

Springer Tracts in Advanced Robotics
Volume 77

Editors: Bruno Siciliano · Oussama Khatib

Satoshi Murata and Haruhisa Kurokawa

Self-Organizing Robots

ABC

Professor Bruno Siciliano, Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy, E-mail: siciliano@unina.it

Professor Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305-9010, USA, E-mail: khatib@cs.stanford.edu

Authors

Prof. Satoshi Murata
Tohoku University
Department of Bioengineering and Robotics
Graduate School of Engineering
6-6-1 Aoba-yama, Sendai 980-8579
Japan
E-mail: murata@molbot.mech.tohoku.ac.jp

Dr. Haruhisa Kurokawa
National Institute of Advanced Industrial
Science and Technology (AIST)
Intelligent Systems Institute
Field Robotics Research Group
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568
Japan
E-mail: kurokawa-h@aist.go.jp

Additional material to this book can be downloaded from http://extra.springer.com

ISBN 978-4-431-54054-0 e-ISBN 978-4-431-54055-7

DOI 10.1007/978-4-431-54055-7

Springer Tracts in Advanced Robotics ISSN 1610-7438

Library of Congress Control Number: 2011942597

c© Satoshi Murata and Haruhisa Kurokawa 2012

Original Japanese edition
Jikososhiki Kikai System no Sekkeiron
By Satoshi Murata and Haruhisa Kurokawa
Copyright c© 2009 by Satoshi Murata and Haruhisa Kurokawa Published by Ohmsha, Ltd.
3-1 Kanda Nishikicho, Chiyodaku, Tokyo 101-8460, Japan

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typeset by Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

5 4 3 2 1 0

springer.com

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, Queensland Univ. Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, Univ. Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, Univ. Utah, USA
Makoto Kaneko, Osaka Univ., Japan
Lydia Kavraki, Rice Univ., USA
Vijay Kumar, Univ. Pennsylvania, USA
Sukhan Lee, Sungkyunkwan Univ., Korea
Frank Park, Seoul National Univ., Korea
Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, Univ. Southern California, USA
Sebastian Thrun, Stanford Univ., USA
Yangsheng Xu, Chinese Univ. Hong Kong, PRC
Shin’ichi Yuta, Tsukuba Univ., Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted un-
der the auspices of EURON (European Robotics Research Network)

ROBOTICS
Research

Network

European

E
U
R
O
N

* *

*
*
*

*
*
*

*

Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the inter-
section of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

The monograph by Satoshi Murata and Haruhisa Kurokawa is an English trans-
lation from a recently appeared book in Japanese on self-organizing mechanical
systems. This is a relatively new area of research focusing on the realization of
machines and robots, made to have a certain structure and functions, which are in-
deed capable to adapt to unexpected situations, such as a misuse or a break-down,
and ultimately reorganize themselves. As such, the book has a wide interest for
scholars in the area of autonomous distributed systems, modular design and bio-
logically-inspired robotics.

Rich in examples and case studies, deep in the discussion of various issues in
the implementation and instrumentation of self-organizing mechanical systems,
this volume ambitiously aims at inspiring the designers of the next generation of
robots. A very fine addition to the STAR series!

Naples, Italy Bruno Siciliano
August 2011 STAR Editor

Preface*

The notion of self-organization has recently been used in a variety of areas. It refers
to the phenomenon in which an entity produces its own organization or structure by
itself, just as biological organisms do. For example, seeds sown in the ground will
sprout and leaves will grow. Then flowers will bloom, fruit will form, and finally
seeds are reproduced. By simply putting the seed into the ground, it spontaneously
becomes these things without any outside guidance. What an intriguing and fascinat-
ing process! What, then, about machines? There has never been a machine that de-
veloped by itself from a seed. Machines are built from many parts in factories using
external forces. Instructions are given from the outside for each step of assembly. In
short, machines are made to have a certain structure.

These days, the machines we need in our everyday life have become more and
more complicated. It now has become difficult to grasp every detail of these
machines, and every detail of the mechanisms at work. Moreover, when those ma-
chines break down or are used in unexpected manners, the behavior of the ma-
chines can become unpredictable or in fact completely useless. In situations like
this, one might hope that the machine would somehow adapt to the situation by
reorganizing itself. This is where the notion of self-organizing mechanical systems
comes in. It means changing from machines that are made to have a certain struc-
ture and functions, to those that become reorganized in a desired way.

Engineers have been learning from biology for a very long time. The drawing
of flying machines by Leonardo da Vinci shows that research fields such as bio-
mechanics and biomimetics have their origins back at least to that time. However,
in order to create a machine that becomes properly organized, it is not sufficient to
copy the appearance or the superficial mechanisms of biological organisms. It is
necessary to understand the architecture and mechanisms behind the organisms
that enable them to function. The theme of this book is to examine the feasibility
of creating such artificial systems, namely self-organizing robots, the title of this
book, within the limitations of current mechanical engineering. We have to con-
sider how to construct such robots, and have to find possible applications for
them. Robotics in general has many different aspects such as dynamics, fabrica-
tion, control, electronic implementation, and software. In this book, in addition to

* This book is an English translation of “Jiko-soshiki kikai sisutemu no sekkeiron (Design-

ing self-organizing mechanical systems)” published in 2009 by Ohm-sha, Japan. Transla-
tion and publication were supported by Grant-in-Aid for Publication of Scientific
Research Result (No. 226006) from the Ministry of Education, Culture, Sports, Science
and Technology (MEXT) of Japan.

X Preface

these items, a robot is viewed as an autonomous distributed system. Taking this
viewpoint, what needs to be considered to create robots that possess the capability
of self-organization is discussed in detail.

Here is an outline of the chapters: Chapter 1 describes the philosophy of design
of self-organizing mechanical systems. The discussion here may seem a little ab-
stract but it contains a simple introduction to the notion of autonomous distributed
systems, which forms the basis of the concept of self-organization and self-
organizing mechanical systems. Chapter 2 considers some examples of self-
organization at various levels of hierarchy in biological systems, which is our
source of inspiration when we design self-organizing machines and robots. Chapter
3 presents a history of the research related to self-organizing mechanical systems.
Instead of providing a complete history, we present several selected topics suitable
for grasping the flow of research in this area. Chapter 4 explains some mathematics
and methodology necessary for understanding theoretical background to use self-
organization phenomena. Chapter 5 demonstrates the feasibility of building a self-
organizing machines by introducing an actual machine that is able to assemble it-
self and repair itself, which is one of the achievements of our own research. Chap-
ter 6 discusses some examples of self-organizing robots which are known as modu-
lar robots, and gives several case studies. The reader will see that a variety of
robots are being developed based on many different approaches. Chapter 7 and 8
primarily explain M-TRAN, one of the most advanced self-organizing robots at this
time, which can create its own shape and robotic motion. Chapter 9 addresses vari-
ous issues in the implementation and instrumentation of self-organizing robots,
suggesting ideas to solve them. Chapter 10 discusses the future of self-organizing
robots, especially molecular-level self-organizing robots.*

It is not required to have advanced knowledge of mathematics to read this
book. The knowledge that science-oriented undergraduates has will suffice. The
assumed readers of this book are students in the existing robotics discipline, in-
cluding areas such as mechanics, control, electronics, and computer science, and
also researchers who wish to look into the area of robotics, or who are working in
other areas and have interest in applications of self-organization phenomena.

This book can be read in different ways: who wish to learn the basic concept
should start from Chapter 1. Those interested in the fundamentals of self-
organizing mechanical systems and robots but not the philosophical arguments may
start from Chapter 5 and then continue onto Chapter 6, and so be able to grasp the
overall trends in this area and the current research activities. Those interested in de-
veloping actual robots are recommended to read Chapters 7 through 9, while refer-
ring to Chapter 4 as needed if the reader encounters unfamiliar mathematics.

Here, we would like to explain the background of this book. The authors were
researchers in an institute formerly called the Mechanical Engineering Laboratory
(MEL) of the Agency of Industrial Science and Technology of the Ministry of

* Extra materials that compliment this book, such as movies of experiments, are available at

a web page. These materials can be accessed through http://extras.springer.com/ and by search-
ing with this book’s ISBN (please make sure you enter the full ISBN number, including
hyphens).

Preface XI

International Trade and Industry, Japan. (Kurokawa is currently affiliated with the
National Institute of Advanced Industrial Science and Technology, AIST, into
which MEL was incorporated, whereas Murata’s current affiliation is Tohoku
University.) In MEL, there was a research group on fault-tolerance at the begin-
ning of the 1980s. The group members included Kurokawa, Toshio Fukuda (now
at Nagoya University), and Shigeru Kokaji, who was substantially the leader of all
the research discussed in this book. This group was one of the birthplaces of self-
organizing robots in Japan, as evidenced by Fukuda’s pioneering self-organizing
robot CEBOT in later years. When Murata joined MEL in 1987, Kokaji had just
completed his innovative distributed machine called Fractal Machine. At that time,
Kokaji was engaged in constructing parallel computers and had assembled entirely
by himself a parallel computer system consisting of 64 microprocessors. This
computer gave Kokaji the idea for the Fractal Machine. This machine was a sys-
tem thoroughly based on the principle of distributed systems and provided in
many ways the model for the research that followed.

In the following years, the Synergetics Research Group was founded with Ko-
kaji as the leader. The group was eventually recognized as one of the official re-
search groups of MEL, and new members Kohji Tomita, Eiichi Yoshida, and
Akiya Kamimura joined this group one after another. The authors would like to
emphasize that many of the results presented in this book are the achievements of
all the members of our group.

The authors received much help from people outside the group, including the
late Kazuo Tanie at Metropolitan University of Tokyo, and Toshio Fukuda at Na-
goya University, who gave us encouragement and valuable advice from time to
time. We thank Kohji Ito at Ritsumeikan University that the authors could meet
various researchers including the late Hideo Yuasa at Tokyo University, Kazuo
Hosokawa at RIKEN, and Akio Ishiguro at Tohoku University.

We also must thank colleagues overseas, including Gregory Chirikjian at Johns
Hopkins University, and Daniela Rus at MIT. The authors also had various ex-
tremely constructive research interactions, such as exchange of graduate students,
with Henrik Lund at the Technical University of Denmark, Rolf Pfeifer at the
University of Zurich, Wei-Min Shen at the University of Southern California, and
Mark Yim at the University of Pennsylvania. Many of the photographs and dia-
grams that appear in this book are shown thanks to the generosity of these people.

The authors are very grateful to Motoko Takenishi of Ohmsha, Ltd. who helped
us to write the Japanese version of this book, and Kazuhiko Ogawa and his col-
leagues at NBT Corporation for their work of translation. If it had not been for
their help, this book would not have been completed.

The research described in this book has been supported almost continuously by
various kinds of funding, including the special funding of the Mechanical Engi-
neering Laboratory, the funding of the former Science and Technology Agency for

XII Preface

basic research, the NEDO Project for Robot Development, and Grants-in-Aid for
Scientific Research of MEXT. The authors would like to take this opportunity to
express their gratitude to all those responsible for the funding.

Lastly, the authors strongly hope that this book will help students and researchers
to understand ways of thinking about self-organizing robots, and that some of the
readers will be inspired to create the next generation of these mechanical systems.

July 2011 Satoshi Murata
Haruhisa Kurokawa

Contents

1 Designing by Self-Organization ...1
 1.1 Reductionist Design and Its Limits ...1
 1.1.1 Components of Mechanical Systems ..2
 1.1.2 Reductionist Design Theory of Mechanical Systems..................3
 1.1.3 Modeling and Optimization ..5
 1.1.4 Problems with Reductionist Design ..6
 1.2 Distributed Autonomous Systems and Self-Organization6
 1.2.1 From Reductionism to Self-Organization7
 1.2.2 Distributed Autonomous Systems and Theory of Design
 by Self-Organization ...8
 1.2.3 Advantages of Self-Organizing Mechanical Systems11
 1.2.3.1 Flexibility ..11
 1.2.3.2 Scalability..12
 1.2.3.3 Fault-Tolerance ...12
 1.2.3.4 Problems Caused by the Involvement of Humans.....13
 1.3 Types of Self-Organizing Mechanical Systems.....................................14
 1.3.1 Systems and Their Components..14
 1.3.2 The Complexity, the Number of Components, and the
 Complexity of Connections ..15
 References ...17

2 Self-Organization of Biological Systems ...19
 2.1 Hierarchy in Biological System...19
 2.2 Nucleic Acids: Formation of Double Helices by Hybridization............22
 2.3 Protein Folding ..23
 2.4 Central Dogma...24
 2.5 Biological Development: Assembly at the Level of Cells25
 2.6 Biological Self-repair ..29
 2.6.1 Reconstruction ..30
 2.6.2 Physiological Regeneration...30
 2.6.3 Compensatory Regeneration ...31
 2.6.4 Wound Healing ...31
 2.6.5 True Regeneration...31
 2.7 Self-Organization of a Group of Individuals ...32
 2.7.1 Cellular Slime Molds ..33

XIV Contents

 2.7.2 Social Insects ..33
 2.7.3 Herds of Animals ..34
 References ...35

3 History of Self-Organizing Machines ..37
 3.1 Work by von Neumann..37
 3.1.1 Von Neumann’s Two Questions ...38
 3.1.2 Von Neumann’s Self-reproducing Automata............................39
 3.1.3 Universal Automata: The Kinetic Model41
 3.1.4 Universal Automata: The Cellular Model42
 3.2 Work by Penrose ...45
 3.3 Mathematical Models of Self-reproduction...48
 3.3.1 Langton’s Self-reproducing Loop ...49
 3.3.2 Graph Automata..50
 3.4 Physical Models of Self-reproduction ...52
 3.4.1 Magnet System by Hosokawa...52
 3.4.2 Mechatronic Self-assembling System by Klavins.....................55
 3.4.3 Self-reproducing System by Griffith...56
 References ...57

4 Basics in Mathematics and Distributed Algorithms59
 4.1 Distributed System and Components...59
 4.2 Diffusion..61
 4.2.1 Diffusion Equations ..61
 4.2.2 Gradient Field ...63
 4.2.3 Pattern Formation by Reaction-Diffusion System63
 4.3 Cellular Automata ...69
 4.3.1 Field of Diffusion..69
 4.3.2 Flow Field ...71
 4.3.3 Game of Life ...72
 4.4 Distributed Algorithms ..72
 4.4.1 Leader Election ...73
 4.4.2 Spanning Tree Construction Problem73
 4.4.3 Exclusion Control ...74
 4.4.4 Deadlock ...74
 4.4.5 Reliability..74
 References ...75

5 Artificial Self-assembly and Self-repair ..77
 5.1 Methods for Self-assembly and Self-repair: Homogenous System
 Approach ...77
 5.2 Hardware for Two Dimensional Units...80
 5.3 Preconditions for Self-assembly Algorithms...83
 5.3.1 Unit Identifier..83
 5.3.2 Method and Range of Communication83
 5.3.3 Spatio-temporal Symmetry Breaking..84

Contents XV

 5.4 Algorithm (I) for Self-assembly ..85
 5.4.1 Description of the Target Configuration85
 5.4.1.1 Connection Type ...86
 5.4.1.2 Distance between Connection Types.........................87
 5.4.1.3 Description of the Target Configuration Using
 Connection Types ...87
 5.4.2 Strategy for Self-assembly ..88
 5.4.2.1 Difference Measure ...88
 5.4.2.2 Movable Type ...89
 5.4.2.3 Diffusion Field ..90
 5.4.2.4 Activation Criteria...90
 5.4.3 Simulations and Experiments..91
 5.5 Algorithm (II) for Staged Self-assembly and Self-repair.......................92
 5.5.1 Logical Type and Description Matrix94
 5.5.2 Onion Method ...94
 5.5.3 Simulation of Self-assembly (Algorithm II)97
 5.5.4 Simulation of Self-repair (Algorithm (II))98
 5.5.4.1 Detection of the Loss...98
 5.5.4.2 Retrogression Signal..98
 5.5.4.3 Retrogression of the Stage...98
 5.6 Cellular Automata Model ..102
 References ...103

6 Prototypes of Self-Organizing Robots...105
 6.1 Classes of Modular Robots..105
 6.2 Lattice-Type and Chain-Type..106
 6.3 Constraints in Hardware Design for Lattice-Type Modules................107
 6.3.1 Limited Space for Design ...107
 6.3.2 Symmetry..108
 6.3.3 Degrees of Freedom for Mobility ...108
 6.3.4 Connectors (Connection Mechanisms)109
 6.3.5 Actuators ...110
 6.4 Prototypes of Modular Robots...110
 6.4.1 CEBOT ...110
 6.4.2 Truss-Type: Fractal Machine ..112
 6.4.3 Truss-Type: TETROBOT ...114
 6.4.4 Lattice-Type: Metamorphic Robot..115
 6.4.5 Lattice-Type : Crystalline ...116
 6.4.6 Lattice-Type: Micro Modules ...116
 6.4.7 Lattice-Type: CHOBIE ...116
 6.4.8 Lattice-Type: Three Dimensional Universal Connection
 System...117
 6.4.9 Lattice-Type: Molecule...120
 6.4.10 Lattice-Type: ATRON..121
 6.4.11 Lattice-Type: Molecube..123
 6.4.12 Chain-Type: PolyPod and PolyBot...124

XVI Contents

 6.4.13 Chain-Type: CONRO and Superbot125
 6.4.14 Lattice-Type: Catom ...126
 6.4.15 Amorphous-Type: SlimeBot ...127
 6.5 Hybrid Type Combining Lattice and Chain ..128
 References ...129

7 Robotic Metamorphosis..131
 7.1 System Design ...131
 7.1.1 M-TRAN Module ...131
 7.1.1.1 Shape and Function ...131
 7.1.1.2 Characteristics of the Shape134
 7.1.2 Basic Motions ...134
 7.1.2.1 Motions on the Ideal Plane......................................134
 7.1.2.2 Constraints...136
 7.1.3 Polarity..137
 7.1.4 Universal Assembly and Self-reconfiguration138
 7.2 Planning Metamorphosis Procedure ..139
 7.2.1 Search for Metamorphosis Procedures....................................140
 7.2.1.1 Reconfigurability...140
 7.2.1.2 Exhaustive Search ...140
 7.2.1.3 Heuristics...141
 7.2.2 Metamorphosis between Mobile Robot Configurations..........141
 7.2.2.1 Parallel Quadruped Form ..141
 7.2.2.2 Other Metamorphoses ...144
 7.3 Distributed Metamorphosis ...144
 7.3.1 Distributed System and Grouping...144
 7.3.2 Meta-modules Simulating Virtual Modules146
 7.3.3 Regular Structures...148
 7.3.3.1 Type-I Linear Regular Form150
 7.3.3.2 Type-II Linear Regular Form151
 7.3.3.3 Planar Regular Form ...151
 7.3.3.4 Three Dimensional Regular Forms151
 7.3.3.5 Cluster Flow ..151
 7.3.4 Motions of Planar Regular Structures155
 7.3.4.1 Basic Motions..155
 7.3.4.2 Tile Model ...156
 7.3.4.3 Cellular Automaton ...159
 7.3.5 Distributed Metamorphosis by the Cellular Automaton
 Model ..160
 7.3.5.1 Cluster Flow on Planar Structure160
 7.3.5.2 Collision Avoidance, Deadlock Avoidance, and
 Global Consensus..162
 7.3.5.3 Porous Structure ..165
 7.4 Various Metamorphoses ..166
 7.4.1 Generation of Robots from Regular Structures.......................166

Contents XVII

 7.4.2 Docking and Merging ...166
 7.4.3 Self-replication..168
 7.5 M-TRAN Colony...169
 References ...170

8 Self-Organization of Motion ..173
 8.1 Robot Motion Control .. 173
 8.1.1 Manipulator End Point Control .. 173
 8.1.2 Legged Walking Robots... 175
 8.1.3 Whole Body Locomotion... 179
 8.1.3.1 Rolling Motion ... 179
 8.1.3.2 Crawler ... 179
 8.1.3.3 Traveling Wave on a Serial Link 180
 8.1.3.4 Motions of Snakes and Fish.................................. 180
 8.1.3.5 Combinations of Traveling Waves 182
 8.1.4 Design of Motion Control Systems.. 183
 8.1.5 Distributed Motion Control of Modular Robots..................... 184
 8.2 Coupled Oscillators .. 184
 8.2.1 Synchronization by Diffusion .. 184
 8.2.2 Entrainment.. 187
 8.2.3 How to Introduce Phase Offsets... 191
 8.3 Motion Control Using Coupled Oscillators .. 193
 8.3.1 Connection with Physical Systems .. 193
 8.3.2 Global Entrainment .. 194
 8.3.3 Neural Oscillator .. 195
 8.4 Genetic Algorithm .. 197
 8.5 Motion Control of the M-TRAN Robots .. 199
 8.5.1 CPG Control System.. 199
 8.5.2 Fitness and Dynamics Simulation.. 200
 8.5.3 GA Optimization.. 201
 8.5.4 Optimization Results and Playback Experiment 203
 8.5.5 Real Time CPG Control ... 203
 8.5.6 Issues of CPG Control.. 207
 8.6 Remark ... 208
 References .. 208

9 Hardware and Software ...211
 9.1 Hardware ...211
 9.1.1 Structure and Mechanism..211
 9.1.2 Connection Mechanism...214
 9.1.2.1 Magnetic Connection Mechanism...........................214
 9.1.2.2 Mechanical Connection Mechanism217
 9.1.3 Circuitry ..219
 9.1.3.1 Multiple CPU System..219
 9.1.3.2 Communication between Modules221
 9.1.3.3 Power...223

XVIII Contents

 9.1.4 Optional Modules..223
 9.2 Software...223
 9.2.1 M-TRAN Simulator ..223
 9.2.2 Onboard Program..225
 9.2.3 Program for Centralized Metamorphoses225
 9.2.3.1 Transformation Procedure Data and Master-Slave
 Control ..225
 9.2.3.2 Configuration Recognition and Role
 Assignment ...226
 9.2.3.3 Symmetric Conversion ..228
 9.2.4 Program for Distributed Metamorphosis.................................230
 9.3 Errors and Reliability...230
 9.3.1 Dimension Error..231
 9.3.2 Structural Deformation ...231
 9.3.3 Dealing with Errors...232
 References ...233

10 The Future of Self-Organizing Robots..235
 10.1 Challenges for Self-Organizing Robots...235
 10.1.1 Module Size ..235
 10.1.2 Number of Modules ..236
 10.1.3 Choice between Self-reconfiguration and Self-assembly......236
 10.2 From Mechatronics to Molecular Machines..237
 10.2.1 Molecular Machines Based on DNA Nanotechnology238
 10.2.2 Self-assembly in DNA Nanostructures239
 10.2.3 DNA Logic Gates..241
 10.2.4 DNA Sensors and DNA Actuators..241
 10.3 From Nanotechnology to Molecular Robotics242
 10.4 Emergence of Hierarchy: The Ultimate Problem................................245
 References ...246

 Subject Index...247

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 1 – 18.
springerlink.com © Springer 2012

Chapter 1
Designing by Self-Organization

Abstract. When designing mechanical systems, the method people normally use
is based on what is called reductionism. Reductionism is very simple and power-
ful, because it is based on the one-to-one correspondence between the required
functions and the necessary components of the system. Further, reductionism and
the concept of centralized control are naturally suited to each other, because rela-
tions between functions and components are clearly seen in centralized control
systems. The theme of this book is the theory of design utilizing self-organization,
which is the opposite of reductionist design. In designing by self-organization, ra-
ther than assigning functions directly to components, relations between compo-
nents are specified so that the components will organize the whole structure by
themselves and consequently let the functions of the whole system emerge. A sys-
tem built in this way does not have a central component, but instead has decentra-
lized, distributed structure. Although it might seem a very roundabout way of
building an entire system, it is a key to progress beyond the limits of reductionist
design, by which it is increasingly difficult to meet demands for increasing com-
plexity and scale. Engineering is a discipline which studies methods for creating
useful things. The theory of design by self-organization is nothing other than an
attempt to establish a new conceptual basis for creating such methods.

1.1 Reductionist Design and Its Limits

A systematic methodology is fundamental for the construction of not only me-
chanical systems but also large and complex artifacts in general [1]. The most
common such methodology is based on a general scientific method, so-called Car-
tesian reductionism, which claims that you can understand a complex object by
decomposing it into components so simple that they cannot be further decomposed
and are very well-understood, then reassembling the components into the whole.
Of course, designing an artifact emulating the function of some object (which we
will refer to as a system) includes determining how to build it, and therefore, simp-
ly decomposing the object is not sufficient. If the function required of the system
is simple, there often exists an obvious solution comprising a mere combination of
several well-understood components. When the required function is not simple,
however, the number and types of necessary components are not obvious. In the
latter case, you have to decompose, or reduce, the required function into simpler

2 1 Designing by Self-Organization

functions which are immediately realizable by simple components. Once the ne-
cessary components are determined, you can assemble them into the system origi-
nally intended. If the resulting system does not satisfy the requirements, some-
thing is wrong with either the way the decomposition was done, or the way the
components were assembled. In either case, you need to make some adjustment
and start again. In short, designing a system is a process of finding how it should
be built while going back and forth between the opposite tasks of decomposition
and reassembly. We call this “reductionist design” methodology.

1.1.1 Components of Mechanical Systems

In this book, we define a mechanical system as “a collection of physical compo-
nents that are driven by energy from external or built-in sources, among those
components there being either mechanical interaction, communication, or both, re-
sulting in relative motions among components and changes in the internal states of
components.”

Since components of a mechanical system are concrete physical entities, a sys-
tem can only contain a finite number of components each with a specific size, and
therefore the whole system has finite dimensions. Consequently, there is a distinc-
tion between the inside and outside of a system. The outside of a system is called
an environment. It refers to the surroundings of the system, and sometimes in-
cludes humans and other mechanical systems.

Components of mechanical systems include not only typical machine parts such
as gears and screws, but also electric parts such as transistors, wires and motors,
and also microprocessors for information processing. Each of these components
must have clearly defined explicit or implicit input-output correspondences, in
which specific input (action upon a component by other components or the
environment) results in specific output (action upon other components or the
environment).

Components of mechanical systems fall into the following five categories:

1. Structural components: components like a chassis or container that define the
structure and the shape of the system.

2. Sensors: components that detect the state of the outside of the system (the envi-
ronment), convert what is detected into information, and convey it to other
components inside the system. They may receive signals from information-
producing components in other systems.

3. Actuators: components that receive information from other components and act
directly on the external environment according to this information. Actuators
include components that generate force and motion, emitters of sound and light,
and generators of heat and chemical substances.

4. Information processing components: components that receive signals from sen-
sors and other information processing components and that perform certain
computations. Some have internal states (memories) for computation purposes.

5. Power sources: energy sources for the actuators.

1.1 Reductionist Design and Its Limits 3

A mechanical system is made of components of these five types connected in a
certain way. The problem of designing a mechanical system is that of selecting
appropriate components and specifying their connection.

1.1.2 Reductionist Design Theory of Mechanical Systems

Designing is a process of creating something new. Therefore, the starting point of
designing always has to be the question why you need to create something new. If
one doesn’t know the purpose clearly, one cannot develop a good design. On the
other hand, if the purpose is clear and valuable, many people will get involved, re-
sulting in outstanding work. We next give a simple review of what is involved in
the process of designing.

The thought you had that initially made you want to create will give you a va-
gue perspective on how the object or system should be realized. Based on this
perspective, the process of design begins. First, the specifications of the system as
a whole with its desired functions are decided; this will determine the target you
want to achieve.

Next, you have to put together a construction plan. The result of this construc-
tion is then simulated and results are checked. If they are satisfactory, then the ac-
tual production begins. Finally, the actual resulting products are tested to check if
they meet the target criteria (Fig. 1.1).

Evaluation

Purpose

Idea Image

Specifications / Functionality

Design

Simulation

Manufacturing

Fig. 1.1 Process of artifact creation

In reality, these products rarely meet the required specifications perfectly at the
first trial, which means that the whole or a part of this process has to be repeated.
By going through this cycle several times, the design becomes more and more re-
fined. Sometimes it may be necessary even to step back to the starting point, as far
back as modifying the original system specification.

4 1 Designing by Self-Organization

Next, we focus on the ‘designing’ phase before the production. This phase can
be divided into the following three steps:

1. Conceptual design, determining the overall specifications of the system.
2. Baseline design, deciding the basic structure and the shape of the system

needed to realize the required specifications.
3. Detailed design, deciding the sizes, shapes, and materials of all the parts.

In this way, we decide the properties and the structure of our system, proceeding
from abstract to concrete, from whole to part (Fig.1.2).

Specification Functionality

Subfunction

Subfunction
Subfunction

Subfunction

Subfunction

Subfunction

Component
Component

Component
Component

Component
Component

Fig. 1.2 Reductionist design. Arrows indicate decomposition; the reverse direction indicates
synthesis.

Of course, it is an oversimplification to think that designing is the reduction
(break up) of the required specifications into the functions of constituent parts.
The first step is reduction into parts after you find out as thoroughly as possible
what components are necessary, and the next is to assemble those components to
build a system. There are many different ways to assemble the components that
realize the same function, and there are differences in the functions exhibited by
components that are assembled differently. Therefore, even after components are
assembled, one needs to evaluate the system to see if it exhibits the intended func-
tions. This evaluation involves analysis of a complex system, to which the ap-
proach of ordinary science, i.e., reductionism, is applicable. If the desired func-
tions are not exhibited, there is some problem with the way the components were
assembled. Modifications thus must be made, and then evaluation and analysis
must be done again. We call this methodology reductionist design. (Although
what is generally called designing is almost always based on this methodology, in
this book we explicitly use this term to contrast it with the notion of designing by
self-organization introduced later in the book.)

An important rule for reductionist design is to achieve one-to-one correspon-
dence of functions and components. In other words, it is decided that a particular
component realizes a particular function, and no other function should depend on
that component. If a component is used for various functions, any change in the
design to change a function related to that component will have undesired effects
in the system. The key to successful reductionist design is to use a component for
only a single function. If this is satisfied, then deciding the assembly of compo-
nents will automatically determine the functions of the whole system.

1.1 Reductionist Design and Its Limits 5

1.1.3 Modeling and Optimization

There is great advantage in dividing the design problem into sub-problems. Most
past and current artificial complex systems have been realized through this reduc-
tionist design. Dividing a problem, however, can cause other difficulties such as
maintaining balance among different functions.

There is no limit to the possible system configurations that satisfy the require-
ment specifications. One has to choose one from them what seems to be the best
with respect to certain criteria (evaluation criteria). Simply stated, determining the
system configuration has two phases. The first is constructing the system frame-
work, also called the design model, which determines the way components are
connected, or the relative positioning of the components (topology). The next is
deciding the values of the parameters for this model, also called the design va-
riables of the model.

Therefore, solving a design problem involves deciding on a design model and
then determining the optimal design variables for the given evaluation criteria. In
the case of designing a vehicle that travels on the ground, for example, one first
has to decide which design model to use; whether the vehicle will be a machine
with four legs like a horse, or six legs like an insect, or with wheels. (Note that the
design model cannot be determined by reductionist methods; the design model
cannot be found by reducing the targeted functions to subfunctions).

The process of design variable optimization is as follows: first, construct a
model (descriptive model) for a quantitative evaluation of how well the system sa-
tisfies the evaluation criteria. Various types of descriptive models can be used; for
example, a mathematical formula like an equation of motion, a flowchart describ-
ing the state transitions and input-output relations, or in some cases even an actual
physical model, so long as they can exhibit the behavioral characteristics of the
target. The problem of predicting the behavior of a system quantitatively is called
a forward problem.

For simple mechanical systems, finding an analytical descriptive model is
sometimes sufficient for understanding the behavior of the system completely. In
such cases, the behavior of the system can be evaluated when the system is ex-
pressed as a model formula incorporating design variables, and the variables
which optimize the evaluation functions are uniquely determined. This completes
the design. In most cases, however, an optimal solution cannot be obtained analyt-
ically, due to the issues such as the complexity and non-linearity of the system, the
complexity of the environment, or the complexity of the evaluation criteria. In
those cases, either analytical evaluation of an approximate model that partially
represents the system behavior, or simulation that reproduces the system behavior
on a computer will be employed.

There are several kinds of simulations, such as discrete event simulation, dy-
namic simulation and probabilistic simulation. When the system is simple enough,
the entire system can be represented by a single simulation model. However, in
general, the system is first divided into several smaller parts, i.e., subsystems, each
of which is simulated independently. This makes the input-output relation of each
subsystem clear. A model of the entire system is then constructed with those sub-
systems used as building units.

6 1 Designing by Self-Organization

1.1.4 Problems with Reductionist Design

Even in the case of a very large and complicated system, by employing the reduc-
tionist approach, the task of design can be reduced to tasks of designing smaller
systems that can each be handled by a single designer. System parts defined in
subtasks are connected and then a simulation of the entire system is done to pre-
dict its behavior. Optimization of the system sometimes entails repetition of the
cycle of decomposition of a system.

In this manner, the reductionist theory is very powerful in designing artificial
systems. One should not forget that it has certain limitations, however. For exam-
ple, it is known that when a system has some non-linear property, a small differ-
ence in the initial values sometimes causes a huge deviation in the course of time
(butterfly effect). This means even when a system is expressed accurately by a de-
scriptive model, its behavior cannot be simulated completely. Recent advances in
computing technology have enabled simulations of complex non-linear descriptive
models, but it is fundamentally impossible to predict completely the behavior of
non-linear systems. What is required instead is a methodology for verifying or gu-
aranteeing the most plausible behavior of systems.

There is another limitation in the reductionist approach. Think of the functions
of the human brain, such as consciousness and intelligence. They are not deter-
mined by the intrinsic functions of the components, neurons, but rather by their in-
teractions with each other. This means that, even if one divides a brain into pieces,
one never obtain a component that determines human will. This example does not
refute the reductionist theory, but it is evidence that investigating the components
does not solve all the issues.

1.2 Distributed Autonomous Systems and Self-Organization

We mentioned earlier that deciding on the design model is an issue beyond the
scope of reductionist design. We have to note that deriving a design model for
complex systems itself is a very important and difficult problem. Moreover, the
systems of our interest are shifting from centralized ones that are suitable for re-
ductionist design theory to decentralized, distributed ones in which many of the
same components scattered over the space (the World Wide Web is a typical ex-
ample). In many conventional systems, components such as information
processing units and actuators have to be concentrated in one place. But nowa-
days, it is often more efficient to distribute components in different locations,
thanks to small, high performance components such as motors, microprocessors,
and sensors, and progress in network technology. In such systems, since distri-
buted components collectively realize the function, correspondence between the
component and the function is not certain any more. Namely, reductionist ap-
proach does not work effectively in these systems.

Since the complexity and the scale of mechanical systems these days are rapid-
ly increasing, they will soon reach a point where they are impossible to create with
reductionist design methodology. We do not yet have a clear solution to that prob-
lem, and the current situation almost gives one the feeling that there is no way out.
In order to deal with this situation, it is natural to seek a new conceptual approach,

1.2 Distributed Autonomous Systems and Self-Organization 7

a methodology based on a new principle which is different from the existing de-
sign theory, i.e., the reductionist one. If engineering is a discipline for establishing
methods for creating things, finding a new methodology for designing systems is
indeed a central theme for engineering.

In this section, we introduce the theory of design by self-organization, which is
the opposite of the reductionist design theory. The key ideas here are autonomous
distributed system and self-organization. These terms refer to multiple autonom-
ous components being distributed, and then organizing themselves, creating an in-
tegrated structure.

1.2.1 From Reductionism to Self-Organization

In the reductionist design, the functions desired for a system are reduced to the
particular functions of each of its components, and then the combinations of the
components are optimized. As we saw in the previous section, however, designing
complex or non-linear mechanical systems exposes the limitations of such a re-
ductionist approach.

One possible solution to this is utilizing self-organization, which is the theme of
this book. It is the extreme opposite of the reductionist design; if you call the re-
ductionist design engineering to do something, then design utilizing self-
organization should be called engineering to let things become something.

In the theory of designing by self-organization, instead of reducing the required
functions directly to particular components, the specifications of components are
left undefined. These components are expected to organize themselves until they
form a system that possesses the desired functions. This idea is close to selective
breeding, the process for improving crops and farm animals in agriculture. The
more complex the system is, the more difficult it is to logically determine the op-
timum design model and variables. Instead, one should adjust the growth prin-
ciples embedded in the system while observing the behavior of the entire system,
thus leading the system to develop into what is desired. This can be understood as
a kind of meta-design in the sense that you do not directly design the system to be
built, but rather design the generating principles of the system.

Before starting discussion of the process of design by self-organization, let us
explain a little about the term self-organization: it refers to the property of a sys-
tem to create organization and structure by itself without external help. In other
words, it is a process of generating order out of randomness. It was the philoso-
pher Kant who first used this term, and after that it became widely known and
used in physics. Although the term may seem to have a clear intuitive meaning, it
is difficult to give it a precise definition, as it is used with different meanings de-
pending on the context.

In physics, it is usually used to describe two phenomena. One is the phase tran-
sition from the state of disorder to that of order. Examples include ferromagnetic
transition and crystallization, both of which can be explained by the minimization
of the free energy. These are phenomena of closed systems, and can be called stat-
ic self-organization. The other is structure formation in non-equilibrium systems,
order formation in dynamical systems where matter and energy are moving in and

8 1 Designing by Self-Organization

out. Pattern formation and rhythm generation in reaction-diffusion systems are
typical examples. Prigogine’s dissipative structures [2] and Haken’s synergetics
[3] are theories explaining these phenomena.

In chemistry, there are dynamic reactions such as reaction-diffusion systems
and oscillating reactions by autocatalysis, but the term self-organization is usually
used for static self-assembly, such as molecular self-assembly, colloidal crystals,
and self-organizing monolayers.

In biology, the term is used rather broadly to cover various levels of hierarchies
in living organisms [4, 5]. Examples range from molecular self-assembly such as
folding of proteins and formation of lipid bilayer membranes, to dynamic pheno-
mena such as homeostasis, embryogenesis, and behavior of animal groups. The
term is sometimes used even in economics and social science; it has become a
convenient expression to use when people want to apply the phenomena described
above to humans and society.

The term self-organization is used very broadly as seen above, and we also use
it in this book without clearly defining its meaning. As engineers, we should learn
from the examples of self-organization found in physics, chemistry and biology,
and use those insights to establish a new methodology.

1.2.2 Distributed Autonomous Systems and
Theory of Design by Self-Organization

The idea of designing by self-organization originated from research into distri-
buted autonomous systems1. To be more precise, the theory for designing distri-
buted autonomous systems is the theory of design by self-organization. We chose
the latter name in this book, because it describes the design method rather than the
type of system.

A distributed autonomous system is defined as a system without any particular
component which directly controls the entire system, each of its components (in-
dividually or as subsystems) realizing the functions of the system as a whole,
through cooperative or competitive interaction with each other.

There are two requirements for a system to be a distributed autonomous system.
One is the autonomy of individuals. Here an individual refers to a component that
can be regarded as an independent entity2. For example, if we consider the auto-
mobile traffic as a system, each automobile is an individual constituting the sys-
tem. In a distributed autonomous system, each individual takes actions on its own
accord. That is, each individual has the capability for recognition, assessment and

1 The notion of distributed autonomous systems can be found in various research areas. In

this book, the term refers to the idea proposed in the course of the research project (1990-
1993) in Japan supported by the Grant-in-Aid for Scientific Research, the Ministry of
Education, Science and Culture [6, 7].

2 In distributed autonomous systems, the term “individual” is often used instead of “com-
ponent.” The rationale is that, since an autonomous component is supposed to be an entity
with appropriate capability for making its own judgment, it should be regarded as not just
a component or part but an individual entity.

1.2 Distributed Autonomous Systems and Self-Organization 9

action, and decides its behavior based on its own evaluation criteria. The other re-
quirement is the capability for self-organization. In distributed autonomous
systems, interconnections and interactions of individuals are not fully specified a
priori, and thus there is a certain freedom of action. A state of a system consisting
of many individuals changes from a random state to a state with some particular
order. This is the process of self-organization, which enables flexible adaptation to
changes in the environment or changes in the specifications.

Such a system does not work if we do not know the outcome of the self-
organization process. Thus, the main issue in design by self-organization is how to
control the self-organization process so that it will result in the desired functionali-
ty. In the example of automobile traffic, if all the cars simply try to arrive at their
destinations as quickly as possible, the roads will be heavily congested and conse-
quently each car will take a much longer time to reach its destination. Instead,
what is needed is to introduce a set of rules, such as that cars turning to the left
having right-of-way, to facilitate the entire traffic flow so that the efficiency of the
whole traffic system is improved. The basic principles underlying the behavior of
individuals must generate order in the entire system. If we set these rules appro-
priately, it becomes possible to direct the self-organization of the individuals to-
ward the desired behavior.

The design starts with determination of the specifications of components (indi-
viduals) and their relations, or the rules for interactions among the components. As
opposed to reductionist design, in design by self-organization, the specifications of
the components are not deduced from the functions to be achieved. The functions
of the whole system are evaluated for the first time when the results of interaction
among the components are revealed. Therefore, in designing the components and
then the relations among them, it is important that they be given the potential for
realizing the desired functions of the whole system.

This potential may seem to be a vague concept. One may get an idea of this by
considering building with blocks; if there is only one way of connecting blocks al-
lowed, this automatically limits the things that can be built using those blocks.
Deciding upon the components and their relations is also analogous to establishing
axioms in mathematics. The theorems that can be proved from the axioms
represents the functions that can be exhibited by a system. Once the axioms are
assumed, the set of theorems it can prove is automatically determined. Similarly,
if the specifications of components and the relations between the components are
not chosen well, the desired functions will never be obtained.

How then can these components and rules be determined correctly? At present,
there is no way other than trial and error. One has to set provisional specifications
and types of relations for components and then observe the self-organization of the
system, either by simulations, or by experiments with real components. This is
the only way to evaluate the tentative design. The results of evaluation are the
basis for the next modified design of components, based on which another

10 1 Designing by Self-Organization

Self-organization

Design

Com-
ponent Relation

Evaluation

Simulation or experiment

Fig. 1.3 Design by self-organization

self-organization will be carried out and tested. These processes are repeated until
a satisfactory design is obtained (Fig. 1.3).

Even in reductionist design theory, evaluation by simulations or by experiments
after assembling components into a system is an indispensable step. In that case, if
evaluation reveals some shortcomings in the design, the components causing the
trouble can be directly identified and adjusted. In design by self-organization,
however, it is not immediately obvious how to make adjustments because it is not
always possible to know how components are related to each other in advance,
and moreover, any change in component specifications or their way of relating to
each other will always affect the whole system.

To put it differently, with design by self-organization, as long as it is possible
for the completed system to have the required functions, there must be a certain
leeway in the original configuration. This freedom allows it to be somewhat ambi-
guous which component will become which part of the system, so the components
must have versatility (flexibility) of function (Fig. 1.4).

Another advantage of design by self-organization is that if you know the effect
of changes in the rules and resulting change of the system function in advance, it
is possible to create a system that detects any change in the external or internal
situation during operation and adjusts its functions flexibly to cope with the
change. Capacity for this kind of dynamic self-reconfiguration is a distinctive fea-
ture of self-organizing systems.

1.2 Distributed Autonomous Systems and Self-Organization 11

Fig. 1.4 Reductionist design (left) and design by self-organization (right).

1.2.3 Advantages of Self-Organizing Mechanical Systems

Self-organizing mechanical systems have advantages over conventional mechani-
cal systems. Let’s look at them one by one.

1.2.3.1 Flexibility

In a self-organizing mechanical system, a function is a consequence of interaction
among many components. It is possible for the same set of components to achieve
different functions by changing the type of possible relations among the compo-
nents. This means that one mechanical system is capable of a wide variety of func-
tions, or in other words, it has flexibility.

In the reductionist design, one defines a fixed model so that it realizes the re-
quired functions satisfactorily. The functions of the system do not expand beyond
what is allowed by the model. Multiple functions can be realized only by equip-
ping the system with each of the functions in advance, just like a Swiss army
knife.

On the other hand, in self-organizing mechanical systems, by carefully choos-
ing a set of a few types of components, their interconnections can result in a wide
variety of functions, such that a good set of building blocks can form a variety of
interesting structures. These components are called modules. Modules are compo-
nents of a system whose inputs and outputs are limited and standardized, so that
the connections with other modules are guaranteed to be within the range defined
by that standard. A system can be constructed by combining many modules.

A flexible system may have as many functions as the number of combinations
of its modules. On the other hand, there are overhead costs incurred by packaging
and wiring each module, and also there is a limit to the possible functions due to

12 1 Designing by Self-Organization

the standardization, therefore making it difficult to achieve the optimal configura-
tion of the whole system. Consequently, modular systems are not suitable for sys-
tems where optimization is critical, but are a practical choice for situations where
a reasonable variety of functions is required.

1.2.3.2 Scalability

The functions of self-organizing mechanical systems are dependent upon the
number of its components. Scalability of the system is the system’s adaptability to
an increase or decrease in its size3. Since the cost for building a large scale system
is substantial, it is desired that such a system can adapt to use conditions that are
not optimal, that is, it should be versatile to some extent. For example, although all
the characteristics that users have in common must be recognized at the start of the
design stage, once the system is in operation, it may turn out that the actual users
have demands slightly different from what was assumed. To deal with such
change in demands, large-scale (mechanical) systems should have the capability to
expand its functions or remove unnecessary functions as needed.

Typical examples of system expansion include adding memory and hard disks
and upgrading CPUs of computing systems4. To do this, we have to shut down our
PC, but a large scale system often needs to be kept running while components are
added or deleted. In the Internet, which is the largest of all the systems ever
created by humans, computers are added and removed perpetually.

1.2.3.3 Fault-Tolerance

Scalability gives the system the ability to continue its operation even when part of
the system stops functioning, the remaining components maintaining operations
by themselves. It is not easy for a large scale system to guarantee reliability of all
the components, because the number of components comprising the system is
enormous. In order to secure reliability of components under certain cost con-
straints, systematic checkups and overhauls should be regularly carried out ac-
cording to the system’s service life and according to the conditions of operation.
This does not resolve all the issues, however.

In conventional design of mechanical systems, there are many ways to deal
with system failures. First of all, in order to avoid failures as much as possible, the
reliability of components should be improved. Next, the system as a whole should
be set up in such a way that failures in some components do not cause immediate
fatal breakdown of the system. This is the idea of fault-tolerant design. In fault-
tolerant design, the system should have redundancy, so that when one of its com-
ponents fails, there are other components to replace the function of the failed
component. In particular, when there are multiple components working in parallel

3 The term extensibility is used with the same meaning.
4 In such systems which only deal with information, one says that the system is scalable

when the throughput (the speed of information processing) of the whole system is propor-
tional to the amount of resources (such as the memory size). In general, it is difficult to
make the amount of used resources and the achieved function linearly proportional.

1.2 Distributed Autonomous Systems and Self-Organization 13

provide the same function (duplication of components), a failure in one component
decreases the efficiency but does not cause complete loss of any functions.

In addition, attempts are made to achieve failsafe design, which keeps a system
safe in case of system failures caused by incorrect user operation or malfunctions.
The system is designed to run in a special safe operating mode if components fail
to function correctly or if the user operates the system incorrectly. For example, it
is safer if the engine of a car is designed to stop as soon as there is an engine
failure.

Information systems are typical examples of systems in which fault-tolerant
measures are introduced relatively easily5. For example, the whole system is often
duplicated by installing extra hard disks. The system is equipped with two sets of
hard disks and every piece of data is written on both sets. When reading data, the
read operation is judged to be successful if the data read from the both sets match;
otherwise, it is judged that there has been some error. If there are three sets of hard
disks, it is possible to identify which of the three is (likely to be) faulty by the ma-
jority principle. This is the idea that the control systems of space ships and the
RAID system are based on.

However, simple fault-tolerant systems are always faced with the problem that
redundancy is costly. Increase in cost is inevitable when redundancy is introduced,
but the cost is not reflected in the efficiency of the system. The more components
there are, the greater the cost for maintenance, because of the increase in the num-
ber of components that might fail. Moreover, it is very difficult to test duplicated
systems. Therefore, duplication redundancy of all the components does not neces-
sarily increase fault-tolerance of the system.

The system process in which after a failure in the system, the system does not
breakdown totally but stays in operation with limited functions depending on the
degree of the failure is called graceful degradation.

1.2.3.4 Problems Caused by the Involvement of Humans

Making a system foolproof is one approach to reducing human error during opera-
tion. This is a kind of the failsafe design mentioned earlier in this section, in which
the system is designed so that humans cannot operate it incorrectly, or so that in-
correct operations do not cause accidents.

A related serious problem is that the process of constructing a system itself is
not free from the risk of human error. For the case of a very large scale system, it
is not always clear that the design specification itself has no inherent problems. It
is very important to verify consistency of the specifications with each other6 be-
fore starting the actual designing process, because if there is any such inconsisten-
cy, it will be impossible to satisfy all the specifications.

5 The term dependability is also used for various systems. It is one aspect of the quality of

service provided by the system, namely, how much of the intended service of the system
is provided properly. This is determined by the system’s reliability, fault-tolerance and
operability.

6 In the area of designing software systems, specification description languages and system
description languages are developed for such purposes.

14 1 Designing by Self-Organization

Even when there is no inconsistency of the specifications with each other, there
always will be errors in programs written by humans. The greater part of the time
required for building a system including software is actually spent on removing
such errors (debugging). The process of debugging is complete when the system
works as defined in the specification, but it is not easy to remove all the bugs.
Moreover, testing is required after debugging to see if the bug was successfully
removed. It is sometimes the case that people find bugs in large scale systems dur-
ing actual operation, even after substantial testing has been done.

1.3 Types of Self-Organizing Mechanical Systems

Many of the problems with mechanical systems we have discussed so far can be
largely resolved if more flexibility and fault-tolerance is introduced to the mechani-
cal systems. Design, production and maintenance all incur costs if done by humans.
If mechanical systems are equipped with the capability of self-organization, they
will contribute to reducing design, production and maintenance costs. Distributed
autonomous systems may offer a basic framework for such systems.

1.3.1 Systems and Their Components

In distributed autonomous systems, the components are individuals, autonomous
entities that have their own behavioral rules and realize the functions of the whole
system by interacting with each other. Below are general aspects of the relation
between individuals and systems in distributed autonomous systems [8-10]:

1. The system is comprised of many individuals (components) that are distributed
over a space (distributed system).

2. Individuals are similar or the same, in the sense that they can be replaced by
another (homogeneity of individuals)7.

3. Each individual behaves autonomously (autonomy, spontaneity of individual
action).

4. The system and its individuals comprise an open system that takes in energy to
maintain activity.

5. Each individual carries global information on the organization of the whole
system. The global order of the whole system is generated and maintained by
the coordination (connection, interaction) of many individuals (order formation
of the system). There are fields of interaction among individuals (field of inte-
raction), in which the information is locally exchanged among individuals (lo-
cality of communication).

6. Interactions between individuals are not determined in advance or may change
at any time, depending on the surrounding conditions (non-determinism of inte-
ractions).

7 Items 1 and 2 are summarized with the word “uniform”, meaning the distribution of ho-

mogenous components over a space.

1.3 Types of Self-Organizing Mechanical Systems 15

7. When the purpose of the system or the environment changes, the system adapts
to the change (adaptability to the environment) by adjusting its own structure.

If a system satisfies the above conditions, it can be regarded as a distributed auto-
nomous system. The actual form of the systems varies substantially depending on
what is taken to be an individual.

1.3.2 The Complexity, the Number of Components, and the
Complexity of Connections

How much complexity must the components have and how many of them must be
used in order to construct a self-organizing mechanical system? In this section we
consider the issue of complexity and the number of components, and the complex-
ity of the connections between components.

It is difficult to define precisely the complexity of a component; for now, we
only posit that complexity is closely connected to the amount of information a
component carries, for example the number of possible states the component has
and what functions it has in those states. In addition, we posit that the amount of
this information is determined by the physical size of the component. For exam-
ple, internal states of an atom include its location and speed in a 3-dimensional
space, and its spin. In the case of a molecule, in addition to those, there also are its
possible spatial arrangements (conformations) and its binding to other molecules.

Possible functions of a single atom or molecule are quite limited. Even if the
spin state or conformation is taken to represent information, it expresses only one
bit of information. On the other hand, the number of atoms and molecules we can
use is enormous; for example, 12 grams of carbon consists of 6 × 1023 (Avoga-
dro’s number) of carbon atoms. If we can control the states of individual atoms
independently, it is possible to use this 12 grams of carbon as a massive memory.

While it is not quite possible yet to manipulate atoms and molecules directly, it
is possible to create very minute structures using photolithography. Current semi-
conductor technology (as of 2010) allows construction of transistors 32 nm in size,
enabling a single microprocessor to have 8 × 1010 transistors. The world’s first mi-
croprocessor, the INTEL 4004, which was a 4-bit processor and had 2300 transis-
tors, would fit within a 12 μm square with the current level of integration. This
means that it is possible to make a component 10 μm in size with the computation
power of a simple calculator.

Micromachines, or systems that have micrometer-size moving parts, are also
being made. It is also possible in principle to combine them with computation cir-
cuits. Most of the currently available micromachines are simple ones such as static
actuators or rotating wheels, but their possible integration degree has reached a
million. An example of such systems is the Digital Mirror Device (DMD). These
kinds of micromachines still need external power sources.

For typical meter-scale machines, we can use not only various mechanical
components, but also microprocessors and micromachines described above. Some
state-of-the-art humanoid robots that are equipped with many of such electronic

16 1 Designing by Self-Organization

and mechanical devices can move like real humans. However, even if super high-
performance humanoids like Astro Boy become available, though, they would be
very costly so that an application requiring many humanoids would be unrealistic.

To summarize, if the size of a component is small, its functionality may be li-
mited, but many of the same components can be used because each one takes up
less space and less cost. When a component is larger, it may have more functions,
but fewer of such components can be used due to cost and reliability constraints.

There is also the issue of homogeneity of components. Atoms and molecules
are usually obtained through chemical reactions and therefore it is almost imposs-
ible to generate them individually (on the other hand, molecules generated by
chemical reactions are completely homogenous and the cost of production per mo-
lecule is extremely small). Consequently, components available for nanometer-
size systems are either all the same or a mixture of a few different kinds of
components.

On the scale of micrometers, it is possible to control components one by one
using photolithography, and microprocessors are indeed produced in such a way.
Systems that have homogenous components placed in a regular repeated pattern,
like semiconductor memories, are easily mass-produced and therefore can be pro-
vided cheaply. Microprocessors and memories can have high integration/density
because they are circuits with no moving parts; it is very difficult to produce high-
ly integrated mechanical systems with actively moving components.

We have discussed the size and the number of components here, but they are
not the only factors deciding the level of functions of self-organizing machines.
Since self-organization is a consequence of interaction between components, the
way and the density with which components are connected are also important. For
example, the function of a brain is determined by the connections of neurons. A
human brain has 10 billion neurons, and each neuron is connected to several thou-
sand other neurons. The flexibility provided by this enormous number of redun-
dant connections enables a brain to memorize, learn, and judge.

Brain cells interact using neural impulses. The interactions of cells making up
biological systems are based on dissipations of chemical substances and mechani-
cal effects such as pushing and pulling. Cells contain many different kinds of mo-
lecules for those purposes, and in order to respond to them selectively, they are
equipped with receptors, channel elements and signaling pathways.

Biological cells also have the ability to communicate with remotely located
cells, for example using hormones and neural systems. Numerous brain cells of
the same type are connected regardless of their spatial separation through nerve fi-
bers into a complex network, whereas effects of normal chemical or mechanical
reactions are greater with closer spatial proximity. An artificial creation that is
similar to the brain is computer networks such as the WWW. In such systems, the
computer interactions are independent of geographical locations, and a vast
amount of data is exchanged according to specific protocols.

Here, let us make a bold simplification:

 The total functional capability of a mechanical system =
 the complexity of its components × the number of components.

References 17

The complexity of the interactions is reflected in the complexity and the number
of components. Of course the complexity of the interactions is in proportion to a
certain power exponential of the number of components, but for now we make the
above simple hypothesis. Now, using this equation as the evaluation standard,
what is the size of components that maximizes the functions of the whole?
(Fig. 1.5)

Whole system function
 = Complexity x Number

Atom
Molecule

Biomacro-

 molecule
Transistor

MEMS

Humanoid

The size of components
Th

e
co

m
pl

ex
ity

of

 a
 s

in
gl

e
co

m
po

ne
nt

Th
e

nu
m

be
r

of
 a

va
ila

bl
e

co
m

po
ne

nt
s num

ber
co

m
pl

ex
ity

Fig. 1.5 The relation of the size and complexity of components to the functional capability
of the entire system

Intuitively, an integrated circuit of about a billion transistors, each of whose
size is a few tens of nanometers, seems to be this optimum component. Our cur-
rent interest, though, is in building mechanical systems, so it is realistic to use
components on the order of millimeters or larger, and in the following chapters,
most mechanical systems are built from components (modules) on the order of
centimeters. This however is simply a reflection of what components are currently
available, independent of the above discussion of optimality. We will come back
to discussion of the optimal size of components in the last chapter.

References

[1] Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press (1996)
[2] Prigogine, I., Nicolis, G.: Self-Organization in Non-Equilibrium Systems. Wiley

(1977)
[3] Haken, H.: Synergetics –An Introduction. Springer Series of Synergetics, vol. 1.

Springer, Berlin (1978)

18 1 Designing by Self-Organization

[4] Camazine, S., et al.: Self-Organization in Biological Systems. Princeton Studies in
Complexity. Princeton Univ. (2001)

[5] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence-From Natural to Artifi-
cial Systems. Oxford Univ. (1999)

[6] Ito, M., et al.: Special issue on Decentralized Autonomous Systems. J. Soc. Instrum.
Control Eng. (Keisoku to Seigyo) 29(10) (1990) (in Japanese)

[7] Ito, M., et al.: Special issue on New Developments in Decentralized Autonomous Sys-
tems. J. Soc. Instrum. Control Eng. (Keisoku to Seigyo) 32(10) (1993) (in Japanese)

[8] Ito, M.: Construction of Decentralized Autonomous Systems. J Soc. Instrum. Control
Eng. (Keisoku to Seigyo) 29(10) (1990) (in Japanese)

[9] Ito, M.: Future Challenges in Decentralized Autonomous Systems. J. Soc. Instrum.
Control Eng. (Keisoku to Seigyo) 32(10) (1993) (in Japanese)

[10] Ito, M., Ichikawa, A., Suda, N. (eds.): Jiritsu-Bunsan Sengen (The Distributed Auto-
nomous Manifesto), Ohmsha (1995) (in Japanese)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 19–35.
springerlink.com © Springer 2012

Chapter 2
Self-Organization of Biological Systems

Abstract. Biological creatures have abilities to generate various kinds of order in
a self-organizing manner, and therefore they can be regarded as autonomous dis-
tributed systems. When we see biological organisms as autonomous distributed
systems, cells are the components of these organisms, because each cell behaves
autonomously as an individual entity, taking in substances and energy from the
external world, carrying out its own reactions, responding to environmental
changes, and even reproducing itself. Moreover, in the case of multicellular organ-
isms, each cell differentiates from others and specializes to have particular func-
tions in order that an assembly of cells can generate complex structures. Such an
assembly can act as an autonomous individual that realizes intricate functions
which cannot be carried out by individual cells. If we regard individual animals as
components, herds of animals are also a kind of self-organizing system. These
herds exhibit a variety of complex and clever behavior, in which distinct roles may
be allotted to different members of a herd, or in which individuals of different
species are in symbiotic relations. The notions of autonomous distributed systems
and design by self-organization introduced in the previous chapter were born from
abstraction of such biological systems. Mechanisms in biological systems are the
result of four billion years of evolution, and in them we can find many clues for
artificial system design. In this chapter, we introduce typical and important exam-
ples of mechanisms in biological entities.

2.1 Hierarchy in Biological System

The entire biological world can be regarded as a huge hierarchical system, each
layer of which is a system made up of components of various sizes and complexi-
ties. A system in one layer is made up of components which in turn are systems in
the layer below; atoms form molecules, molecules form molecular machines and
organelles, molecular machines form cells, cells form organs, organs form indi-
viduals, individuals form herds, and herds form a society. Although each layer op-
erates with a different self-organization mechanism, the hierarchy as a whole is a
remarkably well coordinated system (Fig. 2.1) [1, 2].

20 2 Self-Organization of Biological Systems

Atoms

Molecules

Organelles

Cells

Organs

Individuals

Herds

Heterogenous

Homogenous

Heterogenous

Homogenous

Heterogenous

Homogenous

Homogenous

Fig. 2.1 Hierarchical structure of the biological world

Let us look at the layers starting with molecules. There are four major types of
biomolecule, i.e., nucleic acids, proteins, lipids and sugar chains, which make up
the bodies of biological entities. Nucleic acids are molecules for storing and
transmitting genetic information. In a sense, they are the design blueprints of bio-
logical systems. Proteins provide many different functions: catalyzing of various
chemical reactions in cells as enzymes, transporting substances inside and outside
of cells, forming fibers and muscles to maintain body structure, etc. Lipid mole-
cules assemble into cell membranes and sugar chains work for inter-cellular adhe-
sion and communication.

Typical examples of self-organization at the molecular level include self-
folding of proteins and hybridization of nucleic acids. Proteins are first synthe-
sized into linear chains of amino acids, but they cannot function in this chain
form; they have to be folded into particular conformations in order to function.
The folding process of proteins into a certain conformation that performs a partic-
ular function such as catalysis is a result of interactions between numerous amino
acids on the chain. This is an example of the self-organization processes called
cooperative phenomena. The hybridization reaction of deoxyribonucleic acids
(DNA), in which two strands of DNA joint into a double helix, is also a coopera-
tive phenomenon.

The next layer in the hierarchy is that of organelles, such as nuclei, Golgi appa-
ratuses, mitochondria, and chloroplasts. These are molecular machines with specif-
ic functions, produced by self-assembly of component molecules of lipids and pro-
teins, etc. In the self-assembly process, molecules colliding with each other in
solution gradually arrange themselves into a certain configuration following the
principle of minimization of free energy. Typical examples of such self-assembly
include the formation of a ribosome (a molecular machine that translates genetic in-
formation into proteins) from several kinds of ribonucleic acid molecules, and the
formation of the cell membrane structure called lipid bilayer from phospholipids.

In the layer of cells, the situation is far more complicated. Cells must contain a
certain number of organelles to survive, but the necessary number of each type of

2.1 Hierarchy in Biological System 21

organelle contained in a cell and their activity levels must be adjusted differently
for each cell and its environment. In other words, there is a need for a complex
control mechanism that perpetually enhances or suppresses the functioning of the
individual organelles, depending on the environment. This need is realized by the
network system of gene regulation in which thousands of different genes control
the expression of each other. Cellular division is one such distinctive feature of
cells. Cells follow a cycle or program for division in which they replicate the
whole cell, including the genetic information. This is what is called self-
replication (or self-reproduction). Considerable numbers of the cellular level me-
chanisms underlying these phenomena are being elucidated by molecular biology,
but it seems that it will be a long time before a systematic theory can explain the
whole process.

The process of cells forming organs and organs forming individuals is called
(biological) development. The mechanism of development is not fully understood
yet, but it seems that cell division, apoptosis and differentiation required for each
stage of development take place through various communications between cells;
in particular, signal transmission by chemical substances. The process of self-
repair (also called self-healing), a mechanism where a living individual heals it-
self when its body is damaged, also has a deep connection with the processes of
development. As described above, there are many variations in the self-
organization process of biological systems, and each layer of the hierarchy em-
ploys a different mechanism.

Now look at Fig. 2.1 again. One may note that homogeneous layers and non-
homogeneous layers appear alternately in the biological hierarchy [3]. For exam-
ple, the layer of organelles is homogeneous, as an organelle consists of a large
number of molecules of the same kind, whereas the layer of cell is heterogeneous,
because a cell contains many more kinds of organelles than the kinds of molecules
that an organelle contains. Similarly, an organ consists of many homogeneous
cells, while an individual is composed of different organs. You can follow the al-
ternating homogeneous and non-homogeneous layers as you go upward in this
hierarchy.

The authors think that biological entities are created through evolutionary
processes, not by the Creator. However, let us assume the existence of the Creator
and imagine how he went about designing biological organisms. In a non-
homogeneous layer, an individual is composed of components, organs for exam-
ple, each of which is in charge of a different specific function. This is clearly a re-
ductionist design. On the other hand, homogeneous layers seem to be self-
organized. Let us look at this as a lesson for engineers. Engineering has always re-
lied on reductionist methodologies, focusing only on the non-homogeneous layers
in the biological hierarchy. If we focus on those homogeneous layers, we should
be able to discover a new design methodology, which is successfully used by
Mother Nature.

In the following sections, we discuss some important examples of biological
self-organization, with application to engineering in mind.

22 2 Self-Organization of Biological Systems

2.2 Nucleic Acids: Formation of Double Helices by
Hybridization

Biological cells are often thought of as complicated chemical factories, because a
tremendous number of kinds of protein, nucleic acid and sugar all are synthesized
from simpler molecules inside the cells. In particular, nucleic acids (DNA and
RNA) are made up of nucleotides ― molecules consisting of bases, phosphates
and sugars (See Section 2.4).

DNA molecules are important for storing genetic information. The information
is encoded as sequences of four different nucleotides: adenine (abbreviated A), cy-
tosine (C), guanine (G) and thymine (T). DNA usually exists as two long polymer
chains joined together by hydrogen bonds, forming the famous double helix
structure.

The nucleotide sequences in the DNA strands in a double helix are always ar-
ranged so that adjacent nucleotides of the two strands are one of the Watson-Crick
complementary base pairs (A only bonding to T, and C bonding to G). In other
words, if two DNA strands have Watson-Crick complementarity, they can form a
double helix (Fig. 2.2). This is the process called hybridization.

A

A
A

A

B

B
C

C
D

D
E

E

B

B

C

C

D

D

E

E

(a) Interaction not leading to base pairing

A
B

C
D

E

A
B

C

D
E

A
B

C
D

E

A AA
BB
CC
DD
EE

B
C

D

E
Two strands are
 joined rapidly

A helix core
is formed

(b) Interaction resulting in base pairing

Fig. 2.2 Hybridization of DNA strands (The Cell 3rd Edition ©1994 Garland Science)

2.3 Protein Folding 23

Although there are only four kinds of nucleotides, the size of actual base pair
sequences is enormous; for example, there are approximately three billion base
pairs in human DNA. If a small DNA segment, consisting of 20 to 30 bases, is
placed in a cell, it is able to search inside the cell through diffusion to find a par-
ticular section in the DNA that has a complementary base sequence and bonds to
that section. This is because it bonds only to the particular sequence that has con-
secutive complementary base pairs. This process is explained by a chemical reac-
tion based on the minimization of free energy.

2.3 Protein Folding

Proteins are synthesized from twenty different amino acids (See Section 2.4). Just
after the synthesis, they are linear chains of indeterminate form called random
coils, but they rarely exist as random coils in cells; they are immediately folded in-
to particular shapes in order to function. Self-folding of proteins is the process of
transforming from a random coil into more stable structure, driven by thermal agi-
tation; intensive collision with surrounding water molecules and parts of them-
selves, which replaces weak bonding of segments by bonding of higher chemical
affinity (Fig. 2.3).

The sequence of amino acids is the key to folding of proteins; a wrong se-
quence will result in unsuccessful folding. A sequence that successfully folds has
an extremely well-designed arrangement of amino acid residues which allows
formation of many intramolecular hydrogen bonds, positioning of the hydrophobic
residues to face inside, and positioning of hydrophilic residues to face outside, all
contributing to the stabilization of the entire structure. The forces involved in the
stabilization of protein folding are complicated because there are twenty different
amino acids, as opposed to four in the case of nucleic acids. However, each mole-
cule chooses one conformation repeatedly, based on the principle of minimization
of free energy.

Once folded as described above, proteins associate with each other to form
larger components1. An example of such complexes is human hemoglobin, a te-
tramer consisting of four protein subunits. In the case of hemoglobin, being a te-
tramer makes the four oxygen-binding sites work in coordination, resulting in high
oxygen-carrying efficiency. It is also often the case that the complexes found in
cells are not entirely proteins but rather are combinations of nucleic acids and pro-
teins. A ribosome, which decodes the information in nucleic acids and translates it
into amino acid sequence of proteins, is a complex consisting of five RNAs (ribo-
nucleic acids) and about 80 proteins. Association reactions of such intricate mole-
cular complexes are also governed by the principle of minimization of free energy.

1 The association of protein molecules is caused by weak forces derived from electrostatic

interactions other than covalent binding.

24 2 Self-Organization of Biological Systems

Polar side chain Nonpolar side chain

 (a) Unfolded polypeptide

Outward facing polar
side chains can form
hydrogen bonds with
water molecules

Nonpolar side chains
assemble into the
hydrophobic core

(b) A structure folded in water

Fig. 2.3 Self-folding of proteins (The Cell 3rd Edition ©1994 Garland Science, 1994)

The successful protein folding and assembly of proteins into complex structures
all depend on the amino acid sequence. Given a protein consisting of a sequence
of one hundred amino acids, the size of the space of possible sequence combina-
tions is in the order of 20100. Selecting a random amino sequence from this combi-
natorial space would only yield something like sludge with no function. Only a
small fraction of possible sequences carry biological significance. Selecting those
sequences is beyond the capability of a selection process based on thermodynam-
ics (minimization of free energy). There must be another principle behind the
selection; in the biological world this is genetic selection, through which various
sequences are tried and tested at the cellular level and the individual level, only
those that function well surviving.

2.4 Central Dogma

Central dogma (Fig. 2.4) is a classical concept in molecular biology which states
that the genetic information stored in DNA is relayed in the following order:

DNA → (replication) → DNA → (transcription) → RNA → (translation) → protein

2.5 Biological Development: Assembly at the Level of Cells 25

Replication

DNA
Transcription

Control

RNA
Translation

Protein

Fig. 2.4 Central dogma

Nowadays, it is not considered dogma anymore, because other information paths
have been discovered, but the above is the primary synthesis path for proteins.

In this section, we briefly describe the features of the reactions involved in rep-
lication, transcription and translation. Replication of DNA from DNA happens
during cell division, in order to provide a copy of genetic information to the newly
generated cell. An enzyme called DNA polymerase unwinds the DNA double he-
lix so that the bases in the strands are exposed. DNA polymerase then replicates
the original sequences by matching complementary nucleotides one by one. Tran-
scription of DNA to RNA initiates the protein synthesis, which happens inside
nuclei. An enzyme called RNA polymerase copies only the segments of DNA to
RNA that carry information on amino acid sequences for proteins (called exons)
through a process similar to DNA replication. Such RNAs are called messenger
RNAs (mRNA). Then, mRNA is transported out of the nucleus and taken in by a
complex molecular machine called a ribosome. The ribosome then synthesizes a
chain of amino acids by matching up three bases in the RNA to one amino acid
(this match-up is regarded as decoding by the genetic code table). This process is
called translation. Chains of amino acids synthesized in this way will gain their
functions when they are folded.

The genetic information of DNA (instructions for synthesis of proteins) does
not just go through the processes of transcription and translation. The transcription
process is controlled by complex feedback and feedforward chemical reactions.

2.5 Biological Development: Assembly at the Level of Cells

Cells multiply by division. A monocellular organism consisting of a single cell,
such as E-coli and yeast, simply creates exact copies of itself. As evolution pro-
ceeded, however, cells came to divide into different cells, and those cells did not
separate from each other but rather formed a multicellular organization. In the
multicellular organisms, although the genetic information carried by each cell is
the same, the way that information is used (“expressed”) is different in different
cells, resulting in differentiation of cells to form nerves, muscles, blood cells, di-
gestive organs, and so on.

All animals and plants on earth are multicellular organisms, and all are created
by cell division starting from a single cell, a zygote. One cell splits into two, and
then four, and gradually the number of cells keeps increasing to as many as three

26 2 Self-Organization of Biological Systems

trillion in the case of human babies, which then increases further up to 60 trillion
as they grow to be adults. Some simpler animals, for example nematodes (C. ele-
gans) which have only about a thousand cells in the whole body, have their cell li-
neage trees, that identify what cells divided in what ways to form each part of the
body, fully mapped by researchers (Fig. 2.5). These trees show that the develop-
mental fates of cells whose characteristics diverge after each division are precisely
programmed.

1.2 mm

Head Tail
Intestine Eggs Gonad

Pharynx Oocyte UterusVulva EpidermMuscle
Body wall

Anus

(a) Nematode (C. elegans) (The Cell 3rd Edition ©1994 Garland Science).

(b) Cell lineage

(http://upload.wikimedia.org/wikipedia/commons/3/37/Complete_cell_lineage_of_C_elega
ns.png)

Fig. 2.5 Cell lineage of C. elegans

For animals with a larger number of cells, such as frogs, mice and humans, li-
neage trees for each cell usually cannot be mapped. Instead, the development line
of sheet-like layers of cells, called germ layers, has been studied. During the first
few cleavages, cells are still uniform (totipotent), but then they gradually differen-
tiate and form three different layers called ectoderm, mesoderm and endoderm.
The ectoderm forms the brain, nerves and the epidermis (skins), the mesoderm
forms the skeleton, the muscle and blood, and the endoderm forms the epithelium
of respiratory organs and digestive organs. Lineage trees for such groups of cells
(germ layer lineages) have been mapped.

2.5 Biological Development: Assembly at the Level of Cells 27

These developmental processes are controlled by interactions between germ
layers. In order for germ layers to interact, there is a need for substances that allow
cells at a distance to influence each other. Indeed, various mechanisms have been
discovered in which proteins and small molecules permeate out of cells and dif-
fuse to give signals to remote cells (Fig. 2.6).

Close interval interaction
between neighboring cells
(lateral inhibition)

Specialization at the point
of cell division according
to the concentration of
a substance inside the cell

Differentiation based on the
concentration of signaling
substance dispersing over
a long distance

Fig. 2.6 Differentiation strategy based on substance diffusion (The Cell 3rd Edition ©1994
Garland Science, 1994)

Below, we consider a mathematical model of cellular interaction based on dif-
fusion, proposed by Lewis Wolpert in 1969 [4]. In this model, we posit a hypo-
thetical substance called morphogen, rather than a specific chemical substance,
which carries information about “location.”

As an example, let us consider a case where cells of red, blue and white colors
form a tricolor pattern like the French flag. (The colors can be taken to represent
body parts such as head, abdomen and legs so that this becomes a model of body
formation.) In order to generate such a pattern, each cell must know its location
relative to the whole in order to determine its color. Now, we assume that the hy-
pothetical morphogen L is generated and released from a cell located at the left
edge, and that L is decomposed by a cell located at the right edge, so that there is a
gradient of concentration of L across the body. Then, by introducing two thre-
sholds of L concentration for determining which color each cell should exhibit, the
tricolor flag pattern will be formed (Fig. 2.7).

This tricolor flag model also gives an explanation of the process of self-repair:
assume that the flag has been partially burned, and one third of the flag from the
left has been lost. Then, the cell which now is located at the left edge of the re-
maining part will recognize that it has nothing on its left anymore and start
generating morphogen L. Further, a steeper gradient of concentration can now be
established. Finally, after the cells go through the differentiation process using the
same two thresholds, the tricolor flag is reproduced, albeit two thirds the original
size. This explanation uses the hypothetical morphogen, but if one thinks of it as a
kind of molecule, it corresponds to the regulation mechanism of gene expression.

28 2 Self-Organization of Biological Systems

a

b

a

b

C
on

ce
nt

ra
tio

n

Position

Position

C
on

ce
nt

ra
tio

n

Head Leg

Head

Abdomen
Leg

Abdomen

Fig. 2.7 Tricolor flag problem

Actually, many different molecules have been discovered that function in the same
way as morphogen in the development process of animals and plants.

Readers may think that such determination of developmental fates based on the
concentration of only one type of morphogen and a few thresholds would be too
sensitive to small fluctuations. For example, if there is some problem that causes
morphogen to leak out while diffusing, the concentration gradient pattern will be
disrupted, which will result in formation of a distorted pattern. To avoid such a
situation, real biological systems have cascading mechanisms that use several dif-
ferent types of morphogen triggered in a time sequence (Fig. 2.8). These act as
mechanisms which limit the dependence of cell differentiation on concentration
fluctuations.

A B C D E F G H IA B C D E F G H I

Cell state

Signal generator

Concentration
gradient of
signal

Fig. 2.8 Cascading of morphogen (The Cell 3rd Edition ©1994 Garland Science)

2.6 Biological Self-repair 29

There is also a mechanism that allows generation of various patterns without
increasing the number of types of morphogen. It is the reaction-diffusion model,
proposed in 1952 by Alan Turing, who is well known for his model of computa-
tion. This model assumes two kinds of morphogen, activator and inhibitor, which
not only diffuse but also react with each other. High levels of activator will induce
generation of more activator, while high levels of inhibitor will suppress genera-
tion of activator. The model also assumes that inhibitor diffuses faster than activa-
tor (See Section 4.2.3) [5].

Solving partial differential equations obtained from the above assumptions
yields various stripe patterns with different widths depending on the coefficients
for reaction and diffusion. Fig. 2.9 shows a comparison between a two dimension-
al numerical simulation by Shigeru Kondo and the patterns on a skin of emperor
angelfish [6]. There clearly is amazing similarity between them. The reaction-
diffusion model generates various striped and dotted patterns without any special
boundary conditions on morphogen as in the tricolor flag case where morphogen
is generated at the left end and decomposed at the right end, and therefore the
model is thought to explain colors of animal fur, patterns of shells, and arrange-
ments of plant leaves.

Fig. 2.9 Stripe patterns on the body surface of emperor angelfish and 2-dimensional Turing
model (Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angel-
fish Pomacanthus, Nat 376:765-768 ©1995 NPG)

2.6 Biological Self-repair

During the process of development, multicellular organisms not only organize and
build up their structure, but also have the capability to reconstruct their structure.
In this section, we focus on biological self-repair.

30 2 Self-Organization of Biological Systems

Monocellular organisms can create a new individual by simple cell division. In
most multicellular organisms, however, it takes two individuals (parents) to repro-
duce, and moreover, the process by which the reproduced individual develops
from a zygote to an adult is very long. The life of an individual is longer than that
of a cell, which means that cells in the body must be replaced as they die. This
requirement led to the evolution of self-repair capability. In this sense, develop-
ment and self-repair are the two aspects of the same phenomenon in multicellular
organisms.

There are many variations in biological self-repair capabilities. First of all, that
of animals is fundamentally different from that of plants. In fact, for plants it is
difficult to define the notion of individual clearly, and therefore, in the case of
plant regeneration it is difficult to distinguish between self-repair and generation
of a new individual2.

Below, we focus on self-repair of animals. Animal self-repair is categorized in-
to the following types.

2.6.1 Reconstruction

The process in which the cells of an organism which has been completely torn
apart into pieces form new individuals. For example, sponge cells separated by
sifting through gauze will gradually gather to form aggregations and then reattach
with each other to become multicellular organisms because of the cells’ mobility
and adhesion among themselves. They then continue to proliferate and differen-
tiate, eventually recreating the original structure. It has been reported that in order
for reconstruction to be successful, more than two thousand cells are required.

2.6.2 Physiological Regeneration

The continuous process of loss of cells and replenishment with new cells. For ex-
ample, a number of the cells at the tip of intestinal villi die every day and are dis-
carded inside the intestine, while the loss is filled by cells generated by division of
cells underneath. Similarly, cornified epidermis cells on the surface of the body
are removed naturally, and the loss is supplemented by the shifting of new cells to
the basal layer of the epidermis. Physiological regeneration processes like these
are achieved by cell generation by stem cells, which retain cell division capability
for a long time.

2 Self-repair of animals requires movement of cells, whereas plants repair themselves by

replicating their cells at the place. Plant cells are surrounded by cell walls and in principle
are incapable of moving from the location where they were born. Cell division starts with
formation of a new wall inside the cell, and afterward there is expansion beyond the space
of the original cell.

2.6 Biological Self-repair 31

2.6.3 Compensatory Regeneration

When parts of some organs are removed or damaged, that part is regenerated by
cell proliferation. It is well known that the liver has high regeneration capability.
In the case of mice, the liver will recover its original state in 24 hours after being
partly removed. In this particular regeneration, it is not the case that newly
generated undifferentiated cells specialize to be liver cells, but rather that liver
cells reproduce themselves directly to make up for the loss.

2.6.4 Wound Healing

The process of repairing relatively small wounds of the body. The healing process
of a little scratch on the epidermis is an example. This is the smallest self-repair
process, but still it involves cell movements, adhesion and differentiation.

2.6.5 True Regeneration

This falls into the following two categories:

Morpholaxis
The typical example is an entire planarian that regenerates from a small piece
of body. A cell cluster remaining from an organism regenerates the structure
of the entire organism by redifferentiating existing cells using its information
on all the parts of the original organism (corresponding to the location infor-
mation of the tricolor flag pattern discussed in the previous section). After
the whole structure is regenerated, cells multiply by division so that the new
organism grows to the size of the original.

Epimorphosis
When a leg or a tail of a gecko is amputated, undifferentiated cells proliferate
at the stump to form a blastema. This blastema, as it grows, differentiates and
develops structure, following processes similar to biological development.

Fig. 2.10 illustrates experiments transplanting planaria body parts into other plana-
ria and cockroach legs into other cockroaches. When the head segments of plana-
ria were transplanted either in front of or to the rear of the pharynx (throat) of oth-
er planaria, only in the second case was another pharynx formed. The body was
mapped with 15 coordinate points lengthwise. When a head segment of one, from
point 1 to 2, was transplanted into point 5 of another, the segment regenerated on-
ly the part corresponding to 2 to 5. On the other hand, when the same segment was
transplanted into point 12, it regenerated the part corresponding to 2 to 11. A simi-
lar phenomenon was observed in experiments on transplanting cockroach legs.

32 2 Self-Organization of Biological Systems

1
3

5
7

9
11

1
3

5

transplanted
 segment
 of head

throat

throat

transplanted
 segment
 of head

1

3

5

7

9

11

15

13

A
B
C
D
E

A A
B
C
D
E

A

B
C
D
E

B
A

B

C

C
D

D

E

B
A

B

C

C

C
D

D

E

A
B
C
D
E

A
B
C
D
E

E

newly formed

newly formed

Fig. 2.10 Regeneration experiments on planaria and cockroaches (The Cell 3rd Edition
©1994 Garland Science)

2.7 Self-Organization of a Group of Individuals

The last section of this chapter presents various examples of self-organization in
the highest level of our hierarchy, individual biological organisms. In this section,
we consider cellular slime molds, social insects such as ants and bees, schools of
fish and flocks of migrating birds.

2.7 Self-Organization of a Group of Individuals 33

2.7.1 Cellular Slime Molds

Cellular slime molds are unusual creatures which sometimes live individually as
monocellular organisms but at other times form multicellular bodies. As monocel-
lular organisms, they are amoebae that move individually. When environmental
conditions deteriorate, however, for example if food is running out, many amoe-
bae gather to form a slug-like entity, which then moves as a whole. The system of
interaction between slime molds in the cellular phase that causes this to happen
involves reaction-diffusion of a substance called cyclic AMP. The slug-like organ-
ism eventually produces a fruiting body as in fungi, and releases spores from the
tip. Spores which land in a good environment will hatch into amoebae, which mul-
tiply and eventually form the next slug-like organism.

Slug-like

Formation of
 a fruiting body

Spore

Amoeba

Cell aggregation

Fig. 2.11 The life cycle of cellular slime molds

2.7.2 Social Insects

Ants and bees are sometimes called social insects. In the case of bees, queens,
workers, and male drones all have different morphologies, and they form a hie-
rarchy with a single queen bee at the top. Worker bees, which are female, are in
charge of almost all the daily maintenance, while all bees in a colony are produced
by the queen. The only contribution of males is to provide genes. In recent years,
much ethological research on insect has been directed at trying to understand their
different behavior patterns as contributing to self-organization. So far, attempts
have been made to explain apparently complex phenomena, such as nest making
and “dancing” of bees and the movement of ants from the nest to food by the
shortest route, as the result of following relatively simple rules [7]. There are

34 2 Self-Organization of Biological Systems

engineering-oriented studies of social insects which are being applied to solve
large scale search problems, called ant colony algorithms.

2.7.3 Herds of Animals

Animals gather to form herds to make survival more likely, because this affords
protection against predators, makes breeding easier, etc. Animal herd behavior
takes various forms, including schools of fish staying close together and swim-
ming in the same direction, flocks of migrating birds in formation, and a troop
of monkeys who stay in groups although the behavior of each individual is
different. The dynamics dominating schools of fish and flocks of birds have been
well studied, and various mathematical models have been suggested. Fig. 2.12
shows a model, which creates various behavioral patterns by varying a single
parameter [7].

(a)

ni
vi

vj

nj
rj−ri

Element j
Element i

(b)

(c) (d)

(e) (f)

10 10

10

10

1

5

Fig. 2.12 Herd behavior model. By positing simple interaction among individuals, various
behavior patterns can be generated, such as straight line movement (marching), zig-
zagging, moving in a circle, and random movement. (Shimoyama N et al (1996) Collective
Motion in a System of Mobile Elements, Phys Rev Lett 76(20):3870-3873 ©1996 APS)

References 35

References

[1] Alberts, B., et al.: Molecular Biology of The Cell, 3rd edn., Garland Sci. (1994)
[2] Watson, J.D., et al.: Molecular Biology of The Gene, 5th edn. Cold Spring Harbor Lab

Press (2003)
[3] Ito, M.: Construction of Decentralized Autonomous Systems. J. Soc. Instrum. Control

Eng. (Keisoku to Seigyo) 29(10) (1990) (in Japanese)
[4] Wolpert, L.: Positional Information and the Spatial Pattern of Cellular Differentiation.

J. Theor. Biol. 5, 1–47 (1969)
[5] Turing, A.M.: The Chemical Basis of Morphogenesis. Philos. Trans. Royal Soc. Lond.

B 237(641), 37–72 (1952)
[6] Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the marine angelfish Po-

macanthus. Nature 376, 765–768 (1995)
[7] Shimoyama, N., et al.: Collective Motion in a System of Mobile Elements. Phys. Rev.

Lett. 76(20), 3870–3873 (1996)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 37–57.
springerlink.com © Springer 2012

Chapter 3
History of Self-Organizing Machines

Abstract. In this chapter, we give an overview of research related to self-
organizing machines that was inspired by biological self-organization. There were
various motivations for this kind of research. Von Neumann’s work, which we
discuss first, was motivated by the purely mathematical question of whether self-
reproduction is logically possible or not. Next, we discuss the work by Penrose,
who considered the above as a question of actual objects, to be solved with expe-
riments. We then go on to consider some of the studies that followed upon these
two. A basso continuo underlying all these studies is a desire to understand the
mechanisms behind the biological organisms discussed in the previous chapter. In
order to understand these mechanisms, instead of studying biological organisms
directly, they focused on some aspects of biological organisms of interest and
modeled them. This is called a constructive approach1. If biological organisms
can be understood through a constructive approach, machines can be built accord-
ing to the derived model.

3.1 Work by von Neumann

The first appearance of the notion of self-organizing machines, or machines capa-
ble of modifying themselves, was in the work by John von Neumann, dating back
to around 1950 [1]. He proposed a basic framework by which a machine can
assemble itself from parts using a description of its own design or assembly pro-
cedure embedded in the machine. This separation of the system’s structural de-
scription and its physical embodiment, also present in the genotype and phenotype
of biological organisms, is essential for a system to have the capability for evolu-
tion. In this sense, von Neumann’s work still has a definitive influence on
self-organizing machine research [2].

1 When trying to understand biological organisms, it is often the case that they are difficult

to analyze because they consist of a very large number of components assembled in a
very complex way. Molecular biology offers a very powerful method of tracing the origin
of biological properties to those of substances, that is, genes and proteins. On the other
hand, it is still difficult to trace the origins of functions that themselves are not yet unders-
tood, such as regulation of the size of the body, to the genes. This is the rationale for
building models of simplified biological properties.

38 3 History of Self-Organizing Machines

One group of research that originated from von Neumann’s work is the theory
of cellular automata, which later has been applied to areas such as fluid dynamics
and relatively abstract models of living organisms such as artificial life. Another
current of research went to the self-organization of real physical systems such as
Penrose’s blocks [3, 4]. It is the last line of research, combined with the develop-
ment of electronics and robotics that followed, that gave birth to the module based
self-organizing machines described in this book (More history is found in Chapter
6. See Fig. 6.5).

3.1.1 Von Neumann’s Two Questions

John von Neumann was a mathematician born in Hungary who worked in the
U.S.A. He made outstanding contributions in various areas of applied mathematics
including quantum mechanics, establishing game theory and reliability theory. He
is renowned for his involvement in the development of EDVAC, one of the very
first electronic computers. Modern computers have what is known as the von
Neumann architecture (with internally stored programs). He was also involved in
the development of the atomic bomb during World War II and is known for his
hawkish opinions on politics.

While working on the development of electronic computers, von Neumann
tried to establish a general theory for computers. In particular, he noticed the simi-
larities and differences between computers and living organisms in nature and
tried to categorize them systematically. In his last years, he was engaged in the
theory of self- reproducing automata2 [1].

According to Arthur Burks, who edited von Neumann’s posthumous writings,
“Von Neumann compared the best computers that could be built at the time with
the most intelligent natural organisms and concluded that there were three fun-
damental factors limiting the engineer's ability to build really powerful comput-
ers: the size of the available components, the reliability of these components, and
a lack of a theory of the logical organization of complicated systems of computing
elements... He felt that there are substantially different principles involved in sys-
tems of great complexity, and searched for these principles in the aspects of self-
reproduction which clearly depend on complexity. Because of the close relation of
self-reproduction to self-repair, results of self-reproduction research should also
help solve reliability problems. [1]”

In summary, the two fundamental questions that von Neumann posed were:

1. How can reliable systems be constructed from unreliable components?
2. What kind of logical organization is sufficient for an automaton to be able to

reproduce itself?

The most intelligent biological structure in nature is a brain, which is comprised of
neurons. If we aim to build a system equivalent to a brain, we need artificial com-
ponents equivalent to neurons.

2 An automaton is a system whose inputs, internal states and outputs are defined mathemat-

ically. For more details refer to textbooks on computer science or formal language theory.

3.1 Work by von Neumann 39

Prior to the above argument by von Neumann, Warren McCulloch and Walter
Pitts suggested that neuron structure can be represented using logic circuit compo-
nents [5]. Inspired by this work, von Neumann created a theory for constructing in-
telligent systems from artificial components such as vacuum tubes and mechanical
relays. The difference between von Neumann’s theory and the pure mathematics
(formal logic) is that he took into consideration issues such as delays of in-
put/output and errors occurring with very low but non-zero possibility. The biggest
challenge in building complex artificial systems is to detect malfunctions in those
components without fail and to replace or repair those broken components
promptly.

Related to the first question above, consider transmitting the value one million
in base ten; the simplest way is to send each of seven digits,“1”, “0”, “0”, “0”, “0”,
“0”, and “0”. However, this is not a good transmission method because of the pos-
sibility that wrong digits may be received due to some error. Instead, sending a
pulse a million times to be counted on the receiver side would offer a better prob-
ability of successful communication. This line of discussion led to the establish-
ment of reliability engineering in later years.

As for the second question, the key is the complexity of automata. The differ-
ence between automata in nature and artificial ones lies in their complexity. What
artificial automata (machines) produce is usually simpler than the machines them-
selves, and hence the complexity decreases in the process. For instance, if you
compare a machine that produces screws with the screws that it produces, the ma-
chine itself is much more complex than the screws. On the other hand, living or-
ganisms in nature can reproduce exact copies of themselves, and therefore the
complexity does not decrease in the process. In fact, through the long evolution
process, complexity is gradually increasing rather than decreasing. Is there an ex-
planation for this phenomenon?

3.1.2 Von Neumann’s Self-reproducing Automata

In order to investigate this question rigorously, von Neumann studied Turing’s
universal automata [6], whose inputs, outputs and internal states take only two
values, 0 and 1, which simplifies the discussion.

A universal automaton is an automaton that can simulate the behavior of any
other automata. To construct a universal automaton, one needs a description (spe-
cification) of the automaton to be simulated and the instructions (input) that are
given to that automaton. There are automatons whose input-output characteristics
can be expressed as a sequence of binary numbers without difficulty. For instance,
if the automaton is a simple logic gate, a single sequence that lists the contents of
its truth table will completely describe it.

Now, let φ(X) be a binary sequence describing a certain automaton X. We call
this a “description.” Also assume the existence of a universal automation A (uni-
versal constructing machine), which can construct X while gradually eating up the
description φ(X). The construction method of such a universal automaton A is the
core of von Neumann’s theory, which we explain later.

40 3 History of Self-Organizing Machines

Von Neumann claimed that if there actually is a universal automaton, a system
could be made that would reproduce itself with increased total complexity
(Fig. 3.1). However, we need more tools to accomplish that. By feeding φ(A) to
the automaton A, A will produce a copy of A itself, but without increase in total
complexity. In fact, since this process consumes φ(A), the resulting complexity is
reduced.

An arbitrary automaton D can be included

Initial state

Self-replication complete

C
A B

C
A B

C
A B

C
A B

C
A B

C
A B

C
A B D

C
A B D’

Step 1: C orders B to produce copies of
 φ(A+B+C)

Step 2: C orders A to produce A+B+C by
 feeding one of φ(A+B+C) to A

Step 3: C connects one of φ(A+B+C) to the new
 A+B+C and separates this group form the rest
 (completion of self-reproduction)

Even if there is a mutation in D, the self-
reproduction capability is not lost

φ(A+B+C)

φ(A+B+C)
φ(A+B+C)

φ(A+B+C)

φ(A+B+C)
φ(A+B+C)

φ(A+B+C)φ(A+B+C)

φ(A+B+C+D)

φ(A+B+C+D’)

Fig. 3.1 Von Neumann’s self-reproducing system

So, as a next step, we provide another automaton B which, when given descrip-
tion φ(X), produces two copies of φ(X) without consuming the original φ(X) (de-
scription copying machine). B is only capable of producing copies of descriptions
but not B itself, and it does not increase the total complexity. Now, we add an au-
tomaton C, an appropriate control device for the automaton A+B. The automaton
C gives orders to and functions as a control device of both A and B according to
the following sequence.

Starting from a state where both the automaton (A+B+C) and its description
φ(A+B+C) exist (Fig. 3.1), first, C orders B to produce two copies of the descrip-
tion φ(A+B+C). Then, C orders A to produce (A+B+C) using one of the copies of
φ(A+B+C). Finally, C attaches one of the two remaining descriptions φ(A+B+C)
to the newly produced (A+B+C). The original pair of the automaton and its de-
scription, i.e. (A+B+C) and φ(A+B+C), has produced a copy of the pair, with no
decrease in complexity.

One important feature of this system is that A, B, and C each do not have self-
reproduction capability, but when those three are combined, this capability is
achieved. In other words, a self-reproducing system can be decomposed into com-
ponents each of which does not have self-reproduction capability.

Moreover, this model also gives an account of the process of evolution. A spe-
cific automaton D is introduced, and if the description φ(A+B+C+D) is supplied,
the self-reproducing system can be extended to include D. This system not only
reproduces itself but also produces a byproduct. Now assume that some mutation

3.1 Work by von Neumann 41

happens to such a system. If the mutation happens in components indispensible for
self-reproduction, that is, in either A, B or C, then the system loses its ability to
self-reproduce (lethal mutations), but if it happens in D, since D does not contri-
bute to reproduction, the mutated version of D will be reproduced.

In this way, individuals with various mutations are produced, and those that are
better suited to the surrounding environment will succeed in producing surviving
descendants. That is, the mechanism of evolution based on survival of the fittest,
natural selection, is set into operation. This model demonstrates how artificial
entities can increase in complexity.

3.1.3 Universal Automata: The Kinetic Model

In the previous section, we postponed explaining the details of how to construct an
automaton that is capable of producing an automaton from a description. In fact,
this is a difficult problem.

Von Neumann’s first solution was called a kinetic model. This model deals with
geometric and kinematic issues such as the movement, contact, positioning, fusing
and cutting of components, while ignoring the physical and chemical issues such
as force and energy. A three-dimensional space is envisioned in which various
parts are floating around. A self-reproducing automaton is made from these parts.
We want this automaton to be capable of picking up the parts around it and as-
sembling them into a copy of itself. As explained above, it is easier to let the au-
tomaton refer to a description tape, a binary sequence specifying its own structure,
than to let the automaton examine and determine its own structure. In von Neu-
mann’s draft, description tapes made of connected rods were introduced as shown
in Fig. 3.2.

0 1 01 01 0 1 01

Fig. 3.2 Example of a description using rigid members. A joint with a side branch
represents 1, while one without represents 0.

Von Neumann used eight kinds of parts in his kinetic model, all of which are
expressed as straight lines (line segments). Four of the eight kinds are information
processing organs (parts). A stimulus organ receives and transmits stimuli; and at
the same time performs logical addition “p or q.” A coincidence organ realizes the
truth-function “p and q.” An inhibitory organ realizes the truth-function “p and
not q.” A stimulus producer (pulse generator) serves as a source of stimuli. The
remaining four kinds are in charge of functions other than information processing.

42 3 History of Self-Organizing Machines

A rigid member is a structural part with which a framework for automata and de-
scription tapes can be constructed, and it does not carry any stimuli. Two parts are
connected using a fusing organ. In order to connect member a to another member
b, the output end of the fusing organ should be placed at the contact point of
members a and b. A stimulus provided at the input end of the fusing organ at time
t causes members a and b to be welded at time t+1. On the other hand, a cutting
organ breaks a connection when stimulated. A muscle is capable of motion, and
will contract to length zero at time t+1 after being stimulated at time t, while main-
taining all its connections.

An automaton constructs another automaton as follows: the parent automaton
floats in a sea containing an infinite supply of parts. The parent automaton’s
memory (the description tape) contains a description of a child automaton. The
parent automaton picks up necessary parts and places them appropriately, follow-
ing the instructions given in the description.

The parent automaton has two protruding stimulus elements. When a part
touches them, they stimulate that part and detect the part’s response to determine
what the part is. For example, if the part is a stimulus organ, a stimulus is trans-
mitted, whereas if it is a muscle, it contracts.

After thinking through this much, however, von Neumann became stuck. In or-
der to make this model more concrete, he had to specify in detail the spatial
placements, connections, characteristics, and movements of the eight kinds of
parts, which clearly is a very complicated task. Furthermore, even if all this were
done, would the model with its idealized, abstract parts that have no mechanical or
chemical aspects at all be of any value? This may have been his thinking when he
decided to give up on developing this kinetic model further.

The authors still find this depiction of self-reproducing automata deeply inspir-
ing, because a living organism seen as a molecular machine is indeed a realization
of such a universal automaton, and von Neumann’s model extracts its essence. It
is a vivid image of what an artificial self-reproducing system must be if it is to ex-
ist at all.

3.1.4 Universal Automata: The Cellular Model

Von Neumann next created the cellular model. This universal automaton is con-
structed as an assembly of many cells in various states, arranged in a certain spa-
tial pattern. A system can be defined as an assembly of differentiated cells in a lat-
tice space filled with undifferentiated cells. By introducing this framework, the
difficult problem for the kinetic model of how to secure a supply of parts is
resolved.

In this model, cells fill up the spaces of a lattice like a sheet of graph paper.
Each cell is in one of 29 states and the state determines the cell’s function
(Fig. 3.3). Each cell’s function is determined by the cell’s state and its inputs from
its neighbors. An ordinary transmission cell, a cell in one of the ordinary transmis-
sion states, sends a pulse in the direction indicated by the arrow within one time
unit. When this cell is sending a pulse, it is marked with a dot to identify its state.

3.1 Work by von Neumann 43

U

Sensitized states

Unexcitable state

Ordinary transmission states

Special transmission states

Confluent states C 00 C 01 C 11C 10

S 0 S 00S 1
S 01 S 10 S000S 11

Fig. 3.3 Cellular model table of 29 states that each cell can assume (Neumann Jv, (Burks A
Ed.) (1966) Theory of Self-Reproducing Automata, Univ Illinois Press)

1

0

1

0

1

0

1

0

1

0

1

0

1
0

1 C

0

1

S0

S00

S1

S01

S10

S000

S11

U

Fig. 3.4 Transition rules (Neumann Jv, (Burks A Ed.) (1966) Theory of Self-Reproducing
Automata, Univ Illinois Press)

Since this cell responds to an input pulse from any direction by outputting a pulse
in the direction of the arrow, it also works as a logical OR operator. A special
transmission cell transmits a pulse as an ordinary transmission cell does, but
ordinary transmission cells (→) and confluent cells (C) change back to ground
state (unexcitable) cells (U) when they receive a pulse from a special transmission
cell (⇒). A confluent cell transmits a pulse during two time units, and it is used
for branching and logical AND operations. A ground cell receives a pulse se-
quence (a binary sequence) and changes to one of the transmission states or
confluent states via one of the sensitized states, which are states of cells under-
going differentiation. When pulse sequences are received by a cell, its path of dif-
ferentiation toward a specific type of cell is predetermined by transition rules
(Fig. 3.4).

44 3 History of Self-Organizing Machines

In the actual process of self-reproduction, a pattern of cells in a certain location
extends an arm to a different location and creates the same pattern. Specifically,
the arm refers to a description (a sequence of cells that records a pulse sequence)
to change the state of a cell far away. This process is called the generation of a
cell. Next, the arm extending to that cell, which itself is a concatenation of cells in
transmission states, is erased. By repeating these steps, the pattern is written
(Fig. 3.5).

A B

i

j C

U U

C D

U

U

1

4

2

3

A B

C

C D

C

1

4

2

3

A B

C

U U

C D

C

1

4

2

3

A B

C

U U

C D

C

U

1

4

2

3

A B

C

U

C D

C

1

4

2

3

0

(a) (b) (c)

(d) (e)

into i : 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

into j : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0

produces (b)

produces (c)

produces (d)

produces (e)
(f) Supplied pulse sequences

i

j

i

j

i

j

i

j

Note: "0 arrows" and "1 arrows", , , etc., in the original are
represented as "arrows" and "double arrows", , , etc., here
to ensure consistency with other figures.

Fig. 3.5 Process of assembly using pulse descriptions (Neumann Jv, (Burks A Ed.) (1966)
Theory of Self-Reproducing Automata, Univ Illinois Press)

The actual system requires control of the arm and circuits for generating vari-

ous signals, so that as many as 200,000 cells are required to construct the automa-
ton (Fig. 3.6). It is quite amazing that von Neumann invented this automaton using
only pen and paper. In recent years, people have confirmed by computer simula-
tion that the automaton described above is indeed capable of reproducing itself.

3.2 Work by Penrose 45

s
o

L

Note: The Universal constructor Mc
is not drawn to scale

constructing unit
CU

memory control
MC

Universal constructor Mc

constructing arm

completed part of
secondary automaton

uncompleted part of
secondary automaton

(x1, y1)

(0, 0)

description tape

Fig. 3.6 Entire structure of von Neumann’s self reproducing automaton (Neumann Jv,
(Burks A Ed.) (1966) Theory of Self-Reproducing Automata, Univ Illinois Press)

3.2 Work by Penrose

Lionel S. Penrose was a British psychiatrist and geneticist who also made various
contributions in mathematics. One such contribution is his block models of self-
reproducing machines which we explain in this section [3, 4]. The models come in
varying complexity, from simple to very complex. Here we explain a one-
dimensional model which is easy to understand. Here, “self-reproduction” is de-
fined as the generation by a system of new systems which have the same structure
and size as the original, when the system is placed in a suitable environment.
Further, in order to exclude simple chain reactions we impose the following
conditions:

1. A self-reproducing system consists of plural components, and those compo-
nents must be simpler than the system itself.

2. Different self-reproducing systems with different combinations of components
can be made, each of which reproduces itself (the initial self-reproducing sys-
tem is called a seed).

The first model that Penrose thought of was a system consisting of two kinds of
blocks with bilateral symmetry, A and B, lined up in a one-dimensional sheath as
in Fig. 3.7. The freedom of movement of each block is limited so that each can

46 3 History of Self-Organizing Machines

only shift or tilt to the right or left. By shaking the sheath right and left, one can
make the blocks collide with each other. The blocks have a convexity and con-
cavity such that when two A blocks collide they simply rebound, and similarly for
two Bs, but when a tilted block A and a similarly tilted block B collide, a convexi-
ty of one and a concavity of the other become joined together. If a joined BA
structure is placed as a seed on the track before shaking (ii), only those blocks that
happen to be in the order B-A become joined (iv). Conversely, if a joined AB
structure is used as a seed (v), then only those in the order A-B become joined
(vii). It is easy to see that this system satisfies the above two conditions.

(vii)

A

A B BA B B A B

A B BA B BA B

A B BA B BA B

A B AB B B A B

AB AB B B AB

AB AB B B AB

B B B A B

(vi)

(v)

(iv)

(iii)

(ii)

(i)

Fig. 3.7 Penrose’s blocks (Penrose LS (1958) Mechanics of Self-replication, Ann Human
Genetics, 23:59-72)

Penrose claimed that components of self-reproducing systems should have the
following five properties:

1. Each component has at least two possible states, non-activated (as an isolated
component) and activated (as a part of a system). A non-activated component
can be joined only when activated components approach in its vicinity. In other
words, when a sheath does not have a seed, and contains only non-activated
components, self-reproduction will never happen no matter how much it is
shaken.

3.2 Work by Penrose 47

2. There must be definite boundaries to the activated system. Otherwise, it may
grow indefinitely like a crystal3.

3. The process of self-reproduction must consume some kinetic energy. In the
model described above, the kinetic energy supplied by shaking of the sheath is
transformed into the energy for linking of activated blocks because the con-
vexity and concavity of the blocks work as a ratchet.

4. The activated state of components is transferred within the system. For exam-
ple, in the machine shown in Fig. 3.8, activation of the block at the left end (in
this case, activation means being capable of independent motion) is transferred
to the block on the right end.

5. The movement and interactions of blocks are limited to some extent to make
the desired linking more likely. In the one-dimensional case, the sheath pro-
vides the necessary limitation, but in general, this is provided by the require-
ment that something helps the linking, like catalysts.

a

a

a b c

b c

b c

(i)
Messenger

Strike
staple

Pivot Hook

(ii)

(iii)

Fig. 3.8 Activation transference mechanism (Penrose LS (1958) Mechanics of Self-
replication, Ann Human Genetics, 23:59-72)

Fig. 3.9 shows a one-dimensional self-reproducing system based on the above
discussion. Here each block has four layers. The second from the bottom deter-
mines the type of the system (whether AB or BA in the case of Fig. 3.7), the top
two layers are for linking, and the bottom layer controls the size of a system (so
that not more than two blocks are connected). The seed is the two connected
blocks in the middle of (a). In (b), the block at the left of the seed is linked to the
seed, and in (c), the block at the right of the seed is linked to the seed, at which
point all four blocks can be divided in the middle, yielding two seeds as seen in
(d). In short, the seed expands by taking in two blocks, and when it becomes twice
its original size, it splits into two, generating a copy of itself.

3 Schrödinger said that a living crystal must be aperiodic [7].

48 3 History of Self-Organizing Machines

a

c

b

d

Fig. 3.9 Penrose’s self-reproducing block system (Penrose LS (1959) Self-reproducing
Machines, Sci Am, 200:105-114)

3.3 Mathematical Models of Self-reproduction

Von Neumann’s cellular model has been generalized into the theory of cellular au-
tomata and has found applications in areas such as simulations in fluid dynamics.
At the same time, research has continued on self-reproducing systems themselves.
Since von Neumann’s original cellular model was very complicated, people have
tried to establish simpler, more comprehensible models.

One study distinct from all others was Langton’s work on self-reproducing au-
tomata, which we introduce in this section. This work demonstrated the feasibility
of self-reproduction using simple, visually understandable cellular automata, and
triggered a boom in research into so-called artificial life.

We also introduce our own work on a self-reproduction model using graph au-
tomata. This model allows more flexible construction of systems by removing the
constraint that requires cells to be placed on a two dimensional plane. This con-
straint has been one of the factors making the cellular model unnecessarily com-
plicated, and this model should thus enable visualization of the essential structure
of self-reproducing systems.

3.3 Mathematical Models of Self-reproduction 49

3.3.1 Langton’s Self-reproducing Loop

Christopher Langton succeeded in greatly reducing the complexity of cellular au-
tomata capable of self-reproduction [8]. His model requires only 8 different states,
whereas that of von Neumann required 29. Moreover, Langton’s model requires
only a 10 x 15 cell space. Langton’s model simply produces the same pattern as it-
self, while von Neumann’s model was capable of emulating the universal Turing
machine. However, the amazing similarity of the behavior of Langton’s model to
that of living organisms has attracted a lot of attention.

Fig. 3.10 Langton’s self-reproducing loop

50 3 History of Self-Organizing Machines

Langton’s loop is a two dimensional cell pattern in the form of a loop, a line of
cells containing “genetic information” which is covered by a sheath. The genetic
information includes instructions for extending a part of the sheath to grow a kind
of arm (pseudopod) and also for bending the arm orthogonally to the left at regular
intervals of an appropriate length. The arm continues to extend even after it forms
a loop, and forms another empty loop of the same size. Finally, the genetic infor-
mation of the first loop is transferred into the arm and forms a complete loop,
which is then detached from the parent loop. The pattern reproduces itself by re-
peating these steps (Fig. 3.10).

3.3.2 Graph Automata

A model called graph automata, which realizes the self-reproduction process in a
natural fashion, has been proposed by the authors [9, 10]. A graph automaton is a
cellular automaton defined on a graph, and, in addition to the state transitions of
cellular automata, it has structure rewriting rules so that the structure of the graph
itself can be changed. This allows dynamic changes in component numbers and
topology to be realized in a natural fashion analogous to self-reproduction of bio-
logical organisms, because they are not restricted to a particular lattice space as in
the case of cellular automata.

Anihilation rule

Division rule

Commutation rule

n1
m0n2
n3

m1

n1 n2

n1 n2

Fig. 3.11 Rules of a graph automaton

3.3 Mathematical Models of Self-reproduction 51

The graphs consist of a set of nodes that have internal states and that are con-
nected by links. Here, we assume a planar graph each of whose nodes is adjacent
to three other nodes (3-link graph). Three types of structure rewriting rules that we
use are described in Fig. 3.11. These rules preserve the property that each node is
always adjacent to three other nodes. Each rule is applied at each discrete time
step to only those nodes that have specific local states (all nodes are investigated
and all applicable rules are applied in the step). Starting from the initial graph, ap-
plicable rules in the rule set are applied one after another and the graph is allowed
to evolve with time. Since the time evolution is determined by the initial graph
and the given rule set, designing a graph automaton is equivalent to determining
the initial graph structure and the rule set.

Fig. 3.12 Representation of self-reproducing process using graph automata

As an example of representation using the graph automaton, the self-
reproduction of a Turing machine is shown in Fig. 3.12. A Turing machine is the
simplest model of computer, and is built here as a ladder-like ring structure. One
side of the ladder corresponds to the tape of the Turing machine, while one partic-
ular node on the other side corresponds to the reading head of the Turing machine.
First, a copy of the entire ladder is produced. Then, the information of the tape is
copied on to the new ladder. Finally, the unnecessary links between the two lad-
ders are removed, resulting in two independent ladders. In the case of Turing ma-
chines with binary tapes, 20 states and 257 rules are required to reproduce any
Turing machine whose tape is of an arbitrary length and contains arbitrary signal
sequences.

Thanks to a uniform format for describing rules, it is easy to apply evolutionary
algorithms to graph automata. We have been successful in obtaining various self-
reproducing patterns by selecting rules with reproduction capability from among
randomly generated rules [10].

52 3 History of Self-Organizing Machines

3.4 Physical Models of Self-reproduction

It may be more appropriate to consider the Penrose block system as a model of
self-catalysis in chemical reactions than as a self-reproducing system. In this mod-
el, as the units randomly collide with each other, the number of units in particular
combinations increases. In this section we consider further developments follow-
ing Penrose’s model [2].

We start with the self-assembly system by Hosokawa which uses magnets. This
work analyzes the yields (the ratio of the number of complete assemblies to the
number of units initially placed in the container) of artificial self-assembly sys-
tems quantitatively for the first time. Next, we consider the mechatronic
self-assembly system by Klavins. In contrast to the model by Hosokawa where the
only passive magnetic force is used, each of Klavins’ units is equipped with a mi-
croprocessor, which enables a unit to disconnect from others as desired. In this
way, the self-assembly rules can be changed at will and hence flexible program-
ming of the reactions among units is possible. The third example of programmed
self-reproduction is Griffith’s self-reproducing blocks. These blocks, also
equipped with microprocessors, self-reproduce in the same way as Penrose’s
blocks.

3.4.1 Magnet System by Hosokawa

Kazuo Hosokawa’s work on self-assembly of magnetic units is a pioneering quan-
titative analysis of self-reproducing systems [11]. In the self-assembly process of
this model, triangular units with magnets are joined with each other to form hex-
agons by agitation in a closed two dimensional space (Fig. 3.13).

N S

Plastic
Magnet

25 10

25 25

S N

Fig. 3.13 Units with embedded magnets are agitated by rotation in a container (Hosokawa
K, et al (1995) Dynamics of Self-Assembling Systems; Analogy with Chemical Kinetics,
Artif Life, 1:413-427 ©1995 MIT Press)

3.4 Physical Models of Self-reproduction 53

In the course of this self-assembly, various intermediate products are generated:
monomers (isolated single units), dimers (two joined units), and so on up to hex-
amers, the final products. The following is a complete list of all conceivable join-
ing reactions:

2 X → X2 , X + X2 → X3 ,
X + X3 → X4 , X + X4 → X5 ,
X + X5 → X6 , 2 X2 → X4 ,
X2 + X3 → X5 , X2 + X4 → X6 ,
2 X3 → X6 .

When the density (the number of units) of each cluster is

x = (x1, ... , x2)

and its dynamics are given as follows

x(t+1) = x(t) + F(x(t)) ,

by integrating these equations, the system behavior can be traced. The function F
can be estimated relatively easily from the geometric shape (the angle range of
collisions causing connection) of the units. Fig. 3.14 shows the results of numeri-
cal computation using such estimates.

20

17.5

15

12.5

10

7.5

5

2.5

0
200 400 600 800 1000

t

x i

x1

x3 x5 x6

x2

x4

Fig. 3.14 Results of numerical analysis of self-assembly process (Hosokawa K, et al (1995)
Dynamics of Self-Assembling Systems; Analogy with Chemical Kinetics, Artif Life, 1:413-
427 ©1995 MIT Press)

Fig. 3.14 shows that, as soon as the agitation starts, many monomers become
dimers, which then immediately join up with each other to become tetramers or
join with monomers to become trimers, so that dimers are quickly consumed. But
it also shows that there are substantial amounts of pentamers and tetramers that
fail to become hexamers in the end. This is consistent with the results of actual
agitation experiments.

How can the generation of undesired intermediate products be suppressed? Ho-
sokawa’s solution was to introduce the activation mechanism suggested by Pe-
nrose. One way to realize this mechanism is to allow the magnets to slide along a

54 3 History of Self-Organizing Machines

groove, so that only when magnets protrude from the surface (the activated state)
can the units become connected, as shown in Fig.3.15. The self-assembly occurs
only when a unit is activated by an external magnet, as in Fig. 3.15(d), and then
becomes a seed. Simulations in which such a mechanism is introduced show that
as many hexamers as the number of initial seeds were generated, with only mo-
nomers remaining. This means that the maximum possible yield was achieved.

Fig. 3.15 Activation mechanism by sliding magnets (Hosokawa K, et al (1995) Dynamics
of Self-Assembling Systems; Analogy with Chemical Kinetics, Artif Life, 1:413-427
©1995 MIT Press)

Motor

Motor Mount

Circuit Board
Chassis

IR Transmitter

Fixed MagnetIR Receiver

Movable Magnets
and Holder

Fig. 3.16 Mechatronic self-assembly system by Klavins (Klavins E (2007) Programmable
Self-assembly, IEEE Control Syst Mag, 27(4):43-56 ©2007 IEEE)

3.4 Physical Models of Self-reproduction 55

Fig. 3.16 (continued)

e e
a a

b

a
b

e

b
e

a

c
a
c

e

c
e

a

e e
a a

b

a
b

d

b
c

a

c
a
c

d

c
b

a

r5 r6

a
a

a
a
a

a
b
c

a
c
b

ar5

b
a
a
b

c

c
c
a

b
a
c

b

e
a
a
b

e

c
e
a

b
a
c

b

e
a
a
b

d

c
e
a

b
a
c

d

r1 r3 r4

e
a
a
b

c

c
e
a

b
a
c

b

c
a

b

a
c

b

e
a
a
e

c

c
e
a

b
a
c

b

c
a

b

a
e

b
r2

e
a
a
b

d

c
e
a

b
a
c

b

c
a

b

a
c

b

e
a
a
b

d

c
e
a

b
a
c

b

c
a

b

a
e

b
r9

Fig. 3.17 Assembly rules to maximize the yield of hexagons (Klavins E (2007) Programm-
able Self-assembly, IEEE Control Syst Mag, 27(4):43-56 ©2007 IEEE)

3.4.2 Mechatronic Self-assembling System by Klavins

The model by Eric Klavins uses units which carry magnets like the ones by
Hosokawa but which also are mounted with motors and microprocessors so that
connections made by magnets can be disconnected [12]. Moreover, these units are
capable of exchanging information with each other through digital communica-
tion. When these units are placed floating on an air hockey table and are randomly
agitated by fans placed around the table, the units start colliding with each other.
When the magnets of two units come close, those units become connected, and at
the same time the two units communicate with each other. Based on the informa-
tion obtained through the communication, they may cut the connection (Fig. 3.16).

Klavins considered when connections should be cut in order to generate more
hexagons, and derived a set of rules (grammar) for maximizing the yield

56 3 History of Self-Organizing Machines

(Fig. 3.17). To do this, he had to model the self-assembly process as a Markov
process. The problem thus became how to increase the number of desired final
products by directly controlling the relevant constants of the numerous reaction
paths in the self assembly process. This research can serve as a foundation for
constructing programmable chemical reaction systems.

Fig. 3.18 Griffith’s self-reproducing system (reproduction of 5 bit sequences) (Griffith S, et
al (2005) Robotics: Self-replication from random parts, Nat 437:636 ©2005 NPG)

3.4.3 Self-reproducing System by Griffith

Saul Griffith constructed a self-reproducing system in which a chain of modules
serving as a seed, together with many single modules are placed on an air hockey
table and agitated, like the system by Klavins in the previous section. The system
can produce a module chain that has exactly the same structure and the same in-
formation as the seed [13]. The modules are rectangular pieces and have ratchets
on each side, which become connected upon collision. When such a connection is
made, the microprocessors on the modules communicate with each other, investi-
gating the internal state of each other’s module. They are programmed to separate
if the connection is found to be unnecessary.

According to Griffith, in order for a system to self-reproduce, there exist mini-
mum requirements for the number of different types of modules and for the num-
ber of possible states of a module. In the case of biological systems consisting of
proteins and nucleic acids, each molecule is a module having one state, and 24 dif-
ferent kinds of modules in total, 20 amino acids and four nucleic acids, are re-
quired. In the system of Griffith, self-assembly is possible with two different tiles
in six different states [14].

References 57

References

[1] von Neumann, J., Burks, A. (eds.): Theory of Self-Reproducing Automata. Univ. Illi-
nois Press (1966)

[2] Freitas Jr., R., Merkle, R.: Kinematic Self-Replicating Machines, Landes Bioscience
(2004)

[3] Penrose, L.S.: Mechanics of Self-replication. Ann. Human Genetics 23, 59–72 (1958)
[4] Penrose, L.S.: Self-reproducing Machines. Sci. Am. 200, 105–114 (1959)
[5] McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activi-

ty. Bull. Math. Biophys. 7, 115–133 (1943)
[6] Turing, A.M.: The Chemical Basis of Morphogenesis. Philos. Trans. Royal Soc.

Lond. B 237(641), 37–72 (1952)
[7] Schrödinger, E.: What is Life? Mind and Matter. Cambridge University Press (1944)
[8] Langton, C.G.: Self-reproduction in cellular automata. Physica D 10, 135–144 (1984)
[9] Tomita, K., et al.: Graph Automata; Natural Expression of Self-reproduction. Physica

D 171(4), 197–210 (2002)
[10] Tomita, K., et al.: Automatic Generation of Self-Replicating Patterns in Graph Auto-

mata. Int. J. Bifur. Chaos. 16(4), 1011–1018 (2006)
[11] Hosokawa, K., et al.: Dynamics of Self-Assembling Systems; Analogy with Chemical

Kinetics. Artif. Life 1, 413–427 (1995)
[12] Klavins, E.: Programmable Self-assembly. IEEE Control Syst. Mag. 27(4), 43–56

(2007)
[13] Griffith, S., et al.: Robotics: Self-replication from random parts. Nat. 437, 636 (2005)
[14] Griffith, S.: Growing Machines, PhD Thesis. MIT (2004)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 59–75.
springerlink.com © Springer 2012

Chapter 4
Basics in Mathematics and Distributed Algorithms

Abstract. In this chapter, we study briefly the mathematical foundations for build-
ing self-organizing mechanical systems. First, we discuss diffusion dynamics in a
physical continuum, and then introduce reaction-diffusion systems that generate
spatial patterns, and cellular automaton models which behave like those conti-
nuous systems in discrete state, space and time. Since the actual hardware realiza-
tion of self-organizing mechanical systems often utilizes digital control and
communication, some typical problems with such distributed information systems
will be discussed.

4.1 Distributed System and Components

The behavior of an entire self-organizing system is determined by the characteris-
tics of its individual components, their interactions, and external influences. For
‘mechanical’ systems, these factors are either physical (such as dynamic characte-
ristics, interactions of forces, and disturbances), or informational (such as algo-
rithms, communications, and sensor inputs). Most of the systems we discussed in
Chapter 3 consist of components with simple functions that make mechanical
connections, while those we introduce in the rest of the book use components
equipped with microcomputers.

When microprocessors are used in components, the characteristics and interac-
tions of components can be of a complexity limited only by the hardware of the
processors, and it is also possible that each component functions differently from
others. Having said that, in order to achieve the flexibility, the scalability, and the
fault tolerance discussed in Chapter 1, the self-organizing systems are required to
have components that are homogeneous (or slightly heterogeneous)1, and their in-
formational interactions should be local and symmetric. Our aim is to let compo-
nents develop different functionalities through local interaction starting with
asymmetrical initial conditions and boundary conditions (inputs from outside).

1 Though the term ‘homogeneous’ refers to a whole system which is composed of and

filled with the same components, it is often used in this book and other works in the
phrase “homogeneous component”, referring to a component of a homogeneous system.
Similarly, the term ‘slightly heterogeneous’ here implies that the system is composed of a
few types of components.

60 4 Basics in Mathematics and Distributed Algorithms

Since self-organizing mechanical systems are physical systems, any mechanical
connections are fundamentally local. What the locality requirement actually means
is that the interactions, or the informational connections, between components
must be realized through the mechanical connections. On the other hand, informa-
tion systems usually allow direct communications between components that are
physically distant, and various network configurations such as those shown in Fig.
4.1 are used. However, in the case of the configuration shown in 4.1(a), addition
of one new node requires introduction of connections with all existing nodes, and
thus scalability is not realistically attainable. Furthermore, in the case of the confi-
gurations in Fig. 4.1(b), 4.1(c), 4.1(d), removal of one particular component
breaks connectedness of the whole, so that these are not very fault tolerant. The
bus connection which is frequently used in computer networks works like a fully
connected topology as in Fig. 4.1(a) when the number of nodes is small. Since the
nodes are only connected to the bus signal line, there is excellent scalability. As
the number of nodes increases, however, this desirable property is not maintained
and the system has to be structured into a hierarchical system of subsystems, each
with hubs. Even in such case, scalability and fault tolerance are not easily main-
tained. Therefore, the locality requirement here is to limit the possible connection
topology of graphs to be planar (Fig. 4.1(e)) or three dimensional, so that neigh-
borhood relations in a graph are similar to neighborhoods in physical space.

The requirement of symmetry means that the components in any location have
the same functions (homogeneity), and for each component the method of select-
ing connections is the same, as in Fig. 4.1(e), so that components interact in the

 (a) Fully connected (b) Star (c) Ring

 (d) Tree (e) Planar (f) Spanning tree

Fig. 4.1 Network topologies

4.2 Diffusion 61

same way in any direction. As the behavior of a deterministic system is uniquely
determined if the components’ functions and initial states are made homogeneous,
we assume in self-organizing systems arbitrariness and variability of initial and
boundary conditions or probabilistic behavior in each component’s function.

When all the interactions between components are assumed to be local, there is
no way for two distant components to be set to precisely the same time (asynchro-
ny). Moreover, there is no way for them to immediately share information about
the entire system (inaccessibility to global information). The symmetry require-
ment also dictates that components do not carry any information by which one can
be identified from among the others (anonymity).

We aim for a system that organizes by itself through such symmetric local inte-
raction. In fact, requirements such as locality, symmetry, asynchrony and anonym-
ity are too strong for the entire system to develop specific desired functions.
Therefore for example, in Chapter 8, when we discuss in detail the motion control
of robots, some of these requirements are intentionally neglected or relaxed. In
other cases, we try to meet these requirements as fully as possible and then find
out what kind of global functions can emerge.

Hereafter, in order to gain some understanding of the behavior of systems that
interact symmetrically and locally, we focus on a mathematical model of the dif-
fusion process, one of the simplest processes in a continuous space. It can be re-
garded as the limit of a distributed system as the number of components increases.
Diffusion is a process making the entire system uniform, but we will see that it can
also generate some uneven patterns over the entire system under specific boundary
conditions, or with dynamic characteristics of components.

4.2 Diffusion

4.2.1 Diffusion Equations

When a drop of ink falls in water, the color of the ink will gradually spread throughout
the water. This is an example of the diffusion process, the most basic phenomena that
are caused by local and symmetric interactions satisfying the law of conservation. A
diffusion system is used as a model not only for physical phenomena such as heat
transfer and chemical diffusion but also for consensus formation processes among
numerous autonomous components. In the simplest case, a system of two components
is described by the following mutual interactions.

 ds1/dt = D(s2 − s1),

 ds2/dt = D(s1 − s2) , (4.1)

where s1 and s2 are variables (real number) representing component states, t
represents the time, and the coefficient D is a positive constant. Since the differ-
ence Δ = s1 – s2 of the two state variables satisfies

62 4 Basics in Mathematics and Distributed Algorithms

 dΔ/dt = − 2 D Δ , (4.2)

the difference Δ asymptotically approaches zero, which means that s1 and s2 con-

verge to the same value as time passes. The convergence is faster when D is
larger.

If we increase the number of components, place them in a straight line, and set
the interactions between neighboring components to be the same, the following re-
lation holds:

 dsi / dt = D((si+1 − si) + (si−1 − si)) , (4.3)

where the integer indices i indicate the order of the components in the line.
If we further increase the number of components to infinity, using the density

ρ(x) at a point x as the state variable, we obtain the following:

 dρ /dt = D d2ρ /dx2 . (4.4)

Extending this equation to two or three dimensions, we obtain the following diffu-
sion equation:

 dρ /dt = D ∇2ρ, (4.5)

where ∇2 is the Laplacian. For spatial coordinates (x, y, z),

 ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 . (4.6)

In any of the above cases, diffusion causes all the state variables to eventually
converge to the global average value even while each approaches its local average
value. By taking the sum or the integral of the entire system, the right hand side of
the equation always becomes zero. Hence, the sum of s or the integral of ρ over
the space is preserved (the law of conservation). The larger the diffusion coeffi-
cient D is, the farther and the more rapidly homogenization proceeds.

The systems described above only converge to uniformity. When there are
sources and sinks in the system, however, there may be gradients of variables. Let-
ting σ denote the volume of the flow at a source / sink per unit time (negative val-
ues if there is a sink):

 dρ /dt = D ∇2ρ + σ. (4.7)

If the total sum of the flow is zero, there is an equilibrium state in which the left
side of the equation is zero, namely

 D ∇2ρ = − σ . (4.8)

For example, in a system with a source and a sink with equal amounts of flow, any
points other than these two points are in an equilibrium state described as

 D ∇2ρ = 0 , (4.9)

and in the one dimensional case, the distribution of ρ becomes linear between the
source and the sink.

4.2 Diffusion 63

In actual processes, as discussed in Section 2.5, it is often the case that a source
and a sink with states fixed to constant values define the boundary condition of a
closed system, yielding an equilibrium state with a linear gradient between the
source and the sink.

4.2.2 Gradient Field

As we have seen, a diffusion system with a source and a sink creates a scalar field
with non-zero gradient. The vector field of this gradient creates a flow field in the
system. Using the nabla operator

∇ = (∂/∂x, ∂/∂y, ∂/∂z) , (4.10)

the gradient of a scalar field p is given as a vector field

grad p = ∇p = (∂p/∂x, ∂p/∂y, ∂p/∂z) . (4.11)

The divergence of a vector field u, given as

 div u = ∇ · u = ∂ux /∂x +∂uy /∂y +∂uz /∂z , (4.12)

is the sum of inflow into and outflow from a unit volume around a point (x, y, z).
When p is a diffusion field, the divergence of its gradient is given as

div (grad p) = ∇ · ∇p = ∇2p, (4.13)

and from Eq. (4.8), it is equal to the amount of flow coming out of the source or
going in the sink. Where there is no source or sink, the divergence of the vector
field is zero, meaning that it represents incompressible flow.

In addition, the rotation, defined as

rot u = ∇×u = (∂uz /∂y−∂uy /∂z, ∂ux /∂z−∂uz /∂x, ∂uy /∂x−∂ux /∂y) (4.14)

satisfies the relation

∇×(grad p) = ∇×(∇p) = (∇×∇)p = 0 , (4.15)

showing that the gradient of any chosen scalar field is a vector field without a vor-
tex, i.e., rotation of flow.

4.2.3 Pattern Formation by Reaction-Diffusion System

When multiple autonomous components which have their own dynamics interact
by diffusion, the whole system becomes a reaction-diffusion system [1, 2]:

dρ /dt = f (ρ, t) + D ∇2ρ , (4.16)

where the first term in the right is the autonomous (reaction) term, and the second
is the diffusion term. This type of system is used as a model for chemistry and

64 4 Basics in Mathematics and Distributed Algorithms

biology. Because of the reaction term, the entire system may show various beha-
viors. When the system without the diffusion term, the reaction system, has more
than one stable equilibrium state, the system with diffusion may exhibit various
patterns depending on the initial state. If the reaction system has a unique stable
equilibrium point, however, the entire system settles at this equilibrium regardless
of the initial conditions and characteristics of the reaction term. It seems clear that
as diffusion puts the system into uniform equilibrium, combining stable reaction
with diffusion results in a stable and uniform entire system.

However, things can be quite different when two state variables are involved.
Alan Turing, who created the foundations of computer science, demonstrated that
introduction of diffusion into a stable reaction system with two variables may lead
to instability [3]. To illustrate this, we consider the following reaction system with
two state variables u and v:

 du/dt = a u − b v,

dv/dt = c u − d v , (4.17)

where a, b, c and d are positive coefficients.
Let us investigate the stability around the equilibrium point (0, 0) of this sys-

tem. In general, the solutions to a system of linear differential equations like this
are the combination of two solutions of the following form expressed with the
complex eigenvalue λ and the exponential function exp(x):

(u, v) = Re (exp(λ (t+t0)))(u0, v0) , (4.18)

where Re(x) denotes the real part of a complex number x.
Letting λ=p+q i with i denoting the imaginary unit, we have

Re(exp(λt)) = exp(pt)cos(qt),

so that the solutions will diverge when the real part p is positive and will converge
to zero when p is negative, independently of the imaginary part q of λ. In other
words, the equilibrium point is stable when the real parts of all the eigenvalues are
negative.

In order to determine the eigenvalues, we substitute equation (4.18) for u and v
in equation (4.17). Since differentiating the exponential with respect to t is equal
to multiplying the exponential by λ, we obtain the following:

λ u0 = a u0 − b v0,

λ v0 = c u0 − d v0 . (4.19)

Here, in order for the non-zero solutions for (u0, v0) to exist, the determinant of

the coefficient matrix of the following system of linear equations

0 = (a − λ) u0 − b v0

0 = c u0 − (d + λ) v0 (4.20)

4.2 Diffusion 65

should be zero. Equivalently,

−(a − λ)(d + λ) + b c = λ2 −(a−d)λ + b c − a d = 0 (4.21)

should hold. The solution of this quadratic equation gives the eigenvalues λ. The
relation between the roots and the coefficients here dictates that the sum of the two
eigenvalues is (a − d) and their product is bc − ad. This shows that whether the ei-
genvalues are real or complex numbers, the conditions for both of their real parts
to be negative are

0 < a < d, a d < b c . (4.22)

When these conditions are satisfied, if the eigenvalues are real numbers the con-
vergence is asymptotic, while if they are complex numbers the convergence is os-
cillatory (Fig. 4.2(a) and (b)).

Now, we consider two systems of (u1, v1) and (u2, v2) that satisfy equations
(4.17) and (4.22), and join these two stable systems via the following diffusion in-
teractions of u and v:

 dui /dt = a ui − b vi + Du(uj − ui),

 dvi /dt = c ui − d vi + Dv(vj − vi), (4.23)

where the indices (i, j) are either (1, 2) or (2, 1). If we add up equations (4.23)
with regard to u and v respectively, the diffusion terms are cancelled out. Equiva-
lently, by substituting

U = u1 + u2, V = v1 + v2 , (4.24)

one can obtain equation (4.17), which indicates that (U, V) is stable around (0, 0).
On the other hand, regarding the new variables

Δu = u1 − u2, Δv = v1 − v2 , (4.25)

the following equations hold:

 dΔu/dt = (a − 2Du)Δu − b Δv ,

 dΔv/dt = c Δu − (d + 2Dv)Δv . (4.26)

The first stability condition in (4.22) of this new reaction-diffusion system is satis-
fied if a > 2Du holds. However, when Dv is sufficiently large, we have

 (a − 2Du)(d + 2Dv) > b c , (4.27)

and therefore the second condition in (4.22) is not satisfied, leading to instability.
In this case, a little fluctuation from the equilibrium state will cause Δu and Δv, or
equivalently, ui and vi, to diverge as time passes. This phenomenon is called

Turing instability.

66 4 Basics in Mathematics and Distributed Algorithms

u

v

(a) (a, b, c, d) = (1, 6, 3, 8)

u

v

(b) (a, b, c, d) = (1, 2, 3, 2)

Δu

Δv

(c) Instability by diffusion

Fig. 4.2 Behavior near the stable equilibrium point. (c) is the behavior of the system (4.23)
with the reaction terms of (b) and diffusion terms Du=0.1, Dv=4.

Note that in case of linear reaction terms as in (4.23) the divergence will
progress to infinity, but in general physical or chemical systems there is non-
linearity in the system that prevents divergence. For instance, if we replace au in
the reaction term with au(1 − hu2), the system will behave just as the case of au in
the neighborhood of (0, 0), but it does not diverge because −ahu3 grows rapidly as
u becomes larger.

4.2 Diffusion 67

Let’s look at this instability in a continuous space. Consider the following one
dimensional reaction-diffusion equations of density variables u and v on axis x
with the same reaction terms as above:

du/dt = au − bv + Dud2u/dx2
 ,

dv/dt = cu − dv + Dvd2v/dx2 . (4.28)

The conditions for stabilization without the diffusion terms are also given by
(4.22) for this case. Now, we add to the equilibrium state a small fluctuation:

 (u, v) = Re exp(i k(x+x0)) (U, V) , (4.29)

where U and V are functions of time t only. Equation (4.29) indicates that the
graphs of u, v are sine curves with amplitude U or V and wavenumber k (wave-
length 2π/k) (Fig.4.3). Substituting this for u and v in (4.28) just as before, we ob-
tain the following:

dU/dt = (a − Du k2)U − bV ,

dV/dt = c U − (d + Dv k2) V . (4.30)

When Du is sufficiently small and (a − Du k2) > 0 holds, the first condition in
(4.22) is satisfied. The second stability condition is expressed as

 (a − Du k2)(d + Dv k2) < b c . (4.31)

When Dv is sufficiently large, the left hand side becomes larger than bc near the
wavenumber kc as seen in Fig.4.4, and therefore the inequality does not hold.
Thus, fluctuations in such wavenumber grow like a wave pattern. In the case of
two dimensional space, it appears as a stripe pattern called a Turing pattern.

In equation (4.17), u is called activator because when u increases, both u and v
increase, while v is called inhibitor because increase in v will result in decrease of
u and v. Diffusion coefficients satisfying Du << 1 and Dv >> 1 will lead to insta-
bility. In short, the Turing pattern is generated when the activators work locally
and the inhibitors work at a distance.

x
u U2π/k

b c

a d

−kc kc

k

(a − Du k2)(b + Dv k2)

Fig. 4.3 Sinusoidal wave fluctuation Fig. 4.4 Wave length and stability
measure

68 4 Basics in Mathematics and Distributed Algorithms

Let us explain the mechanism of pattern generation qualitatively again. Assume
that the system is in an equilibrium state, and that at some point an activator u in-
creases locally by a small amount (Fig. 4.5(a)). This activation results in increase
of both u and v. In the case without diffusion, the increased v in turn works to sup-
press the further increase of u and v, and the system stabilizes at the equilibrium
again. But with diffusion, since the inhibitor diffuses away faster than the activa-
tor, inhibition at the site of the activator is insufficient to stop the increase of the
activator. Meanwhile, in the neighborhood of this site, both the inhibitor and the
activator spread through diffusion. Since the inhibitor diffuses before the activator
does, both are inhibited and the activator does not increase. As a result, an undu-
lating shape as shown in Fig.4.5 appears. If there are plural peaks, their surround-
ing plains interfere with each other, and peaks do not approach each other closer
than a certain minimum distance. On the other hand, where peaks are far apart,
new peaks will appear when there are fluctuations. Thus, a state of equilibrium
will be reached in which there is a spatial wave pattern (Fig. 4.5(c)).

u v
u

v
u

Fig. 4.5 Generation process of pattern

The above described a case of a stationery pattern in an equilibrium state. Be-
low is a system that presents a similar pattern that travels across the space:

du/dt = u (1 − u)(u − a) − v ,

dv/dt = ε (u − γ v) , (4.32)

where 0 < a < 1/2, γ > 0, and 0 < ε << 1. Although (0, 0) is a stable equilibrium,
this system does not behave as simply as the case of Fig. 4.2 due to its non-
linearity. Instead, depending on its initial state, it may exhibit impulsive behavior,
growing for a while and then settling back to the origin. If we add diffusion to this
system, a stimulus given to a single point induces an excited state which travels
like waves. This system is different from the Turing pattern which is generated by
instability. When an initial spiral pattern is introduced, the system sustains a spiral
pattern which expands outward as it rotates (it is possible to generate patterns like
the one in Fig. 4.8).

A particularly famous example of various behaviors as above is the Belousov-
Zhabotinsky chemical reaction (BZ reaction). This system exhibits phenomena
such as oscillating color changes of a solution in a beaker or concentric circles and
spiral color patterns in a Petri dish solution.

The above models for the generation of static or dynamic space patterns may
account for the generation of various shapes and skin patterns of biological organ-
isms (See Section 2.5).

4.3 Cellular Automata 69

4.3 Cellular Automata

Discretization of space and time of the above systems is done to transform a con-
tinuous system described by differential equations to one described by difference
equations. If we go further and set each of these discrete segments to have a li-
mited number of discrete states (finite state), we obtain cellular automata [4, 5].

A cellular automaton consists of cells aligned in a grid, which change their
states according to their interactions with neighboring cells. The notions of neigh-
borhood typically used in the case of two dimensional square lattices are the von
Neumann neighborhood, which consists of the four cells neighboring the central
cell on each of the four sides, and the Moore neighborhood, consisting of the eight
cells surrounding the central cell. The states of all cells are updated synchronously
at discrete time intervals. State transition rules determine the state of a cell in the
next time based on the current state of the cell and those of neighboring cells. It is
possible to use cellular automata to model a physical, chemical, or biological
system, but it is also possible to create a system that behaves completely different
from any physically real phenomena.

4.3.1 Field of Diffusion

If we change our one dimensional diffusion equation (4.3) to have discrete spatial
positions and discrete times, the following difference equation is obtained:

si (t+1) = si (t) + D ((si+1(t) − si (t)) + (si−1(t) − si (t))) +σ . (4.33)

Since a cellular automaton has only a finite number of states, s is kept inside this
range.

For an arbitrary dimension, given a cell i and its neighborhood j, let the differ-
ence Δ be

Δi = Σj (sj (t) − si (t)) . (4.34)

Then, by simplifying equation (4.33) as below, we obtain a pseudo-diffusion
system:

() 1, 1,

(1) (), 1,0, 1,

() 1, 1,

i i

i i i

i i

s t

s t s t

s t

+ Δ >⎧
⎪+ = Δ = −⎨
⎪ + Δ < −⎩

 (4.35)

In this system, sources and sinks can be created by fixing the values of some state
variables to the maximum or the minimum.

Another similar pseudo-diffusion system is given by

si (t+1) = minj sj (t) + 1 , (4.36)

70 4 Basics in Mathematics and Distributed Algorithms

where the first term on the right hand side is the minimum value among the states
of a cell and its neighborhood cells. By this rule, the state of each cell becomes
greater at most by 1 than the minimum of the states of cells in its neighborhood,
and therefore, if there is a sink fixed at s = 0, then the state of a cell at distance d
from the sink is no more than d. In other words, if a cell has a state s, it means that
there is no sink among the cells located within the circle around that cell with ra-
dius s. Conversely, by using a sink, the states of cells located within radius r from
the sink are kept less than r. This mechanism is useful for suppressing the beha-
vior of surrounding components in the mechanical systems discussed in the chap-
ters that follow (see Section 5.5.2).

Since diffusion systems with discrete states as described above have the quanti-
zation problem discussed in the following section, in order for the diffusion effect
to reach the entire system, it is in general necessary to increase the number of
states as the size of the cell space increases.

4.3.2 Flow Field

We showed in the previous section that the gradient (grad operation) of the equili-
brium states of a diffusion field can represent incompressible flow. In Chapter 8,
we need to introduce a flow field in a cellular system. Is it always possible to gen-
erate a flow field using a diffusion type of cellular automaton?

S
ta

te
 v

ar
ia

bl
e

Position

Source

Sink

Initial state

Equilibrium state

Fig. 4.6 A problem with discrete diffusion field. In equilibrium state, gradient is zero ex-
cept in some neighborhoods of the source and the sink.

For example, consider a one dimensional finite cell space with uniform initial

states. We assume a source and a sink placed at the ends, as shown by grey circles
in Fig. 4.6. In this case, the effect of diffusion is strong near the source and the
sink, and is weaker in points away from them. In a system with continuous states,
however small the effect is, it is sufficient to cause some change in the states as
time passes, and the system eventually reaches an equilibrium state with a uniform

4.3 Cellular Automata 71

gradient. However, in a system with discrete states, at locations distant from the
source and the sink, state transitions do not happen if difference from the neigh-
boring states is insufficient. This means that except for areas near the source and
the sink, it is impossible to generate a vector field of flow.

An effective way to resolve this problem is to magnify the state variables pe-
riodically and to introduce aperiodicity or probabilistic characteristics. In the si-
mulation shown in Fig. 4.7, the difference between state variables of neighbors is
calculated in modulo, and updating is carried out probabilistically. As a result, a
gradient in the modulo is generated with initial and boundary conditions similar to
Fig. 4.6. It is also possible to design a cellular automaton which generates a vector
field directly. Note that such discrete systems may not have those properties such
as zero-divergence or zero-vortex that a continuous system would have, and that
in some cases they may oscillate or a vortex may remain.

source

sink

Fig. 4.7 Simulation of diffusion realized by expanding state variables. State variables are
integers ranging from 0 (white) to 15 (black).

4.3.3 Game of Life

A particularly well known cellular automaton is the Game of life. In the Game of
life, each cell has two possible states, which are usually represented by white and
black cells and are called dead or alive. The state transition depends on the num-
ber of live cells in the Moore neighborhood, and follows these rules:

• Reproduction: any dead cell neighbored by exactly three live cells becomes a
live cell

• Sustainment: any live cell neighbored by two or three live cells stays alive
• Death: any cell other than the above two cases dies.

Although this system has only two possible states and is driven by simple rules, it
can generate a wide variety of patterns including ones that oscillate or resemble

72 4 Basics in Mathematics and Distributed Algorithms

biological reproduction, depending on the initial pattern. For further details, please
read the references or do experiments with computer programs by yourself.

It is also possible to create a system that generates dynamic patterns like BZ
reactions by extending the Game of Life [6, 7]. For example, we can extend the
possible states to integers from 0 to n; 0 is alive, from 1 to n − 1 represents in-
fected, and n is sick. The state transition rules are as follows:

• Any live cell (state 0) changes its state to [A/k1] + [B/k2]

• Any infected cell (state 1, ..., n − 1) changes its state to [(si +Σsj)/A]+g

• Any sick cell (state n) becomes a live cell (state 0)

where A and B are the number of infected and sick cells in the neighborhood, re-
spectively, k1, k2, and g are positive parameters, and si, sj are states of the cell and
its neighbors, respectively. The [x] carries out the operation within the brackets
upon the real numbers, and rounds the result down to an integer. If the obtained
value is greater than n, n is made the result, but otherwise the obtained value is
made the result. Depending on the value of g, the system generates dynamic pat-
terns that oscillate, rotate as swirls moving outward, etc. (Fig. 4.8).

Fig. 4.8 A simulation example

4.4 Distributed Algorithms

In the case of physical phenomena such as a diffusion process, or the case of stan-
dard cellular automata, it is assumed that the entire system is synchronized with
unique time and a local state variable is passed to all cells in the neighborhood at
the same time, without fail. However, when components are physically imple-
mented, things do not go as assumed in the ideal case, and various problems that
are common in distributed information systems arise due to asynchrony, and de-
lays and errors in communications. Distributed algorithms are introduced for re-
solving such problems of distributed information systems. In this section we ex-
plain some typical examples of such problems. Here we follow the standard

4.4 Distributed Algorithms 73

terminology for information systems and refer to a component as a process, and to
interactions between components as communications [8, 9].

4.4.1 Leader Election

Even with a distributed system, it is sometimes necessary to select a special
process for centralized problem solving. In the following chapters, we will en-
counter the cases where system control is to be centralized. In other words, from
among similar processes one is chosen which controls all the others. This is called
leader election. When each process carries a unique identifier (ID), this problem
can be reduced to that of finding the minimum or maximum value, for which vari-
ous algorithms have been proposed.

For instance, in order to find the maximum ID, first each process sets its ID
number as the value of a variable x. Then, two processes compare their x and
select the one with the larger x as the winner. The loser set its x to that of the win-
ner. By carrying out this comparison procedure for all neighboring pairs initially
and every time there is an update, eventually all the processes will have the same
x. Then, the process whose ID is the same as x is chosen as the leader. Even in the
case where no ID is available, if the processes can generate random numbers
which are different from each other, it is possible to select a leader using the same
algorithm.

However, if the total number of processes is unknown, there is no way to tell
when the selection process is complete. In many mechanical systems there is no
need to choose a single leader for the entire system, as long as the communication
neighborhood coincides with the range of physical interactions. In that case it suf-
fices to choose a leader from among processes within a certain distance and carry
out centralized processing within that range.

Although selecting a leader is beneficial to ensure system-wide consistency, an
advantage of a centralized system, the system may lose advantages of a distributed
system such as efficiency, fault tolerance and scalability. Therefore, the system
should resume distributed control once the task that required centralized
processing is over.

4.4.2 Spanning Tree Construction Problem

In a distributed system, message relaying is necessary for communication between
two processes that do not have a direct link. If the route from the sender process to
the receiver process is unknown, the only thing the sender can do is to broadcast
the message and wait for the response. If processes receiving this message then
broadcast it, this will result in cumulative proliferation of this same message in the
system. In order to avoid this, it is necessary to introduce a mechanism to restrict
duplicated messages or to limit the life time or travel distance of a message.

If a particular route for communication is fixed in advance, communication be-
tween remote processes becomes much easier. When the whole system is
represented as a graph, in which a process and a communication path are

74 4 Basics in Mathematics and Distributed Algorithms

represented by a node and a link respectively, the problem is to find a tree struc-
ture without a loop that connects all the nodes. Such a tree is called a spanning
tree. As shown by the heavy lines in Fig. 4.1(f), in a spanning tree a path between
any two nodes is uniquely determined. Once a spanning tree is constructed, it is
possible to introduce a hierarchical control structure over the whole system. The
spanning tree is also used for solving problems such as the broadcast problem of
sending the same data to all processes, the initialization problem where one of the
processes transforms all the others into a particular state, and the leader election
problem discussed in the previous section.

As is obvious from Fig. 4.1(f), however, communication relying only on the
spanning tree lessens the advantage of distributed systems in speed and reliability.
Moreover, in the mechanical systems described in the following chapters, the
physical connections between components change with time, and the structure of
the connections among processes is not fixed either. In such cases, communication
using the spanning tree has certain limitations.

4.4.3 Exclusion Control

Assume that a resource is shared by several processes, but it is available only for
one process at a time. In such a case, it is necessary to grant one process an exclu-
sive access to the resource, while forbidding access by other processes. Such a
mechanism is called exclusion control, or mutual exclusion control. If exclusion
control does not work, deadlocks may occur, as we explain below, or there may be
starvation of a process that is never granted access to resources.

4.4.4 Deadlock

Assume that two resources A and B are used exclusively by a process, and that
processes 1 and 2 both require both resources A and B. If process 1 takes resource
A while process 2 takes resource B, then both the processes will have to wait for-
ever for the other resource to be released. Such a situation is called deadlock, a
phenomenon where multiple processes wait for events that can never happen. In
this example, if either of the processes gives up and releases the resource, the
deadlock will be resolved.

Even for a single processor system, deadlocks are common bugs found in a
program that consists of several subprograms. Deadlocks happen often in distri-
buted systems but it is usually difficult to detect them. There are various
algorithms for detecting deadlocks.

4.4.5 Reliability

Reliability both in process behavior and in communication between processes is
crucial for achieving good system performance and resolving the issues discussed
above. Network buses, which are widely used in computer networks, employ

References 75

various techniques to cope with communication failures caused by message colli-
sion. For hardware, a method called TMR (Triple Modular Redundancy) is often
used to obtain reliable results by unreliable components; three components are
used in parallel and the output is determined by majority voting. There is also a
method called N-version programming in which different programs configure the
same function, similar to TMR, to reduce the impact of errors (bugs) in a program.
The dynamic redundancy method reduces incidence of faults by correlating mea-
surements of sensors for different quantities, such as angle, angular velocity, and
angular acceleration, based on their dynamic relations. These and many other me-
thods for improving the reliability of computing systems and control systems
(fault-tolerant design) have been proposed.

These methods often require conditions such as the reliability of each compo-
nent being high enough for there to be small probability of multiple simultaneous
failures in the system, or the failure of a sensor causing its output not to become
arbitrary but rather to be fixed to a predefined value. For a software process, these
conditions are difficult to fulfill, and the above methods are not always effective.
The Byzantine Agreement Problem (or Byzantine Generals Problem) for distri-
buted systems asks how to obtain a correct consensus for action by the entire sys-
tem when some processes fail or malfunction. Several algorithms operating under
various assumptions have been suggested. For further details, please refer to [8, 9].

References

[1] Grindrod, P.: Patterns and Waves: The Theory and Applications of Reaction-Diffusion
Equations. Clarendon Press (1991)

[2] Murray, J.D.: Mathematical biology II: Spatial models and biomedical applications, 3rd
edn. Springer (2003)

[3] Turing, A.M.: Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)
[4] von Neumann, J.: The general and logical theory of automata. In: Jeffress, L.A. (ed.)

Cerebral Mechanisms in Behavior: The Hixon Symp., pp. 1–31. Wiley, New York
(1951)

[5] Ilachinsky, A.: Cellular Automata. World Sci. (2001)
[6] Gerhardt, M., Schuster, H.: A cellular automaton describing the formation of spatially

ordered structures in chemical systems. Physica D 36, 209–221 (1989)
[7] Dewdney, K.: The hodgepodge machine makes waves. Sci. Am. 104 (1988)
[8] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
[9] Tel, G.: Introduction to Distributed Algorithms. Cambridge Uni. (1994)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 77–103.
springerlink.com © Springer 2012

Chapter 5
Artificial Self-assembly and Self-repair

Abstract. In Chapter 2, we learned that biological systems have elaborate designs
that cannot be matched by conventional engineering, thanks to the various self-
organizing mechanisms deployed in each layer of their hierarchy. In Chapter 3, we
summarized several attempts to reconstruct such biological mechanisms artificial-
ly. If we can uncover the principles of these mechanisms through reconstruction
efforts, then we can in turn apply these principles in making devices for our own
purposes. In other words, we proceed from science to engineering. Even if we ob-
tain ideas for basic notions and principles from biological systems, though, when
we actually build devices, many practical issues remain to be resolved. In such
specific problem solving stages, there is no need to look to nature for ideas any-
more; although humans were inspired by birds to create flying machines, the ac-
tual airplanes constructed by humans have quite different structures from those of
birds. The technology or materials currently at hand must be used, and the prob-
lems may be solved with new ideas. The aim of this chapter is to construct artifi-
cial systems like the ones we discussed in Chapter 3, but this time from an
engineering perspective. Specifically, we consider how to make systems which
have self-assembly and self-repair functions.

5.1 Methods for Self-assembly and Self-repair: Homogeneous
System Approach

The unit machine called a "Fractum”, which we discuss in this chapter, is one typ-
ical realization of a distributed autonomous system [1-3]. All aspects of its hard-
ware and algorithms are strictly based on the principles of distributed autonomous
systems, such as homogeneity and local communication. Using such units, we
built a mechanical system that is capable of self-assembly and self-repair. As we
have seen in Chapter 2, biological self-repair depends on the self-reproduction of
cells, and the technology of current ordinary mechanical engineering is not likely
to be able to realize a system whose components can self-reproduce. However, we
don’t think that an artificial self-repairing system cannot be achieved until tech-
nology for self-reproduction of elements is completed. This obstacle can be hur-
dled if the conceptual framework of the system is changed appropriately.

78 5 Artificial Self-assembly and Self-repair

Firstly, even if components cannot self-reproduce themselves, it is sufficient
that only one kind of component is used1. Having only one kind of component is
an advantage for self-repair because any broken component can be replaced by
any other.

Secondly, the components should have the ability to assemble into a system by
themselves. Here, the task of assembly can be further decomposed into two func-
tions. One is the mobility of the component, its ability to move to a suitable posi-
tion. In ordinary machine assembly, a human or a robot would move components
to appropriate positions to assemble them into a machine. In the case of self-
assembly by components, however, they themselves must move to appropriate po-
sitions by some method2.

Another function required is connectivity. If components are to arrange them-
selves into a certain configuration to form a mechanical system, they must remain
at certain geometric positions relative to each other. For that purpose, at least three
connections are required for each component. If each component can connect to
only two other components, the systems can only have a one-dimensional linear
structure. If on the other hand each component can have at least three connections,
desired three-dimensional structures can be built just like chemists build models of
molecules.

Now, if we assume that the components already have connections when the as-
sembly begins, the relative positions of components can be changed by reconfi-
guring the connections (“reconfiguration” hereafter means “replacing connec-
tions”). This means that the mobility of components is equivalent to their
reconfiguration function.

To make components with such functions, each component needs control logic,
and it must also have a certain level of information processing capability. Since
the information processing in this case is autonomous and distributed, communi-
cation between units is also necessary.

So far, we have been using the term component, but realizing the above func-
tions with simple components such as screws and magnets is out of the question.
What we mean here by components is the unit of self-organization we discussed in
Section 1.2. Therefore, in this chapter, we call such components units. (In later
chapters, we call more advanced constituent elements modules. There is no strict

1 This is not a particularly new idea. The cellular model of von Neumann is also based on

the assumption of "a space filled with homogeneous cells that can become any type" It
should be kept in mind that, in this model, a cell of a particular type can differentiate into
29 possible types. This is in effect the same as assuming that the desired component is
available at the desired position any time.

2 The best way to move a component depends on the size of that component (See Section
1.3.2). In von Neumann's kinetic model and Penrose's building block model, components
are assumed to be floating in space, and when they randomly collide it is decided whether
to use this connection in the assembly. However, this kind of assembly by random colli-
sion can be adopted only when the components are very small and the effect of the gravity
can be ignored, not for ordinary sized mechanical systems. On the other hand, if we equip
units with legs or wheels, the system will be reduced to a collection of mobile robots.

5.1 Methods for Self-assembly and Self-repair: Homogeneous System Approach 79

distinction between unit and module, but in general a unit is considered to be a
comparatively primitive component.)

To summarize, our approach features:

1. Homogeneous architecture: the entire mechanical system is made of one kind
of mechanical unit. Namely, all the units have the same hardware and the same
software.

2. Connection capability of units: each unit can connect to multiple (three or
more) units.

3. Connection reconfigurability: each unit has an actuator and can act in concert
with other units to change the connections between them.

4. Information processing and communication capability: each unit has a simple
information processing mechanism and can communicate with other units.

If such units are used in building a mechanical system, it is possible not only that a
faulty unit can be replaced by any other unit but also that the configuration and the
function of the whole system adjusts to the environment. Moreover, the assembly
of the system does not require any external help but can be done by the units
autonomously.

Fig. 5.1 describes our notion of self-assembly and self-repair by a machine based
on this approach [1]. Let us first explain the notion of self-assembly. By self-
assembly we mean units moving themselves into a target configuration by changing
their relative positions. For instance, consider a collection of units that looks like a
lump of clay with indeterminate shape as described in this diagram. The process in
which the lump transforms into the target configuration after it is given information
on the target configuration is called self-assembly. Here, the collection can have
any initial configuration; since a collection of units in one shape (a chair, for exam-
ple) transforming into another shape (say, a table) also is self-assembly. The liquid
metal robot in the film "Terminator 2" is a good example.

Reassembly

Arbitrary
configuration

Formation of the target configuration

Failure detection Removal of faulty units

Fig. 5.1 Self-assembly and self-repair

80 5 Artificial Self-assembly and Self-repair

On the other hand, self-repair is the process whereby after some units of a self-
assembled system become defective, those faulty units are detected and removed,
and the system is reconstructed by delivering spare units to replace the faulty ones.
Spare units can be either stored in a designated part of the system or scattered
throughout the system.

5.2 Hardware for Two Dimensional Units

From the discussion so far, we know that if we use the same units in constructing
a mechanical system, self-assembly and self-repair are possible in principle. The
next question is how to realize such units. Since our goal is to check the feasibility
of the concept, we would like the hardware to be as simple as possible. Therefore,
we consider two dimensional units. In two-dimensional space, the directions of
connections and motions are restricted, which reduces the degree of freedom (the
number of actuators). The algorithms for self-assembly and self-repair also be-
come much simpler than the three-dimensional case.

The first thing to consider is the unit shape. Since we use the same units, pack-
ing them side by side in a two dimensional space (plane) would limit their move-
ment. Crystalline lattices naturally come to mind, but given that we need to allow
the units to have mobility, the unit shape should be geometrically symmetric (be-
cause if a unit has an asymmetric shape, the paths it can take without geometric in-
terference would differ according to its spatial orientation). Tessellations made up
of symmetric shapes, regular polygons in particular, can be made only in three
ways as shown in Fig. 5.2. These are our starting points for our designs of the unit
shape.

Fig. 5.2 Triangular, cubic and hexagonal lattices

Units are more reliable when they have a smaller number of parts and a simpler
structure. The complexity of the unit structure is determined by its symmetry (the
number of necessary connections per unit) and its mobility (the number of direc-
tions that a unit can move). The possible modes of motion for a two dimensional
unit are sliding (movement in a line) and rotation. Another issue is the amount of
torque generated by the actuators. Depending on how much torque is generated,
only a single unit or multiple units are allowed to move at one time. The symmetry
of units constrains the connection structures of two units to be complementary.
We will discuss these issues in Chapter 6.

5.2 Hardware for Two Dimensional Units 81

We chose a hexagonal lattice (Fig. 5.3) in order to satisfy the above require-
ments. In the following design, simple actuators realize both connection and lo-
comotion by rotation. Also, units with this shape have a beautiful complementarity
among themselves. We call this unit a Fractum (Fracta is the plural), standing for
"fundamental component that constitutes a mechanical system".

Ball caster

Permanent
 magnet

Optical
 receiver

Optical
 transmitter

Electromagnet

Optical
 receiver

Optical
 transmitter

Fig. 5.3 Two dimensional unit Fractum

This unit is placed on a flat surface and is supported by ball casters but it can-
not move by itself. The body has a three layer structure, each layer of which has a
special shape consisting of combinations of arcs. There is no internal moving part.
Each of the three layers has exactly the same shape, although the middle layer is
rotated 60 degrees from the other two. Three permanent magnets are embedded
in both the top and the bottom layers, the north pole facing upward. In the middle
layer, instead of permanent magnets, electromagnets are embedded. Each unit has
its own CPU, which controls the polarity of the electromagnets.

The basic mechanism for unit connection and locomotion is explained in Fig.
5.4. When the polarity of the electromagnets is set to be the same as that of the
permanent magnets, an attracting force is generated. This force is used for connec-
tion. To release this connection, the polarity of the electromagnets is reversed.
When an electromagnet is pulled in between permanent magnets, the magnetic

82 5 Artificial Self-assembly and Self-repair

field is constant even when the latter are rotating relative to the former. Thus, one
unit can be used as a bearing for rotation of another unit. Moreover, just like self-
aligning bearings, it has an automatic adjustment function because the center of
each magnet works as the axis of rotation, and hence no additional positioning is
required. The units are also capable of making connections and reconfiguring
those connections. A unit can connect to as many as six other units, and by switch-
ing the electromagnets’ polarities, the relative positions of two units which are
connected to each other can be changed so that the units rotate relative to each
other. Also, the connection can be released so that units detach from each other.
By repeating these procedures, such a collection of units can transport a unit on
the border of the collection by rotating it along the circumference.

N
N

N

N
S

N

N
N
N

Attraction

Repulsion

Rotation
Change in connection

Disconnection

Trasportation

Fig. 5.4 Basic mechanism for connection and motion of units

Finally, we briefly explain the implementation of communication and informa-
tion processing functions of the units. In this model, we use 8 bit microcomputers
as information processing CPUs. Local information exchange between adjacent
units is done with infrared communication devices which allow non-contact serial
communication. An optical transmitter (an LED element) and an optical receiver
(a photo transistor) are embedded in the center of the magnets, enabling bilateral
communication between connected units (Fig. 5.3(a)). As for the power source, it
would be ideal if each unit could run with a built-in battery, but since the elec-
tromagnets consume a large amount of electricity, 12 V DC is supplied through a
cable.

5.3 Preconditions for Self-assembly Algorithms 83

5.3 Preconditions for Self-assembly Algorithms

In order to realize functions such as self-assembly and self-repair, we need a pro-
gram, i.e. an algorithm, that specifies the unit behavior. A copy of such a program
is loaded on the processor of each unit of the system, and each runs separately
and in parallel while communicating with neighboring processors. We should
emphasize here that there are many possible conceptual approaches to these algo-
rithms, and that, depending on the conditions we assume, it can be complex or
simple. As we discussed in Section 1.3.1, in designing for self-organization, the
components are the same in the sense that the functions of one can be carried out
by another.

5.3.1 Unit Identifier

If each unit has a unique identifier, e.g. the processor embedded in each unit has a
unique ID number such as a product ID, we can define an order among the units
based on the IDs. This order can be regarded as a priority order, which is very use-
ful for resolving conflicts among them. The order also ensures that there is one
smallest ID number and one largest ID number (This allows symmetry break,
which we explain later, that in turn allows centralized control).

However, even when there is no identifier available and all the units are iden-
tical both in hardware and software, it is still possible to resolve conflicts or to
elect leaders if each unit is capable of generating a unique random number, as we
mentioned in Section 4.4.1. Still, in order to finish the leader election within a cer-
tain time period, the maximum number of units that the system can contain must
be known.

5.3.2 Method and Range of Communication

When units communicate only through individual information exchanges among
adjacent units, as in the case of a Fractum, successful communication means that
there is a connection and unsuccessful communication means that there is no con-
nection, and therefore a unit can discover its physical connections through com-
munication. In other words, the logical connection of inter-unit communication
exactly corresponds to the physical connection of the units. Such information can
be used as the beginning state for the self-assembly and self-repair algorithms. It is
also possible to get more information by communication between adjacent units
(If all the units exchange messages, they update their local information, and then
exchange messages again. By this procedure, a unit can discover the connectivity
of a neighbor of its neighbor.)

There are other possible communication methods, such as communication over
a common bus channel to which all units are connected, or over a wireless net-
work. In these cases, any two units in the system can communicate in a peer-to-
peer manner (at the cost of loss due to communication traffic congestion).

84 5 Artificial Self-assembly and Self-repair

However, this kind of communication does not reveal any information on the dis-
tance between units (see Section 9.1.3.2).

5.3.3 Spatio-temporal Symmetry Breaking

In considering how to realize self-assembly and self-repair functions, existence of
an absolute coordinate system defined in the space makes a significant difference.
For instance, self-assembly algorithms differ greatly depending on whether each
unit knows its own absolute coordinates (and also its direction) or not. If a unit
knows both its current absolute coordinates and its location in the target area ex-
pressed in the same coordinates, self-assembly is accomplished simply by moving
units outside of the target area towards inside of the area (it is necessary to avoid
collisions if a large number of units rush at once). On the other hand, if there is no
coordinate information available, the algorithm becomes substantially more diffi-
cult, as the units have to determine by themselves their position and orientation in
the target configuration.

Some algorithms may require a time origin. In cases where an initial program is
executed and then communication between units starts after the power is turned
on, the time origin is determined implicitly by turning all the units on at the same
time. In the case of staged self-assembly which we explain in Section 5.5, one of
the units in an undifferentiated group of units plays the role of providing the origin
of assembly. The task of choosing this unit is the same as that of the leader elec-
tion, and the moment the leader is determined is the time origin of the process of
self-assembly. The procedure of breaking the spatio-temporal homogeneity like
this is called symmetry breaking3. It is also a useful method to completely delegate
the power of symmetry breaking to a particular unit (e.g. the unit with the largest
ID number, or the one chosen as the leader).

As we have seen, there are various possible preconditions, and depending on
them the structure of the algorithm greatly differs. In the rest of this chapter, we
discuss two such algorithms, which have the following preconditions:

• Algorithm (I) for self-assembly assumes

(1) No unit identifier
(2) Direct communication only between adjacent units
(3) No symmetry breaking

• Algorithm (II) for staged self-assembly and self-repair assumes
(1), (2) the same as Algorithm (I)
(3’) Symmetry breaking given a priori

The notable feature of these algorithms is that they strictly adhere to the definition
of distributed architecture: that the units are perfectly the same, that no coordinate

3 In organisms, symmetry break happens at the moment of fertilization. The process of bio-

logical development begins from the moment a sperm binds to an ovum, and the direction
of the plane of cell division is determined depending on the position where the sperm
binds.

5.4 Algorithm (I) for Self-assembly 85

information is available in advance, and that the only communication is between
adjacent units. The algorithms (I) and (II) only differ as to whether symmetry is
broken a priori or not. It is interesting to see that such a small difference between
the two algorithms generates a great difference in the functions they can offer.

5.4 Algorithm (I) for Self-assembly

A feature of a homogeneous mechanical system consisting of the same units is
that any unit can be used in any location in the system. In other words, each unit
should have the potential to serve as any part of the system. Therefore, all the
units must be governed by the same software, and this software must contain in-
formation of some sort regarding the target configuration. The self-assembly prob-
lem is that of transforming the units in a random configuration into the target con-
figuration under such assumptions [1].

[Self-assembly Problem]
Consider a collection of units in an arbitrary configuration, though it is required
that all the units are connected to at least one other unit, as shown in Fig. 5.5. Each
unit is given information on the target configuration in advance, but it does not
know its position among the rest of the units. Each unit can discover its local
connections only by communicating with adjacent units to which it is connected.
Given such constraints, how can each unit be driven so as to form the target
configuration?4

Final configurationInitial configuration

Fig. 5.5 Self-assembly problem

5.4.1 Description of the Target Configuration

Each unit can discover its local connectivity only through neighbor-to-neighbor
communication. Thus, we need a way to describe the target configuration by list-
ing the local connections of the units.

4 Note that since we are considering transformations from an arbitrary configuration to the

target configuration, there is no spatial symmetry breaking except for using randomized
numbers in Algorithm (I).

86 5 Artificial Self-assembly and Self-repair

5.4.1.1 Connection Type

There are twelve types of possible connectivity that one unit can have, if rotations
and mirror images are ignored; these are shown in Fig. 5.6. We call these the
connection types. The dot in the center of a hexagon denotes a unit and a line from
the dot to one of the sides indicates that this unit is connected to the unit in that
direction.

e o m p

Y K

X f s

ε λ

Ψ

Fig. 5.6 Connection types of Fracta

e o m p

Y

K X

f

s

ε λ

Ψ

Fig. 5.7 Type transition diagram (distance between types)

5.4 Algorithm (I) for Self-assembly 87

5.4.1.2 Distance between Connection Types

The distance between different connection types is defined by introducing a type
transition diagram (Fig.5.7). The nodes of this diagram are connection types. Two
types in the diagram are connected by a link, if a unit in one type can change into
the other type after a single step movement (30 degree rotation). Distance between
two types is defined as the number of links on the shortest path between them on
this diagram. For example, the distance between type e and type X is three. The
distance calculated in this way gives only the lowest limit, and it reflects the min-
imum amount of effort required for transition from one type to another.

5.4.1.3 Description of the Target Configuration Using Connection Types

Each unit knows its own connection type, and it can find out the connection types
of the units in its neighborhood by communication. Given a unit, we call the list of
the connection types of the adjacent units the adjacent type list.

As an example, let us consider the case where ten units are arranged in an equi-
lateral triangle as in Fig. 5.8. This configuration contains three different connec-
tion types; o (corners), K (side edges), and s (center). In this case, the adjacent
type list of the type o unit is {-, -, -, -, K, K}, that of the type K unit is {-, -, o, K,
K, s}, and that of the type s unit is {K, K, K, K, K, K}. Here, the units are listed in
the order shown in Fig. 5.6 (e, o, m, p, ε, λ, Y, ...)5, and the symbols “-“ placed at
the beginning of a list indicate absence of connections, so that all lists have the
same number of elements.

o

oo

K

K

K

K

K

K

s

Fig. 5.8 Example of a target configuration description

Now we are ready to describe the target configuration using local connectivity
relations only. Let us call the types contained in the target configuration target
types; we describe the target configuration using pairs consisting of a target
type and its adjacent type list. We call the combination of a target type and its ad-
jacent type list a statement. Repetitions of the same statements are omitted in a

5 It is also possible to list the types in the order going around the unit. Although this order-

ing contains more information on the connection configuration, we chose this order be-
cause it simplifies computing the difference, which we discuss in the next section.

88 5 Artificial Self-assembly and Self-repair

description. This means that there are the following three statements for the shape
in Fig. 5.8:

o{-, -, -, -, K, K}.
K{-, -, o, K, K, s}.
s{K, K, K, K, K, K}.

When the target configuration is more complex, or it consists of a larger number
of units, the description may be longer. Given a configuration, the description is
uniquely determined, but there may be multiple configurations that correspond to
a given description. For example, since even if type λ is flipped over, the descrip-
tion is unchanged, so the same description may generate several different configu-
rations, as in chemical isomers.

5.4.2 Strategy for Self-assembly

Based on the representation of the target configuration only using local informa-
tion, we next consider how to build the target configuration. Our strategy is the
following:

1. In order to evaluate quantitatively the difference between the current configura-
tion and the target configuration, each unit calculates its difference measure
(a unit whose difference measure is zero is already a part of the target configu-
ration).

2. Check whether each unit is of the movable type. A movable unit can move as
long as the motion does not cause any part of the collection of units to
disconnect.

3. Estimate the average difference measure by an equation simulating the diffu-
sion of each unit (diffusion field, explained later). If the difference measure of a
particular unit is higher than that of the units around it and it is movable, deci-
sion to activate is made, and then it moves in a random direction.

With this strategy, since the motion of a unit is random, it is not apparent that it
will approach the target configuration. However, if it does approach the target
configuration as a result of a move, its difference measure is decreased and that
makes the next movement of this unit more difficult. Since all the units behave in
this way, the entire collection of units gradually approaches the target configura-
tion. In the rest of this section we give further details of this strategy.

5.4.2.1 Difference Measure

In order to form the target configuration with distributed units, each unit needs to
know which part of the target configuration is closest to its current local situation.
Therefore, for a given unit, to indicate the similarity between its current local situ-
ation (its own connection type and its adjacent type list) and the statements de-
scribing the target configuration, we define its “difference measure” Δ as follows:

Δ(i)＝minj [d(type(i)，typed(j)) + Σk d(ntype(i, k), ntyped(j, k))] ,

5.4 Algorithm (I) for Self-assembly 89

where

 d(a, b) : the distance between type a and type b
 type(i) : the current type of the ith Fractum
 ntype(i, k) : the kth type in the current adjacent type list of the ith Fractum
 typed(j) : the type of the jth target statement
 ntyped(j, k) : the kth type in the adjacent type list of the jth target statement.

This is evaluated at every time step. Specifically, for each statement in the target
description, the distance between the unit’s current type and the type of the state-
ment (the first term) is calculated, and then the unit compares its own adjacent
type list with the adjacent type list of the statement to calculate the distance be-
tween each pair of corresponding units (the second term). Then, for each statement
these distances are summed, and the minimum distance gives the difference meas-
ure Δ of the unit. If a unit becomes a part of the target configuration, its difference
measure becomes zero. When the target configuration is completed, the difference
measure becomes zero for all units.

5.4.2.2 Movable Type

The ability of a unit to move is determined as follows. In situations where many
units are connected to each other, not all the units are movable. A unit’s movabili-
ty depends on several factors: one is the hardware specifications of the Fractum
which determine whether it can move without collision (for example, a type “s”
unit cannot move because all of its slots are filled. Similarly, any unit with four or
more connections cannot move.) There is also a constraint due to the actuator spe-
cification of Fractum that each unit can generate only enough torque to move it-
self. Moreover, units of type “m” and “p” are not allowed to move because parts
of the unit will become disconnected if units of those types move. For the above
reasons, the connection types “e”, “o”, and “ε” are the only movable types.

If we give priority to the units with larger difference measure to be moved first,
one may think that the target configuration will be reached eventually. However,
since units are only capable of local communication, it is not possible to examine
the whole system and select the unit with maximum difference measure. Instead,
we choose to move those units that are movable and have differences measure rel-
atively larger than the local average. The direction of the move is randomly de-
termined. This is due to the fact that it is difficult to determine locally which direc-
tion is the best to move in to facilitate the formation of the target configuration.
Still, if a random move of a unit makes the configuration closer to the target one
(the difference is decreased), the priority of that unit is decreased and the unit is
less likely to move in the next step. This also prevents regression of the formation
process. With this strategy, units to be moved are chosen locally, and multiple
units are allowed to move simultaneously in a large system.

90 5 Artificial Self-assembly and Self-repair

5.4.2.3 Diffusion Field

In order to implement the strategy described above, it is necessary to estimate for
each unit the local average of the difference measure. This is computed using the
diffusion field. The problem of estimating the average value of a certain parameter
with continuous values through local communication is solved by the following
diffusion equation:

∑ −=
=

)(

1
)(/))()((d/)(d

in

j
inixjxKtix

where

 x(i) : diffusion variable of the ith Fractum
 n(i)：the number of fracta that connects to the ith Fractum
 K : diffusion coefficient.

The initial value of the variable x(i) is set to be the difference measure of the unit,
and is changed according to this equation for a sufficient amount of time. The val-
ue of x then can be used as an estimate of the average of the local differences. At
every instance when the connection configuration of the unit changes, the value of
x is reset to its difference measure at that time.

5.4.2.4 Activation Criteria

To determine whether the difference of a unit is larger than the local average, we
use the following criterion.

Gx(i) < Δ(i)

where G is an activation constant which is greater than 1. If this is satisfied, and
the unit is movable, it moves one step immediately (if it is not movable, nothing
happens). This process is called the activation of a unit. It is clear that a unit
whose difference is zero is never activated, and units with relatively large differ-
ence will be activated when x decreases due to the diffusion process.

However, every time a unit moves and the x values of its own and neighbor
units are updated, new differences will be put into x, and the total sum of x(i) tends
to grow rather than remain constant. This is because a movable unit with small x(i)
is activated and possibly will get a larger value after its movement.

To avoid this, we introduce a leak only at movable units.

 LinixjxKtix
in

j
−∑ −=

=

)(

1
)(/))()((d/)(d

where L is the leak constant6. This makes movable units more likely to move.

6 In order to keep x positive, when updated x become negative, 0 is substituted to it.

5.4 Algorithm (I) for Self-assembly 91

Fig. 5.9 Simulation of self-assembly

Although the average of difference measures decreases to zero as the formation
process proceeds, since activation is decided by comparison with this average,
units with relatively large difference are sure to be activated at some time. In this
way, until the formation is complete, units continue to be activated one after
another. When the formation is complete, the difference of all the units converge
to zero, and therefore no further move occurs.

5.4.3 Simulations and Experiments

Computer simulations were made to evaluate the validity of Algorithm (I). We
used an initial configuration where the units are aligned in one row.

1000 simulations were executed aiming to form a triangle from ten units, and
the success rate that the target configuration was reached within 2000 steps was
96.8%. A sample of a successful case is shown in Fig. 5.9. In the unsuccessful
cases the units got caught in a deadlock (a state with no movable units) (Fig. 5.10).

Fig. 5.10 Example of a deadlock. Once a hole is formed, units around the hole can never be
moved again, because this configuration includes no movable units

92 5 Artificial Self-assembly and Self-repair

Fig. 5.11 shows the changes in the totals of difference measure and diffusion
variables for successful cases. Although the plots have an overall direction, they
demonstrate that the search is basically random. Consequently, when the number
of units increases, the convergence rate drops drastically. For example, if we in-
crease the size of the triangle by one row (15 units), the success rate within 4000
steps dropped to 73.4%. In the unsuccessful cases, the units either continued to
move without converging, or were caught in deadlock.

Fig. 5.12 shows an experiment in which Algorithm (I) was executed with real
units [2]. The cables are only for supplying power. Since the same algorithm as
the simulations was used, the units moved basically in the same way. Due to phys-
ical constraints, however, changing of connections failed sometimes, resulting in
unsuccessful assembly when the number of steps was large. This experiment
served its purpose of validating the principles.

100 200 300 400 500 600 7000

10

20

0

30

40

50

Time steps

Average of difference measure

Average of
 diffusion variables

Fig. 5.11 Graph of changes in difference and diffusion

Fig. 5.12 Self-assembly experiment

5.5 Algorithm (II) for Staged Self-assembly and Self-repair

Though Algorithm (I) is successful in the above self-assembly, its effectiveness is
limited; the number of units in the system needs to be exactly the same of that of

5.5 Algorithm (II) for Staged Self-assembly and Self-repair 93

the target, and the success rate goes down for a larger target or for an asymmetric
target.

In the rest of this chapter, we describe Algorithm (II), which tries to resolve
these issues by introducing a coordinate system over the units. By setting a point
of origin in the collection of units, which allows specification of the position of fi-
nished assembly and the axis of symmetry in advance, it is possible to reduce un-
necessary moves (searching cost) greatly, hence enabling assembly of larger scale
and more complex configurations [3].

The outline of Algorithm (II) is as follows: first, select one unit from the group
and set it as the origin of assembly. We call this unit the kernel. This process of
selecting a kernel unit is the symmetry breaking which we discussed in 5.3.3. The
difference between a kernel and other units is simply that a kernel knows that it
has been chosen from among the others, otherwise, all the units execute the same
program. Next, the kernel unit forms a "virtual" network with adjacent units, based
on an assembly blueprint describing every stage of assembly. The blueprint which
we call a description matrix is carried by every unit. This matrix describes how
this virtual network shall develop in each stage.

When the kernel finishes building the first stage of the virtual network, those
units which were incorporated in the first stage layer start expanding the network
further by taking in adjacent units outside the network to build the second stage of
the virtual network. By repeating this process, the third, fourth, and further stages
are built, until the entire body of units coincides with the target shape. We call this
algorithm the onion method because of the way the network expands from a single
kernel by repeatedly growing a layer to surround the previous layer (Fig. 5.13).

Formation of connection network in stage

Kernel

Undifferentiated units circulate

Fig. 5.13 Concept of onion method

94 5 Artificial Self-assembly and Self-repair

5.5.1 Logical Type and Description Matrix

In order to expand the network, there must be units in the area where the network
is expanding. If the entire space is filled with units as in the case of cellular auto-
mata, the task required is simply to form new connections for the network. Here,
though, there are only a finite number of units, and we need to supply units to the
area. This is done by circulation of undifferentiated units. Also, operations are
possible only at positions where units exist. In order to deal with such a situation,
we introduce the new notions of logical connection and logical type. Correspon-
dingly, we now call the connection types we used in Algorithm (I) physical types.
While the physical type of a unit is determined by its physical connections, in Al-
gorithm (II), each unit is regarded to have virtual connections independent of its
physical type.

In the following section, we assume that the space is filled with an infinite
number of units, and consider a method to form a network of logical connections,
starting from a kernel chosen from among those units. In order to adapt this me-
thod to the case where the number of units is finite; it is only required that units
that are included in the network of logical connections stay as they are, while
those that are not included move about freely. In this way, even parts of the logical
connection network that grow into areas where there are no units will be covered
over by units eventually (See the last part of 5.2.2).

Next, we explain the description matrix. Each unit has an assembly blueprint
called a description matrix, which contains information on which logical type a
unit (at a certain stage of assembly and at a certain position within the system)
should have. Each unit uses two parameters, stage and location index, to scan the
description matrix to determine its logical type. A description matrix is a lower
triangular matrix as in Fig. 5.14, where the horizontal axis indicates the location
index and vertical axis indicates the stage.

The initial values are 0 for the stage and −1 for the location index for all the
units except for the kernel unit, which has 0 for the stage and 0 for the location in-
dex. A dash in the matrix indicates that the unit should keep its current logical
type.

5.5.2 Onion Method

To start assembly, a unit needs to be selected to serve as the kernel. This choice
can be made from outside the system, or the units can autonomously select one us-
ing the leader election algorithm described in Section 4.4.1. The unit chosen as the
kernel immediately starts building the logical connection network as specified in
the description matrix. What the kernel actually does is to send out messages to
undifferentiated units to which it is physically connected (an undifferentiated unit
is one whose stage and location index are both undetermined) requesting them to
join in the logical connection network. The message contains the stage and the

5.5 Algorithm (II) for Staged Self-assembly and Self-repair 95

location index of the sender so that a unit which receives it can determine the logi-
cal type which the receiver must adopt from the description matrix. However, the
description matrix does not indicate the directional orientation of that logical type.
Therefore, the unit which receives the message selects a tentative direction of its
logical type at random. After all the units that received messages put their logical
type in random direction, if all the units are satisfied7, the logical network for that
stage is complete.

How to recognize when a stage has been completed is a significant problem.
This is due to the fact that the area of a logical network may be much bigger than
the neighborhood of each unit. It is necessary to detect completion before going on

54321

6 7 8

0

stage

 0 1 2 3 4 5 6 7 8

 0 n

 1 Y e

 2 s o o

 3 ― K K o

 4 ― ― K e o

 5 ― ― ― K e o

 6 ― ― ― ― K e o

 7 ― ― ― ― ― K e o

 8 ― ― ― ― ― ― K e o

location index (i)

st
ag

e
(s

)

Fig. 5.14 Assembly stages and description matrix

7 A unit is satisfied when all the units to which it sends requests through its logical connec-

tions do the same and send requests back to it. When all the units in a stage are satisfied,
the logical network for that stage is complete.

96 5 Artificial Self-assembly and Self-repair

to the next stage. For this purpose, we use the following minimal completeness
propagation algorithm, which uses the properties of a diffusion system discussed
in Section 4.3.1:

[Minimal Completeness Propagation Algorithm]
Each unit is assumed to have a positive integer value called completeness in this
algorithm. Also, an integer threshold value R is decided upon in accordance with
the size of the system. At a given time, the completeness of a non-satisfied unit is
set to zero. In the case of a unit that is satisfied, its completeness in the next time
step is calculated by detecting the completeness of all the adjacent units and add-
ing 1 to the lowest of these completeness values (Fig. 5.15).

t
t
t

i

C
om

pl
et

en
es

s

Location of unit
(a) Time development of completeness distribution when all except for the i-th unit are sa-
tisfied at time 0

t

i

R

t
t

C
om

pl
et

en
es

s

Location of unit

Threshold

(b) Time development of completeness distribution when the i-th unit also becomes satis-
fied at time 4

Fig. 5.15 Minimal completeness propagation algorithm

In this way, once the network for a particular stage is completed, the complete-
ness of every unit increases with every time step, and eventually they all pass the
threshold R. Therefore, given a unit, when all the units within the circle with a ra-
dius R around the unit are satisfied, the unit switches to the next stage. Note that
all the units do not progress to the next stage at one time but rather progress unit
by unit as they are completed. This process is repeated until the last stage de-
scribed in the description matrix.

As we mentioned earlier, as the assembly process progresses, there comes a
time when the logical network must expand farther than the boundary of the phys-
ical units. If undifferentiated units can always be supplied to the points where the

5.5 Algorithm (II) for Staged Self-assembly and Self-repair 97

network is expanding, the network can keep growing as long as there are units
available and eventually take on the physical shape of the target configuration.

In a two-dimensional machine, whatever shape the system takes, its perimeter
is a single closed curve. Using this property, it is possible to supply units easily.

[Unit Supply by Circulation]
A unit is either movable or non-movable depending on its physical type. Just as in
the case of the Algorithm (I), we categorize the connection types “e”, “o”, and “e”
as movable. If we make a movable and undifferentiated unit have some probabili-
ty of rotating one step to the left, any undifferentiated unit located on the perime-
ter of the whole structure can circulate counterclockwise around the logical
network (Fig. 5.13).

5.5.3 Simulation of Self-assembly (Algorithm II)

When applying this algorithm, each unit should follow the steps below:

1. Select a kernel
2. Determine its stage and its location index, determine its logical type
3. Detect the direction of its logical type
4. Transmit its completeness and judge whether the stage should be changed
5. Move undifferentiated units

After step 1, each unit simply repeats steps 2 to 5. The execution of this algorithm
is completely distributed and parallel. Moreover, all the units have identical pro-
grams and data in initial state. The data exchanged by the units include random
numbers for leader election, physical types, stages, requests for logical connec-
tions, and completeness, all of which are expressed as integers.

We conducted a computer simulation to evaluate the algorithm (Fig. 5.16). In
this diagram, the units are indicated with numbers, and the number indicates the
stage of that unit. 0 indicates an undifferentiated unit. In the initial state, the unit in
the middle is the kernel. The process of leader election is omitted and so the kernel
is at the center from the beginning. Lines between units indicate logical connec-
tions. Using the description matrix given in Fig. 5.14, we ran 1000 simulations
from the same initial state, and in all cases the assembly was successfully com-
pleted (since the algorithm uses random numbers, the simulations are different
every time even with the same initial configuration). The average time required to
reach the final stage was 590 steps.

Next, we ran simulations with a more complex target configuration of 91 units
(5 of these kept as spare parts). The result is shown in Fig. 5.17. Out of 1000 si-
mulations we ran, in 979 cases the assembly was completed within 5000 steps. In
these cases, the last stage (25th stage) was reached after 2600 steps on average. In
the unsuccessful cases, either the assembly was not complete after 5000 steps, or
the system fell into a deadlock due to a hole formed during the assembly. We

98 5 Artificial Self-assembly and Self-repair

also experimented with several other target configurations, and in most cases, the
assembly was successful with high probabilities.

5.5.4 Simulation of Self-repair (Algorithm (II))

Algorithm (II) can be extended easily into a self-repair algorithm, because of its
hierarchical structure. In the rest of this chapter, we discuss self-repair of a system,
that is, the way that a system repairs a failure of any of its units [3].

Since it is difficult to take all possible failures into consideration, we limit the
type of failures we consider here to random multiple units becoming disconnected
from the system. We allow the possibility that any unit at any position becomes
disconnected at any time, but we assume that all the other units function normally.
The system should detect the missing units, and replace them with spare units (this
might require disassembling of already built parts, retrieving undifferentiated
units, and repairing with these).

These assumptions are realized easily by retracing the steps of assembly. That
is, self-repair can be realized by stopping the process of assembly still underway,
retrogressing to the stage at which the system is certain to be free from failures,
and restarting the assembly from that point.

5.5.4.1 Detection of the Loss

Units that are already differentiated and part of the logical network are in charge
of detecting the loss of units. When the signals are lost from a connection arm that
is supposed to be logically connected to another unit, that unit is considered to be
lost.

5.5.4.2 Retrogression Signal

Retrogression to earlier stages is started when the unit which detected the loss
sends retrogression signals to units around it. The retrogression signal contains in-
formation of the stage to which the system should return (retrogression level). The
level (depth) of retrogression is determined using the location index of the lost
unit. This is for the purpose of keeping the logical network of the highest stage
which is still intact in the remaining system.

5.5.4.3 Retrogression of the Stage

In the case where the unit that detected the loss sends out a retrogression signal to
return to level n, the entire system has to be set back at least to the stage n. Fig.
5.18 will help us explain this process. In order to set back the stage, it suffices to
set back those units in the system whose stage is higher than n (corresponding to
the regions B) to the stage n. Those units in the region A become undifferentiated
again.

5.5 Algorithm (II) for Staged Self-assembly and Self-repair 99

Fig. 5.16 Assembly simulation using the description matrix in Fig. 5.14

100 5 Artificial Self-assembly and Self-repair

Fig. 5.17 Self-assembly of complex configurations

5.5 Algorithm (II) for Staged Self-assembly and Self-repair 101

AB

C

0 1 ... n ...

0

1

n
...

...

Retrogression level

Location index (l)

S
ta

ge
 (

s
)

Fig. 5.18 Self-repair using a description matrix

Removal of units

Units returned to unddifferentiate
state due to retrogression

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Removal of units

Fig. 5.19 Simulation of self-repair after unit removal.

102 5 Artificial Self-assembly and Self-repair

In this method, the unit that sends out a retrogression signal can resume its as-
sembly immediately. Thus, the process of self-assembly and that of self-repair can
be executed concurrently. When several units are lost one after another, retrogres-
sion signals indicating different levels will be propagating through the system. In
this case, the system will choose to return to the deepest of these retrogression le-
vels (the smallest stage number). However, when the kernel has been lost, the sys-
tem has to restart from the leader election process.

Fig. 5.19 shows results of a self-repair simulation. Several units were removed
from the configuration shown in Fig. 5.17 and the self-repair process was ex-
ecuted. First, we removed units from a completed configuration. Units "0" are the
spare units circulating around the system. Diagrams (a) to (f) in Fig. 5.19 show the
transmission of retrogression signals. The whole system tries to get back to the
stage corresponding to location index 19, with the remaining units (Fig. 5.19(g)).
After the retrogression is complete, the process of reassembling is exactly the
same as the normal assembly, and the original configuration is regained.

5.6 Cellular Automata Model

The Fractum system driven by the two algorithms in this chapter can be viewed as
cellular automata. As cellular automata, the units are supposed to be scattered on a
hexagonal lattice space. A cell (lattice node) is live if it is occupied by a unit, oth-
erwise it is dead. Each live cell decides its motion based on its state and its neigh-
bors’ states according to a set of transition rules. Rotation of a unit corresponds to
simultaneous transitions of two adjacent cells, where a live cell becomes dead and
a dead cell live (this must be consistent with the real unit). Strictly speaking, to
homologize Algorithm (I) to be action of a cellular automaton, the diffusion varia-
ble x in Section 5.4.2.3 need to be represented by a discrete number.

Such cellular automata are a little different from the true cellular automata de-
scribed in Section 4.3, as

• A dead cell has no capacity for processing, and state transition of a dead cell
needs to be processed by an adjacent live cell.

• The total number of live cells needs to be kept constant.
• All the live cells need to be connected.
• The system may be asynchronous, i.e., transition of each cell may occur any

time as long as the above two conditions are satisfied.

Similar studies of asynchronous cellular automata have been made not only for
hexagonal units like Fracta but also for cubic or other lattice systems (see the next
chapter). Various tasks have been considered, including self-assembly, transition
between two configurations, the whole structure’s motion as a fluid flow, and
reaching a given point. Various settings for problems have been used, for example
representations of the target configuration varying from a local representation to a
precise global one.

References 103

References

[1] Murata, S., et al.: Self-Assembling Machine. In: Proc. IEEE Int. Conf. Robot. Autom.,
vol. 1, pp. 441–448 (1994)

[2] Yoshida, E., et al.: An Experimental Study on a Self-repairing Modular Machine.
Robot. Auton. Syst. 29(1), 79–89 (1999)

[3] Tomit, K., et al.: A Self-Assembly and Self-Repair Method for a Distributed Mechani-
cal System. IEEE Trans. Robot. Autom. 15(6), 1035–1045 (1999)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 105–130.
springerlink.com © Springer 2012

Chapter 6
Prototypes of Self-Organizing Robots

Abstract. In Chapter 3, we introduced a line of research initiated by von Neu-
mann and Penrose around 1960. The ultimate goal of their work was artificial self-
reproducing systems. In Chapter 5, we explained our mechanical unit called Frac-
tum, whose goal was self-assembly and self-repair. In fact, the Fractum module
was one of the first systems proposed by various researchers after microprocessors
became commercially available. In this chapter, in order to help the reader get an
overall picture of the research on so-called modular robots, we make a classifica-
tion of modular robots, identify typical problems in their design, and then give an
overview of some representative systems that have been developed.

6.1 Classes of Modular Robots

In the early model-oriented research of von Neumann’s automata and Penrose’s
building block models, the system structure itself was of chief interest. Following
these seminal studies, the research on self-organizing mechanical systems gradual-
ly shifted to machines that actually change shape and move around, i.e. robots
(See Fig. 6.5). In our discussion of the Fractum (Chapter 5), which also belongs to
this line of research, we used the term “unit”. The self-organizing mechanical sys-
tems we discuss next are composed of such units and are intended to be like ro-
bots, not merely machines, and therefore we shall refer to them as modular robots.

There is a wide spectrum of modular robots, from simple assemblies of mod-
ules to those capable of advanced self-reconfiguration. We start by briefly present-
ing a classification of modular robots.

Class 1: Modular Robots with Fixed Configuration
A modular robot in this class consists of several modules, each of which has cer-
tain level of independence. When this robot contains multiple modules that are
identical, the design and maintenance is simplified. However, the connection to-
pology between modules (configuration) is fixed and cannot be changed.

Class 2: Manually Reconfigurable Modular Robots
The connection topology among modules of a robot in this class can be changed
manually by a human operator. Block toys, like LEGO MINDSTORMS®, belong
to this class. Designing robots in this class requires more elaboration because the
modules should be equipped with standardized connectors and the software

106 6 Prototypes of Self-Organizing Robots

running the modules should implement standardized protocol. However, once the
modules are built, they operate no matter how they are connected, so that various
functions can be easily realized using them.

Class 3: Self-reconfigurable Modular Robots
A robot in this class consists of modules that are equipped with the actuators, sen-
sors and control circuits which are necessary for changing connections, and are
capable of automatic reconfiguration without human involvement. Fractum which
we discussed in Chapter 5 belongs to this class.

Class 4: Self-replicable Modular Robots
A robot in this class is capable of assembling modules that are scattered around in-
to a duplicate of its own configuration. The kinematic model of von Neumann we
discussed in Section 3.1.3 belongs to this class.

Of the classes described above, those robots in Class 3 and Class 4 are considered
to be self-organizing mechanical systems.

6.2 Lattice-Type and Chain-Type

We can also categorize modular robots into two types: lattice-type and chain-type,
independently of the classification we gave above (Fig. 6.1). In this section we
give the definition of these types and consider their advantages and disadvantages.

Modules of lattice-type form a crystalline structure as in the case of Fractum. A
crystalline structure is formed in a space when many modules gather to form a pe-
riodic structure retaining a specific geometric symmetry. The procedure of module
reconfiguration to form this structure can be determined easily, because a lattice-
type module can only move to neighboring points in the lattice. On the other hand,
lattice-type modules require many connectors and degrees of freedom depending
on the geometric symmetry. One way to reduce the number of actuators is to join
two modules together. Although the module becomes less symmetric, it makes the
mechanisms simpler because connector mechanisms for these joints become un-
necessary.

Modules of chain-type can be considered as segments of a multi-joint robot
which can be taken apart at the joints and reattached with connector mechanisms.
It is easy to build multi-leg multi-arm robots with chain-type modules by introduc-
ing a few branching modules. Chain-type modules have advantages over the lat-
tice-type in that symmetry requirements are relaxed and the same functionality can
be realized with fewer actuators and connectors. They are also suited for robot-
like flexible motions because of their multiple degrees of freedom. On the other
hand, reconfiguration of chain-type modules is generally difficult. This is because
the positions and angles of modules take only discrete values in lattice type mod-
ules, whereas they take continuous values in chain type modules. Therefore, in the
latter, positioning connectors to join modules requires measurement of relative

6.3 Constraints in Hardware Design for Lattice-Type Modules 107

module

branching module

module

joint

Fig. 6.1 Modular robots of lattice-type and chain-type

positions of the modules and control of many joints including calculation of in-
verse kinematics.1

In addition to these two types, there are truss-type and amorphous-type mod-
ules, although few of these have been built. See Section 6.4 for examples.

6.3 Constraints in Hardware Design for Lattice-Type Modules

In designing hardware for lattice-type modular robots, there are several demand-
ing constraints that perplex designers. Designing lattice-type modular robots is
like puzzle solving in a sense, because multiple intertwined geometric constraints
need to be resolved. It is usually significantly more difficult than designing chain-
type ones. In this section, we summarize the constraints which must be considered
in lattice-type modular robot design.

6.3.1 Limited Space for Design

A lattice type module has a limited space in which to carry out its functions. The
hardware for all necessary functions has to be fitted inside this space. Planar ma-
chines (two dimensional machines), like Fractum (Chapter 5) are relatively easy to

1 There are cases where position alignment is impossible (uncontrollable) due to the num-

ber or the direction of joints. See Section 9.3.2.

108 6 Prototypes of Self-Organizing Robots

design because modules can extend in the direction perpendicular to the plane as
far as necessary.

6.3.2 Symmetry

The crystalline structure of modules can be generated from the geometric symme-
try that the modules have. Designs for most of the mechanical modules that have
been made are based on space-filling shapes, as we discussed in Section 5.2. In the
case of two dimensional machines, tessellation with one symmetric shape is possi-
ble with the three regular polygons shown in Fig. 5.2: triangles, squares, and regu-
lar hexagons. For three dimensional space, again there are three possible
space-filling polyhedra that are symmetric: cubes, truncated octahedra (Kelvin’s
fourteen-faced polyhedra) and rhombic dodecahedra2 (Fig. 6.2). Three dimension-
al modules developed so far are mostly based on cubes, which have the simplest
structures. There are some examples based on rhombic dodecahedra, but none on
truncated octahedra.

rhombic dodecahedronCubes truncated octahedron

Fig. 6.2 Three dimensional space filling polyhedra

6.3.3 Degrees of Freedom for Mobility

After the module symmetry is determined, the next thing to decide is what kind of
mobility to give the modules. Generally speaking, it is enough to consider the de-
grees of freedom (DOF) necessary for a module at one lattice point to move to a
neighboring lattice point. The number of actuators required for a module depends
on its required DOF for mobility. In the case of a two dimensional square lattice,
for example, there are two possible types of motion: translation and rotation,
which allow a module to move to the next lattice point (Fig. 6.3)3.

2 Hexagonal and triangular prisms allow space filling tessellation but we do not consider

them here because they are not fully symmetric (the axes are not equivalent).
3 Actual implementation of these motions can be done not only in a shape-preserving man-

ner as shown in Fig. 6.3, but also in the ways that modules may be expanded, contracted,
or deformed.

6.3 Constraints in Hardware Design for Lattice-Type Modules 109

Realizing motions like these is not an easy task. In the case of translation, slid-
ing mechanisms have to be installed on the faces of a module. Careful planning of
the procedure to build a desired configuration is required, because modules cannot
move to a position where they are not supported (See Section 6.4.7). In the case of
rotation, mechanisms need to rotate the module about one of its vertices, and also
should rotate without colliding with other modules.

Fig. 6.3 Degrees of freedom in translation and rotation

6.3.4 Connectors (Connection Mechanisms)

One of the most important issues in designing a module is the connector design.
The primary function required of a connector is to connect two modules with suf-
ficient strength, but there are more requirements:

1. The connectors must have complementary shapes. Usually, in such a connector
pair, one of the pair is the active connector, while the other is passive, and it
should be possible to control the connection by manipulating only the active
connector. Though connectors may have a self-complementary shape, that is,
they may be hermaphrodite (Fig. 6.4), in which case the symmetry of modules
is increased, a pair of modules must then have two active connectors, which
means not only that more actuators are required but also that both modules
must be simultaneously controlled to connect or to disconnect them.

2. The modules must not interfere with each other during their motion. In the case
of rotational motion, no other module should be within the radius of rotation of
a module (the area that a module moves through when it rotates). In the case of
translation, the sliding faces have to be completely flat.

3. Relative position errors and angular errors between the modules should be tole-
rated to a certain extent.

110 6 Prototypes of Self-Organizing Robots

Energy consumption, information exchange between modules, ease of production
and maintenance, etc. should be taken into account as well.

6.3.5 Actuators

The motion and the connection of modules are driven by actuators. The number of
actuators depends on the symmetry of the lattice, but in general a high power-to-
weight ratio is required. Devices such as DC motors, servomotors, electric mag-
nets, solenoids and SMA (shape memory alloy) are often used, all of which have
advantages and disadvantages. When the size of modules is large, hydraulic or
pneumatic actuators can be used.

Fig. 6.4 Complementary connectors (left) and hermaphrodite connectors (right)

6.4 Prototypes of Modular Robots

Fig. 6.5 is a rough description of the genealogy of research since von Neumann
and Penrose. The lines here help us to understand the relations among them, for
example among self-assembly systems using random collisions starting from the
self-replicating blocks by Penrose. Similarly, the lineage of lattice-type modular
robots starts from CEBOT, which developed into chain-type modular robots such
as PolyPod. In this section, we consider several representative prototypes of these
lines of development.

6.4.1 CEBOT

For a while after the work by von Neumann and Penrose, this area of research was
almost forgotten. As various electronic devices such as microcomputers became
widely available in the late 1970s, though, the situation changed suddenly and a
variety of research on self-organizing mechanical systems was started. This
movement was led by Toshio Fukuda of Nagoya University, who published his
work on a dynamically reconfigurable robot system called CEBOT (Cellular Ro-
botic System) in 1985. He proposed a system in which a robot consisting of many
modules reconfigures its own structure depending on the task given to it and the
environment (Fig. 6.6 shows a robot assembling itself from many modules that are
inserted into a closed space and then carrying out a task). Many prototype robot
systems have been built based on this framework (Fig. 6.7).

6.4 Prototypes of Modular Robots 111

Von Neumann
Kinematic model

Von Neumann

Cell automaton

Game of life
(Conway)

Artificial life

CEBOT

Penrose
2D/3D blocks

Hosokawa

Klavins

Stochastic-3D

Fractum Matamorphic
 robot

Fractal machine

TETROBOT

PolyPod

CONRO

M-TRAN
ATRON

Mollecule

Cristalline

2-D

SuperBot

3-D

1950

Micro modules
CHOBIE

I-Cube

Catom YaMoR

Tellecube

CKbot
Odin

1990

2000

S-bot
Molecube

SlimeBot

Griffith

PolyBot

Cell model

3D universal
connection
system

Self-assembling
mechanical systems lattice-type chain-type truss-type

modular robots
swarm
robots

Fig. 6.5 History of modular robotics development

Fig. 6.6 Concept of CEBOT (Courtesy T.Fukuda, Nagoya U.)

112 6 Prototypes of Self-Organizing Robots

CEBOT mark I (1985) CEBOT mark II (1988)

CEBOT mark III (1989) CEBOT mark V (1995)

Fig. 6.7 CEBOT series (Courtesy T.Fukuda, Nagoya U.)

The first version, called CEBOT Mark I, consists of two types of modules,
those equipped with wheels for movement and those equipped with joints, grasp-
ing ability, and other functions. Various systems can be built from combinations
of these modules [1]. CEBOT had many advanced aspects, such as introduction of
connectors with large positioning error tolerance (Mark II) and docking experi-
ments of hovering hexagonal modules (Mark III). In later years, the emphasis of
his research has shifted to topics such as control of a swarm of mobile robots, ap-
plications of the CEBOT concepts to factory automation, and algorithms for evo-
lution of cooperative behavior among the modules.

6.4.2 Truss-Type: Fractal Machine

Shigeru Kokaji of AIST’s Mechanical Engineering Laboratory (MEL) developed
a parallel computing system that included 64 8-bit microprocessors in 1980, and
another more application-oriented parallel computing system MX2, whose
processing unit consisted of 16 16-bit microprocessors, in 1986. His Fractal Ma-
chine is a two dimensional multiple-DOF mechanism controlled by MX2 [2]. This
system is thoroughly based on the design principles of a distributed system in both
its software and hardware.

6.4 Prototypes of Modular Robots 113

t
T1 T2 T3

A

B

C

free fixed fixed

free fixedfixed

freefixed fixed
M

L

S

(C)

(A)

(B)

(C)(A)(B)

T1

free

fixed

T2 T3

Fig. 6.8 Fractal Machine. Movement in one direction is realized by coordinated expand-
ing/contracting of links and locking/unlocking of nodes in phases, depending on their posi-
tions in the LMS coordinates (Courtesy S.Kokaji)

Fractal Machine was built with hierarchy. The first order system of Fractal Ma-
chine consists of a triangular linkage mechanism consisting of three telescopic
links, the second order system consists of three first order systems, and so on, so
that an n-th order system can be constructed recursively (Fig. 6.8). The entire sys-
tem is a telescopic link mechanism with multiple-DOF that has the fractal struc-
ture of the Sierpinski gasket. By employing a fractal truss structure whose links

114 6 Prototypes of Self-Organizing Robots

are connected by free rotating joints, the length of each link can be controlled
independently.

In order to realize the motion of the whole system, moving in one direction for
example, we need to control all the actuators in the system. Namely, stepping mo-
tors that control the length of links and solenoids that control the locking of the
nodes (joints) to the ground have to be appropriately and synchronously con-
trolled. For that purpose, one MX2 processor is assigned for each pair of a link
and a joint (called a unit). These processors communicate only with neighboring
units in the fractal structure. It is also assumed that, in the initial state, each
unit does not know either the system order or its position within the system.
Under these assumptions, control software with complete scalability4 has been
developed.

An outline of the Fractal Machine control is:

1. Wake-up: operation guaranteeing that all the processors have entered the opera-
tional mode. It is realized by local communication.

2. Synchronization: operation guaranteeing that all the units are synchronized to a
single clock, with no phase difference.

3. Localization: by sending out commands from the units at the vertices of the
structure, a coordinate system called LMS coordinates is generated on the frac-
tal structure

4. Locomotion: time schedules of the contraction of links and locking/unlocking
of nodes are determined according to their positions in the generated LMS
coordinates, so as to realize desired motions such as movement in one direction
and rotation in place (Fig. 6.8).

6.4.3 Truss-Type: TETROBOT

Arthur C. Sanderson at Rensselaer Polytechnic Institute developed TETROBOT,
which has a multiple-DOF linkage structure like the Fractal Machine, but which is
distinctive for its capability to form arbitrary three dimensional truss structures
(Fig. 6.9) [3]. In a three dimensional truss, how to design the spherical joints
where the ends of many links converge is the most important issue in the hardware
design. They resolved this by introducing an off-centered pantograph mechanism.
Control system of TETROBOT was basically a centralized one, though motion
control by distributed processors was considered. This system is a Class 2 modular
robot, which is not capable of changing its topological structure by itself, but
which can be assembled manually into various configurations.

4 Here, complete scalability means that a single control software program can control sys-

tems of any order, with constant communication traffic between units regardless of the
order of the system.

6.4 Prototypes of Modular Robots 115

Fig. 6.9 TETROBOT (Hamlin G, Sanderson A (1997) TETROBOT A Modular Approach
to Reconfigurable Parallel Robotics, Springer ©1997 Springer)

6.4.4 Lattice-Type: Metamorphic Robot

In 1994, Gregory Chirikjian of Johns Hopkins University developed the
Metamorphic Robot (Fig. 6.10) [4, 5]. Its module is a hexagonal two dimensional
linkage mechanism with three servomotors for controlling shape transformation.
Three more servomotors are used to drive the connecting mechanism. This is con-
sidered to be a system with hexagonal lattice-type modules. The mode of transpor-
tation between lattice points is rotation, but the problem of interference among
modules is alleviated by the shape change of the module.

A B

C D
+– –

++–

+– –
++– +– –

++–

+– –
++–

+– –
++–

+– –
++–

+– –
++– +– –

++–

+– –
++–

+– –
++–

+– –
++– +– –

++–

+– –
++–

+– –
++–

+– –
++–

+– –
++– +– –

++–

+–
–+
+

–
+– –

++–

+– –
++– +– –

++–

+– –
++–

+– –
++–

+– –
++–

+– –
++– +– –

++–

+– –++–

Fig. 6.10 Metamorphic robot. (Chirikjian GS (1994) Kinematics of a Metamorphic Robotic
System, Proc IEEE Int Conf Robot Autom (ICRA), 1:449-455 ©1994 IEEE, Pamecha A, et
al (1995) Design and Implementation of Metamorphic robot, Proc ASME Des Eng Tech
Conf :18-22©1996 ASME)

116 6 Prototypes of Self-Organizing Robots

6.4.5 Lattice-Type : Crystalline

The Crystalline robot [6, 7], developed by Daniela Rus of MIT, is composed of
two dimensional lattice-type modules that expand and contract (Fig. 6.11). The
lattice is square, and each module can expand to exactly double its standard
length. Each module has actuators for horizontal and vertical expan-
sion/contraction and four locking mechanisms, one for each face. The Crystalline
prototypes were built using the rapid prototyping apparatus called FDM (Fused
Deposition Modeling). Telescopic modules similar to those of Crystalline were al-
so developed at the Xerox Palo Alto Research Center (TeleCube) and at Carnegie
Mellon University.

Fig. 6.11 Crystalline (Rus R, Vona M (1999) Self-reconfiguration Planning with Compress-
ible Unit Modules, Proc. IEEE Int Conf Robot Autom (ICRA), 4:2513-2520 ©1999 IEEE,
Butler Z, Rus D (2003) Distributed Planning and Control for Modular Robots with Unit-
Compressible Modules, Int J Robot Res, 22(9):699-715 ©2003 IEEE)

6.4.6 Lattice-Type: Micro Modules

Eiichi Yoshida, a member of our group at MEL, developed Micro Modules, using
actuators with shape memory alloy (SMA) [8-10]. Although the control circuitry
is provided externally, the size of a module is only about 30 mm. These are the lat-
tice-type modules based on a square lattice, which move by rotation. The rotation-
al actuators and connecting pins are driven by heating SMA springs with electric
current (Fig. 6.12).

6.4.7 Lattice-Type: CHOBIE

Norio Inou of Tokyo Institute of Technology developed a lattice-type modular ro-
bot CHOBIE [11]. He focused on a phenomenon of morphogenesis that he de-
scribed as follows: “when an external force is applied to biological tissues provid-
ing mechanical support such as bones and muscles, the morphology and the

6.4 Prototypes of Modular Robots 117

Connecting part
(male)

Connecting part
(female)

U1

U
1 U1

U2 U2 U2

A

A

A

B
B B

(2)

(i) (ii) (iii)

(1) (3)

(a) Basic motion of two units

(i) (ii) (iii)
(b) Reconfiguration of many SMA units

Fig. 6.12 Micro Modules

strength distribution of those tissues changes adaptively according to the applied
force so that excessive stress on the tissue is avoided.” Accordingly, he proposed a
method for determining the optimum structure to deal with given external forces
using a structure generating algorithm which is a combination of finite element
analysis and cellular automaton methods. The two dimensional module was de-
veloped for the purpose of giving building structures the capability to adapt to
stress (Fig. 6.13). It is a system consisting of robotic modules connected by sliding
connection mechanisms, and it is capable of reconfiguring its structure so that the
stress detected by a strain gauge is averaged out though the entire system. Since its
motion is simple sliding only, the sequencing of motions becomes rather complex.

6.4.8 Lattice-Type: Three Dimensional Universal Connection
System

The system developed by the authors after Fractum was the Three Dimensional
Universal Connection System [12]. The module of this system is a cube with a ro-
tatable connector arm on each face, and the modules are arranged in a cubic lattice
(Fig. 6.14).

118 6 Prototypes of Self-Organizing Robots

Strain Gauge

External force

Fig. 6.13 Module CHOBIE (Suzuki Y, et al (2008) Reconfigurable Modular Robot Adap-
tively Transforming a Mechanical Structure, J Robot Soc Japan, 26(1):74-81 ©2008 RSJ)

Connector latch

Connection arm

Moving unit

Supporting unit

3. Reconnection

2. Rotation

1. Disconnection

Fig. 6.14 Three Dimensional Universal Connection System

6.4 Prototypes of Modular Robots 119

Rotating unit

Moving unit

Supporting unit

(a) Unit transfer motion

(b) Unit transfer completed

Fig. 6.15 Module lifting experiment using the Three Dimensional Universal Connection
System

Connection and rotation of each arm can be independently controlled. Each
module is given only one motor, but it also has six electromagnetic clutches and
six solenoids that provide a mechanism for selecting its motion. The module de-
sign ended up being mechanically too complex, but one module can lift another
module (Fig. 6.15). A distinctive feature of the module is its hermaphrodite con-
nectors (Fig. 6.16). The six arms of a module are all identical, and therefore the
algorithm for assembly can be simplified. It is possible to build simple target con-
figurations according to Algorithm (I), described in the previous chapter, when
this program is extended to three dimensions [13]. The connector is driven about a

120 6 Prototypes of Self-Organizing Robots

single axis, but it can tolerate positioning errors because its connecting claw easily
catches the head of another connector, and once the joining operation is complete,
the link becomes very firm5.

6.4.9 Lattice-Type: Molecule

Daniela Rus at MIT developed a system called Molecule, whose module consists
of two cubic units connected by a rotating link (double unit type) [14]. The mod-
ules come in two types, an active module with gripper mechanisms driven by mo-
tors, and a passive module with parts to be gripped (Fig. 6.17). Consequently, the
mechanical complexity of the system is reduced, but in turn the algorithm for as-
sembling it is more complex.

Connecting claws

Fastener ring

Connector head

(a) Before connection

Unit AUnit B
Connecting claws (A)

Connecting claws (B)
(b) In the process of connection

Fig. 6.16 Hermaphrodite connectors

5 When a system consists of many modules, accumulation of errors is inevitable. Therefore,

reconfiguration actually becomes more difficult when the modules are rigid and the con-
nections are strong. In such a case, it may be necessary to relax the rigidity of the entire
system to eliminate internal warping. See Section 9.3.1.

6.4 Prototypes of Modular Robots 121

(c) Connection completed

Connector head

Connecting claws

Fastener ring

Worm wheel

Rotation clutch

Connection clutch

Base

Transmission shaft

U
ni

t 1
U

ni
t 2

Connecting
 claws

Fastener ring

 (d) Released (e) Connected

Fig. 6.16 (continued)

6.4.10 Lattice-Type: ATRON

The system ATRON, developed by Henrik Lund of the University of Southern
Denmark, is a modular robot whose spherical module consists of two half-spheres
(Fig. 6.19) [15]. The half-spheres can rotate relative to each other, and the module
has connection mechanisms in eight directions by which it can connect with and
disconnect from neighboring modules.

Fig. 6.20 shows a demonstration of seven ATRON modules traveling on a sur-
face with an obstacle [16]. When the robot in a vehicle shape approaches an ob-
stacle (the leftmost image), it changes shape and crawls over the obstacle using a
method called cluster walk, in which the modules rotate to change the positions
where they contact each other. An ATRON module is designed so as to have the
minimum degree of freedom. On the other hand, due to this simplicity, the
processes of motion generation and reconfiguration require coordination of many
modules, and also there are many geometric constraints to be considered.

122 6 Prototypes of Self-Organizing Robots

(a) Active module

(b) Passive module

Fig. 6.17 Molecule (Courtesy D. Rus, MIT)

Fig. 6.18 Reconfiguration experiment of Molecule (Courtesy D. Rus, MIT)

6.4 Prototypes of Modular Robots 123

Attachment points

Rotation plane

45°

Fig. 6.19 Mechanical parts of the ATRON (Jorgensen MW et al. (2004) Modular ATRON:
modules for a self-reconfigurable robot, Proc IEEE/RSJ Int Conf Intel Robot Syst (IROS
2004), 2:2068-2073 ©2004 IEEE)

Fig. 6.20 ATRON movement (cluster walk) (Østergaard EH, et al (2006) Design of the
ATRON lattice-based self-reconfigurable robot, Auton Robot, 21(2):165-183 ©2006
Springer)

6.4.11 Lattice-Type: Molecube

The self-reproducing module, Molecube, developed by Hod Lipson at Cornell
University is a cubic module split into two halves along the (1 1 1) plane, so that
one half can rotate relative to the other half around an axis perpendicular to this
cross section [17]. This plane has 3-fold rotational symmetry, so that every 120
degrees of rotation the module returns to be in the shape of a cube (Fig. 6.21(a)).
The faces of the cubes can be connected by magnetic attraction. A vertical column
formed by the modules can be changed by changing the rotation angle for each
module (Fig. 6.21(b)). The sequence in Fig. 6.21(c) shows a process of self-
reproduction by these modules. A four-module column (the completed configura-
tion) connected to the base plate assembles the same configuration as itself, by
picking up material modules from a specified feeding location one by one and pil-
ing them up at a specified location next to itself. This is a self-reproduction
process of a Class 4 robot.

124 6 Prototypes of Self-Organizing Robots

a

c

b
0:01

0:00

0:42

1:34

0:11

0:55

1:42

0:20

1:03

1:52

0:21

1:20

2:20

0:29

1:33

2:35

0:05 0:10

Fig. 6.21 Lipson’s self-reproducing modular robot (Zykov V, Mytilinaios E, Adams B,
Lipson H (2005) Self-reproducing machines, Nat, 435:163-164 ©2005 NPG)

6.4.12 Chain-Type: PolyPod and PolyBot

PolyPod (Fig. 6.22) is a chain-type modular robot developed by Mark Yim of the
University of Pennsylvania, which consists of two types of modules: one capable
of quasi-rotational motion by changing the shape of its link mechanisms, and the
other for branching [18]. Since the modules have to be connected manually,
PolyPod is a Class 2 modular robot. The main purpose of this robot is motion gen-
eration, and it can realize various periodic motions by controlling the joint angles
of all modules in a synchronized cycle.

Fig. 6.22 PolyPod (Courtesy M.Yim, U.Penn.)

6.4 Prototypes of Modular Robots 125

(a) A module with automatic connection mechanism

(b) A high torque module (manually screwed)

Fig. 6.23 PolyBot (Yim M, et al (2002) Connecting and disconnecting for chain self-
reconfiguration with PolyBot, IEEE/ASME Trans mechatron, 7(4):442-451 ©2002 IEEE)

Another series with a similar name, PolyBot, was developed by the same group.
Instead of the link mechanisms of PolyPod, it has a simple structure in which a
motor is connected directly to the module’s axis of rotation. Some models of
PolyBot are equipped with automatic connection mechanisms and thus are Class 3
modular robots (Fig. 6.23(a)). (The module shown in Fig. 6.23(b) is a high torque
type which requires connection by hand.) As we mentioned in Section 6.2, con-
necting chain-type modules to each other requires precise positioning, and for that
purpose, PolyPod is capable of distance measurement, using multiple LEDs and
phototransistors installed on the connecting surface [19]. However, reconfigura-
tion requires precise alignment of connection parts, and is difficult to automate.

6.4.13 Chain-Type: CONRO and Superbot

The CONRO module, developed by Wei-Min Shen of the University of Southern
California, is a chain-type module that has two degrees of freedom, pitch and yaw
(Fig. 6.24) [20]. As for the connection topology, each module has three male con-
nectors and one female connector, and an SMA actuator is embedded in the

126 6 Prototypes of Self-Organizing Robots

I/O board Yaw servo
Processor board

IR Rx

IR Rx

Pins
IR Tx

Passive Connector

active connectormodule body

Pitch
servo

Active
arm

active
face

IR Tx

sockets

Fig. 6.24 CONRO (Castano A, Behar A, Will PM (2002) The Conro Modules for Reconfi-
gurable Robots, IEEE/ASME Trans Mechatron, 7(4):403-409 ©2002 IEEE)

Fig. 6.25 SuperBot (Courtesy W.M. Shen, USC)

female connector, making automatic disconnection possible. However, like Poly-
Bot, connection of modules is difficult without remote control by a human
operator.

The same group developed the SuperBot module (Fig. 6.25) as an advanced
version of CONRO. In addition to the two rotations of a CONRO module, it has a
DOF for twisting at a link in the middle. Also, more faces of the module are used
for connection, three each for male and female. The shape of this module is simi-
lar to M-TRAN which we discuss in the next chapter.

6.4.14 Lattice-Type: Catom

Claytronics is a project run by Seth Goldstein at Carnegie Mellon University and
Intel aiming at developing a three dimensional tangible display device for indus-
trial designing. It is categorized as a lattice-type modular robot, and in order to

6.4 Prototypes of Modular Robots 127

provide shapes to designers, it aims to achieve detailed shape formation and dy-
namic modification. The goal is to have millions of 300 μm modules moving in-
dependently in coordination, something like in “Terminator 2”. At present though,
a prototype of two dimensional module called Catom (Fig. 6.26), which changes
its connection position using 12 electromagnets, is 4.4 cm in diameter [21].

mover
mover

holder holder

holder

pivot pivot

holder

Shared edge
Pivot point

(a)

(b) (d)(c)

Fig. 6.26 Catom (Kirby BT, et al (2007) Modular Robots Using Magnetic Force Effectors,
Proc IEEE Int Conf Intel Robot Syst (IROS) ©2007 IEEE)

6.4.15 Amorphous-Type: SlimeBot

The two dimensional modular robot SlimeBot is under development by Akio Ishi-
guro at Tohoku University [22]. The design of SlimeBot is inspired by slime
molds. Circular modules have Velcro tapes placed around their side wall so that
modules become connected at any point on their perimeter where they come in
contact. They become disconnected when a certain pulling force is applied. The
modules are also equipped with expanding/contracting actuators so that the shape
of module can be deformed. The processor in each module has a van der Pol oscil-
lator to control the oscillatory deformation of the modules. By using the entrain-
ment phenomenon (see Section 8.3) among oscillators and symmetry breaking by
external light input, a collection of many modules generates amoeboid motions,
realizing locomotion. This collective locomotion is able to avoid obstacles as real

128 6 Prototypes of Self-Organizing Robots

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. 27 SlimeBot (Shimizu M, Ishiguro A (2009) An amoeboid modular robot that exhi-
bits real-time adaptive reconfiguration, Proc IEEE/RSJ Int Conf Intel Robot Syst, 1496-
1501 ©2009 IEEE)

slime molds do. SlimeBot has unique properties not found in other modular ro-
bots, in particular physical and mechanical interactions between modules that
make essential contributions to the formation of order in the whole system.

6.5 Hybrid Type Combining Lattice and Chain

Among all the prototypes we looked at in this section, the lattice type modular ro-
bots and the amorphous-type one which we discussed last are the examples that
can be considered to be self-organizing systems of Classes 3 and 4. In the research
of modular robots of truss-type and chain-type, the emphasis is not so much on
emergence of functions by self-organization but more on distributed control archi-
tectures and motion control by multi-DOF mechanisms.

With many of the lattice-type prototypes, however, only basic experiments us-
ing a small number of modules have been done, because of the complexity of the
modules. For instance, with the Three Dimensional Universal Connection System
we developed, we only did reconfiguration experiments using four modules, and
thus had to make simulations to confirm self-organization of large scale systems.

References 129

This led us to a search for a more realistic design, a hybrid type module with cha-
racteristics of both the lattice-type and chain-type.

In the next chapter, we first give details of self-reconfigurability, a function rea-
lized by M-TRAN due to its lattice-type aspects. In Chapter 8, we focus on the
motion control of M-TRAN as a chain-type modular robot, and discuss motion
acquisition based on the self-organization principle.

References

[1] Fukuda, T., Nakagawa, S.: A Study on Dynamically Reconfigurable Robotic Systems.
Trans. Japan. Soc. Mech. Eng. C 55(509), 114–118 (1989) (in Japanese)

[2] Kokaji, S.: A Mechanism of Very Many Degrees of Freedom and a Distributed Con-
trol System. J. of Japan Soc. Precis. Eng. 54(10), 1921–1926 (1988) (in Japanese)

[3] Hamlin, G., Sanderson, A.: TETROBOT A Modular Approach to Reconfigurable Pa-
rallel Robotics. Springer (1997)

[4] Chirikjian, G.S.: Kinematics of a Metamorphic Robotic System. In: Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), vol. 1, pp. 449–455 (1994)

[5] Pamecha, A., et al.: Design and Implementation of Metamorphic robot. In: Proc.
ASME Des. Eng. Tech. Conf., pp. 18–22 (1995)

[6] Rus, R., Vona, M.: Self-reconfiguration Planning with Compressible Unit Modules.
In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 4, pp. 2513–2520 (1999)

[7] Butler, Z., Rus, D.: Distributed Planning and Control for Modular Robots with Unit-
Compressible Modules. Int. J. Robot. Res. 22(9), 699–715 (2003)

[8] Yoshida, E., et al.: Miniaturization of Self-Reconfigurable Robotics System using
Shape Memory Alloy Actuator. J. Robot. Mechatron 12(2), 96–102 (2000)

[9] Yoshida, E., et al.: Micro Self-Reconfigurable Modular Robot Using Shape Memory
Alloy. J. Robot. Mechatron 13(2), 212–219 (2001)

[10] Yoshida, E., et al.: Miniaturization of Self-Reconfigurable Robotic System using
Shape Memory Alloy Actuator. J. Robot. Mechatron 12(2), 96–102 (2000)

[11] Suzuki, Y., et al.: Reconfigurable Modular Robot Adaptively Transforming a Me-
chanical Structure. J. Robot. Soc. Japan 26(1), 74–81 (2008)

[12] Kurokawa, H., et al.: A Three-Dimensional Self-Reconfigurable System. Adv. Ro-
bot. 13(6), 591–602 (2000)

[13] Yoshida, E., et al.: Self-Assembly and Self-Repair of 3-D Structure by an Autonom-
ous Distributed Machine. Trans. Soc. Instrum. Control Eng. 35(11), 1421–1430
(1999) (in Japanese)

[14] Kotay, K., et al.: The self-reconfiguring robotic molecule. In: Proc. IEEE Int. Conf.
Robot. Autom., vol. 1, pp. 424–431 (1998)

[15] Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: modules for a
self-reconfigurable robot. In: Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS
2004), vol. 2, pp. 2068–2073 (2004)

[16] Østergaard, E.H., et al.: Design of the ATRON lattice-based self-reconfigurable robot.
Auton. Robot. 21(2), 165–183 (2006)

[17] Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines.
Nat. 435, 163–164 (2005)

130 6 Prototypes of Self-Organizing Robots

[18] Yim, M.: Locomotion with a Unit Modular Reconfigurable Robot., Ph.D. Thesis,
Dept. Mech. Eng. Stanford Univ. (1994)

[19] Yim, M., et al.: Connecting and disconnecting for chain self-reconfiguration with Po-
lyBot. IEEE/ASME Trans. Mechatron 7(4), 442–451 (2002)

[20] Castano, A., Behar, A., Will, P.M.: The Conro Modules for Reconfigurable Robots.
IEEE/ASME Trans. Mechatron 7(4), 403–409 (2002)

[21] Kirby, B.T., et al.: Modular Robots Using Magnetic Force Effectors. In: Proc. IEEE
Int. Conf. Intel. Robot. Syst (IROS), pp. 2787–2793 (2007)

[22] Shimizu, M., Ishiguro, A.: An amoeboid modular robot that exhibits real-time adap-
tive reconfiguration. In: Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst., pp. 1496–1501
(2009)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 131–171.
springerlink.com © Springer 2012

Chapter 7
Robotic Metamorphosis

Abstract. M-TRAN is a three dimensional modular robotic system, having fea-
tures of lattice-type and chain-type systems; it can self-reconfigure as a lattice-
type modular robot, and can make versatile robotic motions as a chain-type
modular robot. In this chapter, we discuss its lattice-type features: design prin-
ciples, metamorphosis by small numbers of modules, and distributed self-
reconfiguration by large numbers of modules. Throughout this section, the term
“metamorphosis” is used interchangeably with the term “self-reconfiguration”.

7.1 System Design

M-TRAN (Modular TRANsformer) is a three dimensional lattice-type modular
robot [1, 2]. Many of the lattice-type modular robots discussed in the previous
chapter have very complicated designs because they have many degrees of free-
dom, so actually building them was hard, and only small scale experiments have
been made. For instance, a module of our Three Dimensional Universal Connec-
tion System (Fig. 6.14) has all the symmetry of a cube, and is equipped with six
rotating arms each with connection capability, summing up to 12 degrees of free-
dom [3]. As a consequence, the prototype module we built was very large and
heavy, mechanical connections between modules had to be made sturdy, and
complex mechanisms were required to enable them to support each other.

On the contrary, a module of M-TRAN, consisting of two cube-like blocks
joined together, has only two rotational degrees of freedom and only three of the
six faces are capable of active connection. In this section, we explain the shape
and basic functions of M-TRAN modules.

7.1.1 M-TRAN Module

7.1.1.1 Shape and Function

An M-TRAN module consists of two blocks, each of which has the shape of a half
of a cube and a half of a cylinder joined together, and a link connecting these

132 7 Robotic Metamorphosis

blocks (Fig. 7.1). Two blocks and one link are joined using two parallel axes, each
axis going through the center of each block. Each block is allowed 180 degree
rotation about its axis with regard to the link. Hereafter, these axes are called
joints, following robotics terminology.

The three flat faces of each block actively make connection with faces of other
modules. There are two shapes of these faces, one square and the other not, but
their connection function is the same, meaning that there are four ways for two
faces to connect so that their circumscribed squares coincide.

The M-TRAN system is a homogeneous modular robot, i.e. consisting of iden-
tical modules. Various configurations can be formed using these modules, exploit-
ing the six connection faces of each module and the freedom in the direction of
connections. Once modules are connected in a particular configuration, the whole
is capable of robot-like motions by maneuvering its many joints. For example,
Fig. 7.2(a) is a linear configuration where modules are connected in series with all
the joint axes aligned in parallel. If we generate a propagating wave by moving the
joints in a coordinated manner, the whole line can move forward on a surface. Si-
milarly, (b) is a configuration for rolling, (c) for a manipulator, and (d) for a qua-
druped walking robot.

*

*

*

*

*

*

* Connection surface

Joint axis (180 degree rotation)

Link

Half-circle half-square block
Active block Passive block

Fig. 7.1 M-TRAN module

The half-cube half-cylinder block can be inscribed in a cube, and this shape is
obtained by shaving two connected cubic blocks until each can rotate without in-
terfering with the other. Connected modules can fit in a cubic lattice, each block
put in a unit cube of the lattice with each face in contact with the adjacent mod-
ule’s face, as shown in Fig. 7.3. We call this an in-lattice state. The joint angle is
considered to be 0º when the semi-cylinders of two blocks are facing each other
like the white blocks A and B in Fig. 7.3, and each block can move ±90º. This

7.1 System Design 133

 (a) (b) (c)

 (d) (e) (f)

Fig. 7.2 Examples of configurations of M-TRAN modules

A

B

C

D

(0°)

(0°) (0°)

(90°)

Fig. 7.3 In-lattice state

P0

P1

P2

P3

Fig. 7.4 Base states

134 7 Robotic Metamorphosis

means that an in-lattice state consists of modules whose joint angle is 0 or
±90º, and each module is in one of the four base states shown in Fig. 7.4, disre-
garding the orientation of the module as a whole.

Each connection face of M-TRAN can change or maintain its connections. M-
TRAN modules change their configuration by disconnecting a part of the configu-
ration, and moving and reconnecting the freed modules and blocks. As we explain
below, each action of reconfiguration is basically carried out in an in-lattice state.
The configuration of the quadruped robot in Fig. 7.2(d) turns into an in-lattice
state in Fig. 7.2(e) when the legs are flattened out. In an in-lattice state, a module’s
state is discrete, characterized by its base state and the connection status of its fac-
es. In principle, the metamorphosis procedure can be described by a finite
sequence of state transitions.

7.1.1.2 Characteristics of the Shape

There are two major characteristics of M-TRAN modules; one is that the blocks
connect at their faces, and the other is that the two axes of their link are in parallel.
We discuss the first here, and explain the latter in Section 7.2.2.

First of all, each block of an M-TRAN module is designed to be as close to a
cube as possible so that it has the maximum volume possible. This retains not only
more room for installing machinery and circuitry, but also rigidity of the module
body. Next, the two blocks of each module are always in contact at their curved
surfaces no matter what their angles, making them resistant against pressure and
distortion. Moreover, in in-lattice states, neighboring modules are either connected
or merely in contact, which in either case prevents modules from being crushed or
deformed when stacked up.

In the case of modular robots like the Three Dimensional Universal Connection
System, a module occupies a sphere, smaller than the cubic unit of the lattice, so
that modules do not collide when they rotate. As a result, the connector parts have
to be small, causing the problem of low rigidity. In the case of M-TRAN, since an
entire face of a block is the connecting part, and this face has the maximum possi-
ble surface area, thus the connection is very rigid. Moreover, there is no protrusion
in the connection mechanism, which enables various motions.

7.1.2 Basic Motions

7.1.2.1 Motions on the Ideal Plane

Consider an ideal situation where a module is placed on a plane consisting of a
layer of modules. A single module can make two types of motion in such a
situation depending on its posture: rolling along a line (Fig. 7.5(a)) and pivoting
over the surface (Fig. 7.5(b)). In either motion, one of the module’s block moves
from one lattice point to another by a series of actions such as releasing connec-
tion, controlling joint angles so as to move one of the blocks, and finally connect-
ing to a new face.

7.1 System Design 135

(a) Rolling

(b) Pivoting

(c) Shifting

(d) Turning

(e) Mode conversion.

Fig. 7.5 Basic motions.

136 7 Robotic Metamorphosis

By the above two motions, the direction of module’s joint axes do not change.
Also, the line of rolling does not change, and a rolling module cannot change to a
pivoting module by itself. These limitations are resolved by coordination of two
modules. In Figs. 7.5(c) and (d), by pivoting motion of one of the modules, the
line of rolling shifts or turns at a right angle. By the coordinated motion in Fig.
7.5(e), the posture of a module is changed and rolling module is converted to a pi-
voting module. Note that, in order to do mode conversion under gravity, a module
needs to be at least powerful enough to lift another module.

In most of the metamorphoses we discuss in later sections, there is no ideal
plane available or it is sometimes necessary that two or more modules be lifted, so
these basic motions are not sufficient. Still though, they serve as a foundation for
metamorphosis, together with the collision avoidance motions we discuss next.

7.1.2.2 Constraints

There are constraints in module motions; modules must not collide with others
during rotation (collision avoidance), the entire configuration must not come apart
when connections are released (separation avoidance or connectivity constraint),
and since there is a limit to the maximum torque of the hardware, only a limited
number of modules can be lifted or supported under gravity (hardware con-
straints).

Let us explain the collision and division problems using Fig. 7.6. Obviously,
the motion (1) of A in Fig. 7.6(a) is not possible because another module is block-
ing the path. The motion (2) of changing posture in place is also impossible be-
cause the block B is in the way. In the configuration in Fig. 7.6(b), if the two
modules C and D move independently, the whole may be divided in two, so this
should be avoided.

A

B
(1)

(2)

C

D

 (a) Collision (b) Separation

Fig. 7.6 Constraints

The cube-like shape of the module’s block makes the problem of collision like-
ly, and designing the module to have parallel joints was meant to alleviate this
problem. The module A in Fig. 7.7(a) collides with the adjacent module B if only
one of its joints is driven. However, when the two parallel joints are driven at the

7.1 System Design 137

A B collision

(a) Driving single joint

A B

 (b) Collision avoidance (c) 45 degree step motion

Fig. 7.7 Collision avoidance motions.

same time in the opposite directions, collision is avoided as in Fig. 7.7(b). Even in
the case where a module is surrounded by other modules as Fig. 7.7(c), it is possi-
ble to move a block without collision by changing two joint angles simultaneously
in 45º increments.

The number of connected modules that can be moved at a time depends on
whether the motion is lifting against gravity or moving horizontally, and also de-
pends on the shape of the modules to be carried. In reality, there is a limit to the
joint torque, and moreover, structural deformation and limits on the precision of
positioning also affect the success of connection.

7.1.3 Polarity

Although the two blocks of a module have exactly the same geometrical shape,
they have different polarities, which makes the hardware simpler. This means that

138 7 Robotic Metamorphosis

connection faces have polarity, and two faces must have different polarity to con-
nect, just like a key and a keyhole, or north and south poles of a magnet. All three
faces of each block of an M-TRAN module have the same polarity; the block with
faces that actively make connections is called active (or male), and the block with
faces that allow themselves to be connected is called passive (or female). In the
figures and photos in this book, the darker blocks are active ones, and those with
lighter color are passive ones.

As long as connection changes are carried out while strictly maintaining the in-
lattice state, the polarity does not give rise to any problem. Just as a checker board
is painted in two colors, M-TRAN can be arranged in a three dimensional cubic
lattice so that any adjacent blocks have different colors. Note that the sequence of
motion from Fig. 7.8(a) via (b) to (c) cannot happen in an in-lattice state, but a
similar result can be obtained by the sequence in Fig. 7.8(a), (d), (e) and (f).

 (a) (b) (c)

 (d) (e) (f)

Fig. 7.8 Polarity problem. Since M-TRAN module connections can be made only between
a white block and a grey block, the sequence from (a) to (c) via (b) is not allowed. Howev-
er, a similar result (f) is obtained from (a), via (d) and (e).

7.1.4 Universal Assembly and Self-reconfiguration

Now assume that there are a sufficient number of modules lying on the plane that
we had in Fig. 7.5. Each module can move to any position on the plane with any
orientation by the basic motions in Fig. 7.5. By repeating this process according
to an assembly plan, it is possible to build almost any two dimensional configura-
tion. Procedures for building planar structures like those in Fig. 7.2(a), (e), and
(f) can be easily created, as shown in Fig. 7.9. Moreover, if we use a three dimen-
sional arm made of modules, three dimensional structures can also be built. By
detaching each completed structure, various structures can be made one after

7.2 Planning Metamorphosis Procedure 139

another, as long as there are modules remaining. This is indeed a universal as-
sembly machine.

However, in this case, there is a clear distinction between what is in charge of
assembly and what is being assembled, which is not a very interesting kind of self-
assembly. In general, the term self-reconfiguration implies the cooperative action
of organically related modules to change their configuration without any external
help. In the case of the above universal assembly, the assembly procedure for a
target configuration is straightforward, whereas a procedure for self-
reconfiguration, in which all the modules in the system take part in assembling the
structure (we also call this metamorphosis hereafter), may not be simple.

1 2 3 4

Helper

1

3

4

2

Completed structure

Parts

Fig. 7.9 Assembly procedure

7.2 Planning Metamorphosis Procedure

M-TRAN is a system each of whose modules functions as an autonomous subsys-
tem controlling its own joint angles and connections. What we aim now is to make
the connected modules interact so that they form three dimensional configurations
in a self-organizing manner. Is it possible for the M-TRAN modules to transform
into a target configuration like Fractum in Chapter 5?

The M-TRAN design sacrifices some of the degrees of freedom and symmetry
of an ideal lattice type system. The resulting loss of function is to be compensated
for by coordination between multiple modules, but it is not a simple task to deter-
mine how modules should coordinate their behavior. We have to face the difficul-
ties presented by the geometry of the motion before considering distributed
control.

In this section, we set aside the issues related to distributed control, and concen-
trate on the geometry of reconfigurations of M-TRAN modules.

140 7 Robotic Metamorphosis

7.2.1 Search for Metamorphosis Procedures

7.2.1.1 Reconfigurability

Consider metamorphosis between given two configurations consisting of the same
number of modules, for example, four M-TRAN modules as in Fig. 7.10. Among
many possible configurations, it is obvious that metamorphosis is impossible be-
tween the two configurations (a) and (c) in Fig. 7.10. This is because all the rota-
tion axes are in parallel in (a), so that the modules can transform itself to a shape
like (b), but cannot change the direction of their axes. On the other hand, configu-
ration (d) has one module with a different axis direction. It is easy to see that
(d) can transform to (e), and in fact, it can transform to (c) eventually. Similarly in
the case of ten modules, metamorphosis from a configuration as in Fig. 7.2(a) to
one as in Fig. 7.2(e) is not possible, but (e) can be reached if one module in (a) is
twisted (see Section 7.2.2).

?

X(a)
(b)

(c)
(d) (e)

Fig. 7.10 Reconfigurability

7.2.1.2 Exhaustive Search

Let us next consider the search for a metamorphosis procedure. First, we need a
method of representing the configurations and metamorphosis procedures [4-6].
There may be several methods of representation, and any of them can be used as
long as two configurations can thereby be determined to be identical or not. One
method is to align modules in the lattice space and use discrete coordinate values
defining the position and orientation of each module. Another method considers
only the connection topology, ignoring joint angles. Each module has six connec-
tion faces, and the relative orientation of the two connecting faces of each connec-
tion between modules is represented by a discrete number. Hence, the whole
configuration can be represented by a graph. A metamorphosis procedure is a se-
quence of primitive actions: discrete changes in joint angles and connections.

The search process starts from the initial configuration, and primitive actions
are carried out until the target configuration is reached. Each time there are a finite
number of possible actions, by which possible configurations grow in number in
the form of a tree structure whose root is the initial configuration [6]. It should be

7.2 Planning Metamorphosis Procedure 141

noted that the same configuration may be arrived more than once in the search
process, and therefore it should be checked every time to see if the resulting con-
figuration already appears in the tree or not, in order to avoid searching a branch
more than once. It is also necessary to avoid collisions and check if the whole con-
figuration is still connected.

Although there are many problem solving methods employing traversal of a
tree or a graph structure to reach a target, the search space expands explosively as
the number of modules increases. The complexity of this problem is considered to
be NP-hard, so that searching cost increases exponentially with the number of
modules [7].

The reachability problem, determining whether there is a metamorphosis pro-
cedure between given two configurations, can also be reduced to the same search
problem. Moreover, even if a path is obtained by searching, whether it is optimal
or not can only be determined by a full search1.

7.2.1.3 Heuristics

Generally, searching for a metamorphosis procedure between arbitrarily chosen
configurations often is in vain, because reachablility is not assured before search-
ing. Therefore, we adopted a heuristic method to find various metamorphoses,
aiming for a roughly defined goal of transformation between different types of
configurations such as a legged one and a linear one. In this process, initial and
target configurations are modified by trial-and-error while searching.

7.2.2 Metamorphosis between Mobile Robot Configurations

There are various configurations of M-TRAN modules which are mobile, and we
searched for metamorphoses between them. Reconfigurations which we designed
and verified by experiments are shown in Fig. 7.11.

7.2.2.1 Parallel Quadruped Form

Quadruped robots in Fig. 7.12(a) to (f) have legs each consisting of two modules
with axes all in parallel. We call these parallel quadruped forms. We searched
for a metamorphosis to a linear configuration from the configurations (a) - (f). It
is obvious that (a) and (b) cannot reach a linear structure because all the joint
axes are in parallel. But from (d), (e), or (f), reconfiguration to (g) is possible.
An actual metamorphosis procedure from (e) to (g) was designed taking hard-
ware constraints into consideration, and verified by experiments as shown in
Fig. 7.13 (a).

1 Distance measure between two configurations can be defined as the minimum number of

actions needed to make this transformation. It cannot be obtained without full search and
is not related to any geometrical similarity between two configurations. See [1, 8, 9].

142 7 Robotic Metamorphosis

Linear (10)
Spider (10)

Crawler (9)

Parallel quadruped (10)

Minimum quadruped (4)
Parallel quadruped (9)

Cross-shape
quadruped (8)

Linear (4)

Linear (8)Centipede (8)

Fig. 7.11 Transitions between robot configurations. Below each configuration is its name
and number of modules.

 (a) (b) (c) (d)

 (e) (f) (g)

Fig. 7.12 Parallel quadruped form

7.2 Planning Metamorphosis Procedure 143

(a) From a parallel quadruped form to a linear form

(b) From a spider to a parallel quadruped form

(c) From a cross-shape quadruped form to a linear form

Fig. 7.13 Metamorphosis experiment

144 7 Robotic Metamorphosis

7.2.2.2 Other Metamorphoses

The minimum quadruped form in Fig. 7.11 with four modules has rotational sym-
metry and plays an important role in the next section. We discuss in Chapter 9 the
metamorphosis from this form to a linear configuration in detail.

Fig. 7.13(b) shows the sequence of metamorphosis from the spider form with
ten modules to the parallel quadruped form. Fig. 7.13(c) show transitions from the
cross-shape quadruped form with eight modules to two types of linear forms,
whose axis orientations come in different orders.

In order to perform these metamorphoses on real robots, it is not quite suffi-
cient that a metamorphosis pathway exists. Even if we obtain various paths be-
tween two configurations, some of them likely cannot be carried out because of
physical constraints or because the whole robot falls due to gravity. Therefore,
transient motions between in-lattice states also need to be carefully designed.

7.3 Distributed Metamorphosis

All the examples of metamorphoses we discussed so far were executed under cen-
tralized control following procedures planned in advance, not yet considering how
metamorphoses could be carried out by the modules autonomously or by distri-
buted control. In this section, we explore ways of distributed control.

7.3.1 Distributed System and Grouping

When the number of modules is large, searching for a metamorphosis procedure is
unrealistic in view of the complexity, either by heuristics or by exhaustive search.
Even if a procedure is obtained by searching, it needs to be executed step by step
in the order as obtained. Modules cannot move independently, or else modules
will collide or connections will fail. Such a kind of stepwise execution requires
centralized control under a single leader and/or synchronization of the whole
system.

Generally speaking, in dealing with a large system, it is effective to divide the
system into subsystems and impose a hierarchy on them. For metamorphoses we
are considering, this means that modules are divided into groups, motions are de-
fined in terms of groups, and the system is dealt with as a collection of groups. If a
group consists of a small number of modules, it is possible to make a collection of
possible action sequences in advance by limiting the number of possible configu-
rations and motions, and build procedures by choosing from this collection. Such
procedures in the collection need to be executed internally in a centralized man-
ner, but coordination between groups can be done flexibly under distributed con-
trol. How then should modules be grouped?

Suppose modules A and B in Fig. 7.14(a) move so that modules B and D be-
come connected as in (b). In order to achieve this when modules are running with
distributed control, it is necessary that all four modules, from A to D, work in
coordination. As we mentioned earlier, such coordination requires some kind of

7.3 Distributed Metamorphosis 145

centralized control, e.g. A sends out a message to the other three modules, and on
receiving it the modules C and D stop their motions. By message exchange and
coordinated motions like this, the four modules act as a group, and a communica-
tion route within the group can be established.

Now, consider that modules outside this group might be in the way of B’s mo-
tions as E and F in Fig. 7.14(c). In order to perform the motion in (b), it is neces-
sary either to confirm that a module such as E does not exist or to ask E to get out
of the way. However, in Fig. 7.14(c), the module E is not connected directly to the
group. Module A can send a message to discover the existence of E or to coordi-
nate with E, but for the message that goes outside the group, the distance to the
destination is unknown. To ensure the communication and coordination, it is ne-
cessary to send a message to all the modules in the system and to coordinate with
them. This is no different than centralized control of the entire system.

A B

D

C

A

D B

C

 (a) (b)

B

E F

A

D

C

(c)

Fig. 7.14 Distributed control problem of M-TRAN. Broken lines indicate that modules are
connected via other modules.

We would like to resolve such communication and coordination issues as local-
ly as possible. For example, the modules may be grouped so that when two groups
are adjacent, the communication path between them is automatically determined,
and thus when module E belongs to a group adjacent to A’s group, the module A
can discover the existence of E through message exchanges between these two
groups only. In fact, the mismatch of the geometric distance and the distance in a
connection network is a global problem that cannot be resolved only by grouping;
we will discuss this later in Section 7.3.5.2. Still, for the purpose of avoiding colli-
sions, mutual exclusion, and coordination, it is important to try to keep spatially
neighboring groups connected so that there is a direct communication path
between them.

146 7 Robotic Metamorphosis

Two similar methods have been proposed to realize the concept of grouping
discussed above: one is what is called a meta-module, a group that simulates mo-
tions of a virtual module with higher symmetry. This has been proposed for
various modular robots including M-TRAN2. The other is regular structures,
proposed for M-TRAN in particular. The idea here is to restrict rather than
increase the symmetry of the entire configuration. Modules are grouped into a unit
and units are repeated to form a regular structure. We also call this unit a
meta-module.

In either method, the use of meta-modules allows a hierarchical control struc-
ture. Meta-module motions, executed by coordination of the modules in the
meta-module, comprise a lower layer of this hierarchy, while distributed control is
realized in upper layers.

7.3.2 Meta-modules Simulating Virtual Modules

A meta-module equivalent to the Crystalline module (Fig. 6.11) can be built from
eight M-TRAN modules (Fig. 7.15). This meta-module can connect with its four
sides, shrinks in half in two directions (Fig. 7.15(b) and (c)), and moves by a se-
quence of basic actions as in the fifteen square puzzle (Fig. 7.15(d)). For example,
in order to move squares along the arrows one by one, it is sufficient to shrink two
neighboring squares into half, and shift these shrunken squares to an adjacent
square. When reconfiguration is planned in terms of meta-modules, collision is not

(a)

(b) (c)

(d)

Fig. 7.15 M-TRAN meta-module

2 The meta-module idea was first proposed in [10, 11].

7.3 Distributed Metamorphosis 147

(a)

(b)

(c)

1
2

34

(d)

(e)

(f)

Fig. 7.16 Fractum meta-module

148 7 Robotic Metamorphosis

an issue, splitting of the robot is also easily avoided, and meta-modules placed
apart from each other can move in parallel. Algorithms developed for the original
Crystalline modules can be applied as they are [12].

The above meta-module does not change the connection relation among its
components to attain its function, but the next example does. Consider construct-
ing a Fractum-like meta-module using the original Fractum modules. With the
original Fractums, in the situation shown in Fig. 7.16(a), the grey module cannot
make the downward move. In some cases a workaround procedure may be possi-
ble, as shown in (b), but it is preferable that it can be done in any case. The figure
(c) is a possible meta-module that allows such a move.

First, let us see if this meta-module has the same motion capability as the origi-
nal Fractum. Each module moves in the original motions of a Fractum as shown in
the picture in the middle of Fig. 7.16(d). Now, if we ignore the intermediate states
and simply look at the pictures on the left and right in (d), it seems as if a large
hexagon moved like a Fractum module.

By using this meta-module, motions such as passing through a narrow gap
(Fig. 7.16(e)) and a jump over a distance (Fig. 7.16(f)) become possible. In the
course of these motions, it is possible to maneuver each module so that the mov-
ing meta-module stays connected to neighbor meta-modules.

The procedure of passing through a narrow space as in Fig. 7.16 (a) makes the
metamorphosis process very adaptable and expands the range of possible confi-
gurations. For example, consider a configuration of packed modules (Fig. 7.17,
on the left). If the hexagons are original Fractum modules, only those at the cor-
ners (indicated by white dots) are movable, while other modules on the edges and
the inside cannot move because there will be collisions with adjacent modules.
Therefore, transforming the configuration on the left to that on the right requires
a complicated procedure. On the other hand, if these hexagons are the meta-
modules described above, even the internal hexagons can move as indicated by
the arrows, allowing simple metamorphosis from a filled configuration to a ring
configuration3.

7.3.3 Regular Structures

The above conception of a meta-module is purely geometric, and as seen from the
examples above, the number of modules required for a meta-module is quite large.
The idea of a regular structure involves repeated use of a unit made up of a small
number of modules according to a principle as in Fig. 7.18(a). This unit is also
called a meta-module. If individual modules in a meta-module make motions in-
dependently as (b), and if we ignore the intermediate processes and consider only
the beginning and the end of the motions (Fig. 7.18(c)), it seems as if in this
process a meta-module moves while retaining its outline structure.

3 A meta-module with similar functionality called a scaffold, which is a combination of vir-

tual cubic modules, also has been suggested [13].

7.3 Distributed Metamorphosis 149

Fig. 7.17 Advantage of meta-modules

Basic component
 (metamodule)

 (a) (b) (c)

(d)

Fig. 7.18 Motions of a regular structure

The meta-modules in the previous section meet the following constraints in or-
der that they can simulate virtual modules:

1. Component modules move only inside the virtual module
2. A virtual module moves as a unit to adjacent positions only
3. A meta-module is always composed of the same component modules.

On the other hand, meta-modules in regular structures are not constrained by these
conditions. For instance, (b) and (c) in Fig. 7.18 are cases where Constraints 1 and
2 are not satisfied. It is also possible to obtain (d) after the motion in (c) if we do
not need to meet Constraint 3.

Although there are differences in conception, there is not much point in distin-
guishing these two kinds of meta-modules strictly. In either case, metamorphosis
of the entire system by self-organization is facilitated by making meta-modules
the functional units of the system.

Various M-TRAN regular structures have been proposed so far: linear, planar,
and three dimensional [14, 15].

150 7 Robotic Metamorphosis

7.3.3.1 Type-I Linear Regular Form

The simplest regular structure is linear, consisting of two chains of modules
(Fig. 7.19(a)). By moving the module at an end of one chain to the other end while
keeping the other chain fixed, and repeating this process alternately on the two
chains, the entire structure can move in a line in one direction. It is also possible to
bend the structure in a right angle as in Fig. 7.19(b) or to turn it sideways using a
device called a converter, consisting of two modules, as shown in (c). This struc-
ture, including the converter, is called a Type-I linear regular form.

 (a) Basic structure (b) Bending at a right angle

converter

(c) Changing direction.

Fig. 7.19 Type-I linear regular form

7.3 Distributed Metamorphosis 151

7.3.3.2 Type-II Linear Regular Form

In the structure shown in Fig. 7.20, which is a regular linear sequence of cubes
each consisting of four modules, each cube can be moved from the tail to the head.
Again, by adding a converter consisting of two modules, the structure can also be
made to turn or branch up, down, left or right at a right angle. This structure is
called a Type-II linear regular form.

converter

metamodule

Fig. 7.20 Type-II linear regular form

7.3.3.3 Planar Regular Form

Fig. 7.21 shows a planar structure which is built by a repetition of crosses (the
minimum quadruped form in Fig. 7.11) each consisting of four modules. Trans-
formation by distributed control will be detailed in Sections 7.3.4 and 7.3.5.

7.3.3.4 Three Dimensional Regular Forms

Using the same cross-shaped four-module groups as building blocks, it is also
possible to obtain various three dimensional regular structures (Fig. 7.22). Proce-
dures can be developed for moving these meta-modules to a neighboring lattice
point.

7.3.3.5 Cluster Flow

Meta-module structures can move themselves like an amoeba by repeating local
motions. Motion of meta-modules in parallel is called cluster flow, because it
looks as if many meta-modules are flowing.

Let us consider a cluster flow of the Type-I structure in one direction. There are
two kinds of this structure, shown in (a) and (b) of Fig. 7.23. Also, there are two
possible ways for modules to move locally so that the whole structure moves for-
ward. One is to carry a module at one end to the other end as shown in (c), and the
other is to successively move two modules in the forward direction, thus shifting
the resulting gap to the rear as shown in (d). In particular, algorithms for (d) are
simpler in that each pair of modules moves forward depending on the existence

152 7 Robotic Metamorphosis

Fig. 7.21 Planar regular form

Fig. 7.22 Three-dimensional regular form

7.3 Distributed Metamorphosis 153

 (a) (b)

(c)

(d)

Fig. 7.23 Type-I linear form and forward motion

154 7 Robotic Metamorphosis

 (a) Forward motion (16 modules)

(b) Forward motion (12 modules)

(c) Climbing up a step (8 modules)

Fig. 7.24 Experiments of cluster flow with Type-I regular form

7.3 Distributed Metamorphosis 155

and status of modules to their front, rear and side. Cooperation with distant mod-
ules is unnecessary.

Fig. 7.24 (a) and (b) show experiments achieving different kinds of forward
motion. For each of these motions, the same program is used regardless of the
number of modules in the structure. Fig. 7.24 (c) shows a motion of climbing up a
step [2].

7.3.4 Motions of Planar Regular Structures

In this section we take a closer look at motions and control of planar regular struc-
tures and attempts to make them into distributed autonomous systems.

7.3.4.1 Basic Motions

We here consider three types of meta-modules which form a planar regular struc-
ture as shown in Fig. 7.25(a). The motion principle is described in Fig. 7.25(b).
First, two modules in an L-shape at an edge of the planar structure are lifted onto
the plane, where the two modules are serially connected and their joint axes are
made vertical. A pair of modules in this configuration is called a walker pair and
the above process is called walker generation. A walker pair can traverse a plane
with a motion similar to pivoting if it can connect to the plane underneath it. When

L-shaped
 metamodule

cross-shape
 module

square
 metamodule

(3) descent

(1) rise (2) pivot
 motion

walker pair

(a) Three types of meta-modules (b) Meta-module motion

(c) Cross-shape meta-module motion (d) Square-shape meta-module motion

Fig. 7.25 Planar regular form and its motions

156 7 Robotic Metamorphosis

a walker pair reaches another edge of the structure, a process which is the reverse
of walker generation is executed, and the pair reverts to be a part of the regular
structure, changing the shape of the configuration as a whole. In this way, an
L-shaped meta-module can move from one edge to another, and by repeating this
process twice, a meta-module of a cross or square shape can move similarly
(Fig. 7.25(c), (d)).

There are two types of walker generation, shown in Fig. 7.26(a) and (b), de-
pending on the relations between the L-shaped pair and modules around it. In ei-
ther case, coordination with four modules (a, b, c and d in the figure) is necessary.
In order for the walker pair to move by pivoting, it has to connect to the planar
structure. However, normally all the modules in a planar structure have their con-
nection faces facing each other in order for the structure to be connected as tightly
as possible, as shown in Fig. 7.25(a). Therefore, a module in charge is required to
turn its connection face upward to support the walker pair. We call such an up-
ward face an anchor. An anchor is formed by the same motion as in Fig. 7.7(b) so
that there is no collision with neighboring modules (Fig. 7.27).

The basic processes of a planar regular structure are walker generation, anchor
formation, reversals of these, and pivoting of a walker pair. By carrying out these
processes in an appropriate order, self-reconfiguration of a planar regular structure
is achieved.

7.3.4.2 Tile Model

For self-reconfiguration by distributed control, we need metamorphosis rules both
for meta-modules and for modules in a meta-module. As we mentioned earlier,
there are three types of meta-modules possible for this structure: L-shaped consist-
ing of two modules, and cross-shaped and square-shaped consisting of four mod-
ules. Obviously, since the L-shaped meta-module is smaller, it gives the whole
structure a higher degree of freedom in shape and motion. On the other hand, the
cross and the square meta-modules are easier to handle than the L-shape because
of their symmetry. Since the cross and the square are quite similar, we focus here
on the cross shaped meta-modules.

We now define an abstract model to denote a regular structure and its meta-
morphosis [16]. Given a planar regular structure, we can draw lines passing the
points where four modules meet as shown in Fig. 7.28(a) and get a square grid, so
that each square corresponds to one module. Each module has connections at its
four faces in this regular structure, and these faces correspond to the four sides of
the square. Since there are two possible placements of a module inside a square, a
diagonal line is drawn to divide the square into two triangles, each of which
corresponds to a block of the module.

Fig. 7.28(b) is a description of (a) using this abstract model. The cross-shaped
meta-module A and anchors indicated with circles in Fig. 7.28(a) are represented
by the two-by-two squares and the gray triangles in (b), respectively. In (b), the

7.3 Distributed Metamorphosis 157

B

A

A

A B

A

B

A

d

c
b

a

(a) Procedure 1

A

B B

A

B
A

BA

d

c
b

a

(b) Procedure 2

Fig. 7.26 Walker pair generation

Fig. 7.27 Anchor formation

158 7 Robotic Metamorphosis

A

(a) Planar regular form

A

ModuleMeta-module

disconnected

(b) Square lattice model

1 42 3 5

(c) Tiles of meta-module

Fig. 7.28 Tile model of planar regular structure. A square in the square lattice (b) corres-
ponds to a module in (a), while a cross-shape meta-module (A) in (a) corresponds to the 2 x
2 square (A) in (b). The anchors marked with circles in (a) are indicated by grey triangles in
(b). In (c), local configurations of a meta-module are expressed as patterns of tiles and by
discrete numbers. The tile 5 in (c) represents the state where a walker pair is connected to a
tile 3.

7.3 Distributed Metamorphosis 159

connections are indicated by solid lines, so that in contrast the absence of lines in-
dicates the blocks of the modules forming anchors that are disconnected from their
neighbors. Actually, we omit to draw such lines hereafter, because given the dark
triangle representing an anchor, the disconnected side is automatically determined.

A planar regular structure can be considered as a plane filled with tiles of 2 × 2
squares, which we call a tile model. Tiles may have various patterns as in Fig.
7.28(c). The tile 4 in (c) represents the rest of a meta-module after a half of it is
transformed to a walker pair. A walker pair can be indicated by distinguishing the
tile by some attribute marker.

Since the tile model is only an abstraction, various control rules and procedures
have to be provided. In particular, it is important to guarantee collision avoidance
and entire structure’s connectivity under distributed metamorphoses. Below, we
summarize procedures:

1. Anchor formation: In the model, anchor formation is represented by change

of the color of triangles. Before the walker pair makes a move, there must be
an anchor at the position where the walker’s end lands on the plane. When
creating a necessary anchor using the process in Fig. 7.27, coordination of
tiles in the neighborhood is necessary to preserve connectivity.

2. Walker generation: When generating a walker pair, cooperation with neigh-
boring meta-modules is indispensible. Procedures for walker generation differ
depending on the patterns of tiles. Fig. 7.29 is an example.

3. Walker pair movement: When moving the cross-shaped meta-module from
one edge to another, two walker pairs are generated and move separately from
each other. In order to make these two arrive at the same destination, the
walker pairs should be guided properly so that the first one leaves marks on
the anchors on its path, and the second one follows the marks.

4. Communication within a meta-module: The modules communicate with
each other through their connections. It is desirable that the four modules
forming a meta-module communicate within the meta-module only through
their connections. For example, all component modules are connected within
meta-modules in all of the four meta-module tiles in Fig. 7.28(c) except the
fourth.

33 3 2 6 2

A

7 2

Fig. 7.29 Walker pair generation

7.3.4.3 Cellular Automaton

If we regard the tiles in this model as basic components of a distributed system,
the whole system can be formalized as a cellular automaton. As shown in Fig.
7.30, tiles correspond to cells, and the state of a cell is 0 if there is no tile, other-
wise tile pattern number as in Fig. 7.28(c), Fig. 7.29, and etc. Together with a set

160 7 Robotic Metamorphosis

of transition rules that determine the next state of a cell depending on its current
state and neighbor cells’ states, we obtain a cellular automaton (Fig. 7.30).

This is an asynchronous cellular automaton, in which cells do not make state
transitions at the same discrete times. In addition, there is no tile or module that
corresponds to a cell with zero state, so there is no information processing facility
for such cells.

0

0

0

0

0

0

000000 0

0 000000 0

0

0

0

0

0 000

0

0 0

4

3 3

33

333 3

333 3

3

3

33

33 3

45

5

7

Fig. 7.30 Cellular automaton model and its behavior. Walker pairs in motion are indicated
by dark rectangles for descriptive purposes.

7.3.5 Distributed Metamorphosis by the Cellular Automaton
Model

Now that we have modeled the M-TRAN planar structure as a cellular automaton,
we can run a distributed metamorphosis by setting appropriate rules of the cellular
automaton. The actual rules and algorithms depend on the tasks to be completed.
There have been various studies in which computer simulations have been made
using ideal asynchronous cellular automata models. Various tasks have been con-
sidered such as a cluster flow, transformations to target configurations, and reach-
ing target points [17, 18].

7.3.5.1 Cluster Flow on Planar Structure

In the discussion of one-dimensional cluster flows in the previous section, the
moving modules themselves were the objects to be controlled. In the cellular au-
tomaton model in this section, however, a moving walker pair is regarded as an
attribute of the cell, and the object to be controlled is the cells that are fixed in the
space. Such difference in perspectives corresponds to the difference between Euler
and Lagrange formulations in dealing with fluid dynamics. In the cell space, what
we need to do is to generate a flow field in the cell space.

The problems of forming target configurations and avoiding obstacles can be
expressed by setting a vector field in the cell space as in Fig. 7.31. Here we do not

7.3 Distributed Metamorphosis 161

consider how to describe the target configuration. A vector field can be generated
by a distributed system described in Chapter 4, which simulates gradient genera-
tion by diffusion dynamics.

initial configuration

target configuration

Obstacle

interim configurationObstacle

 (a) Flow field for metamorphosis (b) Flow field for bypassing an obstacle

source

sink

 target configuration
(c) Sink and source allocation for diffusion field (d) Flow field for cavity formation

Fig. 7.31 Metamorphosis according to a flow field

For example, a vector field can create a gradient in a diffusion field by placing
sources and sinks right next to cells on the edge of the structure (Fig. 7.31(c)). If
each module is capable of detecting obstacles, it is possible to create flows that
follow the contour of the environment (Fig. 7.31(b)). Walker generation starts at
the sources in Fig. 7.31(c), walker pairs move in the direction of the vector field,
and then at the sinks, new cells are generated.

There is a certain freedom in how to define the vector field. In cases like Fig.
7.31(b), after the whole goes through the narrow gap by obstacles, the shape of
structure can be controlled rather freely. An example of such a method is to intro-
duce surface tension along the edge of the area which makes the area circular [19].
A ring shape can also be made by placing a source in the center, and generating a
vector field that sends the cells outwards as in Fig. 7.31(d).

Fig. 7.32 shows results of simple cluster flow experiments of cells arranged in
rectangles moving in one direction. With a unidirectional flow, collision avoid-
ance is much simpler. By installing the same program in all the modules, flows of
clusters consisting of 1 × n cells (for n = 2, ..., 5), 2 × 2 cells, and 3 × 2 cells were
made [2].

162 7 Robotic Metamorphosis

7.3.5.2 Collision Avoidance, Deadlock Avoidance, and Global Consensus

Modules in motion have to avoid colliding with each other. A natural way to do so
is to assign to each a certain area into which others cannot enter. This is simple
mutual exclusion by maintaining distance between moving objects, but this may
cause local deadlocks and various global problems.

Fig. 7.33 shows two examples of local deadlock situations. In both cases, the
vector fields have vortices. As we explained in Chapter 4, vector fields generated
from gradients of scalar fields do not make vortices in principle. As a cell space is
discrete, when an area of exclusion is assigned to each module, deadlocks are
prone to occur. It is necessary to use distributed algorithms for avoiding dead-
locks, both at the level of the meta-module and at the level of the individual
modules.

AD

C B

A

D

C

B

A
B

DC

Metamodule

direction of movement

A

B

(a) Movement in one direction (1×4=16 module)

Fig. 7.32 Result of an experiment on one direction cluster flow

7.3 Distributed Metamorphosis 163

A

E
F

B
DC

HG
J

I

Metamodule

m
ovem

ent

(b) Movement in one direction (3×2=24 module)

Fig. 7.32 (continued)

exclusion area

Fig. 7.33 Local deadlock

164 7 Robotic Metamorphosis

A

B

 (a) Local race condition (b) Race condition

C

E

D

 (c) Connectivity (d) Deadlock

Fig. 7.34 Race conditions and global issues

Fig. 7.34(a) shows a race condition where several nearby cells are about to pro-
ceed to the cell A. This situation is potentially a global bottleneck, but forward
motion is still possible by local coordination among neighboring cells. However,
such coordination is not possible in the case shown in Fig. 7.34(b), where a similar
condition occurs after cells detour in two routes around an obstacle. In this case, it
is impossible even to recognize the possibility of collision, let alone coordinate
motions, only by local information exchange.

This problem is due to the lack of global information such as the shape and the
size of an obstacle. Similarly in Fig. 7.34(c), whether separation at C is possible
without breaking the connectivity of the whole is a similar global issue. Moreover,
in the case where the obstacle is large as in Fig. 7.34(d) and the two branches do
not join up, it is necessary to make a global decision on whether to separate at D
or to reverse direction in one of the branches as shown in E.

Some of the above problems are caused by mismatch between the physical
neighborhood and communication neighborhood of each module or meta-module.
These problems can be alleviated by improvement of hardware. For instance, if a
module can directly recognize the modules in a slightly extended neighborhood
using sensors, the possibility of collision in Fig. 7.34(b) can be foreseen by the

7.3 Distributed Metamorphosis 165

modules themselves. Race conditions can be avoided if unconnected modules can
communicate directly with each other.

7.3.5.3 Porous Structure

When a structure with a hole is the target configuration to be formed, such global
race conditions do not occur. When building the configuration in Fig. 7.35(c)
starting from Fig. 7.35(a), we can specify the final length of two branches as in
Fig. 7.35(b) and avoid the above problems. This is equivalent to centralized deci-
sion making.

x

1 2 3 4

1 2 3 4

5

6

(a) (b) (c)

(d) (e)

Fig. 7.35 Ways to form a configuration with a cavity

In an actual situation, however, the above process of extending branches may
fail. The size of the gap indicated by x in Fig. 7.35(b) is exactly one cell in the
ideal model, but in real physical structures errors are inevitable. Longer branches
will have larger error, and will cause collision or connection failure.

On the other hand, the same structure can be formed by creating and expanding
an internal opening as in the sequence of Fig. 7.35 from (a), via (d) and (e) to (c).
This process does not require joining of long branches, and errors are expected to
be much smaller.

If we have appropriate lattice type modules, the above method can be extended
to form a porous structure, which could be stress-adaptive, transforming itself ac-
cording to the stress applied, if modules are equipped with stress sensors (See Sec-
tion 6.4.7) [20].

166 7 Robotic Metamorphosis

7.4 Various Metamorphoses

The advantage of meta-modules is that they extend the symmetry and functions of
a single module. One might think that it would then be better to build a module
which is functionally equivalent to a meta-module from the start. In reality, mak-
ing a choice between complex and highly functional modules and meta-modules
which are combinations of simple modules is not an issue of principles but rather
of hardware realizability.

Another advantage of meta-modules is that they can be ungrouped so that each
module moves independently when necessary. A meta-module structure has the
potential to detach modules to generate a variety of smaller robots, or to merge de-
tached modules into it.

7.4.1 Generation of Robots from Regular Structures

A mobile robot can be generated from a regular structure by transforming a part of
the structure and then detaching the modified part from the body. Fig. 7.36 shows
the process of generating a parallel quadruped robot from a type-II regular struc-
ture, by taking ten modules out of three meta-modules at its end. By adding two
more meta-modules to the remaining two modules, we can generate another qua-
druped robot, and in this way it is possible to keep generating robots while con-
suming modules from the structure [21].

Since the two dimensional planar regular structure is made up of minimum qu-
adruped robots, simply detaching a meta-module makes a walking robot. Similar-
ly, various robots as in Fig. 7.11 can be made from the regular structures and can
be transformed to others. This can be regarded as a universal assembly machine
that uses a regular structure instead of the supporting plane in Fig. 7.9.

7.4.2 Docking and Merging

Docking and merging are the processes reversing generation and detachment.
However, since detachment is an irreversible process, it is not guaranteed that
docking is possible. Modular robots are designed with the conditions that all parts
are always connected and that modules usually cannot detect and communicate
with separated modules. In order for separate modules to become connected, a
means for measuring positions of others and communication is required.

In the case of the prototype module M-TRAN III (see Chapter 9), each module
can wirelessly communicate with the host computer using Bluetooth devices.
Infrared communication is also available between unconnected modules over short
distances. Moreover, a camera module compatible with a passive block of an M-
TRAN module was developed (Fig. 9.11). These devices were used for docking.

7.4 Various Metamorphoses 167

1
2

3metamodule

converter

1

2
3

3

Fig. 7.36 Generation of a walking robot from a type-II linear regular form

Fig. 7.37 shows an experiment in which a mobile robot approaches a Type-I li-
near regular structure and becomes attached and embedded into the structure. A
camera module placed on top of the type-I structure is used for guiding the mov-
ing robot to the part called a docking port (Fig. 7.37(a)). Position measurement
and guiding of the robot using the camera are both carried out by the host comput-
er, and control commands are transmitted via Bluetooth.

When an end of the mobile robot reaches the docking port, it is clamped and
aligned by the docking port (Fig. 7.37(b)). This mechanism enables docking
without fine feedback control4. After the docking comes a metamorphosis process
of embedding the three modules comprising the robot into the type-I linear

4 In similar docking experiments in [23], alignment errors were absorbed by magnetic

connection.

168 7 Robotic Metamorphosis

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

camera module

docking port

Fig. 7.37 Merging and connecting using a camera module

structure (Fig. 7.37(c) to (h)). In this experiment, all steps from approach to em-
bedding are executed automatically [22].

7.4.3 Self-replication

Another possible goal to be achieved by the robot motions described so far is con-
struction of a copy of the robot by itself, i.e., self-replication [24]. Consider a situ-
ation in which many separate modules are scattered on a flat plane, and a robot
made of modules gathers and assembles them to make a copy of itself. Instead of
considering a walking robot as a parent, we first construct a universal assembler
which makes a serial robot of any length. For example, the robot made of nine
modules in Fig. 7.38(a) can collect modules in its proximity, adjust the position
and orientation of each module (Fig. 7.38(b)) and assemble them to a serial struc-
ture by successively putting each on an end of the existing linear structure (c). As
this robot can be transformed from a serial robot (d), assembling this serial robot
is indeed self-replication.

7.5 M-TRAN Colony 169

(b) posture change
(c) assembly

0
1

1

0

1

1 1
00

0
0

Assembler

(a)

(d) serial robot

Fig. 7.38 Self-replication concept. Any length of serial structures can be assembled by the
assembler in (a). A serial configuration is coded by a binary number, each bit of which in-
dicates whether each neighboring pair is aligned in the same posture or have opposing
postures. The serial robot compatible to the assembler is coded as 00010011.

If this serial robot metamorphoses to a walking robot, the whole process may
resemble a biological process in which a serial structure (DNA) duplicates itself
and grows into an individual. Of course, this is far different from biological self-
replication, because ingredients used by natural self-replications are rather passive
compared to those in our structure and M-TRAN modules are too active and intel-
ligent to be mere ingredients.

7.5 M-TRAN Colony

In this chapter, we discussed various metamorphoses by M-TRAN modules, most
of which were verified by experiments. These metamorphoses, cluster flow
movements, detachments, and assemblies are summarized in Fig. 7.39. If these
motions are executed autonomously, the robot will be able to continue its task in
complex and unknown environments by changing its configuration adaptively. For
example, modules will go through a narrow gap in a linear form, travel quickly
over a flat surface by walking in a quadruped form, and go over a step in a larger
form. Such a capability is suited for searching activities in places inaccessible by
humans.

170 7 Robotic Metamorphosis

separation
(robot generation)

transformation, cluster flow

universal assembly
 & sefl-replication

metamorphosis

locomotion

self-assembly

Fig. 7.39 Life cycle model of an M-TRAN colony

The autonomous behavior shown in Fig. 7.39 is similar to that of biological or-
ganisms, particularly to the life cycle of slime molds in Fig. 2.11. This resem-
blance is not surprising, given that this robot behavior was inspired by amoeba
movement, metamorphoses of living creatures, and cooperative behavior of ants.

References

[1] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-
TRAN: Self-Reconfigurable Modular Robotic System. IEEE/ASME Trans. Mecha-
tron 7(4), 431–441 (2002)

[2] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distri-
buted Self-reconfiguration of M-TRAN III Modular Robotic System. Intl. J. Robot.
Res. 27(3-4), 373–386 (2008)

[3] Kurokawa, H., et al.: A Three-Dimensional Self-Reconfigurable System. Adv. Ro-
bot. 13(6), 591–602 (2000)

[4] Chen, I.M., Burdick, J.: Enumerating the non-isomorphic assembly configurations of
a modular robotic system. Int. J. Robot. Res. 17(7), 702–719 (1996)

[5] Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic Configuration Recognition
Methods in Modular Robots. Int. J. Robot. Res. 27(3-4), 403–421 (2008)

[6] Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.: Graph signa-
ture for self-reconfiguration planning. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), pp. 863–869 (2008)

[7] Hou, F., Shen, W.M.: On the Complexity of Optimal Reconfiguration Planning for
Modular Reconfigurable Robots. In: Proc. IEEE Int. Conf. Robot. Autom. (2010)

[8] Pamecha, A., Uphoff, I.E., Chirikjian, G.S.: Useful metrics for modular robot motion
planning. IEEE Trans. Robot. Automat. 13, 531–545 (1997)

References 171

[9] Chirikjian, G.S., Pamecha, A., Uphoff, I.E.: Evaluating efficiency of self-
reconfiguration in a class of modular robots. J. Robot. Sys. 13(5), 317–338 (1996)

[10] Kotay, K.D., Rus, D.L.: Scalable parallel algorithm for configuration planning for
self-reconfiguring robots. In: Proc. SPIE (Sens Fusion Decentralized Control Robot.
Sys. III), vol. 4196, pp. 377–387 (2000)

[11] Nguyen, T., Guibas, L., Yim, M.: Controlled module density, helps reconfiguration
planning. In: Proc. Int. Workshop Algorithmic Found Robot., pp. 15–27 (2000)

[12] Butler, Z., Byrnes, S., Rus, D.: Distributed motion planning for modular robots with
unit-compressible modules. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Sys (IROS),
vol. 2, pp. 790–796 (2001)

[13] Stoy, K., Nagpal, R.: Self-repair through scale independent selfreconfiguration. In:
Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst (IROS), pp. 2062–2067 (2004)

[14] Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A
Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments. Int.
J. Robot. Res. 21(10), 903–916 (2002)

[15] Ostergaard, E.H., Tomita, K., Kurokawa, H.: Distributed Metamorphosis of Regular
M-TRAN Structures. Distrib. Auton. Robot. Syst. (DARS) 6, 169–178 (2007)

[16] Kurokawa, H., Tomita, K., Kamimura, A., Murata, S.: Toward Flexible and Scalable
Self-reconfiguration of M-TRAN. In: Distrib. Auton. Robot. Syst. (DARS), pp. 405–
416. Springer, Berlin (2008)

[17] Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic Decentralized Control for Lattice-
Based Self-Reconfigurable Robots. Int. J. Robot. Res. 23(9), 919–937 (2004)

[18] Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot.
Auton. Syst. 54(2), 135–141 (2006)

[19] Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic lo-
comotion. Robot. Auton. Syst. 54(8), 641–650 (2006)

[20] Inou, N., Fukushima, S., Shimotai, N., Ujihashi, S.: Study of Group Robots Adaptive-
ly Forming a Mechanical Structure - Effect of Mechanical Properties of Cellular Ro-
bots on Structure Formation. JSME Int. J. C43(1), 127–133 (2000)

[21] Kurokawa, H., Yoshida, E., Kamimura, A., Tomita, K., Murata, S., Kokaji, S.: Self-
reconfigurable M-TRAN Structures and Their Walker Generation. Robot. Auton.
Syst. 54(2), 142–149 (2006)

[22] Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system
– Navigation, docking, and integration of M-TRAN. IEEE Robot. Automat. Maga-
zine 14(4), 56–63 (2007)

[23] Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards
Robotic Self-reassembly After Explosion. In: Proc. IEEE/RSJ Int. Conf. Intell., pp.
2767–2772 (2007)

[24] Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and Designed Self-
Reproducing Modular Robotics. IEEE Trans. Robot. 23(2), 308–319 (2007)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 173–209.
springerlink.com © Springer 2012

Chapter 8
Self-Organization of Motion

Abstract. In contrast with lattice-type modular robots capable of self-
reconfiguration, chain-type modular robots are made for flexible motions,
exploiting their multiple degrees of freedom. Motion control is one of the major
areas of robotics, and knowledge accumulated through years of experience is
applicable to chain type modular robots. Most of such knowledge and methods,
however, are suited to a centralized controller based on a complete and precise
model. In this chapter, we explore a way to design distributed motion control for
modular robots. We start with building a homogeneous distributed control system
applicable to any robot configuration. The system then is optimized accordingly to
each specific robot configuration.

8.1 Robot Motion Control

We first survey typical designs and methods in robotic motion control. We focus
on multi-joint manipulators, legged walking robots, and mobile robots with many
degrees of freedom.

8.1.1 Manipulator End Point Control

A robot that corresponds to a human arm is called a manipulator. A manipulator
consists of several links connected by joints. A serial link type manipulator has its
links connected serially, while a parallel link type has its links connected in a loop.
Here we focus on serial manipulators.

A typical task of a manipulator is to move its end effector (a device such as a
gripper, a paint spray gun, or a welding head) along a designated path. This
involves planning of the path (motion trajectory) of the end effector or the whole
arm, and then controlling of the joints to realize movement along the path [1].

As a simple example, consider a three joint manipulator restricted to a two
dimensional plane (Fig. 8.1). The position of the end effector is geometrically
determined by the input angles of the joints, θ1, θ2 and θ3. Namely, we have the

following mapping relation:

r = f(θ), θ = (θ1, θ2, θ3), r = (x, y)T (8.1)

174 8 Self-Organization of Motion

where θ is a set of the three joint angles, and r is a vector representing the position
of the end effector with respect to the coordinate frame on the plane. Here, a
vector is represented by a column vector1. In the case of this manipulator, the
mapping f is given by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++++
++++++

=
y

x

rrrr

rrrr

0321321211

0321321211

)sin()sin(sin

)cos()cos(cos
)(θθθθθθ

θθθθθθ
θf , (8.2)

where ri represents the length of each link and (r0x, r0y)T is the position of the
fixed joint at the root of the manipulator. The geometric relations like these are
called kinematics.

x

y r

r1

r2

r3

joint

end effector

θ1

θ2

θ3

Fig. 8.1 Two dimensional manipulator

In order to maneuver the end effector along a given trajectory, we need to
control the joint angles by computing θs that correspond to a given point r on the
trajectory. The problem of computing θ from a given r is called inverse
kinematics, and in general it is not analytically solvable. An alternative method is
to slightly displace the target position at a time along the desired motion trajectory
and adjust the θs so that the end effector moves toward it. This is achieved by
differentiating equations (8.1) and (8.2)

⎥
⎦

⎤
++++++
++−++−+−

⎢
⎣

⎡
+++++
++−+−−

=∂∂=

=

)cos()cos()cos(

)sin()sin()sin(

)cos()cos(cos

)sin()sin(sin
)/(

,

32133213212

32133213212

321321211

321321211

θθθθθθθθ
θθθθθθθθ

θθθθθθ
θθθθθθ

θ

θ

rrr

rrr

rrr

rrr
fJ

Jdd

ji

r

(8.3)

1 Mathematically, a set of angles, θ, is not regarded as a vector, whereas its derivative, Δθ,

is a vector.

8.1 Robot Motion Control 175

where dθ is a column vector whose elements are dθi, and the matrix J is the
Jacobian of the mapping f. Using the solution2 Δθ of Eq. (8.3) with small Δr, the
joint angles are adjusted to θ+Δθ. By repeating this computation while controlling
the joints, it is possible to realize movement along the trajectory.

The system in this example is a redundant system because the output r has 2
degrees of freedom, whereas the input θ has 3 degrees of freedom. For a redundant
system, kinematic equations such as (8.1) and (8.3) do not have unique solutions
in general. This means that there are multiple sets of joint angles that give the
same end effector position, and that there are multiple sets of joint velocity vectors
that give the same end effector velocity. In order to determine a unique solution,
extra constraints have to be added. One example of such constraints is that the
manipulator should not come in contact with an obstacle. Another example is to
require the solution to the linear equations (8.3) to have the minimum norm (|dθ|).
We then obtain a unique solution given by

1TT##)(, −== JJJJdJd rθ , (8.4)

where J# is the generalized inverse (pseudo inverse) matrix. This is used in many
situations.

When a manipulator moves in a three dimensional space and the end effector
posture should also be controlled, three more variables for representing the end
effector posture have to be added to the three variables representing the end
effector position, resulting in more complicated kinematic equations. Still, the
control method using the inverse matrix as above is applicable. When the joints
are driven by torque actuators and the end effecter needs to follow a trajectory
where the position at each time is specified, control should be based not only on
kinematics but also on dynamics.

8.1.2 Legged Walking Robots

In this section we consider controlling the walking motion of legged robots. A
walking motion changes the position of a robot by maneuvering its multiple legs
in a coordinated manner. Each leg of a robot is a multi-joint manipulator, which in
principle is maneuvered by kinematic control. In walking motions, each leg
alternates between two states: (1) touching the ground and supporting the body
(support leg) and (2) not touching the ground and swinging to prepare for its next
supporting state (swing leg). Swing legs contribute little to the motion of the body;
it is the support legs that drive the body, but this is not achieved by independent
motion of legs [2].

More precisely, walking requires control of the six degrees of freedom of the
position and the posture of the body through time. Robots with four or more legs
have much larger degrees of freedom, so that the system is largely redundant.
Since it is difficult to determine all the redundant degrees of freedom at once, the

2 There can be no solution to the equation (8.3) for certain states of θ. Such a case is called

a singularity or a singular point.

176 8 Self-Organization of Motion

standard procedure is first to determine the timing of switching between swinging
and supporting for each leg (which is called a gait), then to design the detailed
motion of each leg, and finally to determine the motions of the joints.

One of the important things in determining gait is not to let the robot fall.
Assume, for simplicity, that the weight of the legs can be ignored compared with
that of the body, and the foot, i.e. the portion of each leg in contact with the
ground, can be considered as a point. An object, such as a robot, is stable on the
ground under gravity on the condition that it contacts with the ground at three or
more points and the vertical line from its center of gravity crosses the ground at a
point inside the convex polygon made by these points3. A gait that always satisfies
this condition is called static walk. In static walk, the robot will not fall even when
it stops.

On the contrary, if the walking motion involves a period when the above
stability condition is not satisfied, this is called dynamic walk. To realize dynamic
walk, motion trajectory planning and stability control considering dynamics is
indispensable. Generally speaking, walking with two or three legs must be
dynamic walk, and even robots with four or more legs may walk dynamically
when walking at a high speed4.

Fig. 8.2 describes a crawl gait as an example of static walk of a four-legged
robot. One of the four legs becomes a swing leg in the order shown in Fig. 8.2(a),
while the other three legs are used for supporting, in such a way that the center of
gravity of the body always stays inside the triangle that they form as in Fig. 8.2(b).
Fig. 8.2(c) shows the displacements of the four feet relative to the body. Each foot
moves in the same pattern, with each phase a quarter of the cycle out of phase
with others. Fig. 8.2(d) shows motion patterns of the joints which move the foot
along a rectangular path with respect to the body, when the leg has two degrees of
freedom and is capable of planar motion. If the four legs all have this mechanism,
the joints of each leg move in the same motion patterns with a certain phase shift.

Fig. 8.3 shows three different types of gaits for six-legged walk. Fig. 8.3(a)
shows sequences of gaits which use one swing leg at a time or two
simultaneously. Fig. 8.3(b) shows a tripod gait, a gait with three legs moving at
the same time. This is a simple static walk realized by two groups of three legs
making the same triangle with their feet, alternately touching the ground.

As shown by these examples, various gaits are possible even for static walking.
Moreover, even after determining the gait, there still are some degrees of freedom
in the height and the posture of the body. When each leg has three or more degrees
of freedom, there will be extra freedoms in the joint movements.

3 Most control methods of walking robots, either static or dynamic, are based on the idea of

ZMP (Zero Moment Point), which is a generalized point where gravity and body’s inertial
force hit the ground.

4 Even a robot with two legs is capable of static walk because their feet have non zero
areas.

8.1 Robot Motion Control 177

FL FR

BL BR

Center of
gravity

D
ire

ct
io

n
of

 m
ov

em
en

t

(a) Four-legged robot and its gait

(1) (2) (3) (4) (5)

FR

BL

FL

Support leg foot position on the ground
Swing leg foot

(b) Stable walking pattern: (1) to (5) shows half of a walking cycle, which is followed by
the same pattern with left and right reversed. In (2) and (4), the center of gravity shifts
while supported by four points.

x FL

BL

FR

BR

Supporting leg
Swing leg

Time

(c) Movements of feet: Variation in time of the forward direction component x of the
position of foot relative to the center of gravity.

0.5

1

1.5

2

2.5

Supporting leg

Swing leg θ1

θ2θ1
θ2

(d) Movements of legs and leg joints: a case of two joint, planar leg

Fig. 8.2 Four-legged walk.

178 8 Self-Organization of Motion

FL FR

BL BR

ML MR

FL FR

BL BR

ML MR
C.G.

(a) Six-legged robot and its gait

(1) (2) (3) (4)

FL
FR

BL
BR

ML
MR

Support leg foot position on the ground
Swing leg foot

(b) Tripod gate

Fig. 8.3 Six-legged walking pattern

(b) (c) (d)(a)

Fig. 8.4 Four-legged dynamic walk. If the robot stops walking at (b), it will fall over
backwards, but given a sufficient speed it keeps moving forward.

Fig. 8.4 shows the patterns of foot movements projected on to the ground
during dynamic walking of a four-legged robot. The state with two support legs,
as in Figs. 8.4(b) and (d), is statically unstable, so the body should sustain a
sufficient forward velocity so as to continue forward movement and avoid falling
backward, and the swing legs should reach the ground at an appropriate timing so
as to avoid falling forward. For dynamic walk, not only the geometric pattern of
feet movements should be determined, but also trajectory planning and motion

8.1 Robot Motion Control 179

control that take the velocity and the acceleration of the body movements into
account are indispensible.

8.1.3 Whole Body Locomotion

In this section we briefly discuss the configurations and the motions of mobile
robots other than legged ones that are used occasionally. All examples except the
first are statically stable motions.

8.1.3.1 Rolling Motion

A multiple link mechanism forming a loop, whose joint axes are all in parallel as
in Fig. 8.5(a), is capable of rolling motion. Assuming it has sufficient width in the
direction perpendicular to the page, it does not fall sideways. When the number of
joints is sufficiently large, it can be regarded as a smooth ring which is deformed
from a perfect circle as in Fig. 8.5(b). In an ideal situation without friction, a
perfect circle can keep rolling on the flat ground at constant speed. Friction always
exists in reality, and driving force is necessary to compensate for the friction and
maintain the movement. The driving force can be generated by keeping the ring’s
shape as a tilted ellipse as in Fig. 8.5(b). Since the driving force is determined by
the ellipticity (the ratio of a and b) and the tilt angle α, feedback control can
maintain rolling speed by setting these parameters and controlling each joint
angle, i.e., the local curvature, according to the distance from the point touching
the ground. [3].

8.1.3.2 Crawler

A structure similar to the closed ring above obtained by deforming the ring into a
front half-circle and a rear half-circle connected with straight segments as in Fig.
8.5(c). It can roll and move forward merely by controlling a few joints at the front
and the back. This mechanism is called a continuous track or a crawler.

a
b

α

 (a) Closed link configuration (b) Elliptic ring (c) Crawler

Fig. 8.5 Rolling motions

180 8 Self-Organization of Motion

8.1.3.3 Traveling Wave on a Serial Link

When a serial chain of multiple links is put on the ground, a vertical traveling
wave on the chain makes it move in the same direction as the wave propagation
(Fig. 8.6(a)). The wave can be of any form, and the wave in Fig. 8.6(a) made of
circular arcs is an example. This movement does not cause slipping at points
touching the ground, and locally at each of these points, the motion is equivalent
to the rolling motion of a loop.

Representing each point by the distance s measured along the body from one
end, the function θ(s, t) representing the joint motion (the wave curvature) is given
as

θ (s, t) = f (t−Τs/λ) , (8.5)

where T is the period of the periodic function f, and λ is the length of the body
segment that corresponds to one wave cycle. The same periodic function f is used
for every joint with a phase offset proportional to the distance. The wave in Fig.
8.6(a) is generated by the function in Fig. 8.6(b). More practical functions suitable
for control are trapezoidal, triangular and sinusoidal functions. With a sinusoidal
function of joints, the wave shape of the body becomes almost sinusoidal.

Note that, with the above waves, the head and the tail of the robot do not stay
on the ground but move up and down, which serves no actual purpose. Fig.8.6(c)
shows a wave pattern that is modified so that the head and the tail stay on the
ground. This wave pattern is obtained by the concatenation of (1) growing a wave
with increasing wave length and amplitude at the tail, (2) sending it towards the
head, and (3) the reverse process of (1) at the head, in which the wave attenuates
and disappears.

8.1.3.4 Motions of Snakes and Fish

In the motion described in the previous section, the wave occurs in a plane
perpendicular to the ground, and the robot moves forward due to the rolling
motion without slipping at the contact points with the ground. A snake type
motion is realized by a traveling wave of similar shape, but which moves in the
plane parallel to the ground [4]. In this case, the entire surface of one side of the
robot is in contact with the ground. When the ground friction in the longitudinal
direction of the body is less than that in the lateral direction, the result is slipping
motion along the body while the whole wave-shaped body moves in the opposite
direction of the wave propagation. A fish whose body is flat and long receives
friction from the water in a similar manner as this; it can swim in the opposite
direction to the wave.

8.1 Robot Motion Control 181

a bs

t = 0

t = T/4

t = T/2

a b

a
b

a b

λ

r r

Direction of movement

Local rolling

 (a) Traveling waves of circular arcs: wave form and propagation

ta
b

θ T

(b) Change in joint angles: the changes in joint angles at the points a and b in (a)

(c) Superposition of solitary waves: modified wave form

t = 0

t = Δt

t = t0 − 2Δt

t = t0 − Δt

t = t0

t = 2Δt

t = T

t = t0 − T

Amplification

Propagation

Attenuation

(d) Transmission of solitary wave

Fig. 8.6 Motions of traveling waves

182 8 Self-Organization of Motion

8.1.3.5 Combinations of Traveling Waves

A motion that combines a forward wave and a backward wave is also possible. Let
us consider the case that the wave must go through a narrow hole as in Fig. 8.7(a).
In the motion described in Fig. 8.6(c), the front end of the body stays in contact
with the ground, but obviously the body cannot move into the hole. The wave has
to go through the hole at its minimum height, so that this point has to move in the
direction opposite to that of the body. Moreover, at this point the body needs to be
slipping.

It is possible to generate a backward wave at the hole and forward waves at the
rest of the body by dividing the robot in two, keeping the division point between
them progressing backward along the robot, and keeping waves in both parts
progressing forward (Fig. 8.7(a)). This can be also applied for the case where there
is a step instead of a hole; by extending the division point into a segment of a
shape that covers the height of the step and moving this segment backward, it is
possible to climb up the step, keeping the whole body moving forward (Fig.
8.7(b)). Fig. 8.7(c) shows an experiment in which a robot consisting of ten
M-TRAN modules climbed up a step in this way.

 (a) Path with a hole (b) Path with a step

(c) Step-climbing of M-TRAN robot

Fig. 8.7 Passing through a hole and step climbing by partitioned traveling waves

8.1 Robot Motion Control 183

8.1.4 Design of Motion Control Systems

As we have seen so far, there are various issues to be considered in designing
robotic motion control; kinematics for manipulators, gait patterns for legged
robots, whole body motions, and so on. However, all of them are designed
assuming a centralized control as illustrated in Fig. 8.8(a). Our next question is if
it is possible to realize this control using a distributed control as in Fig. 8.8(b).

For the kinematic control of manipulators, distributed control is not suitable, as
long as it is strictly based on (8.1) and (8.3). This is due to the fact that each
element of the Jacobian matrix in (8.3) is given as a function of multiple joint
angles and therefore it is not possible to decouple them and solve linear equations
for each joint5. This also applies to the case of legged robots whose gaits and
joints are designed and controlled based on precise kinematics.

Then what about manipulators with a larger number of joints or mobile robots
with many legs like centipedes? Is it appropriate to use such centralized, precise
control for these cases, too? In the case of manipulators with numerous joints,
solving inverse kinematics may not be always the most appropriate method of
control, because of increase in computational complexity with increase in the
number of joints. Also, for the case of multi-legged robots, if the goal is simply to
move forward, it may not be necessary to compute the movements of each joint in
advance and maneuver them precisely.

Central controller

Joint JointJoint
Robot

 (a) Centralized control

JointJointJoint
Robot

Distributed
controller

Distributed
controller

Distributed
controller

(b) Distributed control

Fig. 8.8 Hierarchy and distribution of control

In fact, the problem that must be addressed is not whether the control system
structure should be centralized or distributed, but a methodology issue: what kind
of movement should be realized and how to realize it. All of the cases we

5 There have been attempts of distributed inverse-kinematic control using iteration [5].

184 8 Self-Organization of Motion

discussed so far are examples of determining joint movements based on precise
motion models. In order to achieve this precision, constraints to the equations are
required depending on the number of redundant degrees of freedom, which
increase in proportion to the number of joints. In the case of four-legged robots,
the crawl gait in Fig. 8.2 seems a natural choice. In the case of six-legged robots,
however, there are many possible gaits so that we need appropriate criteria, or
equivalently, constraints for a unique choice. When there are even more legs,
more constraints have to be given. Design by distributed control and self-
organization which we discuss in the next section is advantageous for such cases.

8.1.5 Distributed Motion Control of Modular Robots

Various chain-type modular robots we introduced in Chapter 6 can realize robotic
motions with various configurations. M-TRAN modules also work as a chain-type
modular robot. Those systems are built as distributed systems consisting of
microcomputers mounted in all the modules and communication means
connecting the modules. In most of the studies, however, robotic motions
described above such as multi-legged walking, traveling waves, and crawlers were
used, which were in effect equivalent to centralized control. Even with distributed
modules, all the modules need to globally synchronize and to follow a specific
(global) model.

Centralized control based on a precise model is certainly useful. However, a
chain-type modular robot has many possible configurations, and once the
configuration is changed, the motion model has to be selected and the motion
pattern of joints has to be designed again from scratch. Moreover, there is no
guarantee that a model suitable for the new configuration can be found easily. In
order to bring out the potential of chain-type modular robots, a common
framework is desired from which a controller can be designed for any
configuration. The method we explain in the next three sections is an attempt to
create such a framework.

8.2 Coupled Oscillators

8.2.1 Synchronization by Diffusion

As we discussed in Chapter 4, diffusion is a general principle for making the state
of a system homogeneous. This principle can be applied also to synchronization,
because synchronization is a process making oscillating objects have the same
frequency and phase [6-8].

Diffusion interaction of discrete components is described again as follows:

dsi /dt = D Σj(sj−si) + fi , (8.6)

8.2 Coupled Oscillators 185

where si is a state variable of the ith component, D is the diffusion coefficient, and
the sum in the first term on the right hand side is taken over all the components
connecting to the ith component.

As an example of synchronization, consider a situation where two components
generate and exchange periodic pulses. Each of the components can adjust their
pulses as follows: on receiving a pulse, if there is still some time scheduled until
the next pulse that the component sends, then it sends the next pulse earlier;
whereas if its next pulse is about to be sent but a pulse has not been received yet,
then it sends the next pulse a little later. In this way, the time delay of pulses
between the two components can be reduced. This is none other than a diffusion
process. Let us look at this mechanism in more detail.

Consider an oscillator (a phase oscillator) whose state is given by a phase
angle. Letting the phase angle φ be the state variable and ω be the angular
frequency, the simplest equation for the oscillation is given as:

dφ /dt = ω . (8.7)

Now, connect two oscillators using diffusion as follows:

dφi /dt = ω i + D (φj − φi) , i =1, 2 j=2, 1, (8.8)

where the two oscillators are distinguished by indices 1 and 2, and the difference
of phase angles is computed modulo 2π so that the resulting value is in the range
[–π, π]. This modulo calculation is one of the differences between this system and
a usual diffusion system. In addition, the phase of the oscillator, φi, keeps
increasing and the sum of the left hand sides of the equations for the two
oscillators is not equal to zero. Taking the sum and the difference of the two
systems, we obtain

d(φ 2+φ1)/dt = (ω 2+ω1) ,

d(φ 2−φ1)/dt = (ω 2−ω1) − 2D (φ 2−φ1) . (8.9)

From this we see that the two oscillators converge to steady oscillation at the
average frequency of (ω2 + ω1)/2 while keeping the phase difference of (ω2 − ω1)
/ (2D).

In the case when there are many oscillators, if we let ω0 be the average
frequency, and substitute φi = ω0t + αi in equation (8.8), we obtain

dαi /dt = (ω i −ω 0)+ D Σj (αj − αi) . (8.10)

This shows that when many phase oscillators are connected together, they all end
up in a synchronized state oscillating at the same frequency while keeping a
constant phase offset. In particular, when the frequencies of all oscillators are the
same, this leads to synchronization with no phase offset over the entire system.

It is to be noted that the validity of the above analysis depends on the
connection topology and initial states of the oscillators. The behavior described by

186 8 Self-Organization of Motion

(8.10) may not converge to a state with zero phase difference even when all the
components’ frequencies are the same. For example, consider the five components
connected in a loop as in Fig. 8.9(a), supposing that they have the same frequency
ω and diffusion coefficient D is 1. Now, by representing the phase angle φ by a
point on the unit circle, the diffusion terms acting at node 2, for instance, can be
expressed as arrows in Fig. 8.9(b). Each arrow is of the length of the arc between
points, and hence the diffusion effect works as if these arrows are springs.

All the phase points in this system converge to a single point if its initial
configuration is like that of Fig. 8.9(b). From other initial configurations, however,
the system may end up in a stable equilibrium state like that of Fig. 8.9(c), in
which the spring-like effects between each other balance out.

1

2

3
4

5

 (a) Loop connection

2

3

1
4 5

2

3

1

4

5

 (b) Diffusion interaction (c) Circular equidistant configuration

Fig. 8.9 Problem by loop connection

In this way, simple diffusion interactions of phase angles do not assure
convergence to a single point. This problem is alleviated by changing the spring
behavior of the diffusion term from a standard straight line (Fig. 8.10(a)) to a
broken line f (Fig. 8.10(b)). The system then is described as

dφi /dt = ω i + D Σj f(φj − φi). (8.11)

By using this function, the circular equidistant equilibrium state in Fig. 8.9(c)
becomes unstable and the system converges to a single point due to the

8.2 Coupled Oscillators 187

nonlinearity of f that now has negative slopes. When the number of nodes on the
circle is at most n, they are guaranteed to converge to a state with zero phase
difference from any initial state if ϕ < π / n [9].

π
−π

0

f f = k x

φ

π
−π

0

f

φ

ϕ

 (a) Linear (b) Nonlinear (piecewise linear)

Fig. 8.10 Non-linear interaction

8.2.2 Entrainment

Multi-joint coordination of a robot in Sec. 8.1 may be realized by synchronized
oscillators such that each joint is controlled by an appropriate function such as Eq.
(8.5) with appropriate phase offset. This, however, is a simple feed-forward (open-
loop) control. For feedback control, phase information of actual periodic motions
needs to be fed back to the oscillators. For example, if a leg of a robot has a sensor
for detecting the ground contact, this on/off signal can be used as a feedback
signal because it carries explicit phase information. However, signals usually
available in a physical system such as joint angles and forces change periodically,
and obtaining phase angles from those signals is not straightforward.

In fact, there is a method to execute synchronization and feedback at the same
time using a phenomenon called entrainment of oscillators, which is realized by
making oscillating variables, such as joint angles and forces, interact directly with
oscillators. We here give a simple explanation of this phenomenon. In the rest of
this section, we assume that all oscillators have the same frequency.

We use an oscillator described by a second-order differential equation instead
of the phase oscillator. Given a second-order differential equation

d2x/dt2 = F(x, dx/dt) , (8.12)

and by introducing two variables defined as

x1 = x ,

x2 = dx/dt ,

(8.12) can be converted into first-order differential equations:

dx1/dt = x2 ,

dx2/dt = F(x1, x2) . (8.13)

188 8 Self-Organization of Motion

We start with the simplest sinusoidal oscillator (harmonic oscillator)

d2x/dt2 = −ω 2x , (8.14)

where ω is the angular frequency. Similarly to the above, this second-order
equation can be reformulated as first-order differential equations:

dx1/dt = −ω x2 ,

dx 2

/dt = ω x1 . (8.15)

Putting the two variables together as a column vector, we have

dx /dt = ω |x| n, (8.16)

where x = (x1, x2), |x| = 2
2

2
1 xx + and n = (−x2, x1)/|x|.

The space of such vector variables is called a phase space, and a two
dimensional phase space is called a phase plane. In the phase plane, the vector x is
represented as an arrow from the origin (0, 0) pointing at (x1, x2) as in Fig. 8.11(a).
The vector n is a vector of length 1 in the direction obtained by rotating x to the
left by 90 degrees. Thus the vector dx/dt is orthogonal to x in the phase plane, and
the trajectory of x (called solution trajectory) is a circle centered at the origin,
whose radius is determined by an initial condition.

This differential equation can be expressed in polar coordinates (r, φ) as

dφ /dt =ω, dr/dt = 0 . (8.17)

Considering φ only, this is the same as (8.7).
Now, we add the following non-linear term in order to get a unique trajectory:

dx /dt = ω |x| n + g , (8.18)

where

g = g(|x|−a)x/|x| ,

0, 0

() 0, 0

0, 0

r

g r r

r

< >⎧
⎪= =⎨
⎪> <⎩

 . (8.19)

The vector g is in the direction of the moving radius, which makes the system’s
trajectory converge to a circle with radius a (Fig. 8.11(a)). The closed trajectory
like this circle to which other trajectories converge is called a limit cycle. In polar
coordinates, the system differs from the original one in (8.17) only in the second
equation for r:

 dr /dt = g (r − a) . (8.20)

8.2 Coupled Oscillators 189

xi

x1

x2

r

xi
x1

x2 xj

 (a) Limit-cycle (b) Diffusion interaction

Fig. 8.11 Entrainment of oscillators. (a) Limit-cycle (b) Diffusion interaction

Now, we let two oscillators interact directly through the state variable x

dxi /dt = ω |xi| ni + g + k(xj − xi) , (8.21)

where the two oscillators are distinguished by the indices i and j. The third term on
the right represents the diffusion interaction. Fig. 8.11(b) shows the vector of the
diffusion term in the phase plane. The interaction term can be decomposed into
components along the radius and the tangent as drawn in the figure. The
component along the radius always works in the direction toward the origin, and
in situations where the restoring effect of g is large or the two states are close to
each other, the radius r changes only a little.

The component along the tangent is obtained by calculating the inner product
with the vector ni :

dxi /dt · ni = ω |xi| + k |xj − xi| · ni. (8.22)

Setting r to be constant, this can be rewritten in terms of φ as

dφi /dt = ω + k sin(φj − φi). (8.23)

This equation can be regarded as (8.11) where the piece-wise linear function f is
smoothed out with the changeover point set to be π/2. When the phase difference
is sufficiently small, the system behaves like a linear diffusion process, which
means that the two oscillators synchronize and both of their radius r become a.

Now let us change the form of diffusion interaction to be more realistic.
Removing xi from the third term of (8.21), we obtain

190 8 Self-Organization of Motion

dx i /dt = ω |x i| n i + g + k x j, (8.24)

which can be transformed to

dx i

 /dt = ω |x i| n i + (g + k x i) + k(x j − x i) . (8.25)

With this, the radius of the limit cycle may change because of the deviation in the
second term on the right from (8.21), but the phase angles φi are synchronized as
above in accordance with (8.23).

Next, we remove the component x
 j2 from x j = (x j1, x j2) in the third term of

equation (8.24) to obtain

dx i /dt = ω |x i| n i + g + k (x j1, 0) . (8.26)

The third term on the right works only horizontally in the phase plane, which is not
always an interaction that causes x

 i to approach x

 j, as shown in Fig. 8.12. Synchro-
nization cannot be confirmed merely by observing each oscillator on the phase
plane. If we assume that x

 i and x

 j are on the same circle, the component along the
tangent line of Eq. (8.26) given as

dx i /dt · n i = ω |x i| + k(x j1, 0) · n i (8.27)

can be rewritten by representing x j1 and ni in terms of the phase angles:

dφi

/dt = ω − k sinφj cosφi.

x1

x2

xi

xj

x1

x2

xi

xj

Fig. 8.12 Entrainment of oscillators by modified interaction

8.2 Coupled Oscillators 191

Using this, the difference of two oscillators is given as follows:

d(φi − φj)/dt = − k (sinφj cosφi − sinφi cosφj)

= k sin(φj − φi) , (8.28)

which means that the phase difference converges to zero due to an effect similar to
the previous example, and that the two oscillators eventually synchronize.

We have explained qualitatively why coupled oscillators synchronize. Such
synchronization is an example of a common phenomenon in nonlinear dynamics
called entrainment. If we apply the same interaction to a more general oscillator,
we will have

dxi1/dt = F(xi1, xi2) + Σj kij xj1

dxi2/dt = G(xi1, xi2). (8.29)

In this case, the limit cycle of each oscillator may not be circular, and there may
be more than one limit cycle. With the interaction, synchronization may or may
not occur, or even if synchronization is achieved, the limit cycle of each oscillator
may differ. Moreover, cycle doubling, intermittent transition from one limit-cycle
to another, or non-periodic chaotic behavior may be exhibited. Such complex and
interesting phenomena are the central themes of non-linear dynamical systems,
especially the theory of bifurcation and chaos6.

What is important in design and control of mechanical systems is that
oscillators with similar frequencies tend to synchronize through interaction of a
single output x, and that this can be utilized for motion control of a robot.

8.2.3 How to Introduce Phase Offsets

So far we have been discussing situations where the phases are all to be the same.
However, in order to use coupled oscillators for motion control of a robot, each
oscillator, corresponding to each joint, needs to keep an appropriate phase offset
with others. There are several possible ways to generate phase offsets.

1. Specify phase offset directly for each component. In the case of a phase
oscillator, it is easy to set both phase offset and the oscillation (amplitude)
function arbitrarily as in (8.5). When the system is described by two variables
as in (8.29), an arbitrary phase offset can be introduced by regarding a linear
combination of two variables, a1 x1 + a2 x2, as an output with appropriate
coefficients a1, a2.

2. Introduce phase gradient by assigning a different frequency to each oscillator,
as demonstrated by (8.10).

6 For further reading refer to [10-12].

192 8 Self-Organization of Motion

3. Use the circular equidistant equilibrium state shown in Fig. 8.9(c), which we
pointed out as a problem in synchronization. The same diffusion system may
converge to either a state of synchronization or the circular equidistant state,
depending on the initial state. Therefore, to utilize this convergence
phenomenon, some additional mechanism is required to achieve the desired
equilibrium state.

4. Set the interaction coefficient k to be negative so that interacting oscillators
move in opposite directions in the phase space. Fig. 8.13(a) shows that, in the
case where two oscillators are coupled with negative diffusion, they come to be
in anti-phase. It is easier to understand to regard this as each oscillator is pulled
by the other’s anti-phase shadow shown by white circles in Fig. 8.13 (a), rather
than as each repels the other. Fig. 8.13(b) shows three oscillators coupled
together by negative coefficients. They converge to be 120º out of phase with
each other. Note that there are two possible ways to arrange them on the circle.
Fig. 8.13(c) is an example of how the coefficient k influences the phase
difference.

5. Synchronization can be regarded as a diffusion process of one variable. As we
explained in Chapter 4, a two variable reaction diffusion system may exhibit a
Turing pattern, an oscillating pattern, or a propagating wave. Eqs. (8.21) and
(8.29) are indeed reaction diffusion equations, so a propagating wave can be
generated by an appropriate reaction function.

Among the above, the second and the fourth methods are currently more realistic,
considering their system homogeneity and the stability of their equilibrium state.
In the design method we explain in Section 8.5, we adopt the fourth method7.

x2

x1

x2

x3

x1

x2

x3

x1

 (a) (b) (c)

Fig. 8.13 Setting phase difference using negative diffusion coefficient. (a) Two oscillators
are coupled by the same negative coefficients. (b) Three oscillators are symmetrically
coupled with the same negative coefficients. There is another steady state where three states
are in reverse order on the circle. (c) The coupling coefficients of (b) are made asymmetric.

7 The controller for SlimeBot in Section 6.4.15 uses the second method [13].

8.3 Motion Control Using Coupled Oscillators 193

8.3 Motion Control Using Coupled Oscillators

There are mechanisms of motion generation in many biological organisms which
utilize biological oscillators connected to biological motor systems. Biological
oscillators are made of several neurons and are called Central Pattern Generators
(CPGs). Many studies have been done on details of neural oscillators and nerve
electric potential oscillations in various biological systems [14]. The word
“central” in its name does not indicate the existence of a single oscillator in charge
of central control, but rather indicates that the network of neurons plays a central
role in generating oscillations suitable for the motion.

There has been research on methods for controlling robot motions based on
CPG, which we call “CPG control” in this book [15, 16]. In a CPG control, a
system of coupled oscillators as described in the previous section is constructed,
and using those oscillators the set of joints of a robot is controlled. Various kinds
of motions can be realized by maintaining the phase differences among the
oscillators appropriately. If coupled oscillators’ outputs are merely connected to
joints and feedback is not given to the oscillators, coordinated motion of the entire
system may not be attainable. Connecting oscillators and joints in both directions
is often necessary.

8.3.1 Connection with Physical Systems

Consider a system consisting of an oscillator and a physical pendulum connected
together. The left hand side of the system in Fig. 8.14 is a pendulum driven by a
torque motor and the right hand side is the oscillator circuit. If there is no
connection from the pendulum to the oscillator, then this is a conventional forced
oscillation problem. Thus, the free oscillation of the pendulum converges as time
passes to follow the oscillator's output with a particular amplitude and a particular
phase offset determined by factors such as the damping factor and the difference
in frequency of the two systems.

In the case of two-way connection shown in Fig. 8.14, the state variable x1 of
the oscillator works as the driving force of the pendulum, while the swing angle θ
acts upon the oscillator. If the two systems are expressed in equations of the same
form

θ

x1

θ

m

d2θ/dt2 = h(θ) −μ dθ/dt + κ x1

motor

kt)0,()(d/d 1θ+= xfx

x = (x1, x2)

Fig. 8.14 Interaction between oscillator and pendulum

194 8 Self-Organization of Motion

 (8.30)

and

 (8.31)

their behavior is also the same whether the oscillator is built as an electrical
circuit, a computer program, or a physical pendulum, and therefore just by
connecting the two systems, they synchronize. However, in the case of the
physical pendulum in Fig. 8.14, the input to the motor is a torque, and its motion
equation is given as

 (8.32)

which has a form different from that of (8.31): the interaction is given to the
second term. So, for now, we rewrite (8.32) using the variable substitution φ = (φ1,
φ 2) = (−θ 2, θ1) as follows:

 (8.33)

The new variable φ represents the state vector 90 degrees ahead of θ. The
interaction between equation (8.30) and (8.33) means that x is pulled by θ and φ is
pulled by x. Fig. 8.15 shows the balanced state reached when the frequency of x is
larger than that of θ. It can be seen that they synchronize at a frequency between
their original frequencies while keeping a certain phase difference.

x1

x2

x

θ1

θ2

φ

θ

ωx
ωθ

κx1kθ1

Fig. 8.15 Synchronization of a physical system

8.3.2 Global Entrainment

The above discussion explains only the bilateral interaction between an oscillator
and a physical system of single degree of freedom. When robotic motion is

)0,()(d/d 1θkt += xfx

)0,()(d/d 1xkt += θθ f

),0()(' d/d 1xkt += θθ f

)0,()(d/d 1xkt += φφ g

8.3 Motion Control Using Coupled Oscillators 195

generated by several oscillators and joints, the periodic motion of the entire robot
also affects every joint and oscillator.

For example, in the case of the locomotion of a multi-legged robot, due to the
walking motion in which the swing leg alternates with support legs one after
another, the body of the robot swings back and forth and side to side like a
pendulum. This means that the entire robot behaves like an oscillator as in Fig.
8.16. This oscillation of the entire body reaches the oscillator circuits through the
controllers in each leg and affects all the oscillator circuits, which results in
entrainment. This entrainment affects both the phase and the amplitude of joint
motions because, from the perspective of each joint, motions of the entire robot
appear as changes in the load and also changes in the inertia m in Fig. 8.14.
Entrainment caused by the motions of the entire system like this is called global
entrainment, as opposed to local entrainment caused by oscillator coupling, which
we explained earlier8.

force force

Fig. 8.16 Global entrainment

8.3.3 Neural Oscillator

In this section, we introduce Matsuoka’s oscillator [18] as one of the
mathematical models of biological CPG. It consists of two subsystems connected
in anti-phase. A muscle, which is a biological actuator, can exert force only by
contraction, and in order to move a joint in two opposite directions, two types of
muscles, a flexor and an extensor, need to be controlled individually by different
neurons. In order to simulate such a system, two subsystems are connected in anti-
phase. Also, non-linear characteristics are introduced to simulate the
characteristics of neuron connection. Nevertheless, this system can be understood
qualitatively using linear approximation.

8 Global entrainment based on bidirectional connection between an oscillator and a joint

motor is not always possible when motors are controlled by local servo controllers. Even
in such a case, some means of global feedback is necessary for the CPG control to work
properly, which uses information on the whole body and environment. An example is the
use of reflex control, where external information such as touch sensing at the foot causes
phase of the leg motion shift or reset [17]. A CPG control is not only a way to maintain
mutual synchronization but also a way to maintain whole body motion.

196 8 Self-Organization of Motion

Matsuoka’s oscillator is defined by the following differential equations:

.,0

,2 ,1

,
2,

1,~

,
0,

0,0

,d/d'

,~d/d

121

1

2

e

kkk

i

iy

iy
y

uu

u
y

yvtv

fkasyuvutu

i

ii

i
i

iii

iiiiiiii

−=>
=

⎩
⎨
⎧

=
=

=

⎩
⎨
⎧

>
≤

=

−−=
++−+−−=

τ
αβτ

. (8.34)

Here, the first two equations for each i, represent two subsystems that have exactly
the same characteristics. The pair (ui, vi) is the state variable of each subsystem, yi
and ỹi are dependent variables defined in the third and fourth equations, and si and
fi are inputs that we define later. The other coefficients τ, τ’, β, ue, αi, a, k1, and k2
are parameters, all positive except for k2.

In order to understand the behavior of this oscillator, consider first the system
of the above equations with the first equation truncated so that only the first three
terms on the right hand side remain.

.dt/d'

,d/d e

iii

iii

yvv

uvutu

−−=
+⋅−−=

τ
βτ

 (8.35)

The system obtained by fixing yi in the second equation to either 0 or ui is a
system of second-order linear differential equations, and oscillates if the
parameters τ, τ’, and β are set appropriately. Since yi switches between two
values, the system oscillates, switching between two linear systems. The effect of
the third term ue in the right hand side of the first equation is to generate a limit-
cycle, and, roughly speaking, an increase in this value results in an increase in the
amplitude of the limit-cycle.

Returning to the original equations (8.34), the fourth term in the right hand side
of the first equation connects the two subsystems. The term ỹi for mutual
interactions is a variable whose value switches between 0 and ui of the other
subsystem, and it can be seen that, since setting yi to ui amounts to negative
coupling of the subsystems, the two subsystems synchronize in antiphase.

The fifth term with si is for interactions with other oscillators. The effect of
each subsystem is weighted with the same coefficient a, but their interaction is
defined as follows:

),()(

,1
1

2
)(

)(

qywpg
e

ps

ipqqi

pgi
i

∑=

−
+

= −

 (8.36)

8.4 Genetic Algorithm 197

where the oscillators’ variables are given their own index p. If the value of yi in
the second equation is ui, gi is the linear interaction term as in the previous
section. The first equation is the sigmoid function, which is one of the action
models of neurons. Since the sigmoid function can be approximated by broken
lines as shown in Fig. 8.17, the interaction by si causes synchronization just as in
the previous case.

x

sig(x)

Fig. 8.17 Sigmoid function

The last term fi is for the input from the physical system, e.g. a muscle, to the
oscillator. In order to provide inputs to the two subsystems connected in antiphase,
the effect of fi in the first equation in (8.34) is multiplied by the coefficient ki,
which has the opposite sign.

When connecting oscillators to a physical system, if each joint actuator is
composed of flexor and extensor as in biological organisms, y1 and y2 are
connected to them separately. When controlling a conventional robot, each joint
motor is driven by the output z, which is defined as y1 − y2.

Of course, in order to control robots, it is not necessary to simulate biological
organisms. Other oscillators may work, such as a phase oscillator, a circular
oscillator or a van der Pol oscillator. However, in the case of controlling M-TRAN
robots, which we discuss later in this chapter, after trying various types of
oscillators, Matsuoka’s oscillator turned out to be the best. In the sections above,
we focused only on synchronization, but for robotic motion control, not only the
phase but also the amplitude function should be set appropriately9.

8.4 Genetic Algorithm

Now that we have a general framework for generating rhythmic motions, in this
section we consider how to use it for robot locomotion control. In Sections. 8.1.2
and 8.1.3, the coordinated motions were described by gaits or motion patterns, but

9 Apart from M-TRAN, there are other modular robots that use CPG. The YaMoR robot

mainly uses a circular oscillator [20], and the SlimeBot (Section 6.4) uses van der Pol
oscillators [13].

198 8 Self-Organization of Motion

in the case of CPG control, they are described in terms of oscillators’ connections.
Moreover, global entrainment has to be taken into account. As a result, designing
a CPG locomotion control system becomes a problem of optimization, discovering
oscillator connections suitable for locomotion by trial and error.

There are various optimization methods depending on the target. Generally
speaking, asymptotic search methods that use derivatives, like the hill climbing
method, are not effective where there are multiple local maxima or where the
characteristics change drastically. A method called metaheuristics has been
attracting attention as a solution to difficult search problems like these. The
genetic algorithm (called GA hereafter) is one such method, which is now widely
applied to various problems including complicated non-linear problems,
combinatorial optimization, and NP-hard problems [20, 21].

GA is an optimization method that imitates the biological mechanism of
evolution involving inheritance and selection (survival of the fittest). In GA, first
we consider the system parameters as genes. When there are multiple parameters,
a gene g can be regarded either as a vector composed of the parameters, or as a
sequence of numbers or letters (Fig. 8.18(a)). A system that carries a particular
gene, that is, a system whose parameters are specified, is called an individual.

Let us assume that there are some fixed numbers, n, of individuals with
different genes. We call a collection of these individuals and equivalently a
collection of genes, G = (g1, g2, ..., gn), a generation. From a generation, the next
generation is obtained by a mechanism which simulates inheritance and selection
(Fig. 8.18(b)). A single real number value, F, called fitness is assigned to each
individual for the purpose of optimization. The fitness of every individual in the
current generation is calculated, and the individuals of the next generation are
determined by applying operations, i.e., selection, mutation and crossover, to
individuals of the current generation according to their fitness.

While selection simulates the survival of the fittest by choosing individuals
with higher fitness values, mutation is a process probabilistically changing part of
a gene of a chosen individual. Crossover is a process of creating a new gene (and a
child individual that carries it) that has traits of the genes of two chosen
individuals (parent individuals). Many types of crossover have been proposed, but
in the case of the M-TRAN robots the following two types are used:

 N point crossover: a gene is regarded as a sequence of letters. Each of two

given genes is divided the same way into N segments. A sequence for a new
gene is constructed by alternately joining segments from the two genes
while preserving the original order. Fig. 8.18(c) is a description of two point
crossover.

 Unimodal normal distribution crossover (UNDX): a method applicable to
real number parameters. As described in Fig. 8.18(d), in the parameter space,
the point of the child individual (g) is probabilistically determined using a
normal distribution along the line connecting two parent individuals (the
points gi and gj in the figure).

8.5 Motion Control of the M-TRAN Robots 199

The procedure described above is repeated a specified number of times, and the
individual with the highest fitness value is chosen from the last generation as the
optimal solution.

p: Parameter
g: Gene

p1
p2

pm

g

p1 p2 pmg =

 (a) Genes

g1
g2

gn

Gi : Generation

gi

gj Gi+1

F(g) : Fitness

Next generation
Mutation

Crossover
Selection

(b) Change of generations

gi

gj

g

gi gj

g

 (c) 2 point crossover (d) UNDX

Fig. 8.18 Principles of genetic algorithms

8.5 Motion Control of the M-TRAN Robots10

The methods described in the previous sections, i.e., CPG motion control, the
Matsuoka’s oscillator, and GA, were applied to locomotion control of the M-
TRAN robots.

8.5.1 CPG Control System

Given a robot configuration consisting of M-TRAN modules, consider a control
system in which a Matsuoka’s oscillator defined by (8.34) is connected to each of

10 The content of this section is based on the research by Akiya Kamimura, AIST, Japan

[22].

200 8 Self-Organization of Motion

modules’ joints (Fig. 8.19(a)). As there are cases, like the configuration in Fig.
8.19(b), in which the joints need to move around angles other than 0º, an offset
angle θi0 is set for each joint, and the difference between the actual joint angle and
the offset, (θi − θi0), is used as an input to the oscillator. For n modules, 2n
oscillators are used, and the interaction coefficient between each pair of oscillators
wij is given. Similarly to the case discussed in Sec. 8.2, the oscillators’ coupling is
set to be symmetric, i.e., wij = wji, and thus the connections in both directions are
represented by a single line in the following diagrams.

8.5.2 Fitness and Dynamics Simulation

Optimization by GA requires evaluation of the fitness function. Since our target is
locomotion control, we define the fitness F so that an individual that travels
further along a straight line while consuming less energy will have a higher fitness
value:

F = a L − b D − c E , (8.37)

where L and D represent, respectively, the distance in a straight line covered per
unit time and the deviation from the straight line, E is the energy consumption per
unit time, and a, b, c are positive weighting coefficients.

Evaluation of this fitness function F cannot be made analytically, and it is not
practical to do it using a real robot, either. Since GA requires numerous trial-and-
error attempts, it is a standard practice to use a numerical simulation for
evaluation. A robotic motion, even static walking, is intrinsically dynamic, hence
simulations need to be made by taking dynamics into account.

Dynamics simulation determines the behavior of a physical system by
numerically calculating the integrals of equations of motion. Once the equations of
motion are formulated, numerical integration can be easily done using algorithms
such as Runge-Kutta method. But formulation of the equations of a mechanical
system consisting of many parts connected in a complicated way is not a simple
task. Issues such as geometric constraints of bearings and linkages, whether parts
come in contact, and, in case of locomotion, friction and rebound due to contact
with the ground need to be taken into account.

Recently, many generic packages have been developed for solving dynamics
problems. By specifying physical and geometric parameters such as the mass,
inertia moment, and three dimensional shape and connections of each component,
they are capable of numerically computing the dynamic behavior of the system,
even including the contacts and collisions, and displaying this three dimensionally.
In our study, a commercial library (Vortex by Critical Math Labs) was used, but
there are free packages available as well, such as ODE (Open Dynamics Engine)
and OpenHRP (AIST) [23].

8.5 Motion Control of the M-TRAN Robots 201

z

zOscw

Osc

f

f

Motor input

 (a) CPG connection (b) Parallel quadruped form

Fig. 8.19 CPG control system and an example application

The dynamic characteristics of an M-TRAN module were modeled in two
blocks, active and passive, with the same characteristics. Since servo control of
joint angles is not appropriate for our CPG control, DC motor dynamics was also
modeled. The friction with the ground was modeled as a combination of static
friction and viscous friction. As a result, in the case of a robot consisting of n
modules, in the system there are 4n variables for joint angles and their time
derivatives, 8n variables describing oscillators for each joint, six variables
describing the three dimensional position and the posture of the whole robot, and
six variables as their time derivatives, so that the number of variables is 12n + 12,
apart from the DC motor variables.

Simulations were run under gravity starting from the initial state where all the
joints are set their offset angles and the robot is resting on level ground. Fig. 8.20
shows examples of simulations using two joints and four joints. In the case of two
joints as in Fig. 8.19(a), oscillations both in phase and in anti-phase (Fig. 8.20(a)
and (b)) were obtained depending on the sign of the connection coefficients. In the
case of linear configuration in Fig. 8.20(c), by connecting the three oscillators by
negative weights, phase differences of roughly 120 degrees are obtained (Fig.
8.20(d)). These phase differences generate a traveling wave in modules arranged
in a linear configuration, and it results in forward movement of this robot when it
is placed on the ground.

8.5.3 GA Optimization

The design parameters for optimization, i.e., the genes, are the coupling weights
wij of the oscillators. To reduce the GA search space, we only consider three
values for each coefficient wij: 0, w, and −w with a fixed value of w.

In the process of optimization, no prior assumptions are made. In the case of
the quadruped configuration in Fig. 8.19(b), for example, it might seem

202 8 Self-Organization of Motion

appropriate to connect the oscillators symmetrically as shown in Fig. 8.21,
because, as we considered in Section 8.1.2, it may be sufficient to set up an
appropriate phase relation among the four legs and then to move each foot in the
same way. If this assumption is correct, many of the connections can be set to
have zero weight and several of the remaining connections can be set to have
equal coefficients for the sake of the symmetry. However, there is no guarantee
that this assumption is correct and that such symmetric connection leads to the
optimal locomotion. Moreover, if there is even a little change in configuration,
conditions based on symmetry cannot be fulfilled. We therefore made no
assumptions for any configuration, started from a system which assumes that all
joints are randomly connected, and then attempted to find connections appropriate
for locomotion through an optimization process.

We considered additional design parameters, i.e., the initial state variables of
the CPGs. A pair of harmonic oscillators following (8.18) that we discussed earlier
have only one limit-cycle, but if several oscillators are connected in a loop, there
can be two limit cycles, one in reverse order, as described in Fig. 8.13. Moreover,
the above discussion of synchronization and entrainment dealt only with steady
state behavior of the system. In the case of walking robots, even if there is an
optimal CPG connection that realizes steady walking, the robot with such
connection may stumble while in transition from the resting state to this steady
state. In order to get a desirable transient behavior as well, we included the initial
states of oscillators into the design parameters.

-1.5
-1

-0.5

0

0.5

1
1.5

0 1.2 2.4 3.6 4.8

t

z

-1.5

-1

-0.5

0

0.5

1
1.5

0 1.2 2.4 3.6 4.8

t

z

 (a) w = 1 (b) w = −1

0 1.2 2.4 3.6 4.8

t

z

 (c) Two module chain (d) Wave motion

Fig. 8.20 Example simulations. (a) and (b) are results for two joint case in Fig. 8.19(a).

8.5 Motion Control of the M-TRAN Robots 203

Fig. 8.21 Candidate connection for the configuration in Fig. 8.19(b).

Thus, for n modules, genes for GA are constructed from 2nC2 variables with the
discrete values 0, 1, and −1, and 8n real number values. Applicable methods for
crossover and mutation when optimizing discrete values and when optimizing
continuous values are different. We applied the N point crossover method for
connection coefficients, which are discrete values, and UNDX for initial states,
which are real number values.

8.5.4 Optimization Results and Playback Experiment

Fig. 8.22 shows one of the results of GA optimization. Various configurations as
shown in Fig. 8.23 were also tried, and the optimization results were applied to the
actual M-TRAN robots. The configurations in Fig. 8.22(a) and Fig. 8.23(c) are
topologically the same, but for their locomotion, different offset angles (θi0) of
joints were used. If the offset angles are set to those when standing on four legs,
quadruped walking is achieved, while if they are all set to zero, the two rows of
traveling waves are obtained.

To begin with, instead of mounting the CPG control system on the robot, we
used playback control for hardware experiments. This means that each module
was given a reference trajectory of joint angles resulting from a steady oscillation
simulation as in Fig. 8.22(c), and the joint angles were maneuvered by servo
controllers to follow this trajectory. Most of movements by robots in Figs. 8.22
and 8.23 are quasi-static, so playback control worked well.

8.5.5 Real Time CPG Control

Playback control does not work well if we change environmental conditions such
as ground friction or the tilt of the ground. In order to take advantage of the local
and global entrainment in this system to deal with such changes, it is necessary to
drive each module by the same CPG controller as in the simulation. To achieve
that, the CPU in each module carries out numerical integration of differential
equations for each pair of oscillators, and state variables are exchanged between
oscillators that are connected via the intra-module network bus. For this real time
CPG control, optimized connections and oscillators’ initial states are used to
achieve the same motion as the simulations.

204 8 Self-Organization of Motion

12 13 4 5 6 7 14 15

10 11 2 3 8 9 16 17

0 1

 (a) Target robot configuration (b) Part of optimized connections

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)
(c) Changes of joint angles

--

θ

dθ/dt

0 10 20 30 40 50 60 70 80
generation

fit
ne

ss

(d) Joint angle trajectory in the phase plane (e) Maximum fitness of succeeding generations

Fig. 8.22 GA optimization example. (a) A parallel quadruped robot, the design target. (b)
Optimized coefficient of the oscillator coupling, for only the connections relating to the
joints 6 and 8. Solid lines are for weight w and dash lines for −w. (c) Changes of joint
angles. (d) A trajectory of a joint angle oscillation expressed in a phase plane. (e) The
change in maximum fitness of each generation during GA computation

8.5 Motion Control of the M-TRAN Robots 205

 (a) Linear form with traveling wave (b) Parallel six-legged form

 (c) Two rows with traveling waves (d) Minimum quadruped form

(e) Spider (four-legged)

Fig. 8.23 Robot configurations

In the rolling motion shown in Fig. 8.24, CPG control differs greatly from
playback control. Since this motion is intrinsically dynamic and the playback
control never synchronizes to the actual rolling motion, the robot was not able to
maintain rolling motion and suffered excessive stress on its joints. By the real time
CPG control, the rolling continued smoothly as seen in Fig. 8.24. It is notable that
this CPG controller does not use a sensor specifically to measure rolling or a
central program that determines whether the robot is properly rolling. The
connection between each oscillator and each joint motor can be regarded as a
proportional controller, in which the output from the oscillator causes motor
torque and the joint angle value is input to the oscillator as feedback. Roughly
speaking, this proportional control works as a sensor for external forces, and
global entrainment works as feedback control of the whole system.

In the case of the quadruped robot in Fig. 8.22(a), a dynamic walk gait with two
swing legs at a time is obtained. Even with this gait, the playback control worked
well when the ground was flat and the actual friction coefficient was close to the
value used in the simulation. However, when there was some change in the tilt of
the ground or the friction coefficient, there were problems such as a swing leg

206 8 Self-Organization of Motion

Fig. 8.24 Global entrainment during rolling motion

colliding with the ground, or slipping of a support leg. With the real time CPG
control, on the other hand, the robot often was able to maintain its motion under
such changes in the environment, by changing the stride or the pace.

Since the connection of each oscillator and each motor provides a proportional
control, each joint has the characteristics of a spring. As with the serial linkage in
Section 8.1.3.5 which uses ground friction and a traveling wave for locomotion,
the serial M-TRAN robot under playback control could not go over the bump in
Fig. 8.25. Under the real time CPG control, the robot successfully went over the
bump using its spring characteristics.

Fig. 8.25 Moving over bump using flexible traveling waves

Actually, the characteristics of proportional control may be either an advantage
or a disadvantage depending on the situation. Integral compensation is a typical
way to improve a proportional control system in many situations. The motion in
Fig. 8.26 is an example of application of proportional integral control with its
capability of disturbance estimation 11 . When the tilt of the ground is small
(Fig. 8.26(a)), the proportional integral control is effective and four-legged walk is
possible by adjusting the stride appropriately. When the tilt becomes steep

11 In fact, the usage of the terms “proportional control” and “integral control” is not precise

here because they are not directly applied to the joint angle control. In reality, they refer
to proportional or integral control over the offsets of periodic movements.

8.5 Motion Control of the M-TRAN Robots 207

(Fig. 8.26(c)), however, no adjustment makes it possible to climb by walking. This
situation can be identified by estimating the disturbance with the integral feedback
term. In the experiment, the robot changed its configuration into two rows when
the estimated disturbance exceeds the threshold, and it continued climbing by
traveling wave motion (Fig. 8.26(d)).

 (a) Tilt angle 10 degrees (b) Tilt angle 0 degree

 (c) Tile angle 15 degrees (d) Motion after metamorphosis

Fig. 8.26 Adaptive metamorphosis under disturbance

8.5.6 Issues of CPG Control

In the above system, the same modules and the same oscillators are used, and
there is no central module that is in control of the whole system. It is indeed a
homogeneous distributed system. Synchronization among modules is the result of
the CPG control, and feedback of the entire motion also is utilized in the CPG
control system. However, this is not the kind of a distributed system we saw in the
previous chapters which uses local interactions only. As can be seen in Fig.
8.22(b), this system has connections even between oscillators of joints far apart
from each other. Like the central nervous system of real biological organisms,
such remote connections are indispensable, for dynamic walking in particular.

There are issues to be resolved in this CPG control of M-TRAN robots. We
briefly discuss them below.

The CPG control in this chapter assumes movements only on a flat ground with
uniform friction. In some experiments, the robot showed robustness against
changes in friction and the tilt of the ground, but such robustness is not enough for
autonomous motion over an actual terrain. Advanced recognition functions such
as visual sensing must be incorporated. Integration of environmental recognition,

208 8 Self-Organization of Motion

decision making, and motion control, into a layered control hierarchy, whether
using model-based control or CPG control, is still a difficult problem.

Various gaits are possible for multi-legged robots, as we explained in Section
8.1. Animals actually switch between different gaits depending on various
factors 12 . In our study, however, only one gait has been obtained for each
configuration so far. Future studies may include optimization with more
parameters and with variation of oscillator functions.

8.6 Remark

The essence of distributed motion control lies in synchronization. In this chapter,
we explained the mechanism of the CPG control that realizes synchronization and
feedback control in the same framework, and, as an example of its application,
various motions of M-TRAN robots were designed and experimented. It is
difficult to convey by words and photographs that motions of the M-TRAN robots
have smoothness and flexibility similar to biological organisms. We recommend
that readers watch the videos available as extra materials.

The design process of motion control involves an initial setting of a
homogeneous mechanism of control, and then repeated trial and error with
simulations, finally achieving the optimal control system suitable for each robot.
This is indeed a process of self-organization.

It is also feasible to make real robots learn motions by themselves using the real
hardware instead of simulations, or using reinforcement learning instead of GA
[19]. What is more, the behavior and the bodily form of all living creatures have
been evolving in parallel. This is simultaneous optimization of structure and
control, and adopting this scheme, a robot would evolve by changing both its
physical configuration and controller structure [25, 26].

References

[1] Craig, J.J.: Introduction to robotics: mechanics and control, 2nd edn. Addison-Wesley
(1989)

[2] Todd, D.J.: Walking machines: an introduction to legged robots. Kogan Page (1985)
[3] Sastra, J., Chitta, S., Yim, M.: Dynamic Rolling for a Modular Loop Robot. In: Adv.

Robot., vol. 39, pp. 421–430. Springer (2008)
[4] Hirose, S., Morishima, A.: Design and Control of a Mobile Robot with an Articulated

Body. Int. J. Robot. Res. 9(2), 99–114 (1990)
[5] Kimura, S., Tsuchiya, S., Suzuki, Y.: Decentralized Autonomous Mechanism for

Fault-Tolerant Control of a Kinematically Redundant Manipulator. In: IEEE Int.
Conf. Syst. Man. Cybern., vol. 3, pp. 2540–2545 (1995)

[6] Winfree, A.T.: Biological Rhythms and the Behavior of Populations of Coupled
Oscillators. J. Theoret. Biol. 16, 15–42 (1967)

12 Typical natural gaits of horses are, in the increasing order of speed, walk, trot and gallop.

There is an experimental study showing that horses seem to use the most energy efficient
gait [24].

References 209

[7] Strogatz, S.H., Stewart, I.: Coupled Oscillators and Biological Synchronazation. Sci.
Am., 102–109 (December 1993)

[8] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in
Nonlinear Sciences. Cambridge University (2001)

[9] Kokaji, S., Murata, S., Kurokawa, H., Tomita, K.: Clock synchronization mechanisms
for a distributed autonomous system. J. Robot. Mechatron 8(5), 427–434 (1996)

[10] Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York
(1984)

[11] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer (1983)

[12] Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. John Wiley &
Sons (1986)

[13] Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: A Modular Robot That Exploits
Emergent Phenomena. In: Proc. Int. Conf. Robot. Autom., pp. 2982–2987 (2005)

[14] Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental
oscillators of the lamprey spinal generator for locomotion: a mathematical model. J.
Math. Biol. 13, 345–369 (1982)

[15] Yuasa, H., Ito, M.: Coordination of many oscillators and generation of locomotory
patterns. Biol. Cybern. 63, 177–184 (1990)

[16] Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots:
a review. Neural Netw. 21(4), 642–653 (2008)

[17] Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive Dynamic Walking of a Quadruped
Robot on Irregular Terrain based on Biological Concepts. Int. J. Robot. Res. 22(3-4),
187–202 (2003)

[18] Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm
generators. Biolog. Cybern. 56, 345–353 (1987)

[19] Marbach, D., Ijspeert, A.: Online Optimization of Modular Robot Locomotion. In:
Proc. IEEE Int. Conf. Mechtron Automat., pp. 248–253 (2005)

[20] Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT (1992)

[21] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1989)

[22] Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.:
Automatic Locomotion Design and Experiments for a Modular Robotic System.
IEEE/ASME Trans. Mechatron 10(3), 314–325 (2005)

[23] http://www.openrtp.jp/openhrp3/en/index.html
(accessed July 05, 2011)

[24] Hoyt, D.F., Taylor, C.R.: Gait and the energetics of locomotion in horses.
Nat. 292(16), 239–240 (1981)

[25] Sims, K.: Evolving Virtual Creatures. In: Proc. SIGGRAPH, pp. 15–22 (1994)
[26] Marbach, D., Ijspeert, A.J.: Co-Evolution of Configuration and Control for

Homogenous Modular Robots. Intel. Auton. Syst. 8, 712–719 (2004)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 211–233.
springerlink.com © Springer 2012

Chapter 9
Hardware and Software

Abstract. In this chapter, we discuss the practical aspects of hardware and soft-
ware designs of the M-TRAN system. In principle, behavior of lattice-type mod-
ular robots like M-TRAN can be understood to some extent without any physical
experiments, instead investigating the algorithm itself, or making computer simu-
lations. Also, motion control of a robot can be investigated without a real machine,
if precise dynamics of the robot is modeled. However, methods and algorithms es-
tablished on abstract models are meaningless unless they are physically realized as
real robots and machines. When building a self-organizing mechanical system, we
need to consider various issues of many different areas such as mechanical engi-
neering, control engineering, robotics, and systems engineering. In this chapter,
we introduce topics we studied while building the M-TRAN system.

9.1 Hardware

We have developed three generations of M-TRAN prototypes (Fig. 9.1). Table 9.1
and Fig. 9.2 summarize their specifications and system structures. The M-TRAN I
module, which only has mechanisms for motion and connection, was developed
into M-TRAN II, which has a control circuit and a battery together with sensors
and wireless communication capability, and this was further developed into M-
TRAN III, with capability for local communication [1-3].

9.1.1 Structure and Mechanism

An M-TRAN module consists of three parts: an active block, a passive block, and
a link (Fig. 9.3). Fig. 9.4 shows the internal structure of M-TRAN II and III mod-
ules, and Fig. 9.5 shows all the structural and mechanical parts of an M-TRAN III
module. To meet the requirements for weight reduction, accuracy of dimensions,
and rigidity, the main structural parts were machined from bulk plastic materials.
M-TRAN modules are remarkably smaller and lighter than other 3-D modules.
For instance, a module of the Three Dimensional Universal Connection System,
made from aluminum, is 275 mm in length and 6.8 kg in weight.

212 9 Hardware and Software

Fig. 9.1 Appearance of M-TRAN modules (from the left, I, II, and III)

Table 9.1 M-TRAN module specifications

 I II III

Length of block (mm) 66 60 65

Weight (g) 440 400 420

Number of CPUs 1 3 4

Inter-module commu-
nication method

- LonWorks CAN CAN
Serial adjacent communication

Control method Control by
host com-

puter

Synchronous control &
CPG motion control

 Synchronous/asynchronous
distributed control

Wireless communica-
tion

- Command transmission
from the host computer

Bidirectional wireless modem
(Bluetooth)

Connection Permanent magnet + SMA actuator Mechanical latch

Sensors - Proximity sensors, acceleration sensors

Battery - Lithium ion battery Lithium polymer battery

Number of modules
produced

10 20 50

Each module contains driving mechanisms for two joints and three active con-

necting faces, and so the choice of actuators and the designs of mechanisms were
important. If we disregard its function as a chain-type modular robot, and limit the

9.1 Hardware 213

usage of the M-TRAN to that of a lattice-type modular robot capable of self-
assembly and metamorphosis, discrete state control is sufficient for both the rota-
tion of joints and connection. Namely, the joints only need be controlled to be in
five different angles, 0°, ±45°, and ±90°, and the connection mechanisms need on-
ly two states, connected and disconnected.

However, it is not easy to find actuators which are capable of discrete motions
with sufficient power. Hydraulic or pneumatic piston cylinders, solenoids, piezoe-
lectric elements, and electrostatic actuators are not easy to use when power
sources and circuits have to be in the module. Other typical devices fitted for
small discrete actuators are electromagnets, permanent magnets, and shape memo-
ry alloy (SMA), but they have their problems as described in the next section. In
the end, for M-TRAN III modules we chose geared DC motors for both joint
drives and connection mechanisms, and used On/Off, bang-bang, and PI (propor-
tional-integral) controllers.

adjacent module

Power source

(M-TRAN I only) Host computer

Remote controller

Programs for development

Programs for experiments

Connection cables Onboard program

Control circuit &
onboard computer Electrical contact points

Connection plate

Joint rotation mechanism
Connection mechanism

M-TRAN module

Fig. 9.2 Overview of the M-TRAN system

214 9 Hardware and Software

*

*

*

*

*

*

*

IRxmt

IRrcv

Active block

LED (IRxmt)

Infrared detector (IRrcv)

Connection claw

Signal contacts

Passive block

Link

180 degree rotating joint

Connection face

Fig. 9.3 External appearance of an M-TRAN III module

9.1.2 Connection Mechanism

The two blocks of a module have different polarities, and all the mechanisms for
controlling connection are mounted in the active block, while the passive block is
designed to be as simple as possible. Since a single module contains three active
connection faces, a compact design of the connection mechanism is a significant
factor in determining the size and weight of the entire module.

9.1.2.1 Magnetic Connection Mechanism

The connection mechanisms in M-TRAN I and II modules are magnetic. A simple
connection mechanism can be made by pairing an electromagnet and an iron
piece. This is controlled by switching the power on and off, but this is not a realis-
tic method as it requires electricity to maintain the connection. A permanent mag-
net has the advantage that it maintains the connection without consuming power,
but now disconnecting becomes a problem. In case of the M-TRAN I and II mod-
ules, a mechanism called Internally Balanced Magnetic Unit (IBMU) [4] is used,
which makes a strong connection but which can be disconnected with a smaller
force.

Fig. 9.6 explains the working principle of this mechanism. Permanent magnets
are placed in both the active and passive blocks so that there is attraction between
the blocks. The magnets of the passive block are fixed at the surface of the block,
whereas those of the active block are fixed on a moving plate placed inside the
block. This moving plate is supported by a spring which allows the plate to move
up and down in the diagram. The plate receives several forces: the attraction Fm
between magnets, repulsion Fs of the spring, the actuation force Fa, and the

9.1 Hardware 215

Connection
 mechanism platePower circuit

Battery

CPU

 (a) M-TRAN II

Power circuit

Battery

Main
CPUsub-CPU

(b) M-TRAN III

Fig. 9.4 Internal structure

Passive blockActive block

Link

gear

motorgear

motor

Fig. 9.5 Structural and mechanical parts of an M-TRAN module

216 9 Hardware and Software

d0

D

Passive block (module 1)

Magnet

Magnet

Spring Actuator

Spring

Active block (module 2) Movable plate

(a) Separated state

d’ d

d

Fm

Fs

Fa

d’

Fm

Fs

FaF1

F2

 (b) Intermediate state (c) Connected state

Fm

Fs

Fa

F s+ F a

d0

Fm0

Fm1

Fs1

Fo
rc

e
of

 m
ag

ne
t/s

pr
in

g

Distance / displacement d , D
(d) Displacement-force characteristics

Fig. 9.6 Working principles of magnetic connection mechanism

9.1 Hardware 217

counter forces F1 and F2 at points where there is contact in the connected state.
Fig. 9.6(d) is a schematic graph that shows the strength of these forces with re-
spect to the distance D or d between the magnets of the passive block and the
moving plate.

The following two points should be noted here. First, since all the forces except
for Fm and F2 are inside the active block, regardless of the position of the moving
plate, the connecting force (the force required to detach two modules) between the
active and passive blocks is always Fm. Secondly, when two blocks are in contact
as in Fig. 9.6(b), it is possible to make the plate move upward when the actuator’s
force Fa is 0 and move downward when Fa is slightly larger than Fm−Fs . This dif-
ference of forces, Fm−Fs, can be made sufficiently small for all d (0 ≤ d ≤ d0) as in
Fig. 9.6(d), by proper design of spring characteristics.

If the actuation force Fa is 0 and the two blocks contact each other, the movable
plate in Fig. 9.6 (b) moves upward, and at d=0 the blocks are maintained in a con-
nected state. In this situation, the connection force is the maximum value Fm0. To
disconnect the blocks, the actuator is activated to push the plate downward (Fa in
9.6(d)). At the lowest point, the attraction force is Fm1 at distance d0, sufficiently
smaller than Fm0 for the modules to be disconnected easily.

As seen from the above, it is possible in principle to make the connecting force
Fm0 sufficiently large, and make the internal force Fa for releasing the connection
and the external force Fm1 for moving the modules apart sufficiently small. In real-
ity though, the permanent magnets, non-linear springs, and actuators all require
very careful production and adjustment. Also, the SMA (Shape memory alloy) ac-
tuator, used for M-TRAN I and II, was very slow and power consuming.

9.1.2.2 Mechanical Connection Mechanism

Mechanical connection mechanisms are used in several of the modular robot pro-
totypes we introduced in Chapter 6, including the Molecule System, the Three
Dimensional Universal Connection System, and the ATRON system. For the M-
TRAN III, we installed a hooking mechanism (called connection hooks hereafter)
in the active module, that clutches at the passive module [5]. M-TRAN modules
differ from other prototypes in their capability to completely retract the connection
hooks beneath the connection face. When hooks are retracted, two faces can slide
along each other. Since the whole face of a block connects with another block,
high rigidity is also achieved.

The connection mechanism consists of a motor, gears, linkages, sliding blocks,
and connection hooks (Fig. 9.7). A connection hook is held by a moving axis on a
sliding block and a fixed axis on the body (Fig. 9.8). The fixed axis moves in a
groove in the connection hook, forming a cam mechanism so that when the sliding
block moves, the hook first rotates about the moving axis and then slides, as
shown in Fig. 9.8.

A connection face has four symmetrically-placed hooks which allow connec-
tions in the same way every time the face rotates 90º. The sliding blocks are dri-
ven by motors via linkages (Fig. 9.7). The link mechanism is designed so that

218 9 Hardware and Software

when the faces are connected, the hooks are not retracted even when external
forces are applied, allowing the connection to be retained without power. Also, the
shapes of the hook and the cavities of a passive block are designed in such a way
that the positioning errors are absorbed. The tolerance for positioning is 5 mm in a
direction parallel to the face, 2 mm in the distance between faces, and 10 degrees
of rotation of the face, for a face that is 65 mm square.

The connection is controlled using limit-switches. The time required for mak-
ing and releasing connections is no more than five seconds.

Worm gear

Motor

Gear chain

Connection hook

Crank mechanism
Sliding block Socket for hook

Active block Passive block

Fig. 9.7 Mechanical connection mechanism. This shows a mechanism of one of the three
faces. Motion of the motor is transferred in the order indicated by the numbers to the sliding
block, causing the straight movement of the moving axis.

Moving axis Fixed axis

Passive connection face

Active connection face

(a) Retracted connection claw (b) Straight movement starts (c) Completion of connection

Fig. 9.8 Action of connection hook

9.1 Hardware 219

9.1.3 Circuitry

9.1.3.1 Multiple CPU System

Along with the advances in microcomputers and network technologies, recent
control systems embedded in mechanical systems are generally designed in such a
way that sensors and actuators are controlled by local CPUs, with these CPUs dis-
tributed in different locations being connected by a network bus. In the case of the
M-TRAN system, the modules form a network, and also each module uses mul-
tiple CPUs, because multiple CPUs are easier to install than a single CPU with
many wires for sensors and actuators.

The main CPU of an M-TRAN module controls the entire module, including
three sub CPUs, one mounted on each of the three blocks (active, passive and
link). Their connection and functions are illustrated in Fig. 9.91. They share a seri-
al signal line and are managed in master-slave manner (Fig. 9.9(1)).

A network bus called Controller Area Network (CAN) is used for communica-
tions among the main CPUs. The host computer is also connected to the CAN
network as in Fig. 9.2, when the connection plate is attached to a face of a module.
CAN is a bus network that uses two-wire balanced line. In order to use CAN be-
tween connected modules, each connection face has electrical contact points, so
that when the modules are connected, the two bus lines become connected.

(1)

(3)

(4)

(5)

(5)

SWSW

CAN interface

(2) CAN network bus

Host computer Electric connection

Main CPU Main CPU

Sub CPU

Sub CPU

Sub CPU

Sub CPU

Sub CPU

Sub CPU
Acceleration sensor

IR sender
 /receiver
Joint motor x 2

Connection mechanism x 3

IR receiver

Module Module

(3) Bluetooth

Fig. 9.9 Multiple CPU system. White circles between modules indicate electrical connec-
tions; black ones indicate non-contact connections.

1 A Renesas 32 bit CPU SH-II (HD64F7047) is used as the main CPU. Two types of 16 bit

CPUs (HD64F3687, HD64F3694) are used as sub CPUs.

220 9 Hardware and Software

Two sets of five electrical contacts are placed on every connection face of a
module (Fig. 9.10). The positions of these contacts on the passive face are differ-
ent from those on the active face so that in any orientation of the blocks, one of the
sets are in contact. The five contacts in a set are: a common ground line, a pair of
CAN bus lines (Fig. 9.9(2)), a connection detection signal line (Fig. 9.9(4)), and
an additional common signal line. The common ground and signal lines are shared
by all modules similarly to the CAN bus lines. The common signal line is used for
starting and ending a program, and recovering from the sleep mode. One module
has six connection detection signal lines for all six faces, and each of them is used
for detecting the state of connection. All of these electrical contacts are placed on
the module surface and therefore may cause short-circuit by contacting other
modules or external objects. To avoid this, mechanical switches which are
turned on only when there is connection with other modules are installed as in
Fig. 9.9.

Apart from CAN communication, the host computer and the modules are capa-
ble of wireless communication over Bluetooth2 . Also, there is serial infrared
communication between adjacent modules (Fig. 9.9(5)). This is realized by a
combination of an infra-red LED and a phototransistor, which are placed on con-
nection faces in positions so that they face each other (Fig. 9.10).

Photo transistors Electrical contacts

LEDElectrical contacts

Fig. 9.10 Contacts and infrared devices

2 M-TRAN III modules use Bluetooth for one-to-one modem communication, but this Blu-

etooth is not used to form a network.

9.1 Hardware 221

9.1.3.2 Communication between Modules

Let us compare two types of communication: global bus communication such as
CAN and Bluetooth, versus local adjacent module communication (Table 9.2).

Bus communications are high speed in general, but they require each module to
have a unique identifier (ID). When the number of modules is large, the number of
digits required for representing IDs increases. Moreover, since bus communica-
tions use shared bus lines, the more modules are used, the more frequently the
messages collide and consequently the actual transmission speed decreases. On
the other hand, communication between adjacent modules (by infrared etc.) is in
general slower than bus communication, but since communication between each
pair of connected faces is independent of other faces, the transmission speed is not
affected by the number of modules used. Moreover, when infrared is used, there is
no need for electrical contact.

Table 9.2 Comparison of communication methods

Global bus communication Local adjacent module communication

Fast Slow

ID required ID not required

Relative coordinates of other modules unknown Relative coordinates can be obtained by com-
munication

Direct remote communication Remote communication by relaying message

Genuine broadcasting Broadcasting with time delay

Global Synchronization can be done by broad-
cast communication

Global synchronization is hard to attain

Speed is dependent on the number of modules,
message collisions, traffic overload

Parallel communication, independent of module
number

Using bus communication, it is possible for modules that are spatially distant

from each other to communicate directly using their IDs, but a module cannot get
information of its spatial position and orientation with respect to others through
communication, and so it is indispensable to use an additional method for detect-
ing spatial adjacency relations, such as the connection detection signal line. On the
contrary, in the case of adjacent module communication, the message itself indi-
cates the adjacency. When a connection face has two receivers and two emitters as
shown in Fig. 9.10, relative orientation can be identified merely by message ex-
change. However, in order to exchange messages between remote modules using
adjacent module communication, it is necessary to introduce an appropriate com-
munication protocol that specifies the ways to describe message destinations,
to choose a message path, and to avoid endless transmission of a message by
broadcasting.

Thus, each type of communication has advantages and disadvantages. In mo-
tion control of chain-type modular robots, communication speed is the most

222 9 Hardware and Software

important consideration and therefore bus communication is better. In fact, the Po-
lyBot system (Fig. 6.23) uses the CAN bus, and the YaMoR system uses Blu-
etooth. On the other hand, for metamorphosis, scalability is more important than
speed, which is one of the reasons why the ATRON system (Fig. 6.19), for exam-
ple, uses infrared communication. In the case of the M-TRAN system, bus com-
munication is used for centralized metamorphoses of configurations consisting of
a relatively small, fixed number of modules, while adjacent module communica-
tion is used for distributed metamorphoses of regular structures of a variable num-
ber of modules. For CPG locomotion control, bus communication is used, and pol-
ling and broadcasting are carried out by a pre-selected leader to enable the
modules to share state variables.

In M-TRAN III, it is possible to simultaneously transfer a program from the
host PC to all modules via the connecting cables (Fig. 9.2). Generally speaking, in
order to use onboard microcomputers, programs and data must be downloaded to
each processor, and when large numbers of modules are used, this procedure is
often very inefficient. Since all M-TRAN modules are designed to use the same

 (a) With camera direction control (b) With image processing capability

(c) Visual navigation

Fig. 9.11 Camera modules. In (c), the modules visually recognized the bar and changed
their locomotion from walking to crawling

9.2 Software 223

program, downloading can be done all at once using this simultaneous transfer ca-
pability, which helps greatly in improving a development cycle of programming
and experiments.

9.1.3.3 Power

Electricity is supplied to an M-TRAN I module via contact points on its connec-
tion faces. Connected modules share power when one module is connected
externally to a power source via the connection plate as in Fig. 9.2. In such a
configuration, the problem of voltage drop arises. For instance, when serially con-
nected modules are provided with power at one end, the voltage drop on the other
end is non-negligible, especially when the electric current is large, due to the
accumulation of contact resistance at the intermediate contact points. Such a vol-
tage drop is particularly problematic when connections or joint angles of many
modules are controlled at the same time.

This problem is solved in M-TRAN II and III because each of these modules
has a built-in battery. Since each module has a different level of battery consump-
tion, it would be ideal if a module which has used up its own battery can receive
power from other modules. Actually, such distributed power management is effec-
tive in large-scale systems such as an electric power transmission network. But in
order to apply the idea to small-scale systems such as robots, we have to wait for
small and highly efficient power control devices to become available.

9.1.4 Optional Modules

Modules with extra functions such as grasping hands or sensors can be made
compatible to M-TRAN. Fig. 9.11 shows two types of camera modules. The mod-
ule (a), which was used in the experiment in Section 7.4.2, is equipped with me-
chanisms for automatically stabilizing the camera direction and wireless image
transmission to the host computer [6]. The module (b) is another camera module
which uses the chassis, the power circuit, and the onboard CPU of M-TRAN III.
Image processing is made by the onboard CPU, and the results are shared with
other modules and/or transferred to the host computer via Bluetooth (Fig. 9.11(c)).

9.2 Software

Whatever the type of mechanical system, it requires a program for controlling the
machine itself, and thus an environment for software development.

9.2.1 M-TRAN Simulator

One of the difficulties with designing three dimensional metamorphosis of
M-TRAN is envisioning three dimensional transformations in your mind. Minia-
ture blocks as in Fig. 9.12 are helpful, but the history of trials is hard to record,
and it is not easy to track back your steps.

224 9 Hardware and Software

The M-TRAN simulator is a support tool that enables us to move and connect
modules on a computer screen as if you are working with their models with your
hands and eyes. It can store configuration data and the transformation processes
(Fig. 9.13). The three dimensional display function was written in OpenGL, and
GLUT (OpenGL toolkit) or Windows SDK were used for building the operation
GUI.

24mm

Fig. 9.12 Miniature blocks. Magnets are used for connection, and link angles can be
changed freely.

Display of events,
log messages

Transformation sequences

State variables

Operations
Three dimensional
 display animation

Fig. 9.13 Screenshot of development tool. Windows for displaying animations of kinemat-
ics simulations, the transformation program, state variables of each module, and operations.

9.2 Software 225

The functions required of the M-TRAN simulator are computing and displaying
results of three dimensional forward kinematics, and solving geometric problems
such as collision and separation. In addition, the simulator can check stability of
robots under gravity. Dynamic simulations provide detailed information on stabili-
ty during motion.

A transformation procedure can be planned by choosing a module on the screen
by a mouse and specifying changes in joint angles or module connections, select-
ing from among possible actions. Every operation applied to modules is displayed
as a text, and they can be edited and saved. This text is a list of motion commands
giving module IDs and parameters, and we call this a transformation sequence.

9.2.2 Onboard Program

Real time operating systems (real time OS) are effective in managing tasks with
varying requirements and priorities, and are often used for computer control3.
Nevertheless, we instead adopted a simple round-robin type method for the M-
TRAN III, where all the tasks are called in order. This is because many tasks are
either executed by sub-CPUs or have hardware interrupt functions.

The program running on the main CPU has a three layer structure. The bottom
layer is in charge of CAN bus communication, timer interrupts, and program
download via the CAN bus. The middle layer manages basic functions such as
joint angle control, connection control and communications via CAN and infrared.
The middle layer functions are included in the M-TRAN simulator so that the
same source codes of the top layer can run either on the simulator or on the hard-
ware. The top application layer includes main programs for transformation, either
centralized or distributed, and uses the functions of the lower layer.

The middle layer is also equipped with a remote control mechanism over the
CAN bus. The host computer can directly control modules via connection cables
or Bluetooth, and also monitors CAN communication between modules.

9.2.3 Program for Centralized Metamorphoses

The various metamorphoses shown in Fig. 7.12 in Section 7.2.2 were realized by
centralized control of a master-and-slave type. We here explain details of the con-
trol program, using the motion of a four-module minimum quadruped form in Fig.
9.14 as an example.

9.2.3.1 Transformation Procedure Data and Master-Slave Control

The transformation sequence for Fig. 9.14 is listed in Fig. 9.15. The same text data
is stored by all the modules. Based on the data, master/slave type control is ap-
plied, where one module acts as a master and the remaining modules follow as
slaves.

3 SH-II (Renesas), the main CPU of an M-TRAN III module, is capable of running a real

time OS called μITron.

226 9 Hardware and Software

1

2
3

4

(1)

(2) (3) (4)

(5)

(6)

1

3

1

3

14

1

4

2

3

1

4

2

3

Fig. 9.14 Transformation procedure. Numbers in parentheses and those in white indicate
the step number in Fig. 9.15 and the IDs, respectively.

Suppose that four modules with ID from 1 to 4 are assembled as in the first
photo in Fig. 9.14, and that the module with ID 1 is set as the master. The master
executes the data in Fig. 9.15 line by line. When the first two characters of a line
are ‘MV’ or ‘ML’, the remaining characters are a triplet, (id, θa, θp), specifying
joint motion. For a triplet with id 1, the master controls its own joint to (θa, θp),
and for a triplet with another id, the master sends messages to the corresponding
module for joint control. Each module sends a message back to the master when
the joint control is completed. When the master receives all such completion mes-
sages, it moves to the next line of the transformation sequence. When the first two
characters of the line are ‘CN’, the remaining characters are a triplet, (id, fid, cntl),
in which fid (1 ... 6) specifies a connection face and cntl (0 or 1) specifies an ac-
tion, either connecting or releasing. Connection of multiple modules is managed in
the same way as the above joint control [3].

Experiments were carried out for various transformations shown in Fig. 7.12,
by designing transformation sequences similar to that in Fig. 9.15. For each confi-
guration and corresponding transformation sequence, a centralized control with
parallel movements of multiple modules was realized as described above.

9.2.3.2 Configuration Recognition and Role Assignment

When arbitrary modules are assembled into one of the predefined configurations,
modules need to recognize their configuration and the way they are assembled.
Each module carries the same program and all the transformation sequences, so
any module can be a master module.

The simplest algorithm for selection of a master (leader election) is to choose
the module with the smallest ID. Another method is to select a module with a spe-
cific connection topology. During the leader election process, the number of

9.2 Software 227

//---------Step 1----------------------------
ML, 1,-90,0, 2,0,90, 3,-90,0, 4,0,90,
MV, 2,-90,90, 4,-90,90, 1,-90,90,
CN, 2,2,1, 4,1,1,
//---------Step 2----------------------------
CN, 1,6,0, 3,2,0,
ML, 2,-90,45, 1,-60,75,
ML, 2,-45,45,
MV, 2,0,90,
CN, 3,2,1,
//---------Step 3----------------------------
CN, 2,2,0,
ML, 2,90,90, 1,0,90,
ML, 4,-90,0,
MV, 1,-90,90, 3,-90,90,
CN, 1,2,1,
//---------Step 4----------------------------
CN, 4,1,0,
ML, 4,0,90,
ML, 3,0,90,
MV, 2,-90,90, 4,-90,0,
CN, 2,1,1, 4,2,1,
//---------Step 5----------------------------
CN, 3,2,0, 3,4,0,
ML, 4,-90,-90,
ML, 4,0,0,
ML, 1,80,90, 2,-90,45, 4,-45,-90,
MV, 1,90,90, 2,0,-90, 4,-90,-90,
MV, 3,-90,90,
CN, 3,2,1,
//---------Step 6----------------------------
CN, 2,1,0
MV, 1,0,0, 2,0,0, 3,0,0, 4,0,0

Fig. 9.15 Transformation procedure. The actual data used in the experiment shown in Fig.
9.14. ML and MV at the beginning of a line indicate that the line specifies a change in joint
angles (ML specifies rough positioning). The following three numbers specify the module
ID (from 1 to 4) and two joint angles. CN indicates a change in connections, and the three
numbers that follow specify the module ID, the connection face (1-6) expressed as a six bit
number (000001 - 100000), and whether the face is to be connected (1) or released (0). The
actions given in one line are executed by multiple modules in parallel, and when all the
modules complete their execution, the next line is executed. The transformation is divided
into 6 steps, and each step consists of disconnection (except for the step 1), changing joint
angles, and making connections in that order. Some of the angle changes are not in units of
45°, for practical reasons.

228 9 Hardware and Software

modules and their IDs are obtained4. Next, the process of module configuration
recognition is carried out by correlating the adjacency relations of all the modules
with those of candidate configurations5. Once the configuration is recognized, the
role of each module is assigned. Each module’s ID is set to that for its place in the
designed configuration (we call this the design model hereafter). Then, each mod-
ule’s orientation is checked as follows.

9.2.3.3 Symmetric Conversion

The adjacency relation between two modules is expressed by a pair of numbers
indicating the faces in contact and orientation with respect to the local coordinates
defined in Fig. 9.16. When modules are assembled with some freedom, some
modules may have a different orientation than that in the design model.

x

y
zx

y

z

Passive Active
1

2

3
45

6

Fig. 9.16 Module coordinates and variables

This freedom in configuration is due to the symmetric transformations of a sin-
gle module or of all the modules. There are three possible types of symmetric
transformation: 180º rotation of each module around the z axis, the mirror image
of the whole configuration, and switching between the passive blocks and the ac-
tive blocks of all modules in the configuration (polarity conversion) (Fig. 9.17)6.
These three transformations are equivalent to the coordinate transformations of

4 In the explanation of distributed algorithms in Chapter 5, we mentioned that it is hard to

know the number of all the processes, but in the case here, it is easy to detect the presence
of a module and to know the total number because the range of module IDs are limited
from 1 to 50, and broadcast using the CAN bus is available.

5 This matching process can be done by individual modules in a distributed parallel man-
ner, but this is equivalent to the centralized process.

6 Vertical flip of the whole configuration is another geometrical transformation that retains
local connective relations. As transformation experiments are made on the ground,
though, vertical flip often makes a transformation unsuccessful.

9.2 Software 229

 (a) Standard configuration (b) z-axis rotation

 (c) Mirror image (d) Polarity conversion

Fig. 9.17 Symmetry conversions

each module and cause changes in joint angles and face IDs as described in the list
below. Therefore, when the configuration of the design model is transformed by
either of these transformations, the corresponding change of joint angles and face
IDs applied to a metamorphosis sequence results in the same metamorphosis:

[rotation around the z axis]
 (θ a, θ p) → (−θ a, −θ p), fid :(1,2,3,4,5,6) → (3,2,1,6,5,4)

[mirror image]
 (θ a, θ p) → (θ a, θ p), fid :(1,2,3,4,5,6) → (3,2,1,6,5,4)

[polarity conversion]
 (θ a, θ p) → (θ p, θ a), fid :(1,2,3,4,5,6) → (4,5,6,1,2,3)

A three bit parameter corresponding to these conversions is set for each module
during the process of configuration recognition. By adjusting the functions for
joint angle control and connection control corresponding to the conversions, all
the actions of a transformation sequence become exactly the same regardless of
orientation of each module.

The polarity conversion, however, requires an additional mechanism. Since the
connection is controlled only by active blocks, the command triplet (id, fid, cntl)

230 9 Hardware and Software

in the transformation sequence is effective only where fid is 1, 2, or 3. When it is
4, 5, or 6, the module cannot initiate connection. In such a case, the module can
remotely control the corresponding active face by sending a message via infra red
communication channels.

9.2.4 Program for Distributed Metamorphosis

Distributed metamorphoses of regular structures discussed in Section 7.3 use only
local adjacent module communication. The top layer of the three layered program
is further divided into two layers, a layer for executing algorithms for an abstract
model of meta-modules and the other for realizing meta-module motions.

In Chapter 7, we were concerned with kinematics and geometry, but we did not
touch very much upon communication between modules, information sharing and
synchronization. Although there is a leader in a meta-module, the problems of dis-
tributed algorithms we discussed in Chapter 4 have to be taken into account even
among modules in a meta-module.

Generally speaking, program development and testing of distributed systems is
much more difficult than centralized sequential programs. In debugging, for in-
stance, it would be useful if distributed programs can be executed in a simulator in
the same way as in a real machine. This entails parallel processing to simulate dis-
tributed behavior on a single computer. One efficient way to do so is to make a
program for a single module, and to run its multiple copies in parallel as program
threads7.

Top layer programs with the same source code run on the simulator as threads
and in the modules. Running a program in a different computer environment from
the one it is written for is called emulation, and a circuit or an environment for this
purpose is called an emulator. A perfect emulation is of course desirable, but
development of an emulator itself is a challenge that requires time and effort. In
developing a program capable of running on real machines, balanced development
of widely applicable distributed algorithms, module programs, and emulators us-
ing abstract models is important.

9.3 Errors and Reliability

In Chapter 1, we stated that self-organization can improve the reliability of ma-
chines. Having said that, manufacturing errors and control errors are inevitable for
not only the M-TRAN system but machines in general, and the larger the number
of modules used, the more problems with reliability may arise. In this section, we
outline typical errors and malfunctions of modular robots.

7 We used Borland C++ on Windows for developing the simulator. The program for con-

trolling modules was made using the TThread class, and as many instances were generat-
ed as the number of the modules, which run in parallel.

9.3 Errors and Reliability 231

9.3.1 Dimension Error

In production of hardware, manufacturing errors in dimensions and angles always
occur, and these may be compounded by control errors when the system is operat-
ed. In general production of machines, in addition to improving the precision of
individual parts, parts are selected so that the error in one compensates for the er-
ror in another. In the case of self-organizing mechanical systems, however, all the
modules are expected to be exactly the same, which may cause problems. For in-
stance, placing another module in the gap in the middle of the configuration
shown in Fig. 9.18 is possible in the design, but may not be possible in reality due
to dimension error.

The problem of such dimension errors is common to most modular robots. To
alleviate the influence of errors when building structures, it is necessary to give
certain flexibility and freedom to the components. The Fractum modules discussed
in Chapter 6 have flexibility in their magnetic connections, and the planar regular
structure in Section 7.3 has internal gaps, resulting in some structural freedom.

9.3.2 Structural Deformation

Flexibility of components and connection, on the other hand, causes the problem
of structural deformation due to external forces such as gravity. Fig. 9.19 shows an
example of configurations that are prone to connection failures. Correction of such
an error usually requires measurement and control in six degrees of freedom.
However, the M-TRAN system does not have sensors for measuring such errors.
Even if an error is measured, there may be less number of joints than necessary in
the configuration, or some of the joints may be at their limits of ±90° and cannot
rotate further. Therefore, alignment correction may often be impossible even by
multi module cooperation.

Fig. 9.18 Problem of dimension error

232 9 Hardware and Software

x

y

z

a b

c
d

e

f
Alignment error

A

B

Fig. 9.19 Structural deformation and positioning. Though the blocks A and B are misa-
ligned, rotation about the axes a and b cannot resolve the error by movement in the positive
direction of the y axis, and rotation about the axis c is not possible in one direction, because
they are at their angle limits.

9.3.3 Dealing with Errors

Instead of feedback control requiring coordination of modules, a simpler method
at the single component level is preferred. Failures and errors as above should be
compensated for in such a way that having enormous numbers of components is
not a disadvantage but an advantage.

In the example shown in Fig. 9.18, for instance, which fails due to dimensional
error, one solution is to give up on the current module and try again using another
module. Also, in the experiments, we avoided the situation described in Fig. 9.19
by using another transformation procedure which caused less structural deforma-
tion. As there are several transformation procedures that yield the same or similar
consequence, it is possible to choose a better procedure by trial-and-error, even
with a real machine.

Furthermore, the lattice structure itself should be reconsidered. The lattice-type
modular robots in Chapter 5, from Fractum to M-TRAN, assume idealized crystal-
line structures. Though a small number of modules readily form ideal structures,
when the number is very large, errors as discussed above are inevitable. In con-
trast, natural crystals usually contain local defects varying from its ideal lattice
structure. Indeed, the circular modules of SlimeBot (Fig. 6.27) can make connec-
tions at any point along their perimeters, and are able to create a planar structure
without being constrained by any lattice, though they cannot make a lattice struc-
ture easily [7]. For large scale structures and their transformation, it may be neces-
sary to change adaptively the rigidity or the flexibility of modules’ connection.

References 233

References

[1] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.:
M-TRAN: Self-Reconfigurable Modular Robotic System. IEEE/ASME Trans. Mecha-
tron 7(4), 431–441 (2002)

[2] Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Auto-
matic Locomotion Design and Experiments for a Modular Robotic System.
IEEE/ASME Trans. Mechatron 10(3), 314–325 (2005)

[3] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distri-
buted Self-reconfiguration of M-TRAN III Modular Robotic System. Intl. J. Robot.
Res. 27(3-4), 373–386 (2008)

[4] Hirose, S., Imazato, M., Kudo, Y., Umetani, Y.: Internally-balanced magnet unit. Adv.
Robot. 1(3), 225–242 (1986)

[5] Terada, Y., Murata, S.: Automatic Assembly System for a Large-Scale Modular Struc-
ture. In: Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), pp. 2349–2355 (2004)

[6] Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system –
Navigation, docking, and integration of M-TRAN. IEEE Robot. Automat Maga-
zine 14(4), 56–63 (2007)

[7] Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic lo-
comotion. Robot. Auton. Syst. 54(8), 641–650 (2006)

S. Murata and H. Kurokawa: Self-Organizing Robots, STAR 77, pp. 235–246.
springerlink.com © Springer 2012

Chapter 10
The Future of Self-Organizing Robots

Abstract. In the chapters so far, we have discussed in detail the design of mechan-
ical systems and robots based on self-organization, from their historical develop-
ment to specific design examples. The authors hope that these chapters enable the
reader to understand that these are fundamentally multiple-module systems that
have flexibility that cannot be expected of traditional mechanical systems. In this
chapter, we discuss the limitations and future challenges facing self-organizing
robots built with electro-mechanical technologies, and then, returning to the phi-
losophy of “design based on self-organization” one last time, consider the goals
we should set for self-organizing robots from a relatively long term perspective.
One such goal is to make molecular machines that self-organize.

10.1 Challenges for Self-Organizing Robots

As we saw in Chapter 6, there are many prototypes of modular robots other than
M-TRAN. Although each of them has specially designed modules and their own
target to achieve, they share the same aspect that they are built based on mecha-
tronics1, which means that they are built by combining existing devices so that the
latest technologies can be readily incorporated. Viewed from another perspective,
however, this also means that the performance of these systems is limited by the
currently available devices.

10.1.1 Module Size

The speed and the density of microprocessors have been steadily improving as de-
scribed by Moore’s Law2. This though is an exception, and there are bottlenecks
in the improvement of many other devices, such as motors and sensors, in both
speed and size. The most notable limitation in a self-organizing mechanical sys-
tem resulting from the use of such devices is the size of a module. With smaller

1 Mechatronics is an interdisciplinary research area which is a combination of mechanical

engineering and electronics. The term mechatronics was originally coined in Japan.
2 An empirical rule that the density of transistors on an integrated circuit doubles every 18

to 24 months. It is said that we are approaching the end of this trend.

236 10 The Future of Self-Organizing Robots

modules, the shape and the functions of a system can be specified with finer reso-
lution, and also the power-to-weight ratio naturally tends to improve.

However, there is a limit to how small a module can be made. In the case of the
M-TRAN for example, the module size is constrained by the axis length of the
motor shaft. It is likely that the current length 60mm can be halved, but when this
is achieved, the size of the battery and the electric circuit board will become criti-
cal in turn. In order to achieve module size of less than 10mm, we need to wait for
downsizing of all component devices3.

10.1.2 Number of Modules

The number of modules that can be used in one self-organizing mechanical system
is limited by various constraints. For the systems developed so far, at most 100
modules have been manufactured (50 in the case of the M-TRAN modules and
100 for the ATRON modules).

This is partly because of the high production cost of a module, but essentially
because of limited module reliability, in particular, reliability of connection me-
chanisms and of the communication channels and power supply lines that are es-
tablished at the same time as the mechanical connections. When connections are
made via electrical contacts, noise and voltage drops have to be dealt with, and as
the number of modules increases, the system must be designed under the assump-
tion that errors occur in both the physical and the communication connections.

Moreover, if the algorithm is to be given sophisticated functions such as auto-
matic recovery from an error, the difficulty of software development, program-
ming and debugging increases as well. One possible solution to such problems is
to extend algorithms like the cellular automata we discussed in Section 7.3 to be
able to deal with such probabilistic errors.

10.1.3 Choice between Self-reconfiguration and Self-assembly

M-TRAN and almost all the other self-organizing mechanical systems and robots
that we discussed in this book are of the type where the modules are already con-
nected in the initial state, and the reconfigurations of the whole system are realized
by incremental changes in the connections. This method is advantageous in that
the degrees of freedom required of a connection mechanism can be reduced, al-
though it is very difficult to build a system out of randomly scattered modules in
this way.

There is a very different approach to self-organization, in which a system is as-
sembled through random collisions among parts, induced by agitating the contain-
er in which all the parts are placed, as we discussed at the end of Section 3.4.

3 The photolithography technology allows building of circuits that are only a few microme-

ters in size on a silicon substrate. However, it is unlikely at the moment that we can de-
vise a way to implement connection changing mechanisms and independent power
sources of that scale in modules.

10.2 From Mechatronics to Molecular Machines 237

A two dimensional system like this may be plausible if methods like air flotation
are used, but in three dimensions, modules of normal sizes are unlikely to form in-
to the desired system4. However, since the supply of modules is a fundamental
problem in self-repair or self-assembly, having modules floating in space and al-
ways available at hand is much to be desired.

10.2 From Mechatronics to Molecular Machines

Roughly speaking, the size of biological cells is about 2 μm in the case of bacteria
and 20 μm in multicellular organisms. The components of the system of a cell are
molecules, and these components can be obtained simply by catching them from
the ambient solution, since molecules move randomly in a solution due to thermal
agitation. Indeed, cells are even capable of reproducing themselves by taking in
molecules that provide energy or serve as their structural parts. A multicellular or-
ganism is an assembly of an innumerable number of such cells. It is said that a hu-
man consists of around sixty trillion cells, a cluster of an astronomical number. It is
truly amazing that an assembly of this scale can function in perfect coordination.

There is a fundamental difference between the ways of building electro-
mechanical systems and biological systems. Machines and electrical circuits are
made through the process of cutting away unnecessary parts from a lump of the
metal to be used (processing by removal). So, unlike a single atom that functions
by itself, a bulk material only has function after being processed. On the other
hand, in the case of biological organisms, each single molecule has its own func-
tion. The molecules which are necessary are synthesized by chemical reactions
when necessary and in the necessary amount, in a very efficient way.

Typical protein molecules are several nanometers in diameter, and in the case
of E. coli, which is one of the simplest bacteria, more than four thousand kinds of
such proteins are contained in a cell of about 2 μm in size. Some of those proteins,
such as enzymes, function independently by themselves, while others function
when many of these molecules assemble themselves into a certain structure such
as a microtubule. Moreover, compared with semiconductors in which elements are
aligned only two dimensionally, biological systems have very high space efficien-
cy because the three dimensional space inside a cell is filled with various
molecules.

It had been considered that molecular machines composed of biopolymers such
as proteins and nucleic acids are unique to biological organisms, but recently, sys-
tems that are made from artificially synthesized molecules and that have functions
similar to those of biological cells have been successfully created. If artificially
synthesized cells with functions similar to those of biological cells are realized,
self-organizing mechanical systems will have come closer to achieving both their
ultimate structure and function, considering that they were originally inspired by
biological organisms.

Below we discuss attempts to construct systems using such artificial molecules.

4 In a stirring attempt conducted at Cornell, though, a large number of mechatronic mod-

ules were placed in a silicon oil vessel and stirred [1].

238 10 The Future of Self-Organizing Robots

10.2.1 Molecular Machines Based on DNA Nanotechnology

The concept of nanometer scale mechanical systems first appeared in the famous
lecture “There is plenty of room at the bottom” in 1959 by Richard Feynman at
the American Physical Society [2]. In this lecture, he argued for the importance of
research on devising ways for manipulating substances at the atomic and molecu-
lar levels, pointing out that it is possible to write all the information contained in
the Encyclopaedia Britannica on the point of a pin without breaking laws of phys-
ics if it is possible to make each individual atom carry data.

Inspired by this idea, K. Eric Drexler claimed that it is possible to build innova-
tive artificial molecular machines such as gears and bearings by using a universal
assembler that assembles atoms [3]. Although his idea was met with much skep-
ticism, it led to the establishment of a research field called molecular nanotech-
nology. Progress in molecular nanotechnology began after developments in organ-
ic chemistry that made possible synthesis of molecules of various shapes and
functions with a wide range of application such as carbon nanotubes. In this sec-
tion, we are unable to discuss the whole area of molecular nanotechnology, so we
limit our discussion to DNA nanotechnology, which is one of the lines of research
in this area.

DNA nanotechnology is a technique for building various nanometer scale struc-
tures and devices using nucleic acids such as DNA and RNA. It started in mid
1980s when an American chemist Nadrian Seeman thought of creating nanostruc-
tures from DNA for the purpose of protein crystallization [4, 5].

Although DNA is the most important molecule that carries genetic information,
in DNA technology it is considered simply as a programmable material. The di-
ameter of the double helical structure of DNA is 2 nm, and the length of one spiral
twist is 3.4 nm (10.5 base pairs), which means that it is possible to go beyond the
resolution limit of photolithography in nanostructures of precisely sequenced
DNA molecules.

There are four types of nucleobases in a DNA molecule: adenine (A), cytosine
(C), guanine (G), and thymine (T). As we explained in Chapter 2, two single-
stranded DNA molecules bind with each other in solution to form a double helical
structure (hybridization) when their base sequences are Watson-Crick complemen-
tary (A is paired with T and C is paired with G). A single-stranded DNA molecule
has no definite shape and is like a thread, but a DNA molecule in the double heli-
cal structure can be considered as a straight rod up to 50 nm.

This means that, given a solution containing single-stranded DNA molecules
with various base sequences, only those strands with complementary base se-
quences can bond together to form a helix, while others do not bond with each
other. By using this property, it is possible to make DNA molecules self-assemble
into desired nanostructures.

DNA molecules used for such purposes are chemically synthesized by linking
bases one by one in a DNA synthesizer. Single-stranded DNA molecules that have
arbitrarily specified base sequences up to about 100 bases can be synthesized easi-
ly at low cost, and recently it has become possible even to synthesize DNA
sequences of tens of thousands bases.

10.2 From Mechatronics to Molecular Machines 239

10.2.2 Self-assembly in DNA Nanostructures

In a biological cell, a DNA molecule is a very long double helix, which does not
have any specific shape. By weaving DNA molecules into a particular configura-
tion, a nanostructure can be constructed. In order to do so, it is necessary to make
DNA molecules branch off. For this purpose, DNA junctions, i.e. branching struc-
tures of DNA molecules, can be used (Fig. 10.1(a)). A DNA tile is a structure con-
sisting of two short double helices joined at two junctions (Fig. 10.1(b)) [6]. The
“glue” that joins the tile is single stranded regions extending from the tile, called
“sticky ends”. Two DNA tiles can assemble together by joining sticky ends that
have complementary base sequences (Fig. 10.1.(c)).

(a) DNA junctions

sticky end

(b) DNA tiles with two junctions

(c) DNA tiles are connected at their sticky ends (self-assembly)

Fig. 10.1 Self-assembly of two dimensional nanostructure using DNA tiles

Since there are 4n possible combinations for sequences of four kind of bases A,
C, G and T of length n, there are quite a few sequences of sticky ends with length
of five or so (1024 for a 5-base sticky end). By using DNA tiles with several dif-
ferent sticky ends, it is possible to make the tiles self-assemble into certain period-
ic or non-periodic patterns. This is called algorithmic self-assembly (Fig. 10.2).
Generation of such tessellation patterns is closely related to the computation mod-
el of cellular automata. This process can be carried out simply by mixing DNA
molecules in a test tube [7, 8].

There is also a method, called DNA origami, involving the folding of a long
single-stranded DNA molecule. In this method, arbitrarily specified two-
dimensional shapes 100 nm in length can be constructed by folding a long circular
single-stranded DNA molecule consisting of about 7000 base pairs. This folding is
done by attaching 250 short single-stranded DNA molecules (Fig. 10.3) [9]. This
method of folding DNA molecules can be extended to three dimensions, and vari-
ous three dimensional objects have been built (Fig. 10.4) [10].

240 10 The Future of Self-Organizing Robots

Fig. 10.2 Experiment on algorithmic self-assembly of DNA tiles that generate the Sierpins-
ki fractal pattern. Quantitative evaluation of the precision of self-assembly by comparing
the atomic force microscope images of constructed DNA nanostructures with the designed
cellular automata (Fujibayashi K, et al (2008) Toward Reliable Algorithmic Self-Assembly
of DNA Tiles; A Fixed-Width Cellular Automaton Pattern, NanoLetters 8(7):1791-1797
©2008 ACS)

Fig. 10.3 Nanoscale structures produced by DNA origami. One long template DNA strand
consisting of about 7000 bases is mixed together with 250 types of short staple DNA mole-
cules (©2006 Nature)

10.2 From Mechatronics to Molecular Machines 241

Fig. 10.4 Example of three dimensional structure formed by DNA folding (octahedron)
(Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns, Nat
440:297-302 ©2004 NPG)

10.2.3 DNA Logic Gates

It is also possible to build logic gates using DNA molecules. The first proposed
method employed restriction enzymes, and relatively simple finite automata have
been built using the method. Afterwards, other ideas such as a logic gate utilizing
only the hybridization reaction of DNA molecules, and a logic gate that uses a
special sequence (called deoxyribozyme) of DNA which has restriction enzyme
activity have been proposed [11].

The last of these proposed logic gates allows two hundred different types of
logic gates to function in parallel in one test tube, and moreover it is possible to
introduce certain relations among the inputs and outputs of these gates. This in ef-
fect amounts to constructing logic circuits. A test algorithm for tic-tac-toe has
been implemented using such logic gates, which successfully demonstrated the
capability of these molecules to carry out reliable computation [12].

10.2.4 DNA Sensors and DNA Actuators

For molecular scale machines, not only environmental conditions such as tempera-
ture and pH, but also existence/non-existence of various molecules can be used as
possible inputs. For DNA logic gates, DNA or RNA molecules can be used as the
inputs. As we explained in Section 2.4, in a biological cell, messenger RNA
(mRNA) molecules are always generated in the course of gene expression. If this
is used as an input, it is possible to compute certain logical operations by sensing
the gene expression in progress in a cell.

There is also a particular DNA sequence called aptamer that changes its mole-
cular configuration in the presence of a special target molecule so that it wraps the
target molecule within [13]. It is also possible to use the different shapes of the

242 10 The Future of Self-Organizing Robots

aptamer molecule as inputs to logic gates. Utilizing this mechanism may for in-
stance enable diagnosis of a particular disease using a complex logic system.

Furthermore, output devices, i.e. actuators, can be built entirely from DNA mo-
lecules. Fig. 10.5 shows a pair of molecular tweezers that open and close, driven
by additional DNA strands called fuel [14]. Other ideas that have been proposed
include a method to control hybridization using lights by inserting in the DNA se-
quence special bases that change their structures when lit by ultraviolet light of a
particular wavelength.

F

Open

F

F

F

F

F

closed

―

―

F
―

Fig. 10.5 DNA actuator. When molecule (F) is added, the tweezers close. When the com-
plement sequence to F (F) is added, the tweezers open. By alternately adding F and F ,
these actions can be repeated any number of times (Yurke B, et al (2000)A DNA-fuelled
molecular machine made of DNA, Nat 406:605-608 ©2000 NPG)

10.3 From Nanotechnology to Molecular Robotics

In the above sections we saw that DNA nanotechnology has enabled assembly of
molecular scale structures, including logic gates, sensors and actuators. This im-
plies that even robots, which have had to be built with mechatronics technology,
can now be built using molecular scale devices.

Now, let us look at Fig. 1.5 in Chapter 1 once again. The horizontal axis in the
graph shows the size of components, and the vertical axis shows the complexity of
components on the right and the number of components on the left. Earlier we said
that if the size of components is too small it is impossible for them to have any
useful function, but in fact, as we saw in the real examples discussed in the pre-
vious section, all the necessary functions of robots can be carried out sufficiently
by DNA molecules. This means that, even when the size of components decreases
to be as small as molecules, the complexity of components does not decrease to
zero, and they maintain a certain level of functional capability. On the other hand,
the number of available components increases to be on the order of Avogadro’s
number. Consequently, the component size maximizing the functional capability
of a whole system which is the product of the complexity and the number of

10.3 From Nanotechnology to Molecular Robotics 243

components, is very small. (Fig. 10.6) This shows that it is no wonder that biolog-
ical organisms, which are the most complex machines in nature, use components
of this size range.

Whole system
 function
 = Complexity
 x Number

Atom
Molecule

Biomacro-

 molecule
Transistor

MEMS

Humanoid

The size of components

Th
e

co
m

pl
ex

ity

of
 a

 s
in

gl
e

co
m

po
ne

nt

Th
e

nu
m

be
r

of
 a

va
ila

bl
e

co
m

po
ne

nt
s

num
ber

co
m

pl
ex

ity

Fig. 10.6 The size of components that maximizes the functional capability of the whole
system

Moreover, when molecules are used as components, there is no need for prepar-
ing a special component supply mechanism, because molecules floating in the so-
lution are always colliding randomly with each other. This is exactly the kinetic
model that von Neumann was thinking of (Section 3.1.3).

Fig. 10.7 is an illustration of an imaginary DNA robot. This is meant to be one
autonomous cell whose body container, which corresponds to a cell membrane, is
built by self-assembly of DNA nanostructures and is embedded with channel
structures that allow transport of substances between the inside of the robot and
the external environment. The channel structures are built using the three dimen-
sional DNA Origami method and have selective permeability functions realized by
DNA devices. Inside the container, DNA logic gates are stored, which are used to
drive the actuators according to the type of the input molecules. This allows the
DNA robot to move around in its environment.

Examples of possible applications of such a DNA robot include a drug delivery
system (DDS) that delivers drugs to desired areas of a body. So-called intracellu-
lar therapy is also possible by using DNA robots where particular reactions are

244 10 The Future of Self-Organizing Robots

Fig. 10.7 Illustration of a DNA robot

accelerated or inhibited depending on the current expression activity of messenger
RNA molecules inside a cell. Or they can be used to provide an operating platform
to select and transform undifferentiated cells for regenerative medicine.

Such molecular robots with self-reproduction capability would be a step closer
to realizing artificial multicellular systems that have highly advanced functions,
and further on to realizing evolving artificial systems. However, in order for DNA
robots to self-reproduce, DNA sequences, which are the crucial ingredients for re-
production, have to be replicated, and this will be a bottleneck. Having said that,
since RNA sequences capable of RNA synthesis are already identified, it may also
become possible in the future that a system consisting only of DNA molecules can
replicate its own total structure while preserving the design specification (i.e., the
genetic information) that it carries out5.

It would be a great simplification of the central dogma we explained in Chapter
2 to allow DNA or RNA molecules to self-reproduce or to carry out their
functions only by themselves (Fig. 10.8). Since the synthesis of protein is a very

5 As Drexler has pointed out, endowing robots with ability to self-reproduce might make it

possible for that robots to evolve by themselves independently of human intentions. The
worst case scenario would be that the earth is entirely covered with self-reproducing mo-
lecular robots, a “grey goo”. It is imperative that any molecular robot should be equipped
with some safety mechanism to keep this from happening. Various ways to do this have
actually been proposed, including making self-reproduction dependent on some special
material, or installing a self-destruction device controlled by an external signal.

10.4 Emergence of Hierarchy: The Ultimate Problem 245

complex process, such a shortcut of the central dogma would improve the engi-
neering prospects for creating a self-replicating system. All design specifications
of a molecular robot built in such a way could be reduced to base sequences of A,
C, G and T, and with such a robot it could be said for the first time that we have
created an artificial entity that has the same information structure as biological
organisms.

Replication

Control

self-assembly
DNA DNA functional structure

Fig. 10.8 Simplification of the central dogma

10.4 Emergence of Hierarchy: The Ultimate Problem

We have outlined a conception for constructing self-organizing mechanical sys-
tems using molecules. Even in this case, we cannot escape von Neumann's two
questions (Section 3.1.1). We have to face the problem of building a reliable sys-
tem using unreliable components if we are to make molecular devices. The re-
search on how to realize computing devices such as DNA logic gates described
above has begun to make progress only recently. And as for the second question
of identifying the minimum logical mechanism that enables self-replication, we
need to wait for further research, because DNA replication without the help of en-
zymes remains difficult. The authors believe, however, that these two questions
can be answered.

Finally, there remains a question, the most difficult of all: how can hierarchy
emerge? Let us have another look at Figure 2.1, which explains that, in biological
systems, there exist natural hierarchical structures consisting of alternating layers
of homogenous and heterogeneous entities. The question is why such hierarchical
structures emerge in nature. We have considered various self-organizing mechani-
cal systems from von Neumann's self-reproducing automaton to DNA robots, but
none of them exhibits emergence of such hierarchy. Given a layer of components,
the structure of the layer immediately above can generated by self-organization,
but it is not possible to construct the layer above that.

The notion of meta-modules described in Section 7.3 introduces a kind of layer
structure of modules. However, a meta-module is only a way of perceiving mod-
ules, not a result of self-organization. To solve this ultimate problem, we may
have to wait until full-scale evolution experiments become possible with
self-organizing robots at the molecular level. Indeed, it seems that there is no other
way to approach this kind of question.

246 10 The Future of Self-Organizing Robots

If understanding by building is the way an engineer might answer the philo-
sophical question of why humans have evolved, research with self-organizing ro-
bots will surely lead to progress in answering that question.

References

[1] White, P.J., et al.: Stochastic Self-Reconfigurable Cellular Robotics. In: Proc. IEEE
Int. Conf. Robot. Autom., vol. 3, pp. 2888–2893 (2004)

[2] Feynman, R.P.: There’s plenty of room at the bottom. IEEE J. Microelectromechani-
cal Syst. 1, 60–66 (1992)

[3] Drexler, K.E.: Engines of Creation, The Coming Era of Nanotechnology. Anchor
Books, New York (1986)

[4] Chen, J., et al. (eds.): Nanotechnology: Science and Computation. Springer (2006)
[5] Komiya, K., et al.: DNA Nanoengineering, Kindaikagakusha, Tokyo (2011) (in Japa-

nese)
[6] Winfree, E., et al.: Design and self-assembly of two-dimensional DNA crystals.

Nat. 394, 539–544 (1998)
[7] Rothemund, P.W.K., et al.: Algorithmic Self-Assembly of DNA Sierpinski Triangles.

PLOS Biology (2004)
[8] Fujibayashi, K., et al.: Toward Reliable Algorithmic Self-Assembly of DNA Tiles; A

Fixed-Width Cellular Automaton Pattern. NanoLetters 8(7), 1791–1797 (2008)
[9] Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nat. 440,

297–302 (2006)
[10] Shih, W.M., et al.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale oc-

tahedron. Nat. 427, 618–621 (2004)
[11] Stojanovic, M., Stefanovic, D.: A deoxyribozime-based molecular automaton. Nat.

Biotechnology 21(9), 1069–1074 (2003)
[12] Pei, R., et al.: Training a molecular automaton to play a game. Nature Nanotechnol. 5,

773–777
[13] Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific

ligands. Nat. 346(6287), 818–822 (1990)
[14] Yurke, B., et al.: A DNA-fuelled molecular machine made of DNA. Nat. 406, 605–

608 (2000)

Subject Index

absolute coordinate system 84
activation criteria 90
activator 29, 67
activation 90
actuator 2
adaptability 15
adenine 22
adjacent module communication 221
adjacent type list 87
algorithmic self-assembly 239
amino acid 23
anchor 156
anchor formation 156
angular error 109
animal herd 34
anonymity 61
ant 33
aptamer 241
artificial life 48
artificially synthesized molecules 237
Astro Boy 16
asynchrony 61
atom 19
ATRON 121
automaton 38
autonomy 14
Avogadro’s number 15

base state 134
baseline design 4
bee 33
Belousov-Zhabotinsky chemical

reaction (BZ reaction) 68
biological development 21
biological organisms 237
biological self-repair 30
biological system 19
biological tissue 116
block models of self-reproducing

machine 45
bluetooth 220

brain 16, 38
bus communication 221
butterfly effect 6
Byzantine agreement problem 75
Byzantine generals problem 75

C. elegans 26
cascading 28
CEBOT 110
cell 19
cell lineage tree 26
cellular automaton, cellular

automata 38, 69, 102, 117,
159, 239

cellular model 42
cellular slime mold 33
central dogma 24
Central Pattern Generator (CPG) 193
chain-type 106
Chirikjian, Gregory 115
CHOBIE 116
Claytronics 126
cluster flow 151
cockroach legs 31
coincidence organ 41
collision avoidance 136, 162
compensatory regeneration 31
complementary shape 109
completeness 96
complexity 15, 41
component 14, 78
computer simulation 91
conceptual design 4
configuration recognition 226
conformation 15
connection mechanism 109, 214
connection type 86
connectivity 78
connector 109
CONRO 125
constructive approach 37

248 Subject Index

Controller Area Network (CAN) 219
cooperative phenomena 20
coordination 14
coupled oscillator 184
crawler 179
crossover 198
crystalline 116, 148
cube 108, 117
cutting organ 42
cyclic AMP 33
cytosine 22

deadlock 74, 91, 162
deadlock avoidance 162
debugging 14
degrees of freedom 108
deoxyribozyme 241
dependability 13
description 85
description matrix 93, 94
description tape 42
design by self-organization 7, 8
design model 5
design variable 5
detailed design 4
detection of the loss 98
difference measure 88
diffusion 61, 96
diffusion field 88, 90
Digital Mirror Device (DMD) 15
dissipative structure 8
distance between connection

types 87
distributed algorithm 72
distributed autonomous system 8, 14,

77
distributed metamorphosis 230
disturbance estimation 206
divergence 63
DNA 22
DNA actuator 241
DNA logic gates 241
DNA nanostructure 239, 243
DNA nanotechnology 238
DNA origami 239
DNA polymerase 25
DNA sensor 241
DNA synthesizer 238
DNA tile 239
double helix 22
Drexler, K. Eric 238, 244
drug delivery system (DDS) 243
duplication of components 13

dynamic walk 176
dynamics simulation 200

EDVAC 38
eigenvalue 64
emergence of hierarchy 245
engineering to do something 7
engineering to let things become

something 7
entrainment 187
environment 2
epimorphosis 31
evaluation criteria 5
exclusion control 74
exhaustive search 140
extensibility 12

failsafe design 13
fault-tolerance, fault-tolerant 12–13
fault-tolerant design 12, 75
FDM (Fused Deposition Modeling)

116
Feynman, Richard 238
fertilization 84
field of interaction 14
finite element analysis 117
fitness 200
fixed configuration 105
flexibility 11
flow field 63
foolproof 13
formal language theory 38
forward problem 5
Fractal Machine 113
Fractum, Fracta 77, 81
Fukuda, Toshio 110
fusing organ 42

gait 176
game of life 71
gene 198
generation 198
Genetic Algorithm (GA) 197, 198
genetic information 22
germ layer lineage 27
global consensus 162
global entrainment 194
global information 14
global order 14
graceful degradation 13
gradient field 63
graph automata 50
Griffith, Saul 56

Subject Index 249

 259

grey goo 244
Goldstein, Seth 126
guanine 22

Haken’s synergetics 8
herd 19
hermaphrodite 109
hermaphrodite connector 119
heterogeneous 59
heuristics 141
hexagonal lattice 81
hexagonal lattice-type module 115
hierarchical system 19
homogeneity 60, 77
homogeneity of individuals 14
homogeneous 59
homogenous system 77
Hosokawa, Kazuo 52
human error 13
humanoid 16
hybrid type 128
hybridization 20, 22, 238
hydrogen bond 22

ID number 83
individual 8, 14, 19
information processing component 2
inhibitor 29, 67
inhibitory organ 41
in-lattice state 132
Inou, Norio 116
input-output characteristics 39
input-output correspondence 2
integral compensation 206
INTEL 4004 15
Internally Balanced Magnetic Unit

(IBMU) 214
Internet 12
inter-unit communication 83
intestinal villi 30
intracellular therapy 243
inverse kinematics 174
Ishiguro, Akio 127

Kelvin’s fourteen-faced

polyhedra 108
kernel 93
kinematics 174
Klavins, Eric 55
Kokaji, Shigeru 112
Kondo, Shigeru 29

Langton, Christopher 49
Langton’s loop 50
lattice-type 106
lattice-type modular robot 131
leader election 73, 83, 226
leak constant 90
LEGO MINDSTORMS® 105
lethal mutation 41
limit cycle 188
limited space 107
lipid 20
Lipson, Hod 123
local communication 77
local entrainment 195
local interaction 59
locality 60
locality of communication 14
localization 114
location index 94
locomotion 114
logical connection 94
logical organization 38
logical type 94
Lund, Henrik 121

machines composed of

biopolymers 237
magnet 81
magnetic unit 52
manually reconfigurable modular

robot 105
Markov process 56
Matsuoka’s oscillator 195
McCulloch, Warren 39
mechanical system 2
mechatronic self-assembling

system 55
mechatronics 235
messenger RNA (mRNA) 25
meta-design 7
meta-module 146, 245
Metamorphic Robot 115
metamorphosis 131
metamorphosis procedure 134
Micro Module 116
micromachine 15
minimal completeness propagation

algorithm 96
mobility 78, 108
mode conversion 136
modular robot 105

250 Subject Index

module 11
module size 235
Molecube 123
molecular machine 19, 237
molecular nanotechnology 238
molecular robotics 242
molecular tweezers 242
Molecule 120
molecule 19
Moore neighborhood 69
Moore’s Law 235
morphogen 27
morpholaxis 31
movability 89
movable type 88, 89
mRNA 25
M-TRAN 129, 131
multicellular organization 25
multiple-DOF 113
multiple-DOF linkage structure 114
muscle 42
mutation 41, 198
mutual exclusion 74
MX2 112

N-point crossover 198
neural oscillator 195
neuron 16
non-determinism of interactions 14
non-linear property 6
NP-hard 141
nucleic acid 20
number of components 15
number of modules 236

one-to-one correspondence of

functions and components 4
onion method 93, 94
open system 14
optimization 198
order formation 14
ordinary transmission cell 42
organ 19
organelle 19
origin of assembly 84

Penrose’s block 38
Penrose, Lionel S. 45
phase 184
phase oscillator 185
phase plane 188
photolithography 236

physical types 94
physiological regeneration 30
pivoting 134
Pitts, Walter 39
planaria 31
polarity 138
PolyBot 125
polymer 22
PolyPod 124
porous structure 165
power source 2
preconditions for self-assembly

algorithm 83
Prigogine, Ilya 8
principle of minimization of free

energy 20, 23
process of evolution 40
programmable material 238
protein 20, 23
protein folding 23
proximity sensors 212

quantitative analysis of self-reproducing

system 52

RAID system 13
random coil 23
ratchet 47
reaction-diffusion model 29
reaction-diffusion system 8, 63
reconfiguration 78
reconstruction 30
reductionism 1
reductionist design 1, 4
redundancy 75
reflex control 195
regular structure 146, 148
reinforcement learning 208
relative position error 109
reliability 74
reliability engineering 39
replication 25
restriction enzyme 241
retrogression of the stage 98
retrogression signal 98
rhombic dodecahedra 108
ribosome 23
rigid member 42
RNA 22
rolling 134
rotational motion 109
Rus, Daniela 116, 120

Subject Index 251

 259

Sanderson, Arthur C. 114
scalability 12
Seeman, Nadrian 238
selection 198
self-assembly 77, 79, 85
self-assembly problem 85
self-complementary shape 109
self-healing 21
self-organization 7, 9
self-organizing machine 37
self-organizing robot 235
self-reconfigurable modular robot 106
self-reconfiguration 131, 138
self-repair 80
self-replicable modular robot 106
self-replication 168
self-reproducing automata 39
self-reproducing molecular

robots 244
self-reproducing system 56
self-reproduction 21, 38, 44, 45, 123
self-reproduction of a Turing

machine 51
sensor 2
separation avoidance 136
shape memory alloy (SMA) 116, 213
Sierpinski gasket 113
sigmoid function 197
simulation 5
simulation of self-assembly 97
simulation of self-repair 98
simulator 223
Shen, Wei-Min 125
SlimeBot 127, 192, 232
SMA actuator 125
social insect 33
society 19
solution trajectory 188
space filling tessellation 108
space-filling polyhedra 108
spanning tree 74
spatio-temporal symmetry

breaking 84
special transmission cell 43
specification description language 13
spontaneity 14
stage 94
staged self-assembly and

self-repair 92
statement 87
static walk 176
sticky end 239

stimulus organ 41
stimulus producer 41
strategy for self-assembly 88
stress 117
structural component 2
structure rewriting rule 51
sugar chain 20
support leg 175
swing leg 175
symmetric transformation 228
symmetry 108
symmetry breaking 84
synchronization 114, 184

target configuration 85
target type 87
telescopic link mechanism 113
Terminator 2 79, 127
tessellation 108
TETROBOT 114
theory of self- reproducing

automata 38
there is plenty of room at the

bottom 238
thermal agitation 237
three dimensional universal

connection system 117, 131
thymine 22
time origin 84
topology 5
totipotent 26
transcription 25
transition diagram 87
translation 25, 109
traveling wave 180
tricolor flag model 27
true regeneration 31
truncated octahedra 108
Turing, Alan 29
Turing instability 65
Turing pattern 67
Turing’s universal automata 39
two dimensional unit 80

UNDX (unimodal normal distribution

crossover) 198
unit 78
unit identifier 83
unit supply by circulation 97
universal assembly 138
universal automaton, universal

automata 39

252 Subject Index

van der Pol oscillator 197
Velcro 127
von Neumann, John 37, 78
von Neumann architecture 38
von Neumann neighborhood 69
von Neumann's two questions 245

wake-up 114
walker generation 155
walker pair 155

Watson-Crick complementary 22, 238
Wolpert, Lewis 27
World Wide Web (WWW) 6, 16
wound healing 31

YaMoR 197
yield 54
Yim, Mark 124

zygote 25

Springer Tracts in Advanced Robotics

Edited by B. Siciliano and O. Khatib

Further volumes of this series can be found on our homepage: springer.com

Vol. 77: Murata, S.; Kurokawa, H.
Self-Organizing Robots
252 p. 2012 [978-4-431-54054-0]

Vol. 76: Prassler, E.; Bischoff, R.; Burgard, W.;
Haschke, R.; Hägele, M.; Lawitzky, G.; Nebel, B.;
Plöger, P.; Reiser, U.; Zöllner, M.
Towards Service Robots for Everyday
Environments
528 p. 2012 [978-3-642-25115-3]

Vol. 75: Civera, J.; Davison, A.J.; Montiel, J.M.M.
Structure from Motion Using the Extended
Kalman Filter
168 p. 2012 [978-3-642-24833-7]

Vol. 73: Corke, P.;
Robotics, Vision and Control
XXX p. 2011 [978-3-642-20143-1]

Vol. 72: Mullane, J.; Vo, B.-N.; Adams, M.;
Vo, B.-T.
Random Finite Sets for Robot Mapping
and SLAM
146 p. 2011 [978-3-642-21389-2]

Vol. 70: Pradalier, C.; Siegwart, R.;
Hirzinger, G. (Eds.)
Robotics Research
752 p. 2011 [978-3-642-19456-6]

Vol. 69: Rocon, E.; Pons, J.L.
Exoskeletons in Rehabilitation Robotics
138 p. 2010 [978-3-642-17658-6]

Vol. 68: Hsu, D.; Isler, V.; Latombe, J.-C.;
Ming C. Lin (Eds.)
Algorithmic Foundations of Robotics IX
424 p. 2010 [978-3-642-17451-3]

Vol. 67: Schütz, D.; Wahl, F.M. (Eds.)
Robotic Systems for Handling
and Assembly
460 p. 2010 [978-3-642-16784-3]

Vol. 66: Kaneko, M.; Nakamura, Y. (Eds.)
Robotics Research
450 p. 2010 [978-3-642-14742-5]

Vol. 65: Ribas, D.; Ridao, P.; Neira, J.
Underwater SLAM for Structured
Environments Using an Imaging Sonar
142 p. 2010 [978-3-642-14039-6]

Vol. 64: Vasquez Govea, A.D.
Incremental Learning for Motion Prediction
of Pedestrians and Vehicles
153 p. 2010 [978-3-642-13641-2]

Vol. 63: Vanderborght, B.;
Dynamic Stabilisation of the
Biped Lucy Powered by Actuators
with Controllable Stiffness
281 p. 2010 [978-3-642-13416-6]

Vol. 62: Howard, A.; Iagnemma, K.;
Kelly, A. (Eds.):
Field and Service Robotics
511 p. 2010 [978-3-642-13407-4]

Vol. 61: Mozos, Ó.M.
Semantic Labeling of Places with Mobile Robots
134 p. 2010 [978-3-642-11209-6]

Vol. 60: Zhu, W.-H.
Virtual Decomposition Control –
Toward Hyper Degrees of Freedom Robots
443 p. 2010 [978-3-642-10723-8]

Vol. 59: Otake, M.
Electroactive Polymer Gel Robots –
Modelling and Control of Artificial Muscles
238 p. 2010 [978-3-540-23955-0]

Vol. 58: Kröger, T.
On-Line Trajectory Generation in Robotic
Systems – Basic Concepts for Instantaneous
Reactions to Unforeseen (Sensor) Events
230 p. 2010 [978-3-642-05174-6]

Vol. 57: Chirikjian, G.S.; Choset, H.;
Morales, M., Murphey, T. (Eds.)
Algorithmic Foundations

of Robotics VIII – Selected Contributions
of the Eighth International Workshop on the
Algorithmic Foundations of Robotics
680 p. 2010 [978-3-642-00311-0]

Vol. 56: Buehler, M.; Iagnemma, K.;
Singh S. (Eds.)
The DARPA Urban Challenge – Autonomous
Vehicles in City Traffic
625 p. 2009 [978-3-642-03990-4]

Vol. 55: Stachniss, C.
Robotic Mapping and Exploration
196 p. 2009 [978-3-642-01096-5]

Vol. 54: Khatib, O.; Kumar, V.;
Pappas, G.J. (Eds.)
Experimental Robotics:
The Eleventh International Symposium
579 p. 2009 [978-3-642-00195-6]

Vol. 53: Duindam, V.; Stramigioli, S.
Modeling and Control for Efficient Bipedal
Walking Robots
211 p. 2009 [978-3-540-89917-4]

Vol. 52: Nüchter, A.
3D Robotic Mapping
201 p. 2009 [978-3-540-89883-2]

Vol. 51: Song, D.
Sharing a Vision
186 p. 2009 [978-3-540-88064-6]

Vol. 50: Alterovitz, R.; Goldberg, K.
Motion Planning in Medicine: Optimization
and Simulation Algorithms for
Image-Guided Procedures
153 p. 2008 [978-3-540-69257-7]

Vol. 49: Ott, C.
Cartesian Impedance Control of Redundant
and Flexible-Joint Robots
190 p. 2008 [978-3-540-69253-9]

Vol. 48: Wolter, D.
Spatial Representation and
Reasoning for Robot
Mapping
185 p. 2008 [978-3-540-69011-5]

Vol. 47: Akella, S.; Amato, N.;
Huang, W.; Mishra, B.; (Eds.)
Algorithmic Foundation of Robotics VII
524 p. 2008 [978-3-540-68404-6]

Vol. 46: Bessière, P.; Laugier, C.;
Siegwart R. (Eds.)
Probabilistic Reasoning and Decision
Making in Sensory-Motor Systems
375 p. 2008 [978-3-540-79006-8]

Vol. 45: Bicchi, A.; Buss, M.;
Ernst, M.O.; Peer A. (Eds.)
The Sense of Touch and Its Rendering
281 p. 2008 [978-3-540-79034-1]

Vol. 44: Bruyninckx, H.; Přeučil, L.;
Kulich, M. (Eds.)
European Robotics Symposium 2008
356 p. 2008 [978-3-540-78315-2]

Vol. 43: Lamon, P.
3D-Position Tracking and Control
for All-Terrain Robots
105 p. 2008 [978-3-540-78286-5]

Vol. 42: Laugier, C.; Siegwart, R. (Eds.)
Field and Service Robotics
597 p. 2008 [978-3-540-75403-9]

Vol. 41: Milford, M.J.
Robot Navigation from Nature
194 p. 2008 [978-3-540-77519-5]

Vol. 40: Birglen, L.; Laliberté, T.; Gosselin, C.
Underactuated Robotic Hands
241 p. 2008 [978-3-540-77458-7]

Vol. 39: Khatib, O.; Kumar, V.; Rus, D. (Eds.)
Experimental Robotics
563 p. 2008 [978-3-540-77456-3]

Vol. 38: Jefferies, M.E.; Yeap, W.-K. (Eds.)
Robotics and Cognitive Approaches to
Spatial Mapping
328 p. 2008 [978-3-540-75386-5]

Vol. 37: Ollero, A.; Maza, I. (Eds.)
Multiple Heterogeneous Unmanned Aerial
Vehicles
233 p. 2007 [978-3-540-73957-9]

Vol. 36: Buehler, M.; Iagnemma, K.;
Singh, S. (Eds.)
The 2005 DARPA Grand Challenge – The Great
Robot Race
520 p. 2007 [978-3-540-73428-4]

Vol. 35: Laugier, C.; Chatila, R. (Eds.)
Autonomous Navigation in Dynamic
Environments
169 p. 2007 [978-3-540-73421-5]

Vol. 34: Wisse, M.; van der Linde, R.Q.
Delft Pneumatic Bipeds
136 p. 2007 [978-3-540-72807-8]

	Title

	Foreword
	Preface

	Contents
	Designing by Self-Organization
	Reductionist Design and Its Limits
	Components of Mechanical Systems
	Reductionist Design Theory of Mechanical Systems
	Modeling and Optimization
	Problems with Reductionist Design

	Distributed Autonomous Systems and Self-Organization
	From Reductionism to Self-Organization
	Distributed Autonomous Systems and
Theory of Design by Self-Organization
	Advantages of Self-Organizing Mechanical Systems

	Types of Self-Organizing Mechanical Systems
	Systems and Their Components
	The Complexity, the Number of Components, and the
Complexity of Connections

	References

	Self-Organization of Biological Systems
	Hierarchy in Biological System
	Nucleic Acids: Formation of Double Helices by
Hybridization
	Protein Folding
	Central Dogma
	Biological Development: Assembly at the Level of Cells
	Biological Self-repair
	Reconstruction
	Physiological Regeneration
	Compensatory Regeneration
	Wound Healing
	True Regeneration

	Self-Organization of a Group of Individuals
	Cellular Slime Molds
	Social Insects
	Herds of Animals

	References

	History of Self-Organizing Machines
	Work by von Neumann
	Von Neumann’s Two Questions
	Von Neumann’s Self-reproducing Automata
	Universal Automata: The Kinetic Model
	Universal Automata: The Cellular Model

	Work by Penrose
	Mathematical Models of Self-reproduction
	Langton’s Self-reproducing Loop
	Graph Automata

	Physical Models of Self-reproduction
	Magnet System by Hosokawa
	Mechatronic Self-assembling System by Klavins
	Self-reproducing System by Griffith

	References

	Basics in Mathematics and Distributed Algorithms
	Distributed System and Components
	Diffusion
	Diffusion Equations
	Gradient Field
	Pattern Formation by Reaction-Diffusion System

	Cellular Automata
	Field of Diffusion
	Flow Field
	Game of Life

	Distributed Algorithms
	Leader Election
	Spanning Tree Construction Problem
	Exclusion Control
	Deadlock
	Reliability

	References

	Artificial Self-assembly and Self-repair
	Methods for Self-assembly and Self-repair: Homogeneous
System Approach
	Hardware for Two Dimensional Units
	Preconditions for Self-assembly Algorithms
	Unit Identifier
	Method and Range of Communication
	Spatio-temporal Symmetry Breaking

	Algorithm (I) for Self-assembly
	Description of the Target Configuration
	Strategy for Self-assembly
	Simulations and Experiments

	Algorithm (II) for Staged Self-assembly and Self-repair
	Logical Type and Description Matrix
	Onion Method
	Simulation of Self-assembly (Algorithm II)
	Simulation of Self-repair (Algorithm (II))

	Cellular Automata Model
	References

	Prototypes of Self-Organizing Robots
	Classes of Modular Robots
	Lattice-Type and Chain-Type
	Constraints in Hardware Design for Lattice-Type Modules
	Limited Space for Design
	Symmetry
	Degrees of Freedom for Mobility
	Connectors (Connection Mechanisms)
	Actuators

	Prototypes of Modular Robots
	CEBOT
	Truss-Type: Fractal Machine
	Truss-Type: TETROBOT
	Lattice-Type: Metamorphic Robot
	Lattice-Type : Crystalline
	Lattice-Type: Micro Modules
	Lattice-Type: CHOBIE
	Lattice-Type: Three Dimensional Universal Connection System
	Lattice-Type: Molecule
	Lattice-Type: ATRON
	Lattice-Type: Molecube
	Chain-Type: PolyPod and PolyBot
	Chain-Type: CONRO and Superbot
	Lattice-Type: Catom
	Amorphous-Type: SlimeBot

	Hybrid Type Combining Lattice and Chain
	References

	Robotic Metamorphosis
	System Design
	M-TRAN Module
	Basic Motions
	Polarity
	Universal Assembly and Self-reconfiguration

	Planning Metamorphosis Procedure
	Search for Metamorphosis Procedures
	Metamorphosis between Mobile Robot Configurations

	Distributed Metamorphosis
	Distributed System and Grouping
	Meta-modules Simulating Virtual Modules
	Regular Structures
	Motions of Planar Regular Structures
	Distributed Metamorphosis by the Cellular Automaton
Model

	Various Metamorphoses
	Generation of Robots from Regular Structures
	Docking and Merging
	Self-replication

	M-TRAN Colony
	References

	Self-Organization of Motion
	Robot Motion Control
	Manipulator End Point Control
	Legged Walking Robots
	Whole Body Locomotion
	Design of Motion Control Systems
	Distributed Motion Control of Modular Robots

	Coupled Oscillators
	Synchronization by Diffusion
	Entrainment
	How to Introduce Phase Offsets

	Motion Control Using Coupled Oscillators
	Connection with Physical Systems
	Global Entrainment
	Neural Oscillator

	Genetic Algorithm
	Motion Control of the M-TRAN Robots10
	CPG Control System
	Fitness and Dynamics Simulation
	GA Optimization
	Optimization Results and Playback Experiment
	Real Time CPG Control
	Issues of CPG Control

	Remark
	References

	Hardware and Software
	Hardware
	Structure and Mechanism
	Connection Mechanism
	Circuitry
	Optional Modules

	Software
	M-TRAN Simulator
	Onboard Program
	Program for Centralized Metamorphoses
	Program for Distributed Metamorphosis

	Errors and Reliability
	Dimension Error
	Structural Deformation
	Dealing with Errors

	References

	The Future of Self-Organizing Robots
	Challenges for Self-Organizing Robots
	Module Size
	Number of Modules
	Choice between Self-reconfiguration and Self-assembly

	From Mechatronics to Molecular Machines
	Molecular Machines Based on DNA Nanotechnology
	Self-assembly in DNA Nanostructures
	DNA Logic Gates
	DNA Sensors and DNA Actuators

	From Nanotechnology to Molecular Robotics
	Emergence of Hierarchy: The Ultimate Problem
	References

	Subject Index

