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PREFACE

Immunological memory has fascinated microbiologists and immunologists for
decades as one of the new frontiers to conquer to better understand the response to
pathogens, cancer and vaccination. Over the past decade, attention has turned to the
intrinsic properties of the memory T cells themselves, as it has become clear that
the eradication of both infected cells and tumors requires T cells. This book is an
attempt to capture the wave of discoveries associated with these recent studies. Its
chapters represent a wide collection of topics related to memory T cells by labora-
tories that have invested their skills and knowledge to understand the biology and
the principles upon which memory T cells are generated, maintained and expanded
upon re-encounter with antigen. Ultimately, these studies are all aimed at a better
understanding of the function of memory T cells in protection against disease.

Little is still known about the transcriptional events regulating the emergence of
memory T cells. Chapter 1 discusses the role of Schnurri-2, which plays a critical role
in cell growth, signal transduction and lymphocyte development, in the generation
of memory CD4 T cells. Nakayama and Kimura point out that Schnurri-2 mediates
repression of NF-kB hence enabling cell survival during the critical time of memory
cell generation. In Chapter 2, Rocha and colleagues focus on how transcriptional
regulation in memory CD8 T-cell responses allows them to more efficiently respond
to antigen stimulation by modifying their cell cycle machinery in order to divide
faster, improving DNA repair and enacting other cell survival mechanisms.

The role of cytokines, novel costimulatory molecules and other signals coming
from the microenvironment in the generation and maintenance of memory T cells is
discussed in Chapters 3-5. In Chapter 3, Sprent and colleagues discuss the importance
of IL-2 signaling during the contraction phase in memory CD8 T-cell differentiation.
At the time where most antigen-specific CD8 T cells disappear by apoptosis, IL-2 sig-
nals rescue CD8 T cells from cell death and provide a durable increase in cell counts.
This work shows that IL-2 signals during different phases of an immune response
are key in optimizing CD8 T-cell functions, affecting both primary and secondary
responses. Chapter 4 sees Butler and Harty discussing the role of inflammation in
the generation and maintenance of memory T cells showing that these two phases
are influenced by a multitude of factors, including inflammatory cytokines that can
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viii Preface

act on T cells during their differentiation, actually shaping the quantity and quality
of memory T cells, and the rate at which functional memory populations develop.
Chapter 5 points to a critical role of 0X40 (CD134) in T-cell memory generation.
Weinberg argues that enhancing OX40 signaling during antigen priming using OX40
agonists increases memory T-cell development. He also discusses the therapeutic
potential of OX40 agonists and antagonists in human clinical trials.

Chapters 6-9 discuss the generation and maintenance of memory CD8 T cells
during acute or chronic viral infection, in the context of the efficiency of recall re-
sponses and protection. In Chapter 6, Marzo, Sowell, and Scott seek to establish a
correlation between precursor frequency and the differentiation of memory T cells
following acute viral infection. In Chapter 7, Ahmed and colleagues discuss the
parameters that influence memory CDS8 T-cell generation and maintenance in the
context of acute vs. chronic viral infection. They also discuss new surprising findings
linking mTOR function with the generation of memory T cells. In the same vein
Walker and Sifka in Chapter 8 examine the longevity of memory CD8 T cells after
acute viral infection by a variety of methods. Their goal is to identify the optimal
combination of functional characteristics required for protective immunity against
the infectious disease. In Chapter 9, Zanetti and colleagues review the available
information to formulate a set of principles to guide the generation of more effec-
tive vaccines that elicit protective memory T cells. The working principles for the
generation of protective memory T cells by vaccination are discussed both in the
context of the immunologically-inexperienced and immunologically-experienced
individual.

In Chapter 10, Vaccari and Franchini present and discuss data on the induction of
memory T-cell responses in non-human primates, and argue that these experimental
models yield information that more closely matches the events that take place in
humans with respect to induction and maintenance of memory T cells. Colpitts and
Scott in Chapter 11 examine a few experimental models used to elucidate the nature
ofthe memory T cells that are generated during parasitic infections, and suggest that
long-term immunity induced by vaccination is a realistic goal to control parasitic
infections.

Chapters 12-15 review what is currently known about the role of memory T cells
in cancer and provide hints about monitoring memory T-cells responses after vac-
cination. In Chapter 12, Alderson and Murphy discuss how memory T-cell responses
generated by vaccination are impacted upon by concomitant immune stimulation
by adjuvants of novel formulation or cytokines. The authors also discuss whether
initial tumor regression and generation of sustained anti-tumor immunity have dif-
ferent immunological signaling requirements. Chapter 13 summarizes a survey in
colorectal cancer patients correlating the presence of memory T cells infiltrating
tumors in humans and clinical outcome. Camus and Galon provide evidence that a
strong and coordinated in situ T-cell response, with accumulation of memory T cells
within primary tumors, dramatically reduces the risks of relapse. This highly significant
correlation between the quality of the in situ immune response, tumor dissemination,
and clinical outcome suggests that attempts to vaccinate cancer patients may ultimately
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succeed if the effect documented in the natural evolution of colorectal cancer can be
generalized to other forms of cancer. Chapter 14 presents a state-of-the-art review by
Marincola and colleagues of current methods to monitor T-cell immune responses
to vaccination in cancer patients. Ex vivo assays to evaluate tumor-specific T-cell
responses at the immunological and transcriptional level have demonstrated tumor
recognition and T-cell activation, implying that tumor-specific T-cell induction indeed
occurs in vivo. However, at the present time these assays alone are not adequate to
predict tumor regression.

Finally, in Chapter 15, Henson and Akbar discuss a crucial issue in the biology
of memory T cells: memory T-cell homeostasis and senescence during aging. The
authors argue that because life expectancy has dramatically increased and continues
to increase, memory T cells will also have to span over longer times. Our current
understanding is that T-cell memory wanes during aging as evidenced by the suscep-
tibility of old individuals to infection by organisms to which they were previously
immune. They show that this loss of memory T cells originates from antigen-driven
differentiation and exhaustion, and telomere erosion.

The field of study of memory T cells is relatively young and the unknowns are
still numerous, but the intellectual and medical rewards promised by a better under-
standing of the biology of memory T-cell generation, differentiation and maintenance,
are formidable not only to understand the immunodynamics of natural adaptive T-cell
responses but also for the induction of protective T-cell responses by vaccination.

The compendium of topics assembled in this book and the ideas discussed
in it represent our initial effort to lay the foundation for a comprehensive view of
the field and its future potential. The scientific facts and premises presented here
constitute, in our view, the seeds from which new work will originate hopefully
increasing our knowledge and ultimately having an impact on our fight against
many human diseases.

We thank Ronald G. Landes for having encouraged us to undertake this
project.

Maurizio Zanetti, MD

The Laboratory of Immunology, Department of Medicine and Moores Cancer
Center, University of California, San Diego, La Jolla, California, USA

Stephen P. Schoenberger, PhD

Laboratory of Cellular Immunology, La Jolla Institute for Allergy
and Immunology, La Jolla, California, USA
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CHAPTER 1

Memory Th1/Th2 Cell Generation
Controlled by Schnurri-2

Toshinori Nakayama* and Motoko Y. Kimura

Abstract

chnurri (Shn) is a large zinc-finger containing protein, which playsa critical role in cell growth,
S signal transduction and lymphocyte development. There are three orthologues (Shn-1, Shn-2

and Shn-3) in vertebrates. In Sh#-2-deficient mice, the activation of NF-kB in CD4 T cells is
upregulated and their ability to differentiate into Th2 cells is enhanced in part through the increased
expression of GATA3. Shn-2 is found to compete with p50 NF-kB for binding to a consensus
NF-kB motif and inhibit the NF-kB-driven promoter activity. In addition, Th2-driven allergic
airway inflammation was enhanced in Sh7-2-deficient mice. Therefore, Shn-2 appears to negatively
control the differentiation of Th2 cells and Th2 responses through the repression of NF-kB func-
tion. Memory Th1/Th2 cells are not properly generated from Shn-2-deficient effector Th1/Th2
cells. The expression levels of CD69 and the number of apoptotic cells are selectively increased in
Shn-2-deficient Th1/Th2 cells when they are transferred into syngeneic host animals, in which
memory Th1/Th2 cells are generated within a month. In addition, an increased susceptibility to
apoptotic cell death is also observed in vitro accompanied with the increased expression of FasL,
one of the NF-kB-dependent genes. Th2 effector cells overexpressing the p65 subunit of NF-xB
demonstrate a decreased cell survival particularly in the lymph node. These results indicate that
Shn-2-mediated repression of NF-kB is required for cell survival and the successful generation of
memory Th1/Th2 cells. This may point to the possibility that after antigen clearance the recovery
of the quiescent state in effector Th cells is required for the generation of memory Th cells. A
repressor molecule Shn-2 plays an important role in this process.

Introduction

The effector helper T ('Th) cells can be categorized into at least three subsets in function, Th1,
Th2 and Th17 cells. Th1 cells produce IFNy and direct cell-mediated immunity. Th2 cells produce
IL-4, IL-5 and IL-13 and play critical roles in allergic reactions. Th17 cells are involved in certain
autoimmune diseases. The differentiation and the function of these Th cell subsets are governed
by several critical transcription factors. Among them, GATA3 appears to be a master transcription
factor for Th2 cell differentiation,'? T-bet for Th1* and RORyt for Th17.%

The generation of memory T cells is crucial for adaptive immunity and protection from infec-
tious disease upon subsequent exposure to pathogens. Figure 1 illustrates the cellular processes that
are required for the generation of functional memory Th1/Th2 cells.’ Upon antigen recognition,
naive CD4 T cells undergo clonal expansion and differentiate into effector Th1/Th2 cells. After
antigen clearance, the majority of these expanded effector Th1/Th2 cells undergo apoptotic cell
death at the contraction phase.® Some of the effector cells survive for along time in vivo as memory

*Corresponding Author: Toshinori Nakayama—Department of Immunology (H3), Graduate
School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan.
Email: tnakayama@faculty.chiba-u.jp

Memory T Cells, edited by Maurizio Zanetti and Stephen P. Schoenberger.
©2010 Landes Bioscience and Springer Science +Business Media.
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Figure 1. Cellular processes required for the generation of functional memory Th1/Th2 cells.
The details are described in the text. Reproduced from: Nakayama T, Yamashita M. Curr Opin
Immunol 2008; 20(3):265-271; with permission from Elsevier.’

type Th1/Th2 cells. In developing memory Th cells, several processes, such as (1) cell survival/
escape from cell death, (2) proliferation/homeostatic proliferation and (3) the maintenance of
Th1/Th2 cell function are required for the successful generation of functional memory Th1/Th2
cells (Fig. 1).

This chapter summarizes the recent findings on the role of an interesting zinc finger repressor,
Schnurri-2 (Shn-2) in the generation and maintenance of memory Th1/Th2 cells. Shn-2 appears
to downregulate the NF-kB target genes to maintain a quiescent state and support cell survival
of developing memory Th cells at the contraction phase to facilitate the successful generation of
memory Th1/Th2 cells.

Schnurri Family Genes

Schnurri (Shn) is a large zinc finger-containing protein; the molecular mass of Shn is -270 kDa
(Fig. 2). Shn was originally reported to be a nuclear target in the Drosophila decapentaplegic (Dpp)
signaling pathway and interacting with Mad-Medea.” In vertebrates, the Drosophila Dpp signal-
ing pathway may equate to the bone morphogenetic protein/TGEF-B/activin signaling pathways
that play various roles in developmental processes.'® Vertebrates have at least three orthologues of
Shn: Shn-1 (also known as HIV-EP1, MBP-1, PRDII-BF1 and a.A-CRYBP1), Shn-2 (also known
as HIV-EP2, MBP-2, AGIE-BP1 and MIBP1) and Shn-3 (also known as HIV-EP3, KRC and
ZAS3). Although the analysis of Shn-1 in the immune system has not been reported, those for
Shn-2 and Shn-3 substantially investigated.
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A. Schnurri (Shn) in mammal

ZAS (Zinc finger acidic domain structure) family protein

ZA main
a. a pair of C2H2 zinc fingers _
b. Glu- and Asp-rich acidic domain d‘f:‘:in domain  ~270kDa

c. Ser/Thr rich sequence
Shn-1, Shn-2 and Shn-3

B. Schnurri-2 (Shn-2)

HIV-EP2(HIV-enhancer binding protein 2)

MBP-2 (MHC enhancer binding protein 2)

AGIE-BP1 (angiotensinogen gene-inducible enhar binding protein 1)
MIBP1 (c-Myc intron binding protein)

# Protein size: 270kDa
# Zinc-figure DNA transcription factor

ZAS Ser/Thr- ZAS
domain Rich region domain 2717 =2

Figure 2. Schematic feature of Schnurri.

Shn-3

Shn-3 is the most precisely analyzed molecule among the Shn proteins. It was originally iden-
tified as a DNA-binding protein of the heptameric recombination signal sequence required for
VD] recombination of immunoglobulin genes.!" Shn-3 can bind to the NF-kB motif directly and
inhibit NF-kB activation.”? Shn-3 interacts with an adopter protein TRAF2 and controls TNF
receptor-driven responses.’> Oukka et al demonstrate that the overexpression of Shn-3 inhibited while
dominant-negative Shn-3 enhanced NF-kB-dependent transactivation and JNK phosphorylation
after TNFa stimulation and regulates the apoptotic cell death and the expression of cytokine genes.
Shn-3 also interacts with c-Jun to augment AP-1-dependent IL-2 gene transcription in T cells. The
overexpression of Shn-3 in transformed and primary T cells leads to increased IL-2 production,
whereas Shn-3 deficient T cells produce decreased IL-2.'* Moreover, the expression of Shn-3 in the
regulation of the adult bone mass has previously been reported.”® Shn-3 deficient mice have mark-
edly increased bone mass by promoting Runx2 degradation through the recruitment of E3 ubiquitin
ligase WWP1 to Runx2. The survival of Shn-3-deficient CD4*CD8* double positive thymocytes was

reported to be decreased,' while there was no effect for positive selection in the thymus.'

Shn-2

The mRNA expression of Shz-2 was detected mostly in the brain, heart and immune cells.
Shn-2-deficient mice revealed several important physiological roles of Shn-2 in the immune system.
First, Shn-2 is required for positive selection but not negative selection of T cells in the thymus.?
This defect in positive selection is caused by Shn-2 deficiency in thymocytes but not caused by the
deficiency in the thymic stroma cells. In mature T cells, Shn-2 regulates Th2 cell differentiation by
controling GATA3 expression through the regulation of NF-kB activation.?! Shn-2 also regulates
memory Th cell generation (described below in detail). Shn-2 is also required for bone develop-
ment is also reported.?? Interestingly, however, Shn-2 deficient mice have the opposite phenotype
in comparison to that of Shn-3 deficient mice. Shn-2 deficient mice have reduced bone remodel-
ing and osteopenia by suppressing NFATc1 and c-fos expression. Shn-2 is involved in the BMP
signaling in mammals. Shn-2 interacts with Smad1/4 and C/EBPa upon BMP-2 stimulation and

17-19



4 Memory T Cells

induces the expression of PPARY2, a key transcription factor for adipocyte differentiation. Shn-2
deficient mice show a reduced amount of the white adipocyte tissue.”

Together, these results indicate that each Shn family gene shares some roles but also the work
in different ways and are involved in many different physiological processes.

Role of Shn-2 in Naive CD4 T and Effector Th2 Cells

Shn-2 deficient mice were mated with OVA-specific TCR Tg (DO11.10 Tg) mice and naive
CDA4T cells were subjected to in vitro stimulation of Th1/Th2 cell differentiation with OVA peptide
and APC.*! As shown in Figure 3A, Th2 cell differentiation was significantly enhanced in Shn-2

non-skewed  Th2skewed  Thi-skewed
A
Shn-2**
X
DO11.10 Tg
Shn-2"
X
DO11.10 Tg
B Cc
Shn-2*"* Shn-2+
Th2-skewed (16h.) . - P65 p50 - p65 pS0
e, anti-TCR
Shn-2 Wt KO stim(3hrs) = * =+ -+ -+ -+ -+
A_A Supershift Band —p ". 4 .'
GATA3 —» — NF-xB —§ .. ' e
05 20 1.0 4.2
non-specific Band —» ! ’ ’ ' '
Tubulin-c —5  w———— non-specific Band —» ' "
08 22 1.0 21 £ T 1
123456789 10 11 12

Figure 3. Enhanced Th2 cell differentiation accompanied with increased NF-xB activity and GATA3
expression in Shn-2-deficient CD4 T cells. A) Naive (CD44'") CD4 T cells from Shn-2-deficient
(Shn-2—/-)x DO11.10 Tg mice were purified by cell sorting and stimulated with antigenic OVA
peptide (Loh15: 0.1 uM) and irradiated BALB/c APCs for 5 days. Th2-skewed (IL-4 with anti-IL-12
mAb and anti-IFNy mAb), Thl-skewed (IL-12 with anti-IL-4 mAb) and nonskewed (IL-2 with
anti-IL.-4 mAb, anti-IL-12 mAb and anti-IFNy mAb) conditions were used. Intracellular staining
was performed with FITC-conjugated anti-IFN-y mAb and PE-conjugated anti-IL-4 mAb. Th2 cell
differentiation is significantly increased in Shn-2-deficient CD4 T cells. B) Splenic CD4 T cells
were cultured under Th2-skewed conditions for 16 hours. The cells were harvested and per-
formed immunoblotting using anti-GATA3 or anti-Tubulin-a antibodies. Arbitrary densitometric
units are shown under each band. GATA3 expression is increased in Shn-2-deficient cells. C)
Splenic CD4 T cells were incubated with medium alone overnight and then stimulated with im-
mobilized anti-TCRof mAb for 3 hours. Nuclear extracts of the cultured cells were prepared and
subjected to EMSAs with NF-kB probes. The supershift assays were performed with antibodies
specific for NF-kB p50 and p65 subunit detection. Hyper-activation of NF-kB was observed
in Shn-2-deficient CD4 T cells. Reproduced from: Kimura et al, 2005. Originally published in
The Journal of Experimental Medicine. doi:101084/jem.20040733.*"
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deficient T-cell cultures, leaving Th1 cell differentiation unaffected. Based on this observation, the
in vivo consequence of the enhanced Th2 cell differentiation was assessed using Th2-driven allergic
inflammation models. Shn-2 deficient mice showed enhanced Th2-dependent airway inflammation
and airway hyperresponsiveness.**

The expression of GATA3, a master transcription factor for the differentiation of Th2 cells is induced
in developing Th2 cells through TCR and IL-4 signaling.”? In Shn-2 deficient T cells, the expression
of GATA3 at the early time point (e.g., 16 hours after stimulation) after TCR and IL-4 stimulation is
up-regulated (Fig. 3B). The induction of GATA3 expression is induced through the activation of the
IL-4/Stat6 mediated signal.”” Stat6 deficient T cells fail to up-regulate GATA3 expression and subse-
quently Th2 cell differentiation. However, no defects in Stat6 activation after IL-4 stimulation were
detected in Shn-2 deficient T cells (data not shown). In addition, no obvious defect in intracellular
Ca? influx or Erk1/Erk2 phosphorylation were detected upon TCR stimulation (data not shown),
which are reported to be important for the efficient generation of Th2 cells.®*

Another candidate molecule, which is involved in GATA3 expression, is NF-kB. An impor-
tant role of NF-kB activation in GATA3 expression was originally reported in the allergic asthma
model.*® NF-kB p50 deficient T cells do not up-regulate GATA3 in in vivo OVA-induced airway
inflammation model. In addition, protein kinase C (PKC) 6 regulates NF-kB activation and GATA3
expression. In PKCO-deficient CD4 T cells, the expression of GATA3 is severely impaired and Th2
cytokine production decreases.’ Therefore, the expression of GATA3 appears to be controlled by
NF-kB activation in peripheral CD4 T cells. As shown in Figure 3C, enhanced activation of NF-xB
in both resting and activated T cells (resting cells: lane 1 vs lane 8, activated cells: lane 2 vs lane 9)
is observed in Shn-2 deficient T cells. In addition, the protein expression of NF-kB (p50 and p65)
in both cytoplasmic and nuclear fractions is equivalent between wild-type and Shn-2 deficient
cells. Shn-2 directly binds to the NF-kB motif and inhibits the activation of NF-kB. Therefore,
the enhanced NF-kB activation in Shn-2 deficient cells appear to be due to the increased binding
of NF-kB but not due the increased protein expression of NF-kB (p50 and p65).2!

Naive CD4 T cells (quiescent) h2 cells (activated)
= @)

@(;P'@..- NF-xB target gene |:> @

(KB mofif ]

I—b NF-xB target gene: ON
Shn-2 binds to xB motif and GATA3---->Th2
interferes with NF-xB binding.

> keep quiescent ! Shn-2 expression is deceased and NF-xB binding is
increased-->the NF-xB target genes are activated.

The contraction phase

After antigen

clearance - !
e Successful

|:> - memory Th2
« c><¥ NF-xB target gene 1
%@ Fas FasL etc. generatlon

Shn-2 expression is increased again
-= support cell survival !!

Figure 4. Shn-2 and NF-«B activation in naive, effector and developing memory Th1/Th2 cells.
The details are described in the text.
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The molecular events operating in naive CD4 T cells (quiescent cells) and effector Th2 cells
(activated cells) can be illustrated based on these experimental results (Fig. 4, upper two panels).
In naive CD4 T cells, the expression of Shn-2 is very high (see Fig. 5) and Shn-2 constitutively
binds to the NF-kB motif resulting in the expression of the suppressed NF-kB-dependent genes.
Through this, naive CD4 T cells are able to remain quiescent. However, once CD4 T cells receive
antigenic stimulation through TCR, Shn-2 expression is decreased (see Fig. 5) and NF-kB signaling
is activated and increased binding of p65/p50/cofactor is induced. As a result, the transactiva-
tion of the NF-kB target genes including GATA3 (Fig. 4, upper right) is induced in developing
effector Th2 cells.

Role of Shn-2 in The Generation of Memory Th1/Th2 Cells

The unique expression of Shn-2 in naive, effector and memory Th2 cells is schematically illus-
trated in Figure SA. The expression levels of Shn-2 are high in naive CD4 T cells and decreased after
TCR stimulation and increased again in memory Th1/Th2 cells, particularly in memory Th2 cells
(Fig. SB). The expression of Shn-2 increased quickly even 3 days after cell transfer (Fig. 5C).2!
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Shn-2 mRNA expression
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Shn-2 mRNA expression
(normalized to hprt)
4

b3 o
° o |
fresh Th2 Th1 Th2 Thi Effector 3d 7d
Th2 ——
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Figure 5. Shn-2 expression in the process of the generation of memory Th1/Th2 cells. A) Schematic
representation of Shn-2 expression and clone size during the immune responses. B) mMRNA expres-
sion of Shn-2 in fresh CD4 T cells from DO11.10 Tg mice, in vitro generated DO11.10 Tg effector
Th1/Th2 cells and memory Th1/Th2 cells generated in BALB/c nu/nu mice was determined by
a real-time PCR analysis. Shn-2 expression is high in fresh CD4 T cells, decreased in effector
T cells and re-expressed in memory T cells. C) In vitro generated DO11.10 Tg effector Th2 cells
were transferred into BALB/c nu/nu mice and 3 or 7 days later CD4* KJ1-26* transferred cells
were purified and their mRNA expression of Shn-2 was assessed. Note that Shn-2 expression is
recovered quickly after cell transfer. B,C) Reproduced with permission from: Schnurri-2 controls
memory Th1 and Th2 cell numbers in vivo. ] Immunol 178:4926-4936.
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Figure 6. Decreased generation of Shn-2-deficient Th2 cells in the second lymphoid tissues. In
vitro differentiated effector Th2 cells from DO11.10 Tg Shn-2-deficient mice were transferred
into BALB/c nu/nu mice and the mice were analyzed 7 days after cell transfer. A) Representative
profiles of CD4/KJ1-26 in the indicated organ are shown. Note that the percentages of
Shn-2-deficient transferred Th2 cells were decreased. B) Annexin V/PI staining profiles were
determined in electronically gated CD4+*KJ1-26* donor cells. Shn-2-deficient Th2 cells show
an increased number of apoptotic cells. Reproduced with permission from: Schnurri-2 controls
memory Th1 and Th2 cell numbers in vivo. J Immunol 178:4926-4936.

In order to address whether Shn-2 plays a crucial role in the generation of memory Th cells, an in
vivo memory T-cell generation assay was performed using adoptive transfer of effector Th1/Th2 cells
into syngeneic mice.** Interestingly, the numbers of Shn-2 deficient Th2 cells significantly decreased in
the spleen, lymph nodes and PBMC 7 days after cell transfer (Fig. 6A).2! No difference was detected
in the liver and lung at this time point (data not shown). It is possible that Shn-2 deficient Th2 cells
proliferate less effectively in vivo. To test this possibility, BrdU was administered three days after cell
transfer and the incorporation of BrdU was analyzed. There is no decrease but rather slightly increased
BrdU incorporation in Shn-2-deficient cells (data not shown). Consequently, the susceptibility to
cell death of Shn-2 deficient T cells was examined and apparently increased Annexin V* cells in
the spleen, lymph nodes and PBMC were observed (Fig. 6B). In addition, there was a high CD69
and FasL expression on Shn-2 deficient Th2 cells 7 days after cell transfer (data not shown). Similar
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results were observed in an in vitro culture system. After overnight culture of effector Th2 cells in
medium alone, anti-TCR stimulation, or in the presence of IL-7 for 3 days, significantly increased
Annexin V* cells were detected in Shn-2 deficient Th2 cells. Again, increased levels of CD69, FasL
and a slightly increase in Bim expression were detected in Shn-2-deficient Th2 cells. However no
decrease was detected in Bcl-x, Bcl2 or Mcll. The same effect was observed in Th1 cells. These results
indicate that Shn-2 deficient T cells show a sustained activated phenotype and are more susceptible
to die in vivo and in vitro.

NF-kB Overexpression in Effector Th Cells Results in the Decreased

Generation of Memory Th Cells

Shn-2-deficient T cells show enhanced NF-kB activation (Fig. 3C) and decreased memory cell
generation because of the increased apoptotic cell death (Fig. 6). Therefore, the decreased memory
cell generation could be due to the enhanced NF-«B activation in Shn-2-deficient T cells. Th2 cells
overexpressing p65 showed up-regulation of CD69 and FasL even in resting culture with medium.
Transfer of the p65 overexpressing Th2 cells resulted in a selective decrease in the cell number in
lymph nodes. Thus, Shn-2-mediated repression of NF-kB activation appears to be required for
the generation of memory Th cells, particularly those in lymph nodes.

The molecular events operating in the Th cells at the contraction phase are illustrated in
Figure 4, lower panel. After antigen clearance, and NF-kB activation decreased the expression of
Shn-2 increased. As a result, the transactivation of the NF-kB target genes such as Fas and FasL is
decreased and supports Th cell survival to generate memory Th2 cells successfully.

Even at the memory phase (e.g., one or two months after cell transfer), the Shn-2-mediated
repression of the NF-kB activation in Th2 cells appears to be required for the maintenance of the
proper number of memory Th1/Th2 cells (unpublished observation).

Interesting Questions Raised by the Study on Shn-2

Several interesting observations were noted during the analysis of Shn-2 in memory Th genera-
tion. First, the most prominent effect (decreased memory Th cell generation) of Shn-2 deficiency
was detected in the lymph node. Shn-2 deficient T cells express decreased levels of CD62L. CD62L
is known to be a homing receptor for the lymph nodes and the expression of CD62L is negatively
controlled by the activation of NF-kB. Therefore, it was possible that the decreased Shn-2 deficient
memory Th cells in the lymph nodes is due to the decreased homing of Th cells due to the low
expression of CD62L. However, this appears not to be the case because the forced expression of
CD62L in Shn-2-deficient effector Th cells did not rescue the number of Shn-2-deficient donor
cells in the lymph nodes. Another possibility is that T-cell interaction with antigen-loading antigen
presenting cells occurs most efficiently in the lymph node resulting in the increased activation
induced cell death (AICD).

Second, the defect in the generation of memory cells was more prominent on CD62L"s"
central memory phenotype cells in comparison to CD62L"" effector memory like cells.?! It is
likely that the maintenance of CD62L " central memory phenotype cells is more dependent on
Shn-2-mediated repression of NF-kB and resulting induction of the quiescence state. However,
there is a more interesting possibility at this time. A nonlinear model has been proposed for the
differentiation fate of central and effector memory cells® (see the chapter by Franchini et al). In
this model, it is proposed that the levels of a certain transcription factor determine the differentia-
tion fate of central or effector memory T cells. Therefore, it is likely that Shn-2 is the first example
of a transcription factor, which determines the differentiation fate of central or effector memory
T cells. Shn-2 may direct the differentiation of central memory Th cells.

Conclusion

A series of studies on Shn-2 shed light on several interesting aspects in the development of
the memory Th cell system. First, Shn-2 is the first example of a transcription factor that controls
cell survival to support the generation of memory Th cells. Second, transcription factors that are
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induced in activated T cells are required to be suppressed for the proper formation of memory
Th cells. Shn-2-mediated downregulation of NF-kB target genes would be a good example of this
possibility. Third, the maintenance of the quiescent state in T cells (in resting memory Th cells as
well as in naive CD4 T cells) is an active process mediated by repressor molecules such as Shn-2.
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CHAPTER 2

Transcriptional Regulation during CD8
T-Cell Immune Responses

Ivana Munitic, César Evaristo, Hsueh Cheng Sung and Benedita Rocha*

Abstract
aive CD8 T cells differentiate in response to antigen stimulation. They acquire the
| \ | capacity to express multiple effector molecules and mediate effector functions that
contribute to infection control. Once antigen loads are reduced they revert progressively
to a less activated status and eventually reach a steady-state referred to as “memory” that is very
different from that of naive cells. Indeed, these “memory” cells are “ready-to-go” populations
that acquired the capacity to respond more efficiently to antigen stimulation. They modify their
cell cycle machinery in order to divide faster; they likely improve DNA repair and other cell
survival mechanisms in order to survive during division and thus to generate much larger clones
of effector cells; finally, they also mediate effector functions much faster.! These modifications
are the consequence of changes in the expression of multiple genes i.c., on the utilization of a
new transcription program.

The Regulation of Gene Expression: General Rules

Multi-cellular organisms possess a single genetic code but multiple cell types, each of them
defined by the expression of a particular set of genes that conditions that cell’s properties. To en-
sure such selective gene expression, extensive networks of regulatory factors were developed, each
protein having a peculiar program of transcription control.** In general, transcription regulation
requires DNA sequence specific transcription factors (TF) that bind to gene regulatory sequences
that may be the proximal promoter or the distal enhancers or silencers.

TF Composition

DNA sequence specific TF are modular proteins constituted by DNA binding and activator
modules that are under the control of regulatory modules. The regulatory module may be an integral
part of the TF molecule or alternatively, it is incorporated into the TF by independent regulatory
events (for an example, IkB that regulates the activity of NF-kB family). There are many transcription
factors, that belong to different families and each family has many members. Within each family, the
DNA binding motif is relatively conserved. DNA binding motifs recognize relatively short DNA
sequences and thus bind to DNA with a relatively low affinity and low specificity.

Transcription Requires Multiple TF Binding

Since TF bind to DNA with low affinity, the precise control of gene expression is usually
achieved by the utilization of multiple recognition sites present in clusters in the gene regulatory ele-
ments. Moreover, the specificity of gene transcription is frequently ensured by combinatory events,
i.e., by multiple and diverse TF binding to multiple sites within promoters/enhancers/silencers.
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Mode of Action of DNA Sequence Specific TF

One of the first roles of TF is to initiate the modifications of the chromatin structure, rendering
the gene accessible to transcription. It was described that some TF can initiate this process directly
because they are able to bind their DNA recognition structures even when these are present within
condensed chromatin, i.c., packed into nucleosomes. It is usually believed that initiation of gene
transcription requires the participation of at least one of these TE. Once chromatin remodeling is
initiated, other TFs may also bind. The combined TFs then recruit coregulators of transcription
to the transcription site. Co-regulators may be co-activators or corepressors have a major role in
ensuring the cell/tissue specificity of transcription, since they can induce or silence gene expression.
Many of these factors are subunits of proteins that modify chromatin structure, or are themselves
enzymes that modify the acetylation, methylation, phosphorylation or ribosylation status of his-
tones. Other coregulators interact with the transcription apparatus. The most universal cofactor
that serves to transduce regulatory information between DNA specific TF and the transcription
apparatus and is the modular complex known as Mediator.*

The Transcription Apparatus

Gene transcription is mediated by RNA polymerase IT (RNAP II). While in prokaryotes pro-
moter regions are recognized directly, in eukaryotes RNAP II requires the contribution of other
accessory proteins that recognize the conserved TATA box and initiation sequences present in most
protein coding genes. Thus the transcription apparatus in eukaryotes is a protein complex where
RNAP II is associated with other proteins named general transcription factors-GTEF. In contrast
to other DNA sequence recognition TF, GTF are relatively few and are quite conserved.

Gene Expression Is Dependent of Complex Regulatory Events

The pathways of gene activation may be regulated at multiple stages and no general rules exist
describing how each individual pathway is regulated in each particular circumstance. Besides, dif-
ferent classes of genes sharing some common pathways may even be regulated at different stages.’
Regulation may be achieved through the synthesis, activation, deactivation, conditional nuclear
localization or degradation of DNA sequence specific TF or other coregulators of transcription.
Frequently, each component involved in gene transcription is itself dependent on its own pathway
ofinduction/activation/deactivation. This complex multi-factorial dependency of gene transcrip-
tion confers a stochastic component to gene expression/down-regulation.

The Gene Expression’ Stochastic Component

Physicists swim happily in probability waters but in immunological terms, probabilities in-
duce in immunologists reactions that go from mild rashes to severe anaphylaxis. However, one
of the major aspects of cell biology i.c., the initiation of gene transcription was clearly shown to
be stochastic. To study this aspect, single-cells were carefully selected to be totally homogeneous
and they were submitted to the same stimulation conditions to induce gene expression.’ A wide
cell-to-cell variation was found. Individual cells started to express the same gene at different time
points and expressed that gene at very different levels. This was shown to occur in bacteria, fungi
and more recently in CD8 T cells responding to antigens in vivo.® Moreover, in conditions where
transcription enhancers’ effects were studied at single-cell-level it was shown that they do not
necessarily induce transcription, they just act by increasing the probability of transcription.” This
probabilistic component makes sense if one considers the multiple events that must concur to
induce gene expression. Multiple transcription factors and regulatory proteins have to be present
simultaneously to regulate transcription. Each of these factors is by itself dependent on its own
peculiar pathway of activation and sometimes it is yet to be synthesized (what will in itself require
other previous multifactor stochastic events...). It would be thus be unlikely all these requirements
reach precisely the same level at precisely the same moment in each individual cell. Cell-to-cell
variation is believed to have a major role in the diversification of an initially homogeneous cell
population. An initial variation of gene expression may generate cells that do not respond to
environmental stimuli exactly in the same way, what may induce further diversification, which
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will also not be homogeneous. In this way, an initial homogeneous population may generate very
different cell types through successive diversification steps. Although available studies only studied
the induction of gene expression it is very likely that down-modulation of gene expression may
also be influenced by similar rules.

Gene Expression Is Not an “All or Nothing Event”

Cells that do not express a gene may differ in the requirements necessary for that gene transcrip-
tion. Common examples are cytokine genes in T-cell responses. While naive cells require relatively
longinduction periods and stronger triggering conditions, memory cells rapidly secrete cytokines
and do so in less favorable conditions of TCR stimulation. This phenomenon was found to be due
to modifications of the accessibility of cytokine gene regulatory elements (that are induced during
priming and maintained in memory cells) and is generally referred to as “induction of locus acces-
sibility”. However, this term lacks precision, because it refers to any type of epigenetic modification.
It may involve several different and progressive events that may affect either the gene or any of its
regulatory elements, the DNA or the histones’ status and the spatial organization of the gene and
its regulatory elements within the nucleus (for example, locus organization into transcriptional
factories or chromosome territories).® Thus, loci are not just accessible or not accessible, they
may be more or less accessible. The processes initiating loci accessibility may already occur during
T-cell differentiation in the thymus well before mature T cells initiate immune responses. Once
a gene is expressed, major variations may also be found in the rate of transcription, conditioned
by cither the cell’ activation status, the stability of the transcription or the intrinsic properties of
the gene. Thus, during CD8 immune responses the number of Granzyme B (Gzmb) and IFN-y
(Ifng) mRNA molecules each cell expresses is much higher at the peak of the response than at other
time points. When CDS8 initiate the expression of a particular effector gene expression, individual
cells show major cell-to-cell variations in the transcription rates of that gene while messages show
little cell to cell variation once transcription becomes permanent. Finally, each gene has a peculiar
transcription rate. For example, perforin (Prf1) transcription levels average 10> mRNA molecules/
cell while and Gzmb transcripts average 10° mRNAs/cell.¢

Epigenetic modifications were mostly characterized in CD4 Th1/Th2 polarization in vitro,’
only sporadic reports studying CD8s in vitro'®!! or in vivo."*"> The /2 and Ifng promoters’
CpG motifs demethylate after CD8 activation and this process is more rapid in memory cells.
H3 acetylation increases in the same loci. Interestingly, CD8 memory cells generated in the

absence of CD4 help have significantly less histone acetylation than “helped” CD8s."

The Gene Regulatory Elements Involved in CD8 Responses

Many gene transcription regulatory elements are known to be involved in CD8 differentiation
and it is likely that many more will be eventually identified. However, some of them are known to
be key factors, required for the acquisition of CD8 effector functions.

Major Regulators 0f CDS8 Function
NFAT

The NFAT (nuclear factor of activated T cells) is an ubiquitous family of transcription factors
comprising multiple members with different tissue representation. With the exception of NFATS
(activated by osmotic stress), NFAT proteins integrate Ca** mediated signals in a large variety of
eukaryotic cells.' The NFAT1 and NFAT?2 are crucial for CD8 differentiation, NFAT1/NFAT2
double deficient cells being unable to produce several cytokines (IL-2, IFN-y, TNF) and to exert
cytolytic functions.”” NFAT transcriptional activity is induced by TCR stimulation via a Ca**
dependent calmodulin activation of calcineurin. This phosphatase dephosphorylates the NFAT s
NLS, allowing NFAT nuclear translocation.'® This process is reversible, regulated at multiple steps,
the NFAT s long-term residence in the nucleus requiring sustained Ca* influx.!*?

NFAT: usually act in concert with other TFs. The most common partners belong to the AP-1
TF family (usually Fos/Jun), which are themselves induced by other T-cell signaling pathways
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(PKC8, Ras, MAPKs).?! The regulatory elements of several CD8 effector genes contain compound
NFAT/AP-1 sites, this co-operative binding decreasing individual TF fall-off rates. Besides, each
factor may act independently, NFAT cooperating with several other TFs activated by either the
TCR, costimulation or cytokines/chemokines signaling but the structural details of these interac-
tions are largely unknown.*

The role NFAT TFs in CD8 expression of effector genes is complex. Depending on the context
NFAT family members may increase or decrease the expression of individual genes.?

T-bet and Eomesodermin (Eomes)

These factors belong to T-box family and have a highly homologous (74%) classic T-Box
DNA-binding domain. They are not expressed in resting cells, but are rapidly induced after TCR
stimulation. Signaling through the IFN-y receptor via STAT-1 can also induce T-bet (encoded
by 7hx21) expression. These two TFs have a fundamental role in the several events occurring
during CD8 differentiation. Depending on each individual gene, each one of these TF may be
cither redundant or have a dominant role in that gene’s expression. However, the study of these
TF impact did not cover many of the genes expressed after CD8 activation that may be regulated
otherwise.

Eomes was shown to interact directly with the //2rb promoter and to be fundamental for
IL-2Rf up-regulation after CD8 activation* while T-bet has a modest role.” It is thus believed
that Eomes is fundamental for the response of memory CD8 T cells to IL-15. Eomes is also domi-
nant in influencing Ifzg, Prfl and Gzmb transcription- Eomes *'~ mice already showing defects in
granzyme B and perforin expression, while the 76x21 deficiency has little, if any, impact in CD8’
capacity to express these mRNAs. However T-bet also contributes to the transcription of these
genes since Eomes ¥~ CD8 T cells lacking 7hx21 have a severe defect in IFN-y expression.?* In
contrast, T-bet was shown to have a dominant effect in promoting /1 26%° and Cxcr3¥ expression.
Finally, T-bet deficiency was claimed to enforce a central memory phenotype and to correct the
defects of CD8 function induced by the lack of CD4 help in LCMYV responses.”® However, these
results are incompatible with other findings reporting incomplete protection to LCMV challenge
in immunized 7bx21-deficient mice” and the major role of central memory cells in conferring
protection to LCMV.

Other TF Reported to Play a Role in CD8 Responses

Several other TFs were described to be involved in CD8 differentiation. Signaling through
TCR, CD28 or cytokines converges to NF-kB TF family members’ activation. These TF recognize
similar DNA motifs as NFAT proteins and homo- or hetero-dimers of different members (such
as p50, p52, p65, c-Rel and RelB) determine the nature of the regulatory event. TCR activation
phosphorylates Ets proteins, that among other effects, collaborate with T-bet to increase IFN-y
secretion in CD4 cells.*® STAT (signal transducers and activators of transcription) family members
mediate signals provided by various cytokines, binding to STAT DNA motifs in cytokine induc-
ible genes. NFAT induced chromatin remodeling often occurs in cooperation with STATs.”” The
ubiquitously expressed SP-1 regulates the activity of many other TFs, including that of T-bet.*"*
ATF/CREB are induced by TCR stimulation and also may act as transcriptional activators or
repressors, depending on their binding partners.* Finally, Runx TFs were reported to be involved
in CD8 division but it is unclear if this role is restricted to thymus differentiation or if it also af-
fects mature T cells.**

Transcriptional Repressors (TR)

Several TR were shown to be involved in CDS8 responses, some positively regulating the gen-
eration of long-term memory (Bcl6, Bcl6b and LKLF), while others having the opposite effect
(Blimp-1, Id2). In most cases the mechanisms involved are unknown.

KLF2 (or LKLF, lung Kruppel-like factor)-deficient T cells show spontancous activation,
increased death rates and severe CD8 depletion.® KLF2 is expressed in naive cells, rapidly
down-regulated following activation and re-expressed in memory T cells.* It is upregulated by
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cytokines IL-2 and IL-7 and KLF2 expression levels correlate to the survival of memory T cells
in vitro and in vivo. KLF2 is believed to contribute to cell quiescence since the ectopic expression
in Jurkat T cells reduces protein synthesis, cell size, proliferation and the expression of activation
markers and up-regulates the expression of CD62L and S1P1.% Some of these effects may be
due to down-regulation of c-Myc but further characterization is required to elucidate its role in
T-cell differentiation.

Blimp-1 (B lymphocyte-induced maturation protein) deficient mice develop severe autoimmu-
nity, but the contribution of different lymphocyte types to this syndrome is yet to be established.
Blimp-1 is largely absent in naive cells, expressed at a high level in effector cells and at a lower
level in memory cells.?! It was shown to directly repress Bc/6, Ifng, 112, Tbx21, Fos and Myc and it
is proposed to suppress cell division and induce cell death.* Blimp-1 down-regulation of 76x21
and effector molecules suggests this factor blocks effector’ differentiation, but how this contributes
to memory generation is yet unclear.

Bcl6 deficient mice have no germinal centers, exhibit Th2 skewing and die from an inflam-
matory syndrome marked by myocarditis and pulmonary vasculitis with eosinophil infiltrations,
again making it hard to distinguish its specific role in CD8 differentiation.***> Bcl6 expression is
induced upon T-cell activation but relative expression levels in effector versus memory cells were
not detailed.* Bcl6 binds several corepressors, thereby recruiting histone deacetylases to the silencer
regions of target genes. In particular, it was shown to associate dircctly with the Gzmb promoter
and to suppress Gzmb expression in a reporter assay.”® Overexpression of Bcl6 in T cells was ini-
tially reported to promote CDG2L" generation and their proliferation in secondary responses*
but different immunizations issued contradictory results.* A closely related TR to Bcl6 is Bcl6b
(or BAZF) that was implicated in promoting the magnitude of CD8 secondary responses.” Bcl6b
and Bcl6 bind an identical DNA motif (which is reminiscent to a STAT motif ) and the repressive
effect of Bcl6b was proposed to be mediated through association with Bcl6.%4

Id2 (inhibitor of DNA binding-2) exerts its repressive effect by binding to E protein transcrip-
tion factors, thus inhibiting their DNA binding.*® Id2 is upregulated after Ag-stimulation and
kept at stable levels in memory cells. /d2-deficient mice lack some subsets of Ty CD8s. Moreover,
during an immune response /42 KO CDS8 cells expanded poorly, contracted rapidly and rapidly
acquired a Ty phenotype.’!

Regulation of Individual Effector Genes

The expression of individual effector genes is regulated by extensive networks of TF (Table 1).
Ifng, Prfl, Gzmb and Faslin CD8 T cells were extensively studied. The TFs conditioning TGF-f3
gene (1gfb1) transcription shown in Table 1 were characterized in epithelial cells or fibroblasts.
Since different cell types may use different regulatory elements to control the expression of the
same gene>® Tgfb1 data must be taken with caution because it may not apply to CD8 lympho-
cytes. For some effector genes little is known. T-bet associates to the promoters of Cc/3 and Cc/4
chemokines and T-bet overexpression studies showed Cc/3 upregulation, but Cc/4 regulation was
not tested directly® and other regulatory elements were not characterized. KLF13 occurs rather
late after naive T-cell activation, binds to the Cc/S promoter and participates in the transcription
of CelS, but KLF13 deficient cells yet express this gene, indicating redundancy. In human T cells
Gzma and Gzmb are expressed in different CD8 populations,” but regulation of Gzma expression
was not characterized.

References describingin further detail promoter and enhancer regions and individual regulatory
elements already characterized to promote or silence each gene expression are quoted in Table 1.
However, this Table rather reveals an important fact. The regulation of individual effector genes
does not overlap. While some of the TF are involved in the regulation of several effector genes, oth-
ers are not. Importantly, if one considers the combination of all regulatory elements, all individual
genes differ. Since transcription regulation is determined by combinatory events, there is ample
opportunity for diversity in the expression of each individual effector gene. Finally, this table only
refers to effector genes, but during immune responses CD8 T cells also modify the expression of a
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Table 1. Transcription factors known to regulate individual effector genes. The list
only includes TF that were demonstrated both to bind the promoter regions
and to influence transcription.

Target Gene Activation Repression References
Tgfb1 AP-1; SMAD2, 3 AP-1; SP-1 54-57
Tnf NFAT; SP-1; ATF2/cJun 58,59
112 NFAT; AP1; NF-kB; Oct T-bet; lkaros 60-62
Ifng NFAT; T-bet; AP-1; NF-xB; Ets-1; ATF1/CREB; SMAD2,3; 63
ATF2/cJun; HMGAT; STAT1, 3, 4,5, NF-xB (p50/p50),
C/EBP; Runx3 GATA3 and STAT6
Prf1 NFAT, T-bet; Eomes; AP-1, NF-kB, 24,64
Ets-1, SP-1, MEF and STAT3, 4, 5
Gzmb NFAT; T-bet; Eomes; AP-1; Ets-1; ATF1; SMAD?2, 3; Bcl6 24,64
Runx1; Ikaros
Fasl NFAT; AP-1; Ets-1; SP-1; Egr2, 3; Myc 64
Ccl5 KLF13; NFAT; NF-xB 65,66

Please note: These activities were sometimes tested in other cell lineages and may not be operable
in CD8 cells (see text). Eomes was found to regulate /fng expression, but binding activity was not yet
demonstrated. The direct mechanisms of action of several repressors (such as Blimp-1, LKLF) are still
poorly defined and were omitted from the table.

vast number of other molecules. If the expression of each of these molecules is also under peculiar
regulation, the CD8 responses may yet show an unsuspected diversity.

Modifications of Gene Expression in CD8 Responses

Methodologies to Evaluate Gene Expression by CD8 T cells

Gene expression may be evaluated by two approach’ types that give complementary but not
overlapping information. In one type (“population studies”) the total mRNA pool from each
cell set is isolated. Then, the different mRNAs recovered from different cell sets are compared, to
determine which genes are differentially expressed. The alternative approach scores transcription
by individual cells (“single-cell studies”). Each of these methods has limitations of two types. The
firstis related to each technique’s limitations that may yet be reduced with time. Importantly, there
are other fundamental differences in the type of information that each method can provide, whatis
frequently overlooked and may lead to data over-interpretation and misconceptions in the field.

Population Studies

The most currently used strategy for “population studies” compares gene expression in two or
more different populations by the use of gene expression arrays. This method has as major advan-
tages that of being quite easy to perform and of covering a vast set of genes. However, arrays were
not set up to study CD8 T cells in particular and thus probes with the capacity to detect genes
that are “CDS8 specific” may be underrepresented or not present at all, while positive signals may
correspond to expressed sequence tag (EST) with yet unknown roles. “CD8 specific” cDNAs may
be not very abundant cither because transcription rates are low or/and because not all cells from
that population transcribe that particular gene. Finally, “CD8 specific” cDNAs are put in contact
with multiple probes, may have yet unknown cross-hybridization patterns and less-specific, low
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affinity binding of cDNA to the multiple probes present in the array may “consume” less abundant
cDNAs and “dump” specific signals. By these limitations, DNA arrays may fail to detect differen-
tially expressed genes with an important role in CD8 differentiation. These inconveniences may
be overcome by the more fastidious and technically demanding subtraction library technology
that is yet the most accurate way to identify differentially expressed genes. The major advantage
of subtraction libraries versus array studies is demonstrated in the identification of 76x21. That
TF that has a fundamental role in CD8 differentiation was identified in subtraction libraries.””
In contrast, array studies comparing naive and effector CDS8 cells did not show a differential ex-
pression of these genes,*® although Thx2Iand Eomes are not expressed at all in naive cells and are
expressed by virtually all CDS8 effectors.

Of major interest, comparison of various CD8 populations may reveal differentially expressed
genes that were not previously identified as having any role in CD8 differentiation and thus become
ideal candidates for further studies. Therefore, population studies are ideally approaches to “fish
genes” with previously unknown functions.

Single-cell analysis is at the opposite end of population studies.” It is laborious and can only
address the expression of known genes. The number of genes that can be studied simultaneously
in each individual cell is actually restricted to about twenty. However, it gives fundamental in-
formation on how known genes are expressed within a population, that cannot be obtained by
array studies. It determines the frequency of cells expressing each gene. It studies gene association.
These two types of information are fundamental to understand the role of each gene within that
cell set, to predict cell function and to determine a possible heterogeneity and sub-division of
cells types. In contrast, in population studies the mRNA are pooled from many individual cells
and thus evaluate the population’s mRNA expression averages, what is frequently insufficient and
may even be misleading. Figure 1 exemplifies potential misconceptions by comparing the same
population (CD8 T cells recovered at 4 days after priming) studied simultancously at a “popula-
tion” or at “single-cell” level.

The Importance of Frequency Estimates

Individual genes are transcribed at very different levels, which are “characteristic” of each gene.
Transcription can range from >10” mRNAs/cell (Gzmb, Gzma) to 10° mRNAs/cell (I /b1, Prf1).6
Consequently, a single cell expressing Gzb at 10° mRNAs/cell present at 1/1,000 frequency may
give the same signal as 100% of the cells expressing Tg/b1 at 10° mRNAs/cell, i.c., in “popula-
tion” readouts a rare nonrepresentative event at 10~ frequency and a major property shared by all
T cells may score similarly. This major bias is evident in Figure 1. Gzmb was the most abundant
gene expressed by the CD8 population, but single-cell analysis revealed that such signal was due
to very rare cells expressing Gzmb at >10° copies/cell. In contrast, Tgfb1 signal was much weaker
but our single-cell analysis revealed that this gene was expressed by more than 70% of CD8s- at
about 10° copies/cell. Single-cell read-outs are thus fundamental to determine the frequency of
cells expressing each gene, i.e., how important is that property within that cell set.

Predicting Functional Behavior

The other major limitation of population studies is their inability to evaluate if different genes
are co-expressed by the same cell or by different individual cells. This may be of importance if cell
function requires the simultaneous expression of several molecules, as exemplified in Figure 1. In
order to kill target cells efficiently each CD8 lymphocyte must co-express perforin and granzymes.
CD8s studied at a population level appeared cytotoxic because both genes were detected but
single-cell studies revealed that Prf1 and Gzmb were usually expressed in different cells. These results
suggested these cells were not cytotoxic, which we did confirm by in vivo functional tests. TGF-f3
may be anti-inflammatory by blocking T-cell proliferation or pro-inflammatory by mobilizing
and activating APCs. Response to TGF-p requires the co-expression of two receptors by the same
cell, one capturing the ligand and other responsible for signal transmission. Studies at population
level detected the expression of Zgfb1 and of both receptors, suggesting an anti-proliferation role,
but single-cell studies revealed that T cells cannot respond to the TGF-f they produce, because
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Figure 1. Population versus single-cell studies. Results compare gene expression levels of the
same CD8 cell setthat was isolated and studied simultaneously as a population (left) or as single
cells (right). In single cell studies each row shows the same individual cell that is numbered.
Each column shows a different gene representing the number of MRNA molecules/cell accord-
ing to a colour scale. Empty symbols represent cells that do not express that gene (<2mRNA/
cell) and grey symbols positive cells where gene expression levels were not quantified.

individual cells did not co-express the Tgfbrl and Tgfbr2.° This finding led us to envisage that
cells expressing 7gfb1 had a pro-inflammatory role of this cell set that we confirmed by in vivo
functional studies.

Screening for New Subpopulations

Single-cell analysis allows the comparison of the co-expression of twenty different genes si-
multaneously. Thus it allows addressing how different effector molecules and different receptors
described to be involved in CD8 responses all associate between themselves. It allows investigating
if the CD8 population we are studying is homogeneous or constituted by different cell sub-types
and in the later case, what are the receptors/effector molecules that define each sub-type. It must
be noted that no other method allows the simultaneous comparison of twenty different param-
eters neither has the same sensitivity level. Flow cytometry has progressed but is yet very below
20 parameters evaluation and available conjugates frequently impose important restrictions to
association studies. Moreover, in many circumstances single—ccll co-expression of different genes
cannot be evaluated at protein level since Abs recognizing native proteins in the mouse are not
yet available (as in the case of perforin), or importantly, protein expression levels are so low they
do not allow precise discrimination between positive/intermediate/negative cell types.

Thus, genetic arrays and single-cell analysis appear to have different complementary scopes.
Genetic arrays are fundamental to identify potentially important genes that are differentially
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expressed in two different cell sets. Single-cell analysis, by evaluating different genes expression
frequencies and on their co-expression by the same cell gives important information on the impor-
tance of each gene within a cell set; indicates potentially different T-cell properties; may identify
different T-cell subpopulations.

Differential Gene Expression during CD8 Responses

The transition of CD8 T cells from the naive to the memory stage was investigated in gene
expression arrays. For that purpose, LCMYV specific P14 TCR-Tg populations were stimulated
with LCMV and cells recovered at the response peak (classified as “effectors”) were compared
with naive and memory cells, recovered at different time points after the contraction phase.®®”
About 350 genes were differentially expressed, corresponding to 2-3% of the genes claimed to be
represented in the array. This number is surprisingly low when compared to array studies performed
in human T cells that shown the differential expression of 3,000 genes (17% of the genome) after
in vitro stimulation.”" Many of the differentially expressed signals corresponded to non-identified
ESTs. Indeed, one of the signals showing important differential display between naive and “ef-
fectors” and “effectors” and memory cells was the EST “moderately similar to the AF51064 from
homo-sapiens”® Other differentially displayed genes gave predictable results. Thus dividing “ef-
fector” cells expressed higher levels of molecules involved in cell division, higher Ifizg and Gzmas
and Fas/, multiple molecules involved in cell adhesion and migration as CD44, CD62L or Ly6C
changes in the proteins involved signaling, including the previous described inversion of Lck/Fyn
ratios”* and the up-regulation of several molecules involved in Ca®* or cytokine signaling. Not de-
scribed before were the modifications of genes coding for the proteins involved in mitochondrial
activity and protein translation that predict an increased metabolic capacity of “effector” cells. 30%
of the genes differentially expressed by effector genes were modified in the “effector” to memory
transition, but these modifications were not very revealing since they correlated to the diminished
division rates, metabolic activity and effector molecules expression, or to previous described modi-
fications of several surface markers as CD62L and Ly6C. However, this array studies reveled that
after reaching steady-state numbers CD8 T memory cells are not necessarily stable populations,
since their gene expression profiles keep on changing with time.

The Expression of Individual Effector Genes Throughout

the Immune Response

Since individual effector genes are under the control of complex and diverse regulatory events
(Table 1) it is not too unexpected that they do not behave similarly throughout the immune
response. This was investigated in detail in the CD8 responses to the HY antigen and to Listeria
monocytogenes (LM) expressing OVA.® These two responses were surprisingly similar although
CD8 populations had different TCR specificities and responses were respectively to a minor
transplantation antigen or to a bacterial infection.

CD8 cells were initially scored for 18 T-cell effector mRNAs and certain were excluded because
they were not expressed ('Th2 cytokines) or were very rare (1/2, I/10). Remaining effector molecules
had different kinetics of expression and down-regulation and that did not necessarily correlate with
CD8 accumulation/decay (Fig. 2). Thus, nRNAs coding for TGF-f and TNF-a were expressed
immediately after activation. We later found out that mRNAs coding for the pro-inflammatory
chemokines MIP-1o and MIP-1f were also expressed immediately after activation. Surprisingly,
mRNA expression for TNF-0,, MIP-1o and MIP-1p was very transient and was down regulated
after the first divisions. In contrast, 7gfb1 frequencies were maintained until the response peak.
Although expression frequencies declined during contraction, a large fraction of memory cells
yet express 1gfb1. CD8s present at the early phase of the response did not co-express Prfl and
Gzmb or expressed Fasl.® These gene expression profiles suggested that that these cells could have
a pro-inflammatory profile. Indeed, in vivo tests showed that these cells were unable to kill target
cells, but rather mediated trapping and the local accumulation CD45* nonT nonB cells (presum-
ably cither DCs or/and monocytes/macrophages).
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Figure 2. Kinetics of effector genes expression during the response to LM-OVA. OT-1 CD8
T cells were transferred to normal mice and immunized with LM-OVA. Results compare the
kinetics of CD8 cell accumulation (upper graph) with the expression frequency of different
effector genes. At days 1-2 not all CD8s were activated. Frequencies were determined in
CD69+ cells, as other cells do not express effector mMRNAs. Ifng and Fas/ expression was not
tested at day 64.
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It thus appeared that CD8 T cells could become effector cells immediately after antigen
encounter even before division, in contrast to the common notion that effectors are generated
at the peak of the response. However, these effectors were not the classic killer cells. Rather, this
initial “inflammatory” effector phase will have a major role in attracting innate immunity actors
to site of the immune reaction. The generation of such “inflammatory effectors” in the anti-HY
response also contradicts the common notion that inflammation is always the consequence of
a nonspecific response to PAMPs expressed by pathogens. It shows that following antigen rec-
ognition, CD8 T cells can trigger an inflammatory reaction directly. This capacity to mobilize
directly the innate immune system will be of major advantage to deal with tissue antigens, as
those presented by tumor cells.

After this initial inflammatory phase, expanding cells progressively expressed other effector
molecules in the following order: Ifig; Prfl; Gzmb; Gzma; and finally Fas/ that was not detected
at the beginning of the response. PrfI and Fas/ expression frequencies were maintained constant
throughout the response and were unchanged in memory cells. In contrast, other genes declined
before CD8s reached the peak of the response. Ifng and Gzma down-regulation was very rapid,
Gzmb decline was slower. Importantly, in vivo tests comparing the behavior of the same number
of CD8 T cells present in the same location confirmed that killer function correlated to killer
genes co-expression: early inflammatory effectors were unable to kill target cells and killer activity
declined during contraction, when individual cells no longer co-expressed killer genes.

Interestingly, secondary responses followed different rules. When memory cells were re-
stimulated in vivo, effector molecules became rapidly expressed. These results were expected, since
priming is reported to induce “locus accessibility” that favors the rapid transcription of genes that
are silent in resting memory cells. Surprisingly, this expression was maintained even after antigen
elimination. Secondary “memory” cells co-express multiple effector genes, kill target cells much
more efficiently than the primary memory cells and are even more efficient than the “cytotoxic
effector cells” recovered at the peak of the primary immune reaction (Fig. 3). These properties
of secondary memory cells are strictly dependent of CD4 help. This results lead to a surprising
conclusion: After boosting secondary “memory” cells actually acquire the permanent functional

0% 57% 72%

Naive Primary effectors Secondary memory

Figure 3. Boosting generates long-lived effectors. Results show in vivo killer activity of: left:
naive cells; middle: effector cells recovered at the peak of the primary response; right: secondary
memory cells, obtained 3 months after the secondary immunization. In most cases where in
vivo killing is investigated target cells are injected i.v. into the animal where they recirculate.
Since it is very difficult to know how many killer cells are present in the whole mouse and
where they meet target cells differences in target elimination can be due to differences in CD8
numbers/location or killer capacity. In these experiments CD8 populations were sorted. The
same number was injected together with peptide-free CFSE™" and peptide-loaded CFSEe"
B-target cells in spleen and killer activity determined after 4 h—what allows to determine killer
capacity of the same number of CD8 cells meeting the same targets in the same location.
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properties of effector cells, but, in contrast to “primary” effectors, they persist for long time periods
in the absence of antigen.

These data raise several considerations that force us to shift the paradigms we currently apply
to immune reactions. Firstly, CD8s effector gene transcription does not necessarily correlate to
the presence or absence of the antigen, contradicting the notion that CD8s transcribe effector
genes when the antigen is present and to stop their expression when antigen is eliminated. The
transcription of pro-inflammatory chemokines and 7#f'is down-regulated at the beginning of
the immune response when antigen is yet abundant, suggesting yet unknown in vivo mecha-
nisms constraining local inflammatory reactions. It is tempting to speculate the existence of
other mechanisms restricting immune reactions by ensuring the rapid down-regulation of other
receptors/effector molecules. For example, a rapid in vivo down-regulation of //2 and CD25
may explain why IL-2 is rarely detected in vivo” and many in vivo activated CD8 T cells do
not express CD25 in spite of the importance of this cytokine and this receptor for CD8 in vivo
growth and differentiation.”® Other effector mRNAs persist for different periods in the primary
reaction and moreover, became permanently transcribed in secondary responses. Thus effectors’
transcription appears to be progressive. Successive antigen triggering (or perhaps other signals,
for example cytokine mediated) may progressively modify effector gene loci eventually inducing
antigen-independent, permanent and hereditary transcription. Secondly, we must modify several
common concepts we use to define the steps/properties of T cells during immune reactions. We
usually regard effector cells as short-lived cells generated at the peak of the response that do not
survive long after antigen elimination. However, effectors may be present at all phases of the
immune response. The detection of effectors with inflammatory functions emerging even before
the beginning of the expansion phase demonstrates that differentiation into effector cells may
precede cell division and occur well before the “official” effector phase, i.c., the peak of response.
The presence of effector cells by the end of the secondary reaction (Fig. 2) shows that effectors are
not necessarily short-lived, programmed to die rapidly. Like B cells that generate both short-lived
and long-lived plasmocytes, CD8s may generate both short-lived and long-lived effectors that
persist in vivo in the absence of antigen. Finally, the memory status is not a final differentiation
stage. Memory cells change with successive antigen triggering. The final differentiation stage
of the CD8 T cell may be rather the long lived antigen-independent effector cell that is so ef-
ficient to control antigen challenges that prevents even antigen accumulation as we and others
found with secondary memory cells.®”>7¢ This may explain why vaccination frequently requires
multiple antigen boosts to ensure efficient protection.

Different Infections May Induce Different Gene Expression Patterns
Considering the complexity of gene regulation it is not surprising that CD8 cells respond dif-
ferently to various antigenic challenges. We observed major differences in gene expression patterns
between in the LM response and the response to LCMV. These differences were not dependent
on the TCR specificity. P14 Tgcells and T cells recognizing different LCMYV epitopes all showed
the same gene expression patterns. Besides, when P14 cells were immunized with LM-GP33, they
behaved exactly like LM-OVA specific cells. This demonstrates that the gene expression patterns
of CD8 T cells during immune responses are strongly influenced by the “infection” context.
Thus, several general rules established in the LM and HY response yet applied in
LCMV. Individual effector genes had different kinetics of induction and down-regulation.
Pro-inflammatory genes were expressed early on. In the contraction phase CD8 T cells lost Prf1
and Gzma/Gzmb co-expression, correlating to their loss of killer capacity. However, the LCMV
infection induced an immediate and overwhelming expression of Ifig that persisted well after
infectious virus clearance, while Ifizg expression in LM was rather transitory. In contrast, in
LCMYV 1gfb1 was modest and very transitory while the majority of LM specific cells expressed
Tgfbland the expression of this gene persisted into memory phase. Major differences in the
expression of several cytokine receptors were also detected- LM-specific cells express /107,
1[217 and I/127b while these receptors are absent or very rare in LCMV specific cells. Some of
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these differences can be explained by previous findings but others suggest the presence of yet
unknown regulatory pathways.

Thus, IL-12 up-regulates the expression of its receptor in Th1 cells in vitro.”” A similar ef-
fect in CD8 T cells explains why during LM infection (where IL-12 is abundant)”®” all CD8
T cells express I/12rb at the response peak. TGF-f suppresses the expression of IFN-y, justifying
the rapid down-regulation of this cytokine found during the LM infection.’*®! However, the
differential expression of Tgfbl in LM and LCMV remains unexplained. It is yet unknown if
IL-12 has any role in inducing Zgfb1 or, alternatively, if IFN-a (that is produced in LCMV)
mediates 7gfb1 down-regulation. It is yet unclear if [IFN-a has any role in favoring the persistent
expression of IFN-y during LCMYV infection since this cytokine was described to have a modest
in vitro effect. Finally Eomes and Thx21 are co-expressed by all LM-specific effector cells while
many LCMYV specific cells only express 76x21 and the reasons for this different expression are
also unknown.

The Identification of CD8 Subpopulations: Man and Mouse Differ

One of the major advantages of single-cell multiparameter analysis was the possible identifi-
cation of CD8 subtypes. Thus, one could hope that association of effector molecules expression
with either CCR7, IL-7R, KLRGI etc, could perhaps identify memory types with different
characteristics, but this was not the case in the mouse.® In mouse memory cells, all molecules
so far studied associated randomly between themselves and with any other of the effector
genes/receptors expressed at the memory stage. In contrast, the cell surface markers CCR7
and CD45RA® together with CD27 and CD28%%% can subdivide human CD8 T cells
into well-defined subtypes that show unique properties. Several aspects of these subtypes are
remarkable. Firstly, each subset is quite homogeneous even when studied at single-cell-level:
all individual cells having very similar or totally identical effector gene expression. Second,
cach subtype is characterized by the expression of restricted set of effector genes. Finally, these
properties are the same in different healthy donors. This is rather surprising, considering the
major variation usually found in most human studies. However, variation is only found in the
relative representation of each subset. The percentage of cells belonging to each subset varies.
The properties of each subset are remarkably similar even when single cells are studied.” Mouse
CD8 T cells do not express some surface markers expressed by human cells and when markers
are expressed, they do not subdivide equivalent subsets.

Thus, naive T cells are CD45RA* CCR7*, co-expressing IL-7R, CD27, CD28 and
CD62L.>3%2% They do not express any effector gene.”*® Central memory cells (Tcy) are
CD45RA- CCR7"" and maintain the expression of IL-7R, CD27, CD28 and CDG62L.*> All
express Cc/S, but no other effector molecules. Remaining memory cells with a CCR7- phenotype
are globally named effector memory cells (Tgy) but they are actually a complex mixture of CD8
cell types, that can be subdivided by their CD27/28 phenotype into discrete subtypes with a
progressive differentiation status.”***® In their less differentiated state Try, are rather similar
to Tcy, They are CD27" and cells with this phenotype also express IL-7R and CDG62L. The
expression of Gzma defines this cell set since besides Ce/S (that is already expressed by Tey),
CD27* CD28* Tgy also express Gzma and Prfl but no other molecules involved in cell cyto-
toxicity. In their most differentiated stage Try are CD27- CD28- and do not express CD62L
and 7/7r5%% All cells co-express Prfl and Gzma. Gzmb is abundant and some cells also express
Ifng. The CD27* CD28" intermediate population is the most heterogeneous. It harbors both
1[7r* and 1177 subtypes, CD62L down-regulates but some cells yet expressed it. Besides Ce/S
and Gzma some cells also express Prf] and rarely Gzmb.

Human cells also differ in the type of effector genes more frequently expressed. Gzra (rather
than Gzmb) is the dominant granzyme expressed by human T cells. The very frequent expression
of this gene as well as its expression in the absence of any other cytotoxic molecules (as found in
CD27*CD28cells) appears to be characteristic of human CD8 T cells. Finally, Fas/ and Ifng are
rarely expressed.”
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Conclusion

Human thought processes can most easily visualize complex processes as a linear series of
events, each step going to completion before the next step begins. Thus, based on the kinetics of
T-cell accumulation CD8 T-cell responses are commonly subdivided in successive phases generally
overviewed as independent: 1) the “expansion phase” where T cells are viewed as dividing only;
(2) the response peak/plateau/effector phase, where T cells are thought as effector cells eliminat-
ing the antigen; (3) The contraction phase, where cells are looked at as mostly dying; (4) and
the memory phase where they are thought to lose effector functions and revert to a resting state.
The above data shows this “stepwise” perspective (that influences the field) is far from the truch.
When all parameters are taken into consideration, the kinetics of CD8 accumulation/decay does
not discriminate discrete differentiation stages. While all CD8 responses go through expansion/
plateau/contraction/memory phases, the sole word that appears to define the modifications of
gene expression is variability. Individual cells behave differently. Different genes are expressed/
down-regulated with different kinetics. The infection context influences which genes are pre-
dominantly expressed and which continue to be expressed in memory cells. Finally, successive
boosting leads to the generation of long-lived cells co-expressing multiple effector molecules. In
general it thus appears that CD8 T cells may progressively evolve in their capacity to transcribe
effector genes to reach a stage of permanent hereditary transcription. It remains to be evaluated
how transcription rates reflect protein expression levels. In most cases this was not studied in suf-
ficient detail and important limitations yet hinder protein evaluation. We do not dispose of any
amplification methods to detect proteins that are equivalent in efficiency to those available for
mRNA expression studies. Most proteins are expressed at low levels, difficult to discriminate from
background values. Intracellular proteins segregating into peculiar compartments can be better
evaluated by confocal microscopy but immunologists do not use this method systematically. Many
antibodies are generated from extracted proteins that no longer maintain in vivo configurations
and frequently they do not recognize native forms. Finally many proteins are rapidly secreted and
cannot be visualized ex vivo. Therefore, current methods yet fail to detect a major fraction of cel-
lular proteins at a single-cell-level and several examples of these limitations can be quoted. It was
not yet possible to detect IL-2 in vivo, but many studies using IL-2 deficient mice revealed the
importance of this molecule in immune responses in general and in CD8 differentiation in par-
ticular.”* Memory cells express Cc/S mRNA.*¢#7 It was claimed that this mRNA was not translated
in mouse memory cells, but it was later shown that RANTES protein was accumulated in small
granules in human memory T cells.®® Thus, with respect to proteins, it is important to conclude
that negative results are not conclusive.
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CHAPTER 3

The Role of Interleukin-2 in Memory
CDS8 Cell Differentiation

Onur Boyman,* Jae-Ho Cho and Jonathan Sprent

Abstract

he current literature on the role of interleukin (IL)-2 in memory CD8* T-cell differentiation

indicates a significant contribution of IL-2 during primary and also secondary expansion

of CD8* T cells. IL-2 seems to be responsible for optimal expansion and generation of
effector functions following primary antigenic challenge. As the magnitude of T-cell expansion
determines the numbers of memory CD8* T cells surviving after pathogen elimination, these events
influence memory cell generation. Moreover, during the contraction phase of an immune response
where most antigen-specific CD8* T cells disappear by apoptosis, IL-2 signals are able to rescue
CD8* T cells from cell death and provide a durable increase in memory CD8* T-cell counts. At
the memory stage, CD8* T-cell frequencies can be boosted by administration of exogenous IL-2.
Significantly, only CD8* T cells that have received IL-2 signals during initial priming are able to
mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals
during different phases of an immune response are key in optimizing CD8* T-cell functions,
thereby affecting both primary and secondary responses of these T cells.

Introduction

Typical T-cell receptor (TCR)0 T cells are derived from precursors that migrate to the thymus
where they undergo a series of selection and maturation processes termed positive and negative
selection.! During positive selection, T cells with newly-arranged TCRaf complexes are tested
for their ability to receive survival signals via TCR contact with self-peptides bound to major
histocompatibility complex (MHC) molecules expressed on cortical epithelium: cells with low
but significant reactivity for self-peptide/MHC ligands are selected for survival while low-affinity
cells die in situ, thus selecting only T cells with functional TCRs. Conversely, through contact
with antigen on bone marrow (BM)-derived dendritic cells (DCs), negative selection eliminates
T cells with high affinity for self-peptide/MHC molecules, thus ensuring the deletion of potentially
auto-reactive T cells. At the end of these selection processes, mature CD4* and CD8* T cells are
generated and subsequently released into the bloodstream for export to the secondary lymphoid
organs. Despite the fact that these cells are selected on self—pcptidc/ MHC molecules in the thymus,
the cells have not yet seen foreign antigens and are thus immunologically naive.

Post-thymic naive T cells recirculate continuously between blood and lymph through the
lymphoid tissues and remain in interphase, rarely if ever dividing.* Activation of naive T cells
occurs in the secondary lymphoid organs, such as lymph nodes and spleen, upon encounter with
their cognate antigen in the form of peptides bound to MHC molecules presented by mature
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antigen-presenting cells (APCs) that express costimulatory molecules, notably DCs. Upon
activation, T cells undergo vigorous clonal expansion and differentiate into effector cells which
then home to the site of infection. These primed cells can directly exert their effector functions
upon TCR engagement without the necessity for costimulatory signals; effector CD8* cells kill
pathogen-infected cells whereas activated CD4* cells provide “help” for CD8* cell differentiation
or induce B-cells to produce high-affinity antibodies.

At the end of the expansion of antigen-specific T cells, which usually occurs after the pathogen has
been eliminated, the immune response undergoes a contraction phase where most antigen-specific
effector T cells die via apoptosis.>® However, a minority (about 5%) of antigen-specific T cells survive
to become long-lived memory cells.”® These cells are resting cells but, unlike naive T cells, memory cells
display certain surface markers (such as a high density of CD44 in mice) which distinguish these cells
from naive T cells. Notably, unmanipulated normal mice contain significant numbers of cells with
high expression of CD44 (CD44"), thus closely resembling memory T cells found after deliberate
antigen priming.*’ These CD44" “memory-phenotype” (MP) cells account for about 10-15% of total
T cells in young mice but become a majority population in old age; MP cells are thought to represent
the descendents of T cells reacting to ubiquitous environmental or self-antigens.

Both naive and memory T cells are maintained in fairly stable numbers during normal
steady-state conditions (reviewed in ref. 9). The homeostatic processes that govern T-cell survival
are complex, but contact with two cytokines, IL-7 and IL-15, with or without TCR signals from
contact with self-peptide/ MHC ligands are of particular importance. For naive T cells, these cells
are maintained through constant low-level signals via contact with IL-7 and self-peptide/ MHC
molecules (MHC-I for CD8*and MHC-II for CD4" cells).!""* For most memory (and MP) CD8*
T cells, by contrast, homeostasis depends on contact with both IL-7 and IL-15, while TCR contact
with self-peptide/ MHC-I ligands is relatively unimportant.”**> Similar to their CD8* counterparts,
memory CD4* cells also require signals from IL-7 and IL-15 and do not depend on contact with
MHC (MHC-II) molecules.'*® Typical memory and MP cells are resting cells which divide
intermittently through contact with IL-15, the density of CD122, the receptor for IL-15, being
higher on memory cells than naive cells.” It should be mentioned that about one-third of MP
cells are activated cells; these cells ignore cytokines and seem to be engaged in chronic responses
to unknown self-peptide/MHC ligands, both for CD4* and CD8* cells.>**

IL-7 and IL-15 belong to the family of common gamma chain (y.) cytokines, which share us-
age of the Y. receptor (also called CD132). This family also includes another cytokine that plays
a central role in T-cell homeostasis, namely IL-2. This cytokine exerts complex effects on typical
mature T cells and is also primarily responsible for the survival of CD4* CD25* T regulatory cells
(Tregs).*? IL-2 is a 15 kDa short-chain four a-helical bundle cytokine and is produced mainly
by activated CD4* T helper cells, although activated CD8* T cells, natural killer (NK) cells, NK
T cells and DCs stimulated with microbial products are also able to secrete IL-2, albeit in low
amounts.”? IL-2 acts in an autocrine or paracrine fashion by binding to IL-2 receptors (IL-2Rs).>
High-affinity IL-2Rs are trimeric receptors consisting of IL-2Ra (CD25), IL-2Rp (CD122) and
the y. chain (Fig. 1); these receptors bind strongly to IL-2 with a dissociation constant (K;) of
about 10~ M.?"* Trimeric IL-2Rs are found on Tregs as well as on recently-activated normal
T cells.*** In addition to trimeric IL-2Rs, IL-2 can also bind to dimeric IL-2Rs consisting of
CD122 and y,, albeit with a 100-fold lower affinity (K4 ~10- M). Dimeric IL-2Rs bind IL-15 in
addition to IL-2 (Fig. 1) and are found at high levels on resting memory and MP CD8" cells as
well as NK cells and at low but significant levels on naive CD8* cells. Notably, CD122 and v, are
responsible for mediating intracellular signaling whereas CD25 confers high-affinity binding to
IL-2 but does not directly contribute to signal transduction.”

Below, we will review the role of IL-2 in CD8* T-cell responses in vivo; the in vitro actions of
IL-2 have been reviewed extensively elsewhere.”** In particular, we will discuss the contribution
of IL-2 to the different phases of a CD8* T-cell response, starting with CD8* cell activation and
expansion, followed by the contraction phase and then the memory phase. During each of these
different stages, IL-2 has a decisive effect on CD8" cells. Thus, by controlling initial T-cell expansion
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Figure 1. The IL-2 receptor (IL-2R) and its subunits. IL-2Rs are either dimeric [L-2Raf and bind
IL-2 with a low affinity (Kd ~10=> M) or trimeric IL-2Ray and associate with IL-2 with a Kd of
about 10" M. IL-2Ra (o subunit), also called CD25, is the private a chain of IL-2 and does not
bind any other cytokine. Moreover, CD25 does not contain a cytoplasmic tail and thus is not
involved in signaling. Conversely, IL-2Rp ( subunit, also called CD122) and IL-2Ry (y subunit,
also known as the common gamma chain, y., or CD132) are crucial for signal transduction upon
IL-2 binding to the IL-2R. CD122 is also a receptor subunit of the IL-15R, whereas y. is shared
by all y. cytokines, i.e., IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Downstream signaling is mediated
by the Jak-STAT pathway, notably involving Jak1, Jak3 and STAT5 as well as STAT3.

and differentiation during the primary response, IL-2 influences both the numbers and functions
of the cells that survive to become long-lived memory cells.®

IL-2 Signals during Priming Lead to Qualitative and Quantitative
Differences in CD8* T-Cell Responses

Once naive T cells encounter their cognate antigen presented by mature APCs and receive
TCR and costimulatory signals, they become activated and begin to proliferate. Activation and
proliferation of T cells induces many changes, including the upregulation of CD25 and CD122,
thus leading to expression of trimeric high-affinity IL-2Rs (Fig. 2). At the same time, activated
T cells, especially CD4* cells, start producing IL-2. Via synthesis of high-affinity IL-2Rs, activated
T cells, including CD8* cells, are highly sensitive to IL-2.

The contribution of IL-2 signals to primary CD8* T-cell responses has been studied using IL-2-
or IL-2R-deficient mice (Table 1). Activation, expansion and primary effector functions of CD8*
T cells were tested in IL-2~ mice following infection with lymphocytic choriomeningitis virus
(LCMV) and vaccinia virus and also after peptide immunization or exposure to alloantigens.?*!
The overall conclusion from these experiments is that functional immune responses do occur in
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Figure 2. Expression levels of IL-2 and IL-2R subunits and the role of IL-2 during the different phases
of a CD8* T-cell immune response. Following activation by a professional APC, naive CD8*
T cells start to proliferate and expand. Proliferation is considerably enhanced by the concomitant
production of IL-2 (solid line), which initially binds to low-affinity IL-2Raf receptors and, upon
upregulation of CD25 (dotted line), to high-affinity IL-2RaBy receptors. Notably, CD122 (dashed
line) is also upregulated during expansion and is highest on memory T cells, where it serves
mainly for conferring responsiveness to IL-15. The role of endogenous IL-2 during activation and
proliferation of CD8* T cells is to optimize cell expansion; by contrast, contact with exogenous
IL-2 during this phase does not seem to be necessary or beneficial. During the contraction phase,
however, administration of exogenous (recombinant) IL-2 is highly beneficial in preventing cell
death and thus allowing higher numbers of antigen-specific T cells to survive as memory cells
for several months. Endogenous IL-2 seems to be dispensable for CD8* T-cell survival during the
contraction phase. For memory CD8* T cells, homeostatic proliferation of these cells is augmented
by the presence of endogenous IL-2 or the administration of exogenous IL-2.

IL-27~ mice, but these responses are somewhat lower and less robust than in normal mice. The
results are as follows; the shortcoming of the use of IL-2-deficient mice is discussed later.

In comparison to IL-2*/~ heterozygous or wild-type (WT) control mice, IL-27~ animals gave
near-normal CD8* T-cell effector responses as measured by direct ex vivo cytotoxicity upon infection
with vaccinia virus.**¥ For infection with LCMV; a 3-fold decrease of cytotoxic T-lymphocyte (CTL)
activity was noted in comparison to control mice when spleen cells from IL-2~ mice were tested in
a direct ex vivo cytotoxicity assay.**>” Moreover, spleen cells from IL-27~ mice produced markedly
reduced interferon (IFN)-y and IL-4 levels upon in vitro restimulation for 24 h.*3* Two studies
concluded that these differences were not biologically significant because IL-2~ mice infected with
LCMYV were as efficient as IL-2*~ or W'T mice in mounting a delayed-type hypersensitivity response
(as measure by footpad-swelling reaction), clearing LCMV below detection levels from spleens, livers
and kidneys by days 9-10 and protection against lethal choriomeningitis after intracerebral infec-
tion with LCM V%% Conversely, others came to a different conclusion, reporting that IL-27~ mice
infected with LCMV contained detectable virus in the spleen and especially in the kidneys on day 7
after infection, whereas IL-2-competent control mice had cleared LCMV from these organs by that
time.* These disparate findings may reflect the different doses of LCMV and routes of administration
(300 plaque-forming units (PFU) intravenously vs. 2000 PFU intraperitoneally, see Table 1) used
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in these studies. Whether this roughly 7-fold difference in initial viral load along with the dissimilar
routes of infection could explain the differences observed remains to be tested.

Others found that IL-2 signals affected the expansion of antigen-specific CD8* T cells only in
nonlymphoid tissues (such as in lamina propria, epithelia, liver and lungs) but not in lymphoid
organs such as the spleen. Thus, after adoptive transfer of IL-27/~ ovalbumin-specific OT-I TCR
transgenic (tg) CD8* T cells to IL-27~ vs. WT mice followed by subsequent infection with
recombinant vesicular stomatitis virus expressing ovalbumin, the authors found that paracrine
IL-2 signals significantly increased the survival and sustained expansion of antigen-specific CD8*
T cells in nonlymphoid tissues but not in spleen; paradoxically, autocrine IL-2 signals (observed
with WT tg cells) negatively influenced expansion in nonlymphoid tissues.”?® In another study,
Listeria monocytogenes (LM)-specific TCR tg CD8* T cells transferred to W'T hosts underwent
comparable expansion and production of IFN-y after infection with LM regardless of whether
the donor antigen-specific CD8* T cells were from an IL-27~ or WT genetic background, thus
providing further evidence that autocrine IL-2 was not essential for in vivo CD8* cell expansion
and IFN-y production in response to LM.* However, the responding CD8* T cells were still able
to receive paracrine IL-2 signals in both situations.

Besides these above-mentioned studies on viral and bacterial infections, IL-27~ mice were also
used to test the role of IL-2 in CD8* responses to alloantigens. In one study, IL-2-~ vs. IL-2*/~ and
WT mice were rendered diabetic before transplantation with allogencic islets grafts; allograft
function was then followed by monitoring blood glucose measurements. The results showed that
IL-2-"~ mice were able to reject islet allografts, albeit with delayed kinetics compared to IL-2*/~ or
WT mice.” Similarly, in another study, vascularized cardiac allografts were rejected by IL-27~ mice,
though here rejection was as rapid as with WT mice.*

The contribution of IL-2 to CD8* T-cell responses has also been tested with the aid of CD257~
mice. In the absence of CD25, IL-2 is able to bind to and signal by the dimeric IL-2RBy receptor, 4
even though such binding is around 100-fold weaker than to the trimeric high-affinity IL-2RaBy
complexes.’* To examine the influence of CD25, CD257~ vs. WT OT-I TCR tg CD8* T cells
were transferred to WT recipients, which then received either recombinant vesicular stomatitis
virus expressing ovalbumin, soluble ovalbumin or tumor cells expressing ovalbumin. These ex-
periments showed that IL-2 signaling through high-afhinity IL-2Rs was not important for initial
division of the responding CD8"* cells, even though CD25 was upregulated on WT OT-I cells
before the first division; however, IL-2 was necessary for optimal expansion and sustained survival
of the responding cells.”® Interestingly, CD8* tg T cells engineered to be capable of prolonged
IL-2R-mediated signaling showed a significant increase in expansion of CD8* cells in response to
LCMY, followed by enhanced secondary responses upon re-exposure to antigen.”

Contrasting in part with these above-mentioned findings on IL-2, another study implicated an
initial role for IL-15 in CD8* cell proliferation. This study examined polyclonal T-cell responses to
alloantigens or superantigens in vivo and concluded that IL-15-driven initial cell division had to
occur before IL-2 production; 1L-2 synthesis and CD25 uprcgulation became evident towards the
end of the T-cell expansion phase and IL-2 signaling during this stage decreased or even terminated
T-cell proliferation via downregulation of the y, receptor. For anti-viral responses, however, there is
no evidence for downregulation of the . receptor.”” Moreover, administration of recombinant IL-2
(rIL-2) promotes the expansion of CD8" cells,** indicating that levels of y, receptors on the respond-
ing CD8* T cells are sufficient for IL-2 signaling. These data thus question the notion of a negative
role for IL-2 at the end of the T-cell expansion phase because of y, downregulation. T-cell expansion
is probably curtailed largely through loss of contact with antigen at the end of the primary response,
thus leading to a decrease in the stimulus for IL-2 production. However, a decline in IL-2 produc-
tion may also involve other factors. Here, it is noteworthy that the factor B-lymphocyte-induced
maturation protein 1 (BLIMP1), a transcriptional repressor, has been suggested to regulate terminal
differentiation of effector T cells by limiting IL-2 production and promoting activation-induced cell
death (AICD).>*52
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It is important to note the shortcomings associated with the use of IL-2~ and IL-2R~~ mice. In
particular, these mice develop hyperplasia of secondary lymphoid organs along with a multi-organ
inflammatory disease, thus partly obscuring other immune responses.*>> Moreover, T cells devel-
oping in these animals do not receive any (or modified) IL-2 signals and develop in the absence of
IL-2-dependent Tregs. In order to circumvent these problems, investigators have used a BM chimera
approach where irradiated W'T mice were reconstituted with a mixed population of T-cell-depleted
BM from WT and CD25~~ mice, thus allowing a direct comparison of normal and CD25-deficient
CD8* cell responses in a normal host. Subsequently, these mixed chimeras were infected with LCMV
and virus-specific CD8* T cells from WT or CD257'~ origin and analyzed based on differential
expression of congenic markers. One group of researchers observed only minimal differences in the
responses of the two populations of CD8* T cells during primary expansion, regardless of whether
polyclonal CD8* T cells or LCM V-specific TCR tg CD8* T cells were tested.* Conversely, also us-
ing LCMYV infection (but another LCMYV strain), others reported a 5-fold decrease in the primary
expansion of CD257~ polyclonal CD8* T cells as compared to their W'T counterparts.*® IL-2 signals
through high-affinity IL-2Rs might thus be important for maximal expansion of virus-specific CD8*
T cells. This finding is in line with the above data obtained using IL-27/~ mice.

Another approach for countering the severe pathology seen in IL-2~/~ and IL-2R~~ mice is to limit
IL-2 unresponsiveness selectively to peripheral T cells but not thymocytes. This has been done by
generating CD 1227/~ tg mice that express CD122 under the CD2 promoter, thus leading to selective
expression in thymocytes;*” these mice do not display pathology and show normal CD8* cell develop-
ment. With these mice, it was shown that signals through CD122 (the common receptor for IL-2 and
IL-15) were dispensable for generating expansion and CTL activity of CD8* T cells followingin vivo
infection with recombinant vaccinia virus, injection of an agonistic anti-CD3 mAb or stimulation
with superantigen.”””® Nevertheless, IFN-y production was somewhat reduced, indicating that optimal
stimulation required signaling through CD122.5%® Others obtained similar findings by preparing
OT-ITCR tgCD8* T cells on a WT, CD1227~ or CD122"'~ tg background and then transferring
these cells to WT mice followed by administration of soluble ovalbumin; based on proliferation
and generation of CTL activity in vivo, no significant difference was noted in antigen-specific CD8*
T cells from these different backgrounds.” These results with CD8* cells from CD1227/~ tg mice
contrast with the above data obtained by others using IL-2~ and CD25~ mice.

The various approaches described above were aimed at determining the role of endogenous
IL-2 at normal physiological levels. The results of exposing CD8* cells to exogenous IL-2 are
considered below.

The effects of administering low-dose recombinant human (rh) IL-2 during expansion of
virus-specific CD8* T cells was examined by giving mice two injections per day of 15,000 inter-
national units (IU) of rhIL-2 on days 0-8 after LCMYV infection. Such IL-2 treatment resulted
in similar LCMV-specific CD8* T-cell counts in IL-2-treated and control mice on day 8 after
infection (though, surprisingly, numbers of virus-specific CD4* T cells at the peak of the response
were markedly reduced in IL-2-treated mice compared to controls).49 Moreover, IL-2 treatment
did not affect LCMYV clearance from the spleen and viral titers became undetectable 9 days after
infection in both groups. These results suggest that provision of additional IL-2 during the first 8
days following LCMYV infection does not influence primary expansion and effector function of
virus-specific CD8* T cells (which contrasts with a negative influence on virus-specific CD4* cells).
Interestingly, allospecific responses of 2C TCR tg CD8* T cells to BALB/c (H-29) splenocytes
were found to be increased by about 40% following the administration of recombinant mouse (rm)
IL-2 during the first 4 days of stimulation in vivo.®” Moreover, for total T cells stimulated with
superantigens, implantation of an IL-2-containing osmotic pump prolonged the expansion and
survival of superantigen-reactive T cells as measured on day 6 after stimulation.* Thus, provision
of exogenous IL-2 in these latter two settings might be beneficial because, under the conditions
used, immune activation to alloantigens or superantigens was brief in the absence of IL-2 and
therefore probably associated with much less proliferation than after virus infection. In the case
of alloantigens, prolonged anti-host responses occur when T cells are transferred to irradiated
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H-2-different mice, thus eliciting graft-versus-host disease (GVHD). For GVHD produced by
purified CD8* cells, disease induction is much worse when the hosts are injected repeatedly with
tIL-2 startingat 1 week posttransfer or when donor CD8* cells are co-injected with IL-2-producing
CD4* cells.®® Paradoxically, with a mixed population of T cells, administration of IL-2 from days
0-5 after T-cell transfer can protect against GVHD, perhaps by stimulating Tregs.®

Recently, it has been shown that naive CD8* T cells can proliferate vigorously and differentiate
into MP cells when exposed to high levels of IL-2 in vivo in the absence of antigen. Such prolifera-
tion occurs when naive CD8* cells are transferred to CD257~ or CD1227/~ mice; not being able
to utilize IL-2, these mice have high levels of IL-2 and also IL-15 in the case of CD122~ mice.*
Antigen-independent proliferation of naive CD8* cells to IL-2 also occurs after administration of
1IL-2 mixed with a particular anti-IL-2 monoclonal antibody (mAb).* This combination leads to
the formation of highly stimulatory IL-2/anti-IL-2 mAb complexes, which under in vivo conditions
are able to stimulate polyclonal or TCR tg naive CD8* T cells to differentiate into effector cells
able to produce IFN-y, tumor necrosis factor-o and granzyme B as well as lysis of target cells.®*¢
Subsequently, these IL-2/anti-IL-2 mAb complex-stimulated CD8* cells differentiated into MP
cells (for polyclonal cells) or central memory cells (in the case of TCR tg cells). For TCR tg cells,
OT-I memory CD8* cells generated by activation with IL-2/anti-IL-2 mAb complexes in the ab-
sence of antigen conferred efficient protection against challenge with recombinant LM expressing
ovalbumin.® Notably, despite being antigen independent, this form of IL-2-driven proliferation of
naive CD8" cells was found to be highly dependent on contact with self-peptide/ MHC-I molecules,
i.e., as for naive CD8"* cells undergoing IL-7-driven homeostatic expansion. It should be noted
that IL-2/mAb complexes also considerably enhance antigen-driven responses. Thus, when IL-2/
anti-IL-2 mAb complexes were injected plus specific antigen to stimulate influenza-specific TCR
transgenic CD8* T cells in vivo, the complexes increased numbers of proliferating antigen-specific
CD8* cells by 7-fold and conferred the cells with strong effector functions such as IFN-y produc-
tion and CTL activity.®

IL-2 and the Contraction Phase

As mentioned earlier, most effector cells are eliminated at the end of the primary response, thus
leading to a sharp contraction in total numbers of antigen-reactive cells. When BM chimeras con-
taininga mixture of WT and CD257~ cells were infected with LCMYV, the decline in virus-specific
CD8* cell numbers during the contraction phase was similar for WT and CD257~ cells.” Thus,
IL-2 signals via the high-affinity IL-2R do not seem to influence contraction. By contrast, injec-
tion of IL-2 during the contraction phase does prevent elimination of the responding cells. Thus,
treating mice twice daily with 15,000 IU rhIL-2 on days 8-15 after LCMYV infection resulted in a
marked reduction of T-cell apoptosis and increased survival, both for CD8* and CD4* cells.” This
effect was seen in both lymphoid and nonlymphoid organs (such as liver and lungs), indicating that
IL-2 had a direct effect in promoting cell survival rather than causing an alteration in cell migration.
Following this short course of IL-2 therapy for 1 week, elevated numbers of LCM V-specific CD8*
and CD4* cells persisted for about 6 months before reaching the levels found in control mice. This
potentiating effect of IL-2 on CD8* T-cell counts was not a byproduct of the increase in CD4* num-
bers but reflected a direct action of IL-2 on CD8* cells: thus, the beneficial effect of IL-2 on CD8*
cell numbers also applied in mice lacking CD4* T cells (either following depletion of CD4* T cells
by antibody in normal mice or by using CD4~~ mice).” On a per-cell basis, the CD8* cells from
IL-2-treated mice were roughly as efficient as their counterparts from control animals. Collectively,
these experiments suggest that IL-2 therapy during the contraction phase of an anti-viral immune
response results in increased immunity to virus that lasts for several months (Fig. 2).

Similar findings on the beneficial role of exogenous IL-2 during the contraction phase were
observed for the response of OT-I TCR tg CD8* T cells to soluble ovalbumin or recombinant
vesicular stomatitis virus expressing ovalbumin. Here, daily injections of IL-2 during the later stages
of the primary response prevented elimination of the responding cells, although this effect lasted
only for 1-2 weeks. ™
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Memeory Cell Generation and Recall Responses

Duringexpansion and proliferation of antigen-specific T cells a small subset of cells expresses high
levels of IL-7Ra. (also called CD127); these cells give rise to long-lived memory cells, suggesting a
role for IL-7 signals in the generation of functional memory cells.”

Recently, it was shown that IL-2 signals received during priming are necessary for efficient sec-
ondary responses of CD8* T cell to viruses (Fig. 2).%* Thus, for the above-mentioned mixed WT/
CD25”- BM chimeras, it was reported that LCM V-specific memory CD8* T cells of CD25~ origin
expanded only 4-fold upon secondary antigen challenge 150 days after primary infection, compared
to 40-fold expansion of WT memory CD8* cells.* Another group showed a 30- to 40-fold reduc-
tion in secondary expansion of CD257~ antigen-specific CD8* T cells, relative to WT cells, when
measured 30-45 days after primary antigen challenge.* This defect was not due to impaired primary
expansion or decreased homeostatic proliferation during the memory phase, although total numbers
of virus-specific CD25~ memory CD8* T cells were 2- to 5-fold reduced in comparison to their
WT counterparts. Instead, the failure to mount an efficient secondary response following challenge
was due to alack of IL-2 signals during priming. Thus, injection of IL-2 in the form of IL-2/anti-IL-2
mADb complexes® during the primary response allowed virus-specific CD25~~ memory CD8* T cells
to efficiently expand and survive following secondary antigen challenge;* injecting IL-2 during the
secondary response, by contrast, was much less effective. Given that IL-2 acts through low-affinity
IL-2Rs (CD122) on CD257~ CD8* cells, it would be interesting to test whether enhanced levels
of IL-15 could substitute for IL-2 in rescuing secondary responses of CD257~ CD8* T cells. In this
respect, the poor generation of memory by CD257~ CD8* T cells also applies to normal CD8* cells
primed in the absence of CD4* T cells.®*7 As CD4* T cells are the main producers of IL-2 under
steady-state conditions,” these findings consolidate the view that the optimal function of memory
cells hinges on the precursors of these cells being exposed to IL-2 during initial priming, It should be
mentioned that CD8* T cells themselves can produce significant amounts of IL-2 in viral infections,
but presumably in amounts insufficient to replace the need for IL-2 “help” from CD4* cells.”*

With regard to resting memory CD8* cells, it was mentioned earlier that these cells divide
sporadically through contact with background levels of IL-15. As for MP cells, the turnover of
antigen (LCMV)-specific memory CD8* (and CD4*) cells is considerably enhanced following
injection of exogenous IL-2 (or IL-15).% Since memory and MP cells have low expression levels
of CD25, responsiveness of these cells to IL-2 (and IL-15) is mediated by low-affinity IL-2Rs.%

As for acute viral infection, IL-2 therapy can also lead to an increased frequency of virus-spe-
cific CD8* T cells during chronic viral infections. Thus, when mice infected with LCMV
clone 13, which results in a chronic infection, were treated with low-dose rhIL-2 for 1 week,
LCMV-specific CD8* cell counts increased by about 10-fold and serum viral titers decreased
in 80% of the animals.” This efficient stimulation of CD8* cells by IL-2 is somewhat surpris-
ing as CD8* T cells found in chronic infections have only intermediate levels of CD122 and
background levels of CD25 receptors,” which contrasts with the high levels of CD122 found
on normal MP CD8* cells and memory CD8* T cells generated after acute LCMV infection.'”?
Notably, the LCMV-specific CD257~ CD8* T cells generated in mixed WT/CD25”- BM
chimeras declined rapidly during persistent viral infection.>® Thus, for chronic viral infections,
either exogenous or endogenous IL-2 signals seem to be beneficial or even crucial for the pro-
longed maintenance of the responding CD8* T cells; these signals have to be delivered through
high-affinity IL-2Rs.*

Memory Maintenance and Homeostasis

As mentioned before, the few CD8* T cells surviving the contraction phase and becoming
resting memory cells are kept alive and in occasional cell division through contact with IL-15 and
IL-7; these cells do not need TCR interaction with self-peptide/ MHC-I molecules.”" Currently,
there is minimal evidence that IL-2 has a direct role in memory maintenance or homeostasis,
probably because the background levels of IL-2 are too low to affect resting cells. Nevertheless,
it is notable that antigen-specific CD8* memory cells generated in the absence of CD4* T cells



38 Memory T Cells

gradually decrease during the memory phase.®”° This decrease might be due to a lack of CD4*
cell-derived IL-2 signals. Interestingly, CD8* MP cells adoptively transferred to IL-27/ recipients
show a slightly reduced rate of homeostatic proliferation compared to WT recipients (O.B. and
J.S., unpublished data). Hence, contact with endogenous IL-2 may play a significant, if minor role
in memory CD8" cell homeostasis. As mentioned above, memory and MP CD8* cells are both
strongly responsive to exogenous IL-2 signals.”>*

Indirect Roles of IL-2 in the Generation of Memory CD8* T Cells

Through its role in controlling the survival of CD4* Tregs, IL-2 plays a vital role in maintain-
ing immune tolerance.”**>74”> Tregs, which are typified by high expression of CD25 and forkhead
box p3 (Foxp3) transcription factor,**’¢7® may impair memory cell generation indirectly by several
mechanisms, including inhibiting the intensity of the primary response, secreting inhibitory cy-
tokines and consuming stimulatory cytokines, including IL-2.”* The many inhibitory functions
of Tregs on the immune response have been discussed elsewhere.*

Conclusion

In conclusion, IL-2 seems to have an important influence on CD8* cells at all stages of the immune
response. Nevertheless, the evidence on this issue is still fragmentary and there are still substantial
points of disagreement. For the primary response, most studies indicate that IL-2 is needed for opti-
mal expansion and generation of effector functions. The discrepancies observed between individual
studies may reflect the different systems used (pathogen vs. peptide stimulation) and/or differences
in the precursor frequencies of antigen-specific CD8* T cells: thus, systems with high frequencies of
responding antigen-specific CD8* cells may consume large amounts of stimulatory cytokines, thus
accentuating a need for IL-2 for optimal expansion. Alternatively, as suggested by some studies, %
IL-2 might not be necessary for initial division of CD8" cells but rather for the late stages of prolif-
eration, thus accentuating the overall magnitude of the primary response and thereby increasing the
total numbers of effector cells available for differentiation into early memory cell precursors.” Since
90-95% of antigen-specific T cells disappear by apoptosis during the contraction phase—perhaps
largely because of loss of contact with growth factors—exposure to exogenous IL-2 during this stage
can be highly beneficial in promoting cell survival and differentiation into early memory cells. Once
these precursor cells upregulate CD122 and re-express IL-7Ra, memory cells become sensitive to
the stimulatory effects of IL-15 and IL-7,IL-15 inducing intermittent cell division and IL-7 control-
ling survival >'*>% At this stage, administration of exogenous IL-2 is able to boost the frequency of
memory T cells, especially CD8* memory cells.* It is notable that IL-2 therapy is able to enhance
proliferation of virus-specific CD8* T cells during the contraction phase but not during initial ex-
pansion. Why exogenous IL-2 is generally ineffective during the expansion phase is unclear. A likely
possibility is that, during this stage, the stimulatory effects of IL-2 are countered by various negative
influences, including enhanced sensitivity to BLIMP1-mediated AICD and suppression through
the activation of Tregs."** Overall, IL-2 signals can be viewed as fine-tuning the immune response,
boosting weak responses and inhibiting excessive responses, thus promoting an optimal response that
climinates the pathogen concerned while maintaining normal self-tolerance.
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CHAPTER 4

The Role of Inflammation
in the Generation and Maintenance

of Memory T Cells

Noah S. Butler and John T. Harty*

Abstract

ollowing infection or vaccination, antigen-specific T cells undergo enormous expansion
F in numbers and differentiate into effector cells that control infection and modulate other

aspects of innate and adaptive immunity. The effector T-cell expansion phase is followed by
an abrupt period of contraction, during which 90-95% of antigen-specific T cells are eliminated.
The surviving pool of T cells subsequently differentiates into long-lived memory populations that
can persist for the life of the host and mediate enhanced protective immunity following pathogen
re-infection. The generation and maintenance of memory T-cell populations are influenced by a
multitude of factors, including inflammatory cytokines that can act on T cells at various points
during their differentiation. Herein, we discuss our current understanding of how inflammation
shapes not only the quantity and quality of memory T cells, but also the rate at which functional
memory T-cell populations develop.

Introduction

The generation and maintenance of efficacious, pathogen-specific memory T-cell responses is an
important goal of vaccination. Moreover, following natural microbial infection, memory T cells afford
heightened protective immunity against subsequent re-infection. Cell-mediated immunity s critically
important for protecting the host against a multitude of pathogenic infections. CD4* T cells gener-
ally function to provide critical signals that augment both pathogen-specific CD8* T-cell and B-cell
(antibody) responses. CD8* T cells are important in defense against viruses, intracellular bacteriaand
protozoan pathogens and are also potentially important in combating tumors. Upon reactivation,
memory T cells exhibit an array of antimicrobial effector mechanisms and express molecules that
mediate cytolysis of infected cells (CD8* T cells) or recruit and activate other immune cells through
the elaboration of growth factors and/or inflammatory cytokines (both CD8" and CD4* T cells).!
Thus, understanding factors that impact the development of memory T-cell populations following
vaccination or natural infection remains an area of intense investigation.

Following infection or vaccination, dendritic cells (DC) acquire foreign antigens and undergo a
program of maturation to become professional antigen-presenting cells (APC). This process culmi-
nates in the display of peptide/MHC complexes and costimulatory molecules on the cell surface,
expression of inflammarory cytokines and migration from peripheral tissues to secondary lymphoid
organs.>® Naive T cells continually traffic from the blood to secondary lymphoid organs where
they survey antigens displayed by mature DC. Importantly, within hours following an infection- or
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vaccination-induced inflammatory response, lymphocyte exit from regional draining lymph nodes
is blocked. This phenomenon is mediated by Type I IFN (IFN-a/p)-induced CD69 upregulation
with subsequent internalization of sphingosine-1-phosphate receptor, a molecule critical for T (and
B) cell egress from the lymph node.* Shutting down T-cell egress from the lymph node effectively
increases the likelihood that DCs will encounter T cells expressing a relevant T-cell receptor (TCR).
Followingencounter with antigen-laden APCs, naive T cells become activated and undergo a program
of differentiation that can be grossly divided into four distinct phases (Fig. 1). In the first phase,
stable interactions with APCs activate T cells via TCR signaling (signal 1) and APC-mediated
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Figure 1. The magnitude and kinetics of antigen-specific T-cell responses following acute infection
or vaccination. A) Schematic depiction showing the relative number of antigen-specific T cells as
a function of time following acute infection or vaccination (arrowhead). The four phases of the
T-cell response include; (1) priming and activation; (2) proliferative expansion and acquisition
of effector cell function; (3) contraction; and (4) formation of stable memory populations. As
described inthe text, each of the four phases is influenced by proinflammatory cytokine signaling,
acting either directly on T cells or indirectly through other cell types. Of note, prior to infection
or vaccination, the number of antigen-specific T-cell precursors is below the limit of detection
(L.O.D.), but the antigen-specific memory T-cell pool can be readily detected years following
initiation of the response. B) Numbers of antigen-specific T cells following acute infection or
vaccination change rapidly as the response transitions through the activation, contraction and
memory phases. Following activation, antigen-specific T cells can undergo up to 13 rounds of
cell division resulting in a >10,000-fold expansion in numbers. Seven to 10 days later, T-cell
populations undergo abrupt contraction where in 90-95% of all antigen-specific T cells are
eliminated. Over the next several months, the surviving antigen-specific T cells undergo slow
homeostatic turnover, acquire phenotypic and functional properties of long-lived memory T cells
and distribute to both secondary lymphoid and tertiary tissues. Importantly, the resultant pool
of memory T cells is generally orders of magnitude larger than the naive repertoir, which thus
affords heightened immunity against re-infection.
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costimulation (signal 2). In the second phase, activated T cells undergo robust expansion and ac-
quire multiple effector functions. During this 5-8 day expansion period, pathogen-specific T-cell
numbers increase by >10,000-fold,”” and daughter cells express effector molecules and begin
migrating from the lymphoid organs to the peripheral tissues to combat infection. In the third
phase, the T-cell response undergoes contraction, wherein 90-95% of effector T cells that arose
during the proliferative expansion are eliminated. Often the contraction phase occurs independent
of pathogen/antigen clearance from the host, suggesting that a brief encounter with antigen during
the initial activation phase is sufficient to initiate a full “program” of T-cell development.®'° Of note,
T-cell contraction is incomplete and some pathogen-specific T cells survive and persist in nearly all
tissues.'! The persistence of these pathogen-specific cells comprises the fourth phase of the T-cell
response, the formation and maintenance of stable memory T-cell populations. Importantly, the
resultant memory populations generally can be maintained for the life of the animal and confer
enhanced protective immunity against subsequent re-infection.

While it is well described that integration of signals 1 and 2 during the activation phase impacts
the generation of efficacious T-cell responses, it is now becoming clear that additional signals,
specifically inflammatory cytokines produced by APCs and other cells, act directly on T cells to
influence T-cell survival and differentiation. In this chapter, we highlight both current and classic
studies that have shaped our understanding of how and when inflammation/inflammatory cytok-
ines influence the T-cell response. Importantly, the size of memory T-cell populations is directly
related to T-cell expansion, degree of contraction and the sustained maintenance of memory
T cells, thus the role of inflammation in shaping each of these phases of the T-cell response will be
discussed. The major themes of this chapter are: (1) T-cell responses are largely programmed early
following antigen encounter; (2) inflammation can influence each phase of the T-cell response;
(3) inflammatory signals that act on T cells are largely pathogen- or adjuvant-specific; and (4)
inflammation directly impacts the rate of memory T-cell generation.

The Role of Inflammation during T-Cell Priming and Expansion

T cells specific for any single pathogen-derived determinant constitute a small fraction of the
naive repertoire, ranging from tens to hundreds of cells in the laboratory mouse.'*!* Therefore,
upon antigen encounter, naive T cells must greatly expand in numbers to effectively eliminate
pathogen-infected cells following infection. As noted above, the size of the memory T-cell pool is
often proportional to the size of the effector T-cell pool that arises following infection or vaccina-
tion." Thus, factors that influence the magnitude of T-cell expansion can directly impact the size
of the stable memory T-cell pools that persist following contraction. As such, we will first discuss
how inflammation influences T-cell priming and expansion

Activation of cells of the innate immune system (i.e., DC, macrophages, NK cells) occurs follow-
ing pathogen infection or immunization in the presence of adjuvants. Innate immune cells respond
to infectious agents via cell-surface and intracellular expression of Toll-like receptors (TLR) and
other innate immune pattern-recognition receptors (PRRs). Ligation of these receptors in APCs
by pathogen-derived molecules (which are also the primary consituents of vaccine adjuvants) can
result in both upregulation of costimulatory molecule expression and secretion of a number of
proinflammatory cytokines, including Type I interferons (IFN-0/B), Type Il interferon (IFN-y)
and IL-12.>'%"7 While these inflammatory cytokines further enhance the maturation of APCs,"”
they are also known to act directly on responding T cells (signal 3) and influence the development
and survival of effector T-cell populations (Fig. 2).

For both CD4 and CD8 T cells, classic in vitro studies showed that the addition of IL-12
or IFN-0/f to T-cell cultures enhanced survival of proliferating T cells. These studies led to the
hypothesis that signal 3 provided by inflammatory cytokines was important for optimal T-cell
responses.’*! Direct proof of this concept came from a series of elegant in vivo studies dem-
onstrating that pro-inflammatory cytokines can act directly on responding T cells to augment
effector T-cell responses. These studies revealed significantly reduced expansion of adoptively
transferred TCR transgenic (tg) T cells genetically deficient in receptors for IFN-a/f, IL-12 or
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Figure 2. Signal 3 provided by proinflammatory cytokines is required early following antigen
exposure to ensure survival of effector T-cell populations. Acute infection or vaccination in
the presence of adjuvants results in the expression of proinflammatory cytokines such as IL-12,
Type Il IFN (IFN-y) and Type I IFN (IFN-a/B) from both professional antigen presenting cells
(dendritic cells) and other cells of the innate immune system (marcophages or natural killer
cells). These cytokines, in turn, both augment further antigen presenting cell function and
provide critical survival signals to responding T cells that prevent the immediate initiation of
apoptotic cell death pathways.

IFN-y, compared with wild-type TCR-tg T cells responding to lymphocytic choriomeningitis
virus (LCMYV) infection in the same wild-type recipient mice.”?”” That fewer receptor-deficient
T cells accumulate during the expansion phase demonstrates that T cells directly receive signals
provided by inflammatory cytokines during their response to infection. Importantly, the absence
of these inflammatory cytokine receptors did not alter the proliferative capacity of the T cells,
rather the effect was directly related to decreased survival rates, resulting in reduced accumulation
of receptor-deficient T cells during the expansion phase.”** Interestingly and in stark contrast to
results from studies utilizing adoptive transfer of Type I receptor-deficient T cells to WT recipient
mice, LCMV infection of mice wholly deficient in Type I IFN signaling (IFNAR™~ mice) revealed
T-cell expansion that was grossly normal.®* While this discrepancy has not yet been formally
resolved, it is possible that because IFNAR™~ mice fail to clear virus, T-cell proliferative capac-
ity is altered, or the lack of Type I IFN responsiveness skews the balance of cytokine production
toward use of alternative cytokines (e.g., IL-12 or IFN-y) as signal 3. Regarding the in vivo effects
of IL-12 signaling, a more recent study found, in line with results described above, that lack of
IL-12 responsiveness in CD8* T cells significantly reduces the expansion, survival and function
of effector cells following Listeria monocytogenes infection.®® As a composite, these data show that
T-cell responsiveness to proinflammatory cytokines dramatically influences the differentiation
of both virus- and bacteria-specific T-cell responses. Furthermore, the disparate results utilizing
receptor-deficient T cells versus whole animal receptor-knockouts underscore complexity of in
vivo proinflammatory cytokine production, the cytokine-responsiveness of T cells versus non
T cells and the development of potent, pathogen-specific T-cell responses.

While the experiments outlined above revealed that IL-12, IFN-y and IFN-0/f can each exert
direct effects on T cells and influence the ensuing effector T-cell response, it is also important to
point out results from several studies demonstrating that the nature of the pathogen can dictate
the magnitude, kinetics and the profile of inflammatory cytokines expressed by infected cells and
by cells of the innate immune system.”?!32 Differences in inflammatory cytokine profiles and
kinetics of cytokine expression, in turn, affect when, how or whether various signal 3 cytokines
influence T-cell expansion. As described above, TCR-tg T cells lacking the Type I IFN receptor
fail to expand following LCMV infection,” however the same TCR-tg T cells that lack the IL-12
receptor or IFN-y receptor exhibit only modest defects in expansion following LCMV infection.
On the other hand, the lack of Type I TFN receptor expression has only minimal effects on T-cell
expansion following L. monocytogenes or vaccinia virus infection.>¥3* Of note, IL-12 and IFN-y
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expression is rapidly induced following L. monocytogenes or vaccinia virus infection, whereas
LCMY infection triggers delayed expression of these cytokines while rapidly inducing IFN-a/f
expression.”>?® Thus, each pathogen likely engenders different proinflammatory cytokine expres-
sion kinetics and cytokine profiles, which may in turn dictate which molecules function as signal
3 to ensure robust expansion and survival of effector T cells.

Although multiple proinflammatory cytokines can serve as signal 3 in vitro, the require-
ments for signal 3 cytokines that result in optimal pathogen-specific T-cell responses in vivo
are less clear. Understanding the factors that determine which cytokines function as signal 3
following infection will require an in-depth analysis of the profile of proinflammatory cytokine
production and the individual requirements of protective T-cell responses following infection
by diverse pathogens. In addition to issues of timing and combinatorial complexity, another
central question that remains relates to the molecular mechanism(s) by which inflammatory
cytokines influence the expansion and survival of effector T cells. Although not completely
understood, recent data suggest that proinflammatory signals (signal 3) serve to enhanced
expression of prosurvival molecules such as B-cell lymphoma 3 (Bcl-3), which has been shown
to be upregulated by IL-12 signaling.>* Alternatively, data from other studies have shown
that signal 3 can influence the balance of pro-apoptotic and anti-apoptotic molelcules of the
Bcl-2 family in responding T cells.” Understanding the precise mechanisms by which signal
3 augments T-cell activation and effector T-cell survival will be an important goal for future
studies. This information will likely be critical for selecting adjuvants to optimize both CD4*
and CD8* T-cell responses to vaccination.

Inflammation and T-Cell Contraction

As described above, the expansion phase of the T-cell response is followed by an abrupt transi-
tion to a contraction phase, wherein 90-95% of pathogen-specific effector T cells are eliminated.
Because the contraction phase is incomplete, the pool of pathogen-specific T cell that remain
constitute the memory T-cell compartment (Fig. 1). Classically, the onset of the contraction phase
coincides with pathogen/antigen clearance. This correlation was initially interpreted to mean that
T cells somehow sensed antigen clearance and underwent a program of cell death that effectively
generated ‘space’ for the immune system to respond to new infections. However, several experiments
demonstrate that the onset and degree of T-cell contraction can occur independently of pathogen/
antigen clearance.*'** In addition, T-cell responses that arise during many acute or chronic virus
infections contract with similar kinetics.*** Together, these results suggest that T-cell responses
are ‘programmed’ following a relatively brief period of antigen stimulation after infection.

Several studies have revealed that at least two candidate signal 3 cytokines that regulate T-cell
survival during the expansion phase (i.e., [IFN-y and IL-12) also influence the onset and degree of
T-cell contraction. Following attenuated L. monocytogenes or LCMYV infection of BALB/c mice ge-
netically deficient in IFN-y, pathogen-specific T cells expand normally, albeit expansion is somewhat
reduced following LCMV infection.” However, despite relatively normal expansion in the absence
of IFN-y, T-cell responses in these mice fail to contract, an effect that is independent of pathogen
clearance (described below). Additional studies have revealed similar phenomena in other mouse
strains: T-cell contraction following LCMYV infection is significantly reduced in C57BL/6 (B6)
mice that lack either IFN-y or its receptor. > While LCMV has been shown via RT-PCR to persist
in these IFN-y-deficient B6 mice,® more recent studies have shown that treatment of mice lacking
IFN-y or its receptor with antibiotics 4 days following L. monacytogenes infection (ruling out a role
for antigen persistence) does not prevent abnormal contraction of CD4* or CD8* T cells.*** In a
series of complementary studies, it was shown that antibiotic treatment of W'T mice prior to infec-
tion with L. monocytogenes significantly reduces levels of inflammatory cytokines, including IFN-y
and also significantly reduced T-cell contraction.* Importantly, reversing this effect via injection
of a TLRY agonist (CpG-containing DNA), to induce inflammation and IFN-y secretion in the
antibiotic-pretreated mice, restores contraction without altering the magnitude of T-cell expansion. *
Moreover, memory cells that develop with or without contraction exhibit similar per cell protective
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capacities following adoptive transfer into WT recipient mice,* suggesting that T-cell contraction
is not required for the formation of functional memory T cells. How IFN-y regulates contraction is
still somewhat controversial. Although it was initially believed that IFN-y primarily acted directly
on T cells to regulate contraction, consistent with the behavior of IFN-y receptor deficient T cells
and the demonstration that T cells directly receive and respond to IFN-y signals during the first
12 hours following L. monocytogenes infection,* more current studies indicate that IFN-y can also
act indirectly on other cell types to regulate T-cell contraction.?**? The relative importance of each
pathway (direct or indirect effects of IFN-y) in regulating T-cell contraction remains to be deter-
mined. Asa composite, these data suggest that inflammatory signals provided by IFN-y can directly
and indirectly influence T-cell contraction and that progression through a contraction phase is not
required for the generation of functional T-cell memory populations.

Regarding the role of IL-12, very recent work has determined that lack of IL-12 signaling in
T cells results in an increase in numbers of L. monocytogenes-specific memory cells, suggesting
that engagement of the IL-12 receptor on T cells not only plays a critical role in driving effector
T-cell development (described above), but also influences memory CD8 T-cell development.®®
Other recent studies show that IL-12 signaling in CD8* T cells regulates the expression of the
transcription factor T-bet.”” The authors of this study conclude that graded expression of T-bet
in recently activated effectors differentiates between short lived effector cells (SLEC, T-bet™),
that do not survive the contraction phase, from memory precursor effector cells (MPEC, T-bet®)
destined to become long-lived memory T cells. Of note, although these experiments reveal strong
correlations between inflammation, levels of T-bet expression and the fate of T cells, evidence for
a direct role for T-bet in regulating T-cell contraction is still lacking because T-bet-deficient tg
T cells still undergo appreciable contraction.”* Future studies are required to further define the
precise role of inflammation in regulating the contraction of T-cell responses.

The link between proinflammatory cytokines and the pathways and molecular mechanisms
responsible for cell death during T-cell contraction are not fully understood. In fact, much of the
early research examining factors that influence T-cell contraction focused on pathways not intimately
tied to inflammation. Indeed, eatly in vitro studies suggested that T-cell contraction is regulated via
activation-induced cell death (AICD). However, follow-up studies demonstrated normal contraction
of T cells lacking the death receptors (CD9S5 and TNFRI) implicated in classical AICD.#>° Attention
subsequently turned to the regulation of (and competition for) common gamma-chain cytokines,
particularly IL-2 and IL-7. Recently, several studies revealed an excellent correlation between the
number of T cells expressing high levels of the IL-7 receptor o chain (CD127) at the peak of expan-
sion and the number of Ag-specific CD8* T cells present following the contraction phase.**">2 These
data were interpreted to mean that IL-7 signaling directly promotes survival of T cells destined to
become memory cells. However, more recent work shows that constitutive expression of CD127
on T cells is neither sufficient to prevent T-cell contraction following L. monocytogenes or LCMV
infection®** nor does high CD127 expression always correlate with diminished contraction under
less inflammatory circumstances.>>¢ Of late, focus has again shifted toward examining the regulation,
activation and balance of pro- and anti-apoptotic Bcl-2 family members that regulate mitochondrial
integrity. For example, deletion of the Bcl-2 family member Bim prevents the massive deletion of
T cells in vivo following exposure to staphylococcal enterotoxin B superantigen and significantly
reduces T-cell contraction following betaherpesvirus challenge.””*® However, antigen-specific T-cell
populations have also been shown to undergo rather normal contraction following LCMV infection
of Bim-deficient mice?”* suggesting that additional pathways function to regulate apoptosis-driven
cell death during T-cell contraction. Consistent with this, it was recently demonstrated that T cells
lacking both CD95 and Bim contract less than T cells lacking Bim alone, particularly in lymph
nodes.*¢! Thus, additional studies are required to determine the relative contribution of death recep-
tor- versus mitochondrial disruption-dependent mechanisms that determine the balance between
effector T-cell survival and apoptotic death, as well as the influence that inflammatory cytokines have
on initiating or potentiating these pathways.
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In summary, contraction of T-cell responses appears to be programmed very early following
T-cell priming and inflammatory cytokines, particularly IFN-y and IL-12, appear to directly influ-
ence the timing and extent of T-cell contraction. Although there are no data to suggest that type
I IFNs (IFN-0/B) regulate the onset or degree of contraction, at least following L. monocytogenes
infection,”**** future studies will be required to determine whether additional proinflammatory
cytokines (e.g., IL-6 or TNF-a) can alter programmed T-cell contraction. It will also be important
to determine whether additional proinflammatory cytokines act directly on pathogen-specific
T-cell populations or whether their effects are mediated indirectly through the activation of and
subsequent cytokine production by other immune cell types. Lastly, it will be of interest to deter-
mine the molecular mechanisms and pathways by which inflammation regulates T-cell death and
contraction of the T-cell response. This information will significantly broaden our understanding
of basic T-cell biology and may ultimately prove useful in tailoring therapeutic or interventional
strategies designed to either limit or enhance T-cell differentiation and survival.

Inflammation Regulates the Rate of Memory T-Cell Generation

There is some controversy in the field of memory T-cell biology regarding when memory T-cell
populations become established following infection or vaccination and definitions of memory often
appear specific to individual model systems. However, even though no single phenotypic marker
(cell surface molecule or cytokine expression pattern) accurately defines a memory T cell, the use
of multi-parameter flow cytometry in combination with methods to detect antigen-specific T cells
(e.g., intracellular cytokine staining (ICS)®* or MHC tetramer staining®®) has enabled investiga-
tors to characterize the changing phenotype of T cells as they progress from naive to effector to
memory T cells (Table 1). When antigen-specific T-cell populations are characterized at various
times following the contraction phase it becomes immediately clear that memory T cells are not
auniform population, but that extensive heterogeneity exists at the population level. Despite this
heterogeneity, effective memory T-cell populations can be classified as exhibiting the following
properties: (1) they persist at numbers higher than the naive repertoire; (2) they rapidly respond
to re-infection utilizing multiple effector functions (e.g., cytolysis and cytokine production); (3)
they provide enhanced protection against re-infection; and (4) they expand vigorously following
antigen re-encounter (the formation of secondary memory T cells), resulting in increased numbers
and increased functionality as compared to primary memory T cells. Importantly, experimental

Table 1. Changes in cell surface marker and effector molecule expression in
populations of T cells differentiating from naive to effector to memory

Marker Naive Effector Early Memory Late Memory
CDe62L +H+ - + +H+

CD127 +++ ~/+ + +++

CCR7 +++ —/+ + +++

CD43 + +++ ++ +

CD44 + ++ 4+ 4+

KLRG-1 - +H ++ +/-

IL-2 - +- + ++

TNF-a - +- + +

Granzyme B - +H+ - -

IFN-y - +++ +++ +++
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settings that shift the kinetics of memory T-cell development (as assessed by both phenotypic and
functional properties) have been instrumental in shaping our understanding of how inflammation
regulates memory T-cell development (Fig. 3).

An acute infection in otherwise normal host results in T-cell responses that undergo explosive
expansion, rapid contraction and are characterized by a relatively slow conversion from effector to
memory cell phenotype and function (Fig. 3A). However, the rate at which T cells acquire character-
istics of functional memory cells is not fixed and is often pathogen-dependent. For example, CD8*
T-cell phenotypic differentiation to memory following L. monocytogenes infection occurs relatively
rapidly (1-2 months) as compared to LCMV infection (greater than 6 months),"** even when
examining T cells of identical antigen specificity. While the rate of conversion to memory in each
of the above scenarios is perhaps related to differences in target cell tropism, pathogen replication
or strength of TCR signaling,* it is also likely that the profile of inflammatory cytokines expressed
following virus versus bacterial infection influences T-cell progression to memory. Indeed, experi-
ments utilizing L. monocytogenes have made it very clear that inflammation significantly impacts
the rate of memory T-cell differentiation. For example, in mice that received antibiotics 48 hours
following attenuated L. monocytogenes infection (to rapidly clear infection and reduce inflam-
mation), antigen-specific CD8 T cells acquire memory T-cell phenotype (CD62L", KLRG-1"v,
CD127"%, CD27") by day 14 post-infection, in the absence of alterations to the magnitude and
peak of expansion and onset of contraction® (Fig. 3B). Furthermore, T-cell responses generated
in this manner could be boosted two weeks following infection, thus establishing the acceler-
ated formation of functional memory CD8 T cells. Importantly, these effects were reversed by
administration of CpG DNA to induce inflammation.® In companion studies, it was shown that
treatment of mice with antibiotics prior to L. monocytogenes infection results in a >99% decrease
in bacterial load at 24 hr post-infection infection, diminishes serum proinflammatory cytokine
levels and markedly impairs CD8* T-cell expansion. However, despite reduced expansion, CD8*
T cells primed in antibiotic-pretreated mice develop phenotypic (KLRG-1¥, CD43"Y, CD62L",
CD127", CD27") and functional (IL-2-producing and responsive to boosting) characteristics of
long-term memory CD8* T cells within 6 days after immunization® (Fig. 3C). Together, these
data show that the duration of infection-induced inflammation (rather than simply the duration
of infection) regulates the differentiation to memory and that in the absence of overt, systemic
inflammation the generation of functional memory T cells is accelerated.

In addition to manipulating the rate of memory cell development in the L. monocyrogenes
model, our lab has demonstrated that vaccination of mice with peptide-coated DCs also results
in the accelerated formation of memory CD8 T-cell populations® (Fig. 3D). In this model, in-
oculation of mice with mature, peptide-coated DCs results in the rapid differentiation of CD8*
T cells exhibiting functional and phenotypic properties of memory cells. Indeed, as early as 4-6
days following peptide-D C vaccination, the majority of Ag-specific CD8* T cells exhibit charac-
teristics (CDG2LM, CD 127", CD27" KLRG-1"", IL-2 production) of long-term memory T cells.
Moreover, these memory-like cells are able to proliferate in response to booster immunization as
soon as 4 days following DC priming. Co-infection of mice with L. monocytogenes or co-admin-
istration of CpG DNA to induce inflammation prevents the accelerated memory CD8* T-cell
transition after peptide-DC vaccination, without changing the magnitude of Ag-specific CD8*
T-cell expansion. Additional studies utilizing adoptive transfer of TCR tg T cells demonstrated
that duration of functional antigen presentation by injected DCs lasted only approximately 2
days. Moreover, CpG DNA could be administered up to 3 days following DC vaccination and still
prevent the accelerated development of memory CD8 T cells, suggesting that inflammation is not
acting through the injectcd DCs. Lastly, when IFN-y rcccptor—dcﬁcient mice are DC-vaccinated,
co-administration of CpG DNA does not prevent rapid memory CD8* T-cell development.”
These data suggest that IFN-y-mediated inflammation (but not necessarily IFN-y itself ) received
by responding CD8* T cells controls the rate of memory CD8* T-cell differentiation.

In addition to modulating the rate of memory differentiation, inflammatory cytokines have
recently been implicated in the rapid acquisition of effector functions by memory T cells. Rapid
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Figure 3. Inflammation regulates the rate memory T-cell differentiation. A) Following acute
infection or vaccination (arrowhead) of an otherwise unmanipulated host, antigen-specific
T cells undergo expansion, contraction and subsequently generate a stable population that
acquires phenotypic and functional properties of memory T cells over the course of several
months. In this scenario, mature DCs provide ample MHC/peptide (signal 1), costimulation
(signal 2) and inflammatory cytokines (signal 3) to antigen-specific T cells resulting maximal
proliferative expansion of effector T-cell populations. Infection-associated systemic inflammation
(shaded to indicate duration) modulates the onset and degree of contraction and the protracted
rate of memory T-cell differentiation. B) Truncating the systemic inflammatory response fol-
lowing L. monocytogenes infection by the post-infection administration of antibiotics does
not change signal 1, 2, or 3, or the kinetics of the T-cell response (i.e., expansion, contraction
and memory T-cell numbers), but does accelerate the rate of memory T-cell differentiation.
C) Administration of antibiotics prior to infection with L. monocytogenes attenuates bacterial
replication, significantly diminishes signals 1, 2 and 3 and prevents infection-associated systemic
inflammation. In this scenario, the T-cell response exhibits reduced expansion, fails to contract
and antigen-specific T cells rapidly (within days) acquire phenotypic and functional properties
of memory T cells. D) Vaccination of mice with mature, peptide-coated dendritic cells (DCs)
reveals a scenario in which antigen presenting cells provide adequate signal 1, 2 and 3 in
the absence of overt, systemic inflammation. CD8* T-cell populations primed in this manner
exhibitnormal expansion and contraction. However, antigen-specific cells rapidly (within days)
acquire phenotypic and functional properties of memory CD8 T-cell populations.
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proliferation, at least for memory CD8* T cells, appears to involve a signaling loop between
stable DC-memory T-cell conjugates.’ In this scenario, memory (but not naive) T cells can
rapidly express IFN-y upon antigen/APC re-encounter. T-cell-derived IFN-y potentiates the
production of IL-18 from DCs, which in turn drives the rapid proliferation of memory T cells.
The molecular basis for rapid proliferation and cytokine production by memory cells appears
to be regulated by changing patterns of histone acetylation.® Thus, rapid proliferation and ef-
fector molecule induction correlate with epigentic changes that have occurred during memory
T-cell differentiation.

While these experiments have made clear the impact inflammation has on the conversion of
naive T cells to functional memory, important questions still remain. For example, it is still not
spcciﬁcally known which proinﬂammatory cytokines elicited byL. monocytogenes infection or CpG
DNA treatment reverses the accelerated progression to memory. The adoptive transfer of cytokine
receptor-deficient CD8* T cells to WT mice prior to peptide-DC/CpG DNA co-administration
may reveal which molecules can provide the signal that balances effector versus memory T-cell
development. In addition, the “window of opportunity” for proinflammatory cytokine signaling
in T cells has not been investigated. For instance, can inflammatory signals act on T cells prior
to antigen exposure and prevent the accelerated transition to memory in the DC-vaccination
model? Lastly, very little is known about whether these molecules act directly on the T cell, or via
signaling in other cell types. Future studies designed to address these questions should significantly
broaden our understanding of how and when T cells receive inflammatory signals that influence
the formation of functional, long-lived memory populations.

Collectively, these data reveal the interesting dichotomy that exists between the ‘positive’
influence of proinflammatory cytokines in promoting effector T-cell responses and the ‘negative’
influence of proinflammatory cytokines in limiting the development of memory T-cell popula-
tions. Thus, some proinflammatory cytokines (e.g., IL-12 and IFN-y) are double-edged swords, at
the same time enhancing and limiting various aspects of T-cell differentiation. Clearly, a balance
has evolved between generating efficacious T-cell responses that can immediately participate in
combating infection and the generation of memory responses that will enhance protective im-
munity to re-infection.

Memory T-Cell Maintenance

It haslongbeen appreciated that certain memory T-cell populations are antigen-independent
and several elegant studies demonstrated that memory T cells can persist following adoptive
transfer into naive mice® (lacking cognant antigen) or MHC-deficient mice’” (lacking both
antigen and TCR ligand). As descibed above, populations of long-lived memory T cells persist
and maintain steady numbers for the life of the host. In circumstances where a pathogen or
antigen is rapidly cleared (i.c., acute infection or vaccination), the maintenance of memory
T-cell populations depends on direct signals provided by IL-7 and IL-15, which promote sur-
vival and slow homeostatic proliferation of memory T cells, respectively.”>”” Because memory
T-cell numbers are stably maintained, proliferation must be accompanied by an equal rate of
memory T-cell death.

In contrast to scenarios of acute infection or vaccination, peristent infection and chronic
antigen display often, but not always,”® causes cither deletion or significant alterations in both the
phenotype and function of long-term memory T-cell populations. For example, following LCMV
clone 13 infection (which establishes persistent infections in laboratory mice), virus-specific
T-cell populations undergo functional “exhaustion” whereby they lose effector function and fail
to mediate protective immunity.”*** Further, exhausted memory cells appear not to undergo IL-7-
and IL-15-dependent homeostatic proliferation, as evidenced by their downregulation of IL-7
and IL-15 receptors (CD127 and CD122).8* Instead, their maintenance requires continued
antigen-driven proliferation and exhausted cells rapidly disappear following adoptive transfer to
naive mice.* In addition to down-regulation of CD127 and CD122, the molecular basis for these
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phenomenaappear to also involve the dysregulated expression of programmed cell death 1 (PD-1)
receptor on exhausted memory T cells. Indeed, blocking PD-1 signaling in vivo enahances virus
clearance and the function of exhausted memory CD8 T cells.*

These studies clearly indicate that the maintenance of memory cells is a function of growth
factor-driven survival and proliferation and that chronic antigen/infection often drives the ex-
haustion of these populations. However, much less is known about the potential links between
proinflammatory cytokine expression and memory T-cell maintenance and function. While
several reports demonstrate a correlation between chronic inflammation and dysregulated
memory T-cell maintenance or function,®*” only recently have investigators begun to directly
address the connection. For example, a recent report by Dudani et al,* demonstrates decay of
preexisting memory CD8* T-cell populations following heterologous bacterial challenge. The
loss of these memory cells was dependent on IFN-y signaling, as memory cells were able to persist
following heterologous infection of mice lacking the IFN-y receptor. While these data indicate
a role for IFN-y, it still remains to be determined whether IFN-y signaling acts directly on the
preexisting memory CD8 T cells. Clearly much more work is required to determine whether
acute or chronic inflammatory settings directly impact the persistence of long-lived memory
T-cell populations. Specifically, it will be of interest to determine which individual cytokines
can (for better or worse) influence the maintenance of memory T cells and whether memory
T cells directly receive simulation by inflammatory cytokines.

Conclusion

In this chapter we have highlighted experimental studies that have begun to reveal how
and when pro-inflammatory cytokines influence the generation and maintenance of memory
T-cell populations. Following infection or vaccination, professional antigen-presenting cells,
through differential TLR activation, express unique patterns of proinflammatory cytokines.
The magnitude, kinetics and specific profile of the inflammatory response can in turn differ-
entially impact T-cell differentiation shortly following antigen encounter. As discussed above,
proinflammatory cytokines also directly affect proliferative expansion, programmed contraction
and the rate of memory T-cell differentiation. While several proinflammatory cytokines can
regulate multiple phases of T-cell differentiation (e.g., [IFN-y and IL-12), others appear only to
modulate discreet phases (e.g., IFN-0/p augmented effector T-cell survival). Collectively, these
results indicate that different pathogens and adjuvants have the potential to uniquely shape the
generation of long-lived, efficacious memory T-cell populations. In this regard, future studies
aimed at identifying the precise signals that influence the development of T-cell responses will
be of significant interest. Understanding the molecular basis for how proinflammatory cytokines
(and the timing of their delivery) shapes the generation and maintenance of memory T cells
populations will have important implications for vaccine development.
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CHAPTER S

The Role of 0X40 (CD134) in T-Cell

Memory Generation
Andrew D. Weinberg*

Abstract
emory T-cell generation is limited by activation-induced cell death during the effector
I \ / I T-cell stage. Cell surface proteins are known to transmit signals that either accentuate
or limit T-cell death after activation. This chapter will focus on the TNF-receptor
family member OX40, which is expressed on effector T cells and when engaged greatly enhances
survival of T cells leading to increased memory T-cell generation. Targeting OX40 in vivo can
alter the fate of T-cell survival. Enhancing OX40 signaling during Ag priming through agonists
increases memory T-cell development, while blocking OX40 signaling decreases the memory
T-cell pool. These two opposing outcomes provide therapeutic tools for blocking inflammation in
autoimmune conditions and enhancing immunity in hosts harboring cancer or chronic pathogens.
OX40 agonists and antagonists are in the first stages of human clinical trials and their therapeutic
potential will soon be realized.

Introduction

The generation of functional immunologic memory via long-lived T- and B-cell responses
is paramount to protective immunity against recurrent pathogen infections and is the goal of
current vaccine strategies.' The coordination of long-lived CD4, CD8 and B-cell responses is a
hallmark of the adaptive arm of immunity and is an irreplaceable part of protective immunity.
The quality of the long-term adaptive immunity is directly related to the amount of Ag-specific
memory T and B cells that are generated following an initial Ag challenge.! Hence, understand-
ing the mechanisms that regulate the generation and maintenance of immune cells could lead to
improved vaccine strategies and also help hosts harboring chronic pathogens or cancer tip the
balance towards immune clearance and host survival. In particular, this chapter will explore the
contributions of the TNF-receptor family member, OX40, to T-cell memory generation and how
to exploit OX40-specific pathways for clinical benefit in patients with autoimmunity, cancer and
chronic pathogens.

There has been a number of T-cell surface molecules linked to the biologic function of
memory T-cell generation and function. The list includes several TNF-receptors, 4-1BB, FAS,
LT-BR, CD27 and OX40 as well as other proteins such as CD28, ICOS, ICAM and PD-1.
While all of these cell surface proteins have been linked to the function of memory T cells, it is
clear that OX40 plays a seminal role in the generation of both CD4 and CD8 T-cell memory.?
T-cell responses to cognate Agare characterized by an early expansion phase, a contraction phase,
followed by the generation and persistence of long-term memory cells.! The generation of large
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numbers of long-term memory T cells is limited by activation-induced cell death (apoptosis)
during the contraction phase. Recently, it has been shown that engagement of OX40 during Ag
priming in vivo diminishes T-cell activation-induced cell death leading to increased numbers
of long-lived antigen-specific CD4 and CD8 T cells.*” This chapter will review the events that
lead to OX40 enhanced T-cell memory generation through natural OX40 ligand engagement
(endogenous OX40 activation) or via exogenous administration of OX40 agonists (OX40
ligand:Ig or anti-OX40) in vivo.

Background

OX40 has a unique pattern of expression; it is for the most part restricted to lymphoid tissue®
and mainly expressed on activated CD4 and CD8 T cells.” More recently, it has been shown
that OX40 is also constitutively expressed on mouse T regulatory cells.'® OX40 expression on
recently activated naive CD4 T cells peaks within 24-48 hr after TCR engagement by peptide Ag
in the context of MHC class IT and returns to baseline levels 120 hr later." Effector CD4 T cells
upregulate OX40 expression more rapidly than naive T cells within 4 hr after Ag stimulation."
The transient expression of OX40 on activated effector cells is observed both in vitro and in
vivo.!"2 OX40 expression on naive CD8 T cells starts 24 hr after Ag stimulation, peaks at 48-72
hrand declines thereafter.> OX40* T cells are found preferentially at sites of inflammation and not
normally in the peripheral blood. In animal models for both autoimmunity and cancer OX40*
T cells found within the site of disease are enriched for the recently stimulated auto- or tumor
Ag-specific T cells.*"> Therefore, OX40 represents a convenient target by which the function
of Ag-specific T-cell responses can be modulated in various disease models, even without prior
knowledge of the specific Ag(s) involved.! In essence, manipulation of OX40* T cells in vivo
targets the ongoing “endogenous” immune responses, but does not affect the remainder of the
peripheral T-cell repertoire. OX40* T cells have been detected at the inflammatory site in several
human autoimmune diseases and in the following human cancers: melanoma, breast, colon, head
and neck and more recently prostate cancer, bladder cancer, lung cancer and sarcoma'*'® and
data not shown. Therefore, manipulation of OX40* T cells in patients with a variety of diseases
could have a wide range of clinical benefits.

The original description of the OX40 monoclonal antibody (Ab) showed that this antibody
bound activated CD4 T cells and augmented their proliferation during the later stages of in
vitro stimulation.” When the biologic effects of anti-OX40 were originally described, the field
of costimulation was in its infancy. CD28 was the first costimulatory molecule described on
T cells; it was shown to augment T-cell stimulation when administered in combination with
TCR signaling.!?! The CD28 interaction with its ligands (CD80/86) is essential to achieve
optimal activation of naive T cells; if a signal is delivered through the TCR receptor in the
absence of CD28 ligation, the T cell becomes anergic or dies prior to becoming small resting
T cells.» CTLA-4 is expressed after TCR engagement and competes with CD28 for binding
CD80/86 and when engaged provides a negative signal that puts the brakes on T-cell prolif-
eration. OX40 was originally shown to have costimulatory activity on an Ag-specific CD4*
T-cell line in vitro of similar potency to that of CD28.* While interaction of B7/CD28 is
required for the optimal stimulation of naive T cells,” OX40-specific costimulation appears
to be most important for the stimulation of effector T cells.!"?** Both CD28 and OX40 ap-
pear to play important but distinct costimulatory roles in the development of Ag-activated
peripheral T cells and both signals are required for the optimal generation of memory CD4*
T cells.” The remainder of this book chapter will focus on the mechanistic details of how
0X40 functions to increase effector T-cell survival/function ultimately leading to increased
generation of a functional memory response. Ultimately, manipulation of OX40 signaling
could beneficially alter the course of several diseases and this concept will be further dissected
within this book chapter.
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Role of 0X40/0X40L Interaction in Memory T-Cell Generation

and Function

OX40 expression is upregulated upon TCR engagement even in the absence of a strong innate
immune adjuvant, however expression of the OX40 ligand is somewhat limited, especially in the
absence of innate immune signaling.?>* Hence, the biologic role of endogenous OX40/0X40L
interaction has been easier to ascertain in models where a proinflammatory event occurs causing
innate immune activation (e.g., viral challenge, EAE, or asthma). It is now evident that the extent
of OX40L expression regulates the magnitude of OX40 signaling within activated T cells.”” The
0X40 ligand (OX40L) is a Type II transmembrane protein (TNF-family member) that was first
identified in mice and shown to have ~67% homology to the human protein gp34.* Subsequently,
studies revealed that the gp34 protein could bind to human OX40, demonstrating that gp34 is
the human homologue of OX40L and to date this is the only known ligand that binds 0X40.8#
OX40L is expressed on activated APCs including B-cells, macrophages, DCs, NK cells, Langerhans
cells, human airway smooth muscle (ASM) cells, CD4+ CD3- accessory cells and activated vascular
endothelial cells and appears to be induced in a CD40-dependent manner.?>**%” The OX40L is
also expressed by T cells and confer T:T-cell interaction that may also be important for OX40
signaling.®

There were two sentinel studies describing OX40/OX40L knockout mice, which suggested that
memory T-cell generation was impaired upon targeted disruption.** The initial study challenged
0X40 knockout mice with LCMV and influenza viruses. While these investigators observed no
differences in Ag-specific CD8 T-cell memory and Ab responses, there was a significant decrease in
viral-specific CD4 T-cell memory. In particular, there was a significant reduction in lung infiltration
of CD4* T cells in virally infected OX40 knockout mice compared to controls. The second study
described defective recall responses in OX40L knockout mice. This group immunized W'T and
OX40L ko mice with various Ag(s) and found defective proliferation and cytokine production
within the CD4 T-cell compartment nine days following immunization. They also found defective
Th1 and Th2 responses following restimulation in vitro, suggesting that the OX40 signaling can
stimulate both Type 1 and 2 responses.® This study also revealed a decline in Ag-specific Abs (all
isotypes) in KLH immunized OX40L ko mice and a slight decline in CD8 T-cell cytotoxicity.*!
Soon to follow was a manuscript detailing a marked decrease in CD4 T-cell memory following
immunization of OX40 ko mice.® This study immunized mice with KLH either in alum (i.p.)
or CFA delivered s.c. Similar to the previous study they found a marked decrease in Ag-specific
cytokine production seven days after priming (effector T-cell stage). This study also investigated
long-term survival of Ag-specific CD4 T cells and found a profound decrease in memory T-cell
frequency and Ag-specific cytokine production in the OX40 ko mice. The frequency of long-term
Ag-specific memory T cells decreased 11-fold and 23-fold in the CFA and Alum immunized
0X40 ko hosts, respectively. This group further reported that an OX40-specific defect that led
to decreased survival of Ag-stimulated T cells was in part due to decreased expression of the
anti-apoptotic proteins, Bcl-2 and Bel-x1.7

CD4 T-cell memory responses within the lung are a critical component for the induction
of asthma in mouse models.* OX40 expression by T cells appears to be an essential component
of T-cell-mediated lung inflammation in asthma, as OX40 ko mice develop a tempered form of
the disease.* In addition, this group found that Ag-specific long-term memory T cells (120 days
post-Ag priming) were also dependent on OX40 signaling to induce asthma.® This data suggest
that OX40 signaling of long-term memory T cells is critical for their effector function and blocking
0OX40 signaling in vivo may have clinical implications for individuals with asthma.

Recent literature has focused on two phenotypes of memory T cells that have separate
functional properties, effector and central memory.** Effector memory T cells reside in both
lymphoid and nonlymphoid tissue, where they elicit immediate function by producing cytokines
and/or being cytotoxic with little clonal expansion upon reencountering Ag.“*® In contrast,
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central memory T cells are mainly located in the secondary lymphoid tissues, where they mediate
long-lasting protection through clonal expansion.** A recent study showed a dramatic decrease
in the effector memory population after Agstimulation of OX40 deficient CD4 T cells compared
to their WT counterparts.”’ There was no difference in these two populations three days after
activation (as defined by CD62L and CD44), however as the cells became long-term memory
T cells there was a dramatic loss in the effector memory population. The data also suggested
that an OX40-specific signal generated early in the immune response is important to maintain
these long-term effector memory CD4 T cells.”

The importance of CD8 memory T-cell generation in the context of OX40 signaling has been
studied in both viral and tumor model systems.”® Initial studies used OX40 deficient T-cell receptor
transgenic T cells (OT1) and compared them to WT cells upon adoptive transfer in tumor-bearing
mice (EG7). These investigators found that the survival of the OX40 ko OT1 T cells was diminished
compared to WT T-cell transfers into tumor-bearing mice and this also correlated with diminished
anti-tumor activity. Transfecting the anti-apoptotic gene, Bcl-xl, into the OX40 ko CD8 T cells
enhanced survival of these cells and increased their efficacy against an ova-expressing tumor.
Another study investigated influenza-specific CD8 T-cell priming and memory T-cell expansion
in the absence of OX40 signaling (OX40 ligand ko mice).”' They found that primary expansion
and memory CD8 T-cell survival was not affected in the OX40 ligand ko mice, however upon viral
rechallenge the influenza-specific T cells within the OX40 ligand ko hosts showed defective recall
responses. Subsequent experiments showed that the defect in secondary expansion of viral-specific
CDB8 T cells was conferred to the cells during the initial priming phase.’!

Providing an Exogenous OX40 Signal (OX40 Agonists) to Enhance

Memory T-Cell Generation

The control point for OX40-dependent stimulation of T cells during an immune response
appears to be at the level of OX40L expression. OX40 is expressed on all CD4 and CD8 T cells
after TCR engagement. The expression of OX40L, however, is more tightly regulated. When T-cell
activation via TCR engagement with peptide/ MHC occurs in the absence of a strong adjuvant, the
local expression of OX40L is minimal. Therefore, in the absence of adjuvant, the Ag-stimulated
T cells express OX40, but because OX40L expression on APC is limiting the majority of OX40*
T cells will never encounter/engage their natural ligand. This may lead to apoptosis and limit the
generation of memory T cells as depicted in Figure 1. Evidence in support of this theory derives
from two transgenic mouse models in which mice over express the OX40L.*"*” In both models, the
investigators noticed a large increase in the proportion of T cells in the lymphoid compartments
as the mice aged. The OX40L transgenic mice also showed a dramatic increase in memory T-cell
generation and recall responses following immunization.”” Hence, one might predict that the ad-
dition of an exogenously delivered OX40 agonist (anti-OX40 or OX40L:Ig) during an ongoing
immune response may increase the numbers of memory T cells generated.

The exogenous OX40 agonist hypothesis was initially tested in superAg-stimulated mice, which
induces rapid in vivo T-cell expansion followed by deletion.? An OX40 agonist was administered
at the same time as superAg to test whether this strategy might save T cells from clonal deletion.
OX40 agonist administration was able to slightly increase T-cell survival in superAg (SEB) treated
mice, similar to that observed with the TLR agonist, LPS.> However, combining an OX40 agonist
with LPS in SEB treated mice showed dramatic synergy not only enhancing CD4 T-cell survival
(greater than 2 logs), but also increasing the proliferative phase of T-cell expansion. This same
dual adjuvant combination (anti-OX40/LPS) also provided increased survival of SEB specific
CDB8 T cells, although not as dramatic as the CD4 T-cell results. This same study also examined
Ag-specific T cells stimulated by soluble Ag delivered s.c. in combination with anti-OX40 and/
or LPS. Seven days after Ag stimulation anti-OX40 boosted the number of Ag-specific T cells
10-fold compared to controls (Ag + rat Ig) and the anti-OX40/LPS combination increased the
numbers 20-fold compared to the control group. Upon inspection of long-term memory (60 days
post-immunization) in the soluble Ag model, anti-OX40 increased the number of Ag-specific
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Figure 1. OX40 engagement in vivo enhances effector T-cell function and survival. OX40 liga-
tion through endogenous OX40 ligand expression on antigent presenting cells (APC) stimulates
effector T cells, which increases cytokine production, proliferation, and survival leading to
increased memory T-cell generation. These properties are observed for both CD4 and CD8
T cells and is dependent OX40 ligand expression, which is only upregulated on activated
APC. These same properties can be elicited by providing exogenous signals through OX40
agonists in hosts harboring chronic infections or cancer with positive therapeutic outcomes.
Conversely, blocking endogenous OX40 ligation decreases T-cell specific inflammation and
has shown great promise for autoimmune disorders.

memory CD4 T cells 15-fold and the anti-OX40/LPS combination increased CD4 T-cell memory
survival 70-fold.> From this study it is clear that exogenous OX40 stimulation in vivo has potent
adjuvant effects leading to increased generation and survival of memory T cells. Ultimately, taking
advantage of this type stimulation to increase T-cell memory in hosts harboring cancer or chronic
pathogens will be discussed later.

There are a number of T-cell targeted immune adjuvants in the form of soluble Ig fusion pro-
teins and monoclonal Abs.>* Some of which have potent immune enhancing properties that lead
to the eradication of tumors in cancer-bearing mice. Both anti-OX40 and anti-CTLA-4 have
anti-tumor efficacy, but mediate their activity through different mechanisms.’* A side by side
comparison of the CD4 T-cell stimulating properties of these two Abs administered in vivo was
tested in a soluble Ag immunization model (see Fig. 2). The study showed that both anti-OX40
and anti-CTLA-4 dramatically increased early proliferation of Ag-stimulated CD4 T cells (4 days
post-immunization).*** However, the Ag-specific T cells in the anti-CTLA-4 stimulated mice did
not survive long-term and return to control levels 10 days after immunization, while the Ag-specific
CD4 T cells in anti-OX40 stimulated mice maintained high numbers throughout the course of
the experiment. This study also showed that OX40 agonists accentuated Ag-specific Ab responses
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Figure 2. Administration of anti-OX40 after priming with soluble Ag greatly enhances CD4
T-cell survival. Ova-specific naive T cells were transfered into mice and were then immunized
with ova (with no adjuvant) with anti-OX40, anti-CTLA-4, or anti-OX40 and anti-CTLA-4.
The mice bled on days 4, 14, and 29 and assessed for the percent of ova-specific T cells via
the KJ1-26 Ab. the percentage shown in the y-axis is Ag-specific cells of total CD4+ cells and
the error bars represents the SE of five mice per group.

in vivo, which was not observed in anti-CTLA-4 treated mice. Subsequent studies showed that
anti-OX40 downregulated CTLA-4 expression within Ag-stimulated CD4 T cells during the
carly priming phase.”> Anti-OX40-induced CTLA-4 downregulation was shown to be important
for OX40 enhanced T-cell proliferation but played no part to enhance memory T-cell survival.
A subsequent report identified that a major difference between anti-OX40 and anti-CTLA-4
stimulated T cells was the upregulation of the IL-12 receptor 2 protein (signaling subunit).*
This report went on to show that anti-OX40-mediated survival of Ag stimulated CD4 T cells was
dependent on IL-12 signaling. The data also showed that there was a critical window of IL-12R
upregulation, 4-7 days after antigen priming/OX40 stimulation and if the cells did not encounter
IL-12 during that time frame they would undergo activation-induced cell death.>*

Exogenous OX40 agonist administration delivered in vivo also affects CD8 T-cell survival
and memory development. The investigators of this study used the OT1 TCR transgenic model
(specific for ova) and immunized these mice with soluble ova in combination with anti-OX40 or
rat Ig. The anti-OX40 Ab increased the initial expansion phase of Ag stimulated CD8 T cells
two-fold compared to the controls. OX40 agonist administration also increased the long-term
survival of the CD8 T cells, 5-10-fold. The surviving CD8 T cells were mostly of central memory
phenotype and were functional upon re-encountering Ag. The OX40-stimulated CD8 T cells
showed a large increase in IL-2 receptor expression early during the response, which might
have conferred the increase in their survival. Anti-OX40 administration also greatly enhanced
CD8 T-cell recall responses. Both proliferation and survival of the recall specific T cells was
increased and was in part CD4-dependent.” Although, it is clear that direct expression of OX40
on CD8 T cells also plays a key role for the OX40 agonist effect observed in both primary and
secondary responses.” OX40 agonists were also shown to increase the effector/cytotoxicity
function of antigen stimulated CD8 T cells by upregulating granzyme B levels, through an
IL-2-dependent mechanism.>
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Altering Memory T-Cell Generation/Function through the OX40
Acxis for Therapeutic Benefit in Autoimmunity, Cancer and Hosts
Harboring Chronic Pathogens

It is clear from the studies summarized above that signaling through OX40 on either CD4 or
CDS8 T cells has a dramatic effect on their effector function and survival. Hence, research groups
have attempted to alter the course of diseases known to have T-cell involvement through either
blocking or enhancing OX40 signaling in vivo. What appears to make OX40 such a good target
to alter T-cell function in vivo is its unique expression pattern, which is only upregulated after
T-cell receptor engagement in vivo and quickly downregulated 24-48 hr after induction. Hence, in
vivo expression at any time is extremely low, although OX40 is constitutively expressed on mouse
T regulatory cells. The highest expression of OX40 is found at sites of inflammation, such as the
colon in inflammatory bowel disease, the CNS in mice with EAE and in tumors/tumor-draining
LNs in mice and humans with cancer. OX40* T cells sorted from these sites of inflammation are
enriched for either autoimmune-specific or cancer-specific T cells.'® Hence, targeting OX40 is a
convenient way to home in on the relevant Ag-specific T cells without significantly affecting the
peripheral T-cell repertoire.

Two approaches have been used for OX40-specific therapy in autoimmune disease. One involves
direct deletion of OX40 positive cells through a cytotoxic Ab, while the other targets the OX40
ligand in attempt to decrease OX40-specific signaling.”*” Antibody directed deletion of OX40*
T cells showed therapeutic promise in EAE, as it was able to ameliorate ongoing signs of disease.”
This was accomplished using a ricin conjugated OX40-specific Ab that was shown to directly target
myelin-specific T cells within the CNS of mice with EAE. This therapy led to a 2-log reduction in
the myelin-specific T cells isolated from the CNS, which correlated well with a reduction in disease
score. While this therapy worked well there has been some concern regarding this approach, because
other cell types have more recently been identified to express OX40 including T regulatory cells
and PMNG5.%%¢ The second approach involves agents that target/bind to the OX40 ligand, thus
limiting OX40-specific signals in activated T cells. The OX40 ligand is upregulated at the site of
inflammation in several autoimmune models* and hence OX40 ligand blockade was a logical exten-
sion for treatment of inflammatory disorders. Initial reports showed that injection of an OX40:Ig
fusion protein was effective at inhibiting clinical signs of disease in EAE when administered after
disease onset.” It was also shown that OX40 ligand blockade administered during a relapse episode
was effective at tempering disease; however, as soon as treatment was stopped the mice relapsed.””
Therefore, it appeared that blocking OX40 signaling was able to reduce T-cell effector function,
but not eliminate the cells responsible for causing the disease. OX40 ligand blockade has been
used to temper a variety of autoimmune/inflammatory models including asthma, inflammatory
bowel discase, viral-induced lung inflammation, graft-vs-host discase, diabetes and rheumatoid
arthritis.>*” Genentech is now developing a humanized OX40 ligand Ab, which is currently being
tested in a phase I clinical trial for asthma. This Ab may have far reaching potential as a potent
anti-inflammatory for several human diseases in future clinical trials.

Enhancing immune responses through in vivo administration of OX40 agonists has shown
therapeutic promise in mouse models for cancer and chronic pathogen infections.*” Primarily, two
agents have been used to achieve successful agonist stimulation: (1) an OX40 ligand:Ig fusion
protein and (2) an OX40 agonist Ab. The initial report showed that both OX40L:Ig and an-
ti-OX40 had similar activity to regress tumors in cancer-bearing mice.'* Although, there has been
a more recent report that suggests the OX40L:Ig fusion protein has better anti-tumor efficacy
than the anti-mouse OX40 agonist Ab (termed OX86).5 The OX40-specific anti-tumor efficacy
has been observed in several tumor models, including sarcoma, melanoma, colon cancer, breast
carcinoma, lung cancer, glioma, prostate cancer.” The anti-tumor efficacy generated by OX40
agonists is dependent on both CD4 and CD8 T cells and it has been shown that OX40 agonists
do enhance tumor-Ag specific memory T-cell development.'*” Subsequently, another report has
shown that anti-OX40 administration greatly augments the adoptive transfer of tumor-reactive
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Table 1. Potential use for OX40-specific treatment in disease

Treatment Schemes

OX40 Agonists OX40L Blockade
Agents used Anti-OX40 mAb Anti-OX40 ligand mAb
OX40L-Ig fusion protein OX40-Ig fusion protein

OX40L-transduced/transfected APCs
Recombinant OX40L-expressing
virus/tumor/bacteria

OX40-specific DNA aptamers

Potential diseases for Cancer (all types) Muiltiple sclerosis
therapeutic use Persistent bacterial infections Rheumatoid arthritis
Chronic viral infections Allergic asthma
(HIV, hepatits C) Inflammatory bowel disease
Lupus
Type 1 diabetes
Psoriasis
Atherosclerosis
GVHD
Pathogen-induced inflammation
(influenza, SARS, West Nile virus)

T cells.® Anti-OX40 showed similar therapeutic efficacy to IL-2 in supporting tumor-reactive
T-cell mediated destruction of lung-metastases. However, IL-2 in combination with adoptive
immunotherapy did not support the eradication of brain metastases, while anti-OX40 showed
powerful synergy to eradicate brain metastases.®® It was not clear why anti-OX40 was able to
augment the efficacy of T cells while IL-2 was not, but it may be linked to differential expression
of T-cell surface proteins and their ability to help break the blood brain barrier.

While it is clear that OX40 agonists given as a single agent can enhance anti-tumor immunity
in cancer-bearing hosts, there are models where its activity alone is not enough to cure mice of
disease. Hence, there have been a number of studies that have attempted combination thera-
pies with vaccines/cytokines and anti-OX40.>*¢"2 These combination therapies have included
GM-CSF secreting whole tumor vaccines as well as the addition of innate cytokines, both of
which showed promising synergy.>*¢'¢* It was shown that anti-OX40 in combination with a
GM-CSF secreting whole cell vaccine expressing the Her-2/neu tumor Ag was able to enhance
CD8 T-cell responses and regress tumors (breast cancer model).®> However, the vaccine alone
showed very little anti-tumor efficacy, which correlated with a weak Her-2-specific CD8 T-cell
response. It was subsequently shown that the increase in Her-2-specific CD8 T cells elicited
via the combination treatment was dependent on anti-OX40 accentuating CD4 T-cell help.
Another combinatorial approach that has shown great promise for tumor immunotherapy is
combining anti-OX40 with innate cytokine(s), especially IL-12. One of the theoretical limita-
tions of priming the immune system to tumor-specific Ags is the lack of “danger” signals (e.g.,
CpG, dsRNA, LPS, etc...) known to elicit innate cytokines when tumor Ags are presented
to the immune system in vivo. As previously mentioned, IL-12 is necessary to mediate the
survival of anti-OX40-stimulated CD4 T cells and the combination of anti-OX40 and IL-12
in tumor-bearing mice showed synergistic therapy.* This combination was therapeutically ef-
fective in the poorly immunogenic prostate cancer model, TRAMP-C1, where neither IL-12
nor anti-OX40 alone showed any therapeutic efficacy.’* IL-12 and anti-OX40 also showed

dramatic therapeutic synergy in an active immunization model using a tumor-dendritic fusion
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vaccine injected directly into the spleen.”* Whether IL-12 actually enhances survival of OX40
stimulated tumor-reactive T cells or increases Th1/Tcl immunity was not directly ascertained
in these models, but most likely both mechanisms are involved to enhance OX40-mediated
tumor destruction.

OX40 agonists have also been shown to enhance T-cell responses to chronic pathogens (e.g.,
viruses and bacteria). In particular, anti-OX40 was administered into mice harboringa chronic
cytomegalovirus known to replicate in visceral organs (i.c., salivary gland). The initial study
showed that anti-OX40 enhanced viral specific effector T-cell differentiation leading decreased
viral replication in the salivary gland. Subsequently this group treated mice during the initial
stage of infection and found that anti-OX40 greatly enhanced CD8 T-cell responses during
the carly stages of infection, which led to protective immunity.® The OX40 agonist strategy
was also beneficial against hosts infected with Cryptococcus neoformans, where the infection
resides in the lungs and becomes persistent.” The persistence of this pathogen is characterized by
immune deviation to a nonclearing Th2 response, leading to chronic eosinphilia in the lungs.®
Administration of an OX40L:Ig fusion protein drove a cytokine switch from Th2 to Th1 and
reduced the pathogen burden and reduced the eosinphilia. OX40-specific elimination of C.
neoformans was dependent on IFN-y/IL-12, as injection of an OX40 agonist to IFN-y or IL-12
ko mice harboring the pathogen was not able to resolve the infection.

It is clear that OX40 agonists have potent immune stimulating properties in several disease
models, which ultimately helps the host eradicate harmful/potentially lethal entities within the
body. Recently, our group has translated these findings into a cancer patient-specific clinical
trial. Initially we tested the safety/dosing of a mouse anti-human OX40-specific monoclonal Ab
in nonhuman primates.® We found that OX40 agonist administration to nonhuman primates
potentiated memory T-cell generation and increased Ag-specific Ab responses similar to what
was observed in mice. However, in contrast to the mouse studies we found that the adjuvant
affect lasted longer, up to a month after the injection. We also observed a transient in drop in
lymphocyte counts in the peripheral blood seven days after the initial Ab infusion and this was
followed by a rebound where the lymphocyte numbers increased over base-line values. Upon
completion of the monkey studies, the FDA approved a Phase I clinical trial in patients with Stage
IV cancer. So far we have treated 17 patients with relatively low toxicity and we have observed
immune stimulatory effects in most of the patients post-anti-OX40 treatment. In particular we
have observed an increase in cycling memory T cells starting with the CD4 T-cell population
one week after Ab infusion, followed by CD8 T cells usually 2-4 weeks post-OX40 treatment.
We have observed cycling T cells in both the central memory compartment (CD28*) and effec-
tor memory (CD28) populations. The increase in cycling memory T cells usually lasts 28-days
following Ab infusion, however in some patients this effect lasted during the entire two-month
evaluation period. There has been some hint of anti-tumor activity with four patients showing
regression of some metastatic disease; however there have been no complete responders on this
trial to date.

Conclusion

In summary, OX40-specific signaling within T cells plays a key role in the generation of memory
T cells as well as T-cell effector function. Its biologic function in vivo appears to be limited by
expression of the OX40 ligand, which is expressed mainly on activated antigen presenting cells.
0X40 ligand expressing cells are found within sites of inflammation in autoimmune disease and
hence strategies have evolved to temper inflammation via blockade of 0X40/0X40 ligand in-
teraction. In contrast, little to no OX40 ligand expression is observed in hosts harboring tumors
and some chronic infections and therefore accentuating OX40 signaling can enhance immunity
leading to the destruction of these harmful entities. It is clear that tipping the balance of T-cell
immunity through the OX40 axis could have important ramifications for several human diseases.
The first stages of OX40-specific clinical trials are now being performed and efficacy of these trials
will be determined in the future.
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CHAPTER 6

The Role of Precursor Frequency
in the Differentiation of Memory

T Cells:
Memory by Numbers

Amanda L. Marzo,* Ryan T. Sowell and Bernadette Scott

Abstract

mmunological memory is considered the hallmark of adaptive, or acquired, immunity. That
Iability of our immune system to recognize and respond to those pathogens we have encountered

before not only typifies acquired immunity but has provided the basis for the most notable
of medical interventions: vaccination. Yet, as much as we now know about this process, we are
still on the cusp of fully understanding how memory T cells develop, how they are maintained
and the importance of memory T-cell heterogeneity. In this review we will primarily focus on
our understanding of CD8 T-cell memory generated during acute infections and how precursor
frequency influences their development and functional attributes.

History of Immunological Memory

The nascence of our Western understanding of immunological memory originates from the
inoculations undertaken by Jenner in the 18th century to prevent smallpox' and the subsequent
broadening of the concept by Pasteur in his germ theory of disease in the 19th century.* However
these great experimentalists were the heirs of knowledge belonging to Indian and Chinese physi-
cians of the early 11th century. These practitioners used material from infected patients to inoculate
healthy individuals against smallpox thereby demonstrating their knowledge that previous expo-
sure to a disease was protective. Even more remarkable, was the realization that the survivors of
a disease were unlikely to succumb to reinfection had been made as early as the 5th century B.C.
Thucydides, the chronicler of the great plague of Athens during the Peloponnesian War, wrote
that those that survived the “plague” tended the sick because “no one was ever attacked a second
time, or not with a fatal result”?

Elucidating our modern concepts of immunological memory first required an understanding
of the cellular nature of adaptive immunity. The development of theories concerning the clonal
nature of the immune system, such as those described by Niels Jerne* and MacFarlane Burnett®
amongst others, as well as Jacque Miller’s experiments and insights into the role of the thymus®”
in the mid 20th century, paved the way for experimentation into the mechanisms of underlying
immunity, response maturation and memory development. Today we know that immunological
memory is a characteristic of both B- and T cells and is, not unexpectedly, complex.
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Inroads into Understanding T Memory Development

T-cell memory is functionally defined as long-lived recall responses and is a well-established
concept of modern immunology. Ata cellular level, memory is established in several phases. T cells
become activated after encounter with antigen and then undergo a massive clonal expansion. In this
period they acquire the ability to kill and produce cytokines, resulting in a population of effector
cytotoxic T-lymphocytes (CTLs) that disseminate throughout the body to eradicate the pathogen.
Subsequently, a dramatic contraction phase occurs, where most of the effector CTLs die. However,
a numerically small but stable population of T cells survive the contraction leading to a distinct
population of apparently long-lived T cells (Fig. 1).*'? These long-lived cells respond to rechallenge
more quickly, more efficiently than observed as a result of the initial antigen encounter.

A. Primary Lung Infection B. Recall Lung Infection
Tew Differentiation s e New Effectors
From Memory Pool
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Figure 1. Differentiation of primary and secondary memory CD8 T cells. A) In a primary response
such as an insult with a pathogen that infects the lung, antigen is taken to the draining lymph
node where naive antigen specific T cells become activated and expand to competent effectors.
These cells down-regulate lymph node homing receptors (CCR7 and CD62L) and then migrate
throughout the body populating both secondary lymphoid tissues such as the nondraining lymph
nodes, spleen and various nonlymphoid tissue including the lung where the infection originated.
In acute infections these cells succeed in clearing the virus. Subsequently, a contraction phase
occurs and T cells that survive this phase are termed memory T cells. Memory T cells that reside
in the lung predominately posses the Ty phenotype (CCR7-/CD62L-) in contrast, Tew predomi-
nate in the lymph nodes and are characterized by up-regulation of the lymph node homing
receptors CCR7 and CD62L. The spleen 30 days after infection is dominated by Tgy however,
Tewm slowly accumulate in number with time. This is because Tey have a greater capacity to self
renew compared to Tgy, via a process of homeostatic proliferation.”*¢ B) In a recall response
Tem already residing in the lung are poised for controlling a further insult. Their capacity for
immediate effector function facilitates the elimination of the pathogen. In addition, Ty and Tey
also residing in the spleen contribute to a higher precursor of antigen specific cells that can be
activated upon rechallenge and subsequently disseminate throughout the body, including the
lung and aid in pathogen eradication. Thus this process results in new effectors being generated
from both the memory T-cell pool and naive T cells specific for the pathogen.
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Our ability to specifically identify memory T cells began with studies of Peter Beverley and col-
leagues who recognized that two monoclonal antibodies, CD45RO and CD45RA, were expressed
on reciprocal populations of human T cells with differing functional capacities; memory and naive
T cells respectively.®'>' Later, Sallusto and colleagues showed that memory T cells could be further
divided into at least 2 functional subpopulations that differentially expressed the chemokine recep-
tor 7 (CCR?7). Specifically they demonstrated that one of these T-cell populations that survived
the initial contraction phase did not, for the most part, express CCR7. These CCR7" cells were
generally excluded from lymphoid tissues, preferring to migrate into peripheral organs’®'” and
thus coined effector memory T cells (Trwr). Try express both perforin and granzyme B'¢ and are
capable of direct ex vivo lytic activity.'® The second population of memory T cells that survived
re-expressed the lymph node homing receptors CCR7 and CDG62L, thereby facilitating their
recirculation and re-entry into lymphoid tissues. In contrast to Tgy, this second memory T-cell
population lacked immediate cytolytic function. These recirculating memory T cells were termed
central memory T cells (Tcy). In addition to the expression of CD62L and CCR7, Ty, were later
found to express CD27, a member of the tumor necrosis factor (TNF) receptor superfamily'**
and CD127, the o chain of the IL-7 receptor.?! Tgy on the other hand lacked expression of CCR7,
CD62L and CD27 while they were found to retain expression of CD127.

The studies above have provided a means to define different memory populations but the ques-
tion of what shapes this process and how memory is maintained continues to be the subjcct of
intense research. One of the parameters considered to be a critical factor in shaping the memory
T-cell response was the persistence of antigen though this was a matter of intense debate. Evidence
cited to support the requirement for antigen persistence included human vaccinations which
required booster immunizations to reinvigorate flagging immunity. In mouse models, early viral
studies showed that protection to virus declined with time** and studies measuring the response to
the male antigen H-Y** also supported this premise. However subsequent experiments, utilizing the
capacity to better phenotype memory T cells, showed that the maintenance of T-cell memory was
not dependent on the persistence of antigen. Studies using purified memory CD8 T cells isolated
from Lymphocytic Choriomeningitis Virus (LCMV) immune mice and adoptively transferred
into naive recipients found that these memory CD8 T cells to survive long-term. In addition, these
long-lived memory CD8 T cells were also able to provide protection against virus challenge.*
Similar experiments using Sendai Virus demonstrated that Sendai specific memory CD8 T cells
were also maintained in the absence of antigen.” In order to try and understand the discrepancies
observed between experimental systems, Wherry and colleagues investigated the effect of antigen
persistence in acute compared with chronic LCMV infections.? They showed that antigen clear-
ance, as seen in acute viral infections, leads to “typical” memory T cells that survive in the absence of
antigen. They were also able to isolate memory T cells from hosts with chronic LCMV infections,
(i.e., antigen persistence). However, in contrast to memory T cells isolated from acute infections,
the memory T cells induced during chronic infections were unable to survive if transferred into
uninfected, secondary recipients i.c., these cells did not survive in the absence of antigen.” These
data were interpreted to mean that the duration of antigen encounter, brief in the case of an acute
infection or persistent for chronic infections, influenced the type of memory T cell that developed.
More recent data suggest this may not be a universal rule. Mice infected with Trypanosoma cruzi
(T cruzi) cannot clear the parasite, resulting in chronicity. However, unlike LMCYV, there is a
population of Ty that survive without encountering persistent antigen. In this case there is an
anatomical division as to where antigen persists and where the Ty reside. In 7. cruzi infection,
low levels of antigen persist in muscle, adipose and neural tissues.”” Given that 7. cruzi specific
Toware largely excluded from peripheral tissues encounter with antigen is unlikely, although one
cannot rule out the possibility that these Ty are not replenished by newly recruited cells from
the naive population.”® However, upon transfer into naive recipients, these 7. cruzi specific Toy
were capable of antigen independent survival for at least 20 days.”” What these data emphasize is
that context is an important defining parameter in memory T-cell differentiation.
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Use of TCR Transgenics to Elucidate T-Cell Biology

The use of T-cell receptor (TCR) transgenic mice revolutionized our capacity to study T-cell
function. One of the reasons for the use of TCR transgenic T cells to study T-cell responses is that
they enable us to study antigen specific T cells at a frequency that facilitates experimentation. Using
this technology important progress was made into our understanding of T-cell development,*°
central’ and peripheral tolerance induction®** and how T cells can interact with specific antigen
in vivo.*** Indeed, such technology has been used in almost every type of immunological system,
including studies into memory T-cell differentiation.

Despite the increased ability to phenotype memory T cells, the pathways and relationship
between the various stages of T-cell differentiation, as well as the signals that drive the process,
have not been well understood. In terms of differentiation pathways, the original experiments of
Sallusto et al were consistent with a linear model of memory T-cell differentiation in which Tcy
function as precursors of Ty thus providing a continual source of Ty (Fig. 2A). However, this
in vitro model has not been supported by in vivo data.’®¥ In order to investigate the relation-
ship between Ty and Try, Wherry et al* made use of TCR transgenic technology to facilitate
analysis of memory T-cell differentiation. They used the well characterized P14 TCR transgenic
mice, which recognize the H-2" restricted epitope of LCMV gp33, in their experiments in or-
der to facilitate identification of antigen specific cells in vivo. In these elegant experiments, as
with others before and since, high numbers of naive P14 TCR transgenic T cells, typically ~7
x 10%, were transferred into naive, secondary, recipients to produce “chimeras”. These chimeras
were subsequently infected with LCMV and the phenotype and function of resultant Tgy and
Teym compared and contrasted. As previously described for endogenous T memory responses,
they showed that the transferred TCR transgenic cells became long-lived memory CD8 T-cell
populations i.e., the T cells could be identified at least 30 days post infection and be divided into
those that expressed high levels of CD62L and CCR7 and those that did not. Importantly this
dichotomy also segregated with other previously defined markers of Ty and Ty subpopulations.
In the studies described by Wherry et al, the CD62L expressing cells also expressed CCR7 and
high levels of CD27. Conversely, CD62L" cells did not express CCR7 and little if any CD27.
They also showed that both memory T-cell populations were functionally different. Though both
Ty and Tey were able to produce effector molecules (IFN-y and TNF-a), the Ty population
was deficient in IL-2 production upon restimulation in vitro. In vivo, this difference in functional
capacity was also seen in the relative ability of the two subpopulations to control viremia on a
cell for cell basis. Again, using adoptive transfer techniques, when Ty or Ty were adoptively
transferred into naive recipients and then rechallenged, Ty mediated a more effective reduction
of virus than transferred Ty, irrespective of route of administration for the infectious agent.
This enhanced anti-viral function was associated with a greater proliferative capacity of Tcy in
vitro or in vivo. The authors also showed that the majority of long-lived memory T cells were
predominantly CD62L high and not only could their persistence be explained by an enhanced
proliferative potential, but from conversion of CD62L- cells to CD62L expressing cells. In fact,
when the two populations were monitored over long periods of time, there was a decline in the
Ty population with a concurrent rise in the Tey cells, implying a linear differentiation relation-

ship between these two memory T-cell types (Fig. 2B).

Precursor Frequency Affects Memory T-Cell Development

Despite what appeared to be strong evidence for this linear relationship, older studies that
were consistent with other models still needed to be reconciled. The early work of Sallusto and
Lanzavecchia suggested,'® in direct contrast to the transgenic studies of Wherry et al*® described
above, that Ty converted into Ty as the Tey cells lost CCR7 expression and gained functional
capacity in vitro (Fig. 2A). On the other hand, a third model proposed by Baron et al, analyzing
TCR usage in human memory T cells, found that the TCR usage was unique and implied that
these populations were distinct lineages (Fig. 2C).3® What is the source of these discrepancies? Is
it a species-specific problem? Or is it the result of the systems used?
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Figure 2. Models of memory T-cell development. A) T, produce Tgy. This model demonstrates
a linear pathway of memory T-cell development. According to this model Ty, are generated
from effector T cells and are capable of self renewal. Ty also give rise to more terminally
differentiated Tew. The model was based on in vitro data where they culture Tey and found
that after time they had both Ty that were CCR7+ and CD62L+ and Ty that lacked both
CCR7 and CD®62L. B) Tew convert to Teu. This model was generated using high number of
transgenic T cells and demonstrates that Ty, are lost over time while Tey accumulate in number.
The model predicts that Ty actually convert to Tey and then increase over time, although
whether these Ty, actually convert or are lost is still debated. C) Tew and Tgy develop from
separate lineages. In this scenario both Ty and Tey are derived from effectors as separate but
stable lineages and are maintained by differential self-renewal capacities. With Tey increas-
ing in number compared to Tgy over time. It has also become evident that Ty that reside in
nonlymphoid tissues such as the lung are functionally more superior to those that reside in
secondary lymphoid tissues such as the spleen.’

Later studies pointed towards the conclusion that the system utilized influenced the experimen-
tal outcome, more specifically that the use of TCR transgenic cells skewed the biological outcome.”
It was found that memory T-cell development in adoptive transfer models did not mirror that of
the endogenous response. In these experiments, like those of Wherry et al, adoptive transfer of
large numbers of naive TCR transgenic T cells (10%-107 cells) into naive recipients, subsequently
infected them with virus, lead to a Ty, to Ty conversion. However, concomitant analysis of the



74 Memory T Cells

endogenous T-cell response showed a different profile of memory T development. In the endog-
enous response, though both Tgy and Tcy were generated there was not a linear relationship
between the two populations. Ty were a stable population that did not differentiate into Ty
These data imply that the precursor frequency of the initial responder cells shapes the composi-
tion of the memory response that develops. In support of this conclusion, when small numbers
(5 x 10?) of transgenic CD8 T cells were transferred, the response was similar to that observed for
the endogenous response. Furthermore, this stability of memory T-cell phenotype was observed
irrespective of the infectious agent (LCMYV or Vesicular Stomatitis Virus, VSV) or of the antigenic
epitope monitored (gp33 or OVA) when initial responder numbers approximated physiological
frequencies. Moreover, these separate lineages were “imprinted” during the primary infections
because a secondary challenge did not alter their phenotype. These experiments were supported
by those of Badovinac et al, who, undertook similar titration experiments of TCR transgenic
T cells, using recombinant Listeria monocytogenes (LM), expressing ovalbumin (OVA), as the
infectious agent and OT-1 T cells as responders.” They also demonstrated that transfer of large
numbers of TCR transgenic T cells skewed the distribution of the memory T-cell populations.
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Figure 3. Model of Tcy and Ty differentiation. The model depicts three scenarios where Tey
and Tgy are generated where (A) low precursor frequency of naive T cells get activated in the
presence of sufficient resources resulting in the generation of both Tey and Tey, (B) high precur-
sor frequency of naive T cells get activated in the presence of limiting resources resulting in
sub-optimal priming and the formation of both Ty and Tey. In addition a third population of
transitional Tgy develop that convert to Tey and (C) high precursor frequency of naive T cells
activated in the presence of sufficient resources results in an optimal response and the generation
of both Tcy and Tey memory subsets. We hypothesize another consequence of high precursor
frequency and limiting resources is that the effector T cells will undergo sub-optimal prolifera-
tion contributing to the altered T\ differentiation and the generation of transitional Tey.
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Another consequence of supraphysiological numbers of primary responders was that the peak
of the response shifted forward in time. The enhanced production of Try, over that of Ty cells
was also observed when the potential for antigen presentation was increased by treating mice
with FLT3L, thereby increasing dendritic cell (DC) numbers.” These data are most consistent
with that of the Baron model of distinct memory T-cell lineages and non conversion and clearly
demonstrate that the initial precursor frequency impacts on the type of memory T-cell response
evoked.”* The question is how does the initial frequency of T cells alter the long-term functional
makeup of the T-cell memory compartment? Together, these data imply that at least one of the
parameters that drives Ty or Try differentiation is the availability of resources (Fig. 3). When
there are too many responders to be efficiently processed through the system, as is the case when
large numbers of TCR transgenic T cells are transferred, Ty production is favored. In contrast,
when resources are not limiting i.e., at low precursor frequencies or when antigen presentation is
not limiting, Tgy production is favored. However, other factors could impact the outcome of T
memory differentiation. When the precursor frequency is high there may be a reduction in the
number of cell divisions. With a reduction in cell division one could hypothesize that the resul-
tant memory T cells would be of a less differentiated phenotype. This could potentially result in a
“transitional” memory T cell that initially has a Try phenotype but, over time, converts to a Ty
phenotype (Fig. 3).

For decades now a question that has remained largely theoretical has been what is the precur-
sor frequency of T cells for their cognate epitope? Tetramer technology has provided the answer
for a number of epitopes for both CD4 and CD8 T cells. Moon et al studied three CD4 epitopes
and determined the naive precursor frequency for W1S:I-A® epitope, FliC:I-A® and Ova:I-A® to
be 200, 20 and 20 cells, respectively.*” Another group later examined six CD8 specificities and
showed a range of 80-1200 cells/per mouse (with an average of 120- 600).*! These data confirm
that the traditional methods of adoptively transferring large number of TCR transgenic cells are
orders of magnitude above physiological frequencies.

One Cell, Many Fates

Asthere are still competing models of memory T-cell differentiation, further studies looking at
the underlying mechanisms that control the cellular transitions are needed. Recent experiments by
Stemberger et al, demonstrated that the adoptive transfer of a single CD8 TCR transgenic T cell,
followed by infection, gave rise to all the phenotypic and functional CD8 T-cell subsets observed
in the endogenous repertoire from effector to memory T cells. It is remarkable that a single cell
has the potential to become both subsets of memory T cells (Tcy and Tgy). Furthermore, they
showed that the relative composition of the T-cell memory response i.c., the proportion of Ty
and Tky, differed with different modes of insult. Given the reproducibility of the differentiation
process in these experiments, the model of differentiation that could be applied would be one
that was instructional. That is, in these single cell experiments, T-cell memory differentiation is
not hard wired but responds according to how the pathogen is encountered and the coordinated
response that ensues. These results are consistent with the idea that memory T-cell development
is driven by encounter with antigen and the resultant contribution of Ty and Tcy depends on
the type of pathogen and the tissue in which the response is primed. Such a mechanism may
facilitate the response upon reencounter with the pathogen and ensure that the most suitable
response is engaged. Whilst these experiments show that T-cell memory differentiation is not
predetermined, the difficult question is what cellular mechanisms could account for this capabil-
ity? The answer may lie, in part, in the use of an evolutionarily conserved process, asymmetric cell
division.” This cell-intrinsic process is used to create two daughter cells of differential potential
from a single precursor. Recent data has demonstrated this phenomenon in T cells.* Using
confocal microscopy, Chang and colleagues demonstrated that in activated T cells that had not
yet divided, signaling components, such as CD3, CD4 or CDS8, were polarized perpendicular to
the mitotic spindle, a morphological characteristic of asymmetrical cell division. It was shown
that an antigen-APC interaction was required for this phenomenon as it did not occur in T cells
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that had initiated homeostatic proliferation. Importantly, proteins that have been established as
components of asymmetrical cell division in other systems were also segregated appropriately
in these T cells. Asymmetric cell division provides an attractive mechanism whereby a single T
cell could give rise to progeny with different functional capacities. Importantly Chang et al went
one step further and showed that the proximal daughter cells of the activated T cells expressed
features and markers consistent with effector T cells. On the other hand, the distal daughter cells,
defined as those that were further from the immunological synapse, expressed markers consistent
with memory T cells. Even more remarkably, when sorted and transferred into naive recipients,
upon rechallenge with the bacterial pathogen LM at 30 days post transfer, the putative memory
cells (i.e., the distal daughters) had a greater protective function than the proximal daughter cells,
though both were equally effective at reducing the bacteria burden in an acute assay. These results
are consistent with the known properties of memory (renewal, survival and long-lived protective
capacity) and effector (limited renewal, short-lived protective capacity) T cells. What is important
to note in these experiments, is that the data is derived from an initial transfer of high numbers
(107) of transgenic T cells. Indeed, the phenotype of the memory T cells derived in these transfer
experiments was consistent with a Ty phenotype (i.e., the predominant phenotype observed in
the carlier memory studies using adoptive transfer of high numbers of TCR transgenic). Further
studies are required to unravel this problem. Given that processes like asymmetric cell division
and epigenetic modifications are well-described mechanisms for shaping the fate or function of
cells in other systems, it is not unlikely that they could be utilized by the adaptive immune system
to direct memory development.

Which Are the Better Protectors?

Why do we worry about understanding the differentiation of T cells into various memory
populations? It is because this heterogeneity implies distinct functional capacities and therefore,
potentially distinct protective capacities. Unfortunately there is no consensus as to which of the
broad T memory populations provide superior protection when re-encountering pathogen. In the
acute studies with LMCV, Ty were shown to be more efficient than Tkyy at clearing secondary viral
infections.* Studies using Sendai virus demonstrate that early after infection the recall response
relies predominately on Try, however at later time points Ty dominate.®* This change in relative
contributions of the Tgy and Tey is probably a consequence of the increased proliferative capacity
of the Ty compare to Tgy.**? It is probable that the most appropriate memory T-cell response
will depend on the pathogen itself and the site of priming and the tissue in which they reside. To
begin to address this issue Klonowski et al used lymphotoxin o (LT ) null mice (which lack lymph
nodes) as well as LT asplenectomized mice to evaluate how priming in the recall response affects
existing T-cell memory. Perhaps not altogether surprisingly, they demonstrated that the memory
T-cell response to infectious agents, either recombinant LM-OVA or VSV, required secondary
lymphoid tissue. Antigen independent proliferation, as occurs with homeostatic proliferation, was
not dependent on lymph nodes or spleen. More specifically, LM-OVA memory cells required the
presence of the spleen and Ty and Ty populations responded with nearly identical efficacy to
the pathogen. VSV infection differed in that it was lymph node dependent and T were able to
respond more efficiently to the virus than Ty Overall these data suggest that both the location
of priming and the location of Tcy and Try determine which memory T-cell subset participates
in the recall response. However, it should be noted that increased numbers of memory cells does
not necessarily mean better protection.

Conclusion

The observation that the use of high numbers of transgenic T cells does not necessarily reflect
the endogenous response is not the end of their use in studying immunological phenomenon. It
is partly a reminder, that not all systems are perfect and require verification by other means. In
addition we can take the opportunity to make use of these data to our advantage. For example,
adoptive therapy is a strategy that has been trialed in cancer treatments and is exemplified by trials
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in the treatment of melanoma. There has been some progress, but clearly not enough for transla-
tion to a more widespread clinical application. Perhaps the study of adoptive transfer and memory
development is the aspect of treatment that will prove to be pivotal.
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CHAPTER 7

CDS8 T-Cell Memory Differentiation
during Acute and Chronic Viral

Infections
Vandana Kalia,* Surojit Sarkar* and Rafi Ahmed*

Abstract

D8 T-cell responses play an important role in protection against intracellular pathogens.
‘ Memory CD8 T cells mediate rapid clearance of pathogens upon secondary infection

owing to their elevated frequency, ready localization to peripheral sites of infection and
their ability to rapidly expand and mount effector functions. Such potent long-lasting protective
memory CD8 T cells develop in acute infections where antigen is effectively cleared. In contrast,
chronic infections with persistently high viral loads are characterized by CD8 T-cell dysfunction.
In this chapter we present our current understanding of signals and mechanisms that regulate
the development of functional long-lived memory CD8 T cells during acute infections. This is
discussed in the context of proposed models of memory differentiation and compared with CD8
T-cell exhaustion and altered T-cell homeostasis, as occurs during persistent viral infections.

Introduction

Immunological memory is a cardinal feature of adaptive immunity, whereby the first encounter
with a pathogen is imprinted indelibly into the immune system. Subsequent exposure to the same
pathogen then results in accelerated, more robust immune responses that either prevent reinfection
or significantly reduce the severity of clinical disease. Protective immune memory can persist for
many years after initial antigenic exposure, even up to the lifetime of an individual. Both humoral
and cellular immune responses comprise important arms of immunological memory and have
evolved to perform distinct complementary effector functions of tackling free pathogens versus
infected cells. Humoral immunity includes preexisting antibody, memory B-cells and long-lived
plasma cells. The antibodies provide the first line of defense by neutralizing or opsonizing free
extracellular pathogens. CD4 T cells further provide help for antibody production and the genera-
tion and maintenance of CD8 T-cell memory. Memory CD8 T cells, unlike antibodies, cannot
recognize free pathogens, but instead identify infected cells and exert effector functions including
direct cytotoxic effects on target cells and/or release of cytokines to inhibit growth or survival
of the pathogen. Thus, the development of CD8 T-cell responses is necessary for the control of a
variety of intracellular bacterial and viral infections and tumors.

In this chapter, we will focus on our current understanding of how protective CD8 T-cell
responses are generated and maintained following two major types of infection, acute and
chronic. Viral infection is largely divided into two types: (i) acute, where virus is eliminated;
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and (ii) chronic, where virus persists. Chronic infections are further classified into two broad
categories: (i) latent infections, where virus is usually dormant, but occasional viral replication
may occur during periodic episodes of reactivation; and (ii) persistent infections, where viral
replication continues to maintain persistent viremia. Acute viral infections usually result in
effective antiviral immune responses. In contrast, chronic persistent infections are typically
associated with compromised CD8 T-cell function. In this chapter we will first focus on CD8
T-cell immunological memory following acute infections and discuss the underlying mechanisms
of memory CD8 T-cell differentiation and maintenance when antigen is effectively cleared from
the system. We will then discuss how the CD8 T-cell differentiation program is altered during
chronic infections, where viral loads are maintained at persistently high levels. Due to the plethora
of information pertinent to this topic, we will primarily describe broad themes of CD8 T-cell
differentiation that have emerged from studies in the mouse model system, with appropriate
references to other higher order model systems, which are discussed extensively elsewhere.

CDS8 T-Cell Responses following Acute Infection

Primary infection results in the activation and proliferation of a subset of naive CD8 T cells
that have the capability of specifically responding to the invading pathogen. By some estimates,
a mouse contains 50-200 naive CD8 T cells specific for any one epitope.! Following activation,
naive cells go through as many as 15-20 cell divisions and expand their numbers by up to 50,000
fold.** At the population level, these expanded CD8 T cells express effector molecules such as
perforin, granzymes and antiviral cytokines that aid in the elimination of infected host cells and
are typically referred to as cytotoxic T-lymphocytes (CTL). After clearance of the pathogen, most
pathogen-specific CD8 T cells die, but a small fraction (5-10%) of the cells survive long-term and
form the memory pool of CD8 T cells (Fig. 1), which provides rapid protection to the host in case
of reinfection with the pathogen (Table 1).>¢

A typical primary CD8 T-cell response to acute infection is classically divided into three phases
based on the kinetics of accumulation of antigen-specific T cells, as well as specific functional and
phenotypic properties that are associated with them (Fig. 1): (i) the effector phase, when naive
CD8 T cells get primed, undergo dramatic expansion, differentiate into potent killer cells (cyto-
toxic T-lymphocytes, CTL) by acquiring a host of effector functions (such as: antiviral cytokine
production, cytotoxicity, chemokine production and the ability to migrate to peripheral sites of
infection to mediate pathogen clearance); (ii) the contraction phase, when majority of the effector
CD8 T-cell population dies, with about 5-10% cells of the original burst size surviving to form the
long-lived memory pool; (iii) the memory differentiation and maintenance phase, when surviv-
ing CD8 T cells progressively acquire hallmark memory characteristics and stable memory CD8
T-cell numbers are maintained via homeostatic proliferation for up to the lifetime of the mouse.
Memory T cells differ from both naive and effector T cells and show a range of differentiation
states defined by phenotype (Table 2), function, anatomic localization and contribution to pro-
tection from reinfection. How and when is it decided which pathogen-specific CD8 T cells die
after clearance of the pathogen (terminal effectors, TE) and which become long-lived memory is
a question that is being vigorously studied and actively debated. In the context of this question,
we will next discuss our current knowledge of memory CD8 T-cell differentiation as occurs fol-
lowing an acute infection.

Table 1. Defining characteristics of memory T cells

* Memory cells exhibit faster responsiveness upon encountering antigen. Memory T cells are
more efficient than naive cells in mounting an effector response.

e Besides the lymphoid compartment, memory T cells also localize in nonlymphoid and mu-
cosal sites and can immediately confront the invading pathogen.

* Memory T cells are typically found at greater than naive frequencies.
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Figure 1. Antiviral CD8 T-cell responses. Illustration of the kinetics of CD8 T-cell response fol-
lowing infection of a mouse with a virulent pathogen such as Listeria monocytegenes, LCMV,
VSV or vaccinia. Antigen-specific T cells clonally expand during the first expansion phase in the
presence of antigen. After the virus is cleared the contraction phase ensues and the number of
antigen-specific T cells decreases due to apoptosis. After the contraction phase the number of
virus-specific T cells stabilizes and can be maintained for long periods (memory phase).

Programming during the Expansion Phase

CD8 T-cell responses are initiated when a naive cell encounters antigen. In vivo, T-cell activa-
tion involves the transmission of two distinct inductive signals from APCs to naive precursors.
Signal 1 is antigen-specific and delivered via stimulation of the T-cell antigen receptor (TCR)
by peptide-MHC class I complexes on the APC surface. Signal 2 (CD28) is costimulatory and
serves to amplify or modify signal 1 by lowering the threshold required for responsiveness. A
common theme that has emerged over recent years is that of “programming” of T-cell responses.”
Several studies demonstrate that following initial antigenic instruction, the ensuing CD8 T-cell
proliferation and effector cell differentiation events occur in a programmed fashion without
further need for antigen.®'* Moreover, the onset and kinetics of contraction and memory dif-
ferentiation are also programmed during the early stages of an immune response.®'* While these
studies underscore the importance of instructive priming events in T-cell expansion, effector
differentiation, contraction and memory generation, it is important to bear in mind that during
an acute infection, other environmental cues are also collectively and progressively integrated
during the course of CD8 T-cell immune responses to modulate CD8 T-cell differentiation.'

In addition to TCR and CD28 signals, recent data implicate the participation of a third signal
in promoting strong CD8 T-cell expansion, development of effector functions and survival of the
effector cells in vivo. This includes adjuvants, IL-12,"*° or Type-I interferons.?*** Using Type-I
interferon receptor deficient CD8 T cells, it was observed that in the absence of direct Type-I
interferon signals there was 99% reduction in CD8 T-cell expansion and memory generation. In
recent years, it has been shown that CD8 T-cell expansion and cytotoxicity are also impaired in the
absence of IL-21 signals.?®> Whether IL-21 signals can replace the third signal provided by IL-12
or Type-I interferons, or if IL-21 (and possibly another cytokine) is needed as an independent
(fourth?) signal remains to be determined. Other factors that are dynamically regulated during
an acute infection and have been implicated in impacting CD8 T-cell differentiation include
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Table 2. Markers that distinguish between naive, effector and memory T cells

Marker Naive Effector Memory
|

CD44 Low High High
CD11a Low High High
Ly-6C Low High High
CD122 Low High High
CD123 Low High High

1l
CD69 Low High Low
CD25 Low High Low
CD43 Low High Low
KLRG-1 Low High Low
Granzyme B Low High Low

1
CD62L High Low High
CD127 High Low High
CCR7 High Low High
Bcl-2 High Low High
CD27 High Low High

v
IFN-y Low High High
TNF-a High High High
IL-2 High Low High

This is a representative (not comprehensive) list illustrating the major patterns of changes seen as
naive T cells differentiate through effector and memory stages.

the strength and duration of antigenic stimulation, type of costimulatory signal (CD40, CD30,
CD27,0X-40, 4-1BB, inducible costimulatory molecule ICOS), the complex cytokine milieu of
inflammatory cytokines and growth factors, the type of antigen-presenting cells and interaction
with other cell-types like CD4 T cells.?*?¢ Signals through the inhibitory receptors (cytotoxic
T-lymphocyte antigen 4 CTLA-4, B and T-lymphocyte attenuator BTLA and programmed
death 1 PD-1, killer lectin-like receptor KLRG-1, 2B4, etc.) are also proposed to act to control
the extent of expansion and effector differentiation and prevent immunopathology by blunting
the immune response.>®!

Thus, collective assimilation of these signals directs the acquisition of key effector properties
such as production of antiviral cytokines (IFN-y, TNF-a), downregulation of lymphoid homing
molecules (CD62L, CCR7) to enable peripheral tissue migration and cytolysis of infected target
cells. This generation of potent CTLs is responsible for efficient pathogen clearance via direct
effects on the pathogen and cytolysis of infected target cells.
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Selective Survival of Memory Precursors during the Contraction Phase

After elimination of the pathogen, 90-95% of pathogen-specific CTL die by apoptosis during
the contraction phase. Apoptosis primarily occurs by Fas and Bim pathways,” leaving behind a
pool of surviving pathogen-specific cells that differentiate into long-lived memory cells. Towards
distinguishing pathogen-specific CD8 T cells that are destined to dic (terminal effectors, TE) from
those that will live long-term to comprise the memory pool (memory precursors, MP), several
studies were conducted. Based on these, we now know that the pathogen-specific CTL population
is heterogenous and is marked by differential expression of various cell surface (CD62L, IL-7Ra,
KLRG-1) and intracellular (IL-2, serine protease inhibitor 6, Spi6) markers.**! Furthermore, dif-
ferential expression of these markers is associated with diverse cell fates, in certain cases. For example,
in acute infections, higher level of expression of IL-7Ra, Spi6 and IL-2 and lower expression of
KLRG-1 by asubset of effector CD8 T cells correlates with selective survival and differentiation of
this subset into long-lived memory cells.**® Such phenotypic distinction of effector CD8 T cells
into two subsets: one that preferentially survives following antigen clearance (memory precursors)
and one that will predominantly die (terminal effectors) has opened up new lines of experimental
pursuit to dissect the signals that drive their selective generation. Moreover, this observation suggests
that the ability to survive during the contraction phase and differentiate into long-lived memory
cells is actively programmed during the priming and expansion phase, whereby enhanced survival
potential does not result from a passive, stochastic survival of a sub-population of effectors due to
limitation of growth factors in the face of largely increased T-cell numbers.

However, little is known about the cell intrinsic and cell extrinsic mechanisms that control con-
traction. While IL-2 and Spi6 expression directly correlates with memory precursors, their precise
role in mediating selective survival of memory precursors during the contraction phase is unclear.
It is proposed that by inhibiting granzyme activity, Spi6 protects effector CTL from damage dur-
ing target cell killing. The availability of growth factors including IL-15, IL-7 and IL-2 have been
proposed to play a crucial role during the contraction phase and memory T-cell maintenance.’%
Rapid contraction is indeed observed in the absence of IL-15 signals, but the size of the resultant
memory pool in IL-15-/- mice is similar to that in wild-type mice.®*#! This suggests that selective
survival of memory precursors is independent of IL-15 signals. While higher IL-7Ra effectively
distinguishes memory precursors during an acute infection, studies involving augmented delivery
of IL-7 signals did not lead to enhanced memory generation, % suggesting that IL-7 signals are
not sufficient to drive the preferential survival of memory precursors. Additionally, studies showing
similar contraction in the setting of an acute infection where CD8 T cells lacked IL-2Rot expres-
sion®* are suggestive of IL-2 independent survival of memory precursors during the contraction
phase. Knowledge of various cell intrinsic and extrinsic factors that regulate contraction will aid
in the manipulation of the kinetics and quantity of CD8 T-cell memory.

Memory CD8 T-Cell Differentiation and Heterogeneity

Afterantigen is cleared, terminal effector cells are eliminated during contraction, leaving behind
memory precursors that give rise to the long-lived memory pool. Differentiation of memory CD8
T cells is a progressive process wherein key genotypic, phenotypic and functional properties are
acquired over several weeks following antigen clearance.” In the absence of antigen, virus-specific
CD8 T cells return to a resting phenotype by downregulating the expression of certain effector
molecules such as granzyme B, while progressively acquiring key memory properties of rapid pro-
liferation upon exposure to antigen and antigen independent homeostatic proliferation in response
to IL-7 and IL-15 cytokines. It is noteworthy that not all effector functions are downregulated
during transition of effector cells into memory; memory CD8 T cells retain the ability to rapidly
produce IFN-y and TNF-a upon reexposure to antigen. Memory cells can also quickly reacquire
cytotoxic activity upon secondary antigen encounter. Combined with elevated frequencies of
virus-specific memory cells compared to naive cells (upto 1000-fold higher frequencies), the abil-
ity to rapidly mount effector functions renders memory cells more efficacious than naive CD8
T cells at combating infection (Table 1).
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Processes involved in conversion from effector to memory stage are largely unknown. Two
recent studies in Nature by Araki et al. and Pearce et al®* %", demonstrate for the first time
that metabolic changes in T cells may be crucial for T-cell memory generation. Using the im-
munosuppressive drug, rapamycin, which inhibits mT'OR signaling, Araki et al.** showed that
treating mice with rapamycin during the expansion phase led to enhanced generation of memory
precursors and long-lived memory T cells. Furthermore, treatment during the contraction phase
sped up the conversion of effector T cells to long-lived memory cells with superior recall ability.
It was also shown that mT'OR functioned in a T cell intrinsic manner to regulate memory cell
differentiation. In a parallel study, Pearce et al*®, found compromised memory generation in
TRAF-6 deficient mice. In microarray analyses they found that in the absence of TRAF-6, which
is a negative rcgulator of T-cell signaling, several metabolic pathways such as fatty acid oxidation
were defective. Compromised memory T-cell generation in TRAF-6 deficient mice could be
reversed by treatment with anti-diabetic drug metformin, or by rapamycin. Both these drugs af-
fect cellular metabolism; while metformin activates AMP kinase, an enzyme that inhibits mTOR
activity, rapamycin directly inhibits mT'OR. Typically, nTOR is activated by antigen-induced TCR
signaling and growth factors, and regulates various cellular processes including cell growth and
metabolism, autophagy, etc. While these studies suggest that an alteration of metabolic state via
mT'OR inhibition may be crucial for effector to memory conversion, how a change in metabolic
state of a T cell could enhance memory T-cell numbers and function remains to be determined.
Moreover, manipulation of mI'OR and key downstream signaling molecules holds promise for
improving future vaccine strategies.

The memory CD8 T-cell compartment is characterized by significant heterogeneity with
respect to surface protein expression, gene expression, effector functions, proliferative potential
and contribution to protection from reinfection and trafficking. Two main cell-types involved in
CD8 T-cell memory are effector memory (Tgy) and (CD62L-/CCR7-) central memory (Tcy)
(CDG2L+/CCR7+) cells.®3*51 T, cells are concentrated in secondary lymphoid tissues and have
little or no immediate effector functions. Instead, they respond to antigen by rapidly dividing and
differentiating into effector cells. Moreover, they possess stem cell like qualities of self-renewal in
response to homeostatic cytokines including IL-7 and IL-15. Ty cells, on the other hand, can
migrate to peripheral tissues and mount a more pronounced immediate cytolytic activity com-
pared to Ty cells. Ty cells undergo modest proliferation upon antigenic stimulation, albeit to
lower levels than Ty cells. Together, both Ty and Tey cells contribute to protective immunity
depending on the nature and route of infection. Besides this well-defined T/ Ty dichotomy of
recirculating memory CD8 T cells, additional levels of complexity in memory CD8 T-cell phe-
notypes exist between distinct peripheral tissues and in different infectious models; for example,
pathogen-specific lymphocytes residing in the gut, lung-airways or brain retain a distinguishing
CD69 expression.® Such functional, anatomic and phenotypic heterogeneity in the CD8 T-cell
memory pool has important consequences for immunity and the factors that govern this cell fate
decision are of major interest.

Molecular Basis of Optimal Memory Functions

Accelerated, more efficacious recall responses of memory cells result from a reprogramming
of gene expression profile by epigenetic changes involving DNA methylation, histone modifica-
tions and reorganization of chromatin structure.’>>> Moreover, accelerated demethylation of
the IFN-y promoter by a putative enzymatic factor specifically active in memory cells may pres-
ent an additional novel mechanism of differential gene expression.* In addition to epigenetic
changes, heritable programs of gene expression are also maintained by continued expression of
certain transcription factors such as the tissue-specific T-box transcription factors T-bet and
comesodermin.®>* Interestingly, mice with mutations of the genes encoding T-bet and eomeso-
dermin exhibit defective effector cytotoxic programming, decreased expression of CD122 and
are nearly devoid of IL-15 dependent memory CD8 T cells. These studies provide a molecular
link between programming of effector and memory CD8 T cells and exemplify a framework in
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which transcription factors specifying lineage function can also specify responsiveness to growth
signals. In addition, transcriptional repressor BCL6b has been shown to enhance magnitude of
secondary response of memory CD8 T cells independent of primary responses.”” Ata molecular
level rapid proliferative responses of memory upon rechallenge are also attributed to modifica-
tions in TCR signal transduction machinery leading to more sensitive and rapid assimilation
of stimulatory signals.>® Moreover, memory cells are precharged with several factors necessary
for G1- to —S-phase transitions,”* thereby suggesting that they may require a lower threshold
of stimulation to enter cell cycle.

Models of Memory CD8 T-Cell Differentiation

The differentiation path followed by memory CD8 T cells is keenly studied. Whether memory
cells arise as direct descendants of effector cells (linear differentiation model), or develop as a
separate lineage from naive cells (divergent differentiation model) has long been debated (Fig. 2).
Technological advances are now making it possible to distinguish between these two possibilities
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Figure 2. Models of memory cell differentiation. A simplistic illustration of the currently de-
bated models of T-cell differentiation is presented. Model 1 represents the B-cell paradigm of
divergent pathways followed by effector and memory T cells, such that following activation
of naive cells, divergent effector and memory lineages are generated via asymmetric division.
Model 2 is a representation of the more conventional linear pathway of differentiation of naive
T cells into effector cells and ultimately memory cells.
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more incisively, yet data supportingboth models of memory T-cell generation exist. The conventional
model of memory CD8 T-cell differentiation is the linear differentiation model, which proposes that
memory cells are derived directly from effector cells. In fact, several studies have shown that T-cell
activation and proliferation are tightly coupled to effector cell and eventually memory cell differen-
tiation.””*! The use of CRE/LOXP system in transgenic mice to indelibly ‘mark’ (via Cre-mediated
recombination) pathogen-specific effector T cells that have activated a “signature” effector gene
(granzyme B) promoter with a reporter molecule (alkaline phosphatase or a fluorescent molecule) ¢
showed that ‘marked’ effectors were maintained in the memory T-cell pool. Using this elegant system,
it was found that effector cells that upregulated granzyme B expression form long-lived memory
cells in both lymphoid and nonlymphoid compartments, indicating that both Ty and Ty cells are
direct descendants of effector cells. However, this experimental system cannot distinguish between
TE and MP cells and does not allow one to ask the question whether intrinsic differences between
TE and MP cells, other than granzyme B expression, may be responsible for their diverse cell fates.
With the ability to now phenotypically distinguish TE and MP cells, detailed protein expression,
gene profilingand functional analyses of these subsets has demonstrated that memory precursors are
remarkably similar to terminal effectors in their effector differentiation.” This further supports the
paradigm that memory T cells pass through an effector phase. However, whether transition through
an effector stage is obligatory for memory generation is unclear from these studies.

The second model of memory differentiation proposes that memory T-cell development occurs
in a nonlinear fashion without passing through a fully functional effector phase. Thus, asymmetric
division after activation of a naive T cell can lead to the formation of two distinct daughter cells with
polarized terminal effector and memory cell fates, due to unequal partitioning of proteins during
the first division.* In certain cases (for e.g., activation with heat killed bacteria, or in vitro stimula-
tion with high doses of IL-2 or IL-15 cytokines)®* memory T cells have been shown to develop
without passing through an effector-cell stage. Depending on the priming milieu, it is proposed that
antigen plus costimulation in the presence of an inflammatory milieu early during an infection (for
e.g. IL-12, Type-linterferons and IL-21 signals) may favor differentiation of effector T cells, whereas
antigen plus costimulation in the absence of inflammation (as antigen and infection are waning)
may lead to memory T-cell differentiation.***>”" A recent study provides evidence that the quality
of TCR signals can also determine effector versus memory development.”>”® By introducing point
mutations in the transmembrane domain of TCR-p, which leads to poor polarization of the TCR
to the immunological synapse without any evident effects on T-cell-APC interaction in vitro, the
investigators found that the effector differentiation was unaltered, but pathogen-specific memory
pool was largely abrogated. While this study clearly demonstrates that the quality of signal 1 from the
TCR can direct transcriptional programs that are unique to effector versus memory development,
it does not provide incontrovertible proof for the divergent model, as it is unclear whether memory
precursors were generated in this system but failed to differentiate into functional memory cells.
Also, whether the signaling defects that are associated with lack of memory generation in this study
are recapitulated in vivo is unclear at present.

In summary, presently evidence in support of both linear and divergent models of memory
differentiation exist and additional creative approaches are needed to resolve this issue. The key to
understanding the differentiation path followed by memory T cells will be to identify true memory
precursors at the earliest possible time during an immune response and to determine the signals
required for their generation.

Mechanisms Regulating Memory CD8 T-Cell Heterogeneity

While developing complete models of memory T-cell differentiation, it is also important to
consider the heterogeneous nature of memory T-cell pool. What is the source of memory T-cell
heterogeneity? Is this continuum of differentiation states and/or lineages programmed via unique
transcriptional regulation that is cell autonomous and can cell extrinsic factors be manipulated to
dictate the final outcome of the differentiation process? As discussed above, early priming events
strongly influence the number, location and functional properties (quality) of memory CD8 T cells.
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Although, antigen exposure is needed only briefly (20-24 hrs) to initiate T-cell development, the
type of effector and memory CD8 T-cell responses eventually generated is further influenced by the
duration and/or dose and the “context” of antigenic stimulation (for e.g, cytokine milieu, chemokines
signals and costimulation, as determined by the nature and activation state of APCs). Distinct lym-
phoid environments have also been shown to program T cells to adopt different trafficking properties,
thereby implicating unique environmental cues in possibly dictating memory outcome. Additionally,
following emigration from secondary lymphoid tissue, inductive signals unique to distinct anatomi-
cal compartments may further regulate memory CD8 T-cell differentiation by providing a unique
milieu of cytokines, costimulation, immune accessory cells and antigen persistence.

Itis believed that the balance between effector and memory cells and the heterogeneity in memory
population is directly related to the extent and frequency of TCR stimulation>®*¢”7#77 and the
division history of the cells (likely conditioned by the dose of the antigen), such that functionally
fit memory cells arise only under optimal stimulation conditions in which antigen load is effectively
controlled. This is incorporated in the decreasing potential model of memory differentiation (Fig. 3,
which proposes that the potential of effector CD8 T cells to differentiate into memory cells is
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Figure 3. The decreasing potential model of memory CD8 T-cell development. Optimal antigenic
stimulation triggers a developmental program of expansion and differentiation of naive T cells into
effectors, a fraction (5-10%) of which progressively differentiate into potent long-lived memory
cells following antigen clearance. Whereas suboptimal stimulation may lead to limited CD8 T-cell
expansion and/or impaired memory development and function, prolonged antigenic stimulation
also impairs memory generation potential by driving the cells towards a terminally differentiated
effector phenotype. Thus, the decreasing potential model postulates that cells become progressively
terminally differentiated with increasing stimulation and cell division. This is accompanied by
an increasing susceptibility to apoptosis and cells receiving the highest magnitude of stimulation
possess the lowest potential to survive and differentiate into memory cells. Furthermore, the gen-
eration of lymphoid and nonlymphoid lineages and the rate of development of lymphoid memory
cells are also regulated by the duration and/or strength of antigenic stimulation. Whereas a short
duration of antigenic stimulation favors the development of Tc, longer stimulation favors the dif-
ferentiation of terminal Tey cells. Apart from antigen, additional cell-extrinsic variables including
the cytokine and chemokine milieu, costimulatory and inhibitory signals (dependent on the type
and activation state of the APC), interaction with other cell-types (for e.g., CD4 T cells) and the
anatomic location might further impact the qualitative and quantitative aspects of a developing
T-cell response and the ensuing memory differentiation and maintenance.
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Figure 4. CD8 T-cell differentiation during acute and chronic infections. Acute viral infec-
tions are characterized by clearance of virus and progressive differentiation of CD8 T cells
into functional memory cells capable of IL-7 and IL-15 driven homeostatic proliferation in
the absence of antigen and robust recall proliferation and effector responses upon second-
ary encounter with the pathogen. Although early events during acute and chronic infections
are presumed to be similar, antigen persistence during chronic infections results in altered
differentiation of virus-specific CD8 T cells. Functional exhaustion develops as early as the
effector phase with progressive loss of functions. Memory T cells are also functionally defec-
tive when pathogen persists and are unable to homeostatically maintain their numbers in the
absence of antigen.

progressively lost with increased antigenic stimulation.)™ Several studies have helped further refine
this model to explain the generation of memory T-cell heterogeneity. It is proposed that whereas,
suboptimal stimulation might lead to limited T-cell expansion and memory development, optimal
TCR signal integration during activation of naive cells leads to the generation of effector cells
that have the potential to differentiate into memory cells.® Whereas a short duration of antigenic
stimulation favors Ty generation, longer stimulation promotes the generation of Tgy and TE
cells thereafter. In support of this, reducing antigen load, by antibiotics or by using higher CD8
T-cell precursor frequencies, was found to lead to a more rapid conversion to Tcy phenotype
(CDG2L+). 30487884 Since the expression pattern of CD62L on activated T cells appears to be
regulated by antigenic stimulation (initial TCR stimulation results in rapid shedding of CD62L
from cell-surface by proteolytic cleavage, but continued TCR stimulation leads to transcriptional
silencing of CD62L encodinglocus), it is interesting to speculate that differential modes of CD62L
downregulation may relate to differential reexpression during memory development. The decreasing
potential model of memory differentiation also explains CD8 T-cell dysfunction in chronic infec-
tions where antigen persists (Fig. 4). In this case effector T cells do not differentiate into durable
memory cellsand may survive in an antigen-dependent manner as dysfunctional cells (exhaustion),
or may eventually die (deletion). The degree to which CD8 T cells become defective appears to
correlate with antigen load and can range from partial loss of cytokine production to complete
loss of cytolytic function and cytokine secretion as discussed below.

CD8 T-Cell Responses following Persistent Infection

CD8 T-cell differentiation pathway described above represents the paradigm for most acute
infections. However, under conditions of chronic infections where antigen persists several aspects
of a normal CD8 T-cell response are altered (Table 3).% First, the hierarchy of epitope-specific
CD8'T cells may be skewed such that subdominant specificities can predominate the virus-specific
T-cell response, while immunodominant specificities may even be lost in certain cases.**%” Second,
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Table 3. Comparison of CD8 T-cell differentiation in acute and chronic infections

Characteristic CD8 T-Cell Differentiation
Acute Infection

Virus is cleared and Functional memory CD8 T cells capable of
T cells experience rest  antigen-indepent longterm persistence develop
from antigen

Persistent Infection

Persisting high level Functional exhaustion (loss of cytokine produc-
viral replication leads  tion and CTL activity) and deletion of certain

to continuous TCR CD8 T-cell clones occurs. Exhaustion correlates
stimulation, such that  with expression of inhibitory cell surface recep-
there is no rest from tors. Memory cells are unable to persist in the
antigen absence of antigen

the tissue distribution of virus-specific CD8 T cells may be altered, such that virus-specific cells
preferentially localize in nonlymphoid tissues. This is likely driven by antigen localized in these
compartments or by altered expression of homing molecules on virus-specific CD8 T cells. Third,
chronic infections result in severely impaired T-cell function (functional exhaustion) and can also
lead to physical elimination of responding T cells (deletion). Fourth, the molecular requirements
for maintenance of virus-specific CD8 T cells during chronic infections are also altered.® In the
following sections, we will describe the altered CD8 T-cell responses observed during chronic infec-
tions and discuss our current understanding of the molecular basis of CD8 T-cell dysfunction.

Functional Exbaustion of CD8 T Cells during Chronic Infections

One of the key properties of memory CD8 T cells generated following acute infection is that
they maintain the ability to reactivate antiviral effector functions upon antigenic stimulation.
Exhaustion or loss of effector function was first reported in mice chronically infected with LCM V.5
Duringchronic LCMYV infection, there is a hierarchical loss of the ability to perform effector func-
tions, starting during the effector phase and becoming progressively more severe as the infection
progresses.® This exhaustion of effector functions occurs in a hierarchical manner. First, properties
such as the ability to produce IL-2 and mount cytolysis and robust proliferation are lost at early
stages of exhaustion. During this stage there may be loss of TNF-a production as well, which
appears to be more resistant to exhaustion than IL-2. As infection progresses, [IFN-y production
also begins to be compromised, ultimately leading to functionally inactive virus-specific cells that
do not produce IL-2, TNF-a or IEN-y and are incapable of ex vivo cytotoxicity. If antigen load in
the form of MHC/peptide complexes presented in vivo is high, epitope-specific CD8 T cells can
be physically deleted. During chronic LCMYV infection, this is the case for two immunodomiant
responses (Db/NP396 and Kb/GP34)."” This continuum of inactivation, with loss of function
becoming progressively worse as either viral load or the duration of infection increases, is distinct
from T-cell anergy, wherein acquisition of function is impaired to begin with following priming.
Functional exhaustion is not limited to chronic LCMYV infection, but is also observed in other
animal models such as polyoma virus,” Friend’s leukemia virus,”! adenovirus,”” mouse hepatitis
virus”® and SIV infection of macaques.”

Altered Memory CD8 T-Cell Homeostasis

A hallmark of memory CD8 T cells generated following acute infections is their ability to
persist in the absence of antigen. Longevity of memory T cells, perhaps indefinite, is attributed to
their stem cell-like quality of replenishing their numbers in the absence of antigen via homeostatic
proliferation. This property of self-renewal in the absence of antigen distinguishes memory CD8
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Table 4. T-cell homeostasis in acute and chronic infections

* Memory CD8 T Cells can persist and maintain their numbers in an antigen-free environment
by undergoing homeostatic proliferation to replenish their pool. Homeostatic proliferation oc-
curs in response to IL-15 and IL-7 and does not require stimulation with cognate antigen.

¢ In chronic infections many pathogens can persist and provide continuous or intermittent stimu-
lus to maintain memory T-cell numbers.

T cells from naive and effector cells (Table 4). Clearly factors that enhance cell division (IL-15)
or promote cell survival (IL-7) are important in maintaining the numbers of memory T cells in
the absence of antigen. Bone marrow is the preferential homing site for memory T cells,”>* where
they proliferate more extensively than in secondary lymphoid organs in response to self-renewal
signals, which are likely produced constitutively by specific cell-types within the bone marrow.

Contrary to acute infections, virus-specific CD8 T cells generated during chronic LCMV
infection fail to persist when adoptively transferred into naive mice. 37 This defect in CD8
T-cell homeostasis correlates with decreased expression of CD127 and CD122, the receptors
for homeostatic cytokines IL-7 and IL-15. Similar observations of loss in homeostatic prolifera-
tion in response to IL-15 was also reported for CD8 T cells generated in response to the murine
y-herpesvirus infection of mice!'” and is likely not limited to mouse models of chronic viral infec-
tion. Although virus-specific CD8 T cells from chronically infected mice respond poorly to IL-7
and IL-15, they are maintained for long-periods in chronically infected mice. This maintenance is
apparently dependent on the presence of infection since virus-specific cells decline when adoptively
transferred into uninfected hosts. As opposed to the slow and steady homeostatic proliferation of
antigen-independent memory cells generated following acute infections, CD8 T cells are main-
tained in chronic infections via extensive proliferation.”” This suggests an altered homeostatic
regulation in persistent infections.

Mechanisms of CD8 T-Cell Exhaustion

As we continue to understand the underlying molecular causes of CD8 T-cell exhaustion, it is
important to note that the functional programming of memory responses during persistent infec-
tion of mice is not hardwired during priming but is alterable and is impacted by continuous instruc-
tion from the antigenic environment. Through an elegant set of adoptive transfer experiments,' it
has been shown that removal of dysfunctional T cells from the infection and/or antigenic milieu
bears the potential to rescue T-cell functionality. When dysfunctional CD8 T cells are transferred
from a persistently infected mouse into a mouse that has cleared an acute infection, reversal of
T-cell dysfunction is observed such that cells regain their ability to produce TNF-otand IL-2 and
also upregulate the expression of survival molecules CD127 and Bcl-2. However, restoration of
function was dependent on the extent of CD8 T-cell dysfunction, such that longer duration of
persistent infection resulted in a progressive loss of functional recovery potential. This provides a
basis for future therapeutic strategies to treat persistent viral infections.

Understanding the molecular basis of CD8 T-cell exhaustion is an area of intense research.
CD8 T-cell exhaustion is marked by gene expression changes, such that the transcriptional profile
of exhausted CD8 T cells differs from that of naive CD8 T cells as well as functional effector and
memory cells generated during an acute infection.'” Interestingly, exhausted CD8 T cells gener-
ated following chronic LCMYV infection exhibit overexpression of several inhibitory receptors
(PD-1, 2B4, CTLA-4, LAG-3, CD160, etc), which in certain cases is even nonredundant.!®
Using the mouse model of chronic LCMYV infection, programmed death-1 (PD-1), an inhibitory
receptor in the CD28 superfamily, has been found to serve as an important negative regulator of
T-cell function.'®® Exhausted CD8 T cells express high levels of PD-1 compared to functional
memory cells and blockade of PD-1/PD-L1 interactions results in enhanced T-cell function
and viral control. HIV-1 and HCV-specific CD8 T cells also express high levels of PD-1 and in
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the case of HIV-1 patients, the level of PD-1 expression correlates directly with viral loads and
inversely with CD4 T-cell counts.'® ' Furthermore, HIV-1 long-term nonprogressors expressed
lower levels of PD-1 than progressors and PD-1 expression declined in viremic patients following
initiation of HAART.!*®!!! In vitro blockade of the PD-1/PD-L1 pathway on human cells led
to enhanced proliferation and improved function of HIV-specific CD4 and CD8 T cells as well
as HCV-specific CD8 T cells.">''® Whether different infections upregulate unique inhibitory
receptors and whether different inhibitory receptors act cooperatively to downregulate T-cell
responses in chronic infections are important questions that will guide development of therapeutic
approaches specific to a particular pathogen. Additionally, the mechanisms by which CD8 T-cell
function is restored by blockade of inhibitory receptors present another important question that
will further our understanding of CD8 T-cell exhaustion.

IL-10 has also been recently implicated in limiting optimal T-cell responses during chronic
infections.!*!" Mice lacking IL-10 or blockade of IL-10R led to efficient control of replication
of chronic LCMYV and development of functional T-cell responses.!'>!"* In contrast, control mice
progressed to chronic infection. These results suggest that the IL-10/IL-10R pathway plays a key
role in early events that determine whether an infection is rapidly cleared or becomes chronic with
T-cell dysfunction. Additionally, Foxp3+ regulatory T cells (Tregs) can also influence the quality
and potency of antiviral CD8 T cells directly by modulating CTL function and indirectly via pro-
duction of immunoregulatory cytokines or inhibition of APC maturation. Given the potent ability
of Tregs to suppress T-cell proliferation in vitro''>!'¢ and their role in modulating the cytotoxicity
of CD8 T cells in vivo,'” it is possible that different negative regulatory pathways such as IL-10,
PD-1 and Tregs may regulate different effector T-cell properties during chronic infection.

Conclusion

In conclusion, recent years have seen major advances in the field of CD8 T-cell memory dif-
ferentiation. With the molecular distinction of memory precursors and terminal effectors, we
are now uniquely poised to ask important mechanistic questions pertaining to the generation of
memory cells. For example, precisely when during an immune response are memory cells gener-
ated? What are the signals that regulate the generation and developmental program of memory
cells? Is there a unique transcriptional signature comprising memory-specific genes? What are the
precise mechanisms regulating T-cell exhaustion? Can dysfunctional CD8 T cells be rescued at
any stage of exhaustion? Answers to these and many other exciting questions will help move the
field forward towards a more rational design of vaccines that aim at inducing potent CD8 T-cell
immunological memory to chronic viral infections and cancer.
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CHAPTER 8§

Longevity of T-Cell Memory

following Acute Viral Infection
Joshua M. Walker and Mark K. Slifka*

Abstract

nvestigation of T-cell-mediated immunity following acute viral infection represents an area of
Irescarch with broad implications for both fundamental immunology research as well as vac-

cine development. Here, we review techniques that are used to assess T-cell memory including
limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine
staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory
is explored in the context of several acute viral infections including vaccinia virus (VV), measles
virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell
subpopulations exhibit distinct cytokine profiles and these profiles change over the course of in-
fection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin
are also observed in virus-specific T cells following infection. As a result of this work, we have
gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well
as new insight into the patterns of immunodominance and differential regulation of cytokines
and cytotoxicity-associated molecules. This information may eventually lead to the generation
of more effective vaccines that elicit T-cell memory with the optimal combination of functional
characteristics required for providing protective immunity against infectious disease.

Introduction

The concept of immunological memory is well established, but it was not until the twentieth
century that the cellular origins of antimicrobial immunity and the basis of inmunological memory
first began to be elucidated.! It is remarkable how the field of immunology has changed in the four
decades that have passed since Mitchell and Miller postulated the existence of T cells as a distinct
subset of small lymphocytes® (Fig. 1). During this time, several of the initial questions regarding
T-cell specificity and function have been answered and yet many new questions regarding the dy-
namics and functional attributes of the memory T-cell compartment have been raised. To answer
these questions, a multitude of quantitative techniques have been developed and optimized to
assess T-cell memory. In the carly days of immunology, these techniques often consisted of bulk
analysis of broadly defined cell populations with little understanding of the mechanisms employed
in their function. Today, it is possible to analyze cytokine production, cytolytic potential and the
phenotype of highly defined subsets of even rare T-cell populations directly ex vivo. Thus, the
evolution of T-cell analysis (Fig. 1) is characterized by a trend toward measuring more precisely
defined T-cell subsets and developing a progressively more refined ability to determine function
at the single cell level.
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Figure 1. Historical advances involved with analysis of T-cell memory. In 1968, Mitchell and
Miller proposed the existence of a subset of lymphocytes that were thymus-derived and
distinct from bone marrow-derived B-cells,? setting the next four decades of T-cell research
in motion. The development of the in vitro cytotoxicity assay in the late 1960s* made it pos-
sible to determine that T cells and not B cells, were the component of small lymphocytes that
were directly cytotoxic.* In the mid 1970s, the concept of CD4+* and CD8* T-cell subsets arose
when it was determined that helper activity and cytotoxic activity were restricted to distinct
subpopulations of T cells.®” In the late 1960s, the first flow cytometers were developed” and
this technology would later come to play an integral role in T-cell analysis. In the late 1970s,
the limiting dilution assay was developed.®'® This is a significant landmark in T-cell analysis
because the limiting dilution assay was the first technique to quantitatively assess T-cell
responses to antigen. In the late 1980s, the cytokine ELISPOT (enzyme-linked immunospot)
assay was developed, allowing T-cell responses to be quantitatively measured without requir-
ing ex vivo T-cell expansion." In the early 1990s, intracellular cytokine staining assays were
developed, making it possible to quantitate the expression of multiple cytokines directly ex
vivo.”?™ In 1996, peptide-MHC Class | tetramers were developed.’ The introduction of te-
tramer reagents made it possible to quantitatively measure the frequency of peptide-specific
T-cell populations regardless of their function/cytokine profiles and without performing ex vivo
restimulation. Since the antigen-specific T cells do not require restimulation to be visualized
with peptide-MHC Class | tetramers, the native in vivo phenotype of the cells is also preserved.
By the late 1990s and through today, polychromatic flow cytometry?*7> has revolutionized the
study of T-cell function and phenotype by making it possible to simultaneously analyze T-cell
lineage markers, phenotype, cytokine profiles and cytotolytic protein expression of even rare
T-cell populations directly ex vivo.

Cytotoxic activity has been a mainstay of T-cell analysis since its development in the 1970s.
Through the use of Cr51-release assays, Cerottini et al demonstrated that the cytotoxic T cells
present in a mixed population of lymphocytes could be depleted with anti-0 antibodies.? Shortly
thereafter, others proved that depletion of B cells had no effect on the cytotoxic properties of
mixed lymphocyte populations,® proving that it was indeed the thymus-derived lymphocyte
population that was responsible for cell-mediated destruction of allogenic targets. This discovery



98 Memory T Cells

was followed by the work of two independent groups who demonstrated that cells bearing the
CD8 antigen were responsible for the cytolytic activity of T cells,’” further defining this popula-
tion. During this time, Taswell and colleagues developed limiting dilution assays which allowed
the frequency of antigen-specific T cells to be quantitatively determined.®!® Limiting dilution
assays remained the cornerstone of T-cell quantitation until the late 1980s and early 1990s when
the development of cytokine ELISPOT assays,"" intracellular cytokine staining (ICCS)'*'% and
peptide-MHC Class I tetramers' greatly expanded the number of techniques that could be used for
quantitatively measuring T-cell responses directly ex vivo. In a landmark study published in 1998,
Murali-Krishna et al'® demonstrated that IFNy ELISPOT assays, IFNy ICCS and peptide-MHC
Class I tetramers all identified the same approximate frequency of peptide-specific CD8* T cells
following infection of mice with lymphocytic choriomeningitis virus (LCMV). Moreover,
they compared these new techniques to the standard approach of limiting dilution analysis and
demonstrated that the number of antigen-specific T cells determined by the older technique was
off by 10-fold or more. In other words, limiting dilution analysis, the best technique available
up until the 1990’, was detecting <10% of the total virus-specific T-cell response identified by
ELISPOT, ICCS, or peptide-MHC Class I tetramers. By performing T-cell quantitation by each
of these approaches in one comprehensive study, this work provided the first “Rosetta stone” for
understanding how these different approaches to T-cell quantitation compared with each other
in direct side-by-side analysis. Remarkably, peak antiviral T-cell responses to LCMV reach about
50-75% of the total CD8* T cells in the spleen.'®'” This is likely due to the tropism of the virus;
LCMYV infects lymphoid tissues such as the spleen and virus-specific T cells preferentially home to,
and proliferate at, sites of infection. Peak CD8* T-cell responses against vaccinia also reach ~25%
of total splenic T cells'® and frequencies of virus-specific T cells in nonlymphoid organs can also
be quite high."” For instance, the frequency of virus-specific T cells may reach 25-80% of the total
T-cell population in the lungs following acute respiratory infection®*** or in the brain following
infection with neurotropic viruses.”*** The high frequency of virus-specific T cells observed in these
murine studies was thought to be restricted to rodent models of acute viral infection. However, as
discussed later in this chapter, high frequencies of virus-specific T cells are now being identified
during acute human infection as well. With the advent of polychromatic flow cytometry, in the
last decade it has become possible to analyze ten or more fluorescence parameters® and this now
makes it feasible to simultancously analyze phenotype, cytokine production, cytolytic potential,
proliferative status and viability of T cells identified by peptide-MHC tetramers or by antigenic
stimulation. These advances in technology have lead to exciting new developments in our under-
standing of human T-cell memory.

Memory T-Cell Responses following Acute Viral Infection

T-cell memory can be surprisingly long-lived and studies examining the duration of cellular
immunity following smallpox vaccination have demonstrated that antiviral CD4* and CD8* T-cell
responses can be identified for up to 75 years after a single acute viral infection.?*”” Measurement of
virus-specific T-cell frequency however, represents only one dimension of T-cell memory and as our
ability to quantitate and functionally assess T cells has evolved, our understanding of the dynam-
ics and duration of T-cell memory to acute viral pathogens has continued to grow. There are no
cross-reactive orthopoxviruses endemic to the US and so analysis of immunity following smallpox
vaccination with vaccinia virus (VV) provides an opportunity to measure T-cell memory in the
absence of environmental re-exposure.”” Likewise, analysis of T-cell memory following childhood
measles virus (MV) infection or vaccination (e.g., MMR; measles, mumps, rubella vaccination) or
yellow fever virus (YFV) vaccination also provide important information regarding T-cell memory
to viruses that cause only rare outbreaks (MV) or are no longer endemic in the US (YFV).

Edward Jenner was the first to formally demonstrate long-term protective immunity against
orthopoxviruses® and in 1800, he published a report demonstrating that immunity following
cowpox infection (the basis of contemporary smallpox vaccination) could be maintained for >50
years after infection.”” Over 200 years passed before the technology was available to quantitatively
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Figure 2. Immunological memory following vaccinia virus (VV) infection. Vaccinia virus infec-
tion provides a prototype for understanding the kinetics and duration of antiviral immunity
following acute viral infection. Antiviral antibody responses peak within a few weeks after
infection and after passing through a short period of decline, the humoral immune response
remains quite stable, declining with a half-life of approximately 92 years.”® Virus-specific
CD4* and CD8* T-cell responses peak within 2-3 weeks after infection®5 and then follow-
ing an early rapid decay rate, the estimated half-life of T-cell memory is approximately 8-15
years.?>3 Unlike the antiviral CD4* T-cell response that is relatively uniform in terms of decay
kinetics, antiviral CD8* T-cell responses appeared to split, with approximately half of the
VV-immune population losing detectable CD8* T-cell memory at some time in the 20 years
postvaccination. Further studies are needed, but it is possible that by using multiple cytokine
combinations for estimating memory T-cell frequencies, we may find CD8* T-cell memory
maintained in a larger proportion of subjects than the number determined based only the
frequency of IFNyTNFa* T cells.?

measure the duration/half-life of human T-cell responses following smallpox vaccination. In one
study, VV-specific T-cell responses measured mainly by IFNy ELISPOT analysis showed that
T-cell memory was detectable for >50 years while delcining slowly with a half-life of ~14 years.*
Likewise, we measured the frequency of IFENy*TNFo* VV-specific memory T cells by ICCS and
found that memory could be maintained for up to 75 years and that virus-specific CD4* and
CD8* T-cell responses declined with a half life of approximately 8-15 years* (Fig. 2). Despite us-
ing different T-cell quantitation techniques, these independent studies were in close agreement in
terms of the estimated half-life of long-term T-cell memory. However, these studies were focused
primarily on memory T-cell responses analyzed several years after vaccination and further studies
have now examined the earlier kinetics of VV-specific T-cell responses.®’ Interestingly, primary
antiviral T-cell responses in most human subjects peak between 14-21 days after VV infection,
which is a substantial delay compared to VV-specific T-cell responses in mice, which peak within
the first 7 days after infection.” Another interesting observation revealed by these studies® is
that antiviral CD8* T-cell responses decline dramatically over the course of the first few weeks/
months after the infection has cleared before reachinga more stable, albeit slowly declining platean
phase of immunological memory. Comparing studies that examined the early VV-specific T-cell
response®' to the studies that focused on long-term T-cell memory,?**” it appears that antiviral
T-cell responses may decline in a biphasic manner; a rapid initial decline in virus-specific T-cell
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numbers followed by a slower decline in T-cell memory at later time points. With this in mind, it
is possible that the 8-15 year halflife of T-cell memory following VV infection?** may be an overly
conservative estimate and once these different decay rates are separated, the duration of latc—stagc
T-cell memory at >1 year post-infection may be longer than currently estimated.

Analysis of virus-specific CD4* T-cell memory versus CD8* T-cell memory following VV infec-
tion has also revealed some interesting differences between these two T-cell subsets. Although the
long term T-cell half life estimates are similar (T, = 8-12 years and T}, = 8-15 years for CD4*
and CD8* T cells, respectively), CD4* T-cell memory appeared to be maintained more efficiently
than CD8"* T-cell memory since nearly half of VV-immune subjects lost detectable CD8* T-cell
responses within 20 years after vaccination whereas CD4* T-cell responses declined but remained
rcadily detectable in most individuals during the same observation pcriod.26 Similar results were
found by an independent group®® and this observation may be due, at least in part, to strikingly
different dynamics in the early kinetics of the T-cell response following VV infection. When
compared side-by-side, VV-specific CD4* T-cell numbers do not reach the same peak levels as
the coinciding CD8* T-cell response, but they also do not decline as sharply as their CD8* T-cell
counterparts during the first weeks/months after infection.”>* This indicates that the kinetics and
relative magnitude of human CD8* and CD4* T-cell subpopulations differ substantially follow-
ing this acute viral infection and a better understanding of why these differences exist will be an
important area of future investigation.

Lifelong immunity occurs following childhood infection with MV and this was perhaps
most clearly demonstrated by Panum® who showed that following a MV epidemic in 1781,
isolated inhabitants on the remote Faroe Islands were protected against reinfection during a
second outbreak that occurred 65 years later in 1846. Since the island was not visited during the
intervening years between these two outbreaks, it appears that antiviral immunity persisted in
the absence of environmental re-exposure. It is believed that strong T-cell responses are impor-
tant for protection against MV*” and several techniques have been used to measure MV-specific
T-cell responses including direct ex vivo CTL assays, ELISPOT, ICCS and peptidc—MHC Class
I tetramer staining.””** One study”' examined the relative levels and duration of MV-specific
T-cell memory following 10 days of in vitro expansion of carboxyfluorescein succinimidyl es-
ter (CFSE)-labeled lymphocytes. Following this period of expansion, MV-reactive CD4* and
CD8* T-cell responses could be detected for up to 34 years after vaccination and interestingiy,
the study suggests that CD8* T-cell memory remained largely intact whereas CD4* T-cell
responses appeared to decline over time. This appears to be different from the results observed
following VV infection wherein CD8* T cells initially decline more rapidly than CD4* T cells
and then at later time points both populations decline slowly with similar decay rates. Further
studies will be needed to determine if CD4* and CD8* T-cell memory responses following VV
infection represent a paradigm for T-cell responses to other acute viral infections or whether
each viral infection instead triggers T-cell memory with different long-term kinetic patterns for
CD4* and CD8* T-cell subsets.

Humoral immunity against YFV can be maintained for up to 75 years after infection® but
there is relatively little known about the overall duration of YFV-specific T-cell responses. One
longitudinal study identified stable T-cell memory by IFNy ELISPOT analysis for up to 18 months
after YFV infection® but another more recent study by Miller et al* has provided further insight
into the kinetics and magnitude of the early phases of the antiviral T-cell response to YFV. In this
study, antiviral T-cell responses against YFV and VV were compared using multiple quantitation
techniques including peptide-MHC Class I tetramer staining, ICCS and two sets of phenotypic
markers that identified activated T-cell populations. As indicated in Figure 3, peptide-MHC
Class I tetramer staining identifies a small defined T-cell population with specificity to only a
single peptide epitope bound to one MHC haplotype. Use of IFNy ICCS (or ELISPOT) allows
T cells of multiple antigenic specificities to be identified by using peptide pools or infected APC for
stimulation. If more than one cytokine is used for T-cell quantitation, then an even larger frequency
of virus-specific T cells can be identified because it will include T-cell populations that do not
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Figure 3. Comparison between different quantitation approaches used to measure T-cell
memory. The measured frequency of antigen-specific T cells depends to a great extent on
which techniques are used for their quantitation. This figure shows an illustration of the
proportion of a virus-specific T-cell response that can be detected using currently available
techniques. Peptide-MHC Class | tetramer analysis is highly specific, but identifies the lowest
percentage of the total virus-specific T-cell response due to measuring only T cells with a single
peptide specificity. Measuring a single cytokine such as IFNy by ICCS allows identification of
a potentially broader subset of T cells than using a peptide-MHC Class | tetramer due to the
ability to use pools of peptides, entire viral antigens or virus-infected APC. Performing ICCS
that is based on the production of multiple cytokines may further increase the number of
virus-specific T cells that are measured due to identification T-cell populations that may not
produce any one cytokine of interest. For instance, several studies have found virus-specific
T-cell populations that fail to produce IFNy, the most common cytokine used for measur-
ing T-cell memory. T-cell quantitation based on phenotypic analysis using markers such as
CD38*HLA-DR* or Ki-67*Bcl-2-, is capable of detecting the highest proportion of activated
T cells during the early stages of infection. Although we may never know the “total” T-cell
response mounted during acute human infection, the various assays described here provide
the initial steps towards achieving this goal.

*Note: Estimating an antiviral T-cell response based on phenotypic markers (CD38*HLA-DR*
or Ki-67*Bcl-27) is only valid during the first few weeks after infection since these activation
markers are rapidly down-regulated on virus-specific T cells at later time points.

produce IFNy directly ex vivo. In addition to these antigen-specific assays (peptide-MHC Class I
tetramer binding or cytokine production), analysis of virus-induced T-cell populations can also be
indirectly estimated by measuring the frequency of T cells bearing an activated CD38*HLA-DR*
or Ki-67*Bcl-2- phenotype.*>* Using either of these phenotypic marker combinations, it appears
that there are ~3-fold more T cells elicited by VV and YFV infection than what are measured
using other current approaches to T-cell quantitation. Based on the Miller study,® the frequency
of virus-specific T cells at the peak of the antiviral immune response could reach as high as 12%
to 40% of total peripheral T cells following YFV or VV infection, respectively. This is intriguing
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because it indicates that human T-cell responses to acute viral infection may be far more robust
than previously realized.** These studies also showed that YFV-specific T-cell kinetics mimic
the responses observed following VV infection, with antiviral T-cell responses peaking by ~14
days after infection and then dropping rapidly before reaching the memory phase of the immune
response within 1-6 months after infection.

Functional Attributes of Human Memory T Cells

Concerns with bioterrorism and the threat of natural emerging/re-emerging infectious
disease has greatly accelerated our understanding of human T-cell immunology. As noted
above, we have gained considerable information in terms of the induction and maintenance
of immunological memory. We have also made substantial progress in understanding the basic
antiviral functions of human CD4* and CD8* T cells and their role in antiviral immunity. The
NIH funded a program entitled, “Large Scale B- and T-cell Epitope Discovery” and this has
led to an explosion of research dedicated to identifying CD4* and CD8* T-cell epitopes in a
variety of human pathogens (see http://www.immuneepitope.org). For orthopoxvirus research
in particular, this has revolutionized the field. Over 170 human and murine T-cell epitopes
have been mapped in VV* and this has led to the opportunity to ask immunological questions
that would have otherwise been unfeasible. Is T-cell immunodominance a factor in shaping the
immune response to a complex virus in outbred human populations? What are the attributes
of highly immunogenic viral proteins? Are early gene products targeted more often than late
genes? With a toolbox of mapped CD4* and CD8* T-cell epitopes in hand, we are beginning
to find answers to these fundamental questions.

T-cellimmunodominance occurs when the majority of the T-cell response is directed to only a
small number of potential peptide epitopes. VV represents a large DNA virus with approximately
180 predicted open reading frames (ORFs) and the potential to harbor many peptide epitopes.
Close to 120 human CD8* T-cell epitopes have been mapped across 103 VV ORFs, making it
clear that the antiviral CD8* T-cell response following this acute viral infection is remarkably
broad.* This is not just a characteristic of VV since CD8* T-cell responses to MV are also diverse
and one study mapping HLA-A2-restricted T cells found that no single peptide dominated
the T-cell response.®’ Similar to VV-specific CD8* T-cell responses, VV-specific CD4* T-cell
responses are surprisingly diverse with CD4* T cells recognizing 122 different VV ORFs.” On
average, each subject developed CD4* T-cell responses against 39 VV ORFs with a range of 13
to 63 VV ORFs. In comparison, a proteome-wide analysis of antiviral CD4* T-cell responses
to human cytomegalovirus (CMV) revealed a median of 12 CMV ORFs with as many as 39
CMYV ORFs being recognized by CD4* T cells.*® Although these viruses are similar in genome
size and number of ORFs, they differ significantly in the sense that VV induces only an acute
infection that is rapidly cleared whereas CMV induces a chronic and lifelong infection.

A meta-analysis of viral protein immunogenicity was performed based on 8 studies that
together included 151 human and murine CD8* T-cell epitopes spanning 62 VV ORFs.#
Based on V'V protein expression kinetics, 47% of the CD8* T-cell response targeted early genes,
19% targeted late genes and the remaining 34% of the response targeted genes with unknown
kinetics or both early and late kinetics. Although not absolute, these results indicate that CD8*
T cells show a trend toward preferentially targeting early gene products. Comparisons between
viral proteins divided according to functional attributes (e.g., replication/viral regulation,
virulence/host range or structural) did not reveal a clear preference in CD8* T-cell recogni-
tion in this meta-analysis. Comparison of protein localization indicated that nearly half (48%)
of the CD8* T-cell response targeted intracellular proteins with 12% of the T cells targeting
membrane proteins, 8% targeting secreted proteins and 32% of the response directed towards
proteins of unknown localization. In a large proteomic analysis of CD4* T-cell responses to
VV, the most commonly targeted ORFs included structural proteins and proteins with late
expression kinetics.*” There was also a trend towards higher recognition of larger vs smaller virus
proteins.”” Similar results were observed after mapping murine T-cell epitopes in VV-infected
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mice showing that CD8* T-cell responses tended to target early gene products whereas CD4*
T-cell epitopes showed a modest trend towards recognition of late gene products (39% ecarly,
61% late gene recognition by CD4* T cells, respectively).” Together, this indicates that T-cell
responses to a complex virus such as VV is broad and targets a wide variety of proteins based
on localization, structure/size and time of gene expression, which together is likely to provide
eflicient recognition of infected cells during the course of acute viral infection.

Perhaps the most important aspect of T-cell memory is the ability to express a variety of
antiviral effector molecules upon cognate interactions with their specific peptide antigen.
VV-specific T cells produce a number of different cytokines including IFNy, TNFa, IL-2,
IL-4, IL-13 and MIP1{,*5%%! costimulatory adhesion molecules such as CD40L"* and cy-
tolytic molecules such as granzyme A, granzyme B and perforin.?>**>*>% The expression pattern
of different effector molecules depends on the T-cell subpopulation (CD4 vs CD8) as well as
the time point examined after infection, since expression profiles often change dramatically
between the peak of the antiviral T-cell response and the resting memory stages of the immune
response. Although both CD4* and CD8* T cells have the ability to express [IFNy, TNFa and
IL-2, only VV-specific CD4" T cells express the Th2 cytokine, IL-13.* IFNy is the most com-
mon cytokine used to measure T-cell responses and in murine models there is essentially a 1:1
ratio between IFNy* CD8* T cells and peptide-MHC Class I tetramer* T cells.’* With human
T cells (especially human CD4* T cells), it is becoming clear that IFNy production may iden-
tify only a subpopulation of the total virus-specific T-cell response. Some studies have identi-
fied VV-specific CD4* T-cell clones that proliferate against VV antigens, but fail to produce
IFNY.% Likewise, other studies have identified primary VV-specific CD4* T cells that were
IFNy-negative but still produced other cytokines including TNFa,, IL-2, or IL-13 in response
to VV stimulation.?** Indeed, analysis of IFNy, TNFa and IL-2 production by VV-specific
CD4* T cells revealed T-cell subpopulations producing each of the 7 possible combinations
of these 3 cytokines.” Compared to CD4* T cells, VV-specific CD8* T cells are more likely to
express IFNy. However, detailed analysis ofcytokine proﬁlcs including IFNy, TNFa, IL-2 and
MIP1p also demonstrate the existence of VV-specific CD8* T-cell subpopulations that express a
variety of cytokines in the absence of IFNy production.*® These variations in cytokine expression
patterns may explain the dichotomy observed in long-term CD8* T-cell responses measured by
Hammarlund et al.? In those studies, polyfunctional CD4* and CD8* T-cell responses were
measured on the basis of dual production of two cytokines, IFNy and TNFa. Although CD4*
T-cell responses appeared fairly uniform in their decay rates, CD8* T-cell responses split into two
groups by 20 years postvaccination wherein about half of VV-immune individuals maintained
detectable CD8* T-cell memory and the other half of the sample population appeared to lose
detectable VV-specific CD8* T-cell responses (Fig. 2). Retesting of a subset of these samples has
revealed that many of the VV-specific CD8* T cells examined at >20 years after infection had
not actually disappeared, but instead appear to make other cytokine combinations besides IFNy
and TNFa (Slifka and Hammarlund, unpublished results) and were not previously identified
because they did not produce both IFNy and TNFa. This emphasizes the point illustrated in
Figure 3 indicating that it is important to measure as many cytokine combinations as possible
when quantitating T-cell memory because measuring any cytokine alone is likely to lead to a
conservatively lower estimate of the total antigen-specific T-cell response.

Perforin and granzyme B are expressed by nearly all VV-specific MHC Class I tetramer-pos-
itive CD8* T cells at early time points after infection.? Interestingly, <8% of VV-specific CD8*
T cells express perforin directly ex vivo by one month after infection.>> However, the memory
T cells are able to re-express perforin following 7 days of in vitro restimulation, indicating that
although this important cytolytic molecule is rapidly downregulated in vivo after VV infec-
tion has cleared, it can be quickly upregulated after re-exposure to specific viral antigens.” In
contrast to perforin, other cytolytic molecules such as granzyme A and granzyme B continue
to be expressed in a sizeable subpopulation of MHC Class I tetramer-positive or restimulated
IFNy* CD8* T cells at 1 month post-infection.”>*> The proportion of CD8* T cells expressing
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both granzyme A and granzyme B declines from 60% at one month to 33% of the virus-specific
T-cell response at one year post-infection.> This is still a relatively high percentage of memory
cells expressing granzymes when compared to perforin expression, which has dropped to nearly
baseline levels within the first month after infection. This indicates that, similar to shifting
virus-specific cytokine expression profiles, cytolytic proteins such as perforin and granzymes A
and B are differentially regulated after acute viral infection.

In contrast to CD8* T cells, there is much less known about the kinetics and expression
levels of cytolytic proteins in cytotoxic CD4* T cells. Although most cytotoxic T-lymphocytes
are CD8* T cells, it is important to note that cytotoxic CD4* T cells have been identified di-
rectly ex vivo following human MV infection® and the development of cytolytic CD4* T-cell
responses against acute and chronic viral infections are far more common than one might expect.
Virus-specific CD4* CTL are MHC Class II-restricted***? and have been identified following
infection with MV,*® VV,¢? polio,* dengue,* influenza,”” hepatitis B virus,*® varicella zoster
virus,® Epstein Barr virus,””* herpes simplex virus®® and CMV.¢”%® Although MHC Class II
(e.g.. HLA-DR) is typically expressed on professional APC, following infection and the resulting
inflammatory cytokine response, MHC Class I1 is upregulated on nonprofessional APC includ-
ing human epithelial cells®7# as well as highly activated virus-specific T cells® and potentially
other cell types as well. This indicates that during acute infection, cytolytic CD4* T cells may
be capable of enhanced immune surveillance due to the transient upregulation of MHC Class
IT on a broader array of host cells.

Conclusion

Over the last several decades a number of different techniques have been developed to assess
the duration and functional characteristics of T-cell-mediated immunity following acute viral
infection. These techniques have been refined to permit the detection of precisely defined, low
frequency antigen-specific T-cell subsets directly ex vivo. Analysis of T-cell memory following
infection with VV, MV or YFV has provided valuable insight into the kinetics, magnitude and
duration of virus-specific T-cell responses. CD4* and CD8* T-cell memory has been demon-
strated up to 75 years after VV infection and 34 years following MV infection. Although the
half-life of VV-specific T cells has been calculated at 8-15 years following VV infection, it is
unclear if this degree of immunological memory is representative of other acute viral infections
or if thisis specific only to VV infection. Likewise, more information on the relative duration of
CD4* versus CD8* T-cell memory following acute viral infection is needed in order to determine
if there are virus-specific patterns of T-cell memory or if the immune response to a variety of
viruses is similar. The expression of effector cytokines and cytotoxic proteins has been shown
to evolve throughout the course of primary viral infection and memory T-cell generation. This
effect can be observed in shifting cytokine production profiles of virus-specific T cells as well as
the differential regulation of perforin compared to granzyme A and granzyme B. The biological
relevance of these various patterns of effector molecule expression in the context of acute human
infection have yet to be fully understood.

Analysis of T-cell memory following acute infection by viruses such as VV, MV and YFV il-
lustrate both the great strides that have been made in our knowledge of T-cell-mediated immunity
as well as the sizeable gaps that remain in our understanding of human T-cell immunobiology.
It will be exciting to learn the mechanisms that govern the longevity of memory T cells induced
by acute viral infection and learn how to best mimic these forms of immunological memory by
developing improved vaccines that elicit effective and long-lived T-cell responses.
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CHAPTER 9

Principles of Memory CD8 T-Cells

Generation in Relation to Protective
Immunity

Maurizio Zanetti,* Paola Castiglioni and Elizabeth Ingulli

Abstract

emory T-cell responses are of vital importance in understanding the host’s immune

response against pathogens and cancer cells and to begin establishing the correlation of

protection against disease. In this review, we discuss our own data in the general context
of current knowledge to sketch tentative working principles for the induction of protective T-cell
responses by vaccination. We draw attention to quantitative and qualitative aspects of the initial
contact with antigen, as well as to the kinetics of events leading to the generation of memory
T cells thereafter. Our arguments are based on the current distinction of memory T cells into
two lineages: effector memory T cells (Tgy) and central memory T cells (Tcy). Our provisional
conclusion is that protective T-cell responses correlate positively with the T cells of the central
memory phenotype. In proposinga set of working principles to enable protective memory T cells by
vaccination we address vaccination both in the context of the immunologically-inexperienced and
immunologically-experienced individual, respectively. Finally, we draw attention to the interplay
between systemic and local immunity as important factors in determining the success of memory
T-cell responses in protecting the individual. We believe that considerations on the immunody-
namics of memory induction and maintenance, memory lineage differentiation and their relation
to protection may help design strategies to control disease caused by pathogens and cancer.

Introduction

Remembrance of things past is a general mechanism of experience organization and function
programming.' Immunological memory spans across the lifetime of the individual and the inability
to establish immunological memory could be seen as a deleterious event for the evolution of the
species. A general mechanism of experience organization and function programming for immu-
nological memory involves the acquisition and maintenance of previous information in relation
to the same antigen. The study of immunological memory implies revealing the link(s) between
single elements of the immune system (i.e., lymphocytes) and functional topology to explain
how longevity and protective function are generated. In molecular terms, this equates to a better
understanding of the enablement of gene programs and transcriptional events in T cells.

Previously, we defined immunological memory as the event that occurs when the immunologi-
cally experienced individual reencounters antigen through infection, tumor growth, or vaccination
and develops an even greater response than after the first exposure to the same antigen.? Studies
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show that immunological memory owes its characteristics to an increased frequency of specific B
and T-lymphocytes. Furthermore, it appears that T cells have heightened sensitivity for antigen®
and B cells have high susceptibility to activation and proliferation in an antigen-independent way
by microbial products.*

At the present time, vaccines for use in humans owe their effectiveness to the induction of
neutralizing and opsonizing antibodies> working to intercept pathogens at the port of entry, in
the blood stream or in the intercellular space depending on the pathogen’s pathway for infection.
For instance, pathogens that initially come in contact with external secretions (e.g., influenza
virus), or enter the bloodstream in a cell-free form (e.g., polio virus) are intercepted by antibodies
that prevent infection or disease, respectively. Protection by memory antibody responses is also
subject to the length of the incubation period. A pathogen with a short incubation period (< 3
days, as for the influenza virus) requires that protective levels of serum neutralizing antibody be
present at the time of exposure to prevent the establishment of infection.” The portal of entry, in
this instance, is also the site of pathology in the respiratory tract, and the degree of resistance to in-
fluenza virus infection is directly proportional to the level of specific hemagglutination-inhibition
antibody in the secretion of the respiratory tract.® Therefore, to prevent influenza infection it is
necessary to induce and maintain antibody titers above levels associated with protection against
appropriate type-specific variants. To this end, vaccines need to be reformulated periodically to
compensate for antigenic shift and drift. However, as it will be discussed below, an alternative to
this is to elicit cytotoxic T-cell responses against conserved determinants of the virus such as the
matrix and nucleoprotein antigens, so to obviate the constant need to chase antigenic variations
of the virus. For diseases of longer incubation period, e.g., paralytic poliomyelitis (>3 days for
central nervous system invasion from the primary site of infection), immunologic memory en-
ables durable resistance to paralysis.” Recently, new clues on the generation of memory antibody
responses have begun to emerge. Working in the influenza system Wilson et al” demonstrated
that approximately 7 days after the booster vaccination there is a rapid and robust influenza spe-
cific IgG1 antibody-secreting plasma cell response accounting for up to 6% of peripheral blood
B-cells. This is consistent with the fact that memory antibody responses could result either from
long-lived plasma cells in the bone marrow® or from a de novo differentiation of antigen-specific
B-cells into plasma cells following polyclonal activation."

For many diseases (e.g., measles, mumps, rubella and smallpox), immunity conferred by infection
or vaccination provides life long immunity. Based on anecdotic recounts and scientific observations,
the longevity of memory responses against some major infectious agents has been estimated to be
between 40 and 75 years.”*"> Thus, immunity by natural infection or vaccination with inactivated
or attenuated virus establishes life long immunity. Since an effective anamnestic response to many
pathogens does not need periodic reinforcement by immunization, it appears as if in the course
of evolution, the primary antibody response evolved to clear the host of the invading organisms,
while the memory antibody response evolved to prevent re-infection.

Compared with memory antibody responses much less is known about the parameters for
induction and maintenance of memory T cells and particularly their role in protection. Our goal
in this chapter is to discuss our views on this issue and point to a few general principles on the link
between memory T cells and protection by vaccination. Ultimately, this may benefit the design of
the next generation of vaccines against viruses, parasites and cancer cells.

T-Cell Immunity—From Activation to Imprinting T-Cell Memory

The defense against intracellular pathogens and cancer cells requires T-cell immunity. Seen in
evolutionary terms, it appears as if memory T-cell responses evolved as a specialized mechanism for
protection against intracellular pathogens that would have otherwise harmed the species irreparably.
The effect of tumor cells is much more relevant today as the life span of humans has lengthened
considerably due to better sanitation, antibiotics, and antiviral therapies. Like B-cell responses,
primary T-cell responses reflect clonal selection and expansion'® and are regulated by antigen.!”
Both naive and memory T cells only recognize antigen processed and presented by specialized cells,
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denderitic cells, macrophages, and B-lymphocytes.' In addition to peptide/MHC complexes at the
surface of antigen presenting cells (APCs) activation of naive T cells requires a positive signal from
asecond set of molecules, costimulatory molecules. Lack of costimulation prevents activation and
promotes anergy."” Pathogens have evolved to display a rich set of molecules that can trigger the
upregulation of costimulatory molecules on the APCs.**** Unlike microbial pathogens, cancer
cells lack costimulatory molecules and vaccines require the help of immunological adjuvants to
exploit their immunogenic potential.

The primary T-cell response to infection or vaccination has temporal characteristics that
are well understood (Fig. 1A). For instance, antigen-specific CD8 T cells go through clonal
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Figure 1. A) Schematic representation of the course of a primary T-cell response and relation
between the events taking place during priming and the establishment of long-term memory
T-cell responses. In response to primary infection or vaccination, antigen-specific T cells
undergo a first phase of clonal selection and expansion followed by a contraction phase in
which the great majority (~90%) of activated effector T cells undergo apoptosis. During this
event the immune response slowly progresses into the emergence of memory T cells and their
maintenance through homeostatic proliferation. This is the origin of a reservoir of antigen
specific T cells expandable upon re-encounter of antigen. It has been estimated that 100
naive CD8 T cells expand to 3 x 10° cells at the peak of the response around day 7 and then
contract to 10° 14 days after the initial contact with antigen. B) Schematic representation of
the two main phases of the primary expansion leading into a long-term response awaiting
for the reencounter with antigen. The programming and postprogramming phases and their
relationship with maintenance and homeostatic proliferation are shown.
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expansion and then contract so that the majority (~90%) of activated effector T cells die by
apoptosis.?>** This happens with great regularity within the first 7-10 days from the initial contact
with antigen.”?¢ At the end of this event, the immune response slowly progresses into memory
CD8 T cells. These self-renew through a slow process termed homeostatic proliferation”” and
form a reservoir of resting memory CD8 T cells expandable upon re-encounter of antigen.
Interestingly, both clonal expansion and contraction seem to be developmentally programmed
and while the magnitude of clonal expansion is proportional to the dose of antigen and the
strength of antigen presentation (APCs abundance, inflammation, degree of costimulation,
etc),®? contraction proceeds independent of the magnitude of the expansion.”® A prevailing
school of thought is that after priming, antigen is no longer required to maintain the pool of
expandable memory T cells.

Given these general premises on the structural organization of the early T-cell response we
shall begin by asking the question: “What are the requirements for the induction and main-
tenance of purposeful immunity?” The argument we intend to develop herein, central to our
views on T-cell memory, is that the characteristics of the primary T-cell response dictate the
type of immunity that will ensue after the initial burst, both in quantitative and qualitative
terms, i.c., the longevity biological characteristics of T-cell memory. Our proposal is that the
way priming occurs has a direct impact on the function of memory T cells and their ability to
control disease (Fig 1B). Ultimately, understanding the rules of engagement will point us to
effective T-cell vaccines.

Considerations on the Parameters of the Primary Response
That Influence the Generation of Memory T Cells

These issues have been dealt in detail recently."*! The basis for the proposed principles are
recapitulated in Box 1.

Early observations showed that small doses of antigen favor cell-mediated responses and
large doses of antigen favor antibody-mediated responses.’** Too much antigen also activates
alarge fraction of available T-cell precursors and this could cause their deletion by exhaustion.
Since the magnitude of the expansion of effector T cells directly correlates with the amount of

Box 1. Proposed parameters of the primary response that influence the generation
of memory T cells

¢ Amongadaptive memory CD8 T-cell responses, CD8 Ty cells offer the best correlate
of protection.

o Protective T-cell responses can be programmed if priming is induced in such a way as
to respect the parameters that control the induction of Ty cells.

e Expansion of memory T cells is an acquired property that correlates with the availability
of T-cell help at the time of priming.

e Imprinting lineage selection, i.e., the generation and/or the selective expansion of Ty
vs Ty cells, occurs at the time of priming by favoring the induction of memory T cells
best fit for homeostatic proliferation and poised to long term persistence while retaining
the ability to expand upon re-encounter with antigen.

e Successful imprinting must favor the induction and long-term maintenance of mem-
ory T cells under conditions that minimize the process of cell senescence after clonal
expansion.

o Expansion of memory T cells upon antigen recall is an intrinsic property of memory
T cells (Tcey > Tey) not a reflection of their number prior to re-encounter with
antigen.




112 Memory T Cells

antigen administered® we argue that excess antigen may not be necessary and even counteractive
if the goal is to induce effective memory T cells. In line with this proposal are early studies on
the relation between the priming dose and the induction of protective memory T-cell responses
which established that protective CD4 T-cell (Th1) responses against the parasite Leishmania
major in Balb/c mice were induced by priming with a low not high antigen dose.

Although the magnitude of a primary CD8 T-cell response correlates with the infectious dose
or the amount of antigen,” analysis of antigen dose at primingand the magnitude of the expansion
phase of the memory response shows instead an inverse correlation.”**

Another paradox to which reference has been made is whether antigen is required for the
maintenance of memory T cells. Once set in motion by sufficient antigen a T-cell response has been
shown to function on “autopilot”.* We have argued that this may not necessarily be the case since
protective T-cell memory responses against pathogens such as Plasmodium malaria,”’ Leishmania
major,*® Bacillus Calmette-Guerin® and LCMV* fade rather quickly when infection is eliminated
by sterilizing chemotherapy. At variance with this view is that the long-term survival of memory
T cells in vivo is apparently dependent on a nonspecific interaction with MHC molecules.*!

From the foregoing it would appear that small quantities of antigen may be required to generate
memory responses, arguing that memory T cells accounting for protection could emerge from
T-cell exposed to scarce amounts of antigen and/or a discrete number of APCs.

A number of studies have shown that T-cell help plays an important role in determining the
initial activation (programming phase) as well as destiny (post-programming phase) of CD8 T cells,
that is the emergence and maintenance of memory T cells.**“¢ Helpless priming negatively affects
the long-term number of resting memory CTL precursors during the maintenance phase of the
memory response by a factor of 1047 and program cells to undergo TRAIL-mediated apoptosis
upon re-encounter with antigen.” Importantly, helpless priming creates unfavorable conditions
for the generation of protective responses. 4

Itis also commonly accepted that the initial T-cell activation by the APC requires some degree
of inflammation. This condition is thought necessary to up-regulate costimulatory molecules on the
APC. However, contrary to this generally held belief we originally argued that overt inflammation
may play adversely on the induction of T-cell memory."*! Experiments show that inflammation
during priming by way of concomitant infection with Listeria monocytogenes or by administration
of Toll-like receptor agonists dramatically diminish the generation of antigen-specific memory
CD8 T cells and severely restrict their expansion upon recall infection.? Similarly, tinkering with
the CD40 receptor was found to abolish memory responses.”*** Thus, the common practice of
taking advantage of an inflammatory umbrella to amplify effector T-cell expansion may curtail the
generation of memory T cells. A difficulty we are confronted with is being able to distinguish, in
quantitative and qualitative terms, the threshold of inflammation necessary to jump-start T-cell
activation from that which seems to hinder the generation and maintenance of memory T cells.
Studies will need to address this issue.

Not unexpectedly, high antigen dose, excess costimulatory activation, TLR triggering, and
overt inflammation have a direct impact and take their toll on the replicative life of memory
T cells pushing them into proliferative arrest, senescence.’’ Senescent T cells, like other somatic
cells, have short telomeres and are end-stage differentiation memory T cells® that offer little if
any value to ongoing or future immune responses. The progressive loss of immunological memory
observed in ageing correlates with reduced frequency of antigen-specific IEN-y producing cells®
and proliferative capacity.’** In chronic HIV infection excessive antigen stimulation drives cells
in a state of replicative senescence with a prevalence of CD57* CD8 T cells.’**¢

Memory CD8 T-Cell Subpopulations, Lineage Commitment

and Protective Responses

To narrow our focus and to extend the analysis let us draw attention to the general idea that
cells destined to become memory T cells are not only the survivors of activation-induced cell death
but also undergo lineage differentiation to give origin to two sub-populations equivalent in the
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mouse and in humans: effector memory (Tgy) and central memory (Tcy) cells. Their distinction
is based primarily on the expression of L-selectin (CD62L) and the CC-chemokine receptor 7
(CCR?). These determine the capacity to home lymph nodes.”>* Their expression is elevated in
central memory T cells and is minimal or absent in effector memory T cells. The characteristics that
distinguish Try and Tey cells include homing to lymph nodes, homeostatic and antigen-driven
proliferative potential,”® the ability to kill in vivo®, and IL-2 production after antigen stimula-
tion.”” Together, this distinction may also be important in understanding how the two lineages
of memory T cells originate and persist in the immunologically experienced individual and how
they relate to protection.

The distinction between Ty and Ty cells is relevant not only to understand how and when
memory T cells with characteristics of Tgy and Tey cells are generated (the lineage differentiation
problem) but also how they differ with respect to mediating protection in vivo. As for the lineage
differentiation problem it was originally suggested that Ty cells provide a continuous source of
Ty cells® even though TCRP repertoire analysis shows that most Ty cells may not derive from
Tew cells.® An alternate view posits that Ty cells convert into Tey cells according to a linear dif-
ferentiation program where effector T cells are converted into Ty cells and these into Ty cells. >
Accordingly, following the clonal expansion of effector T cells, Tgy and Ty cells slowly emerge
and differentiate.”” A third view suggests that commitment to a particular memory T-cell lineage
is governed by the initial naive precursor frequency® so that at low precursor frequency, Tey cells
develop as a stable memory population preferentially. Interestingly, if the ratio APCs:precursor
CD8 T-cell frequency is high, Ty cells are virtually not generated.®® The issue is no doubt com-
plex since by comparing responses with different naive precursor frequencies it was shown that
the naive precursor frequency influences the kinetics (not the magnitude) of the primary response
and inversely correlates with the generation of CD62L" memory T cells.®*

The inference to be drawn is that the two memory T-cell subpopulations are established ac-
cording to a master program whereby a Tty -> Ty conversion would be the exception, not the
rule, at physiological low precursor frequencies, and Ty cells have the ability to develop asa stable
lineage over a range of precursor frequencies and under conditions of low antigen presentation
and seemingly low antigen dose.

Distinguishing memory T cells into two populations, Try and Tey cells, have been key
to shedding light on the correlation of protection. The first hint came from studies using as a
model LCMYV infection in which protection is known to correlate with memory not with ef-
fector CD8 T cells.” The first studies showed that viral replication in vivo was more effectively
controlled by CD8 Ty cells.”” Work from this laboratory expanded the initial observation
and is reviewed below.

Memory CD8 T Cells Induced by Low Antigen Dose Vaccination
Protect Mice from Influenza a Virus Infection—The Role of CD62"
Memory CD8 T (Tcy) Cells

In mice, as well as in humans, influenza virus infection is an inflammatory disease of the
airway.”® CTL responses are coordinately associated with attenuation of symptoms and protec-
tion from disease.**®” During natural infection the T-cell response peaks around day 7-10% and
then contracts, while recovery from infection occurs, and T-cell memory is gradually generated
and thereafter maintained.

As a model system of vaccination we used transgenic B-lymphocytes, a new way to program
T-cell responses in vivo based on the fact that mature naive B-lymphocytes can be effectively turned
into powerful APCs with a dual capacity of synthesis and presentation of antigen to T cells in vivo
following internalization of suitably engineered plasmid DNA.¥ A single intravenous injection
of transgenic lymphocytes activates T-cell responses reproducibly and specifically even at very
low cell doses (<10%).

Mice were vaccinated by single intravenous injection of APCs (syngeneic B-lymphocytes)
transgenic with plasmid DNA coding for the influenza virus peptide ASNENMETM (NP4 574),
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Figure 2. Analysis of the response in mice primed with different doses of transgenic B-lymphocytes
shows that a small immunizing dose yields an expansion of memory CD8 T cells comparable
to a high dose. A) Mice were primed by single injection of transgenic B-lymphocytes ranging
from 3 x 10? to 2 x 10* cells/inoculum. Mice were challenged with a sub-lethal dose of A/
PR8/34 influenza virus i.n. on day 28 after priming and peripheral blood lymphocytes were
analyzed longitudinally as shown in the figure. B) Specificity of the staining with the D"/
NP;46.374 tetramer. Peripheral blood lymphocytes were collected on day 11 after challenge
from groups of mice primed with different doses of transgenic lymphocytes (as indicated in
each panel). Peripheral blood was pooled from each group (four mice per group) and cells
were then stained with an anti-CD8 monoclonal antibody and D/NPs 5,4 tetramer. The per-
centage of DY/NPs 374 tetramer specific CD8 T cells is indicated in each panel. (Reproduced
from: Castiglioni P et al. Vaccine 2004; 23:699-708;7 with permission.)

an epitope restricted by D,*”* under a B-cell specific promoter. Vaccination induced systemic
anti-virus CD8 T cells immunity” even though tetramer positive CD8 T cells could not be
detected during the primary response, suggesting that the genetically engineered APCs provide a
relatively weak immunogenic stimulus. This could be due to either low abundance of antigen, low
number of APCs, or little pro-inflammation. Nonetheless, immunization by single intravenous
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injection of APCs induced a durable CTL response that protected mice from an intranasal lethal
virus challenge 21 or 60 days after vaccination.” The protective effect of vaccination could be
generated with a small (<10%) APC priming dose.”

To gain insight into the events of protection we decided to monitor the expansion of memory
CD8T cells after a sub-lethal virus challenge. The expansion of D*/NPs4 574 tetramer-positive CD8
T-lymphocytes occurred at all doses tested with a magnitude comparable to that following prim-
ing with virus (Fig. 2). In other terms, there appeared to be no advantage in priming with a high
antigen dose (a large APC inoculum) if the purpose was to induce memory CD8 T-cell responses
that could be easily expanded upon re-encounter with antigen. We, then, decided to use this system
to assess which sub-population of CD8 memory T cells were responsible for in disease protection.
To this end, CD8 T cells were purified on the basis of CD62L" and CD62L"" from transgenic
B-lymphocyte-primed or virus-primed mice 21 days after priming and adoptively transferred (10°
CD8 T cells/inoculum) into naive C57Bl/6 recipients (Fig. 4A). Mice were given a lethal virus
challenge 48 hours later. Thirteen out of 15 (87%) mice adoptively-transferred with CD62L" cells
survived, whereas transfer of CD62L" cells protected only 3 out of 9 (33%) mice (p = 0.019).
Similarly, 5 out of 8 (63%) mice given CDG62L" cells from live virus-primed mice were protected,
whereas the transfer of CD62L"" cells was ineffective (0 out of 4). Thus, protection from disease
in the case of acute influenza virus infection is property of CD62L" CD8 memory T cells.”

Central Memory CD8 T Cells Correlate with Protection against SIV

in Rhesus Macaques

In collaboration with Dr. Genoveffa Franchini (NIH/NCI) we had the opportunity to verify
the validity of the new working principle in Rhesus macaques vaccinated and exposed to the simian
immunodeficiency virus (SIV). These studies are reviewed in detail in the chapter by Dr. Franchini
in this book. The hypothesis that CD8 central memory T cells correlates with protection (for that
purpose viremia was chosen as the end point) was tested on archival blood samples so that the
results were not biased by vaccine use and vaccination design. The study consisted in measuring
longitudinally the relative frequency of CD8 Tcy and Try cells specific for Gag and Env. It was
found that the level of SIVmac251 replication following challenge exposure correlated inversely
with the magnitude of vaccine-induced virus specific CD8* central memory T cells but not with
CD8* effector memory T cells suggesting that CD8 Ty, cells play a pivotal role in the control of
viral replication.” This study also made it clear that the quality of vaccine-induced CD8* T cells
matters more than the magnitude of the total T-cell response itself. Paradoxically, in nonhuman
primates a DNA vaccine is more effective than a vaccinia virus vaccine in generating protective
memory response against SIV7*7 even though the expression of antigens differs substantially in
these two vaccine platforms.

Principles for Programming Protective T-Cell Responses

by Vaccination in the Immunologically Inexperienced Individual

The experimental data that have been proposed thus far in the discussion point to the general
idea that by controlling priming in qualitative and quantitative terms, one imprints the charac-
teristics of the memory T-cell response. It is as if the power to control priming is the power to
define the type of memory T-cell response required for protection against discase. The working
principles for vaccination of the immunologically inexperienced individual are summarized in
Box 2. Optimal induction of protective memory T-cell responses should be induced with low
antigen dose and prolonged antigen presentation as these procedures (i) favor the induction of
memory T cells that most readily expand to recall antigen, (ii) control the APCs:T-cell precursors
ratio, (iii) protect against exhaustion and reduce the toll of senescence on the responding T cells,
and (iv) direct lineage commitment in favor of Tcy cells. Priming should be under the umbrella
of T-cell help to favor long-term survival of memory T cells and their expansion upon antigen
recall, including protective responses. Although a direct role for T-cell help in the Tey—Teu
lineage differentiation has not been directly analyzed, the available data imply that T-cell help is
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Figure 3. Figure legend viewed on next page.
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Figure 3, continued from previous page. Possible scenarios in the generation of memory T cells
after vaccination of the immunologically inexperienced individual. B) The expansion phase of
the primary T-cell response occurs in the presence of inflammation. During the contraction
phase activated effector T cells go through two checkpoints: exhaustion and acceleration
of replicative senescence, both set in motion by inflammation-driven cell hyperactivation.
T cells that survive the toll of these two checkpoints enter the “germinative hub” where
memory cells are generated and lineage differentiation imprinted. Under conditions of high
inflammation few memory T cells survive and enter the “germinative hub” and consequently
only few T cells will be carried through the memory maintenance phase. Upon Ag recall
the expansion of these few memory T cells will be limited. In the case of “helpless” priming
the generation of memory T cells will be hindered during both the programming and the
maintenance phase. Upon antigen recall only a limited expansion will occur with most cells
undergoing TRAIL-mediated apoptosis. A) The expansion phase of the T-cell response occurs
in the presence of high antigen (Ag) dose and/or high antigen presenting cell (APC):T-cell
precursors (Tp) ratio. Again in this case activated effector T cells go through two checkpoints:
exhaustion and acceleration of replicative senescence, both set in motion by high antigen
stimulation. T cells that survive the toll of these two checkpoints enter the “germinative hub”
where memory cell lineage differentiation is imprinted with a selective advantage for Ty over
Tem cells. Upon antigen recall Tey cells are expanded while Ty cells expand proportionally
much less. C) The expansion phase of the primary T-cell response occurs at low antigen dose,
low APC:Tp ratio, in the absence of inflammation and with T-cell help. In this case activated
effector T cells do not go through the exhaustion and acceleration of replicative senescence
checkpoints. T cells enter the “germinative hub” where memory cell lineage differentiation
is imprinted with a selective advantage for Tcy over Tey cells. Upon antigen recall Tey cells
expand while Ty cells expand proportionally much less. Reprinted from: Zanetti M, Franchini
G. Trends Immunol 2006; 27:511-517.3'with permission from Elsevier.

Box 2. Precis on principles for the induction of protective memory T-cell responses
by vaccination in the immunologically-inexperienced individual

Principles Effects on Memory T Cells Refs

1 Priming with low antigen e Higher expansion of resting memory T cells  30,72,87
dose; prolonged antigen upon antigen recall
presentation in vivo

¢ Lineage generation commitment in favor of ~ 59,88,89
Tem cells over Tey

e Likely to confer protection against
exhaustion and reduce the toll of
accelerated senescence

2 Priming under the umbrella e Th cell help increases degree of protection 43,47

of CD4 T cell help e Favors Tey cell differentiation(?)
3 Priming avoiding excessive ® Reduces activation of the APC limiting 63
inflammation (TLR agonists, conditions that favor effector generation
viral vectors) and Ty cell lineage differentiation
e Bypass restriction of memory T-cell 26

expansion upon antigen recall

e Decelerates replicative senescence 76
e Regulation of T-bet that in turn regulates
the memory cell potential
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necessary for protective responses arguing for a positive effect on lineage differentiation. Finally,
the fate of memory T-cell generation is inversely proportional to the degree of inflammation at
the time of priming. Overt inflammation has been shown to play adversely on the induction of
memory T cells at different levels. These include restriction of the expansion upon recall infec-
tion,” bias in favor of Try cell generation®, and modulation of the levels of the transcription
factor T-bet in activated T cells which in turn regulates the memory cell potential.”®

Collectively, this set of working principles are paradoxically at variance with commonly used
vaccination practices relying on high antigen dose and local inflammation by either potent im-
munological adjuvants (e.g., TLR agonist) or viral vectors to elicit primary T-cell responses that
can be easily detected in the aftermath of priming. These practices are owed mainly to a tradition
that did not, nor could have had, an understanding of the correlation between T-cell immunity
and protection that exists today. We are not surprised that contemporary trial with viral vector
vaccines”””® have not met with the desired success.

The inference to be drawn is that the recipe for vaccination of the immunologically inexpe-
rienced individual to induce protective T-cell responses should follow the simple principle that
more is not better and that, paradoxically, the survival of the fittest in the context of vaccination
is achieved with maximal economy of means.* These concepts are illustrated in Figure 3.

Principles for Reprogramming Protective T-Cell Responses

by Vaccination in the Immunologically Experienced Individual

Given the incidence of certain chronic viral disease in the population and their morbidity,
the prospect of an effective post-infection vaccination strategy is as necessary as a preventive
one. Here again in collaboration with Dr. Franchini we performed studies in Rhesus macaques.
Through retrieval and analysis of archival samples we demonstrated that vaccination of already
infected macaques yield a control of viremia that correlates with the induction and persistence of
CD8 Ty cells provided that macaques were subject to a cycle of anti-retroviral therapy (ART)
prior to vaccination.

Briefly, we analyzed 24 macaques divided into three groups. A group of macaques were treated
with ART and mock vaccinated with the highly attenuated vaccinia virus strain, NYVAC, whereas
the remaining macaques were vaccinated with a NYVAC-SIV construct in the presence or absence
of ART. The relative frequency of Gagl81-189 CM9 tetramer-positive Ty and Ty cells before,
during and after all treatments was measured over a period of months. We found that immuniza-
tion with NYVAC-SIV of ART-treated macaques expanded approximately cight-fold the mean
frequency of the Gagl81-189 tetramer-positive cells when compared to unvaccinated controls.
W also found that in the absence of ART, NYVAC-SIV was unable to expand these responses.
A distinction of Gag181-189 tetramer-positive into cells with Ty or Tgy characteristics demon-
strated a significant increase in the frequency of Tcy cells in macaques vaccinated while on ART.”
Interestingly, a significant negative correlation between viremia and CD8 Ty cells persisted fol-
lowing ART cessation. Thus, while a correlation between protection from disease and Ty cells
was again evidenced, the value of these new studies is that the induction of central memory CD8
T cells can be attained in the infected individual if the antigen load is first abated by anti-retroviral
therapy. These concepts are illustrated in Figure 4 where vaccination of the highly viremic individual
and the individual in which viremia has been abated by anti-retroviral therapy are placed in relation
to exhaustion, accelerated senescence and memory T-cell lineage differentiation.

The Role of Local Immunity in Protection by Memory CD8 T Cells

The defense against many pathogens, and in all likelihood cancer cells, begins in the lymph
nodes draining the portal of entry (microbial pathogens) or the site of pathology (cancer cells).
Excluded from this scenario is the response to pathogens transmitted by arthropods, which gen-
erally cause the systemic spread of the pathogen with involvement of the spleen as a secondary
lymphoid site to originate a primary immune response. This category comprises flea-transmitted



Principles of Memory CD8 T-Cells Generation in Relation to Protective Immunity 119

A.
, Vaccine
\
1
I : i
g\ §
T:l I G I &
o |! ST N :
21 :
= o i g
E ] www Exhaustion 3
NN :
I Py Accelerated % &
Senescence =
:tttt«:, = e |
) “\.8 ................................ [#]
Time
B.
{l Reset Clock
! : Ag Load
ol Antrtrovia 3
o | therapy g
-] \ - g
- I O g
g ; Vaccine 8
2| & :
: o
<| . :
I :
-nu-..n"... E
s —8 |
Time

Figure 4. Possible scenarios in the generation of memory T cells after vaccination of the im-
munologically experienced, infected individual (post-infection vaccination). A) Conditions of
high antigen load and inflammation limit the immune response that follows infection leading to
negative regulation at the exhaustion and acceleration of replicative senescence checkpoints.
Upon vaccination T cells enter the “germinative hub” which imprints memory cell lineage
differentiation with a selective advantage for Tgy over Ty cells. Persisting conditions of in-
flammation and high antigen load hamper the expansion of these memory T cells leading to
a limited expansion of Ty cells only. B) Under conditions in which the antigen load is reset,
vaccination favors the selective imprinting of Tey over Ty cells in the “germinative hub” and
allows their subsequent expansion. Reprinted from: Zanetti M, Franchini G. Trends Immunol
2006; 27:511-517.3'with permission from Elsevier.

disease like plague, mosquito-transmitted viruses such as equine encephalitis and West Nile viruses,
flaviviruses, malaria parasites, Rift Valley fever, and yellow fever viruses.

To exemplify the concept of local immunity as it relates to protective memory T-cell responses
we will use as an example influenza virus infection. By tracking peptide/MHC complex-specific
DCsin vivo following primary virus infection we determined that antigen presentation is confined
to CD8a negative DCs of the draining lymph nodes and is maximal on day 2. We also determined
that activation of CD8 T cells (CDG69+) correlates with the timing of complex detection and
their proliferation (dilution of CFSE) occurs in the draining lymph nodes 3 days after infection.”
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Table 1. Lack of restimulation by myeloid DCs in lymph nodes draining the airway
tract is essential to protection by memory CD8 T cells

CD62" CD8 Lethal
T-Cells DC Virus Survival
Mice Vaccination Transfer Reconstitution Challenge %
C57Bl/6 + - - + 100
- + - + 100
RelB (-/-) + - - + 0
- + - + 0
- + + + 100

Peptide/MHC complex-specific DCs are not detected in the lung nor are antigen-specific T cells.
Thus, though DCs and macrophages are present at the alveolar surface in the lung, antigen pre-
sentation occurs exclusively in the draining lymph nodes as site of immune induction.

Asnoted above, vaccine-induced memory CD8 T cells (Tcy) protect from lethal influenza virus
challenge.”” However, the relationship between local immunity and protection, the ultimate impor-
tant parameter in the control of influenza A virus morbidity and mortality, is not fully understood. To
address this issue we performed experiments in a mouse model of DC deficiency. Homozygous r¢/B
(—/-) mice possess no LNs and lack functional bone marrow-derived DCs* although they possess a
population of CD8a* lymphoid DCs in the spleen.® Bone marrow chimeras generated by transfer-
ring re/B (~/-) bone marrow cells into lethally-irradiated hemizygous (+/-) r¢/B recipients carry the
same DC defect as re/B (—/-) mice but have a longer life span.®? In fact, 7e/B (~/-)spleen DCs are
unable to prime T cells.*** However, when immunized with transgenic B-lymphocytes such as APCs
relB (=/-) bone marrow chimeric mice mount both CD4 and CD8 T-cell responses demonstrating
that T-cell priming in the absence of myeloid DCs is possible.® Using this model we then asked the
question: “Can memory CD8 T cells protect in the context of DC deficiency?”

Vaccination with transgenic B-lymphocyte failed to protect mice carrying bone marrow-derived
DCs with 7¢/B deficiency® (Table 1). We reasoned that lack of protection in vaccinated re/B (-/-)
mice could result from the defective reactivation of memory CD8 T cells in the LNs draining the lung
rather than an impaired T-cell response. The explanation seemed plausible and testable only requiring
the adoptive transfer of immune CD62L" CD8 T cells generated in C57BL/6 mice into re/B (-/-)
mice. As expected the transfer of memory CD8 T cells fully protected C57BL/6 mice but not 7¢/B
(-/-) mice (Table 1). Protection was, nonetheless, restored in full by injecting 5x10° C57BL/6 bone
marrow-derived DCs pulsed with the influenza NPs 574 peptide 24 hours after memory T-cell transfer
and 24 hours prior to lethal virus challenge (Table 1). The combination of these two results strongly
implicated a defect in the function of memory T cells once in the 7¢/B deficient environment which
could be due either to poor trafficking by the adoptively transferred memory T cells or to inadequate
antigen presentation by the 7¢/B (/=) DCs in the lymph nodes draining the airway tract. The latter
defect became apparent when antigen presentation by 7e/B (—/-) DCs isolated from the draininglymph
nodes 24-48 hours after intranasal challenge with the A/HKx31-OVA influenza virus was analyzed
with a monoclonal antibody specific for the SIINFEKL peptide complexed with the K® molecule.
While marked antigen presentation was observed by DCs in C57BL/6 mice we found no presentation
by DCs in re/B (~/-) mice (Fig. 5). Together these results raise an important point: memory CD8
T cells must be reactivated by DCs in the draining LNs in order to mediate protection. Thus, systemic
and local immunity need to complement each other, to establish a communication between site of
infection and pathology and the site of immune induction by natural infection (Fig. 6).
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Figure 5. Antigen presentation by DCs in lymph nodes draining the airway tract. Memory CD8
TCR transgenic OT-1 cells were adoptively-transferred into C57BL/6 mice or relB (-/-) BMC
and mice were challenged 24 hours later with a sublethal dose of A/HKx31-OVA influenza
virus. Twenty four hours after infection, draining LNs and spleens were removed, digested
and stained for DCs (CD11c+) and presentation of SHINFEKL/K® (clone 25.D-1.16). CD11c+ cells
presenting the SIINFEKL peptide complex with the K> molecule are shown. (Reproduced from:
Castiglioni P et al. ] Immunol 2008; 180:4956-4964;% with permission.)

Conclusion

The value of the hypothesis that central memory CD8 T cells are operative in protection against
disease caused by viruses is in itself an important step forward to clarify the immunodynamics of
protective responses after vaccination. The synthesis attempted herein provides for direction for
observation and for experimentation of theoretical and practical importance. Irrespective of the
type of vaccine, the principles discussed lay the foundation for a rational understanding of the im-
munodynamics of the correlate for protection by T cells.

Our purpose in presenting the forgoingideas was to try to view the problem through a wide-angle
lens to ultimately focus on a set of general principles that take into account the dynamics of the T-cell

Systemic T cell Inmunity

Vaccination

Memory CD8 T cells
Recirculating pool
Stationary pool

Infection

Local T cell Immunity ~—

Figure 6. Relation between vaccination-induced systemic T-cell immunity and the role of local
immunity in protective T-cell responses. A general idea based on the interaction between
systemic and local immunity based on the influenza virus system.
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response, the effect of antigen dose and antigen presentation, and the characteristics surrounding the
initial contact with antigen including inflammation and over- activation.

The notion that vaccine induced activation of T cells can protect from disease induced by viruses
is premised on a still imperfect understanding of lineage differentiation of memory T cells into ef-
fector and central type, their replicative life, and the dynamics of telomere attrition versus function
development. Taken together, and in light of experimental evidence in patients with chronic viral
infections, it appears as if memory T-cell lineage differentiation can be imprinted not only in the im-
munologically inexperienced individual but also in the already infected, immunologically experienced
individual, possibly at various stages of disease, provided that the foregoing principles are taken into
consideration. Thus while single ideas could be erroneously equated to vaccine formulation, we have
drawn attention to a set of events establishing the relationships among them into a coherent scenario.
By integrating information from experimental evidence and extrapolating it into a simple theoretical
framework we believe a new basis for vaccination design and implementation may be set.

Notwithstanding the fact that a great deal still needs to be learned to further clarify our thoughts
about this issue we begin to see how significant progress has and will be made departing from tra-
ditional vaccines that control infection by the induction of antibodies. The effectiveness of these
vaccines has been a testimony to the success of medicine in the 20th century. It is our view that
progress in understanding the relationship between vaccination and protection by T cells along the
lines discussed in this paper will be critical for the development of safe and effective strategies of
vaccination to control disease in the future. The next new frontier may also require to de-convolute
the genetic program and the transcriptional events that regulate lineage differentiation of memory
T cells so that the induction of protective responses against diseases for which vaccines do not yet
exist can be facilitated.
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CHAPTER 10

Memory T Cells in Rhesus Macaques

Monica Vaccari and Genoveffa Franchini*

Abstract

he Rhesus macaque (Macaca mulatta) is one of the best studied species of Old World

monkeys. DNA sequencing of the entire Rhesus macaque genome, completed in 2007, has

demonstrated that humans and macaques share about 93% of their nucleotide sequence.
Rhesus macaques have been widely used for medical research including drug testing, neurology,
behavioral and cognitive science, reproduction, xenotransplantation and genetics. Because of the
Rhesus macaque’s sensitivity to bacteria, parasites and viruses that cause similar disease in humans,
these animals represent an excellent model to study infectious diseases. The recent pandemic of
HIV and the discovery of SIV, a lentivirus genetically related to HIV Type 1 that causes AIDS in
Rhesus macaques, have prompted the development of reagents that can be used to study innate
and adaptive immune responses in macaques at the single cell level. This review will focus on the
distribution of memory cells in the different immunologic compartments of Rhesus macaques. In
addition, the strategies available to manipulate memory cells in Rhesus macaques to understand
their trafficking and function will be discussed. Emphasis is placed on studies of memory cells in
macaques infected with SIV because many studies are available. Lastly, we highlight the usefulness
of the Rhesus macaque model in studies related to the aging of the immune system.

Introduction

The ability to maintain memory after encounter with an antigen is one of the central features of the
immune system. The memory T-cell pool functions as a dynamic repository of antigen-experienced
T-lymphocytes that accumulate over the lifetime of a host. While naive T cells even with optimal T-cell
receptor (TCR) stimulation and costimulation are largely incapable of immediate synthesis of certain
effector cytokines such as interferons (IFNs), memory T cells acquire this capability upon receiving
appropriate differentiation signals during the transition of T cell from naive to memory state."

The most advanced discoveries about the induction, development, maintenance and function
of the T-cell memory pool have been derived from studies in mice. However, because there are
substantial differences in the life span and the immune system of mice and humans,* studies in
non-human primates (NHP) can provide information on the applicability to humans from con-
cepts derived in murine models.

Most NHP used in the United States and European Union for research on HIV Type 1 and 2
are Old World monkeys that diverged from humans approximately 30 million years ago.* These
animals are not inbred and are naturally infected by viral pathogens highly related to human CMYV,
EBV, HTLVI and I, HHV8 and HPV.

Three macaque species account for 79% of all NHP used in research in the UK and 63% of all
federally funded research grants for projects using primates in the U.S.> The Rhesus macaque (RM)
model is the best model for studying the pathogenesis of SIV and for evaluating vaccines for HIV
Type 1. In fact, SIV inoculation in RM causes immunodeficiency disease that is similar to that

*Corresponding Author: Genoveffa Franchini—Animal Models and Retroviral Vaccine Section, NCI,
NIH, Building 41, Room D804, Bethesda, Maryland 20892, USA. Email: franchig@mail.nih.gov
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Table 1. Commercial antibodies that cross-react with rhesus macaques cells
Naive and Beckton Beckman
Memory T Cells  Dickinson Coulter Invitrogen  Milteny eBioscence
CD3 SP34 10D12 FN18,Cris-7
CD4 Leu-3A, L200 13B8 S3.4 OKT4
CD8 RPA-T8, SK1 B9.11 3B5 2B5 OKT8, RPA-T8
17d8, G42-8 143-44 Bw135/80  HIT8a
CD8p 2ST8.5H7
CD11a HIT11 25.3 HIT00
CD28 CD28.2, L.293 CD28.2 15 E8 15 E8 CD28.2
CD45RA 5H9, L48 2H4, MEM-56 TeD11
ALBT1
CD45RO*
CD62L SK11
CD95 DX2 DX2 DX2 DX2
T Regulatory Cells
CD25 M-A251 1HT44H3  3G10 4.00E+03 BC96
CTLA4 BNI3.1 BNI3 14D3
FoxP3 3G3 PCH101
Cytokines
IL-2 MQ1-17H12 N7.48A MQT1-17H12 N7.48A MQ1-17H12
IL-17**
IFNa B27, 4SB3 4S.B3 B27, MD1 45-15
TNFp*** 359-81-11
Chemokines and Proliferation
CCR5**** 3A9
CCR7 3D12
ki67 B56

*Dako, clone OPD4. **R & D System KIT. ***very weak staining. ****R & D clone CTC5.

observed in HIV infected individuals, both from a virological (tropism and kinetic of expansion
of the virus, establishment of reservoir) as well an immunological prospective.®” Because of these
studies, a large body of knowledge has been accumulated on the MHC-I and II diversity in these
species. Also, several phenotypic markers that define innate and adaptive immune cells are highly

conserved between humans and Old World NHP (see Table 1).1°

Memory T Cells in Rhesus Macaques
Phenotypic Characterization of T-Cell Memory Subsets

The memory T-cell population in RM has been phenotypically characterized in the blood
lymphoid and mucosal tissues of neonate and adult animals.'® Markers that define human T cells
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subsets have been studied in macaque’s cells using cross-reactive monoclonal antibodies (mAbs)
to human lymphocyte surface antigens in flow cytometric analysis (Table 1)."*!%'? This method
allows simultaneous multi-parametric analysis of the physical and functional characteristics of
single cells and both the enumeration and isolation of sorted purified populations.

The optimal separation of memory T cells from the antigen inexperienced naive T-cell popula-
tion can be obtained using a pool of mononuclear antibodies that react with different markers
simultaneously expressed on the surface of these cells. One study in particular has shown optimal
separation of Rhesus macaque CD4 naive and memory T cells combining markers for the Fas
receptor CD95, the costimulator molecule CD28 and 7 integrin. CD8 memory T cells are also
characterized using CD28 and CD95 along with the marker for the lymphocyte function-as-
sociated antigen 1, or CD11a, instead of 7 integrin.'” Of note, in RM, the transmembrane
tyrosine phosphate known as CD45RA, a common marker for human T cells, is highly expressed
by both naive CD4* and CD8"* T cells. While CD95 along with CD45RA efficiently separates
naive T cells from the rest of the lymphocytes, the remaining population shows great phenotypic
heterogeneity, suggesting the presence of different subsets within the memory pool.

Central and Effector Memory T Cells

Memory T-lymphocytes contain distinct populations of central memory (Tcy) and effector
memory (Try) cells characterized by distinct homing capacity and effector functions.”*** In hu-
mans, Tcy express lymph node homing receptors (CD62L and CCR7), whereas Ty are mainly
located at the effector sites' and they express , and f, integrins, chemokines such as CCR1,
CCR3 and CCRS5 and homing receptors such as CD103 and CLA." In mice and humans, Ty
differentiate into effector cells upon secondary stimulation while Ty convert to Tcy, following
antigen clearance.”'® Ty are the main source of IL-2, a cytokine that induces proliferation of
T-lymphocytes, thus displaying greater proliferative potential compared to effector memory
T cells. Rhesus macaque’s Ty and Try, have been characterized using mAbs to CD28 costimula-
tory molecule and CD95 Fas ligand'™"? (Fig. 1). Both the CD4* and CD8* Ty lineages express
CDY5 and low levels of CCR?7, a chemokine that controls the migration of memory T cells to the
lymph nodes and they also lack CD28 (CD95*/CD28~/CCR7"). Tcy are also CD95*, but they
express high levels of both CD28 and CCR7 (CD95*/CD28*/CCR7*). The CD45RA or the
CD62L markers, commonly used in humans and in mice to define one or the other subset, have
been less extensively used to characterize Ty and Tgy in RM. CD45RA marker in combination
with CD28 has been used to characterize effector memory (CD28-/CD45RA") from terminally
differentiated effectors (CD28-/CD45RA*) CD8* T cells, cells that have reached the last stage
of their differentiation path, thus lacking proliferative potential and expressing high levels of pro
apoptotic markers.”

A subset of memory T-lymphocytes that co-expresses CD4 and CD8 has also been identified
in RM. This subset expresses high levels of CD4 and low levels of CD8c markers (CD4"/CD8a)
and based on analysis of CD28 and CD95 expression, the majority (80%) of CD4" CD8a
lymphocytes display an effector memory phenotype (CD28/CD95*). Only a minor fraction
of double positive T cells are central memory. This T-Cell subset is particularly abundant in the
intestinal lamina propria where it is capable of producing high levels of cytokines and chemokines
and relatively high levels of granzyme B.?*

T Regulatory Cells and Th17

Heterogeneity is a hallmark of antigen-specific T cells.”* Upon antigen stimulation, CD4*
T cells can differentiate into different types of effectors cells: T helper cell 1 and T helper cell 2
(Th1 and Th2) represent well know forms of polarized CD4* T-cell responses. Th1 produce IL-2,
IFN-y and TNF-q, activating phagocitic cellsand CD8* T cells, thus promoting cell mediated im-
munity and cytotoxic responses??®; Th2 cells produce IL-4, IL-5,IL-9 and IL-13, inducing B-cells
to produce immunoglobulin IgG1 and IgE. More recently, two different subsets of T cells have
been found: under certain stimulatory conditions and depending on the homing tissues, T cells
can differentiate in regulatory T cells (Tregs)*** or IL-17 producing cells (Th17).
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Figure 1. Flow cytometric analysis of memory T-cell subsets in healthy and infected macaques.
Raw data from one naive noninfected animal (left panel) and one SIV infected animal (right
panel), during the acute phase of infection.

T regulatory cells are subsets of CD4* and CD8* T cells that control immune responses main-
taining the balance between immunity and tolerance.?? Regulatory T cells expressing CD4 have
been most extensively studied in mice and humans and more recently in Rhesus macaques.*?!
Tregs are heterogeneous and can be divided into two subsets, naturally occurring, thymic-derived
Tregs, that constitute 5-10% of the total peripheral CD4* T cells in mice and humans®' and
adaptive-Tregs.

Naturally derived Tregs express the interleukin-2 receptor alpha chain CD25%3 and they
constitutively express several other activation markers, such as the glucocorticoid induced tumor
necrosis factor (TNF) receptor-related protein (GITR), OX40 (CD134), L-selectin (CD62L)
and the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD152).%3¢ However, none of

these markers exclusively identifies Tregs as they can also be expressed on activated T-cell subsets.
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Forkhead box P3 (FOXP3) is an important transcription factor for the development and function-
ality of Tregs and it is also a more selective intracellular marker to define this population.’ Loss
of function mutations in FOXP3, both in mice and men, results in the absence of Tregs, leading
to a phenotype with severe autoimmune disorders known as scurfy mice and IPEX (immunedys-
regulation, polyendocrinopathy, enteropathy, X-linked syndrome) in men.***Also, the Type I
glycoprotein CD127, that is the receptor for IL-7, is down-regulated on Tregs.** This population
originates in the thymus upon strong antigenic stimulation that requires different signals, through
the engagement of the T cells receptor (TCR) and co stimulation molecules, such as CD28. Once
activated, Tregs inhibit proliferation of T cells primarily through contact dependent mechanisms.
However, different studies have shown that this subset can also function in a cytokine dependent
way, through the production of IL-10 and transforming growth factor-p( TGF-p).*4

The origin of the ‘adaptive’ Treg population is less clear: some studies have proposed that this
subset is generated in the periphery from the pool of CD4* CD45RO* CD25- FOXP3™ memory
T cells; others suggest that it originates in the thymus and then further differentiates as a con-
sequence of exposure to antigens in distinct immunological contexts.”” Adaptive Tregs express
variable levels of CD25, depending on the disease setting or the site of regulatory activity® and
they function in vivo in a cytokine dependent manner.** What remains unclear is the antigen
specificity of the adaptive Tregs cells.***

The suppressive role of Trcgs has been studied in the context of many autoimmune diseases
as well as cancer®* and in HIV.>**® The hypothesis that Tregs may play a role in HIV infection
has been tested in the SIV non-human primate model of AIDS. Tregs can be characterized with
the same markers used in humans. Ex vivo studies have shown that depletion of CD25* cells from
human PBMC and monkey’s peripheral lymph nodes leads to a significant enhancement of CD4*
and CD8* T-cell responses to select pools of HIV and SIV peptides.”>* These data indicate that
CD25* Tregs exert similar functions in humans and Rhesus macaques and suggest their role in de-
creasing HIV and SIV specific immune responses. In addition, longitudinal studies on SIV-infected
Rhesus macaques have revealed a transient increase in the ﬁ'equency of Tregs from baseline values
following acute infection. Also, during chronic infection T regulatory cells accumulate in tissues of
infected macaques, especially in the spleen and in the gut, while the frequency of this population
decreases in periphery.’®*® The accumulation of T regulatory cells at these sites has been correlated
with disease progression.’®>

More recently, another subset of CD4* T cells has been identified. These activated CD4* T cells
reside mostly in the gut and at the mucosal sites, where they are able to produce IL-17, a cytokine
important in the host defense against extracellular bacteria (Th17).%% While the induction and
function of CD4 T helper Type 1 and 2 are clear, the full spectrum of function of this subset
has not been defined. Together with IL-17, Th17 cells produce IL-22, a cytokine that induces
production of antibacterial defensins.® In Rhesus macaques, this subset is mainly present in the
lamina propria of the colon, the jejunum, ileum and the rectum, and less represented in blood,
lymph nodes and spleen.® Th17 can be identified upon in vitro stimulation with CD3 or phorbol
myristate acetate (PMA) and ionomicin.

When stimulated in vitro, Th17 cells express CCR5 and CD95 and can be positive or negative
for CD27. The frequency of CD4-producing IL-17 significantly declines in the gastrointestinal
(GI) tract during the early phase of infection with HIV/SIV. This loss may explain the chronic
enteropathy in HIV infection.®*¢¢

Tissue Distribution of T-Cell Memory Subsets in Rbhesus Macaques

Many of the cellular and molecular processes involved in forming and maintaining im-
munological memory are still unknown. Studies in mice have elucidated the distribution of
memory T cells in different tissues. In vitro and in vivo imaging in mice have demonstrated that
antigen-stimulated memory T cells migrate from the lymphoid tissues to nonlymphoid tissues
where they form the first line of defense against re-encountered pathogens.”** Memory T cells
that remain in the lymphoid tissues constitute a reservoir that can be mobilized again when



Memory T Cells in Rhesus Macaques 131

necessary. The physiological distribution of memory T cells in humans is less known, due to
the difficulty of sampling healthy individuals. Therefore, the Rhesus macaque model serves as
avaluable tool to study the immunobiology of different lymphoid and nonlymphoid compart-
ments in a model that closely relates to humans.

In macaques, naive and effector/memory T cells express different trafficking ligands and re-
ceptors and consequently have distinct patterns of migration.””° Memory T cells are localized in
lymphoid tissues and have the ability to traffic to various extra lymphoid tissues of the body, also
called effector sites.'” The anatomic location plays an inductive role in the CD8* T cells memory
differentiation program. In fact, it has been shown in mice, that virus-specific intraepithelial
lymphocytes in gut resemble neither central nor effector memory CD8* T cells isolated from
spleen or blood, suggesting that memory CD8* T cells may change phenotype upon changing

location.””?

Peripheral Blood and Lymph Nodes

Naive and memory T cells coexist in the peripheral blood of Rhesus macaques, as well as in
humans. The CD4 memory population in the periphery is mainly CD28 positive (Tcy), while
both central (CD28*/CD95*) and effector memory (CD28-/CD95*) CD8* T cells coexist in
this compartment (Fig. 1)."°

The development of T-cell immune responses starts with delivery of an antigen (Ag) from
an exposed tissue site to the draining lymph node. Naive T cells that constantly recirculate from
the blood to the lymph nodes are activated and differentiate into effector and memory T cells.
Following differentiation T cells express new cell surface molecules that allow them to home to
nonlymphoid tissues.”>” These activated T cells express effector cytokines and are unable to return
to the draining lymph nodes or to the pool of circulating lymphocytes.”* Memory CD8* T cells
present in the lymph nodes are important as a first line of defense to pathogenesis as they curb
the spread of pathogens from the lymph node to vital organs at very early stages of infection.”
Peripheral lymph nodes of RM contain both CD4* and CD8* T cells and the main subsets are
naive and central memory T cells (CD28*/CD95*)(Fig.1).°

The Gastrointestinal Tract

The gastrointestinal tract is a prominent part of the immune system and is enriched with
memory T cells that predominate in the intestinal lamina propria (lamina propria lymphocytes,
LPL) and in the epithelium (intraepithelial lymphocytes, IEL).”® The gut associated lymphoid
tissues (GALT) of RM has been extensively studied in the context of SIV infection and during
disease progression to simian AIDS. In fact, the GALT is the primary site of replication for HIV/
SIV. The remarkable similarity in the composition of the GALT between humans and Rhesus
macaques has justified the use of these animals as model for human AIDS.”>®

The intra-epithelial lymphocytes (IELs) in the gut of RM are predominantly CD8* (63-80%)
and contain very few CD4* T cells. CD8* T cells present a memory phenotype and express
the aEB7, an integrin that mediate T-cell adhesion to epithelial cells through its binding to
E-cadherin.””*% Lamina propria lymphocytes (LPLs) are a mixed population of CD4*and CD8*
T-lymphocytes, with a CD4:CD8 ratio that range from 0.74 to 1.3. Memory phenotypes are present
at this site (Fig. 1).”” Both CD8* and CD4* T cells express low levels of aEB7, are mainly positive
for the CD95 marker and the CD8 memory population expresses beta7 integrin. The memory
pool contains CD4* and CD8* Ty, and Try; subsets, as indicated by the presence of positive and
negative CD28 and CD95 positive T-lymphocytes (Fig. 1).1°

In SIV infected macaques, as early as a few weeks from infection with a CCRS5 tropic viral
strain of SIV, CD4* T cells in the LP decrease by 50-70% compared to uninfected controls (Fig.
1). The main population that is targeted and killed at this site is activated CD4* T cells expressing
the homing marker CCR5*, which are numerous in the LP but scarce in the periphery.*** A near
normal level of CD4* T cells is maintained in lymph nodes and blood.®! The CCRS coreceptor is
selectively expressed at effector site on effector memory T cells that are negative for CCR7.5% All
CD4* memory T cells are not equally susceptible to this acute destruction. In SIV infected RMs, the
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remaining CD4* T-cell population is predominantly CCR5" Ty cells. This population undergoes
a substantial increase in proliferative activity that initially provides sufficient production of Ty
cell in the effector sites to maintain clinical immune competence.® During the chronic phase of
infection the frequency of CD4* Tky cell decreases in the extra-lymphoid immune effector sites
of the body, both in humans and RM.#*°

The Lung

Similar to the gut, the RM’s lamina propria of the bronchoalveolar compartment is composed
of memory T cells that express CD95, whereas the frequency of T-lymphocytes that express f7
integrin is lower than in the gut. The central memory pool is the main CD4 subset present in the
lung, whereas both Ty and Tgy CDS8 are represented in this compartment.”

The Vaginal Mucosa

The vaginal mucosa of normal juvenile and adult female Rhesus macaques have been exam-
ined by flow cytometric analysis and multicolor immunohistochemistry, a process that visual-
izes antibody-antigen interaction on tissue sections.”’”> The objective of these studies was to
characterize the vaginal mucosa as a primary site for HIV transmission and the role of mucosal
immune responses in the vagina and cervix in protection from the virus. Lymphocytes of the
vaginal mucosa are localized within the epithelial layer and in the lamina propria. Vaginal lamina
propria of macaques contains 55 to 65% CD8* T cells and 28 to 34% CD4* T cells, while the
majority of intra-epithelial cells are CD8* T cells (75 to 85%).”! 54-67% of the CD4* T cells
in the vaginal mucosa express the activation marker CCRS5.” This population resides in the
lamina propria, whereas essentially no CD4 or CCRS expression can be detected within the
squamous or keratinized layers of the vaginal epithelium. CCR5 expression is higher in the
vaginal lamina propria of mature macaques compared to 1-3-year-old juveniles. The vast major-
ity of CD4*CCRS* lymphocytes in the vagina also express CD95 and CD28 (CD95*/CD28*)
showing a central memory phenotype (Fig. 1). In addition, cytolytic CD8* T-cell lines derived
from the vaginal epithelium are aEf7 positive and L-selectin negative.”*”* The vaginal lamina
propria of SIV infected female macaques is depleted of almost 40-60% of CCR5*CD4* T cells
during the early phase of infection.”**

In Vivo Manipulation of Memory T Cells in Non-Human Primates

Autologous Transfer

T-lymphocyte migratory circuits in humans remain largely unexplored due to the difficulty
of performing cell trafficking in normal volunteers. Recently, NHP have been used as a model to
study how T-lymphocytes migrate to different compartments. Experiments of autologous transfer
of labeled peripheral blood mononuclear cells (PBMCs) have been performed in RM to study
the homing of T-lymphocytes to lymphoid and nonlymphoid compartments. This method uses
the carboxyfluorescein diacetate succinimidyl ester (CFSE), a fluorescent cell staining dye that is
retained by the cell in the cytoplasm, which does not adversely affect cellular functions and can be
detected by flow cytometric analysis.” Using this technique, Clay and colleagues have shown that,
within 48 hours of intravenous transfer of CFSE labeled PBMCs, T-lymphocyte trafficking can
be detected to the liver and bone marrow and at a lower level to the thymus and small intestine.
The liver contains the highest proportion of stained CD45RA™ T-lymphocytes, consistent with
homing of activated/memory T-lymphocytes to this nonlymphoid site.””?

Another recent study established tracking of T cells to various compartments of RM as a pre-
clinical model for the evaluation of T-cell-based immunotherapy.” In this study, harvested PBMC
were either unstimulated or stimulated with antiCD3/antiCD28, then labeled with CFSE and
reinjected intravenously into the donor animals. Blood samples, lymph node biopsies and biopsies
from duodenum and rectum were collected at various time points and analyzed by flow cytometric
analysis for the presence of the reinjected T cells. The authors showed that non-specific in vitro
activation changes the in vivo migratory behavior of T cells. In fact, they observed a preferential
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migration of activated CD8* T cells to the rectum, while non-specifically activated transferred
CD4* T cells were found in much lower frequencies at this site and also in other compartments.

In Vivo Studies of T-Cell Turnover

The rates of lymphocyte turnover during health and disease are poorly characterized. This
limits the understanding of diseases like HIV infection'®!*! that lead to increased rates of
cellular turnover and ultimately to deterioration of the immune system. Since the NHP is the
primary model for HIV infection of humans, techniques have been developed to study T-cell
turnover and loss, in healthy and SIV infected macaques. Proliferative activity of T-lymphocytes
can be monitored in ex vivo experiments by flow cytometric analysis through the evaluation
of Ki67 antigen, a marker of the cell cycle progression.'® A more advanced technique uses the
administration of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog measuring the rate at
which cells become labeled with this DNA precursor during the S phase of the cell cycle. BrdU
can be administered to the animals via drinking water. Cells that contain BrdU are then detected
ex vivo using fluorochrome-labeled antiBrdU monoclonal antibody by flow cytometric analysis.'*
Various mathematical models have been developed that permit estimates of different parameters
from the data generated by this type of experiment.'”'* One of these models has been used to
analyze BrdU labeling curves for a number of different lymphocyte populations in healthy and STV
infected Rhesus macaques.'* This method has been used by Luka Ci¢in-Sain and colleagues to test
whether naive T-cell turnover is increased in aged monkeys. In this study, cohorts of adult and old
monkeys were pulsed with BrdU on days 0 and 3 and assayed for its incorporation/decay kinetic
inblood T cells over time. This technique allows the concomitant detection of BrdU positive cells
that proliferated at any time during the days of BrdU administration, of actively proliferating cells
(Ki67+/BrdU*) and of cells that ceased proliferating by the time of detection (Ki67-/BrdU*).!%

Kaur and colleagues have studied the perturbations in lymphocyte dynamics in sooty mang-
abeys, the natural hosts of nonpathogenic simian immunodeficiency virus (SIV) infection during
in vivo administration of BrdU.'* Using the same technique, Picker and colleagues demonstrated
that IL-15 dramatically increases in vivo proliferation of RM CD4* and CD8* Ty cells, with

little effect on the naive or Ty subsets.!”

Thymectomy

T-cell maturation partially occurs in the thymus, where lymphocyte precursors from the
bone-marrow become thymocytes and mature into T cells. Once mature, T cells emigrate from
the thymus and constitute the peripheral T-cell repertoire responsible for directing many facets
of the adaptive immune system. Loss of the thymus at an early age through genetic mutation or
surgical removal results in severe immunodeficiency and a high susceptibility to infection. To
study extra thymic T maturation, a method of thymectomy was developed in macaques by Healy
and colleagues.'® The role of the thymus in the pathogenesis of AIDS is a frequently discussed
and controversial topic. Therefore, this method has been used to study the role of the thymus in
peripheral T-cell homeostasis and to assess the significance of thymic output in SIV infection of
RM. By surgical removal of the thymus in juvenile Rhesus macaques, the authors reported that
complete abrogation of thymic output in juvenile Rhesus macaques resulted in a faster decay of
peripheral CD4* T cells, but did not cause a substantial shift in CD45RA*and CD45RA" popu-
lations. In conclusion, thymectomy had very little impact on the peripheral T-cell compartment,
both in healthy and in SIV-infected macaques.'?*!'

In Vivo Depletion of T-Cells Subsets

It is difficult to perform studies that assess the role of cell-mediated immune responses during
viral infections in humans. Indirect correlations between the frequency of antigen specific CD4*
and CD8* T cells and virus levels are informative, but they do not directly prove the importance
of these responses during the course of infections. Therefore, animal models that permit passive
administration of immunoglobulin to naive hosts have been crucial for demonstrating the contribu-
tion of specific components of the immune system in controlling certain infections. Non-human



134 Memory T Cells

primates provide valuable animal models for human diseases. A Rhesus monkey model of CD8*
cells depletion usinga mouse-human chimeric monoclonal antibody has been developed by Schmitz
and colleagues'!! (Table 2). Administration by the intravenous route of this antibody results in
nearly total depletion of CD8* lymphocytes from the blood and lymph nodes for 2-6 weeks, leav-
ing CD4 cell-mediated immune responses and humoral immune responses intact. In vivo CD8
depletion in RM has been used to study the importance of this population during SIV and other
infections. Rhesus monkeys were depleted of CD8* lymphocytes by monoclonal anti-CD8 anti-
body infusion and then challenged with wild-type measles virus.! The CD8* lymphocyte-depleted
animals exhibited a more extensive rash, higher viral loads at the peak of virus replication and a
longer duration of viremia than did the control antibody-treated animals, suggesting a central
role for CD8* lymphocytes in the control of measles virus infections. A CD4* T-cell depleting
antibody has first been used in chimpanzee infected with Hepatitis C to demonstrate that memory
CD4* T cells are essential for protection. Indeed, CD4* T-cell depletion in chimpanzees before
re infection impaired the ability of these animals to clear virus despite the presence of functional
intra-heapatic CD8* T cells.'?

The role of vaccine-induced CD8*, CD4* T and B cells in protection from monkey pox virus,
avirus ortholog of smallpox, has been dissected in Rhesus macaques.''* Neither CD4* nor CD8*

Table 2. Antibodies for in vivo depletion assays

Clone/
Commercial Detection Number
AntiAb Name mAb of Doses mg/kg Route Ref.
aCD8 cM-T807 DK25 4 doses 1x10,3 x5 s.c./iv. 116
DK25/SK1 3 doses 5 Intravenous 111/112
DK25 3 doses 1x10,2 x5 s.c/iv 114/117
T87PT3F9* 2/4 doses 2 Intravenous 115
aCD4 OKT4 L200 1 dose 50 Intravenous 114/117
aCD20 Rituxan** J4.119 (CD19) 4 doses/ 20 Intravenous 114
every wk
aCD16 3G8 DJ130C 1 dose 50 Intravenous 119,
120

s.c. subcutaneus. i.v. intravenous. *Coulter. **Genentech and IDEC Pharmaceuticals.

Antibodies for in vivo blocking assays

Clone/

Commercial Detection Number
AntiAb Name Ab of Doses mg/kg Route Ref.
aCD40L* 1 dose 20 Intravenous 131
CTLA4 -1g* 1 dose 20 Intravenous 131
aCTLA4 MDX-10** 2 dose 10 Intravenous 55

4 dose 10 Intravenous 133

*Baxter Healthcare Corp., Deerfield, Illinois, USA. **Medarex, Inc.
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T-cell depletion in Dryvax vaccinated macaques affected vaccine induced protection from the
disease. In contrast, antibody-mediated depletion of B cells during immunization abrogated protec-
tion and importantly, passive transfer of immunoglobulines from vaccinated individuals restored
protection, indicating that protection from smallpox is antibody-mediated."*

Different groups have shown that in vivo depletion of CD8* T cells during SIV infection of
RMs results in marked increases in plasma viral load, suggestive of a key role for CD8* T cells
in controlling levels of SIV replication.'>""” The main limitation of this model is the fact that
the antibody used for depletion is not specifically targeting only adaptive CD8* T-lymphocytes
because a high frequency of natural killers (NK) of RMs also express CD8.!® This leaves an open
question about the role of innate responses in the control of SIV replication. Two recent studies
have partially ruled out the importance of cytotoxic CD16* NK cells in controlling AIDS virus
replication during primary and chronic infection."">** In fact, transient depletion of NK cells from
two Rhesus monkeys chronically infected with simian immunodeficiency virus failed to induce
changes in virus replication.

A large body of literature in murine models indicates that CD4 help is not required for a
generation of specific CD8* T cells responses, but is essential to maintain a pool of memory CD8
able to expand after a second encounter with an antigen.””"'* In vivo CD4 depletion has also
been used in macaques as a mean to investigate the importance of helper T cells on the generation
and maintenance of SIV specific CD8* T cells.'” Depletion of CD4 cells was performed during
immunization to decrease the functionality of CD8* T cells. Treatment with the CD4-depleting
antibody resulted in the complete absence of CD4* T cells from the blood, leaving the frequency
of CD8* T cells and CD20 population intact. The reconstitution of the CD4 population was
slow and incomplete, as was previously observed in humans.'** Vaccinated macaques treated with
the CD4-depleting antibody developed less functional CD8* T cells, resulting in lost control of
SIV replication earlier than vaccinated macaque controls.'” (see Table 2 for details on treatment
with depleting antibodies) .

Blocking Antibodies In Vivo

The generation of adaptive immune responses is a highly regulated process that requires the
interaction between antigen presenting cells and CD4* T cells via the major histocompatibility
complex (MHC) class 2 and the T-cell receptor (TCR) and also involves numerous costimula-
tory pathways, aimed to control the balance between immune stimulation and tolerance. One of
those pathways involves the binding between the CD40, a protein, expressed by all mature B cells,
as well as by dendritic cells, macrophages, fibroblasts, epithelial cells and endothelial cells'?>!¢
and CD40 ligand (CD40L; also known as CD154), expressed by activated T and B cells and
activated platelets. The interaction between CD40 and CD40L promotes both humoral and
cell-mediated immune responses and is crucial for the induction of effective adaptive immune and
inflammatory responses.'?” Also, the murine CD40L-CD40 interaction between CD4 T helpers
and dendritic cells or CD8* T cells augments the generation of CD8 memory T cells following
viral infections.!*®

A second pathway involves the binding of the CTLA4 (Cytotoxic T Lymphocyte Antigen 4),
aCD28-family receptor constitutively expressed on regulatory CD4* T cells, to CD80 and CD86
costimulatory molecule expressed on B cells and dendritic cells. CD28 also binds to the CD80
and the CD86, but CTLA4 has higher aflinity than the CD28 and in contrast to CD28 which
enhances T-cell function, CTLA4 inhibits T-cell activation.'?

In mice, the in vivo administration of blocking antibodies to CD40 and to CD28 results in
potent and specific immune suppression.’*® In Rhesus macaques, administration of CTLA4 im-
munoglobuline (Ig) and anti CD40 Ligand prevent renal allograft rejection.'!

The NHP model has also been used to assess the role of these pathways in the generation of
SIV-specific CD4 helper, CD8* T cells and antibodies.”>"** Garber and colleagues induced the
in vivo blockade of CD28 and CD40 T-cell costimulation pathways with the aim to experimen-
tally induce tolerance to SIV antigens in infected Rhesus macaques. Transient administration of
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CTLA4-Ig and anti-CD40L mAb to SIV-infected macaques resulted in dramatic inhibition of
the generation of both SIV-specific cellular and humoral immune responses.'*

The impact of immune activation in SIV infection has been addressed directly by inhibiting
CTLA4 during the acute and chronic phase of infection.>>'* In vivo CTLA4 blockade significantly
increased T-cell activation and viral replication in primary SIV infection, particularly at mucosal
sites and increased the expression and activity of the indoleamine 2,3- dioxygenase (IDO), an
enzyme that converts tryptophan to N-formyl-kynurenine which suppresses T-cell proliferation.'**
Accordingly, protracted anti-CTLA4 treatment of macaques chronically infected with SIV and
treated with ART, decreased responsiveness to antiretroviral therapy and abrogated the ability of
therapeutic T-cell vaccines to decrease viral replication (see Table 2 for details on treatment with

blocking antibodies) .

Differentiation of Memory T-Cells Subsets: Lesson from In Vivo

Studies in Non-Human Primates

Studies in humans have implicated a family of cytokines, such as IL-2, IL-7 and IL-15
that use the common ¥y chain as part of their receptor, as important regulators of peripheral
T-cell homeostasis.’*>'” Interleukin-2 (IL-2) exerts a wide spectrum of effects on the immune
system and plays crucial roles in regulating both immune activation and homeostasis. IL-2 was
identified based on its potent T-cell growth-factor activity and is widely considered to be a key
cytokine in T-cell-dependent immune responses both for CD4* and CD8* T cells. However,
a major nonredundant activity of this cytokine centers on the regulation of T-cell tolerance in
the periphery, whereas T-cell immunity to various agents can be readily elicited in the absence
of IL-2 in vivo.!381%

IL-2 has been evaluated as a therapeutic in the clinical settings of HIV/SIV infection and
cancer.'*!¥ In vivo administration of IL-2 to Rhesus macaques enhances antigen specific
responses. The effects of the administration of IL-2 have been studied as an adjuvant in vac-
cine strategy for SIV. IL-2 combined with antiretroviral therapy and poxvirus vector based
vaccines improves CD4 and CD8 T cells responses and decreases plasma viral load upon ART
cessation.!*# TL-2 administration ameliorates DNA- based vaccines efficacy, improving the
quantity and the quality of the antigen specific immune responses compared to DNA- based
vaccines alone.'® Villinger and colleagues have shown that following primary immunization to
tetanus toxoid (TT) or influenza virus, TT specific CD4* T cells and influenza matrix protein
(Flu-MP) specific CDS8 effector responses are enhanced by IL-2 administration, but CD8 spe-
cific memory responses are not different from cytokine nontreated monkeys.'® In that study,
the highest levels of primary effector and memory T cells were observed following alternate
administration of both IL-2 and IL-15.

Interleukin-7 (IL-7) is a nonredundant cytokine produced by nonlymphoid cells that is
essential for T-cell development in humans and mice and B-cell development in mice'#*!*
promoting expansion of both thymic and peripheral T-cell populations, the latter including
both the CD4* and CD8* lineages and both the naive and memory compartments.''¥ IL-7
contributes to the maintenance of the size and subset composition of the peripheral T-cell
pool by providing growth and survival signals through the IL-7 receptor."*** IL-7 modulates
memory CD8* T cells in response to a virus infection.'!

Administration of recombinant human IL-7 (rhIL-7) and IL-15 to NHP has, in part,
clucidated the immunologic effects of these cytokines. Following IL-7 therapy, an increase in
the absolute number of naive CD4* and CD8* T cells has been observed.'*”!>2 Upon treatment
peripheral T cells up regulate proliferation markers such as Ki67 and BcL2, a survival marker.'>
IL-7 treatment in macaques also induces a transient change in CD11a expression on CD8* cells
with the emergence of a dominant population of CD1 1am™d cells, suggestinga partial conversion
of the naive subset to an activated/memory phenotype. Thus, IL-7 treatment alters peripheral
T-cell homeostasis and results in a substantial, but reversible, increase of peripheral blood T-cell
number due to faster entry of these cells into cell cycle.”” Another study from Moniuszko et al,
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dissected the effect of IL-7 therapy on different memory T cells subsets of Rhesus macaques.'
IL-7 induced the acquisition of memory cell markers not only in CD8* T cells but also in CD4*
T-cell subsets that express both CD28 and CD95 markers and are positive for the proliferation
marker Ki67, a protein expressed during all phases of the cell cycle (G1, S, G2 and mitosis),
but not in resting cells (GO). Thus, IL-7 increases the frequency of T cells that phenotypically
resemble CD4* Tcy. The increase of this memory-like population was dose dependent and oc-
curred in blood as well as secondary lymphoid organs. In addiction, IL-7 increased the ability
of CD4* Ty as well as CD4* Ty to produce tumor necrosis factor alpha (TNF-a) and to a
lesser extent, gamma interferon (IFN-y) following stimulation with cognate antigen.

Administration of recombinant IL-15 demonstrated that this cytokine play a role in CD4*
Ty cell development and homeostasis in primates.!””!** IL-15 has proven to be superior to
IL-2 in the generation of long-lived antigen specific memory CD4* and CD8* T cells in Rhesus
macaques.">* Moreover, IL-15 increases the flux of long-lived CD4* T cells into extra-lymphoid
effector sites. The effect of this cytokine on the CD8* T-cell population is similar to what has
been observed for the CD4 T cells: IL-15 potently induces proliferation of CD8* Ty, cells,
with little effect on CD8* Ty cells.!”” Thus, IL-15, in contrast to both IL-2 and IL-7, selectively
expands the CD4* and CD8* Ty cell in the extralymphoid tissues.

Several studies have assessed the impact of IL-7 and IL-15 treatment on viral replication
alone,®">¢ or in conjunction with vaccines in SIV-infected macaques.'””"® Beq and colleagues
investigated the impact of recombinant simian IL-7 on T-cell renewal in Rhesus macaques chroni-
cally infected with SIVmac251 and treated with antiretroviral therapy (ART). This treatment
resulted in an increase of the number of circulating CD4* and CD8* memory T cells expressing
activation and proliferation markers and enhanced thymic function, with no effects on the plasma
viral load."” Mueller and colleagues have shown that in vivo treatment of acutely SIV infected
Rhesus macaques with IL-15 resulted in an increased number of SIV-specific CD8 T cells and
NK cells during the peak of viral load. Interestingly, this increase was not maintained during
the set point of viremia; on the contrary, at this time animals that had received IL-15 showed
an increased viral set point by 3 logs and accelerated development of simian AIDS."*

Demberg et al have treated Rhesus macaques with SIV plasmid DNA with or without IL-15
DNA, a multigenic replicating Adenovirus based SIV immunization and two boosts with SIV
gp140 and SIV Nef protein.”” Macaques that were treated with the IL-15 DNA showed a
higher peak of anti-Nef antibody titer and expanded SIV-specific CD8* T cells 2 weeks after
the challenge with SIVmac251, compared to the DNA-only group. Although, IL-15 treated
macaques did not exhibit lower viral replication and better protection from disease. Finally,
our group assessed the impact of recombinant IL-7 and IL-15 treatment on viral replication
and the immunogenicity of live poxvirus vaccines in SIVmac251 infected macaques.'® Neither
cytokine augmented the frequency of vaccine-expanded CD4* or CD8* memory T cells, clonal
recruitment to the SIV-specific CD8* T-cell pool, or CD8* T-cell function. Moreover, while
vaccination alone transiently decreased the viral set point following antiretroviral thcrapy sus-
pension, IL-15 induced massive proliferation of CD4* effector T cells and abrogated the ability
of vaccination to decrease set point viremia. In contrast, IL-7 neither augmented nor decreased
the vaccine effect and was associated with a decrease in TGF-f expression.

Aging of T Memory Cells

During aging, the immune system undergoes dramatic changes in both structure and func-
tion. Macroscopically, the most evident event is thymic involution, which severly diminishes
the production of naive T cells.'” Consequently, peripheral lymphocyte subset composition
is shifted toward the memory phenotype, as an increasing proportion of naive T cells become
exposed to foreign antigens over time. However, the mechanisms linking specific age-related
changes in T-cell subset distribution and function to the age-related immunodeficiency are still
incompletely understood. Most of the existing data describing the age-related changes in T-cell
function come from studies of the rodent’s immune system.'**!*! However, even though this
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model has been helpful in elucidating some aspect of immune senescence, not all results from
rodent models translate to humans, given that these two species diverged approximately 210
million years ago'¢!®* and they have a different lifespan (10 folds). Moreover, rodents are held
in virtually pathogen-free condition during these studies, thus affecting the number of antigens
encountered during their existence and therefore affecting the pool of memory T cells generated
and accumulated during life. Non-human primates are better suited for immunogerontologic
studies, with direct relevance for human T-cell senescence.'41¢

With respect to their lifespan, macaques are classified as neonates (first month), juveniles
(1-5 years), adult (5-15 years) and old (15-25 years). The memory population in neonates is
quite low, but in keeping with the expected result of postnatal Ag exposure, rapidly increases
in the first few months of life. Cross-sectional analyses indicate that the average frequency of
memory T cells in adult human blood (40-50%) is reached within the first 2-3 years of life in
RM.1¢7 After this time, the rise in memory frequencies slows and by middle adulthood (10-15
years), memory frequencies average 70% for CD4* T cells and 80-90% for CD8* T cells. These
results suggest that RM, especially juvenile animals, may be exposed to more diverse pathogens
more frequently than humans.'

In vivo and ex vivo studies on cohorts of old RM model have been used as a tool to study
the other mechanisms involved in the depletion of naive T-lymphocytes and in parallel, the
accumulation of memory T cells. Through the in vivo administration of BrdU and concomi-
tant analysis of Ki67, a study has shown that in RM, naive CD8* and, to a lesser extent, naive
CD4* T cells in old animals exhibit higher proliferation and higher turnover than in young
animals.’® Because the relative size of the naive subset was also decreased, the authors suggest
that elevated turnover comes with a naive T-cell loss that is equal to or surpasses the elevated
proliferation. Also, the authors observed a significant increase in CD4* Ty cells and CD8*
T cells in an aged RM cohort with small naive CD8 pools. Cross-age comparisons revealed
no age-related differences in proliferation and turnover of the Tgy subsets and an age-related
decline in proliferation of Ty CD4 and CD8.

Another study has focused on the effector function of RM CD8* and CD4* T cells during
senescence.'®® The authors demonstrated that the percentage of cells capable of immediate TNF-o
secretion upon T-cell receptor stimulation increases with age among RMs CD8* T cells, but
not among CD4* T cells. Also, in this study, age-related loss of CD95" naive cells in RMs did
not differ between CD4* and CD8* T cells. Therefore, at least among the RMs CD8* T cells,
functional changes within the CD8 memory population appeared to correlate with the aging
process better than acquisition of CD95* CD28" phenotype.

Conclusion

Humans are much indebted to non-human primates. Their use in research has contributed
greatly to scientific discoveries that have improved human health worldwide. Studies in NHPs
have made possible the development of protective vaccines against important human pathogens,
including Poliovirus and Hepatitis and have been essential in developing a plethora of drugs
for treatment of human diseases, such as cancer and AIDS. The genetic and immunological
similaries between NHP and humans permit the validation of the relevance of some concepts
derived from studies in mice to humans. This is particularly important in studies of the immune
system. Hopefully, the use of NHP will also facilitate the full understanding of HIV pathogenesis
and guide the development of much needed protective vaccines not only for HIV but also for
malaria and tuberculosis.
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CHAPTER 11

Memory T-Cell Subsets

in Parasitic Infections
Sara Colpitts and Phillip Scott*

Abstract

arasitic infections remain a major health problem throughout the world and unlike many
Pviral or bacterial diseases, there are no vaccines to help control parasitic diseases. While

several important advances have been made that will contribute to the development of
parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the
effector T-cell subsets needed for immunity, fundamental questions remain about how to induce
long-term immunologic memory in vaccines. Here we examine a few of the experimental models
that have been used to elucidate the nature of the memory T cells that are generated during parasitic
infections. Although significant hurdles remain in the development of parasite vaccines, studies
with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by
vaccination is a realistic goal for control of parasitic infections.

Introduction

The ability to induce immunologic memory is the key to the development of successful vaccines,
which have been pivotal in controlling infectious diseases that have plagued humans and animals
for centuries. The most famous example is the eradication of smallpox in the 20th century, which
inspired a global campaign to control several other important infectious diseases (e.g., measles,
polio) by large-scale vaccination programs.! The success of those campaigns begs the question why
vaccines for all infectious diseases have not been developed; it is particularly notable that there
are no vaccines for any of the parasitic discases that cause tremendous morbidity and mortality in
large parts of the world. In short, the answer is that we do not have a good understanding of how
immunologic memory is established or maintained, a deficit that is particularly evident when it
comes to T-cell memory. Without a framework for understanding memory, the development of
vaccines continues to rely on a trial and error approach. This has clearly not been successful for
developing parasite vaccines.

Fortunately, over the last decade a renewed interest in understanding the cellular and
molecular basis of memory has generated a substantial amount of new information about im-
munologic memory. New tools, including the ability to monitor specific T cells with tetramers,
adoptive transfer of TCR transgenic cells and intravital imaging techniques, have helped define
the in vivo life history and biology of T cells during infection or following immunization.
Based upon the results of these studies several models have been proposed that attempt to
explain memory cell development and maintenance.*® In this chapter we will explore some of
the advances in our understanding of immunologic memory in parasitic infections, specifically
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focusing on recent studies that tell us about the memory T-cell subsets that mediate immunity
to parasitic infections.

The future of vaccines for parasites looked particularly bright in the 1980’s and 90’. The
molecular revolution led to the identification and large-scale production of parasite antigens
that previously were impossible to obtain in any reasonable quantity. At that time, the strategy
for vaccine design was quite simple: identify the dominant antigens recognized by the immune
system, clone those antigens and use them to induce a protective immune response. However, this
approach turned out to be less successful than anticipated. The most notable failure was in the field
of malaria vaccine development. It was known from pioneering studies in the 1960s that irradiated
sporozoites could provide protection against malaria and it was later shown that this immunity
was directed against the major surface antigen of the sporozoites, known as the circumsporozoite
protein.”® Cloning the circumsporozoite protein from malaria was prematurely heralded as the first
step in what was thought to be the rapid development of a malaria vaccine. Unfortunately, there
is still no malaria vaccine. However, while the malaria vaccine was not immediately forthcoming,
the ability to clone this parasite molecule and subsequently many other malaria proteins, was a
key advance on the pathway to a vaccine.

The other important advance that occurred in the 1980’ was the discovery that CD4* T cells
could be separated into subsets, termed Th1 and Th2 and that these subsets performed distinct
immunologic functions.” Studies of the immune responses to parasites played a key role in eluci-
dating the factors that control T-cell development. Notably, the differential development of Th1
and Th2 cells following infections with the protozoan parasite Leishmania major demonstrated
the key role these subsets played in the development of immunity.'** As it became clear that cy-
tokines associated with the innate immune response could preferentially direct the development
of T-cell subsets, there was a greater focus on understanding the role of adjuvants as inducers of
innate cells that could influence the response to a vaccine. This led to many important advances
in our understanding of how microbial products—what Janeway once referred to as the “immu-
nologists dirty little secret,”*—influence the immune response. This led to the notion that if the
appropriate immune response was stimulated by modulating the cytokine milieu, then a vaccine
would be successful. In the case of leishmaniasis, it was found that inclusion of IL-12 in a vaccine
could successful induce a protective immune response.'* However, the duration of the immunity
induced was limited and thus, simply inducing the appropriate response did not lead to long-term
immunity.">'¢ While understanding the different subsets of T cells will be important in vaccine
development, these results demonstrate that there is more to immunologic memory than simply
inducing an appropriate effector response.

The failure to develop vaccines for several of the most important pathogcns causing disease
today, in spite of our ability to clone and produce critical antigens and our increased understanding
of effector T-cell subsets, has led to a re-evaluation of what is required for immunologic memory.
The simple notion that memory T cells represent the few cells left after an effector response has
dissipated has been replaced by more complicated models of memory T-cell development. It is
now apparent that the memory T-cell pool is heterogeneous and contains several types of memory
T-cell subsets. One subset has the characteristics of effector cells, while another has been proposed
to act as a reservoir of antigen-specific T cells that can expand upon rechallenge, differentiate into
effector T cells and replenish the effector cell population (see Fig. 1). These latter cells, termed
“T central memory cells” by Lanzavecchia,” express the adhesion molecule CD62L (L-selectin)
and the chemokine receptor CCR7, which target the cells to the lymph nodes. The former subset,
termed “T effector memory cells”, develops from effector T cells, produces effector cytokines
(such as IFN-y or IL-4) and migrates through the tissues. Thus, effector memory T cells have the
ability to immediately respond to a challenge infection, while central memory T cells proliferate
in the lymph nodes and can replenish the T effector pool. Memory T cells would be expected to
express the IL-7R, since IL-7 provides survival signals to T cells. On the other hand, effector cells
would be expected to be short-lived. Understanding how these memory T cells develop and are
maintained will be critical in the development of vaccines for parasitic infections.
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Figure 1. Heterogeneity in memory T cells. Naive T cells circulate through the secondary lym-
phoid organs and are able to enter lymph nodes because they express CD62L and CCR7 on
their surface. Upon contact with the appropriate antigen-presenting dendritic cells, the T cells
proliferate and have the potential to differentiate into effector T cells that produce effector
molecules (such as IFN-y in the case of CD8+ and CD4* Th1 cells or IL-4 in the case of CD4+
Th2 cells). These effector cells lose expression of CD62L and CCR7 and gain expression of
other adhesion molecules that target them to the tissues. While most of these effector T cells
will undergo apoptosis, some will remain as “effector memory cells.” Following activation of
naive T cells, some will cease proliferating before become effector cells. These cells express
CD62L and CCR7 and thus, maintain the ability to circulate through the lymph nodes and
are termed “central memory cells.” This pool of antigen-reactive T cells acts as a reservoir
of expanded antigen-reactive T cells, which upon reencounter with antigen can proliferate
and become effector T cells.

What Are the Challenges for the Development of Parasite Vaccines?

Since there are vaccines for many viral and bacterial infections, one might conclude that there
are unique hurdles to vaccine development for parasites. While not necessarily unique, there are
hurdles that are more common within this group of organisms as compared to viruses or bacteria.
Parasites frequently have complicated life cycles and immunity may need to operate at more than
one stage of infection. Thcy also can occupy niches within the host where our undcrstanding of the
immune responses is limited (e.g., nemotodes living in the gastrointestinal tract). In some cases, it
remains unclear what the appropriate immune response is to control the parasite. Moreover, while
antigens from various parasites stages have been identified, whether they function as dominant
antigens is often unknown. Indeed, in the case of CD4* T cells it is not clear that there are over-
whelmingly dominant antigens and it may be that protection is obtained simply due to reaching
a threshold of antigen-specific T cells recognizing a diverse repertoire of antigens. In addition
to the lack of dominant parasite antigens (or at least few defined dominant antigens), several
parasitic infections (e.g., malaria, African trypanosomiasis) exhibit antigenic variation, which
further complicates vaccine development. Another common characteristic of parasites is that they
often induce chronic infections and associated with this chronicity is the development of many
immunoregulatory mechanisms. How these modulate the immune response when immunized
individuals are challenged has not been fully evaluated.

An important issue that may make vaccine development for parasites difficult is that control
of these organisms most often requires T cells rather than antibodies. The vaccines in use today
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mostly rely on generating high titered antibody responses, which is thought to be more easily
achieved than protective T-cell responses that are maintained long-term.’ In fact, in some cases it
is still an open question as to whether immunity to parasites can be achieved with vaccination, or
whether immunity may require the persistence of the pathogen (or the antigen)."” The question of
whether antigen is required for maintenance of memory T cells has been debated for years despite
the fact that studies of both natural and experimental viral and bacterial infections indicate that it
is unlikely that persistent antigen is required for maintaining memory T cells. However, it is critical
to distinguish between maintenance of memory T cells and immunity to reinfection since these
may not always correlate.’® Whether resistance to reinfection requires the constant generation of
effector T cells or can depend upon memory cells that may need more time to become effector
cells probably depends upon the pathogen. For example, it has been suggested that immunity to
malaria sporozoites may require the constant presence of effector cells since sporozoites are present
for such a short time in the host.”

In natural parasitic infections the number of organisms associated with an infection may vary
dramatically, which may also be important in the outcome of infection. How the challenge dose
influences the ability to recall an immune response is not well defined. If 2 memory response
requires additional expansion of the T cells, possibly by central memory T cells differentiating
into effector cells, then low doses may fail to trigger this response effectively.?® Similarly, how an
immune individual responds to several low dose challenges is poorly understood and this type of
exposure is often common with parasitic infections. One example where this may be an issue is in
malaria endemic regions, where there is continuous exposure to mosquitoes transmitting low doses
of sporozoites. Likewise, helminth infections in endemic regions are more likely to be initiated by
trickle infections, which are known to stimulate different responses than higher, single dose infec-
tions.?! Finally, protozoa replicate much slower than viruses or bacteria and in the case of helminths
fail to replicate at all within the mammalian host, which is likely to have implications on how well
an immune response is recalled upon challenge. Thus, taken together, the characteristics of parasitic
infections present substantial hurdles for the development of effective vaccines.

Th1 Immunity: Balancing Resistance and Persistence

in Parasitic Infections

While it is known that both CD4* Th1 cells and CD8* T cells contribute to the control of
intracellular pathogens, how these T cells are maintained so that they can mediate long-term im-
munity to reinfection is poorly understood. Since many intracellular protozoan parasites, such as
Leishmania, Toxoplasma and Trypanosoma cruzi, are associated with the long-term persistence of
low numbers of parasites, it has been difficult to determine whether true memory T cells develop
in such infections. Indeed, the argument has been made that immunity cannot be maintained
in the absence of a low level of persisting organisms which in turn maintain a pool of activated
effector T cells.??* Since the strong resistance to reinfection associated with these infections may
simply be due to the continuous generation of effector T cells, the protective immunity elicited
by live infection may be difficult to replicate in the form of a vaccine. Fortunately, recent studies
that take advantage of genetically modified parasites and chemotherapeutics suggest that similar
to viral and bacterial infection, memory T cells can be generated and maintained independent of
the persisting parasites.

Studies with parasitic protozoa have begun to incorporate the findings from viral- and bac-
terial-induced models of memory T-cell development with the phenotype of T cells responding
to and mediating protection to parasitic infections. One infection which has been extensively
studied as a model for the development of T-cell subsets is leishmaniasis. Leishmaniasis refers
to a broad spectrum of disease states that can be induced upon infection with the more than 30
species bclonging to the genus Leishmania. Seminal studies carried out in models of cutaneous
leishmaniasis in which different strains of mice were infected with L. major were instrumental in
defining the factors that promote CD4* Th1 and Th2 responses.?* Specifically, infection with L.
majorleads to a Th1 response and resolution of infection in several strains of mice (e.g., C57BL/6),
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while in other strains (BALB/c), a Th2 response is induced and progressive disease occurs. The
most important influence on the outcome of infection with L. 7ajor is the presence of specific
cytokines. For example, resolution of infection duringa Th1 response requires the production of
IFN-y, which promotes the macrophage activation required for parasite killing. Moreover, [IFN-y
production is dependent on IL-12 production as L. major infected IL-12 deficient C57BL/6 mice
develop a Th2 response and are unable to control their disease.>* In contrast, in the absence of
IL-10, BALB/c mice are able to resolve a normally fatal infection and C57BL/6 mice heal more
rapidly,”*” suggesting that IL-10 normally functions to inhibit immunity.

The quest to develop an effective leishmaniasis vaccine has been ongoing for many years, but
unfortunately, all trials against human disease have been unsuccessful thus far. Nevertheless,
resolution of a primary infection with L. major leads to life-long immunity. This is the basis of
leishmaniazation, the only successful strategy that has been used to induce resistance to cutaneous
leishmaniasis. This procedure involves the intentional inoculation of people with live parasites at
an unobtrusive site of the body. Following resolution of the infection, individuals are resistant
to reinfection. While for the most part discontinued due to the potential for serious complica-
tions, the efficacy of this approach directly demonstrates that strong immunity can be generated
by infection. However, whether the low numbers of parasites that persist following infection are
necessary to maintain immunity is an open question. Many experimental leishmaniasis vaccines in
mice have been described, but only a few of them have examined the ability to induce long-term
immunologic memory.*® For example, IL-12 was able to promote Th1 cell development and sub-
sequent immunity to challenge infection when used as an adjuvant in a L. major vaccine,' but
subsequent studies showed that the immunity induced was short-lived.”® These results and the
failure of other experimental leishmaniasis vaccines suggest that a traditional leishmaniasis vaccine
may be difficult to develop. Indeed, C57BL/6 IL-10 deficient mice are able to completely clear
parasites following L. ajor infection and in contrast to wild-type mice, lose their immunity to
reinfection.?”? This observation suggests that persistent parasites may be absolutely required for
the maintenance of immunity and that delivery of a dead protozoal vaccine would not provide
long-term immunologic memory.

Infecting mice with a genetically modified strain of Leishmania, termed dhfr-ts, was used to
address this issue. These parasites lack the gene for dihydrofolate reductase-thymidilate synthetase”
and hence are unable to synthesize thymidine. These parasites do not replicate in vivo and induce
no apparent signs of disease in mice.*® Importantly, the parasites are completely cleared from mice
by 8 to 10 weeks post-infection. Infecting mice with wild-type (W'T') L. major or dhfr-ts parasites
allowed for a comparison of CD4* T-cell responses during chronic and nonchronic infections. Mice
infected with WT parasites contained two types of CD4* T cells, distinguished by their expression
of the LN-homing molecule CD62L.*' One subset of cells, which expressed CD62L and homed to
the lymph nodes, had the characteristics of central memory T cells. These T cells did not produce
IFN-y and moreover had the capacity to differentiate into either Th1 or Th2 cells depending upon
their environment.” Recent studies indicate that central memory T cells develop carly after infection
with L. major (Colpitts and Scott, manuscript in preparation). A second population of cells had the
characteristics of effector CD4* T cells. While both of these populations could transfer immunity
to naive recipients, the CD62L" effector T cells could mediate resistance faster than the CD62L"
central memory T cells. In contrast to infection of mice with WT parasites, following infection
with dhfr-ts, there was no evidence that an effector T-cell population (or an effector memory T-cell
population) was maintained. However, CD62L" central memory cells were maintained and were
able to provide protection in dfr-#s- infected mice or following adoptive transfer.®! These results
indicate that while parasites may be required for the maintenance of the effector pool, functional
memory cells can be maintained in the absence of persistent parasites.

Studies with another intracellular protozoan, Trypanosoma cruzi, has shed light on the memory
CD8* T-cell subsets that are associated with a chronic parasitic infection. Resistance to 7. cruzi
has long been known to be dependent on CD8* T cells.?*** However, it was unknown whether
these CD8* T cells could be maintained in the absence of 7. cruzi and whether they would have



150 Memory T Cells

the phenotypic and functional characteristics of memory CD8* T cells described with other types
of pathogens. In order to address this issue, Tarleton and colleagues drug-cured infected mice and
used a 7. cruzi-specific tetramer to examine the pool of antigen-specific CD8* T cells that are pres-
ent in chronically infected mice versus those that have achieved sterile cure.’> Several important
observations were made in these studies. First of all, following sterile cure of 7. ¢ruzi, a memory
T-cell population was readily apparent that could mediate resistance to reinfection. Second, these
cells had the characteristics of central memory T cells (CD62L" IL7RY). This observation was
in contrast to the majority of antigen-specific cells present in the chronically infected mice that
exhibited an effector phenotype (CD62L" IL7R"). As the effector cells present in chronically
infected mice maintained their ability to produce the effector cytokine IFN-y, these results also
demonstrate that, in contrast to some chronic viral infections, chronicity of the pathogen is not
always associated with the loss of functional T cells.***” It is important to note that the central
memory T-cell pool is not completely absent in chronically infected mice as a small population
of IL7RM cells were identified in the animals with persistent parasites. Some of these were also
CDG2L" and had the capacity to produce IFN-y following restimulation.?® Thus, this observa-
tion suggests that, similar to L. major infections, central memory CD8* T cells may develop early
after infection.

Taken together, the results of recent studies with L. major and 1. cruzi indicate that both
CD4* and CD8* central memory T cells can develop in the presence of parasites, suggesting that
they may be part of the normal primary immune response to infection. In the case of 7. cruzi,
the CD8* central memory T cells were very effective at inducing resistance. However, in leish-
maniasis central memory CD4* T cells were less effective at providing immunity to rechallenge.
Whether this reflects differences in CD4* and CD8* T cells or different requirements for control
of Leishmania and T. cruzi is unknown. In both cases, however, central memory T cells could be
maintained without persistent parasites, suggesting that it should be possible to develop a vaccine
for these infections.

Th2 Immunity: Longer Lasting Than Th1 Memory?

Gastrointestinal nematodes infect more individuals than any other group of parasites and
no vaccines to control these parasites are currently available. Two well-studied gastrointestinal
nematodes are Trichuris muris and Heligmosomoides polygyrus, both of which are controlled by Th2
responses. These parasites differ in their ability to persist long-term and are excellent models for
studying protective memory responses induced under Th2 conditions. 7. 7uris can be completely
cleared from the gastrointestinal tract of resistant strains of mice, thus achieving sterile cure and
subsequent immunity to reinfection.”” Similar to the findings with L. major and T. cruzi, studies
indicated that following clearance of 7. muris infection a CD4* central memory T-cell population
was maintained. However, unlike the findings with parasitic protozoa, the clearance of 7. muris
did not lead to the loss of effector T cells.*” Moreover, by using IL-4 reporter mice, it was shown
that some of the CD62L" central memory T cells were already predisposed to Th2 cytokine
production. Thus, these experimental infections with 7. 7uris indicate that Th2 memory T cells
may differ in fundamental ways from the memory cells induced during a Th1 response. First, Th2
effector memory T cells were maintained in the absence of the worms, while in leishmaniasis Th1
effector memory T cells were not maintained. Secondly, some of these IL-4 producing cells were
able to express CD62L, which would allow them to home to the lymph nodes. While it is not yet
clear whether these differences relate to the types of infection or may reflect a universal difference
between the generation of memory during a Th1 versus a Th2 response, the data clearly indicate
that the maintenance of an effector memory CD4* T-cell population does not always require
persistent parasites.

Primary infection with H. polygyrus results in chronic infection, but the worms can be cleared
following treatment with helminth-specific chemotherapeutics. These treated mice are subsequently
resistant to a secondary infection.*! Again, studies using an IL-4 reporter mouse were helpful in
demonstrating that following clearance of the parasites memory Th2 cells were maintained.



Memory T-Cell Subsets in Parasitic Infections 151

These findings, in conjunction with those described above for 7. muris, further support the idea
that Th2 memory may be fundamentally different from Th1 memory.

The ability to better resist a sccondary challcngc will dcpend not only on the presence of
memory T cells, butalso on the ability of those cells to induce effective effector functions. While it
is well established that T cells are required for resistance to gastrointestinal nematodes, the effector
mechanisms that mediate protection have been poorly understood. Recent elegant experiments
indicate that alternatively activated macrophages (AAM9), which are characterized by the expres-
sion of the IL-4 receptor and the mannose receptor (CD206) and the production of arginase,
are recruited to the host-parasite interface following secondary challenge with H. polygyrus. %
Since the depletion of AAM¢ using clodronate-loaded liposomes induced a significant increase in
parasites in the lumen and recovered larvae compared to control treated mice, this study establishes
AAMG¢ as critical for immunity. Understanding how memory influences the activation of effector
mechanisms and what those effector mechanisms are, will be critical in developing vaccines for
gastrointestinal nematodes.

Memory T Cells in Malaria

Malaria, along with tuberculosis and HIV/AIDs, is one of the three most important infectious
diseases in the world today. While control of the mosquito vector and the development of chemo-
therapy have had a major impact on the disease, malaria is still responsible for the deaths of 1 to 3
million people per year. The development of a vaccine for malaria has been the goal of scientists
for more than 40 years, but to date, they remain unsuccessful. Malaria exhibits many of the hurdles
to vaccine development described above: it has a complicated life cycle, individuals may require
continued exposure to parasites to maintain resistance, the parasite undergoes antigenic variation
and multiple antigens are involved in protection. In addition, there is a belief that protective im-
munity is difficult to acquire naturally and that it is short-lived. However, this may depend upon
how immunity is defined, since it has recently been argued that if resistance to severe disease is an
indication of immunity then it can in fact be maintained for a long time.#

Malaria’s life cycle involves a pre-erthrocytic stage where mosquito injected sporozoites migrate
to the liver and invade hepatocytes. Here they replicate and eventually are released to go on and
infect erthrocytes. The organisms replicate within the erthryocytes and are eventually released
to infect other red blood cells. Protective immune responses to malaria can be directed at cither
stage of infection and a role for CD8*, CD4* and B-cells (specifically antibodies) in immunity to
malaria has been well documented.'>#

Although the species of malaria that cause disease in humans (Plasmodium falciparum, P vivax,
P malariae, P. ovale) do not infect mice, studies of murine malaria (e.g., P bergbei, P _yoelli, P
chabaudi) have provided insights into the immune responses to these organisms and how memory
develops following infection. Using these murine models and following up with human infections,
it was established that irradiated sporozoites induce protection to malaria challenge” and since
this immunization induces sterile immunity, it is considered the gold standard for a vaccine. The
protection can be mediated by CD4* and CD8* T cells, as indicated by depletion and adoptive
transfer experiments, and is directed against the circumsporozoite protein found on the surface
of sporozoites.”

In order to understand how T cells respond to malaria infection during this early stage of the
infection, TCR transgenic mice recognizing an epitope found in the circumsporozoite protein
were created.® Cells from these mice were transferred into naive mice that were subsequently chal-
lenged with malaria and the expansion and contraction of the T cells was assessed. Since malaria
has been thought to induce poor immunity, a logical question was whether the T-cell response to
circumsporozoite protein following malaria infection might be quite different than normal T-cell
responses to other pathogens. The results from the studies with these TCR transgenic T cells
indicated that the response was similar to that observed with other infections or immunizations,
suggesting that a lack of immunity is not likely to be due to the absence of memory T cells.'”*
Rather, it has been suggested that due to the need for a rapid response, a large number of effector
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T cells rather than memory T cells, may be required to mediate protection.””?*¥ Interestingly,
the most important factor determining whether the parasites were eliminated was the number of
specific T cells, rather than whether they were effector or memory T cells.””

The immunity induced by irradiated sporozoites has no influence on the erythrocytic stages
of the infection, as immunized mice challenged with infected red blood cell show no immunity.
Antibodies and CD4* T cells mediate the protection directed against the erythrocytic stage.’*
Again, a useful tool to understand the CD4* T-cell response and the generation of immunity
was the creation of a TCR transgenic mouse where the T cells recognized an epitope on the
merozoite surface protein 1 (MSP-1). This antigen has been extensively studied in malaria and is
associated with protection.> Studies using these TCR transgenic cells indicated that CD4* T cells
can protect mice, but that the best protection is obtained when antibodies are present.> Thus,
the major role for CD4* T cells in protection during the blood cell stage may be to act as helper
T cells promoting antibody responses. Future studies will be required to better understand why
malaria-specific CD4* T-cell responses are so low and what will be required to maintain these
cells to promote immunity.>

It is difficult to study the development of memory T cells in an endemic population, but for-
tunately there are now new tools available that take advantage of the murine models of malaria.
Future studies with these models, in combination with human studies when possible, will hopefully
shed light on the factors that contribute to the generation of memory CD4* and CD8* T cells and
link the presence of these cells with immunity to infection.

Conclusion

The ability to monitor T-cell expansion and contraction in vivo has provided a clearer picture
of how memory T cells develop during parasitic infections. These studies indicate that similar to
other infections, heterogeneous populations of memory T cells can be generated, some of which
have the characteristics of central memory and effector memory T cells. However, depending upon
the parasite, these memory T cells may or may not be effective at providing rapid resistance to
rechallenge. The challenge now will be to determine how to generate those memory T cells that
are required for protective immunity by vaccination. The important recent findings that immu-
nological memory can be induced by parasitic infections—either in protozoal or gastrointestinal
nematode infections—provides hope that this will be feasible.
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CHAPTER 12

Antigen Specific Memory T Cells and
Their Putative Need for the Generation

of Sustained Anti-Tumor Responses
Kory L. Alderson and William J. Murphy*

Abstract

emory T-cell responses to cancer antigens may be an effective way to sustain long-term

tumor-free survival. However, finding an effective vaccination strategy to induce

memory T-cell responses toward tumor associated antigens in patients with existing
disease has proven to be extremely difficult. Inmune stimulation regimens have been combined
with tumor vaccination in an attempt to boost the immune response resulting in better vaccine
efficacy. In these instances immune stimulation alone has shown some promise as a primary tumor
therapy, but has been less effective at eliciting long-term tumor immunity. Likewise, combining
systemic adjuvant therapy with tumor antigen vaccination also demonstrated a lack of sustained
anti-tumor immunity in cancer patients. In this review, we discuss whether the immune response
generated during immune stimulation is appropriate for supporting memory T-cell generation or
whether initial tumor regression and generation of sustained anti-tumor immunity have different
immunological signaling requirements.

Introduction

Immunological memory has classically been defined by immunological response time. Upon
rechallenge with the appropriate antigen, memory cells react more rapidly to destroy pathogens.
Immunological memory has therefore been employed for the control of widespread disease through
the application of many vaccination strategies. Various infectious diseases can be controlled or
even eradicated by vaccination. However, some diseases such as cancer have remained difficult to
vaccinate effectively against. The difficulty in generating an effective anti-tumor response through
vaccination has primarily been attributed to the state of active disease. Therefore in this context,
vaccination is being used a treatment regimen rather than for prevention.

Preventative vaccination to viruses such as those that cause polio and smallpox have almost
completely eradicated these discases that were once considered epidemic in the United States and
in the case of smallpox it has been eradicated worldwide. A similar approach is being used for the
prevention of Human Papilloma Virus (HPV) infection for the prevention of cervical cancer.
Unlike smallpox and polio, cancer vaccines are for a disease that has slowly developed out of self
tissues, in some cases well over 20 years.! This is problematic for two reasons; one is the weakly
immunogenic nature of most nonviral tumor associated antigens and second is the lack of sufficient
immune induction associated with cancer-induced immunosuppressive pathways.
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Cancer is a general term for hundreds of different diseases, which illustrate a major problem
associated with its management." Many different vaccination strategies have been explored for the
treatment of various types of cancer, both in mouse models and clinical trials. Some have shown
limited and potentially promising results limited by the types of cancers that respond."* Thus, more
research is needed to continue the search for effective anti-tumor vaccines as a means to boost
anti-tumor responses. Due to multiple mechanisms of immunological suppression, the generation of
antigen specific immunity and memory to tumor associated antigens (TAAs) is difficult, especially
considering that most tumor vaccines are administered once the disease has become a problem.
Additionally, many immunotherapeutic regimens, even those that seemed promising initially, did
not confer lasting immunity to the individual.’> Therefore, it is possible that in the context of an
existing tumor, two therapy regimens must be applied; one that targets the initial tcumor and one
that generates lasting antigen specific T-cell immunity to TAAs.

One example of an effective vaccine that has potential to impact cancer rates is the HPV vac-
cine.*” Gaining FDA approval in 2006, this vaccine protects against the two most common strains
of HPV (HPV16 and HPV18) which are responsible for 60-70% of all cases of cervical cancer in
the United States annually. Recent reports have suggested the HPV vaccine is ineffective against
active HPV infections (www.cdc.gov/std/hpv). Although the evidence is not yet sufficient to make
definitive claims, it is likely that vaccination of women who already have HPV will not result in
similar protection against HPV induced cervical cancer.

One current dilemma regarding vaccination for cancer therapy is whether the vaccine should
be designed to amplify an existing immune response to the tumor or create and boost a de novo
immune response to cancer associated or self antigens. Futhermore, to what extent does an immune
response exist to cancer associated antigens and at what stage of tumor development is this response
generated? Thus far it has been difficult to find clinical vaccination strategies capable of conferring
both efficient immunological memory and maintaining tumor free survival. For the purpose of
this review, we will question memory T-cell responses and the potential advantage for their use
in cancer immunotherapies. Reducing tumor burden and maintaining tumor free survival may
have two different immunological requirements. Reducing tumor burden may require a rapidly
developed effector cell with broad specificity. On the other hand, tumor free survival may require
antigen specific memory to tumor or self antigens that keep the tumor at a manageable level. Here,
we will cover evidence to suggest that T-cell memory is vital to long term survival without tumor
related complications and call into question the ability to generate effective memory cells if potent
systemic immune stimulation is applied for the treatment of cancer.

The Difficulties Facing Potent and Sustained Immune Responses

to Cancer

Directing T-cell responses to cancer associated antigens is problematic. It is generally accepted
that the weak antigenic property of cancer associated antigens is due to their arising from self tissues
or being intracellular in expression. While lacking a sufficient antigen for immune recognition is
true for the majority of tumors, it is not absolute. Tumors with strong viral antigen components,
e.g., cervical cancer, Burkitt lymphoma and adult T-cell leukemia, among others escape immune
control. This demonstrates the extent of immunosuppression that tumors employ to evade im-
mune recognition.

Immune responses to cancer have been classically divided into innate and adaptive arms due to
specificity. Natural killer (NK) cells are often considered as a natural defense mechanism against
virally infected and neoplastic cells. Unlike T cells, NK cells are not restricted to MHC and are
therefore effective against tumor cells which have downregulated MHC class I in order to escape
immune recognition. The presence of NK cells is limited within tissues, which minimizes their
effectiveness against solid tumors. While NK cells are an attractive candidate to help reduce
metastases, their lack of antigen specificity translates to a lack of immunological memory and
sustained responses.’
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Adding to the complexity of tumor-immune cell interactions is that the tumor can utilize
immunological suppression mechanisms both locally in the tumor microenvironment and/or
systemically. Some tumors are proficient at inducing the production of Th2 type cytokines, which
skew the local immune response away from a proinflammatory response toward a humoral immune
response that may have little effect on tumor growth.® Tumor microenvironments have a signifi-
cant population of inhibitory cell types e.g., regulatory T cells and myeloid suppressor cells.”"!
Tumor associated macrophages (TAMs) can inhibit immune responses and are commonly found
within tumors.'> Additionally, tumor cells can upregulate suppressive or death ligands to reduce
the function of migrating activated effector cells.>"> Systemically, tumors can promote myeloid
suppressor cells that upon interaction with T cells in the lymph node or other peripheral lymphoid
organs inhibit the generation of an anti-tumor response.'® Thus, even if T-cell responses to the
tumor occur, suppression may obviate protection.

Evidence for Inmune Responses to Cancer in Man

Despite the many suppressive networks involved, there is an abundance of evidence both
experimental and anecdotal to suggest the immune system is cognisant of developing tumor
growth. However, the stage at which the tumor is “seen” by the immune system falls into question
and may depend on the tumor type. Animal studies as well as isolation of human tumors have
demonstrated the presence of tumor infiltrating lymphocytes (TILs) that may contain tumor
specific T-cell populations displaying an activated phenotype within the tumor are usually tumor
specific.”” Additionally, there is a favorable association between the number of TILs found within
a tumor and the prognosis of patients with many different cancers including but not limited to
breast and colorectal.'®*2 However, in vitro studies have suggested that the effector capabilities of
TILs are inexplicably lacking full potential »*** Therefore, the enhancement of TIL function and
numbers, potentially through the application of a vaccine or adjuvant therapy regimen, would be
favorable to a patient.

Dudley et al have worked to utilize/augment the effector function of TILs by ex-vivo expan-
sion with interleukin-2 (IL-2) for adoptive transfer into melanoma patients.> Although limited
to patients with metastatic melanoma, the observations were promising in the beginning with
substantial improvements to tumor burden. While initial results were promising, this therapy
was unable to sustained long term (>2 years) tumor regression.” This demonstrated that while
the presence of specific activated T cells may have been efficient at reducing the tumor burden to
near undetectable limits, sufficient long term memory was not conferred and the tumor eventu-
ally escaped immune control, which may have been due to the induction of antigen loss variants.

Historically, there have been compelling examples of immune surveillance to human and
mouse tumors. One such example is from two individual kidney transplant patients receiving a
kidney from an organ donor that had been involved in a fatal car accident. Both recipients later
developed metastatic melanoma tissue typed to the kidney donor. This recurrence of tumor was
despite the donor having been in remission for well over ten years at the time of the accident.!
The idea of immune surveillance has been supported using mouse models. It was demonstrated
using a spontaneous prostate cancer model that while not all mice grew palpable tumors after
carcinogen exposure, T-cell depletion resulted in tumor growth in nearly 100% of the mice that
were previously tumor free. This study indicated that immunological suppression can maintain
tumor burden at an undetectable limit.*

Immune Responses to Tumors in Mouse Models

Studies in immunodeficient and transgenic mouse models have demonstrated a direct role for
immunological recognition in tumor destruction and in shaping the immunogenictiy of tumor
cells during development. The observation that tumors in immundeficient mice occurred despite
being house in specific pathogen free environments led to a hypothesis of tumor-immune cell
interaction called “immunoediting”*” Cancer immunoediting occurs in three stages; elimination,
equilibrium and escape. During the elimination phase, cells of the innate and adaptive immune
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system are capable of recognizing neoplastic cells and destroying them. Interferon-gamma (IFNy)
isan important effector cytokine for this process and spontaneous tumors rendered resistant to or
sensitive to IFNy signaling have been shown to be more or less responsive to immune destruction,
respectively. Despite more recent data suggesting a cytostatic role for IFNy induction by potent
immune stimulation,?® the role for IFNY in tumor cell elimination was originally thought to be
due to activation of effector T cells and to IFNy induced upregulation of MHC I on tumor cells
directly”” IFNy upregulation of MHC I may be a key factor in tumor recognition and elimina-
tion as it may be instrumental in the ability of the normal cellular components becoming tumor
associated antigens (TAAs).” During the second phase of cancer immunoediting, tumor cells
which survived the elimination phase undergo consistent targeting and destruction by cells of
the immune system. This can be beneficial or detrimental to tumor development. The equilibrium
stage has the potential to last for a long period of time or to select for a less immunogenic variant
of the tumor which can then enter into the third stage of tumor immunoediting, escape.?” This
demonstrates the potential dichotomy in the actions of immune cell recognition and targeting
of tumor cells. It also demonstrates however, that continuous recognition may be needed not for
eradication, but for control.

A compelling example of an acquired immune response to auto-antigens in the presence of
tumor was recently demonstrated using a mouse model of prostate cancer. In spontancous adeno-
carcinoma, Savage et al demonstrated that TILs from tumor bearing mice, unlike T cells isolated
from their nontumor bearing counterparts, recognized a ubiquitously expressed self antigen,
histone H4."” While the recognition of histone H4 did not result in complete tumor regression,
it did result in a significant reduction in tumor size.'” This report suggests that TILs are capable
of recognizing normal cell components when associated with a tumor, which is contrary to what
was previously believed. What is not addressed in this publication however is the role of histone
H4 and why this specific intracellular protein was targeted by cells of the immune system. This
leads to questions of when immune cells are capable of recognizing tumor cells and why the tumor
is capable of escaping complete immune eradication.

Part of the aforementioned question was answered recently with the demonstration that
carcinogen induced tumors are not only recognized by the T-cell repertoire of mice, but that
immunological recognition is capable of maintaining a state of tumor “equilibrium”? It was ob-
served that after carcinogen exposure, approximately 20% of the exposed mice never developed
tumors. However, upon depletion of T cells (both CD4* and CD8*) from the nontumor bearing
cohort, sub-cutaneous tumors quickly became apparent. From these T-cell depletion studies it
was concluded that immune controlled tumor equilibrium was responsible for the lack tumor
progression in the original “cumor free” cohort. Furthermore, the authors demonstrated a role
for immunoediting of tumor antigens by tumor transfer studies from tumor bearing mice into
naive recipients. Tumors which developed spontancously as opposed to those that developed
as the result of T-cell depletion had different levels if immunogenicity and therefore displayed
different growth rates.?

Tumor stroma is another tissue to which an immune response can be generated to maintain a
state of equilibrium.?** Using antigen specific CD8* T-cell adoptive transfers, Zhang et al dem-
onstrated tumor regression when tumor stroma cells were pulsed with tumor antigen such that
the tumor antigen was cross presented to T-cell infiltrating the site.” Furthermore, the transferred
CD8* T cells maintained a state of cancer equilibrium and consistently destroyed myeloid derived
stromal cells.” This demonstrated that directingantigen specific responses toward the tumor stroma
and not the tumor cells directly may be capable of maintaining tumor load to a minimum.

Taken together these publications have demonstrated the degree to which the immune system
can play a role both in the emergence of tumors as well as the recognition of tumor associated
antigens. However, the question still remains; how do the tumors bypass such immune control?
How do they escape? Numerous studies have demonstrated that immune cell recognition can
lead to tumor escape,”” most likely through the emergence of an antigen loss variant. Additionally,
Savage et al demonstrated that the immune system disregards the evolutionary pressures and can
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generate immune responses to “self ” determinants, including ubiquitously expressed “self” proteins
at some as yet undetermined time after tumor initiation. However this still does not explain why
tumor burden was not subsequently reduced after self peptide recognition or why severe autoim-
munity was not observed.

While mouse studies are helpful in showing what can be done, they are limited in their mimicry
of the human situation. Some of the primary flaws, which have the potential to be controlled,
are that studies often utilize young mice which are inbred and results are rarely demonstrated in
more than one strain. Additionally, the mice are housed under specific pathogen free conditions.
The majority of the immune repertoire phenotype of a young (8-16wk old) mouse is of a naive
phenotype. Cancer predominantly affects elderly individuals and many studies have demonstrated
that the aged immune system is significantly altered in comparison to the young immune system
in its ability to generate an immune response.’’** So how does the aged immune system generate
immunological recognition to the weak, self antigens necessary to induce tumor equilibrium?
Importantly, are there means to augment this response and still have it sustained?

Is Immunological Memory Important for Tumor Regression

or Tumor Equilibrium?

Thus far, we have discussed two potential problems that face effective vaccination to cancer
antigens. First, cancer antigens are often weak in eliciting an immune response. Second, cancer
antigens are generated over long periods of time, often without “danger” signals. The amount of
time that cancer antigens are present may have an effect on the ability of immune cells to recognize
and target them. One reason for this is peripheral tolerance. Peripheral tolerance is a mechanism
by which T cells are tolerized to self antigen exposure in the periphery. One proposed mechanism
for this is through self peptide expression by antigen presenting cells (APCs) in the periphery
without appropriate cositmulation.** Another proposed mechanism of peripheral tolerance is the
co-expression of inhibitory molecules such as B7-H1 alongside MHC-peptide on the surface of
normal cells.®» B7-H1 is aligand for programmed death-1 (PD-1) which is inhibitory to T cells.*
In addition to being a mechanism of peripheral and central*’tolerance, B7-H1 has been shown to
be upregulated by a wide array of tumors in vitro in the presence of the pro-inflammatory cytokine,
IFNy.*® A lack of costimulation and resulting tolerance to cancer antigens may be the outcome
of tumor cell presence for long periods of time without any sign of danger to the host. Danger
signals which occur during infection with a foreign pathogen or as the results of a high level of
cellular necrosis are required for appropriate immunological activation.”” While many tumors
can be associated with high levels of necrotic cell death, this often occurs at much later stages in
cancer progression therefore the tumor antigen has become putative. In order to generate effec-
tive immunological memory against cancer antigens, vaccination strategies must overcome these
mechanisms of T-cell suppression to self peptides that are associated with the tumor. However,
it first needs to be determined whether immunological memory is effective for tumor regression
and maintenance of tumor free survival.

The ex-vivo induction and transfer of IL-2 activated lymphocytes into a tumor bearing individu-
als can have profound effects on primary tumor regression, but has not demonstrated the ability
to confer long lasting survival.”> However, it is possible that optimal anti-tumor responses would
be expected by combining highly activated T cells for initial tumor destruction followed by a
regimen designed to generate immunological memory to maintain a state of tumor equilibrium.
It has not been sufficiently addressed however whether tumor regression and tumor equilibrium
require the same type of immune effector cell.

Using systemic adjuvant therapy to enhance the response generated to a tumor antigen vaccine
has been the goal of many mouse models and clinical trials. Toll like receptor (TLR) agonists are
one such method of enhancing cancer vaccine efficacy. A TLR 9 agonist was used in melanoma
patients in combination with a cancer vaccine strategy which resulted in a markedly higher ex-
pansion of melanin-A specific CD8* T cells in the peripheral blood of treated patients over that
of the patients that received vaccine alone.® However, it was noted that the majority of antigen
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specific T cells generated with TLR-9 agonist plus vaccine were of effector memory phenotype.
Effector memory T cells do not persist for an extended period of time after infection and long
term disease free status was not reported.’ Systemic administration of interleukin-2 (IL-2) has
been administered as part of many clinical cancer vaccine trials to support the antigen specific
expansion of effector cells (reviewed in ref. 3). Most clinical trials utilizing IL-2 have been limited
in the amount of cytokine that can be administered as IL-2 is associated with severe signs of toxic-
ity.**> However, with the exception of one report.* clinical trials using low dose IL-2 have not
demonstrated a beneficial role to the addition of this cytokine to cancer vaccine regimens.*#” The
administration of other systemic proinflammatory cytokines as well as the blockade of inhibitory
cells and cell surface markers have also been used in conjunction with cancer vaccines in clinical
trials to maximize vaccine efficacy.’ Some have had modest results, but problems associated with
toxicity are usually associated with effective enhancement of the immune response as well as dif-
ficulties in sustaining T-cell responses.

Lacking T-Cell Memory after Strong Immune Stimulation

There are two subtypes of memory T cells, effector memory (CD44" CD62L") and central
memory (CD44" CD62L"). The necessary signal(s) for a T-cell to become a specific subset is
debated.®®® However, it is generally accepted that there is a different physiological role for each
subset.”® Central memory T cells (Tcy) are those typically regarded as immunological memory
cells. They are described as the longer lived memory cell and are at their most basic definition
characterized by the expression of adhesion molecules (e.g., L-selectin and CCR7) in addition to
the adhesion and classic memory cell marker CD44. Both CD28 and CD127 are suggested to be
important for the longevity of memory cells and central memory T cells can persist in the lymph
nodes long after an antigen is cleared.>"** While the long term presence of CD28™! T cells, both
CD4* and CD8, have been described in humans, they have been linked with immune incom-
petence associated with normal aging or with chronic inflammation.>® Upon secondary antigen
exposure, central memory T cells rapidly produce cytokines and undergo a high level of cellular
proliferation.”®® Conversely, effector memory T cells do not persist for a long time in mice and
do not home to the lymph nodes. Mouse models have demonstrated that effector memory T cells
persist rather for a relatively short period after antigen exposure, only lasting about 2-3 weeks.’
Effector memory T cells are classified by their expression of the memory marker CD44 and their
appreciable lack of other adhesion molecules, most notably L-selectin (CD62L). Effector memory
cells also respond quickly to antigen re-exposure most likely with less rapidity and potency than
central memory cells® (Fig. 1).

The powerful effector capabilities of memory CD8* T cells make them an exceptionally at-
tractive candidate for cancer therapy. While some tumor models seem to be directly sensitive to
the killing capabilities of CD4* T cells,** these cells are not generally regarded as potent effector
cells in mouse tumor models. However, CD4* T cells are vital to the generation and possible the
maintenance of effective CD8* T-cell-mediated immunity, particularly memory CD8* T cells,
which may necessitate their presence in therapy approaches.>>>

To understand T-cell memory it is important to understand the critical collaboration between
CD4* and CD8* T cells. CD4* T cells are known for their functional role as helpers and have
many times been shown to be needed during the primary immune response to prime CD8* T cells
properly for sustaining immunological memory.*®*>? In various tumor models, our laboratory
demonstrated that administration of systemic potent proinflammatory immunotherapy using an
agonist mAb to CD40 in combination with high dose interleukin-2 (IL-2) resulted in increased
CD4* T-cell death.”® The increased CD4* T-cell death was correlated with an increased expres-
sion of the INFy dependent PD-1 ligand, B7-H1. This increased CD4* T-cell death correlated
with a lack of continual memory to the tumor antigens when immunotherapy was administered
directly following irradiated tumor vaccine.?® The lack of sustained T-cell memory was despite
primary anti-tumor immunity being previously observed with the same systemic immunotherapy
regimen.®! Effector cells generated during immunotherapy were predominantly effector memory
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Figure 1. Generation of memory T cells. Two subtypes of memory T cells are generated follow-
ing an immune response. Central memory (CD62L" CD44") T cells are longer lived and are
activated more rapidly as determined by cytokine production and death ligand upregulation.
Effector memory (CD62L'" CD44M) T cells are shorter lived and less rapid effector cells, but
are maintained in the periphery for a extended period of time after infection.

phenotype, therefore it was possible that potent immotherapy only supported the initiation of
immediately powerful effector cells and that immunological memory was not generated simul-
taneously. In this model of potent systemic immunotherapy, the observed level of CD8* T-cell
expansion strongly argues against selective expansion of antigen specific cells which would have
resulted in long term immunological memory. CD40 stimulation alone has been demonstrated
to have potentially detrimental effects on viral antigen specific T cells, but was dependent on the
virus.®* Bartholdy et al demonstrated that the deletion of antigen specific CD8* T cells occurred
with lymphocytic choriomeningitis virus (LCMYV) infected mice resulted in delayed viral clearance.
However, CD40 mAb administration to mice infected with vesicular stomatitis virus resulted in
enhanced virus specific CD8* T-cell function correlating with rapid viral clearance.®* These pub-
lications demonstrate a potential problem with combination immunotherapies, cytokine support
of vaccination may be beneficial to the primary or metastatic tumor burden but detrimental to
the generation of long lasting immunity. Why then, if potent immune stimulation can generate
memory phenotype cells does this not correspond with long lived immunity (Fig. 2)? The answer
may lie in that every augmentation of an immune response does not necessarily mean expansion
of antigen specific cells. Verneris et al has reported a mechanism through which CD8* T cells can
acquire MHC-unrestricted killing mechanisms after T-cell receptor (TCR) crosslinking and high
dose IL-2 in vitro.®® Cytotoxicity of these cells was displayed toward many different target cells in
an NKG2D mediated fashion and was found to be dependent on the expression of the adaptor
protein DAP-10. Importantly, DAP-10 was only upregulated in the presence of high dose and not
low dose IL-2 which correlated with the high level of cytotoxicity.® This paper demonstrated a
possible mechanism through which potent systemic immune stimulation could be elicitinga large
population of effector T cells that are capable of primary tumor regression but not antigen specific
in nature and therefore do not persist as long lasting memory cells as demonstrated in Figure 2.
Long term immunological studies in a mouse model of sepsis have shown that immediately
following induction of sepsis, dendritic cells (DCs) were depleted from the lung and the spleen.®*
Furthermore, it was demonstrated that once the DC population returns, their function, as de-
termined by IL-12 secretion, is severely depressed for over 6 weeks after sepsis onset.** This study
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Figure 2. Divergence in memory retention depending on stimulus. This schematic demon-
strates the hypothesis that potent immune stimulus initiates powerful effector memory (Tew)
and effector (Tgeco) T cells. This response is capable of inducing initial tumor regression,
but long term memory is not attained to tumor antigens. Subsequently, weaker more stable
stimulus elicits Tem, Terrecior and central memory (Tey) T cells which are capable of long lived
antigen recognition and therefore tumor equilibrium.

may demonstrate an as yet unidentified problem associated with the administration of potent
systemic immune stimulation for the treatment of cancer. A consequence of activation and expan-
sion is contraction and loss without possible desensitization resulting in blunted responses and
in cancer, relapse.

Conclusion

The examples shown herein may suggest a divergent role for immune cells in the reduction of
immediate tumor burden and the long term maintenance of tumor free survival. While highly
activated T cells seemingly eliminate a significant tumor burden, they may not be proficient at
becoming memory cells and therefore lack the potential to support long-term tumor specific im-
munity. Conversely, memory T cells may not be sufficiently activated to eliminate a burgeoning
tumor, but are proficient at keeping an already reduced tumor load at a minimum.

Utilization of vaccination effectively against tumors which have arisen from self antigens
may require a more complete understanding of T-cell memory and its role during chronic state
disease, such as cancer. Vaccination studies that utilize both antigen specific vaccine as well as the
administration of strong immunomodulators, such as CTLA-4 blockade or cytokine, have shown
some promising success in the clinic, but this may also be contingent on the immunogenecity of
the cancer being treated.’ Additionally, the length of response has yet to be determined. While
the mechanism for these combination strategies has not been elucidated, combination strategies
are aimed to result in independent initiation of effector and memory T cells however previous
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studies have suggested that potent immune stimulus may destroy the generation of long term im-
munity to cancer antigens.”®

Using vaccination to ﬁght various cancers remains an area of strong interest to researchers as
effective vaccination strategies can have profound effects on reducing the mortality associated with
aspecific disease. However, our knowledge is still limited regarding both the complexity of T-cell
memory as well as the importance of immune control to self antigens. Recently, the use of mouse
models has elucidated a direct role for immunological recognition in the destruction of tumor
cells.?® Additional studies have implicated strong immune stimulation as being beneficial to the
primary response and detrimental to the secondary response.*® This early beneficial effect may be
through the generation of CD8* CTL that are relatively MHC-unrestriced in nature as previously
demonstrated in vitro.®> What remains to be addressed however is the long term consequence of
large relatively antigen nonspecific expansion. Is the T-cell repertoire at a permanent disadvantage
after this strong stimulus or can it regain its full potential? These questions demonstrate the need
for more studies to elucidate if tumor therapy and tumor equilibrium can be generated simultane-
ously or if this needs to occur consecutively.
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CHAPTER 13

Memory T-Cell Responses and Survival

in Human Cancer:
Remember to Stay Alive

Matthieu Camus and Jéréme Galon*

Abstract

ancer is a major public health problem worldwide. Accumulating evidence suggests that

tumor-host interactions may in part impact on tumor progression. However, the role of

inflammation and adaptive immune reaction in cancer emergence, local and metastatic
invasion and recurrence are still not clearly defined. Pro-inflammatory mediators are suspected
to favor tumor growth and angiogenesis and naturally generated T cells with antigenic specific-
ity to tumor associated antigens were usually in a state of anergy. Nevertheless, experiments in
mouse and human showed a significant association between high density of tumor infiltrating
T cells and improved cancer prognosis. Recently, the global analysis of colorectal cancer microen-
vironment demonstrated that a strong and coordinated Th1 adaptive immune response within
primary tumors dramatically reduced the risks of relapse events. Interestingly the absence of early
signs of metastatic invasion (lymphovascular emboli) correlated with a significant increase of the
density of memory T cells in situ. This chapter presents the arguments supporting the existence
of immunosurveillance mechanisms in human cancer. We will discuss the potent role of memory
T cells in cancer immunity as well as the opportunities of therapeutic strategies uncovered by this
new area of investigation.

Introduction

Many developments have occurred in prevention and treatment of cancer, but death from this
disease is still common. Of the 58 million people who died worldwide in 2005, 7.6 million died
of cancer. Based on projections, cancer deaths will continue to rise with an estimated 9 million
people dying from cancer in 2015 and 11.4 million dying in 2030 (http://www.who.int/cancer/
en/). Regardless of a great biological heterogeneity among malignancies, six major check points
allowing tumors to adapt to their environment can basically describe cancer progression: (i) growth
factor and (ii) proliferation-inhibiting signals autonomy, (iii) apoptosis escape, (iv) unlimited
replication potential and—for carcinoma—(v) angiogenesis and (vi) primary tumor expansion
and metastatic invasion.! Despite extensive characterization of the intrinsic? and environmental'
underlying mechanisms, markers of the oncogenic process remain poorly predictive of patient
survival and fail to prove their reliability in clinical use. Thus cancer prognosis is still estimated
by yet imprecise classical anatomopathological parameters. For instance, the accuracy of current
tumor-node-metastasis UICC-TNM staging’ in colorectal cancer has remained largely unchanged
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since 1932 Dukes’ original classification.? This lack of elements for relapse prediction improvement
led to the investigation of the impact of nontumoral parameters on patient survival.

For immunologists, an hallmark of tumorogenesis is immune escape.’ Because the immune
system is in constant interaction with tumors, the ability to circumvent and adapt to immu-
nosurveillance mechanisms®” dramatically improves local and metastatic cancer progression.®
Paradoxically, the immune system itself can participate in immune escape. Under the pressure of
immune reaction a darwinian selection of variant tumor cells that are resistant to immune-sur-
veillance mechanisms can occur. This is the model of immunoediting or immune shaping of
tumors.>” Inflammation is now commonly considered as a tumor-promoting factor.'®!! Cancer
cells can take advantage of the release into their environment of pro-inflammatory mediators such
as TNFa, IL-1, IL-8 and IL-6 to increase their own growth and metastatic invasion and induce
angiogenesis.'*"® Thus, innate immune cells through inflammation-dependant mechanisms like
tumor associated macrophages (TAMs) favor tumor progression.'®'” Furthermore, inflammatory
conditions can alter local immune responses. Indeed, intratumoral Type 2 macrophages (M2)
were shown to produce high amounts of immunosuppressive cytokines IL-10 and TGFp but
low levels of Th1 cytokine IL-12."8

By contrast, experiments in mice revealed that immune responses mediated by IFNy'**° and
cytotoxic mediators such as perforine*"** secreted by lymphocytes?*** are involved in cancer im-
munosurveillance of solid tumors and lymphoma.? Local release of IFNy can induces antiprolif-
erative,” proapototic?’ and angiostatic**?” mechanisms leading to tumor cell death. Subsequent
tumor antigen uptake, processing and presentation by APC to T cells can lead to antitumoral Th1
adaptive immune response induced and supported by IFNYy.>**! Consistently, in human cancer,
inﬁltrating cytotoxic T cells were associated with improved clinical outcome and survival in
melanoma,*? ovarian cancer®*** and colorectal cancer.*** In this chapter we will discuss the role
of memory T cells in human cancer and the opportunities of therapeutic strategies uncovered by
this new area of investigation. Because memory T cells are the final actors of the immune reaction
cascade, they could represent a critical marker of antitumoral activity that may help establish cancer
patient prognosis. Furthermore, due to strong cytokine secretion and cytotoxicity memory T cells
may directly be involved in the control of tumor progression and metastatic invasion.

Characteristics of Tumor Antigen-Specific T Cells

Molecular identification of specific tumor antigenic peptides that started 20 years ago was de-
cisive for the acknowledgment of adaptive immunosuveillance. The first human tumor associated
antigen (TAA) was discovered by the team of T. Boon in melanoma. The existence of TA A-specific
T cells is now confirmed in an increasing number of malignancies (more information available at
http://www.cancerimmunity.org/peptidedatabase/ Teellepitopes.htm). TAA and can be classified
in 2 major groups: unique antigens*' and shared antigens.” Unique tumor antigens result from
point mutations in genes that are expressed ubiquitously but that are restricted to an individual
patient or to very few patients. On the other hand, shared antigens are present on many independent
tumors. They can be further divided into four groups: shared tumor-specific antigens, differen-
tiation antigens, overexpressed antigens and viral and bacterial antigens. Shared Tumor-specific
antigens correspond to peptides encoded by “cancer-germline” genes, such as MAGE, which are
silenced in normal tissues but expressed in many tumors.**#* Differentiation antigens are not
tumor-specific because they are also expressed in the normal tissue of origin of the malignancy such
as tyrosinase, which is expressed in normal melanocytes and in most melanomas.* Overexpressed
antigens are expressed in a wide variety of normal tissues but overexpressed in tumors. One of the
most studied antigen of this group is the proto-oncogene HER-2/neu which is overexpressed in
many epithelial carcinoma (ovary, lung, breast, etc.).” Viral and bacterial TAA are encoded by a
number of pathogen agents such as Epstein-Barr virus (EBV) and human papilloma virus (HPV)
that are associated with human malignancies.

The quality of adaptive immune responses is tightly dependant of the quality of the T-cell
repertoire that can be mobilized. Because TAA expression is generally weak, a high frequency of
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naive T cells resulting in high avidity and diversity of effector T cells are needed to elicit efficient
antitumoral responses. Fortunately, all the data collected until now tend to indicate that the
TAA-specific T-cell repertoire is much diversified independently of the antigen. A great poly-
clonality was observed among anti-Melan-A CD8 T cells.”"* Frequencies in the order of 5.1077
were observed for CD8 naive precursors specific of MAGE-3 epitopes restricted by HLA-A1%
or HLA-A25" For comparison, the frequency of CD8 naive precursors specific of LCMV gp33
epitope in mice is 5.10¢ approximately.”> When assessing the frequencies CD8 T cells in periph-
eral blood that were responsive to melanoma tumors, frequencies of 10~ to 10~ were observed
with the highest values for Melan-A-specific T cells.”* Frequencies of tumor-specific T-cell are
increased (107* to 107!) in tumor invaded lymph nodes®®®! and can represent up to 60% of infil-
trating T cells in metastases.””

T cells responses against TAA remain poorly described because they were generally assessed by
methods that did not allow extensive phenotypic and functional analysis. Limit-dilution followed
by cloning protocols are limited by the duration of in vitro cell culture. Ex vivo studies lead to a
better characterization of T-cell populations of high frequency such as Melan-A-specific T cells
that may not be representative of all tumor-specific T cells. In peripheral blood, CD8 T cells that
were specific of Melan-A epitope restricted by HLA-A2 presented intermediate states of activation
and differentiation compared to T cells in invaded lymph nodes that had a more differentiated
phenotype.®* The profile of effector functions of tumor antigen-specific CD8 T cells remains
controversial. Melan-A-specific T-cell populations from peripheral blood are able to secrete IFNy
ex vivo but present variable cytotoxic capacity.®*** CD8 T cells sharing specificity to a tyrosinase
epitope were found functionally anergic in one study®® whereas they were cytotoxic in another.®” At
the contact of tumors, T cells seem to enter in a state of functional tolerance® with impaircd per-
forin and IFNy secretion. The isolation from a melanoma metastase of a suppressor CD4+CD25+
clone specific to LAGE-1 antigen suggested a role for regulatory T cells in the induction of cancer
tolerance.” However, this potent state of tolerance seems reversible in vitro.**¢

In summary, the identification of tumor antigens and associated speciﬁc effector T cells rep-
resents a great step in the revelation of anti-tumoral immunity mechanisms and offers promising
perspectives for cancer immunotherapy. However, due to the experimental difficulty related with
very low frequency of targeted clones, the comprehension of potent functional abnormalities in
tumor antigen-specific T-cell responsiveness in regard of the pathologic state (expression patterns
of tumor antigen, tumor microenvironment, etc.) remains largely unexplored. More global analytic
approaches may help to answer these complex questions concerning host-tumor interactions.

Global Analysis of the Inmune Reaction in Colorectal Cancer:
A Breakthrough for Patient Prognosis

Th1 Adaptive Immune Responses and Patient Survival

It has been proposed that limitations of an experimental design can be overcome by integrat-
ing data obtained from two or more distinct approaches.®”® As described in C. Elegans and S.
Cerevisiae, ‘phenoclusters’ can provide information about both the involvement of markers in
particular modules and the functional relationships that might exist between them.””* It is becom-
ing clear that a global correlation of cellular and molecular datasets applies to the understanding
of complex systems, such as tumor microenvironment and how biological hypotheses can be
formulated based on data integration. Our team performed global phenotypic (large-scale flow
cytometry), gene expression (Low density array RT-PCR) and topographic (TMA in specific
tumor regions) analyses of the cells present in the tumor microenvironment of colorectal cancer
(CRC) patients.”*” The concordant functional patterns of biological markers we observed led us
to propose a new comprehensive view of anti-tumoral activity of immune cells.” Identified expres-
sion profiles of markers with potent implication in CRC outcome were validated, with a strong
statistical confidence, in large cohorts of patients according to clinical reports and follow-up data
that were prospectively collected and updated for 20 years.
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We used large-scale flow cytometry to analyze subpopulations of immune cells from 39
freshly resected colon carcinoma.”* To refine the analysis, 410 combinations of surface mark-
ers were measured. T cells, B cells, nacural killer cells, natural killer T cells and macrophages
were analyzed. CD3+ T cells were the most prevalent tumor-infiltrating immune cells. Naive
T cells (CD3+CCR7+) were rare in the tumors. By contrast, in the differentiation pathway
from early memory T cells (CD45RO+CCR7-CD28+CD27+) to effector memory T cells
(CD45RO+CCR7-CD28-CD27-), all subpopulations were detected. We performed im-
munohistochemical analysis of tissue microarrays prepared from 415 colorectal cancers.”
Kaplan—Meier curves suggested longer overall survival and disease-free survival among pa-
tients with tumors containing a high density of CD45RO+ cells than among patients whose
tumors had a low density of such cells (P < 0.001 by the log-rank test). Patients whose tumors
had a high density of CD45RO+ cells had a median disease-free survival of 36.5 months and
a median overall survival of 53.2 months, as compared with 11.1 months and 20.6 months,
respectively, among patients with tumors that had a low density of CD45RO+ cells (P < 0.001
for all comparisons). The respective five-year overall and discase-free survival rates were 46.3
percent and 43.1 percent among patients with tumors containinga high density of CD45RO+
cells and 23.7 percent and 21.5 percent among patients with tumors containing a low density
of CD45RO+ cells. Multivariate Cox analysis showed that the M stage (P < 0.001), the N
stage (P = 0.002) and the T stage (P = 0.004) as well as the CD45RO+ status (P = 0.02) were
independent prognostic factors for overall survival. Thus, strong densities of memory T cells
were associated with improved patient survival.

To assess the functional orientation of intratumoral responses, we used quantitative real-time
polymerasc chain reaction to evaluate the expression levels of genes related to inflammation, Th1
and cytotoxic adaptive immunity and immunosuppression.” These genes showed variable expres-
sion patterns in the 75 tumors studied. Correlation matrix followed by unsupervised clustering
revealed highly significant combinations of comodulated genes, isolating clusters referring to
known biological functions. Strikingly, a sole cluster for Th1 adaptive immunity (T-bet, IRF-1,
IFNy, CD3C, CD8a, granulysin and granzyme B) correlated with protection against relapse
(P < 0.05). We did immunohistochemical analyses for CD3¢, CD8a, granzyme B and CD45RO
of tissue microarrays prepared from three independent series of colorectal cancer.” For each adap-
tive immune marker, there was a statistically significant correlation between immune cell density
and patient outcome. These data suggested that Th1 adaptive immunity could have a beneficial
effect on clinical outcome.

Altogether, these first observations indicated that strong intratumoral cytotoxic Th1 adaptive
responses, illustrated by the expression of related mediators as well as the state of memory differ-
entiation of T cells, could take place at the primary tumor site. These findings were inconsistent
with infiltration of the tumor by inactive, anergic T cells indicating that cancer tolerance within
tumors is not a generality. At the contrary, the strong pronostic values of the immune parameters
we identified imply an efficient antitumoral activity of the immune system in situ. However, because
high densities of T cells were not associated with the stages of tumoral tissue invasion, control
of local tumor progression may not be the major role of immune reaction in situ. Conversely,
infiltrates of high memory T-cell density were significantly associated with tumors without lymph
node involvement and distant metastases (P < 0.001).” This strongly suggests that diminished
risks of relapse occurrence are rather associated with control of the metastatic invasion process
by the immune system.

Effector-Memory T Cells and Early Metastatic Invasion

Antitumoral activity of adaptive immune responses and improved prognosis associated with
T-cell infiltrates of high density have been described in human colorectal cancer.>*” Evidence is
accumulating that colorectal cancer expresses tumor-associated antigens (e.g., K-ras mutations,
p53, carcinoembryonic antigen, Ep-CAM and SART3) that can induce tumor-specific T-cell

responses in patients.”® Recently, systematic analysis of genetic alterations identified 751 somatic
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mutations in human colorectal cancer and derived cell lines,”” emphasizing a wide spectrum of
putative peptides for T-cell recognition. All these experimental data provide strong arguments in
favor of the immune-mediated control of colorectal cancer. We chose to investigate the potent
associations between immune and histopathological parameters. In regard of our preliminary
observations we focused on the possible involvement of the immune system in the control of
metastatic spreading.

W assessed the early steps of the metastatic invasion processes at the primary tumor site, which
include vascular emboli (VE), lymphatic invasion (LI) and perineural invasion (PI) (collectively
referred to as “VELIPI”).”* VELIPI status of tumors was determined from the histopathological re-
ports obtained at the time of resection in a representative cohort of 959 patients. A VELIPI-positive
tumor had at least one of these pathological findings, whereas a VELIPI-negative tumor had none
of the three findings. The VELIPI status had a significant pronostic value. Kaplan—Meier curves
suggested longer overall survival and disease-free survival among patients with VELIPI-negative
tumors than among patients with VELIPI-positive tumors (P < 0.001 by the log-rank test for
both analyses). There were significant differences in the median duration of disease-free survival
between patients with VELIPI-positive tumors and patients with VELIPI-negative tumors (3.3
months vs 26.9 months, P < 0.001). A similar pattern was found for overall survival. Furthermore,
the presence of more than one sign of early metastatic invasion conferred a worse prognosis than
the presence of a single sign.

The association between signs of early metastatic invasion and immune reaction was evaluated
by integrative analyses of complementary approaches.”* Inmunohistochemical analysis of tissue
microarrays showed that VELIPI-negative tumors contained high numbers immune infiltrates and
in particular of CD45RO+ cells as compared with VELIPI-positive tumors (P = 0.02). Large scale
phenotypic analysis confirmed that the absence of tumor emboli was associated with a significant
increase of (i) the density of intratumoral CD3+, CD3+CD4+ and CD3+CD8+ T cells (by a
factor of 2.6, 2.5 and 4.9, respectively; P < 0.05) (ii) the expression of the marker of T-cell activa-
tion (HLA-DR, CD98, CD80, CD86, CD134), differentiation (CD45RO, CD45RA, CD27,
CD28, CCR7, CD127), migration (CD62L, CCR7, CD103, CD49d, CXCR3) and (iii) the
proportion fully differentiated CD8+ T cells. Finally, gene expression profiles revealed that the
expression levels of cytotoxicity mediators (CD8a, granzyme B, granulysin) and Th1 adaptive
response mediators (T-BET, IRF-1, IFNy) were significantly increased VELIPI-negative tumors
from patients who had not relapsed, as compared with levels in VELIPI-positive tumors from
patients who had relapsed (P < 0.05). In contrast, levels of the Th2 transcription factor GATA-3,
inflammatory mediators (IL-8, VEGF, CEACAM-1, MMP7, COX-2, thrombospondin-1) and
immunosuppressive molecules (TGFp, IL-10 B7-H3, CD32b) were not differentially expressed
among the group of patients.

Our work, for the first time, provides the evidence that Th1 adaptive immune response elicited
at the primary tumor site of colorectal carcinoma can control cancer recurrence and are benefi-
cial for patient survival. Concordant data from distinct approaches indirectly indicate that early
metastatic dissemination is probably hold in check by tumor infiltrating memory T cells through
their superior effector function as compared to conventional undifferentiated T cells. However, it
cannot be excluded that intratumoral lymphocytes modify tumor stroma or tumor cells, or both,
in such a way that they attenuate the metastatic capacity of tumor cells. Furthermore, we failed
to identify the biological mechanisms associated with reduced T-cell infiltration within tumors.
Pro-inflammatory and immunosuppressive molecules we analyzed were not associated with im-
mune cell recruitment at the primary tumor site. Thus, differences in tumor immunogenecity
among CRC tumors still need to be elucidated.

In Situ Coordination of Immune Reaction and Improved
Prognostic Evaluation

A note of caution is useful when interpreting the highly significant correlation we found
between the quality of the in situ immune reaction and the signs of tumor dissemination and
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clinical outcome. This indicates a strong but indirect evidence of an immune-mediated control
of colorectal cancer progression. In an attempt to better evaluate the impact of T-cell infiltrates
on the dissemination of metastases from the primary tumor site, we extended tissue microarray
analyses to the immediate surroundings of the primary tumor—the invasive margin (IM)—in
addition to the center of the tumor (CT).” Patients without recurrence had higher immune cell
densities (CD3, CD8, GZMB and CD45RO) within each tumor region, than did those from
patients whose tumors had recurred. In each tumor region (CT and IM) and for each marker
(CD3, CD8, GZMB and CD45RO), there was a statistically significant correlation between im-
mune cell density and patient outcome for a large range of cutoff values. In particular, using the
cutoff that yielded the minimum P value for disease-free survival, the densities of CD3+, CD8+,
GZMB+ and CD45RO+ cells in each tumor region (CT and IM) allowed the stratification of
patients into groups with different disease-free survival rates (P values ranging from 107 to 10-)
and overall survival rates (P values ranging from 107 to 107).

The combined analysis of tumor regions further improved the prediction of patient survival. For
all markers, the combined analysis of CT plus IM regions increased the accuracy of prediction of
disease-free and overall survival time for the different patient groups, as compared to single-region
analysis. These results were confirmed in two other independent cohorts of patients. Univariate
and multivariate analyses done in multiple parallel ways (correction factors, median cutoff,
cross-validation methods, leave-one-out and bootstrap methods) led into similar conclusions.
These results strongly support the presumed immune activity against metastatic dissemination
from the primary tumor site.

Finally, we determined whether these immune criteria could discriminate patient outcome at
cach step of cancer progression. Patients were stratified according to the UICC-TNM classifica-
tion.> A strong in situ immune reaction in both tumor regions (CT and IM) correlated with a
favorable prognosis regardless of the local extent of the tumor and of invasion of regional lymph
nodes (stages I, Il and I1I). Conversely, a weak in situ immune reaction in both tumor regions cor-
related with a poor prognosis even in patients with minimal tumor invasion (Stage I). Furthermore,
patients with low densities of CD3+ cells and CD45RO+ memory T cells in both tumor regions
had a very poor prognosis, similar to that of patients with concomitant distant metastasis (Stage
IV). Multivariate Cox analysis showed that immune patterns remained the unique parameter
significantly associated with prognosis, whereas T-stage, N-stage and differentiation of the tu-
mor were not significant when adjusted with immune patterns. Thus, the amplitude of adaptive
immune reaction within the primary tumor was a better predictor of survival than traditional
clinical parameters.

A Long-Term Memory against Cancer?

Our results suggest that once human CRCs become clinically detectable, the adaptive immune
response plays a role in preventing tumor recurrence. Despite immunoediting mechanisms, the
beneficial effect of the adaptive immunity may persist throughout tumor progression (stages IT and
III). The absence of microscopic evidence of early metastatic invasiveness within lymphovascular
vessels was strongly positively correlated with high densities of intratumoral effector-memory
T cells. An appealing interpretation of these data is that even when a tumor has already reached
an advanced clinical stage, efficient adaptive immune reaction can keep tumor emboli in check.
Because cancers present the physiopathological characteristics of chronic and evolutive diseases,
it is not surprising to observe differentiated memory T cell within tumors. Strong adaptive im-
mune reactions resulting in massive recruitment and differentiation of T cells in situ can basically
explain the strong prognostic value of CD45RO marker. However, it could be hypothesized that
effector-memory T cells may not only illustrate global antitumoral immune responses but may
be directly involved in the control of cancer progression. The cytotoxic and cytokinic capability
of effector-memory T cells may provide them the relevant weapons to control tumor progres-
sion and metastatic invasion at the primary tumor site. In another hand, the observation of high
intratumoral immune reaction in patients with advanced metastatic cancer could indicate that the
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immune system is unable to efficiently prevent metastatic dissemination. Thus other antitumoral
immune mechanisms may be implicated in reduced relapse occurrence.

Because the primary tumor is removed by surgery, the prognostic value associated with the
host response in colorectal cancer may reflect a quality of systemic effectors for recognition and
killing of circulating cancer cells in peripheral blood, peritoneal cavity, bone marrow, or lymph
nodes. The effector-memory T-cell ability to “remember” previously encountered antigens leads
to faster response on reexposure. Following a primary response to antigen, memory T cells dis-
seminate and are maintained in the body for long periods.”® As suggested in mice,” the trafficking
properties and the long-lasting antitumor capacity of memory T cells could result in long-term
immunity in human CRC.

It is suspected that metastatic invasion can lead to the dissemination of tumoral foci that can
remain in an asymptomatic and nondetectable state of dormancy (i.e., not expanding in mass)
for long periods of time before cancer reemergence.®** Control of cancer dormancy involves
various mechanisms like cellular dormancy (GO-G1 arrest), angiogenic dormancy and immuno-
surveillance.*® Recently, Koebel and colleagues demonstrated that stable lesions of transformed
immunogenic cells in mice were controlled by the host’s adaptive immune system in a condition of
‘equilibrium’** In these experiments, loss of either immunocompetence or immunogenicity could
lead to tumor outgrowth. Based on these data it could be hypothesized that human cancer relapse
may arise cither because of the loss of the protective antitumoral immunity and/or the ‘awaken-
ing’ of dormant tumors. This could explain why occult cancer can be transplanted from organ of
a donor—apparently cured from cancer—to a recipient® who is at one and the same time naive
to the transplanted tumor cell antigens and under immunosuppressant treatment.

In this context, our data suggest that depending on the strength and localization of anti-
tumoral immune responses elicited in situ, distinct quantity (number of clones) and quality
(memory differentiation state) of memory T cells could be generated among the patients.
Before surgery, resident memory T cells may actively reduce the number of disseminating occult
tumors. Following resection of primary and secondary tumors, circulating memory T cell may
participate in the control disseminated distant occult tumors. During the equilibrium phase,
both mechanisms may result in tipping the scale towards immunosurveillance mechanisms
against occult tumor outgrowth, thus dramatically reducing relapse occurrence and favoring
patient survival.

Perspectives for Cancer Research and Treatment Strategies

The strong prognostic value of immune parameters we uncovered has to be repeated in
independent and larger cohorts of colorectal cancer patients and in those with other cancers.
Similar observations are expected in melanoma but some data in breast cancer advocate against
it.* However, if confirmed these results may have immediate impact on the establishment of
cancer patient clinical prognosis. Indeed, the combination of immunological parameters together
with classical clinical observations in routine may dramatically improve the prognosis of cancer
patients. Redefined classifications according to patient immunologic profile may allow propos-
ing more adapted treatments and therapy strategies. Indeed, this could help identify high-risk
individual with modestly invading tumors who would benefit from aggressive adjuvant therapy
as well as patients with advanced tumors but good immune criteria who may not necessarily need
postoperative treatments.

At present, classical treatments against cancer (surgery, radiotherapy and chemotherapy) al-
low half the patient to durably survive their disease despite important adverse reactions. Cancer
immunotherapy offers complementary strategies with minimal secondary effects.*”*® However,
direct tumor antigen vaccination strategies globally induce only marginal objective responses in
clinical trials (3% according to RECIST criteria)® though in some cases evidence of tumor regres-
sion can be observed in up to 20% of enrolled patients.*® This disappointing clinical inefficiency is
probably inherent to stimulations of monospecific T-cell responses. Indeed, adoptive transfer of
dendritic cells activated with tumor antigens are associated with 9.5% of global clinical responses,
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a3 time increase as compared to vaccination trials.*” This suggests that costimulation molecules”
and multiple epitope of a given antigen® presented to T cells by antigen presenting cells improve
antitumoral immune activity. This is consistent with the observation that only strong and coor-
dinated adaptive immune responses are associated with good prognostic in human CRC.” Thus,
the key for immunotherapy success may reside in the induction of global antitumoral reaction in
situ strong cnough to circumvent the tumor immunosuppressive network. Furthermore, given
the suspected role of memory T cells in the long-lived control of cancer reemergence, local tumor
regression may not be the sole objective of immunotherapeutic strategies. The artificial induction
of large and diversified populations of memory T cells may dramatically reduce the risks of cancer
relapse following tumor removal or destruction.

The use of monoclonal antibody remains the most successful strategy of immunotherapy.
Recent clinical studies (1998-2004) show that rituximab (anti-CD20) treatment alone induces
40-70% of partial responses and 4-37% of complete remission of lymphoma patients.” Besides,
anti-VEGF treatments provide an alternative but complementary approach to reduce colorectal
cancer progression” when combined with chemotherapy.” Angiogenesis in part mediated by
VEGF expression seems to play a critical in primary tumor progression by promoting nutri-
ment supply® and inducing vascular exit paths for migrating tumor cells.” A greater systemic
mass of occult tumors may increase the risks of disruption of their dormancy state because of
overwhelmed immunosurveillance mechanisms. Furtheremore, if the migrating tumor cells
inherit the strong angiogenic properties of their resident counterparts the angiogenic dormancy
mechanisms” may be dramatically impaired. Because angiogenic mechanisms may occur very
early in CRC the onset of dysplastic transformation in the polyp®® anti-VEGF treatments could
be efficient even in carly CRC stages. In rcgard of our results and hypothcscs, combined treat-
ment targeting both angiogenesis inhibition and memory T-cell generation could dramatically
favor patient survival by (i) respectively reducing metastatic spreading and enhancing immune
reaction within tumors and (ii) respectively enhancing occult tumor dormancy and long-term
immunosurveillance during the equilibrium phase. Further studies are needed to investigate
these crucial issues.

In the field of fundamental research, future comparative studies of tumors according to im-
mune parameters may reveal distinct biological processes of tumor-host interactions such as tumor
immunogenecity or immune escape and subsequent regulation of immune cell recruitment and
activation in situ. Cataloging tumors with distinct immune sensitivity could facilitate the com-
prehension of emergence and cancer progression. This new area of investigation may help uncover
individual and universal mechanisms of human antitumoral reactivity.

Conclusion

Continuous technologic advances in cancer models and immunodeficient mice, miniaturiza-
tion of experimental tools and large scale analysis allowed uncovering several mechanisms of im-
munosurveillance and tumor escape. Integrative biology represents a valuable approach to assess
the complexity of tumor-host interactions in situ. The beneficial impact of intratumoral Thl
adaptive immune response on patient outcome is a powerful argument in the demonstration of
antitumoral immunity. In human colorectal cancer, immune parameters were even better predic-
tors of patient outcome than classical anatomopathological parameters. At the primary tumor site,
the positive correlation between the absence early metastatic events and high densities memory
T cells was associated with prolonged patient survival. This provide a better comprehension of the
role of memory T cells in local control of cancer progression and offers new appealing hypotheses
in favor of potent mechanisms of long-lived cancer immunity. The combination of immunological
parameters together with classical clinical observations in routine may dramatically improve the
prognosis of cancer patients by redefining classifications according to their immunologic profiles.
More adapted treatments and therapy strategies may ultimately be proposed to attempt to eficiently
cure colorectal cancer.
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CHAPTER 14

Analysis of Vaccine-Induced T Cells

in Humans with Cancer
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and Francesco M. Marincola*

Abstract

ver the past several years, progress in the field of tumor immunology has lead to advances

in active immunotherapy and vaccination as a means of eliciting tumor-specific immune

responses to mediate tumor regression and clearance. Developing vaccines targeted
against cancer became an important focus as a therapy following the success of viral vaccines in
preventing infection and disease. In humans with cancer, similar to viral infections, the host im-
mune system is capable of recognizing antigens expressed on tumor cells. This similarity allows
the immunological framework of the viral vaccine to be adapted to the cancer setting in hopes
of enhancing human T-cell reactivity against tumor.! It is generally believed that a requirement
for tumor destruction to occur is the induction of sufficient levels of immune cells with high
avidity for recognition of tumor antigens. Moreover, the cells must be targeted to the tumor
site and be capable of infiltrating tumor stroma.? Several tumor-associated antigens (TAA) have
been identified in the melanoma model which has allowed for immunization trials to evaluate
therapeutic potential of tumor-specific T-cell induction. Some clinical trials reported limited
success of T-cell mediated tumor rejection, reporting partial or complete regression in 10 to 30%
of patients.® Although tumor regression was not observed following active immunization in vivo,
ex vivo assays evaluating TAA-specific T cells demonstrated tumor recognition and subsequent
T-cell activation suggesting that tumor-specific T-cell induction indeed occurs but alone is not
adequate to induce tumor regression.' Recently, the usefulness and success of active-specific im-
munization (ASI) against TAAs as a means of eliciting a tumor-specific immune response leading
to tumor regression and clearance has been a topic of debate and discussion.

Argument against Potential of Tumor Vaccination

Those unconvinced of the potential usefulness of cancer vaccines as a therapy argue that the
clinical endpoint of ASI is tumor destruction and clinical trials have yet to successfully correlate
ASI with clinical regression. Instead, other therapeutic methods should be investigated such as
adoptive immunotherapy. In the viral model, vaccination shows no benefit to the host when ad-
ministered during acute viral infection and Rosenberg et al* suggest that a similar phenomenon
may be occurring during ASI against cancer and that cancer vaccines may be more useful if used as
a preventative. In animal models, antitumor vaccinations were administered both in prophylactic
and therapeutic settings. Prophylactic vaccinations against viral diseases and to prevent virally
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induced tumors were effective when synthetic peptide was used. However, nonvirally induced
tumors did not respond to prophylactic vaccination, though antitumor efficacy was present. As a
therapy, vaccination was effective in only limited number animal models.

Rather than measuring success based on immunologic data such as circulating TAA-specific
T-lymphocytes, presence of tumor infiltrating lymphocytes (TILs) and histology, it has been
suggested that success should be based on clinical regression following the Response Evaluation
Criteria for Solid Tumors (RECIST) guidelines which require a 30% reduction in the sum of
maximum lesion diameter and no novel or progressing lesions.>” However, the more conventional
criteria to characterize a clinical response are a “50% reduction in the sum of the products of the
perpendicular diameters of all lesions without 25% growth of any lesion or the appearance of new
lesions”. Using this more common approach, Rosenberg et al reported an objective response rate
of only 2.6% in 440 patients following vaccine administration to patients with various types of
metastatic cancer including melanoma, renal cell, ovarian, colorectal and breast, a rate which they
found to be comparable to other vaccine trials. Patients were administered various vaccines such as
peptide, viral vectors and naked DNA encoding tumor antigen. Although T cells activated against
specific TAAs can be successfully generated in vivo, the lack of correlation to clinical response still
exists. However, the report was biased by the aggregation of heterogeneous protocols into a single
analysis and by the lack of mechanistic interpretation of the reasons for the lack of correlation
between frequency of TAA-specific T cells and tumor regression.®

Various obstacles exist in the cancer ASI setting. One issue is that although T-lymphocytes
capable of recognizing TA As are generated, antigen recognition is not enough to mediate regres-
sion and T-cell mediated rejection of vascularized tumors.® In addition to recognizing TAAs,
T cells must also be capable of localizing and surviving in target tissue. Another concern is that
the number of circulating T cells may be inadequate to mount a clinical response. In adoptive
therapy studies, it has been reported that between 5 and 75% of antitumor T cells are necessary
to achieve somewhat successful clinical effectiveness.” Other important elements that should be
addressed are the inability of tumor to activate quiescent or precursor lymphocytcs, tolerance
mechanisms including anergy,’ suppressor influences by tumor or immune system'®!! and tumor
escape mechanisms.

Argument for Potential of Tumor Vaccination

Expectations from immunizations against cancer are similar to those from immunizations
against pathogens. In the pathogenic immunization pathway an inflammatory response at the injec-
tion site activates monocytes making them capable of antigen uptake. The immunogen or adjuvant
can cause monocyte maturation into professional antigen presenting cells (APCs) which migrate
to loco regional lymph nodes where they interact with naive and memory T cells, including those
that can recognize the antigen and initiate the afferent loop of immunization. Differences between
anti-cancer and anti-infectious ASI occur in the efferent arm. In a pathogenic model, after T cells
are primed in the lymph nodes, they migrate back to the site of infection which is usually associated
with inflammation allowing the T cells to become activated and to perform their cytolytic function.
However, because tissue damage in cancer is typically not as extensive as in a pathogenic model,
the tumor microenvironment is less conducive to producing inflammatory responses capable of
stimulating tumor-specific T cells to perform effector functions. The afferent arm of immunization
however, is functioning properly as demonstrated by identification of circulating antigen-specific
T cells suggesting that the problem lies in effector function performance.!

Because T-cell induction does not equal clinical regression, certain aspects should be in-
vestigated such as effector function adequacy, frequency of immunogen-specific T cells, T-cell
localization and function at tumor site, secondary stimuli and tumor escape mechanisms. The
fact that tumor and tumor-specific circulating or intra-tumoral cytotoxic T-lymphocytes (CTLs)
can coexist in the host suggests that there may be an issue with the adequacy of T-lymphocyte
effector function. Following immunization, TAA-specific T cells typically express T-cell activa-
tion markers and secrete IFN-y when stimulated ex vivo by cognate tumor. However, they do
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not express perforin and other effector molecules and are small in size which is similar to that
of resting T cells.’*!* In addition, it is possible that TAA-specific T cells are not produced at
a high enough frequcncy to induce tumor regression since there is evidence that in the virus
model T-cell frequency directly correlates with disease clearance or resurgence. Tissue sensitiv-
ity to CTLs may also be variable depending on the tumor, which may determine the frequency
necessary for regression. Mouse studies have shown that immune response intensity directly
correlates with tumor regression'® and that T-cell frequency directly correlates with number
of immunizations administered. It has been reported that in order to reach a T-cell frequency
comparable to that of acute infection, between 16 and 24 rounds of immunization might be
necessary' and in most cancer vaccine trials only a few rounds of immunization are administered,
which may limit the ability or success of the vaccine. Longcr immunization schedules could be
beneficial, albeit in a population not requiring urgent palliative or therapeutic intervention.
Moreover, although T cells seem to have the ability to reach the tumor site, recognize antigen
and produce interferon-y (IFN-y), they are not able to expand, nor limit tumor growth which
is similar to the immune response in chronic viral infection in which CTLs are circulating but
not eliminating virus.'¢ It is possible that secondary stimuli such as interleukin-2 (IL-2) may be
required in order to activate CTL effector function. Although tumor escape mechanisms offer
an attractive explanation for the lack of correlation between TAA-induced T cells and clinical
regression, we are inclined to believe that this is probably not the case and that it is instead a
result of T cells that are not adequately stimulated for killing.

Although the RECIST guidelines are useful to determine tumor shrinkage, this may not be the
best suited method to measure success in the cancer vaccination setting. In a literature review of
clinical ASI studies Mocellin et al® report a response rate of tumor shrinkage in 10% of subjects,
which would be even higher under RECIST guidelines however, this number does not correlate
with clinical regression."” This demonstrates that contrasting “tumor response” from RECIST with
“patient response” from increased survival following immunization may be more useful and that
soiciy using the same RECIST criteria rcgardless of thcrapy, type of cancer and stage of disease may
be dangerous. In clinical cancer vaccine trials, few have demonstrated robust responses satisfying
RECIST guidelines, however prolonged survival has been observed as a measurable endpoint.’®

Methods for Immune Monitoring following Active-Specific
Immunization

Systemic Response

Developing a standardized method for immune monitoring of vaccine induced immune
responses is of great importance for the development and evaluation of cancer vaccines.
Standardization would allow vaccine study comparison between institutions however standard-
izing parameters and laboratory techniques among the large variety of cellular and molecular
assays that are used to detect responses to vaccination is quite difficult.!” A vast array of tech-
niques and assays are regularly employed to monitor the systemic immune response following
ASI. Furthermore, it should be emphasized that the human biology is the independent variable
and relevant clinical parameters should be easily reproducible independent of the assays if they
are truly associated with a particular determinism. Thus, excessive emphasis on assay validation
and cross-validation may be unwarranted when the biology evaluated is not clearly relevant to
disease outcome or the phenomenon studied is poorly linked to a clinical parameter.

Limiting Dilution Assays (LDA)

Two types of limiting dilution assays (LD As) are typically used to measure systemic activation of
circulating T cells, one measures antigen-specific T-cell proliferation and the other T-cell ability to
lyse labeled tumor cells. Antigen-induced clonal expansion is detected via radiolabel incorporation
into DNA to measure expansion of CTL and helper T cells. Briefly, cells are incubated for approxi-
mately 5 days in the presence of soluble antigen and *H-thymidine is added for several hours. DNA
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synthesis, which is the first response of cells to the mitogenic potential of the antigen, is determined by
measuring radioisotope incorporation associated with the cells. As a positive control, lectin PHA can
be added as a nonspecific T-cell activator. This assay is extensively used because the desired outcome
of any vaccination protocol is the expansion of an antigen-specific T-cell population.”® The other
assay measures the lytic ability of CTLs and helper T cells that are measured through radio-labeled
tumor cells. This assay is important in immunization immunology because it is assumed that the
ability to lyse and kill tumor targets in vitro is similar to CTL killing ability in vivo, however this
has been difficult to prove. Tumor lysis can occur via two methods (1) CTL release of lytic granules
containing perforin and granzymes causing pore formation in target membrane followed by lysis and
(2) through the Fas-Fas ligand apoptotic pathway. The chromium release assay (CRA) elucidates
CTL function by measuring the amount of > Chromium (Cr) released following lysis of labeled cells.
Tumor target cells are labeled with >'Cr and mixed with T-lymphocytes. Target cells spontaneously
release ' Cr slowly, so rapid *'Cr release demonstrates target cell lysis. In a similar colorimetric assay,
MTT tetrazolium salt is hydrolyzed by viable cells to form a blue crystal measurable in a microtiter
plate reader. Additionally, fluorimetric methods includingMUH and AlamarBlue give more sensitive
results when compared to the CRA method. Fluorimetric assays are attractive because they avoid
radioisotype use, however they do have longer assay times and require the purchase of a microplate
reader.”® From a clinical standpoint, CRA has often been used to monitor clinical immunization
trials and to determine immunogenicity of tumor-related proteins however no correlation has been
documented between antigen-specific proliferation and clinical outcome. In theory, vaccine-naive
patients with cancer or volunteers without cancer should not have detectable TA A-specific immunity.
However, it has been reported in some cases that melanoma patients, as well as volunteers without
cancer do have immune responses to melanoma differentiation antigens, making evaluation of the
prevalence of immunity in the naive population important.?"*

Enzyme-Linked Immunospot Assays (ELISPOT)

The enzyme-linked immunospot assay (ELISPOT) is based on the ELISA principles and was
originally established to detect antibody-secreting cells and was later adapted to detect antigen-specific
T cells and T-cell frequency. Practically speaking, a 96-well nitrocellulose-bottomed microtiter plate is
coated with an antibody that traps a specific cytokine. Peripheral blood mononuclear cells (PBMCs),
isolated CD8* or CD4* lymphocytes are incubated in the wells in the presence of an antigen for 6
to 48 hours. If cells respond to antigen, they will release said cytokine which is then bound by the
antibody in close proximity to T cell in the well. Cells are then washed from the wells to visualize
cytokine release by T-lymphocytes by an enzyme-labeled detection antibody and its chromogenic
substrate that attaches to the well surface. The final product consists of colored spots in the wells;
each spot corresponds to one cell secreting the candidate cytokine. IFN-y production is often used
as a read out for T-cell activity because it is not typically spontancously secreted in unstimulated
T cells that occur with other cytokines, such as TNF-a in a small fraction of cells. Various studies
have used ELISPOT to measure tumor-reactive T-lymphocytes in peripheral blood of patients with
tumors and data suggest that the assay is capable of detecting low frequency T-cell responses.*® One
advantage of using ELISPOT over assays such as LDAs is that it does not rely on cell proliferation
which better reflects individual IFN-y producing cells and functional state in vivo."” Clinically,
this method of immune monitoring has been useful in vaccination trials, most of which measured
responses against peptides, melanoma cells, or idiotype protein in patients with myeloma.

Cytokine Flow Cytometry (CFC)

Cytokine flow cytometry (CFC) can be used to detect stimulated CD4* and CD8*
T-lymphocytes at a low frequency following ex vivo stimulation with antigen by measuring
intracellular IFN-y as a surrogate of T-cell activation. CFC can be successfully performed with
mononuclear cells obtained from PBMC,? whole blood,* lymph nodes or other biologic fluids.?
Briefly, mononuclear cells are incubated for a total of 6 hours in presence of stimulating antigen
to allow generation of high cytokine levels and for optimal cytokine staining. After 1 to 2 hours
of stimulation, a cytokine secretion inhibitor such as brefeldin A is added to the culture. The cells
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are then fixed at 6 hours post stimulation, permeabilized and stained with monoclonal antibod-
ies that recognize both surface and intracellular proteins to be characterized via flow cytometric
analysis. Due to the short stimulation time, problems associated with increased culture times such
asapoptosis and proliferation need not be addressed. As we have previously shown®?” unstimulated
lymphocytes and lymphocytes stimulated with irrelevant peptide do not exhibit cytokine secretion
and thus background noise is rare. Moreover, super-antigens such as staphylococcal enterotoxin
B can effectively stimulate a large proportion of lymphocytes as a positive control® In studies
investigating T-cell activation in response to stimulation with CMV and EBV viral epitopes,
CFC was reliable in producing measureable amounts of IFN-y.2?¢ Because tumor-specific T cells
often produce less IEN-y than virally stimulated T cells, they may be theoretically more difficult
to detect using this method.”** However, studies have demonstrated that CFC is in fact sensitive
enough to detect immune responses to tumor antigens in spite of the fact that IFN-y frequencies
are lower than when compared to infection.”” Others report the need for in vitro sensitization for
frozen and thawed samples, rather than direct ex vivo testing.** In addition to immune monitor-
ing, CFC may also be a powerful tool in vaccine development by identifying novel TAA capable

of eliciting immune responses.

Tetramer Analysis with Soluble Major Histocompatibility Complex (MHC)/
Peptide Complexes

Soluble MHC/peptide tetramers can be produced that are conjugated to a fluorochrome and
stably bind to a specific T-cell receptor (TCR). Tetramers can be generated for MHC classI CD8*
T-cell screening as well as for MHC class IT CD4* T-cell screening. Fluorescent MHC/peptide
tetramers when incubated with a heterogeneous population of T cells will bind those T cells ex-
pressing MHC/peptide-specific TCRs which can then be detected by flow cytometric assays. This
tool is useful in identification of antigen-specific CD8* and CD4* T cells in a polyclonal T-cell
population and to generate information on T-cell functionality when combined with additional
assays.'”* Methodology for tetramer generation has been established and described.”** Tetramer
analysis following vaccination has numerous advantages over some other methods. Tetramers allow
cell enumeration without employing indirect functional assays in vitro and also allows cell sorting
to isolate antigen-specific T cells which provides a source for TCR analysis and for cells targeted
to adoptive transfer therapy. In addition, cellular phenotype can be obtained by using markers for
activation status, costimulatory receptors, homing and others, while simultaneously staining for
intracellular proteins to study T-cell stages of those responding to vaccination." Although tetram-
ers are a powerful tool, they do have some limitations such as that MHC/peptide tetramers bind
TCR with minimal avidity, which may allow some T cells of functional and clinical importance
to be overlooked. In addition, some clinically important epitopes bind MHC with low affinity
eliminating the possibility to produce an effective tetramer complex.

LQuantitative Reverse Transcription-Polymerase Chain Reaction

Originally, quantitative reverse transcription-polymerase chain reaction (QRT-PCR) was
developed to measure viral loads in patients and for monitoring viral infection following trans-
plantation. Investigators at the National Cancer Institute Surgery Branch adapted this procedure
for use in evaluating T-cell activation by measuring IFN-y transcript levels in melanoma patients
following ASI with peptide. Kammula et al*** compared IFN-y transcript levels in PBMC pre
and postvaccination as well as in PBMC stimulated ex vivo with the relevant epitope. Data from
this study found that the qRT-PCR results correlated well with results from HLA/peptide tetra-
meric complexes and intracellular CFC. This assay allows the investigation of gene expression of
an unlimited number of genes from small samples, such as FNAs, from a likewise minimal amount
of candidate RNA. Because this is a sequence-based method, it also allows for investigation of
any gene with a known sequence. Additionally, after cDNA is generated from the RNA of clini-
cal samples, it can be stored safely for a long time for future analyses. This method also provides
flexibility in that it can be applied to T-cell reactivity to whole proteins, protein mixtures, whole
tumor cells without first determining relevant peptides/HLA restrictions.?”
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Transcriptional Analysis of Circulating T Cells Following Active-Specific

Immunization

In a transgenic mouse model Kaech et al'” characterized time-dependent phenotypes of CD8*
T cells following acute exposure to antigen. One week following antigen exposure, expanding
CD8* T cells were found to be cytotoxic when tested ex vivo and had a transcriptional profile rich
in effector function. In the following two weeks during the contraction phase, a memory pheno-
type was observed that responded to cognate stimulus measured by IFN-y secretion, but was not
capable of cytolytic activity and other effector functions. These findings correlate well with the
TAA-specific immunization model in which a time-limited course of TAA-exposure is followed
by a rest period of a few weeks. In this model, immunization induced T cells retain the effector
phenotype (CD27-, CCR7-CD45RAhigh) and IFN-y responsiveness, however they cannot exert
effector functions."* Monsurrd et al'® described this ‘quiescent’ phenotype through transcriptional
profiling of an immunization-induced T-cell population not capable of exerting ex vivo cytotoxicity
that was found to lack gene expression associated with T-cell activation, proliferation and effec-
tor function. This study was important because it demonstrated the significance of evaluating the
functional status of vaccine-induced T cells at the global level pointing out that circulating T cells
induced by vaccines do not have a phenotype of true effector cells and this finding may provide
the most likely explanation for the lack of correlation between TAA-specific T-cell frequency in
the blood and tumor regression.! Importantly, this study also demonstrated that transcriptional
analysis of rare sub-populations of T cells can be performed using sorting procedures; further
improvement in sorting technologies using high-speed FACS sorters has increased the yield and
purity of such subsets allowing sophisticated distinctions among various circulating lymphocytes
and subtleties about their interactions.?”¥’

Tumor-Site Response, Tumor Microenvironment

The Immune Surveillance Hypothesis

Immune surveillance, as described by Wang et al is a hypothesis that may be useful in understand-
ing spontancous cancer rejection.® Although no direct way exists to test this hypothesis, it has been
suggested that the immune system is in a constant battle in surveillance against neoplastic develop-
ment.*”” Examples of spontaneous rejection that drove the hypothesis include Rosenberg’s patient
with gastric cancer who was found to be disease free years later” and studies that demonstrated a
reduction in size or complete regression of renal cancer pulmonary metastases following primary
tumor removal.* In these instances, it is suggested that perhaps through immune surveillance,
the host responded to a systemic presence of cancer. These occurrences support experimental
evidence that demonstrates an increased prevalence of cancer in mice that lack immune effector
mechanisms such as IFN-y production or are deficient in T-cell function.” Remarkable human
examples occur within Epstein-Barr Virus (EBV)-induced lymphomas that are often observed dur-
ingimmunosuppression. These lymphomas are readily reversed both when immunosuppression is
discontinued and when EBV-specific CTL are adoptively transferred to the patient.” Thus, there
is sufficient evidence that innate and adaptive immune responses play a role in the modulation of
the growth of at least a subset of cancers.

Transcriptional Profiling Immune Responses against Tumors

Although many studies have focused on measuring immune responsiveness by way of circulat-
ing peripheral T cells, it is also important to study the immune responses occurring in the target
organ and in the tumor microenvironment. Studying the tumor microenvironment is relevant
as it has been shown that cancer cells can significantly affect the surrounding environment,®
some cancers are more sensitive to immune responses than others,** immune responses for
particular cancers may be predetermined® and it may provide insight into the effects of IL-2 on
microenvironment.>'¢>">3 For example, the importance of tumor microenvironment has been

observed during the evaluation of tumor-free peritoneum in patients with epithelial ovarian
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cancer. Alterations in surrounding tissue were observed that seemed to be a result of soluble
factor secretion from tumor deposits that activated cell-cell interactions and adhesions as well
as extra-cellular matrix modulation and growth.”® Use of transcriptional profiling techniques
on tumors as well on as surrounding tissues may be important in providing insight into the
intricacies of tumor growth and persistence.

Use of transcriptional analysis at the level of tumor microenvironment has proven to be valuable.
Initially, from transcriptional analysis of frozen tissue and cell lines, melanomas were thought to
segregate into two molecular subclasses.>* However, additional transcript analysis of melanoma
lesions sampled by repeated FNAs have shown that what were thought to be subclasses are prob-
ably two phases of an evolving process that eventually leads to loss of gene expression associated
with melanoma ontogeny.*” As such, transcriptional analysis is beneficial in evaluating effects of
ontogeny of molecular sub-classifications. This approach was used to compare profiles of normal
kidney samples and primary cancers of varying histology to renal cell cancer (RCC) profiles and
confirmed that the molecular basis of the subclasses correlates to the level of differentiation of
individual cancers. When the genes that were co-expressed by normal kidney tissue were removed
from analysis, RCC displayed the same profile as other cancers, demonstrating similarities in
oncogenic processes.” In fact, use of transcriptional profiling allowed Wang et al* to elucidate
molecular signatures for melanoma in which most melanoma-restricted immune-associated genes
cluster tightly together including those genes associated with natural killer (NK) cell and activated
CD8* T-cell function. Moreover, a large cluster of genes is shared between melanoma and RCC;
although the significance of these similarities should be investigated further.

IL-2 has been credited with inducing regression of both melanoma and metastatic RCC and
is also thought to p[ay a role in immune-mediated cancer regression. Because of this capability,
Panelli et al investigated the transcriptional profile of FNA obtained from melanoma metastases
before and during IL-2 therapy. In this study, it was observed that IL-2 does not cause migration,
activation, or proliferation of T cells at tumor site, it does however induce a cytokine storm that
is surged by monocytes and NK cells, mimicking acute inflammation. Monocytes and NK cells
contribute to immune response by destroying cancer cells and taking up shed TAAs that are
then presented to adaptive immune cells.® The transcriptional analysis of a lesion responding to
IL-2 demonstrated gene activation that overlapped with those genes identified in the profile of
TAA-specific T-cell activation in vitro.”® It is likely that IL-2 does not directly alter the tumor
microenvironment, but that alterations are dependent on the downstream production of immune
modulators by IL-2 stimulated cells, which then affect the microenvironment.>"* In order to
investigate the potential effect of the cytokine storm on intra-tumoral mononuclear phagocytes
Wang et al*® analyzed the profile of target cells following stimulation with panel of cytokines and
identified two major cytokine classes capable of inducing classical and alternative mononuclear
phagocyte activation. In summary, the study of circulating T-cell responses needs to be comple-
mented by the study of functional signatures within the tumor microenvironment at time points
relevant to their function. In particular, the dynamic phase of the immune response in which a
switch is observed between a chronic inflammatory process conducive to cancer growth onto an
acute one leading to cancer destruction needs to be studied by comparing circulating and peripheral
immune responses.” Following this strategy we have recently proposed a model representative of
this dynamic phase of the immune response which is relevant not only to tumor rejection but, more
generally, to immune-mediated tissue-destruction in the context of allograft rejection, pathogen
clearance and autoimmunity; we called this model “the immunologic constant of rejection™® (see
also next section). The immunologic constant of rejection predicts that tissue-specific destruction
in mediated to activation of Type Il interferon signatures inclusive of CXCL-9 to -11 and CCL5
chemokines, activation of cytotoxic T cells and Natural Killer cells with their localization, expan-
sion and activation at the tumor site leading to high levels of expression of immune effector genes
such as granzyme A and B, Perforin and FAS. Thus, immune responses switch during immune
rejection from a quiescent circulating phenotype onto an activated effector natural-killer cell type
within the target organ."'¢
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Conclusion

Although investigation into T-cell responses to cancer vaccines is far from complete, great
progress has been made to begin understanding the complex interactions leading to cancer
regression. Although vaccination against TAAs increases antigen-specific T cells in peripheral
blood, this increase is not correlated with clinical regression, which sparked investigation into
T-cell function following immunization. One explanation that may describe this phenomenon
is immunoediting as a means of tumor escape from immune recognition.’*** Alternatively, we
and others have hypothesized that although tumor-specific T cells are induced by vaccination,
their function is inadequate for tumor regression.>”*! This lack of function may result from
various problems during tumor-host interactions including inadequate T-cell receptor (TCR)
engagement with epitope, insufficient host costimulation, lack of T-cell localization to target
tissue and the complexity of tumor-host interactions in the tumor environment resulting
from varying tumor phenotypes and the immune mediators secreted into the microenviron-
ment.* In order to determine functional and genetic differences, Monsurré et al'® compared
an antigen-specific subset of T-lymphocytes to properly functioning T-lymphocytes. The
immunization-induced subset of cells was described as having a quiescent effector phenotype
lacking prolifcrative and cytotoxic capabilities exvivo. This phenotypc was also characterized by
down-regulation of genes important in T-cell activation, proliferation and effector function. In
one clinical study, patients with Stage I-III melanoma were vaccinated with a modified gp100
peptide. Although in the majority of patients vaccinated induced high avidity, tumor-specific
T cells, they were still found to be of low function in tumor lysis assays.®> Moreover, Chen et al®
developed a high throughput array method using peptide/MHC complexes with antibodies
against secreted factors to capture T-lymphocyte secreted cytokines. This methodology is
useful for characterization of antigen-specific CD8* T-lymphocyte functionality in clinical
samples following vaccination and may be useful in correlating lymphocyte function to clinical
outcome. The clinical samples from ten melanoma patients vaccinated with a gp100 peptide
evaluated in this study displayed distinct differences in cytokine secretion profiles both in
patient-specific and antigen-specific CD8* lymphocytes, demonstrating the variability in T-cell
function following vaccination.

Another point that has been elucidated in recent years is that TAA-specific T cells must not
only be induced following immunization, they must be active and functioning at the tumor
site. We propose that T-cell function and ultimately tissue destruction in cancer may occur
through a route similar to other pathological processes such as infection, allograft rejection
and autoimmunity and suggest that an “immunological constant of rejection” may exist as the
common mechanism for these disease processes. Transcriptional profiling studies revealed that
this immunological constant includes activation of interferon stimulated genes (ISGs) and im-
mune effector functions (IEFs).!® Sarwal et al* studied the basis of acute rejection in kidney
allografts and identified ISGs, granzymes, B and T-cell signature. Similarly, studies regarding
immune-mediated melanoma metastasis rejection during IL-2 therapy demonstrated activa-
tion of ISGs, granzymes as well as transcripts for activated CTL and NK cells.***% Based on
these results, we hypothesized that the last step in the pathway leading to cancer rejection is
broad activation of cytotoxic mechanisms by innate or adaptive immune cells. This hypothesis
was studied in the Imiquimod-mediated rejection of basal cell carcinoma (BCC), in which
rejection was associated with expression of ISGs, IEFs, IFN-0, IFN-y and infiltration of CTL
and NK cells, with a complete lack of B-cell involvement.>? These studies, among others, have
demonstrated the association of Type I pro-inflammatory modulators, especially IFN-o and
IFN-y, with tissue-specific destruction. Because this activation is present in many chronic
inflammatory conditions, it alone is unlikely to be adequate for tumor or tissue rejection, but
in combination with additional immune responders may recruit CTLs and initiate a cascade
leading to rejection.'¢
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CHAPTER 15

Memory T-Cell Homeostasis

and SCHCSCCHCC dur lng Aglng
Sian M. Henson* and Arne N. Akbar

Abstract

vidence is accumulating that old individuals are more susceptible to infection with organ-
Eisms to which they were previously immune, indicating that there might be a limit to the

persistence of immune memory. The prevailing concept is that defects in memory T-cell
populations result from inexorable end-stage differentiation as a result of repeated lifelong an-
tigenic challenge. We discuss here mechanisms that might constrain the persistence of memory
T cells and consider whether humans will suffer from memory T-cell exhaustion as life expectancy
increases.

Introduction

The immune system undergoes dramatic restructuring with age, leading to a decline in im-
mune responses and an increased vulnerability of old individuals. The incidence and severity of
infectious diseases, such as pneumonia,' meningitis,? sepsis,> urinary tract infections, infection
with respiratory syncytial virus® or influenza® all increase with age. Indeed the mortality rate of
older adults suffering urinary tract infections or tuberculosis is ten-fold higher than that of young
adults.” This waning immunity in old age results from defects in numerous different leucocyte
populations. However the dysfunction is most pronounced in T cells, as old individuals often
experience reactivation of latent organisms, such as varicella zoster virus (VZV)® and occasionally
Epstein Barr virus (EBV),” mycobacteria' and cytomegalovirus (CMV)." The VZV reactivation
that is observed in old individuals is associated with a decrease in VZV-specific T-cell numbers
but notantibody levels, indicating that the immune defect might be at the T cell but not the B cell
level.™? This T-cell immune decline is marked by a dramatic decline in the number of naive T cells
as a result of thymic atrophy.’*!4 This reduced thymic output leads to the peripheral expansion of
naive and memory T cellsto regenerate the T-cell pool, which in turn leads to the accumulation of
oligoclonally expanded, functionally impaired T cells.">'¢ These age associated changes contribute
to the inability of the aged immune system to respond to new antigenic challenge and mount poor
responds following vaccination."”

Phenotypic and Functional Differentiation of T Cells during Aging
T-cell memory is lost during aging however it is not clear whether this is a qualitative or quan-
titative defect. The human memory T-cell pool is not homogeneous but contains a multitude of
cells that are specific for different antigens. Reports have compared the relative number of memory
T cells in young and old individuals. Data shows older adults to have significantly higher numbers
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Table 1. Phenotypic and functional characteristics of human T-cell subsets

Phenotype Naive Central Memory Effector Memory CD45RA Memory References
CD45RA +++ - - +++ 86,87
CD45RB o+ . + + 86,87
CD45RO - - i - 86,87
CD28 FHt ++ +/—- +—- 86,88
CD27 - ++ +/- +- 86,87
CCR7 . ++ - - 86
CD62L O + + 86

LFA1 - +++ +++ +++ 45

CD95 - +++ +++ +++ 89,90
CTLA-4 o+ ++ ++ + 91,92
PD-1 + +++ +++ ++ 37,93
KLRG1 + ++ ++ +++ 19,32
BCL-2 +++ ++ + ++ 45,89,90
Telomere +H ++ + ++ 27,45
length

Following antigen stimulation naive T cells lose expression of CD45RA and become CD45RO*.
Upon differentiation to an effector memory population T cells lose CD45RB, CCR7, CD62L,
CD28, CD27 and CTLA-4, while expression of LFA1, CD95, PD-1 and KLRG1 increase. In
young adults, these CD45RA* revertant T cells have similar telomere lengths to the central
memory pool and do not require proliferation to mediate effector function. While in old adults
these cells are highly differentiated and close to replicative senescence.

of T cells that are speciﬁc for persistent viruses such as EBV and CMYV, but these cells have a de-
creased capacity to secrete interferon-y (IFNy)."*2 Implying that as we age virus-specific memory
T cells become less effective in the suppression of viral replication.’*

There are numerous reports cataloging the phenotypic and functional characteristics of human
T cells to identify qualitative changes that occur during aging (Table 1). Old individuals show
an increased proportion of T cells that are highly differentiated, with similar phenotypic changes
occurringin both CD4* and CD8* T cells during differentiation. However the rate at which these
changes happen varies within each subset, with age-related changes being more pronounced on
CD8* T cells due to a greater homeostatic stability of CD4* T cells.”* Highly differentiated
T cells are characterized by the loss of the cell surface costimulatory molecules CD27 and CD28,
CD8* T cells losing CD28 first followed by CD27 with the converse being true for CD4* T cells.**
Initially, it was thought that the loss of CD28 was a major factor in the reduced activation and
function of these cells,®® however, it has been shown that there is considerable redundancy in
costimulatory receptor usage in highly differentiated T cells and that alternative receptors, such
as 4-1BB may be engaged to promote T-cell activation in CD28-CD8*populations.?”*

In addition to the loss of costimulatory receptors inhibitory receptor expression increases
further adding to T-cell dysfunction during aging. We and others have shown an age related increase
in the expression of the inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) on CD4*
and CD8* T cells,** with expression being highest on highly differentiated CD28-CD27- T cells.
KLRG1* T cells are unable to undergo clonal expansion, even in the CD28* subset,” furthermore
KLRGI expression correlates with the inability to proliferate upon stimulation.”” The ligands for
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KLRG1 have recently been identified* and it has now become possible to block KLRG1 signal-
ling, resulting in increased proliferation in both CD4* and CD8* T cells (Henson et al in press).
Offering the possibility of increasing the proliferative capacity of highly differentiated T cells.

The inhibitory B7 family member Cytotoxic T-lymphocyte antigen 4 (CTLA-4) also increases
with age,*** with the largest change in CTLA-4 expression in human CD8* T cells being found
in the CD28* subset (Henson et al unpublished data). This increased expression of CTLA-4
with age does not occur at the transcriptional level, for we and others have demonstrated that
CTLA-4 mRNA does not to differ with respect to age in either CD4* or CD8* T cells.?** We
believe the elevated CTLA-4 expression arises from a change in the recycling rate of CTLA-4
from the cell surface.

There has been much interest in the inhibitory receptor program death 1 (PD-1), as blockade
of PD-1 signalling has been shown by numerous groups to boost immune responses.’”* We and
others have found the expression of PD-1 on CD4* and CD8* T cells does not change with age
at the RNA or protein level.?*¢ The expression of PD-1 is not dependent on age but is dependent
on viral status and our data is in concordance with the idea that PD-1 serves as a marker on viral
specific CD8* T cells to indicate the degree of T-cell exhaustion.?” The level of PD-1 protein per
cell is important in regulating T-cell dysfunction, for example CMV positive old donors express
more PD-1 and have a higher degree of CD8* T-cell dysfunction than donors who are CMV
negative (Henson et al unpublished dara).

Highly differentiated CD28-CD27-CD4* and CD8* T cells re-express CD45RA. These
CD45RA re-expressing or revertant T cells accumulate with age,”* with CD4* revertant T cells
being found in lower numbers.** CD8" revertant T cells are thought to arise from the less differenti-
ated central memory population through interleukin-15 (IL-15) driven homeostatic proliferation
in youngindividuals.®*! These cells do not require proliferation to mediate potent effector function
and are resistant to apoptosis.* Nevertheless, under appropriate conditions, these cells can be
induced to proliferate,* suggesting that revertant cells are an effector population that has been
functionally reprogrammed away from proliferation. This theory may not wholly apply to old
individuals, as revertant T cells function poorly suggesting that during the course of aging, these
populations are eventually driven to end-stage differentiation.””

Telomere Erosion and T-Cell Memory

After a finite number of divisions T cells reach replicative senescence,*** which is the clos-
est approximation to a functional definition of end-stage differentiation in T cells. The sensing
mechanism or ‘mitotic clock” that is responsible for setting a limit on proliferative lifespan is the
telomere. The telomere is a repeating hexameric sequence of nucleotides that is found at the ends
of chromosomes.”* Each division of a cell leads to the loss of 50-100 base pairs of telomeric DNA
owing to the inability of DNA polymerase to fully replicate the ends of chromosomes.**” Marked
shortening of telomeres causes chromosomal instability and results in end-to-end fusions.” In
turn, this triggers DNA damage-repair programmes through the activation of p53 and results in
growth arrest and/or apoptosis.*

The measurement of telomere length has been used to assess the extent of differentiation in
T cells, with both CD4* and CD8* T cells in old individuals have significantly shorter telomeres
than the same cells from young individuals.>*” The rate of telomere loss is retarded by the enzyme
telomerase, a RNA-dependent DNA polymerase, that synthesizes telomeric repeats maintaining
telomeres during cell replication.’! This enzyme complex consists of a catalytic reverse transcriptase
protein, telomerase reverse transcriptase (TERT'), a RNA template and a number of associated
proteins.”” Telomerase activity after activation was found to be highest in undifferentiated T cells,
lower in the intermediate and very low in the highly differentiated CD28-CD27" T-cell popula-
tions.”*”5? Suggesting that the ability to induce this enzyme is lost as T cells differentiate progres-
sively. Thus, highly differentiated effector T cells have short telomeres and a limited replicative
lifespan.>?

44,45
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Telomerase Regulation in Differentiated T Cells

Little is know about the mechanism for the decrease in telomerase activity during T-cell dif-
ferentiation. Although resting human CD4*>* and CD8* T-cell populations* do not express te-
lomerase activity without activation, they express KT ERT,*** indicating that activity of the enzyme
is not only regulated at the level of protein expression. Signals via the T-cell receptor (TCR) and
also costimulatory molecules such as CD28 are required for the induction of telomerase activity,
which peaks after 4-5 days of stimulation and then decreases to baseline by 10 days.”*>%¢ As T cells
are repeatedly activated in vitro, both the peak and duration of telomerase activity are decreased?”
and highly differentiated CD28-CD27- T cells activated in vitro express low telomerase activity
at all time points measured.””

The induction of telomerase activity is associated with an increase in hTERT protein expres-
sion,” however it is not the net \TERT protein increase but the phosphorylation and translocation
of hTERT from cytoplasm to nucleus that regulates telomerase function.>® hTERT is a substrate
of the kinase Ake, which itself requires phosphorylation at two different sites for activity.”® We
have shown there to be a specific defect in Akt phosphorylation at the Ser*>Ake site in the highly
differentiated CD8*CD28-CD27- T-cell subset but not in less differentiated populations.*
Collectively, these results suggest that telomerase down-regulation in highly differentiated T cells
is not only achieved by transcriptional control but is also related to changes in posttranslational
modification of this enzyme.

Phosphoinositide 3-kinase (PI3K) dependent Akt activation can be regulated through the
tumor suppressor phosphatase and tensin homolog (PTEN).” PTEN acts as a phosphatase to
dephosphorylate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) back to phosphatidylinosi-
tol (4,5)-bisphosphate,(PIP2) removing the membrane-localization factor from the Akt com-
plex, decreasing the rate of Akt activation.®*¢! PIP3 can also be dephosphorylated by the SH2
domain-containinginositol phosphatase (SHIP), causing the inhibition of Akt by again regulating
Ake’s membrane localization.* The src homology 2-containing protein tyrosine phosphatase-1
(SHP-1) isalso thought to have a negative role on Akt activity dephosphorylating the p85 subunit
of PI3K.® However it has been shown to dephosphorylate PTEN and hence potentiate PI3K
activity.* SHP-2 also appears to have a convoluted role in Akt regulation, with data showing it
to be required for PI3K activation,® whereas other reports indicate that SHP-2 interferes with
PI3K activation.®

We have investigated whether telomerase activity in highly differentiated T cells can be upregu-
lated through the interruption of inhibitory receptor signaling, notably PD-1 and KLRG1 which
signal via SHP-2 and SHIP respectively.““¢ Whilst we can restore the defect in phosphorylation
of Ser”?Ake in highly differentiated CD28-CD27- CD8* T cells, we see no increase in telomerase
activity per proliferating cell using blocking antibodies directed to the ligands of PD-1 and KLRG1
(Henson et al in press), suggesting that telomerase activity is not controlled by Akt in primary CD8*
T cells. A recent paper has demonstrated an increase in telomerase activity following blockade of
the PD-1/PD-L1 pathway in CD8* T cells using HIV peptides,” however the authors don’t take
into account the increased proliferation caused by interrupting PD-1 signaling.

Telomerase activity can also be controlled by the cytokines IL-7 and IL-15. While IL-7 is
important in the homeostatic regulation of the CD4* T-cell pool, IL-15 regulates homeostatic
expansion of both naive” and memory CD8* T cells.”"”* These cytokines have been shown to
induce telomerase in both CD4* and CD8* adult T-cells’®”* but not in cord blood T-cell popula-
tions.” The exact signaling pathways by which this occurs is not clear; however, it has been shown
that IL-15 acts via a Jak3 and PI3K pathway to induce telomerase activity.”! Indeed, we have
shown that IL-15 only partially restores the low telomerase induction in highly differentiated
CD8*CD28-CD27- T cells.?®

Loss of T-Cell Memory during Aging
Highly differentiated T cells accumulate with age as a result of continuous antigen-induced
turnover of populations that are specific for frequently encountered antigens. CM V-specific T cells
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are more differentiated than those specific for VZV, EBV, herpes simplex virus (HSV), influenza
virus and also tuberculin-purified protein derivative (PPD).* This may be due in part to the ef-
fects of IFN-a, known to inhibit telomerase,” induced by the triggering of plasmacytoid dendritic
cells by CMV.?> CMYV infection has been considered harmless to individuals with a functional
immune system. Longitudinal studies, however, have defined an immune risk phenotype (IRP) in
healthy old individuals, which is predictive of significantly decreased two and four year survival of
patients above the age of 80."3”> The IRP phenotype is composed of a cluster of immune parameters
including CMYV seropositivity, a CD4:CD8 T-cell ratio of <1 due to increased CD8* T cells, an
increased proportion of highly differentiated CD8*CD28~ T cells, the presence of CD8* T-cell
clonal expansions and elevated serum levels of pro-inflammatory cytokines.'®” There is evidence
that all these changes may be primarily due to the effects of persistent infection with CMV in old
adults subjects and this has been reviewed extensively elsewhere.”® Thus, CMV might have a more
insidious effect on the immune system than previously appreciated; however, it is unclear how the
various immune changes that comprise the IRP are linked and why CMYV infection in particular
appears to reduce the survival of old adults in the IRP group.

Another feature of the T-cell compartment in old individuals is the number of large clonal
populations indicating that cells approaching immunosenescence might accumulate rather than
disappear. Many of these clones are specific for antigens that are continuously present, such as
CMYV and EBV.”?*” One explanation for this paradoxical observation is that clonal evolution
occurs during persistent viral infection,”” which drives the specific T-cell clones with the highest
avidity and/or functional activity to replicative exhaustion (Fig. 1). These may be replaced by other
populations of less efficient cells in the memory pool.””” This hypothesis is consistent with the
observation that the expanded, highly differentiated CMV-specific CD8* T cells that are found
in old subjects have decreased functional activity.®* This accumulation of suboptimal highly dif-
ferentiated CMV-specific T cells causes overcrowding of the memory T-cell pool, leading to the
constriction and loss of memory T-cell populations.®**®! For example, infrequently present memory
T cells such as vaccinia virus and influenza virus®” or T cells that are usually inaccessible to the

) ) §

Squeezing out of Replicative
rare specificities senescence

e O

T cells of CMV-specific CMV-specific
other specificities T cell (functional) T cell (non functional)

Figure 1. Effect of CMV-specific T-cell differentiation and accumulation. CMV-specific T cells
are present at a relatively high frequency compared with cells of other specificities. Following
antigen encounter, CMV-specific cells with the highest efficiency will expand preferentially.
Large expanded CMV-specific clones reduce the available immunological space for T cells
of other specificities. Leading to the disappearance of memory T-cell populations that are
specific for infrequently encountered antigens. As the efficiency of available antigen-specific
cells decreases, bigger expansions will be necessary to control the virus. This will eventually
lead to large accumulations of nonfunctional CMV clones.
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immune system such as HSV and VZV.* The most severe manifestation of antigen-specific T-cell
exhaustion occurs when the suboptimal T cells are lost through replicative senescence. When
this occurs, the prediction would be that CM V-specific T cells would diminish in number and
an increased incidence of CMV-mediated disease would be reported. However, this has not been
observed in old aduls thus far but cannot be ruled out in the future as life expectancy continues to
increase.* This suggests that it may be important to consider whether strategies targeting CMV
replication such as anti-viral therapy or anti-CMV vaccination may be used to preserve immune
function during aging.®

Conclusion

Human life expectancy has doubled in the last 150 years and continues to increase, meaning
that memory T-cell populations will also need to persist for longer in the future. We have high-
lighted that T-cell memory is lost during aging increasing the susceptibility of old individuals to
infection by organisms to which they were previously immune. This loss of T-cell memory arises
from antigen-driven differentiation and telomere erosion. Although telomere erosion has been
viewed as a crucial mechanism that safeguards against malignant transformation and proliferation
of T cells, the gradual loss of T-cell memory might be the price exacted for this protection. We
suggest that prevention of chronic antigenic stimulation by prophylactic vaccination might be the
most effective strategy to prevent declining immune competence with age.
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