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The scientific use of global satellite navigation systems and dedicated gravimetric
satellite missions such as the NASA GRACE and the ESA GOCE mission are
having an enormous impact on geodesy, in general, and its contribution to Earth
and climate sciences, in particular. The present thesis addresses three elements of
this developments: (1) the use of GPS for high-precision orbit determination of low
altitude Earth orbiting satellites, referred to as kinematic orbit determination,
(2) next generation satellite navigation systems equipped with new types of clocks
and their application to global timekeeping and positioning, and (3) new mathe-
matical algorithms for orbit determination and the representation of the global
gravitational field of the Earth by spherical harmonics. While kinematic orbit
determination has grown already to a new international standard method, the two
other topics are in the experimental phase.

Munich, Germany Prof. Dr. R. Rummel
July 2017
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In his Ph.D. thesis, Drazen Svehla addresses the major new developments that were
taking place in space geodesy in the last decade, namely the availability of GPS
receivers onboard LEO satellites, the multitude of new GNSS frequencies and
signals, the huge improvement in the stability and accuracy of clocks, and the
revolution in the determination of the Earth’s gravity field with dedicated satellite
missions. Therefore, the major topics of his Ph.D. thesis concern satellite orbit
determination, time and frequency transfer with space geodetic techniques, ambi-
guity resolution in GNSS and global reference frames, where he contributed, with
detailed studies and many innovative ideas, a lot of new knowledge, methods, and
procedures to the international scientific community. The Ph.D. thesis documents
this wealth of interesting results.

Zurich, Switzerland Prof. Dr. M. Rothacher
July 2017
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Introduction to the Thesis Work Described
in this Book

The framework of this thesis consists of the three gravity field missions CHAMP,
GRACE, and GOCE in LEO orbit, the launch of the first Galileo satellites and the
Space-Time Explorer mission (STE-QUEST) in the ESA Cosmic Vision Programme,
jointly proposed by the timing community involved in the ACES mission on the
International Space Station. The satellite missions CHAMP, GRACE, and GOCE
equipped with geodetic GPS receivers in the LEO orbit have initiated a new era of
space geodesy and accurate static and temporal gravity field observations from space
based on Precise Orbit Determination (POD) using GPS. The Space-Time Explorer
mission covers space geodesy and relativistic geodesy as science objectives and aims
to combine the terrestrial and celestial reference frame determination and to unify the
reference frames for positioning, time, and gravity. This thesis presents major results
and achievements obtained with these space geodesy missions over the last 15 years.
The major part of this thesis covers work done with Prof. M. Rothacher at TU
Miinchen and ETH Ziirich in the context of the LEO Working Group on Precise Orbit
Determination of IAG and IGS, ESA mission GOCE, ESA Topical Team on ACES
Geodesy and several Working Groups of the IGS. All developments in the
Bernese GNSS Software were used for the orbit determination of the GOCE mission
(PI Prof. R. Rummel) and the Formosat-3/COSMIC mission.

In all these space geodesy missions, precise orbit determination of satellites and
determination of terrestrial reference frame parameters of the Earth represent the
fundamental framework of all space geodesy activities. In this thesis, pioneering
work has been done on the estimation of purely geometrical (i.e., kinematic) orbits
of LEO satellites that has triggered the worldwide development of new approaches
in gravity field determination, opened up new fields of application, and significantly
changed the way we think about the gravity field of the Earth from the point of view
of satellite dynamics. This thesis not only presents pioneering work on the
high-precision kinematic and reduced-dynamic orbit determination of LEO and
GNSS satellites, and the submillimeter relative positioning between the two
GRACE satellites flying in formation in LEO orbit, but also demonstrates the use of
GPS measurements from LEO satellites in the determination of terrestrial reference
frame parameters, and provides fundamental studies on the geometrical approach

XXi
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for other space geodesy techniques, such as the submillimeter double-difference
SLR, Lunar Laser Ranging, and their combination with the global GNSS solutions.
The use of stable clocks on board Galileo satellites offered an extension of the
kinematic POD approach from LEO to GNSS satellites by using Galileo clocks to
map kinematically radial orbit errors. This has led to the development of new
approaches in the modeling of solar radiation pressure and satellite thermal rera-
diation. Several linear combinations were developed for the processing of
multi-GNSS data and the integer nature of the ionosphere-free ambiguities is shown
by means of the integer ambiguity algebra for the resolution of carrier-phase
ambiguities. Several different strategies for the ambiguity resolution are presented
including the track-to-track ambiguity resolution demonstrated with GPS data from
the GRACE mission in LEO orbit. By introducing the so-called “absolute” code
biases, a consistent definition of carrier-phase ambiguities has been developed with
satellite clock parameters and differential code biases that are estimated without
ionosphere information. In the field of satellite orbit dynamics, it was demonstrated
that the concept of geometrical rotations of spherical harmonics can be applied to
the gravity field modeling and subsequently to the orbit representation. In addition,
geometrical rotations offer a direct representation of the spherical harmonics and
their calculation to ultra-high degree and order, considering that a rotation about the
polar axis is equivalent to the geometrical rotation of spherical harmonics about an
equatorial axis. In this thesis, fundamental work on frequency transfer using GPS
has been performed and a new approach consisting of the estimation of the
so-called phase clock parameters for GNSS was introduced and tested. This
demonstrated the feasibility of one-way frequency transfer between ground and
space to support the geodetic applications of optical clocks that now provide
relative frequency stability at the level of 107'®. At the end of the thesis, the focus is
on relativistic geodesy, related to ACES and STE-QUEST missions, covered by the
work done on this thesis over several years. This new field of space geodesy is
described, as it is a new field opened up by the capabilities of the new generation of
optical atomic clocks.

As part of this thesis, three major developments in the Bernese GNSS Software
were performed, including the implementation of kinematic and reduced-dynamic
orbit determination of LEO satellites using zero- and double-difference GPS and
SLR measurements and the combination with the GPS constellation in the deter-
mination of terrestrial reference frame parameters. This work also includes the
processing of the GPS baseline with ambiguity resolution between the two GRACE
satellites and the combination with GRACE K-band measurements. The second
major development is related to the multi-GNSS data processing, in particular the
implementation of Galileo and Beidou data processing and the combination with all
other GNSS systems. The third major development is the double-difference SLR
approach for GNSS with double differences over time (free of SLR range biases)
and the implementation of lunar laser ranging data processing in the barycentric and
geocentric frame, including the estimation of the lunar orbit and all reference frame
parameters (for GNSS).
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As part of this work on the Ph.D. thesis, several conference sessions were
organized, including the organization of an ESA conference with more than 100
participants at TU Miinchen, in the context of the ESA Topical Team on Geodesy,
that triggered several activities described in this thesis. This work in the field of
space geodesy was supported by the ESA GOCE mission, several developments
of the Bernese GNSS Software, and the ESA Topical Team on Geodesy of the
ACES mission. This contributed to several ESA missions and mission proposals
such as STE-QUEST (reference frames of the Earth), ACES, ASTROD-1, GPS
reflectometry/altimetry on the International Space Station—three of them were
selected.



Chapter 1 )
The First Geometric POD of LEO Check or
Satellites—A Piece of History

The very first precise geometric (i.e., kinematic) orbit determination of a LEO
satellite was presented in Svehla and Rothacher (2002), where for the first time
double-difference ambiguity resolution was demonstrated using the CHAMP
satellite in LEO orbit and the ground IGS network. In Svehla and Rothacher
(2003a, b) and later in Svehla and Rothacher (2005a, b) geometric precise orbit
determination (POD) was demonstrated to cm-level accuracy and presented as an
established technique and as very attractive for gravity field determination. Here we
give a chronological overview of the development of the method.

1.1 Introduction

In Svehla and Rothacher (2005a, b), kinematic (or geometric) precise orbit deter-
mination of Low Earth Orbiting (LEO) satellites was introduced as a new method of
precise orbit determination of LEO satellites where the main application is in
gravity field determination. The first geometric orbits of the CHAMP satellite were
presented in Svehla and Rothacher (2002). Later, in Svehla and Rothacher (2004a)
kinematic and reduced-dynamic POD were shown for a period of two years using
CHAMP data. Kinematic or geometric POD can be considered as the third fun-
damental POD approach, along with dynamic and reduced-dynamic POD:

e Dynamic POD: (Kaula 1966), (Beutler 1977)
e Reduced-Dynamic POD: (Colombo 1986), (Yunck et al. 1994)
e Geometric POD: (Svehla and Rothacher 2003b)

An intermediate, or fourth basic approach to POD, is the reduced-kinematic
POD, where the orbit kinematics (geometry) is reduced to a dynamic orbit by
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estimating normal kinematic points along an a priori dynamic orbit and making use
of relative constraints between kinematic positions (Svehla and Rothacher 2003b).
However, we applied the reduced-kinematic POD approach only for GPS and
Galileo satellites. In the reduced-dynamic POD approach, the orbit dynamics is
reduced by making use of geometrical information, i.e., estimating velocity pulses
along a dynamic orbit (Yunck et al. 1994) or estimating empirical accelerations
(Colombo 1986). The dynamic POD approach is based on numerical integration of
the equation of motion, see e.g., Beutler (1977). This numerical integration can be
avoided in certain applications, and in the case of analytical POD the equation of
motion is modeled as an analytical representation, see e.g., Kaula (1966).

A considerable number of groups have been using our CHAMP kinematic
positions to estimate Earth gravity field coefficients and to validate dynamic orbits
and orbit models. Using the CHAMP kinematic positions together with the cor-
responding variance—covariance information, gravity field coefficients can be esti-
mated geometrically by making use of the energy balance approach or the boundary
value method rather than the classical numerical integration schemes, see e.g.,
Gerlach et al. (2003a, b), Wermuth et al. (2004), Foldvary et al. (2005) at TU
Miinchen, (Mayer-Giirr et al. 2005) at TU Bonn now at TU Graz, (Reubelt et al.
2006), (Sneeuw et al. 2003, 2005) at TU Stuttgart and (Ditmar et al. 2006) at TU
Delft, and (Fengler et al. 2004) from Prof. Freeden’s Group at TU Kaiserslautern
and (Schmidt et al. 2005) from DGFI (Deutsches Geodétisches Forschungsinstitut).
With the GRACE and GOCE missions, kinematic orbits continued to be used
world-wide and a number of groups have been reporting gravity field recovery
based on GRACE and GOCE kinematic orbits, e.g., (Mayer-Glirr et al. 2010),
(Jaggi et al. 2011), (Pail et al. 2010, 2011), (Baur and Grafarend 2006), (Rummel
et al. 2011). The validation of gravity field models computed in such a way showed
that LEO kinematic positions contain high-resolution gravity field information. In
combination with gravity gradients from the GOCE gradiometer in very low Earth
orbit 255 km altitude), kinematic orbits allow mapping of the gravity field of the
Earth from space with the highest resolution reported so far. Kinematic positions
with the corresponding variance—covariance information are a very attractive
interface between the raw GPS data and gravity field models or other valuable
information that can be derived from satellite orbits, e.g., air densities, thermo-
spheric winds or orbit force model improvements. In this way, the groups that use
kinematic positions do not have to undertake the laborious tasks of processing and
analyzing the GPS observations and determining the reference frame.

In regard to kinematic POD for ESA mission GOCE we refer to Bock et al.
(2011), Visser et al. (2007, 2009), Bock et al. (2014). Several other groups reported
calculation of kinematic orbits for gravity field determination e.g., (Zehentner and
Mayer-Giirr 2015) for the GRACE mission and (Hwang et al. 2009, 2010), (Tseng
et al. 2012) using similar approach for the Formosat-3/COSMIC mission. Zehentner
and Mayer-Giirr (2015) demonstrated an approach that avoids ionosphere-free
linear combination by estimating an additional bias per GPS satellite every epoch in



1.1 Introduction 3

order to remove remaining systematic effects in carrier-phase measurements.
Among the aforementioned geometric gravity models, Baur et al. (2013) identifies
and compares 5 fundamental approaches in gravity field determination based on
kinematic orbits:

Short-Arc Approach: TU Graz

Celestial Mechanics Approach: AIUB/University of Bern

Averaged Acceleration Approach: DEOS/TU Delft

Point-wise Acceleration Approach: University of Stuttgart/Austrian Acad. of
Sciences

e Energy Balance Approach: TU Miinchen, TU Graz.

Time-variable gravity field determination using a CHAMP kinematic orbit was
recently demonstrated in Baur (2013), showing that the ice mass loss over
Greenland is in line with the findings from GRACE data and the trend estimates
differ by only 10%. This opens up the possibility of using kinematic orbits to bridge
the gap between GRACE and the GRACE follow-on mission, making use of the
GPS receivers on the 3 satellites of the ESA mission Swarm for mapping the
time-variable gravity field of the Earth.

1.2 Geometric and Dynamic Equation of Motion

The theory of relativity is the frame of reference for satellite orbit determination and
includes corrections to the Newtonian equations of motion, so-called
post-Newtonian approximation of general relativity, often denoted as
Parameterized Post-Newtonian Formalism or PPN-formalism. For the near-Earth
orbiting satellites, the geocentric reference frame is used, whereas for planetary
missions in the Solar System, a barycentric reference frame is more appropriate.
A geocentric reference frame is more suitable for the orbit determination of
Earth-orbiting satellites because the gravitational effects of the Moon, the Sun and
other planets can be described solely as tidal forces, while the relativistic acceler-
ation corrections to the equations of motion are very small. For satellites in Earth
orbit, in the post-Newtonian approximation of general relativity, the main general
relativistic effects are caused by the gravity field of the Earth and its rotation. The
flat three-dimensional Euclidian space is used to model geometry and to dynami-
cally integrate the satellite orbit. A geocentric terrestrial reference frame is created
using space geodesy techniques such as GNSS, SLR, VLBI and DORIS. The latest
versions of this reference frame, e.g., ITRF2005 or ITRF2008 use terrestrial time
defined on the geoid as the reference.
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The geometric equation of kinematic motion of a satellite can be defined as

= satellite ,__ —frame —satellite
s =7 —|—Arfmme (1.1)

where 7/“" defines the reference frame (coordinate system defined by station

coordinates, GNSS satellite orbits and clock parameters, etc.) and A?}iﬁ’,ﬁlji’e is the

relative geometric vector of the satellite ?gg”"””e w.r.t. to that reference frame, i.e.,

the vector between a GNSS and a LEO satellite, or a vector between a GNSS
satellite and a ground station. Since the geometric equation of motion (1.1) does not
include the dynamics of the satellite, it is kinematic in its nature. This is why
geometric orbits of satellites are also often called kinematic orbits.

The dynamic equation of motion can be written as

Ssatellite satellite | = = =
r@ = VV@ + rtemp + rrelativiry + rnonfgmvitarional (12)

where V‘/_g”e”""’ is the gravitational acceleration, what one could call the dynamic

reference frame, #,emp denotes temporal variations of the gravitational field (tides,

etc.) and #,ela,ivi,y represents relativistic corrections, what one could call the rela-
tivistic frame. The last term in (1.2) denotes non-gravitational contributions to the
equation of motion, such as solar radiation, Earth albedo, aerodynamic drag, etc.

1.3 LEO GPS Observation Equation

The observation equation for LEO zero-difference POD using carrier-phase mea-
surements for the frequency i between a LEO receiver and a GPS satellite s can be
written as follows (in units of length)

Ligo; = Prpo + ¢(0tLro + Otyys) — (08 +0r™™)

+ 5pion.i + 5:01‘61 =+ 5pmul,i + 5ppcu,i + 5ppcv,i (13)
+ ).i . NiEO.,i + &

Ligo; LEO zero-difference phase measurement,

PliEo Geometric distance,

c Speed of light in vacuum ¢ = 299792458 m/s,

Otr ko, OF LEO and GPS satellite clock corrections,

Otgys i S LEO and GPS satellite system delays (cable, electronics, etc.),
OPion.i Ionospheric delay,

0P rer Periodic relativistic correction and Shapiro correction,

0Pt i Multipath, scattering, bending effects,

OPpcosi LEO phase center offset,
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5ppcv‘i LEO phase center variations,

i Wavelength of the GPS signal (L; or L;),
Niko. Zero-difference phase ambiguity,

6 Phase noise (L, or L),

For more on this subject see Svehla and Rothacher (2005a). One can immedi-
ately recognize the well-known observation equation for a ground station, with one
exception: in the LEO case there is no tropospheric delay to be taken into account.
In order to eliminate ionospheric delays, the ionosphere-free L; linear combination
(LC) can be formed between the LEO phase measurements Lj ., ; and Ljp,, on

carrier frequencies f; and f>, respectively

2 2
s fl K f2 K

LEO3 — f—z — o LEO T f—z ) LLEO,Z
1 2 1 2

(1.4)

In this case the LEO zero-difference observation equation can be written as
follows

LZEO,S = pZEO +c- 6ILE0A,L‘ZkA,3 —C- 5ts.'dk73 + 5prel + 5pmul73 + 5:0pco,3 + 5:01)(‘\),3
+ BSLEO’3 + &3

(1.5)

where 0t o i 3 denotes the ionosphere-free LEO clock parameter consisting of the
real LEO clock value 6f;z0 and the system delays oty and Ot on both
frequencies:
f 3
5tLEO,clk,3 = 5[LEO + —lét‘vys,l - #5%}1‘?,2 (16)

f2—f2 -5

In the same way the ionosphere-free GPS clock parameter can be defined as

5tJ7CLK,3 — 513 + zf;zatsys’l — zf;zzétsys’z (17)
i =5 =5

0Pt 3> OPpeo3 and Op,., 5 denote multipath effects, phase center offset and phase
center variations for the ionosphere-free linear combination, respectively. The
zero-difference ionosphere-free ambiguity (phase bias) is denoted by Bjg, 5, for
more details we refer to Svehla and Rothacher (2005a).

The ionosphere-free observation equation for the LEO zero-difference code
measurements can be written in the same way except that the LEO phase ambiguity
parameter Bj ., 5 is not included and the first order ionosphere effect has an opposite
sign. GPS satellite and LEO system delays are different for P; and P, code
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measurements. By convention, the ionosphere-free LC is said to have no
Differential Code Bias (DCB), i.e., system delays are included in the GPS satellite
and the receiver clocks, respectively, see Schaer (1999).

The observation equation for POD based on double differences can be written by
forming double-differences between the LEO and a ground station and between
GPS satellites k and s:

s,k _ k k S
L;)‘d,LEO,S - (LLEO,S - Lgrd,S) - (L;,EO,S - Lz'rdﬁ) (18)

In this way we can form baselines between all ground IGS stations and the LEO
satellite. It is very important to note that, by using double-differences between LEO
and ground station, the absolute tropospheric delay for the ground station can be
estimated and isolated.

As soon as we involve the GPS ground network (e.g., the IGS network), the
troposphere zenith delays and station coordinates have to be considered. In our
POD approach, weekly IGS solutions for station coordinates, computed at the
CODE Analysis Center, and corresponding troposphere zenith delays and tropo-
sphere gradients are introduced and kept fixed. (For more about IGS products see
Dow et al. (2005)). For the CODE IGS products we refer to the ftp site ftp://ftp.
unibe.ch/aiub/. In order to have full consistency between IGS products and the
software used, we used GPS satellite orbits, ground station coordinates and tro-
posphere parameters from the IGS Reprocessing Project (Steigenberger et al. 2006)
run at TU Miinchen. With regard to the IGS and the quality of the IGS products, we
refer to Hugentobler et al. (2012) and to the GGOS Coventions to Hugentobler et al.
(2012). For more information on the GGOS Project of IAG (Global Geodetic
Observing System) and the combination of space geodesy techniques in the gen-
eration of the terrestrial reference frame of the Earth, we refer to Rothacher et al.
(2004), and Rummel et al. (2000). For the latest generations of the international
terrestrial reference frame we refer to e.g., Altamimi et al. (2011).

1.4 Zero-, Double- and Triple-Difference POD
Approaches

In the field of kinematic POD with spaceborne GPS receivers, three main
approaches can be distinguished from the point of view of differencing:
zero-difference (ZD), double-difference (DD) and triple-difference (TD), (see
Fig. 1.1), for more on this subject see Svehla and Rothacher (2002, 2005a).

The ZD approach, in contrast to the DD and TD approaches, only relies on the
GPS observations of the LEO and avoids the use of the ground IGS network. This
is, at the same time the weakness of this solution, because high-rate satellite GPS
clocks are a prerequisite for this method of determining the position of the
spaceborne GPS receiver. One has to use the data from the IGS network to estimate
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a very high number of GPS clock parameters first, and then use these to compute a
kinematic orbit, which means that errors in the GPS satellite clocks propagate
directly into the LEO orbit positions. A high level of correlation exists between
clock parameters, zero-difference ambiguities and epoch-wise satellite positions.
Thus we can say that the quality of ZD kinematic orbit determination greatly
depends on the accuracy of GPS orbit data, which is itself strongly correlated to that
of the GPS satellite clocks.

A very efficient alternative zero-difference approach, followed at the
Astronomical Institute, University of Berne, avoids setting up zero-difference
ambiguity parameters by forming differences between phase observations of con-
secutive epochs, (see Bock et al. (2007)).

By forming double-differences, i.e., baselines between the stations of the IGS
network and the LEO, all GPS/LEO satellite clock parameters can be eliminated.
The present accuracy of the GPS orbits provided by the IGS, which is in the range
of 1-2 cm, is sufficient, according to the rule of thumb given by Bauersima (1983),
for there to be no significant impact on the double-difference solutions. The great
advantage of the DD approach is the possibility of fixing ambiguities to integer
values and thus of improving the accuracy of LEO POD.

By forming triple differences (differences of DD in time), ambiguities are
eliminated, thus allowing very efficient processing algorithms to be employed. The
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drawback of this approach is the increase of the observation noise and the need for
efficient methods to correctly account for the correlations between epochs.

All three aforementioned approaches make direct or indirect use of the IGS
network. In the ZD case a global solution is needed to supply GPS satellite orbit
and clock information for the subsequent kinematic POD using ZD. Similarly, in
the DD and TD cases a global solution can be used to obtain highly accurate IGS
site coordinates, the corresponding troposphere zenith delays and GPS satellite
orbits. All of these parameters can be held fixed in both DD and TD POD. From the
point of view of accuracy, IGS thus plays a major role in providing the framework
for LEO POD by GPS.

In all three cases the effect of the ionosphere can be eliminated by forming the
ionosphere-free linear combination. The remaining effect of multipath can be
reduced to a great extent by elevation-dependent weighting of the GPS observations
of the ground network as well as the spaceborne GPS receiver. Last but not least,
the LEO antenna phase center position (offset and phase center variations) has to be
exactly known in the satellite-fixed system and we need an accurate model of the
attitude of the spacecraft (e.g., from quaternions provided by star trackers—with or
without combining them with onboard accelerometer data).

1.5 Zero-Difference Approach

In the zero-difference kinematic POD for each epoch three LEO coordinates have to
be estimated together with one LEO clock parameter. Zero-difference ambiguities
are the only parameters in the adjustment procedure that are not epoch-specific.
Figure 1.2 shows the normal equation matrix for zero-difference kinematic POD
over eleven epochs. On the main diagonal we can easily recognize 3 x 3 blocks of
epoch-wise kinematic LEO coordinates, 11 epoch-wise LEO clock parameters and,
in the lower right corner, 6 zero-difference ionosphere-free ambiguities. We easily
see the correlations between zero-difference ambiguities and epoch-wise parame-
ters. All zero-difference approaches rely on the availability of highly accurate GPS
satellite orbits and clocks. They should be provided with the same sampling as used
for the LEO kinematic POD. For the highest accuracy, GPS satellite clocks can be
linearly interpolated only for sampling below 30 s. Linear interpolation of 5 min
GPS satellite clocks is not recommended for high-precision applications. It is very
important that GPS satellite orbits and clocks are consistent with each other because
of the high correlations. If highly accurate GPS satellite orbits and clocks are
available, this method is very simple and reliable because it does not involve the
immense task of processing the ground IGS network. More about the
zero-difference approach can be found in e.g., Svehla and Rothacher (2002, 2005a).
An alternative zero-difference approach based on forming differences between
phase observations of consecutive epochs and avoiding zero-difference ambiguity
parameters, may be found in Bock et al. (2007).
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Fig. 1.2 Normal equation
matrix for zero-difference
kinematic POD (11 epochs
only). On the main diagonal:
3 by 3 blocks of epoch-wise
kinematic coordinates, 11
epoch-wise LEO clock
parameters, and in the lower
right corner, 6 zero-difference
ambiguity parameters,
(Svehla and Rothacher 2005a)

The normal equations in the least-squares adjustment can be written in the form
A'PAx = A'Pl (1.9)

with the design matrix A, containing in our case partial derivatives of the obser-
vation Eq. (1.5), the weight matrix P of the observations, the vector of the unknown
parameters x and the vector / containing the so-called observed-minus-computed
values. If we denote in (1.9) the normal equation matrix as N = A’PA and b = A'PI,
the normal Eqgs. (1.9) can be written as

Nx=b (1.10)

The normal equation matrix for the kinematic POD can be considered as a block
diagonal, see also Fig. 1.3, thus we can separate ambiguities x; from epoch-wise

parameters x,
Nit Np || x b
= 1.11
I:N2l sz][xz] [bz} ( )

where ambiguities are estimated first
(N1t — NioNy'Noy )x1 = by — NioNy,' by (1.12)

and epoch-wise parameters are determined by a re-substitution of the estimated
ambiguity parameters

X2 :Nz_zl(bz—Nzl)xl (113)
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Fig. 1.3 An elegant
algorithm to calculate
variance-covariances between
several epochs

In order to derive the variance-covariance matrix Q,, of the estimated
epoch-wise parameters we start with

QuN =1 (1.14)
and obtain the variance-covariance matrix for the single epoch

02 = Ny' +Ny,'Nay Q11 NioNy,' (1.15)
(4x4) (4x4) (nxn)

Considering (1.14) and making use of the Shur-Frobenius relations for
block-matrices, we derive the variance-covariance matrix of epoch-wise kinematic

parameters Q»; over several epochs n
(4xn)

Q1 = —Q1NiN5, (1.16)
021 = —Ny' NioNy' (1.17)
(4xn) (4x4)

Figure 1.3 graphically shows the matrix Qy;(4x,) containing variance-covariance
information of n kinematic epochs as used for the GOCE mission, where the
Q21(4xn) matrix is provided as an official product of the GOCE mission, accom-
panying the GOCE kinematic orbit positions. Figure 1.4 shows the first kinematic
orbits of the CHAMP and GRACE satellites with a sampling of 30 s over one day
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Fig. 1.4 First kinematic orbit of CHAMP, day 200/2002 (left) and GRACE-A, day 200/2003
(right) against the reduced-dynamic orbit

against the reduced-dynamic orbit. One can see that the kinematic positions in the
radial direction are more affected by noise than those in the along-track and
cross-track directions, and the along-track differences show a clear once-per-rev.
pattern. The variations of the kinematic positions are in the order of 1-2 cm.
Figure 1.5 shows typical correlations of LEO kinematic positions, with corre-
lation length ~22 min and Fig. 1.6 shows the first continuous CHAMP kinematic
orbit with cm-level accuracy. The reduced-dynamic orbit model used in our
approach for LEO satellites is based on the dynamic model originally developed at
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Fig. 1.6 Differences between CHAMP kinematic and red.-dynamic orbit, week 1175/2002,
(Svehla and Rothacher 2005a)

the CODE IGS Analysis Center for GPS satellites and here subsequently adapted
for use in LEO satellite POD (Svehla and Rothacher 2002). The adaptation of this
software involved, among other things, the development of an independent orbit
modeling chain in the Bernese software including kinematic and reduced-dynamic
orbit parameterization, and pre-processing of the data. First results with GPS
measurements from the CHAMP satellite showed that frequent estimation of
pseudo-stochastic pulses (small velocity changes) is a very efficient approach to
modeling the orbit dynamics of a satellite at low orbit altitude. For the orbits of the
CHAMP, GRACE and GOCE satellites, pseudo-stochastic pulses are set-up every
6 min in the numerical integration. Later Jaggi et al. (2006) introduced the esti-
mation of pseudo-stochastic accelerations estimated as constant parameters.
However, comparing the accuracy of kinematic and reduced-dynamic orbits for
GOCE (Bock et al. 2007, 2011), (Visser et al. 2007, 2009) with the CHAMP and
GRACE results in Fig. 1.4, one can see that over the last 10 years the LEO orbit
accuracy has not been significantly improved. Figure 1.7 shows the daily RMS of
GRACE kinematic orbits estimated for the first 4 months of GPS data provided to
the GRACE Science Team.
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Fig. 1.7 Daily RMS of kinematic orbits of the GRACE-A and GRACE-B satellite versus the
reduced-dynamic orbit for the first 4 months (days 182-303/2003) of GPS data provided to the
GRACE Science Team

1.5.1 GPS Receiver Clock and Kinematic POD

In the case of the CHAMP satellite, the estimated clock corrections of the internal
GPS receiver clock used to time-tag carrier-phase and code measurements w.r.t. GPS
time are in the order of 0.1 ps. In the case of the GRACE mission, GPS measure-
ments can be synchronized to GPS time very accurately in post-processing due to the
onboard K-band ranging system and this synchronization is carried out at the level of
the accuracy of the P-code measurements. In the case of the CHAMP or GRACE
missions, the estimated GPS receiver clock corrections are very small and do not
create any problems concerning the interpolation of GPS clocks and the computation
of the correct distance between GPS and LEO satellites. If we consider the LEO orbit
velocity to be below 10 km/s, including the perigee velocity of a satellite in a highly
elliptic orbit, a synchronization error of GPS measurements in the order of 0.1 ps
will lead to an error of 1 mm. Therefore, any double-differences between a LEO
satellite and the ground network can easily be formed and this synchronization error
can easily be taken into account when forming zero- or double-differences.
However, if the onboard navigation solution is not used for the steering of the GPS
receiver clock, as is the case with the GOCE mission, the internal GPS receiver clock
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will slowly drift w.r.t. GPS time and the GPS measurements will be taken anywhere
in the integer second interval, since the sampling interval of GOCE GPS measure-
ments is 1 s. In this case, the orbit changes significantly from the nominal integer
second position and this needs to be properly accounted for. If GPS measurements
are taken anywhere between the integer seconds of receiver time, it is very difficult to
form double- or triple-differences with the ground IGS network, since clock steering
is used for all GNSS receivers in the IGS network. For more, see Svehla and
Rothacher (2002, 2003a). The BlackJack GPS receiver and derivatives of this device
onboard several LEO missions use the calculated clock offset from the navigation
solution to adjust the onboard GPS receiver clock to GPS time. The BlackJack
receiver clock is based on a voltage-controlled quartz oscillator and the frequency of
oscillation is controlled, so that the drift is nearly zero. Navigation time solutions are
used for clock steering only when at least 5 satellites are being tracked and a valid
navigation solution can be calculated. Therefore, the GPS receiver clock drifts away
from GPS time only during epochs without a valid navigation solution. The receiver
also generates a 0.1 PPS timing pulse on both timing ports. This timing pulse is
coincident with the receiver clock 10 s epoch and is used to provide a time source for
the spacecraft and scientific instruments. Note that the BlackJack GPS receiver
operates without knowledge of the Anti-Spoofing (AS) encryption code. More about
the ICESat BlackJack receiver can be found in, e.g., Williams et al. (2002).

1.5.2 Validation of Kinematic Positions with SLR

That we are not just talking about orbit consistency, but also orbit accuracy, can be seen
in Fig. 1.8, where SLR residuals are shown for the same kinematic and
reduced-dynamic orbits as displayed in Fig. 1.6. SLR residuals were calculated as the
difference between the SLR measurements (corrected for signal propagation effects)
minus the distance between the SLR station and the GPS-derived orbit position. For the
validation of dynamic orbits, LEO positions were calculated directly from the dynamic
orbit represented by the high order polynomial in the integration step. The offset
between CHAMP center of mass and SLR retro-reflector was applied using the attitude
provided in the form of quaternions. In the case of kinematic orbits, the only difference
is that kinematic positions are given with a sampling of 30 s and an interpolation
procedure is required in order to obtain positions at the epochs of the SLR normal
points. A linear interpolation was used to obtain kinematic positions along an a priori
dynamic orbit. We noticed that the SLR validation of kinematic orbits is more difficult
and the necessary interpolation may easily increase the RMS. Another alternative
would be to form SLR normal points exactly at the epochs where kinematic positions
are defined, but in this case raw SLR data would have to be processed, and these are
not readily available from all SLR stations.
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Fig. 1.8 SLR residuals for CHAMP kinematic (top) and reduced-dynamic orbits (bottom) for
GPS week 1175/2002 (days 195-201/2002), (Svehla and Rothacher 2005b)

Tropospheric delays for SLR measurements were modeled using the
Marini-Murray model and standard corrections like ocean loading (GOT00.2),
Shapiro relativistic effect and station velocities were applied. All SLR stations and
SLR measurements were used in this validation (elevation cut-off 10°) The RMS of
the CHAMP kinematic and reduced-dynamic orbits is about 2.5 cm (days 195-201/
2002). It is interesting to note that the SLR residuals show a similar pattern for both
kinematic and reduced-dynamic orbits and that no significant bias can be identified
in the SLR residuals. Table 4.3 summarizes the daily RMS of the SLR residuals for
our CHAMP orbits based on four different POD approaches, namely kinematic and
reduced-dynamic orbits based on zero- and double-differences. One can see that
CHAMP orbits are of similar quality for both a purely kinematic and a
reduced-dynamic approach. This also holds for CHAMP orbits calculated using
either zero- or double-differences. Slightly better orbit quality, i.e., 2.56 cm is
obtained with kinematic orbits based on double-differences (Table 1.1).
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Table 1.1 Daily RMS of Day |Zero-diff. | Zero-diff. | Double-diff. | Double-diff.
SLR residuals in cm for dynamic | kinematic | dynamic kinematic
CHAMP kinematic and 6
reduced-dynamic orbits based 195 4.02 4.17 3.22 2.66
on zero- and 196  [2.90 2.93 3.19 3.03
double-differences (days 195—- 197 3.40 3.11 3.29 2.90
202/2002), (Svehla and 198 207 2.07 1.99 1.34
Rothacher 2005b) 199 | 1.94 1.66 191 1.70

200 1.43 1.45 1.69 1.83

201 3.59 4.65 4.32 5.00

202 2.03 2.08 1.93 2.05

Mean |2.67 2.77 2.69 2.56

1.6 Double-Difference Approach

In comparison to the zero-difference kinematic POD approach, the
double-difference approach requires simultaneous processing of the GPS ground
network and the LEO GPS measurements. All possible baselines between the LEO
and the ground IGS network are formed and processed together. For each epoch
three kinematic LEO coordinates are estimated, together with the double-difference
ambiguity parameters. By forming double-differences, all GPS satellite clocks are
eliminated and there is thus no need for highly accurate GPS satellite clocks cal-
culated from the ground GPS network, see Svehla and Rothacher (2002).

The disadvantage of the double-difference kinematic approach is the very large
number of observations and ambiguity parameters originating from the IGS net-
work. The noise of the double-difference observable is twice as high as that of the
zero-difference observable, but all clock parameters are eliminated and, what is
most important, ambiguity resolution can be performed using double-differences.
This advantage of ambiguity resolution, together with different ambiguity resolu-
tion strategies, will be discussed later in this thesis.

1.7 Triple-Difference Approach

By forming triple-differences (differences of double-differences in time), ambigui-
ties are eliminated, which allows very efficient processing algorithms to be
employed. The drawback of this approach is the increase of the observation noise
and efficient methods are needed to correctly account for the correlations between
epochs. More about the triple-difference approach can be found in Ijssel et al.
(2003) and in Byun (2003).
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1.8 Parameter Space in Geometric and Dynamic POD

Table 1.2 shows the parameter statistics for zero- and double-difference kinematic
and dynamic POD with real LEO GPS data over one day. We immediately notice
the very large number of phase observations stemming from the approx. 100 IGS
ground stations selected. This, together with the rapidly changing geometry, is also
the reason why a great number of double-difference ambiguities are involved.
Compared to dynamic parameterization, kinematic POD has many more
epoch-wise parameters. Table 1.3 shows the treatment of parameters while forming
the normal equation system. In order to speed up computation, epoch-wise
parameters (LEO clocks and kinematic positions) are always pre-eliminated
epoch-by-epoch. At the end, only the normal equation matrix consisting of
parameters that are not epoch-specific remains. This is then inverted, and by back
substitution, epoch-wise parameters are obtained epoch-by-epoch, see (1.13). In the
double-difference kinematic case, if more than 100 ground IGS stations are used it
is more efficient to pre-eliminate double-difference ambiguities using (1.12) and
invert the normal equation with kinematic parameters first.

Table 1.2 Parameter and observation statistics for zero- and double-difference kinematic and
dynamic POD, (Svehla and Rothacher 2003b)

Solution Zero-diff. Zero-diff. Double-diff. Double-diff.
dynamic kinematic dynamic kinematic

Ambiguities 450 450 13200 13200

Orbit parameters 300 - 300 -

Kinematic coordinates - 8640 - 8640

LEO clocks 2880 2880 - -

Total number 3630 11700 13500 21840

Number of observations 18400 18400 340000 340000

Table 1.3 NEQ parameters in the zero-

(Svehla and Rothacher 2003b)

and double-difference kinematic and dynamic POD,

Solution Zero-diff. Zero-diff. Double-diff. Double-diff.
dynamic kinematic dynamic kinematic

Ambiguities Pre-eliminated | Estimated Pre-eliminated | Pre-eliminated

Orbit parameters Estimated - Estimated -

Kinematic - Pre-eliminated | — Estimated

coordinates

LEO clocks Pre-eliminated Pre-eliminated | — -
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1.9 Ambiguity Resolution

The potential to resolve phase ambiguities and thus to achieve higher levels of LEO
orbit accuracy is one of the main advantages of the double-difference technique.
Ambiguity resolution is certainly the most challenging aspect of double-difference
POD. Here we consider two major approaches to ambiguity resolution. The first is
based on phase observations only, without making use of P code measurements,
and is known as the QIF strategy (Quasi-lonosphere-Free). The second strategy
(wide-lane/narrow-lane) is based on wide-lane ambiguity resolution using the
Melbourne-Wiibbena linear combination and subsequent resolution of the
narrow-lane ambiguities using the ionosphere-free linear combination of the phase
observables. More about LEO ambiguity resolution can be found in Svehla and
Rothacher (2002, 2003a).

QIF Ambiguity Resolution was developed at the CODE Analysis Center for
large-area permanent networks. The QIF strategy enables L; and L, ambiguities to
be resolved in one step, in which the phase observations on L; and L, are processed
together and epoch- and satellite-specific ionospheric parameters are set up. These
stochastic ionospheric parameters are slightly constrained and pre-eliminated
epoch-wise. The QIF strategy can cope with larger ionospheric errors than the
phase-based wide-lane method, i.e., with errors up to approximately two wide-lane
cycles. In order to increase the percentage of ambiguities fixed by QIF, global
ionosphere maps may be used. For LEO satellites, orbiting the Earth within the
ionosphere, the total electron content (TEC) has to be reduced to account for only the
free electrons above the LEO orbit. This can, e.g., be performed by an appropriate
integration of the alpha-Chapman layer. We found that the fast-changing ionosphere
(due to the high LEO velocity) and the difficulty in computing the vertical TEC (e.g.,
given by IGS ionosphere maps based on a single layer model) for the altitude of the
LEO, are the reasons why the QIF approach is still problematic when used for LEO
ambiguity resolution, and, therefore, it will not be discussed further. For more on this
subject we refer to Svehla and Rothacher (2005a, b).

1.9.1 Melbourne-Wiibbena Ambiguity Resolution

In order to completely avoid ionosphere effects in ambiguity resolution, the
Melbourne-Wiibbena (MW) linear combination of phase and code observations is
used to first resolve the wide-lane ambiguities. At the double-difference level the
observation equation of the MW linear combination may be written as

w V(A e h o A o B g )
iLEO,5 15 1_‘](‘2 iLEO,1 fl _f2 iLEO,2 fl +f2 iLEO,1 ﬁ _f2 iLEO,2

(1.18)
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where NszlEo,s denotes the wide-lane double-difference ambiguity, with wavelength
As =~ 86 cm, of the baseline from station i to the LEO satellite with the GPS
satellites k& and I; Li%EO ; and P%EO , are the phase and P code double difference
observations on both frequencies. Observation Eq. (1.18) is free of geometry, clock
parameters, ionosphere and troposphere delays and contains only the wide-lane
ambiguity and possible effects of multipath. It is, therefore, independent of the
baseline length involved and ambiguity resolution may be performed baseline by
baseline. To resolve the wide-lane ambiguities an iterative approach (bootstrapping)
is used, where, after a first float solution, ambiguities are sorted according to best
RMS and iteratively resolved starting with the best determined ambiguities. In order
to ensure that ambiguities are correctly resolved, a double-difference ambiguity is
only set to an integer value if exactly one integer lies within the three RMS
confidence interval of the real-valued ambiguity estimate. For practical reasons, two
additional criteria are used to define the pull-in region of the integer bootstrapping:
(1) if the RMS of a float ambiguity is smaller than a user-specified minimum value,
this minimum value will be used to define the confidence interval. This is necessary,
because often the formal RMS of an ambiguity is too small and obviously
resolvable ambiguities will remain unresolved; (2) if the RMS of a float ambiguity
is larger than a user-specified maximum value, the ambiguity will not be resolved.

Discussions on integer bootstrapping can also be found in Teunissen (2001),
where the decorrelation of ambiguities by Z-transformations is recommended in
order to improve the success rate of the bootstrapping method. For more on this
subject see Svehla and Rothacher (2003a, 2005a).

For the sake of completeness, Fig. 1.9 shows the percentage of resolved
wide-lane ambiguities using the Melbourne-Wiibbena linear combination over
11 days (140-150/2001). However, not all GNSS receivers provide P code mea-
surements on both the L; and L, frequencies. According to (Ray 2002), there are
three main classes of GPS receivers within the IGS network, namely:
(1) cross-correlators that observe C; and P; = C; + (P, — Py) (e.g., Rogue SNR-x,
AOA 1ICS-4000Z, Trimble 4000, and Trimble 4700); (2) Y-codeless,
non-cross-correlators that observe P, and P, (e.g., Ashtech Z-XII3, AOA SNR-12
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ACT, and AOA Benchmark ACT); (3) C;, Y-codeless, non-cross-correlators that
apparently function in a similar way to other modern Y-codeless receivers, but
report C; (instead of P;) and P, (Trimble 5700, Leica CRS1000, and Leica
SR9600). For those receivers that do not provide P code on both frequencies, the
use of differential code biases P; — C; for the GPS satellites, available from the
CODE IGS AC, considerably improves wide-lane ambiguity resolution.

1.9.2 Narrow-Lane Ambiguity Resolution

If wide-lane ambiguities have successfully been resolved, the ionosphere-free linear
combination of the L; and L, phase observations can be used to resolve the cor-
responding narrow-lane ambiguities. The ionosphere-free linear combination may
be written in the form

o
Liipos = szEO3 JrBzLE03 (1.19)

where the first term denotes double-difference geometrical distance and the second
term the ionosphere-free ambiguity bias. Note that other terms such as tropospheric
refraction delay, multipath and noise are not explicitly shown and higher-order
ionospheric terms have been ignored. The ionosphere-free bias can be written as

Bkl f2 ) Nkl f2 /’{ Nkl (1 20)
iLEO3 — f f2 “1YiLEO, L f f2 2ViLEO,2 :

where 4;(j = 1,2) denote the wavelength of L; and L, and N¥., , the corre-

sponding double-difference ambiguity. By introducing the known wide-lane
ambiguity

N{(LIEO,S = N{(LlEo,l - N;(LIEOQ (1-21)
into (1.20) we obtain

f
BfI{EO 3 f f NlLEO 5 +—F f +f leIfEO 1 (1 22)
1 2

where the first term contains the resolved wide-lane ambiguity and the second term
is known as narrow-lane ambiguity. In this way the ionosphere refraction has been
eliminated and using only phase observations the remaining ambiguity N{‘LZEO‘I can
be resolved with the same algorithms as used for wide-lane ambiguities. In com-
parison to wide-lane ambiguities, all baselines have to be processed simultaneously
to obtain the best possible kinematic orbit by accounting for the correct correlations
between the baselines and thus obtaining the best possible bootstrapping results.
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Due to the short wavelength (11.6 cm) of the narrow-lane ambiguities, all biases
stemming from the orbits of the GPS satellites and tropospheric refraction have to
be modeled very carefully. Tropospheric biases can be corrected for by using
tropospheric zenith delays (and gradients). The impact of errors in the IGS Final
Orbits for GPS satellites on double-differences with LEO satellites, given their
current level of accuracy, is negligible. The station coordinates of the ground
network should be consistent with the GPS satellite orbits. For more on this subject
we refer to Svehla and Rothacher (2005a, b).

1.9.3 The Impact of Narrow-Lane Ambiguity Resolution
and Tracking Geometry on Ground GPS
Double-Differences with LEO Satellites

GPS phase observations for the CHAMP satellite were simulated with a white noise
of 1 mm using the same physical and mathematical models as those used in the
processing of real data. The white noise applied to the carrier-phase of IGS stations
was 1 mm and no other error sources were simulated (no systematic effects).
Simulation was carried out with a higher cut-off angle of 15°, with the maximum
number of tracked GPS satellites set to 8, and with 105 stations of the IGS ground
network. Figure 1.10 shows the kinematic orbit positions obtained with an ambi-
guity float/fixed solution against the true orbit used in the simulation. It is inter-
esting to note the systematic excursions of up to a few centimeters in the float
solution caused only by the observation noise, low number of tracked GPS satellites
and probably also by the high correlation between ambiguities and kinematic
coordinates. The large deviations at about 0.75 and 2.45 h are the result of a small
number of satellites tracked around these epochs. Figure 1.10(right) shows the
kinematic orbit with fixed ambiguities after narrow-lane bootstrapping with 98% of
the narrow-lane ambiguities resolved. A systematic once-per-rev. pattern in the
kinematic orbit with float ambiguities is clearly visible in Fig. 1.10(left) and is
completely eliminated after ambiguity resolution in Fig. 1.10(right), producing
kinematic orbit determination to an accuracy of less than one centimeter. This
analysis shows that, if the kinematic orbit is estimated using double-differences
from the IGS network, ambiguity resolution needs to be performed due to the very
large number of ambiguities introduced by that network.

Comparing the two sets of results in Fig. 1.10, we may expect orbit changes in
the order of a few centimeters when fixing the double-difference ambiguities in
kinematic POD based on double-differences. It is interesting to note that, analogous
to the height component for ground stations, the radial kinematic component is less
accurately determined by a factor of about 2-3.
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Fig. 1.10 Kinematic orbit with float (left) and fixed ambiguities after narrow-lane bootstrapping
(right) based on simulated data with high cut-off angle of 15° and max. number of tracked GPS
satellites set to 8

We would like to point out that for POD of the present geodetic missions such as
CHAMP, JASON and GRACE, GPS measurements over all elevations 0°-90° are
used. In the early days of CHAMP, GPS measurements were collected even below
the antenna horizon (down to —15°) throughout the satellite constellation, but, due
to their poor quality, all measurements below 0° elevation were rejected in the
pre-processing stage and were not used in POD. Later on, the CHAMP BlackJack
software was upgraded and GPS satellites below the antenna horizon were no
longer tracked. The main part of the LEO GPS data is at elevations of 5°-20° and,
therefore, an elevation cut-off angle of 0° is strongly recommended for any satellite
mission that requires orbits with high accuracy. The usage of a cut-off angle above
0°, e.g., above 15°, is very disadvantageous and may lead to gaps in kinematic POD
as shown in Fig. 1.10. It is important to note that weighting of the phase mea-
surements as a function of elevation is not necessary in the POD of CHAMP and
GRACE, which means that the phase measurements over the entire elevation range
from 0° to 90° are of similar quality. Elevation-dependent weighting is still required
for ground GPS applications due to multipath and troposphere effects. For more on
this subject see Svehla and Rothacher (2003a, 2005a).
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1.9.4 Narrow-Lane Kinematic and Reduced-Dynamic
Bootstrapping

Using the ionosphere-free linear combination of the carrier-phase measurements
and the resolved wide-lane ambiguities, an iterative resolution of the narrow-lane
ambiguities (bootstrapping) can be performed. Two main methods were studied to
perform the narrow-lane ambiguity resolution with LEO data. In the kinematic
bootstrapping epoch-wise coordinates are pre-eliminated in order to reduce the size
of the normal-equation matrix. The first solution is a float solution where the
ambiguities are real numbers. Then the best estimated ambiguities are set to integer
numbers, the normal equation system is updated and re-inverted and the whole
procedure is repeated. More about this type of bootstrapping and the criteria applied
for ambiguity fixing can be found in Svehla and Rothacher (2002). The same
procedure can also be used when estimating dynamic orbit parameters. We then
speak of dynamic bootstrapping, see Svehla and Rothacher (2005a, b).

The reduced-dynamic orbit model used in our approach is based on the dynamic
model originally developed at the CODE Analysis Center for GPS orbits and here
subsequently used for LEO satellites (Svehla and Rothacher 2002) making use of
the estimation of pseudo-stochastic pulses (small velocity changes). For the
CHAMP and GRACE orbits, stochastic pulses are set-up every 6 min.
Bootstrapping with this reduced-dynamic parameterization can be used as an
independent check for the ambiguity resolution based on kinematic bootstrapping.
When comparing the double-difference ambiguities obtained from the kinematic
and the reduced-dynamic bootstrapping no discrepancies were found.

Baseline-wise ambiguity resolution could, in principle, be applied for kinematic
as well as for dynamic orbits, but highly accurate a priori orbits have to be available
in that case. The orbits are then fixed in the baseline by baseline ambiguity reso-
lution. The drawback of this method is that the criteria to fix the ambiguities have to
be very restrictive in order to ensure that ambiguities are correctly resolved. In
principle, baseline-wise ambiguity resolution can be performed iteratively: after the
first baseline-wise ambiguity resolution step a new orbit is computed making use of
the fixed ambiguities and a new iteration of the baseline-wise ambiguity resolution
is performed with the updated orbits. Our experience with baseline-wise ambiguity
resolution shows that highly accurate dynamic orbit models are a prerequisite for
this method. More details about Melbourne-Wiibbena wide-laning with narrow-lane
bootstrapping may be found in Svehla and Rothacher (2002).

Ambiguity resolution was performed in the double-difference case for GPS week
1175/2002. Using the Melbourne-Wiibbena linear combination, about 59% of the
wide-lane ambiguities could be resolved. These wide-lane ambiguities were
introduced in the next step to resolve the narrow-lane ambiguities. Epoch-wise
coordinates were pre-eliminated from the NEQ system in kinematic, and orbital
parameters in reduced-dynamic POD, leaving ambiguities as remaining parameters
for bootstrapping. The overall percentage of resolved narrow-lane ambiguities was
27% of all ambiguities or 59% of the ambiguities for which the wide-lane
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ambiguities were successfully resolved with the Melbourne-Wiibbena approach.
Comparing kinematic and reduced-dynamic bootstrapping, no discrepancies were
found in the fixed ambiguities. Due to the large number of ambiguity parameters
(5000 per day), bootstrapping is very time-consuming and requires about 100
inversions of the 1-day NEQ for both approaches.

Figure 1.11 shows the impact of ambiguity resolution on reduced-dynamic
orbits based on double-differences. Ambiguity resolution changes the determined
orbit by 1-2 cm.
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Fig. 1.11 Impact of ambiguity resolution: difference between reduced-dynamic orbit with float
and fixed ambiguities, day 200/2002
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1.10 Differential Code Biases and Kinematic POD

The term differential code biases (DCB) denotes biases in the tracking of different
code observables, e.g., between P; and P, or C/A and P; code that can be indi-
vidually assigned to each GPS satellite, as well as, to each GPS receiver. When
estimating the GPS satellite clock corrections from the global IGS network using
the ionosphere-free linear combination, the differential code biases are included in
the clock correction. Phase “iono-free” GPS clocks are then consistent with the
corresponding GPS orbits. Unfortunately, this is not the case for the inter-channel
biases, and therefore this effect has to be correctly and very accurately calibrated.
When performing ambiguity resolution based on the Melbourne-Wiibbena linear
combination, the quality of P code measurements has to be very high and GPS
satellite differential code biases should be taken into account. In the case of the
DCBs of a GPS receiver, they should be constant over time, and as small and as
independent of the environment (e.g., temperature) as possible. DCBs play a role in
kinematic POD only if ambiguity resolution based on the Melbourne-Wiibbena
linear combination is performed, or if ionospheric delays are estimated.
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Chapter 2 )
Reference Frame from the Combination et
of a LEO Satellite with GPS

Constellation and Ground Network

of GPS Stations

In this section we demonstrate the combination of a LEO satellite with the satellites
of the GPS constellation and the ground networks of space geodesy techniques
(GPS, SLR, DORIS) in the generation of reference frame parameters. We show
clear improvements in terrestrial reference frame parameters after the combination
of the GPS constellation in MEO with spaceborne GPS, DORIS and SLR mea-
surements from the Jason-2 satellite in LEO orbit, including station coordinates,
tropospheric zenith delays, Earth rotation parameters, geocenter coordinates and
GPS satellite orbit and high-rate clock parameters. We analyze the impact of the
LEO data on the terrestrial reference frame parameters and possible improvements
they could bring. (See also (Svehla et al. 2010b).) This is a continuation of the work
performed with the GPS data from the Jason-1 satellite, where the strong impact of
the LEO data on the global parameters has already been demonstrated by means of
simulated GPS measurements and variance-covariance analysis (Svehla and
Rothacher 2006a).

Terrestrial reference frames are usually defined by a set of station coordinates
that are estimated over a long period of time using a combination of different space
geodesy techniques. However, in the case of Precise Point Positioning (PPP) of a
GPS receiver on the ground or kinematic or dynamic POD of LEO satellites using
GPS, reference stations on the ground are not directly used to estimate the orbit of a
LEO satellite or coordinates of a GPS receiver on the ground. The PPP of a ground
station or POD of LEO satellites is based on an intermediate reference frame
defined by the GPS satellite orbits and epoch-wise estimates of GPS satellite clocks.
Any error in the GPS satellite orbits and clocks, or in this intermediate space-based
reference frame (that is highly temporal in nature), will map directly into the LEO
kinematic/dynamic orbit and gravity field determination (CHAMP, GRACE,
GOCE), altimetry results (Jason-2, Sentinel-3, etc.) or coordinates of a ground
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station. Therefore, an instantaneous terrestrial reference frame can be defined as a
frame created by the epoch-wise solution of GNSS orbit and clock parameters
supported by other space geodesy techniques such as SLR, DORIS and VLBLI. In
the next section we introduce the concept of phase clocks in order to consistently
bridge the gap between ground-based and space-based terrestrial frames and show
how a terrestrial frame can be transferred to the LEO orbit avoiding biases asso-
ciated with the code GPS measurements.

At the end we give an insight into the generation of an instantaneous reference
frame from different GPS frame solutions (e.g., provided by IGS ACs) by means of
least-squares collocation using a so-called intermediate reference sphere in LEO or
GNSS orbit. The use of a simple weighted average, which is often used in the
combination of GNSS solutions from different IGS ACs without taking into account
correlations in time (and space) of each individual solution, will always introduce
systematic effects that are not equally distributed over an imaginary sphere at the
GNSS orbit height.

2.1 General Remarks on the Combination of a LEO
Satellite with the GPS Constellation for Reference
Frame Determination

In (Svehla and Rothacher 2006a) and in various publications before we demon-
strated the strong impact of LEO data (from GRACE-A&B and Jason-1 satellites)
on reference frame parameters, indicating that altimetry satellites are the best
candidates for such a combination. However, due to the onboard multipath and the
performance of the Jason-1 GPS receiver, those results were not based on real GPS
measurements, but rather on simulations. In the case of GRACE-A&B satellites in a
lower LEO orbit, we noticed a strong impact of the gravity field used in the
LEO POD on the combined reference frame solution.

The quality of the instantaneous reference frame defined by the GPS satellites
will more strongly affect LEO satellites in very low orbit (such as GOCE) than
satellites in a high LEO orbit (such as Jason-2). This is because the orbit of the
Jason-2 satellite requires a rather modest number of orbital parameters comparable
to the parameterization of the GPS satellite orbits. Furthermore, in terms of
non-gravitational forces, satellites in a high LEO orbit are mainly affected by solar
radiation pressure, whereas satellites in a very low LEO orbit are, besides solar
radiation, mainly affected by air-drag. Satellites in higher LEO orbits are very good
candidates for the combination of space geodesy techniques. With the Jason-2
satellite, all GPS satellites in the GPS constellation can be connected in only ~1.5
h, and all ground SLR and DORIS stations within the same timeframe. One can
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imagine the Jason-2 satellite as a station with well-defined ties between different
space geodesy techniques collocated on the same satellite, flying below the con-
stellation of GPS satellites and above the ground networks of the different space
geodesy techniques (GPS, SLR, DORIS, VLBI).

Thus we can draw the conclusion that altimetry satellites in higher LEO orbits
with an onboard GPS, DORIS and SLR are very good candidates for the combi-
nation of space geodesy techniques, since the orbit parameterization is very similar
to GPS satellites and the orbit is also mainly affected by solar radiation pressure.

2.2 Terrestrial Frame Parameters from the Combination
of a LEO Satellite with the GPS Constellation

Here we used GPS, SLR and DORIS measurements from the Jason-2 satellite
during the CONT’08 Campaign (10.8.-31.8.2008) and combined them with GPS
measurements from about 150 stations of the global IGS ground network and
estimated typical reference frame parameters, such as GPS orbits and clocks, station
coordinates, Earth rotation parameters, troposphere zenith delays and geocenter
coordinates. In essence, we generated typical IGS-type daily solutions and added
DORIS and SLR measurements from the Jason-2 satellite on the observational
level. As a priori datum definition we used the station coordinates of GPS, DORIS
and SLR stations in ITRF2005 and a no-net-rotation condition for GPS and DORIS
stations. The scale was mainly defined by SLR measurements to Jason-2 and the
coordinates of ground ILRS stations (high constraints). Absolute phase center
variations from the robot calibration (Montenbruck et al. 2009) were used for the
GPS antenna on board the Jason-2 satellite. In order to prevent the remaining
systematic effects of the Jasson-2 antenna phase center offset propagating into the
geocenter z-coordinate, we estimated the phase center offset for the Jason-2 GPS
antenna in the up direction. Figure 2.1 shows the impact of GPS, DORIS and SLR
measurements on Jason-2 POD as well as on the orbit determination of all satellites
in the GPS constellation. This solution was based on ambiguity resolution for GPS
measurements from the ground IGS network. For the orbits of GPS satellites, the
effect is in the order of 12-16 mm RMS. This is a significant effect, considering that
the current accuracy of GPS satellite orbit determination is at a similar level.
For LEO orbit, the main effect is in the along-track direction (three times higher
than for the radial direction). However, the radial orbit component is changed by an
RMS of about 5 mm.

This is a significant effect for all altimetry satellites as the typical consistency of
the radial orbit component between different solutions (e.g., JPL. CNES, ESOC,
GFZ) is about 5-8 mm, see e.g., (Flohrer et al. 2011).
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Fig. 2.1 Impact of the combined GPS, DORIS and SLR measurements on the Jason-2 orbit (left)
and the orbits of the GPS constellation (right). Ambiguity resolution was performed for GPS
measurements from the ground network. For LEO, the main effect is in the along-track direction,
for GPS all components are affected by 12—-16 mm RMS. Notice that for the LEO, the RMS in the
radial component is in the order of 5 mm (significant for altimetry satellites that typically have an
accuracy of the radial orbit component at that level)

Figure 2.2 shows the impact of ambiguity resolution carried out for the ground
IGS network when GPS, DORIS and SLR measurements from the Jason-2 satellite
are combined with measurements from the GPS constellation for the POD of
Jason-2 and GPS satellites. One can see that ambiguity resolution improves the
along-track orbit component of the Jason-2 satellite by a factor of 2 or even 3
compared with the radial orbit component. For the orbits of the GPS satellites, the
effect of ambiguity resolution is surprisingly less visible. However, this is what is to
be expected, since inclusion of GPS measurements from the Jason-2 satellite
decorrelates all GPS orbit parameters, i.e., the LEO satellite connects all GPS
satellites during just one orbit revolution of typically about 1.5 h. Figure 2.2 (right)
shows that inclusion of GPS measurements from just one satellite in higher LEO
orbit has a similar effect to carrier-phase ambiguity resolution of the GPS mea-
surements for the entire IGS network (the ambiguity-fixed solution was used as a
reference).

More and more altimetry satellites are now carrying GPS receivers as well as
DORIS and SLR. It is expected that, in future, GNSS receivers will track all GNSS
systems as well as receive DORIS signals. With Jason-2 we clearly demonstrated
that LEO data can be included in the generation of reference frame parameters and
that there is a good reason to do so.
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Fig. 2.2 Impact of the ambiguity resolution carried out for GPS measurements from the ground
IGS network on the combined Jason-2 orbit (with GPS, DORIS and SLR data from Jason-2) (left)
and on the determined orbits of the GPS constellation (right). Blue/red dots show orbit solution
with/without Jason-2 data in the combination respectively, versus ambiguity-fixed solution. For
both the LEO and GPS satellites, the main improvement is in the along-track direction. Notice that
for LEO, ambiguity resolution improves the along-track orbit component by a factor of two
compared to other components. Inclusion of GPS data from just one LEO in the combination has a
similar effect to ambiguity resolution for the entire IGS network in the GPS-only case

2.2.1 Geocenter Estimates from the Combination of a LEO
Satellite with GPS Constellation

Table 2.1 shows the Helmert transformation of weekly station coordinates (after
stacking of daily normal equations) against the ITRF2005. One can immediately
notice a very large systematic translation of the geocenter by about —5.8 cm in the
Z-direction that is very much uniform for all three weeks of the CONT’08
Campaign and also very uniform in the daily solutions. The other six parameters of

Table 2.1 Helmert transformation of weekly coordinates solution (after stacking daily NEQs)
from the combined GPS/Jason-2 constellation (GPS, DORIS, SLR)—CONT’08 Campaign. Notice
a large systematic translation of about —5.8 mm in the geocenter z-coordinate that is very much
uniform for all three weeks

Weekly geocenter estimates (CONT’08 Campaign)

Week 1 Week 2 Week 3

dx = —0.83 mm dx = —1.78 mm dx = —1.72 mm
dy = —0.94 mm dy = —1.67 mm dy = —1.22 mm
dz = —5.90 mm dz = —5.75 mm dz = —5.60 mm
rx = 0.021 mas rx = 0.067 mas rx = 0.059 mas
ry = 0.052 mas ry = 0.055 mas ry = —0.011 mas
rz = —0.051 mas rz = —0.077 mas rz = —0.051 mas
scale = 0.13 ppb scale = 0.14 ppb scale = 0.16 ppb
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the Helmert transformation are significantly smaller. The reason for such a large
effect is most likely the SLR frame, since the orbits of the Jason-2 satellite do not
indicate that there is any bias introduced by GPS data processing (e.g., phase center
definition). It is also interesting that weekly geocenter estimates drift slightly over
the three weeks at a rate of about 2 mm/yr to 5 mm/yr. This is consistent with the
variation of the SLR origin values as given in (Pavlis 2012). However, Table 2.1
shows very smooth SLR origin variations estimated using only one LEO satellite,
as depicted in Fig. 2.3. Unfortunately, the data set of the CONT 08 campaign is
limited to just three weeks to reliably extrapolate those values over a longer time
span. Our combination of space geodesy techniques from a LEO satellite, GPS
constellations and ground GPS/SLR/DORIS networks clearly demonstrates
improvements of the combined solutions and the presence of biases in the
ITRF2005 reference frame.

2.2.2 SLR Network Effect

Figures 2.3 and 2.4 show a possible explanation for the Z-offset in the estimated
geocenter—the fact that the majority of SLR stations are located in the northern

GNSS satellite (GPS)

SN\ N

Fig. 2.3 Geometrical representation of geocenter estimation from the combination of a Jason-2
satellite with the GPS constellation
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Fig. 2.4. Possible . SLR Frame

explanation for the Z-offset in .
Translations

the geocenter—the fact that

the majority of SLR stations

are in the Northern

hemisphere. Any frame

translation in a west-east
direction will average out

Jason-2

hemisphere. Any common range bias and typically the high weight of SLR mea-
surements will bias the determined orbit of the Jason-2 satellite towards the
Northern hemisphere. Any frame translation in a west-east direction will average
out. However, due to the uneven distribution of SLR stations this is not the case
with the Z-direction.

Let us now see if there is any similar offset in the GPS satellite orbits after
combination. Figure 2.5 shows the translation and scale of the GPS constellation
after the combination with Jason-2 data (GPS, DORIS, SLR). One can immediately
see a large offset of —5.4 mm in the geocenter z-coordinate that is very similar to the
Z-offset of —5.8 mm in Table 2.1. Thus, both Jason-2 and GPS orbits are shifted by
the same amount in the Z-direction. In addition, very interestingly, Fig. 2.5 (right)
shows that the combination of GPS measurements from a ground network
observing the GPS constellation and GPS data from a LEO satellite reduces the
SLR bias in GPS orbits by 5 mm. From this, we can conclude that there must be
some residual SLR bias in GPS satellite orbits in the order of about —5 mm. This
effect is mapped into LEO orbits (mainly in along-track and radial) and due to the
typically high weight of SLR measurements and the majority of SLR stations being
in the Northern hemisphere, this then shifts the entire GPS/LEO frame in the
Z-direction. Thus, there is a bias between SLR and GPS frames that could be
removed to a great extent by estimating LEO antenna phase center offset.

2.2.3 Earth Rotation Parameters from the Combination
of a LEO Satellite with GPS Constellation

Figure 2.6 shows the effect on X-Pole and Y-Pole coordinates of a combination of
GPS, DORIS and SLR data from the Jason-2 satellite in high LEO orbit with the
satellites of GPS constellation and ground IGS/IDS/ILRS networks. One can see a
bias of the order of 0.4 mas in both X-Pole and Y-Pole and the effect is within
0.15 mas peak-to-peak over a period of three weeks of the CONT’08 Campaign.
This bias of 0.4 mas gives about 1.2 mm at the Earth’s surface or about 5.1 mm at
GPS orbit altitude. However, those are daily solutions, without any stacking of
normal equations over a longer period of time. Figure 2.7 shows corresponding
length-of-day estimated for the same period.
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Fig. 2.5 Translation (left) and scale (right) of the orbits of the GPS constellation after
combination with Jason-2 data (GPS, DORIS, SLR). Notice a large systematic translation of
—5.4mm in the z-coordinate that is very similar to the geocenter Z-offset of —5.8 mm in Table 2.1.
The scale difference after combination indicates that the Jason-2 data reduces the SLR bias in GPS
orbits (GPS scale) by 5mm (0.2 ppb)
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Fig. 2.6 Impact of the combination of Jason-2 data (GPS, DORIS, SLR) with GPS constellation
and ground IGS/ILRS/IDS networks on pole coordinates (left) and rates in pole coordinates (right).
CONT’08 Campaign

Since combining LEO space geodesy measurements (GPS, DORIS, SLR) with
the GPS constellation gives the main orbit effect in the along-track direction (for
both LEO and GPS satellites, see Fig. 2.3), it is expected that about 16 LEO orbit
revolutions per day could “see” the sub-daily parameters in Earth rotation. However
for this, it is expected that the ambiguity resolution for LEO GPS measurements
would need to be performed. Later in this thesis, we introduce the concept of
track-to-track ambiguities, where, by connecting 16 LEO ambiguity parameters per
GPS satellite over one day, one could obtain only one ambiguity per GPS satellite.
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Thus, by reducing the number of ambiguity parameters, it is expected that the
LEO GPS data will significantly contribute to the estimation of daily and sub-daily
Earth rotation parameters.

2.3 An Instantaneous Reference Sphere—A Proposal
for the GNSS Orbit Combination and Terrestrial
Frame Realization by Means of Least-Squares
Collocation

An instantaneous terrestrial reference frame can be defined as a frame realized by
the epoch-wise solution of GNSS orbit and clock parameters supported by other
space geodesy techniques such as SLR, DORIS and VLBL. It is typically formed by
7-8 GPS satellites in the field of view of a ground station or LEO satellite. In the
case of orbit determination of LEO satellites or Precise Point Positioning (PPP) of a
ground GPS receiver, we use an intermediate space-based terrestrial reference frame
given by GNSS orbit and clock parameters and not by station coordinates on the
ground. Terrestrial reference frames are usually defined by a set of station coor-
dinates that are estimated over a long period of time using a combination of dif-
ferent space geodesy techniques such as GNSS, SLR, DORIS and VLBI. This
intermediate instantaneous space-based reference frame is temporal in nature and
any error in, e.g., GNSS satellite clock parameters will map directly into the LEO
kinematic/dynamic orbit, gravity field determination (CHAMP, GRACE, GOCE),
altimetry results (Jason-2, Sentinel-3, etc.) or PPP coordinates of a ground GPS
receiver. In the next section, we introduce the concept of phase clocks
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(carrier-phase estimation of GNSS clock parameters) in order to consistently bridge
the gap between ground-based and space-based terrestrial frames and thus develop
a bias-free means of transferring a terrestrial frame to LEO orbit considering typical
systematic effects and biases associated with the GPS code measurements. One
could assume that GNSS orbit solutions provided by different IGS ACs or IGS
Final GNSS orbits themselves are a significantly better tool for generating phase
clocks for GNSS satellites and defining this intermediate space-based terrestrial
frame. By definition, IGS Final GNSS orbits are the best in terms of RMS com-
pared to any other solution. However, colored noise introduced by a combination of
different orbit solutions directly maps into the LEO kinematic/dynamic orbits,
gravity field determination and altimetry results. The same is true of high-rate IGS
clock parameters for GNSS satellites that are combined as a weighted average of
different solutions, however without taking into account any correlation in time
between the subsequent epochs of the individual solution. Compared to precise
point positioning, for a series of applications in geosciences, IGS Final Orbits/
Clocks are not always the best option.

Therefore, from the point of view of least-squares, least-squares collocation is an
alternative and promising approach for the combination of different IGS orbit
solutions and for the realization of the intermediate instantaneous space-based
reference frame. Rather than using a weighted average between different GNSS
solutions every epoch (as is done now), one could have a different covariance
function for each individual solution that would correctly model noise and corre-
lations between epochs over time. As a result, least-squares collocation would
provide an unbiased estimate (zero-mean). Typically, in least-squares collocation
one splits the noise from the signal associated with the homogeneous and isotropic
covariance function to obtain the best estimate of parameters for a given set of
observables. In this way, one could filter out and smooth spatial and temporal
systematic effects in each individual solution.

Following (Moritz 1980) the observation equation in least-squares collocation
can be written as

l=Ax+s+n (2.1)

where x is the vector of estimated parameters, A is sensitivity or design matrix and /
is the vector of observations, often denoted as “observed-minus-computed” (—!). In
the case of least-squares collocation, the vector of errors is split into two parts: in
addition to the measuring errors n (“noise”) we have the “signal” s. The noise n is a
random (stochastic) quantity with a probability distribution with the mathematical
expectation denoted here by E. The signal s is not a stochastic quantity in the same
sense as noise, i.e., repeated observation of the same quantity give different noise
values, but the values for signal s remain the same. Thus, expectation E{s} = s and
E{n} = 0. If we now introduce an operator M that denotes a homogeneous and
isotropic average over the sphere, rather than an expectation in a probabilistic sense,
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we may write M{s} = 0 and M{n} = n. This leads us to the following condition of
the least-squares collocation

s'Cls+n'Cln = min (2.2)
with the estimated unknown parameter vector

x=(ATc A 'ATC (2.3)
and estimated values of the signal (predicted and/or filtered)

s=C_C'(1-Ax) (2.4)

sS

where
C=Cy+Cp (2.5)

where C,, is the noise covariance matrix, Cy the signal covariance matrix and C _

SsS
contains covariances between a new and the given signal points. (For more about
least-squares collocation and determination of empirical covariance functions we
refer to (Moritz 1980)). The reason why least-squares collocation can offer real-
ization of an instantaneous reference frame that will provide homogeneous and
isotropic positioning, is that the empirical covariance function of the signal is
determined only as a function of distance (or time), i.e., an angle between two
points on the reference sphere. Therefore, collocation can map the remaining
residual signal in the combination of space geodesy techniques or in the generation
of an instantaneous reference frame in a theoretically correct way. The use of a
simple weighted average between different solutions that is often used in the
combination of GNSS solutions from different IGS ACs without taking into account
the correlations in time (and space) of each individual solution, will always
introduce systematic effects that are not equally distributed over a reference sphere
at the GNSS orbit altitude. Figure 2.8 shows an instantaneous reference sphere at
the GNSS or LEO orbit altitude that one could use to model residual systematic
effects in each individual GNSS solution.

In addition, for a given reference sphere at LEO orbit, one could construct a
global grid of epoch-wise positioning solutions (epoch by epoch), and by gener-
ating temporal maps on that reference sphere one could monitor geographically
correlated errors of the instantaneous reference frame realization based on GNSS
orbits and clock parameters provided by different IGS Analysis Centers. This would
be analogous to temporal gravity field maps modeled by spherical harmonics.

In the next step, the orbits of different LEO satellites could be mapped onto that
reference sphere in LEO orbit and a combined instantaneous terrestrial reference
frame based on a GNSS constellation (and LEO data) could be generated using
least-squares collocation with parameters. This would be the spatial approach to the
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Fig. 2.8 Reference frame realization by least-squares collocation on the reference sphere placed at
the altitude of the LEO/GNSS orbit, offering optimal combination and variance-covariance
properties

generation of the terrestrial frame using GNSS (and LEO) data. Another,
straightforward, classical approach is to combine the LEO with a GNSS constel-
lation and ground IGS/ILRS/IDS networks at the conventional normal equation or
observation level. The advantage of the spatial combination strategy is the possi-
bility of obtaining a reference frame that will give homogeneous and isotropic
positioning results over the entire reference sphere at the LEO orbit altitude, irre-
spective of the location and direction (azimuth) on the sphere. Here, homogeneous
positioning is defined as positioning that provides the same consistency or spatial
correlation anywhere on the reference sphere and isotropic means over all azimuths,
for any given point on the reference sphere. By definition, correlation functions of
the instantaneous reference sphere include all information already contained in the
normal equations of the individual IGS solutions or frame solutions of the space
geodesy techniques, the difference is only that a spatial dimension is introduced in
the combination or generation of the terrestrial reference frame by least-squares.
Least-squares collocation is thus a very good candidate for providing an alter-
native to conventional approaches in the combination of individual reference frame
solutions (e.g., by IGS) or in the generation of terrestrial reference frames (e.g., by
IERS) in order to provide globally homogeneous and isotropic positioning results.
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Chapter 3 )
Geometrical Model of the Earth’s e
Geocenter Based on Temporal Gravity

Field Maps

We demonstrate that GRACE gravity field maps could be used to derive annual
amplitudes and secular rates in the geocenter z-coordinate from the low-degree odd
coefficients (“pear-shaped”), i.e., from the Csg, Cso and Cy, although degree 1 gravity
field coefficients are not estimated. This is because “pear-shaped” coefficients are not
symmetrical with the equator like even zonnals C,y, C4g and Cgp, and they are big
enough relative to other low-degree “pear-shaped” coefficients to absorb any translation
rate present when degree 1 gravity field coefficients are not estimated. If degree 1 gravity
field coefficients are derived together with all other gravity field coefficients, degree 1
absorbs systematic effects associated to space geodesy techniques and reference frame
realization. Therefore, when degree 1 coefficients are not estimated, any rate in the
geocenter z-coordinate is reflected in the translation of the “pear-shaped” harmonics.
This also follows from the translation of spherical harmonics. We derived the secular
rate and annual amplitudes in geocenter z-coordinate from the low-degree odd coeffi-
cients (“pear-shaped”) over the last 10 years (GRACE RLO05) and compared it with
results from the global GPS and SLR solutions, tide-gauge records over the last 100
years and the limited data set of geocenter z-coordinates estimated from the combined
orbit determination for the Jason-2 satellite and the GPS constellation. We confirm the
initial assumption that temporal gravity field maps provided by the GRACE mission
contain an information on the geocenter z-coordinates and estimated annual amplitudes
are very close to results from GPS/SLR/LEO solutions. In addition, this approach
reveals an interesting information that the asymmetrical mean sea lever rise between the
Northern and the Southern hemispheres could be reflected in the rate of asymmetric
surface spherical harmonics (“pear-shaped”). Following (Cazenave and Llovel 2010),
satellite altimetry observations suggest that the mean sea level has been rising faster over
the Southern than over the Northern Hemisphere, whereas recently (Woppelmann et al.
2014) using selected tide-gauges measurements corrected with the glacial isostatic
adjustment (GIA) and GPS velocities report the opposite sign, i.e. the mean sea level rise
of 2.0 = 0.2 mm/yr for the Northern hemisphere and 1.1 £ 0.2 mm/yr for the Southern
hemisphere. Based on the 10 years of GRACE gravity field models (GRACE RLO05),
we can draw the conclusion that difference in the mean sea level rise between the
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Northern and the Southern hemispheres is reflected in the rate of the z-coordinate of the
geocenter and that the mean sea level has been rising faster over the Southern than over
the Northern hemisphere (confirmed Church priv. com.). At the end we derive similar
approach from the rates in the even degree zonal spherical harmonics and derive a rate in
the scale of GRACE gravity fields of -0.5 ppb/10 yr. This shows that GRACE gravity
field maps represented by spherical harmonics contain a scale and one can use temporal
gravity field maps to monitor its variations over time.

3.1 Interhemispheric Temperature Asymmetry and Ocean
Mass Flux Between the Northern and Southern
Hemispheres

The very first reaction when presenting the weekly z-coordinates of the geocenter in
Table 2.1 arising from a combined orbit determination of Jason-2 and the GPS con-
stellation of satellites (Svehla et al. 2010b), was that the source of the constant geo-
center offset was in the inhomogeneous distribution of the SLR network between
Northern and Southern hemispheres, (Pavlis, priv. com.). However, a closer look at
Table 2.1 reveals a rate that is very much constant from week to week and, when
extrapolated to the entire year, gives a rate of about 2-4 mm/yr. However, this
extrapolation is based on the very limited data set of the CONT 08 Campaign (about
one month only). We should bear in mind that the relative dynamics of a LEO satellite
and the GPS constellation is a new, unique tool, since in this case the orbit of the
Jason-2 satellite is tied to the GPS constellation of satellites and not directly to the
reference frame realized by the ground network, as is the case with DORIS satellites.
From this point of view, the sensitivity of relative dynamics between a LEO satellite
and GPS constellation is a completely new tool in the research of the system Earth and
the estimation of the annual amplitude in the z-coordinate of the geocenter and secular
rates. Any secular rate in the z-coordinate of the geocenter would indicate a secular rate
in the mean sea lever rise between the Northern and the Southern hemispheres. This
analysis leads us to another idea, namely that rate in the z-coordinate of the geocenter
could also be derived from the gravity maps provided by the GRACE mission.

(Cazenave and Llovel 2010) quantify the role of the thermal expansion of the oceans,
land ice mass loss, and land water—storage change in the global sea-level rise measured
by radar altimetry. Thermal expansion of the oceans and melting of the polar ice-sheets
are the two main contributors to sea-level rise in general. Approximately one-third of the
sea-level rise has been attributed to thermal expansion and two-thirds to the melting of
the polar ice-sheets and mountain glaciers, (Cazenave and Llovel 2010). However, since
2003 acceleration in glacier melting and ice mass loss from the ice sheets has increased
this to 80% (Cazenave and Llovel 2010), see also (Cazenave et al. 2009). The sea level
variations due to anomalies in temperature and salinity, or so-called steric variations, are
associated with the density or the volume of the water column.

Recently, (Friedman et al. 2013) showed that global warming is faster in the
Northern hemisphere than in the Southern hemisphere, with some of the most rapid
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warming rates located in the Arctic regions of the Earth, where sea and land ice is
rapidly thinning and shrinking faster than in Antarctica. (Friedman et al. 2013) introduce
the so-called interhemispheric temperature asymmetry (ITA) as an emerging indicator of
global climate change and report that the observed annual mean ITA (Northern minus
Southern) has varied within an 0.8 °C range over the last 100 years and has featured a
significant positive trend since 1980. (Friedman et al. 2013) attribute this increase to the
uneven spatial impacts of greenhouse forcing, which result in amplified warming in the
Arctic and northern landmasses. This is largely because the Northern hemisphere has
less ocean and more land than the Southern hemisphere, and oceans warm relatively
slowly, (Friedman et al. 2013). Another consequence of the Northern hemisphere
becoming warmer is the tendency tropical rainfall to extend northward. This means a
northward extension of the wet season in sub-Saharan Africa and South America
(Amazon) and an increase in extremes in the monsoon weather systems in Asia, see
(Friedman et al. 2013). At the same time, (Luderer et al. 2013) point to global ocean
currents as another factor confirming asymmetrical warming between Northern and
Southern hemisphere. Global currents, such as the Gulf Stream, transport heat from the
Southern hemisphere and into the Northern hemisphere, primarily to the North Pacific
and North Atlantic.

All this implies that any asymmetric mass flux between the Northern and
Southern hemispheres should be reflected in the z-coordinate of the geocenter.
Following (Cazenave and Llovel 2010) satellite altimetry observations suggest that
the mean sea level has been rising faster over the Southern than over the Northern
Hemisphere. On the other hand, most altimetry satellites are placed at an inclination
of approx. 66°, thus mainly mapping sea level rise in the mid-latitudes and equa-
torial waters. Although the altimetry orbits are symmetrical w.r.t. the equator, this is
not the case for the amount water in the oceans, i.e., the Northern hemisphere has
less ocean than the Southern hemisphere. Therefore, altimetry satellites measure sea
level rise mainly in the southern waters and not globally.

Thus we can draw the conclusion that symmetries in the mass flux between the
Northern and Southern hemisphere should be reflected in the gravity field maps
from the GRACE mission and potentially also in the geocenter z-coordinates
derived from the combined orbit determination of altimetry and GPS satellites.

3.2 The Geocenter Rate from Pear-Shaped Zonal
Spherical Harmonics

Following (Heiskanen and Moritz 1967), degree one gravity field coefficients C),
Ci; and Sy, are directly related to the center of mass coordinates (x,y,z) as the
origin of the coordinate system by

z X y
10 R@ 11 R@ 11 R@ ( )
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Therefore, the rate in the translation of the geocenter z-coordinate could be
related to the first degree gravity field coefficient Cio by

dz dC]()
— =R 32
da F dr (32)

with Rg being the Earth’s semi-major axis. Unfortunately, gravity field maps from
the GRACE mission delivered on a routine basis by JPL, CSR and GFZ do not provide
degree one harmonics of the spherical harmonic expansion of the Earth’s gravity field.
This would be a direct measure of this effect. However, any mass flux between the
Northern and the Southern hemisphere should be reflected in the asymmetrical surface
spherical harmonics (that are not symmetrical with the equator), such as odd zonal
degree harmonics that depend only on geographical latitude. They are of odd degree
and are asymmetric w.r.t. the equator, so-called “pear-shaped”.

Let us now write Earth’s gravitational potential V in the form of a spherical
harmonic expansion as a function of the geocentric coordinates (r, 0, 1)

(r,0,7) GMZZ Pon(cos 0)(Cpy cos mi + S, sin mA) (3.3)

n=0 m=

with the un-normalized spherical harmonic coefficients C,, and S,, and the
P,n(cos 0) denoting the unnormalized associated Legendre polynomials of degree
n and order m. Let us now write surface spherical harmonic Y,,,(0, ) in (3.3) in the
complex form

Yum (0, 2) = Pyp(cos 0)e™ (3.4)
that gives three forms of spherical harmonics: zonal, tesseral and sectorial harmonics

zonal (m = 0) tesseral (m # n) sectorial (m = n)
Pym(cos 6) cos(mA) Py, (cos )  cos(nd)P,,(cos 6) (3.5)
sin(mAd) Py, (cos 0)  sin(nd)P,,(cos 0)

Considering that temporal variation of a spherical harmonic should be equivalent
to the temporal variation of spherical harmonic coefficient itself, one can write the
following relation for the translation along the z-direction for zonal harmonic with
m=0

dY,0(cos 0) dYno(cos 0) dz  dCydz dCpo ((dY,0(c08 Opean) '
& it
dt dz dt dr dr nt dt dz

(3.6)

since for the vertically oriented zonal surface spherical harmonic we have
dY,o(cos 0)/dt = dC,p/dr. This can also be seen if we scale surface spherical
harmonic Y,,,(0,4) in (3.4) by spherical harmonic coefficients written in the
complex form K, = Cppy + Symi
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KunYum (0, 2) = CpypPrm(cos 6) cos mA + S P (cos 0) sin mA (3.7)
that for m = 0 gives
KnoYno(0) = CpoPyo(cos 0) cos 04 (3.8)

The v/2n+1 in (3.6) stands for the normalization factor. The mean derivative
dY,,0(c08 Opean)/dz can be calculated from the mean value theorem for integrals in
the following way

dY,0(coS Oean) 1 /RQP dYuo(cos 0) d (3.9)
2O Pmean) — 2 dz .

dz n % “R. dz

Since cos 0 = z/Rg, for the first three odd spherical harmonics (“pear-shaped”)
we can derive

57 3
Y30(cos 0) = P3p(cos 0) cos 04 = 3 ;—SB ~3 é

632 707 15 ¢
Ys0(cos 0) = Psp(cos 0) cos 04 = n g— n E + 3R

429 77 693 7 3157 35 z
Y 0) = P O)cos 0 = 2 L 22T 20 3L
o(cos 6) = Pro{cos 0) cos 6K, 16 & 16 & 16R,

(3.10)

In the next step we approximate annual periodic variations of odd zonal degree
coefficients from monthly gravity field maps in Fig. 3.1 with amplitudes A, and A;

taking into account secular rates C, and S, relative to nominal epoch #, = 2003.0.
Therefore, the adjusted model of temporal gravity field coefficients for C,o(¢) and

S.0(f) as a function of time is finally

Coo(to) + é’not + A, cos(wt + Ag,)
S,0(to) + Spot + A, cos(wt + Ao,)

Cn()(t)

Sn0<l)

(3.11)

with

Cs0 = (0.78 £0.03) - 10~ cos(wr)
Cso = (1.04 £0.01) - 10~ cos(wt) (3.12)
Cro = (0.29 £0.01) - 10~ cos(wr)

where time 7 is measured in days and w denotes annual frequency w = 27/365.25.
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dz -

i(CSO) = RyV7 x (078 - 1071 cos(wr) = 1.3 mm x cos(wr) =+ 0.05 mm
dz

Ef (Cs0) = R V11 x (1.04 - 107'%) cos(wt) = 2.2 mm x cos(wr) = 0.03 mm
dz

Ej (C70) = Ry V15 x (0.29 - 107'%) cos(wt) = 0.7 mm x cos(wf) +0.03 mm

(3.13)

Considering that the pear-shaped term Cso is 10 times larger than other
low-order odd coefficients, for the period of the CONT’08 Campaign (August
2008) we obtain dz/dt(Csp) = —0.1 mm/2 weeks, whereas for the geocenter rate
from LEO/GPS combination we obtain dz/dr = —0.15 mm/2 weeks. Note that the
data set of the CONT 08 Campaign (August 2008) is limited to three weeks only.
Our annual amplitude of 1.4 mm is consistent with the ~4 mm annual amplitude of
SLR z-origin values as given for the same period in (Pavlis 2012) using 30-day
boxcar smoothing of SLR geocenter values (but significantly noisier). This is also
similar to typical annual amplitude of 3 mm, e.g., (Rebischung and Garayt 2013)
derived from space geodesy techniques, such as GPS and SLR or combined GPS/
LEO solutions, but with significantly smaller error bars (x20). This value is also
consistent with the annual amplitude of the mean see level variations of about
2.5 mm due to geocenter variations as reported in (Pavlis 2012).

Let us now look at the secular rate of the odd zonal degree coefficients in
Fig. 3.1 based on GRACE monthly gravity fields. For

Cs0 = (—0.60 +0.07) - 107°/10 yr

Cso = (—0.62 +£0.03) - 107'°/10 yr (3.14)
Cro = (—0.314£0.03) - 107°/10 yr

we obtain the following geocenter translation rate

dz -

Ej(cgo) =RV % (—0.60-107°)/10 yr = —~1.0 mm/10 yr  +0.13 mm/10 yr
dz -

Zf(cso) =RV11 x (=0.62-1071%)/10 yr = —1.3 mm/10 yr £ 0.07 mm/10 yr

dz
é(cm) = RoV15 x (=0.31-107%)/10 yr = —0.8 mm/10 yr £ 0.07 mm/10 yr
(3.15)

Estimated secular rates from GRACE gravity field maps in the geocenter
z-coordinate are in the order of dz/dt= -1.03 mm/10 yr. The geocenter model
confirms that the mean sea level has been rising faster over the Southern than over
the Northern hemisphere. This confirms the sign of the hemispherical sea lever rise
(Cazenave and Llovel 2010) compared to an opposite sign of (Woppelmann et al.
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Fig. 3.1 Normalized odd zonal degree coefficients (“pear-shaped”) from GRACE monthly
gravity fields, RLO5. One can clearly see an annual period and a very strong rate in all odd zonal
degree coefficients up to degree C7. For higher degrees this rate is smaller and lost in noise

2014), (Santamaria-Gomez et al. 2014), (Church priv. com). Derived geocenter
model reveals an interesting information that the asymmetrical mean sea lever rise
between the Northern and the Southern hemispheres could be reflected in the rate of
asymmetric surface spherical harmonics (“pear-shaped”) and in the derived geo-
center z-coordinate.

Here we have demonstrated that GRACE gravity field maps could be used to
derive annual amplitudes and secular rates in the geocenter z-coordinate from the
low-degree odd coefficients (“pear-shaped”), i.e. from the Csg, Cso and Cy,
although degree 1 gravity field coefficients are not estimated. This is because
“pear-shaped” coefficients are not symmetrical with the equator like even zonnals
Cyp, Cy4o and Cgp, and they are big enough relative to other lowdegree
“pear-shaped” coefficients to absorb any translation rate present when degree 1
gravity field coefficients are not estimated. If degree 1 gravity field coefficients are
derived together with all other gravity field coefficients, degree 1 absorbs systematic
effects associated to space geodesy techniques and reference frame realization.
Therefore, when degree 1 coefficients are not estimated, any rate in the geocenter z-
coordinate is reflected in the translation of the “pear-shaped” harmonics. This also
follows from the translation of spherical harmonics.
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3.3 Rate in the Even-Degree Zonal Spherical Harmonics
as a Measure of Sea Level Rise and Intrinsic Scale
of the Reference Frame

The central term of the gravity field Coy of the spherical harmonic expansion
defines the mean gravitational potential of the Earth. In the case of homogeneous
sea level rise over all oceans it is expected that only zonal surface spherical har-
monics will be affected since they are symmetrical w.r.t. the equator. The mean
gravitational potential as well as the shape of the oblate ellipsoid will not be
changed under this assumption. Thus, one could expect a scale type effect that will
be reflected in a change of the mean sphere in the expansion of the Earth’s gravity
field in terms of spherical harmonics. The derivative of the radius Rg of the mean
sphere of the spherical harmonic expansion can be calculated from the mean value
theorem for integrals in the following way

dYn 0"16(1” 2 R% dYYl 9
dYy0(¢0S Onean) _ 2. / dio(cos 0) (3.16)
dRg R Jo dRg
Since for the first odd zonal spherical harmonics
Y20(cos 0) = Pyy(cos 0) cos 0/ 32 1
R = R == — — —
20 20 ) RgB 2
354 30722 3
Yao(cos 0) = Pgo(cos 0) cos o= 2 0 (3.17)

8 RE, 8 RY 8
231 2% 315z 10572 5

Yéo(COS Q)ZPGO(COS G)COSO//‘L:FIQ—%7ER—§B+ER—§l E

we obtain the rate in the scale of the geometrical frame that defines expansion of
Earth’s gravitational field in terms of spherical harmonics, see also Fig. 3.2

dRs
7:9 (Cx) = R,V5 x (=1.7-1071%) /10 yr = —2.4 mm/10 yr

dRs -

Tz@ (Ca0) = R,V9 x (=1.0-1071%) /10 yr = —1.9 mm/10 yr (3.18)
dR

7:“(060) =R, V13 x (—=0.9-107'%)/10 yr = —1.7 mm/10 yr

or the relative rate in the scale of —0.5 ppb/10 yr. The scale of the conventional
terrestrial frame is defined by the scale of the station coordinates of the ground
networks of space geodesy techniques fixed to the continental Earth’s crust. Here
we show that spherical harmonics also contain an intrinsic scale and one can use
temporal gravity field maps to monitor its variations over time. This scale does not
influence the mean gravitational potential nor the shape of the oblate ellipsoid, but
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Fig. 3.2 Normalized even zonal degree coefficients from GRACE monthly gravity fields, RLOS5.
One can clearly see an annual period and a very strong rate in all even zonal degree coefficients up
to degree Cs ¢ of the order of dC/dt = —0.5 - 1071°/10 yr. For C, o the secular rate is higher by
about one order of magnitude

rather defines the scale of the background geometrical reference frame that defines
the expansion of spherical harmonics. Equation (3.18) shows that this geometrical
scale can be monitored by temporal gravity field maps. Since the radius of the mean
sphere approximates the global mean see level, a constant rise of the mean sea level
will be reflected in the rate of the estimated even degree zonal gravity field coef-
ficients or equivalently in the radius of the mean sphere used in the expansion of
spherical harmonics.

References

Cazenave A, Dominh K, Guinehut S et al (2009) Sea level budget over 2003-2008: a reevaluation
from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65:83-88.
https://doi.org/10.1016/j.gloplacha.2008.10.004

Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145-173. https://
doi.org/10.1146/annurev-marine-120308-081105

Friedman AR, Hwang Y-T, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature
asymmetry over the twentieth Century and in future projections. J Clim 26:5419-5433. https://
doi.org/10.1175/JCLI-D-12-00525.1

Heiskanen WA, Moritz H (1967) Physical geodesy. W.H.Freeman & Co Ltd

Luderer G, Pietzcker RC, Bertram C et al (2013) Economic mitigation challenges: how further
delay closes the door for achieving climate targets. Environ Res Lett 8:034033. https://doi.org/
10.1088/1748-9326/8/3/034033

Pavlis E (2012) Laser ranging: scientific accomplishments of the past and requirements for the
future. In: International technical laser workshop 2012. “Satellite, Lunar and Planetary Laser
Ranging: characterizing the space segment”, Frascati, Italy


http://dx.doi.org/10.1016/j.gloplacha.2008.10.004
http://dx.doi.org/10.1146/annurev-marine-120308-081105
http://dx.doi.org/10.1146/annurev-marine-120308-081105
http://dx.doi.org/10.1175/JCLI-D-12-00525.1
http://dx.doi.org/10.1175/JCLI-D-12-00525.1
http://dx.doi.org/10.1088/1748-9326/8/3/034033
http://dx.doi.org/10.1088/1748-9326/8/3/034033

52 3 Geometrical Model of the Earth’s Geocenter ...

Rebischung P, Garayt B (2013) Recent results from the igs terrestrial frame combinations. In:
Altamimi Z, Collilieux X, (eds) Reference frames for applications in geosciences, volume 138
of IAG Symposia, pp 69-74. Springer, Berlin. doi:https://doi.org/10.1007/978-3-642-32998-2_
12

Santamaria-Goémez A, Woppelmann G, Marcos M, et al (2014) Observed differential geocentric
sea-level rise between hemispheres over the past hundred years, REFAG conference
Luxembourg

Svehla D, Flohrer C, Otten M, et al (2010b) Instantaneous reference frame realization by means of
combination of space geodesy techniques onboard Jason-2 satellite. In: ESA Living Planet
Symposium, 28 June 2010-2 July 2010, Bergen, Norway

Woppelmann G, Marcos M, Santamaria-Gomez A et al (2014) Evidence for a differential sea level
rise between hemispheres over the twentieth century. Geophys Res Lett 41:1639-1643. https://
doi.org/10.1002/2013GL059039


http://dx.doi.org/10.1007/978-3-642-32998-2_12
http://dx.doi.org/10.1007/978-3-642-32998-2_12
http://dx.doi.org/10.1002/2013GL059039
http://dx.doi.org/10.1002/2013GL059039

Chapter 4 M)
First Phase Clocks and Frequency gt
Transfer

In Svehla and Rothacher (20044a, b, 2005a, 2006b), it was demonstrated for the first
time that clock parameters for GPS satellites and ground stations can be estimated
solely from the carrier-phase GPS measurements. These also allow frequency
transfer with a very high level of accuracy of a few parts in 10716 (=25 ps/day in
terms of linear time rate). The main motivation for the development of the phase
clock approach is to avoid the colored systematic noise that is introduced by using
code, or smoothed code GPS measurements and other possible biases in the official
GNSS clock parameters provided by IGS. On the other hand, phase clocks com-
pletely absorb the GPS radial orbit error and are fully consistent with the LEO
carrier-phase measurements when determining kinematic or reduced-dynamic LEO
orbits, since in both cases carrier-phase ambiguities are estimated. Phase mea-
surements from a GPS ground network of about 40-50 stations tracking about
30 GPS satellites in MEO orbit form a closed, internally connected system, in
which the phase information of one clock can be related to that of any other GPS
satellite or a ground station clock in the network, even on the antipodal side of the
world. This opens up the possibility of high-precision positioning and especially
intercontinental non-common view frequency transfer of utmost accuracy. We may
say, phase clocks are the optimal way to compare phase information between
ground station clocks and/or LEO/GNSS satellites. Later on in this thesis, we
introduce the concept of track-to-track ambiguities to optimally fix carrier-phase
ambiguities to their integer values.

Later, phase clocks were also studied in Dach et al. (2005, 2006); Bauch et al.
(2006) and in Matsakis et al. (2006) over longer periods of time and have been
compared to other time/frequency comparison techniques. Ambiguity resolution
with phase clocks was demonstrated for the first time in Svehla and Rothacher
(2006a) and later on in Mercier and Laurichesse (2007), Delporte et al. (2007,
2008). Starting with GPS Week 1449, JPL started providing additional information
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on clock time bias and drift relative to the reference clock in the IGS network in
their IGS reports, see Desai (2007). In their IGS reports, as a reference clock JPL
uses exclusively IGS station USN3 (US Naval Observatory), or in some cases
AMC2 (Colorado Springs). Besides CNES, all IGS Analysis Centers provide
satellite clock parameters calculated using carrier-phase and pseudo-range mea-
surements in order to support both time and frequency transfer at the same time.
Thus, IGS clock parameters are more applicable to PPP (Precise Point Positioning)
than to frequency transfer. This section describes the estimation of phase clocks and
their application in frequency transfer and precise point positioning.

4.1 The Concept of Phase Clocks

Phase clocks are biased clock parameters preserving the highly accurate relative
epoch-to-epoch information of carrier-phase measurements. When carrier-phase is
connected over all ground stations and all GPS satellites, any time bias and drift in
the selected reference clock biases all other clocks in the network by exactly the
same amount. Ground stations do not have to be connected to a stable frequency
standard such as H-maser or a clock assembly in a timing lab. There is a minimum
number of about 40 ground stations needed to form a connected system with
continuous carrier-phase information between all GPS satellites and ground sta-
tions, see Fig. 4.1. We demonstrated for the first time that the frequency transfer
between the best timing labs in the IGS network is possible with a precision of
below 25 ps/day (few parts in 10~'° /day) (Svehla and Rothacher 2004a, b, 2005a),
and in Svehla and Rothacher (2006b). Using carrier-phase data only, the impact of
the pseudorange noise and accompanying systematic effects can be avoided. Code
measurements are needed only to pre-synchronize all receiver clocks at the levelof
about 1 ps. Due to the low accuracy of code measurements, phase clocks can be
aligned in an absolute time frame to about 1 ns. Increasing the number of ground
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Fig. 4.1 The concept of phase clocks. Phase information is connected and transferred between all
ground stations and all GPS satellites
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stations increases the overall number of stations that contribute to the clock
parameters of one GPS satellite at a given time. In this way, local effects such as
multipath and other station-specific environmental errors are averaged out over a
number of ground stations providing extremely precise and consistent phase
information for the GPS satellites. GPS satellites are placed at high altitude in the
MEO orbit and any radial orbit error can be fully represented by the estimated
satellite clock parameters. This is the reason why GPS orbit errors do not propagate
into frequency transfer between ground stations or LEO satellites, and allow for
extremely accurate precise point positioning and orbit determination of LEO
satellites. We may say, phase clocks are the optimal way to compare clock infor-
mation between ground GPS stations and/or LEO satellites. Usually, one
well-performing H-maser in the IGS network or timing lab is selected as the ref-
erence clock in the system, and any epoch-specific bias in the ensemble of such
ground/space phase clocks will be removed when differences between different
stations are formed. All common errors between ground stations will be removed as
well, such as common troposphere and tidal errors. This opens up the possibility of
extracting extremely accurate frequency information on two ground clocks a great
distance apart or to study the frequency stability of clocks on board GPS or LEO
satellites However, in the case of the clock parameters of GPS (and LEO) satellites,
orbit errors will propagate into the estimated clock parameters, but due to the nature
of satellite orbits, these orbit errors will average out over one or several orbit
revolutions. Thus very accurate frequency offsets (time rate) can be calculated
between ground-to-space or ground-to-ground despite the orbit determination errors
of GPS (and LEO) satellites. This is especially true for the orbit errors of GNSS
satellites that typically have once-per-revolution pattern.

4.2 Estimation of Phase Clocks

Figure 4.2 shows the ground network of IGS stations used for the calculation of
phase clocks. It is a network of about 40-50 ground stations uniformly distributed
over the globe. All stations are part of the IGS network used in the IGS
Reprocessing Project running at TU Miinchen. In order to maintain consistency
with the software, station coordinates, GPS satellite orbits and Earth rotation
parameters were kindly provided by the IGS Reprocessing Project (Steigenberger
et al. 2006). The disadvantage of these products is that many timinglabs within the
IGS network are not included in the IGS Reprocessing Project, mainly due to poor
station monumentation or simply a lack of continuous tracking over many years.
Figure 4.3 shows the procedure used to estimate phase clocks for GPS satellites and
ground stations. In the first step, broadcast GPS satellite clock information is used
to align the selected ground reference clock to GPS time. As the reference clock, the
most stable H-maser is selected, such as the one available from the timing lab US
Naval Observatory (USNO) or a geodetic IGS station connected to a local H-maser,
e.g., Wettzell in Germany. In this alignment step time bias and drift are estimated
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Fig. 4.2 Ground GPS stations used for determination of phase GPS satellite clocks

Estimation of the 5-min and the 30-s phase GPS clocks
using 40 IGS stations

Selection of the reference clock (BRUS, USNO or WTZR)
Bk

Alignment of the reference clock to the broadcast GPS clocks
(daily bias and drift estimation)

N

Pre-processing of the phase/code data
based on Melboume-Wibbena LC

9% 2

Estimation of the 5-min GPS clocks only to clean data
using code and phase measurements

L

Pre-processing of the phase data
using the 5-min GPS clocks

g i

Estimation of the 30-s GPS clocks
using phase measurements and code measurements (only reference station)
- normal equation matrix with up to 5000 phase ambiguities

Fig. 4.3 Overview of phase clocks calculation
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for the reference H-maser using smoothed ionosphere-free pseudorange measure-
ments. In this calculation, all broadcast GPS satellite clock parameters are held
fixed. For all other ground GPS stations, an a priori clock synchronization to
broadcast GPS time is performed by estimating one clock parameter every epoch
using ionosphere-free code measurements. This step is required since GPS mea-
surements are given in the GPS receiver time, which could differ from GPS time by
up to a millisecond. Screening of code and phase measurements is based on the
Melbourne-Wiibbena linear combination. In the next step, the parameters of the
aligned reference clock from the previous step are held fixed and all other GPS
satellite/station clock parameters are estimated with a resolution of 5 min using
smoothed-code ionosphere-free measurements. Once the first solution for GPS
satellite clocks is available, it is used to pre-process carrier-phase measurements,
i.e., to detect cycle-slips and outliers. Once the phase data have been screened, the
clock estimation is repeated for all GPS satellites and ground stations without using
any pseudorange measurements. The clock solution in this step is calculated with a
resolution of 30 s. This procedure is repeated in order to further screen the phase
data. For a 1-day arc, GPS satellite/ground station clocks can be estimated with a
sampling of 30 s using the full normal equation system consisting of phase
ambiguities and GPS satellite/receiver clocks as parameters only. With 45 ground
stations we may easily expect up to 5000 ambiguities and this can easily be handled
on a standard Linux PC system. The NEQ matrix contains only phase ambiguities
(up to 5000) since all GPS satellite and ground clock parameters are pre-eliminated
every epoch. Once the normal equation system is inverted, phase ambiguities are
back-substituted and a normal equation matrix is set-up and inverted every epoch
containing only clock parameters for about 30 GPS satellites and 40-50 ground
stations.

By calculating high-rate GPS satellite phase clocks and CHAMP kinematic and
reduced-dynamic orbits for a period of 2 years (Svehla and Rothacher 2004a), we
demonstrated that such an approach can easily be performed on a standard PC with
1 GB of RAM. The high-rate 30 s phase clock solution was based on about 40-50
ground I GS stations and one ground hydrogen maser as a fixed clock reference.

4.3 Frequency Transfer Based on Phase Clocks

In Svehla and Rothacher (20044a, b, 2005a, 2006b), it was demonstrated for the first
time that clock parameters estimated for ground stations allow frequency transfer
with few parts in 107! (=25 ps/day in terms of linear time rate). Later on those
results were repeated by Dach et al. (2005, 2006); Bauch et al. (2006), and Matsakis
et al. (2006). Figure 4.4 shows the differences in phase clocks between AMC2 and
USNO for a period of one day. After removing a linear time drift (top figure) we
obtained a residual clock noise with a standard deviation of ~25 ps over one day
(bottom figure) with results below 10 ps for the best days.



58 4 First Phase Clocks and Frequency Transfer

AMC2-USNO Clock difference, day 196/2003
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Fig. 4.4 First high-precision frequency transfer using GPS with STD = 25 ps, day 196/2003

Considering the short-term stability of H-masers in the IGS network, the residual
systematic pattern in Fig. 4.4 (bottom) is most likely mainly due to the modeling of
troposphere delay, i.e., estimation of the troposphere zenith delays that, in this case,
were estimated every hour as a piece-wise constant function. Figure 4.5 shows the
power spectral density of the residual phase clock parameters between AMC2 and
USNO given in Fig. 4.4 (bottom). Comparing Fig. 4.4 (bottom) and Fig. 4.5, one
can see that phase clocks show white noise up to 200 s, whereas flicker noise from
200 s—24 h. It should be noted that the residual clock parameters in Fig. 4.4
(bottom) include noise of the H-maser at both AMC2 and USNO as well as effects
from the GPS data, including residual troposphere effects, signal multipath, station
coordinates (residual atmospheric effects and tides), antenna phase center varia-
tions, antenna cable delays, in addition to GPS receiver effects (e.g., front-end).
Here, the role of GPS orbit errors is significantly reduced since any radial orbit error
is compensated for by the GPS satellite clock parameters being averaged over many
ground stations. Thus the difference between the phase clocks of two separate
timing labs is free of any common biases (to a great extent), including an overall
common time offset. This is true for all estimated phase clocks, which only give
relative time information between all clocks in the network.

GPS satellite clock parameters are not as smooth as ground receiver clock
parameters derived from an external frequency such as a H-maser. Figure 4.6
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Fig. 4.5 Power spectral
density of phase clock
differences between AMC2
and USNO, 196/2003
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shows the phase clocks of the GPS satellite PRN24. Compared to AMC2 or USNO,
the noise level is about 120 ps after removing a low-order polynomial (quadratic
term). The remaining clock residuals show a periodic pattern with a period of about
6 h (see Fig. 4.6.) that can be explained by the periodic relativistic correction due to
the J, gravity field coefficient and a variable semi-major axis, following the model
presented in Kouba (2004). The green line in Fig. 4.6 shows the remaining periodic
relativistic correction (Kouba 2004), and the black line represents a periodic signal
with a period of 6 h fitted to the phase clock parameters. One can see very good
agreement between the model and the phase clocks of GPS PRN24. It should be
noted that in GPS data processing only relativistic satellite clock correction due to
the eccentricity of the GPS satellite orbit has been applied.

T T T T
06 —— phase clocks estimated

# & —— 6h signal
0.4+ l f —— 6 h periodic correct. M

Fig. 4.6 Phase clock parameters of GPS PRN 24 over a period of 24 h. The green line shows
remaining periodic relativistic correction from Kouba (2004), and the black line represents a
periodic signal with a period of 6 h fitted to the phase clock parameters
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4.4 Inter-Frequency and Inter-Channel Biases

Inter-frequency biases can be considered as a delay on the L, frequency mea-
surements with respect to the measurements on the L; frequency. They are caused
by hardware delays in the L; and L, signal paths and are mostly
temperature-dependent. Inter-channel biases are differences in the signal path
between the different receiver channels that track the GPS satellites. This effect is
very difficult to estimate as it is receiver-specific and has not yet been estimated in
global I GS processing. Inter-channel biases can be determined by calibration
procedures and, when correctly applied, should not present a problem in the pro-
cessing of GPS data. Inter-frequency biases can be eliminated when one clock
parameter is estimated every epoch. This is not the case for inter-channel biases,
whose constant parts can be eliminated by estimating phase ambiguities.
Calibration for inter-channel biases can in fact be performed in the GPS receiver on
the ground or in space, tracking the same GPS satellite on all channels.

In order to assess potential GPS receiver errors, we connected four Septentrio
PolaRx2 GPS receivers to the same GPS antenna and external frequency, see
Fig. 4.7. This experiment was carried out in cooperation with the Institute of
Navigation and Communication at DLR (Svehla et al. 2006a). Figure 4.8 shows
very large variations on L, carrier-phase for those four 4 receivers denoted as
UTC1, UTC2, GRX1 and GRX2. When forming single-differences between those
four GPS receivers, w.r.t. the receiver denoted as UTC1, all signal propagation and
receiver-specific effects should be removed, and phase noise is then the remaining
effect. It is interesting that L, carrier-phase is not affected by the apparent clock

)

4 Septentrio GPS GPS GPS GPS
GPS receivers | receiver receiver receiver receiver
Cs-Clock

Fig. 4.7 Test set-up with four Septentrio PolaRx2 GPS receivers
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Fig. 4.8 L, and L, carrier-phase of the GPS satellite PRN30 from four Septentrio receivers
connected to the same antenna and an external frequency, (day 160/2006). Large variations on the
L, carrier-phase are most likely due to delays in the receiver front-end (Simsky, priv. com.)
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variation that one can clearly see on L, data. Although all four GPS receivers are
identical, residual multipath mitigation effects between the same receivers could
also play a role. Following (Petit, priv. com.), such an effect could also be caused by
the antenna cable splitters. A similar effect can be seen in Fig. 4.9, comparing the
carrier-phase from GPS PRNS against PRN30 tracked by two GPS receivers, UTC1
and UTC2. Figure 4.9 indicates that the carrier-phase on L, shows some form of
inter-channel or inter-satellite phase variations. Following (Simsky, priv. com.)
these effects are most likely caused by the GPS receiver front-end.

Figure 4.10 shows code and -carrier-phase measurements from four
Septentrio GPS receivers connected to the same GPS antenna and the same external
frequency standard over 10 days, (day 160—-170/2006). For the code measurements,
one can clearly see antenna cable delays of up to 10 m between different receivers
and for the carrier-phase measurements a dominant periodic effect, most likely
caused by the residual multipath effect (between receivers of the same type) or
receiver front-ends, especially on the second GPS frequency (Simsky, priv. com.).



62 4 First Phase Clocks and Frequency Transfer

Zero-Clock-Baseline with 4 Septentrio Receivers, days 160-17072006 Zero-Clock-Baseline with 4 Septentrio Receivers, days 160-170/2008
P1 code i ) ) L1 carrier-phase ) R

1 =Ty ’ [~ UTC2UTC! ST0-0 78 mm |
- GRA1UTCT STOS0.80 mm | |

THH N A H A A R

1
[H
o | .
E o
L 1 5|
aF 3 I 3 - 1 af
F T o ad 1 51
N Al B Ao i I B o B T 2
T 0 12 n 18 ] E:] % 10 (1] " % [0 E
Timw ndlays Time in days
Zero-Clock-Baseline with 4 i Receivers, days 160-170/2006 Zero-Clock-Baseline with 4 io Receivers, days 160-170/2006
P2 code L2 camier-phase
12, T . x - t ; s -
ok ) . {——UTcaurCI SToe0 16 m :: — UTC2ATCY STOT 74 e
1 4 I 1 4 e GRAUTCS STO=023m | ] H : i -Gl 1 men ||
1 N N R " N H W H_ w‘ls‘; oo 1 RAI-UTCS STD=1433

| 1 [as s
o i
HHHHH

s [ 12 n [0 ] 2

Il

(T VTR VIV I N RV

8 &

]
|
— e e

<30 -
L . 1 L L
* 10 1 0 18 0 n -0

Fig. 410 P, and P, code (left) and carrier-phase L; and L, (right) from 4 Septentrio GPS
receivers connected to the same antenna and an external frequency standard over 10 days, (day
160-170/2006). One can clearly see antenna cable delays in code measurements between different
receivers and periodic effects in carrier-phase (GPS satellite PRN30)
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Chapter 5 )
First Geometric POD of GPS Check or
and Galileo Satellites

We have already estimated purely geometric orbits of several LEO satellites, and
now one may ask how accurately a GPS satellite orbit can be estimated purely
geometrically, i.e., kinematically. The main problem is that GNSS satellites are
high above the Earth and positioning geometry is not as good as for satellites in
LEO orbit. This section deals with the first estimation of one GPS satellite fully
geometrically. New Galileo satellites are equipped with H-masers and in this case
the satellite clock can be modeled very efficiently using a linear model over one
day. We present here the first Galileo orbits estimated geometrically using a linear
model for the H-maser on board the GIOVE-B satellite. The current accuracy of
geometric GPS orbits is approximately 15 cm, whereas this improves to several
centimeters in the case of Galileo. On the other hand, with Galileo, ambiguity
resolution on the zero-difference level will be significantly improved, thus once the
phase ambiguities are fixed, it is assumed that it will be feasible to estimate GNSS
orbits fully geometrically with an accuracy comparable to dynamic orbits. For more
on geometric POD of GNSS satellites see (Svehla and Rothacher 2005).

5.1 The First Geometric Positioning of a GPS Satellite

The basic idea is to fix the coordinates of the IGS GPS points on the ground and to
estimate three coordinates of the center-of-mass of the GPS satellite every epoch
using zero- or double-difference phase measurements. The main difference to
kinematic positioning of a ground station or a LEO satellite is that, due to the very
high altitude, the GPS satellites “see” all ground stations within a very small range
of nadir angles. A GPS antenna placed on a LEO satellite or located on the ground
can receive signals from the GPS satellites at elevations ranging from 0° to 90°. In
contrast, the maximum nadir angle of a signal transmitted from a GPS satellite to a
LEO satellite or ground station is about 14°-15°, see Fig. 5.1. This angle is six
times smaller than the maximum zenith angle of a LEO or ground GPS antenna and
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Fig. 5.1 Geometry for LEO and GPS satellites and ground GPS station (Svehla and Rothacher
2005)

thus, the position of the ground stations in the local orbital system of the GPS
satellite varies very little with time.

In the case of a LEO or a ground GPS station the kinematic positions are
computed at the measurement epoch, which is the same for all GPS satellites
tracked. This is not the case for the kinematic positioning of GPS satellites where,
due to the GPS receiver clock correction and the light-travel time correction, dif-
ferent ground GPS stations “see” the GPS satellite at different places along its orbit
for nominally the same observation epoch.

Due to the instability of the GPS receiver clock, the GPS measurements are not
taken exactly at the integer second in GPS time. Steering of the GPS receiver clock
on the ground or on the LEO satellite can be performed using the receiver’s
navigation solution based solely on the code measurements and broadcast GPS
orbits and clocks. In the case of the Blackjack GPS receiver onboard the CHAMP
satellite, the clock steering is performed to a precision of 0.1 ps. Nevertheless, for
some ground GPS receivers (IGS network) the clock correction w.r.t. GPS time
may vary by up to 1 ms. In order to correct for this GPS receiver effect, aiming at an
accuracy for the GPS orbit of Ax =1 cm and assuming a GPS receiver clock
correction of Az = 1 ms the velocity of the GPS satellite has to be known with only
a very low level of accuracy, about Av = Ax/Ar = 10 m/s. The velocity of the GPS
satellite is required to a higher level of accuracy, however, to correctly apply
light-travel time and periodic relativistic corrections. For the GPS satellites, the
light-travel time correction A7 and the periodic relativistic correction Apgc, see
(Ashby 2003), are given as
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(5.1)

(5.2)

where d and 7, denote distance and unit vector between GPS satellite and ground
stations, respectively, s and Vg are the geocentric position and velocity vector of the
GPS satellite, and c is the speed of light in vacuum. One can easily see that the
periodic relativistic correction is satellite-specific and, therefore, is canceled out
when forming double-differences or can be absorbed by the GPS satellite clock
parameters when using zero-differences. Following (5.1), to compute the light-travel
time to an accuracy of 1 cm (in terms of length), the velocity of the GPS satellite
should be known to an accuracy of Av &z 0.12 m/s. Since the requirements imposed
on the velocity in the computation of the light-travel time correction are not so
demanding, the orbits of the GPS satellites can indeed be determined geometrically.
Nevertheless, an approximate GPS orbit has to be available, and in principle could
be computed solely based on smoothed code measurements. Figure 5.2 shows
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Fig. 5.2 Differences between the kinematic and dynamic orbit for GPS satellite PRN 20, day 200/2002
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differences between a kinematic and dynamic orbit (assumed to be more accurate)
for the GPS satellite PRN 20 and Fig. 5.3 the corresponding a posteriori RMS
values of the kinematic positions. Both types of orbit were determined using the
same IGS stations, troposphere parameters, station coordinates and Earth rotation
parameters and the only difference is in the estimated orbital parameters.
Dynamic GPS orbits were modeled by six Keplerian elements, nine solar radiation
pressure parameters and one pseudo-stochastic pulse for the one day arc, whereas
three kinematic coordinates were estimated for PRN 20 (the parameters of the other
satellites were held fixed) every epoch (i.e., every 30 s). In both cases, the ambi-
guities were held fixed at their integer values. One can easily see that the accuracy
of the estimated kinematic positions is in the order of 10-20 cm. Replacing the
kinematic parameterization by polynomials over a few 10 min intervals would
considerably improve the “kinematic” GPS orbits. We should bear in mind that the
dynamic GPS orbit is usually represented by a polynomial of degree 12 for each
step of 1 h in the numerical integration method in the Bernese GPS Software. The
rather large variations between kinematic and dynamic GPS positions in Fig. 5.2
and the periodic behavior in the corresponding formal precision displayed in
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Fig. 5.3 A posteriori RMS of the kinematic orbit for GPS satellite PRN 20, day 200/2002 (Svehla
and Rothacher 2005)
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Fig. 5.3 are certainly due to the weak and slowly changing geometry of ground
stations as seen from the GPS satellite.

Figure 5.4 shows the kinematic orbit of the GIOVE-B satellite based on a linear
clock model of the onboard passive H-maser. Normal points of the kinematic
positions of the GIOVE-B satellite were estimated every 30 min over a period of
six days using two-frequency carrier-phase measurements with a sampling of 30 s
and without performing any ambiguity resolution at the zero-difference level. GPS
orbits and satellite clocks, as well as station coordinates and troposphere parameters
were held fixed in the estimation. Blue dots show SLR residuals of the estimated
kinematic orbit giving an agreement of about 1-2 cm RMS with the kinematic
positions. One can see that the SLR validation closely matches the shape of the
estimated kinematic positions against the dynamic orbit for the entire period of
time. Compared to Fig. 5.2, the kinematic orbit of the GIOVE-B satellite based on a
linear clock model is smooth and considerably more stable than the kinematic orbit
of the GPS satellite.
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Chapter 6 M)
Kinematics of IGS Stations Check or

For comparison with the kinematic POD of LEO and GPS satellites, a ground GPS
baseline from Greenbelt (GODE, US) to Algonquin Park (ALGO, Canada) with a
length of 777 km was processed kinematically for a period of one day. The
coordinates of one station of the baseline were kept fixed (GODE) and a set of three
coordinates was estimated every 30 s for the second station ALGO using
carrier-phase data only.

6.1 Ground Double-Difference GPS Baseline in IGS
Network

Figure 6.1 shows the kinematic positions of the station ALGO against the “true”
static coordinates estimated in the global IGS network solution. Ambiguities were
resolved using the Melbourne-Wiibbena linear combination and narrow-lane
bootstrapping. One can see that an accuracy of 0.5—1 cm in horizontal position and
2 cm in height can easily be achieved. Similar results can be obtained, if tropo-
sphere parameters are taken from the global IGS solution or estimated every 1 h.
Other GPS baselines in the IGS network with lengths of up to 1000 km show
similar results. Using the rule of thumb given by (Bauersima 1983),

l

A= 36000 km

(6.1)

with the GPS orbit error of, e.g., Ap = 1 cm RMS and with a baseline length of
I = 1000 km, one can expect an effect in the station coordinates in the order of
Al = 0.5 mm RMS. For a baseline length of 10000 km (LEO) one can expect about
5 mm RMS. Therefore, for the ground GPS applications, a GPS orbit accuracy of
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Fig. 6.1 Kinematic estimation of the ground IGS point ALGO with respect to the fixed IGS
station GODE. Ambiguity-resolved baseline with a length of 777 km, day 200/2002 (Svehla and

Rothacher 2005)

1 cm allows the cm-kinematic positioning for double-difference baselines up to
5000-10000 km. From this analysis it follows that station multipath along with the
troposphere delay errors (wet part), are probably the main sources of error in ground

GPS positioning based on double-differences.

References

Bauersima I (1983) NAVSTAR Global Positioning System (GPS) 1. Berne, Switzerland
Svehla D, Rothacher M (2005) Kinematic positioning of LEO and GPS satellites and IGS stations
on the ground. Adv Space Res 36:376-381. https://doi.org/10.1016/j.asr.2005.04.066


http://dx.doi.org/10.1016/j.asr.2005.04.066

Chapter 7 )
Reduced-Kinematic POD Check or

Here we present the results of reduced-kinematic POD, as introduced and published
in (Svehla and Rothacher 2005). Reduced-kinematic POD can be defined as the
fourth fundamental approach in precise orbit determination, along with kinematic,
reduced-dynamic and dynamic POD. The main difference between
reduced-kinematic and reduced-dynamic orbit determination is that in the
reduced-kinematic POD the constrained normal equations are set up for the
epoch-wise kinematic positions (with epoch-wise clock parameters), whereas in the
reduced-dynamic approach, dynamic parameters (such as initial Keplerian state
vector, aerodynamic drag coefficients, empirical accelerations, etc.) and/or some
pseudo-stochastic parameters are determined. Thus, in the case of reduced-kinematic
POD, degrees of freedom are reduced towards a dynamic orbit, whereas in the
reduced-dynamic orbit, the dynamics of the orbit is reduced towards a kinematic
orbit. Due to the relative or absolute constraints that are used in the reduced-kinematic
POD, we did not use nor develop this approach further for LEO satellites. We merely
present typical results for the sake of completeness.

7.1 Reduced-Kinematic POD of LEQO Satellites

Compared to dynamic orbits, the main disadvantage of kinematic orbits is the
presence of “jumps” between consecutive positions that occur when, e.g., small
numbers of GPS satellites are tracked or when phase breaks occur. Although these
“jumps” from epoch to epoch are fully reflected in the variance—covariance infor-
mation, they can be clearly seen in Fig. 7.1, where CHAMP kinematic positions are
plotted against the dynamic orbit. Typical spikes in kinematic positions, and
accordingly in the variance—covariances, can be seen around 1.1, 1.3, 2.5 and 4.1 h
and phase breaks can be identified for the isolated arc from 4.1 to 4.6 h.
Compared to kinematic orbits, dynamic orbits are very smooth, i.e., high fre-
quency noise is not visible from epoch to epoch due to the integration of the
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Fig. 7.1 Kinematic (blue) and reduced-kinematic orbit (red) for the CHAMP satellite using
relative constraints, day 200/2003, (Svehla and Rothacher 2005)

equation of motion. In order to reduce the size of the small jumps in kinematic
position, constraints can be applied from epoch to epoch to the kinematic position
differences w.r.t. corresponding differences in the a priori dynamic orbit. In this
case, we may speak of “reduced-kinematic” orbit determination, where the kine-
matic degrees of freedom are reduced by constraints to the dynamic orbit. It can be
shown that the a priori dynamic LEO orbit used for constraining can be of very low
accuracy, e.g., defined by only 15 orbital parameters per day and estimated by
means of code measurements only. The size of the relative constraints applied in the
computation of reduced-kinematic orbits in Fig. 7.1 was 5 mm between 30 s con-
secutive epochs. Using the reduced-kinematic approach, one can obtain very
smooth kinematic orbits where spikes in the kinematic positions are removed or
considerably reduced. This is illustrated in Fig. 7.1, where kinematic and
reduced-kinematic orbits are shown w.r.t. the best reduced-dynamic orbit. Although
the stochastic process achieved by relative constraints is a random walk, the tra-
jectory does not drift away from the a priori dynamic orbit. Depending on the
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strength of the constraints between consecutive epochs, the estimated
reduced-kinematic orbit will be closer either to the dynamic or the kinematic orbit,
for more see Svehla and Rothacher (2005).

The main difference between reduced-kinematic and reduced-dynamic orbit
determination is that in the reduced-kinematic POD the constrained normal
equations are set up for the epoch-wise kinematic positions (with epoch-wise
clocks), whereas in the reduced-dynamic approach dynamic parameters (such as
initial Keplerian state vector, air-drag coefficients, empirical accelerations, etc.)
and/or some pseudo-stochastic parameters are determined. The reduced-
kinematic method improves the overall characteristics of the purely kinematic
POD by a considerable reduction of spikes and jumps. Therefore, reduced-
kinematic POD can be used for LEO applications that require a very smooth
trajectory such as radio-occultation. Since the a priori dynamic orbit used in
reduced-kinematic POD does not have to be of high accuracy and can be very
easily computed, the reduced-kinematic positions will not rely significantly on
an a priori gravity field, but will allow, e.g., better velocity computation for the
energy balance approach of gravity field determination. However, there will still
be a residual dependency on the a priori information. Figures 7.2 and 7.3 show
the reduced-kinematic orbit of the CHAMP satellite based on simulated phase
measurements with a noise of 5 mm and data rates of 10 s and 30 s, respectively.
Computation is performed based on the inversion of the full normal equation matrix
for a period of 3 h. In the case of the GOCE mission, GPS measurements are
provided every second and therefore kinematic and reduced-kinematic orbits have
to be provided with a sampling interval of 1 s.

When relative constraints are set up between epochs, as depicted in Fig. 7.4
(right), the normal equation matrix of the kinematic positions is no longer block
diagonal, but rather tridiagonal. In kinematic POD, a very efficient parameter
pre-elimination scheme is used, where in the first step kinematic positions and clock
parameters are pre-eliminated to ambiguities. In the second step, after inversion of
the reduced normal equation system (ambiguities only), ambiguities are
back-substituted and epoch-wise 4 x 4 blocks are inverted providing kinematic
positions every epoch. Ambiguities can be pre-eliminated to the epoch-wise
parameters, but the block tridiagonal/diagonal property of the normal equation
matrix is lost in that case, since the normal-equation matrix becomes fully
populated.

In order to improve numerical stability and reduce execution time, we studied
several algorithms to invert tridiagonal matrices with very large numbers of
parameters (about 350000 per day) as well as various algorithms for inverting
sparse matrices. If such an algorithm is to be integrated into the official software, it
has to be compatible with all other processing and parameter estimation methods. In
particular, it should be compatible with the existing bookkeeping of ambiguity
parameters and epoch-wise clock parameters.
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Fig. 7.2 Reduced-kinematic orbit of the CHAMP satellite based on simulated phase measure-
ments. Noise of simulated phase observables is ¢(L;) = o(Ly) = 5 mm, data rate is 30 s, (Svehla
and Rothacher 2005)

After reviewing the software and algorithm design, the conclusion was drawn
that reduced-kinematic POD requires a re-design. The main arguments for this
decision were the amount of time required to perform the computations and, even
more importantly, the significant biases introduced into the reduced-kinematic orbit
by the relative constraints applied over a long orbit arc. Small, but significant biases
in the cross-track components can be seen in Figs. 7.1, 7.2, 7.3.

In the present design, all epochs are constrained, and therefore, relative con-
straints between the first epoch pair affect the solution of the last epoch pair within
the same run. This is similar to applying a small absolute constraint to all epochs. In
order to overcome this problem, the current strategy for the reduced-kinematic orbit
was changed from relative constraining over the entire arc to a band-limited form of
relative constraints preserving the local properties of the orbit. Another solution
would be to represent the reduced-kinematic orbit by normal points, estimated
every, e.g., few epochs. Computing a normal point over several kinematic positions
would have a similar effect to setting up relative constraints between epochs.
However, in the case of normal point estimation, the original sampling of the
kinematic orbit is lost.

In order to preserve the local properties of the orbit and avoid long-periodic
biases introduced by setting up relative constraints over the entire orbital arc, we do
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Fig. 7.3 Reduced-kinematic orbit for the CHAMP satellite based on simulated phase measure-
ments. Noise of simulated phase observables is ¢(L;) = o(L,) = 5 mm, data rate is 10 s, (Svehla
and Rothacher 2005)
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not make use of the fully populated cofactor matrix, but rather select elements only
over the specified band of epochs, see Fig. 7.5. In fact, the same window over a
selected number of epochs used to calculate the cofactor matrix Q,, for the kine-
matic positions can be used to determine the reduced-kinematic orbit. Therefore,
kinematic and reduced-kinematic orbit can be determined in the same processing
run. However, we never calculated reduced-kinematic orbits for LEO satellite
missions, merely tested the algorithm.

Since the reduced-kinematic orbits can be obtained by a parameter trans-
formation of the kinematic orbit (linear combination), the computation of the
matrix C with constraints can be extended using dynamic information over a short
interval of time. In this way standard numerical integration could, in fact, be
avoided, since the local properties of the orbit are preserved over a very short period
of time. In this way one can talk of reduced-dynamic POD with local properties.
Figure 7.6 (left) was calculated by setting up relative constraints over different
bands of consecutive epochs (smoothing window over a number of epochs) and by
varying the size of relative constraints. Figure 7.6 (right) shows the equivalence
between the reduced-kinematic orbit (smoothing window of 30 s with 1 s sampling)
and the highly-reduced-dynamic orbit with a significant number of empirical
parameters estimated. Both orbits exhibit a similar power spectrum density (PSD).
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Kinematic coordinates

Clock parameters Arbigiites

Fig. 7.4 Normal equation matrix for kinematic (left) and block tridiagonal normal equation
matrix for reduced-kinematic POD (right), (Svehla and Rothacher 2005)

To summarize, we have shown that the reduced-kinematic orbit is a very simple
representation of the kinematic orbit preserving the local properties of the orbit and
reducing the high-frequency noise in kinematic positions between consecutive
epochs. However, since only kinematic orbits are used for gravity field determi-
nation for the GOCE, GRACE and CHAMP missions, the reduced-kinematic orbit
determination strategy has not been developed further.

W ™ AW

Fig. 7.5 Successive use of relative constraints (3 x 3 red blocks) in the NEQ between coordinates
of the consecutive epochs set-up over the three epochs (left, middle, right figure). In the first
sub-matrix on the main diagonal (upper left), one can see the ambiguity parameters (1 x 1 black
blocks) and in the second sub-matrix on the main diagonal (lower-right) the 4 x 4 black blocks
(three coordinates and a receiver clock) of parameters set-up every epoch. The yellow color shows
the empty fields in the NEQ



7.2 Constraints in the Reduced-Kinematic POD 79

10 ] 10° -
] . .
10' 1 il -‘H.._-:_._-!\J‘J \i-}ﬂ
| n V |
L P 1 10
10 e 1
— - i ~
N 1
Lo} | iz
& 2 { &
o 2 wn
e — 1 E
Kinematic H
E - RK 10/0.25 mm { E
10 RK 5/0.25 mm 1 10t
" REK 3/0.30 mm | Kinematic
10 RK 2/0.25 mm 1 — H-Reduced-Dynamic
RK 210.15 mm { 1 | Reduced-Kinematic 30s/0.30mm
10 = 10 -
10° 10" 10° 10° 10" 10° 10° 10° 107 10° 10" 10"
Frequency [Hz] Frequency [Hz]

Fig. 7.6 PSD of the radial reduced-kinematic positions (denoted as RK) by varying the
smoothing window over a number of epochs and the size of the relative constraints (number of
epochs/relative constraint). The figure to the right shows the equivalence between the
reduced-kinematic orbit (sampling 1 s, constraints over 30 s) and the highly-reduced-dynamic
orbit (H-Reduced-Dynamic) with a significant number of estimated empirical parameters. Both
orbits show similar PSD

7.2 Constraints in the Reduced-Kinematic POD

Although we did not use constraints in the kinematic POD, here we provide more
information how constraining could be performed for the coordinates of a ground
station or the reduced kinematic orbit in the case of a LEO satellite.

Let us write the normal equation system, with the normal equation matrix N and
the vector of unknown kinematic positions x estimated along an a priori orbit in the
geocentric Cartesian coordinates

Nx=n (7.1)

constructed from the observation equation associated with the design matrix A and
the vector of the reduced observations —I, typically termed “observed minus
computed”

v=Ax—1 (7.2)

where the vector of errors is denoted with v and associated with the weight matrix
P. The normal equation matrix is then

N =A"PA, n=A"Pl (7.3)

Typically, the vector of unknowns x is given in geocentric Cartesian coordinates.
If we require unknowns in the local station coordinate system (north, east, up) or in
the local orbital frame (along, cross, radial), we need to transform our geocentric

unknowns x = [0x, Jy, dz], first to the geographic coordinates x = [d¢, o4, k] and
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then to apply any additional rotation necessary to achieve a local station coordinate
system (north, east, up) or a local orbital LEO coordinate system (along, cross,
radial)

dx do
x=Rx dy| =R-x=R-|d. (7.4)
dz dh

with matrix R (partial derivatives) and the constraint (weight) matrix C

—sing cosA —cos@ sinA cos ¢ cos i
R=| —sinpsinA cosgcosl cose sin/
cos ¢ 0 sin ¢
m2
th) 0 (7.3)
}712
€= o
m,
0 (i

with mo(@), mo(4) and mo(h) denoting the noise level or the constraints of the

estimated parameters where my = \/vTPv/(n — u) with the number of measure-
ments n and number of unknowns u. After substitution of (7.5) into (7.1) we derive

(RINR+C)-x=R'n=n (7.6)

where n = RTATPI. The absolute constraints could be represented by using the
vector of unknowns as the pseudo-observations in the least squares adjustment with
an identity matrix as the design matrix A.

If the relative constraints are set up between consecutive epochs, the approach is
similar to that for absolute constraints, with the difference that the design matrix is
no longer an identity matrix for the estimated coordinates of the consecutive epochs
Xi—1 and Xi,

A= (7.7)

By introducing the matrix C containing the relative constraints between con-
secutive epochs x;_; and x; (see (7.5)), we obtain
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(C+N)x=n
N !'Cx+x=N"'n

with Oy = (QuC +1 )71. As shown in (7.8), the reduced-kinematic orbit X can be
obtained by a parameter transformation of the original kinematic orbit x (linear
combination). As an alternative to (7.8), reduced-kinematic positions can be
obtained by calculating a “small correction” to the existing kinematic orbit, e.g.,

¥=x—N'Cx
R (7.9)
X =x— 0nCx
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Chapter 8 M)
First GPS Baseline in Space—The e
GRACE Mission

In Svehla and Rothacher (2004) it was reported for the first time that the orbit vector
between the two GRACE satellites equipped with GPS in the LEO orbit can be
estimated with mm-level accuracy. This level of accuracy was achieved after per-
forming ambiguity resolution for the GPS double-difference baseline and inde-
pendently confirmed by the K-band measurements between the two GRACE
satellites. Here we present the results of this GPS baseline in space.

8.1 Formation Flying Using GPS

Distributed space systems employ two or more spacecraft which act in a coordi-
nated way to achieve the common mission objective. The architecture of such
distributed systems can be based on rendezvous and docking scenarios with two
spacecraft in close vicinity, formation flying with two or more spacecraft with a
separation of a few tens of meters to a few 100 km, constellations with several
spacecraft distributed on a global scale or swarms with a multitude of spacecraft,
each with limited functionality (Gill 2006). Following this very precise definition,
the GRACE mission is a typical example of formation flying and the US/Taiwanese
COSMIC mission a constellation of six satellites in LEO orbit, whereas the ESA
Swarm mission is the first swarm in LEO orbit.

Let us now see what accuracy might be achievable for the inter-satellite baseline
between the two GRACE satellites using a kinematic approach. In order to do this,
phase zero-difference measurements were simulated for both GRACE satellites,
assuming the noise level and the number of GPS satellites tracked to be similar to
CHAMP (only a noise of 1.1 mm was considered, with multipath included in this
noise). A typical noise value for the a posteriori RMS of the phase zero-differences
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in CHAMP kinematic POD is about 1.5—2.0 mm or 1.2—1.4 mm when using
double-differences. Whereas zero-differences are mainly affected by the GPS
satellite orbit/clock errors, double-differences primarily reflect ground station
specific errors such as troposphere, multipath, etc. Therefore, the noise level of
1.1 mm adopted for the GRACE simulation might be considered rather pessimistic,
bearing in mind that for the short GRACE baseline (about 220 km) the effect of
GPS orbit errors should only be about 0.2 mm, tropospheric refraction is
non-existent and multipath is expected to be very small. Figure 8.1 shows the
GRACE kinematic baseline results with float, Fig. 8.2 those with fixed ambiguities.
In both cases, the GRACE-B positions were held fixed to the a priori orbit and
GRACE-A positions were estimated kinematically. Comparing these two figures,
one can clearly see that ambiguity resolution de-correlates kinematic coordinates
and ambiguities and changes the colored noise present in the kinematic positions of
the float solution into white noise. A decrease of the a posteriori RMS from 5 to
3 mm for the along-track component can also be noticed. Ambiguity resolution was
performed as explained in Sect. 1.9 (Melbourne-Wiibbena wide-laning,
narrow-lane bootstrapping) and all ambiguities were correctly resolved.
GRACE GPS data are a very nice playground to study, for the first time, an

RMS = 5 mm

Along-track in m

Cross—track in m

Radial in m

Time in hours

Fig. 8.1 Kinematic positions of GRACE-A w.rt. GRACE-B from simulated data with float
ambiguities compared to the true baseline. Note the colored noise, reflecting correlations between
positions and ambiguities
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Fig. 8.2 Kinematic positions of GRACE-A w.r.t. GRACE-B from simulated data with resolved
ambiguities compared to the true baseline. Note the white noise in the kinematic positions and the
reduction of the a posteriori RMS from 5 to 3 mm

inter-satellite baseline with the unique possibility to validate the results with the
much more accurate measurements of the K-band link.

8.2 GRACE GPS Baseline

The orbits of both the GRACE A and GRACE B satellites can be determined
independently of each other using either zero-difference point positioning or
double-difference baselines formed from IGS GPS stations to the GRACE satellites.
In both cases, the GRACE satellites are treated as two independent satellites similar
to CHAMP and their orbits are estimated independently. An alternative approach
consists of a combined zero- and double-difference POD, where one LEO satellite
is determined absolutely using zero-differences, and the other satellite is determined
relatively to the reference satellite by forming a very accurate inter-satellite GPS
baseline. In order to validate such a spaceborne double-difference GPS baseline,
KBR measurements were used. The KBR observable is the biased distance between
the two GRACE satellites measured to an accuracy of a few micrometers.
Figure 8.4 shows the KBR residuals for the GRACE GPS baseline with fixed
ambiguities and Fig. 8.3 shows the KBR residuals for the reduced-dynamic orbits
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Fig. 8.3 KBR residuals of the reduced-dynamic orbits (over 4 h) of GRACE-A and GRACE-B
satellites estimated independently of each other using zero-difference carrier-phase measurements,
RMS = 12.6 mm. A clear once-per-orbit pattern can be recognized. GPS Day 200/2003
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Fig. 8.4 KBR residuals of the orbits of the GRACE-A and GRACE-B satellites (over 4 h)
estimated using the GRACE GPS baseline with fixed ambiguities, RMS = 2.8 mm. Peaks in the
KBR residuals show the epochs where pseudo-stochastic pulses were introduced. GPS Day 200/
2003
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Fig. 8.5 Left: Total number of ambiguities per day, mean = 416/day. GPS days 182-303/2003.
Right: Resolved wide-lane ambiguities (Melbourne-Wiibbena), mean = 98.4%

of the two GRACE satellites estimated separately using zero-differences. The KBR
and accelerometer data were not used in the orbit determination. These two figures
show that for LEO satellites flying in formation (e.g., the two GRACE satellites) the
optimum POD strategy is to estimate the orbit or position of one satellite absolutely
and those of the other satellites in the formation relatively by forming GPS base-
lines in space to the reference satellite.

In this case, the relative orbit information between the LEO satellites can be
estimated to a level of 1-3 mm (see Fig. 8.4) compared to the 10-15 mm in the case
where all satellites are estimated independently from each other, e.g., using
zero-difference GPS measurements, as in Fig. 8.3. More about LEO formation
flying and the GRACE GPS baseline can be found in (Svehla and Rothacher 2004).
Figure 8.5 shows the number of double-difference ambiguities and the percentage
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of resolved wide-lane ambiguities using the Melbourne-Wiibbena linear combina-
tion for the two GRACE satellites for a period of four months, days 182-303/2003.
Figure 8.6 shows the percentage of the resolved narrow-lane ambiguities using
bootstrapping of the normal equation matrix (NEQ) with dynamic orbit parameters
(left) and kinematic positions (right).

The impact of the ambiguity resolution on the kinematic and reduced-dynamic
GPS baseline is shown in Fig. 8.7 and 8.8 . One can see that ambiguity resolution
improves the relative orbit accuracy by about one order of magnitude in the case of
a reduced-dynamic orbit, whereas in the case of a kinematic parameterization this
improvement is about a factor of two. A clear, once-per-orbit pattern can be rec-
ognized in both the reduced-dynamic and the kinematic double-difference baselines
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Fig. 8.6 Resolved narrow-lane ambiguities using dynamic NEQ bootstrapping (left), mean =
92.8%. and kinematic NEQ bootstrapping (right), mean = 93.6%. GRACE data set 182-303/2003
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Fig. 8.7 Kinematic and reduced-dynamic GPS baselines between the two GRACE satellites,
estimated using double-differences with float ambiguities (left) and double-differences with fixed
ambiguities (right) compared to KBR measurements, day 200/2003. a red.-dyn. baseline: float
ambig. RMS = 11.6 mm b red.-dyn. baseline: fixed ambig. RMS = 2.8 mm ¢ kinematic baseline:
float ambig. RMS = 11.7 mm d kinematic baseline: fixed ambig. RMS = 6.1 mm
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Fig. 8.8 Daily RMS of the differences between the kinematic and reduced-dynamic baseline
results, days 182-303/2003. After ambiguity resolution, kinematic and reduced-dynamic baseline

results agree to within 1 cm. Compared to zero-difference GRACE orbits this is an improvement in
accuracy by a factor of two

with float ambiguities that is removed after performing the ambiguity resolution.
A closer look at the reduced-dynamic baseline with fixed ambiguities in Fig. 8.7b,
and especially in Fig. 8.4, reveals a very strong systematic pattern in the KBR
residuals, indicating epochs where pseudo-stochastic pulses were set up in the
reduced-dynamic orbit parameterization (every 6 min in this case).

8.3 Along-Track Sub-mm Kinematic Orbit Determination
with GRACE—Combination of GPS and K-Band
Measurements

Let us now see what happens when GPS measurements from the two GRACE
satellites are combined with inter-satellite K-band measurements in kinematic and
reduced-dynamic POD. For this, we first estimated the orbit of the GRACE-B
satellite using zero-differences and in the second step we estimated the position of
the GRACE-A satellite kinematically from the orbit of the GRACE-B satellite.

In this relative orbit determination, K-band measurements are combined with
GPS measurements with fixed narrow-lane ambiguities. Figure 8.9 shows the dif-
ferences between kinematic and reduced-dynamic orbits after fixing
double-difference ambiguities and combining GPS with GRACE K-band mea-
surements of um- precision. One can see that differences are in the order of a few
millimeters in the along-track and cross-track directions and up to one centimeter in
the radial direction. Interestingly, the difference in the along-track orbit direction is
not zero. This is what one would expect in kinematic POD, when combining GPS
double-difference measurements with K-band measurements of very high weight.
The most likely explanation for this fact is that the combined GPS/K-band
reduced-dynamic baseline is limited by the level of accuracy of the dynamic orbit
models used, as shown in Fig. 8.9 in the along-track direction. The reasons for this
lie, most likely, in the accuracy of the dynamic orbit modeling, in the orbit
parameterization and the numerical integration (gravity field used). Thus, the
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Fig. 8.9 Kinematic GPS baseline in space with fixed ambiguities combined with the K-band
measurements (sub-mm accuracy only in along-track orbit direction) between two GRACE
satellites separated in the same orbital plane by about 200 km, day 300/2003

accuracy of the reduced-dynamic baseline between two GRACE satellites can, in
our case, be determined with an RMS of the order of 0.7 mm.
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Chapter 9 )
Geometrical Modeling of the Ionosphere ki
and the Troposphere with LEO Orbit

In this section, we first briefly describe the mathematical and physical background
of the first and second order ionosphere effects on LEO GPS measurements and
then give a geometrical interpretation of the second order ionosphere effect for
one-way and two-way LEO tracking observables. We discuss systematic effects
resulting from higher order ionosphere effects on LEO orbit determination and then
on gravity field and altimetry results. We show that, when the IGS TEC maps are
compared to the TEC observed along the CHAMP orbit (merely by applying a
constant bias) during the solar maximum, the agreement is excellent and is at the
level of about 1 TECU or below. We show how to calculate the fractional TEC
below or above the LEO orbit, taking into account the Sun’s position w.r.t. LEO
orbit. We show that the fractional TEC for LEO orbit can be calculated exactly from
the Chapman function, by transforming the Chapman function into the “error
function” erf (x), encountered when integrating the normal distribution in statistics.
This allows a direct combination of LEO and ground IGS TEC maps. After that, we
present a novel remove-restore approach in the combination of LEO and
ground-based TEC measurements by means of least-squares collocation. The same
approach could be applied to augment final and real-time IGS TEC maps. It is
proposed to model the ionospheric TEC (by combining LEO and ground GNSS
measurements) as a spherically-layered electron density distribution in three main
Chapman layers, i.e., E, F1 and F2 with an additional layer for the plasmaspheric
density above the ionosphere, using GOCE (above the E-layer), GRACE (above the
F1 layer) and Jason-2 (above the F2-layer and below the plasmasphere). In the
second part, we discuss tropospheric effects on the propagation of microwave and
optical measurements and show the influence of tropospheric effects on the kine-
matic and reduced-dynamic POD of LEO satellites. We show that there is an effect
of the tropospheric modeling on the estimated low-degree zonal gravity field
coefficients based on LEO orbits. At the end, we propose a way forward in mod-
eling ground-specific high-resolution tropospheric delays for all space geodesy
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techniques, making use of the high-performing clocks on board the new GNSS
satellites and the more than 35 GNSS satellites in the field of view of a ground
station, given that all four GNSS constellations will be deployed in a few years
from now. For that, ground-specific tropospheric and ionospheric delays could be
modeled making use of the rotation of spherical harmonics in order to account for
temporal variations w.r.t. a fixed frame. Rotations of spherical harmonic coefficients
provide continuous TEC information.

9.1 Ionospheric Refraction and LEO

The ionosphere is a dispersive and anisotropic medium for radio waves. The
first-order ionospheric group delay (or phase advance) for microwave signals is in
the order of 1-50 m. For the GPS carrier phase and code observables, the obser-
vation equation with higher-order ionosphere effects can be derived as

Li:p+Ni;°i__2__3____ (91)

Co C C4 Cs
Pi=p+]?+2]?§+3]?+4ﬁ (9.2)
where the index i refers to the GPS frequency f;, P; and L; are the code and carrier
phase measurements respectively, 4; is the corresponding wavelength, and N; is the
integer ambiguity. The geometry part, denoted by p, includes the geometrical
distance and the clock corrections, as well as other effects, including the phase
wind-up, and the Shapiro and light-travel time corrections. From (9.1) and (9.2) the
first-order ionosphere correction (it appears with factor 1/f for the carrier-phase in
cycles) causes a group delay (code measurements) and phase advance (carrier phase
measurements). The ¢;, c3, ¢4 and c5 are the coefficients of the first-, second-, third-
and fourth-order ionosphere effects respectively. They approximate the phase
refractive index np,
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Making use of the Rayleigh equation, the group refractive index ng, can easily
be derived from the phase refractive index n,,

dnph
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Ngr = Ny +f (9.4)
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and up to the fourth-order, for the group refractive index we can derive

Since the velocity of carrier waves v,, and the group velocity v,, is given by

C C
=, vy = (9.6)

Nph Ngr

making use of the approximation (1 + 8)_1 =1 — ¢ for (9.3) and (9.5) in (9.6), we
can derive higher order ionosphere effects in (9.1) and (9.2).

The coefficient ¢, of the first order ionosphere effect is typically given as ¢, =
—40.3 - TEC and measured in [Hz?], where TEC stands for the total electron content
along the line of sight. The first order ionosphere free effect can be eliminated by
forming the so-called ionosphere-free linear combination, denoted in some cases by
L3. For the ionosphere-free linear combination of the carrier-phase this is given by

2
fi L - 5

Ir— 2
gt et

9.7)

This very nice formula can easily be derived by multiplying the original carrier
phase measurements given in cycles with «; and oy, and introducing the condition
that the first-order ionosphere effect is eliminated by forming the linear combination

C2
" f1 Pef 68
Setting o; = 1, we obtain
f
o = ——=. 9.9
*TA 69)

The second-order ionosphere effect is caused by the Faraday rotation effect
induced by the Earth’s magnetic field and depends on the direction of signal
propagation, (see, e.g., Kedar et al. 2003).

The second-order ionosphere correction in (9.1) and (9.2) can be calculated by
means of

s = /fgfp2 cos OpdL = 7527 - c/NBO cos OgdL (9.10)
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as originally given in Kedar et al. (2003), where f, is gyro frequency (~0.59 MHz)
and f, is the plasma frequency integrated along the line of sight and c is the speed of
light in vacuum. For more details see Kedar et al. (2003). (9.10) is related to the
coefficient of the second-order ionosphere effect in (9.1) and (9.2) by s = 2¢3. The
integral part of (9.10) includes the integration of the total electron content TEC

TEC:/NdL (9.11)

along the line of sight, multiplied by the strength B, of the magnetic field vector ?0

projected in the direction of signal propagation k. Considering the definition of the
scalar product of two vectors spanning the angle 0p, (9.10) can further be written as

—
s =7527- c/ (ng)NdL (9.12)

as originally given in Kedar et al. (2003). A simple magnetic dipole model of the
Earth’s magnetic field was recommended in Kedar et al. (2003), along with a single
layer model for the ionosphere. For a ground station with magnetic latitude 4,
colatitude 0,, and a satellite with elevation E,, and azimuth A,, (measured clockwise
from the magnetic pole), the magnetic colatitude 0/, of the sub-ionospheric point,
where the signal propagation direction intersects the ionosphere layer is to the first
order (Kedar et al. 2003)

0 =0 cosA,, cosE,, (9.13)

"o RgsinE,
Rg denotes the Earth’s radius (Rg = 6370 km) and H is the reference height of the
ionosphere single layer model (H = 400 km). The scalar product of the magnetic

- . . . -
field vector B and the signal propagation unit vector k reads as

. Rp\’
Bok =B, (—E> (sin 0, cos E,, cos A, — 2 cos 0, sin E,,) (9.14)

7, m

with radius r,, = Rg + H and the amplitude of the equatorial magnetic field at the
Earth’s surface B, (~3.12:107° T). Finally, Kedar et al. (2003) defines the
second-order ionospheric group delay Alg; in meters for the GPS signal wavelength
A; as

R
Alg; =2.61-10718)} (—E) (sin 0, cos E,, cos A, — 2 cos 0, sin E,;) - TEC  [m]

T'm

(9.15)
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From (9.1), the phase delay Alp; (advance) is then
1

In fact, different TEC values should be used for the first- and the second-order
ionosphere correction, as the Faraday rotation effect is due to electrons below
2000 km, but the effect would be very small. For more details see Davies (1990).
There are other higher order ionosphere effects that also include the additional
bending of the signal, but they will not be discussed here.

9.2 Geometric Interpretation of the Second Order
Ionosphere Effect for One-Way LEO and Two-Way
LEO Observables

When the signal direction vector K is parallel to the magnetic field vector E)O, the
phase signal is delayed. The opposite is true as well, when the vector K is

anti-parallel to E)o. In both cases, the true position is shifted accordingly. By
considering the geometry of the Earth’s magnetic field lines, (see Fig. 9.1) and the
inclination of GPS satellite orbits, one can draw the conclusion that the
second-order ionosphere effect mainly occurs at lower elevations (mid-latitudes).
This means that the effect is close to zero towards the zenith, when the satellite
signal from the zenith direction is orthogonal to the lines of the Earth’s magnetic
field. The effect is also highly dependent on the azimuth angle. As a rule of thumb,
the apparent distance from GPS stations in the Northern hemisphere is shortened
compared to that from stations in the Southern hemisphere. Therefore, stations

Fig. 9.1 Profile of the [
Earth’s magnetic field along
the polar orbit. Arrows show
direction and strength of the
field and the corresponding
distortion and offset of the
orbit
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appear further north than they really are, especially at higher latitudes. The same
happens with the determination of a polar LEO orbit in the along-track orbit
component, (see Fig. 9.1), i.e., the determined orbit is translated within the geo-
centric frame.

The second order ionosphere effect changes the scale of the observables and
therefore the scale of the corresponding GPS solutions, reference frame parameters,
GPS baseline, ground network or a determined LEO orbit. Looking at Figure 9.1,
one can see that the effect is strongly geographically correlated following the
Earth’s magnetic field profile. Therefore, in the case of a polar LEO orbit, this could
lead to significant long-periodic errors in the determined orbit and shifts in the
geocenter of that orbit. In the case of all POD approaches, we may expect the orbit
to be systematically translated in the reference frame along the lines of the Earth’s
magnetic field, see Fig. 9.1. This is significant for a very low GOCE orbit with the
entire ionosphere above that orbit, c.f. Fig. 9.2. On the other hand, altimetry
satellites are typically aligned away from a polar inclination, and hence from a
magnetic field axis, and will thus experience a different systematic distortion and
offset of the orbit. Nevertheless, altimetry satellites are typically placed above the
Chapman layer and therefore above the main part of the ionosphere, thus the overall
effect will be significantly smaller than for a low LEO orbit. However, there is still
an ionosphere effect stemming from the plasmasphere above the 1000 km orbit
altitude that affects GNSS measurements from altimetry missions above that
altitude.

Compared to classical one way measurements, the advantage of using two-way
measurements for, e.g., frequency transfer lies in the possibility of removing all
geometrical and signal propagation effects. In this way, a frequency between two
ground clocks can be compared directly without parameter estimation. However,
the only propagation effect that is not eliminated in two-way measurements is the
second-order ionosphere effect. The reason for that is that Faraday rotation depends
on the signal propagation direction. In the case of receiving and sending a signal

Fig. 9.2 LEO orbit altitude Altitude 4
and vertical electron density
distribution 1000 km =
Chapman layer
LEO orbit altitude
) 7
|7//;/

TEC
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from the same ground station to LEO, HEO or an interplanetary orbit, the
second-order ionosphere effect is compounded, i.e., doubled. Therefore, the only
way forward in designing a high-performance metrology ground-to-space link is to
go towards higher X-band or Ka-frequencies where first- and higher-order iono-
sphere effects decrease rapidly with frequency.

GNSS frequencies are in the 1.2-1.5 GHz range, compared to S-band at
~2.248 GHz (microwave link for the ACES mission). The second order ionosphere
effect for S-band is smaller by a factor of ~3—4 than that for the L, GPS frequency.
In the zenith direction, there can easily be an effect of 1 cm ~ 30 ps, whereas close
to the horizon, the effect is multiplied by a factor of ~10. During the solar maxi-
mum, the ionospheric TEC value can reach up to 200 TECU. TEC maps are
provided by the IGS for the zenith direction, thus towards the horizon the effect is
increased by 1/ cos (zenith angle), or one can use a multiplication factor of 6-12 for
elevation angles in the range of 5°-10°. Of all space geodesy techniques, only SLR
is free from ionosphere effects.

9.3 Ionosphere Effect at LEO Altitude

Here we look at the possibility of using global TEC maps provided on a regular
basis by the IGS to calculate the fractional TEC above or below a LEO orbit. First,
a few words about ionospheric modeling using the single layer model we have
referred to. The IGS provides Global Ionosphere Maps (GIM) on a daily basis with
a time resolution of 2 h, (see e.g., Dow et al. 2005). These maps are generated using
estimates from the ground IGS network and contain the total electron content
between the Earth’s surface and the GPS orbit height.

Figure 9.2 shows the vertical profile of electron density often called the
Chapman layer. The Chapman function provides a simple model of the ion pro-
duction rate as a function of altitude / and the zenith angle y with respect to the Sun
(Davies 1990)

q(h, 7) = goe!' <77 (9.17)

The scaled altitude for the altitude / and the reference height Ay (when the Sun is
at its zenith, y = 0) reads as

h — hy
- Ahn

(9.18)

with A& denoting the scale height (typically by = 450 km, Ak = 100 km). Ay is the
reference height of maximum ion production when the Sun is at its zenith.
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For all other zenith angles the height of maximum ion production is given by

1
Bumax = ho + Ah ITn—— . (9.19)
cos y

The ion production rate gq is given by

$(oc) -1

=— 2
90 Ao (9.20)

where ¢(00) denotes the solar flux density outside the atmosphere (photons per
square meter), # is the number of ion pairs produced per photon and “e” is the base
of natural logarithms. The electron density distribution corresponding to the
Chapman function in (9.17) is called the Chapman layer and is given by

Ne(z, %) = Neget!memseere) (9.21)

with o denoting the mean recombination coefficient for molecular ions and N, is
the electron density at z =0

Neg = /2 (9.22)

and the maximum electron density is given by

Nemax (1) = Neo+/C0S 7. (9.23)

Figure 9.3 shows the ionosphere profile from CHAMP GPS measurements
given in terms of the first-order ionosphere delay for P; code in the zenith direction
along the CHAMP orbit during the last “normal” solar maximum. We see that the
effect of the ionosphere is significantly reduced for LEO orbits above 400 km. On
the other hand, if ionosphere maps provided by IGS are corrected for the LEO
altitude (applying a constant bias), we see that the agreement with observed TEC
values from CHAMP is excellent and is at the level of about 1 TECU or below.
Larger deviations can only be expected when a satellite is passing the equatorial
anomaly.

In Montenbruck and Gill (2002), the following model is given to calculate the
fractional TEC above a LEO orbit. The coefficient « is given as a scaling factor and
reads as

e—el®™”

a="° (9.24)

ho/H
e —el—¢"/

Figure 9.4 shows the ionosphere profile along the GRACE orbit in terms of the
geometry-free linear combination P, with and without applying the fractional TEC
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Fig. 9.3 Ionosphere profile estimated using CHAMP P; and P, code measurements during solar
maximum as a delay on P; in the zenith direction along the CHAMP orbit (red), in comparison
with the global iono-maps estimated by IGS and corrected for the LEO altitude applying a constant
bias (blue). Agreement with the IGS TEC maps is at the level of 1 TECU or below. Larger
variations are due to the equatorial anomaly

model (9.24) from Montenbruck and Gill (2002). One can see that agreement is not
as good as in Fig. 9.3. Therefore, it is proposed to refine this fractional TEC model
including the zenith angle y with respect to the Sun f(Sun position), e.g., including
cos x

e—e! .
o= e_GW]‘(Sun position) (9.25)
A closer look at the Chapman function (9.21) that describes the shape of the
Chapman layer (vertical TEC profile of ionosphere), shows that correct calculation
of the fractional TEC above or below the LEO orbit altitude involves solution of the

following integral

/ e%(lfzfsecxe’z) dz (926)

ZLEO
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Fig. 9.4 Ionosphere profile (GRACE-B) estimated using P; and P, code in terms of the
geometry-free linear combination P4, with and without applying the fractional TEC model (9.24)
(agreement is not as good as in Fig. 9.3)

We can show that (9.26) can be reduced to the “error function” erf(x) well
known in statistics

o0
/ e%(l*Z*SECZe_Z)dZ = ./em cos X . e,f(

ZLEO

\/;ﬂ> = Jemcosy - erf(x)  (9.27)

The “error function” in integrating the normal distribution is given as, e.g.,
(Bronstein and Semendjajew 1996)

X
2 e, 2 S 2 K ()t
e p— - = — —_— —_— e 2
erf (x) ﬁ/e di ﬁ(x 37710 > nkzk ke O
0

We see that the fractional TEC along the LEO orbit can be calculated exactly
from the Chapman function.
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9.4 Proposal for a Novel Remove-Restore Approach
for Ionosphere/Plasmasphere Modelling with LEO
Satellites Based on Least-Squares Collocation
and Four Chapman Layers

Global ionosphere TEC maps provided by IGS have considerable spatial and
temporal deficiencies due to the irregular distribution of the ground IGS stations
(e.g., low density over oceans, polar caps and in the Southern hemisphere in
general). This is especially true for the IGS real-time network, considering the
recent attempts by IGS to provide ionosphere maps in real-time. In the combination
of LEO and ground TEC measurements for the generation of final IGS TEC maps
or the augmentation of real-time TEC maps, one could use the remove-restore
approach. This would be similar to the remove-restore approach used in geoid
determination by least-squares collocation. For both the final and real-time IGS
maps, observed TEC obtained from ground IGS receivers and/or along the LEO
orbit (for the final IGS maps only) is “removed” or reduced by employing a
background ionosphere model, such as IRI2010 or NeQuick-2. In the second step,
the derived LEO and ground-based TEC residuals are then modeled and properly
combined using least-squares collocation. In the third step, the ionosphere model is
“restored” to the reduced and combined TEC measurements. This proposed
remove-restore method would augment the real-time IGS TEC maps with the
background ionosphere model and combine LEO and ground IGS measurements
for the final TEC maps. Such a remove-restore approach could especially improve
spatial and temporal resolution of TEC maps in the regions where ground based or
space based TEC observations are insufficient, e.g., oceans, polar caps or the
Southern hemisphere in general. Compared to ground TEC measurements, a LEO
orbit is typically placed within the ionosphere, thus the main challenge in the
combination of LEO and ground TEC measurements is how to correctly account for
the fractional TEC of the ionosphere below the orbit altitude, (see Fig. 9.2).
However, homogeneous and isotropic covariance functions used in least-squares
collocation are designed to clearly distinguish between signal and noise in the data
combination and filter out geographically correlated errors allowing the consistent
combination of LEO and ground TEC measurements over the entire sphere. Here
homogeneous means that statistical properties of the combination are preserved
uniquely over the entire sphere and isotropic means over all azimuths. This is
typically achieved by the design of the covariance function. For more on
least-squares collocation we refer to Moritz (1980).

Compared to all other LEO satellites equipped with a GPS receiver, GOCE with
an altitude of 240 km is placed in a very low LEO orbit below the Chapman height
(about 450 km altitude) and thus is a good candidate for studying improvements in
the IGS global ionosphere maps, combining total electron content derived from the
GOCE orbit and the ground TEC measurements. The GOCE satellite performs 16
revolutions per day around the Earth and thus it is expected that the future iono-
sphere products provided by IGS will be based on a combination of ground- and
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space-based LEO GNSS measurements including in addition about 100 GNSS
satellites of the GPS, GLONASS, Galileo and Beidou constellations.

Inclusion of GOCE, GRACE and Jason-2 data can considerably improve
modeling of the layered structure of the ionosphere, considering that GOCE TEC
measurements at 240 km altitude represent almost the complete effect of the
ionosphere, whereas TEC measurements taken by Jason-2 above the 1300 km
altitude are mainly driven by the plasmasphere. Therefore, we propose to model the
ionosphere as a spherically-layered electron density distribution in three main
Chapman layers, i.e., E, F1 and F2 and an additional layer for the plasmasphere
density above the ionosphere. The GOCE orbit is located above the E layer and
below the F1 and F2 layers, the GRACE orbit is above the F1 layer and below the
F2 layer, whereas Jason-2 is above the E, F1 and F2 layers, just above the iono-
sphere, where the plasmasphere starts. Therefore, there is great potential in com-
bining these three missions with ground IGS measurements in constructing a
layered model of the ionosphere.

At the moment, GPS measurements provided by the GOCE GPS receiver are
solely used for kinematic and reduced-dynamic precise orbit determination. Here
we are proposing applications of the GOCE GPS data in other scientific disciplines.
In particular, applications to enhance IGS products and to study potential appli-
cation of the LEO GPS measurements for the Space Weather segment section of
ESA’s Space Situational Awareness (SSA) Programme. The SSA Programme is
based on the following three areas: (1) Space Surveillance and Tracking; (2) Near
Earth Objects; (3) Space Weather. lonosphere monitoring is one of the components
of the Space Weather section of ESA’s SSA Programme and GOCE GPS data could
help to answer the question of how GPS measurements from the LEO satellites
could improve the temporal and spatial resolution of the global ionosphere models.
The GOCE satellite is an excellent candidate for such a study, since the error in
TEC reduction from the very low GOCE orbit to the location of the ground TEC
measurements is not as significant as that in TEC reduction from other LEO
missions.

Typically, TEC maps provided by the CODE IGS AC are calculated in terms of
a single-layer model represented by a spherical harmonic expansion in a frame
defined by the axis of the geomagnetic pole and the geomagnetic equator w.r.t. the
position of the Sun, (see Schaer 1999). Thus, instead of using geographic latitude,
geomagnetic latitude is used, calculated for the intersection point of the line of sight
with the single layer (ionospheric pierce point). Instead of geographic longitude, the
Sun-fixed longitude of the ionospheric pierce point is used w.r.t. the longitude of
the Sun. This rotation from an Earth-system, where TEC measurements and
coordinates of ground stations are given, to the Sun-fixed geomagnetic coordinate
system can be performed at the level of spherical harmonic coefficients by a rotation
about the polar axis by an angle «
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transformed coefficients as

] R A e ] IS

In this case, global TEC mapping could be performed with station coordinates in
an Earth-fixed terrestrial frame. For more on rotation of spherical harmonic coef-
ficients, see Sect. 25. In the same way, rotations of spherical harmonic coefficients
could be directly introduced as parameters of TEC maps. Therefore, instead of
calculating a set of spherical harmonic coefficients every, e.g., 2 h, one could
calculate a set of rotations o = o(r) for initial spherical harmonic coefficients given
for a period of one day. In that case, one could produce a continuous transition of
temporal ionosphere maps over one day or longer. That is not the case now, where
every TEC map is calculated separately and there is no smooth transition between
those maps. To our knowledge, only CODE Analysis Center uses constraints
between the TEC maps, but one still needs to use an interpolation method to obtain
the TEC value between the two TEC maps.

9.5 Tropospheric Refraction and Low-Order Zonal
Gravity Field Coefficients from LEO Orbits. Is There
a Connection?

A LEO orbit is located high above the troposphere and therefore only ionospheric
effects are relevant in determining a given LEO orbit. However, since GPS satellite
orbits, and especially GPS satellite clock parameters, are estimated by means of the
ground GPS network, the troposphere has an indirect impact on LEO orbit deter-
mination and subsequently on the estimated gravity field and altimetry results. We
have noticed that with the kinematic orbits of CHAMP and the low-order zonal
gravity field coefficients. It was reported for the first time by Mayer-Giirr et al.
(2006) that some of the solutions of CHAMP kinematic orbits show very significant
differences in low-order zonal gravity field coefficients, namely J;, J4 and Js. The
error was above the error-bars one would expect and was significant compared to
the first GRACE gravity models. Over several years we were very puzzled as to
what the root cause was and the background effect. Looking at the affected low



104 9 Geometrical Modeling of the Ionosphere ...

order zonal gravity field coefficients, they define the shape of the Earth’s gravity
field, i.e., the flattening of the rotational ellipsoid and zonal effects along the par-
allels (e.g., at mid latitudes). The only effect that is similar is that of troposphere
gradients, where a strong north-south component follows the shape of the tropo-
sphere (flattening at the poles). As with the Earth’s gravity field, the troposphere
also flattens at the poles, having a typical maximum height of 18-20 km above the
equator and 8-9 km above the poles. In the calculation of phase clocks for GPS
satellites we did not take into account tropospheric gradients, although they have a
strong effect on GPS signals at 10° elevation and below. It was assumed that
processing GPS measurements from the IGS network above 10° elevation and
estimating tropospheric zenith delays as piece-wise linear functions every hour,
would be sufficient to properly model the effect of the troposphere on ground GPS
measurements. However, we did not take into account any data below 10° elevation
or tropospheric gradients, which basically model the troposphere mapping function
as a function of azimuth. This un-isotropical effect caused by this chosen model of
tropospheric refraction affected GPS satellite clock parameters and subsequently
LEO kinematic POD. In the case of reduced-dynamic orbits or gravity field mod-
eling based on dynamic orbits, the effect is coupled with the once-per-rev. empirical
accelerations that are typically estimated in dynamic POD (and could partially
remove it), but not in kinematic POD.

9.6 An Overview of Tropospheric Effects on Microwave
and Optical Measurements

This overview is fully based on the existing literature, see e.g., IERS Conventions
(Petit and Luzum 2010) and given here for the sake of completeness, thus readers
familiar with the topic may wish to forego this summary. The atmosphere is a layer
of gases surrounding the Earth that is held in place by the Earth’s gravity field. The
Earth’s atmosphere has several layers that differ in properties such as temperature,
pressure and composition that extend from the troposphere (the lowest layer up to
some 10 km), to the stratosphere, mesosphere, thermosphere, up to the exosphere
that includes ionosphere and plasmasphere.

Atmospheric refraction is the main accuracy-limiting factor in all microwave
space-based geodetic techniques such as GPS, DORIS, VLBI and satellite
altimetry. This is also true, to a great extent, for optical space-based geodetic
techniques, such as SLR, that are also influenced by range biases. Moreover, for
kinematic POD, tropospheric refraction and ground station multipath are the main
sources of error in determining GPS satellite clock parameters and consequently
LEO kinematic orbit. Therefore, we decided to give here an overview of the state of
the art in the modeling of tropospheric refraction and to propose improvements.

The troposphere is non-dispersive for radio signals with frequencies up to
40 GHz. Due to the refractive index and its variation within the troposphere,
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microwave signals are delayed. The same is true for a laser pulse transmitted and
received by a SLR telescope. Typically, the total delay of the radio signal is divided
into “hydrostatic” and “wet” components. The hydrostatic delay is caused by the
refractivity of the dry gases in the troposphere and by the non-dipole component of
water vapor refractivity. The main part, (about 90%) of the total delay, is caused by
the hydrostatic component and can be very accurately predicted using surface
pressure data. The dipole component of water vapor refractivity is responsible for
the wet delay and amounts to about 10% of the total delay. This corresponds to 5—
40 cm (max.) for very humid conditions. A mapping function is used to transform
the zenith tropospheric delay to the elevation of each observation. In recent years,
the so-called Niell Mapping Function (NMF) has become the standard for the
processing of microwave measurements. It is based on one year of radiosonde
profiles, primarily from the Northern hemisphere (Niell 1996). In order to improve
accuracy, it was recommended that troposphere mapping functions based on data
from numerical weather models (NWM), such as ECMWF (European Centre for
Medium-Range Weather Forecasts) be used. They provide the spatial distribution of
refractivity throughout the troposphere with high temporal resolution. Today, these
mapping functions (e.g., Vienna Mapping Function—VMF1 (Boehm et al. 2006b)
or IMF (Niell 2001)) are available as time series of coefficients with a resolution of
6 h (Boehm et al. 2006a). As an alternative, if NWM-based mapping functions are
not available for a particular station or period of time, the global mapping function
(GMF) can be used without introducing systematic biases (in the coordinate time
series), see Boehm et al. (2006a). The GMF is a compatible empirical representa-
tion of the more complex NWM-based mapping functions, the differences being
mainly in short-term precision. The GMF provides better precision than the NMF
and smaller height biases with respect to VMF1 (Boehm et al. 2006a). VMF1 is
currently the mapping function providing globally the most accurate and reliable
geodetic results. However, systematic station height changes of up to 10 mm occur
when changing from NMF to VMF1 (Boehm et al. 2006a).

Traditionally, the correction of the tropospheric delay at optical wavelengths has
been performed using the formulation of (Marini and Murray 1973), a model
developed for the 0.6943 um wavelength (McCarthy and Petit 2004). The model
formulated in (Hulley and Pavlis 2007) is now the standard zenith delay model, the
so-called M-P model, for modeling the refraction of SLR measurements and is valid
for a wide spectrum of wavelengths (355-1064 nm) with sub-mm accuracies. The
accompanying mapping functions (FCULa and FCULDb) published in Mendes et al.
(2002) showed a 2-year average RMS (model minus ray tracing through radiosonde
data) of approximately 7 mm at 10° elevation (Hulley and Pavlis 2007). However,
these are models based on an unrealistic spherically symmetric atmosphere
neglecting contributions from horizontal refractivity gradients around the SLR
tracking sites. Hulley and Pavlis (2007) addressed the contribution of horizontal
refractivity gradients to the computation of the total tropospheric delay for SLR
measurements by direct ray tracing through three-dimensional atmospheric fields
generated using AIRS and NCEP data. AIRS stands for the Atmospheric Infra-Red
Sounder instrument on NASA’s AQUA Earth Observing System (EOS) platform.
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They calculated horizontal gradient delays at any selected azimuth and elevation
angle for 10 of the most prolific, globally distributed ILRS stations during 2004 and
2005. They showed that AIRS North-South (NS) and East-West (EW) gradients
have annual means of between 1 and 4 mm in absolute magnitude at 10° elevation.
The NS component had larger standard deviations ranging from 6 to 12 mm, while
the standard deviations of the EW component were between 5 and 9 mm at all the
stations analyzed. Maximum NS gradient delays of up to 50 mm were found at
Yarragadee (Australia) and Herstmonceux (UK) at 10° elevation. They found that
the largest variations occur as a result of seasonal and diurnal changes. Stations
situated in mountainous regions, such as McDonald and Monument Peak, had
larger horizontal pressure gradients, while stations in close proximity to large
bodies of water (for example, Yarragadee) had larger horizontal temperature gra-
dients. No significant non-hydrostatic (wet) gradients were found, with maximum
wet delays only reaching a few tenths of a millimeter during the summer at
Greenbelt. They found that the gradient delays decreased by a factor of 3 from 10°
to 20° elevation and were at sub-mm levels at higher elevation angles. The NS and
EW gradients varied primarily by station location and time of year. Gradient
variations in the NS and EW directions increased from winter to summer at
Yarragadee and Monument Peak and from summer to winter at Herstmonceux and
Zimmerwald. By using uncertainties in the most recent AIRS validation results,
they were able to estimate error variations in the gradient delay results. They found
monthly RMS differences (original minus simulated data) of less than 5 mm for an
elevation angle of 10° at Herstmonceux and Yarragadee. Actual day-to-day vari-
ations in the gradients were larger and ranged from 7 to 14 mm. The effects of
replacing the M-P delay model by ray-tracing results in order to calculate the total
tropospheric correction (including gradients) resulted in a reduction in the variance
of the SLR observation residuals for LAGEOS 1 and 2 of 25-43% for NCEP and
10-30% for AIRS during 2004 and 2005. They concluded that NCEP had much
larger biases than AIRS at most stations, and an optimum solution would need to be
developed (e.g., using ECMWEF) in order to extract the best results for future
corrections, see Hulley and Pavlis (2007).

Compared to data relying on microwave technology, the two main advantages of
SLR measurements are, firstly, that they are free from first- and higher-order
ionospheric effects, and, secondly, that water vapor delays can easily be modeled.
The signal delay due to refraction by the water vapor in the atmosphere is signif-
icantly different in the optical and in the microwave band. The ratio is about 67:1,
meaning that a typical “wet component” in the zenith direction of about 5-40 cm
for the microwave band (GPS) corresponds to a delay of about 1-6 mm for SLR
observations. Since the effect is relatively small, about 80% of the delay can be
modeled by using surface pressure, temperature and humidity measured at the
station.

Atmospheric water vapor is the dominant greenhouse gas in the Earth’s atmo-
sphere, and quantifying the feedback of water vapor in global warming is therefore
of paramount importance, (Bengtsson et al. 2003). The lack of detailed knowledge
of the hydrological cycle is thus a major factor limiting a better understanding of the
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Earth’s climate system. The inaccuracy is substantial and concerns practically all
aspects of the hydrological cycle (Bengtsson et al. 2003). Recently, GNSS-based
measurements have offered new and promising possibilities. The global IGS net-
work and dense regional GNSS networks have been developed around the world,
and these provide highly temporal and spatial information (e.g., up to 20 km) about
the integrated atmospheric water vapor; vertical profiling using the GPS
radio-occultation technique is similarly taking place, using satellites in LEO orbit.
Tropospheric zenith delays are estimated on a regular basis using regional GPS
networks and the global IGS ground network. These are then used to assimilate and
constrain numerical weather models, (see e.g., Guerova et al. 2006). However, GPS
networks provide total zenith delay, and the water vapor information is extracted
using models.

9.7 The Way Forward in High-Resolution Modeling
of Tropospheric Delays for All Space Geodesy
Techniques

From the overview of tropospheric modeling approaches given above, a number of
possible improvements spring to mind. Use of water vapor radiometers is the way
forward, although these instruments have not yet found operational application in
space geodesy. This is due to their inability to consistently deliver tropospheric
delays in all directions in the field of view and especially in all weather conditions
(e.g., rain). On the other hand, the use of numerical weather models can improve
spatial and temporal resolution of the background troposphere model (e.g., for
troposphere mapping or ray-tracing). However, the state-of-the art numerical
weather models still have a temporal resolution of several hours and cannot rep-
resent the effect of the troposphere to a spatial resolution of below some 20 km. We
know that the water vapor content can change significantly within about 30 min and
over several kilometers in terms of spatial resolution.

From Sect. 15.2 we will learn that in just a few years from now one can expect
the operation of four complete GNSS constellations (GPS, GLONASS, Galileo, and
Beidou) providing more than 35 GNSS satellites in the field of view 10° above the
horizon. This opens up the possibility of modeling station-specific tropospheric
delays in terms of temporal spherical harmonics or spherical grids. In this way, fine
structures in the station troposphere and multipath could be mapped at the same
time on the reference sphere placed around the ground station. This will be very
similar to estimating a PCV map for the specific location of a ground station. Such
an approach will be feasible, since more and more GNSS satellites are equipped
with high-performing satellite clocks that allow modeling of GNSS clock param-
eters with a simple linear model over a one-day period, (see Svehla (2010a) or
Chap. 18). The same trend can be seen in the inclusion of H-masers in the ground
IGS network. Therefore, it is to be expected that Galileo will require modeling of
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tropospheric delays to a significantly higher resolution in order to fully benefit from
the short- and long-term stability of the on-board H-maser. To understand why, one
just has to consider that at each epoch about 8 different ground stations contribute to
the estimation of a single GNSS clock parameter. Thus, the residual tropospheric
effect is averaged over those 8 different stations every epoch and the noise is much
higher than carrier-phase noise or noise from the “instability” of the Galileo
H-maser, (see, e.g., Chap. 18). In addition, the tracking geometry changes slightly
from epoch to epoch and new ground stations enter this averaging process typically
at very low elevations. For validation of the H-maser on board GIOVE-B using
SLR measurements see Svehla (2010a) and for the first Galileo FOC satellites
Chap. 18. However, one should always consider correlations of any additional
parameters with the station coordinates, if they are estimated in the same processing
run, especially the station height.

Once, high-resolution troposphere maps are being provided by ground GNSS
stations, other space geodesy techniques, such as SLR, VLBI and DORIS could use
those maps to accurately account for very small changes in tropospheric delays. In
almost all cases, GNSS receivers are co-located with all other space geodesy sen-
sors in very close proximity, so such an approach is already feasible. Combination
with space geodesy techniques could also bring an added value. On the other hand,
rotation of spherical harmonics can very efficiently account for any temporal
variations in modeling of station-specific tropospheric delays. In the scope of this
thesis we have developed a new technique for the rotation of spherical harmonics
that can be used for the modeling of temporal variations represented by spherical
harmonics (e.g., gravity field, ionosphere maps, troposphere maps).
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Chapter 10 M)
Aerodynamics in Low LEO: A Novel e
Approach to Modeling Air Density

Based on IGS TEC Maps

Here we present some theoretical aspects of the modeling of aerodynamic accel-
eration in the precise orbit determination of a LEO satellite. We have included this
section because of the great importance of the role that aerodynamic drag plays in
all gravity field missions, as they are typically placed in a very low LEO orbit.
Thus, here we look at the geometrical properties of this effect. We show that the
accuracy of the velocity in the calculation of the aerodynamic drag for a LEO
satellite, in particular the velocity of thermospheric horizontal winds, is as impor-
tant as the atmospheric density. We then give a geographical representation of the
models used to calculate atmospheric density and thermospheric horizontal winds,
with an emphasis on the GOCE (Sun-synchronous) orbit, and compare this with the
orbits of altimetry satellites in high LEO. In addition, we present the prospects of
investigating atmospheric density and thermospheric winds using the GOCE mis-
sion at 220-250 km altitude. Models of neutral horizontal winds show that ther-
mospheric winds mainly occur around the geomagnetic poles where they are driven
by the perturbations in the geomagnetic field. The highest thermospheric wind
velocities may be expected along the dawn-dusk regions, and from that point of
view, the GOCE orbit is the perfect candidate to provide unique information on the
neutral horizontal winds in the lower thermosphere. Section 10.3 of this thesis
triggered an ESA study that demonstrated the retrieval of thermospheric wind
parameters from GOCE data. At the end of this section, we demonstrate a novel
approach to calculating and predicting air density in the thermosphere based on the
global TEC maps provided by IGS. This approach could be used to predict solar
activity in an alternative way, independent of the number of Sun spots or the solar
flux index at a wavelength of 10.7 cm (F;y7). We also show that information on the
ionization of the thermospheric part of the ionosphere, as provided in IGS TEC
maps, can be used to calculate the LEO mission duration (as was done for GOCE).
This opens up new applications for the global IGS TEC maps in monitoring air
density in the thermosphere, including spatial and temporal variations. In addition,
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we show that variations in air density driven by variations in solar activity (heating)
are empirically proportional to the ionization of the ionosphere. Thermospheric
density and TEC can be related by an empirical linear model as shown here.

10.1 Aerodynamic Drag

Aerodynamic drag is the most significant non-gravitational force acting on a
satellite in low LEO orbit. Atmospheric density decreases exponentially with
increasing orbit altitude and, as a result, aerodynamic drag becomes negligible at
the outer boundary of the thermosphere (<1000 km). Due to the energy dissipation
caused by air resistance, natural orbital motion below 120 km orbit altitude cannot
be sustained in the Earth’s atmosphere and so is followed by orbital re-entry.
The ESA mission GOCE, in Sun-synchronous orbit, uses a dedicated electric ion
propulsion system to counteract aerodynamic drag and to maintain the satellite orbit
at 220-250 km altitude. Thus, the duration of the GOCE mission is limited by the
capacity of the 40-kg tank of xenon on board, as xenon is used for propulsion.
Neutral xenon atoms are converted into fast-moving ions by an electric discharge
generated by the satellite’s photo-voltaic panels. The ions are then ejected aft of the
satellite giving a very smooth thrust of 1-20 mN, depending on the measured drag
in the along-track direction. On the orbit determination of the International Space
Station, see Shum et al. (2008, 2009).

The aerodynamic acceleration of the satellite due to air drag reads as, e.g.,
Montenbruck and Gill (2000)

1 A ;
:7§CD%‘DI.',;'; (101)

s

with p denoting the air density, cp the empirical drag coefficient, A/m is the
so-called form factor or the aerodynamic reference cross-section with satellite mass
m and satellite velocity 7, relative to the atmosphere (assuming that the atmosphere
co-rotates with the Earth). Air drag acceleration can easily be derived by consid-
ering the linear momentum of a small mass element of a column of the atmosphere
that hits the satellite’s cross-sectional area. (For more details see, e.g., Montenbruck
and Gill 2000). This is the reason why the acceleration of the satellite due to air
drag is directly proportional to the square of the relative velocity. The relative

velocity or free-stream flow velocity, as a function of the satellite velocity 7, is

with @, denoting the Earth’s angular velocity vector and 7, is the satellite position
in the Earth-fixed frame. In (10.2), we have included, in addition, the thermospheric

horizontal wind velocity denoted as ?HW. The second term in (10.2) assumes that
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the entire atmosphere co-rotates with the Earth and the third term models more
closely the real dynamics of the atmosphere, making use of the model for horizontal
neutral winds in the upper thermosphere.

In the case of a more refined model, the satellite surface can be considered as an
array of finite elements, where the surface element A; has a corresponding drag

coefficient Cp(k). By introducing the normal vector for each surface element Xk,
with the length set to the actual surface element area, we can derive the refined
model for the aerodynamic acceleration of the satellite due to aerodynamic drag,
giving

F o —%%?,Zk: Co() A (10.3)

Accuracy of the satellite velocity relative to the atmosphere is limited by the
complex atmosphere dynamics modeled by the horizontal wind models, see
Figs. 10.2 and 10.3. Estimation of the absolute velocity of the atmosphere is at least
five orders of magnitude less accurate than determination of the actual satellite
velocity (/0.01 mm/s). Aerodynamic drag modeling is mainly limited by the
accuracy of the models for atmospheric density and neutral thermospheric wind
velocity as well as by the drag coefficients that describe the interaction of the
atmosphere’s constituents with the satellite surface. These limitations can be
reduced by empirical orbit modeling, i.e., by estimating frequent air drag coeffi-
cients and other empirical parameters.

Comparing the kinematic and reduced-dynamic orbits of the CHAMP satellite it
was demonstrated that aerodynamic-drag could only have a smooth effect on POD
with very long periodicity. It can therefore easily be removed by estimating
empirical parameters (pseudo-stochastic pulses) allowing cm- level orbit accuracy
to be achieved (gvehla and Rothacher 2002). However, in comparison with the
kinematic CHAMP orbit, the remaining systematic errors in the along-track of the
reduced-dynamic orbit can easily be identified in the polar regions (Svehla and
Rothacher 2002, 2005b). These are regions where the dynamics of the atmosphere
is very complex and larger errors in the thermosphere wind/density models can be
expected. Bruinsma et al. (2003) compared methods to model acceleration for the
CHAMP satellite and showed that the level of geomagnetic activity is highly
correlated with the atmospheric drag model error, and that the largest errors occur
around the geomagnetic Poles.

The size of the drag coefficient depends, firstly, on the flow conditions which are
characterized by the Mach, Reynolds and Knudsen numbers, and, secondly, on the
scattering mechanisms taking place at the satellite surface, such as specular, elastic
and diffuse reflections. For LEO orbits, the satellite is in the free molecular flow
regime, which means that the incident flow is undisturbed by the satellite moving
through it, i.e., particles re-emitted from the surface of the satellite do not interfere
with the incident flow. A typical drag coefficient for LEO free molecular flow that
one can find in the relevant literature, is in the order of 2-2.3. As the orbit altitude
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decreases, air density increases exponentially and the satellite moves from a free
molecular flow regime into intermolecular collision flow and finally into continuum
flow. A typical value for the aerodynamic drag coefficient in this transitional flow
regime (below 200 km) is about 1.0, however, and the increased air density causes
orbital re-entry of the satellite.

10.2 Geographical Representation of Atmosphere Density
and Thermospheric Horizontal Wind Models

Thermospheric density models play an important role in POD, orbit predictions,
orbital station keeping maneuvers, ground-track maintenance, collision risk analysis
and orbit reentry predictions. In order to model aerodynamic drag, we employed the
NRLMSIS-00 atmosphere density model (Picone et al. 2002) along with the
thermospheric horizontal wind model HWM93 (Hedin et al. 1996). NRLMSIS-00
is the recent major upgrade of the MSISE-90 model of the thermosphere (Picone
et al. 2002). The MSISE-90 model is a revision of the MSIS-86 empirical model
(Hedin 1987) of the lower thermosphere extended into the mesosphere and lower
atmosphere taking into account data derived from space shuttle flights and from
incoherent scatter radar (Hedin 1991). Compared to MSISE-90, the NRLMSIS-00
model is based on the following data: (1) total mass density from satellite
accelerometers and from orbit determination (including the Jacchia and Barlier data
sets), (2) temperature from incoherent scatter radar covering the years 1981-1997,
and (3) molecular oxygen number density, from solar ultraviolet occultation aboard
the Solar Maximum Mission (Picone et al. 2002). A new component, “anomalous
oxygen”, allows for appreciable O* and hot atomic oxygen contributions to the total
mass density at high altitudes and applies primarily to drag estimation above
500 km (Picone et al. 2002). The same paper reports a large O™ contribution to the
total mass density when there is a combination of summer, low solar activity, high
latitude, and high altitude. Under these conditions, except when there is very little
solar activity, the Jacchia-70 model shows a significantly higher total mass density
than does MSISE-90. However, under the corresponding winter conditions, the
MSIS-class models represent a noticeable improvement relative to Jacchia-70 over
a wide range of solar fluxes. Considering the two regimes together, NRLMSISE-00
achieves an improvement over both, MSISE-90 and Jacchia-70, by incorporating
advantages from both (Picone et al. 2002).

Figure 10.1 shows the air density for a sphere placed at 250, 500, 700 and
1000 km above the Equator at 12 UT. The solar flux F10.7 was set to 150 and the Ap
indices to 4 as approx. values for day 200/2003. The maximum density at 250 km
altitude occurs two hours after the local noon around the geomagnetic equator,
whereas for higher altitudes this maximum is shifted to the south-east. From
Fig. 10.1 one can draw the conclusion that the air density at 250 km is about one
order of magnitude higher than that at an altitude of 400 km, three orders of
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Fig. 10.1 Air density in kg/m® based on the NRLMSISE-00 model for a sphere placed at 250,
500, 700 and 1000 km above the equator at 12 UT (F10.7 solar index was set to 150 (during last
solar maximum) and Ap index to 4, day 200/2003). Comparing top and bottom figures, one can
see that the density of the atmosphere is much higher below an altitude of 400 km and that for
these altitudes, air density shows a geographical distribution similar to global TEC maps provided
by the IGS

magnitude higher than that at 700 km and about four orders of magnitude higher
than that at 1000 km. In a Sun-synchronous orbit the satellite is not exposed to
maximum atmospheric density. For the GOCE satellite placed in a Sun-synchronous
orbit at an orbit altitude of 240 km, the main density perturbation is avoided.
However, residual perturbations can be expected around the geomagnetic poles.
The thermospheric horizontal wind model HWM93 (Hedin et al. 1996) is a
revision of the previous HWM90 model (Hedin et al. 1991) for the lower ther-
mosphere and extended into the mesosphere, stratosphere and lower atmosphere to
provide a single analytic model for calculating zonal and meridional wind profiles
representative of the climatological average for various geophysical conditions
(Hedin et al. 1996). Gradient winds from CIRA-86, plus rocket soundings, inco-
herent scatter radar, MF radar, and meteor radar provided the data base and were
supplemented by previous models. Low-order vector spherical harmonics and
Fourier series were used to describe the major variations in the atmosphere
including factors such as latitude, annual, semiannual and local time (tides), and



116 10 Aerodynamics in Low LEO: A Novel Approach ...

longitude, with a cubic spline interpolation in altitude (Hedin et al. 1996).
The MSIS models are based on the so-called Bates-Walker temperature profile—a
function of geopotential height for the upper thermosphere and an inverse poly-
nomial in geopotential height for the lower thermosphere. Exospheric temperature
and other atmospheric quantities are expressed as functions of geographical and
solar/magnetic parameters. The temperature profiles allow for exact integration of
the hydrostatic equation for a constant mass to determine the density profile based
on a density specified at 120 km as a function of geographic and solar/magnetic
parameters (Hedin et al. 1996).

Although the agreement between various data sources was reported to be good,
systematic differences were reported, particularly near the mesopause. RMS dif-
ferences between data and the model values are of the order of 15 m/s in the
mesosphere and 10 m/s in the stratosphere for zonal winds, and 10 m/s and 5 m/s,
respectively, for meridional winds. (For more detail see Hedin et al. 1996) The
output of the model are zonal and meridional wind components for altitudes from 0
to 2000 km. Velocities of up to 1 km/s can be reached across the poles at altitudes
of 300 km. In the vertical direction, the mean wind velocity is generally less than
1 cm/s and can be neglected for all applications.

Figure 10.2 shows the total horizontal thermospheric wind velocity in m/s based
on the HWM93 model at 250, 500, 700 and 1000 km altitude at 12 UT. The same
solar and geomagnetic parameters were used as in the computation of atmospheric
density. The neutral horizontal wind model shows that thermospheric winds mainly
occur around the geomagnetic poles, where they are caused by the perturbations in
the geomagnetic field. The highest wind velocities may be expected along the
dawn-dusk regions. At low latitudes, more stable (accurate) and moderate velocities
are to be found and unlike with atmospheric density and the ionosphere, no cor-
relation with the sub-solar point can be observed (as is the case with IGS TEC
maps).

The thermosphere is the “LEO layer” of the Earth’s atmosphere above the
mesosphere and below the exosphere, where ultraviolet radiation causes ionization
and the creation of the ionosphere. The exosphere is the uppermost layer of the
atmosphere (roughly above 1000 km) and is sometimes used synonymously with
outer space, since there is no clear boundary between the two. In the exosphere, a
molecule can escape into space or can be pulled back to Earth by gravity with
almost no probability of colliding with another molecule.

Figure 10.3 shows the neutral atmospheric density and horizontal velocity at
1300 km altitude (altimetry satellites such as T/P, JASON-1/2). One can see that
atmospheric density is lower by a factor of 5 compared to an altitude of 1000 km, but
horizontal winds show a very similar behavior to those in the lower thermosphere at
altitudes of 250 or 400 km. Figure 10.3 confirms again that atmospheric winds are
driven mainly by perturbations in the magnetic field and that atmospheric density is
driven by the solar flux at a wavelength of 10.7 cm (F( 7). Maximum air density
occurs about 2 h after the local noon and is placed close to the South Magnetic Pole.
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Fig. 10.2 Total horizontal air velocity in m/s based on the HWM93 model at 250, 500, 700 and
1000 km altitude at 12 UT (F;(7 index set to 150 and Ap indices to 4, approx. values for day 200/
2003)
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Fig. 10.3 Total horizontal atmosphere velocity in m/s and air density in kg/m® based on the
HWMO93 model at 1300 km altitude at 12 UT (F,(; index set to 150 and Ap indices to 4, approx.
for 200/2003)

Both models for thermospheric density and models for thermospheric winds, are
mainly driven by the solar flux index Fy,; as an input and the mean solar flux over
the previous three 27-day rotations of the Sun. Due to the interaction between the
solar wind and the Earth’s magnetic field, the geomagnetic field is perturbed and
related variations in atmospheric density can be expected. Variations in the Earth’s
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Fig. 10.4 Observed and absolute (corrected to the mean Sun-Earth distance) solar flux at 10.7 cm
wavelength (data source NRCAN)

magnetic field are globally represented by the so-called (three-hourly) planetary
geomagnetic index and its daily mean, often denoted as Ap.

Figure 10.4 shows the mean observed solar radio flux at a wavelength of
10.7 cm over more than 60 years. One can clearly recognize the 11-year solar
cycle. The same periods may be identified in the ionosphere maps provided by IGS
and in the atmospheric density models that use the solar flux index as an input. The
Sun emits radio energy that is driven by the layers high in the Sun’s chromosphere
and low in its corona, and the rate at which that energy is emitted changes in unison
with the number of spot groups on the disk. By looking at the number of Sun spot
groups on the Sun’s disk we can identify the 27-day Sun rotation period. This
rotation period can also be seen in the variations of the solar flux as reflected in the
Total Electron Content shown on the IGS ionosphere maps or in the atmospheric
density.

The solar flux density at 2.8 GHz corresponds to a wavelength of 10.7 cm and
has been recorded routinely by radio telescopes. Figure 10.4 shows observed
monthly means of the solar flux recorded since 1947 by the radio telescope near
Ottawa and starting with June 1991, from Penticton, in Canada. The observed time
series contain fluctuations that arise from the variations in the Sun-Earth distance
over one year. Absolute solar fluxes are corrected and referred to the mean
Sun-Earth distance. In addition, they are multiplied by 0.90 to compensate for
uncertainties in the antenna gain and in waves reflected from the ground (NOAA
2009).
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10.3 Probing the Thermospheric Density
and Thermospheric Horizontal Winds Using
the GOCE Mission

During the writing of this thesis, this section triggered a dedicated ESA Study that
demonstrated the use of GOCE data in examining of thermospheric horizontal
winds.

The common mode of the GOCE accelerometers contains the signal of the
non-gravitational forces acting on the satellite. However, acceleration in the
along-track direction is counteracted by the electric ion-propulsion system. This, in
turn, is controlled by the measurements from the accelerometers. Hence, they
measure the near-zero drag acceleration in a closed loop. Therefore, thermospheric
density can be derived mainly from the force that is applied by the ion-propulsion
system on the satellite. Since the drag-free system is acting only in the along-track
direction, GOCE accelerometers should be able to provide information on the
horizontal crosswind velocity (in cross-track direction) since the ion-propulsion
system does not counteract the effect of these on the satellite.

High-quality accelerometer measurements from the CHAMP and the two
GRACE satellites in LEO orbit have shown that existing state-of-the-art thermo-
spheric density and horizontal wind models such as JB2006 (Bowman et al. 2008),
JB2008 (Bowman et al. 2008), NRLMSIS-00 (Picone et al. 2002) and HWM93
(Hedin et al. 1996) contain systematic errors and their use in precise orbit deter-
mination has to be heavily supported by the estimation of empirical orbital
parameters (pseudo-stochastic pulses, i.e., empirical velocities), see e.g., Svehla and
Rothacher (2005a). However, at the same time, air density provided by those
models can easily be calibrated against the accelerometer measurements, providing
very good predicted variations of the air density along the orbit. Thermospheric
density models and solar radiation pressure at higher LEO altitudes are the main
source of error in the precise determination and prediction of the orbits of LEO
satellites, considering the high spatial and temporal resolution of the Earth’s gravity
field models available after the GOCE and GRACE mission.

Due to its Sun-synchronous, very low LEO orbit (only 220-250 km altitude),
GOCE could provide a new insight into non-gravitational forces acting on LEO
satellites at altitudes of 220-250 km. This is particularly true for forces related to
air-density and horizontal winds in the lower thermosphere, but is also the case for
those connected with other effects such as solar radiation and albedo. For instance,
GOCE is the first LEO mission with highly sensitive accelerometers in a dawn-dusk
Sun-synchronous orbit and could provide for the first time, a spectral characteri-
zation of solar radiation pressure, which, in the case of GOCE, acts approximately
orthogonally to the aerodynamic drag.

Before the satellite gravity missions such as CHAMP, GRACE and GOCE
equipped with highly sensitive accelerometers, launched over the last 10 years,
there was very little high quality data available on thermospheric density and
thermospheric winds. However, at times of low solar activity, and especially at the
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higher altitude of the GRACE and forthcoming Swarm satellites, the determination
of thermospheric cross-winds is likely to remain much more challenging. Firstly,
because of the reduced aerodynamic effect under those conditions and errors in the
data calibration, and secondly, due to solar radiation pressure that is a more
dominant effect at those altitudes.

On the other hand, GOCE could offer unprecedented information on air density
and neutral horizontal winds in the thermosphere at very low LEO altitudes never
investigated before. This region of the thermosphere is of special interest for
research involving the orbital re-entry analysis of space objects as well as cali-
bration of the air density models to be used at higher LEO altitudes in the upper
thermosphere. For the GOCE satellite in a Sun-synchronous orbit, and for
dawn-dusk orbits in general, the local mean solar time of passage for equatorial
longitudes is around sunrise or sunset, so that the satellite rides the terminator
between day and night. In that position the aerodynamic drag along the GOCE orbit
is not significantly perturbed by the Sun, as is the case for a Sun-synchronous orbit
placed at the noon-midnight position. This could help in calibrating thermospheric
air density models at 220-250 km altitude, which could then be used as reference
for higher altitudes, where density is considerably lower. Such a strategy is also
used in the e.g., MSIS-type models, where temperature profiles allow for the exact
integration of the hydrostatic equation for a constant mass to determine the density
profile based on a density specified at 120 km as a function of geographic and solar/
magnetic parameters.

On the other hand, neutral horizontal wind models show that thermospheric
horizontal winds mainly occur around the geomagnetic poles, where they are driven
by the perturbations in the geomagnetic field. The highest thermospheric wind
velocities may be expected in the dawn-dusk regions, and from that point of view,
the GOCE orbit is a perfect candidate for providing, for the first time, information
on neutral horizontal winds in the lower thermosphere.

For more on the dedicated ESA study triggered by this section that demonstrated
for the first time the use of GOCE data on thermospheric winds, see Doornbos et al.
(2012), Peterseim et al. (2011).

10.4 A Novel Approach to Modeling Thermospheric Air
Density Using Ionosphere TEC Maps

Can we make use of the global TEC maps, regularly provided by the IGS, to
improve the thermospheric density models used in the orbit determination of LEO
satellites? Can we use IGS TEC maps to predict solar activity and from that the
duration of a LEO mission? The current solar cycle (Solar Cycle 24) is extremely
mild, and thus the GOCE mission in very low LEO orbit has now two additional
mission phases. This clearly indicates that the atmospheric density in the thermo-
sphere is lower than predicted. A similar effect can be seen in the TEC maps
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Fig. 10.5 Daily Sun Spot Number (in red) from the year 1874 to 30.6.2013 (=~mid Cycle 24)
against the monthly mean of the Solar flux index F10.7 (in blue) scaled by a factor of 20. Both sets
of data represent the mean over the entire sphere placed at the Chapman height of 450 km

provided by the IGS, i.e., due to a lower level of solar activity, there are fewer free
electrons in the ionosphere, as measured by GNSS receivers in the global IGS
network.

Figure 10.5 shows the daily Sun spot number over the last 150 years using data
from the National Geophysical Data Center (NOAA). Both this set of data and the
solar flux index F10.7, clearly show that Solar Cycle 24 is the mildest for the last
150 years and up to 50% milder than the other solar cycles.

The same can be seen in Fig. 10.6, showing global mean TEC values calculated
using the IGS TEC maps (CODE AC) over the last two solar cycles. Since CODE
IGS AC uses a spherical harmonic expansion to generate the global TEC maps, we
plotted the central term Cy of the spherical harmonic expansion that shows that
Solar Cycle 24 (with the maximum in 2012-2013) is the mildest for the last
150 years and up to 50% milder than other cycles.

The question one can now ask is, “Can we see the same effect in atmospheric
density?”. To answer this we calculated daily global mean density using the
NRLMSISEOO model for a global grid 5° x 5° at 250 km altitude every 6 h.
Figure 10.6 shows the daily global mean density in [kg/m3] scaled by a constant
factor over the last 20 years. The agreement between the two different physical
quantities is astonishing. A linear model was fitted by least-squares for a period of
20 years, covering the last two solar cycles. As one can see from Fig. 10.6, the
relation between TEC and thermospheric density can be modeled by a simple linear
model with an accuracy of a few TECU over two solar cycles. One can clearly see
the annual and the 27-day Sun rotation period in both time series, as well as the
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Global Mean TEC vs. Scalled Global Mean Density
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Fig. 10.6 Daily global mean TEC based on IGS TEC maps (CODE AC) against daily global
mean density in [kg/m3] at 250 km altitude calculated using the NRLMSISE-00 model (for a
5° x 5° grid every 6 h) based on the linear model (10.5) over the last 20 years. The agreement
between the two different physical quantities is excellent and the relation can be modeled by a
simple linear model with an accuracy of a few TECU over two solar cycles. One can clearly see the
annual and the 27-day Sun rotation period in both time series as well as the maxima of Solar Cycle
23 and Solar Cycle 24 around the years 2002 and 2013 respectively

maxima of Solar Cycle 23 and Solar Cycle 24 around the years 2002 and 2013,
respectively.

Over shorter time scales, e.g., half a solar cycle as shown in Fig. 10.7, we see
that the agreement between the global mean TEC and the mean thermospheric
density is even better, at a level of 1-2 TECU over the last 7 years. The
NRLMSISE-00 model was used with the solar index F,,; and the geomagnetic Ap
index from the National Geophysical Data Center (NOAA). The calculation using
the NRLMSISE-00 model is very sensitive to the solar index Fyo;, whereas the
3-hourly Ap indices provide only short-term sub-daily data. Looking at those time
series, given for the last 20 years, one could also ask the question, “How stable are
the differential code biases (DCBs) over those 20 years?”. DCBs define the absolute
datum for IGS TEC maps, and the estimation of global ionosphere maps is used as
the reference to determine them.

To calculate the mean daily TEC based on the mean thermospheric density at
250 km altitude for the period of the two solar cycles displayed in Fig. 10.6, we
used the following linear model

TEC=a x p+b (10.4)



10.4 A Novel Approach to Modeling Thermospheric ... 123
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Fig. 10.7 Daily global mean TEC based on IGS TEC maps against daily global mean density in
[kg/m3] at 250 km altitude (NRLMSISE-00 model, 5° x 5° grid every 6 h) based on the linear
model (10.5) over the last 20 years. Agreement between the two different physical quantities is to a
level of 1-2 TECU over the last 7 years. One can clearly see the annual and the 27-day Sun
rotation period in both time series

with coefficients a and b, and the mean density p. After least-squares adjustment (fit
to IGS TEC maps) we obtained

TEC = 5.0 - 10" X pysgrm — 7.4 (10.5)

where TEC stands for daily global mean of the TEC in [TECU], pysgm is the mean
air density given in [kg/m?] calculated using the NRLMSISE-00 model for a 5° x
5° grid every 6 h at 250 km altitude. Figure 10.6 was calculated using Ap = 4,
since the use of the 3-hourly Ap indices increases only the high-frequency part.

From (10.5) it follows that ionization in the ionosphere is directly proportional to
air density, i.e., a greater density of the thermosphere due to a higher level of solar
activity (heating) is accompanied by proportionally more free electrons in the
ionosphere. The linear model of fractional thermospheric density at 250 km altitude
is similar to the fractional TEC at LEO altitude, both fractional quantities can be
modeled using a simple linear model (10.5). In Sect. 9.3, we showed with GPS
measurements from the CHAMP satellite that integration of the Chapman function,
i.e., fractional TEC above LEO orbit altitude, can be calculated using a bias applied
to ground TEC values.

Making use of the liner model (10.5), we can combine ground TEC or fractional
LEO TEC measurements with thermospheric density at a given altitude. This could
be used to indirectly predict solar activity in order to calculate LEO mission
duration (as was done for the GOCE mission) and opens up new applications of the
global IGS TEC maps in monitoring air density in the thermosphere.
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A similar linear model for thermospheric density was derived for an altitude of
500 km

TEC = 252.0 - 10" X psggim + 8.6 (10.6)

(see also Fig. 10.8). Although, compared to (10.5), the orbit altitude was increased
by a factor of 2, the scaling factor in (10.6) increased by a factor of 50. Figure 10.9
(left) shows a geographical map of air density at 400 km altitude scaled to the TEC
values by a linear model (scale and offset) at 12 UT, while the figure on the right
shows TEC values as provided by IGS (CODE IGS AC). One can see that the
overall agreement is very good and in both cases the maximum value occurs at
about 14 h local time, two hours after the Sun has passed the meridian of that
geographical location.

What is the mechanism that relates density of the thermosphere to ionization in
the ionosphere? When the Sun is more active it emits more high-energy radiation,
i.e., X-ray and extreme UV radiation (XUV) that is almost completely absorbed in
the thermosphere. This radiation creates ionospheric layers and increases the tem-
perature at those altitudes. Due to this high-energy radiation, the thermosphere
becomes hotter and so expands. Expansion of the thermosphere moves lower levels
of the thermosphere with higher density to higher altitudes. This, in turn, increases
the aerodynamic drag on satellites at those altitudes. In the auroral regions addi-
tional heating of the thermosphere can be caused by the solar wind interacting with
the magnetosphere. At the same time, this high-energy radiation from the Sun in the

Global Mean TEC vs. Scalled Global Mean Density at 500 km
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Fig. 10.8 Daily global mean TEC based on IGS TEC maps against daily global mean density in
[kg/m3] at 500 km altitude calculated using NRLMSISE-00 model (for a 5° x 5° grid every 6 h)
scaled by a constant factor over the last 20 years. Agreement between the two different quantities
is to a level of 1-2 TECU over the last 7 years. One can clearly see the annual and the 27-day Sun
rotation period in both time series
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Fig. 10.9 Air density at 400 km altitude scaled to TEC map (left) versus global TEC (right) in
[TECU] during the current solar maximum (day 55/2013, 12 UT). Air density was calculated using
the NRLMSISE-00 model (for a 5° x 5° grid) and scaled to the TEC values by a linear model
(scale and offset). One can see that in both cases maximum values occurs at about 14 h local time

form of high-energy photons tears electrons away from gas molecules creating ions
at the same thermospheric altitudes (ionosphere). This is described by the Chapman
function (9.17) that gives the ion production rate as a function of height for the
entire ionosphere. Thus we have two mechanisms that work in parallel at similar
altitudes, i.e., ionization of the ionosphere and heating of the electrically neutral
thermosphere.

Analogous to the Chapman function (9.17) that defines the vertical profile of the
ionosphere, thermospheric temperature is given by the so-called Bates profile, Bates
(1959)

T =Ty — (To — Tp) e %) (10.7)

with reference temperature 7o = 355 K given at zp = 120 km. The exospheric
temperature T, is directly related to solar activity as a function of the solar index
F107 by the following empirical formula

Tso = 500 +3.4F, (10.8)

with the Covington index F having a typical range of 70-250 over one complete
solar cycle. The shape of the Bates profile is given by the empirical parameter s that
typically decreases with T,,. Once the temperature profile of the thermosphere
(10.7) is given, one can calculate the corresponding pressure profile and from that
the thermospheric density profile. Taking into account the ideal gas law and inte-
gration of the hydrostatic equation, the simplest form of the density profile as a
function of temperature T and altitude / reads as

p = pge "M (10.9)
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with

R
Hy=—T (10.10)
1g

with R denoting the universal gas constant, g is the gravity at altitude h, u repre-
sents the molecular weight of the atmospheric constituents and p, in (10.9) is the
atmospheric density at the reference height.

10.5 The Remove-Restore Approach to Modeling
the Density of the Thermosphere

The previous subsection clearly shows that there is a high correlation between the
density of the thermosphere and the total electron content in the ionosphere and that
there is a similar physical mechanism governing both. The next step would be to
improve the temporal and spatial resolution and accuracy of the thermospheric
models. One possible approach is to look at the existing information on the geo-
magnetic indices and solar radio flux measurements that drive input parameters for
the thermospheric models. Is there an alternative?

Here we propose studying the empirical coupling between thermospheric density
and ionospheric total electron content. We intend to use data provided with a high
degree of spatial and temporal resolution by the IGS. The idea is to study temporal
and spatial correlations between global TEC maps and air density. It is known that
both effects are highly correlated with, and driven by the solar radio flux index
F10.7. Monitoring of the ionosphere is performed by IGS providing global maps of
the vertical TEC every 2 h. Our proposed approach could be based on the temporal
and spatial correlations between variations in the TEC at the GOCE altitude, against
the air density provided by the models and the air densities derived from the GOCE
accelerometer. One way to carry out such an approach is to use a standard
remove-restore technique with the thermospheric model as a background model. It
can be shown that ionosphere models such as IRI2007 or NeQuick can be used as
background models in the very sparse real-time IGS network to improve spatial and
temporal resolution of the real-time/predicted TEC maps. In a similar way, coupling
and correlation between ionospheric charging and thermospheric heating could be
studied, where the TEC information is used as a precursor for density variation.
The GOCE in-situ density measurements could be used as a reference in this
modeling. The quality of orbit prediction would be the first criterion in assessing the
performance of such empirically derived density models. External validation can be
carried out by independent comparison with density estimates from other missions,
e.g., the TIMED mission (NASA) with an orbit inclination of 74°.
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10.6 Sustainable Mapping of the Earth’s Gravity Field
at Very Low LEO Altitudes of 195-205 km
and Below

It is expected that GOCE follow-on missions will be single satellite missions to
monitor both, the static and temporal gravity field of the Earth, based on atomic
interferometry. These missions will need to fly at very low orbit altitude in order to
map the static and temporal gravity field of the Earth with very high degree and
order in terms of spherical harmonic expansion, most likely in the range of 195-
205 km orbit altitude with drag levels at 15 mN and above. At the GOCE orbit
altitude of 192 km in a Sun-synchronous orbit, the reported measured atmospheric
drag level of GOCE accelerometers was 24 mN on average, with peaks up to
35 mN and an average natural orbit decay of 4 km/day. At the GOCE orbit altitude
of about 224 km (last mission phase) the drag level is nearly halved in size and is at
the level of 8 mN compared to the orbit altitude of 205 km. Since the GOCE
mission demonstrated for the first time that ion propulsion is a viable technique for
maintaining a satellite at low LEO orbit for a period of nearly 5 years, new gen-
erations of gravity missions will push the borders of ion propulsion even further, in
terms both of duration and of lower orbit altitude. However, maintenance of an
extremely low LEO orbit is always limited by the onboard fuel capacity and
depends on the air density at those altitudes, i.e., solar activity. It is expected that
future propulsion systems will need to be able to maintain the orbit altitude for
about 10 years (depending on solar activity), at orbit altitudes 195-205 km with a
natural orbit decay of 2-3 km/day at those altitudes. This appears even more
attractive if the very low level of solar activity in the current solar cycles continues
into the future solar cycles (as highly expected). At the GOCE orbit altitude of
190 km, orbit decay was already 4 km/day and doubled at the orbit altitude of
170 km to 8 km/day. At the 160 km orbit altitude, GOCE orbit decay was
13 km/day with an average air-drag of around 90 mN. At an orbit altitude of
147 km, less than 18 h before re-entry, GOCE was dropping at a rate of more than
1 km/h with an average drag level of about 165 mN. Interestingly, the temperatures
of payloads and GOCE subsystems close to the front of the satellite increased by
only about 13 °C from those of the altitude of about 160 km the day before, as
reported by the GOCE mission operations team in ESA/ESOC. For the sake of
completeness, at the orbit altitude of 122 km the orbit decay was about 2.7 km/h.

Going to lower orbit altitudes, an additional lift force could be gained by the
increased density levels and optimizing the angle of attack. In the case of drag, the
surface force is parallel to the air flow direction, whereas the lift force is the
component of the total aerodynamic force perpendicular to the oncoming flow
direction. When the angle of attack o (typically in the order of several degrees) is
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optimized for the platform area A one can obtain a lift coefficient Cy(«) that will
give maximum lift acceleration (o) for a given angle of attack

a(o) = lpDZ M

10.11
3 - (10.11)

From (10.11) we see that lift acceleration is proportional to air density p and to
the square of the relative velocity v. Similar to the cross-section ratio for air drag,
the ratio A/m could be called platform ratio. Thus, for future gravity field missions
flying at 200 km orbit altitude and below it is expected that significant lift could be
generated by increasing the platform ratio and optimizing the angle of attack to gain
the maximum lift coefficient Cp(«). Air planes typically maintain an optimized
angle of attack by using the onboard computer to ensure that air flow generates
maximum lift at all times. A similar optimization could be performed in astronautics
for satellites in low LEO orbit. At the Karman line, the LEO orbit cannot be
sustained any longer and the lift force is equal to gravitation g

1 ,C(a)-A
a(o) = 5,ou2 % =g(h) h=100km, Karman line (10.12)

GOCE was the first satellite that re-entered the Earth’s atmosphere with a
drag-free system active prior to orbit re-entry, and was the first uncontrolled ESA
re-entry in 25 years. Although the onboard fuel was spent, the net effect was that
the re-entry of the GOCE satellite took place at very low angle of attack w.r.t. the
Earth’s atmosphere, i.e., the so-called Karman line at =100 km altitude. This is due
to the drag-free mode that was active at very low orbit altitudes, much below the
nominal orbit altitude when the mission was planned some 15 years ago. For ATV
and the Shuttle missions, an orbit maneuver is usually needed to achieve the correct
angle of attack for safe orbit re-entry or in order to burn up the satellite in the
atmosphere (ATV). However, for a drag-free satellite with an uncontrolled re-entry,
the angle of attack is close to zero with lower relative velocity, thus the re-entry will
take longer and there is a high probability that many parts of the satellite will
survive thermal effects. For the GOCE mission, it was estimated that the proof mass
could survive the satellite re-entry. However, after maintaining the GOCE satellite
at a significantly lower orbit altitude than that planned some 15 years ago, it is
expected that more parts of the satellite survived re-entry and impacted on landing.
Typically for all satellite missions, parts with high melting temperatures, such as
fuel tanks made of stainless steel or titanium could survive orbit re-entry. As
showed in Hansen (1987), the heat load experienced by a satellite re-entering the
atmosphere is inversely proportional to the air-drag coefficient, i.e., the greater the
air-drag, the lower the heat load. Higher air-drag or cross-section area acts in a
similar way to an air-bag by keeping hot gases away from direct contact with the
satellite, the heat energy moves around the satellite and dissipates in the atmo-
sphere. Thus, with a low angle of re-entry the air drag will be maximal and with
relatively lower velocity (entering slowly), there is a high probability that such a
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satellite could re-enter the Earth’s atmosphere and impact on landing with many
parts. The GOCE gradiometer itself is protected by a carbon-carbon structure that
has a very high melting point. This poses the question of whether, with some
additional thermal protection on the port side of the satellite (GOCE shadow side)
and flying a high-drag altitude profile, one could land the main part of the satellite
on the ground. Some early predictions from 15 years ago claimed that 25% of the
GOCE satellite (250 kg) will survive re-entry. Thanks to its aerodynamic shape, it
is expected that the GOCE spacecraft could maintain the nominal attitude by the
atmospheric drag forces alone, flying like a “needle” in the Earth’s atmosphere.
New generation mini shuttle missions and other re-entry space vehicles or
sub-orbital flights capabilities show that it will be possible to land the payload after
the mission is over and to re-launch the same system. This could be a sustainable
option for the core satellite missions that require decades of continuous Earth
monitoring with a significant number of satellites at extremely low LEO orbits
equipped with propulsion systems. The ion propulsion could be supported by the
new generation of combustion engines such as the rotational detonation engine that
could both maintain a satellite orbit at very low altitude for a very long time.
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Chapter 11 )
GPS Single-Frequency: From First ki
cm-POD to Single Frequency

GNSS-RO/R

In this section we introduce what we call “Positive Code-Phase” linear combination
or the LP linear combination (phase and code added) to eliminate the first-order
ionosphere effect and estimate LEO orbits using single-frequency GPS measure-
ments, (see Svehla and Rothacher 2003a; 2005b). We do not smooth code mea-
surements with the linear model as proposed by the GRAPHIC (Group and Phase
Tonospheric Calibration) linear combination in (Yunck 1993; Gold et al. 1994;
Muellerschoen et al. 2004). We show that in the case of the GRACE-B satellite it is
possible to estimate LEO orbits to an accuracy of 2-3 cm RMS (1.3 cm radial)
using single-frequency GPS measurements only, (see also Svehla et al. 2010a). This
is similar to the orbit accuracy of 1-2 cm one can typically achieve with
dual-frequency carrier-phase measurements. This is possible due to the very low
noise level of the code measurements from the GRACE-B satellite and recent
gravity field models from the GRACE and GOCE missions that provide very
accurate gravity field coefficients up to degree and order 120 allowing an orbit
parameterization with a very modest number of empirical parameters. In addition,
thanks to the excellent precision of the real-time GPS satellite clock parameters
provided by the IGS, we show that this cm-orbit accuracy can be achieved even in
real-time. Subsequently, we introduce an estimation of the group delay pattern of
GNSS satellite antennae based on the LP linear combination. We show that the LP
linear combination can be used to estimate single-code group delay variations
(GDV) for GNSS satellite antennae at the single-frequency level and present the
first GDV pattern based on GPS measurements from the GRACE-B satellite.
The GDV pattern based on LP linear combination is related to a single code
observable and not to an ionosphere-free linear combination, a strong advantage in
the presence of multi-GNSS data. After that, we present the concept of using
single-frequency GPS radio-occultations (RO) as a very promising alternative to
standard GPS-RO based on dual-frequency measurements. The advantage of this
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approach is that carrier and code measurements on the same GPS frequency follow
the same path in the ionosphere. This is not the case for the bended carrier-phase
GPS-RO measurements on different GPS frequencies that can reach a vertical
separation of up to 500 m in some cases. Since the antenna used for GPS-RO is
typically a high-gain antenna, the noise level of the code measurements is very low
and, with an additional smoothing, this approach could be used for GPS-RO with
SBAS satellites in GEO. The same approach could also be applied to GNSS
reflectometry (GNSS-R).

11.1 Positive Code-Phase Linear Combination

Following (Svehla and Rothacher 2003b), a simplified version of the observation
equation for the phase Lj,; and code P}, ; observations (GPS frequency i, dis-

tance between LEO satellite and GPS satellite s) is given as

Liro; = Preo + 4iNigo; + g0, + ¢Otieo — cot’ +&(L;)

Plro; = Preo = ILpo i+ ¢Otieo — cot’ + &(Py) ey
where pj ., denotes the geometry term of the distance between the LEO and the
GPS satellite s, Njp ; is the zero-difference phase ambiguity with wavelength Ais
Iiro,; 1s the first order ionospheric correction, dt.ro and 0t° are the LEO and GPS
satellite clock values and ¢(L;) and ¢(P;) denote carrier-phase and code noise,
respectively. The LP linear combirvlation (“Positive Code-Phase”) of phase and code
measurements is then defined as Svehla and Rothacher (2003a, 2005b)

S 1 S 5
LPigp; = B (PLEO,i +LLE0,i) (11.2)

Since the first-order ionosphere effect has opposite signs for phase and code
observables, it can be eliminated by adding code and carrier-phase measurements
together and the ionosphere-free linear combination is then

1
LPZEO,:‘ = p;,EO + EAiNzEO,i + cdtrpo — cot® + S(LPZ‘) (113)

Any bias in the GPS satellite clocks or bias in the code measurements is
absorbed by the estimated carrier-phase ambiguities. The wavelength of the LP
linear combination is half that of the original wavelength /; and the noise e(LP;) is
half that of the original code.
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Fig. 11.1 The first CHAMP reduced-dynamic orbit estimated using the LP linear combination of
the L; and P; measurements, day 200/2002 (Svehla and Rothacher 2005b) based on the EIGEN-1
gravity field model and IGS orbit/clock quality in 2002. In comparison, the GRACE-B orbit can be
estimated with an accuracy of 2 — 3 cm RMS using single-frequency fata and gravity models from
the GRACE mission, (see Fig. 11.2)

Figure 11.1 shows the first reduced-dynamic orbit of the CHAMP satellite based
on the LP linear combination of the L; and P; measurements, day 200/2002. The
accuracy level is about 10 cm, when compared against the best reduced-dynamic
orbit estimated using dual-frequency carrier-phase measurements. However, it
should be noted that this accuracy level is mainly driven by the GPS satellite orbit
and clock quality available from IGS in 2002 and the very first CHAMP gravity
models, such as EIGEN-1. In order to compensate for orbit modeling deficiencies,
empirical parameters need to be estimated. The orbit results in Fig. 11.1 are based
on the frequent estimation of so-called pseudo-stochastic parameters (empirical
velocity pulses) that, in this particular case, were estimated every 6 min. One can
expect that this is correlated with the carrier-phase ambiguities that are estimated
per tracking pass (15-20 min), and due to the noise level of the LP linear com-
bination the resulting orbit is not better than about 10 cm RMS. We will see in the
next subsection that, when the duration of the empirical parameterization is
increased to about 1-2 h, and when making use of the GRACE gravity field models
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and the IGS orbit/high-rate clock parameters, the orbit quality improves to about 2—
3 cm RMS.

Apparently, in comparison to the LP linear combination in (11.2), a similar
linear combination was introduced by Yunck (1993), Gold et al. (1994), Bertiger
and Wu (1996) for C/A code measurements, where it was called GRAPHIC (Group
and Phase Ionospheric Calibration) linear combination. Although developed inde-
pendently, the GRAPHIC linear combination was re-discovered in 2002 and used
for the first CHAMP data using more accurate P code measurements, as presented
at the CHAMP Workshop in Potsdam in 2003 (Svehla and Rothacher 2005b).
However, the GRAPHIC linear combination is based on the smoothed code mea-
surements, see Muellerschoen et al. (2004), where a linear or quadratic smoothing
operator (-) is employed on the difference between the code and the carrier phase
measurements

S s 1 .S S
LPipo; = Ligo; + 3 <PLE0,i - LLEO,i> (11.4)

For more on GRAPHIC see Muellerschoen et al. (2004), where a linear fit was
used to smooth code measurement in (11.4).

11.2 The 1-cm Single-Frequency Orbit in a Radial
Direction Based on Real-Time GPS Satellite Clocks

The LP linear combination not only reduces the noise level of code measurements
by about 50%, in addition, the noise level is also averaged over the tracking pass
(typically 15-20 min) and over all tracked GPS satellites every epoch by estimating
one phase ambiguity per tracking pass and receiver clock parameters every epoch.
Since the precision of the CHAMP ionosphere-free observables based on C/A and
P code measurements is about 48 cm (from the kinematic POD), we expect the
precision of the code measurements to be about (15-16 cm). This leads to a noise
level of the LP; observable of about 5-8 cm for CHAMP, whereas for GRACE-B
the noise level is halved

—_

e(LP;) ~ ~¢(P;) ~5—8cm CHAMP

—_ N

(11.5)
e(LP;) =~ ~¢(P;)) =2 —4cm GRACE-B

[\

Galileo and future GNSS will introduce wide-band signals that will enable a low
code noise in the cm-range to be achieved. The Galileo E5 wide-band signal
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(nominal bandwidth of 51.15 MHz) and AItBOC modulation will offer a code noise
at the cm-level. However, this is not the case for its subcarriers ESa and ESb.

Figure 11.2 shows SLR residuals of the GRACE-B reduced-dynamic orbit
estimated using the LP linear combination, while Fig. 11.3 shows daily RMS errors
in the along-track, cross-track and radial directions against the JPL orbit estimated
by means of dual-frequency carrier-phase. One can see that the radial orbit com-
ponent can be determined down to 14 mm RMS using the LP linear combination.
Typical RMS of the single orbit component is 26 mm and is similar to the 25.5 mm
RMS of the SLR residuals, (see Fig. 11.2).

It should be noted that the GRACE orbits are based on the GRACE gravity field
models (Tapley et al. 2005) and the IGS orbit/high-rate clock parameters.
The GRACE gravity field models allow the orbit to be modelled dynamically with a
relatively modest number of empirical parameters, e.g., velocity pulses every 1-2 h.
Thus there is a weaker correlation with the frequent carrier-phase ambiguities that
are estimated per tracking pass (typically 15-20 min in duration). At this point, it is
interesting to note the noise in the estimated carrier-phase ambiguities (see
Fig. 11.4). The noise level of the LP residuals is in the order of 2 cm compared to
the wavelength that is of the order of 10 cm.

This clearly opens doors to fix track-to-track carrier-phase ambiguities on L; (see
Chap. 20). It should be noted that biases in the code measurements, which are
common to all tracking passes, are eliminated by forming track-to-track
ambiguities.

Figure 11.5 shows the GRACE-B orbit based on real-time IGS clock products
(latency 10 s). One can see that the orbit quality is only slightly reduced when
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Fig. 11.2 SLR residuals of the GRACE-B orbit based on the “Positive Code-Phase” or the LP
linear combination using Final IGS orbit and clock products and the GRACE gravity field models
(days 140-150/2010)
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Fig. 11.3 GRACE-B orbit based on the IGS Final GPS orbit and clock products against the
GRACE-B orbit provided by JPL (GRACE Level 2 Product)

o4 Observed Noise in the LP Ambiguities

0.08F b

0.06

0.04

' ||uf"

|2

0.02
E o

-0.02

-0.04

-0.06

-0.081 b

_0_1 1 1
140.85 140.9 140.95 141
Day of Year 2010

Fig. 11.4 Observed noise in the estimated carrier-phase ambiguities using the (Positive
Code-Phase) linear combination of the L; and C/A code measurements

real-time GPS satellite clocks are used, i.e., from 26 to 33.8 mm as a typical RMS
for all three orbit components. Again, the radial orbit component is the most
accurate (15.6 mm RMS).
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Fig. 11.5 Single-frequency GRACE-B orbit based on real-time GPS orbit and clock products,
versus the GRACE-B orbit from JPL

11.3 Estimation of GPS Satellite Group Delay Patterns
Using the LP Linear Combination

Figure 11.6 shows the LP residuals from the reduced-dynamic orbit determination
of the GRACE-B satellite as a function of GPS satellite nadir angle. One can see
that residuals, when plotted in the GPS satellite frame, are strongly nadir dependent,
as is to be expected, when elevation dependency of the residuals is observed for the
receiving GPS antenna on the ground. This test confirms that the group delay
patterns for C /A code are flat (within about 6-8 cm peak-to-peak) and that both the
choke-ring antenna on board the GRACE-B and the GPS satellite transmitter
(SVN49) have similar characteristics in terms of group delay variations.

Let us now see if the same POD performance can be achieved when other code
observables are used, namely Py, P, and L, carrier-phase. Figure 11.7 shows the daily
RMS of the orbit estimated using all alternative code observables against the orbit
based on dual-frequency carrier-phase used as a reference. One can clearly see the
significant degradation of the orbit based on P, code that could be explained by higher
variations in the group-delay variation (GDV) patterns on P,. A significantly smaller
effect can be seen in the orbit based on P, code. Figure 11.7 shows that the LP linear
combination could be used to estimate single-code group delay patterns of GNSS
satellites. The GDV patterns estimated based on the LP linear combination are related
to the single code observables and not to an ionosphere-free linear combination, an
advantage in the presence of multi-GNSS data.
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Fig. 11.6 GRACE-B residuals (SVN49) from the reduced-dynamic orbit estimated using the LP
linear combination of L; and C/A code as a function of GPS satellite nadir angle (day 150/2010)
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Fig. 11.7 Single-frequency GRACE-B orbit based on P, and L, measurements compared with P}
and C/A code measurements. One can see a significant degradation of the P, based orbit compared
to other code measurements, most likely due to the P, group-delay patterns of GPS satellites

Figure 11.8 shows the GDV pattern on P, for the GPS satellite GPS-08 based on
code measurements from the GRACE-B satellite and the LP linear combination.
One can see a strong nadir dependency as well as variations with azimuth.
This GDV pattern was estimated based on the choke-ring antenna on the GRACE-B
satellite that has a very low multipath environment in LEO orbit. This is the lowest
code noise <10 cm RMS, reported for a GPS receiver.
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Fig. 11.8 Preliminary map
of the group delay pattern on
P, in [cm] for the GPS
satellite GPS-08 in the
satellite-specific reference
frame based on P, code
measurements from the
GRACE-B satellite and the
LP linear combination, day
214/2008. Typically, Block
IIR-M satellites show large
group delay variations, Svehla
et al. (2010a)

11.4 “Negative Code-Phase” Linear Combination:
A Geometrically Correct Ionosphere-Free Linear
Combination for GNSS-Radio-Occultations

The first-order ionospheric effects can be eliminated by adding code and phase
measurements together. Let us now see what happens when those two types of
observables are subtracted from each other. In this case we obtain what we call the
LM linear combination (phase minus) or “Negative Code-Phase” linear combina-
tion, defined as follows

s 1 s N
LMo, = ) (PLEO,i - LLEo,i) (11.6)

from which we can derive the observation equation of the geometry-free linear
combination

) 1 o) s
LM;po; = — §}~iNLEo,i — Iy, + e(LM;) (11.7)

As with the LP linear combination, the wavelength of the LM linear combination
is half that of the original wavelength, Z;, and the noise ¢(LM;) is half the code noise

e(LM;) ~=¢(P;) ~5—8cm CHAMP

(11.8)

e(LM;) ~ - ¢(P;) ~2 —4cm GRACE-B

N = N =
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From (11.7) it follows that the ionospheric slant delay between the LEO and the
GPS satellite can be calculated as

\) s 1 )
lipo; = —LMipo; — EﬂviN'LEo,i +&(LM;) (11.9)

Equation (11.9) is biased by an unknown carrier-phase ambiguity Ny, that

could be back-substituted from the orbit determination procedure based on the LP
(Positive Code-Phase) linear combination. When GPS measurements are provided
at a high sampling rate an additional averaging or smoothing of (11.9) can be
employed. The corrected, ionosphere-free carrier-phase measurement iiEOJ- is then

— , ) 1, .
LZEO,I‘ = LZEOJ + <LM2E0,i + EAiNon,i + S(LMi)> (11.10)

where (-) denotes the smoothing or averaging operator. With an increased sampling
rate, one could average code noise and even form normal points at a sampling rate
below the GPS-RO signal. In addition, the code noise could be reduced by the
GPS-RO antenna with high-gain (phased-array, etc.).

For GPS radio-occultations, the first derivative of (11.10) is actually needed.
Thus, as a smoothing operator one could employ a simple polynomial. The first
derivative of the fitted polynomial can be used directly as an input for the inversion
of GPS-RO data. If the multipath level on board the LEO satellite is low, the
single-frequency approach described above could provide an alternative GPS-RO
observable with very low noise. GPS-RO with 10-15 GEO satellites could provide
added value to the standard GPS-RO approach with GPS satellites in MEO.
Typically, satellites such as EGNOS, and WAAS provide single-frequency
carrier-phase and code measurements that are collected by the ground GPS recei-
vers, but hardly used for any application.

It is very important to mention that the L; carrier-phase and the C/A code follow
the same path in the ionosphere, even in the case of extremly bent GPS-RO signals.
This is not the case with the GPS-RO carrier-phase measurements on two GPS
frequencies, since it is well known that the vertical separation between the paths of
Ly and L, signals in the GPS-RO profile can reach up to 500 m (Engeln,
priv. com.). In the case of GPS-RO carrier-phase measurements, such significant
bending leads to difficulties in forming the ionosphere-free linear combination in
order to completely remove the first-order ionosphere effect. The error created when
forming such a dual-frequency ionosphere-free GPS-RO observable can easily be
above the noise level of the alternative single-frequency approach. Therefore, the
single-frequency approach described above is an attractive alternative to the stan-
dard GPS-RO strategy, especially in the light of possible future GNSS signals,
considering other applications in GNSS radio-occultation and GNSS reflectometry,
providing code measurements at frequencies outside the conventional L-band and
under different tracking conditions.
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11.5 Pre-processing and Synchronization
of Single-Frequency GPS Data

A disadvantage of the LP linear combination lies in the data pre-processing, since in
the case of single-frequency GPS receivers, pre-processing has to be performed
without the second GPS frequency. The pre-processing approach, as implemented
in the Bernese GNSS software for undifferenced dual-frequency carrier-phase
measurements, is based on the estimation of position differences and one clock
parameter between subsequent epochs, (see Svehla and Rothacher 2003b).
Considering the relatively high sampling rate of carrier-phase measurements
compared to the changes in the ionospheric TEC, it can be shown that phase
cycle-slips can be reliably detected by looking at the differences between successive
epochs. Thus the same algorithm used to pre-process carrier-phase measurements
could be used to pre-process single-frequency measurements. When dual-frequency
data are processed as single-frequency, the pre-processing can be performed at the
dual-frequency level using the ionosphere-free linear combination and the afore-
mentioned algorithm used in the Bernese GNSS software.

When GPS measurements are provided at high sampling rates (e.g., 30 s), the
following linear combination could be employed utilizing epoch-wise differencing
between consecutive epochs # | and #

LiEO,i(tlI:+l) = Lygo it 1)=Ligo, () = [PiEo(fH 1) — szO(tk)}
+ {Ion,i(lH 1) — Ion,f(tk)] + [edtLeo(tiy 1) — cotreo(t)]

(11.11)

PZEO,;‘(’/E+ = Prioi(tes1)=Prpo;(tk) = {ﬂon(tH 1) — Pon(fk)]
~ [Baoutis1) = o (1)) + [edtizoltes 1) = cdteo(t)

(11.12)

Large clock variations from epoch-to-epoch can further be detected and elimi-
nated by forming differences between two GPS satellites s and r tracked at the same
epoch

L;,EO,[(ZIIE+1) - LZEO,[(I]I§+1) = [ﬂiEo(tlliﬂ) - pZEO(lI]§+1)] + MEO,[(’/IEH) - [lr,EO,i(l]1§+l)]

(11.13)

Piod(tE"") = Plao,(t ) = [ho (™) = o] = [Raou (1) = Tigo ()]

(11.14)
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The advantage of this alternative pre-processing algorithm, is that the variation
of the ionosphere effect from epoch to epoch is smooth and small enough to detect
phase breaks between epochs. This approach could be combined with the estima-
tion of kinematic differences between successive epochs along an a priori
reduced-dynamic orbit as described above. The a priori LEO orbit needed for this
algorithm is obtained by making use of the single- or dual-frequency code mea-
surements and a relatively small number of orbit parameters (e.g., 6 Keplerian
parameters and 9 empirical accelerations per day). Variations in the ionospheric
delay from epoch to epoch and relative orbit errors between subsequent epochs are
small enough to limit epoch-wise kinematic orbit differences. In this parameter
estimation, single-frequency L; phase measurements are used between two con-
secutive epochs and four parameters are estimated, including three kinematic
position differences and one clock parameter between two consecutive epochs.

In the case of dual-frequency GPS data, the ionosphere-free linear combination
of code measurements is used to obtain a priori LEO positions and to approximately
synchronize LEO measurements to GPS time. For single-frequency GPS data,
receiver clock synchronization of raw phase and code measurements can only be
performed by means of the single-frequency code measurements fully affected by
ionosphere effects. The use of IGS ionosphere maps corrected for the LEO altitude
could be used to further improve this procedure.

In the case of dual-frequency GPS receivers, the synchronization of the GPS
receiver time to the GPS time scale is limited by the noise of code measurements
and the a priori orbit errors. For a maximum orbit error of e.g., 1 cm and a velocity
of the LEO satellite of about 7.7 km/s, synchronization could be carried out with an
accuracy below 1.3 ps, if code measurements of similar quality were available

0.0l m

o0 s~ 13 ks (11.15)

This corresponds to about 400 m in terms of the code error. If we now consider
total electron content (TEC) above the LEO satellite to be very extreme, reaching
about 200 TECU (TEC Units, 1 TECU = 10'® electrons per m?) in the vertical
direction (VTEC), the maximum ionospheric error reads as

1 403
Iipo = GnE 2 VTEC (11.16)

which at an elevation of E = 10° is about 330 m. We see that such an error is below
the synchronization error of 400 m. Generally speaking, even during the solar
maximum, and under very extreme ionospheric conditions, the a priori synchro-
nization of the receiver clock can be performed with sufficient accuracy without
using any a priori ionosphere model.
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Chapter 12 )
Absolute Code Biases Based et
on the Ambiguity-Free Linear
Combination—DCBs Without TEC

Absolute code biases and associated DCBs determined using absolute code biases
are called “absolute” because they do not require TEC information to estimate them
and are defined against the IGS Clock Convention (“P3 clocks™).

Differential code biases (DCBs) are typically determined by co-estimating the
first-order ionosphere effect using the geometry-free linear combination of code
measurements from two different GNSS frequencies. We develop ambiguity-free
linear combinations based on the dual- or triple-frequency GPS carrier-phase and
code measurements on only one GPS frequency. In this way, we can estimate code
biases on a single GPS frequency. Since the datum of the GPS satellite clock
corrections is defined by the ionosphere-free linear combination of the P-code
measurements on L; and L, we can estimate these single-frequency code biases as
“absolute biases” using the geometry-free approach. Our ambiguity-free linear
combination removes single-frequency ambiguities, but it requires the estimation of
one wide-lane ambiguity with a very long wavelength, a wavelength that is sig-
nificantly greater than the size of the code biases. In addition, by forming
single-differences between two GNSS satellites using measurements from one
station, one can separate satellite-based from station-based code biases. We show
the relationship between the code biases and the narrow-lane biases in the
Melbourne-Wiibbena linear combination and DCBs. The same approach is exten-
ded to other multi-GNSS code observables.

Absolute code biases defined for single-frequency observables can be used to
combine carrier-phase and code measurements consistently in a multi-GNSS
environment and to define carrier-phase ambiguities and ionospheric effects in an
“absolute sense”. Absolute code biases can provide a datum for estimated global
ionosphere maps and for all calibration of multi-GNSS code measurements (e.g.,
group delays). We show here absolute code bias in P; and Cs code GPS mea-
surements on L; and Ls carrier-phases and present calibration of “s-ambiguities
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associated with Ls. We discuss absolute code biases in the light of the S-curve bias
and group delay variation maps for GNSS satellites. We show how, by introducing
absolute code biases, we can consistently define a datum for GNSS satellite clock
parameters and ionosphere maps in a multi-frequency GNSS environment. Galileo
and future GNSS will introduce wide-band signals that will lead to low code noise
(in the cm-range). Specifically, the Galileo ES wide-band signal (nominal band-
width of 51.15 MHz) and the AItBOC modulation will offer code noise at cm-level.
The same approach could be applied to Galileo using wide-band signals as refer-
ence signals to determined absolute code biases.

12.1 Definition of Absolute Code Biases in the Light
of Multi-GNSS Data

In the case of the positive code-phase linear combination, any bias in the GPS
satellite clock parameters or any satellite/receiver code biases are absorbed by the
estimated carrier-phase ambiguities. By definition, GPS satellite clock parameters
provided by the IGS are based on the standard ionosphere-free linear combination
of P code measurements on both GPS carrier-frequencies (L; and L,). The use of
any other code observable (e.g., C/A, L2C code) or linear combination (e.g.,
Melbourne-Wiibbena), requires a consistent handling of the code biases. At the
moment, only relative or so-called differential code biases (DCBs) are used by the
IGS for GPS satellites, relating two code observables at a given time and fulfilling
the zero-mean condition over all GPS satellites in the constellation. By forming the
negative code-phase linear combination, one can measure the first-order ionosphere
effect. However, even by knowing the absolute values for carrier-phase ambiguities,
we will not be able to define a datum for ionosphere measurements in an absolute
sense. This is because DCBs are always defined between two different code
observables and the absolute single-frequency biases have not yet been considered
by the IGS. Therefore, in the light of multi-frequency GNSS there is a need to
introduce absolute code biases, defined separately for each code observable relative
to the corresponding carrier-phase on the same frequency.

The LP linear combination (“Positive Code-Phase”) of phase L; and code P;
measurements on the carrier-frequency i is defined as (Svehla and Rothacher 2003,
2005) (for more information see Chap. 11)

1
LP; :=

;=5 (Pt L) (12.1)
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The observation equation for the LP linear combination including the absolute
code bias AB; is then

LP,=p+ %/liN[ + cot — cot’ + %ABi +&(LP;) (12.2)
with the geometry term p, and the satellite and receiver clock parameters cdt and
cor’. The wavelength of the LP linear combination is half that of the original
wavelength 4; and the noise ¢(LP;) is half that of the original code noise. If we look
at the difference between any two associated code and carrier-phase measurements
on the carrier frequencies i, j and k we obtain the following two possibilities

1, 1 1
LP; — LP; = 3 (2 — 4;)N; + EijNW W+ 5 (AB; — AB;) +¢(LP; — LP;)
1 1 1
LP; —LP, =3 (2 — Z)Ni + E),kNWU’k) +3 (AB; — ABy) + &(LP; — LPy)

(12.3)

where Ny ;) = N; — N; and where the third term represents the relative differential
code bias between two frequencies

DCB;; := AB; — AB, (12.4)

From the reference absolute bias, e.g., on the first frequency AB;, we can esti-
mate any other absolute bias

AB. = AB;+ DCB,; (12.5)

12.2 Absolute Code Biases Based and the Ambiguity-Free
Linear Combination

Let us first define the ambiguity-free linear combination AF" with only one code
observable at a given time. For this, we make use of the LP linear combination
(12.2) and the ionosphere-free linear combination L; of two carrier-phase mea-
surements L; and L,

AFy =1L +1YLP, (12.6)
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(12.6) only contains absolute code bias on the P; code measurement, see (12.2).

The geometry-preserving condition for the multiplication factors Klff and Kgf is then
as follows

K i =1 (12.7)

For the first time, we introduce here an ambiguity-free condition that for
ambiguity N; on L; carrier-phase is defined as

: v
K‘ff;w+x§f71 =0 (12.8)

where Ay = ¢/(fi +/>) denotes the narrow-lane wavelength of narrow-lane ambi-
guity in the ionosphere-free linear combination L3 with the two GPS frequencies f;
and f>. The 4;/2 is the wavelength of the L; ambiguity in the LP; linear combi-
nation. The basic idea of the ambiguity-free condition (12.8) is to eliminate the N;
ambiguity that appears both in the ionosphere-free L; and the LP; linear
combination

1P 5
2 5L — 25 2
f1 _fz fl _fz
1 1 1 !
LPI :E(Ll +P1) = p+ EAINI + EABI +C5t_ C&fs

, 1, , ;
3 = Lz=p+ANN1+E(/Lw—/LN)Nw+C(3[—C5l‘

(12.9)

where AB; is the absolute code bias on P;. In a similar way, in order to obtain the
AB;, the absolute code bias on P,, we need to eliminate the N; ambiguity that
appears both in the ionosphere-free L3 and the LP, linear combination
ft 5 : [P
L, — L2:p+/LNN1+—(/wa/LN)Nw+C52‘7€5IJ
=" F-F£ 2

1 1 1 1
LP, :E(Lg —I—Pz) =p+ EAQNI —EigNw—i- EABZ + cot — cot’

Ly =

(12.10)

For the ABs, the absolute code bias on code measurements on Ls carrier-phase,
denoted here as Cs, we use the following two linear combinations

1 5
Ly = L —
S

1 1 1 1
LPs :E(LS +GCs)=p+ 5)»51\’1 - EXSNW(LS) + EABS + ot — cot’

1
L, = p+/L,NN1 + E(iw — ;LN)NW+C5I —cor

(12.11)
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where Ny (1 5y = N — Ns. The ambiguity-free condition (12.8) is fulfilled as long as
the wide-lane ambiguities Ny = N; — N, are fixed in the ionosphere-free linear
combination, i.e., all ambiguities are aligned to each other so that Ny = N, using
e.g., the Melbourne-Wiibbena linear combination. After solving (12.8) and (12.7)
for the multiplication factors of the ambiguity-free linear combination in (12.6) we
obtain

A _hth o _

= , K 12.12
1 fl 7]02 2 f‘l f2 ( )
or ambiguity-free linear combination
c-h S
AF, =p — Ny + AB) + cot — cof (12.13)
(fi =) fi—h
where the wide-lane ambiguity is associated with a long wavelength of
Pl 3um. (12.14)
C(h-h)

We can also write the ambiguity-free linear combination (12.6) for other code
measurements and frequencies. For LP, = (L, + P,)/2 we obtain

AF; = Kk 12 )L3 +K 20 LP2 (12.15)
with
2
o hth g 2 (12.16)
@ fi—f 227 - f
or
c-fi f
AF, = p+ Nw — AB; + cot — ¢of (12.17)
(h —f)° fi—hf
where the wide-lane ambiguity is associated with a long wavelength of
e 390m (12.18)
(i — 2)

and for LPs = (Ls + Cs)/2 and ionosphere-free linear combination L3

AFs := K5 Ly + 1¢5/5 LPs (12.19)
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with

o _  Sith o 2fs

KI(S) - 2f5 _fl _fza KZ(S) = 2].5 —fl ——f2 (1220)
or

¢ 2
AFs=p— : N
ST
¢ B A+ cot—cor (12.21)

BT T G Ry

According to the IGS convention, GNSS satellite clock parameters are defined
by the ionosphere-free linear combination L3 of the two carrier-phase measurements
Ly and L,, and the ionosphere-free linear combination P; of the two code mea-
surements P; and P,. The use of any other code observable requires the intro-
duction of differential code biases. Any bias in those two code observables will
move into a clock parameter, or, in other words, by convention ionosphere-free
linear combination P3 does not contain any code bias, thus one can define code
biases in an absolute way. This also means that any absolute bias in P; or P, would
need to be defined in terms of the P; observable. Therefore, in the next step we
define the geometry-free form of the ambiguity-free linear combination (12.6)

of
AF, == AF| — Py = k¥ Ly + kY LP| — Py = %ABI. (12.22)

From (12.22) we may calculate the absolute bias AB; on the P; code mea-
surements using the absolute bias linear combination defined as

_h-p

2
AB] :_af(AFl —P3) (AF] —P3) (1223)
Ky 1
or
c-f f, 2 h—-Fh
AB1 —7NW :ABl _*/LWNW = T(AFI —P3) :7(AF1 —P3)
hlh = £) h kY fi
(12.24)
where the wide-lane ambiguity Ny is associated with the wavelength of
¢k By s 067m (12.25)

(hi—fH) A
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and the wide-lane wavelength 1w = ¢/(fi — f2). Assuming that ¢(P;) = o(P,), for
the noise level of the estimated absolute bias AB;, we may write

o(ABy) ~ % - (P1) ~ 0.78 - o(Py) (12.26)

For code observables on the second GPS frequency we may write

AB, := aif(AF2 —Py) = =k (AF, — P3) (12.27)
K5) f
or
c-fi fi, 2
ABy — ——1__Ny = AB, —— = AF, —
b fH(f —fz)NW b szWNW K;{z)( Fa=Ps)
N Bt (AF, — P3) (12.28)
e

where the wide-lane ambiguity Ny is associated with the wavelength of

_eh N i (12.29)

(i — f2) f

Assuming that 6(P;) = a(P,), for the noise level of the estimated absolute bias
AB, we get

o(AB)) %? Co(P1) ~ 1.28- 6(Py) (12.30)
1

and for the third GPS frequency

2 2fs —fi —
ABs ::a—f(AFS — Pg) = W(AFS —P3) (1231)
K(s) s
or
c-f c 2 s —fi —fa
ABs — ———=Nw — —N, =—(AFs — P3) =——(AF5 — P
STRG A TRV K;)ES)( 5 — P3) % (AFs — P3)

(12.32)
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or
) 2 2fs —fi —
ABs JEAWNW — AsNwqs) = —— (AFs — P3) = BNk (AFs — P3)
fs Ks) fs
(12.33)
where the wide-lane ambiguity Ny is associated with the wavelength of
c-fr _h
——————=—ZAy =~ —090m 12.34
A=) R (1239
and assuming that o(P;) = o(P;) ~ ¢(Cs), with the noise level
o(ABs) ~ ] ﬂ}z =5 o(Py) =~ 138 - a(Py) (12.35)

Let us now remove wide-lane ambiguity in (12.24) and (12.28) with the fol-
lowing ambiguity-free condition

o2 i
+1)— =0, K + Ky =1 (12.36)
f 2‘f2 1 2
from which we can derive the following multiplication factors k) and x4
f12 ) f2
Ky = = K, K = — (12.37)
LR-B VRS

which are equal to the multiplication factors of the ionosphere-free linear combi-
nations of k; and x,. Since the ionosphere-free linear combination of P, and P,
code is by convention free of biases we obtain

K]ivABl + KEVABQ = K1AB| + K2AB, =0 (1238)

from which it follows that the relationship between absolute code biases and dif-
ferential code bias DCBp, p,

2 2
ABzzfiABl — AB, = -— _f 2 (AB; — AB,) = — f2

= DCB
72 -7 =g

(12.39)
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If we now subtract (12.24) and (12.28) we derive

=5
fifa

2 2
h fZAWNW_

AB, — AB, + #h ;
1

AwNw = DCBp, p, +

h szFH—f LYy
f

(12.40)

Let us now estimate wide-lane ambiguity Ny in (12.24), (12.28) and (12.33).
For this we use the following two ionosphere-free linear combinations (omitting the
receiver/satellite clock parameters)

1, ,
Ly =p+ AN + E(AW — n)Nw
(12.41)

L,
Ly’ =p+ IN@5) N1 — Zns) Nw + 3 (Aw(s) — Anes)) Nwes)

In order to eliminate the N; ambiguity we use the following ambiguity-free and
geometry-free condition

K I+ & dnas) =0, K i =1 (12.42)
from which we obtain the multiplication factors

~7.02 kY= SN v - B

= Ines)  fi—fs

A —/N(25) _h+th
! AN = Ines) =S

(12.43)

For more on this linear combination we refer to Sect. 22. Finally, for this
ambiguity-free linear combination we derive

ngf* — af*L + af*L
af x af'*
K af x K
=p+ 17 (w — 2y) — & in2s) | Nw + % (Aw(s) — *n2s)) Nwes)

(12.44)
with the wavelengths of wide-lane ambiguities that are relatively very long, i.e.,

2 :"I—UW—;LN)—K2 Inps ~3.40m

raf*

(12.45)
Aw W(2,5) — ()\-W(Z,S) - /LN(2’5)) ~ —17.28 m
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In a similar way, we can eliminate wide-lane ambiguity by combining (12.13)
with (12.44)

_cfh K e =, Kk =1 (12.46)

(fi —p)
with
K 2053, k¥ ~047 (12.47)

and (12.17) with (12.44), using the following ambiguity-free and geometry-free
condition

C ﬁ f*** + K 2 ***)vaf* — 07 f*** 4

] 12.48
(f] —fz) w 2 ( )

with
K = —6.80, Kk =7.80 (12.49)

After removing the geometry term by subtracting P; we obtain

* ok Sk % Sk fl Sk %
AF = &/ AF + kLY — Py =1 TR+ S s Nwes)
(12.50)
and
AF* _ Kclzf***AF +Kaf***Laj"* —P3 _ Kzllf***fl f%f AB +Kaf>s<>k>k af;k )NW(Z )

(12.51)

that give

AB, =f1a;*? (kAR L = Py ) = kil Nwes| (1252)
K?l 1

AB, = — hi—Ff [(K?f***AFz +Kgf***L§f* . P3> B K;f***ﬂaf? )NW(Z 5):| (1253)

Kzlzf***
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and finally
B, =11 af**szF* 2 Niyas) (12.54)
il
AB, = faf***fz AF; + 7 Nyyas) (12.55)
K

1

with the wavelengths 24" and J4F" of the wide-lane ambiguity Ny(25)
AP~ 341 m (12.56)
AT~ 562 m (12.57)

Assuming that 6(P,) ~ o(P,), the noise levels are

o(AB)) = 1/0.06262(Py) + 0.65262(P;) ~ 0.65 - 6(P5) ~ 0.65 - ¢(P) (12.58)

0(ABy) ~ \/1.06262(P;) +0.1126%(P,) =~ 1.07 - a(P)) (12.59)

It is interesting to note that the noise level of AB; is mainly driven by o(P;),
whereas the noise level of AB, by a(P;). Closer look at (12.56) and (12.55), in
addition to noise level (12.59) confirms the scaling factor AB, = f2/f?AB) in
(12.39).

Another approach to estimate AB; is to subtract (12.17) and (12.44)

af* C- a * af
AF, — LY = <—f‘)2 4 )NW 2 s Nwas) — (12.60)

h—r

Inserting AB, = f7 /f;AB; we derive

f
h—rH

fZ(fl _f2) af* ¢ 'f2 af* af*
AB, = —7f12 AF, — L7 + 71 (f] —fz) — A‘W Ny + AW<215)NW(275)
(12.61)

12.3 Absolute Code Biases and Melbourne-Wiibbena
Linear Combination

Since our ambiguity-free linear combination (12.22) is geometry-free, there must be
a direct relation to the wide-lane biases in the Melbourne-Wiibbena linear
combination
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bi H fi f
Apb TRl GEh T iRt
(12.62)

MW],Q = ;LWNW = LW — PN =

that is also both geometry-free and ionosphere-free. In (12.62) Ly and Py represent
the wide-lane and narrow-lane linear combinations of the carrier-phase and code
measurements respectively, while Ny is the wide-lane ambiguity and Ay =
¢/(fi —f2) the wide-lane wavelength. In contrast to the ionosphere-free linear
combination P3, the Melbourne-Wiibbena linear combination is in general, by
convention, not free of biases. Therefore, in (12.62) we need to introduce the
narrow-lane bias denoted as Jy

MWi5 = Lw — Py = AwNw + dn (12.63)

We will see later that the wide-lane biases can be removed by forming
track-to-track ambiguities (pass-to-pass ambiguities) between consecutive tracking
passes at the zero-difference level which can then be removed by forming
double-differences. However, this is not the case for the ambiguity resolution of
wide-lane ambiguities using zero-difference measurements. By estimating absolute
code bias, wide-lane biases can be adequately dealt with for all GNSS code
observables in a multi-frequency GNSS environment. It can be shown that the
following relation exists between our geometry-free form (12.22) of the
ambiguity-free linear combination AF and the Melbourne-Wiibbena linear combi-
nation (12.62)

MW]72 = —

fl;zfzﬁl (12.64)

fl;fzﬁz (12.65)

1

MW, =

From (12.64) and (12.65) it follows that absolute code biases can be calculated
directly from the narrow-lane biases dy

S
o 12.66
7o ( )

AB,(P)) = AB, = -2
1

ABy(Py) = AB, = =6y (12.67)
J2

Since GNSS satellite clock data provided by the IGS refer, by convention, to the
ionosphere-free linear combination P3, following our expression for the absolute
code biases (12.66) and (12.67) we may write
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AB,(P,) :fc—leBl(Pl) (12.68)
2

Therefore, we can calculate differential-code bias directly from the narrow-lane
bias

DCBp, p, = ABp, — ABp, = — A Sy + % Sy (12.69)

from which we may derive the following relation between the differential-code bias
and the narrow-lane bias

2
DCBp, p, _fioh S (12.70)

itg

This also means that for a given differential-code bias, one can calculate the
narrow-lane bias

oy = szfz > DCBp, p, (12.71)
It =1
and for the absolute code biases we finally obtain
g -
AB\(P1) = AB, = — 5~ DCBp, p, (12.72)
i =f
g IT
AB,(P;) = AB, = — ——DCBp, p, (12.73)
=5

Similar relations can be derived for the Melbourne-Wiibbena linear combination
MW, 5 for code and carrier-phase measurements on f and f5 frequencies as

MW, s = —fljjsfjﬁs(m) (12.74)

where AF ; is the ambiguity-free linear combination defined relative to the
ionosphere-free code P3(; )

S of o Kgf

AFS = AF5 — P3(1’5> = K L3(|~5) + Ky LP5 - P3(1,5) = 7AB] (1275)

ABI(I,S)(PI) :ABI(I‘S) = —;—?51\/(1_’5) (1276)
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As mentioned before, Galileo and future GNSS will introduce wide-band signals
with low code noise (in the cm-range). The Galileo E5 wide-band signal (nominal
bandwidth 51.15 MHz) and the AItBOC modulation will offer code noise at
cm-level. However, this is not the case for its subcarriers E5Sa and ESb. Therefore,
the same approach could be applied to Galileo using the ES signal as a reference
observable to derive absolute code biases.

12.4 Estimation of DCBs and Absolute Code Biases

In order to demonstrate this new approach, Fig. 12.1 shows the absolute code biases
on P, for satellites of the GPS constellation from the station ZIMJ over a period of
11 days, using dual- and triple-frequency GPS measurements. The triple-frequency
ambiguity-free linear combination offers a very long wavelength of 3.41 m (12.56).
Figure 12.1 show that the noise level over 11 days is ¢ = £0.065 m without any
elevation-dependent weighting and wind-up effect applied. An additional effect, the
apparent clock variations, was reported for the third GPS frequency f5, see
(Montenbruck et al. 2012) that could affect the code measurements on the third GPS
frequency. For comparison, the noise of the dual-frequency code biases is
o = £0.027 m, as can be seen in Fig. 12.1. It is very interesting to note that the
estimated code ambiguities are very stable and show similar fractional parts over
those 11 days. Hoverer, when longer data sets are processed, such as the 21 days in
Fig. 12.2, one can see that triple-frequency solution shows the ' carrier-phase
ambiguities typically associated with the Ls carrier-phase measurements and

Daily Absolute Code Biases for P1 (Fractional Parts) from ZIMJ (190-200/2015)
T T
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Fig. 12.1 Daily estimates of P; absolute code biases (11 days) for GPS constellation from ZIMJ
station. One can see a very low noise of ¢ = £0.027 m for the two-frequency solution and for the
triple-frequency solution with wavelengths of 0.67 m and 3.41 m respectively
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Daily Absolute Code Biases for P1 (Fractional Parts) from ZIMJ (190-210/2015)
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Fig. 12.2 Daily estimates of absolute code biases (21 days) for GPS constellation from ZIMJ
station (Javad). Over a longer period of time, one can see Y4 carrier-phase ambiguities due to f5 that
give a code bias of about 0.85 cm

Javad GPS receiver (Javad TRE_G3TH Delta3.4.9). One quarter of the
3.41-m-wavelength gives a code bias of about 0.85 cm. From this, we can draw the
conclusion that resolution of code biases could also be used to detect the Yi-
ambiguities associated with carrier-phase measurements.

About 10 satellites in the GPS constellation currently transmit on three, rather
than two, GPS frequencies. This opens the opportunity of comparing the estimation
of absolute code biases using the two GPS frequency AB;(Li,L;) with the
triple-frequency solution AB; (L, L,, Ls) of higher wavelength. Figure 12.3 shows
the resolution of dual-frequency solution against the triple-frequency solution.

The advantage of such a “fixed” dual-frequency solution is the lower noise level
(about 50% lower than that of the triple-frequency solution, see Fig. 12.1). For the
remaining satellites in the GPS constellation with dual-frequency GPS measure-
ments only, we averaged the fractional code biases in Fig. 12.1.

In step 3, from the estimated absolute code biases in Fig. 12.3 we derived
differential-code biases (DCBs) using (12.72). Due to the multiplication factor in
(12.72), the wavelength of 3.41 m is reduced to 2.21 m. and the wavelength of 0.67
to 0.43 m for the dual-frequency code biases. Figure 12.4 shows that the estimated
DCBs are very close to each other within the same GPS BLOCK. This is more
visible in Fig. 12.5 where the mean DCB is calculated for every GPS BLOCK and
subtracted from the individual DCB value for every GPS satellite. From Fig. 12.5,
one can draw the conclusion that estimated DCB values are within a wavelength of
0.43 m for all satellites in the GPS constellation. A closer look at Fig. 12.4 shows
that values for all GPS BLOCK IIF satellites with the third GPS frequency are
centered at about —2.21 m.
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AB1 in [m]
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Step 1: Resolution of Two- Against Triple-Frequency Code Biases

2+

® Code Bias Triple-Frequency (BLOCK lIR-M)| |
® Code Bias Two-Frequency (BLOCK IIR-M) |
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Fig. 12.3 Step 2: Resolution of absolute code biases AB; (L, L,) with carrier-phase Ls benefitting
from the large wavelength of 3.41 m. Code biases with triple-frequency linear combination are
used as a reference for the two-frequency data. We can see that for one satellite, out of 10 satellites
in the GPS constellation, the wavelength was fixed incorrectly by 0.67 m. Elevation dependent
weighting and wind-up effect were not used
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Fig. 12.4 Step 3: Estimation of DCBs based on absolute code biases AB;(L;,L;) and
AB;(Ly,L,,Ls). Note that DCBs between GPS satellites within the same GPS BLOCK are very

small
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Fig. 12.5 Step 3: DCBs between GPS BLOCKSs are small: GPS BLOCK II-A/IIR-A/IIR-B/IIR-M

Figure 12.6 shows DCBs from Fig. 12.5, estimated by making use of the
absolute code biases, in comparison with the DCBs provided by the CODE
Analysis Center. The difference is also displayed in Fig. 12.7, where a mean DCB
value (per GPS BLOCK) is subtracted from the single satellite DCB solution. It
should be noted that CODE DCBs are based on the two zero-mean conditions,
separately applied for the DCBs of GPS satellites and ground receivers, con-
straining in this way the DCBs for all satellites and receivers to the zero value. In
the same way as the GPS satellite clock parameters provided by IGS are referenced
to a reference clock in the ground IGS network, our estimates of DCBs values are
solely based on the ZIMJ ground station. However, the overall agreement with the
DCB values provided by the CODE AC is very good for such a limited data set of
only 11 days. From this we can draw the conclusion that the approach presented for
deriving absolute code biases offers relatively low noise and a resolution of code
biases that can be used in the next step in calculating DCB values. Generally
speaking, one can identify three applications of the approach associated with the
dual- and triple-frequency GPS data:

e estimation of wide-lane ambiguities (two- and triple-frequency)
e detection of “4-ambiguities
e resolution of absolute code biases and DCBs.
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CODE Analysis Center. One can see a good overall agreement for dual- and triple-frequency
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Fig. 12.7 CODE DCBs versus DCBs based on the absolute code biases (mean DCB removed)

12.5 Consistent Datum Definition for GNSS Clock
Parameters and Ionosphere Maps

So far we have used the ambiguity-free linear combination (12.22) to derive a
geometry-free definition of absolute code biases in terms of the ionosphere-free
linear combination of P; and P, code GPS measurements. However, in the
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multi-frequency GNSS environment, it would be interesting to estimate GNSS
clock parameters based on all carrier-phase measurements, since all forms of error
in carrier-phase and code measurements would be averaged over a range of different
frequency bands and signal modulations. This is particularly true for the GPS
“apparent clock variations” in the case of carrier-phase on a different frequency and
different multipath sensitivity in the case of code measurements on several fre-
quencies. It was reported in (Montenbruck et al. 2012) that small delays can be
noticed between carrier-phase on different GNSS frequencies. For Galileo, such a
thermal delay or internal multipath delay will be negligible. However,
ionosphere-free carrier-phase values obtained by averaging measurements over
several frequencies will always be more accurate than a single ionosphere-free
carrier-phase measurement. In order to be consistent with the IGS convention for
GNSS clock parameters, we can always use absolute code biases from different
GNSS observables to transform GNSS clock parameters into the two-code mea-
surements used by IGS per convention. Based on (12.68), absolute code biases for
the ionosphere-free linear combination can be written as

AB I B R
3(P1, Pr) = 7 szBl(P1) ey szBl(Pl) =0 (12.77)

that gives a zero bias for AB3(Py,P;):=0, as expected. For any other
two-frequency ionosphere-free linear combination, the ionosphere-free bias
AB3(P,‘,Pj) is

12 f

ABy(P Pi) = 5 AB(P) — szB() (12.78)
Ji j

Therefore, we may use the zero-bias condition (12.77) to estimate a
frequency-independent GNSS clock parameter that is consistent with the IGS
convention for GNSS satellite clock parameters. Relative code biases between
different observables on the same GNSS frequency can be measured directly.

For a permanent GNSS network, such as that of IGS, track-to-track ambiguities
(integer ambiguities between consecutive tracking passes) can be estimated or fixed
to their integer values over longer periods of time. After resolving track-to-track
ambiguities for a given station and a given GNSS satellite, there remains only one
carrier-phase ambiguity to be estimated over several days, weeks or even months.
Since absolute code biases are removed by forming track-to-track ambiguities, we
can establish a consistent datum to define GNSS satellite clock parameters and
absolute code biases. The only possible ambiguity that could arise in this datum
definition is the size of the wide-lane ambiguity in (12.23). The size of the
wide-lane ambiguity for GPS is around 86 cm or 5.86 cm for the super-wide-lane,
and so can easily be detected by a ground H-maser or GNSS satellite clock. From
this, we may draw the conclusion that the ambiguity-free linear combination can be
used to define a geometry-free datum for GNSS satellite clock parameters that is
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consistent with the IGS definition of clock parameters and at the same time is
absolute in nature. For the evolution of ground TEC maps over longer periods of
time, such a datum definition will provide long-term TEC stability and at the same
time can be used to give consistency to any time/frequency transfer over long
periods. Moreover, absolute code biases provide a framework for combining all
multi-GNSS observables.

12.6 S-Curve Bias and Group Delay Variations

There are several other justifications for the use of absolute code biases in the
multi-frequency GNSS, such as code-carrier coherency, S-curve bias and related
code-offset delay variations. Code measurements need to be coherent with the
carrier-phase for both the satellite and the ground receiver. Any synchronization
offset between code and carrier-phase will introduce an additional carrier-phase
bias. Such a bias should be constant and satellite-specific. It has been noticed that
some GPS receivers in the IGS network sporadically experience so-called
“ms-jumps”, i.e., the code measurements do not have the same receiver time as
the carrier-phase measurements. However, for GPS satellites any delay can be
considered as constant bias and is driven by the analog technology of the satellite
electronics causing different delays between code and carrier-phase. These delays
can be measured and monitored by phasemeters on board the GNSS satellite. They
can also be partially reduced in a relative sense by applying information on group
delay variations provided in the navigation message.

The S-curve bias is an effect that can be measured by a GPS receiver connected
to a high-gain antenna (e.g., the size of a VLBI antenna). The very large size of
such a GPS antenna reduces the thermal noise of the tracked GPS signal and offers
code measurements with sub-cm precision. If the GPS signal is sampled with such
an antenna in the open-loop mode or if several GPS receivers are connected to this
antenna with different correlator spacing (narrow-band correlator to wide-bands
with long integration time), one can observe a bias as a function of the correlator
spacing. This S-curve bias effect can also be seen if the group delay pattern of the
GPS satellite transmitter is estimated using GPS receivers with different correlator
spacing, since results will be biased to each other. This is also one of the reasons
why so far no reliable maps of group delay variations for GPS satellites have been
provided by the IGS, as GPS receivers based on different correlator spacing will
give slightly different results.

One can show that when different GPS satellites are compared, S-curve bias
effects can easily reach 1.5-2.5 ns for C/A and P code with differences in the order
of 0.5 ns between different GPS satellites. The related code-offset delay variations
could easily reach 0.5-1.0 ns between different GPS satellites. These variations in
the absolute code biases between different GPS satellites and receivers play a very
important role in the definition of the IGS time scale, especially on a day-to-day
basis. It is well known that the daily solutions of the GPS satellite clock parameters
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are biased by about 1 ns when the common clock parameter at day-boundary is
compared.

The best way forward to calibrate code measurements for different GNSS
receiver classes and to estimate group delay variation maps for GNSS satellites is to
use a high-gain ground GNSS antenna. Such an antenna should be as large as
possible, i.e. at least as the VLBI antenna, in order to reduce thermal noise and
should be connected to several different GNSS receivers with different correlator
spacing (narrow- to wide-bands with longer integration time).
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Chapter 13 M)
LEO Near-Field Multipath and Antenna ki
Effects

In an internal technical note (Svehla and Rothacher 2004b), it was suggested to the
GOCE Project Office in ESA that a study be conducted on the effect of the near-field
multipath on a POD antenna due to the structural environment of the GOCE satellite
itself. The idea was that by performing an absolute calibration of the GOCE antenna,
with and without a mock-up (solar panel wing), the near-field multipath effect could
be described as the difference between the two estimated PCV maps. In the case of
near-field multipath, the total antenna PCV correction can be defined as the sum of
the nominal antenna PCV map and the antenna map resulting from the near-field
multipath. This section studies multipath effects originating from the satellite
environment and the impact of GPS antenna calibration on orbit determination of
LEO satellites. It is shown that near-field multipath has a very strong effect on the
kinematic POD of a LEO satellite using carrier-phase measurements. At the end of
this section, a near-field multipath calibration method is proposed and then discussed
for GNSS satellites.

13.1 Near-Field Multipath Onboard LEO Satellite

Multipath is one of the main factors limiting the positioning accuracy of GNSS. For
carrier-phase measurements, its theoretical maximum is a quarter of the carrier
wavelength, or about 4.8 cm for L-band frequencies. For pseudo-range measure-
ments, the situation is significantly worse and the theoretical maximum effect is half
the code chip length, i.e., for P code measurements it is about 15 m and for C/
A code up to 150 m when the reflected/direct signal amplitude ratio is 1. Several
authors have reported measured multipath on P code pseudo-ranges between 1.3 m,
in a benign environment, and 4 to 5 m in a highly reflective environment, (for more
see (Langley 1998)). For C/A code, values that are up to one order of magnitude
larger may be expected. Generally speaking, multipath can be to a great extent
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mitigated by the GPS receiver’s multipath mitigation techniques and by a
choke-ring antenna.

There is a principal difference between the multipath of a ground GPS antenna
and that of a GPS antenna on board a satellite. A LEO antenna is less affected by the
far-field reflectors and the main multipath driver on board a LEO satellite is the
near-field antenna environment and solar panels. Other payloads in the vicinity can
also interfere with the POD antenna, e.g., a radio-occultation antenna placed close
to the POD antenna, as is the case with the CHAMP satellite (cross-talk). By tuning
tracking loops and optimizing multipath mitigation techniques within the space-
borne GPS receiver, multipath can be minimized to a large extent. In the case of
geodetic satellite missions with the highest POD requirements, it is important to
ensure that there is a flat surface and a clear horizon surrounding the GPS antenna.
The possible impact of the satellite surface rims on the GPS signal, as in the case of
the CHAMP satellite, was pointed out by (Isler, priv. com.) and confirmed using
GPS data as shown in Fig. 13.6 later in this section. In some cases, the GPS
receiver itself can be a multipath generator. With the four Septentrio Polarex GPS
receivers connected to the same GPS antenna and external Cs-frequency standard,
we noticed that single-differences formed between different receivers show sig-
nificant differences of up to 1.5 cm on the second GPS frequency. The first
explanation offered for this multipath-like effect was that it was due to the front-end
of the receiver (Simsky, priv. com.). However, the signal splitters of the antenna
cable has also been put forward as a possible cause of this effect (Petit, priv. com.).
That a GPS receiver itself can generate a multipath-like effect was also reported for
the IGOR GPS receiver (Montenbruck, priv. com.) on the TerraSAR mission.

It is known that multipath interference induced by reflecting objects in the very
close vicinity of GPS antennae (e.g., surfaces of pillars) as well as antenna imaging
effects and diffraction cause near-field effects on the GPS signal received, (see e.g.,
(Eldsegui et al. 1995)). Elésegui et al. (1995) reported that the part of the GPS
signal scattered from the surface of a pillar on which a GPS antenna is mounted
interferes with the direct signal. The error depends on the elevation angle of the
satellite, varies slowly with elevation angle and time and is not necessarily elimi-
nated by changing the antenna configuration and/or lengthening the baselines. It
introduces systematic errors at the centimetre-level in the estimates of all param-
eters including site coordinates and residual tropospheric propagation delays, see
(Elésegui et al. 1995). Although imaging and true multipath are similar phenomena
and are often simply called multipath, they are frequently distinguished from
scattering (Langley 1998). Multipath effects, when averaged over a longer time
period, will be considerably reduced for ground static positioning or
reduced-dynamic POD of LEO satellites. However, this is not true for imaging
effects, which, by definition, leave biases in the measurements, since the reflecting
object generates an image of the antenna and the effective antenna is a combination
of the nominal antenna and its image. Imaging effects for LEO satellites can easily
be demonstrated in the case of the Jason-1 satellite, where the GPS antenna is tilted
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towards the satellite body by about 45° and, together with the reflecting satellite
surface, generates a new antenna pattern. Looking at the calibrated Jason-1 antenna
map, see e.g., (Haines et al. 2004), one can easily recognize the satellite’s structure
in the derived antenna PCV maps.

The far-field multipath effects caused by reflecting objects located further away
from the GPS antenna tend to be much weaker compared to the signals reflected in
the vicinity of the antenna and can be to a greater extent reduced by the antenna
design and receiver mitigation methods. Despite the difference in amplitude, the
near-field and far-field multipath also have different periodic behavior. By means of
signal processing techniques, a GNSS receiver can mitigate the effect of multipath
when the multipath distance (the difference between the direct path and the indirect
path) is more than about 10 m. In cases where the antenna is mounted on a satellite
or a boom, the multipath distance is much shorter than 10 m and the multipath
cannot be mitigated significantly. A number of different receiver-tracking tech-
niques have been developed to mitigate multipath, e.g., using narrow correlators or
using multiple-correlator channels to estimate multipath. For more about multipath
mitigation techniques, especially those based on receiver-internal approaches such
as the narrow correlation technique, double delta correlator implementation and
Early/Late Slope (ELS) techniques we refer to (Irsigler 2008). The author also
discusses several other mitigation approaches, such as those based on arrays of
closely spaced antennae. It is demonstrated that carrier smoothing does not ensure
efficient multipath mitigation in any situation (Irsigler 2008). In the same source, a
new multipath monitoring approach is proposed based on multi-correlator obser-
vations. It allows instantaneous detection of multipath signals and can be used to
detect very weak multipath-affected observations (Irsigler 2008).

Near-field multipath, caused by the satellite structure in the vicinity of the
antenna or the satellite underneath the antenna, can be mitigated to a large extent by
choke-ring ground planes. A choke-ring ground plane consists of several concentric
thin rings around the antenna element in the center. The principal disadvantage of
the choke-ring design is that the radial spacing of the rings is related to the
wavelength of the GNSS signal and therefore the choke-ring can be tuned only for
one frequency at a time. This is the reason why a choke-ring antenna in a conical
form has been developed for different GNSS frequencies (Leica AR25 r.4),
although often incorrectly termed a “pyramid”.

In Svehla and Rothacher (2004b), it was suggested to the GOCE Project Office
in ESA that a study be conducted on the near-field multipath caused by the
structural environment of a GOCE satellite. We proposed calibrating the
GOCE GPS antenna using the robot absolute calibration method, with and without
the GOCE mock-up, i.e., the solar panel (wing) as shown in Fig. 13.1. The antenna
calibration was then performed by ESA (the GOCE Project Office). With the cal-
ibration set up depicted in Fig. 13.1 it is possible to calibrate phase center variations
in an absolute manner by tilting and rotating an antenna. The errors from sources
such as the ionosphere or troposphere, or satellite orbit/station errors are eliminated
by using an additional nearby reference station. The idea was to perform antenna
calibration with and without a mock-up and to describe the near-field multipath
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Fig. 13.1 GOCE GPS
antenna set-up for near-field
multipath calibration using a
GOCE mock-up as originally
proposed to ESA (GOCE
Project Office) in (Svehla and
Rothacher 2004b). (credit
ESA)

effect as the difference between the two estimated antenna PCV maps. In the case of
near-field multipath, the total antenna PCV correction dpcy can be defined as the
sum of the nominal antenna PCV map d5y, and the antenna map originating from

the near-field multipath dygp
Opcy == Oply + ONEM (13.1)

It is assumed that near-field multipath can be represented in much the same way
as the nominal antenna map using an elevation/azimuth grid or a spherical harmonic
representation. However, due to the shape and structure of the reflecting antenna
environment, large gradients can be expected, especially for the L, frequency and
therefore, the near-field multipath map should be provided with sufficient resolu-
tion. Figure 13.2 confirms that larger gradients can be expected for the L, fre-
quency. In the case of satellites with movable parts, such as solar panels on board
COSMIC satellites in LEO orbit, near field multipath cannot be adequately repre-
sented by only one antenna map, but requires a function of time or Sun position in
the antenna reference frame. In this case, several antenna maps could be used to
model near-field multipath based on representative cases of the antenna
environment.

Later on in Wiibbena et al. (2006), the near-field multipath was studied for
different configurations of a ground GPS antenna, in particular an antenna mounted
on a pillar with different antenna heights from 7 cm up to 27 cm, as well as an
antenna installation mounted on a standard tripod (height of 175 cm). A significant
low-frequency effect even at high elevations was reported, especially in the first
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Effect of the wing on the L1 PCV Effect of the wing on the L2 PCV
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Fig. 13.2 The GOCE near-field multipath. Impact of the GOCE solar panel (Fig. 13.1) on the
GPS antenna phase-center pattern. Phase-center variations are at the level of a few millimeters

case. In particular, a systematic bias, predominantly in the height component, was
reported, which does not average out over long observation time periods and
increases with lowering antenna height. Although only elevation-dependent effects
have been shown, there are also azimuth-dependent influences for asymmetric
configurations. The same paper (Wiibbena et al. 2006) includes report analyses for
the two common geodetic set-ups using Dorne Margoline choke-ring antenna with
a tribrach on a round (diameter 20 cm) and a quadratic pillar (sides of 30 cm). The
influence of the near-field has a magnitude of up to 7.5 mm at low elevations and
even 5 mm at 10° elevation. For some azimuthal regions at the horizon the effect
was even larger.

In Lau and Cross (2007) it is developed a new ray-tracing approach for
carrier-phase multipath modeling. It takes into account the relative positions of the
receiving antenna and reflectors, relative permittivity of the reflecting surfaces, the
correlator spacing of the receiver, the RCP gain pattern of the receiving antenna and
the phase center offset and variation map of the receiving antenna. Sensitivity tests
with the model showed that the accuracy of the predicted multipath errors was
highly dependent on precise knowledge of the relative antenna-reflector geometry.
For instance, errors of up to 1 cm in their relative height can cause errors in the
modelled multipath from reflectors below the antenna of up to 1 cm. It was shown
that an error of up to 10% in the assumed permittivity of the reflector would not
have a noticeable effect on the modeled multipath (Lau and Cross 2007).

Figure 13.1 shows the proposed set-up for the near-field multipath calibration of
the GOCE antenna using a robot (Svehla and Rothacher 2004d). One can recognize
the GOCE helix antenna mounted on the solar panel (mock-up). The original idea
was to perform absolute calibration both with and without the mock-up, and
compare the resulting antenna maps. The difference between the two respective
antenna maps is a measure of the constant near-field multipath environment.

The impact of the GOCE solar panel wing (mock-up), depicted in Fig. 13.1, on
the L; and L, antenna phase-center is shown in Fig. 13.2, based on the PCV maps



172 13 LEO Near-Field Multipath and Antenna Effects

Fig. 13.3 GOCE antenna Effect of the wing on the iono-free PCV
phase-center variations for the [mm]
ionophere-free linear

combination

provided by the GOCE Project Office in ESA. One can clearly see an effect due to
the satellite mock-up and a significantly increased effect for the L, frequency of
about —3 mm at 45° zenith angle and 10 mm at 90° (close to antenna horizon).

By forming the ionosphere-free linear combination of the original L; and L,
phase patterns, it can be determined that the phase-center variations are increased
by up to 1 cm when the wing is present, see Fig. 13.3. This is an increase by at least
a factor of three compared to the accuracy of the original L; and L, GPS carrier
phase measurements. Reference directions (0° azimuth) for all GOCE PCVs is the
along-satellite axis (flight direction).

This study shows that the antenna calibration results depend heavily on the
antenna environment during the calibration. Therefore, it is necessary to calibrate
the antenna together with the satellite mock-up, i.e., using a set-up similar to the
real satellite. For highly accurate LEO POD, the use of a choke-ring antenna to
suppress the near-field multipath is required, i.e., a “conical design” for all GNSS
frequencies.

13.2 Impact of the Near-Field Multipath on GOCE
Kinematic POD

In order to study the effect of the near-field multipath on the GOCE kinematic POD,
GPS phase measurements were simulated for the GOCE antenna with and without
PCV maps characterizing the near-field multipath on board the satellite. The sim-
ulation was carried out with a cut-off angle of 0° for the nominal case and also with
15°, given the limitations of the GOCE GPS receiver that only locks the signals
above 12° elevation. From Fig. 13.4, one can see variations in the kinematic
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Fig. 13.4 The effect of the near-field multipath on the GOCE kinematic POD for 2 different
cut-off angles

positions in the order of several centimeters for a single orbit component (1-3 cm
RMS), or 3-5 cm RMS for the 3D orbit error. To a large extent this effect can be
smoothed out by employing reduced-dynamic POD. The long-periodic structure is
clearly visible.

It was assumed that elevation-dependent weighting for phase measurements
would down-weight the effect of near-field multipath on the GOCE antenna.
Figure 13.5 shows the results when elevation-dependent weighting was employed.
The differences are even greater (3—5 cm 3D RMS), due to the fact that the entire
antenna map is affected, and that the conventional elevation-dependent weighting is
not optimal in this case. It should be noted that the antenna phase-center offset was
not corrected in the case when the antenna PCV map was used with a cut-off angle

Elev. dependent weighting - cut off 0° Elev. dependent weighting - cut off 15°
3D RMS=46.0 mm 3D RMS=52.0 mm
100 100 . : - : .
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Fig. 13.5 The effect of the near-field multipath on the GOCE kinematic POD for 2 different
antenna cut-off angles when using elevation-dependent weighting
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of 15° elevation. However, such an offset would mainly produce bias in the radial
direction, since the kinematic coordinates were estimated every epoch. The pres-
ence of a radial bias is not visible in Fig. 13.4.

13.3 CHAMP Near-Field Multipath

Figure 13.6 shows the CHAMP ionosphere-free code residuals versus azimuth,
after precise orbit determination (POD). The orbit was estimated with carrier-phase
measurements and to obtain residuals of code measurements, the CHAMP
reduced-dynamic orbit was fixed and clock parameters were estimated every epoch
using only ionosphere-free P code measurements. Considering the very low noise
level of these code measurements and the orbit quality of several centimeters, it can
be assumed that the code residuals obtained are only affected by noise and multi-
path effects. One can clearly see multipath originating from the aft side of the
satellite, (Svehla and Rothacher 2003). Two particular directions can be clearly
identified: at azimuth 135° and at azimuth 225° (Svehla and Rothacher 2003) and
this effect is related to the shape of the CHAMP satellite structure (sharp edges on

Residuals in meters

0® 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°
Azimuth in degrees

Fig. 13.6 CHAMP ionosphere-free code residuals versus azimuth for day 200/2002 clearly show
multipath originating from two particular directions: at azimuth 135° and 225° (due to satellite
structure—edges, see Fig. 13.7). Multipath at azimuth 180° is due to radio-occultation antenna
(cross-talk with POD antenna)
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the aft side), see Fig. 13.7. The satellite holding mechanism, visible in Fig. 13.7 in
the same direction, was also identified as a potential candidate to explain those two
particular directions. Multipath at azimuth 180° is mainly driven by the receiving
radio-occultation antenna, see also (Montenbruck and Kroes 2003).

13.4 CHAMP/GRACE GPS Antenna

The POD antenna on board the CHAMP, GRACE and TerraSAR/Tandem missions
is a space qualified GPS patch antenna (Sensor Systems S67-1575-14 model), see
Fig. 13.7. This model was selected for the CHAMP mission because of the slightly
better performance of this antenna on the L, frequency and its better thermal
behavior (Grunwaldt, priv. com.). The helix radio occultation antenna on board the
CHAMP satellite is the JPL design with a gain of up to 9 dB along boresight and a
half cone (at 3 dB) of 45°. For radio-occultation satellites such as COSMIC,
radio-occultation antennae are built up from stacked patch arrays of 4x 1 elements,
which should have a gain of up to 11.5 dB, but exhibit a very narrow gain char-
acteristic (Grunwaldt, priv. com.). For more information on the POD of the
Formosat-3/COSMIC mission we refer to (Hwang et al. 2009; Tseng et al. 2012).

Figure 13.7 shows the main CHAMP POD antenna together with the choke ring,
pointing in the zenith direction, and the helix antenna, directed aft. The lightweight
choke ring developed by the GeoForschungsZentrum (GFZ) Postdam is used to
suppress multipath and to achieve high-grade code and carrier-phase measurements.
In Fig. 13.7, one can also see a small POD antenna without a choke ring close to the

Fig. 13.7 CHAMP POD antenna with the choke ring (zenith) and radio-occultation antenna (aft).
Next to the radio-occultation (helix) antenna is the spare POD antenna without choke ring (aft).
(credit GFZ)
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helix antenna and also directed aft. This is a spare POD antenna and has never been
used. The GRACE mission uses BlackJack GPS receivers and GPS antennae of the
same type as CHAMP. There are two omni-directional POD antennae (one primary
in the zenith direction and one backup directed aft) and one high-gain helix antenna
with a 45° field of view directed aft. The aft-pointing POD antenna serves as a
redundant source for orbit determination in case of a failure of the zenith antenna.

13.5 Antenna Calibration on Board CHAMP, GRACE
and JASON Satellites

Two types of antenna calibration can be performed: relative and absolute. Relative
antenna calibration is based on the Dorne Margolin T choke-ring antenna as the
reference antenna for all other GPS antennae. It can be performed on a very short
baseline using a series of GPS measurements. However, the absolute antenna
calibration, carried out independently with a robot and in a separate procedure in an
anechoic chamber, showed in both instances that the Dorne Margolin T antenna
phase center varies with elevation and azimuth. Starting with the GPS week 1400,
IGS has included absolute phase-center offsets and patterns for all ground GPS
antennae and GPS satellites in its routine processing of global IGS data, (Schmid
and Rothacher 2003; Gendt 2006).

In the case of the Jason-1 mission, several attempts have been made to calibrate
the GPS antenna using dynamic POD and to estimate the GPS antenna parameters
together with the orbit parameters. Due to the high orbit altitude, it is possible to
perform fully dynamic POD for the Jason-1 satellite by estimating a relatively small
number of orbit parameters. Hence in-orbit antenna calibration is feasible. At the
same time, highly accurate and fully independent Jason-1 orbits based on SLR and
DORIS are available for comparison. More about Jason-1 POD and the related GPS
antenna problem on the Jason-1 satellite can be found in Luthcke et al. (2003);
Haines et al. (2004); Flohrer et al. (2011).

Figure 13.8 shows the CHAMP absolute phase-center variation over all eleva-
tions estimated using ionosphere-free carrier phase measurements together with all
orbital parameters, see (Svehla and Rothacher 2004a). The elevation-dependent
PCV was estimated in bins of 5° and 10° and both series of parameters show very
close agreement (about =40.15 mm). The estimation of azimuth-dependent
phase-center variations revealed the high correlation between the phase center
variations in the along-track direction, the along-track orbit component and the
pseudo-stochastic pulses. The azimuth-dependent pattern can be estimated using the
higher accuracy in the cross-track direction. Elevation-dependent weighting is not
used for the CHAMP carrier-phase, although in ground GPS applications it is
mostly applied. Recently, the GPS antenna on board CHAMP and GRACE has
been absolutely calibrated by the robot calibration system developed by the Institut
fiir Erdmessung (IfE) and Geo ++ in Hannover, see (Montenbruck et al. 2009).
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Comparing Figs. 13.8 and 13.9 one can see a close overall agreement between the
CHAMP elevation-dependent antenna patterns estimated in-flight using GPS
carrier-phase and the ground calibration using the robot. The opposite sign is due to
the different sign conventions used, namely the sign of the PCVs provided by IGS
is opposite to that of the IfE. In both cases, we see an effect from —10 to 10 mm
with a maximum value at 50° zenith angle. Deviations can only be seen in the
zenith direction and are most likely due to the slightly different mean phase-center
offset.

13.6 The Ray-Tracing Technique for Multipath Maps
of GNSS and LEO Satellites

Antenna phase-center maps for GPS satellites were estimated using a least-squares
adjustment and GPS measurements from the ground IGS network, applying
absolute antenna PCV maps for the ground GPS antennae from robot calibrations,
see (Schmid and Rothacher 2003). GPS satellite antenna PCV parameters were
estimated together with all other reference frame parameters, including GPS
satellite orbits, troposphere parameters and station coordinates. As a result, the
estimated GPS satellite antenna PCVs contain residual effects due to high corre-
lations with other reference frame parameters and poor geometry, given the high
altitude of GPS satellites and the relatively small GPS satellite antenna aperture
angle of about 28°. Those maps were estimated and then averaged over a long
period of time and do not necessarily represent the GPS satellite PCV affected by
near-field multipath stemming from the rotation of large GPS solar panels.
Therefore it would be interesting to calibrate and derive near-field multipath maps
using an alternative technique (e.g., as a function of solar beta angle and argument
of latitude of the satellite relative to the Sun’s position in the orbital frame).
Although calibration on a robot or in an anechoic chamber provides similar results
for the receiving ground antennae, using such a technique for calibration of GNSS
transmitting antennae together with a rotating solar panel would be a more
demanding and challenging task. Perhaps this could still be done for new GNSS
satellites.

An alternative method is the ray-tracing technique based on the antenna
electro-magnetic characterization and coupling between the antenna environment
and the phase-center variations. Figure 13.10 shows the GOCE antenna PCV
profile (along the satellite axis) for the L, frequency. This PCV profile was esti-
mated using a model of the complete GOCE satellite. The green line shows the
nominal L, PCV, whereas the blue line is the PCV profile considering the GOCE
mock-up, the same as that used for the robot calibration shown in Fig. 13.2. The red
line shows the near-field effects stemming from the complete satellite structure. The
blue line shows a good overall agreement with Fig. 13.2, where the entire PCV map
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Fig. 13.10 GOCE L, PCV profile (along the satellite axis) in [mm] versus zenith angle in [°]
estimated using the ray-tracing technique. The blue line is the PCV estimated using a mock-up and
shows very close agreement with Fig. 13.2, namely an effect of =3 mm at 45° and 10 mm at 90°
(data ESA GOCE Project Office)

is depicted. One can clearly recognize an effect of about —3 mm at 45° zenith angle
and 10 mm at 90° (horizon).

It is interesting to note that the complete model of the GOCE satellite gives a
very variable signal over all elevations. A high-resolution GOCE PCV map is
difficult to derive using a POD technique that is independent of the gravity field,
since a very small step size is needed to pick up all PCV variations, especially close
to the antenna horizon and in the direction of the solar wing. This very good overall
agreement between robot calibration and the ray-tracing technique opens up the
possibility of calibrating GPS antennae on any LEO satellite, or even calibrating
near-field multipath on GNSS satellites.

In the case of the GNSS or the six COSMIC satellites, antenna phase center
maps could be provided for several characteristic orientations of the satellite solar
panels. In this way, temporal PCV maps could be established for GNSS and LEO
satellites to more accurately model the near-field multipath (including multipath,
imaging and scattering effects) generated by the on-board near-field antenna
environment and large solar panels. The same approach could be used for the
ground or spaceborne LEO GNSS antennae and transmitting antennae on board
GNSS satellites.
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13.7 Multipath Linear Combination

Here we derive a multipath linear combination that can be used to assess and
monitor multipath in GPS measurements, as was performed for the GOCE mission,
but which can also be easily extended to any other GNSS observable. Similar linear
combination, without derivation, can be found in (Estey and Meertens 1999).

Let us look again at the ionosphere-free linear combination L; of the
carrier-phase measurements L; and L, converted from cycles to meters

1 , 1 ,
Ls :]ﬁ (flle —fzsz) = p+ ANNi + E(/IW —n)Nw =p+B; (13.2)
)
with the geometry term p and the ionosphere-free bias denoted as Bj
1 )
B; = /INNI + §</1W — AN)NW (133)

with the narrow-lane wavelength Ay, the wide-lane wavelength Ay and the corre-
sponding wide-lane ambiguity Ny . The ionosphere effects can also be removed by
forming the so-called LP linear combination by adding carrier-phase and code
measurements on the same GPS frequency

_Li+P

LP
2

(13.4)

Bearing in mind that multipath and the noise of the carrier-phase measurements
can be neglected compared to multipath Mp; and noise of the code measurements
ep1, the following relation between the LP linear combination and the
ionospehe-free linear combination L3 can be written

2LP = L1 +P1 = 2p+}v1N1 +Mp1 + &p1
=L1+P1 :2(L3 —B3)—|—)4N1+Mp1—|—8p1 (135)
= 2L3 + Bp1 +Mp1 + ¢p

where 4; is the wavelength of the L; carrier-frequency with the corresponding
integer ambiguity N;. Mp, denotes the multipath and ep, the noise of P; code
measurements. Bp; can be considered as a bias in the LP linear combination

, A
Bp] = 7233 +/L1N1 = 72(/11\/ — EI)NI — (/IW — JVN)NW (136)
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The following expressions can be written and used for the evaluation of mul-
tipath on C/A, Py and P, code measurements, respectively:

2
Mca+eca =L +C/A —ﬁ(fELl _f22L2) — Bpi
—J3

fi
2
Mpy +epy = L1 + P —]ﬁ (flle _f22L2) — Bpi (13.7)
)
2
Mpy+éepp =L+ P> 7f27f2(flzl‘l *fzzLZ)fBPZ
1 =2

The float ambiguity should be constant throughout each pass and can be
removed by calculating the mean. The Bp, denotes a bias in the LP linear com-
bination for the second GPS frequency

A
Bpy = —2B3 + J,N, = _2()°N — ?Z)Nl - (lw — Ay -‘riz)NW (138)
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Chapter 14 )
Probing the Flyby Anomaly Using gt
Kinematic POD—Exotic Applications

of Kinematic POD

The idea presented here is to use the GPS receiver for the comparison of kinematic
and dynamic orbits of an interplanetary mission during Earth flyby, e.g.,
BepiColombo, Juno. Purely geometrical orbits can be estimated to an accuracy of
1 cm RMS using GPS carrier-phase measurements, whereas dynamic orbits will be
affected by any potential flyby anomaly effect on the spacecraft while it is in Earth
flyby.

The flyby anomaly is an unexpected increase in the spacecraft velocity or orbital
energy during Earth flyby. This anomaly has been observed in Doppler measure-
ments by a number of ground ESA/NASA stations operating in S- and X-band, for
more details see e.g., (Anderson et al. 2008). The orbit velocity increase is in the
order of 7-13 mm/s and it has not been reported for all swingbys (Morley, priv.
com.).

The minimum altitude for a flyby is in the order of 500-2500 km, which means
that an Earth flyby could be observed using a GPS receiver over several hours (up
to altitudes of e.g., 10 000 km). In the case of kinematic POD, the velocity of the
satellite can be estimated geometrically to an accuracy well below 0.05 mm/s
(Svehla and Féldvary 2006). Using a GNSS receiver on a future interplanetary
mission during Earth flyby we will be able to monitor the flyby anomaly geo-
metrically and compare the results with dynamic orbits. An additional SLR
retro-reflector would enable ground laser stations to monitor the flyby anomaly.

In 2009 we proposed mounting a GPS receiver on the BepiColombo spacecraft.
However, after approaching the BepiColombo Project Office it was deemed to be
too late to include one in the payload. Nevertheless, the concept is well worth
further test, since kinematic POD can assess the flyby anomaly effect far more
accurately than Doppler S-band/X-band tracking from the ground. Figure 14.1
shows the predicted ground track of the Juno satellite in interplanetary orbit at Earth
swingby on 9.10.2013.
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Chapter 15 )
Galileo-2: A Highly Accurate ki
Dynamical GEO Reference Frame

to Complement the TRF

In Svehla (2007), Svehla et al. (2008) and in Svehla (2008) we presented a novel
design for the GNSS system called here Galielo-2 based on recent developments in
optical clocks, frequency combs and time/frequency comparison technology. We
demonstrated a concept of a navigation system in MEO based on master clocks in
the GEO orbit and two-way optical/microwave links to transfer their stable fre-
quency to the navigation satellites in MEO orbit (either from the ground or via
GEO). In this way, the use of H-masers and Cs- or Rb-clocks in the GNSS satellites
can be avoided and frequency combs could be used to generate the desired navi-
gation radio (and optical) signal in the MEO orbit. The development of “Ultra’-
USO, e.g., for the STE-QUEST mission with a frequency stability in the order of
10715 at 1 s is sufficient to meet the required GNSS clock stability over a longer
period of time (e.g., one day), and thus one could separate precise orbit determi-
nation of GNSS satellites from estimation of GNSS clock parameters. GNSS clock
frequency can be steered either from the ground or from the GEO orbit making use
of the two-way metrology links. For this, master clocks in GEO do not need to be of
the highest accuracy, they could be optical clocks or the latest Rb-clocks with high
short-term stability. However, the assembly of several GEO clocks equipped with
optical/microwave links for frequency transfer will meet the needs of the timing
community for clock comparison in the generation of the global TAI/UTC time
scale. Thus, the idea of Galileo-2 is twofold: Firstly, to combine positioning and
timing systems under one umbrella, and, secondly, to enable new applications in
geosciences.

Generally speaking, a highly accurate dynamic reference frame in the GEO orbit
would, in future, have the potential in terms of accuracy to provide an alternative to,
and to complement, the terrestrial reference frame of the Earth. Drag-free and
ranging technology as developed for the LISA mission provide very strong argu-
ments in this direction. A GEO reference frame could provide the basis for a
real-time positioning/timing facility for all GNSS Earth-based applications, from
LEO to GEO orbit and beyond towards lunar orbits. Intersatellite ranging between
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such (drag-free) GEO satellites could be obtained to a very high level of accuracy,
e.g., sub-micrometer—several orders of magnitude higher than the accuracy of a
terrestrial reference frame. Considering the orbit-redshift equivalence principle we
introduce in Sect. 29 (a symmetry between the error in orbit position and velocity
such that these cancel or compensate each other out in generating the net redshift
effect), an orbit in space (GEO) offers the best environment to define and realize the
frequency standard and define the SI second using an atomic clock. A far more
reliable method than using the geoid and the surface of the Earth. This is mainly due
to the fact that cold atoms in the clock can be observed for a long time in space
(weightlessness) and are not limited by free-fall as they are on Earth. This typically
gains an additional 3—4 orders of magnitude in sensitivity. Therefore, in future,
GEO orbit could offer the best place to define the datum for time and so support
positioning on Earth. The terrestrial reference frame of the Earth is, by definition,
tied to the ground network of station coordinates on the Earth’s crust. Thus the
proposed realization using GEO orbit is an extended and complementary realization
of the terrestrial frame which aims to achieve higher accuracy and precision and to
obtain synergy with time realization.

15.1 Galileo and Beidou—Paving the Way Towards
the New GNSS Science?

Can we design a navigation system that can meet the requirements of both navi-
gation and geosciences at the same time? Is there a place for improving GPS, for
something better than introducing a third navigation frequency? Can we enhance
GNSS so that it can be used for novel applications in geosciences? What new
developments and potential will Galileo and Beidou bring? Can we use satellites in
the GEO orbit for real-time positioning of GNSS satellites, just as GNSS is used for
to the POD of satellites in the LEO orbit?

If we look back some 30 years, GPS was primarily designed to meet US military
requirements for navigation. However, over the years, GPS has become much more
than just a navigation system. It is now a driving force in geodesy, with applications
ranging from precise geodetic positioning, geodynamics and timing, to meteorology
and remote sensing techniques, such as radio-occultation and reflectometry/
scatterometry. Today GNSS receivers are readily available and GNSS has become
an indispensable part of the infrastructure in every aspect of human activity.

Every GNSS satellite carries several atomic clocks, and as a result GNSS satellites
are very expensive, bulky, heavy and the entire constellation needs to be maintained
by launching new satellites every 5-10 years. Atomic clocks on board GNSS
satellites have demanding requirements in terms of power and payload and hence all
GNSS satellites are equipped with large solar panels and with three-axis attitude
stabilization. The atomic clocks placed on board such satellites are probably the most
crucial single element in achieving a high-performance GNSS (Hein et al. 2007).
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A more accurate and stable frequency inside the GNSS satellite means a reduction of
uncertainty in clock prediction and hence improved real-time positioning and greater
integrity of information.

Figure 15.1 shows the number of atomic clocks put into space since the launch of
the first GPS satellite in early 1978. One can see that of the 58 GPS satellites launched
to date, only 30 are still active and over the last 30 years altogether 202 atomic clocks
have been launched into space. Altogether 170—180 atomic clocks are orbiting the
planet Earth on board the decommissioned GNSS satellites without sending any
signal towards the Earth. Although the lifetime of GPS satellites is higher compared
to those of GLONASS, satellites of both GNSS systems have to be decommissioned
in orbit and their lifetime is limited by the lifetime of the on-board batteries and the
radiation environment in MEO orbit. If we now take 30 years of GPS and 200 clocks
per single GNSS system and multiply this by 4 GNSS systems in the near future
(GPS, GLONASS, Galileo and Beidou, not including Indian and Japanese regional
navigation systems IRNSS and QZSS), we end up with about 1000 atomic clocks in
space in just 20 years from now. Is there an alternative? It is generally considered that
clocks in timing labs will always be more accurate than even the most modern optical
clocks developed for space. However, this is not completely true since it is well
known that weightlessness in space offers orders of magnitude improvements in clock
performance compared to ground clocks. Therefore, it would seem logical to develop
a number of very high-quality clocks and put them into GEO orbit. Their frequency
could always be controlled by the ultra-accurate optical ground clocks. Their main
purpose would be to compare optical ground clocks defining TAI/UTC and to dis-
tribute this frequency standard to GNSS satellites in MEO orbit. In order to ensure
integrity, 3—5 master clocks would be required in GEO orbit. As in the case of GNSS
satellites, additional onboard clocks would meet all redundancy and integrity
requirements. Frequency dissemination in space between GEO and MEO is easier
given the atmospheric conditions close to the Earth’s surface and can either be
performed optically or in the microwave domain.

Despite high quality onboard clocks, GNSS are not designed for time/frequency
transfer. Unlike ground Cs-fountains in TAI labs that provide frequency with a
stability of below one part in 10~'¢ or optical clocks with a stability of less than one
part in 10717 /3 h, GNSS systems cannot meet the demanding requirements of time/
frequency transfer for TAI/UTC. One can draw the general conclusion that posi-
tioning and timing are two separate worlds and both communities are using their
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own global timing and positioning systems. The main problem is that positioning is
based on one-way systems and time/frequency transfer requires a two-way system.
Why not combine them and benefit mutually? In the case of a two-way system,
such as TWSTFT, a signal is sent in both directions and, by differencing, the first
order Doppler effect and all geometry and propagation delays are removed. There
are still residual higher-order ionosphere terms present in the two-way microwave
measurements, but due to the very high frequency used they are very small (they
sum up for the uplink and downlink). In the case of optical two-way measurements,
all propagation effects are eliminated, and atmospheric turbulence is the main
source of error.

Currently, there is no operational system available which can compare on a
global scale the best ground optical clocks that have already demonstrated an
accuracy of two parts in 1078, (Nicholson et al. 2015). In the very near future,
there will be a gap in performance between the TAI clocks and the satellite-based
time/frequency comparison systems. In fact, the best ground optical clocks have
reached such a level of accuracy that it is already now feasible to measure dynamic
heights (geopotential numbers) using terrestrial clocks, but there is no satellite
system available to compare ground clocks with sufficient accuracy. GNSS recei-
vers measure geometric heights above the ellipsoid, whereas physical height sys-
tems use the equipotential surface of the reference geopotential, called geoid, as a
datum. Therefore, a two-way link on a GNSS satellite would allow the unification
of the timing and positioning systems, and hence the unification of geometrical and
gravitational positioning (gravity potential).

Compared to carrier-phase and pseudo-range measurement of the present and the
forthcoming one-way GNSS constellations, a two-way system would provide
geometry-free transfer of clock frequency. This would allow geometry-free steering
of the GNSS satellite clock frequency. In the case of Galileo H-maser, we already
see that the satellite clock can be modelled with just two linear parameters per day
(time drift and bias) providing a standard deviation of remaining residual clock
parameters at the cm-level. By introducing frequency steering of the Galileo
satellite clock, one could predict satellite clock over a longer time period and thus
separate orbit from determination of clock parameters. In the case of pseudo-ranges,
or, generally speaking, observables of all traditional one-way GNSS systems,
receiver and satellite clock parameters need to be estimated or removed every
epoch. That clock parameters cannot be separated from the propagation effects in
the orbit determination or parameter estimation is the main disadvantage of the
one-way GNSS systems. Even with the three or four Galileo frequencies we cannot
estimate absolute TEC and calibrate all biases at the mm-level in order to “measure
carrier-phase ambiguities”. In the processing of one-way GNSS data, we fix
something that we call “phase ambiguity” by estimating a very large number of
other global parameters such as station coordinates, tropospheric zenith delays and
gradients, Earth rotation and satellite orbit parameters. This is the case with zero-
and double-difference carrier-phase measurements. Even with the three-carrier
ambiguity resolution strategies, these problems still remain to a great extent, and
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propagation effects need to be separated from the integer phase ambiguities. There
is always a trade-off between the ambiguity space and the parameter space (all
global GNSS parameters including ambiguities). In zero-difference GNSS appli-
cations, carrier-phase ambiguities are additional “nuisance” parameters that need to
be estimated and they constrain the capacity to reduce the influence of systematic
errors of GPS orbit/clock products, and tropospheric, multipath and other effects.
The absolute ionospheric effects and tropospheric delays cannot be separated
entirely from GNSS satellite/receiver clock parameters. The bottom line is that
modern and future GNSS systems must be a combination of one-way and two-way
systems.

In the orbit determination for GNSS satellites we estimate typically 9 empirical
solar radiation pressure (SRP) parameters per daily orbit arc and the SRP effects
propagate into geocenter results, EOPs, and the orbits of altimetry and gravity field
missions that require the highest accuracy. On the other hand, GNSS satellites are
placed at a very high altitude above the Earth with a very small antenna aperture
angle of about 14° half angle, and due to this “bad geometry”, orbit errors such as
residual solar radiation pressure propagate into all global GNSS parameters (EOPs,
geocenter, etc.).

Therefore, one could generate a dynamic reference frame in the GEO orbit
consisting of several GEO satellites, similar to the three drag-free satellites of the
LISA mission in a triangular constellation. In this way, one could extend and
complement the classical definition of the terrestrial reference frame based on a
network of ground stations and thus tied to the Earth’s crust. Intersatellite ranging
between those GEO satellites could lead to a very high level of accuracy, several
orders of magnitude higher than that of a terrestrial reference frame. However, since
the conventional terrestrial frame is by definition tied to the ground stations on the
Earth’s crust, one would still need a tie with such a dynamic system in space. Thus,
one could talk about complementarity between the space-based and the
ground-based reference frames, where space-based frames provide higher accuracy
and stability.

One could make use of frequency combs as a metrology system between GEO
satellites as well as a generator of microwave/optical frequencies for the navigation
signals. Frequency combs were proposed for the various ESA missions that use
formation flying and high-accuracy long-distance metrology (Holzwarth et al.
2008). In the latter, femtosecond-based laser systems are combined with incoherent
time-of-flight absolute distance measurement capabilities over long distances using
coherent high-resolution interferometric methods. Such optical systems provide
sub-micrometer resolution in an absolute measurement of nearly arbitrary distances
(Holzwarth et al. 2008). On the other hand, the GEO orbit is high enough above the
Earth and the microwave downlink transmitter of the two-way system can be
tracked by VLBI antennas in S- and X-band and up to Ka-band. This is the same
frequency band used by VLBI to observe quasars (VLBI2010). Thus the use of
VLBI in combination with a satellite in a higher orbit (e.g., GEO), would open up
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new possibilities in combining the terrestrial reference frame and the, at the
moment, fully independent VLBI celestial reference frame based on extragalactic
radio sources (quasars).

15.2 Geometrical Properties of Positioning with Four
GNSS—Homogeneous and Isotropic Positioning
with Galileo

What improvements will Galileo and Beidou bring to global positioning? We
carried out a simulation of IGS-type processing with four GNSS. For that purpose
the Bernese GPS software was adapted for GNSS, i.e., Galileo/Beidou data pro-
cessing, within the scope of a project with Astrium and GFZ. The first results in
processing GIOVE-A data with this new version of Bernese multi-GNSS software
were presented in Svehla and Heinze (2007). The simulation covered a period of
one day and included 31 satellites of the GPS constellation (day 62/2007), 24
GLONASS satellites (8 satellites were added to simulate the complete GLONASS
constellation), 30 Galileo satellites and 30 Beidou satellites. This gives 115 GNSS
satellites in total, the number one can expect to be in Earth orbit in the near future,
see Figs. 15.2 and 15.3. For the IGS network we considered a grid of 15° x 15°
which covers about 200 ground stations. Carrier-phase measurements were simu-
lated with a white noise of 3 mm.

For Galileo and Beidou we considered the L; and ESa frequencies, which leads
to an increase in the noise level of the ionosphere-free linear combination in the
order of ~2.588 (w.r.t. the noise of L), compared to ~=2.978 in the case of GPS and
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Fig. 15.2 GNSS satellites and orbital planes used in the simulation (day 62/2007)
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Fig. 15.3 Orbit altitude of GNSS satellites used in the simulation

GLONASS. For the ground stations, the so-called elevation-dependent weighting
was used to model noise as a function of elevation. For GPS and GLONASS we
used IGS Final Orbits for day 62/2007, see Fig. 15.2, whereas Galileo and Beidou
were simulated in a Walker constellation based on the constellation parameters
available in 2007.

Figure 15.4 shows the number of visible GNSS satellites using an antenna
cut-off angle of 10°. One can see that, whereas there are about 9 GPS satellites in
the field of view at present, in future we can expect about 16 GNSS satellites by
considering the complete GLONASS constellation in addition to GPS, and 26
GNSS satellites with the addition of both the GLONASS and Galileo constellations.
The additional Beidou satellites increase the number of visible GNSS satellites to
35. From Fig. 15.4 one can clearly see that the number of visible GNSS satellites

Visibility with GPS/GLONASS, mean=16.4 (10" cul-off)
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Fig. 15.4 Mean number of visible GNSS satellites over one day with all four GNSS (10° cut-off
angle)
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varies strongly with geographical latitude, with the highest number of GNSS
satellites visible in polar regions and along the equator.

Figure 15.5 shows the error ellipses of the horizontal position based on one-day
PPP solutions with all four GNSS (10° cut-off angle). We calculated the Helmert
error ellipse (central ellipse) M

A’ + B = M* = 2R? (15.1)

with the semi-major axis A and the semi-minor axis B. The Helmert ellipse is often
called the central ellipse because it is the smallest in size and can be described by a
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Fig. 15.5 Error ellipses of the horizontal position based on one-day PPP solutions with all four
GNSS (10° cut-off angle). More homogeneous and isotropic positioning with Galileo.
Improvement in the central Helmert error ellipse by a factor of 1.51 when adding GLONASS
and 2.22 when adding in addition Galileo and Beidou
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circle of radius R with a probability of 0.39. For the sake of completeness we would
like to mention that an ellipse with a probability of 0.63 in the interval =16 has

semi-major axes Av/2 and Bv/2.

Based on the central Helmert ellipse of radius R, one can calculate an
improvement factor by adding each individual GNSS constellation separately. One
can see an improvement in the central ellipse by a factor of 1.51 when adding
GLONASS and by 2.22 when adding in addition Galileo and Beidou. More
homogeneous and isotropic positioning with Galileo can clearly be seen from
Fig. 15.5, since by increasing the number of GNSS satellites, error ellipses become
smaller and more circular, i.e., the dominant east-west orientation is reduced.

Isotropic positioning in our definition here means that the error ellipses are
circular in shape, i.e., the accuracy of the estimated horizontal station coordinates is
the same at all azimuth angles. Homogeneous positioning in our definition here
refers to a mean accuracy of station coordinates that is similar or equal over all
geographical longitudes and latitudes, i.e., irrespective of the location of the station.
It is interesting to note the east-west orientation of error ellipses also in the polar
regions. Figure 15.6 shows the formal errors of the station height based on PPP
over one day with four GNSS. One can clearly see that the highest accuracy can be
expected in mid-latitudes. Around the polar regions, despite the highest number of
visible GNSS satellites, the accuracy of the estimated station heights is lowest,
simply due to the satellite geometry and the low elevations of GNSS satellites
tracked.

By adding Galileo to complete the GPS and GLONASS constellations one can
reduce the formal errors by a factor of 1.8 of the estimated station heights and by a
factor of 2.4 by using all 4 GNSS. Figure 15.7 shows the formal errors of
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Fig. 15.6 Formal error of station heights based on one day PPP with all four GNSS (10° cut-off
antenna angle). Improvements by a factor of 1.8 are obtained by adding Galileo and 2.4 with all 4
GNSS
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Fig. 15.7 Formal errors of troposphere zenith delays with all four GNSS (estimated every two
hours, 10° cut-off angle). Periodic patterns are visible at mid-latitudes, most likely due to the six
orbital planes used

tropospheric zenith delays (TZDs) estimated every two hours using all four GNSS.
The improvement compared to the GPS-only scenario due to the addition of the
GLONASS and Galileo constellations amounts to a factor of 2 in terms of formal
errors of the estimated tropospheric zenith delays.

Comparing tropospheric zenith delays in Fig. 15.7 with station heights in
Fig. 15.6, one can clearly see that station heights can be estimated most accurately
in the mid-latitudes, whereas tropospheric zenith delays are estimated most accu-
rately around the equator. This must be due to correlations between station heights,
tropospheric zenith delays and station clocks as well as observation geometry.
A closer look at Fig. 15.7, reveals very strong periodic patterns at mid-latitudes,
most likely related to the six orbital planes.

15.3 Can We Improve GPS Satellite Orbits with Galileo?

Can we improve the orbit determination of GPS satellites with Galileo? The answer
is “yes”. Galileo measurements contribute to common parameters estimated toge-
ther with GPS measurements, such as tropospheric zenith delays and station
coordinates, EOPs and GNSS receiver clock parameters. We have extended our
GPS simulation by adding the Galileo constellation and Fig. 15.8 shows the typical
improvements in the orbit of one GPS satellite against orbit estimation based only
on the GPS constellation. The effect is in the order of 1-2 cm. The estimation was
based on zero-difference carrier-phase measurements and the orbit parameterization
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Fig. 15.8 Typical differences in GPS satellite orbits by adding measurements from 30 Galileo
satellites. For the simulation of the combined processing of the GPS and Galileo constellations, see
Svehla and Heinze (2007)

is exactly the same as that used at the CODE IGS AC for the one-day orbit arc. The
only difference is that the combined GPS/Galileo processing was based on
zero-difference measurements without ambiguity resolution.

15.4 Orbit Determination of GNSS Satellites from GEO

How accurately can one estimate the orbit of a GEO satellite? Can we generate a
highly accurate space-based reference frame in GEO orbit and combine such a
geometric/dynamic frame with the conventional terrestrial and celestial frame? With
just three to five satellites in GEO orbit one could cover, in terms of visibility, the
entire Earth, (see Fig. 15.9) and continuously measure range or range-rate between
the reference GEOsatellites with very high, e.g., sub-micrometer accuracy. Any
additional reference “station” in GEO orbit will be in the field of view of all other
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Fig. 15.9 Intermediate GEO Reference Frame based on 3-5 reference satellites connected with
intersatellite metrology links and closely tied to the ground terrestrial frame and GNSS satellites

reference “stations” in the GEO orbit, as shown in Fig. 15.9. No matter how accu-
rately one could determine the GEO orbit from the ground, any reduced-dynamic or
dynamic POD approach will constrain the relative GEO orbit information to highly
accurate range (or range-rate) measurements. This is also demonstrated with simu-
lated data later in the text in more detail, see Fig. 15.10. The relative orbit information
between reference “stations” in the GEO orbit will be several orders of magnitude
more accurate than the relative information between the satellites and the ground
geodetic stations of space geodesy techniques such as GPS, VLBI, SLR and DORIS.
This can be argued based on the intersatellite link between two GRACE satellites that
uses K-band measurements with a noise level below 10 um. The relative radial and
along-track orbit information will be of the highest accuracy, whereas out-of-plane
orbit information will strongly depend on the accuracy of the ground-to-space link
and the ability to orient this orbital frame in space. The gravity field of the Earth, like
e.g., Jo coefficient, will provide additional constraints to the accuracy of the
cross-track orbit direction. Additional ranging from GEO to any satellite in MEO or
LEO orbit will provide a space-based reference frame of utmost accuracy in all
directions.
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Fig. 15.10 Accuracy of Galileo orbit (MEO) based on tracking from 10 ground stations (left) and
accuracy of GEO orbit based on 10 ground stations (right)

This GEO reference frame needs to be tied to the ground to complement the
Earth terrestrial reference frame defined by the global network of ground stations
fixed to the Earth’s crust.

Compared to pseudo-range and carrier-phase measurements from the GPS or
Galileo system, SLR measurements provide ranges that do not require the esti-
mation of clock and ambiguity parameters in orbit determination. This is the reason
why simulations show that using such range measurements, orbits of GEO satellites
could be determined with an accuracy of a few centimeters based on only 10 ground
stations, see Fig. 15.10. At the moment, not all SLR stations can be used for
tracking GNSS satellites and thus also not for GEO satellites. It should be noted that
such level of accuracy of orbit determination cannot be obtained with one-way
measurements, such as carrier phase or pseudo-range measurements. GNSS based
one-way measurements require the estimation of additional parameters, such as
phase ambiguities and clock parameters, that are highly correlated with the GEO
orbit parameters and, in this case, cannot be separated from orbit parameters with
sufficient accuracy. This can be clearly seen in Fig. 15.10 (right). The RMS of
14.3 m in the along-track direction for the orbit solution based on carrier-phase
measurements compares with 0.04 m based on ranges. The simulation was carried
out using 10 globally distributed SLR stations, assuming noise in the range mea-
surements of ¢(range) = 15 mm and in the carrier-phase o(phase) = 3 mm. For
the noise level applied in the simulation for range and carrier-phase measurements
of the navigation concept with 3—-5 GEO satellites, we refer to Fig. 15.11. Since the
gravity field can be assumed as error-free for the GEO orbit altitudes, the main
source of error remains solar radiation pressure. It should be noted that GEO orbit
determination will be sensitive to the polar and equatorial flattening of the Earth’s
gravity field as well as lunar and solar gravitational forces, and they will be driving



198 15 Galileo-2: A Highly Accurate Dynamical ...

range: 5 mm GEO
- phase: 1 mm .
? 2|3
*9,3.@. 15‘% zZ E
f'a". 2l

K w =
o

GALILEO Force models:

True orbits simulated with
the ROCK medel for the
solar radiation pressure
(excluded in the second

step: POD)

Different noise levels for
space- and ground-based tracking

ww ¢ aseyd
ww G| :ebues

Fig. 15.11 Noise level used in the simulation for range and carrier-phase of the navigation
concept with 3-5 GEO satellites, Galileo in MEO and 10 ground stations. The ROCK solar
radiation pressure model was applied a priori in the simulation. Typically, 15 orbital parameters
were estimated for daily GNSS orbits

factors in the dynamic orientation of the orbital plane in the inertial frame. One
should also consider resonances in the GEO orbit and periodic maneuvers.
However, since all 3-5 satellites are affected by resonances in longitude in a similar
way, it is expected that the entire GEO constellation could also drift as a whole over
a longer period of time. For more on resonances of GEO satellites see Hugentobler
et al. (1999).

Solar radiation pressure remains the main source of error in the realization of the
GEO reference frame. In the simulation, we employed the ROCK model developed
for GPS satellites as implemented in the Bernese GPS Software v5.1, see e.g.,
Rothacher and Mervart (1996). The GEO orbit determination was performed using
orbit parameterizations similar to GPS satellites, i.e., an arc length of only 24 h and
the standard 9 solar radiation pressure parameters in the Bernese GPS Software
v5.1. Since we did not make use of longer arcs, in reality one could expect sig-
nificantly better results, especially when all GEO satellites are combined together
with cross-link measurements and the solar radiation pressure parameters are esti-
mated simultaneously for all GEO satellites. Looking at Fig. 15.10, one can observe
that the orbit quality in the radial direction is well below the noise level of the
simulated measurements, i.e., it is heavily constrained by the gravity field of the
Earth. It has been shown, (Thaller et al. 2010), that for good ground ILRS stations,
the noise floor of SLR measurements to GPS satellite GO6 is at the level of 13 mm.
Performing the same simulation for GPS satellites and using the same 10 ground
stations reveals that GEO orbits can, in fact, be estimated with better accuracy than
MEO orbits, see Fig. 15.10 (left). This is especially true for the radial and
along-track orbit components, whose accuracy is better by a factor of ~2 compared
to the GPS orbit. This paradox in our simulation can be explained by the fact that
the radial orbit error for GEO is smaller by at least a factor of 2 than that for GPS,
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and thus the along-track component of the GEO orbit can indeed be better esti-
mated. However, this is only true if highly accurate range measurements are
available that heavily constrain the radial orbit component.

Figure 15.12 graphically explains why the along-track orbit component of a
GEO orbit is estimated with very low accuracy when using carrier-phase mea-
surements, or any observable that requires the estimation of GEO satellite clock
parameters. True range measurements such as SLR can provide enough information
to accurately constrain in-plane orbit rotation. It should be noted that MEO orbit can
only be observed by the same ground station for several hours, whereas GEO orbit
allows continuous tracking from the terrestrial reference frame. Other alternatives
for determining an accurate along-track GEO orbit component include differential
VLBI or GNSS double-differences (against the GNSS constellation and the GEO
satellite). However, ambiguity resolution would play an important role in this case
and should be performed using a geometry-free method. One could also assume that
significant information will come from the highly accurate intersatellite ranging
between GEO satellites, since sub-micrometer level accuracy could be achieved in
the free space in GEO orbit.

Generally speaking, a GEO dynamic reference frame has the potential to provide
an alternative realization of the frame and complement and extend realization of the
conventional terrestrial reference frame of the Earth. In this way, both the celestial
and the terrestrial reference frame of the Earth could be combined with a GEO
dynamic reference frame at the same time. Drag-free and ranging technology as
developed for the LISA mission support this contention. A GEO reference frame
could not only provide a basis for the real-time positioning/timing facility for GNSS
Earth-based applications, but could also be used for positioning and time/frequency
dissemination in the very populated GEO belt. MEO (GNSS), LEO, and satellites in
GEO orbit could make use of this reference frame in GEO orbit, e.g., for real-time
orbit determination and time/frequency dissemination. Figure 15.13 shows the
accuracy of a Galileo orbit based on tracking from five GEO satellites. One can see
that all three orbit components can be estimated with a similar level of accuracy. If
tracking from several GEO satellites in the equatorial plane is available to satellites
in MEO, one should expect that one orbit component could be determined with less

Fig. 15.12 Geometry of the
GEO and MEO orbit
sensitivity, distinguishing the
orbit error in the along-track
and the radial orbit directions
influenced by the clock error

clock error

orbit error
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accuracy. However, considering that GNSS orbit is determined with only 15
parameters, one can see from Fig. 15.13 that all orbit components for a GNSS
satellite can be determined with a similar level of accuracy.
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Chapter 16 M)
The GPS Transponder Concept— sk
Towards One-Way and Two-Way GNSS
Frequency Transfer

In this section we discuss alternative, geometry-free approaches for positioning and
time/frequency transfer using one-way and two-way measurements. The transmitter
and receiver clock parameters can be separated or removed from the tracking
geometry by using two-way measurements or introducing one-way measurements
into the geometry-free linear combination. Clocks on board GNSS have become so
stable that it makes interesting to steer their frequency using a geometry-free
approach as demonstrated here. Galileo satellite clock parameters can be modelled
using just two parameters per day (time drift and offset) with the remaining residual
clock parameters showing the standard deviation at the level of 15 mm, see
Sect. 18. Therefore, frequency steering of the satellite clock could be performed far
more infrequently, (e.g., once a day) using the two-way frequency transfer
approach. This could also bring to the separation of the prediction of GNSS satellite
clock parameters (based on frequency steering) from the orbit prediction. We also
discuss an application of the one-way frequency transfer approach based on
geometry-free linear combination between two satellites (e.g., between GNSS
satellites in MEO or with GEO). On the development of the two-way microwave
metrology links for atomic clocks of the ACES mission we refer to Cacciapuoti and
Salomon (2009).

In addition to providing a two-way frequency transfer capability for GNSS, one
could also consider the GPS-transponder concept, where a GNSS signals is tracked
by a LEO GBSS receiver and then re-transmitted by the LEO satellite to a ground
station (e.g., on a slightly shifted frequency). This opens up the possibility of
separating tracking geometry from clock information when using a one-way
approach for positioning, similar to the geometry-free two-way approach. One
could also consider combining the standard one-way GPS positioning with the
one-way frequency transfer. Observables in the one-way frequency transfer based
on geometry-free linear combination would then be free of propagation effects, such
as the effects of the ionosphere and the troposphere. The one-way approach based
on geometry-free linear combination would also eliminate errors due to tropo-
spheric effects and atmospheric turbulence in the case of optical measurements, and
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tropospheric effects and first and higher-order ionospheric corrections in the case of
microwave measurements.

We also discuss the geometrical mapping of GNSS constellations with VLBI
against extragalactic radio sources in the GPS-transponder configuration. At the end
of this section, we discuss the idea of a similar two-way approach constructed using
VLBI to observe both LAGEOS and passive laser retro-reflectors on the Moon in a
bi-static radar configuration.

16.1 Principles of the One-Way and Two-Way Tracking

One-way tracking involves one signal transmitter with a stable frequency reference
and one receiver, whereas in the case of two-way tracking an additional transponder
is used. Such a configuration can be implemented for both radio and optical fre-
quency bands anywhere within the Solar System. Transponders in navigation/data
communication in space (e.g., interplanetary satellites) typically operate by sending
the received radio signal back to the transmitter, only with amplification of the
received signal and shifting the signal from the uplink to the downlink frequency in
order to avoid signal interference. Thus transponders work as a frequency translator,
using an onboard ultra-stable oscillator (USO) and a frequency mixer to convert the
frequency of the received incoming Doppler-shifted signal to the frequency
required for the transmitted downlink signal. An onboard satellite receiver uses a
phase-locked loop to lock the uplink carrier and to generate a reference signal
coherent with that uplink carrier. Similar to GNSS, this reference signal is used to
demodulate the ranging signal (ranging tones) received on the uplink carrier. As
with GNSS, this ranging signal is again phase-modulated onto the downlink carrier
that is shifted in frequency and coherent with the uplink carrier (reference signal).
Thus, the frequency transmitted by the satellite is a Doppler-shifted replica of the
uplink frequency. Typically, for the Deep-Space Network (DSN) for example, the
downlink carrier frequency is higher by a factor of 880/749 in X-band and 3344/
749 in Ka-band for an X-band uplink. The station that generated and transmitted the
uplink signal receives the downlink signal and uses a PLL (Phase Locked Loop) to
generate a reference signal coherent with the received signal. The round trip
two-way transit time is determined by comparing the received range code with a
model of the transmitted range code on the uplink. The same ground frequency
standard is used to generate ranging codes consisting of a sequence of sinusoidal
tones. In addition to range measurements, two-way Doppler measurements are
derived by comparing the received reference signal with the same ground frequency
reference used to generate the uplink carrier. The Doppler cycle counter measures
the phase change of the Doppler tone (frequency difference) during a given count
time, thus providing a measure of the range change over a given time interval.
The state of the art of technology in two-way interplanetary tracking is the
radio-science instrument developed for the BepiColombo mission based on a Ka/
Ka-band digital transponder enabling a high phase coherence between uplink and
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downlink carriers and supporting a wideband ranging tone. (For more details see
Iess et al. 2009). The BepiColombo wideband ranging system is designed for an
end-to-end accuracy of 20 cm using integration times of a few seconds based on the
simultaneous transmission and reception of multiple frequencies in X- and
Ka-bands with two-way range-rate measurements accurate to 3 pum/s, (Iess et al.
2009). In the case of the SELENE mission, differential same-beam VLBI inter-
ferometry has been successfully demonstrated between the two Lunar orbiters
tracked by the same ground VLBI antenna, and further differenced between two
ground stations. Differential same-beam interferometry provides extremely accurate
relative position measurements in the plane-of-the-sky, thus complementing the
line-of-sight information one can obtain from the two-way Doppler and range
measurements. It was reported in Goossens et al. (2010) that the differential phase
delay obtained in this way on the X-band signal can be estimated to within 1 ps
(0.3 mm). In the case of S-band data, obtained with wider beamwidth compared to
X-band, differential phase delay was determined with an error of a few picoseconds
(roughly 1 mm) for narrow separation angles of the spacecraft, and about 10 ps
(3 mm) for wider angles. These accuracies include effects of the ionosphere and
atmosphere, (Goossens et al. 2010). The advantage of the differential same-beam
VLBI measurements lies in the differencing out of common errors over a very
narrow beamwidth angle. However, if the differential measurement is performed on
only a single frequency, the total phase delay is biased by an integer ambiguity. To
overcome the cycle ambiguity problem in the same-beam VLBI interferometry and
to increase the accuracy of the SELENE measurement, a multi-frequency method
was used, with three carriers in the S-band (2212, 2218 and 2287 MHz) and one in
the X-band (8456 MHz), (Goossens et al. 2010).

Following (Border and Kursinski 1991), the internationally allocated frequency
bands for uplink/downlink used in the communication/navigation of interplanetary
missions are given in Table 16.1. In the case of a very long round trip transit time,
e.g., a distant interplanetary mission, when the downlink signal reaches Earth, the
satellite might no longer be in the field of view of the ground station which
transmitted the uplink signal. Thus a second ground station is required to receive
the downlink signal. Such tracking is referred to as “three-way tracking”. For
example, for the distances to Neptune, the round-trip light travel time is more than
8 h. Similar scenarios may arise with two satellites (e.g., the SELENE mission in
the lunar orbit) and one ground station, where one can even identify four-way
tracking. In all these cases, high stability of the onboard (ultra-) stable oscillator is

Table 16.1 Internationally allocated frequency bands used for navigation/communication of
interplanetary missions (DSN) (Border and Kursinski 1991)

Frequency band Uplink frequency [MHz] Downlink frequency [MHz]
S 2110-2120 2290-2300

X 7145-7190 8400-8450

Ka 34 200-34 700 31 800-32 300
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essential and, typically, additional parameters need to be taken into account in orbit
determination to model the onboard frequency offset. Thus, any instability or
inaccuracy of the onboard frequency reference translates directly into an error Ap in
range rate

Ap =c—. (16.1)

Assuming the frequency instability over a tracking pass to be in the order of
Af/f = 107!, we have an error in the range rate in the order of 3 pm/s. For
comparison, the typical accuracy of the radial velocity of GPS satellites is in the
order of 5-10 um/s (based on orbit solutions provided by the IGS Analysis
Centers), whereas in the case of GOCE, in very low LEO, the velocity can be
determined with an accuracy in the order of 15-25 pm/s for all three components.

The state-of-the-art two-way approach was developed for the ACES mission in
LEO orbit, see Cacciapuoti and Salomon (2009) making use of the small ground
and spaceborne antenna. Therefore, there are enough arguments to consider the
two-way approach for future GNSS. This is especially true considering that clocks
on board Galileo have become so stable that they can easily be steered from the
ground using the two-way frequency transfer approach. This could be performed
very infrequently, e.g., once a day, using ground clocks in the UTC/TAI network
that have several orders of magnitude better accuracy and stability than the Galileo
clocks. Such an approach could even be extended by using master clock(s) in the
GEO orbit. Frequency steering for GNSS is a very interesting new technique for
GNSS, considering that Galileo satellite clock parameters can be modelled with just
two parameters per day (time drift and offset). See Sect. 18, for more details on the
Galileo clock performance, where we showed that remaining residuals for Galileo
clocks (after removing the linear model) have a standard deviation at the level of
15 mm. This could also bring to the separation of GNSS satellite clock parameters
(frequency steering) from the orbit prediction.

16.2 Geometry and Propagation Constraints from LEO
to Interplanetary Distances

The two-way approach can be used to transfer frequency between two clocks free of
any geometry effects, since these are removed by differentiating downlink and
uplink measurements. The observation equation for the downlink L3(#,) from e.g., a
satellite to a ground station and uplink L}(z,) carrier-phase measurements in the
two-way form can be given as
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L%(t2) = p% + )“%le - bm’(tl) + breC(IZ)

(16.2)
Ly(12) = p + 23Ny + 5" (12) = brec(t1)
where L3(1,) is tracked by the ground receiver at the reception time 7. The bye.(12)
denotes the receiver clock error at the reception epoch #, and the satellite clock error
b*(t,) is referred to the transmitting epoch #;. The term p? includes all geometry
terms for the downlink between epochs ¢, and #,. One can say that the first equation
given for the downlink in (16.2) is the same as for the GNSS one-way measure-
ments. The uplink carrier-phase measurements L}(#;) can be performed on the
satellite, or referred to the ground receiver if the satellite is used as a transponder of
the uplink signal and the signal is sent by the ground station. If we assume that the
satellite measures carrier-phase L%(tz) from the uplink, the observation equation is
given as the second equation in (16.2). For the GNSS orbit altitude, we can model
light-travel time for the uplink and the downlink using the line-of sight velocity of
the GNSS satellites relative to the ground station, similar to the geometry between
GNSS and a ground station or a LEO satellite in space, see Sect. 2. This means that
the geometry terms for downlink p? and uplink p} are nearly equal and can be
removed with the sufficient accuracy. Making a difference of (16.2) we derive

1
2

1 1 . 3 1
(L% - Lé) = ()“%le - ;”éNzl) - 5 (bmt(tl) +bm(t2)) + E (breC(IZ) +br66(tl))

T2
(16.3)

From (16.3) we can see that our observation model is still biased by the
carrier-phase ambiguities for downlink A%le and uplink )éNzl that are typically
given at different frequency. To remove ambiguity parts, one can make use of
differencing over time. Frequency difference between a ground clock and a space
clock from time #4 and #p

-1 ~[3E-1)] = [-5Ep )+ 50l + b)) -

A g

[~ 005 (0) 4 () + b))

2 i
_‘](;EC 7fSllf
(16.4)
gives the frequency difference f*“ — f,,. that can be written
4 l(LZ—L‘) = Af = free = f*" (16.5)
dr |2V 2 e '

If the satellite is used as a transponder of the uplink signal sent from a ground
station, carrier-phase measurements can be performed separately for uplink and
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downlink by the ground receiver. Carrier-phase measurements can also be per-
formed between an uplink and a downlink signal by the ground station. In case the
ground station is used as a transponder, carrier-phase measurements can be per-
formed by the satellite. Again, a geometry-free frequency offset is determined
between a ground station clock and a satellite clock. Such measurements can be
used to steer very accurately the onboard frequency of a GNSS satellite. We do not
consider an error budget in full detail here. However, visibility time of a GNSS
satellite from a ground station is typically several hours (e.g., 6 h), compared to a
very short observation time, limited to about 5 min, for the ACES mission in LEO
orbit. This gives a lot of confidence for future GNSS considering that the ACES
two-way link with satellite clocks showing two orders of magnitude better per-
formance compared to Galileo clocks is a guarantee of such an approach.

The question is what are the limitations of the two-way approach? Considering
that there is a light-travel time between a satellite and a ground station Az, one could
distinguish a A-configuration when differencing is referred to the common epoch on
a satellite or V-configuration when differencing between downlink and uplink
measurements is done for an epoch referred to the a ground station, see Fig. 16.1.
The propagation path in the atmosphere for A-configuration and V-configuration is
slightly different, and could be a source of error. This is especially true for the
ground-to-LEO or ground-to-GNSS clock comparison in A-configuration with a
large point-ahead angle between the ground station and the LEO satellite, or for a
HEO orbit with a very long light-travel time. In both cases, atmospheric turbulence
(with a spectrum up to some 1000 Hz) can generate an effect in the optical or
microwave phase that is not eliminated by forming differences between
carrier-phase measurements of the two symmetric paths. Considering the very short

A-configuration V-configuration

GNSS ‘* At 4 GNSS
' <4

At

LKk

Ground station

Ground station

Fig. 16.1 The A-configuration and V-configuration of the two-way approach for uplink and
downlink measurements. Due to the light-travel time A¢, signal propagates slightly differently for
the atmosphere conditions in the A-configuration, whereas satellite moves during the light-travel
time in the V-configuration
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wavelength of the optical frequencies used, in the case of optical measurements,
this asymmetry could even prevent coherent tracking of the optical signal, i.e.,
coherent optical carrier with GHz-modulation. In the case of a clock on an inter-
planetary satellite, the light-travel time could easily reach 30 min (2 x 8.3 min/AU)
and during that period of time the dry/wet part of the atmospheric delay could
significantly change (not only due to atmospheric turbulence). Because of Earth’s
rotation, the point-ahead angle changes by ~2x2.1°/AU, and is about 10° at the
distance to, e.g., Mars (a = 1.5 AU). In the case of the ionosphere this asymmetry
introduces different bending angles between two counter-propagating waves and
the ionospheric/plasmaspheric effects are generally different for the two waves. This
complicates the removal of the first order ionosphere-effect by using the
ionosphere-free linear combination. In the case of higher order effects of the
ionosphere, these are not eliminated by forming differences or ionosphere-free
linear combination, but effects on uplink and downlink sum up. Ionospheric/
plasmaspheric effects can be reduced by making use of the higher microwave bands
such as Ka-band or higher, where the second and higher order effects are
insignificant. In the case of the LISA mission (The Laser Interferometer Space
Antenna) with an armlength of 5 Mkm, or eLISA (Extended LISA) with an arm-
length of 1 Mkm, an additional constraint is precise pointing or alignment for the
optical telescope. Even ILRS stations with very good ground stabilization very
often report difficulties in directing SLR telescopes at GNSS satellites. Tracking
over lunar distances is feasible only for a few ILRS stations. Considering the
previous example with the Mars distance, the SLR telescope should be re-aligned
by about 10° between an uplink and a downlink.

All these geometry and propagation constraints would be eliminated if one
designed a one-way metrology link, because in that case the signals would prop-
agate along the same path through the atmosphere or interplanetary plasmasphere.

16.3 The One-Way Geometry-Free Approach
to Frequency Transfer

Let us imagine that a satellite clock is transmitting to the receiver the same signal
twice, i.e., with frequency f*“, and a frequency f*“? shifted by an offset Af, with
foar2 = fsat 1 Af. see Fig. 16.2. Such a scenario is typical for GNSS satellites, for
time and frequency transfer, and for some interplanetary missions. In addition to the
reference clock error b*" associated with the frequency f*“, any use of a
transponder or frequency multiplication, such as the case of GNSS, will introduce
an additional time delay error 5°*? in the generation of the frequency offset Af. The
observation equation for the carrier-phase measurements denoted here as L; (b**)
and L, (b*  b**?) tracked by the receiver is
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4 satellite clock
transmitter

&
Af

f‘mr fsat,Z :fsat + Af

receiver,

Fig. 16.2 General concept of the one-way approach to transfer frequency offset Af. When
received by the receiver, geometry and propagation effects can be removed by using geometry-free
linear combination in the time domain. In this way, frequency offset Af can be directly measured
by the ground receiver. The first order ionosphere-effect reduces by 1/f> and is significantly
smaller in size when differenced in time

Ll(bxat) = p +}L]N1 (bsal) _ bxat +brec+ll

f.vat (166)

Lz(bsat7 bsaz,Z) =p + }~2N2 (bsat7 bsat,Z) _ bsat _ bsat,Z +brec + (fsat72)211

where b, is the receiver error on the ground with geometry term p, ambiguity
terms 4;N; and AN, and the first-order ionosphere-effect I;. The frequency offset
can be small enough to guarantee that there is no interference between the two
signals. The geometry-free linear combination Ly (b*, b**?) is then

L4(bmt, bsat72) _ Ll (bsat) o Ll (bsat7 bsat,2)

) sat (16.7)
_ bsat,Z + N, (bsat) _ )QNz(bmt,bsm"z) 4 |:1 . (]{;al,z)2:| I

with the last term denoting the differential first-order ionosphere effect Al;. If we
now make a difference of (16.7) over a time interval ¢, the ambiguity parameter will
be removed

AL4(bsm, bmt,2) _ A[Ll(bsat) _ Ll (bmt, bsat,Z)]g: bxat,Z(t) _ bsat,Z +A11 (t) _ AI]

Z/(Af+A11) ~dt
0
(16.8)

By increasing the frequency, the first order ionosphere-effect reduces by 1/f2.
We will show later in this section that differential ionospheric effects Al; between
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two frequencies are proportional to 1/f* and thus are significantly smaller in size
when differenced in the time domain. Thus, they can either be neglected or removed
using an a priori ionosphere-model. The use of two frequencies in X-band or in the
Ka-band will decrease the first order ionosphere effect by a factor of at least 100
compared to the GNSS frequencies in the L-band. The high-order
ionosphere-effects that are proportional to 1/f3, 1/f* or 1/f> are reduced even
faster by increasing the frequency. When considering such a concept in space, using
a space-based receiver and a space-based transmitter, frequency steering between
satellites or a GEO satellite could, in principle, be performed using the one-way
approach. GNSS satellites are high above the ionosphere and plasmasphere effects
are significantly reduced.

The clock parameter »**%(¢) in (16.8) is associated with the frequency f**? and
measured against the frequency of the receiver f..

b2 (1) = / Af - dt (16.9)
0

In this way, we can measure a frequency offset Af of the satellite clock relative
to the same frequency offset generated by the receiver. The geometry and propa-
gation effects can be removed by using the geometry-free linear combination in the
time domain (16.8). This concept could be realized with optical and microwave
measurements and is basically free of all propagation effects. If we assume that
typical LEO orbit velocity is known with a standard deviation of 0.01 mm/s (over a
daily period), the error in the first order Doppler effect will give a relative frequency
offset in the reference frequency to an accuracy of 3 - 10~!# for a single station and
the effect will be reduced by using single-differences with two stations as a function
of nadir angle o4

one station two stations

Af 0.0l mm/s 14 Af 0.0l mm/s 16 1110

7:7x3~10 7:7[1—cos(o¢nad,‘,)]z4~10 /10
c c

(16.10)

Since the determined radial orbit velocity is more accurate for GNSS and
averages out for a typical GNSS orbit, this approach is very interesting for the
application of tri-carrier GPS measurements (GPS BLOCK-IIF). In the case of
common-view single-differencing the effect is significantly reduced by about two
orders of magnitude, offering the possibility of achieving a level of accuracy for the
relative frequency comparison in the order of 108 over several hours of aver-
aging. Currently, there are about 12 GPS BLOCK-IIF satellites in the GPS
constellation.
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16.3.1 Differential Atmospheric Effects in Optical
and Microwave Bands

Here we look at the differential ionospheric and tropospheric effects on the one-way
signal on the two frequencies f;* and f;" close to one another in the optical band and
separately, two frequencies f|” and f; in the microwave frequency band.

Let us first look at the differential ionospheric effect on the two frequencies close
to one another in the GNSS L-band. The derivative of the first order
ionosphere-effect I in the zenith direction gives

al = 2 ppe g = Y (16.11)
f? f

with typically used value for k7 = 40.3 in the first-order ionosphere-effect. With a
differential microwave frequency df at the MHz-level, the first order effect is
reduced by about three orders of magnitude, thus it can be neglected or easily
eliminated to below the mme-level by the simple Klobuchar-grade ionosphere
models available from the broadcast navigation message. Higher-order ionospheric
effects are completely eliminated as are the tropospheric effects. At higher fre-
quencies, such as Ka-band, the first order ionosphere-effect is further reduced by a
factor of about 30 compared to the fi GPS frequency. For the differential atmo-
spheric effect on optical frequencies, we make use of the Marini-Murray model,
IERS Conventions 2003 (McCarthy and Petit 2004). The range correction due to
the Marini-Murray is

f(A) A+B
AR = . (16.12)
. B/(A+B
f(¢,H) sin £ + sin/l(5++0.0)l

with elevation of satellite £ and A and B given in McCarthy and Petit (2004). The
laser site function is denoted by f(¢, H) and the laser frequency parameter (1) is

f(i)=k1+k—§+k—j (16.13)
A A
given for the wavelength A in micrometers. For a ruby laser f(1) = 1. For the
constants k; = 0.9650 and k, = 0.0164 and k3 = 0.000228 we refer to McCarthy
and Petit (2004). From (16.13) it follows that the differential in the range correction
(meters) is

0.0334
23

dAR ~ —AR . (16.14)
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which for the infrared wavelength of 1064 nm gives
dAR =~ —0.0311AR - dA (16.15)

A difference in the wavelengths of 1 nm gives about 30 pm per 1 m of range
correction for a wavelength of 1064 nm. The accuracy of the troposphere models
used for SLR is below one millimeter, (see IERS Conventions 2010 (Petit and
Luzum 2010)). Therefore, by utilizing an a priori troposphere model, e.g., (Mendes
and Pavlis 2004), the accuracy of our differential troposphere model (16.15) can be
significantly increased.

16.3.2 A Concept for an Interferometric Metrology Link

Let us now look at the case where a satellite is transmitting a carrier-wave on two
frequencies f; and f;' in the optical or near-infrared spectrum separated by the beat
frequency Af* in the microwave domain. This frequency separation could be
chosen to be in the microwave band of GNSS frequencies, e.g.,

A =f—fi =154-fy=h, (16.16)

where f;, denotes the fundamental GPS frequency f, = 10.23 MHz and f; is the
GPS frequency. Taking into account only the first order Doppler effect, the fre-
quencies of the signal received on the ground are

Jra = (1 —g)ff‘, Tro = (1 —§>f2* (16.17)

where p denotes the line-of-sight range rate with the Doppler shifted beat frequency
Afy

N =tia—fin = (1-2)ar = (1-2)5, (16.18)

Instead of tracking each optical frequency separately, we combine them in order
to generate the beat frequency Afy using optical heterodyning

sin (27Tf§11l) sin (27Tf1§2t) = %cos [271 (f;‘2 —f;‘l)t} - %cos [271 (f;,z —&-f,}"l)t} .
(16.19)

Heterodyning is a radio/optical signal processing technique in which two ref-
erence frequencies are linearly combined or mixed in order to create two new
frequencies (differencing/summation). From the trigonometric relation (16.19), we
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see that the multiplication of two carrier waves generates two new signals. Applied
to our case, two frequencies close to one another in the visible part of the spectrum
fr1 and fz, illuminate the photo-detector in the receiver and the oscillating elec-
trical signal corresponds to the difference between their frequencies, i.e., the beat
frequency Afy. In our case, this beat frequency corresponds to the Doppler-shifted
GPS frequency f; in the L-band. In the next step, the generated beat signal with
frequency Afy is compared against the reference signal from the ground frequency
reference in order to generate carrier-phase measurements. Using this approach, we
can obtain very precise measurements of phase and frequency differences between
two optical signals. Optical heterodyne detection is used for many applications,
such as coherent Doppler LIDAR measurements that are capable of detecting very
weak light scattered in the atmosphere or monitoring wind speeds in the atmosphere
with a high degree of accuracy. One can find many applications in high-accuracy
optical frequency measurements, including frequency combs.

Considering the relative velocity of the GPS satellite in (16.18) for the range rate
of, e.g., p =4 km/s, the beat frequency Afy is in the order of 21 kHz and it
generates the same carrier-phase signal as the GPS frequency fi. The received beat
frequency Afy is free of the first and higher-order ionospheric-effects, and the
influence of atmospheric turbulence as well as the dry/wet part of the tropospheric
delay is basically eliminated. Another approach would be to modulate the GPS
frequency f; onto the optical carrier with frequency f; (e.g., using phase modula-
tion) and use the optical carrier as an “atmosphere tunnel”, since optical frequencies
are not affected by ionospheric effects and the dry/wet part of the troposphere can
be modeled at the sub-mm-level, see IERS Conventions 2010 (Petit and Luzum
2010). In that case, carrier-phase measurements would need to be performed using a
modulated “GPS carrier” on the optical carrier comparing it against the reference
frequency used by the receiver. Such a concept would be feasible with only one
optical frequency.

16.4 The GPS One-Way Approach to Frequency Transfer

Typically, a GPS satellite uses the fundamental frequency f; = 10.23 MHz to
generate by multiplication fi = 154 -fy, o =120-fy and f5 = 115-f;. Let us
imagine a frequency offset Af associated with, e.g., f& = (115 - f + Af). Such an
error will generate an additional clock error b{(¢) accumulated over time ¢

t t t
wign € [N [Af
bt (t)_fS!Af dt_co/fs dt—llso L (16.20)

given in meters and using the speed of light c. In addition to the satellite clock error
b*" associated with an error in reference GPS frequency dfy and corresponding
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receiver clock error b, estimated every epoch, the observation equation for
carrier-phase L, and L, with this newly modified L3 observable using f5' is

Ly =p+MUNi = b+ brec + 1
f1 i,
2

B
L5 = p+A5N5 = 0™ = b5 (1) + brec +

L, = IoNy — B* + byee
2 = p+ A2N2 + + (16.21)
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with geometry term p, ambiguities N, and N,, and wavelengths /; and A,. For the
new frequency £, we have an integer ambiguity NI and wavelength As. The first
order ionosphere-effect on f; is denoted by I;. If we now form the ionosphere-free
linear combination relative to L; we obtain

¢ f2 sat
Lsy(Ly,Ly) =p+ — No) = b 4+ b
3(Li, L) = p f1+f2 f1 f2< 2)
* c f5 * 5*2 sat sat
Liy(Ly,Ls) =p+ Ny — NJ) 4+ 5——=b" — b + by
(L1, Ls) = p f1+f5* fl ( 1 5) flzf 5*2 5
(16.22)

The satellite clock error 5*“(¢) accumulated over time # for ionosphere-free linear
combination Ly(L;,Ly) can be derived from a clock error dfy in the fundamental
GPS frequency fj as

:fl [154d g P [120d dt = o
72 ﬁ/ ﬁtf‘ﬁ/ o - dt C/ﬁ

0

bmt (t)

(16.23)

where dfy/fy denotes the relative frequency error of the fundamental clock fre-
quency fy. The same satellite clock is defined using the ionosphere-free linear
combination on fj and fs

t t

bxat(t): fi-c /154 dfy - dt — ff /115 dfo-dt =c- /cj(fo dt
0

-5 5B 0
(16.24)
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Following the IGS convention, GPS satellite clock parameters are defined using
the ionosphere-free linear combination Ly(L,,L,) of L; and L, measured on P-
code. From, (16.24) one can see that the same clock parameter is defined by f; and
fs aslong as ff =fy =115 - fy and Af = 0.

If we now subtract the two equations in (16.22), we derive AL;

%2
ALy = La(La, 15) = La(la, L2) = 7 b (izv<1,z> - A;V(LS>)N1
1 P Js (16.25)
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with the narrow-lane Ay(12) = ¢/(fi + /) and Ay, 5) = ¢/(fi +f5), and the wide-lane
wavelengths Ay (1) = ¢/(fi —f>) and /lfm_s) =c/(fi —f;), and ambiguities
NW(],Z) =N —N, and N;V(I,S) =N, — N;

The ambiguity part in (16.25) can be removed by making a difference in time ¢,

measuring directly frequency offset Af using the geometry-free linear combination
AL;(t) differenced over time

t
AL (1) = i b (1) = i e [Y g (16.26)
B T e - '
0

considering that 5" (r) is an accumulated time error over 7. The size of the term

(f2/f? +f2) ~ 1.26 is modest. Equation (16.26) shows that one can transfer fre-
quency offset Af or relative frequency Af/fs from space to ground in a
geometry-free way, as in the case with the one-way approach with two frequencies.

16.5 The GPS Transponder Concept—Towards
“Geometry-Free” Positioning

As demonstrated earlier in this section, using a one-way or two-way approach it is
possible to eliminate frequency offset between receiver and transmitter from
equations used in orbit determination.

Quasars can be observed over the entire observable electromagnetic spectrum,
including radio, infrared, optical, ultraviolet, X-ray and even gamma rays.
A selected frequency band could be observed by a phased-array antenna on board a
satellite. The same approach could be applied to a GNSS and a LEO satellite,
(Fig. 16.3). This tracking could be performed in open-loop, as in the case of VLBI,
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or using a frequency comb to measure the spectrum of the received signal. The ideal
solution would be to perform carrier-phase measurements, as in the GNSS-LEO
case. At the same time, the signal tracked by the antenna array could be transmitted
to Earth or measurements taken could be downloaded to a ground station using an
(optical) communication link or retransmitted towards the Earth ("GPS transpon-
der” concept) in the case of GNSS-LEO configuration. If the same quasar is tracked
in the vicinity of the satellite (in the line-of-sight), one could directly measure the
Doppler shift, i.e., the line-of-sight velocity of the satellite, by comparing the same
signal from satellite and/or quasar. This measurement is geometry-free, since the
frequency of the clock onboard the satellite could be measured from the ground
using either one-way or two-way frequency measurements. This measurement of
the line-of-sight velocity is not only geometry-free, but is also free of any propa-
gation effects. The more than 3000 radio sources listed in ICRF2 are sufficient to
enable any satellite to carry out such measurement in the light-of-sight direction.
For the ground tracking, one would need to use VLBI or phased-array antennae.
Due to good multipath mitigation capabilities and the low noise of GNSS
observables, it is believed that phased-array antennae will find an application in
permanent GNSS networks such as IGS.

This type of geometry-free measurement could support a pulsar-based time
scale. According to Hobbs et al. (2012), there are about 30 quasars that in terms of
timing stability provide an alternative to TAI, as demonstrated in Hobbs et al.
(2012). With the proposed geometry-free approach, one could transfer a pulsar time
scale from the satellite to the ground, eliminating atmospheric effects with the
one-way or two-way approach. STE-QUEST has the potential to be the first mission
to demonstrate the geometry-free one-way approach for positioning (making use of
the existing onboard payload), see Sect. 27. The same approach could be applied to
deep space missions carrying metrology links.

GNSS
.

/ Extragalactic ‘Sources LEO
4
@ GNSS or LEO Satellite /

4

VLBI Telescope

Fig. 16.3 Concept of one-way geometry-free positioning: with a GNSS satellite and a quasar
(left) and a GNSS satellite and a LEO or a GEO satellite (right) “GPS transponder” concept. Since
time could be eliminated from orbit determination, the orbit itself can be observed w.r.t. another
satellite or object. A navigation signal needs to be received and re-transmitted from the target
satellite relative to the known object, e.g., the GNSS satellite or quasar
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16.6 Geometrical Mapping of a GNSS Constellation
Against Extragalactic Radio Sources

Geometrical mapping of a GNSS constellation against extragalactic radio sources
(quasars) can be realized by observing quasars at the approximate location of GNSS
satellites. This is similar to the Delta-DOR approach used in the tracking of inter-
planetary satellites, where an open-loop receiver samples VLBI signals in the S-/X-
and/or Ka-bands. To track GNSS satellites, one would also need to sample GNSS
signals in the L-band, and correlate them on a correlator. Compared to GPS, there
would be an advantage for Galileo, due to the wide range of different modulations on
several frequencies and the higher bandwidth one could obtain from the Galileo
signals. A second approach would be to observe GNSS carrier-phase and code
measurements using a GNSS receiver connected to a VLBI antenna. Due to the size
of the typical VLBI antenna dish and the pointing of the antenna, the thermal noise of
the received signal would be significantly less than that experienced with the stan-
dard choke-ring omni-directional antenna currently used by the IGS.

Figure 16.4 shows ionosphere-free code against ionosphere-free carrier-phase
measurements from the GNSS receiver connected to a 25 m antenna dish.
Translated to the original single frequency observable, the noise of the code
measurements is at 6 mm precision. Such a low code noise significantly simplifies
ambiguity resolution of the carrier-phase measurements. This opens up the possi-
bility of using the differential same-beam VLBI interferometry approach to track
GNSS constellations. In this technique, two ground-based VLBI stations track the
same two close-by GNSS satellites within the beam width of the VLBI antennae.
Differential same-beam interferometry provides very accurate relative positioning

03 T T T T T

L1CA & L2P |

0.2

0.15

Group Delay in meters

13.9 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9
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Fig. 16.4 GPS signal observed with an L-band receiver connected to a 25 m antenna. Difference
between ionosphere-free code (C/A on L;) and ionosphere-free carrier-phase measurements
(Svehla et al. 2010a) converted to the noise level of the original single-frequency measurements.
The code measurements have a precision of about 6 mm
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measurements in the plane-of-the-sky (same plane), thus complementing the
line-of-sight information one can obtain from the one-way GNSS carrier-phase and
code measurements. The main advantage of differential same-beam VLBI lies in the
differencing out of common errors over a narrow beam-width angle. However, if
the differential measurement is performed on only a single frequency, the total
phase delay is biased by an integer ambiguity, thus ambiguity resolution is required
(with very accurate code measurements in that case). A VLBI session would always
need to be scheduled in such a way that several GNSS satellites are visible in the

Table 16.2 Advantages and
disadvantages of VLBI at
higher frequencies (Ka/
W-band) that could allow the

Advantages

* Main drivers are new space missions (Mars Reconnaissance
Orbiter, BepiColombo, JUICE, Netlander...) requiring higher
telemetry rates, radio-science, improved deep-space navigation

use Of smaller antennae for (gravity field), lower ionosphere/solar plasma-effects, etc.

comb.med C_}NSSN LBI * Higher telemetry data rates in deep space

tracking using a phased-array . Oppoard RF systems are smaller (antenna) and lighter

antenna design * Avoidance of RF interference in S-band

* Ionospheric & solar plasma effects decreased by 16-100 times at
32 GHz/90 GHz compared to 8 GHz

* Observations possible closer to the Sun/galactic center

* Very compact sources (spatial distribution of flux) that give more
stability in position over time

» Compared to ICRF2 frame defined in S/X-band, positions in
Ka-band are closer to optical positions (GAIA)

Disadvantages

* More weather-sensitive (close to the 22 GHz water vapor line)

* Antenna pointing requirements 4—10 times higher at 32 GHz/90
GHz than at 8 GHz (beam forming technique)

* In order to increase sensitivity, sampling rate needs to be 4-10
times higher at 32 GHz/90 GHz compared to 8§ GHz

* Currently no celestial frame in the W-band, first realization of
celestial frame at 32 GHz

same beam-width in the vicinity of a selected quasar seen from two different VLBI
stations. Differential same-beam interferometry between GNSS satellites in close
proximity to one another is, by its very nature, a double-difference approach.
First attempts have already been made to observe GNSS satellites using VLBI
(Kodet et al. 2013) by observing GLONASS satellites from the Wettzell and
Onsala VLBI stations with an open-loop receiver. The receiver of the Wettzell 20 m
VLBI antenna has been modified to measure the GNSS L; signal without changing
the local ties (Kodet et al. 2013). It is very important to mention that with the VLBI
technique it is possible to determine GNSS satellite orbits without using any other
GNSS or SLR measurements. The noise level of the positions of 3414 S-/X-band
radio sources listed in ICRF2 (295 defining sources) is in the order of ~40 pas with
an axis stability of ~10 pas (Gordon et al. 2010). Translated to GNSS altitudes, this
gives a position precision of 5 mm RMS for these 3414 S-/X-band radio sources.
Very small steerable antennae will be required to observe the orbits of GNSS
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satellites against quasars using higher frequencies (Ka-band or W-band). Such a
configuration could be improved by making use of a fixed phased-array antennae
with beam forming on receive. The phased-array technique would improve the gain
of the antenna and it could track all in-view GNSS satellites and refer them to the
common measurement epoch. Table 16.2 lists the advantages and disadvantages of
VLBI at higher frequencies. First attempts to define a celestial frame at 32 GHz have
already been made, mainly driven by the radio-science objectives of the most recent
space missions. It is expected that the next realization of the ICRS will include
radio-sources observed at higher frequencies, in at least the Ka-band (32 GHz).

16.7 Can LAGEOS or Lunar Retro-Reflectors
be Observed by VLBI?

Radars are used to detect and track objects in space with metre-grade ranging, (Joint
Space Operations Center (JSpOC) and NORAD in the USA and TIRA (Tracking
and Imaging Radar) of the Fraunhofer Institute in Europe). JSpOC tracks more than
16 000 objects and uses infrared sensors to detect the re-entry of satellites.

If the ground radar sends microwave signals towards a LAGEOS satellite, this
signal will be reflected and scattered by the surface of the satellite into all directions
and a tiny part of the wave’s energy will be directed towards the ground VLBI
antennae, see Fig. 16.5.

How the microwaves transmitted by the ground radar scatter on the surface of
the satellite depends on their wavelength and the shape of the satellite. If the
wavelength of the microwave signal is smaller than the size of the satellite, the
wave will be reflected in a specular way similar to light. However, due to
diffraction, divergence of the reflected signal will allow tracking the same signal by
the VLBI antennae at different locations. It is assumed that such a wide-band
microwave signal could be tracked by the open-loop receiver or similar techniques
used for tracking extragalactic sources and inter-planetary satellites.

Making use of such a bi-static VLBI concept, the LAGEOS orbit could be
determined by SLR and microwave VLBI and tied against the positions of extra-
galactic radio sources. The same principle could be applied to Iunar laser
retro-reflectors. So-called persistent scatterers, as they are known in SAR inter-
ferometry, are objects that reflect radar well, e.g., metallic structures, buildings etc.
If the radar is directed towards the laser retro-reflector on the Moon, the diffraction
pattern from the laser retro-reflectors will be different to that from the surrounding
lunar surface. Thus one could correlate VLBI signals observed by several VLBI
antennae on Earth. Potentially, this could be extended to all 5 retro-reflectors on the
Moon in order to monitor lunar orientation (librations). The proposed bi-static
concept could potentially open up new applications of VLBI in combining geo-
metric and dynamic frames. Here we only outline the idea and perform no
simulations.
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LAGEOS or lunar laser retro-reflector

]

VLBI antenna Radar or wide-band VLBI antenna
microwave signal

Fig. 16.5 A possible bi-static concept of VLBI with a LAGEOS satellite or lunar laser
retro-reflectors. A radar microwave signal is transmitted towards the LAGEOS satellite and after
reflection/scattering by the satellite, is tracked by the VLBI radio-telescopes on Earth. In the case
of laser retro-reflectors on the Moon, the diffraction pattern from the retro-reflectors will be
different to that from the surrounding surface, thus one could possibly correlate wide-band signals
received by different VLBI antennae. Another approach is to use the principle of photoconduc-
tivity, where a passive detector (e.g., on lunar/Mars surface), after being illuminated by SLR or a
ground-based radar, transmits a wide-band signal tracked by several VLBI antennae

Another possible approach is to use a principle of photoconductive antennae,
where a passive detector (e.g., on lunar/Mars surface), after being illuminated by
SLR or a ground radar, transmits a wide-band microwave signal observed by
several VLBI antennae on Earth. This could be called planetary VLBI.
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Chapter 17 )
The SLR/LLR Double-Difference Check for
Baseline

Here we present a novel SLR double-difference approach with GNSS satellites. It is
shown how forming double-differences of SLR measurements between
Herstmonceux (HERL) and Graz (GRZL) ILRS stations and two Galileo satellites
removes common SLR biases: i.e., ILRS station range biases and common
retro-reflector effects. By using the orbits of GNSS satellites from IGS as fixed in the
parameter estimation, the double-difference SLR approach offers a bias-free esti-
mation of relative coordinates with the mm-accuracy between two ILRS stations
(SLR baseline) that are separated by about 5000 km. In this way, we obtain SLR
observables of utmost precision and accuracy at sub-millimeter level with the
standard deviation ¢ = 0.5 — 1.0 mm. We show that after differencing the remain-
ing noise in the SLR measurements nicely averages out, leading to estimation of
station coordinates, local ties between different space geodesy techniques and pre-
cise comparison of optical/microwave tropospheric effects. Considering that relative
station coordinates between ILRS stations can be estimated in a similar way between
collocated GNSS stations using the GNSS double-differences, the SLR approach
allows direct estimation of local ties between SLR and GNSS ground stations. We
extend the common-view SLR and make double-differences over time by consid-
ering the different observation times for all SLR measurements between all SLR
stations. SLR range biases and small biases between SLR sessions are removed. The
scale is preserved when double-differencing SLR and free of range biases (at
mme-level), making this approach very attractive to combine ILRS network with IGS
network in the global GNSS solution. We show that LLR offers estimation of UTO
and with differential SLR the global GNSS can estimate a complete terrestrial frame.
For the un-differenced SLR we refer to Pearlman et al. (2002).

When a LEO satellite is observed by two SLR stations quasi-simultaneously
with a GNSS satellite, one can calculate the “vertical SLR baseline” (vector)
between the GNSS and the LAGEOS (LEO) satellite as well as the “vertical SLR
range” (GNSS-LEO range) derived from geometry. This provides radial orbit
information that can be used for altimetry and gravity field missions as well as
reference frame satellites. At the end we extend the double-difference approach to
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other space geodesy techniques such as lunar laser ranging, VLBI and DORIS and
discuss estimation of local ties and global reference frame parameters. We also
derive a relationship between a possible bias in LAGEOS center of mass correction
and radial bias in GNSS orbits. At the end we extend the concept of SLR
double-differencing to lunar laser ranging (LLR) and present first results for the
LLR double-difference baseline. We succeeded in processing LLR measurements to
Apollo and Luna retro-reflectors on the Moon, and, in a similar way, have pro-
cessed SLR measurements to GPS satellites considering only the geocentric frame
in order to model the uplink and downlink for lunar laser ranges.

17.1 SLR Double-Differences—QOver Time
and Common-View

Double-differences are widely used in the processing of GPS measurements,
forming so-called GPS baselines, or vectors between ground GPS stations. In the
case of common-view double-difference SLR, the approach is very much the same,
we need SLR ranges or SLR normal points given at the same (common) epoch ¢
from two stations (one station as reference), see Fig. 17.1 (left). In that case, the
SLR single-difference SD}, ; between the ranges d of stations A and B to a satellite

“1” for a given common epoch ¢ can be defined as

1 gl 1
SD, p(t) := dg(t) — d,(2) (17.1)
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Fig. 17.1 Figure on the left shows the general case, i.e. the SLR double-differences over time
(green) with four different observation epochs observing two Galileo satellites from two ILRS
stations with SLR range biases (red). Figure on the right shows radial orbit differences between
different IGS solutions and the IGS Final Orbit. The high level of orbit precision for GPS satellites
enables interpolation of SLR normal points to the common epoch to form common-view SLR
double-differences. Range- and satellite-biases are removed
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If we observe quasi-simultaneously a second satellite “2” from both stations,
similar to GPS, we can define the common-view SLR double-difference or the
common-view SLR baseline as

DD, y(1) == [di (1) — d3(1)] — [dy(r) — dj(1)] (17.2)

as originally proposed in Svehla et al. (2012) and later extended with more mea-
surements and discussed in more detail in Svehla et al. (2013a, 2014, 2015b). From
(17.1), we see that by forming SLR single-differences between two ILRS stations
and a common GNSS satellite, common orbit errors are removed as well as com-
mon retro-reflector effects. According to (17.2), common-view SLR
double-differences remove range-biases and station-specific effects such as common
troposphere effects between the two ILRS stations and the same two GNSS satel-
lites. In general case, that is more appropriate when ILRS network is processed with
IGS network, we can define the SLR double-differences over time, considering
different observation time for all ILRS stations. SLR range biases and small biases
between SLR sessions are removed.

In the case of GPS, measurements are taken at integer seconds of receiver time that
is synchronized to the global GPS time scale, and the navigation solution is calculated
internally by the GPS receiver. Hence, GPS double-differences can be formed
between any two stations in the world that have two GPS satellites in common-view.
The velocity of the observed satellite drives the synchronization accuracy required to
form common-view double-differences. A synchronization error of 0.1 ps will lead to
an orbit error of 0.4 mm in the case of GNSS satellites or 0.8 mm in the case of LEOs.
In order to form common-view SLR double-differences with an accuracy better than
0.4 mm RMS, SLR measurements between two stations need to be synchronized
(e.g., to GPS time) with an accuracy of about 50 ns RMS that corresponds to a GNSS
orbit-induced error of 0.2 mm. The typical accuracy of a GPS receiver clock
parameter estimated by the navigation solution in a GPS receiver is in the order of
10 ns RMS. The required level of synchronization for the SLR double-difference
approach is already provided by GPS and available at ILRS stations.

The easiest way to form common-view double-differences of SLR measurements
between two ILRS stations is to generate SLR normal points at the common epoch
for both stations. Since this is currently not done, SLR normal points need to be
interpolated using the epoch of one of the stations in the pair as a reference.
Figure 17.1 shows the orbit differences in the radial direction for the GPS-36
satellite between different IGS Analysis Centres and the IGS Final Orbit. One can
see that for the best orbit solutions, the radial orbit error is always under 1 cm,
which corresponds to a standard deviation of about ¢ = 3 mm. If we look at the
first derivative, we have a slope in the radial orbit error in the order of up to 1 cm/
3 h (vs. IGS Final Orbit). Therefore, if we assume the interleaving time between the
SLR observations of two GNSS satellites to be, e.g., 10 min, we have a systematic
error of about 0.5 mm. However, it should be noted that any mean in this inter-
polation is removed by single-differencing to the same satellite, thus a standard
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deviation below 0.1 mm is more realistic considering also that IGS Final Orbits
should be more accurate than any of the individual orbit solutions. For some ILRS
stations (e.g., Herstmonceux and Graz), the interleaving time between GNSS
satellites can be reduced to 30—60 s, thus several GNSS satellites could be observed
simultaneously in the same session. This analysis shows that SLR single-differences
do not remove the interpolation error of SLR normal points. However, the use of
the precise orbit keeps this orbit error below the precision of the SLR normal points
even for longer interleaving time intervals.

SLR range biases are not eliminated by forming single-differences between two
stations, thus the single-difference to another satellite in common-view is needed.
When orbit and range biases are removed by double-differencing, SLR with
sub-millimeter precision is feasible, and is mainly limited by the station-internal
noise. The use of zero-signature retro-reflectors, kHz-ranging systems for GNSS
arrays, and the use of enhanced troposphere modeling have produced a degree of
precision in SLR that is heading towards the sub-millimetre level. Both GNSS
satellites need to be observed quasi-simultaneously (within some e.g., 10-30 min)
so that SLR residuals from two stations can be interpolated to the common epoch.
Although double-differencing increases the noise level by a factor of 2 w.r.t. the
original SLR observable, all session-based systematic effects are at much higher
levels and are removed, thus paving the way for sub-millimeter SLR.

We call this approach geometrical because, for the separation of ground SLR
stations up to a distance of about 1000-5000 km, GNSS orbit errors of 1 cm RMS
do not have a significant impact on the SLR double-difference baseline, or they are
significantly reduced to below 1.7 mm. This topic is further discussed in this section.
Therefore, relative station coordinates can be determined using double-difference
SLR without further improving the orbits of the target satellites that need to be at
higher altitudes (GNSS). In this way, this approach is similar to geometrical VLBI,
where relative station coordinates are estimated. In our view, when LAGEOS and
Etalon satellites are observed by SLR for reference frame realization, any orbit error
or deficiency in the orbit modeling, such as e.g., solar radiation pressure and other
effects, propagates directly into the estimated station coordinates. In addition, SLR
measurements are very sparse in nature: the orbits of SLR satellites used for refer-
ence frame realization are not observed continuously, as is the case with GNSS. In
this way, the quality of the satellite orbit determination that is based on SLR mea-
surements has a significant impact on reference frame realization and the averaging
process is essential for the estimation of high-precision station coordinates over a
long period of time. In our view, all these deficiencies of the classical SLR approach
can be avoided by making use of double-differences with satellites in high Earth
orbit, e.g., GNSS. In this case, ground stations are within half of the max. nadir
angle, i.e., 12-14°, as seen from the GNSS satellite.

Differencing of SLR measurements was considered back in the 80s, where the
use of simultaneously (from two stations) observed range differences to LAGEOS
satellites was investigated. For more details see Pavlis (1985) or Dedes and Mueller
(1989). However, the LAGEOS orbit is too low for the common-view
double-differencing that is used in this paper with GNSS satellites.
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17.2 Biases in SLR Measurements

In order to assess the size of the biases in the SLR range measurements, we compared
SLR residuals of the Galileo E11 satellite from different ILRS stations against Galileo
residual clock parameters calculated by removing a daily time offset and time drift
from the estimated clock parameters. Due to the high altitude of the Galileo satellite
orbits, any radial orbit error is compensated by the estimated clock parameter in the
orbit determination. Therefore, when a linear model is removed from the estimated
Galileo clock parameters, residual clock parameters map radial orbit errors along the
orbit with an opposite sign relative to the SLR residuals. Figure 17.2 shows a very
good agreement between SLR residuals and residual clock parameters for the Galileo
E11 satellite. We chose a period of 30 days (95-125/2013) with high Sun elevation
angle above the orbital plane (§ = 60°—67°) in order to avoid a large impact of solar
radiation pressure effects in the radial orbit direction. Galileo E11 clock parameters
were corrected only for the periodic relativistic correction due to J, gravity field
coefficient, following (Kouba 2004). The standard deviation of the calculated residual
clock parameters is 20.7 mm, whereas SLR residuals show a higher standard devi-
ation of 25.3 mm. For this analysis we used the Galileo orbit/clock solution submitted
to MGEX Campaign of IGS by the Astronomical Institute of the University of Bern
(AIUB). For more on the MGEX Campaign we refer to Steigenberger et al. (2014).
We have carried out very realistic simulations of Galileo H-masers based on ground
test results, and it can be shown that the standard deviation of simulated Galileo
residual clock parameters is at the level of 15.5 mm for a period of 24 h and about
7 mm for a period of half the orbit revolution. In this simulation we also considered
all onboard environmental effects such as variations due to temperature and magnetic
field along the Galileo orbit, for more information see Svehla et al. (2015a, 2016).
Thus the standard deviation of the corresponding Galileo radial orbit error should be
at the level of about 14 mm for the selected period of 30 days. That is about a factor of
2 smaller than the standard deviation of the SLR residuals of 25.3 mm. From this, we
can draw a conclusion that space/ground local ties as well as biases in some of the
SLR ranges and in the reference frame (e.g., geocenter), prevent the maximum
exploitation of SLR normal points that show standard deviations at much lower noise
levels, going down to some 0.2 mm, which is actually the limit for the best SLR
ground stations. On the other hand, orbit predictions operationally provided for the
first Galileo satellites are currently not of high accuracy compared to those for other
GNSS satellites, thus they are not easy targets for the ground ILRS stations. As a
consequence, any change in the ranging gate at ground stations will also result in
session-specific SLR range biases. Figure 17.3 shows SLR measurements from
Herstmonceux and Graz ILRS stations taken to the GLONASS 103 and GLONASS
129 satellites. One can see clear common orbit errors of the order of 1-5 cm in the
SLR residuals from both stations. The second interesting feature is the long-periodic
systematic effects spread over several tracking passes observed by both stations at the
mm-level. This effect is either caused by the orbit dynamics, satellite reflector sig-
nature, troposphere modeling or time-varying station effects, e.g., unmodelled tidal
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Fig. 17.2 Residual clock parameters of Galileo E11 satellite against SLR residuals for a 7-day
subset of the 30-day analysis period. From the Galileo E11 clock parameters (MGEX-AIUB) a
daily time drift and time offset was removed. The standard deviation of residual clock parameters
is 20.7 mm for days 95-125/2013, whereas noise contribution of the Galileo H-maser is about
15.5 mm over a 24 h period (based on simulated data of Galileo H-masers using ground test
results). This leads to radial Galileo orbit error at the level of ~14 mm. In comparison with clock
parameters, SLR residuals show a higher standard deviation of 25.3 mm and this factor of ~2 is
most likely due to space/ground local ties, biases in some of the SLR ranges and in the reference
frame (e.g., geocenter). The SLR residuals were calculated using the Bernese GNSS Software at
TU Miinchen and provided by AIUB, but this should introduce no inconsistencies
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Fig. 17.3 SLR residuals of the GLONASS 103 (top) and 129 (bottom) satellites from the Graz
(GRZL) and Herstmonceux (HERL) ILRS station. SLR residuals based on the orbit solution from
CODE IGS Center
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effects or atmosphere loading. The third interesting feature to note is the small relative
range biases, in the order of about 3.4 mm between the two stations. These that are
similar in size (except for the first normal point), but there is a clear difference
between the consecutive tracking passes measured at the two stations. For LAGEOS
satellites, used for reference frame determination, there exists a 7 mm difference
between the CoM corrections to be applied to stations GRZL and HERL, as rec-
ommended by the ILRS and applied by the analysis centres (Otsubo and Appleby
2003). It is interesting to note that SLR residuals to Galileo E11 in Fig. 17.2 also
show similar SLR range bias between the two stations with the same sign.
Tentatively, we suggest that loading effects of a few millimeters may contribute, and
these will be investigated in the future.

The question remains as to whether there are any signature effects due to the
SLR array or to the variable angle of incidence. The SLR arrays are flat, thus the
only systematic effect introduced into the range measurement will be via the angle
of incidence, Otsubo et al. (2001). However, GRZL and HERL ILRS stations only
receive single photons (due to 0.4 mJ pulses). With single photons, the mean
reflection point is very close to the center of the SLR array, and it will remain there,
regardless of the angle of incidence. Hence there is no systematic range error from
the “array signature”. Small variations, as induced by variations in the far field
diffraction pattern due to non-perfect prisms, are at the mm-level, and should not
appear here. Variations in the angle of incidence will only have an effects on the
RMS of the measurements: min. at 90° angle of incidence, and max. at lower
elevations/angles of incidence.

The first normal point to GLONASS 103 in Fig. 17.2 has a slightly different
range bias, thus differencing could be used in the SLR data pre-processing for
screening and calibrating SLR normal points. This is more visible for the Galileo
satellites in Fig. 17.4, where the second tracking pass (after 24 h) shows a small
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Fig. 17.4 SLR residuals of Galileo 103 (top) and 104 (bottom) satellites from Graz (GRZL) and
Herstmonceux (HERL). SLR residuals based on the orbit solution from MGEX IGS Campaign
(AIUB)
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bias for both satellites compared to the tracking pass 24 h before. Orbits for both
Galileo satellites in Fig. 17.4 were generated as two independent daily 24-h arcs for
both days and SLR measurements were most likely taken during the same session.
Thus, apparently we could have two independent tracking passes.

17.3 The First SLR Double-Difference Baseline
and the Local Tie

In order to form SLR normal points at common epochs for the Galileo 103 and
Galileo 104 satellites in Fig. 17.4, a linear model (first order polynomial) was fitted
to the normal points of the GRZL station separately for both tracking passes. In this
way, the SLR normal points of the GRZL station were interpolated to epochs of the
normal points of the HERL station, separately for each satellite and tracking pass.

Figure 17.5 shows single-difference SLR measurements for both Galileo satel-
lites. One can clearly see that residuals are grouped for each tracking pass, whereas
differences between the two satellites within the tracking pass are very small
(mm-level). Single differences cannot remove station-specific range biases, and this
explains why SLR differences to both Galileo satellites show the same bias. This
bias is removed by forming double-differences in Fig. 17.6. However, here we did
not use a linear model (first order polynomial) to interpolate SLR normal points, we
merely calculated a mean SLR bias for the single-differences of the Galileo 104
satellite. At this level, residuals shows random nature and it is difficult to model any
trend using a linear model.
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Fig. 17.5 Concept of SLR single-differences (left) and the first SLR single-differences (right) to
the Galileo 103 and Galileo 104 satellites using SLR measurements from HERL and GRZL
stations. Orbit errors in the original SLR measurements are removed, since the single-difference
residuals are very similar for both Galileo satellites. The remaining biases reflect range biases
between the two stations
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Fig. 17.6 Concept of SLR double-difference (left) and the first SLR double-differences (right)
between the Galileo 103 and Galileo 104 satellites using SLR measurements from HERL and
GRZL. Orbit and range biases in the original SLR measurements are removed, giving a SLR
baseline with a standard deviation of only 1.2 mm for MGEX-TUM orbits and 0.9 mm for
MGEX-AIUB orbits. Results were confirmed with more data from different days and different
ITRS (Svehla et al. 2015b)

Least-squares prediction with an empirical covariance function would probably
be more suitable for interpolating single-difference normal points. After subtracting
the single-differences of the Galileo 103 and Galileo 104 satellites in Fig. 17.5 we
obtained the double-difference SLR residuals shown in Fig. 17.6. Figure 17.6
nicely shows that all orbit and SLR range biases are removed by forming
double-differences of SLR measurements. The standard deviation of
double-difference residuals is ¢ = 1.2 mm for MGEX-TUM orbits and ¢ = 0.9 mm
for MGEX-AIUB orbits. Since by forming double-differences the noise is increased
by a factor of 2, the noise level of the original SLR normal points is about
g = 0.5 mm. A small bias in the remaining SLR double-differences for both orbits
in Fig. 17.6 indicates remaining systematic effects that were not removed by dif-
ferencing. However, the scale of the SLR measurements is preserved by

Table 17.1 Left: estimated horizontal coordinates (N-North, E-East) of the HERL station w.r.t.
ITRF2008 terrestrial reference frame using the SLR double-difference baselines from GRZL based
on only 15 double-difference normal points. Both solutions, based on the MGEX-TUM and
MGEX-AIUB orbits for Galileo 103 and Galileo 104 provide similar results with an accuracy of
several millimeters. If all three local coordinates are estimated, accuracy is at the cm-level based on
only 15 normal points and two GNSS satellites observed over 2 h. Right: estimated local tie in
ITRF2014 between SLR and GPS at HERL station based on collected double-difference SLR and
GPS baseline between GRAZ and HERL. Local tie at GRAZ is from ITRF2014

E_stlmatcd cmr(lin:t!cs of HERL in [mrin Given Local Tie  GRAZ
using SLR double-differences from GRZL Baseline GRAZ-HERS
MGEX-TUM Orbits | MGEX-AIUB Orbits | Estimated Local Tie HERS
op==x1.2mm op = 0.7 mm ITRF2014 Local Tie HERS
N=1.2£2.5 N=4.2+7.2
E=2.140.8 E=8.1+2.4 Difference Local Tie (Measured 6 ITRF2014): N=-0.007 E=0.0005

SLR-GPS): AX=2.5580 AY=-8.5160 AZ=1.3210
SLR-GPS): AX=-9.0427 AY=-1.7543 AZ=2.6192
SLR-GPS): AX=-6.4847 AY=-10.2703 AZ=3.9402
SLR-GPS): AX=-6.4868 AY=-10.2700 AZ=3.9487
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Fig. 17.7 Common-view observation of Galileo 103 and Galileo 104 satellites from GRZL and
HERL ground ILRS stations. Blue and magenta dots denote 15 SLR normal points on the ground
tracks of the Galileo 103 and Galileo 104 used to form the first SLR double-difference baseline.
The error-ellipse (red) refers to estimated HERL coordinates with semi-major axes my4 = 2.5 mm
and mp = 0.7 mm (based on MGEX-TUM orbits)

differencing and should be free of biases in the case of double-differences.
Table 17.1 shows estimated coordinates of the HERL station w.r.t. the ITRF2008
terrestrial reference frame using the SLR double-difference baselines from GRZL
and HERL stations. The a posteriori sigma of unit weight from the least-squares
adjustment is 09 = £0.7 mm. Figure 17.6 is the first demonstration of
sub-millimeter differential ranging from Earth to space, to the Galileo satellites with
an orbit altitude of 23 222 km, see Fig. 17.7. In our view, the SLR
double-difference approach allows for a precision and accuracy significantly better
than any other space geodesy technique (GNSS, VLBI, DORIS, or classical SLR).
With sub-millimeter precision and accuracy, this approach recommends itself for a
suite of novel applications in geodesy and terrestrial reference frame realization,
especially considering effects that could be monitored between SLR stations, such
as tidal effects and atmosphere loading. Making use of long SLR baselines, the
double-difference SLR approach offers bias-free estimation of all terrestrial refer-
ence frame parameters. SLR double-differences are similar to GPS
double-differences with fixed carrier-phase ambiguities. However, SLR is much
more precise and accurate than GPS considering multipath, antenna phase center
effects and other signal propagation effects, such as troposphere and higher-order
ionosphere effects. When a pair of GNSS satellites is observed simultaneously
using both microwave (GNSS/VLBI) and SLR techniques, one could use this
configuration to estimate very accurately local ties by comparing (or subtracting)
GNSS and SLR double-difference baselines, see Fig. 17.8, showing that there is
only one local tie between IGS and ILR networks and the same approach for local
ties could be extended to VLBI and DORIS.
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Fig. 17.8 An efficient approach to estimate local ties between SLR and GPS ground stations by
estimating baselines (relative coordinates) using double-difference SLR and collocated
double-difference GPS relative to the reference station. Therefore, there is only one local tie
between the global IGS and ILRS networks

17.4 Sensitivity Analysis of SLR Double-Differences

Let us now try to estimate station coordinates using simulated measurements for an
SLR baseline. Table 17.2 shows the ZIML station coordinates estimated relative to
WETL based on simulated SLR double-differences with normal points every 5, 10
and 15 min. Before differencing, SLR measurements were simulated with an RMS of
2.2 mm for GPS and 6.0 mm for GLONASS satellites. This RMS corresponds to
o = 3.2 mm of epoch-wise differences of normal points for GPS-36 and 8.5 mm for
epoch-wise differences for GLONASS R07, taken over a period of 7 years from SLR

Table 17.2 Sensitivity analysis of simulated SLR double-differences for GPS/GLONASS: ZIML
station coordinates estimated relative to WETL based on only two SLR tracking passes with three
GNSS satellites (left columns) and the full GNSS constellation for GPS/GLONASS (last column),
day 293/2012

Two double-differences with 3 GNSS satellites GPS/GLONASS

Full GNSS
constellation

ZIML
Coordinates
[mm]

Normal point
every 5 min

Normal point
every 10 min

Normal point
every 15 min

Normal point
every 10 min

Up —1.4/—- 3.7 5.4/14.6 —5.7/- 15.6 —0.1/- 0.3
North 0.3/0.7 —-0.7/- 2.0 0.1/0.3 0.0/0.0
East 0.2/0.5 0.1/0.2 0.0/— 0.1 0.0/0.0
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station GRZL, Thaller et al. (2011). Table 17.2 shows that with just two SLR
double-difference passes (based on three GNSS satellites) one can estimate station
coordinates at the mm-level. The noise level is a factor of 2-3 higher for GLONASS.
When all satellites of the GPS or GLONASS constellations are taken into account
over a period of one day (last column in Table 17.2), the precision of the station
coordinates is within the sub-millimeter level, assuming white noise only. However,
in our case the noise level of the original SLR measurements of ¢ = 0.5 mm is 3—4
times smaller. This tells us that with the geometrical SLR double-difference approach
station coordinates could be estimated with millimeter precision and accuracy for all
three coordinates, as we showed for the first time in Svehla et al. (2012).

An error in the order of 4-6 cm RMS was introduced to the GNSS orbits for the
processing of the simulated SLR baseline. The effect on station coordinates was neg-
ligible over such a short SLR baseline, confirming the “rule of thumb” in Eq. (17.3).
Equation (17.3) relates the station vector component error dp,,, (scale) with an orbit
error or multiplied by the baseline length / and normalized by the orbit altitude R, and
is identical to the “rule of thumb” given by Bauersima (1983) for GNSS

!
0y = 1 0r (17.3)

Considering that GNSS orbits can be estimated with an accuracy of about 1 cm
RMS, one can see that for baselines of 1000-5000 km the impact of orbit errors on
station coordinates is in the order of only 1.7 mm, whereas for a baseline of
1000 km the effect is only 0.3 mm and for a baseline of 500 km only 0.2 mm

0r(GNSS) =1 cm
[ =500 km — ¢p,,, = 0.2 mm
[ =1000 km — 0p,,, = 0.4 mm
1 =5000 km — dp,,, = 2.2 mm

(17.4)

Simulation shows that with just a few double-difference passes one can estimate
station coordinates at the mm-level or even at the sub-mm level, whereas for longer
SLR baselines it is suggested that IGS Final Orbits are used in order to reduce the
impact of the GNSS orbit on the estimated station coordinates.

The SLR double-difference approach is similar to the GPS double-difference
approach. Since the ionosphere-free linear combination is used to process GPS
measurements, the noise of the calculated GPS double-differences is increased by a
factor of 3, in addition to the factor of two resulting from forming double-differences.
Compared to this factor of 6 in the increase in noise of the original GPS measure-
ments provided by a geodetic GPS receiver, in the case of SLR, double-differencing
increases the noise of SLR normal points by a factor of 2, but the size of range biases
in the SLR measurements is significantly higher than the noise of SLR normal
points. In addition, range biases and satellite orbit error are removed or significantly
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reduced in the case of double-differencing. Thus, the SLR double-differences are
significantly more accurate than the original SLR measurements.

This is why one could claim that the double-difference SLR approach has the
potential to offer a level of precision and accuracy that is significantly better than
any other space geodesy technique (GNSS, VLBI, DORIS, or classical SLR). As
with GPS, with very long SLR baselines all terrestrial reference frame parameters
could be estimated, including station coordinates, geocenter and Earth rotation
parameters (ERPs), since following Eq. (17.3) the effect of the orbit error will be
linearly scaled in the estimated station coordinates.

However, the estimation of ERPs and the geocenter will most likely require the
modelling of the satellite orbits, or relative dynamics between the two GNSS
satellites involved in double-differencing. Galileo satellites could also be treated as
geometrical targets where geocenter and ERP errors are common to all observed
satellites and also mapped geometrically in the radial direction by the onboard
Galileo H-maser. This issue on combination of Galileo clock information and SLR,
is outside the scope here and will be addressed in future work.

17.5 How to Observe Four GNSS Constellations with SLR

Figure 17.9 shows the first common-view SLR ranging to the Galileo constellation
from three ILRS stations that was used to form the first SLR double-difference
baseline. The complete Galileo and Beidou constellations as well as GLONASS and
future GPS satellites equipped with SLR retro-reflectors will provide about 35 SLR
targets above 10° elevation. With three GNSS constellations this global mean
number of SLR targets over all latitudes and longitudes is about 26. Given that the
SLR double-difference approach may allow precision and accuracy that is much
better than any other space geodesy technique, it is assumed that SLR telescopes will
be improved in the future, enabling wide-angle SLR ranging, see Fig. 17.10. Beam
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Fig. 17.10 Proposed |
wide-angle SLR ranging to
several GNSS with a
telescope using beam steering
(over e.g., 10-60° angle) and
does not move during one
session

steering within the optical telescope has been developed in optical communication
providing wide-angle tracking in space (up to some 120° without a loss in energy).
With a telescope that does not move during one SLR session, very accurate pointing
could be achieved, allowing very fast tracking of all common-view GNSS satellites
including all LEO and reference frame SLR satellites.

17.6 Vertical SLR Double-Difference Baseline
and Vertical SLR Range Between GNSS and LEO
Satellites

For altimetry and gravity field missions, the radial component is the most important
orbit component as it is the direction of the main gravity gradient (Rummel et al.
2011) and the direction in which the range to the sea surface topography is mea-
sured by satellite altimetry. In addition, we have SLR range biases for measure-
ments to LEO satellites that cannot be directly assessed due to the very low orbit
altitude, i.e., no common-view to a LEO satellite (including LAGEOS) from two
stations in, e.g., the US and Europe. If we observe a quasi-simultaneously a LEO
and a GNSS satellite from two SLR ground stations A and B, see Fig. 17.11, one
can define the vertical SLR double-difference baseline DDZ5 , -, defined for a

common epoch ¢ as

DDéII?VSS,LEO(I) = [deo(t) - dgNss(fﬂ - [d?EO(t) - déNSS(t)] (17.5)
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Fig. 17.11 Quasi-simultaneous SLR tracking of a LEO and a GNSS satellite from two ground
SLR stations (in green). Vertical double-difference SLR baseline (red) between a GNSS and a LEO
satellite w.r.t. two ground SLR stations

with SLR ranges to the LEO d4,, and d?,,, and to the GNSS satellite d . d5yss-
In this case, the orbit of a LEO satellite can be defined w.r.t. the GNSS satellite. We
call this baseline “vertical”, because GNSS and the LEO satellite are observed by
SLR at different elevations, the GNSS-LEO baseline itself is always “vertical” or
“radial”. The advantage of the “vertical SLR baseline” lies in the elimination of
SLR range biases and radial GNSS orbit errors, since both stations are within a
small angular separation as seen from the GNSS satellite. It is assumed that the
station range biases are independent of the satellite altitude, which is not necessarily
true for LEO and GNSS (e.g., when the time delay measurement system has
non-linear errors). Since SLR measurements to the LEO and the GNSS satellite
need to refer to the same observation epoch ¢, only the LEO satellite needs to be
observed simultaneously from both stations. We have seen in the beginning of this
section that SLR residuals of GNSS satellites can be interpolated very accurately to
the common epoch over an interval of e.g., 10-30 min. In the case of a ground
twin-SLR telescope, the LEO and the GNSS satellite could even be observed with
the same laser pulse generated for both telescopes in the twin-configuration. The
same approach could be applied to the two LAGEOS reference frame satellites in
combination with GNSS.
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Taking, in addition, a fixed distance between the two SLR stations in Fig. 17.11,
we can calculate another completely independent observable, what we call the
“vertical SLR range” between a GNSS and a LEO satellite. For this, GNSS needs to
be observed in approx. the radial direction as seen from a satellite in the lower orbit
(e.g., LAGEOS, JASON-2). The “vertical SLR range” and residuals will refer to the
radial orbit direction in that case and can be calculated from the geometry of the two
“observed” triangles A-LEO-B and A-GNSS-B, even without any LEO/GNSS orbit
information.

17.7 Double-Difference Approach in Space Geodesy:
SLR/GNSS/VLBI

Figure 17.12 shows the double-difference concept of space geodesy. Figure 17.12
(left) depicts different ways to form SLR double-differences based on satellites in
different orbits, such as lunar, MEO and LAGEOS orbit. In all cases SLR satellites
are observed quasi-simultaneously against the background GNSS constellation. By
forming SLR double-differences, one can combine, with reduced SLR biases, the
orbits of GNSS satellites with the ETALON and LAGEOS satellites used for defi-
nition of the terrestrial reference frame, as well as Lunar Laser Ranging (LLR). One
could also form double-differences between two retro-reflectors on the Moon,
considering that the baseline/altitude ratio in (17.3) approaches zero in that case. In a
few years from now, when the Galileo and Beidou constellations have been
deployed, together with GLONASS we will have three GNSS constellations com-
pletely equipped with SLR arrays—more than 70 GNSS satellites in space with SLR
reflectors. Currently, only GPS-36 is equipped with SLR reflectors, but future GPS
satellites will carry new generation SLR arrays. Figure 17.12 (right) depicts SLR,
GNSS and VLBI double-differences with GNSS satellites. In the case of SLR
measurements, double-differences can be used to geometrically map SLR reference
frame satellites against GNSS constellations, whereas VLBI double-differences can
be used to geometrically map the GNSS constellations against the VLBI quasars
(extragalactic sources) that define ICRF-2 (International Celestial Reference Frame).

When both GNSS satellites are observed simultaneously using both the micro-
wave (GNSS/VLBI) and SLR techniques, one could use this configuration to esti-
mate very accurately local ties by comparing (or subtracting) GNSS and SLR

double-difference measurements (17.6). In (17.6), pﬁ‘B denotes the geometry term

and 5pZ‘B represents tropospheric effects. Thus (17.6) can be used for very precise
comparisons of troposphere models and mapping functions between the optical and
microwave domains, as well as local ties between different space geodesy techniques
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Geometrical Mapping of SLR Frame Satellites
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Fig. 17.12 Double-difference concept of space geodesy. SLR observation of reference frame
satellites (ETALON, LAGEOS) and Moon, quasi-simultaneously with (against) background
GNSS constellation (left). SLR, GNSS and VLBI double-differences with GNSS satellites (right).
In the case of SLR, an a priori orbit is used whereas in the case of VLBI, the new generation of
GNSS clocks will allow interpolation of VLBI measurements to a common epoch (e.g., Galileo
Passive H-Maser)

DDXCB(GNSS) = pZ(B + 5&B(TZDmicrowave)
DD/{4(SLR) = plty + 80/ o(TZD piicar) + local tieg; g (17.6)
DDifB (VLBI) = PifB + 5ﬁB(TZDmicrowave) +local tieyy i

Following the “Bauersima rule of thumb” (Bauersima 1983), we see that in all
three cases (GNSS, SLR and VLBI double-difference baseline), we do not need
very accurate GNSS satellite orbits to estimate station coordinates. In all these
cases, GNSS satellites could be considered as geometrical targets on the celestial
sphere, i.e., similar to quasars in VLBI. From this point of view, the
double-difference concept of space geodesy, as outlined in this section, is very
much a geometrical technique by its nature, similar to VLBL

However, in the case of very long double-difference baselines, the estimated
vector will be affected by an additional rotation of the GNSS reference frame
(common to all baselines in the network). This will not be the case, if this baseline is
composed of two shorter baselines, e.g., by adding one or more stations in between.
From this we can draw the conclusion that orbits of GNSS satellites could be mapped
against the celestial frame (e.g., using the Delta-DOR approach), and thus GNSS
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satellites could serve geometrically as “moving quasars” on the celestial sphere.
Observing these geometrical targets with SLR, GNSS or VLBI double-difference
approaches we could estimate all other parameters, not only station coordinates, but
also parameters such as Earth rotation/orientation and geocenter coordinates. Since
Earth orientation and rotation can be considered as dynamic in nature, especially
regarding the parameters used to interpolate normal points to the common epoch, the
double-difference concept of space geodesy as outlined in this section is a viable
method for observing and combining the geometry and dynamics of reference frames.
So far we have not referred to DORIS, the fourth space geodesy technique.
Tracking of DORIS and GNSS is very similar and we are now seeing the first
attempts to upgrade geodetic space GNSS receivers with DORIS tracking, i.e., as
proposed for the STE-QUEST mission in highly elliptical orbit for terrestrial and
celestial reference frame determination. For this part of the STE-QUEST mission see
Svehla et al. (2013b). DORIS has the potential to complement GNSS with a nadir
pointing antenna at higher altitudes. By making use of the phased-array antenna
design and beam forming on receive it should be possible to increase the gain of the
DORIS antenna and hopefully achieve DORIS tracking at higher altitudes.

17.8 Global Solution with Double-Difference SLR
Approach

In order to simulate global SLR baselines, we have chosen 4 globally distributed
ILRS stations, see Fig. 17.13, with one short SLR baseline between GRZL and
HERL, Svehla et al. (2014). We simulated double-difference SLR measurements as

90 | :
=49
! Number of NPT
PRN 05 - PRN 26 A,'D‘:?""’e' of NPT,
60 PRN 14 - PRN 25 HERL DRN 08 - =28 i
GRZL PRN16.ppf 2039
30| e er of NPT=13 GODL oGMsL ™"
PRN 01 - PRN 3;
PRN 06 - PRN 2 Number of PT=296
or PRN 08 - PRN 927 Al
PRN 06 - RN
.30 OHARL
-60
'gﬁ] L L L
~180 120 -60 0 60 120 180

Fig. 17.13 Simulation of the global double-difference (DD) SLR approach with 4 ground ILRS
stations (GRZL, HARL, GSL and GODL). To form the baseline we 2 GPS satellites observed
simultaneously from two ILRS stations in common-view (blue). The “Number of NPT” shows the
daily number of DD-normal points
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Fig. 17.14 The X-Pole and Y-pole coordinates and rates estimated with a posteriori RMS values
against the C04 values using only 4 global ILRS stations. The solution a) refers to the fixed orbits
of GPS satellites, whereas in b) the orbit error was simulated using the daily orbit difference
between two IGS AC centers
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normal points (NPT) every 10 min with two common GPS satellite (denoted by PRN
numbers in Fig. 17.13) between two ILRS stations in common-view. We used
simulation for common-view due to simplicity. The noise level used in the simulation
was 1 mm for SLR measurements from GODL, GMSL, HARL, and £+0.5 mm for
those from HERL and GRZL. In the next step, for a period of 17 days we estimated
daily solutions for global parameters including X- and Y-pole and rates,
length-of-day (LOD) and the geocenter coordinates in the Z-direction. The X-pole
and Y-pole coordinates with rates and LOD parameters were estimated against the
C04 values. In this estimation, we used two independent solutions, keeping the orbits
of the GPS satellites fixed and simulating the orbit error using the daily orbit dif-
ference between orbits provided by the two IGS AC centers (CODE and ESOC), see
Figs. 17.14, 17.15 and 17.16. Solution with fixed GPS orbits shows the sensitivity of
the measurements to the estimated parameters. When orbit error is introduced for
GPS satellites, one can see that by forming double-differences with SLR measure-
ments, the long SLR baselines are still affected by the orbit error and one would need
to estimate orbit parameters, or to combine DD-SLR with GPS measurements.
Simulation shows that by introducing an orbit error, the noise of all estimated
parameters is about 2-3 times higher compared to difference between CODE and
ESOC ACs. This is based on only 4 ground ILRS stations.
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Fig. 17.15 The estimated length-of-day (LOD) with a posteriori RMS values against the C04
values using only 4 global ILRS stations. The top figures refer to the fixed orbits of GPS satellites,
whereas in the bottom figures an orbit error is simulated as the daily orbit difference between orbits
provided by the two IGS AC
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Fig. 17.16 The geocenter Z-coordinate with a posteriori RMS values estimated with fixed orbits
of GPS satellites and with a daily orbit difference between two IGS AC centers using only 4 global
ILRS stations

17.9 Relationship Between Bias in LAGEOS Center
of Mass Correction and Radial Bias in Orbits
of GNSS Satellites

Let us now see what would be the impact of the bias of e.g., 7 mm in the LAGEOS
center of mass correction on the GNSS orbits. The existence of a potential small
bias is indicated in the single-difference SLR measurements between HERL and
GRZL in Fig. 17.3. As we mentioned before, HERL employs strictly single-photon
ranging to all satellites with a center of mass correction of 245 mm, whereas GRZL
uses “leading edge” post-processing with a center of mass correction of 252 mm.
The SLR frame bias of 7 mm in the radial orbit of LAGEOS satellites (reflected as
the bias in the center of mass correction) will give a scale error or radial bias in the
orbits of GNSS satellites, since the scale of the GNSS frame is typically taken from
the SLR frame. From Kepler’s third law written in the form n? =GM / a3, we can
derive the following relation for the semi-major axis ayageos of LAGEOS and
GNSS satellites agnss respectively
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Table 17.3 Radial bias in the orbits of GNSS satellites calculated as a function of the bias in the
center of mass value of LAGEOS satellites. One can see that the Galileo radial orbit bias of
—10 mm corresponds to a bias of —4.1 mm in the SLR measurements to LAGEOS that determine
scale of the GNSS terrestrial frame

LAGEOS Galileo GPS GLONASS
—7 mm —17.1 mm —15.4 mm —14.8 mm
—4.1 mm —10 mm —9 mm —8.7 mm

acGnss
Aagyss = ————Aaraceos —  Aagps = 2.2 - Aaraceos,
ALAGEOS (17.7)

Aagyiiteo = 2.4 - Aapaceos

A bias in the semi-major axis of LAGEOS satellites (a bias in the center of mass
correction) of Aapageos = —7 mm would give a radial orbit bias Adaguie, =
—17 mm in the orbits of Galileo satellites and Aagps =~ —15 mm in the orbits of
GPS and GLONASS satellites, see Table 17.3.

17.10 Lunar Laser Ranging Double-Differences
and Estimation of UT0

We have processed undifferenced and double-difference lunar laser ranging
(LLR) measurements to Luna and Apollo retro-reflectors on the Moon in a similar
way we are processing SLR measurements to GPS satellites, see (Svehla et al.
2015a, b). We made use of the latest lunar libration models and DE430 ephe-
merides given in the Solar system barycentric frame and modeled uplink and
downlink LLR ranges in the geocentric frame as one-way measurements, like the
SLR to GPS satellites. We estimated all orbital parameters including UTO.

For the lunar orbit, we implemented the latest DE430 ephemerides given in the
barycentric frame and described in Williams et al. (2009). The same model provides
physical librations of the Moon and coordinates of the two Luna and three Apollo
lunar laser retro-reflectors. The DE430 model includes solid-body tides of the Moon
in the form of permanent tidal displacements separately for each retroreflector array.

Following Williams et al. (2009), the LLR retro-reflector principal axis coor-
dinates were determined during the solution of DE430 ephemerides. These coor-
dinates are rotated from the LLR principal axis frame (PA) to the lunar mean Earth/
mean rotation axis frame (MER) by

P = R.(67.573")R,(78.580")R,(0.285") - (17.8)

where 77 is the vector from the Lunar center of mass to a surface point in the mean
Earth/mean rotation axis frame (MER) and j is the same vector in the principal axis
(PA) frame. Such a transformation needs to be performed for the lunar libration
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Table 17.4 Processing standard for the LLR measurements following the IERS Conventions
2010 (Petit and Luzum 2010, Williams et al. 2009). Figure on the right shows position of the 5
Lunar retro-reflectors

DE430 Ephemerides
Frame aligned to the International Celestial Reference Frame v.2.0
Solar System barycentric frame
TDB used as the Solar System barycentric coordinate time
TCB-TCG (IERS2010Conventions)
Lunar librations (DE430)
Lunar reflector coordinates (DE430)
Principal axes and mean Earth/mean rotation axes
Constant tidal displacements from the Earth and the Sun (DE430)
Different force modeling for Moon (compared to GNSS/LEOs)
Shapiro effect:
1. Sun gravitational field: 7.5 m
2. Earth gravitational field: 0.04 m
3. Moon gravitational field: <1 mm

rotation matrix provided by the DE430 ephemerides. For a description of DE430
models, we refer to Williams et al. (2009), see Table 17.4. The lunar solid tides
(constant tidal displacements due to Earth and Sun) are applied to the coordinates of
the lunar retro-reflectors given by the DE430 ephemerides, Williams et al. (2009).

It is interesting to note that the size of the Shapiro effect (Petit and Luzum 2010)
in Table 17.4 for LLR measurements is in the order of 7.5 m for the Sun gravi-
tational field and only 4 cm for the gravitational field of the Earth. For the analysis
of LLR data in the geocentric frame, we used the following formulation in the IERS
Conventions 2010 (Petit and Luzum 2010),

U\ 1(V-?\~
?b:(7——)—— v (17.9)

that provides transformation of the vector 7, a geocentric position vector expressed
in the GCRS (Geocentric Celestial Reference System), to 7, the vector expressed in
the BCRS (Barycentric Celestial Reference System). U is the gravitational potential

at the geocenter (excluding the Earth’s mass) and V is the barycentric velocity of
the Earth. The geocentric and barycentric systems are chosen so that the geocentric
space coordinates (position vector 777) are consistent with terrestrial time (TT) and
that the barycentric space coordinates are TDB-compatible (position vector Frpg
from DE430 ephemerides) (Petit and Luzum 2010). The transformation of 77 to
Frpp is then given by

U 1V )5
Frpp = 777<1 - Lc) -5 ;TT v (17.10)
c

with the conversion factor L¢ given in the IERS Conventions 2010, Petit and
Luzum (2010). The difference between TCB and TCG time scales (TCB-TCG) is
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calculated at the geocenter, using the approximation of the time ephemeris TE405.
The TERS subroutine HF2002.f provided by the IERS Conventions approximates
TEA405 time ephemeris (including the trend) with an error of 0.453 ns (RMS) over
the years 1600-2200, Petit and Luzum (2010). For other time transformations:
TCG-TT, TDB-TCB, TDB-TT we refer to IERS Conventions 2010, Petit and
Luzum (2010). The novelty is that we processed LLR measurements in the geo-
centric frame in a similar way we process SLR measurements in the geocentric
frame for GPS satellites. For this, we calculate a light-travel time for LLR mea-
surements from a ground ILRS station to a lunar retro-reflector, and evaluated lunar
libration at the epoch when LLR photons sent by a ground LLR station arrive at the
lunar retro-reflectors. It was noticed that the physical lunar librations change sig-
nificantly during the light-travel time. This separation between the epoch of lunar
librations and the epoch of the Lunar orbit, enables to model uplink and downlink
lunar laser ranges in the geocentric frame as the one-way measurements (similar to
SLR measurements to GPS satellites). SLR measurements for GPS satellites are
typically calculated at the reception epoch, when the reflected SLR signal arrives at
the ILRS station. The same occurs with LLR, with the difference that the lunar orbit
is provided by the DE430 ephemerides and given in TDB time. We calculate lunar
librations from DE430 ephemerides at the reflection point (reception time minus
one-way light-travel time) and took into account the velocity of the Earth Vg, in
the barycentric frame. The one-way light-travel equation for a distance d between a
ground receiver and a satellite, for GPS and SLR measurements, is given by (17.11)
in the equatorial true system of date. The same Eq. (17.11) can also be used for
lunar laser ranging, taking into account the velocity of the Earth, Vg,y:

_ A)?m[, . sat .
crssa-a (19574 asy
d-c
- d A)‘é\:dt. . \‘)‘.\‘Ht A)—c:\‘at.(v‘.\'ut _2. Vre()
SIR :d =—- |1 ——1< ] = HMree V' 7 2" Vrec)
2 [( c-d ) * ( c-d )}
- d Axsat . ypat A}r.at.(vsar —2. ;rec) AR et ARt
LIR :d =—- ] — —fec 1 — rec _ rec rec
2 {( c-d ) + ( c-d )} o2 d
(17.11)

where AX}% denotes to the station-satellite vector and ¥ and V.. are the satellite
and receiver velocity.

Figure 17.17 shows undifferenced and single-difference LLR residuals to
Apollo-11 and Apollo-15 lunar retro-reflectors for a period of 90 days. All param-
eters were kept fixed, including lunar ephemerides, and station coordinates were in
the SLR2008 frame. One can see that the accuracy of DE430 ephemerides and the
ranging model is at the level of several centimeters, whereas single-difference
residuals show significantly smaller scatter, with a standard deviation of about
0 = £2.5 cm. In the next step, we formed double-difference LLR measurements
between two lunar retro-reflectors and two LLR stations, see Fig. 17.7. Since, by
forming double-differences of LLR measurements, all range biases are removed and
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Fig. 17.17 Undifferenced and single-difference LLR residuals to Apollo-11 and Apollo-15 lunar
retro-reflectors from ground stations GRASE and Apache Point Observatory. Single-differencing
is performed by making use of the residuals from the nearest epoch. Lunar ephemerides were fixed
to DE430, along with all other parameters, and station coordinates were fixed to SLR2008. The
cm-accuracy is achieved by single-differencing
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Fig. 17.18 Double-difference LLR residuals to Apollo-11 and Apollo-15 from GRASE and
Apache Point Observatory. Apache LLR measurements (one-way) show noise ¢ = +7.5 mm
(mean —3.6 cm), compared to GRASSE ¢ = £7.1 mm (mean 4.6 cm). Differencing performed
with residuals at the nearest epoch

orbit errors are significantly reduced (the lunar orbit is much further away than GPS
orbits), one can consider the double-difference LLLR as an “orbit-free” and
“bias-free” differential approach. This is the reason why the noise level of residuals
is reduced significantly in Fig. 17.17, and for double-difference Apache LLR
measurements achieved a noise level of ¢ = £7.5 mm (one-way) and those from
GRASSE a level of ¢ = 7.1 mm (Fig. 17.18).

Estimation of 6 Keplerian parameters for the lunar orbit over 90 days improves
the RMS of LLR residuals by x2 (from RMS = 8.4 cm to RMS = 4.8 cm). These
residuals are further improved by estimating UTO (every 10 days) to an RMS of
about 3.5 cm, see Fig. 17.19. LLR residuals plotted relative to Sun position in the
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Fig. 17.19 LLR residuals over 90 days after estimating 6 Keplerian parameters (left) and UTO
(right)
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Fig. 17.20 Estimation of UTO over 90 days with an additional 9 empirical parameters (vs. CODE
EOPs)

lunar orbital plane in Fig. 17.19 show a distinct pattern around 90 and 270° relative
argument of latitude. This indicates that remaining modelling errors could also be
associated with errors in the Earth orbit around the Sun. UTO results are similar
when additional empirical parameters are estimated in Fig. 17.20.

References

Bauersima I (1983) NAVSTAR global positioning system (GPS) 1. Berne, Switzerland

Dedes GC, Mueller II (1989) Baseline estimation with semidynamic and geometric satellite
methods. Bull Geodesique 63:99-114. https://doi.org/10.1007/BF02519145

Kouba J (2004) Improved relativistic transformations in GPS. GPS Solut 8:170-180. https://doi.
0rg/10.1007/s10291-004-0102-x

Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic
satellites. J Geophys Res Solid Earth 108:n/a—n/a. https://doi.org/10.1029/2002jb002209


http://dx.doi.org/10.1007/BF02519145
http://dx.doi.org/10.1007/s10291-004-0102-x
http://dx.doi.org/10.1007/s10291-004-0102-x
http://dx.doi.org/10.1029/2002jb002209

References 249

Otsubo T, Appleby G, Gibbs P (2001) GLONASS laser ranging accuracy with satellite signature
effect. Surv Geophys 22:509-516

Pavlis EC (1985) On the geodetic applications of simultaneous range differences to LAGEOS.
J Geophys Res 90:9431-9438. https://doi.org/10.1029/JB090iB11p09431

Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space
Res 30:135-143. https://doi.org/10.1016/S0273-1177(02)00277-6

Petit G, Luzum B (2010) IERS Conventions. Verlag des Bundesamts fiir Kartographie und
Geodisie

Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777-790.
https://doi.org/10.1007/s00190-011-0500-0

Steigenberger P, Hugentobler U, Loyer S et al (2014) Galileo orbit and clock quality of the IGS
Multi-GNSS experiment. Adv Space Res. https://doi.org/10.1016/j.asr.2014.06.030

Svehla D, Floberghagen R, Haagmans R et al (2012) SLR measurements of the forthcoming ESA
Earth observation and fundamental physics missions and their applications in the reference
frames realization. In: International technical laser workshop 2012, 5-9, 11 2012, Frascati,
Italy, pp 1-2

Svehla D, Haagmans R, Floberghagen R et al (2013a) Geometrical SLR approach for reference
frame determination - the first SLR double-difference baseline. In: IAG scientific assembly
2013, Potsdam, Germany, (reviewed for IAG Series 143). Springer

Svehla D, Rothacher M, Hugentobler U et al (2013b) STE-QUEST - space geodesy mission for
celestial and terrestrial reference frame realization. In: STE-QUEST science workshop, ESTEC
22-23 May 2013. ESTEC/ESA, The Netherlands

Svehla D, Rothacher M, Appleby G et al (2014) High-accuracy double-difference slr approach
with GNSS satellites for terrestrial reference frame realization. In: REFAG 2014, Luxembourg

Svehla D, Cacciapuoti L, Rothacher M (2015a) Noise model of the Galileo “mm-Clock” -
geometrical mapping of the orbit perturbations using a clock on board Galileo satellites. In:
IUGG general assembly 2015

Svehla D, Rothacher M, Appleby G et al (2015b) Double-difference SLR approach with GNSS,
GEO, LAGEOS and LLR. In: IUGG general assembly 2015, Prague

Svehla D, Rothacher M, Cacciapuoti L (2016) Thermal re-radiation acceleration in the GNSS orbit
modelling based on Galileo clock parameters. In: IGS workshop 2016, Sydney, Australia

Thaller D, Dach R, Seitz M et al (2011) Combination of GNSS and SLR observations using
satellite co-locations. J Geod 85:257-272. https://doi.org/10.1007/s00190-010-0433-z

Williams GJ, Turyshev S et al (2009) Lunar science and lunar laser ranging. A white paper
submitted to the Panel on Inner Planets — Mercury, Venus, and the Moon of The National
Academies Planetary Science Decadal Survey, US


http://dx.doi.org/10.1029/JB090iB11p09431
http://dx.doi.org/10.1016/S0273-1177(02)00277-6
http://dx.doi.org/10.1007/s00190-011-0500-0
http://dx.doi.org/10.1016/j.asr.2014.06.030
http://dx.doi.org/10.1007/s00190-010-0433-z

Chapter 18 M)
Noise Model of the Galileo “mm-Clock” Check or

Galileo is the first GNSS system equipped with a highly stable H-maser. In this
section we conduct a comprehensive analysis of the performance of the Passive
H-Maser (PHM) used as a primary clock on board Galileo navigation satellites.
PHM ground test results are compared to the clock parameters estimated from the
MGEX data. The time evolution of the relativistic effects arising from the J, term of
Earth’s gravity field, as well as Sun and Moon gravitational potential have been
calculated and taken into account. In addition, an analysis has been performed of
the space environment (temperature and magnetic field variations) and the corre-
sponding perturbations on the timing signal evolution.

Based on available ground test results, we derived relevant noise processes for
the Galileo onboard passive maser, including the white frequency noise at the level
of 5.9 x 10~ !3—defining the short- to medium-term performance, and the flicker
frequency noise of 7.9 x 10~'—defining the clock long-term behavior. The white
phase noise of 9.8 x 10~13 plays a role only for very short integration times (up to
about 10 s), whereas a relatively low frequency drift of <1 x 10~"°/day plays a role
only for measurement times longer than a few days.

Galileo clock parameters simulated according to the noise processes above show
a residual standard deviation of ¢ = 15.5 mm, when time offset and time drift
(linear model) are removed at 24 h intervals from the simulated epoch-wise Galileo
clock parameters over 10 days. This standard deviation is reduced to ¢ = 11.2 mm,
when the linear model is removed every 14 h (orbit period), going down to
o = 2.7 mm after time offset and time drift removal at 1 h intervals. For more see
Svehla et al. (2015, 2016, 2017).

The simulated data where then compared to the real in-orbit data. The Galileo
clock solution from AIUB submitted to the MGEX Campaign of IGS shows a
standard deviation of residual clock parameters at the level of ¢ = 20.7 mm,
whereas SLR residuals show a higher standard deviation of ¢ = 25.3 mm. From
this, one can derive a standard deviation of the radial orbit error to a level of
o ~ 13-14 mm. This factor of about 2 in precision between Galileo clock and SLR
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is most likely due to space/ground local ties, biases in some of the SLR ranges and
in the reference frame (e.g., geocenter). We analyzed a period of 30 days 95-125/
2013 of MGEX data with a high Sun elevation angle (>60°) above the Galileo
satellite orbit plane in order to decouple orbit errors from the clock noise in the
estimated Galileo clock parameters. In this case, the orbit errors originating from
the modelling of solar radiation pressure are very modest compared to the rest of the
draconic year of about 357 days for Galileo orbits. Similar results were obtained for
Sun elevation angles <—60° and four Galileo IOV satellites.

The main perturbation affecting the Galileo clock parameters for the analyzed
period with high Sun elevation (>60°) is the periodic relativistic effect due to the J,
gravity field coefficient that contributes an amplitude of about 18 mm at twice the
orbital frequency. Accumulated time along the Galileo orbit due to the gravitational
potential of Sun and Moon after removing daily time offset and time drift shows
distinct, twice per revolution effects below 0.4 mm for the Sun potential and 1 mm
for the Moon potential. Environmental effects, such as variations in temperature and
magnetic field, were integrated along the orbit, but did not have a significant impact
on the Galileo residual clock parameters. The maximum effect due to the magnetic
field is below 0.8 mm while temperature perturbations are well below 1 x 10715,

This analysis clearly shows that the onboard Galileo passive maser is stable
enough to map for the first time radial perturbations continuously along the orbit.
This is also confirmed by the close agreement with SLR residuals.

Estimated GNSS satellite clock parameters completely absorb variations in
radial orbit error along the orbit. As a result, one can talk about an equivalence
between the Galileo clock and SLR residuals, such that the Galileo clock can be
considered as providing “continuous SLR” measurements along the orbit.

In summary, based on the simulated and real Galileo clock data, as well as the
independent SLR measurements, the Galileo primary clock offers a wide spectrum
of new applications, such as:

e geometrical mapping of the orbit perturbations along the orbit;

e clock modeling with only two linear parameters (time offset and time drift) or
with a low-degree polynomial for a period up to one day, considerably reducing
the number of estimated parameters in the orbit determination;

e primary clock on future LEO missions (e.g., DORIS on altimetry missions, or
gravity missions) and for one-way ranging on interplanetary missions;

e mapping of troposphere slant delays between Galileo and a ground H-maser of
similar stability.

18.1 An Overview of Galileo Clocks

The first two satellites of the European navigation system Galileo were launched on
21 October 2011, followed by the launch of two additional satellites on 12 October
2012 (ESA Portal 2014). The first four Galileo satellites are part of the Galileo
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In-Orbit Validation (IOV) Phase and contribute to the full constellation of 30
Galileo satellites. The Galileo navigation payload consists of two Passive Hydrogen
Masers, two Rubidium Atomic Frequency Standards (RAFS) serving as backup, the
Clock Monitoring and Control Unit (CMCU), the navigation signal generator unit,
the L-band antenna for transmission of the navigation signal, the C-band antenna
for uplink signal detection, the two S-band antennae for telemetry and telecom-
mands, and the search and rescue antenna (ESA Portal 2014). The first Satellite
Laser Ranging (SLR) to the retro-reflector arrays of the first two Galileo IOV
satellites, denoted as Galileo-101 and Galileo-102 by ILRS (International SLR
Service) and Galileo E11 and Galileo E12 by IGS (International GNSS Service),
was carried out on 27 and 29 November 2011, respectively, using a near-infrared
laser beam, (Svehla and Navarro-Reyes 2011).

The development of on-board clocks was initiated by ESA in the late nineties
and resulted in the validation and qualification of two technologies. The Rubidium
Atomic Frequency Standard is a microwave clock based on a vapour-cell with
buffer gas operated on the double optical-microwave resonance of rubidium atoms.
The clock, very compact and with low power consumption, has a fractional fre-
quency stability better than 5 x 10~'27-1/2 over one day of integration time (Waller
et al. 2009). The Passive Hydrogen Maser is based on the stimulated emission of
microwave radiation on the hyperfine transition of the hydrogen ground state. Its
fractional frequency stability is about 5 times better than that of RAFS (Waller et al.
2009). An overview of the Galileo clocks and their specifications can be found in
Rochat et al. (2012) and Waller et al. (2009).

In the light of the new Galileo and BeiDou global navigation satellite systems
(GNSS), as well as regional navigation and augmentation systems such as the
Japanese Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation
Satellite System (IRNSS), the IGS initiated the Multi-GNSS EXperiment (MGEX).
The goal of MGEX is the data collection and analysis of all available GNSS
(Montenbruck 2013). The MGEX Tracking Network currently consists of about 90
active tracking stations contributed by about 25 different institutions (Steigenberger
et al. 2014). The general consistency of the MGEX orbit products for Galileo is
slightly better than one decimeter (Steigenberger et al. 2014). This rather rough
orbit quality limits evaluation of the Galileo clock performance, since any orbit
error will also be reflected in the estimated Galileo clock parameters. Perturbations
which strongly depend on the satellite orbit have been recently observed in the
analysis of MGEX Galileo clock solutions (Steigenberger et al. 2014). These
measurements also confirm earlier results reported in Waller et al. (2009) or Rochat
et al. ( 2012) and clearly indicate that clock performance evaluation is heavily
biased by orbit errors. Improvements in the quality of Galileo IOV orbit determi-
nation were reported recently in Montenbruck et al. (2014) by employing an
empirical a priori solar radiation pressure model that reduces the overall standard
deviation of SLR residuals from 8—10 to 5—7 cm for all four Galileo IOV satellites
(Montenbruck et al. 2014).
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Modelling of the solar radiation pressure (SRP) based on the CODE SRP model
(Beutler et al. 1994) introduces an error in the orbit as a function of the Sun
elevation angle f above the orbital plane and the satellite argument of latitude
(u) relative to the Sun’s position in the orbital plane, see Chap. 19. At lower
elevations there will be an additional effect on the orbit due to orbit eclipses. The
same is true, if an empirical a priori SRP model is used, as this improves the overall
accuracy of the orbit, but also introduces an additional signal at different orbit
frequencies.

This has led to the development of a completely different approach to assess the
quality of the Galileo PHM clock. Our proposed method for evaluating Galileo
clock performance is based on two distinct facts. We decouple orbit and clock error
by analyzing estimated clock parameters at high Sun elevation above the orbital
plane —60° > f# > 60°, where orbit quality is increased by a factor of 5-8 com-
pared to low Sun elevations. In addition, we introduce what we call an equivalence
between orbit error and clock error (see Fig. 18.1), and use the SLR measurements
in direct comparison with the Galileo epoch-wise clock parameters. This leads us to
the first geometrical mapping of GNSS orbit perturbations. Power Spectral Density,
Allan deviation and other metrics of the simulated and estimated Galileo clock
parameters corrected by all known relativistic and environmental effects are then
analyzed.

GNSS .:"n_i.‘ tResiduaI Clock Parameter

]
't J SLR Residual AClock = AOrbit= ~ASLR

% max. ~12° Galileo
=

Fig. 18.1 Equivalence between the radial orbit error and the residual clock parameters. Any radial
orbit error (A Orbit) is compensated by the estimated clock parameter (A Clock) that corresponds
to a negative SLR residual (—A SLR). Since the majority of ground stations are visible from a
Galileo orbit at a nadir angle of ~10°, a slant error of, e.g., 10 mm will give an error of only
—1.5 mm, when projected in a radial direction
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18.2 First Geometrical Mapping of GNSS Orbit
Perturbations

For satellites at GNSS orbit altitudes, any radial orbit error is directly mapped into
the estimated clock parameters resulting in an opposite sign between the SLR
residuals and the residual clock parameters (see Fig. 18.1). SLR residuals are cal-
culated as “observed-minus-computed”, i.e., as the laser-measured ranges minus the
ranges calculated from the solved-for satellite orbit. In this case, it is possible to
establish an equivalence between the radial orbit error and the residual clock
parameter. Therefore, if the clock onboard a GNSS satellite is stable enough, it can
be used to map orbit perturbations along the satellite orbit. That was the original
idea to assess the quality of the Galileo primary clock: to compare epoch-wise
estimated Galileo clock parameters with the SLR measurements.

Figure 18.2 shows residual GIOVE-B clock parameters over a period of 4 days
after subtracting a daily time offset and time drift from the clock parameters esti-
mated epoch-wise every 30 s. One can clearly see a distinct pattern in the orbital
period, highly correlated with the SLR residuals (plotted with an opposite sign)
used only for the external orbit validation (dark blue). By adjusting just two linear
parameters (time offset and drift over a one-day period) to the estimated Galileo
clock parameters, the passive H-maser can be modelled with cm-accuracy, mapping
the radial error continuously along the orbit with an excellent agreement with SLR
measurements. We call this approach geometrical, as the stable Galileo clock
measurements are equivalent to “continuous” SLR at every given GNSS epoch.
The SLR residuals have a RMS of 5.4 cm.
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Fig. 18.2 Residual GIOVE-B clock parameters after subtracting a daily time offset and drift from
the satellite clock parameters estimated every 30 s (starting with day 250 in 2009). Dark blue dots
represent SLR residuals (with an opposite sign) used only for orbit validation, showing that the
passive H-maser on board GIOVE-B can be used to geometrically map orbit errors with remaining
clock variations at the cm-level. This figure shows the first use of a stable GNSS clock in precise
orbit determination/validation, (Svehla 2010a)
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This RMS value is significantly higher than the differences between the SLR
residuals and GIOVE-B clock residuals, as one can see in Fig. 18.2, indicating that
any potential use of SLR measurements in the dynamic orbit determination is
irrelevant to this approach.

Figure 18.3 shows residual clock parameters for the Galileo E11 satellite against
SLR residuals from different ground ILRS stations. We used the Galileo clock
solution from AIUB submitted to the MGEX Campaign of the IGS, days 95-125/
2013.

When a daily time drift and time offset is removed from the calculated satellite
clock parameters, the remaining residual clock parameters map radial orbit errors
with an opposite sign relative to the SLR residuals at the sub-cm level. We selected
a period with high Sun elevation above the orbital plane <—60° and >60° to sig-
nificantly reduce the distinct periodic perturbation observed in Fig. 18.2 at low Sun
elevations. Only a periodic relativistic correction (Kouba 2004) due to the J, gravity
field coefficient was applied to estimated Galileo E11 clock parameters. It is
interesting to note that the standard deviation of residual clock parameters is ¢ =
20.7 mm, whereas SLR residuals show a higher standard deviation of ¢ = 25.3
mm. We will see later in the text from the end-to-end simulation of the Galileo
clock that the noise contribution of the PHM is about ¢ = 15.5 mm over a 24 h
period (see e.g., Fig. 18.6). From this, one can derive a standard deviation of the
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Fig. 18.3 Residual clock parameters of the Galileo E11 satellite against SLR residuals for a 7-day
subset of the 30-day analysis period. From the Galileo E11 clock parameters (MGEX solution
from AIUB) a daily time drift and time offset were removed. Remaining residual clock parameters
map radial orbit errors with an opposite sign relative to the SLR residuals calculated
as”observed-minus-computed”. The standard deviation of residual clock parameters is ¢ = 20.7
mm, for days 95-125/2013, whereas the noise contribution of the Galileo H-maser is about
o = 15.5 mm over a 24 h period (see Fig. 18.6). This gives the radial Galileo orbit error with
o =~ 13-14 mm. In comparison with clock, SLR residuals show a higher standard deviation of
¢ = 25.3 mm (mean is —4.9 cm) and this factor of about 2 is most likely due to space/ground local
ties, biases in some of the SLR ranges and in the reference frame (e.g., geocenter). The SLR
residuals were provided by and compared with the Bernese GNSS Software v.5.3 at AIUB
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radial Galileo orbit error of ¢ ~ 13—-14 mm. This factor of about 2 in precision
between Galileo clock parameters and SLR measurements is most likely due to
space/ground local ties, biases in some of the SLR ranges and in the reference frame
(e.g., geocenter).

This analysis confirms that the Galileo PHM can be used as “continuous SLR”
along the orbit. However, the Galileo clock only maps the radial orbit error,
whereas SLR maps, in addition, the contribution of the along-track and cross-track
error. Since we did not account for the noise contribution of the global ground
network in the standard deviation of residual clock parameters of ¢ = 20.7 mm, we
can assume that the standard deviation of the radial orbit error is ¢ ~ 10 mm.

18.3 Noise Model of the Galileo H-Maser

In order to evaluate the quality of the measured orbit errors in the radial direction,
i.e., the stability of the residual Galileo clock parameters, we analyzed the per-
formance of the Galileo onboard H-maser and evaluated possible environmental
effects along the orbit.

The overlapping Allan variance corresponding to one of the best stability curves
achieved during PHM performance tests on the ground (Rochat, priv. com. and
Wang et al. 2013 as available from SpectraTime) was considered as a reference.
A model function, including all the relevant noise processes, was fitted to the data
points:

A2 B
1) :T—2+7+C2+DZT+E%2 (18.1)

where the coefficients A, B, C, D and E are the fit coefficients. Only the first three
coefficients in (18.1) were considered here: white phase noise, white frequency
noise and the flicker frequency noise, respectively.

The relevant noise processes for the passive maser include the white frequency
noise, defining the short to medium-term performance, and the flicker frequency
noise, defining the clock long-term behavior. The white phase noise only plays a
role for very short integration times (up to about 10 s) and becomes irrelevant for
our analysis. Both, experimental data and the fitting function are shown in
Fig. 18.4. In the next step, the fit results are used in the Stable32 software (Riley
2014) to generate a time series of simulated clock data covering the same time span
of 10 days that is available for the MGEX space clock parameter data. A frequency
drift of 1 x 107'5 /day, as measured during the flight model tests on Galileo passive
masers, was also added to the model function. The drift considered here is an upper
estimate, which anyhow plays a role only for measurement times longer than a few
days. Simulated clock data were generated at a sampling rate of 30 s, according to
the model function parameters (Allan deviation at T = 1 s) listed below:
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Figure 18.5 shows the resulting Allan deviation compared with the Allan
deviation of real Galileo residual clock parameters from the MGEX Campaign. The
higher noise observed in the MGEX data at about 7 h (half the orbit period) will be

discussed later in detail.
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Fig. 18.5 Allan deviation of the simulated clock parameters (red) and ground Galileo test results
(green) against PHM specifications (cyan). In blue is the Allan deviation of the real residual clock
parameters after time drift and bias removal every 24 h from the MGEX clock solution (AIUB) of
IGS (days 96-106/2013). The “connected phase” denotes residual clock parameters connected at

day boundaries and therefore showing better short term stability
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Fig. 18.6 Simulated Galileo residual clock parameters over a period of 10 days. Only time offset
and time drift were removed from the Galileo clock parameters every 24 h. Simulated residual
clock parameters show a very good agreement with the real Galileo clocks in Fig. 18.3, where the
periodic relativistic effect of J, was removed, and Fig. 18.7. The noise introduced by the GNSS
network has not been considered

Simulated Galileo PHM data were then used to estimate the standard deviation
of the clock error and compare it to the results obtained from MGEX data after
applying the same processing algorithms. Simulated Galileo residual clock
parameters show a standard deviation of ¢ = 15.5 mm, when time offset and time
drift (linear model) are removed at 24 h intervals. The corresponding data are
shown in Fig. 18.6. For comparison, it is interesting to note the qualitative agree-
ment between Figs. 18.3 and 18.6 in terms of peak-to-peak variations and noise
behavior. The standard deviation is reduced to ¢ = 11.2 mm, when a linear model
is removed every 14 h, down to ¢ = 2.7 mm after time offset and drift removal at
1 h intervals.

The results of our analysis are shown in Table 18.1. With a polynomial of higher
degree, mm-accuracy can be reached (Table 18.1). This is in line with Fig. 18.3
which clearly shows consistency between clock and SLR residuals at the sub-cm
level, when time offset and time drift is removed at 24 h intervals. However, for
short intervals in Table 18.1, it is difficult to fully confirm values with real MGEX
data, due to the short-term noise in the estimated clock parameters of the limited
MGEX network, see Table 18.2. This is reflected in higher ADEV values in
Fig. 18.5 for MGEX satellite clock parameters for integration times up to several
hours.

Table 18.3 shows standard deviation differences between MGEX clock param-
eters and simulated clock parameters based on the ground test results in Table 18.1.
By forming such a differences, Table 18.3 reflects the noise of the ground data
processing in the estimated MGEX Galileo clock parameters. It is interesting for a
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Table 18.1 Standard deviation of the simulated clock parameters for Galileo passive H-maser
over a period of 10 days, after removing a polynomial of degree 1-5 over time intervals from 0.2
to 24 h. Accuracy at the mm-level can be achieved by using the low-degree polynomial,
significantly reducing the number of estimated clock parameters

Simulated Galileo H-Maser (¢ in mm)

Degree 02h 025 h 0.5h 1.0 h 1.5h 6h 12 h 14 h 24 h
1 1.2 1.4 2.0 2.7 3.4 6.8 9.3 11.2 15.5
2 1.0 1.1 1.5 22 2.7 5.7 7.7 8.8 10.3
3 0.8 0.9 1.3 1.9 2.3 4.7 6.5 7.8 9.8
4 0.7 0.8 1.2 1.7 2.1 4.3 5.8 6.6 8.7
5 0.8 0.9 1.1 1.5 1.9 3.8 5.2 5.6 7.8

Table 18.2 Standard deviation of the MGEX clock parameters (AIUB) for Galileo passive
H-maser over a period of 10 days (96—-106/2013), after removing a polynomial of degree 1-5 over
time intervals from 0.2 to 24 h. Missing values are due to the lower sampling of MGEX clock
parameters, given every 300 s

MGEX (AIUB) clock parameters (¢ in mm)

Degree 02h 0.25 h 05h 1.0 h 1.5h 6h 12 h 14 h 24 h
1 - 1.8 29 4.2 5.3 10.9 16.2 18.3 20.2
2 - - 23 3.7 4.2 8.3 12.5 14.1 17.8
3 — - 1.8 3.1 3.8 7.1 10.4 12.4 16.9
4 - - 1.3 2.8 3.4 6.4 9.3 10.4 12.9
5 - - - 2.8 32 5.6 8.5 9.6 11.9

Table 18.3 Standard deviation difference between MGEX clock parameters (AIUB) in
Table 18.2 and simulated clock parameters based on ground test data in Table 18.1 for Galileo
passive H-maser over a period of 10 days (96-106/2013), after removing a polynomial of degree
1-5 over time intervals from 0.2 to 24 h

Difference: MGEX (AIUB)—simulated, (¢ in mm)

Degree 02h 025 h 05h 1.0 h 1.5h 6 h 12 h 14 h 24 h
1 - 1.1 2.1 32 4.0 8.5 13.3 14.5 13.1
2 - - 1.7 29 32 6.1 9.8 11.0 14.4
3 - - 1.2 2.4 3.0 5.3 8.1 9.7 13.8
4 - - 0.5 2.2 2.7 4.7 73 8.1 9.6
5 - - - 2.3 2.6 4.2 6.7 7.9 9.0

linear model to note that values at 12, 24-h and at the orbit period interval, are very
similar, indicating that there is no significant signal at the orbit period and is most
likely represented by flicker frequency noise after about 8-10 h (see also Allan
deviations in Fig. 18.5). This noise figure is most likely related to the significant
orbit error represented by the orbit period being in the order of 7 h.
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18.4 Relativistic Effects of Earth’s Oblateness
and Gravitational Fields of the Sun and Moon
on the Galileo Clock Parameters

Following Petit and Luzum (2010), the proper time 7 of a clock with the coordinate
position x(t) in the Geocentric Celestial Reference System (GCRS) moving with the
coordinate velocity v = dx/dt, where ¢ is Geocenteric Coordinate Time (TCG), is

dt 1 [v? ;
== |5+ Us(0 + V(X) = V(Xg) = ¥V (Xe) (18.2)

where c is the speed of light and Ug the gravitational potential of the Earth at the
clock position x in the geocentric frame. V denotes the sum of the gravitational
potential of the Sun and the Moon calculated at a location X in barycentric coor-
dinates of the Solar system, separately for the Earth’s center of mass Xz and the
clock location X. GNSS satellite clock parameters provided by IGS only include
conventional periodic relativistic correction due to satellite orbit eccentricity.
Considering only the central term of the Earth’s gravity field (Kouba 2004), the Ug
term in (18.2),

Atpey = —C—22 GMa - e sinE (18.3)
where a, e and E are the osculating semi-major axis, the eccentricity and the
eccentric (angular) anomaly of the GNSS satellite orbit and GM is the geocentric
gravitational constant. This periodic effect, with the orbit frequency mainly depends
on the orbit eccentricity, i.e., special and general relativity effects due to satellite
height and velocity variations from the mean values along the orbit. Considering the
very small orbit eccentricity of e = 0.0002, the amplitude of this effect is only about
—0.15 m for Galileo E11 (similar to all four IOV satellites), and it is about one order
of magnitude higher for the constellation of GPS satellites that typically have higher
orbit eccentricities by at least one order of magnitude. An alternative, but more
convenient formulation of (18.3) applied directly in GNSS software packages is
Atyer = —2r - v/c?, where r and v denote for the satellite position and velocity
vectors, respectively (Kouba 2004).

The periodic relativistic effect due to the J, gravity field coefficient was calcu-
lated using the following expression (Kouba 2004)

3 2
At(J) 0 = — E%JZ\/GMa -sin® i sin 2u (18.4)
where a is the semi-major axis of the orbit, i the orbit inclination, u the argument of
latitude and ag the semi-major axis of the Earth’s ellipsoid. This effect is due to
special and general relativistic effects of the elliptical orbit perturbed by the Earth’s
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oblateness, reflected in the J, coefficient (dynamic flattening) of the Earth’s gravity
field. Periodic effects of other low-degree zonal gravity field coefficients are neg-
ligible in our case. An additional time drift due to the J, coefficient in Kouba (2004)
is not considered here, since residual clock parameters are calculated by removing
time offset and time drift of the satellite clock parameters estimated against the
reference H-maser on the ground.

Figure 18.7 shows Galileo residual clock parameters (MGEX) at high Sun
elevations from 60 to 65° together with the calculated J, contribution. The periodic
relativistic correction (18.3) was added to the Galileo residual clock parameters in
Fig. 18.7 after multiplication by the speed of light ¢ in a vacuum. The standard
deviation of the calculated residual clock parameters is reduced from 2.5 to 2.1 cm.
The amplitude of the periodic effect (18.4) for the orbit of the Galileo E11 satellite
is about 18 mm. Figure 18.8 shows the power spectral density of the Galileo E11
residual clock parameters before and after applying the correction for the periodic
relativistic effect due to the J, gravity field coefficient. The peak originally present
at twice the orbital frequency is removed after accounting for the J, perturbation.

The CMCU onboard the Galileo satellite can be used to adjust the constant
frequency offset of the clock due to the effects of the general and special theories of
relativity (Svehla 2010a) arising from the orbit altitude, see e.g., (Kouba 2004).
Since this frequency adjustment could be performed in small finite steps, the
absolute frequency of the Galileo clock is ambiguous by a constant step of the
CMCU unit (Svehla 2010a). Therefore, here we are not considering the absolute
frequency of the Galileo primary onboard clock (i.e., the time drift).

Galileo E11 (Sun Elevations 60°-65°)
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Fig. 18.7 Galileo E11 residual clock parameters at high Sun elevations from 60 to 65° (clock
solution from MGEX/AIUB). After removing the periodic relativistic effect due to the J, gravity
field coefficient, remaining residual clock parameters show a standard deviation (STD) of 2.1 cm
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Fig. 18.8 Power Spectral Density (PSD) of the Galileo E11 residual clock parameters (unit of
length) at high Sun elevations from 60 to 65° before (blue) and after removing (red) the periodic
relativistic effect due to the J, gravity field coefficient. The effect at 3 cycles per orbit revolution is
still to be understood. Clock solution from MGEX/AIUB, days 96-106 in 2013

Since the first two terms in the brackets of (18.2) consider the periodic rela-
tivistic corrections (18.4) and (18.3) in the Earth’s gravitational field, the accu-
mulated time due to gravitational potential of the Sun and the Moon in (18.2) along
the Galileo orbit was evaluated by the following expression based on (Wolf and
Petit 1995)

V(X4) = V(Xe) — ¥0V(Xe) = 3 GM, [——i + MEEEPL(18.5)

AZE TAE TAE
and displayed in Fig. 18.9. A summation was carried out with the subscript
A denoting Sun and Moon, and the subscript E is Earth. r is the modulus of the
corresponding vector x to satellite P in the barycentric frame. Figure 18.9 shows
that the net relativistic effect due to the Sun’s and the Moon’s gravitational potential
is very small and, after removing the daily time offset and drift (see Fig. 18.10), it
reduces to 0.4 mm for the Sun and 0.8 mm for the Moon. We selected a period of
6 days with low Sun elevation in order to have a maximum extension of the Galileo
satellite orbit in the Sun’s gravitational field of about 2 x 29600 km over one orbit
revolution. The larger oscillations for the Moon gravitational potential for the first
few days in Fig. 18.10 are due to the low elevation of the Moon above the satellite
orbital plane.
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Effect of the Sun and Moon Gravitational Potential on Galileo Clock
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Fig. 18.9 Accumulated time along the orbit of the Galileo E11 satellite due to the gravitational
potential of Sun and Moon for a selected period of 6 days with low Sun elevation 4° > > —2°
above the orbital plane. When the Sun is in the Galileo orbital plane, the satellite orbit spans about
2 x 29600 km per orbit revolution in the Sun’s gravitational field (max.-min. distance to the Sun).
The maximum is reached for a Moon elevation of 28.5°

18.5 Environmental Effects on the Galileo Clock
Parameters

In this section, we discuss the impact of the in-orbit environment (magnetic field and
temperature variations) on the Galileo clock performance. Magnetic field pertur-
bations can be estimated by using the magnetic sensitivity coefficient of <3 x 1073/
G (one gauss equals 10~ tesla) in fractional frequency, as measured during ground
tests (Boving et al. 2009) and (Rochat et al. 2012). Magnetic filed variations along
the Galileo orbit were calculated by using the International Geomagnetic Reference
Field (IGRF) model (International Association of Geomagnetism and Aeronomy
et al. 2010) in the direction of the satellite X, Y and Z axes. The time accumulated
along the orbit was obtained by integrating the fractional frequency variations due to
the ambient magnetic field (see Fig. 18.11). Considering that the magnetic field is in
the order of 300-550 nT along the Galileo orbit (days 100-116 in 2013), the con-
tribution of magnetic perturbations to the estimated residual clock parameters is in
the order of several millimeters. However, assuming the orientation of the Galileo
maser cavity along the satellite X-axis (that never faces the Sun), the maximum effect
of the magnetic field is below 0.8 mm, see Fig. 18.11. When applied as a correction,
the standard deviation of the residual clock parameters in Fig. 18.7 was improved by
only 0.1 mm. We can therefore conclude that the impact of magnetic field variations
on the Galileo clock parameters is very small and negligible. In addition, shielding of
the satellite further reduces their effect. However, this would not be the case if the
same clock were placed in a LEO orbit, where the magnetic field strength is higher
by two orders of magnitude.
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Effect of the Sun and Moon Gravitational Potential on Galileo Clock
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Fig. 18.10 Accumulated time along the orbit of the Galileo E11 satellite due to the gravitational
potential of Sun and Moon after removing daily time offset and drift. One can clearly see a distinct
twice per revolution effect for the Sun potential. After removing daily time offset and time drift, the
remaining effect on the residual clock parameters is below 0.4 mm for the Sun and up to 1 mm for
the Moon potential
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Fig. 18.11 Maximum accumulated time in (mm) along the orbit of Galileo E11 satellite assuming
a maximum magnetic sensitivity coefficient of 3 x 10~!* /Gauss. The magnetic field along the X,
Y and Z satellite axes was calculated using the IGRF model giving a magnetic field variation of
300-550 nT along the orbit. Assuming the orientation of the H-maser cavity along the X satellite
axis (never faces Sun), the maximum effect of the magnetic field on residual clock parameters is
below 0.8 mm. Along the Z axis, the effect is about three times higher. Daily bias and drift were
removed
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Unfortunately, no public data is available on the in-orbit temperature at the clock
reference point, therefore not much can be said about thermal perturbations. Boving
et al. (2009) reported a thermal sensitivity coefficient of the Galileo H-maser as
measured on the ground of <2 x 1071*/°C. The cavity temperature of the Galileo
H-maser is stabilized by a two-stage thermal control and an additional electronic
Automatic Cavity Tuning (ACT) system is used to optimize the cavity frequency
pulling effect caused by the residual thermal drift (Mattioni et al. 2002). From
Mattioni et al. (2002), one can see that, for platform temperature variations of 5 °C,
the cavity thermal control stabilizes the temperature within 3 m°C.

Temperature variations at the PHM reference point on-board the Galileo satellite
are expected to have two different periods, the orbital period and the period of the
stabilization loop. An analysis of the Allan deviation and PSD curves in Figs. 18.7
and 18.8, reveals no perturbation at the orbital period nor for periods shorter than
1000 s that could be attributed to temperature effects. This allows us to conclude
that the temperature stability at the PHM reference point is at the level of a few
tenths of a Kelvin.
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Chapter 19 )
Model of Solar Radiation Pressure Check or
and Thermal Re-radiation

The non-gravitational force solar radiation pressure is the main source of error in
the precise orbit determination of GNSS satellites. All deficiencies in the modeling
of solar radiation pressure map into estimated terrestrial reference frame parameters
as well as into derived gravity field coefficients and altimetry results when LEO
orbits are determined using GPS. Here we introduce a new approach to geomet-
rically map radial orbit perturbations of GNSS satellites, in particular due to solar
radiation pressure along the orbit, using high-performing clocks on board the first
Galileo satellites. We have seen in Chap. 18 that only a linear model (time offset
and time drift) need be removed from the estimated Galileo clock parameters and
the remaining clock residuals will map all radial orbit perturbations along the orbit.
Agreement between SLR residuals and clock residuals is at the cm-level RMS for
an orbit arc of 24 h. Looking at the clock parameters determined along one orbit
revolution over a period of one year, we show that the so-called SLR bias in Galileo
and GPS orbits can be represented by a translation of the determined orbit in the
orbital plane away from the Sun. This orbit translation is due to thermal re-radiation
and does not account for the Sun’s elevation above the orbital plane in the
parameterization of the estimated solar radiation pressure parameters. SLR ranging
to GNSS satellites takes place typically at night, e.g., between 6 p.m. and 6 a.m.
local time, when the Sun is in opposition to the satellite. Therefore, SLR mostly
observes that part of the GNSS orbit with a radial orbit error that is mapped as an
artificial bias into the SLR observables. The Galileo clocks clearly show an orbit
translation for all Sun elevations: the radial orbit error is negative when the Sun is in
conjunction (orbit noon) and positive when the Sun is in opposition (orbit mid-
night). The magnitude of this SLR bias depends on the accuracy of the determined
orbit and should rather be called “GNSS orbit bias” instead of “SLR bias”. All LEO
satellites, such as CHAMP, GRACE and JASON-1/2, need an adjustment of the
radial antenna phase center offset. When LEO satellite orbits are estimated using
GPS, this GPS orbit bias is mapped into the antenna phase center. GNSS orbit
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translation away from the Sun in the orbital plane not only propagate into the
estimated LEO orbits, but also into derived gravity field and altimetry products. The
mapping of orbit perturbations using an onboard GNSS clock is a new technique to
monitor orbit perturbations along the orbit and was successfully applied in the
modeling of solar radiation pressure. We show that the CODE solar radiation
pressure parameterization lacks the dependency on the Sun’s elevation above the
orbital plane, i.e., the elongation angle (rotation of solar arrays), especially at low
Sun elevations (eclipses). Sun elongation angle is used in the so-called T30 model
(ROCK) that includes thermal re-radiation. A preliminary version of a solar radi-
ation pressure model for the first five Galileo and the GPS-36 satellite is based on
the orbit/clock solution of 2 x 180 days of the MGEX Campaign. We show that, in
addition, Galileo clocks map the Yarkowsky effect along the orbit, i.e., a small time
lag between the Sun’s illumination of the satellite and its thermal re-radiation. We
present the first geometrical mapping of the anisotropic thermal emission of
absorbed sunlight of an illuminated satellite.

19.1 Galileo Clock Parameters and the SLR Bias in GNSS
Orbits

In Chap. 18 we demonstrated that the estimated epoch-wise Galileo clock parameters
can be used to map radial orbit error continuously along the Galileo orbit. That was
confirmed by an external validation with SLR measurements. Based on this analysis
of Galileo clock parameters, it was reported in Svehla et al. (2013c) that modelling
solar radiation pressure (SRP) based on the CODE SRP model (Beutler et al. 1994)

Orbit Plane

Sun B >
elevation .-

Argument of latitude w.r.t. Sun &

Fig. 19.1 Definition of a Sun-fixed orbit coordinate system. The f§ angle denotes the elevation of
the Sun above the orbital plane, Au is the argument of latitude w.r.t. the argument of latitude of the
Sun and E denotes Sun elongation angle
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will always introduce an error in the orbit modeling as a function of the Sun elon-
gation angle E. The Sun elongation angle E is the angle at which the satellite “sees”

the Sun and the geocenter and can be determined from spherical geometry, see
Fig. 19.1,

cos E = —cos f§ cos Au = —cos f§ cos(u — ug) (19.1)

as the function of the Sun elevation angle f§ above the orbital plane and satellite
argument of latitude u relative to Sun position in the orbital plane of the satellite u.
The Sun elongation angle is also the angle defining the orientation of the solar array
with respect to the satellite body. The same Sun elongation angle is explicitly used
in the so-called T30 model (ROCK) an a priori SRP model for GPS satellites that
includes thermal re-radiation (Fliegel and Gallini 1996) and an empirical SRP
model from JPL (Bar-Sever and Kuang 2004). In these two models amplitudes are
typically given for the following harmonics: E, 3E, 5E in the GPS satellite
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Fig. 19.2 Galileo El1 residual clock parameters in Sun-fixed orbital frame for rising (top) and
setting Sun elevations (bottom) against the argument of latitude relative to the Sun argument of
latitude. Figures are based on the MGEX clock solutions from AIUB and the bottom-right figure
on the MGEX solution from GFZ Potsdam. One can see a very close agreement between different
MGEX solutions and asymmetry in argument of latitude between rising and setting Sun elevations.
Max. effect is at Au = 180° (vertical red line), when the Sun and the satellite are in opposition and
min. effect at Au = 0° when they are in conjunction. The horizontal red lines show Sun elevations
between —12° < < 12° (satellite passing eclipses)
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Z-direction with an additional 2E and 7F in the X-component. However, as
reported in Svehla et al. (2013c), Galileo clock parameters clearly show only the
first harmonic E in the Galileo orbit over all Sun elevations that can be modelled as
A cos i cos Au = —A cos E, where A denotes amplitude. Recently, Montenbruck
et al. (2014) reported an a priori SRP model for Galileo satellites that is very similar
in parameterization to Svehla et al. (2013c). The same approach was also recently
applied in the parameterizations of solar radiation pressure for GPS and GLONASS
(Arnold et al. 2014), reporting estimation of harmonic amplitudes of the elongation
angle that go up to 3F and 4F.

Let us now analyze Galileo residual clock parameters for all Sun elevations
above the orbital plane. We use the Sun-fixed orbital frame, as defined in Fig. 19.1
with Sun elevation angle f§ above the orbital plane and argument of latitude of the
Galileo satellite relative to the Sun position in the orbital plane Au. Figure 19.2
shows Galileo E11 residual clock parameters for rising and setting Sun (ascending
and descending Sun elevations) based on MGEX orbit/clock solutions from ATUB
and GFZ Potsdam. As expected, one can see a very close agreement between
different MGEX solutions. Figure 19.2 shows that residual Galileo clock
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Fig. 19.3 Clock residuals of GIOVE-B, Galileo E11 and Galileo E12 satellites against the
argument of latitude of the satellite relative to the Sun argument of latitude. Max. effect is at
Au = 180°, when the Sun and the satellite are in opposition and at Au = 0°, when they are in
conjunction. Note also a slight asymmetry for the GIOVE-B satellite clock parameters that follows
the high Sun elevation. Based on 2 x 180 days (2012/2013) of data from the MGEX Campaign of
IGS (Galileo Clock Solution from TU Miinchen)
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Fig. 19.4 Translation of the GNSS orbit away from the Sun in the orbit plane, as mapped by the
Galileo clock. Night-time SLR ranging (depicted in grey) covers mainly that part of the orbit with
positive radial orbit errors Ar > 0. This explains why the SLR bias should be called “GNSS orbit
bias” instead of “SLR bias”. Based on information provided on the ILRS homepage, the blue/black
arrows depict +Y and +Z-axes of the attitude yaw steering such that the +Y axis has an opposite
sign to the +Y axis of GPS II/IIA, i.e., the +X (red arrow) spacecraft panel is maintained away
from the Sun. This is the same as for GPS IIR satellites

parameters are centered at an argument of latitude of Au = 180° relative to the Sun
and the magnitude decreases with increasing Sun elevation. The maximum effect is
when Sun and satellite are in opposition Au = 180°, and the minimum at Au = 0°
when they are in conjunction. The same effects can be seen in the MGEX orbits
available from TU Miinchen in Fig. 19.3.

Since the minimum and maximum are reached at Sun/satellite conjunction (orbit
noon) and opposition (orbit midnight) for all Sun elevation points towards trans-
lation of the calculated orbit away from the Sun in the Sun-fixed orbital frame, i.e.,
the radial orbit error is positive when the Sun is in opposition and negative when
Sun is in conjunction, see Figs. 19.3 and 19.4.

Estimated clock parameters for all three Galileo satellites show a periodic effect
(cosine function) highly correlated with the argument of latitude relative to the
position of the Sun. The maximum effect is reached when Sun and satellite are in
opposition Au = 180°, and at Au = 0°, when they are in conjunction. Due to the
fact that SLR ranging to GNSS satellites takes place typically at night, e.g., between
6 p.m. and 6 a.m. local time when the Sun is in opposition to the satellite, SLR
measurements observe only one part of the GNSS orbit, including radial orbit error
that leads to an artificial negative bias in SLR measurements, see Fig. 19.4. The
Galileo clocks clearly show this orbit translation for all Sun elevations: the radial
orbit error is positive, when the Sun is in conjunction (orbit noon) and negative
when the Sun is in opposition (orbit midnight), see also Fig. 19.5. The magnitude of
this artificial negative SLR bias depends on the orbit quality and, therefore, should
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Fig. 19.5 True and calculated orbit as revealed by the Galileo clock parameters

rather be called “GNSS orbit bias”, instead of “SLR bias”. For example, early
Galileo orbits were showing a bias of —10 cm that dropped to some —6 cm, when
orbits improved by a factor of 2. When LEO satellite orbits are estimated using
GNSS, this orbit bias could be reflected as phase center offset in the radial direction,
and this could be the reason why all LEO satellite missions need an adjustment of
the antenna phase center in the radial direction. Moreover, the GNSS orbit trans-
lation in the Earth-Sun direction in the orbital plane directly maps into the estimated
LEO orbits and subsequently into derived gravity field or altimetry products in the
case of gravity and altimetry missions.

In order to model the periodic effect in Figs. 19.2 and 19.3, as a first approxi-
mation we may use the cosine function of the satellite argument of latitude relative
to the Sun position in the orbital frame Au.

In addition, by making use of the Sun elevation above the orbital plane f, the
satellite radial orbit error Ar along the orbit can be approximated by

Ar=A - cos ff cos Au (19.2)

In the case of GIOVE-B and the first four Galileo satellites, the amplitude A is in
the order of A =~ 20 cm and depends also on the orbit quality. Let us now introduce
the elongation angle E from (19.1) at which the satellite “sees” the Sun and the
geocenter, see Fig. 19.1. Hence, as a first approximation we can introduce an
empirical model d. for the Galileo residual clock parameters as

Ouqr = Ar = —A - cosE (19.3)

Figure 19.6 shows the first approximation model of the Galileo residual clock
parameters parameterized by the elongation angle in (19.3). Since (19.3) gives the
circular pattern in Fig. 19.6 that can also be seen with real Galileo data in Fig. 19.2,
we have given this effect the name “eye-effect”. Figure 19.6 also shows a similar
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Fig. 19.6 The first model of the Galileo clock residuals (left) in [m] using elongation angle and a
model for SLR residuals for GPS 06 (right) (Svehla et al. 2011). For GPS, one can see the very
modest amplitude of about 10 cm and change of the sign for SLR. The higher amplitude of the

effect for Galileo is due to the orbit quality available for Galileo satellites from TU Miinchen at that
time

pattern for the model of GPS radial error due to solar radiation pressure modelling
deficiencies for GPS 06 (Svehla et al. 2011). Compared to Galileo, one can see the
very modest amplitude of about 10 cm due to the Galileo orbit quality at that time.

Equation (19.3) and Fig. 19.6 clearly point towards a translation of the calcu-
lated orbit away from the Sun in the Sun-fixed orbital frame, i.e., the radial orbit
error is positive at orbit midnight, when Sun is in opposition £ = 180°, and neg-
ative at orbit noon E = 0°. Such an orbit translation will introduce an orbit bias and
subsequently an SLR bias when GNSS orbit is observed by nigh-time SLR ranging
between e.g., 6 pm and 6 am that corresponds to the interval of about
Au = 90° — 270°.

If we now plot residual clock parameters as a function of elongation angle, we
obtain Fig. 19.7, showing that Galileo residual clock parameters (radial error)
closely follow the Sun elongation angle, i.e., the orientation of the solar array w.r.t.
to the satellite body. This is also confirmed by SLR residuals plotted with a negative
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Fig. 19.7 Residual clock parameters (left) and SLR residuals (right) in [m] against Sun
elongation. Galileo E11 clock residuals follow the Sun elongation angle, i.e., the orientation of the
solar array, as confirmed by independent SLR residuals (right) given with an opposite sign.
Residual clock parameters are based on the Galileo clock solutions from TU Miinchen submitted
to the MGEX Campaign of IGS
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sign in Fig. 19.7(right). The use of Sun elongation angle in (19.3) clearly points
towards deficiencies in the modeling of solar radiation pressure. Sun elongation
angle is explicitly used in the so-called T30 model (ROCK) that includes thermal
re-radiation (Fliegel and Gallini 1996) and in an a priori empirical model of solar
radiation pressure for GPS satellites used at JPL (Bar-Sever and Kuang 2004).

The clock estimates for all five Galileo satellites clearly show this orbit trans-
lation for all Sun elevations: the radial orbit error is positive when the Sun is in
conjunction (orbit noon) and negative when the Sun is in opposition (orbit mid-
night). This is fully in line with Urschl et al. (2007) that reported for the first time an
eye-type pattern in the SLR residuals of the two GPS and GLONASS satellites
equipped with SLR retro-reflectors, indicating negative SLR residuals with a
maximum effect when Sun and satellite are in opposition.

Compared to SLR, Galileo clock parameters map the radial orbit error along the
entire orbit, including when the Sun and satellite are in conjunction Au = 0°. This
is a strong argument to claim the orbit translation, not only for Galileo, but also for
GPS and GLONASS. Due to the fact that SLR ranging to GNSS takes place
typically at night, e.g., between 6 pm and 6 am local time, when the Sun is mainly
in opposition to the satellite, SLR observes mainly that side of the GNSS orbit with
a negative radial orbit error that is mapped as an artificial bias into the SLR ranges.
The magnitude of this artificial negative SLR bias depends on the orbit quality and,
therefore, should rather be called “GNSS orbit bias”, instead of “SLR bias”. For
example, early Galileo orbits were showing a bias of 10 cm that dropped to some
5 cm when orbits improved by a factor of 2. This can also be seen in Figs. 19.2 and
19.3 where MGEX orbits from AIUB show a smaller amplitude compared to orbit/
clock solutions from TU Miinchen. Partially, this orbit translation is also affected by
albedo effects, although the net albedo effects tend to move the orbit in an opposite
direction (towards the Sun) compared to our case. Related to albedo see Ziebart
et al. (2007), Rodriguez-Solano et al. (2012). When LEO orbits are estimated using
GNSS, any GNS orbit translation maps into the estimated LEO orbits.

Figure 19.8 shows a histogram of SLR residuals as a function of satellite
argument of latitude Au relative to the position of the Sun in the orbital plane. SLR
residuals refer to two periods of about 50 days (days 69-131/2013 and 300/
2013-52/2014) for AIUB orbit solutions showing a mean SLR bias of —6.5 cm.
One can see that SLR measurements are not spread uniformly along the orbit and
for Galileo the majority of SLR measurements are taken around midnight, whereas
fewer SLR measurements are available for when Galileo satellites are closer to the
Sun. Therefore, the mean SLR bias (orbit bias) dg g can be decomposed into one
part due to an orbit modelling, accounting for mismodeling of e.g., solar radiation
pressure Os gmoder by using e.g., (19.3) and a constant part along the orbit dcons
generated by e.g., the antenna trust effect or constant part of the Earth’s albedo.
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Fig. 19.8 Histogram of SLR residuals based on the MGEX solution from AIUB (days 69-131/
2013 and 300/2013-52/2014). One can see that the Galileo E11 orbit is observed when Sun and
satellite are in opposition

5SLR = SSLRmodel + 5const (194)

If we now calculate the weighted average of SLR residuals in Fig. 19.8, making
use of (19.3)

Syp = A COSE s m—4lem—24cm=—65cm  (19.5)
2_on

as a functional model and weighting by the number of measurements 7; in histogram
bins shown in Fig. 19.8. The weighted SLR bias (orbit bias) is dsir = —6.5 cm,
giving an estimated constant SLR bias of —2.4 cm. We will see in the next section
that the Earth’s planetary radiation contributes approx. —14.6 mm to the constant
bias in the radial direction. For GPS we estimated this value to be about —6.3 mm for
GPS Block-IIR and —7.7 mm for GPS Block-IIF. Considering the transmitted power
of Galileo IOV satellites, our estimate of the Galileo trust effect is in the order of —9
to —11 mm. These values are in line with (Ziebart et al. 2007) that also reported a
constant effect of the Earth’s albedo in the radial orbit error of GPS satellites at the
cm-level and an antenna trust effect of —5 mm for GPS Block-IIF satellites.

We conclude this section by validating the derived empirical Galileo clock
model in (19.3) with SLR measurements over all Sun elevations. Figure 19.9 shows
SLR residuals (with an opposite sign) in the Sun-fixed orbital frame for two periods
of about 50 days in 2013 and 2014 with rising Sun elevation. One can see very
close agreement with the residual clock parameters displayed in Fig. 19.2. Distinct
asymmetry for rising and setting Sun elevations versus orbit noon and midnight is
consistent for both Galileo clock residuals and SLR.
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Fig. 19.9 Galileo E11 SLR residuals (with negative sign) for rising Sun elevations based on the
MGEX clock solutions from AIUB (days 69-131/2013 and 300/2013-52/2014). The figure on the
left and on the right show negative SLR residuals relative to the satellite argument of latitude
(relative to Sun position in the orbit frame). Notice a small asymmetry of residuals vs. orbit noon
and midnight for SLR and Galileo clock residuals

19.2 A Model of Solar Radiation Pressure Based
on Galileo Clock Parameters and Circular
Perturbations

Equation (19.2) can be written as the radial perturbation equation in the form
A cos(u+up), see (19.23), which is the general solution of the radial harmonic
oscillator. Thus, we may use the following circular model to approximate the
associated perturbations:

¥ = ¢ cosnt + ¢, sinnt, ¢1Lés, ||El|| = ||Ez|| =r (196)

with two orthogonal vectors ¢; and ¢,, the mean motion n = 27/P of the satellite
and the orbit period P =~ 14 h for Galileo. The second time derivative is then

¥ = —n?(¢| cosnt + & sinnt) = —n’F (19.7)
that gives circular radial orbit perturbation A# = —n? - Ar assuming constant mean

motion n. We may approximate A7 with the radial component of acceleration due to
mismodeled solar radiation pressure, as observed by clock residuals in (19.2). After
substituting with (19.2), we obtain

AF = —n*- A - cos f cos Au (19.8)
By introducing the elongation angle E (19.1), (see Fig. 19.1), and after substi-

tution into (19.8), we obtain the circular perturbation of the modelled clock
residuals.
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.. 21\ 2 21\ 2
AF=—-A- > -cosfcosAu=A - cosE (19.9)

We now note that — cos f§ cos Au is the projection of the Sun unit vector s, onto
the Z-axis in the satellite body frame pointing radially inwards towards the geo-
center. For all three components of the Sun unit vector.

Sox = — cos fsinAu
Soy = —sinf (19.10)
Sez = —cos ff cos Au

In an analogous way, similar to ROCK-type models where only X- and Z-
directions are considered (Fliegel and Gallini 1996), we may define an orthogonal
effect in the X-direction ¥ = —(5, X Z) X Z. As a result we may thus propose a
perturbation model for both components in the satellite frame parameterized with
two amplitudes A, and A, as follows

A, =A 21 2(:os p sin A A 21 2sinE
Iy = | — S S = — —
x x P u \p
o\ ? 27\
Ai, =A; - (:) cos f cos Au = —A, (Pn) cosE

The amplitudes in (19.11) can be determined from the estimated clock param-
eters or estimated as parameters in the global GNSS solution. We typically remove

(19.11)
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Fig. 19.10 Estimated Galileo clock parameters (linear model removed) (dotted line) against effect
of the thermal re-radiation (red) in radial direction calculated using analytical orbit Hill equation,
(Colombo 1986). For the thermal inertia, a small asymmetry with the orbit non-midnight direction,
we used a value of 4.7 min. Note the size of the amplitude ~20 cm in the radial direction that is
similar to our simple model A - cos E
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daily time offset and drift from the Galileo clock parameters, thus (19.11) is a good
approximation for the residual SRP acting along the satellite orbit (radial offset and
drift removed). Equation (19.2) or the form d. = Ar = —A - cosE, is a general
solution of the radial harmonic oscillator and (19.11) is a good approximation that
gives an order of magnitude of the total effect. The Galileo clock amplitude of ~20
cm shows a very close agreement in Fig. 19.10 with the solution of Hill equations
(Colombo 1986). Small terms due to orbit velocity in Hill equations
(Hill-Clohessy-Wiltshire equations) are not modelled and will affect the radial orbit
(radial linear model removed), (Clohessy and Wiltshire 1960).

19.3 Thermal Re-radiation Acceleration and Thermal
Inertia of the Satellite

A satellite illuminated by the Sun experiences acceleration due to the absorption
and reflection of photons on the exposed surface areas. This effect is commonly
known as solar radiation pressure (SRP) and is dependent on the optical properties
of the satellite surfaces. Solar radiation pressure is driven by the solar radiation
intensity J; that for a given distance d from Sun can be calculated as, see e.g.,
(Fortescue et al. 2011).

P

Jy = e (19.12)

where P is the total power output from the Sun, or the solar flux 3.856 x 10%° W.
At the Earth’s mean distance from the Sun (1 AU) it is approx. 1371 + 5 W/m? and
often referred to as the Solar Constant. Since the satellite acceleration induced by
solar radiation is proportional to the projected area exposed to the Sun (here
denoted as A.) and inversely proportional to the total mass m of the satellite, the
SRP acceleration in satellite-Sun direction €, is

e ]sAc_»
VSRp = *CSRP__EG) (1913)
cm

where c is the speed of light in a vacuum and Csgp the Solar radiation pressure
coefficient describing optical properties of the satellite surface. Let us now define a
normal to the surface 7 with an angle 0 defined as cos 0 = 71’ - &.. We introduce the
optical properties on the satellite surface by defining absorptivity, specular and
diffusive reflectivity

e the specular reflectivity: —2p, - cos? 0ii
o the diffusive reflectivity: —p, - cos0 - €z — _%pd - cos@-n
e the absorptivity: —a - cos 0 - €5
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with specular, diffusive and absorptivity coefficient p, 4+ p; + o = 1. From this we
can derive an equation for the solar radiation pressure acceleration

. A, . 1
Fsrp = — s 0 {(1 — py)€e +2(p,cos 0+ g/’d)”} (19.14)

In the case of solar arrays oriented towards the Sun

= JsAc 2 - JSA—»
Fspp = — —— [1 +ps+ Pd} éo = —Csgp——¢0 (19.15)
cm 3 cm

where Csgp = 1+ p, + %pd. A similar expression can be found in (Milani et al.
1987).

Solar radiation acceleration is typically estimated as part of orbit determination
by utilizing the widely used CODE SRP model (Beutler et al. 1994). As a function
of argument of latitude u

D(u) = Dy + D, cos(u) + Dj sin(u)
Y(u) = Yo+ Y.cos(u) + Y, sin(u) (19.16)
B(u) = By + B, cos(u) + By sin(u)

The CODE SRP model (19.16) defines estimated empirical acceleration in the
satellite-Sun direction D(u), along the solar panel axis Y (u), and B(u) completes
the orthogonal triad. Typically, the CODE 5-parameter version is used where of the
nine empirical parameters in (19.16) only the direct accelerations Dy, Yy, By are
estimated, along with two periodic components B, and B. The remaining four
amplitudes D,, Dy, Y, and Y; in (19.16) are either not estimated or constrained in the
orbit determination. It is neither well known nor available in the relevant literature,
but due to variable satellite-Sun distance d along the orbital plane, all nine SRP
parameters in (19.16) are scaled to one Astronomical Unit (1 AU), making use of
the scaling factor (1 AU/d)>.

The SRP acceleration is induced by incident solar radiation due to the exchange
of momentum with the satellite surface depending on how much power is absorbed
or reflected either diffusely or specularly by the satellite surface. This exchange of
momentum depends also on the nature of the Sun radiation. Since a satellite is not a
black body, it absorbs only a fraction of the incident Sun energy (absorptance o).
The actual temperature T of the satellite surface will cause infrared re-radiation
emission at thermal infrared wavelengths generating thermal re-radiation intensity
according to Stefan-Boltzmann’s law

Jradiateda = €+ 0 - T4 (1917)

where ¢ denotes the emittance and o the Stefan-Boltzman constant
5.67 x 1078 Wm2K~*, see (Fortescue et al. 2011). With the effective area of the



282 19 Model of Solar Radiation Pressure ...

satellite for absorbing A, and for emitting A., with no internal heat dissipation, the
equilibrium temperature 7 is achieved when absorbed thermal flux ¢, and emitted
thermal flux g, are equal, g, = g,

Ay-a-Jy=A,-e-0-T (19.18)

For a given ratio between absorptance and emittance o;/¢ which mainly depends
on the surface color, one can calculate the equilibrium temperature 7 at the exposed
satellite surface.

According to the ESA News of 11.7.2013, each of the solar arrays in the pair on
board a Galileo satellite is 1 x 5 m in size and consist of more than 2500
state-of-the-art gallium arsenide (GaAs) solar cells. This type of solar cells is also
used on GPS Block-IIF satellites, see Table 19.1 and other ESA satellite missions,
such as Rosetta. Typical values for absorptance and emittance for GaAs solar cells
can be found in the relevant literature, e.g., (Fortescue et al. 2011), and are o = 0.88
and ¢ = 0.80. For the ratio between absorptance and emittance for the Galileo solar
arrays this gives o/e = 1.10. For the black paint that is typically used for the
satellite body one obtains 1.16. At the distance of 1 AU for Galileo solar arrays this
gives an equilibrium temperature of 7 = 339.60 K or T = 66.45 °C. This is based
on the assumption that A,/A, =2, as a first approximation, it was assumed that
both the front and the rear side of the Solar array are radiating equally. When the
Sun is in the orbital plane, the max. difference in temperature along the orbit
(between orbit noon and orbit midnight) is only 0.07 °C.

Since the satellite acceleration due to thermal re-radiation is proportional to the
area of the radiating satellite body surface A, and inversely proportional to the total
mass m of the satellite, the final expression for thermal re-radiation acceleration in
the Sun-satellite direction can be derived from the emitted thermal flux Q,

204 2

4
3¢ m 3Cther ef Tf (1919)

where Ty denotes the equilibrium temperature at the satellite body surface con-
sidering only Lambertian diffuse reflectivity and neglected specular reflectivity.
Thus, the factor 2/3 in (19.19) comes from Lambert’s cosine law integrated over the
whole hemisphere. Following (Rievers et al. 2009), if the radiating surface is an
ideal radiator, the radiation pattern is hemispheric and the distribution of intensity
over the hemisphere can be expressed by Lambert’s cosine law. We define the
thermal coefficient Cy,, in the following way

Corer = %% [m/ (s2K%)] (19.20)

In the case of solar panels we need to account for the thermal re-radiation from
both sides of the solar panels, i.e., a difference between emitted thermal flux from
the front and the rear side of the solar panel Q¢ — Qc,
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. __ -front rear
Tther = ,{her + Tiher

_ Qg =04 (19.21)
c m

= _Cther(ef T;‘— S Tf)
where T, denotes the temperature of the rear side of the solar panel. Following
(Fortescue et al. 2011), absorptance of a satellite surface illuminated by solar
radiation that has a peak intensity at about 0.45 pm in the optical part of the
spectrum has a corresponding emittance of a surface radiating in the infrared region
with peak intensity at about 10 pm in the infrared spectrum.

Since the heat flow through the typical honeycomb core structure of the solar
arrays occurs by conduction only, the thermal emission properties of solar arrays
are practically unaffected by outgassing and radiation of the heat flux through the
cavities within the solar array core. Radiation is the main mode of heat transfer in a
vacuum and thus in space. Therefore, we may calculate the temperature difference
between the front and the rear side of the solar array AT due to the heat flow from
the warmer front panel to the colder rear panel knowing the conductive heat flow
rate Q. that is equal to the absorbed thermal flux A, - o - J; in (19.18)

JA

Qc:l

CAT = h(Ty — T)) (19.22)

where h, is the thermal conductance as a function of cross-sectional area A, [ the
conductive path length (approx. thickness of the solar array) and / the thermal
conductivity. Since the GaAs solar cells are also used on other ESA missions, such
as Rosetta, we assumed that the inner core of the Galileo solar arrays consist of a
thin honeycomb structure made of aluminum (Al), whereas the external front and
rear solar array surfaces are made of Carbon Fiber Reinforced Plastic (CFRP),
with the front surface being covered by the GaAs solar cells. Typical thermal
conductivity for Al-honeycombs as A = 109+ 0.245 - (T, — 273.15) where T, is
the mean temperature 7, = (T; — T,)/2. Emissivity of CFRP surface have a
strong temperature dependency that is empirically given as €= 0.312 +0.003288
-T — 0.00000533 - T°.

Figure 19.10 shows estimated Galileo clock parameters after removing linear
clock model (time offset and drift) against the effect of the thermal re-radiation
acceleration of the satellite body in the radial direction. For this calculation we used
analytical Hill equations for the radial orbit direction given in Colombo (1986)
perturbed by the analytical effect of thermal re-radiation from this section. For the
calculated radial perturbation we removed offset and drift in order to be comparable
to the Galileo clock parameter. Figure 19.10 shows very close agreement between
both analytical effects without any parameter estimation. For the small asymmetry
with the orbit non-midnight direction we used thermal inertia of 4.7 min.

Solar radiation pressure for orbits of GNSS satellites is mainly driven by the
large solar panels. Since these are relatively thin, the main component of the
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thermal re-radiation of Solar panels at infrared wavelengths act in the opposite
direction to that of the solar radiation pressure. Considering that the same area of
solar panels is illuminated by the Sun along the orbit, both solar radiation and
related thermal re-radiation of solar panels generate a net force along the GNSS
orbit that is removed by the estimated CODE 5-parameter model. This is not the
case with the thermal re-radiation of the satellite body that when heated by the Sun
generates a re-radiation force acting in the same direction as the solar radiation
pressure, but with a delay needed to heat the surface. This is so called thermal
inertia or Yarkovsky effect, often associated with the orbital dynamics of asteroids,
see Chesley et al. (2003). Thus, once illuminated by the Sun, the satellite surface
will warm up after some delay and stay warmer even after pointing to the Sun. This
afternoon side of the satellite is hotter and thus will generate thermal re-radiation
acceleration that is away from the Sun- satellite direction and not co-linear with the
SRP acceleration. Due to the size of the satellite body, the solar radiation pressure is
significantly smaller compared to the thermal re-radiation for the satellite body.
Because of the time lag, the net effect due to thermal re-radiation is not collinear
with the direction of solar radiation pressure and we see an asymmetric effect when
comparing rising and setting Sun elevations for orbit noon and midnight. This
thermal inertia of the satellite or the Yarkovsky effect, can be confirmed with
Galileo clock residuals and SLR residuals plotted against the satellite argument of
latitude in all figures in this section, see e.g., Figs. 19.2 or 19.7.

The Yarkovsky effect was first claimed for the asteroid 6489 Golevka tracked by
the Arecibo radio telescope in 1991-2003. The asteroid drifted 15 km from its
predicted position over 12 years, (see Science paper (Chesley et al. 2003)). An
illuminated object, or a Solar array and a satellite body in our case, takes some time
to become warm when illuminated and to cool down when this illumination stops.
Recently Turyshev et al. (2012) have claimed that the anomalous acceleration of the
Pioneer 10 and 11 (Pioneer anomaly) is due to the recoil force associated with an
anisotropic emission of thermal radiation from these vehicles.

In Lucchesi et al. (2004), a part of the total Yarkovsky effect is analyzed for the
LAGEOS-2 satellite (called the Yarkovsky—Schach effect) that is modulated only
during the eclipse passages through the Earth’s shadow. For satellites that are
rapidly spinning, such as LAGEOS-2, one can assume a latitudinal distribution of
temperature across the satellite surface, and therefore, the thermal re-radiation
acceleration is directed along the satellite spin axis. Due to the absence of solar
radiation in the eclipse passages, and associated change in the surface temperature,
the finite thermal inertia of the spinning satellite produces a small change in the
thermal re-radiation acceleration along the spin axis. This gives rise to a non-null
along-track acceleration along the orbit revolution and associated long-term effects
in the satellite semimajor axis (Lucchesi et al. 2004). Rubincam (1987) discusses a
similar thermal inertia effect for the rapidly spinning LAGEOS-2 satellites due to
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the Earth’s infrared radiation, causing a net force along the direction of the spin
axis. This effect is often called the Earth-Yarkovsky or Rubicam effect, see e.g.,
Lucchesi et al. (2004).

However, GNSS satellites or typical gravity or altimetry missions in the polar
Earth orbits, do not rapidly spin as does the LAGEOS-2 satellite. This is a sig-
nificant factor, as one cannot assume a latitudinal distribution of temperature across
the satellite surface and easily distinguish between the “cold” and the "hot hemi-
sphere” for a spherical approximation of satellite surface. In this case, thermal
re-radiation acceleration is fixed in the inertial space, relative to Sun direction. For
nadir- pointing satellites typical rotation is associated with one orbital period.
For GNSS satellites one should also consider yaw steering along the nadir direction
with typical oscillations from f to 180° — f§ outside the fixed yaw-steering regime
when Sun elevation is close to zero.

In the general case of a spinning satellite both a spin component and an equa-
torial component of the acceleration are present. The recoil acceleration for a
spinning satellite is generated by the imbalance of the temperature distribution
across the satellite surface and directed along the satellite spin axis, away from the
colder pole. As soon as the spinning satellite is in full sunlight, i.e., in the absence
of eclipses, the along-track acceleration at a given point of the orbit is compensated
by an equal and opposite acceleration at the opposite point of the orbit, giving a
resultant null acceleration over one orbital revolution.

Since all GNSS satellites are pointing towards the Earth, there will always be a
component of thermal re-radiation in the radial orbit direction as a function of
relative Sun argument of latitude cos Au that is not removed by the estimated
CODE 5-parameter model. The estimated CODE 5-parameter model removes only
solar radiation/re-radiation pressure of the solar panels constantly oriented towards
the Sun. Since cos(0°) = — cos(180°), we get the maximum effect of the thermal
re-radiation of the satellite body in the radial direction when Sun and satellite are in
opposition Au = 180°, and the minimum at Au = 0° when they are in conjunction.
Thus, the net effect translates the orbit away from the Sun. Satellite payloads also
generate heat within the satellite and radiators placed on the satellite surface
channel this heat outside the satellite. However, they are typically placed sym-
metrically to each other along the Y-axis (Solar panel axis) of the satellite.
Therefore the net thermal effect of the internal heat dissipation is zero and with
appropriate thermal design should not have a significant effect on the satellite orbit.

Figure 19.11 graphically depicts the Yarkovsky effect on satellite orbit around
the Earth. Radiation from the Sun heats the satellite body on the nearest side to the
Sun (orbit noon). The net effect in the along-track direction accelerates the satellite
in Sun-satellite opposition and slows it down in Sun-satellite conjunction. This can
be geometrically measured in the radial direction by the Galileo H-maser. One can
distinguish the Yarkovsky effect at orbit period in Fig. 19.11 and at draconic period
between rising and setting Sun elevations in Fig. 19.12. The GNSS draconic year is
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“orbit _

Midnight

Fig. 19.11 Yarkovsky effect on a spherical, nadir-pointing satellite in a prograde orbit around the
Earth in the Sun-fixed orbital coordinate system. Due to thermal inertia, the maximum of the
surface temperature (red) and subsequently its thermal radiation acceleration (green arrows) is
displaced from the Sun-satellite direction. The hotter side of the satellite (red) is the afternoon side
(past the orbit noon) that re-radiates most of the absorbed solar radiation (red arrows). As long as
the satellite is in sunlight, the effect will result in zero net acceleration over one orbital revolution,
since the projection of thermal acceleration in the along-track orbit direction at any given point
along the orbit will be compensated by equal and opposite acceleration at the antipodal point of the
orbit. When Sun and satellite are in opposition, Au = 180°, additional along-track acceleration
increases the satellite velocity, whereas it is compensated by an equal and opposite accelerations at
the orbit Sun/satellite conjunction Au = 0°, where it is opposite to the along-track velocity. Thus,
the net effect along the orbit will result in translation of the orbit in the Sun-satellite direction away
from the Sun

the repeat period of the GNSS constellation w.r.t. Sun which is approximately
351 days for Galileo and 357 days for Galileo.

For rising and setting Sun elevations, Galileo radial orbit error or residual clock
parameters can be approximated by

Aax = Ar, = A, cos 8 cos(u — ug) Rising Sun (19.23)
Agr = Ar, = A, cos B cos(u — us, — 1807) Setting Sun |

where u; denotes the argument of latitude of the Sun’s ascending node on the
satellite orbit plane. By introducing a time lag for the thermal inertia «, the clock
model A is then given for rising and setting Sun elevations

Aax = Ar, = A, cos 8 cos(u — ug) Rising Sun (19.24)
Acr = Ary = —A,cos f cos(u — ug, +a) Setting Sun '
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Fig. 19.12 Yarkovsky effect on a spherical nadir-pointing satellite in orbit around the Earth due to
rising and setting Sun elevations over one draconic period (357 days for Galileo). Due to thermal
inertia, the maximum of the surface temperature (red) and subsequently its thermal radiation
acceleration (green arrow) is displaced from the Sun-satellite direction. This seasonal Yarkovsky
effect between orbit summer and orbit winter is equivalent to the Yarkovsky effect with orbit
revolution between orbit noon and orbit midnight. The hotter side of the satellite (red) is the
summer side of the orbit (rising Sun elevations) that re-radiates the most of the thermal radiation
(red arrows). As long as the satellite is in sunlight, the effect will result with null acceleration over
one Sun draconic period. Projection of thermal acceleration to the radial orbit direction at any
given orbit noon along the summer orbit will be compensated by an equal and opposite
acceleration in the antipodal point of the winter orbit. When Sun and satellite are in opposition
Au = 180°, additional radial acceleration increases the satellite velocity whereas it is compensated
by an equal and opposite accelerations in the orbit Sun/satellite conjunction Au = 0°, where it is
opposite to the along-track velocity. Thus, the net effect along the orbit will result in the orbit
rotation along the orbital plane direction

19.4 Planetary Radiation of the Earth

The Earth and other planetary bodies in the Solar System have non-zero temperature.
Therefore, in addition to thermal flux due to solar radiation intensity J; given by
(19.12) there is also the planetary radiation of the Earth to be considered. This has a
wavelengths in the infrared spectrum between 2 and 50 pum, exhibiting peak intensity
around 10 pm, and is generated by the whole cross-sectional area of the Earth.
Intensity of planetary radiation J, is a function of orbit altitude R,,;; and is given by

R
J, =237~

(19.25)

orbit

where R, is the radius of the effective radiating surface, and in the case of the Earth
can be approximated by the mean Earth’s radius. For the Galileo orbit altitude one
can find J, = 11.0037 and for GPS J, = 13.7292. This corresponds to about 0.8%
of the solar intensity for the Galileo orbit and 1.0% for the GPS orbit at 1 AU from
(19.12). Estimated radial orbit bias is given in Table 19.1 for Galileo and GPS
satellites calculated using satellite properties available from http://www.gps.gov
and http://www.gsa.europa.eu/galileo/programme.


http://www.gps.gov
http://www.gsa.europa.eu/galileo/programme
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From Table 19.1 one can see that the orbit bias Ar = —14.6 mm of calculated
Earth’s radiation for Galileo satellites is in a very good agreement with the mean
bias in SLR residuals that is in the order of —2.4 cm. The remaining bias of
—9.4 mm is close to the estimated antenna trust effect, see previous section.

For solar arrays, the effect of the Earth’s radiation is strongly dependent on the
cross-sectional area of the solar arrays in the nadir direction and the orientation of
the solar arrays. This relationship can be modelled using the elongation angle E

Ar =A; - cosE (19.26)

In order to calculate the amplitude A; one also needs to take into account the
emittance of the rear side of the solar panel.

19.5 Galileo Clock Parameters and Attitude

According to the description of Galileo satellite parameters provided on the ILRS
homepage, GIOVE-A, GIOVE-B and the Galileo satellites follow the yaw steering
law. The satellite body +Z axis points continuously to nadir (as in GPS), and a
rotation performed around the Z axis maintains the satellite +Y axis perpendicular
to the Sun. The +X spacecraft panel is maintained away from the Sun. From the
information provided on the ILRS homepage it follows that the +Y axis has the
opposite sign to the +Y axis of GPS Block II/IIA satellites, i.e., the axis definition
for Galileo is the same as for GPS Block IIR satellites, (see IGSMail#16353 for a
description of Block IIR satellites). The Galileo clock residuals and Fig. 19.3 show
that the accumulated carrier-phase due to the antenna wind-up is similar to that for a
GPS orbit, indicating that orientation of the yaw steering for Galileo is the same as
for GPS. Since the clock residuals nicely match the SLR residuals, we may draw the
conclusion that the Galileo wind-up effect was correctly calculated and that the
assumptions used in the Galileo axis definition and attitude law are correct. In
addition, the ILRS homepage states, “As with GIOVE-A, it is foreseen that the
theoretical attitude will not be achieved at times where the beta angle is small, due
to limitations in the reaction wheels and yaw measurement (Sun co-linearity)”. This
is similar to GPS Block IIR satellites. According to IGSMail#1653, it was reported
that for low Sun elevations, —1.6° < <1.6°, GPS IIR satellites switch from yaw
steering to a fixed yaw mode. This transition happens at orbit dusk and in this mode
the yaw angle is fixed, i.e., the X and Z axes are in the orbital plane, while the +X
points approximately in the direction of the velocity vector (axes definition for GPS
Block IIR), (see IGSMail#1653). In the case of Galileo, the yaw steering algorithm
was presented in Gonzalez (2010), where it was indicated that the beta angle, at
which yaw steering is switched to the fixed yaw mode is below 2°. Figure 19.13



290 19 Model of Solar Radiation Pressure ...

Clock Residuals in [m]

], M S T

IS Y TR Y T N TR SN AN N NS A M S N /S S
0 15 30 45 60 75 S0 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 30
Au-angle

Fig. 19.13 Galileo El11 clock residuals against the argument of latitude relative to the Sun’s
position. One can see a clear jump at Au = 180° and a slightly smaller jump at Au = 0° of about
half a narrow-lane wavelength, indicating that during fixed yaw steering (Sun elevation § = 0°)
the satellite rotates approx. 180° about the Z axis, i.e., a turn in the yaw angle from 0° to 180° over
an argument of latitude of ~15°. The antenna wind-up was based on nominal yaw steering.
A rotation of 180° in yaw corresponds to half a narrow-lane wavelength

shows the clock residuals of the Galileo E11 satellite during fixed yaw steering (Sun
elevation f = 0° ). Since the antenna wind-up effect was calculated for nominal
yaw steering, one can clearly see a jump at Au = 180° and a slightly smaller jump
at Au = 0° . This indicates that during fixed yaw steering (Sun elevation ff = 0° ),
the satellite rotates by 180° about the Z axis at Au = 180° , i.e., it makes a turn in
the yaw angle from 0° to 180° over an interval in the argument of latitude of about
15°. A rotation by 180° in the yaw angle corresponds to the wind-up effect of half
of the narrow-lane wavelength, and this is mapped into estimated satellite clock
parameters. Figure 19.13 indicates that this yaw rotation turn also takes place at
Au = 0°, in the opposite direction and is less visible.

Calculation of the antenna wind-up effect was based on nominal yaw steering.
Figure 19.13 shows the clock residuals of the Galileo E11 against the Sun’s
elevation above the orbital plane and the argument of latitude of the satellite
relative to the Sun’s position. One can see that at low Sun elevations the clock
residuals experience higher variations, which are most likely due to eclipses.
For GNSS, eclipse periods take place when —14°<f<14°. For Galileo, the
eclipse interval is slightly narrower, i.e., —12° <ff<12° due to the higher orbit
altitude. The angle of 12° is the angle of the Earth’s radius as seen from the
Galileo orbit altitude.
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19.6 Comparison with a Thermal Re-radiation Model
for GPS Satellites at Low Sun Elevations

By inserting the mass of the GPS PRNO6 (975 kg) and the model of solar radiation
pressure (19.11) we obtain for the force due to solar radiation pressure

2 2
f=0.10- (F”) . cosE-975 =021 cosE [107°N] (19.27)

in units of [IO’SN]. Comparison of (19.27) with the T30 thermal re-radiation model
of ROCK-type Solar radiation pressure models, reveals parameterization with the
elongation angle E that is similar to our model (19.11). Following (Fliegel and
Gallini 1996), for BLOCK IIR GPS satellites, the T30 model including thermal
re-radiation in the X and Z directions of a satellite body-fixed system is

fz=—11.3cos E+0.1cos3E+0.2cos5E

. . . (19.28)

Jx =—11.0sinE — 0.2sin3E +0.2sin 5E
in units of [I073N], as a function of the elongation angle only. Explanation for the
frequencies 3E and 5E is not given in (Fliegel and Gallini 1996). Similar param-
eterization to the T30 thermal re-radiation model was presented in (Bar-Sever and
Kuang 2004). Note that the Z direction for GNSS satellites is a negative radial
direction, hence the change in sign compared to our model (19.27). The 5 or 9
standard CODE solar radiation pressure parameters are not suited to absorbing an
effect that varies significantly with the Sun f— angle. A variation in Sun elevation
by one degree will generate an additional acceleration at the ~10™° m/s” level that
can explain the effect in (19.11). This is why GPS and Galileo orbits are at their
most accurate levels when the Sun is high above the orbital plane. We can draw the
conclusion that 9 CODE solar radiation pressure parameters should be used in
addition to our thermal re-radiation model, or the parameters of the T30 model in
(19.28) should be estimated empirically in addition to the CODE Solar radiation
model. Considering the single term in (19.11), one could estimate empirically two
additional frequencies such as

AF¥ = A(21/P)*cos E + A3 (6m/ P)*cos 3E + As(107m/P)*cos SE (19.29)

in order to properly model the ‘“side lobes” at lower Sun elevations, (see
Fig. 19.14). Atlow Sun elevations, the amplitude of the twice-per-rev. frequency is
more visible, due to the high Sun beta angle in Fig. 19.14.
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Fig. 19.14 Clock parameters of the Galileo E11 satellite at low Sun elevations <12°. At these Sun
elevations, the amplitudes of the “side lobes” due to the 3E and 5E frequency are more visible

19.7 Solar Wind Pressure and Its Symmetry with Solar
Radiation Pressure

Solar wind pressure has not been considered so far in precise orbit determination.
However, with increasing orbit accuracy, this effect is becoming more interesting.
Here we derive a theoretical model of solar wind pressure and discuss its appli-
cation in precise orbit determination.

With several groups performing POD of SLR satellites, (Ciufolini et al. 2012)
reports that the recently launched LARES satellite shows the smallest deviations
from a geodesic motion of any artificial satellite, i.e., its residual mean acceleration
away from a geodesic motion is less than 0.5 x 10~'2 m/s?> after modelling
non-gravitational perturbations. When talking about orbit modeling at the 10712 —
10~13 m/s? level, the effect of solar wind pressure becomes far more interesting, not
only for LARES, but also for GPS and Galileo satellites with very large
cross-section-to-mass ratios (form factor) and long orbit arcs.

Analogous to solar radiation pressure due to the photon flux from the Sun that
propagates at the speed of light, we may consider, in addition, pressure due to solar
wind that propagates at velocities v, = 400 — 800 km/s. According to Feldman et al.
(2005), solar wind has two components: slow solar wind with a velocity of about
400 km/s and a composition similar to the Sun’s corona; and fast solar wind with a
typical velocity of 750 km/s and whose composition nearly matches that of the Sun’s
photosphere. The slow solar wind is twice as dense as the fast solar wind. Solar wind
is believed to originate very close to the Solar surface, but since it is accelerated
significantly above the solar surface, its velocity cannot be correlated with remote
observations to trace its origin, (Feldman et al. 2005). Sun particles travelling at a
velocity of 400 — 750 km/s reach the Earth after about 2.2 — 4.4 days from an
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apparent direction that is 2.2° — 4.4° away from the Earth-Sun direction. Satellites
such as Ulysses (ESA) or ACE (NASA) at the L1 Lagrangian point (about 1 Mkm
away from the Earth towards the Sun) measure the speed of the solar wind and the
number of protons per cm?®. Taking into account the mass of a proton m, =
1.672621777(74) x 10727 kg and the number of protons n, per cm?®, we obtain the
pressure of the solar wind as a function of solar wind velocity v, in [km/s] and proton
density 1, (number of protons per cm®) given in nPa

Po=my-n, - v; (19.30)
or
P, =1.6726-10"-n,-v, [PNm™’] (19.31)

where %mpvlz, is the kinetic energy of a single particle. Introducing the effective

cross-sectional area A divided by the mass of the satellite m, or the form factor of
the satellite A/m, we can obtain the acceleration of the satellite due to the force

exerted by the solar wind

b

a,,:—z'm,,%-n,,-vﬁ (19.32)
or
A
ap=—2-1.6726-107"%-=.n,-v>  [nm/s’] (19.33)
m

where the factor of 2 arises when there is pure absorption. We may introduce the
solar wind pressure coefficient C,, similar to that for solar radiation. The acceler-
ation of a satellite due to solar wind can then be defined as

A
ay == —m, - Cy, - M vﬁ (19.34)
or

A
G = ~1.6726-107° - C, - my v} (19.35)

As an example, for a wind speed of 400 km/s, n, = 20 protons/cm’, and pure
absorption C,, = 2 we obtain

A
a,=—-27-10"" - [m/s?] (19.36)
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For the form factor in the order of A/m = 0.02 for GNSS satellites, we get an
effect in the order of about a, = —0.5 - 10~13 m/s*. One should bear in mind that
the effect of solar wind pressure is very systematic, i.e., it does not average out and,
in our example, is about 4.4° away from the Sun’s direction.
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Chapter 20 M)
Track-to-Track Ambiguity Resolution e
for Zero-Differences—Integer Phase

Clocks

In this section we introduce a novel approach for GNSS ambiguity resolution at the
zero-difference level, what we call Track-to-Track (T2T) ambiguity resolution. The
T2T approach is based on the resolution of wide-lane and narrow-lane ambiguities
between consecutive satellite tracking passes, what we call track-to-track or
pass-to-pass ambiguities. To fix T2T ambiguities to their integer values, GNSS
measurements from only a single GNSS receiver are used without forming any
double-differences or similar combinations between different GNSS receivers.
Thus, the T2T approach is especially appropriate for LEO applications, to connect
very short tracking passes (typically 15-20 min) that introduce a very large number
of zero(double)-difference ambiguities, and for ground networks, where the ambi-
guities of a single GNSS satellite can be connected over a longer period of time
(e.g., one week). This opens up a new application for T2T ambiguities to monitor
stability and to define code biases and GNSS clock parameters over a long period of
time. In this section, we demonstrate the T2T ambiguity resolution approach using
LEO and ground GPS measurements. We show that LEO T2T ambiguity resolution
leads to an optimal combination of LEO and ground GPS measurements and thus
opens doors to form a network of LEO satellites in space for the determination of
combined GNSS/LEO terrestrial reference frame parameters. This is possible
thanks to the connected LEO ambiguities over all tracking passes (about 16
ambiguities per day per GPS satellite). Hence double-differences between a LEO
satellite and ground stations are connected, reducing the number of zero-difference
or double-difference ambiguities with the ground IGS network by nearly 95%.
The same Track-to-Track (T2T) ambiguity resolution approach based on
carrier-phase measurements could be applied to double-differences. Biases in the
double-differences that are common and repeat from one GPS tracking pass to
another tracking pass (e.g., multipath effects, orbit errors, etc.) will be removed
when forming differences of double-difference ambiguities between consecutive
tracking passes. This is particularly true for the narrow-lane ambiguities where the
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reduction of common systematic effects between tracking passes will significantly
improve ambiguity resolution. In this way reducing the effects like near-field
multipath and orbit errors, that repeat in a similar way from the track to the track.

20.1 Direct Resolution of T2T Wide-Lane
and Narrow-Lane Ambiguities at the Zero-Difference
Level

Wide-lane ambiguities can easily be fixed at the double-difference level using the
Melbourne-Wiibbena linear combination with a very high success rate close to
100%. Thanks to improved receiver-tracking and multipath mitigation techniques
and better antenna design, the relatively low noise of the pseudo-range measure-
ments guarantees very robust resolution of wide-lane ambiguities. In the light of the
forthcoming Galileo navigation system offering a wide range of different
pseudo-range observables with relatively low noise, the success rate in fixing
wide-lane ambiguities will follow this trend. Compared to double-differences,
wide-lane ambiguities at the zero-difference level are affected by additional satellite
and receiver code biases that need to be correctly modelled. One of the main
problems stems from the convention used to define satellite and receiver differential
code biases (DCBs). By convention, satellite and receiver DCBs are defined as a
zero mean over all GPS satellites and over all ground receivers, respectively. This
convention is inappropriate for the resolution of wide-lane ambiguities at the
zero-difference level, since after applying the DCBs, the Melbourne-Wiibbena
linear combination will always be affected by an additional wide-lane bias.
Figure 20.1 shows satellite DCBs for a period of about three months. One can
clearly see jumps in the time series of up to one narrow-lane ambiguity, and
differences between different GPS satellites larger than the wavelength of the
wide-lane ambiguity. DCBs are typically estimated using global ionosphere maps,
and any change in the number of satellites in the GPS constellation or tracking
problems of a single GPS satellite, have an impact on the DCBs of all GPS
satellites.

When resolution of wide-lane and narrow-lane ambiguities is performed with the
DCBs depicted in Fig. 20.1, the percentage of the resolved wide-lane ambiguities at
the zero-difference level is only about 20-30%. This considerably limits the
ambiguity resolution of subsequent narrow-lane ambiguities to 20-30% or less.
Narrow-lane ambiguity resolution is directly limited by the success rate in fixing
wide-lane ambiguities and can only be equal to or lower than the number of
successfully resolved wide-lane ambiguities. Wide-lane ambiguities align ambi-
guities on both GPS frequencies. Figure 20.2 shows the influence of the resolved
zero-difference narrow-lane ambiguities on the station coordinates using the phase
clock approach, i.e., carrier-phase measurements only. For this test, a global
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Fig. 20.1 Stability of the differential code biases (P1-P2) provided by IGS. Note jumps of up to
one narrow-lane ambiguity and differences larger than one wide-lane ambiguity

network of about 45 ground stations has been processed for a period of one day,
estimating all relevant global parameters, such as station coordinates, GPS satellite
orbits, troposphere parameters and satellite and receiver high-rate clock parameters.
The effect of the ambiguity resolution on station coordinates is relatively small, and
this can easily be explained by the low number of successfully resolved narrow-lane
ambiguities (about 22%), limited by the number of resolved wide-lane ambiguities.
From Fig. 20.2 one can see that the main effect of the direct ambiguity resolution on
station coordinates is in the East-West component, whereas the North-South
component is less affected. A similar effect, in terms of Cartesian coordinates, can
be seen in Fig. 20.3, where the impact of direct ambiguity resolution is shown in
the case of a LEO orbit. The effect is in the order of 1 cm RMS. Figure 20.3 shows
the GRACE-A orbit calculated for a period of 3 h. Figure 20.4 shows the impact of
the direct resolution of narrow-lane ambiguities on the GPS satellite orbits.
Although the reduction of 20-30% in the overall number of narrow-lane ambigu-
ities is relatively small, the difference in GPS satellite orbits between the zero- and
the double-difference solution with fixed ambiguities is in the order of 1-3 cm
RMS.

A typical geographically correlated East-West error structure can be seen in the
PPP results shown in Fig. 20.5 based on simulated carrier-phase measurements
with float ambiguities of four GNSS systems (E1/ES used for Galileo/Compass).
One can notice homogeneous and more isotropic positioning and an improvement
by a factor of 2.2 in the Helmert error ellipse radius, compared to GPS-only results.
Figure 20.6 shows the effects of float ambiguities in the troposphere zenith delays
estimated as a piece-wise constant function every hour for an evenly distributed
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Fig. 20.3 Impact of direct zero-difference ambiguity resolution on GRACE-A determined orbit
(float minus ambiguity fixed solution)

global network of ground stations. Carrier-phase measurements were simulated for
the network of ground stations over one day with noise ¢ = 1 mm and sampling
interval of 30 s.
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Fig. 20.5 East-west effect of float ambiguities on the error ellipses in the PPP solution (24 h)
based on simulated carrier-phase measurements for all four GNSS (day 3.3.2007). On can notice
reduced noise and more isotropic errors when measurements for all four GNSS are included
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Fig. 20.6 Effect of the float ambiguities in the troposphere zenith delays in [mm] based on PPP
with simulated GPS constellation (day 3.3.2007). Noise of the estimated TRP parameters is
reduced by a factor of 2.5 compared to the solution with four GNSS (E1/ES used for Galileo/
Compass). The 6 simulated orbital GPS planes can easily be recognized as geographically
correlated errors. Black dots shows an evenly distributed global network where carrier-phase
measurements were simulated over a period of one day
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Fig. 20.7 Schematic view (in green) of fixing ambiguities between consecutive passes to the same
GPS satellite (from GRACE-B GPS receiver) over a period of one day—called here track-to-track
ambiguities (T2T). One can see wide-lane ambiguities (in red) every 30 s as estimated using
Melbourne-Wiibbena linear combination, affected by the same wide-lane bias for all tracking
passes. The integer property of wide-lane ambiguities is preserved by forming differences between
consecutive tracking passes (T2T ambiguities)



20.2 Track-to-Track Ambiguity Resolution of Wide-Lane Ambiguities 303

20.2 Track-to-Track Ambiguity Resolution of Wide-Lane
Ambiguities

Over the last couple of years, several ambiguity resolution approaches have been
under development at the zero-difference level. The ambiguity resolution approach
followed by the IGS Analysis Centre at CNES is based on a very frequent esti-
mation of biases in the Melbourne-Wiibbena linear combination, leading to a very
high success rate of almost 100%, (Laurichesse and Mercier 2007). However, the
very frequent estimation of calibration biases might introduce additional nuisance
parameters in the least-squares adjustment, leading to aliasing effects in all other
GPS parameters. In the ambiguity resolution approach proposed by Ge et al. (2007),
a network of ground receivers is required to estimate so-called uncalibrated phase
delays in the GPS measurements. However, in the case of GPS measurements from
LEO satellites, very short tracking passes in LEO GPS measurements (typically 15—
20 min) introduce a large number of double-difference ambiguities with the stations
of the global ground network. Thus, an ambiguity resolution approach needs to be
developed for zero-differences that overcomes both problems, i.e., it does not
require a ground network in order to resolve ambiguities from a single GPS
receiver, and estimation of biases should be limited and preferably avoided.

In order to avoid estimation of the satellite and receiver code biases (0¥, b,,.) in
the least-squares approach and possible aliasing effects on other GPS parameters,
we show that it is possible to remove those biases between subsequent tracking
passes (Fig. 20.7). Let us first write the Melbourne-Wiibbena linear combination
Lyw between two consecutive tracking passes i,i+ 1 to the same GPS satellite

LMW(L11L27P17P2)[ = ;LWN{}[/ +bsa[+bl‘ec

, (20.1)
Lyw(Li,La, P, P2), == JwNig '+ 0™ + by

with Ay Ny denoting the wide-lane ambiguity. We use the standard definition of the
Melbourne-Wiibbena linear combination as the difference between the wide-lane
linear combination Ly of carrier-phase measurements (L;, L,) and the narrow-lane
linear combination Py of code measurements (P1, P). In addition, we calculate the
mean of all measurements j related to one tracking pass with the number of epochs
denoted here as n,

ne

1
Lyw(Ly, Ly, Py, Py) i=— Y [Lw(L1,Ly) — Py(P1, P)); (20.2)
€ j=1

Since the noise of code GPS measurements is typically dependent on the zenith
angle, the weighted mean Melbourne-Wiibbena linear combination over one
tracking pass is finally defined as
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2.0 [Lw(L1, Lo) — Py(P1, P2));
=1
Lyw (L1, Lo, Py, Py) =" . pi=cos’(z)
Zpi
j=1

(20.3)

with the elevation-dependent weighting p;. Wide-lane and narrow-lane observables
are then

_ = __f
Lw (L1, Lz) = kwiLy + kwaLo { W= e = o (20.4)

Py(P1, P2) = kn1P1 + Kno P KN1 :ﬁfT‘fz, KN2 :,ﬁ

By differentiating weighted mean Melbourne-Wiibbena linear combinations
between consecutive tracking passes, we define the track-to-track (T2T) wide-lane
ambiguity AN}, as

/lwAN{,V = /lewl — AWN{)V (205)

defined as the bias-free integer wide-lane ambiguity between Melbourne-Wiibbena
linear combinations of consecutive tracking passes of the same GPS satellite

JwANy, = Lyw(Ly, Lo, P1, P2), . ,—Luw (L1, Lo, P1, P2); (20.6)

assuming that the satellite and receiver code biases (b*“, b,,.) are constant between
the consecutive tracking passes i and i + 1. Considering that the duration of data
gaps between consecutive tracking passes is about 6—12 h and less than 30 min in
the case of a LEO GPS receiver, we will show with real GPS data that satellite and
receiver biases are stable enough over this period of time and are almost completely
reduced by forming the difference (20.6). It should be noted that T2T wide-lane
ambiguities can be fixed to their integer values without knowing any geometry,
even in real-time, by the GPS receiver.

The cumulative integer wide-lane ambiguity N}, of the tracking pass i is defined
then as the sum of all T2T wide-lane ambiguities AN%!, added to the initial
wide-lane ambiguity N},

IwNjy = dwNy, + iw > ANG! (20.7)
k=2

The initial or reference wide-lane ambiguity N}, is affected by satellite and
receiver biases b* and b,,.
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Fig. 20.8 Float wide-lane ambiguities estimated using the Melbourne-Wiibbena linear combina-
tion based on C/A and P, code measurements

rec

‘ ‘ 1 .
Bsat = bbal +bret = n—z [LMW(L17L27P17P2),‘_1WN€)V} (208)

ln/

where the bias B is the fractional difference to the nearest wide-lane integer,
common to all tracking passes. In the light of this approach, one could consider
defining these receiver and satellite code biases as “absolute DCBs”, to associate
them with the term “relative DCBs” used by IGS. The absolute DCBs in (20.8)
should allow for the “absolute” resolution of wide-lane ambiguities at the
zero-difference level. One way to define “absolute DCBs” is to consider them to be
zero in the ionosphere-free linear combination of code measurements P; and P,.
This is in line with the IGS convention for the estimated GPS satellite clock
parameters that by definition are not affected by the ionosphere-free DCBs. In this
way, one could talk about the “absolute DCBs”, keeping in mind that by forming
T2T ambiguities all systematic effects between consecutive tracking passes are
removed, and considering that the bias B’ requires an “absolute” integer number
of wide-lane cycles. In order to demonstrate the T2T ambiguity resolution
approach, Figs. 20.8 and 20.9 show float wide-lane ambiguities for the GRACE-B
satellite estimated using the Melbourne-Wiibbena linear combination. Figure 20.8
is based on C/A and P, code measurements, whereas Fig. 20.9 on P; and P, code.
One can see that the variation between consecutive tracks or tracking passes can be
up to several cycles of wide-lane ambiguity in size. To demonstrate the robustness
of the approach, typical modeling effects such as satellite and receiver antenna
phase-center variations and offsets for different carrier-phase frequencies, as well as
the antenna wind-up effect, were not applied. Only raw GPS measurements were
used to form the Melbourne-Wiibbena linear combination without any screening or
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Fig. 20.9 Float wide-lane ambiguities estimated using the Melbourne-Wiibbena linear combina-
tion based on P; and P, code measurements

data pre-processing. Elevation-dependent weighting was not applied, and for each
track the mean Melbourne-Wiibbena linear combination was calculated using
(20.2). Typically, at the beginning and at the end of every tracking pass one can
expect greater noise in the code measurements that could be dealt with by using
elevation-dependent weighting, c.f. (20.3). It should be noted that the noise of the
Melburne-Wiibbena linear combination is in the order of 70% of the original noise
floor for the GPS code measurements.

Comparing Fig. 20.9 with Fig. 20.8 based on C/A and P, code measurements
(Melbourne-Wiibbena linear combination), one can clearly see a constant bias over
all tracking passes. This bias is more visible, when wide-lane ambiguities from
Figs. 20.8 and 20.9 are rounded to the nearest integer value, as shown in
Figs. 20.10 and 20.11, respectively. One can see that the fractional parts of
wide-lane ambiguities show a clear bias for all tracking passes of about —0.2 cycles
for P; and P, code measurements, and about —0.4 cycles for C/A and P, code
measurements. These biases are the reason why direct resolution of wide-lane
ambiguities at the zero-difference level has a very low success rate, although the
noise of the code measurements is sufficiently low to fix wide-lane ambiguities
reliably. Ambiguity resolution at the zero-difference level without properly con-
sidering these biases could give misleading results. There are two approaches
possible: either to estimate wide-lane biases as parameters or to remove them by
forming T2T ambiguities. If the wide-lane biases are estimated as parameters, one
should count on additional correlations with ambiguity parameters in the
least-squares.
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Fig. 20.10 Fractional parts of the float wide-lane ambiguities from the nearest integer values,
based on P; and P, code measurements
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Fig. 20.11 Fractional parts of float wide-lane ambiguities from the nearest integer values, based
on C/A and P, code measurements. The two outliers (=4 h and 14 h) are due to rounding to the

nearest integer

The two outliers in Fig. 20.11 are due to rounding to the nearest integer, since
the bias is very close to 0.5 cycles. Variations in the estimated wide-lame ambi-
guities between successive tracking passes are within 0.1 cycles, or significantly
less in the case of C/A code measurements. This depends on the DCBs applied to
the code measurements of the GPS satellite and a GPS receiver. In this particular
case, we did not apply any DCB between C/A and P, code data. When differences
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Fig. 20.12 Residuals in wide-lane ambiguities after fixing track-to-track ambiguities to their
integer values (RMS = 4.8 cm, antenna wind up, PCVs and other similar effects not applied). This
solution is based on C/A and P, code measurements (GPS PRN 15)

are formed between consecutives passes, such a bias is removed. If the bias in
carrier-phase tracking in the GPS receiver is randomly initiated for every tracking
pass, the common bias in T2T ambiguities would experience a random property,
but this is not visible. Figure 20.13 shows residuals after fixing T2T ambiguities, or
differences between mean float wide-lane ambiguities along consecutive tracking
passes. One can see that the common bias is removed between consecutive tracking
passes and remaining residuals are below 0.1 cycles. Figure 20.13 clearly shows
that T2T wide lane ambiguity resolution can be performed with a very high success
rate very close to 100%. Figure 20.12 shows the same T2T ambiguities, but based
on C/A and P, code measurements.

In a similar way, we show in Fig. 20.14 mean wide-lane ambiguities for the
ground station ALGO and all GPS satellites tracked, for a period of one day. Again,
one can see a clear bias between consecutive float wide-lane ambiguities. Typically,
for one day of ground GPS measurements, one can expect 2-3 tracking passes with
2-3 wide-lane ambiguities to the same GPS satellite. After forming differences
between consecutive passes, common biases are eliminated for all GPS satellites
and fractional parts of the T2T ambiguities are below 0.1 cycles, see Fig. 20.15.
This shows again that track-to-track differences remove common biases and the
remaining float ambiguity can be fixed with a success rate close to 100%. Thanks to
the very long observation time, noise in the code measurements is averaged over a
period of 4-6 h leading to very small errors in the fractional parts of the wide-lane
ambiguities. However, if the tracking pass is very short (LEO or a ground station),
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Fig. 20.13 Residuals in wide-lane ambiguities after fixing T2T ambiguities (RMS = 5.2 cm,

antenna wind up, PCVs and other similar effects not applied). This solution is based on P;/P,
code measurements
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Fig. 20.14 Float wide-lane ambiguities for the ground station ALGO over one day. Typically, 2—
3 wide-lane ambiguities have to be set up per satellite for a one-day arc. Note the different common
biases between GPS satellites and the very similar magnitude of the float wide-lane ambiguities for
the same GPS satellite

the ambiguity resolution could be critical, and therefore, GPS data should be
properly combined between consecutive days (day boundaries). Typically, the
beginning and the end of a tracking pass show higher noise and multipath effects
compared to the middle. Elevation-dependent weighting could give misleading
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Fig. 20.15 The fractional parts of the track-to-track wide-lane ambiguities over one day are well
below 0.2 cycles and can be reliably fixed to their integer values (green lines). Please note that the
wide-lane ambiguities were processed for a period of one day, thus, a short fraction of a tracking
pass (close to a day boundary) could in principle produce a fractional part with higher error

results if only a short fraction of a tracking pass (close to a day boundary) is
processed. However, Fig. 20.15 shows that even in this case, when one could
expect higher noise for the tracking passes close to day boundaries (see in
Fig. 20.14 cases with GPS satellites with three passes per day), estimated fractional
parts are below 0.2 cycles. In this calculation we used standard processing models
for carrier-phase and code measurements, such as satellite and station PCO/PCVs,
antenna wind-up effect and elevation-dependent weighting. Other geometrical
effects such as light-travel time corrections, relativistic corrections, tidal effects in
the station coordinates, etc. do not play any role in the Melbourne-Wiibbena linear
combination.

20.3 Track-to-Track Ambiguity Resolution
of Narrow-Lane Ambiguities

We first write the ionosphere-free linear combination L3 between consecutive
tracking passes ,i+ 1

i 1 i 1., i i i sa
L3(L17[/z)i = pl +ANN1 + E(AW — iN)NW — 5xat +5mc —b t—f—brec

Ly(Li,La); = p' T+ AN 4 5 Vw = ININGEE = SIEL L §TE L b
(20.9)
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Compared to the Melbourne-Wiibbena linear combination, additional terms are
involved, namely geometry p and satellite and receiver clock parameters
(0,4> 0,c)- Thus the easiest way to form track-to-track differences is to extract
narrow-lane ambiguities from the parameter estimation procedure based on float
ambiguities and then to form T2T ambiguities. If GPS satellite orbits and high-rate
GPS satellite clock parameters are available, one would need to estimate station
coordinates or the LEO orbit together with GPS receiver clock parameters, and
subsequently form T2T ambiguities. In the float solution, it is a prerequisite that
GPS satellite clock parameters are continuous, i.e., clock parameters of successive
tracking passes are connected. Typically, GPS satellite clock parameters estimated
using the phase clock approach, or a combination of code and phase measurements
with down-weighted code measurements, show excellent stability between GPS
tracking passes. They are, however, biased in the absolute sense by »*“. This is
especially the case with phase clocks estimated using only carrier-phase measure-
ments. A global ground network of about 45 stations is sufficient to estimate GPS
satellite clocks that do not experience discontinuities, and can thus be used to
connect consecutive tracking passes. However, they are biased in an absolute sense.
This common bias can be removed by forming differences between consecutive
tracking passes, defining the track-to-track narrow-lane ambiguity AN},

INAN} = JyNiTt — JyNi (20.10)

as the bias-free, integer narrow-lane ambiguity between ionosphere-free linear
combinations of consecutive tracking passes to the same GPS satellite

INANY = Ls(Li, Lo)  —La(Li, Lo)= (o' = o) = (0" = 04,) — (01 = L)
(20.11)

From (20.11), we see that satellite and receiver code biases are completely
removed. Any bias in the GPS satellite clock parameters is removed by forming
differences between consecutive float ambiguities. There are only a small remaining
effects on the carrier-phase that are not constant between consecutive passes, e.g.,
due to the geometry terms (troposphere, GPS orbits), multipath, receiver front-end,
etc.

The cumulative narrow-lane ambiguity N! is then defined as the sum of all
consecutive narrow-lane ambiguities ANY~! added to the initial narrow-lane
ambiguity denoted as N},

NN} = JNN} + Ay Y ANET! (20.12)
k=2



312 20 Track-to-Track Ambiguity Resolution for Zero-Differences ...

Track-to-Track NL Ambiguities - ALGO station (one day from an IGS run)
1 : : , : - .

0.8
0.6
0.4
0.2

or

0.2} . .

0.4+ . .

06

_08

NL ambiguity in [Cycles]

o 5 10 15 20 25 30 35
GPS PRN Number

Fig. 20.16 Fractional parts in track-to-track narrow-lane ambiguities for a period of one day. All
residuals are within an interval of £3 cm

Compared to the ambiguity resolution of T2T wide-lane ambiguities, the addi-
tional geometry and satellite/receiver clock parameters need to be modeled to an
accuracy of 1-2 cm RMS. This is required in order to obtain a noise level of the
estimated fractional T2T ambiguities in the order of 10-20% of the narrow-lane
wavelength of ~10.7 cm.

Figure 20.16 shows fractional (residual) T2T narrow-lane ambiguities of the IGS
station ALGO for all GPS satellites over a period of one day. One can see that the
noise level of the estimated T2T ambiguities is <0.3 cycle, and thus most T2T
ambiguities can be fixed to their integer numbers. In this solution, GPS satellite
orbits and high-rate clock parameters were estimated, together with the ground
station coordinates, Earth’s rotation and troposphere parameters, using all
state-of-the-art modeling and processing standards for GPS measurements.

In order to align the integer T2T narrow-lane ambiguities, an additional satellite/
receiver bias needs to be estimated together with the initial narrow-lane ambiguity.
This could be solved by estimating the initial narrow-lane ambiguity as a float
integer, or in a similar way to wide-lane ambiguities, by estimating a common
fractional part in the narrow-lane ambiguities over all tracking passes. For LEO
measurements, T2T ambiguity resolution can be performed first (for the very
short-duration LEO ambiguities), and in the second step, the common bias can be
removed using ground-to-LEO baselines. In this way, T2T ambiguities are esti-
mated together with the ground-to-ground (long duration) and ground-to-space
phase ambiguities. T2T ambiguity resolution could be considered as the optimal
method for combining LEO and ground GPS measurements. In this way, the LEO
can serve as a “flying station” connecting carrier-phase ambiguities for all ground
stations in only 90 min (LEO orbit period).
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By forming double-differences, biases in the initial narrow-lane ambiguities are
removed. If those biases are not stable over time, double-difference ambiguities
cannot be fixed to their integer values. For all GPS receivers in the IGS ground
network it is well-known that double-differences remove all common biases
between a GPS receiver and a GPS satellite.

It is important to mention that, if the bias in the tracking of carrier-phase in the
GPS receiver were randomly initiated for every tracking pass, the common bias in
the narrow-lane T2T ambiguities would experience a random property from one
tracking pass to the next, but this is not visible in the data.

20.4 L1-L1A Track-to-Track Ambiguities

For GPS measurements from the GRACE mission, two types of carrier-phase
measurements are available on the first GPS frequency f;: carrier-phase measure-
ments from C/A, and measurements from the P; code tracking. Figure 20.17(left)
shows the differences between L; and L carrier-phase measurements, abbreviated
to “L1-L1A” float ambiguities. One can see that there is a common bias in all
ambiguities of about one wide-lane ambiguity and the differences between con-
secutive tracks are in the order of one wavelength 4;. Once track-to-track mea-
surements are formed, the common bias is removed and the integer nature of the
track-to-track ambiguities can be clearly seen in Fig. 20.17(right). After rounding
the track-to-track L1-L1A ambiguities to their integer values, the remaining phase
residuals are in the order of 0.29 mm RMS, as shown in Fig. 20.18. This value
corresponds to the typical noise floor of carrier-phase measurements. It is important
to note that Fig. 20.18 does not show any systematic effects in the carrier-phase
measurements between consecutive tracking passes. Figure 20.17(left) shows that
larger differences between L; and L;5 phase measurements can be expected at the
beginning and end of the tracking pass and making use of the elevation-dependent
weighting, the residuals in Fig. 20.18 might be even smaller.

GRACE-B: L1-L1A Ambiguities, GPS PRN15  GRACE-B: L1-L1A T2T Ambiguities, GPS PRN15
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Fig. 20.17 Differences in L1-L1A phase measurements (left) and track-to-track ambiguities
(right)
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Fig. 20.18 Residuals in the L1-L1A T2T ambiguities after rounding to their integer values

20.5 Using Stable Satellite Clocks for Track-to-Track
Ambiguity Resolution

Let us now see what satellite clock stability would be needed to predict clock
parameters reliably over the data gaps caused by tracking geometry, if one had a
linear combination with a sufficiently high wavelength. One could then estimate
integer track-to-track ambiguity as simple carrier-phase cycle-slip.

As long as phase clocks are estimated without code measurements and GPS
phase measurements remain connected for all satellites and ground stations, we may
select one reference H-maser and relate all epoch-wise ground and station clock
parameters in the IGS network to this reference clock. In that sense, phase clocks
estimated with float ambiguities are a closed system and can be used for the
ambiguity resolution of track-to-track narrow-lane ambiguities. The absolute bias in
the phase clocks of the same GPS satellite is removed by forming track-to-track
differences. Or one could use IGS Final clock solutions and relate carrier-phase
between consecutive passes. On the other hand, one could use stable clocks in the
IGS network and attempt to treat consecutive narrow-lane ambiguities as
cycle-slips. Considering that there are about 70 H-masers and other atomic clocks in
the IGS network, ambiguity resolution of track-to-track narrow-lane ambiguities
could be considered as cycle-slip fixing.

Let us now see what level of clock stability would be required to reliably predict
or estimate the receiver and satellite clock terms in (20.11) between two successive
tracking passes, i.e., over a period of 6-12 h. For an H-maser, given the Allan
deviation ADEV(1) over an integration time 7 = 1 s, we can calculate the Allan
deviation for an integration time t using
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ADEV(t) = ADEV(1 s5)/V7 (20.13)

The time deviation of the receiver or satellite clock over a time interval t, for a
given (modified) Allan deviation (MDEV) is then

#(dax(t)) = —= - MDEV(1) (20.14)

V3

or in simple terms, TDEV is equal to MDEV whose slope is normalized by V3,
(Riley 2014). The time Allan variance is equal to the standard variance of the time
deviations for white phase modulated noise. It is particularly useful for measuring
the stability of a time distribution network (Riley 2014).

In Chap. 18 on the performance of the Galileo passive H-Maser (PHM) based on
ground data, we derived white phase noise in the order of 9.8 x 1013, white
frequency noise of 5.9 x 10~!3, flicker frequency noise of 7.9 x 107'® and a very
small frequency drift of 1.2 x 1072°/s. Figure 18.5 shows the Galileo PHM clock
model based on ground data with the linear model removed (time offset and time
drift over a period of time 7) in comparison with simple TDEV without the linear
model removed. One can see that removal of time drift and time offset significantly
improves performance of the Galileo PHM, especially for flicker frequency and
white frequency noise. Flicker frequency is the dominant error source only after
Galileo orbit period (14 h). Note that frequency drift is very small. This confirms
that the Galileo PHM clock is stable enough to maintain carrier-phase over data
gaps to the same ground station and can be used for T2T ambiguity resolution.

Table 20.1 shows that a highly stable H-Maser in the IGS network can predict
and keep phase between two consecutive tracking passes of the same GPS satellite
up to 612 h. It should be noted that Allan variance actually gives the accuracy of
the linear time drift, i.e., the accuracy of the slope defined by two parameters (time
offset and drift), and therefore, the estimated GPS receiver clock parameters are
considerably more stable than depicted in Table 20.1. In a similar way, any gap in
the Galileo satellite clock could be preserved over a period of about 0.5-1 h.
However, if the Galileo clock is modeled using linear bias and drift over a period of
one day, the estimated results are sufficiently stable to resolve the T2T ambiguities.
The last line in Table 20.1 refers to an optical clock and represents the
state-of-the-art in clock performance.

This analysis shows that T2T narrow-lane ambiguities can be considered as
cycle-slips, and stable clocks in the IGS network could be used to correct them
between subsequent tracking passes. This statement is true, as long as 40-50 well
performing H-masers in the IGS network can be modeled with just two linear clock
parameters per day. An additional geometry term, including station coordinates and
troposphere parameters can be estimated with sufficient accuracy and its impact
could be considered smaller than the clock contribution.
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Table 20.1 Allan deviation of an H-maser for Galileo and a highly stable H-maser in the IGS
network in comparison with an optical clock in terms of time standard deviation over an interval of
0.5-14 h

a(0cr (7)) a(t =0.5h) ag(t=1h) a(t =7h) a(t =14 h)
(mm) (mm) (mm) mm

Galileo PHM all 2 2.7 6.8 11.2

(linear model removed)

1 x 10~'2 (Galileo PHM) |7 10 27 39

(linear model included

(20.14))

1 x 10713 (H-maser) 0.7 1.0 2.7 39

1 x 1071¢ (optical clock) | 0.0007 0.001 0.0027 0.0039

On the other hand, the best IGS Final clocks for GPS and GLONASS satellites
(estimated epoch-wise satellite clock parameters) show standard deviation of about
15 ps (a typical comparison between the best GPS/GLONASS clock solutions and
the IGS Final Product in 2011). This corresponds to a standard deviation of about
4.5 mm or roughly 3.4 mm above the noise floor of the ionosphere-free linear
combination. The 3 mm noise floor of the ionosphere-free linear combination
corresponds to a phase noise of about I mm on L; and on L,. It is expected that the
noise floor of 15 mm will be improved in the near future to 5-10 ps (2-3 mm),
especially when additional Galileo satellites become available. Galileo satellites can
reduce noise in the estimated epoch-wise clock parameters of GPS and GLONASS
satellites by using common ground station clock parameters. This is what one can
see when processing GLONASS data together with GPS—a clear improvement in
the estimated GPS satellite clock parameters. This analysis shows that estimated
satellite clock parameters are of sufficient accuracy to be used for T2T ambiguity
resolution, i.e., to bridge the gap and fix the cycle-slip ambiguity between two
consecutive tracking passes. Since the GPS satellite orbit can be predicted very
accurately, assuming Galileo satellite clock stability one could estimate T2T
ambiguities as cycle-slips. In the following sections, we will develop a Galileo/GPS
three-carrier linear combination with a wavelength sufficient to fix ambiguities to
their integer values by treating them as simple cycle-slips.

20.6 Towards the LEO Network in Space and Combined
LEO/GNSS Frame Parameters Based
on the Cumulative Track-to-Track Ambiguities

For one LEO satellite and the constellation of 30 GPS satellites, one can expect
about 450 zero-difference ambiguities for a period of one day. Connecting the
carrier-phase between consecutive tracking passes, the T2T ambiguity resolution
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leads to a reduction in the overall number of LEO ambiguities of about 95%. After
fixing ambiguities between consecutive tracking passes (16 LEO revolutions), we
end up with only one cumulative or core float zero-difference ambiguity per GPS
satellite (and LEO) for the period of one day or longer (i.e., 30 ambiguities in total
for all GPS constellation a total of about 30 GPS satellites).

If we now look at a constellation of several LEO satellites, or just two LEO satellites
flying in formation (as with the GRACE-A/B mission), after T2T ambiguity resolution
we need to fix only one arc-specific float ambiguity, i.e., one core float ambiguity per
GPS satellite and one LEO satellite for the entire arc. Once carrier-phase between the
LEO satellite and one GPS satellite is connected for the entire arc (about 16 orbits per
day), one can form baselines between the LEO satellites and/or between the LEO
satellite and the ground stations. Typically, for the ground-to-LEO GPS baselines with
about 100 ground stations, we have about 5000 double-difference ambiguities for the
period of one day. Following the proposed T2T approach, this total number of
ambiguities can be reduced to one double-difference ambiguity per LEO satellite and
ground station. It should be noted that the duration of LEO passes is very short
(typically 15-20 mm) and when GPS baselines are formed between LEO satellites or a
ground station and a LEO satellite, the observation time of one double-difference
ambiguity is significantly shorter than that for the original zero-difference ambiguity.
However, after fixing T2T ambiguities, the observation time of one double-difference
ambiguity is increased to the entire duration of the arc (e.g., 24 h or even one week).

It should be noted that LEO orbits can be estimated with an accuracy of 1-2 cm
without any ambiguity resolution. Thus, the float orbit solution could be used and T2T
ambiguities could be fixed to their integer values. After T2T ambiguity resolution, an
efficient combination of LEO and ground GPS measurements is feasible, leading to a
combined LEO-to-LEO or ground-to-LEO reference frame solution of utmost accuracy.

When the global IGS network is processed at the zero-difference level by esti-
mating all GNSS terrestrial frame parameters and zero-difference ambiguities are
fixed using, e.g., the “GFZ approach”, the additional constraints at the normal
equation level for T2T ambiguities improves the overall ambiguity resolution by a
total of about 30—40%. However, the best results are obtained if core T2T ambi-
guities are fixed first and the carrier-phase is connected for all tracking passes. This
reduces the number of all narrow-lane ambiguities by about 95%.
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Chapter 21 )
Integer Ambiguity Algebra ki

In this section we develop integer ambiguity algebra, a mathematical approach to
handle integer ambiguities between different GNSS frequencies and introduce what
we call the ambiguity-free linear combination. We first show the vector form of the
wide-lane ambiguity for multi-frequency GNSS and then develop integer ambiguity
algebra and show in detail the integer property of the ionosphere-free ambiguity for
GPS and Galileo. We show that any GNSS ionosphere-free linear combination can
be represented by an integer ambiguity without resolving wide-lane ambiguity. This
opens up the possibility of forming an integer ambiguity of arbitrary wavelength,
when combined with narrow-lane ambiguity. We introduce an elegant way to
resolve wide-/narrow-lane ambiguities using the ambiguity-free linear combination
that is consistent with what we term absolute code biases. The advantage of this
approach is the consistent resolution of wide-lane ambiguities and calibration of
wide-lane biases in an absolute sense, since the same ambiguity-free linear com-
bination can be used to estimate absolute code biases, (see section on absolute code
biases). Code biases can be defined in an absolute sense if one uses the IGS
convention for estimated clock parameters that the net effect of code biases is zero
for the ionosphere-free linear combination of P-code measurements, or so-called
P3-clocks. They are still limited by the full number of wide-lane ambiguities that
can be defined separately for two- and three-carriers with a wavelength of 0.67 m
and 3.41 m respectively. Since absolute code biases are determined against the
ionosphere-free P-code, we obtain a consistent framework for ambiguity resolution
for all four GNSS. Then, by using integer ambiguity algebra, we develop
three-carrier wide-/narrow-lane linear combinations for GPS/Galileo and show how
to use this approach for ambiguity resolution and retrieval of ionospheric effects.
We show that a three-carrier-type Melbourne-Wiibbena linear combination can be
derived by means of ambiguity algebra.

© Springer International Publishing AG, part of Springer Nature 2018 319
D. Svehla, Geometrical Theory of Satellite Orbits and Gravity Field,
Springer Theses, https://doi.org/10.1007/978-3-319-76873-1_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_21&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_21&amp;domain=pdf

320 21 Integer Ambiguity Algebra

21.1 Code-Ambiguity Linear Combination

Due to receiver tracking difficulties, e.g., due to missing broadcast orbits, code
measurements can also be biased by integer ambiguities, or what we call “code
ambiguities”. A typical example occurred with the GIOVE-A/B and early Galileo
data, when ground receivers were tracking the Galileo signal without knowing
satellite’s position (the broadcast navigation message not being transmitted). In this
case, a GNSS receiver could not resolve the full number of code chip lengths from
the receiver to the satellite, as noted for the first time in Svehla et al. (2008). It was
reported by the Galileo Project Office at ESA/ESTEC that (Svehla et al. 2008) was
the first solution of this problem (Gonzalez, priv. com.). This was already available
to the Galileo Project Office (in 2007). Table 21.1 shows code ambiguities applied
to different code observables and the clear clock bias once the code ambiguities are
applied. Another aspect of tracking that could cause code integer biases is incorrect
locking in the tracking loops. Figure 21.1 shows the so-called 10-m jumps in the
Galileo PRS (Public Regulated Service) modulation code (C1A-C1B) residuals
from GIOVE-A station GIEN, due to incorrect tracking lock to the nearest asym-
metric side-peak (on the right), spaced at 1/12 chip length ~9.77 m.

The PRS code chip length corresponds to about ~117.2 m and if we consider a
correlation profile with 12 chips (as shown in Fig. 21.1) the offset to the nearest
side-peak is ~9.77 m, (Svehla et al. 2008). Similar code ambiguities caused by the
tracking loops in the receivers could be seen in the early GPS measurements from
the CHAMP mission in 2001, typically at low elevations.

The general form of the code-ambiguity linear combination for measurement on
the frequency pair (1,q) to resolve code and phase ambiguities to their integer
numbers can be defined as a difference of wide-lane phase Ly, ;) and narrow-lane
code Py q)

Table 21.1 Ambiguities in pseudorange measurements (broadcast navigation message not being
transmitted) in the early GIOVE-A data (GNOR, day 70/2007). The last column shows corrected
pseudoranges after applying code ambiguities with chip length (third column) that we found to
match the original data. One can see a common clock bias in the corrected pseudoranges

Code | Raw pseudorange Chip length Code ambiguity Corrected
(km) (msec) (sec) pseudorange (km)
CIA 399801 100 -12 40050
CIB —49888 4 75 40050
C1C —49888 100 3 40050
C31 1149282 20 —185 40050
C5Q 1149282 100 =37 40050
Cc7Q —49888 100 3 40050
C8Q 1149282 100 -37 40050
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Fig. 21.1 The so-called 10 - m jumps (left) in the GIOVE-A PRS code residuals (C1A-C1B) due
to incorrect lock to the nearest asymmetric side-peak in the receiver tracking loop (right) spaced at
1/12 chip length of =~ 9.77 m (GIEN)

Leams(Li, Ly, P1, Py) = Ly(1,9) — Pn(ig)
= IvtaNwirg = (KychAm 1y Ary )+ + b
(21.1)

where Ap; and Ap, denote code ambiguities on both tracking frequencies and
Ny(1.9) the wide-lane carrier-phase ambiguity with wavelength Ay (; 4). The satellite

and receiver code ambiguities are denoted as b** and b,,.. Furthermore, the code
ambiguity Ap,, can be defined as the sum of an integer number (IT¢;) of code chip
lengths (A ) between receiver and satellite, and what we call the integer side-peak
offset ambiguity (Ilgp) with length Agp

APq = ACLHCL + ASPHSPa HSP ==+l (212)

Typically, the integer side-peak offset ambiguity IIgp = £1. It should be noted
that by forming T2T ambiguities, the code ambiguity Acy will be completely
removed for all tracking passes, enabling resolution of T2T wide-lane ambiguities.
However, this is not the case with the integer side-peak offset ambiguity Acpllcy
that can change from track to track, as shown in Fig. 21.1. That additional effect is
due to incorrect lock to the nearest asymmetric side-peak of the correlation profile
in the receiver tracking loop. As long as broadcast ephemerides are transmitted
from a GNSS satellite and the receiver knows the approximate position of the
GNSS satellite, code ambiguities can be directly fixed by the receiver. However, in
some extreme tracking situations, especially at low elevations, with a poor S/N
ratio, or in a strong multipath environment, the receiver can in addition incorrectly
lock the signal to the nearest side-peak in the correlation profile. This incorrect lock
could be detected in the early measurements from the GIOVE-A satellite and the
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very first GPS measurements from the CHAMP satellite in LEO orbit. Code
ambiguities were present in GNSS measurements from GIOVE-B as well as early
Galileo satellites, or in all cases where broadcast navigation messages were not
being transmitted by the GNSS satellite.

21.2 Ambiguity Resolution Based on a Symmetric
Geometry-Free Form of the Ionosphere-Free Linear
Combination

In the case of three- or multi-frequency GNSS measurements, receiver and satellite
code biases will always be present in the estimated wide-lane and narrow-lane
ambiguities at the zero-difference level. T2T ambiguity resolution can be used to
remove these biases in the zero-difference GNSS measurements (by forming dif-
ference between satellite tracks) and reliably fix ambiguities to their integer values.
Absolute code biases can be estimated using ambiguity-free linear combination (see
section on absolute code biases). This enables an absolute datum for the remaining
float ambiguities to be obtained after the T2T ambiguity resolution.

For any combination of two-frequency GNSS measurements, the geometry-free
form of the ionosphere-free linear combination L3 (comprising only the ambiguity
part) can be written as

Z;LNNl —|- (;LW —_ lN)NW = (LN — Pw) + (LW — PN) = 2<L3 —_ P3) (213)

with Py and Py denoting the narrow-lane and wide-lane linear combination of code
measurements with wavelength Ay and Ay of the wide-lane Ny and narrow-lane
ambiguities. The main drawback of (21.3) is the very high noise of the wide-lane
linear combination of code measurements. This noise level can be reduced by the
symmetric form of the ionosphere-free linear combination (21.3), with the negative
wide-lane ambiguity

Z;LNNI — (;LW - ;LN)NW = (LN - Pw) - (LW - PN)

_(KW1 +KN1)[(L1 — L2) + (Pl o PZ)] (214)

where xy and k) are the wide-lane and narrow-lane multiplication factors for the
first GPS frequency. In both cases, the noise of the linear combination is too high to
reliably fix the narrow-lane ambiguity Ay, and thus an additional transformation is
needed to increase the wavelength of the ambiguity with respect to the noise of the
code measurements.

Galileo and future GNSS will introduce a wide-band signal that will lead to very
low code noise (in the cm-range). The Galileo ES signal with a wide-band signal
(nominal bandwidth of 51.15 MHz) and AltBOC modulation will offer a code noise
at the cm-level, enabling reliable ambiguity resolution of the narrow-lane, or,
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Fig. 21.2 Ambiguity resolution using a symmetric geometry-free form of the ionosphere-free
linear combination (21.4). The figure on the left shows the noise level in fixing the T2T N,
ambiguities in terms of single-frequency LP linear combination (“graphic data” of L, and C/A
code). GPS measurements from the GRACE-B satellite

generally speaking, original carrier-phase ambiguities. The multipath level is
expected to be in the order of several centimeters for the worst-case environment.
An alternative to a broadband signal is to use a high-gain antenna with a very large
antenna size. Since the thermal noise is significantly reduced by an increase in the
antenna size, in both cases we can get code measurements with noise at the
cm-level or even sub-cm precision with very large antennae (VLBI). This offers
direct resolution of the narrow-lane ambiguities using a geometry-free form of the
ionosphere-free linear combination (21.3) or its symmetric counterpart (21.4).

A closer look at the symmetric geometry-free form of the ionosphere-free linear
combination (21.4) reveals differences in the LP linear combination (mean sum of
code and phase) on both GPS frequencies that are scaled by constant wide-lane x|
and narrow-lane xy; multiplication factors. By forming the LP linear combination,
the first order ionosphere effect is removed and the code noise is reduced by 50%.
One of the best code tracking performances can be seen in the case of the
GRACE-B mission, with code noise at a level of 5-6 cm. Figure 21.2 shows
residuals in the original T2T narrow-lane N; ambiguities after forming the LP linear
combination. Figure 21.2 confirms that with a low code noise, the symmetric
geometry-free form of the iono-free linear combination (21.4) can be used for
ambiguity resolution for two-frequency GNSS measurements.

21.3 General Geometry-Free Form of the Ionosphere-Free
Linear Combination

Let us now find the general form of the linear combination of carrier-phase and/or
pseudo-range measurements that fulfils both the ionosphere-free and the
geometry-free condition at the same time. In addition, such a linear combination
should be applicable to two-frequency as well as multi-frequency GNSS
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measurements. The general form of the linear combination L(LIC"2 """ 9 of q
carrier-phase observables can be defined as
LSCZ """ q>(L1,lQ, .. .,Lq) =0 f—lLl + Otzf—sz +...+ thf—qu (215)
Jre Jic fic
where féé’z"""” denotes the frequency of the linear combination
& = ofi vonfi+...+0.f, o ER (21.6)

In the case of narrow-lane and wide-lane type linear combinations
o; € {—1,1} (21.7)
Introducing the multiplication factor x;

K := OC,'i (218)

I

we finally obtain the general form of the linear combination for multi-carrier GNSS
measurements as

L2 Ly, Ly, .. Ly) o= k1L + 1Ly + ..+ KL, (21.9)

The basic condition one can formulate in forming any linear combination is the
geometry-free condition that removes the geometrical terms from the observation
equation. The geometry-free condition is fulfilled if the sum of all multiplication
factors k;, of n observables, is equal to zero

Ki+rk+...+K,:=0 (2110)

The geometry-free condition guarantees that ambiguities are estimated solely by
means of measurements. In a similar way, the geometry-preserving condition is
given when the sum of the coefficients is equal to one

Ki+K+...+K,:=1 (21.11)

In order to remove the first-order ionosphere effect, we need to formulate an
ionosphere-free condition that could easily be derived by setting the sum of the
first-order ionosphere effects I; equal to zero for each observable

kKily +x2lb+ ...+ k.0, :=0 (2112)
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or in the final form

1 1
Ki+Kx—5+...+K,—:=0 21.13
1 2f22 f;lz ( )

It is assumed that higher-order ionosphere effects can be pre-computed with
sufficient accuracy, and, considering their size, will not have any significant impact
on ambiguity resolution. When multiplication factors fulfill the ionosphere-free
condition, we may define the ambiguity linear combination

Kl;LlNl + K2)v2N2 +...+ Kq;Lqu = AN (2114)
with the ionosphere-free ambiguity AN. In this section we will show in more detail
that the ionosphere-free ambiguity term can be represented by an integer N and an
ionosphere-free wavelength A, as with any other carrier-phase observable. In the
general case of the ambiguity linear combination (21.14)

g<n (21.15)

if carrier-phase measurements are combined with pseudorange measurements. In
order to preserve the integer nature of the ionosphere-free ambiguity, we need to
formulate an additional, what we call, the integer ambiguity condition. One way to
derive the integer ambiguity condition is to introduce into (21.14) the normalized
wavelength J;, defined as

A= (21.16)
and the normalized ambiguity linear combination
K121Ny + K2 JoNa + ... + K4 2gNy == N (21.17)
which gives the integer ambiguity equation defined as
N :=iIN{+iaNo +i3N3+ ... +igN, i,i2,13,...i €Z (21.18)
with
i1 =K1k, =Kok, e g = Kglyg (21.19)

From (21.6) it follows that in the case of wide-lane and narrow-lane type linear
combinations the following integer ambiguity equation can be defined
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N := o Ny +ooN, + ...+ ayN, o E€Z (21.20)

Another integer ambiguity condition for four-frequency Galileo measurements
can be found in Ji et al. (2007) and for code-phase linear combinations in Henkel
(2008).

An elegant way to find the integer multiplication factors in (21.18) is to make
use of the wide-lane ambiguities that can be resolved directly at the zero-difference
level. Wide-lane ambiguities align the phase ambiguities between two different
carrier-phase observables and for a particular frequency pair can be reliably
determined to their integer values using the Melbourne-Wiibbena linear combina-
tion. Wide-lane and narrow-lane ambiguities relative to the reference ambiguity N;
can then be defined as

NWZ:Nl—Nz NW(I,q) Z:Nl—Nq

(21.21)
Ny :=Ni+N2 ... Ny, =N—+N,

and after substitution into the ambiguity linear combination (21.14), we obtain the
expression for the narrow-lane-wide-lane ambiguity linear combination of the
generalized ionosphere-free ambiguity

(K]/ll +rod+.. .+ Kq/lq)Nl - (KQ;LQNW + K3),3NW(1,3) +...+ Kq/quW(lﬁq))
=N
(21.22)

or, in short
q q
IN =N Y widi = Y kidiNw) (21.23)
i=1 =2

Substituting (21.8) for o; € Z (wide-lane/narrow-lane type linear combinations)
into (21.23) we obtain

q q
N=NY o= aNwuy (21.24)
i=1 =2

Since

Nw(19) = Nw +Nw(2,q) (21.25)
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we finally obtain

N:Nlia[—Nwidi—itxin(zﬁi) (2126)
i=1 i=2 i=3

The simplest form of (21.22) can be written as

1 , ,
5 (AN +AN(1,3) +... +/“N(1,q))N1

1 : . )
2 [Gow = 28)Nw + (Zow1.3) = Avas) ) Nwii sy + - -+ (Awii.g) = g ) Nwi,g)] = AN

(21.27)

or

) 1<, 1 <
AN = N';ZAN(U)+ZZ dw(riy = Ane ) Nwp (21.28)
i

=2

that reduces to

1 ¢ . 1 ¢ .
AN := N~ ZAN 1)+ Z_Z (Aw(1i) — Zni)) Nw + 2—2 (Aw(ry = v 1)) Nw()-
=2 9= 9=

(21.29)

Equation (21.28) combines all possible carrier-phase measurements in a
multi-frequency GNSS environment, reducing the noise level by /g, and thus is
equivalent to processing all measurements without forming any linear combinations
and estimating one ionosphere-free slant delay per epoch and satellite. The
advantage of estimating an additional ionosphere-free slant delays is in the
absorption of one common multipath effect per epoch and satellite. However, such
an epoch-wise bias could also be estimated on the level of ionosphere-free linear
combinations. Nevertheless, if precise point positioning is based on estimated clock
parameters using either of these two approaches, the results will be consistent in
both cases if carried out in a consistent manner. This is especially important con-
sidering that two-frequency ionosphere-free linear combinations will be standard
for all Galileo services, as is the case for GPS and all four GNSS. In the case of
precise point positioning, an additional epoch-wise bias can always be estimated to
average out common systematic effects, such as multipath and front-end effects of
the receiver. The estimation of an epoch-wise bias per satellite and receiver was first
performed in Schaer (1999) in the case of two-frequency GPS measurements, where
this parameter was called the SIP or the stochastic ionosphere parameter.
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In the case of carrier-phase measurements from two GPS frequencies L; and L,
the general form (21.28) reduces to the well-known expression for the
ionosphere-free bias that is actually a float ambiguity

) 1 ,
/LNN] + 5 (/IW — /“N)NW = 13N; (2130)

typically denoted as N3 and the associated wavelength as A3. We will see later that
N3 is an integer ambiguity with the specific wavelength /3. For the integer prop-
erties of the ionosphere-free ambiguity, we refer to Sect. 21.5. The ionosphere-free
ambiguity in (21.30) is directly related to the general form of the ionosphere- and
geometry-free linear combination for two-frequency GPS measurements.

21.4 Triangular Form of Wide-Lane Ambiguities

Considering all possible dual-frequency pairs of multi-frequency GNSS measure-
ments, wide-lane ambiguities can be resolved using the Melbourne-Wiibbena linear
combination. If the frequencies in such a pair are very close to each other, e.g., L,
and Ls, the resulting wide-lane ambiguity will have a so-called super-wavelength
(~5.86 m), about an order of magnitude larger than the original wide-lane wave-
length between the L; and L, carrier-phase observables. However, the noise floor of
such a super wide-lane linear combination will be increased by a factor of about 33.
Nevertheless, it will still be, by a factor of about 2, the wide-lane ambiguity to be
best determined of the three wide-lane linear combinations. Thus, in order to use
such a super wide-lane ambiguity as an additional constraint in the estimation of
wide-lane ambiguities, we introduce the vector form of the three-carrier wide-lane
ambiguities as depicted in Fig. 21.3

Fig. 21.3 Triangular form of Ns
the three-carrier wide-lane

ambiguities. The three pairs of

wide-lane ambiguities are

fully linearly dependent, but

only two pairs can be

estimated independently N, W(1,5) M w(2,5)
<4+—
N, N N,
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Ny =N — N,
Nw(,s) = N1 — Ns (21.31)
Nws) = N2 — Ns

from which it follows the triangular form of the wide-lane ambiguity
Nws) = Nwas) — Nw (21.32)

that can be used to additionally constrain the resolution of the other two wide-lane
ambiguities. From (21.32) we see that for all frequency pairs, the wide-lane
ambiguities can be reliably fixed to their integer values and be used to align
carrier-phase ambiguities between different frequencies. However, all three pairs of
ambiguities are fully linearly dependent and one can estimate only two pairs
independently.

A similar geometry-free approach can also be applied when different measure-
ments on the same frequency are available. For instance, in the case of
two-frequency GPS measurements from the GRACE-B satellite, we can form two
different narrow-lane and two wide-lane ambiguities between the L; — Lia phase
measurements on the first frequency and the second GPS frequency. It is assumed
that the common ambiguities on the same frequency can easily be fixed between
Ly — L5 phase measurements, as demonstrated in Sect. 20.4. Thus with the ref-
erence ambiguity denoted as N; on Pj, we can write the following transformed
ambiguity equation

. 1< I <&, ,
AN =N %Zﬂwu,o + %21: (Aw(ri) — AN )Nw(Li) (21.33)

From (21.33) we see that, with this technique related to a parameter transfor-
mation, we can combine all independent ionosphere-free linear combinations,
transforming all narrow-lane ambiguities into the ionosphere-free linear combina-
tion with the common N; ambiguity, see also (21.29). Thus in the case of
multi-frequency GNSS measurements, the number of parameters is the same as for
two-frequency GPS using L;. However, the noise level can be decreased by about
/2 by adding the second ionosphere-free linear combination L3 5) in the case of
the third GPS frequency, or by adding the ionosphere-free linear combination based
on Lja carrier-phase L3(qa 5)-
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21.5 Ambiguity-Free Linear Combinations—
Geometry-Free Ambiguity Resolution of Wide-Lane
and Narrow-Lane Ambiguities

Here we introduce an elegant way to resolve wide-lane and narrow-lane ambiguities
with the ambiguity-free linear combination that is consistent with the code biases
(see section on the absolute code biases). Let us write the ionosphere-free linear
combination for L; and L, and, in addition, for L, and Ls carrier-phase
measurements

1
L;’Z = p+IyN; + 5()W — Zn)Nw

(21.34)
LY =p+ IN@2s)NL = Ans)Nw + % (Aw(s) — Anes)) Nwes)
We now define the following ambiguity-free condition
K+ K Anas) =0 (21.35)
satisfying the geometry condition
K =1 (21.36)

from which the following expression to calculate ambiguity-free multiplication
factors that are of very moderate magnitude results:

A —Ines) fi+h

_ _ ~6.02
! IN = Ines)  fi— s

N0 oM PES
IN = N@5) fi—fs
(21.37)

Applying the ambiguity-free condition to the ionosphere-free linear combina-
tion, we obtain the following narrow-lane ambiguity-free linear combination

LY = L 12

af x af'*
K afx K
=p+ 17 (Aw — AN) — Kzf n@s) | Nw + % (Aw(s) — *ns)) Nwes)

(21.38)
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with the following wide-lane wavelengths of considerable magnitude

* K“f* af*
/L(‘l,{; = IT ()NW — )LN) — Kzf )VN(275) ~ 340 m

;Laf*

(21.39)

afx
K )
W(2s) = = ()»W(Z,S) — /LN(275>) ~ —17.28 m

Let us now repeat the procedure with the (L;,L,) and the (L;,Ls) combination
of the ionosphere-free linear combination

12 ) 1, \
Ly" = p+ AnNi + E(AW — /n)Nw
(21.40)

15 , 1,
L™ = p+AvasNi+ 5 (Zw(s) = Anas))Nwas)

We thus obtain the ambiguity-free multiplication factors

: -2
Kzlzf** —_ N(1,5) :fl +f2 ~54.8
AN — )“N(].,S) .f2 7_f5 (21 41)
Kaf** _ iN — _fl +f5 ~ —53.8 .
2 AN = N(15) fh—=f
and the following narrow-lane ambiguity-free linear combination
Lgf** — K‘llf**L;"z + Kgf**L;"S
Kclzf** Kzzzf** (21.42)
=p+ ) (4w — An)Nw + 5 (Zw(is) — An15)) Nw s)
with the following wide-lane wavelengths
20 = Gy — ) ~20.69 m
2 o (21.43)

/1%?;:5) = KZT (}vw(lj) — ;LN(I,S)) ~ —17.28 m

Repeating the procedure with the third combination of ionosphere-free linear
combination

1 ,
Lé’s = p+Anas) N1+ 3 (;~W(1,5) - /LN(I,S))NW(I‘S)
(21.44)

1,
LY =p+ IN@,5)N1 = Zns) Nw + 3 (Awis) — Anes))Nwes)
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we obtain the ambiguity-free multiplication factors

)
K(ff*** _ N(2.5) :fl +fs ~ 791,
Inas) — nes)  fi—h (21.45)
- .
K = N(L.5) _ Bt 6o

Inas) —nes)  h—b

and the following narrow-lane ambiguity-free linear combination

L(;f*** — af***L +K uf*** 25

3
af***
_p_Kaf***n (4 _2 )N
2 ANE@S) 5 Gwas) = vas)Nwas)  (21.46)
af %%

+ 22 (Aw(zs) — nes))Nw

where K‘ff***)LN(Lf,)Nl + Kgf***/l,v@S)Nl = 0 due to the ambiguity-free condition for
Ny, i.e., the multiplication factors (21.45). For the wide-lane wavelengths in (21.46)
we obtain

= —’fgf***i 2.5) ~ —0.86 m
afsxx Ka -
Avis =5 (was) = Avas) ~2.54m (21.47)
s af#xx
}'(6(/(*2,5) =2 (lwes) — ves) ~—19.82m

It can be shown that the differences of the two linear combinations (21.38) and
(21.42) is equal to zero

Lglf* _ glf** — O = /LWNW + )L’W IS)NW(I 5) + A’W(Z S)NW<2 5) (2148)
where
oK o>
}“W = > MW - AN) — K5 /11\/(275) ~ —17.28 m
af <k
)“V+V(1,5) = —KZT (/LW(LS) - )VN(Ls)) ~ 17.28 m (21.49)
af =

’1V+V(275> = KZT (/IW(Z,S) - i1\'(2,5)) ~ —17.28 m

or
o ek K4 . afx
L;f — Lg = 12 (/LW - /LN) - K'2 )LN 2.,5) NW + % (/Auw(zj) — j’N(Z,S))NW(Z,S)
Kaf** K“f**

1

(Aw — 2n)Nw — (Aws) — An(15)) Nw(rs) (21.50)

2
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that can be reduced to

Kaf* _ Kaf**
1 1
2

af' afxx

+ 3 (Awes) — Anes) ) Nwes) — 22 (Aws) — Anas))Nwas)-  (21.51)

ng - L; = (;LW — /LN) — Kgf*)w(z‘s) NW

Thus, there is a way to resolve the wide-lane ambiguities and obtain
ambiguity-free linear combination considering only wide-lane ambiguities from the
GPS carrier-phase measurements on the three frequencies.

Another approach to remove geometry in these linear combinations is to form
ambiguity-free linear combinations of single code measurements. This could be
very interesting for future wide-band GNSS signals, such as PRS code on Galileo
E6 that offers cm-level precision. For this, we make use of the LP linear combi-
nation LP = (L+ P)/2 and the ionosphere-free linear combination L; of two
carrier-phase measurements L; and L,

AF) = & Ly + 1Y LP (21.52)

that contains only an absolute code bias from P; code measurements. The

geometry-preserving condition for multiplication factors K(ff and Kgf is then as
follows

K 4 =1 (21.53)

For the first time, we are introducing here an ambiguity-free condition (a con-
dition to remove an ambiguity that is common to a pair of linear combinations) that
for ambiguity N; on L, carrier-phase is defined as

: v
K oy + i 71 =0 (21.54)

where Ay denotes the narrow-lane wavelength of the narrow-lane ambiguity in
ionosphere-free linear combination L; and 4;/2 is the wavelength of the L;
ambiguity in the LP; linear combination. The ambiguity-free condition is fulfilled
as long as wide-lane ambiguities are fixed, i.e., all ambiguities are aligned to each
other Ny = N, = Ns, using e.g., Melbourne-Wiibbena linear combination. After
solving (21.53) and (21.54), for the multiplication factors of ambiguity-free linear
combination in (21.52) we obtain
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o _fith o 2
! h—=f’ > A-h

(21.55)

We can also write ambiguity-free linear combination (21.52) for other code
measurements and frequencies. For LP, = (L, + P)/2 we obtain

AF, := K[, Ly + 15/, LP, (21.56)

with

o _Nith o _ 2P
K1) == Ky = A (21.57)
and for LPs = (Ls 4+ Cs)/2

AFs := x5 Ls + 155 LPs (21.58)

with

o ___Nth o _ 25 215

RIC Ry A U T ey (21.59)

Accordingly, for the Galileo E6 signal we introduce LP¢ = (Lg + Eg)/2 that
divides E¢ by 2 and reduces the code noise of the original E6 frequency by 50%

AFs := K{g La(1.6) + K56 LPé (21.60)

with

o _Sith P (21.61)

KI(EG) _fl _f6’ KZ(E6) - _fl _f6

Such an ambiguity-free linear combination could offer a noise level of 10-15 cm
and could be used for the resolution of wide-lane and narrow-lane ambiguities by
making differences to e.g., (21.38) and removing the geometry term. Once
singe-frequency ambiguity is resolved on the wideband GNSS signal, e.g., Eg, all
ambiguities are resolved, since wide-lane ambiguities can be fixed to their integer
values. This is also true for the absolute code biases that could be used as a
reference for the absolute calibration of code measurements and the resolution of
wide-lane ambiguities; see the section on absolute code biases and calibration of
code measurements. The advantage of this approach is that it offers consistent
resolution of wide-lane ambiguities and calibration of wide-lane biases in an
absolute sense, since the same ambiguity-free linear combination is used to estimate
single-frequency absolute code biases. Since absolute code biases are determined



21.5 Ambiguity-Free Linear Combinations ... 335

against the ionosphere-free P-code observable (IGS conventions for clock param-
eters) we can establish a consistent framework to process observables that could be
extended to all four-GNSS.

21.6 Integer Ambiguity Algebra and the Integer Property
of the Ionosphere-Free Linear Combination

The ionosphere-free ambiguity of L; and L, carrier-phase measurements is a real
number and can be decomposed into the sum of a narrow-lane and a wide-lane
ambiguity. Here we show that it is possible to express an ionosphere-free linear
combination as a function of a single integer ionosphere-free ambiguity without
resolving the wide-lane ambiguity.

We start with the ionosphere-free linear combination and introduce the integer
ionosphere-free ambiguity N3 with the wavelength 13 as follows:

K1 AN| 4+ k2 A2Ny = A3N3, NsecZ (2162)
with corresponding multiplication factors x; and x, defined as

1 15
- - 21.63
F-f T R-R (216

K1

These can easily be derived from the ionosphere-free (21.13) and
geometry-preserving condition (21.11)

2
K1+K2%:0, Ki+Ky=1 (21.64)
2

It is interesting to note that the ionosphere-free multipliers can be represented as
the product of the wide-lane and the narrow-lane multipliers on the first and the
second frequency

K1 = Kw(1) " Kn(1), K2 = Kw(2) " Kn(2) (21.65)
with
N f
Kn(y = v Knp) = 21.66
T N Y ( )
bi B h

WO T YT TR g (21.67)
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Let us now substitute (21.63) into (21.62) to obtain

fl f2 N :lN 21.68
Fop o T (21.68)

Ny —

that in the case of aligned ambiguities N; = N,, after wide-lane ambiguity reso-
lution reduces to

1 1
— Ny = — .6
7 —‘rszl f3N3 (21 9)
A=fitfHh=0154+120)-fo — 3= (21.70)

Let us now write (21.62) in the following form

Kziz /13
N+ —N, =——
K1},1 K1/

N3 (21.71)
and since

K2)L2__f2__120'ﬁ)__@
Kilh  h 154-fy 77

(21.72)

it follows that

R=f
f

3

JiNy — o2 = Ns (21.73)

Equation (21.73) will remain unchanged if the two GPS frequencies 154 - fy and
120 - fp are divided by the fundamental GPS frequency fy = 10.23 MHz. The same
is true for (21.62). Therefore, we may normalize all GPS frequencies with the
fundamental GPS frequency f; and consider f; and f> to be integers of 154 and 120
respectively.

One of the integer ambiguity solutions of (21.73) is

H= == —H)+R) o =fufw - fo (21.74)

or finally

B=ffw  fo (21.75)

with the normalized wide-lane frequency fw = (fi —f2)/fo and the normalized
narrow-lane frequency fy = (fi +/2)/fo. When ambiguities Ny = N, are aligned,
e.g., after wide-lane ambiguity resolution, we may write
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L=fR~-f — AN =({i+£)Ns (21.76)
Thus
JfwNi1 = N3 (21.77)

giving a direct relationship between the narrow-lane wavelength Ay and the
ionosphere-free wavelength /3

— /’{N
ko

I3 ~3.14 mm (21.78)

Since fi is an even number in the case of the two GPS frequencies, we may
further write

, AN AN
A3 =2

’ :'%W'f() fW fO

~ 6.29 mm (21.79)

The same expression can be developed following (21.68) that for two GPS
frequencies gives

J
7INy — 60N, = 17N} + 60Ny = 77— N (21.80)

KiAp

If N; and N, are integers, the ionosphere-free ambiguity N3 will be an integer
when the following condition is met

/3
77T —— = =+£1 21.81
K1),1 ( )

Finally, the integer equation of the ionosphere-free ambiguity N3 of the
ionosphere-free linear combination can be defined as

N3 :=TIN; — 60N; = 17N; + 60Ny = 137N, — 60Ny (21.82)

Ny and Ny denote the wide-lane and narrow-lane ambiguity respectively and A3

is the ionosphere-free wavelength

A3 , K141 1 c
778 1 _ h=——Sx629 21.83
K1hr BT T P T8 ), mm - (21.83)

with the fundamental GPS frequency fy = 10.23 MHz and the speed of light c. The
ionosphere-free linear combination with the integer ionosphere-free ambiguity Ns is
then defined as
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Ly =1Ly +10ls :=p + 23N;3 (2184)
with the geometry term denoted by p. Introducing

n _Kl;bl o f]

mo Ky f

m,né€Z (21.85)

we obtain the general form of the integer ambiguity Eq. (21.82)

nNy+mN, = N3 (21.86)
with
A
Jy =4 (21.87)
n

The final form of the equation for the wavelength of the ionosphere-free
ambiguity A3 with an integer ionosphere-free ambiguity N3 is

Mo

Ay =— 21.88
3 nly +mi; ( )
or in terms of frequencies
c
Ay i=—— 21.89
> nfi +mfy ( )

Let us now define a new, transformed ionosphere-free integer ambiguity in the
following way

N3 :=T77N; (21.90)
and after substitution in (21.81) we obtain the following new solution for the

wavelength A3 denoted as 3

7 -
D=1 = J3:=rK1A ~ 4844 cm (21.91)
K])»l

that is considerably longer than the original ionosphere-free wavelength. From
(21.90) and (21.91) we obtain the following ambiguity equation

17N + 60Ny = 77N5 (21.92)
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showing that in an arbitrary case our new transformed ambiguity N3 is not an
integer, but rather a float ambiguity. However, the integer condition is fulfilled in
the special case

Ny

=1 N V4 21.93
Ny — N € ( )

From the integer equation of the ionosphere-free ambiguity (21.82) and from the
transformed ambiguity Eq. (21.92) we see that adding one narrow-lane ambiguity
to our integer Eq. (21.82) will modify the wide-lane ambiguity to (N; +1 — N>)
and the ionosphere-free linear combination by the wavelength 13 ~ 48.44 cm
(21.91). Therefore, instead of aligning initial ambiguities N; = N; first, by applying
a wide-lane ambiguity, one can first determine the narrow-lane ambiguity N; with a
relatively long wavelength of /3 ~ 48.44 cm. In the second step, the wide-lane
ambiguity can be applied, aligning the initial ambiguities N; = N,.

From this, we can draw the conclusion that one can add an arbitrary number of
integer wide-lane ambiguities to iono-free linear combination, as long as the
single-frequency ambiguity N; or N, is estimated. This also means that there is a
mechanism to form iono-free linear combination with an arbitrary wavelength. Let
us now find the simplest solution when N3 =0, i.e., when iono-free integer
ambiguity is fixed. From the integer ambiguity Eq. (21.82) we obtain

17N} + 60Ny = N3 = 0 (21.94)
and
60
Nl:_ﬁNW N eZ, NyeZ (2195)

Therefore, after aligning carrier-phase measurements on both frequencies by
wide-lane ambiguity resolution, one can add an arbitrary number of wide-lane
ambiguities Ny under the condition

Nw =17 -k keZ (21.96)
that gives the following solution for the single-frequency ambiguity N;
Ny =-60-k (21.97)

This means that adding a number of wide-lane ambiguities Ny = 17k to
iono-free linear combination of GPS carrier-phase measurements is equivalent to
adding single-frequency ambiguities N; = —60k, since the total number of
iono-free ambiguities in (21.94) will not change.
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21.7 Integer Ambiguity Algebra for Narrow-Lane
and Wide-Lane Ambiguities

It can easily be shown that narrow-lane and wide-lane ambiguities with
wavelengths

A ¢ ! ¢ A L ¢ 10.70 cm
= = - — — - — - & .
NT AT 1544120 fy NT0274 (21.98)
A ¢ ! ¢ =~ £ ~86.19 cm '
= = - — — w=—"—= .
YTHR-p  154-120 f VT34,
have direct integer properties
Iy 4658 ) Jw 4658
2N _ 17 Av=17- —=—=137
b 274 o “ iy 34 ~(21.99)
dw =137 13

satisfying the following integer relations with wide-lane ambiguities

K‘A‘Z’Cm Ny — ’CZ“Z Ny =Ny — I =is, % - % (21.100)
that gives
(77 = 60)N; + 60Ny = N3 (21.101)
or
17N, + 60Ny = Ns (21.102)

Once the wide-lane ambiguity is introduced in (21.102) one can form an integer
ambiguity of arbitrary wavelength considering that the ambiguity-free linear
combination provides absolute (pseudo)-range with an accuracy of about 20 cm
RMS. Thus, we obtain in that case

17N} := Ns (21.103)

that could be used as a “ruler” in the ambiguity space when forming a wavelength
of an integer ambiguity.

With narrow-lane type ambiguity AyN; in the ionosphere-free linear combina-
tion we obtain

INNL + JnwNy = 3N3 (21.104)
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denoting the intermediate wavelength Ayw, where

1 h

JVNW :—(/{W 7/11\/) = ——>5C (21105)

2 f=F

For the narrow-lane ambiguities it follows that
Klil — Kz/lz Kziz n 137
N Ny =N —=—— 21.106
P R TN T T TR (21.106)
and considering (77 + 60)N; — 60Ny = N3 we obtain

137N} — 60Ny = N3 (21.107)

with a wide-lane type ambiguity AwN; in the ionosphere-free linear combination
AwN1 — AnwNn = A3N3 (21.108)

The sum of narrow-lane and wide-lane ambiguity is then

n )LN 17
Ly + Ly = 2L —=—=— 21.109
el P Y. (21.109)
After substituting (21.98) we derive
17Ny + 137Ny = 2N3 (21.110)

21.8 Integer Ambiguity Algebra for the Third GPS
Frequency

For other combinations of two fundamental GPS frequencies including Ls we have

n__h

m fs 115

154 fi =154 f;
{f_f, 115 1 (21.111)

n_ f 120 24 [H=120-f
m fs 115 23

= 1154 (21.112)

that in the first and second cases gives the following ionosphere-free wavelength

23(1,5) = 70w ~ 2.8 mm (21.113)



342 21 Integer Ambiguity Algebra

Similarly, for the second and third GPS frequencies we obtain

1 ¢ c

) = . =_—— =) ~12.5 21.114
43(2,5) 235 fo ftfs AN(2,5) cm ( )

In the second case, the wavelength of the ionosphere-free ambiguity is equal to
the narrow-lane ambiguity. In a similar way, the following ambiguity equation can
be obtained for the first GPS frequency pair

39N; + 115Ny (1 5) = N3 5) (21.115)
269N; — 115Ny 5) = Na(1 5 (21.116)
and the second GPS frequency pair
N2+ 23Ny 25 = N325) (21.117)
47Ny — 23Ny 5) = N3(2,5) (21.118)
After substituting Ny = N; — N,, (21.117) reduces to

Ni — Ny +23Nys) = Nss) (21.119)

From (21.117) it follows that in the case of L, and Ls phase measurements,
wide-lane ambiguities can be represented as multiples of the narrow-lane ambiguity

A
WES) _ 47 (21.120)
AN (2,5)
with the super wide-lane wavelength
Aw (2,5 ~ 5.86 m (21.121)

From (21.117) it follows that for the ionosphere-free linear combination based
on L, and Ls phase measurements there is no need to solve wide-lane ambiguities
before solving narrow-lane ambiguities, since the iono-free integer has the same
wavelength as the narrow-lane ambiguity

1
Lios) = p+AnesyNo + 3 (Awes) — Anes))Nws)
=p + )LN(Q’S) (Nz + 23Nw(2‘5))
= p+ Anes)Na2s)-

(21.122)
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21.9 Integer Ambiguity Algebra for Galileo Ambiguities

In a similar way we can apply integer ambiguity algebra to Galileo measurements.
In the case of Galileo frequencies, the longest wavelength can be obtained by
combining Ls, and Lg observables

n_ _Jo_ 1252 fo=125fo (21.123)
m fs 115 23 '

- fsa = 115 -f

from which follows the ionosphere-free wavelength, which is half the narrow-lane
wavelength /e 5q)

1 ¢ c 1
A ===, A =6.1 21.124
3(6,54) 480 fo  2(fstfm) 2 N(6,5q2) 3(6,5a) em  ( )

The corresponding ionosphere-free frequency f3(s 5, is then defined as

1,
fa65a) =480 - fo = 2(fs +f5a) = 2fnt65a) —  A3(6.50) = 5 AN (6,50) (21.125)

with the corresponding integer ambiguity equation
25N6 — 23Ns, = N3(654) (21.126)

Inserting the wide-lane Ny s, and the narrow-lane Ny s, ambiguity, we
finally obtain

2N6 + 23Ny (6.50) = N3(6,5q) (21.127)
48N6 - 23NN(6,5(1) == N3(6,5a) (21128)

Let us now define the frequencies of the new wide-lane and narrow-lane linear
combination, respectively

1
fv(V1,6.3) =i + foa — §f3(6,5a)
(21.129)

1
f1£’1,6,3) = fi — fou+ 5f3(6,5a)

as linear combinations of L;, Lg and the ionosphere-free linear combination L 54)-
The frequencies of the new wide-lane and narrow-lane linear combinations are

essentially equal to the frequencies of the wide-lane and narrow-lane linear com-
binations of the original L; and L, measurements
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(1,6,3)

fw T =h—fe =fwae)

(21.130)
f[\(/1,6,3) =fi+fo =fvae)

With the wide-lane and narrow-lane wavelengths defined as

06— < - e e e~ 0L em
v fitfsa —=05f650 fi—fo Sfwae 29 fo ’
,(1,6,3) c c c 1 ¢
) — = = =——=] ~ 10.5 cm
VTR a0 fiths fvae 279 fo
(21.131)
the three-carrier wide-lane ambiguity is then
(163) 1 _ 1
Ny = N} + Ns, _§N3(6,5a) = N+ Ns, _5(251\/6 — 23Ns,)
23
=N1+N5a—N6—7(N6—N54) (21.132)
25
=N — 7Nw(6,5a)
In its final form the three-carrier wide-lane ambiguity is defined as
NGO = 2Ny — 25Ny (6.50) (21.133)

In a similar way, we can derive the three-carrier narrow-lane ambiguity

1 1
N,(\,l"ﬁ’3> =Ny — Nsg+ - N3(6,50) = N1 — N5, + 3 (25Ng — 23Ns,)

2
23
= Ny — Nsg + Neq + 7(N6 —Nsa) (21134)
25
=N+ 7Nw(6,5a)

In its final form, the three-carrier narrow-lane ambiguity is defined as

ZNJ(\,I’“) 1= 2N + 25Ny (6.5 (21.135)

Equations (21.133) and (21.135) show that with integer ambiguity algebra it is
possible to express the wide-lane and the narrow-lane linear combinations of the
original L; and Lg measurements as a linear combination of the wide-lane ambi-
guity between Lg and Ls, measurements. However, the noise floor of the wide-lane
linear combination Ly 65a) needed to derive the super wide-lane ambiguity Ny (6.50)
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is higher by a factor of 17 than that of the original measurements L, on the
reference Galileo frequency

U(LW(é,sa)) ~17-0(L,) (21.136)

Therefore, in order to obtain the super wide-lane ambiguity Ny (s 5.), We propose
to make use of the vector form of the wide-lane ambiguity (21.32)

Nuwssa) = Nwisa) — Nwiis) (21.137)

since the wide-lane ambiguities NW(I.Sa) and NW(1 6) can be fixed to their integer

values using the Melbourne-Wiibbena linear combination.

Let us now derive a mathematical model of the three-carrier wide-lane and
narrow-lane linear combinations and prove that the final form of the three-carrier
linear combinations can be reduced to the wide-lane and narrow-lane linear com-
binations of two frequencies. By means of (21.129) the three-carrier wide-lane
linear combination is

(1,5a,3) fl fSa
L Li, Lsa, Ln(6.sa)) = L+ Ls,
W Lo Lvtes) = G Y e 0
0.5f3(6,54)
_ So g 21.138
Si+fsa — 0.5f65q) N6 ( )
and in its final form can be defined as
(1,54,3) bil Ssa Jo +fsa
L Ly, Lsa, Ln(s.sa)) := L+ Ls, — Li(s.sa
W b L Lvesa) = b+ 2P L = NGS5
= Lw(16)

In a similar way, by means of (21.151) and (21.153) we obtain the three-carrier
narrow-lane linear combination

(1,5a,3) N Ssa
L L 7L a>L Sa)) = Ly — Ls,
W (L Lsay Livosa) Si = fsa +0.5f3(6 50) A feat 0.5f3(6,54) :
0.5
fi6350 Ly(6sa) (21.140)

f] _fSa + 05]%(67511)
leading to the final form of the three-carrier narrow-lane linear combination

fi fsa s +fsa
= L — Ls, + Ly (6.5
fitte N fitfe T fiafe MO

= L)

1,503
L1<v' “ >(LlaL5a7LN(6,5a))

(21.141)
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As expected, the three-carrier wide-lane and narrow-lane linear combinations
(21.139) and (21.141) have been reduced to the wide-lane and narrow-lane linear
combination of the original L; and Ls measurements. The mathematical model of
the three-carrier wide-lane linear combination is then defined as

a, ;\’ 1,6
Ly ™ (L1, Lg) = p+ dwa oM, W;'  Niy(s50 _?;11 (21.142)

and for the three-carrier narrow-lane linear combination

Lﬁ“”@h%)fp+wNmmI+%

1,6 bil
E)Nmﬁw+ﬁh (21.143)

The code version of the three-carrier narrow-lane linear combination (21.141) is
then

1ﬁ“@@p&)_p—éh (21.144)

fo

21.10 Exotic Three-Carrier Wide-Lane and Narrow-Lane
Combinations

In Sect. 21.5, we developed ambiguity integer algebra that can easily be extended
to any GNSS frequency and observable. Let us now form the ionosphere-free
L3(25), wide-lane Lyy(>5) and narrow-lane Ly(y 5) linear combinations of L, and Ls
phase measurements

L35 = p+432,5N3025)
f2
Lys) = p+iwesNwes) — fzf (21.145)
f2
Lys) = p+ 2nes)Nhes) +]§Il
with the ionosphere-free ambiguity N3, 5), defined by the integer Eq. (21.117) in
Sect. 21.5

1 ¢ c

N> +23Nya5) = N3as) —  A3ps) = 35 5 :fs(z S

~125cm  (21.146)
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The corresponding ionosphere-free frequency f35) is then equal to the
narrow-lane frequency fy( s)

fs) =235 fo=fr+f =fves) — 43(25) = AN(2)5) (21.147)

From (21.147) we can see that in the case of L, and Ls phase measurements the
ionosphere-free and the narrow-lane linear combinations have exactly the same
frequency and wavelength. Following (21.117), the ionosphere-free integer ambi-
guity can be defined as

N3(2,5) := 24Ny — 23Ns (21.148)

Following (21.5), the general form of the linear combination Lilcz %) of three

carrier-phase observables is

LY (Ly, Ly, Ls) : SR LN 2 I (21.149)

Jre fre Jic

with the frequency of the linear combination f;¢ defined as

(1,2,5)

A = afi+of+oss % ER (21.150)

Let us now define the frequency of the three-carrier wide-lane and narrow-lane
linear combination in the following way

(1,5,3)

A
(1,53
le, )

=0+ fes)
=fi —f+fes)

(21.151)

i.e., as a linear combination of L, Ls and the ionosphere-free linear combination
L3(25)- The frequency of the new wide-lane and narrow-lane linear combinations is
essentially equal to the frequency of the wide-lane and narrow-lane linear combi-
nations of the original L; and L, measurements

(1,5,3)

fw
¥ (153)
N

With fundamental GPS frequency fy = 10.23 MHz, the wide-lane and
narrow-lane wavelengths can be defined as

V= fi—fh=fw-fo=34fy
=fi+th=/-fo=274-f

(21.152)
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1 ¢
AL ¢ ¢ ¢ C ., ~82cm
fitfs—fas) fi—fH fwfo 34 f "
1 ¢
153 ¢ - __¢ =— . — = v~ 10.7cm 21.153
fi—Ffithos fith fvfo 274 f ( )

By means of (21.117), the three-carrier wide-lane ambiguity is then

(1,5,3)

Ny = Ny +Ns — Nyo5) = Ny + N5 — (24N, — 23Ns)
=N, +Ns — N> — 23(N, — Ns)
= Ns+Nw — 23Ny (s) (21.154)
= Ny + Ny — 24Ny a5)
= Ni — 24Ny o5)

In its final form, the three-carrier wide-lane ambiguity is defined as
NG = Ny = 24Ny 05, (21.155)
or by adding N, — N, to (21.155)
NS .y
w = IV +NW - 24Nw<2,5) (21156)

In a similar way, we can derive the three-carrier narrow-lane ambiguity

(1,5,3)

NN =N; — N;s —|—N3(275> =N —N5—|-(24N2 —23N5)
= —Ns+N; + N, +23(N, — Ns) (21.157)
= —Ns5+ Ny + 23NW(2_5)

In its final form, the three-carrier narrow-lane ambiguity is defined as
Ny = Ny + 24Ny 05, (21.158)

Equations (21.155) and (21.158) show that with integer ambiguity algebra it is
possible to express the wide-lane and narrow-lane linear combinations of the
original L; and L, measurements as a linear combination of the wide-lane ambi-
guity between L; and Ls measurements. However, the noise floor of the wide-lane
linear combination LW(z,s) is higher by a factor of about 33 than that of the original

measurements L, on the first GPS frequency

o(Lys) ~33-a(L) (21.159)
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Therefore, in order to obtain the super wide-lane ambiguity Ny, 5), we propose
to make use of the vector form of the wide-lane ambiguity (21.32)

Nw(z,s) = Ny(1,5 — Ny (21.160)

since the wide-lane ambiguities NW( 1,5) and Ny, can be fixed to their integer values

using Melbourne-Wiibbena linear combination.

Let us now derive a mathematical model of the three-carrier wide-lane and
narrow-lane linear combinations defined by (21.151) and prove that the final form
of the three-carrier linear combinations is reduced to the wide-lane and narrow-lane
linear combinations of two frequencies. The three-carrier wide-lane linear combi-
nation is then

(1,53) N fs
LS L Lyas)) = L+ L
W L ks, L) fitfs —fes YA +f =25
; (21.161)
3(2,5)
£ ) N S
fi+f5 = s (Eries) +Aves)
with Ay, 5) denoting
f2
A ( = —13 25 N5 +23)u3<25>Nw<25> _f?II (21162)
since from (21.145) and (21.146) we have
) flz
Lss5) = Lv2s) — 43(2,5)Ns5 + 234325/ Nw (2,5 _f_zfsll (21.163)
= Lyps) +Anes)
In its final form, (21.161) can be defined as
(1,53) bl fs _htfs
LUS(Ly, Ls, Ly s)) - L+ Ls Lygs) +A
(L1, Ls, Lya5)) := “iRh b ] —f( N2s) T Aves)
f+rs
=Ly — A 21.164
W a g Aves) ( )
that reduces to
Ly 53)(L1,L5,L3<25)) = p+w(Ny — 24Ny (25)) + fixhh I (21.165)

hi=1hfs
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and after substitution of (21.155), we finally obtain the (super) ionosphere linear
combination or the three-carrier wide-lane linear combination

f +fo1[

(1,5.3) (1.5.3)
LY3NLy Ls, Lyns)) == p + AwNE>Y +
(£ 33) " h =Rt

(21.166)

Since in (21.166) the first order ionosphere effect is multiplied by the very large
factor

fitfh
h—ff

it can be used to derive the first order ionosphere effect. It can be shown that the
multiplication coefficients in (21.161) follow the following properties

1,53
1(Ly™Y) =

I ~10.6 -1, (21.167)

fi _ f

fiths=fes hi-h
fs S

fi+hs—fes f-F (21.168)
fes  _ fhes

S +f5 = fes) h—rH
and so in its final form we obtain the three-carrier wide-lane linear combination

S by hes Lips)  (21.169)

f —szl +f1 A" fi—h

In a similar way, by means of (21.151) and (21.153) we obtain the three-carrier
narrow-lane linear combination

L(l > 3)(L1,L57L%(2 5)) ==

LY (L1, Ls, Laas)) = / L= . L
fi=fsthes — h=F+hes (21.170)
fes) .

b B g+ A
fi = +h0es) (Eves) +Bvias)

leading to the final form of the three-carrier narrow-lane linear combination

5 f £ ftrf
Ll(vl,ss) (L17L57LN(2,5)) ::fl ‘fl"fZ L, 7f1 J:fz Ls +f? +fs ( N(2.5) +AN 2 s))
= LN+f2 s AN(z,s) (21.171)

fi+hHh
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that reduces to

(1,5.3) h =54
L Ly,Ls,L := p+ An(Ny + 24N, — —1 21.172
N (L1, Ls, Ly s)) = p + An(N1 w(.s)) el ( )
and after substitution of (21.158) we finally obtain
L(IS’;)(L17L57L3(25)) = p+j.NN3(2’5) ;1 +;§£ (21173)
or
(1,53) (153) _N f5f1
L Li,Ls,L3ns) :=p+n N 21.174
W Ls L) = p hi +f2f5 ( )

Note that in (21.173) the first order ionosphere effect is multiplied by the very
small factor

(1,5,3))_ fhi—fh

I = —-0.19-1 21.175
fit+hfs ! ( )

As expected, the three-carrier wide-lane and narrow-lane linear combinations
(21.164) and (21.171) have been reduced to the wide-lane and narrow-lane type
linear combination of the original L; and L, measurements.

It can be shown that multiplication coefficients in (21.170) follow the following
properties

f _ A
fi—fs +f3<2’5) A+
_ /5 5
f—fi+hes Ait+h (21.176)
fes) _ faes)

h=Ff+thes hHth
and in its final form we derive the three-carrier narrow-lane linear combination

fi f5 5e.s)
Li,Ls,L = L — Ls+
L S

1,53
Ly

Ly (21.177)

with the following property

Ao, h

L s = 21.1
N f1-|—sz5 (21.178)
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Thus, only the third multiplication factor in (21.177) effectively contributes to
ambiguity resolution when the original zero-difference ambiguities are aligned
using wide-lane ambiguities.

The mathematical model of the three-carrier wide-lane linear combination we
will use for ambiguity resolution is defined as

f1+f5f1
f - LS

Ly (L, Ly) == p+ iwN, — 2425w Ny(2s) ava (21.179)

and for the three-carrier narrow-lane linear combination

h=5h

L(l 25>(L1,L2) — p—"—/’LNNl +24;LNNW(2‘5) f _|_f2f'5

v (21.180)

The code version of the three-carrier wide-lane linear combination (21.179) is
then

(1.2.5) htf f1
P =P 21.181
W L A ( )
and in its final form
(12,5) fi +f5f1
P = 21.182
v P f fzfs ( )

The code version of the three-carrier narrow-lane linear combination (21.180) is
then

P = PN+f2+f5 fr I (21.183)
S +Lh6f5
and in its final form
(12,5) bil fsf1
P =p+ 21.184
v P AR (21.184)

21.11 Three-Carrier Type Melbourne-Wiibenna Linear
Combination

By subtracting the three-carrier wide-lane linear combination of phase measure-
ments (21.179) from the three-carrier narrow-lane linear combination of code
measurements (21.183) we derive the three-carrier Melbourne-Wiibbena linear
combination
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MW<1’2’3>(L1,L5a Ly 5), P1, Ps, P3(2,5)) :
= L3V (Ly, Ls, Lyas))
— P2 (P, Ps, Pys)  (21.185)

that can be reduced to
MWLy, Ls, Ly s), P1, Ps, Pyas)) := MW = Ly, — Py = wNy  (21.186)

with Melbourne-Wiibbena linear combination MW . The mathematical model of the
three-carrier Melbourne-Wiibbena linear combination is defined as

MW = JyN, — 245Ny 2s) (21.187)
with an acceptable noise floor, mainly driven by the code measurements
a(MWID) = g(MW12)) x~ (MW 123)) = 0.71 - o(P)) (21.188)

From (21.187) we see that the three-carrier Melbourne-Wiibbena linear combi-
nation can be used to fix the reference ambiguity N, to an integer value. However,
the reference ambiguity N, can also be estimated using L; and Ls phase mea-
surements, i.e., using the following Melbourne-Wiibbena linear combination

MW = Jyas)(Nw +Nwes) = Awas)Ny — 234w sNwes)  (21.189)

By adding (21.187) and (21.189) we obtain the following observation equation
for wide-lane ambiguities

MWD MW = (4w + Aw(1,5))Ny — (242w + 232w(1,5) )Nwzs) (21.190)

Although the noise level of (21.190) is increased by a factor of about v/2 in this
way, the wavelength of the reference ambiguity Zy ;2 s) is approximately doubled
in size and defined as

2fi—f—fs

}“W(l,2,5) = )LW +/lw<175) = mc ~ 086+075 ~ 161 m (21191)
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Chapter 22 )
Earth Orientation Quaternion e

In Svehla (2006), it was proposed for the first time to represent Earth orientation
and rotation by means of an Earth Orientation Quaternion (EOQ). Quaternions are a
very practical way to represent the Earth’s orientation parameters (EOPs), because
the transformation between the terrestrial and the inertial system can be performed
without calculating rotation matrices. Most importantly, the use of EOPs stored in
the form of a quaternion avoids the use of the latest models and standards available
from the IERS Conventions, as in the case of the EOP/ERP parameters provided by
IGS and IERS. In this way, information about the Earth’s rotation/orientation is
straightforward and the transformation can be performed much in the same way as
for satellite attitude. This idea that was originally presented in Svehla (2006), was
included in the recommendations of the Workshop on Precise Orbit Determination
for the future ESA Earth observation missions, held at ESTEC/ESA in 2007
(Svehla 2007c). Following this recommendation, the ESA Core Mission GOCE
provides Earth Orientation Quaternions as a separate product accompanying the
kinematic and reduced-dynamic orbit. The sampling rate of Earth Orientation
Quaternions, as provided in the scope of the GOCE mission.

The four Euler symmetric parameters written in the form of a quaternion are a
minimal set of parameters for defining non-singular mapping to the corresponding
rotation matrix. Besides their symmetrical properties, modeling finite rotations
using quaternions has many advantages compared to using Euler angles since any
interpolation or integration can be performed on the sphere, preserving the
orthonormality of the rotation transformation (Svehla 2006).

Hamilton or quaternion algebra avoids the use of a rotation matrix and any
sequence of successive rotations can be represented very elegantly by the quater-
nion operator. This also holds for the derivatives of the successive rotations and the
treatment of the kinematic equation of rotation. We show how to interpolate and
extrapolate the Earth orientation quaternions preserving the orthonormality of the
transformation. We introduce a transition quaternion derived from the kinematic
equation of rotation.
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In the field of numerical solutions of ordinary differential equations, geometric
integration is defined as a numerical method that preserves the geometric properties
of the exact flow of a differential equation. Therefore, when talking about inte-
grating quaternions on the sphere and preserving orthonormality of the rotation
transformation at the same time, we are actually talking about using geometric
integration.

22.1 Kinematic Equation of Earth’s Rotation in Terms
of Quaternions

The kinematic rotation of a planet such as the Earth, or a satellite in the orbital
plane, can be defined as a rotation irrespective of the forces that govern that
rotation. Kinematic rotation describes rotation of a body, e.g., (Operation and Wertz
1978), and can be given by a set of first-order differential equations specifying the
time evolution of the rotation parameters. Modeling rotation is, in essence, mod-
eling an instantaneous angular velocity vector. Space geodesy techniques, such as
VLBI, measure the geometric rotation and orientation of the Earth. Much in the
same way, star trackers placed on a satellite take images of stars to provide
orientation.

The Earth Orientation Quaternion defines a rotation between a terrestrial refer-
ence frame, such as ITRF, and the inertial, quasi-inertial, true system of date, or a
celestial reference frame, here donoted as ICRF. The quaternion ¢g is defined in
terms of Euler symmetric parameters {qi, g2, q3,qo} defined as e.g., (Hamilton
1853)

q = qo +iq1 +jq2 + kg3
. D
q1 = elsm5
. D
9@ = ezsmz (22.1)
qz = egsinz
qo :cosE

where {e, e2,e3} are the components of the Euler axis and @ the corresponding
rotation angle. The quantity g is the real or scalar part of the quaternion and
iq1 +jq2 + kg3 is the imaginary or vector part. {i,j, k} are the hyperimaginary
numbers satisfying the conditions
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y== (22.2)
jk=—ki=i
ki=—ik =]

For more detail on the definition of quaternions and geometric algebra see the
original paper Hamilton (1853). When working with quaternions available from
satellite missions, one needs to take into account the scalar term gy in (22.1) that
can be provided either as the first or the last element.

The relationship between quaternions and the rotation matrix can be derived
from the so-called “Euler/axis-angle” representation of the rotation. Following
(Operation and Wertz 1978), the direction cosine matrix A is in this case given by

cos @+ e3(1 — cos D) ere2(1 —cos®@) +e3sin®  ejez(1 —cos®@) — ey sin®
A= |eier(l1 —cos®) —e3sin®  cos®+e3(1 — cos D) ere3(1 — cos @) + e sin @
ere3(1 —cos @) +esin®  eze3(1 — cos @) — e sin @ cos @ +€3(1 — cos )
(22.3)

From there, the direction cosine matrix expressed in terms of the Euler sym-
metric parameters, or in our case the rotation matrix R from the terrestrial into the
inertial reference frame, is defined as

-G -G+ 22(q161% + 6]3;10) i 2(q193 — 9290)
R=1| 2(q192—q3q0) —qi+%—a5+tq  2(9293 +q190) (22.4)
2(q193 + 9290) 2(g293 — q190) -4 — B+ G+

For a position vector Xjrrg and a velocity vector XiTRF given in the Earth-fixed
reference frame, the transformation into the quasi-inertial reference frame can be
calculated as follows

Xicrr = R X1rRE

) ) . (22.5)
Xicrr = RXitRr + R XiTRE

Expressing the first derivative of the rotation matrix by means of the
skew-symmetric matrix € we have

Xicrr = RXrrrr + Q33 RX1mrr (22.6)

where the skew-symmetric matrix Q3,3 can be defined by means of the angular
velocity vector @ = {wy, wy, w3} as follows



358 22 Earth Orientation Quaternion

0 w3 —» 0 w3 0

Q3X3 = |— w3 0 w1 ~ | —W3 0 0
22.7
wy —W 0 0 0 0 ( )

w3= — 7292115.1567 - 107! rad/s

and can, in some cases, be approximated with sufficient accuracy by a rotation
about only one axis. Using quaternions, the calculation of the rotation matrix can be
avoided and the rotation can be replaced by the quaternion multiplication with
(4 x 1) vectors Xrrrr and Xicgrr (the fist value is zero)

Xicrr=¢" - X11RF - q (22.8)
where g* denotes the conjugate or inverse quaternion g* defined as
q" = qo — iq1 — jq2 — kq3 (22.9)

The multiplication of two quaternions, ¢ and ¢', can be written as

q'=q q

4o % —4 —4 —45] [q

@“| _|a 0% —h 4| |¢ (22.10)
| |db & a —d| |

a5 a —¢ 4 9 1 Lla

For the GOCE mission, the Earth Orientation Quaternions are provided for every
integer second #y, of GPS time (terrestrial time). To obtain quaternion information
for the actual epoch time f,,,, the kinematic equation of rotation may be used to
propagate quaternion information between the two nearest integer seconds g4« ()
and g4 (f1). Following (Operation and Wertz 1978), the time derivative of a
quaternion reads as

q(t+ Ab) ~ [I+ %QAt} q(t) (22.11)

where I denotes the (4 x 4) identity matrix and Q is the skew-symmetric (4 x 4)
matrix defined as

0 w3 —y W]
Q.| 0 o o (22.12)
w7 —1 0 w3
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Finally, the first time derivative of a quaternion, or kinematic equation of
rotation reads as

dg .. q(t+A1) —q(t) 1
4 A, At =3 (22.13)

Assuming the angular vector to be constant between two epochs, by integrating

(22.13), we can obtain a closed solution for the kinematic equation of rotation, see
e.g., (Operation and Wertz 1978)

-q(to) (22.14)

22.2 Transition Quaternion

Since any sequence of successive rotations can be represented very elegantly by the
quaternion multiplication operator as given in (22.10), we introduce and define the
transition quaternion ¢, in the following way

q(t1) = qsq(to)

=) L) e (22.15)
s =P

where ¢* is the conjugate or inverse quaternion defined in (22.9) with the norm of a
quaternion given as

lgll = v/aq* (22.16)

Equation (22.15) allows the calculation of a transition quaternion between two
consecutive epochs. Let us now see how the transition quaternion can be calculated
for an intermediate epoch. Using the expansion of the exponential function as given
in Bronstein and Semendjajew (1996) we obtain

00 r) 21
A=3 &) (22.17)

which can be written as

(22.18)
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And since
Q¥ = (—1)" I3 4 (22.19)

with the identity matrix I4x4, wWe obtain

50 00 1 2n+1
6%214“2( 1)( ) —|—Qaflz ( t)

n=0 ( ) n=0 2}’l+ 1

(22.20)
1 (1
= I44 COS > ot ) +Qw™ " sin 5 wt
with the rotation rate w, and finally
cos (% a)t) @ sm( a)t) —“2sin (% wt) “Lsin (% )
L |- “sin (% a)t) cos (2 wt) “Lsin (% wt) Zsin (% a)t) (2221)
2sin(Jwr)  —2sin(lowr) cos (L i) 2 sin (4 wr) ’
—%sin(or) —2sin(for) —2sin(for)  cos(Fwr)

In the case of an extrapolation or interpolation, e.g., between two consecutive
epochs, the transition quaternion ¢ at epoch #,,, can be obtained in the following
way

qs(tepo) = Saxaqaxi (o)

At = tepo — 1o
cos( wAr) Dsin(JwAr)  —2sin(lwAr)  2sin(wAr)
P Zsin (% wAt) cos (% a)At) “Lsin (% cuAt) ﬂ sin (% )
bt = 2sin(fwAr)  —2sin(fwAr) cos (3 wAr) 2 sin (L wAr)
—%sin(fwAr) —2sin(fwAr) —%sin(foAr)  cos(wAr)

(22.22)

When the Earth Orientation Quaternions are provided with a sufficient sampling
rate, (22.22) can be further approximated by

cos (% cuAt) —sin (% a)At) 0 0
_ | sin((wAr)  cos(wAr) 0 0
Saxa = 2O 20 cos (% wAt) —sin (% wAt) (22.23)
0 0 sin (% o)At) cos (% wAt)

with the rotation rate @ = —7292115.1567 - 10~ !![rad/s]. Before interpolation or
extrapolation of the quaternions given at two epochs, one first needs to check if
there is any ambiguity in the quaternion between consecutive epochs, i.e., that the
rotation is carried out in the correct direction.
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Once the Earth Orientation Quaternion is known for the given epoch, the
position vector Xyrrr is first written in the form of a quaternion (the scalar part, or
the first value is zero). Finally, transformation from the Earth-fixed reference frame
(ITRF) into ICRF can be calculated as follows

0 9 9 @ g 9 —q91 —q@ —q 0
Xicre | | =1 g0 93 —q2 a1 g9 g5 —q2| | Xire
YierRe | |92 —43 9 @ 9@ —95 490 q YiTRE
ZICRF -4 9@  —q1 qo B 9@ —q 9o ZITRF
(22.24)
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Chapter 23 M)
A Geometrical Approach to Model ki
Circular Rotations

Here we introduce an elegant way to geometrically model the rotation of a rigid
body in vector form. Typically, to perform a rotation in Euclidian space 93> one
uses rotation matrices based on a given sequence of Euler angles. Another approach
is to use quaternions. A matrix exponent is often used to describe rotations in
mathematical expressions and derivations, i.e., the exponential map from so(3) to
SO(@3). However, the nine elements of the rotation matrix are still exclusively used
for calculating rotations in Euclidian space. The axis/angle representation in terms
of quaternions and Rodrigues’ rotation formula are alternative approaches.
However, hidden geometrical properties, or the complexity of using quaternion
algebra are the stumbling blocks that lead to the situation that rotation matrices are
still almost exclusively used nowadays. Here we introduce the spherical orthodrome
rotation that describes a rotation purely geometrically in a highly transparent way as
an orthodrome, or a great arc on a sphere. The application of such transparent
geometrical rotations in vector form has many advantages compared to any other
rotation. Here we introduce spherical rotation and show basic geometrical prop-
erties, i.e., the use of vector algebra to very efficiently perform rotation of a vector
in Euclidian space or to describe any orientation. Thus, this approach could be used
to model Earth orientation and rotation as well as the attitude of a satellite. We also
show that this geometrical rotation approach could be used in orbit modeling, since
orbit perturbations can be represented by circular rotations with an axis of rotation
very close to the main axis of the satellite orbit.

23.1 Vector Rotations: Spherical Rotation

Spherical rotation on the sphere, as introduced here, is based on the equation of a
great circle on a sphere, called the orthodrome. More on the equations of ortho-
drome and loxodrome on a sphere, given in a very elegant orthogonal vector form,
can be found in (Svehla 1995 and 1996), two student theses (not Diplom). The first
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was awarded the Rector’s Prize in 1995 and the second the same prize in 1996. In
(Svehla 1995), the following equation of the orthodrome was elaborated in the light
of differential geometry and various projections on a sphere based on two
orthogonal vectors ¢; and &,

Fla) =cdicosa+asina ¢ Ldy, |61] = 62| = |F(a)] (23.1)

Thus, to describe a great arc on a sphere we need an orthogonal basis {¢,¢>}
and an angle o. The normal to the orthodrome is then given by @& = ¢ x ¢&,.
Representation (23.1) can be extended and used to describe the rotation of any
vector 7 around an axis of rotation @ and the rotation rate @ = |&|, along the given
arc of the orthodrome on the sphere.

We first consider a sphere of radius r, with the fixed rotation axis @ and the
rotation angle ot defined by w = |@|. In the second step we consider a plane
defined by the normal that is collinear with the rotation axis @ and intersects the
sphere in a circle that describes the rotation of the vector F(¢), see Fig. 23.1.
A rotation of the vector () is then described uniquely by the following orthogonal
basis

. @ x 7 (23.2)

where unit vector @° points along the rotation axis @, @° X ¥ X @° defines the
direction in the meridian towards the vector 7 and @° X 7 is collinear with the
normal to the meridional plane defined by the vector 7. The spherical rotation of the
vector 7 around the rotation axis ¢ and the angle of rotation wt is then defined as

rotation—an elegant method
of vector rotation, avoiding

the use of rotation matrices, ? (t)
quaternions, etc

Fig. 23.1 Spherical T

=i
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F(t) :=F0° - @°+@° X FX @° - coswt+@° X 7+ sinwt (23.3)

After including the scalar product 7&° = r cos o, that is constant for all rotation
angles and

d=[F"xa&° coswt+7° - sinwt] (23.4)
we obtain the second form of the spherical rotation
F(t) := r[@° cos o + B° X d] (23.5)
The inverse rotation denoted here as 7*(¢) is defined by the negative argument - ¢
F(t) :=F(—1) =F&° - &°+ @D° X FX &°- coswt —@° X 7- sinwt  (23.6)
thus we obtain the following property
F(t) =7 (1) =2-&° x F- sinwt (23.7)
from where it follows
Fx(t) :=7(t) —2-@° X7 sinwt (23.8)

Keeping the radius constant, the first and second derivatives are

dr(t :
r():rd')o X d
i 23.9
=—w-O°XFXO°-sinwt+w-° X F- coswt (23.9)
=wr-@° X [-F X ®° - sinwt+ 7 - cos wi]
a’r(t) .,
=r®d° X d
dr?
=0 @ XFX@ - coswt — > @° X F- sinwt (23.10)
= —’r-&° X [° x &° - coswt +7° - sinwt]
= —*r-&° xa
or
d*¥(t . e L
M _ _o? . () — 7 - &) (23.11)
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The kinematic rotation of a planet such as the Earth, or a satellite, can be defined
as a rotation irrespective of the forces that cause that rotation. Here the focus is on
the model using uniform circular rotation. This kinematic rotation can be described
by a set of first order differential equations specifying the time evolution of the
rotation parameters.

23.2 Multipole Spherical Rotation

Let us now look at the case when the rotation axis @ in is not fixed, but slowly
rotating or precessing around a fixed axis @;. Generally speaking, we can add any
number of additional frequencies and additional axes of rotation. For instance, in
the case of Earth rotation, one could also add Chandler wobble, daily and annual
terms, nutation due to tidal forces of the Moon and Sun, with the main period of
18.6 years, as well as precession. Thus, to add an additional rotation around an axis
@3 by an angle w7, we may write

@°(1) = @ - COS Uppy, + B] X (&° X B - cos wyf+&° - sinwyr) (23.12)
or
@° (1) = @] CO8 Ugyy, + D] X dyy, (23.13)
with
COS Uy, = W° D]
Gy, = @° X @] - coswit+@° - sinwt (23.14)

such a nested rotational spherical structure can be extended to any frequency
argument l_i(z) = @° - cOS oy, + @° X dn - w,t and rotation axis ). The same
model could be applied to the attitude of GNSS, or of LEO satellites, such as
GOCE.

23.3 Transition Spherical Rotation

If two vectors are given on a sphere, the question is how to define the spherical
rotation that directly connects them. This would be the same as the so-called second
geodetic task on a sphere, i.e., given the positions of two points on a unit sphere
{# (1), 7%(t2)} we need to define the orthodrome or great arc between them.
Following (23.1) we may define
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from where it follows

cose =cosw(ty — 1) =7 (t) - 75 (1)
B eoso (23.16)

sino

—

(&)

Finally, for the transition spherical rotation we obtain

4

(1) = ¢1(t1) cos wt + & (1) sin wrt (23.17)

with the first and second derivative

d_’O
) = w[—¢(f) sinwt + & (1) cos wi]
dt
g (23.18)
a0 _ 2 e
dr

In a similar way we obtain for the apsidal precession, i.e., the precession of the
line of apsides dw/dt, around the unit momentum vector /°(z)

72 (1) = 75,(1) cos(wot + o) + [iio (1) x 7. (z)} sin(wot + @) (23.19)

with an initial angular value wy. Since the precession of the orbital plane is uniquely
determined by the normal of the orbital plane, one can directly model the angular

momentum vector /i by rotating it around the normal to the equatorial plane @g
using the following orthogonal rotation

7(t) =Fd° - @&°+@° X FX ®° - coswt+ @° X F- sinwt (23.20)

After including the scalar product ﬁdia = COS dy,,, that is constant for all rotation
angles, we obtain

—

h(t) = @° - oS g + @ X (ii X &° - cos ot +7 - sinwt) (23.21)
that reduces to a very elegant orthogonal spherical rotation defined as
.fz(t) = @° - COSUpy, + D° X d. (23.22)

with vector @ where
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d:=hxad°- coswt+h- sinwt (23.23)

Such an elegant method to geometrically rotate a vector around an axis for a
given angle of rotation has not been reported so far in literature.

To calculate the first derivative of the angular momentum vector h (¢) in (25.23),
only the second term plays a role

—

iz;(t) = @° Xd=—m-& X |hx & - sinwt—h- coswt (23.24)

If we would like to rotate the vector 7 by an angle 6 around a rotation vector @y,
or arbitrary number of rotation vectors (@, @y, @3, ..., ®,) we can also use the
following nested relations

cos 0+ () x 7°)sin0
)) sin 6

;.’0
(&1, y) = 7° (1) cos 0+ (@ x 7° (&
7° 7‘0(6?)1,6?)2) sin 0

(67)1,(?)2)0050—&-(?)3 X

—0

2y .7(?),1,1)008()%»6?)” Xr (J)],CT)Q,. ..,&')n,l)sin()
(1) = ... =By X (D1, Da,...,0p1)] =1

(23.25)

Generally speaking, an Earth-centered satellite orbit has a main axis of rotation
that is precessing around an another axis that defines apsidal and nodal precession
of the orbit. Typically, non-gravitational forces such as air-drag or solar radiation
pressure have a clear orbit period signal. Therefore, all orbit perturbations can be
described by multipole rotations with an axis of rotation close to the main axis of
the orbit. The concept of circular motion and orbit representation will be discussed
further in this thesis.
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Chapter 24 )
The Concept of Counter-Rotating e
Circular Orbits

Here we discuss the concept of bi-circular orbits and bi-circular orbit perturbations.
It is shown how an elliptical orbit can be decomposed into two counter-rotating
circular orbits. In this way, orbital dynamics can be approximated geometrically by
circular orbits or circular rotations. Two counter-rotating orbits remove the varia-
tion of the orbit radius. Bi-circular orbit representation is essentially a linear
combination of two harmonic oscillators with an opposite direction of rotation. In
Chap. 19, we applied a simple harmonic oscillator to daily estimates of residual
Galileo clock parameters. We just looked into the remaining amplitude in the clock
parameters that measure the radial orbit error after removing a linear model (time
offset and drift removed). Similar results to the circular representation of the effect
where obtained when a solution of Hill equations in the radial direction (Colombo
1986) was plotted after removing a linear model (bias and drift) in the radial
direction, see Chap. 19. The use of harmonic oscillators leads us also to the synergy
or unification in modeling of orbital and rotational dynamics. We will show in the
next section an interesting feature of circular orbit representation: that for a
Keplerian orbit the velocity vector describes a circle. The velocity vector of the
satellite in the presence of any point-like mass will rotate about that object along a
circle with a constant radius. Thus an interesting application is in supporting
numerical integration.

Another interesting feature of circular perturbations is in preserving the
orthonormality of the rotation transformation, i.e., the geometrical properties of the
orbit. The term orthonormality group denotes an orthogonal set of vectors that are
normalized in terms of length. Most analytical orbit theories use a form of
Keplerian motion as a reference and in numerical integration, typically,
higher-order polynomials are used to approximate the orbit over an integration
step. Here we use a combination of two uniform circular motions to represent the
orbit in terms of orbit positions and in the next section we will see how to use a
circular representation and its multipole expansion in modeling orbit velocity.
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370 24 The Concept of Counter-Rotating Circular Orbits

24.1 The Concept of Bi-Circular Orbits

The simplest orbit in celestial mechanics is the circular orbit. It can be represented
as a special case of a Keplerian orbit which is the general solution of the two-body
problem. In the case of circular orbit, geometry of the orbit is represented by a circle
and Kepler’s equation reduces to the equation of uniform mean motion. The vector
of motion of a satellite in uniform circular rotation with a radius ¢, and a constant
rotation rate n can be defined as

7o := c(Cy cos(nt) 4 Cy sin(nr)) (24.1)

with the orthonormal vector basis 6‘1 and 62. The mean motion is derived from
Kepler’s Third Law

M
n= /M (24.2)

3

with the geocentric constant GM. Denoting the prograde orthonormal rotation with
=+
o7 (n)

3% (n) := C) cos(nt) 4 C, sin(nr) (24.3)
the final kinematic equation of the prograde orthonormal rotation can be written as
Poi=co " (n) (24.4)

Introducing the second derivative
8% (n) = —n37 (n) (24.5)

we then obtain the dynamic equation of the prograde orthonormal rotation

Foi=co " (n) (24.6)
or
. M

Rearranging both sides we can see that (24.7) is the differential equation of a
simple harmonic motion

Fo+nF, =0 (24.8)
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with n as angular frequency of oscillation. Finally, introducing the mean motion we
obtain

5 GM

Po + 3 7o =0 (24.9)

which is the equation of motion resulting from a central gravity term.
The velocity and orbit (gravity) gradient can be obtained in a similar way starting
with the first derivative of the prograde orthonormal vector basis

6" (n) = n(—Cysin(nt) + C; cos(nt)) (24.10)
and finally
Fo=co" (24.11)
or
. . GM GM
Fo=—n"c6" = —n'Fo=——FFo=——750" (24.12)
c c

Let us now introduce the retrograde orthonormal circular motion 6~ (n) that
describes a circular motion in the opposite direction

3~ (n) := 8™ (—n) = cC) cos(nt) + c¢C, sin(—n1) (24.13)
or
Fo i =cd (n) (24.14)

The dynamic equation of the retrograde orthonormal orbit follows as

3~ (n) = —n’ (n)
N GM (24.15)
Fo = _0—257(’1)

Velocity and orbit (gravity) gradient can be obtained in a similar way as

& (n) = n(—Cy sin(nt) — C cos(nt)) (24.16)
Fo=co (24.17)

. . GM .- GM
Fom e = -ty = - My M- (24.18)

a3 c2
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So far, we have considered two simple circular orbits with counter-rotation. Let
us now define a linear combination of a prograde and a retrograde circular orbit
with radii of rotation ¢ and d that rotate at the same rotation rate n

F:=co" (n)+do (n) (24.19)

Introducing the vector basis C, and G, into (24.19) we obtain the equation of an
ellipse

7= (c+d)Cy cos(nt) + (¢ — d)C, sin(nt) (24.20)
7 = aC) cos(nt) + bCy sin(nt) (24.21)

with semi-major @ and semi-minor axis b defined as

=c+d
a=c (24.22)
b:=c—d
from which it follows
a+b a—>b
= d .= 24.23

The constant radius of rotation ¢ of the first circular orbit is given as the mean
between the semi-major and semi-minor axis whereas the radius of the second
circular orbit is computed as half the difference between the ellipse axes. The
magnitude of the resulting radius vector can be derived as follows

P =8t +do|'=|cd" | +|do|* +2cd5 " 5 (24.24)
r? = ¢ +d* + 2cd cos(2nt) (24.25)
which is the same as

r* = c*+d* — 2cd cos(n — 2nt) (24.26)
confirming that the sum of two vectors satisfies the cosine law, since (1m — 2nr) is
the supplement of the angle between them. Introducing (24.23) into (24.25) leads to

the equation of an ellipse
r? = a® cos®(nt) + b* sin’(nt) (24.27)
As a conclusion, we have demonstrated that an elliptical motion can be repre-

sented as a superposition of two counter-rotating circular orbits. The general
solution of the ordinary differential equation of a simple harmonic motion (24.8) is
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an ellipse and it can be decomposed into a superposition of two circular motions
(24.21) with opposite rotation. This is graphically shown in Fig. 24.1. If we rotate
the inner and outer circle by the same angle in opposite directions, point A repre-
sented by the vector ¢C on the outer circle rotates to point A™ and the corre-
sponding point on the inner circle is rotated together with the vector dC; to the
point A~. The resulting vector 7 on the ellipse is the superposition of these two
vectors. The eccentricity of the ellipse is then defined as

/a2 — H2 A/
= Y& —H _2vVed (24.28)
a c+d

Combining (24.22) with (24.28), we can write the radius of the second circular
orbit as a function of the orbit eccentricity and the radius of rotation of the first
circular orbit

4 1—v1—¢2
=
1+vV1—e?

Once the eccentricity has been derived, the equation of Kepler’s ellipse centered
at one of the focii is

(24.29)

F=c8" (n)+ds (n) —2VcdC, (24.30)
or by introducing the eccentricity vector as

¢:=eC) (24.31)

Fig. 24.1 Elliptical motion
as a superposition of two
counter-rotating circular
motions
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Fig. 24.2 Elliptical orbit (left and middle) and linear motion (right) as a result of a coplanar
counter-rotating motion. Ellipse: ¢ = 0.85a, d = 0.15a (left and middle), c =d =0.5a — e =1
linear motion (right)

the kinematic equation of motion in terms of a uniform prograde and retrograde
rotation, is given as

F=cd" (n)+do (n) — cé — dé (24.32)

From (24.32) we see that for every circular motion we have one translation to
decompose Kepler’s ellipse. The orthonormal vector basis C, and C, is defined
such that C, points towards the orbit pericenter and Crisa perpendicular coplanar
vector pointing in the direction of the satellite velocity at the pericenter. Figure 24.2
shows how the Kepler orbit can easily be oriented and for ¢ = d one obtains a linear
motion represented by circular rotations.

In the next section we will see how to use circular representation and its mul-
tipole expansion in modeling orbit velocity. We will discuss in more detail the
property that the velocity vector of the satellite in the presence of any point-like
mass will rotate about that object along a circle with a constant radius. Therefore,
the potential application of this model is in supporting numerical integration over
long integration arcs, e.g., reference frame satellites, interplanetary orbits, etc.

Reference

Colombo OL (1986) Ephemeris errors of GPS satellites. Bull Géodésique 60:64—84. https://doi.
org/10.1007/BF02519355


http://dx.doi.org/10.1007/BF02519355
http://dx.doi.org/10.1007/BF02519355

Chapter 25 )
The Circular Kinematic and Dynamic Lk
Equation of a Satellite Orbit

Here we discuss the kinematic equation of a satellite orbit based on a circular
representation of the velocity vectors of a Kepler orbit, otherwise known as the
two-body problem in celestial mechanics. The velocity vector for Keplerian orbit
describes a circle, i.e., we show that the velocity vector of the satellite in the
presence of any point-like mass will rotate about that object along a circle with a
constant radius. Thus, an interesting advantage of using circular perturbations is
that this method preserves the orthonormality of the rotational transformation, i.e.,
the geometrical properties of the orbit. We show that the proposed circular model
could be applied to kinematic as well as dynamic modeling of the orbit and rotation
of a rigid body (satellite, Earth, etc.). In the case of circular perturbations, the radius
of rotation is preserved, as is also the case with rotation of a rigid body (satellite,
planet, etc.). At the end of this section, we discuss the proposed model in the light
of geometrical integration, a special kind of integration that preserves the properties
of the orbit, i.e., the exact flow of differential equations or Hamiltonian systems that
govern satellite motion and rotation. In the light of circular perturbations we extend
Newton’s theorem of revolving orbits that defines a special central force as one that
is changing the angular speed of the orbit by some constant factor, while the radial
motion remains unaffected.

25.1 The Circular Kinematic and Dynamic Equation
of Orbit

Let us first write the dynamic equation of satellite motion given by the radius-vector
7 including the central gravity term GM /r?

5 df GM_,
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with the unit vector defined as 7°. The associated constant angular momentum h of
the orbit (given per unit mass, i.e., or the specific angular momentum) can be
written as

h=FxF (25.2)

and considering the areal velocity over an angle 0, i.e., the area of the ellipse swept
over a given period

; do-. b - N
h=2 M _ 25 o5 PO o JGMa(l — )i = 7

period  dr 2n/ ((;1_1:4 a

(25.3)

with the ellipse semi-major axis a and semi-major axis b and eccentricity e, and the
unit vector /°

h =+/GMa(1 — e*) = const (25.4)

Including semi-latus rectum p of the Kepler orbit
b2
p=-—=a(l —e*) = const (25.5)
a

for the specific angular momentum we obtain

. . 2
h=\/GMph® — h=./GMp — GM=— (25.6)
p

and from (25.3) we then have

d P r? r?

A0~ h~ J/GMa(l —¢?) /GMp 257

By inserting (25.7) into the dynamic equation of satellite motion (25.1), we
obtain

it GM

o~ T /Gl ) P b (25.8)
i GM
o~ h
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Finally, considering (25.6), we obtain the derivative

dr h
R 25.9
70 P (25.9)
or
d—" h }7>< ?‘
G Mo 7 (25.10)
do p p

We see that the velocity vector describes a circle as a function of the true
anomaly 0, i.e., the derivative of the velocity vector w.r.t. true anomaly is a circle
with a constant radius & /p. If we now integrate (25.9) we obtain the equation of a

circle centered at k

Sl
Il
|
|
<
}_
+
Pl
4
=
b
[
o
=4
X
~
i
[
=

(25.11)

where & is a constant velocity vector of integration and 7| is unit vector orthogonal
to 7°. It is interesting to note that the size of the circle in (25.10) does not depend on
the orientation of the orbit, only on the shape of the orbit given by the semi-latus
rectum p. In addition, there is one more interesting property: since 7° and 7| are two

orthogonal vectors, the velocity # and the orbit vector 7 are orthogonal under the
following condition

(7'— 12) L7 (25.12)

Generally speaking, the specific angular momentum is not constant h #£0, ie.,
h = h(t) and p = p(¢). Thus we obtain a torque exerted by the perturbing 7

h() =S (Fx ) = FXF+FXF=FxF (25.13)

Finally, combining (25.10) and (25.13), we obtain the equation of motion in the
form defined as

LI PN el P
a6~ " p() 0 (25:14)

We call (25.14) the kinematic equation of motion or the kinematic form of the
equation of motion, because the central gravity term that governs the motion does
not appear in the equation. Kinematic equation is the terminology typically reserved
for the description of the rotation of a body irrespective of the dynamics that govern
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that motion. We will see later in this section how a multipole representation could
be used to model the general case, including all perturbations.

The importance of the kinematic equation of motion (25.14) is two-fold. Firstly,
we see that the velocity vector of the satellite in the presence of any point-like mass
(like central term of the gravity field) will rotate about that object along a circle with
a constant radius GM /h or h/p. This “dynamic”-like constant radius GM /h or
“kinematic”—Iike constant radius //p is a constant in a Kepler orbit, analogous to
the constant radius of a circular orbit. Thus one can model the orbit of a satellite in a
way similar to the way we model the rotation of a rigid body, e.g., the attitude of a

satellite or Earth rotation, making use of the specific angular momentum B and 7.
We can see that in the case of a Kepler orbit, GM/h as well as h/p are both

constants. Thus d?/ d0 is a constant in a Kepler orbit, dependent only on the shape
of the orbit, i.e., dependent only on the geocentric gravitational constant GM.
Equation (25.14) can be integrated kinematically or dynamically with the initial

state vector {70, ?0} defining the initial osculating Kepler orbit. This leads us to a

special type of integration of ordinary differential equations that is often termed
geometric integration, a numerical integration method that preserves the geometric
properties of the exact flow of the differential equations. This means that the
geometric properties of the orbit will be preserved even over a very long integration
time, as well as if one were looking at the orbit at very short “microscopic”
intervals. In this particular case, one can define energy to have conservative
property in the geometric integration. This also opens up the possibility of separate
numerical integration for the conservative and the non-conservative part of the
orbit. This is not the case with polynomial representation of the orbit, as in the case
of collocation approaches used in numerical integration. Geometric integration is
very often considered in highly oscillatory mechanical systems as it preserves the
properties of the Hamiltonian systems. Since geometrical integration is well known
in literature, we do not give a specific reference. However, compared to
Hamiltonian systems in celestial mechanics, where often generalized coordinates
are used in terms of “momentum” and position, here we are using the geometrical
properties of differential orbit velocity, that, according to (25.14), follow a simple
circular motion (similar to a harmonic oscillator). Therefore, the second important
aspect of (25.14) is that any satellite orbit can be represented by circular pertur-
bations, i.e., geometrical rotations only. It is also astonishing that the kinematic
“circular velocity equation” (25.14) is not a function of time at all, but depends
only on the geometric angle 6, and //p also has a purely geometrical representation,
i.e., it does not explicitly depend on the gravity field. This is the reason why we call
it a kinematic equation. Circular perturbations, e.g., in multipole expansion, offer a
new way to represent and numerically integrate satellite orbits and are an alternative
to the high-degree polynomials that are used in numerical integration at the
moment. This is especially true for applications that require long integration time,
as it is often the case in planetary geodesy, where the orbits of satellites and planets
are integrated over long time periods, or gravity field missions for temporal gravity
field variations. In the case of the general collocation methods often used in orbit
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integration, the polynomial model that approximates the orbit for each orbit com-
ponent separately in the integration step reads as

r(t) = zq: (t—10)" - ro; (25.15)
i=0

15

with g denoting the degree of the polynomials and ry; the coefficients that are
estimated when fitting the second derivative of (25.15) to the acceleration field that
governs the equation of motion and is calculated from models.

If we now consider the principle of moments from mechanics (Varignon’s
theorem), where the sum of the torques exerted by several forces (c.f. due to
different harmonics in the spherical harmonic expansion) is equal to the torque of
the resultant force, we can derive

= o
=

R=FXF=FXP+FXP+...4+F X7 (25.16)

Thus, instead of integrating the acceleration field #along the orbit, one could use

specific angular momentum (torque) h since, in the case of a nearly circular orbit in
the Earth’s gravity field, angular momentum changes very slowly, c.f. precession of
the orbital plane and apsidal line due to the J, coefficient of the Earth’s gravity field.
This makes angular momentum suitable for numerical integration of the orbit. We
will see later in this section that to preserve the circular property of the orbit one
could also make use of Newton’s theorem of revolving orbits to account for per-
turbations in rotation, and the concept of bi-circular orbits to account for pertur-
bations in a radial direction. Generally speaking, the circular property of the orbit
can be preserved by integrating the velocity vector (25.10) making use of the linear
Hill equations for constant acceleration along an orbit.

25.2 Orbit Representation Using Spherical Rotation

Let us now first see how, by introducing spherical rotation from the previous
section and secular perturbations in orbital elements (Kaula 1966), one can easily
represent a satellite orbit over a long period of time. Let us define the Kepler orbit

by the specific angular momentum vector h and the line of nodes Fun (pointing
towards the right ascension of the ascending nodes) and introduce precession of the
orbital plane dQ/dr due to the J, coefficient of the gravity field. Generally speaking,
we may model the rotation of the vector 7, around the normal to the equatorial
plane @3 ~ {0,0,1} in a very elegant way by using the following orthogonal
vector form, which we call spherical rotation
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72.(t) = 7o, cos Qt + @ x 75, ] sin Qr (25.17)

In a similar way we can write for the apsidal precession, i.e., precession of the
line of apsides dw/dt, around the momentum vector /° ()

72 (1) = 5, (1) cos (@ + o) + [mt) X ;jn(t)] sin(wo + @r) (25.18)

with the orbital plane defined uniquely by

-

h(t) =

Foult) X 7oy 1) (25.19)

aps

Following (Kaula 1966), secular perturbations in the Keplerian elements due to
the J, gravity field coefficients are given by

dQ 3nCya? . do 3nCypa? 2.

_:42(:051 —:72[1—5005 l]

dt 2(1 - )’ - 4(1 - &) ’a (25.20)
am 31’1C20d3 2. .
—=n———""5—[3cos”i — 1]
dt 4(1 — 62)3/2a2

with da/dt = de/dt = di/dt = 0. Therefore, with just a few parameters, it is possible
to model an orbit with an orthogonal vector basis over a long period of time. Since
precession of the orbital plane is uniquely determined by the normal of the orbital

plane, one can directly model specific angular momentum vector h by rotating it
around the normal to the equatorial plane @, using the following orthogonal rotation

h(t) = hdg, - @ + @3 X h X @ - cos Qt + @3 x h - sinQ (25.21)

and after including the scalar product h- (¢ = COS tye, that is constant for all
rotation angles, we obtain

-

(1) = @ - cos o+ @ x (B x @ - cos Q-+ i+ sin ) (25.22)
that reduces to a very elegant orthogonal spherical rotation given by

h(t) = @¢ - oS ooy + @ X d (25.23)
with the vector d

d=hxdy- cosQt+h- sinQr (25.24)
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To our knowledge, such an elegant way to geometrically rotate a vector about an
axis for a given angle of rotation has never before been published.

To calculate the first derivative of the angular momentum vector ﬁ(t) in (25.23),
only the second term plays a role

—

h(t) := &g x d = —Q- &g x |hx &% - sinQt — k- cos (25.25)

In the general form of spherical rotation (25.23), we can add different fre-
quencies and additional axes of rotation. For instance, in the case of Earth rotation,
in addition to precession we have nutation due to tidal forces of the Moon and Sun,
with the main period of 18.6 years, the same as that of the precession of the Moon’s
orbital nodes. Thus, to add an additional rotation on top of (25.23) around an axis
@3 by an angle w,¢ we may write

B (1) = B] -+ COS 0y, + @ X (DG X @ - coswit+ B - sinwyt)  (25.26)

Such a nested rotational structure can be extended to any frequency argument
nw;t and rotation axis @¢.

no =0 o o | 20 | =0
¢ = 0] cos Wizt + 3 sinwipt  @F L5 Ly (25.27)

25.3 Multipole Circular Perturbations and Newton’s
Theorem of Revolving Orbits

To continue this discussion on orbit representation, let us now see if one can
separate radial motion from angular motion. In Proposition XLIII and in
Proposition XLIV of Newton’s Principia (Newton 1687), it is stated

“It is required to make a body move in a trajectory that revolves about the centre of force in
the same manner as another body in the same trajectory at rest.” — Proposition XLIII

“The difference of the forces, by which two bodies may be made to move equally, one in a
quiescent, the other in the same orbit revolving is in a triplicate ratio of their altitudes
inversely.” — Proposition XLIV

Following Newton’s theorem of revolving orbits in Fig. 25.1, Proposition XLIII
introduces apsidal precession under the special category of a central force.
Proposition XLIV says that the difference of the central forces between those two
orbits (perturbed and unperturbed “at rest”) varies inversely as the cube of their
radial distances. Newton’s theorem of revolving orbits defines a central force as one
that is changing the angular speed of the orbit by some constant factor &, while the
radial motion stays unaffected. Thus, for the true anomalies between those two
Newtonian orbits we may write
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PROPOSITION XLIII. PROBLEM XXX.
It is required to make a body move in a trajectory that revolves about
the centre of force in the same manner as another body in the same
trajectory at rest.

PROPOSITION XLIV. THEOREM XIV.
The difference of the forees, by which two bodies may be mads. to 2:0ve
equally, one in a quiescent, the other in the same orbit revolving, 1 ¢ in
a triplicate ratio of their common altitudes inversely.

Fig. 25.1 N’s theorem of revolving orbits, as published in Philosophice Naturalis Principia
Mathematica, Newton (1687) showing apsidal precession of the Kepler orbit

d0, do,
—=k— 25.28
dt dt ( )
and for the corresponding specific angular momentums
do do
hy =72 —d; = r2k—dt1 =k-hy (25.29)

If we now assume that the orbit is circular or nearly circular we may write the
following Euler-Lagrange equation

dr (dON® & W
P (E) =@ 7 (25.30)

separating radial % and rotational part r(%)z. Considering (25.29), we obtain for
the difference in radial acceleration (Newton 1687)
. .. KRy ki
A7 = i(ry) — ¥(r) 2—;——31 2—3](1 —kz) (25.31)
r r r
Thus, by considering an inverse-cube acceleration, the angular speed or angular
momentum will be changed by a constant factor k. There will be no effect of the
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new radial acceleration in (25.31) if k = £1. However, the total angular momentum
in (25.28) depends on the sign of k. By setting k = 2,3, ...,n, (25.31) can be used
for multipole expansion of the orbit representation, where each angular frequency
defined by k gives a different perturbation at a different orbit frequency, and so a
different contribution to the final orbit.

In multipole representation, the kinematic equation of orbit (25.14) can be
written as

dr ki-h
op ki) ==

‘?x ?" ’?x ?‘
7= —k; P =—ki—— 7 25.32
p r al—e)’ (2332)

Therefore, the integration of the individual frequencies will lead to an orbit
velocity

; k-h ki-h_o -

i

This model could be extended considering that each frequency k; contributes
with a coefficient ¢;, which leads to

; k-h
F=— —*’d()_ ZC’ rL—i-ko (25.34)

with an initial condition Eo. Let us now see how to consider the general case of
(25.32), when k = k(0), thus k/a(1 — ¢?) is no longer a constant radius in (25.32).
For this we will introduce the concept of bi-circular orbits.

With the theorem of revolving orbits, (Newton 1687) introduced the concept of
an inverse-cube central force in order to explain the apsidal precession of the
Moon’s orbit. Newton’s theorem of revolving orbits defines a central force that
increases the angular rate of the orbit by some constant factor k, while the radial
motion remains unaffected

do, do,

yra k ” (25.35)
which is the same as (25.28). This is a very important theorem that tells us that by
adding inverse-cube type acceleration to any type of central force, the angular rate
of the corresponding orbit will be changed by a constant factor, while the radial
motion is the same for both orbits. The specific angular momentum for the second
orbit is then again

0 0
de: kﬂ— k- hy (25.36)
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Let us consider a spherically symmetric gravitational potential, i.e., a potential
that depends only on the radial distance, so that V ~ GM - a" /" *!. Making use of
spherical harmonic rotation, the general form of the spherical harmonic represen-
tation of the gravity field of the Earth can be written as spherically symmetric
gravitational potential V ~GM -a"/r" ! considering that the rotation w.r.t. the
initial state is purely a matter of datum definition. When acceleration is expressed in
polar coordinates, the radial component is non-zero and we may write, see (25.30)

& N
: <d> dr (25.37)

a \at) “ar P

For the two orbits sharing the same radial motion, we may write for the dif-
ference in radial acceleration
k2h2 hy  h? 2

r

Ar = '}"‘(7‘2) — 'I"(l’l)

7

that gives the inverse-cube acceleration. Considering only the central term of the
Earth’s gravitational field V = GM/r, the specific angular momentum of the

Keplerian orbit is h; = 1/GMa(1 — ¢?), hence we obtain
GM
A =22 1— ) (1 - #) (25.39)
o

an inverse-cube acceleration, whereas the specific angular momentum is changed
by constant factor k. Since both initial and perturbed Keplerian orbits share the
same radial motion, we may introduce the equation of the initial orbit
a(l —ée*)/r = (1+ecosh)

. GM
Ar:7-(1+e cos0)(1 — k%) (25.40)

Thus the equation of motion of the perturbed orbit can be written in the form
¢ GM_, GM -
i +— (14ecos0)(1 —&*)F (25.41)
Assuming a circular orbit e = 0 we obtain
AP = — — —k* (25.42)

Thus the equation of motion of the perturbed orbit can be written in the form

d7 _GM_,  GM GM
: — R (25.43)
r

dar 27 +_(1_k2)
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We see that for k = £1 we have the initial unperturbed Keplerian orbit. By
setting k = 2,3, ...,n, the angular rate or the specific angular momentum will be
perturbed by a constant factor k, whereas the radial acceleration is changed by 2.
However, orbits will share the same radial motion, i.e., the radius of both central
orbits will be the same r = a. This can easily be seen if (25.43) is multiplied by

a_ ¢
do k-h

(25.44)

and we thus obtain the circular velocity perturbation

aF  GM dr GM
Z o kP — kR = ——7 =R 25.45
70 I v r = k- do, hl r r ( )

where R* is the constant radius of the circle R* = GM/hy. If we denote a as the
radius or semi-major axis of the initial central orbit we see that there is a geo-
metrical interpretation of the factor k, i.e., for central orbits we may write k = a/r.
Thus for degree n = 2 of the spherical harmonic expansion we may write

a

ky = (25.46)
r

Equation (25.31) can be used for a multipole expansion of the orbit represen-
tation, since each angular frequency defined by k defines a perturbation at the
frequency that is a harmonic of the original orbit frequency. If k£ > 1, the added
inverse-cube force is attractive, whereas it is repulsive when —1 <k <1. When
k = 1, both orbits are similar and the net effect is either apsidal precession, if k is
slightly lower than 1, or regression, if & is slightly higher than 1.

Let us now derive the circular perturbations for Newton’s inverse-cube accel-
eration (25.31) of the initial Keplerian orbit in the form

i GM_,

hi
a2

2\ =0
r—3(1 —k )r (25.47)

The specific angular momentum of the perturbed orbit is
hy = kr? - dO, /dt = kr* - d0/dt. Thus by multiplying (25.47) with

dt_ r2
do k-h

(25.48)

we obtain

i GM_, Iy .
= — (1 —k 254
0~ khy o ( )7 (25.49)
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Considering that both orbits share the same radial motion of the Keplerial orbit
in the form r=a(l —e*)/(1+ecosf) and considering the specific angular
momentum of the initial Keplerian orbit /7 = GMa(1 — €*), we obtain

hy GM

e | 25.
P (1+e cos0) (25.50)

In addition, by denoting R* = GM/h, Eq. (25.49) reduces to

dr¥ . 1— & .
@——R k(l—Te cos())r (25.51)

Finally, by introducing the eccentricity of the perturbed orbit ¢* = 1;2'"2 e, we

obtain

dr_ —k-R*(1 —e* cos 0)r° (25.52)
do
This is the equation of an ellipse as long as ';f2e< 1, and can be written in
bi-circular representation and be directly integrated without any numerical inte-
gration. For k = 1, (25.52) reduces to the equation of a circle for the Keplerian
orbit.
Let us now see, what happens when k is not constant along the orbit and is
dependent on the radial distance to the satellite, i.e., kK~ 1/r. In general form, the
radial gravitational acceleration can be written as

dr C,-a
d—j: —GM(n+ 1) %R (25.53)

rn+

where R - 7° is the rotation of the unit-radius vector 7° of the orbit in the direction of
gravitation. In the case of Earth-bounded orbits, those two vectors are nearly col-
linear. The a, is the equatorial Earth radius used in the spherical harmonic
expansion of the gravity field and C, = C,(7) can be related to the initial state
vector 7 of the orbit

C, =R, C,(F) (25.54)
where R, is the transformation matrix of the spherical harmonic coefficients
defining rotation of the harmonic coefficients C, given for a degree n. Therefore, in
the general case k, = ¢,/r" we may write

dez d@l - Cy d@l

= fk— =2 25.
dt dt rodt (25.55)
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with ¢, = ¢,(7°) for a degree n. Considering again the Keplerian orbit in the form
r=a(l —e*)/(1+ecos0) for k; = c1/r we derive
%:—cl-R (I —€"cos0)(1 —e cosO)F (25.56)

Thus, since adding an inverse-cube radial acceleration to the inverse-square
acceleration corresponds to a potential ~ 1/r> (first degree in terms of spherical
harmonics), we can derive

i

Vo=——L(1-#) 25.57
2 2,.2( ) ( )
or
GMa 1—¢°
Vo= —— " 1— & 25.58
2 ror 2 ( ) ( )

Discussion in this section shows that there are very interesting alternative
approaches for representing an orbit from the geometrical point of view and that
Newton’s theorem of revolving orbits, although not well known in the relevant
literature, leads to very interesting geometrical properties.
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Chapter 26 M)
A Geometrical Approach s
for the Computation and Rotation

of Spherical Harmonics and Legendre
Functions up to Ultra-High Degree

and Order

In this section we introduce a new algorithm for the computation and rotation of
spherical harmonics, Legendre polynomials and associated Legendre functions up
to ultra-high degree and order. The algorithm is based on the geometric rotation of
Legendre polynomials in Hilbert space. It is shown that Legendre polynomials can
be calculated using geometrical rotations and can be treated as vectors in the Hilbert
space leading to unitary Hermitian rotation matrices with geometric properties. We
use the term geometrical rotations because although rotation itself is not governed
by gravity and it can be used as a proxy to represent a gravity field geometrically.
This novel method allows the calculation of spherical harmonics up to an arbitrary
degree and order, i.e., up to degree and order 10° and beyond.

26.1 Basic Definitions

Following Arfken et al. (1995), Legendre polynomials may appear in many dif-
ferent mathematical and physical solutions: (1) they may originate as solutions of
the Legendre differential equation, (2) they may appear as a consequence of
Rodrigues’ formula, (3) they may be constructed as a consequence of the
requirement for a complete, orthogonal set of functions (Gram-Schmidt orthogo-
nalization), (4) we find them in gravity field modeling when representing a function
in terms of spherical harmonics or in quantum mechanics to represent angular
momentum eigenfunctions, (5) they may be generated by a generating function. The
so-called Legendre differential equation is a second-order ordinary differential
equation with two linearly independent solutions. The associated Legendre function
of the first kind, often denoted as P, (cos 6) of degree n and order m is a solution of
the Legendre differential equation which is regular for all co-latitude angles 6. The
associated Legendre function of the second kind, often denoted as Q(cos ) is
singular for 0 € {0, n}. The complete solution of the Legendre differential equation
is a linear combination of the associated Legendre functions of the first and second
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kind. In their famous textbook on physical geodesy (Heiskanen and Moritz 1967),
one can find surface spherical harmonics as the angular portion of the solution to
the Laplace equation in spherical coordinates, assuming that azimuthal symmetry is
not present. This is the standard representation of the spherical harmonics used in
geodesy, i.e., modeling the gravity field of the Earth and other planets.

The general method for calculating Legendre polynomials is by using a
hypergeometric series (Abramowitz and Stegun 1965; Koepf 1998) (see the given
references for the description of arguments)

1—
Pn(x):2F1<—n,n+1,1,Tx), n=0,1,2,... (26.1)

Hypergeometric functions are solutions to the hypergeometric differential equa-
tion, which is a general second-order ordinary differential equation. Many elemen-
tary functions, such as Bessel functions, elliptic integrals, error functions, gamma
functions, and classical orthogonal polynomials are in fact special cases of hyper-
geometric functions. There are several alternative methods to evaluate Legendre
functions, and the standard recursion formulae exclusively used to compute asso-
ciated Legendre functions P, = P,,,(cos 0) are as follows (e.g., Hobson 1931):

Py = (2m — 1) sin OP,,_y 1 N\
Ppi1m = (2m+ 1) cos 0Py l (26.2)

1
Py =——((2n -1 ‘OPnfm_ —DPy2m
n—m(( n ) cos 1, (n+m )Pu—2, ) 1

where arrows symbolically show the direction of computation (recursions) over
degree n and order m. This approach has the disadvantage that Legendre functions
of a particular degree/order require the computation of previous degrees/orders in
the recursion chain. Thus, the numerical errors accumulate with increasing degree
and the absolute size of the functions may reach the critical size for representation
on standard computation platforms. Usually, for a particular degree of expansion,
the recursions start with associated Legendre functions of sectorial harmonics of the
previous degree. In this case, order and degree are equal and Legendre functions
reach extreme values that cannot be handled on standard computation platforms.
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26.2 Admissible Underflow Co-latitudes
for the Computation of Associated Legendre
Functions

Compared to associated Legendre functions, normalized or unnormalized Legendre
polynomials up to ultra-high degree (i.e., 3000 or even up to 10 000 or higher) are
very uniform in size and experience neither computational nor numerical problems.
This will be demonstrated in the following sections.

In the relevant literature one can typically find three basic numerical aspects in
computing spherical harmonics or Legendre functions of ultra-high degree: (1) the
numerical efficiency of the algorithm, (2) the stability of the recurrence relations in
the computation of the Legendre functions and (3) the underflow problem in
recurrence relations. Recurrence relations are crucial in all three categories. The
term underflow or arithmetic underflow (or floating point underflow) is a condition
where the result of a computer program calculation is a number that has a smaller
absolute value than the smallest value that computer can store in its memory. The
underflow problem in recurrence relations can easily be seen in the asymptotic
approximation of the normalized associated Legendre functions (Smith et al. 1981)

. Lm\4 .
P,WNE(E) (sin)", n— oo, 0 fixed, (26.3)

where P,, denotes the fully normalized associated Legendre functions of degree
and order n. The standard recursion commonly used to compute P,,, cannot be
initialized due to an underflow during the computation of P,,. Following Wittwer
et al. (2008) the maximum admissible degree n for a given function of the smallest
non-zero positive and the largest non-zero negative normalized number w that is
storable for the given compiler and software is

21g2m
m lg(sin®0) 21g2w

lg(sin’ 0) " lg(sin? )

21g2m —3lg

nmax <

(26.4)

According to the IEEE standard for binary floating-point arithmetics in double
precision @ ~ £2.225 x 1073%, For instance, an underflow will occur in IEEE
double precision for co-latitudes outside the interval from 21.7° to 158.3° if the
maximum degree is 720 (Wittwer et al. 2008). One can draw the general conclusion
that errors may occur for co-latitude angles close to 0° and 180°. For instance, with
the expansion up to degree 360, an underflow will occur for all co-latitudes below
8° and above its complementary co-latitude angle of 172°. For an expansion up to
degree 240 the underflow co-latitude angle is 3° and for degree 180, the underflow
will occur for all latitudes below 1.13° and above its complementary co-latitude
angle of 1.13°. Considering that almost all geodetic LEO satellites are in polar
orbits, i.e., with orbit inclinations close to 90°, such effects will take place in the
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dynamic orbit modeling, especially for missions where gravity field determination
requires high resolution. There are a number of proposed ways to extend the
interval of admissible co-latitudes, such as Wenzel (1998), where all the upward
computations are scaled by a factor of 102%,

In Libbrecht (1985), Holmes and Featherstone (2002) a method was presented
based on a recurrence relation for P, /sin(mf)) that eliminates the problematic
sin(m@) term from the recursive algorithms and reintroduces it by employing
Horner’s scheme. However, in order to avoid an overflow during the recursions, a
scale factor of 1020 is introduced. In Jekeli et al. (2007) it is observed that
Legendre functions for specific orders show a very strong attenuation w.r.t. the
degree/order domain as a function of the degree and the co-latitude.

A closer look at asymptotic expressions for Legendre polynomials, e.g., given in
Press et al. (2007), reveals two particular cases that do not pose any numerical
problems, i.e., for sectorials m = n we obtain

_ 1 /m\1/4 | " g—1. pnan ﬂ)1/4
P””NE(E) (sinf)" = {0:6: P :6(“ (26.5)

and for Legendre polynomials (zonals m = 0)

2\"? A 0=1: P,~(2)"?

For an ultra-high degree and order, e.g., n = 10°, we obtain

0= g C =100 — Pnn(cosg) ~47.5 (26.7)
0= g Con=10° — Pn(cosg) ~ 1.6 (26.8)

showing that there are no numerical problems for the calculation of zonal and
sectorial spherical harmonics at the equator and pole. This means, if a rotation of
the spherical harmonics can be decomposed into several rotations and where that
about the equatorial axis is limited to a rotation only from equator to pole, we can
calculate spherical harmonics to any desired ultra-high degree and order. Or in other
words, the algorithm to calculate associated Legendre functions could be based on
pre-calculating associated Legendre functions at the equator (with recursions that
are stable) and solely use an equivalent rotation along the equator to obtain asso-
ciated Legendre functions at any location on the sphere.
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26.3 Geometrical Rotation of Spherical Harmonics
in Hyperspace

Spherical basis functions, e.g., spherical harmonics or wavelets, play a central role
in modeling spatial and temporal processes in the system Earth. So far, to our
knowledge, no usable algorithm has been published neither for rotation of spherical
harmonics nor wavelet representations. The transformation of spherical harmonics
under an arbitrary rotation of the coordinate system has been studied in the past and
the earliest reference dates back to Schmidt (1899). Most of the work in this field
over the last 50 years has been based on Wigner (1959), Edmonds (1960) and
related to group theory in quantum mechanics. In geodesy, the rotation of spherical
harmonics has been related to inclination functions and the analysis of the pertur-
bations of satellite orbits. Inclination functions were introduced in Kaula (1961,
1966). If we write

V= f: Z Vi (26.9)

n=0 m=0
uz n . Cnr” n—m even Snm n—m even )
Vom = GM i Z Foump (i) S cos[(n — 2p)u+mA] + sin[(n — 2p)u+ mA]
p=0 nm 1 p—m odd nm 1 p—m odd
Uu=w+v
A=Q-0

(26.10)

expressing the gravitational potential V as a function of orbit inclination i, argument
of latitude u (sum of eccentric anomaly w and true anomaly v), right ascension of
the ascending node Q and Greenwich Sidereal Time 6. The equatorial radius is
denoted by a, and GM is the geocentric gravitational constant. The corresponding
inclination function F,,, (i) is

N (2n —21)!
Famn () = 2 00 0in — = 20"

S (o (T

s=0
(26.11)

where k is the integer part of (I — m)/2 and ¢ is summed from O to the lesser of p or
k, and c¢ is summed over all values making the binomial coefficients non-zero, see
(Kaula 1966). This expansion is based on the particular form of the associated
Legendre functions that can be found in Hobson (1931)
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k
P (sin @) = cos™ @ Z Ty sin" " (26.12)
t=0

and

(—1)(21 — 21)!

Ty =
(1= (1 — m — 21)!

(26.13)

Note that gravity models are provided with normalized coefficients and, there-
fore, the inclination function in (26.11) needs to be normalized in order to be
consistent. At the moment two of the most stable and accurate algorithms to cal-
culate inclination functions can be found in Emeljanov and Kanter (1989), Gooding
and Wagner (2008). Based on a re-parameterization of the potential using orbital
elements (26.10) and in combination with the Lagrange Planetary Equations, Kaula
(1966) developed his famous first-order linear perturbation theory of satellite orbits.
The main application of this theory is in very efficient error-assessment tools
developed for satellite-to-satellite tracking (Rosborough and Tapley 1987; Casotto
1993) and for satellite gradiometry (Sneeuw 2000). Sneeuw (2000) applied Kaula’s
first-order theory to a Hill orbit and showed how gravity field coefficients can easily
be interpreted as the 2D Fourier spectrum of a function on a torus, reducing the
gravity field inversion to a very simple block-diagonal normal equation matrix.
Goldstein (1984) was the first to introduce complex inclination functions and
Masters and Richards-Dinger (1998) proved to be about twice as efficient as
Goldstein (1984) and provide results which agree to one part in 10" up to harmonic
degree 256 (Masters and Richards-Dinger 1998).

Furthermore, the rotation of spherical harmonics has been used by Balmino and
Borderies (1978) to expand the gravitational potential in terms of harmonic coef-
ficients relative to the axis of rotation of a rotating solid body. Kleusberg (1980)
derived an approximation of spherical harmonic rotation valid for small rotations
that were used recently by (Kotsakis). Complete transformations of spherical har-
monics, including translations and rotations were developed in Giacaglia and Bursa
(1980) using Clebsch-Gordan coefficients. However, following Goldstein (1984),
due to the complexity of the general transformation formula and numerical insta-
bility in the propagation of the transformation coefficients, this has been used only
for low degree (<10) expansions. Although Goldstein (1984) presented the rotation
of spherical harmonics with expansions up to degree 180, the mathematical appa-
ratus is very complex, and numerically and computationally extensive. Generally
speaking, all algorithms for spherical harmonic rotations are based on the recursions
starting with Wigner matrices of degree one, or the actual rotation matrix of the
coordinate frame rotation. The problem is that these recursions are instable in
themselves, as frequently reported in the associated literature.

The gravitational potential in terms of real spherical harmonics reads as
Heiskanen and Moritz (1967)
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V(r,0,2) = G—M 1+ i (g)n z’l: (Cpym o8 mA+ S, sin m2) Py (cos 0)
n=2 m=—n

(26.14)

where C,,, and S,,, represent unnormalized spherical harmonic coefficients (SH).
Typically, SH are normalized, employing the normalization function (27.28) in
order to obtain the normalized associated Legendre functions

Pun = Num - Pum (26.15)
and the normalized spherical harmonic coefficients C,,, and S using
Com = Num * Coms Sum = Ny Spm- (26.16)
By introducing

>
Cnm = { Cnm’ "= 0 (2617)

Sn|m‘, m<0
we obtain

V0.2 ="

m=—n

Z( ) Z ComYoum (0 )L] (26.18)

or the general case, assuming an arbitrary position of the center of gravitation with
respect to the figure axis of the Earth

V(r,0,7) = GMZ( o S con¥on(0,2) (26.19)

m=—n

or shortened using the general form with the harmonic V,,,,(r, 6, A) similar to (26.9)

V(r,0,2) ZZVnmreﬂ (26.20)

n=0 m=—n

We can identify two scaling factors in (26.19), namely a geometrical scale a and
dynamical scale GM that refer to the size of the central term Vj of the underlying
gravitational field represented by a sphere with the radius a and the geocentric
gravitational constant GM

M
Voo(a, 0,7) = GT (26.21)
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The real spherical harmonic functions can be further written as

cosmA, m>0
Fon(0.2) = P cosO){ St 720 1. (2622)
In the complex notation spherical harmonic functions Y, (60, 1) read as
Yum(0,2) = ei’”)'Pn,,I(cos(H)) (26.23)

By the rotation of spherical harmonics we find a new set of spherical harmonic
coefficients {x,,} representing the rotated gravitational potential

1+2&Y§m%ﬁ% (26.24)

vwm:%

m=—n

where ¥t denotes the rotation matrix applied to the initial position 7y and r,, a set of
coefficients as a function of the rotated position

Knm = Knm(R(7p)). (26.25)

The gravitational potential for a specific degree n can be exactly represented by
the rotated set of coefficients v, obtained from the rotation of the initial spherical
harmonic coefficients ®,. This rotation can be carried out as a simple linear
transformation for a specific degree n

Vo = R,0, (26.26)

considering all SH coefficients of the same degree 7. In the general case, including
SH coefficients of all degrees, rotation matrix Ry, , is a block-sparse rotation matrix
with a dimension n X n

V= R(n.n)G) (2627)

with blocks R, on the main diagonal, see Fig. 26.1. The ® denotes a vector of
spherical harmonic coefficients over all degrees. Rotation matrices in space with an
arbitrary dimension or so-called Wigner D functions are the matrix representation
of the rotation operators on the basis of spherical harmonics. The rotation matrix of
the first degree, i.e., R is a rotation matrix in the Euclidian space and in spherical
harmonic space at the same time

7:R1?(Z‘0), Vi :R1®1 With@l = {SU,Clo,CH} (2628)

A graphical representation of the structure of the rotation matrix of the spherical
harmonic coefficients for every degree n can be seen in Fig. 26.1.
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Fig. 26.1 Structure of the spherical harmonic rotation matrix for a rotation about polar or
equatorial axis. The symbol x denotes the populated elements of the rotation sub-matrices

Apart from the rotation of surface spherical harmonics in (26.24), the general
case in the transformation of spherical harmonics includes an arbitrary scale s
defined as

s=L (26.29)

Thus we have
GM X a \" <&
Ll 7 =—1 - rum ¥ nm 7 26.
Vis-R(#) = =1+ ; <HO> > (ro)] (26.30)

m=-—n

where the original set of coefficients is re-scaled per-degree

1+ (™)' ) fcannm(?o)] (2631)

n=2 m=—n

V(s 0() = X

with
fcnm = (£> Knm (2632)
1o

Generally speaking, such a scale can be defined per degree of the spherical
harmonic expansion and is reflected in the degree variance that is invariant under
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Fig. 26.2 Variation of the degree variance (amplitude) vs. degree of spherical harmonics
expansion from GRACE monthly gravity fields (RL4). One can see that degree variance is very

uniform in amplitude < 5%o for n <60 and < 0.5%o for n <30

Fig. 26.3 Schematic
description of modeling
temporal gravity field
variations with rotation of
spherical harmonics. Instead
of having no physical
connection between gravity
Field A and gravity Field B
(e.g., two successive monthly
gravity fields) one could
model temporal gravity field
variations with continuous
rotations of spherical
harmonics about the polar
axis. This is possible since
pole coordinates estimates
from Czl and 321 of the
GRACE monthly gravity
fields follow the conventional
IERS pole

Field A

—_

(33)

X-

Field B

=

SH Rotation

(4.4)

-,

rotation. In the case of GRACE gravity field maps, Fig. 26.2 shows that the vari-
ation of the degree variance is very uniform in amplitude, i.e., the amplitude
is <5%o for n <60 and <0.5%o for n<30. From this one can draw the conclusion
that temporal gravity field maps can be parameterized by rotations of spherical
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harmonics, as depicted in Fig. 26.3. One could model temporal gravity field vari-
ations between the gravity Field A and the gravity Field B (e.g., two successive
monthly gravity fields) with continuous rotations of spherical harmonics about the
polar axis. This is possible since the pole coordinates estimates from the coefficients
C» and S»; of the GRACE monthly gravity fields follow the conventional IERS
pole. In this way the rotation of spherical harmonic coefficients provides a con-
tinuous parameterization of the temporal variations. Generally speaking, one could
use a different rotation axis for each degree of SH expansion, however, the use of a
polar axis is more efficient in this case. This topic and rotation about the polar axis
is discussed later in this section. Coefficients of the GRACE gravity monthly fields
follow the conventional IERS pole. Rotation provides continuous parameterization
of spherical harmonic coefficients.

26.3.1 Geometrical Rotation of Spherical Harmonics About
the Polar Axis

A SH rotation about the polar axis is very simple and can be derived using simple
trigonometric addition theorem. Let us introduce surface spherical harmonics of
degree n

Pa(0) Au(2) == > conYum(0, ) (26.33)

with p,(0) denoting the vector of Legendre functions for a specific degree n and
vector A, (1) given as

[ Synsinni |
Sn,l sin A

A, () = Cho (26.34)
Cp1cos A

| Cnncosni |

thus obtaining the gravitational potential in the form

o0

320

n=2

v(r,0,2) =1

n

P.(0) Au(2) (26.35)

If we now apply trigonometric addition theorem to (26.34) we derive
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A(A+a) =
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[ S, sinni cosna |

Sp.18in A cos o
CnO
C,1cos/ cosa

C,,, COs 1/ cos no.

[ S,.cosnd sinna |

S, 1 €os A sin o
0
—Cp,1sin/ sina

| —Cy.nsinni sinno |

(26.36)

Because of the symmetry in spherical harmonics, the associated Legendre
function appears twice for the same order and hence the sine and cosine terms in

(26.36) can be written in the following way

Ay(A+a) =

[ S, sinni cosno |
S,.18in A cos o

C,,1cos A coso

C,n cOS A cosna

[ —C,.sinnA sinna |

Co cos Oa +

Snn cOSNA sSinno

—Cp,8in A sina
C,0 sin Oc
Sy.1 €08/ sino

(26.37)

Separating out the starting vector A,(2) in the form of a diagonal matrix

Ay(A+a) =

[ sinni

sin A

cos A

cos n |

Ay (o).

(26.38)

Since sinni and cosnd appear in both terms, (26.37) can be reduced to the

argument o only

[ Sy, cosno ]

Sp,1 co8 o
Cpo cos Oa
C,.1cosa

C,., cOSno

[ —Cpnsinno|

—C,,1sina
C0 sin O
S,1 sin o

Syn Sin not

As an example for the degree n = 3 we obtain

(26.39)
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[ S35 cos3a ] [ —C33sin3a]
832 cos 2o —C3 5 sin 20
R S3.1 cosa —C3sina
As(o) = | C3pcos0a | + | CsosinOo (26.40)
Cs,cosa S3,1 sino
Czpcos2a S35 sin 20
| C33 08 3 | | S33sin3a |

We see that the rotation of spherical harmonic coefficients /ﬁ\,l about the polar
axis is very simple and, based on (26.37), rotated coefficients , (o) can be defined
using the orthonormal rotation matrix K, (o)

[ cosno sinno 17 [ Sun
coS o sin o Sl
Kn(0t) == 1 Co| (2641)
—sina cos o Cu
| — sinno cosno| | C;m ]
or shortened
Kn(0) 1= Ky (2) Ay (26.42)

After performing QR decomposition of the matrix K,, = K, (), we obtain a new
orthogonal matrix K, and the right triangular matrix I,

K, = K,I, (26.43)
[ — cos no sinna | [—1 1
—cosa sin o -1
K, (o) := 1 1
sin o cos o 1
L sinno cosno | [ 1]
(26.44)

It can be shown that both matrices are Hermitian matrices. A Hermitian matrix is

a square matrix with complex entries which is equal to its own conjugate transpose,
i.e., the i-th row and j-th column is equal to the complex conjugate. However, in our
case both matrices are real without complex or conjugate complex parts and it can
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be shown that they are at the same time unitary matrices. A matrix is unitary if and
only if it has an inverse which is equal to its conjugate transpose, or as in our case,
with all elements real numbers

K, K,=1 1, T,=1 (26.45)

the inverse of the matrix is equal to the original matrix. From isometry, it follows
that all eigenvalues of a unitary matrix are complex numbers of absolute value 1,
i.e., they lie on the unit circle centered at 0 in the complex plane. Or in other words,
QR decomposition transforms our rotation matrix into an unitary matrix, a normal
matrix with eigenvalues lying on the unit circle.

We see that QR decomposition of the rotation matrix K, decomposes the matrix

into two reflection matrices K,, I,. Rotation matrices have det(K,) =1 and to

obtain det(K,) = det(I,) = 1, we simply change the sign of the central element of
both matrices

[ — cos no sinno | [ —1
—cosa sina -1
Ky () := -1 -1
sin o Ccos o 1
| sinna cosno | | 1]
(26.46)
which reduces to
[ — cos no sinno T [ —Sun T
—Ccos o sin o —Su
Kn(ot) := -1 —Cno
sin o cos o Cu
sin no. cosna] | Cp,,
(26.47)

Comparing (26.47) with (26.41) we see that with QR decomposition it is pos-
sible to transform a rotation matrix into a reflection matrix.
Let us now perform a rotation only within the same order m
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T cos mo. sinmot ] [ Sum T
cosmo  Sinmo. S
(%) 1= . | (26.48)
—sinma  cosmao Com
| — sinmo cosma | | C,,

This leads us to the final expression for a spherical harmonic rotation about the
polar axis for the particular order m

S (%) Ay— Chrpem

Smm (05) o Smm mm .

(@) | = | com cos mo, + s | sinma (26.49)
Crpm (%) (G — S

with ny,x denoting the maximum degree in the spherical harmonics expansion.
Equation (26.49) can be written in a very short form

Ay(a) == Ay cosmo+ A, sinmo (26.50)

where A, corresponds to a form of conjugate transpose of the original vector A,,.
Both vectors, A, and A}, have a very nice orthonormal property: they are
orthogonal and of the same length

An LA, Al = [|Al (26.51)
Special cases of (26.50) include for o = 0

An(a=0) = A, (26.52)

and for o =7

m (OC = %) = (_1)(m_l)/2/\;; Vm = odd

/2 (26.53)
(=)™ A, Vm = even

3
—~
K
I

e
~—
I

which corresponds to a rotation about the polar axis by 7/2.
A schematic ordering of (26.49) for a fixed order m is shown in Fig. 26.4, i.e.,
the specific order m is kept fixed and the degree index » runs over all degrees, up to

Nmax-
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Fig. 26.4 Ordering of spherical harmonic coefficients for a geometrical rotation about the polar
axis

26.3.2 Conventional Sequence for the Rotation of Spherical
Harmonics About an Arbitrary Axis

Here we describe the conventional sequence in the rotation of spherical harmonics
one can often find in literature, and in particular the case represented by an orbital
plane, see e.g., (Sneeuw 2000). We first decompose the rotation matrix R; into the
zxz orthogonal rotation sequence, i.e., represented by two rotations about the polar z
axis (angles A and u) and one rotation about an arbitrary equatorial x axis (angle 7).
Furthermore, the rotation about the x axis is decomposed into the yzy rotation
sequence, where the rotation about the y axis is represented by a pre- and
post-rotation by /2, whereas a rotation about the z axis by an angle i. The com-
plete zyzyz orthogonal rotation sequence for the x axis is then

Fig. 26.5 Graphical representation of the second zonal harmonic and it’s rotated version tilted by
30° from the equatorial plane after rotation about an arbitrary equatorial axis
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R = R.(u)R, (- %n) R.(—i)R, G n) R.(A) (26.54)

In the case of an orbit represented by the Keplerian parameters, the x axis
(Greenwich meridian) is, after the first rotation matrix with angle A, aligned with
the line of nodes and pointing towards the ascending node of the orbit. The rotation
about the x axis is decomposed into the yzy sequence and tilts the orbital plane by
the inclination 7 from the equatorial plane. The last, fifth rotation about the rotated z
axis, describes the rotation of the x axis in the orbital plane by the argument of
latitude u. The yzy rotation sequence is decomposed into pre- and post-rotation of
the x axis by 7/2, meaning that rotation by the inclination angle is, in the end,
carried out around the z axis and not around the x or y axis. The rotation of spherical
harmonics about the x axis is in this way carried out about the z axis. The zyzyz
orthogonal rotation sequence allows us to limit the rotation about the y axis to
merely a rotation between the equator and the Poles.

One can easily see a very nice advantage of spherical harmonic rotation by
means of this approach: the transformation between equator and Pole or the tilt of
the orbital plane from the equator by an inclination angle needs to be calculated
only once and the values are valid for all points along an orbit. The final rotation
matrix R,, for the spherical harmonic coefficients of degree n is then

1 ) 1
R, = Rn(z) (M)R,l(y) (— 5 7'C> Rn(z) (—Z)R,l(y) (2 7'5) Rn(z) (A) (2655)

The main drawback of this approach is in the calculation of the Wigner matrices
that is still challenging from the numerical point of view. Figure 26.5 shows a
graphical representation of the spherical harmonic rotation of the second zonal
harmonic tilted by 30° from the equatorial plane in the Euclidian space.

26.4 A Fast Geometrical Approach to Calculate
and Rotate Legendre Polynomials and Their
Derivatives to Ultra-High Degree Without
Recurrence Relations

Following the Lecture Notes on Physical Geodesy (Rummel 2006), the spherical
harmonics addition theorem or addition theorem for associated Legendre functions
can be written as

n — |
P,(cosy) = P,(cosbt) - P,(cost,) +22m- Pl (cost,) - P(cos0,)
m=1 .

- cos[m(A; — 2p)]
(26.56)
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where the spherical distance y between the two points on the sphere can be cal-
culated from spherical coordinates 6 and 4 making use of the spherical law of
cosine

cos y = cos 6 cos 6, + sin 6ysin 6, cos(Ay — Ap) (26.57)

The question arises as to whether there is any geometrical representation of the
addition theorem (26.56). Let us first introduce the associated Legendre functions of
negative order by means of

(n—m)!

P;m(COS 0) = (—l)mm

- P (cos 0) (26.58)

Since
Py (cos) = (—1)" P (cos0) (26.59)

the addition theorem for the associated Legendre functions can be written as

Equatorial Associated Legendre Functions for n=10°
10 T T I T T T T T

2 i Il L L 1 L L L L
0 1 2 3 4 5 6 7 8 9 10
Order m x 10°

Fig. 26.6 Equatorial fully normalized associated Legendre functions for n = 10°. One can see
that the magnitude is very moderate at the equator, thus a rotation can be performed along the
equator and used for the calculation of associated Legendre functions at an arbitrary location
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P,(cosy) = P,(cosb,) - P,(cost,) 42 ZP”(—’”) (cosby) « Pyu(costy)
m=1

-cos[m(A — 42)] (26.60)

If we now use the following vector form of the associated Legendre functions

P, _n(cosb) P (cos0r)
D, (cosby) = P,o(cos0,) D, (cosB2) = < Pyo(cosy) (26.61)
P, _m(cosb) P, (cos0y)

we may write the addition theorem of the associated Legendre functions as a scalar
product in Hilbert space as

Pa(cosy) = p,,, " (c0s01) -, (costl) (26.62)

where y=0; —0,. For an -equatorial arc of the same length
y=0, — 0, =0= 4 — Ay = A, we obtain

cos mAL
P,(cos) = P,(cosAZ) =p, T(0) 1 P (0)

cos mAA
(26.63)

And by denoting the middle cos-matrix by C(A4) we may write in shortened
form

P,(cosl) = P,(cosAL) =p, T(0)-C(AZ) -p,, (0) (26.64)

Since p,,,(0) can easily be pre-calculated for all arguments, see, e.g., Fig. 26.6,
we may use (26.63) for a very elegant calculation of the Legendre polynomials and
their derivatives. The first derivative is merely a function of 1 measured along the
equator
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dP,(cos0)

10 = —P,1(cosAl)
—m sinmAL
=P (0) 0 Pun(0)
—m sinmAL
(26.65)
as long as 8 = AA. The properties of the first-order associated Legendre functions
P,1 = —dP,/d0 will be derived in the next section. The second derivative is
accordingly

d*P,(cos0) _ dPy(cosAZ)

de? do
—m?*cos mAL
o,
- pnm (O) 0 pnm (0)
—m?%cos mAL
(26.66)
or in shortened form
d?pP,(cosb dP,; (cosAA B
rleonl) _ _AnleA) ) (A 0) (667

where (26.64) is multiplied by —m? on the main diagonal.

In the theory of least squares adjustment, the matrix multiplication in (26.65) is
known as the bilinear form, with two vectors y and x in a multiplication with a
matrix A giving the scalar denoted here as u such that

yAx=u (26.68)
However, since in our case we may directly multiply the diagonal elements of
matrix A by g;";);!, instead

of multiplying them by p,,. in (26.58), the bilinear form (26.68) reduces to the
so-called quadratic form

P,(cos0) = P,(cosA%) =p,,. '(0)-A, -p,,(0) (26.69)

or
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' Ax=u (26.70)
where

—((:;':2)!! cos mAA

Ay = Ay (AL) = o (26.71)

(n—m)!

(nrm)1 €08 mAJ

Therefore, with the spherical harmonics addition theorem we may very elegantly
calculate the Legendre polynomials and their first and higher derivatives.

Let us now look at the full geometrical potential of this approach. Since any
rotation along the meridional arc will give the same value of the Legendre poly-
nomial for the equivalent rotation along the equator %,(0)

Pu(cos0) =p- (0)" - R,(0) -p,, (0) (26.72)
or
Py—m(0) T'r cosmb sinmf | | Ppm(0)
P,(cosl) = Pn.o.(.O) 1 Pn'ol(.o)
P L=simo  cosmt] [ Pm0)
(26.73)

and we may rotate the first equatorial Legendre polynomial in (26.62) p,. 7(0) by
7/2 in the equatorial plane by the rotation matrix $,(7/2) and the second equa-
torial Legendre polynomial p,,, (0) by the geographical latitude ¢ = /2 — 6 using
rotation matrix ¥,(¢). Both rotations in the equatorial plane will give the net
rotation about the polar axis equal to the original zenith distance
0 =mn/2 — (n/2 — 0) = 0. However, since the new rotation matrix R, (7/2 + ¢) is
a function of geographical latitude instead of zenith distance 0, this is equivalent to
a rotation of the Legendre polynomial about an equatorial axis by 7/2.

Po(c0s0) = [R(7/2)p5,(0)] " - Ra(0)p,,(0) (26.74)
Py w(0)]7[ cosm? sinm2] 7T cosme sinme | [ Pun(0)
P,(cosf) = | Pyo(0) 1 1 P.(0)
Pua®)] |- sinms cosmz | | ~sinme cosmo | | Pun(®)

(26.75)
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that can be written as

Pa(c0s0) = Py, ()7 - R (/2) R (9) -, (0) (26.76)

The matrix R, has the very nice property that it is a unitary matrix, i.e., its
inverse is equal to its transpose

R, R =1 (26.77)
thus
Rn(a) - R,(—a) =1 (26.78)
Since R, (n/2)" = R,(—n/2) we finally obtain
Pa(c050) =y (O)T - R~/ 2)R(0) -2, (0) (26.79)

That is equivalent to a rotation by 0 = —n/24+ ¢ = —n/2+ (n/2 — 0) =0

Py—n(0) T cosm(p — o) sinm(¢p —3) ] [ Pum(0)
P,(cosh) = | Pu(0) 1 P.(0)
P, _(0) —sinm(p — %) cosm(p —3%) | | Pu(0)
(26.80)
Foo

! !
Bs| Ba P Py,
31 31
Py Py Py Py P Py Pp Py Py

Pops P Bz Do Pso Py Psg Boa By

Fig. 26.7 Schematic calculation of Legendre polynomial as a “scalar product” of rotated
equatorial associated Legendre functions along the order m (“vertical rotation”) with the one along
the same degree n (“horizontal”)
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If we now compare (26.80) with the rotation of the spherical harmonic coeffi-
cients about the polar axis (26.48) we can represent the geometrical rotation
R (—7/2)Rn(9)P,,,(0) in (26.80) as an orthogonal span or linear combination of
two orthogonal vectors describing orthogonal geometrical rotation along the order m

Py — 1/2) Prpm(0) Pypm(0)
Pmm(qo - 7'[/2) Pmm(o) Pmm(o) :

= cosmbl — sinmf (26.81
Pmm(q) - 7[/2) Pmm(o) _Pmm(o) ( )
Py (0 — 1/2) Prpm(0) =Py (0)

Then (26.81) can be written in a very short orthogonal form similar to spherical
harmonic coefficients (26.50)

Anlp — g) = Ay cosm(p — g) + AL sinm(ep — g) (26.82)

or by denoting o = ¢ — /2

Ap(a) == Ay, cosmo+ A, sinmo (26.83)

where A}, corresponds to a form of conjugate transpose of the original vector A,,
with orthonormal property.

After geometrical rotation of the equatorial associated Legendre functions along
the order m (“vertical rotation”), the “scalar product™ along the same degree n
(“horizontal”) gives the Legendre polynomial of the rotation

Py _m(0)7"

Pun(p — /2)
P,(cost) = | Pu(0) Puo(p —1/2) (26.84)
Pn,—m(o) an(qo - 7'[/2)

as depicted in Fig. 26.7.

26.5 A Fast Geometrical Approach to Calculate
First-Order and Sectorial Associated Legendre
Functions

Let us now introduce the following recursion, which can be found in the excellent
collection of recursion relations by Ilk (1983)
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dP nm

2
do

using the associated Legendre function of negative order

_ |
Pnfm*(*l)m( M).Pn.m
(n4+m)!" "
for m = —1, we obtain
—-1)!
Pn 1= — (n ) n,1
’ (n+1)!

and introducing (26.87) into (26.85)

dP,l() o (n— 1)'

2 T —(n(n+1) (n+1)!' +1)Pn‘1

since

(n—-1! 1
(n+1)! nn+1)

and finally the first-order associated Legendre function is

dP,o

P, =
1 do

i.e., the associated Legendre function of the first-order can be

=m+m)(n—m+1)Pym_1 — Pum+1 (26.85)

(26.86)

(26.87)

(26.88)

(26.89)

(26.90)

calculated as the first

derivative of the Legendre polynomial of the same degree. Let us now make use of
the general definition of the associated Legendre functions based on Legendre
polynomials, given by Rodriguez (see Heiskanen and Moritz 1967):

d"P,(cos 0)

an(COS 0) = sin QW

If we now take order m = 1 it follows the same property

Pyi(cos ) = sin GM =sin0 dPy(cos0) _do

d(cos 0) df  d(cosb)

(26.91)

d
=— %Pn(cos 0)

(26.92)
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Finally, associated Legendre functions of order one (m = 1) can be defined in
terms of trigonometric expansion or rotations about the polar axis by longitude
angle AA =0 as

P,i(cosl) = — G%Pn(cos 0) = —P,1(cosAZ) (26.93)

This property (26.93) was presented for the first time in Svehla (2008) and later

in Svehla (2010). A similar property can be used for sectorials m = n, as from
(27.62) we obtain

APy
2 4o = (m+m)(m —m+ I)Pm,mfl - Pl11,m+l (2694)

and considering P, ,, +1 = 0, we obtain

b LdP,,
mm= T d0

(26.95)

It is well known that sectorial associated Legendre functions P,,, can be cal-
culated directly, e.g., (Hobson 1931) reads as

2m)} o g (26.96)

Py = m

or the Rodriguez formula one can also find in Ilk (1983)

Py = (2m — 1)!sin™ 0 (26.97)
from which we derive
2m)!
Py = 2nfmr)n!cos() sin” 10 (26.98)
Py = (2m — 1)!lcosOsin™ ! 0 (26.99)

where !l is the double factoriel. For n = m = 10 the amplitude (2m)!/(2" - m!)
already reaches a very high value of 3.1983e + 23, thus such an approach is not an
elegant method to calculate associated Legendre functions. In the next section we
will see that there is a very nice symmetry between Legendre polynomials and
sectorial Legendre functions.

Let us now try to express sectorial associated Legendre functions as a function of
Legendre polynomials. Following Abramowitz and Stegun (1965) we may write
inverse relations such as
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cos 0 = Py(cos 0) cos*0 = 3z [TPy(cos 0) 4 20P;(cos 0) + 8P4 (cos 0)]
cos? 0 = 1 [Py(cos 0) +2P;(cos 0)]  cos’ 0 = & [27P; (cos 0) + 28P3(cos 0) + 8Ps(cos 0)]
[33Py(cos 0) 4+ 110P;(cos 0) +

cos® 0 = 1 [3P(cos 0) +2P3(cos 0)] cos®0 = 7
+ 72P4(cos 0) + 16P¢(cos 0)]

31

(26.100)
Or, in general form
cos" 0 = Z 2+ Dn! Py(cos0) (26.101)
B l:n,11—2,...2(n71)/2(% (n - l))'(n+l+ l)” l ‘ .

from which we can derive sectorial associated Legendre functions as a function of
Legendre polynomials by making use of cos = sing,

21+ 1)n!

Pnn = (Zl’l - 1)” Pl(COSqD) (26102)
2 T D)a T+ D
1dP,, (2n—1)! 21+ 1)n! dP;(coso)
Pont =+ - Z “D/2(1
n d@ n I=n,n—2 2(n )/ (i (n - l))'(l’l+l+ 1)” d(p

(26.103)

which are directly related to the Legendre polynomials by rotation of equatorial
Legendre polynomials about the polar axis. In the next section we will present an
algorithm for the associated Legendre functions.

26.6 A Fast Geometrical Approach to Calculate
Associated Legendre Functions to Ultra-High
Degree and Order

Once Legendre polynomials are available, together with associated Legendre
functions of the first order, one can use recursive relations to calculate the
remaining associated Legendre functions. Recursions could also be used starting
with the sectorial associated Legendre functions and the associated Legendre
functions of the order m = n — 1 we derived in the previous section.

To calculate associated Legendre functions one could make direct use of the
formula given by Ferrers, see, e.g., (Heiskanen and Moritz 1967)
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Fig. 26.8 Algorithm sketch:
Step 1: calculate Legendre
polynomials, e.g., P3y using
geometrical rotation along the
equator. Step 2: derive
associated Legendre
functions, e.g., P3;. The “x”
is the steps or calculation

3o
>

XX 5] XXX
X |

oV [T
o
o
oo
oo

d"P,(cos 0)

P,(cos 0) = sin™ 0 (cos 0"

(26.104)

In our case, Legendre polynomials can be represented by rotations, therefore,
one would need to calculate high order derivatives of the geometrical rotations

d"P,(cos0) Gin” Od’”Pn(cosA/i)
d(cos0)" d(cos 6)"

=P T(O) . |:Sinm Qm} ‘an(o) (26105)

P(cos 0) = sin™ 0

It should be noted that calculation of higher order derivatives of geometrical
rotations is more elegant than the calculation of higher order derivatives of
Legendre polynomials. In our case we need to calculate the following terms on the
main diagonal

d"(cosmA2L)

(26.106)

considering that AA = 0. To calculate higher derivatives of (26.106) we make use
of the following recurrence relation

cosnl = 2cosfcos(n —1)0 — cos(n —2)0 (26.107)

If we now take the first and second derivatives we obtain
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d(cosnl)) d(cos(n —1)8) d(cos(n—2)6)

d(cos0) 2cos(n—1)0+2cos 0 d(cos®)  d(cosb)
d*(cosnf)  d(cos(n — 1)0) cos d*(cos(n —1)0) 3 d*(cos(n —2)0)
d(cos 0)* =4 d(cos 0) 2 cosf d(cos 0)? d(cos 0)?
d3(cosnl) 6d2(cos(n - 1)0) +2coggd3(cos(n -10) d>(cos(n —2)0)
d(cos 0)° B d(cos 0)? A d(cos 0)° d(cos 0)°

(26.108)

The general form of the k-th derivative of the recurrence relations (26.108) is
thus

dk(cosnﬁk) (20 d*1(cos(n —kl)H) 2 co0s gdk(cos(n - :)9) B d*(cos(n — 5)0)
d(cos 0) d(cos 0) d(cos 0) d(cos 0)
(26.109)

This approach allows the calculation of associated Legendre functions up to an
ultra-high degree and order, see also Fig. 26.8 where the algorithm is sketched in
two steps.

26.7 A Fast Geometrical Approach to Calculate Legendre
Polynomials and Associated Legendre Functions
at the Equator

With the addition theorem we can calculate the ““scalar product” of two associated
Legendre functions over the same degree. The question is whether we can calculate
a similar ““scalar product” over the same order.

Let us now imagine two points on a sphere with co-latitude 0; and 6,. For these
two points, we may write recurrence relations for the associated Legendre functions
(running over the degree)

(2n+1)costy Py (cost) = (n — m~+1)Py 11 m(cost) + (n+ m)Py_1 n(cost;)
(2n+41)c0s02 Py (costr) = (n — m+ 1)Py 11 m(costh) + (n+ m)Py_1 m(cosby)
(26.110)

If we now multiply the upper equation by P,,(cost;) and the lower by
P,m(cos0y), and then subtract these two equations, we obtain
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(cosby — cosby)(2n + 1) Py (costy )Py (coshs) = (n —m+1)-
[an(cosel)PnJrl.m(COSHZ) - Pn+l,m(cosel)an(COSGZ)}
— (n+m)-
[P,,,Lm (c0801)Pum(c0s02) — Py (c0801 )Pyt m (00502)]
(26.111)

When added together up to degree n, for m = 0, we derive

n
(cosly — cosby) Z (2k + 1)Py(cos0; )Py (costy) =(n+1)-
=0

[Pn(cos0)Py+1(costy) — Py 1(costy)P,(cosbs)]
(26. 1 12)

If we now set 6, = 0 and 6; = 0 for Legendre polynomials we obtain the very
elegant expression

n

> (2k+1)Pi(cos0) (26.113)
k=0

1 — cosf

P, 1 1(cost) = P,(cost) — 1
n

to calculate Legendre polynomials. For an equatorial point 8 = /2 we obtain

n

> (2k+1)P(0) (26.114)

Pn+1(0):Pn(O)_n+1

In a similar way for associated Legendre functions we set 6, = n/2 and 0, = 0
and obtain an elegant algorithm to calculate the ‘““scalar product™ between two
associated Legendre functions of the same order

PnJrl,m(COSH)an(O) - an(COSH)PnJrI.m(O)
1 —cos) &
= 2k +1)P,, 0)P (0 26.115
w1 2 2k D Pan(c0s0)Pon(0) (26.115)

If we now take into account the following expression from Hobson (1931)

_ dPnJrl(x) _ dPnfl(x)

(2n+1)P,(x) T T

(26.116)

we obtain

1 —cosO (dPryi1(x)  dPi_1(x)
P, —P,(x) = — E — 26.117
+1(0) () n+1 ( dx dx (26 )

from where it follows
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dP, 1(cos0)  dP,(cos0) n+1

sind(P, +1(cosl) — P,(costl)) (26.118)

do T d0 1 —cos
Since we have already shown that P,; = —dP,(cosf)/d0 we can write
n+1 |
P, i11(cosO) — Py, 1(cosl) = —————sin O(P, 4 1 (cos®) — P,(cos0))
’ 1 — cosf
(26.119)
that for an equatorial point § = 7/2 gives
Pyi11(0) =P,y 1(0) = —(n+1)(Py+1(0) — P,(0)) (26.120)
and reduces to
Py111(0) = (n+1)P,(0) (26.121)
In the general case when m # 0 we obtain
Pyy1m(0) = (n+m)P,,(0) (26.122)
and for the derivative
dPVl m 0
T() = (n4+m)Py_1m(0) (26.123)
In the general case we can derive
dpP, s0 N
dPy 1 1(cos0) = —P,(cosl) +sin0 Z (2k + 1)Py(cosb) (26.124)
do ’ —
dPn+ 1 (x) dPn(.X) 1
— =— 2k+1)P 0 26.125
T = Bk DPeo) (26.125)

Since equatorial associated Legendre functions contain alternating zero values
between consecutive orders we can make use of the following expression that is
initiated with the Legendre polynomial

Pum+1(0) = —(n+m)(n —m—+1)Py,,—1(0) (26.126)
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Chapter 27 )
Trigonometric Representations ki
of Legendre Functions

Although the trigonometric representation of associated Legendre functions has
been considered in literature, here we give a new insight into the trigonometric
reduction of Legendre polynomials. We show that Legnedre polynomials can be
calculated up to an ultra-high degree, e.g., n = 10° and beyond without recursive
relations and this can be used as a basis for the calculation of associated Legendre
functions. The approach presented here was reported for the first time in Svehla
(2008) and in Svehla (2010). In addition, we derive orthogonal geometrical forms
of associated Legendre functions. However, in terms of performance, our geo-
metrical approach based on the addition theorem of Legendre functions and geo-
metrical rotations along the equator (previous section) is significantly more elegant.

27.1 A Slow Algorithm for the Computation of Legendre
Polynomials Without Recursions Based
on Trigonometric Series

Following (Heiskanen and Moritz 1967), the Legendre polynomials developed by
means of recursion functions for the first low degrees are given as

Po(t) =1
Pi(t)=t
Py(t) = %tz - %
P3(t):%,3_%t (27.1)
Ps(t) = %3? - 34—5t3 + %t
© Springer International Publishing AG, part of Springer Nature 2018 421

D. Svehla, Geometrical Theory of Satellite Orbits and Gravity Field,
Springer Theses, https://doi.org/10.1007/978-3-319-76873-1_27


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76873-1_27&amp;domain=pdf

422 27 Trigonometric Representations of Legendre Functions

with ¢ = cos 0. (Heiskanen and Moritz 1967) continue with this development,
expressing the powers of cos 0 in terms of the cosines of multiples of 0 such as

1 1 1 3
2 3
— — 0 27.2
cos” 0 cos 20+ cos” 0 cos3 0+ —cos ( )

and they obtain the following form of the Legendre polynomials in terms of
trigonometric series

Py(cos 0) =1

Py (cos 0) = cos 0

Py(cos 0) = %(SCOS 20+1)

Ps(cos 0) = é(S cos 30+ 3 cos 0) (27.3)
P4(cos 0) = 6i4 (35cos 40 +20cos 20+ 9)

Ps(cos 0) = % (63 cos 50+ 35 cos 360+ 30cos 0)

This particular form of the Legendre polynomials is interest