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Preface

This is the second edition of Melt Rheology and its Role in Plastics Processing,
although the title has changed a bit to indicate its broadened scope. Advances in
rheometer technology and polymer science have greatly enhanced the usefulness
of rheology in the plastics industry. It is now possible to design polymers having
specific molecular structures and to predict the flow properties of melts having
those structures. In addition, rheological properties now provide more precise
information about molecular structure.

Our primary interest is in practical applications, not basic polymer science,
which is the subject of several excellent books. But an understanding of key
aspects of polymer physics is essential to be an intelligent user of rheology, and we
provide the information necessary to build this understanding. And extensive
references are provided for those wishing to pursue certain issues in greater depth.

Thus, while our primary audience is applied polymer scientists and plastics
engineers, the book should also be of use to postgraduate students in polymer
science and engineering, and the first edition has been used as a text for graduate
courses.

After an introductory chapter we start our discussion of melt rheology with a
chapter mainly about viscosity, because most readers will be familiar with this
concept and some of its applications. Discussions involving tensors that were
present in several chapters of the first edition are now concentrated in Chap. 5, and
mastery of this material is not required for an understanding of the other chapters.

The rheology of filled polymers is now too big a subject to deal with in a
chapter and is the subject of entire books, including the three listed at the bottom
of this page.

Kurt Wissbrun, coauthor of the first edition, is retired from his successful career
as an industrial scientist, and the applied science expertise essential to the goals of
this book is now provided by Jian Wang. The authors are grateful to many people
who provided advice and information that added in important ways to the
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usefulness of the book. These include Tom Butler, Chan Chung, Albert Co, Ste-
phane Costeux, Willem deGroot, César Garcia-Franco, Jeffrey Giacomin, Kathy
Jackson, Teresa Karjala, Helmut Miinstedt, Martin Sentmanat, and John Vlacho-
poulos.

Montreal, QC John M. Dealy
Freeport, TX Jian Wang
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Symbols and Nomenclature

ap(P)
ar(T)
br(T)

Constant in damping function equation (Eq. 4.2)
Horizontal shift factor for effect of pressure on viscosity (Eq. 2.18)
Horizontal temperature shift factor for time/strain rate (Eqs. 3.60, 3.61)
Vertical shift factor for stress (Eq. 3.65)

Area of sample in contact with fluid (Eq. 6.29)

Area of sample in contact with fluid (Eq. 6.29)

Area of die exit (Eq. 8.26)

Swell ratio for capillary extrudate (Eq. 8.16)
Diameter swell at annular die exit (Eq. 8.24)
Thickness swell at annular die exit (Eq. 8.25)
Weight swell for annular extrudate (Eq. 8.26)

Area swell for annular extrudate (Eq. 8.27)

Finger tensor (Appendix B)

Cauchy tensor (Appendix B)

Constant in transition region (Egs. 3.82, 3.83)
Diameter of swollen extrudate (Eq. 8.16)
Extensional creep compliance (Eq. 3.34)

Deborah number (Eq. 4.9)

Diameter of capillary (Eq. 8.17)

End correction for capillary rheometer (Eq. 6.20)
Force (Sect. 1.5.3)

Continuous relaxation spectrum (Eq. 3.22)

Shear modulus of Hookeian solid (Eq. 1.11)
Crossover modulus (where G' = G'') (Eq. 3.71)
Relaxation modulus in linear viscoelasticity (Eq. 4.1)
Relaxation modulus in nonlinear viscoelasticity (Eq. 4.1)
Plateau modulus (Sect. 5.3.1)

Complex modulus (Eq. 4.37)

Storage modulus (Eq. 4.36a)

Loss modulus (Eq. 4.36b)

Gap between plates in rtheometer (Egs. 2.1, 6.8)
Damping function for shear (Eq. 4.1)

Relaxation spectrum function (Eq. 3.23)
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12 Flow rate (melt index) for load of 2 kg (Sect. 6.3.3)

110 Flow rate (melt index) for load of 10 kg (Sect. 6.3.3)
Lo (= ow/o,) Amplitude ratio in LAOS (Eq. 4.17)

I, First invariant of the finger tensor (Eq. 5.38)

I Second invariant of the finger tensor (Eq. 5.39)

J Compliance of a Hookean solid (Eq. 1.12)

J(2) Creep compliance in linear viscoelasticity (Eq. 3.24)

Je Equilibrium compliance of a rubber

J; Recoverable compliance (Eq. 3.28)

J? Steady-state compliance of a melt (Eq. 4.22)

J3 Plateau compliance

k, K Constant in power-law for viscosity (Eq. 2.6)

L(%) Length of spesiman for extensional test (Eq. 4.19)

L(7) Retardation spectrum (Eq. 3.24c¢)

m Constant in cross viscosity model (Eq. 2.9)

m(s) Memory function (Eq. 5.43b)

MI Melt index

M Molecular weight of polymer (see note* at bottom of list)
M, Torque amplitude in rotational rheometer (Egs. 6.6, 6.7, 6.11)
M, Molecular weight per backbone bond (Eq. 2.25)

Mc Critical molecular weight for viscosity (Eq. 2.21)

M Critical molecular weight for compliance (Sect. 7.1.3)

M, Molecular weight between entanglements (Ferry) (Eq. 3.72)
M, Number average molecular weight

M, Monomer molecular weight (Eq. 3.76)

M, Weight average molecular weight

MeG Molecular weight between entanglements (not recommended)
n Exponent in power-law model for viscosity (Eq. 2.6)

N, First normal stress difference (Eq. 2.26)

NlJr First normal stress growth coefficient (Sect. 4.3.2)

N, Second normal stress difference (Eq. 2.27)
p Constant in Carreau viscosity model (Eq. 2.10)

P Degree of polymerization (M/M;) (Eq. 3.74)

Py Reference pressure (Eq. 2.17)

Py Driving pressure, in capillary rheometer (Eq. 6.18)

AP Entrance pressure drop (Eq. 6.18)
APy, Pressure drop for flow through a capillary (6.18)

PI Polydispersity index defined as M, /M,

O(w, y0) Nonlinearity parameter for LAOS (Eq. 4.17)

0 Volumetric flow rate in capillary rheometer (Eq. 6.17)

05 Component of Doi-Edwards strain tensor (Eq. 5.56)

R Universal gas constant

<R2>0 Mean square radius of an unperturbed molecule (Eq. 3.74)

< R2> Mean square radius of gyration of an unperturbed molecule (Eq. 1.24)
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Time elapsing between ¢ and ¢, i.e., -1

Engineering strain (Eq. 1.1)

In constitutive equations, the time at which the stress is to be evaluated
Time at which strain is stopped for creep recovery test (¢-ty) (Eq. 3.28)
A time prior to the time ¢ (Eq. 3.7)

Temperature

Empirical constant with units of absolute temperature (Eq. 8.33)
Reference temperature (Eq. 3.61)

Displacement vector (Eq. 5.12)

Velocity of fluid at a point

Speed of rheometer plate

Weight fraction of component i (Eq. 2.20)

Weissenberg number (Eq. 4.10)

Width of slit (Eq. 8.6)

Degree of entanglement (M/M.) (Sect. 3.18.2)

Greek Letters

Exponent in relationship for zero-shear viscosity (Eqs. 2.20 and 2.21)
Average number of branch points per molecule (Eq. 7.7)
Pressure coefficient in Barus equation (Eq. 2.17)

Cone angle of rotational rheometer fixture (Eq. 6.1)

Shear strain amplitude in step shear (Eq. 1.8)

Recoverable strain (ultimate recoil) (Eq. 3.27)

Shear rate (Eq. 1.9)

Apparent wall shear rate in capillary rheometer (Eq. 6.17)
Nominal shear rate (V/h) in sliding plate rheometer (Eq. 6.26)
Wall shear rate in capillary rheometer (Eq. 6.23)

Component of rate of deformation tensor (Eq. 5.13)

Loss angle (Eq. 3.39)

Hencky strain (Eq. 1.4)

Hencky strain rate (Eq. 1.5)

Monomeric friction coefficient (Eq. 3.74)

Viscosity (Eq. 1.14)

Zero-shear viscosity (Sect. 2.4.1)

Plastic viscosity (Eq. 1.23)

Shear-rate dependent viscosity (Sect. 2.4.1)

Shear stress growth coefficient-linear viscoelasticity (Eq. 3.10)
Shear stress growth coefficient-nonlinear behavior (Eq. 4.11)
Complex viscosity (Eq. 3.51)

Tensile stress growth coefficient (Eq. 4.21)

Extensional viscosity (Eq. 4.23)

Time constant in viscosity models (Egs. 2.8-2.11)
Characteristic time for non-Newtonian behavior (Eq. 4.10)
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Avg number of branch points per 1000 carbon atoms (Eq. 7.7)
Melt density

Solid density (Eq. 6.29)

Density at reference temperature (Eq. 3.65)

Shear stress in viscometric flow

Stress amplitude in oscillatory shear (Eq. 3.37)

Apparent wall shear stress in capillary rheometer (Eq. 6.16)
Net tensile stress (Sect. 3.10.1)

Components of stress tensor (Eq. 5.1)

Wall shear stress in capillary (Eq. 6.19)

Yield stress (Eq. 1.23)

Time constant in Maxwell model (Eq. 3.18)

Variable of integration with units of time (Eq. 3.22)

Reptation (disengagement) time-Doi-Edwards model (Eq. 5.55)
Characteristic relaxation time of polymer (Eq. 4.9)

Longest Rouse stress relaxation time (Eq. 3.75)

Time after which relaxation modulus curves superpose (Sect. 4.3.1)
Angular displacement in rotational rtheometer (Egs. 6.1, 6.8)
Angular displacement amplitude in rotational rheometer (Eqs. 6.5-6.7)
First normal stress relaxation coefficient (Eq. 2.28)

Limiting zero-shear-rate value of ¥(}) (Eq. 5.49)

First normal stress diff. coefficient in steady shear (Eq. 2.28)
Second normal stress diff. coefficient in steady shear (Eq. 2.29)
Normal stress relaxation ratio (Eq. 4.8)

Frequency of oscillation (Eq. 3.37)

Crossover frequency (where G' = G”') (Eq. 3.71)

“The International Union of Pure and Applied Chemistry (IUPAC) recommends
the term molar mass (MM), which has SI units of g/mol. But molecular weight
(MW) is widely used, and the American Chemical Society accepts both terms.
However, MW is a dimensionless ratio that depends on the acceleration of gravity
and is numerically very close to MM (g/mol), and one cannot change its units. The
number often called “molecular weight (kg/mol)” is actually MW/1000 (no
units). This number can also be called molar mass (kg/mol).
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Chapter 1
Introduction to Rheology

Abstract Basic concepts of rheology are presented: what it is and how it is useful
in applied polymer science and plastics engineering. Stress and strain are defined,
and their use to describe material behavior is described. Rheological phenomena
and the properties used to describe them are presented, including elasticity, viscous
flow, viscoelasticity and plasticity. Finally the molecular structures that give rise to
the complexity of melt rheology are discussed.

1.1 What is Rheology?

Some readers may have little previous knowledge of rheology but wish to find out
how it can be useful in solving practical problems involving the flow of molten
plastics. For this reason, the authors have tried to supply sufficient basic infor-
mation about rheology to enable these readers to understand and make use of the
methods described. With this in mind, we begin with the definition of rheology.

Rheology is the science that deals with the way materials deform when forces
are applied to them. The term is most commonly applied to the study of liquids and
liquid-like materials such as paint, ketchup, oil well drilling mud, blood, polymer
solutions and molten plastics, i.e., materials that flow, although rheology also
includes the study of elastic materials that do not flow, particularly cross-linked
elastomers.

The two key words in the above definition of rheology are deformation and
force. To learn anything about the rheological properties of a material, we must
either measure the deformation resulting from a given force or measure the force
required to produce a given deformation. For example, let us say you wish to
compare the softnesses of several foam rubber pillows. Instinctively, one would
squeeze (deform) the various products, noting the force required to deform them.
A pillow that required a high force to compress it would be considered hard, and
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2 1 Introduction to Rheology

you probably wouldn’t buy it, because it would be painful to sleep on. On the other
hand, if it required too little force (too soft) it would not provide adequate support
for your weary head. Foam rubber is a lightly cross-linked elastomer that is full of
gas bubbles, and in squeezing it you are making your evaluation on the basis of its
resistance to deformation, i.e., its elastic modulus, which is a rheological property.

Now let us say that you are looking for lubricating oil for a household appli-
cation and that your local hardware store has a display in which samples of several
oils are contained in glass bottles. You can pick up the bottles and invert them to
make the oil flow from one end to the other. The “light oils” flow very rapidly and
splash as they hit the end of the bottle. The “heavy oils” creep slowly in response
to your test and take several seconds to accumulate at the end of the bottle. This is
a rheological experiment. You have used the earth’s gravitational pull to supply
the force, and the speed with which the oil flows is a rough measure of its rate of
deformation. Lubricating oils are viscous liquids, and in tipping the bottles you are
evaluating them on the basis of their viscosity, i.e., their resistance to flow, and this
is another example of a rheological property.

There are two principal aspects of theology. One involves the development of
quantitative relationships between deformation and force for a material of interest.
The information for the development of such a relationship is obtained from
experimental measurements. For example, for the foam pillow it might be
observed that the force required to compress it a certain distance is proportional to
the distance. In the case of the lubricating oil, it might be found that the speed with
which it flows through a small hole in the bottom of a can is proportional to the
height of the oil remaining in the can.

For a linear elastic rubber or a Newtonian fluid, such simple observations are
sufficient to establish a general equation describing how the material will respond
to any type of deformation. Such an equation is called a constitutive equation or a
rheological equation of state. However, for more complex materials such as
molten plastics, the development of a constitutive equation is a much more
complex task that requires data from several types of experiment.

The second aspect of rheology is the development of relationships that show
how rheological behavior is influenced by the structure and composition of the
material and temperature and pressure. Ideally, one would like to know how these
parameters affect the constitutive equation, but this is still a work in progress at the
present time, except for linear, unbranched polymers. In the case of more complex
materials, one can at least develop relationships showing how specific rheological
properties such as the viscosity and the relaxation modulus are influenced by
molecular structure, composition, temperature and pressure.

Molten plastics are rheologically complex materials that can exhibit both vis-
cous flow and elastic recoil. A truly general constitutive equation has not been
developed for these materials, and our present knowledge of their rheological
behavior is largely empirical. This complicates the description and measurement
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of their rheological properties but makes polymer rheology an interesting and
challenging field of study.

1.2 Why Rheological Properties are Important

Many materials of major commercial importance are examples of soft matter, a
category of materials that includes molten polymers, colloids, foams and gels.
When being deformed, these materials exhibit complex mechanical behavior, i.e.,
complex rheological behavior. Their rheological properties are of central impor-
tance in their industrial processing behavior and/or their end-use applications. The
syrup we put on our pancakes has a high viscosity, but it is a Newtonian fluid,
which means it has very simple rheological behavior. But many other everyday
materials exhibit complex flow behavior. These include toothpaste, ketchup,
shampoo and processed foods such as pudding and ice cream. Other materials are
solids in their final application but require processing at high temperatures in
liquid form. Examples are paving asphalt and molten plastics. There are also
liquids such as lubricating oils, greases and oil-well drilling-fluids that experience
high temperatures during normal use.

Polymers that melt and are processed as liquids are called thermoplastics, and
these are nearly always converted to end-use products by means of melt forming
operations, including profile extrusion and several molding techniques. In all these
processes, the rheological properties of the molten polymer are of crucial
importance and must be taken into account in the design of processing equipment
and selection of operating conditions. And for resin manufacturers, the ease with
which a polymer can be processed is of crucial importance in the development of
new products. In an extruder, the dependence of viscosity on shear rate and
temperature is of most interest, but once a melt leaves a die, its viscoelastic
properties govern its behavior. For example, the swelling that occurs on exiting a
die is of central importance in profile extrusion and blow molding. A polyethylene
milk container is produced by blow molding, and the amount of swelling that the
melt undergoes as it exits the die before being expanded into the mold is of crucial
importance if a reliable and economically optimal product is to be obtained. And
various flow instabilities that can cause havoc in melt processing are strongly
affected by rheological properties. In summary, because rheological properties
govern melt flow behavior, they have important applications in resin development,
quality control, and the numerical simulation of forming processes.

Rheological data are also useful for polymer characterization, i.e., to determine
molecular structure. This is because the viscoelastic behavior of a melt is very
sensitive to molecular weight distribution and branching structure. In fact, melt
rheology can often provide a more accurate picture of structure than gel perme-
ation chromatography.
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1.3 Stress: A Measure of Force
1.3.1 Foam Rubber Revisited

It was emphasized in Sect. 1.1 that force and deformation are the key words in the
definition of rheology. In order to describe the rheological behavior of a material in
a quantitative way, i.e., to define rheological material constants (such as the vis-
cosity of a Newtonian fluid) or material functions (such as the relaxation modulus
of a rubber), it is necessary to establish clearly defined and quantitative measures
of force and deformation. Furthermore, it is necessary to define these measures in
such a way that they describe the state of the material of interest without detailed
reference to the procedure used to make the measurement. For example, in the case
of the foam-rubber pillows mentioned in Sect. 1.1, one way to quantify the test
results would be to place the pillow on a table, place a flat board on top, and
measure the distance between the board and the table both before and after a
weight of a certain mass was placed on top of the board, as shown in Fig. 1.1. If
our objective is simply to compare several pillows of the same size, it would be
sufficient to simply list the amount of compression, in centimeters, caused by a
weight having a mass of say 1 kg.

However, if our objective is to make a quantitative determination of a property
of the foam rubber, this way of reporting of test results is awkward at best. To
make use of the data, one would have to know the size and shape of the sample
(the pillow), the mass of the weight applied, the size and weight of the board used,
and the amount of compression. If one wishes to compare the behavior of this
foam with that of another, the second material would have to be tested in exactly
the same way as the first. It would be advantageous to be able to describe the
elastic behavior of the foam rubber using characteristics or properties of the
material, without reference to the details of the test procedure. To do this, we will
need to use a normalized measure of force, which is called stress.

1.3.2 Stress: A Normalized Measure of Force

Two types of force can act on a fluid element. A body force acts directly on the
mass of the element as the result of a force field. Usually only gravity need be

Fig. 1.1 Testing the softness
of a pillow
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considered, but a magnetic field can also generate a body force in a magnetic
material. A surface force results from contact of the fluid element with a solid wall
or with surrounding fluid elements. While gravity may play a role in a melt
processing operation, for example in rotational and blow molding, when
describing the rheological behavior of a tiny element of fluid, the force due to
gravity is negligible compared to surface forces.

Surface forces are of two types; shear forces act tangentially to the surface of a
fluid element, while normal forces act normal to the surface. And a normal force
can be tensile or compressive. Both shear and normal forces cause deformation
and are thus of importance in rheology. Now we will look at how we might
determine experimentally the relationship between the deforming force and the
deformation of the foam rubber mentioned above. Notice that we now focus our
attention not on the pillow but on the foam of which it is made. If we could
establish a relationship between force and deformation for the foam, we could
calculate the deformation of any pillow made of this foam caused by a given force.

Placing a weight having a mass of 1 kg on a small sample of the foam will
cause more compression than placing it on a larger sample. From the point of view
of the material, it is obviously not the total force that is important. In fact, since the
deforming force acts on the upper and lower surfaces of the sample, if this force is
divided by the area of the surface we obtain a quantity suitable for describing the
properties of the material. We call this quantity stress. In general, then, the stress is
calculated by dividing the force driving a deformation by the area over which it
acts. In the case of a test like the one with the foam rubber, which involves
squeezing, we have a compressive stress. A more common type of test method for
elastic materials involves stretching rather than compressing, as shown in Fig. 1.2.
Again, the stress is the force divided by the cross-sectional area of the sample, but
in this case it is a tensile stress.

Fig. 1.2 Uniaxial (simple)
extension
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Fig. 1.3 Shear and normal stress components

Compressive and tensile stresses are the two types of normal stress, so called
because the direction of the force is normal (perpendicular) to the surface on which
it acts. In addition to normal stresses, there are shear stresses, which act in a
direction tangential to the surface on which it acts, as shown in Fig. 1.3. This
figure shows the deformation called simple shear, in which the sample is con-
tained between two flat plates with a fixed gap & between them. The upper plate
moves in a direction parallel to itself while the lower plate is stationary. The shear
stress is the shear force divided by the area of the plate wetted by the fluid of
interest. We will use the symbol ¢ with no subscript, to refer to the shear stress in a
simple shear deformation.

The representation of stress components acting on a fluid element during
deformations more complex than simple shear or simple compression requires two
subscripts. This is because stress is a tensor—valued quantity rather than a vector-
valued one that requires only one index. In this book, tensor notation is only used
in Chap. 4, which deals with the theory of nonlinear viscoelasticity. We will use it
here only to help illustrated the types of surface force that act on a fluid element.
Figure 1.3 shows a fluid element along with several typical stress components.
Note that when the two subscripts are the same, a normal stress is indicated, while
when the two subscripts are different, it is a shear stress.

1.3.3 Role of Normal Stresses in Rheology

While all materials are compressible to some extent, in the case of molten plastics,
quite high pressures are required to produce a significant change in volume. Thus,
for many practical purposes these materials can be considered incompressible in
the molten state. Now consider what happens when we subject an incompressible
material to a compressive stress that is equal in all directions, i.e., an isotropic
stress, and we call this stress the pressure P. However, pressure is positive when
acting to compress a material, while a tensile stress is positive when it acts to
stretch the material, so the normal stress in the fluid is —P. An incompressible fluid
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at rest will not be deformed by an isotropic stress, i.e., it will not change its size or
shape. Thus, an isotropic stress field is of no rheological significance. Only when
there are shear stresses acting, as in simple shear flow, or when the normal stress
components are different from each other, will deformation occur in an incom-
pressible material. This means that for an incompressible material a single normal
component of stress has no rheological significance. Only differences between
normal components are of rheological significance, because only differences can
result in deformation. We will see in Chap. 2 that for shear flows the two rheo-
logically meaningful normal stress differences are called the first and second
normal stress differences.

In the case of simple extension, there is only one significant feature of the stress
field, because there are no shear stresses acting, and there is axial symmetry. This
is the principal stretching stress, g, which is a normal stress difference, the
difference between the tensile stress and the ambient pressure surrounding the
sample. Because of the relatively high resistance to deformation of molten, high-
molecular-weight polymers, the tensile stress driving the deformation is normally
much larger than the ambient pressure. Thus, for practical purposes, 0 = Gensile-

1.4 Strain: A Measure of Deformation

In the previous section, we said that shear stresses and normal stresses are useful
measures of the forces that deform a material. Now we need a quantitative measure
of deformation that is rheologically significant. There are many general measures
of strain that can be used to describe, large, complex deformations, but for the
purposes of this book we make use only of measures that are needed to describe
the deformations used for most rheological measurements, namely simple shear
and simple extension.

To define a measure of strain we need to consider two states of a material
element, as deformation involves a change in shape and must refer to two states,
one before and one after the deformation. In other words, to specify the strain of a
material element at a time ¢, we must compare its shape at that time with its shape
in some reference state. In the case of an elastic material that cannot flow, for
example a cross-linked rubber, the selection of the reference state is straightfor-
ward, because there is a unique, unstrained state to which a material element
always returns when deforming stresses are removed.

For materials that flow, i.e., fluids, such a unique reference state does not exist.
In the case of a well-controlled experiment, however, in which a simple homo-
geneous deformation is imposed on a sample initially at rest and free of all
deforming stresses, this initial condition provides a useful reference state with
respect to which strain can be defined. We will make use of this fact in the next
two sections to define strain measures for simple extension and simple shear.
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1.4.1 Strain Measures for Simple (Uniaxial) Extension

Consider the simple stretching test illustrated in Fig. 1.4. Let L, be the length of
the sample prior to the application of a tensile stress and L the length after
deformation has occurred. A simple measure of the deformation is the quantity
(L—Ly). However, this quantity depends on the initial length of the sample,
whereas we desire a measure of deformation that describes the state of a material
element. We can easily form such a quantity by dividing the length difference by
the initial length to obtain the engineering or linear strain for simple or uniaxial
extension.

S = (L— Lo)/Lo (1.1)

For a uniform deformation, every material element of the sample experiences
this same strain. For example, if the initial length at time #; of a material element
measured in the direction of stretching is X(#y), and its length at a later time ¢ after
deformation has occurred is X;(¢), the linear strain of the material element is:

S=1[6X(t) — 6X1(t0)]/0X1(to) (1.2)

This measure of deformation has some useful features. It is independent of
sample size, and it is zero in the unstressed, initial state.

However, it is not the only measure of deformation that has these properties.
Another is the Hencky strain, which is defined as follows in terms of the length of
a material element.

e = n[5X,(r)/5X, (t0)] (1.3)
Fig. 1.4 Deformation of a N H SX( fo)
fluid element in simple
extension N I I .
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For a sample with initial length L, undergoing uniform strain the Hencky strain
is given by Eq. (1.4).

e =1In(L/Ly) (1.4)

Note that this measure is also initially zero and independent of sample size.

For materials that flow, e.g., molten plastics, this quantity is more useful than
the linear strain." The Hencky strain rate is also useful for describing rheological
behavior. This is defined by Eq. (1.5) in terms of the current length L of the
sample.

& =d[In(L)]/dt (1.5)

We note that the initial length does not enter into the Hencky strain rate but does
enter into the linear strain rate dS/dr. Because an elastic liquid does not maintain
any memory of its initial state we use the Hencky strain to describe the stretching
of molten plastics.

1.4.2 A Strain Measure for Shear

Now consider simple shear, which is the type of deformation most often used to
make rheological measurements on fluids. Referring to Fig. 2.1, an obvious choice
of a strain measure is the displacement of the moving plate, AX, divided by the
distance between the plates, A.

y = AX/h (1.6)

Referring to the two material particles shown in Fig. 1.5 rather than to the entire
sample, we can define the shear strain vy for the fluid element located at (x;, x5, x3)
as

P(x1,%2,%3) = AX1 /Axs (1.7)

where AX; is the displacement in the x; direction of one particle relative to a
neighboring particle separated from it by a distance AX, in the x, direction. In the
absence of edge effects, i.e., for a uniform deformation, every fluid element
undergoes the same strain, and the local shear strain at every location within the
sample is equal to the overall strain of the sample:

P(x1,%2,x3) = AX/h (1.8)

! In the limit of very small strains the linear and Hencky strains become equivalent. This can be
demonstrated for simple extension by noting that ¢ = In(1 + S) and that the first term of the
series expansion of In(1 + S) is S.


http://dx.doi.org/10.1007/978-94-007-6395-1_2

10 1 Introduction to Rheology
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Fig. 1.5 Displacement of two material particles in simple shear

And the shear rate is simply the rate of change of the shear strain with time:
. ldx Vv
TS hdar T h

where V is the velocity of the moving plate.

(1.9)

1.5 Rheological Phenomena

In this section we examine the general types of rheological behavior that are
exhibited by materials. These are elasticity, viscosity, viscoelasticity, structural
time dependency, and plasticity. Although we will use simple extension and
simple shear behavior to describe rheological phenomena, it is important to
remember that for rheologically complex materials such as polymeric liquids, the
behavior observed in these simple deformations cannot be used to predict how
such materials would behave in more complex flows.

1.5.1 Elasticity: Hooke’s Law

Elasticity is a type of behavior in which a deformed material returns to its original
shape whenever a deforming stress is removed. This implies that a deforming
stress is necessary to produce and maintain any deviation in shape from the ori-
ginal (unstressed) shape, i.e., to produce strain. The simplest type of elastic
behavior is that in which the stress required to produce a given amount of
deformation is directly proportional to the strain associated with that deformation.
For example, in simple extension this can be expressed as follows.

The constant of proportionality E is called Young’s modulus, and this rela-
tionship is called Hooke’s law. The corresponding form of Hooke’s law for simple
shear is:
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g=Gy (1.11)

where G is the shear modulus or modulus of rigidity. We note that in a purely
elastic material like this, all the work done to deform the material is stored as
elastic energy and can be recovered when the material returns to its equilibrium
configuration.

Another way of describing elastic behavior is to specify the strain that results
from the application of a specific stress. For a Hookean material we have, for
simple shear:

y=Jo (1.12)
where J is the shear compliance. Obviously, for a material following Hooke’s law:

J=1/G (1.13)

1.5.2 Viscosity: The Newtonian Fluid

Viscosity is the property of a material that describes its resistance to continuous
deformation. Unlike elasticity, the stress is not related to the amount of defor-
mation but to the rate of deformation. Thus, it is a property peculiar to materials
that flow. We will consider first the simplest type of rheological behavior for a
material that can flow. For simple shear this type of behavior is described by a
linear relationship between the shear stress and the shear rate:

¢ =n (1.14)

where 7 is the viscosity. A material that obeys this equation, with the viscosity
independent of shear rate, is called a Newtonian fluid.

The quantity measured in uniaxial extension is the net tensile stress gg, and in
Chap. 4 it is shown that for a Newtonian fluid, this is simply related to the
viscosity:

og = 3né (1.15)

We will see later that the extensional viscosity is defined as ag/¢, so that for a
Newtonian fluid, the extensional viscosity is just three times the (shear) viscosity.

For a Newtonian fluid, the viscosity is a material constant, in that it does not
depend on the rate or amount of strain (But it does depend on temperature and
pressure.). Single phase liquids containing only low molecular weight compounds
are Newtonian for all practical purposes. For multiphase systems, for example
suspensions and emulsions, and for polymeric liquids, the relationship between
stress and strain rate is no longer linear and cannot be described in terms of a
single constant. It is still convenient, however, to present the results of steady
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simple shear experiments in terms of ¢/}, which becomes the viscosity function
n(7)-

n() =o/7 (1.16)

where o is the shear stress and j is the shear rate. A typical viscosity-shear rate
curve for a polymer melt or important details of low-rate behavior that would
disappear into the left axis on a linear scale (See Fig. 2.3). The important features
of this curve are noted below. A detailed discussion of the viscosity function is
provided in Chap. 2.

1. At sufficiently low shear rates, the viscosity approaches a limiting constant
value 1 called the zero-shear viscosity.

2. The viscosity decreases monotonically as the shear rate is increased. This type
of behavior is called shear thinning (An older terminology was pseudoplastic).

3. At sufficiently high shear rates the viscosity might be expected to level off
again, or even increase, although such behavior is not observed in melts,
because viscous heating, wall slip, flow instabilities, or polymer degradation
make it impossible to carry out experiments at sufficiently high shear rates.

1.5.3 Viscoelasticity

Polymeric materials, including solutions, melts, and cross-linked elastomers,
exhibit both viscous resistance to deformation and elasticity. In the case of a
vulcanized (cross-linked) rubber, flow is not possible, and the material has a
unique configuration that it returns to in the absence of deforming stresses.
However, the viscous resistance to deformation makes itself felt by delaying the
response of the rubber to a change in stress. To illustrate this point, consider the
phenomenological analog of a viscoelastic rubber shown in Fig. 1.6. This
mechanical assembly consists of a spring in parallel with a dashpot. In this simple
picture, the force in the spring is proportional to its elongation, and the force in the
dashpot is proportional to its rate of elongation. Thus, the spring is a linear elastic
element, in which the force is proportional to the extension, X, and the dashpot is a
linear viscous element, in which the force is proportional to the rate of change of
X. Note that this assembly will always return to a unique length, the rest length of
the spring, when no force is acting on it. This assembly, called a Voigt body, is not
intended to be a physical or quantitative model for a rubber. However, the qual-
itative characteristics of its response to changes in force are similar in some ways
to those exhibited by rubbers.

Consider how this assembly responds to a sudden application of a tensile load
F. The total force F is the sum of the force in the spring, KX, and that in the
dashpot, K4(dX/dr). Thus:

F = KX + Kq(dX /dr) (1.17)
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Fig. 1.6 Voigt body
mechanical analog of a
viscoelastic solid

n

We note that some of the work put into the assembly to deform it is dissipated
in the dashpot, while the remainder is stored elastically in the spring. If X is
initially zero, and the force F is suddenly applied at time # = 0, the solution to this
ordinary differential equation is given below.

X(1) = F/K,[1 — exp(~Kit/Kq) (1.18)

The important point to note is that the viscous resistance to elongation intro-
duces a time dependency into the response of the assembly and that this time
dependency is governed by the ratio (K4/K), which has units of time. If we take
the force to be analogous to the deforming stress in a viscoelastic material, and the
elongation to be analogous to strain, we see that a viscoelastic rubber has a time
constant and cannot respond instantaneously to changes in stress. This is called
retarded elasticity. And as the time constant approaches zero, the behavior
becomes purely elastic.

Now we turn to the case of an elastic liquid. To illustrate certain qualitative
features of the rheological behavior of such a material, consider the mechanical
assembly shown in Fig. 1.7. This assembly, called a Maxwell element, consists of
a linear spring in series with a linear dashpot. Note first that unlike the Voigt body,
this assembly has no unique equilibrium length and will deform forever under the
influence of an applied force (assuming the dashpot is infinite in length). This is
analogous to the behavior of an uncross-linked polymeric material above its glass
transition and melting temperatures.

Now we examine the force on a Maxwell element that is subjected to sudden
stretching by an amount X,,. The force, but not the displacement, is the same in
both the spring and dashpot. The force is thus as follows.

F = KX, :Kd(dXd/dl) (119)
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Fig. 1.7 Maxwell
mechanical analog of a
viscoelastic liquid

F

Again we note that some of the work done is dissipated in the dashpot and the
remainder is stored in the spring. The total displacement of the assembly X, is the
sum of X, and Xjy:

X+ Xa = Xo (1.20)
Thus:
F(t) = Ks(Xo — Xa) = Ka(dXq/dr) (1.21)
The solution of this ordinary differential equation is an exponential function:
F(t) = KXo[exp(—K;t/Kq)] (1.22)

Note once again that (K4/K;) is a constant with units of time. The force thus decays
or relaxes exponentially. If we take the force to be analogous to the deforming
stress in an elastic liquid and the elongation to be analogous to the strain, this
process is analogous to a stress relaxation experiment. As in the case of the
viscoelastic rubber, we note that the combination of viscous and elastic properties
endows the material with a characteristic time and makes its behavior time-
dependent. As this relaxation time becomes shorter and shorter, however, its
behavior will approach that of a purely viscous material.

When we examine the rheological behavior of actual polymeric materials, we
find creep and relaxation behavior that is qualitatively like those described above.
In particular, the response to a sudden change in stress or strain is always time-
dependent, never instantaneous, and there is both elastic storage of energy and
viscous dissipation. However, for real polymeric materials the creep and relaxation
curves cannot be described by a single exponential function involving a single
characteristic time.> As will be explained in Chap. 3, however, practical use can

2 Other deficiencies of these simple analogs are that the Voigt body cannot be stretched
instantaneously, and the Maxwell element does not exhibit retarded creep.
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still be made of the concept of a relaxation time by describing the viscoelastic
behavior of real materials in terms of a spectrum of relaxation times.

1.5.4 Structural Time Dependency

In our discussion of the viscosity function, we took the shear stress to be inde-
pendent of time at constant shear rate. For a Newtonian fluid this is appropriate,
because the stress responds instantaneously to the imposition of a shear rate.
However, some inelastic non-Newtonian fluids do not respond instantaneously, so
that when shearing begins, there is a transient period during which the shear stress
varies with time, first rising instantly to one value and later reaching a steady state
value that can be used to calculate a viscosity by use of Eq. (1.16). The origin of
such time dependency is most often a flow-induced change in the structure of the
fluid, as in the case of a concentrated suspension of solid particles. For example,
the state of aggregation of suspended particles can be changed significantly by
shearing. This structural time dependency is entirely dissipative, that is to say there
is no elastic energy storage, and all the work done to deform the material is
converted immediately into heat, or more accurately, into internal energy. Time
dependency can also arise from changes in the conformation and orientation of
molecules, as in the case of polymer solutions, but this type of time dependency is
a viscoelastic effect rather than a structural time dependency.

Restricting attention here to inelastic materials such as suspensions of rigid
particles in Newtonian fluids, in which no elastic energy storage occurs, the most
common type of structural time dependency is that shown in Fig. 1.8, where the
shear stress decreases with time after the start up of steady shear flow. This type of
behavior, in which the viscosity decreases with time, is called thixotropy. If the
shearing is stopped, the viscosity will gradually increase as the particles respond to
inter-particle forces in the absence of a shear stress, but the time required for the
complete reformation of the equilibrium structure can be very long. There are

Fig. 1.8 Start-up of simple
shear for a material with
time-dependent structure
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some materials, such as corn starch suspensions, that exhibit the opposite effect,
viz., the stress increases with time after the start-up of steady shear. This type of
behavior is called rheopexy or antithixotropy. In the case of thixotropy, the shear
tends to break down structure that has been established in the unsheared material,
while in the case of a rheopectic material, shearing promotes the buildup of
structure.

1.5.5 Plasticity and Yield Stress

The structure in a concentrated suspension can be sufficiently rigid that it permits
the material to withstand a certain level of deforming stress without flowing. The
maximum stress that can be sustained without flow is called the yield stress, and
this type of behavior is called plasticity. Polycrystalline metals generally exhibit
plasticity, as do semicrystalline polymers at temperatures between their melting
and glass transition temperatures. Highly filled melts are also thought to have a
yield stress, although its precise measurement is difficult.

The simplest model of plastic behavior is that in which the excess stress, above
the yield stress, is proportional to the shear rate. For simple shear flow, this type of
behavior is described by Eq. (1.23).

oc=o0y+n,) (6>0y) (1.23)

Here oy is the yield stress, and 1y, is a plastic viscosity. A material that behaves this
way is called a Bingham plastic. This is an idealized type of behavior that is not
precisely followed by any real material, but it is sometimes a useful approximation
to real behavior. Note that Eq. (1.23) is not a constitutive equation, as it does not

Fig. 1.9 Shear stress versus
shear rate for three types of
material
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describe all the components of the stress tensor in any type of deformation but only
the shear stress in simple shear. Figure 1.9 compares shear stress versus shear rate
curves for a Bingham plastic, a Newtonian fluid and a shear thinning fluid.

1.6 Why Polymeric Liquids are Non-Newtonian
and Elastic

It is important in applied polymer science to be able to relate physical properties,
including rheological properties, to molecular structure. This subject is taken up in
some detail in Chap. 7. We mention here only the general mechanisms by which
polymeric molecules endow liquids with complex rheological behavior.

First, we consider why polymer molecules are elastic. A useful picture of a
polymer molecule is that of a long chain with many freely jointed links allowing
relative rotation of adjacent links. The presence of the large number of joints
makes the chain quite flexible and allows it to have many different configurations.
At temperatures above the glass transition temperature a molecule continually
changes its configuration due to Brownian motion, but we can describe the states
of a single molecule over a period of time or a large number of molecules at a
given time in terms of statistical averages. For example, at a given temperature
there will be a unique average value of the end-to-end distance, R, for the mole-
cules of a polymeric liquid that has been at rest for a sufficient length of time that it
is in its equilibrium state. Deforming the liquid will alter this average length, but if
the deformation is stopped, Brownian motion will tend to return the average value
of R to its equilibrium value. This is the molecular origin of the elastic and
relaxation phenomena that occur in polymeric liquids. This mechanism, by which
a molecule always tend to return to its equilibrium, isotropic configuration when
free of deforming stresses, is sometimes referred to as an entropic spring.

Some types of deformation have a greater ability to change R and orient
molecules than others. Deformations that can generate a high degree of stretching
and orientation are said to be strong flows, while those that cannot are said to be
weak. We have seen how the deformation of a polymeric liquid can alter the
configuration and orientation of the molecules. Thus, the physical nature of the
fluid is altered by the deformation, and this, in turn, alters the mechanical (rheo-
logical) properties of the fluid. At high shear rates, the shape of a polymer mol-
ecule is different from that at low shear rates, and this alters its resistance to flow
and thus its viscosity. Furthermore, the partial orientation of the molecules, i.e., the
shift of the average orientation of the R vectors away from zero, introduces a
strain-induced anisotropy that is responsible for differences in the normal stresses
in steady simple shear. Finally, the tendency of Brownian motion to return the
system of molecules to its most probable, i.e., equilibrium, configuration distri-
bution explains why the behavior of these fluids is time-dependent.

The short-time response to rapid deformations of high-molecular-weight,
molten polymers is observed to be very similar to that of cross-linked rubbers. This
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has inspired the concept of a temporary network that exists in the melt and acts like
a rubbery network at shorter times but whose junctions can slip over longer periods
of time to permit flow. This network is said to arise from entanglements in the
melt. The modern view is that the rubbery behavior of melts is due not to an actual
looping or knotting of molecules around each other but simply to the constraints on
their motion resulting from the fact that molecules cannot cross over each other,
i.e., to their uncrossability. However, the word entanglements is still universally
used to describe the important limitation on the motion of one molecule by its
neighbors.

Entanglement is related to the high degree of spatial overlap of molecules in
concentrated solutions and melts. The existence of overlap is readily demonstrated
by considering the size of a polymer coil. One measure of molecular size is the
radius of gyration R,. For linear polyethylene, R, depends on the molecular weight
M as follows:

Rg(cm) =4 x 107°M'/? (1.24)

For a polyethylene with a molecular weight of 10° g/mol, the volume of the sphere
occupied by one molecule is therefore about 2.6 x 10™° cm®. The mass of this
coil is 10° divided by Avogadro’s number, which is 1.7 x 107'® g. The density of
the coil based on its occupied volume is thus less than 0.01 g/cm®. But the bulk
melt density is about 0.76 g/cm® at 190 °C, and this implies that parts of many
other coils are invading the volume explored by a given molecule. In other words,
molecules penetrate each others space to a very large extent and thus strongly
impede each others’ movements.

A similar calculation for much shorter molecules, e.g., a polymer with a
molecular weight of 10* g/mol, gives a density of 0.1 g/cm®, which is considerably
closer to the measured bulk density. This shows that the degree of coil overlap, and
therefore the entanglement density, increases sharply with molecular weight.

Rubbery behavior occurs in a melt when the molecular weight is above a
characteristic value that varies from one polymer to another. Above this molecular
weight the number of entanglements is sufficient to produce strong rubberlike
effects. The macroscopic effects of entanglements include high viscosity and high
elastic recoil. At the same time, the nature of this strong interaction can be altered
temporarily by deformation, so that high molecular weight melts have highly
nonlinear properties; for example, the viscosity is a very strong function of shear
rate.

Polymeric materials are said to have a memory, in the sense that when
deforming stresses are eliminated, they tend to return to a previous configuration.
Cross-linked polymers have perfect memory since their network consists of per-
manent chemical cross-links. Thus, a sample always returns to a unique equilib-
rium shape when deforming stresses are removed, whereas a molten polymer is
said to have a fading memory, since the so-called entanglement network is not
permanent and is altered by flow and relaxation processes. Therefore, only part of
the deformation is recovered when deforming stresses are removed.



Chapter 2
Viscosity and Normal Stress Differences

Abstract Viscosity is the property most used with molten plastics. It relates the
shear stress to the shear rate in steady simple shear flow, which is the deformation
generated between two parallel plates, one of which undergoes linear displace-
ment. For viscoelastic fluids, two other quantities are needed for a complete
description of the stress field, and these are the first and second normal stress
differences. The viscosity and the two normal stress differences are functions of
shear rate that are called the viscometric functions, and flows governed by these are
called viscometric flows. In addition to simple shear, other viscometric flows
include flow in straight channels and rotational flows between concentric cylin-
ders, between a cone and plate and between two disks. Flow in an extruder is
dominated by the viscometric functions, mainly the viscosity. This chapter
describes the dependence of viscosity on shear rate, temperature, molecular weight
and its distribution, tacticity, comonomer content, and long-chain branching.

2.1 Simple Shear and Steady Simple Shear

Simple shear is of central importance in applied rheology for two reasons. First, it
is the flow that is the easiest to generate in the laboratory, and melt data most often
reported are based on flows that are rheologically equivalent to simple shear.
Secondly, a number of processes of industrial importance, particularly extrusion
and flow in many types of die, approximate steady simple shear flow. Finally, the
flow behavior of melts in these flows is governed mainly by viscosity, and elas-
ticity is not an important factor. It is thus appropriate to devote a chapter to the
properties that govern simple shear flow.

Simple shear was introduced in Sect. 1.4.2, and we will review its essential
features here. Referring to Fig. 2.1, we show this flow being generated by the
rectilinear motion of one flat plate relative to another, where the two plates are
parallel and the gap between them /% is constant with time. This flow is completely
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Fig. 2.1 Simple shear flow in x; direction

described by giving the shear strain y as a function of time, where y was defined by
Eq. (1.8), which is repeated below as (2.1). The shear rate 7 is the derivative of this
quantity with respect to time and is thus the velocity of the moving plate divided
by the gap, as was shown by Eq. (1.9), repeated below as (2.2). In steady simple
shear the shear rate is constant with time.

y = AX/h 2.1)
1dX Vv

y pr— _—— f— _— 2.2

TS har T on (2.2)

According to a universally used convention, the velocity components in simple
shear are defined as follows in terms of the coordinate system shown in the
Fig. 2.1.

V is the velocity of the upper plate.

v; is the velocity of the fluid in the x; direction.
The velocities in the x, and x5 directions are zero.
The velocity gradient is in the x, direction.

Simple shear is a uniform deformation, i.e., each fluid element undergoes the
same deformation, and the strain and strain rate are independent of position in
space; and for steady simple shear the strain rate is constant with time. Thus, the
strain rate of every fluid element is the same and given by:

7 =dvi/dx;

As a result, the rheologically meaningful stresses are also independent of position
in space.

2.2 Viscometric Flow

We will define a viscometric flow as one that, from the point of view of a fluid
element, is indistinguishable from steady simple shear. A more comprehensive
mathematical definition can be found in the book by Bird et al. [1]. Thus, while
various fluid elements in the field of flow may be subject to different shear rates,
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the shear rate experienced by any particular fluid element is constant with time.
Steady simple shear is the simplest possible viscometric flow.

Viscometric flows are of practical interest, not only because of their wide use in
experimental rheology, but also because many flows of practical importance are
viscometric flows or close approximations thereto. Some examples are listed below:

1. Steady tube flow (Poiseuille flow)

This flow is the one most often used to determine the viscosity of molten
plastics. It also occurs whenever a melt is transported by means of circular
channel. The magnitudes of the shear stress and shear rate vary from zero on the
axis to a maximum at the wall.

2. Steady slit flow

Sometimes called plane Poiseuille flow, slit flow can also be used to measure
viscosity. The shear stress and shear rate vary from zero on the plane of symmetry
to a maximum at the walls.

3. Annular pressure flow

This flow occurs in the axial direction in the space between two concentric
cylinders as the result of a pressure gradient. If the ratio of the two diameters is
close to one, the velocity distribution approaches that for slit flow.

4. Steady concentric cylinder (Couette) Flow

This is a drag flow generated by the rotation of either the inner or outer cylinder
of a concentric cylinder apparatus. It is widely used for the measurement of
viscosity in Newtonian fluids, but is not convenient for use with melts. If the ratio
of the two diameters is close to one, the shear rate becomes nearly uniform in the
annular gap containing the fluid and thus approximates that in steady simple shear
flow.

5. Steady parallel disk flow

This involves torsional flow of fluid between two parallel discs generated by the
rotation of one of the disks. Also called plate—plate flow

6. Steady cone and plate flow

This flow is approximately viscometric and is of special interest, because if the
cone angle is very small, the shear rate and shear stress are very nearly uniform,
and the viscosity and first normal stress difference can be readily measured. The
use of this flow, however, is limited to quite low shear rates because of the
substantial departures from viscometric flow that occur at higher rates.

7. Steady sliding cylinder flow

This is a drag flow of fluid between concentric cylinders generated by the linear
displacement of the inner cylinder. If the ratio of the diameters of the two cylinders
is close to one, the shear rate is nearly uniform in the gap.
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8. Steady helical flow

This is a combination of flows 4 and 7. The fluid is contained in the annular
space between two concentric cylinders; one of these rotates at a constant speed
while either the same or the other cylinder is displaced along its own axis at a
constant speed.

9. Combined drag and pressure flow

If we combine steady simple shear with pressure flow in a slit, there are two
forces driving fluid flow. Drag flow results from the motion of one wall, while
pressure flow results from the pressure gradient. If the direction of the pressure
gradient is the same as the direction of the motion of the moving wall, the velocity
profile is of one of the types shown in Fig. 2.2 [1]. Depending on the sign of the
pressure gradient, pressure can work with or against the drag flow, and four
situations are illustrated in the figure. Note that a negative pressure gradient (dp/
dx < 0) promotes flow from left to right, while a positive gradient works against
the drag flow. If the direction of the drag flow is at an angle to the direction of the
pressure gradient, the resulting deformation is similar to that in the channel of a
single screw extruder. A similar combined flow is Couette (concentric cylinder)
flow with an axial pressure gradient. Here the drag flow is perpendicular to the
pressure flow direction. When the gap is very small, this flow becomes equivalent
to plane Couette flow with perpendicular pressure flow.

All of the analyses presented or cited above are based on the no-slip assumption
that the fluid adheres to any wall with which it is in contact and that if this wall
moves, the fluid in contact with it moves at the same speed. However, this
assumption is not always valid for molten plastics. For certain combinations of
shear stress and shear strain, the melt undergoes some type of fracture at or near
the wall and subsequently undergoes slip. In the case of linear polyethylene this
occurs at shear stresses in the neighborhood of 0.1 MPa unless the experiment is
terminated while the total shear strain is still quite small. Once slip flow begins, the
velocity of the sliding polymer surface relative to the wall is not known a priori.
This complicates the interpretation of data to determine the viscometric functions.
Wall slip is discussed in further detail in Chap. 6.

Another assumption that is made in the classical analyses of viscometric flows
is that the deformation is homogeneous. In reality, an experimental apparatus is

Case | Caseo Il Case Il Case IV
Xy = F ~ — — |/
=
X, 4 4
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Fig. 2.2 Velocity profiles for combined drag and pressure flows. Cases I and II: dp/dx < O;
Cases III and IV: dp/dx > 0. Adapted from Ref. [1]


http://dx.doi.org/10.1007/978-94-007-6395-1_6

2.2 Viscometric Flow 23

always finite in size, and the sample has one or more exposed free surfaces.
Examples are the sample edge in a cone and plate or parallel disk rheometer. In
addition, there may be zones in the field of flow where the deformation differs
significantly from the assumed viscometric flow. Examples are the zones below
the inner cylinder of a Couette viscometer and at the entrance of a capillary
rheometer. These end and edge effects can be sources of error in viscometric
measurements and are considered in some detail in Chap. 6.

2.3 The Viscometric Functions

As was pointed out in Chap. 1, for an incompressible material a normal stress by
itself has no rheological significance, since if the normal stresses are the same in
all directions, i.e. the stress is isotropic, there will be no deformation. Only normal
stress differences can cause deformation, for example stretching and compression.
There are two, independent, normal stress differences, and these are called the first
and second normal stress differences. These, along with the viscosity, are func-
tions of shear rate, and are called the viscometric functions.

) = o/ (2.3)
Ni(7) = o1 —on (2.4)
Nz(y) = 02 — 033 (25)

For any viscometric flow, the three viscometric functions completely describe
the rheological behavior of a fluid. In other words, these constitute all the rheo-
logical information that can be obtained from measuring the stress components.

2.4 The Viscosity

Viscosity is the rheological property most often used to characterize molten
plastics, because it is relatively easy to measure, provides some information about
molecular structure, and plays an important role in melt processing. Like all
rheological properties the viscosity (and normal stress differences) of a polymer
depend on the following factors:

1. Flow conditions

(a) Shear rate
(b) Temperature
(c) Pressure
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2. Resin composition and molecular structure

(a) Chemical nature of polymer

(b) Molecular weight distribution

(c) Presence of long chain branches

(d) Nature and concentration of additives, fillers, etc.

The viscosity at high shear rates is determined by use of a capillary rheometer,
while that at low rates it is measured using a rotational theometer with cone-plate
fixtures. The actual range of shear rates accessible using either instrument depends
on the properties of the melt, as is explained in Chap. 6. These instruments are able
to generate the steady shear flow that is required to measure viscosity. The entire
viscosity curve is rarely used for routine quality control. The device most used for
this application is the melt indexer, more properly called an extrusion plastometer.
While this very simple flow tester involves flow through a short capillary, it does
not provide a reliable value of viscosity. Experimental methods are described in
detail in Chap. 6.

2.4.1 Effect of Shear Rate on Viscosity

As in the case of Newtonian fluids, the viscosity of a polymer depends on tem-
perature and pressure, but for polymeric fluids it also depends on shear rate, and
this dependency is quite sensitive to molecular structure. In particular, compre-
hensive and precise data of viscosity versus shear rate can be used to infer the
molecular weight distribution of a linear polymer. And it can sometimes tell us
something about the level of long-chain branching. This curve is also of central
importance in plastics processing, where it is directly related to the torque and
energy required to extrude a melt and is useful in the design of extruders and dies.

The viscosity of molten thermoplastics decreases sharply as the shear rate
increases. Typical behavior is sketched in Fig. 2.3. Note that linear rather than
logarithmic scales are used here. At very low shear rates, the viscosity normally
becomes independent of shear rate, as shown in the magnified inset of Fig. 2.3.
The constant viscosity that prevails at these low shear rates is called the zero-shear
viscosity and has the symbol 7. The zero shear viscosity is an important scaling
parameter, as is shown below, but for many commercial resins, particularly those
with very broad molecular weight distributions or a high degree of long chain
branching, it is difficult to measure using controlled strain rotational rheometers.
This is because the shear rate at which #(7) levels out to its limiting value is too
low to be generated in these instruments. It is often necessary to resort to a long-
duration creep experiment to determine 7. More will be said about this in Chap. 6.

In order to show clearly the approach of the viscosity to its limiting, low shear-
rate value, while also showing high shear-rate behavior, it is customary to display
viscosity versus shear rate behavior as a plot of log(#) versus log(y). An example
of such a plot is shown in Fig. 2.4, which shows the data of Meissner [2] for a
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Fig. 2.3 Shape of viscosity

versus shear rate curve for a (
molten polymer. Using linear
scales important low shear
rate features are crowded into
the left-hand axis. The inset is
an expansion of this region

low-density polyethylene at several temperatures. This polymer has a broad
molecular weight distribution and a high level of long-chain branching. As a result
the decrease in viscosity from its zero-shear value to a power-law region extends
over many decades of shear rate. To obtain the data at very low shear rates, it was
necessary to make major modifications to a commercial rotational rheometer, and
the measurements required great skill and very long measurement times. At the
lowest shear rates we see a clearly-defined “Newtonian” region over which the
viscosity is constant. And at the highest shear rates, the curves tend to approach
each other, appearing to move onto straight lines, suggesting power-law behavior.

For linear polymers with narrow molecular weight distributions, the viscosity
curve (on a log—log plot) has a distinct region of essentially constant viscosity as
well as a well-defined power law region, and the transition between the two occurs
over about one decade of shear rate. This is illustrated in Fig. 2.5, where data for
several, narrow molecular weight distribution polystyrenes are shown [3]. For
these specially-polymerized samples the range of shear rates between the low-rate
Newtonian region and a well-defined power law is much narrower than in the case
of the LDPE data shown in Fig. 2.4. Also, we see that the curves for samples with
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Fig. 2.4 Viscosity versus shear rate of a LDPE at several temperatures; from fop to bottom:
T(°C) = 115, 130, 150, 170, 190, 210, and 240. Data of Meissner [2]
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Fig. 2.5 Viscosity versus
shear rate for narrow MWD
polystyrenes; from top to
bottom My, = 4.9 x 10,
12 x 10%, 18 x 10,

22 x 10 and 24 x 10%
From Stratton [3]
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various molecular weights converge onto a single power-law line at shear rates that
decrease with molecular weight. This power law is described by Eq. (2.6).

o=ki" (2.6)

In terms of viscosity this becomes Eq. (2.7).

n=kG)"" (2.7)

Obviously, a Newtonian fluid is a special case for which n = 1 and K is equal to
the viscosity.

There are several undesirable features of the power law expressed by Eqs. (2.6)
and (2.7).

1. The units of K depend on the value of n, and unless n is unity, they involve time
to a power that is not an integer.
2. If the shear rate is negative, the equation does not yield a value for the viscosity
(unless 7 is an integer).
. The zero shear viscosity does not appear as a parameter.
4. The equation is only valid at high shear rates.

W

The first three undesired features can be eliminated by use of the following
form:

A (2.8)

nm="Mno

where A is a material constant with units of time, i.e., a characteristic time of the
material. Specifically, it is the reciprocal of the shear rate at which # becomes
equal to 7. A variation of (2.8) that is occasionally used is:

n=np""

where 1, is numerically equal to the viscosity at a shear rate of 1 s".
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While Eq. (2.8) still cannot describe the low-shear-rate portion of the curve,
where the viscosity approaches a constant value, for many polymers Eq. (2.6) [and
Egs. (2.7) or (2.8)] holds reasonably well over the high-shear-rate range of interest
for processing. It has been widely used in the modeling of melt flow because of its
mathematical simplicity, and this makes it possible to derive analytical expressions
describing flows in extruders and channels. However, because of the wide avail-
ability of powerful computational facilities, the power law no longer offers an
important advantage, and more realistic equations are now being used in most
process simulations. These allow for the transition to Newtonian behavior over a
range of shear rates.

As suggested by Eq. (2.8), the variation of # with y implies the existence of at
least one material property with units of time, and in that model this parameter, A,
is the reciprocal of the shear rate at which the power-law line reaches 1. Models
that can describe the approach to 7 thus involve at lease one characteristic time.
Examples of modified power laws whose parameters are 7, a characteristic time,
and an exponent, include the Cross equation [4] and the Carreau equation [5],
shown below as Eqgs. (2.9) and (2.10) respectively.

n(3) = no1 + (Al31)"] (2.9)
1) =mo1+ ()] " (2.10)

These models approach power-law behavior at high shear rates, and the
dimensionless material constants m and p are simply related to the power law
exponent, i.e., m = 1—n and p = (1—n)/2. Hieber and Chiang [6] compared the
ability of these two models to fit data for a variety of commercial polymers for
purposes of flow simulation. They found that the Cross equation provided a better
fit for the polymers they considered.

For more flexibility in fitting data, Yasuda et al. [7] generalized Eq. (2.10) by
adding an additional parameter as shown in Eq. (2.11) in order to adjust the
curvature in the transition region.

n(3) = nolt + (29)4 "V« (2.11)

This is often called the Carreau-Yasuda equation.

Elberli and Shaw [8] reported that time constants obtained by fitting data to
two-parameter viscosity models were less sensitive to experimental error than
those based on models with more parameters. Data at low shear rates and around
the reciprocal of the time constant are most essential to obtain useful values of the
parameters, while the high shear rate data are less important.

Plumley [9] evaluated the ability of the above models to fit data for linear and
sparsely-branched metallocene polyethylenes. They found that the Cross equation
gave a good fit to the data and that adding parameters did not lead to a significant
improvement. On the other hand, for a linear polymer with a bimodal molecular
weight distribution or polymers with long-chain branching, such as LDPE, three-
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parameter models are not able to fit data over a very broad range of frequencies.
Wang [10] proposed a “double-Cross” model to describe the behavior of such
materials. It is the sum of two Cross model terms (Eq. 2.9), each with its own set
of three parameters. Wang found that this model could fit both the low-shear-rate
approach to the zero-shear viscosity as well as the high-shear-rate approach to a
power law with great precision.

Equations such as those presented above are sometimes used to extrapolate low-
shear-rate data to estimate the zero-shear viscosity when data do not reach the
Newtonian region. But this is not a reliable procedure, since there is no theoretical
basis for it, and it can yield values that are 50 % or more away from the correct value.

In Chap. 7 we will see that the molecular weight distribution of a linear polymer
can be inferred from viscosity data obtained over a broad range of shear rates.

2.4.2 The Cox-Merz “Rule”

In Chap. 3 it is shown that small amplitude oscillatory shear using a rotational
rheometer is the most widely used technique for the determination of linear vis-
coelastic properties. Using a small sample and a single instrument, it is possible to
obtain data over a wide range of frequencies. One way of presenting the resulting
data is a plot of magnitude of the complex viscosity |7* ()| versus frequency. This
is often referred to simply as the “complex viscosity” or the “dynamic viscosity.”
This is much less trouble than measuring the viscosity over a wide range of shear
rates using at least two rheometers. It would thus be useful to be able to relate the
complex viscosity to the (steady-shear) viscosity. Based on data for two polysty-
renes, Cox and Merz [11] reported that the curve of apparent viscosity versus shear
rate measured using a capillary viscometer was very similar to the curve of complex
viscosity versus frequency. We will see in Chap. 6 that the apparent viscosity
calculated from capillary viscometer data, i.e., the wall shear stress divided by the
apparent shear rate, is substantially different from the actual viscosity, but it is
possible that for the two polymers Cox and Merz studied the apparent viscosity was
closer to the true value than is generally the case. What they observed was that the
curve traced by their #,(7,) data was very similar to that traced by |n*(w)| data. If
the two curves were in fact identical, it would imply that:

Ow

Ny = ; ~ p*|(w) with 7, = o. (2.12)
A

Over time, however, these details have been forgotten, and one refers now to a
“Cox-Merz rule” which is expressed by Eq. (2.13).

(7 = ) = (o) (2.13)

Thus, the original observation, based on the apparent viscosity, has come to be
replaced by a quantitative relationship. However, it has often been reported that
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the relationship expressed by Eq. (2.13) is obeyed by experimental data, although
this conclusion is sometimes based on the use of a small log—log graph on which
significant deviations can easily hide. The Cox-Merz rule has been examined
critically by Utracki and Gendron [12] and by Venkatraman et al. [13]. The latter
authors reported that Eq. (2.13) works fairly well for LDPE, but not for HDPE. In
any event, we will see below that many viscosity-structure relationships originally
developed for use with viscosity data are now often applied to complex viscosity
data. One can look at this in two ways. On the one hand, it is simply an application
of Eq. (2.13). Or, on the other hand, one can say that the relationship itself applies
to the complex viscosity.

2.4.3 Effect of Temperature on Viscosity

In Chap. 3, the procedure called time—temperature superposition is explained in
detail. Here we make use of this technique to show how the shear rate range over
which viscosity information can be obtained can be extended beyond the range
actually accessible using a given viscometer. The procedure is based on the idea
that increasing temperature has an equivalent effect on viscosity as decreasing
shear rate. This trend can be seen by inspection of Fig. 2.4, noting that increasing
the temperature moves data to lower curves. If this effect is quantitatively the same
at all shear rates, this implies that a single horizontal shift factor can be used to
shift data on a log—log plot taken at several temperatures along the shear rate axis
to coincide with those measured at a reference temperature Ty. This idea is
expressed by Eq. (2.14). As explained in Sect. 3.12, for greater precision, a second
shift factor, b1(7T), normally equal to (Tppo/Tp), should also be applied to the
viscosity, but it is usually close to unity and is often neglected.

(7, To) = [1/ar(T)]n(jar, T) (2.14)

Such a representation is called a master curve and is a plot of reduced viscosity
n(T)/ar(T) versus reduced shear rate jar(T). Note that the horizontal shift factor
at(T) is applied to both axes, because the definition of the viscosity involves the
shear rate. By use of this procedure, the range of reduced shear rate range over
which a master curve can be prepared is broader than the range of shear rates over
which measurements can be made.

For a polymer well above its glass transition temperature, it is often found that
the zero-shear viscosity obeys the well-known Arrhenius relationship shown by

Eq. (2.15).
E (1 1
(T - To>] (215)

(1) = (7o) exp
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The constant E, is called the activation energy for flow. But this is the special
case of Eq. (2.14) for shear rates where the viscosity equals 7o, which implies that
the shift factor is give by Eq. (2.16).

ar(T) = 1o(T) :exp{% (l—i)} (2.16)
170(T()) R \T T()
Since 71y (Tp) is a constant for a given master curve, the shift factor is proportional
to 1y(T). Thus, a viscosity master curve can be prepared by plotting #(7T)/ny(T)
versus 71,(7T).

It should be mentioned that time—temperature superposition is of limited utility
with crystallizable polymers, because the range of temperatures over which
measurements can be made is limited to that between the melting point and the
temperature at which the polymer starts to decompose.

Time—temperature superposition is not useful for long-chain branched systems,
although such materials are sometimes characterized in terms of specially-defined
activation energies. This subject is discussed in detail in Chap. 3.

2.4.4 Effects of Pressure and Dissolved Gas on Viscosity

Whereas increasing temperature decreases the viscosity of melts, increasing
pressure increases it, because compression of the melt decreases free volume.
Pressure shift factors can be used to generate master curves just as temperature
shift factors are used in time—temperature superposition. The Barus equation is
often found to describe the pressure dependence of viscosity. This is shown as
Eq. (2.17).

1o (P)
tn [’70(130)

This implies that the pressure shift factor ap is given by:

In[ap(P)] = B(P — Po) (2.18)

] — B(P— Po) .17)

Figure 2.6 shows the effect of pressure on the viscosity of a high-density
polyethylene at 180 °C, and Fig. 2.7 is a maser curve based on the same data [14].
The horizontal shift factor is ap(P), the prime indicating that the vertical shift
factor was neglected, i.e., set equal to unity. The Barus Eq. (2.18) was found to fit
the entire viscosity curve very well with bp set at unity. Increasing the pressure
from atmospheric 0.1 to 69 MPa (& 10,000 psi) increases the viscosity by a factor
of about two.

The HDPE for which data are shown in Figs. 2.6 and 2.7 was saturated with
carbon dioxide at several pressures, and viscosity data are shown in Fig. 2.8; the
corresponding master curve is shown in Fig. 2.9. The horizontal shift factor apc


http://dx.doi.org/10.1007/978-94-007-6395-1_3

24 The Viscosity

Fig. 2.6 Effect of pressure
on the viscosity versus shear
rate curve of HDPE. From
Park and Dealy [14]

Fig. 2.7 Shifted viscosity
curve taking bp to be unity;
reference pressure is

0.1 MPa. From Park and
Dealy [14]

Fig. 2.8 Effects of pressure
and dissolved CO, on
viscosity. From Park and
Dealy [14]
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accounts for both pressure and gas concentration. The CO, reduced the viscosity
by increasing free volume, thus counteracting the effect of pressure. The carbon
dioxide not only neutralized the pressure effect but reduced the viscosity below its
value at atmospheric pressure. At 69 MPa the viscosity is reduced by a factor of
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about 2.5. Park et al. [15] reported on the effect of long-chain branching on
pressure shift factors for polystyrene and polyethylene.

2.4.5 Effect of Molecular Weight on the Zero-Shear
Viscosity

Small molecules in the liquid state interact primarily through intermolecular forces
that give rise at the microscopic level to friction and at the macroscopic level to
viscosity. The viscosity of such a liquid is independent of shear rate. A polymeric
liquid with a low molecular weight behaves in this way, and its viscosity increases
linearly with molecular weight. For example, for linear polyethylene this behavior
obtains up to a molecular weight around 3,500. But over a fairly narrow range of
molecular weights the viscosity starts to decrease with shear rate and the increase
of 1y with molecular weight becomes much stronger than linear. In the same range
of rates, the viscosity depends increasingly on shear rate.

Plots of log(no) versus log(M) for several linear, monodisperse polymers are
shown in Fig. 2.10 [16]. At low molecular weights the viscosity is proportional to
molecular weight and varies little with shear rate over a wide range of shear rates.

nocM (2.19)

As the molecular weight increase, 7 starts to increase much more rapidly with M,
and the viscosity starts to depend strongly on shear rate. Over a fairly narrow range
of M, data on a log—log plot approach a line with a slope between 3.4 and 3.6. In
other words for linear, monodisperse polymers having sufficiently high molecular
weight the relationship between log(#o) and log(M) is given by Eq. (2.20).

no = KM" (2.20)

where « is usually the range of 3.5 £ 0.2
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Fig. 2.10 Zero-shear
viscosity versus molecular
weight (logarithmic scales) B
for several polymers. The
axes have been shifted to =
avoid crowding. The low-MW
lines correspond to £
unentangled samples and
have slopes of unity, while -
the high-MW lines
correspond to entangled
polymers and are fitted to
lines having slopes of 3.4.
From Berry and Fox [16]
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The value of M where the lines described by Eqgs. (2.19) and (2.20) intersect for

a given polymer, Mc, is called the critical molecular weight for entanglement.
Values of Mc for a number of polymers are given in Appendix A. This is not to be
confused with two other rheologically meaningful critical molecular weights M’

and M., which will be introduced later.
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For polydisperse materials, it is found that Eq. (2.20) continues to be valid if
M is simply replaced by the weight-average molecular weight, as long as there are
very few unentangled molecules present, i.e. those with M < Mc.

o = KM? (2.21)

This relationship leads directly to a blending law for viscosity. For example, in
a binary blend of two monodisperse samples of the same polymer having
molecular weights M, and M,, the weight-average molecular weight of the blend is
given by:

Mwb = WlMl + W2M2 (222)
where wy, and w,, are the weight fractions of the blend components.
Using Eqgs. (2.20) and (2.21) to eliminate the molecular weights, we have:

No,» = KMy, = (Wlﬂ(l)/T + W2’7(1),/§> (2.23)

This equation has been tested for blends of monodisperse [17, 18] and polydisperse
[19] materials.

2.4.6 Effect of Molecular Weight Distribution on Viscosity

The effect of molecular weight distribution, MWD, is somewhat more subtle but
still very important. In general, commercial polymers have a rather broad
molecular weight distribution, although materials produced using metallocene
catalysts can have polydispersities (M, /M,,) as low as two. Figure 2.11 is a sketch
of viscosity curves for two polymers having the same weight average molecular

log (viscosity)

log (shear rate)

Fig. 2.11 Shapes of viscosity curves for two samples having the same M,, but with narrow
(upper curve) and broad (lower) molecular weight distributions. The narrow MWD sample moves
from a well-defined Newtonian region to power-law behavior over a narrower range of shear rates
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weight but different molecular weight distributions. The upper curve is for a nearly
monodisperse sample, while the lower one is for a sample with a moderately broad
MWD. The broadening of the distribution stretches out the range of shear rates
over which the transition from the zero-shear viscosity to the power law region
occurs. Chapter 7 describes methods for using viscosity data to infer the MWD of
a linear polymer, although it is to be noted that this requires data of high accuracy.
In the plastics industry it is often desired to estimate polydispersity from easily
measured quantities. Shroff and Mavridis [20] have compared several empirical
correlations that have been proposed to do this.

2.4.7 Effect of Tacticity on Viscosity

The effect of tacticity on viscoelastic behavior is discussed in Chap. 3, but little has
been published about its effect on viscosity. Fuchs et al. [21] studied a series of
PMMAs that were 78 and 81 % syndiotactic as well as more conventional
materials that were 59 % syndiotactic. They found that the zero-shear viscosities
obeyed Eq. (2.20) with o equal to about 3.4. Figure 2.12 shows their results for two
series of samples that were 59 and 81 % syndiotactic.

Figures 2.13 and 2.14 show data of Huang et al. [22] for iso-, stereo- and a
tactic polystyrenes (iPS, sPS, aPS) having similar M, values (about 2.5 x 10° g/
mol) and polydispersities (2.3-2.5). The inset shows that dividing M, by M, made
it possible to bring data for the three samples together on one line. M, is the
molecular weight between entanglements defined in Chap. 3. It is calculated from
the plateau modulus and is one measure of the molecular weight at which

Fig. 2.12 Effect of tacticity 10°
on viscosity—Dependence of e T,=180°C /
zero-shear viscosity at A Ty =TH73°C / /
190 °C on M,, for 10° | s
polypropylenes of varying ,.///
tacticities. From Fuchs et al. ./
[21] 107 | S
——PMMA204R
4 (43% st)
8
o 108 |
105 | ./
/’/
J/ jua
;S
104 | // /
/ ® 81% syndiotactic triads
59% syndiotactic triads
103 i
10¢ 10° 108

M,, . g/mol
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entanglement effects become prominent. The equation of the line in the inset of
Fig. 2.14 is:

o = 2.92 x 1072(M,,/M,)*® (2.24)

2.4.8 Viscosity of Ethylene/Alpha-Olefin Copolymers

An important class of commercial polymers are copolymers of ethylene and an
alpha-olefin, known as linear low density polyethylenes (LLDPE). The use of a
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copolymer introduces short-chain side branches onto the polyethylene backbone,
and the details of the molecular structure depend on the method of polymerization.
If a heterogeneous, Ziegler catalyst is used, the side-chains tend to be distributed in
blocks rather than randomly along the backbone. If the copolymer is prepared
using a single-site (metallocene) catalyst, the short-chain branching distribution is
expected to be random.

Wood-Adams et al. [23] studied the effect of comonomer content in three
ethylene-butene copolymers prepared using a single-site catalyst, in which the
butene level ranged from 11 to 21 %. While the three materials studied had
polydispersities of about 2.0, there was a modest variation in average molecular
weight, and this was accounted for by dividing the complex viscosity by the zero-
shear viscosity. While the resulting master plots for the three materials were not
precisely identical, the authors concluded that there was no significant effect of
comonomer content on 7, Wood-Adams and Costeux [24] found that the
copolymers used in this study were thermorheologically simple, i.e., that they
obeyed time—temperature superposition, and that the activation energy was
insensitive to butene content at levels up to 7 wt %.

Garcia-Franco et al. [25] later studied this issue using a set of twelve ethylene/
butene copolymers and also looked at data from several studies that involved other
comonomers. They were able to correlate all their data using, in place of My, the
average molecular weight per backbone bond my,, and Fig. 2.15 shows their cor-
relation. The line corresponds to Eq. (2.25), and while there is considerable scatter
on this highly compressed log—log plot, a general trend is suggested.

M 3.33
=473 x 10710 =¥ 2.25
=473 % 1070 (3 (2.25)

1E+6
1E+5
—_ 1E+4
k3
[ 1E+3
&
1E+2
1E+1
1E+0
1E+3 1E+4 1E+5
.'1!,‘.41'1';,

Fig. 2.15 Zero-shear viscosity at 190 °C for various polyolefins versus M,,/M,, where My, is the
average molecular weight per backbone bond. EB Ethylene/butane copolymers; EP Ethylene/
propylene; EH Ethylene/hexane; HPB Hydrogenated polybutadiene. From Garcia-Franco et al. [25]
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T T eEy

Star H-Mclecule Comb

Dendrimer Cayley tree

Fig. 2.16 Sketches of several branching structures: star, H-shaped, comb, dendrimer and cayley
tree (branch-on-branch)

2.4.9 Effect of Long-Chain Branching on Viscosity

Branches are “long” from our point of view if they are sufficiently entangled to
affect rheological behavior. For viscosity we might expect the molecular weight
for the onset of branching effects to be Mc, which is about 3M.. The effect of
branching also depends very much on the branching structure, i.e., lengths of
branches, distance between branch points, and level of branching (branches on
branches). Figure 2.16 shows several types of branching structure that will be
referred to in the following discussion. It is not possible to infer branching
structure from viscosity data unless something is known about the way a sample
was polymerized. The effect of branching structure on rheological behavior is dealt
with at length by Dealy and Larson [26]. Levels of long-chain branching too low to
be detected using GPC can have a significant effect on viscosity, so rheology is a
valuable tool for characterizing LCB.

To study the effects of specific types of LCB, it is necessary to work with
polymers that have well-known branching structures. Small samples of such
materials can be prepared by means of anionic polymerization, and this technique
has been widely used in rheological studies. There is still a gap, however, between
what is known about such materials and our understanding of structure-rheology
relationships for highly-branched, commercial polymers.

2.4.9.1 Zero-Shear Viscosity of Monodisperse, Star-Shaped Polymers

For symmetric star polymers of a given molecular weight whose arms are too short
to entangle, as the number of arms is increased 7 falls progressively further below
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that of a linear polymer with the same molecular weight. This is because the size
of a molecule decreases as the number of branches increases at constant M. For a
given number of arms, if the arm length is increased, #, rises above that of the
linear polymer having the same M. When the arms become long enough to be well-
entangled, however, i.e. when the arm molecular weight M, reaches two or three
times the molecular weight between entanglements M. (defined in Chap. 3) 5
increases approximately exponentially with molecular weight [27]. This phe-
nomenon is illustrated in Fig. 2.17 which shows data of Kraus and Gruver [28] for
linear, three-arm and four-arm polybutadiene stars. At moderate molecular weights
the data for the stars lie below, but parallel to, the line for linear, entangled
polymer with o = 3.4, in accord with Eq. (2.20), but when the branch length
reaches about 3M, for three-armed stars, and about 4M, for four-arm stars, the star
data rise sharply and cross the line for linear polymers described by Eq. (2.20).
Somewhat surprisingly, the viscosity of symmetric stars with entangled branches
depends only on branch length and not on the polymer type or number of arms [27,
29], up at least 33 arms. The sharp increase in viscosity with M, when arms are
highly entangled is interpreted in terms of a molecular model in Chap. 4.

The picture is more complicated in the case of asymmetric stars. Gell et al. [30]
studied a series of asymmetric stars made by adding arms of varying length at the
midpoint of a very long backbone (M/M, =~ 40). They found that even a short arm

Fig. 2.17 Zero-shear 8
viscosity at 379 °C versus M,,
for polybutadienes having
various structures: linear
(circles), three-arm stars
(squares), four-arm stars
(trangles). At low Mw
branched systems fall below
the line for linear molecules,
and at higher Mw their values
rise above the line and
approach an exponential
behavior. From Kraus and
Gruver [28]

LOG 2, (AT 379 °K)
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with (M,/M, = 0.5 had the effect of tripling 4o, and for M, /M. = 2.4, ny, was
increased by a factor of ten. This illustrates the difficulty of inferring structural
details from viscosity data unless one knows the type of structure present.

It is explained in Chap. 7 that the presence of chain segments with branch
points at both ends, as in all the structures shown in Fig. 2.16 except the star, has a
strong effect on extensional flow behavior.

While the use of specially synthesized polymers has advanced our knowledge
of the effect of specific branching structures, relating rheological behavior to the
structure of commercial branched polymers is a considerably more complex task.
But the branching structure of commercial polymers is of great importance
because of the very strong effect of certain branching structures on the processing
behavior of thermoplastics.

2.4.9.2 Branched Metallocene Polymers

Polyolefins made using metallocene or related catalyst systems were the first
commercial commodity polymers whose molecular structures were well-con-
trolled and reproducible. It was thus possible to establish quantitative relationships
between rheological behavior and structure. The linear homopolymers and eth-
ylene-alpha-olefin copolymers have polydispersity indexes (M,,/M,) very close to
two. And constrained geometry catalysts [31, 32] can produce polymers with well-
controlled, low levels of long-chain branching. These materials are sometimes said
to be “substantially linear.” Moreover, the branching structure of these polymers
is well described by theory [33-37]. The first branches to be formed have one
branch point, i.e., they are three-arm stars. As the branching level increases,
molecules with two branch points start to appear; these are like the H-molecule
shown in Fig. 2.16. A more detailed description of these polymers can be found in
Sect. 7.2.3.

Wood-Adams et al. [23] reported the rheological properties of a series of
polyethylenes made using such a catalyst. The branching levels were very low,
ranging from 0.1 to 0.8 branches per 10,000 carbon atoms, and the polydispersities
were very close to 2.0. The zero-shear viscosity increased very strongly with
branching level, reaching nearly 70 times that of a linear polymer with the same
molecular weight at the highest branching level, as shown in Fig. 2.18. Wood-
Adams and Costeux [24] studied the effect of comonomer on branched polymers
of this type. They found that all the long-chain branched polymers were thermo-
rheologically complex, i.e., they did not obey time—temperature superposition, and
that the activation energy based on the zero-shear viscosity was much higher for
branched copolymers than for comparable branched homopolymers. The behavior
of these samples is discussed in more detail in Chap. 7 where a technique is
described for inferring the branching level in metallocene polymers from viscosity
data.
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Fig. 2.18 Zero-shear viscosity of sparsely branched metallocene polyethylenes versus number of
long-chain branches per 1,000 carbons. The viscosities are divided by that of linear PE having the
same molecular weight. The first branched molecules to form at the /eft are stars, while as we
move to the right there start to be H-molecules and very low levels of more highly-branched
structures. From Wood-Adams et al. [23]

2.4.9.3 Viscosity of Randomly Branched Polymers and LDPE

We have already seen that the presence of long-chain branching, even at quite low
levels, has a strong effect on the zero-shear viscosity and the shape of the viscosity
curve. Random branching leads to a broad distribution of structures, making it dif-
ficult, if not impossible, to distinguish between the effects of branching and poly-
dispersity. In fact, Wood-Adams and Dealy [38] demonstrated that one can, in
principle, prescribe the molecular weight distribution of a linear polymer that would
have the same complex viscosity as any given branched polymer. Low-density
polyethylene is the commercial polyolefin with the most complex branching struc-
ture and poses the largest challenge in characterizing its structure. Laboratory studies
of random branching usually make use of techniques in which increasing levels of
branching are introduced into a linear precursor. While the results of these studies are
instructive, their direct application to low-density polyethylene (LDPE) is limited.

Figure 2.19 shows complex viscosity as a function of frequency (similar to
viscosity versus shear rate) for one linear and four branched ethylene/1-butene
copolymers [39]. All five samples have nearly the same absolute molecular weight
(M, =~ 155 kg/mol), MWD (M,/M,, ~ 2), and comonomer content. Sample A is
linear, and the level of long-chain branching increases in the order B-C-D-E. We
see that the zero-shear viscosity increases sharply with the level of branching but
that all the data converge onto one curve at high shear rates.

Auhl et al. [40] studied the behavior of a series of polypropylenes that had been
subjected to doses of electron beam radiation to generate various levels of long-
chain branching. The ratio of the viscosity of a branched polymer #,(br) to that of
the linear precursor #y(lin) is shown as a function of radiation dose d in Fig. 2.20.
Assuming little chain scission, all these samples have the same molecular weight as
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Fig. 2.19 Complex viscosity magnitude at 190 °C versus frequency for a linear (Sample A) and
four branched polyethylene/1-butene copolymers. The branching level increases as we move
through the alphabet. All samples have nearly the same absolute M, (155 kg/mol) and
polydispersity (2). Shear thinning begins at higher frequencies as we move from A to E, and at
the highest frequencies all the curves come together. From Robertson et al. [39]

the linear precursor. Thus the point for d = 0 corresponds to #no(br)/no(lin) = 1.0.
These data show the trend of increasing viscosity at low branching levels, reaching
a peak and then decreasing. Comparing Figs. 2.18 and 2.20 makes it clear that the
details of the branching structure have as important an effect on the zero-shear
viscosity as the average degree of branching. The metallocene polyethylene (mPE)

© no steady-state values
u T=180°C

m, (br) /1, (iin)
()

0 T T T T T T T T
0 20 40 60 80 100 120 140 160

d [kGy]

Fig. 2.20 Branching factor g, the ratio of 7, of radiated polypropylene to that of linear PP
precursor, versus radiation dose d. If little chain scission occurred all samples have the same
molecular weight; i.e. d = 0 implies a branching factor of unity. Electron beam radiation has
resulted in long-chain branching. The viscosity first increases sharply with branching level but
then falls continuously to values below that of the linear precursor. From Auhl et al. [40]
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(Fig. 2.18) always contains a large fraction of linear chains, and all the branch
segments have the same size distribution as the linear chains. The irradiated
polypropylene (PP) (Fig. 2.20), on the other hand, probably contains tree-like
molecules with short branch segments. It is thus somewhat similar to a LDPE.

The most important commercial, branched polymer is low-density polyethylene
(LDPE), which has a broad range of branching structures, with many short
branches attached to tree- or comb-like molecules. In addition, LDPEs made in
autoclaves have a distinctly different structure from those made in tubular reactors,
as is explained in Chap. 7. All LDPEs are strongly shear-thinning, and we will see
in Chap. 4 that they have a distinctive extensional flow behavior that is associated
with high levels of long-chain branching.

The dependence of the zero-shear viscosity of LDPE [41-44] on average
molecular weight is often compared with that of linear polymer having the same
M,,, which is described by Eq. (2.20). However, two major questions arise in
making such a comparison: obtaining a reliable value for 7y, and choosing an
appropriate average molecular weight. Highly-branched, heterogeneous polymers
such as LDPE have a very broad range of shear rates over which viscosity data
make the transition from the Newtonian limiting value to a power-law region. It is
generally not feasible to determine the zero-shear viscosity of LDPE using small-
amplitude oscillatory shear, because the frequency required and the torque signal
are extremely low. And extrapolation using an empirical viscosity model is highly
unreliable. The LDPE viscosity data shown in Fig. 2.4 were obtained using a
specially modified rotational rtheometer, the operation of which required excep-
tional skill. The only reliable method is the long-time creep test described in Chap.
6. Such measurements can last several hours and require extra stabilization of the
sample against thermo-oxidative degradation. Also, the activation energy defined
by Eq. (2.30) has different values for linear PE and LDPE, so changing the tem-
perature will alter the relationship between the viscosities of the two polymers.

The second issue regarding #, correlations for LDPE is the selection of a
molecular weight average. Two averages have been used, one based on the size of
molecules in solution, determined using GPC with universal calibration, and one
based on mass, determined using light-scattering. Whichever one is selected, a
collection of molecules having either similar sizes or similar masses will contain
chains having a distribution of branching structures. Furthermore, LDPEs made in
autoclaves have distinctly different branching structures than those made in tubular
reactors. This issue is taken up in more detail in Sect. 7.2.5.

2.5 Normal Stress Differences

It was mentioned at the beginning of this chapter that there are two rheologically
meaningful normal stress differences that can be measured in steady simple shear,
the first and second normal stress differences. Based on the coordinate convention
shown in Fig. 2.1, these are defined as:
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Ni(7) = on —ox (2.26)
Na2(7) = 02— 03 (2.27)

These stress differences are associated with strain-induced anisotropy in a fluid,
and in the case of polymeric liquids the anisotropy arises from the departure of
molecules from their equilibrium, symmetrical average shape. In Chap. 8§ we will
find that the first normal stress difference is indirectly related to extrudate swell
and that the second normal stress difference governs flow instabilities that occur in
multi-layer profile coextrusion and flow through non-circular channels.

The first normal stress difference can be measured at low shear rates using a
rotational rheometer equipped with cone-plate fixtures, although problems arise
that are not encountered in the measurement of viscosity. The second normal stress
difference is considerably more difficult to determine, and relatively few data have
been reported. It has been observed that N, is negative with a magnitude about 1/3
that of N;.

For a Newtonian fluid the shear stress is proportional to the shear rate, the
normal stress differences are zero, and at sufficiently low shear rates viscoelastic
materials approach Newtonian behavior. There are two simplified models that
provide useful information about the first departures from Newtonian behavior as
the shear rate is increased from zero. One of these is the second-order fluid model,
and the other is the rubberlike-liquid model. Both of these models predict that the
shear stress is still linear in shear rate (constant viscosity) but that the normal stress
differences are quadratic in shear rate. This observation led to the definitions of the
first and second normal stress difference coefficients, which these models predict
are independent of shear rate.

Y1) = Ni(3)/7 (2.28)

Fig. 2.21 First normal stress E y
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for a polystyrene measured °
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¥2(7) = N2 (3) /7 (2.29)

Data obtained at low shear rates have shown that ¥, and ¥, do indeed have
limiting, non-zero values, which are assigned the symbols ¥; ¢ and ¥ .

The second normal stress difference is usually reported in relation to the first
normal stress difference by use of a shear-rate dependent normal stress ratio:
—20) _ ~M:(3) (2.30)
i M)

This ratio has a non-zero limiting value as the shear rate approaches zero, and this
value has been reported to be 0.24 for linear melts [45] and about 0.3 for stars [46].

As the shear rate increases, ¥ decreases, but its value at high shear rates can
not be determined using rotational rheometers due to flow disturbances. Data for a
polybutadiene and a polystyrene at shear rates up to several hundred have been
obtained using a Lodge Stressmeter [47] and a sliding plate theometer (SPR), and
polystyrene data obtained using both techniques are compared in Fig. 2.21 [48].
The data were found to be in good agreement with an empirical relationship
proposed by Laun [49], shown below as Eq. (2.31)

(i) =

5707

, G G
i) =25 1+(5> : (2.31)

The dimensionless quantity N;(j)/a(}) is called the stress ratio SR and indi-
cates the relative importance of orientation or stored elastic energy at a given shear
rate. The ratio N;(7)/2a(7), i.e., SR/2, is often called the recoverable shear.
However, it is only equal to the actual strain recovered after sudden release of the
shear stress during steady shear, at low shear rates.
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Chapter 3
Linear Viscoelasticity

Abstract Linear viscoelasticity is a type of behavior exhibited by molten polymers
when the deformation is very small or very slow. Such behavior can be described
completely by the relaxation modulus, which is determined by measuring the
response of the melt to a sudden, small deformation. Alternatively it can be char-
acterized in terms of the storage and loss moduli that are measured in small-
amplitude oscillatory shear or the creep compliance measured by suddenly imposing
a shear stress and tracking the deformation. A convenient mathematical form for the
relaxation modulus is a sum of exponentials, which is called the generalized Max-
well model. The set of moduli and time constants involved in this model comprise a
discrete relaxation spectrum. The dependence of these properties on temperature is
described, and molecular models for their prediction are presented.

3.1 Introduction

The simplest type of viscoelastic behavior is linear viscoelasticity. This type of
behavior is observed when the deformation is sufficiently mild that the molecules
of a polymeric material are disturbed from their equilibrium configuration and
entanglement state to a negligible extent. Obviously, very small deformations are
in this category of deformation. This might be a deformation in which the total
strain is very small, or the early stages of a larger deformation. For melts, which
have a fading memory and can flow, linear behavior is also observed when a
deformation occurs very slowly, as in steady simple shear or another viscometric
flow at very low shear rates. This is because relaxation processes due to Brownian
motion are always acting to return molecules to their equilibrium state, and if the
deformation is tending to take them away from this state sufficiently slowly, the
relaxation mechanism has plenty of time to keep up with this process, with the net
result that no significant deviation from equilibrium occurs. One manifestation of
this is that at very low shear rates, the viscosity of a polymeric liquid becomes
independent of shear rate.

J. M. Dealy and J. Wang, Melt Rheology and its Applications in the Plastics Industry, 49
Engineering Materials and Processes, DOI: 10.1007/978-94-007-6395-1_3,
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While nonlinear behavior is more directly relevant to processing, deformation
in the linear regime is the most fruitful source of information about molecular
structure of all shear flows. Linear data provide information about average
molecular weight and molecular weight distribution. While some information
about long-chain branching can also be obtained, we will see in Chap. 4 that
stretching flows provide valuable additional information about branching. In this
chapter, we present the theory of linear viscoelasticity along with formulas that are
useful for the treatment of data. We then describe the linear behavior of typical
molten polymers and the molecular mechanisms underlying this behavior. A more
thorough treatment of this subject can be found in the excellent monograph by
Ferry [1] on polymer viscoelasticity.

3.2 Stress Relaxation and the Relaxation Modulus

In Sect. 1.5.3 we described an experiment in which the Maxwell element shown in
Fig. 1.7 was subjected to a sudden elongation, and the force was calculated as a
function of time. The analogous rheological experiment is one in which a sample is
suddenly deformed at time # = 0, and the resulting stress is measured as a function
of time. This is called a stress relaxation experiment. In reporting the results of
such an experiment, it is customary to divide the stress by the magnitude of the
strain that is introduced to start the experiment. In the case of a sudden shear strain
of magnitude 7yq, the quantity reported is the shear relaxation modulus G(t,y,).

G(t,79) = a(1) /7o (3.1)

In the case of an extensional strain of magnitude &y, the quantity reported is the
tensile relaxation modulus E(#, &y), which is the net tensile stress, o, divided by &,.

E(t,&o) EO’E(I)/SO (32)

In general, the relaxation moduli defined above are functions of the strain
magnitude, but when the strain is very small, they are independent of the strain. In
this case the stress at any particular value of ¢ is proportional to the strain.

a(1) = G(1) %o (3:3)

It is because of this linear relationship that we call small-strain or small-rate
behavior linear viscoelasticity.

3.3 The Boltzmann Superposition Principle

It is useful to have a general equation that describes all types of linear viscoelastic
behavior. We will derive this equation starting from the assumption that the
relaxation modulus is independent of strain amplitude, i.e., from Eq. (3.3).
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Consider a sequence of small shear strains as shown in Fig. 3.1. The shear stress
resulting from the strain dy(#;) that occurs at time #; is:

a(t) =G(t—1)dy () (3.4)

To calculate the stress resulting from the strain introduced at time ¢, if both dy(t)
and 0y(z;) are very small we can assume that the incremental response of the
material to the second step strain will be independent of the strain introduced at
time #;. Thus, we can simply add on or superpose the stress resulting from the
strain at time #,, as follows:

a(t) = G(t —11)oy(t1) + G(t — 1) 0y(t2) (3.5)

For a combination of N small strains, we can continue to add up the contributions
to the stress:

N

o(t) =Y _ G(t—1)8y(t;) (3.6)

i=1

For a smooth strain history not consisting of finite steps, we can make use of the
definition of the integral to show that:

1

o(t) = / Gt — )a(r) (3.7)

—00

Noting that the strain that occurs during the time interval df’ is simply (¢')dt’, this
can also be written as:

t

o(t) = / G(t—1)p(d)dr (3.8)

—00

Fig. 3.1 A sequence of step
strains. If the steps are
sufficiently small, the I
Boltzmann superposition z S+4(t) dv(Ls)
principle (Eq. 3.6) can be é ’
used to calculate the resulting b
stress o ‘
« 84(t)
& I
7]
[
Sy(t,)
U l L 1 1
0 t 1, 1y t
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The use of the lower limit of minus infinity is a mathematical convenience; it
implies that to calculate the stress at time ¢ in the most general case one must know
the strain history infinitely far into the past, i.e., at all times ¢ prior to 7. But
polymeric liquids have a fading memory, which means that as time passes the
effect of a given deformation diminishes steadily, eventually falling to zero. In
other words, the relaxation modulus approaches zero at long times.

lim G() = 0

1—00

And in an experiment, we generally start (f = 0) when the material is in a stress-
free state. In this case, ¢(0) = 0, and we can set the lower limit in 3.8 to zero.

t

o(t) = /G(r—t’)dy(t’) (3.9)

0

3.4 Start-Up of Steady Simple Shear

An example of using the relaxation modulus to calculate the response to any shear
deformation that is very slow or very small is start-up of steady-simple-shear. With
the sample in a stress-free state, a constant shear rate is suddenly imposed at ¢ = 0.
From Eq. (3.8) the shear stress is given by:

t

a(t) = y/G(t— !)dt'

0

Or, letting s =1 — 7,

t
o= ?/G(s)ds
0

The ratio a(¢)/7 is called the shear stress growth coefficient n*(t).

0 (f) = / G(s)ds (3.10)
0

The viscosity is the steady-state (t — o0) value of 17(¢), so we evaluate the
above integral in 3.10 at t = o0 to obtain:

ny = [ G(s)ds (3.11)
/
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In Chap. 5 we will see how the Boltzmann superposition principle can be
written in tensorial form so that it can be used to calculate the response to any type
of deformation, as long as it is small or slow. For example, for steady uniaxial
extensional flow, the net tensile stress o is simply three times the product of the
viscosity and the Hencky strain rate.

op = 3né (3.12)

The extensional viscosity is defined as og/é, so for a Newtonian fluid, the
extensional viscosity is just three times the (shear) viscosity.
And for step Hencky strain, the tensile stress is:

O =011 — 03 = 380G(l) (313)

In other words, Young’s modulus E(#) for a Newtonian fluid is just three times the
shear relaxation modulus.

ox(t)/e0 = E(1) = 3G(1) (3.14)

3.5 Relaxation Moduli of Rubbers and Molten Polymers

Figure 3.2 is a sketch of G(¢) for a cross-linked elastomer. A logarithmic time scale
is used to expand the short time behavior and show that there is a very short initial
time period during which an elastic, glassy mechanism operates. And a logarithmic
modulus scale is used to accommodate the very large difference between the glassy
modulus G, and the equilibrium modulus Ge.. If the deformation occurs instanta-
neously, the only mechanism for deformation is chemical bond distortion, and this
is the origin of the glassy behavior observed in most materials at extremely short
times and or sufficiently low temperatures. Once the very fast, initial deformation
is accommodated by the glassy mechanism there is time for changes in molecular
conformation via Brownian motion within segments of a molecule, and the stress
decays more rapidly. Since this is a cross-linked material, the modulus approaches
an equilibrium value G, at long times.

Turning now to uncross-linked melts, we find behavior similar to that of a
rubber at very short times, but at longer times the melt flows instead of
approaching an equilibrium configuration. Figure 3.3 shows sketches of G(?),
again using logarithmic scales, for three samples of a linear polymer. Samples A
and B have narrow molecular weight distributions. One of these, B, has a
molecular weight that is sufficiently high that there is a high degree of entangle-
ment, while sample A has a molecular weight below that required for entangle-
ment. The mean molecular weight of sample C is well above the entanglement
threshold, but it has a broad molecular weight distribution and contains a signif-
icant number of unentangled molecules. We note that for all three materials, if the
deformation is nearly instantaneous there is a very short time period in which
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Fig. 3.2 Sketch of log-log
plot of relaxation modulus
versus time for a cured
elastomer. This material has a
glassy modulus G, at very
short times and an
equilibrium modulus G, at
long times

£
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glassy behavior is observed, as in the case of the cross-linked polymer. At longer
times, thermal motion occurs, accelerating relaxation. This is the transition region.
All three materials exhibit the same behavior in this region, as only very small
scale molecular motions are involved, and the molecular weight is not important.
For the low molecular weight material A we move directly to a terminal zone
where G(¢) falls off toward zero, as must happen eventually for any uncross-linked,
unfilled polymer. For the high molecular weight, narrow distribution melt B the
transition zone is followed by a plateau zone in which the modulus is nearly
constant. The modulus in this region is called the plateau modulus, and has the
symbol GY¥. At longer times flow occurs, and the G(f) curve moves into the
terminal zone where the modulus relaxes eventually to zero.

The existence of a plateau implies that there are two relaxation mechanisms.
One type of relaxation occurs at short times, and this governs the behavior in the
transition zone. And there is another type that occurs at longer relaxation times,
which governs behavior in the terminal zone. When the times over which these
two relaxation mechanisms operate are widely separated, i.e., for a very high
molecular weight, monodisperse polymer, there is an intervening range of times,
the plateau region, in which little relaxation occurs, and the melt behaves much
like the cross-linked material shown in Fig. 3.2.

The curve for sample C shows the behavior observed for a material with a broad
molecular weight distribution. There is neither a well-defined plateau zone nor a
clear transition to a well-defined terminal zone. It is not possible, therefore, to
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determine a reliable value for the plateau modulus. Long-chain branching has a
similar effect on the relaxation modulus.

Molecular structure has significant effects on behavior only in the plateau and
terminal zones, and melt processing involves only longer-time processes, so we
will be interested in this book primarily with behavior in these zones.

3.6 The Maxwell Model for the Relaxation Modulus

It is useful to have a general functional form for the relaxation modulus G(¥) that
can be used to describe experimental data. In Chap. 1, to illustrate the general
nature of viscoelasticity we used a mechanical assembly consisting of a linear
(Hookean) spring and a linear dash-pot, connected in series, which was shown in
Fig. 1.7. This assembly was proposed by Maxwell as a model for the behavior of
gases, and it is referred to as Maxwell element. We saw in Chap. 1 that if this
element is suddenly stretched a distance X at time ¢ = 0, the force will be trans-
mitted through the spring and the dashpot and will thus be the same in both. This
force is proportional to the spring extension X and also to the rate of extension of
the dashpot dX4/dr. The differential equation that describes the force as a function
of time F(#) was given as Eq. (1.19), which is repeated below as Eq. (3.15).

F(t) = KX, = Kg—— 3.15

(1) i (3.15)
The total displacement X is X + Xg, and for a step-strain experiment is given

by a step function. The differential equation can then be solved as follows for F(¢):

F(t) = XK, exp(—tK,/Ky) (3.16)

We note that XK is the initial value of the force, since all of the extension must
initially be absorbed by the spring and that K4/K has units of time, which we will
call the relaxation time of the Maxwell element 7.

F(t) = Foexp(—t/tn) (3.17)

In general one can say that the dynamic behavior of a system that incorporates
both energy storage and energy dissipation must have at least one characteristic
time. Another example is an electrical circuit that includes both resistance and
capacitance.

It will be useful in our discussion of linear viscoelastic behavior to use the
relaxation modulus that is the viscoelastic analog of the Maxwell element. This
model for melt elasticity in shear is obtained by taking the force F' to be analogous
to the shear stress o, the spring constant K analogous to the initial shear modulus
Gy of a polymeric liquid, and ty; analogous to the relaxation time 7. According to
this simple model of viscoelasticity the response to a step shear strain is:
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Fig. 3.4 Dimensionless
relaxation modulus versus
dimensionless time modeled
as the exponential function
shown as Eq. (3.19)

Fig. 3.5 The function shown
in Fig. 3.4 plotted using
logarithmic scales. Note the
drastic change in the
appearance of the curve.
Logarithmic scales are very
useful, but one must be
careful in their interpretation
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And the shear relaxation modulus is:
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a(r) = Gopolexp(—1/7)] (3.18)
G(1) = Golexp(—1/7)] (3.19)

This is called the Maxwell model and is plotted in Fig. 3.4 in dimensionless
form, i.e., (G/Gy) versus (t/1,). We note the fast initial decay and the long-time,
asymptotic approach to zero. In order to reveal details of the short-time behavior
without losing the long-time data off the graph on the right, logarithmic scales are
often used in plotting rheological material functions. For example, the curve
shown in Fig. 3.4 is replotted using logarithmic scales in Fig. 3.5. This is a useful
technique, but it is important to realize that the use of nonlinear scales greatly
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changes the shape of the curve. For example, one gets the impression from Fig. 3.5
that there is a short-time plateau in the behavior, but this is not so in this case.

3.7 The Generalized Maxwell Model and the Discrete
Relaxation Spectrum

The exponential stress relaxation described by Eq. (3.18) is qualitatively similar to
the behavior of polymeric liquids, but it does not describe the response of real
materials However, it can be generalized by means of an assembly of Maxwell
elements connected in parallel, as shown in Fig. 3.6. This leads to a multi-mode
Maxwell model for linear viscoelastic behavior, which consists of the sum of
exponentials shown by Eq. (3.20).

N

G(t) =Y Gilexp(~1/x)] (3.20)

i=1

The response to a small or slow deformation is described by substituting
Eq. (3.20) into Eq. (3.7) and integrating. For example, Eq. (3.11) can be used to
show that the zero-shear viscosity according to the multi-mode Maxwell model is:

N
Mo = ZGFC,’ (3.21)
i=1

The set of parameters [Gy, Ty] constitutes a discrete relaxation spectrum, and it
is useful for the conversion of one response functional into another. If a sufficient
number of terms are used, it is possible to fit the behavior of real materials to this
model to a level of accuracy limited only by the precision and time or frequency
range of the experimental data. Methods of determining the parameters of a dis-
crete spectrum from experimental data are described in Sect. 3.12.

For a high-molecular-weight polymer with a narrow molecular weight distri-
bution, the largest 7; is well separated from the next largest one and is called the
terminal relaxation time of the sample. This leads to classical terminal zone

?
[LILILL
TIIIIT
%f%jg%

Fig. 3.6 Several maxwell elements in parallel used to model viscoelastic behavior that more
complex than a single exponential, i.e., that involves a spectrum of relaxation times
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behavior in which G(¢) decreases exponentially with time. This means that on a
plot of log(G) versus log(#) such as Fig. 3.3, the data will approach a line having a
slope of minus one at long times.

3.8 The Continuous Spectrum

In the computation of one linear viscoelastic function from another, it is conve-
nient to make use of a continuous spectrum. This can be defined by letting the
number of elements in the generalized Maxwell model increase without limit so
that G() can be represented in terms of a continuous spectrum F(t), such that Fdt
is the contribution to the modulus of relaxation times between 7 and 7 + dt.

G(t) = / F(o)fexp(—1/7)]dr (3.22)
0

However, a logarithmic time scale is more convenient for representing data, and
the spectrum H(t) is generally used in place of F(t), where H = Fr, and
Hd[In(1)] = Fdz. The relaxation modulus is related to H(t) as follows.

o0

G(1) = / H(7)[exp(—1t/7)]d(In7) (3.23)

—00

Figure 3.7 [1, p. 371] shows typical relaxation spectra for: (1) a monodisperse,
(2) a somewhat polydisperse, and (3) a polydisperse sample. The minimum occurs
at about midway in the plateau zone. A basic assumption of polymer physics is that
a homogeneous melt has a unique relaxation modulus G(f) and a unique spectrum
H(t). However, using Eq. (3.23) to infer H(t) from experimental data is an ill-
posed problem. Since data are always subject to random error it is not possible to
infer the theoretical unique spectrum from data, which are usually in the form of
storage and loss moduli values determined at several frequencies [GI’(, G{(’,wk].
Dealing with this issue to achieve the most accurate representation of data is
addressed in Sect. 3.12.

3.9 Creep and Creep Recovery: The Compliance

In a shear creep test, a material initially in its equilibrium state is subjected to a
constant shear stress ¢ at time ¢t = 0. The shear strain y(¢) is then monitored as a
function of time. This is often the preferred experimental technique when it is
desired to study linear viscoelastic behavior at very long times. The results are
presented in terms of the shear creep compliance defined as follows:
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Fig. 3.7 Relaxation spetra T
H(7) in the plateau zone of
three materials: /—
monodisperse polystyrene;
2—poly(n-octyl
methacrylate); 3—broad
MWD polyisobutylene. The
dashed lines 4—outline the
“box distribution,” a
primitive approximation of
this type of behavior. From
Ferry [1, p. 371]
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Fig. 3.8 The shape of the
creep compliance curve for a
typical molten polymer. If the
stress is sufficiently small, the
zero-time intersect of the
extrapolation of the linear
portion of the curve is the LVE
steady-state compliance J?

SHEAR CREEP COMPLIANCE, J(t)

TIME (1)

J(t)=y(@)/o (3.24)

For a cross-linked polymer, e.g. a cured elastomer or vulcanized rubber, for at a
constant stress, the strain will reach an equilibrium value, and the creep will reach
a steady value called the equilibrium compliance J.. A melt, however, does not
have an equilibrium compliance, and the strain will increase approaching linearity
with time, and the slope of the line will be stress divided by the viscosity, so that
the compliance approaches a line whose slope is the reciprocal of the viscosity.

A typical creep compliance curve is sketched in Fig. 3.8. In the case of linear
behavior, the creep compliance is independent of ¢. For a melt, the shear rate
eventually becomes constant and equal to the shear stress divided by the viscosity.
The intercept on the vertical J axis is called the steady state compliance JS, and the
compliance at long times is given by:

J(t) =J° +t/n, (3.25)
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For unentangled polymers, the steady-state compliance increases linearly with
molecular weight. While it is independent of molecular weight for well-entangled,
monodisperse polymers, it is pointed out in Chap. 7 that J? depends strongly on
polydispersity.

In terms of the parameters of the multi-mode Maxwell model, the creep
compliance of a melt is:

J(6) =D i1 —exp(t/5)] +t/ng
i=1

And corresponding to the relaxation spectrum H(t) there is a retardation
spectrum L(t) defined as follows:

J(t) = / L(7)[1 — exp(¢/7;)]dInt + #/1,

If, at a time ¢, after the start of a creep experiment, the shear stress is suddenly
eliminated, for example by removing a weight from a pulley mechanism, the
material will spring back or recoil in a direction opposite that of the original
applied force. The amount of recoil or recovered shear strain v, is a function of
t and of the time ¢ — ¢, that has elapsed since the elimination of the shear stress,
but if the stress is removed only after steady state has been achieved, the recoil
depends only on ¢ — #,. It is convenient to start a new time scale (f, = ¢ — ;) that
is zero at t = 1, so that the recoverable strain is:

7,:(tr) = (ko) — (1) (3.26)

Note that the recoverable strain is defined so that it is positive.
The ultimate recoil, or recoverable shear, when the deformation is halted, is:

The recoverable compliance J(t,) is defined as follows.

J () =y() /0 (3.28)
And making use of the Boltzrnann superposition principle, it can be shown that:
J(t) =J(@) —t/n (3.29)

By comparison with Eq. (3.25), we see that the ultimate value of the recov-
erable compliance is equal to the steady state compliance:

lim J,(t,) = J? (3.30)

t,—00

For very polydisperse materials, particularly those with a small amount of high-
molecular-weight polymer, the time required to reach steady state in a creep test
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can be extremely long because of the need to measure extremely slow deforma-
tions while maintaining the stress at a very low value to ensure that the behavior is
linear. Also, if the measurement is made at an elevated temperature thermal sta-
bility may be a problem. Kraft et al. [2] proposed a technique for determining the
creep compliance up to the steady-state without dealing with these issues. During a
standard creep experiment at a stress o, that would take the polymer into the
nonlinear regime if maintained to steady state, they reduce the stress back to zero
at time, #,, well before steady-state is reached, and monitor the resulting recovery.
This experiment can be analyzed by use of Eq. (3.31), which is an expression of
the Boltzmann superposition principle where strain rather than stress is the
dependent variable.

1

(1) = /J(t—t’)da(t) (3.31)

—00

The unloading that takes place at #; starts a second creep experiment com-
mencing at that time and driven by a negative stress of —g,. From Eq. (3.31) the
resulting deformation y(¢) is related to the creep compliance as follows:

y(t) =J(t)oo+J(t —t1)(—a0) = ao[J(t) —J(t—11)] (3.32)

The creep compliance is only measured directly from # = O to #;, but solving
(3.32) for J(¢), we we can use the recovery data to extend J(f) up to t = 2¢; as
follows:

J(@) =9(t)/ao+J(t—11) (h<t<2ty) (3.33)

Now that J(¢) has been determined up to # = 2¢,, this information can be used in
combination with the next portion of the recoil curve to determine the compliance
at times up to 3¢,. This procedure is repeated until steady state is reached and the
zero-shear viscosity can be calculated as the reciprocal of the slope of the creep
curve.

There remains the problem of combining creep data with storage and loss
modulus data to obtain a characterization valid over the broadest possible time
range. This issue is examined in Sect. 3.13.

Figure 3.9 shows sketches of shear creep compliance curves for the three
samples of linear polymer whose relaxation moduli were shown in Fig. 3.3. At
very short times glassy behavior is observed. At times sufficient to allow motion
within a molecule, all three samples exhibit a transition zone. For the low
molecular weight sample A this transition leads directly to a steady flow or ter-
minal region, while for sample B there is a well defined plateau and then a sharp
transition to the terminal zone. The value of the compliance in the plateau zone is
the plateau compliance JI(\)I. The broad molecular weight sample C has neither a
clearly defined plateau nor a sharp transition to the terminal zone.
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Fig. 3.9 Creep compliance
curves using logarithmic axes
for three linear, molten
polymers. A is monodisperse
with M < Mg; B is
monodisperse with M > M.,
C is polydisperse with

My, > M.

J( t) - (logarithmic scale)
o
o

log(t)

3.10 Uniaxial (Simple) Extension
3.10.1 The Net Stretching Stress

We saw in Chap. 2 that a single normal stress component has no rheological
significance for a constant density material, because only normal stress differences
can cause deformation. The principal stress generating uniaxial extension is the
tensile stress g,,, if z is the direction of stretch. But the sides of the sample normal
to the stretch direction must be exposed to a lower normal stress if deformation is
to occur. In most experiments, this stress is due to the ambient pressure, which is
small compared to the stress driving the flow. The stress difference of rheological
importance is the difference between the tensile stress o, and the stress due to the
ambient pressure, and we call this the net stretching stress og. In nearly all melt
measurements, it is very close to the tensile stress.

3.10.2 Extensional Creep

Analogous to the shear creep and creep recovery functions described above are the
extensional creep and creep recovery functions. Rather than applying a constant
shear stress, we apply a constant net stretching stress og starting at time ¢ = 0. The
tensile creep compliance is the time-dependent Hencky strain divided by og. By
use of the Boltzmann superposition principle, it can be shown that D(¢) = J(¢)/3.
Thus, at long times, when D(f) becomes linear with time, we have:

D(t)=J/3 + t/3n, (3.34)
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3.10.3 Start-Up of Steady Simple Extension

Simple, i.e., uniaxial, extension is not used to determine the relaxation spectrum
but when it is used to study nonlinear behavior it is useful to calculate the stress for
the limiting case of very small strain or strain rate. In Sect. 3.4 we considered start-
up of steady simple shear, and we now deal with the analogous deformation in
which a sample initially in an equilibrium state is subjected to a constant Hencky
strain rate starting at t = 0. Data are usually reported in terms of the fensile stress
growth coefficient defined as follows:

ng (t) = ox(t)/é (3.35)

The Boltzmann principle can be used to show that this is proportional to the
corresponding material function for simple shear:

t

() =3 / G(s)ds = 3™ (1) (3.36)
0

When plotting tensile stress growth coefficient data obtained under conditions
outside the linear regime, it is useful to show on the same graph the linear behavior
given by Eq. (3.36), as it provides a test of the validity of the nonlinear data and is
helpful in interpreting these data. This will be explored in detail in the following
chapter.

At a sufficiently long time the deformation will approach steady simple
extension, and nj(r) will approach the extensional viscosity, which is equal to
three times the viscosity measured in shear.

lim 5 (1) = g =3

t—00

G(s)ds = 3n,

The relationship ng = 35 also applies to Newtonian fluids, and was first dis-
covered by Trouton.

3.11 Small-Amplitude Oscillatory Shear

While it is convenient to use the shear relaxation modulus G(7) to introduce basic
concepts, the experiment that is generally used to determine the linear viscoelastic
behavior of polymeric liquids is small amplitude oscillatory shear. In this exper-
iment, a thin sample of material is subjected to a simple shearing deformation such
that the shear strain as a function of time is given by:

p(2) = 7y, sin(wt) (3.37)



64 3 Linear Viscoelasticity

where 7, is the strain amplitude and o is the frequency. By differentiating, we find
that the shear rate as a function of time is given by Eq. (3.38).

7(t) = yow cos(wt) = j, cos(wt) (3.38)

where 7, is the shear rate amplitude wy,.
The stress is then measured as a function of time, and if ), is sufficiently small
the stress will also be periodic.

o(t) = ag sin(wt + 9) (3.39)

where o is the stress amplitude and 0 is the phase shift, which is called the loss
angle. The amplitude ratio Gy = do/yo and the loss angle are functions of fre-
quency but are independent of strain amplitude, as long as the deformation is
sufficiently small that the behavior is in the linear regime. The maximum strain for
linear behavior generally depends on frequency.

3.11.1 The Storage and Loss Moduli and the Complex
Viscosity

The results of an oscillatory shear experiment could be presented by plots of
amplitude ratio and phase shift versus frequency, but it is customary to make use
of a trigonometric identity to write Eq. (3.39) in the form shown by Eq. (3.40).

a(t) = 7[G' (w) sin(wt) + G"(wt) cos(wt)] (3.40)

where oG’ is the amplitude of the in-phase component of the stress, and G’ is the
storage modulus; while yoG" is out-of phase amplitude, and G"' is the loss mod-
ulus. These two quantities are simply related to the amplitude ratio and the phase
shift.

G = Ggcosd (3.41)
G" = Gysind (3.42)

To understand the physical significance of the storage and loss moduli, it is
instructive to look at the behavior of a Newtonian (linear, purely viscous) fluid and
a Hookean (linear, purely elastic) solid when subjected to oscillatory shear. For the
linear solid with a shear modulus G, stress is proportional to strain, and for
oscillatory shear we have:

o = Gy = y,G[sin(wt)] (3.43)

Thus, G’ = G, G” = 0, and the loss angle is zero. Thus we say that the in-phase
component of Eq. (3.40) describes the elastic aspect of the response. For a
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Newtonian fluid, on the other hand, stress is proportional to strain rate, and we
have:

& = 17 = yonlcos(wr)] (3.44)

For this material G’ = 0, G = nw, and the loss angle is 7/2, since sin(wt + ©/
2) = cos(wt).

The out-of-phase component of 3.40 describes the viscous aspect of the
response. It can easily be shown that the energy dissipation or work per cycle per
unit volume W is proportional to G”.

W= }{m'/dt = 3G’ (3.45)

The ratio of the moduli is the tangent of the loss angle, tan o.
G"/G' =tand

This useful function of frequency is a measure of the ratio of dissipated or lost
energy to stored, elastic energy. At high frequencies, where energy storage pre-
dominates, it approaches zero, while at very low frequencies, where dissipation
predominates, the loss angle approaches 7/2, and its tangent grows without bound.

It is sometimes convenient to think of G’ and G” as the real and imaginary
components, respectively, of a complex modulus G*(w),

G (w) = G () +iG" () (3.46)
The amplitude ratio Gy is thus the magnitude of G*.
Ga =00/ = |G"| = \/(G)’ + (G")* (3.47)

An alternative representation of the results of a small amplitude oscillatory
shear test is based on material functions with units of viscosity.

a(t) = o[’ (w) cos(wt) + 1" (w) sin(wt)] (3.48)

where
7 = (60/7)sind = G" /» (3.49)
n" = (a0/79) cosd =G Jw (3.50)

The complex viscosity is:

n"=n'(o) —in'"(v) (3.51)

And its absolute value is

n*| = 0/h = \/ ()> + (n")? (3.52)
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In Chap. 2 it was pointed out that when this quantity is plotted versus fre-
quency, the data often fall remarkably close to a plot of viscosity versus shear rate.

n@) =@ j=o (3.53)

This relationship is called the Cox-Merz rule. This so-called rule is based on an
observation [3] that when apparent viscosity data for two molten, commercial
polystyrenes obtained using a capillary rheometer were plotted versus shear rate,
they fell close to data for |17*| versus w. It is explained in Chap. 6 that the apparent
viscosity measured in a capillary rheometer deviates from the true viscosity of a
non-Newtonian fluid. Nonetheless, it has been reported that the Cox-Merz rule
defined by Eq. (3.53) is often obeyed by linear, molten polymers [4-6], and since
the measurement of the viscosity at low shear rates using a rotational rheometer is
more difficult than oscillatory shear measurement |17*(w)] is often used in place of
n(7) in the plastics industry.

All linear behavior is governed by the Boltzmann superposition principle, in
which the material‘s viscoelasticity is described completely by the relaxation
modulus G(7). For example G’'(w) and G”(w) can be shown to be the Fourier sine
and cosine transforms, respectively, of the relaxation modulus. And if the relax-
ation modulus is represented in terms of the generalized Maxwell model (Eq. 3.20)
we obtain:

N (T 2
G'(co):z Gilom)” (3.54)

G”(w)zzN: Gilon) _ (3.55)

i |1+ (01)?

Methods to infer discrete and continuous spectra from oscillatory shear data are
summarized in Sect. 3.12.

3.11.2 The Storage and Loss Compliances

As an alternative to the use of the components of the complex modulus or the
complex viscosity to report the results of a sinusoidal shear experiment, the storage
and loss compliances J' and J” can be used. Here, an oscillatory stress is con-
sidered to be the stimulus, with the sinusoidal strain reflecting the material
response. In fact, the same data that are used to calculate G’ and G can also be used
to calculate J' and J".

J' = (70/00) cos(d) (3.56)

J" = (70/0) sin(d) (3.57)
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We note that

I*| = (v0/00) = 1/Ga (3.58)

3.12 Inferring a Discrete Relaxation Spectrum
from Storage and Loss Moduli

The information required to determine the parameter set [G;, ;] for a specific polymer
is usually obtained by means of oscillatory shear measurements that yield a set of
storage and loss modulus data [G}, Gy, wx]. In other words, we want to determine
N pairs of model parameters [G;, t;] starting with m sets of experimental data
(G}, G}, wi]. As was mentioned in Sect. 3.8 this is an ill-posed problem, and there
is no unique solution. As a result, the model parameters have no physical signifi-
cance, but they are useful for calculating one rheological property from another.

In attempting to improve agreement between data and values recalculated from
an inferred discrete spectrum by increasing the number of relaxation times t;, more
and more relaxation strengths are found to be negative, and the standard error for the
fit of the entire curve increases. This is because the model is trying to fit the noise in
the data. Special techniques are required to achieve the most accurate representation
of the data. Honerkamp and Weese [7] have demonstrated the use of Tikhonov
regularization to solve this problem. A further advance is the use of regularization
along with nonlinear regression [8, 9], with which it is possible to obtain a discrete
spectrum that contains as much as possible of the information in the data.

Figure 3.10 compares discrete spectra obtained from oscillatory shear data
using three methods: linear regression with regularization, nonlinear regression,
and linear regression without regularization [10]. The use of linear regression with
regularization yielded the spectrum that gave the most accurate re-calculation of
the original data.

Fig. 3.10 Discrete relaxation 0.5
spectra calculate by three
methods: linear regression 0.4 | .
without regularization 1t e
(LRwReg); nonlinear 0.3 *
regression (NLR); linear T 5 . .'..
regression without G/h g3} o0 .‘*
regularization. £ is a (Pa) S e ¢
normalization factor. 0.1t o ?
® LRwReegul, + MLR, ..-' .
A LRwReegul from Orbey 0.0 peseess*® =4 ,"--'..j
and Dealy [10] o*
-0.1 Lt Lt R PP "
10-5% 1047 10-3% 10-2% 1017 100

relaxation time (s)
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3.13 Combining Creep and Oscillatory Shear Data

To relate rheological behavior with molecular structure, it is important to obtain
data extending into the terminal zone. Oscillatory shear data are often limited to
frequencies above the terminal zone, but creep data can be used to explore this
region. One then wishes to display all the data on a single plot, and this is usually
accomplished by converting creep compliance data to storage and loss moduli by
use of a continuous or discrete spectrum. He et al. [11] recommend that one
calculate the continuous retardation spectrum using both modulus and creep data
and plot these together. The resulting graph shows clearly the zones in which each
technique provides reliable data and the zone of overlap. They believe this pro-
cedure is better than using a discrete spectrum to combine data from the two types
of experiment.

3.14 Time-Temperature Superposition
3.14.1 Basic Principle

In Chap. 2 we showed that viscosity data obtained at several temperatures can
often be brought together on a single master plot by the use of a shift factor. Now
we will extend this principal to deal with linear viscoelastic data. Time-temper-
ature superposition is also useful in the presentation of nonlinear data, as is
explained in Chap. 4.

A single rheometer operating at a single temperature can usually provide small-
amplitude oscillatory shear data over only about three decades of frequency, and
this is inadequate to track viscoelastic behavior from the high-frequency end of the
plateau zone into the low-frequency terminal zone. By obtaining data at several
temperatures, time—temperature superposition can be used to generate master
curves showing the behavior at a reference temperature over many decades of time
or frequency. A material to which this technique is applicable is said to be ther-
morheologically simple.

This also applies to material functions that depend on time instead of frequency,
such as the relaxation modulus G(¢) and the creep compliance J(f). The implication
is that when material function data are shown on a double-logarithmic plot, data at
various temperatures can be shifted horizontally, on the frequency or time axis, by
a constant (independent of time or frequency) amount log(ar) and vertically by
another temperature-dependent distance identified as by to obtain a single master
curve bringing all the data together. The quantity br(7) is called the vertical shift
factor, and a1(T) is the horizontal shift factor. The master curve displays data over
a wide range of frequencies or times reduced to a common reference temperature
Ty. A thorough discussion of time—temperature superposition can be found in the
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book by Ferry [1, Sect. 11-C], who also discusses the shifting of data obtained at
several pressures.

Thermorheological simplicity obtains when the characteristic times of all
relaxation mechanisms have the same temperature dependence and when stress
magnitudes at all frequencies have the same temperature dependence. This is valid
for describing behavior in the plateau and terminal zones and in the longest-time
(lowest-frequency) portion of the transition zone. In this range of times or fre-
quencies, behavior is dominated by fairly long chain segments. But at shorter
times, relaxation modes involving shorter segments come into play, and as a result
a value of ar obtained using data in the terminal and plateau zones will not
superpose data obtained at significantly shorter times (or higher frequencies). For
polydisperse samples, there is a gradual transition from one zone to another, so one
must examine the data carefully to detect the beginnings of thermorheological
complexity as the frequency is increased. It is also important to note that short-
time relaxation mechanisms will come into play at longer times as the temperature
is lowered. One must therefore be on the alert for complexity not only at short
times (high frequencies) but also at low temperatures.

As an example of this technique, a master curve of the frequency-dependent
storage modulus, based on data obtained at various temperatures 7 can be obtained
by plotting:

brG'(w,T) versus war (3.59)

While it is not indicated explicitly, bt and ar are functions of temperature,
although the bt dependence is relatively weak. The quantity on the left is called
the reduced storage modulus G, while the reduced frequency is .. Using these
variables a master curve is obtained by plotting of G’ versus w;. And the tem-
perature dependence is described by a plot of log(at) versus T.

A master curve of the relaxation modulus is obtained by plotting

G, (1) versust, (3.60)

However, the reader should be aware that an alternative definition of bt has been
used, particularly in the earlier publications of Graessley and his colleagues and in
the recent book by Rubinstein and Colby [12]. In these publications the reduced
modulus is (1/b1)G(t).

The concept of time—temperature superposition can be expressed in terms of an
equation relating the property at the reference temperature 7 to that measured at a
temperature 7 and then shifted to Tj:

bTGl(T, CUCZT) = G/(T(), CO) (361)
or:

G.(T, ;) = G (Ty, ) (3.62)
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Some authors write these equalities in a different way, which can cause confusion.

Viscosity, which involves both stress and time, requires the application of both
shift factors. For example, a master curve of the absolute value of the complex
viscosity is constructed by means of a double-logarithmic plot of

Z—:M*KT) versus  war (3.63)
where
| = VPG fo
A special case is the zero-shear viscosity.

br(T)
aT(T)

1no(T) = no(To) (3.64)

If the vertical shift factor is taken to be unity, the horizontal shift factor can be
inferred from the zero-shear viscosity.

_ no(T)
no(To)

Since viscosity is then proportional to the shift factor, the viscosity ratio or even
the viscosity itself #y(7) is often used as a horizontal shift factor.

Time-temperature superposition can be applied to all the material functions of
linear viscoelasticity to generate master curves. For example to obtain a compli-
ance master curve one plots J (¢,7)/br(T) versus t/ar(T).

In the case of crystallizable melts, the useful temperature range extends only
from the crystallization temperature at the low end, to the degradation temperature,
at the high end, and this limits the applicability of superposition to these polymers.

In general, establishing thermorheological complexity by inspection of a log—
log plot of data can be misleading, and Wood-Adams and Costeux [13] propose
the use of linear rather than logarithmic scales to detect thermorheological com-
plexity. Figure 3.11 shows data for a metallocene polyethylene homopolymer with
a very low level of long-chain branching. On this log-log plot the data appear to
superpose well, but the linear plot shown in Fig. 3.12 shows clearly that this
material is not thermorheologically simple. In this example, the detection of
complexity is important, as it provides evidence of long-chain branching. Fig-
ure 3.13 shows master curves of the storage and loss moduli of a polybutadiene
binary blend [14]. The actual frequency range of the rheometers used was only
about three decades, but by making measurements at eight temperatures, the
reduced frequency extends over nine decades. At the highest reduced frequency,
i.e., the lowest temperature, the superposition is starting to fail, because the hor-
izontal shift factor appropriate for the plateau and terminal zones is not appropriate
for the Rouse modes that dominate the high-frequency behavior.

aT(T)
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Fig. 3.11 Master curve of G’ versus arw for an ethylene-butene copolymer with a low level of
long-chain branching. Superposition was achieved by shifting the data to the reference curve
(solid curve) such that the departures were averaged over the entire range of frequencies.
However, we note that the points are a bit above the curve at high frequencies and a bit below at
low frequencies. From Wood-Adams and Costeux [13]
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Fig. 3.12 Wood-Adams and Costeux [13] recommend the use of a plot of the magnitude of the
complex compliance G* versus reduced frequency using linear scales to reveal thermorheological
complexity. We see here data for the same sample as in Fig. 3.12 but plotted using linear scales,
and the lack of superposition is quite apparent

While some star polymers [15] and combs [16] have been found to be ther-
morheologically simple, more complex branching structures result in the failure of
superposability. For example, metallocene polyethylenes containing even low
levels of long-chain branching have been found to be thermorheologically com-
plex [13, 17]. And low-density polyethylene data do not obey time—temperature
superposition.
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3.14.2 The Vertical Shift Factor

In the Bueche-Rouse model of the linear viscoelasticity of unentangled polymer
melts, which is presented in Sect. 3.17, the stress magnitudes, e.g. G(¢), G'(w) and
G"(w), are proportional to the product of density and temperature. This implies
that the vertical shift factor b(7T) is:

br = Topo/Tp (3.65)

For entangled polymer systems, the molecular models most widely used predict
that the magnitude of the relaxation modulus is proportional to the factor pT that
appears in the Rouse prediction multiplied by a factor that depends very weakly on
temperature. While the vertical shift factor is thus predicted to be slightly different
from the pT ratio, data are rarely if ever precise enough to reveal this difference.

The vertical shift factor is sometimes used as a fitting parameter for an entire set
of data, and the data are shifted both vertically and horizontally in an attempt to
achieve a superposition that looks OK. This empirical procedure can disguise the
failure of superposition by averaging the discrepancy over the entire frequency
range. Systematic deviations of by(7) from its expected behavior (Eq. 3.65) can
also result from experimental error. Finally, if both shifts are carried out by fitting,
neither factor has any physical significance. The best practice is to either use
Eq. (3.65) or let bt be unity.

3.14.3 The Horizontal Shift Factor

Since at cannot be predicted, it is found by shifting data horizontally on a log—log
plot until they superpose. This should be done after the vertical shift factor has



3.14 Time-Temperature Superposition 73

been applied, but one can determine the horizontal shift factor without making any
assumption about b1(7) by plotting as a function of frequency a quantity that is not
affected by br, such as the loss angle or its tangent, which is equal to G"/G'.
Honerkamp and Weese [18] describe a procedure for determining horizontal shift
factors in an objective manner, and software for this procedure is part of the IRIS
software [19].

The empirical Arrhenius relationship has been found to describe the depen-
dence of ar on temperature in the plateau and terminal zones as long as the
temperature is well above T.

ar(T) = exp {E— (l - i)] (3.66)

R\T Ty

By analogy with reaction rate theory, the constant E, is called the activation
energy for flow. However, an activation energy is often used to characterize
polymers even when rheological data do not superpose, and this results in ambi-
guity as to the meaning of E,. For example, E, is sometimes reported to vary with
frequency or time or modulus. Various approaches have been proposed for iden-
tifying meaningful activation energies when data do not superpose [13, 20]. One
value is based on 7. In any event, when data do not superpose the use of an
activation energy is questionable.

At temperatures within about 100 °C of T, the WLF equation [1, Sects. 11-B, C]
is usually obeyed.

—C1 (T — T())

[c2 + (T — To)] 257

logar =
where ¢ and ¢, are empirical constants.
An extensive tabulation of WLF parameters for many polymers can be found in
Reference [21].

3.15 Cole-Cole and Related Plots of Linear Data

Several plotting techniques that involve plotting one material function versus
another have been proposed for oscillatory shear data to reveal time—temperature
superposability or structural features. These were inspired by a way of plotting
data for the complex dielectric constant. Cole and Cole [22] found that when they
plotted the imaginary versus real components of this, their dependence on fre-
quency could be described by Eq. (3.68).

(80 — €o0)

_ 0T %o) (3.68)
[1 + (iwte)' ™

& — by =
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Plots of this type are called Cole—Cole plots, and we will call this the Cole—Cole
function. Equation (3.68) implies that a plot of imaginary versus real component
of a complex variable is a circular arc with its origin below the real axis, as shown
in Fig. 3.14, where the parameter « is related to 6 by 0 = an/2, and is independent
of temperature.

Marin and Graessley [23] used Cole—Cole plots together with Eq. (3.68) to
interpret data for several polystyrenes prepared by anionic polymerization. They
plotted the imaginary versus real components of the complex retardational com-
pliance J7(w) defined as [Jf(co) — 1/(iwnog)]. They found that for the sample with a
molecular weight of about 37,000, which is near the critical molecular weight for
viscosity M., a plot of J/ (w) versus J/(w) took the form of a circular arc and could
thus be fitted to Eq. (3.69) by analogy with Eq. (3.68).

Ji

Jo)=— "
r( ) 1+ (iwrt)lfb:|

(3.69)

The subscript ¢ refers to transition zone behavior, while the glassy compliance is
relatively negligible and has been omitted. The time constant, 7, has the same
temperature dependence as the viscosity, and b is independent of temperature. For
samples with molecular weights well above M, a second circular arc appeared at
lower frequencies, reflecting the appearance of a plateau in the storage modulus.
Montfort et al. [24] used this approach to interpret their data for narrow MWD
polystyrenes. This technique has also been used to describe the behavior of star
molecules [15] and combs [16]. Other applications of Cole—Cole plots have also
been reported [25-30].

One should remember that frequency-dependence information is not revealed in
these types of data presentation, so they are not complete descriptions of linear
viscoelastic behavior.

Fig. 3.14 Imaginary versus

real components of the

complex dielectric constant

as described by the Cole— £
Cole function, Eq. (3.68).

The significance of the angle

0 is shown
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3.16 Van Gurp-Palmen Plot of Loss Angle Versus Complex
Modulus

Another plot of one linear viscoelastic property versus another, in which the
frequency varies along the curve, was proposed by van Gurp and Palmen [31].
This is a plot of loss angle  versus the logarithm of the magnitude of the complex
modulus |G*|. Such a plot is temperature invariant if the data obey time—tem-
perature superposition. Thus, if data obtained at several temperatures all fall on the
same curve on such a plot, this indicates that the time—temperature superposition is
valid. Van Gurp and Palmen found that such a plot provides a more critical test of
time—temperature superposability than data plotted in the usual manner, i.e., G’
and G” versus frequency. As mentioned above, frequency-dependence is lost in
this representation. Finally, since the loss angle depends on the ratio of the loss to
the storage modulus, it is not subject to calibration error, which might arise from
sample trimming in a rotational rheometer.

This representation is also invariant with regard to average molecular weight
but is very sensitive to polydispersity and long-chain branching. For example,
Trinkle and Friedrich [32] used this type of plot to characterize polydispersity in
linear polymers. They found that the value of |G*| where the loss angle J is 60°
correlated approximately with M /M. Trinkle et al. [33, 34] also suggested using
this type of plot to reveal the presence of long chain branching in polyethylene.
Lohse et al. [35] found that the use of a van Gurp-Palmen plot to display data for
hydrogenated polybutadienes having well-defined structures was a useful way to
bring out the distinctive effects of branching on linear viscoelastic behavior. Figure
5.15 shows such a plot of their data for linear, star and comb polymers, and we see
clearly the distinctive features of the curves that are associated with each
branching structure (Fig. 3.15).
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@
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10 + PES(50)3
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IG*I (Pa)

Fig. 3.15 van-Gurp Palmen plots of data for linear (circles), star (triangles) and comb (squares)
molecules prepared by hydrogenation of polybutadienes to make samples similar to monodis-
perse polyethylene. From Lohse et al. [35]
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3.17 Storage and Loss Moduli of Molten Linear Polymers

Figure 3.16 is a sketch showing typical G'(w) curves for the three polymers, A, B
and C, whose relaxation moduli were shown in Fig. 3.3. The general features of
these curves are qualitatively similar to those seen in the curves of the relaxation
modulus (Fig. 3.3) where the short time behavior of the G(f) curve corresponds to
the high frequency portion of the G'(w) curve and vice versa. At the highest
frequencies shown, glassy behavior is exhibited. At somewhat lower frequencies,
rearrangement within molecules becomes possible during a cycle, and there is a
transition zone to more fluid-like behavior. For the low molecular weight material
A we move directly into a terminal zone, whereas for the high molecular weight
material B, we have a plateau zone. In the terminal zone where behavior is gov-
erned by the longest relaxation time, according to Eq. (3.54) the storage modulus
becoms proportional to @? while according to Eq. (3.55) the loss modulus
becomes proportional to w. As in the case of the relaxation modulus, we note that
for material C, which has a broad molecular weight distribution (MWD), the
plateau modulus is not clearly defined, and there is no sharp transition to the
terminal zone.

Samples for scientific study having very narrow molecular weight distributions
and known molecular structures are generally made by anionic polymerization.
Two that have been widely used are polystyrene and polybutadiene. These poly-
mers have the added advantage that they do not crystallize, so time—temperature
superposition can be used to great advantage. Figures 3.17 and 3.18 show master
curves of data of Wang et al. [36] for four monodisperse polybutadienes having
various molecular weights. The value of M, for polybutadiene is about 1,800, so
the degrees of entanglement Z of these samples range from about 20 to about 200.
This means that all except the 44K sample are well entangled and have well-
developed plateau zones, with the terminal zone moving to lower frequencies as
the molecular weight increases. For this entangled polymer, G” passes through a

Fig. 3.16 Typical plots of
storage moduli for the three
linear polymers of Figs. 3.3
and 3.9. A is monodisperse
with M < Mc; B is
monodisperse with M > M,
and C is polydisperse with
M, > Mc

G'( w) - (logarithmic scale)

log @
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Fig. 3.17 Storage modulus
master curves for
monodisperse polybutadienes
of four molecular weights.
The degree of entanglement
(M/Me) ranges from about 20
to 200 so that all except the
44K sample are well
entangled and have well-
developed plateau zones.
From Wang et al. [36]

Fig. 3.18 Loss modulus
master curves for the samples
of Fig. 3.17. All except the
least entangled (44K) sample
have well-developed minima
in their plateau zones. From
Wang et al. [36]

G' (Pa)

G' (Pa)
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minimum in the plateau zone reflecting the fact that little dissipation occurs in the

region of rubbery behavior.

3.18 The Plateau Modulus and the Molecular Weight

Between Entanglements

3.18.1 Methods for Estimating the Plateau Modulus

Except for very monodisperse samples having extremely high molecular weights,
there is no true plateau in the storage modulus. Therefore, all methods for inferring
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a value for G% provide only estimates. But because this parameter plays a central
role in the molecular modeling of polymer behavior it is important to determine a
meaningful value based on experimental LVE data. Liu et al. describe a number of
methods for doing this, and we provide here a brief summary.

The method with the best theoretical basis involves the integration of G'’d(Inw)
over all frequencies in the neighborhood of its maximum. However, it is necessary
to avoid the effect of high-frequency Rouse relaxation modes, and this requires an
arbitary extrapolation of the storage modulus beyond its peak. For polymers that
can be made by a polymerization method that yields highly-entangled (Z > 30),
very nearly monodisperse samples, a definitive value can be identified as the
storage modulus at the frequency where the loss modulus is a minimum.

Gy =G'(0)

G"=min

Figure 3.19 shows data for a monodisperse polybutadiene [36] with M,/M.
equal to about 260, i.e., this is a very highly entangled polymer. There is a well-
defined minimum in the loss modulus, which corresponds very well to a value that
one might infer from the behavior of G’. This method has the advantages that it can
be precisely determined directly from experimental data without the use of an
empirical relationship and is free of interference from Rouse modes.

This value is very close to the value of G’ where tan(d) is minimum. For
somewhat polydisperse samples, when there is no minimum in G” but there is one
in the loss angle, Wu [38] suggested this as a useful estimate of GY. There are also
relationships based on the maximum value of G” [1, 39]. The effect of broadening
the molecular weight distribution is illustrated in Fig. 3.20, where we see master
curves of the storage and loss moduli and tan § for a polyisobutylene with
M, =8 x 10* and My/M, =~ 2 and M/M. =~ 15 [37]. Although the polydis-
persity is well below that of many commercial polymers there is no longer a
distinct plateau in G’, and the minimum in G’ has disappeared. For this case, and
the tan J,,;, method was used to estimate the plateau modulus.

Fig. 3.19 Storage and loss 107 3
moduli of a highly entangled, i
monodisperse
poolybutadiene. The loss 108
modulus has a very distinct E
minimum that points to an w
unambiguous value of the a
plateau modulus. Data of tn 10° 3
Wang et al. [36] i ] LTS ' .
e | :
Lg g :
@ (Gmin)
103 Ty Ty e e
1071 10 10° 10° 107

w (rad/s)
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Fig. 3.20 Master curves of
storage and loss moduli for a 106
polyisobutylene with a broad ]
MWD. There is no minimum
in the storage modulus, but
there is in the loss angle,
which can be used to identify
a plausible value for the
plateau modulus on the plot R
of G'(w). From Liu et al. [37] 10097 4

105 4

G', G" (Pa)
tan &

10° " . PR
102 10! 100 107 102 10° 10¢
o (rad/s)

In the worst case, when only the crossover modulus G, evaluated at the fre-
quency where G’ = G”, is known, Wu [39] proposed the following empirical
equation that he said was applicable when the polydispersity is less than three for
condensation polymers with limited M,, and some crystalline polymers.

GY\ 2.63log(M,,/M,)
log(G) = 0384 17 45 10g (M, /M,) (3.71)

All of the methods for use with polydisperse samples are empirical, and there is
no way to know how much they may be in error, but they can be of use for
comparing similar materials.

Polyolefins cannot be made by anionic polymerization, and for polyethylene
several methods have been used to prepare narrow-distribution samples thought to
be similar to polyethylene. These methods have yielded a wide range of values, in
MPa: 1.58 @ 190C [40], 2.6 @ 140C, [41], and 3.5 @ 25 C [42].

The plateau moduli of several common polymers are tabulated in Appendix A,
and a more extensive list can be found in Ref. [42].

3.18.2 The Molecular Weight Between Entanglements M,

We have noted that the plateau in G'(w) of a highly entangled melt imitates the
behavior of a cross-linked polymer at low frequencies. This rubbery behavior
implies the presence of strong interactions between molecules that mimic the
effects of chemical cross-links over a certain period of time. These strong inter-
actions between molecules are referred to as entanglements, as they are clearly
different from the simple hydrodynamic frictional interactions that occur in low
molecular weight liquids. Because these strong interactions result in behavior
similar to that exhibited by a rubber, which has a permanent network, they are
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sometimes said to comprise a temporary network. The plateau modulus was used
by Ferry [1] as the basis for defining an average molecular weight between
entanglements M.

PRT

M, = —GR;

(3.72)

It was later recognized that in stress relaxation, one fifth of the initial stress
relaxes by fast Rouse modes, i.e., the motion of small chain segments between
entanglements, before reaching the plateau region. This inspired a new definition
of M, as 4/5 of the value defined by Eq. (3.72); the symbol MS = 4/5M, is
sometimes used for this quantity. In this book, we use only the original Ferry
definition given by Eq. (3.72). In reading scientific literature it is important to
ascertain which definition is being used by the authors.

The degree of entanglement of a polymer is defined as the ratio of the molecular
weight divided by the molecular weight between entanglements.

For a polymer to be considered highly entangled, Z should have a value of at least
30-40.

3.19 The Rouse-Bueche Model for Unentangled Melts

While we are interested here primarily in the behavior of high molecular weight,
i.e., entangled, polymers, it will be useful for our discussion of a theory for
entangled melts to summarize the molecular theory for unentangled melts. Rouse
[43] developed a molecular theory for dilute polymer solutions in which a polymer
molecule is modeled as a chain of N straight segments or submolecules that act as
Hookean springs. Since the origin of the spring force is Brownian motion, the
spring constant is proportional to the absolute temperature. These segments are
connected by beads in which the mass of the molecule is assumed to be con-
centrated. The motion of the beads through the solvent gives rise to viscous
resistance, which is described by a friction coefficient {. The combination of elastic
spring and the viscous resistance gives rise to viscoelastic behavior. We have seen
that for a Maxwell element or a Voigt element, each of which contains one spring
constant and one viscous resistance constant, there is only one relaxation time. In
the case of the segmented chain, however, there are many possible modes of
deformation because of the flexibility of the chain, and this gives rise to multiple
relaxation times.

Rouse’s model for dilute solution behavior is not directly applicable to bulk
polymers, and Bueche [44] suggested that for low molecular weight molten
polymers in which there are no entanglements, the Rouse model could easily be
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modified to account for the fact that in a melt the polymer molecule is surrounded
not by solvent but by other polymer molecules. The modified Rouse theory, which
we call the Rouse-Bueche model, predicts that the relaxation modulus is given by a
sum over terms involving the Rouse relaxation times t, as shown by Eq. (3.73).

N

RT
G(r) :LM D el (3.73)
p=1
b2P2C
= =1,2,3,... 3.74
ks 6n2p2kT P="%%2 (3:74)

where:
{ translational friction coefficient per monomer unit
b a length characteristic of the chemical structure of the molecule, equal to

(&), /P)"

P degree of polymerization = M/M,,.

The longest Rouse relaxation time corresponds to p = 1 and is an important
parameter in polymer rheology; for an unentangled polymer it is given by
Eq. (3.79).

b*P*(
R 6m2kT (3.75)

The storage and loss moduli are given by Eqgs. (3.54) and (3.55) with all the
relaxation moduli G; equal to pRT/M and the relaxation times equal to the Rouse
times of Eq. (3.74).

The low-frequency limiting value of the loss modulus is equal to wrng, and this
fact can be used to derive an expression for the zero-shear viscosity of an unen-
tangled polymer.

{pb>MN
= —— 3.76
Mo 3 6M(2) ( )
where:
Na Avogadro’s number
M, = M/P monomer molecular weight
0 density.

At molecular weights well below those necessary for entanglement, the
monomeric friction coefficient { is an increasing function of the molecular weight,
but there is a significant range of molecular weights over which it is nearly
constant. This implies that within this range the viscosity increases linearly with
molecular weight, and there is substantial experimental verification of this pre-
diction for unentangled polymers.
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Equation (3.76) can be used to rewrite the longest Rouse time in terms of 7 as
shown by Eq. (3.77).

oM

-~ m2pRT

(3.77)

In the terminal zone, i.e., at very long times or very low frequencies, behavior is
governed by the longest relaxation time tg, and the several viscoelastic moduli
simplify to the following forms.

RT
G(1) = %e-'/fﬂ (3.78)
PR > pRT
G () = 7 Z: = 1.08w*7% T (3.79)
PRT N PRT
G'(w) = =7 O = 16450t —— (3.80)
M

The Rouse-Bueche prediction of the steady-state compliance is:

Jo_ 040m

V= (381)

Equation (3.81) indicates that the steady state compliance is proportional to the
molecular weight for a linear, monodisperse polymer when there are no entan-
glements (M < M'c). This is in sharp contrast to the behavior observed for highly-
entangled (M >> M'¢), linear, monodisperse melts, where J? is found to be inde-
pendent of molecular weight. Also, this property is strongly influenced by the
molecular weight distribution, as is shown in Chap. 7.

At higher frequencies (shorter times) in the transition zone, it has been shown
[1, p. 189] that if the 2 or 3 longest relaxation times are ignored a relaxation
modulus that approximates the Rouse prediction over a limited portion of the zone
is:

G(t)y=ct'? (3.82)
where
c = [2PRTn
- 2nM

Since 1 is proportional to M, C is independent of the molecular weight, and
Eq. (3.82) implies that:

G'(w) = G"(w) = /1/2Cw'/? (3.83)
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These approximate forms are only valid over a limited portion of the transition
zone, because at very short times or high frequencies, the segmented chain model
of a polymer molecule is no longer valid.

Figure 3.21 is a log-log plot of dimensionless relaxation modulus versus
dimensionless time, as predicted by the Rouse-Bueche model. We note that at
short times, the slope on this log—log plot has a slope of —1/2, in accord with
Eq. (3.82), and at long times the exponential behavior given by Eq. (3.78) is
obeyed. Figure 3.22 is a log-log plot of dimensionless storage and loss moduli
versus dimensionless frequency. At the highest frequencies shown, the behavior is
as predicted by Eq. (3.83), and the terminal slopes are in accord with Eqs. (3.79)
and (3.80).

Fig. 3.21 Double 102
logarithmic plot of
dimensionless relaxation 7
modulus versus 18
dimensionless time for a
linear polymer described by 10 mmeeeeeeell T e
the Rouse-Bueche model, = exp(-t/Ty)
Egs. (3.73) and (3.74). Atthe & |
shortest times, the slope of — “E‘
Y is in accord with o
Eq. (3.82), while the behavior 10% -
at long times is shown by
Eq. (3.78) 10° F
=1 1 1
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ity
Fig. 3.22 Curves of 10°

dimensionless storage and
loss moduli as predicted by
the Rouse-Bueche model. At
short times the slopes are in
accord with Eqgs. (3.79) and
(3.80), while at long times the
slopes of 2 are in accord with
Eq. (3.83)
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The Rouse-Bueche model can be extended to polydisperse systems as long as
no species have molecular weights high enough to participate in entanglements
[45, 46]. One surprising result is that the steady state compliance of a blend of two
molecular weights can greatly exceed that of either component, especially when
one component has a much higher molecular weight than the other and this
component has the lower concentration in the blend [47].

3.20 Tube Models for Entangled Melts

We provide here only a brief introduction to this subject. A much more detailed
treatment can be found in the book by Dealy and Larson [48]. While the Bueche-
Rouse model does a good job of describing the behavior of polymers of low
molecular weight, we have seen that as molecular weight increases, there are
dramatic departures from this behavior. One example is the very large change in
the dependence of viscosity on molecular weight when M approaches Mc.
Whereas the Rouse-Bueche theory predicts that 1, is proportional to M (Eq. 3.76),
in the neighborhood of a molecular weight M the viscosity starts to increase much
more rapidly, becoming proportional to about the 3.5 power of the molecular
weight. Another example is the appearance of a plateau in the relaxation modulus
of monodisperse samples. When these phenomena were first encountered, they
were attributed to entanglements, and while it is now known that they are due
simply to the uncrossability of long chains over each other, the term entanglements
continues to be used.

The detailed modeling of the behavior of a very large number of very long
molecules is not possible at present, but progress has been made using a mean-field
approach in which attention is focused on a single test molecule, and its interac-
tions with the surrounding molecules are averaged. The inspiration for this type of
model came from Pierre-Gilles deGennes, a Nobel Prize winning French polymer
physicist, who noted that in trying to relax the stress imposed on a long chain by
strain, the displacements available to chain segments are initially restricted to very
small motions, and that larger motions required for full relaxation could only occur
by as a result of the segments moving along the length of the backbone. This
motion was called reptation by deGennes [49], after the Latin reptare, to creep,
from which the word reptile also derives.

Doi and Edwards used the reptation concept to develop a model for the vis-
coelasticity of molten, high molecular weight polymers [50, 51]. Considering a
Rouse segmented chain they assumed that the effect of the restrictions on lateral
motion imposed by the neighboring molecules sketched in Fig. 3.23, was equiv-
alent to placing the molecule in a tube, as shown in Fig. 3.24. This tube has a
diameter d and a length L. Because the model does not refer to specific points of
entanglement, the molecular weight between entanglements M, does not appear as
a parameter. However, there is some basis for associating the number of entan-
glements M/M. with the ratio L/d.
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Fig. 3.23 Sketch of a typical
polymer chain showing the
segments of the surrounding
chains that restrict its motion
in the direction normal to its
length

Fig. 3.24 Sketch showing
the hypothetical tube pictured
by Doi and Edwards to
represent the restrictions of
the surrounding chains on the
one whose behavior is being
modeled

At very short times, the only mechanism available is the redistribution of
extensions among the segments between points where constraints are present. This
rapid relaxation process has a characteristic time 7, called the equilibration time.
Once this process is completed further relaxation is strongly suppressed for a
period of time, as the only mechanism available for the molecule to further relieve
stress is disengagement, i.e., reptation out of its tube. This is a relatively slow
process with a characteristic time 74, and for a long chain, 74 > 7.. Another
relaxation process that can, in principle, occur in entangled melts is relaxation of
the contour length, i.e., the retraction of the molecule within its tube. However,
this only comes into play when a deformation is large and fast and is taken up in
Chap. 4.

In this way the Doi-Edwards tube model accounts for the two distinct groups of
relaxation times that are observed for high molecular weight, monodisperse, linear
polymers. For times ¢ < 1. this theory agrees with the Rouse-Bueche theory.

In the plateau and terminal zones the model predicts:

8 <. 1
Gi)=Gy— > —e (3.84)
S oddP

Because of the 1/p* factor, this result is dominated by the first term with p = 1.
This spectrum is much narrower than observed spectra and results from the fact
that the original Doi-Edwards model includes only one relaxation mechanism in
the plateau and terminal zones. As a result the predicted relaxation modulus at
short times and the storage and loss moduli at high frequencies fall below
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experimental data, especially in the case of G(r). We will see how the model has
been modified to account for this below.

The predictions for the zero-shear viscosity and steady-state compliance are as
follows.

a’c MPGY,
S b\ 3.85
o = oMokt (3.85)
6
JQ=—- 3.86

The strong effect of M on the viscosity is qualitatively correct, but the value of 3
for the exponent is less than the observed value of about 3.5. The steady-state
compliance is independent of molecular weight, which is correct for high
molecular weight melts and is in contrast with the prediction of the Rouse-Bueche
model for unentangled melts that J° is proportional to molecular weight.

A central hypothesis of the Doi-Edwards model is that the tube retains its
identity throughout the disengagement time for an individual molecule. For a
highly-entangled monodisperse polymer, estimates of the time required for the
tube to lose its identity through Brownian motion of the molecules comprising the
tube is much larger than 74, and the hypothesis is valid. However, in a polydisperse
system some of the molecules making up the tube are shorter than the longest
molecules present. In this case, constraint release provides an additional mecha-
nism for relaxation and thus speeds up the process [52]. The presence of long-
chain branches leads to major theoretical complications. Reptation is no longer
possible, and relaxation occurs primarily through the mechanism of contour length
fluctuations [53, 54].

3.21 Molecular Weights for the Onset of Entanglement
Effects

One manifestation of entanglements is a rather sharp change in the dependence of
viscosity on molecular weight. Whereas the modified Rouse theory predicts that #,
is proportional to M (Eq. 3.76), in the neighborhood of a certain molecular weight
Mc, the viscosity starts to increase much more rapidly with molecular weight,
often approaching a proportionality to about the 3.5 power of the molecular
weight, as predicted by a tube model that accounts for contour length relaxations.
The characteristic molecular weight Mc depends on molecular structure and is in
the range of two to three times M,. Entanglements also have a dramatic effect on
compliance, which we can see by comparing Eqgs. (3.81) and (3.86). Whereas the
Rouse-Bueche model for unentangled chains predicts that JO is proportional to
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M’c (Eq. 3.81), JO of entangled, monodisperse, linear polymers is independent of
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as predicted by tube models (Eq. 3.86). The molecular weight at which this
nge in behavior is observed, M'c is four to six times M..
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Chapter 4
Nonlinear Viscoelasticity: Phenomena

Abstract While linear viscoelastic properties are very helpful in establishing the
molecular structure of polymers, the deformations that occur in processing
machinery are always large and rapid, and under these conditions melt behavior is
decidedly nonlinear. One manifestation of this is that the response to a shearing
deformation no longer provides a complete description of rheological behavior.
The molecular processes that give rise to nonlinear viscoelasticity are described as
well as several large and rapid deformations that used to obtain information
about nonlinear behavior. These include large-amplitude oscillatory shear and
extensional flow.

4.1 Introduction

The response of a polymer to large, rapid deformations is nonlinear, i.e., the stress
depends on the magnitude, the rate and the kinematics of the deformation. The
Boltzmann superposition principle no longer applies, and nonlinear behavior
cannot be predicted from linear properties. There exists no general model, i.e., no
universal constitutive equation or rheological equation of state capable of
describing nonlinear behavior. These are discussed in Chap. 5, but since most
readers will be interested more in relating rheological behavior to molecular
structure and processability, rather than the computational simulation of complex
flows, we will begin this chapter with an interpretation of nonlinear behavior in
terms of a model based on molecular phenomena. The role of rheology in melt
forming operations is described in Chap. 8.

The nonlinear behavior of linear polymers is, in general, not as sensitive to
MWD as linear behavior, but both the linear and nonlinear properties are strongly
affected by long-chain branching structure. Using only data from shear-flow tests,
it is often difficult to distinguish between the effects of molecular weight distri-
bution and long-chain branching, but extensional flow behavior is very sensitive to
branching when there are chain segments having branch points at both ends.
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4.2 Nonlinear Phenomena from a Tube Model Point
of View

In Chap. 3 we saw that tube models are based on a representation of the constraints
imposed on a highly entangled polymer molecule (fest chain) in which the sur-
rounding chains are imagined to constitute a fube [1]. We begin by reviewing what
was said in Chap. 3 about how tube models describe small or slow deformation. In
response to a sudden deformation, as in a stress relaxation test, the tube is
deformed, and the distribution of orientations of test chain segments is shifted
from its equilibrium distribution. The relaxation of the test chain back to its
undeformed, equilibrium configuration is constrained by its confinement within the
tube. When the imposed deformation is very small the first relaxation process is
equilibration within the tube, as mentioned in Chap. 3. Equilibration involves the
redistribution of stress among chain segments. Further relaxation occurs primarily
as a result of the test chain escaping the constraints of the tube, and this requires it
to slither along or reptate out of its tube. This is a much slower process and is the
reason that there is a plateau in the relaxation modulus for polymers with high
molecular weights and narrow molecular weight distributions. In other words, in
the plateau region of relaxation times there is limited possibility for relaxation.
These relaxation mechanisms show up in the linear relaxation spectrum H(t) in the
form of peaks, as was shown in Fig. 3.7. If the molecular weight is not narrow, the
shorter molecules making up the tube will relax fast enough to cause the expansion
of the tube. This process, called constraint release accelerates the relaxation of a
long molecule within the expanding tube. This results in significant relaxation in
what would be the plateau zone for a monodisperse sample of the same polymer.

If the deformation is not very small or slow, the orientation of the chain seg-
ments are sufficiently large to cause a nonlinear response. As shown in Chap. 5,
this effect can be accounted for in rheological models by replacing the infinites-
imal strain tensor with one able to describe large deformations; no new relaxation
mechanism needs to be invoked. Moderately nonlinear effects related to orienta-
tion can be modeled in this manner.

In continuous shear flow at significant rates, another relaxation mechanism has
been proposed to account for the monotonic increase of shear stress with shear rate
at a steady shear rate, and this is convective constraint release, which results from
the loss of entanglements of a given chain with the chains on neighboring
streamlines due to the fact that they are moving at different velocities. In shear
flows at very high strain rates and in extensional flows at lower strain rates, another
phenomenon occurs, and that is chain stretch. In shear chain stretch is rarely
observed except in stress relaxation at large strains, but stretch is much more easily
generated in extensional flow, especially when there is long-chain branching.


http://dx.doi.org/10.1007/978-94-007-6395-1_3
http://dx.doi.org/10.1007/978-94-007-6395-1_3
http://dx.doi.org/10.1007/978-94-007-6395-1_3
http://dx.doi.org/10.1007/978-94-007-6395-1_3
http://dx.doi.org/10.1007/978-94-007-6395-1_5

4.3 Nonlinear Stress Relaxation 93

4.3 Nonlinear Stress Relaxation
4.3.1 Chain Retraction and the Damping Function

In an ideal step strain test the shear rate is infinite. Of course this is not physically
possible, but the deformation is still so fast that there is no time for relaxation, and
there is no continuous flow, so convective constrain release does not come into
play. When the strain is large a chain is stretched beyond its equilibrium length,
but as soon as the deformation stops, there is a very fast retraction within the tube,
sometimes called contour length relaxation. Figure 4.1 [2] illustrates this phe-
nomenon schematically. The chain segment at left, which has an initial length R;,
is initially stretched but then very rapidly retracts to its original length. Following
this fast process relaxation continues, and in a monodisperse polymer this is pri-
marily by reptation. The result is a relaxation modulus curve that has an initial
very rapid decrease, due to retraction, followed by a curve that has the same shape
as that for linear behavior.

These features can be seen in Fig. 4.2, which shows the relaxation modulus
following strains of several sizes for a monodisperse polystyrene solution [4].
Except at the shortest times and smallest strains, the modulus curves drop to
successively lower levels as the strain is increased and appear to be superposable
by vertical shifting. Figure 4.3 shows the result of such shifting, and the super-
position is excellent at times greater than ty, which is very small. This is essen-
tially the time required for retraction.

Superposability implies that the nonlinear relaxation modulus can be separated
into time-dependent and strain-dependent factors, as shown by Eq. (4.1).

G(t,7) = G(0)h(y) (4.1)

T T—

Fig. 4.1 Contour length relaxation. In response to a sudden strain, the chain and the tube formed
by the surrounding molecules initially deform affinely, i.e. in the same way as the bulk, and the
chain then retracts very rapidly to its equilibrium length within the tube, but the chain segments
between entanglements keep the orientation of the deformed tube. From Larson [2]
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Fig. 4.2 Relaxation moduli
at several strains. For the
smallest strain (fop curve) the
response is linear, but as the
strain is increased, it falls
further and further below the
linear data. After a rapid
initial relaxation during time
Ty, further relaxation
proceeds as for the linear
case, so that the remainder of
the high-stress curves are
parallel to that for the
smallest strain. Data of Osaki
et al. [3]

Fig. 4.3 The data of Fig. 4.5
shifted vertically by use of the
damping function so that data
at times longer than 1y
collapse onto a single curve.
7, is the longest relaxation
time, where the terminal zone
begins. Data of Osaki et al. [3]
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This type of stress relaxation is said to exhibit time—strain separability, and the
strain-dependent factor A(y) is called the damping function. This can be thought of
as is the fraction of the initial stress not relaxed by retraction.

The original Doi-Edwards tube model yields a fairly accurate prediction of the
damping function for monodisperse, entangled polymers. Although this prediction
cannot be expressed in an analytical form, Larson [4, p. 143] showed that it is very
similar to Eq. (4.2) with a = 0.2.

h(y) = —

:1+ay2

(4.2)
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The Doi—Edwards prediction of h(y) is independent of molecular weight for
linear, entangled, monodisperse polymers with M between 40 and 50 M, Poly-
dispersity decreases damping, i.e., the damping function has a larger value for a
broad-distribution polymer [5, 6], but time—strain separability fails when poly-
dispersity becomes large. The damping function is also affected by branching
[5, 6-10], but the dependence is not strong.

There have been reports of materials that exhibit very severe damping compared
to the DE prediction, for example in melts with M/M, > 50 [11]. However, San-
chez-Reyes and Archer [12] showed that this anomalous relaxation behavior was
the result of slip between bulk polymer and molecules strongly adsorbed at the wall.

4.3.2 Normal Stress Relaxation

In defining material functions to describe stresses in simple-shear deformations,
we use the frame of reference that was illustrated in Fig. 2.1. While tensor notation
is introduced in Chap. 5, we will need here only the components shown if Fig. 4.4.
The shear stress is component g,; (shown in Chap. 5 to be equal to ¢¢,), and the
three normal stresses are: o4, in the direction of flow (x;), g5, in the direction of
the gradient (x,), and o033, in the neutral (x3) direction. As this is by definition a
two-dimensional flow, there is no velocity and no velocity gradient in the x3
direction. In discussing shear flow behavior, we refer to the shear stress as o
without subscripts. As was pointed out in Chap. 2, in an incompressible material,
normal stresses are themselves of no rheological significance, because as long as
they are equal in all directions they cause no deformation. However, differences
between normal stress components are significant, because they do cause defor-
mation. As noted in Chap. 2 for simple shear, the two rheologically significant
differences are the first and second normal stress differences N; and N..

Nl = 011 — 02 (24)

X3 /
933

Fig. 4.4 Stress components referred to in this chapter. When the two subscripts are equal, we
have a normal stress, and when they different it is a shear stress. The first index identifies the face
on which the stress acts, and the second indicates the direction of the stress
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Ny = 02 — 033 (2.5)

In Chap. 5 it is shown that a very simple model of nonlinear viscoelasticity, the
rubberlike liquid model, predicts that stress relaxation after a step shear strain is
given by [13]:

Ni(1) = y*G(1) = ya(t) (4.3)

In fact it has been found that at sufficiently small strains, the stress ratio (N1 /o)
does become equal to the strain as indicated by this relationship, which is called
the Lodge—Meissner rule [14]. It is similar to the behavior of an isotropic, perfectly
elastic solid [15, p. 78], which has a constant modulus of elasticity:

o =Gy (linear elasticity) (4.4)

N, =Gy? (linear elasticity) (4.5)

Thus, the stress ratio (N;/a) is also equal to the strain for a perfectly elastic solid.
The Doi-Edwards theory [1, p. 253] predicts that the stress ratio is equal to the
strain for any strain.

Ny (t, ')))
a(t,7)

This implies that the Lodge-Meissner rule (Eq. 4.4) is valid at large strains. If
time-strain superposability is valid, Eq. (4.6) becomes:

Ni(t,7) = 7*h(y)G(t) (4.7)

This relationship has been found to describe experimental data for LDPE for y
up to 30 [16], but the precise measurement of transient normal stress differences is
subject to large errors due to instrument compliance and temperature variation.

It was pointed out above that wall slip can cause a larger error in the determi-
nation of the strain in step-strain experiments, and the true strain may be much
smaller than the nominal strain inferred from the displacement of a rheometer
surface. The observation that N,/¢ is independent of time does not, by itself, imply
that there is no slip unless this ratio is also equal to the nominal strain applied. And
when the Lodge-Meissner rule is not obeyed, it is often taken as evidence that slip
occurred, and the stress ratio N/ is used in place of the nominal strain as the
independent variable in reporting shear stress and normal stress difference data [17].

The second normal stress difference has been found to be negative with a
magnitude less than that of N;. A useful material function is the normal stress ratio
¥(t,7) defined as follows:

=7 (4.6)

_ _NZ(tv '))) _ —2(1‘,’/)
D= N~ )
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For strains less than one, ¥(y) approaches a limiting, zero-strain value ¥(0),
often around 0.25.

4.4 Dimensionless Groups Used to Plot Rheological Data
4.4.1 The Deborah Number

In plotting the nonlinear response to transient strains other than step strain, and for
comparing data with theoretical predictions, it is sometimes useful to show results
in terms of a dimensionless ratio called the Deborah number (De). This is a measure
of the degree to which elastic behavior is expected in a flow that is unsteady from
the point of view of a material element. In other words, it reflects the rate at which
elastic energy is either stored or released during an experiment. This dimensionless
group is the ratio of a time arising from the fluid’s viscoelasticity, i.e., a relaxation
time that we call here 7., to a time that is a measure of the duration of the defor-
mation. In simple shear, at steady state when all stresses (and the stored elastic
energy) are constant with time, the duration of the flow is unlimited, and De is zero.
More generally, De is zero in all flows with constant stretch history (steady from the
point of view of a material element) when the stresses are steady. Thus, it is only in
transient flows, i.e., when the deformation is unsteady from the point of view of a
fluid element, that the Deborah number non-zero.

It is difficult to write a concise definition of a time constant that governs the rate
at which stored elastic energy changes in a given deformation without reference to
a specific flow, and we therefore give a definition of the Deborah number in
general terms

Tr

e = - - - 4.9
char. time of transient deformation (4.9)

In an oscillatory flow, the characteristic time of the deformation is the reci-
procal of the frequency. In start-up flow, De is time-dependent; at early times the
stress changes rapidly, and elasticity plays a key role, but at long times, as the
strain-rate approaches a steady value, De approaches zero. Thus, De = t,/t. This
implies that in an ideal start-up flow De is initially infinity. This reflects the fact
that elasticity arising from intra-molecular motions cannot operate instanta-
neously, and the only mechanism available arises from a glassy mechanism.

4.4.2 The Weissenberg Number

The Weissenberg number (Wi) is a measure of the degree of nonlinearity or
orientation that is expected as the result of flow. This is defined as the product of a
time scale governing the onset of rheological nonlinearity, let’s call it 4, and the
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rate of strain of the deformation. We saw in Chap. 2 that a fluid with a shear-rate
dependent viscosity must have at least one material constant with units of time. For
example, one might select the reciprocal of the shear rate at which the viscosity
falls to ninety percent of its zero-shear value. Obviously, the degree to which a
melt deviates from Newtonian behavior depends on rate of the deformation. Thus
the Weissenberg number in simple shear flow is defined as:

Wi =54 (4.10)

For single-phase, low-molecular-weight fluids, the time constant of the material
is extremely short, so that the Weissenberg number is also extremely small. But for
molten, high-molecular weight polymers, A can be quite large. For molten poly-
mers, the Weissenberg number also indicates the degree of anisotropy generated
by the deformation. And in the case of steady simple shear, the normal stress
differences are manifestations of anisotropy and thus of nonlinear viscoelasticity.
Therefore, the Weissenberg number also governs the degree to which the normal
stress differences differ from zero. The Weissenberg number is easily defined for a
flow with constant stretch history. For example, in steady uniaxial extension at a
Hencky strain rate &, Wi = éA.

For deformations in which linear viscoelastic behavior is exhibited, Wi is zero.
However, there are flows of practical importance in which both Wi and De are
nonzero and are sometimes even directly related to each other. This causes con-
fusion, as authors often use the two groups interchangeably. This situation arises,
for example, in the flow from a reservoir into a much smaller channel, either a slit
or capillary. A Weissenberg number can be defined for this flow as the product of
the characteristic time of the fluid and the shear rate at the wall of the flow channel.
However, entrance flow is clearly not a flow with constant stretch history, and the
Deborah number is thus non-zero as well and depends on the rate of convergence
of the flow.

The utility of these dimensionless parameters is limited by the difficulty of
defining a meaningful characteristic time of the melt. For high molecular weight,
monodisperse samples, possible choices are the longest Rouse time and the
equilibration and disengagement times of the tube model. For example, the ori-
ginal tube model predicts that ¥(7) is a universal function of (y74) for all
entangled polymers. But for polydisperse materials, these well-defined times are
not available.

4.5 The Viscosity in Terms of the Tube Model

The original Doi-Edwards model predicted that the shear stress in steady shear
increases from zero and goes through a maximum and a minimum before
increasing again. This type of behavior has never been observed, and this remained
a basic deficiency of tube models until Ianniruberto and Marrucci [18] introduced
the concept of convective constraint release (CCR). In steady shear flow,
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molecules on neighboring streamlines move at different speeds, and this carries
away entanglements at a rate comparable to the reciprocal of the shear rate.

If the shear rate is increased to a level near the reciprocal of the Rouse time of
the chain, chain stretch should become active, as the rate would be too fast for
CCR to maintain equilibrium. But this effect has not been observed in melts
because of the very large value of M/M, required for 1/t to be within the range of
shear rates that are experimentally accessible.

4.6 Transient Shear Tests at Finite Rates
4.6.1 Stress Growth and Relaxation in Steady Shear

In start-up of steady simple shear, the measured stresses are divided by the
imposed shear rate or its square to obtain the shear stress growth coefficient and
the first normal stress growth coefficient, which are defined as follows:

n(t,9) =o(t,9)/7 (4.11)
wi(n,9) = Ni(t,9)/7 (4.12)

At short times, when the deformation is small, we expect the shear stress
growth coefficient to follow the prediction of the Boltzmann superposition prin-
ciple. And if the shear rate is sufficiently low, the entire transient will be governed
by this principle, and 5™ (¢,7) will be the same as 7 (¢), which was given as Eq.
(3.10) and is repeated here as (4.13).

nt(t) = 5 = /G(s)ds (4.13)

The shear stress growth coefficient for an entangled polystyrene solution is
shown in Fig. 4.5 at several strain rates [19]. At the lowest strain rate, the behavior
is linear, corresponding to Eq. (4.13), and there is no overshoot. The strains yg and
y~ at which the maxima occur in the shear stress and first normal stress difference
are sometimes used as empirical measures of nonlinearity. After a sufficient length
of time at constant shear rate, all the stresses become independent of time, and
three rheologically meaningful material functions of shear rate can be determined.
These viscometric functions are the viscosity and the first and second normal stress
differences, which were first presented in Chap. 2. Stress growth data have rarely
been used to characterize molten polymers [20].

There is also a shear stress decay coefficient n~(t,7) that describes stress
relaxation following the cessation of steady simple shear at a time ¢ = 0, but it has
not been found useful for polymer characterization. An interesting variant of start-up
and cessation of steady shear is inferrupted shear, which is used to monitor
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5 ¥ =.0214 sec

log[n*¥ .t) (Pas)]

log t(s)

Fig. 4.5 Shear stress start-up function for an entangled polystyrene solution at a number of shear
rates. The data at the lowest shear rate are in accord with Eq. (4.13) for linear behavior, and as the
shear rate increases, the data start out along the linear curve, exhibit an overshoot, and then
descend to a steady value, which is the viscosity at that shear rate

relaxation processes that occur at very long times. The time at which data can no
longer be obtained in a relaxation experiment is governed by the sensitivity of the
stress or strain transducer used to monitor the process. In order to obtain information
about relaxation that occurs after the stress signal has fallen into the noise level, a
series of start-up and cessation tests are performed with increasing rest time, i.e., the
time between one cessation and the next start-up of flow, #.. The start-up flow is
allowed to continue until the steady-state stress o is reached. In the nonlinear
regime, there will be a peak stress g,,(#) that is a function of the rest time ¢.. This
stress will have its maximum value ¢,,,(c0) during the first test, which takes place
when the sample has not been previously sheared, and unless the rest time is long, the
maximum stress in the second test, started at a time 7, after the first ended, will be
smaller. In the limit of zero rest time, there will be no overshoot, so that the stress
will return immediately to its steady-state value, i.e., 6s = 0,,(0). Only after a very
long rest time is the initial maximum stress recovered. There have been several
reports of the use of this technique to characterize polymeric liquids [21-24].

4.6.2 Nonlinear Creep

If a creep experiment is carried out at a constant stress sufficiently large that the
sample is strained into the nonlinear regime before achieving a steady strain rate,
the compliance function will be a function of stress as well as time. Data from this
type of experiment have been reported by Agarwal and Plazek [25], but creep has
not been widely used for the study of nonlinear viscoelasticity.
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4.6.3 Large-Amplitude Oscillatory Shear

In large amplitude oscillatory (LAOS) the shear strain is sinusoidal, as in the
measurement of the storage and loss moduli, but the strain amplitude is sufficiently
large that the response is not governed by the Boltzmann superposition principle.
As a result the stress is not sinusoidal and cannot be interpreted in terms of one in-
phase and one out-of-phase component. Large-amplitude oscillatory shear has the
interesting feature that the Weissenberg and Deborah numbers can be varied
independently. The Weissenberg number is 7,7, where 7 is a time describing the
first onset of nonlinearity as the frequency increases from zero, and the Deborah
number is wt, where 7 is a relaxation time. Hyun et al. [26] have provided a
thorough review of the use of this strain history, and Giacomin et al. [27] have
summarized published analytical predictions for a number of constitutive equations
for LAOS. In using SAOS for linear viscoelastic measurements, one can oscillate
either the strain or the stress and obtain the storage and loss moduli. However,
because LAOS operates in the nonlinear regime, the two types of deformation do
not yield the same information and cannot be converted one to the other.

If the material is isotropic in its rest state and has no yield stress, continuum
mechanics considerations imply that the stress can be represented as a Fourier
series with only odd terms.

o(t) = Y ousin(nwt+,) (4.14)

n=1,odd

Krieger and Niu [28] developed a method for signal averaging to determine the
Fourier components by high-sensitivity Fourier transform, and Wilhelm et al. [29]
have made extensive use of this technique to characterize molten polymers.

An interesting way to display LAOS data is as a plot of stress versus strain or
strain rate. These are closed loops with skew symmetry. For rubbers in the linear
regime, stress versus strain is preferred and the loops are ellipses with axes ori-
ented in the x and y directions. For melts in the linear regime, the loops are ellipses
with principal axes at an angle with the x and y directions; this angle corresponds
to the loss angle. For nonlinear behavior, the loops are no longer ellipses but retain
symmetry properties. Figure 4.6 shows such loops for a polyethylene (top) and a
polystyrene (bottom) [30]. The strain rate amplitude for the upper left plot was
within the linear range, and the loop is an ellipse. For the PS, the amplitude for the
left hand plot was somewhat above the limit of linear viscoelasticity, and the loop
is pointed at the ends. The first normal stress difference is always positive and its
loop is symmetric about the vertical axis. The same is true for N3y = N; + N3, and
Fig. 4.7 shows an N3 loop for an entangled polystyrene solution [31].

Each component of the series given by (4.14) can be rewritten as the sum of an
in-phase and out-of-phase component as shown by Eq. (4.15).

a(t) =7y, Z (G, (@, 7o) sin(nwt) + G} (@, 7,) cos(nwt)] (4.15)
n,odd
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Fig. 4.6 Shear stress versus shear rate loops for a polyethylene (top) and a polystyrene (bottom).
The strain-rate amplitude for the upper left is within the linear regime, and the loop is an ellipse.
For the polystyrene, both loops are in the nonlinear regime, but the strain-rate amplitude is larger
for the loop on the right. From Tee and Dealy [30]

Fig. 4.7 Third normal stress 1.15
difference (N, + N,) versus

shear rate loop for an

entangled polystyrene L10 |
solution. Like N, this quantity
is always positive, because N, L
is negative but smaller in 1.05 1
magnitude. From Reimers i
and Dealy [31]
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However, the terms no longer have the simple mechanical significance that they
had for linear viscoelasticity. For example, all the energy dissipation is associated
with the principal harmonic (n = 1).

The following power series has also been used to represent LAOS data:

P
a(t) = Z Z 70 |Gpq sin got + Gpq cos gt ] (4.16)
p,odd g.odd

For example, Pearson and Rochefort [32] developed series expansions for the
fundamental frequency components of the torque for parallel disk fixtures in terms
of the parameters of (4.16) and also expansions of the G4 coefficients for the Doi-
Edwards model. The terms of these series expansions are not useful for relating
LAOS data to molecular structure.

Yet another approach involves the use of Chebyshev polynomials [33]. In this
representation, time no longer appears as the independent variable and is replaced
by the strain and strain rate.

It has been reported that LAOS data provide information about structural fea-
tures of a polymer that cannot be inferred from the storage and loss moduli of
linear viscoelasticity [26]. For example it has been suggested that long-chain
branching can be inferred from the higher harmonics, although there is at present
no theoretical basis for such a correlation, and polydispersity may blur the rela-
tionship. To facilitate data analysis the relative values of the stress amplitudes o,
in Eq. (4.15) are described using the terminology I,,,,,, defined as ¢,,/c,,. A quantity
that has been used to correlate LAOS data with structure is the “nonlinearity
parameter” Q, defined as follows:

O(w,7) = 13# (4.17)
70

The present authors believe that the most useful rheological source of structural
information is small-amplitude oscillatory shear data, especially at low frequen-
cies, supplemented by uniaxial extensional data for long-chain branched polymers.

4.7 Extensional Flow Behavior: Introduction

Most laboratory tests of melt flow behavior involve shearing, and we will see in
Chap. 7 that linear viscoelastic behavior is a rich source of information about
molecular structure. However, no matter how many linear or nonlinear material
functions we determine in shear, such information cannot be used to predict the
response of a melt to extensional deformations, unless the strain rate is extremely
low. Nonlinear behavior in extension provides information about long-chain
branching that is not revealed by shear data. In addition, extensional flows play an
important role in several melt forming processes.
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As in the case of shear flow, the preferred test modes for the study of stretching
deformations are those that generate a homogeneous strain. The shear free flow
that has been most used in experimental rheology is uniaxial extension, also called
simple extension, which is an axisymmetric flow with stretching in the direction of
the axis of symmetry. The effect of uniaxial extension on the shape of an initially
cubic fluid element is sketched in Fig. 4.8. Another axisymmetric extensional flow
is biaxial extension, which can also be thought of as axial compression. In this
deformation there is compression along the axis of symmetry and stretching in the
radial direction, as shown in Fig. 4.9. Among non-symmetric stretching flows, the
simplest is planar extension, in which the velocity in one direction is zero, as
shown in Fig. 4.10. This type of flow can be approximated, for example, by
stretching a thin-walled tube in its axial direction while providing sufficient
internal pressure to keep the diameter constant.

In uniaxial extension at significant rates molecules tend to be oriented in the
axial direction, while in biaxial extension the tendency is to align molecules in the
radial direction, and this implies a symmetrical distribution of alignments in planes
perpendicular to the axis of symmetry. In other words, within one of these planes,
there is no overall preferred orientation in any one direction. Planar extension is
intermediate between these two extremes, with a tendency to orient molecules

<—| D e — :

F 4

Fig. 4.8 Uniaxial (simple) extension acting on a cubical fluid element

e T el -

Fig. 4.9 Biaxial (equibiaxial) extension acting on a cylindrical fluid element
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Fig. 4.10 Planar extension acting on a cubical fluid element. The tension in the lateral direction
is just sufficient to keep the sample from shrinking in that direction
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mainly parallel to the direction of stress and to a lesser degree in the transverse
direction. Uniaxial extension is the deformation for which strain hardening is most
apparent and is the one most sensitive to long-chain branching.

Nearly all melt processing operations involve some kind of extensional flow, as
there is always stretching along streamlines at one or more stages of the process.
For example, whenever there is a converging flow, as in a die, there is acceleration,
and this implies the presence of uniaxial or planar extension, depending on the
flow geometry. In a diverging channel, there will be extension in directions normal
to the main flow direction implying biaxial extension. Converging and diverging
die flow also have important shearing components, and extensional flow properties
are not as important. It is in extrudate flows with tensile stresses that these
properties play an important role. These include film blowing, sheet extrusion and
fiber spinning.

Uniaxial extension is an axisymmetric deformation in which a tensile stress is
applied in one direction, which we will call it the z-direction, while the free surfaces
of the sample are under a uniform normal stress, the ambient pressure. The quantity
measured is the net tensile stress og defined as (¢,, — ,,), which is the applied
axial stress minus that acting on the free surfaces, which is often negligible.

Step strain in extension is not practical for melts, and the experiment usually
carried out is start-up of steady simple extension at constant Hencky strain rate &.
The Hencky strain rate can be defined in terms of the length L of the sample as
shown by Eq. (4.18).

¢=dInL/dt (4.18)

This strain rate is a measure of the speed with which material elements on a
streamline are separated from each other. Note that both the velocity of the end of
the sample and the sample length increase exponentially with time at constant
Hencky strain rate.

L(t) = L(0) exp(&t) (4.19)

But at a fixed distance z from the z = 0 plane where v, = 0, the velocity is
constant and proportional to the Hencky strain rate:

v, =&z (4.20)

The material function usually reported is the tensile stress growth coefficient
defined by Eq. (4.21).

ng(t,8) = op(t,8) /& (4.21)

The Boltzmann superposition principle can be used to derive the linear response,
which is exhibited at sufficiently small strains or strain rates:

t

tim . (18) = £ () =3 [ Gls)ds 3" () (4.22)
0
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The linear relaxation modulus G(¢) can be inferred from oscillatory shear data,
and it is useful to compare extensional flow data with the behavior predicted by
Eq. (4.22) as is explained below.

If steady extensional flow is achieved, the extensional viscosity can be
determined:

lim 7 (1,) = n(8) (4.23)

and in the limit of vanishing strain rate, the extensional viscosity becomes simply
three times the zero-shear viscosity:

(o @]
lim 7 (2) =3 / G(s)ds = 3n, (4.24)
0

This limiting case describes the behavior of a Newtonian fluid, ng = 35,. The
extensional flow behavior of Newtonian fluids was first noted by Trouton, and the
quantity 7z(&)/3#n, is sometimes referred to as the Trouton ratio and used to
normalize extensional viscosity data. However, this term is also used for several
other ratios, including 1(£)/3n, ; n(&)/n(7 = &) and 5(&)/n(y = V/3%) , the last of
which compares the extensional and shear viscosities at equal values of the second
invariant of the rate of strain tensor. Such normalizations do not reveal anything of
basic interest.

There are three possible types of behavior for the extensional viscosity function.
It can exhibit the linear behavior shown by Eq. (4.24); it can exhibit extension
thickening (ng increasing with &); or it can exhibit extension thinning (ng decreasing
with &). It is important not to confuse this classification scheme with that used to
describe the transient response to the start-up of steady simple extension.

Because of the strong tendency of melts to neck and rupture at high stretch
rates, one does not usually observe a true plateau in 173 (#,&) that can be used to
determine # (&), and instead there is a maximum where necking begins. For many
years it was thought that this maximum could be taken to be nz(¢) . However,
more recent observations [34—-36] suggest that for highly-branched melts, partic-
ularly LDPE, the maximum is not a steady state but is followed by a true plateau at
a lower stress. As a result, previously reported extensional viscosity data for LDPE
should be viewed with caution. Figure 4.11 shows data obtained by Huang et al.
[34] for an LDPE using a filament stretching rheometer (FSR). There is very strong
strain hardening with a maximum followed at some strain rates by an apparent
approach to a steady value. Since the FSR is not suitable for routine use, for
industrial applications one should rely on the transient function (¢, £), which can
be determined using the easy-to-use devices described in Chap. 6.

In reporting results of extensional flow tests, it is common practice to compare
the nonlinear material function n;(¢,£) with the linear response given by
Eq. (4.22). If both data sets are accurate, the nonlinear response should agree with
the linear one at short times and low strain rates. Furthermore, the way in which the
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Fig. 4.11 Tensile stress growth coefficient for a LDPE. After a maximum the data fall to a
plateau value equal to the extensional viscosity. From Huang et al. [34]

nonlinear response departs from the linear one can be used to classify extensional
flow behavior. If the nonlinear data rise above the linear curve at some point, the
melt is said to be strain hardening, and if they fall below, it is said to be strain
softening. Figure 4.12 shows the data of Miinstedt and Laun [37] for a low-density
polyethylene made in a tubular reactor, and we see that this material exhibits strong
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Fig. 4.12 Tensile stress growth coefficient for a LDPE at many strain rates. At the lowest strain
rate the data follow the curve for linear behavior, which is given by Eq. (4.22). From Miinstedt
and Laun [37]
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strain hardening. Linear polymers containing no very high-molecular-weight
components exhibit strain softening. This classification system has inspired the use
of a reduced stress growth coefficient [38] 77z (2, &), or degree of strain hardening y
[39], defined as follows:

ie(t,8) = e (t) (4.25)

When there is strain hardening, the value of this function is greater than one and
vice versa. The use of this function to compare data for several polymers shows the
comparative strain hardening normalized with respect to the effect of the linear
relaxation spectrum. Wood-Adams et al. [38] used this function to compare data
for a series of metallocene polyethylene homopolymers having very low levels of
long-chain branching and found that once the effect of the linear spectrum was
eliminated in this way, the differences between the samples became insignificant
except at the longest times.

When comparing extensional flow data with the LVE prediction, care must be
taken in the calculation of the linear prediction. If the data used to establish the
relaxation spectrum do not include very short-time (high-frequency) data, the
initial portion of the curve will not be correct. It may thus be better to use data
from start-up of steady simple shear to measure 17 (¢) directly rather than inferring
it from complex modulus data.

4.8 Extensional Flow Characterization of Melts
4.8.1 Linear Polymers

Tube models predict that chain stretch should occur in an entangled, linear,
monodisperse melt when the rate of deformation is greater than 1/tg and that T
depends on the ratio (Mc/M). For polyolefins, monodisperse samples cannot be
made, and in addition they have small values of M, so an extremely high value of
M would be required to generate significant chain stretch at a practically achiev-
able strain rate. For polystyrene, on the other hand, M¢ and tx are much larger, and
it is possible to generate chain stretch and thus strain hardening in a practical
experiment. Studies of linear, high-MW polystyrene melts [40] using a filament-
stretching rheometer have, indeed, revealed marked strain hardening at high strain
rates. While strain hardening is not expected to be observed in polydisperse
polymers, there have been reports that a small amount of relatively high molecular
weight material in polystyrenes [41-43] and polyolefins [44, 45] can lead to strain
hardening. This phenomenon is discussed in more detail in Chap. 7.
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4.8.2 Long-Chain Branched Polymers with Known
Structures

Star polymers do not exhibit strain hardening [46], and the presence of inner chain
segments, i.e., “backbones” with branch points at both ends, are believed to be
essential to produce this effect. Data on a series of long-chain branched metallo-
cene polyethylenes supporting this concept are presented in Chap. 7.

4.8.3 Randomly Branched Polymers and LDPE

Linear polymers that are strain-softening can be made strongly strain-hardening by
the introduction of long-chain branches. This has been demonstrated by treating
linear polymers by electron radiation [47] or crosslinking agents [48, 49]. Hing-
mann and Marczinke [48] estimated that fewer than three branches per molecule
are required in the polypropylene they studied to produce pronounced strain
hardening.

Gabriel and Miinstedt [50] compared polyolefins having various branching
structures and concluded that both the number of branches per molecule and the
number of entanglements per branch play crucial roles in strain hardening. They
believe that if a polyethylene exhibits strain hardening but has a zero-shear vis-
cosity dependence on M,, that is typical of linear polymers (Eq. 2.19), it is very
likely a linear polymer containing some very high-molecular-weight material.

The structure and rheology of low-density polyethylene (LDPE) is of practical
interest because of its importance as a commercial polymer, especially in film-
blowing and extrusion-coating. It is the most strain hardening in extension of all
commercial polymers, and this endows it with superior melt strength. This can be
seen in Fig. 4.12 which shows data for an LDPE made in a tubular reactor [37].
The difficulties that arise in measuring the extensional viscosity defined by
Eq. (4.23) were explained in Sect. 4.7, while the relationship between the structure
and rheology of LDPE is discussed in detail in Chap. 7.

4.9 Shear Modification

It was observed many years ago that after high-rate shearing of LDPE its rheo-
logical behavior is altered for a considerable time thereafter [51], a phenomenon
called shear modification. For example if the melt is extruded and immediately
converted to pellets, when these pellets are remelted the properties of the melt are
different from those of the original polymer. But if the re-melted polymer stands in
its molten state for a sufficiently long time, or if it is dissolved in a solvent and re-
precipitated, it regains its original properties. Shearing in a mixer for a period of
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one hour was observed to reduce the viscosity, first normal stress difference, and
extrudate swell by about thirty percent [52]. The effect of shearing on extensional
flow behavior is particularly strong. Leblans and Bastiaansen [53] found that five
passes through a twin-screw extruder substantially decreased the tendency for
strain hardening and reduced the steady-state extensional viscosity by a factor of
three. It has been hypothesized that this phenomenon results from the alignment of
the long branches along the backbone. In terms of the tube picture, the branches
are drawn into the tube of the backbone during deformation, and a long time is
required for the complex molecule to recover its equilibrium configuration. Leb-
lans and Bastiaansen [53] found that the Doi-Edwards strain measure provided a
good description of the extensional behavior of sheared LDPE, making its
response similar to that of linear HDPE. This supports the idea that the long
branches are drawn into the tube with the backbone by pre-shearing. Bourrigaud
et al. [54] modified the tube model for a pom-pom polymer to simulate this
phenomenon. Their results indicated that strain hardening can be eliminated by
sufficient shear modification and that extensional flow itself should have a much
stronger modifying effect than shear.

Yamaguchi and Gogos [55] observed a strong effect of preshearing on melt
strength. Yamaguchi et al. [56] compared several shearing devices and reported
that the continuous shearing that occurs in a twin-screw extruder with conveying
screws or in an internal batch mixer is much more effective for shear modification
than that in a two-roll mill or an extruder equipped with kneading blocks. Yam-
aguchi and Takahashi [57] found that the melt strength of autoclave LDPE is
significantly more sensitive to shear history than that produced in a tubular reactor.

The practical application of shear modification in a plastics forming operation,
for example to improve the surface of blown film, is not practical because of the
substantial time and energy required to perform the shear modification.

4.10 Time-Temperature Superposition of Nonlinear
Properties

Graessley [58, p. 239] provides a discussion of the application of time-temperature
superposition to nonlinear properties, and we give here only a brief summary. The
viscosity function is often found to obey time-temperature superposition. If the
vertical shift factor is neglected, the zero-shear viscosity can be used as the hor-
izontal shift factor to obtain a master curve by plotting

n(T,7)
1o(T)

The other viscometric functions can also be treated in this manner. But vis-
cometric functions are not functions of time; what about time-dependent proper-
ties? Constitutive equations for melts almost universally build on the same spectra

versus  1y(T)7 (4.27)
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of relaxation times that are used to describe linear viscoelasticity. This implies that
if time-temperature superposition brings linear data together, it should also work
for nonlinear properties using the same shift factors. The fundamental assumption
is that the relaxation times are independent of the state of stress. For example, a
temperature-invariant representation of the shear stress-growth coefficient is based
on the following relationship:

b . .
a—;;ﬁ(r/an jar, T) =" (1,7, To) (4.28)

Miinstedt and Laun [37] applied time-temperature superposition to extensional
stress-growth data for an LDPE, and their excellent result is shown in Fig. 4.13.
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Chapter 5
Nonlinear Viscoelasticity: Models

Abstract This chapter deals with the theory and modeling of nonlinear behavior.
The study of its contents is not essential for an understanding of the other chapters,
and it will be of interest primarily to those involved in the modeling of melt flow
processes in which viscoelasticity plays an important role, such as blow molding
and film blowing. Tensor representations of stress and strain are introduced and
used to present several models of nonlinear behavior.

5.1 Introduction

This chapter will be of limited interest to most engineers and scientists working in
the plastics industry. It is certainly true that the deformations that occur in melt
processing operations are never very small or very slow, and the rheological
behavior is thus nonlinear. Internal flows dominated by shear deformation are
governed by the viscometric functions, which were discussed in Chap. 2. Flows of
this type occur, for example, in extruders, channels, and the filling of a mold. Thus,
while such deformations are in the nonlinear regime, elasticity does not play a
central role. On the other hand, elasticity plays an important role in processes
involving free surfaces such as film blowing, profile extrusion, and blow molding.
At the present time, the development of models for such processes is limited by the
availability of constitutive equations that are convenient for computation but also
make reliable predictions for large, rapid deformations. In this chapter we present
the basic concepts involved in the formulation of models of nonlinear behavior.
A much more detailed treatment of this subject can be found in books by Larson
[1] and by Larson and Dealy [2].

The Boltzmann principle indicates that knowledge of the linear relaxation
modulus G(¢) is sufficient to calculate the stress for any very slow or very small
shearing deformation. And in this chapter we will develop a tensorial form of this
principle that can be used to determine the stress resulting from non-shear
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deformations that are very small or very slow. Then we explore methods for
describing the stress arising from deformations that are large and rapid, i.e., for
describing nonlinear viscoelastic behavior. A model that relates the stress tensor to
the deformation tensor for any type of deformation is called a constitutive equation
or rheological equation of state.

For many years, equations of state were empirical in nature, based on general
continuum mechanics principles regarding acceptable ways of describing large,
rapid deformations. These contain empirical constants or functions that can only
be determined by fitting experimental data, and this greatly limits the range of
application of the model, because laboratory techniques used to explore nonlinear
behavior are quite limited in terms of kinematics and deformation rates.

More recently, mean field models, mostly based on a tube or slip-link picture,
have shown promise in the modeling of nonlinear phenomena. However, in
replacing the detailed modeling of individual molecular interactions by a much
larger scale view of a molecule that interacts with its neighbors only at specific
points along the chain, empiricism is still present but transferred to a mesoscopic
scale. This has the advantage that the empiricism is based on a somewhat detailed
picture of how molecules interact rather than on arbitrary functions. But to derive
constitutive equations from mean field theories, additional assumptions are
required, so that the final model is rather far removed from the molecular picture
from which it arose.

The more complex the constitutive equation, the less useful it is for flow
simulation. Simple integral and differential equations are required for modeling
complex flows, and even if these start from molecular dynamics concepts, sim-
plifying assumptions are required to arrive at such equations.

5.2 Tensor Notation

The description of large, rapid deformations of viscoelastic materials requires the
use of tensors. For those readers who have had little if any experience in the use of
tensor analysis, the very word tensor may suggest a mathematical system of
impenetrable mystery. However, such readers should have no fear. While we do
not offer here a complete course in tensor analysis, we do present in the next two
brief sections everything you will need to know about tensors to understand the
remainder of this chapter.

Certain physical quantities, such as force and velocity, are specified in terms of
vectors, which have both a magnitude and a direction. For example, the velocity
vector is specified by giving its components, vy, v, and v3 in the directions, xy, x5,
and x3. We will refer to a typical velocity component as v;, where i can be 1, 2, or
3. While the magnitude is a physical attribute of a vector that does not depend on
the choice of a particular coordinate system, the components of the vector do
depend on the coordinate system selected to describe the flow. There is a simple
rule that tells us how to use the components of a vector in one coordinate system to
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calculate the components of that vector in a second coordinate system that is
rotated with respect to the first. If vectors are adequate to describe the velocity of a
body and the force acting on it, why are they not sufficient for describing rheo-
logical phenomena? The answer is that rheology deals not with motion per se, but
with deformation, and specifically with the relationship between the deformation
of a fluid element and the surface forces exerted on this element by the sur-
rounding fluid. Tensors are necessary to describe deformations and surface forces,
and the tensors used to represent them are the strain tensor and the stress tensor.

Like a vector, a tensor can be represented in terms of its components, and the
values of these components depend on the choice of the coordinate system. Fur-
thermore, there is a rule for using the components of a tensor in one coordinate system
to calculate the components of that tensor in another coordinate system, rotated with
respect to the first. The existence of this rule shows that a tensor has a basic physical
significance that transcends any particular choice of coordinate system. However,
unlike a vector, the physical significance of a tensor cannot be described in terms of a
directed line segment, i.e., in terms of a magnitude and a direction.

5.3 The Stress Tensor

The concepts of strain and stress were introduced in Chap. 1 in regard to specific
components, the extensional stress for elongation and the shear stress for a shear.
But stress and strain are not scalar variables like temperature and pressure that
have single values at each point in space. Stress is directional like velocity, but it
acts on three types of surface, one normal to each coordinate direction. Whereas a
component of a vector is indicated by a single subscript, for example vy, stress
requires two indices, one indicating the direction of the stress and the other
indicating the surface on which it acts. A typical stress component is written as j;,
where each index can take on values of 1, 2, or 3 corresponding to the three
coordinate directions The second index indicates the direction in which the force
acts, and the first index indicates the type of surface on which it acts. When the
stress acts in a direction normal to a surface (i = j) it is a normal stress, and when
it acts tangentially to a surface (i # j) it is a shear stress. In general, then, nine
quantities are required to describe the state of stress at a point in a fluid. To write
the values of all the components, it is convenient to use matrix notation.

011 012 013
O'ij = 021 022 023 (51)
031 032 033

To understand the physical significance of the nine components of the stress
tensor, consider the small cubical element of material shown in Fig. 5.1. The
second subscript indicates the direction of the force and corresponds to the
coordinate axis direction. For example, the stress component shown in Fig. 5.1
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X

(8]

X5

Fig. 5.1 Cubical fluid element showing stress component g;;

acts in the x; direction, and the second subscript of this component is thus 1. The
first subscript indicates the face on which the component acts, and, this is indicated
by the coordinate direction normal to this face. Thus, the force shown acts on a
face normal to the x, direction, and the first subscript of this component of the
stress is thus 2. The stress component shown is thus ¢,;. To complete our defi-
nition of the components of stress, we need a sign convention. In this book we use
the standard convention of mechanics, although the reader should be aware that the
opposite convention is used by some rheologists [3]. In this book, the stress is
positive when it acts in the positive x; direction on a face having the higher value
of x;, i.e., the face further from the origin in the x; direction. For example, the stress
component shown in Fig. 5.1 is positive if the force acts in the direction of the
arrow. This is because it acts in the positive x, direction on a face having the
higher value of x;. Figure 5.2 shows several additional stress components.

Since the components of the stress tensor describe the state of stress at a point in
the material, the cubical element shown in Fig. 5.1 must shrink to an infinitesimal
size. Thus, the two force vectors shown in Fig. 5.3 act in opposite directions at the
same point. From Newton’s law of action and reaction, these two forces must be
equal in magnitude. They are thus both manifestations of the same stress com-
ponent, 1, and both have positive values if they act in the directions indicated.
Using our sign convention, a tensile stress has a positive value.

The principle of conservation of angular momentum can be applied to the
infinitesimal material element to show that the stress tensor has the following

property:

—- 0y,
X,

3 ":Az/

Fig. 5.2 Additional stress components. When two subscripts are equal, we have a normal stress,
and when they different it is a shear stress. The first index identifies the face on which the stress
acts, and the second indicates the direction of the stress
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a,, - < > 0.,

Fig. 5.3 The stresses acting at a point in opposite directions must be equal, from Newton’s law
of action and reaction. Thus, both the components shown are equal to g

Fig. 5.4 Coordinate
convention for simple shear. X5
X1 is the direction of motion, Vv

and x, is the direction of the L
velocity gradient

17777777 77777777777

O'ij = O'ji (52)

Thus, any two components that have the same subscripts or indexes, but in
reverse order, have the same value and sign. A tensor that has this property is said
to be symmetric. One result of this property is that a symmetric tensor has only six
independent components rather than the nine that would be required to specify an
asymmetric tensor. In other words, a second-order, symmetric tensor has only six
independent components.

To make more concrete our discussion of stress, consider the shearing defor-
mation shown in Fig. 5.4. There is a widely used convention in describing this
flow; the direction of motion is x;, while the velocity varies in the x, direction. To
generate this deformation, a force is applied to the upper plate in the direction
shown by the arrow. In the ideal case (no inertia or edge effects) this force
generates a uniform deformation and stress in the sample. Since the force is in the
x1 direction and acts on a face perpendicular to the x, direction, the stress gen-
erated by the force F is g,;. Obviously this is a shear stress, and due to the
symmetry of the stress tensor it is equal to g1,. We use the symbol g, with no
subscripts, to indicate this stress component in simple shear. Thus for simple shear,

071 ZO'leO'ZF/A (53)

where A is the area of the sample in contact with the plates.
The other shear stress components are zero:

013 = 031 = 03 = 03 = 0. (5.4)

We can now use matrix notation to specify the state of stress at a point in a
material subjected to simple shear:

o1 o2 O
oj= |02 02 0 (5.5)
0 0 033

And we recall that o;; = oj;, so there are actually only four independent com-
ponents. Don’t worry about the three normal stress components now; we will deal
with them a little further on.
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Fig. 5.5 Uniaxial (simple) L D
extension

M

O =

A
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Another example of a deformation that is of central interest in rheology is
simple or uniaxial extension. This is illustrated in Fig. 5.5. If we let x; be the
direction of the applied force, the stress component resulting from this force will
be 11, which is a normal stress. If it acts in the direction shown, it is positive, i.e.,
a tensile stress. There are no shear stress components in this case, and the com-
ponents of the stress tensor are as shown below:

011 0 0
gjj = 0 022 0 (56)
0 0 033

While all materials are compressible to some extent, in the case of molten
plastics, quite high pressures are required to produce a significant change in the
volume of a sample. Thus, for many practical purposes melts can be considered to
be incompressible. Now consider what happens when we subject an incompress-
ible material to a compressive stress that is equal in all directions, i.e., an isotropic
stress that we call pressure P. But since pressure is positive when acting to
compress a material, while a tensile stress is positive when it acts to stretch the
material, we need a minus sign to relate the normal stress to the pressure. The
components of the stress tensor in this situation are thus as shown by Eq. (5.7).

P 0 0
gi=|0 —P 0 (5.7)
0 0 -P

An incompressible fluid at rest will not be deformed by an isotropic stress, i.e.,
it will not change its size or shape. Thus, an isotropic stress field is of no rheo-
logical significance. Only when there are shear stresses acting, as in simple shear
flow, or when the normal stress components are different from each other, will
deformation occur in an incompressible material. Another way of saying this is
that if a rheological measurement on an incompressible material is repeated at
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several ambient pressures, for example by placing the rheometer in a hyperbaric
chamber, the measurements at various pressures will yield exactly the same values
of rheological properties. This means that for an incompressible material a single
normal component of stress has no rheological significance. In the case of simple
shear the stress quantities of rheological significance as defined in Chap. 2 are the
shear stress ¢ and the first and second normal stress differences N, and N,.

g =021 =012 (58)
N] =011 — 022 (59)
Ny =09 — 033 (5.10)

For Newtonian fluids the two normal stress differences are zero, but in entan-
gled polymeric liquids they are nonzero. One manifestation of the first normal
stress difference is observed when a polymeric fluid is sheared by placing it
between two flat parallel disks and rotating one disk. The fluid exerts a normal
force or thrust on the disks that tries to push them apart, while a Newtonian fluid
exerts no such normal force. And the second normal stress difference contributes to
coextrusion instabilities.

In the case of simple extension in the x; direction, there is only one significant
stress variable, which is a normal stress difference (the shear stresses are zero), and
there is axial symmetry, so 05, = ¢33. This normal stress difference is called the
principal stretching stress, og, which is defined in Eq. (5.11).

Op =011 — 02 = 011 — 033 (5.11)

Because of the relatively high resistance to deformation of molten, high-
molecular-weight polymers, the tensile stress ¢ is normally much larger than the
ambient pressure, which is equal to —g,, and —a33. Thus, for most practical pur-
poses, og = 0q;.

5.4 A Strain Tensor for Infinitesimal Deformations

We begin our discussion of strain tensors by developing one that can be used to
write the Boltzmann superposition principle in a more general form that describes
responses to deformations of arbitrary kinematics, i.e., shear, extension, or any
combination of these.

The simplest description of deformation of a fluid element is one based on
position vectors of fluid particles within this element. Figure 5.6 shows the posi-
tion vector x(#;), for the particle A at time #; as well as the position vector x(%),
for the same fluid particle at another time #,. The use of two times, or two states of
the fluid element, is essential in discussing strain, as strain is a measure of the
difference between two states. We will take ¢, to represent a time when the fluid is
in a reference configuration, with which the configuration at any other time ¢, is to
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O (ORIGIN)

Fig. 5.6 Position vectors of particle A at times 1,[xa(71)] and £ [Xa ()], and displacement
vectors at time #, of neighboring particles A [ua(72)] and B [ugA(z;)] relative to their positions
at time #,. The position vectors of particle B at #; and #, are not shown; they would be lines
connecting the origin with the two points labeled B

be compared. Thus, we will say that a material element is in a strained state at time
t,, if it undergoes deformation in the time interval between ¢, and t,.

To describe deformation it is necessary to look at two fluid particles and the
change that occurs in their relative positions between times #; and #,. In Fig. 5.6
two such particles are shown, with the position of the second particle with respect
to the first given by the vector dx(¢;) at time #; and by 0x(f,) at time #,. The
displacement vector u(z;) is the position of a particle at time #, relative to its
position at time #;. The relative variation of the u(z;) vectors for the two fluid
particles obviously provides information about the deformation of the fluid ele-
ment containing these particles. In the rigid displacement of the element shown in
Fig. 5.7 there is no deformation, and the displacement vectors for the two particles
are the same. This suggests that the gradient of u may be useful as a quantitative
measure of strain. This gradient has nine components:

aui(lz)
a)Cj (I] )
Fig. 5.7 Displacement
vectors (%) and ug(z,) of B
two particles located in a fluid A ]

element for rigid translation \ ug(t)
of the element. There is no

deformation of the element in
I, u,(ts) \ B

this process
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These nine quantities are the components of a tensor, and they clearly contain
all the information necessary to describe the relative displacements of the two
neighboring particles. While this tensor is not suitable as a general measure of
strain, if we limit our attention to flows in which this gradient is always very small,
a useful measure of strain can be defined as follows:

aui(l‘z
6)Cj (t1

~—
()]
~

uj(t2
i (11

+

~—
~—

where 7;(71,1,) is the infinitesimal strain tensor at rime 1, relative to the configu-
ration of the same fluid element at time #;. Like the stress, this is a symmetric
tensor, because if the order of the indexes i and j is reversed, the value of each
component remains unchanged.

The strain rate tensor, also called the rate of deformation tensor, is defined by
Eq. (5.13).

i = dy/di (5.13)
Since the components v; of the velocity vector are given by:

vi = du;/dt (5.14)
Equation (5.13) can be expanded as shown by Eq. (5.15).

. an 6vi
Vi = aXi + an (515)
This definition of a rate of deformation is not limited to use in describing
deformations that are infinitesimal in total magnitude, as its definition requires
only a measure of strain valid during an infinitesimal interval of time.
As an example of the use of the infinitesimal strain tensor, we note that for
simple shear of magnitude y:

6u1 6142

712 = 721 :a

S an (5.16)

The variation with time of the components of the position vector for simple
shear are:

x1(6) =x1(t1) +x2(t1)[y(t2) — (1)) (5.17a)
x () = xa(t) (5.17b)
x3(t2) = x3(1)) (5.17¢)

The only nonzero component of the displacement vector is u;.

ui(t2) = x1(t2) — x1(n) = x2(t)y(2) — p(t1)]
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and the components of the gradient of the displacement vector are:

Oui(t) 0 [y(t2) —7(r1)] O
Quj(n) 8 8 8 (5.18)

Thus, the only nonzero components of the infinitesimal strain tensor defined by
Eq. (5.12) are:

T2 = = () — () =7 (5.19)
and the only nonzero components of the rate of strain tensor are:
T2 =P =7 (520

Likewise, for simple extension, it can be seen that in the limit of infinitesimal
deformation, the Hencky and linear strains become equal to each other, and that
both become equal to 2(0u;/0x;). All of the components of the deformation
gradient tensor for simple extension are shown below, where ¢ = ¢(t,) — &(f;).

€ 0 0
Gult2) o ;g (5.21)
i) 1o 0 ¢

Thus, the components of the infinitesimal strain tensor are:

[2¢ 0 0]
0 0 —¢

2% 0 0
=10 —& 0 (5.23)
0 0 —i]

We are now in a position to write the constitutive equation for the Newtonian
fluid, for which the strain tensor for small deformations is always applicable.
Using the stress and strain fensors in place of the scalars sufficient for the special
case of simple shear, we have:

0 9 0
oi=ny;=n|v 0 0
0 00

This equation tells us how to calculate all the components of the stress in any
flow of a Newtonian fluid. Applying this to uniaxial extensional flow:
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26 0 O
oi=ny;=n0 —& 0 (5.24)
0 0 =&

And since the extensional viscosity is defined as the net stretching stress og
divided by the strain rate, it is given by:
O _ 011 — 022

& &

Ng 3n (Newtonian fluid) (5.25)

The extensional viscosity of a Newtonian fluid is thus simply three times the
(shear) viscosity.

5.5 The Boltzmann Superposition Principle in Tensor
Form

The tensorial forms of the Boltzmann superposition principle are obtained by
replacing the shear stress and shear rate in Eq. (3.9) by the stress tensor and the
strain tensor developed above:

t

wi(t) = [ Gl 1)y (1) (5.26)
oyt = / Glt — )iy ()t (5.27)

Using Eq. (3.20) we can obtain the linear constitutive equation corresponding to
a single Maxwell element.

t
s(0) = | Goexpl(t —¢)/aig(0 (5.28)
And the generalized (multimode)Maxwell model is:
1

7i(0) = [ 3 Gulexpl—(0 - )/} (529
k=1

where Gy and 7y are the initial modulus and relaxation time corresponding to each
Maxwell element.

There is no differential equation form of Eq. (5.27), but the special case of the
Maxwell model can be written as follows:
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oij + r% = Gtjy (5.30)

And if a discrete spectrum is used, as in the generalized Maxwell model (5.29),
Eq. (5.30) is valid, with a separate differential equation for each relaxation time
and the stress given by the sum of those given by these equations.

The tensorial form of the Boltzmann superposition principle can be used to
show how extensional flow properties are related to the shear relaxation modulus.
For an incompressible material undergoing start-up of steady uniaxial extension
the components of the strain rate tensor are given by Eq. (5.23), which is shown
again below.

2% 0 0
=10 —& 0 (5.23)
0 0 —é

Thus, the net stretching stress is given by Eq. (5.31).

t t t

OE =011 — 0 = /G(t — )26 — (—¢))df = 3[9/ G(t—1)df = Sé/G(s)ds

0 0 0
(5.31)
And the tensile stress growth coefficient is:
1
() = ”Eé(t ) _3 / G(s)ds (5.32)
0
But in Chap. 3 we showed that the shear stress growth coefficient is:
t 1
) = ‘TS/’) - /G(t /) = /G(s)ds (3.10)

0 0

Thus the function of time given by Eq. (3.32) is just three times the stress
growth function for shear. This relationship is useful in the validation of exten-
sional rheometer data.

ng (1) = 30" (1) (5.33)

5.6 Strain Tensors for Large, Rapid Deformations

The strain tensor defined by Eq. (5.12) is not suitable for the description of large
deformations and must be replaced by a finite measure of strain. From a physical
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point of view, the complexity that arises in describing large, rapid deformation of
viscoelastic materials arises from the fact that stress relaxation occurs in a material
element, not at a stationary point in space. In other words, the stress in each fluid
element depends on the strain history of that fluid element, so each fluid element
has its own relaxation “clock”. As a result, in order to meet the most basic
requirements for a strain measure to describe nonlinear phenomena it must track
fluid elements.

Some general principles of continuum mechanics can be used to identify likely
candidates. The most important one is the principle of material indifference, which
states that a material’s rheological behavior reflects a basic physical property and
therefore cannot depend on the frame of reference used to describe the behavior.

5.6.1 The Cauchy and Finger Tensors

We present in this section two strain measures that meet the requirements of
material indifference and that have been found useful in describing nonlinear
viscoelastic behavior. These are the Cauchy tensor Cj;(#;, ) and the Finger tensor:
Bij(t1, 1,). The time arguments have the following significance: ¢; is the time at
which a material element is in its reference configuration, and ¢, is the time at
which the strain is evaluated relative to the configuration of the element at time ;.
These tensors are developed from first principles in Appendix B for readers who
are particularly interested, but to follow the contents of this chapter, it is only
necessary to know the components of these tensors for simple shear and simple
extension.

For simple shear, the components of the Cauchy and Finger tensors are shown
below.

1 [(t2) — (1)) 0
Ciln,) = | () = 9] {1+ b() =9} o (5.34)
I 0 0 1
and
{1+ b =92} o) = ()] 0]
Bij(11,12) = (1) — 9(02)] 1 0 (5.35)
i 0 0 1

For simple extension, the components of the Cauchy and Finger tensors are:

e2le(r)—e(n)] 0 0
Ci(t1, 1) = 0 e~ [e()—e(n)] 0 (5.36)
0 0 e [e(t2)—&(1)]
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2le(n)—s(r2) 0 0
Bih)=| 0  ebw-l g (537)
0 0 e*[s(fl)*ﬁ(fz)]

We note that the components of the Cauchy and Finger tensors are not zero
when a material is in its undeformed state, since e = 1, and both tensors become
equal to the unit tensor.

1 0
Bij = Cij =10 1
0 0

i)

For this reason, it is sometimes convenient to use the Cauchy strain tensor and
the Finger strain tensor, defined as follows:

Cauchy strain tensor = Cj; — ;i

Finger strain tensor = dj; — Bj;
where J;; is the Kronecker delta defined as follows:

=1 =]
9 =0 i #j)

It is not difficult to show using equations in this chapter to show that for
infinitesimal deformations:

7ij = Gj — 0 = dij — Bjj

It is comforting to find that the Cauchy and Finger strain tensors reduce to the
strain tensor for very small deformations in the limit of vanishing strain.

5.6.2 Reference Configurations

In the definitions of the Finger and Cauchy tensors provided in Appendix B the
meaning of the time arguments ¢, and ¢, is as follows: Bjj(ty, t,) is the Finger tensor
at time t, relative to the configuration of the fluid element at time #,. Thus, time #,
establishes the reference state with respect to which the strain is to be measured at
any other time. In an experiment that begins when the sample has been at rest for a
long period of time and is free of deforming stresses, it is convenient to let 7, be the
time 7, at which deformation begins.

This is the obvious reference state for a laboratory test involving a homogeneous
deformation starting from the rest state, but it is not useful for writing a general
model capable of predicting the viscoelastic response to a complex sequence of
deformations of varying kinematics, because even if an “initial” configuration could
be established, it would become less and less relevant as a fluid element moved along
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due to the fluid’s fading memory and would eventually lose its relevance altogether.
We want to predict the stresses in a fluid element at time ¢ based on deformations that
occurred at earlier times ¢, where ¢ < 1. For a viscoelastic fluid the only configu-
ration that continues to have any unique significance is that at time z. This suggests
that strains be relative to the configuration of a fluid element at time ¢. Therefore,
we take 1, to be 7, the time at which a past contribution to the strain took place, and
we let the reference time #; be ¢, the time at which the stress is to be evaluated. In
other words, the fluid element is in its reference configuration at time ¢. The Finger
tensor, evaluated at time 7, relative to  is thus Bj;(t, 7).

5.6.3 Scalar Invariants of the Finger Tensor

A vector has one scalar invariant, i.e., a scalar that is determined from the com-
ponents of the vector but whose value, unlike those of the components, is inde-
pendent of the coordinate system used to describe the vector. The single scalar
invariant of a vector v is its magnitude v given by:

v=1/vi+v3+13

A second order Cartesian tensor has three scalar invariants. In this book, we
will make use of the scalar invariants of the Finger tensor for an incompressible
fluid. For a given deformation, these are:

I, (By) = Bi1 + By + B (5.38)
L(Bj) = Cii +Cy + C33 (5.39)
L(By) =1 (5.40)

Since Bj; is a function of the two times #; and #,, the scalar invariants also
depend on these two quantities. For example, the values of /,(B;;) and I»(B;j) for
simple shear, using the diagonal components from Eqs. (5.34) and (5.35) are:

I, (By) = L(By) = [(r) — ()]’

+3 (5.41)

5.7 Integral Constitutive Equations Based on Continuum
Mechanics Concepts

A first, empirical step to develop an empirical constitutive equation to describe
nonlinear viscoelastic phenomena is to replace the infinitesimal strain tensor y;; in
the Boltzrnann superposition principle by a measure of finite strain that meets basic
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continuum mechanics criteria. If y; in the Boltzmann superposition principle is
replaced by such a strain tensor, the result is called a model of finite linear
viscoelasticity or a quasilinear viscoelastic model. It will be helpful to examine
some simple examples.

5.7.1 Lodge’s Rubberlike Liquid Model

Either the Cauchy or the Finger tensor, or a combination of the two, can be used to
formulate a model of nonlinear viscoelastic behavior, and rational mechanics
provides no guidance as to which, if either, choice will prove useful. Experimental
observation, however, has shown that for a viscoelastic fluid, if only one tensor is
to be used, the Finger tensor gives the best indication of behavior that is just
beyond the regime of linear viscoelasticity. The result of using the Finger tensor to
generalize the Boltzmann superposition principle is as follows:

t

Tii(1) = / m (t —1')Bij(t,1)dr’ (5.42)

—00

Lodge called Eq. (5.42) the rubberlike liquid and reported its predictions for many
types of deformation [4].

The memory function m(t — ¢') is related to the linear relaxation modulus
G(1) as follows:

G(t) = / e (5.43a)

mt—1t)=——-— (5.43b)

In other words, the relaxation modulus is identical to the one that appears in the
Boltzmann superposition principle, which governs the relaxation after a strain that
is very slow or very small. The only new feature is the use of a strain tensor for
describing large, rapid deformations.

For the generalized Maxwell model, Eq. (3.20), m(t — 7) is:

m(t —1) = f:ECXP (—t;ﬂ) (5.44)

i=1 i

And using this in Eq. (5.44), we obtain Lodge’s network model.

t
(f) — Ng _t_t/ B (t.7)df 5.45
Tij(1) = § _exp - i(r,1)dr’. (5.45)
o i=t !
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Equation (5.45) is the integral form of a differential constitutive equation called
the upper convected Maxwell model. It is one of a series of differential equation
models that differ only in the type of time derivative involved. It is the upper
convected derivative that appears in the differential form of Lodge’s network
model. There is also a lower convected derivative whose use leads to a differential
equation that is equivalent to Eq. (5.45) with the Finger tensor replaced by the
Cauchy tensor Cj;. In addition there is a corotational derivative that yields the
corotational Maxwell model. All of these special time derivatives involve tracking
a fluid element, since it is the relaxation of a fluid element that is governed by a
relaxation model. For example the corotational derivative translates and rotates
with a fluid element, based on the fact that simple translation and rotation do not
involve deformation. One can find detailed descriptions of these models in the
book by Bird et al. [3]

The predictions of the rubberlike liquid for the shear stress in any simple shear
flow are the same as those of the theory of linear viscoelasticity, but the first
normal stress difference is:

1

M) = [ me= 0l - p0)Par (5.46)

For step shear strain, the first normal stress relaxation function is:
Ni(t,7) =1*G(1) (5.47)
And the stress ratio introduced above Eq. (4.6):
Ni(t,7) _
a(y,1)

This is the Lodge-Meissner relation, which has often been observed to hold for
molten polymers well beyond the normal regime of validity of the rubberlike
liquid equation.

In steady simple shear, the first normal stress is.

Ni(3) = 72 / m(s)s2ds = 237 / Gls)sds (5.48)
0 0

And this implies that the fist normal stress coefficient is independent of shear rate:

o]

N
¥ == / m(s)s*ds =2

7 G(s)ds (5.49)

\8

0 0

It has been found that in the limit of very small shear rates, N; for polymer
melts does become proportional to 7%, and it was this observation that inspired the
definitions of the normal stress coefficients. Thus, Eq. (5.49) gives the correct
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limiting low shear rate behavior of molten polymers and thus provides an accurate
prediction of ¥ .

During steady simple shear, if the shear stress is suddenly eliminated while the
fluid is held between the shearing surfaces it will exhibit recoil, i.e., negative
strain, and the ultimate recoverable shear strain predicted by the rubberlike liquid
model is given by Eq. (5.50).

" 20

The quantity on the right hand side of Eq. (5.50) is sometimes called the
“recoverable shear”, but it is not equal to the actual recoverable shear except at
very low shear rates.

Step shear strain in extension is not a practical experiment for a molten plastic,
and the test usually used is tensile start-up flow. Using the appropriate components
of the Finger tensor given in Eq. (5.37), together with Eq. (5.42) we can derive the
tensile stress growth coefficient for a rubberlike liquid.

Yoo (5.50)

t

ng(té) = / G(s)(2¢* + e7¥)ds (5.51)
0

To obtain a clearer picture of the behavior of the rubberlike liquid at the start-up
of extensional flow, we can use the relaxation modulus of the Maxwell fluid given
by Eq. (3.19) to obtain:

. 2;/’ T , n B PO
+ — _ - 1(1=2e)t/4 _ L L(1+eA)e/A
g (€) <1 - 2@;1) [1 ¢ } + (1 +é),) [1 ¢ } (5:52)

where 7 is equal to Gyt for a Maxwell fluid.

Figure 5.8 is a plot of 15 /n versus (#/7) for several values of (ét) As the
Weissenberg number (&1)approaches zero, we recover Eq. (3.36) for linear vis-
coelastic behavior. The curves for nonzero (&1) rise above the linear curve, and
this type of behavior is called strain hardening, which is observed for long-chain
branched polymers like LDPE. In reality of course, the stress cannot increase
without limit, and either a steady stress is reached or the sample ruptures.

We have seen that by replacing the infinitesimal strain tensor by the Finger
tensor we obtain a model that predicts a nonzero first normal stress difference and
strain hardening in extension. However, the shear stress predicted in shear flows is
the same as that of linear viscoelasticity, and the second normal stress difference is
zero. We will now examine the effects or introducing a strain-dependent relaxation
modulus and other measures of strain.
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5.7.2 Strain Dependent Memory Function and the Cauchy
Tensor

While staying with the Finger tensor in a single integral constitutive equation,
there have been suggestions that the memory function be permitted to depend on
strain as well as time. A simple example is to let the memory function depend on
the scalar invariants of the Finger tensor, which are given by Egs. (5.38) and
(5.39). The resulting constitutive equation is:

a(t) = oa(t) = /M[(f—/%11(Bij)aIz(Bij)]Bij(f,t/)df' (5.53)

—00

As explained in Chap. 4, stress relaxation data for melts and for crosslinked
rubbers can often be described by a relaxation modulus that is the product of a
time-dependent term and a strain-dependent term. This observation suggests that
the memory function for a polymeric liquid can be expressed as the product of a
strain-independent function of time and a function of strain. The strain-dependent
factor is called the damping function, which was introduced in Chap. 4, where
separability was expressed by Eq. (4.1).

G(t,7) = G(t)h(y) (4.1)

Wagner [5] made use of this idea to define the nonlinear memory function
shown below.

M[(t — l‘/),Il,Iz} = I’I’l(l‘ — l,)h(ll,lz)

where h(I;, I,) is the damping function and m(t — ) is the memory function of
linear viscoelasticity. The resulting constitutive equation is:
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aij(t) = / m(t — )h(l1, 1)Bj(t,1')d! (5.54)

This is not a complete constitutive equation, since it contains the empirical
function Ah(ly, I;), which must be determined by fitting experimental data In
addition, it is not possible to determine the dependence of 4 on the two scalar
invariants of Bj; using data from conventional experiments. This is because in
simple shear and in simple extension the two invariants cannot be varied inde-
pendently. However, if A(y) has been determined using step shear data, it is often
possible to make approximate predictions of behavior in other shear flows. A
constitutive equation of the form of Eq. (5.54) predicts a nonlinear extensional
stress growth coefficient that does not increase without limit, but the second
normal stress difference is still zero.

A non-zero second normal stress difference is obtained when the Cauchy tensor
is used, but by itself this does not lead to realistic predictions. The BKZ model [6]
was inspired by the theory of rubber elasticity and makes use of both the Finger
and Cauchy tensors along with a strain-dependent elastic energy potential function
that depends on the history of the first and second invariants of the strain tensor.
The strain energy function is determined from experimental data.

5.8 Continuum Differential Constitutive Equations

For use in numerical flow simulations, differential equations are much preferred to
integral equations, because they do not require the tracking of each fluid element to
determine its strain history. The differential equation version of the Maxwell
model was shown in tensor form as Eq. (5.30). It was also noted that (5.30) could
be made into a nonlinear model equivalent to Lodge’s network model, obtained by
inserting (5.44) into (5.42), by replacing the derivative of the stress tensor by the
“upper convected derivative” of the stress. Differential equation models that can
make more realistic predictions are based on more sophisticated network ideas. A
popular example is that of Phan-Thien and Tanner [7], which has been used for
many flow simulations.

5.9 Constitutive Equations from Molecular Models

The Doi-Edwards tube model is much too complex for use in modeling any but the
simplest flows, for example homogeneous simple shear. In order to arrive at a
closed-form constitutive equation it is necessary to make several simplifying
assumptions:
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1. There is no chain stretch, i.e., retraction is instantaneous.
2. Each segment of the tube orients independently of the others; the independent
alignment assumption.

The result is Eq. (5.42) with the memory function equivalent to Eq. (3.84), shown
below as (5.55),

_8G
T 5gum?

m(s) Z exp(—sp?/14) (5.53)

podd

and the Finger tensor replaced by the Doi-Edwards strain tensor, Q(¢, ), whose
components can be represented in terms of the components of the Finger and
Cauchy tensors as follows:

0ii(1) = ¢1 (I, L)By(t, 1) + by (I, ) Cyi (2,7 (5.56)

The two functions of the first and second invariants of the Finger tensor, given by
Egs. (5.38) and (5.39), cannot be written in a closed form, but Currie [8] showed
that they can be approximated by the following analytical expressions.

¢ =-— (5.57)

5
2= LJ 1)k + 13/4)1/2] (5-58)

where: J =1, +2(, + 13/4)'/2

This model predicts a damping function that is in good agreement with data for
linear, high-molecular weight, monodisperse polymers, but other predictions are
not accurate. In particular, the shear stress in steady simple shear has a maximum
and a minimum as a function of shear rate, implying that it has the same value at
three shear rates. At one time this was thought to explain the spurt and oscillatory
flow phenomena sometimes observed in capillary flow and described in Chap. 6.
But these phenomena are now known to result from slip.

Over the years since the appearance of the first tube model, many modifications
have been proposed to deal with its deficiencies. One of these is constraint release,
to deal with the fact that the tube does not stand still while the molecule inside
relaxes. This is especially important for polydisperse materials, for which the
double-reptation semi-empirical concept has been found useful. Another devel-
opment was convective constraint release, introduced to correct the incorrect
prediction of a multivalued stress in steady shear flow. Also, a retraction time was
introduced to allow for time-dependent retraction.

If instead of using molecular concepts to calculate a relaxation spectrum, an
experimentally determined one is used, it has been possible to develop models that
have had some success in simulating the flow of linear and long-chain branched
polymers. An example is the molecular stress model of Wagner et al. [9, 10].
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Additional ideas have been introduced to deal with long-chain branching, which
suppresses reptation so that relaxation must rely instead on fluctuations of arm
length. One of these, the pom—pom model was developed to model a molecule with
two branch points, each with multiple arms [11]. It has been used to model the
flow of LDPE into and out of a slit [12]. A modified form called the “extended
pom—pom” was developed for the simulation of plastics forming operations [13].
However, the connection between the detailed structure of the polymer and the
model is now completely lost. And there is also very little to link the model to the
classical concept of reptation. What is left is an empirical model that is an
improvement on earlier ones based on continuum concepts alone.

5.10 Numerical Simulation of Melt Flows

Simulations of melt forming processes have proven useful for flows in which
viscoelasticity does not play an important role. These are mainly internal flows in
dies, extruders and molds. Even in these flows the presence of a sharp corner, for
example when the diameter of a channel suddenly decreases, poses a major
challenge because of mathematical singularities that arise at such a point. And
when melt exits a die into air, its behavior is governed primarily by the viscoelastic
response to the stresses generated during die flow. Here the lack of a reliable
constitutive equation limits the usefulness of the flow model.
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Chapter 6
Measurement Techniques

Abstract The measurement of the rheological behavior of viscoelastic melts is
much more challenging than determining the viscosity of a Newtonian fluid, but
reliable data on melts are essential for resin characterization, quality control,
evaluating processability and for use in process simulation. This chapter describes
the instruments and techniques used to learn about the rheological behavior of
molten polymers. Rotational rheometers are used to obtain linear behavior but are
of limited utility in exploring nonlinear behavior. Capillary rheometers are used to
determine viscosity at moderate to high shear rates and to study the occurrence of
flow instabilities and melt fracture. The extrusion plastometer, commonly called a
melt indexer and widely used in the plastics industry, is a useful tool although not a
true rheometer. The use of rheometers as process instruments and in high-
throughput resin development is described. Finally, extensional rheometers for
melts are described, and applications are discussed.

6.1 Introduction

In the plastics industry, data from rheological measurements are used for the
following purposes:

1. Polymer characterization

Data provide information about the structure of the melt, including average
molecular weight, molecular weight distribution, and branching structure.

2. Quality control—statistical process control

This is a specialized type of characterization in which a particular rheological
characteristic is used to indicate the degree to which a batch of resin adheres to
product specifications. Current practice is to use statistical process control rather
than product quality control to avoid producing off-spec product.
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3. Measure of processability

In the development of new polymers or new grades of existing polymers, it is
highly desirable to be able to evaluate the potential of a candidate resin for use in a
melt forming process using a small sample. We will see in later chapters that for
processes in which viscoelasticity plays an important role, there is no fully reliable
way to do this, and it is necessary at some point to evaluate the material using
production scale equipment. However, it is often possible to do a preliminary
screening of candidate materials based on laboratory tests in order to limit the
number of resins to be evaluated using process machinery.

4. Data for process simulation

The simulation of melt forming operations requires a model describing rheo-
logical behavior, and data are required to develop such models. However,
advances in process simulation are currently limited by the availability of reliable
constitutive models for nonlinear viscoelastic flow behavior.

It is important to distinguish between two types of rheological characterization.
One is the measurement of a well-defined rheological property, such as viscosity
or storage and loss moduli. The second type is an empirical test that does not yield
a well-defined physical property but is used to compare materials based on the
result of a simple test. The principal example is the extrusion plastometer, com-
monly called a melt indexer. Such testers are used primarily for quality control and
statistical process control.

The most-used tools used to make rheological measurements on melts are
capillary rheometers, rotational rheometers and extensional rheometers. In order to
use these instruments effectively the user must understand how the raw data are
related to the property to be measured and must have the skill required to obtain
reliable data. Rheological measurements on melts are challenging in several ways.
Issues of concern include residual stresses, flow instabilities, thermo-oxidative
degradation, and wall slip. Additional issues in the case of rotational rheometers
are fixture alignment and sample rim trimming. These issues are discussed in this
chapter.

6.2 Rotational and Other Drag-Flow Rheometers

In a drag-flow rheometer, one surface is moved relative to another to generate
shear in the fluid between them. The simplest example is the flow between two flat
plates, one of which translates with respect to the other, as was illustrated in Fig.
2.1. There are rheometers based on this principle, and Fig. 6.1 is a sketch of a
sliding plate rheometer developed by Dealy et al. [1, 2]. Such instruments are used
for the study of wall slip and non-linear viscoelasticity but are not convenient for
linear viscoelastic characterization.
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Fig. 6.1 Sketch showing
basic features of the sliding
plate rheometer for melts.

1 = sample, 2 = bearing table,
3 = back-plate, 4 = stationary
plate, 5 = Support for frame,
6 = gap spacing shim,

7 = shear stress transducer,

8 = linear actuator, 9 = oven

In preparing samples for the rheometers described in this section, it is important
to avoid residual stresses arising from the sample molding process. A hot press is
usually used for sample molding, with sample particles placed in the cavity formed
by a circular hole in a sheet of metal placed between the platens. If an excess of
polymer is placed in the cavity, significant compression can result, which can
compromise data. It is also important to ensure that samples are free of moisture,
monomer, and dissolved gases. This usually requires vacuum drying at an elevated
temperature. Polystyrene is especially sensitive to dissolved gas, which plasticizes
the polymer. It is recommended that samples be conditioned for 8 h at room
temperature or 2 h at 80 °C. Absorbed moisture is a very common problem with
polar polymers. The special difficulties caused by reactions involving water in the
case of polyesters and polyamides are dealt with in Sect. 6.9 at the end of this
chapter.

For the determination of viscoelastic behavior in shear, rotational rheometers
are most commonly used. In such devices the melt is placed between to circular
surfaces, one of which rotates with respect to the other. Two fixture geometries are
used, cone-and-plate and parallel disk, also called plate—plate, which are shown in
Fig. 6.2. Cone-plate fixtures have the advantage that the shear rate is very nearly
uniform throughout the sample, and this is essential for tests such as large-strain
stress relaxation and start-up of steady shear and for measuring viscosity and
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Fig. 6.2 Parallel disk (plate—plate) and cone-plate fixtures for use in rotational rheometers

normal stress differences. Sample preparation and loading, however, are much
simpler with parallel disk fixtures, and these are preferred for studies of linear
viscoelasticity. Because of the onset of flow instabilities [3] rotational rheometers
are not able to access high shear rates and are thus limited in their ability to probe
nonlinear behavior.

Whenever possible, calibration should be based on the measurement of basic
quantities such as torque and angular displacement. Scatter in results from several
tests arise mainly from variations in gap spacing, sample trimming and tempera-
ture. Round-robin tests have revealed that variability from one laboratory to
another is much higher than that within a laboratory, probably due to differences in
test procedure and equipment. When establishing the limiting strain amplitude for
linear behavior, it is important to realize that this depends on frequency.

Two types of motor-drive are available. In controlled-strain or controlled rate
(CR) instruments a motor rotates one fixture, while torque and normal force
transducers are coupled to the stationary fixture. In controlled-stress (CS) instru-
ments, the rotating fixture is driven by a motor designed to generate a prescribed
torque. Thus, torque determination and motion generation are combined. A
detailed discussion of the differences between these two types of instrument is
available [4].

For many years, controlled-strain (CR) units made use of DC motors in which
commutation was by means of brushes, while brushless (electrically commutated,
EC) motors were later introduced. An optical encoder is generally used to track
rotary displacement, the signal from which goes to a closed-loop control motor
control system. The compliance of the body and rotor shaft causes a mismatch
between the encoder output and the deformation experienced by the sample, and
the force balance transducer was developed to deal with this problem. A
description and sketch of the FBT can be found in [5, p. 344]. A drag cup motor
applies a torque to balance that driving compliance, and the motor current is
proportional to the torque. This device adds its own time constant to the system.
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With drag cup motors, the time required for the fields to build up limits their use
at high frequencies and for generating large amplitude oscillatory motion. Air-
bearing supported EC (brushless DC) motors are now used in some CS rheometers,
and this means that the stator torque follows the stator current almost instanta-
neously. Using an optical encoder indication of the strain or rate in a feedback loop
makes it possible to operate in a controlled strain or rate mode.

CR units are suitable for oscillatory shear at moderate to high frequencies and
steady shear, including start-up of steady shear, and for the measurement of viscosity
and first normal stress difference. CS instruments are advantageous for creep and
recoil, especially when very low strain rates are needed to probe the terminal region.

For creep and recovery tests, it is very important to minimize friction, as this
introduces an error in the torque signal. This is especially crucial for creep
recovery (elastic recoil) as this requires that the torque be suddenly reduced to
zero, and this is virtually impossible to achieve with an air bearing due to the small
torque resulting from the air flow. Magnetic bearings can eliminate this residual
torque.

The equations used to calculate stress and strain in cone-plate and parallel plate
rheometers are based on the following assumptions:

. Inertia can be neglected because of the high viscosity of melts.

. Surface tension at the exposed edges of the sample does not affect the torque.

. The free surface at the edge of the sample is spherical in shape.

. The flow is uniform out to the edge.

. In the case of cone-plate geometry, the cone angle is sufficiently small that
certain trigonometric identities can be used.

[ O I S

Assumptions 1 and 2 are generally valid for melts, and number five is valid for
the cone angles normally used. Assumption 4 is not always valid, particularly in
cone-plate fixtures, for reasons that are given in the next section. Care is required
to ensure that assumption 3 is valid. The usual procedure is to use a sample
somewhat larger than needed to fill the gap, bring the surfaces together until the
gap is a bit larger than its final value, trim the extruded polymer to give a smooth
surface, and then set the final gap spacing. It has been reported [6, p. 810] that the
edge shape changed during repeated tests with the same sample of a polyisoprene,
and this resulted in a large reduction in stress. A concave surface must be avoided
as it initiates unstable flow [7]. There is always a small residual uncertainty due to
the edge shape issue. Overall, even with the best possible practice using com-
mercial rheometers, the best accuracy that can be achieved for molten polymer in
rotational rheometers is about +3 %.

6.2.1 Cone-Plate Rheometry

The fixture parameters are the radius R and the cone angle f. Either the torque
M(t) or the angular displacement ¢(f) is programmed to vary with time in a
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prescribed manner. For steady shear, M and €, the angular velocity in rad/s, are
constant. If the cone angle is less than 0.1 rad, the error related to the small-cone-
angle approximation is less than 1 %, and for f§ < 0.2 rad the error is about 2 %.
The resulting approximate values of the shear strain, strain rate, shear stress and
normal stress differences are given by the following expressions. Derivations of
these can be found in the book by Macosko [5].

y=/B (6.1)

7=Q/B (6.2)

0 =0¢pp = 2?3;3 (6.3)
2F

N = ) (6.4)

The modulus amplitude in small-amplitude oscillatory shear is:

3Myfp

= SR (6.5)

d
where M and ¢, are the torque and angular displacement amplitudes respectively.
At small strain amplitudes the storage and loss moduli are calculated by rheometer
software using Eqgs. (3.41) and (3.42).

Controlled strain is the preferred mode of operation for nonlinear studies. In
step-strain experiments, an important source of experimental error is the deviation
of the actual strain history from a perfect step [8]. Methods to deal with this
problem have been reported [9, 10].

One uncertainty in cone-plate data arises from the precision with which the cone
was fabricated. In order to avoid problems arising from a sharp apex, cones are
truncated, and in setting the gap, the virtual height of the missing cone tip must be
calculated. A comparison of data from many laboratories indicated that the error in
stress due to uncertainties in cone angle and truncation height was 2.5 % [11].

Instrument compliance is another cause of concern in making mechanical
measurements, since the forces generated by the fluid in response to a deformation
will tend to twist and compress the rheometer components that also experience
these forces. Compliant components include shear and normal force transducers
and the rheometer frame. This problem can be dealt with by use of a force
rebalance transducer that corrects for the deformation by means of a servo. Most
rheometer manufacturers now provide such devices to compensate for twisting
deformations due to torque, and at least one also offers a normal force rebalance
transducer. The performance of an early torque rebalance transducer has been
described [12-14].

Wall slip becomes prominent in the shear flow of entangled, linear polymers
when the shear stress is sufficiently large over a period of time, and this represents
a serious limitation to the use of such flows to study nonlinear viscoelasticity,
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i.e., when the strain and strain rate are large [8]. When the substrate is steel or
another high-energy surface, it has been shown [15] that this phenomenon involves
partial disentanglement between molecules strongly adsorbed at the wall and those
in the bulk rather than cohesive failure at the polymer-metal interface. Thus, even
in the absence of flow instabilities, the actual strain in a rotational rheometer may
not be equal to the nominal strain calculated from the angular displacement and the
gap. But the bulk deformation may still be homogeneous in the presence of slip,
and in step strain or steady shear, if the true strain or strain rate is known, useful
data can be obtained by correcting the strain data for slip. But in transient flows, a
time-dependent slip transient is superposed on the viscoelastic response, and
rheologically useful information cannot be obtained.

Several types of flow irregularity occur in cone-plate flow of molten polymers,
and these limit these fixtures to use at low shear rates [3]. Some irregularities
manifest themselves as visible distortions at the edge of the sample. Edge fracture
starts as an axisymmetric indentation in the meniscus [16] like that sketched in
Fig. 6.3, and as the shear rate increases, the indentation develops into a crack that
penetrates into the sample, leading eventually to severe breakup and debonding
[17]. An advanced stage of fracture is sketched in Fig. 6.4 [18]. A second irreg-
ularity that affects the edge of the sample is the occurrence of edge vortices, which
are the ends of cone-shaped eddies that extend to the flow axis [19, 20] and are
thought to be associated with the first normal stress difference [10]. This type of
irregularity has also been observed in large-amplitude oscillatory shear [21, 22].
Finally, for polyethylenes in both steady shear [23] and step strain at strains greater
than two [24] a distorted edge has been observed. Larson [24] found that it was
necessary to wait several hours after this occurred to reproduce the original data in
an LDPE. It is generally not advisable to use the same sample for a series of
experiments in the nonlinear regime.

The effects of edge distortions can be avoided by use of a cone-partitioned-plate
fixture [25], but to make use of this fixture it is necessary to modify the oven
design. It was reported that this fixture could be used to measure shear stress at
shear rates up to 70 s™' for a linear polystyrene but that it was not useful for
normal stress measurement because of instrument compliance.

Fig. 6.3 Edge indentation
that is the first stage of edge
fracture
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Fig. 6.4 Edge fracture as
observed by Mattes et al. [18]

r(t)

— B

The first normal stress difference is usually determined by measuring the nor-
mal thrust F exerted on cone-plate fixtures by the melt, using Eq. (6.4). The
normal thrust is strongly affected by changes in the gap due to axial instrument
compliance as these cause squeezing or stretching of the sample. It also varies with
temperature much more than does the shear stress, so temperature control and
measurement are critical. And any variation in temperature due to control system
imperfections or viscous heating will change the melt density, contributing to the
squeezing and stretching. A servo-positioner can be used to keep the gap constant,
but the dynamics of the servo system may interfere with transient experiments.

The second normal stress difference is more difficult to measure than the first.
Techniques developed to accomplish this include the use of micro-miniature
pressure sensors [26] and cone-partitioned plate fixtures [27].

6.2.2 Parallel Disk Rheometry

Parallel disk fixtures in rotational rheometers are used primarily to determine the
linear viscoelastic behavior of melts. For cone-plate fixtures, disk-shaped samples
must be squeezed substantially between the cone and the plate, and this introduces
a normal thrust that can take a long time to relax. In addition, the molten sample
may not be centered with respect to the cone and plate after squeezing. While
methods for using parallel-disk fixtures to determine the viscosity [28] and the
nonlinear relaxation modulus [29] have been proposed, these are not recom-
mended, and cone-plate fixtures are preferred because of the approximate uni-
formity of strain and stresses throughout the sample.

The equations for calculating the storage and loss moduli from the torque
amplitude M, the phase angle 0, the disk radius and gap R and £, and the angular
amplitude ¢, are given below.

, 2Moh

G = nR4¢00085 (6.6)
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) 2Mh
TR,

sin d (6.7)

Most of the flow irregularities that occur in cone-plate rheometry can also
happen in parallel disk fixtures, but are generally much less troublesome because
of the small strains used to probe linear behavior.

Parallel disk geometry is also useful for creep tests within the regime of linear
viscoelasticy. Calculating the compliance from the torque and angular displace-
ment is straightforward, because the compliance is independent of radius. The
torque is fixed at My, and the angular displacement ¢(7) is measured as a function
of time. The shear strain at a radius r is:

(rit) = ¢ (}?r (6.8)

The creep compliance is independent of strain and thus of radius, which implies
that:

) _¢(n)r
(1) = a(r)  ho(r)

(6.9)

This relationship implies that the stress is also linear in r and can be represented as
follows:

o(r) = 20 (6.10)

The torque M, is related to the local shear stress by integrating from r = 0 to R.

R
¢(t) 2nR*
My = 2nridr = -~ 6.11
0 /U(F) nr-ar J(t)h 4 ( )
0
Solving for the creep compliance, we obtain:
R (1)
J(t) = 6.12
=S, (6.12)

6.2.3 Accessing the Terminal Zone Using Creep and Creep
Recovery

The plateau and terminal zones are of principal interest, because it is in these
ranges of frequency that viscoelastic behavior is most closely related to molecular
structure. For example, the zero-shear viscosity, which describes behavior in the
limit of zero frequency, is very sensitive to molecular weight. However, it may not
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be possible to reach the terminal zone using small-amplitude oscillatory shear,
because the time required is excessive or the torque signal is too low. In particular,
this arises when the polymer of interest has a broad molecular weight distribution
or a high level of long-chain branching. Creep measurements using a torque-
controlled rheometer can often be used to probe the terminal zone, but for very
polydisperse materials, particularly those with even a small amount of high-
molecular-weight polymer, creep measurements may also be problematic because
of the need to measure extremely slow strains while maintaining the stress at the
very low, constant value required to ensure that the behavior is linear. In addition,
thermo-oxidative degradation may take place if the experiment lasts many hours.
And a difficulty that arises when an air bearing is used is that it is not possible to
maintain the torque at precisely zero, although this problem can be avoided by the
use of a magnetic bearing.

If the torque level is increased, strain data are more precise, but if this is
allowed to continue to steady state the linear elastic regime will be vacated. Kraft
et al. [30] proposed a technique for determining the creep compliance up to the
steady-state without moving outside the regime of linear behavior. During creep at
a relatively high stress oy, they reduce the stress to zero at a time #;, when the
deformation is still within the linear range, and monitor the resulting recoil. This
experiment can be analyzed by use of Eq. (6.13), which is an expression of the
Boltzmann superposition principle for an experiment in which the stress, rather
than the strain, is the controlled (independent) variable.

2(1) = / J(t— 1)do(?) (6.13)

The unloading that takes place at #; represents a second creep experiment
commencing at this time and driven by a negative stress of —oo. From Eq. (6.13),
the resulting shear deformation, 7 (7), is related to the creep compliance as follows:

p(t) = J(t)ao +J(t — t1)(—00) = ao[J(t) — J(t — 11)] (6.14)

The creep compliance is only measured directly from ¢ = 0 to #;. However,
solving (6.14) for J(), we find that we can use the recovery data to extend J(f) up
to t = 2¢, as follows:

J(@t) =y() oo +J(t— 1) (1< t< 211) (6.15)

Now that J(¢) has been determined up to t = 2¢, this information can be used in
combination with the next portion of the recoil curve to determine the compliance
at times up to 3¢;. This procedure is repeated until the terminal zone is reached,
i.e., until J(#) becomes linear with time. Finally, the zero-shear viscosity is cal-
culated as the reciprocal of the slope of this line.

There remains the problem of combining creep data with storage and loss
modulus data to extend the characterization into the terminal zone. To accomplish
this, He et al. [31] calculated continuous retardation spectra using both modulus
and creep data and plotted these together. The resulting graph shows the zones in
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which each technique provides reliable data and the zone of overlap. They argue
that this procedure is to be preferred to the use of a discrete spectrum to combine
the data from the two types of experiment. To infer a continuous spectrum from
storage and loss modulus data, one never has data over the frequency from 0 to co,
as are ideally required, so there is uncertainty in any spectrum inferred from
experimental data. A traditional guideline is that the inferred spectrum is valid
between values of ¢ equal to the reciprocals of the maximum and minimum fre-
quencies at which data are available. However, Davies and Anderssen [32] showed
that the range of validity of the spectrum is substantially less than this.

6.3 Pressure-Driven Rheometers
6.3.1 Capillary and Slit Rheometers

Pressure-driven capillary rheometers are used to determine melt viscosity at high
shear rates and have been the rheological work-horses of the plastics industry for
many years. Their use has recently decreased somewhat as rotational rheometers
have become more widely used, and the complex viscosity is now often used in
place of viscosity. But capillary instruments are also used to observe extrudate
swell, sharkskin melt fracture, and die build-up (die drool).

The flow is generated either by a piston moving in a cylindrical reservoir or by
application of gas pressure to the reservoir. Downstream from an entrance region
the flow in the capillary becomes fully-developed, i.e. the velocity and shear stress
profiles become independent of distance from the entrance, if the flow is assumed
isothermal and we neglect the effect of pressure on viscosity. Raw data consist of
the reservoir pressures P4 corresponding to various volumetric flow rates Q, but to
calculate the viscosity one needs the wall shear stress oy, and the wall shear rate },,:

Data are sometimes reported in terms of a flow curve of apparent wall shear
stress @5, which ignores the entrance correction, versus apparent wall shear rate
74, which would be the shear rate for a Newtonian fluid:

_ PR

= 6.16
IA=L (6.16)
. 40

Va = — 6.17
YA R3 ( )

The equation for the apparent shear stress, (6.16), ignores the entrance pressure
drop, and Eq. (6.17) for the apparent shear rate is only correct for a Newtonian
fluid in the absence of wall slip. If the true viscosity—shear rate curve is needed,
corrections must be applied to both quantities.
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Figure 6.5 shows pressure data obtained by wall-mounted pressure transducers
in the reservoir and capillary [33]. The exit pressure indicated in the figure is
generally neglected. It is clear that use of the driving pressure in Eq. (6.16) yields a
wall shear stress that is significantly larger than that in the fully-developed flow
zone, where the pressure gradient is constant. The AP, shown in the figure is the
pressure drop that must be subtracted from P4 to give the pressure drop for fully-
developed flow throughout a capillary of length L.

Py = APy + APy (6.18)

If the driving pressure in Eq. (6.16) is replaced by AP.,, we obtain an expression
for the true wall shear stress.

AP.,R
2L

Bagley [34] proposed a method for obtaining the entrance correction that
involves the use of capillaries of several diameters. The procedure is illustrated in
Fig. 6.6. Plotting the driving pressure versus L/R for data obtained for given values
of the apparent wall shear rate, one extrapolates to zero P4 to get an end cor-
rection, e that can then be used to correct Eq. ( 6.16).

(6.19)

g, =

Py
™ T L/R + o) (6.20)

Fig. 6.5 Wall pressures T 1
measured in the reservoir and T, (iPa)
along the length of two 637 MPa
capillaries for the flow of a 3
HDPE. There is a sharp N
pressure drop in the AP N\
immediate neighborhood of
the entrance and a linear 4
pressure gradient after that. If
Py 1s neglected, Py, is the
quantity to be subtracted from ad
the driving pressure (e.g. \‘
6.37 MPa) to obtain the v

‘\Prll

pressure drop for fully-

3
developed flow in a capillary \‘

of length L. From Han [33]

1 Al
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The factor e is the hypothetical extra length divided by R that would yield the
true wall stress. It can also be related to the APy

e = APey /20y, (6.21)

A problem with this method is that the points on the plot often do not fall on a
straight line due to the effect of pressure on viscosity. In addition it is quite time-
consuming, requiring the use of at least three capillaries. A simpler method of
correcting for the entrance loss is the use of an orifice die [35]. Kim and Dealy [36]
reported that the most accurate determination of entrance pressure drop is obtained
when L/D is less than 0.5, and the entrance angle is greater than 90°. It is very
important to design the exit region to avoid its being wetted by the melt [36].
Otherwise the measured value of AP, will be too high [37, 38].

Another quantity sometimes used to report data is the apparent viscosity:

TR*Peyp

So1 (6.22)

Ma = o-w/ YA =

The true shear rate at the wall can be determined by use of the Rabinowich
correction, which requires the differentiation of data obtained using capillaries
having several radii [5, p. 240]. But a much simpler approximate method is based
on the power-law viscosity model and does not require the use of several dies
[39, 40]. According to the power-law model the wall shear rate in a capillary is:

: 3n4+1\"T 40  [(3n4+1\"T.
e - o (623)

4n nR3 4n

But over the range of values of n from 0.2 to 1.3, a value of 0.83 for the shift factor
yields a viscosity error that is less than 2 %.

e ~ (0.83)9, (02<n<13) (6.24)

Fig. 6.6 Sketch showing the
use of a Bagley plot to
determine the end correction
e for capillary flow. This is
added to L/R to obtain the
effective capillary dimensions
that can be used with the
driving pressure to obtain the

true wall shear stress using
Eq. (6.20) /
0

0

L/R

Fa
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This implies that points on a log—log plot of shear stress versus apparent shear rate
can be shifted by 0.83 units to the left to obtain a reasonable approximation of the
shear stress versus shear rate curve.

Slit theometers are more difficult to build and use but are preferred for research
studies, because the flat flow channel makes it possible to mount pressure sensors
and to make optical measurements. As in the case of capillary rheometers, there
are established methods for calculating the true wall shear stress and shear rate
from experimental data [5].

The standard methods for interpreting capillary and slit rheometer data to
determine the viscosity are based on the assumptions that the temperature and
density are uniform and that the axial variation in pressure has no effect on the
viscosity. However, it is known that the effects of pressure-dependent viscosity
and viscous heating are significant and should be taken into account in analyzing
capillary flow data [41, 42], and the same is true for slit flow [43]. There is also a
variation in melt density, but it has been estimated that its effect on calculated
pressure and temperature coefficients is less than 5 %, even at high driving
pressures [41].

A final source of uncertainty in the analysis of data from pressure-driven rhe-
ometers is the possibility of wall slip [44]. In fact, well-entangled, linear polymers
nearly always slip at a sufficiently high wall shear stress. A large slip velocity often
announces itself in the flow curve (o vs..7,) by the occurrence of an oscillatory
shear regime in constant-piston-speed rheometers, or a sudden large jump in flow
rate (spurt) in pressure-controlled instruments. However, the presence of low slip
velocities at pressures below those at which these phenomena occur may not be
apparent from an inspection of data. More information on these phenomena is
provided in the following section.

Capillary [45] and slit [46] rheometers have been used to determine the effect of
pressure on viscosity, either by using a piston-driven instrument with a throttling
valve at the exit and operating at fixed flow rates [47-50] or by controlling the
pressure at the entrance and the exit and operating at a fixed pressure drop [51].
Park et al. [42] compared these methods and discussed methods for interpreting
data in terms of a pressure coefficient for viscosity. Issues that need to be
addressed are the variation of pressure along the capillary and viscous heating.

We note in conclusion that capillary rheometers are useful for the determination
of melt viscosity at shear rates far above those accessible in rotational rheometers.
However, at high shear rates pressure and temperature variations become impor-
tant and must be taken into account in the analysis of data. Also, the occurrence of
slip may limit the shear rate at which reliable data can be obtained. The shear rate
at which these phenomena appear depends on the polymer and its viscosity. For
example, a high viscosity HDPE can exhibit gross melt fracture at a shear rate
below 100 s~', while a high-flow (low viscosity) melt might produce reliable
results at shear rates several times this high.
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6.3.2 Extrudate Distortion: Gross Melt Fracture
and Sharkskin

Several polymers, particularly polyolefins and polystyrene, are subject to several
types of instability in capillary flow that occur at the entrance or the exit from the
die, and some of these also affect melt forming processes. A comprehensive
treatment of all these phenomena can be found in the book by Koopmans et al.
[52]. At the entrance to the capillary streamlines converge, and this results in
stretching along streamlines and high tensile stresses, especially when the entrance
has a sharp corner. One manifestation of these stresses is a swirling motion of the
melt entering the capillary, which results in extrudate in the form of a spiral.

A more dramatic instability is gross melt fracture (GMF), which occurs when
the tensile stress at the entrance is sufficient to cause the melt to rupture [53]. This
is shown in Fig. 6.7, which displays photos of cross-sections of extruded melt at
three flow rates [54]. The extrudate distortions were made visible by placing layers
of carbon-black-filled resin in the barrel. The entrance acceleration stretches these
layers out into cylinders. At the lowest shear-rate (top photo) the exterior of the
extrudate, as well as the black cylinders, are smooth, and there is no distortion. At
the next highest shear rate (center) there is an exterior roughness called sharksin,
which is discussed below, while the interior flow remains smooth, showing that
there is no entrance instability. The third photo (bottom) shows the result of melt at
the rupture at the entrance where the melt has been broken into pieces. Following
the rupture of the melt in the highly stretched region near the center, melt flows
into the capillary from the surrounding region. Then continuous flow reestablishes
itself, only to break once more.

Kim and Dealy [54] estimated the critical tensile stress for the onset of GMF.
They reported that this stress was insensitive to molecular weight but increased
with polydispersity and level of long-chain branching [55]. Furthermore, it
decreased somewhat with entrance angle at high flow rates at angles below 90°.

Gross melt fracture is not thought to have an important effect on melt forming
processes with the possible exception of high-speed wire coating [53]. However,
viscous dissipation plays an important role in wire coating due to the very high
shear rate near the wall, and the resulting large increase in temperature greatly
reduces the stresses in the melt.

Surface melt fracture, usually called sharkskin, results from a tensile failure of
melt at the exit of the die. The high tensile stress results from the sudden accel-
eration of melt from the wall region when it is abruptly freed from the restraining
influence of the wall and is pulled forward by shear stress from the faster-moving
melt closer to the axis. This results in small grooves that sometimes spiral around
the extrudate. Figure 6.8 is a photo of extrudate showing this phenomenon [56],
and Fig. 6.9 is a sketch based on the detailed observations of Migler et al. [57]. A
crack forms at the die exit, then separates and moves downstream to be followed
by another crack. Sharkskin can be a problem in film blowing, sheet extrusion and
blow molding. It is most often addressed by the use of a processing aid, usually a
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Fig. 6.7 Cross-sections of
melt extruded from a
capillary. Flow patterns were
made visible by loading
layers of carbon-black-filled
resin into the reservoir. At the
lowest flow rate (fop) the
exterior is smooth, and there
is no interior distortion of the
streamlines. At the next
highest shear rate sharkskin
fracture is present on the
surface, but the interior flow
is till smooth. At the highest
flow rate, stretching of melt at
the entrance to the capillary
has broken the melt into
pieces. Research of the late
Sing Oh Kim [54]
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fluoropolymer that promotes slip at the die wall. Slip greatly reduces the wall shear
stress so that the melt near the wall is much closer to that of the bulk flow when it
reaches the exit. It has been claimed that there is a change of slope in a flow curve
at the onset of sharkskin, but there is no objective basis for this [58]. In any event,
the “onset” reported is the point at which roughness becomes readily visible to the
naked eye, while closer inspection reveals that it is already present at lower flow

rates.
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Fig. 6.8 Photo of sharkskin
exit fracture. From Bergen
[56]

Fig. 6.9 Sketch based on
detailed observations of
sharkskin melt fracture. From
Migler et al. [57]

(A) 'g:wml
~

Surface
Cohesive Failure



156 6 Measurement Techniques

6.3.3 The Spurt Effect, Oscillating Flow, and Wall Slip

In the capillary flow of linear polymers at controlled driving pressures, a curious
thing happens at a particular shear stress. This is shown in Fig. 6.10, which is the
flow curve of a linear polyethylene [59]. At the shear stress (proportional to the
apparent shear rate) indicated by A, the flow rate suddenly increases by a factor of
about twenty! This is called the spurt effect. When the flow is driven by a piston
moving at successively increasing speeds, at the constant speed corresponding to
point A the flow rate increases suddenly to point B but then decreases toward point
C. At C it suddenly shifts back to point B, only to start the process over again. This
phenomenon is called a stick—slip instability or oscillating flow. One may wonder
how the flow rate can vary while the piston speed is constant. While melts are
taken to be incompressible for many purposes, their densities do indeed depend on
pressure. At point A, wall slip suddenly occurs. This drastically decreases the wall
shear rate and the wall shear stress and thus the pressure drop in the capillary. The
melt in the reservoir expands in response to the reduced pressure, and the melt
released floods into the capillary. If the pressure is increased to compensate for
this, the flow rate must increase until the pressure drop for slip flow is high enough
to match that for non-slip flow at the same total flow rate. In the case of constant
piston speed, the sudden release of compressed melt leads to a reduction of
pressure and a decrease in flow rate back to point C, where pressure starts to
rebuild and the process repeats itself.

0.8
0.7 o STEADY-STATE
0.6 2 OSCILLATING FLOW
(UNSTEADY-STATE) °
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Fig. 6.10 Flow curve of a HDPE. As the flow rate increases from zero, steady flow is interrupted
at point A by oscillations in which the system moves around the cycle A-B-C-D until the feed
flow rate reaches that for point B, after which it increases steadily. The oscillating flow regime
results from periodic wall slip (low pressure) and re-adhesion (increasing pressure), and starting
when the driving pressure is compatible with steady slip flow, the flow rate increases steadily
again. Data of Hatzikiriakos [59]
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Wall slip occurs in rheometers and melt forming processes and has been
investigated extensively [60]. It is now understood that melts do not actually slip
on a high-energy surface such as steel. The molecules in contact with the wall are
strongly adsorbed at multiple sites, leaving only loops and chain ends to entangle
with bulk material. This entanglement is relatively weak, allowing the bulk to slip
past the adsorbed molecules. True wall slip can be promoted by coating the wall
with a polymer that is incompatible with the bulk so that none of its molecules are
adsorbed at the wall [61]. For example, fluorocarbons promote slip in polyolefins,
and polyolefins promote the slip of fluorocarbons.

Early studies made use of capillary flow and often reported exponential rela-
tionships between slip velocity and shear stress:

vs = ko" (6.25)

More reliable data can be obtained using a sliding plate instrument in which the
shear rate and stress are uniform, and the metal surfaces can be easily exposed for
cleaning and coating. If a nominal shear rate is defined as V/h, where V is the
velocity of the moving plate, and 4 is the gap between the two plates, the true shear
rate is given by:

. V- . Vs

PEea =, (6.26)

Figure 6.11 shows sliding plate data for a polybutadiene, which shows slip

velocity as a function of shear stress and pressure [62]. The presence of two
maxima is consistent with the observation of spurt and oscillatory flow in capillary
flow, and we see that there is a relatively weak slip regime at low stresses with a
sudden switch to a high-slip regime when the stress reaches a maximum. But on
reducing the stress, the switch back to the low-stress regime occurs at a lower
stress giving rise to the hysteresis observed in capillary data.

6.3.4 The Extrusion Plastometer (Melt Indexer)

The extrusion plastometer was developed around 1950 in response to the need for
a standard way of specifying the fluidity of molten polymers for use by resin
manufacturers as a product characteristic. Widely referred to as a melt indexer, this
is a primitive capillary instrument in which the driving force is applied to the
piston by placing a weight on a platform attached to its upper end. A specific
protocol for the use of this device was subsequently adopted by the American
society for testing and materials (ASTM) as Standard Test Method DI1238. ASTM
test methods are revised from time to time, and the version published in a given
year indicates, after the number of the test method, the year of the most recent
revision; at time of publication the most recent version was ASTM D1238-10. The
test method prescribes the exact geometry of the barrel and die and the detailed
procedure to be used for the measurement. Figure 6.12 shows the essential
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Fig. 6.11 Slip velocity versus wall shear stress for a polybutadiene at two pressures as measured
in a sliding plate rheometer. Between the maximum and minimum stresses there is a zone of
transition from weak slip to strong slip. Due to melt compressibility, this zone cannot be probed
using a capillary rheometer, because the pressure, density and shear stress are all related. From
Lim et al. [62]

elements of the extrusion plastometer described in ASTM D1238. Polymer pellets
are loaded into the barrel (6) equipped with a thermometer (3) and surrounded by
an electrical heater (4) and an insulating jacket (5). The weight (1) drives the
piston (2), which forces the polymer through the die (7). “Procedure A” involves
cutting and weighing the length of extrudate produced during a time interval
indicated by a stop watch. Alternatives to manual operation, “Procedures B and
C” involve automatic measurement of the distance the piston travels during a
specified time interval. To calculate the mass of melt extruded it is necessary to
know the melt density.

A table in the standard test method lists a number of standard combinations of
temperatures and loads. For example, the conditions usually used for polyethyl-
enes are indicated as 190/2.16, which implies a measurement at 190 °C with a total
load 2.16 kg. The mass of the weight is 2 kg, and that of the piston is 0.16 kg. The
recorded datum is the flow rate (FR), which is the mass of polymer extruded
during a particular time interval, in units of grams per ten minutes. Other names
commonly used for this quantity are melt flow index (MFI), melt index (MI) and
melt flow rate (MFR). In reporting an MI value it should be accompanied by the
temperature and load used, for example 190/2.16. The mass of the sample and the
time interval for collecting extrudate are selected based on the expected value of
the Flow Rate. For example, for FR values less than 1.0 g/10 min, 2.5-3 g of
sample and a measurement time of 6 min are recommended, while for a high-flow
polymer with FR greater than 25, 4-8 g of sample and a time of 0.25 min are
recommended. Obviously FR or MI increases as viscosity decreases, i.e., a high MI
resin has a low viscosity.
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Fig. 6.12 Cross-section of W
the extrusion plastometer
(melt indexer) described in =i
ASTM Standard Test Method
D1238. Drawing courtesy of
Jean Leblanc
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The Flow Rate, or Melt Index, is now used globally, and standard test methods
equivalent to ASTM DI238 have been adopted by virtually every industrial nation.
As a result MI is nearly always the only melt flow property listed among the
specifications of commercial thermoplastic resins. Typical values for polyethyl-
enes under condition 190/2.16 are: blow molding 0.2-0.8 (called fractional MI
grades); extrusion and film blowing 1.0; rotational molding 2—10, and injection
molding 1-30. High-flow resins for injection molding of thin parts have values
ranging up to 80 or higher.

While one can calculate the driving pressure P4 and then use Egs. (6.16) and
(6.17) to calculate an apparent shear stress and an apparent shear rate, these have
little relationship to the true values of these quantities, because the L/D is only four,
and the region of fully-developed flow, if any, is very short. Therefore, FR cannot
be used to calculate a well-defined physical property. A variation in resin formu-
lation can affect both the entrance pressure drop and the viscosity, and the change in
FR will reflect both of these effects. In brief, the extrusion plastometer is not a
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rheometer but an empirically-based melt characterizing tool. The ASTM Standard
Test Method warns the user regarding the fundamental significance of the results.

The temperature history of a sample has an effect on the measured MI; ASTM D
1238 specifies a preheat time of 7 min, starting from the loading of the solid
polymer into the barrel, and the solid polymer loaded normally comes from a
pelletizing operation that introduces its own thermal history. Shekhtmeyster et al.
[63] showed that the addition of a nitrogen blanket for laboratory polypropylene
measurements can reduce the MI by 20 % and that variations in the additive
package for a high-density polyethylene (HDPE) can change the MI by a factor of 3.

Even if the test could be relied upon to yield a good approximation of the
viscosity at one shear stress, it still would have the limitation of being a single-
point characterization that tells us nothing about the shape of the viscosity curve.
As a result, two resins can have similar values of MI but quite different behaviors
at shear rates relevant to extrusion. Figure 6.13 shows viscosity curves of three
polymers that have very similar melt index values. As can be seen, this reflects
their behavior at a rather low shear rate, while the viscosities at high shear rates are
quite different from each other. Measuring the flow rates at two or more loads
provides some information regarding the shape of the viscosity curve, i.e. the
degree of shear thinning of the melt. The most commonly used second total load is
10 kg, yielding the flow rate 110, and the ratio of this to flow rate 12 for a 2 kg
weight (total load of 2.16 kg) is reported as I10/I2. Another flow rate ratio
sometimes used is 121/12, which involves the use of a total load of 21.6 kg. Of
course both measurements must be made at the same temperature, and this is
normally 190 °C for polyethylene. The official name of this ratio is the Flow Rate
Ratio FRR, but it is sometimes called the melt flow ratio, MFR, which should not
to be confused with the Melt Flow Rate. In general, increasing the polydispersity
of a linear polymer increases 110/I2. And increasing long-chain branching while
keeping polydispersity constant also increases I10/12. This is illustrated in

Fig. 6.13 Viscosity versus 104
shear rate plots for three
polyethylenes having very
similar melt index values but
whose viscosity curves have
different shapes. The
conditions approximating
those in the melt indexer are
in the upper left corner, while
many melt forming processes
involve much higher shear
rates where the viscosities of
the three polymers are
significantly different. Figure
courtesy of Don Delaney,
Dynisco Polymer Test
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Fig. 6.14 The ratio of high-load to low-load flow rates in an extrusion plastometer used to
indicate degree of shear-thinning of metallocene polyethylenes. In traditional HDPEs the
polyidispersity index (PI = M,/M,) is increased to achieve stronger shear-thinning. But all the
samples made using the CGC technology mentioned in Sect. 7.2.3.1 have about the same
polydispersity index (PI & 2) but vary greatly in viscosity behavior due to the presence of low
levels of long-chain branching. From Lai and Knight [64]

Fig. 6.14, which shows the effect of adding small, gradually increasing levels
of LCB to a metallocene polyethylene while keeping the polydispersity index
(My/M,) equal to about two [64].

6.4 On-Line Rheometers

Rheometers that can be mounted directly on a process stream provide a nearly
real-time indication of the state of the melt. Although it is not possible to exercise
the same control over experimental conditions as that in the laboratory, on-line
monitoring can yield improved precision, especially in the case of high viscosity
resins, owing to the reproducible sample history and measuring procedure. On-line
monitoring may also be advantageous in the case of polymers that are highly
sensitive to environmental conditions, such as polyethylene terephthalate (PET),
which is very sensitive to moisture, and polypropylene, which is very sensitive to
oxygen. A bypass rheometer consists of a sample line, a gear pump, a capillary,
and a pressure transducer, as shown schematically in Fig. 6.15. Compact units use
an annular, combined feed and return line, and some can sample melt directly from
the barrel of an extruder.

We note that the flow rate in the feed line is governed by the shear rate that one
wishes to generate in the capillary or slit, and because the flow channel has a small
diameter this flow rate is quite low. The long delay between the time that a change
occurs in the process and the time that the output signal reflects this change can be
greatly reduced by use of two gear pumps, one that draws melt from the process
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Fig. 6.15 Cross-section of
an on-line melt rheometer
showing: a melt side stream
from extruder; b gear pump;
¢ pressure transducer;

d thermocouple; e capillary.
Drawing courtesy of Gottfert

stream and operates at a high rate, and a second that feeds a small side stream to
the capillary.

Other aspects of the sampling circuit are also important. A side stream takes
melt from the region near the wall of the main process channel, and this is slow
moving material that may not be representative of the average properties of the
entire flow. The degree to which this is a problem can be determined by comparing
on-line measurements with those made in the laboratory using pellets made from
extrudate. Of course this procedure assumes that no change takes place in the
sample between the point where the rheometer is installed and the pelletizer.
Finally, the temperature of the feed line is important. If there are hot spots, these
will promote degradation, while cold spots will restrict the sampling flow.

The simplest mode of operation is to select the apparent shear rate, calculate the
corresponding flow rate using Eq. (6.17) and set the gear pump to generate this flow
rate. Uncertainties arise from the measurement of the pressure drop and the pump
speed. A pressure transducer should not be used in the lowest 10 % of its full-scale
reading. Instrument error is normally specified as a percentage of the full-scale reading.

On-line instruments are subject to large temperature variations in the plant
setting that affect the output signal. In the case of bypass units, the exposure of the
bottom of the capillary to ambient air causes the polymer near the exit to be cooler.
The sensitivity and zero of pressure transducers depend on their temperature and
that of the housing of their electronic components. These characteristics also drift
with time, and periodic recalibration is a necessary part of routine maintenance.
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6.4.1 On-Line Detection of Melt Index

The flow rate (FR) or melt index (MI) is useful for tracking variations in molecular
weight when the shape of the molecular weight distribution does not vary and there
is no long-chain branching. Because this quantity is widely used in quality control,
it is sometimes desirable to have an on-line rheometer that is capable of providing
a continuous indication of the melt index. Of course, it is not possible to reproduce
exactly the procedure described in ASTM Standard Test Method D 1238, which
involves the use of a piston driven by a dead weight. A simulation of the standard
method is achieved by making the entrance and capillary dimensions identical to
those in D 1238. A feedback loop is used to provide the gear pump speed required
to generate the nominal driving pressure of the test method. A pressure of 43.2 psi
is generally used to simulate the melt index. What remains is to convert the
volumetric flow rate, Q, to the MI. This requires the density of the melt, p,,, since
MI is a mass flow rate and is related to the volumetric rate as shown by Eq. (6.27).

MI(g/10min.) = IOpm(g/cm3)Q(cm3/min.) (6.27)

This procedure is said to work best for materials having MI values between 1 and 20.

Shekhtmeyster et al. [63] demonstrated that the thermal stability of the polymer
is an important factor that is often neglected in comparing on-line and laboratory
measurements, because it is never possible to reproduce, on-line, the temperature
history of the sample of the standard test method.

6.4.2 On-Line Determination of Viscosity

A single-point characterization, such as the melt index, or the viscosity at a single
shear rate, may be adequate to track quality when the shape of the molecular
weight distribution is not changing and there is no long-chain branching. When the
shape of the molecular weight distribution may change, or when long-chain
branching is present, a single-point measurement may not be adequate to track
resin variation, because several materials may have the same viscosity at one shear
rate or stress but quite different viscosity curves. There are on-line units that
employ two capillaries to permit measurements at two shear rates.

Viscosity is very sensitive to temperature, and if it is not possible to maintain
the temperature of the melt at a standard test temperature, one must compensate
for the deviation of the melt temperature from this value. Temperature compen-
sation makes use of concepts introduced in Chap. 3. If the vertical shift factor is
taken to be one, the stress versus shear rate curve can be shifted horizontally as
indicated by Eq. (6.28).

O'(“}, to) = 0{[aT(T)7>]7 t} (6~28)
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6.5 High-Throughput Rheometry

High-throughput techniques have been used with success for the rapid evaluation
of the potential value of many small experimental samples, particularly in the
development of new pharmaceuticals and polymer catalysts. The analytical tools
used to characterize samples probe molecules, usually in solution, but rheological
evaluation of polymers requires bulk, fully-entangled samples, so samples of at
least 5-10 g are required. However, melt rheology is useful at a second stage of the
development process after initial screening using traditional high-throughput
techniques. While there have been a number of reports of instruments for use with
small samples, there remains the challenge of the speed with which a series of
materials can be evaluated. A group at the National Institute of Standards and
Technology (NIST) has developed a multi-sample micro-slit theometer (MMR)
capable of measuring the viscosity of four samples simultaneously [65, 66].

There are two commercially-available apparatuses for the rapid evaluation
polymers, both based on oscillatory shear. The VTM rheometer made by Dynisco
is based on an instrument originally developed for the rubber industry. Pre-molded
samples are clamped between two sheets of film in a closed-cavity shearing
chamber. There is thus some uncertainty as to the exact sample size, and since the
cavity is closed around the rim of the sample, and the shape of the cavity conforms
to neither cone-plate nor parallel disk geometry, the data cannot be reliably
interpreted in terms of storage and loss moduli. The High-Throughput Rheometer
(HTR) from Anton Paar [67] is a standard rotational rheometer with parallel-disk
fixtures that operates in conjunction with a multi-axis robot that carries out all the
steps normally done by a technician to determine the storage and loss moduli. This
instrument provides high-quality rheological data, but as one might expect it is
large and expensive.

6.6 Extensional Rheometers
6.6.1 Introduction

It is more difficult to measure precisely the response of a melt to a stretching
deformation than to a shearing deformation. However, without a reliable consti-
tutive equation based on a molecular model, there is no way to predict how a melt
will behave in a large, rapid extensional flow, based only on knowledge of its
response to shearing deformations. In other words, extensional tests reveal aspects
of the nonlinear viscoelasticity that cannot be predicted from shear data. These
aspects are particularly important for polymers with significant levels of long-
chain branching. Therefore, the essential criterion for the success of an extensional
flow technique is the degree of departure from linear viscoelastic behavior that can
be generated. Melt behavior has been studied using uniaxial (also called simple or
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tensile), biaxial, and planar extensional flows [5, Chap. 7]. These are described in
Chap. 4 and shown in Figs. 4.8-4.10. However, only uniaxial extension is in
general use and discussed here.

The extensional rheometers described in the next section are limited to use at
strain rates well below 10 s~'. In order to reach higher rates, drawdown of an
extruded filament (melt spinning) and converging flow at the entrance to a cap-
illary have been used to determine apparent extensional viscosities, but they
cannot be used to infer well-defined material properties such as 1} (z, £). These
methods are described in Sect. 6.6.3.

6.6.2 Rheometers for Uniaxial (Simple) Extension

A uniaxial extensional rheometer generates a deformation in which the Hencky
strain rate ¢ (defined by Eq. 4.18) is maintained constant. The material function
that is determined is the tensile stress growth coefficient 174 (&) defined by Eq.
(4.21). In the early stages of either a start-up of steady simple extension or when
the strain rate is very low, the behavior should follow the prediction of the
Boltzmann superposition principle. This can be calculated using the linear relax-
ation modulus (Eq. 4.22) thus providing a valuable criterion for the accuracy of
data from an extensional rheometer, at short times and low rates.

The first reliable extensional rheometer for operation at fixed strain rates was
that of Meissner [68, 69] which made use of a rotary clamp. In this device two
gear-like rotors turn at the same speed but in different directions at the end of a
cylindrical sample to generating a constant velocity at a fixed point in space. The
Hencky strain rate is the velocity of the melt passing through the rotors divided by
the distance from the rotors to a vertical plane where the axial velocity is zero. The
sample floats on the surface of an oil bath. A second set of slowly turning rotors at
the other end of the sample provides a balancing tensile force, and a later
embodiment [70] made use of adhesive to fasten this end of the sample to a fixed
end-plate submerged in the oil. In later designs a sample is clamped at both ends,
with one clamp fixed in position and the other displaced by means of a servomotor.
The most successful configuration is that of Miinstedt [71] the essential features of
which are shown in Fig. 6.16. The sample is mounted in a vertical oil bath. The
bottom end of the small sample is glued to an end plate coupled to a load cell,
while the top end plate is connected to the end of a flexible band that winds onto a
drum driven by a DC servomotor. This instrument has been used in many
important studies of melt rheology. But while it is a fine tool for scientific work, it
is not convenient for routine use.

An extensional rheometer suitable for routine use was designed as a fixture to
be installed in a standard rotational instrument; this is the Sentmanat Extensional
Rheometer (SER) [72, 73] shown in Fig. 6.17. Two drums are rotated by the motor
of the rotational rheometer, and the force in the sample is calculated from the
torque. A similar device is the Extensional Viscosity Fixture (EVF) developed at
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Fig. 6.16 Extensional
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TA Instruments [74]. There is no bearing friction contribution to the torque signal,
because the two drums are decoupled in the EVF, but one of the drums rotates
around the other, so the sample does not stay in view during stretching. In both
devices, the sample is a small molded rectangular plaque that is clamped at each
end to a rotating drum. Because the sample is small and thin, and all its surfaces
are exposed to the oven environment, heating is very fast. Sample changing is also
fast, taking only about a minute. In addition to start-up of steady, simple extension,
creep and stress relaxation experiments can be carried out.

The control of sample temperature requires special care, since sample surfaces
are entirely exposed to the oven atmosphere. A recommended procedure is to
preheat the oven for fifteen minutes before loading a sample and to position the
temperature sensor as close to the sample as possible. If the sample loading time
can be kept to 15-20 s, 30-60 s should suffice for heating the sample in an oven of
modern design.

Sample preparation is another issue of concern because of the need to avoid
residual stresses. This is not likely to be a problem with resins for which stresses
relax rapidly, thermal expansion is small, and crystallinity is low. But in general it
is wise to compression mold a flat sheet between non-stick surfaces, with no edge
constraints, to the desired thickness and then cut samples from the center of the
sheet using a dual-blade knife. For thermoplastic melts sample widths from 3 to
12.7 mm and thicknesses from 0.2 to 0.8 mm are commonly used. Lower
molecular weight, linear polymer samples generate lower torques and sag more,
and use of a wider sample maximizes the torque and reduces sagging.

Nielsen et al. [75] used a model to determine the effect of sample aspect ratio
(thickness H over width W) on data obtained using the fixtures mentioned above.
They found that when this ratio is much less than one the deformation deviates
from uniaxial extension and starts to approach planar extension. However, data
comparisons have indicated that while this may be a problem with elastomers and
at high strains, it is not a problem with most thermoplastics. For very elastic
materials, when this is a concern, a sample thickness less than 0.3 mm and a width
less than 3.5 mm are recommended.

Equation (6.27) corrects the sample cross-sectional area for the decrease in
density on melting and for the increase in length [72].

m

A(t) = Ao <&) 2ﬂexp(—é 1) (6.29)

The density correction is from 10 to 20 % and need not be made if one is only
comparing similar polymers, but it is necessary to obtain true values of rheological
properties.

The sample sags a bit after being clamped, while being heated and before
stretching begins, and there are two ways to deal with this. One approach is to pre-
stretch the sample at a very low rate until there is a small torque value, wait for the
force to relax, and then start the experiment. Another approach that avoids
introducing a pre-test strain history is to use a time offset when plotting the data.
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The SER has been found to yield data that are in reasonable agreement with
those from the sophisticated Miinstedt tensile rheometer [76]. Aho et al. [77]
proposed a protocol for use of the SER that gives good results; by not using the
sample clamps they were able to achieve higher strains, since the sample does not
have to wrap on top of the clamp after one revolution. They also corrected for
thermal expansion of the sample and ensured good temperature control and uni-
formity by mounting the temperature sensor next to the SER frame and leaving the
fixture in the oven for up to two hours before use to ensure that it is at the set
temperature.

Figure 6.18 [76] compares data obtained using two SER fixtures, one installed
in an ARES rheometer (TA Instruments) and the other in an MCR501 rheometer
(Anton Paar). Also shown is the linear viscoelasticity prediction based on storage
and loss moduli data. The agreement between the two instruments is very good, as
is the agreement with the linear prediction at low strain rates or short times.

Figure 6.19 is a photo of the EVF fixture. Stadler et al. reported on the use of
the EVF to study the behavior of HDPE [78] and LDPE [78, 79]. Jackson et al.
[80] used an EVF to evaluate PVC additives for foam applications and polylactic
acid (PLA) for use in film blowing. For comparison of materials they plot 1} (z, &)
versus time using linear scales at a single rate. Figure 6.20 shows an example of
the use of this technique to study the effect of resin additives [81].

A problem that arises in all the methods described in this section is the necking
of the sample that always occurs at some point during a stretching test. For strain-
hardening melts, there is a maximum in the transient property #; (7, £), and using
available instruments it was impossible to reach strains significantly beyond the
maximum before necking and rupture occurred. Figure 4.9 showed data for LDPE
that exhibited maxima at all strain rates. Published values of the uniaxial exten-
sional viscosity 7 (&) defined by Eq. (4.23) were based on the assumption that the
maximum was the steady-state value [81]. However, data obtained using a filament
stretching rheometer (FSR) [82] suggest that that in strain-hardening melts the

Fig. 6.18 Tensile stress 10° =
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Fig. 6.19 Photo of extensional viscosity fixture (EVF) made by TA instruments. Courtesy of
instruments courtesy of Catherine Jackson [80]
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Fig. 6.20 Use of an EVF to compare the effectiveness of processing aids to make PVC strain
hardening for use in foam. Extensional stress growth coefficient 5 (¢) as function of time at 1 s7!
and 185 °C. From C. L. Jackson [80]

maximum in 77} (¢, &) is followed by a decrease to a true steady state, as shown in
Fig. 6.21 [83, 84]. Because this sophisticated research tool is not suitable for
routine industrial use, the devices now widely used to determine the response of
melts to stretching are the rotating cylinder fixtures used with standard rotational
rheometers. Thus, for practical applications, one relies on the transient portion of
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Fig. 6.21 Extensional stress growth coefficient of a LDPE measured using a filament stretching
rheometer. At some strain rates, after reaching a peak the coefficient decreases to reach a plateau.
From Huang et al. [84]

the stress-growth data obtained prior to necking. In any event, the conditions under
which steady extensional strain can be achieved are very far removed from those
that arise in melt forming processes. To determine when necking starts to com-
promise data, one can eliminate the torque near its maximum at several strain rates
and observe stress relaxation data. An atypically, rapid initial relaxation at a higher
shear rate is a sign that necking has begun.

6.6.3 Converging Flow and Melt Strength

We have seen that rheometers capable of accurate measurements of extensional
flow properties are limited to use at low Hencky strain rates, usually well below
10 s~'. In order to reach higher strain rates, the drawdown of an extruded filament
(melt spinning) and the converging flow into an orifice die or capillary have been
used to determine an apparent extensional viscosity. Since the stress and strain are
not uniform in these flows, it is necessary to model the flow in order to interpret
data in terms of material functions or constants.

In converging flow, one knows only the overall pressure drop and the flow rate,
and the results are very sensitive to die exit shape [36, 85]. The first attempt to
interpret these data in terms of an apparent extensional viscosity was that of
Cogswell [86] based on power laws. Genieser et al. [87] concluded from their
detailed simulation of entrance flow that it is not possible to generate a significant
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Fig. 6.22 Extrudate drawing
test. Melt is extruded from a
capillary and drawn down by
a rotating element while the

tensile stress is monitored

Vix)

degree of chain stretch using this technique. And data comparisons [35, 88]
indicate that differences in extensional flow behavior between resins cannot be
reliably correlated with entrance pressure losses.

In the extrudate drawing test, melt is forced through a capillary, usually by
means of a capillary rheometer, as shown in Fig. 6.22. The extruded filament is
cooled by exposure to ambient air, drawn down by means of a rotary clamp, and
the tensile force in the filament is determined by measuring the vertical force on
the rotary clamps. In the test procedure usually used, the draw-down is steadily
increased until the filament breaks and the stress at break is called the melt
strength. The Goettfert Rheotens is a commercial device based on this concept.

While the melt strength test has found application in the evaluation of poly-
ethylenes for film blowing, sheet extrusion, and foaming. It does not yield a well-
defined rheological property, because neither the strain nor the temperature is
uniform in the filament. The melt first experiences shear deformation in the cap-
illary, and the deformation in the filament is primarily uniaxial extension, but the
strain rate and temperature vary with distance from the capillary exit up to the
point where the melt solidifies.

Laun and Schuch [35] found that filament breakage occurs at a stress of about
0.8 MPa for all the low density polyethylenes they studied, whereas the melt
strength, i.e., the force at break, varied strongly with drawdown ratio. This implies
that the tensile stress at break is a basic physical property of a polymer. While the
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stress at break is not a rheological property, the drawdown required to produce this
stress depends strongly on the extensional flow properties. Laun and Schuch [35]
also examined the effect of die geometry and other parameters on the reliability of
melt strength measurements and made the following recommendations. A capillary
die with a large L/D will minimize the effect of entrance flow history and swell. A
high flow rate minimizes the effects of heat transfer on the filament temperature.
And a high nominal drawdown ratio (v_/vy) and a low value of }, in the die will
minimize the effects of swell. These guidelines are not always compatible, and
compromise is usually necessary in designing a test protocol for a given polymer.

Wagner et al. [89] measured the extensional flow behavior of several polymers
using both an extensional rheometer and a Rheotens melt strength apparatus and
compared the data. A melt strength test can be carried out isothermally [90], but
this makes the test more complicated and does not make it possible to determine
any basic rheological property [91].

6.7 Torque Rheometers

A torque rheometer consists of a powerful motor drive, in the range of 1-7
horsepower, a torque sensor, and a mixing head or lab-scale extruder. The mixing
heads are miniaturized batch mixers of various designs, from low-intensity open
mixers to high-intensity internal mixers. Within dual cavities, rotors of several
types generate a complex mixing pattern. These range from sigma blades, for low
shear, through cams for medium shear, to rollers for high shear; also available are
planetary and Banbury mixing heads. The recipe of interest is loaded into the
cavities through a port equipped with a weight-driven piston to keep the mix under
pressure. As mixing proceeds the torque on the drive shaft is monitored to produce
a characteristic pattern of mechanical energy input.

Although there have been attempts to develop relationships between the torque
and the viscosity of the mixture, the complexity of the flow in the mixing head
renders this a highly unreliable procedure. However, for certain applications tor-
que rheometer data are reasonably repeatable and are sometimes used for process
control. The advantage of the torque rheometer is its ability to simulate in the
laboratory industrial mixing processes in which rheology plays an important role.
In particular, the time evolution of a mixing or reaction process can be monitored.

Torque rheometers have been found useful for PVC compounds, crosslinking
polymers, and elastomers. For example, ASTM Standard Test Method D 2396 [92]
deals with plasticizer absorption by PVC, while D 2538 [93] describes a test for
the fusion rate of PVC. And D 3795 [94] deals with the cure properties of thermo
sets as determined using a torque rheometer.

Also available as accessories for use with the basic drive unit of torque rhe-
ometers are small single- and twin-screw extruders and other continuous mixing
systems. Among the various dies offered for use with the extruders are capillary
and slit dies designed for the measurement of melt viscosity.
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6.8 Using Rheology for Statistical Process Control

This topic is treated in detail in the book by Dealy and Saucier [95], and we
present here only a brief summary. Quality control is a long-established method of
ensuring that all products shipped to or received by a resin customer meet contract
specifications. One or more samples of product are taken from each batch or at
regular time intervals from a process stream and subjected to laboratory tests. By
the time a resin manufacturer discovers that off-spec material has been produced, a
substantial amount of this material has already been produced and cannot be sold
as is. The more modern approach to quality is statistical process control.

The melt index or an apparent viscosity value is often used for statistical
process control. First, a record is kept of test data obtained in successive tests, and
these are plotted versus time to create a run chart. This shows the normal variation
of the melt index from one sample to the next, and based on experience with a
given resin upper and lower control limits are established that are well within the
specification limits. These are shown as horizontal lines on the run chart to form a
control chart. Figure 6.23 is an example of a control chart that shows the viscosity
of each sample and the moving range (MR) which is the absolute value of the
difference between successive values. The latter highlights test-to test variations.
Also shown are the long-term average line and upper and lower control limits.

Instead of rejecting material that goes outside the specification limits the
objective is to watch the control chart for signs that the process may be out of
control, before any off-spec material has been produced. A commonly used set of
rules for deciding when there has been a significant process upset the cause of
which needs to be sought was developed by Western Electric, and one example is
when two out of three consecutive points are on the same side of the average and
more than two standard deviations above or below the long-term average.

6.9 Sample Stability: Thermo-Oxidative Degradation
and Hydrolysis

At elevated temperatures, the rheological properties of polymer are subject to
change with time due to reactions of several types. Polyolefins are prone to
thermo-oxidative degradation in the presence of oxygen; polypropylene is espe-
cially sensitive to this problem due to its many tertiary carbons. In rotational
rheometers the oven containing the test fixtures should be flooded with nitrogen,
but technical grade nitrogen contains a small amount of oxygen, and the sample
itself is may contain a bit. Commercial resins are generally stabilized by means of
an additive such as the Irgan0x® line of antioxidants (BASF). The additive
effectiveness decreases with time at temperature, and the amount added is gen-
erally sufficient to stabilize the resin through a typical melt processing operation. It
is always wise when studying a new material to verify the time available for
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Fig. 6.23 Upper figure is a control chart of subgroup average melt index test results over time.
Upper and lower control limits are shown as well as the long-term average value (2.202 gm/10
min). Points at bottom show the range of values within each subgroup. The bar chart shows the
frequency distribution of MI subgroup averages

measurements by doing a time sweep in a rotational rheometer at a fixed fre-
quency. A fairly low frequency should be used as the stress amplitude will be more
sensitive to the presence of the longer molecules most likely to undergo chain
scission. Samples synthesized for research should have stabilizer added before
experiments are undertake. This is especially important when the amount of
material available is small.

Condensation polymers such as polyamides (Nylons), polycarbonates and
polyesters, e.g., polyethylene terephthalate (PET), are very sensitive to moisture,
and this poses a problem in both processing and laboratory studies. If the amount
of water present is less than the equilibrium concentration, polymerization takes
place, and the molecular weight and the viscosity increase, whereas if the water
concentration is more than the equilibrium concentration, hydrolysis takes place,
and the molecular weight and the viscosity decrease. It is crucial to control the
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humidity in both situations. Pezzin [96] and Laun [97] studied the effect of
moisture on capillary rheometer data for a polyamide (PA) 6. And Khanna et al.
[98] reported that reducing moisture in a PA6 from 0.1 to 0.02 % doubled the zero-
shear viscosity. Although PA11l absorbs less moisture than PA6 or PA 6-6,
reversible hydrolysis is still a concern. Figure 6.24 shows the variation of water
concentration with time for a PA11 [99], as determined by Karl Fischer titration.
Vacuum drying of samples is essential; exposure of dried samples to air prior to
testing was avoided by squeezing pellets in the rheometer rather than forming
disks in an earlier step. Figure 6.25 shows the evolution with time of the viscosity
of the PA11 of Fig. 6.24 at three temperatures for an initial water content of
0.095 %. As moisture is absorbed, the molecular weight and viscosity increase.

A study of the variation of viscosity with time of polyethylene terephthalate
[100] revealed two effects: a fast hydrolysis reaction followed by slow thermo-
oxidative degradation. The data were interpreted in terms of rate constants for
these two processes.

Fig. 6.24 Water 0.30 - v
concentration in a polyamide
as a function of drying time.
From Acierno and Van
Puyvelde [99]
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Chapter 7
Rheology and Molecular Structure

Abstract The sensitivity of rheological properties to molecular structure makes
rheological information valuable for characterizing polymers and for under-
standing their behavior in melt processing operations. Structural factors explored
include molecular weight distribution, tacticity, comonomer content, and long-
chain branching (LCB). The effects of LCB on melt behavior are complex but very
important, and this subject is explored in detail.

The relationship between the rheological properties of polymers and their
molecular structure is dealt with in detail in a book devoted entirely to this subject
[1]. This chapter contains information the authors believe to be useful to those
interested in the development and processing of commercial polymers. In general,
we can say that linear viscoelastic behavior, e.g., the storage and loss moduli, is the
richest source of information about the molecular structure of linear polymers,
while extensional flow behavior provides important additional information in the
case of long-chain branched polymers.

7.1 Rheology and Structure of Linear Polymers
7.1.1 Effect of Molecular Weight on Zero-Shear Viscosity

Section 2.4 explains how molecular structure affects viscosity, and this informa-
tion is summarized briefly here. The zero-shear viscosity of linear, monodisperse
polymers is governed by the following relationships:

M<Mc nox M (2.17)

M > Mc ny = KM* (o =35=+02) (2.18)
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For polydisperse, linear polymers, Eq. (2.18) is valid with M replaced by the
weight-average molecular weight, as long as there are few unentangled molecules
present.

o = KM (2.19)

This implies a blending law for a binary blend of two monodisperse samples of
the same polymer having molecular weights M ;| and M ,; according to (2.19) the
weight-average molecular weight of the blend is:

Mwb = W1M1 + W2M2 (220)

where w, and w, are the weight fractions of the blend components.
Using (2.18) and (2.19) we obtain:

Mow = KM = (wint)y + wangy) 21)

In Sect. 6.2.3 it was pointed out that the determination of the zero-shear viscosity
may not possible using oscillatory shear, especially in the case of a broad molecular
weight distribution. And it was shown there how creep or creep together with creep
recovery can be used to probe very long-time (low-frequency) behavior.

7.1.2 Effect of Molecular Weight Distribution on Shear
Behavior

Molecular weight distribution affects both shear-thinning and end-product perfor-
mance. While broadening the MWD enhances shear thinning, which is usually
desirable, it may not yield optimum product properties, and in resin development it
is often necessary to compromise on these objectives. We will see in this chapter
how some modern technologies permit independent control of viscosity and MWD.

An example of an early technique to control rheology involved efforts to
broaden the market for polypropylene. Traditional Ziegler—Natta catalysts do not
permit precise control of MWD, and this proved a barrier to the use of polypro-
pylene for some applications. This motivated the development of controlled
rheology polypropylene resins having narrower MWD than reactor product that
were made by chemical or thermal degradation, a process called visbreaking.
Narrow distribution polypropylenes can now be polymerized using metallocene
catalysts. And we will see in this chapter that certain metallocene catalyst systems
can be used to achieve independent control of MWD and shear thinning.

7.1.2.1 Determining MWD from Viscosity

The technique generally used to determine molecular weight distribution (MWD) is
gel permeation chromatography (GPC) also called size exclusion chromatography
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(SEC). But rheological data are sometimes advantageous for this purpose. First,
many polymers dissolve either with great difficulty or not at all. Second, rheological
data are more sensitive to high molecular weight fractions than GPC elution curves,
and these fractions have an important effect on the ease with which a polymer can
be processed in the molten state, i.e., its processability. Also, the number average is
significantly less reproducible than the weight average, which leads to uncertainty
in the polydispersity index (M /M ,,). And finally, standard rheological properties
such as the viscosity and the storage and loss moduli are easier to determine than
GPC elution curves. Several methods have been proposed to infer MWD from
rheological data, and these are reviewed in detail by Dealy and Larson [1]. We
provide here only a brief summary.

Bruce Bersted [2, 3] in 1975 suggested a technique to estimate the viscosity of a
linear polyethylene from its MWD. This was based on the idea that each molecule
makes a contribution to the viscosity equal to its zero-shear viscosity but that as
the shear rate increases, the maximum length of molecules that make such a
contribution decreases. In other words, as the shear rate increases, the effects of
progressively shorter molecules on the viscosity are eliminated. Bersted and Slee
[4] used this idea as the basis for a method to determine weight distribution from
viscosity data. This idea was developed further [5, 6] and improved [7-16]. The
method requires the second derivative of (log #7) with respect to (log 7) and at least
seven precise data points per decade. Wood-Adams and Dealy [8] demonstrated its
successful use with a polydisperse polyethylene. They used |17*| versus frequency
rather than viscosity versus shear rate data, because precision, accuracy and range
are all enhanced in this way. The most important portions of the viscosity curve are
those where changes in shape occur [8, 11]. Peaks in the MWD show up in the data
as minima in the second derivative. They used a plot of the second derivative
versus reduced frequency (w/w ) to evaluate the reliability of the MWD calcu-
lation. The region around a minimum is most important. If the measured points, as
opposed to the extrapolated points, include this minimum, then the peak in the
MWD will be within the experimental window. Figure 7.1 is an example of such a
curve for a polyethylene [8].

Wu [14] proposed a method to determine MWD from G’(w) data in the terminal
and plateau zones. His basic assumption was that the cumulative molecular weight
distribution curve has the same shape as the G'(w) curve. Turninello [15] reviewed
work on relations between G'(w) and MWD and proposed an improvement of
Wu’s method that is better for polymers having a bimodal MWD.

7.1.2.2 Polydispersity Correlations

Zeichner and coworkers [16, 17] developed a measure of the breadth of the
molecular weight distribution for a particular set of polypropylenes that is based on
the curves of storage and loss moduli versus frequency. Using data for a series of
polypropylenes made by Ziegler—Natta catalysts and degraded by random chain
scission, they defined a polydispersity parameter PI(Z), as shown by Eq. (7.1),
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Fig. 7.1 Second derivative of the complex viscosity with respect to frequency for a HDPE. The
key features for MWD determination are the minima, as these are related to peaks on the MWD.
From Wood-Adams and Dealy [8]

where G . is the crossover modulus, and found that it was approximately equal to
the polydispersity index defined as M ,, /M ,, .

PI(Z) = 10%(dynes/cm?)/G¢ (7.1)

The crossover modulus is the value of G’ (and G”) at the frequency where the
two moduli are equal. An objective identification of the crossover point can be
made by fitting the points on both curves in the vicinity of this point with cubic
splines. Bafna [18] pointed out that this empirical correlation is based on data for a
single family of polypropylenes, i.e. a group of polymers having similar molecular
weight distributions, and that it cannot be expected to be valid for other groups of
polymers.

Yoo [19] reported that the above correlation based on the crossover modulus is
not useful for polypropylenes with melt flow rates above about 40 gm/10 min. For
very high MFR resins, he proposed a correlation based on the frequencies at which
the storage and loss moduli equal a particular value in dynes/cm”. For example, for
a value of 10,000 dynes/cm” the modulus separation (Modsep) is defined as
follows:

(G = 10,000 dynes/cm?)
o(G" = 10,000 dynes/cm?)

Modsep(10,000) = (7.2)

For a large set of MFR polypropylenes, this modulus value was found to provide a
useful correlation as follows:

PI = 11.5 — 1.92[Modsep (10,000)] (7.3)

Yoo showed that the Modsep correlation agreed well with the crossover

modulus method based on PI(Z) over the range of MFR values in which both were

useful and that Modsep was useful over the range from 30 to 1,000 gm/10 min".
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Shroff and Mavridis [20] compared several methods for inferring the polydis-
persity index from rheological data. They point out that some of the parameters that
have been proposed depend on temperature and that highly asymmetric MWDs and
the presence of even a small amount of LCB make these techniques unreliable.

7.1.3 Effect of Molecular Weight Distribution on Steady
State Compliance

In Chap. 3 it is shown that the Rouse-Bueche model for unentangled melts predicts
that the steady-state compliance is linear with molecular weight and that the tube
model predicts that for a perfectly monodisperse sample it is independent of
molecular weight. Data have shown that these predictions are correct, although the
molecular weight M’C at which J? becomes independent of M is larger than M .,
the critical value for # (. However, even a small amount of polydispersity in an
entangled polymer increases JO dramatically [21, 22]. This is illustrated in
Fig. 7.2, which shows data for blends of nearly monodisperse polydimethyl
siloxanes A and B, where B has an M ,, about ten times that of A [23]. The values
of J? are normalized by dividing by the value for polymer B, and this quantity is
thus unity for pure B at the right end of the scale. We see that the viscosity of the
blend can be over twenty times that of either of the components.

100

40 -
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10 19 o

Jo(blend),/J2(B)
o

T

1 I L 1
0 0.2 0.4 0.6 0.8 1.0

WEIGHT FRACTION B

Fig. 7.2 Steady-state compliance of blends of two polydisperse silicones. For component A, M ,
is 5.9 x 104, while for B it is 6.0 x 105, but the two have very similar values of J;’A The
compliance is divided by that of component B, so that this ratio is nearly unity for A and exactly
unity for 100 % B. Broadening MWD has a dramatic effect on J°, with the ratio rising to nearly
30 at about 10 wt % B. From Graessley [23]
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7.1.4 Effect of Tacticity on Viscosity

Vinyl polymers can exist in a variety of molecular forms depending on the rela-
tionship between the orientations of neighboring side groups. Many commercial
polymerization processes produce atactic products, in which the distribution of
orientations is random; an important example is polystyrene. In isotactic polymers,
alternate side groups have the same orientation, while in syndiotactic products they
have opposite orientations. An atactic polymer is one in which the orientations are
randomly distributed along the chain.

Using metallocene catalysts it is possible to produce materials that are nearly
perfectly iso- or syndiotactic. Studies of polystyrene [24], polypropylene [25],
poly(methyl-methacrylate) [26, 27] and polybutadiene [27] have revealed that the
plateau moduli of the iso- and atactic polymers are similar (0.4-0.5 MPa for PP)
but that of the syndiotactic form is significantly higher (0.9-1.3 MPa for PP), with
M . following the opposite trend. In making such comparisons it is important to
use values at the same temperature. Figure 7.3 shows |y*| versus frequency data
reported by Huang et al. [24] for three polystyrenes having very similar molecular
weights (2.5 x 10°) but different tacticities. The zero-shear viscosities were found
to follow the following relationship with molecular weight when M ,, was nor-
malized by M ..

1o (Pas) = 0.029 (ﬁ)w (280 °C) (7.4)

e

As with the dependence of viscosity on molecular weight, at high shear rates
viscosity becomes independent of tacticity.

Fig. 7.3 Complex viscosity 10t
versus frequency of atactic, - - PS25
syndiotactic and isotactic > )'._":3
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7.1.5 Effect of Comonomer on Linear Shear Behavior

The use of an alpha-olefin comonomer in the polymerization of linear polyeth-
ylene is a widely-used method of controlling the crystallinity and thus density of
polyethylene. For many years this has been carried out using Ziegler—Natta cat-
alysts, and the product is called linear low density polyethylene (LLDPE).
Metallocene catalysts were later found to make more efficient use of more costly
comonomer by distributing it more uniformly among the molecules. LLDPEs
made using Ziegler-Natta catalysts have more comonomer in the lower molecular
weight fractions [28]. In addition to having a more uniform chemical composition
distribution (CCD), linear products of a single reactor using a single catalyst of this
type have molecular weight distributions described by the most-probable or
Schultz-Flory distribution. This distribution has a polydispersity index (M /M ,)
of two, and metallocene polymers have values very close to this theoretical value.
We will refer to such a copolymer as an mLLDPE.

The principal effects of comonomer on rheology can be described in terms of its
impact on the zero-shear viscosity and the plateau modulus. Fetters et al. [29]
found that the average molecular weight per backbone bond m , was a useful
correlating parameter for use with ethylene/a-olefin copolymers. Garcia-Franco
et al. [30] used this parameter to analyze data for a series of ethylene/butane
copolymers synthesized using a metallocene catalyst. They found that the zero-
shear viscosities of all the samples were well described by Eq. (7.5).

Mo 33

o (Pas) = 4.743 x 10—'0(m—w) (190 °C) (7.5)
b

Data for hydrogenated polybutadiene that had been anionically synthesized (m

» = 14) were also found to obey this relationship.

The plateau modulus for copolymers having a comonomer fraction greater than
about 0.2 was found to be related to the crossover modulus by Eq. (3.71), which
had been proposed by Wu [31]. Inserting the polydispersity ratio for metallocene
polymers, 2.0, the result is G / Gc = 6.85.

Using the backbone equivalence concept, Fetters et al. [29] developed a rela-
tionship between the plateau modulus of a copolymer and that of polyethylene
homopolymer.

@ = (Ef(cg)m (76)

Figure 7.4 compares their data with the predictions of this model. The dashed line is
Eq. (7.6), while the dotted and solid lines are empirical power laws that fitted the data
better than the backbone equivalence model. While the model does not fit the date
quantitatively, it does describe the general trend quite well. It was possible to place
the storage and loss modulus data for all the copolymers on master curves by dividing
the moduli by the plateau modulus and multiplying the frequency by #, / Gy,
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m, (g/mol)

Fig. 7.4 Plateau modulus versus molecular weight per backbone bond for a large number of
polyolefin copolymers. The dashed line is Eq. (7.6), and the dotted and solid lines are empirical
power laws fitted to two regions of the plot. The backbone equivalent model alone does not lead
to an accurate correlation, but it obviously plays an important role. From Fetters et al. [29]

The van Gurp and Palmen plot, a graph of loss angle ¢ versus the logarithm of
|G*|, was described in Sect. 3.16, and it was pointed out there that such a plot is
invariant with temperature if the polymer is thermorheologically simple, and to
average molecular weight for linear homopolymers. This type of representation is
quite sensitive to comonomer content, but Garcia-Fanco et al. [32] found they
could describe this effect by use of a van Gurp and Palmen plot in which the
complex modulus is normalized by the plateau modulusG* / GON. This is illustrated
in Fig. 7.5 for a series of ethylene/octene copolymers. The number shown is wt %
octene, and the upper data set is for monodisperse, hydrogenated polybutadiene.
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Fig. 7.5 A modified van Gurp and Palmen plot of loss angle versus |G*| / G, for eight ethylene/
octene copolymers. The number shown is the wt % octene, and the upper data set is for
monodisperse, hydrogenated polybutadiene, which is expected to be very similar to monodisperse
polyethylene. Normalizing using GON tends to bring data for all the copolymers close together.
From Garcia-Franco et al. [32]
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7.1.6 Extensional Flow Behavior of Linear Polymers

Tube models predict that chain stretch and strain hardening can occur in an
entangled, linear, monodisperse melt only when it is well entangled (M greater
than about 3M ) and the rate of deformation exceeds the reciprocal of the longest
Rouse time. For polyethylene M, is relatively low (& 1000), which means that a
very high value of M would be required for significant stretch at practically
achievable strain rates. But for polystyrene (M. ~ 17,000) one might be able to
generate chain stretch and thus strain hardening in a practical experiment. Studies
of highly-entangled, monodisperse polystyrene melts [33] using a filament
stretching rheometer revealed slight strain softening at the lowest strain rates and
marked strain hardening at higher strain rates. But such samples are not typical of
commercial resins.

While we do not expect to see strain hardening in linear polymers at accessible
strain rates unless the molecular weight is extremely high, it has been reported that
a very small amount of relatively high molecular weight material in a sample
consisting primarily of molecules having moderate molecular weights can result in
strain hardening at very low strain rates. This has been observed in polystyrene
[34-36], polypropylene [37] and polyethylene [38]. For example, Miinstedt [34]
compared the behavior of four linear polystyrenes, one of which exhibited strong
strain hardening. This sample had an M|, of only 39,000 but also a much smaller
MWD peak at about 70,000. However, neither a sample with M,, = 74,000 and a
very small high molecular weight tail nor a commercial polymer with
M,, = 219,000 and M,/M, = 2.3 exhibited significant strain hardening. For
HDPE a very high MW tail can result in strong strain hardening around strain rate
of 0.01 s 'or lower, and this is advantageous for extrusion blow molding, because
strain hardening at low strain rates suppresses parison sag.

7.2 Long-Chain Branching and Melt Rheology
7.2.1 Introduction

The effects of long-chain branching on linear viscoelastic properties have been
extensively studied. When the detailed branching structure is known, quantitative
relationships can often be developed between structure and rheology, but when the
structure is nonhomogeneous and not well characterized, quantitative relationships
cannot be made.

When is a branch “long”? Data from NMR measurements give the same
response for all side-chains longer than five monomer units and this might be
classified as long. But the zero-shear viscosity undergoes a dramatic change in its
dependence on molecular weight around the critical molecular weight M ¢, which
involves a lot more than five carbons. And the steady-state compliance has a
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somewhat different value of M for the onset of entanglement effects. For our
purposes, a long-chain is one that has a significant effect on rheological properties.

A great variety of branching structures are possible, and we will see that it is not
possible to establish quantitative relationships between rheological data and
branching structure unless something is known about the type of branching
structure involved. This information can only come from information about the
way the polymer was produced. Without any knowledge of the origin of a sample,
it is not possible to use any combination of characterization techniques to deter-
mine the detailed branching structure.

In general, long-chain branched polymers are thermorheologically complex [39,
40]. However, branched systems are sometimes characterized in terms of an
activation energy of flow valid over a specific, narrow range of times, often in the
terminal zone [41]. Various ways have been proposed to infer values of such a
parameter from data, and care must be taken in interpreting reported flow acti-
vation energies.

Strain hardening in extension is the most prominent indicator of long-chain
branching. Star polymers do not exhibit strain hardening, because the arms are not
stretched. But inner chain segments with branch points at each end promote chain
stretch. Gabriel and Miinstedt [42] compared a number of polyolefins having
various branching structures. They concluded that both the number of branches per
molecule and the number of entanglements per branch play crucial roles in strain
hardening. In general, except for a polymer whose structure is known with some
certainty, for example a metallocene polyethylene, shear behavior is of limited
utility for the detection of the important aspects of long-chain branching structure.
What one often wants to know from a practical point of view is the degree to
which LCB enhances strain hardening, and extensional flow is the most direct way
to discern this.

7.2.2 Branched Polymers with Monodisperse Structures

Polymers having well-defined structures can be prepared by means of anionic
polymerization, and this technique has been widely used to prepare samples for
rheological study. This has been a fruitful approach to the study of the effects of
long-chain branching on rheological behavior, and we begin our discussion of this
subject by describing the behavior of such “model polymers”.

For star polymer with arms of increasing length, when the arms are still too
short to entangle there is a decrease in the viscosity compared with a linear
polymer of the same molecular weight, because the size of the molecule decreases
as the branch length increases. But when the arm molecular weight M , reaches
two or three times the molecular weight between entanglements M ., 1 ( starts to
increase approximately exponentially with molecular weight. This is illustrated in
Fig. 7.6, which shows data for linear, three-arm and four-arm polybutadiene stars
[43]. At moderate molecular weights the data for the stars lie below, but parallel
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Fig. 7.6 Zero-shear 8
viscosity of three series of
polybutadienes: linear
(circles), three-arm stars
(squares) and four-arm stars
(triangles). At low MW the
data are below but parallel to
the line for the unbranched
polymer, and when the
branch length rises to three or
four times M, the star data
rise above the line
approaching exponential
growth. From Kraus and
Gruver [43]

LOG %, (AT 379 °K)

LOG My

to, the line for linear, entangled polymer with oo = 3.4, in accord with Eq. (2.20),
but when the branch length reaches three to four times M . the data for the stars
rise sharply and cross the line for linear polymers. The exponential increase of
viscosity seen in Fig. 7.6 is consistent a the picture in which relaxation occurs
primarily by means of arm retraction, since reptation is suppressed by the branch
point. Gell et al. [44] studied asymmetric stars made by adding arms of varying
length at the midpoint of a monodisperse highly entangled backbone. They found
that even very short arms could lead to a marked increase in 7 .

For multi-armed stars, when M , is above M’ we expect the onset of entan-
glement to cause marked deviations from the linear increase of JO with M that is in
line with the Rouse-Bueche model for linear, unentangled polymers. However, for
stars J? continues to increase with M , beyond M'¢,

The storage and loss moduli of a number of model branched polymers have been
reported including stars [45-52] and combs of various types [53-55]. Branching
leads to deviations from the behavior shown in Chap. 3 for linear polymers, but the
details depend strongly on branching structure. Trinkle et al. [56, 57] used the van
Gurp-Palmen plot to reveal the presence of long chain branching in polyethylene.
Lohse et al. [58] found that this type of plot for hydrogenated polybutadienes
(model PEs) having well-defined structures was useful to bring out the distinctive
effects of branching on linear viscoelastic behavior. Figure 7.7 shows such a plot of
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Fig. 7.7 A van-Gurp and 90
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their data for several comb polymers, it reveals the features of the curve associated
with each branching structure. Sample PEC(101) had 30 arms of molecular weight
6.5, PEC(97) had 26 arms with MW of 23.5, and PEC(108) had 12 arms with MW
of 5.8. One should keep in mind that frequency-dependence information, which is
essential for characterizing viscoelastic behavior, is lost in this type of data pre-
sentation, so it is not complete characterization of linear behavior.

Star polymers do not exhibit strain hardening in extension [59], because there is
no chain stretch; we will see below that data on branched metallocene polymers
suggest that at least two branch points on some molecules are required to produce
strain hardening.

7.2.3 Long-Chain Branching in Metallocene Polymers

7.2.3.1 Introduction

Polyethylene copolymers (LLDPE), in which comonomer content governs crys-
tallinity and thus density, were described in Sect. 7.1.5, and it was pointed out that
copolymers made using single-site catalysts (mLLDPE) have a more uniform
distribution of co-monomer among the chains (CCD) than LLDPEs made using
Ziegler-Natta catalysts. Films made from LLDPE have improved mechanical
properties but are more difficult to process, because of their lower degree of shear
thinning, as compared with more polydisperse or long-chain-branched polymers.

This deficiency was corrected when the Constrained Geometry Catalyst (CGC)
[60] was developed. Using this catalyst in a particular type of reactor, it was
possible to produce homopolymers having long chain branching frequencies 4, the
average number of branch points per 1,000 carbon atoms, in the range of 0.01-3
[61]. The introduction of LCB has an important effect on the viscosity, substan-
tially increasing the degree of shear thinning. It thus became possible to have
reproducible MWD and controlled levels of crystallinity as well as strong shear



7.2 Long-Chain Branching and Melt Rheology 193

thinning. Aside from their commercial importance, these materials are of funda-
mental interest, because they make it possible to carry out detailed studies of the
relationships between branching structure and rheological behavior.

A key difference between branched metallocene polyolefins and other branched
systems is that mPEs contain a large fraction of linear chains, and all chain segments
have the same size distribution as the linear chains. For polyethylene the level of
branching 4, the average number of branch points per thousand carbon atoms, is
related to f3, the average number of branch points per molecule through Eq. (7.7).

My

b=t 10

(7.7)

Costeux [62] derived the following useful expressions relating these parameters
to polydispersity.

Mw

My~ 2(B+1) (7.8)
5 l4x 103(28)(B+ 1) (7.9)
My

Costeux [62] also derived equations for the distributions of structures among
the molecules.

The key feature from the point of view of rheological behavior is the distri-
bution of segment types among the molecules rather than simply the number of
branches, because extensional flow behavior is primarily sensitive to the presence
of segments with branch points at both ends. The simplest such molecule has an H
shape. Costeux et al. [63] calculated the branching distributions of all polymers
that can be made using a single, constrained-geometry catalyst in a single reactor.
They represented these systems using a triangular diagram in which the vertexes
correspond to linear molecules, free arms, and inner backbone segments. Seven
simulated systems are shown on Fig. 7.8. The point nearest the lower-right-hand
vertex corresponds to a system made up mostly of linear molecules with a few
three-armed stars. We will see that the rheological behavior of such materials can
be quantitatively related to these features of their structure.

The CGC technology used to make the copolymers discussed above is a
solution polymerization process, and the vinyl-terminated macromonomers formed
in solution compete with comonomer for insertion to form long branches, and as a
result the branches have the same molecular weight distribution as the backbone
chain. Since there are very few long-chain branches, if the reincorporation is
random there should be no significant effect of comomoner concentration on the
level of long-chain branching. This implies that the rheological effects of the short
and long branches should be independent. This may not be case with very long
comonomers [64], but these are not of commercial interest. However, reincorpo-
ration of macromonomers in mLLDPEs polymerized in slurry or gas-phase
reactors may occur by a different mechanism [65], and it is not clear how this
might alter the effect of comonomer on structure and rheology.
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Fig. 7.8 Triangular diagram
showing the segment-type
compositions of all long-
chain branched polyethylenes
that can be made by CGC
technology. The lower-right
apex is linear molecules, the
lower left corner is inner
backbones, and the fop apex
is free arms. From Costeux
et al. [63]. The points
indicated refer to samples
whose rheological behavior
has been studied [67]

7.2.3.2 Shear Behavior of Long-Chain Branched Metallocene
Polyolefins

The zero-shear viscosity of branched metallocene polyethylenes at fixed M ,
increases with branching level; the ratio of # o of a branched polymer to that of its
linear analog having the same M , rises from 10 to 40 as the branching level
increases from 0.4 to 2.0 LCB per 10,000 carbon atoms at 150 °C [66, 67],

Methods have been proposed to infer branching level in branched metallocene
polyethylenes from viscosity data. These require calibration using LCB informa-
tion from multi-detector GPC or NMR [61]. As explained above, all polymers
made using a single metallocene catalyst in a single reactor are members of a well-
defined set, and any rheological property that differentiates between the members
of this set can indicate the branching level, although some techniques may be more
sensitive than others. One method [68, 69] compares the MWD of the polymer
with that predicted from viscosity data by means of the method described in Sect.
7.1.2. The difference between the actual and predicted peak in the MWD was
found to be quantitatively related to the branching level. A simpler approach is that
of Lai et al. [70], who found that for strictly linear polyethylenes prepared using
one single-site catalyst, the Cross equation (Eq. 2.9) provides a good fit to vis-
cosity data, and they related departures from the Cross equation with levels of
long-chain branching. Garcia-Franco et al. [71] studied lightly long-chain bran-
ched metallocene copolymers made by both the CGC solution process and a gas-
phase process. They found that van Gurp-Palmen plots were sensitive to the low
levels of long-chain branching in these polymers and correlated the branching
level with the value of the loss angle when IG*| = 10 kPa.
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Karjala et al. [72] studied the combined effects of LCB and polydispersity on n
o by blending metallocene polyethylenes to yield groups of samples having very
similar values of M /M |, but varying LCB levels. While it was not possible to
infer quantitative relationships, the data indicated that LCB has a much stronger
effect on the departure from the line for linear PE and that increasing the level of
LCB clearly increases this departure.

There has been very little study of the combined effects of comonomer and
LCB in metallocene copolymers. Based on a small set of samples, Karjala et al.
[73] reported that regardless of comonomer content, levels of branching as low as
0.01 LCB/1000C had values of 7 ¢ that were above the 95 % confidence limits of
the line describing linear homopolymers. And the effect of LCB was significantly
more important than that of comonomer.

7.2.3.3 LCB in Metallocene Polyethylenes: Extensional Flow Behavior

While the levels of LCB in mPEs are not sufficient to give the strong strain
hardening desired for film applications, these materials made it possible to learn a
great deal about what branching structures are important in generating high
stretching stresses. To study this connection, Wood-Adams et al. [66] studied
seven homopolymers made using one CGC catalyst (described in Sect. 7.2.3.1)
and having various levels of branching. The values of M |, A and f for these
materials are given in Table 7.1. For comparison with their data, they also
determined the #n ¢ of linear homopolymers made using the same catalyst and
reported the following relationship with molecular weight:

o (Pa-s) =3.9 x 107 M2% (150 °C) (7.10)

The structural makeup of the samples in this set can be located on the triangular
diagram shown in Fig. 7.8 [63]. The lower right vertex is linear chains, the top
vertex is arms, and the lower left vertex is inner backbones. We note that samples
1-4 consist mostly of linear chains, with some stars and very few inner backbones,
and these polymers exhibited very little strain hardening [66]. The extensional
flow behavior of samples 5 to 7 in Table 7.1 were later measured by Torres [67]

Table 7.1 Values of parameters defined by Eqgs. (7.7—7.9) for the seven long-chain branched
metallocene polyethylenes indicated in Fig. 7.8

Sample M., A p

HDBI1 77,000 0.026 0.067
HDB2 82,000 0.037 0.099
HDB3 86,000 0.042 0.116
HDB4 96,000 0.080 0.224
HDB5 79,000 0.090 0.210
HDB6 68,000 0.190 0.343

HDB7 70,000 0.330 0.537
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Fig. 7.9 Extensional stress growth function of three materials corresponding to points in
Fig. 7.8. Equation (4.23) was used to normalize the data to emphasize departures from linear
behavior. Sample HDB 5, which contains some free arms but almost no inner backbones, is a
dilute blend of stars in linear polymer and exhibits no strain hardening. But as inner backbones
start to appear, there is an increasing degree of strain hardening. From Torres [67]

using a Miinstedt rheometer, and the results are shown in Fig. 7.9 where the tensile
stress growth coefficient has been normalized using Eq. (4.23). Sample HDB 5
exhibits no strain hardening, but starting with HDB 6 we see significant hardening,
which increases markedly as we move on to HDB7, Again referring to Fig. 7.8, we
see that these samples contain growing numbers of inner backbones, which appear
to be essential for strain hardening. These materials were also characterized using
the much simpler SER extensional rheometer described in Chap. 6, and while the
data lacked the precision of those from the Miinstedt rheometer used by Torres, the
effect of increasing the number of inner backbones was very clear.

Malmberg et al. [74] studied branched metallocene copolymers made using
several catalysts and found marked differences between the products. They pro-
posed that extensional flow behavior depends more on the distribution of long
chain branches than the number of branches. In particular the presence of multiple
branch points on a few molecules is much more effective than many branches
evenly distributed among many molecules. On the other hand, the evenly dis-
tributed branches had a larger effect on the zero-shear viscosity. This is consistent
with observations of the difference between star and comb polymers.
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7.2.4 Random Branching Introduced by Post-Polymerization
Reactions

There have been reports that some polymers classified as HDPE contain low levels
of long-chain branching, for example those made using chromium oxide catalysts
[75, 76]. It has been reported [77] that many variables affect branch formation in
these polymers, and it is not clear whether the branching occurs during poly-
merization or subsequently, as the molecules are vinyl terminated and can react
during melt processing. Another source of long-chain branching in a linear
polyethylene is the cross-linking that can occur whenever it is heated above its
melting point, particularly in the presence of air. This is a potential source of
uncertainty in laboratory measurements.

Linear polymers can be made strain-hardening by the introduction of long-
chain branches. Techniques used to introduce branching in already-polymerized
samples yield distributions of structures that often include tree-like molecules with
short segments, similar in some ways to LDPE. This complexity can make it
difficult to distinguish between the effects of branching and polydispersity on the
basis of viscosity alone. Treating linear polyethylene with a peroxide [78-80]
leads to branching and eventually to cross-linking although the precise branching
structure produced by the peroxide is somewhat uncertain and difficult to quantify.
This process is used commercially to enhance the properties of HDPE or LLDPE
for particular applications.

Polypropylene is another polymer whose processability in certain applications
requires long-chain branching. High melt strength polypropylene (HMSPP) is
made by treatment of reactor product using a peroxide crosslinking agent, electron
radiation of macro-monomer grafting [81, 82]. Kurzbeck et al. [83] used electron-
beam radiation to introduce branching into a polypropylene to produce strong
strain-hardening, and the same result was obtained by Hingmann and Marczinke
[84] using a chemical cross-linking agent. They estimated that fewer than three
branches per molecule are required to produce this pronounced strain hardening. A
problem in drawing quantitative conclusions from such studies is that polydis-
persity increases when monodisperse linear polymers are treated to introduce
branching, and the average molecular weight decreases.

Auhl et al. [85] studied the behavior of a series of polypropylenes that had been
subjected to electron beam radiation to introduce various levels of long-chain
branching. A branching factor, defined as the ratio of zero-shear viscosity of a
branched sample to that of its linear precursor, is shown in Fig. 7.10 as a function
of radiation dose d. If little chain scission occurred, the branched samples should
have the same molecular weight as the linear precursor, e.g., the point for d = 0
corresponds to a branching factor of unity. The viscosity increases at low
branching levels, reaching a peak, and then falls to values a bit below unity. Based
on all the analytical data available for these samples, as well as the rheological
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Fig. 7.10 Branching factor g, the ratio of r, of radiated polypropylene to that of linear PP
precursor, versus radiation dose d. If little chain scission occurred all samples have the same
molecular weight; i.e. d = 0 implies a branching factor of unity. Electron beam radiation has
resulted in long-chain branching. The viscosity first increases sharply with branching level but
then falls continuously to values below that of the linear precursor. From Auhl et al. [85]

data, the authors concluded that at low radiation doses the branched molecules
were mainly stars, and the increase in viscosity was thus similar to that shown in
Fig. 7.6 whereas the higher doses produced more treelike structures.

7.2.5 Low-Density Polyethylene

Low-density polyethylene (LDPE) is strongly shear-thinning, which makes it easy
to extrude, and it is strongly strain hardening, which gives it high melt strength.
Branched metallocene polyolefin copolymers also exhibit strong shear thinning but
their strain hardening is significantly weaker than LDPE. LDPE therefore remains
the resin of choice for fabrication processes in which strain hardening is crucial,
such as extrusion-coating and extrusion foaming, and as a melt strength enhancer
when blended with LLDPE or HDPE to improve bubble stability in film blowing
or reduce neck-in in extrusion coating. Figure 4.12 showed data for stress growth
in extension for a tubular LDPE [86]. [It was explained in Sect. 4.7 that whether
the value of the extensional viscosity 7(¢) can be inferred from the maximum in
the curve of 1} (z,7) is now debatable.]

There is a broad range of branching structures in an LDPE resin, with many
short branches as well as complex, tree-like molecules. The structure depends on
how the polymer was manufactured. LDPE is made by high-pressure, free-radical
polymerization in either a tubular reactor or an autoclave, and autoclave LDPE
typically has a much higher branching level and a more tree-like structure than
LDPE produced in a tubular reactor [87].
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As noted earlier, the zero-shear viscosities of linear homo- and copolymers with
molecular weights well above M ¢ obey Eq. (2.21), which is repeated below.

no = KM¢ (2.21)

The introduction of long-chain branches (LCB) leads to important deviations from
the line on a log—log graph defined by this equation, and such a deviation is often
cited as evidence of LCB. In general, we know that a small or modest level of
entangled branches results in a significant viscosity increase, in comparison with a
linear polymer with the same M ,. This was shown for star polymers in Fig. 7.6.
While LDPEs have zero-shear viscosities that are usually well below those of
linear polymers having the same M ., it is sometimes reported that an LDPE has a
viscosity greater than its linear analog, particularly when the sample has a rela-
tively high molecular weight.

There are several issues that make this type of comparison questionable. First,
the temperature dependence of # ¢ is much stronger for LDPE than for HDPE, so
changing the temperature will alter # ( by different amounts for the two polymers.
In addition, the temperature dependencies for autoclave and tubular LDPEs have
also been reported to be different [88]. But a more serious issue is the value of M ,
used for the comparison. The “conventional GPC” value (gpc-M ) is obtained
using an infrared detector and a calibration curve based on linear standards. This
value is said to be a “backbone” M , for any PE sample. On the other hand, the
“absolute value” (abs-M ) is obtained using a light scattering detector and
includes the entire molecule: backbone, LCBs and SCBs. It was noted in Sect.
7.1.5 that SCBs have a significant effect on % ( in copolymers having no LCBs. In
addition, it is not possible to discern whether a change in viscosity is due simply to
the increase in molecular weight or to the entanglement of branches. Wang et al.
[88] used both molecular weight values to correlate data for a number of LDPEs
made in both types of reactor, and their plots are shown in Fig. 7.11a, using abs-M
w»> and in Fig. 7.11b using gpc-M . First we note that some points move from one
side of the linear PE line to the other when the M ,, method is changed. Moreover,
using the gpc-M , results in a clearer trend, especially for the samples from a
tubular reactor, for which there is some indication of an exponential dependence.

7.2.6 Branching Level from Zero-Shear Viscosity
and Molecular Weight

A number of correlations have been proposed to relate level of long-chain, random
branching to zero-shear viscosity together with molecular weight [89-96] and/or
intrinsic viscosity. Larson [91] compared some of these with model predictions
and concluded that “...the zero-shear viscosity of a branched melt is extremely
sensitive not only to degree of branching but also to type.” and that no single type
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of correlation could describe all branched systems. Vega et al. [96] evaluated
several such correlations and concluded that a correlation for number of branches
based on a few rheological and molecular parameters is at best approximately
valid only for one specific type of branching structure.
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Chapter 8
Role of Rheology in Melt Processing

Abstract Rheological properties govern the behavior of polymers in melt forming
operations. This chapter first explores melt behavior in channels, dies and ex-
truders where the viscometric functions play a dominant role. Extrudate swell, wall
slip, flow instabilities, and die build-up are described. The remaining operations
dealt with are those in which elasticity is important. Processes for making sheet
and film are described and processing problems related to rheology are explained.
The roles of rheology in blow molding, injection molding, rotational molding and
foam formation are taken up in the remainder of the chapter.

8.1 Introduction

This chapter treats primarily those aspects of melt forming processes in which
rheology plays a significant role. There are a number of books on all aspects of
polymer processing [1, 2], and it is not our intention to compete with them. The
aspects of polymer melt rheology that are important in a given melt forming
operation depend on the type of flow involved. For internal flows, i.e., flows
through channels, dies, etc., knowledge of the viscosity as a function of shear rate
is usually adequate. And in a process such as rotational molding the shear rate is
very low, and it is the viscosity at very low shear rates that is important. In external
flows, i.e., flow from a die into air, as in blow molding and film extrusion, vis-
coelasticity becomes important, because the melt is free to deform to relieve the
stresses introduced by flow in the die. And when the melt is stretched, as in film
blowing, extensional flow behavior is very important.

When developing a new resin for a certain application, the end product per-
formance is the first consideration. Important factors include durability, strength,
barrier properties, stress-crack resistance, weatherability, and optical properties.
But it must also be possible to convert the resin into the end product using a
reliable and economical forming process, and this depends on the properties of the
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melt. It is often impossible to optimize both of these requirements at the same
time, and a compromise must be made. The objectives might be achieved by use of
a blend, a filled resin, or coextrusion of two or more resins, although this may
increase the cost the resin or of processing.

Assessing the processability of an experimental resin is a major challenge for an
industrial rheologist. The ideal would be to predict rheological behavior based on
the molecular structure of the polymer and then to mathematically simulate the
forming operation to predict its processability. Molecular models for nonlinear
behavior were mentioned in Chaps. 4 and 5; while significant progress has been
made in predicting the behavior of linear polymers, long-chain branching is much
more difficult to deal with. While progress has also been made in this field, we are
still far from being able to deal with the structural polydispersity that is typical of
commercial resins.

In the simulation of processes in which viscoelasticity must be taken into
account, there are two difficulties. One arises from the lack of a reliable consti-
tutive equation, and the other is dealing with mathematical singularities that occur
at sharp corners in a flow field. The predicted stress becomes infinite at such
points, which causes the simulation to crash. There are ad hoc methods for
allowing the calculation to continue, although these programming tricks are not
based on polymer physics. For example, Lee et al. [3] rounded the corners of their
experimental channel slightly, and the model limited the stress that could be
calculated to a reasonable value. They produced an impressive agreement with
LDPE data of the entrance to and exit from a capillary inserted in a larger channel
using the “eXtended” pom—pom model [4]. A basic question is whether the sin-
gularity arises from the nonlinearity of the model or a departure of the material
from continuum behavior.

We must keep in mind that some melt flow phenomena cannot be described in
terms of the continuum concept. An example is the behavior of a melt as it exits a
die. Undesirable phenomena that can occur at this point are exit fracture (shark-
skin) and die build-up (die drool.). Rupture cannot be described by a model that
assumes the melt to be a continuum. While there are well-established models the
fracture of elastic solids, these are not valid if there is significant dissipation, as in
a melt. Die exit phenomena are discussed in this chapter.

Numerical simulations have proven to be of use for internal flows such as those
in extruders, dies, channels and molds when there are no sudden changes of cross-
section. For such simulations a temperature-dependent power law is often used.
But as mentioned above when viscoelasticity plays a key role flow, simulations
have proven much less useful in product and process design in spite of many years
of strenuous efforts. As a result, the development of resins for use in such pro-
cesses is more an art than a science. The only way to ensure that a new resin can be
successfully converted is to observe its behavior in a full-scale test run. This is
obviously a very expensive testing procedure, and it is not feasible to use it to
evaluate large numbers of candidate materials.

In the first stage of resin development, only small quantities of material are
available, and while it is not possible to do a conclusive processability evaluation,
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one wishes to use laboratory-scale measurements to at least rank candidate
materials according their probable processability. This is where the art comes in.
Those with long experience in the field may come to rely on one or two key lab
tests, but there is often little scientific basis for this. Blow molding is a good
example of this situation. Parison swell is a major factor in processability, but it is
impossible to predict this reliably using numerical simulation or a lab test. It is
easy to measure the diameter swell at the exit of a capillary, but blow molding dies
are much more complicated than a capillary, and a great variety of die designs are
used. A lab test may be of use to eliminate candidate materials that are unlikely to
be successful, but once the search has been narrowed down, the remaining can-
didates must be evaluated using industrial blow-molding equipment. A similar
challenge arises in the development of film blowing resins, as is explained in the
section on that process.

8.2 Flow in Simple Channels and Dies

This section provides an introduction to flow in channels and dies. A detailed
treatment of the design of extrusion dies can be found in the book by Michaeli [5].

8.2.1 Flow in a Circular Channel

We can use equations in Sect. 6.3.1 for capillary flow to derive the basic equations
for flow of a power-law fluid in a circular channel. The shear stress for any fluid is
a linear function of radius and for a power-law fluid is related to the shear rate, i.e.,

the velocity gradient, as follows:
n—1
dv
— 8.1
<dr) (8.1)

) r r APR dv k
o = — Q0. = == _ =
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Now setting the velocity equal to zero at r = R and integrating, we can obtain the
velocity distribution.

o-Eatab- 0w

The velocity can be integrated over the cross-section to obtain the volumetric flow
rate.

9
dr

k> [APR\'"
=T +3 (ﬂ) (83)
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8.2.2 Flow in a Slit Die

The equations for describing flow in a circular channel were presented in Sect.
6.3.1, and we present here a parallel treatment of flow in a slit. We define a slit as a
rectangular channel having a width w that is at least ten times its thickness
h. When W/h is large, the edges make a negligible contribution to the pressure
drop, and the fully developed flow can be considered to be two-dimensional. The
flow field in certain commercial forming operations approximates slit flow, and
this geometry can also used for rheological measurements. It has certain advan-
tages over a capillary, since flush-mounted pressure transducers can be used, and
the two-dimensional flow field facilitates observation of the flow. We consider
only fully developed flow, which means that there is no change of the velocity
distribution in the flow direction.

A force balance on a rectangular element of fluid in the slit yields a relationship
between the shear stress and the pressure gradient:

(8.4)

where y is measured from the center plane of the slit as shown in Fig. 8.1, and L is
the length of the die. Note that the shear stress and the pressure change over the slit
length and are both negative quantities. The magnitude of the shear stress at the
wall is:

—AP\ h
= _ =h/2)=|—)= 8.5
o =—otr=n/2) = (")} 8.5)
These equations are valid for any fluid, but in order to relate the shear rate at the
wall to the flow rate, the viscosity must be known as a function of shear rate. For a
Newtonian fluid, the magnitude of the shear rate at the wall is:

. . 60

e == =h/2) =15 (8.6)
where Q is the volumetric flow rate.
Fig. 8.1 Slit flow geometry
showing the meaning of the
symbols used in Egs. (8.4—
8.9)

&
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For a power-law fluid (Eq. 2.6) the wall shear rate is:

—hAP\ "
Y = _— 8-7
= (%) 8.)
The velocity distribution is given by Eq. (8.8).
1/n
—yAP hn (y) (I4n)/n
=|—— 1 = 8.8
2 (KL>n+1[+n (88)
And the volumetric flow rate is:
20°W [ —APR\ "
=— | —— 8.9
Q 1/n—|—2< KL > (89)

8.2.3 Flow in Channels with Varying Cross-Section

8.2.3.1 The Lubrication Approximation

When analyzing the flow in a converging or diverging channel, there is a math-
ematical approximation for inelastic fluids in which the velocity distribution is
assumed to be that of fully developed flow even though the cross section varies.
This is the lubrication approximation, and is valid when both the Reynolds number
and the rate of change of the size of the channel are small. The requirement of low
Reynolds number is satisfied for a molten polymer because of its high viscosity.
However, if the fluid is viscoelastic, there is an additional requirement that must be
met to use the lubrication approximation, and that is that the Deborah number be
small. If the Deborah number is not small, a viscoelastic model must be used to
model the flow. For flow in a tapered channel, this requirement can be expressed as
follows.

De=rt

dv
— 1 8.10
dz‘ < ( )

where 7 is a relaxation time of the melt.
For flow in a tapered section of length L with inlet radius of R, and outlet radius
R, this can be expressed as:

_Q[R — Ry

De =
R} L

<1 (8.12)
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Fig. 8.2 Conical converging
channel showing the symbols
used in Eq. (8.13). The flow = R.

is from right to left \

8.2.3.2 Flow in a Converging Channel

Using the lubrication approximation for flow through the conical channel shown in
Fig. 8.2 the pressure drop for a power-law fluid can be shown to be:
— 40

2K (1+3n\" R\
0= s (o) 7)1~ (&)
Ry
where 4 = 5.

" 3ntano 4n

As o becomes smaller, the magnitude of AP increases, because the tapered
section is longer. However, it may still be desirable to use a small angle to reduce
the severity of extrudate distortion that can occur at high flow rates (see Sect.
8.3.3). When the convergence angle is not small and the flow rate is high, the
pressure drop is independent of convergence angle, and this reflects the fact that
the lubrication approximation is no longer valid when o is not small.

When the Deborah number (Eq. 8.12) is not small, the flow can only be reliably
modeled by use of a nonlinear viscoelastic constitutive equation. However,
because of the complexities of this procedure, most die design formulas used in the
plastics industry are based on the use of the lubrication approximation together
with the power law model.

(8.13)

8.2.4 Flow in Noncircular Channels

While Newtonian fluids always have straight streamlines in straight channels of
any shape, entangled polymers exhibit secondary flow, i.e., flow that is not co-
linear with the axis of the die [6]. It has been shown that this occurs when the
second normal stress difference is non-zero and varies with shear rate [7, 8].
Figure 8.3 shows cross-sections of extrudate at the entrance and exit of a square
channel with a 13-ring feed-block [7]. A single polystyrene was used, but alternate
layers were colored. A numerical prediction of this flow produced the streamlines
shown in Fig. 8.4 [6]. These flows become significant at high flow rates in large
channels.
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Fig. 8.3 Cross-sections of extrudate at the entrance and exit of a square die. A 13-ring feed-
block was used to create alternate layers of melt with and without colorant. The colored bands at
the exit show that there is substantial secondary flow in the die and that the streamlines are not
straight. From Debbaut et al. [6]

Fig. 8.4 A numerical
prediction of the streamlines
showing the secondary flow
that results in the pattern seen
in the melt exiting the square
die of Fig. 8.3. From Dooley
and Hughes [7]

8.2.5 Coextrusion Instabilities

When two or more different polymers are fed to a die to obtain a product with two
or more layers, the interface between the two polymers is deformed by the flow in
a manner governed by their rheological properties [9]. These are not prominent for
slow flows in small dies, but they can be significant in a large die at high flow
rates. For flow in a circular channel, the melt with the lower viscosity will pref-
erentially flow toward the wall, eventually surrounding the more viscous one. This
is called viscous encapsulation and is shown in Fig. 8.5 [9]. This process can be
minimized by matching the viscosities of the two polymers, but this is complicated
by the dependence of viscosity on shear rate and temperature. In noncircular dies,
the second normal stress difference causes the more complex secondary flow
described in the previous section, and this can result in distortions of the interface
between the two polymers.
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Fig. 8.5 Sketch showing
viscous encapsulation. The
melt with the lower viscosity
preferentially flows toward
the wall, eventually
surrounding the more viscous
one. From Dooley [9]
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8.3 Flow in an Extruder
8.3.1 Basic Considerations

Extruders are essential elements of most melt processing operations, including
pipe and profile extrusion, film and sheet extrusion, blow molding, wire coating,
pelletizing, compounding and injection molding. We treat here only the role of
rheology in extrusion; a number of books are available that describe all aspects of
this important process, for example those by Chung [10] and Rauwendaal [11].

An extruder consists of three sections: feeding/melting/plasticating, compres-
sion, and metering. Melting/plasticating is a complex process in which solid is
melted, and melt occupies an increasing fraction of the flowing solid-liquid
mixture. In the compression zone solid is still present, and the diameter of the
screw increases. Once melting is complete, what happens in the metering section is
governed by melt rheology, principally the viscosity, with viscoelasticity playing a
secondary role.

The earliest model of the flow in the metering section was developed before
numerical simulation was an option and made use of equations that had analytical
solutions. The melt was assumed to be a Newtonian fluid at constant temperature,
and the channel depth was assumed to be small compared to the screw diameter.
While more realistic models are now used, this one is still of use as an aid to
understanding some basic flow phenomena. A simplified representation of the
volumetric flow rate Q predicted by this model is shown below.

K, AP
0 =K/N 0 Az (8.14)
where K; and K, depend on the design of the extruder, N is the screw speed, and
AP/Az. is the axial pressure gradient. Note that AP means P,,—P;, and is normally
positive, and drag flow must overcome the pressure gradient in order for the
extruder to act as a pump.
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The first term in Eq. (8.14) is the drag flow Q4 due to the rotation of the screw,
which must overcome the back flow resulting from the pressure term Q,,. The ratio
of these two terms governs the shape of the velocity distribution.

_

¢ = 04 (8.15)

The flow is three dimensional, but for illustrative purposes, we show in Fig. 8.6
radial distributions of the axial component of dimensionless velocity for four
values of this ratio. The velocity is a maximum at the surface of the screw (top)
and zero at the barrel wall (bottom). In the distribution shown at top there is no
back pressure, and we have pure drag flow. This would correspond to an extruder
open at the end with no die. Moving down the figure, we see that for increasing
pressure drop, there is more and more back flow. A net flow rate of zero implies a

Fig. 8.6 Flow in an extruder =
for four values of ¢, the ratio =4
of pressure to drag flow. The
ordinate is the relative
distance from the root to the
barrel, from 0 at the bottom to
1.0 at the fop. The down-
channel velocity v, is divided
by vp,, which is the down-
channel component of the
relative boundary plane
velocity

a=0

¢ =(2/3)
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closed discharge, corresponding to a flow ratio ¢ of unity and to the bottom sketch
in Fig. 8.6.

While the velocity distributions shown in Fig. 8.6 are of the correct general
shape, the constant viscosity model is quite unrealistic, and the shear-thinning
nature of melts must be taken into account if quantitative results are to be obtained.
Rauwendaal [12] reported results of a simulation making use of the power-law
model, generalized for two-dimensional flow. His results show that as the power-
law index n becomes smaller, i.e., as the melt becomes more shear thinning, the
pressure gradient contribution to the net flow becomes larger. Extrusion models
now also account for leakage flow between the tip of the flight and the barrel and
for thermal effects [11, 12]. The thermal effects are viscous dissipation and heat
transfer with a heated or cooled barrel. Most of the power used to turn the screw is
expended in viscous dissipation, and this energy input is often adequate for
melting and heating, but to minimize temperature variations along the extruder,
heating and cooling of the barrel may be necessary.

8.3.2 Effect of Wall Slip on Flow in an Extruder

On the basis of a numerical simulation [13], it was concluded that wall slip reduces
mixing and pressurization efficiencies and increases leakage over flight tips,
although slip on the screw may reduce power input for a given throughput. Chung,
author of a book on extrusion [10], has expressed the following view. “The
conveying capability for solid and melt arises from the shear stress at the barrel
surface, and if slip occurs there, the conveying capacity will be reduced. It is
known that output rate falls drastically if a lubricant such as silicone oil is added to
the feed pellets. But if slip occurs on the screw, conveying capacity will be
increased. The net effect of fluorocarbon processing aids is probably a slightly
reduced output rate in a single-screw extruder.”

8.3.3 Extrudate Phenomena

8.3.3.1 Sharkskin

Melt fracture is a term used for several phenomena that are quite different from
each other in their origin and effects [14], and these were described in Sect. 6.3.2.
One type mentioned there, gross melt fracture, which occurs at the entrance to a
die, is not usually encountered in processing, but if it occurs in a pelletizer
extruding into water, it can increase the moisture content of the pellets. One or
more types of fracture might be expected to occur in high-speed wire coating, but
the extremely high shear rate in the wall region results in intense viscous heating
and a greatly reduced viscosity. Thus the stresses at the exit are relatively small,
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and fracture is avoided. There is negligible thermal degradation because of the
very short residence time at high temperature.

The surface defect called sharkskin results from fracture at the exit of a die and
can be a major problem in film extrusion and blow molding. This is now known to
be caused by a fracture of the melt where the melt exits the die. Figure 6.9 is a
sketch based on the observations of Moon et al. [15]. The melt at the wall just
inside the channel is stationary, but the melt that was flowing near the wall sud-
denly finds itself free of the presence of the wall and accelerates, pulling on
polymer that is still stuck to the wall. The resulting tensile stress can be large
enough to cause a crack, and as the crack opens up the tensile stress is relieved,
and the shear stress between the moving and stationary polymer starts the process
over again.

The tendency of a polymer to exhibit this defect depends on its structure. For
example LDPE is much less likely to undergo sharkskin than HDPE and LLDPE,
possibly because of the high melt strength that is associated with its extensional
flow behavior. Many schemes have been proposed to alleviate sharksin, including
heating the die or altering its design. The most common approach is to modify the
resin by either blending it with LDPE or adding a processing aid. Processing aids
are generally fluoropolymers that coat the die wall and promote slip. In this way
the melt at the wall is no longer restrained from moving out of the die with the
bulk flow. Because these methods increase resin cost, it would be preferable to
alter the polymerization process to produce a polymer resistant to exit fracture.

8.3.3.2 Extrudate Swell

At the exit of a die, the emerging stream of melt expands in cross-sectional area, a
phenomenon called die swell or extrudate swell. If the flow channel is noncircular,
as in profile extrusion, the extrudate will also undergo a change of shape. Such
changes in extrudate shape and size are of practical importance in such processes
as profile extrusion, blow molding and injection molding. In addition, swell has
been used as a qualitative measure of melt elasticity for quality control purposes.
Extrudate swell is an elastic response resulting from the stresses generated by
shearing in the die. When the restraining influence of the die wall disappears, the
melt is free to relieve these stresses. The presence of a slip coating at the die wall,
as would result from the presence of certain processing aids, substantially reduces
wall stress and shear rate and thus extrudate swell.

The simplest type of swell occurs at the exit of a circular die, such as an orifice
plate or a capillary. There is no change of shape, and the swell can be described in
terms of a single swell ratio, the ratio of the diameter of the extrudate to that of the
die exit. Laun and Schuch [16] studied the effect of die geometry on this ratio and
found that a diverging die decreases the swell, while a converging die increases it.
We address in this section only capillary die swell; flow through annular dies will
be dealt with in the section on blow molding.
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Fig. 8.7 Extrudate swell 26
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The variables commonly used to describe swell are the swell ratio B, the fully
developed wall shear rate },,, the length to diameter ratio L/D, the temperature 7,
and the time ¢ that has elapsed since the melt left the die. Thus, for a given
polymer, the relevant variables for a circular die are as follows:

B=D/Dy=f(},, L/D, T.) (8.16)

After a sufficient time, swell reaches an equilibrium value, and for a Newtonian
fluid this ratio is 1.13, which is due to the redistribution of velocity. But for
polymeric liquids it can be as high as two or three. This large swell ratio is a
manifestation of molecular orientation generated by the flow in the die. At the inlet
from a larger reservoir, streamlines converge rapidly, and this generates a high
degree of stretching along streamlines. In a short die or orifice, this leads to a large
swell at the exit, where the melt is free to deform in response to the anisotropic
stresses associated with molecular orientation caused by stretching.

If the entrance leads to a capillary, there will be time for relaxation of the
orientation generated at the entrance, and as the capillary is lengthened the degree of
swell will decrease. At the same time, however, shearing in the die produces a
moderate degree of axial orientation, and this will lead to a some extrudate swell. For
a long capillary, therefore, swell approaches an ultimate value B, that is indepen-
dent of length and reflects only the shear-induced orientation generated in the
capillary. Figure 8.7 shows the effect of L/D and wall shear rate on swell ratio [17].

For rapid evaluation for quality control purposes, the diameter of the extrudate
at a fixed distance from the die exit can be measured by an optical method.
Alternatively one can extrude into air and immediately measure the diameter of the
frozen extrudate, or measure the extrudate diameter after annealing to permit the
diameter to reach its fully swollen value.

Because swell is a viscoelastic phenomenon, it depends on time and tempera-
ture. If this dependence is of interest, the melt must be extruded into oil having the
same density and temperature as the melt. This technique has been used to measure
swell as a function of time for a capillary [18], a straight annular die [19] and for
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several converging and diverging dies [20]. For HDPE at 170 °C about 75 % of
the swell occurred in the first few seconds, while the ultimate swell was only
reached after several minutes. For a polypropylene at 190 °C, only 50 % of the
swell occurred in the first few seconds, with equilibrium swell achieved only after
more than 10 min. In a melt forming operation, if the extrudate is cooled imme-
diately after exiting the die, it is only the swell that occurs immediately that is of
interest.

For a given resin, if attention is restricted to the ultimate swell, and only
capillaries with large L/D are used, Eq. (8.16) reduces to:

B = f(3s T) (8.17)

Because commercial extrusion dies usually have their own temperature control
system, it is of practical interest to examine the effect on the swell of a difference
between the stock temperature and the die wall temperature. Cooling the die wall
substantially increases the swell of some thermoplastics [21].

For noncircular dies as in profile extrusion, both the size and the shape of the
extrudate vary with time after extrusion [22, 23]. Stevenson et al. [24] suggest a
scheme for classifying dimensional changes for complex profile extrusions on the
basis of size and shape factors. They also describe methods for controlling size and
shape by manipulation of line speed, stock temperature and die temperature. The
dependence of swell on molecular weight distribution is important, because it
governs swell behavior in a linear resin. While it is generally accepted that
increasing molecular weight increases swell at constant flow rate, no quantitative
representation of this effect is possible, because it depends on many moments of
the molecular weight distribution.

While capillary flow data can be used for comparing members of a family of
resins, they cannot be related quantitatively to processing behavior, for example in
blow molding, where parison swell is a very important. This issue is explored in
the section on blow molding.

8.3.3.3 Die Build Up

A common problem in extrusion is die build-up (DBU), the accumulation of melt
at the exit of a die. This material degrades with time and can affect the surface of
the extrudate; pieces of this material can break off and attach to the extrudate.
Other names for DBU are die-drool and die-bleed. When DBU becomes severe,
the line must be shut down and the die cleaned. If this happens frequently it will
result in increased production costs. Although much effort has been directed to
identifying a cause of this phenomenon, no one “smoking gun” has been identi-
fied. Among the many contributing factors that have been proposed are:

Additives (e.g., talc, calcium stearate)
Molecular weight distribution
Moisture or oxygen in the resin
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Thermo-oxidative degradation

Contamination

Quality of fabrication of die (surface finish, dimensional precision)
Die wall material of construction (surface energy)

Temperature of die.

It has been proposed that DBU is facilitated by extrudate swell. Patented
methods for reducing DBU include increasing the land length or die gap and
flaring the die exit, all of which reduce swell. Hogan et al. [25] observed die build-
up of a polyolefin elastomer at the exit of a strand die and found no correlation
between swell and DBU. However, they concluded that a key contributing factor
was the time during which melt underwent high shear rates. By comparing the
MWD of DBU material with that of feed resin they found that the DBU material
contained a significant amount of oligomer that was not present in the feed. This
would seem to be the result of thermo-mechanical degradation of the melt flowing
slowly in the high-shear-rate region near the die wall. This material might vola-
tilize at the exit and condense on the die face. Another possibility is fractionation
of feed resin in the die with low molecular weight polymer migrating to the wall
[26]. However, these conclusions may not apply to other resins under different
conditions. Because this process involves the separation of a layer of polymer from
the bulk, its mechanism might be related to that of surface fracture (sharkskin), and
this idea has been explored by Giacomin and Schmalzer [27].

Many methods for suppressing DBU have been proposed, including:

Processing aid that promotes slip in the die
Special die design

Use of non-standard die material

Surface conditioning of steel die

Drying of resin.

The use of these methods has been described in detail by Gander and Giacomin
[28]. They note, for example, that while the same processing aids that are useful
for suppressing sharkskin have also been found to be helpful for DBU, the amount
required is much less, from a tenth to a hundredth as much.

Capillaries and flat dies have been used to study DBU in the laboratory. A flat
(rectangular) die has the advantage that it facilitates observation and the recovery
of deposited polymer [29]. The capillary volumetric rate of build up ¢ is some-
times normalized by dividing by the total volumetric flow rate Q [26], although
this scaling may not be appropriate. The material accumulating on the die face
comes from a thin layer of thickness /4 and should thus scale with the area of this
annular region, which is 7Dh, whereas the total flow scales with the area, which is
nD?*/4. If the build-up is associated with material flowing in the layer of thickness
h with an average velocity of V,, the rate of build up would be nV,hD. Thus,
changing the diameter has a larger effect on the total flow than on the build-up. A
more meaningful dimensionless group would involve V,, and the average velocity



8.3 Flow in an Extruder 219

in the die, which is 4Q/zD?. The wall velocity is g/mhD so the ratio of interest is
gD/4Qh, which involves the two dimensionless ratios, ¢/Q and D/h. The length
h is unknown, but data can be used to calculate gD/4Q, which has units of length.
This characteristic length might be used as an empirical tool for comparing data. If
this length is relatively insensitive to the diameter D, it could be used to scale up
data to larger diameters.

8.4 Sheet Extrusion/Film Casting

Sheet extrusion and film casting (chill role casting) are similar processes for
producing a continuous sheet of polymer; both involve extrusion from a wide slot
die with a narrow gap, usually downward. An extruded sheet may be cooled by
quenching in water and produces relatively thick sheet that is further processed, for
example by thermoforming. Cast film is cooled on a chill roll and squeezed by a
rubber roll to produce a much thinner product, less than 0.25 mm, and is often
multi-layered. The basic features of the process are shown in Fig. 8.8. The drawing
length L is short, typically 25-65 mm. A greater variety of resins can be used for
film casting than for film blowing, as high melt strength is not required, although
Satoh et al. [30] found that strain-hardening decreased neck-in and edge bead size.

Sheet and film dies are of the coat-hanger or T-shaped type, with a typical width
of one meter and a die opening of about one mm. It is desirable to design the die so
that it produces a sheet of uniform thickness. The dependency of viscosity on shear
rate is very important, and models are often based on the power-law. If a resin
manufacturer wishes to supplant another supplier’s product, it is essential to match
the shear-rate dependence of viscosity. As was pointed out in Chap. 2, for linear
polymers this dependency depends entirely on the molecular weight distribution,
and the van Gurp-Palmen plot described in Sect. 3.16 has been found useful as a
guide to MWD. Several strategies have been used to develop die design models,

Fig. 8.8 Sketch showing
essential features of the film
casting process
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and these are summarized by Tadmor and Gogos [2, p. 706]. However, these are
not able to produce accurate, optimal designs. For example designing a die to
provide uniform velocity distribution at the die lips does not yield a uniform web
thickness, because swell depends not just on the exit flow but on previous strain
history. For this reason sheeting dies have adjustable geometry for in-plant opti-
mization. Viscoelasticity is of primary importance after melt leaves the die and
experiences tensile stress, thickness swell and necking.

In film casting, the extrudate, called a web, is quenched on one or two chill rolls
and wound up. The web is stretched, because the take-up velocity at the roll V| is
greater than the average melt velocity at the die lips V,, and the ratio of these
quantities V1 /V is the principal stretch ratio, called the draw ratio or draw-down
ratio DR. If the melt is assumed incompressible, the average thickness of the web
at the chill roll Ay is related to the die gap hg as follows:

hi, = ho(Vo/VL) = ho/DR (8.18)

The rheology-related phenomena that affect web behavior are edge bead, neck-
in, draw resonance and web rupture. Extrudate swell occurs and plays some role in
each of these phenomena.

Edge bead refers to the thickening of the web at its outer edges, which can be as
much as five times as thick as the center of the web. Beads are trimmed off and go
to waste or regrind. This phenomenon results from the combined effects of
extrudate swell and drawdown. The melt at the ends of the die have been subjected
to two-dimensional shearing, which enhances its swell compared to the more one-
dimensional shearing away from the edges. If slip could be promoted in this region
it would reduce the enhanced swell, but adding slip promoter would have an
adverse effect on the flow distribution in the die.

The more important contribution to edge bead arises from the difference in the
drawdown kinematics between the edges and the center of the web. The melt away
from the edge is subjected to a transverse component of stress transmitted to it
through the web from the melt flowing through the outer portions of the die, and
this melt undergoes deformation that becomes more like planar extension as the
center of the web is approached. Planer extension was described in Sect. 4.7; a
rectangular sample of film is stretched in one direction, while shrinkage of the
width is prevented. If the density is constant, the thickness is inversely propor-
tional to the length in the stretch direction. For the present case, the ratio of the
final thickness 4 to the initial thickness /g of a small element of film is inversely
proportional the ratio of the take-up velocity V| to the die exit velocity Vj, which
is the draw ratio.

b _ Vo

= 8.19
hy VL (8.19)

But the melt at the edges has a free surface on which the only stress that due to
ambient pressure, and the stress field is closer to that of tensile extension. The
transverse dimension of a segment of this material is inversely proportional to the
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square root of its length. Thus, the edge bead thickness at take-up dy is related to
the initial web thickness A as follows:

dL = hov/Vo/VL (8.20)

Combining the above two equations we find that the edge bead dimension is
related to the thickness of the web away from the edges by Eq. (8.20).

di = hy /\% (8.21)

Dobroth and Erwin [31] reported data for LDPE that agreed with this result.
Various methods have been proposed to reduce the size of the bead [32], but it is
usually removed by trimming.

Neck-in reduces the width of the sheet and is undesirable. Strain hardening
reduces neck-in, and this usually implies the presence of long-chain branching. For
example, polypropylene can be treated with peroxide to introduce branches,
although this reduces the molecular weight somewhat.

Draw resonance is a flow instability that occurs in melt spinning and sheet
extrusion at a critical draw ratio, even for Newtonian fluid [32]. It causes an
oscillation in web thickness and to a lesser extent in width, with maxima in width
corresponding to minima in thickness. A non-uniform film gauge is highly
undesirable. Critical draw ratios for polyethylenes range from 15 to 35. Draw
resonance is much more severe for linear than for branched polyethylene, and this
was an initial barrier to the penetration of LLDPE into sheet extrusion markets. A
proposed solution is to avoid the sudden cooling of the web at the chill roll by use
of a linear jet of cooling air. Another is to blend LLDPE with LDPE. The modeling
of draw resonance has not proven quantitatively useful because of deficiencies in
viscoelasticity models and the lack of planar extensional flow data at high strain
rates and temperatures.

As the drawdown ratio is increased, the deformation rate and tensile stress in
the web also increase, leading eventually to rupture. By generating regions having
less than average thickness, draw resonance exacerbates this problem.

8.4.1 Extrusion Coating

In extrusion coating a thin layer of polymer is coated onto a substrate at high
speed. The substrate can be paper, aluminum foil or plastic film, and a wide range
of products can be made, from thin film to thick board and including multi-layer
coatings [33]. Extrusion coating is similar to chill-roll casting but runs under more
intense conditions. The coating line runs much faster, up to 700 m/min, and the air
gap between die lip and chill role is much larger than in film casting, typically
between 150 and 250 mm as compared to 25-65 mm for cast film. A potential
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problem is rupture of the curtain before reaching the desired draw-down level.
Neck-in is reduced by elasticity, but the ability to be drawn into a thin film without
breaking is associated with more viscous behavior. The maximum speed a resin
can run without rupturing the curtain is called the drawdown speed.

Coating runs at much higher temperatures than chill-roll casting, usually around
300 °C. This is to reduce viscosity so that the curtain can be stretched very thin
(10-50 pm) before being coated on the substrate and to allow the line to run at
high speed. For these reasons general purpose coating resins have relatively high
melt index values, in the range of 4-25 g/10 min at 190 °C. The high temperature
also promotes slight oxidation, which improves adhesion to the substrate.

The wider air gap results in larger neck-in, and the neck-in requirement is more
stringent for extrusion coating resins than for cast film resins. Since the defor-
mation of the web between die lip and chill roll is dominated by stretching, strain
hardening at high strain rates is critical to minimize neck-in. Autoclave LDPE is
the preferred resin for coating, since its highly branched structure provides strain
hardening along with low zero-shear viscosity [34].

The behavior of the extruded melt curtain does not involve shear, and MI serves
primarily as an indicator of molecular weight. Increasing M,, increases viscosity
and melt strength but impairs draw-down ability. Clevenhag and Oveby [35]
observed coating performance and measured MI and storage modulus for a large
number of autoclave LDPEs, all having MI values in the normal range of coating
resins. They found a substantial variation in both the rheology and processing
among the resins but found little correlation between draw-down and MI. They
observed that it is often necessary to evaluate LDPE coating resin processability by
using a pilot or production scale coater.

When LDPE alone does not meet product specifications it is often blended with
LLDPE to improve sealing performance, wear resistance or temperature resis-
tance. Something that needs to be considered when blending LDPE with LLDPE is
the flow activation energy. The viscosity of LDPE decreases more rapidly in going
from the standard measurement temperature 190 °C to a processing temperature of
300 °C than a LDPE/LLDPE blend. So in order for the blend to have the same
draw-down speed as LDPE, the blend often needs to have a lower viscosity at
190 °C, i.e., a higher melt index.

Draw resonance, which occurs in all drawing processes, can also be a problem
in coating and manifests itself by a periodic fluctuation of neck-in and film gauge
above a certain line speed, and low strain hardening or low melt strength has been
associated with this phenomenon. Roberts et al. [36] describe a method for sup-
pressing draw resonance.

Die designs are based on general principles similar to those for sheet extrusion
but are more complicated. Automatic control of a flexible die lip may be used to
maintain the desired product thickness.
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8.5 Film Blowing
8.5.1 Introduction

The essential elements of film blowing are illustrated in Fig. 8.9. An extruder
melts the resin and forces it through a screen pack and an annular die. The
extruded melt, in the form of a tube, flows upward under the influence of a vertical,
machine direction force, applied by means of nip rolls some distance above the
die. There is stretching in this direction, and the ratio of the linear speed of the film
through the nip rolls v,,, divided by the average melt velocity at the die lips vg;e, is
the draw down ratio (DDR).

When the process is started up air is injected through a hole in the die face, and
when the extruded tube is threaded between the nip rolls to form an air seal,
additional air is introduced to form the bubble. In this region the tube expands to a
much larger diameter, and the ratio of this diameter to that of the die lips is the
blow up ratio (BUR). This expansion of the molten tube as it moves into the
inflated region generates stretching in the transverse (circumferential) direction.
The bubble is cooled by means of an air ring that directs air along its outer surface.

Fig. 8.9 Sketch showing the NIP ROLLS
essential features of the film
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Additional cooling may be provided by the internal circulation of cold air. The
frost line is actually a zone in which the final diameter is established and solidi-
fication is completed. This terminology arises from the loss of transparency due to
crystallization in polyethylene film and not from the presence of condensed
moisture on the film.

The film continues its upward movement until it is sufficiently cool to be
flattened without sticking to itself or to the apparatus. The tube then passes through
a frame or flattening ladder so that it can pass between nip rolls that generate
machine direction tension. The flattened tube is then wound up and cut for ship-
ment or for further processing. The width of the flattened tube is the lay-flar width,
which is equal to 7 times the final bubble radius. Rheological properties play an
important role in film blowing. They govern the shape and stability of the bubble
and the onset of sharkskin (surface roughness). Because of the complexity of the
flows involved, it is not generally possible to establish simple quantitative corre-
lations between these phenomena and easily measured rheological properties.
However, an understanding of how variations in the rheological behavior of melts
can affect the processing and properties of blown film is essential if one is to
achieve optimum results from this process.

The objective is to produce a film having uniform gauge and good optical and
mechanical properties. Gauge nonuniformity is a serious defect that can lead to the
rejection of finished film and usually results from bubble instability but can also be
caused by extruder surging. Since the film is quite thin it is especially important to
avoid the presence of unmelted material, gels or foreign matter, as these will be
readily apparent in the finished product. In order to achieve good mechanical
properties it is desirable that molecular orientation in the film be more or less
balanced i.e., equal in the machine and transverse directions. This implies a small
die gap and low DDR, but maximizing production rate may require relaxation of
these conditions, resulting in preferred orientation in the machine direction and a
splitty film, i.e., one that is weak in the transverse direction. For this reason, higher
quality film has a more balanced orientation.

One problem that often occurs when linear polymers are being processed is
sharkskin, which was described in Sect. 6.3.2. This results from surface fracture at
the exit of the die and causes a marked deterioration in optical properties. More is
said about this below.

The resins most used for blown film are polyethylene and polypropylene. Low-
density polyethylene (LDPE) is easy to extrude, exhibits good bubble stability and
yields a flexible film. It has been found that a narrow molecular weight distribution
and a modest degree of long chain branching give good drawdown and optical
properties, although this combination of characteristics does not give the best
impact strength. A stronger and less flexible film is produced using high-molecular
weight, high density polyethylene (HDPE), but it is more difficult to process and to
make a film having balanced orientation. Because it is a copolymer, linear low
density polyethylene (LLDPE) has the low crystallinity and flexibility of LDPE but
better film strength. At the same time, it has some of the processing disadvantages
of HDPE. Compared with LDPE, it has a higher viscosity at the high shear rates that


http://dx.doi.org/10.1007/978-94-007-6395-1_6

8.5 Film Blowing 225

Fig. 8.10 Viscosity curves
for LLDPE and LDPE film
resins. The LLDPE is less
shear-thinning and has a
higher viscosity at shear rates
ahat occur in an extruder and LLDPE
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occur in the extruder and the die, thus increasing screw torque, barrel wear, and
melt temperature. This is illustrated in Fig. 8.10, which shows typical viscosity
versus shear rate curves for LDPE and LLDPE film resins. LLDPE also exhibits
lower extensional stresses at the low strain rates typical of the bubble inflation
region, and this renders the bubble less stable than LDPE but better in this regard
than HDPE. Unlike LDPE, LLDPE is prone to sharkskin exit fracture.

Because of the complexity of the flow field and the strong effects of cooling and
solidification on polymer properties, no simple cause-effect relationships are
available to predict the process performance of a resin on the basis of a few easily
performed laboratory tests. As in the case of blow molding, the final step in resin
evaluation involves the use of a full-scale film line.

8.5.2 Flow in the Extruder and Die

The extrusion of LDPE is well understood, and screw design is a well established
art. In the case of HDPE simple screw designs can produce inadequate solids
conveying at moderate and high screw speeds. Thus, as screw speed increases,
output rate and film properties deteriorate. Mixing sections can correct this, but
their use leads to higher melt temperatures and degradation. This in turn reduces
the maximum blow up ratio, which is needed to promote balanced orientation.
Grooved barrels in the feed zone can improve solids conveying, as can barrier
screws, which keep unmelted material separate from the melt and pushed up
against the wall. This generates less shear and reduces melt temperature and
pressure fluctuations.

LLDPE also poses extrusion problems compared to LDPE, which can be dealt
with by the use of barrier screws [37]. Because of the higher viscosity at typical
extrusion shear rates, as shown in Fig. 8.10, there is higher torque on the screw,
accelerated barrel wear, and higher melt temperature.
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Fig. 8.11 Spiral die used to
extrude melt for the film
blowing process. The partial
cross-section of the mandrel
shows the main flow along
the channel and the leakage
flow over the land into the
next channel

The die is designed to produce annular extrudate having no weld lines with
uniform thickness and velocity around its circumference. The most popular type of
film die, the spiral mandrel die, is shown in partial cross section in Fig. 8.11. The
melt enters at the center and flows out through several feeding ports to a series of
helical grooved channels cut into the wall of the mandrel. The cross section of
these channels decreases in the flow direction, while there is an increasing gap
between the land of the channels and the cylindrical outer wall of the die. Thus, an
increasing quantity of the melt leaks over this land into the next channel, and there
is thus substantial mixing. The depth of the helical channels ultimately reduces to
zero, and the final section of the flow channel is an annulus whose gap varies in the
axial direction, narrowing significantly near the exit.

The flow is complex, but a simplified method of calculation was used by
Proctor [38] to calculate the details of the flow for a purely viscous material with a
power-law viscosity. More elaborate methods for power law fluids that make fewer
simplifying flow assumptions and require more computation were described later
[39, 40], and several of these were compared by Perdikoulias et al. [41]. Another
model incorporates viscoelastic material behavior [42].

Gates [43] discusses the problems involved in designing a spiral mandrel die for
use with LLDPE. He says that the main problem is to avoid high shear rates, which
result in high back pressure and melt temperature. Furthermore, he points out that
there can be a substantial temperature variation across the diameter of the extruder
adapter that feeds the die, and that the flow in the spiral mandrel die tends to
produce a layering of polymer having a range of temperatures in the molten tube
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produced. This in turn can cause cyclic variations in gauge and frost line height.
He suggests that this effect is minimized by use of a longer spiral wrap distance,
leading to more port overlap. A longer spiral channel also yields performance that
is less sensitive to changes in the viscosity of the resin.

In Sect. 6.3.2 we described extrudate distortions that can occur when melt exits
a die. In the film blowing process, the most troublesome of these is sharkskin
(surface melt fracture), because it results in film having a rough, unattractive
surface. Sharkskin is especially troublesome with LLDPE, with the result that dies
designed for LDPE can only be used at significantly reduced production rates. One
solution is to use a wider die gap to reduce wall shear rate. However, this increases
demands on the bubble cooling system and causes some deterioration of film
properties. Other solutions proposed include a diverging die gap and heated die
lips, but the usual approach, which does not require equipment modification, is the
use of processing aid, which is usually a fluorocarbon elastomer that is added to
the resin at time of processing or introduced as a masterbatch.

8.5.2.1 The Bubble Region

The melt leaving the die is suddenly free of restraints imposed by contact with the
die wall and reacts quickly to its new environment. In particular, it swells in
response to the molecular orientation induced by die flow, and it stretches in the
machine direction in response to the tension imposed by the nip rolls. Its behavior
in such a free surface flow is mainly dependent on its rheological properties, with
thermal properties also playing an important role. The design of the die and film
cooling system are also important.

For a given resin and film line, processing conditions that influence the flow in
the bubble are:

. Melt temperature

. Output rate (melt flow rate)

. Nip roll speed

. Internal bubble pressure

. Cooling air temperature and flow rate.

wn A W =

The draw down ratio and blow up ratio are usually used as process variable in
place of nip roll speed and bubble pressure, respectively. Obviously many vari-
ables contribute to bubble behavior, and the systematic study of the effects of each
of these would be an enormous task, and the result would be a huge mass of data
that would be impossible to correlate without the guidance of a model. Our present
understanding is based on inferences from small-scale studies in which only a few
variables are examined. In addition, there is no reliable way to scale up results
obtained with one apparatus so that they are relevant to an apparatus of a different
size and design. We present here some empirical observations, but it is important
to keep in mind that these do not constitute fundamental principles.


http://dx.doi.org/10.1007/978-94-007-6395-1_6

228 8 Role of Rheology in Melt Processing
8.5.2.2 Bubble Cooling

The converter wants to maximize production, and this implies a high cooling rate.
In early air-rings this rate was maximized by directing air at the bubble to generate
stagnation flow, but this generated high pressure and severe buffeting. To avoid the
destabilizing effects of this flow pattern, air flow was limited to low rates. This led
to the use of a deflector to divert the air so that a fan spray flow pattern was
generated. This permitted an increase in air flow, but the flow passages were not
streamlined, and large-scale turbulence was generated. While this type of air ring
was used for several decades, improved units were developed. The flow of cooling
air next to the film has a significant effect on bubble shape [44], and this can be
used to advantage. In the case of LLDPE the bubble is particularly sensitive to
destabilizing forces, and the venturi effect has been used to control bubble shape
while stabilizing the position of the bubble. Dual and multiple stacked air-rings are
now used to generate streamlined flow without creating large suction at the base of
the bubble. Zhang et al. [45] measured heat transfer rates at the bubble surface of a
large-scale apparatus with a dual-lip air-ring.

8.5.2.3 Forces Acting on the Bubble

The bubble is supported from above by the nip rolls, and the position of the cooled
film is stabilized by guides such as irises and cages, and by the collapsing ladder.
However, at its base the bubble is held in place only by the tube of molten polymer
coming from the die. This allows the bubble to move and deform in response to
external forces, particularly those arising from the flow of cooling air. Distur-
bances of any kind can cause gauge variations and even bubble rupture. Therefore,
it is of importance to understand all the forces that can act on the bubble.

Looking first at the entire bubble, there is an upward (machine direction) force
exerted by the nip rolls. Bubble stabilizing devices and the collapsing frame will
exert lateral forces on the bubble. At the bottom, viscous stresses act in the molten
tube at the exit of the die to hold the bubble in place. Internal pressure supplies the
driving force for inflation, while aerodynamic forces can be used to control bubble
shape and stabilize its position. Finally, gravity acts directly on the bubble, so that
the nip rolls not only produce the force that generates stretching in the bubble but
must also support its weight.

8.5.2.4 Stresses in the Film

Internal stresses arise from the viscoelastic reaction of the melt to its deformation
and act to stretch a fluid in the machine and transverse directions. Figure 8.12
shows the stresses in these directions acting on a small element of the bubble. The
extensional strain rates: &y in the machine x; direction and &t in the transverse xr
direction, can be written in terms of the velocity v(f) and bubble radius R(f) of a



8.5 Film Blowing 229

moving element of melt. The use of a frame of reference that tracks a fluid element
is required when a constitutive equation is used to describe calculate the stresses in
the melt. However, it is more convenient for describing experiments to use the
variables vy(z) and R(z) that refer to a point in the bubble at a fixed distance
z above the die. Assuming axial symmetry, the strain rates in both frames of
reference are given below.

——==cos0 dvm(2)

RO dz (8.22)

.1 dR(t) v.(2)dR(z)
ngW dt  R(z) dz (8.23)

The stresses generated in each of these directions are related to strain rate
histories of a fluid element by the viscoelastic properties of the polymer. The flow
kinematics in the bubble varies from planar extension, if there is a region above
the die where the diameter is constant, to biaxial extension in the inflation region.
However, the only readily measured extensional flow in the laboratory is uniaxial
extension, and this is the one used for correlating lab data with processability.
Strain hardening is most apparent in uniaxial stretching but is thought to follow the
same trend as in biaxial extension. The extensional flow properties of the resin
govern its ability to avoid bubble instability and molecular orientation in the
finished film.

8.5.2.5 Bubble Shape and Molecular Orientation

Bubble shape affects bubble stability and orientation of the final film; it depends on
polymer, amount of air injected, DDR, BUR and air ring aerodynamics. The two
bubble types used in film blowing are shown in Fig. 8.13. The pocket shape shown
on the left is used for LDPE, LLDPE, polypropylene, and a number of other
materials, while the long stalk shape shown on the right is used primarily for
HDPE. The bubble shape plays an important role in generating molecular orien-
tation, since transverse orientation is the direct result of the radial expansion that
accompanies inflation. The principal factors affecting bubble shape are the amount
of air injected and aerodynamic forces due to the flow of cooling air.

The long stalk process is used for HDPE in order to produce film having a more
balanced orientation. First, it provides time for the relaxation of the molecular
orientation generated by flow in the die. In addition, we note that in this type of
operation most of the machine direction drawdown occurs before inflation, while
transverse stretching occurs at a later time and at lower temperatures. In this way,
the transverse extension makes a larger contribution to film orientation even
though it may be smaller in total magnitude than the machine direction drawdown.
Another reason for using a long stalk, and thus delaying inflation, is that a rapidly
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Fig. 8.12 Principal stresses
in the blow-up region of the x
bubble. a,, is the normal

(tensile) stress in the machine

direction, and o7 is the
normal (tensile) stress in the

transverse direction

Fig. 8.13 Bubble shapes
used in film blowing. The
“pocket” shape on the left is
used for LDPE, LLDPE and
polypropylene, while the
“long-stalk” shape on the
right is used primarily with
HDPE

thinning film of melt would be susceptible to instability and rupture at the high
temperature of the extrudate.

Small variations in resin characteristics, for example those due to batch-to-
batch differences, can cause significant variations in bubble shape [46], and these
differences can be amplified by the bubble cooling process, which itself can have
an important effect on bubble shape.
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As mentioned above, molecular orientation in the finished film governs its tear
and rupture strength, and orientation is the result of stresses generated during
upward flow in the bubble. Detailed strain histories in the molten zone of low
density polyethylene film bubbles have been determined experimentally [47, 48].
The machine direction strain rate is highest at some point above the die and then
decreases monotonically up to the frost line. After a short zone in which extrudate
swell is significant, the machine direction strain rate reaches its maximum value,
while the transverse strain rate only becomes significant in the region of diameter
increase where it reaches a maximum and then falls to zero in the neighborhood of
the frost line. For large blow-up ratios, the transverse strain rate can rise far above
the machine direction strain rate in the region of maximum rate of increase of the
bubble radius.

However, the strain history must be considered in light of the time and tem-
perature dependencies of viscoelastic behavior. Stresses present in the lower
regions of the bubble will relax much more quickly than those introduced by
deformation in the cooler regions, and stresses present as the melt begins to
solidify are particularly effective in generating permanent orientation. However,
high molecular weight linear resins have longer relaxation times, and this will
enhance the effect of deformations occurring lower in the bubble. To summarize,
the final orientation of the film depends in detail on the histories of both the stress
field and the temperature as the polymer moves from the die to the frost line.

To determine the degree of molecular orientation in a sample of film one can
use analytical methods such as infrared dichroism and x-ray diffraction, but a
much simpler technique can provide useful information for LDPE. A circular film
sample with the machine and transverse directions marked on its surface is placed
in hot oil in a shallow dish. The sample shrinks, and the relative shrinkage in the
two directions is indicative of the amount and direction of orientation. Liu and
Harrison [49] compared their shrinkage data with those obtained using a polarized
infrared technique and found a good correlation.

The relationship between melt deformation in the bubble and film orientation
was studied by Farber and Dealy [47]. They measured deformation rates in a
laboratory film line in the transverse and machine directions for an LDPE.
Figure 8.14 shows strain rates in the two directions for a BUR of 2.2. The ordinate
is time as seen by an element of melt as it moves through the bubble. Machine
direction stretch rate is maximum just above the die and then decreases steadily to
the frost line, while the transverse rate rises to a maximum in the region where the
bubble diameter is increasing most rapidly. The ratio of the transverse shrinkage to
that in the machine direction of the finished film was found to be 0.34. Thus, even
though the deformation was mainly transverse over most of the melt path, the final
orientation was in the machine direction. At the frost line, the curves are extrap-
olated to zero, but the melt was still under stress in this region, and while the strain
occurring there was small it had a strong effect on final orientation.
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Fig. 8.14 Strain rates in the machine and transverse directions as functions of time following a
melt element from the die to the frost line for an LDPE. The BUR was 3, and the ratio of shrink in
the transverse direction to that in the machine direction was 0.34. While the rate in the transverse
direction is much higher most of the time, the strain that occurs in the neighborhood of the frost
line, although small, is much more effective in generating orientation, because the polymer is in
its rubbery state there

8.5.2.6 Bubble Stability

Disturbances that can trigger bubble instability include air-ring flow, machinery
vibrations, poor temperature control, and spikes in line voltage. Instabilities in
bubble behavior are limiting factors in the production of blown film, and the
limiting condition is usually associated with the maximum cooling rate that does
not destabilize the bubble [50]. Instabilities can take many forms, including the
following:

Oscillation of bubble diameter

Neck moves abruptly up and down at regular intervals

Frost line height oscillates

Circular motion or wobbling of bubble, which introduces a helical bulge in the film
Periodic thickness variation, similar in nature to the draw resonance that occurs in
melt spinning [51].

Zhang et al. [45] carried out numerical simulations and experiments to deter-
mine the effect of air-ring aerodynamics on bubble behavior. Their results con-
firmed the strong interactions between cooling rate and bubble shape and how
these affect bubble stability. Increasing cooling decreased the stability of a low
BUR bubble but stabilized one with a high BUR.

The combination of instability, thin film and high tensile stress can result in
rupture of the bubble and interruption of production. Melt strength is obviously
important for good drawability. But the most common problem arising from
instability is gauge variation in the finished film.
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The ability of a resin to resist becoming unstable in response to a disturbance
has been found to correlate with its extensional flow behavior. Strain hardening,
particularly at low strain rates, appears to damp instabilities by suppressing further
strain where a fluctuation has created a small reduction in film thickness and a
locally higher strain rate. LDPE bubbles are much more stable than those of
HDPE, although broadening the MWD of HDPE improves bubble stability
somewhat. In start-up of steady simple extension, LDPE exhibits marked strain
hardening, i.e., its tensile stress growth coefficient rises sharply above the linear
viscoelastic curve at a Hencky strain that decreases with strain rate. In a com-
parison of two similar LDPE film resins [52], it was found that the resin with
higher values of ; (7, ¢) and lower maximum drawdown produced the more stable
bubble. HDPE, on the other hand, is strain softening unless some very high MW
material is present.

When LLDPE was introduced, it was intended as a replacement for LDPE, as it
produced stronger film, and it was thus desirable to be able to process it using
equipment already in place for the latter. However, this could only be achieved by
reducing production rates, because LLDPE was more susceptible to gauge varia-
tion than LDPE although significantly better than HDPE. Improved bubble sta-
bility and higher production rates in LLDPE were achieved by use of air-rings that
use aerodynamics to control bubble shape. Another way to stabilize LLDPE
bubbles is to use a booster, often a peroxide cross-linking agent. Cross-linking can
make LLDPE behave more like LDPE, although care must be taken not to produce
sufficient cross-linking to interfere with the drawdown process or to produce gels.
The most common way to improve bubble stability for LLDPE is to blend it with
LDPE. Micic and Bhattacharya [53] studied blends of LLDPE with from 10 to
30 % of several LDPEs. The LDPEs varied in molecular structure, with MI values
ranging from 0.3 to 1.7, MWDs from 7 to 30, and branching levels from 2.5 to
6 LCBs per 1,000 carbons. They measured extensional flow behavior of each of
the blends using a sophisticated rotary-clamp instrument and observed their
behavior in a film line. They found that the LDPE with the broadest MWD and the
highest LCB level was the most effective in promoting strain hardening and bubble
stability. They also reported that increasing the amount of LDPE in the blend
effected these improvements up to the highest level used, which was 30 %.

Metallocene copolymers (mLLDPE) made more efficient use of comonomer
than LLDPE made using Ziegler catalysts and offered much better control over
MWD. However, their narrow MWD made them much less shear thinning so that
they were more difficult to extrude. This drawback was eliminated by the devel-
opment of the CGC catalyst system described in Sect. 7.2.3.1. The introduction of
a small and well-controlled level of long chain branching made it possible to vary
independently crystallinity and shear thinning.
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8.5.3 Drawability

An important feature of the film blowing process is its ability to generate a high
degree of drawdown, so that the gauge of the final film is much less than the die
gap. However, a limit to this process is imposed by the strength of the melt in the
bubble. For a given die, blow-up ratio, and throughput rate, if the nip roll speed is
increased, a point is reached where the tensile stress in the bubble exceeds the
cohesive strength of the melt, and rupture occurs. The ability of a resin to be drawn
down can be characterized by the maximum drawdown ratio (DDR).

This limitation is particularly noticeable in the case of LDPE, and it is thought
that this is related to the fact that this resin is strain hardening. This means that its
tensile stress growth coefficient increases sharply above the linear viscoelastic
curve as strain increases. If the principal stretching stresses in the process also
increase sharply with strain, such a resin would be particularly subject to cohesive
failure. However, it must be remembered that flow in the bubble is not a uniaxial
deformation, and the correlation between strain hardening and the tendency to
rupture is not direct.

Comparisons of similar LDPE film resins [46] and of HDPE with LDPE [16]
showed that differences in maximum drawdown had no correlation with shear
behavior but was related to some extent with extensional flow properties. How-
ever, the melt strength test described in Chap. 6 is the simplest method for
detecting differences in drawability with similar resins [54].

8.5.4 Modeling the Film Blowing Process

Modeling this process to predict the performance of a given combination of resin,
equipment, and operating conditions is extremely complex. The geometry of the
bubble cannot be described simply and is dependent on resin properties, operating
conditions and equipment design. The air-ring not only affects film temperature
but also exerts aerodynamic forces on the bubble that can have a strong effect on
bubble shape [44]. In addition, the air flow is turbulent and buffets the surface of
the bubble. Flow in the die also affects film thickness uniformity, and this may be
complicated by the presence of wall slip in HDPE [54]. A comprehensive model
must account for air-ring aerodynamics, heat transfer, crystallization, and non-
linear viscoelastic behavior.

The deformation is close to planar extension just above the die and then
becomes biaxial in the bubble but not equibiaxial. It starts out at the die as a hot
viscous melt, but it cools rapidly becoming more and more elastic and finally
crystallizes. For these reasons, the reliability of the model used for the melt vis-
coelasticity is of crucial importance. Continuum models in the form of differential
equations are preferred, as these lend themselves to numerical analysis. Finally
there is at present no way to measure the response of a melt to high-rate planar or
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biaxial stretching under controlled conditions. As a result, it is not possible to
evaluate the ability of an empirical model to predict such flows. Another com-
plication is that the melt becomes increasingly elastic as its temperature falls, and
as it starts to solidify, a constitutive equation suitable for a homogeneous material
will no longer be appropriate. Some models employ different rheological models
in the two regions.

Pearson and Petrie [55] developed a coordinate system suitable for describing
the complex shape of a bubble in 1970, and since then there have many efforts to
do a useful numerical simulation. A final and especially challenging aspect of the
problem is that the issue of most interest is the stability of the system, and this
means that a steady-state axisymmetric solution will not be adequate. Jim et al.
[56] have spent well over a decade on this problem. Meanwhile the group of
Housiades [44] has focused their efforts on interactions between cooling air
aerodynamics and bubble surface.

8.6 Blow Molding
8.6.1 Introduction

The principal types of blow molding are extrusion blow molding and injection
blow molding. In the latter process a preform, often similar to a test tube with a
threaded end, is injection molded and subsequently reheated and inflated inside a
mold. This process affords excellent control of the thickness distribution in the
preform and is used to make small containers with high quality finishes. It is also
used in the stretch blow molding process used to make carbonated beverage
bottles. Since there is no freely suspended parison, the issues addressed in this
section, namely parison swell and sag do not arise.

In the extrusion blow molding process, a tube, called a parison, of melt is
extruded from a die. The mold halves then close around the parison to pinch it off
at one end, and, if a bottle is to be made, to form a threaded neck at the other. Then
the parison is inflated to conform to the shape of the mold. The extrusion can be
intermittent, halting while the parison is pinched, inflated and cooled, or it can be
done continuously by the use of two or more moving molds. The extrusion process
is faster and more economical than the injection process, and is preferred for
manufacturing large items. Very large items can be made by extrusion blow
molding, with parisons weighing as much as 100 kg or more. For such large
objects the extruder is supplemented by a ram accumulator that permits rapid
formation of the parison.

There are two types of extrusion blow molding, reciprocating, involving peri-
odic extrusion, and shuttling, which involves continuous extrusion. In the recip-
rocating process, melt accumulates at the end of the extruder as the screw backs
up, and the screw then moves forward to generate the parison. For very large
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containers melt collects in a separate accumulator. Then melt is pushed through the
die by a ram, generating a relatively high flow rate in the die and more parison
swell than in the continuous process. While the parison is being clamped and
inflated, the extruder is generating a new batch of melt. In the continuous extrusion
process, once a parison has been formed it is shuttled aside for molding, and a new
parison is formed immediately. The flow rate in the die is lower than in the case of
reciprocating extrusion, resulting in smaller swell and allowing more time for
parison sag.

The viscoelastic properties of the melt play a key role in blow molding, par-
ticularly in the extrusion blow molding process. The pressure profiles and flow
patterns in the extruder and die are governed by the viscous properties and the
shape of the flow passages. However, between the time the melt exits the die and
the time it touches the cooled mold walls, it moves and changes its shape entirely
as a viscoelastic response to three factors:

1. Molecular orientation generated by flow in the die, which results in parison
swell,

2. Gravity, which causes “drawdown” or “sag” of the parison, and

3. Blow pressure, which causes parison inflation.

8.6.2 Flow in the Die

Approximate methods are used to calculate the important aspects of flow in a blow
molding die. The calculation of forces and velocity distributions requires only the
viscosity as a function of shear rate and temperature; the flow is usually assumed
to be isothermal [57-59]. Winter and Fritz [59] used the power-law to calculate the
velocity distribution of velocity in the die gap. The resulting model was then used
to design dies having a uniform velocity distribution, and dies fabricated based on
these designs were found to have good flow distribution. Another use of models is
to calculate the total force exerted by the melt on the mandrel [58]. For a con-
verging die, the normal pressure acts in a direction opposite to the shear force. This
makes it possible to design a die so that the net force on the mandrel is quite small.
This simplifies die design and makes it possible to use a stepper motor rather than
a servo-hydraulic actuator to drive a movable mandrel for purposes of parison
programming.

Swell is one manifestation of the flow that occurs in the die, and other effects
include weld lines, shear modification, and extrudate distortion. If there are spider
legs to hold the mandrel in place, weld lines will be formed as the melt flows
around the legs. The reentanglement of molecules across weld lines occurs slowly,
leaving lateral weakness in the parison and in the molded product in the neigh-
borhood of a weld line. Shear modification can reduce elasticity and viscosity,
especially in the case of branched polymers.

Finally, the melt leaving the die may exhibit sharkskin, described in Sect. 6.3.2,
which affects the surface finish of a molded container. It becomes noticeable above


http://dx.doi.org/10.1007/978-94-007-6395-1_6

8.6 Blow Molding 237

a critical wall shear stress and can limit the extrusion rate. Extrudate distortion is
most severe for narrow MWD, high viscosity resins at high shear rates. A very
rough estimate of the critical stress for surface melt fracture is 0.1 MPa. In the
development of a new blow molding resin, if the stress in the die is estimated to
approach this value, measurement of the critical stress by capillary rheometry is
advised. Sharkskin can sometimes be eliminated by increasing the temperature or
reducing the extrusion rate, although these actions increase the cycle time. The use
of an internal heater in the mandrel is thought to reduce melt fracture on the inside
of the parison.

In the case of large or irregularly shaped objects, it is desirable to be able to
change the parison thickness during extrusion, and this is done by use of parison
programming to alter the geometry of the die to produce a parison having the
desired profile. However, parison programming cannot compensate for resin
properties that are basically unsuited for use in a given machine, and for this
reason it will be useful to examine in more detail the processes of parison swell
and sag.

8.6.3 Parison Swell

The melt deformation that occurs in the die generates molecular orientation, which
manifests itself at the die exit as extrudate swell, a phenomenon first described in
Sect. 8.3.3.2. Flow at the inlet of a die, where the streamlines are converging
rapidly, involves a high rate of stretching in the flow direction. This results in
molecular orientation, and if the melt were permitted to exit immediately, as in the
case of flow through an orifice plate, there would be a very high degree of swell.
However, if the entrance is followed by a long straight section, for example a
capillary or straight annular die, molecular relaxation will lead to the decay of
orientation, and as the die becomes longer, the degree of swell falls. At the same
time, however, shearing in the die produces some axial orientation, and this can
result in significant swell.

Furthermore, if the die has an expanding or contracting section, this will induce
orientation that depends on the details of the die design. For these reasons, parison
swell is very sensitive to the shape of the die channel. To describe the swell of a
tubular extrudate it is necessary to use two swell ratios, one for diameter swell and
one for thickness swell. These are defined as follows; the symbols used are defined
in Fig. 8.15.

BD = Dp/DO (824)
Bu = hy /ho (8.25)

There is also a weight swell By, that is the weight of a given length of parison,
divided by the weight of the same length of a parison having the same inner and
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Fig. 8.15 Definitions of the
two swell ratios for extrudate
from a die with annular lips.
The thickness swell By = hp/
ho, and the diameter swell
BD == Dp/DO

1

l
?

outer radii as the die. If the density of the melt does not change significantly while
the parison is being formed, the weight swell is equal to the area swell, Bx.

If the parison wall thickness is small compared to its diameter, the area swell is
approximately equal to the product of the diameter and thickness swells.

Ba = BpBy (8.27)

Both the quality and cost of a blow molded container depend on the parison
swell ratios. If the diameter swell is too small, incomplete handles, tabs or other
unsymmetrical features may result. On the other hand, if the diameter swell is too
large, polymer may be trapped in the mold relief or pleating may occur. Pleating,
in turn, can produce webbing in a handle. Weight swell governs the weight and
thus the material cost of the molded product. The optimum is the minimum weight
that provides the required strength and rigidity.

Because swell is a manifestation of viscoelasticity, it is time dependent. For
example, for high density polyethylene at 170 °C, 70-80 % of the swell occurs
during the first few seconds after the melt leaves the die, while the remainder
occurs over a period of 2-3 min [19]. Garcia-Rejon and Dealy studied the swell
behavior of a set of commercial polyolefins extruded from an annular die [19] by
extruding into hot oil having the same temperature and density as the melt, so that
the swelling process could be monitored as a function of time in the absence of
sag. Figure 8.16 shows diameter swell versus time for a polyethylene at three flow
rates, and we see that it takes several minutes to reach steady state. The same study
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found that for polypropylene at 190 °C, only 50 % of the swell occurred in the first
few seconds, while more than 10 min were required to reach the ultimate value
[19]. While short-time swell is more directly relevant to the case of short parisons
[60], ultimate swell is easier to determine quantitatively.

Another source of time dependency in the case of intermittent extrusion is the
cuff effect. The first melt to be extruded after a period of no flow has had an
opportunity to relax in the die and experiences relatively little shear just prior to
being extruded. Thus, there is less molecular orientation, and less swell, than for
melt that has just flowed through the entire length of die. This means that the swell
is least at the bottom of the parison (the “cuff”’) increasing to a maximum and then
decreasing. Of course sag will cause swell to decrease toward the top of the
parison.

Swell increases as the temperature decreases, although it takes place somewhat
more slowly. Since the time during which the parison is exposed to the air before
the mold closes is rather short, and the air surrounding the parison is warm and
relatively still, the decrease in temperature that occurs during parison formation is
generally rather small, usually less than 5 °C [61]. For this reason, parison for-
mation is often assumed to be an isothermal process. Swell increases as the flow
rate increases due to enhanced molecular orientation in the die. Swell varies
greatly from one polymer to another and is strongly affected by the extent of
branching, molecular weight, and molecular weight distribution. For linear poly-
mers, a broader MWD generally results in higher swell. However, resins with very
similar measured molecular weight distributions can have significantly different
swell behavior [20], and this probably reflects the fact that swell is highly sensitive
to small amounts of high molecular weight or branched material.

Koopmans [62] studied the effect of small amounts of high molecular weight
material on the swell of HDPE blends at the exit of a capillary at a wall shear rate
of 300 s~'. He found that the molecular weight of the high molecular weight
component was very important and concluded that it is misleading to use a single
parameter such as M,/M, as a measure of molecular weight distribution. The



240 8 Role of Rheology in Melt Processing

apparent decrease in swell that Koopmans observed as the molecular weight of the
heavier component was further increased may be due to the time dependency of
the swell. Raising the molecular weight increases the ultimate swell but decreases
the rate of approach to a steady state value. Highly branched polymers tend to
swell more, but it is not possible to generalize when both branching and MWD are
altered simultaneously.

Because swell is an elastic recoil process that results from molecular orientation
in the die, the shape of the die channel has a strong effect on both diameter and
thickness swells. The simplest case is a long straight annular die. Here we have
only shear flow, and we would expect to see some orientation in the axial direc-
tion. This suggests that there should not be preferential orientation in either the
radial or hoop direction and that the diameter swell should thus be equal to the
thickness swell.

Bp = By (8.28)

This is referred to as isotropic swell. If Egs. (8.26) and (8.27) are valid, (8.28)
implies that:

Bw = B} (8.29)

For anisotropic swell, it has been suggested [63] that the following empirical
relationship might be useful.

By = B (8.30)

We expect to find that m > 2 for a diverging die for which diameter swell is
suppressed

Figure 8.17 shows equilibrium thickness swell versus diameter swell from a
straight, annular die for three polyethylenes, 22, 26 and 27 and a polypropylene, 28
[19]. The three HDPEs were made by different companies but were marketed for
making the same type of bottle. The HDPEs have similar behavior, which is quite
different from the PP. The lines are plots of Egs. (8.29) and (8.30). A question of
interest is the degree to which capillary swell data can be related to parison
behavior. Figures 8.18 and 8.19 show diameter and thickness swells versus cap-
illary swell for the three HDPEs and the PP. The ranking of the HDPEs is the
same, while the PP is clearly from a different family.

For more complex dies like those used for blow molding, the swell ratios are
strongly influenced by two die geometry features, the angle of divergence or
convergence of the outer die wall, and the variation of gap spacing along the flow
path. A diverging die stretches the melt in the hoop direction, and this should
reduce diameter swell by counteracting the axial orientation generated by the shear
flow. Orbey and Dealy [20] used the apparatus described above to study the effect
of die geometry on swell. Cross-sections of their dies are shown in Fig. 8.20. Note
that in the 10° converging die the gap narrows, while in the 20° converging die the
die walls are parallel. The three HDPEs studied were made by different manu-
facturers but were all intended to make bottles for non-stress-cracking fluids.
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Fig. 8.17 Equilibrium
thickness swell versus
equilibrium diameter swell
for an annular die in the
absence of sag for three
similar HDPE resins and a
polypropylene resin
(squares). The straight line is
Eq. (8.28), and the upper
curve is Eq. (8.29). From
Garcia-Rejon and Dealy [19]

Fig. 8.18 Equilibrium
diameter swell from an
annular die versus capillary
swell for three similar HDPE
resins and a polypropylene
resin (squares). There is
clearly no correlation
between the two swell ratios.
From Garcia-Rejon and
Dealy [19]
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Resins 22A and 29 were made by solution polymerization using a modified Z-N
catalyst, while 27 was polymerized in a fluidized bed. Figures 8.21 and 8.22 show
the effect of die design on diameter and thickness swells. As expected the type of
molecular orientation introduced in the die has a powerful effect on swell behavior.
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Fig. 8.19 Annular thickness
swell versus capillary swell
for three similar HDPE resins
and a polypropylene resin
(squares). There is clearly no
correlation between the two
swell ratios. From Garcia-
Rejon and Dealy [19]

Fig. 8.20 Dies used to study
the effect of die geometry on
extrudate swell. Clockwise
from upper left: annular die,
diverging die, 10° converging
die, 20° converging die. From
Orbey and Dealy [20]
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Flow in the straight die generates some orientation in the axial direction, which
is expected to result in swelling that is isotropic in the plane normal to the flow
axis. And this implies that the diameter swell should be about the same as the
thickness swell so that Eq. (8.29) is valid. Figure 8.23 shows that this is what was
observed for two resins, although resin 29 deviated somewhat from isotropy. The
diverging die is expected to generate stretch in the hoop direction and deceleration
along streamlines. The resulting orientation is expected to suppress diameter swell,
and this is what we see in Fig. 8.24. The dashed line corresponds to m = 4 in
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Fig. 8.21 Equilibrium
diameter swell versus flow
rate (cm3/s) for a HDPE for
four dies: straight annulus,
open triangles; 10°
converging, open squares;,
20° converging, open circles;
diverging, solid squares.
From Orbey and Dealy [20]

Fig. 8.22 Equilibrium
thickness swell versus flow
rate (cm>/s) for a HDPE for
four dies: straight annulus,
open triangles; 10°
converging, open squares;,
20° converging, open circles;
diverging, solid squares.
From Orbey and Dealy [20]
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Fig. 8.23 Equilibrium 3 T T T LM B B
diameter swell versus weight
swell for the annular die. The
line is for isotropic swell,
Eq. (8.29). The three HDBEs
exhibit similar behavior,
while the polypropylene
swell (open squares) deviates
somewhat from isotropy.
From Orbey and Dealy [20]
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Fig. 8.24 Equilibrium 3 T T T
diameter swell versus weight
swell for three similar HDPE
resins. The solid line is a plot
of Eq. (8.29) (isotropic), and
the dashed line is Eq. (8.30)
with m = 4. From Orbey and
Dealy [20]
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Eq. (8.30), which is greater than one as expected. A very strongly diverging die
should be able to produce diameter swell ratios less than one.

The thickness swells for the straight, diverging and 20° converging dies are all
similar, reflecting the fact that these three dies all have parallel walls and the same
annular gap. The 10° converging die, on the other hand, converges in the thickness
direction, promoting orientation along streamlines and generating larger thickness
and diameter swells. Blow molding dies often have gaps that are narrowest at the
die lips, as this enhances the stability of the exit flow and reduces the tendency of
the melt will pull away from one of the die walls before it reaches the exit. Orbey
and Dealy [20] found that their converging die with a narrowing gap produced
extrudate exhibiting nearly isotropic swell corresponding to m = 2 in Eq. (8.30).

Figures 8.25, 8.26 compare the behavior of three resins in the 20° converging
die. While the three resins were marketed for the same usage, it is clear that
switching from one to another would require adjustment of the processing
machinery.

The method used in the two studies described above was designed to measure
the time-dependency of swell in the absence of drawdown due to gravity, but this
is a complex technique that is rarely used. The most common method used in
industry makes use of a pinch-off or pillow mold. Figure 8.27 is a photo of such a
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Fig. 8.25 Equilibrium
diameter swell versus flow
rate (cm3/s) for the 20°
converging for three similar
HDPEs. While the three
resins are similar in density,
melt index and
polydispersity, their swell
behaviors are markedly
different. From Orbey and
Dealy [20]

Fig. 8.26 Equilibrium
thickneess swell versus flow
rate (cm3/s) for the 20°
converging for three similar
HDPEs. While the ranking of
the three resins for this die is
the same as that for diameter
swell (Fig. 8.25) there is no
quantitative correlation
between the two swell ratios.
From Orbey and Dealy [20]

EQUILIBRIUM DIAMETER SWELL

A NN N A B BN SN B N N N R B NL I NN ENLEN

- o -4
L o o .
(=]
B o a7
L a E
L
o
- i ~
- a .
18 E
&
- -
9 .
- .,
&

L 4
L .
" a b s s s o b g o o a8 8 4 o o Ly s 5 4

0 1 2

VOLUMETRIC FLOW RATE {(cm¥s}

=0

a =TT Lo T T
- T T
w
=
0 b
2 I -
w
Zmb_ o
a -
) ° .
x o 2 a
- o

L &

]

= a
=] =5
x 15}
o
=
=2
o
w

VOLUMETRIC FLOW RATE (cm¥s)

device [64]. While this technique can produce unreliable results [65], it continues
to find use for the rapid evaluation of commercial resins [64].

It would obviously be very useful to be able to predict swell by use of a
numerical simulation. A long-term effort at the National Research Council of
Canada has led to the development of a useful model [66]. An integral constitutive
equation is used to describe nonlinear viscoelastic behavior, and like other con-
tinuum mechanics models it is empirical and of limited accuracy. However, the
resulting software package, BlowParison, has found application in the plastics

industry.
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Fig. 8.27 Photo showing a
pinch-off mold used to
evaluate extrudate swell of
blow molding resins. From
Jivraj et al. [64]
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8.6.4 Parison Sag

As soon as melt leaves the die it is subjected to gravity, which stretches it
downward, but this occurs simultaneously with swell that causes the length to
decrease with time. When extrusion stops, at the drop time, swell continues and
can sometimes cause the parison to recoil or bounce back. After this, there is
continuous sag or draw-down until inflation takes place; draw-down involves
extensional flow. For long parisons, sag can lead to significant variations in
thickness and diameter along the parison and in an extreme case can cause the
parison to break off. Since the low stress viscosity provides a rough guide to
parison melt strength, PE blow molding resins are usually fractional MI grades
having melt index values less than one. Sag becomes more severe as temperature
increases and is a major concern in the case of large parisons.

In addition to the low-stress viscosity, the amount of sag depends on drop time
and parison length. The drawdown stress at the top of the parison is its weight per
unit area, which is equal to (pgL), where p is the density of the melt, g is the
acceleration due to gravity, and L is parison length. If sag is small, the case of most
interest, the maximum amount of sag occurs near the middle of the parison and is
equal to (pgLt4/2n), where t4 is the drop time, and 7 is a relevant viscosity.

While a long drop time usually means that viscosity contributes more than
elasticity to total sag, if the drop time is short compared to the relaxation time of
the melt, initial resistance to sag will be governed by viscoelasticity [67]. Thus,
resistance to sag cannot always be quantitatively correlated with viscosity. Ajroldi
[67] used linear creep compliance, as calculated from a tensile relaxation modulus,
to predict sag, while Sebastion and Dearborn [68] suggested that the extensional
stress growth function could be correlated with sag behavior. However, since sag
is neither a constant stress nor a constant strain rate process, neither of these
material functions can be quantitatively related to sag. In order to compare resins
according to their sag behavior, Swerdlow et al. [69] simply clamped a weight onto
the end of a specified length of extrudate from a melt indexer and measured the
resulting sag during a prescribed time.
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8.6.5 Pleating

Pleating (also called draping or curtaining) is a buckling of the parison that occurs
when the melt in the upper portion of the parison is unable to withstand the
compressive hoop stresses due to the weight of the parison suspended below it.
This phenomenon is illustrated in Fig. 8.28. Pleating is usually undesirable, for
example it can cause cause webbing in handles, but it is virtually unavoidable for
very large parisons.

Obviously, large diameter swell and a small die gap are factors that will
increase the severity of pleating. It is not clear exactly which rheological properties
govern the ability of a melt to resist pleating, but the low-shear-rate viscosity is a
rough guide to melt stiffness. Thus, high viscosity resins are less likely to pleat,
and increasing the temperature increases the likelihood of pleating.

8.6.6 Parison Inflation

The behavior of the parison during the inflation process is a manifestation of its
extensional flow rheological properties. It has been observed [70] that the parison
does not inflate uniformly and tends to bulge out in the center, especially in the
case of PET resins [71]. Blow-outs can occur if the ratio of the mold diameter to
the parison diameter (the blow-up ratio) is too high.

The deformation involves stretching, but it is more like planar or biaxial
extension, depending on the mold shape, than uniaxial extension. However, uni-
axial extension data (Chap. 6) are thought to be relevant to inflation [68]. In
particular, it is thought that strain hardening implies that a resin will be easy to
inflate and unlikely to exhibit blow-out, even when the blow-up ratio and inflation
pressure are high. Strain softening on the other hand is thought to imply unstable

Fig. 8.28 Sketch showing
pleating (or curtaining) of a
large blow molding parison
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inflation and an increased likelihood of blow-outs. This hypothesis is consistent
with the observation that LDPE is easier to inflate than HDPE. Numerical simu-
lations of the inflation stage often make use of rubber elasticity models rather than
viscoelastic liquid constitutive equations.

8.6.7 Blow Molding of Engineering Resins

In order to take advantage of the economies of extrusion blow molding, there is a
growing interest in its use for the processing of engineering resins. However, many
of these materials were originally developed for injection molding, and they tend
to have properties that make them unsuitable for blow molding. Specifically they
have low viscosity, and if semicrystalline they have high melting points and a
narrow melting range. Moreover, they are often hygroscopic and sensitive to
thermal degradation. Some of these disadvantages can be overcome by modifi-
cations of the process. Hygroscopic resins must be thoroughly dried immediately
prior to processing, and temperatures must be closely controlled. Extruder screws
having a low compression ratio and a long transition zone are often advantageous,
and it is especially important to streamline all flow channels to avoid stagnation
regions.

The low viscosity poses a problem at the parison formation stage because of
excessive sag and the inability of the melt to be blown into deep pockets without
tearing. Accumulators are helpful, as they decouple the extrusion speed from the
parison formation speed and thus reduce the hang time prior to inflation. Methods
for reducing sag include “preblow,” which supports the parison by an upward jet
of air prior to inflation, and “prepinch,” which involves a partial inflation of the
parison while it is still forming.

To minimize equipment modifications, however, and to make possible the blow
molding of large products, it is highly desirable to modify the resin to increase its
viscosity at low strain rates. This can be accomplished by altering the molecular
weight distribution, blending, cross-linking or using a comonomer or an additive.

8.6.8 Stretch Blow Molding

In the stretch blow molding process, the parison is preformed in an injection
molding or extrusion operation and is reheated before inflation. However, the
preform is not heated to a temperature above its melting point but only to a
temperature sufficient for rubbery behavior. The proper selection of the reheat
time, which governs the inflation temperature, is of central importance. The
essential feature of the process is the generation of a high degree of molecular
orientation in the inflation step. To accomplish this one must ensure that nearly all
of the stretching work is taken up by the polymer as elastic strain rather than
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viscous dissipation. This only occurs in a fairly narrow range of temperatures,
which is between 90 and 115 °C for PET.

The rubbery state temperature range can be altered by changing the formulation
of the resin. In the case of polypropylene a comonomer can be used, and in the
case of PET, diethylene glycol can be added. Absorbed water can also act as a
plasticizer, reducing the optimum temperature for orientation [72]. However, such
changes will also affect other characteristics of the resin and can sometimes result
in a deterioration of mechanical properties.

Molecular weight also influences the temperature range for processing [73]. In
the case of PET, the inherent viscosity (I.V.) is used as an indicator of molecular
weight, and PET resins for bottles normally have an I.V. between 0.72 and 0.85.
Cakmak et al. [74] studied the kinematics of the stretch blow molding of PET. PET
is nearly Newtonian above its melting point and is thus unsuitable for extrusion
blow molding. However, the use of a multifunctional comonomer that produces
long chain branching and broadens the MWD can render PET suitable for
extrusion blow molding.

8.6.9 Resin Selection

The selection of a polymer for a given blow molding application is governed
primarily by product requirements such as gas permeability, strength, and resis-
tance to solvent and high or low temperatures. Once a polymer is selected, its
processability must be considered, and this depends primarily on its rheological
properties. If the behavior of the neat resin is a problem, it may be possible to
modify it by means of additives or by altering the molecular weight distribution.

Because of the diversity of blow molding processes and of shapes and sizes of
blow molded articles, it is not possible to specify a general rheological profile for a
blow molding resin. Several process requirements must be met simultaneously,
and the rheological behavior necessary to meet one requirement may conflict with
that needed to meet another. Ideally one would design the machinery and tooling
to match the resin characteristics and optimize the entire process. However, it is
often impossible to do this especially when the resin must be processable using
existing equipment, and then one must identify rheological behavior that can
accommodate all of these requirements.

Schaul et al. [75] described one approach to this problem when the only
machine settings that could be varied were the shot pressure and die gap. The resin
selected had to meet specifications for parison diameter, bottle weight, melt
fracture, and pleating, but some of these requirements were in conflict. Decreasing
the die gap, for example, increased parison diameter, but this could cause cur-
taining. An understanding of each stage of the process is necessary for defining the
effects of rheological characteristics if an empirical trial-and-error technique is to
be avoided.
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Parison formation is the most critical stage of the process and also the most
difficult to model. A given rheological property affects more than one aspect of
parison formation. For example, the viscosity at the shear rate in the die governs
the pressure required to extrude the parison. And if extrusion rate is limited by the
pressure capability of the extruder, this limitation will govern the time required to
form the parison, i.e., the drop time. If this time is too long, excessive sag will
occur, which will affect the diameter, length, and appearance of the parison.
Another possible result of a high viscosity is that the critical stress for extrudate
distortion will be exceeded.

8.7 Injection Molding

The equations provided in this section are intended to facilitate understanding. All
those required for the detailed numerical simulation of all stages of the injection
molding process are given by Kennedy [76].

8.7.1 Flow in Runners

A simplified analysis of flow in a circular runner can be made using the equations
in Sect. 8.2 for flow in a circular channel. At the beginning of a shot the runner is
empty, and the length of runner filled with melt Z(¢) increases with time. Equa-
tion (8.3) can then be written as follows:

TR3 APR \ /"
) =753 (2kZ(t)> (8.31)

For the simplest case of isothermal flow k and » are constant. As the runner fills
with melt, if the pressure is held constant the flow rate will decrease rapidly, while
if the flow rate is to be kept constant the pressure must increase. If the runner is
cool the viscosity will increase, and solidification will take place at the wall,
reducing the effective radius and slowing the flow. This can be avoided if the
runners are heated. Shear rates in a runner can be well above 1,000 s, which will
result in significant viscous heating and a reduction in viscosity.

8.7.2 Mold Filling

Viscosity is the key rheological property governing mold filling, while visco-
elasticity governs the residual stresses in the cooled part [77]. Melt index is uni-
versally used to specify ease of flow, even when it is not directly relevant to a



8.7 Injection Molding 251

Fig. 8.29 A spiral mold
using to evaluate the mold-
filling properties of injection
molding resins. (Photo
courtesy of Master Unit Die
Products Inc.)

given process. For example, where a typical film resin might have an MI of about
1.0, a high-flow molding resin for thin parts might have an MI of 100 or more. But
MI is not a reliable guide to molding performance, because the stresses and flow
rates that arise in a melt indexer, even at high load, are much lower than those that
occur in a mold. The behavior at high flow rate is sensitive to the molecular weight
distribution, and while the melt flow ratio MFR, for example 121/12, provides some
information about MWD, it is too coarse a measure. While the ability of a melt to
fill a mold before solidifying depends also on its thermal properties, these are
much less sensitive to molecular weight than viscosity.

A widely used tool for evaluating injection molding resins is the spiral flow
mold, an example of which is shown in Fig. 8.29. (Made in accord with ASTM
standard test method D3123 for thermosetting molding compounds) Melt is
injected at the center of the spiral, and the distance traveled before solidification
prevents further flow is reported in terms of numbers etched in the mold cavity.
This is called the flow length or spiral flow number SFN. Within a single family of
resins, i.e., polyethylenes made in the same reactor using the same catalyst, SFN
increases with MI, although SFN goes up much more slowly than MI. But between
families, there is no correlation at all. This is illustrated in Table 8.1 based on
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Table 8.1 Melt indexes and spiral flow numbers for four families of injection molding resins

PE family Melt index Spiral flow number
HDPE-A 2.2 9.2
6.0 12
20 14
34 16
HDPE-B 3.8 8.1
4.5 8.4
6.6 10
18 13
LLDPE 21 13
32 16
135 27
LDPE 9.0 14
25 17
38 21

information from an actual polyethylene manufacturer. Numbers are shown for
four families of resins. A single number is rarely, if ever, adequate to describe the
flow behavior of a melt a forming process and the SFN is no exception.

In going from a test mold to a production mold, for example, the relative roles
played by rheological and thermal properties may be altered. Or the relative
importance of the roles played by various regions of the viscosity-shear rate curve
may change. As a result, one may obtain a ranking of several resins that is not a
correct indication of the relative ease with which they will fill a given production
mold. The empirical moldability tests are therefore most useful when used to
compare several resins of the same family, for example several linear polyethyl-
enes having similar molecular weight distributions but different average molecular
weights.

As might have been anticipated, the single most important physical property
contributing to flow length is the high shear rate viscosity, particularly in the range
of 1,500-2,500 s~ ', although this range will depend on the resin, injection pres-
sure, and mold dimensions.

Of course the flow length depends also on the thermal properties of the melt. In
his analytical model of the flow in a cooled spiral mold at fixed wall temperature,
Richardson [78] obtained the following result:

n/(14n)

h2 AP 1/n
L-cn|™ (7) ] (8.32)

where:

L Flow length

h  Smaller dimension of a rectangular spiral mold
oo Themal diffusivity
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k  Power-law constant
C Constant of order 0.1.

Experimental results yield values of L corresponding to values of C between 0.2
and 0.4 [79, 80]. Since thermal diffusivity is much less sensitive to molecular
weight distribution than viscosity, the high shear rate viscosity is the governing
property. Hieber et al. [79] carried out a numerical simulation of the flow in a
spiral mold and used it together with experimental data to estimate the four
parameters of a temperature and pressure-dependent power-law model:

n(T,P,y) =Aexp(T,/T)exp(bP) }" (8.33)

Since there is no universally accepted spiral mold design or set of molding
conditions, a moldability index has meaning only within a given laboratory. In
fact, it is nearly impossible to specify a truly universal flow length test, because
there are so many variables, and some of these cannot be satisfactorily controlled
[81]. The design of machinery is obviously a key factor, and it is not practical to
specify in detail, the injection molding machine that must be used for the test. For
a given machine and mold design, there are two sets of operating conditions:
machine settings and mold conditions. While mold conditions are probably more
important, the conditions actually seen by the melt cannot be fixed by merely
specifying these. For example, the temperature of the cavity wall depends not just
on the temperature and flow rate of the mold coolant, but also on melt temperature
and the injection rate. It is also not practical to fix the mold pressure. Fritch [81]
gives the following advice regarding flow length testing:

1. Stick to one machine and mold

2. Keep the hydraulic pressure constant

3. Melt temperature is more important than mold temperature, but a single tem-
perature is not adequate

4. Injection rate influences the shear rate in the mold, and a single value is not
adequate.

Since there is no way to scale up a single spiral mold test to various specific
molding situations, it is not possible to select in advance “relevant” standard
values for the test variables. Therefore, Fritch recommends that tests be carried out
at three melt temperatures and three injection rates for a total of nine tests.
Obviously, the values selected should cover the ranges of melt temperature and
mold flow rate that are likely to occur in commercial processing.

Another approach to evaluating the processability of a molding resin is to
measure the pressure required to fill a standard mold. Furches and Kachin [82]
compared the results of several rheological tests often used to evaluate injection
molding resins.

A phenomenon that can lead to a complex pattern of weld lines is jetting in
which the melt jets to the end of the cavity without wetting the walls near the gate.
In one manifestation of this phenomenon, the cavity fills by a piling up of the jet at



254 8 Role of Rheology in Melt Processing

Fig. 8.30 Sketch showing
the jetting phenomenon in
injection molding

the end of the cavity to form many folds, as sketched in Fig. 8.30. Or jetting may
cease when the stream hits the opposite wall, followed by normal filling. Jetting
can occur when the gate faces a mold wall that is far away and when the flow rate
is high. Jain et al. [83] found that the LDPE, polypropylene, polystyrene, poly-
amide and polybutylene terephthalate that they used did not exhibit jetting but that
ABS, polyacetal and polycarbonate did. Oda et al. [84] suggest that jetting occurs
when the swell at the exit from the gate is insufficient to cause immediate contact
between the melt and the cavity walls. Jain et al. [83] reported that Oda’s criterion
was useful only when the thickness at the gate matched the cavity thickness but
that, in general, there is no reliable way to predict when jetting will occur. Jetting
can sometimes be eliminated by redesigning the mold so that the gate is opposite a
nearby wall or by using a fan-shaped gate or by using a larger gate.

Surface defects called tiger stripes or flow marks are alternating smooth and
dull bands in injection molded parts. Bogaerds et al. [85] reviewed the extensive
work on this problem and concluded there is at present no clear understanding of
its origin.

8.7.3 Formulation and Selection of Injection Molding Resins

For rapid filling at modest melt temperatures and pressures, it is clearly advan-
tageous that the melt viscosity be as low as possible. The cycle time is thus short,
and thin runners can be used. A low viscosity is especially advantageous for the
molding of parts with thin walls. For these reasons, there has been a trend toward
the marketing of molding resins with ever decreasing viscosity. However, the
increase in melt index is usually accomplished by reducing the molecular weight,
and this has the undesired effect of decreasing the toughness of the finished part, as
indicated by its impact strength. In order to minimize the sacrifice in mechanical
properties for a given application, the molder looks for the lowest melt index
material that will give satisfactory flow in the mold. This requires the availability
of many grades of resin, and this is disadvantageous to the economics of resin
manufacturing. One approach to this problem is to eliminate the highest molecular
weight fractions by narrowing the molecular weight distribution, as is done to
make controlled-rheology resins.
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8.8 Rotational Molding

Rotational molding is used principally to make large, hollow objects [86].
Everything happens in the mold, from melting of resin to final part cooling, and it
is thus a batch rather than a continuous process. The mold is rotated inside an oven
and is thus heated only from the outside. The most used resins are polyethylene
and polypropylene. PEs for rotational molding have MI (190 °C) values in the
range of 2—10, while the MFIs (230 °C) of PPs are in the range of 5-10. In order of
decreasing processability these are: LLDPE > HDPE > PP, while for the PEs,
product properties usually go in the opposite direction. For thermoplastics the feed
is a fine powder, but liquid PVC plastisol is also used. Particle density is roughly
half the melt density. Polyethylene may be cross-linked to make large containers.

The only forces affecting resin behavior are gravity and interfacial tension. The
rheological properties of importance are low-shear-rate viscosity and low fre-
quency viscoelasticity. For thermoplastics the steps in the process are:

. Loading of powder

. Particle softening to tack temperature
. Melting

. Coalescence

. Densification

. Cooling

. Removal of product.

~N N R WD

The tack temperature, at which powder particles begin to stick to the wall and
to each other, is very close to the melting point. The temperature of the air in the
mold rises more slowly than the wall, and as the melt layer at the wall builds up,
the rate of temperature increase decreases. Coalescence, driven by interfacial
tension, now acts to form bridges or necks between particles, and the result is a
three-dimensional network. This leads to densification of the bed with air trapped
in void spaces [86]. Elasticity hinders the early stages of neck growth, and a high
low-shear-rate viscosity inhibits the later stages. Continued capillary action leads
to the collapse of the network, trapping air bubbles. Diffusion of air into the melt
involves viscoelastic expansion. Thus, capillary action, network collapse, and air
dissolution act to densify the melt and form a monolithic layer. Models that have
been proposed for these processes are described by Crawford and Throne [87]. If
cross-linking is used, it takes place at this time, followed by curing. ASTM-2765 is
a standard test for the extent of cross-linking that takes place during rotational
molding.

The low-shear-rate viscosity is of central importance for rotational molding
resins. For practical purposes, we will speak of the zero-shear viscosity, since it is
a well-defined property. While MI is the property usually used to describe melt
flow, its relationship with #, depends strongly on molecular weight distribution
and long-chain branching, as was shown in Fig. 6.13. Taking into account the
entire molding cycle, a high #q (or less precisely a low MI) can result in poor flow,
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longer cycle time, poor replication of the mold surface, and trapped air bubbles.
Meanwhile, if 5 is too low (or less precisely Ml is too high) it can result in flash at
the parting line and low mechanical strength of the molded article.

Elasticity hinders the early stages of neck growth, which implies that it is
desirable to have a low value of G’ or a high value of tan ¢ at a low frequencies,
probably below 0.1 s~'. Van Gurp-Palmen plots (see Sect. 3.16) have been found
useful in this regard.

8.9 Foam Extrusion

Foaming is a complex process, and foam quality depends strongly on all the
phenomena listed below. We discuss here only the use of a physical blowing agent
[(PBA), also called a physical foaming agent (PFA)].

Large reduction of viscosity due to the plasticizing effect of the PBA.

Diffusion of PBA out of the melt phase.

Large, rapid increase in viscosity as the foaming agent diffuses out of the melt
phase.

Effect of viscosity and extensional viscosity on development of foam structure.
Effect of crystallization on foam structure.

Furthermore, molecular weight, MWD and long-chain branching affect most of
these phenomena. Noting that well-controlled experiments to study all the possible
interactions between them are difficult, if not impossible, to carry out it is not
surprising that there have been few reports of useful data. We provide here a brief
review of some of these reports. A thorough discussion of the role of rheology in
foam extrusion can be found in the book chapter by Gendron [88].

The action begins in the extruder, where the dissolution of the blowing agent
leads to a strong reduction in viscosity. Evidence of this can be seen in Fig. 2.8,
which shows the effect of dissolved carbon dioxide on the viscosity of a HDPE.
For polystyrene the reduction in viscosity can approach a factor of 100. The
pressure falls sharply at the exit of the die, and the blowing agent (PBA) starts to
diffuse out of the melt and nucleate to form bubbles, which develop into cells
imbedded in a matrix having a complex structure. The stability of this structure is
crucial to successful foam formation. With the loss of PBA the viscosity increases
markedly, and this helps to stabilize the structure. The deformation in the cell
walls is mainly biaxial extension, and strain hardening has been found to be
beneficial to successful foaming [89, 90]. This subject was addressed by Miinstedt
et al. [89] who studied the effect of extensional flow behavior on foaming. They
studied blends of linear PP with long-chain branched PP and also blends of
LLDPE with LDPE. They found that strain hardening resulting from LCB was
very beneficial to the quality of the foams produced. For the PP blends they found
that the expansion ratio, the density of bulk polymer over the density of foam,
increased steadily with the addition of LCB-PP up to a level of about 50 %.
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Cell rupture must be avoided before crystallization freezes the structure,
because it causes cell coalesce and allows gas to escape. Melt strength, as mea-
sured using the Rheotens device described in Chap. 6, or an extensional rheometer,
has been found useful by some in the foam industry as a guide to the ability of the
cell structure to resist rupture [90].

Results have been recently reported on the role of rheology in poly (lactic acid)
extrusion foaming [91], compression foam molding [92], and the injection
molding of foam [93].
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Appendix A
Structural and Rheological Parameters
of Several Polymers

These data are extracted from a much more extensive tabulation published as:
Fetters LJ, Lohse DJ, Colby RH (2005) Chain dimensions and entanglement
spacings. In: Mark, JE (ed) Physical Properties of Polymers Handbook. Springer,
Berlin.

Sources of all the original data are given in the Handbook article.

Polymer T (K) p(glm™) G (MPa) <R>/M A% M, x107° M x 1077

Eq. (3.72)
PE 413 0.785 2.6 1.25 1,040
PE 443 0.768 1.21 980 3,480
a-PP 298 0.852 0.48 0.678 4,390
a-PP 463 0.765 0.42 0.678 7,010
i-PP 463 0.765 0.43 0.694 6,850
s-PP 463 0.766 1.35 1.03 2,180
PIB 298 0.918 0.34 0.570 6,690 13,100
cis-PI 298 0.910 0.58 0.679 3,890
cis-PBd 298 0.900 0.76 0.758 2,930 8,200
PBd-30 298 0.894 0.98 0.813 2,260 5,600
a-PMMA 413 1.13 0.31 0.390 12,500 29,500(1)
a-PS 413 0.969 0.20 0.437 16,600 33,000(2)
i-PS 413 0.969 0.19 0.420 17,500
a-PVA 333 1.08 0.35 0.490 8,540 24,500(3)
PDMS 298 0.970 0.20 0.422 12,000 24,500
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262 Appendix A: Structural and Rheological Parameters of Several Polymers

Polymers Listed

PE Polyethylene

a-PP Attactic polypropylene
i-PP Isotactic polypropylene
s-PP Syndiotactic polypropylene
PIB Polyisobutylene

cis-PI cis polyisoprene

cis-PBd 1,4 polybutadiene, 96 % cis content
PBd-30 Polybutadiene with 30 % vinyl content
a-PMMA  Atactic poly (methyl) methacrylate
a-PS Atactic polystyrene

i-PS Isotactic polystyrene

a-PVA Atactic poly (vinyl acetate)

PDMS Poly (dimethylsiloxane)

Notes

490 K
183 K
428 K



Appendix B
The Displacement Gradient Tensor

As the first step in establishing a quantitative measure of the strain that occurs in a
fluid as a result of a large deformation, we need to describe the position of a
particle of fluid as it moves during a deformation process. This is easily done by
writing down the coordinates of the particle as functions of time. However, we
need to keep track of which particle we are tracking. This can be done by
“labeling” each particle with its position vector, X, at some reference time, #;.
Thus, giving the components of x(#;) identifies a particular fluid particle and
distinguishes it from all other particles. At some other time #, the coordinates of
this particle will be given by the following displacement functions:

X] = X1 [Iz,x(tl)] (B.la)
X = X][Iz,x(ﬁ)] (Blb)
X = X][tz,x(ll)] (BlC)

These functions tell us the location at any time f, of the fluid particle that was
located at x(¢;) at time ;.

As an example of the use of the displacement functions to describe a
deformation, consider simple shear flow in which the shear strain y is some
specified function of time y(#), with y(0) = 0. The displacement of a typical fluid
particle is shown in Fig. B.1. We locate the origin for the position vectors of all
fluid particles at zero on the lower, stationary plate. Since we are considering only
one or two specific particles in the remainder of our discussion, it will not be
necessary to include the particle label x(#;) as an argument of the displacement
functions. Thus, the shear strain can be expressed in terms of the displacement
functions as follows for the particular particle shown:

1) = ooy =212 l0) (8.2)

where [x(t;) — x1(#1)] is the distance moved in the x; direction by a fluid particle
that is located at a distance x, from the stationary plate, during the time interval
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Fig. B.1 Fluid particle dis- -

placement in simple shear “—"-(fe)—*|
sy

x5(t,)

Q- SIS

Fig. B.2 Position and dis- I AX. I
placement vectors at times £,
and 1, of two particles in an
element of fluid undergoing

solid body translation

.,
— |

ax(t,) AX,

x(t.)

x(1,)

between ¢, and f,. The displacement functions for this deformation can then be
expressed in terms of the shear strain as follows:

xi(2) = xi(h) +x(0)h(R) — v(0)] (B.3a)
x(f) =x(t) (B.3b)
x3(h) =x3(t1) (B.3c)

To describe the deformation of a fluid element, we need to examine the relative
displacement of two fluid particles. Consider two neighboring particles that are
separated by the vector dx(¢;) at time #; and by dx(#,) at time f,, as shown in
Fig. B.2. If we could define a quantity relating these two vectors, it might be useful
to describe the strain that has occurred between times ft, and ¢,.

One such a quantity is the displacement gradient tensor, whose components
Fij(t1, 12), are defined below.

dxi (l‘g
d)Cj (ll

~—

Fij(t1,n) = (B4)

~—
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Another tensor that relates the two vectors dx(¢;) and dx(z,) is the inverse of the
displacement gradient tensor, which is defined as follows:

dxi(tl)

F:! ) =
ij (t17 2) de(lz)

(B.5)

The use of the displacement gradient tensor to determine the components of dx(z,)
given dx(#,) is demonstrated below:

dxi(t)) = Fii(t1,02)dx; (1) + Fio(t1, 02)dxa(t1) + Fis(t1, 12)dxs (1)) (B.6)

The inverse tensor can be used in a similar manner to determine dx(#;) given
dx(z,).

To see if these tensors might be useful measures of strain, we consider first the
solid body translation of the fluid element shown in Fig. B.2. In this type of
motion, there is no deformation of the fluid element, i.e., no strain. To see if the
components of the displacement gradient tensor or its inverse reflect this, we first
write the displacement functions for this motion.

)Cl(l‘z) :xl(tl) + AX, (B7a)
Xz(lg) = )Cg(ll) — AX, (B7b)
x3(t2) = x3(t2) (B.7¢)

Now we want to evaluate Fj;, and its inverse for this flow. We note that the two
vectors dx(¢;) and dx(z,) are equal; this implies (from Egs. B.4, B.5 and B.7) that
the components of Fjj(, ;) and its inverse have the special, simple form shown

below:
1 0 0
Fij(ti, 1) = Fy'(,) = |0 1 0 (B.8)
0 0 1

where the quantity on the right is the unit tensor. When a vector is multiplied by
the unit tensor it is unchanged, and since there is no strain in this sample, that is
exactly the way we want a strain tensor to behave. Thus, both Fj; and its inverse
show promise as possible measures of finite strain.

As a further test of the usefulness of these tensors as measures of strain,
consider the solid body rotation shown in Fig. B.3. Again there is no deformation,
i.e., no strain. However, in this case the vectors dx(¢;) and dx(z,) are not equal and
neither Fj; nor its inverse reduces to the unit tensor. Thus, neither of these tensors
is a useful measure of finite strain. However, they can be used to define tensors that
do meet our requirements.

Two measures of strain that satisfy our criteria and that are particularly useful in
polymer rheology are the Cauchy tensor: Cj;(#), t,) and the Finger tensor: Bij(t,, 1,).
The time arguments have the following significance: #; is the time at which a
material element is in its reference configuration, and #, is the time at which the
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X
2
X3
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ax(t,)

0 i 0 o

Fig. B.3 Displacement vectors at times ¢, and f, of two particles in a fluid element undergoing
solid body rotation

Fig. B.4 Principal compo-

nent of a position vector for
simple extension of a sample
with one end fixed at x; = 0
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strain is evaluated, relative to the configuration at time #,. The components of these
two tensors can be represented in terms of the deformation gradient and its inverse.

GCij(t1,12) = FiiFj + FaiFoj + FiF3 (B.9)
Bij(h, ) = Fyy'Fj,' + F ' F,' + F3 ' F! (B.10)

To find the components of these tensors for simple shear and simple extension,
we start by writing the components of Fj;(f;,1,) and Fy Y(t1,1,) for these flows. For
simple shear from Egs. (B.3-B.5) we have:

1L [p(2) =»(n)] O

Fij(t,',tj) =10 1 0 (Bll)
0 0 1
1 [y(t) —»(r)] O

Fy'(ti,5) = | 0 1 0 (B.12)
0 0 1

The components of the Cauchy tensor for simple shear (Eq. 5.34) are obtained
by combining Eq. (B.9) with Eq. (B.11), while the components of the Finger
tensor (Eq. 5.35) are obtained by combining Eq. (B.10) with Eq. (B.12).
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For simple extension, with x; taken to be the principal stretch direction (see
Fig. B.4), the distances of a fluid element from the x; = 0 plane at times ¢, and t,
are related to the Hencky strain ¢, evaluated at these two times, by:

X1 (lz)
1 =&(tp) —e(t B.13
[ = o) ~ o) (B.13)
The displacement functions are:
x1(t2) = x1(t1)exple(t2) — &(f1)] (B.14a)
x(t2) = xa(tr)exp{(—1/2)[e(r2) — &(11)]} (B.14b)
x3(12) = x3(r)exp{(=1/2)[e(r2) — &(n1)]} (B.l4c)
And the components of the displacement gradient tensor and its inverse are:
ele(t)—e(n)] 0 0
Fi(t1,0) = 0 el (=1/2)e(r)—e(n)]} 0 (B.15)
0 0 el (=1/2)[e(t2) —2(n)]}
elet)—e(n)] 0 0
Fijfl([l’b) = 0 el (=1/2)e(t)—e(n)]} 0 (B.16)
0 0 el (=172)[e(t) ()]}

The components of the Cauchy and Finger tensors are obtained from B.9 and
B.10 and are shown in Chap. 5 as Egs. (5.36) and (5.37).
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Simple extension. See uniaxial extension
Simple shear, 8, 19
Simulation, of melt flows. See Numerical
simulation
Slip flow. See Wall slip
Sliding plate rheometer, 140
Slit flow
rheometer, in, 21, 152
dies, in, 207
Small amplitude oscillatory shear, 63
Spurt effect, in capillary rheometers, 156
Star polymers, rheological behavior of, 109
Start-up of steady simple shear, 52
Statistical process control, 139, 172
Steady-state compliance, 60
polydispersity, effect of on, 183
tube model prediction of, for entangled
polymers, 82
unentangled polymers, behavior of, 81
Step shear strain, 55
Storage and loss compliances, 66
Storage and loss moduli, 64
measurement of, 140
monodisperse polymers,
behavior of, 60
polydispersity, effect of on, 75
Strain, 7
Strain hardening, in extensional flow, 106
Strain softening, in extensional flow, 107
Strain tensor
infinitesimal strain, 123
finite strain, 126, 129
Stress, 4
Stress growth in steady shear, 52
Stress ratio (SR), 96
Stress relaxation, after step shear strain. See
also (Damping function)
linear viscoelasticity, 49
nonlinear viscoelasticity, 96, 98
Stress relaxation modulus. See (Relaxation
modulus)
Stress tensor, 116
Stretch blow molding, 236
Strong flows, 17
Structural time-dependency, 15
Surface force, 5
Swell and swell ratio. See Extrudate swell

281

T
Tack temperature, in rotational molding, 256
Tacticity, effect pm viscosity, 35
Tensile stress growth coefficient, 63
Tensile stress, net, 50
Tensors. See also Stress tensor, Strain tensor
Terminal zone for relaxation
creep, used to study behavior in, 147
definition of, 57
storage and loss modulus behavior in, 76
Thermorheologically simple behavior. See
(Time-temperature superposition)
Thixotropy, 15
Time-pressure superposition. See Viscosity,
effect of pressure
Time-strain separablility, 95
Time-temperature superposition, 68
horizontal shift factor for, 70
long-chain branched polymers, 190
master curve based on, 68
non-newtonian viscoelasticity properties,
of, 111
vertical shift factor for, 68
Transducers. See (Force rebalance transducer,
Shear stress transducer, Lodge
stressmeter)
Transition zone, 74, 82
Trouton ratio, 106
Tube models
linear viscoelasticity, 98
nonlinear viscoelasticity, 91

U
Ultimate recoil (recoverable shear), 60
Uniaxial extension (tensile extension)
branched metallocene polyethylene,
behavior of, 194
branched polymers, behavior in, 109, 190,
191, 194
definition of, 8
experimental methods for, 104, 160, 164
linear polymers, behavior in, 108, 189
low-density polyethylene, behavior of in,
109
Upper convected Maxwell model, 131

A\

Van Gurp-Palmen plot, 75, 191, 256

Visbreaking. See (Polypropylene)

Viscoelasticity. See also Linear viscoelaticity,
Non-linear viscoelasticity

Viscometric flow, 20



282

Viscometric functions, 23.See also (Viscosity,
Normal stress differences)
Viscosity. See also Zero-shear viscosity,
Extensional viscosity
dissolved gas, effect of on, 30
molecular weight distribution, effect of on,
34
power-laws for, 25, 27
pressure dependence of, 30, 152, 253
shear rate, effect of on, 35
tacticity, effect of on, 35
temperature, effect of on, 29, 249
tube model explanation of, 98
Voigt body, 12

w

Wall slip
extrusion, effect of in, 214
film blowing die, effect of in, 235
rheometers, occurrence in, 144, 149
step strain, effect of on data, 96

Subject Index

Weissenberg number, 97
WLF temperature dependence. See Time-
temperature superposition

Y
Yield stress, 16

V/
Zero-shear viscosity, 24
copolymers, 187
critical weight for entanglement for, 33
long-chain branching, use of to determine,
197
low-density polyethylene, of, 198
measurement of, 25
metallocene polyethylene, 194
molecular weight, effect of on, 32, 181
polydispersity, effect of on, 35
Ziegler-Natta catalyst, 182
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