs

i

To sum up the above arguments, T has the substitutivity between
attributes. �

Remark 1. In this model we just partition the critical attributes for the model
proposed in [6], in fact we can partition both the critical and non-critical
attributes for both the models described in [6, 7]. We will not discuss the
detail here for these situations.

4 A Small Simulation

This section gives a small simulation for our model. Suppose the number of
the critical attributes and non-critical attributes are 3 and 2 separately, i.e.,
m = 3, s = 2. We use our combinational algorithm to compute the weight in
the model. Suppose

A1 =

⎡⎣ 1 2 3
1/2 1 3
1/3 1/3 1

⎤⎦
be the positive reciprocal matrix about critical attributes and

A2 =
[

1 2
1/2 1

]
be the positive reciprocal matrix about non-critical attributes. By our com-
binational algorithm, for A1 the weight vector

(α1, α2, α3) = (0.5278, 0.3325, 0.1396)

produced by LLSM is the optimal, and for A2 the weight vector

(α4, α5) = (0.6667, 0.3333)

produced by CSM is the optimal. We suppose (α, β) = (0.9, 0.1). Suppose y1
and y2 in the same group in this model and
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Table 1. Simulations for our metric models

Sim. y1 y2 y3 y4 y5 ε T1 T2 T3

1 8 8 6 8 8 0.001 6.79 6.65 6.81
8 8 6 8 8 0.01 6.58 6.43 6.76

2 8 8 7 8 8 0.001 6.90 6.76 6.93
8 8 7 8 8 0.01 6.69 6.54 6.91

3 8 9 6 8 8 0.001 7.00 6.85 7.02
8 9 6 8 8 0.01 6.77 6.30 6.99

4 9 8 6 8 8 0.001 7.12 6.97 7.59
9 8 6 8 8 0.01 6.89 6.75 7.56

(α(1)
1 , α

(1)
2 ) = (

αα1

αα1 + αα2
,

αα2

αα1 + αα2
) = (0.614, 0.386)

We set ρ = 0.5 and ρ1 = −0.5. Let T1 and T2 be the metric functions for
trustworthiness of software proposed in [6] and [7] respectively, and let T3 be
the model presented in this paper.

Table 1 is a small simulation for our models with parameters described
above. From Table 1, we can find these follows. In the three models the in-
crement of the parameter ε leads the decline of whole trustworthy degree.
The increment of these attributes leads the increasing of the trustworthy de-
gree. Among these increments, the minimal critical attribute gives the larger
increment relative its importance and the most important critical attribute
gives the largest increment. And T3 is always bigger than the previous two
models. Therefore if we want to increase the rank of trustworthiness of a
software. Firstly, we would better improve the minimal critical attribute, not
only because it is easier to be improved but also it is more sensitive to the
software trustworthiness compared with its relative importance. Secondly, we
can make the most important attribute better.

5 Conclusion

In this paper, we present a new metric model for the software trustworthiness
which satisfies all criteria proposed in [6]. We partition critical attributes
into several groups to make the substitutivity between critical attributes
that belong to different group different. Compared with the previous our
two model [6, 7], this model is better in the view of substitutivity. In fact,
we can also partition non-critical attributes into different groups in a similar
way to make the substitutivity between non-critical attributes that belong to
different group different.

Verifying this model by the real cases is the future work. How to identify
and measure the attributes which influence the software trustworthiness and
how to distinguish the critical and non-critical attributes are what we will do
in the future.
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Abstract. Relation algebra is used to deal with the semantics of programs,
the meaning of a program is given by specifying the input-output function
that corresponds to the program. However, these programs are not probabilis-
tic programs, because the relation algebra does not contain specific proper-
ties for probabilistic programs. In this paper, we extend usual relation to
multi-random relation. Then, we give examples to show that multi-random
relation can be used to handle the semantics of probabilistic nondeterministic
programs.

Keywords: Relation, multi-random relation, multi-random relation space,
probability measure, random variable.

1 Introduction

Relation algebra emerged in the 19th century, which culminated in the al-
gebraic logic of Ernst Schröder. The present-day purely equational form or
relation algebra is due to the work of Alfred Tarski and his students in the
1940s [1]. Recently, relation algebra is employed as a mathematical tool to
deal with the problems in computer science, such as [2-8]. In [4-8], the authors
use relation algebra to deal with the semantics of programs (specifications),
and consider the input-output semantics of a program (specification) which
is given by a relation on its set of states. However, the relation does not con-
tain specific properties for probabilistic programs, so the programs they have
dealt with couldn’t be probabilistic programs.

In this paper, we firstly extend usual relation to multi-random relation, and
obtain some results on multi-random relation. Then, we use multi-random
relation to consider the input-output semantics of probabilistic nondetermin-
istic programs.

This paper is organized as follows. In Section 2, we extend usual relation to
multi-random relation, and give some interesting propositions and theorems
on multi-random relation. In Section 3, by some examples, we show that
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multi-random relation can be used to consider the input-output semantics of
probabilistic nondeterministic programs. The conclusions follow in section 4.

In the rest of this section we introduce some notations which will be used
in the later discussion.

(1) Let S be a set, 2S denotes the power set of S. |S| denotes the cardinality
of S.

(2) � denotes the set of real numbers.
(3) N denotes the set of natural numbers.

2 Extension to Multi-random Relation Algebra

In this section, we firstly introduce usual relation, then we extend it to multi-
random relation.

2.1 Usual Relation

Definition 2.1 [7]. Usually a relation R on a set S is a subset of the carte-
sian product of S. The constant relations are the empty relation (∅), the
universal relation (V ) and the identity relation (I). The operations that can
be applied to relations are complementation (−), union (∪), intersection (∩),
converse (̆), composition or relative product (; ), relative implication ('), do-
main (dom()), relation-domain (<), power (n) and reflexive transitive closure
(∗). These are defined as follows:

(1) ∅ � {(s, s′
)|false}.

(2) V � {(s, s′
)|true}.

(3) I � {(s, s′
)|s = s

′}.
(4) R̄ � {(s, s′

)|¬(s, s
′
) ∈ R}.

(5) Q ∪R � {(s, s′
)|(s, s′

) ∈ Q ∨ (s, s
′
) ∈ R}.

(6) Q ∩R � {(s, s′
)|(s, s′

) ∈ Q ∧ (s, s
′
) ∈ R}.

(7) R̆ � {(s, s′
)|(s′

, s) ∈ R}.
(8) Q;R � {(s, s′

)|∃(s
′′

:: (s, s
′′
) ∈ Q ∧ (s

′′
, s

′
) ∈ R)}.

(9) Q ' R � Q;R.
(10) dom(R) � {s|∃(s

′
:: (s, s

′
) ∈ R}.

(11) R< � R;V ∩ I.
(12) Rn � ifn = 0 then I elseRn−1;R.
(13) R∗ � ∪(n : n ≥ 0 : Rn).

Remark 2.1 [7]. The precedence of the relational operators from highest to
lowest is the following: (−),(̆),(<),(n) and (∗) bind equally, followed by ;, then
by ', and finally by ∩ and ∪.

Definition 2.2 [7]. A relation R on a set S is functional (or deterministic)
if and only if Ř;R ⊆ I.
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Remark 2.2 [7]. A relation R is functional if and only if ∀s, s′
: ∃t : (t, s) ∈

R ∧ (t, s
′
) ∈ R =⇒ s = s

′
.

2.2 Multi-random Relation Algebra

Now, we we will extend usual relation to multi-random relation.

Proposition 2.1. Let S be a set, F = 2S. Then (S,F) is a measurable space.

Proof. The proof easily follows by the definition of measurable space. #$

Remark 2.3. ∀x ∈ S, let xR = {y|(x, y) ∈ R}. Then (xR, 2xR) is a measur-
able space.

Proposition 2.2. Let S be a set and R be a relation on S. ∀x ∈ S, μxR(·)
is a numerically valued set function with domain 2xR, defined as follows:
∀A ∈ 2xR,

μxR(A) =
{
|A|, A is a finite set;
+∞, A is an infinte set.

Then, (xR, 2xR, μxR) is a measure space.

Proof. By proposition 2.1, the proof follows. #$

Definition 2.3. Let S be a set and R ⊆ S×S. Take a fixed x ∈ S, such that
xR �= ∅, FΔ is a Borel field of subsets of Δ(⊆ xR), Px(·) is a numerically
valued set function: FΔ �→ [0, 1], satisfying the following axioms:

(i) Px(Δ) = 1.
(ii) ∀A ∈ FΔ, Px(A) ≥ 0.
(iii) If {Ai} is a countable collection of (pairwise) disjoint in FΔ, then

Px(∪iAi) =
∑

i Px(Ai).
The quadruple ({x}, Δ,FΔ, Px)Δ⊆xR is called a multi-random relation

space (generated by x and R), x is called the god of ({x}, Δ,FΔ, Px)Δ⊆xR,
Δ ⊆ xR is called the sample space, the point in Δ is called the sample point.
Furthermore,

(iv) If ∪{Δγ |({x},Δγ ,FΔγ ,Px)Δγ⊆xR is a multi-random relation space}Δγ =
xR and Δγ1 ∩Δγ2 = ∅, γ1 �= γ2.

R is then a multi-random relation on {x}.

Proposition 2.3. ∀x ∈ S, if ∃R is a usual relation, xR �= ∅. Then, ∃Δ ⊆
xR(Δ �= ∅), we can structure a multi-random relation space ({x}, Δ,FΔ,
Px)Δ⊆xR on Δ.

Proof. By xR �= 0, we can take y0 ∈ xR. Then, we can construct multi-
random relation space as follows:

Δ = {y},FΔ{{y}, ∅}, Px({y}) = 1.

So, ({x}, {y},FΔ, Px) is the desired multi-random relation space. #$
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Definition 2.4. (1)For a given multi-random relationR, ∀x ∈ S, xR �= ∅. If
for each Δ ∈ {Δ |({x}, Δ,FΔ, Px)Δ⊆xR is a multi-random relation space},FΔ
is a trivial Borel field. Then R is called a trivial-multi-random relation on S.
The trivial-multi-random relation is just a usual relation.

(2)For a given multi-random relationR, ∃x ∈ S such that xR �= ∅. ∃Δ ∈
sup{|Δ| |({x}, Δ, FΔ, Px)Δ⊆xR is a multi-random relation space}, FΔ is not
a trivial Borel field.. Then R is called a partial-multi-random relation on S.

(3)For a given multi-random relationR, ∀x ∈ S, xR �= ∅. If for each
Δ ∈ {Δ |({x}, Δ,FΔ, Px)Δ⊆xR is a multi-random relation space}, |Δ| = |xR|
and FΔ is not a trivial Borel field, Then R is called a total-multi-random re-
lation on S. Specially, if |xR| ≡ 1, R degenerates into a trivial-multi-random
relation.

Collectively these relations are referred to as the multi-random relations.
To avoid confusion, if R is a multi-random relation on S, we denote with RP

S .

Proposition 2.4. For any usual relation R, we can transform R to a multi-
random relation.

Proof. By proposition 2.3 and definition 2.3, the proof immediately follows.
#$

Definition 2.5. (x, y) ∈ RP if and only if ∃({x}, Δ,FΔ, Px)Δ⊆xRP , such
that ∀T ∈ {T |{y} ⊆ T ∈ FΔ}, Px(T ) > 0.

Definition 2.6

(1
′
) ∅P � {(s, s′

)|false ∨ ∀RP
{s}, such that{s′} ⊆ B ∈ FΔ, butPs(B) = 0}.

(2
′
) V P � {(s, s′

)|∃RP
{s}, ∀T ∈ {T |{s′} ⊆ T ∈ FΔ}, Ps(T ) > 0}.

(3
′
) IP � {(s, s′

)|s = s
′ ∧ ∃RP

{s}, ∀T ∈ {T |{s′} ⊆ T ∈ FΔ}, Ps(T ) > 0}.
(4

′
) RP � {(s, s′)|¬(s, s′) ∈ RP ∧ ∃RP

{s′}, ∀T ∈ {T |{s} ⊆ T ∈ FΔ},
Ps′(T ) > 0}.

(5
′
) QP ∪RP � {(s, s′)|(s, s′) ∈ QP ∨ (s, s′) ∈ RP }.

(6
′
) QP ∩RP � {(s, s′)|(s, s′) ∈ QP ∧ (s, s′) ∈ RP }.

(7
′
) R̆P � {(s, s′)|(s′, s) ∈ RP ∧ ∃RP

{s}, ∀T ∈ {T |{s′} ⊆ T ∈ FΔ},
Ps(T ) > 0}.

(8
′
) QP ;RP � {(s, s′)|∃s′′ :: (s, s′′) ∈ QP ∧ (s′′, s′) ∈ RP }.

(9
′
) QP ' RP � QP ;RP .

(10
′
) dom(RP ) � {s|∃(s

′
:: (s, s

′
) ∈ RP }.

(11
′
) (RP )< � RP ;V P ∩ IP .

(12
′
) (RP )n � ifn = 0 then I else (RP )n−1;RP .

(13
′
) (RP )∗ � ∪(n : n ≥ 0 : (RP )n),

here, the precedence of the multi-random relational operators is the same
with the usual relation.
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Remark 2.4. By these definitions, we can show that
(a) A multi-random relation RP is almost everywhere functional if and

only if ∀s, s′
: ∃t : (t, s) ∈ RP ∧ (t, s

′
) ∈ RP =⇒ s = s

′
.

(b) A partial identity is a multi-random relation of the form {(s, s′)|s ∈
F ∧ s = s

′ ∧ ∃RP
{s}, ∀T ∈ {T |{s′} ⊆ T ∈ FΔ}, Ps(T ) > 0}, for some F ⊆ S.

(c) (RP )< = {(s, s′)|s ∈ dom(RP ) ∧ s = s′ ∧ ∃RP
{s}, ∀T ∈ {T |{s′} ⊆ T ∈

FΔ}, Ps(T ) > 0}. It is a partial identity.
(d) |QP ∩RP | > 0, but we may have QP ∩RP = ∅P .

Theorem 2.1. Let EP , QP , RP be multi-random relations. Then:
(1) RP ; ∅P = ∅P ;RP = ∅P .
(2) RP ; IP = IP ;RP = RP .
(3) V P ;V P = V P .
(4) PP ; (QP ∩RP ) ⊆ PP ;QP ∩ PP ;RP ).
(5) PP ; (QP ∪RP ) = PP ;QP ∪ PP ;RP ).
(6) PP ⊆ QP ⇒ RP ;PP ⊆ RP ;QP .
(7) PP ⊆ QP ⇒ PP ' RP ⊆ QP ' RP .
(8) PP ⊆ QP ⇒ RP ' PP ⊆ RP ' QP .
(9) IP ' RP = RP .
(10) PP ' QP ∩ PP ' RP = PP ' (QP ∩RP ).
(11) PP ' RP ∩QP ' RP = (PP ∩QP ) ' RP .
(12) PP ;QP ' RP = PP ' (QP ' RP ).

Proof. By definition 2.3, the proofs easily follow. #$

Theorem 2.2. Let |S|= ℵ1, for each x ∈ S, ∃RP
{x}, ({x}, Δx,FΔx , Px)Δx⊆xRP

is a multi-random relation space. There exists a unique multi-random relation
space (S,

∏
x∈S Δ{x},

∏
x∈S FΔ{x} , P ), where P satisfy that, ∀n ∈ N , Sn =

{x1, x2, · · · , xn} ⊂ S, Ax ∈ FΔ{x}, x ∈ Sn, P (
∏
x∈Sn

Ax×
∏
x∈S\Sn

Δ{x}) =∏
x∈Sn

Px(Ax).

Proof. The proof is similar to the proof of Product Probability Theorem
in [9]. #$

Proposition 2.5. Let δxR = |{Δ|({x}, Δ,FxRΔ , Px)Δ⊆xRP is a multi-random
relation space}|. Then, δxR � |xR|.

Proof. By definition 2.3 and definition 2.4, the proof follows. #$

Proposition 2.6. For any K � ℵ1, ∃D ⊆ �, such that |D| = k.

Proof. By |�| = ℵ1, the proof follows. #$

Corollary 2.1. Let |S| = ℵ1, take a fixed x ∈ S, such that RP
{x}. There

exists a unique multi-random relation space ({x},
∏
t∈δxR

Δt,
∏
t∈δxR

FΔt , P ),
where P satisfy that, ∀n ∈ K(⊆ N) and |K| ≤ δxR, ∃D(D ⊆ �), |D| = δxR
Sn = {t1, t2, · · · , tn} ⊂ D, At ∈ FxRΔt

, t ∈ Sn, P (
∏
t∈Sn

At×
∏
t∈δxR\Sn

Δt) =∏
t∈Sn

Px(At).
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Proof. This follows immediately from theorem 2.2. #$

If RP
{s} is a total-multi-random relation, then we have the following corollary:

Corollary 2.2. Let |S| = ℵ1, ∀x ∈ S, ({x}, xR,FRP
{x}

, Px) is a multi-
random relation space. There exists a unique multi-random relation space
(S,
∏
x∈S xR,

∏
x∈S FRP

{x}
, P ), where P satisfy that, ∀n ∈ N , Sn = {x1,

x2, · · · , xn} ⊂ S, Ax ∈ FRP
{x}

, x ∈ Sn, P (
∏
x∈Sn

Ax ×
∏
x∈S\Sn

xR) =∏
x∈Sn

Px(Ax).

Proof. This follows immediately from theorem 2.2. #$

3 Applications

In this section, we will show that how to apply multi-random relation to
probabilistic programs.

Probabilistic programs were discussed in [10-11], etc.. The following is the
abstract syntax of the probabilistic programming language defined in [10],
which will be considered in this paper.

P ::= ABORT |SKIP |x := e|P ' α ) P |P r ⊕ P |P ⊕P |P ;P |X |μX ·P (X),
here, P1 r⊕P2 is a probabilistic choice, in which P1 is chosen with probability
r and P2 with 1-r.

By the definition of probabilistic programs, we give two examples, through
which we will show that how to use multi-random relation to define the input
and output semantics of probabilistic programs.

Example 3.1
var x;

x :=?;
x := (2 × x) ⊕ (x r1 ⊕ x + 1) ⊕ (x2

r2 ⊕ x3).
From fig. 1, we get the multi-random relation that corresponds to the

program in example 3.1, which is as follows
RP = {(x, x′)|x′ = 2x ∨ x′ = ξ1 ∨ x′ = ξ2}.

Example 3.2
var x;

x :=?;
x := x r1 ⊕ x + 1;
x := x r1 ⊕ x + 1;
x := x r1 ⊕ x + 1;
x := x r1 ⊕ x + 1.
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Fig. 1. The relational graph of example 3.1

Fig. 2. The relational graph of example 3.2

From fig. 2, we can obtain the multi-random relation that corresponds to
the program in example 3.2,

RP = {(x, x′)|x′ = x + ηi}, i = 1, 2, 3.
So,

RP ;RP ;RP = {(x, x′)|x′ = x +
3∑
i=1

ηi}.

4 Conclusion

In this paper, we change the mind’s perspective on the relation. We ex-
tend the usual relation to multi-random relation, and get some interesting
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results on multi-random relation. In addition, we give examples to show that
multi-random relation can be used to deal with the input-output semantics
of probabilistic programs.
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2005CB321904) and the Research and Development Project of High-Technology
of China (Grant No. 2007AA01Z189).

References

1. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
2. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in computer sci-

ence. Springer, Heidelberg (1997)
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Abstract. With the widespread application of ubiquitous computing, the context-
aware computing is introduced into virtual environment for providing proactive 
service model in this paper. The key technology of context-aware computing is to 
predefine the context rules set for inference. The current generation methods of 
context rules however are usually dependent on manual definition, which could 
cause lots of problems. Therefore the modified ID3 algorithm is proposed to 
automatically generate context rules based on virtual environment in this paper. It 
is to build a context decision tree and then convert this tree into rules set. The 
experimental result shows that this algorithm has a good performance in effective-
ness of generated rules and computational efficiency.  

Keywords: Virtual Environment, Context-Aware, Rules Generation, ID3, Deci-
sion Tree.  

1   Introduction 

With the rapid development of network virtual environment, a user might meet 
multiple services at the same time in virtual environment. For example, the user is 
likely to both observe the activity state of rival and check-up the use condition of 
virtual equipments, even to look over the travel path etc., which means that the 
user need to simultaneously interact with multiple services or multiple systems. 
The user’ attention is distracted because the start-up, configuration for those ser-
vices and equipments require the user frequently interact with them, so that the 
user’s experience becomes uncomfortable. 

Consequently, the concept of ubiquitous computing is introduced into virtual 
environment to improve the Human-Computer Interaction (HCI) [1]. As yet, there 
are a lot of researchers to deeply explore the HCI and context-aware computing 
[2-3]. This computing paradigm is to make the system automatically finding the 
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context information of the user’s current situation and surrounding environment, 
and proactively providing relevant services or resources for the current user, 
which reduces the frequency of HCI and improves the user’s experience [4-5]. 

The context-aware computing, as the most important branch of ubiquitous 
computing, was proposed in the early days of 1990s. Schilit B. [6] defined the 
context environment varying with individuals, and on which the system could 
improve the interaction of users and computing equipments  or  other users in his 
doctoral dissertation in 1994. Ding et al. [7] considered the user’s activities may 
change context, thereby established the prediction model and inference algorithm 
based on interactive context. Yue et al. [8] investigated how to extract context 
from interactive environment, and then adjust autologous behaviors. Those re-
search achievements greatly rich the content of context-aware computing and 
expand the application domain. 

The system, solving the problems denoted by context, normally consists of two 
sections: One is context rules generation, which is to generate context rules and 
construct context-rules repository. Another is the inference engine to solve the 
problems. The inference process generally refers to rules match that is to search 
the rule, which antecedent part is similar to the unsolved problem, in repository. 

It is thus clear that the efficient rule-generation is the crucial precondition for 
the successful inference. How to automatically generate context rules from virtual 
environment therefore is the research priority in this paper. 

2   Problems and Solutions 

The inference rules of context-aware system are normally defined by system de-
veloper or users by hand. These methods however may bring about some prob-
lems as follows [9]. Firstly, owing to system developer’s limited cognition to user 
requirements; it is difficult to define the rules exactly matching user requirements. 
Secondly, in later period, when those rules need to be modified or improved it is a 
hard work to express and manage them. Thirdly, there are many redundancies in 
those manual rules, which may lead to mutual conflict between rules and make 
rule-matching wrong. 

The goal of the context-aware computing is to use the concise and compatible 
rules for rule matching so that to realize the natural interaction between the users 
and environments. The complex rules definition makes the interaction more diffi-
cult, obviously, which is contradictory to the original intention of context-aware 
computing. 

A new generation method of context rules is proposed in this paper, which is 
based on virtual environment by means of decision-tree theory. Firstly, we deeply 
analyze the basic theory of context-aware computing. Afterward, ontology is ap-
plied to construct context information modeling in view of networked virtual envi-
ronment. Secondly, the modified generation algorithm of ID3 decision-tree is 
carried out. And then it may be automatically transformed into context rules. Fi-
nally, the effectiveness of generation algorithm of context rules is verified through 
experiment. 
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3   Preliminaries 

A. Context awareness concept 

Context awareness originated as a term from ubiquitous computing or as so-called 
pervasive computing which sought to deal with linking changes in the environ-
ment with computer systems. The term context-awareness in ubiquitous comput-
ing was introduced by Schilit [6]. Context aware devices may also try to make 
assumptions about the user's current situation. Dey [10] define context as "any 
information that can be used to characterize the situation of an entity." Context 
awareness is regarded as an enabling technology for ubiquitous computing sys-
tems. Context awareness is used to design innovative user interfaces, and is often 
used as a part of ubiquitous and wearable computing. It is also beginning to be felt 
in the internet with the advent of hybrid search engines. Schmidt et al. [11] define 
human factors and physical environment as two important aspects relating to 
computer science. 

 
B. Context modeling based on ontology 

As a matter of fact, the context modeling is the necessary precondition of context 
computing. There are two main modeling methods at present: semi-UML lan-
guage [12] and ontology [13]. The advantage of ontology-based context modeling 
is that we can describe context in a way with no reference to certain language, 
which can do formalized analysis for domain knowledge. For example, the First 
Order Logic could be used to conduct context inference in context-aware comput-
ing. Compared with other modeling, the modeling based on ontology has stronger 
expression power and platform independence [14]. So we adapt ontology to mod-
eling context information. 

The relation of ontology and context can be denoted with a triad, { }, ,M O C R= . 

O  is the set of ontology; C is the set of context; R is the relation of ontology and 
context information. 

For example, the Location(Lisa� Library R01) indicates that Lisa is in room 
R01 of Library. Similarly, the Status (Gate3, Close) indicates that Gate3 is closed. 
In virtual environment, the interactions between virtual human and system involve 
plenty of context information. We use the OWL to construct ontology denoting 
context information. The relations of core ontology are set up by means of built-in 
owl: Property [13]. In Fig. 1, we define a set of core context entities: Avatar, Lo-
cation, Activity, Entity and Time; and then we build inter-relations among those 
entities. 

The owl label is OWL metadata. From the traditional view, it might be an on-
tology, property or means. In addition, it might be as well the self-defining of 
certain domain metadata, which describe the information perceived by system 
when virtual human moving.  
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Fig. 1. Inter-relations of ontology-based entities 

C. Context information awareness 

The context awareness is to transform those factors relevant to current application 
in computing environment into semantic-explicit and uniform context information. 

The context awareness of system starts from the context sensors monitoring and 
getting environment data. Those context sensors are the interfaces between com-
puting system and context world. They might be physical one or logical one. The 
logical sensors could be aware of the context of users’ interactive habit and his-
tory. In this paper, we set the interactive triggers in virtual environment as context 
sensors. For example, when the virtual human is passing a certain scene and pulls 
the built-in trigger, system begins to record the context information such as pass-
ing time, times and speed etc.. And then that context information is used to con-
struct a context knowledge repository, which is the input resource of context 
inference rules generation algorithm.   

4   Automatic Generation of Context Rules 

There are some researchers studying the rules generation algorithm at present [15]. 
Mitra [16] introduced the fuzzy logic into the primary rule generation algorithm of 
artificial neural network, which make the algorithm have stronger adaptability. Liu 
[9] proposed an automatic rule generation algorithm based on rough set theory. He 
regarded the context-aware system as a decision information system. So he re-
duced the context information by means of identifiable matrix, and then context 
rules could be automatically generated. 

It is well-known that rough set theory is a mathematic tool to deal with fuzzy 
and imprecise knowledge, which has a stronger ability of knowledge acquisition. 
Although the rough set theory is effective for incomplete knowledge, it is quite 
limited for its fault tolerance and extension ability. 

The decision tree learning of artificial intelligence is an inductive learning algo-
rithm based on examples [17]. It has some advantages as follows: Firstly, decision 
tree could be easier for user understanding. Secondly, the generation efficiency of 
decision tree is higher than rough set; thus it is more appropriate for large training 
set. Thirdly, the generation algorithm of decision tree does not require the extra 
information beside training set. Finally, it could provide more precise for rule 
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generation. Certainly, it might be as well some disadvantages such as unable to 
exclude the irrelevant attributes with noise and so on, whereas it could be solved 
via the preprocessing for primary data. Considering the rich context information in 
virtual environment, the efficiency of rule generation and precision of inference 
are more emphasized in application. Evidently, the technology of decision tree is 
more suitable for context rule generation in virtual environment. 

The technology of decision tree mainly consists of ID3, C4.5, SLIQ, SPRINT 
algorithm and so on, in which the most influential algorithm is ID3 presented by 
R.Quilan in 1986. The others are the variation or modified one of ID3 according to 
different application. Beside above advantages of decision tree, the reasons we 
chose ID3 as rule generation algorithm are listed as follows: Firstly, in spite of 
abundance of context information in virtual environment, by preprocessing ID3 
could be able to deal with them. Secondly, the computing efficiency of ID3 is 
higher than the others, which is in agreement with application requirement of 
virtual environment. Finally, in order to void over-fitting, to some extent, occur-
ring in building process of ID3 decision tree, we define the indistinguishable rela-
tion to modify the classical ID3. 

4.1   Context Decision Tree Based on Modified ID3 

The ID3 algorithm employs the information gain as choosing standard for tested 
attributes. It chooses the attribute, which entropy-reducing is most, as division 
attribute, which is used to split the training examples set and then to build decision 
tree. 

A path from the root to leaf of tree corresponds to a rule. So the whole decision 
tree corresponds to a set of rules. The interior nodes of tree are the attributes of 
examples, while the leaves are the prediction values. By this token, the decision 
tree has a natural advantage for rules generation. 

On the basis of analysis of context-aware system’s inference mechanism and 
decision tree theory, we present a generation algorithm of context decision tree 
based on modified ID3. 

Suppose that n different types of context constitute conditional attributes 

set
1 2

{ , , }
n

A C C C= " , we define 
1 2

{ , , }
n

CV v v v= "  as a value of those contexts at a 

certain time, where 
iv is the value of context

iC . Let users’ next using type of 

services, namely ToS be decision attribute { }
1 2
, ,

t
ToS ToS ToS ToS= " . And then we 

define the contexts vector 
1 2

{ , , , }
m

U CV CV CV ToS= "  as the universe of discourse.   

In order to avoid over-fitting, we employ the indistinguishable relation (see 
also definition 1) to modify the ID3 in course of tree building. 

 
Definition 1[9]. Let ˆ( )IND A  be the indistinguishable relation, and then ˆ( )IND A  is 
listed as follows. 

{ }ˆ ˆ( ) ( , ) , ( ) ( ) ( ) ( )
i j k k i k j i j

IND A CV CV CV CV C A C CV C CV Class CV Class CV= ∈ × ∀ ∈ = ∨ =  
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Where
1 2

ˆ { , , }
n

A A C C C⊆ = " ; ( )
k

C CV  denotes the value of vector CV  to attribute 

k
C ; ( )Class CV  is the CV - belonging class.  

The input and output of algorithm based on modified ID3 are listed as follows. 
 

 Inputs: 
1 2

{ , , , }
m

U CV CV CV ToS= " , 
1 2

{ , , }
n

A C C C= " , 

{ }
1 2
, ,

t
ToS ToS ToS ToS= " ; 

 Outputs: (1) ID3 decision tree; (2) context rules. 
The basic steps of algorithm are listed as follows. 

(1)ID3 (U,A,ToS) 

{ 

Create the root node of tree. 
If the whole U satisfies ˆ( )IND A , then the tree of single node, root labeled 

ˆ( )IND A , is returned. 
If the attributes set A is empty, then the single node root is return, which is 

labeled as the most prevalent ToS ’s value in U.  

While( ! 0A = ) 
{ 

Initialize InfoGain=0  

For i=1 to n do  
//for every attribute, compute information gain, namely InfoGain, and 

choose the division attribute or attribute set called the BestA. 

{ 

( , ) ( ) ( )
i

v

i v

v CV

U
Gain U C Entropy U Entropy U

U∈

= −∑  

If  ( , )   Then  BestA
i i

Gain U C InfoGain C> =  

} 

For the every value 
i

V  of BestA  

{ 

 Generate a new branch of root and label it 
i

A V= . Let ( )
i

U V  be 

the U ’s subset which value to A  is 
i

V . 
 If  ( )

i
U V is empty Then generate a leaf under above new branch 

and label it as the most prevalent ToS ’s value in ( )
i

U V , else 
generate a new sub-tree labeled as ID3( ( )

i
U V ,ToS ,A-BestA) 

under new branch. 

} 
} 

Return root 
} 
(2) Transform the ID3 decision into the context rules set. 
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4.2   Example Analysis for Generation of Context Rules 

We illuminate the operation principle of algorithm by means of an example. 
Firstly, we define the context information such as virtual human location, move-
ment speed, glance time, first time, and user’s preference so on.  We design a 
context-aware information service system that can automatically provide user with 
different type of service information according to current context information.  For 
example, suppose that the user is browsing the art gallery in virtual scene, if the 
user‘s representative, virtual human, triggers the sensor built-in somewhere of 
virtual scene in advance, the system could get those current context information: 
the movement speed of virtual human is slow;  the glance time is relatively long 
and the user’s preference is reading. Therefore, the system introduces the relative 
background information in text form in order to satisfy the user’s personalized 
interest and special requirement. 

We define the context information as a 5-dimensional vector 

1 2 3 4 5
{ , , , , }CV C C C C C= , where 

1
C  denotes current location of virtual human, 

2
C  is 

movement speed, 
3

C  is glance time, 
4

C  denotes whether virtual human is first time 

to be here,
5

C  is user’s preference. In order to preferably explain the problem, we 

advisably simplify the range of value of context attributes. As a result, the move-
ment speed has only three types of value such as high, medium and slow. The 
value of glance time is long, medium or short. Whether be here first time: yes or 
no. the user’s preference is listening or reading.  Accordingly, we define the  
Table 1 in which a set of context information records and the corresponding type 
of service are given out. 

Table 1. The records of context information and type of services 

No 
Loca-

tion(C1) 
Movement 
Speed(C2) 

Glance 
Time(C3) 

First 
Time(C4) 

User’s 
Prefer-

ence(C5) 

Type of 
Ser-

vice (ToS) 
1 Corridor1 High Long Yes Listening Video 

2 ArtGallery1 Slow Medium No Reading Text 

3 ArtGallery2 Medium Short No Listening Abstract 

4 GameArea1 Slow Medium Yes Listening Video 

5 Workshop1 Medium Medium No Reading Text 

6 ScenicArea1 Slow Long Yes Listening Video 

7 GameArea2 Medium Medium No Listening Audio 

8 Corridor2 Medium Medium No Listening Audio 

9 ScenicArea2 High Medium No Reading Abstract 

10 Workshop2 High Short No Reading Abstract 

11 Corridor3 Medium Long No Reading Text 

12 GameArea3 Slow Medium No Reading Text 

13 ArtGallery3 High Medium Yes Listening Audio 

… … … … … … … 
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Evidently, it is a quite hard work to directly define context rules by those con-
text records in Table 1, which even might some generate redundant and paradoxi-
cal rules in spite of the help of Graphical User Interface [18]. The rule-generation 
algorithm mentioned in this paper does not seek to change the current human-
computer interactive model, but make use of a small quantity of interactive record 
and context information to automatically generate rules. We apply the modified 
ID3 generation algorithm of decision tree to Table 1, and then can get the decision 
tree as shown in Fig. 2. 

 

Fig. 2. Context-aware ID3 decision tree 

Let the context operation records be antecedent part of rules and the type of 
service be succedent part. We may get 12 pieces of rules as seen in Table 2.  

Table 2. Context-aware rules 

No. Rules 
1 If (C1� Corridor)∧ (C4� Yes) Then ToS=Video 

2 If (C1� Corridor)∧ (C4� No) Then ToS=Audio 

3 If (C1� ArtGallery)∧ (C3� Medium)∧ (C2� Slow) Then ToS=Text 

4 If (C1� ArtGallery)∧ (C3� Short) Then ToS=Abstract 

5 If (C1� Workshop)∧ (C2� Medium)∧ (C3� Medium) Then ToS=Text 

6 If (C1� Workshop)∧ (C2� Medium)∧ (C3� Short) Then ToS=Abstract 

7 If (C1� Workshop)∧ (C2� Slow) Then ToS=Audio 

8 If (C1� GameArea)∧ (C4� Yes) Then ToS=Video 

9 If (C1� GameArea)∧ (C4� No) Then ToS=Audio 

10 If (C1� ScenicArea)∧ (C2� High)∧ (C3� Long) Then ToS=Text 

11 If (C1� ScenicArea)∧ (C2� High)∧ (C3� Short) Then ToS=Abstract 

12 If (C1� ScenicArea)∧ (C2� High)∧ (C4� Yes) Then ToS=Video 
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5   Experiment and Analysis 

In order to verify the efficiency of rule-generation algorithm, the test data set for 
training and contrasting is necessary. Thus we need to define rational training and 
contrasting data set. The experimental steps are given as follows. Firstly, we for-
mulate some context rules and randomly produce an amount of context records, 
then apply those rules to the latter for rule inference. As a result, we get the proac-
tive service (namely ToS) corresponding to those context records. Secondly, after 
the redundant and noise data are removed from the above context, we assemble 
the context record and corresponding ToS as test data set. Thirdly, randomly select 
a portion to be training data set as the input of generation algorithm of decision 
tree, while the remainder servers as contrasting data set. Fourthly, the rule-
generation algorithm is working. Finally, we apply the antecedent part of rules to 
match the context records in contrasting data set then get the matching result. 
Afterwards, compare the matching result with corresponding ToS in contrasting 
data set, the effectiveness of generated rules could be figured out. 
 
Definition 2 [9]. EGR (Effectiveness of Generated Rules)  
Let MR be the handmade rules set, GR be the rules set generated by ID3, C be the 
context records in contrasting set, and ( , )apply R c denotes the ToS which is gen-

erated by applying the rules R into context record (where )c c C∈ , then the EGR 

can be shown as follows: 

{ } { }( , ( , )) ( , ( , ))c apply GR c c apply MR c
EGR

C
=

∩
.                                 (1) 

Experiment environment: Operation system: Windows XP Professional with 
SP2; CPU: Intel Pentium® Dual Core 3.20GHz; EMS memory: Kingston 1.50GB; 
Main board: Intel 955X; VGA Card: NVIDIA Quadro FX540.  

We randomly generate the 1000 pieces of context records including 5 types of 
context such as location, glance time, movement speed, first time and user’s pref-
erence, to which we apply the rules listed in table 2 to infer those records-
corresponding ToS. Accordingly, a context and its corresponding ToS make up an 
example. All of examples compose the testing set. Similarly, we also randomly 
generate 1000 pieces of context records only including 3 types of context. 

We test the performance of algorithm from two ways: one is the relation of the 
effectiveness of generated rules and training set size when the number of context 
is 3 or 5 as seen in Fig. 3; the other is the relation of the computing time of algo-
rithm and training set size when the number of context is 3 or 5 as seen in Fig. 4.  
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Fig. 3. The relation of the Effectiveness of Generated Rules and training set size 
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Fig. 4. The relation of the computing time of algorithm and training set size 

From Fig 3, we might make the following conclusions. Firstly, the value of 
EGR is gradually increasing along with the increasing training set size. It finally 
closes to 1, which shows that the generated rules are approaching the handmade 
rules. Secondly, for different number of context, the EGR has a different value at 
the same size of training set. As a general rule, EGR (Context Number=5)> EGR 
(Context Number =3). The more context numbers are, the more chances there are 
for ID3 to select best expanding attribute, thus the higher EGR is.  

From Fig 4, we might make the following conclusions: Firstly, the computing 
time of algorithm is near linearly increasing along with the increasing training set 
size.  Secondly, Computing time (Context Number=5)> Computing time (Context 
Number=3) at the same size of training set. Therefore, on the condition of satisfy-
ing the certain EGR requirement, we ought to select those contexts with bigger 
information gain and limit the number of context to a reasonable extent for fear of 
unacceptable computing time. 
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6   Conclusion  

In this paper, we, considering the characteristic of virtual environment, mainly 
explore the context information modeling and context rules generation. One is to 
utilize the OWL norm to realize the context information modeling by ontologies. 
The other is to present the modified ID3 algorithm to generate decision tree by 
using a certain number of context information and users’ operation records. And 
then, the generated decision tree might automatically be transformed into concise 
and compatible context rules. On that basis, we illuminate the inference principle 
of context rules to realize proactive service in virtual environment through an 
example. Finally, the experiment results of EGR show the algorithm mentioned in 
this paper has a good performance. 
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A Classification Method of Grassland and Trees in 
Remote Sensing Image 
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Abstract. Aimed at the classification of grassland and trees in remote sensing 
image, according to the image preprocessing of bilateral filter, this method 
proposed smooth local grassland (trees) similar texture while preserving the edge 
characteristics between grassland and trees .Then, combining with color image edge 
detection based on color gradient operator, and dealing with gradient image 
threshold processing to get binary image, that is , achieve edge detection between 
grassland and trees, obtain local region rings. Since the topology of segmentation 
unit is closed, finally making use of mathematical morphology fills with the local 
closure of the region, obtains tree regions, and ultimately realizes the classification 
of grassland and trees. The results of experiments show that the algorithm has a 
good classification of grassland and trees. 

Keywords: Bilateral filter, color edge detection, threshold, region filling, 
classification.  

1   Introduction 

Grass and trees are green plants, it is difficult for direct classification between 
grassland and trees in the color space of the remote sensing image. In general, there 
are different textures between grassland and trees of the Ortho remote sensing 
images, grassland texture is relatively homogeneous, while tree texture is relatively 
coarse. In the region of grassland (trees), color (or brightness) and texture features 
are similar, but the edges between the grassland and trees are more obvious. 

Filtering is perhaps the most fundamental operation of image processing and 
computer vision. In the broadest sense of the term “filtering,” the value of the filtered 
image at a given location is a function of the values of the input image in a small 
neighborhood of the same location. Clearly, there is obvious edge information in the 
image, the usual field operations will inevitably lead to fail at edges, so that the edge of 
the image blurred. To improve this situation, C. Tomasi and R. Manduchi proposed 
bilateral filtering method [1], which is non-iterative, local, and simple. It combines gray 
                                                           
* Corresponding author. 
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levels or colors based on both their geometric closeness and their photometric 
similarity, and prefers near values to distant values in both domain and range. The 
images were smoothed with the template processing, which were not only smoothed 
locally similar texture, but were largely preserved and strengthened the edges [2]. 
Therefore, it is useful for grassland and trees on the classification by the use of the 
image pre-processing of the bilateral filter, which can smooth local grassland (tree) 
similar texture, and maintain the edge characteristics of grassland and trees.  

In this paper, considering texture features of grassland and trees, according to the 
image preprocessing of bilateral filter, this method proposed smooth local grassland 
(tree) similar texture while preserving the edge characteristics between grassland 
and trees .Then, in accordance with color image edge detection based on color 
gradient operator [3], we obtain gradient image. In order to get the boundary of 
segmentation unit (local trees region)，dealing with gradient image threshold 
processing gains binary images, and obtains local area rings. Since the topology of 
segmentation unit is closed, finally making use of mathematical morphology fills 
with the local closure of the region, obtains tree regions, and ultimately achieves the 
classification between grassland and trees. 

2   Bilateral Filter 

Bilateral filter was by C. Tomasi and R. Manduchi, who first put forward in 1998, in 
contract with traditional Gaussian filters� bilateral filtering smooth image while 
preserving edge [1]. A Gaussian filter applied to image inI x

G
（） produces an output 

image outI x
G
（） defined as follows:  

                    

2

2

2

2
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ε
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G GG
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where δ  is the standard deviation. This nonlinear filter is widely used to eliminate 
noise. However, the bilateral filter is a nonlinear filter, the filter coefficients depend 
on differences in local image pixels，which is combined with two Gaussian 
filters(one representation is the spatial domain (2D), the other is intensity range). 

dδ and rδ  respectively represent geometric spread and photometric spread. Bilateral 

filter can be expressed as: 
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where 
x

SG  is the scope (2 1) (2 1)N N+ × + of the center x
G
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Bilateral filter is the product of the nonlinear combination of between ( , )d xω ε
G G

 

(spatial proximity factor) and ( , )s xω ε
G G

(image intensity similarity factor).As the 

Euclidean distance between the pixel and the center, ( , )d xω ε
G G

decreases; and 

( , )s xω ε
G G

decreases with the increasing difference between the two pixel brightness 

values. In the smooth region of the image, neighborhood of pixel brightness values 
are similar, bilateral filtering changes to Gaussian low-pass filter; whereas, the filter 
by means of the average brightness values near the edge pixels replace the original 
in the similar brightness values. Therefore, bilateral filtering smooth images while 
preserving edges. 

Taking advantage of the image preprocessing of bilateral filter, this method 
proposed smooth local grassland (tree) similar texture while preserving the edge 
characteristics between grassland and trees. Next, considering how to extract the 
edges between grassland and trees, here we use color edge detection. 

3   Color Edge Detection 

Edge detection is an important tool for image segmentation. In this section, we are 
interested in the issue of computing edges directly in color vector space. The 
following is one of the various ways in which we can extend in the concept of a 
gradient to vector functions [3]. 

Let r , g and b  be unit vector along the R , G and B axis of RGB color space and 
define the vectors[4] 

                                 R G B
u r g b

x x x

∂ ∂ ∂= + +
∂ ∂ ∂

,                                                      (5) 

and 

                                     R G B
v r g b

y y y

∂ ∂ ∂= + +
∂ ∂ ∂

.                                                  (6) 

The partial derivatives required for implementing Eqs.(5) and (6) can be computed 
using, for example Sobel operator. 

Let the quantities xxg , yyg and xyg be defined in terms of the dot product of 

these vectors, as follows： 

                         
2 2 2

T
xx

R G B
g u u u u

x x x

∂ ∂ ∂= ⋅ = = + +
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,                                           (7) 

                             
2 2 2

T
yy

R G B
g v v v v

y y y

∂ ∂ ∂= ⋅ = = + +
∂ ∂ ∂

,                                        (8) 

and 
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                             T
xy

R R G G B B
g u v u v

x y x y x y

∂ ∂ ∂ ∂ ∂ ∂= ⋅ = = + +
∂ ∂ ∂ ∂ ∂ ∂

.                                (9) 

Keeping in mind that R , G and B ,and consequently the g’s, are function of 
x and y .Using this notation, it can be shown[1]that the direction of maximum rate 
of change of ( , )c x y  is given by the angle  

                                 
21

( , ) arctan
2 ( )

xy

xx yy

g
x y

g g
θ

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
,                                              (10) 

and that the value of the rate of change (i.e. the magnitude of the gradient )in the 
directions given by the elements of ( , )x yθ  is given by 

                   
1

21
( , ) ( ) ( ) cos 2 2 sin 2

2 xx yy xx yy xyF x y g g g g gθ θ θ⎧ ⎫⎡ ⎤= + + − +⎨ ⎬⎣ ⎦⎩ ⎭
.                 (11) 

Note that ( , )x yθ  and ( , )F x yθ are images of the same size as the input image. The 

elements of ( , )x yθ  are simply the angles at each point that the gradient is 
calculated, and ( , )F x yθ  is the gradient image. Then, we say a pixel at location ( , )x y  

is an edge pixel if ( , )F x y Tθ ≥  at the location ,where T is a specified threshold. A 

threshold image ( , )g x y  is defined as: 

                                   
1 ( , )

( , )
0 ( , )

F x y T
g x y

F x y T
θ

θ

>⎧
= ⎨ ≤⎩

.                                              (12) 

Form Eq.(12) binary image is obtained, pixels labeled 1 correspond to (or 
objects) boundary points, whereas pixels labeled 0 correspond to the background. 

4   Region Filling 

From the topology, each segmentation unit (local tree region) is closed, it can be 
filled with the closed regions on binary image to get some local closure of the 
regions, which are trees. Next we develop a simple algorithm for region filling 
based on set dilations, complementation and intersections [4]. In Figure.1, A denotes 
a set containing a subset whose elements are 8-connected boundary point p  inside 
the boundary ,the objective is to fill the entire region with 1’s.If we adopt the 
convention that all non-boundary（background） points are labeled 0,then we assign 
a value of 1 to p to begin. The following procedure then fills the region with 1’s: 

                              1( ) 1, 2,3,...c
k kX X B A k−= ⊕ =∩ ,                                       (13) 

where 0X p= , and B is the symmetric structuring element shown in Fig.1(c).The 

algorithm terminates at iteration step k  if 1k kX X −= .The set union of kX  and A  

contains the filled set and its boundary. The rest of Figure 1 illustrated further the 
mechanics of Eq.(13). 
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Fig. 1. Region filling：(a) Set A;(b) Complement of A; (c) Structuring elements B; (d) Initial 
point inside the boundary; (e)- (h) Various steps of Eq.(13); (i) Final result [union 
of(a)and(h)]. 

5   Experimental Results and Analysis 

In order to test an automatic classification of trees and grassland algorithm in 
remote sensing image, the images come from low-altitude remote sensing system 
from Xiamen Passenger Station (image size 512×512). The parameters of the 
bilateral filter 3N = , 3dδ = and 40rδ = ,in addition specified threshold 0.12T = . 

In the process of the experiments, using the bilateral filter not only smooth 
locally similar texture, but largely preserve and strengthen the edges, in Fig.2 (b), 
bilateral filter smooth local grassland (tree) similar texture, and maintain the edge 
characteristics of grassland and trees. Without filtering, original image directly 
detects edge, gets some discrete points, which are white points in Fig.2 (e); in 
contract with image preprocessing of bilateral filter and color edge detection, we 
obtain better closed-loop regions, which are the boundary of all local regions of the 
trees, shown in Fig.2 (f) boundary points labeled 0. Making use of mathematical 
morphology fills with the local closure of the regions, which are tree regions shown 
in Fig. 2 (g), where trees regions are labeled white while grassland regions are 
black. The dividing lines between trees and grassland are blurred in the image [5], 
however, grassland and trees can be distinguished. In Fig.2 (h) the red areas are 
miscarriage by justice subjective analysis, but at last it obtains a good classification 
between grassland and trees. 
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（a）                             （b） 

   

（c）                         （d） 

   

（e）                              （f） 

Fig. 2. The procedure of classification between grassland and trees: (a) RGB image;(b) 
Processed with bilateral filter ; (c) Gradient computed in RGB image(a) vector space;  (d) 
Gradient computed in RGB image(b) vector space;  (e) Binary image by image (c) threshold 
processing ;  (f) Binary image by image (d) threshold processing; (g) Image(f) with region 
filling ;  (h) The classification result of the proposed algorithm. 
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               (g)                                (h) 
 grassland   trees     misjudgment 

Fig. 2. (continued) 

6   Conclusion 

In this paper we have proposed an automatic classification of trees and grassland 
algorithm. First of all�  according to the image preprocessing of bilateral filter, 
which not only smooth local grassland (tree) similar texture, but also maintain the 
edge characteristics of grassland and trees. Next, combining with color image edge 
detection, obtain binary image. Finally, making use of mathematical morphology, 
get tree regions, and ultimately achieve the classification of grassland and trees. The 
automatic classification algorithm has the following distinctive features: the 
algorithm is unsupervised and no training; the experimental results have shown the 
preprocessing of the bilateral filter can obtain better closed circuit regions. The next 
step we will continue to study including making use of collection of fuzzy theory in 
the classification of grassland and trees [6]; a number of sub-pixels on the edge of 
the composition need further analysis by sub-segment unit links to extract the 
closed loop and closed loop non-split unit. 
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P -Set and Its (f, f̄)-Heredity
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Abstract. P -set (packet set) is a set pair, which consists of interior P -set
(interior packet sets) and exterior P -set (exterior packet sets); by employing
the concept of P -set and its structure, the f -heredity set of P -set is presented
in this article firstly, then the measurement method and the f -heredity the-
orems of interior P -set are proposed; similarly the concept of f̄ -heredity, the
measurement method and the f̄ -heredity theorems of exterior P -set are also
proposed. The (f, f̄)-heredity is one of the important characteristics of P -set.

Keywords: P -set, f -heredity Theorem, f̄ -heredity Theorem, Heredity
Measurement.

1 Introduction

In the year of 2008, by introducing dynamic characteristic into general set
(Cantor set) X which has static characteristic, Refs.[1,2] improved general
set X , and proposed the concept of P -set (packet set) (X F̄ , XF ). P -set is
a set pair, which consists of interior P -set (interior packet set) X F̄ and ex-
terior P -set (exterior packet set) XF ; P -set (X F̄ , XF ) has dynamic char-
acteristics. By employing P -sets theory, some discussions can be abstracted
from the fact as follows: suppose X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
is an apple set, and α = {α1, α2, α3, α4} is the attribute set confined in
X , where α1 denotes red color, α2 denotes sweet taste, α3 denotes di-
ameter is 6 cm, α4 denotes weight is 200 g. Due to attribute α1, set
X F̄
α1

= {x1, x3, x4, x7, x8, x10} can be obtained. Obviously that X F̄
α1

is the ele-
ment set with attribute α1, namely x1, x3, x4, x7, x8 and x10 are indistinguish-
able with regard to α1, the IND(X F̄

α1
) exists. Similarly, due to attributes α1

and α2, set X F̄
α1,α2

= {x1, x3, x4, x8, x10} can be obtained, and IND(X F̄
α1,α2

)
exists; due to attributes α1, α2 and α3, set X F̄

α1,α2,α3
= {x3, x4, x8, x10} can be

obtained, and IND(X F̄
α1,α2,α3

) exists; due to attributes α1, α2, α3 and α4, set
X F̄
α1,α2,α3,α4

= {x4, x10} can be obtained, and IND(X F̄
α1,α2,α3,α4

) exists. The

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 735–743.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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reason of attribute set {α1} becomes {α1, α2} is the existent of element trans-
fer f ∈ F , and the reason of attribute {α1, α2} becomes {α1, α2, α3} is also
the existent of element transfer f ∈ F , and so on. Form where a interesting
phenomenon can be inferred that the elements x1, x3, x4, x8, x10 in X F̄

α1
are

reserved, while element x7 is deleted. x1, x3, x4, x8, x10 constitute X F̄
α1,α2

=
{x1, x3, x4, x8, x10}. The elements x3, x4, x8, x10 in X F̄

α1,α2
are reserved, x1 is

deleted; x3, x4, x8 and x10 constitute X F̄
α1,α2,α3

= {x3, x4, x8, x10}. The ele-
ment x4 and x10 in X F̄

α1,α2,α3
are reserved, while x3 and x8 are deleted; x4

and x10 constitute X F̄
α1,α2,α3,α4

= {x4, x10}.
The phenomenon above can be introduced in biology, by employing the

concept of heredity in biology, a fact can be obtained that if X F̄
α1

is great pro-
genitor, X F̄

α1,α2
is progenitor, X F̄

α1,α2,α3
is parental generation, X F̄

α1,α2,α3,α4

is children generation, then x1, x3, x4, x8 and x10 in X F̄
α1

are inherited to
X F̄
α1,α2

. x1, x3, x4, x8, and x10 constitute X F̄
α1,α2

. Similarly x3, x4, x8, and x10

in X F̄
α1,α2

are inherited to X F̄
α1,α2,α3

, x3, x4, x8 and x10 constitute X F̄
α1,α2,α3

.
x4 and x10 in X F̄

α1,α2,α3
are inherited to X F̄

α1,α2,α3,α4
, x4 and x10 constitute

X F̄
α1,α2,α3,α4

. x1, x3, x4, x7, x8, x10 present dominance in X F̄
α1

; x1, x3, x4, x8

and x10 present dominance in X F̄
α1,α2

, while x7 presents recessive in X F̄
α1,α2

;
x3, x4, x8 and x10 present dominance in X F̄

α1,α2,α3
, while x1 presents reces-

sive in X F̄
α1,α2,α3

, and so on. Form the strict biology option above, a fact can
be obtained as follows that interior P -set X F̄

α1,α2
depends on exterior P -set

X F̄
α1

; interior P -set X F̄
α1,α2,α3

depends on interior P -set X F̄
α1,α2

; interior P -set
X F̄
α1,α2,α3,α4

depends on interior P -set X F̄
α1,α2,α3

. If add attribute α2 into at-
tribute set {α1}, then interior P -set X F̄

α1
generates X F̄

α1,α2
hereditarily; if add

attribute α3 into attribute set {α1, α2} , then interior P -set X F̄
α1,α2

gener-
ates X F̄

α1,α2,α3
hereditarily; if add attribute α4 in attribute set {α1, α2, α3},

then interior P -set X F̄
α1,α2,α3

generates X F̄
α1,α2,α3,α4

hereditarily. From this
phenomenon, it is can be concluded that element transfer f ∈ F changes
interior P -set and its structure, leading interior P -set possesses f -heredity.
On these grounds, some questions can be proposed as follows: does interior
P -set possess f -heredity? In other words, with the change of attribute set,
new interior P -set can be obtained from the old one, whether the new interior
P -set is the f -heredity of the old one or not? If interior P -set has f -heredity,
then what kind of theory or enlightenment about application this fact can
offer us? If interior P -set has f -heredity, does it can intercross with biology
and give the mathematical interpretation of the biology heredity correspond-
ing to reality? As a mathematical tool, Could interior P -set offer help for the
heredity research on biology? Do exterior P -set and interior P -set have same
genetic characteristic? By employing the concept of P -set and its structure,
this article presents the concepts of P -set and f-heredity set, and proposed
the measurement method of interior P -set; then the f-heredity theorem of
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interior P -set is given. Meanwhile the concept of f̄ -heredity set of exterior
P -set is given, and the measurement method of f̄ -heredity of P -set and the
f̄ -heredity theorem of exterior P -set are proposed; f-heredity or f̄ -heredity is
a kind of the important characteristics of P -set. For the convenience of dis-
cussion and without misunderstanding, moreover keeping the content intact,
the P -set and its structure are introduced simply in section 2 as the theory
basis and preparation of this article for discussion.

Assumption: (f, f̄)-heredity is the collective name of f -heredity and f̄ -
heredity.

2 P -Set and Its Structure [1, 2]

Assumption: X is the general finite set on U , U is the finite element uni-
verse, V is finite attribute universe.

Definition 2.1. Given the general set X = {x1, x2, · · · , xm} ⊂ U , α =
{α1, α2, · · · , αk} ⊂ V is the attribute set of X. X F̄ is called the interior
P -set (interior packet set) generated by X , or called the interior P -set for
short, moreover

X F̄ = X −X−, (1)

X−is called the F̄ -removed element set of X, moreover

X− = {x|x ∈ X, f̄(x) = u∈̄X, f̄ ∈ F̄}, (2)

if the attribute set αF of X F̄ fulfils

αF = α ∪ {α′|f(β) = α′ ∈ α, f ∈ F}, (3)

where β ∈ V, β∈̄α; f ∈ F turns β into f(β) = α′ ∈ α.

Definition 2.2. Given general set X = {x1, x2, · · · , xm} ⊂ U , α =
{α1, α2, · · · , αk} ⊂ V is the attribute set of X, XF is called the exterior
P -set(outer packet set) of X, or called the exterior P -set for short, moreover

XF = X ∪X+, (4)

X+ is called the F -complemented element set of X, moreover

X+ = {u|u ∈ U, u∈̄X, f(u) = x′ ∈ X, f ∈ F}, (5)

if the attribute set αF̄ of XF fulfils

αF̄ = α− {βi|f̄(αi) = βi∈̄α, f̄ ∈ F̄}, (6)

where αi ∈ α; f̄ ∈ F̄ turns αi into f̄(αi) = βi∈̄α.
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Definition 2.3. Interior P -set X F̄ and exterior P -set XF constitute a set
pair, which is called P -set (packet set) generated by general set, moreover

(X F̄ , XF ), (7)

(X F̄ , XF ) is called P -set for short; the general set X is called the ground set
of (X F̄ , XF ).

Illustrations of the name P -set
Because of the existent of the element transfer f̄ ∈ F̄ , in formula (1), the
amount of element in the general set X decreases, and X generates X F̄ ,
where X F̄ is contained in X ; similarly, because of the existent of element
transfer f ∈ F , in formula (4), the amount of element in the general set X
increases, X generates XF , where XF contains X ; X F̄ and XF are in a state
of constant motion. X F̄ , which is contained in X , and XF which contains X ,
constitute P -set (X F̄ , XF ) of general set X .

The principle of the generation of P -set
When some elements of a general set X are transferred out from X , or some
elements out of X are transferred into X , the general set X generates P -
set (X F̄ , XF ) which has dynamic characteristic; the existent of (X F̄ , XF )
depends on X , and is independent with the amount of elements transferred
into or out from X .

3 The f -Heredity and Its Measurement of Interior
P -Set

Definition 3.1. Given general set X = {x1, x2, · · · , xm} ⊂ U ,
α = {α1, α2, · · · , αk} ⊂ V is the attribute set of X. X F̄

α∪{f(α′
i)}

is called the

first order f -heredity set of X F̄ , if there is an attribute α′∈̄α, f(α′) ∈ α;
similarly X F̄

α∪{f(α′
i)
, . . . ,f(α′

j)} is called the λ order f -heredity set of X F̄ ,

and is denoted by X F̄λ

(α,f); the parameter λ is called f -genetic order. Where
λ = card(αf ), αf = {f(α′

i), · · · , f(α′
j)}, and λ ∈ N+.

Definition 3.2. X F̄
α is the f -genetic of λ order f -heredity set X F̄λ

(α,f)j
, if

X F̄
α =

t⋂
j=1

X F̄λ

(α,f)j
. (8)

Definition 3.3. GEC(X F̄λ

(α,f)) is called the f -genetic coefficient of λ order

f -hereditary set X F̄λ

(α,f) with regard to set X F̄ , moreover

GEC(X F̄λ

(α,f)) = GRD(X F̄λ

(α,f))
/

GRD(X F̄ ). (9)
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Definition 3.4. GV D(X F̄λ

(α,f)) is called the f -genetic variation degree of λ

order f -heredity set X F̄λ

(α,f) with regard to set X F̄ , moreover

GV D(X F̄λ

(α,f)) = 1 −GEC(X F̄λ

(α,f)). (10)

Due to Definitions 3.1-3.4, the following propositions can be obtained.

Proposition 3.1. f -genetic X F̄
α exists in every f -heredity set.

Proposition 3.2. Any two λ order f -heredity sets of X F̄ fulfil X F̄λ

(α,f)i
∩

X F̄λ

(α,f)j
�= ∅.

Propositions 3.1-3.2 is intuitive facts, and the proofs are omitted.

Theorem 3.1.(The theorem of f -heredity set chain) Suppose X F̄λ

(α,f) is the λ

order f -genetic knowledge of X F̄ , and =λ1, λ2, . . . , λt. If λ1 ≤ λ2 ≤ . . . ≤ λt,
then

X F̄λt

(α,f) ⊆ X F̄λt−1

(α,f) ⊆ . . . ⊆ X F̄λ1

(α,f). (11)

Proof. Since λ1 ≤ λ2 ≤ . . . ≤ λt, there are (α ∪ {f(α′
1)}) ⊆ (α ∪

{f(α′
1), f(α′

2)}) ⊆ · · · ⊆ (α ∪ {f(α′
1), f(α′

2), · · · , f(α′
λ)}); GRD(X F̄λt

(α,f)) ≤
GRD(X F̄λt−1

(α,f) ) ≤ . . . ≤ GRD(X F̄λ1

(α,f)) or card(X F̄λt

(α,f)) ≤ card(X F̄λt−1

(α,f) ) ≤
. . . ≤ card(X F̄λ1

(α,f). So X F̄λt

(α,f) ⊆ X F̄λt−1

(α,f) ⊆ . . . ⊆ X F̄λ1

(α,f).

Theorem 3.2. (The minimum granularity theorem of f -heredity set) Suppose
X F̄λ

(α,f) is the λ order f -heredity set of set X F̄ . If the attribute set (α∪αf ) of

X F̄λ

(α,f) fulfils
card(α ∪ αf ) = m + λ, (12)

then X F̄λ

(α,f) has the minimum granularity GRD(X F̄λ

(α,f)), namely,

GRD(X F̄λ

(α,f)) = min . (13)

Proof. Because card(α ∪ αf ) = m + λ, λ order f -heredity set X F̄λ

(α,f) has

maximum genetic order λmax=
t

max
i=1

(λi), by employing theorem 3.1, there is

card(XF̄ λt

(α,f))
/

card(U) ≤ cardXF̄
λt−1

(α,f) )
/

card(U) ≤ . . .≤ card(XF̄ λ1
(α,f))
/

card(U).

Then due to the set granularity, there is GRD(X F̄λ

(α,f)) =

card(X F̄λt

(α,f))
/
card(U)= min.

Theorem 3.3. (The relation theorem between f -genetic coefficient and f -
genetic variation degree) Suppose GEC(X F̄λ

(α,f)) and GV D(X F̄λ

(α,f)) are the
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f -genetic coefficient and the f -genetic variation degree of λ order f -heredity
set of X F̄λ

(α,f) with regard to set X F̄ respectively, then

GEC(X F̄λ

(α,f)) + GV D(X F̄λ

(α,f)) = 1. (14)

The intuitive meaning of Theorem 3.3: with the attribute comple-
ment to the attribute set α of set X F̄ , the f -genetic granularity and the f -
genetic coefficient decrease, while the f -genetic variation degree of f -heredity
set increases. If F = ∅, then GEC(X F̄λ

(α,f)) = 1, and GV D(X F̄λ

(α,f) = 0.

GV D(X F̄λ

(α,f)) = 0 denotes that the knowledge X F̄ has the minimum f -
genetic variation at the beginning of f -heredity, which fact infers the propa-
gate that during the propagating generation after generation, the character-
istics of the interbreed species degenerate gradually.

Theorem 3.4. (f -genetic invariability theorem) In f -heredity set, card(X F̄
α )

of f -genetic X F̄
α is a invariant constant, and is independent with change of

genetic order λ, moreover

card(X F̄
α ) = ηf , (15)

where ηf ∈ N+.
Theorem 3.4 is an intuitive fact, and the proof is omitted.
Due to definitions 3.1-3.4 and the theorems 3.1-3.4, there is the principle

as follows.

The principle of f-genetic sieve (K,G)f
(K,G)f is a f -genetic sieve with minimum even holes, the f -heredity set X F̄

α

of set X F̄ could be separated from (K,G)f , and other f -heredity sets are the
surpluses of sieve (K,G)f .

Where K is the set which composites of f -heredity set, and G is the set
which composites of the granularity of f -heredity set.

4 The f̄ -Heredity of Exterior P -Set and Its
Measurement

Definition 4.1. Given general set X = {x1, x2, · · · , xm} ⊂ U , α =
{α1, α2, · · · , αk} ⊂ V is the attribute set of X, XF

α\{f(αi)} is called the
first order f̄-heredity set of XF . If there is attribute αi ∈ α, f̄(αi)∈̄α,
then XF

α\{f̄(α1),...,f̄(αλ)} is called the λ order f̄ -heredity set of XF , de-

noted by XFλ

(α,f̄), λ is called f̄ -genetic order, where λ = card(αf̄ ), αf̄ =
{f(α1), · · · , f(αλ)} and λ ∈ N+.
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Definition 4.2. X f̄
α is called the f̄ -genetic of the f̄ -heredity set XFλ

(α,f̄)i
, if

X f̄
α =

t⋂
i=1

XFλ

(α,f̄)i
. (16)

For example, XF
(α\{f̄(α1),f̄(α2),f̄(α3)}) = {x3, x4, x9, x10, x17},

XF
(α\{f̄(α1),f̄(α2)}) = {x4, x9, x17}, XF

(α\{f̄(α1)})={x4, x17}, so f̄ -genetic is

X f̄
α = {x4, x17}. The genetic orders of f̄ - heredity sets XF

(α\{f̄(α1),f̄(α2),f̄(α3)}),
XF

(α\{f̄(α1),f̄(α2)}) and XF
(α\{f̄(α1)}) are λ = card({f̄(α1), f̄(α2), f̄(α3)}) = 3,

λ = card({f̄(α1), f̄(α2)}) = 2, and λ = card({f̄(α1)}) = 1 respectively.

Definition 4.3. GEC(XFλ

(α,f̄)) is called f̄-genetic coefficient of λ order f̄ -

heredity set XFλ

(α,f̄) with regard to set XF , moreover

GEC(XFλ

(α,f̄)) = GRD(XF )
/
GRD(XFλ

(α,f̄)). (17)

Definition 4.4. GV D(XFλ

(α,f̄)) is called the f̄ -genetic variation degree of λ

order f̄-heredity set XFλ

(α,f̄) with regard to set XF , moreover

GV D(XFλ

(α,f̄)) = 1 −GEC(XFλ

(α,f̄)). (18)

Due to the definition 4.1-4.4, the following propositions can be obtained.

Proposition 4.1. f̄ -genetic Xf
α exists in all f̄-heredity set.

Proposition 4.2. Any two λ order f̄-heredity set of XF fulfil XFλ

(α,f̄)i
∩

XFλ

(α,f̄)j
�= ∅.

Propositions 4.1-4.2 are intuitive facts, and the proofs are omitted.

Theorem 4.1. (The theorem of f̄ -heredity set chain) Suppose XFλ

(α,f̄) is the
λ order f̄ -heredity set of XF , and λ = λ1, λ2, · · · , λt. If λ1 ≤ λ2 ≤ · · · ≤ λt,
then

XFλ1

(α,f̄) ⊆ XFλ2

(α,f̄) ⊆ · · · ⊆ XFλt−1

(α,f̄) ⊆ XFλt

(α,f̄). (19)

The proof is similar to theorem 3.1, here is omitted.

Theorem 4.2. (The maximum granularity theorem of f̄ -genetic knowledge)
Suppose XFλ

(α,f̄) is λ order f̄ -heredity set of set XF , If the attribute set (α\αf̄ )
of XFλ

(α,f̄) fulfils

card(α\αf̄ ) = 1. (20)

Then XFλ

(α,f̄) posses the maximum granularity, namely

GRD(XFλ

(α,f̄)) = max. (21)
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Proof. Because card(α\αf̄ ) = 1, λ order f̄ -heredity set XFλ

(α,f̄) posses

the maximum genetic order λt =
t

max
j=1

(λj). Moreover λ1 ≤ λ2 · · · ≤

λt, so there is card(XFλ1

(α,f̄))/card(U) ≤ card(XFλ2

(α,f̄))/card(U) ≤ · · · ≤
card(XFλt

(α,f̄))/card(U), It is easy to be obtained that GRD(XFλt

(α,f̄)) =

card(XFλt

(α,f̄))/card(U) = max.

Theorem 4.3. (The relation theorem between f̄ -genetic coefficient and f̄ -
genetic variation degree) Suppose GEC(XFλ

(α,f̄)) and GV D(XFλ

(α,f̄)) are the
f̄ -genetic coefficient and the f̄ -genetic variation degree of λ order f̄ -heredity
set XFλ

(α,f̄) with regard to knowledge XF respectively, then

GEC(XFλ

(α,f̄)) + GV D(XFλ

(α,f̄)) = 1. (22)

This theorem is an intuitive fact, and the proof is omitted.

The intuitive meaning of Theorem 4.3: with the attribute αi being re-
moved from attribute set α = {α1, α2, · · · , αm} one by one, i = 1, 2, · · · , t;
t < m, the f̄ -genetic coefficient GEC(XFλ

(α,f̄)) of λ order f̄ -heredity set XFλ

(α,f̄)

decreases gradually, while the f̄ -genetic variation degree GV D(XFλ

(α,f̄)) in-

creases gradually; when card(α\αf̄ ) = 1, the f̄ -genetic variation degree
GV D(XFλ

(α,f̄)) attains maximum. This indicates that during the hybridiza-
tion species in the reproduction, there is a degenerate phenomenon.

Theorem 4.4. (invariance theorem of f̄ -genetic) In f̄ -heredity set, card(Xf
α)

of f̄ -genetic XFλ

(α,f̄) is a constant, and is independent of the change of order
λ, moreover

card(X f̄
α) = ηf̄ , (23)

where ηf ∈ N+.
Due to definitions 4.1-4.4, and theorems 4.3-4.4, the principle can be ob-

tained as follows.

The principle of f̄-genetic sieve (K,G)f̄
(K,G)f̄ is an f̄ -genetic sieve with minimum even holes, the f̄ -genetic XFλ

(α,f̄)

of f̄ -heredity set could be separated by (K,G)f , and other f̄ - heredity sets
are the surpluses of sieve (K,G)f .

5 Conclusion

P -set was proposed in Refs.[1,2], and discussions about the characteristics of
information system was presented in Refs.[3-8]. By employing the concepts
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in Refs.[1-8], the concept of f-heredity set of interior P -set and its mea-
surement method are presented in this article, and the f-heredity theorems
of interior P -set are proposed in this article; similarly the concept of
f̄ -heredity set of exterior P -set and its measurement method are presented,
and the f̄ -heredity theorems of interior P -set are proposed. It reveals the
“information inertia” in system. Any new information in system depends on
the old ones and its some evolution without exception, and the evolution of
old information implicates heredity; the generation of the new information
in system also depends on the existent of old information. Some specie in
biological world, either its reproduction or sustenance of life abides by the
“information inertia”law; the independence characteristic of species comes
from the its “genetic code” self. A application background hides in P -set
as follows: perhaps P -set and its (f, f̄)-heredity offer to people one of the
helpful mathematical tool for the researches on biological heredity, species
reproduction and so on.
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Abstract. In this paper, we show that a two-sided quantale is coherent iff it is
isomorphic to the quantale of ideals of a distributive two-sided ∗-semilattice.
Thus quantale representations of distributive two-sided ∗-semilattices are ob-
tained. We also show that the free two-sided quantale generated by a set
exists. And then the category TQuant of two-sided quantales is an algebraic
category.

Keywords: Two-sided quantales,∗−semilattice, ideal, homomorphism.

1 Introduction and Preliminaries

The concept of quantale was introduced by C.J.Mulvey in [7] with the purpose
of studying the spectrum of c*-algebra, as well as constructive foundations for
quantum mechanics. There are abundant contents in the structure of quan-
tales, because quantales can be regarded as the generalization of the notion
of complete Heyting algebra(cHa). The research of quantales has related to
several research areas such as non-commutative c*-algebra, the ideal theory
of rings, linear logic, theoretic computer science and the sheaf theory (see [1],
[2],[5]). In this paper we investigate a special class of quantales—-two-sided
quantales. We show that a two-sided quantale is coherent iff it is isomor-
phic to the quantale of ideals of a distributive two-sided ∗-semilattice, thus,
a quantale representation of distributive two-sided ∗-semilattice is obtained.
We also show that the free two-sided quantale generated by a set exists, and
then, the category TQuant is an algebraic category.

A quantale is a complete lattice Q together with an associative binary
operation ∗ satisfying

a∗ (
∨

bs) =
∨

(a∗bs) and (
∨

bs)∗a =
∨

(bs ∗a) for all a ∈ Q and {bs} ⊆ Q.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 745–753.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Let Q be a quantale. Q is commutative if ∗ is commutative. An element a
of Q is called left-sided if 1 ∗ a = a, where 1 is the largest element of Q. If
every element of Q is left-sided, then Q is called a left-sided quantale. The
notions of right-sided quantales and two-sided quantales are defined similarly.

A typical example of commutative two-sided quantales is the poset Idl(R)
of two-sided ideals of a commutative ring R by defining I1&I2 = {a1a2|a1 ∈
I1, a2 ∈ I2}.

Definition 1.1. Let L be a sup-semilattice with the largest element 1, and
∗ be an associative binary operation on L. Then L is called a ∗-semilattice.

Let L be a ∗-semilattice. We call a a prime element of L if it satisfies:
a �= 1 and x ∗ y ≤ a implies x ≤ a or y ≤ a for any x, y ∈ L. If L satisfies:
a∗(b1∨b2) = (a∗b1)∨(a∗b2) , (b1∨b2)∗a = (b1∗a)∨(b2∗a) and a∗0 = 0∗a = 0
for any a, b1, b2 ∈ L, then we call L a distributive ∗-semilattice. If L satisfies:
a ∗ 1 = a = 1 ∗ a for all a ∈ L, then we call L a two-sided ∗-semilattice.
Obviously a quantale is a ∗-semilattice, and also a distributive ∗-semilattice.
A two-sided quantale is a two-sided ∗-semilattice.

Let Q and Q
′

be quantales. A quantale homomorphism f : Q → Q
′

is a
∨,∗ and 1 preserving function. The category of quantales and quantale ho-
momorphisms is denoted by Quant and the category of two-sided quantales
denoted by TQuant. Let L1 and L2 be ∗-semilattices. A ∗-semilattice ho-
momorphism f : L1 → L2 is a ∨,∗ and 1 preserving function. The category
of distributive two-sided ∗-semilattices and ∗-semilattice homomorphisms is
denoted by ∗DTSLAT.

Definition 1.2. Let L be a ∗-semilattice and ∅ �= I ⊆ L. We call I a right-
ideal if I satisfies the following conditions:

(1) If a ∈ I and b ∈ I, then a ∨ b ∈ I;
(2) If a ∈ I and r ∈ L, then a ∗ r ∈ I ;
(3) If a ∈ I and b ≤ I, then b ∈ I.
Similarly we can define the concept of left-ideal. If I is a right-ideal and

also is a left-ideal, then we call it an ideal. In a distributive two-sided ∗-
semilattice, ↓ a is an ideal. The set of all ideals of L is denoted by Idl(L).

Definition 1.3. Let L be a ∗-semilattice and ∅ �= F ⊆ L. We call F a filter
if F satisfies:

(1) If a ∈ F and b ∈ F , then a ∗ b ∈ F ;
(2) F is an upper set.
The set of all filters of L is denoted by Fil(L).

Definition 1.4. Let L be a ∗-semilattice and I be a proper ideal of L. We
call I a prime ideal if it satisfies: a ∗ b ∈ I implies a ∈ I or b ∈ I. Dually
a proper filter F of L is called to be a prime filter if it satisfies: a ∨ b ∈ F
implies a ∈ F or b ∈ F .
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2 The Quantale Idl(L)

We regard the two-elements lattice {0, 1} as a ∗-semilattice by taking ∗ = ∧.

Lemma 2.1. Let L be a ∗-semilattice and f : L → {0, 1} be a ∗-semilattice
homomorphism. Then f−1(0) = {a ∈ L|f(a) = 0} is an ideal of L and
f−1(1) = {a ∈ L|f(a) = 1} is a filter.

Proof. Obviously f−1(0) �= ∅. For any a, b ∈ f−1(0), f(a) = 0 and f(b)=0.
Since f is a ∗-semilattice homomorphism, f(a∨ b) = f(a)∨ f(b) = 0∨ 0 = 0,
and hence a ∨ b ∈ f−1(0). For any r ∈ L and a ∈ f−1(0), f(a ∗ r) =
f(a) ∗ f(r) = 0 ∗ f(r) = 0 and f(r ∗ a) = f(r) ∗ f(a) = f(r) ∗ 0 = 0 since f
is a homomorphism. So a ∗ r ∈ f−1(0) and r ∗ a ∈ f−1(0). f preserves order
since it is a homomorphism, then if f(a) = 0 and b ≤ a, then f(b) = 0.

Obviously f−1(1) �= ∅. Since f preserves finite sups, f preserves order, and
hence f−1(1) is an upper set. For any b1, b2 ∈ f−1(1), f(b1) = f(b2) = 1.
Then f(b1 ∗ b2) = f(b1) ∗ f(b2) = 1 ∗ 1 = 1. So b1 ∗ b2 ∈ f−1(1). Thus f−1(1)
is a filter.

Proposition 2.2. Let L be a ∗-semilattice and I ⊆ L be an ideal. Then the
following statements are equivalent:

(1) L \ I is a (prime) filter of L.
(2) I is a prime ideal of L.
(3) There exists a ∗-semilattice homomorphism f : L → {0, 1} such that

f−1(0) = I.
(4) There exists a ∗-semilattice homomorphism f : L → {0, 1} such that

f−1(1) = L \ I.

Proof. (1) Implies (2): Suppose F = L− I be a filter of L. Then 1 ∈ F , and
hence 1 /∈ I. For any a, b ∈ L with a ∗ b ∈ I, a ∗ b /∈ F . If a /∈ I and b /∈ I,
then a, b ∈ F . Since F is a filter, a ∗ b ∈ F . A contradiction to a ∗ b /∈ F . So
a ∈ I or b ∈ I. Then I is a prime ideal.

(2) Implies (3): Define f : L → {0, 1} as the following: for any a ∈ L,
f(a) = 0 if a ∈ I and f(a) = 1 if a /∈ I. Then f−1(0) = I. Since I is
prime, I �= L and I �= ∅. So f(1) = 1 and f(0) = 0. For any a1, a2 ∈ L,
f(a1 ∨a2) = f(a1)∨ f(a2) can be directly checked. If a1 ∗ a2 ∈ I, then a1 ∈ I
or a2 ∈ I since I is a prime ideal. So 0 = f(a1∗a2) = f(a1)∗f(a2). If a1∗a2 /∈ I,
then a1 /∈ I and a2 /∈ I since I is an ideal. So 1 = f(a1 ∗ a2) = f(a1) ∗ f(a2).

(3) Implies (1): Suppose f : L → {0, 1} be a ∗-semilattice homomorphism
and f−1(0) = I. Then f is surjective, and hence f−1(1) = L− I. By Lemma
2.1, f−1(1) = L − I is a filter. Since 0 /∈ L − I, L− I is a proper filter of L.
For any a, b ∈ L with a ∨ b ∈ L − I, f(a ∨ b) = 1. Since f is a ∗-semilattice
homomorphism, f(a) ∨ f(b) = 1. Then f(a) = 1 or f(b) = 1, i.e. a ∈ L − I
or b ∈ L− I. Thus L− I is a prime filter.

The equivalence of (3) and (4) is obvious.
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Theorem 2.3. Let L be a distributive two-sided ∗-semilattice and I ∈
Idl(L), F ∈ Fil(L). If I is maximal for that I ∩ F = ∅, then I is a prime
ideal.

Proof. Since 1 ∈ F , I is a proper ideal. Suppose a1 ∗ a2 ∈ I. Denote the
ideals generated by I and ai(i=1,2) by Ki. Then Ki =↓ {x ∨ b|x ∈ I, b ∈
L, b ≤ ai}, i=1,2. If Ki ∩ F �= ∅, i=1,2, then there exist x1, x2 ∈ I and
b1 ≤ a1, b2 ≤ a2 such that x1 ∨ b1 ∈ F and x2 ∨ b2 ∈ F . Since F is a filter,
d = (x1 ∨ b1) ∗ (x2 ∨ b2) = (x1 ∗ x2) ∨ (x1 ∗ b2) ∨ (b1 ∗ x2) ∨ (b1 ∗ b2) ∈ F .
But x1 ∗ x2, x1 ∗ b2, b1 ∗ x2 and b1 ∗ b2 all belong to I since I is an ideal
and a1 ∗ a2 ∈ I, and hence d ∈ I. Then I ∩ F �= ∅, a contradiction. So either
K1 ∩ F = ∅ or K2 ∩ F = ∅, i.e. a1 ∈ I or a2 ∈ I. So I is a prime ideal.

Let L be a distributive ∗-semilattice. Then Idl(L) is a complete lattice
under inclusion order. For a family of ideals {Iλ : λ ∈ Λ} of L,

∨
Iλ =↓

{x1 ∨ x2 ∨ · · · ∨ xn|xi ∈ Iλi , λi ∈ Λ, i = 1, 2 · · · , n.}. For I, J ∈ Idl(L), define
I&J =↓ {ai ∗ aj |ai ∈ I, aj ∈ J}. We easily check that I&J is an ideal of L,
and then Idl(L) is a quantale. If L is a distributive two-sided ∗-semilattice,
then Idl(L) is a two-sided quantale. Specially, if L is a two-sided quantale,
then Idl(L) is a two-sided quantale.

Proposition 2.4. Let L be a distributive two-sided ∗-semilattice. Then a
prime element of Idl(L) just is a prime ideal of L.

Proof. Suppose I be a prime element of Idl(L) and a∗b ∈ I. obviously 1 /∈ I.
Write J =↓ a, K =↓ b, then J&K =↓ (a ∗ b), and hence J&K ⊆ I. Since
I is a prime element of Idl(L), ↓ a ⊆ I or ↓ b ⊆ I. Then a ∈ I or b ∈ I.
Conversely, suppose I be a prime ideal of L. Then I �= L. Let J,K ∈ Idl(L)
and J&K ⊆ I. If K ⊆ I is not true, then there exists a ∈ K \ I. For any
b ∈ J , a ∗ b ∈ J&K ⊆ I, i.e. a ∗ b ∈ I. Since a /∈ I and I is a prime ideal,
b ∈ I. Then J ⊆ I. Similarly, If J ⊆ I is not true, then K ⊆ I. So I is a
prime element of Idl(L).

An element a of a quantale L is called a finite element if it satisfies the
condition: for every S ⊆ L with a ≤

∨
S, there exists a finite F ⊆ S with

a ≤
∨

F . The set of all finite elements of L is denoted by K(L). We know
K(L) is a sub-∨- semilattice of L. We define a quantale L to be coherent if it
satisfies: (i) every element of L can be expressed as a join of finite elements,
and (ii) the finite elements form a sub ∗-semilattice of L—equivalently, a ∗ b
is finite for any finite elements a, b and 1 is finite.

Lemma 2.5. Let L be a distributive two-sided ∗-semilattice. Then I ∈ Idl(L)
is finite if and only if it is a principle ideal of L, i.e. I =↓ a for some a ∈ L.

Proof. Suppose I ∈ Idl(L) is finite. Then I =
⋃
{↓ x|x ∈ I} =

∨
Idl(L){↓

x|x ∈ I}. Since I is finite and ↓ x is an ideal, there exist x1, x2, · · · , xn ∈ I
such that I ⊆

∨
Idl(L){↓ xi| i = 1, 2, · · · , n.} =↓ (∨ni=1xi). ↓ (∨ni=1xi) ⊆ I

is obviously, and then ↓ (∨ni=1xi) = I, this shows I is a principle ideal.
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Conversely, suppose I be a principle ideal of L, i.e. there is a ∈ L such that
I =↓ a. Let {Iλ : λ ∈ Λ} ⊆ Idl(L) with ↓ a ⊆

∨
Idl(L) Iλ. Then a ∈

∨
Idl(L) Iλ,

and hence there exist a natural number n and xi ∈ Iλi , i = 1, 2, · · · , n such
that a ≤ x1 ∨x2 ∨ · · · ∨xn. Then a ∈

∨i=n
i=1 Iλi , and then ↓ a ⊆

∨i=n
i=1 Iλi , this

is to say that I =↓ a is a finite element of Idl(L).

Theorem 2.6. A two-sided quantale is coherent iff it is isomorphic to the
quantale of ideals of a distributive two-sided ∗-semilattice.

Proof. Suppose L be a two-sided quantale and it is isomorphic to the quan-
tale of ideals of a distributive two-sided ∗-semilattice D. By Lemma 2.5,
K(Idl(D)) = {↓ a|a ∈ D}. For any a, b ∈ D, (↓ a)&(↓ b) =↓ (a ∗ b) and for
any I ∈ Idl(D), I =

∨
Idl(D){↓ x|x ∈ I}. So Idl(L) is coherent and then L is

coherent. Conversely, suppose L be a two-sided and coherent quantale. Then
K(L) is a distributive two-sided ∗-semilattice. Define f : L → Idl(K(L))
by f(a) = {k ∈ K(L)|k ≤ a} for any a ∈ L. We easily check that the def-
inition of f is suitable. For any I ∈ Idl(K(L)), it is a directed subset of
L, and so k ∈ K(L), k ≤

∨
L I implies k ≤ i for some i ∈ I, and hence

k ∈ I. Thus f(
∨
L I) = I for all I ∈ Idl(K(L)); but the condition (i) in

the definition of coherence tells us that
∨
L(f(a)) = a for all a ∈ L. So

f is a bijection(clearly order preserving) between L and Idl(K(L)). Then
f preserves arbitrary sups. It remains to check that f(a ∗ b) = f(a)&f(b)
for any a, b ∈ L. f(a ∗ b) ⊇ f(a)&f(b) is obvious. For any k ∈ K(L)
with k ≤ a ∗ b, k ≤ (

∨
L{ka ∈ K(L)|ka ≤ a}) ∗ (

∨
L{kb ∈ K(L)|kb ≤

b}) =
∨
L{ka ∗ kb|ka, kb ∈ K(L) and ka ≤ a, kb ≤ b}. Since k ∈ K(L),

there exist a natural number n and kai , kbi ∈ K(L) with kai ≤ a and
kbi ≤ b, i = 1, 2, · · · , n such that k ≤ ∨ni=1(kai ∗ kbi). Then k ∈ f(a)&f(b),
and hence f(a ∗ b) ⊆ f(a)&f(b).

3 Free Two-Sided Quantales

Definition 3.1. Let (A,≤) be a poset with the largest element 1, and ∗ be
an associative binary operation on L. We call L a ∗-algebra if it satisfies:
a1 ≤ a2 implies a ∗ a1 ≤ a ∗ a2 and a1 ∗ a ≤ a2 ∗ a for any a, a1, a2 ∈ A.

We call a ∗-algebra A a two-sided ∗-algebra if it satisfies: a ∗ 1 = a = 1 ∗ a
for all a ∈ A. And we call a two-sided ∗-algebra A a commutative two-sided
∗-algebra if ∗ is commutative.

Obviously a quantale is a ∗-algebra, a two-sided quantale is a two-sided ∗-
algebra. But the converse is not true. The interval (−∞, 1] is not a complete
lattice, and then it is not a quantale. But it is a two-sided ∗-algebra by
defining ∗ = ∧.

Let A and A
′

be ∗-algebras. A ∗-algebra homomorphism f : A → A
′

is
a ∗,1 and order preserving function. The category of two-sided ∗-algebras
and ∗-algebra homomorphisms is denoted by ∗TAlg and the category of
commutative two-sided ∗-algebras and ∗-algebra homomorphisms is denoted
by ∗CTAlg.
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Let A be a set. The set of all finite sequences {(a1, a2, · · · , an)|ai ∈ A, i =
1, 2, · · · , n.n = 1, 2, · · ·} (including empty sequence) is denoted as ωA. We
define an order ≤ on ωA by ω1 = (a1, a2, · · · , an) ≤ ω2 = (b1, b2, · · · , bm) iff
ω2 is a subsequence of ω1, and define an associative binary operation ∗ on ωA
by ω1 ∗ω2 = (a1, a2, · · · , an, b1, b2, · · · , bm) for any ω1 = (a1, a2, · · · , an), ω2 =
(b1, b2, · · · , bm). Then ωA is a two-sided ∗-algebra.

Lemma 3.2. The free two-sided ∗-algebra generated by a set A is the ∗-
algebra (ωA,≤, ∗).

Proof. The unit map ηA : A → ωA sends a ∈ A to the singleton sequence
(a). Now any ω = (a1, a2, · · · , an) ∈ ωA can be uniquely expressed as (a1) ∗
(a2) ∗ · · · ∗ (an). So any map f : A → B, where B is a two-sided ∗-algebra,
can uniquely extended to a ∗-algebra homomorphism

f̄ : ωA → B; ω = (a1, a2, · · · , an) �→ f(a1) ∗ f(a2) ∗ · · · ∗ f(an).
For S ∈ ob(∗TAlg), take DS = {A ⊆ S|A =↓ A} and ordered by inclusion.

Then DS is a complete lattice. For any A1, A2 ∈ DS, define A1&A2 =↓
{a1 ∗ a2| a1 ∈ A1, a2 ∈ A2} and A1&∅ = ∅&A1 = ∅. We can easily verify that
DS is a two-sided quantale.

For a ∗-algebra homomorphism h : S → T define Dh = (A �→↓ h(A)):
DS → DT . Obviously Dh preserves arbitrary ∨ and 1. For any A1, A2 ∈
DS, Dh(A1&A2) =↓ h(A1&A2) =↓ h(↓ {a1 ∗ a2| a1 ∈ A1, a2 ∈ A2});
Dh(A1)&Dh(A1) = [↓ h(A1]&[↓ h(A2)] =↓ {b1 ∗ b2| b1 ≤ h(a1), b2 ≤
h(a2), a1 ∈ A1 , a2 ∈ A2}. Let b ≤ b1 ∗ b2, where b1 ≤ h(a1), b2 ≤
h(a2), a1 ∈ A1 , a2 ∈ A2}. Then b ≤ h(a1) ∗ h(a2) = h(a1 ∗ a2), and hence
b ∈ Dh(A1&A2). On the other hand, let d ≤ h(b), where b ≤ a1 ∗ a2. Then
h(b) ≤ h(a1 ∗ a2) = h(a1) ∗ h(a2) since h is a ∗-algebra homomorphism. So
d ∈ Dh(A1)&Dh(A1). Thus Dh(A1&A2) = Dh(A1)&Dh(A1). The above
shows Dh is a quantale homomorphism.

Lemma 3.3. D: ∗TAlg → TQuant is a functor.

Theorem 3.4. The functor D: ∗TAlg → TQuant is a left adjoint to the
forgetful functor U : TQuant → ∗TAlg.

Proof. The unit map ηS : S → UDS sends a ∈ S to the down set ↓ a. Easily
see that ηS is a ∗-algebra homomorphism.

For any ∗-algebra homomorphism f : S → B, where B is a two-sided
quantale, it has unique extension to a quantale homomorphism: f̄ : UDS →
B; A �→

∨
{f(a)| a ∈ A}. Obviously, f = f̄ ◦ ηS and f̄ preserves arbitrary

∨ and 1. It remains to show that f̄ preserves &. For any A1, A2 ∈ DS,
f̄(A1) ∗ f̄(A2) = (

∨
{f(a1)| a1 ∈ A1}) ∗ (

∨
{f(a2)| a2 ∈ A2}) =

∨
{f(a1) ∗

f(a2)| a1 ∈ A1, a2 ∈ A2} =
∨
{f(a1 ∗ a2)| a1 ∈ A1, a2 ∈ A2}; f̄(A1&A2) =

f̄(↓ {a1 ∗ a2| a1 ∈ A1, a2 ∈ A2}) =
∨
{f(b)| b ≤ a1 ∗ a2, a1 ∈ A1, a2 ∈ A2}.

Then f̄(A1) ∗ f̄(A2) = f̄(A1&A2).
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By Lemma 3.2 and Theorem 3.4 ,we have

Theorem 3.5. The free two-sided quantale generated by a set A is (D(ωA),
⊆, &).

Corollary 3.6. The category TQuant is an algebraic category.

4 The Coproduct of Commutative Two-Sided
Quantales

In this section we discuss the coproduct of commutative two-sided quantales,
and we write CTQuant for the category of commutative two-sided quantales
and quantale homomorphisms.

Let S be a ∗-algebra. By a coverage on S we mean a function C assigning
to each s ∈ S a set C(s) of subsets of ↓ s, called covering of s, with the
∗−stability property: A ∈ C(s) ⇒ {a ∗ r| a ∈ A} ∈ C(s ∗ r) and {r ∗ a| a ∈
A} ∈ C(r ∗ s) for any r ∈ S.

Given a coverage C on a ∗-algebra S, we call a subset I of S to be C−ideal
if it is a lower set and satisfies: (∃A ∈ C(a))(A ⊆ I) ⇒ a ∈ I for all a ∈ S.
We write C-Idl(S) for the set of all C − ideals of S, ordered by inclusion.

For example, if S is a distributive two-sided ∗-semilattice(as an ∗-algebra),
we could take C(s) to be the set of all finite sets with join s and the C−ideals
of S are just its ideals. ∗−stability in this case is just the distributive law.
By a site we mean a ∗-algebra equipped with a coverage. We say a quantale
B is freely generated by a site (S,C) if there is a ∗-algebra homomorphism
f : S → B which transforms covers to joins in the sense that for every s ∈ S
and every A ∈ C(s) we have f(s) = ∨B{f(a)| a ∈ A}, and which is universal
among such maps, i.e. every f

′
: S → B

′
satisfying the same conditions

factors uniquely through f by a quantale homomorphism B → B
′
.

Let Q be a quantale. A quantic nucleus on Q is a closure operator j such
that j(a) ∗ j(b) ≤ j(a ∗ b), for all a, b ∈ Q, and if j is a closure operator on
a complete lattice Q, then the image Qj = {a ∈ Q| j(a) = a} is complete,
where the join in Qj is given by ∨j(aγ) = j(∨aγ).

Lemma 4.1(see [2]). If j : Q → Q is a quantic nucleus, then Qj ia a
quantale via a ∗j b = j(a ∗ b) for any a, b ∈ Qj; and j : Q → Qj is a quantale
homomorphism. We call Qj a quotient quantale.

Theorem 4.2. Let S be a ∗-algebra. For any site (S,C), C-Idl(S) is a
quantale, and is freely generated by (S,C).

Proof. First we show that C-Idl(S) is a quotient quantale of the quantale
DS. It is clear that an arbitrary intersection of C−ideals is a C−ideal. If we
define j : DS → DS by j(A) =

⋂
{I ∈ C − Idl(S)| I ⊇ A} for any A ∈ DS,

then we have A ⊆ j(A) = j(j(A)) for any A ∈ DS, and the image of j is
precisely C-Idl(S). So we need only to show that j(A1)&j(A2) ⊆ j(A1&A2)
for any A1, A2 ∈ DS.
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Write I for j(A1&A2). Consider J = {s ∈ S| (∀a1 ∈ A1))(a1 ∗ s ∈ I)}; It is
clear that A2 ⊆ J since A1&A2 ⊆ I. We shall show that J is a C− ideal. J is
obviously a lower set. Suppose U ∈ C(s), U ⊆ J , then for every a1 ∈ A1 we
have {a1 ∗ u|u ∈ U} ∈ C(a1 ∗ s) by ∗-stability of C, and {a1 ∗ u|u ∈ U} ⊆ I
by the definition of J . Since I is a C − ideal, we deduce a1 ∗ s ∈ I for all
a1 ∈ A1, and hence s ∈ J .

Now if we define K = {s ∈ S| (∀t ∈ J)(s ∗ t ∈ I)}, then a similar argu-
ment shows K is a C − ideal, and A1 ⊆ K since A1&J ⊆ I. Then we have
j(A1)&j(A2) ⊆ K&J ⊆ I = j(A1&A2), So j is a nucleus and C-Idl(S) is a
quotient quantale of DS.

We write f for the composite map:

S
↓(−) �� DS

j �� (DS)j = C-Idl(S).

For any A ∈ C(s), since A ⊆
⋃
{↓ a| a ∈ A} ⊆ j(

⋃
{↓ a| a ∈ A}), we

have s ∈ j(
⋃
{↓ a| a ∈ A}), so f transforms covers to joins. Let g : S →

B be any other ∗-algebra homomorphism from S to a quantale with this
property, it is easy to verify that the right adjoint h : B → DS of the
unique extension ḡ : DS → B of g to a quantale homomorphism is given by
h(b) = {s ∈ S| f(s) ≤ b}, and since g transforms covers to joins this set is a
C − ideal, i.e. h factors through C-Idl(S). So ḡ factors (uniquely) through
j : DS → C-Idl(S), i.e. there is an unique mapping g∗ : C-Idl(S) → B such
that ḡ = g∗ ◦ j. Since ḡ is a quantale homomorphism and j is surjective, g∗

is a quantale homomorphism.

Let L1 and L2 be two-sided coherent quantales. Then by Theorem 2.6 Li
is freely generated by K(Li) ,i=1,2. So any ∗−semilattice homomorphism
K(L1) → K(L2) extends uniquely to a quantale homomorphism L1 → L2.
We define that a quantale homomorphism f : L1 → L2 between coherent
quantales is coherent if f maps K(L1) into K(L2). Then we have

Corollary 4.3. The category ∗DTSLAT is dual to the category TCohQ of
two-sided coherent quantales and coherent maps between them.

We conclude this section with an application of Theorem 4.2: to obtain the
construction of coproducts of CTQuant.

Let (Qγ | γ ∈ Γ ) be a family of commutative two-sided quantales, and
write B for the set theoretic product of the Qγ with a ∗ operation defined
by (aγ)γ∈Γ ∗ (bγ)γ∈Γ = (aγ ∗ bγ)γ∈Γ (of course B is a commutative two-
sided quantales, and it is the product of Qλ in CTQuant). For each γ, the
projection pγ : B → Qγ has a right adjoint qγ : Qγ → B, which sends a ∈ Qγ

to the unique element b with pγ(b) = a and pδ(b) = 1 for δ �= γ; and easily
check that qγ preserves ∗. Let Q be the sub-∗−algebra of B generated by the
union of the images of the qγ , i.e., the set of all b ∈ B, such that pγ(b) = 1
for all but a finite number of indices γ; then it is easy to see that the maps
qγ : Qγ → Q make Q into the coproduct of the Qγ in ∗CTAlg.
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From the universal property of coproducts, it ie clear that we should have
a ∗−algebra homomorphism from Q to the coproduct of Qγ in ∗CTQuant,
which is universal among homomorphisms f such that each of the composites
f ◦ qγ preserves joins. We accordingly define a coverage C on Q, as follows: if
a ∈ Q and S ⊆ Qγ , define S[γ, a] to be the set of all elements of Q obtained
on replacing the γth entry of a by a member of S. Then define

C(a) = {S[γ, a]| γ ∈ Γ and S ⊆ Qγ and ∨S = pγ(a)}.
It is easily verified that C satisfies the ∗-stability condition, and that a ∗-
algebra homomorphism f from Q to a quantale transforms covers in C to
joins iff each of the composites f ◦ qγ preserves joins. So we have

Theorem 4.4. The coproduct of {Qγ| γ ∈ Γ} in the category CTQuant is
C − Idl(Q).
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Counting the Solutions of a System of
Equations over Finite Field is NP-Hard
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Abstract. Let G be a simple connected graph with r vertices and t edges.
Let d be a positive integer and a ∈ F ∗

pn . The associated system of equations
S(G, d, pn, a) of G over a finite field Fn

p is defined to be AX = C, where
X = (xd1, x

d
2, ..., x

d
t )

�, C = (a, a, ..., a)�, A = (aij) is the incidence matrix of
G. We show that the solutions of S(G, d, pn, a) has a relation with the number
of perfect matchings of G. We also show that the problem of determining the
number of solutions to a system of equations over finite field is NP-hard.

Keywords: NP-hard Problem, perfect matching, finite field.

1 Introduction

All graphs considered in this paper will be simple graphs. Let G be a graph
with vertex set V (G) and edge set E(G). A matching M of G is a subset
of E(G) such that any two edges of M have no vertices in common [6]. A
matching M is said to be a perfect matching if it covers all vertices of G. The
number of perfect matchings of G is denoted by φ(G). From the definition of
perfect matching, we know that if G has a perfect matching, then the number
of vertices of G must be even. Let a, b be two positive integers, the largest
common divisor of a and b is denoted by gcd(a, b).

Let Fn
p denote a finite field with pn elements, where p is a prime, and

let F ∗
pn = Fpn \ {0}. Finite field theory has many applications in theoretical

computer science, especially in coding theory [5]. Estimating the number of
solutions of equations over a finite field is a charming and important problem
with a long history. As mentioned in [3], C.F.Gauss first studied the solutions
of equation ayl + bzm+ c = 0 over a a finite field, and calculated the number
of solutions for (l,m) = (2, 2), (3, 3), (4, 4), (2, 4). A. Weil [8] made a further
study on solutions of the equation a0x

n0
0 +a1x

n1
1 + · · ·+arx

nr
r = 0, and posed

a famous conjecture which has been very influential in the recent development
of both number theory and algebraic geometry. Deligine finally solved Weil’s
conjecture and was awarded the Fields Medal in 1978 [4]. For some more

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 755–759.
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results on this topic, we refer to [5, 7, 8, 9]. Other graph, finite field and
algorithm theoretical terminologies and notations not defined in this paper
we refer the readers to [1, 5, 2].

Let G be a graph with r vertices v1, v2, · · · , vr and t edges e1, e2, · · · , et.
Then the incidence matrix A of G is defined as a r× t matrix A=(aij), where
aij = 1 if vi and ej are incident, or aij = 0 if vi and ej are not incident. Let
d be a positive integer and a ∈ F ∗

pn . Now we can define an associated system
of equations S(G, d, pn, a) of G over the finite field Fpn as following

AX = C,

where X = (xd1, x
d
2, ..., x

d
t )

�, C = (a, a, ..., a)�, A = (aij) is the incidence
matrix of G.

For an example, let G be a cycle with 4 vertices v1, v2, v3, v4 and 4 edges
e1, e2, e3, e4. (see Figure 1)

� �

� �
v1 v2

v3v4

e1

e2

e3

e4

Fig. 1.

Set d = 2, p = 3, n = 1, a = 1. Then X = (x2
1, x

2
2, x

2
3, x

2
4)

�, the incidence
matrix A of the cycle G is

A =

⎛⎜⎜⎝
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎞⎟⎟⎠ ,

and the associated system of equations S(G, 2, 3, 1) over the finite field F3 of
the cycle G is ⎧⎪⎪⎨⎪⎪⎩

x2
1 + x2

4 = 1,
x2

1 + x2
2 = 1,

x2
2 + x2

3 = 1,
x2

3 + x2
4 = 1.

The number of solutions of an associated system of equations S(G, d, pn, a)
of a graph G is denoted by N(S(G, d, pn, a)).

In this paper, we show that the solutions of an associated system of equa-
tions S(G, d, pn, a) has a relation with the number of perfect matching of
G. More precisely, we can give some lower bounds of N(S(G, d, pn, a)) by
φ(G). Moreover, we also prove that the problem of determining the number
of solutions to a system of equations over finite field is NP − hard.
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2 Main Results

To prove our main results, we need the following lemma.

Lemma 1 ([3]). Let a ∈ F ∗
pn . Then the equation xd = a over the finite

field Fpn has solutions if and only if a(pn−1)/l = 1, where l = gcd(d, pn − 1).
Furthermore, if xd = a has solutions, then it has exactly l solutions.

The degree of a vertex v in a graph G is the number of edges of G incident
with v. We denote by Δ(G) the maximum degree of vertices of G. Now we
can state our main results.

Theorem 2. Let G be a graph with r vertices and t edges. Suppose the
number of perfect matchings of G is φ(G). Let p be a prime, d be a positive
integer and a ∈ F ∗

pn . Let N(S(G, d, pn, a)) be the number of solutions of the
associated system of equations S(G, d, pn, a). If a(pn−1)/l = 1, where l =
gcd(d, pn − 1), then

N(S(G, d, pn, a)) ≥ lr/2φ(G), (1)

especially,

N(S(G, d, pn, 1)) ≥ lr/2φ(G), (2)

furthermore, if Δ(G) ≤ p, then

N(S(G, pn − 1, pn, 1)) = (pn − 1)r/2φ(G). (3)

Proof. Since a(pn−1)/l = 1, by Lemma 1 the equation xd = a has exactly
l = gcd(d, pn − 1) solutions. Let E = {b1, b2, · · · , bl} be the set of these
solutions.

Assume that the edge set of G is {e1, e2, · · · , et}. Since G has φ(G) perfect
matchings, let {F1, F2, · · · , Fφ(G)} be the set of these perfect matchings.

For each Fi ∈ {F1, F2, · · · , Fφ(G)}, we can construct lr/2 solutions of
the associated system of equations S(G, d, pn, a) as follows: assume that
Fi = {ei1 , ei2 , · · · , eir/2} is a perfect matching of G, where {i1, i2, · · · , ir/2} ⊆
{1, 2, · · · , t}. Let X=(x1, x2, · · · , xt)� be a vector in (Fpn)t such that xj = c
(where c ∈ E) if j ∈ {i1, i2, · · · , ir/2}, or xj = 0 if j /∈ {i1, i2, · · · , ir/2}.

By the definition of the associated system of equations, it is easy to check
that X is a solution of S(G, d, pn, a). Note the set E (resp. Fi) has l (resp. r/2)
elements, and G has φ(G) perfect matchings, so we can construct lr/2φ(G)
solutions of this kind like X , therefore N(S(G, d, pn, a)) ≥ lr/2φ(G), this
proves the inequality (1).

Especially, for the associated system of equations S(G, d, pn, 1), it is evi-
dent that the equation xd = 1 has a solution x = 1. By Lemma 1, we know
that the equation xd = 1 has exactly l = gcd(d, pn−1) solutions. By a similar
discussion as above, we can also get that N(S(G, d, pn, 1)) ≥ lr/2φ(G), this
proves the inequality (2).
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Now assume that Δ(G) ≤ p. For the associated system of equations
S(G, pn − 1, pn, 1), notice that l = gcd(pn − 1, pn − 1) = pn − 1.

By above method, we can construct (pn − 1)r/2φ(G) solutions, let R be
the set of these solutions. Let X=(b1, b2, · · · , bt)� be an arbitrary solution of
S(G, pn − 1, pn, 1), in the following we will show that X ∈ R.

Note that for any b ∈ F ∗
pn , by Lemma 1, b is always a solution of the

equation xp
n−1 = 1. Since the characterization of the finite field Fpn is p

and Δ(G) ≤ p. It implies that if the system of equations S(G, pn − 1, pn, 1)
has solution, then each equation in S(G, pn − 1, pn, 1) has exactly one vari-
able can take value in F ∗

pn . By the definition of the associated system of
equations, S(G, pn − 1, pn, 1) has exactly r equations, and each variable ap-
pears in exactly two equations (since each edge in G is incident with exactly
two vertices). Thus X has exactly r/2 non-zero entries. Let xj1 , xj2 , · · · , xjr/2

be those non-zero entries, where {j1, j2, · · · , jr/2} ⊆ {1, 2, · · · , t}. The above
discussion show that {ej1 , ej2 , · · · , ejr/2} is a perfect matching of G, and
thus X ∈ R. So N(S(G, pn − 1, pn, 1)) = (pn − 1)r/2φ(G), this proves the
equality (3).

In algorithm complexity theory, the following result is well-known.

Lemma 3 ([2, 6]). The problem of determining the number of perfect match-
ings in a graph is NP-hard.

By above results, we can prove another main result of this paper.

Theorem 4. The problem of determining the number of solutions to a system
of equations over finite field is NP-hard.

Proof. From the proof the equality (3) of Theorem 2, it is easy to see that
the problem of determining the number of perfect matchings in a graph G
can be reduced to the problem of counting the number of solutions of a
special associated system of equations S(G, pn−1, pn, 1) over finite field Fpn .
By Lemma 3, we conclude that the problem of determining the number of
solutions over finite field is NP-hard.

3 Conclusion

Estimating the number of solutions of equations over a finite field is an im-
portant, but difficult problem in coding theory. By Theorem 4, we also know
that the problem is difficult in sense of complexity of algorithm.
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The Stability of BAM Networks with Delayed
Self-feedback and Impulses
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Abstract. This paper considers a class of bidirectional associative mem-
ory(BAM) neural networks with self-feedback and nonlinear impulses. A new
criterion concerning global exponential stability for these neural networks is
derived, which improve the previously known results. Finally, an example is
given to show the applicability of our results.

Keywords: Bidirectional associative memory, neural networks, nonlinear im-
pulses, delay.

1 Introduction

The bidirectional associative memory (BAM) model of the type⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋi(t) = −aixi(t) +

n∑
j=1

pijfj(yj(t)) + ri

ẏj(t) = −bjyj(t) +
n∑
i=1

qjigi(xi(t)) + sj

(1)

known as an extension of the unidirectional autoassociator of Hopfield [1],
was first introduced by Kosto [2]. It has been used in many fields such as
optimization, pattern recognition and automatic control [3-6]. Realizing the
ubiquitous existence of delay in neural networks, Gopalsamy and He [4] in-
corporated time delays into the model and considered the following system
of delay differential equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t) +
m∑
j=1

cijfj(yj(t− τij)) + ri ,

ẏj(t) = −bjyj(t) +
n∑
i=1

djigi(xi(t− σij)) + sj .

(2)
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Moreover, it should be noted that the theory of impulsive differential equa-
tions is now being recognized to be not only richer than the corresponding
theory of differential equations without impulse, but also represent a more
natural framework for mathematical modelling of many real-world phenom-
ena. there have been extensive results on the problem of the stability and
other dynamical behaviors of impulsive BAM neural networks with delays
in the literature, see [10-13] and the references cited therein. However, few
authors have considered global exponential stability of BAM neural networks
with nonlinear impulses which include common impulsive and non-impulsive
system.

On the other hand, recent work [7-9] has shown that inhibitory self-
connections play a role in stabilizing a network under some conditions on
delays. In the present paper, inspired by references [7-9, 11, 13, 16-17], we
shall study the stability problem of BAM neural networks with nonlinear
impulsive and continuously distributed delays.

2 Preliminaried

In the following, we shall consider the nonlinear impulsive BAM neural net-
works with continuously distributed delays which can be described by the
following integro-differential equations of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −ρi(xi(t)) + ciigi(xi(t − eii)) +
n∑

j=1

pijfj(yj(t − τij)) + ri, t ≥ 0, t 
= tk ,

Δxi(tk) = Ii(xi(tk)), i = 1, 2, · · · , n, k = 1, 2, · · · ,

ẏj(t) = −�j(yj(t)) + djjfj(yj(t − hjj)) +
n∑

i=1

qjigi(xi(t − σji)) + sj , t ≥ 0, t 
= tk,

Δyj(tk) = Jj(yj(tk)), j = 1, 2, · · · , n, k = 1, 2, · · · ,
(3)

where xi and yj are the activations of the ith neurons and the jth neurons,
respectively. cii, djj , pij , qji are the connection weight, and ri and sj denote
the external inputs. gi, fj (i, j = 1, 2, · · · , n) are signal transmission functions.
Here Δxi(tk) = xi(tk+0)−xi(tk−0), Δyj(tk) = yj(tk+0)−yj(tk−0) are the
impulses at moments tk and 0 < t1 < t2 < · · · is an increasing sequence. The
nonlinear impulsive functions Ii, Jj : R → R are assumed to be continuous
which detail form would be given in section 4. And system (3) is supplemented
with initial values given by

xi(s) = ϕi(s), s ∈ [−τ, 0], τ = max
1≤i,j≤n

{τij} i = 1, 2, · · · , n,

yj(s) = ψj(s), s ∈ [−σ, 0], σ = max
1≤i,j≤n

{σji} j = 1, 2, · · · , n,

where ϕi(·), ψj(·) are bounded and continuous on [−τ, 0], [−σ, 0],
respectively.
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In general speaking, by a solution of (3) we mean z(t) = (x1(t), · · · , xn(t),
y1(t), · · · , yn(t))T ∈ R2n in which xi(·), yj(·) is piecewise continuous on (0, β)
for some β > 0 such that z(tk±0) exists and z(·) is differentiable on intervals
of the form (tk−1, tk) ⊂ (0, β) and satisfies (3); we assume that z(t) is left
continuous with z(tk) = z(tk − 0)(k = 1, 2, · · ·). Throughout this paper, we
assume that:

•(H1) cii, djj , pij , qji, ri, sj ∈ R, τij , σji ∈ [0,∞). And ρi, $j : R → R are
differentiable and strictly monotone increasing, i.e., ai = inf

x∈R
{ρ̇i(x)} > 0 and

bj = inf
x∈R

{$̇j(x)} > 0, i, j = 1, 2, · · · , n.

•(H2) fj and gi are Lipschitz-continuous on R with Lipschitz constant
βj (j = 1, · · · , n) and αi(i = 1, · · · , n) respectively, that is,

|fj(x) − fj(y)| ≤ βj |x− y|, |gi(x) − gi(y)| ≤ αi|x− y|, ∀ x, y ∈ R.

Throughout the paper, for convenience, we introduce the following notations:
we will use z = (x1, x2, · · · , xn, y1, · · · , yn)T ∈ R2n to denote a column vector,
in which the symbol ”T” denotes the transpose of a vector, P ≥ 0 denotes
nonnegative matrix.

Before starting the main results, firstly, we shall give some definitions and
lemmas as follows:

Definition 1. A real matrix H = (hij)n×n is said to be a nonsingular
M-matrix, if H has the form

H = αE − P, α > 0, P ≥ 0,

where α > ρ(P ), ρ(P ) denotes the spectral radius of P .

Definition 2. A constant vector z∗ = (x∗
1, x

∗
2, · · · , x∗

n, y
∗
1 , y

∗
2 · · · , y∗n)T is said

to be the equilibrium point of (3) if it satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρi(x∗

i ) = ciigi(x∗
i ) +

n∑
j=1

pijfj(y∗j ) + ri, i = 1, · · · , n,

$j(y∗j ) = djjfj(y∗j ) +
n∑
i=1

qjigi(x∗
i ) + sj , j = 1, · · · , n,

(4)

where the impulsive jumps Ii(x∗
i ) = Jj(y∗j ) = 0 (i, j = 1, 2, · · · , n).

Definition 3. The unique equilibrium z∗ = (x∗
1, x

∗
2, · · · , x∗

n, y
∗
1 , y

∗
2 · · · , y∗n)T

of (3) is said to be globally exponentially stable, if there exist λ > 0 and
M ≥ 1 such that for all t ≥ 0,{ n∑
i=1

|xi(t)−x∗
i |+

n∑
j=1

|yj(t)−y∗j |
}
≤ Me−λt

{ n∑
i=1

‖ϕi−x∗
i ‖+

n∑
j=1

‖ψj−y∗j ‖
}
.
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Lemma 1. ([14]) Let H = (hij)n×n is a matrix with non-positive off-
diagonal elements. Then H is an M-matrix if and only if there exists a pos-
itive diagonal D = diag(d1, · · · , dn) such that HD is a strictly diagonally
dominant with positive diagonal entries; that is

hiidi >
∑
j �=i

|hij |dj , i = 1, 2, · · · , n.

Lemma 2. ([15]) Let H ≥ 0 be an n × n matrix and ρ(H) < 1. Then
(En −H)−1 ≥ 0, where ρ(H) denotes the spectral radius of H.

3 Existence and Uniqueness of Equilibrium

Theorem 1. In addition to (H1)−(H2), assume further that ρ(F ) < 1, where

F = L−1HD, H =

(
0n×n An×n

Bn×n 0n×n

)
, D = diag(α1, α2, · · · , αn, β1, β2, · · · , βn),

L = diag(Δ1, Δ2, · · · , Δn, Δ1, Δ2, · · · , Δn), Δi = min{ai

2
,
bi

2
}, A = (|djj |+ |pij|)n×n,

B = (|cii| + |qji|)n×n, then there exists a unique equilibrium for (3).

Proof. Consider a mapping Φ : R2n → R2n defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρi(Φi(z)) = ciigi(xi) +

n∑
j=1

pijfj(yj) + ri, i = 1, 2, · · · , n,

$j(Φn+j(z)) = djjfj(yj) +
n∑
i=1

qjigi(xi) + sj , j = 1, 2, · · · , n.

(5)

We show that Φ : R2n → R2n possesses a unique fixed point in
R2n. In fact, for any z = (x1, x2, · · · , xn, y1, y2, · · · , yn)T ∈ R2n, z̄ =
(x̄1, x̄2, · · · , x̄n, ȳ1, ȳ2 · · · , ȳn)T ∈ R2n, from (5), we have

|Φi(z)−Φi(z̄)| =
|ρi(Φi(z)) − ρi(Φi(z̄))|

|ρ̇i(ξi)|
≤ αi

ai
|cii||xi−x̄i|+

n∑
j=1

βj
ai

|pij ||yj−ȳj|

|Φn+j(z)−Φn+j(z̄)| =
|�j(Φn+j(z)) − �j(Φn+j(z̄))|

|�̇j(ξn+j)|
≤ βj

bj
|djj ||yj−ȳj |+

n∑
i=1

αi

bj
|qji||xi−x̄i|

where (ξ1, ξ2, · · · , ξ2n)T lies between Φ(z) and Φ(z̄).
Then, we get

|Φ(z) − Φ(z̄)| = F
(
|x1 − x̄1|, |x2 − x̄2|, · · · , |xn − x̄n|, |y1 − ȳ1|, |y2 − ȳ2|, · · · , |yn − ȳn|

)T
,
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Let η be a positive integer. We obtain

|Φη(z) − φη(z̄)| ≤ F η
(
|z − z̄|1, |z − z̄|2, · · · , |z − z̄|2n

)T
,

Since ρ(F ) < 1, we have
lim

η→+∞
F η = 0,

which implies that there exist a positive integer N and a positive constant
γ < 1 such that

FN = (lij)(2n)×(2n).
2n∑
j=1

lij ≤ 1, i = 1, 2, · · · , 2n,

So, we get
‖ΦN (z) − ΦN (z̄)‖ ≤ γ‖z − z̄‖,

which implies that the mapping Φ : R2n → R2n is a contracting mapping. By
the fixed point theorem of Banach Space, Φ possess a unique fixed point z∗ in
R2n which is a unique solution of (3). Then, (3) has exactly one equilibrium.

4 Exponential Stability of Equilibrium

Theorem 2. Suppose that all the conditions of Theorem 1 hold, and z∗ =
(x∗

1, · · · , x∗
n, y

∗
1 , · · · , y∗n)T is the unique equilibrium of (3). Furthermore, as-

sume that the following conditions are satisfied⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ii(xi(tk)) = −γik(xi(tk) − x∗

i ) +

∫ tk

tk−1

Mi(s)(xi(s) − x∗
i )ds, i = 1, 2, · · · , n, k ∈ Z+,

Jj(yj(tk)) = −δjk(yj(tk) − y∗
j ) +

∫ tk

tk−1

Nj(s)(yj(s) − y∗
j )ds, j = 1, 2, · · · , n, k ∈ Z+.

(6)

Then, the unique equilibrium z∗ of (3) is globally exponentially stable.

Proof. Let z(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T

be an arbitrary solution of (3) with initial value Ψ =
(φ1(t), φ2(t), · · · , φn(t), ψ1(t), ψ2(t), · · · , ψn(t))T . Set ui(t) = xi(t) −
x∗
i , vj(t) = yj(t) − y∗j , (3) can be reduced to the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = −hi(ui(t)) + ciiGi(ui(t− eii)) +
n∑
j=1

pijFj(vj(t− τij))

v̇j(t) = −kj(vj(t)) + djjFj(vj(t− hjj)) +
n∑
i=1

qjiGi(ui(t− σji))

(7)

for t > 0, t �= tk, k ∈ Z+. And for any i, j = 1, · · · , n, k ∈ Z+,
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|ui(tk + 0)| ≤ |1 − γik||ui(tk)| +
tk∫

tk−1

|Mi(s)||ui(s)|ds,

|vj(tk + 0)| ≤ |1 − δjk||vj(tk)| +
tk∫

tk−1

|Nj(s)||vj(s)|ds,

(8)

where

hi(ui(t)) = ρ(xi(t)) − ρ(x∗
i ), kj(vj(t)) = $(yj(t)) − $(y∗j ),

Fj(vj(t)) = fj(yj(t)) − fj(y∗j ), Gi(ui(t)) = gi(xi(t)) − gi(x∗
i ).

Since ρ(F ) < 1, it follows from Lemma 1 and Lemma 2 that E −
(HDL−1)T is a nonsingular M-matrix, and there exists a diagonal matrix
D = diag(ξ1, ξ2, · · · , ξn, η1, η2, · · · , ηn), such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − αi|cii|)ξi >
n∑
j=1

αiηj |qji|, i = 1, 2, · · · , n,

(1 − βj |djj |)ηj >

n∑
i=1

βjξi‖pij |, j = 1, 2, · · · , n.

(9)

Let Ri(λi), Qj(εj) be defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ri(λi) = ξi(1 − λi) − ξiαi|cii|eλieii −

n∑
j=1

ηjαi|qji|eλiσji , i = 1, 2, · · · , n,

Qj(εj) = ηj(1 − εj) − ηjβj |djj |eεjhjj −
n∑
i=1

ξiβj |pij |eεjτij , j = 1, 2, · · · , n,

where λi, εj ∈ [0,∞). Since E − (HDL−1)T is an M-matrix, it follows from
(9) that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ri(0) = ξi − ξiαi|cii| −
n∑
j=1

αiηj |qji| > 0, i = 1, 2, · · · , n,

Qj(0) = ηj − ηjβj |djj | −
n∑
i=1

βjξi‖pij | > 0, j = 1, 2, · · · , n.

Since Ri(·), Qj(·) are continuous on [0,∞) and Ri(λi), Qj(εj) → −∞ as
λi, εj → +∞, there exist λ∗

i , ε
∗
j > 0 such that Ri(λ∗

i ) = 0, Qj(ε∗j ) = 0 and
Ri(λi) > 0 for λi ∈ (0, λ∗

i ), Qj(εj) > 0 for εj ∈ (0, ε∗j ). By choosing a posivie
constant λ = min{λ∗

1, ..., λ
∗
n, ε

∗
1, ..., ε

∗
n}, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξi(1 − λ) − ξiαi|cii|eλeii −
n∑
j=1

ηjαi|qji|eλσji > 0, i = 1, 2, · · · , n,

ηj(1 − λ) − ηjβj |djj |eλhjj −
n∑
i=1

ξiβj |pij |eλτij > 0, j = 1, 2, · · · , n.

(10)
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Now we define {
Ui(t) = eλt|ui(t)|, for i = 1, 2, · · · , n,
Vj(t) = eλt|vj(t)|, for j = 1, 2, · · · , n.

(11)

Consider the following Lyapunov functional

V (t)=
n∑

i=1

ξi

{
Ui(t) + |cii|αie

λeii

t∫
t−eii

Ui(s)ds +
n∑

j=1

βj |pij |eλτij

t∫
t−τij

Vj(s)ds
}

+
n∑

j=1

ηj

{
Vj(t) + |djj |βje

λhjj

t∫
t−hjj

Vj(s)ds +
n∑

i=1

αi|qji|
t∫

t−σji

Ui(s)ds
}

.(12)

The derivative of V (t) along the trajectories of (3) is obtained as

D+V (t)≤−
n∑
i=1

{
(1 − λ)ξi − αiξi|cii|eλeii −

n∑
j=1

ηjαi|qji|eλσji

}
Ui(t)

−
n∑
j=1

{
(1 − λ)ηj − βjηj |djj |eλhjj −

n∑
i=1

ξiβj |pij |eλτij

}
Vj(t)

≤ 0 (13)

for t > 0, t �= tk, k ∈ Z+. Also,

V (tk + 0)≤(1 + εk)V (tk) + m

tk∫
tk−1

eλ(tk−s)V (s)ds

≤
k∏

h=1

[
(1 + εk) + m

eλ(tk−tk−1) − 1
λ

]
V (0), k ∈ Z+, (14)

where εk = max{γik, δik}.
From (12), we obtain

V (0)=
n∑

i=1

ξi

{
Ui(0) + |cii|αie

λeii

0∫
−eii

Ui(s)ds +
n∑

j=1

βj |pij|eλτij

0∫
−τij

Vj(s)ds
}

+
n∑

j=1

ηj

{
Vj(0) + |djj |βjeλhjj

0∫
−hjj

Vj(s)ds +
n∑

i=1

αi|qji|eλσji

0∫
−σji

Ui(s)ds
}

≤
n∑

i=1

[
ξi + ξiαi|cii|eλeiieii +

n∑
j=1

ηjαi|qji|eλσjiσji

]
‖φi − x∗

i ‖

+
n∑

j=1

[
ηj + ηjβj |djj |eλhjj hjj +

n∑
i=1

ξiβj |pij |eλτij τij

]
‖ψi − y∗

j ‖. (15)
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Denote

γ1
i = ξi + ξiαi|cii|eλeiieii +

n∑
j=1

ηjαi|qji|eλσjiσji, γ
2
j

= ηj + ηjβj |djj |eλhjjhjj +
n∑
i=1

ξiβj |pij |eλτijτij .

It follows from (15), we have

n∑
i=1

|xi(t) − x∗
i | +

n∑
j=1

|yj(t) − y∗j |

≤ Me−λt
k∏

h=1

[
(1 + εk) + m

eλ(tk−tk−1) − 1
λ

]{ n∑
i=1

‖φi − x∗
i ‖ +

n∑
j=1

‖ψj − y∗j ‖
}
,

where t > 0 and M = max{γ1
i , γ

2
j } (i, j = 1, 2, · · · , n).

5 An Illustrative Example

In this section, an example is presented to illustrate the feasibility our results.
We consider the following BAM neural networks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t) − gi(xi(t − 0.5)) +
2∑

j=1

pijfj(yj(t − 2) + ri, i = 1, 2, t ≥ 0, t 
= tk ,

Δxi(tk) = −γik(xi(tk) − 1) +

tk∫
tk−1

cos(s)(xi(s) − 1)ds,

ẏj(t) = −bjyj(t) − fj(yj(t − 0.5)) +
2∑

i=1

qjigi(xi(t − 3)) + sj , j = 1, 2, t ≥ 0, t 
= tk ,

Δyj(tk) = −δjk(yj(tk) − 1) +

tk∫
tk−1

sin(s)(yj(s) − 1)ds,

(16)

where gi(x) = fj(x) =
1
2
(
|x + 1| − |x − 1|

)
, γik = 1 + sin(5 + 3k), δjk =

1 + cos(3k), k ∈ Z+,
(a1, a2)T = (2, 2)T ,(b1, b2)T = (3, 3)T ,(r1, r2)T = (4, 2)T ,(s1, s2)T = (3, 5)T ,(

p11 p12
p21 p22

)
=
(

1 −2
−3 4

)
,

(
q11 q12
q21 q22

)
=
(
−5 6
7 −8

)
.

So, by simple computation, we can see that (16) satisfy the conditions of
Theorem 1 and Theorem 2, thus, (16) has exactly one equilibrium (1, 1, 1, 1)T

which is globally exponentially stable.
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Abstract. The most important part of surface mining design is to select the 
rational technology system. On the basis of the classification and according to 
various applicable conditions, we should determine a corresponding mining 
technology system for all sorts of opencast coalfield in order to give guidances on 
the mining design and to provide theoretical bases on the selection of mining 
technology. In this paper, it discussed how to determine a rational evaluation 
about mining technology. First, we should determine an evaluation index system 
of mining technology system which is constituted with 8 indexes of grade one, 20 
indexes of grade two, 69 indexes of grade three. Second, we quantified the indexes 
of grade three according to the applicable conditions of various mining technology 
and concluded a quantification evaluation system. We used vectors which were 
constituted with the aggregate of numeric area of 69 indexes of grade three to 
indicate the quantification evaluation system and then calculated the value of 
subordination-degree and the value of weight coefficients. At last we could get the 
value of adaptability-degree of various mining technology, the mining technology 
with maximum value of adaptability-degree is the rational mining technology 
system. 

Keywords: Surface mining technology, fuzzy evaluation, adptability-degree, 
evaluation index, subordination-degree. 

1   Introduction 

In the surface mining design of development of opencast coalfield, the most 
important decisive technique is the mining technology, however, it is difficult to 
select a corresponding and rational mining technology for a specific opencast 
coalfield. There are two main reasons: first, there are many factors to influence the 
surface mining technology; second, there are not specific evaluation criterias for 
surface mining technology. Traditionally the method to select mining technology 
is as follows: according to the characteristics of the opencast coalfield, it is 
proposed several feasible technological programs and then we make a detailed 
mining design for each program, compare the economic benefits and select a more 
economical technological program. Although this method is effective and 
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traditional, there is a phenomenon that the selected program may be not the 
optimal one because the optimal program may be missing when it is proposed. So 
the compared factors are not comprehensive. Especially our country lacks the 
research on the characteristics and the mining technology of nationwide opencast 
coalfield, so it leads to lack theoretical guidance and the forecasts of development 
trend of surface mining. At the same time, it also constrains the development 
strategies and the plan of long-term development[4-6]. 

The backward technology of mining machinery manufacturing also constrains 
the development of our surface mining, and they mutually restrictive and 
interactive. The way to solve the problem is formulating development strategies of 
surface mining and mining technology in order to promote the common progress 
of the industry of mining machinery manufacturing and surface mining. This 
paper attempts to discuss that through the classifiable research of national 
opencast coalfield, it proposes the applicable mining technology for different 
types of coalfields and makes a rational evaluation about it. Through establishing 
a comprehensive evaluation system and selecting a rational method of evaluation 
to evaluate the mining technology, it can provide the theoretical bases for the 
selection of a rational mining technology in the development of surface mining. 

2  Classifiable System of Surface Mining Technology and Its 
Influencing Factors 

Now there are many types of commonly used technology system. The applicable 
conditions for different types are different. As the lithology of coal seam, rock seam 
and the topsoil are quite different, the mining technology, rock stripping technology 
and topsoil stripping technology are usually different in large-scale opencast mine. In 
the mining design it is necessary to select mining technology, rock stripping 
technology and topsoil stripping technology separately. The commonly used stripping 
technologies are divided into: “independent discontinuous mining technology system: 
single dou excavator- auto mining technology” and other 23 kinds of technologies. 
The mining technologies are divided into: “semi-continuous mining technology 
system : single dou excavator- working face auto-semi-fixed crushing and screening 
station-belt conveyor mining technology” and other15 kinds of technologies. 

For the opencast mine the influencing factors of selection mining technology 
include the natural conditions of opencast coalfield, the equipments for mining, 
mining design and so on. The following are specific factors: 

 
(1) The natural conditions of opencast mine which include the nature of ore and 

rock, the burying conditions and burying depth of ore bodies, the slant of seam, 
thickness, layers, terrain, geographical location; climatic conditions; hydrology 
and engineering geology; and the types of opencast mine. 

(2) Available equipments which include the following requirements: first, the 
equipments for mining, transportation and unloading should match the types and 
specifications; second, it is better to choose the sets of equipments which are 
unification in the same link; third, the provision of the equipment parts and the 
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maintance should be reliable; fourth, auxiliary equipments should be consistent 
with the main equipments; fifth, the training to users should be guaranteed; sixth, 
the sources of available equipments are reliable. 

(3) Equipments can meet the requirements of production scale and the quality 
of ore. It is required to complete opencast stripping and coal mining operation and 
production. At the same time the selected equipments should be beneficial for the 
selecting and mining  of coal, should meet the requirements of the quality of coal 
and should reduce the losses of coal. 

(4) Considering the sources of funding to purchase the equipments. Because the 
equipments are expensive, the initial investerment for equipments is huge, it 
should be fully considered the sources and reliability of funding. 

(5) Considering the requirements of environmental protection. Surface mining 
can ruin the environment seriously, so it is better to choose the technology which 
is less polluted on the environment and is beneficial to improving the 
environment. 

(6) Considering the economic and technological conditions around the mines 
area. It is mainly considered the economic and technological level around 
coalfield, the conditions of transportation and the distance from urban centers, the 
conditions of energy supply and living conditions. 

3   Rational Evaluation System of Surface Mining Technology 

A. The Determination of the Evaluation Index System 

According to the influencing factors of surface mining, the suitable conditions of 
various mining technology system as well as the characteristics of surface 
coalfield, we can conclude that an evaluation index system of surface mining is a 
three-level index system which includes eight indexes of grade one {A1, A2, A3, A4, 

A5, A6, A7, A8}；20 indexes of grade two {A11, A12, A13, A14, A15}, {A21、A22}, 
{A31, A32}, {A41, A42}, {A51, A52}, {A61, A62, A63, A64, A65}, {A71, 
A72}, {A81, A82}；69 indexes of grade three {x1, x2, x3, x4}, {x5, x6, x7, 
x8},……,{x68、x69}.We can see the significance of various indexes from the 
directions in the 4th, 2008 “the learned journal of coal”. The former six indexes （
A1, A2, A3, A4, A5, A6） of grade one and the 8th th index（A8） of grade one 
are the same as the classifiable index system of coalfield. The constitution of the 
7th index（A7）of grade one, its index of grade two and its index of grade three 
is shown in the following fig.1: 

B. The Selection of Evaluation Methods and the Establishment of Models 

Through the fuzzy comprehensive evaluation of the above mentioned 69 indexes 
of grade three, we get an adaptability index of different mining technology 
（Bi, Ci）for a opencast coalfield. We call it adaptability-degree. The technology 
with the maximum value of adaptability-degree is the suitable mining technology. 
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Maximum transport distance x60

Average transport distance x61

Average lifting height of coal x62

Transport distance of rock and coal A
7

Transport distance of coal 
A71

Transport distance of 

stripping substance A72
Average transport distance x64

Maximum transport distance x63

 

Fig. 1.  The constitution of index of grade one A7 

 
The procedures and methods of establishment of the evaluation model are as 

follows: 
 
Step 1. The determination of applicable conditions for all sorts of mining 

technology system 
According to relevant references [1] [2] [3] and the experience of surface mining 

design, the applicable conditions of all sorts of mining technology system are as 
follows: 

 
(1) Independent discontinuous mining technology system: single dou (one dou 

equals to 10 liters) excavator- automotive mining technology system（B1, C1）is 
suitable for the following conditions :① The open-air coal mine whose the terrain 
and ore bodies are complex and the length is limited;② The transport distance is 
not more than 3～5km; ③The opencast mine whose stripping volume is large and 
the construction building is fast; ④ Deep pioneering transportation; ⑤ For any 
lithology. 

(2) Independent discontinuous mining technology system: single dou (one dou 
equals to 10 liters) excavator- railway mining technology system（B2, C2）is 
suitable for the following conditions: ① All types of ore and rock and bulk of 
materials; ② For any climate; ③ As the cost of railway transport is less, it is 
suitable for the coal mine which is large capacity and the long transport distance; 
④ Because of the poor climbing ability of railway transport（20~40%） and the 
restriction on the restricted gradient, the mining size and mining depth are limited. 
Usually, for the standard gauge railway transport, the lengthy of bottom boundary 
is not less than 1.2Km; the height of sloping open-pit mine should be around 
200m and the height of hollow opencast coal mine should be around 100~200m, 
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sometimes it can reach 200~300m；⑤ The expected life should be long enough 
to pay the higher capital investment. 

(3) Independent continuous mining technology: wheel dou (one dou equals to 
10 liters) excavator—belt conveyor mining technology system（ B7, C7 ） is 
suitable for  the following conditions: ① The materials whose hardness is  f=1~2 
from economic aspect and the cutting resistance KL≤100kg/cm, KF≤6~7kg/cm2；

②  The climate is not too cold; ③  Tthe seam memory is more regular; ④ 
Materials don’t contain abrasive materials or easily clogging materials. 

(4) Combined discontinuous mining technology system: drag—shoveling, 
stripping, inverted heaping throwing—blasting mining technology system� B10）

is suitable for the following conditions: ① The coal seam should be horizontal or 
similar to horizontal or little tilting inn order to ensure the adequate space and 
stability of dump; ②The thickness of inverted heaping and stripping materials is 
not too thick; ③ The coal seam is not too thick; ④The stripping materials are 
medium hard rock or hard rock which have effective blasting (the block is 
uniform, and the bulk is less); ⑤ For any climate. 

(5) Combined continuous mining technology system: wheel-dou (one dou 
equals to 10 liters) excavator—transport dumping bridge mining technology 
system（B14）is suitable for the following conditions: ① The stripping materials 
are loose and soft but there is a certain carrying capacity; ② The coal seam should 
be horizontal or similar to horizontal; ③ There is no major fault structure; ④ 
There are large coal reserves and the expected life of pen-air mine is long; ⑤The 
climate is not too cold. 

(6) Semi-continuous mining technology system: wheel-dou  (one dou equals to 
10 liters) excavator-automotive (or railway) mining technology（B19, C11） is 
suitable for the following conditions: ① The open-air coal mine which strips the 
loose and soft rock and in the situation that the belt conveyor is not suitable or 
economic; ② Working face is not horizontal and straight. 

(7) Semi-continuous mining technology system: single dou  (one dou equals to 
10 liters) excavator- working face auto- semi fixed crushing screening station—
belt conveyor mining technology system（B21, C13）is suitable for the following 
conditions: ① The mining of coal seam; ② The stripping of hard and medium 
hard rock and effective blasting; ③ Long-distance transport and high promoting 
degree; ④ The climate is not too cold. 

There are the other 16 types of mining technology systems such as independent 
discontinuous mining technology system: hydraulic excavator automotive mining 
technology system, independent continuous mining technolgoy: chain dou (one 
dou equals to 10 liters) excavatour-belt conveyor mining technology system, 
combined continuous mining technology system: wheel-dou (one dou equals to 10 
liters) with dumping cantilever excavator mining technology system and semi-
continuous mining technology system: single-dou excavator-mobile working face 
crusher-belt conveyor mining technology system. Because we were familiar with 
the above 16 types of mining technology systems, we didn’t discuss it any more in 
this paper. 
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Step 2. Processing the above applicable conditions of mining technology to 
quantify according to the evaluation indexes (x1～x69) of grade three in technology 
evaluation system ,we can get a quantification evaluation system for various 
applicable conditions of technology. 

Using the vector:
1 1 2 2 3 3 69 69{[ , ],[ , ],[ , ], ,[ , ]}N M N M N M N MU u u u u u u u u= to 

indicate quantification index system of mining technology and the [ , ]kN kMu u is 

the numeric area of the index xk of grade three which is concluded from one of 
applicable conditions of technology. We standardized the numeric area 

[ , ]kN kMu u  of various evaluation index xk  according to the formula in reference 

[7]. At last we get the quantification index vectors of applicable conditions of 
various mining technology system ( in fact, it is the aggregate of numeric area of 
69 indexes of grade three), as follows 

                   1 1 2 2 69 69{[ , ] ,[ , ] , ,[ , ] }Bi N M Bi N M Bi N M BiU u u u u u u= ,           (1) 

i=1,2,3,………,23，indicating 1～23 stripping mining technologies. 

     1 1 2 2 69 69{[ , ] ,[ , ] , ,[ , ] }Ci N M Ci N M Ci N M C iU u u u u u u= ,  (2) 

i=1,2,3,………,15, indicating 1～15 mining technologies. 
 

Step 3. Calculating the subordination-degree ( ), ( )B i k C i kx xμ μ  for 

relative mining technology of every evaluation index xk for the evaluated opencast 
coalfield: 

1, [ , ]
( )

0 , [ , ]
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k k N k M B i

w h e n x u u
x

w h e n x u u
μ
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              (3) 

1, [ , ]
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x
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μ
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              (4) 

If the value of xk  belongs to the numeric area [xKn，xkM]，so the calculating 
formula of relative subordination-degree is as follows: 
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By equation(5), it can also be calculated the value of ( )Ci kxμ of mining 

technology. k=1,2,3,……,69  indicating 69 indexes of grade three. 
 
Step 4. According to the refernce[1] , we can determine the weight coefficients 

wk of every evaluation index. 

The vector of weight coefficient: 1 2 69( , , , )W w w w=  

 
Step 5. Calculating the value of fitness-degree RBi, RCi  of every mining 

technology. 

69

1

( )B i B i k k
k

R x wμ
=

= ⋅∑ ,                                                    (6) 

69

1

( )C i C i k k
k

R x wμ
=

= ⋅∑ .                                                   (7) 

Step 6.  The determination of rational mining technology 
 
According to the value of adaptability-degree RBi, RCi of various mining 

technology, the mining technology with maximum value of adaptability-degree is 
the rational mining technology. 

Stripping technology: 1 2 3{ , , , }I B B BB Max R R R= ;  

Mining technology: 1 2 3{ , , , }I C C CC Max R R R= . 

If we do a adaptability evaluation on a mining technology system which is 
selected by an opencast coalfield, we can get the index values of fitness-degree RB, 
RC, the value of fitness-degree is the number in the area [0, 1], the criteria of the 
adaptability-degree is as follows: 

 

.
[0.9,1.0] , indicating the technology is entirely suitable for the opencast coalfield.
[0.8, 0 9) , indicating the technology is suitable for the opencast coalfield.
[0.7, 0.8) , indicating the technol

B

B

B

R

R

R

�
�
� ogy is less suitable for the opencast coalfield.

[0.6, 0.7) , indicating the technology is not very suitable for the opencast coalfield.
[0.0, 0.6) , indicating the technology is not suitable for the op

B

B

R

R

�
� .encast coalfield  

4   Conclusion 

(1) The factors that influence the selection of the surface-mining technology 
system including: the natural conditions of mineral deposit, available equipments, 
production scale, requirements for ore quality, sources of funding for purchasing 
equipment, requirements of environmental protection, economic and technological 
conditions around mining area and so on; 
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(2) It makes a systematic classification of the surface-mining technology, it 
determines 23 types of commonly used strip mining technology and 15 mining 
technology; it also identifies a variety of mining technology in general use; 
(3) It establishes a evaluation index system for the adaptability evaluation of 
surface mining technology system, including 8 indexes of grade one, 20 indexes of 
grade two, 69 indexes of grade three; 
(4) It determines the adaptability evaluation methods of mining technology, it 
quantifies various applicable conditions of surface mining technology and it 
establishes adaptability subordination-degree function between surface coalfield 
and mining technology. Through calculating the value of subordination-degree of 
every factor and calculating comprehensive adaptability value RBi, RCi according 
to weight coefficients of every factor, it concludes that the type of mining 
technology with the maximum value of adaptability-degree is the rational mining 
technology system. 
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Abstract. In this paper we consider the blow-up for initial and Dirichlet
boundary-value problem of a class of nonlinear Schrödinger equations with
potential. We establish a conservative difference spectral approximation and
propose sufficient conditions for the blow-up of approximation as well as the
maximum time interval of existence of the solution. Finally it is proved that
the spatial location of the radially symmetric blow-up solution is the origin.

Keywords: Nonlinear schrödinger equation, blow-up, spectral method.

1 Introduction

Nonlinear Schrödinger equation is a fundamental model in quantum mathe-
matics mechanics. Classical nonlinear Schrödinger equation (without poten-
tial) is used to describe some phenomena is quantum physics, such as the
propagation of laser beam in dispersive and nonlinear medium, self trapping
in nonlinear optics ([1]) and Langmur waves in plasma ([2]). The nonlinear
Schrödinger equation with potential has also definite physical background,
especially the nonlinear Schrödinger equation with a harmonic potential is
known as a model for describing the remarkable Bose-Einstein condensate
(BEC) ([3,4]).

In this paper we consider the following the nonlinear Schrödinger equation
with potential

⎧⎨⎩
iut + "u− v(x)u + λf(|u|2)u = 0, (x, t) ∈ Ω × [0, T ), (1.1)
u(x, 0) = u0(x), x ∈ Ω, (1.2)
u(x, t)|x∈∂Ω = 0. t ≥ 0, (1.3)

where i =
√
−1, ut = ∂u

∂t , Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
d
, Ω is a bounded domain in

Rd, with boundary ∂Ω and Ω = Ω∪∂Ω. u(x, t) is a complex-valued function
defined on Ω × [0, T ), v(x) is a known real function, and λ ≥ 0 is a real
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parameter, f(s) = sp. ReZ denotes real part of Z, ImZ denotes imaginary
part of Z.

The equation has infinitely many conservation laws, include L2 norm, the
energy and Momentum, whose explicit form is.

•L2-norm:

d

dt
E0(u) = 0, where E0(u) =

∫
Ω

|u|2dx. (1.4)

• Energy:

d

dt
E1(u) = 0, where E1(u) =

∫
Ω

|∇u|2dx +
∫

Ω

v(x)|u|2dx − λ

p + 1

∫
Ω

|u|2p+2dx.

(1.5)

The nonlinear Schrödinger equation (1.1) is a typical dispersive wave equa-
tion, which reflects the relation between dispersion and nonlinear interaction.
When dispersion dominate, energy disperse in space and solution exists glob-
ally, decaying with time evolving ([5,6]). When the dispersion and nonlinear
reach balance, the nonlinear Schrödinger equation has localized, finite en-
ergy solutions which are often standing waves ([7]). When the nonlinearity
dominate, wave will collapse and the solution blow up in finite time ([8]).

In this paper we are interested in the numerical approximation of blow-
up the initial and Dirichlet boundary-value problem for a class of nonlinear
Schrödinger equations with potential. Many numerical schemes are used to
simulate the nonlinear Schrödinger Equation [9] including finite difference[10],
finite element [11] and pseudo-spectral [12] schemes. Notice that the paper
about numerical approximation for blow-up of nonlinear Schrödinger equa-
tion are few considered. In [13,14] Akrivis, Dougalis [13] and Salvador Jiménez
[14] only studied that numerical approximation in radially symmetric case for
v(x) = 0, λ = 1, p = 2.

The organization of the paper is as follows. In Section 2, we established
a fully discrete spectral scheme, that is, which carry out discrete in time. In
section 3, it is proven that the approximate solutions satisfy three conserva-
tion laws, a sufficient condition for the blow-up approximate solution is given
as well, i.e. the solution would blow up if the initial value with certain con-
ditions, an explicit upper bound of the T interval of existence of the solution
is obtained.

2 Fully Discrete Spectral Method

For 1 ≤ q ≤ ∞, we introduce the space Lq(Ω) = {v; ‖v‖Lq < ∞}, where the
corresponding norm is denoted by
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‖v‖Lq =

⎧⎪⎨⎪⎩
(∫

Ω

|v|qdx
) 1

q

, 1 ≤ q < ∞,

ess sup
x∈Ω

|v(x)|, q = ∞.

We recall that (·, ·) and ‖·‖ are the inner products and the norms of L2 for

p = 2 respectively, where (u, v) =
∫
Ω

u(x)v(x)dx, v is the conjugate function

of v.

Let ∂kxv =
∂kv

∂xk
for any positive integer m. We define the following space

Hm(Ω)
Hm(Ω) = {v; ∂kxv ∈ L2(Ω), 0 ≤ k ≤ m}.

For any fixed integerN ≥ 1, assume that PN (Ω) is the space of all algebraic
polynomials with complex coefficients of degree, i.e., the degree of each xj(j =
1, 2, · · ·, d). The piecewise polynomial space is defined as follows: PN (Ω) =
{φ ∈ L2(Ω), φ|Ω ∈ PN (Ω)}, VN = H1(Ω) ∩ PN (Ω), V 0

N = H1
0 (Ω) ∩ PN (Ω).

Let Δt = T
M is the time step and tn = nΔt(n = 0, 1, 2, · · ·,M), where

M is a positive integer. We seek un approximating u(tn) and satisfying for
n = 0, 1, 2, · · ·,M − 1.

Define

φ∗(u, v) =
1

p + 1
up+1 − vp+1

u− v
=

up + up−1v + · · · + uvp−1 + vp

p + 1
,

φ(u, v) = φ∗(|u|2, |v|2).

We construct the following scheme of fully-discrete approximation: find
un+1
N ∈ V 0

N , n = 0, 1, · · · ,M − 1 such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i(
un+1
N − unN

"t
, χ) − (

∇un+1
N + ∇unN

2
,∇χ) − (v(x)

un+1
N + unN

2
, χ)

+λ(φ(un+1
N , unN )

un+1
N + unN

2
, χ) = 0, ∀χ ∈ V 0

N , (2.1)

u0
N = P 0

1,Nu0. (2.2)

3 Conservation Laws and Sufficient Conditions for
Blow-Up of Approximate Solution

It is commonly accepted that to simulate Hamiltonian wave processes sym-
metric and conservative schemes are preferred over conventional ones because
of their better global stability and long time behavior. Therefore we obtain
the following theorem.

Theorem 3.1. The solutions unN (∀n = 0, 1, · · ·,M −1) of (2.1)-(2.2) satisfy
the following conservation laws:
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E0(unN) = ‖unN‖ = ‖u0
N‖ = E0(u0

N ), (3.1)

E1(unN) = ‖∇unN‖2 +
∫
Ω

v(x)|unN |2dx− λ

p + 1
‖unN ||2p+2

L2p+2 = E1(u0
N ). (3.2)

Proof. Let χ = unN + un+1
N in (2.1), taking the imaginary part, we obtain

the (3.1) easily. Similarly, (3.2) can be reduced by taking the real part of
χ = unN − un+1

N .
For convenience, let ϕn = 1

2 (unN + un+1
N ), then the scheme (2.1) can be

rewritten as

i(
un+1
N − unN

"t
, χ)−(∇ϕn,∇χ)−(v(x)ϕn, χ)+λ(φ(un+1

N , unN)ϕn, χ) = 0. (3.3)

In the following, we consider about the blow-up of estimate solution.

Theorem 3.2. Suppose that p ≥ 4
dλ , 2v(x) + x · ∇v(x) ≥ 0, and if u0(x) ∈

H1
0 (Ω) satisfies either of the following conditions,

(1) E1(u0
N) < 0;

(2) E1(u0
N) = 0, S0 < 0;

(3) E1(u0
N) > 0, S0 < 0, S2

0 > 16E1(u0
N )W0;

where

Sn = S(tn) = 2Im
∫
Ω

[(x · ∇un+1
N )un+1

N + (x · ∇unN)unN ]dx, (3.4)

and
Wn = W (tn) =

∫
Ω

|x|2|unN |2dx, (3.5)

then the solution unN of (2.1)-(2.2) does not globally exist and the time interval
is bounded by

T ≤ T ∗ =
2W0√

S2
0 − 16E1(u0

N )W0 − S0
. (3.6)

Proof. Let χ = |x|2ϕn in equations (3.3), then taking imaginary part, we
obtain

Re

∫
Ω

un+1
N − unN

Δt
|x|2(un+1

N + unN )dx = 4Im
∫
Ω

(x · ∇ϕn)ϕndx, (3.7)

i.e.,

Wn+1 −Wn

"t
=

∫
Ω
|x|2|un+1

N |2dx−
∫
Ω
|x|2|unN |2dx

Δt
= 4Im

∫
Ω

(x · ∇ϕn)ϕndx.

(3.8)
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Set Fn = 4Im
∫
Ω(x · ∇ϕn)ϕndx,

Fn − Fn−1

Δt
=

4
Δt

Im[
∫
Ω

(x · ∇ϕn)ϕndx −
∫
Ω

(x · ∇ϕn−1)ϕn−1dx]

= − 2d
Δt

Im

∫
Ω

(ϕn + ϕn−1)(ϕn − ϕn−1)dx

− 4
Δt

Im

∫
Ω

[x · (∇ϕn + ∇ϕn−1)](ϕn − ϕn−1)dx

= I1 + I2, (3.9)

in the following, we deduce the estimations of I1 and I2, respectively,

I1 = − 2d
Δt

Im

∫
Ω

(ϕn + ϕn−1)(ϕn − ϕn−1)dx

= −dIm[
∫
Ω

ϕn
un+1
N − unN

Δt
dx +
∫
Ω

ϕn−1u
n
N − un−1

N

Δt
dx

+
∫
Ω

ϕn−1u
n+1
N − unN

Δt
dx +
∫
Ω

ϕn
unN − un−1

N

Δt
dx]

= −2dIm
∫
Ω

ϕn
un+1
N − unN

Δt
dx− 2dIm

∫
Ω

ϕn−1u
n
N − un−1

N

Δt
dx

+2dIm
∫
Ω

unN − un−1
N

2
un+1
N − unN

Δt
dx. (3.10)

I2 = − 4
Δt

Im

∫
Ω

[x · (∇ϕn + ∇ϕn−1)](ϕn − ϕn−1)dx

= −2Im[
∫
Ω

(x · ∇ϕn)
un+1
N − unN

Δt
dx +
∫
Ω

(x · ∇ϕn−1)
unN − un−1

N

Δt
dx

+
∫
Ω

(x · ∇ϕn−1)
un+1
N − unN

Δt
dx +
∫
Ω

(x · ∇ϕn)
unN − un−1

N

Δt
dx]

= −4Im[
∫
Ω

(x · ∇ϕn)
un+1
N − unN

Δt
dx +
∫
Ω

(x · ∇ϕn−1)
unN − un−1

N

Δt
dx]

−2Im
∫
Ω

(x · ∇unN −∇un−1
N

2
)
unN − un−1

N

"t
dx

+2Im
∫
Ω

(x · ∇un+1
N −∇unN

2
)
un+1
N − unN

"t
dx

−2dIm
∫
Ω

unN − un−1
N

2
un+1
N − unN

Δt
dx. (3.11)
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In terms of (3.10) and (3.11) can be rewritten as

Fn − Fn−1

Δt
− 2Im

∫
Ω

(x · ∇un+1
N −∇unN

2
)
un+1
N − unN

"t
dx

+2Im
∫
Ω

(x · ∇unN −∇un−1
N

2
)
unN − un−1

N

"t
dx

= −2dIm
∫
Ω

ϕn
un+1
N − unN

Δt
dx− 2dIm

∫
Ω

ϕn−1u
n
N − un−1

N

Δt
dx

−4Im
∫
Ω

(x · ∇ϕn)
un+1
N − unN

Δt
dx

−4Im
∫
Ω

(x · ∇ϕn−1)
unN − un−1

N

Δt
dx. (3.12)

Noting Sn = 2Im
∫
Ω

[(x · ∇un+1
N )un+1

N + (x · ∇unN )unN ]dx, (3.12) is equivalent
to

Sn − Sn−1

Δt
= −2dIm

∫
Ω

ϕn
un+1
N − unN

Δt
dx− 2dIm

∫
Ω

ϕn−1u
n
N − un−1

N

Δt
dx

−4Im
∫
Ω

(x · ∇ϕn)
un+1
N − unN

Δt
dx

−4Im
∫
Ω

(x · ∇ϕn−1)
unN − un−1

N

Δt
dx

= Θ1 + Θ2 + Θ3 + Θ4. (3.13)

Because of

Θ1 = −2dIm
∫
Ω

ϕn
un+1
N − unN

Δt
dx

= 2dRe

∫
Ω

ϕn[−Δϕn + v(x)ϕn − λ(φ(un+1
N , unN)ϕn]dx

= 2d‖∇ϕn‖2 + 2d
∫
Ω

v(x)|ϕn|2dx− 2dλ
∫
Ω

φ(un+1
N , unN)|ϕn|2dx, (3.14)

similarly

Θ2 = 2d‖∇ϕn−1‖2 + 2d
∫
Ω

v(x)|ϕn−1|2dx − 2dλ
∫
Ω

φ(unN , un−1
N )|ϕn−1|2dx,

(3.15)

Θ3 = −4Im
∫
Ω

(x · ∇ϕn)
un+1
N − unN

Δt
dx

= 4Re

∫
Ω

(x · ∇ϕn)[−Δϕn + v(x)ϕn − λ(φ(un+1
N , unN )ϕn]dx
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≤ (4 − 2d)‖∇ϕn‖2 − 2d
∫
Ω

v(x)|ϕn|2dx− 2
∫
Ω

(x · ∇v(x))|ϕn |2dx

−2λ
∫
Ω

(x · ∇|ϕn|2)φ(un+1
N , unN)dx. (3.16)

Similar to the estimation of Θ3, we have

Θ4 ≤ (4 − 2d)‖∇ϕn−1‖2 − 2d
∫
Ω

v(x)|ϕn−1|2dx− 2
∫
Ω

(x · ∇v(x))|ϕn−1|2dx

−2λ
∫
Ω

(x · ∇|ϕn−1|2)φ(unN , un−1
N )dx. (3.17)

Consequently, we obtain the estimation (3.13) in terms of (3.14),(3.15) and
(3.16),

Sn+1 − Sn

Δt
≤ 4(‖∇ϕn−1‖2 + ‖∇ϕn‖2) − 2

∫
Ω

(x · ∇v(x))(|ϕn−1|2 + |ϕn|2)dx

−2dλ

∫
Ω

φ(un+1
N , un

N )|ϕn|2dx − 2dλ

∫
Ω

(x · ∇|ϕn|2)φ(un+1
N , un

N )dx

−2dλ

∫
Ω

φ(un
N , un−1

N )|ϕn−1|2dx

−2λ

∫
Ω

(x · ∇|ϕn−1|2)φ(un+1
N , un

N )dx. (3.18)

In the following, we concern about the nonlinear term above, that is

−2dλ

∫
Ω

φ(un+1
N , un

N)|ϕn|2dx − 2λ

∫
Ω

(x · ∇|ϕn|2)φ(un+1
N , un

N )dx

= 2λ

∫
Ω

(x · ∇(φ(un+1
N , un

N )|ϕn|2)dx − 2λ

∫
Ω

(x · ∇|ϕn|2)φ(un+1
N , un

N )dx

= 2λ

∫
Ω

(x · ∇φ(un+1
N , un

N ))|ϕn|2dx

=
λ

p + 1

∫
Ω

(x · ∇(|un+1
N |2p + |un+1

N |2p−2|un
N |2 + · · · + |un

N |2p)
1
2
|un+1

N + un
N |2dx

≤ λ

p + 1

∫
Ω

(x · ∇(|un+1
N |2p + |un+1

N |2p−2|un
N |2 + · · · + |un

N |2p)(|un+1
N |2 + |un

N |2)dx,

by Young’s inequality,

|un+1
N |2p−2k|unN |2k(|un+1

N |2 + |unN |2)
= |un+1

N |2p−2k+2|unN |2k + |un+1
N |2p−2k|unN |2k+2

≤ p− k + 1
p + 1

|un+1
N |2p+2 +

k

p + 1
|unN |2p+2 +

p− k

p + 1
|un+1
N |2p+2 +

k + 1
p + 1

|unN |2p+2

=
2p− 2k + 1

p + 1
|un+1
N |2p+2 +

2k + 1
p + 1

|unN |2p+2(k = 0, 1, · · ·, p).
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Consequently,

2λ
∫
Ω

(x · ∇φ(un+1
N , unN ))|ϕn|2dx ≤ − pdλ

p + 1

∫
Ω

(|un+1
N |2p+2 + unN |2p+2)dx.

(3.19)
Moreover, due to the conservation laws E1(unN ) = E1(u0

N) and their expres-
sions, together with the hypothesis in theorem 3.2, (3.18) can be rewritten
as

Sn+1 − Sn

Δt
≤ 2(‖un+1

N ‖2 + 2‖un
N‖2 + ‖un−1

N ‖2)

−
∫

Ω

(x · ∇v(x))(|un+1
N |2 + 2|un

N |2 + |un−1
N |2)dx

− pdλ

p + 1
(‖un+1

N ‖2p+2

L2p+2 + 2‖un
N‖2p+2

L2p+2 + ‖un−1
N ‖2p+2

L2p+2))

≤ 16E1(u0
N ) −
∫

Ω

(2v(x) + x · ∇v(x))(|un+1
N |2 + 2|un

N |2 + |un−1
N |2)dx

−λ
dp − 4
p + 1

(‖un+1
N ‖2p+2

L2p+2 + 2‖un
N‖2p+2

L2p+2 + ‖un−1
N ‖2p+2

L2p+2)

≤ 16E1(u0
N ). (3.20)

Consequently,
Sn ≤ S0 + 16E1(u0

N )T . (3.21)

Moreover, because that an equivalent expression of (3.20) can be expressed
as

Wn+1 − 2Wn + Wn−1

Δt2
=

Sn+1 − Sn
Δt

≤ 16E1(u0
N ), (3.22)

Wn ≤ W0 + S0T + 8E1(u0
N )T 2. (3.23)

If limtn→T∗ Wn = limtn→T∗
∫
Ω
|x|2|unN |2dx = 0, the right-hand side of the

last inequality becomes negative for T > T ∗ provided one of assumptions
(1)-(3) of Theorem 3.2 holds.

Theorem 3.3. Assume that the conditions of Theorem 3.2 hold. If

lim
tn→T∗

∫
Ω

|x|2|unN |2dx = 0, (3.24)

where T ∗is the smallest positive zero of Wn,then

lim
tn→T∗

‖unN‖Lq = 0 if 1 ≤ q < 2, (3.25)

and
lim

tn→T∗
‖unN‖Lq = +∞ if 2 < q ≤ +∞. (3.26)



The Blow-Up of Discrete Solution for NLS Equation with Potential 787

Proof. Let q ∈ [1, 2) be a fixed number, choose a constant α such that

0 < α < min{q, d
2
(2 − q)},

then apply the Hölder inequality two times, we get with regard to (3.2)∫
Ω

|unN |qdx =
∫
Ω

|x|−α|x|α|unN |qdx

≤ (
∫
Ω

|x|−
2α
2−q dx)(2−q)/2(

∫
Ω

|x|2α/q |unN |2dx)q/2

= c(
∫
Ω

|x|2α/q|unN |2α/q|unN |2(1−α/q)dx)q/2

≤ c(
∫
Ω

|x|2|unN |2dx)α/2(
∫
Ω

|unN |2dx)(q−α)/2

= c(
∫
Ω

|x|2|unN |2dx)α/2‖u0
N‖q−αdx → 0,

as tn → T ∗, tn < T ∗, where c is a positive constant, therefor

lim
tn→T∗

‖unN‖Lq = 0 if 1 ≤ q < 2.

If q > 2, then we use the Hölder inequality once more to obtain

0 < ‖u0
N‖2 = ‖unN‖2 ≤ ‖unN‖Lq‖unN‖Ls ,

where s ∈ [1, 2) and 1/q + 1/s = 1. Noting (3.24) and the assumption that∫
Ω

|x|2|unN |2dx → 0 as tn → T ∗,

we conclude

lim
tn→T∗

‖unN‖Lq = +∞ if 2 < q ≤ +∞.

Corollary 3.1. Assume that the conditions of Theorem 3.2 hold. The in-
equality

‖∇unN‖ ≥ d

2
‖unN‖2

‖xunN‖
implies that

lim
tn→T∗

‖∇unN‖ = +∞, (3.27)

if
∫
Ω
|x|2|unN |2dx → 0 as tn → T ∗.

Corollary 3.2. Suppose that u0(x) is radially symmetric and it satisfies the
conditions of the theorem 3.2 if d ≥ 2. Then the solutions of (2,1) and (2.2),
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i.e., unN(∀n = 0, 1, · · ·,M), will blow up in limit time, and the origin is the
point of blow-up. That is, ∀R > 0, it holds

(i) limtn→T∗ ‖unN‖L∞(|x|<R) = +∞,

(ii) limtn→T∗ ‖unN‖Lq(|x|<R) = +∞ (2 < q ≤ ∞).

In fact, according to∫
|x|>R

|unN |2dx ≤ 1
R

∫
Ω

|x|2|unN |2dx → 0 (tn → T ∗),

and
‖unN‖qLq(|x|<R) ≤ ‖unN‖L2‖unN‖q−2

L∞(|x|<R),

both (i)and (ii) can be obtained easily.

4 Conclusion

In all, we study the blow-up for initial and Dirichlet boundary-value prob-
lem of a class of nonlinear Schrödinger equations with potential. We construct
fully discrete spectral method by difference in time and by the spectral scheme
in space. We prove that the scheme satisfies the conservation of energy. Then
both sufficient conditions about the blow-up approximation and the maxi-
mum time interval of the solution existence are obtained. It is proved that
the blow-up point in space is the origin for radial symmetry if the solution
blows up.

Acknowledgements. The research is supported by Fujian National Science Foun-
dation of China Grant 2008J0198.
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équations de Schrödinger de Klein-Gordon non linéairees. C. R. Acad. Sci.
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P-Sets and F -Data Selection-Discovery 
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Abstract. P-sets (packet sets) are set pair which are composed of internal P-sets XF 
(internal packet set XF) and outer P-sets XF (outer packet sets XF), or (XF ,XF) is 
P-sets. P-sets have dynamic characteristics. P-sets which come from finite general 
sets have new mathematic structure and the concept of P-sets is new. Based on 
P-sets, the concept of F -data, F -data selection guideline , F -data selection 
theorem are given. By using these results, applications of F -data selection are 
proposed. P-sets are new method to study data system. 

Keywords: P-sets, F -data, data selection, data circle theorem, data selection 
theorem, applications. 

1   Introduction 

There is an example as this: 1 2 3 4 5, , , ,x x x x x are five apples which have 

1 2red, sweetα α= = , then there is a set of apple 1 2 3 4 5{ , , , , }=X x x x x x ; in other words, 
every ∈kx X in X has 1α and 2α , 1,2, ,5k = " . If 1α and 2α are defined as 
attributes ∈kx X , 1 2 3 4 5{ , , , , }X x x x x x= has attribute set 1 2{ , }α α α= . Obviously, 
set X and setα are corresponding, or, given set 1 2 3 4 5{ , , , , }=X x x x x x , there must 
be set 1 2{ , }α α α= ; ,i ix X x∀ ∈ has 1 2{ , }, 1,2, ,5iα α α= = " . If attribute 

3 200gα = is added to attribute set α , or, 1 2{ , }α α α= changes into 

3 1 2 3{ } { , , },Fα α α α α α= =∪ then attribute set 1 2 3 4 5{ , , , , }=X x x x x x changes 
into attribute set 1 4 1 4{ , }; ,F FX x x x x X= ∈ have attribute set Fα . There easily to 
see: If attribute setα is supplemented by attribute set 3α ,then the set of apple 
becomes smaller, X changes into FX , or 1 4 1 2 3 4 5{ , } { , , , , }FX x x x x x x x X= ⊆ = . 
This is a simple fact. Further discussion we have: given set 1 2{ , , , }mX x x x= " , 

1 2{ , , , }kα α α α= " is attribute set of X . If X is defined as data X , then data X  
has attribute setα . Adding attributes 1 2, , ,k k k rα α α+ + +" to α , we can select data 

1 2{ , , , }F
nX x x x= " from X ,we want to get data FX , where 1 2{ , , , }F

nX x x x= "  

1 2 1 2 1 2 1{ , , , } { , , , } { , , , , , , }F
m k k k r k k k rx x x X α α α α α α α α α α+ + + + +⊆ = = =" ∪ " " "，

is attribute set of data FX . This example is similar to P-sets [1,2], )F FX X（ . In 2008, 
Ref. [1,2] introduced dynamic characteristic to finite general set X  (cantor set X ), 
the finite general set X is improved and P-sets (packet set) are proposed, the 
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structure and applications of P-sets are given. P-sets are new module to study data 
system and information system. 

Using structure of P-sets, the paper gives concept F -data, F -data selection 
guideline and F -data selection theorem. The results given in this paper can be used 
in many applied fields of data system and information system. 

For the convenience and keeping the contents integral, the structure of P-sets is 
introduced to section 2 as the theory basis of the discussion of this paper. The more 
concepts and applications of P-sets, please to see Ref. [1-5]. 

2   The Structure and Characteristic of P-sets  

Assumption 1. X  is  a  finite general set on U , U is  a  finite element universe, 
V  is  a  finite attribute universe. 

Given a general set 1 2{ , , , }mX x x x= " U⊂ , and 1 2{ , , , }k Vα α α α= ⊂"  is 

attribute set of X , FX  is called internal packet sets of X , called internal P-sets 
for short, moreover  

                                                   FX X X −= − .                                                  (1) 

X −  is called F -element deleted set of X , moreover 

                         { | , ( ) , }X x x X f x u X f F− = ∈ = ∈ ∈ ,                                (2) 

if the attribute set  Fα  of  FX  satisfies 

{ | ( ) , }F f f Fα α α β α α′ ′= = ∈ ∈∪ ,                                 (3) 

where , , ,FX V f Fφ β β α≠ ∈ ∈ ∈  turns β  into ( )f β α′= α∈ . 

Given a general set 1 2{ , , , }mX x x x U= ⊂" , and 1 2{ , , , }k Vα α α α= ⊂"  is 

attribute set of X , FX  is called outer packet sets of X , called outer P-sets for 
short, moreover 

                                  FX X X += ∪ .                                                              (4) 

X +  is called F -element supplemented set, moreover 

{ | , , ( ) , }X u u U u X f u x X f F+ ′= ∈ ∈ ∈ ∈ ∈ ,                     (5)  

if the attribute set Fα  of FX  satisfies 

{ | ( ) , }F
i i if f Fα α β α β α= − = ∈ ∈ ,                            (6) 

where , ,F
i f Fα φ α α≠ ∈ ∈  turns iα  into ( )i if α β α= ∈ . 
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The set pair which are composed of internal P-sets FX  and outer P-sets  FX  are 
called P-sets (packet sets) generated by general set X , called P-sets for short, 
moreover  

                                                  ( , )F FX X ,                                                      (7) 

where: General set X  is ground set of ( , )F FX X . 

As P-sets have dynamic characteristic, the general representation of P-sets is: 

                                      {( , ) | I, J}F F
i jX X i j∈ ∈ ,                                             (8)  

where : I, J are index sets, formula (8) is the representation of set pair family of 
P-sets. 

U
FX

X
FX

 

Fig. 1. Gives intuitive graphical representation of P-sets. X U⊂  is a finite general set on 

1 2{ , , , } ,= "
q

X x x x FX is internal P-sets of 1 2, { , , , }, ,⊂ = ≤"F
pX U X x x x p q FX is 

outer P-sets of 1 2, { , , , },F

r
X U X x x x⊂ = " ,≤q r ( , )F FX X is P-sets. FX is expressed in 

thick line, X is expressed in thin line, FX is expressed in dashed line. 

Theorem 1. If F F φ= = , then P-sets ( , )F FX X  and general set X satisfy 

( , )F F
F FX X X= =∅ = .                                 (9) 

Proof. If F φ= ,then formula (2) changes into { | , ( )X x x X f x u− = ∈ =  

,X∈ }f F φ∈ = , formula (1) changes into ,−= − =FX X X X If ,φ=F then 

formula (5) changes into { | , , ( ) , } ,X u u U u X f u x X f F φ+ ′= ∈ ∈ = ∈ ∈ =   

formula (4) changes into =FX .+ =∪X X X P-sets ( , )F FX X changes into X , 

then there is formula (10). 



794 M. Xiu, K.-q. Shi, and L. Zhang
 

Formula (10) proposes that under the condition of φ= =F F , 

P-sets ( , )F FX X turns back to “origin” of general set , in other words, P-sets have 

lost dynamic characteristics, actually, P-sets ( , )F FX X  is general set X . 

 
Theorem 2. If F F φ= = , then the set pair family of P-sets {( , ) | I, J}F F

i jX X i j∈ ∈ and 

general set X satisfy: 

{( , ) | I, J}F F
i j F FX X i j X= =∅∈ ∈ = .                     (10) 

Formula (11) proposes that under the condition of φ= =F F , every F
iX , F

jX  

turns back to “origin” of general set , or {( , ) | I, J}F F
i jX X i j∈ ∈  turns back to 

“origin” of general set . The proof of theorem 2 is similar to theorem 1’s, so the 
proof is omitted. 

It is should be pointed out here: 

1Di The characteristic of formulas (1), (3), (4), (6) is similar to the structure of 

1T T= +  in computer memory. In the field of computer science, 1T T= + is a 
simple, common concept, people are familiar with it. They have dynamic 
characteristic. The dynamic characteristic of formula (3) is that 1β changes 

into 1 1( )f β α′= , 1α′  comes intoα and 1
Fα is obtained, or, 1 1{ ( )}F fα α β α= =∪ ∪  

1 1{ } { , }α α α′ ′= . If 1
Fα α= , 2 3,β β change into 2 2 3 3( ) , ( )f fβ α β α′ ′= = ; 2 3,α α′ ′ come 

into 1
Fα and 2

Fα  is obtained, or, 2 2 3 1 2 3 1 2{ , } { , } { , } { ,F Fα α α α α α α α α α′ ′ ′ ′ ′ ′= = =∪ ∪ ∪  

3 1 2 3} { , , , }.α α α α α′ ′ ′ ′= If 2
Fα α= , 4β  changes into 4 4( )f β α′= , 4α′ comes into 2

Fα , 

or, 3 4 2{ }F Fα α α α′= =∪ ∪ 4 1 2 3 4 1 2 3 4{ } ({ , } { , }) { } { , , , , },α α α α α α α α α α α′ ′ ′ ′ ′ ′ ′ ′ ′= =∪ ∪  

and so on, apparently, formula (3) is similar to the structure of 1T T= + . It is 
wrong to use the viewpoint of "static"  or  "classical mathematics"  to understand the 
four formulas. 

2Di 1 2 1 2{ , , , } , { , , , }m nF f f f F f f f= =" " are element transfer families 

[1-3], ,f F f F∈ ∈  are element transfers[1-3], The characteristic of f F∈ is: 

, ,u U u X f∈ ∈ F∈ changes u into ( )f u x X′= ∈ ,or , ,V fβ β α∈ ∈ ∈ F  

changes β into ( )f β α α′= ∈ . The characteristic of f F∈  is: ,x X f F∈ ∈  

changes x  into ( )f x u X= ∈ , or ,iα α∈ f F∈  changes iα into ( )i if α β α= ∈ . 

Obviously, ,f F f F∈ ∈  are given functions (function is a transformation or 

mapping).  
o3 . In formula (3): { | ( ) , }F f f Fα α α β α α′ ′= = ∈ ∈∪ ,{ | ( ) ,fα β α α′ ′= ∈  

}f F∈ is composed of attributes which are added toα , { | ( ) ,fα β α α′ ′= ∈  
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}f F∈ and α which hasn’t been supplemented by attributes satisfy that 

{ | ( ) , }f f Fα β α α α φ′ ′= ∈ ∈ =∩ . For example: 1 2 3{ , , }α α α α= ,{ | ( )fα β α′ ′=  

1 2 3, } { , , }, , 1,2,3;k kf F kα α α α α α′ ′ ′ ′∈ ∈ = ≠ = apparently,as α and { | ( )fα β′ =
, }f Fα α′∈ ∈ have no common elements, { | ( ) , }f f Fα α β α α φ′ ′= ∈ ∈ =∩ . 

So the conclusion of “As { | ( ) , }f f Fα β α α α′ ′= ∈ ∈ ⊆ , { | ( )F fα α α β′= ∪  

, }f Fα α′= ∈ ∈ α= ”  is wrong.  
o4 .  Formulas (1)-(3) give concepts as this: Some attributes are deleted from 

X , X generates internal P-sets FX , it is equivalent to attribute setα of X being 

supplemented by new attributes, α generates Fα , Fα α⊆ .Or, if 1 2,F Fα α are 

attribute sets of 1 2,F FX X respectively, moreover 1
Fα ⊆ 2

Fα , then 2 1
F FX X⊆ . 

{ | ( ) ,fα β α α′ ′= ∈ }f F∈ in formula (3) isn’t attribute set of X − which is 

composed of elements deleted from X , or{ | ( ) , }f f Fα β α α′ ′= ∈ ∈  is attribute 

set of X − , X − is formula (2). 
The reason and evidence for the existence of set pair family 

{( , ) | I, J}∈ ∈F F
i jX X i j  

Given finite general set 1 2{ , , , }mX x x x U= ⊂" , 1 2{ , , , }k Vα α α α= ⊂" is 

attribute set of X . If α is supplemented by some attributes at the same time some 

attributes are deleted from it, then α changes into 1 1, ,α αF F
1 1 ,α α≠F F α ⊆  

1 1,α α α⊆F F . By formulas (1)-(7), there is P-sets 1 1, )F FX X（ of X .If this process 

continues, thenα  changes into 2 2 2 2 2 2, , , ,F F F F F Fα α α α α α α α≠ ⊆ ⊆  respectively. 

By formulas (1)-(7) , there is P-sets 2 2, )F FX X（ of X ,and so on. These a string of set 

pairs , )F F
i iX X（  compose set pair family of formula (8). 

By the concepts in section 2, section 3 gives: 

3   F -Data and F -Data Selection Theorem 

Assumption. , ,F FX X X in section 2 are expressed by ( ), ( ) , ( )F Fx x x respectively, 

or, ( ) , ( ) ,= =F Fx X x X ( ) =F Fx X , in order not to cause confusion and 

misunderstanding. 

Definition 1. ( )x is called data onU ,moreover 

1 2( ) { , , , }qx x x x= " ,                               (11) 

( )ix x∀ ∈ is called data element of ( )x , 1,2, ,i q= " . 

 



796 M. Xiu, K.-q. Shi, and L. Zhang
 

If ( )x has attribute set α , moreover 

1 2{ , , , }kα α α α= " .                                (12) 

Definition 2. ( )Fx  is called F -data generated by ( )x ,moreover 

  1 2( ) { , , , }F
px x x x= " ,                       (13) 

( )F
jx x∀ ∈  is called data element of ( )Fx . 

If the attribute set Fα of ( )Fx and attribute setα of ( )x satisfy 

{ | ( ) , }F f f Fα α α β α α′ ′= = ∈ ∈∪ .      (14) 

Definition 3. y  is called characteristic value set of ( )x , moreover 

1 2{ , , }qy y y y= " .                          (15) 

Fy is called characteristic value set of F -data ( )Fx , moreover 

1 2{ , , , }F
py y y y= " ,                             (16) 

where: iy y∀ ∈ is characteristic value of data element ( )ix x∈ , F
jy y∀ ∈  is 

characteristic value of data element ( )F
jx x∈ , , Ri jy y ∈ , R is real number set. 

 
Definition 4. O is called data circle generated by data ( )x which considers 

coordinate origin O as the center and considers ρ as the radius , if  

                                                 || || || ||y yρ = ,                                             (17) 

where: 2 2 2 1 2
1 2|| || ( )qy y y y= + + +"  is 2-Norm of vector 1 2( , , , )T

qy y y y= "  

generated by characteristic value set 1 2{ , , , }qy y y y= " , 1 2{ , , , }qy y y y= " is 

generated by formula (15). 
 
Definition 5. FO  is called F -data circle generated by F -data ( )Fx which 

considers coordinate origin O as the center and considers Fρ as the radius ,if 

|| || || ||F Fy yρ = ,                       (18) 

where： 2 2 2 1 2
1 2|| || ( )F

py y y y= + + +"  is 2-Norm of vector 1 2( , , , )F T
py y y y= " , 

Fy is vector generated by formula (15). 
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By definitions 1-6, there is 

Theorem 3  (Internal-data circle theorem of F -data selection) If *( )x is F -data of 

( )x , then data circle *O generated by *( )x and data circle O generated by ( )x  

satisfy 

* ⊂O O ,                                     (19) 

Where:“⊂ ”in formula (19) denotes that *O  is surrounded. 

 

Corollary 1 Given data ( ) , ( )x x′ ′′ , if data circle ′O generated by ( )x ′ is internal 

circle of data circle ′′O  generated by ( )x ′′ ,or 

′ ′′⊂O O ,                                        (20) 

then ( )x ′ is F -data of ( )x ′′ , ( ) ( )Fx x′ = . 

 

Theorem 4. (Attribute set theorem of F -data selection) Suppose *α is attribute set 

of data *( )x , and α  is attribute set of data ( )x , the necessary and sufficient 

condition of *( )x being F -data of ( )x  is  

*α α φ− ≠ .                                     (21) 

Corollary 2. F -data ( )Fx and data ( )x  satisfy  

                               ( )card(( ) ) card ( ) 0Fx x− ≤ ,                                           (22) 

where� card=cardinal number. 

By theorems 3, 4, corollaries 1, 2, we can get easily: 

F -Data Selection Guideline 

Adding attribute iα′ to attribute set α , α generates Fα , data ( )Fx  which has 

attribute set Fα is F -data of ( )x . 

Selection guideline give us a method to select F -data from data ( )x . 

Using concepts in section 2,3, section 4 gives: 

4   Application of F -Data Selection  

Example of this section is from data security transmission-identification system, A 
is transmission side of data ( )x , B is recipient side of data ( )x . Important data 
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*( )x hides in data ( )x , *( ) ( )x x⊂ .α is attribute set of data ( )x . Data ( )x  and its 

attribute set α  are included in table 1. 

Table 1. Data ( )x and its attribute set α  

( )x  1x  2x  3x  4x  5x  6x  7x  

α  1α  2α  3α      

 
 

where: the names of attributes 1 2 3, ,α α α are omitted, ix is data element of data 

( )x , 1 2 3 4 5 6 7( ) { , , , , , , }x x x x x x x x= , 1 2 3{ , , }α α α α= . 

Security Transmission Assumption of Data ( )x  

4 5,α α′ ′ are attributes added to α , or α is supplemented with attributes 4 5,α α′ ′ , 

α changes into 4 5 1 2 3 4 5{ , } { , , , , }α α α α α α α α α′ ′ ′ ′= =∪F . 4 5,α α′ ′ have characteristic 

values 1 2, ;γ γ 1 2, Nγ γ +∈ . By 1 2,γ γ , A and B select elliptic curve [12] jointly  

2 3= + +y x ax b .                                    (23) 

So there is the point 1 2( , ) ( ) {( , ) | , , ( , ) 0} { }E K x y x y K x y Oγ γ ρ∈ = ∈ = ∪   

which is constituted by 1 2,γ γ . 

 

1Di A uses public key B BP n G= in encryption of B to change 1 2( , )γ γ into 

ciphertext 1 2( , )C c c= , A transmits C to B. 

2Di B accepts C, B uses secret key Bn in encryption to get 1 2( , )γ γ  from C.  

The algorithm process of 1 ,D 2D , the secret key An of A and the selection of 

public key A AP n G= in encryption; the secret key Bn of B and the selection of public 

key B BP n G= in encryption, please to see Ref. [11,12], these discussions are 

omitted here. 

3Di B selects data ( )x ′ from ( )x . 

B accepts data 1 2 3 4 5 6 7( ) { , , , , , , }x x x x x x x x= in table 1, attribute set 1 2{ , ,α α α=  

3}α , B gets attributes 4 5,α α′ ′  from 1 2−D D , B proposes: 

4 5{ , }Fα α α α′ ′= ∪  

        1 2 3 4 5{ , , , , }α α α α α′ ′=  
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Using Fα , B accepts data ( )x ′ from ( )x  

2 3 7( ) { , , }x x x x′ =  

Where: 2 3 7 1 2 3 4 5 6 7( ) { , , } { , , , , , , } ( )x x x x x x x x x x x x′ = ⊆ = . 

5   Discussion 

The paper uses the structure and characteristics of P-sets to give the discussions of 
F -data and F -data selection, applications on data security transmission are given. 
P-sets are new mathematical model to study dynamic data system and dynamic 
information system, P-sets have great use of space, especially in computer science 
and information science. 
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AI-VCR Addition Computing without Overflowing 
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Abstract. In Computation of Numbers, addition is rather simple and universal computation 
of arithmetic. However, no matter what advanced computer in the world, and no matter 
what backward calculator(such as abacus in China etc.) in people’s hand, to do sum of 
addition is always a NP problem in all the time. Such as capacities of numbers in variables, 
precise computing (PC) of which is concerned with a certain algorithm, computing preci-
sion (CP) of which is limited to data bits of CPU word size in computer, perturbation mo-
tion(PM) of which is owing to some errors in computing of numbers, etc. This paper gives 
a realization of novel addition with AI-VCR computation in computer, and its reality solu-
tions of avoiding the sum value’s overflowing after many times additions, PM in arithmetic 
computation, insufficient valid figures, etc. 

Keywords: AI-VCR (Variable Carrying Rules), Addition, VCO (Variable Capacities of 
Overflowing), PM (Perturbation Motion), CPU (Central Processing Units). 

1   Forewords 

Nowadays, in international Mathematics and Computer Science, all researches on 
Numbers are mechanized [1] and only confined to same varying rules of FCN 
(Fixed Carrying Numbers). For example, 10-carrying numbers (D, Decimal num-
bers), it was used early in SHANG dynasty of China (From B.C. century 17 to 11), 
until A.D. century 6 it had been used in unity in all over the world [2], today it has 
been mainly used in unity for 15 centuries (more than 1500 years) in the world; And 
2-carrying numbers (B, Binary numbers) was used in main and unity in an inner 
Computer since 1946. Besides, 5-carrying numbers, 6-carrying numbers, 8-carrying 
numbers (Q, Octonal numbers), 16-carrying numbers (H, Hexadecimal numbers), 
etc. All FCN varying rules are called FCR(Fixed Carrying Rules), namely, in a 
FCN, neighbor Figures’ computation rule to be a Same: Binary numbers’ Same rules 
are “Plus 2 as 1, Borrow/Lend 1 as 2”, 5-carrying numbers’ Same rules are “Plus 5 
as 1, Borrow/Lend 1 as 5”, 6-carrying numbers’ Same rules are “Plus 6 as 1, Bor-
row/Lend 1 as 6”, Octonal numbers’ Same rules are “Plus 8 as 1, Borrow/Lend 1 as 
8”, Decimal numbers’ Same rules are “Plus 10 as 1, Borrow/Lend 1 as 10”,  Hexa-
decimal numbers’ Same rules are “Plus 16 as 1, Borrow/Lend 1 as 16”, and the like.  

However, in Role of Engineering in Human Society[3], some researches on 
Numbers must be AI(Artificial Intelligence) and Different varying rules of VCN 
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(Variable  Carrying Numbers) which was promoted by Qiusun Ye in 1995. 
Namely, in a VCN, neighbor Figures’ computation rule to be a Variable. For ex-
ample, the Numbers of time: 2006 years 8 months 5 days, 1 year=12 or 13(the 
lunar calendar of Chinese leap year) months, 1 month= 30 or 31 days(Chinese 
calendar may be 29 or 30 days, specially, in a normal year without including leap 
month, the February=28 days), 1 day=24 hours, 1 hour=60 minutes, 1 minute=60 
seconds. The different Figures(year, month, day, hour, minute and second) com-
putation rules are variable, it is also called VCR(Variable Carrying Rules). Qiusun 
Ye thought that, running & changing of matter in the world was absolute, and the 
matter’s stopping & fixing was relative; so the Numerical Rule, a certain conver-
sion regularity of computation we ought to abide by in a process of describing 
quantity of matters would be changed in the movement. In an astronomical year-
book, if scientists(who worked in China and in the other countries) didn’t inlay 
AI-Properties of VCR among the Figures such as year, month, day, hour, minute 
and second; then we couldn’t accurately describe periodic changing of weather in 
one year of which including 4 quarters with 24 climates, peasants wouldn’t know 
planting time for a variety of plants in nature. Of course, today under a big shed 
with plastic, peasants could also plant a variety of vegetables in different quarter’s 
climates, but these vegetables’ taste wouldn’t be so good for people in the course 
of nature. Numbers [4,5], the objects of its study, is mainly a quantity describing 
how much/many of matters. The matters ought to be an identical with broad mat-
ters in concept of Philosophy. It may be an objective reality matters in general 
sense such as fire, water, fish, and so on. And it also may be an abstract matters or 
an appearance of matters like that: sound, city, flood, and the like. To describe 
how much/many of the above matters mentioned, we can describe them as fol-
lows: 1 fish, 2 tons of water, 3 fire shows, 4 sounds, 5 cities, 6 times flood, and so 
forth. Of course, all of these numbers are integer type here. Sometimes, in need of 
a practice computation, numbers are also fraction type such as 0.5(or 1/2, decimal 
number with limited figures 0 and 5); 0.666…(or 2/3, recurring decimal number 
with limitless figures 6); 0.75(or 3/4, decimal number with limited figures 0, 7 and 
5); (25.513)6÷(5)6=(3.324111…)6, recurring decimal number with limitless figures 
1;π=3.1415926…(not recurring decimal number, πis the Ratio of circumference of 
a circle to its diameter), etc. 

After the 10th Conference of Chinese Association for Artificial Intelligence 
(CAAI) in 2003, the World Famous Mathematician, the first Top-Prize 
(¥5,000,000) Winner of National Science & Technology of China in 2000, the 24th 
Conference Chairman of World Mathematician in 2002, the third International 
Yifu Shao Mathematics Science Prize ($1,000,000) Winner in 2006, the Academi-
cian of Chinese Academy of Sciences (CAS), the Academician of the third World 
Academy of Sciences, the Pre-President of Chinese Mathematics Society(CMS), 
the Honor President of CMS, the Advisory Committee Honor Chairman of CAAI, 
Mr. Wentsun Wu was sure that, the VCN promoted by Mr. Qiusun Ye  was a 
novel broad concept of numbers, there would be indeed too much potential sci-
ence value of researches & applications on VCN. The Famous Expert of AI, the 
Advisory Committee Chairman of CAAI, the Pre-President of CAAI, the Honor 
President of CAAI, professor Xuyan Tu thought that, to research the VCN & its 
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applications, and create Mathematics Theory & Methods of the VCN, it owns very 
important meanings of academy and very wide value of applications, it may be 
used not only in Cyphering Science, Communication and Safety of Information, 
but also in all kinds of variable constructions, variable parameters, constructing 
models of complex systems and analysis & synthesis, researching & development 
of new theory or methods & new technology in AI. Thereupon, the Academician 
of Chinese Academy of Engineering (CAE), Editor in Chief of the journal of En-
gineering Sciences, Mr. Xuguang Wang was also interested in the VCN, so the 
invited paper of title as VCN & Its Role of Engineering in Human Society was to 
be published in the journal of Engineering Sciences (Vol.6, No.1, Mar., 2008). In 
this paper, it will introduce a novel practical AI-VCR addition computing without 
overflowing. 

2   Numbers Computation of VCN & FCN 

We suppose that, Fn-1Fn-2…F0.F-1F-2…F-m is an optional FCN of including n-
Figures integer and m-Figures fraction, and then its Real number value of the FCN 
may be computed in computation formula as follows: 

1

1 2 0 1 2 ( 1)
n

i
FCN n n m i

i m

R F F F F F F F r
−

− − − − −
=−

= ⋅⋅ ⋅ ⋅ ⋅ ⋅ = +∑i ,                           (1) 

1

1 2 0
0

( ) ( 1) 1 ( 1)
n

n i
FCN n n

i

Max I F F F r r r
−

− −
=

= ⋅⋅ ⋅ = + − = +∑ ,                         (2) 

( ) ( 1) ,DV
FCN DCP R r m n V−= + + ≤ (Digits of valid numbers),                         (3) 

1 2 0 1 2( ) ( 1) ( 1)n m
FCN n n mMax R F F F F F F r r −

− − − − −= ⋅⋅⋅ ⋅ ⋅ ⋅ = + − +i ,               (4) 

i N∈ , m N∈ , n N∈ , {1, 2,3, }N = ⋅⋅⋅ , 1 2 0FCN n nI F F F− −= ⋅⋅⋅ , ( )ir Max F= , 

1 1 2 2 0 0( ), ( ), , ( )n n n nR Max F R Max F R Max F− − − −= = ⋅⋅⋅ = .  

In an optional FCN, all the biggest Figures are equal to each other, namely, 

1 2 0n nR R R R r− −= = ⋅⋅ ⋅ = ≡ = . The Figures’ Module(FM) are equal to r+1. In a 

FCN integer of n-Figures, its Numbers’ Module(NM) is the biggest number plus 
one, namely,  

( ) 1 ( 1)n
FCNNM Max I r= + = + .                                   (5) 

Similarly, we suppose that, Fn-1Fn-2…F0.F-1F-2…F-m is an optional VCN of in-
cluding n-Figures integer and m-Figures fraction, and then its Real number value 
of the VCN may be computed in computation formula as follows: 

1 2 0 1 2VCN n n mR F F F F F F− − − − −= ⋅⋅ ⋅ ⋅⋅ ⋅ =i  

  

11

0
1 0

( 1)
kn

k i
k i

F r F
−−

= =

+ + +∑ ∏
1

1
1

2 1

( 1)
jm

j
j

F r F
− +−

−
−

=− =−

+ +∑ ∏ A
A

,            (6) 
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k N∈ , i N∈ , m N∈ , n N∈ , j I∈ , I∈A , { }I IntegerNumbers= .  

In an optional VCN integer of n-Figures, not all the biggest Figures are equal to 
each other, the Figures’ Module (FMi) are separately equal to Ri+1, its Numbers’ 
Module (NM) is the biggest number plus one, or Multiplication of Rolling with all 
FMs, namely, 

1i iFM R= + , {0,1,2, , 1}i n∈ ⋅⋅⋅ − , ( )i iR Max F= ,                              (7) 

1

0

( ) 1 100 00
n

VCN i
n zeros

i

NM Max I FM
−

− =

= + = ⋅⋅ ⋅ =∏ ,                                     (8) 

1
1( ) ( 1) ,

D

VCN i D
i V

CP R r m n V
−

−

=−

= + + ≤∏ (Digits of valid numbers),                   (9) 

1 1
1

1 2 0 1 2
0

( ) ( 1) ( 1)
n

VCN n n m i j
i j m

Max R F F F F F F r r
− −

−
− − − − −

= =−

= ⋅⋅⋅ ⋅⋅⋅ = + − +∏ ∏i .              (10) 

3   AI-VCR, VCO, CN, PM, CP and PC 

In a VCN, we know that different figures’ computation rules are called VCR, the 
VCR is relatively fixed in the VCN, but the VCN length of figures after making a 
certain computation(such as addition, etc.) with another number would be vari-
able, so the VCR is always dynamic in changing value of VCN. When the VCR 
will be designed in Artificial Intelligence (AI), this computation rule is called AI-
VCR [6]. 

In a computer, we know that capacity of number value is always limited for 
data word size of CPU(Central Processing Unit), the word size of CPU to be ex-
pressed with Bits of binary numbers(binary codes such as 0 and 1), such as 1 
Byte=8Bits, 2 Bytes=16Bits, 4 Bytes=32Bits, 8 Bytes=64Bits, etc. When a num-
ber value is over more than the biggest number (≥NM), the number will be over-
flowing in computer. However, if AI-VCR is used of designing a dynamic VCN, 
then NM of the VCN may be getting larger so that it is limitless, it results in with-
out overflowing forever. This is also called Variable Capacities of Overflowing 
(VCO).  

In Number Theory of Mathematics Science, Numbers are processed  in many 
kinds of arithmetic signs such as ＋, －, ×, ÷, etc. We called it Computation of 
Numbers (CN). In CN of traditional FCN and its extensive VCN, Perturbation 
Motion (PM) is the main origins of errors resulted in computing of numbers. Pre-
cise Computing (PC) is concerned with an algorithm of Mathematics, and Com-
puting Precision (CP) is concerned with valid number of Figures in computer, 
namely the data word size of CPU (Bits of binary numbers).  
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4   AI-VCR Addition Computing with VCO 

An addition computation SUM with i decimal numbers [R, Real decimal numbers 
including Integer(Whole number) and Fraction] may be described as follows: 

1 2
1

i

i j
j

S A A A A
=

= + + ⋅⋅ ⋅ + =∑ , j N∈ ,  {1, 2,3, }N = ⋅⋅⋅ ,                    (11) 

1 1 1 1 2 0 1 2 1 1 1n n m n mA F F F F F F D D− − − − −= ⋅⋅ ⋅ ⋅ ⋅ ⋅ =i i , 1n N∈ , 1m N∈ , 1A R∈ , 

2 2 1 2 2 0 1 2 2 2 2n n m n mA F F F F F F D D− − − − −= ⋅⋅⋅ ⋅⋅⋅ =i i , 2n N∈ , 2m N∈ , 2A R∈ , 

…… 

1 2 0 1 2i ni ni mi ni miA F F F F F F D D− − − − −= ⋅⋅ ⋅ ⋅ ⋅ ⋅ =i i , ni N∈ , mi N∈ , iA R∈ . 

 
VD1=n1+m1, VD2=n2+m2, …, VDi=ni+mi, VD is Valid number for Figures 

which is limited on the Data word size (Bits of binary numbers) of CPU in 
computer. 

Owing to the Properties of AI-VCR in IFN [7-9] (AI-Fuzzy VCN), we can 
make a realization of AI-VCR addition computing without overflowing as Fig.1. 
We definite some concepts from amongst the Initial Works: SO=0 to be showed 
the SUM value S is not overflowing after addition computing, SO=1 to be showed 
the SUM value S is overflowing after addition computing; SM is temporary vari-
able for the SUM value. When SO=0, the SUM figures (length of numbers) with-
out changing; When SO=1, the SUM figures (length of numbers) is in need of 
changing (increasing the length of number figures). 

Sub-Prg1. When Valid number length of VDi is longer than that length of VD, 
namely, VD＜VDi≤2VD, this service program to be used in problem-solving of 
which expressing accumulate number Ai that as  follows: Ai=Dni+Dmi, AMi= Ai, 
AMi is temporary variable for the Ai value. All Figures of Ai would be saved at 
one-dimension variables of array in RAM(Read Access Memory) of computer. 

Sub-Prg2. When SUM number S is overflowing, this service program to be used 
in problem-solving of which inlaying AI-VCR computation regularities of VCO, 
the typical FCN(Decimal numbers) would be changed into HCN(High Carrying 
Numbers), it is a kind of VCN which is input in RAM at one-dimension variables 
of array. 

Sub-Prg3. When SUM number S is over, this service program to be used in prob-
lem-solving of which outputting the final SUM number S from the RAM, the 
HCN would be changed back into the typical FCN(Decimal numbers), it is very 
much in need of habituating to universal numbers for human beings. 

In Fig.1, you are also to do many supplements else in the Initial Work, so that 
all of your sub-programs may be run correctly in later on, for example, public 
variables, VCR parameters, definite functions of AI, information of error prompts, 
information of inputting  prompts, etc.  
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Fig. 1. Realization of AI-VCR addition computing without overflowing 

 

Initial Work: 
S0=0, S=0, SM=0, i=1, j=0, 

Ni=0, Mi=0, NDi=0, ND… 

Input Data: 
Ni, Mi; Dni, Dmi; 
Ai, NDi=Ni+Mi 
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Sub-Prg1 

Error Prompts 

Quit?

Print S 
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5   Discussion of AI-VCR Addition Computing with VCO 

In the above mentioned realization of addition computing, an addend and sum-
mand are the most typical FCN－Decimal numbers, owing to its universal re-
search & application in the whole world for 15 centuries, it is in need of changing 
the HCN sum for addition computing back into the universal Decimal numbers; 
owing to the VCO of AI-VCR, the Number Value (NV) of an optional VCN 
wouldn’t  be overflowing from the sum data in RAM of computer, it looks like 
that, the flagon in hand of JIGONG monk in Chinese myth wouldn’t  be canned up 
with full of wine forever; owing to the Real VCN may be separately processed 
with both of Integer and Fraction, the Valid Figures to be used would be extended 
to 2VD,  and the sum Valid Figures of  CP would be limitless (even if it may sur-
pass 2VD), accurate and without PM in computing of numbers, but the complexity 
of time for sum  of PC would be added up in a great deal. For example, there are 
some VCN (Integer numbers or Real numbers) of 3-Figures such as (516) FM2, FM1, 

FM0. Supposed that: VD=8; FM2, FM1, FM0 are to be some whole numbers (Integer 
numbers) which would be designed as you like, then you can compute lots of 
VCN accurately into decimal number [3] as follows: 
 

6,1234567891,9876543212(516)VCNI =  
05 1234567891 987654321 1 9876543212 6 9876543212= × × + × + ×             

60,966,315, 627,922,572,678 ( )D DecimalNumber=  

60966315627922572678( : 20 2 4)DTotal Figures V= = + , 
0

8,123456,654321(516) 5 123456 654321 1 654321 6 654321VCNI = = × × + × + ×         

403,899,921, 207 ( )D DecimalNumber=  

403899921207( :12 2 4)DTotal Figures V= = − , 
0

6,10,9(516) 5 10 9 1 9 6 9VCNI = = × × + × + ×         (FM2=6, FM1=10, FM0=9) 

465 ( )D DecimalNumber=  

465( : 3 5)DTotal Figures V= = − , 
0 1

6,10,8(51.6) 5 10 1 10 6 8 51.75VCNR D−= = × + × + × = (4Figures=VD-4), 

0 1
10,2,12(51.6) 5 2 1 2 6 12 11.5VCNR D−= = × + × + × = (3Figures=VD-5), 

0 1
10,2,9(51.6) 5 2 1 2 6 9 11.666VCNR D−= = × + × + × = ⋅⋅⋅ (Figures>2VD), 

0 1 1 1
10,2,12(5.16) 5 10 1 2 6 12 2 5.75VCNR D− − −= = × + × + × × = (3Figures=VD-5), 

1 1 1 1 1 1
8,10,12(0.516) 5 8 1 10 8 6 12 10 8 0.64375VCNR D− − − − − −= = × + × × + × × × = (5Figures=VD-3). 
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6   Conclusion 

Because data word size (Bits of binary numbers) of an optional CPU of computer 
in the whole world is limited, it is in need of removing PM in all mathematics 
computation of numbers such as addition, subtraction, multiplication, division, etc. 
In this paper, there are 5 properties of realizing computation of AI-VCR addition 
as follows:  ⑴ Sum of this addition isn’t overflowing forever; ⑵ Sum valid fig-
ures of CP are limitless though valid figures of an addend & summand are limited; 
⑶ The complexity of time for sum  of PC is higher than that computation ones of 
universal FCN; ⑷ Sums of this addition are accurate and without PM, namely the 
errors of this addition are always equal to zero; ⑸ Valid Figures of addend and 
summand may be not over more than 2VD, but the Valid Figures of SUM after 
many times additions may be over more than 2VD. 

The VCN for n-figures is a new and broad concept of numbers; and the FCN 
for n-figures is some of the special circumstances. Researches on the VCN for n-
figures are to research into generality of the broad numbers. The application of 
VCN for n-figures is more widely and much more significance than that of FCN 
for n-figures.  

The different additions of integer numbers (whole numbers), decimal/fraction 
numbers and real numbers (a number including integer numbers and deci-
mal/fraction numbers) may be realized in different methods. For example, in inte-
ger numbers’ addition, all figures in numbers of addend and summand must be 
eyes right (low figure to low figure); in decimal numbers’ addition, all figures in 
numbers of addend and summand must be eyes left (high figure to high figure); in 
decimal/fraction numbers’ addition, all figures in numbers of addend and sum-
mand must be eyes left (high figure to high figure); in real numbers’ addition, all 
figures in numbers of addend and summand must be eyes middle (namely, integer 
figures to be eyes right, decimal or fraction figures to be eyes left).  

In practice computing applications, additions given by this paper are only a few 
parts of making many important functions in the wide field of application. For 
example, the VCN of n figures still may be precisely used in counting Mental [1] 
Work, multi- expresses in a same value of AE function [10] , AI-searching [11] 

Technology, AI-express of diagram [12] in Computer Graphics, Numbers Com-
pressive Techniques of AI, Multi-agent System (MAS) [13], Unified Theory of 
Information of Yixin Zhong [14], Synthesis Reasoning in Design [15], Extensive 
Researches of Numbers Theory [4,5,16] , Heapsort Algorithm [17], Multivariate 
Analysis [18], General Linear Model [19], Design and Analysis of Computer Algo-
rithms [20], Networks Security of Information [21], etc. 

For this reason, researches and applications on numbers wouldn’t always be 
confined in a lane or in a narrow sphere of VCN such as binary numbers, the 
common decimal numbers, etc. The author’s purpose of writing this paper is, to 
cast a brick to attract jade---offer a few common place remarks by way of intro-
duction so that others may come up with valuable opinions, and to hope the more 
researcher will take much more interest in researches and applications on the VCN 
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of n-figures later on, furthermore, the more achievements in their researches will 
come out. 
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Abstract. The paper proposes a new face recognition algorithm. Firstly,
Discrete Cosine Transform (DCT) is conducted on an input face image. A
few DCT coefficients on the left top corner are chosen as the global feature. At
the same time, the image is divided into several parts. Local Binary Pattern
(LBP)is conducted on each part and then LBP histogram sequences (Uniform
LBP used) are accepted as the local feature. Secondly, the paper fusions the
global and local feature using feature level fusion. Finally, Support Vector
Machine (SVM) is adopted as the classifier and experiments are done on the
ORL database. A result of 95.5% recognition rate and 5 ms time elapsed
for each image is obtained, which shows the efficiency and practicability of
the proposed algorithm and the correctness of feature level fusion. At last,
the paper drops a conclusion that application of feature level fusion in face
recognition will draw more and more attention in the future.

Keywords: Face recognition, Discrete Cosine Transform, Local Binary Pat-
tern, Feature Level Fusion.

1 Introduction

Face recognition is a typical research problem on model recognition, image
analysis and understanding. It has high research value. At the same time, face
recognition has high application value in many fields such as public security,
banking and so on. Therefore, face recognition is a focus in both academia
and industry.

DCT is an important data compression technique. It has been widely used
in JPEG and MPEG standard. ZIAD M. HAFED et al. first introduced DCT
into the face recognition field [1]. DCT has special high efficiency and data
independence. LBP is a texture representing approach. It has showed high
robustness and efficiency in the face recognition field [2].


 Corresponding author.

B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing 2010, AISC 82, pp. 811–818.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



812 P.-z. Chen and S.-l. Chen

However, performance of single DCT or LBP is not that perfect. Kittler
et al. developed a common theoretical framework for combining classifiers
and four fusion rules [3]. Features in different models were abstracted and
classified independently. Several recognition matrixes were obtained. Final
decision according to fusion rules was made. In the face recognition exper-
iment, three different features of front face images, profile face images and
voice were combined. The result successfully verified the theoretical frame-
work and the nice classifying performance of the sum rule in the paper. After-
wards, decision level fusion attracted more and more researchers’ attention.
It has been widely used in face recognition fusion approaches [4, 5, 6], and a
nice recognition result has been achieved.

But decision level fusion is very complex due to its muti-classifiers, which
limit its application in practical use. As a starting point, our paper intends
to investigate feature level fusion which only needs one classifier. Because
several different features of input data were collected, the classifier has more
sufficient matching scores or decision results [7]. As a result, we believe that
feature level fusion will perform better than decision level fusion.

The paper combines DCT and LBP feature using feature level fusion.
Experiment results show that our algorithm can achieve high recognition
rate and fulfill real-time application requirement.

SVM using RBF kernel function is accepted as the classifier in the paper.

2 Face Representation

The overall framework of the proposed representation algorithm based on
feature level fusion of LBP and DCT is illustrated in Fig.1. In our algorithm,

Fig. 1. Steps of the proposed algorithm in the paper
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the feature of an input face image can be obtained by the following proce-
dures:(1)DCT is conducted on an input face image and a few DCT coefficients
on the top left corner are selected as the global feature;(2)At the same time,
the image is divided into k non-overlapping regions and then transformed
to get LBP histogram sequences as the local feature.(3)Normalize the global
and local feature and adjust them according to the strategy proposed in the
paper.(4)Combine the adjusted features as the final features of the image.The
procedures can be instructed in Fig.1.

2.1 DCT

DCT is an orthogonal transformation proposed by N.Ahmed et al. in 1974.
It is always considered to be the most optimal transformation method on
voice and image signal processing. In the image processing field, to con-
duct two dimensional DCT is to separate high frequency and low frequency
information.

Given an input image A sized M*N, its two dimensional DCT result B is
obtained by the following equation:

Bpq = αpαq
∑M

m=1
∑N

n=1 cos
π(2m+1)p

2M cosπ(2n+1)q
2N

0 ≤ p ≤ M − 1 0 ≤ q ≤ N − 1
(1)

αp =

⎧⎨⎩
√

1
M p = 0√
2
M 1 ≤ p ≤ M − 1

(2)

αq =

⎧⎨⎩
√

1
N q = 0√
2
N 1 ≤ q ≤ N − 1

(3)

Obviously, the size of the result coefficient matrix B is M*N. Therefore, pure
DCT transform can not play the role of data reduction.

As is depicted in Fig.2, large DCT coefficients concentrate on the top left
corner. These coefficients show the low frequency information of the face. As

Fig. 2. DCT results
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a result, these top left coefficients can be accepted as the representation of
the face. According to results in the paper [1], choice of 8*8 sized region on
the left-lop shows the best recognition effect. So the same region size 8*8 is
adopted in our paper as the global feature of the face.

2.2 LBP

LBP was introduced by Ojala in 1996. It is a powerful method of texture
description based on statistical analysis and shows its practical use in texture
description. LBP was applied in the face recognition field in 2004 and showed
nice discriminability and fast recognition speed [2]. The operator labels the
pixels of an image by thresholding the 3*3 neighborhood of each pixel with
the center pixel and considering the result as a binary number. The LBP
result can be calculated as follows:

LBPP,R =
∑P−1

p=0 s(gp − gc) ∗ 2p (4)

Where gc is the center pixel value and gp is one of the neighborhoods around
the center with the radius R, P is the whole neighborhood number.

s(x) =
{

1 x ≥ 0
0 x < 0 (5)

For example,LBP8,1represented that radius R is 1 and there are
P(P=8)neighborhoods all together, as is depicted in Fig.3:

Obviously, for an input image sized M*N, the LBP image’s size is
(M-1)*(N-1).

The original LBP with P neighborhoods has 2p different binary pattern.
For example, given P=8, LBP operator gets 256 different binary patterns.
Therefore, Ojala made a definition of Uniform LBP noted LBPu

P,R, for those
Patterns which contain at most two bitwise transitions from 0 to 1 or vice
versa when the binary strings are considered circular. For example, 00000000,
11110000 and 01110000 are uniform patterns. For those patterns that are
not uniform patterns, we fall them under one special pattern, for example
11110010 can be used to represent them.Therefore, when P=8, LBPu

P,R has

136 111 127

132 128 125

121 156 153

1 0 0

1 0

0 1 1

( )
2

10001101 =141

Fig. 3. LBP
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all together 58+1 different patterns. In our paper, LBPu
P,Ris adopted for the

image texture and them histogram sequence information of the texture image
is regarded as the feature.

The histogram sequence of the LBP texture image f(x,y)can be obtained
as follows:

hi =
∑

I[f(x, y) = i] i is one of the uniform patterns (6)

I(A) =
{

1 A is true
0 A is false (7)

2.3 Feature Level Fusion

A lot of physiology and psychology research shows that global feature and
local feature play different roles on face representation and recognition. The
global feature reflects the face’s whole property while the local feature reflects
the detail change on the face.

Given a face imageAm∗nwhose DCT coefficient is D1D2 · · ·Dm1 and LBP
histogram sequence L1

1L
1
2 · · ·L1

59L
2
1L

2
2 · · ·L2

59· · ·Lk1Lk2 · · ·Lk59,the procedure of
feature level fusion of DCT coefficient is showed as follow:

(1) Data normalization
DCT coefficient and LBP histogram sequence are separately normalized

to [0,1]; The normalized DCT coefficients are noted

Dn
1D

n
2 · · ·Dn

m1

While the normalized LBP histogram sequences are noted

L1,n
1 L1,n

2 · · ·L1,n
59 L2,n

1 L2,n
2 · · ·L2,n

59 · · ·Lk,n1 Lk,n2 · · ·Lk,n59

(2) Compute adjust weight
Given the mean value of the DCT coefficient and LBP histogram sequence

of the training set respectively meandct and meanlbp , we can obtain the LBP
weight is

meandct

meanlbp

(3) Change the LBP feature
Change the LBP histogram sequence of the training set and the test set

as follows:

Lj,ci = meandct

meanlbp
∗ Lj,ni

Where i=1, 2, · · ·, 59 j=1, 2,· · ·,k

(4) Combine feature
Combine the treated DCT coefficient and LBP histogram sequence and

finally get the feature of Am∗nas follow:

Dn
1D

n
2 · · ·Dn

m1L
1,c
1 L1,c

2 · · ·L1,c
59 L2,c

1 L2,c
2 · · ·L2,c

59 · · ·L
k,c
1 Lk,c2 · · ·Lk,c59
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3 Experiment

In this section, we will demonstrate the robustness of the combination of DCT
and LBP in feature level fusion .We choose the AT&T face database[8] (ORL
database) in our experiments. The subset of ORL database includes 400 im-
ages of 40 individuals (each individual has 10 images), for some subjects, the
images were taken at different times, varying the lighting, facial expressions
(open / closed eyes, smiling / not smiling) and facial details (glasses / no
glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side
movement).The size of each image is 92*112 pixels.In our paper the size is
changed to 64*64 pixels.Ten images of one person is showed in Fig.4.

Fig. 4. Ten face images in ORL database

We perform our algorithm on a MS Windows XP PC with dual Intel Xeon
2.8-GHz CPUs, 4.0 Gbytes of RAM, using Matlab Programming.

In this paper, all the experiments are done using LIBSVM [9] developed
by Lin Zhiren . 8 * 8 region of the DCT coefficients of the left top corner is
chosen, and the image is divided into 4 sub-blocks to abstract LBP features.
For each individual, the former five images are chosen for training , while the
rear 5 images for testing. In the LIBSVM, c=2.50, g=0.16.

The recognition result is showed in Tab.1.
The results show that, our algorithm performed better in recognition rate

then DCT or LBP separately due to the combination of global feature and
local feature in our algorithm.

The training and testing time of our algorithm is showed in Tab.2

Table 1. Comparation of recognition results

Method Recognition rate (%)

DCT+SVM 84
LBP+SVM 90.5

DCT+LBP+SVM 95.5
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Table 2. Time used in our proposed algorithm

Items Time (s)

training 1.121361
testing 1.106737

Testing time for each face image is 1.106737s/200 ≈ 5ms As can be seen
from our experiments, each face image costs 5ms and the recognition rate
is 95.5% as long as we perform training in advance. The results meet the
practical application request. Using support vector machine as the classifier,
which can be implemented by hardware method, makes our algorithm more
suitable for practical application in engineering.

4 Conclusions

Experiment results show that the feature fusion level of DCT and LBP al-
gorithm are robust to change in expression,pose,illumination. Therefore, we
can drop an conclusion that our algorithm is suitable for practical application
request.

At the same time, the paper shows the effectiveness of feature level
fusion. That is to say, the proposed algorithm has certain extendness. It is
believed that feature level fusion will be researchable and draw more and
more attention in the face recognition field.
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Abstract. According to the fuzzy edge information, this paper presents a 
FSVM(Fuzzy Support Vector Machine) edge detection algorithm has its own 
advantages.  First, it calculates each point’s 3 × 3 window of the four directions of 
the difference as gradient and it regards gradient value and four differences and 
gradient angle as edge point feature. It utilize gauss RBF kernel as kernel function. 
Next, it constructs fuzzy edge point’s membership function. Finally, it uses FVM 
to do edge detection. Experiments show that our FSVM(Fuzzy Support Vector 
Machine) edge detection algorithm is feasible. 

Keywords: FSVM, membership function, image processing, edge detection. 

1   Introduction 

Edge detection is the most fundamental problem in image processing. Over the 
years, many methods have been proposed for detecting edges. Some of the earlier 
methods, such as Sobel, Prewitt and Robert and Canny [1]. Those methods base 
on edge point’s gray gradient [2], set threshold to find edge point algorithm.Canny 
uses dual-threshold to detect edge. This method obtains favorable edge results. 

In recent years, there is another novel edge detection method, which consid-
ers edge detection as two classification problem that is edge point and non-edge 
point. In paper [3], Wei G et al introduces SVM to detect edge. Support vector 
machines (SVM) introduced by Vapnik are based onstatistical learning theory. An 
SVM first maps the edge point input feature into a high-dimensional feature space 
and finds a separating hyperplane that maximizes the margin between two classes 
in this space .SVM is a powerful tools for solving two classification problems. But 
edge point and non-edge point are not exactly assigned to one of those classes. 
Some date points are more important. Some date points such as noise are less 
meaningful .SVM can’t consider this situation. In paper [4], Hong et al apply a 
fuzzy membership to each input point of SVM and reformulate SVM into fuzzy 
SVM (FSVM) so that different input points can make different contribution to the 
learning of decision surface. This method can reduce the effect of noises in data 
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points. In this paper, we retain the traditional edge detection's gradient information 
and use SVM powerful two classification ability, introduce the fuzzy membership 
functions, handle the transition between edge points and non-edge points problem. 
We introduce Fuzzy SVM to detect edge points. We will not introduce Fuzzy 
logic in detail; it can be seen in [5]. Finally, we test our method and compare to 
Sobel and SVM edge detection. 

2   Construct  Edge Point Feature  

From eqs.(1) to eqs.(6) we give the formula of each pixel’s 3×3 neighborhood as 
well as the difference of 0o , 90o, 45o, 135o four directions, gradient values and 
direction. 

0o  direction difference: 

1[ , ] [ 1, ] [ 1, ]p i j I i j I i j= + − − ,                                (1) 

90o direction difference: 

  2 [ , ] [ , 1] [ , 1]p i j I i j I i j= + − − ,                                (2) 

45o direction difference: 

3[ , ] [ 1, 1] [ 1, 1]p i j I i j I i j= − + − + − ,                                (3) 

135o direction difference:  

4[ , ] [ 1, 1] [ 1, 1]p i j I i j I i j= + + − − − .                                  (4) 

Gradient value and direction can be calculated as: 

2 2 2 2
1 2 3 4[ , ] [ , ] [ , ] [ , ] [ , ]m i j p i j p i j p i j p i j= + + + ,                    (5) 

1

2

[ , ]
( , ) arctan( )

[ , ]

p i j
i j

p i j
θ = .                                           (6) 

Normalized gradient value: 

[ ] m i n

m a x m in

[ , ]
,

m i j M
m i j

M M

−′ =
−

.                               (7) 

According to traditional edge detections’ result, we have good reason believe that 
edge points of information is focus on gray and gradient of each pixel’s 3×3 
neighborhood, and building edge points’ gray and gradient have strong directions. 
So we construct each training sample point feature as six-dimension�  

( )1 2 3 4, , , , , .ix p p p p m θ′=  
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3   SVM 

SVM (support vector machine) is a supervised learning technique from the field of 
machine learning applicable to both classification and regression� which is based 
on the principle of Structural Risk Minimization [6] . The algorithm can be sum-
marized as mapping the data into a very high dimensional feature space using an 
appropriate kernel function, constructing an optimal separating hyper-plane, and 
then trying to separate the mapped vectors from the origin with maximum margin. 
The optimal separating hyper-plane is each class edge. We will not introduce it in 

detail; it can be seen in [6].  Its idea is as follows. { },i iS x y=  Each training 

point m
ix R∈ has a label 1iy = +  or 1iy = −  . In this paper, where 

( )1 2 3 4, , , , ,
T

ix p p p p m θ′=  and edge point 1iy = + , non-edge point 1iy = − . 

Next, We wish to find the hyper-plane  
( ) 0w x b⋅ + = .Edge training point hyper-plane:  

11, ( 1, , )T
iw x b i n+ ≥ = " .                                      (8) 

Non-edge point hyper-plane:  

11, ( , , )T
iw x b i n n+ ≤ − = "

 .                                      (9) 

The optimal hyper-plane can be obtained by solving the following convex quad-
ratic optimization problem�  

( ) 1
min

2

. 1 0

T

T
i i

w w w

s t y w x b

φ⎧ =⎪
⎨
⎪ ⎡ ⎤+ − ≥⎣ ⎦⎩

                                            (10) 

We construct the Lagragian and transform into its dual problem. 

{ }2

1

1
( , , ) [( ) ] 1

2

n
T

i i i
i

L w b a w a y w x b
=

= − + −∑ ,                           (11) 

( )
1 1 1

1

1
max

2

. 0;0

n n n
T

i i j i j i j
i i j

n

i i i
i

a a a a y y x x

s t a y a C

φ
= = =

=

⎧ = −⎪⎪
⎨
⎪ = ≤ ≤⎪⎩

∑ ∑∑

∑
,                    (12) 

where ia is lagragian parameter, can be calculate by Lagragian. 

At last the optimal classification function can be described as 

0 0( ) sgn(( ) )f x w x b= ⋅ + ,                                   (13) 

where 0w , 0b : 
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0

n

i i i
i

w a y x=∑ ,                                                      (14) 

( )0 0

1

2 ib w x x= − ⋅ .                                               (15) 

In this paper, each training point feature is six-dimension. Our separable problem 
is nonlinear. So we need kernel function to solve this problem. In this paper, our 
kernel function is Gaussian kernel function. The optimal classification function 
can be described as 

*
0

1

( ) sgn( ( , ) )
l

j j i
j

f x a y K x x b
=

= +∑ ,                            (16) 

where Gaussian kernel function: 

( ) 2
, exp{ }

x x
K x x

σ
′−

′ = − .                                      (17) 

4   Fuzzy SVM 

SVM is a commonly used method in statistical learning theory. SVM can only 
solve one or the other classification. In fact some training points are not so abso-
lute, which certain some degrees of ambiguity, some data points are more impor-
tant, and some data points are less important, so the machine should take those 
situation into account. SVM lack this kind of ability, so they reformulate SVM 

into Fuzzy SVM [4,5,7]  (FSVM) .Its idea is as follows. Given a set fS of labeled 

training points with fuzzy memberships { }, ,f i i iS x y s= .Each training point 
m

ix R∈ has a label 1iy = +  or 1iy = −  , where 

( )1 2 3 4, , , , ,
T

ix p p p p m θ′= and edge point 1iy = + , non-edge point 1iy = − , and 

a fuzzy memberships 0 1is≤ ≤ .  

According to the characteristics of  normalized edge gradient value, in this 
paper the proposed S fuzzy membership can be described as follows:  

( )

2

2

0,

( )
,

( )( )
, , ,

( )
1 ,

( )( )

1,

m a

m a
a m b

b a c a
S m a b c

m c
b m c

c b c a

c m

′ <⎧
⎪ ′ −⎪ ′≤ <
⎪ − −⎪′ = ⎨

′ −⎪ ′− ≤ <⎪ − −
⎪

′≤⎪⎩

,                         (18) 
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Fig. 1. S fuzzy membership 

where a、b、c determine the shape of S fuzzy membership function. Fuzzy value 
b is usually the middle of [a, c] .Figure.1 shows S membership function curve  
image. 

S fuzzy membership function can fuzzy the process which from edge to non-
edge. So there are two fuzzy states that the possibility of non-edge and the possi-
bility of edge. 

The optimal hyper-plane problem is then regarded as solution to 

( )

( )
1

1
min , ,

2

. 1

n
T m

i i
i

i i i

s C s

st y x b

φ ω ξ ω ω ξ

ω φ ξ
=

⎧ = +⎪
⎨
⎪ × + ≥ −⎡ ⎤⎣ ⎦⎩

∑
,                                (19) 

where C＞0 is a penalty factor for errors. Tuning this parameter can make balance 
between margin maximization and classification violation. The above problem is 
an optimization problem .In order to solve this problem, we construct the La-
gragian and transform into its dual problem. 

( )
1 1 1

1

1
max

2

. 0;0

n n n
T

i i j i j i j
i i j

n

i i i i
i

a a aa y y x x

st a y a sC

φ
= = =

=

⎧ = −⎪⎪
⎨
⎪ = ≤ ≤⎪⎩

∑ ∑∑

∑
.                                   (20) 

According to the theory of FSVM, the nonlinear separable problem can be solved 
by using the kernel function.  

( ) ( )
1 1 1

1

1
max ,

2

. 0;0

n n n

i i j i j i
i i j

n

i i i i
i

a a aa y y K x x

st a y a sC

φ
= = =

=

⎧ = −⎪⎪
⎨
⎪ = ≤ ≤⎪⎩

∑ ∑∑

∑
.                                 (21) 
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At last the optimal classification function can be described as 

*
0

1

( ) sgn( ( , ) )
l

j j i
j

f x a y K x x b
=

= +∑ .                                   (22) 

5   Experiments and Results 

5.1   Image Edge Detection Steps Base on FSVM   

Our method is composed of 4 steps, and is described as follows and shown in 
Figure.2: 

1) Using improved Canny[8] detect edge. We take edge points as edge training 
points (xi , yi), and manually select the non-edge training points, calculate each 
training point’s feature  

2) According to the method which is described in formula (21), finding out the 
membership iS  for each training point. 

3) Constructing the FSVM by introducing memberships (which is obtained form 
step 2) to the SVM. 

4) Using the FSVM to detect the gray image edge. 

In this paper, comparing to FSVM edge detection, SVM edge detection don’t need 
fuzzy memberships, other steps are the same, such as edge point feature and train-
ing sample and so on. 

 
Fig. 2. FSVM edge detect steps 

5.2    Simulation and Results 

Simulation environment is Windows XP and MATLAB R2009a software, hard-
ware environment is T660, 2G of main memory. The proposed algorithm is  

Select Sample

Set membership iS

Training Sample 

Construct FSVM

Detect edge 
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applied on test picture which is 500×319 pixels acquired with UAV platform in 
Guanqiao Town.  

In this paper, we find the good training effect when (C, σ , a, c ) and (C,σ ) is 
equal to (4500, 0.2, 0.2, 0.8), (4500, 0.2), where σ  is Gaussian K ’ parameter, C 
is penalty factor for errors. The results are compared with the other edge detection 
method such as Sobel, SVM. The experiment results are shown in Figure.3,  
Parameters and Run-time are shown in Table 1.  

 

 
Fig. 3. a)Main image, b) Sobel results, c)SVM result, d)FSVM results 

Table 1. Run-times and parameter 

 parameter Run-times 

Sobel 
  

Thre=0.05 
 

Time=3.56s 
 

SVM   
 

 

σ=0.2     
C=2500 
 

 
Time=5.60s 

 
FSVM 
 

a=0.2 
c=0.8 
σ =0.2 
C=2500 

 
Time=7.30s 

 

 

2 

1 
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Comparing region 1 of Figure 3’s edge detect result , Sobel edge detect result 
(b) lost a lot of edge, SVM (c) is better than Sobel, FSVM edge detect result (d) is 
clear and complete, so FSVM  can better maintain the integrity of edge features. 
From figure.3, edge detect results in region 2 show that FSVM edge detector can 
better avoid noise where building outside.  

6   Conclusion  

Throughout this paper, we introduce FSVM to detect building edge. The FSVM 
edge detector includes appropriate defined fuzzy membership function and de-
cided about pixel classification as edge or non-edge. Experimental results shown 
this method extract more integrity of edge and avoid more noise than Sobel. And 
it is shown that introduce fuzzy memberships to improve SVM is useful. We will 
do more research in the relationship between Kernel function and building edge 
detection in future. 
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