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“continuum checklist” provides a framework for a wide variety of problems in solid and fluid mechanics. 
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Preface

If science teaches us anything, it’s to accept our failures, as well as our successes,
with quiet dignity and grace.

Gene Wilder,
Young Frankenstein, 1974

This book is intended to provide a unified introduction to solid and fluid mechanics, and to
convey the underlying principles of continuum mechanics to undergraduates. We assume
that the students using this book have taken courses in calculus, physics, and vector anal-
ysis. By demonstrating both the connections and the distinctions between solid and fluid
mechanics, this book will prepare students for further study in either field or in fields such
as bioengineering that blur traditional disciplinary boundaries.

The use of a continuum approach to make connections between solid and fluid mechan-
ics is typically provided only to advanced undergraduates and graduate students. This
book introduces the concepts of stress and strain in the continuum context, showing
the relationships between solid and fluid behavior and the mathematics that describe
them. It is an introductory textbook in strength of materials and in fluid mechanics and
also includes the mathematical connective tissue between these fields. We have decided
to begin with the aha! of continuum mechanics rather than requiring students to wait
for it.

This approach was first developed for a sophomore-level course called Continuum
Mechanics at Harvey Mudd College (HMC). The broad, unspecialized engineering pro-
gram at HMC requires that faculty developing the curriculum ask themselves, What
specific knowledge is essential for an engineer who may practice, or continue study, in one
of a wide variety of fields? This course was our answer to the question, What engineering
mechanics knowledge is essential for a broadly educated engineer?

An engineer of any type, we felt, should have an understanding of how materials
respond to loading: how solids deform and incur stress and how fluids flow. We conceived
of a spectrum of material behavior, with the idealizations of Hookean solids and Newto-
nian fluids at the extremes. Most modern engineering materials—biological materials, for
example—lie between these two extremes, and we believe that students who are aware
of the entire spectrum from their first introduction to engineering mechanics will be well
prepared to understand this complex middle ground of nonlinearity and viscoelasticity.

Our integrated introduction to the mechanics of solids and fluids has evolved. As ini-
tially taught by Clive L. Dym, the HMC course emphasized the underlying principles from
a mathematical, applied mechanics perspective. This focus on the structure of elasticity
problems made it difficult for students to relate formulation to applications. In subsequent
offerings, Jenn Stroud Rossmann chose to embed continuum concepts and mathemat-
ics into introductory problems and to build the strain and stress tensors gradually. We
now establish a “continuum checklist”—compatibility [kinematics of deformation], con-
stitutive law relating deformation to stress, and equilibrium—that we return repeatedly.

xi
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This checklist provides a framework for a wide variety of problems in solid and fluid
mechanics.

We have found this approach effective at Harvey Mudd and Lafayette Colleges and were
gratified by the adoption of the first edition at a wide variety of institutions. For the sec-
ond edition, we have persuaded our colleague and friend Lori Bassman, who has taught
the HMC course for 10 years, to join us as a coauthor, and her perspective has improved
many aspects of the book. Bassman’s enthusiasm for real-world applications, from plant
biomechanics to the material behavior of candy, enriched the relevance of our approach,
and readers may soon learn to recognize which of the examples and problems here bear
her hallmarks of elegance and fun.

We make the necessary definitions and present the template for our continuum approach
in Chapter 1. In Chapter 2, we introduce strain and stress in one dimension, develop a
constitutive law, and apply these concepts to the simple case of an axially loaded bar. In
Chapter 4, we extend these concepts to higher dimensions by introducing the Poisson’s
ratio and strain and stress tensors. In Chapters 5 through 11 we apply our continuum sense
of solid mechanics to problems including torsion, pressure vessels, beams, and columns. In
Chapter 13, we make connections between solid and fluid mechanics, introducing proper-
ties of fluids and strain rate tensor. Chapter 16 addresses fluid statics. Applications in fluid
mechanics are considered in Chapters 18 and 20. We develop the governing equations
in both control volume and differential forms. In Chapter 22, we see that the equations
for solid dynamics strongly resemble the ones, what we have used to study fluid dynam-
ics. Throughout, we emphasize real-world design applications. We maintain a continuum
“big picture” approach, tempered with worked examples, problems, and a set of case stud-
ies. The second edition significantly includes more of these examples, problems, and case
studies than the first edition.

The 10 case studies included in this book (an increase from the six in the first edition)
illustrate important applications of the concepts. In some cases, students’ knowledge with
understanding of solid and fluid mechanics will help them to understand what went
wrong in famous failures; in others, students will see how the textbook theories can be
extended and applied in other fields, such as bioengineering. The essence of continuum
mechanics, the internal response of materials to external loading, is often obscured by
the complex mathematics of its formulation. By gradually building the formulations from
one-dimensional to two- and three-dimensional, and by including these illustrative real-
world case studies, we hope to help students develop physical intuition for solid and fluid
behavior.

We have written this book for our students, and we hope that reading this book is very
much like sitting in our classes. We have tried to keep the tone conversational, and we
have included many asides that describe the historical context for the ideas we describe
and hints at how some concepts may become even more useful later on.

We are very grateful to the students who have helped us refine our approach and
suggested problems. We also thank Georg Fantner (Ecole Polytechnique Federale de Lau-
sanne), Aaron Altman (Dayton), Joseph A. King (HMC), Harry E. Williams (HMC), James
Ferri (Lafayette), Josh Smith (Lafayette), D.C. Jackson (Lafayette), Diane Windham Shaw
(Lafayette), Brian Storey (Olin), Borjana Mikic (Smith), and Drew Guswa (Smith). Egor
has been with Rossman and Bassman from our start, and we are grateful for his inspiring
wisdom. In preparing the manuscript of the second edition, we have appreciated the con-
tributions of Javier Grande Bardanca. We thank Michael Slaughter and Jonathan Plant, our
editors at Taylor & Francis/CRC, and their staff.
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We want to convey our warmest gratitude to our families. First are Toby, Leda, and
Cleo Rossmann. And then, there are Joan Dym, Jordana Dym and Miriam Dym, and
Matt Anderson and Ryan Anderson, and spouses and partners, and a growing number
of grandchildren (six, not including Hank, a black standard poodle). Peter Swannell, while
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1
Introduction

Mechanics is the study of the motion or equilibrium of matter and the forces that cause such
motion or equilibrium. We are generally familiar with the sort of “billiard ball” mechanics
formulated in physics courses; for example, when two such billiard balls collide, applying
Newton’s second law would help us to calculate the velocities of both balls after the colli-
sion. Engineering mechanics asks that we also consider how the impact will affect the balls:
Will they deform or even crack? How many such collisions can they sustain? How does
the material chosen for their construction affect both these answers? What design decisions
will optimize the strength, cost, or other properties of the balls?

Recall that in our first set of examinations of billiard balls collision, we assumed that
they were absolutely rigid, that is, undeformable. Now we will take a continuum approach
to engineering mechanics: we want to consider what is going on inside the billiard balls if
we recognize that they are not rigid. We want to quantify the internal response to external
loading.

In this book, we will introduce the mechanics of both solids and fluids and will
emphasize both distinctions and connections between these fields. We will see that the
material behaviors of ideal solids and fluids are at the far ends of a spectrum of mate-
rial behavior and that many materials of interest to modern engineers—particularly
biomaterials—lie between these two extremes, combining elements of both “solid” and
“fluid” behavior.

Our objectives are to learn how to formulate problems in mechanics and how to reduce
vague questions and ideas into precise mathematical statements. The floor of a building
may be strong enough to support us, our furniture, and even the occasional fatiguing
dance party without collapsing, but if not designed carefully, the floor may deflect con-
siderably and sag. By learning how to predict the effects of forces, stresses, and strains, we
will become better designers and better engineers.

1.1 A Motivating Example: Remodeling an Underwater Structure

Underwater rigs, such as the one shown in Figure 1.1, are commonly used by the
petroleum industry to harvest offshore oil. Over the life of a structure, many sea crea-
tures and plants attach themselves to the rig’s supporting structures. When wells have
dried up, the underwater structures can be removed in manageable segments and towed
to shore. However, this process results in the loss of both the reef dwellers attached to the
platform’s trusses and the larger fish who feed there. Corporations often abandon their
rigs rather than incur the financial and environmental expense of removal. An engineer-
ing firm would like to make use of a decommissioned rig by redesigning it to serve as
an artificial reef that would provide a hospitable sea habitat. This firm must find ways to
strengthen the supports and to affix the reef components to sustain the sea life.

1



2 Introduction to Engineering Mechanics

South pass    Block 77
“D” structure

Water depth 180′
No. of well slots 24

Waterline
Approx. steel weight

Jacket
Piling
Decks
      Total

=
=
=
=

Mudline

84″ O.D. piling

144″ O.D. piling

12–24″ O.D. conductors

3400
4100

900
8400

(tons)

FIGURE 1.1
Mud-slide-type platform. (From the Committee on Techniques for Removing Fixed Offshore Structures and the
Marine Board Commission on Engineering and Technical Systems, National Research Council, An Assessment of
Techniques for Removing Offshore Structures, Washington, DC: National Academy Press, 1996. With permission.)

The rig support structure was initially designed to support the drilling platform above
the water level. As the oil drill itself was mobile, the structure was built so that it could
remain balanced, without listing, under dynamic loading. In its new life as the support
for an artificial reef, this structure must continue to withstand the weight of the platform
and the changing loads of wind and sea currents, and it must also support the additional
loading of concrete “reef balls” and other reef-mimicking assemblies (Figure 1.2), as well
as the weight of the reef dwellers.

To remodel the underwater rig, a team of engineers must dive below the water surface
to attach the necessary reef balls and other attachments. The reef balls themselves may be
lowered using a crane. A conceptualization of this is shown in Figure 1.3.

Among the factors that must be considered in the redesign process are the structural
performance of the modified structure and its ability to withstand the required loading.
An additional challenge to the engineering firm is the undersea location of the structure.
What materials should be chosen so that the structure remains sound? How should the
additional supports and reef assemblies be added? What precautions must engineers and
fabricators take when they work underwater? What effects will the exposure to the ocean
environment have on their structure, equipment, and bodies? We address many of these
issues in this book. Throughout, we return to this problem to demonstrate the utility of
various theoretical results, and we rely on first principles that look familiar.
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FIGURE 1.2
Concrete reef ball. (Courtesy of the Reef Ball Foundation, Athens, GA. With permission.)

FIGURE 1.3
Rendering of scuba diver at work remodeling underwater rig structure.

1.2 Newton’s Laws: The First Principles of Mechanics

Newton’s laws provide us with the first principles that, along with conservation equations,
guide the work we do in continuum mechanics. These laws were formulated by Sir Isaac
Newton (1642–1727), based on his own experimental work and on the observations of
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others, including Galileo Galilei (1564–1642). Many of the equations we use in problem
solving are directly descended from Newton’s elegant statements, which are expressed as
follows:

Newton’s first law: A body remains at rest or moves in a straight line with a constant
velocity if there is no unbalanced force acting on it.

Newton’s second law: The time rate of change of momentum of a body is equal to (and in
the same direction as) the resultant of the forces acting on it:

∑
F = d

dt
(m V). (1.1)

When the mass of the body of interest is constant, this has the form

∑
F = m a. (1.2)

When a = 0, we have ∑
F = 0. (1.3)

The class of problems governed by Equation 1.3 is called statics.

Newton’s third law: To every action, there is an equal and opposite reaction. That is, the
forces of action and reaction between the interacting bodies are equal in magnitude and
exactly opposite in direction.

Forces always occur, according to Newton’s third law, in pairs of equal and opposite
forces. The downward force exerted on the desk by the pencil is accompanied by an
upward force of equal magnitude exerted on the pencil by the desk.

1.3 Equilibrium

We have alluded to the concept of equilibrium (also known as static equilibrium) in our
discussion of Newton’s second law. To be in equilibrium, a three-dimensional object must
satisfy six equations. In Cartesian coordinates, these are as follows:

∑
Fx = 0,∑
Fy = 0, (1.4a)∑
Fz = 0,∑

Mx = 0,∑
My = 0, (1.4b)∑
Mz = 0.
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These equations can be written more concisely in the vector form as∑
F = 0, (1.5)∑

M = 0, (1.6)

and represent the statements “the sum of forces equals zero” and “the sum of moments
equals zero.” One advantage of writing these equations in the vector form is that we do not
have to specify a coordinate system.

For planar (two-dimensional) situations or models, equilibrium requires the satisfaction
of only three equations, typically in the xy-plane:∑

Fx = 0, (1.7a)∑
Fy = 0, (1.7b)∑
Mz = 0. (1.7c)

These equations essentially state that the object is neither translating (in the x- or y-
directions) nor rotating (about the z-axis) in the xy-plane as a result of applied forces.

It is useful to distinguish between forces that act externally and those that act internally.
External loads are applied to a structure by, for example, gravity or wind. Reaction forces
are also external: They occur at supports and at points where the structure is prevented
from moving in response to the external loads. These supports may be surfaces, rollers,
or hinges that restrict both deflections and rotations. Internal forces, on the other hand,
result from the applied external loads and are what we are concerned with when we study
continuum mechanics. These are forces that act within a body as a result of all external
forces. Chapter 2 shows how the principle of equilibrium helps us calculate these internal
forces.

1.4 Definition of a Continuum

In elementary physics, we concerned ourselves with particles and bodies that behaved like
inert, rigid billiard balls: bouncing off each other and interacting without deformation or
other changes. In continuum mechanics, we consider the effects of deformation, of internal
forces within bodies, to obtain a fuller sense of how bodies react to external forces.

We would like to be able to consider these bodies as whole entities and not have to
account for each individual particle composing each body. It would be much more con-
venient for us to treat the properties (e.g., density, momentum, forces) of such bodies as
continuous functions. We may do this if the body in question is modeled as a continuum.

We may treat a body as a continuum if we believe that the ensemble of particles making
up the body—in other words, the body as a whole—acts like a continuum, that is, more
like a single body than a lot of independent bodies. We may then consider average or bulk
properties of the body and may ignore the details of any individual particle dynamics.
This means that when we assume or model a body as a continuum and then look at a very
small chunk of the body, that chunk will have the same properties (e.g., density) as the rest
of the body.
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P Vn Vn–1… V2 V1

FIGURE 1.4
Volumes V– i surrounding a point P .

Mathematically, we define a continuum as a continuous distribution of matter in space
and time. For a mass m n contained in a small volume of space V– n, surrounding a point P ,
as in Figure 1.4, we can define a mass density ρ:

ρ(P) = lim
n→∞
V– n→0

m n

V– n
. (1.8)

So, a material continuum is a material for which density (of mass, momentum, or energy)
exists in a mathematical sense. We define its properties as continuous functions and neglect
what is happening on the microscopic, molecular level in favor of the macroscopic, bulk
behaviors.

Note that materials will not satisfy this equation if V– n truly goes to zero. If the volume
goes to zero, it will not have a chance to enclose any atoms—so naturally, the density will
be undefined. Yet we still think of these materials as continua. So physically, our definition
of a continuum is a material for which∣∣∣∣ρ − m n

V– n

∣∣∣∣ < ε as n → ∞. (1.9)

Here, ε represents a very small number approaching zero, indicating that the mathemat-
ical definition of density approaches a usable value ρ.

Sometimes, it is easier to get a grasp on what is not a continuum than on what is. Almost
all solids satisfy the definition handily, in part because the intermolecular forces are greater
in solids and solids are generally denser than fluids. Because fluids can be liquids or gases,
it is harder to pin down a “density” when the molecules get sparse and the intermolecular
forces are much smaller. It would surely be a stretch of our definition of a continuum
to apply it to interstellar space, for example, where the objects of interest (planets and
asteroids, for example) are not much farther apart than the molecules of the interstellar
medium. Fortunately, there is another test for continuity, and it is especially applicable to
fluids.

That additional test is expressed in terms of the dimensionless Knudsen∗ number, Kn:

Kn = λ

L
. (1.10)

∗ The Knudsen number is named after Martin Hans Christian Knudsen (1871–1949), Professor at the University
of Copenhagen and author of The Kinetic Theory of Gases (London, 1934). In physical gas dynamics, the Knudsen
number defines the extent to which a gas behaves like a collection of independent particles (Kn � 1) or like a
viscous fluid (Kn � 1).
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Here L is a problem-specific characteristic length, such as a diameter or width, and λ

is the material’s mean free path, or average distance between particle collisions, which is
calculated as

λ = 0.225
m
ρd2 , (1.11)

where m is the mass of a particle, ρ is its density, and d is the effective diameter of the
particle. We would then say that a fluid, be it a liquid or a gas, may be called a continuum
if its Kn is less than 0.1.

For example, for air m = 4.8 × 10−26 kg, d = 3.7 × 10−10 m, and at atmospheric condi-
tions λ is approximately 6 × 10−6 cm; at an altitude of 100 km, it is 10 cm; and at 160 km,
it is 5000 cm. In order for the Knudsen number to justify the continuum assumption, our
length scales of interest (e.g., the diameter of a baseball, or the wing chord length of an
aircraft or spacecraft) must be more than 10 times greater than these mean free paths. So at
higher altitudes, the continuum assumption is unacceptable and the molecular dynamics
must be considered in the governing equations.

The ease with which we can define density, and thus continuity, is not the only difference
between solids and fluids. A solid is a three-dimensional continuum that supports both
tensile and shear forces and stresses. The atoms making up a solid have a fixed spatial
arrangement—often a crystal lattice structure—in which atoms are able to vibrate and spin
and their electrons can fly and dance around, but the internal structure is basically fixed.
Because of this, although it is possible to distort or destroy the shape taken by a solid, it
is generally said that a solid object retains its own shape. For solids, we will be able to
relate stresses (the internal distribution of forces over areas, resulting from external forces
on the body) to strains (the descriptors of the resulting changes in lengths and angles in
the body) by a constitutive law (containing material constants that reflect the interatomic or
intra-molecular forces binding the atoms into the solid).

A fluid, be it a liquid or a gas, cannot support a shear force: Under the slightest shear-
ing force, a fluid will flow or deform continuously. We see that when liquids assume the
shapes of their containers, and when gases expand to fill their containers. This is because
the interatomic or intramolecular forces in a fluid are not spatially constrained like those
in a solid. Also, a fluid typically cannot support tensile forces or stresses. For fluids, we
will be able to relate stresses to strain rates (the time rate of change of the strains) by a
constitutive law.

We note that the distinction between solid and fluid behavior is not always clear-cut;
there are classes of materials whose behavior situates them in a sort of middle ground.
We explore this middle ground further in Chapter 14. The existence of this middle ground
provides us with more motivation to understand the broad field of continuum mechanics
and the connections between solid and fluid behavior.

In this text, we are interested in how Newton’s laws apply to continua. Some of the
relevant consequences of Newton’s laws, which we discuss in more detail later, are as
follows:

Momentum is always conserved, in both solids and fluids. Equilibrium equations (see
Section 1.3) are mathematical expressions of the conservation of momentum.

Equilibrium must apply both to entire bodies and to sections of, or particles within,
those bodies. This is one of the reasons why free-body diagrams (FBDs) are so
valuable: They illustrate the equilibrium of a section of a larger body or system.
This is also why we will introduce control volumes to analyze fluid flows.
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Mass is conserved.
Area is a vector because it has both a magnitude (size) and a direction that is defined

by a unit vector normal to the area. That unit normal vector is designated as
positive when it is directed outward from the free body or section of interest.

Forces produce changes in shape and geometry, which we will characterize in terms
of strains for solids and strain rates for fluids.

In the real world, material objects are subjected to body forces (e.g., gravitational and
electromagnetic forces), which do not require direct contact, and surface forces (e.g., atmo-
spheric pressure, wind and rain, burdens to be carried), which do. We want to know how
the material in the body reacts to external forces. To do this, we will need to (1) character-
ize the deformation of a continuous material, (2) define the internal loading, (3) relate this
to the body’s deformation, and (4) make sure that the body is in equilibrium. This is what
continuum mechanics is all about.

1.5 Some Mathematical Basics: Scalars and Vectors

The familiar distinction between scalars and vectors is that a vector, unlike a scalar, has
direction as well as magnitude. Examples of scalar quantities include time, volume, den-
sity, speed, energy, and mass. Velocity, acceleration, force, and momentum are vectors and
thus contain additional directional information. We denote vectors with a bold font. Unit
vectors are indicated with hats, as in the following equations.

A vector V may be expressed mathematically by multiplying its magnitude, V, by a unit
vector n̂ (i.e., |n̂| = 1), where the direction of n̂ coincides with that of V:

V = Vn̂. (1.12)

We may also write a vector V in terms of its components along the primary directions,
whether these are the Cartesian (x, y, z) directions or cylindrical (r , θ, z) or another set. In
Cartesian coordinates, the vector is simply written as

V = Vx î + Vy ĵ + Vzk̂, (1.13)

based on a situation like that shown in Figure 1.5. In general, in coordinates (x1, x2, x3) with
unit vectors ê1, ê2, ê3, we will be able to write any vector V as

V = V1ê1 + V2ê2 + V3ê3, (1.14)

or as the triplet (V1, V2, V3) that is called a column vector in linear algebra.∗ We recall that
the magnitude of V can be obtained as

V = |V| =
√

V2
1 + V2

2 + V2
3 , (1.15)

so V = 0 if, and only if, V1 = V2 = V3 = 0.

∗ We have written the column vector of components of V as a row vector to save space.
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V

Vzk̂

Vyĵ

Vx î

y

x

z

FIGURE 1.5
Decomposition of vector V in x, y, z coordinates.

The calculated scalar (dot) and vector (cross) products are also of interest. Remember
that the result of taking a dot product between two vectors is a scalar and that the result of
a cross product is a vector. Thus,

u · v = |u||v| cos θ, (1.16)

where θ is the angle between vectors u and v, and 0 ≤ θ ≤ π. (Remember that two inter-
secting lines form a plane and that θ is the angle between the two lines.) In terms of
components,

u = u1ê1 + u2ê2 + u3ê3, (1.17)

v = v1ê1 + v2ê2 + v3ê3, (1.18)

u · v = u1v1 + u2v2 + u3v3. (1.19)

The cross product results in a vector that is perpendicular to both u and v:

u × v = w, (1.20)

where
w = n̂|u||v| sin θ, (1.21)

with unit vector n̂ being in the direction perpendicular to both u and v, and

u × v = (u2v3 − u3v2)ê1 + (u3v1 − u1v3)ê2 + (u1v2 − u2v1)ê3 . (1.22)

We notice that this has the form of a determinant:

u × v =
∣∣∣∣∣∣
ê1 ê2 ê3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ . (1.23)
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When we work with vectors, we may find ourselves getting stuck carrying around a
lot of variables distinguished by their various subscripts: x1, x2, . . . , xn. This can become
unwieldy, and so we use a shortcut known as index notation. Using this shortcut, we
write those variables as xi , i = 1, 2, . . . , n, and call i the index. For example, the vectors
in Equations 1.17 and 1.18 can be written as

u =
3∑

i=1

ui êi and v =
3∑

j=1

v j ê j . (1.24)

We may further simplify life by introducing a very efficient shortcut known as the sum-
mation convention: The repetition of the index (or subscript) represents summation with
respect to that index over its range, which in our continuum mechanics work will always
be 1 to 3 and thus will not require specification. Using index notation and the summation
convention, we can rewrite Equation 1.24 as

u = ui êi and v = v j ê j . (1.25)

Note that in Equation 1.25, we have used different letters for the repeated subscripts. In
fact, the repeated subscripts in the summation are often referred to as dummy variables
because it does not matter whether we call them i or j or k, or a or b or c. The reason that
we have used different dummy variables in Equation 1.25 is that we frequently confront
situations where there may be more than one dummy variable. For example, how would
we express the scalar (dot) product in Equation 1.19? If we were to spell out all the details,
we would start with Equation 1.24 and first write that

u · v =
3∑

i=1

ui êi ·
3∑

j=1

v j ê j = ui êi · v j ê j = uiv j
(
êi · ê j

)
. (1.26)

We invoked the summation convention twice, once for each of the two dummy variables
i and j , and then we appropriately re-ordered the respective scalar and vector components.
To further clarify the right-most term of Equation 1.26, we expand the summation terms to
make them explicit while noting that êi · ê j = 0 for i �= j assuming the unit vectors form
an orthogonal set. Then of nine terms, three remain:

uiv j
(
êi · ê j

) = u1v1
(
ê1 · ê1

)+ u2v2
(
ê2 · ê2

)+ u3v3
(
ê3 · ê3

)
. (1.27)

Now êi · ê j = 1 for i = j , that is,
(
ê1 · ê1

) = (
ê2 · ê2

) = (
ê3 · ê3

) = 1. Thus, we can com-
bine Equations 1.26 and 1.27 to find that

u · v = uiv j
(
êi · ê j

) = u1v1 + u2v2 + u3v3 = uivi . (1.28)

There are a couple more pieces of shorthand notation that we will use later on, but can
introduce now. We have noted that êi · ê j = 1 for i = j and êi · ê j = 0 for i �= j . We now
define the Kronecker delta as

δi j =
{

0, when i �= j ,
1, when i = j .

(1.29)
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Then we can easily abbreviate an effective definition of our unit vectors as

êi · ê j = δi j . (1.30)

We understand a scalar to contain only one piece of information—a magnitude—while a
vector contains more information—a magnitude and a direction—and can be manipulated
in more ways. This raises the provocative question of what might contain even more infor-
mation than a vector. Both scalars and vectors are, in fact, subclasses of quantities we call
tensors, which we will use in Chapter 5 to describe stress and strain in three dimensions.
The notation and shorthand we have just described will be useful there as well. We will
consider points in rectangular coordinate systems (x, y, z) that displace very small amounts
(u, v, w). In index or subscripted notation, we would consider the coordinates as (x1, x2, x3)

and the displacements as (u1, u2, u3). In Chapter 5, we will define normal and shear strains
that we write here in both “regular” Cartesian and index notation as

εxx = ∂u
∂x

= ∂u1

∂x1
= 1

2

(
∂u1

∂x1
+ ∂u1

∂x1

)
= ε11,

εxy = 1
2

(
∂u
∂y

+ ∂v

∂x

)
= 1

2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= ε12.

(1.31)

The physical and mathematical meanings of these expressions will be discussed in more
detail in Chapter 5. However, now we can use these expressions to illustrate another bit
of notation: a comma denotes a partial derivative with respect to the index that follows.
That is,

∂( )

∂xi
≡ ( ),i . (1.32)

So we can further simplify Equation 1.31 as

ε11 = 1
2

(
∂u1

∂x1
+ ∂u1

∂x1

)
= 1

2

(
u1,1 + u1,1

) = u1,1,

ε12 = 1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= 1

2

(
u1,2 + u2,1

)
.

(1.33)

1.6 Problem Solving

Any reader, of your solution to a given problem, should be able to follow the reasoning
behind it. To test yourself, you may find a stranger on the street and ask whether your
logic is clear, or you may simply make sure that you have included each of the following
steps:

1. State what is given: A major league pitcher throws a ball at a speed of 132 fps (or
90 mph), and the distance from the pitcher’s mound to home plate, 60 feet 6 inches
is also given.

2. State what is sought: Find the time a batter has to react to an incoming pitch.
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3. Draw relevant sketches or pictures: In particular, isolate the body (or relevant control
volume) to see the forces involved, by means of an FBD.

4. State the simplifying assumptions: What assumptions will you make, and how can
you justify them based on what is known?

5. Identify the governing principles: For example, Newton’s second law.
6. Start the relevant calculations: Write the final formulas in symbolic terms (e.g., v =

d/t).
7. Check the physical dimensions of the answer: Does the answer have dimensions of

time? If it looks like it will be a length, go back.
8. Complete relevant calculations: Substitute in numbers—but wait as long as possi-

ble to plug in numbers. This provides time to perform a dimensional check and
to think about whether the dependencies found make sense (should the answer
depend on the pitcher’s wingspan?), and it allows the reuse of the model for
similar problems that may arise in the future.

9. State answers and conclusions.

We will follow these steps in the worked example problems that follow each chapter in
this book.

1.7 Examples

EXAMPLE 1.1

A force F with magnitude 100 N points from point (1, 2, 1) toward (3, −2, 2), where the
coordinates are in meters. Determine: (a) the magnitudes of the x, y, and z scalar compo-
nents of F; (b) the moment of F about the origin; and (c) the moment of F about the point
(2, 0.3, 1).

Given: Force vector.

Find: Components of vector and moment of vector about two points.

Assume: No assumptions are necessary.

Solution

We can obtain a solution using either a holistic “vector approach” or a piece-by-piece
“component approach.” We will demonstrate both approaches.

Fz

Fy

+Mz

+Mx +My

x

y

z

Fx

x

y

z

1

1

2

(Drawn with
negative

orientation)
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Vector Approach

a. The force can be written as F = F n̂, where n̂ is the unit vector in the direction of the force:

n̂ = 2î − 4ĵ + 1k̂√
22 + (−4)2 + 12

= 0.436î − 0.873ĵ + 0.218k̂,

F = 100n̂ = 43.6î − 87.3ĵ + 21.8k̂ N.

The scalar components of F are thus

(Fx , Fy, Fz) = (43.6, −87.3, 21.8) N.

b. The moment of F about the origin is found using M0 = r0 × F, where r is a vector from
the origin to any point on the line of action of F. With r0 = 1î + 2ĵ + 1k̂ m, the moment
can be written as a determinant:

M0 =
∣∣∣∣∣∣

î ĵ k̂
rx ry rz
Fx Fy Fz

∣∣∣∣∣∣ =
∣∣∣∣∣∣

î ĵ k̂
1 2 1

43.6 −87.3 21.8

∣∣∣∣∣∣ N m

= [
2(21.8) − 1(−87.3)

]
î + [

1(43.6) − 1(21.8)
]
ĵ + [

1(−87.3) − 2(43.6)
]
k̂

= 130.9î + 21.8ĵ − 174.5k̂ N m.

c. A vector r is needed from the point P(2, 0.3, 1) to any point on the line of action of F.
We see that rP = −1î + 1.7ĵ + 0k̂, going to the point (1, 2, 1), is such a vector. Then MP =
rP × F yields

MP =
∣∣∣∣∣∣

î ĵ k̂
rx ry rz
Fx Fy Fz

∣∣∣∣∣∣ =
∣∣∣∣∣∣

î ĵ k̂
−1 1.7 0
43.6 −87.3 21.8

∣∣∣∣∣∣ N m

= 37.1î + 21.8ĵ + 13.2k̂ N m.

Scalar (Components) Approach

a. The length of the segment from (1, 2, 1) to (3, −2, 2) is

√
(3 − 1)2 + (−2 − 2)2 + (2 − 1)2 =

√
22 + (−4)2 + 12 =

√
21.

Direction cosines Then

l = 2/
√

21 = 0.436 Fx = 100(0.436) = 43.6 N
m = −4/

√
21 = −0.873 Fy = −100(0.873) = −87.3 N

n = 1/
√

21 = 0.218 Fz = 100(0.218) = 21.8 N

b. As described, the force F is applied at (1, 2, 1). The moments about the x-, y-, and z-axes
through the origin are

M0x = 1(87.3) + 2(21.8) = 130.9 N m.
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Note that Fx is parallel to the x-axis and thus does not have a moment about the x-axis.
Similarly,

M0y = 1(43.6) − 1(21.8) = 21.8 N m,

M0z = −2(43.6) − 1(87.3) = −174.5 N m.

c. Use the same procedure as part (b). In this case, the distances required are from the point
of action of the force to the point P(2, 0.3, 1), and we choose (1, 2, 1) as before:

MPx = (1 − 1)(87.3) + (2 − 0.3)(21.8) = 37.1 N m,

MPy = (1 − 1)(43.6) + (2 − 1)(21.8) = 21.8 N m,

MPz = −(2 − 0.3)(43.6) + (2 − 1)(87.3) = 13.2 N m.

EXAMPLE 1.2

Given the three vectors r1 = a î, r2 = b ĵ, and r3 = ck̂, (a) determine how the vector prod-
uct r1 · r2 × r3 should be evaluated and explain why; and (b) explain the results to (a) in
physical terms.

Given: Three line vectors.

Find: The meaning and value of the vector product r1 · r2 × r3.

Assume: No assumptions are necessary.

Solution

a. There are two ways in which the given vector product can be evaluated because there
are only two choices about the order in which the individual products are performed:

P1 = (r1 · r2) × r3,

P2 = r1 · (r2 × r3).

The first of these has no meaning because it requires the cross product of a scalar
(r1 · r2) with a vector. The second evaluation does produce a meaningful result whose
value is a scalar:

P2 = a î ·
∣∣∣∣∣∣
î ĵ k̂
0 b 0
0 0 c

∣∣∣∣∣∣ = a î ·
[
bc î + 0ĵ + 0k̂

]
= abc.

b. The scalar resulting from the scalar triple product r1 · r2 × r3 is the volume of the rect-
angular parallelepiped defined by (or contained within) the original vectors given.

EXAMPLE 1.3

Consider the three two-dimensional vectors:

r1 = cos αî + sin αĵ, r2 = cos βî − sin βĵ, and r3 = cos βî + sin βĵ.
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Use the definition (Equation 1.21) of the cross product to find formulas for sin(α + β)

and sin(α − β).

Given: Three line vectors and two angles (α, ±β).

Find: Formulas for the sines of the angles α ± β.

Assume: No assumptions are necessary.

Solution

Note that each of the three vectors given is a unit vector. It then follows from the
definition of the cross product that

r1 × r2 =
∣∣∣∣∣∣

î ĵ k̂
cos α sin α 0
cos β − sin β 0

∣∣∣∣∣∣ = −(sin α cos β + cos α sin β)k̂.

But from the definition (Equation 1.21), it is also true that

r1 × r2 = −|r1||r2| sin(α + β)k̂.

When we equate these two results, we find

sin(α + β) = sin α cos β + cos α sin β.

In exactly the same way, we can see that

r1 × r3 = −|r1||r3| sin(α − β)k̂,

and

r1 × r3 =
∣∣∣∣∣∣

î ĵ k̂
cos α sin α 0
cos β sin β 0

∣∣∣∣∣∣ = −(sin α cos β − cos α sin β)k̂.

So just as before, we find the difference formula

sin(α − β) = sin α cos β − cos α sin β.

EXAMPLE 1.4

A clever student wants to weigh himself using only a scale with a capacity of 500 N and
a small 80 N spring dynamometer. With the rig shown, he discovers that when he exerts
a pull on the rope so that the dynamometer registers 76 N, the scale reads 454 N. What
are his correct weight and mass?
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Dyno

Scale

Given: Geometry of problem, weight indicated on scale, and tension registered on
dynamometer.

Find: True weight and mass of the student.

Assume: This is a planar statics problem. Also, assume that the tension in the rope is
constant, the masses of the pulleys are negligible, and static equilibrium.

Governing principles: Newton’s second and third laws, as reflected in Equation 1.7.

Solution

The relevant FBDs are those of the two lower pulleys (circles) and of the student (at right
figure):

76 N 76 N 76 N 76 N

T2

W

T1 T1

T1

T2

T1

76 N

454 N

Next, we ensure that
∑

Fy = 0 holds for each FBD, that is, that the two pulleys and
the student are each in equilibrium. From the pulleys,

T1 = 76 N + 76 N = 152 N.

Similarly, from the remaining FBDs, we obtain

T2 = T1 + T1 = 304 N,

W = 454 N + 76 N + T2 = 834 N.
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So, the student’s mass is

834 N

9.8 m/s2 = 85 kg.

EXAMPLE 1.5

Determine the force(s) and moment(s) required to keep the tree shown from falling down
the hill:

Given: The tree shown.

Find: The system of force(s) and moment(s) needed to equilibrate the tree.

Assume: The tree lies in a plane so that Equation 1.7 may be used (i.e., this is a planar
statics problem). In addition, assume that the ground around the tree is level (i.e.,
ignore the slope appearing in the photo).

Governing principles: Newton’s second and third laws, as reflected in Equation 1.7.

Solution

In principle, a horizontal force H, a vertical force V, and a moment M are needed at
the base of the tree to support it. They are shown in the FBDs. These three elements
are provided by the interaction between the tree’s root system and the soil at the tree’s
base. Then we apply the equations of equilibrium (1.7), summing forces, and summing
counterclockwise moments about the base of the tree. First consider the weight of the
tree, inclined at an angle θ from the ground, modeled as a constant distributed load q0
per unit length (as in the left FBD), with s representing the position along the length of
the tree.

∑
Fx = H î = 0 ⇒ H = 0,∑
Fy = Vĵ − q0L ĵ = 0 ⇒ V = q0L ,
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∑
Mz = Mk̂ +

L∫

0

(−s cos θî) × −(q0ds ĵ) = 0

⇒ M = −q0 cos θL2

2
.

H M
V

hh

M
V

H

θ

LL

W = q0L

q0

If the tree weight is modeled as a concentrated load at its center of mass (as in the right
FBD), halfway up the trunk, only the moment equilibrium equation changes:

∑
Mz = Mk̂ + [(−(L/2) cos θ)î × −q0L ĵ] = 0

⇒ M = −q0 cos θL2

2
.

Not surprisingly, we get the same result.

EXAMPLE 1.6

Determine the forces required to maintain equilibrium and support the load W in the
plank shown. Then, find expressions for the internal force and moment required at any
position along the left side of the plank.

W
ba

L = a + b
RRRL

Given: The loaded plank shown.

Find: The system of force(s) and moment(s) needed to equilibrate the plank and support
the load W.

Assume: This is a planar statics problem.

Governing principles: Newton’s second and third laws, as reflected in Equation 1.7.
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Solution

Since this is a planar statics problem, we can dispense with some of the vector formal-
ism simply by recognizing that all of the loads are in the vertical direction (i.e., ĵ) and
all of the coordinate measurements are in the horizontal direction (i.e., î), so that all
moments or couples are out-of-plane vectors (i.e., k̂). Then summing forces in the vertical
(y) direction (see figure in Example 1.6) shows that

∑
Fy = RL + RR − W = 0 ⇒ RL + RR = W.

By summing moments about the left support, taking counterclockwise as positive, we
see that ∑

MRL = a W − RRL = 0 ⇒ RR = a W
L

.

When we combine these two results, we find

RL = bW
L

and RR = a W
L

.

We now look at a section or piece of the beam as shown in the figure below and ask,
What is needed there, in the beam at coordinate x, in order to maintain equilibrium?
Clearly a vertical internal reaction there would still leave a moment or couple that would
serve to spin that section as a rigid body. Thus, since vertical equilibrium requires a
downward shear force VL = −RL there, the plank must develop an internal moment to
maintain equilibrium:

ML = −RLx = − Wbx
L

.

The negative signs here indicate that in our FBD, we have assumed the incorrect sense of
the force VL and moment ML. This is not a case of bad judgment, but our attempt to fol-
low the sign convention for positive internal forces and moments that we will continue
to use for the more complex loading we encounter in Chapter 11.

VL ML VR

RR

W ba – x

L – xx MR
RL

A similar examination of the right-hand section of the plank shows that

VR = RR − W = (W − RL) − W = −RL,

and

MR = −RR(L − x) + W(a − x) = −W
( a

L

)
(L − x) + W(a − x) = −W

(
bx
L

)
.

Again, our use of the standard sign convention for internal moment has led us to nega-
tive answers, representing a force and a moment that are in the opposite directions from
those drawn in our FBD.
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Importantly, we see that at the cut itself we have equilibrium in accord with Newton’s
third law, that is, while accounting for signs and the directions drawn:

VL − VR = 0 and MR − ML = 0.

This simple example presages some very important concepts to which we will return.
First, we have briefly introduced the method of sections by dividing the plank into con-
tiguous pieces and applying Newton’s third law. We will do that a lot in what follows.
Second, we have seen that even a simple plank or beam must somehow develop an inter-
nal moment to support an external vertical force. We will develop the theory of beams
extensively in Chapters 11 and 16.

EXAMPLE 1.7

Determine the forces in the truss members AB and AC in the truss structure shown and
use them to show that the truss as a whole bends (i.e., provides an internal moment or
couple) as it supports the load W:

L
B

C

W

A

a b

D

h

θ

Given: The truss shown.

Find: The bar forces needed to illustrate how the truss supports the load.

Assume: This is a planar statics problem.

Governing principles: Newton’s second and third laws, as reflected in Equation 1.7.

Solution

Again, we skip the vector formalism and start by noting that a truss is made up of one-
dimensional elements that: (a) are loaded only by forces applied at the ends of each bar,
and (b) cannot have any loads applied along and normal to their axis. Having said this,
we will quickly see that taken in its entirety, the truss supports and transmits forces
rather like a beam. Each individual bar is assumed to be in tension, with positive force
and indicated by an arrow directed outward from the joint.

We apply the method of sections, here taking a section at coordinate x, as shown. At
the section we see that the individual bar forces also reflect Newton’s third law about
action and reactions. Then we apply the method of joints by summing forces in both
vertical (y) and horizontal (x) directions for the joint A on the left:

∑
Fy = RL + FAB sin θ = 0 ⇒ FAB = − RL

sin θ
,∑

Fx = FAC + FAB cos θ = 0 ⇒ FAC = −FAB cos θ = RL cot θ.
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B

FBA
FAB

FAC

RL RRW
L – x

FCA

x

A D

b

h

Cθ

We now take a look at the right-hand section of the truss (see below figure). We see that
the horizontal component of the bar force FABx is a compressive (remember, FAB < 0 )
force acting on joint B with magnitude

FABx = −
(

RL
sin θ

)
cos θ = −RL cot θ = −FAC .

RR

FCA

FBAx

FBAy

W

B

Thus, FABx and FAC form a couple or moment of magnitude hFABx , which allows us
to say that the truss as a whole acts like the plank or beam in Example 1.6.

PROBLEMS

1.1 The premixed concrete in a cement truck can be treated as a fluid continuum when it
is poured into a mold. Sand flowing from a large bucket can also be considered a fluid.
Describe three other examples in which an aggregate of solid objects flows likes a fluid
continuum.

1.2 Investigate the reef balls used to create artificial reef environments. What are the most
important parameters for the successful maintenance of a stable marine environment?

1.3 Use the dot product to find the angle θ between the two vectors F1 = 4î + 3ĵ and
F2 = 1î + 7ĵ.

1.4 Find and sketch the cross product of the two vectors F1 = −5î + 3ĵ and F2 = 1î − 4ĵ.
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1.5 Generalize the results of Example 1.2 to show that for three arbitrary vectors (i.e.,
not each collinear with one axis), the scalar triple product r1 · (r2 × r3) produces the
volume of the parallelepiped whose sides are, respectively, given by r1, r2, and r3.

1.6 Using the generalized vectors of Problem 1.5, show that

r1 · r2 × r3 = r2 · r3 × r1 = r3 · r1 × r2.

1.7 Use vector representations of the sides of the triangle below to demonstrate the law
of sines. (Hint: Note that in vector arithmetic, r(C/A) = r(B/A) + r(C/B), where, for
example, r(C/A) is the position of C relative to A.)

B

A b

a

γα

β

c

C

1.8 Use vector representations of the sides of the triangle in Problem 1.7 to demonstrate the
law of cosines. (Hint: Note that in vector arithmetic, r(C/A) = r(B/A) + r(C/B), where,
for example, r(C/A) is the position of C relative to A.)

1.9 Show that the included angle ∠APB in the triangle shown below is a right angle (i.e.,
∠APB = π/2). (Hint: Note that with vector arithmetic, r(P/A) = Rî + r(P/O).)

R

R

OA B

P

R

ĵ

î

1.10 For the triangle in Problem 1.9 show that ∠BOP = 2∠AOP. (Hint: Note that Rî =
r(P/O) + r(B/P).)
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1.11 Find an expression for the force F required (as a function of the angle θ) to keep the
pulley system shown in static equilibrium.

F

θ

m

1.12 A force F acts on a uniform pendulum as shown. Find the reaction forces at the pin
connection and the angle θ, letting F = 100 N, d = 1.6 m, and W = 300 N.

d

d

W

F

θ

1.13 Suppose the tree considered in Example 1.5 is subjected to a fierce wind (blowing
left to right) that produces pressure pw that acts on the projected area of the tree.
Assuming the tree trunk is a circular cylinder of radius r , calculate the forces and
moment at the base of the tree.

1.14 Calculate the forces and moment required to support the same tree if the slope on
which it stands is considered, and we would like to know the forces parallel and
normal to the ground. Assume the slope is at an angle α.

1.15 For the truss shown, find the bar forces at the section indicated.

P

h

l

L

θ

θ
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1.16 Determine the effective moment and vertical shear force that would be required to
replicate the effect of the three bar forces in Problem 1.15.

1.17 For the truss shown, find the bar forces at the section indicated.

P
L

l

h

θ

1.18 Determine the effective moment and vertical shear force that would be required to
replicate the effect of the three bar forces in Problem 1.17.

1.19 A 15 m tall utility pole is located at a 40◦ bend in a set of power lines. The tension in
each line is 15 kN, and due to sag of the lines, the tension forces act along directions
10◦ below horizontal. A guy wire has been installed, as shown in the photo and the
top-view sketch, to keep the pole upright. What should be the tension in the guy
wire to minimize the magnitude of the moment reaction required from the ground at
the bottom of the pole? With that tension, what are the reaction forces and moments
required at the ground? Assume that the forces from the guy wire and all incoming
and outgoing lines act at a single point on the top of the pole itself.

Top view

Side view
of one line

10°

Power line

Pole

Pole

Guy wire
110°

110°

40°

40°



2
Strain and Stress in One Dimension

In Chapter 1, we stated that in order to study continuum mechanics, that is, to charac-
terize the response of a continuous material to external loading, we must (1) characterize
the material’s deformation, (2) define its internal loading, and (3) relate this to its defor-
mation, and (4) ensure that the body is in equilibrium.∗ We will begin by considering the
deformation of a material under loading.

Returning to our example of the remodeling of an underwater oil rig as an artificial reef,
we want to examine the trusses of the existing rig. As we have seen (Figures 1.1 and 1.3),
the rig is composed of many slender steel bars that must withstand the cyclic loading of
ocean currents, as well as other loads. Each bar may be pulled or pushed along its axis, as
in Figure 2.1, and by isolating each bar, we can begin to determine whether the bars can
withstand this loading.

This raises the question of what it means to “withstand” a load. Is it sufficient for the bar
to sustain the load without incurring damage or breaking, or is it necessary for it to sustain
the load without deforming or bending?

You may have noticed that a standard office table or desk can support far more weight
or force than it does when serving as a writing table or computer desk and that some
chairs can support the weight of several people without breaking. These are not examples
of wasteful or inefficient designs. In fact, these products have been designed for stiffness
rather than for strength. Instead of merely building a chair strong enough to hold a person,
designers have chosen to make the chair stiff enough that its deflections can be limited
to some small amount, under a load much larger than it is expected to typically carry.
Under normal use, therefore, the chair should not deflect perceptibly. Designing for stiff-
ness means minimizing or limiting deflections, and it is generally a much more restrictive
proposition than designing purely for strength. In this chapter, we will discover ways of
characterizing the stiffness and strength of materials and structures.

In order to begin to design for stiffness by minimizing deflection, we must understand
how to characterize the deformation a loaded body will undergo.

2.1 Kinematics: Strain

In continuum mechanics, we want to characterize how bodies respond to the effects of
external loading, and how these responses are distributed through the bodies. One way a
body responds to external loads is by deforming. We will develop a way of quantifying its
deformation relative to its initial size and shape, and we will call this relative deformation
strain.

∗ Otherwise, more generally, that Newton’s second law is satisfied.
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FIGURE 2.1
Isolated bars of underwater structure.

2.1.1 Normal Strain

When an axial force is applied to a body, the distance between any two points A and B
along the body changes. We call the initial, undeformed length between two points A and
B the gage length (or gauge length). During a tensile experiment such as the one sketched in
Figure 2.2, we may measure the change in gage length as a function of applied force. What
interests us is how much this gage length changes, relative to its initial value, or, in other
words, the intensity of deformation.

In Figure 2.2, the bar is acted on, or loaded, at its ends by two equal and opposite axial
forces. (An axial force is one that coincides with the longitudinal axis of the bar and acts
through the centroid of the cross section.) These forces, called tensile forces, tend to stretch
or elongate the bar. We say that such a bar is in tension.

If L0 is the initial gage length and L is the observed length of the same segment under an
applied load, the gage elongation is �L = L − L0. The elongation per unit of initial gage
length, or “deformation intensity,” ε is then

ε = L − L0

L0
= �L

L0
. (2.1)

This expression for epsilon defines the macroscopic extensional strain.
It is also possible for this apparatus to load a bar with two equal and opposite forces

directed toward each other, as in the sketch in Figure 2.3. These forces, called compressive
forces, tend to shorten or compress the bar. We say that such a bar is in compression. Note
that for compressive loading �L < 0, the strain as calculated from Equation 2.1 is negative.

Both tensile (tending to elongate) and compressive (tending to shorten) deformations
result in normal strain, defined as the change in length of our material relative to its initial
undeformed length. Normal strain is a dimensionless quantity, but is often represented as
having dimensions of length/length, or units of in/in, m/m, or mm/mm. Sometimes it is
given as a percentage.



Strain and Stress in One Dimension 27

Gage
length

A

B

FIGURE 2.2
Tension specimen.

In some applications, we will use a slightly more careful definition of strain. This is
sometimes called the natural or true strain as distinct from the engineering strain defined by
Equation 2.1. In this true strain definition, a strain increment dε is integrated over the bar:

ε̄ =
L∫

L0

dε =
L∫

L0

dL
L

= ln
(

L
L0

)
= ln(1 + ε). (2.2)

For very small strains, this natural strain is coincident with the engineering normal
strain ε. This book focuses on problems for which such a small strain assumption is
reasonable.

In a third definition of strain, we consider that each and every planar section normal
to the longitudinal axis moves a distance along the axis u(x). We assume here that each
planar section remains planar. An element of the bar that was originally of length dx is
thus stretched to a new length, dx + u(x + dx) − u(x). This is illustrated in Figure 2.4.

FIGURE 2.3
Bar in compression.
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FIGURE 2.4
One-dimensional stretching of a bar.

For this longitudinal deformation, we define strain—in the same spirit as the first
definition—as

ε = change in length
original length

=
[
dx + u(x + dx) − u(x)

]− dx
dx

, (2.3)

or, retaining only the first-order term in a Taylor series expansion of u(x + dx), we find

ε ≈ [u(x) + (du/dx) dx − u(x)]
dx

= du
dx

, (2.4)

In Section 2.8, we use Equation 2.4 to express equilibrium in terms of the displacement
u(x), to illustrate where the concept of compatibility is applied and to obtain a classic result
for the extension of an axially loaded bar.

2.1.2 Shear Strain

Bodies may experience both normal and shear deformations, and hence normal and shear
strains. When an axial tensile load is applied to a body, it causes elongation. Similarly, an
axial compressive load will cause shortening. When a shear force is applied to a body, it
will cause an angular deformation. The intensity of this deformation is shear strain.

To visualize the effect of shear strain, consider a motor mount as shown in Figure 2.5a.
The motor mount is composed of a block of elastic material (our “body”) with attachments
to allow for connection to the base of the motor and the support structure. A force P is
applied at the top of the block, and the support structure resists with an equal and opposite
force P . This subjects the block/body (of initial height L) to a pair of shear forces, as shown
in Figure 2.5b. If we imagine that the block is composed of many thin layers and that each
layer will slide slightly with respect to its neighbor, we may visualize how the angular
distortion of the block will develop, resulting in maximum displacement �s at the top of
the block.

As for normal strain, several definitions of shear strain exist. The engineering shear defor-
mation incurred is φ, the change in an initially right angle, as shown in Figure 2.5b. This is
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FIGURE 2.5
Shear strain. (a) Motor mount. (b) Motor mount distorted in shear.

the formal definition of shear strain: the change in the angle between two initially perpen-
dicular planes. It is measured in radians and hence, like normal strain, is dimensionless.
However, it is often difficult to take precise measurements of these angular changes, espe-
cially for very small deformations. For small deformations, the tangent of the angle φ will
closely approximate φ itself, so that we can approximate the shear strain gamma by:

γ = φ ≈ tan φ = �s

L
. (2.5)

With normal and shear strain defined, we are equipped to address the kinematics of
deformation of continuous materials due to loading. In Section 2.2, we will then move on
to the second item on our checklist: the internal forces developed in response to external
loading. First, we will consider how to measure the small deformations of interest.

2.1.3 Measurement of Strain

Until 1930, normal strain was commonly measured indirectly, using extensometers that
measured the displacement �L over some initial gage length L to allow strain to be cal-
culated using the equations we have just discussed. An extensometer system typically
included a mechanical or optical lever system. In 1931, the first electrical strain gage
demonstrated that strain could also be measured directly. Most modern strain gages are
resistive electrical meters.

In 1856, Lord Kelvin demonstrated that the resistances of copper and iron wires changed
when the wires were stretched, compressed, or otherwise deformed. This concept is at the
heart of the electrical strain gages first implemented by Roy Carlson in 1931 and Edward
Simmons in 1938.∗ Advances in materials and fabrication techniques have since refined
the design of the resistive strain gage, whose general construction is shown in Figure 2.6.

When the resistance element, typically a thin wire array etched in a metal foil, is attached
to a loaded (and thus deformed) body in such a way that the wire will also be deformed,
the measured change in resistance may be calibrated in terms of strain in the direction
aligned with the long wire segments. Important parameters in the design and performance
of a strain gage are: (1) the material used for the wires or foil, and to a lesser extent, the
backing and bonding materials; (2) protection of the gage; and (3) electrical circuitry, typ-
ically involving a Wheatstone bridge. The wires should have a large change in resistance

∗ Carlson was a civil engineer investigating California dams; Simmons was an electrical engineer who first devel-
oped a way to manufacture a bonded wire strain gage and patented his design—though it took an 11-year
court battle for him to win the patent rights for himself and not for Caltech, where he had been educated and
continued to work.
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FIGURE 2.6
Construction of a bonded-wire strain gage.

corresponding to the strains expected (sometimes called the wire material’s gage factor), a
high electrical resistivity, a low-temperature sensitivity∗, and a good corrosion resistance,
among other properties. Mounting a strain gage is straightforward (though not always
easy) as long as the surface of the body in question is extremely clean, and as long as the
manufacturer’s installation procedures are followed carefully.

2.2 The Method of Sections and Stress

We now want to consider the forces within a body that balances the effect of externally
applied forces. In order to do this, we must prepare a FBD that shows all the external
forces acting on the body at their respective points of application (Figure 2.7a). All of the
forces acting on a body, including reactive forces caused by supports and the weight of
the body itself (sometimes assumed negligible and not included if much smaller than the
applied loads), are considered external forces. This view is valuable, but does not allow us
to visualize the internal forces we are interested in, so we imagine slicing open our body
(Figure 2.7b and c). Then the former internal forces at the slice become external forces on
each section and so must be included in the separate FBDs. Each sliced section must be in
equilibrium, just as the larger body is in equilibrium. The fundamental statement of this
concept is that: the externally applied forces on one side of an arbitrary cut through a body must
be balanced by the internal forces developed at the cut. We may use this principle to solve for
the internal forces of interest, and the name given to this technique is the method of sections.

These internal forces revealed by the method of sections are vectors, with magnitude
and direction. In a solid, these forces determine the solid’s resistance to deformations and
to external forces.

Physically, these internal forces are the ones that hold the body together: they are the
resultants of intermolecular forces, or chemical bonds. The application of an external force
changes the distances between the atoms (i.e. deformation) by changing the forces exerted

∗ Temperature considerations are important because the wires’ electrical properties may be temperature-
dependent, and also because temperature itself can result in deformation, as will be quantified in Section 2.10.
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FIGURE 2.7
The method of sections. (a) Equilibrium of entire body. (b, c) Equilibrium of sections created by arbitrary cut
through body.

by these bonds. We could model the individual internal atomic forces, and this is in fact
done for atomistic simulations of very small numbers of atoms, but for engineering-scale
questions the bookkeeping, associated with so many force vectors and complex atomic
arrangements, is prohibitive. In addition, dealing with continuous materials was supposed
to get us off the hook from having to worry about individual atoms, anyway. So, we tend
to consider one distributed internal force, and stress as the intensity of that distributed
force.

In general, stress is a force per unit area, or the intensity of the force, with typical units
[N/m2 or Pa] or [lb/in2 or psi]. This indicates that we should divide the force P by the
area A on which it acts, but remember that both P and A are vectors.∗ The stress depends
on the orientations of both P and A, as we will see in Chapter 4. It will be useful for us to
resolve the internal force P into its components perpendicular and parallel to the section
of interest.

Interestingly, it took a long time for engineers and scientists to conceptualize stress as
we now understand it. While this was partly due to the susceptibility of scientific progress
to fads and biases, and the tyranny of Isaac Newton as a trendsetter (more on this later), it
was also a result of researchers focusing on whole structures and not “looking inside” the
body as the method of section demands. Instead, as J. E. Gordon notes, “all through the
eighteenth century and well into the nineteenth, very clever men, such as Leonhard Euler
and Thomas Young, performed what must appear to the modern engineer to be the most
incredible intellectual contortions”† in order to characterize material behavior without the
modern notion of stress.

It was Augustin Cauchy who first conceptualized stress and strain as we now under-
stand them, in 1822. J. E. Gordon again: “Cauchy perceived that. . .the ‘stress’ in a solid
is rather like the ‘pressure’ in a liquid or a gas. It is a measure of how hard the atoms
and molecules which make up the material are being pushed together or pulled apart as a
result of external forces.”

2.2.1 Normal Stresses

By using the method of sections in one-dimensional loading cases, we can identify two
different types of stresses. Consider a straight bar acted on at its ends by two equal and

∗ The vector A is n̂A, where n̂ is the outward normal unit vector of the area with magnitude A.
† From Gordon’s illuminating Structures, or Why Things Don’t Fall Down, 1978.
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FIGURE 2.8
Bar in tension. (a) Bar BC. (b) Free body BA.
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FIGURE 2.9
Bar in compression. (a) Bar BC. (b) Free body BA.

opposite forces, as in Figure 2.8a. Remember that these external forces are called tensile
forces. Similarly, the bar in Figure 2.9a is acted on by two equal and opposite forces,
directed toward each other; these forces are compressive forces. If we make an imaginary
cut through each bar and consider the left-hand segment as a free body, as in Figure 2.8b
and 2.9b, we see that for each bar to be in equilibrium, a force P1, equal and opposite to
external force P, must exist. This force P1 is actually an internal force in the original bar
that resists the action of force P. Also, we assume that the internal resisting force is uni-
formly distributed over the cross section of the bar. This force-per-area (the magnitude of
the internal force divided by the cross-sectional area) is what we call normal stress.

The tensile forces in Figure 2.8 produce internal tensile stresses, and the compressive
forces in Figure 2.9 produce internal compressive stresses. By convention, tensile stresses
are positive, and compressive stresses are negative. (This sign convention has to do with
the outward normal vector of surface A, as will be discussed in Chapter 4.) Tensile and
compressive stresses are developed by forces perpendicular (normal) to the surfaces on
which they act, hence the term normal stresses. As we understand that the direction of the
vector A is also perpendicular to the surface, that is, the vectors are parallel to each other,
in this one-dimensional case, we can work with the scalar magnitudes P and A. We use
the Greek letter sigma to represent normal stress, and we write

σ ≡ P
A

. (2.6)

2.2.2 Shear Stresses

The other type of stress, called shear stress (sometimes tangential stress), is developed in
a direction parallel to the surface on which it acts. An example is shown in Figure 2.10.
When equal and opposite forces with magnitude P are applied to two flat plates bonded
together by adhesive, the contact (shaded) surface is subjected to a shearing action. In the
absence of the adhesive, the two surfaces would slide past one another. The shear force is
assumed to be uniformly distributed across the contact area. As a result, the shear stress,
defined as the shearing force divided by the contact area, is developed. Shear stress can
also develop within a single body, when various layers of the material resist sliding with
respect to each other.
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FIGURE 2.10
Shear between two bodies.

Again, stress is the intensity of the internal force, and in this case its magnitude is once
again P/A, where A is the magnitude of the area of the glued surface; however, for shear
stresses, the vector A is oriented perpendicular to the force vector P. We use the Greek
letter tau to represent shear stress:

τ ≡ P
As

. (2.7)

We have included a subscript on the area to remind ourselves that the force and area
in this expression are magnitudes of vectors that are not parallel to each other. Now that
we have defined both strain (kinematics) and stress, we must consider the relationship
between them.

2.3 Stress–Strain Relationships

We will see that different materials respond differently to loads. In some materials (e.g.,
rubber), small loads produce relatively large deformations. Other engineering materials,
such as steel, undergo smaller deformations; however, it is still important to consider the
effects of such changes. Even very rigid materials, when subjected to a load, will experi-
ence a small deformation. Instead of characterizing a material’s behavior in terms of loads
and deformations, we will do so in terms of stresses and strains, defining the material’s
constitutive law.

For most engineering materials, a simple relationship exists between stress and strain.
For each increment in stress, there is a proportional increase in strain, provided that a
certain limit of stress is not exceeded. If the induced stress exceeds the limiting value, the
strain will no longer be linearly proportional to the stress. This limiting value is called the
proportional limit.

Most of the behavior we will consider occurs below the proportional limit, in the regime
where stress and strain enjoy a linearly proportional relationship. If we subject a material
in this regime to a tensile load PA, producing a stress σA and a strain εA, then subject it to
a tensile load PB , producing a stress σB and a strain εB , and then we plot the stresses and
strains to see a linear relationship between stress and strain, as shown in Figure 2.11.∗

This linear relationship between load and deformation was first stated by Robert Hooke
in 1678, and became known as Hooke’s law: Ut tensio, sic vis. This Latin phrase—in the form

∗ Such experiments were performed by Jacob Bernoulli (1654–1705) and J. V. Poncelet (1788–1867) in the quest to
understand materials’ responses to loading.
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FIGURE 2.11
Linear relationship between stress and strain.

of an anagram, ceiiinosssttuv—was how Robert Hooke∗ summed up his finding, which he
first applied to the extension of a spring. It translates: “as is the extension, so is the force.”
We are familiar with his law in this form:

F = kx, (2.8)

and have called k the spring constant or stiffness of the spring in question. Figure 2.12
shows a representative spring.

The stress–strain diagram is another example of a force (stress being a force per area)
being linearly proportional to an extension (strain being extension per initial length). It is
too the Hooke’s law: Ut tensio, sic vis. It too contains a linear constant of proportionality, a
stiffness.

The ratio of change in stress to change in strain, which is also the slope of the line join-
ing these two data points, is constant for loading below the material’s proportional limit.
This constant is now known as the elastic modulus (sometimes modulus of elasticity) or
Young’s modulus, after Thomas Young, who defined it in 1807. (Young’s definition was
somewhat awkward and ungainly, since Cauchy had yet to clearly define stress. It was
not until 1826 that Claude Navier defined the elastic modulus as we are about to.) The

∗ Hooke (1635–1703) has never received due recognition for his scientific achievements. In addition to craft-
ing what we know as Hooke’s law, Hooke was an architect and geologist whose studies of microorganisms
(using his friend Anton van Leeuwenhoek’s newfangled microscopes) and fossils were seminal. Hooke’s rela-
tive obscurity is largely a result of the efforts of his vindictive contemporary, Sir Isaac Newton, who used his
own fame and influence to diminish Hooke’s accomplishments; it was his fear that Newton would steal or
diminish “ut tensio, sic vis” that led Hooke to publish only his encrypted anagram for Hooke’s law. He and
Newton had had a feud over the inverse-square law of planetary motion, and Newton was so perturbed by it
that he removed all traces of Hooke from his Principia. Hooke had even been prescient enough to anticipate the
application of his observation of springs to material behavior, having stated that every kind of solid changes
its shape when a mechanical force is applied, and that it is this deformation which enables the solid to do
what Gordon calls “the pushing back.” In so observing, Hooke anticipated the fields of continuum mechanics
and elasticity. However, his intellectual heirs Young and Euler were denied their inheritance by Newton, and
Hooke remained obscure. Furthermore, we do not know what Hooke looked like, perhaps because—as he is
often described as a “lean, bent, and ugly man”—he was unwilling to sit for a portrait.
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Linear (Hookean) spring.

elastic modulus for bodies in tension or compression is usually represented by the symbol
E and is expressed as

E = Normal stress
Normal strain

= σ

ε
, (2.9)

where it is understood that this refers to a change in normal stress divided by a change
in normal strain. Since strain is a dimensionless quantity (length divided by length), E
has the same units as stress: either N/m2 or Pascals (Pa) in SI units, or lb/in2 (psi) in U.S.
customary units. Table 2.1 shows the values of E for several engineering materials.

Unlike the case of the spring constant k, the elastic modulus does not depend on the
geometry of a body; it is the physical stiffness of the material itself. A material’s stiffness
may be defined as the property that enables the material to withstand stress without great
strain, in other words, the material’s resistance to deformation.

In the Hookean regime, both springs and solid materials are linearly elastic. In the pres-
ence of an applied load, stress is linearly related to strain. If an applied load is removed,
both stress and strain decrease linearly to zero. However, if a material’s proportional limit
is exceeded due to an applied load, this is no longer true. In this case, the removal of
the applied load causes both stress and strain to decrease linearly, along a line parallel to
the linear portion of the stress–strain curve, as shown in Figure 2.13. The strain does not
return to zero. By exceeding its proportional limit, the material has undergone a perma-
nent plastic deformation. Plastic, as opposed to elastic, deformation represents a permanent
set of materials as you likely have observed when bending a paper clip too far. For most
materials, the degree of plastic deformation depends on both the maximum stress value
reached and the time elapsed before the load is removed. The time-dependent part of
plastic deformation, which can also be influenced by temperature, is known as creep.

TABLE 2.1

Approximate Design Values of Elastic and Shear Moduli
for General Material Categories, in Linear Regimes (SI)

Elastic Modulus, Shear Modulus,

Material E (GPa) G (GPa)

Steel 200 79
Aluminum alloy 70 26
Glass 65–75 26–31
Rubber 0.001–0.1 0.0003–0.03
Other polymers 0.2–5 0.08–1.5
Concrete 30 13
Bone 1–21
Wood 8–14



36 Introduction to Engineering Mechanics

ε
εp

σ

FIGURE 2.13
Plastic deformation incurred when proportional limit is exceeded.

A change in shear stress is also proportional to a change in shear strain, as long as the
stress is below the proportional limit for that mode of loading. The constant of shear pro-
portionality is known as the shear modulus or the modulus of rigidity. It is represented by G
and expressed as:

G = Shear stress
Shear strain

= τ

γ
. (2.10)

Average values of the shear modulus for some common materials are given in Table 2.1.
Note that the elastic and shear moduli differ significantly for each material.

It is interesting to observe the consistency of the ratio of E to G, despite the diversity of
materials represented in Table 2.1. In Section 4.1, we will further reflect on the relationship
between E and G, representing a material’s resistance to axial deformation relative to its
resistance to shear. Values for more specific materials are in Appendix C.

We now have two additional forms of Hooke’s law, the constitutive law for linear elastic
materials and likenesses of F = kx for one-dimensional loading:

σ = Eε, (2.11)

τ = Gγ. (2.12)

In modeling our material body as a linear spring, we are making the assumption of
linearity: that we are in the Hookean regime of the material’s stress–strain curve and also
that we have small deformations.

This model incorporates three further assumptions that thus represent limitations—
albeit broad ones—on the kinds of materials it can represent. One assumption is that the
material is homogeneous, by which we mean the material constants (e.g., the elastic mod-
ulus) do not vary from point to point, that is, are not functions of the coordinates. The
second assumption is that the material is isotropic, by which we mean that the elastic prop-
erties are invariant with respect to any rotation of the coordinate axes. In other words,
no matter of which axis we align with the loading, we see the same material behavior.
(Note that the bone and wood listed in Table 2.1 are not isotropic, so that the range of
material values given in Table 2.1 reflects different moduli in different directions, as well
as variation among different materials in these categories.) The third assumption is that
there is no apparent effect of temperature. We will incorporate the effects of temperature
in Section 2.10.

Each material has its own characteristic stress–strain curve that illustrates its constitu-
tive law. The extreme values of strain that materials can withstand or vary widely, as do



Strain and Stress in One Dimension 37

Ductile materials

Brittle materials

Some organic
materials

X

X

X

σ

ε

FIGURE 2.14
Schematic of typical stress–strain diagrams.

the slopes of the Hookean portions of their curves, as shown in Figure 2.14. The terminal
point on a stress–strain diagram represents the complete failure (rupture or fracture) of the
specimen. Materials that are capable of withstanding large plastic strains before they fail
are called ductile materials. Low-carbon steels, most polymers, and skin are examples of
ductile materials. Brittle materials, on the other hand, fail abruptly after a small amount of
plastic deformation. Cast iron, glass, ceramics, concrete, and bone are examples of brittle
materials. Further discussion of material properties is available in Section 2.13.

For the most part, we will be considering homogenous, isotropic materials—materials
whose behavior does not depend on the direction of loading. Many engineering materials
such as metals and ceramics may be readily modeled this way; however, we have seen
that some materials, like wood and bone, have different properties in different directions.
Wood is strongest against loading along its grain, and is much easier to break with loads
applied across the grain; compact bone is strongest along its long axis to resist compressive
loading. For the time being, we will neglect such variations and cling to the assumptions
of homogeneity and isotropy, but we will keep in mind that for truly anisotropic materials
the results of our calculations will be limited approximations.

2.4 Limiting Behavior

Let’s look more closely at an idealized stress–strain diagram (Figure 2.15). This diagram
represents the behavior of mild steel, a ductile material. Hooke’s law, as we already
know, governs the low-strain regime of the diagram, where stress and strain are linearly
related. But what’s going on at higher stress and strain, as the curve bends and ultimately
terminates?

The point at which the curve is no longer linear, often a plateau on the stress–strain dia-
gram, is called the material’s yield point, defining a yield strength (or yield stress). Generally,
beyond the yield point, it takes much less stress to cause much higher strains than in the
Hookean region, and, of course the relationship between stress and strain is no longer
linear. In some materials, a maximum stress may be reached just before fracture. This is
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FIGURE 2.15
Idealized stress–strain diagram for mild steel (ductile).

called the ultimate strength (or ultimate stress) of the material. Finally, we see that the curve
ends abruptly at a certain stress point. This point represents the stress that would cause
the material to rupture or fracture. From Figure 2.14, we observe that ductile materials can
withstand much more strain than brittle materials. We classify materials as ductile or brittle
based on their behavior at room temperature; at elevated temperatures, an otherwise brit-
tle material may behave more like a ductile one, while at lowered temperatures, a ductile
material may behave like a brittle one.∗

Stress–strain curves for various materials are obtained through rigorous testing of the
materials’ behaviors in tensile, compressive, and bending tests. The tensile tests are per-
formed in a setup like that shown in Figure 2.2. Near the breaking point, a specimen of
mild steel may resemble the sketch in Figure 2.16. The narrowing of the specimen at its
midpoint is called “necking.” Although the overall cross section of a bar in tension will
narrow during elastic deformation (as we will learn in Section 4.1), the dramatic localized
necking is plastic deformation.

Necking occurs in ductile materials, or in materials in ductile states. Figure 2.17 contains
photographs of a ductile material undergoing necking (Figure 2.17a) and after failure (Fig-
ure 2.17b). Brittle materials, such as cast iron, glass, and stone, experience rupture without
any observable change in deformation rate, and no necking. A photograph of a brittle
material after failure is shown in Figure 2.17c.

The testing, necking phenomenon, and modulus values discussed here are all uniaxial,
or one-dimensional, in nature. Values for elastic modulus, yield strength, and ultimate ten-
sile strength are obtained by stretching a specimen until it fails. Values for shear modulus
and ultimate shear strength are obtained by applying purely shearing deformations to a
specimen. We are beginning to realize that real-world loading is not as simple as these
testing conditions. Because of the complexities of real loading and real materials, various

∗ One example of each of these transitions has achieved notoriety. Combustion heating of the steel support mem-
bers of the World Trade Center (2001) caused the steel to become more ductile and lose strength, contributing
to the progressive failure of the towers. Also, the infamous O-ring seal on the Space Shuttle Challenger (1986)
became brittle due to cold weather, and allowed hot gas to escape from the Solid Rocket Booster, leading to the
destruction of the vehicle.
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Original diameter of the specimen

FIGURE 2.16
Necking of a ductile material during tensile testing.

criteria are used to predict failure of structures. In Section 5.4, we will develop such crite-
ria, but for now we will keep this need for reliable predictors of structural failure in mind
as we continue our study of continuum mechanics.

The yield and ultimate strengths of a range of engineering materials are shown in
Appendix C. Brittle materials do not have meaningful yield strengths, so only ultimate
strengths are listed. Note that while different related alloys (e.g., different steels) have
similar elastic moduli, they may have very different strengths.

The fracture strength of a solid depends on the strength of intermolecular bonds in the
material. Based on this reasoning, the theoretical cohesive strength of a brittle elastic solid
can be estimated to be approximately one-tenth the value of E . However, experimentally
determined fracture strengths of most engineering materials lie between 10 and 1000 times
below this theoretical value. In the 1920s, A. A. Griffith proposed an explanation for this
discrepancy that has now become widely accepted: the presence of microscopic flaws or

(a) (b) (c)

FIGURE 2.17
Ductile material (a) experiencing necking and (b) after failure, and (c) brittle material after failure, in uni-
axial tension test. (http://www.hsc.csu.edu.au/engineering_studies/application/lift/3210/index.html. With
permission.)
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cracks that exist under normal conditions on surfaces and within a body of material reduce
a material’s overall strength due to stress concentration (as we will learn in Section 2.11).
The local amplification of stress accelerates the growth of the crack, accelerating the mate-
rial’s failure. Using strain energy analysis (as in Section 2.12), Griffith showed that the
critical stress required for crack propagation in a brittle material depends on the material’s
elastic modulus and the specific surface energy, and is inversely proportional to the ini-
tial size of the crack. A study of materials science would address the microscopic issues
involved in stress concentration and crack propagation; in this text, we are concerned
with the macroscopic implications for our structures. In particular, brittle materials have
different strengths in tension and compression, as tension opens and propagates cracks,
while compression tends to close them. Ductile materials, in which plastic deformation
at a crack tip reduces stress, are more likely to have the same strengths in tension and
compression.

Engineers include safety factors in designs. A safety factor is a margin of insurance against
unforeseen conditions, material imperfections, fabrication errors, and other uncertainties.
The allowable (actually induced) stress in a design must be less than the failure strength
or (more conservatively) the yield strength. The safety factor is simply the ratio of failure
(or yield) strength to the allowable stress in the current loading conditions (a limit deter-
mined from several factors, including material properties, confidence in load prediction,
type of loading, possible deterioration, and design life of the structure). Although differ-
ent applications have different established values, safety factors should have values over
2.0 in robust designs. That is, our analysis should assure us that the allowed stress will
never exceed half of the reference (failure or yield) value. For higher-risk applications, we
may prefer to use higher safety factors, which can reduce the risk but also increase costs,
requiring engineers to use their judgment to make ethical and judicious tradeoffs.

2.5 Equilibrium

We recall our checklist of what is needed to apply continuum mechanics to understand
the response of a body to external loading: we must (1) characterize the deformation of
a continuous material, (2) define the internal loading, (3) relate this to the body’s defor-
mation, and (4) make sure that the body is in equilibrium. We have accomplished the first
three items in the list, and now understand that in doing so we have constructed (1) a kine-
matic description of deformation, or strain; (2) a definition of stress; and (3) a constitutive
law relating stress and strain. The last item in our list, (4) equilibrium, is addressed by the
method of sections, but we can also consider it in a more rigorous manner.

We have used equilibrium and the method of sections to apply Newton’s second law on
a “macroscopic” basis. Now we will do a “microscopic” equilibrium analysis in terms of
the stress resultants at an arbitrary point in the bar, an infinitesimal element of length dx,
and of volume d V– = A(x) dx, as shown in Figure 2.18. Since the point we have chosen is
arbitrary, this analysis is valid at every point in the bar, and also for the entire bar.

Because the loading is spread along the bar, the internal axial force N(x) is different at
each section. At the point x + dx, we represent this force using the first terms in the Taylor-
series expansion of N(x + dx). Summing forces in the x-direction on this uniaxially loaded
element, we see that the internal axial force N(x) balances both the external axial load q(x),
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dx

dx

Bx

q(x)

Bx A(x) dx

q(x) dx

N(x) N(x) + dN(x)
dx

dx

A(x)

FIGURE 2.18
Equilibrium of an infinitesimal element in one dimension: internal axial force N(x) balances applied axial load
q(x) and body force Bx .

a distributed axial load per unit length of the bar (a force per length, having units of N/m
or lb/ft), and an axial body force Bx (a force per volume):(

N(x) + dN(x)

dx
dx
)

− N(x) + q(x) dx + Bx A(x) dx = 0. (2.13)

The load per length q(x) might represent, for example, friction forces distributed on the
outer surface of the bar. The volumetrically distributed constant body force per volume Bx
allows us to include forces that depend on the intrinsic mass or volume, such as gravity or
magnetic fields. For example, to consider the weight of a vertical element, we would use
Bx = ρg, if x points toward the center of the Earth. Equation 2.13 can then be simplified,
yielding an ordinary differential equation of first order for the axial normal force resultant:

dN(x)

dx
+ q(x) + Bx A(x) = 0. (2.14)

If loads are to be modeled as concentrated loads Pi located at coordinates xi , the dis-
tributed load per length can be replaced by a discrete set of point loads with q(x) =∑

i Piδ(x − xi ), where δ(x − xi ) is the Dirac delta expression that equals 1 where x = xi
and zero elsewhere. Then Equation 2.14 takes the form

dN(x)

dx
+
∑

i

Piδ(x − xi ) + Bx A(x) = 0. (2.15)

In Section 2.8, we will see that microscopic and macroscopic equilibrium results are in
agreement. Our checklist for continuum mechanics analysis is complete:

�� Kinematics (strain)
�� Definition of stress
�� Constitutive law (stress–strain relationship)
�� Equilibrium
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Now that we have developed these four items for one-dimensional loading, we will see
what they mean for an axially loaded bar like those in our underwater structure.

2.6 Stress in Axially Loaded Bars

Consider a steel ruler, a thin body made of a seemingly compliant material. We know that
if we hold such a ruler by one end and push down on the other end (perpendicular to the
ruler’s broad surface), as in Figure 2.19a, the loaded end will be deflected significantly. In
this case of loading, we call the system a cantilever beam. On the other hand, if we instead
pull on the free end (parallel with the long axis of the ruler), as shown in Figure 2.19b, we
would see very little movement. A system with this type of loading is called a bar. It is
intriguing that the same body can experience such a dramatically different behavior due
to differences in loading. We hope to be able to postulate and develop models to explain
these different behaviors.

Once we remove either load from the ruler—once we stop pushing or pulling—the ruler
returns to its original, planar shape. In this way, the ruler behaves like an elastic spring,
just as Hooke suggested. In our “beam” and “bar” experiments, the different behavior of
the ruler can be explained by its having a different stiffness depending on the loading.
In Section 2.7, we will derive the bar stiffness, and then in Chapter 9 we will derive the
different form of this structural stiffness for beams. We will see in detail that the beam
stiffness is much less than the stiffness in the bar mode, which is why under similar applied
forces we see greater movement or deflection when the ruler acts like a beam.

For now, the important lesson is that the effective stiffness (a measure of how much a
body will resist being deflected by a load) of a structural element or mechanical device is
dependent on several factors, including the nature of the loading, as well as the element’s
geometry and the material itself. Since we are interested in how bodies will react to external
forces, this stiffness will provide us with a way to quantify their reactions.

Let us expand our ruler example of a bar in axial loading (Figure 2.20a). The bar is built
in, or attached to a wall, at x = 0, and is subjected to a single external (applied) load P
at x = L . The load P acts along the bar’s axis. We know from Newton’s second law that
in order to keep the bar in static equilibrium, the attachment point or wall must exert an
equal and opposite force P at the left end of the bar.

What we’re interested in, to perhaps establish whether it is strong or stiff enough to meet
our requirements, is what’s happening inside the bar. We can use the method of sections

(a)

(b)

P

P
Δbeam

Δbar

FIGURE 2.19
Steel ruler in (a) beam and (b) bar modes.
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(a)

(b)

(c)

x = 0 x = L
Δbar

P

P

P

FIGURE 2.20
Stresses on sections of axially loaded bar. (a) An axially loaded bar. (b) Section cut normal to the bar’s longitudinal
axis. (c) Section cut at an angle θ.

to make an imaginary slice through the bar, exposing a cross section of area A. An FBD
will show us that something must be happening on that area to exert a net tensile force
P across A. And, if our slice is normal to the bar’s axis (as in Figure 2.20b), the exposed
area A is also normal to the axis, and we can define the normal stress σ acting on that area
as σ = P/A.

If instead we make our section cut at an angle θ, then the picture will be different (Fig-
ure 2.20c). Now, the equilibrating force at the section surface has two components, as
shown in Figure 2.21. The normal force component is P cos θ and the shear component
(parallel to the section surface) is P sin θ. (These components may be obtained by summing
forces in the horizontal and vertical directions.)

P

A/cos θA

P sin θ

P cos θ
θ θ

FIGURE 2.21
Sectioning of a bar at an angle θ.
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The area of the inclined cross section is A/ cos θ. From these values, we can calculate the
magnitudes of normal stress σθ and shear stress τθ on this angled section by the following
two equations∗:

σθ = force
area

= P cos θ

A/cos θ
= P

A
cos2 θ, (2.16a)

τθ = P sin θ

A/cos θ
= P

A
sin θ cos θ. (2.16b)

Both normal and shear stresses will vary with the angle θ. Looking at the equation above
for σθ, we see that it will reach its maximum value when θ = 0◦, that is, when the section
is perpendicular to the axis of the bar (as in Figure 2.20b). The corresponding shear stress
at θ = 0◦ would be zero. Hence we determine the maximum normal stress in an axially
loaded bar:

σmax = P
A

. (2.17)

A question to think about: What happens at θ = 90◦? Does this make sense?
If we differentiate the equation for shear stress with respect to the angle θ, and set it

equal to zero, we should find the angle that produces the maximum value of τθ. We find
that τθ has its maximum value when tan θ = ±1, leading us to the conclusion that τmax
occurs on planes of either +45◦ or −45◦ with the bar axis. If we substitute ±45◦ into our
equation, we find that

|τmax| = P
2A

= σmax

2
. (2.18)

Thus, the maximum shear stress in an axially loaded bar is only half as large as the
maximum normal stress.

Note that as we consider different values for θ we are not changing the load the bar is
subject to, but we are merely changing how we represent the stress that this load causes.
When we consider applications including multi-dimensional loading in Chapter 5, we will
find this concept to be quite important.

2.7 Deformation of Axially Loaded Bars

We have established expressions for stress, strain, and the elastic (Young’s) modulus E .
These may now be combined into a convenient expression to directly determine the total
deformation �L for an axially loaded bar (Figure 2.20a). We begin with the definition of
the elastic modulus, or Hooke’s law, and substitute for stress and strain:

E = σ

ε
= P/A

�L/L
= P L

A�L
. (2.19)

∗ What we have done here is rotate our axes by the angle θ (we will do this a lot more in Chapter 5). You may
have noticed that the shear force is pointing in a negative (rotated) direction, and in fact this stress is negative
by the sign convention we will develop. We are only determining the magnitudes of the stress components at
this time.
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Then, solving for �L , we obtain

�L = P L
AE

, (2.20)

where �L is the total axial deformation, P the total applied external axial load, L the
original length of the bar, A the cross-sectional area of the bar, and E the elastic modulus.

This expression is valid only when the stress in the bar does not exceed the proportional
limit. This should make sense, as it is only below this limit that the bar’s stress and strain
will obey Hooke’s law. Also, Equation 2.20 assumes that the force, area, and properties of
the bar do not change along its length. For a more complex problem, where quantities vary
along the bar’s axis (here the x-axis), we can obtain a similar relationship that takes such
variations into account:

�L =
L∫

0

N(x)

A(x)E(x)
dx, (2.21)

where N(x) is the internal axial force as in Section 2.5.
We can cast Equation 2.20 in terms of the bar’s stiffness, as discussed earlier. If we recall

the form Hooke’s law took for linear springs, F = kx, we can write P as a function of �L
using Equation 2.20:

P = E A
L

�L . (2.22)

Comparing Equation 2.22 with F = kx, we see that the axial deformation �L of this bar
due to the axial load P depends on its stiffness E A/L . We can compare this spring stiffness
to that for a beam, loaded as in Figure 2.19a, in Chapter 9.

2.8 Equilibrium of an Axially Loaded Bar

Now we want to combine our kinematics (Equation 2.4), constitutive (Equation 2.11), and
equilibrium (Equation 2.15) models to characterize a uniaxially loaded bar. In principle,
this is a system of three equations for three unknowns: the strain ε(x), the stress σ(x), and
the axial displacement u(x). However, we can simplify the mathematics by eliminating
variables and reducing our system to a single differential equation. Since our system of
equations includes two first-order differential equations (kinematics, equilibrium) and one
algebraic equation (Hooke’s law, our constitutive equation), we expect our single equation
to be second-order. We achieve this result by writing the stress in terms of strain, and strain
in terms of displacement. That is,

σ(x) = Eε(x) = E
(

du(x)

dx

)
. (2.23)

Second, we substitute Equation 2.23 into the equilibrium Equation 2.14 for the case of no
distributed load q(x), and with σ(x) = N(x)/A to find, assuming that the area and elastic
modulus are constant (i.e., they do not vary with the x-coordinate):

E
d2u(x)

dx2 + Bx = 0. (2.24)
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This is the second-order equation we expected. In the absence of body forces (Bx = 0), it
is easily integrated, yielding

u(x) = C1x + C2. (2.25)

To determine the constants of integration in Equation 2.25, we must apply appropriate
boundary conditions. As an example, we will solve for the displacement in the bar as is
shown in Figure 2.20a. One boundary condition is clear: the displacement (or movement)
of the bar is zero at the left end (u(0) = 0) because the bar is attached to the wall and
restrained there. At the free end, x = L , we are pulling with a force P , so that we can
express this boundary condition in terms of the strain as

du
dx

∣∣∣∣
x=L

= ε(L) = σ(L)

E
= P

E A
. (2.26)

After applying our two boundary conditions, we find the solution (2.25) to be

u(x) = Px
E A

+ u(0) = Px
E A

. (2.27)

The net extension of an entire bar of length L is thus:

�L = u(L) − u(0) = P L
E A

, (2.28)

which is in agreement with Equation 2.20, and from which we can recover the expression
for the bar stiffness, E A/L , just as in Equation 2.22. We can also see from Equation 2.27
that the strain, as the derivative of u(x), is constant; each section of the bar experiences the
same stretch.

2.9 Statically Indeterminate Bars

For some structural systems, the equations for static equilibrium expressed in terms of
forces are insufficient for determining reactions.∗ This may be because some of the reac-
tions are superfluous or redundant for maintaining equilibrium. But even a redundant
support feels reaction forces—forces we as engineers must calculate. However, regardless
of how many extra support reaction forces there are in a system, we have a fixed num-
ber of independent equilibrium equations. Equilibrium equations may also be insufficient
when some internal forces cannot be determined using the equations of statics alone. Both
of these situations, called statical indeterminacy, may arise in axially loaded bar systems.

We can resolve statical indeterminacy by several methods. In all of the available meth-
ods, as in all of our mechanics problems, we must make sure of three things, in no
prescribed order:

∗ If, instead, equilibrium is expressed in terms of displacements (as will be done in Section 4.6), the distinction
between determinate and indeterminate problems vanishes, and we may apply the solution method developed
in Section 2.8. However, it is useful to work out a technique to resolve the indeterminacy of problems expressed
in terms of stresses.
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• Equilibrium conditions for the system must be assured, both locally and globally.
• Geometric compatibility must be satisfied among deformed parts of the body, and

at boundaries. This has to do with the kinematics of deformation.
• Constitutive relations such as Hooke’s law must be obeyed by all materials of the

system.

Of the available methods, the two most commonly used are: (1) the force method, in
which we first remove, and then restore, a redundant reaction to develop a compatibil-
ity equation; and (2) the displacement method, in which we maintain compatibility of the
displacements of adjoining bars and at the boundaries, and solution displacements are
obtained from equilibrium equations.

The displacement method is the basis for most of the finite-element method (FEM) pro-
grams that are commonly used to analyze complex structures, and is better suited to large
systems. Both methods make use of the analogy between the elastic (Young’s) modulus E
and the spring constant k. E and k each relate loading and deformation in a linear equa-
tion: σ = Eε and F = kx. We have just seen that the stiffness of an axially loaded bar may
be expressed as k = E A/L .

2.9.1 Force (Flexibility) Method

The force method is also sometimes called the force/flexibility method. We will be think-
ing of our indeterminate bars as elastic members of a system, each bar with a flexibility f
defined as the reciprocal of k: f = 1/k = �L/P , or fi = Li/Ai Ei . Note that f has physical
dimensions of length/force, reciprocal dimensions of the stiffness k.

To illustrate the force method in the case where a compatibility equation cannot be writ-
ten down directly, consider the following example: In Figure 2.22a, an axial force P is
applied at point B of the varying-diameter bar ABC . This axial load leads to reactions
R1 and R2 being developed at the ends, and the system deforms to the state seen in
Figure 2.22b. The deformations shown are exaggerated.

Since only one nontrivial equation of statics is available (�Fx = R1 + R2 + P = 0, with
two unknown Ri ), this system is statically indeterminate to the first degree, meaning there
is one more support reaction force than is needed for equilibrium. We will assume positive
forces and deflections, so that any result with a negative sign will mean that the force or
deflection in question is in the opposite direction from that drawn in Figure 2.22b. The
force method tells us to “remove” one of the supports (in the same hypothetical sense that
we “slice” bodies open to use the method of sections). We choose to remove the right-hand
support with reaction R2. This permits the system to deform as in Figure 2.22c.

We see that in Figure 2.22c, the same axial deformation �0 occurs at B as at C—in the
imagined absence of reaction R2 (imposed by the right wall), the bar is free to deform in
this way. Note that analysis by the method of sections shows that the bar BC is not loaded
at all in this imagined situation. If the flexibilities of the elastic bars are f AB and fBC , then
we can use the definition of flexibility to write

�0 = f AB P + fBC (0) = f AB P = P L AB

AAB E AB
. (2.29)
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FIGURE 2.22
Force method for statically indeterminate bar ABC : (a) subjected to applied force P ; (b) experiencing reactions
and deformation; (c) with right support “removed”; and (d) subjected only to the support reactions.

But this deformation violates the geometric condition that is actually imposed at C : there
is, truly, a wall that prevents a deflection of even �0. To comply with geometric compat-
ibility, we must find the deflection �2 that would be caused by R2 acting at C , as shown
in Figure 2.22d. This deflection is caused by the stretching (if R2 is in the direction shown;
we might intuitively know that it must be in the other direction to cause compression, but
assuming all unknown forces to be positive is a good strategy, and makes a negative result
unambiguous) of both constituent bars. Thus,

�2 = ( f AB + fBC )R2 = R2L AB

AAB E AB
+ R2L BC

ABC EBC
. (2.30)

We may then achieve compatibility by requiring that at C

�0 + �2 = 0. (2.31)

That is, there is no net deformation of the actual bar system. From this expression, we find
an expression for R2:

R2 = − f AB

f AB + fBC
P . (2.32)

The negative sign here indicates that R2 acts in the opposite direction from what we had
assumed: the bar is in compression. (The same is true for the deflection, �2. It is nega-
tive, reflecting the fact that bar BC is being compressed under this loading.) The original
equilibrium equation may now be used to determine R1. In this problem, it has a negative
value, and thus is also pointing in the opposite direction from that assumed. With these
reaction forces known, the method of sections provides the internal forces in the bars,
tension in AB and compression in BC , as the initial figure suggests.
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The idea of the force method is that the complete solution is the sum of the solutions
shown in Figure 2.22c and d; the method is an application of the principle of superposition.
Our premise is that the resultant stress or strain in a system due to several forces is the
algebraic sum of these forces’ effects when separately applied. This is only true if each
effect is linearly related to the force causing it, that is, if we are in the Hookean range of
behavior.

It may be useful to refer to the following steps of the force method in problem solving:

1. Determine the number of redundants, that is, the number of forces that cannot
be determined from equilibrium alone. The number of forces needed to maintain
equilibrium is equal to the number of equations of equilibrium, so any additional
forces are redundant.

2. Determine compatibility equation(s) that describe geometric constraint(s). There
should be one such equation for each redundant. In some cases, these may be
immediately clear, and a complete set of equations is ready for solution without
the following steps. In many cases, the method described above is required. In
that case, choose reaction(s) to be the redundant(s) and remove them from the
structure, thus temporarily producing a determinate structure. There is no formal
method or set of criteria for making the choice, so convenience is the guiding
principle for choosing redundants.

3. Calculate the displacements at the points from which redundants were removed,
as produced by the actual (given) external loading.

4. Calculate the displacements at the points from which redundants were removed,
but now as produced by the reapplied redundants only, without the given external
loading.

5. Sum the two displacements at each point where a redundant has been removed,
as calculated in the last two steps, that is, as displacement (step 3) + displace-
ment (step 4). Applying superposition to this linear structure, we see that these
must be added to equal the actual physical displacement at that point of the fully
loaded, indeterminate structure. We then calculate the values for the redundant
forces from these equations. (We are now enforcing compatibility or consistency
of deformations.)

6. With the redundants determined in step 5 acting, determine the remaining
support reactions of the fully loaded, indeterminate structure by applying equi-
librium.

This procedure is very general; in practice, any number of axial loads, bar cross sections,
material properties, and thermal effects (to be discussed in Section 2.10) on the length of a
bar system may be included in your analyses. However, for very large systems, application
of the force (flexibility) method is inefficient.

2.9.2 Displacement (Stiffness) Method

The displacement method is also known as the displacement/stiffness method. We
remember that the stiffness of an axially loaded bar may be expressed as k = E A/L .

If we are presented with a statically indeterminate elastic axially loaded bar system (like
that in Figure 2.23a), we may define the stiffness of each bar ki as Ei Ai/Li . An applied
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FIGURE 2.23
Displacement method for a statically indeterminate bar ABC : (a) subjected to applied force P ; (b) experiencing
reactions and deformation; (c) with “cuts” in sections AB and BC to produce node FBDs.

force P at point B causes reactions R1 and R2. As before, these forces and the displacement
� at B are considered positive when they act toward the right, and initially we assume
them to have this sense as shown in Figure 2.23b.

Our objective is to determine the displacement �B . (Since there is only one unknown
�B to be determined in this example, this problem is said to have one degree of kinematic
indeterminacy, or one degree of freedom.) We also hope to find expressions for the reaction
forces Ri .

In the problem considered here (Figure 2.23), the displacement �B causes tension in
bar AB and compression in bar BC . But if we had a more complex system and could not
determine that through intuition, we could use the approach of assuming positive internal
forces (tension) and understanding that final negative results indicate compression. With
both external forces assumed positive (pointing to the right) and internal forces assumed
positive (acting on bars in tension, whether that means drawing arrows to the left or right
for a given bar∗), we can produce isolated FBDs of each of the points, or nodes, A, B, and
C as shown in Figure 2.23c.† Writing an equilibrium equation for the free body at node B,
we have

− PAB + PBC + P = 0. (2.33a)

∗ A bar in tension will pull on the nodes to which it is attached, and a bar in compression will push on them.
† You might be confused by the combination of sign conventions for external and internal forces. First, be clear

that there are two different conventions for the two different types of forces. For external forces, the overall
coordinate axes for the problem dictate signs. Typically, we choose pointing to the right and pointing up as
positive directions. When we know the direction of a force, we draw it that way on our FBD, but when we
do not know the real direction of an external force, we assume these positive directions and understand a
negative result to mean the force points the opposite way. For internal forces, tension and compression dictate
signs. We have established the convention of tension forces being positive. When we know the direction of
a force, we draw it that way on our FBD, but when we do not know the real direction of an internal force,
we assume it is pulling on the body (tension) and understand a negative result to indicate that it is actually
pushing (compression).
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We have more unknowns than equations, so we introduce additional information, the
constitutive relation for each bar:

PAB = kAB (�B − �A) = kAB�B , (2.33b)

PBC = kBC (�C − �B) = −kBC�B . (2.33c)

Substituting these expressions into Equation 2.33a let us solve for the unknown displace-
ment at node B, and then we can solve (2.33b) and (2.33c) for the unknown internal forces
in each bar:

�B = P
kAB + kBC

, (2.33d)

PAB = kAB

kAB + kBC
P and PBC = − kBC

kAB + kBC
P . (2.34)

Equilibrium for free bodies A and C gives us

R1 = −PAB = − kAB

kAB + kBC
P and R2 = PBC = − kBC

kAB + kBC
P . (2.35)

Equation 2.35 tells us that both reaction forces are in directions opposite to those indi-
cated in Figure 2.23b, as we could have expected, and the signs in Equation 2.34 indicate
that AB is in tension and BC in compression.

It may be useful to refer to this sequence of steps for the displacement method:

1. Determine the number of redundants, that is, the number of forces that cannot be
determined from equilibrium alone. Draw an FBD of the structure with unknown
reaction forces pointed in positive coordinate directions.

2. Identify within the structure a number of nodes equal to the number of redun-
dants, and for each of these points identify a nodal displacement of the structure.

3. Draw FBDs of these nodes, with unknown bar internal forces drawn in tension
(positive) and sum all the forces at each node to enforce equilibrium.

4. Write internal bar forces in terms of displacements using constitutive laws.
5. Use the system of nodal equilibrium and constitutive equations to solve for

unknown nodal displacements and unknown bar internal forces.
6. Determine the support reactions of the fully loaded, indeterminate structure by

applying equilibrium.

2.10 Thermal Effects

So far, we have considered mechanical stress and externally applied loads as the only
sources of strain in materials. However, solid bodies expand with increasing tempera-
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ture and contract with decreasing temperature. These deformations can be represented
as thermal strains. We define thermal strain εT in the following way:

εT = α(T − T0) = α�T , (2.36)

where α is an experimentally determined coefficient of (linear) thermal expansion for a
given material, and T0 and T are the initial and final temperatures of our body of interest,
respectively. The thermal expansion coefficient α measures dimensional change per degree
of temperature change for a given material. Typical values for concrete, carbon steel, and
aluminum, in SI units of (m/m)/◦C or just (◦C)−1, range from 9.9 × 10−6 for concrete to
11.7 × 10−6 for carbon steel to 23 × 10−6 for aluminum.

Thermal strain has no directional dependence; equal thermal strains develop in every
direction for unconstrained homogeneous isotropic materials. For a body of length L
subjected to a temperature change, the extensional deformation �LT is

�LT = α�T L , (2.37)

where �T is allowed to be positive or negative for increasing or decreasing temperature.
If the body in question is free to expand or contract (i.e., the body is not restrained), no

stress is induced by these thermal effects. The dimensional change �LT will simply occur,
and the otherwise unloaded bar will continue to be in equilibrium. However, if the body
is partially or fully restrained so as to inhibit or prevent this change �LT , internal thermal
stresses will develop, and the force/flexibility method of Section 2.9.1 is useful for solving
the unknown forces as these are typically statically indeterminate situations.

The stresses and strains due to thermal effects may be combined with other stresses and
strains in the same directions by straightforward superposition.

2.11 Saint-Venant’s Principle and Stress Concentrations

In applying equations such as σ = P/A, we have assumed that forces and stresses are
distributed uniformly across the surfaces on which they act. In ideal cases such as the axi-
ally loaded bars of the previous sections, this is very nearly the true situation. However,
in more realistic scenarios, things are more complex. Fortunately for us, many researchers
have performed detailed calculations of stress states, and have learned things from the dis-
tributions they found. We may benefit from their conclusions without performing arduous
computations ourselves.

An exemplary result came from the analysis of an elastic block, acted on by concen-
trated forces at its ends, as shown in Figure 2.24a. (Of course, in the real world, a truly
concentrated force such as this one is not even possible.) The calculated stress distributions
at three incremental depths within the bar are shown in Figure 2.24b through d. Clearly,
these are not uniform distributions across the cross section, but the stress as calculated by
our formula σ = P/A is in agreement with the averages of these more carefully obtained
profiles.

The important fact to glean from these results is that the normal stresses are nearly uni-
form on a surface whose distance from the applied force is the same as the width of the
body. (This is true despite the high spatial variation in stress at surfaces nearer to the force
application.) This point illustrates Saint-Venant’s principle, as first stated by the eponymous
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(a) (b)

Dotted line represents σav = P/A

(c) (d)

P

P P P P

Max: 2.75σav Max: 1.387σav

Max: 1.027σav

b

b/4 b/2
b

FIGURE 2.24
Stress distributions near concentrated force in a bar. (a) A bar of width b acted on by concentrated load P ; and
calculated stress distributions on “cut” sections (b) b/4; (c) b/2; and (d) b from the load application.

French elastician in 1855. It means that the manner of force application (point, or evenly
distributed, or other) has a significant effect on the stress distribution only in the near
vicinity of the force’s application. We are applying this principle when we idealize our
systems.

Highlighted in Figure 2.24b through d are the maximum normal stresses at each cut and
their proportionality to the average stress. This maximum stress and its relation to average
stress is a function of geometry. In particular, features such as holes and filleted edges cause
areas of stress concentration, and ruin our idealization of uniform stress distribution. A
formula is available for the calculation of maximum normal stress:

σmax = Kσav = K
P
A

, (2.38)

where K is an experimentally obtained stress concentration factor for the particular geo-
metric feature in question. See Figure 2.25 for stress concentration factors for flat, axially
loaded bars with three types of change in cross section.

Whether the area A used in Equation 2.38 is the original area (without a hole) or the
reduced area can vary with researcher and data; this naturally affects the value of K .
The data in Figure 2.25 are based on the reduced cross section. In cases not covered by
the graph in Figure 2.25, another reference (such as Peterson’s Stress Concentration Factors,
by Walter Pilkey) or an online stress concentration calculator may prove useful.

In ductile materials, high stress concentration is not necessarily dangerous because these
materials can accommodate high stresses through plastic yielding and subsequent stress
redistribution. In brittle materials, cracks may occur in areas of high localized stress and
lead to dramatic failure.

2.12 Strain Energy in One Dimension

Thanks to Robert Hooke, we have recognized that a solid material responds to load-
ing in much the same way as a linear spring, as long as the material remains below its
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FIGURE 2.25
Stress concentration factors for flat bars. (After M. M. Frocht, Factors of Stress Concentration Photoelastically
Determined, ASME Journal of Applied Mechanics 2:A67–A68 (1935).)

proportional limit. Recall that the linear elastic spring is an energy storage device for which
we can calculate the stored energy as

Uspring =
x∫

0

F dx =
x∫

0

kx dx = 1
2

kx2. (2.39)

We can also calculate the strain energy stored in a deformed elastic solid. For the ele-
mentary one-dimensional Hooke’s law, the strain energy density U0, or strain energy per
unit volume (check the dimensions), can be calculated as the work done by a stress state
acting through its corresponding strain:

U0 =
ε∫

0

σ dε =
ε∫

0

Eε dε = 1
2

Eε2. (2.40)

As with the comparable spring calculation, we recognize U0 as the area below the stress–
strain curve given by Hooke’s law, as is shown in Figure 2.26. The concept of strain energy
is the basis for several methods of analyzing displacements and forces in structures.
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FIGURE 2.26
Constitutive relationships and (a) strain energy for a spring and (b) strain energy density for an elastic solid.

2.13 Properties of Engineering Materials

By performing a tension test, we obtain values for the proportional limit (the end of
Hookean behavior), yield strength, and ultimate strength; we also determine the elastic
modulus, percent elongation, and percent reduction in cross-sectional area. These values
provide quantifiable definitions for the vocabulary generally used to discuss the way a
material responds to loading and deformation.

• Stiffness is resistance to deformation. As we have seen, the stiffness of a material
in the elastic range of deformation is indicated by its elastic modulus E or shear
modulus G.

• Strength refers to the greatest stress a material can withstand before failure. This
may be quantified by the proportional limit, which gives the yield strength (or
yield stress), or the ultimate strength (ultimate stress), depending on the type of
material and loading being considered.

• Elasticity is what enables a material to regain its original dimensions after a
deforming load is removed. No known material is completely elastic in all
ranges of stress. However, most engineering materials are elastic over large
ranges of stress. Deformations beyond the elastic region are referred to as plastic
deformations, and cannot be completely recovered.

• Ductility is what allows a material to undergo considerable plastic deformation
under tensile load before final failure—to “bend before it breaks,” or absorb
energy by plastic deformation before fracturing. We can see this on the stress–
strain curve for ductile materials (Figure 2.15): the curve features a sizeable,
near-flat region beyond the Hookean limit, in which stress increases very little,
while deformation increases. Ductility is characterized by the percent elongation
of the specimen during the tensile test and by the percent reduction in area of
the cross section (due to necking) at the plane of fracture. A high percent elon-
gation indicates a highly ductile material; a material is considered ductile if its
percent elongation before failure is greater than 5%. Many steels, aluminum alloys,
and plastics are ductile. Often increasing a material’s strength via chemical or
thermomechanical means will decrease its ductility.

• Brittleness implies the absence of plastic deformation before abrupt failure. This is
reflected in a stress–strain curve that ends rather suddenly after the proportional
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limit. Brittle materials, such as cast iron, concrete, and stone, are relatively weak
in tension and are usually tested and used in compression.

• Malleability is what enables a material to undergo considerable plastic defor-
mation under compressive load before fracture. Most ductile materials are also
quite malleable. When processing includes hammering or rolling of a metal, mal-
leable materials are the best choice, because they are able to withstand the large
compressive deformation that accompanies these processes.

• Toughness enables a material to endure high-impact loads or shock loads. In a high-
impact load, some of the energy of the blow is transmitted to and absorbed by the
body. Toughness is a measure of the energy required to crack the material. We can
measure toughness by calculating the area under the entire stress–strain curve.

• Resilience enables a material to endure high-impact loads without inducing a stress
above the elastic limit. In a resilient material, for example, rubber, the energy
absorbed during the blow is stored and recovered when the body is unloaded.
Resilient materials are well-suited to applications like baseball bats. We can mea-
sure resilience by calculating the area under the elastic portion of the stress–strain
curve from the origin through the elastic limit. This is the strain energy density
U0, as we remember.

As has been suggested in the above descriptions of these properties, treatments or
manufacturing techniques that change one of these properties will also affect the oth-
ers. For example, quenching carbon steel makes it harder, but less tough and more brittle
than it was before quenching. As designers, we must make tradeoffs and optimize the
combination of material behaviors in our systems.

Many common materials may be categorized as metals, ceramics, and polymers, but
there are natural and fabricated materials that fall outside these categories.

2.13.1 Metals

Metals are typically categorized as ferrous, meaning iron-containing, or nonferrous. Spe-
cific ferrous alloys are the primary metals currently used in civil engineering and other
structures, as they are relatively inexpensive and easy to produce. The iron in ferrous
metals must be extracted from the iron ores, which often contain impurities such as phos-
phorous and silica that must be removed during production. Steel and cast iron are the two
most common forms of ferrous metals, and both are fundamentally iron–carbon alloys.
Other elements such as manganese, nickel, and chromium are added to alter physical and
mechanical properties.

Steel is an alloy consisting almost entirely of iron (less than 2%, and often less than 1%,
carbon, and similar amounts of any other elements), and its properties may be changed
dramatically by varying the composition through thermal and mechanical processing. Cast
iron is a generic name for a group of alloys of carbon and silicon with iron. Most have at
least 3% total carbon by weight. The graphite flakes in cast iron cause stress concentrations,
making the cast iron as a whole fairly brittle.

The mechanical properties of the primary nonferrous metals depend on their principal
element, the quantity and type of alloying element(s), on the method of manufacturing,
and the heat-treating process.

Aluminum’s basic raw material is bauxite ore. High-purity aluminum is soft, weak,
and ductile. However, with the addition of small amounts of alloying elements such as
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magnesium, silicon, and chromium, it becomes much stronger. As with steels, thermal
and mechanical processing also have a large effect on properties. Aluminum alloys are
lightweight, almost three times less dense than steel, and highly resistant to corrosion
under most conditions. However, aluminum also has an elastic modulus that is approx-
imately three times less than that of steel. It has good thermal conductivity and high
electrical conductivity which are often useful properties, but it also has a high coefficient
of thermal expansion, which can be a drawback.

Titanium and its alloys have attractive engineering properties. They are light, with den-
sities between those of aluminum and steel, and also possess very high strength, up to
twice that of aluminum. This combination of moderate weight and high strength gives tita-
nium alloys the highest strength-to-weight ratio of any common structural metal. Titanium
alloys also have excellent corrosion resistance, low coefficient of thermal expansion, high
melting point, and high electrical resistivity. However, titanium’s high cost has limited its
utility and range of applications.

Copper’s most significant properties are its high electrical conductivity, high thermal
conductivity, good resistance to corrosion, and good malleability and strength. These prop-
erties are exploited in heat-exchange equipment and many other applications, but most of
all in the electrical field. Brass, which is an alloy of copper and zinc, is the most common
copper alloy. Bronzes are alloys of copper and, typically, tin or aluminum.

2.13.2 Ceramics

Ceramics are combinations of both metallic and nonmetallic elements, commonly oxygen,
nitrogen, and carbon. They include traditional ceramics such as clays, glasses, and cements
as well as advanced materials such as pure oxides, carbides, and nitrides. Ceramics are
generally very stiff and hard, and are good thermal and electrical insulators. Traditional
ceramics are typically brittle, but advanced materials have been developed to be more
resistant to fracture.

A common engineering material, concrete consists mainly of a mixture of cement, fine
and coarse aggregates (sand, gravel, crushed rock, etc.), and water to harden the mixture.
The compressive strength of concrete is relatively high, but it is a fairly brittle material with
low tensile strength. Steel reinforcing rods are often used in combination with concrete; the
steel resists tension and the concrete resists compression. Please see Chapter 15 for more
information about reinforced concrete and other composite materials.

2.13.3 Polymers

Polymers are a group of synthetic organic materials with chain-like structures created by
a process called polymerization. They include plastics and rubbers, and a key quality is
that they can easily be formed into complex shapes. A distinction is made between ther-
moplastic polymers, which can be repeatedly softened and made to flow by heating, and
thermosetting polymers which have network structures and do not soften when heated.
Most thermosetting plastics are relatively brittle, hard, and strong, while thermoplastics
are typically ductile, low in strength, and resistant to impact. Exceptions are rubber mate-
rials, which are usually thermosetting polymers but are very resilient. Specific polymers
have been developed to have desirable properties such as good chemical resistance, high
electrical resistivity, high abrasion resistance, and low coefficient of friction.
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2.13.4 Other Materials

Many materials do not fit neatly in the above categories. Some of these are natural
materials such as wood and biomaterials, and others are engineered materials such as
composites. As advanced materials such as semiconductors and nanomaterials of course
obey the principles of continuum mechanics, we just need to employ sufficiently complex
models (e.g., constitutive laws) to account for their specific structures.

Wood, one of the oldest natural construction materials, is a cellular organic material.
We divide wood into two classes: hardwood and softwood. These are somewhat mis-
leading terms in that there is no direct relationship between these designations and
the actual hardness or softness of the wood. Softwood comes from conifers (trees with
needle-like or scale-like leaves), and hardwood comes from deciduous trees. Mostly, the
wood used in the United States for structural purposes is softwood, most often Dou-
glas fir and southern pine. Allowable stresses for lumber must take into account species
and grade (quality), as well as conditions under which the lumber is to be used, such
as load duration and moisture conditions. Importantly, for our purposes, wood is not
homogenous or isotropic. We will sometimes choose to apply the models that we are
learning to wood materials, but we always remember that significant assumptions are
being made. When needed, more complex models that account for anisotropy can be
used.

The modern usage of the phrase “engineering materials” also includes both natural and
synthetic biomaterials, whose properties can be quite complex. Please see Chapter 14 for a
more involved discussion of the mechanics of biomaterials.

Engineered materials such as particle- and fiber-reinforced composites are multi-phase
materials. They are composed of multiple components to produce properties that are
superior to those of the individual components. Concrete, which was described in
the ceramics section because of the nature of its components, is a particle-reinforced
composite. Fiberglass and carbon-fiber materials are created from dissimilar materials:
glass or carbon fibers imbedded in polymer. Like wood, these materials are not homo-
geneous or isotropic, and we must take care when making assumptions about their
behaviors.

2.14 A Road Map for Strength of Materials

For one-dimensional loading, we have addressed the checklist for continuum mechanics,
involving (1) kinematics, or description of deformation; (2) a definition of stress; (3) a rela-
tionship between stress and strain; and (4) equilibrium. We must next turn our attention
to loading in multiple dimensions, so that we may model more realistic problems. If we
look back at our modeling of stretched or compressed bars, we can discern a pattern of
thought that serves as a road map for a more general approach to problems in strength of
materials, structural analysis, and elasticity.

Our road map encompasses several major physical elements, beginning with the exter-
nal loads—the applied loads on a solid. These loads or forces are the drivers of our
analyses because, as engineers, we design structures and machine elements in order
to support, guide, and contain the effects of the external loads. This was illustrated
in our analysis of a long, thin bar that was being pulled (or pushed) by an axial
force.
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The reactions are external forces that support the loaded body and keep it from moving
in response to the given applied loads. They are determined by requiring the body in its
entirety to be in equilibrium under the given externally applied loads. There are many
kinds of reactions. We needed only one axially directed support to ensure equilibrium for
the stretched (or compressed) bar.

The internal forces N(x) are the force distributions or resultants needed to maintain inter-
nal equilibrium. Stresses describe the distribution of the internal forces over planar sections
drawn through the body’s interior. They were defined as functions of the body’s coordi-
nates. So, although it seemed relatively straightforward to define a stress as the quotient
N(x)/A, where A is the bar’s cross-sectional area, we want to extend and generalize this
simple definition.

The strains are measures of the deformation of the body that result from the applied
forces. There are many definitions of strain, which we reviewed in Section 2.1. The mechan-
ical strains are specifically related to the stresses by constitutive laws that describe the
properties of the material of which the body is made (Section 2.3). Thermal strains were
discussed in Section 2.10. The strains are required to be compatible, by which we mean
that their point-by-point variation cannot produce holes in the continuous material of
which the body is made, nor can they permit deformation that violates any geometrical
constraints relative to the supports that keep the body in place. Simply put, we want our
models to reflect “well-behaved” deformation that does not produce physically untenable
results.

The displacements or the deflections are the (generally) more visible movements of the
body. The strains are typically found by differentiating the displacements or deflections
with respect to spatial coordinates, as we began to see in Section 2.1.1 and will further
explore in Chapter 4. The deflections must also be compatible, that is, they must conform
with the geometry of the body and its support constraints.

In the language of continuum mechanics, we can now restate our four-item checklist as
three major physical considerations that must be applied:

• Equilibrium considerations relate external forces, reactions, internal forces, and
stresses. That is, we apply Newton’s second law to relate external loads to reac-
tions; the method of sections to relate external forces and reactions to internal
(resultant) forces; and consideration of areas on which forces act to relate internal
forces to stresses. (This consideration comprises the second and fourth items on
our checklist.)

• Constitutive laws relate stresses to strains. We invoke constitutive laws to describe
the properties of the material of which a body is made. (This is the third on our
four-item checklist.)

• Compatibility considerations relate strains to displacements and/or deflections,
that is, kinematics. We pay attention to compatibility both when calculating move-
ments and deflections and when ensuring consistency and continuity with respect
to the geometry of the body and its support constraints. (This has been, so far, the
first on our checklist: the kinematics of deformation.)

The order in which we apply these criteria, or in which we check off items on our check-
list, is not important. The requirement is that our analyses include all of them, no matter
the order.
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2.15 Examples

EXAMPLE 2.1

Consider the given structure that might be part of an underwater oil rig-turned-artificial
reef from Chapter 1. All bars of the truss pictured here have a cross-sectional area of
500 mm2, and all the bolts and pin connectors have diameter 20 mm. Find the normal
stresses in bars BC and DE .

G

2 m

2 m

F E D

CBA

2 m 2 m

21 kN

Given: Dimensions of and loading on truss system.

Find: Normal stresses in bars BC and DE .

Assume: Equilibrium; planar system; neglect weights of bars.

Solution

We first use the method of sections to examine an FBD of the joint at D:

21 kN

45°PDE

PDC

Note that we have assumed both bars DC and DE to be in tension; if we calculate
negative values for either internal force, we will know that this assumption was incorrect
and that the bar is in compression. Since the joint must be in equilibrium, we have∑

Fy = 0 = PDC sin 45◦ − 21 kN → PDC = 29.7 kN,∑
Fx = 0 = −PDE − PDC cos 45◦ → PDE = −21 kN.

Using the definition of normal stress and the given cross-sectional area A, we have

σDE = PDE
A

= −42 × 106 N/m2,
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or

σDE = 42 MPa compressive.

In our next use of the method of sections, we make an imaginary cut between B and
C , resulting in an FBD that includes the internal forces in three bars of the truss:

PCF

PCB

PEF

21 kN

The force equilibrium equations are of course valid, but we cleverly find the bar force
of interest directly by applying the third equilibrium equation, summing moments about
point F , which is the intersection of the two bar forces that we are not asked to find. Point
F is not even on our isolated section, but the moment about any and all points must be
zero. ∑

MF = 0 = PC B · (2 m) − 21 kN · (4 m) → PC B = 42 kN,

so that

σC B = PC B
A

= 84 × 106 N/m2,

σC B = 84 MPa tensile.

We may take this opportunity to check our intuition about this truss. The load, P ,
is pulling the structure down. Thus, the composite bar ABC should become longer, and
DE F G should become shorter. This would mean that bars on the top (like BC) would be
in tension, and bars on the bottom (like DE) in compression. Our results are consistent
with our physical intuition.

EXAMPLE 2.2

Consider again the truss from Example 2.1. Find the shear stress in the bolt at A if it is in
double shear. A connection element (bolt or pin) is said to be in “single shear” if one cut
between the bar and its support is sufficient to break the connection, as shown below on
the left; “double shear” means that two cuts are needed to break the connection, as on
the right.

Single shear

F F

Double shear
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Given: Dimensions of and loading on truss system with connection bolt in double shear.

Find: Shear stress in the bolt in double shear.

Assume: Equilibrium; planar system; symmetric loading on bolt.

Solution

To find the reaction forces at the supports, we consider an FBD of the entire truss. Direc-
tions have been assumed for the unknown forces; any negative values in our results will
indicate that the real direction is opposite of that assumed.

21 kNRGy

RGx

RAx

Summing moments about point G, since we are interested in the force at A, we have:

∑
MG = 0 = RAx · (2 m) − 21 kN · (6 m) → RAx = 63 kN.

Now, we draw an FBD of the bolt itself.

RAx

½RAx

½RAx

∑
Fx = 0 and the symmetry assumption lead to forces of RAx/2 in each support

bracket. Using the method of sections, we see that this is also the maximum value of
shear force in the bolt. So the shear stress in the bolt at A is

τA = RAx/2
Abolt

= 100 × 106 N/m2 = 100 MPa.

EXAMPLE 2.3

An infinitesimal rectangle at a point in a reference state of a material becomes the
parallelogram shown in a deformed state. Determine (a) the extensional strain in the
dL1 direction; (b) the extensional strain in the dL2 direction; and (c) the shear strain
corresponding to the dL1 and dL2 directions.
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Reference state

dL2

dL1 1.2dL1

1.3dL2 1.20°30°
dL dĹ

Deformed state

Given: Reference and deformed geometries of infinitesimal rectangle.

Find: Normal and shear components of strain.

Assume: Strain definitions are adequate; use of “true” strain integral is unnecessary.

Solution

a. Normal strain in dL1 direction, ε1 = �dL1
dL1

= 1.2dL1 − dL1
dL1

= 0.2.

b. Normal strain in dL2 direction, ε2 = �dL2
dL2

= 1.3dL2 − dL2
dL2

= 0.3.

c. Shear strain is the angular deformation, or change in angle between two reference lines.
In the reference state, the angle between dL1 and dL2 is 90◦, or π/2. In the deformed
state, the angle between these lines is 60◦, or π/3. The shear strain is thus:

γ12 = π

6
= 0.52 rad.

Note: If we tried to approximate shear strain by the tangent of this angular deformation
instead of using the angle itself, we would obtain:

γ = 1.3dL2 sin π/6
dL2

= 0.65 rad.

This is close, but not that close, to 0.52 rad. The angular change in this problem is not
sufficiently small to justify the use of the tangent in place of the angle itself.

EXAMPLE 2.4

Three metal balls are suspended by three wires of equal length arranged in sequence
as shown. The masses of the balls, starting at the top, are 2, 4, and 3 kg. In the same
order, beginning at the top, the wires have diameters 2, 1.5, and 1 mm, respectively.
(a) Determine the most highly stressed wire, and (b) by changing the location of the
balls, optimize the mass locations to achieve a system with minimum stresses.

A = 2 kg

B = 4 kg

C = 3 kg

c

b

a
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Given: Dimensions and arrangement of steel balls.

Find: Stresses in each wire; lowest stress configuration.

Assume: Neglect weights of wires.

Solution

a. We must find the internal force within each wire, then divide by the wire’s cross-sectional
area, to find the normal stress in each wire. For each wire, the internal force will equal
the mass this wire must support times the acceleration of gravity. This can be found by
using the method of sections by making an imaginary cut in a wire and drawing an FBD
of the system below the cut. For example, the top wire, a , must support (2 + 4 + 3) kg, so
its internal axial force is 88.3 N. We tabulate these calculations:

Pi(N) Ai (m2) σi (MPa)

Wire a 88.3 3.14 × 10−6 28.1
Wire b 68.7 1.77 × 10−6 38.8
Wire c 29.4 0.79 × 10−6 37.2

The wire subjected to the highest stress is wire b.

b. To achieve a minimum stress system, we recognize that stress is inversely proportional
to cross-sectional area. Hence, since Aa > Ab > Ac , wire a should carry the largest load
(which it must), and wire c should support as little load as possible. This leads us to the
following configuration, with the maximum stress reduced by about 10 MPa:

A = 2 kg

B = 4 kg

C = 3 kg

c

b

a

σi (MPa)

Wire a 28.1
Wire b 27.7
Wire c 24.8

EXAMPLE 2.5

A steel bar of 10 m long used in a control mechanism must transmit a tensile force of
5 kN without stretching more than 3 mm, nor exceeding an allowable stress of 150 MPa.
What must the diameter of the bar be? State your answer to the nearest millimeter, and
use E = 200 GPa.
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Given: Dimensions and loading on steel bar.

Find: Required bar diameter to nearest millimeter to meet stress and strain requirements.

Assume: Hooke’s law applies.

Solution

We will impose both strength and stiffness constraints on the bar, and see which is the
limiting case. Using the definition of normal stress, we must have

σ = P
A

≤ 150 MPa, or

A ≥ P

150 MN/m2 = 5000 N

150 × 106 N/m2 = 33.3 × 10−6 m2 = 33.3 mm2.

If Hooke’s law applies, as we have assumed it does, then �L = P L/AE , and we must
have

P L
AE

≤ 3 mm, or

A ≥ P L
�L E

= 5000 N · 10 m

(0.003 m)(200 × 109 N/m2)
= 83.3 × 10−6 m2 = 83.3 mm2.

We see that the stiffness criterion produces the limiting case and that we must have a
cross-sectional area greater than or equal to 83.3 mm2 to safely meet our constraint. This
is all we need to find the required diameter of the steel bar:

π

4
d2 ≥ 83.3 mm2, so

d ≥ 10.3 mm.

So to the nearest millimeter, we must use an 11-mm diameter bar.

EXAMPLE 2.6

A solid bar 50 mm in diameter and 2000 mm in length consists of a steel and an alu-
minum section, as shown. When an axial force P is applied to the system, a strain gage
attached to the aluminum indicates an axial strain of 873 × 10−6 m/m (also written as
873 µstrain). Determine the magnitude of applied force P .

P 
Steel Aluminum

500 mm  1500 mm 

P 

If the system behaves elastically, find the total elongation of the bar.

Given: Dimensions of composite bar, and measured normal strain.

Find: Applied force P , and elongation of bar, �Ltotal.

Assume: Hooke’s law applies.
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Solution

The diameter of the bar is 50 mm, so the cross-sectional areas of both parts are equal:

ASt = AAl = π

4
(0.05 m)2 = 1.96 × 10−3 m2.

The elastic moduli for aluminum and steel may be looked up in Table 2.1 or in another
reference.

EAl = 70 GPa and ESt = 200 GPa.

If Hooke’s law applies, we can relate the strain measured in the aluminum portion to
the stress induced by P in that portion:

εAl = 873 × 10−6 = σAl
EAl

= P/AAl
EAl

,

so

P = (873 × 10−6)(70 × 109 Pa)(1.96 × 10−3 m2) = 120 kN.

We can exploit Hooke’s law and superpose the displacements of both portions of
the bar:

�Ltotal =
∑ P L

AE
=
(

P L
AE

)
St

+
(

P L
AE

)
Al

= 120,000 N

1.96 × 10−3 m2

[
1.5 m

200 × 109 N/m2 + 0.5 m

70 × 109 N/m2

]
= 896 × 10−6 m.

�L = 896 µm, or 0.896 mm.

Note: The aluminum section is only a third as long as the steel, but it deforms nearly as
much.

EXAMPLE 2.7

If we would like to redesign the steel and aluminum bar from Example 2.6 to reduce its
weight, we could reduce the diameter of the section that has a higher safety factor. If the
bars are steel with an yield strength of 520 MPa and aluminum with an yield strength of
240 MPa, determine which section should be reduced and what the new diameter should
be so that the safety factor for the whole system remains the same.

Given: Dimensions of composite bar, and load computed in Example 2.6.

Find: Reduction in diameter of one material so that both materials have the same safety
factor.

Assume: Hooke’s law applies; neglect stress concentration that will be introduced by
creating a stepped bar.

Solution

The safety factors are, for the specified common alloys of steel and aluminum,

SFAl =
σAlyield

σAl
= 240 MPa

σAl
and SFSt =

σStyield

σSt
= 520 MPa

σSt
.
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For the original bar with equal diameters, the stresses in the aluminum and steel are
equal, so the steel has a factor of safety that is more than twice as large and it is this bar
that should be reduced. The value of the safety factor in the aluminum for any value of
load P (in N) is

SFAl = 240 MPa
P/((π/4)(0.05 m)2)

= 471 × 103

P
.

In order to match this for steel, we consider

SFSt = 471 × 103

P
= 520 MPa

P/((π/4)d2
St)

,

and solve for dSt = 34 mm.

EXAMPLE 2.8

A load P is supported by a bar with a cross-sectional area AB and elastic modulus EB
as well as a cylinder with a cross-sectional area AC and elastic modulus EC . The bar and
the cylinder are of the same length L and the load P is applied to them via a rigid end
plate. Determine expressions for (a) the stresses in the bar and the cylinder and (b) the
total change in the length of the assembly.

Cylinder 

Bar 
L 

P 

Given: Elastic and geometrical properties of the bar and cylinder system.

Find: Stress in each element and total length change.

Assume: Hooke’s law applies. Neglect weight of the bar and the cylinder.

Solution

a. The first thing we need is an FBD, in particular, of the end plate because it is the element
that is directly loaded by all forces in the problem.

P

PB PC
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We ensure that this system is in equilibrium by stating∑
Fy = 0 or PB + PC = −P .

This one equation contains two unknowns: the problem is statically indeterminate.
We have two methods for solving such problems and both are suitable for this problem.

First, to use the force method, we must find the compatibility equation that describes
the geometric constraints on the system. In this problem, the task is straightforward:
the bar and the cylinder are of the same length and because the top plate is rigid, they
experience the same change in length. So �L B = �LC .

Using Hooke’s law, we can write these displacements as:

�L B = PB L
AB EB

and �LC = PC L
AC EC

.

So, imposing the geometric compatibility constraint, we have

PB L
AB EB

= PC L
AC EC

,

or

PB = AB EB
AC EC

PC .

The equilibrium equation has the same two unknowns, so we can solve these two
equations to obtain the bar and cylinder forces. We then divide the internal forces by
the cross-sectional areas they act on to obtain the normal stresses in both pieces:

PB = − AB EB
AB EB + AC EC

P and then σB = − EB
AB EB + AC EC

P ,

PC = − AC EC
AB EB + AC EC

P and then σC = − EC
AB EB + AC EC

P .

These forces and stresses are compressive, as indicated by the negative signs.

b. The total change in length of the assembly may be calculated from either element:

�L = �L B = − P L
AB EB + AC EC

.

You may recognize these results as characteristic of solutions for springs in parallel.
An alternate solution with the displacement method makes this explicit.

a. We start with the same single equation of equilibrium, developed from isolation of the
node at point 2. We now introduce the constitutive relation for each element:

kB

P 

kC

Δ1

Δ2
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PB = kB (�2 − �1) = kB�2 = EB AB
L

�2,

PC = kC (�2 − �1) = kC�2 = EC AC
L

�2.

b. Substituting these expressions into the equilibrium equation let us solve for the
unknown displacement at node 2, which is also the total change in length that we seek:

EB AB
L

�2 + EC AC
L

�2 = −P ,

�L = �2 = − P L
EB AB + EC AC

,

which is the same as the force method result. Replacing this in the constitutive equations
gives us the same force expressions we found with the first method.

EXAMPLE 2.9

Each bar in the truss shown has a 2 in2 cross-sectional area, elastic modulus E =
14 × 106 psi, and coefficient of thermal expansion α = 11 × 10−6 (◦F)−1. If their tempera-
ture is increased by 40 ◦F from their initial temperature T , what is the resulting displace-
ment of point A? What upward force must be applied to prevent this displacement?

B C

A

36 in.

60° 60°

Given: Dimensions and properties of truss, imposed temperature change.

Find: Displacement of point A; force necessary to prevent this displacement.

Assume: Hooke’s law applies. Neglect weight of bars.

Solution

The geometry of the problem allows us to find the original length of bars AB and AC .
The change in the length of each bar due to the change in temperature �T is then

�LT = Lα�T = (36 in/ sin 60◦)(11 × 10−6 (◦F)−1)(40 ◦F) = 0.018 in.

So, the new vertical distance from the fixed surface to point A is

(36 in/sin 60◦ + 0.018) · sin 60◦ = 36.008 in.

The horizontal displacements of AB and AC will be equal and opposite, so the net
displacement of point A is only vertical, and is 0.008 in.
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The upward force applied to prevent this must induce a compressive axial load P in
both bars to cause a change in length equal and opposite to �LT . By Hooke’s law,

P L
AE

= −0.018 in, so P = (−0.018 in)(14 × 106 psi)(2 in2)

36 in/ sin 60◦ = −12 kips.

(1 kip = 1000 pounds). The negative sign indicates that the force is compressive. We
construct an FBD and use equilibrium to find the force F necessary to induce this com-
pressive load P in both bars. Because the loads P are known to be compressive, they are
drawn in the correct direction.

PP

F

∑
Fy = 0 = F − 2P sin 60◦ or F = 2P sin 60◦.

F = 21 kips.

EXAMPLE 2.10

A steel railroad track (E = 200 GPa, α = 11.7 × 10−6/◦C) was laid out at a temperature of
0◦C. Determine the normal stress in a rail when its temperature reaches 50◦C, assuming
that the rails (a) are welded to form a continuous track, or (b) are 12 m long with 6 mm
gaps between them.

Given: Geometry of problem, material properties, imposed temperature change.

Find: Normal stress when continuous or when gaps are left.

Assume: Hooke’s law applies.

Solution

Based on our understanding of thermal stresses, we expect the stress calculated in part
(b) to be lower than that in part (a): we have learned that thermal stresses are induced
only when a part is prevented from experiencing its natural thermal deformation, so the
space left to accommodate thermal expansion in part (b) should help relieve the induced
stress. We will see whether this expectation is met.

A schematic of a segment of rail helps to illustrate the problem. In the final figure,
we see forces P on the segment. The one equation of equilibrium that we have at our
disposal confirms that these forces must be equal in magnitude, but it does not help us
determine that magnitude. This is a statically indeterminate problem.

Original state P = 0, T = 0°C

ΔLT thermal expansion

ΔLP compression due to P
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a. Using the force method, which is typically the more straightforward choice when ther-
mal effects or gaps are involved, we imagine removing the redundant constraint (of the
next segment of rail) on one end and calculate the displacement �LT due to the tem-
perature rise. We then consider the redundant constraint force re-applied as an external
force −P (negative since assumed compressive) and calculate the displacement �L P .
Note that although we have broken the problem into separate thermal and mechanical
steps, physically these happen simultaneously to the bar and only one initial length is
needed.

The total deformation of a steel track segment is zero, as the welding allows no net
change to the length of the segments. Hence, we add the deformations due to thermal
effects and compressive forces to obtain the compatibility equation that will let us solve
for the unknown force:

�LT + �L P = 0,

α(�T)L
tends to
stretch

+ −P L
AE

tends to
squash

= 0,

so

α�T = P
AE

= σ

E
,

σ = α�T E = (11.7 × 10−6 (◦C)−1)(50 − 0 ◦C)(200 × 109 Pa),

σ = 117 MPa (compressive due to assumed direction of P) when welded.

b. If a gap of 6 mm is left between rails, we allow each segment a net extension of 6 mm, so
our compatibility equation is revised to reflect this real total displacement:

α(�T)L − P L
AE

= 0.006 m,

so

σ = α�T L − 0.006 m
L

E =
(

11.7 × 10−6 (◦C)−1(50 ◦C)(12 m) − 0.006 m
12 m

)
(200 × 109 Pa),

σ = 17 MPa (compressive) when gap is left.

EXAMPLE 2.11

If the railroad track of Example 2.10 is structural steel with a yield stress of 220 MPa, by
how much is the safety factor increased by leaving the 6 mm gaps between the sections
of rail?

Given: Geometry, material properties, imposed temperature change of Example 2.10.

Find: Safety factor without and with gaps between rails.

Assume: Hooke’s law applies.
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Solution

From Example 2.10, the stress in the rails due to an extreme 50◦C temperature difference
is 117 MPa with no gap and 17 MPa with a 6 mm gap. The safety factors are

SFno gap = 220 MPa/117 MPa = 1.9,

SFgap = 220 MPa/17 MPa = 13.

The gap changes this from a situation with a safety factor that is perhaps insufficient to
one that is certainly more than is needed, in terms of failure by yielding. Note, however,
that the long, slender rails would first fail by buckling, which we will learn about in
Chapter 11, so this gap is not in fact excessively conservative.

EXAMPLE 2.12

A 6 mm by 75 mm plate, 600 mm long, has a circular hole of 25 mm diameter located at
its center. Find the axial tensile force that can be applied to this plate in the longitudinal
direction without exceeding an allowable stress of 220 MPa. How does the presence of
the hole affect the strength of the plate?

Given: Dimensions of plate, limiting normal stress.

Find: Allowable axial load that can be applied to plate.

Assume: Hole is only feature that causes a stress concentration.

Solution

6 mm

75 mm

25 mm

600 mm

P P

The cross-sectional area normal to an axial load P is A0 = 6 mm × 75 mm = 450 mm2.
The average normal stress induced by such a load will be σav = P/A0, and due to the
presence of the hole we must consider the effects of stress concentration:

σmax = Kσav = K
P
A0

.

We can find K for this geometry using the graph in Figure 2.25:

r
d

= (25 mm)/2
75 mm − 25 mm

= 1
4

,

K
( r

d
= 0.25

)
= 2.26,
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so

σmax = K
P
A0

= 2.26
P

450 mm2 = 0.005P ,

we must have

220 MPa ≥ 0.005P ,

P ≤ 44 kN.

Note: If there were no holes in this plate, we would simply have σav = P/A0, and we
could allow a force P ≤ 99 kN. So with the hole, we can permit only 44% of the load, we
could have allowed without the hole.

PROBLEMS

2.1 In tissue engineering, biological materials are grown from seeded cells, so that artifi-
cial corneas, blood vessels, or other materials may be made from biological materials.
Such materials are less likely than artificial parts made of plastic or metal to be rejected
by the body. In order to engineer true replacement parts, it is necessary to understand
the behavior of physiological systems, and to match material properties such as elastic
and shear moduli. It is impractical to construct a tension specimen like that in Fig-
ure 2.2 from soft tissues such as muscles, tendons, or blood vessels. What would you
do instead?

2.2 Concrete, rocks, and bone are strong in compression and are usually designed for
compressive loading. To test their strength in compression, what sort of test specimen
would be useful?

2.3 Suppose that a downward force is applied at point A of the truss, causing point A to
move 0.360 in downward and 0.220 in to the left. If the resulting extensional strain εAB
in the direction parallel to the axis of bar AB is uniform, what is εAB?

B C

A

24 in16 in

16 in

2.4 The tension in your Achilles tendon is considerable when you stand on tiptoe or poise
for a jump. Design a tension gage that might be useful in measuring such tension, or
the tension in a bow string or rubber slingshot.
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Hint, after Y. C. Fung:

T

F

θ θ

T

2.5 The top figure shows a diagram of the bones and biceps muscle of a person’s arm
supporting a mass. The lower figure shows a biomechanical model of the arm, in which
the biceps muscle AB is represented by a bar with pin supports. The suspended mass is
m = 2 kg, and the weight of the forearm is 9 N. If the cross-sectional area of the tendon
connecting the biceps to the forearm at A is 28 mm2, what is the average normal stress
in the tendon? If the largest safe stress for the tendon is 10 MPa, what is the largest
suspended mass that can be supported?

290 mm

200 mm 150 mm

9 N

A

B

C

m
50

mm

2.6 The bar shown has a solid circular cross section, with a 2-in radius. Determine the
average normal stress at (a) plane P1 and (b) plane P2.

8 kip

P1 P2

4 kip
12 kip
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2.7 Your local lumber yard is providing a set of wooden 4 in × 4 in posts that you will
mount on 6 in × 6 in concrete bases to support a section of roof. Handbooks provide the
allowable compressive stresses: 1800 psi for wood and 1250 psi for concrete. The spe-
cific weight of concrete is also given as 150 lbf/ft3, although the corresponding number
for wood is not shown. For the post-support configuration shown, determine

a. The specific weight of wood, given that a two-foot section of the post weighs
21 lb and knowing that a 4 in × 4 in post is actually 3.5 in × 3.5 in.

b. The allowed load P when the weights of the support and post are included.
c. The allowed load P when the weights of the support and post are not included.

Wood

P

6 ft

Concrete1 ft

2.8 The jaws of the bolt cutter shown are connected by two links AB. The cross-sectional
area of each link is 750 mm2. (a) What average normal stress is induced in each link
by the 90 N forces exerted on the handles? (b) The pins connecting the links AB to the
jaws of the bolt cutter are 20 mm in diameter. What average shear stress is induced in
the pins by the 90 N forces exerted on the handles?

90 N

90 N

540 mm

100
mm

160 mm
80

mm

Front view

Jaws

Links

A A

B B
B

A
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2.9 A prototype bolt shaft (assume a uniform cylinder) that is to be loaded in tension is
made of a stainless steel with a yield strength of 450 MPa and has a safety factor of 3
with respect to yielding for the maximum allowable loading. Find two ductile mate-
rials that could be used to replace the steel to make the bolt lighter while maintaining
the same safety factor. The new bolts will have the same length as the original but
may have different diameters. What is the percent weight savings with each of the
new materials? What other material properties might be important to consider before
a final choice is made?

2.10 For the wood block shown, the allowable shear stress parallel to the grain is 1 MN/m2

and the maximum allowable compressive stress in any one direction is 4 MN/m2.
Determine the maximum compressive force F that the block can support.

50 mm

24

7

50 mmFF

2.11 Determine the minimum allowable value of the force F if the tensile stress in segment
AB must be less than 150 MN/m2. What are the changes in length of segment BC and
of the entire bar for this value of F ? The bar’s cross-sectional area is 50 mm2, and the
bar is made of steel.

2 m

50 kN

30 kN

3 m

A

B

C

F

1 m

2.12 An electronic scoreboard is to be installed in a large stadium. Due to the design of the
roof structure, the suspending cables will have different lengths, as is shown below.
a. Determine a suitable cross-sectional area for each cable so that the scoreboard

will hang level, accounting for the stretch in each cable. Use the data in the figure
and the requirement that the maximum stress allowed in the cable is 36 ksi. The
elastic modulus for the cables is E = 30,000 ksi, and the weight of the scoreboard
is W = 10 k. Remember, 1 kip (k) = 1000 pounds.

b. The slope of the grain in the longer support cable has a maximum deviation from
the cable’s longitudinal axis of 15◦, and there is some concern that the relatively
low shear strength of the cable material along its grain could cause problems.
Calculate both normal and shear stresses along this grain.



Strain and Stress in One Dimension 77

Go Bears

10 ft

40 ft

7 ft 3 ft

W

2.13 Oil drill pipes are long, heavy steel bars that deflect significantly hanging vertically
under their own weight. Determine the movement � of the tip of a steel drill pipe
(a) 3500 ft long, which is typical of Texas oil wells, and (b) 35,000 ft long, which was
the depth of the ill-fated Deepwater Horizon well in the Gulf of Mexico. (Real drill
pipes extend even more due to thermal expansion.)
Hint: you must take into account that the force on each section is a function of
position.

2.14 Often we neglect the self-weight of elements in our structures because the stress due
to this weight is much less than that caused by externally applied loads. However,
if both are considered in the design of a circular cross section bar that is optimally
shaped to vertically carry a point load and its own weight with constant stress, the
radial profile of the bar is r(z) = r0 exp(ρgz/2σ), where r0 is the radius of the flat top
of the bar, ρ is the mass density of the bar material, g is the acceleration due to gravity,
and σ = σ(0) = P/πr2

0 is the stress at the top of the bar. Show that this profile indeed
produces constant stress σ along the length of the bar.

P 

r(z)

z

r0

2.15 The bar shown has a constant cross section and is fixed rigidly at both walls.
Determine the reactions at both walls for the given applied load P .

P

ba
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2.16 A rigid slab with mass m = 15,000 kg is supported by three columns, as shown below.
Determine the compressive force in each of the columns. Each aluminum bar has
twice the cross-sectional area of the steel bar.

Steel

Aluminium

2 m

m

L/2 L/2

2.17 The bar shown has a varying cross section and is fixed rigidly at both walls. The cross-
sectional area of the narrower section is A; the cross-sectional area of the wider section
is larger by a factor of m , or m A. Using the force (flexibility) method, determine
a. The reactions at both walls for the given applied load P .
b. The displacement of the point D at which the load P acts.

P

B
L/4 L/2L/4

CDA

2.18 Considering again the bar of Problem 2.17, using the displacement (stiffness) method,
determine
a. The reactions at both walls for the given applied load P .
b. The displacement of the point D at which the load P acts.

2.19 Two cylindrical bars with 30 mm diameters, one (ABC) made of yellow brass and the
other (C DE) of stainless steel, are joined at C . End A of the composite bar is fixed,
while there is a gap of 0.2 mm between the end E and a vertical wall. A force of
magnitude 40 kN and directed to the right is applied at B. Determine
a. The smallest force P needed at D to just close the gap without the steel bar

exerting a force on the wall at E .
b. The reactions at A and E if a 40 kN force directed to the right is applied at D.
c. The reactions at A and E if force P is twice the value you calculated in part (a).

P

A B C D E

Brass Steel
0.2 mm

0.2 m0.2 m
0.1 m 0.1 m

40 kN

0.1 m 0.1 m
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2.20 High-density polyethylene (HDPE; with an elastic modulus of 1.1 GPa, a coefficient of
thermal expansion of 190 × 10−6/◦C, and a yield strength of 23 MPa) pipe was laid in
a trench for the purpose of carrying water from an artesian bore to troughs for sheep
in outback Australia. The pipe was straight when laid when the ambient temperature
was 15◦C and this photo was taken when it was 37◦C. (a) By what percent has the
length changed? (b) If the pipe had remained straight, would the yield stress have
been exceeded?

(Courtesy of Rodney Shannon.)

2.21 An aluminum cylinder (AAl = 30 cm2) is centered between two rigid end plates con-
nected by two steel bolts (each ASt = 1.0 cm2). At 20◦C, the bolts are just tight enough
to hold the end plates against the cylinder and there are no axial loads in the cylinder
or bolts. Find the stress in the steel bolts when the temperature is increased to 70◦C.
Do not include thermal expansion of the end plates in your solution.

Aluminum cylinder  

21 cm 2 cm 2 cm 

Steel bolt  

Rigid
end
plate    
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2.22 The stepped bar shown has a uniform thickness and can carry a certain axial load
without yielding. We would like to drill a 0.2 in radius hole through the wider part of
the bar, far from the fillet. Will this reduce its load-carrying capacity?

Radius = 0.2 in 

2.4 in    2 in 

Original stepped bar Proposed hole 

Radius = 0.2 in 

2.23 A bar consists of two portions BC and C D of the same material and of the same
length L , but of different cross sections. Determine the strain energy of the bar when
it is subjected to an axial load P , expressing the result in terms of P , L , E , the cross-
sectional area A of portion C D, and the ratio n of the two diameters.

C

An2 A

P

DB

2.24 Kangaroo hopping is very efficient, because upon landing the kangaroo stores elas-
tic strain energy in its tissues, which act as springs, and then recovers it in the next
hop. The Achilles tendon (one of three major tendons in a kangaroo hindlimb) of
a 40 kg kangaroo is 1 cm in diameter and 45 cm in length (human Achilles tendons
have a smaller diameter and are about 15 cm long). If the Achilles tendon has an
elastic modulus of 1.4 GPa and is loaded to 2% strain (below its elastic limit), how
much strain energy (i.e., stored potential energy) would both Achilles tendons con-
tain? Based strictly on energy considerations, how high could the amount of energy
stored in just these tendons lift the kangaroo?



3
Case Study 1: Collapse of the Kansas City Hyatt
Regency Walkways

On July 17, 1981, in the most damaging unforced structural failure in the history of the
United States, two overhead walkways fell into the atrium lobby of the Hyatt Regency
Hotel in Kansas City, Missouri. As a result of this collapse, 114 people died, and significant
damage was sustained (Figure 3.1).

The failure derived, in large part, from a key aspect of modern engineering design, which
is that engineering designers do not, typically, build what they design. Instead, they pro-
duce a fabrication specification, a detailed description of the designed object that allows its
assembly or manufacture by others. Separating the “designing” from the “making” means
that such fabrication specifications must be complete and unambiguous.

Fabrication specifications are presented in drawings (e.g., blueprints, circuit diagrams,
flow charts) and in text (e.g., parts lists, materials specifications, assembly instructions).
Such traditional specifications can be complete and sufficiently specific, but they may not
capture the designer’s intent—and this can lead to catastrophe. The suspended walkways
in the Hyatt Regency Hotel in Kansas City collapsed because a contractor fabricated the
connections for the walkways in a manner different from the original design.

In the original design, walkways at the second and fourth floors were hung from the
same set of 24-ft-long threaded rods that would carry their weights and loads to a roof
truss (Figure 3.2). The fabricator was unable to procure threaded rods sufficiently long to
suspend the second-floor walkway from the roof truss, so instead, as shown in Figure 3.3,
he hung it from the fourth-floor walkway using shorter rods. (The original design would
not have been easy to implement because of the difficulty involved in screwing on bolts
over such long hanger rods and attaching walkway support beams.) The support beams of
the fourth-floor walkway were not designed to carry both the second-floor walkway and
its own dead and live loads, resulting in the collapse. If the fabricator had understood the
designer’s intention to hang the second-floor walkway directly from the roof truss, this
accident might have been avoided.

As Henry Petroski (1982) noted, the fabricator’s redesign was akin to requiring that the
lower of two climbers hanging independently from the same rope change his position so
that he was grasping the feet of the climber above, causing the upper climber to carry the
weights of both with respect to the rope. The redesigned supports for the second-floor
walkway were configured similarly.

Figure 3.4 shows several sketches of the original design: (a) an elevation view of the
second- and fourth-floor walkways, each supported by the same pairs of hanger rods (on east
and west sides of the walkway) spaced at a distance L ; and (b) an end view of the two
walkways and FBDs of the supporting beam of each walkway. Consider now the lower,
second-floor walkway. The load carried by each pair of its hanger rods can be estimated
as the sum of the dead load of the walkway and its supporting beams and the live load of
pedestrians likely to stand on walk across the walkways. Since the hanger rods are spaced
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FIGURE 3.1
The lobby of the Kansas City Hyatt Regency Hotel after the collapse of the second- and fourth-floor walkways on
July 17, 1981. The devastation is evident. (Courtesy of Lee Lowry, Kansas City, MO. Contribution of the National
Institute of Standards and Technology. With permission.)

a distance L apart, we estimate the total force 2P needed to support a span of length L/2
on either side of a pair of hangers as

2P = (w + W)bL , (3.1)

where w is the dead load per unit area, W the live load per unit area, and b the walk-
way width. In this instance, by both making calculations based on the design drawings
and weighing pieces of the collapsed walkways, the engineers at the National Bureau of
Standards (NBS)∗ who performed the forensic investigation of the walkway collapse deter-
mined that the combination of the dead and live loads, called the design load, was in this
case P = 90 kN (20,300 lbf) per hanger rod. The analysis of the fourth-floor walkway based
on the original design would be the same. Then the individual hanger rods needed to sup-
port both the second- and fourth-floor walkways as designed would each support a total
load of 2P and would be sized accordingly.

On the other hand, the end views of the walkways as built and their corresponding FBDs
(Figure 3.5) show that the rods would have to carry exactly the same loads at each level,
that is, to support the lower walkway, each rod carries a load equal to P , while above the
fourth floor each rod would have to carry a load of 2P to support both the second- and
fourth-floor walkways. So the rods in both designs would have equivalent designs with

∗ Since 1988, has been called the National Institute of Science and Technology (NIST).
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FIGURE 3.2
An artist’s sketch of the second- and fourth-floor walkways across the west side of the atrium of the Kansas City
Hyatt Regency Hotel. The view looks southward and also shows a separate third-floor walkway that did not
collapse, but was taken down after a design review prompted by the collapse of the other two walkways on July
17, 1981. (From Pfrang and Marshall, Civil Engineering, pp. 65–68, July 1982. With permission.)

Original design

(a) (b)

As built

FIGURE 3.3
The two hanger connections at the fourth-floor walkway: (a) The left sketch shows the configuration as designed,
wherein the hanger rods went straight through the fourth-floor connection, down to the second floor, which
these rods also supported. (b) The right sketch shows the configuration as built, with the hanger rods supporting
the second floor now hung from the box beams that hold up the fourth-floor walkway. (From Dym and Little,
Engineering Design: A Project-Based Introduction, New York. 2008. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission.)



84 Introduction to Engineering Mechanics

P
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(W+w)L

(W+w)L
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2P 2P

L L

(a) (b)

FIGURE 3.4
Building a model of the walkways and their supports: (a) an elevation of the second- and fourth-floor walkways
as originally designed. (b) An end view and FBDs of the support beams. The forces carried by the hanger rods
accumulate according to the number of walkways being supported below them.

the same area, determined by Equation 2.6,

A = 2P
σallow

, (3.2)

where σallow is the allowable stress in the rod. In terms of the rope analogy, the part of the
rope above the two climbers has to support the weight of both: It does not care whether
each hangs directly from the rope or one climber hangs from the other.

So, why did the walkways collapse? They failed because an unanticipated connection
was inserted into the design and the connection was not properly designed (Figure 3.6). As
noted by respected engineers E. O. Pfrang and R. Marshall (1982), “With this modification
the design load to be supported by each second floor ... connection was unchanged ....

P

P P

bb

(W + w)L

(W + w)L

P

2P 2P

FIGURE 3.5
Extending the model of the walkways and their supports to reflect the redesign. An end view of the second-
and fourth-floor walkways designed so that the second-floor walkway hangs from the fourth-floor supporting
beams, and FBDs of a typical pair of supports. Note that the forces supported by the hanger rods are unchanged
from the original design.
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FIGURE 3.6
Photographs of the failed connections that led to the collapse of the two walkways in the Kansas City Hyatt
Regency Hotel. Compare with Figure 3.3b and observe that the outboard connection (on the right-hand edge)
failed because the threaded nut and washer that went underneath the box beam pulled right through the beam
because that connection, designed originally to transmit a load of P , was actually carrying a load of 2P . (Cour-
tesy of Lee Lowry, Kansas City, MO. Contribution of the National Institute of Standards and Technology. With
permission.)

However, the load to be transferred from the fourth floor ... to the upper hanger rod under
this arrangement was essentially doubled” (p. 68). Look again at the FBD in Figure 3.5:
It shows that the redesign required the nut under the fourth-floor supporting beam and
its connection with the beam itself to support the transfer of twice the load that would
have been transferred in the original design—which the fabricator’s redesigned connection
did not.

Interestingly enough, it was also revealed in the subsequent forensic investigation that
even the original design was only marginally safe. The NBS investigators found that the
long-rod design would likely not have satisfied the Kansas City Building Code specifica-
tions. Further, it turned out that during construction, the building’s construction workers
had noticed that the walkways seemed flimsy and that they moved noticeably whenever
workers moved wheelbarrows or other heavy objects across them. Their solution? Rather
than report the problem and request a fix, they found other routes over which to transport
their building materials!

The NBS official report issued in 1981 did not assign blame for this catastrophe. The
essential problem was a lack of proper communication between the design engineers
(Jack D. Gillum and Associates) and the manufacturers (Havens Steel). However, the NBS
report’s authors, Pfrang and Marshall, made it clear that responsibility lay primarily with
the structural engineers. The Missouri licensing board and Court of Appeals agreed, find-
ing that the design engineers should have noticed the difference between their design
and what the contractor suggested, and should have analyzed the redesigned connection.
Basic calculations should have demonstrated the flaws in both the original design and
in what was ultimately built. The principal structural engineers lost their Missouri engi-
neer’s licenses, and the firm, Jack D. Gillum and Associates, dissolved. The Hyatt Regency
Crown Center lobby in Kansas City today features only one walkway, which is not sus-
pended from the roof but instead rests on sturdy-looking columns that transmit its loads
to the atrium floor.
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Sarah Pfatteicher (2010) has written about the implications of this case for the engi-
neering profession and our codes of ethics. Gillum and the other engineers were the first
American engineers to have their licenses revoked for “gross negligence.” Pfatteicher has
noted that after almost a century of industrialization and acknowledged acts of engineer-
ing heroism, this was “a disquieting admission” that “a good engineer could practice
engineering badly.” The catastrophe and investigations that followed also serve as object
lessons in the challenges of managing complex projects among multiple organizations,
and in the importance of communication to engineering projects. Because engineering
is perpetually challenging limits and pushing boundaries of knowledge, and because in
the modern world engineering projects are complex, interconnected systems, failures are
“never desired, but never completely preventable.”

Twenty years after the “Hyatt Horror,” as the newspaper headlines called it, the Amer-
ican Society of Civil Engineers (ASCE) reflected upon its legacy in a special journal issue.
The ASCE had rewritten its code of ethics in the 1970s, prioritizing its emphasis on public
welfare, with the engineer’s duty to “his client, employer, or employees,” next, followed
last by loyalty to his profession: a complete inversion of the previous version of the code. It
was this sense that the engineer was accountable to the public that led to the initial revoca-
tion of the Hyatt engineers’ licenses. In subsequent hearings, the ASCE reduced Gillum’s
punishment to a 3 year suspension, finding him “vicariously responsible . . . but not guilty
of gross negligence nor of unprofessional conduct” (ASCE 1986). In a way, the most signif-
icant legacies of the disaster are the subsequent conversations among engineers about our
responsibilities, to whom and for what we are accountable, and how we can uphold the
values of our profession.

Our professional codes of ethics provide us with guidelines to follow; regulations, codes,
and standards suggest appropriate parameters. Still, engineering inherently involves the
risk of failure. We may strive to mitigate its catastrophic consequences, and to reduce the
risks, and of course to communicate all of this clearly—but we should be prepared to learn
from failure as well as from success.

PROBLEMS

3.1 If the Kansas City Building Code specified that a floor structure must support a live
load of 4.79 kPa (100 psf), and if the walkway length L = 9.1 m = 30.0 ft and width
b = 2 m = 6.56 ft, what contribution is made to the hanger rod load P?

3.2 If the design load is 90 kN (20,300 lbf), what is the dead load and what is the intensity
of the dead load in the light of the live load calculation of Problem CS1.1?

3.3 Determine the specific weight of lightweight concrete and calculate its dead load inten-
sity if it is used in an 80-mm (3.25-in) cover of a formed steel deck walkway. Compare
this result with that found in Problem CS1.2 and explain any differences.

3.4 Determine the stress induced in hanger rods carrying a design load of 90 kN
(20,300 lbf), if their diameter is 32 mm (1.26 in). Does that seem a reasonable stress level
if the rods are made of mild steel? Explain your answer.

3.5 If the interfloor distance of the Hyatt Regency Hotel is 4.57 m (15 ft), how much does
the second-floor walkway move down with respect to the fourth-floor walkway due
to the design load?
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4
Strain and Stress in Higher Dimensions

Now that we have constructed a foundation for our study of continuum mechanics, con-
sisting of (1) kinematics or compatibility, (2) stress, (3) constitutive relationships, and
(4) equilibrium, and have applied this to uniaxial loading and deformation, we are curious
about the form this foundation will take in higher dimensions.

4.1 Poisson’s Ratio

So far when we have discussed deformations of bodies in tension or compression, we have
been referring to the deformation of a body in the direction of the applied uniaxial force. It
is also true that in all solid materials, some deformation occurs along axes perpendicular to
this force. That is, when a material is pulled along its axis, as shown in Figure 4.1a, it expe-
riences some transverse (aka lateral) contraction. This is easily visualized by stretching a
rubber band. When pushed, the material experiences transverse expansion (Figure 4.1b).

The deformations in Figure 4.1 are greatly exaggerated; in most engineering materials,
this effect is small. One way to quantify material behavior, in fact, is to consider the relative
axial and lateral strains due to axial loading. We do this by means of Poisson’s ratio, first
formulated by French scientist S. D. Poisson in 1828, and denoted by the Greek letter ν (nu):

ν = − lateral strain
axial strain

. (4.1)

Poisson’s ratio is a property of a material and can be found tabulated with other prop-
erties such as the elastic (Young’s) modulus E , for example, in Appendix C of this book.
Remember that the strains in question are caused by uniaxial stress only: by simple tension
or compression. The value of ν varies for different materials; generally, it is on the order of
0.25–0.35, but can range from 0.1 (for some concretes) to 0.5 (for rubber).∗ Table 4.1 shows
some of these values.

Note that the Poisson effect does not cause any additional stresses, unless the transverse
deformation is inhibited or prevented. Incidentally, for isotropic Hookean solids, it is pos-
sible to relate the three material properties we have so far discussed (elastic modulus E ,
shear modulus G, and Poisson’s ratio):

G = E
2(1 + ν)

. (4.2)

∗ An elegant demonstration of the Poisson’s ratio effect can be seen by stretching a swatch of chicken wire (which
is not a continuous material but is a fine demonstration): the wire mesh visibly expands in the direction you
are pulling, and contracts in the transverse direction. Rod Lakes (Science 235, 1038–1040 (1987)) has created
polymer foams which exhibit negative Poisson’s ratios: when pulled, they expand in the transverse direction as
well as the axial. Some materials composed of fibrous networks (e.g., textiles, biomaterials) have also exhibited
this “anti-rubber” or “auxetic” negative Poisson’s behavior (Evans, K. E. J. Phys. D 22, 1870–1876 (1989).).
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Final shape

Initial shape(a) (b)

Initial shape

Final shape

FIGURE 4.1
(a) Lateral contraction and (b) lateral expansion of solid bodies subjected to axial forces (Poisson effect).

TABLE 4.1

Typical Poisson’s Ratio for Common Materials

Material ν

Steel 0.27
Aluminum 0.35
Glass 0.23
Rubber 0.50
Concrete 0.20

What Poisson’s ratio reminds us is that our ideal situation of one-dimensional strain,
considered in the Chapter 2, is rarely physically realized. We must be conscious of a mate-
rial’s deformation in every dimension, even when loading is purely uniaxial. Although
we will sometimes choose to neglect other dimensions, we should recognize that this is a
choice to simplify our modeling, and that we are leaving something out of our analysis.

4.2 The Strain Tensor

The equations in Section 2.1 for strain as an average “percent deformation” are useful in
a variety of straightforward loading conditions. However, in many cases, we will need to
keep track of normal strains in multiple directions as well as shear strain. We can see how
complicated the strain picture might become. There are three normal strains, in the x-, y-,
and z-directions; and in addition six shear strains, a pair in each plane. That is nine strain
components in all. All of these directions or senses of strain are contained quite elegantly
in the strain tensor. This tensor can be represented as a 3 × 3 matrix, but it has special
properties that we will examine more in Chapter 5.

Strain is a local property, and the values of each strain component may change dramat-
ically within a material. And so we come to our mathematical definition of strain, which
relates to relative deformations of an infinitesimal element.

If we consider the extensional strain in one direction of an original element AB with
length �x, as shown in Figure 4.2, we see that point A experiences a displacement u.
This displacement is common to the whole element, a kind of “rigid-body displacement.”
A stretching �u also takes place within the element, so that point B experiences a total
displacement u + �u.
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0
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u + Δu

Δx

u

x

FIGURE 4.2
One-dimensional extensional strain.

Based on this situation, we define the extensional normal strain of this element as

ε = lim
�x→0

�u
�x

= du
dx

, (4.3)

taking the limit as �x → 0 so that the expression will apply to any length �x of the ele-
ment. We see that this definition is independent of whatever “rigid body displacement”
occurred and recalls our third definition of normal strain, Equation 2.4, in Section 2.1.1.

If we extend our thinking to higher dimensions, as in Figure 4.3 for two dimensions, we
see that we will now need to use subscripts to keep track of the components of strain; we
will also need to use partial derivatives because, as we will understand fully when we dis-
cuss shear strains, displacement can vary in all directions as we consider a spatial element
aligned in any direction.

And so, if u, v, and w are the three components of displacement u occurring in the x-,
y-, and z-directions, and if we again take the limits as �x, �y, and �z go to zero, we have
three components∗ of normal strain:

εxx = ∂u
∂x

, (4.4a)

εyy = ∂v

∂y
, (4.4b)

εzz = ∂w

∂z
. (4.4c)

v + dv, or v +

u + du, or u + dx

dy

dx

dy

v
u

∂v
∂y

∂u
∂x

FIGURE 4.3
Two-dimensional normal strains.

∗ The subscripts on ε provide directional orientation. One subscript, j , tells us we are considering deformation in
the j direction. The other subscript, i , tells us what to compare that deformation to. When i = j this is normal
strain: the deformation is in the reference direction, making strain a change in length with respect to a length
in the same direction. For shear strain, i �= j , and the displacement of interest is perpendicular to the reference
direction.
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The analysis here has shown that the three normal strains define the change in size of
a rectangular parallelepiped with initial volume dx dy dz. Problem 4.1 will ask you to
confirm that the normalized (meaning scaled by the original) change in volume of the
rectangular parallelepiped dx dy dz can be shown to be a function of the normal strains:

�V–
V– 0

= εxx + εyy + εzz. (4.5)

In the normal strains of Equations 4.4a through 4.4c, we have the derivative of the
displacement in each direction with respect to the spatial coordinate in the same direc-
tion. But why are the expressions written with partial derivatives? Because unlike in the
one-dimensional case where the x-direction displacement u is simply u(x), in multiple
dimensions each displacement is a function of all spatial coordinates. That is, u is now
u(x, y, z), meaning that the displacement in the x-direction can vary at different points in
the body, whether they are located at different x positions or also different y or z positions.
This is important to keep in mind as we learn about shear strains, as shown in Figure 4.4
for the two-dimensional case.

After straining, the initially horizontal side with initial length dx has slope ∂v/∂x , and
the initially vertical side with initial length dy has slope ∂u/∂y. So, the initially right-angled
ACB is reduced by the amount ∂v/∂x + ∂u/∂y. This is an angular deformation, or a shear
strain, on the xy-plane, and like normal strain it is dimensionless. We have

γxy = γyx = ∂v

∂x
+ ∂u

∂y
, (4.6a)

γxz = γzx = ∂w

∂x
+ ∂u

∂z
, (4.6b)

γyz = γzy = ∂w

∂y
+ ∂v

∂z
. (4.6c)

We see that, as we learned in Section 2.1.2, the engineering shear strain is equal to the
change in the right angle between the two axes denoted in the subscripts. Now we can

u + dy∂u
∂y

B

C A

u
v

v + dx∂v
∂x

dy

dx

∂u
∂y

∂v
∂x

FIGURE 4.4
Shear strain in two dimensions.
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think again about why partial derivatives are necessary: not only does the u displacement,
for example, vary over an interval du, it also varies over dv and dw.

By considering all the possible deformations of our parallelepiped, we have identified
nine total, and six unique, strain components: εxx , εyy, εzz, γxy = γyx , γxz = γzx, and γyz =
γzy. Somehow, all of these components together represent the total state of strain for a point
in our continuum. Strain is a second-order tensor, with one more level of sophistication than
a vector.

Remember that we were able to write vectors, such as a force P, as column vectors:

⎛
⎜⎝Px

Py

Pz

⎞
⎟⎠ .

In index notation, we can represent P as Pi where, as we recall from Section 1.5, it is
implied that i = 1, 2, 3. There is no need to specify this range, and Pi indicates all three
components of the vector u. A vector is also known as a first-order tensor. It contains
information about both magnitude and direction. For strain, we have magnitudes and
directions as well as directions relative to which strains are quantified. The normal strain
component εxx , for example, represents the magnitude of deformation in the x-direction,
relative to a reference length in the x-direction. We are able to write the nine components
of strain as a 3 × 3 matrix, which is one way to represent a second-order tensor.

Although this definition is physically motivated and mathematically sound, these engi-
neering shear strains are not exactly the shear components of the strain tensor. For a reason
having to do with the fact that elements do not truly behave as rigid bodies, the strain ten-
sor components are actually defined using a factor of 1/2. This factor is necessary to make
εi j behave mathematically as a proper tensor, as future study in continuum mechanics will
show. We can write the strain tensor (using index notation∗) as

εkl = 1
2

(
∂ul

∂xk
+ ∂uk

∂xl

)
= 1

2

(
ul,k + uk,l

)
. (4.7)

Again we know that k = 1, 2, 3 and l = 1, 2, 3. Then uk (and ul ) indicates all three com-
ponents of the vector u, that is, the x-, y-, and z-direction displacements aka u, v, and w;
and xk (and xl ) indicates all three spatial coordinates. Therefore, Equation 4.7 defines nine
terms, six unique, that form the components of a symmetric, second-order tensor. (Sym-
metric refers to the fact that each εi j = ε j i ; e.g., εxy = εyx , and of course also γxy = γyx.)
Writing these out in long-hand notation, we obtain terms like

ε12 = 1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= 1

2

(
∂u
∂y

+ ∂v

∂x

)
= 1

2
γxy = εxy, (4.8)

ε11 = 1
2

(
∂u1

∂x1
+ ∂u1

∂x1

)
= 1

2

(
∂u
∂x

+ ∂u
∂x

)
= ∂u

∂x
= εxx . (4.9)

∗ Also called Einstein notation because Albert Einstein introduced its use in his 1916 paper “The Foundation of
the General Theory of Relativity.”
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Or we can write the strain tensor in its matrix form as

ε =
⎛
⎝εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

εxx
γxy

2
γxz

2
γyx

2
εyy

γyz

2
γzx

2
γzy

2
εzz

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂x

1
2

(
∂u
∂y

+ ∂v

∂x

)
1
2

(
∂u
∂z

+ ∂w

∂x

)
1
2

(
∂v

∂x
+ ∂u

∂y

)
∂v

∂y
1
2

(
∂v

∂z
+ ∂w

∂y

)
1
2

(
∂w

∂x
+ ∂u

∂z

)
1
2

(
∂w

∂y
+ ∂v

∂z

)
∂w

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

4.3 The Stress Tensor

We already understand stress as the intensity of an internal force, or force/area, but this
division only makes sense while we are considering the uniaxial case and scalar values.
We know that force P and the area A are, in fact, vectors (where the normal to the area
defines its direction), and so when before we caculated P/A it was really |P|/|A|, where
each was the component appropriate for a given calculation. This suggests to us that a
full description of the stress distribution in a body will require a new notation and some
careful bookkeeping.

As a starting point, we will consider a section of a loaded body, as shown in Figure 4.5.
On that section, we identify a very small area �An characterized by an outward normal n̂.
This area contains the point O in which we are interested. We denote �P as the net force
acting on that small area, knowing that this is a contribution to the resultant force acting
on the section in order to maintain equilibrium. (If we knew the particulars of the external
loading on this body, we would have used the method of sections to calculate �P.)

ΔP

Δ AnO

n

y

z x

FIGURE 4.5
The stress vector on a planar section through point O with outward normal n̂.
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Each of the vectors �P and �An may be written as the sum of components referred to a
standard Cartesian system with unit vectors (î, ĵ, k̂) in the (x, y, z) directions, respectively:

�P = �Px î + �Pyĵ + �Pzk̂,

�An = �Ax î + �Ayĵ + �Azk̂.
(4.11)

Remember that in Chapter 2, we considered both normal and shear forces acting on
an area and for each considered the stress (normal or shear) to be the intensity of the
distribution of force over the area. Now consider that for each component of area, one
component of force is a normal force. For example, on the area �Ax the force component
�Px is a normal force and �Py and �Pz are shear forces. If we consider each component
of the area vector, then there are nine different stresses we can define, three normal and six
shear. Stress, like strain, is defined at a point, using an infinitesimal element. So we define
each stress component as the point function yielded by a limit process in which we divide
the force component �Pj acting at a point O by the area of the section �Ai at the point O,
and then let the area become vanishingly small:

σi j ≡ lim
�Ai →0

�Pj

�Ai
. (4.12)

With this we have characterized the entire stress state in one elegant package, using two
subscripts, just as we did for multidimensional strain. For stress, the first subscript denotes
the direction of the normal vector to the area component, while the second denotes the
direction of the component of force measured on that plane. Thus, we will define stress
components such as

σ12 ≡ lim
�A1→0

�P2

�A1
= lim

�Ax→0

�Py

�Ax
≡ σxy,

σ11 ≡ lim
�A1→0

�P1

�A1
= lim

�Ax→0

�Px

�Ax
≡ σxx ,

(4.13)

as the resulting limits of forces in the y- and x-directions divided by the very small area
normal to the x-axis. We recognize that when the area and force are in the same direction,
so that the subscripts match, we have a normal stress component, and when they are in
different directions and so the subscripts are mixed we have a shear stress component as
illustrated in Figure 4.6.

The nine components can be displayed in the matrix form of the stress tensor:

σ =
⎛
⎝σxx σxy σxz

σyx σyy σyz
σzx σzy σzz

⎞
⎠ =

⎛
⎝σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎞
⎠ . (4.14)

Sometimes, these components are cast in mixed-format symbols: σxx for components
with repeated subscripts (normal stresses) and τzx for components with mixed subscripts
(shear stresses). We mean the same thing by both of these representations.

This does get a bit simpler; it turns out that, like the strain tensor, the stress tensor is
symmetric, that is, that σxy = σyx or τxy = τyx. This is due to the need to maintain rota-
tional equilibrium for the element we are considering. And, in many cases, we will only
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FIGURE 4.6
An infinitesimal element with a three-dimensional stress state.

speak of the average values over an area of a single component each of normal stress and
shear stresses. However, it is useful to know the big picture.

The expressions that we have developed depend explicitly on the orientation of the
(x, y, z) coordinate system chosen. With differently oriented unit vectors, we would find
different values for stress and strain components to represent the same physical stress
and strain. This is just the same as the case of first-order tensors, aka vectors. The vector
representation has different scalar values for different choices of unit vectors.

There are some special coordinate system orientations that will allow us to understand
key facts about a stress or strain state. Stress, strain, and also strain rate, which is relevant
for time-dependent behavior in solids but which we will encounter when we begin to
focus on fluids in Chapter 13, are all second-order tensors, and as such they exhibit some
common properties about their respective principal values. These principal values have to
do with extreme values of stress and strain on planes at different orientations through a
given point. By considering the stresses on particular inclined sections of an axially loaded
bar, as we did in Section 2.6, and maximizing normal stress we were taking a first step
toward finding the principal stresses and the planes to which they corresponded. We also
found the magnitude and plane of maximum shear stress. We will return to this issue in
Section 5.3.

A note on sign conventions: normal stress is considered positive if it puts an element
in tension, and negative if it puts an element in compression. The more general way to
think about this is that positive normal stress arises when the force component acting on
an area has the same direction as the normal to that area. Negative stress results when the
force component is acting in a direction opposite to the area’s normal. This is illustrated
in Figure 4.7a. The convention for shear stress is exactly the same, and is illustrated in
Figure 4.7b. On element faces with normals in positive directions, positively oriented shear
forces produce positive stresses.
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FIGURE 4.7
Sign convention for (a) normal and (b) shear stress.

In the light of our desire to know what is going on at any arbitrary point O within a
loaded body—or, equivalently, at each and every point within the body—we now know
that we can calculate the components of the forces on each of three perpendicular faces
drawn through the point O. We now state the following (provable) mathematical assertion.

If we pass any three mutually orthogonal planes through a point O and find the
stress components on each of three mutually perpendicular faces, then we have fully
characterized the stress at point O.

If these faces or planes were themselves normal to the x-, y-, and z-axes, we would
have found the stress components given in Equations 4.12 through 4.14. We are relieved
to find that due to the symmetry of the stress tensor, we will only need six—not
nine—components of the stress tensor to fully characterize stress at a point.

It bears repeating: Stress represents the intensity of internal forces on surfaces within a body
subjected to loads. At an imaginary cut or section, a vector sum of these forces (sometimes
called a stress resultant) keeps a body in equilibrium. The body we speak of could be a
solid material, a liquid, or a gas. Although the internal forces in a gas more commonly
arise from molecular collisions than from applied loads P, we can represent these forces by
distributed loads in the same way we built up the stress tensor for our general body from
Figure 4.5. This will be useful to us throughout our study of continuum mechanics.

4.4 Generalized Hooke’s Law

Although we have discussed the fact that stress and strain are second-order tensors, we
looked in Chapter 2 at one-dimensional loading, for which we considered only one scalar
component of stress and strain at a time. We related stress to strain by the one-dimensional
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form of Hooke’s law, σ = Eε for normal stress and strain or τ = Gγ for shear stress and
strain. We can also write a more general form of Hooke’s law, relating stress and strain in
three dimensions.

If we represent the stress and strain tensors as 3 × 3 matrices, the constant of proportion-
ality between them is a rather bulky, multi-component construction. Remembering our
index notation from Chapter 1, we write the general relation

σi j = Ci jkm εkm . (4.15)

C is an enormous, 3 × 3 × 3 × 3 tensor—a fourth-order tensor. In practice, C is known
as a material’s stiffness matrix and its inverse as the compliance matrix. It has 81 compo-
nents. You may wonder why C is not simply another 3 × 3 tensor, as matrix multiplication
rules would allow it to be. The reason is that the mechanical behavior C represents is
complicated, in a way that we understand physically. Any one component of stress could
contribute to any and all components of strain. As an example, think about the discussion
of Poisson’s ratio in Section 4.1: under the action of a single uniaxial applied force, there
is deformation along that axis but also along axes perpendicular to the force. Fortunately,
though, we do not need to deal with an 81-component tensor. Due to the symmetry of
both stress and strain tensors, C is also symmetric, with only 36 independent components.
The necessity of the existence of a strain energy function (U0 from Chapter 2) adds some
additional symmetry. Because of these symmetry conditions, there are only 21 indepen-
dent constants (assuming material homogeneity) needed to fully represent a linear elastic
solid. However, this most general case, referred to as anisotropic elasticity, is not needed for
many, many practical materials,∗ and we will simplify further.

For these materials, Hooke’s law can be written quite satisfactorily for the isotropic case,
in which case the constants Ci jkm must be invariant with respect to coordinate rotations,
that is, they will not change as we look in different directions. In this case, there are in
fact only two elastic constants, E and G, although we will also make use of Poisson’s
ratio ν (not an independent constant; remember Equation 4.2) to keep expressions simple.
Hooke’s law for an isotropic elastic solid is written as

εxx = σxx

E
− ν

σyy

E
− ν

σzz

E
, (4.16a)

εyy = −ν
σxx

E
+ σyy

E
− ν

σzz

E
, (4.16b)

εzz = −ν
σxx

E
− ν

σyy

E
+ σzz

E
, (4.16c)

and

γxy = 2εxy = σxy

G
, (4.17a)

γyz = 2εyz = σyz

G
, (4.17b)

γzx = 2εzx = σzx

G
. (4.17c)

∗ One prominent exception to this optimistic assumption of homogeneity and isotropy arises in the consideration
of biological materials. Arteries and other biological structures have varying properties in different directions,
and this variation serves them well. (It also complicates the modeling and mimicking efforts of engineers and
biologists.) Please see Chapter 14 for further discussion of the mechanics of biomaterials.
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Please remember that the equations here apply only to homogeneous isotropic materials:
materials that have the same properties at all points and in all directions. Note that even
for these ideal, simplest case materials, the deformation in one direction depends on the
normal stresses in all directions.

Finally, by noting the result in Equation 4.5 and summing Equations 4.16a through 4.16c,
we find that

�V
V0

= εxx + εyy + εzz = 1 − 2ν

E

(
σxx + σyy + σzz

) = σxx + σyy + σzz

3K
, (4.18)

where K is known as the bulk modulus and the factor of 3 is introduced as part of its defini-
tion. Note that both G and K are defined in terms of E and ν, and that there are (still) only
two independent constants for a homogeneous, linearly elastic, isotropic solid.

4.5 Equilibrium

We have now addressed the first three items in our continuum mechanics checklist. We
have developed ways to talk about (1) deformation or strain, (2) stress, and (3) constitutive
laws or stress–strain relationships in multiple dimensions. The fourth item that concerns
us is equilibrium, our governing principle. Often, we will be able to tackle equilibrium
using statics and the method of sections. Please see the worked examples in Section 4.7
for examples of this. It is also useful to recognize that we can formulate equilibrium as an
elasticity problem.

4.5.1 Equilibrium Equations

Let’s derive the equations of equilibrium for an infinitesimal element in three dimensions,
starting with the six components that fully characterize stress at any arbitrary point (recall
our assertion that the stress tensor is symmetric).

Consider an element of volume dx dy dz in which we look at the changes in the stress
as we sum forces in three independent directions (see Figure 4.8). We assume that the
components of stress are known at the left, bottom, and rear faces, and use the first term of
the Taylor expansion to approximate the values of these components at the right, top, and
front faces, distances dx, dy, and dz away, as illustrated in Figure 4.8.

For example, forces in the x-direction result from stresses on all six faces (with each stress
multiplied by the area on which it acts):

(
σxx + ∂σxx

∂x
dx
)

dy dz − σxx dy dz +
(

σyx + ∂σyx

∂y
dy
)

dx dz − σyx dx dz

+
(

σzx + ∂σzx

∂z
dz
)

dx dy − σzx dx dy + Bx dx dy dz = 0. (4.19)
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FIGURE 4.8
An element with a three-dimensional stress state. For clarity, stress components on three faces at a time are shown:
(a) stress components on left, bottom, and rear faces; (b) stress components on right, top, and front faces.

In Equation 4.19, we have once again introduced a body force, per unit volume, whose x-
component is Bx. After canceling terms appropriately and dividing through by the element
volume, we find the following equation of equilibrium:

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ Bx = 0. (4.20a)

Similarly, in the y- and z-directions,

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ By = 0, (4.20b)

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ Bz = 0. (4.20c)

Thus, Equations 4.20a through 4.20c represent three equations of equilibrium from which
we must determine six components of stress. Interestingly, we reduced the number of
stress unknowns to six from nine by effectively using three moment equilibrium equations
that enforce the symmetry of the tensor.

We can also use indicial or index notation from Section 1.5 to write these equations
in a very elegant form. Recalling the summation convention that a comma is used to
denote partial differentiation and that the stress tensor is symmetric, the three equations
of equilibrium can be written simply as

σi j , j + Bi = 0, (4.21)

where σ is used for all stress components including shear stresses, and the range of the
indices implied to be i , j = 1, 2, 3.

4.5.2 The Two-Dimensional State of Plane Stress

In many circumstances, we can simplify the analysis of stress by recognizing that a struc-
ture is thin in one dimension (e.g., the dimension along the z-axis) in comparison to its
dimensions in the other two (x and y) directions, and the loading is essentially in the xy-
plane. This class of problems is called plane stress, and it includes the analysis of aircraft



Strain and Stress in Higher Dimensions 101

+ ∂σyyσyy ∂y
dy

σxx

σxy

σyx

σyy

dy

dx dz

+ ∂σyxσyx ∂y
dy

+ ∂σxyσxy ∂x
dx

+ ∂σxxσxx ∂x
dx

y

x
z

FIGURE 4.9
A three-dimensional element in plane stress.

and spacecraft structures, pressure vessels, and similar thin-walled structures. In this case,
because we assume that

σzz, σxz, σyz ≈ 0, (4.22)

there are only three stress components to worry about: σxx , σxy and σyy.
In this context, we need to solve only two equilibrium equations (see also Figure 4.9):

∂σxx

∂x
+ ∂σyx

∂y
+ Bx = 0,

∂σxy

∂x
+ ∂σyy

∂y
+ By = 0.

(4.23)

It is important to note the following:

• Plane stress in the z-direction does not mean or imply that there are no loads
applied in that direction. Indeed, the loads in the thickness- or z-direction in a thin-
walled structure cause membrane stresses of significant magnitude in the in-plane
directions. These stresses are significantly larger than the stress in the thickness
direction. We will understand this more clearly when we study pressure vessels
in Chapter 5.

• Plane stress in the z-direction does not mean or imply that the deflection (or
displacement, w) is zero in that direction. For thin-walled structures, it is the
deflection in the direction of the thickness that is usually the most prominent and
visible deformation.

For the state of plane stress in the z-direction, as defined in Equation 4.23, the constitutive
law, or appropriate form of generalized Hooke’s law, for the remaining two normal stresses
becomes

σxx = E
1 − ν2

(
εxx + νεyy

)
,

σyy = E
1 − ν2

(
νεxx + εyy

)
.

(4.24)
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4.5.3 The Two-Dimensional State of Plane Strain

Problems in plane strain occur when there is reason to believe there is no appreciable varia-
tion or deformation in a direction. In such instances, the movement of any point is likely to
be very small in that direction. Assuming that the loading doesn’t vary appreciably along
this direction, we could look at every plane perpendicular to this direction and expect to
realize the same behavior in each plane. We realize plane strain in objects that are both
very long in one direction and constrained (relatively) uniformly in that direction so that

εzz = εxz = εyz = 0. (4.25)

Equation 4.25 indicates that when the conditions of plane strain are judged to apply,
we simply set the corresponding strain components to zero. However, this does not mean
that the corresponding stresses are zero. For the case of plane strain in the z-direction, as
defined in Equation 4.25, the normal stress in the z-direction is not zero. In fact, it is the
stress required to maintain the constraints that can be said to characterize plane strain.
Re-arranging Equation 4.16c for the case of εzz = 0,

σzz = ν
(
σxx + σyy

) �= 0, (4.26)

so that the constitutive laws for plane strain become

σxx = E
(1 + ν)(1 − 2ν)

[
(1 − ν)εxx + νεyy

]
,

σyy = E
(1 + ν)(1 − 2ν)

[
νεxx + (1 − ν)εyy

]
.

(4.27)

The in-plane equilibrium equations and the compatibility relations between strain and
displacement are the same in both plane stress and plane strain.

4.6 Formulating Two-Dimensional Elasticity Problems

In this section, we briefly describe how a two-dimensional problem is formulated in the
theory of elasticity. Bearing in mind the notation often used in structural mechanics, as
we will do when we study beams in Chapters 7 and 9, we now place our problems in the
(x, z)-plane, so that we are considering plane stress or plane strain in the y-direction.

The starting point is equilibrium, and the two-dimensional version (Equation 4.23) is
repeated here with a body force due to gravity in the downward vertical or negative
z-direction:

∂σxx

∂x
+ ∂σzx

∂z
= 0, (4.28a)

∂σxz

∂x
+ ∂σzz

∂z
− ρg = 0. (4.28b)

If we were to integrate these partial differential equations, we could then algebraically
calculate the corresponding strains, depending on which planar model we were applying.
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For plane stress, for example, and from either Equations 4.16 or equivalently the inversion
of Equations 4.27, we could find the engineering strains

εxx = 1
E

(σxx − νσzz), (4.29a)

εzz = 1
E

(σzz − νσxx), (4.29b)

γxz = σxz

G
. (4.29c)

Next we can determine the two meaningful displacements in this plane stress model,
that is u(x, z) and w(x, z), by integrating the relevant strain–displacement equations
(a subset of Equations 4.4 and 4.6),

εxx = ∂u
∂x

, εzz = ∂w

∂z
,

γxz =
(

∂u
∂z

+ ∂w

∂x

)
. (4.30)

Summarizing what we have said so far for plane stress, in tabular form:

Equations Number Unknowns Number

Equilibrium (4.28) 2 σxx , σzz, σxz 3
Hooke’s law (4.29) 3 εxx , εzz, γxz 3
Strain–displacement (4.30) 3 u(x, z), w(x, z) 2
Total 8 8

On the surface, this seems copacetic: in Equations 4.28 through 4.30, we clearly have
a system of eight equations involving eight unknowns. But some questions remain. First
and foremost, are there ways to restructure the problem to make it seem less onerous? We
espy a glimmer of hope, recalling that a footnote in Section 2.9 hinted that by formulating
a problem in terms of displacements rather than stresses, we would be able to erode the
distinction between statically indeterminate and determinate problems.

4.6.1 Equilibrium Expressed in Terms of Displacements

There are two ways to structure solution processes for elasticity problems, and choosing
between the two depends on whether one wants to get directly to displacements or directly
to stresses. The approach to calculating displacements directly requires a short chain of
straightforward substitutions: First, Equations 4.29 is substituted into Equations 4.28 to
cast equilibrium in terms of strain components. Second, the strain–displacement relations
(4.30) are used to eliminate the strains from the intermediate results just found. As Prob-
lem 4.14 asks you to confirm, the equations of equilibrium cast in terms of displacements
are, for plane stress:

G∇2u + 1 + ν

1 − ν
G

∂

∂x

(
∂u
∂x

+ ∂w

∂z

)
= 0,

G∇2w + 1 + ν

1 − ν
G

∂

∂z

(
∂u
∂x

+ ∂w

∂z

)
= ρg.

(4.31)
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This is a system of just two equations for the two unknown displacements, and an
elegant system at that. Notice the symmetry of the differential operators∗ and of the group-
ings of elastic constants. In fact, Equations 4.31 are a subset (remember, we are talking
about plane stress) of the well-known Navier equations of elasticity theory. In indicial
notation, the three-dimensional Navier equations are

G∇2ui + 1
1 − 2ν

G
∂εkk

∂xi
+ Bi = 0, (4.32)

where B is the net body force acting on the body—in very many cases, the only body
force that comes into play is that due to gravity—with modulus G and Poisson’s ratio
ν. Of course with the summation convention εkk is the trace of the strain tensor. The
parallels between Equations 4.31 and 4.32 are unmistakable. The difference in the elastic
constants results from the plane stress assumption in Equation 4.31. Note, also, that both
of Equation 4.31 include an abbreviated, two-dimensional version of the volume change,
or dilatation (Equation 4.5):

∂u
∂x

+ ∂w

∂z
= εxx + εzz. (4.33)

This term also clearly reflects the two-dimensional nature of this discussion.

4.6.2 Compatibility Expressed in Terms of Stress Functions

How would the solution process for the case of plane stress be different if we wanted to
find stresses directly? It is a neat piece of arithmetic to show that if we can identify some
function φ from which we can calculate the stress components by performing the following
derivatives:

σxx = ∂2φ

∂z2 ,

σzz = ∂2φ

∂x2 + ρgz, (4.34)

σxz = − ∂2φ

∂x∂z
.

then these stress components will identically satisfy the two-dimensional equations of
equilibrium. So, what is this function φ, and how do we find and calculate it?

The function φ is called a potential function, and in this instance it derives from the
stress–strain and strain–displacement relations, Equations 4.29 and 4.30. Starting with
Equation 4.30, we seem to have three strain–displacement relations for determining (only)
two displacements. In fact, these three equations are themselves related, that is, they
are not entirely independent. We can see this by eliminating the displacements u and w

between the three Equation 4.30, that is, by noting that

∂2εxx

∂z2 + ∂2εzz

∂x2 = ∂3u
∂x∂z2 + ∂3w

∂z∂x2 ≡ ∂2γxz

∂x∂z
,

∗ The del-squared ∇2 operator, or Laplacian, is reviewed in Appendix B.
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or

∂2εxx

∂z2 + ∂2εzz

∂x2 = ∂2γxz

∂x∂z
. (4.35)

Equation 4.35 is a compatibility condition that the strains must satisfy in order that dis-
placements obtained by integrating Equation 4.30 are continuous and single-valued. That
compatibility condition can then be straightforwardly expressed in terms of the poten-
tial function—also called the Airy stress function after its originator—by substituting for
the strains using the stress–strain law (Equation 4.29) and for the stresses from the defini-
tion of the potential function (Equation 4.34). Then, as Problem 4.15 asks you to confirm,
the resulting form of the compatibility equation expressed in terms of the Airy stress
function∗ is

∇4φ = ∇2∇2φ = 0. (4.36)

4.6.3 Some Remaining Pieces of the Puzzle of General Formulations

We can summarize our two formulations so far as follows. In the first instance, we used
constitutive and kinematics relations to write equilibrium entirely in terms of displace-
ments (see Equation 4.31). The solutions to these equations can be inspected to ensure
that the resulting displacements are continuous, single-valued, and consistent with any
constraints. From these displacements, we can calculate strain and then stress.

In the second instance, we used equilibrium and a constitutive law to write compatibility
entirely in terms of a (single) Airy stress function (Equation 4.36). A solution to Equa-
tion 4.36 automatically satisfies equilibrium and will produce compatible displacements
(although it is always a good idea to inspect displacement results).

How and where do the actual loads come into the picture? And, what are the correct
boundary conditions corresponding to Equations 4.31 and 4.36? These two questions—and
their answers —are related, in part because of issues raised in Chapter 2. Remember that
there are two kinds of external or applied loads that are applied to solids or structures.
One kind of applied load comes through body forces that typically reflect response on a
specific, “per unit” basis to a field, such as gravity or electromagnetic radiation. As we
have seen, body forces appear in our formulations of equilibrium. The second kind of
external load results from surface loading, that is, the distribution of forces (and moments)
on the surface of the solid or structure, including points on the solid’s bounding surface
at which the structure is supported (or grounded). Surface loads may appear in equations
of equilibrium (as they did for axially loaded bars, and as they will in our discussion of
beams in later chapters), as well as in appropriate boundary conditions, as we will now
discuss.

We begin by introducing the idea of a traction vector as the point function resulting from
a limit process in which we divide the net force �P acting at a point O by the area of the
section �An at the point O, and then let the area become vanishingly small. This is the
same process we used to define the stress tensor, but here we are going to group terms dif-
ferently. Instead of breaking up the force and area each into three components and defining

∗ Again, the del-squared operator, or Laplacian, is reviewed in Appendix B. ∇4 = ∇2∇2 is called the biharmonic
operator.
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nine entries in the stress tensor, we will consider the total force acting on each component
of area:

tx ≡ lim
�Ax→0

�Px î + �Pyĵ + �Pzk̂
�Ax

= σxx î + σxyĵ + σxzk̂, (4.37a)

ty ≡ lim
�Ay→0

�Px î + �Pyĵ + �Pzk̂
�Ay

= σyx î + σyyĵ + σyzk̂, (4.37b)

tz ≡ lim
�Az→0

�Px î + �Pyĵ + �Pzk̂
�Az

= σzx î + σzyĵ + σzzk̂. (4.37c)

These components are truly vectors because in each we are looking at the vector force
�P acting on a scalar area.

Then, if we simply apply Equation 4.37 at points on a surface bounding the solid or
structure of interest, with the various t’s taken as known or prescribed forces, then Equa-
tion 4.37 serve as the boundary conditions on the corresponding stresses at those points
on the surface. Written in indicial form, Equations 4.37 is the famous Cauchy equation of
the theory of elasticity, relating traction vectors to the stress tensor:

ti = σi j n j , (4.38)

where n j is the unit basis vectors. Of course, there are problems where we also know or
prescribe the displacement(s) at points. These seem easier to express because we are simply
equating displacement components to specified values or functions. However, it is also the
case that we cannot prescribe both a force and a displacement in the same direction at the same
point. We will see how that plays out in detail when we talk about engineering beam theory
in Chapter 7. In the meantime, we leave it as an assertion that should have at least intuitive
appeal. Would it make sense to prescribe the force we might apply to one end of a spring
and, at the same time, prescribe independently how far that end should move?

Finally, we note that the above formulations of the plane stress problem can be dupli-
cated for plane strain, although the final details may differ. Plane stress and plane strain are
important concepts that find frequent use in elasticity theory and in structural mechanics.
And while their mathematics may be quite similar, their applications are rather different.
Thus, it is important to remember the domain of each. The plane stress model is valid for
solids or structures that are both thin and only insignificantly loaded through the thick-
ness, while the plane strain model is valid for a thin slice of a solid that is very long in one
direction, along which there is no (or very little) variation in load or geometry.

This introduction to elasticity has been just that, an introduction. The important concepts
here should not surprise you: kinematic description of displacements (strain), internal
loading (stress), equilibrium, and compatibility. We have packed a full bag of mathematical
tools for problems in continuum mechanics. In Chapter 5, we will investigate applications
of these tools to problems in torsion and pressure vessels and return to the question of
transforming coordinate systems in our descriptions of stress and strain.

4.7 Examples

EXAMPLE 4.1

Freshly cured concrete is cut with a saw to provide joints that allow for expansion and
contraction to prevent random cracking. A flexible sealant is used to fill the gap between
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concrete slabs. Consider a sealant joint that subsequently is subject to compression and
shear forces Pn and Ps. Using the coordinate axes shown, write the strain tensor for a
point in the sealant in terms of its elastic modulus E and Poisson’s ratio ν; the height h,
thickness t, and length L of the joint; and the force magnitudes.

Given: Geometry and loading on sealant.

Find: Strain tensor for the sealant.

Assume: Uniformly distributed loads; Hooke’s law applies.

Solution

The sealant experiences one normal stress σyy = Pn/hL which results in three normal
strains.

εyy = σyy

E
= Pn

EhL
and εxx = εzz = −νεyy = − νPn

EhL
.

There is only one pair of nonzero shear stresses, σyz = σzy = −Ps/hL . Note that the
negative sign indicates that the force is in the negative z-direction on the area with its
normal in the positive y-direction. This results in one pair of normal strains.

εyz = εzy = 1
2
γyz = 1

2
σyz

G
= 1

2
−Ps/hL

E/2(1 + ν)
= − Ps(1 + ν)

EhL
.

So the complete strain tensor is

ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

− νPn
EhL

0 0

0
Pn

EhL
− Ps(1 + ν)

EhL

0 − Ps(1 + ν)

EhL
− νPn

EhL

⎞
⎟⎟⎟⎟⎟⎟⎠ .

EXAMPLE 4.2

A rectangular copper alloy block as shown in the figure below has the following
dimensions: a = 200 mm, b = 120 mm, and c = 100 mm. This block is subjected to a tri-
axial loading in equilibrium having the following magnitude: σxx = +2.40 MPa, σyy =
−1.20 MPa, and σzz = −2.0 MPa. Assuming that the applied forces are uniformly dis-
tributed on the respective faces, determine the size changes that take place along a , b,
and c. Let E = 140 GPa and ν = 0.35.

a

y

b

c

x

z

Given: Stress state, dimensions, and properties of the copper block.
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Find: Size changes in each direction.

Assume: Homogeneous and isotropic; Hooke’s law applies.

Solution

We will need the generalized form of Hooke’s law, since we have stresses and deforma-
tions in multiple directions.

εxx = σxx

E
− ν

σyy

E
− ν

σzz

E
,

εyy = −ν
σxx

E
+ σyy

E
− ν

σzz

E
,

εzz = −ν
σxx

E
− ν

σyy

E
+ σzz

E
.

Plugging in the given values of each normal stress component, Poisson’s ratio, and E :

εxx = 25 × 10−6 = �a

a
, so �a = (25 × 10−6)(200 mm) = 5.0 × 10−3 mm.

Similarly,

�b = −9.8 × 10−4 mm,

�c = −2.1 × 10−3 mm,

so that the new dimensions of the copper block are: a ′ = 200.005 mm, b′ = 119.999 mm,
and c′ = 99.998 mm.

EXAMPLE 4.3

A rectangular block is compressed by a uniform stress σ0 as it sits between two rigid
surfaces with the gap a shown in the figure below. Determine

a. The stress σyy after the gap is closed

b. The change in the length along the x-axis both before and after the gap is closed

c. The minimum value of σ0 needed to close the gap

y

z x

y

c d

a

bz xσ0 σ0

Given: Rectangular block under uniform stress.

Find: Normal stress in the y-direction; deformation in the x-direction; applied stress
needed to close gap.

Assume: Material is homogeneous and isotropic; Hooke’s law applies.
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Solution

1. Before the gap is closed, σxx = −σ0 is the only nonzero stress component. After the gap
is closed σyy is not zero. With σzz = 0 in both cases, in general

εyy = −ν
σxx

E
+ σyy

E
= ν

σ0
E

+ σyy

E
,

then solving for σyy

σyy = Eεyy − νσ0.

When the gap is closed, εyy = �L y/L y = a/b, so

σyy = E
a
b

− νσ0.

2. Generally

εxx = σxx

E
− ν

σyy

E
= −σ0

E
− ν

σyy

E
,

So

�Lx = εxxc = − c
E

(
σ0 + νσyy

)
,

and this reduces to �Lx = −(c/E)σ0 before the gap is closed.

3. σyy is zero before and just as the gap closes. With this, re-arranging the result from part
(1) gives

σ0 =
(

Ea
νb

)
.

EXAMPLE 4.4

For a general case of plane stress, find the out-of-plane normal strain in terms of the
in-plane strains.

Given: Plane stress state.

Find: Relationship between out-of-plane strain and in-plane strains.

Assume: Hooke’s law applies.

Solution

We start with generalized Hooke’s law for the case of plane stress:

εzz = −ν
σxx

E
− ν

σyy

E
+ σzz

E
= − ν

E
(σxx + σyy),

and then incorporate the Equation 4.24

σxx = E
1 − ν2

(
εxx + νεyy

)
,

σyy = E
1 − ν2

(
νεxx + εyy

)
,
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to get

εzz = − ν

E

[
E

1 − ν2

(
εxx + νεyy + νεxx + εyy

)] = − ν

1 − ν

(
εxx + εyy

)
.

The negative sign confirms that in-plane stretch corresponds to thinning in the out-of-
plane direction. Interestingly, this result shows dependence on Poisson’s ratio but not on
elastic modulus.

PROBLEMS

4.1 Show that the change in volume of a solid body element whose initial, unstrained
volume is V– = lxlylz is given (to first order in the normal strains) by

� V–
V–

= εxx + εyy + εzz.

4.2 Calculate all of the normal and shear strains for the following displacement field:

u(x, y, z) = −z
∂w(x)

∂x
, v(x, y, z) = 0, w(x, y, z) = w(x).

Write your answer in a strain tensor. (Note: These results will reappear when we study
beams.)

4.3 Calculate all of the normal and shear strains for the following displacement field:

u(x, y, z) = −αyz, v(x, y, z) = αxz, w(x, y, z) = 0.

Write your answer in a strain tensor. (Note: These results will re-appear when we study
torsion.)

4.4 Calculate all of the normal and shear strains for the following displacement field:

u(x, y, z) = −αyz, v(x, y, z) = αxz, w(x, y, z) = κ(x, y).

Write your answer in a strain tensor. Compare and contrast these results with those of
Problem 4.3.

4.5 Verify that the results σxy = σyx, σyz = σzy, σxz = σzx are correct by satisfying moment
equilibrium for an infinitesimal volume element about each of the three orthogonal
axes.

4.6 A circle of diameter d is inscribed on the surface of an unstressed metal (Young’s
modulus E and Poisson ratio ν) square plate of thickness t and side length l (as pic-
tured below). If the plate is subjected to planar stresses σxx = 82.7 MPa and σyy =
137.8 MPa, and has properties E = 200 GPa, ν = 0.30, t = 2.00 cm, and l = 40.0 cm, find
the changes in
a. The length of the diameter AB

b. The length of the diameter C D
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c. The thickness of the plate
d. The volume of the plate

z

ll
t

x y

C

BD
A

σyyσxx

4.7 A piece of 50 × 200 × 10 mm steel plate is subjected to loading along its edges, as
shown. (a) If Px = 100 kN and Py = 200 kN, what change in thickness occurs due to
the application of these forces? (b) For Px alone to cause the same change in thickness
as in part (a), what must be the magnitude of Px? Let E = 200 GPa and ν = 0.25.

4.8 Two small cubes of equal size but made of different materials are stacked (as shown
in the figure below), so they just fit between two rigid surfaces. The bottom cube is
subjected to a uniform pressure p on each of its exposed surfaces. Find the contact or
interfacial stress on the connecting plane, expressed in terms of p and the two sets of
material properties.

EA, νA

EB, νB

p

p

y

p
x

z

4.9 The two small cubes of Problem 4.8 are each subjected to a separate uniform pressure,
pb on the exposed faces of the bottom cube and pa on the exposed surfaces of the top
cube. What is the ratio of these two pressures, expressed in terms of the two sets of
material properties, such that the volume changes of both cubes are the same?

4.10 An isotropic, elastic (modulus E , Poisson’s ratio ν), homogenous block of a mate-
rial with a high coefficient of thermal expansion α is embedded in a mold that has a
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cavity open on top and rigid, smooth walls (negligible friction). The coefficient of ther-
mal expansion of the mold is very small, and we can assume its dimensions do not
change. The block has original dimensions Lx , L y, and Lz. If the block temperature is
increased by �T , what is the change in the height of the block in the z-direction?

Block

Mold

Open cavity

x

y

z

4.11 A prototype bolt shaft (assume a uniform cylinder) that is to be loaded in tension is
made of a stainless steel with a yield strength of 450 MPa and has a safety factor of 3
with respect to yielding for the maximum allowable loading. Find two ductile mate-
rials that could be used to replace the steel to make the bolt lighter while maintaining
the same safety factor. The new bolts will have the same length as the original but
may have different diameters. What is the percent weight savings with each of the
new materials? What other material properties might be important to consider before
a final choice is made?

4.12 Fabric used in hot air balloons (see below) is subjected to biaxial loading that results
in a state of plane stress. A particular panel on a balloon that has an x length of 175 cm
and a y length of 130 cm is subject to stresses σxx = 160 MPa and σyy = 140 MPa. The
properties of the fabric can be approximated as E = 87 GPa and ν = 0.34. Determine
(a) the changes in x and y dimensions, and (b) the percent change in thickness of the
panel.
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4.13 Consider a 4-in square steel bar subjected to transverse biaxial tensile stresses of 20 ksi
in the x-direction and 10 ksi in the y-direction. (a) Assuming the bar to be in a state of
plane stress, determine the strain in the z-direction and the elongations of the plate in
the x- and y-directions. (b) Assuming the bar to be in a state of plane strain, determine
the stress in the z-direction and the elongations of the bar in the x- and y-directions.
Let E = 30 × 103 ksi and ν = 0.25.

4.14 Verify the following equilibrium equations for plane stress in the xz-plane.

G∇2u + 1 + ν

1 − ν
G

∂

∂x

(
∂u
∂x

+ ∂w

∂z

)
= 0,

G∇2w + 1 + ν

1 − ν
G

∂

∂z

(
∂u
∂x

+ ∂w

∂z

)
= ρg.

4.15 Verify the following compatibility equation for plane stress in the xz-plane.

∇4φ = ∇2∇2φ = 0.

4.16 Derive counterparts for the case of plane strain in the xz-plane of the equilibrium
equations shown in Problem 4.14 for plane stress. How do these plane strain results
differ from the equilibrium equations for plane stress?

4.17 Derive a counterpart for the case of plane strain in the xz-plane of the compatibility
equation shown in Problem 4.15 for plane stress. How does this plane strain result
differs from the compatibility equation for plane stress?

4.18 Explain the notation and meaning of Cauchy’s formula:

ti = σi j n j .
4.19 Determine, for the following three-dimensional state of stress,∣∣∣∣∣∣

1000 200 200
200 1000 200
200 200 1000

∣∣∣∣∣∣ psi

a. The components of the surface traction vector acting on an element of surface
that has a normal vector n̂ = 0.50î + 0.50ĵ + 0.707k̂.

b. The component of this surface traction vector in the direction of the unit vector
λ̂ = 0.25î + 0.935ĵ + 0.25k̂.





5
Applying Strain and Stress in Multiple Dimensions

In both one and multiple dimensions, we have now considered how continuum mechanics
will help us create and analyze effective designs. We made sure to include (1) kine-
matics, or strain; (2) stress; (3) constitutive laws, or how strain and stress are related; and
(4) equilibrium as we developed general results to help us analyze the internal response
of continuous materials to external loading. In Chapter 4, we recognized that strain, stress,
and the material stiffness that relates them are each tensors (of second-, second-, and fourth-
order, respectively). The somewhat involved mathematics of the last parts of Chapter 4
should not have distracted us from our goal: to obtain useful results that we will apply
to the design and analysis of structures. In Chapter 5, we will apply the formulations and
results of Chapter 4 to several canonical types of external loading, and we will return to
the question of how strain and stress depend on the reference coordinate system.

5.1 Torsion

In the previous chapters, we have discussed primarily axial loading conditions and how to
determine stresses and deformations under these conditions. We now turn our attention to
bodies subjected to a twisting action caused by a torque or a twisting moment. As before,
we will be looking at the isolated effects of this one type of loading; we will later be able
to combine multiple loading configurations to address more realistic, real-world problems.
One example of a twisting external load is in the tightening of a vise grip: the user applies a
torque to the threaded screw of the vise, turning it, which in turn causes the jaws to tighten.
In practice, rods for transmitting torque, such as motor shafts, are generally circular or
tubular in cross section. Most of our examples and applications, therefore, will involve
circular sections.

5.1.1 Method of Sections

What happens when a shaft or rod in static equilibrium is subjected to a twisting motion? If
the rod is free, this is caused by a pair of externally applied, equal and oppositely directed
torques (or couples) acting in parallel planes. If the rod is fixed, this is caused by a single
applied external torque and internal resisting torque supplied by the fixed end. The portion
of the rod between these two external, or between the external and internal, torques is said
to be in torsion, or under torsional load. For example, the screw of the bench vise mentioned
above is in torsion when the jaws are fully tightened and force is still applied to the handle.

Generally, only one equation of statics will be relevant:
∑

Mx = 0, where the x-axis is
directed along the rod in question. So, when we apply the method of sections, the internal
torque must balance the externally applied torque: it must be equal, but have opposite
sense. For an example of this, see Figure 5.1.
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F

dFF

FIGURE 5.1
Sketches showing (clockwise from top left): equal and opposite torques; an FBD of section; rigidly fixed bar.

The torque, being the cross product of lever arm and force, has units of in-lb in U.S.
customary system and Nm in SI. Although the terms torque, moment, and couple do have
distinct meanings, they are often used interchangeably in modern engineering practice.

In order to relate the internal torque and the stresses it sets up in rods with circular solid
and tubular cross sections, we make the following assumptions, all of which are rooted in
and validated by copious experimental data:

1. A plane section of material initially perpendicular to the rod’s axis remains plane
after torques are applied, that is, no warpage or distortion of parallel planes takes
place. Imagine a cylinder composed of very thin disks, like a roll of pennies, if
the reader will indulge this anachronism. When you twist the roll, the pennies are
each displaced, but are not warped out of their planes.

2. Shear strains γ vary linearly from the central axis, reaching γmax at the periph-
ery. That is, shear strain varies linearly with radial coordinate r . The radius itself
remains straight. (On any cross section or penny, the outer edges are deformed the
most.)

And, if the material composing the rod is linearly elastic, we may apply Hooke’s law, from
which it follows that

3. Shear stress is proportional to shear strain, as we have seen: τ = Gγ. Thus, we
expect τ, like γ, to increase with r .

5.1.2 Torsional Shear Strain and Stress: Angle of Twist and the Torsion Formula

Consider a torsionally loaded rod like the bottom sketch in Figure 5.1, fixed against rota-
tion at one end and subjected to a torque at the other end. Since torques cause neither direct
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Applying
a torque: L

T

c

L

L′

c
γxθ = γ

Results in
distortion:

φ

FIGURE 5.2
Circular shaft in torsion.

tension nor compression, this loading develops pure shear stresses on each cross-sectional
plane between the applied torque and the fixed end.

If we imagine that the rod is made up of a series of ultra-thin plates (a roll of micro-
pennies), we can visualize each thin plate tending to slide across the contact surface with
the adjacent plate. Since the rod is in equilibrium (and does not fracture), some internal
resistance must develop that prevents any such slippage. This internal resistance (per unit
area) is called the torsional shear stress. The resultant of these resisting stresses on any cross-
sectional plane is an internal resisting torque.

Since we are by now well aware that all materials have limited (tensile, compressive,
and shear) strength, we desire a mathematical relationship between torsional shear stress,
applied torque, and the physical properties of the rod. As always, we seek to understand
the internal response of a material to (in this case, torsional) loading.

The free end of the rod in Figure 5.1 (bottom) will rotate slightly when a torque is applied.
This is shown in Figure 5.2. The shaft radius of length c will be rotated an angle φ, called
the angle of twist, and line length L will become L ′, actually part of a helical curve. So, the
shear distortion of the line is equal to the arc length subtended by this twisting φ. We are
interested in finding an expression for this arc length, with which we can write the shear
strain. The shear strain, like any strain, is defined at each point. However, in the same
way that each thin section of a bar loaded in tension by a pair of point forces on its ends
stretches by the same amount, each thin section of a rod subject to end torques twists the
same amount. Both the normal strain in the bar and the shear strain in the rod do not vary
with position along the length (the shear strain also does not vary with position θ around
the rod, but as we have said, it does increase linearly with radius). So every point on the
rod’s outer surface has the same value of shear strain, and we may use the average without
loss of information.

If we look closely at the circular front face of the shaft, we can write the arc length cor-
responding to the shear distortion as φc; if we look at the length of the shaft, we see that
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(assuming small deformations) the arc length is γL . These two expressions for arc length
must be equivalent, so we must have

γL = φc. (5.1)

Remember, this shear strain is at the outer radius, so is the maximum possible shear
strain (since shear strain increases linearly with r ). In other words, the maximum shear
strain γ depends on the angle of twist of the shaft, φ:

γmax = φc
L

, (5.2)

where both γ and φ are expressed in radians. In general, the shear strain is given by

γ(r) = φr
L

, (5.3)

where both γ and φ are in radians.
In the previous section, we listed the assumptions made for a circular rod in torsion.

The first was that a plane cross section will remain a plane after the shaft has twisted;
also, a straight line radius will remain a straight line as the shaft is twisted. Our second
assumption that shear strains vary linearly with r tells us that halfway between the center
of the shaft and its outer edge, the shear strain will have half its value at the outer surface.
We write this statement, which readily follows from Equations 5.2 and 5.3, as

γ = r
c
γmax. (5.4)

If Hooke’s law τ = Gγ applies, our third assumption lets us use a similar distribution
for shear stress, as shown graphically in Figure 5.3.

Once the stress distribution at a section is established, the resisting torque in the rod can
be expressed in terms of stress. Remember that stress is the internal resistance to applied
loads. To satisfy equilibrium, this internal resisting torque must balance the externally
applied torque T . To best apply this equilibrium relation, we should consider its vector
form ∫

A

dTinternal =
∫

A

r × dF = T, (5.5)

where the integral sums all torques developed on the section in question by the infinitesi-
mal internal forces acting at some distance r from a rod’s axis, over the whole area A of the

τmax
τmax

cr

dA

c
r

FIGURE 5.3
Shear stress variation on a plane.
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cross section. Thinking about this in cylindrical coordinates,∗ we know that the direction
of r is always radial and can say the direction of each infinitesimal force dF is perpendic-
ular to that, in the local tangential, or θ, direction. Their cross product is in the x-direction
along the axis of the beam, as it must be equal to the external torque. Continuing now with
magnitudes only, we have

∫

A

r︸︷︷︸
moment

arm

r
c
τmax︸ ︷︷ ︸

stress

dA︸︷︷︸
area︸ ︷︷ ︸

force︸ ︷︷ ︸
torque

= T .

(5.6)

At any given section, τmax and c are constant; therefore, we take them out of the integral
and write the expression as

τmax

c

∫

A

r2 dA = T . (5.7)

The integral
∫

r2 dA is called the polar second moment of area, denoted by J .† For a circular
cross section, dA = 2πr dr , and we can calculate J as

J =
∫

A

r2 dA =
c∫

0

2πr3dr = 2π

[
r4

4

]c

0

= πc4

2
= πd4

32
, (5.8)

where d is the diameter of the solid circular shaft in question. J has dimensions of
(length4). We can now rewrite our expression for the internal torque as

τmax = Tc
J

, (5.9)

which is the well-known torsion formula for circular shafts, giving us τmax in terms of the
resisting torque and the rod’s dimensions. More generally, we can find the shear stress τ at
any point a distance r away from the center of a section from

τ = r
c
τmax = Tr

J
. (5.10)

The shear stress we have just derived acts on a circular cross section face, which has its
normal in the x-direction, and the local force that causes shear stress acts everywhere in the
local θ direction. This shear stress τ can be more specifically designated as σxθ which must
also equal σθx . Remembering that shear strains γ are two times the shear strains ε that are
entered in strain tensors, the corresponding shear strain components are εxθ = εθx = 1

2γ.

∗ In our previous discussion of the strain and stress tensors, we only discussed Cartesian coordinate systems.
Cylindrical coordinates are equally valid.

† J is commonly called the “polar moment of inertia,” though it is a moment of area and not mass, and is more
correctly referred to as polar second moment of area. Moments of area are geometric properties of certain areas,
reflecting how effectively those areas resist deformation. A large J indicates a cross section that will effectively
resist torsion. Please see Appendix A for a table of values for common areas.
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If our shaft is not solid but a tube of some thickness, similar expressions can be derived.
The limits of integration in this case are not 0 and c, but b and c where b marks the inner
radius of the tube, so the polar second moment of area becomes

J =
∫

A

r2 dA =
c∫

b

2πr3 dr = πc4

2
− πb4

2
. (5.11)

And for very thin tubes, where b ∼ c, and c − b = t, the thickness of the tube, J
reduces to

J ≈ 2πR3
avt, (5.12)

where Rav = (b + c)/2.
If a circular shaft is made from two different materials bonded together as in Figure 5.4,

our original strain assumption applies. Through Hooke’s law, the shear stress distribution
will be found to be more like that in Figure 5.4.

Using the torsion formula (Equation 5.9), the angle of twist can now be related to the
shear stress, and hence to the applied torque. Recall that γmax = cφ/L . If Hooke’s law
applies, we can use our equation for τmax to write

γmax = τmax

G
= Tc

J G
, (5.13)

so equating these two expressions for maximum shear strain, we have

φ = T L
J G

. (5.14)

This expression suggests the technique used for measuring a material’s shear modu-
lus G in a torsion testing machine. In torsion testing, a known torque T is applied, the
resulting deformation φ measured, and the slope of the plotted data is J G/L . Since the
geometric parameters of the sample are known, J and L are known constants, yielding an
experimental value of G.

c1

c2

φ τ = G1
γ

τc1

τc2

τ = G2
γ

FIGURE 5.4
Elastic behavior of circular rod in torsion having an inner core of flexible material.
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Equation 5.14 gives the angle of twist for a rod of uniform J , G, and L . In the case of
adjoining sections of differing geometries, we are able to superpose the angles of twist by
integrating or merely summing over the different components:

φ =
L∫

0

T(x)

J (x)G(x)
dx for continuous changes in torque, diameter, or properties (5.15)

or,

φ =
∑

i

Ti Li

J i Gi
for abrupt changes or stepped shafts. (5.16)

You may find it interesting to compare these results for the twist of a rod with those for
the extension of a bar in Section 2.7.

Always remember that we based this derivation of the torsion formula on Hooke’s law,
so the expressions developed for shear stress and angle of twist in a bar in torsion are
only relevant when loads are under the proportional limit. If the yield strength is exceeded
somewhere in the rod, or if the material involved has a nonlinear shear constitutive law,
these relations are invalidated.

5.1.3 Stress Concentrations

The equations we have so far developed for stresses and strains in circular rods apply to
solid and tubular circular rods while the material behaves elastically, and while the cross-
sectional area along the rod remains reasonably constant. Stresses calculated from angles
of twist determined using Equation 5.15 will also give acceptable results when changes
in cross-sectional area are gradual. But for stepped shafts where the diameter changes
abruptly, large stress concentrations are possible. In this textbook, we will not be calculat-
ing these local stress concentrations, but we will use a torsional stress–concentration factor
to estimate their effects. This method is completely analogous to that discussed in Sec-
tion 2.11 for axially loaded bars, and again the factors depend only on the rod geometry.
Figure 5.5 shows the stress–concentration factors for various proportions of stepped round
shafts. The factor obtained from the chart is then used to adjust the value of maximum
shear stress:

τmax = K
Tc
J

, (5.17)

where the shear stress Tc/J is obtained for the smaller shaft. It should be clear from the
extreme slope at low r in Figure 5.5 that it is desirable to have a large fillet radius r at all
sections where a transition in shaft diameter is made.

5.1.4 Transmission of Power by a Shaft

Rotating shafts are commonly used to transmit power. If an applied torque turns a shaft,
work is done by the torque. Work, you may recall, is defined as the energy developed
by a force acting through a distance against a resistance. When the force is constant, we
express the work as force × distance. For a rotating shaft, the applied torque turns the
shaft through a circular distance, so work is expressed as torque × angular distance = Tθ.
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FIGURE 5.5
Torsional stress–concentration factors in circular shafts of two diameters. (After Jacobsen, L.S., Torsional-Stress–
Concentrations in Shafts of Circular Cross-Section and Variable Diameter, Trans. ASME, 47: 619–638, 1925.)

We will express the rotation angle θ in radians; if a shaft is rotated at constant speed
against some resistance, the work done in one revolution will be 2πT . The units of work
are (N·m), (ft·lb), or (in·lb).

Power is defined as the work done per unit time. We will therefore want to talk about
the shaft rotation per unit time, or the shaft’s angular speed. We will use ω to represent the
shaft’s angular velocity (dθ/dt) in radians per second. (Often, we will be given a shaft’s
angular velocity in revolutions per minute, or rpm; to convert this to radians per second,
we must multiply by 2π and divide by 60.) Power can then be written

P = ωT . (5.18)

The unit conventionally used in the United States is the horsepower (hp). In SI, the unit
used to express (N · m/s) is the Watt (W). It was the Scottish inventor James Watt who,
having refined the Newcomen pump to create the useful steam engine, needed a standard
to which to compare his new technology. The industry standard at the time was what a
millhorse could produce, so Watt tested a brewery horse turning a mill wheel, and found
that the horse output 33,000 ft-lb/min, a number that became known as 1 horse power
(hp). Some useful facts for dealing with these units:

1 hp = 33,000
ft · lb
min

= 550
ft · lb
sec

= 6600
in · lb

sec
= 745.7 W.

5.1.5 Statically Indeterminate Problems

Just as in the case of axially loaded bars, there are times when we cannot determine
the internal torques from statics alone. It is necessary to complement the equilibrium
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equations with relations involving the shaft deformations and considering the geometry
of the problem. And, as before, several techniques are available to help us.

We can adapt the methods of Section 2.9 directly by substituting torques for forces and
twists for displacements. In the force method (we still use this name) for rods in torsion,
we introduce an additional equation by writing a geometric compatibility equation that
must be satisfied. For example, we might know that the twists of two rods must be equal.
Or we might first remove one of the redundant reaction torques and calculate the rotation
φ0 at the released support. Then we restore the required boundary conditions by twisting
the rod at the released end through an angle φ1 such that the sum φ0 + φ1 = 0.

In the displacement method, the strategy is to consider the torque Ti for the ith shaft
component as Ti = (kt)iφi and then to write equilibrium equations for each node where
shaft segments meet. In these expressions, kt is the torsional stiffness of a rod, again anal-
ogous to a spring constant, and we define it as (kt)i = Ti/φi = Gi Ji/Li , with dimensions
of [(length · force)/rad]. And, as in the case of axial loads, we can define the reciprocal of
stiffness to be the torsional flexibility, which we use in the force method for indeterminate
problems.

So just as we did for axially loaded bars which were statically indeterminate, we must
ensure (1) equilibrium, (2) geometric compatibility, and (3) consistency of material prop-
erties, using constitutive laws such as Hooke’s law, in any order we find convenient, until
we can solve for all the unknowns in the problem.

5.1.6 Torsion of Solid Noncircular Rods

Everything we have said about torsion has applied to rods with circular cross sections. We
assumed early and often that plane sections (i.e., each cross section) remained plane. This
assumption depends on the axisymmetry of the rod: that it appears the same when viewed
from a fixed position and rotated about its axis through an arbitrary angle.

In a square bar, for example, because of the lack of axisymmetry, most lines drawn
through a cross section will deform when the bar is twisted, and the cross section itself
will be warped out of its original plane. See Figure 5.6 for an illustration of this behavior,
or draw an even grid on a rubber eraser and apply a twisting moment to see the irregularity
of the grid under torsion.

Disappointingly, then, our equations for strain and stress distribution in elastic circular
shafts are nontransferable to noncircular shafts. It would be wrong to assume that shear
stress in a square bar varied linearly with distance from the axis of the bar; under this
assumption, shear stress would be highest at the corners, and it is actually zero at these
points.

The mathematical computation of the stresses and strains in noncircular bars in torsion is
quite complex. In fact, it was the French elastician Adhémar Barré de Saint-Venant (of the

(a) (b)

FIGURE 5.6
Rectangular bar (a) before and (b) after a torque is applied.
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a
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L

FIGURE 5.7
Generic rectangular bar in torsion.

eponymous principle in Section 2.11) who developed the solution in 1853. This solution is
somewhat beyond our scope. However, we can gain some intuition about these problems
from the final results of his analysis.

For straight bars with a uniform rectangular cross section of length L and with a and b
denoting the wider and narrower sides of the cross section as in Figure 5.7, the maximum
shear stress occurs along the center line of the wider face of the bar and is equal to

τmax = T
C1ab2 , (5.19)

and the angle of twist may be expressed as

φ = T L
C2ab3G

. (5.20)

In these expressions, the coefficients C1 and C2 depend only on the ratio a/b and are
given in Table 5.1 for a range of values of this ratio. Both these expressions are valid only
within the elastic regime. Similar results for different types of cross sections are available
in books such as R. J. Roark and W. C. Young’s Formulas for Stress and Strain.

It is also possible to recast the equation for angle of twist to express the torsional stiffness
kt for a rectangular section:

kt = T
φ

= C2ab3 G
L

. (5.21)

TABLE 5.1

Coefficients for Rectangular Bars in
Torsion
a/b C1 C2

1.0 0.208 0.1406
1.2 0.219 0.1661
1.5 0.231 0.1958
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312
∞ 0.333 0.333
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FIGURE 5.8
Membrane analogy for bars in torsion.

An elegant membrane analogy provides a way of visualizing the shear stress distribution
in noncircular rods. This analogy was introduced by the prolific German scientist Ludwig
Prandtl in 1903. The idea comes from the fact that the partial differential equation govern-
ing the shear stress in a bar in torsion is the same equation which governs the deformation
of an elastic membrane (such as a soap film) attached to a fixed frame and subjected to a
uniform pressure on one of its sides. For the equations to be mathematically identical, the
frame must be the same shape as the bar cross section. The solution of this equation shows
that

1. The shear stress at any point is proportional to the slope of the stretched membrane
at the same point, as illustrated in Figure 5.8.

2. The direction of a particular shear stress at a point is normal to the slope of the
membrane at the same point, as also illustrated in Figure 5.8.

3. Twice the volume enclosed by the membrane is proportional to the torque carried
by the section.

If you simply imagine blowing on a soap film, too gently to detach the film and blow a
bubble, you should be able to picture the places at which the film will distort, and where
its slope will be greatest. The membrane analogy tells you that these points correspond to
the locations of highest shear stress in a cross section in torsion. For example, in Figure 5.9,
a circular soap film is shown being deformed by uniform pressure on its lower surface.

FIGURE 5.9
Soap film on a circular frame. (From Isenberg, C., The Science of Soap Films and Soap Bubbles, Dover, 1992. With
permission.)
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Observe that it is nearly flat at the center, where we know the shear stress to be at its
minimum value and that the curvature is very steep at the outer edge, where we already
know that due to its radial dependence the shear stress will be maximized.

5.2 Pressure Vessels

Pressure vessels are generally spheres, cylinders, ellipsoids, or some combination of these,
with the goal of containing liquids and gases under pressure. Examples of pressure ves-
sels include boilers, fire extinguishers, shaving cream cans, and pipes, as well as the
compressed air tanks carried by scuba divers such as those installing the artificial reef
components in our motivating example from Chapter 1.

Actual vessels are usually composed of a complete pressure-containing shell with flange
rings and fastening devices for connecting and securing mating parts. At this point, we
are interested in the stresses developed in the walls of simple spheres and cylinders, two
shapes which are widely used in industry. To perform our stress analysis, we will employ
a generalized form of Hooke’s law.

Thin-walled pressure vessels are those which have a wall thickness t not more than one-
tenth of the internal radius ri of the vessel (t ≤ 0.1ri ). The walls of an ideal thin-walled
pressure vessel act as a membrane, experiencing no bending. The internal pressures within
such vessels are relatively low. Thick-walled vessels such as gun barrels or high-pressure
hydraulic presses, on the other hand, have t > 0.1ri and experience dramatic variations in
stress from the inner to the outer surface. In this section, we will be considering the simpler
thin-walled situation.

Cylindrical and spherical thin-walled pressure vessels are generally subjected to some
level of internal fluid (gas and/or liquid) pressure. As a result of the internal pressure,
tensile stresses are developed in the vessel walls. These stresses may not exceed specified
allowable tensile stresses. Internal pressure tends to rupture the vessel along a joint.

Consider first the cylindrical pressure vessel shown in Figure 5.10a. If we take a section
by passing a cutting plane through the pressure vessel, we obtain a slice as in Figure 5.10b,
a typical cross section of a cylindrical thin-walled pressure vessel subjected to an internal
pressure p. The internal pressure at any point acts equally in all directions and is always
perpendicular to any surface on which it acts. This is reflected in Figure 5.10b.

As mentioned above, the radially acting internal pressure is resisted by tensile stresses
developed in the walls of the pressure vessel. These are called circumferential or hoop
stresses. In conventional cylindrical coordinates, these are normal stresses on a plane with

L Do

Dip p

L

σxx σθθ

σθθ

(a) (b) (c)

FIGURE 5.10
(a) Cylindrical pressure vessel; (b) cross section; and (c) section of thickness L . As an exercise, label the stresses
in (a) as σθθ or σxx , so that they are in agreement with (c).
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FIGURE 5.11
Projected area of cylindrical pressure vessel half section. Note that arrows to right indicate vectors out of the
page; arrows to left indicate vectors into the page.

its area normal in the θ-direction due to forces in the θ-direction, or σθθ. If we perform
a force balance on the element in Figure 5.10c, where the vessel has been sliced along its
length, we can obtain an estimate of these stresses.

In Figure 5.10c, the hoop stress σθθ acting on the two cut surfaces resists the force devel-
oped by the internal pressure p. Although this acts perpendicular to the surface at all
points, the resulting forces are only unbalanced in the horizontal direction and effectively
the pressure acts normal to a projected area Di L . Figure 5.11, which shows only the pro-
jected area Do L , should serve to make this even clearer. (Remember that pressure, like
stress, is a force per unit area.)

The hoop stress σθθ acts on a combined cut area 2L(ro − ri ) = 2Lt. Balancing the forces,
we have

pDi L = 2σθθLt, (5.22)

which neatly simplifies to an expression for hoop stress σθθ:

σθθ = pDi

2t
= pri

t
. (5.23)

This is an expression for the average circumferential hoop stress and is valid only for
thin-walled cylindrical pressure vessels. In these vessels, in fact, it is often estimated that
ro ≈ ri , and so the subscript on r is omitted. And incidentally, this expression can also
be arrived at by examining an infinitesimal slice of the cylindrical vessel, and integrating
over it.

The other normal stress acting in a cylindrical pressure vessel acts longitudinally and
may be determined by the solution of an axial-force problem. Conveniently, it is called the
longitudinal stress. In cylindrical coordinates, we call it σxx. To find its value, we slice the
body perpendicular to its axis and obtain the section shown in Figure 5.12.

The pressure acting on the cylindrical length of the cylinder is not shown as it has no
component in the x-direction of interest. On the end cap, the pressure acts normal to the
surface, but the only net x-direction force, regardless of the nature of the curved shape of

σxxp

FIGURE 5.12
Longitudinal stress.
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σθθ = σxx

p

FIGURE 5.13
Spherical pressure vessel.

the end cap, is due to the pressure acting on the projected circular area. This force pπr2
i

must be balanced by the force developed by the longitudinal stress σxx in the wall multi-
plied by the area on which it acts: σxx(πr2

o − πr2
i ). If we equate these two forces and solve

for σxx:
pπr2

i = σxx(πr2
o − πr2

i ),

σxx = pr2
i

r2
o − r2

i
= pr2

i
(ro + ri )(ro − ri )

.
(5.24)

But, we have ro − ri = t, the thickness of the cylindrical wall, and since we are consider-
ing thin-walled vessels, we take ro ≈ ri ≈ r , so we may use

σxx = pr
2t

, (5.25)

and we notice that for thin-walled cylindrical pressure vessels, σxx ≈ σθθ/2. That the
hoop stresses are twice the longitudinal may be appreciated by cooking a hot dog until
it “plumps” (deforms by expanding in response to rising internal pressure) and bursts—
the tears in its casing will be along the longitudinal direction, because it will fail due to
stress in the circumferential or hoopwise direction.

For thin-walled spherical pressure vessels, a similar method may be employed. In Fig-
ure 5.13, we see a sample vessel and an FBD that combines elements of Figures 5.10 and
5.12. For a sphere, any section we take passing through the center of the sphere will yield
the same result, whatever the inclination, and the analysis proceeds just as the case of lon-
gitudinal stress for the cylindrical pressure vessel. So, the membrane stress for thin-walled
spherical pressure vessels in any plane is

σsphere = pr
2t

. (5.26)

The complete state of stress in the membrane wall is biaxial stress, with an element
experiencing σsphere in two perpendicular directions.

The stresses we have developed for cylindrical and spherical pressure vessels are in the
plane of the vessel walls. It is true that the pressure itself acts in a normal direction per-
pendicular to the wall, but we do not consider this in a thin-walled vessel model. We can
see from the stress expressions derived that since t ≤ 0.1ri , the in-plane stresses must be
significantly larger than p. The stress tensors therefore are assumed to contain only the
two in-plane normal stresses. The plane stress analysis of Chapter 4 is thus applicable.

For either cylindrical or spherical pressure vessels, the effects of internal pressure may be
combined with other loading conditions. Just as in the case of thermal effects, the hoop and
circumferential stress are simply added to the other stresses in the corresponding positions
in the stress tensor. For further discussion of pressure vessels, please see Chapter 6.
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5.3 Transformation of Stress and Strain

So far we have considered the isolated effects of normal stresses and shear stresses due
to various loading by axial and shear forces and torques. When stresses due to differ-
ent sources act on an element to cause contributions to the same stress component (such
as a pressure vessel’s longitudinal normal stress, and the normal stress due to an axial
load on the vessel), we can simply add them. Often we will have multiple non-zero stress
components due to real loading situations and then we must consider all of the stress ten-
sor components. In some cases, the combinations of stresses produce critical conditions
worthy of more detailed examination.

In the previous sections, we have been able to calculate the stress state on a lateral cross
section of a component. However, as we remember from our study of axially loaded bars,
the stresses on an inclined cross section may be quite different. In designing a system,
we might prefer to know the stress state at some other orientation, for example, if we
were using a material (such as wood or fiber-reinforced concrete) with a grain, or with
anisotropic properties, or if a weld or bolt were inclined at some angle from our usual
axes. Consider the failure of a material under torsion—some materials do fail along the
interfaces between the imaginary pennies being twisted, in a “clean break” along the cross
section (Figure 5.14a). But more brittle materials tend to fail in a different way, so that
the cleavage surface is inclined at an angle of about 45◦ (Figure 5.14b). Twist a piece of
chalk in your hands to see this type of failure. In order to understand these failures, and
to create robust designs, we want to develop a way of calculating the stress state on axes
that are oriented at an arbitrary angle to our reference axes. We will also be interested
to know at what orientation of the axes we can see the largest stresses, and what those
stresses are.

We are aware that the most general state of stress at a given point may be represented
by six unique components of a stress tensor. Three of these components, σxx , σyy, and
σzz, are the normal stresses exerted on the faces of a small cube-shaped element centered
at the point, and three are the shear components σxy, σxz, and σyz on the same element.
(We remember that the stress tensor is symmetric, and therefore σxy = σyx , σxz = σzx, and
σyz = σzy.) If the element is rotated from the standard coordinate axes, we will have to
transform the stress components (as shown in Figure 5.15). The same goes for the six
independent components of the strain tensor.

(a) (b)

FIGURE 5.14
Failure of circular shafts due to torsion: (a) ductile failure, (b) brittle failure along 45◦ helix.
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FIGURE 5.15
Stress components on a cubic element. Only the components on faces with positive normal directions are shown;
equal and opposite components are present on the negative faces.

In this section, we will focus primarily on plane stress, a state in which two faces of the
cubic element are stress-free. This two-dimensional case, itself of significant use in practice,
is easily extended to three dimensions once it is understood.

5.3.1 Transformation of Plane Stress

In Section 2.6, we considered the stresses on an inclined plane in an axially loaded bar. A
similar technique may be used to find the stress state on planes and cubic elements that
have been rotated. Let’s see that we do in fact know how to transform the stresses on an
inclined plane, even now that multiple components of stress are in the picture.

For the state of stress for a cube element shown in Figure 5.16a, we may also express
the state of stress on a wedge with a surface at angle α. Because this wedge (ABC) is part
of the original element, the stresses on faces AC and BC , which are rectangles with one
dimension into the page, are known. They appear again on the wedge in Figure 5.16b. The
unknown normal and shear stresses acting on face AB, σα and τα, are what we want to
find. Face AB has area dA. Then the area of face AC is dAcos α and the area of face BC is
dAsin α.

Next we can obtain the forces on the faces, Fi in Figure 5.16c, by multiplying the stresses
by their respective areas.

F1 = 3 MPa cos α,

F2 = 2 MPa cos α,

F3 = 2 MPa sin α,

F4 = 1 MPa sin α.

To keep the wedge in equilibrium, the unknown forces due to unknown normal and shear
stresses must balance these forces:∑

FN = 0: N = F1 cos α − F2 sin α − F3 cos α + F4 sin α

= 3 cos2 α − 2 cos α sin α − 2 sin α cos α + 1 sin2 α,
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FIGURE 5.16
Finding stresses on an inclined plane. Element has unit depth into the page. (After Popov, E.P., Engineering
Mechanics of Solids, Prentice Hall, 1998.)

∑
FS = 0: S = F1 sin α + F2 cos α − F3 sin α − F4 cos α

= 3 cos α sin α + 2 cos2 α − 2 sin2 α − 1 sin α cos α.

Since forces N and S act on the plane defined by AB, whose area is dA, we divide these
forces by dA to find the stresses. We can find the stress values for any angle α, and as
an example, with α = 22.5◦, σα = 1.3 MPa, and τα = 2.1 MPa in the directions shown in
Figure 5.16b.

Conceptually, this is all we are doing in this section. This approach is the starting point
for all of the seemingly more sophisticated analyses to follow.

We want to generalize the approach of the example to any initial element and any
inclined wedge. This is illustrated in Figure 5.17. Again, we want to determine the trans-
formed stresses (in the “prime” directions, as in Figure 5.15); again, we apply the equations
of equilibrium to our wedge.

y′ y′

x′ x′

x x

y y

dA

dA cosθ

dA sinθ

σxxdAcosθ
σx′x′dA

σx′y′dA

σxydAcosθ

σyydAsinθ

σxydAsinθ

θ θ

FIGURE 5.17
Derivation of stress transformation on an inclined plane.



132 Introduction to Engineering Mechanics

Equilibrium in the x′- and y′-directions requires (check these results as an exercise):

σx′x′ = σxx + σyy

2
+ σxx − σyy

2
cos 2θ + σxy sin 2θ, (5.27)

σx′ y′ = −σxx − σyy

2
sin 2θ + σxy cos 2θ. (5.28)

These are the general expressions for the normal and shear stress on any plane located
by the angle θ. Clearly, we must know the state of stress in the initial (x, y, z) orientation to
find these transformed stresses. The quantities σxx , σyy, and σxy before rotation are initially
known.

To find the normal stress on the face perpendicular to the wedge face dA, that is, σy′ y′ ,
we replace θ by θ + 90◦ in the equation for σx′x′ , and obtain

σy′ y′ = σxx + σyy

2
− σxx − σyy

2
cos 2θ − σxy sin 2θ. (5.29)

If we add this to the equation for σx′x′ , we see that σx′x′ + σy′ y′ = σxx + σyy, meaning
that the sum of the normal stresses remains invariant, regardless of orientation.

In plane strain problems where εzz = εzx = εzy = 0, a normal stress σzz can develop.
In Section 4.5.3, we saw that this stress is given as σzz = ν(σxx + σyy), where ν is Pois-
son’s ratio. However, the forces resulting from this stress do not enter into the relevant
equilibrium equations used to derive in-plane stress transformation relations. The above
equations for σx′x′ and σy′ y′ are applicable for plane stress, and if corresponding ε terms are
substituted for all σ terms, plane strain.

We now have general expressions for the normal and shear stresses that we see when
a state of plane stress is rotated by any angle θ. Note that since the real, physical state of
stress is unchanged, we are merely representing it with respect to different axes.

5.3.2 Principal and Maximum Shear Stresses

As we know, we are often interested in determining the maximum stresses induced in
bodies, so that these limiting cases may inform our designs. Now that we have expressions
for the stresses at any orientation θ, we can determine the rotations that produce maximum
values by setting the derivatives of these expressions to zero, for example,

dσx′x′

dθ
= −σxx − σyy

2
(2 sin 2θ) + 2σxy cos 2θ = 0, (5.30)

which requires that to maximize the stress σx′x′ ,

tan 2θN = σxy

(σxx − σyy)/2
. (5.31)

The N subscript on theta is used to signify its status as the angle defining the plane of
maximum or minimum normal stress. The equation for θN has two roots [since tan 2β =
tan(2β + 180◦)], 90◦ apart. One of these roots locates the plane on which the maximum
normal stress acts, and the other locates the plane of minimum normal stress.
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On these planes corresponding to maximum or minimum normal stresses, there are no
shear stresses. These planes are called the principal planes of stress, and the (purely normal)
stresses acting on them are the principal stresses.∗

If we substitute θN into the equations for normal stresses, we obtain expressions for
these extreme stress values. We will denote maximum normal stress by σ1, and minimum
normal stress by σ2, and find

(σx′x′)max
min

= σ1 or 2 = σxx + σyy

2
±
√(

σxx − σyy

2

)2

+ σ2
xy. (5.32)

These principal stresses are experienced by an element oriented at θN to the original
axes.

Turning our attention to the shear stress, we note again that shear stress is zero on the
plane defined by θN. However, there is a plane on which shear stress may be maximized
or minimized, which we obtain in the same way that we obtained θN. We find that the
extreme shear stresses act on planes defined by θS, where

tan 2θS = − (σxx − σyy)/2
σxy

. (5.33)

Once again this equation has two roots, 90◦ apart. Also, the roots of this equation, θS, are
45◦ away from the planes defined by θN. Substituting θS into our equation for shear stress,
we get an expression for the maximum and minimum shear stresses:

(
σx′ y′

)
max
min

= τmax
min

= ±
√(

σxx − σyy

2

)2

+ σ2
xy. (5.34)

The maximum and minimum values differ only by sign. Physically, this sign has no
meaning (except that if it is negative, the shear has the opposite sense from that assumed
in Figure 5.17), and so this shear stress regardless of sign is simply called the maximum 2D
shear stress. However, the magnitude of the maximum shear for the full 3D stress tensor
is what we need to know to create robust designs in certain materials, as we will see in
Section 5.4. Although the sign of a shear stress component or 2D maximum is not phys-
ically significant, note that when we calculate the principal stresses and maximum shear
that can be seen by rotation of the coordinate axes in 3D the mathematical sign does affect
the result. (Please see Figure 4.7 for a reminder of the shear stress sign convention.)

On the principal axes, the principal stresses were purely normal, with zero shear stress.
But the planes where maximum shear stress acts are not necessarily free of normal stresses.
If we substitute θS into our equation for normal stress, we find that the normal stresses
acting on planes of maximum shear stress are

σθS = σxx + σyy

2
. (5.35)

∗ We recognize that the principal stress state, in which an element experiences only normal stresses, signifies
that we have in essence diagonalized the symmetric stress tensor. We also note that for pressure vessels, where
we found stress components σθθ and σxx , there was an implicit acknowledgment that the stress state corre-
sponding to conventional cylindrical or spherical coordinates is the principal stress state for a pressure vessel.
However, we might still be interested in the stress state under different reference axes to learn the design
constraints for a weld used in constructing a pressure vessel from a flat sheet of material. So even when the
principal stress state is what we see with our usual coordinates, we will have a motivation to transform the
stress state to different axes and orientations.
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This stress occurs on both the x′- and the y′-planes, so from it we can confirm that σx′x′ +
σy′ y′ = σxx + σyy.

5.3.3 Mohr’s Circle for Plane Stress

If we look back at our equations for transformed σx′x′ and σx′ y′ , we notice that these are
the parametric equations of a circle. If we choose a set of rectangular axes and plot points
with coordinates (σx′x′ , σx′ y′) for all possible values of θ, all the points will lie on a circle.
We can see this more clearly if we rewrite the equations:

σx′x′ − σxx + σyy

2
= σxx − σyy

2
cos 2θ + σxy sin 2θ, (5.36)

σx′ y′ = −σxx − σyy

2
sin 2θ + σxy cos 2θ, (5.37)

and then square both equations, add them, and simplify to obtain

(
σx′x′ − σxx + σyy

2

)2

+ σ2
x′ y′ =

(
σxx − σyy

2

)2

+ σ2
xy. (5.38)

This equation has the form (σx′x′ − a)2 + σ2
x′ y′ = b2, where the quantities a = (σxx +

σyy)/2 and b2 = [(σxx − σyy)/2]2 + σ2
xy are constants. We remember that (x − a)2 + y2 = b2

is the equation of a circle of radius b with its center at (+a , 0). Hence, we may plot all points
(σ, τ) = (σx′x′ , σx′ y′) on a circle. The resulting circle is called Mohr’s circle of stress, named
after Otto Mohr who first proposed its use in 1882.

From Equation 5.38, we can see that the center of this circle will be at (a , 0), or at

(
σxx + σyy

2
, 0
)

and that the circle’s radius b = R is given by

R =
√(

σxx − σyy

2

)2

+ σ2
xy.

Using Mohr’s circle to graphically display stress transformations will offer a big-picture
view of a problem and make certain relationships visually clear. Mohr’s circle gives us a
way to see all possible stress states at a certain point (i.e., the stress states for all possible
axes with their origins at that certain point) at once, as in Figure 5.18. Again, remember
that these states are all just different representations of the same physical stress.

Certain observations can be made based on Figure 5.18:

• The largest possible normal stress is σ1 and the smallest is σ2. No shear stresses
exist together with either one of these principal stresses.

• The largest shear stress (σx′ y′)max is equal to the radius R of the circle. A normal
stress equal to (σ1 + σ2)/2 acts on each of the planes of maximum shear stress.
This is σθS as defined in Equation 5.35.
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FIGURE 5.18
Mohr’s circle.

• If σxx + σyy = 0, the center of Mohr’s circle coincides with the coordinate origin,
and a state of pure shear exists.

• The sum of the normal stresses on any two mutually perpendicular planes is
invariant. That is,

σxx + σyy = σ1 + σ2 = σx′x′ + σy′ y′ = constant. (5.39)

One tricky aspect of constructing Mohr’s circle is whether to plot a given shear stress
above or below the σ-axis. There are a variety of conventions used in the literature; the
choice of convention is not as critical as is consistency in applying it. The best way to get
comfortable with any convention is to work examples, such as Example 5.9.

Mohr’s circle also gives us a way to check our earlier results for axial loading and tor-
sional loading. In the case of axial loading, shown in Figure 5.19a, we have already shown
that σxx = P/A, σyy = 0, and σxy = 0. The corresponding points X and Y define a circle
with radius R = P/2A, as in Figure 5.19b. Points D and E yield the orientation of the
planes of maximum shearing stress (Figure 5.19c, at θ = 45◦, as we already knew; these
lines are separated by 2θ on Mohr’s circle), and the values of maximum shear stress and
corresponding normal stress:

τmax = R = P
2A

. (5.40)

In torsional loading, we have σxx = 0, σyy = 0, and σxy = τmax = Tc/J (Figure 5.20a).
Points X and Y are on the τ-axis, and Mohr’s circle (Figure 5.20b) has radius R = Tc/J
and is centered on the origin. Points A and B define the principal planes and the principal
stresses:

σ1,2 = ±R = ±Tc
J

. (5.41)
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Mohr’s circle for axial loading.
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FIGURE 5.20
Mohr’s circle for torsional loading.

We also note that for pressure vessels, the standard cylindrical coordinate system (used
by us in Section 5.2) is aligned with the principal planes. The stress state given by σθθ and
σxx (and no shear stress σθx) is the principal stress state; accordingly, it is not unusual to
see the hoop stress (σθθ) called σ1, and the longitudinal stress called σ2.

5.3.4 Transformation of Plane Strain

We recall the existence and form of the strain tensor, which like the stress tensor gives us
six independent components at each location within a body. We may find ourselves in a
situation where the initial xy-axes are rotated through some angle θ to axes x′y′, and we
may need to transform strains associated with xy to an equivalent set of strains on the
rotated axes. All of the equations in Sections 5.3.1 and 5.3.2 for transformation of plane
stress can be used for transformation of plane strain with the substitution of ε terms for σ.
However, another approach to getting equivalent results is described here. Of course this
result applies just as well to stress tensor transformations, as they are mathematically the
same.

We consider first an arbitrary point Aat point (x, y) in the initial coordinate system. After
the rotation through θ, as shown in Figure 5.21, this point A is at (x′, y′). From the figure,
we see that

x′ = x cos θ + y sin θ, (5.42a)

y′ = −x sin θ + y cos θ. (5.42b)
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Coordinate transformation.

These equations may be written in matrix form

(
x′
y′
)

=
(

cos θ sin θ

− sin θ cos θ

)(
x
y

)
. (5.43)

If we want to rearrange this expression, we look at the 2 × 2 matrix and see that its
determinant is unity; hence, its transpose is equal to its inverse. So,

(
x
y

)
=
(

cos θ − sin θ

sin θ cos θ

)(
x′
y′
)

. (5.44)

The same rules of transformation will apply to the small linear displacements u and v:

u′ = u cos θ + v sin θ, (5.45a)

v′ = −u sin θ + v cos θ. (5.45b)

Next, we recall the definition of normal strain from the previous section. Applying the
chain rule, we have the normal strain in the x′-direction:

εx′x′ = ∂u′

∂x′ = ∂u′

∂x
∂x
∂x′ + ∂u′

∂y
∂y
∂x′ . (5.46)

If we find the required partial derivatives from Equations 5.44 and 5.45, we will obtain

εx′x′ = εxx cos2 θ + εyy sin2 θ + 2εxy sin θ cos θ

= εxx + εyy

2
+ εxx − εyy

2
cos 2θ + εxy sin 2θ,

(5.47a)

εy′ y′ = εxx sin2 θ + εyy cos2 θ − 2εxy sin θ cos θ

= εxx + εyy

2
− εxx − εyy

2
cos 2θ − εxy sin 2θ.

(5.47b)



138 Introduction to Engineering Mechanics

We may also transform the shear strain, by first writing it in the rotated coordinates as

2εx′ y′ = γx′ y′ = ∂v′

∂x′ + ∂u′

∂y′ . (5.48)

And then differentiating and simplifying to obtain

εx′ y′ = γx′ y′

2
= −(εxx − εyy) sin θ cos θ + εxy(cos2 θ − sin2 θ)

= −εxx − εyy

2
sin 2θ + εxy cos 2θ.

(5.49)

We may also construct Mohr’s circle of strain to determine the principal strains and max-
imum shear strains. In doing this, we must remember that the shear components of the
strain tensor are εx′ y′ (and not γx′ y′ = 2εx′ y′ ), and so we plot Mohr’s circle of strain as
the set of all points (ε, γ/2). The principal (maximum and minimum normal) strains are
written as

(εx′x′)max
min

= ε1 or 2 = εxx + εyy

2
±
√(

εxx − εyy

2

)2

+ ε2
xy, (5.50)

and they occur on the plane defined by

tan 2θNε = εxy

(εxx − εyy)/2
. (5.51)

Compare these to the corresponding stress transformation equations to see that they are
mathematically equivalent.

5.3.5 Three-Dimensional State of Stress

The normal and shear stresses acting on a plane through a material depend on the orienta-
tion of that plane. We have found both equations and a graphical technique (Mohr’s circle)
to determine the normal and shear stresses on a variety of planes, but only for the special
case of plane stress. If we keep things more general, we obtain the principal stresses in
three dimensions.

We remember that our stress tensor is symmetric. From linear algebra, we recall that
a symmetric matrix may be diagonalized. This suggests that the symmetric stress tensor
may also be diagonalized—that there is a certain coordinate system (x′, y′, z′) for which⎛

⎝σx′x′ σx′ y′ σx′z′
σy′x′ σy′ y′ σy′z′
σz′x′ σz′ y′ σz′z′

⎞
⎠ =

⎛
⎝σ1 0 0

0 σ2 0
0 0 σ3

⎞
⎠ . (5.52)

The axes x′, y′, z′ are called the principal axes for this state of stress, and σ1, σ2 , and σ3 are
the principal stresses, which are the eigenvalues of the matrix. It can be shown∗ that the
principal stresses are the roots of the cubic equation

σ3 − I1σ
2 + I2σ − I3 = 0, (5.53)

∗ For the details of this analysis, first proposed by French mathematician A. L. Cauchy in the 1820s, see
Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, 1970, sec. 77.
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where
I1 = σxx + σyy + σzz = tr[σ],

I2 = σxxσyy + σyyσzz + σzzσxx − σ2
xy − σ2

yz − σ2
zx,

I3 = σxxσyyσzz − σxxσ
2
yz − σyyσ

2
xz − σzzσ

2
xy + 2σxyσyzσzx = det[σ].

(5.54)

These quantities Ii are invariants, independent of the orientation of the coordinate sys-
tem. (The trace of the stress tensor I1 is the extension of quantity σxx + σyy that we found to
be invariant with rotation for the case of plane stress.) We determine the principal stresses
by evaluating the coefficients Ii and solving for σ, or using any method that will find the
eigenvalues directly.

We determine the maximum shear stress in the same way we did for plane stress and
find that the absolute maximum shear stress is the largest of the three values:

max
(∣∣∣∣σ1 − σ2

2

∣∣∣∣ ,
∣∣∣∣σ1 − σ3

2

∣∣∣∣ ,
∣∣∣∣σ2 − σ3

2

∣∣∣∣
)

. (5.55)

This absolute maximum shear stress may be visualized by superimposing the Mohr’s
circles obtained from the three orientations as is shown in Figure 5.22a. Notice from
Figure 5.22b that if σ1 > σ2 > σ3, the absolute maximum shear stress is (σ1 − σ3)/2.

From linear algebra, we know how to perform a general rotation of a stress tensor (or
a matrix) from (x, y, z) to (x′, y′, z′) coordinate axes as a change of basis. The transformed
stress σ′ can be calculated as σ′ = AσAT, where A is a general orthogonal transformation
matrix analogous to the 2 × 2 matrix of Equation 4.43.

5.4 Failure Prediction Criteria

In Section 2.4, we discussed the need for techniques to predict failure for various materials
under various loading. In designing structures, it may be necessary to make compromises
and trade-offs, based on material availability, manufacturability, cost, weight, and esthetic
issues, but avoiding failure is not negotiable in many contexts. For complex structures sub-
ject to general states of stress, various criteria have been proposed for predicting (and so
preventing) failure. The applicability of these criteria depends on the nature of the materi-
als and the loading involved. Note that these criteria have been empirically demonstrated
to be good predictors of failure, but they are not exact, analytically derived expressions.

In all cases, it is crucial to consider the entire stress tensor, and not just one or several
entries, when predicting whether a state of stress will cause failure. To determine whether
a structural component will be safe under a given load, we should calculate the stress
state at all critical points of the component, and particularly at all points where stress–
concentrations are likely to occur.

5.4.1 Failure Criteria for Brittle Materials

We recall from Figure 2.17c that a brittle material subjected to uniaxial tension fails without
necking, on a plane normal to the material’s long axis. When such an element is under
uniaxial tensile stress, the normal stress that causes it to fail is the ultimate tensile strength
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FIGURE 5.22
(a) Different orientations of the coordinate system relative to the element on which the principal stresses act.
Only the components on faces with positive normal directions are shown; (b) superimposing the Mohr’s circles
demonstrates the absolute maximum shear stress.

of the material. However, when a structural element is in a state of plane stress or a three-
dimensional stress state, we must determine the principal stresses at any given point and
use one of the following criteria.

5.4.1.1 Maximum Normal Stress Criterion

According to this criterion, a given structural element fails when the maximum normal
stress in that component reaches the material’s ultimate tensile strength. This criterion is
appropriate for brittle materials, which do not yield or undergo much plastic deforma-
tion, since the implied mechanism for the failure is one of separation rather than sliding or
shear. Mathematically, we can represent this criterion using the principal stresses as saying
that failure will occur when the maximum positive principal stress reaches the material’s
ultimate tensile strength. Since for brittle materials the tensile strength is typically much
lower than the compressive strength—because tension opens and grows cracks and com-
pression closes them—this criterion is based on the maximum tensile stress. It makes sense
to compare the maximum negative principal stress to the material’s ultimate compressive
strength if failure by compression is also of concern.∗

∗ A somewhat more refined version of this is known as Mohr’s criterion. It is based on an envelope defined by
two Mohr’s circles: one constructed for the stress state at failure in a tension experiment, and one constructed
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5.4.2 Yield Criteria for Ductile Materials

We observed in Figure 2.17b that a ductile material subjected to uniaxial tension yields and
fails by slippage along angled surfaces, primarily due to shear stresses. A uniaxial tension
test gives the tensile yield strength for a ductile material, and the compressive yield stress
is typically the same. Although ductile materials do not fracture when they reach their
yield strengths, at this point permanent deformation can occur and proper function of a
structural element may be lost. We, therefore, cast our criteria in terms of yield and not of
fracture.

5.4.2.1 Maximum Shearing Stress (Tresca) Criterion

Because the plastic deformation initiated at the yield strength takes place through shear
deformation, it is natural to expect failure criteria to be expressed in terms of shear stress.
Based on this logic, the Tresca criterion says that a given structural component is safe as
long as the maximum shear stress value in that component does not exceed the yield shear
strength, τY, of the material. Since for axial loading, as we saw in Section 2.6, the maximum
shear stress is equal to half the value of the corresponding normal axial stress, we conclude
that the maximum shear stress experienced by a uniaxial tensile test specimen is τY =
σY/2.

We extend this criterion to an arbitrary state of stress by assuming that yielding occurs
when the absolute maximum shear stress is equal to τY:

max
(∣∣∣∣σ1 − σ2

2

∣∣∣∣ ,
∣∣∣∣σ2 − σ3

2

∣∣∣∣ ,
∣∣∣∣σ3 − σ1

2

∣∣∣∣
)

= τY, (5.56)

where σ1, σ2, and σ3 are the principal stresses. Or, using τY = σY/2 to recast the criterion
in terms of a Tresca equivalent normal stress σT ,

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) ≡ σT = σY. (5.57)

For this criterion, we must consider the full three-dimensional tensor even if the physical
state is plane stress. The zero normal stress in the third direction may determine the max-
imum principal stress difference. For the sake of illustration, however, we can consider a
plane stress case where the maximum principal stress is positive and the minimum is neg-
ative (so the zero does not contribute to the maximum difference calculation). In this case,
our safe region is bounded by the lines σ1 − σ2 = ±σY, σ1 = ±σY, and σ2 = ±σY, which
form the hexagon shown in Figure 5.23.

We can also compare the Tresca equivalent stress to the material’s yield stress to
determine how close the material is to failure. We obtain a Tresca safety factor:

ST = σY

σT
. (5.58)

Failure will occur when ST = 1, and a safe design will ensure that ST > 1.

for the stress state at failure in a compression experiment. If the material’s ultimate shear strength is known, a
third circle may be added. Mohr’s criterion says that a general state of stress is safe if its Mohr’s circle—based
on the maximum and minimum principal stresses—lies entirely within the area bounded by the envelope
around the two (or three) circles representing the ultimate failure stresses. This criterion uses a plane stress
approach, as it does not consider the intermediate principal stress.
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FIGURE 5.23
Failure boundaries for the Tresca (hexagon) and von Mises (ellipse) failure criteria under plane stress.

5.4.2.2 Von Mises Criterion

This criterion for failure of ductile materials is derived from strain energy considerations
and states that yielding occurs when

1
2

[
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2 + 6(σ2
xy + σ2

yz + σ2
zx)
]

= σ2
Y, (5.59)

or equivalently in terms of principal stresses,

1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

= σ2
Y. (5.60)

In plane stress, the safe region is bounded by the curve that describes the ellipse in Fig-
ure 5.23, but this criterion correctly accounts for the full 3D stress state. We can define a
von Mises equivalent stress:

σM ≡ 1√
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
yz + σ2

zx)

= 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2, (5.61)

and compare this value to the material’s yield stress to determine how close the material
is to failure. We obtain a von Mises safety factor:

SM = σY

σM
. (5.62)

Again, failure will occur when SM = 1, and a safe design will ensure that SM > 1.
The Tresca and von Mises criteria do not produce the same safety factors, and a stress

state that might just fail by one criterion may produce a small safety factor with the other.
Because we design with safety factors of 2 or greater, this difference is not crucial. Both
are empirically demonstrated to be effective, but they are not exact analytically derived
equations.
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5.5 Examples

EXAMPLE 5.1

What must be the length of a 6-mm diameter aluminum (G = 27 GPa) wire so that it
could be twisted through one complete revolution without exceeding a shear stress of
42 MPa?

Given: Cross section of wire, desired deformation, limit on shear stress.

Find: Required length of wire.

Assume: Hooke’s law applies.

Solution

The angle of twist of the wire after one complete revolution will be 2π. The angle of twist
is defined:

φ = T L
J G

and, using the definition of maximum shear stress, this can also be written as

φ = τmax J
c

L
J G

= τmaxL
cG

,

which we rearrange to solve for the wire length L :

L = φcG
τmax

= 2π · (0.003 m)(27 × 109 Pa)

42 × 106 Pa
,

L = 12.1 m.

EXAMPLE 5.2

A solid aluminum alloy (GAl = 28 GPa) shaft 60 mm in diameter and 1000 mm long is to
be replaced by a tubular steel shaft (GSt = 84 GPa) of the same outer diameter such that
the new shaft will exceed neither (1) twice the maximum shear stress nor (2) the angle of
twist of the aluminum shaft. What should be the inner radius of the tubular steel shaft?
Which of the two criteria, (1) strength or (2) stiffness, governs?

Given: Dimensions of the aluminum shaft.

Find: Dimensions of the steel shaft (same length, same outer diameter) that will meet
strength and stiffness requirements.

Assume: Hooke’s law applies.

Solution

We will design first for strength, then for stiffness.

1. Designing for strength:

τmax,St ≤ 2τmax,Al,(
Tc
J

)
St

≤ 2
(

Tc
J

)
Al

.
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Since we are told that the outer diameters of both shafts are equal, and since the
applied torque T does not change, we are simply requiring that

JSt ≥ 1
2

JAl,

π

2

[
(0.03 m)4 − r4

i

]
≥ π

4

[
(0.03 m)4

]
,

r4
i ≤ 2

π

[π

2
(0.03 m)4 − π

4
(0.03 m)4

]
,

r4
i ≤ 1

2
(0.03 m)4 = 405 × 10−9 m4,

ri ≤ 25.2 mm.

2. Designing for stiffness:

φSt ≤ φAl,

T L
JStGSt

≤ T L
JAlGAl

,

JStGSt ≥ JAlGAl,

π

2

[
(0.03 m)4 − r4

i

]
(84 × 109 Pa) ≥ π

2

[
(0.03 m)4

]
(28 × 109 Pa),

Solve for ri ≤ 27.1 mm.

The inner radius of the steel shaft must be ri ≤ 25.2 mm, as strength governs.

EXAMPLE 5.3

Two shafts (G = 28 GPa) A and B are joined and subjected to the torques shown. Sec-
tion A has a solid circular cross section with diameter 40 mm, and is 160 mm long; B has
a solid circular cross section with diameter 20 mm, and is 120 mm long.

  
1200 N · m

400 N · m
B 

A 

Find (a) the maximum shear stress in sections A and B; and (b) the angle of twist of
the rightmost end of B relative to the wall.

Given: Dimensions and properties of composite shaft in torsion.

Find: Shear stresses, angle of twist of free end.

Assume: Hooke’s law applies; stress–concentration at the step in the composite shaft is
not included.

Solution

Our strategy is to use the method of sections to find the internal torque in each portion of
the composite shaft, then find the shear stress and angle of twist induced by this torque.
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First, we construct an FBD:

Twall

1200 N · m

400 N · m
B 

A 

Equilibrium requires that 400 N · m − 1200 N · m − Twall = 0.
Therefore, Twall = −800 N · m (Twall is clockwise, opposite from what is drawn).
Now use the method of sections on segments A and B:

Twall = 800 N · m

TA = 800 N · m

A 

Internal torque TA = 800 N · m, and maximum shear stress occurs at c A = 0.02 m. So:

τmax,A = TAc A
J A

= TAc A
π
2 c4

A
= 63.7 MPa.

To find the internal resisting torque in section B, we must look at the whole shaft from
the wall to our imaginary section cut:

TB

1200 N · m 

Twall = 800 N · m 

Equilibrium of this section requires that the internal torque TB = 400 N · m. Maximum
shear stress occurs at cB = 0.01 m, and

τmax,B = TBcB
J B

= TBcB
π
2 c4

B
= 255 MPa.

Next, we will calculate the angles of twist of both A and B, and then find the resultant
twist of the free end with respect to the wall: φA + φB = φ.

Taking counterclockwise twists to be positive, as we have taken counterclockwise
torques to be

φA = TAL A
J AG A

= (−800 N · m)(0.16 m)

(2.51 × 10−7 m4)(28 × 109 Pa)
= −0.018 rad (−1.0◦),

φB = TB L B
J B G B

= (400 N · m)(0.12 m)

(1.57 × 10−8 m4)(28 × 109 Pa)
= 0.109 rad (6.2◦).

The total angle of twist of the free end relative to the wall is then

φ = φA + φB = −1.0◦ + 6.2◦ = 5.2◦ (counterclockwise).
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EXAMPLE 5.4

Design a hollow steel shaft to transmit 300 hp at 75 rpm without exceeding a shear stress
of 8000 psi. Use 1.2:1 as the ratio of the outside to the inner diameter. What solid shaft
could be used instead?

Given: Desired performance of hollow shaft.

Find: Inner and outer diameters of shaft; dimensions of equivalent solid shaft.

Assume: Hooke’s law applies.

Solution

We can obtain the torque required with

T = P
ω

,

and the conversions, necessary to find a torque in U.S. units of in-lb are built into the
following version of this relationship, where N is the number of rotations per minute:

T(in-lb) = 63,000×(hp)

N(rpm)
. We have

T = 63,000 × 300 hp
75 rpm

= 252,000 in-lb.

Since the maximum shear stress induced by this torque is given by τmax = Tc/J , we
obtain the value of J /c needed to transmit 600 hp without exceeding the stated stress
limit:

J
c

= T
τmax

= 252,000 in-lb
8000 psi

= 31.5 in3,

J
c

= π

2

(
c4 − (c/1.2)4

)
c

= 0.813c3 = 31.5 in3.

This has the solution c = 3.4 in, so the outer diameter necessary is Do = 2c = 6.8 in,
and the inner diameter is Di = Do/1.2 = 5.6 in.

For a solid shaft, J /c has a simpler form, and we require only

J
c

= π

2
c3 = 31.5 in3,

Solving for c, the radius of a solid shaft capable of transmitting 600 hp without
exceeding a shear stress of 8000 psi, we have D = 2c = 5.4 in.

EXAMPLE 5.5

Find the required fillet radius for the juncture of a 6-in-diameter shaft with a 4-in-
diameter segment if the shaft transmits 110 hp at 100 rpm and the maximum shear stress
is limited to 8000 psi.

Given: Dimensions of and requirements for shaft performance.

Find: Fillet radius for connecting two segments of shaft.

Assume: Hooke’s law applies. Transition between segments is only stress–concentration.
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Solution

We make use of the relationship between applied torque, power output, and rotational
frequency (see also Example 5.4) to find the applied torque:

T = 63,000 · 110 hp
100 rpm

= 69,300 in-lb.

The shear stress in the shaft cannot exceed 8000 psi. We obtain the maximum allowable
stress concentration factor, using the smaller segment’s radius for c and in J :

K = τmax J
Tc

=
8000 psi

[
π
2 (2 in)4

]
69,300 in-lb(2 in)

= 1.45

and

D
d

= big shaft diameter
small shaft diameter

= 6
4

= 1.5.

From Figure 5.5, we find that this K and this D/d correspond to an r/d ratio of 0.085.
This means that the allowable fillet radius is

r = (0.085)(4 in) = 0.34 in.

EXAMPLE 5.6

The composite rod with length L consists of an inner core (with shear modulus G1 and
polar second moment of area J1) and outer tube (with shear modulus G2 and polar
second moment of area J2) that are firmly bonded to each other. Both parts are also
bonded to end plates (not shown) through which a torque T is applied. Determine

a. the maximum shear stress in the core and in the tube

b. the total angle of twist of the composite rod.

T

T

Given: Dimensions and material properties of components of a composite rod.

Find: Stress in each component and total twist.

Assume: Hooke’s law applies.

Solution

a. Picking the force method (although the displacement method is equally effective for
this problem), we start with an FBD and write the equation of equilibrium:
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T

T

T

T1

T2

T1 + T2 − T = 0.

The applied torque T is given, leaving one equation for two unknown torques. To gain
an additional equation, we enforce geometric compatibility:

φ1 = φ2,

where these are the twists of the two rod components. Then with our assumption of
elastic (Hookean) behavior, this equation for geometric compatibility becomes

T1L1
J1G1

= T2L2
J2G2

.

Recognizing that both components have the same length and solving this pair of
equations for the unknown torques

T1 = T
J1G1

J1G1 + J2G2
and T2 = T

J2G2
J1G1 + J2G2

.

b. The total twist is φ = φ1 = φ2, so plugging in one of the above results:

φ = φ1 = T1L
J1G1

= T L
J1G1

J1G1
J1G1 + J2G2

= T L
J1G1 + J2G2

.

These results make sense for torsional elastic elements in parallel.

EXAMPLE 5.7

Calculate the tensile stresses (circumferential and longitudinal) developed in the walls
of a cylindrical pressure vessel with inside diameter 18 in and wall thickness 1/4 in. The
vessel is subjected to an internal gage pressure of 300 psi and a simultaneous external
axial tensile load of 50,000 lb.

Given: Dimensions of and loading on cylindrical pressure vessel.

Find: Hoop and longitudinal normal stresses.

Assume: We will test whether thin-walled theory may be applied to this vessel.

Solution

Does thin-walled theory apply? Is the thickness t ≤ 0.1ri ?

0.25 in ≤ 0.1 · (9 in) = 0.90 in �

We can use thin-walled theory.
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The circumferential, or hoop stress, is calculated:

σθθ = pri
t

= (300 psi)(9 in)

0.25 in
= 10.8 ksi.

The longitudinal stress due to the internal pressure may be combined with the normal
stress due to the axial load by straightforward superposition, as these stresses are due to
forces in the same direction and act normal to areas with the same orientation:

σxx = pri
2t

+ P
A

= (300 psi)(9 in)

0.5 in
+ 50,000 lb

(2πri )t
,

σxx = 5.4 ksi + 3.5 ksi = 8.9 ksi.

Note: the area on which P acts can also be calculated as πr2
o − πr2

i ; this gives essentially
the same results for thin circular sections.

EXAMPLE 5.8

Aneurysm, a ballooning or dilation of a blood vessel, often afflicts the abdominal aorta,
a large vessel supplying blood to the abdomen, pelvis, and legs. While aneurysms
can develop and grow gradually, the rupture (rapid expansion and tearing) of an
aneurysm is usually catastrophic. Although the healthy abdominal aorta has a diam-
eter of 1.2–2 cm, an aneurismal abdominal aorta may have a diameter up to 6–10 cm.
Anatomy textbooks give a range of values for the thickness of artery walls, from which
we choose a median value of 0.1 cm. The figure below shows a rough sketch of this
anatomy. Using outside references, determine the stresses in the walls of a healthy
abdominal aorta and one affected by aneurysm.

Kidneys

Iliac
arteries

(a) (b)

Given: Dimensions of healthy aorta and aneurysm.

Find: Stresses in the aorta walls.

Assume: The healthy aorta is a cylindrical pressure vessel and the aneurysm may be a
cylindrical or spherical pressure vessel; thin wall theory applies.

Solution

We would like to model the artery as a pressure vessel, despite the many differences
between a physiologically realistic blood vessel and the idealization we have just stud-
ied. If we choose a radius of 1.2 cm (or larger) for our model healthy abdominal aorta,
we can call our vessel is thin-walled.
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The pressure inside the artery varies from a low (diastolic) to high (systolic) value over
each heartbeat. Using a typical healthy systolic pressure of 120 mm Hg (1.6 N/cm2), we
can calculate the peak circumferential or hoop stress in a healthy abdominal aorta:

σθθ = pr
t

= 1.6 N/cm2 · 1.2 cm
0.1 cm

= 19 N/cm2.

If the vessel grows to a diameter of 6 cm, the hoop stress in a cylindrical vessel becomes

σθθ = pr
t

= 1.6 N/cm2 · 3 cm
0.1 cm

= 48 N/cm2.

If, however, the abdominal aorta remodels itself into a more spherical shape, the hoop
stress will be reduced:

σθθ = pr
2t

= 1.6 N/cm2 · 3 cm
2(0.1 cm)

= 24 N/cm2.

This crude calculation suggests that the aorta may change its shape in part to reduce
the stress induced by internal (blood) pressure. It is worth noting again that this pres-
sure pulses, too, resulting in a cyclic loading and unloading of the vessel. Other factors
contributing to aneurysm development include elastin degradation, atherosclerosis, and
genetics, but continuum mechanics is certainly part of the package.

EXAMPLE 5.9

For the given state of plane stress, construct Mohr’s circle, determine the principal
stresses, and determine the maximum shearing stress and the corresponding normal
stress.

y

x

10 MPa

50 MPa

40 MPa

Given: σxx = 50 MPa, σyy = −10 MPa, σxy = 40 MPa.

Find: Extreme stress states.

Assume: Plane stress: σzz = σxz = σyz = 0.

Solution

We will outline the steps used to construct Mohr’s circle, and make the necessary
calculations.

The steps we will follow are

1. Plot point X: (σxx , σxy)

2. Plot point Y: (σyy, σxy)
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3. Draw line XY, which passes through the circle center: (σav, 0)

4. Find radius R and draw in the circle

1. Plot point X : (σxx , σxy): We note straight-off that the shear stress given is positive,
according to Figure 4.7, but we are not sure how to plot the point (σxx , σxy) on Mohr’s
circle. Finding σxx on the σ-axis is straightforward—the normal stress sign convention
simply says that tensile stresses are positive and compressive are negative, but does τxy
lie above or below that axis? We know that for Mohr’s circle to work, we must have
points X and Y on the opposite sides of the σ-axis, so that their connecting line XY passes
through the center of the circle. Our sign convention must ensure this. We, therefore,
make use of a system based on the positive x (and y) faces of our unrotated element.

Looking at the positive x face of our initial element (right-hand face), we see that the
component of shear stress on this face is tending to rotate the element counterclockwise.
This tells us to plot point X below the σ-axis. Our convention is that when this com-
ponent tends to rotate clockwise, X is above the axis; when counterclockwise, below.
(This somewhat awkward rule can be remembered by the equally strange mnemonic:
“in the kitchen, the clock is above and the counter is below.”) We formalize this rule in
the figure below. Remember that we will apply this sign convention to points X and Y
separately—for Mohr’s circle to work, we must have points X and Y on the opposite
sides of the σ-axis.

Plotting “positive” shear stress on Mohr’s circle:

Below σii axis Above σii axis

2. Plot point Y: (σyy, σxy): Following the same reasoning as for point X, we will plot point
Y to the left of the τ-axis, as σyy is compressive, and above the σ-axis, as the shear stress
on the positive y (top) face of the element tends to rotate clockwise.

These two points may now be plotted on the στ-axes:

60

40

20

20

40

60

0
–40 –20 0 20 σ (MPa)

τ (MPa)

40 60

Y

X
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3. Draw line XY: This line passes through the σ (horizontal) axis at the center of the circle:

(σav, 0) =
(

σxx + σyy

2
, 0
)

= (20 MPa, 0).

60

40

20

20

40

60

0
–40 –20 0 20 σ (MPa)

τ (MPa)

40 60

Y

X

σav

4. Find the radius R and draw the circle: We may use the geometry of the first three steps,
or the formulas derived in the notes, to calculate the radius of the circle. Graphically,
we see that R is the hypotenuse of a right triangle whose other legs have length 40 and
50 − 20 = 30. Thus, R = ((40)2 + (30)2)1/2 = 50 MPa.

Alternatively,

R =
√(

σxx − σyy

2

)2
+ (τxy)2 = 50 MPa.

We can now sketch Mohr’s circle by hand, using a compass, or using a software pack-
age. The circle contains all the information we need about all possible axes, and thus all
possible stress states, for the given element.

60

40

20

20

40

60

0

–40 –20
σ (MPa)

σavσ2 σ1

τ (MPa) τmax

τmax

6040200 80

R
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We can find, and label, the principal stresses:

σ1 = σav + R = 20 MPa + 50 MPa = 70 MPa,

σ2 = σav − R = 20 MPa − 50 MPa = −30 MPa.

This principal stress state (extreme normal stress, no shear stress) occurs when the axes
are rotated by θN. (Or when the line XY is rotated around Mohr’s circle by 2θN). We
can find 2θN using a protractor, or we can use our formulas: θN = 1

2 tan−1(2τxy/(σxx −
σyy)). At this θN, we can calculate that the value of σx′x′ (rather than σy′ y′ ) is 70 MPa, so
we draw our properly oriented element which experiences this principal stress state:

σ1 = 70 MPa

σ2 = (–)30 MPa

θN = 26.6°

Next, we calculate the maximum shear stress and the corresponding normal stress,
which we can see from Mohr’s circle is the average normal stress, σav:

τmax = R = 50 MPa,

σav = 20 MPa.

From the principal stress state, we can see on Mohr’s circle that it will take 2θ = 90◦
to obtain this stress state (σav, τmax). We need, then, to rotate our element’s axes 45◦
counterclockwise past the principal stress orientation. From our initial orientation, this
rotation is given by

θS = θN + 45◦ = 26.6◦ + 45◦ = 71.6◦.

We can again draw a properly oriented element experiencing the maximum shear
stress, having been rotated by 71.6◦ counterclockwise from its initial orientation:

σav = 20 MPa

τmax = 50 MPa

σav = 20 MPa

θS = 71.6°

We obtain the proper sense of the shear stress from Mohr’s circle. By rotating line XY
counterclockwise by 2θS, we get to a point above the σ-axis. Thus, on the rotated positive
x face, we must have a shear stress that tends to rotate the element clockwise.
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Finally, we can visualize these rotations on Mohr’s circle:

60

2θS

2θN

20

40

20

40

60

0
–40 –20 0 20

σ2 σ1

τ (MPa)

σ (MPa)

τmax

τmax

40 60 80

Note: a positive rotation, that is, a positive value in degrees or radians, is counterclock-
wise, both in physical space and on Mohr’s circle.

EXAMPLE 5.10

A compressed air tank is supported by two cradles as shown. Relative to the effects of
the air pressure inside the tank, the effects of the cradle supports are negligible. The
cylindrical body of the tank has a 30-in outer diameter and is fabricated from a 3/8-in
steel plate by welding along a helix that forms an angle of 25◦ with a transverse (vertical)
plane. The end caps are spherical and have a uniform wall thickness of 5/16 in. For an
internal gage pressure of 180 psi, determine

a. The normal stresses and maximum shear stresses in the spherical caps

b. The stresses in directions perpendicular and parallel to the helical weld

8 ft

25°

30 in

Given: Dimensions of and pressure on compressed air tank.

Find: Stress states in spherical end caps and along welds in cylindrical body.

Assume: Thin-walled pressure vessel theory applies.



Applying Strain and Stress in Multiple Dimensions 155

Solution

First, we validate our assumption that thin-walled theory will apply in both the spherical
end caps and the cylindrical body. We must have t ≤ 0.1r in both sections. So:

a. In spherical cap, t = 5/16 in and r = 15 − (5/16) = 14.688 in. So, t = 0.0212r . �
b. In cylindrical body, t = 3/8 in and inner radius r = 14.625 in. So, t = 0.0256r . �

In a spherical pressure vessel, we have equal hoop and longitudinal stresses:

σsphere = pr
2t

= (180 psi)(14.688 in)

2(0.3125 in)
= 4230 psi.

D′

C A, BO σ

τmax

τ
σ1 = σ2 = 4230 psi

So, in a plane tangent to the cap, Mohr’s circle reduces to a point (A, B) on the hor-
izontal (σ) axis, and all in-plane shear stresses are zero. On the surface of the cap, the
third principal stress is zero, corresponding to point O. On a Mohr’s circle of diameter
AO, point D′ represents the maximum shear stress; it occurs on planes inclined at 45◦
to the plane tangent to the cap. (This is as we would expect for purely normal loading
in the reference axes, as for an axially loaded bar which experiences maximum normal
stress on planes inclined at 45◦ to the bar axis.) Hence,

τmax = 1
2
(4230 psi) = 2115 psi.

In the cylindrical body of the tank, we have hoop and longitudinal normal stresses:

σθθ = pr
t

= (180 psi)(14.625 in)

0.375 in
= 7020 psi,

σxx = pr
2t

= (180 psi)(14.625 in)

2(0.375 in)
= 3510 psi.

Here, the average normal stress is σav = 1
2 (σ1 + σ2) = 5265 psi, and the radius of

Mohr’s circle is R = 1
2 (σ1 − σ2) = 1755 psi. We want to rotate our axes from their initial

configuration, shown at left below, so that our element has a face parallel to the weld,
as shown at right; the transformed σx′x′ and σx′ y′ , or σw and τw, will be the requested
stresses.
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σ1 = 7020 psi

σ2 = 3510 psi

Weld

σw

τw

σ1

σ2

Using the average stress (center) and radius R found above, we construct Mohr’s circle
and find these transformed stress components.

Since we want to rotate the element by θ = 25◦, we rotate around Mohr’s circle by
2θ = 50◦, to arrive at point X′. This point has coordinates:

σw = σav − R cos 50◦

= 5265 − 1755 cos 50◦

= 4140 psi (tensile),

τw = R sin 50◦ = 1755 sin 50◦

= 1344 psi.

Since point X′ is below the horizontal axis, τw tends to rotate the element counter-
clockwise, as assumed in the sketch below.

τ
(σij)

σ
(σii)τw

σ1 = 7020 psi

σav = 5265 psi

σw

σ2 = 3510 psi

2θ R

X′

X

EXAMPLE 5.11

A state of plane stress consists of a tensile stress σ0 = 8 ksi exerted on vertical surfaces
and unknown shear stresses τ0. Determine (a) the magnitude of the shear stress τ0 for
which the maximum normal stress is 10 ksi, and (b) the corresponding maximum shear
stress.
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τ0

τ0

σ0 σ0

Given: Plane stress state.

Find: Shear stress τ0; maximum shear stress.

Assume: Plane stress.

Solution

We will assume a sense (sign) for the unknown shear stress, and construct Mohr’s circle.
The shearing stress τ0 on faces normal to the x-axis tends to rotate the element clockwise,
so we plot point X, whose coordinates are (σ0, τ0), above the σ-axis. We see that in our
initial state, σyy is zero and that on faces normal to the y-axis τ0 tends to rotate the
element counterclockwise; thus, we plot point Y(0, τ0), below the σ-axis.

τ (ksi)

σ (ksi)

X

Y

σav

Line XY passes through the center of our circle, at

σav = 1
2
(σxx + σyy) = 1

2
(8 + 0) = 4 ksi.

We determine the radius R of the circle by observing that the maximum normal stress,
given as 10 ksi, appears a distance R to the right of the circle’s center:

σ1 = σav + R,

R = σ1 − σav,

R = 10 ksi − 4 ksi = 6 ksi.
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C

Y

F
2θN

τ  (ksi)

R

X

σ (ksi)

2θS

Now we have Mohr’s circle to work with. We see that the rotation required to get
from our initial stress state (point X) to the principal stress state at (10 ksi, 0) is either
clockwise 2θN as shown, or counterclockwise 360◦ − 2θN. We choose to work with the
more manageable clockwise rotation, and consider the right triangle C F X.

cos 2θN = C F
C X

= C F
R

= 4 ksi
6 ksi

.

θN = −24.1◦.

This rotation, again, is clockwise, as reflected by the negative sign. The right triangle
C F X also allows us to compute the unknown shear stress, τ0, which is experienced at
point X:

τ0 = F X = R sin 2θN = (6 ksi) sin 48.2◦ = 4.47 ksi.

The maximum shear stress is also apparent from Mohr’s circle. It is simply the radius
of the circle, R:

τmax = R = 6 ksi.

The corresponding normal stress at this stress state is σav = 4 ksi. Mohr’s circle indi-
cates that to get from the initial stress state to the state of maximum shear stress, we must
rotate the circle diameter XY counterclockwise by 2θS, or rotate the element itself by θS.
It is clear from the circle that 2θS + |2θN| = 90◦. Hence

2θS = 90◦ − |2θN| = 90◦ − 48.2◦ = 41.8◦.

With all this information in hand, we can draw properly oriented elements in each of
the identified stress states.

σ2 = 2 ksi

σav = 4 ksi

τmax = 6 ksiτ0

σ0 x
θN = 24.1°
θS = 20.9°

σ1 = 10 ksi
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Note: If we had originally assumed the opposite sense of the unknown τ0, we would
have obtained the same numerical answers, but the orientation of the elements would
be as shown below.

σ2 = 2 ksi

τmax = 6 ksi

τ0

σ0 x
20.9°

24.1°

σ1 = 10 ksi

σav = 4 ksi

EXAMPLE 5.12

A stress state is described by the tensor σi j =
⎛
⎝25 15 5

15 20 −15
5 −15 −20

⎞
⎠ ksi.

a. Determine the principal stresses.

b. If this state of stress exists in a part made of gray cast iron (a brittle material with ulti-
mate strength in tension of σult = 30 ksi and in compression of σult = 120 ksi), will it fail
at this location?

c. If this state of stress exists in a part made of 6061-T6 aluminum (a ductile material with
yield strength of σys = 35 ksi). Will the part fail by yielding at this location?

Given: Three-dimensional stress state.

Find: Principal stresses and evaluate failure criteria for two materials.

Assume: Failure criteria apply.

Solution

a. The principal stresses may be found from the roots of the cubic equation in Section 5.3.5
or by finding the eigenvalues of the tensor. Either way the values are: σ1 = 38.4 ksi,
σ2 = 13.5 ksi, and σ3 = −26.8 ksi.

b. For brittle materials, the first check should be a comparison of the maximum positive
principal stress with the ultimate strength in tension. Since 38.4 ksi is greater than the
strength of 30 ksi, we predict that the cast iron will fail at this point. (If we did not predict
failure, we would next compare the maximum negative principal stress to the ultimate
compressive strength).

c. For ductile materials we have two criteria, and either is valid. For the Tresca criterion,
we evalulate

max
(∣∣∣∣σ1 − σ2

2

∣∣∣∣ ,
∣∣∣∣σ2 − σ3

2

∣∣∣∣ ,
∣∣∣∣σ1 − σ3

2

∣∣∣∣
)

= 38.4 − (−26.8)

2
= 32.6 ksi

and compare to σY/2 = 17.5 ksi to predict that this material, too, will fail due to the
given stress state.
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The von Mises criterion shows this as well. Since we have already found the principal
stresses, we can use the compact form of the von Mises stress:

σM = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

= 1√
2

√
(38.4 − 13.5)2 + (13.5 − (−26.8))2 + (−26.8 − 38.4)2

= 57 ksi,

which is greater than the yield stress.

PROBLEMS

5.1 A solid circular shaft of 40 mm diameter is to be replaced by a hollow circular tube.
If the outside diameter of the tube is limited to 60 mm, what must be the thickness of
the tube for the same linearly elastic material working at the same maximum stress?
Determine the ratio of weights for the two shafts.

5.2 The propeller of a wind generator is supported by a hollow circular shaft with 0.4 m
outer radius and 0.3 m inner radius. The shear modulus of the material is G = 80 GPa.
(a) If the propeller exerts an 840 kN · m torque on the shaft, what is the resulting max-
imum shear stress? (b) What is the angle of twist of the propeller shaft per meter of
length?

5.3 A 100-mm diameter core is bored out from a 200-mm diameter solid circular shaft.
What percentage of the shaft’s torsional strength is lost due to this operation?

5.4 A solid circular shaft has a slight uniform taper. Find the error committed if the angle of
twist for a given length is calculated using the mean radius of the shaft when b/a = 1.2.

b

dx
L

x

a r
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5.5 Calculate the torsional stiffness kt of the rubber bushing shown. Assume that the rub-
ber is bonded both to the steel shaft and to the outer steel tube, which is in turn
attached to a machine housing. Assume that the metal parts do not deform, and that
the shear modulus of rubber is G.

D

T

L

d

dr

r
+

5.6 The stepped shaft rotates at 120 rpm and has a 20 kW input at A. 16 kW is taken off
to operate machinery at B, and the remaining 4 kW is used at C . The shaft is stainless
steel with yield strength in shear of 300 MPa.

a. Not including the effect of stress–concentration, what are the minimum allow-
able diameters for segments AB and BC to achieve a safety factor of 3?

b. With the minimum shaft radii, and now considering stress–concentration, what
is the safety factor if the fillet radius is 1 mm?

20 kW input

16 kW

4 kW
A

B
C

5.7 Determine the reaction torques at the fixed end of the circular shaft shown.

L
L3L2

T2T1

L1

5.8 Two structural steel shafts with flanges forged on their ends are rigidly connected with
a circle of bolts. The shafts are meant to rotate in their supports at A and D, however a
100 N · m torque is applied to flange B while the shafts are locked and prevented from
rotating at A and D. Shaft AB has diameter 20 mm and shaft C D has diameter 30 mm.
What is the maximum shearing stress that occurs in a shaft?
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A B C

T = 100 N · m

0.5 m 0.5 m

D

5.9 The wrong size bolts were used to connect the flanges in Problem 5.8, and when the
torque is applied to flange B it rotates by 2 degrees (twisting shaft AB) before engaging
flange C . Once flange C is engaged both B and C rotate together, twisting both shafts.
What is the maximum shearing stress that occurs in a shaft?

5.10 Consider the torsion of a thin-walled tube. Determine an approximate expression for
the torque if the shear stress must be less than a given working stress τw. Express
this result in terms of the tube’s mean radius R and its thickness t. (Hint: The binomial
theorem will be useful here.) Also, derive an approximate expression for the strength-to-
weight ratio of the tube in terms of the working stress, its radius, and length L , and
its specific weight ρg. This result is widely used in aircraft design.

5.11 A cylindrical pressure vessel of 120 in outside diameter, used for processing rub-
ber, is 36 ft long. If the cylindrical portion of the vessel is made from 1 in thick steel
(E = 29 × 106 psi, ν = 0.25) plate and the vessel operates at 120 psi internal pressure,
determine the total elongation of the circumference and the increase in the length
caused by the operating pressure.

5.12 A closed cylindrical tank of length L , radius R, and wall thickness t contains a liquid
at pressure p. If a hole is suddenly made in the cylinder, determine

a. How much the tank radius R changes
b. How much the tank length L changes

5.13 An inflatable cylindrical Quonset hut of length L , radius R = 30 ft from material with
thickness t = 2.5 mm, E = 30.7 GPa, and ν = 0.24 has a longitudinal seam that runs
the entire length of the hut at its highest point (see figure). The hut is closed at each
end by a quarter of a sphere.

Longitudinal seam
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If the hut is inflated to a pressure p = 3.44 kPa, determine

a. The maximum tension (force per length along the seam) that the longitudinal
seam must withstand with a factor of safety of 2

b. How much higher the peak of the cylindrical roof gets when the hut is inflated
to pressure p

c. The maximum tension that a seam in the quasi-spherical end cap must
withstand to maintain the same safety factor of 2

Note: Quonset huts (see photograph above) were lightweight, prefabricated struc-
tures developed to be used as military barracks and offices during World War II.
The Quonset hut skeleton was a row of semi-circular steel ribs covered with corru-
gated sheet metal. The ribs sat on a low steel-frame foundation with a plywood
floor. The basic model was 20 feet wide and 48 feet long with 720 square feet
of usable floor space. A larger model was 40 by 100 feet. Approximately 170,000
Quonset huts were produced during the war. After the war, the military sold the
huts to civilians for about a thousand dollars each.

5.14 A strain gage is installed as shown on an aluminum soda can. The can’s radius is
1.3 in and its wall thickness is 0.004 in (sometimes written as 4 mil; 1 mil = 1/1000 in).
When the lid of the can is opened, the magnitude of the strain reading changes by
180 μstrain.

To circuit
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a. What was the internal pressure p in the can?
b. When the can was pressurized, what was the factor of safety with respect to

yielding in the cylindrical wall?

5.15 For a state of plane stress, examine how the normal and shear stress vary on an
inclined section as a function of angle θ (measured from the positive x-axis). Over the
range 0–2π, plot normal stress and shear stress as a function of θ—use the particular
plane stress example of σyy = 0.4σxx and σxy = 0.9σxx (normalize your vertical plot
axis to σxx). Comment on the significance of key features and points of the curves
(e.g., relative positions/values of maxima, minima, and zero crossings). Pick a few
angles and draw the rotated square element with the state of stress at that angle.

0.4 σxx

0.9 σxx

σxx

5.16 For the state of stress shown, determine

a. the principal planes
b. the principal stresses
c. the orientation of the planes of maximum shear stress
d. the extreme shear stresses and any associated normal stresses

6 ksi

6 ksi

8 ksi

5.17 For the state of stress shown, determine

a. the principal planes
b. the principal stresses
c. the orientation of the planes of maximum shear stress
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100 MPa

20 MPa

80 MPa

5.18 For the state of stress given in Problem 5.17, determine

a. the maximum shear stress
b. the normal stresses on the plane of maximum shear stress
c. the normal and shear stresses after the element has been rotated through an

angle of 30◦ clockwise

5.19 Using the equations for stress transformation,

a. confirm the angles that define the planes of maximum and minimum shear
stress

b. determine the maximum and minimum values of the shear stress

5.20 Consider the top part of the balloon to be half of a spherical pressure vessel. What is
the ratio of the normal stress across a vertical seam to the normal stress across a seam
inclined 45 degrees?

5.21 A weld is oriented at an angle θ (less than 45◦) from the horizontal axis in a com-
ponent loaded in plane stress. All stresses have positive values as shown. If we are
concerned that the component might fail due to tensile normal stress across the weld,
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which is the safer design—or are they both the same—or does it depend on the
magnitudes of the stresses?

σ2 σ2

σ1 σ1
θ

(a) (b)

θ

τ τ

5.22 A solid circular rod of known radius is twisted in a testing machine with a known
torque T . Only one strain gage is available. Does each of the test setups below give
us enough information to determine the shear modulus of the material?

Radius r Radius r
45°

Strain gage Strain gage(b)(a) T T

5.23 A rosette composed of three strain gages measures strain at a point on the surface of
a flat sheet of annealed stainless steel loaded in plane stress. The strains measured
(numbers correspond to strain gages in the figure) are

ε1 = +280 μstrain, ε2 = +720 μstrain, ε3 = −120 μstrain.

a. Find the in-plane strains at this point using the xy-axes shown.
b. Find the in-plane stresses at this point.
c. What is the percent change in thickness of the plate if this stress state is uniform

over it?

(Courtesy of Micro-Measurements, a brand of VPG, Raleigh, NC, USA.)

y

x

45°

1 2 32 3

5.24 If the strain rosette applied to the plate in Problem 5.23 was instead a delta rosette of
the configuration shown, what would the gage readings be?
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x

y

3 1

2

(Courtesy of Micro-Measurements, a brand of VPG, Raleigh, NC, USA.)

5.25 In order to penetrate a workpiece, a tungsten carbide drill bit is subject to a torque
of 3.8 Nm and an axial force of 5 kN. Tungsten carbide is very strong (compressive
strength 1400 MPa, tensile strength 340 MPa) but also brittle. Assuming the bit is a
uniform cylinder with 4 mm diameter, what is the safety factor with respect to failure
during this operation?

5.26 You are asked to design a cylindrical scuba tank with a radius R = 16 cm to a pres-
sure of p = 12.0 MPa at a factor of safety of 2.0 with respect to the yield stress. The
relevant tabulated yield values for the steel of which the tank is intended to be made
are 290 MPa in tension and 124 MPa in shear.

a. Explain why the in-plane (in the plane of the cylinder wall) shear stress is not
the maximum shear stress?

b. What wall thickness t would you recommend?
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5.27 A cylindrical pressure vessel with hemispherical endcaps has radius r = 2 m, wall
thickness t = 10 mm, and is made of steel with yield stress σy = 1800 MPa. It is
internally pressurized at p = 2 MPa. Compare the Tresca and von Mises safety
factors.

5.28 An annealed stainless steel cylindrical pressure vessel has an inner radius of 250 mm
and a wall thickness of 10 mm. In addition to an internal pressure of p = 4 MPa, the
vessel is loaded with a torque T = 200 kNm. Will it fail?

T



6
Case Study 2: Pressure Vessels

Pressure vessels are structures designed to contain or preclude a significant pressure, that
is, a force distributed over the entire surface of the vessel in question. Pressure vessels
show up in a variety of settings and typically are in one of two shapes. Some are spherical:
balloons of all sorts, gas storage tanks (Figure 6.1a), and basketballs. Many are cylindrical:
pressurized cabins in aircraft, rocket motors, scuba tanks, oil-storage tanks, aerosol spray
cans, and fire extinguishers. Some of the cylindrical tanks have flat ends or caps, as in spray
cans and home heating oil-storage tanks. Often, though, the cylindrical tanks have slightly
rounded caps (Figure 6.1b), or spherical caps, as do submarines (Figure 6.1c). Nuclear reac-
tor containment vessels are often cylinders with spherical caps, although newer nuclear
plants tend to have spherical containment tanks.

Pressure vessels have given way or exploded in some rather dramatic fashions. Among
the most notorious are the explosion of a molasses-storage tank in Boston in 1919 that
resulted in 21 deaths and more than 150 injured as 2 million gallons of thick, brown
molasses swept through Boston’s North End (Figure 6.2, Problem 6.1); the burning of the
Hindenburg blimp in Lakehurst, New Jersey in 1937; the rupture of the Apollo 13 oxygen
tank in 1970; and the implosion of several submarines, including the USS Thresher in 1963,
the USS Scorpion in 1968, and the Russian submarine Kursk in 2001. Though the causes
of these catastrophes varied, serious pressure build-ups and the failures of connections or
joints or seams were involved in most. Thus, the design and construction of a pressure
vessel is at least as important as its shape. In fact, a major piece of regulatory code is the
ASME International Boiler and Pressure Vessel Code (IBPVC) that governs the design and
manufacture of pressure vessels.

6.1 Why Pressure Vessels Are Spheres and Cylinders

Why pressure vessels are curved, rather than flat? Two important reasons become evident
when we review the physics of pressure vessels. The first has to do with material prop-
erties. As we noted in Sections 2.4 and 2.11, cracks propagate in metals, even in ductile
metals. Further, crack propagation is especially likely to propagate from the stress concen-
trations that typically form at corners that subsume an angle less than 90◦, termed re-entrant
corners (see Figure 6.3). That is why, for example, airplane windows have rounded cor-
ners. There is a similar increased likelihood of crack propagation when we have structural
elements like rectangular tubes that include four corners.

The second reason that pressure vessels are spheres or cylinders is that when such shapes
are pressurized, they respond with a set of normal stresses that are distributed uniformly
through the thickness and always directed along tangents to the surface enclosed (see Sec-
tion 5.2). These stress states are called membrane stresses. These shapes and their membrane
stress states produce much stiffer structural forms than their beam counterparts and thus
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(a) (b) (c)

FIGURE 6.1
(a) A spherical pressure vessel; (b) a cylindrical pressure vessel with a slightly rounded cap; (c) a submarine: a
cylindrical pressure vessel with a rounded cap.

FIGURE 6.2
A glimpse of the aftermath of the 1919 failure of 5-story-high tank that unleashed 12,000 tons of molasses on
Boston’s North End. (Photograph by Leslie Jones, Boston Herald. With permission.)

1620654 Fillet 3 outside view1 mm

(a) (b)

FIGURE 6.3
Cracks emanating (a) from a re-entrant corner inside a groove; (b) from a filleted corner. (Courtesy of J. A. King.)
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they deflect or deform much less. Consider the pressurized cylinder originally depicted
in Figure 5.10. We have already seen in Section 5.2 that a thin-walled pressure vessel
experiences a circumferential stress, the hoop stress σθθ, of magnitude:

σθθ = pri

t
. (6.1)

Remember, too, that the wall thickness of a thin-walled vessel is always significantly
smaller than the radius, that is, t � ri , so that the stresses induced by the pressure are
significantly larger than the pressure itself.

Now consider what happens to the geometry of a cylinder when that cylinder is sub-
jected to this pressure. We would expect it to expand symmetrically, meaning that its radius
will become larger (see Figure 6.4). Thus, if we use w to denote the radial motion or deflec-
tion of the cylinder, the circle that was originally of mean radius R (which we will use in
place of inner radius ri for simplicity) will become a circle of radius (R + w). So the cir-
cumference of the cylinder increases from 2πR to 2π(R + w), and the resulting hoop strain
εθθ is given by

εθθ = 2π(R + w) − 2πR
2πR

= w

R
. (6.2)

For the sake of simplicity, let us assume a one-dimensional stress–strain law, σ = Eε

(although we of course know that generalized Hooke’s law is really what we need for com-
plete analysis of the strains caused by the biaxial stress state in a pressure vessel wall). This
means that we can find (see Problems 6.2 and 6.3) that the radial expansion or deflection is

w

t
= p

E

(
R
t

)2

. (6.3)

Now imagine that instead of a cylinder of radius R and thickness t, we were using a
square tube of dimensions H × H (and wall thickness t) to contain a gas at the same pres-
sure. We assume that the tube’s side lengths H are comparable in magnitude to the cylinder
radius R (see Problem 6.3) and that t � H. How does the shape of this square tube change
when the gas is subjected to pressure? As we look at Figure 6.5, we can envision that a
given side, say the one marked BC , will move upward or outward due to two effects: the
upward movement of points B and C as sides AB and C D are stretched, and the vertical
or transverse motion of the side BC due to the pressure acting on that surface. The side

R

R + w

p
+

t

FIGURE 6.4
The development of hoop strain in a pressurized cylinder due to the (greatly exaggerated) axisymmetric radial
deflection w.
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t

B

A

H

H

D

C uB,C

wbeam

FIGURE 6.5
A pressurized square tube with cross section side dimensions H × H and wall thickness t. Note that the move-
ment of side BC is due in part to the upward movement of points B and C as sides AB and C D are stretched,
and in part due to the bending of the side BC due to the pressure acting on that surface. Deformations are not to
scale; wbeam � uB,C .

stretching is just like the extension of a one-dimensional bar, so the equal vertical move-
ment of points B (from the stretching of AB) and C (from the stretching of C D) can be
shown (see Problem 6.4) to be

uB,C

t
= p

2E

(
H
t

)2

. (6.4)

On the other hand, the transverse motion of the side BC is actually due to the bending
of that side under the pressure load. As we will see in Chapter 9 when we analyze the
deflections of bent beams, the maximum deflection of such a beam occurs at its center and
can be modeled as

wbeam

t
= 5p

32E

(
H
t

)4

. (6.5)

Note that this beam deflection is proportional to the ratio (H/t) raised to the fourth
power. Compare that with the deflection due to the stretching of the sides (Equation 6.4),
which is proportional to the same ratio squared, which means that the bending deflection
of a tube face is going to be much, much larger than movement due to the stretching of the
sides (again, see Figure 6.5). Further, compare the beam bending deflection (Equation 6.5)
to the radial expansion of a circular cylinder (Equation 6.3) of the same sheet material and
under the same pressure:

wbeam/t
wcyl/t

= 5p
32E

(
H
t

)4 E
p

(
t
R

)2

= 5
32

(
H
t

)2 (H
R

)2

, (6.6)

or, since H ∼ R (see Problem 6.4, again),
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wbeam

wcyl
∼
(

H
t

)2

� 1. (6.7)

Equation 6.7 clearly shows that the deflections due to the bending of the sides of a rectan-
gular tube are two orders of magnitude larger than the radial motion due to the extension
of the walls of a circular cylinder. Thus, a cylinder, like a sphere, responds to pressure as
a stiff structural form characterized by large membrane forces and stresses and relatively
small (compared to the corresponding bending of thin-walled cylinders that are not pres-
surized) deflections (see Problem 6.6). We will say more about this when we describe beam
bending in Chapters 7 and 9.

We have noted that some cylindrical tanks have spherical caps and, while we are on
the subject of radial expansion of such tanks, it is interesting to examine another aspect of
pressure vessel behavior: can we put a hemispherical cap on the end of a cylinder of the
same radius R? For a cylinder of finite length, we noted in Section 5.2 that both axial and
hoop stresses result from an internal pressure p:

σθθ = pR
t

and σxx = pR
2t

. (6.8)

The hoop strain for a (two-dimensional) state of plane stress within the cylinder surface
would follow from Equation 4.27, rather than the one-dimensional version used above.
Thus,

εθθ = σθθ − νσxx

E
, (6.9)

so that we can eliminate the hoop strain between Equations 6.2 and 6.9, and the hoop
stresses from Equation 6.8 to find the radial expansion to be

wcyl

t
= (2 − ν)p

2E

(
R
t

)
. (6.10)

A comparable analysis for the sphere would look much like the cylinder’s, with the
obvious exception that the stresses in a hemispherical cap were found in Section 5.2 to be

σsphere = pR
2t

, (6.11)

(using the same mean radius R as an approximation of ri ) so that here the analysis of the
sphere’s hoop strain yields the following radial deflection for the sphere:

wsph

t
= (1 − ν)p

2E

(
R
t

)
. (6.12)

Clearly both p and R must be the same for the mated cylinder and sphere, and the
radial deflections are compatible only if they are equal. If we set the right-hand side of
Equation 6.10 to equal that of Equation 6.12, we find that the radial deflections are equal
when

(Et)cyl

(Et)sph
= 2 − νcyl

1 − νsph
, (6.13)
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where we have added appropriate subscripts to distinguish the thicknesses and material
properties. If the materials are the same, which seems a reasonable assumption, then

tcyl

tsph
= 2 − ν

1 − ν
, (6.14)

which suggests that the thickness of the cylinder should be much larger than that of
the cap. For typical materials for which ν = 0.30, the ratio (6.14) is about 2.43! Thus, the
cylinder should be thicker by a factor of almost 2.5.

What happens in “real life” is, of course, more complicated. The mismatch caused by
the mating of spheres and cylinders produces some modest bending effects that are super-
posed on the basic membrane states caused by the pressure. The bending stresses add a
modest amount (∼30%) to the membrane stresses, and they decay fairly rapidly as we
move away from the joint or intersection of cap and circular tube. As a result, cylinders
are tapered near the joints, with locally increased thickness designed to accommodate the
added bending stresses. The complete analysis of these edge effects allows us to carefully
and safely design such intersections and thus avoid a catastrophic failure due to a bad
joint.

6.2 Why Do Pressure Vessels Fail?

A gas pressure vessel typically contains a large volume of gas that has been compressed
to fit into the vessel’s much smaller volume, which produces the constant pressure that
acts on the container’s inner wall. When such vessels fail, they explode because the pent-
up gas wants to return to its initial volume as quickly as it can (see Problems 6.9–6.12).
However, pressure vessels containing incompressible liquids also fail, as did the Boston
molasses tank mentioned earlier. The common link is that tank failures typically arise
because their designers either failed to properly anticipate possible sources of crack propa-
gation or failed to adequately analyze the stresses at connections. For example, the owners
of the Boston molasses tank, the Purity Distilling Company, claimed that it failed because
of (variously) an explosion, vibration from an adjacent elevated train track, fermentation
producing carbon dioxide and raising the pressure inside the tank, and a runaway trolley
car colliding with the tank. However, forensic analysis of the tank ruins showed that its
joints were inadequately designed and, further, the tank was fabricated with even thinner
materials than required by the (already inadequate) design!

The 50-ft high, 90-ft diameter steel molasses tank had been ordered from Hammond
Iron Works in 1915 by the Purity Distilling Company on authorization of U.S. Industrial
Alcohol. (At the time, molasses was a standard sweetener; it can also be fermented to
produce alcoholic beverages.) The treasurer of Purity ordered it without consulting an
engineer. The only constraint was that the tank has a factor of safety of 3 for the storage of
molasses, which is 50% more dense than water, weighing 12 lb per gallon.

All the steel sheets used in construction of the tank actually proved less thick than shown
on the drawings used to obtain the building permit. For instance, the bottom ring—the
most stressed part of the structure—was supposed to be 0.687 in; as built, it was only
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0.667 in. The steel thicknesses for the other six rings were similarly found to be 5–10%
less than the values indicated on the permit plans.

The tank was completed early in 1916 and tested with only 6 in of water. During the
tank’s 3 years of service, it had on several occasions contained a maximum of around
1.9 million gallons (for periods up to 25 days). At the time of failure, the tank had been near
maximum capacity (at 2.3 million gallons) for 4 days. Months later, at the legal proceed-
ings, several recalled that the seams of the tank were leaking molasses before the disaster.
It was alleged to discourage neighborhood children from collecting the obvious drippings,
the owner had painted the tank brown to hide the leaks.

The detailed design of joints, and of the connections of pipes and gages and doors, is
beyond our scope. However, understanding the nature of the stress fields in pressure ves-
sels is not. The estimates of the membrane stresses given for the cylinder (Equation 6.8)
and sphere (Equation 6.11) are correct as far as they go, but they are incomplete—and
sufficiently incomplete that by themselves they do not form an adequate basis for a com-
prehensive design. Thus, we will explore the stress states in greater depth to show that
shear is present in pressure vessels and that Mohr’s circle can be used to advantage in the
design of joints.

Consider first the sphere. If we establish an x, y-coordinate system tangent to the
sphere’s surface at any point on the sphere, the equations for stress transformation (5.27)
through (5.29) quickly confirm that the stresses in the plane of the sphere are always
normal stresses, that is,

σx′x′ = σy′ y′ = pR
2t

= σ1 = σ2. (6.15)

But what happens through the thickness, or in the z-direction? Consider the element
shown in Figure 6.6. We see there a stress state

σyy = pR
2t

, σzz = −p. (6.16)

x

z

σzz = 0

σyy = pR/2t σyy = pR/2t

σzz = –p

z
y

y

FIGURE 6.6
An element in the skin of a spherical pressure vessel, and a “blow-up” of the y–z-plane showing the stress σzz =
−p due to the internal pressure p acting on the sphere’s inner wall, and the stress σyy = pR/2t, acting as shown.
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If we then apply the stress transformation Equations 5.27 through 5.29 to this stress state
(see Problem 6.13), we would find that in the z-y-plane the stresses vary as

σz′z′ = 1
2

(
−p + pR

2t

)
− 1

2

(
p + pR

2t

)
cos 2θ, (6.17a)

σz′ y′ = 1
2

(
p + pR

2t

)
sin 2θ, (6.17b)

σy′ y′ = 1
2

(
−p + pR

2t

)
+ 1

2

(
p + pR

2t

)
cos 2θ. (6.17c)

Equation 6.17b shows that there are shear stresses in the wall of a spherical pressure
vessel and that the maximum shear stress occurs at θ = π/4 and has the value

τmax = σx′ y′
max = p

2

(
1 + R

2t

)
. (6.18)

Thus, there is a shear stress that acts through the thickness: its magnitude is the same
as the principal membrane stresses and it must be accounted for in the design of spherical
tanks (see Problem 6.14).

A similar situation occurs in the case of cylindrical tanks, with an interesting twist that
arises because of the different ways that cylindrical tanks are actually made. While hol-
low reeds and bamboo tubes occur quite naturally, we have to manufacture cylindrical
tanks. Typically that means forming flat, rectangular sheets around a rigid form, termed a
mandrel, and welded together along seams that can be longitudinal, transversely circum-
ferential, or even helically wound around the cylinder’s axis (Figure 6.7). This means that
the stresses along the seams are of especial interest, and thus the transformation of stresses
needs to be considered. In fact, if we identify x as the axial coordinate in a cylinder and y
as the circumferential coordinate, the membrane stress state of a pressurized cylinder is

σxx = pR
2t

, σyy = pR
t

. (6.19)

Helical weld



FIGURE 6.7
A cylindrical tank with helical seams. (After J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th Edition,
PWS Publishing Company, Boston, MA, 1997.)
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Then this stress state substituted into the stress transformation Equations 5.27 through 5.29
yields the following stresses in the x–y-plane (see Problem 6.15):

σx′x′ = 3pR
4t

− pR
4t

cos 2θ, (6.20a)

τx′ y′ = − pR
4t

sin 2θ, (6.20b)

σy′ y′ = 3pR
4t

+ pR
4t

cos 2θ. (6.20c)

Equation 6.20 allows us to determine the variation of the stresses with the angle θ.
We can thus calculate the in-plane or membrane stresses along any intended seams (see
Problems 6.16 and 6.17). Of course, in addition to the membrane stresses just analyzed,
cylindrical tanks also have shear stress components that are directed in the thickness or
z-direction.

Cylindrical pressure vessels that are made from welded steel sheets are very common,
and this is the least expensive way to manufacture cylindrical tubing. It is also common to
see cylinders that have been extruded from a solid piece of steel or aluminum, with weld-
ing only necessary at the end caps. This extrusion method is preferred for applications
requiring higher safety factors than welded tubing, for example, in scuba cylinders. A third
manufacturing technique of interest is spin casting, which helps to reduce the weight of the
pressure vessel and also requires no welds along the length of the vessel. The tank mate-
rial, generally aluminum, is melted and poured into a rotating cylindrical mold, where it
solidifies in the desired vessel shape.

PROBLEMS

6.1 Determine in both US customary and SI units the volume that 12,000 tons of molasses
occupies.

6.2 Derive Equation 6.3 by substituting Equations 6.1and 6.2 into the appropriate one-
dimensional stress–strain law.

6.3 Is Equation 6.3 dimensionally correct? Explain your answer.

6.4 Determine how much the sides AB and C D of the square tube in Figure 6.7 are
stretched due to an upward pressure p acting on the bottom surface of side BC . How
does this answer compare to Equation 6.4?

6.5 Develop three scenarios for comparable circular cylinders of radius R and square tubes
of side H that allow one to say R ∼ H. (Hint: What geometric attributes of the cylinder
and tube might be made equal?)

6.6 If a structural stiffness parameter was defined in terms of the pressure/radial deflec-
tion ratio (i.e., p/w), compare the stiffness parameters for a circular cylinder of radius
R with that of a square tube of side H. What are the physical dimensions of these stiff-
ness parameters and of their ratio? Assume that R ∼ H. (Hint: Recall Equations 6.3
and 6.5.)

6.7 Given that the hoop strain is likely to be a very small number, estimate the pressure-
to-modulus ratio, p/E .
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6.8 Given the result of Problem 6.7, estimate the magnitude of the radial deflection of a
pressurized cylinder as a fraction of its thickness. (Hint: Equation 6.3 might be handy.)

6.9 The adiabatic compression of an ideal gas obeys the following law: p V– γ = constant,
where p is the pressure, V– the volume, and γ = 1.4. Assuming that the ideal law
provides a reasonable rough estimate of the gas’ behavior, determine the pressure in
a tank of 1 ft3 volume when it stores 100 ft3 of standard atmospheric air.

6.10 For the two scuba cyliners shown, of radii R = 4 in and length L = 25 in, estimate the
pressure reading if 80 ft3 of air was compressed into them.

6.11 For the assumptions stated in Problem 6.9, show that the work done in adiabatically
compressing an ideal gas is

W1−2 = −
2∫

1

p dV– = p1 V– 1

γ − 1

[(
V– 1

V– 2

)γ−1

− 1

]
.

6.12 Determine how much work was required to undertake the compression specified
in Problem 6.9. Is that a lot of work (or energy)? Explain your answer, perhaps by
providing a suitable comparison.

6.13 Verify that Equation 6.17 is correct by substituting the stress state of Equation 6.16
into the stress transformation Equations 5.27 through 5.29.

6.14 Determine an appropriate approximation to Equation 6.18 for thin-walled pressure
vessels, that is, t/R � 1. From which of the original components of stress does the
dominant, surviving term originate?

6.15 Verify that Equation 6.20 is correct by substituting the stress state of Equation 6.19
into the stress transformation Equations 5.27 through 5.29.

6.16 Determine the maximum in-plane stresses for a cylindrical tank made of steel (E =
205 GPa, ν = 0.30), having a mean radius of 2 m and a thickness of 20 mm, and
subjected to an internal pressure p = 1 MPa.
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6.17 Determine the in-plane normal and shear stresses along the seam of the tank of
Problem 6.16 if it is helically wound at an angle θ = 60◦.

6.18 How much would the maximum stress in the Boston molasses tank have been
increased by the reduction in wall thickness from the design spec, 0.687 in, to 0.667 in?
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7
Beams

The word beam is derived from Germanic words meaning tree or structural element. (One
would guess that “tree” came first.) Beams are among the most common structural ele-
ments, popping up in the support structures of cars, aircraft, and buildings. A beam carries
loads applied at right angles, or transverse, to its longitudinal axis, which cause it to bend.
In practice, structural elements may experience complex loading including axial bar load-
ing, torsional rod loading, and transverse beam loading. As we have already examined
axial and torsional loading, for now we will consider the isolated effects of beam loading.
The fundamental elements of continuum mechanics will serve us well: we will need equi-
librium (and stress), constitutive laws, and compatibility (an appreciation of the kinematics
of deformation). This time we will start with equilibrium, then develop our definitions of
stress and strain, relatable by Hooke’s law when deformations are small. We will examine
first the internal forces and moments in the beams, and then the resulting stresses on the
beams, and finally (in Chapter 9) the beams’ deflections due to this loading.

7.1 Calculation of Reactions

Not surprisingly, our first step in analyzing a beam will be to draw an FBD and deter-
mine the reactions at its supports. A beam’s behavior when subjected to an external load
depends on the type of supports and on the type of loading.

There are three basic types of supports for planar structures such as beams: (1) the roller
or link, which is capable of resisting a force in only one specific line of action; (2) the pin,
which is capable of resisting a force in any direction, and whose reaction force hence
has two components in a two-dimensional analysis and three components in a three-
dimensional analysis; and (3) the fixed support, which is capable of resisting a force in
any direction and is also capable of resisting a moment or a couple. This third type of sup-
port is obtained, for example, by building a beam into a wall, casting it into concrete, or
welding its end to a main structure. Figure 7.1 shows physical and idealized diagrams of
these three types of supports, and the resisting reactions they offer.

In addition to the type of supports, we also take into account the type of loading on the
beam. In this book, we have considered a number of concentrated “point” loads; we can
also see this type of loading on beams. We will also consider problems where the loads are
distributed, either uniformly or not. Figure 7.2 gives an idea of how these load diagrams
will look, and what their real-world equivalents might be.

Often when considering equilibrium, we will be able to replace a distributed load by an
equivalent concentrated resultant load, acting through the centroid (center of force) of the
distributed load. Note that when we consider deflections of beams in Chapter 9 we need
to be careful, however, as the resultant load does not produce the same deflection as the
distributed load.
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Type
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FIGURE 7.1
Beam supports.
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FIGURE 7.2
Types of loading conditions for beams.
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We will also be able to classify beam problems, as we have classified axial bar and tor-
sion problems, into statically determinate and statically indeterminate scenarios. And as
before, whenever we encounter a statically indeterminate problem, we will supplement the
equations of static equilibrium with compatibility (geometric restrictions) and constitutive
laws.

Armed with this information about beam supports and loads, we are prepared to cal-
culate beam reaction forces and moments. In statically determinate cases, the equations of
static equilibrium will suffice.

7.2 Method of Sections: Axial Force, Shear, Bending Moment

By now we are good friends with the method of sections: the idea that if a whole body is in
equilibrium, any part or section of this body is in equilibrium itself. We exploit this method
to determine the complete force system of a body, including both external and internal
forces and moments. In the particular case of a beam, the externally applied forces and the
support reactions keep the entire body in equilibrium. When we make “cuts” to apply the
method of sections, equilibrium requires the existence of internal forces at the cut section.
These internal resisting forces and moments are what keep the cut sections in equilibrium.
At each section, we may find any or all of: a vertical force, a horizontal force, and a moment
necessary to maintain equilibrium. In the case of three-dimensional problems, there are
additional force and moment reactions to be determined, but the principles remain the
same.

7.2.1 Axial Force in Beams

A horizontal force N may be necessary at a beam section to satisfy equilibrium. The mag-
nitude and sense of this force N are obtained from the solution of

∑
Fx = 0. If the force

N acts toward the section, it is a compressive force, sometimes called a thrust, as we have
already seen; if it acts away from the section, N is called axial tension. Its line of action will
always be directed through the centroid∗ of the beam’s cross-sectional area. This loading
is as we have seen for bars, and the normal stress may be calculated as in Chapter 2.

7.2.2 Shear in Beams

Typically, to keep a cut section in equilibrium, there must be an internal vertical force V
at the cut. Because this internal force acts normal to the beam axis and therefore along the
beam’s cross-sectional area, it is called a shear force. The shear’s magnitude is the sum of
the vertical components of all the external forces acting on this cut section, and it is in the
opposite direction to balance the external forces.

If we look at two adjacent sections, the shear on their shared face is defined as in
Figure 7.3. The shear on this face should clearly have the same magnitude no matter which
way we choose to look at it; the positive direction of the shear depends on the face. If we
are looking at a face that has its outward normal pointing in the positive horizontal direc-
tion, a positive shear force acts in the positive vertical direction. On a face with its normal

∗ The centroid of an area is defined as its geometric center. Imagine cutting the shape of the cross section out of
cardboard; the centroid would be the center of mass of the cutout.
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FIGURE 7.3
Application of method of sections.
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FIGURE 7.4
Definition of positive shear.

pointing in the negative horizontal direction, the corresponding shear—still positive—acts
in the negative vertical direction. Looking ahead, this will ensure that the shear stress that
this shear force causes matches the sign convention we learned in Chapter 4. Thus, for the
typical right-handed coordinate system we will use for beams, shown in Figure 7.3, posi-
tive shear involves upward V on the left-hand segment of a cut beam, and downward V
on the adjacent right-hand segment, as shown in Figure 7.4. So in addition to specifying
the direction of V, it will be important to make sure we have associated it with a particular
side of a cut.

7.2.3 Bending Moment in Beams

We have two internal forces, an axial force N and a shear force V, to assist us in satis-
fying equilibrium equations for a beam. In general, we will have axes defined with x
directed along the axis of the beam (positive to the right), z directed vertically (positive
upward), and y directed parallel to the beam’s cross-sectional surfaces (positive into the
page). Clearly, N and V will help out with

∑
Fx = 0 and

∑
Fz = 0. The remaining equilib-

rium equation for a planar problem is
∑

My = 0, and we will generally need an internal
resisting moment to help us meet this requirement, to balance the moment caused by exter-
nal loads. This internal moment is developed within the cross-sectional area of the cut, in a
direction opposite to the resultant external moment. The magnitude of the internal resist-
ing moment, it should be apparent, equals the external moment. These moments tend to
bend a beam in the plane of the loads, and are hence called bending moments.

In the method of sections, this external moment can be defined as the sum of the
moments of all the external forces and external moments acting on one side of the cutting
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FIGURE 7.5
Definition of positive bending moment.

plane. The sign of the balancing internal moment at the cut follows our consistent conven-
tion: on a face that has its outward normal pointing in the positive horizontal direction, a
positive internal moment acts in the positive direction determined by the right-hand rule.
Of course on the opposite side of the cut, this postive internal moment acts in the opposite
direction, as required by equilibrium and sign convention consistency. With our coordinate
system, this means that the bending moment in a beam is positive when the bottom fibers are in
compression and the top fibers are in tension. The bending moment is negative when the bottom
fibers are in tension and the top fibers are in compression. An illustration of this convention is
shown in Figure 7.5.

7.3 Shear and Bending Moment Diagrams

Now that we have sign conventions for the internal forces and moments in a beam, we
have the ability to represent the varying values of internal forces and bending moment
throughout the length of the beam. We do this by means of separate diagrams for each
quantity. These diagrams are called axial force, shear, and bending moment diagrams. We will
rarely use axial force diagrams since most of the beams we will investigate (and most
beams in practice) are loaded by forces acting perpendicular to the beam axis, and for
these cases there are no axial forces at any section. Again, any stresses due to axial forces,
when they are present, can be calculated just as in Chapter 2.

These diagrams can be quick sketches, typically made just below the FBD of the beam.
From a quick glance at such a diagram, a designer can ascertain the type of performance
that will be required of a beam at every section.

We will first construct these diagrams by inspection of the FBD; then, we will use inte-
gration to evaluate more complex cases. See Section 7.7 for examples implementing the
protocols described here for constructing shear and bending moment diagrams.

7.3.1 Rules and Regulations for Shear Diagrams

Protocol:

1. Sketch FBD of beam.
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2. Find reactions.
3. Draw V diagram directly below load diagram (FBD).
4. By solving

∑
Fz = 0 on each section of the beam, find and plot V. The sec-

tions should be evaluated with cuts between (not at) points of application of
concentrated loads and reactions.

5. Locate point(s) of zero shear.

Fun facts:

• For any part of the beam where there are no external loads, the shear diagram will
be a straight horizontal line.

• At the point of application of a concentrated load, there will be a sudden change in
the shear. This is why we do not want to make a cut right at the point of application
of a load.

• Where there is a uniformly distributed load, the shear diagram will be a straight
line with the slope equal to the load intensity.

• For a simply supported beam subjected to vertical loads, the absolute values of
the positive and negative areas contained by the shear diagram are equal.

7.3.2 Rules and Regulations for Moment Diagrams

Protocol:

1. Draw M diagram directly below shear diagram.
2. Either (a) calculate areas under the shear diagram between key points,∗ then cal-

culate moments by adding shear areas beginning at the left end of the beam; or
(b) use FBDs of sections beginning at the left end of the beam to compute moment
expressions between key points.

3. Plot moment values.

Fun facts:

• For a simply supported, single span beam, bending moment at both ends is equal
to zero.

• For a cantilever beam acted on only by vertical downward loads, bending moment
is zero at the free end and maximum at the fixed end. (Shear is also maximum at
the fixed end.)

• Local maximum bending moment(s) occur at point(s) of zero shear, or where V
goes through zero.

∗ Key points: points of application of concentrated loads and reactions; points of zero shear and where the V
diagram goes through zero; and the endpoints of all distributed loads.
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7.4 Integration Methods for Shear and Bending Moment

To develop a more elegant method for calculating the shear forces and moments (V and
M) within a beam, we will derive a few differential relations. To do this, we will imagine
using the method of sections on an infinitesimally small section of the beam, say one with
length dx. To keep things as general as possible, we will say that this beam is acted on by
a distributed force with intensity q(x). q has units of force per unit length and a positive
q is defined as a load in the positive z-direction. An FBD of such a segment is shown in
Figure 7.6.

The changes in shear and moment from the left face of element dx to the right
are denoted by dV and dM, respectively.∗ Our next step is to write the equations of
equilibrium for this element:

∑
Fz = −V + q dx + (V + dV) = 0, (7.1)

which simplifies to

dV
dx

= −q . (7.2)

We also sum the moments about the center of the right face of our element, with
clockwise moments positive:

(M + dM) − V dx − M + (q dx)(dx/2) = 0, (7.3)

which gives us

dM
dx

= V − q dx
2

. (7.4)

dx

M + dM
V

(y into page)
x

q(x)

V + dV

z

M

FIGURE 7.6
Differential element.

∗ We do not need to consider any variation of q(x) within dx, because in the limit as dx → 0, the change in q
becomes negligibly small. This is not an approximation.
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If we take the limit as dx → 0, we see that we have two equations:

dV
dx

= −q ,

dM
dx

= V.

(7.5)

And furthermore, by substituting dM/dx = V into dV/dx = −q , we obtain

d2 M
dx2 = −q . (7.6)

Equations 7.5 and 7.6 are very useful in the construction of shear and moment diagrams,
as we will see.

Integrating the above equation for dV/dx, we obtain an expression for shear at any x:

V = −
∫

q dx + C1. (7.7)

From this integral, we can see that the shear at any section is simply a sum (i.e., an inte-
gral) of the vertical forces along the beam from the left end of the beam to the section of
interest, plus a constant of integration C1. This constant is equal to the shear on the left-
hand end of the beam (at x = 0). So, between any two sections of a beam, the shear V
changes by the amount of vertical force included between these two sections. If no force
occurs between any two sections, there is no change in the shear (i.e., the shear diagram
is a horizontal line). If a concentrated force occurs, a discontinuity or jump in the value of
V occurs at the point of application. The slope of the shear diagram comes from the load
intensity q . If, for example, the applied distributed load is downward (negative) and uni-
formly distributed (q = q0 = constant), then the slope of V(x) is positive and also constant.
For nonuniform distributed loads, the slope of the shear diagram is determined from the
trend of q . Similarly, for a V diagram with positive slope, the corresponding M diagram is
concave up, and for V(x) with negative slope, M(x) is concave down (note we are talking
about the M diagram here, not the shape of the beam itself). This follows nicely from the
differential relations we have just derived: if V goes as +x, M goes as +x2; and if V goes
as −x, M goes as −x2.

Once again, to determine a shear diagram in this way, we must first find the reactions.
Then we can start summing vertical forces to calculate the shear at any point. Integrating
the dM/dx equation, we obtain a relation for bending moment at any x:

M =
∫

V dx + C2, (7.8)

where, again, C2 is a constant of integration, determined from boundary conditions at
x = 0. If the ends of the beam are on rollers, pins, or free, the moments at these ends are
zero. If an end of the beam is fixed, the moment at this end is known from the reactions.
For such cantilever beams, zero moment is felt at the free end.

The term V dx represents the area beneath the V diagram over a length dx. The sum
of these areas over a length x, according to the above equation, will give us the bending
moment M(x). By proceeding from the leftmost (x = 0) end of a given beam to the right,
we can construct a moment diagram.
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7.5 Normal Stresses in Beams and Geometric Properties of Sections

We know now that a system of internal forces may occur in a beam subject to external
loads. We have already considered the stresses due to internal axial forces such as N. Now,
we want to develop a way to talk about the stresses due to the shear force V and bending
moment M. For simplicity, we will begin our discussion of these stresses by focusing on
beams with symmetric (left to right) cross sections, and we will first consider a load state
known as pure bending or flexure. In pure bending, only bending moments, not shear forces,
are applied to the beam.

We will use a similar approach to the one we used to consider the effects of torsion. First,
we make a plausible assumption about the deformation to ensure that we will be able to
deal with the problem analytically. Figure 7.7 should help you visualize this assumption
for pure bending. In Figure 7.7a, a horizontal beam with a vertical axis of symmetry is
shown. The horizontal line parallel to the x-coordinate axis through the cross section cen-
troid will be called the axis of the beam. If we look at a segment of this beam when it is
subjected to a bending moment, as in Figure 7.7b, the beam bends in the plane of sym-
metry. Although the planes initially perpendicular to the beam axis slightly tilt, the lines
defining their boundaries remain straight. That is, plane sections through a beam taken normal
to its axis remain plane after the beam is subjected to bending.∗

This assumption is completely valid for elastic, rectangular elements in pure bending. If
shears are also introduced, there are some small corrections to the theory. But, in practice,
this theory and assumption are remarkably robust and capable of supporting the stress
analysis of all beams even with shear present.

Looking again at Figure 7.7b, we see that the beam axis has deformed into a portion of
a circle of radius ρ. For an element (shaded) defined by an infinitesimal segment dθ, the

z(a)

ds

ds

dθ

a

c

a′

ρ

c′ d′

b′

d

My

b
x y

z

(b)

FIGURE 7.7
Behavior of elastic beam (a) in bending (b).

∗ In the immediate vicinity of the applied load, the behavior is somewhat more complex; we make use of
Saint-Venant’s principle to apply the assumption to the whole beam. Incidentally, this “plane sections remain
plane” hypothesis for bending was first made (with some mistakes) by influential Swiss mathematician Jacob
Bernoulli (1645–1705), whose nephew Daniel was renowned for his work in fluid mechanics.
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FIGURE 7.8
Nomenclature for deformation of beam in bending.

length ds of the beam axis (an arclength on this circle with radius ρ containing angle dθ) is
given by ds = ρ dθ. Rearranging,

dθ

ds
= 1

ρ
≡ κ, (7.9)

where the reciprocal of ρ is defined as the axis curvature κ. For pure bending of a pris-
matic beam, that is, a beam with a non-changing cross section along its length, both ρ and
κ are constant. In the course of solving the bending problem, we hope to find a way of
determining κ.

If we imagine another curve, parallel to the beam axis, at some radius ρ + z, we can find
the arclength contained in our shaded segment. We will call this arclength ds′, and ds′ =
(ρ + z)dθ, as shown in Figure 7.8. We write the difference between our two arclengths:

ds′ − ds = (ρ + z)dθ − ρdθ = z dθ. (7.10)

We then divide this difference by the first arclength ds, the initial length of the segment
of interest. At some z position, called the neutral axis, the segment length does not change
under pure bending. In Figure 7.7b, the horizontal lines above the neutral axis have been
lengthened, and those below it have been compressed, but the neutral axis has not changed
length. ds was in fact the length of all horizontal lines in the shaded segment before the
bending moments were applied. Hence, dividing this new change in arclengths, ds′ − ds,
by the old one, ds, we should get an expression for strain. And, we do:

εxx = ds′ − ds
ds

= z
dθ

ds
= κz. (7.11)

This is a normal strain, a measure of how much dimensions in the x-direction have
changed under this bending moment. We see that it depends linearly on z.

By using Hooke’s law, we obtain a relation for normal longitudinal stress in the beam:

σxx = Eεxx = Eκz. (7.12)

Note that due to the position of the origin of the z-axis in the beam at the neutral axis, z
can have either positive or negative values. We will need to develop a way of determining
the location of the origin. How can we find out where the neutral axis is?
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FIGURE 7.9
Internal stress distribution on a cut section of a beam in equilibrium.

To answer this question, we turn to the equations of equilibrium using the free body dia-
gram in Figure 7.9, which shows the linearly varying stress on cut area A. In pure bending,
the sum of all forces at a section in the x-direction must vanish, so

∑
Fx = 0 −→

∫

A

σxx dA = 0, (7.13)

where the integration over A represents summation over the entire cross-sectional area A
of the beam. Using Hooke’s law, we can rewrite this integral as

∫

A

Eκz dA = Eκ

∫

A

z dA = 0. (7.14)

Since E and κ are constant, we have taken them outside the integral. By definition, the
remaining integral

∫
z dA = zc A, where zc is the distance from the origin to the centroid of

the area. Since the integral must equal zero, this distance zc must equal zero, and hence the
origin must coincide with the centroid. That is, the x-axis must pass through the centroid
of the cross section, and this is the location of the neutral axis. A modification of this idea
gives us a way to find the centroid. If we set up a temporary set of coordinate axes with a
known origin location, we can call zc the distance from the temporary origin to the centroid
of the area and solve for it as

zc =

∫
z dA

∫
dA

=
∑

z dA∑
dA

. (7.15)

The summation expressions are simpler to use when the cross-sectional geometry can be
broken up into simple shapes (see Examples 7.3 and 7.4).

Returning to Equation 7.12, we now see that along the x-axis (where z is zero) both
normal strain εxx and normal stress σxx equal zero. In bending theory, the name neutral
axis indicates that at the level of this axis there is neither tension nor compression.

To finish up our solution of the bending problem, we use the second available equation
of equilibrium. The sum of the externally applied and the internal resisting moments on
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a section of the beam as shown in Figure 7.9 must vanish, so, using the convention of
clockwise moments being positive:∗

∑
M0 = 0 −→

∫

A

z︸︷︷︸
arm

dF︸︷︷︸
force

−My = 0,

My =
∫

A

z︸︷︷︸
arm

σxx dA︸ ︷︷ ︸
force

=
∫

A

z(Eκz)dA.
(7.16)

Recognizing that E and κ (in this case of pure bending) are constants, we can write

My = Eκ

∫

A

z2 dA, (7.17)

and we now define the second moment of area (often and erroneously called the moment of
inertia†) defined with respect to the cross section’s neutral (centroidal), or y-axis:

Iy =
∫

A

z2 dA. (7.18)

This is similar to the polar second moment of area that we saw in Section 5.1. There,
each bit of area was multiplied by the square of its radial distance from the x-axis. Here,
each bit of area is multiplied by the square of its distance from the horizontal y-axis. As
with calculation of the centroid location, the integral may be replaced by a summation if
the cross section is composed of simple shapes for which Iy has already been calculated.
In Appendix A, the second moments of area for shapes are given with respect to their own
centroids. As we need the second moment of area of each simple shape with respect to the
centroid of the whole cross section, we must include a shift term for each area contribution.
Thus, the summation form of the second moment is

Iy =
∑(

Iycentroid + Ad2
)

, (7.19)

where Iycentroid is the second moment of area of a shape that is part of the whole cross
section, A is the area of that part, and d is the distance from the centroid of the part to the
centroid of the whole cross section‡ (see Examples 7.3 and 7.4).

∗ Note that there are two different notions of positive and negative moments and forces at work here. When
we are writing equilibrium expressions, all of the forces or moments in one direction must be given the same
sign. In this kind of calculation, we are either writing equilibrium equations for an entire beam, or we are
writing them for a cut section where the formerly internal forces have been shown explicitly. Thus, in this case
everything (for now) is treated as an external force. This is different than when we are considering the method
of sections itself, and drawing the forces and moments on a cut internal section. Then, on one side of the cut
the forces and moments will be equal and opposite to the other side of the cut (so they cancel when the beam
is put back together, as they should because there is no real external force there) but they will both be positive,
as defined in Section 7.2.

† In fact, this is analogous to the moment of inertia that you may know from dynamics. There, each bit of a
body’s mass is multiplied by its distance to an axis, squared, and contributions are integrated over the entire
body. Here, each bit of area of the cross section is multiplied by its distance to the neutral axis, squared, and
contributions are integrated over the entire area. But moment of inertia is not a correct term in this context.

‡ This may look familiar as it is analogous to the parallel axis theorem for moment of inertia from dynamics.
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Beams are commonly composed of multiple simple shapes, either built up from several
components or constructed from a single piece of material in a T- or I-shaped beam. Now
that we have learned some beam theory, it may seem straightforward to recognize that the
T- and I-shaped cross sections commonly used for beams improve upon a basic rectangu-
lar cross section in two important ways: (1) reducing weight and (2) increasing the cross
section’s second moment of area, in order to reduce the stress induced by a particular load,
thus increasing the load the beam can withstand.∗

If we replace the integral in Equation 7.17 by Iy, we have

κ = My

E Iy
. (7.20)

And when we substitute this expression for κ back into our equation for normal stress,
we obtain the elastic flexure formula for pure bending of beams:

σxx = My

Iy
z, (7.21)

which, to demonstrate the dependence of normal stress on both x and z positions along
and in the beam, we can also write as

σxx(x, z) = My(x)

Iy
z. (7.22)

Note that since z is negative at the bottom of the beam and positive at its top edge, under
a positive bending moment the normal stress will be negative (reflecting compression) at
the bottom of the beam and positive (reflecting tension) at the top. Often we omit the y
subscripts in this equation as they are usually correctly implied.

Since we are interested in the limiting behavior of beams, it is valuable to have an expres-
sion for the maximum stress occuring anywhere in a beam. For beams with symmetric

∗ By this logic, it is only reasonable that we would find the canonical T- and I-profiles in early railroad rails, and
the skeletons of Industrial Revolution-era ships.

However, like many developments in science and engineering, the adoption of such beams did not follow
a linearly logical path. The beam theory developed by Galileo, Mariotte, Coulomb, Navier, and St. Venant,
although available, was apparently not utilized by the engineers who empirically developed the I-beam’s
shape.†Instead of being motivated by the equations we have ourselves admired, these engineers responded
to manufacturing requirements and limitations, to the careful and systematic experiments they performed,
and to their own intuition.

Design choices are often driven by the available materials. Iron, the dominant structural material when the
industrialized world began to need railroads, came in two flavors: cast iron, which resists compression beau-
tifully but is very brittle; and higher purity wrought iron. Improvements in rolling mills made it possible to
roll wrought iron into rails for the young British rail system. In 1830, American Robert Stevens visited England
and intuitively refined the shape into a T-rail (or T-beam) for American railroads. The shape was also used for
building: by the 1850s, New York manufacturer and builder Peter Cooper recognized the utility of the rolled
T-shape for fire-resistant building construction. This was an improvement on the standard practice of rolling
and heating, then welding flat bars into composite beams that tended to delaminate and fail.

The T-beam was evolved into the I-beam through the experiments of British engineer William Fairbairn, who
was hoping to improve upon the scientific art of ship-building. The empirically developed I-beam was then
included in Rankine’s‡1868 textbook on ship construction.

† The appropriately intrigued reader is directed to Jewett, R. A. “Structural Antecedents of the I-Beam, 1800–
1850,” Technology and Culture 8(3): 346–362. 1967.

‡ Yes, that Rankine. William Rankine (1820–1872) was a Scottish civil engineer who also helped develop the
science of thermodynamics.
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cross sections, bent in the plane of symmetry, we designate zmax as c, and at a position x
along the beam, we obtain

σmax(x) = M(x)c
I

. (7.23)

The convention is to dispense with the sign in this expression, because the sense of the
normal stresses can be determined by inspection of the beam in question, and with the sub-
scripts. The maximum magnitude of stress in the beam overall is found by using the
maximum value of M(x).

Normal stress in the direction of the beam’s long axis (here the x-axis) is the only stress
resulting from pure bending.∗ The stress tensor’s matrix representation at every point in
the beam is therefore

σ =
⎛
⎝σxx 0 0

0 0 0
0 0 0

⎞
⎠ . (7.24)

Remembering Poisson’s ratio, we will have normal strains in the y- and z-directions:
εyy = εzz = −νεxx , where εxx is given by σxx/E or Mz/(E I ).

7.6 Shear Stresses in Beams

We will now consider shear stresses in beams caused by transverse shear. (Remember,
transverse here means normal to the beam’s long axis.) We will also give some thought to
the attachment of separate parts of a beam by bolts, gluing, or welding.

For problems of torsion and pure bending, we began by assuming a strain distribution
across the cross section. (In both cases, this distribution followed from the assumption
made about “plane sections remaining plane.”) We cannot make any analogous assump-
tion about the strain distribution due to shear force. However, we will be able to use the
expressions for normal stress that we have developed in the previous section.

By examining the equilibrium of an infinitesimal beam element, we saw in Equation 7.5
that dM = Vdx, that is, the shear force V is linked with a change in bending moment. So, if
a shear and a bending moment are present at one section of a beam, the adjoining section
will have a different bending moment, even if the shear remains constant. This variation
in moment establishes shear stresses on the conceptual parallel longitudinal planes of the
beam. (As when we first defined shear stress in Section 2.2, we can imagine the beam to be
composed of thin planes that are allowed to slide with respect to each other.) Even when
we seem to be talking about isolated shear forces, we must remember that these forces are
linked with a change in the bending moment along the beam’s length.

The shear and moment diagrams in Figure 7.10 show this: bending moment varies over
sections with constant shear, while in regions of no shear there is no change in the moment.
Note that we mean variation in the x-direction.

The distribution of shear stress over the beam cross section, that is, variation in the z-
direction, is much different than that of normal stress. The shear stress is zero at those
points where the bending normal stress is a maximum. And, maximum shear stress very

∗ That is, the only stress relative to the x-, y-, and z-coordinates as we have defined them. The stress state on a
different plane, as we well know, could look different.
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FIGURE 7.10
Shear and bending moment diagrams for the loading shown. (Adapted from Popov, E. P., Engineering Mechanics
of Solids, Prentice Hall, 1998.)

often occurs at the neutral axis (where normal strain and stress due to bending are both
zero). We will now derive an expression for shear stress that shows this. Alternatively, we
could derive it using the theory of elasticity from Chapter 4. This is done as an exercise in
Example 7.8.

Consider the beam as a long, slender body with rectangular cross section (b × h) and
length L , as shown in Figure 7.11. “Slender” beams are those for which b and h are both
much less than L . The beam of interest is in plane stress in the y-direction, that is,

σyy = σyx = σyz = 0. (7.25)

For the purpose of this derivation, consider that our beam is made by stacking five
planks as shown in Figure 7.12. If the planks were not adhered to each other and this
stack were bent, the planks would slide relative to each other—picture how the pages
slide across each other when you bend a paperback book. But if the stack is to act as one
built-up beam the planks should be attached, and so consider them to be glued together.

x

z

h
y

b

FIGURE 7.11
Rectangular beam.
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FIGURE 7.12
Cross section of rectangular beam built up by gluing five planks together.

Now when the beam is bent, the glue prevents sliding because it transmits shear force
from one plank to the next. Our goal is to determine the shear stress in a layer of glue. The
expression we derive will be useful for finding shear stress at any point in solid (not just
built-up) beams with general (not just rectangular) symmetric cross sections.

In Figure 7.13, a section of the beam with length dx is isolated. For the general case of
bending moment changing over this distance from M to M + dM, there is a corresponding
change over x in the magnitude of the normal stress distribution (with its z variation, as
given in Equation 7.22). Since we are interested in the shear stress in a layer of glue, we
use the method of sections to expose a layer by isolating a plank. In Figure 7.14a, the cross
section of the plank to be isolated is labeled A′, and this same area is indicated on each end
of the plank section in Figure 7.14b. The plank is isolated in Figure 7.14c with its free body
diagram in Figure 7.14d. Forces F1 and F2 are the resultants of the stress distributions on
the plank shown in Figure 7.14c, and Fshear is the unknown shear force in the glue. Note
that it is pointing in the negative x-direction on a face with its normal in the negative
z-direction, so by our sign convention the corresponding stress would be positive. This
section of the plank must be in equilibrium, so∑

Fx = F2 − F1 − Fshear = 0. (7.26)

dx

M + dM

(M + dM) z
I

(σxx)2  =

(σxx)1  =
Mz

M

I

y
z

x

b

FIGURE 7.13
Normal stress on a section of a bent beam with rectangular cross section. (Adapted from Popov, E. P., Engineering
Mechanics of Solids, Prentice Hall, 1998.)
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FIGURE 7.14
Elements used in derivation of shear stress in a beam: (a) cross section of plank; (b) stress distribution shown on
whole cross section; (c) stress distribution on isolated subsection A′ of the cross section; (d) free body diagram of
isolated subsection. (Adapted from Popov, E. P., Engineering Mechanics of Solids, Prentice Hall, 1998.)

Then

Fshear = F2 − F1 =
∫

A′

(σxx)2 dA−
∫

A′

(σxx)1 dA

=
∫

A′

(M + dM)z
I

dA−
∫

A′

Mz
I

dA = dM
I

∫

A′

z dA.
(7.27)

This indicates that the magnitude of the shear force is proportional to the change in
bending moment and also to an integral that is nearly familiar. We have seen the second
moment of area, and this integral, now with z and not z2, is sensibly called the first moment
of area of area A′. Note that it is not the first moment of area of the whole cross section,
just the area A′ on one side of the glue layer. Further note that z is still measured from the
centroid, even though that point is not within A′. The letter Q is often used to designate
first moments of area, so in this case we define

Q′ =
∫

A′

z dA, (7.28)

as the first moment of area of the portion of the cross section that would tend to slide
relative to the plane of the glue. As with the integrals in the previous section, this may
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be replaced by a sum for an A′ composed of simple shapes. Replacing this term in
Equation 7.27,

Fshear = dM
I

Q′. (7.29)

Then the average shear stress is this shear force divided by the area on which it acts:

σzx = σxz = Fshear

b dx
= dM

dx
Q′

I b
= VQ′

I b
, (7.30)

where we have made use of V = dM/dx, and b is the width of the layer of glue (or the
width of contact where this shear force prevents sliding) as shown in Figure 7.13. This,
like the classical bending stress equation, is a well-known and important result. We have
derived it by considering an x-directed force on a plane with a z-pointing normal (σzx), but
the symmetry of the stress tensor tells us that this must also be the stress at points on our
cut x face due to shearing forces in the z-direction (σxz).

To emphasize the dependence of this stress on the x- and z-position within the beam, we
can explicitly write

σxz(x, z) = V(x)Q′(z)
I b(z)

. (7.31)

We know well that the shearing force V varies with x, and we have seen that Q′, the first
moment of area for area A′ about the centroidal axis of the original cross section, depends
on the level z of the section of interest (the location of the glue). The width b of the beam
is constant with z in this case of a rectangular cross section, but in general it need not be.
This result is applicable for general cross sections. It is certainly applicable in beams that
are solid, as well. The glue we considered was helpful for visualization, but if the beam
had a solid rectangular section then we would have found the shear stress in the solid at
that same level z. It may be helpful when determining the shear stress in a point in a solid
beam to imagine cutting it into two layers at the point of interest, gluing the layers back
together, and finding the shear stress in the glue.

If we explicitly write the functional dependence of the shear stress on a rectangular cross
section on z, as we will see in Example 7.8, we find that the shear stress is distributed
quadratically (and symmetrically) through the thickness, achieving its maximum value at
the beam centerline (z = 0) and being zero on both the top and bottom surfaces (z = ±h/2).
The latter point is consistent with the assumptions we have made about the loading of bent
beams. Figure 7.15 allows us to compare the distributions of normal and shear stress along
the height of the cross section.

x

σxx(z): σxz(z)σmax

σmax

FIGURE 7.15
Stress distributions for rectangular cross section.



Beams 199

7.7 Examples

EXAMPLE 7.1

Find the reactions and determine the axial force P , the shear V, and the bending moment
M caused by the applied loads at the specified sections. Also, draw FBDs indicating the
sense (direction) of all forces and moments.

3 ft 3 ft

aA
a

b
B

b

8 k/ft

2 ft

Given: Dimensions of and loading on beam.

Find: Internal forces and bending moment.

Assume: The only assumptions necessary are implicitly made throughout this textbook:
Equilibrium, and Saint-Venant’s principle.

Solution

Our strategy is to find the reactions at the supports from the whole beam’s equilib-
rium, and then use the method of sections to find the internal forces and moments at
the specified locations.

For the purpose of finding reaction forces, we can replace the distributed load by its
equivalent concentrated load. The magnitude of this concentrated load is simply the
area under the distributed load, in this case W = 1

2 (8 k/ft)(6 ft) = 24 kips. It acts at the
centroid of the triangular area under the distributed load: one-third of the way from
its maximum intensity, or 2 ft from the left end of the beam. We use this load in our
free-body diagram:

RA RB

W = 24 K

&
∑

MB = 0 = −RA(8 ft) + (24 k)(6 ft) → RA = 18 kips,

&
∑

MA = 0 = −(24 k)(2 ft) + RB(8 ft) → RB = 6 kips,∑
Fz = 0 is then used as a check: RA + RB = 24 kips. �

Next, we consider sections a–a and b–b. We make an imaginary cut at the specified
location, and realize that considering the loading to the left, or to the right, of the a–a cut
will yield equivalent results:
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 Va

 Va

MaMa

RB = 6 kRA = 18 k

½(4 k/ft)(3 k) = 6 k

Na
Na

We choose the simpler side to calculate, in this case the portion of the beam to the right
of a–a . We simply apply the equilibrium equations to this section of the beam:

∑
Fx = 0 = Na ,∑
Fz = 0 = −Va + RB − 6 k → Va = 0 kips,

&
∑

Mabout a = 0 = Ma − (6 k)(1 ft) + RB(5 ft) → Ma = −24 ft-kips.

Next comes the cut at b–b. It is clear that using the portion of the beam to the right of b–b
will be easier, and so we construct an FBD and apply equilibrium:

RB = 6 k

VbMb

Nb

∑
Fx = 0 = Pb ,∑
Fz = 0 = −Vb + RB → Vb = 6 kips,

&
∑

Mabout b = 0 = RB(2 ft) + Mb → Mb = −12 ft-kips.

Note: The negative signs on the moments at cuts a–a and b–b indicate that these
moments are opposite from the way they are drawn in our FBDs. It is convenient to
assume positive shear and bending moment when constructing FBDs, so that a negative
sign will always represent negative shear or negative bending moment. Please refer to
Figures 7.4 and 7.5 for a reminder of the sign convention for shear and bending moment.

EXAMPLE 7.2

Plot shear and moment diagrams for the beams shown:

P P

L/3 L/3 L/3

kx

x

L

Wϕ  N/m

L

Given: Loading on three beams.
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Find: Internal response to this loading.

Assume: The only assumptions necessary are implicitly made throughout: equilibrium,
and Saint-Venant’s principle.

Solution

In each case, we will first find the external reaction forces and/or moments, then use the
method of sections at points of interest along the beam to construct the diagrams of V(x)

and M(x).
Starting with the first beam, to find reactions, we need an FBD of the whole beam:

P

RA RB

P

&
∑

MA = 0 = P L
3

− 2P L
3

+ RB L → RB = P
3

(up),

&
∑

MB = 0 = P L
3

− 2P L
3

− RAL → RA = − P
3

(down).

To construct V diagram, look only at the points where the loading conditions change.

• At the left-hand end of the beam, V must balance RA, so V = P/3.

P/3

V

• At the right-hand end, V must balance RB , so V = P/3.

RB = P/3

V

• Just to the right of the upward applied load P , V = −2P/3.

P/3

P

V
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To construct M diagram:

• M = 0 at simply supported ends

• M = 0 at center by symmetry

• At upward P , M = P
3

(
L
3

)
= P L

9

• At downward P , M = P
3

(
2L
3

)
− P

(
L
3

)
= − P L

9

Plot the results.

V
P/3

–2P/3

PL/9

–PL/9

M

P/3

P P

A B

For the second beam, once again, we start with the external reactions, using the
equivalent concentrated load in place of the distributed one:

½ kL2

⅓ kL2

½ kL (L) = ½ kL2

Since the distributed load is linearly distributed, the shear distribution is parabolic,
and the moment distribution is cubic. We may proceed either by integrating the dis-
tributed load q (x) = kx once for V(x) and twice for M(x), or by making our imaginary
cut at some distance x from the end of the beam, and finding the internal shear and
moment. Both methods will provide the same results.

Integration:

V(x) = −
∫

q dx = −
∫

−kx dx = 1
2

kx2 + C1,

V(0) = −1
2

kL2 = C1,

V(x) = 1
2

kx2 − 1
2

kL2,
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M(x) =
∫

V dx = 1
6

kx3 − 1
2

kL2x + C2,

M(0) = 1
3

kL3 = C2,

M(x) = 1
6

kx3 − 1
2

kL2x + 1
3

kL3.

Method of sections:

M(x)

½ kL2

⅓ kL2

⅓ kx2

x/3
V(x)

x

∑
Fz = 0 = 1

2
kL2 − 1

2
kx2 + V(x),

so V(x) = 1
2

kx2 − 1
2

kL2,

&
∑

Mx = 0 = M(x) + 1
3

kL3 − 1
2

kL2x + 1
2

kx2
( x

3

)
.

(We note that the internal shear V(x) does not cause a moment about the cut at x.)

so M(x) = 1
6

kx3 − 1
2

kL2x + 1
3

kL3.

The resulting shear and moment diagrams are as shown below. We can check our
results by evaluating V(x) and M(x) at x = L . Both are zero there, as they must be at a
free end.

V

–½ kL2

M ⅓ kL3

L

kx
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We now consider the third beam. The fixed support can offer both reaction forces and
a moment, which are found using an FBD:

qoL

qo (N/m)

L

qoL

qoL (L/2)

∑
Fz = 0 → V(L) = q0L ,

∑
M0 = 0 → M(L) = 1

2
q0L2.

The shear V is zero at the free end of this cantilever beam, and must balance the
upward reaction force q0L at the fixed end. Since the distributed load is uniformly
distributed, the shear distribution is linear.

The moment M is zero at the free end and must balance the reaction moment q0L2/2
at the fixed end. Since the shear distribution is linear (proportional to x), the bending
moment distribution is parabolic (proportional to x2). The shear and moment diagrams
are shown:

qoL

½ qoL2

qo (N/m)

L

V

M
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EXAMPLE 7.3

Find the centroid and the second moment of area about the horizontal (y) axis of the
cross section shown. All dimensions are in millimeters. If a beam is constructed with
the cross section shown from steel whose maximum allowable tensile stress is 400 MPa,
what is the maximum bending moment that may be applied to the beam?

10 20 10

10

30

20

yc

z

y

zc

Given: Dimensions of beam cross section; limiting stress.

Find: Location of centroid; maximum applied moment.

Assume: Hooke’s law applies.

Solution

The symmetry of the cross section shown suggests that the horizontal coordinate of the
centroid will be on the vertical centerline, as sketched. yc is then 20 cm. We need only
locate the vertical location of the centroid (zc ). Several strategies are available to us. We
recognize that the cross section is a large rectangle, with an inner rectangular hole. It
will thus be possible for us to find the area and second moment of area of the large outer
rectangle, and simply subtract off the properties of the inner rectangle.

Recall that zc = ∫
z dA/

∫
dA = ∑

z dA/
∑

dA, where z and zc are measured from an
arbitrarily chosen reference datum, in this case the top of the cross section. For clarity,
results are tabulated as follows:

A (mm2) z (mm) A · z (mm3)

Outer
40 × 60 = 2400 30 72,000 Centroid:

zc =
∑

Az∑
A

= 31.7 mm

from top (or 28.3 mm
from bottom)

Outer

Inner
−20 × 30 = −600 25 −15,000

Inner∑
1800 57,000
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With the location of the centroid known, we can find the second moment of area with
respect to that location, starting with the second moment of area of a rectangle about its
own centroid from Appendix A.

Irectangle = bh3/12 d A · d2

(mm4) (mm) (mm4)

Outer
720,000 31.7 − 30 = 1.7 6940 Second moment of area:

I = ∑(
bh3

12
+ Ad2

)

= 655,000 mm4

Outer

Inner
−45,000 31.7 − 25 = 6.7 −26,940

Inner∑
675,000 −20,000

If the maximum allowable normal stress is 400 MPa, we can find the maximum
moment that can be applied using the relationship:

σmax = Mc
I

.

We have found the second moment of area I , and c is the maximum distance from the
centroid attainable on the cross section, in this case 31.7 mm. Solving for M:

M = σmax I
c

= (400 N/mm2)(655,000 mm4)

31.7 mm
= 8.26 kN m

EXAMPLE 7.4

A steel T-beam is used in an inverted position to span 400 mm. If, due to the applica-
tion of the three forces as shown in the figure, the longitudinal strain gage at A (3 mm
down from top of beam and at the x location shown) registers a compressive strain of
−50 × 10−5, how large are the applied forces?

16 mm

4 mm
Gage A

12 mm

4
mm

Beam
section:

3
mm

100
mm

100
mm

100
mm

3PPP

50
mm

A

50
mm
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Given: Dimensions of and strain in T beam.

Find: Magnitude of applied force P .

Assume: Hooke’s law applies.

Solution

The gage at A, in the upper portion of the cross section, registers a negative strain. This
tells us that the bending moment in the beam at A is negative. Using Hooke’s law, we
will be able to relate this measured strain to a normal stress in the beam at this point,
which we can then relate to the local bending moment. To do these calculations, we will
need to know the location of the centroid and the second moment of area of the inverted
T cross section.

As in Example 7.3, the centroid is clearly on the vertical line of symmetry. We need zc ,
which we will calculate relative to the top of the section:

Zc

Z2

Z1 Z

x1

2

A (mm2) z (mm) A · z (mm3)

1 4 × 12 = 48 6 288
2 12 × 4 = 48 14 672∑

96 960

Hence, zc = ∑
zA/

∑
A = 10 mm from the top, or 6 mm from bottom. Next comes the

second moment of area I :

bh3/12 (mm4) d (mm) Ad2 (mm4)

1 576 4 768
2 64 4 768∑

640 1536

I =
∑(

bh3

12
+ Ad2

)
= 2176 mm4.

We are now ready to apply Hooke’s law and find the stress corresponding to the strain
measured at A. The beam is steel, so its Young’s modulus is E = 200 GPa. In addition,

σxxA = EεxxA = (200 × 109 Pa)(−50 × 10−5) = −108 Pa.

This is measured at zA = 3 mm from the top of the T, or 7 mm from the neutral axis.
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Next, we relate this stress to the internal bending moment at A:

σxxA = MAzA
I

,

−108 Pa = MA(0.007 m)

2.176 × 10−9 m4 ,

so MA = (−108 Pa)(2.176 × 10−9 m4)

0.007 m
= −31.1 N m.

We then consider the loading on the beam to relate this local bending moment to the
applied loads P . To do this, we must construct an FBD:

P

R1 R2

A

P 3P

Equilibrium requires that
∑

Fz = 0, or R1 + R2 = 5P , and if we also impose
∑

M1 = 0
we will have 0.1P + 0.2P + 0.3(3P) − 0.4R2 = 0, and solving these two equations we
have R1 = 2P and R2 = 3P . We can then use the method of sections, cutting the beam
and ensuring equilibrium of the right half, to find the bending moment at A:

R2

MA

3P

&
∑

MA = 0 = MA − 3P · (0.05 m) + 3P · (0.150 m),

Mabout A = −0.450P + 0.150P = −0.3P .

So, knowing that MA = −31.1 N m and that MA = −0.3P , we find that

P = −31.1 N m
−0.3 m

= 104 N.

EXAMPLE 7.5

An I-beam is made by gluing five wood planks together, as shown. At a given axial
position, the beam is subjected to a shear force V = 6000 lb. (a) What is the average shear
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stress at the neutral axis z = 0? (b) What are the magnitudes of the average shear stresses
acting on each glued joint?

8 in

2 in

Glued joints

2 in

2 in
4 in 4 in

Given: Cross section, local loading.

Find: Average shear stresses.

Assume: Hooke’s law applies.

Solution

We obtained a formula for shear stress at a given height, σxz = VQ′/I b, where Q′ and b
depend on the z position in question. I in this relationship is always the second moment
of area of the entire cross section about the z-axis. We have been given V. So, we must
calculate I once and then calculate the appropriate values of Q′ and b for both parts of
this problem.

By inspection of the cross section’s symmetry, we see that the centroid is at the geo-
metric center of the I-beam. For the central vertical segment, therefore d , the distance
between the centroid of the segment and the centroid of the entire cross section, is zero.
The four remaining segments will each have the same second moment of area about
their own horizontal bisectors, and the same areas and distances d . Thus, we can write

I = Ivertical + 4Ismaller =
(

1
12

bh3
)

vertical
+ 4

[
1
12

bh3 + Ad2
]

smaller
,

I = 1
12

(2 in)(8 in)3 + 4
[

1
12

(4 in)(2 in)3 + (2 in × 4 in)(3 in)2
]

= 384 in4.

b y

A′

z

b y

2 31

z
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We can calculate Q′ at the neutral axis by finding the centroid and area of the shaded
area on the left, or by summing the contributions due to the individual planks, as shown
at right. The values of z for planks 2 and 3 are the same as their d values used in the I
calculation.

Q′ =
∫

A′
z dA =

∑
z′ A′

= (2)(2 · 4) + 3(4 · 2) + 3(4 · 2) = 64 in3.

So, the average shear stress at the neutral axis is σxz = VQ′/I b = (6000 lb)(64 in3)/

(384 in4)(2 in) = 500 psi.
As an exercise, verify that each glued joint is subjected to the same average shear

stress. We will determine only the average shear stress acting on the lower-right glued
joint by using the area A and length of contact b as shown below. The value of Q′ is
(3)(4 · 2) = 24 in3, and the average shear stress is VQ′/I b = 188 psi.

y

z

b A′

EXAMPLE 7.6

The beam shown is subjected to a distributed load. For the cross section at x = 0.6 m,
determine the average shear stress (a) at the neutral axis and (b) at z = 0.02 m.

130 kN/m

0.06 m

1.4 m

0.8 m
0.04 m

y
x

z

Given: Dimensions of and loading on simply supported beam.

Find: Shear stress at two locations along height of cross section at x = 0.6 m.

Assume: Hooke’s law applies.

Solution

First we need to consult our FBD and find the reactions at the supports.

∑
Fy = 0 → RA + RB = 91 kN,∑

MB = 0 = RA(0.8 m) + 91 kN(0.133 m),
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½ (130 kN/m)(1.4 m) =
91 kN

⅓ (1.4 m) 
= 0.467 mRBRA

→ RA = −15.1 kN (downward),

→ RB = 106.1 kN (upward).

We are interested in the cross section at x = 0.6 m. We know that the average shear
stress depends on the internal shear force in the beam at the point of interest, so we
need to calculate the shear V(x = 0.6 m). To do this, we will make an imaginary cut at
x = 0.6 m:

V

RA

In this 0.6-m-long span, the distributed load has a maximum intensity of(
130 kN

m

)
0.6 m
1.4 m = 55.7 kN

m , so the equivalent concentrated load acting on the 0.6-m-long

segment is the area under this load: 1
2

(
55.7 kN

m

)
(0.6 m) = 16.7 kN.

Equilibrium of our 0.6 m segment:

∑
Fy = 0 = V − RA − 16.7 kN,

→ V = 16.7 kN + 15.1 kN = 31.8 kN.

The second moment of area for the cross section is

I = 1
12

bh3 = 1
12

(0.04)(0.06)3 = 7.2 × 10−7 m4.

At the height of the centroid or neutral axis, Q′ is the first moment of area of the area
above (or below) the centroid:

Q′ = z′ A′ = 0.015(0.03 × 0.04) = 1.8 × 10−5 m3.

Then the shear stress at the centroid is

σxz = VQ′
I b

= (31.8 kN)(1.8 × 10−5 m3)

(7.2 × 10−7 m4)(0.04 m)
= 19.9 MPa.
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At z = 0.02 m above the neutral axis

Q′ = z′ A′ = 0.02(0.02 × 0.04) = 1.0 × 10−5 m3.

This is the only change from the calculation at z = 0, and the shear stress at this point
is 11.0 MPa.

EXAMPLE 7.7

For a thin elastic beam with rectangular cross section (b × h) and loading that causes
bending moment M(x), derive Equation 7.22, the expression for the normal stress
σxx(x, z) in a beam, starting from the fact that, as we have shown, the normal stress
varies linearly through the thickness.

Given: Rectangular beam in bending.

Find: Normal stress starting from an assumption of a linear distribution.

Assume: Hooke’s law applies; no axial loading on the beam.

Solution

We begin with a general statement of the fact that the normal stress varies linearly
through the thickness:

σxx(x, z) = f (x) · z,

where f (x) is an (as yet) unknown function of x. Then we can integrate this stress over
the area of the cross section to find an expression for the axial resultant on the beam,
which is zero:

h/2∫

−h/2

σxx(x, z)b dz = f (x) · b

h/2∫

−h/2

z dz = 0.

Now, let us take the moment (about the y-axis) of the axial normal stress acting on a
thin strip of cross-sectional area b dz at height z:

d My = (σxxb dz)z.

And if we sum this moment for all strips through the thickness, we obtain a positive
internal moment, M(x):

M(x) =
h/2∫

−h/2

dMy =
h/2∫

−h/2

z(σxxb dz) = f (x)

h/2∫

−h/2

z2b dz = f (x)I .

We recognize the integral as I , the second moment of area for the cross section about
the centroid. Solving for f (x), we obtain

f (x) = M(x)

I
.

And we can now write the equation for the normal stress as we have in Equation 7.22:

σxx(x, z) = f (x) · z = M(x)z
I

.
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EXAMPLE 7.8

Having confirmed the normal stress equation in Example 7.7, derive the shear stress
distribution in a rectangular beam (b × h) subject to loading that causes bending
moment M(x) and shear force V(x), starting from the plane stress elasticity equations
of equilibrium from Chapter 4:

∂σxx

∂x
+ ∂σxz

∂z
= 0,

∂σzx

∂x
+ ∂σzz

∂z
= 0.

Given: Rectangular beam in bending.

Find: Normal stress starting from plane stress elasticity equations.

Assume: Hooke’s law applies; no axial loading on the beam.

Solution

The first of the equilibrium equations represents equilibrium in the x-direction. We can
rearrange the equation and then substitute the known expression for σxx and taking the
partial derivative with respect to x, recognizing that neither z nor I is a function of x:

∂σxz

∂z
= −∂σxx

∂x
= −∂(M(x)z/I )

∂x
= − z

I
dM
dx

.

We can now integrate through the beam thickness, from the z location of interest to
the top of the beam at h/2, to obtain

h/2∫

z

∂σxz(x, z)
∂z

dz =
h/2∫

z

− z
I

dM(x)

dx
dz = − 1

I
dM(x)

dx

h/2∫

z

z dz,

σxz(x, h
2 ) − σxz(x, z) = − 1

2I
dM(x)

dx

(
h2

4
− z2

)
,

σx,z(x, z) = 1
2I

dM(x)

dx

(
h2

4
− z2

)
.

We have used the fact that the shear stress must be zero on the top surface of the beam
as there is no layer above it to provide a shear force to the surface. Now instead of just
stating that dM(x)/dx = V(x), we can show this by writing V(x) as the integral of the
shear stress over the cross section:

V(x) =
h/2∫

−h/2

σxz(x, z)b dz.

Then, by substituting the previous result into this equation we find that:

V(x) = 1
2I

dM(x)

dx

h/2∫

−h/2

(
h2

4
− z2

)
b dz = 1

2(bh3/12)

dM(x)

dx
b

(
h2

4
z − z3

3

)∣∣∣∣∣
h/2

−h/2

= dM(x)

dx
.
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We can now write an explicit expression that shows how a beam carries a resultant
shear force V(x) with a spatially varying stress distribution on a section:

σxz(x, z) = 1
2I

V(x)

(
h2

4
− z2

)
.

Now that we have this expression, we can use it to determine maximum value of
shear stress on the section. We can see that we have a parabolic distribution of shear
stress, with a maximum at z = 0, the neutral axis, and at that level

σxz,max(x) = 3V(x)

2bh
= 1.5

V(x)

A
.

The maximum shear stress is 1.5 times the average. Remember that these results are
only for a rectangular cross section.

EXAMPLE 7.9

An axial load is applied to a solid circular bar that contains an offset in order to fit in
a tight space in a machine. Compute the maximum tensile and compressive normal
stresses at section a .

30 mm 10 mm

5000 Na

a

5000 N

1 m

Given: Magnitude of axial force and bent bar geometry.

Find: Maximum normal stresses at specified section.

Assume: Hooke’s law applies.

Solution

Although we have learned about bars subject to axial loading, rods subject to torsion,
and beams subject to bending in separate chapters, in practice elements are often acted
upon by multiple types of loads. In this example, the center section is subject to both
axial loading and bending, as we can see by constructing an FBD of the section to the left
of a .

Va5000 N
Na

Ma

Solve for the internal forces and moment at a :∑
Fx = 0 = Na − 5000 N → Na = 5000 N,∑
Fz = 0 = Va ,

&
∑

Mabout a = 0 = −Ma + (5000 N)(0.01 m) → Ma = 50 N m.



Beams 215

The normal stress due to Na is

σxx = Na

A
= 5000 N

π(0.015 m)2 = 7.1 MPa.

The normal stress due to Ma varies, with the maximum tensile stress at the top surface
(z = +0.015 m) and the maximum compressive at the bottom (z = −0.015 m). For the
circular cross section, Appendix A tells us that I = πr4/4.

σxx = Ma (±zmax)

I
= (50 N m)(±0.015 m)

π
4 (0.015 m)4 = ±18.9 MPa.

Because both of these stresses contribute to the same component of the stress tensor,
in our linear setting we use the principle of superposition to add them. The maximum
tensile and compressive stresses are

σxx,top = Na

A
+ Ma (+zmax)

I
= 7.1 MPa + 18.9 MPa = 26 MPa (maximum tension),

σxx,bottom = Na

A
+ Ma (−zmax)

I
= 7.1 MPa − 18.9 MPa = −11.8 MPa (maximum compression).

In several of the problems below you are asked to consider superposition of mul-
tiple sources of stress. In some cases there will be multiple contributions to a single
element of the stress tensor, which may be added as in this example. In others, loads
cause contributions to different elements of the stress tensor.

PROBLEMS

7.1 Draw the shear diagram for the following beam:

10 kips

RA RB

6 ft 2 ft2 ft4 ft

q = 4 kips/ft

7.2 Draw shear and bending moment diagrams for the following beam:

P = 24 kips

5 ft10 ft
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7.3 Draw shear and bending moment diagrams for the following overhanging beam:

p = 15 N

q = 1 N/m
5 m

5 m 15 m 10 m

7.4 Draw shear and bending moment diagrams for the following beam:

p1 = 8N

q = 4 N/m

10 m 5 m 5 m 5 m

p2 = 8N

7.5 Construct axial force, shear and bending moment diagrams for the loaded beam
shown. Note: drawing is not to scale.

90 N/m

2 m 2 m 2 m 2 m1 m1.5 m

200 kN

4
3

200 Nm

7.6 The shear-force diagram for a beam is shown. Assuming that only forces (not applied
moments) act on the beam, determine the beam’s loading and draw the bending
moment diagram.

570 lb

390 lb 330 lb

150 lb

–540 lb

18 in18 in 72 in

X

180 lb

0

7.7 The force applied to a nut in a nutcracker is larger than the force P applied to the
handles. Model the top element of the nutcracker as a beam as shown, and find the
forcce on the nut as a function of P and lengths a and b. Draw the shearing force and
bending moment diagrams for the beam and find the maximum normal stress in the
beam if it has a circular cross section with radius c.
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a b

P

Nut

(Photograph courtesy of  Dreamstime ID 19388023.
With permission.)

7.8 A uniform cantilever beam with triangular cross section is loaded only due to its
own weight (a load uniformly distributed along the length). What is the ratio of the
maximum tensile normal stress to the maximum compressive normal stress in the
beam?

Cross section

B

H

7.9 A hollow structural steel tube is being selected to support traffic lights like those
shown. The tube is a uniform cantilever of 30 ft long, with lights mounted 15 ft and 30 ft
from the support pole. For this preliminary design, wind loads are not being included,
but with a high factor of safety the maximum normal stress in the beam may not exceed
12 ksi. The loads being considered are the 30 lb weight of each light and the self-weight
of the tube. The available tubes have 1/2 in wall thickness and outer diameters ranging
from 2 to 8 in, in 1/2 in increments. To the nearest 1/2 in, what outer diameter tube is
required? Explain why the beam in the picture has a tapered (smaller at the tip) cross
section and whether such a taper should be considered in a refinement of this design.

(http://commons.wikimedia.org/wiki/File%3AStampede_Traffic_Signal.JPG)
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7.10 Each wood railroad tie supports part of the weight of a train (plus the relatively small
weight of a section of rail). This is modeled with two point loads representing the
force of the rail on the tie. The reaction from the ground is modeled as uniformly
distributed since the railroad tie is supported along its whole length. Determine the
smallest allowable dimension s of the square cross section if both of these conditions
must be met:

a. The largest normal stress in the railroad tie cannot exceed 9 MPa.
b. The largest shear stress in the railroad tie cannot exceed 1 MPa.

(Photograph courtesy of Lorenzo McGary.
With permission.)

7.11 A laminated plastic beam with a square cross section is built up by gluing together
three strips, each 10 mm × 30 mm in cross section. It must carry a load P at its
midpoint.

a. The beam has a total weight W and a length L . Considering the weight of the
beam as a distributed load in addition to the applied load P , draw the shearing
force and bending moment diagrams, indicating magnitudes in terms of W, L ,
and P .

b. If the beam has a total weight of 4 N and a length of 400 mm, calculate the max-
imum permissible load P that may be placed at the midpoint if the maximum
allowable tensile stress in the plastic is 8 MPa and the maximum allowable shear
stress in the glued joints is 0.3 MPa.

P Cross section

10 mm
10 mm
10 mm

30 mm

30 mm

Load per length
q = W/L

L/2 L/2

BA

7.12 Derive a general expression for Q′(z) for a rectangular cross section, and use it with
Equation 7.31 to confirm the expression for σxz(x, z) from Example 7.8.

7.13 Figure (a) shows a steel I-beam cross section (note, not symmetric about the y axis).
Two steel plates with cross section 10 mm × 200 mm are welded to the beam. Fig-
ure (b) and the 3D inset show the configuration of the composite I-beam, plates, and
welds. All welds have the same geometry and are continuous in the longitudinal (x)-
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direction along the beam. The welds bond to the plates only in the area shown in the
inset (from the edge of the original I-beam out to the edge of the plate). What is the
average shear stress in a weld/plate interface at the bottom flange if we consider a
section where the shear force is 40 kN?

180 mm

Plate
dimensions:
10 × 200 mm

Plate touching
l-beam, not
bonded to it

Weld
bonded
to plate

240 mm
125 mm

y

z

135 mm

140 mm

(b)(a)

7.14 A steel frame is fabricated with the cross section shown. The centered hole allows
cables to be run up to equipment above. The frame supports a load P at a distance
d from the centroid of the vertical beam. Bending of the horizontal piece does not
need to be included, consider it to be rigid. On the outside of the beam at a dis-
tance of 1 m from the ground, two strain gages are installed to measure longitudinal
normal strain. The gage at A measures ε = 200 × 10−6 and the gage at B measures
ε = −250 × 10−6.

a. What are the magnitudes of the force P and the distance d?
b. What is the maximum shear stress on the transverse section 1 m from the

ground?

3 m 100 mm

100 mm

d P

1 m 1B

40 mm
diameter

Cross section

A1

7.15 The maximum force applied to the tip of the allen wrench before the bolt loosened is
60 N. Assume the wrench has a circular cross section with a radius 2 mm. The length
of the short segment (touching the screw) is 3 cm and the length of the long segment
(to which the force is applied) is 6 cm. Write the stress tensors at points A and B, both
of which are on the top (z-facing surface) of the wrench. Hint: you will need to use
some results from Chapter 5.
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P

BA

1 cm 2 cm 3 cm 3 cm

z

xy

7.16 The solid steel shaft with radius 40 mm has two pulleys B and C , both with radius
0.5 m, rigidly welded to it. The belts on the pulleys produce the loads shown. The
torque of 1500 N m is also externally applied. The rectangular supports at A and D
do not provide any resistance to rotation about any axis—they act as pin supports.
Assuming that the shear stress due to bending is negligible compared to other con-
tributions, what is the factor of safety with respect to yielding in the shaft? Hint: you
may want to refer back to results from more than one section of Chapter 5.

A B

2500 N

1500 N m

2000 N

1000 N

1 m 1 m 1 m

500 N

C D

7.17 A heavy rectangular beam is being lifted slowly by a crane that applies force P at
x = 2

3 L . The plank is 12 m long and weighs 1.5 kN/m. When θ = 30◦, find

a. The shear stress σxz at point A (on the top surface of the beam at x = 1
2 L).

b. The normal stress σxx at point A.

c. The normal stress σxx at point B (on the top surface of the beam at x = 3
4 L).

Cross section
0.2 m × 0.1 m
(longer edge
resting on ground)

P

A

z

x

B
L/4

L/2

L/3

θ
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7.18 Airplane fuselages are subject to a variety of complex loads during flight. Consider
a Boeing 777 modeled as a cylinder with 1/4 in wall thickness of 2024 aluminum,
209 ft length and 20.3 ft outer diameter. Assume the cylinder is loaded uniformly
along the length with total weight (self-weight, passengers, all that luggage, cargo) of
600,000 lb. The load is supported by a lift from the wings, which can be simply mod-
eled as a uniformly distributed load along the 31 ft length of the wingbox as shown.
The fuselage is also pressurized for passenger safety and comfort, so that at a cruising
altitude of 32,000 ft the internal pressure is atmospheric pressure at 7200 ft, resulting
in an internal pressure 7.3 psi higher than the outside air. Aerodynamic loads that
cause several modes of bending and twisting are not considered in this problem.

a. Find the position (x) along the length of the fuselage that experiences the
maximum bending moment. At this section, find the normal stress in the
fuselage due to the weight and lift loads, as a function of vertical position in
the section (z).

b. Find the stresses due to pressure.
c. Considering only the stresses determined in parts (a) and (b), that is, neglecting

shear due to bending and dynamic loads, what is the factor of safety with respect
to yielding in the fuselage? Hint: consider points with extreme values of the
stress components.

(http://commons.wikimedia.org/wiki/File:ZK-OKQ_%288338658778%29.jpg)

89 ft 89 ft

Lift (600,000 lb)

Total weight 600,00 lb

Pressure 7.3 psi

31 ft
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Case Study 3: Physiological Levers and Repairs

The human skeletal system is a natural mechanical apparatus. Our beam models can
provide useful ways of explaining how the musculoskeletal system works and why it
sometimes breaks, as well as provide a basis for repairing broken elements. In the first
category, we will extend Problem 2.5 to model the human forearm as a beam. Then we will
use a simple beam analysis to design a repair for a broken hip bone.

8.1 The Forearm Is Connected to the Elbow Joint

In Problem 2.5, we performed a very simple equilibrium analysis of the bones and bicep
muscle of a human arm. Our single interest there was to find the force exerted by the biceps
muscle when it supported a weight through the elbow–biceps–forearm–hand system. A
more complete analysis requires a deeper consideration of that system. This is, by the way,
a very old problem. Figure 8.1 shows a diagram taken from the treatise De Motu Animalum,
published in Italy by Giovanni Alfonso Borelli (1608–1679). Note that Borelli’s work, whose
English title is On the Movement of Animals, preceded the 1687 publication of Newton’s
laws of motion. Working without the benefits of Newton’s laws, Borelli discovered that
the forces on bones are significantly higher than the forces applied externally. Thus, the
skeleton is at a mechanical disadvantage, as the following analysis will show.

We show an anatomical drawing of the elbow–biceps–forearm–hand system in Fig-
ure 8.2. The elbow joint is a complicated hinge that allows a bent arm to go straight up
and down, to extend away from the body, and to rotate about an axis through the forearm.
(The forearm rotations pronation and supination are much like those experienced by runners
when their feet rotate with respect to their ankles and legs.) We restrict our analysis to sim-
ple lifting with no extension or rotation. Then we can assume that the three muscles shown
in Figure 8.2 act as a single “biceps-brachialis” muscle unit that exerts the force B shown in
the free-body diagram in Figure 8.3. The force J is exerted by the joint on the forearm, and
W is the supported weight. In this model, the elbow joint clearly acts as a simple planar
hinge. The angle θ at which B acts can be determined by anatomical measurement, and
the angle φ at which J acts is unknown or indeterminate. (The observant reader will note
that the arm’s own weight is left out altogether; see Problems 8.3 through 8.7.)

We now sum forces in the x- and y-directions, and moments about an axis drawn
through the elbow joint (and we ignore the small offset between the application of the
muscle force B and the axis of the arm):

∑
Fx = B cos θ − J cos φ = 0, (8.1a)

223
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H L
D

E

O
B

G

R

I
C

A

FIGURE 8.1
The elbow force problem presented by the mathematician Giovanni Alfonso Borelli (1608–1679) in his treatise,
De Motu Animalum. (From R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, Springer-Verlag,
New York, 1998. With permission.)

Biceps
Brachialis

Brachio-
radialis

Biceps

Humerus

A

B C D

Radius

UlnaOlecranon

FIGURE 8.2
Anatomical drawings of the elbow–biceps–forearm–hand system, showing some of the muscles and bones that
enable the joint to flex up and down, extend in and out, and rotate about the forearm’s axis. (From R. B. Martin,
D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, Springer-Verlag, New York, 1998. With permission.)

∑
Fy = B sin θ − J sin φ − W = 0, (8.1b)∑
Mz = WL − Bb sin θ = 0. (8.1c)

Equation 8.1 comprises a set of three equations for three unknowns: B, J , and φ. They
can be straightforwardly solved (Problem 8.1) to yield

B = WL
b sin θ

, (8.2a)
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y

x

W
w b

JB

θ

FIGURE 8.3
A FBD of the principal forces acting on a forearm when the elbow acts as a simple (planar) hinge, raising and
lowering the hand with respect to the elbow. (Adapted from R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal
Tissue Mechanics, Springer-Verlag, New York, 1998.)

J =
√

(B sin θ − W)2 + (B cos θ)2, (8.2b)

φ = tan−1 B sin θ − W
B cos θ

. (8.2c)

The FBD in Figure 8.3 shows that the forearm must bend like a beam and that the bend-
ing moment will: be zero at the hand carrying the weight; increase (in magnitude) linearly
until it reaches its maximum value at the point where B is applied; and then decrease to
zero at the hinge. Therefore, the maximum moment carried by the ulna and radius bones is
given by (see Problem 8.2)

Mmax = −W(L − b). (8.3)

Now let us estimate the magnitudes of the internal forces and the moment that result
from supporting the weight W. First of all, from our everyday experience, we can approx-
imate sin θ ≈ 1 because the biceps acts almost immediately adjacent to the elbow joint
(or hinge). Second, in a similar estimate resulting from inspection of the geometry of the
elbow–biceps–forearm–hand system, we can say that L/b � 1 (see Problem 8.8). The first
consequence of these two assumptions follows from Equation 8.2a, and is

B ≈ W
(

L
b

)
� W. (8.4)

Thus, the force exerted by the biceps is an order of magnitude larger than the weight
supported. The second consequence of our two assumptions follows from Equations 8.2b
and 8.4 and states a similar result about the reaction force at the joint:

J ≈
√

(B − W)2 + (B)2 ≈ B � W. (8.5)

Finally, a corresponding estimate of the maximum moment in the beam resulting from
the weight W at its tip follows from Equation 8.3:

Mmax ≈ −WL . (8.6)
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This result is consistent with what we have already seen about the behavior of beams since
in the limit sin θ ≈ 1 the forearm is acting as a cantilever beam.

8.2 Fixing an Intertrochanteric Fracture

The hip bone is connected to the thigh bone or femur. The femur’s neck and head comprise
the familiar post-and-ball joint connecting the thigh bone to the hip bone. This ball joint
allows the thigh bone to rotate and swivel so we can sit and walk and run. The femur’s
neck and head are connected to the top of the femur by the trochanter, an elaborate bony
structure that has several parts (see Figure 8.4). An intertrochanteric fracture occurs when
the substantial forces transmitted from the hip to the femur cause the trochanter to break.
Modeling the repair of an intertrochanteric fracture is a neat application of beam theory.

Figure 8.5 displays a sketch of an intertrochanteric nail plate that has been inserted into
the top of the femur. The nail plate transmits the appropriate (and substantial) forces from
the hip bone, across the ball joint, to the thigh bone—when the basic trochanteric structure
is no longer able to do that because it has cracked. Figure 8.5 also shows that this substan-
tial force of 400 N must be carried at an angle of 20◦ with the axis of the nail plate, so that
the nail plate across the trochanteric structure can be modeled as a beam that also sup-
ports an axial load. We need to know the relevant stresses and strains in order to validate
the design of this orthopedic device.

The entire nail plate structure is rigidly attached to the femur as shown in Figure 8.5.
Thus, the nail plate itself, apart from its vertical attachment to the femur, can be modeled
as an axially and transversely loaded cantilever beam. The beam (or nail plate) is made of

Neck

Neck

Lesser trochanter

Femur

Body or
diaphysis of

femur

Tubercle

Medial epicondyle

Patellar surface

Lateral epicondyle

Greater
trochanter

Trochanteric fossa Head

FIGURE 8.4
The skeletal structure of the femur and its connection to the hip bone across the trochanteric structure at the top of
the femur. (Adapted from Barron’s Atlas of Anatomy, Barron’s Educational Series, Hauppauge, New York, 1997.)
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135°

20°
400 N

FIGURE 8.5
The nail plate structure showing both the nail plate itself and its rigid, vertical connection to the femur. The nail
plate is intended to provide the support needed after an intertrochanteric fracture. (Adapted from J. D. Enderle,
S. M. Blanchard and J. D. Bronzino, Introduction to Biomedical Engineering, Academic Press, San Diego, 2000.)

stainless steel (E = 205 GPa) and has the following dimensions: b = 5 mm, h = 10 mm, and
L = 60 mm long. The FBD in Figure 8.6 shows that the beam is subjected to an axial force of
400 cos 20◦ = 376 N and a transverse tip load of 400 sin 20◦ = 137 N. The axial and bending
behaviors can be considered as two separate issues and combined by superposition; we
will focus here on the beam bending (see Problems 8.9 and 8.10).

The bending of the nail plate is modeled simply as that of a tip-loaded cantilever. Thus,
with P being the load and x the distance from the tip, the shear and moment in such a
beam are, respectively,

V(x) = P , (8.7)

and

M(x) = −Px. (8.8)

The shear force and stress are constant over the length of the beam, and the maximum
moment and bending stress will occur at the support, located at the greater trochanter. The
maximum shear and bending stresses in the coordinate frame of the beam are, respectively,
τmax or σxz max = 4.11 MPa and σmax or σxx max = 197 MPa (see Problems 8.11 and 8.12).

P x

M
V

PL

FIGURE 8.6
FBD of the bending model of an intertrochanteric nail plate structure.
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Both of these stresses are much smaller than the yield stress for stainless steel, σyield =
700 MPa, and so the proposed stainless steel nail plate can be considered a satisfactory
design in terms of its mechanical performance. It is important to keep in mind that we have
not considered whether, for example, the nail plate might be rejected by the body in which
it was placed. There are important compatibility issues to consider when materials are
selected for human implants and biomimetic devices (see Problem 8.13).

PROBLEMS

8.1 Confirm that Equation 8.2 is correct by solving Equation 8.1.

8.2 Draw the moment diagram for the elbow–biceps–forearm–hand system and deter-
mine the magnitude and location of the maximum moment.

8.3 How do the magnitudes of the biceps force B and joint reaction J change if the total
weight w of the forearm and hand are included in the analysis and are assumed to act
at the midpoint of the forearm?

8.4 Draw the moment diagram for the elbow–biceps–forearm–hand system and deter-
mine the magnitude and location of the maximum moment if the total weight w of
the forearm and hand are included and are assumed to act at the midpoint of the
forearm.

8.5 How large (as a fraction of the supported weight W) must the weight w of the forearm
and hand be to change the analysis done under the assumption of weightlessness?

8.6 What sort of simple measurement or experiment could be done to determine the total
weight w of the human forearm and hand?

8.7 How do the magnitudes of the biceps force B and joint reaction J change if the total
weight w of the forearm and hand are included in the analysis and are assumed to be
uniformly distributed over the forearm length L?

8.8 Examine and measure the arms of three (or more) of your colleagues and develop
average estimates of the distances b and L , and of the L/b ratio.

8.9 Determine the axial stress and strain of the axially loaded nail plate. How much does
the nail plate shorten as a result of this axial response?

8.10 What is the maximum shear stress that is caused by the axial force on the nail plate?

8.11 Calculate and confirm the maximum shear stress due to the bending of the stainless
steel nail plate given above.

8.12 Calculate and confirm the maximum bending stress of the stainless steel nail plate
given above.

8.13 Research and identify the major materials compatibility issues that arise when
devices such as the nail plate are inserted or implanted in a human being.
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9
Beam Deflections

Knowing the accurate deflection of a beam under certain loading conditions is of interest
to us as designers. In some designs, for example, when we design for stiffness, we will
be seeking to minimize deflection (strain). Floorboards, roof supports, and bookshelves are
some examples of beams whose deflections are ideally minimized. In other cases, a func-
tional design may rely on the deflections of beams; examples of this include diving boards,
leaf springs, and atomic force microscope cantilevers. Both situations require that we be
able to predict the deflection behavior of a beam under loading (and more prudently than
is suggested in Figure 9.1).

9.1 Governing Equation

We will model the deflected shape of a beam in terms of the vertical movement of the
beam’s neutral axis. Once again, we will make use of the premise that during bending,
plane cross-sections normal to this axis through a beam remain plane. For simplicity, we
will first consider bending only about one of the principal axes of the cross-section. All of
this should sound familiar from the previous section’s explanation of pure bending, but now
we will include an added generality: we will discuss variation of the radius of curvature ρ

of the neutral axis along the span (x).
In Figure 9.2, we see a segment of a beam with a greatly exaggerated z-direction deflec-

tion w, measured from the x-axis. We note that the slope of the beam’s neutral axis at point
A is dw/dx = − tan θ. Since we are assuming small deformations, we say tan θ ≈ θ in radi-
ans. The change in slope between points A and B, which were originally dx apart on the
horizontal beam axis, is −dθ. The curvature of the beam, or the rate of change of the slope
with respect to x, is

d
dx

(
dw

dx

)
= d

dx
(−θ), (9.1)

or,

d2w

dx2 = −dθ

dx
. (9.2)

In Figure 9.2, we remind ourselves that the neutral axis can be thought of as a segment of
a very large circle with radius ρ. The angle dθ between A (deflection w) and B (deflection
w + dw) is the change in θ from x to x + dx. In terms of ρ, this angle may be written

dθ = 1
ρ

ds, (9.3)

231
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FIGURE 9.1
Inspiration from Bill Watterson, Calvin and Hobbes. (Used by permission of Universal Press Syndicate.)

dx

Bdw

A

dθ

dθx

z

θ

ρ

FIGURE 9.2
Beam deflected by pure bending; points Aand B lie on the beam’s neutral axis. A line with the slope of the neutral
axis at A is extended past B to show the change in slope, −dθ, between A and B.

where ds is the arc length given by

dx = ds cos θ = ds
(

1 − 1
2θ2 + · · ·

)
, (9.4)

and again, since we are restricting ourselves to small angles θ, the higher-order terms drop
out and we have

dx ≈ ds, (9.5)

and hence
dθ

dx
= 1

ρ
. (9.6)

If we substitute Equation 9.2 into this expression, we have

d2w

dx2 = −1
ρ

. (9.7)
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Recalling from Equation 7.20 that the radius of curvature can be related to the bending
moment and the beam’s flexural rigidity as

κ = 1
ρ

= M
E I

, (9.8)

we obtain a new relationship between the beam’s deflection and the bending moment:

d2w

dx2 = − M
E I

. (9.9)

Here, M = My and I = Iy as in Chapter 7. With this equation, we will be able to calculate
the deflections of beams. Our basic strategy will be to determine the bending moment M(x)

in a beam, then integrate this new equation twice to determine w(x).
We also observe that if the E I product is constant, as it is for many beams, the governing

equation for deflection can be recast in terms of the moment, shear, or load:

E I
d2w

dx2 = −M(x), (9.10a)

E I
d3w

dx3 = −V(x), (9.10b)

E I
d4w

dx4 = q(x). (9.10c)

Fewer constants of integration are necessary in the lower-order equations. No matter
which of these equations we choose to use, we will need to use boundary conditions to
determine the constants of integration.

9.2 Boundary Conditions

As we have seen when obtaining shear V(x) and moment M(x) by the integration methods
of Section 7.4, the conditions at the beam ends are significant. We know that the type of
support at a boundary helps to determine the internal forces and moments at this location,
and it follows that the type of support also affects the deflection w(x).

• At a fixed or clamped support, the displacement w and its slope dw/dx (negative of
rotation θ as explained in the previous section) must vanish. If this support is at
x = 0 as shown in Figure 9.3a, we must have

w(0) = 0,

dw

dx

∣∣∣∣
x=0

= 0.
(9.11)



234 Introduction to Engineering Mechanics

x

z(a)

Fixed

w(x = 0) = 0

dw
dx 0

θ(0) = – = 0

x

z
(c)

Free

d2w
dx2 a

M(0) = –EI = 0

d3w
dx3 0

V(0) = –EI = 0

x

z
(d)

Guided

dw
dx 0

θ(0) = – = 0

d3w
dx3 0

V(0) = –EI = 0

x

z
(b)

w(x = 0) = 0

Simple

d2w
dx2 0

M(0) = –EI = 0

FIGURE 9.3
Homogeneous boundary conditions for beams with constant E I . In (a) both conditions are kinematic; in (c) both
are static; and in (b) and (d), conditions are mixed.

• At a roller or pinned support, aka a “simple support,” neither deflection w nor
moment M can exist. So, if this support is at x = 0 as in Figure 9.3b, we must
have

w(0) = 0,

M(0) = −E I
d2w

dx2

∣∣∣∣∣
x=0

= 0.
(9.12)

• At a free end, the beam experiences neither moment nor shear. If x = 0 is free
(Figure 9.3c), we have

M(0) = −E I
d2w

dx2

∣∣∣∣∣
x=0

= 0,

V(0) = −E I
d3w

dx3

∣∣∣∣∣
x=0

= 0.

(9.13)

• At a guided support like that sketched in Figure 9.3d, free vertical movement is
permitted, but rotation of the end is prevented. This type of support cannot resist
shear. In addition,

dw

dx

∣∣∣∣
x=a

= 0,

V(a) = −E I
d3w

dx3

∣∣∣∣∣
x=a

= 0.

(9.14)

The boundary conditions pertaining to force quantities (V or M) are known as static
boundary conditions. Those that describe geometrical or deformational behavior of an end
(w or dw/dx) are known as kinematic boundary conditions.

The boundary conditions listed above are all homogeneous boundary conditions (i.e.,
something must equal zero). It is also possible to encounter nonhomogeneous bound-
ary conditions, where a specificed non-zero shear, moment, rotation, or displacement is
prescribed. In this case, the prescribed quantity simply replaces 0 in the above conditions.
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Tangents

xx

FIGURE 9.4
Discontinuous configurations of the neutral axis’ deflection which would have to be corrected by enforcing
continuity boundary conditions.

In some calculations, we will uncover discontinuities in the mathematical functions for
either load or stiffness along a given beam’s length. These discontinuities occur at con-
centrated forces or moments and at abrupt changes in cross-sectional areas. When this
happens, we supplement our boundary conditions with the physical requirement of conti-
nuity of the neutral axis.∗ Anywhere a discontinuity occurs, we must ensure that deflection
and the tangent to the neutral axis remain the same when this discontinuity’s point is
approached from either direction. Figure 9.4 illustrates two unacceptable geometries that
would have to be corrected by imposing this requirement.

This requirement is expressed as a continuity boundary condition: at a place d where two
solutions meet, we must have continuity of deflection w and its tangent or slope dw/dx:

w1(d) = w2(d),

dw1

dx

∣∣∣∣
x=d

= dw2

dx

∣∣∣∣
x=d

.
(9.15)

We now have sufficient information to solve our differential equation for deflection. In
practice, using the method described in Section 9.4 is more efficient than implementing
continuity boundary conditions directly.

9.3 Beam Deflections by Integration and by Superposition

If we start with the equation E I d4w/dx4 = q(x), we must integrate this expression four
times to obtain the solution for deflection w(x). Assuming the product EI is constant:

E I
d4w

dx4 = E I
d

dx

(
d3w

dx3

)
= q(x),

E I
d3w

dx3 =
∫

q(x) dx + C1,

E I
d2w

dx2 =
∫ ∫

q(x) dx + C1x + C2,

∗ The shape of the neutral axis is sometimes called the elastic curve; hence some texts call this requirement
continuity of the elastic curve.
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E I
dw

dx
=

∫ ∫ ∫
q(x) dx + 1

2
C1x2 + C2x + C3,

E Iw(x) =
∫ ∫ ∫ ∫

q(x) dx + 1
6

C1x3 + 1
2

C2x2 + C3x + C4.

The constants Ci have physical meanings. The second of these five equations is equiv-
alent to V = −∫

qdx + C1, since we know that −E I d3w/dx3 = V; the third equation
should also look familiar. We have worked with these equations and seen that the con-
stants C1 and C2 come from the end conditions on V and M; hence, these two constants
come from static boundary conditions. When we continue onto the fourth and fifth equa-
tions, we obtain two more constants of integrations, C3 and C4, which describe the slope
and deflection of the neutral axis. These constants come from the kinematic boundary
conditions.

If we begin our integration at a point further down this chain, starting with
−E I d2w/dx2 = M(x), we will obtain after two integrations:

−E Iw =
∫ ∫

M(x) dx + C3x + C4. (9.16)

We will once again find C3 and C4 from the kinematic boundary conditions.
Any one of these five equations may be used as a starting point for finding beam

deflection. The choice depends entirely on the available data.
It is important to note that distributed loads should not be replaced by their resultants for

determining deflections. Although two loadings may be statically equivalent (e.g., cause
the same reaction forces) they will not cause the same deflected shapes.

As long as the beam behaves elastically, it is possible to superpose solutions to determine
the deflection w(x) in a complex loading situation. Tables 9.1 and 9.2 offer deflections w(x)

for many isolated loads. Although some might appear to be in a different form, these are
exactly the same as the results obtained from integrating. Using such a table and our pre-
vious results, we can simply add the solutions for the various loads, as in Figure 9.5. This
is also an excellent way to resolve the problem of statically indeterminate beams, as we
will see in Section 9.6.

In Section 9.4, we will discuss a mathematically rigorous and very convenient technique
that can be used to analyze more complex situations. The method uses discontinuity func-
tions, and it is especially useful in resolving discontinuities in loading along the beam’s
axis.

PP

q q

= +

FIGURE 9.5
Finding deflection by superposition.
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TABLE 9.1

Deflections and Slopes of Neutral Axes for Variously Loaded Cantilever
Beams

L

P

w(x) = P L3

6E I

[
3
( x

L

)2 −
( x

L

)3]

L
a

P
w(x) = Pa3
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( x

a

)2 −
( x

a

)3]
, 0 ≤ x ≤ a

w(x) = Pa3

6E I
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3
( x

a
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− 1

]
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a

w(x) = M0a2
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( x
a

)2
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q0
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( x
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)4]
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q0
w(x) = q0a4
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( x

a

)3 +
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a

)4]
, 0 ≤ x ≤ a

w(x) = q0a4
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6
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a

)
− 1

]
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L

q0
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L
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)4 −
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L
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q0
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L
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)3 +
( x

L
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TABLE 9.2

Deflections and Slopes of Neutral Axes for Variously Loaded Simply Supported Beams

L
a

P

b

w(x) = PbL2

6E I

[(
1 −

(
b
L

)2
)( x

L

)
−
( x

L

)3]
, 0 ≤ x ≤ a

L
a

M0

w(x) = M0 L2

6E I
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6
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L

)
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L
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)( x

L
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−
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L
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L
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(
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[
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9.4 Discontinuity Functions

Determining the deflection and slope of a beam using the integration method is straightfor-
ward when we can represent the bending moment within the beam by a single analytical
function M(x). Discontinuity functions (frequently but inexactly called singularity functions)
make it possible to characterize the shear V and bending moment M by single mathemat-
ical expressions even when the loading is discontinuous. This method is most effective
for beams with a constant product E I . Discontinuity functions are particularly valuable in
computational techniques.

Using discontinuity functions to describe the beam deflections was first suggested in
1862 by German mathematician A. Clebsch (1833–1872), though the notation of Equa-
tion 9.17 was introduced somewhat later by W. H. Macaulay (1853–1936), a British
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mathematician and engineer. The angle brackets 〈〉 used to write discontinuity functions
are often called “Macaulay’s brackets.”∗

In general, unit discontinuity functions are defined:

〈x − a〉n =
{

(x − a)n, when x ≥ a ,
0, when x < a ,

for n ≥ 0. (9.17)

The discontinuity functions corresponding to n = 0, 1, and 2 are graphed in Figure 9.6a.
These are useful for representing M(x) functions because a load that occurs (or a dis-
tributed load that begins) at a point a contributes to M(x) only when x is greater than a .
Figure 9.7 shows how discontinuity functions can be used to express M(x) on four repre-
sentative beams by scaling the unit discontinuity functions. Note that the expressions are
for the bending moment caused by the single load shown and that multiple loads, includ-
ing those provided by support forces, can be represented using superposition. A complete
M(x) expression for a beam may then be used in Equation 9.10a.

We have seen from Equation 9.10 that we have the choice of starting with expressions for
bending moment, shear force, or load. If we want to use discontinuity functions to repre-
sent the load q(x) directly we need some additional Macaulay bracket notation because the
definition in Equation 9.17 can represent distributed loads for which q(x) contributions are
polynomials but not point loads. For concentrated applied point loads and moments, we
use negative integer values of n with the angle bracket notation. As shown in Figure 9.6b,
these are not conventional continuous functions, and the values of n are not exponents.
They instead indicate the type of singularity that the discontinuity function represents.
For n = −1, the notation indicates the Dirac delta, or unit impulse function. We have seen
this in Section 2.5, where it was used to represent axial point loads on bars, but now we rep-
resent the same idea with Macaulay bracket notation. When n = −2, the notation indicates
a unit doublet. This may be used for representing a concentrated moment.

Unit step(a)

(b)

〈x – a〉0 Unit ramp〈x – a〉1

Unit impulse〈x – a〉–1 Unit doublet〈x – a〉–2

Unit parabola〈x – a〉2

a 

1 

x a 

1 

x

(Slope = 1)

a x

(Curvature = 1)

a 

1/ε

a – ε/2 a + ε/2 a – ε/2 a + ε/2

6/ε2

x a x

(Moment = 1)(Area = 1)

FIGURE 9.6
(a) Unit discontinuity functions with n = 0, 1, and 2. (b) Unit discontinuity (singularity) functions with n = −1
and −2. These are represented by limits as ε → 0.

∗ W. H. Macaulay, “Note on the Deflection of Beams,” Messenger of Mathematics, vol. 48, pp. 129–130, 1919.



240 Introduction to Engineering Mechanics

x

a 

M

x

a 

P

x

a 
q0

x

a 

Slope k

x 

a 

Curvature c

x

a 
q0

b 
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1
2
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24
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2

1
2

q(x) = k〈x – a〉1

M(x) = –   k 〈x – a〉31
6

FIGURE 9.7
Basic beam loadings expressed in terms of discontinuity functions.

Figure 9.7 shows how discontinuity functions can be used to express the loadings and
moments on representative beams. The expressions for M(x) may be found directly using
equilibrium or via the integration method of Section 7.4. Note that when an expression
containing a Macaulay bracket term is integrated, the terms within the angle brackets stay
within the angle brackets, unchanged. When n ≥ 0, these terms otherwise integrate like
regular polynomial terms. The integral of the unit doublet is the unit impulse, and the
integral of the unit impulse is the unit step. Finally, it is important to reinforce the idea that
for x < a , the location of the start of the loading, the value of any of these discontinuity
functions is zero.

Like many problem-solving approaches, the use of discontinuity functions is best
learned by applying the technique. Practice solving the worked examples in this chap-
ter using the method of discontinuity functions to confirm that the solutions obtained are
equivalent to those arrived at by other methods.

9.5 Beams with Non-Constant Cross Section

In practice, we often encounter beams whose cross-sectional areas vary and whose loading
is complex. This is the typical situation with machine shafts, which have variations in
shaft diameter to accommodate rotors, bearings, collars, etc., and it is also common in
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aircraft and bridge construction. In such cases, the product E I is no longer constant, as we
assumed it was in the preceding sections. Equation 9.10 must then be replaced with a more
general form:

E I
d2w

dx2 = −M(x), (9.18a)

d
dx

(
E I

d2w

dx2

)
= d(−M(x))

dx
= −V(x), (9.18b)

d2

dx2

(
E I

d2w

dx2

)
= d(−V(x))

dx
= q(x). (9.18c)

9.6 Statically Indeterminate Beams

In Section 2.9, we learned that structures are statically indeterminate when there are more
reactions than are needed to maintain equilibrium and hence more unknowns than we
can determine using the fixed number of equations of static equilibrium. As we did for
bars, we can gain the additional needed equations by enforcing geometric compatibility for
deformed parts of the body and at its boundaries (compatibility) and including a stress–
strain relationship such as Hooke’s law for elastic materials (constitutive law).

While analogs of both the force method and the displacement method of Section 2.9
can be developed for beams, the force method is particularly practical as it allows us to
use tabulated results like those in Tables 9.1 and 9.2. The list of steps in Section 2.9.1 for
implementing the force method may be directly applied here.

For example, consider a uniformly loaded beam for which the left end is fixed, but the
right end is supported with a roller (as shown in Figure 9.8a). Either the moment reaction
at the left end may be considered redundant (a pin support would be sufficient for equi-
librium) or the roller at the right end may be (the cantilever is in equilibrium without it).
Taking the second option, we remove the right hand support, which permits the system
to deform as in Figure 9.8b. We can use the fourth entry in Table 9.1 to evaluate the tip
deflection �tip/q0 due only to the externally applied load (q0 in the negative z-direction):

�tip/q0 = −q0L4

24E I

[
6
( x

L

)2 − 4
( x

L

)3 +
( x

L

)4
]∣∣∣∣

x=L
= −q0L4

8E I
. (9.19)

But this deformation violates the geometric condition that is actually imposed at the
right end, where the deflection is known to be zero. To comply with geometric compati-
bility, we must find the deflection �tip/R that would be caused by R at the right end, as
shown in Figure 9.8c. Thus,

�tip/R = RL3

6E I

[
3
( x

L

)2 −
( x

L

)3
]∣∣∣∣

x=L
= RL3

3E I
. (9.20)

Just as in Section 2.9.1, we may then achieve compatibility by requiring that

�tip/q0 + �tip/R = 0, (9.21)
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q0

Δtip/q0
(negative)

Δtip/R

(b)

R 

(c)

q0(a)

FIGURE 9.8
Decomposition of indeterminate beam by force method: (a) indeterminate beam subject to distributed load q and
effect of pin support; (b) beam subjected only to distributed load q ; (c) beam subjected only to pin reaction force.

enforcing the condition that there is no real displacement of the tip of the beam. Note that
we knew to compute displacements at the tip because this was the point of application of
the redundant load. From this expression, we find an expression for R:

R = q0L4

8E I
3E I
L3 = 3

8
q0L . (9.22)

If the real physical displacement was some known non-zero value, the right-hand side
of Equation 9.21 would be set to this value and a different value of R would be obtained. In
Section 9.7, we consider the case where the deflection at the support is not a fixed known
value.

We can extend our understanding of statically indeterminate problems using an example
that has two more supports than are needed for equilibrium (Figure 9.9). This is called a
second-degree indeterminate problem.

We approach the problem using the method of flexibility coefficients, an extension of the
force (flexibility) method. We decompose the indeterminate problem into three determi-
nate ones. To keep terms straight, the displacement � at a point on the beam is given
a subscript denoting the location and a superscript identifying the position of the load.
Thus, the deflection at x = x1 due to a load P applied at x2 is denoted by �

P2
1 .

a

P

b b 

R2 R3

FIGURE 9.9
Cantilever with two supports: statically indeterminate.
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For the loading in Figure 9.9, using decomposition (considering the applied load P and
the reaction forces R2 and R3 one load at a time using Table 9.1, with b eliminated by
replacement with (L − a ), we find that

�P
2 =

(
Pa2

12E I

)
(3L + a), �P

3 =
(

P
48E I

)
(5L3 + 9L2a + 3La2 − a3), (9.23a,b)

�
R2
2 =

(
a3

3E I

)
R2, �

R2
3 =

(
a2(3L − a)

6E I

)
R2, (9.24a,b)

�
R3
2 =

(
a2(3L − a)

6E I

)
R3, �

R3
3 =

(
L3

3E I

)
R3. (9.25a,b)

The principle of compatibility requires that when we re-assemble our component prob-
lems into the original beam, that is, apply superposition, the structure must hold together
without violating any geometric or other constraints. Since we are applying compatibility
at the two (redundant) supports, this means that

�2 = �P
2 + �

R2
2 + �

R3
2 = 0, (9.26a)

�3 = �P
3 + �

R2
3 + �

R3
3 = 0. (9.26b)

From this pair of equations, we can now determine the two redundant reactions.
This approach can be extended to any number of redundant reactions, but keeping track

of terms could get confusing. So let us write the equations in matrix form, and in so doing
we will introduce the idea of a matrix of flexibility coefficients. Flexibility coefficients relate
deflection to applied load: the deflection at location i due to forces Pj applied at points j
can be expressed in terms of flexibility coefficients fi j as �i = fi j Pj . This expression uses
the indicial notation summation convention that we learned in Chapter 1.

First, the flexibility coefficients corresponding to the unknown reaction forces are
extracted from Equations 9.24a,b through 9.25a,b, that is,

(
f22 f23
f32 f33

)
=

⎛
⎜⎜⎜⎝

a3

3E I
a2(3L − a)

6E I

a2(3L − a)

6E I
L3

3E I

⎞
⎟⎟⎟⎠ . (9.27)

This expression shows the property of symmetry, which we could also have seen in
the prior component results, namely �

R3
2 = �

R2
3 . We note now the general principle that

fi j = f j i .
The matrix form of the dependence of deflections on the applied loads can now be

written as (
�2

�3

)
=
(

�P
2

�P
3

)
+
(

�
R2
2

�
R2
3

)
+
(

�
R3
2

�
R3
3

)

=
(

�P
2

�P
3

)
+
(

f22 f23

f32 f33

)(
R2
R3

)
=
(

0
0

)
,

(9.28)
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because we know that the true deflections at the support points are zero. Rearranging,

(
R2
R3

)
= −

(
f22 f23
f32 f33

)−1
(

�P
2

�P
3

)
. (9.29)

Problem 9.18 asks you to complete this solution with specific numerical values.
We now have extended the force (flexibility) method to include an arbitrary number of

redundants, formulated a structural problem in matrix notation, and found that the (struc-
tural) flexibility coefficients form a symmetric matrix. This representation is very powerful
for numerical work and it is utilized in the finite-element method (FEM) for structural
computation.

9.7 Beams with Elastic Supports

What happens in the case of a support that is not rigid? How does a flexible or elastic sup-
port affect a beam’s deflection? Consider a modification of the example from the previous
section, with the right end supported by a spring of stiffness ks as in Figure 9.10a, instead
of a rigid support.

This problem is indeterminate as in the previous section because the magnitude of the
reaction force applied through the spring is unknown, and the beam deflection at that
point is also unknown. This problem can be decomposed, so that the respective moments
and tip deflections may be found. However, our consistency or compatibility condition
for this application of the force method requires we recognize the unknown deflection at
x = L due to the spring. Thus, the present compatibility condition requires that

�tip/q0 + �tip/R = �s ,

−q0L4

8E I
+ RL3

3E I
= −R

ks
,

(9.30)

kb//q0

kb//Rks

ks

q0

(a)

(b)

FIGURE 9.10
An indeterminate beam with elastic support (a) and its equivalent mechanical circuit (b).
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where the negative sign on the right-hand side comes from drawing the reaction force R
in equal and opposite directions on the beam and the spring as is required by the method
of sections. An equation for the redundant R emerges as

R

(
1
ks

+ L3

3E I

)
= q0L4

8E I
. (9.31)

Note that this equation for the redundant (spring) force requires that we add the flexi-
bility coefficients for both the spring and the tip-loaded cantilever. It is also interesting to
observe that if we define the following two stiffness coefficients,

kb/q0 = q0L
�tip/q0

= 8E I
L3 , (9.32)

kb/R = R
�tip/R

= 3E I
L3 , (9.33)

then the equation for the redundant can be cast as

R
(

1
ks

+ 1
kb/R

)
= q0L

(
1

kb/q0

)
. (9.34)

This result is just what we would expect from an equivalent mechanical circuit for this
problem (shown in Figure 9.10b). The load carried by the discrete spring at the tip of the
cantilever is found to be

R = q0L
(

kb/R

kb/q0

)(
ks

ks + kb/R

)
. (9.35)

Clearly, if there is no discrete spring at the tip, there will be no reaction at the tip. Further,
if the discrete spring is allowed to become infinitely stiff, we can take the appropriate limit
in the above equation and use the prior definitions to show that there will be a reaction
whose magnitude is

lim
ks→∞

R = q0L
(

kb/R

kb/q0

)
= 3q0L

8
, (9.36)

which is the result of Equation 9.22.
Elastic supports arise fairly often in practice, so it is useful to have the capacity to model

their behavior. Two simple examples are pictured in Figure 9.11, and their correspond-
ing stiffness coefficients for a supporting cantilever (Figure 9.11a) and for cable support
(Figure 9.11b) are, respectively,

kcantilever = 3E1 I1

L3
1

, (9.37)

and

kcable = A2 E2

L2
. (9.38)

In practice, of course, elastic or yielding supports may be more complicated, but they can
often be modeled as simple extensional or rotational springs.
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(a)

(b)
Cable

E1, I1, L1

E2, A2, L2

FIGURE 9.11
Examples of elastic supports: beam (a) resting on cantilever beam, and (b) held by cable subject to axial
deformation.

9.8 Strain Energy for Bent Beams

As we remember from our discussion in Section 2.12, strain energy represents the energy
absorbed by a material during a loading process. This is sometimes referred to as “inter-
nal work,” or “potential energy.” Strain energy is a useful concept for determining the
response of structures to static (and dynamic) loads. We begin our discussion of strain
energy in beam bending by restating results for a simply supported, uniformly loaded
beam and extending them to reinforce the validity of our basic assumptions. First of all,
the deflected shape of this simple beam may found to be (as in Table 9.2)

w(x) = q0L4

24E I

[( x
L

)
− 2

( x
L

)3 +
( x

L

)4
]

. (9.39)

We can now “go backwards,” and use this result to calculate the moment and shear force:

M(x) = −E I
d2w

dx2 = q0L2

2

[( x
L

)
−
( x

L

)2
]

, (9.40)

V(x) = −E I
d3w

dx3 = q0L
2

[
1 − 2

( x
L

)]
, (9.41)

and the normal and shear stresses (see Example 7.8) due to bending for this problem with
a beam of rectangular cross-section (b × h) are

σxx = M(x)z
I

= q0L2z
2I

[( x
L

)
−
( x

L

)2
]

, (9.42)

σxz = V(x)

2I

(
h2

4
− z2

)
= q0L

4I

(
h2

4
− z2

)[
1 − 2

( x
L

)]
. (9.43)

Note first of all that we can compare the maximum values of the bending and shear
stresses:

(σxx)max = σxx

(
L
2

,
h
2

)
= q0L2h

16I
, (9.44)

(σxz)max = |σxz(0, 0)| = q0Lh2

16I
, (9.45)
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from which it follows that
(σxz)max

(σxx)max
= h

L
, (9.46)

so that for slender beams, with h � L , the shear stress is much smaller than the normal
stress. We can then infer that the shear strain is also much smaller than the normal strain,
so the fact that our kinematics assumptions include zero shear strain should not bother us
too much.

However, we can go one step further to confirm this result. In the same way that we can
calculate the energy stored in a simple spring, we can calculate the energy stored in an
elastic beam due to different kinds of deformation. More specifically, we can calculate the
energy stored due to bending deformation and the energy stored due to shear deformation.
In general, as an extension to the strain energy density (energy per unit volume) for a one-
dimensional bar shown in Section 2.12, the strain energy density at a point in a general
elastic solid is

U0 = 1
2σi jεi j , (9.47)

where the repeated indices indicate summation (as usual) over all of the elements of the
tensors. The dimensions of this expression are those of work per volume, as they should be,
and the details of this calculation result from a straightforward analysis of the work done
on a volumetric element dx dy dz by a set of stresses σi j acting through the corresponding
gradients of deformation, or strain, εi j . To find the total stored strain energy U, we can
integrate this expression over the volume V– of the elastic body:

U = 1
2

∫

V–

σi jεi j d V– . (9.48)

For our beam problem, there are only two non-zero terms to examine. Bringing in Hooke’s
law, due to normal stress,

Unormal = 1
2

∫

V–

σxxεxxb dx dz = 1
2

∫

V–

σ2
xx

E
b dx dz, (9.49)

while for shear,

Ushear = 1
2

∫

V–

(σxzεxz + σzxεzx)b dx dz = 1
2

∫

V–

σ2
xz

G
b dx dz. (9.50)

If we substitute the stresses into the strain energy expressions, we can then do some
algebra to find that

Unormal = q 2
0 L5

240E I
, (9.51)

Ushear = q 2
0 L5

240E I

[
2(1 + ν)

(
h
L

)2
]

, (9.52)
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so that the ratio of these two strain energy terms is

Ushear

Unormal
= 2(1 + ν)

(
h
L

)2

. (9.53)

The ratio of the energy stored in shear to that stored in bending is proportional to the
square of the thickness-to-length ratio. Since the work done by loads on beams is stored as
strain energy, and since the shear component of this energy is very small for long, slender
beams, the assumption we make when neglecting deformation due to shear when we are
modeling the bending of beams is sound.

9.9 Deflections by Castigliano’s Second Theorem

Strain energy is also used directly in methods for finding the deflections of structures.
Although most are subjects for separate courses on structural mechanics, we can get a taste
of such methods here by introducing Castigliano’s second theorem.∗ This famous theorem
from 1879 says

The deflection of a structure at any point where a load is applied can be obtained from
the partial derivative of the strain energy function with respect to that load.

We will not prove this theorem, but we can write out its useful form for beams here
and demonstrate it in Example 9.6. Starting with the expression for strain energy that was
developed in Equation 9.49, which includes only the energy due to normal stress (because
we established that it is much larger than that due to shear stress in long, slender beams),
we can write d V– as dAdx and replace the expression we know for σxx :

U = 1
2

∫

V–

σxxεxxd V– = 1
2

∫

V–

σ2
xx

E
d V–

= 1
2

L∫

0

∫

A

1
E

[
M(x)z

I

]2

dAdx.

(9.54)

Then because M(x) and I do not vary in the cross-section A,

U = 1
2

L∫

0

1
E

[M(x)]2

I 2

⎡
⎣∫

A

z2 dA

⎤
⎦dx = 1

2

L∫

0

[M(x)]2

E I
dx, (9.55)

where we have recognized that the integral over A is the definition of second moment of
area, I , about the y-axis. If we use Equation 9.55 to get an expression for U, by squaring

∗ Castigliano’s first theorem makes a similar case for the forces being calculated as the partial derivatives of strain
energy with respect to the appropriate deflections.
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the polynomial (or other) function M(x), we can implement Castigliano’s second theorem
with

�i = ∂U
∂ Pi

, (9.56)

which is an elegant mathematical form relating the load at point i , Pi , to the deflection of
the structure at that position, �i , through the strain energy U. This is useful on its own
as shown in Example 9.6, but it can also be used to generate one or more compatibility
equations for solving statically indeterminate problems, as shown in Example 9.7.

9.10 Examples

EXAMPLE 9.1

A bending moment M1 is applied at the free end of a cantilever of length L and constant
flexural rigidity E I . Find an expression for w(x).

L

x

z
M1

Given: Load applied to beam.

Find: Deflection, or “equation of elastic curve.”

Assume: Hooke’s law applies; long, slender beam.

Solution

We start with an FBD and the external reaction forces and/or moments. In this case,
this procedure is straightforward: the fixed support exerts a reaction moment equal and
opposite to M1 on the beam. If we made an imaginary cut at any x and used the method
of sections to find the local internal bending moment, we would similarly find that at
each x, the internal bending moment was M1. M(x) = M1 = constant, as shown in the
bending moment diagram.

M(x)

M1 M1

M1

x
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At the fixed end (x = 0), we know that deflection and slope are both zero; at the
free end (x = L), we know the moment is M1 and the shear is zero. We can thus begin
integrating the second-order equation for deflection w(x):

E I
d2w(x)

dx2 = −M(x) = −M1,

Integrate: E I
dw(x)

dx
= −M1x + C3,

Apply BC:
dw

dx

∣∣∣∣
x=0

= 0 → C3 = 0 (fixed end),

Integrate: E Iw(x) = −1
2

M1x2 + C4,

Apply BC: w(0) = 0 → C4 = 0 (fixed end).

So,

w(x) = − M1x2

2E I
.

This deflection is negative, which means that the deflection due to M1 is downward. The
maximum deflection is at x = L , and the neutral axis has the general shape sketched
here.

w(x)
x

z

EXAMPLE 9.2

A simple beam supports a concentrated downward force P at a distance a from the left
support. The flexural rigidity E I is constant. Find w(x).

P

D B

a b
L

A

Given: Loading conditions, reaction forces, length of beam.

Find: Deflection w(x).

Assume: Hooke’s law applies; long, slender beam.
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Solution

We want to integrate the internal moment to find the deflection w(x). We have simple
supports, so we know that at A, w(x = 0) = 0 and M(x = 0) = 0, and at B, w(x = L) = 0
and M(x = L) = 0. We use the method of sections to find M(x):

M(x)

M(x)

Pb/L

Pb/L x – a

x < a

x > a

M1(x) = − Pb
L

x,

M(x)

Mmax = M(x=a) =– Pab
L

a

x

M2(x) = − Pb
L

x + P(x − a) = − P(L − a)

L
x + P(x − a) = Pa

L
(x − L).

We note that there is a discontinuity at x = a , so we have two distinct M(x) expres-
sions. Although M(x) may be discontinuous in this way, neither the slope nor the
deflection is allowed to be discontinuous. We can, therefore, integrate the two distinct
M(x) expressions for the deflections of the two portions of the beam, and match the two
solutions at x = a .

For 0 ≤ x ≤ a ,

E I
d2w1
dx2 = −M1 = Pb

L
x,

Integrate:
dw1
dx

= Pb
2E I L

x2 + A1.

Integrate: w1(x) = Pb
6E I L

x3 + A1x + A2.
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For a ≤ x ≤ L ,

E I
d2w2
dx2 = −M2 = − Pa

L
(x − L) = Pa − Pax

L
,

Integrate:
dw2
dx

= Pax
E I

− Pax2

2E I L
+ B1.

Integrate: w2(x) = Pax2

2E I
− Pax3

6E I L
+ B1x + B2.

To find the constants of integration Ai and Bi , we will apply the end BCs as well
as the continuity condition: both w and dw/dx must be continuous at x = a , so that

w1(a) = w2(a) and dw1
dx

∣∣∣
x=a

= dw2
dx

∣∣∣
x=a

. Beginning with the end conditions, we have

w1(0) = 0 = A2,

w2(L) = 0 = Pa L2

3E I
+ B1L + B2,

w1(a) = w2(a) → Pa3b
6E I L

+ A1a = Pa3

2E I
− Pa4

6E I L
+ B1a + B2,

dw1
dx

∣∣∣∣
x=a

= dw2
dx

∣∣∣∣
x=a

→ Pa2b
2E I L

+ A1 = Pa2

E I
− Pa3

2E I L
+ B1.

Here we have three equations for three unknown constants, so we can solve the
equations simultaneously and obtain the remaining constants:

A1 = − Pb
6E I L

(L2 − b2) and B1 = − Pa
6E I L

(2L2 + a2),

so

A2 = 0 and B2 = Pa3

6E I
.

So the deflection of the beam (after some esthetic rearrangements) is given by

0 ≤ x ≤ a : w1(x) = Pbx
6E I L

(x2 + b2 − L2),

a ≤ x ≤ L : w2(x) = − Pax3

6E I L
+ Pax2

2E I
−
[

Pa
6E I L

(2L2 + a2)

]
x + Pa3

6E I
.

Note: the deflection at the point of application of force P may be determined by
substituting x = a into either of the above expressions and is Pa2b2/3E I L .

An alternative method, which does not require the need to explicitly enforce the conti-
nuity conditions at a , is to use discontinuity functions. Writing one expression for M(x)

that works for the entire beam can be done with Macaulay brackets. There is no need
to use the Macaulay bracket notation for x = 0, but it may be done for consistency of
notation:

M(x) = − Pb
L

〈x − 0〉1 + P〈x − a〉1.
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We then carry on with the two integration steps:

E I
d2w

dx2 = −M = Pb
L

〈x − 0〉1 − P〈x − a〉1,

Integrate:
dw

dx
= Pb

2E I L
〈x − 0〉2 − P

2E I
〈x − a〉2 + C1.

Integrate: w(x) = Pb
6E I L

〈x − 0〉3 − P
6E I

〈x − a〉3 + C1x + C2.

The BCs we need are just end conditions:

w(0) = 0 = C2,

w(L) = 0 = Pb
6E I L

L3 − P
6E I

(L − a)3 + C1L .

So

C1 = − PbL
6E I

+ P
6E I L

(L − a)3,

w(x) = Pb
6E I L

〈x − 0〉3 − P
6E I

〈x − a〉3 +
[
− PbL

6E I
+ P

6E I L
(L − a)3

]
x,

which looks different but is the same as the result obtained above. Plotting both solutions
for arbitrary values of P , E I , a , and b is an easier way to demonstrate this than manip-
ulating the expressions further. Remember that the second Macaulay bracket term does
not get included until x > a .

EXAMPLE 9.3

For the beam with the given loading, with a maximum load intensity of q0, find (a) the
reaction at A, (b) the equation of the elastic curve w(x), and (c) the slope at A.

q0

BA

L

Given: Loading and support conditions, length of beam.

Find: Reactions, deflection w(x), slope of neutral axis at A.

Assume: Hooke’s law applies; long, slender beam.
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Solution

We start with an FBD of the system:

∑
Fy = 0 = RA + RB − 1

2 q0L ,

&
∑

Mabout A = 0 = −MB + RB L −
(

1
2 q0L

)(2L
3

)
,

&
∑

Mabout B = 0 = −MB − RAL +
(

1
2 q0L

)( L
3

)
.

RA RB

MB

½ q0L

L/3

We have three unknowns (RA, RB , and MB ) and only two relevant equilibrium equa-
tions, so this problem is statically indeterminate. We will proceed with the solution for
w(x), leaving the reactions as unknowns, and hope that our boundary conditions for V,
M, dw/dx, and w may help us out. First, we will make an imaginary cut at some x to
determine the form of M(x).

RA

M(x)

V(x)

½ q0X

X/3

We require moment equilibrium about our point x, that is, −M(x) + ( 1
2 q0x2/L

)
(x/3) −

RAx = 0. Thus, M(x) = −RAx + q0x3/6L . Having this expression for internal bending
moment as a function of x allows us to integrate the second-order equation for deflection
w(x):

E I
d2w(x)

dx2 = −M(x) = RAx − q0x3

6L
.

Integrate: E I
dw(x)

dx
= 1

2
RAx2 − q0x4

24L
+ C1.

Integrate: E Iw(x) = 1
6

RAx3 − q0x5

120L
+ C1x + C2.

Note that the numbering scheme for our constants of integration is not tied to the
numbered Ci cited in Section 9.3. Although this scheme was followed in Example 9.1,
there is no need to stick to it. In working problems, we will most often be integrating
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the second-order equation and so will have only two constants to find, so they may be
named in any manner the problem solver deems appropriate.

We now need some boundary conditions to find the constants C1 and C2 above. At A,
where x = 0, we have a pin support, at which we are sure both moment and deflection
are zero. Then one of these that helps us is w(x = 0) = 0. At B, or x = L , we have a fixed
support, where deflection and slope must both be zero. Applying these three BCs gets us

w(x = 0) = 0 → C2 = 0,

w(x = L) = 0 → 1
6

RAL3 − q0L4

120
+ C1L = 0,

dw

dx

∣∣∣∣
x=L

= 0 → 1
2

RAL2 − q0L3

24
+ C1 = 0.

At last, we have two equations and two unknowns, a soluble system. We choose arbi-
trarily to solve for RA first, and do this by multiplying the slope boundary condition by
L and then subtracting the deflection condition:

(
1
2

RAL3 − q0L4

24
+ C1L

)
−
(

1
6

RAL3 − q0L4

120
+ C1L

)
= 0.

So,

1
3

RAL3 − q0L4

30
= 0.

This allows us to solve for RA = 1
10 q0L , which is an upward force as assumed in the

FBD, and which we note is independent of E I . By substituting this RA into either condi-
tion at x = L , we are able to find that the constant C1 = − 1

120 q0L3. Putting both of these
into our expression for the deflection of the neutral axis, we have

E Iw(x) = 1
6

(
1

10
q0L

)
x3 − q0x5

120L
+
(

− 1
120

q0L3
)

x,

or

w(x) = q0/L
120E I

(
−x5 + 2L2x3 − L4x

)
.

We could then find a general expression for the slope dw/dx of the neutral axis along
the beam, and find the slope at A as requested in part (c):

dw

dx
(x = 0) = − q0L3

120E I
.

Note: We could also have solved this complex problem by recognizing the loading on
the beam as the superposition of two more straightforward conditions:

= +
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The superposition of w(x) for both these loading conditions is exactly the result
achieved above. Superposition is quite a useful technique for finding the deflections of
beams.

EXAMPLE 9.4

The beam shown has uniform elastic modulus E and second moment of area I .
Determine

1. The reactions at the left wall.

2. The beam’s deflection w as a function of x.

3. The maximum allowable value of load intensity q0 if the beam has a square cross-
section with sides of 4 in and length L = 96 in, and is made from a material with
E = 15 × 106 psi and maximum allowable normal stress 110 ksi.

L

q0

Given: Loading conditions; properties of beam.

Find: Reactions, deflection, maximum allowable intensity q0.

Assume: Hooke’s law applies; long, slender beam.

Solution

Since there are no applied axial loads we know that the supports exert equal and oppo-
site axial forces, which may occur due to the sagging of the beam, but we do not have a
method to find them and they are not considered in this problem. An FBD of the system
can thus be constructed:

q0L

MBMA

RBRA

And, summing forces and moments, we have

∑
Fz = 0 = −q0L + RA + RB ,

&
∑

MA = 0 = MA − MB + RB L − q0L2

2
.

By symmetry, we can reasonably assume that RA = RB and MA = MB ; however, this
assumption will not help us solve the equations of statics for the reaction moments.
We will need more than just statics to find all four reactions. As in Example 9.3, we will
proceed with the solution for deflection w(x) and hope that the boundary conditions will
help us identify our unknowns. At the two fixed supports, we know that both deflection
and slope must equal zero, that is, w(0) = w(L) = 0 and dw/dx|x=0 = dw/dx|x=L = 0.
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We use the method of sections and make a cut at a distance x to find the internal
bending moment M(x):

q0x

xMA MB

RA

Balancing moments on this x-long segment, we have

M(x) = MA − RAx + q0x2

2
.

Next, we integrate for the deflection w(x):

E I
d2w

dx2 = −M(x) = −MA + RAx − q0x2

2
,

E I
dw

dx
= −MAx + RAx2

2
− q0x3

6
+ C1,

E Iw(x) = − MAx2

2
+ RAx3

6
− q0x4

24
+ C1x + C2.

Applying our BCs we have

w(0) = 0 → C2 = 0,

dw

dx

∣∣∣∣
x=0

= 0 → C1 = 0,

w(L) = 0 → − MAL2

2
+ RAL3

6
− q0L4

24
= 0,

dw

dx

∣∣∣∣
x=L

= 0 → −MAL + RAL2

2
− q0L3

6
= 0.

We solve these last two equations together with the two equilibrium equations for our
four unknowns, and find

RA = RB = q0L
2

,

MA = MB = q0L2

12
.

We can now substitute these values into the expression for w(x) above:

E Iw(x) = − MAx2

2
+ RAx3

6
− q0x4

24
+ C1x + C2,

w(x) = 1
E I

[
−q0L2x2

24
+ q0Lx3

12
− q0x4

24

]
,
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or

w(x) = q0x2

24E I

[
−L2 + 2Lx − x2

]
.

To find the maximum allowable load intensity q0 based on the given normal stress
limitation, we must calculate the maximum normal stress induced in the beam in terms
of q0. Because normal stress is linearly proportional to bending moment, we will do this
by finding the maximum internal bending moment in the beam. We return to our general
equation for M(x) and now put in the known values for the reactions.

M(x) = MA − RAx + q0x2

2
= q0L2

12
− q0Lx

2
+ q0x2

2
.

The maximum M(x) will occur where dM/dx = 0: dM/dx = −q0
L
2 + q0x = 0 at x =

L
2 . We must consider the end points of the beam, which also have zero slope, as well.
The bending moment at the center of the beam is

M
(

L
2

)
= −q0L2

24
.

This has a lower magnitude than the bending moment q0L2/12 at the ends of the
beam, so the ends are the critical points.

Below, we sketch the form of M(x).

M(x)

L/2 L
x

The second moment of area of the given cross-section is I = bh3/12 = (4 in)4/12 =
21.3 in4. The maximum normal stress is given by

σmax = Mmaxc
I

≤ σallow.

So working with the magnitude of Mmax only since there are equal and opposite tensile
and compressive stresses at each x location in the beam,

|Mmax| = q0L2

12
≤ σmax I

c
,

q0 ≤ (110 ksi) · (21.3 in4)

2 in
12

(96 in)2 = 1.53 kips/in.

Note that this result is independent of the Young’s modulus of the beam, E .



Beam Deflections 259

EXAMPLE 9.5

Before the distributed load q0 is applied, there is a gap s between the ends of the can-
tilevers. Determine the reactions provided by the walls at A and C when the load is
applied, assuming that the load is more than large enough to close the gap. Both beams
have the same E and I .

q0

s 

L1 L2

A CB

Given: Cantilever that will act as a flexible support for another cantilever when gap is
closed.

Find: Reaction forces at the walls.

Assume: Hooke’s law applies; long slender beams with constant cross-section; the load
causes the gap to close.

Solution

If the load is not sufficient for the gap to close, then each beam may be analyzed sepa-
rately. The problem is more interesting, and statically indeterminate, when the gap does
close. When the beams are in contact, they exert equal and opposite forces FB on each
other, so the beams are supported by three unknown forces, RA, RC , and FB and two
moment reactions MA and MC but there are only four equilibrium equations available,
two from each beam:

RA = FB , MA = FB L1,

RC = −FB + q0L2, MC = −FB L2 + 1
2

q0L2
2.

q0

RC

MC

FB

FB

RA

MA

To plan our implementation of the force method, we start by constructing the compati-
bility relationship to become the fifth needed equation. Since the beams end up touching,
we know that the difference between the tip deflections must be s. Also, using super-
position we can say that the deflection of the tip of the upper beam is the sum of the
deflections due to the applied load and the unknown reaction force FB . Note that all
terms are drawn and will be computed using the convention of positive deflection being
up. So

�1/FB + s = �2/FB + �2/q0 .
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Table 9.1 gives us the information we need to calculate the tip deflections. For the lower
beam,

w1(x) = −FB L3
1

6E I

[
3
(

x
L1

)2
−
(

x
L1

)3
]

,

so

�1/FB = w1(L1) = −FB L3
1

3E I
.

Similarly for the upper beam, considering x going right to left, the point reaction force
causes deflection

�2/FB = w2(L2) = FB L3
2

3E I
.

And for the distributed load,

w2(x) = −q0L4
2

24E I

[
6
(

x
L2

)2
− 4

(
x

L2

)3
+ 4

(
x

L2

)4
]

,

so

�2/q0 = w2(L2) = −q0L4
2

8E I
.

Now enforcing compatibility

�1/FB + s = �2/FB + �2/q0 ,

becomes

− FB L3
1

3E I
= FB L3

2
3E I

− q0L4
2

8E I
− s.

Solving for the unknown force, we obtain

FB = q0L4
2/8E I + s

L3
1/3E I + L3

2/3E I
= 3q0L4

2 + 24s E I

8
(

L3
1 + L3

2

) .

Then from the equilibrium relations

RA = 3q0L4
2 + 24s E I

8
(

L3
1 + L3

2

) , MA =
(

3q0L4
2 + 24s E I

)
L1

8
(

L3
1 + L3

2

) ,

RC = −3q0L4
2 + 24s E I

8
(

L3
1 + L3

2

) + q0L2, MC = −
(

3q0L4
2 + 24s E I

)
L2

8
(

L3
1 + L3

2

) + 1
2

q0L2
2.
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EXAMPLE 9.6

Use Castigliano’s second theorem to find the deflection of the beam at points B and C
due to the load P at B. The beam has a constant E I .

B

L/2

A C

P

L/2

Given: Cantilever beam with a point load.

Find: Deflection at point of applied load and at the tip.

Assume: Hooke’s law applies; long slender beam.

Solution

Castigliano’s second theorem lets us find the deflection at B in a straightforward manner.
We find the strain energy in the beam, take the partial derivative of it with respect to
force P , and the result is the deflection at B, the point of application of force P . It pays
to think ahead to the other deflection that is requested before beginning, however. There
is no point load at C , so how can we find the deflection there? We can cleverly add a
“dummy” force Q at C , and then the partial derivative of strain energy with respect to
Q is the deflection at C . We then set the value of Q to its real value, zero.

To use Castigliano’s second theorem, we need the function M(x) which we can write
using Macaulay bracket notation. Starting with the load q (x) and including the reaction
force R1 and moment M1 at the left end,

BA C

P

R1

Q

q (x) = −MA〈x − 0〉−2 + RA〈x − 0〉−1 − P〈x − 1
2 L〉−1 − Q〈x − L〉−1.

The final term is always zero and is dropped in the following expressions. Integrating
twice and remembering the negative sign in dV/dx = −q , we obtain

V(x) = MA〈x − 0〉−1 − RA〈x − 0〉0 + P〈x − 1
2 L〉0,

M(x) = MA〈x − 0〉0 − RA〈x − 0〉1 + P〈x − 1
2 L〉1.

Using equilibrium, we can eliminate MA = P L/2 + QL and RA = P + Q. And we
recognize that the Macaulay brackets are not needed on the first two terms:

M(x) = 1
2 P L + QL − Px − Qx + P〈x − 1

2 L〉1.
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Now the strain energy can be broken up into two integrals:

U = 1
2

L∫

0

[M(x)]2

E I
dx

= 1
2E I

1
2 L∫

0

[
1
2 P L + QL − Px − Qx

]2
dx + 1

2E I

L∫

1
2 L

[QL − Qx]2 dx

= L3

48E I
(P2 + 5P Q + 7Q2) + L3

48E I
Q2 = L3

48E I
(P2 + 5P Q + 8Q2).

Implementing Castigliano’s second theorem,

�B = ∂U
∂ P

= L3

48E I
(2P + 5Q),

�C = ∂U
∂ Q

= L3

48E I
(5P + 16Q).

These deflections are both downward, the direction of P and Q. Now setting Q to its
real value, zero, we get the final result:

�B = P L3

24E I
and �C = 5P L3

48E I
.

EXAMPLE 9.7

Use Castigliano’s second theorem to find the reaction force in the support at C due to
the load P at B. The beam has a constant E I .

B

L/2

A C

P

L/2

Given: Statically indeterminate cantilever beam with a point load.

Find: Reaction force at redundant support.

Assume: Hooke’s law applies; long slender beam.

Solution

The work we have done in Example 9.6 allows us to quickly solve this problem. There is
now a real force at C , so we can consider the force Q to be −RC (noting Q was pointing
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down and RC is pointing up). Our intermediate result from Example 9.6 for �C can be
set to equal the real, physical deflection at C , which due to the support is zero:

�C = ∂U
∂ Q

= L3

48E I
(5P + 16Q) = 0.

From this compatibility equation, we find that RC = −Q = 5P/16.
The problem does not ask for the deflection at B, but we could find it with other

equations from Example 9.6 now that RC is known.

PROBLEMS

9.1 The beam shown has modulus E and second moment of area I . The load per length
increases linearly in the right half of the beam and has a maximum value of q0.

a. Use the method of sections to find M(x), and then use integration method with
the second-order differential equation to find the expression for the deflection
w(x).

b. Find the deflection w(x) again using the integration method with the fourth-
order equation. That is, start by writing q(x).

c. Determine the maximum deflection and the point at which it occurs.

L/2L/2

q0

9.2 Beam ABC DE has simple supports at B and D and symmetrical overhangs at each
end, as shown. The center span has length L and each overhang has length b. A
uniform load of intensity q acts on the beam.

a. Determine the ratio b/L such that the deflection �C at the midpoint of the beam
is equal to the deflections �A and �E at the ends.

b. For this value of b/L , what is the deflection �C at the midpoint?

A B
b b

q

C
L

D E

9.3 This atomic force microscope probe is a silicon beam and tip. The beam is 40 µm wide,
4 µm thick, and 130 µm long. The tip is set back 15 µm from the end of the cantilever.
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The deflection of the tip is 1 µm for every 42 µN of force applied to the tip. What is the
elastic modulus of the silicon?

P

(Courtesy of Ted Pellea.)

9.4 For the allen wrench of Problem 7.15, what is the deflection of the tip of the wrench
when the maximum load of 60 N is applied, just before the bolt loosens?

9.5 A cantilever beam AB supports a uniform load of intensity q acting over part of the
span and a concentrated load P acting at the free end, as shown. Determine the deflec-
tion and slope at end B of the beam. The beam has length L and constant flexural
rigidity E I .

Pq

A B
a b

L

9.6 A beam with a constant E I is loaded as shown. (a) Determine the length a of the over-
hang such that the elastic curve would be horizontal over support B. (b) Determine
the maximum deflection between the supports.

120 kN/m

a10 m BA

9.7 A simply supported beam 5 m long is loaded with a 20 N downward force at a point
4 m from the left support. The second moment of area of the cross-section of the beam
is 4I1 for segment AB and I1 for the remainder of the beam. Determine the deflection
w(x) of the neutral axis.

4 m 1 m

20 N
4I1 I1

4 N 16 N

B
A

x

C

x1

9.8 Consider an aluminum cantilever beam 1600 mm long, with a 10-kN force applied
400 mm from the free end. For a distance of 600 mm from the fixed end, the beam



Beam Deflections 265

has I1 = 50 × 106 mm4. For the remaining 1000 mm of its length, the beam has I2 =
10 × 106 mm4. Find the deflection and the angular rotation of the free end. Neglect the
weight of the beam, and use E = 70 GPa.

10 kN

A D C B

600
mm

600
mm

400
mm

9.9 Determine the tip deflection of a beam with linear varying width b(x), constant height
h, length L , and elastic modulus E due to tip load P . Write the answer in terms of the
maximum width bL = b(L). Also determine the normal stress as a function of x. On
the same axes, plot this normal stress, as well as the normal stress in a cantilever of
the same length with a constant width bL/2. Both beams have the same volume of
material—which can carry a higher load P?

b(x)

x 
h L 

P

9.10 A cantilever beam AB has a rigid (i.e., its deformation is negligible relative to that of
the beam) bracket AC attached to its free end and a vertical load P applied at point
C . Find the ratio a/L required so that the deflection at point A will be zero. E and I
are constant along the beam.

a
C

P

A

B

L

9.11 A 1 in × 10 in plank on a redwood deck has L = 48 in long and supported on three
joists that rest on the ground and so do not bend. The joists act as pin/roller supports
for the plank. If a 130 lb person stands on the plank in the location shown, what is the
reaction force on each of the joists?

Bearer Joist 

130 lb

24 in 16 in 8 in 

Plank 
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9.12 An aluminum (E = 70 GPa) cantilever must carry an end load of 1.4 kN as shown.
However, in this design, when the beam is loaded the end of the cantilever A has
to have the same elevation as point C (i.e., the net deflection of A must be zero). A
hydraulic jack may be used to raise point B to achieve this. Determine the amount
that B should be raised and the reaction at B (when the load is applied and B has
been raised). Do not consider the weight of the beam. The cross-section of the beam is
half of an I-beam as shown. The properties given in the box below are for the whole I-
beam. The position of the centroid of the half-section (relative to the top of the section)
is shown in the figure.

0.5 m 1.0 m

A

CB

1.4 kN

Properties for
whole I-beam:
A = 3000 mm2

Iy = 5.0 × 106 mm4

Iz = 2.4 × 106 mm4

11 mm

z
Half I-beam cross-section

100 mm

9.13 A cable with a length H, a cross-sectional area A, and modulus E is attached to the
end of a cantilever beam with length L , second moment of area I , and modulus E
(same modulus as the cable). The beam is loaded with a force per length of q0, which
includes the weight of the beam itself. Determine the force in the cable.

Cable, length H 

BA

C

q0

Beam, length L

9.14 When the deck from Problem 9.11 is raised off of the ground and installed on the side
of a house, the two outer joists are reinforced and remain rigid, but the center joist
bends under the load of the 130 lb person (standing in the same place), providing a
flexible support at the plank center. If the joist is a 2 in (width) × 8 in (depth) simply
supported redwood beam 10 ft long, loaded at its center, what is the reaction force on
each of the three plank supports?

House 

10 ft 

24 in 

24 in 

130 lb

24 in 16 in 8 in 
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9.15 The deck of Problems 9.11 and 9.14 is not wide enough, and another 2 in × 8 in joist
is required to extend the planks to 72 in long. What is the reaction force in each of the
four plank supports when the person is standing at the location of one of them? The
joists are both loaded at their centers.

10 ft 

24 in 

24 in 

24 in 

130 lb

24 in 24 in 24 in 

9.16 A simply supported beam of length L is subjected to loads that produce a symmetric
deflection curve with maximum deflection at the midpoint of the span. How much
strain energy U is stored in the beam if the deflection curve is (a) a parabola, or (b) a
half wave of a sine curve?

9.17 Use Castigliano’s second theorem to determine the tip deflection of this cantilever
with a length L , a constant E I , and a linearly increasing load with a maximum
force/length q0. Confirm your result using Table 9.1.

9.18 For the beam in Section 9.6 with two redundant supports, shown again here, deter-
mine the reaction forces (a) from the matrix equation in Section 9.6 and (b) using
Castigliano’s second theorem. For both, use a = 3 ft, L = 5 ft, and P = 7 kips to
simplify expressions.

a

P

b b 

R 2 R 3
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Case Study 4: Truss-Braced Airplane Wings

This case study provides a glimpse of the history of flight, as it considers how we can use
elementary beam theory to explain one aspect of how airplanes work. We are all familiar
with the Wright Brothers’ famous Wright Flyer (Figure 10.1a), and we have likely seen
similar early-twentieth-century planes in the movies or at air shows (Figure 10.1b). Note
that these aircraft are biplanes: each has a pair of wings arrayed one above the other, with
the wings connected by struts and cables that keep their respective wing spans in (relative)
place. The bottom wing functions as a beam cantilevered from the bottom of the fuselage,
while the top wing is connected to the bottom wing by the aforementioned struts and
cables, but not to the fuselage itself. Note also in Figure 10.1b showing the Boeing Model
40 biplane, just how much shorter and stubbier (relative to the lengths of the fuselages) the
wings of the biplane are, compared to those of the 787.

This marked change in appearance stems from two advances in technology. Biplanes like
the Boeing 40 had evolved from the Wright Flyer in that pilots were no longer required to
lie prone on an open, exposed platform—as Orville and Wilbur had done. Instead, there
were enclosed fuselages made of steel tubular frames, covered first by fabric and later
by metal panels, to provide aerodynamic smoothness and efficiency, as well as an indoor
cargo space. Two technological advances enabled the transition from the Boeing 40 to the
Boeing 707, 737, and 747, and to the composite 787: (1) the ability to make thin sheets of
aluminum that could serve as aerodynamic surfaces; and (2) the ability to analyze, design,
and manufacture monocoque∗ aircraft structures in which the framing and the surfaces
were connected in a single coherent structure. Of course, we are focusing on the structural
aspects only here and are ignoring parallel advances such as those in aircraft propulsion.
The earliest monocoque aircraft, like the cargo and passenger DC3s and the famed British
Spitfires, were driven by propellers well before the advent of the jet engine. And the Boe-
ing 787 recognizes another advance in materials, namely the introduction of composites as
the main structural material for the modern jetliner. For more on that subject, please see
Chapter 15.

For the moment we will focus on wings and how we can use beam theory to model their
behavior. When such cantilevered wings are subject to loads along their spans or lengths,
they bend either upward or downward, depending on whether the net pressure exerted
is upward or downward. In fact, we show in Figure 10.2 an extreme and telling version
of such wing-beam behavior, namely, the shape of a B52 wing during a static deflection
test. This dramatic photograph shows just how much a wing bends under flight loading,
as it ranges from a maximum upward deflection of 6.7 m (22 ft) through a downward max-
imum of 3.6 m (12 ft). So we might think of this B52 wing as an exceptionally large and
springy diving board! Both the picture and the behavior shown clearly suggest that even
such a complex wing structure appears to act like—and so might be modeled as—a basic
cantilever beam.

∗ This term combines the Latin word mono (for one) and the French word coque, meaning shell. It refers to a
structural approach allowing an object’s external “skin” to support loads.

269
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(a) (b)

FIGURE 10.1
Two early biplanes: (a) the famed Wright Flyer in 1903 in Kitty Hawk, North Carolina. (Courtesy of the US Library
of Congress.); and (b) the Boeing Model 40 flying over mountains, likely the Cascade Range, in the 1930s. Note
the wing structure in 1940s is typical of aircraft during flying’s formative years in the early part of the previous
century. (Accessed from Seattle Municipal Archives via Wikipedia Commons on 6 April 2013.)

FIGURE 10.2
The deflected shapes, upward and downward, of a B52 wing show just how much an airplane wing can bend or
deflect. (From R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity, 1962, New York. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission. Republished by Dover Publications, Mineola,
New York, 1975, 2013. With permission.)
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Of course, actual wing structures are not really as simple as the cantilevers we studied
in Chapters 7 and 9: they have more complex cross sections and, more importantly, they
are comprised of many moving parts. Anyone who has sat by the window of a modern jet,
especially during take-off and landing, will have seen the flaps and ailerons that change
the shape of the wings to provide the aerodynamic form appropriate to the particular flight
regime. A truly discerning observer will also have noted that the wings themselves bend
or flex during flight, just as cantilever beams do. In fact, for many purposes, we can treat
an airplane’s wings as simple cantilevers. This is the crux of what we do as engineers:
we determine the appropriate level of detail needed to accurately model the behavior of a
physical device or system, depending on the behavior we are trying to predict.

There is a limit to how long a simple cantilever can be before it bends or deflects too
much. This deflection limit also limits the amount of lift that can be generated by the
airflow around the wing, because that lift is proportional to the wing’s (or cantilever’s)
surface area. If there is a limit to the lift generated, then there is a limit on how much
weight, in terms of passengers and/or cargo, the plane can carry. That is an incentive
to make the wing as long as we can without exceeding those deflection limits. Another
incentive: a longer wing has greater lift efficiency. (To be technically correct, the lift effi-
ciency increases with the wing’s aspect ratio, but if we regard our wing model as having
a constant effective width, we can increase the wing’s aspect ratio and thus its lift effi-
ciency by making it longer.) We can make the wing longer by providing it with additional
support beyond its cantilever base or root. So can we make a wing significantly longer by
adding a truss element to support the wing? If we did that, would the supporting base
moment of the truss-supported wing be noticeably smaller than that of the unsupported
wing? Further, would the bending deflection of the wing be noticeably smaller than that
of its unsupported counterpart?

10.1 Modeling and Analysis

The aim of our modeling is to determine whether providing an additional intermediate
support to a cantilever beam standing in for a real airplane wing will significantly reduce
the clamping moment at its base, and so also its maximum bending stress, as well as its
maximum deflection at its tip. For an elementary cantilever of original length L0 subjected
to a uniform load q0 (see Table 9.1), the moment at the base and the deflection at the tip
are, respectively, given by

M0 = q0L2
0

2
and �tip = q0L4

0
8E I

. (10.1)

We can use Equation 10.1 to generate simple estimates of how an unsupported wing might
behave.

In order to use our model to predict the behavior of a truss-supported wing, we could
insert a truss member between the fuselage and some point on the wing. In Figure 10.3,
we show a wind-tunnel scale model of such a configuration which is being developed
in a NASA technology demonstration project aimed at developing a greener aircraft. In
Figure 10.4, we see a sketch of a beam-and-truss member model of the truss-braced wing
concept. This truss-supported beam is statically indeterminate to the first degree because
of the unknown force transmitted by the truss element in supporting the beam. We also
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FIGURE 10.3
A wind tunnel scale model of a conceptualization of a truss-braced airplane wing. (Courtesy of NASA
Langley/Sandie Gibbs.)

note that this supporting can be resolved into two components at its interesection with
the beam or wing: one acts normal to the beam’s centerline, and the other acts along the
beam’s axis. Since we presume beams to be much more flexible (i.e., much less stiff) when
loaded normal to their axes than along their axes, we can then assume that the axial compo-
nent of the truss support force will be carried without much noticeable axial deformation
by the (relatively) high axial stiffness of the beam. This allows us to simplify our model
still further to consider only an elementary cantilever supported by a vertical support-
ing spring, as shown in Figure 10.5. This spring-supported cantilever is still indeterminate
to the first degree, but we can now focus only on its transverse (in level flight, vertical)
deflection.

We can determine the redundant or unknown truss force for the configuration just as we
did for the spring-supported beam in Figure 9.10a, only here we must recognize that the

q0

Ls
L

(EtAt, Lt)

(EwIw)

FIGURE 10.4
A cantilever beam simulating a wing of length L0 = Lw that has been increased to a new length L = L0 + �L0.
It has a bending stiffness Ew Iw and is subject to a uniform load q0 and supported by a truss element (i.e., a bar)
of length Lt , extensional stiffness Et At , and transmitting a supporting force Ft (Ft > 0 in tension).
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q0

Ls

L

(kt = EtAt/Lt)

(EwIw)

FIGURE 10.5
A cantilever beam simulating a wing of length L0 = Lw that has been increased to a new length L = L0 + �L0.
It has a bending stiffness Ew Iw and is subject to a uniform load q0 and supported by a transverse (i.e., vertical)
spring with a spring stiffness kt = Et At/Lt that encapsulates the stiffness of the truss element it is modeling.

spring occurs at a distance Ls from the base, where, obviously, 0 ≤ Ls ≤ L , and where L is
the new length of the now-spring-supported beam L = L0 + �L0. Then the unsupported
cantilever’s deflection at that point is, from Table 9.1,

w(Ls) = q0L4

24E I

(
Ls

L

)2
((

Ls

L

)2

− 4
(

Ls

L

)
+ 6

)
, (10.2a)

or, in terms of the dimensionless length ratio α = Ls/L ,

w(Ls) = q0L4

24E I
α2

(
α2 − 4α + 6

)
. (10.2b)

Using Equation 10.2b, we can then relate this deflection to the total load q0L on the beam
in terms of a stiffness parameter for the uniform load on the beam (or wing):

kwq0 = 24Ew Iw
L3

s

(
α

α2 − 4α + 6

)
, (10.3)

so that

q0L = kwq0w(Ls) and/or q0Ls = αkwq0w(Ls). (10.4)

We also introduce the axial stiffness of the truss member that forms the support

kt = Et At

Lt
, (10.5)

and the bending stiffness of that length of the beam (i.e., wing) that is within the support
(which is obtained from the tip deflection of a cantilever of length Ls),

kwb = 3Ew Iw
L3

s
. (10.6)

Now we can use the shorthand of the three stiffnesses just defined to calculate the redun-
dant truss force Rt by enforcing compatibility as we did in Equation 9.34. We require that
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the net bending deflection of the beam under the downward uniform load q0 and the
upward support force Rt be compatible with (i.e., the same as) the extension of its truss
member support:

Rt

(
1
kt

+ L3
s

3E I

)
= q0L

(
1

kwq0

)
. (10.7)

We then solve for the redundant force:

Rt = q0L
8

(
α2 − 4α + 6

α(1 + kwb/kt)

)
= q0Ls

8

(
α2 − 4α + 6

α2(1 + kwb/kt)

)
. (10.8)

There are several limiting cases of Equation 10.8 that can be demonstrated to verify this
result (see Problems 10.4 and 10.8).

Finally, having made our statically indeterminate beam into a determinate system by
virtue of Equation 10.8, it is now a straightforward matter to calculate the moment at the
cantilever base and the deflection at the free tip of the supported cantilever. That moment
and deflection are, respectively,

ML = q0L2

2

(
1 − (kt/4kwb)(α

2 − 4α + 2)

1 + kt/kwb

)
(10.9)

and

�tip = q0L4

8Ew Iw

(
1 − (3α − α2)(α2 − 4α + 6)

6(1 + kwb/kt)

)
. (10.10)

Note that the stiffness ratio kt/kwb appears directly in Equation 10.9, while that ratio’s
reciprocal appears in Equation 10.10.

Equations 10.9 and 10.10 can be compared with their counterparts for the elementary
unsupported cantilver given in Equation 10.1. However, in order to assess whether the
added support makes a difference, or estimate how much of a difference it might make,
we will use these results in a somewhat more refined way. Recall that the argument we
proposed was that the support would allow a longer wing, so we can use Equations 10.1
and 10.9 to calculate the increase we would achieve in the beam length if we required only
that the moment (and so the bending stress) remained the same. That length change �L0
that can be added to the original wing length L0 is found to be

�L0

L0
=
[

1 + kt/kwb

1 − (kt/4kwb)(α2 − 4α + 2)

]1/2

− 1. (10.11)

In a similar manner, we can approximate the change in the value of the tip deflection from
Equations 10.1 and 10.10 as (see Problem 10.8):

�(�tip) ≈ − q0L4
0

8Ew Iw

(
1 + 4

�L0

L0

)[
(3α − α2)(α2 − 4α + 6)

6(1 + kwb/kt)

]

≈ − q0L4
0

8Ew Iw

[
(3α − α2)(α2 − 4α + 6)

6(1 + kwb/kt)

]
. (10.12)
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10.2 What Does Our Model Tell Us?

Equations 10.11 and 10.12 show the potential for both increasing the wing length (i.e.,
�L0/L0 ≥ 0) and decreasing the tip deflection (i.e., �(�tip) ≤ 0) by adding the truss
support, although there are some limits. In particular, the dimensionless location of the
truss support must be in the range 0 ≤ α ≤ 1.∗ The polynomial α2 − 4α + 2 vanishes at
α ≈ 0.586 and changes sign as it passes through that point, being positive for α < 0.586 and
negative for α > 0.586. Consequently, the added support serves to increase the length only
when α < 0.586, and the smallest increase in wing length occurs with the support placed
at α = 0.586, for which α2 − 4α + 2 = 0 (and α2 − 4α + 6 ≈ 4). Thus, the “optimized”
changes in wing length and tip deflection when the truss suport is placed at that location
are, respectively,

�L0

L0

∣∣∣∣
α=0.586

=
√

1 + kt/kwb − 1 (10.13)

and

�(�tip)

∣∣∣
α=0.586

≈ − q0L4
0

8Ew Iw

[
0.943

1 + kwb/kt

]
. (10.14)

Consider the implications of the foregoing results. This rough calculation suggests that
the truss bar should supply a stiffness such that kt < 4kwb/(α

2 − 4α + 2) in order for the
additional length estimate in Equation 10.13 to be real. Given what we just noted about
the magnitude of the polynomial in Equation 10.11, this effectively means that the truss
bar stiffness must be positive and finite. If, for example, the truss bar provided one-half
of the bending stiffness of the supported part of the beam (i.e., kt = 0.50kwb), then the
resulting length (and thus lift area) gain is about 22%, and the corresponding tip deflection
is reduced some 31%.

The real question is, just how big should the stiffness ratio kt/kwb be to make a difference
in an actual plane? From Equations 10.5 and 10.6, we see that

kt

kwb
= 1

3

(
Et

Ew

)(
At L3

s

Iw Lt

)
. (10.15)

Since it seems reasonable to expect that the truss and wing would be made of the same
material(s), then we really need to know or estimate the value of

kt

kwb

∣∣∣∣
Et=Ew

= 1
3

(
At L3

s

Iw Lt

)
. (10.16)

Consider the Boeing 737–800. It has an initial wing length L0 = 75 ft = 22.86 m, with
a second area moment that drops from 1.2635 ft4 at the root to 0.00085 ft4 at the tip,

∗ It may seem from Equation 10.11 that we should be attentive to the case of α2 − 4α + 2 = −4, which would
make �L0 = 0 and control the sign of �(�tip). However, since 0 ≤ α ≤ 1, this case is not physically possible.
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with an average value Iw/av = 0.2980 ft4 = 0.00863 m4. If we take kt/kwb = 0.50 again, then
Equation 10.13 states that the length increase due to a truss support is

�L0
∣∣
α=0.586 =

(√
1 + kt/kwb − 1

)
L0 = (0.2247)(75) = 16.86 ft. (10.17)

This means that we would take our wing length as Lw = L = L0 + �L0 = (75 + 16.86) =
91.86 ft. Since we assumed α = 0.586 for the minimum length benefit, the supported wing
length is Ls = 53.83 ft and the truss dimensions must then be

At

Lt
= 3

(
0.2980

(53.83)3

)(
kt

kwb

∣∣∣∣
Et=Ew

)
ft = 5.734 × 10−6

(
kt

kwb

∣∣∣∣
Et=Ew

)
ft. (10.18)

Figure 10.4 shows that Lt > Ls , so taking Lt = 57.42 ft (which amounts to assuming a fuse-
lage height just over 20 ft), we see that Equation 10.18 suggests that our stiffening bar needs
to have a very small area:

At = 5.734 × 10−6(57.42)(0.50) ft2 = 1.624 × 10−4 ft2 = 0.153 cm2. (10.19)

Thus, a tiny truss member produces a 22% increase in our model wing length and a cor-
responding increase in the wing’s aspect ratio, without accounting for potential penalties
due to the truss’ additional weight or its added aerodynamic drag.

We can also use the above model results differently. Rather than seeking values of
�L0/L0 for a specified kt/kwb , we can ask what truss stiffness (or stiffness ratio) we need to
achieve a specified increase in wing length. We look at this by rewriting Equation 10.13 as

kt

kwb
=
(

1 + �L0

L0

)2

− 1. (10.20)

To achieve a 22% increase in length, we would thus need a truss kt = 0.49kwb , which
basically confirms our earlier calculation. To achieve a 50% increase in length, we require
kt = 1.25kwb , a much larger stiffness that does seem unreasonable, within the scope of this
model.

10.3 Conclusions

It is important to keep in mind that the analysis we have just presented is not only an
incomplete model of the actual behavior of a real truss-braced wing, but it is also not
even a remotely complete analysis of the structural mechanics of such a wing. We did
not study the effects of a truss’ additional weight or its extra drag, or the possibility that
the truss bar might buckle. We only exercised a simple model in a “back of the enve-
lope” calculation intended to answer only one question: From an elementary structural
mechanics view, is a significant increase in wing length—and lift area— physically plau-
sible with a truss-braced wing? If this simple model had shown that there would be no
appreciable gain realizable with such a brace, we might ask whether it could be worth
investing resources in further exploration. But having found some noticeable positive
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gain, we found that in principle such a truss-based wing is realizable, which suggests that
a truss-supported wing does warrant further exploration. (We also developed a simple
calculator that can be used to validate any numbers we might generate with more com-
plex computer models.) But we must always keep in mind that the design of any serious
engineering artifact requires mediating among competing objectives and making compro-
mises. So while there may be a clear structural advantage, we should expect drawbacks
(e.g., additional drag from the truss element) that must be balanced against perceived
gains.

PROBLEMS

10.1 Determine the support reactions of a simple beam of length L under both a counter-
clockwise moment M∗

0 at the left support (x = 0) and a uniform load q0 applied over
its length.

10.2 What would the magnitude of the applied moment M∗
0 in Problem 10.1 have to be in

order to make the slope at x = 0 vanish?

10.3 What would be the support reaction at x = L for the beam in Problem 10.2? Does that
compare—and if so, how—with the result given in Equation 10.7?

10.4 What is the value of Rt in Equation 10.8 when α → 0?

10.5 What is the value of Rt in Equation 10.8 when α → 1?

10.6 What are the values of ML and �tip in Equations 10.9 and 10.10, respectively, when
α → 0?

10.7 What are the values of ML and �tip in Equations 10.9 and 10.10, respectively, when
α → 1?

10.8 Identify and estimate the approximations being made in the two forms of Equa-
tion 10.12.
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11
Instability: Column Buckling

In our analysis of the internal response to external loading on bars, beams, pressure vessels,
and shafts in torsion, we have had two primary concerns: the stiffness and the strength of
the structure. By strength, we mean the ability of our structure to support the required
loads without experiencing excessive stress; by stiffness, we mean its ability to support the
required loads without undergoing excessive deformations. In practice, we have a third
concern: the stability of our structure, by which we mean its ability to support the required
loads without experiencing a sudden change in configuration.

The instability known as buckling typically occurs when forces much lower than those
necessary to exceed material yield stresses are applied. Buckling can occur whenever a
slender∗ structural member is subjected to compression. These forces are applied axially,
as shown in Figure 11.1. Here, by holding a metal ruler between his palms, a man has been
able to induce instability, and the ruler fails as a structural element.

The most common occurrence of this kind of loading, and of buckling instability, is
in columns. Figure 11.2 shows some examples of structural columns: the ancient Greek
Parthenon contained columns that were constructed of stacked stones, not single slender
supports; the nineteenth-century use of iron as a structural material led to slender metal
compressive members such as those on the Welsh viaduct shown, and these members are
susceptible to buckling, as are the concrete columns of Markle Hall. Figure 11.3 shows
failed columns.

11.1 Euler’s Formula

Consider a column of length L supported by pin supports at both ends, subjected to a com-
pressive axial load P that acts through the centroid of the cross section, as in Figure 11.4a.
We would like to determine the critical value, Pcr, for which the initial position is no longer
stable. Once P exceeds Pcr, any small perturbation or misalignment causes the column to
buckle, taking on the sort of curvature illustrated in Figure 11.4b. Our method of finding
Pcr is to determine the conditions under which the geometry of Figure 11.4b is possible. We
will find that unlike the problems we have solved so far, the solution involves nonlinearity.

We approach this column as a vertical beam subjected not to a transverse load (as we
may have come to expect), but instead to an axial load. We use x to denote the distance
from the top, along the beam’s initial elastic curve (the shape of the neutral axis). The
column’s deflection w in the z-direction denotes the lateral deflection of the elastic curve
from its original position, just as it did for beams. We make an imaginary cut at some point

∗ We have just developed a theory of beam bending and deflection that applies to slender beams, for which the
cross-sectional dimensions are much less than the axial length; for columns, we continue to work under this
assumption, and we quantify a measure of slenderness.

279



280 Introduction to Engineering Mechanics

FIGURE 11.1
At left, application of compressive axial force to metal ruler. At right, a small compressive load causes the ruler
to “buckle.”

FIGURE 11.2
Examples of columns: Parthenon (left); Crymlyn Viaduct (middle); Markle Hall, Lafayette College (right).

FIGURE 11.3
Examples of column failure by buckling, top row: Columns in Salisbury cathedral; freeway supports damaged
in 1971 San Fernando, CA earthquake; Bottom row: Box beam column damage in 1985 Mexico City earthquake;
Wind turbine column failure; and buckling of thin-walled pressure vessel, which is not described by the models
in this chapter.
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P

L

P
(b)(a)

FIGURE 11.4
(a) Beam/column under compression; (b) buckled geometry.

C along this curve, as in Figure 11.5, and observe that at this point the internal axial force
is P and the internal bending moment is M = Pw.

We understand that this internal bending moment—which is unusual for us because it
is a function of the deflection w of the column’s axis—also may be related to the deflection
w using Equation 9.9:

d2w

dx2 = − M
E I

= − P
E I

w. (11.1)

P

P

P

x

z

M

P

C C

FIGURE 11.5
Method of sections on buckling column.
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We note that the second moment of area I of the cross section in this case may be Iy or
Iz and will discuss how to choose the appropriate I once we have derived an expression
for Pcr.

We rearrange Equation 11.1 as

d2w

dx2 + P
E I

w = 0, (11.2)

and find that it is an ordinary differential equation with whose solution we are likely
familiar:

w(x) = Asin

√
P

E I
x + B cos

√
P

E I
x. (11.3)

To move from this general solution to a specific expression for the buckling column, we
apply the relevant boundary conditions. These are specific to the column supports, which
for our column (Figure 11.4a) are pins at both ends. At the bottom of our beam, x = 0, and
we have w = 0 since the pin support does not allow any deflection. We also have w = 0
at the top support, where x = L . The first condition, w(x = 0) = 0, requires that B = 0. To
have w(x = L) = 0, we require

Asin

√
P

E I
L = 0. (11.4)

This statement holds if either A = 0, or sin
√

(P/E I )L = 0. If A = 0, the general solution
is w = 0, and the column remains straight. Since we are modeling the buckling phe-
nomenon, we are concerned with satisfying the second condition. Due to the periodic
nature of sin x, this requires that √

P
E I

L = nπ,

where n is any integer. Solving for the force P that will make this happen, we find

P = n2π2 E I
L2 . (11.5)

This suggests that there are many modes of buckling, each with a different value of n,
as shown in Figure 11.6. We are particularly interested in the first mode, the smallest load
that can cause buckling, which corresponds to n = 1. Therefore, the critical load Pcr for the
pinned–pinned column of Figures 11.4 and 11.5 is

Pcr = π2 E I
L2 . (11.6)

This result is known as Euler’s formula, as Swiss mathematician Leonhard Euler first
derived it in 1744. Applying this force makes it possible for the shape of the neutral axis of
the column to be described by w = Asin πx

L . Note that we have not determined the value
of the coefficient A, which is the column’s maximum deflection wmax. We will not be able
to solve for this deflection, but our goal was only to determine the force that would cause
this type of instability to occur.
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P
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z
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n = 1

First mode
n = 2

Second mode
n = 3

Third mode
n = 4

Fourth mode

P P P

P P P

FIGURE 11.6
Deflection distributions in the first four buckling modes.

The second moment of area I in Euler’s formula should be taken about the axis around
which the column bends. This is often apparent from the way the column is supported;
when it is not, we recognize that a buckling column bends about the principal axis of its
cross section with the smaller second moment of area and make our calculations accord-
ingly. When calculating the critical buckling load, one should first determine whether Iy
or Iz is the smaller second moment of area I for the cross section.

We note that Euler’s formula (Equation 11.6) as just derived applies to the particular
case of a column with two pinned ends. The column ends are thus free to rotate at the
ends where the loads P are applied; in other words, there are no reactions at the ends
other than P . This affected the boundary conditions we used in obtaining Pcr. For different
supports, and thus different boundary conditions, the value of Pcr is different. We codify
these differences by using an effective length Le in the place of L in Euler’s formula, where
the relationship between Le and L depends on the end supports:

Pcr = π2 E I
L2

e
. (11.7)

Values of the effective length for a variety of supports are tabulated in Table 11.1.

TABLE 11.1

Effective Length Le for Different End Supports

End Conditions Effective Length

Fixed–free 2L

Pinned–pinned L

Fixed–pinned 0.7L

Fixed–fixed 0.5L
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The value of normal stress corresponding to the critical load is called the critical stress,
σcr. We divide Euler’s formula by the column’s cross-sectional area:

σcr = Pcr

A
= π2 E I

L2
e A

. (11.8)

Next, we set the second moment of area I = Ar2, where r is the cross-sectional area’s
radius of gyration. We obtain the radius of gyration of various shapes using its definition,
r = (I/A)1/2:

σcr = π2 E Ar2

L2
e A

= π2 Er2

L2
e

= π2 E
(Le/r)2 . (11.9)

The quantity Le/r is known as the column’s slenderness ratio. The critical stress is pro-
portional to the elastic modulus of the material used and is inversely proportional to the
square of this ratio. For sufficiently slender columns, σcr can be much lower than the mate-
rial’s yield stress, and the column almost certainly fails due to buckling. If this critical
buckling stress is greater than the material’s yield stress, the column in question likely
yields in compression before it has the opportunity to buckle—this is often true for short,
stubby columns.

In practice, loads are rarely applied as we have modeled our P—a perfectly aligned axial
load. To more realistically assess the likelihood of buckling, we must develop a model that
includes the effects of load eccentricity.

11.2 Effect of Eccentricity

The lines of action of applied forces P are generally not through the cross section’s
centroid, as we had optimistically modeled them in the previous section. We now analyze
the potential for buckling when an eccentric, or off-center, load is applied, again beginning
with a beam/column that is free to rotate at pinned ends. We see that this off-center load P
applies a moment to the column even when it is straight. As illustrated in Figure 11.7, the
force P has a moment arm equal to its eccentricity e. We can thus replace the off-center P
by a centric load, also with magnitude P , and a moment M = Pe, as shown in Figure 11.7.
No matter how small either P or e is, this moment M will cause some bending of the col-
umn. In a sense, we are calculating not how to make the column stay straight but how
much bending is permissible to maintain a normal stress σ < σcr and a tolerable deflection
wmax. As expected from the previous section, the solution to this question comes from a
nonlinear expression. This means that we cannot use superposition and add the effect of
M to our understanding of the solution for P alone, we must start from the beginning with
both loads considered together.

Note that an eccentrically loaded column will deflect, unlike a centrically loaded column
which may deflect. While the loading in Section 11.1 could potentially cause the instability
of buckling, in eccentric loading we are certain to observe deflection.

Again, we want to obtain the equation of the column’s elastic curve. We begin with the
method of sections in an effort to find the internal bending moment at some arbitrary
position x. Figure 11.8 indicates that the internal bending moment necessary to keep this
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M = Pe

M = Pe

e

=L

FIGURE 11.7
Modeling an eccentric load P .

section in equilibrium is M(x) = Pw + Pe. We proceed with the second-order equation for
the column’s deflection w(x):

d2w

dx2 = − M
E I

= − P
E I

w − P
E I

e, (11.10)

or

d2w

dx2 + P
E I

w = − P
E I

e. (11.11)

P

P

x

z

M(x)

P(x) = P

M = Pe

M = PeM = Pe
P

C C

FIGURE 11.8
Method of sections for eccentric P .
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The left-hand side of this equation is the same as the homogeneous ordinary differential
equation we solved for centric loading, whose solution we already know. We add to this
general solution the constant −e that solves the nonhomogeneous equation, and have

w(x) = Asin

√
P

E I
x + B cos

√
P

E I
x − e. (11.12)

Again, we make use of the boundary conditions to identify the unknown constants. At
x = 0, we have w = 0, which requires that B = e. At x = L , we also have w = 0, so that

Asin

√
P

E I
L = e

(
1 − cos

√
P

E I
L

)
. (11.13)

We make use of the trigonometric identities

sin

√
P

E I
L = 2 sin

√
P

E I
L
2

cos

√
P

E I
L
2

and 1 − cos

√
P

E I
L = 2 sin2

√
P

E I
L
2

to write

A = e tan

√
P

E I
L
2

, (11.14)

which allows us to write the equation of the elastic curve:

w(x) = e

(
tan

√
P

E I
L
2

sin

√
P

E I
x + cos

√
P

E I
x − 1

)
. (11.15)

We obtain the value of the maximum deflection wmax by evaluating this expression at
x = L/2:

wmax = e

[
sec

(√
P

E I
L
2

)
− 1

]
. (11.16)

The nature of the secant curve tells us that the value of wmax becomes infinite when√
P

E I
L
2

= π

2
.

While the column deflection does not actually become infinite, it becomes unaccept-
ably large at this condition. We can therefore find the critical force Pcr that satisfies the
expression: √

Pcr

E I
L
2

= π

2
.

It is

Pcr = π2 E I
L2 , (11.17)
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which is Euler’s formula for the buckling of a column under centric loading. Knowing this
allows us to recast the maximum deflection in terms of this critical load:

wmax = e

[
sec

(
π

2

√
P

Pcr

)
− 1

]
. (11.18)

The form of Equation 11.18 is useful, since it expresses deflection as a function of the ratio
of the applied load P to the critical load Pcr, and if this ratio is 1, then the column has surely
failed. Of course, as mentioned before, we are certain that an eccentrically loaded column
will deflect in this manner—it is not just a possibility as for a normally loaded column.
Therefore, the notion of a critical stress is not as relevant as our old friend the material’s
yield stress. The maximum normal stress in the column occurs where the bending moment
is maximized, that is, at x = L/2. We obtain this stress by superposing the stress due to P
with the bending stress,

σmax = − P
A

+ Mmaxc
I

, (11.19)

where Mmax is Pwmax + Pe = P(wmax + e). We plug in our expression for wmax and have

σmax = − P
A

[
1 + ec

r2 sec

(√
P

E I
L
2

)]
, (11.20)

or

σmax = − P
A

[
1 + ec

r2 sec

(
π

2

√
P

Pcr

)]
. (11.21)

Since the applied force P is compressive, the maximum normal stress is compressive,
as reflected by the negative sign in the previous expressions. Just as for centric loading,
the second moment of area I also used to calculate the column’s radius of gyration is the
smaller of Iy and Iz for the column cross section.

If the end conditions for a particular column differ from the pinned–pinned supports
assumed in this model, then L should be replaced by the appropriate effective length Le.

11.3 Examples

EXAMPLE 11.1

An aluminum column of length L and rectangular cross section has a fixed end B and
supports a centric axial load at A. Two smooth and rounded fixed plates restrain end A
from moving in one of the vertical planes of symmetry but allow it to move in the other
plane. (1) Determine the ratio a/b of the two sides of the cross section corresponding to
the most efficient design against buckling. (2) Design the most efficient cross section for
the column, knowing that L = 50 cm, E = 70 GPa, P = 22 kN and that a safety factor of
2.5 for buckling is required.
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z

a b

y

L

P

Given: Loading and support conditions for column; safety factor; length and elastic
modulus.

Find: Optimal rectangular cross section of column.

Assume: Hooke’s law applies (we have assumed constant E in derivations).

Solution

Figure on next page indicates that we must consider buckling in both the xy- and xz-
planes and that due to the nature of the support at A, the critical load and the prospect of
buckling will be different in the two planes. As the supports allow end A to move freely
in the z-direction, for buckling in the xz-plane we have a fixed–free support combination;
the supports constrain motion in the y-direction but do not provide a reaction moment
so that in the xy-plane we have a fixed–pinned support.

1. For buckling in the xy-plane, due to the fixed–pinned support combination, we find
from Table 11.1 that the effective length of the column with respect to buckling in this
plane is Le = 0.7L . And we have

Iz = 1
12

ba3.

For buckling in the xz-plane, the column sees a fixed–free support situation, so the
effective length is Le = 2L . And

Iy = 1
12

ab3.

The most efficient design is that for which the critical buckling loads corresponding
to the two possible modes of buckling are equal; neither mode is preferred. This is the
case if

π2 E
(

1/12ba3
)

(0.7L)2 =
π2 E

(
1/12ab3

)
(2L)2 .

From which we determine the ratio a/b = 0.35.
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2. A safety factor of 2.5 means that for our design with specific parameters we must have
a critical load that is 2.5 times the load P that will actually be applied. So Pcr = 2.5P =
2.5(22 kN) = 55 kN.

Using the ratio a/b found above, and the buckling criterion for the xz-plane (xy is the
same), we have

Pcr = 55 kN =
π2 E

(
(1/12)(0.35b)b3

)
(2L)2 .

With the given values for E and L , we can solve for b = 4.1 cm and a = 0.35b =
1.4 cm.

EXAMPLE 11.2

An 8-ft length of structural tubing has the illustrated cross section and geometric proper-
ties. Using Euler’s formula and a safety factor of 2, determine the allowable centric load
for the column and the corresponding normal stress. Assuming that this allowable load
is applied as shown at a point 0.75 in from the geometric axis of the column, determine
the horizontal deflection of the top of the column and the maximum normal stress in the
column. Use E = 29 × 106 psi.

P

L = 8 ft

P
e

A = 3.54 in2

I = 8.00 in2

r = 1.50 in
c = 2.00 in

4 in

4 in

Given: Geometry of column, including second moment of area; safety factor.

Find: Pcr and σcr; wmax and σmax if Pcr/2 applied eccentrically.

Assume: Hooke’s law applies.
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Solution

Since the column has one fixed and one free end, the effective length is Le = 2L = 16 ft =
192 in. Using Euler’s formula, we find the critical load to be

Pcr = π2 E I

L2
e

= π2(29 × 106 psi)(8.00 in4)

(192 in)2 = 62 kips.

Since we are asked to use a safety factor of 2, our allowable centric load is then Pcr/2 =
31 kips. The corresponding normal stress is

σ = Pallow
A

= 31 kips

3.54 in2 = 8.8 ksi.

We have been asked for the horizontal deflection at the top of the column, which, given
the supports, is the maximum deflection wmax. As long as we have used the correct Le
to obtain Pcr, we are able to use the secant formulas for eccentric loading on columns
with any type of supports:

wmax = e

[
sec

(
π

2

√
P

Pcr

)
− 1

]
= (0.75 in)

[
sec

(
π

2

√
1
2

)
− 1

]

= (0.75 in)(2.252 − 1) = 0.94 in.

The maximum normal stress is calculated as

σmax = − P
A

[
1 + ec

r2 sec

(
π

2

√
P

Pcr

)]

= − 31 kips

3.54 in2

[
1 + (0.75 in)(2 in)

(1.50 in)2 sec
(

π

2
√

2

)]
= −(8.8 ksi)[1 + 0.667(2.252)]

= −22 ksi.

The sign correctly indicates that this is a compressive stress.

EXAMPLE 11.3

A 3-m long fixed–fixed ended column of square cross section is to be made of wood
in which the maximum allowable stress is 16 MPa and with E = 13 GPa. Using a safety
factor with respect to buckling of 2.5, determine the required size of the cross section if
the column is to safely support centric loads of (1) 100 kN and (2) 200 kN.

Given: Geometry of column, safety factor.

Find: Size of square cross section for given applied loads.

Assume: Hooke’s law applies; the anisotropy in the wood may be neglected.

Solution

1. Since we are asked to use a safety factor of 2.5, to support an actual load of 100 kN, we
must have Pcr = 250 kN. Designating the length of the side of the square cross section
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as s and with Le = 0.5L = 1.5 m,

Pcr = π2 E I

L2
e

= π2(13 × 109 Pa)(1/12s4)

(1.5 m)2 = 250 kN.

Then s = 8.5 cm. We must also check that the allowable stress criterion is satisfied:

σ = P
A

= 100 kN
(0.085 m)2 = 13.8 ksi.

It is, so the size we have selected is sufficient.

2. Now to support an actual load of 200 kN, we must have Pcr = 500 kN.

Pcr = π2 E I

L2
e

= π2(13 × 109 Pa)(1/12s4)

(1.5 m)2 = 500 kN.

So s = 10.1 cm. Checking the allowable stress,

σ = P
A

= 200 kN
(0.101 m)2 = 19.5 ksi.

The size that is sufficient to prevent buckling does not meet the strength criterion for
this load. We must redesign a larger column that will meet both criteria using

σallow = 16 MPa = 200 kN
s2 ,

which gives s = 11.2 cm.

PROBLEMS

11.1 An I-beam with the proportions shown is to be used as a long column. There is a
concern about buckling, so two reinforcing plates are to be welded along the length
of the column. Two options for the resulting cross section are shown. Which will
increase the critical buckling load? Will it have a large or small effect? Explain why.

(a) (b)

11.2 A W10 × 45 beam is made of structural steel and used as a column with a length 15 ft.
If its ends are fixed, can the column support the critical load without yielding? (The
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designation W10 × 45 provides specifications about the cross-sectional shape of this
column (or beam). Specifically, each flange is 8.02 in wide and 0.62 in thick; the web
is 0.35 in wide; and the total height of the cross section is 10.10 in.)

11.3 A slender vertical bar AB with pinned ends and length L is held between immovable
supports. What increase �T in the temperature of the bar will produce buckling?

11.4 A W2 × 87 structural steel column has a length of 12 ft. (Look up the geometric prop-
erties of the W2 × 87 cross section.) If its bottom end is fixed, while its top is free, and
it is subjected to an axial load of P = 380 kip, determine the safety factor with respect
to buckling.

11.5 The A36 steel bar AB has a square cross section. If it is pin-connected at its ends,
determine the maximum allowable load P that can be applied to the truss. Use a
safety factor with respect to buckling of 2.

B

P

A

C

10 ft

1.5 in

1.5 in

1.5 in

30°

11.6 In more than one paragraph but less than a page, discuss some of the failure modes
experienced in the collapse of the World Trade Center and how they might have been
prevented.

11.7 A truss ABC supports a load W at joint B as shown. The length L1 of member AB
is fixed, but the length of strut BC varies as the angle θ is changed. Strut BC has a
solid circular cross section. Assuming that collapse occurs by buckling of the strut,
determine the angle θ for minimum weight of the strut.

A

C

W

B

L1

θ

11.8 For a deck, supports of length 3.25 m are proposed to be built from aluminum with
a Young’s modulus of 72 GPa and a yield stress of 480 MPa. A cylindrical design is
proposed with outer diameter d = 100 mm and wall thickness t to be specified. If the
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design specs require that each column support a load of 100 kN with a safety factor
of 3, find the necessary column thickness t.

11.9 A rectangular brass column is loaded with a load of P = 1500 lb applied 0.45 in off its
centroidal axis. Find the longest permissible length L of the column if the deflection
of its free end cannot exceed 0.12 in.

e = 0.45″

b = 0.6″

h = 1.2″P

11.10 Consider Equation 11.16, giving the maximum deflection for eccentric loading.
Make a graph that illustrates the relationship between deflection and load. What
happens when the load is Pcr?

11.11 It has been observed that the most effective way to crush an empty aluminum bever-
age can is to apply an eccentric compressive load. Use buckling theory to explain this
phenomenon. The can wall thickness is 80 μm, and the radius-to-thickness ratio is
200. The can is 12.2 cm high. How does the effect of eccentric compression compared
with the likelihood of crushing (buckling) the empty can with normal loading?

11.12 A steel bar with the cross section shown and effective length L = 2.5 m is subjected
to a compressive load P = 200 kN with a eccentricity e = 0.00625 m. Find (a) the
beam’s maximum deflection, and (b) the maximum normal stress.

PP
e

0.01 m0.04 m

e
L

11.13 For the bar in Problem 11.12, find the largest allowable value of P if the allowable
compressive stress is 250 MPa.





12
Case Study 5: Hartford Civic Arena

A new arena in Hartford, Connecticut, was approved in 1970 and built in 1973. The facility
suffered a catastrophic failure in January 1978, when its roof collapsed only hours after
a large crowd had attended a UConn hockey game. The resulting damage is seen in Fig-
ure 12.1. The center of the roof appears sunken in, while the corners have been thrust
upward.

Tasked with saving money for the city of Hartford, the architect and engineering firm
created an innovative design for the arena’s roof. The proposed roof consisted of two main
layers arranged in 30 by 30-ft grids composed of horizontal steel bars 21 ft apart. A set of
30-ft diagonal bars connected the nodes of the upper and lower layers, and, in turn, were
braced by a middle layer of horizontal bars. The 30-ft bars in the top layer were also braced
at their midpoint by intermediate diagonal bars, so they were frame elements subject to
both axial and transverse bending loads. The space frame (meaning a frame structure that
is three-dimensional, as opposed to a two-dimensional plane frame), shown in Figure 12.2,
looks like a set of linked pyramid-shaped trusses.

This was not a conventional space frame roof design. Many of its unique features con-
tributed to the vulnerability of the structure. In particular, the cross section of the bars did
not provide good resistance to buckling. The cross section was composed of four structural
steel angles (bars with L-shaped cross sections themselves) arranged in a composite cross-
shaped section. This configuration has a much smaller radius of gyration than either an
I-section or a tube section arrangement of the same angles (Figure 12.3). Also, the top hor-
izontal bars intersected at a different point than the diagonal bars rather than at the same
point, making the roof especially susceptible to buckling as this load eccentricity induced
bending stresses. And, the space frame was not cambered (slightly arched upward). Com-
puter analysis predicted a downward deflection of 13 in at the midpoint of the roof and an
upward deflection of 6 in at the corners due only to the roof’s dead load.

To save time and money, the roof frame was assembled on the ground. While it was
on the ground, the inspection agency notified the engineers that inspectors had measured
excessive deflections. No changes or repairs were made. Hydraulic jacks were used to
lift the completed roof into position. Once the frame was in its final position but before
the roof deck (which would support the final roofing material) was installed, the roof
frame’s deflection was measured to be twice that predicted by computer analysis, and
the engineers were notified. However, they expressed little concern and responded that
such discrepancies between the actual and the theoretical values should be expected. The
subcontractor fitting the steel frame supports for fascia panels onto the outside of the truss
ran into difficulties due to the excessive deflections of the frame, but as directed by the
contractor, he reshaped some panels with his coping saw, and re-made others so that they
would all fit.

The engineers, contractor, and members of the Hartford City Council made public state-
ments attesting to the safety of the structure. And the roof survived for 5 years before the
heavy snow of January 1978 triggered its catastrophic failure. At 4:15 am on January 18th,
witnesses reported hearing a loud crack and seeing the center of the roof begin to sink in
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FIGURE 12.1
Damage at the Hartford Civic Arena, 1978. (Feld, Jacob and Carper, Kenneth, Construction Failure, Wiley & Sons,
New York, 1997.)

before the explosive chaos of the rapid collapse. Because the hockey crowd had left hours
earlier, no one was hurt in the collapse.

In the subsequent investigation (performed by an appointed panel and an outside fail-
ure analysis agency), it was determined that the roof of the Hartford Arena had begun
failing as soon as it was completed due to an underestimation of the “dead load”∗ the roof

Column

FIGURE 12.2
Sketch of roof design. (After M. Levy and M. Salvadori, Why Buildings Fall Down, Norton, New York, 1992.)

∗ Structures we design must withstand both “dead” and “live loads”; the sum of these is sometimes called the
“design load.” The dead load is simply the weight of the structure itself; live load is the anticipated weight it
must also be able to support. For example, bridges must be able to support a predicted traffic load of cars and
trucks; buildings must support the weight of the people and furniture in them; and all structures must also
withstand loading due to wind, rain, and snow.
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Cross I-section Square

FIGURE 12.3
Cross-shaped member cross section, as used in the Hartford Arena roof frame; more conventional I-section and
tube cross section shapes.

would need to support and three design errors that resulted in a significant overloading of
structural components. In particular:

• The top layer’s exterior compression members on the east and the west faces were
overloaded by 852%.

• The top layer’s exterior compression members on the north and the south faces
were overloaded by 213%.

• The top layer’s interior compression members in the east–west direction were
overloaded by 72%.

In addition, the support braces in the middle layer had been installed at 30-ft intervals,
rather than the designed 15 ft, reducing the structure’s ability to withstand loading, partic-
ularly such dramatic overloading. The most overstressed members in the top layer buckled
under the added weight of the snow, causing the other members to buckle. This changed
the forces acting on the lower layer from tension to compression, causing them to buckle
as well.

The investigators also determined that several departures from the engineers’ design
contributed to, but did not cause, the collapse: (1) the slenderness ratio of the built-up
cross-shaped elements violated the American Institute of Steel Construction (AISC) code
provisions; (2) elements with bolt holes exceeding 85% of the total area violated the AISC
code; (3) spacer plates that joined the four angles of a cross section were placed too far
apart in some elements, allowing individual angles to buckle; (4) some of the steel did not
meet material property specifications; and (5) there were misplaced diagonal elements.

A second investigation blamed the failure not on lateral buckling, but on torsional buck-
ling of diagonal elements that could not support the live load of the heavy snowfall.∗
A third investigation pinned the blame on a faulty weld securing the scoreboard to the
roof.

It was noted that the roof, despite its many flaws, had apparently survived for 5 years
before its dramatic failure. One study analyzed the progressive failure of the roof, which was
a 5-year-long process. When an element of a frame structure buckles, it transfers its load
to adjacent bars. These bars eventually buckle under the increased load and continue the
load-transferring domino effect until the entire roof structure cannot withstand any greater
load and begins to give way. This sort of progressive failure can be triggered by even a
minor structural flaw unless the design includes redundancy—as Levy and Salvadori put
it, “structural insurance.” Analyses have shown that relatively few additional braces in the
Hartford roof would have prevented bar buckling.

∗ Several other roof collapses in the Northeast were attributed to heavy snows in 1978, including the roof of the
auditorium at C. W. Post College on Long Island.
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The assessment of responsibility for the collapse was as complicated as determining the
reasons. The fact that five independent subcontractors constructed the arena made assess-
ing responsibility especially tricky. Lack of ownership and oversight by the contractors
toward the entire project had resulted in creating a fragmented system, in which no one
examined the “big picture.” Six years after the collapse, all the involved parties reached an
out-of-court settlement.

It is also worth noting that potential problems with the Hartford arena design were
brought before the engineers several times during the construction of the arena. The engi-
neers, confident in their designs (and, perhaps willfully unaware that what was built might
not be precisely what they would designed) and in their computations (from which they
would reportedly omitted buckling as a possible failure mode), did not heed warnings or
re-examine their work. In fact, unanticipated deformations can indicate a flawed design
and are generally worth investigating.
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13
Connecting Solid and Fluid Mechanics

We are now familiar with the response of solids to external loading. We have learned about
the stress tensor, the strain tensor, and the individual components of these measures of
“internal response to external loads.” Time and again, we have returned to the essence of
continuum mechanics:

• Kinematics of deformation (including geometric compatibility)
• Definition of stress
• Constitutive law (stress–strain relationship)
• Equilibrium

Solids, we remember, are continua—their densities may be mathematically defined.
Fluids—gases and liquids—may also satisfy this definition, and so these concepts of stress
and strain also apply to them. As we have done for solids, we would now like to contem-
plate the response of fluids to loading and to consider how stress may be related to the
material’s deformation.

Remember that a fluid may be called a continuum if the Knudsen number, Kn, is less than
about 0.1. The Knudsen number is defined as

Kn = λ

L
, (13.1)

where L is a problem-specific characteristic length, such as a diameter or width, and λ

is the material’s “mean free path.” We have already considered in Chapter 1 what is and
what is not a continuum at some length.

When this assumption of a material’s continuity is made, the properties of a material—
solid or fluid—may be assumed to apply uniformly in space and time. That is, the density
ρ may vary in space and time, but it is always definable and is a continuous function of x,
y, z, and t.

Fluids are usually defined, and distinguished from solids, as materials that deform con-
tinuously under shear stress. This is true no matter how small the applied shear stress is.
Also, when normal stress is applied—when a fluid is squeezed in one direction—the fluid
flows in the other two directions. This can be observed when you squeeze a hose in the
middle and see water flow from its ends. Fluids cannot offer permanent resistance to these
kinds of loads.

If we now consider fluid mechanics with the ideas of solid mechanics fresh in our minds,
we will see many connections and analogies between the two fields. Fluids have their own
measures of elasticity, resistance to loads, and deformation. In the following sections, we will
discuss some of the important properties of fluids. If density variation or heat transfer is
significant, these fluid properties must be supplemented with additional information.

Once again we will rely on the fundamentals listed above. Put another way, also by
now familiar, we will ensure equilibrium (or Newton’s second law), compatibility, and a
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constitutive law are satisfied at all times. In this chapter, we will first consider the kinds
of stress that may be experienced by a volume of fluid; next, we will discuss a fluid’s
constitutive law. Finally, we will develop a way to talk about the kinematics of deformation
of a fluid, this time using strain rate rather than strain as we did for solids. In Chapter 16,
we will use these three definitions to enforce equilibrium.

13.1 Pressure

In fluids, pressure results from a normal compressive force acting on an area, as shown in
Figure 13.1.

It is written as

p = lim
�A→0

�Fn

�A
, (13.2)

and has units of N/m2 or psi.
We recognize that this is also the definition of a normal stress. In fact, if this compression

were the only force acting on an element of the fluid, the element’s stress tensor could be
written as

σi j =
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠ , (13.3)

where the negative sign is present because positive pressure is compressive, and compres-
sion is represented by negative normal stress. We will see that in reality a variety of forces
may act on a fluid element, but that pressure will always be an important part of its stress
state.

As in our discussion of pressure vessels, we will generally speak of a gage pressure that is
measured relative to local atmospheric pressure, that is pgage = pabsolute − patm.

Pressure, as shown in Figure 13.1, is a surface force, acting on boundaries of a fluid
through direct contact. Shear forces and stresses also fit this description. Fluids may also
be acted on by body forces, which are applied without physical contact and distributed over
the entire fluid volume. The total body force is in fact proportional to the fluid volume.
Gravitational and electromagnetic fields impart body forces to fluids.

Surface

ΔFn

ΔA

FIGURE 13.1
Definition of pressure.
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13.2 Viscosity

A fluid’s viscosity can be thought of as a measure of how well the fluid flows. Water and
maple syrup, for example, flow differently, at different rates; the difference is reflected in
their viscosities.

The rate of deformation of a fluid is directly linked to the fluid’s viscosity. If we consider
a fluid element of area dx × dy under application of a shearing stress τ, as in Figure 13.2,
we see that the shear strain angle dθ grows continuously as long as τ is maintained.
(Remember that this is what differentiates fluids from solids: that they deform continu-
ously under shear. There is therefore a time dependence in their constitutive law. The rate
at which this deformation occurs depends on many factors, and particularly on the fluid’s
properties.)

In Figure 13.2, we see that a plate sliding with speed du over our initially rectangular
fluid element induces some angular deformation dθ in a time dt. When this experiment
is performed on common fluids like water, oil, and air, the experimenters observe that the
shear stress τ (which is σyx) is proportional to the rate of angular deformation dθ/dt. The
constant of proportionality is the fluid’s viscosity μ.

We use the geometry of Figure 13.2 to manipulate this experimentally observed relation-
ship into its more useful form:

σyx ∝ dθ

dt
, (13.4a)

tan dθ = du dt
dy

. (13.4b)

For small angles, tan dθ ≈ dθ, and we can rearrange this to have dθ dt = du/dy. Finally,
we have

τ = σyx = μ
du
dy

. (13.5)

Fluids for which this linear proportionality exists, for which viscosity μ does not itself
depend on the strain rate, are called Newtonian, and we see that this is analogous to the
behavior of a Hookean solid. Newton first referred to the “slipperiness” of fluids and wrote
down the essence of Equation 13.5, in his Principia in 1687. In both cases, we have stress
= (constant) · (strain or strain rate), whether this constant is E , G, or μ. The dimensions of
viscosity are time · force/area, or Pa · s (N · s/m2) in the SI system. The viscosity of a fluid,

u = 0

u = du

dθdθ
dy

du dt

τ

τ

FIGURE 13.2
Sliding plate inducing shear stress τ. Note that this is σyx .
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FIGURE 13.3
Relative motion of two fluid particles in the presence of shear stress.

we see, measures its ability to resist deformation due to shear stress, or to resist flow. In a
sense, it measures the fluid’s stiffness, just as E and G did for solids.

Although we are struck by the analogy between the constitutive laws for solids and flu-
ids, we also note the key difference: the dependence on strain for solids, and on strain
rate for fluids. Remembering Hooke’s initial source of inspiration—the extension of a
spring—we arrive at another comparison:

Component Constitutive Law Material Constitutive Law

F = kx Solid τ = Gγ

F = c
dx
dt

Fluid τ = μ
du
dy

If we think of solids as behaving more like springs, and fluids behaving more like dash-
pots (or dampers), we can relate these constitutive laws to ones with which we are familiar.
We can also foresee the introduction of other materials whose behavior is neither purely
solid nor purely fluid—non-Newtonian fluids, for example—which may be modeled by
the series or parallel combination of these spring and dashpot elements. We can even
visualize the gamut of constitutive behavior as a spectrum with springs (Hookean elastic
solids) at one end, and dashpots (Newtonian fluids) at the other, with myriad variations
between.∗ Please see Chapter 14 for a discussion of the many types of material behavior
possible in between these two idealized extremes.

The du/dy term that appears in the definition of viscosity (Equation 13.5) was derived
in terms of the angular deformation, or shear strain, of the fluid element per time, that is,
the strain rate. It also represents a gradient of velocity, as shown in Figure 13.3. Note that
if a fluid is not flowing, shear stresses cannot exist, and only normal stress (pressure) is
considered.

Viscosity varies with temperature, as shown in Figure 13.4. For a liquid, the temperature
dependence can be approximated by an exponential equation, μ(T) = c1 exp[c2/T], where
the constants c1 and c2 are determined from measured data. In liquids, the shear stress is
due in greater part to intermolecular cohesive forces, and these cohesive forces decrease
with increasing T . Figure 13.4 demonstrates that the viscosity of a gas, which is due to the
thermal motion of molecules, is much less dependent on temperature.

∗ We should pause again to empathize with Robert Hooke, whose work was suppressed by the bitterly compet-
itive Isaac Newton, but who now finds himself facing his rival on the opposite end of the material behavior
spectrum.
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FIGURE 13.4
Viscosity versus temperature for representative liquids and gases. (Fox, R. W. and McDonald, A. T., Introduction
to Fluid Mechanics, 1978. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

For non-Newtonian fluids, the viscosity may also depend on the type or rate of load-
ing applied to the fluid. Dilatants such as quicksand or slurries become more resistant to
motion as the strain rate increases. A mixture of corn starch and water is a dilatant and,
as you can experimentally verify, feels harder the harder (faster) you pound it. Pseudoplas-
tics become less resistant to motion with increased strain rates. Examples of this include
ketchup and latex paint. Bingham plastics, or viscoplastics, require a minimum shear stress
to cause motion, but after this threshold behave like Newtonian fluids. Toothpaste is a
Bingham plastic.∗ Figure 13.5 illustrates the constitutive behavior for these classes of fluids.

Viscosity causes fluids to adhere to surfaces; this is called the no-slip condition and it
means that the fluid adjacent to any surface moves with the same velocity as the surface
itself.

Incidentally, μ is more formally called the dynamic viscosity of a given fluid. We may also
wish to think in terms of a fluid’s kinematic viscosity, denoted by ν:

ν ≡ μ

ρ
, (13.6)

which is of special interest as it reflects a fluid’s tendency to diffuse velocity gradients. The
SI units of kinematic viscosity are m2/s.

∗ The materials scientist Eugene Bingham (1878–1945) was a professor of chemistry at Lafayette College. He
coined the term rheology for the study of fluid deformation and flow, that is, for the continuum mechanics
of fluids. Bingham chose a quote from Heraclitus, “panta rei”—“everything flows”—as a suitable motto for
the Society of Rheology he helped found in 1929. He and the chemical engineer Markus Reiner proposed the
Deborah number as a fundamental quantity of rheology, with larger Deborah numbers resulting in material
behavior further toward the “solid” end of the spectrum. It was named for the prophetess Deborah who sang,
“The mountains flowed,” to the defeated Philistines. We refer readers to Reiner’s text, Deformation, Strain, and
Flow: An Elementary Introduction to Rheology, New York: Interscience, 1960.
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Newtonianτ
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FIGURE 13.5
Representative constitutive behavior for Newtonian and non-Newtonian fluids. The slope of the stress–strain
rate diagram, representing the viscosity or resistance to deformation, is constant for a Newtonian fluid.

13.3 Surface Tension

The attractive forces between fluid molecules result in surface tension. Molecules deep
within the fluid are closely packed, and bound by cohesive forces. But the molecules at
surfaces are less densely packed, and—because half their neighbors are missing—have
nothing to balance their cohesive forces. The result is an inward force, or contraction, at
the surface.

Surface tension is generally represented with a lower-case sigma, but to avoid confusion
with components of the stress tensor, we will denote surface tension with s. It is measured
in (N/m) or in (lb/ft), and depends on the two fluids in contact and on their temperature.

The scale of a given problem determines which forces (inertia, pressure, viscosity, or sur-
face tension) are involved in its physics. Though in traditional fluid mechanics textbooks,
the importance of this last force, surface tension, is often minimized, it has enormous
relevance in emerging micro- and nano-scale applications.

Because inertia (the ma term in F = ma) scales as the volume of an object, when objects
get smaller, inertia decreases by a power of 3. But the force due to surface tension only
goes as the length of a given surface, so that the same reduction in size causes it to decrease
by only a power of 1. This scaling means that surface tension dominates the micro-scale
physics, and inertia hardly enters the picture. However, the importance of surface ten-
sion has not always been well understood. Surface tension was seen as a major problem
when researchers first began designing MEMS devices. The slightest amount of moisture
beneath a miniature cantilever beam would pull the beam down to the substrate, welding
it in place. The first micromotors could be rendered inoperable by the moisture in a single
drop of water. Now that it is better understood, surface tension can be harnessed to cre-
ate motion if it is increased locally and decreased somewhere else. Researchers do this by
adding a surfactant (such as soap, which lowers surface tension), raising the temperature
at one point (which decreases surface tension), or by applying an electrical potential.

13.4 Governing Laws

Newton’s laws of motion apply to fluids, just as they do to solids. Newton’s second
law, F = ma, will be especially useful to us as we consider the combined effects of all
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forces—due to pressure, viscosity, surface tension, etc.—on a fluid and require their
resultant to equal ma. We will develop this further in Chapter 18.

13.5 Motion and Deformation of Fluids

The motion and deformation of a fluid element depend on the velocity field. The relation-
ship between this motion and the forces causing the motion depends on the acceleration
field (via F = ma). We will use an Eulerian description, in which we concentrate on a spa-
tial point (x, y, z) and consider the flow through and around this point, rather than the
Lagrangian method of description sometimes used to track individual fluid particles.

13.5.1 Linear Motion and Deformation

If all points in a given fluid element have the same velocity, the element simply translates
from one point to the next. However, we typically have velocity gradients present, so that
the element is deformed and rotated as it moves. We will write the velocity V = (u, v, w)

in Cartesian (x, y, z) coordinates. You may wonder about the fact that we are using the
same letters for the components of the velocity vector as we used for the components of
the displacement vector in our discussion of solids. We will discuss the reasoning behind
this choice at the end of Section 13.5.2. A sample fluid element, a cube with infinitesimal
volume d V– = dx dy dz, is shown in Figure 13.6. This element is part of a flow with velocity
gradient ∂u/∂x—that is, the x velocity is varying with x. In a time interval dt, the change
in the element’s volume is given by

(
∂u
∂x

dx dt
)

(dy dz) = ∂u
∂x

dt d V– . (13.7)

The rate at which the volume d V– is changing, per unit volume, due to ∂u/∂x may be
written

1
d V–

d(d V– )

dt
= lim

dt→0

[
∂u/∂x dt

dt

]
= ∂u

∂x
. (13.8)

u

dx

∂x
∂u

dz

dy
u u + dx

∂x
∂u dxdt

∂x
∂uu + dx

FIGURE 13.6
Linear deformation of fluid element by ∂u/∂x.
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And if velocity gradients ∂v/∂y and ∂w/∂z are also present, we will have the rate of
change in volume (per unit volume):

1
d V–

d(d V– )

dt
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∇ · V, (13.9)

where we have recognized the sum of the partial derivatives of the velocity vector V’s
components as the divergence of V.

Notice that the isolated effect of each of these velocity gradients causes a one-
dimensional, normalized change in length per time, or normal strain rate, which can be
written in the same way:

εxx = ∂u
∂x

, (13.10a)

εyy = ∂v

∂y
, (13.10b)

εzz = ∂w

∂z
. (13.10c)

The quantity ∇ · V derived above for the entire volume is known as the volumetric strain
rate. For an incompressible fluid, the volume of a fluid element cannot change, and we
must have ∇ · V = 0.

13.5.2 Angular Motion and Deformation

In addition to undergoing normal strain rates, a fluid element may experience angular
motion and deformation. We will measure this with a shear strain rate, derived from the
change in shape of the fluid element in Figure 13.7. The figure shows the position of an
element with initial area dx dy at time t, and its subsequent position at time t + dt.

We see that the initially horizontal side (initial length dx) has undergone a rotation dα,
and the initially vertical side (initial length dy) has been rotated dβ.

∂x
∂v

v dt (v + dx)dt

∂y
∂u(u + dy)dt

∂xv + dx

u dt

v
u

y

x

∂y
∂u

dβ

dαu + dy

∂v

FIGURE 13.7
Translation and angular deformation of a fluid element.
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We can calculate these angles and then find an expression for the shear strain rate, defined
as (dα + dβ)/dt. We will also assume that the angles are small, so tan dα ≈ dα. From the
figure, we see

tan dα ≈ dα = (∂v/∂x) dx dt
dx

= ∂v

∂x
dt. (13.11)

(We note that if ∂v/∂x > 0, the rotation of this side is counter-clockwise.) Similarly we find

dβ = ∂u
∂y

dt (13.12)

(seeing that if ∂u/∂y > 0, the rotation of this side is clockwise)—and thus we find the shear
strain rate:

dα + dβ

dt
= ∂v

∂x
+ ∂u

∂y
. (13.13)

And extending this to the other two dimensions, we see that in general the i j component
of shear strain rate may be written as

γi j = ∂ui

∂xj
+ ∂u j

∂xi
. (13.14)

However, as before, when we compose the strain rate tensor, these shear components
must be divided by 2 in order to make the tensor behave like a tensor. Now, a general
form for the i j component of the strain rate tensor, including both normal and shear
components, may be written

εi j = 1
2

(
∂ui

∂xj
+ ∂u j

∂xi

)
= 1

2

(
ui , j + u j ,i

)
. (13.15)

So that the matrix form of the tensor itself looks like

εi j =

⎛
⎜⎜⎜⎜⎝

εxx εxy = γxy

2
εxz = γxz

2

εyx = γxy

2
εyy εyz = γyz

2

εzx = γxz

2
εzy = γyz

2
εzz

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂x

1
2

(
∂u
∂y

+ ∂v

∂x

)
1
2

(
∂u
∂z

+ ∂w

∂x

)
1
2

(
∂u
∂y

+ ∂v

∂x

)
∂v

∂y
1
2

(
∂w

∂y
+ ∂v

∂z

)
1
2

(
∂u
∂z

+ ∂w

∂x

)
1
2

(
∂w

∂y
+ ∂v

∂z

)
∂w

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.16)

All of these components of the strain rate tensor should look strikingly similar to the
components of the strain tensor derived for a solid in Section 4.2. This similarity, while
undeniably wondrous, should not be surprising: both fluids and solids are continua, and
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their deformations can be written mathematically in the form of a nine-component tensor,
which we have seen can be related to the nine components of stress. The difference between
this strain rate tensor and the strain tensor in Section 4.2 is simply that for solids, strain is
a dimensionless quantity measuring percent length change, while for fluids, we measure
rate of strain so that (u, v, w) here are velocities rather than lengths.

13.5.3 Vorticity

To quantify the rotation of fluid elements due to a given flow, we again consider the
angles dα and dβ as shown in Figure 13.7. We want to find an expression for the average
rotation rate of this element. Again we consider both dα and dβ, the rotations of two mutu-
ally perpendicular lines. (This is because the average of these two rotation rates will be
independent of the initial orientation of the pair.) To combine these two, we must remem-
ber that dα is a counterclockwise rotation, while dβ was clockwise—so we will find the
combined effect to be:

Angular velocity of element about the z-axis = 1
dt

[
1

dy

(
−∂u

∂y
dy dt

)
+ 1

dx

(
∂v

∂x
dx dt

)]
.

Or

ωz = ∂v

∂x
− ∂u

∂y
. (13.17)

This angular velocity could also be computed for rotation about the x- and y-axes, with
similar results, giving us three components

ωx = ∂w

∂y
− ∂v

∂z
, (13.18a)

ωy = ∂u
∂z

− ∂w

∂x
, (13.18b)

ωz = ∂v

∂x
− ∂u

∂y
, (13.18c)

of what is known as the vorticity vector. We recognize that the vorticity may be written as
the curl of the velocity field, or

ωωω = ∇ × V. (13.19)

If a flow has ∇ × V = 0, the flow is called irrotational. For such flows, the velocity vector
V can be written as the gradient of a scalar potential function [V = ∇φ], since the curl of a
gradient must be zero.

13.5.4 Constitutive Equation for Newtonian Fluids

We recall that the relationship between stress and deformation in a continuum is known
as a constitutive equation. We now seek an equation linearly relating the stress to the rate of
strain in a fluid, a counterpart to the generalized form of Hooke’s law for solids that we
saw in Section 4.4.

We have already seen that pressure is a normal stress on the surface of a fluid element.
This contribution to the stress tensor may be written as a diagonal matrix with eigenvalues
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−p. We make use of the tensor equivalent of the identity matrix, known as the Kronecker
delta, introduced in Section 1.5. The Kronecker delta is a second-order, isotropic tensor
whose matrix representation is

δi j =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (13.20)

And so we can write the pressure’s contribution to the fluid’s stress state as

σi j = −pδi j , (13.21)

where δi j , and hence σi j , is only nonzero when i = j .
Knowing that we can superpose these components of normal stress with any normal

components that arise due to fluid motion, as described in Section 13.5.1, we simply add
on the stress tensor that is developed by fluid motion, so that the complete stress picture
is given by

σi j = −pδi j + σd
i j , (13.22)

where σd
i j , the part of the stress tensor due to fluid motion, is known as the deviatoric stress

tensor. It is related to the velocity gradients, as we have seen through the construction of
the strain rate tensor. We now know

εi j = 1
2

(
∂ui

∂xj
+ ∂u j

∂xi

)
, (13.23)

and we assume a linear relationship between stress and strain rate:

σd
i j = Ki jm nεm n, (13.24)

where Ki jm n is a fourth-order tensor with 81 components, very much like the large tensor
invoked in our discussion of the generalized form of Hooke’s law (Section 4.4). We recall
that for solids, this large tensor depended on E and G and Poisson’s ratio ν. For fluids, K
turns out to depend on viscosity μ, and to have a very simple form for most fluids. We need
only assume that the fluid is isotropic and that the stress tensor is symmetric to reduce K
to a matter of only two (not 81) elements.∗ In fact, the whole mess can be reduced quite
nicely to

σi j = −
(

p + 2
3
μ∇ · V

)
δi j + 2μεi j , (13.25)

which for an incompressible fluid (∇ · V = 0) reduces still further to

σi j = −pδi j + 2μεi j . (13.26)

∗ For the details of this, please see Kundu, P. K., Fluid Mechanics, Academic Press, 1990, pp. 89–93. For the
mathematical justification, see Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, 1962.
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This is the constitutive law for an incompressible, Newtonian fluid. As we did for solids,
we will be able to consider a few components of this relationship at a time. But again, it is
useful to see the big picture.

13.6 Examples

EXAMPLE 13.1

In the center of a hurricane, the pressure can be very low. Find the force acting on the
wall of a house, measuring 10 ft by 20 ft, when the pressure inside the house is 30 in Hg
and the pressure outside is 26.3 in Hg. Express the answer in both pounds and Newtons.

(26.3 in Hg)

(30 in Hg)
pi

po

Given: Pressure on both sides of wall; wall dimensions.

Find: Resultant force on the wall.

Assume: Uniform pressure distributions on both sides of the wall. Negligible pressure
contributions from inside the wall.

Solution

A mercury barometer measures the local atmospheric pressure. A standard atmosphere
has a pressure of 14.7 psi, or 101.3 kPa. A mercury barometer reads this standard atmo-
spheric pressure as 760 mm Hg, or 29.92 in Hg. Since we are asked for a result in two
different units, we must be mindful of these conversion factors.

The resultant force on the wall is simply the net pressure applied to it, times its area.
A quick free-body diagram of the wall will be of use:
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po A

pi A

We see that the net force on the wall will be directed outward, and that it is

F = (pi − po)A

= (30.0 − 26.3)(in Hg)
14.7 psi

29.92 in Hg
· (120 in)(240 in)

= 52,300 lb

= 52,300 lb
9.8 N

2.205 lb
= 233 kN.

This outward force is very large, and if the wall has not been adequately strengthened,
the force can explode the wall outward. If you know a hurricane is coming, it is therefore
a good idea to open as many windows as possible, to equalize the pressure inside and
outside.

EXAMPLE 13.2

The flow between two parallel plates, one of which is moving with a constant speed U,
is known as Couette flow. If the fluid between the two plates is Newtonian, develop an
expression for the velocity distribution in the fluid layer. If the fluid is SAE oil at 20◦C,
which has a viscosity of 0.26 Pas, and if the top plate moves with a speed U = 3 m/s and
the gap thickness is h = 2 cm, what shear stress is applied to the fluid?

Oil, μh

U

y

x

Given: Couette flow.

Find: Fluid velocity distribution, shear stress.

Assume: Newtonian fluid; any transient effects due to initiation of plate motion have
died out and flow is steady; negligible gravity; one-dimensional flow; u = u(y) only.



312 Introduction to Engineering Mechanics

Solution

We know that, for a Newtonian fluid, the definition σyx = μ(du/dy) is a linear rela-
tionship with a constant viscosity μ. This is a differential equation we can solve for
velocity u(y).

Due to equilibrium, the shear stress will be constant throughout the layer of fluid.

σxy = τ

σyx = τ

This is because there are no other forces on the fluid, so to keep a fluid element in
equilibrium we must have σyx(= σxy) = constant = τ. So

τ = μ
du
dy

,

du
dy

= τ

μ
= constant.

If we call this constant C and then integrate, we find that the velocity must have the
form

u(y) = Cy + D.

To complete the solution, we will use boundary conditions. We have discussed an
important property of viscous fluids: that the fluid adjacent to a solid surface moves
with the same speed as that surface. This is known as the no-slip condition. At the lower
plate, which is at rest, we have u(y = 0) = 0; at the upper plate which slides with speed
U we have u(y = h) = U. Applying these boundary conditions:

u(y = 0) = 0 → D = 0,

u(y = h) = U → C = U
h

.

We, therefore, must have

u(y) = U
h

y.

u(y)

U

h
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For the given numerical values, we find the shear stress:

τ = μ
du
dy

= μ
U
h

= (0.26 Pa · s)
(3 m/s)
(0.02 m)

= 39 Pa.

EXAMPLE 13.3

A 5-kg cube with sides 12 cm long slides down an oil-coated incline. If the incline makes
a 10◦ angle with the horizontal and the oil layer is 0.2 mm thick, estimate the constant
speed with which the block slides down the incline. The viscosity of the oil is 0.1 Pa s.

10°

Oil
5 kg

Given: Dimensions of cube and fluid layer.

Find: Cube’s terminal velocity.

Assume: Newtonian fluid; flow is steady; negligible end effects; one-dimensional fluid
flow in thin layer can be modeled as Couette flow.

Solution

We begin with an FBD of the cube.

N
y

x
W θ = 10°

Fs

This contains the weight of the cube itself, a normal force upward, and a frictional
resistance from the oil. This shear force Fs is simply the fluid shear stress acting over the
area of contact between cube and fluid. (An equal and opposite shear force acts on the
layer of oil.)

The cube is not accelerating—we are seeking its terminal velocity. So, the cube is in
static equilibrium. We must have the sum of forces in both x- and y-directions equal
zero. The x-direction is more useful to us:

∑
Fx = 0,

0 = W sin θ − Fs.

In the layer of oil, we have a top surface (the bottom of the cube) that is moving with
a constant velocity, say V, in the x-direction, and a bottom surface (the inclined plane)
which is at rest. The oil is therefore in Couette flow. We make use of our result from
Example 13.2 to express the shear force:

Fs = τA = μ
V
h

A.
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So,

0 = W sin θ − μ
V
h

A.

Rearranging, we have

V = Wh sin θ

μA
.

Plugging in the given values,

V = (5 kg)(9.8 m/s2)(0.2 × 10−3 m) sin(10◦)
(0.1 Pa · s)(0.12 m)2 = 1.18 m/s.

EXAMPLE 13.4

The steady flow of an incompressible fluid has the x and y velocity components:

u = x2 + y2 + z2,

v = xy + yz + z.

What form does the z component of velocity have?

Given: u, v for steady, incompressible flow.

Find: w.

Assume: Steady flow.

Solution

We know that the volumetric strain rate can be written as the divergence of the velocity
field, and that for an incompressible fluid or flow, this must equal zero:

∇ · V = ∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0.

For the given velocity components,

∂u
∂x

= 2x,

∂v

∂y
= x + z.

Hence

2x + x + z + ∂w

∂z
= 0.

Or
∂w

∂z
= −3x − z.

Integrating both sides in z:

w = −3xz − 1
2

z2 + k(x, y),
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where k(x, y) may be a constant, or any function of x and/or y. The precise nature of
k(x, y) cannot be determined from what is known.

PROBLEMS

13.1 A beaker has the shape of a circular cone of diameter 7 in and height 9 in. When empty,
it weighs 14 oz; full of liquid, it weighs 70 oz. Find the density of the liquid in both SI
and U.S. customary units.

13.2 Some experimental data for the viscosity of argon gas at 1 atm are provided:
Fit these data to a power law.

T(K ) 300 400 500 600 700 800
μ

(Ns/m2)
2.27 × 10−5 2.85 × 10−5 3.37 × 10−5 3.83 × 10−5 4.25 × 10−5 4.64 × 10−5

13.3 Some experimental data for shearing stress τ and shear strain rate γ obtained for
a particular non-Newtonian fluid at 80◦F are shown below. Please plot these data
and fit a second-order polynomial to the data using graphing software. Estimate the
apparent viscosity of this fluid when the shear strain rate is 70 s−1, and compare this
value with the viscosity of water at the same temperature.

τ (lb/ft2) 0 2.11 7.82 18.5 31.7
γ (s−1) 0 50 100 150 200

13.4 The space between two very long parallel plates separated by a distance h is filled
with a fluid with viscosity

μ = μ0

(
du
dy

)n

,

where μ0 is a constant and n is a constant exponent. The top plate slides to the right
with a constant speed V0, as shown.

h
y

V0

μ

a. Find the velocity distribution between the plates, and an expression for the shear
stress τ.

b. Graph the shear stress versus the shear strain rate V0/h for several values of
n > 0 (dilatant), n = 0 (Newtonian), and n < 0 (pseudoplastic).
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13.5 Many devices have been developed to measure the viscosity of fluids. One such
device, known as a rotational viscometer, involves a pair of concentric cylinders with
radii ri and ro, and total length L . The inner cylinder rotates at a rate of � rad/s when
a torque T is applied. Derive an expression for the viscosity of the fluid between the
cylinders, μ, as a function of these parameters.

13.6 A thin plate is separated from two fixed plates by viscous liquids with viscosity val-
ues μ1 and μ2. The plate spacings are h1 and h2 as shown. The contact area between
the center plate and each fluid is A. Assuming a linear velocity distribution in each
fluid, find the force F required to pull the thin plate at velocity V.

h1

h2

F, V

μ2

μ1

13.7 Magnet wire is single-strand wire with a thin insulation layer (of enamel, varnish,
glass, etc.) to prevent short circuits. In a production facility, copper (E = 120 GPa,
σys = 70 MPa) magnet wire is to be coated with varnish by pulling it through a cir-
cular die (i.e., a cylindrical tube) of 0.35 mm diameter. The wire diameter is 0.30 mm
and it is centered in the die. The varnish (μ = 0.020 Pas) completely fills the space
between the wire and the die for a length of 30 mm. Determine the maximum speed
with which the wire can be pulled through the die while ensuring a factor of safety
of 3.0 with respect to yielding.

13.8 A solid cylindrical needle of diameter d, length L , and density ρn is able to float in
liquid of surface tension s. Assuming a contact angle of 0◦, derive an expression for
the maximum diameter dmax that will be able to float in the liquid. If the needle is
steel and the liquid is water, what is the value of dmax?

13.9 A flow is described (in Cartesian coordinates) by the velocity vector V = 2xyî − 3y2 ĵ.
Is the flow incompressible?

13.10 A flow is described (in Cartesian coordinates) by the velocity vector V =
(2x2 + 6z2x)î + (y2 − 4xy)ĵ − (2z3 + 2yz)k̂. Is the flow incompressible?

13.11 For the given fluid stress tensor, calculate the following quantities.

σ =
⎛
⎝σxx σxy σxz

σyx σyy σyz
σzx σzy σzz

⎞
⎠ =

⎛
⎝−2Az 0 Ax

0 −2Az Ay
Ax Ay −2Az

⎞
⎠ .

a. The stress divergence
b. The component of the surface force acting on a cube of edge length α in the

y-direction
c. The total surface force acting on a cube of edge length α

d. The appropriate dimensions for the constant A
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13.12 Is the velocity field V = (x2 − y2)î − 2xyĵ physically possible for a constant density
flow?

13.13 The velocity distribution for a Newtonian constant density fluid is given by

V = (6xy2 − 3x3)î + (9x2 y − 2y3)ĵ.

Determine the stress tensor for this flow.

13.14 A sled slides along a thin horizontal layer of water between an icy surface and the
sled’s runners. The horizontal force that the water applies to the runners is 5 N when
the sled’s speed is 15 ft/s. The total area of contact between both runners and the
water is 74 cm2. Determine the thickness of the water layer under the runners.

13.15 A piston with a diameter of 5.5 in and a length of 9.5 in slides downward with a
velocity V through a vertical pipe. The downward motion is resisted by an oil film
between the piston and the pipe wall. The film thickness is 0.002 in, and the cylinder
weighs 0.5 lb. Estimate the piston velocity V if the oil viscosity is 0.016 lbs/ft2.





14
Case Study 6: Mechanics of Biomaterials

We have discussed the properties and behavior of Hookean solids and Newtonian fluids:
materials that are special cases, on either extreme of the spectrum of material behavior.
These materials and most applications fit our favorite simplifying assumptions (homo-
geneity, isotropy, linearity, small deformations), nicely. While a great number of engineer-
ing materials are well-served by these assumptions and models, the increasingly important
category of biomaterials demands that we consider the more complex behaviors between
these two idealized extremes.

Biomaterials may be natural (blood vessels, bone, cartilage, or the cornea) or artificial
(joint replacements, blood vessel shunts and stents, or the results of tissue engineering).
Scientific interest in biomaterials is not an exclusively modern phenomenon: ancient tech-
nology relied on horn, tendon, and various woods and fibers. However, we are now able to
analyze the biological role of biomaterials, and how these complex behaviors contribute to
the species that rely on them. This helps us to understand the relationship between prop-
erties and applications, or between structure and function. Since engineers often seek to
replace or mimic biological materials, we must understand both the material behavior and
the biological reasons for it.

It is critical for engineers to understand how such materials will respond to loading, to
mechanical stresses, and to biochemical and electrical stimuli, as well. In his pioneering
texts on Biomechanics, Y. C. Fung outlines a systematic approach to problems in biome-
chanics: the first step is studying organism morphology, organ anatomy, tissue histology,
and structure of materials. The second is determining the mechanical properties of the mate-
rials involved, before later steps—deriving the governing equations, developing boundary
conditions, solving the problems, and performing experiments—follow. As Fung notes,
determining the mechanical properties of biomaterials can be difficult, because “we can-
not isolate the tissue for testing, or the size of available tissue specimens is too small, or it is
difficult to keep the tissue in the normal living condition. Furthermore, biological tissues
are often subjected to large deformations, and the stress–strain relationships are usually
nonlinear and history dependent.”

Tensile testing of the sort described in Chapters 2 and 4 has yielded an extensive array of
properties for biomaterials. Values of elastic (Young’s) modulus are tabulated in Table 14.1;
values of the shear modulus and Poisson’s ratio are shown in Table 14.2. These values come
with strong disclaimers, though, as they are only as valid as the assumptions behind them.
While these parameters have familiar meanings, and while biomaterials obey many of the
equations we have already derived, we must be cautious. Remember well the assumptions
implicit in many results of engineering mechanics, and consider how well such assump-
tions describe the material of interest. Remember the handy equation that could be used
to relate E , G, and ν—Equation 4.2? It does not hold for biomaterials. The measured G
and E tabulated for bone would suggest a Poisson’s ratio of 0.8, which is twice the mea-
sured value and larger than the maximum theoretical value of 0.5 for isotropic materials;
and tree trunks and bamboo stalks would have Poisson’s ratios of 6 or 7. The model-
ing challenge is that those assumptions we have begun to make almost implicitly about
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TABLE 14.1

Modulus of Elasticity for Various Biomaterials

Material Elastic Modulus E (MPa)

Aorta, cow 0.2
Aorta, pig 0.5
Nuchal ligament (mainly elastin) 1.0
Dragonfly tendon (mainly resilin) 1.8
Cartilage 20
Tendon (mainly collagen) 2000
Tree trunks 6400
Wood, dry, with grain 10,000
Teeth (dentine) 15,000
Bone (large mammal) 18,000
Teeth (enamel) 60,000
Kevlar (synthetic fiber) 130,000
Steel 200,000

Source: S. Vogel, Comparative Biomechanics: Life’s Physical World,
Princeton: Princeton University Press, 2003.

Note: These values should be regarded as rough approximations,
with wide variations depending on the rate of stretching,
on the amount and orientation of deformation, and on the
natural biological diversity of each material.

TABLE 14.2

Shear Modulus and Poisson’s Ratio for Various Biomaterials
Material Shear Modulus G Poisson’s Ratio ν (MPa)

Aorta (at 100 mm Hg) 0.15 0.24
Cartilage (rabbit) 0.35 0.30
Tendon (mainly collagen) 1 (huge variation) 0.40
Tree trunks 450 0.33
Bone (large mammal) 3300–5000 0.40
Teeth (enamel) 65,000 0.3
Kevlar (synthetic fiber) 30,000 –
Steel 77,000 0.33

Source: S. Vogel, Comparative Biomechanics: Life’s Physical World, Princeton:
Princeton University Press, 2003.

Note: These values should be regarded as rough approximations, with wide
variations depending on the rate of stretching, on the amount and ori-
entation of deformation, and on the natural biological diversity of each
material.

materials—homogeneity, isotropy, linearity, and small deformations—often do not apply
to biomaterials.

Material testing of biomaterials to obtain the values shown in Table 14.1 is also a chal-
lenge. The properties, microstructure, and behavior of natural biomaterials change in
response to the physiological environment. This makes determining decisive experimental
results or developing detailed constitutive models very difficult. (The interdependence of
structure and function for biological materials also means that “bone” or “muscle” may
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have very different behavior and properties depending on its physiological location and
purpose. For example, human bone consists of both dense, very stiff cortical bone, which
is much stiffer and stronger in the direction subjected to greater loads, as well as a porous
trabecular or cancellous bone.) The bulk of elastomechanical testing of natural biomaterials
has been conducted in vitro in an experimental simulacrum of in vivo conditions, including
thermal conditions and ionic concentrations which affect smooth muscle activity. Proper
specimen preparation and conditioning is vital to maintaining the integrity of the material.
Debes and Fung first proposed a preconditioning of very low-frequency cyclic loading for
a few cycles, suggesting that the internal structure of the tissue would respond to this
loading until it reached a steady state that would allow consistent mechanical response to
loading.

14.1 Nonlinearity

We may have begun to take for granted the linear elasticity of most engineering materi-
als. When working problems, we may even have been tempted to construct a rubber stamp
saying “Hooke’s law applies” for the Assumptions section of our solutions. It is time, how-
ever, to re-examine that assumption. Many biomaterials have stress–strain curves that are
not linear but are “J-shaped,” that is, curves that get increasingly steep. An example is
shown in Figure 14.1. This sort of curve signifies that the elastic modulus or stiffness of
the material increases with extension. For materials with nonlinear behavior, the elastic
modulus, cited in Table 14.1, is calculated from low-strain, quasi-linear “toe” region of the
stress–strain curve.

In our discussion of pressure vessels, we considered an abdominal aortic aneurysm
(Example 5.8), positing that the aneurysm exposed to high fluid pressures might remodel
itself into a more spherical shape to reduce the induced stresses. The aortic wall, however,
is not a Hookean material. And good thing, too: artery walls must expand and contract

1.0

0.5

0.5
Strain

St
re

ss
, M

Pa

1.0

FIGURE 14.1
Exemplary J-shaped stress–strain curve for nuchal ligament of deer. (After S. Vogel, Comparative Biomechanics:
Life’s Physical World, Princeton: Princeton University Press, 2003.)
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with each heartbeat, to accommodate the heart’s pressure pulse. A Hookean material
would be a poor choice for a cylinder meant to have a compliant wall, because already
dilated portions of the cylinder would tend to expand further just as much as areas that
had not expanded, thus creating regions of dangerously high stress.

Although Hookean linearity is the “best-case scenario” for many of our analyses, there
are many reasons that nonlinearity is an advantage for biomaterials. Getting stiffer as it
gets closer to the failure point can make a structure safer, because it then requires a dispro-
portionate force to break. Additionally, the stress–strain curve’s upward concavity reduces
the area under the curve (compared to a Hookean material with the same limits), mean-
ing less energy will be released on failure of the biomaterial. Energy release drives crack
propagation, and for a biomaterial (e.g., skin), we would prefer cracks not to propagate.

14.2 Composite Materials

One way to keep cracks from propagating dramatically, and disastrously, through mate-
rials is to construct composites from materials with different properties. A well-known
engineering trick is to use carbon fibers (which are very strong and stiff) to reinforce other
materials, such as concrete (which is stronger in compression than in tension) or plastic
(carbon fiber-reinforced plastic, widely known as “carbon fiber,” is widely used in modern
bicycles and racecars). This addition of a strong component allows the matrix materials
(concrete or plastic) to be used in a wider array of applications and to be more durable. For
more on engineered composite materials, please see Chapter 15.

Nature has made good use of composite materials, in wood and leaves of grass, and
in tendons (which are collagen fiber-reinforced) and bone (in which cells form osteons
that reinforce the longitudinal direction against compressive loads). Table 14.3 shows some
natural composites and their components.

Blood vessels are soft tissue comprised of elastin and collagen fibers, smooth muscle, and
a single layer of endothelial cells lining the vessel lumen. The proportions of the fibrous
proteins and vascular smooth muscle depend on the type of blood vessel and the loading
it must withstand. The two types of protein fibers have important consequences for the
material behavior of vessels. Elastin is a very elastic fiber with a large Hookean region in

TABLE 14.3

Natural Composite Biomaterials

Material Strong Component Matrix

Wood Cellulose (polysaccharide) Lignin, hemicelluloses
Sponge body wall Calcareous, siliceous spicules, collagen Miscellaneous organic
Stony corals Aragonite (CaCO3) crystals Chitin fibril network
Mollusk shell Calcite (CaCO3), aragonite Protein, sometimes chitin
Bird eggshell Calcite crystals Protein, some polysaccharide
Cartilage Collagen fibrils Mucopolysaccharide
Bovid horn Keratin fibers Wet, amorphous keratin
Bone Hydroxyapatite (Ca5(PO4)3(OH)) Collagen, other organic
Tooth enamel Hydroxyapatite Organic
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FIGURE 14.2
Experimental stress–strain diagrams for a bovine artery, showing two distinct regimes of material stiffness and
the J-shaped overall curve. (Data from J. S. Rossmann, Elastomechanical properties of bovine veins, Journal of
Mechanical Behavior of Biomedical Materials 3(2) (2010): 201–205.)

its stress–strain behavior. It provides blood vessels with the ability to expand (or distend) to
accommodate the pressure pulse of the heartbeat. Vessels that are too stiff will not expand,
which will result in high blood pressure or hypertension. Collagen fibers form a network
outside the elastin. Collagen has a very high elastic modulus and a very high ultimate
strength: its stiffness provides a limit to the vessel walls’ distensibility. The collagen fibers
are typically arranged with some slackness or “give;” in tendons, this is known as “crimp.”
This crimp means that each collagen fiber must be stretched taut before it begins to resist
additional deformation, so that the material gradually stiffens as it is stretched. In this way,
each collagen fiber in turn is “recruited” to contribute to the overall behavior of the vessel.
This behavior creates a J-shaped stress–strain curve, as shown in the experimental data in
Figure 14.2.

Figure 14.2 shows a stress–strain curve for a bovine artery with two identifiable regions:
a long “toe” region of linear behavior dominated by elastin, in which large deformations
result in only small stresses; and an increasingly steep region illustrating the recruitment
of collagen fibers to stiffen the composite material.

Blood vessels also exhibit behavior called cylindrical orthotropy—different mechanical
properties in the circumferential and longitudinal directions. Since we know from our
study of pressure vessels that arteries and veins will experience different stresses in these
two directions, it is only logical that arteries and veins have responded to directionally
dependent pressure loading by having directionally dependent properties. The different
stiffness values in circumferential and longitudinal directions are evident from the slopes
of the experimentally obtained stress–strain diagrams shown in Figure 14.3.

Because of the difficulty associated with obtaining valid and generalizable experimental
data for biomaterials, it is desirable to develop constitutive models (like the generalized
form of Hooke’s law useful for less complex materials). The gradual recruitment of colla-
gen fibers has been included in constitutive models in a “neo-Hookean” fashion. In such a
model, each collagen fiber can be thought of as a “linear” spring activated differently, with
all the fibers (springs) acting in parallel, with this combination in parallel with the elastin
component, in order to comprise the artery wall’s bulk behavior.
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FIGURE 14.3
Experimental data for bovine veins in the (a) circumferential and (b) longitudinal directions. The slopes of the toe
(elastin-dominated) regions are Ecirc = 30 kPa and Elong = 100 kPa.

14.3 Viscoelasticity

Recall the material behavior spectrum, and the special cases at its extrema: Hookean solids,
for whom shear stress equals the product of a shear modulus and shear strain; and New-
tonian fluids, for whom shear stress is viscosity times shear strain rate. At these extremes,
these constitutive relationships are linear. We have already recognized that Hookean solids
may be modeled as springs—as is the extension, so is the force; and that Newtonian fluids
behave like dampers or dashpots. A spring is an elastic element, a dashpot a viscous one—
so we will be able to fill in the middle of the material behavior spectrum with combinations
of these two elements. Materials whose behavior is best described by such a combination
are known as viscoelastic materials.

For viscoelastic materials, both how much they deform and how fast they deform are
important. Many, biomaterials exhibit some degree of viscoelasticity. The two primary
characteristics of viscoelastic behavior are creep and stress relaxation. Creep occurs when
a material is exposed to a constant load for a long time and the material deforms increas-
ingly: it is why a rubber band used to suspend a weight will gradually lengthen, and why
you will find that you are measurably shorter at the end of an active day during which
your intervertebral cartilage has been subjected to constant compressive loading. Stress
relaxation means that when a constant deformation is applied to a material, over time it
will resist that deformation less, so that the experienced loading decreases with time.

Another key feature of viscoelastic materials is hysteresis. This is the term used to describe
the tendency of viscoelastic materials to dissipate energy, rather than to store all of the
energy of deformation as linearly elastic solids do. A schematic of this behavior is shown
on a stress–strain diagram in Figure 14.4a; the area between the loading and unloading
curves represents dissipated or lost energy. (For a Hookean solid, the loading and unload-
ing curves are the same for small deformations.) Figure 14.4b shows an experimentally
obtained hysteresis curve for bovine veins in which it becomes clear that for these ves-
sels, the amount of energy dissipated increases with increasing strain rate. This energy
dissipation is what makes viscoelastic materials well suited to absorbing or cushioning
shock.
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FIGURE 14.5
Schematics of the two most common mechanical models for viscoelastic material behavior: (a) Maxwell and (b)
Kelvin–Voigt materials.

The classical models for viscoelasticity represent different combinations of the spring
(elastic) and dashpot (viscous) elements, as shown in the schematics of Figure 14.5. Other
combinations are possible, of course; but these two models proved remarkably effective
for many materials.

For a Maxwell material, because the elastic and viscous elements are in series, they expe-
rience the same load (σs = σd = σ), and the net deformation of the material is the sum
of the deformation of each element (εs + εd = ε).∗ The resulting constitutive law relating
stress and strain is thus written as

Eμ
dε

dt
= μ

dσ

dt
+ Eσ, (14.1)

where E is the elastic modulus or spring stiffness of the elastic element and μ is the
dynamic viscosity of the viscous element of the material.

∗ The elements experiencing the same load translates to experiencing the same stress because the spring and
dashpot are modeling two behavioral aspects of the same tissue, so they can be considered to have the same
area. Similarly, since strain involves a reference (undeformed) length, and since both elements have a common
reference, any relationships we would normally use for changes in displacement x also hold for strains.
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FIGURE 14.6
Characteristic (a) stress relaxation and (b) creep responses of the Maxwell and Kelvin–Voigt models. (After J. D.
Humphrey and S. L. Delange, Biomechanics, New York: Springer, 2003.)

In a Kelvin–Voigt material, the elements in parallel share the same deformation (εs =
εd = ε), and the total stress is the sum of that experienced by each element (σs + σd = σ).
The constitutive law for the viscoelastic material is therefore

Eε + μ
dε

dt
= σ. (14.2)

The ability of these models to capture viscoelastic behavior such as stress relaxation and
creep varies, as you will see in Problems 14.2–14.4. The response of each model to a step
input in load or deformation, which can be deduced from the constitutive equations, is
shown in Figure 14.6.

A brief historical note: these models are attributed to James Clerk Maxwell (1831–1879),
a prolific Scottish theoretical physicist who developed the Maxwell model of viscoelas-
ticity in order to mathematically describe the viscous behavior of air; Woldemar Voigt
(1850–1919), a German physicist notable for his work in crystallography; and William
Thomson (Lord Kelvin, 1824–1907), an Irish thermodynamicist whose interest in model-
ing mechanical behavior was rooted in his interest in irreversibility, a.k.a. the second law
of thermodynamics.

PROBLEMS

14.1 Show that the constitutive law for a Maxwell body must have the form given in
Equation 14.1.

14.2 For the Kelvin–Voigt model of viscoelastic behavior, (a) find the solution of Equa-
tion 14.2, ε(t), due to a step input in stress (a constant stress of magnitude unity
applied beginning at t = 0), and (b) the solution σ(t) due to a step input in strain.
Sketch both solutions.

14.3 For the Maxwell model of viscoelastic behavior, (a) find the solution of Equation 14.1,
ε(t), due to a step input in stress (a constant stress of magnitude unity applied begin-
ning at t = 0), and (b) the solution σ(t) due to a step input in strain. Sketch both
solutions.
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14.4 Compare your results for Problems 14.2 and 14.3 to the sketches in Figure 14.6. Which
of the two models represents creep behavior well, and which better represents stress
relaxation?
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15
Case Study 7: Engineered Composite Materials

In Chapter 14, we noted that some biological materials are “composites,” comprised of
multiple materials with significantly different physical properties. The resulting combined
materials have characteristics that are different from any of their component materials.
Many engineered composite materials are designed with similar objectives, often yielding
materials that are stronger, lighter, or less expensive than traditional materials. We char-
acterize the components as “matrix” and “reinforcement;” composite materials should
have at least one of each. The matrix material surrounds and supports the reinforce-
ment materials by maintaining their relative positions. The reinforcements impart their
particular mechanical and physical properties to enhance the matrix properties. Like bio-
logical materials, engineered composites are often anisotropic, due to the orientation of the
reinforcements. Engineered composite materials include concrete (and its steel-reinforced
form as well), fiber-reinforced plastic (including fiberglass), metal composites, and ceramic
composites.

15.1 Concrete

Concrete itself is a “composite,” in the sense that it results from the combination of sev-
eral materials. It is composed of (1) coarse granular aggregate sometimes called filler,
embedded in (2) a hard matrix (cement or another binder) that fills the spaces among the
aggregate particles and binds them together with the aid of (3) water. The ancient Roman
architect/engineer Vitruvius∗ first wrote down a recipe for concrete—his version included
volcanic ash as the binder. The Roman Colosseum was constructed from concrete; more
recently, the Hoover Dam and Panama Canal have made good use of this material. It is
now the most widely used structural material worldwide.

We often use steel bars (which are very strong) to reinforce concrete (which is stronger in
compression than in tension). The resulting material is known as “rebar” due to the rein-
forcement provided by the bars. The bars may be arranged in any direction, to withstand
anticipated loading, or in multiple directions when arranged in a mesh as in Figure 15.1.
The addition of a reinforcing component allows concrete to be used in a wider array of
applications, as the combined material is stronger, and able to withstand a wider range of
loading types, than either component.

∗ Vitruvius was a Roman civil engineer during the first-century BC whose multi-volume book De Architectura
records the building practices of Roman aqueducts, roads, and other structures. Vitruvius prized proportion
and symmetry, and held dear three principles of effective design: utility, durability, and beauty. His work was
rediscovered during the Renaissance and celebrated in Leonardo Da Vinci’s image of the proportional ideal of
the “Vitruvian man.”
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FIGURE 15.1
The Nine Bowl skateboarding facility in Troy, Michigan, uses rebar to provide strength and structural support.
(Photo courtesy of Davo Scheich.)

15.2 Plastics

In the 1967 film The Graduate, the recent college graduate played by Dustin Hoffman is told
that one word fully encompasses the future: “plastics” are said to be synonymous with
progress, and the young graduate is directed to neglect them at his peril. Although the
movie’s sympathy with Hoffman’s character painted the plastics enthusiast in a less than
glowing light, from our contemporary perspective, it is true that plastics have transformed
much of modern society.

Plastics are composed of organic polymers, which may be synthetic (often derived from
petrochemicals) or natural. The vast majority of these polymers are based on chains of car-
bon atoms alone or with oxygen, sulfur, or nitrogen. This backbone links a large number of
repeating units together. The properties of a plastic are affected by the different molecular
groups hanging from the backbone, and may be fine-tuned by intentionally hanging side
chains of artfully chosen structure.

Many commercially produced composites use a polymer matrix material often called a
resin solution. There are many different polymers available depending upon the starting
raw ingredients. There are several broad categories, each with numerous variations. The
most common are known as polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide,
and polypropylene. The reinforcement materials are generally fibers or ground minerals.

In 1932, a researcher at Owens-Illinois accidentally pointed a jet of compressed air
toward molten glass and produced glass fibers. Owens joined forces with the Corning
Company in 1935, and the company soon patented “fiberglas” (with one ‘s’). However, the
new material was very brittle, and refinements were made to its manufacturing process at
Owens Corning before it began to be widely used in cars, airplanes, and boats.

We often use carbon fibers (which are very strong) to reinforce plastic: carbon fiber-
reinforced plastic, widely known as “carbon fiber,” is widely used in modern bicycles and
racecars. Due to the orientation of the fibers, glass and carbon fiber-reinforced plastics are
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typically anisotropic, but they can be designed to have strength in exactly the directions
required by an application.

Polymer-based composites are now ubiquitous in modern society, beloved for their
moldability into a wide variety of shapes, for their ability to be optimized for certain
properties, and for their lightness and seeming indestructibility.

15.2.1 3D Printing

A particularly interesting application of plastics has been in the development of rapid
prototyping or 3D Printing technology. In this process, a material—often ABS plastic—is
heated until it flows from a printer head following toolpaths derived from computer-
aided engineering drawings. The toolpaths describe successive layers of the designed
object, building the object layer by layer. Adjacent layers cool and harden together. A sec-
ond material, often a dissolvable plastic, is also used to support the object as it is being
“printed.” This is an additive manufacturing technique, as opposed to CNC manufactur-
ing in which material is removed by the computer-controlled tool or printer head.

3D Printing is appealing because it enables designers to quickly and inexpensively move
from drawing to prototype and to perform the iterations of the prototype and testing
phases of design processes. It also permits complex shapes to be created much more easily
than they could be machined with traditional manufacturing tools.

The resulting objects, however, are anisotropic, with different properties in the plane
of printed layers than in other directions. While this is not what we typically mean by
composite materials, the toolpaths of material that provides inner support to the object
may be specified to provide reinforcement.

15.3 Ceramics

Ceramic matrix composites—in which fibers of ceramic are embedded in a ceramic matrix
material—were engineered to combat a weakness of standard ceramics: their very low
crack resistance (or fracture toughness). The most frequently used materials for both fiber
and matrix are carbon, silicon carbide, alumina, and mullite. These new materials are of
great interest in the aerospace industry, where the desirably low thermal conductivity of
ceramics has sometimes been compromised by ceramics’ brittleness and susceptibility to
crack propagation.

Novel composite materials played a prominent role in the development of Boeing’s
787 Dreamliner airplane (Figure 15.2), whose use of composites permitted a new robust
single-barrel fuselage design and reduced aircraft weight. The 787 uses 50% composites
by weight; by comparison, Boeing’s 777 uses only 12% composites by weight and is 50%
aluminum. Carbon fiber technology has also revolutionized the design of prosthetic limbs,
including innovative designs using carbon-reinforced polymer (e.g., Figure 15.3) that have
enabled double amputee athletes to compete in the Olympic Games.

The nature of the anisotropy in physical properties of composites depends on a range of
factors. For example, the stiffness of a composite panel will depend upon the orientation of
the applied loads and on the design of the panel: the fiber reinforcement and matrix used,
the method of panel build, thermoset versus thermoplastic, type of weave, and orienta-
tion of fiber axis to the primary force. While the fibers do indeed provide “reinforcement”
in their primary axis, composite materials are weak in the direction perpendicular to the
fibers.
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FIGURE 15.2
The Boeing 787 Dreamliner contains significantly more composite material than competitive aircraft. (Image
courtesy of Boeing.)

FIGURE 15.3
Ossur’s Flex Foot Cheetah prosthetics in action. (Image courtesy of Elvar Pálsson.)

For a composite material to be effectively strengthened and stiffened, the fibers must
be longer than a critical fiber length. This critical length lc depends on the fiber diameter
d and its ultimate (typically tensile) strength σ∗

f , and on the smaller of the matrix’s yield
shear strength or the fiber–matrix bond strength, τc, according to

lc = dσ∗
f

2τc
. (15.1)
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For many glass and carbon fiber–matrix combinations, this critical length is in the order
of 1 mm, which is between 20 and 150 times the fiber diameter. When fibers are much
longer than this critical fiber length (l � lc, generally > 15lc), they are known as “contin-
uous fibers” and are effective in transferring stress from the matrix and reinforcing the
material. When fibers are much shorter than the critical length, the matrix deforms sig-
nificantly and is not as effectively reinforced. However, sometimes the relative ease and
expense of “discontinuous fiber” or particulate reinforcement may justify settling for less
effective strengthening; short-fiber composites may achieve elastic modulus and tensile
strength values near 90 and 50% of comparable continuous-fiber materials.∗

When dealing with engineered or natural composite materials, we must remember that
the material stiffness in our generalized form of Hooke’s law (Equation 4.15) permits us to
take into account different behavior in different directions: often, composite materials have
stiffness or compliance matrices that are much more interesting than those of isotropic
materials!

PROBLEMS

15.1 A continuous-fiber composite is loaded axially, in the direction of fiber alignment. In
this case, we may model the fiber and matrix as two materials in parallel: the two
materials “share” the applied load F , so that F = Ff +Fm; and the two materials
experience the same normal strain in the direction of the applied load. Develop an
expression for the effective elastic modulus of the composite material in terms of the
moduli and volume fractions of its fiber and matrix constituents.

15.2 For the material and loading described in Problem 15.1, what is the ratio of the load
carried by the fibers to that carried by the matrix?

15.3 A continuous-fiber composite is loaded transversely, in the direction normal to the
fiber alignment. We may model the fiber and matrix as two materials in series: the
two materials experience the same stress; and “share” the deformation in the trans-
verse direction, so that the material’s net deformation is the sum of the deformation
of each element. Develop an expression for the effective elastic modulus of the com-
posite material in terms of the moduli and volume fractions of its fiber and matrix
constituents.

15.4 Wrapped carbon tubes are often used for fishing rods, tail booms for helicopters
and gliders, and drive shafts for small vehicles. In the roll-wrapping process, a resin
pre-impregnated fiber cloth (Pre-Preg) is wrapped around a mandrel; tubes may be
manufactured in a variety of woven patterns. Provide an explanation for why either
a helical or a square weave might be selected.

15.5 Research the controversy surrounding the eligibility of athletes with prosthetic limbs
to compete in the Olympic Games. Propose at least three calculations that can be
made using concepts in this textbook to determine whether prosthetic limbs com-
prise an “unfair advantage” for an athlete. Please specify to which sport(s) and which
event(s) your proposed calculations are most relevant.

∗ Please see W. D. Callister, Materials Science and Engineering: An Introduction, Wiley, for further discussion.





16
Fluid Statics

When there is no relative motion between fluid particles, no shearing stresses exist, and
the only stress present is a normal stress, the pressure. Hence F = m a (or more properly,∑

F = m a) is a balance between the forces due to pressure and the inertia of the fluid. Our
fluid, like the solids we studied in Chapters 2 to 11, is in equilibrium.

16.1 Local Pressure

We have defined fluid pressure as an infinitesimal normal force divided by the infinites-
imal area it acts on. From our study of solid mechanics, we may suspect that the value
of p will change if the orientation of this planar area changes—that we will have a differ-
ent p if the xy-plane is rotated to x′y′. However, this is not the case, as we can show by a
simple analysis of a now-familiar inclined plane.

If we write the equations of motion (
∑

F = m a) in the y- and z-directions for the element
shown in Figure 16.1, we have

∑
Fy = py dx dz − ps dx ds sin θ = ρ

dx dy dz
2

ay, (16.1a)

∑
Fz = pz dx dy − ps dx ds cos θ − ρg

dx dy dz
2

= ρ
dx dy dz

2
az, (16.1b)

noting the geometry of the problem, dy = ds cos θ and dz = ds sin θ, we can rewrite these
equations as

py − ps = ρay
dy
2

, (16.2a)

pz − ps = (ρaz + ρg)
dz
2

. (16.2b)

And, since our real interest is in what is happening at a point, we shrink this element,
taking the limit as dx, dy, and dz go to zero (while maintaining θ), and hence we must
have py = ps and pz = ps , or

ps = py = pz. (16.3)

Since θ was an arbitrary angle, this must be true for any θ, so that we may say the pressure
at a point at a fluid is independent of direction as long as there are no shearing stresses present. In
other words, in a fluid at rest, pressure at a point is the same in all directions. This result is
due to the French mathematician Blaise Pascal (1623–1662) and is known as Pascal’s law.
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FIGURE 16.1
Forces on an arbitrary wedge-shaped element of fluid.
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FIGURE 16.2
Mohr’s circle.

We could also consider the Mohr’s circle of stress for a fluid with no relative motion
between fluid particles. A general Mohr’s circle is sketched in Figure 16.2. When shear
stress is absent, Mohr’s circle degenerates to a point and pi = pj. Hence using Mohr’s
circle, we could have beaten Pascal to the punch.

16.2 Force due to Pressure

We would like to be able to determine the pressure variation within a fluid. Certainly,
Pascal’s law will help us do this. We will consider another small fluid element, this time
in the shape of a cube (the shape is ours to choose since Pascal’s law tells us that p at
the center of an element is independent of the orientations of the element’s faces, and
choosing a cube simplifies the geometry). This element is shown in Figure 16.3. We will
write Newton’s second law for this element, first finding an expression for the force due to
pressure p(x, y, z).

The pressure is p at the center of our element, a point with coordinates (x, y, z). Since p
varies in x, y, and z, we can write the pressures at each of the element’s faces using the
chain rule:
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FIGURE 16.3
Forces acting on a small fluid element (x forces, not shown, have similar form).

dp = ∂p
∂x

dx + ∂p
∂y

dy + ∂p
∂z

dz, (16.4)

so that the pressure at a distance (dx/2) from the element’s center is written as

p
(
x + dx

2
, y, z

) = p(x, y, z) + ∂p
∂x

dx
2

. (16.5)

The same reasoning gives us expressions for the pressure on all six faces of the element
in Figure 16.3.

The resultant forces on the element are the differences between those on top and bottom,
right and left, or front and back faces. For example, the resultant force due to pressure in
the y-direction is

dFy = −∂p
∂y

dx dy dz. (16.6)

And the resultant surface force on the element can be written in vector form as dF =
dFx î + dFyĵ + dFzk̂, or

dF = −
(

∂p
∂x

î + ∂p
∂y

ĵ + ∂p
∂z

k̂
)

dx dy dz. (16.7)
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The group of terms in parentheses is the vector form of the pressure gradient, or grad p.
We can thus write the resultant surface force on the element using the notation:

dF
dx dy dz

= −∇ p. (16.8)

Something very interesting has happened: the force on the element due to pressure has
been shown to depend only on the gradient of pressure, or on how pressure varies in x, y,
and z.

To complete
∑

F = m a, we combine this resultant surface force with the body force
(gravity) acting on the element and set these forces equal to the inertia of the element.
The body force is written as −ρg dx dy dz k̂, and ma is written as ρ dx dy dz a. The element
volume, dx dy dz, appears in all terms and may be divided out of the equation, leaving in
vector form

−∇ p − ρgk̂ = ρa. (16.9)

This is the general equation of motion for a fluid in which there are no shear stresses. It
is an equation per unit volume of the fluid, since we have divided through by dx dy dz,
and each term in Equation 16.9 hence has dimensions of force-per-volume.

16.3 Fluids at Rest

In the special case of a fluid at rest, acceleration a = 0 and the governing equation
reduces to

−∇ p − ρgk̂ = 0. (16.10)

With three component equations:

∂p
∂x

= 0, (16.11a)

∂p
∂y

= 0, (16.11b)

∂p
∂z

= −ρg. (16.11c)

The x and y components show that the pressure in this special case does not depend on
x or y. The pressure p = p(z) only, and its dependence is given by

dp
dz

= −ρg. (16.12)

To use this equation to calculate pressure throughout a fluid, it is necessary to specify
how the product (ρg) varies with z. In most engineering applications, variation in g is
negligible, and so we concern ourselves primarily with the variation of density ρ.

An incompressible fluid is defined as one which requires a very large pressure change to
effect a small change in volume. This threshold is so high that in most cases, the fluid’s



Fluid Statics 339

volume and therefore its density are constant. Most liquids satisfy this requirement. When
ρg can be taken to be constant, the equation for p is easily integrated:

p2∫

p1

dp = −ρg

z2∫

z1

dz. (16.13)

So,

p1 − p2 = ρg(z2 − z1), (16.14)

or, if h = z2 − z1, then p1 − p2 = ρgh or

p1 = p2 + ρgh. (16.15)

This equation describes what is called a hydrostatic pressure distribution. The distance
h = z2 − z1 is measured downward from the location of p2. Equation 16.15 is sometimes
written in the shorthand form:

�p = ρg�h. (16.16)

While Equation 16.16 is handy, we must be mindful of the physical significance of these
“deltas.” Hydrostatic pressure increases linearly with depth, as the pressure increases to
“hold up” the weight of the fluid above it. This is familiar knowledge to anyone who has
lingered near the bottom of a deep swimming pool, or gone SCUBA diving.

Many devices exploit the hydrostatic pressure distribution. The hydraulic brakes in an
automobile take advantage of the fact that pushing on a column of fluid with a certain force
(by pressing on a foot pedal) transmits the pressure by moving brake fluid through the
car’s brake lines. A hydraulic lift in a mechanic’s shop allows a small force to be applied
to a small piston area, then transmitted as fluid pressure to a larger area in order to lift
a heavy vehicle (whose weight is much greater than the small force applied).∗ Similar
hydraulic pistons are often used to reduce the force required to move or lift heavy loads.

For a compressible fluid—typically a gas—the fluid density can change significantly due
to relatively small changes in pressure and temperature. For these fluids, the product ρg
is typically quite small—for air at sea level at 60◦F, ρg is 0.0763 lb/ft3, compared with
62.4 lb/ft3 for water at the same conditions. It, therefore, requires very large elevation
changes h to make much difference in the pressure of compressible fluids. To account for
the variation in ρg, we make use of the ideal gas law, p = ρRT , to write

dp
dz

= − gp
RT

. (16.17)

Separating variables and integrating, we get

p2∫

p1

dp
p

= ln
(

p2

p1

)
= − g

R

z2∫

z1

dz
T

, (16.18)

where g and R are assumed constant over the elevation change from z1 to z2.

∗ Readers concerned that this might violate the energy conservation principle should note that the distance the
large piston is moved is much less than the throw of the smaller piston, and thus breathe more easily.
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Δh

θ

FIGURE 16.4
Types of manometers: left, U-tube; right, inclined-tube.

Pressure is often measured using liquid columns in vertical or inclined tubes, or manome-
ters. These devices make use of the information we have just obtained: that pressure
increases with depth and that (therefore) two points at the same elevation in a continu-
ous length of the same fluid must have the same pressure. The three most common types
of manometers are U-tube and inclined-tube manometers, and piezometers. Examples of
manometers are shown in Figure 16.4.

As you might expect, manometers are not particularly well suited for the measurement
of very high pressures (since they must then include a very very long tube), or of pressures
which vary rapidly in time. Some other devices have thus been developed—and they are of
special interest to us as students of continuum mechanics. This other class of measurement
devices makes use of the idea that when a pressure acts on an elastic structure the struc-
ture will deform, and this deformation can be related to the magnitude of the pressure. A
Bourdon tube is one example of this; it consists of a calibrated hollow, elastic curved tube
that tends to straighten when the pressure inside it increases. A pressure transducer as in
Figure 16.5 converts the reading from a Bourdon tube or other measurement device into
an electrical output.

Output
Core

Bourdon C-tube

Mounting
block

Pressure line

Spring
Input

Linear variable
displacement
transducer

FIGURE 16.5
Bourdon tube pressure transducer. (After B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of Fluid
Mechanics, 1998. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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Another example of this type of device is shown in Figure 16.6. In this case, the sensing
element is a thin, elastic diaphragm that is in contact with the fluid. Fluid pressure causes
the diaphragm to deflect, and its deflection is measured and converted into an electrical
voltage. Strain gages are attached to the reverse side of the diaphragm or to an element
attached to the diaphragm. Figure 16.6a shows two different sized strain-gage pressure
transducers, both made by Viggo-SpectraMed (now Ohmeda), commonly used to mea-
sure physiological pressures within the human body. Pressure-induced deflection of the
diaphragm is measured using a silicon beam on which strain gages and a bridge circuit
have been deposited (as shown in Figure 16.6b).

Diaphragm
stop

Armature

Diaphragm

Diaphragm

Electrical connections

Case(b)

Link pin

Beam (strain gages deposited on beam)

(a)

FIGURE 16.6
(a) Photographs and (b) schematic of strain-gage pressure transducers used for biological flows. (B. R. Munson,
D. F. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics, 1998. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission.)
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16.4 Forces on Submerged Surfaces

When we design devices and objects that are submerged within a body of fluid, such as
dams, ships, holding tanks, bridge supports, and artificial reefs, we must consider the mag-
nitudes and locations of forces acting on both plane and curved surfaces due to the fluid.
If the fluid is at rest, we know that this force will be perpendicular to the surface (normal
stress) since there are no shearing stresses present. If the fluid is also incompressible, we
know that the pressure will vary linearly with depth.

For a horizontal surface, such as the bottom of a tank, the force due to fluid pressure is
easily calculated. The resultant force is just F = p A, where p is the uniform pressure and
equals ρgh and A is the area of the surface. Since the pressure is constant and uniformly
distributed over the bottom, the resultant force acts through the centroid of the area.

In the case of a vertical surface, the pressure is not constant, but varies linearly with
depth along the submerged surface. This is sketched in Figure 16.7b, and reminds us very
much of the distributed loading we have seen acting on beams, as in Figure 16.7a. In our
analysis of such beams, we found that the equivalent concentrated force (by which we
replaced the distributed load to calculate reactions and internal forces) acted through the
centroid of the area between the force profile and the beam surface. For example, for a
linearly increasing load as in Figure 16.7a, the shape created is a triangle, and the resul-
tant concentrated load acts at h/3 from the right end, the centroid of that triangle. The
same is true for submerged surfaces. In Figure 16.7b, a hydrostatic pressure is drawn as a
distributed load on a vertical wall. This creates a triangular shape, known as a “pressure
prism,” whose centroid is at h/3 from the deepest point. This is the “center of pressure”
(the point at which the resultant force acts, yR) for this load. The resultant force FR is simply
the pressure integrated over this vertical surface:

FR =
∫

A

dF =
∫

A

p dA =
∫

A

ρgy dA = ρghc A, (16.19)

where hc = h/2 is the depth of the centroid of the submerged surface itself (as opposed to
the centroid of the load distribution) and A is the area of the vertical surface.

We would like to move beyond the idealizations of horizontal and vertical surfaces to
more realistic geometries. It will be useful to formulate a method for calculating the force
due to pressure on an inclined surface, at an angle θ to the horizontal fluid surface as shown
in Figure 16.8. This general formulation can then be applied to a wide range of problems.

FR
(a) (b)

FR

h

h

h/3 h/3

FIGURE 16.7
Pressure prisms for (a) distributed beam loading and (b) hydrostatic pressure.
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Center of pressure

A

dA

FR dF

hc

θ

y yc yR

hR h

Free surface

xcxRy

x

FIGURE 16.8
Hydrostatic force on an inclined plane surface of arbitrary shape.

Essentially, we are once again considering the effect of a distributed force, and in order
to deal with the equivalent concentrated load, we must find the “center of pressure” at
which this equivalent load acts. We choose coordinates, as shown in Figure 16.8, that are
convenient for the surface in question, and we must find the point (xR, yR)—the center of
pressure, at which the resultant force acts.

The total force exerted on the plane surface by the fluid is simply the integral of the fluid
pressure over the surface’s entire area:

FR =
∫

A

dF =
∫

A

p dA, (16.20)

where p is the gage pressure. For a fluid at rest, the pressure distribution is hydrostatic,
and dF = ρgh = ρgy sin θ. For constant ρg and θ, we thus have

FR = ρg sin θ

∫

A

y dA, (16.21)

and we recognize that the integral
∫

y dA = yc A, where yc is the position of the centroid of
the entire submerged surface. So, the resultant force is simply

FR = ρg Ayc sin θ = ρghc A, (16.22)
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where hc is the vertical distance from the fluid surface to the centroid of the area. We notice
that this force’s magnitude is independent of the angle θ and depends only on the fluid’s
specific weight, the total area, and the depth of the centroid.

Although we might suspect that this resultant force passes through the centroid of the
surface, if we remember that pressure is increasing with increasing depth, we realize that
the center of pressure must actually be below the centroid. We can find the coordinates of
the center of pressure by summing moments around the x-axis, forcing the moment of the
resultant force to balance the moment of the distributed force due to pressure, so that

yR =
∫

A y2 dA
yc A

= Ix

yc A
. (16.23)

Please note that the xy-axes are now playing the same role for our submerged surface
that the yz-axes did for beam cross sections, so that Iy in the context of beams is the same as
Ix in this new context. Since Ixc (about the centroid) is typically the easiest second moment
of area to calculate, and the one tabulated in handy places,∗ we use the parallel axis theo-
rem to make sure we are considering the second moment of area with respect to our x-axis
as drawn in Figure 16.8:

Ix = Ixc + Ay2
c , (16.24)

so that

yR = Ixc

yc A
+ yc. (16.25)

This expression demonstrates that the resultant force acts on a point below the centroid,
since Ixc/yc A > 0. In a similar way, we determine the x-coordinate of the center of pressure:

xR = Ixyc

xc A
+ xc. (16.26)

The second moment of area Ixy that appears in this expression is the second moment
of area with respect to the x- and y-axes, and equals

∫
xy dA. For symmetric (about their

x-axes) shapes, Ixyc is 0 and the resultant force acts at xc.
When the submerged surface in question is curved, our work is somewhat more com-

plicated. The resultant force due to pressure acts normal to the surface, which did not
affect our integration over the surface area for a plane surface as the surface had only
one outward normal vector. However, for a curved surface, the outward normal changes
continuously all along the surface, making our integration less easily simplified.

Rather than accounting for this variation in the outward normal, most analyses simply
separate the resultant force on the surface FR into its horizontal (FH) and vertical (FV)
components. Each of these has a straightforward physical interpretation that becomes
clear when it is calculated. As an example, let us consider a parabolic dam as shown in
Figure 16.9. The shape of the curved dam surface is described by z/z0 = (x/x0)

2.
The gage pressure at any height z is given by

p = ρg(h − z). (16.27)

∗ For example, in Appendix A of this book!
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h = z0

dF

ds

z

x

pa

pa

z/z0 = (x/x0)2

FIGURE 16.9
Curved surface of a parabolic dam.

So, the infinitesimal force at any height z, acting on an infinitesimal area element dA, is

dF = ρg(h − z) dA. (16.28)

And the area dA at any z is simply the width w of the dam into the page times the
infinitesimal length ds along the curved surface, as shown in Figure 16.10.

We want to find the horizontal and vertical components of this vector dF, so we begin
with the horizontal force:

dFH = dF sin θ (16.29)

= ρg(h − z)w ds sin θ. (16.30)

From Figure 16.10, we see that ds sin θ is just dz, so we have

dFH = ρg(h − z)w dz, (16.31)

dz

dx

ds
dF

θ

θdFV

dFH

FIGURE 16.10
Infinitesimal segment of a curved surface.
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and we proceed by integrating in z to find the resultant horizontal force on the surface.

FH = ρg

h∫

0

(h − z)w dz (16.32a)

= ρgw

[
hz − z2

2

]h

0

(16.32b)

= 1
2
ρgwh2. (16.32c)

We can rearrange this horizontal force as

FH =
(

ρg
h
2

)
wh, (16.33)

and recognize that wh would be the area of a vertical projection of our parabolic curved
surface and that ρg(h/2) would be the resultant force on this vertical projection. We can
thus physically interpret the horizontal component of force on a curved submerged surface
as the resultant force that would act on a vertical projection (same depth into page, same
height) of the curved surface.

Next, we look for the vertical component FV, integrating dFV = dF cos θ over the
surface:

dFV = dF cos θ (16.34)

= ρg(h − z)w ds cos θ, (16.35)

In Figure 16.10, we see that ds cos θ is just dx, so we have

dFV = ρg(h − z)w dx. (16.36)

To integrate this expression in x, we will need to express z as a function of x, using the
equation of the curved surface. Here, when substituting z in terms of x, we use z0 = h.

FV = ρg

x0∫

0

(
h − h

x2
0

x2

)
w dx

= ρghw

[
x − x3

3x2
0

]x0

0

= 2
3
ρghwx0. (16.37)

We recognize that 2
3 x0z0 is the area contained by a parabolic section with maximum

height z0 and maximum width x0. (In our case, z0 = h.) Since w is the width of this section
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into the page, the vertical force component is the fluid density ρ times the acceleration of
gravity g times the volume of fluid, that is, this force is equal to the weight of fluid above
the curved surface.

To find the center of pressure at which the resultant of these components acts, we first
consider where each component force must act. For the inclined plane surface, these com-
ponents must induce the same moment about a reference point as does the distributed force.
Because FH is the force that would act on a vertical projection of the curved surface, it acts
where the equivalent force due to pressure would act on that vertical projection: at h/3 up
from the base of the surface, the centroid of the pressure prism. Because FV is the weight
of the fluid supported by the surface, it acts at the x-coordinate of the centroid of that vol-
ume of fluid. These coordinates come naturally out of the moment calculation. Taking our
reference point as the origin of the x, z axes, we require

FHzH︸ ︷︷ ︸
moment due to concentrated
horizontal force component

= ρgw

h∫

0

z(h − z)dz.

︸ ︷︷ ︸
sum of all moments due to all
infinitesimal forces dFH, each

with moment arm z

(16.38)

For any curved surface (since the shape of the curve, x(z) does not enter into the integral),
this moment equivalence requires that zH = 1

3 h. We must also have

FVxV︸ ︷︷ ︸
moment due to concentrated

vertical force component

= ρgw

x0∫

0

x(h − z)dx.

︸ ︷︷ ︸
sum of all moments due to all
infinitesimal forces dFV, each

with moment arm x

(16.39)

For our parabolic surface, we plug in z = (h/x2
0)x2, and we get xV = 3

8 x0. This is in fact
the x-coordinate of the centroid of a parabolic section. The line of action of the resultant

force FR =
√

(F 2
H + F 2

V) passes through the point (xV, zH) with slope = tan−1(FV/FH).

16.5 Buoyancy

An object that is submersed in fluid is subjected to hydrostatic pressure over its entire
surface area. In the previous section, we limited ourselves to the consideration of simple
surfaces—walls, gates, and dams. However, if we recognize that the hydrostatic pressure
acts on all surfaces, we see clearly how a resultant buoyancy force arises. The sketch in
Figure 16.11 illustrates this.

Archimedes (287–212 BC) was a Greek mathematician who invented the lever, fine-tuned
the definition of pi, and “discovered” buoyancy. Though some details of this story have
taken on the distinct patina of apocrypha, it is still a cracking-good yarn. Archimedes’ close
friend, King Hiero of Syracuse, suspected that the gold crown he had recently received
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Net

FIGURE 16.11
Distributed force due to hydrostatic pressure on a submerged object. Left, distributed; right, net resultant upward
vertical buoyancy force.

from the goldsmith did not include all of the gold he had supplied. He shared his suspi-
cions with Archimedes, who (it is said) went home to ruminate in the bathtub. Archimedes,
ever observant, noticed that his body displaced the bathwater—when he got into the tub,
the water level rose. He quickly calculated that the weight of displaced water balanced
his own weight, and celebrated this discovery by running through the streets shouting
“Eureka (I have found it),” so intoxicated by hydrostatics that he neglected to dry off or
don a bathrobe. The next day, so the story goes, Archimedes dunked his friend’s crown,
as well as a lump of gold equal to what he had provided to the goldsmith, and found that
they did not displace equal amounts of water. The crown did, in fact, contain less gold than
the King had specified. The goldsmith, unable to produce the remainder of the gold, was
beheaded posthaste.

Archimedes’ principle states that the buoyant force on an object equals the weight of the
volume of fluid the object displaces.

The force on a submerged object due to the fluid’s hydrostatic pressure tends to be an
upward vertical force, as the pressure in the fluid increases with depth and the resul-
tant force is upward. Refer to Figure 16.11 to visualize this. If this buoyancy force exactly
balances the weight of the object, the object is said to be neutrally buoyant.

The line of action of the buoyancy force acts through the centroid of the displaced fluid
volume. The stability of an object designed to float on or maneuver in a fluid depends on
the moments due to the buoyancy and weight forces on the object, and whether the resul-
tant moment will tend to right or to capsize the craft. For submerged vessels that operate
at a range of depths, mechanisms that allow active control of these forces are necessary.
Tanks that can be flooded or filled with air to adjust the vessel’s weight mimic the swim
bladder in fish to allow vessels to maintain the proper force balance.

16.6 Examples

EXAMPLE 16.1

Determine the pressure difference between the benzene at A and the air at B.

Given: Manometer geometry and gage fluids; heights of fluid columns.

Find: Pressure difference between A and B.
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Assume: No relative motion of fluid elements (hydrostatics); fluids have constant,
uniform density, and it is appropriate to evaluate densities at 20◦C.

Water

8 cm

9 cm

14 cm

40 cm

Air

20 cm

Benzene

Kerosene

Mercury

A
B

2
4

3

1

Solution

We look up the properties of the fluids used in our manometer at 20◦C and find that

Fluid Density ρ (kg/m3)

Water 998
Mercury 13,550
Air 1.2
Benzene 881
Kerosene 804

We know that in a fluid at rest, the pressure depends only on the elevation in the fluid.
Thus, in any continuous length of the same fluid, two points at the same elevation must
be at the same pressure. Manometers are based on this principle. We find the requested
pressure difference by starting at point A and working our way through the manometer,
noting that the pressure increases when the fluid level drops and that pressure decreases
when the fluid level rises.

Point 1: P1 = PA + ρBgh1
Point 2: P2 = P1 − ρMgh2
Point 3: P3 = P2 − ρKgh3
Point 4: P4 = P3 + ρWgh4
At B: PB = P4 − ρAgh5.

So, PB = PA + ρBgh1 − ρMgh2 − ρKgh3 + ρWgh4 + ρAgh5. Factoring out g, we have
PB − PA = g(ρBh1 − ρMh2 − ρKh3 + ρWh4 + ρAh5):

PB − PA = (9.8 m/s2)[(881 kg/m3)(0.2 m) − (13,550 kg/m3)(0.08 m)

− (804 kg/m3)(0.32 m)

+ (998 kg/m3)(0.26 m)

− (1.2 kg/m3)(0.09 m)] = −8885 Pa,

or, PA − PB = 8.9 kPa.
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EXAMPLE 16.2

Panel ABC in the slanted side of a water tank is an isosceles triangle with the vertex at
A and the base BC = 2 m, as shown. Find the force on the panel due to water pressure,
and this force’s line of action.

Water

4 m

3 mB, C

A

Given: Dimensions of panel in water tank.

Find: Resultant force on panel, location of center of pressure.

Assume: No relative motion of fluid elements (hydrostatics); water has constant,
uniform density, equal to its tabulated value at 20 ◦C (998 kg/m3).

Solution

We first want to understand the geometry of the triangular panel. We are given a side
view of the tank, and the height of the triangle ABC . In a head-on view, we would see
the panel as sketched below at left.

2 m

5 m

3 m

4 m

53°
B, C

A

(52 + 12) = 5.1 m

B C

AB = AC =

A

The water pressure has a hydrostatic distribution, as sketched above at right, and
the resultant force is found by integrating this pressure over the panel area. This is
equivalent to the formula:

FR = ρghc A,

where hc is the depth of the centroid of the submerged surface, the triangular panel
ABC . The depth of point A is zero; the depth of points B and C is 4 m. The depth of
the centroid of the triangular gate ABC is 2/3 of the way down. (Note: This is because
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the submerged surface is a triangle, not because the pressure has a triangular pressure
prism.)

hc = 2
3
(4 m) = 2.67 m,

A = 1
2

bh = 1
2
(2 m)(5 m) = 5 m2.

So,

FR = ρghc A = (998 kg/m3)(9.8 m/s2)(2.67 m)(5 m2),

FR = 131,000 N = 131 kN.

This force acts at the center of pressure of the submerged panel ABC . Due to the sym-
metry of the panel, this is on the centerline (xR = 0), and we are only required to calculate
the y-coordinate yR.

Ay

hc = 2.67 m

B,C
Similar triangles:

4
5

2.67= yc
yc = 3.33 m

yR = yc + Ixc
yc A

= yc + Ixc sin θ

hc A

= yc + (1/36)bh3 sin θ

hc A

= 3.33 m + (1/36)(2 m)(5 m)3 sin 53◦

(2.67 m)(5 m2)

= 3.33 m + 0.417 m

= 3.75 m.

Note that this yR is measured down from A, along the panel surface, as shown in the
sketch.

B,C

FR yR

A
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EXAMPLE 16.3

Gate AB has an evenly distributed mass of 180 kg, and is 1.2 m wide “into the page.”
The gate is hinged at A and rests on a smooth tank floor at B. For what water depth h
will the force at point B be zero?

Water

1 m

60°

A

B

Glycerin

2 m
h

Given: Gate dimensions and mass; fluids on either side.

Find: Water depth h required for RB = 0.

Assume: No relative motion of fluid elements (hydrostatics); fluids have constant,
uniform density, and it is appropriate to evaluate densities at 20◦C. Looking up
these values, we find that the densities of water and glycerin are 998 kg/m3 and
1260 kg/m3, respectively.

Solution

We start with a FBD of gate AB.

Fglycerin

Fwater

W

RAy

RB = 0

RAx

We intend to apply the equations of equilibrium to the gate, to ensure the proper
relationships between forces and meet the constraint that RB must be equal to 0. To do
this, we will first need to evaluate all the forces in the FBD. The weight of the gate is
simply m g, or W = (180 kg)(9.8 m/s2) = 1766 N, and this force acts at the centroid of the
gate.

1.2 m

1 · sin 60˚
= 0.866 m

A
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Next, we must find the forces on the gate due to fluid pressure, and where they act.
We begin with glycerin. Since we would prefer not to have to find the reaction forces
at A, we plan to sum moments about this point. We will need to know the depth of the
centroid of the gate, hc, measured from the surface of glycerin. The gate is a rectangle,
as shown above, and due to its symmetry, its centroid is simply 0.433 m down from the
hinge at A. The depth of the centroid is thus 2 m − 0.433 m = 1.567 m below the glycerin
surface.

Fglycerin = ρglyceringhc A

= (1260 kg/m3)(9.8 m/s2)(1.567 m)(1.2 m2)

= 23.2 kN.

This force acts at yR = yc + Ixc/(yc A) = yc + Ixc sin θ/(hc A), and since we intend to
sum moments about A, we would like to know the moment arm from Fglycerin to point
A. Thus, we are most concerned with how much deeper yR is than yc, as yc is clearly
0.5 m from point A.

yR − yc = Ixc sin θ

hc A
= (1/12)bh3 sin θ

hc A
= (1/12)(1.2 m)(1 m)3 sin 60◦

(1.567 m)(1.2 m2)
= 0.0461 m.

We now know that Fglycerin = 23.2 kN has a moment arm of 0.5461 m relative to point A.
What remains to be found is the force due to the water on the other side of the gate.

Both the magnitude of this force and its moment arm (where it acts) will depend on
the depth of water, h. For the moment, we will leave both these values in terms of the
depth of the centroid of the gate, hc, measured from the water surface—the depth h =
hc + 0.433 m.

Fwater = ρwaterghc A

= (998 kg/m3)(9.8 m/s2)hc(1.2 m2)

= (11.75hc) kN.

And this force acts at yR, where

yR − yc = Ixc sin θ

hc A
= (1/12)bh3 sin θ

hc A
= (1/12)(1.2 m)(1 m)3 sin 60◦

hc(1.2 m2)
= 0.0722

hc
.

So, Fwater = 11.75hc kN has a moment arm of (0.5 + 0.0722/hc) m relative to point A.

RB = 0

RAy

RAx

11.75 hc

1.766 kN

0.5461 m

23.2 kN

0.5 + (0.0722/hc) m
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We choose to sum moments about point A to avoid having to solve for the hinge
reaction forces, and require that the gate be in equilibrium:

&
∑

MA = 0 = (23,200 N)(0.5461 m) + (1766 N)(0.5 cos 60◦) − (11, 750hc)

(
0.5 + 0.0722

hc

)
.

Solving this expression for hc, we find

hc = 2.09 m.

The depth of the water is then h = hc + 0.433 m = 2.52 m.

EXAMPLE 16.4

The bottle of champagne shown is under pressure, as indicated by the mercury-
manometer reading. Compute the net vertical force on the 2-in radius hemispherical
end cap at the bottom of the bottle.

4 in
2 in

6 in

r = 2 in Mercury

Given: Pressure measurement; bottle geometry.

Find: Net vertical force on hemispherical surface.

Assume: No relative motion of fluid elements (hydrostatics); fluids have constant, uni-
form density, and it is appropriate to evaluate densities at 68 ◦F. We look up values
for champagne and mercury at this temperature and find that (ρg)C = 59.9 lbf/ft3,
and (ρg)M = 847 lbf/ft3.

Solution

We have a manometer that gives us the champagne pressure at a height of 6 in (We will
denote values at this position by the subscript ∗), if we work through the U-tube as we
did in Example 16.1:

p∗ + (ρg)C

(
2
12

ft
)

− (ρg)M

(
4
12

ft
)

= patm = 0 (gage).

So,

p∗ = (ρg)M(0.333 ft) − (ρg)C(0.167 ft)

= (847 lbf/ft3)(0.333 ft) − (59.9 lbf/ft3)(0.167 ft)

= 272 lbf/ft2 = 272 psf.
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This pressure p∗ acts on the circular cross-sectional area of the champagne bottle at a
height of 6 in, imparting a resultant force of p∗ A = (272 psf)(π

4 ( 4
12 ft)2) = 23.74 lbf on the

champagne below it. In addition, the champagne below this 6 in height imparts its own
force on the hemispherical surface. The vertical component of this force, which we are
looking for, can also be interpreted as the weight of this champagne above the surface.
The net vertical force on the endcap will thus be the p∗ A force already calculated, plus
the weight of the fluid below ∗ and above the hemispherical surface. Since we know the
specific weight of the champagne, we need only to find the volume between ∗ and the
endcap.

= –6 in

4 in 4 in

FV = p∗ A+ weight of champagne

= p∗ A+ (ρg)C

[
π(0.167)2(0.5) − 2π

3
(0.167)3

]
= 23.74 lbf + [2.61 − 0.58] lbf

= 25.8 lbf.

EXAMPLE 16.5

A parabolic dam’s shape is given by z/z0 = (x/x0)2, where x0 = 10 ft and z0 = 24 ft. The
dam is 50 ft wide (into the page). Find the resultant force on the dam due to the water
pressure, and its line of action.

Pa

h = z0 = 24 ft

z

x
x0 = 10 ft

z/z0 = (x/x0)2

Given: Geometry of dam; water depth.

Find: Resultant force due to pressure; line of action.

Assume: No relative motion of fluid elements (hydrostatics); fluids have constant,
uniform density, and it is appropriate to evaluate densities at 68◦F.
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Solution

We look up the density of water at this temperature and find that ρg = 62.4 lbf/ft3. We
will find separately the horizontal and vertical components of the resultant force on the
dam surface. To find the horizontal component FH, we consider the vertical projection
of the curved dam surface, a rectangle which is 24 ft high and 50 ft wide (into the page).
This projected surface has an area A = (24)(50) = 1200 ft2, and its centroid is halfway
down, at a depth of hc = 12 ft. So,

FH = ρghc A

= (62.4 lbf/ft3)(12 ft)(1200 ft2)

= 899,000 lbf

= 899 kips.

This force acts at the centroid of the pressure prism on the projected vertical surface,
at zH = h/3 = 8 ft from the bottom.

The vertical component FV can be interpreted as the weight of fluid above the curved
surface. We consider the properties of a parabolic section, as shown in the sketch, to find
this value.

x0

z0

z0
x0z0A =

3

3

5

2

FV = ρg V–

= ρg
(

2
3

x0z0

)
(50 ft)

= (62.4 lbf/ft3)

[
2
3
(24 ft)(10 ft)

]
(50 ft)

= 499,000 lbf

= 499 kips.

This force acts at the x-coordinate of the centroid of the volume of fluid, V– . From our
sketch, we see that this is 3x0/8 = 3.75 ft from the origin indicated above.

The resultant normal force on the surface of the parabolic dam is

FR =
√

F 2
H + F 2

V

=
√

(899 k)2 + (499 k)2

= 1028 kips.
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The line of action of this force passes through the point (xV, zH) = (3.75 ft, 8 ft), and
has slope equal to tan−1(FV/FH) = tan−1(499/899) = 29◦.

FR = 1028 k

499

899
Center of pressure

3.75 ft

z = 0.24x2

8 ft

PROBLEMS

16.1 In 1646, the French scientist Blaise Pascal put a long vertical pipe in the top of a barrel
filled with water and poured water in the pipe. He found that he could burst the
barrel (not just make it leak a bit like the picture shows) even though the weight of
the water added in the pipe was only a small fraction of the force required to break
the barrel. Briefly explain his finding.

16.2 In each of the gates shown, the top of the gate is supported by a frictionless hinge.
Each has a rectangular overhang that sticks out or in a distance a from the gate (a
is small relative to the depth h). A stop at the bottom of each wall prevents it from
opening in a counterclockwise direction. When the water is at the same depth h in
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both cases, what is the ratio of the horizontal force exerted on stop (a) to the horizontal
force exerted on stop (b)? Please draw appropriate FBDs.

Hinge(a)

h/3

h/3

h/3 a
Stop

Hinge(b)

h/3

h/3

h/3 a
Stop

16.3 The wood (σys = 8 ksi, E = 1.5 × 106 psi) forms for a concrete wall that is to be 8 ft
high are sunk into the ground at the bottom (fixed support) and held in place at the
top (10 ft from the ground) by 0.5-in diameter tie rods that permit negligible horizon-
tal deflection at that height. Each plank in the form may be modeled as an individual
beam.

Each plank
cross section
is 4 in × 12 in

Concrete

10 ft

(End view)

4 in

8

Assuming that concrete behaves as a liquid (specific gravity = 2.5) just after it is
poured, determine

a. The resultant force on a plank due to the concrete, and its corresponding center
of pressure (height as measured from the ground)

b. The normal stress in a tie rod using the actual distributed load

c. The maximum normal stress due to bending in a plank using the actual distributed
load

16.4 For wall A shown, what is the magnitude and line of action of the horizontal compo-
nent of the hydrostatic force of the water on the wall (an arc of a circle)?

If you were to compare the maximum normal stress due to bending in walls A and
B, (induced by the hydrostatic loading), would B’s be lower, the same, or greater than
A’s? (Explain briefly in a complete sentence.)

B

hh

A
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16.5 A tall standpipe with an open top, as shown, has diameter d = 2 m and wall thickness
t = 5 mm.

d

t

a. If a circumferential stress of 32 MPa is measured in the wall at the bottom of the
standpipe, what is the height h of water in the standpipe?

b. What is the axial stress in the standpipe wall due to the water pressure?
c. What is the maximum shear stress induced in the standpipe wall, and where

does it occur?

16.6 A closed tank contains 1.5 m of SAE 30 oil, 1 m of water, 20 cm of mercury, and an
air gap on top. The absolute pressure at the bottom of the tank is 60 kPa. What is the
pressure in the air?

16.7 Consider a circular cylinder of radius R and length L , and in inverted cone (point/tip
up) with base radius R and height L . Both cylinder and cone are filled with water
and open to the atmosphere. Write a concise, coherent paragraph that explains the
hydrostatic paradox: Both containers have the same downward force on the bottom
since those bases have the same surface area, even though the cone’s volume is only
one-third of the cylinder’s volume.

16.8 The Three Gorges Dam ( ) is 2309 m long, 185 m tall, and 115 m wide at the
base.
a. Determine the horizontal component of the hydrostatic force resultant on the

dam exerted by water 175 m deep.
b. If all of the people in China (approximately 1.3 billion) were to somehow simul-

taneously push horizontally against the dam, could they generate enough force
to hold it in place with the water at this depth? Support your answer with
appropriate calculations.

16.9 What force P is needed to hold the 4-m-wide gate shown closed?

6 m
Water

Hinge 3 m+

P
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16.10 Suppose you have three spheres of cork, aluminum, and lead, each with diame-
ter 1.5 cm. You drop all three spheres into a cylinder of water. Explain the different
behavior of the three spheres upon their release.

16.11 A solid brass sphere of diameter 11.0 in is lowered into the ocean to a depth of
10,000 ft. Determine the change in diameter, the change in volume, and the strain
energy of the sphere due to hydrostatic pressure.

16.12 Sometimes when you are driving into the mountains, or even riding an elevator,
your ears “pop” as the pressure difference between the inside and outside of the
ear is equalized. (As you ascend and ambient air pressure decreases, the air trapped
in your inner ear pushes your eardrums outward; this expansion is uncomfortable,
and also makes it harder to hear. Your body equalizes the pressure by venting some
of the trapped air through your Eustachian tubes, two small channels that connect
the inner ears to the throat.) Estimate the pressure difference (in Pa) associated with
this phenomenon if it occurs during a 50 m elevation change.

16.13 A water-filled U-tube manometer is used to measure the pressure inside an air tank.
The water level in the U-tube on the side connected to the tank is 5 ft above the base
of the tank. The water level in the other side of the U-tube, open to the atmosphere,
is 2 ft above the base. What is the pressure inside the tank?

16.14 A hydraulic press is shown below. The plunger has an area of 1 in2, and a force, F1,
can be applied to the plunger through a lever with a mechanical advantage of 8 to
1. If the large piston has an area of 150 in2, what load F2 can be raised by a force of
30 lbf applied to the lever?

Hydraulic fluid F1

F2

16.15 A square gate, 4 m by 4 m, is located on the 45◦ face of a dam. The top edge of the
gate is 8 m below the water surface. Determine the resultant force of the water on
the gate, and the point through which it acts.

16.16 A long, vertical wall separates seawater from fresh water. If the seawater is 7 m deep,
what depth of freshwater is required to yield a zero resultant force on the wall?
When the resultant force is zero, will the net moment on the wall due to fluid forces
also be zero? Explain.
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16.17 In the vessels shown in the figure below, the amount of liquid is not constant, but the
height of the fluid surface is the same for each vessel. In which vessel is the pressure
of the fluid on the bottom of the vessel the greatest?

A B C D E
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Case Study 8: St. Francis Dam

At 3 min before midnight, March 12, 1928, the St. Francis Dam—built to supply water to
the growing city of Los Angeles—collapsed (Figure 17.1). During the early morning hours
of March 13th, more than 38,000 acre-feet of water surged down from 1650 ft above sea
level. At its highest, the wall of water was said to be 78 ft high; by the time it hit Santa
Paula, 42 miles south of the dam, the water was 25 ft deep. Almost everything in the
water’s path was destroyed: livestock, structures, railways, bridges, and orchards. Ulti-
mately, parts of Ventura County lay under 70 ft of mud and debris. Over 500 people were
killed, and damage estimates topped $20 million.

William Mulholland, an Irish immigrant who had risen through the ranks of the city’s
water department∗ to the position of chief engineer, had proposed, designed, and super-
vised the construction of the 238-mile Los Angeles Aqueduct, which brought water from
the Owens Valley to the city. The St. Francis Dam had been one of the more controver-
sial aspects of his plans. Still, the charismatic Mulholland had the full support of the
Department of Water and Power (DWP) and city leaders. The dam was violently opposed
by Owens Valley residents, who sabotaged its construction and often un-built portions
overnight. The Aqueduct itself had been dynamited in 1924. The St. Francis Dam was
Mulholland’s 19th, and final, dam. Figure 17.2 shows Mulholland surveying its wreckage.

The St. Francis was a curved gravity concrete dam, designed to be 62 m high. During
construction, the height was increased by 7 m to allow more water to be stored in the
reservoir. No change was made to the other dimensions of the dam. In the days before the
dam collapsed, the water level in the reservoir was only inches below the top of the dam.

At the subsequent inquest, it was demonstrated that the dam was leaking as late as the
day before the collapse, and it was brought into evidence that the Department of Water
and Power—and more importantly, Mulholland himself—knew it. Mulholland testified
that he had been at the dam the day before the break, but said that he hadn’t noticed
anything unusual. A muddy leak had so worried the resident dam keeper that he’d called
Mulholland out to investigate, but Mulholland and his deputy pronounced the leak safe
before returning to the city. Leaks, he pointed out in his testimony, were not particularly
unusual in dams, especially dams as large as the St. Francis.

Although the assignation of cause and culpability is still a contentious subject among
modern analysts, the 1928 jury ruled that the disaster was caused by the failure of a fault
and rock formations on which the dam was built. Even so, the public held the DWP,
and particularly William Mulholland, responsible. This included Mulholland himself, who
uttered unforgettably, “I envy the dead.” Mulholland attempted to resign from his post as
Chief Engineer, but his board refused, stating: “The board hereby declines to grant such
a request and urges the chief to remain on the job he has so faithfully filled for half a
century.”

∗ Mulholland’s first job with the DWP was as a “Zanjero,” digging wells and maintaining the aque-ditches,
called “zanjas,” that lined Los Angeles streets to distribute water from the Los Angeles River.

363
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FIGURE 17.1
St. Francis Dam before and after the collapse. (Photographs courtesy of Santa Clarita Valley Historical Society.)

FIGURE 17.2
Mulholland and H. Van Norman, inspecting wreckage at the St. Francis Dam, March 15, 1928. (Photograph
courtesy of Santa Clarita Valley Historical Society.)

Still, Mulholland insisted, “Fasten [the blame] on me. If there was any error of
judgment—human judgment—I was the human.” The Coroner’s inquest cleared Mulhol-
land and the LADWP of any crimes, but stated unequivocally that the disaster had been
caused by an error in engineering judgment and recommended:

The construction and operation of a great dam should never be left to the sole judgment of one
man, no matter how eminent.

Although no criminal charges were brought against Mulholland, he retired from the
DWP soon after the jury’s verdict, and lived in self-imposed exile until he died in 1935, at
79 years old.

Recent investigations into the St. Francis Dam disaster have revealed that the ground
on which it was built was indeed unstable; it was constructed on the site of an ancient
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landslide, which 1920s engineers could not have detected, and tunnels created during
the construction process may have further weakened the foundation. Even so, its design
has been shown to be inadequate (as we will see in even the simplified analyses of Prob-
lems 17.1–17.4), and out of step with the contemporary understanding of concrete gravity
dam requirements. In response to the disaster, the California legislature updated its dam
safety program and eliminated the exemption of municipal engineering departments from
regulations. Having determined that the unregulated design of construction projects con-
stituted a hazard to the public, the California legislature passed laws to regulate civil
engineering and, in 1929, created the state Board of Registration for Civil Engineers (now
the Board for Professional Engineers, Land Surveyors, and Geologists).

PROBLEMS

17.1 For a dam of height H = 62 m, thickness b, and width into the page w = 75 m as
shown, made of concrete with a density of 2300 kg/m3, retaining a body of water
that is 60 m deep, find the net moment about point A and the minimum thickness of
the dam that will prevent this moment from overturning the dam.

b

H

A

Water
ρ = 1000 kg/m3

g

17.2 If the dam’s height is increased to 70 m, and the water depth rises to 68 m, what
thickness b is required to prevent tipping?

17.3 The St. Francis dam (with dimensions as in Problem 17.2) was observed to be leaking
muddy water at its base, indicating that water was seeping under and around its
supports. If water is allowed to penetrate freely under our model dam to point A,
what thickness b is necessary to prevent the dam from tipping?

17.4 If we refined our model to more accurately represent the geometry of the St. Francis
dam, including the curvature of the surface, would you expect the required thickness
b to increase or decrease? Why?
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18
Fluid Dynamics: Governing Equations

In Chapter 17, we considered cases in which there was no relative motion of fluid
particles—no velocity gradients, and thus no shear stress. Now we will consider the
somewhat more interesting flows in which velocity gradients and accelerations do appear.

18.1 Description of Fluid Motion

You have probably seen the car companies’ ads featuring this year’s models in wind
tunnels, with smoke tracing the flow of air over the cars’ streamlined curves. There
is a mathematical way to define the equations of these smoke traces, and a physical
interpretation of them, that we will find quite useful in our discussion of fluid dynamics.

The velocity field specifies the instantaneous speed and direction of the motion of all
points in the flow. A streamline is everywhere tangent to the velocity field and so reflects
the character of the flow field. Streamlines are instantaneous, being based on the velocity
field at one given time. The smoke traces mentioned above and illustrated in Figure 18.1
are streaklines, which include all the fluid particles that once passed through a certain point.
We may also describe a flow field with pathlines, which represent the trajectory traced out
by a given fluid particle over time. When the flow is steady, or independent of time t, the
streamlines, streaklines, and pathlines coincide.

For a two-dimensional flow field, we can find the equations of streamlines by applying
their definition. Since streamlines are tangent to velocity, the slope of a streamline must
equals the tangent of the angle that the velocity vector makes with the horizontal, as shown
in Figure 18.2. In mathematical language, this is

dy
dx

= v

u
, or

dx
u

= dy
v

, (18.1)

so that if the velocity field is known as a function of x and y (and t, if the flow is unsteady),
we simply integrate the above expression to find the equation of the streamline.

For a three-dimensional flow, we write

dx
u

= dy
v

= dz
w

= ds. (18.2)

And we can integrate these expressions with respect to s, holding time constant and
using the initial condition (x0, y0, z0, t0) at s = 0, then eliminate s to find the equation of
the streamline.

367
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FIGURE 18.1
Smoke-traced streaklines of flow around a car. (From DaimlerChrysler. With permission.)

tan θ = slope
of streamline

V2

V3

V

x

y

u

vθ
V1

FIGURE 18.2
Streamlines are tangent to the velocity field.

For the two-dimensional flow of an incompressible∗ fluid, an even lovelier method of
finding streamlines exists. We need only remember that for incompressible flow, ∇ · V = 0,
or

∂u
∂x

+ ∂v

∂y
= 0. (18.3)

We can then define a stream function ψ by the following:

u = ∂ψ

∂y
, (18.4a)

and

v = −∂ψ

∂x
. (18.4b)

Lines of constant ψ are the streamlines for the flow with V = (u, v).
Streamlines can give us important information about the pattern and relative speed of

flow. Closely spaced streamlines reflect faster flow than widely spaced streamlines. There
is no flow across or through streamlines, since the velocity field is purely tangential to these
lines. Streamlines can hence be thought of as boundaries for the flow. Fluid particles on
one side of a streamline will never cross it. Solid boundaries of resting solids are always
streamlines, since flow does not penetrate them.

∗ A similar stream function may be derived for compressible flows, though this is outside the scope of this book.
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18.2 Equations of Fluid Motion

Although the physics of fluid mechanics is certainly familiar—neither mass conservation
nor F = ma is a new concept—fluid particles are much harder to keep track of than the solid
bodies we have considered previously. It is very difficult to follow a prescribed amount of
fluid mass around. We will therefore need some new tools with which to apply the same
old physics.

Rather than following the flow of a fixed fluid mass, which would be quite challenging,
we will keep track of a prescribed volume through which fluid may flow. This volume may
be thought of as an imaginary “cage” for fluid, though it is more commonly known as a
control volume. We may choose to have a “cage” of finite size, in which case we will use the
integral governing equations of Section 18.3, or of infinitesimally small size, in which case
our equations will be the partial differential equations of Section 18.4.

18.3 Integral Equations of Motion

We will first apply our “old physics” to a control volume or “cage” of finite size. This
approach is particularly useful when we are interested in the large-scale behavior of
the flow field, and the effect of a flow on devices such as nozzles, turbine blades, or
heart valves.

In our study of solid mechanics we often used a free-body diagram, in which we iso-
lated an object from its surroundings, replaced these surroundings by the actions they had
on our object, then applied Newton’s laws of motion. The fluid mechanics equivalent of
this free-body or object would be a fluid element, a specific quantity of matter composed
of many fluid particles. This is the so-called system approach. However, fluids move and
deform in such a way that it is difficult to keep track of a specific quantity of matter. It is
easy to follow a branch moving on the surface of a river, but it is hard to follow a particular
portion of water in the river. This is why we consider the flow through set boundaries (in
this section, finite control volumes) instead of the mass once contained in these boundaries.

18.3.1 Mass Conservation

When a fluid is in motion, it moves in such a way that mass is conserved. This principle,
known as mass conservation, places restrictions on the fluid’s velocity field. To see this,
we consider the steady (i.e., not changing in time) flow of fluid through a duct. A relevant
control volume (CV) is shown in Figure 18.3.

In this simple example, both inflow and outflow are one-dimensional, so that the veloc-
ity Vi and density ρi distributions are constant over the inlet and outlet areas. Applying
conservation of mass to this control volume means that whatever mass flows into the CV
must flow out. In some time interval �t, a volume of A1V1�t flows into the CV, and a
volume of A2V2�t flows out. These volumes are shaded in Figure 18.3. We multiply these
volumes by the fluid density at each control surface so that we will have the amount of
mass flowing in and out (ρ1 A1V1�t and ρ2 A2V2�t). We then balance mass in with mass
out, canceling the �t that appears in both terms, and have

ρ1 A1V1 = ρ2 A2V2. (18.5)
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A1

A2

CV

V1, ρ1

V2, ρ2

V1 Δt

V2 Δt

FIGURE 18.3
CV for a steady, one-dimensional fluid through a duct.

These terms are now mass flow rates, a.k.a. mass fluxes, as we have divided by �t. This
mathematically states that mass flow rate entering the control volume is balanced by mass
flow rate leaving it. For a more general CV with N inlets and outlets, we would write

N∑
i=1

ρi Ai Vi = 0, (18.6)

with inflows negative and outflows positive.
We now move beyond this simple case of one-dimensional, steady flow. To conserve

mass, we require no net change of mass in our volume. In the previous example, the amount
of mass in our control volume changed only due to flow in and flow out. The amount of
mass may also change in time due to the flow’s unsteadiness. In a more general equation,
we must account for both.

Total rate of
change of
property

=
Time rate of

change in
property

+
Flux of

property across
CV surfaces

In our earlier example, this was easy to do: because it was a steady flow, there was no
time rate of change, and because the flow was one-dimensional and uniform, the flux was
easily computed. We need a more general mathematical statement of mass conservation.

The time rate of change of mass in our control volume is the time derivative of the total
product of CV fluid density and the volume (integrated over the volume, since density of
fluid can vary spatially)

Time rate of change = ∂

∂t

∫

CV

ρ d V– . (18.7)

The flux of mass across a control surface is the amount of mass per unit time that is
transported across the surface’s area with outward unit normal vector n̂. Hence for a CV
with N inlets and outlets

Flux across surfaces =
N∑

i=1

ρi
(
V · n̂

)
i Ai . (18.8)
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CV

dA

dV

n̂

FIGURE 18.4
Standard potato-shaped control volume (CV).

The dot product (V · n̂)i is simply the normal component of velocity across the ith con-
trol surface, and since n̂ is an outward normal vector, product (V · n̂)i is negative for flows
into the control volume, and positive for flows out of it. More generally, when we do not
have discrete areas with constant density, velocity, and normal vectors:

flux across surfaces =
∫

CS

ρ(V · n̂) dA. (18.9)

We sum, or integrate, the fluxes across all the control surfaces, as shown in Figure 18.4.
Mass conservation requires that the total change in mass in the control volume, which

must equal the sum of the time rate of change of mass in the CV plus the flux of mass
across all control surfaces, is equal to zero:

0 = ∂

∂t

∫

CV

ρ d V– +
∫

CS

ρ(V · n̂) dA. (18.10)

This is how we write mass conservation for a finite-sized control volume.

18.3.2 Newton’s Second Law, or Momentum Conservation

In order to write down Newton’s second law,
∑

F = ma for a finite control volume, we
must consider (1) all forces on the fluid in the CV that may cause an acceleration, and (2)
how to express the fluid’s ma, or the total rate of change of its linear momentum.

Forces on a fluid, just like those acting on a solid, may be either surface (acting through
direct contact, on control surfaces) or body forces (acting on the entire control volume with-
out contact, and sometimes called “field” forces). We will begin with surface forces. We are
already familiar with the notion that a difference in pressure imparts a force. Indeed, a
pressure gradient can cause a fluid to move toward the region of lower pressure. The force
on a fluid due to pressure variation must be included in

∑
F = ma. When there is relative

motion of fluid particles, a frictional force (i.e., a viscous stress) is developed and acts on
the fluid. Because of the complex form of the constitutive law for fluids, this can be the
hardest term to construct; fortunately, it is often possible to neglect viscous effects relative
to pressure gradients, inertia, and other forces. We will add only a rather vague “Fvisc” to
the equation at this time. The primary body force acting on fluids is gravity. We may also
include external reaction forces (from ducts or other surfaces) that act on the fluid.
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A1 A2

CV

V1, ρ1, ρ1

V2 , ρ2  , ρ2

V1 Δt
V2  Δt

FIGURE 18.5
CV for a steady, one-dimensional fluid through a duct.

The total change in linear momentum of fluid in the control volume, like the total change
in mass, must be written as its time rate of change plus the flux of it across control surfaces.
We will again start with a fairly simplistic example: steady, one-directional flow through a
duct, as in Figure 18.5.

Because V2 �= V1, we know the fluid is accelerating between the inlet and outlet
surfaces—even though the velocity is not changing in time, there is acceleration due to
spatial variation in velocity. This fluid acceleration must equals the net force on the fluid in
the control volume. The resultant force on the fluid, as we have just discussed, must con-
sist of forces: (1) due to pressure variation, (2) due to viscous stresses, (3) due to gravity,
and (4) exerted by the duct on the fluid, that is, reaction forces. To preserve the simplicity
of the example, we will neglect both viscous and gravitational effects. The resultant force
on the fluid in the CV is thus

p1 A1
pressure force
on left CS, in
+x-direction

− p2 A2
pressure force
on right CS, in
−x-direction

+ Rx
reaction
on fluid

from duct

= Fx, (18.11)

and is in the x-direction (as reflected by its subscript). It is a good practice to draw a free
body diagram, or FBD, of your control volume, indicating the relevant forces and their
orientations, as we do in Figure 18.6.

Having written down the resultant force Fx on the fluid, we must now write an expres-
sion for the total rate of change in the fluid’s x-momentum, to balance Fx. Because the flow
is steady, the x-momentum does not change in time; we simply need to account for the
flow of x-momentum into and out of the control volume. The difference between inflow

CV

Rx
p2A2p1A1

FIGURE 18.6
FBD of fluid in CV.
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and outflow, or the net change in x-momentum, will balance Fx. In some time interval �t, an
amount of x-momentum of (ρ1 A1V1�t)V1 flows into the CV, and an amount (ρ2 A2V2�t)V2
flows out. (Note that the x-momentum is simply the mass flux, already found in Sec-
tion 18.3.1, times the x component of velocity at the given control surface.) Again, outflow
is positive, so the net rate of change of momentum is the difference between these terms,
divided by the time �t: ρ2 A2V2

2 − ρ1 A1V2
1 . We can write the x-component of

∑
F = ma:

p1 A1 − p2 A2 + Rx = ρ2 A2V2
2 − ρ1 A1V2

1 . (18.12)

We want to generalize this, so we can apply our physics to less simplistic problems. The
forces are easy to generalize: the net pressure force can be written as the pressure p act-
ing on a given control surface, times the area of that control surface: pn̂ dA. We must sum
over all the control surfaces of our CV, and we will write this as an integral: − ∫

CS pn̂ dA,
where the negative sign reflects the fact that a positive p compresses our fluid. The force
due to gravity is also easy to write:

∫
CV ρg d V– , since it acts on the whole control volume.

Next we write a more general expression for the total rate of change of fluid linear momen-
tum. Again, the momentum is just mass times velocity, so this extends naturally from our
expressions for mass conservation:

Time rate of change = ∂

∂t

∫

CV

ρV d V– , (18.13)

Flux across surfaces =
∫

CS

ρV
(
V · n̂

)
dA. (18.14)

Note that V is a vector [V = (u, v, w)], and hence there are three components of each of
these expressions. We can now write the vector form of our general equation:

F = Fvisc + Fexternal +
∫

CV

ρgd V– −
∫

CS

pn̂dA = ∂

∂t

∫

CV

ρVd V– +
∫

CS

ρV
(
V · n̂

)
dA. (18.15)

As well as the form of its three component equations in Cartesian coordinates:

Fx = (Fvisc)x + (Fexternal)x +
∫

CV

ρgxd V– −
∫

CS

pî · n̂ dA = ∂

∂t

∫

CV

ρu dV– +
∫

CS

ρu(V · n̂) dA,

(18.16a)

Fy = (Fvisc)y + (Fexternal)y +
∫

CV

ρgy dV– −
∫

CS

pĵ · n̂ dA = ∂

∂t

∫

CV

ρv dV– +
∫

CS

ρv(V · n̂) dA,

(18.16b)

Fz = (Fvisc)z + (Fexternal)z +
∫

CV

ρgz d V– −
∫

CS

pk̂ · n̂ dA = ∂

∂t

∫

CV

ρw dV– +
∫

CS

ρw(V · n̂) dA,

(18.16c)

Note that in the final term, V · n̂ is a scalar quantity and so does not vary for the
component equations. This is how we write

∑
F = ma for a finite-sized control volume.
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18.3.3 Reynolds Transport Theorem

As we have said, the big difference between the forms of the governing equations for fluids
and solids is that fluids may flow across the surfaces of a control volume. (For a solid, a
control volume is a fixed mass of the solid!) The idea of the Reynolds transport theorem is
that we can relate these two approaches by accounting for the flow across control surfaces.

It is possible to obtain the equations for both mass and momentum conservation using
the Reynolds transport theorem, which says that the total rate of change of some quantity
η (a specific quantity, some parameter H per unit mass) is equal to the time rate of change
of η for the contents of the control volume plus a contribution due to the flow of η through
the control surface. For our purposes, H may be the mass of fluid in our control volume
(ρ d V– ), or the fluid momentum (Vρ d V– ). The Reynolds transport theorem has the general
form

D
Dt

∫
mass

(system)

η dm

︸ ︷︷ ︸
Time rate of change of η
for the coincident system

(if we were to follow a mass)

= ∂

∂t

∫

CV

ρη d V–

︸ ︷︷ ︸
Time rate of change of η

of the contents of the
coincident control volume

+
∫

CS

ρηV · n̂ dA.

︸ ︷︷ ︸
Net rate of flux of η

through control surface

(18.17)

We typically use D/Dt in this expression rather than d/dt, to represent the time rate of
change in a property (our η or H) subjected to a velocity field that varies in space and
time. The property can simply change in time, and it can also be affected by the motion
of flowing fluid. The operator D/Dt is sometimes called the “material derivative.” It has
the same meaning as the total derivative d/dt we learned in mathematics classes, requir-
ing the chain rule to fully characterize, but it is the convention to use material derivative
terminology and capital D’s in fluid mechanics.

Once again, to conserve mass, we must have “flow in” balancing “flow out,” and the
Reynolds transport theorem with H = mass, thus η = H/mass = ρ d V– /ρ d V– = 1 gives us:

0 = ∂

∂t

∫

CV

ρ d V– +
∫

CS

ρV · n̂ dA, (18.18)

where the left-hand side is zero since, by definition, D(mass)/Dt for a system is zero. For
the special case of a steady flow, the first term on the right-hand side drops out, and we
must have ∫

CS

ρV · n̂ dA = 0. (18.19)

To obtain the control volume form of momentum conservation, we apply the Reynolds
transport theorem to H = m V = ρ d V– V, or η = H/m = ρV d V– /ρ d V– = V, and get

F = ∂

∂t

∫

CV

ρV d V– +
∫

CS

ρV
(
V · n̂

)
dA, (18.20)

where the left-hand side is
∑

F since Newton’s second law tells us that
∑

F = ma =
d(m V)/dt. In other words, this equation tells us that the time rate of change of momentum
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contained in a fixed volume plus the net flow rate of momentum through the surfaces
of this volume, are equal to the sum of all the forces acting on the volume. (We have
developed the form of this sum, resultant force F in the previous section.)

18.4 Differential Equations of Motion

We can also construct useful expressions of mass conservation and
∑

F = ma for “cages”
or volumes that are infinitesimally small. This is useful when we want to know detailed
information about the flow at very small scales, at high resolution.

18.4.1 Continuity, or Mass Conservation

The principle of mass conservation is fundamental to the study of mechanics. It states that
mass is neither created nor destroyed; hence, the mass of a system remains constant as the
system moves through the flow field.

By considering the flow through an imaginary, very small cage in the flow field, we
can derive a useful mathematical expression of this principle. (Though this “cage” has the
same dimensions as our frequently discussed fluid element, with volume d V– = dx dy dz,
it is stationary.) The fluid has velocity V = (u, v, w) when it is at the center of the cage. Its
mass flow rate per unit area may then be written as (ρu, ρv, ρw).

We want to obtain an expression for the mass flow across the cage faces (control sur-
faces), to see what is flowing in and out of the cage (control volume). This is shown for
one direction of flow in Figure 18.7. We must multiply the face-specific expressions by the
appropriate areas (dx dz in both cases), and we can then combine them to get mass flow
rate in the y-direction:

(
dm
dt

)
y

= m y =
[
ρv + ∂(ρv)

∂y
dy
2

]
dx dz −

[
ρv − ∂(ρv)

∂y
dy
2

]
dx dz = ∂(ρv)

∂y
dx dy dz.

(18.21)

x

y

2

z

∂y

∂y∂(ρν)

2∂y

∂y∂(ρν)
ρν –

ρν ρν  +

FIGURE 18.7
Mass flow through a cage with volume dx dy dz. We have used Taylor expansions in order to express the values
of mass flow at all faces, just as we did for the pressure field.
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We repeat this in the x- and z-directions to have an expression for total mass flow rate
through the cage:

dm
dt

= m =
[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
dx dy dz. (18.22)

To satisfy mass conservation, this mass flow rate must balance the rate of mass decrease
within the element, − ∂ρ

∂t dx dy dz. Balancing these terms and canceling dx dy dz, we obtain

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0. (18.23)

This is the mass conservation equation, also known as the continuity equation, for fluids.
It is valid for steady or unsteady flow, and for incompressible or compressible fluids. We
remember that the last three terms, the sum of partials of the vector ρV, represent the
divergence of this vector, and we can rewrite the equation in vector form as

∂ρ

∂t
+ ∇ · (ρV) = 0. (18.24)

In vector form, this equation is independent of coordinate choice and will work in
cylindrical, spherical, or polar coordinates in addition to our Cartesian (x, y, z) friends.

We note that for steady flows, ∂ρ/∂t = 0. For incompressible (ρ ≈ constant) fluids, the
continuity equation reduces to ∇ · V = 0, as we saw in Section 13.5.1.

18.4.2 Newton’s Second Law, or Momentum Conservation

Just as for solids, the governing equation for fluid mechanics is Newton’s second law. We
have inched toward expressing this mathematically for fluids by writing out the forces due
to pressure, gravity, and viscosity. All that remains is to formulate the acceleration of a fluid
element, and since we know the effects of these forces, we can write

∑
F = ma.

Although the vast majority of problems we have seen have dealt with non-accelerating
solids, we are familiar with the idea that a solid’s acceleration is simply the rate of change
of its velocity. This is also true for fluids. We must consider the rate of change of the velocity
field, remembering that this “change” may be in time t, and also in x, y, and z.

Given a velocity field V = (u, v, w), where each component is allowed to vary in space
and time, so that ui = f (x, y, z, t), we know that the acceleration is the change in this veloc-
ity field in a time interval dt. The velocity of some fluid particle L is VL at time t, and at
some later time t + dt, as shown in Figure 18.8, has evolved:

VL
∣∣
t = V(x, y, z, t), (18.25a)

VL
∣∣
t+dt = V(x + dx, y + dy, z + dz, t + dt), (18.25b)

so the change in VL may be written as the difference between these two, or

dVL = V(x + dx, y + dy, z + dz, t + dt) − V(x, y, z, t)

= ∂V
∂x

dx + ∂V
∂y

dy + ∂V
∂z

dz + ∂V
∂t

dt, (18.26)
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z

t
t + dt

(x + dx, y+dy, z + dz)
(x, y, z)

y

x

FIGURE 18.8
Evolution of point L and its velocity VL .

so that the rate of change in VL , or dVL/dt, is

aL = dVL

dt
= ∂V

∂x
dx
dt

+ ∂V
∂y

dy
dt

+ ∂V
∂z

dz
dt

+ ∂V
∂t

, (18.27)

or more generally

a = ∂V
∂t

local

+ ∂V
∂x

u + ∂V
∂y

v + ∂V
∂z

w

convective

≡ DV
Dt

. (18.28)

This expression is defined as the material derivative of the velocity V. It may also be
written in vector form as

a = DV
Dt

= ∂V
∂t

+ (V · ∇)V. (18.29)

The material derivative is, in a sense, a derivative “following the fluid,” as it considers
the movement of the fluid particle in question. This way of writing the acceleration takes
into account the change in flow velocity in time and space, and equips us to write

∑
F = ma

for a fluid element. Notice that it expresses the total change in velocity as the time rate of
change, plus a reflection of spatial variation, of velocity.∗

We have the above expression for acceleration and we know that ma is ρ dx dy dz a. We
know that both surface and body forces can act on a fluid, and we know how to write the
forces due to gravity, pressure, and viscous effects. We also know about surface tension—
and because surface tension will come into play only at boundaries between fluids, it
affects the boundary conditions but not the governing equations themselves.

If viscous effects are neglected, we can write
∑

F = ma for a fluid element d V– :

ρ d V–
DV
Dt

= −∇ p d V– +ρg d V– , (18.30)

or, dividing through by d V– ,

ρ
DV
Dt

= −∇ p + ρg, (18.31)

∗ Again, we note that for a solid, whose mass could be vigilantly monitored, and which would not flow in
response to shear, this flux term would not be necessary.
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where typically g = −gk̂. This equation is Newton’s second law for an effectively invis-
cid fluid, first derived by Euler in 1755 and henceforth known as the Euler equation. It
is also known as the inviscid momentum equation, as it expresses the conservation of
linear momentum. Please note that the only assumption made in its derivation is that
of inviscid behavior—this equation holds for both compressible and incompressible flu-
ids, and steady and unsteady flows. Viscous effects are generally negligible far from flow
boundaries, allowing us to rely on Euler’s inviscid momentum equation in good faith.

If we include viscous effects, we must write the force on the fluid element due to the
viscous stress tensor, which was discussed in Section 13.5.4. In that discussion, the stress
tensor was shown to be composed of a portion due to pressure (already included in the
inviscid equation) and another portion that is proportional to the strain rate tensor, which
itself depends on the velocity gradients in the flow. The force due to stress tensor σ on
an element d V– may be written as ∇ · σ. (This requires the recollection of Gauss’ theorem,
to change the surface force

∫
A
σ dA to a force on the entire volume

∫
V

∇ · σ d V– . Physically,

we could derive this in the same way we determined the force due to pressure on a fluid
element d V– .) For a viscous, incompressible Newtonian fluid,∗

∑
F = ma is written

ρ
DV
Dt

= −∇ p + ρg + μ∇2V, (18.32)

where μ is the fluid’s viscosity, and the del-squared operator on V may be written in index
notation:

∇2ui ≡ ∂2ui

∂xj∂xj
= ∂2ui

∂x2
1

+ ∂2ui

∂x2
2

+ ∂2ui

∂x2
3

. (18.33)

Equation 18.32 (as well as its variants with the fuller stress tensor) is known as the
Navier-Stokes equation. This name is somewhat interesting since Claude Navier got it
wrong. He misunderstood viscosity and the dependence of the stress tensor on veloc-
ity gradients, and published a flawed derivation of

∑
F = ma for viscous fluids in 1822.

Though his results were correct, his reasoning was flawed. George Stokes later got the
derivation of the viscous terms right, and so his name was added to the marquee. How-
ever, in 1843, two years before Stokes’ results were published, a paper appeared by Jean
Claude Saint-Venant in which this equation was correctly derived and interpreted. It is
a mystery why the equation does not bear his name today. As students of continuum
mechanics, we are already grateful to Saint-Venant for his discovery that the details of
force application are only relevant in the immediate neighborhood of application, allow-
ing us to use spatially averaged stress relations, and now we have another reason to thank
him, and to condemn the injustice that leaves his name out of most discussions of the
Navier–Stokes equation. Incidentally, Navier was no slouch, despite his errors here—he
was a great builder of bridges and did important work in elasticity and solid mechanics.

∗ The student chafing under the restrictions of incompressibility and Newtonian behavior is encouraged to take
further courses in fluid mechanics, and to refer posthaste to Kundu’s Fluid Mechanics. She will find that the full
form of the stress tensor makes things quite a bit more interesting.
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18.5 Bernoulli Equation

Equation 18.32 for the conservation of momentum is a vector equation, with component
equations in each direction of motion. These directions may be (x, y, z), (r , θ, z), or (r , θ, ϕ).
If we remember that streamlines are everywhere tangent to the velocity vector, we can also
think of a set of coordinates defined relative to the streamlines—for two-dimensional flow,
one coordinate s directed along the streamline, and n defined normal to the streamline.
We could then write the component equations of motion in the s and n directions. The
resulting equation in the s direction, which states

∑
F = ma along a streamline, may be

integrated to yield the following equation:

p
ρ

+ gz + 1
2

V2 = constant along a streamline, (18.34)

where we have assumed that gravity acts in the negative z-direction, and where V is the
velocity in the s direction, simply the magnitude of the velocity vector since V is in the s
direction. This equation is known as the Bernoulli equation, and it is true for steady flow of
an incompressible fluid under inviscid conditions. For convenience, we write the equation
together with its restrictions:

p
ρ

+ gz + 1
2

V2 = constant

• On a streamline

• For steady flow

• For incompressible fluid

• If viscous effects neglected

Many problems can be solved using the Bernoulli equation, allowing us to dodge having
to solve the full Euler or Navier–Stokes equations. It should not escape our notice that
the Bernoulli equation, derived from

∑
F = ma, looks like an energy conservation equa-

tion. This is even easier to see if we multiply through by the (assumed constant) density:
Equation 18.34 becomes

p + ρgz + 1
2
ρV2 = constant, (18.35)

and we can think of pressure p as a measure of flow work, ρgz as a gravitational potential
energy, and 1

2ρV2 as a kinetic energy, all per unit volume of fluid. Daniel Bernoulli actually
first arrived at Equation 18.34 by performing an energy balance, even though the concept
of energy was still a bit fuzzy in 1738.

One of the most useful applications of the Bernoulli equation is a device known as a
Pitot∗ tube, and its cousin the Pitot-static tube, used to measure flow velocities. The tube
(Figure 18.9a) contains a column of air. When an oncoming fluid flow impinges on the nose
of the Pitot tube, it displaces this air. As we know from hydrostatics, the displacement
will be proportional to the pressure at the stagnation point on the Pitot tube nose. The

∗ The Pitot tube is named for Henri Pitot (1695–1771), a French hydraulic engineer who invented it by intuition
when measuring the flow in the River Seine in 1732.
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Δh

(a) (b)

Δh

V∞ V∞

FIGURE 18.9
Pitot tube with differential manometer to measure flow speed: (a) standard arrangement of Pitot tube and static
pressure tap, and (b) Pitot-static tube.

stagnation point is at the divide between the flow that goes up-and-over and that which
goes down-and-under (imagining a flow in the plane of the page for simplicity) and there
the velocity must be zero. The difference between this “stagnation pressure” (where the
fluid has speed V = 0) and the “static pressure” elsewhere in the flow (where the fluid has
average speed V∞), by Bernoulli’s equation, is

pstagnation − pstatic = 1
2
ρV2

∞. (18.36)

A Pitot-static tube, as illustrated in Figure 18.9b, contains static pressure ports along the
nose to measure the static fluid pressure as well as the stagnation pressure. It is clear from
Equation 18.36 and Figure 18.9 that the assumptions of steady, incompressible flow are
made when a Pitot tube is used. The flow is also assumed to be inviscid, so that there are
no boundary layers near tube or other walls to reduce the bulk flow speed from V∞.

18.6 Examples
EXAMPLE 18.1

Find the equation of, and sketch, the streamline that passes through (1, −2) for the
velocity field given by V = xyî − 2y2 ĵ m/s.

Given: Velocity vector V.

Find: Streamline through (x = 1, y = −2).

Assume: No assumptions are necessary.

Solution

By definition, a streamline is everywhere tangent to the velocity field. So, the stream-
line through (1, −2) is tangent to the velocity V at this point. We state this relationship
mathematically as

slope
dy
dx

∣∣∣∣
streamline

= v

u
,

dy
dx

= −2y2

xy
= −2y

x
.
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Separating variables:

dy
−2y

= dx
x

.

Integrating both sides:

∫
dy

−2y
=

∫
dx
x

,

−1
2

ln y = ln x + C1.

We have absorbed the constants of integration from both sides into this new constant
C1. Or

ln x + 1
2

ln y = C2.

This new C2 is simply −C1 from the previous expression. To get rid of the natural logs
and find a graphable function y(x), we take the exponent of the entire expression:

x
√

y = C3, or

x2 y = C .

This C may no longer bear much resemblance to our initial constant C1, but the product
x2 y must equal some constant.

At point (1, −2), x2 y = (1)2(−2) = −2, so the equation of the streamline through
(1, −2) is

x2 y = −2.

We plot this streamline below.

0
0

(1,–2)
–2

–4

–6

–8

–10

y

2 4 6 8 10
X

EXAMPLE 18.2

The open tank shown contains water at 20◦C and is being filled through Section 1.
Assume incompressible flow. First derive an analytic expression for the water-level
change dh/dt in terms of arbitrary volume flows Q1, Q2, Q3, and tank diameter d .
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Then, if the water level h is constant, determine the exit velocity V2 for the given data
V1 = 3 m/s and Q3 = 0.01 m3/s.

d

h

D2 = 7 cm

D1 = 5 cm 2

1

3 Q3 = 0.01 m3/s

Given: Tank inlet and outlet information.

Find: dh/dt, unknown exit velocity.

Assume: Inlet and outlet velocity profiles are uniform, one-dimensional. Fluid is
incompressible; density is uniform.

Solution

We intend to consider the fluid in the tank as the contents of a control volume.

D2

D1 2

1

3 Q3

CV

We must have mass conservation:

0 = ∂

∂t

∫

CV

ρ d V– +
∫

CS

ρV · dA,

which for this CV can be written as

d
dt

[
ρ

πd2

4
h

]
+ ρ

(
Q2 − Q1 − Q3

) = 0,

where we have changed the partial derivative to a total one, as time is the only depen-
dence of the quantity in brackets, and where the signs of various flow rates depend on
whether they are into or out of the CV: Q2 is outflow, and thus positive, while Q1 and
Q3 are both inflow and negative. We further simplify by canceling the common density,
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and by removing the constants from the time derivative:

πd2

4
dh
dt

+ (
Q2 − Q1 − Q3

) = 0,

dh
dt

= 4
(
Q1 + Q3 − Q2

)
πd2 ,

If h is constant, dh/dt = 0 and we must have Q1 + Q3 − Q2 = 0. Each Qi = Vi Ai . We
can thus solve for the requested value of V2 which corresponds to dh/dt = 0:

Q2 = V2 A2 = Q1 + Q3 = 0.01 m3/s + π

4
(0.05 m)2(3 m/s) = 0.0159 m3/s,

V2 = Q2
A2

= 0.0159 m3/s
(π/4)(0.07 m)2 = 4.13 m/s.

EXAMPLE 18.3

A steady jet of water is redirected by a deflector, as shown. The jet has a mass flow rate
of 32 kg/s, cross-sectional area of 2 cm × 40 cm, and speed V1 when it encounters the
deflector. What force per unit width of the deflector (into the page) is needed to hold the
deflector in place?

CV
θ = 30˚

V2

V1
Rx

Ry

Given: Geometry of flow deflector.

Find: Reaction forces from deflector support on fluid in CV.

Assume: Jet has constant cross-sectional area, even after being deflected. Flow is steady
and incompressible. Density of water is constant, uniformly 1000 kg/m3. Gravity and
viscous effects may be neglected.

Solution

The flow of water imparts a force to the deflector. Reaction forces from the deflector bal-
ance these forces, and act on the fluid in the CV drawn. We are asked for these reactions,
Rx and Ry, if the deflector has width of 1 m into the page.

We begin by finding the inlet velocity V1. We are given the mass flow rate of the jet,
ṁ , which is ρV1 A1. As the cross-sectional area A1 is also given, we use this to find V1:

V1 = ṁ
ρA1

= 32 kg/s

(1000 kg/m3)(0.02 m)(0.40 m)
= 4 m/s.

If the flow is steady, we must have a constant mass flow rate (what flows into our CV
must flow back out again), or ρV1 A1 = ρV2 A2. Since we have an incompressible flow
and since the jet’s cross-sectional area does not change, we must have V2 = V1 = 4 m/s.
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In order to find the requested reaction forces, we must apply the conservation of linear
momentum, or F = ma, in both x- and y-directions. These equations are

Fx = (
Fvisc

)
x + (

Fexternal
)

x +
∫

CV

ρgx d V– −
∫

CS

pî · n̂ dA = ∂

∂t

∫

CV

ρu d V– +
∫

CS

ρuV · n̂ dA,

Fy = (
Fvisc

)
y + (

Fexternal
)

y +
∫

CV

ρgy d V– −
∫

CS

pĵ · n̂ dA = ∂

∂t

∫

CV

ρv d V– +
∫

CS

ρvV · n̂ dA.

Since our jet is steady, with negligible contributions from gravity, viscosity, and
pressure gradients, these equations simplify greatly:

−Rx =
∫

CS

ρuV · n̂ dA,

Ry =
∫

CS

ρvV · n̂ dA.

The x-momentum flux therefore balances the reaction force Rx , negative as it is in the
negative x-direction. Writing out the flux at each of the two control surfaces, we have

−Rx =
∫

CS

ρuV · n̂ dA = −ρV1V1 A1 + ρ(V2 cos θ)V2 A2.

(Note that V2 cos θ is the x-component of velocity at surface A2, and that V2 is V · n̂ at
A2.)

Rx = ṁ (V1 − V2 cos θ)

= (32 kg/s)(4 m/s)(1 − cos 30◦)

= 17.2 N.

In the y-direction, we have

Ry =
∫

CS

ρvV · n̂ dA = 0 + ρ(V2 sin θ)V2 A2,

Ry = ṁ V2 sin θ

= (32 kg/s)(4 m/s) sin 30◦

= 64 N.

EXAMPLE 18.4

Uniform air flow with speed U = 1.5 m/s approaches a cylinder as shown. The veloc-
ity distribution at the location shown downstream in the wake of the cylinder may be
approximated by

u(y) = 1.25 + y2

4
, −1 < y < 1,
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where u(y) is in meter per second and y is in meters. Determine (a) the mass flux across
the surface AB per meter of depth (into the page) and (b) the drag force per meter of
length acting on the cylinder.

1.5 m/s 1.5 m/s

Wakey

1 m

u(y)

H

A B

Given: Flow over cylinder; upstream and downstream velocity profiles.

Find: Mass flux across surface AB, drag force on cylinder.

Assume: Air has constant, uniform density 1.23 kg/m3. Flow is symmetrical and steady.
Pressure differences, gravity, and viscous effects may be neglected.

Solution

We first select a control volume. It is generally wisest to choose control volumes on
whose surfaces we have information about the flow. It is also useful to take advantage
of symmetry, to simplify our calculations.

Our choice of control volume is shown below.

1.5 m/s 1.5 m/s

Wakey

1 m

u(y)

H

A BCV

At its left surface, the normal velocity is U = 1.5 m/s, into the CV. Its top surface is a
plane of symmetry for the flow, so there is no mass flux across it. At the right, the wake
velocity profile is given by u(y) above, and outside the wake, the velocity is 1.5 m/s, out
of the CV. We have a steady flow, so the conservation of mass is written as

0 =
∫

CS

ρV · n̂ dA,

0 =
∫

left
CS

ρV · n̂ dA+
∫

AB

ρV · n̂ dA+
∫

right
CS

ρV · n̂ dA.

Since we are not given the length of the cylinder into the page, we assume a unit
cylinder length of 1 m. The areas of our control surfaces are thus l dy, with a unit length
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l = 1. Hence the “area” of the left control surface is simply H (m2). The desired mass
flow rate will be the mass flux across AB per meter of cylinder length. We now have

0 = −ρU H + ṁ AB +
H∫

0

ρu(y) dy. (18.37)

This is nearly an expression we can rearrange to solve for the desired mass flow rate.
H, however, is not known. To complete the solution we must investigate the flow field
further. Outside the wake region, which is 1 m wide at the control surface, the flow out of
the right CS has speed 1.5 m/s. The left control surface has a uniform inflow of 1.5 m/s.
Hence, more than 1 m away from the cylinder axis, the flow is unaffected by the cylinder
and simply proceeds with a constant speed 1.5 m/s. We can therefore assess the amount
of mass flux forced across AB by integrating only from 0 to 1 m, instead of 0 to H

0 = −ρU(1) + ṁ AB +
1∫

0

ρu(y) dy,

ṁ AB = ρU(1) −
1∫

0

ρ

(
1.25 + y2

4

)
dy,

ṁ AB = (1.23 kg/m3)

⎧⎨
⎩1.5 m3/s −

[
1.25y + y3

12

]1

0

⎫⎬
⎭ ,

ṁ AB = 0.205 kg/s per meter of cylinder length.

To address part (b) of this problem, we will conserve linear momentum in the
x-direction. We may either continue with the same control volume as in part (a), multi-
plying the fluxes by two to obtain the force on the whole cylinder, or we may now use
a CV that consists of all the fluid between −H and +H, or equivalently −1 and 1. The
drag force on the cylinder is in the +x-direction; hence, there is an equal and opposite
force on the fluid in the −x-direction. Conserving x momentum, we have

Fx = (
Fvisc

)
x + (

Fexternal
)

x +
∫

CV

ρgx d V– −
∫

CS

pî · n̂ dA = ∂

∂t

∫

CV

ρu d V– +
∫

CS

ρu(V · n̂) dA.

Under the assumptions of steady flow, with negligible contributions from pressure
gradients, gravity, and viscous effects, this becomes

−Fx =
∫

CS

ρu(V · n̂) dA.
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We evaluate the flux at all three control surfaces of the initial CV, and multiply each
by two due to symmetry:

−Fx = 2
∫

left
CS

ρu(V · n̂) dA+ 2
∫

AB

ρu(V · n̂) dA+ 2
∫

right
CS

ρu(V · n̂) dA

= −2

1∫

0

ρUU(1 dy) + 2
∫

AB

ρu(V · n̂) dA+ 2

1∫

0

ρu(y)u(y)(1 dy).

We have again assumed a unit cylinder length into the page, so that the area of both
right and left control surfaces is 1 dy. We next recognize that the second integral con-
tains the mass flux we just solved for, ṁ AB = ∫

AB
ρV · n̂ dA, and differs from this only

by the value of u, the x-component of velocity at the surface AB. The surface AB is at a
distance of H from the cylinder axis, where, as we have discussed, the cylinder does not
influence the x-directional flow. The velocity u is therefore U = 1.5 m/s on AB. We thus
get something even simpler:

−Fx = −2ρU2(1)2 + 2Uṁ AB + 2

1∫

0

ρ

[
1.25 + y2

4

]2

1 · dy,

−Fx = −2ρU2 + 2Uṁ AB + 2ρ

[
1.252 y + 2.5

12
y3 + y5

80

]1

0

,

−Fx = −2(1.23 kg/m3)(1.5 m/s)2 + 2(1.5 m/s)(0.205 kg/s) + 2(1.23 kg/m3)(1.783 m2/s2),

Fx = 0.53 N per meter of cylinder length.

EXAMPLE 18.5

For the given water siphon, find(a) the speed of water leaving as a free jet at point 2 and
(b) the water pressure at point A in the flow. State all assumptions. Heights h1 = 1 m,
and h2 = 8 m. Drawing is not to scale.

Z

A

1

2

h1

h2
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Given: Length of siphon used to remove water from large tank.

Find: Speed at 2 and pressure at A.

Assume: Steady flow (all transient effects associated with flow initiation have died
down), incompressible (water has constant, uniform density, equal to 1000 kg/m3),
and negligible viscous effects.

Solution

We would like to use the Bernoulli equation to relate the flow quantities between the
labeled points. The conditions necessary for the Bernoulli equation to apply have been
reasonably assumed. (We feel least confident in our assumption of negligible viscous
losses in the siphon, and in Chapter 20 we will discuss a way to characterize the
importance of viscosity in a given flow.)

We must have a streamline on which to apply the Bernoulli equation, and so we
assume that the one sketched below exists. This streamline connects points 1 and A,
and A and 2.

Z

A

1

2

We will make one more assumption in order to solve this problem. By inspection, the
reservoir is much larger than the siphon diameter. That is,

A1 � A2.

So, if we conserve mass from point 1 to point 2, we will have

ρV1 A1 = ρV2 A2.

And, with A1 � A2, we must have V1 � V2. We approximate this very small velocity
at 1 by saying V1 ≈ 0.

We can now apply Bernoulli’s equation between points 1 and 2, to find the
unknown V2:

p1
ρ

+ V2
1
2

+ gz1 = p2
ρ

+ V2
2
2

+ gz2,
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where, as we have just said, V1 ≈ 0, and where p1 = p2 = patm. (If we are using
gage pressures, this means p1 = p2 = 0.) We note from the figure that z1 = 0, and
z2 = −7 m, so

gz1 = V2
2
2

+ gz2,

V2
2 = 2g(z1 − z2),

V2 =
√

2(9.8 m/s2)(7 m) = 11.7 m/s.

Our assumed streamline also goes through point A, so that the Bernoulli equation is

p1
ρ

+ V2
1
2

+ gz1 = pA
ρ

+ V2
A

2
+ gzA.

If we conserve mass within the constant-area siphon, we must have

ρVAAA = ρV2 A2.

Or, since AA = A2, VA = V2 = 11.7 m/s. We are now equipped to solve the Bernoulli
equation for the unknown pA:

p1
ρ

+ gz1 = pA
ρ

+ V2
2
2

+ gzA,

pA = p1 + ρ

(
gz1 − V2

2
2

− gzA

)

= patm + ρg(z1 − zA) − ρ
V2

2
2

= patm + (1000 kg/m3)(9.8 m/s2)(0 − 1 m) − (1000 kg/m3)
(11.7 m/s)2

2
,

pA = 22.8 kPa (abs)

= −78.5 kPa (gage).

We have used standard atmospheric pressure, patm = 101.325 kPa.

EXAMPLE 18.6

A person holds her hand out of an open car window while the car drives through still air
at 65 mph. Under standard atmospheric conditions, what is the maximum pressure on
her hand? What would be the maximum pressure if the car were traveling at 130 mph?

Given: Speed of airflow past hand; standard atmospheric conditions.

Find: Maximum pressure on hand.

Assume: Flow is steady and incompressible, with negligible viscous effects; air has con-
stant, uniform density, equal to its tabulated value at 20◦C (1.23 kg/m3). Standard
atmospheric pressure patm = 101.325 kPa.
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Solution

We put ourselves in the frame of the person’s hand, so that the hand is still and the air
moves with speed 65 mph (or 130 mph). We can visualize the airflow as sketched below:

V

Note that there is a dividing streamline that impinges on the hand at a stagnation
point. (Airflow either goes above this streamline, up and over the hand, or below it.)
At this stagnation point, the air will be at its maximum pressure, the stagnation pres-
sure. (Recall that pressure and velocity are inversely proportional.) If we assume that
this stagnation streamline is level, so that gravitational effects are easily neglected, we
can apply the Bernoulli equation on this streamline to find the stagnation pressure. The
Bernoulli equation has the form(

p + 1
2
ρV2

)
upstream

=
(

p + 1
2
ρV2

)
SP

,

or

patm + 1
2
ρV2 = pmax.

Plugging in the atmospheric pressure, air density, and V = 65 mph, we have

pmax = 101,325 Pa + 1
2
(1.23 kg/m3)

(
65 mph

0.447 m/s
1 mph

)2
= 101.8 kPa (abs)

= 520 Pa (gage).

If the car (and hence the air, in the frame of the hand) moves with speed V = 130 mph:

pmax = 101,325 Pa + 1
2
(1.23 kg/m3)

(
130 mph

0.447 m/s
1 mph

)2
= 103.4 kPa (abs)

= 2.08 kPa (gage).

PROBLEMS

18.1 A two-dimensional fluid velocity field is given by u = x(1 + 2t), v = y. Find the equa-
tion of the time-varying streamlines which all pass through the point (x0, y0) at some
time t. Sketch some of the streamlines at various times t.

18.2 A velocity field is given by V = axî + byĵ − (a + b)zk̂, where a and b are constants
with dimensions of inverse time. Please find the acceleration in this flow.

18.3 For the following velocity field: (a) determine the acceleration, noting the local and
convective components; and (b) determine the location of the maximum acceleration:

V = (C sin ωt)[xî − yĵ].
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18.4 For the three-dimensional, time-varying velocity field V = 3tî + xzĵ + ty2k̂, find the
acceleration of a fluid element.

18.5 Consider a two-dimensional velocity field in Cartesian coordinates:

(u, v) =
( −ky

x2 + y2 ,
kx

x2 + y2

)
,

where k is a positive constant. Sketch the velocity profiles along the x-axis and the
line x = y. Determine the equation of the streamline passing through (x, y) = (1, 1).
What are the velocity and acceleration at this point? Sketch both vectors. Is the flow
incompressible?

18.6 Consider the velocity field u = C1txî + C2txyĵ + C3tzk̂, where the constants C1 =
1 s−2, C2 = 2 m−1s−2, and C3 = −2 s−2. For the region described by [ 0 < x < 1 m, 0 <

y < 2 m, and 0 < z < 3 m ], determine whether this flow satisfies mass conservation
for a constant density fluid.

18.7 An inflatable backyard swimming pool is being filled from a garden hose with a
flowrate of 0.12 gal/s.
a. If the pool is 8 ft in diameter, determine the time rate of change of the depth of

water in the pool.
b. Suppose that the pool has a drain port with a diameter 0.5 in. Immediately after

the drain is opened, the rate of change of the depth of the water in the pool is
observed to decrease to 80% of the value calculated in part (a). Determine the
average fluid velocity at the drain port.

18.8 A new jet engine is being tested in a wind tunnel, as illustrated in the following figure.
Air, with standard properties at an altitude of 6000 m, enters the engine at a velocity of
275 m/s through a circular intake port of radius 0.5 m. Fuel enters the engine at a mass
flowrate of 2.5 kg/s. If the exhaust gas leaves the engine with an average velocity of
300 m/s through an exit port of radius 0.4 m, calculate the density of the exhaust gas.
How would your solution to this problem change if the engine were attached to the
wing of an airplane flying through still air at a velocity of 900 km/h?

0.5 m

0.4 m
300 m/s

Air
275 m/s

Fuel

18.9 Based on test results for the prototype jet engine in Problem 18.8, the engine is
redesigned. During the next stage of testing, it is desirable to determine the thrust
generated by the engine, using the setup shown in the following figure. The air and
fuel inlet conditions are the same as in Problem 18.8. If the exhaust gas leaves the
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engine with an average velocity of 300 m/s at atmospheric pressure, calculate the
magnitude and direction of the force exerted on the support structure.

0.5 m
Load cell

0.4 m
300 m/s

Air
275 m/s

18.10 The horizontal nozzle shown has D1 = 0.3 m and D2 = 0.15 m, with inlet pressure of
the operating fluid (water at 20◦C) p1 = 262 kPa (absolute) and V2 = 17 m/s. Com-
pute the normal stress induced in the flange bolts (diameter 1 cm) by keeping the
nozzle fixed.

Open jet
Water

1

2

18.11 Water from a stationary nozzle strikes a flat plate (directed normal to the plate as
shown in the figure). The velocity of the water leaving the nozzle is 15 m/s and the
nozzle area is 0.01 m2. After the water strikes the plate, subsequent flow is parallel
to the plate.

Cross section of
support post: outer
dimension is 100 mm
square, and wall
thickness is 5 mm

1.5 m

Nozzle

a. Find the horizontal force that must be provided to the plate by the support.
b. Find the maximum longitudinal normal tensile stress in the support post if it is

a hollow square cross section as shown. Model the force due to the water as a
point load.

c. Find the maximum transverse shearing stress in a cross section of the post.
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18.12 Observations show that it is not possible to blow the table tennis ball out of the
funnel shown on the left. In fact, the ball can be kept in an inverted funnel, like the
one on the right, by blowing through it. The harder one blows through the funnel,
the harder the ball is held within the funnel. Explain this phenomenon.

Q

Q

18.13 An open-circuit wind tunnel draws in sea-level standard air and accelerates it
through a contraction into a 1 m-by-1 m test section. A differential pressure trans-
ducer mounted in the test section wall measures a pressure difference of 45 mm
of water between the inside and outside. Estimate (a) the test section velocity in
miles/h and (b) the absolute pressure on the front nose of a small model mounted
in the test section.

18.14 Blood, an incompressible fluid with density ρ = 1060 kg/m3, flows through vessels
which often branch. Using the given model for a branching arteriole, and assuming
that at the point of interest flow is steady, with negligible contributions from gravity
and viscosity, calculate the pressure differences:
a. PC − PA

b. PB − PA

3 mm

2 mm

15 cm/s

10 cm/s

C

B

A

18.15 Five holes are punched in the side of a can of liquid. Which figure shown below best
illustrates the velocity profile that would result from liquid leaving the five holes?

(a) (b) (c)

18.16 You have been contracted to build a cylindrical brick chimney of height H, weigh-
ing a = 850 lb/ft and fixed securely in a concrete foundation. The inner and outer
diameters are d1 = 3 ft and d2 = 4 ft, respectively. The chimney must be designed to
withstand a distributed load due to a 60 mph (88 ft/sec) wind that we will assume
is constant at any height from the ground.
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a. Find the static pressure at a stagnation point on the chimney. Assume that this
pressure acts over the whole projected area (a rectangle H × d2) for calculation
of the force on the chimney by the wind, but this is only an approximation. Find
the force/ft of height on the chimney due to the wind.

b. You have a strict design requirement: considering the weight of the chimney and
the wind load together, there is to be no tensile normal stress in the brickwork
(because it is brittle and a poor carrier of tensile stress). What is the maximum
allowable height H?

18.17 Two very large tanks of water have smoothly contoured openings of equal cross-
sectional area. A jet of water flows from the left tank. Assume the flow is uniform and
unaffected by friction/viscous effects. The jet impinges on a flat plate (and departs
the plate in a flow parallel to the surface of the plate) that also covers the opening of
the right tank. In terms of the height H, determine the minimum value for the height
h to keep the plate in place over the opening of the right tank.

Plate

Hh
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Case Study 9: China’s Three Gorges Dam,

China’s Yangtze River flows 6400 km (almost 4000 miles) across the country—from moun-
tain glaciers in Tibet through steep gorges and farmland all the way to Shanghai, on the
East China Sea. The river supports substantial trade in its Delta region amounting to a fifth
of China’s economy, and is habitat to many animals, including some endangered species.
Flooding of the Yangtze in its lower course has been a pernicious problem, particularly
since deforestation has made the region more susceptible to the effects of heavy rains.
Ironically, the dams and dikes built in the 1950s to reduce flooding and irrigate farmland
actually exacerbated the flood risk by cutting off lakes that had served as natural flood
control. (See Chapter 21 for further discussion of flood management approaches.) The
Three Gorges region of the Yangtze is shown in Figure 19.1. Xiling Gorge is 75 km long
and includes the new Three Gorges Dam near the eastern end. Before construction of the
dam, it was known for its treacherous rapids.

The notion of a dam on the Yangtze for flood control and hydroelectric power genera-
tion was first proposed by Sun Yat-Sen in 1919. While some survey work and planning was
performed, the Chinese Civil War and other complications delayed the project. After the
1954 Yangtze flooding, the Communist leader Mao Zedong wrote a poem, “Swimming,”
expressing support for a dam on the Yangtze, but prioritized other infrastructure projects,
as well as the Great Leap Forward and the Cultural Revolution. In 1992, the National
People’s Congress approved the dam, and construction finally began in late 1994.

One goal of the Three Gorges Dam project was to reduce China’s reliance on coal-
burning power plants, which contributed to carbon dioxide emissions and air pollution.
The Three Gorges Project included a hydroelectric generation system; hydroelectric power
from the dam as built can produce up to one-ninth of China’s energy needs.

Hydroelectric plants like the turbines at the Three Gorges Dam produce electrical power
through the energy of falling or flowing water. A simple equation to estimate the electrical
power production P in Watts, is

P = ρhQgη, (19.1)

where ρ is the density of water in SI dimensions (kg/m3), h is the depth of water (or height
of waterfall) (in m), Q is the volumetric flow rate in m3/s, g is the acceleration of gravity
(9.8 m/s2), and η is the efficiency of energy conversion—a value between 0 and 1.

In the case of a dam-based hydroelectric plant, the high-pressure water kept in the reser-
voir behind the dam is released by a control gate, and the water then spins a turbine, whose
mechanical energy is converted into electrical power by a transformer. Figure 19.2 shows
a simple schematic of this process.

The dam was not a particularly popular idea with the public. The government endeav-
ored to persuade them of its virtues with information about the reduced risk of flooding,
and the improvement in air quality that could be achieved by replacing coal plants with
hydroelectric power.

395
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FIGURE 19.1
Xiling Gorge, China.

The construction of the dam required the planned flooding of sites along the Yangtze.
Villages lining the river were designated to be flooded, and their residents relocated to
newly planned and built communities on higher ground. Citizens were offered “relocation
payments” and new housing in these new communities. This gradual flooding affected
sites of natural and cultural historical significance, and some 1.3 million people.

Reservoir Dam

Control
gate

Intake

Penstock Turbine

Transformer
Generator

Powerhouse

Power lines

Outflow

FIGURE 19.2
Schematic of a hydroelectric power plant.
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FIGURE 19.3
Completed Three Gorges Dam. ( c© istock.com/Prill Mediendesign & Fotographie. With permission.)

In his short story, “Village 113,” writer Anthony Doerr depicts residents of a village
slated for submergence, including a woman who is reluctant to leave her longtime home
and her son, an engineer who is helping with the dam-related logistics. Doerr lyrically
portrays the sense of imminent loss as preparations are made: “Memory is a house with
ten thousand rooms; it is a village slated to be inundated.” Doerr also shows the son’s
enchantment with the scale of the project: he “recites numbers. The dam will be made
from eleven million tons of concrete: Its parapet will be a mile long; its impoundment will
swallow a dozen cities, a hundred towns, a thousand villages. The river will become a lake
and the lake will be visible from the moon.” He cannot understand his mother’s failure to
appreciate the dam, and his own contributions.

As engineers, we must be cautious not to let the technical advantages of a technolog-
ical enterprise, and astounding specifications of size, power, or capabilities, overwhelm
our empathy for human stakeholders. As built, the Three Gorges Dam is indeed a won-
der: it is 2335 m long, 185 m high, and 130 m wide at the bottom, tapering to 18 m wide at
the top. The dam raised the river to 175 m above sea level, creating a 600 km long reser-
voir with a storage capacity of 39.9 billion cubic meters. The completed dam (whose final
turbine was installed in June, 2012) is the world’s largest power station, with a capacity
of 22,500 MW—this is about eight times the output of the Hoover Dam on the Colorado
River. The completed Three Gorges Dam is shown in Figure 19.3.

This technical achievement has had significant social impacts, reaching beyond the
reduced risk of Yangtze flooding and the addition of hydroelectric power as an alternative
to coal.

The farmland lost in the submergence process had provided 40% of China’s grain and
70% of rice crops. Farmers that were relocated to the hillsides of the dam have struggled to
grow crops, and so far the only viable crop able to be produced on such steep terrain has
been oranges.

The more than 1300 archeological sites flooded included that of the ancient Ba civiliza-
tion that settled in the Three Gorges area over 4000 years ago. Only some of the artifacts of
these sites have been preserved; the rest are lost beneath the 175-plus meter depth of the
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reservoir behind the dam. Some archeological organizations and scholars petitioned for
funding and time to remove the artifacts, but these requests were denied by the Chinese
government.

Relocated Chinese citizens have had varying degrees of success adjusting to their forced
transplantation to new homes and communities. Although few of their individual stories
are publicly available, economic analyses have shown that younger citizens adapt more
readily and achieve greater financial success than older citizens forced to relocate. The
government is moving ahead with a widespread “urbanization” plan, in which millions
more will be forced to relocate from rural villages to cities, even in areas not affected by
the dam.

The dam has induced erosion and contributed to increased earthquake activity and
landslides in the region. The reduction in forested land around the Yangtze has affected
wildlife, including a critically endangered crane, and the dam’s turbines are harmful to
fish.

Fan Xiao, a geologist at the Bureau of Geological Exploration and Exploitation of Mineral
Resources in Sichuan province, described to Scientific American the tradeoffs and compet-
ing objectives of the project. “For the economic interests and profit of the Three Gorges
Project Development Corporation,” he says, “that’s very important. But the function of
any river, including the Yangtze, is not only to produce power. At the very least, [a river]
is also important for shipping, alleviating pollution, sustaining species and ecosystems,
and maintaining a natural evolutionary balance.” Moreover: “The Yangtze doesn’t belong
to the Three Gorges Project Development Corporation,” Fan adds. “It belongs to all of
society.”
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20
Fluid Dynamics: Applications

That we have written an equation does not remove from the flow of fluids its charm or mystery
or its surprise.

Richard Feynman, 1964

We have found two distinct ways to apply the fundamental concepts of mass conserva-
tion and

∑
F = m a to fluids. We now want to identify some canonical problems of fluid

mechanics, their historical context, and their relevance to us. Both solid and fluid mechan-
ics are enormous fields, with many rich details; in this book, we have been necessarily brief
with both of them. We encourage further study of both areas, and of the field of continuum
mechanics; please consult the References listed at the end of this book.

20.1 How Do We Classify Fluid Flows?

The Navier–Stokes equation contains terms corresponding to several possible forces on a
fluid element. If we look at it again, we can name the source of each of these forces:

ρ
DV
Dt

inertia

= −∇ p
pressure

+ ρg
gravity

(body force)

+ μ∇2V
viscous
stress

. (20.1)

We would like to have a way to quantify the relative effects of these forces, and of other
factors, on a given flow; this way, when faced with an intriguing fluid mechanics problem,
we could decisively say whether viscosity or inertia was the more dominant effect, and how
much more dominant. The most useful result would be a dimensionless parameter—that
way, it would not matter whether we were dealing with SI or US units; a certain numerical
value of this parameter would represent the same type of flow in either unit system.

It is apparent that by taking the ratio of the inertial and viscous terms of the Navier–
Stokes equation, we could obtain this quantification. This ratio will clearly go as ρ/μ.
Unfortunately, this ratio ρ/μ has dimensions of time/length2. To make it dimensionless,
we need to multiply it by something with units of length2/time. The easiest way to con-
struct this “something” is to multiply the velocity V by a characteristic length scale of the
problem, say L . It turns out that this is also correct physically, as we can see by a scaling
argument:

Inertial force = m V
dV
ds

∼ ρL3V
V
L

= ρL2V2, (20.2)
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Viscous force = τA = μ
du
dy

A ∼ μ
V
L

L2 = μVL , (20.3)

Ratio of inertial to viscous forces = ρL2V2

μVL
= ρVL

μ
. (20.4)

This ratio is known as the Reynolds number, abbreviated Re.∗ When Re is large, inertial
effects dominate the flow, and when Re is small, viscous effects dominate. This lets us
know what terms we can drop out of the Navier–Stokes equation when we are at the far
ends of the Re spectrum. As expected, Re also tells us something about the character of
the flow. Generally, lower Re flows are smooth, with parallel streamlines because viscosity
tends to diffuse more complex flow patterns. These flows are known as laminar. At higher
Re, viscosity is not strong enough to diffuse eddies and other rotational flow patterns, and
the flow tends to be more disorderly. These higher Re flows are called turbulent. A critical
value of Reynolds number, Recrit, is a threshold separating laminar from turbulent flows.
The value of Recrit depends on the type of flow being considered, as we will see.

Other non-dimensional parameters serve to measure the relative effects of other forces
on a particular flow. For example, the Euler number Eu compares pressure drop to inertial
forces. The Euler number and a few other relevant parameters are listed in Table 20.1.

The Reynolds, Euler, Froude, and Weber numbers, among others, allow us to quantify
the relative importance of different forces on the flow in question; they are also useful in
planning experiments. Two flows, with the same Re, have very similar flow patterns and
characteristics—inertia and viscosity have the same relationship in both flows. To build
an experimental model of a flow whose real dimensions are unwieldy, it is sufficient to
match the appropriate nondimensional parameters. It is much more economical to study
the influence of Re on a given flow than to have to independently vary the density ρ and
viscosity μ of a fluid, the size of the model L , and the flow speed V!

TABLE 20.1

Relevant Non-Dimensional Parameters

Reynolds number Re
Inertia

Viscosity
ρVL

μ

Euler number Eu
Pressure
Inertia

�p
ρV2

Froude number Fr
Inertia
Gravity

V√
Lg

Weber number We
Inertia

Surface tension
V2 Lρ

s

Mach number M
Velocity

Local speed of sound
V
a

∗ The Reynolds number is named after Osborne Reynolds, the son of an Anglican priest who became a noted
fluid mechanician (becoming especially active in fluids after 1873). He was particularly influential in the study
of pipe flow and the transition from laminar to turbulent flow. He also established the course of study in
applied mathematics at the University of Manchester, though sadly, as one biographer reports, “Despite his
intense interest in education, he was not a great lecturer. His lectures were difficult to follow, and he frequently wandered
among topics with little or no connection.” (Anderson, J. D., A History of Aerodynamics, Cambridge, 1997.)
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20.2 What Is Going on Inside Pipes?

Pipelines, blood vessels, hallways, and ink-jet printers all contain examples of internal
flows. A fluid’s “stiffness,” viscosity, has a significant effect on the flow of an incompress-
ible fluid through a pipe or between parallel plates. The critical Reynolds number in a pipe
is about 2000; for Re < 2000, pipe flow is laminar.

Pipe flow is said to be fully developed when it does not change in the flow direction; as
in Figure 20.1, the velocity profile u(x, r) becomes independent of axial length x. At the
pipe inlet, flow is uniform [u(x, r) = U0 = constant]; as x increases, a very thin layer near
the walls slowly grows outward. Viscous effects dominate these thin boundary layers, but
viscosity does not yet affect the inner core of the flow. We continue along the pipe length x
until viscosity affects the entire cross section. Finally, the thin layers all merge and the flow
becomes fully developed.

For a laminar flow, we can determine the entrance length LE necessary for a pipe flow to
become fully developed if we know the Reynolds number:

LE

D
= 0.065Re, (20.5)

where Re is based on the average velocity (V = ū) and the diameter of the pipe (L = D).
Now that we know to expect the flow to become independent of axial length x, we would

like to be able to determine the shape of the velocity profile u(y), or u(r) for a circular pipe.
We will assume steady flow, to simplify our lives a bit. Figure 20.2 shows a cylindrical fluid
element for which we can now write

∑
F = ma.

Once the flow is fully developed, it experiences no acceleration. (The local acceleration,
∂u/∂t = 0, and the convective acceleration, u(∂u/∂x) = 0, since u is a function of r only.)
Every part of the fluid moves with constant velocity, although neighboring particles have
different velocities and this velocity gradient, as we well know, gives rise to shear stress.

For this simple analysis, we will neglect gravity, assuming that pressure and viscous
effects are much more significant. The pressure is constant across vertical cross sections
(with no hydrostatic effect due to gravity), though it changes in x. So if pressure is p = p1 at
section (1) as shown, it is p2 = p1 − �p at section (2). We anticipate that pressure decreases
in the direction of flow, so that �p > 0.∗ A shear stress τ acts on the surface of the fluid
cylinder. This shear stress is a function of radius r , τ = τ(r).

Entrance length LE

r

Viscous wall layer

Developed
laminar flow

x

Viscous wall layer

Uo
u(x,r) u(r)

FIGURE 20.1
Laminar flow developing in a pipe or a wide rectangular channel.

∗ Fluids tend to flow from high-pressure toward lower-pressure regions, just as mass tends to flow from regions
of high to low concentrations.
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τ 2πrl

p1 πr2
r

l

l

(p1 – Δp) πr2

Fluid element at time t
(a)

(b)

Element at time t + dt

xDr

FIGURE 20.2
(a) Motion of a cylindrical fluid element within a pipe flow; (b) FBD of a cylindrical fluid element.

Once again, we need to look at this FBD (Figure 20.2b) and write out (
∑

F = ma)x for
this cylindrical fluid element. We have ax = 0, and the remaining terms of the force balance
are

p1πr2 − (p1 − �p)πr2 − τ2πrl = 0. (20.6)

This expression can be simplified, yielding

�p
l

= 2τ

r
. (20.7)

This balance of forces is necessary to drive each fluid particle down the pipe with a
constant velocity. Since neither �p nor l depends on the radial coordinate r , the right-
hand-side term, 2τ/r , must not depend on r . That is, τ = Cr , where C is a constant. At
r = 0, that is, the pipe centerline, there is no shear stress. At r ’s maximum value of D/2, the
shear stress has its maximum value, called τw, the wall shear stress. (Note that this is σr x .)
This boundary condition lets us determine the value of C , which must be C = 2τw/D:

τ(r) = 2τwr
D

. (20.8)

From the force balance, then, we must have

�p = 4lτw

D
. (20.9)

We see that a small shear stress can produce a large pressure difference if the pipe is
relatively long. We also note that if viscosity were zero, there would be no shear stress and
the pressure would be constant throughout the pipe. To get further with this analysis, we
need to know how the shear stress is related to the velocity.
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We could proceed by integrating the full Navier–Stokes equation for this steady,
incompressible, viscous flow of a Newtonian fluid, or we could simply remember that
for a Newtonian fluid, shear stress is proportional to velocity gradient. For our pipe flow,
this is

τ = −μ
du
dr

, (20.10)

where we have included the negative sign in order to have τ > 0 for du/dr < 0, since the
velocity decreases from the centerline to the outer wall and shear stress is maximum at
the pipe wall; it is more intuitive to keep track of positive τ’s. If we combine this equation
(the definition of a Newtonian fluid) with the force balance (

∑
F = ma), and eliminate τ,

we obtain
du
dr

= −
(

�p
2μl

)
r , (20.11)

which we integrate to find the velocity profile:

u(r) = −
(

�p
4μl

)
r2 + C1 (20.12)

and use the no-slip boundary condition (u(r = D/2) = 0) to find C1 = (�p/16μl)D2, so that

u(r) = �pD2

16μl

[
1 −

(
2r
D

)2
]

= Vc

[
1 −

(
2r
D

)2
]

, (20.13)

where Vc is the centerline velocity, defined by �pD2/16μl. We can also express the velocity
profile in terms of the wall shear stress, and in terms of R = D/2, as

u(r) = τw D
4μ

[
1 −

( r
R

)2
]

. (20.14)

This velocity profile is parabolic in the radial coordinate r and has a maximum value, Vc
at the centerline, and minimum values (zero) at the pipe wall. We can next find the volume
flowrate Q through the pipe. We integrate over a series of very small rings of radius r and
thickness dr to find Q:

Q =
∫

u dA =
r=R∫

r=0

u(r)2πr dr = 2πVc

R∫

0

[
1 −

( r
R

)2
]

r dr , (20.15)

Q = πR2Vc

2
. (20.16)

The average velocity is defined as the flowrate divided by the cross-sectional area, so for
this flow we have

Vav = πR2Vc

2πR2 = Vc

2
= �pD2

32μl
, (20.17)
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and

Q = πD4�p
128μl

. (20.18)

We have found that the average velocity is half the centerline velocity for our laminar
parabolic velocity profile. Our results also confirm that the flowrate is

• Directly proportional to the pressure drop
• Inversely proportional to the viscosity
• Inversely proportional to pipe length
• Proportional to the diameter to the fourth power

Equation 20.18 for Q is commonly known as Poiseuille’s law, so named for a French
physician who performed the first analysis of laminar pipe flow with the goal of learning
about blood flow.∗ Fully developed laminar pipe flow, with its parabolic velocity profile,
is generally known as Poiseuille flow.

20.3 Why Can an Airplane Fly?

A body, such as a wing or an airfoil, experiences a resultant force due to the inter-
action between the body and the moving fluid surrounding it. Figure 20.3 shows a
two-dimensional airfoil and the forces on it due to the surrounding fluid: (a) pressure
distribution, (b) viscous force distribution, and (c) resultant forces, lift and drag.

You are probably already familiar with the idea that the pressure distribution is respon-
sible for lift. The basic idea is that pressure is lower on the upper surface of a wing, so a net
upward force keeps the wing aloft. We could show this using the Bernoulli equation: the
flow over the smooth upper surface is much faster (therefore exerts lower pressure) than
that past the lower surface.

Knowing that drag D and lift L are the x and y resultants of the pressure and viscous
stress forces, we could obtain expressions for D and L by integrating these pressure and
viscous forces over the body’s surface:

D =
∫

dFx =
∫

p cos θ dA+
∫

τw sin θ dA, (20.19)

L =
∫

dFy = −
∫

p sin θ dA+
∫

τw cos θ dA, (20.20)

where θ is the degree of inclination (with respect to horizontal) of the outward normal at
any point along the body surface. To carry out this integration, we must know the body
shape, including θ as a function of position along the body, and the distribution of τw
and p. This is quite difficult to do for realistic geometries. As we have seen when finding

∗ Jean Poiseuille (1799–1869) made the same assumptions we have made: he modeled blood flow as steady,
incompressible flow of a non-Newtonian fluid in rigid circular pipes. Although these are spectacularly inap-
propriate assumptions for blood flow as it is now understood, Poiseuille flow theory has proved robust in its
ability to relate flow rate and fluid mechanical forces for many internal flows. It is even a reasonable ballpark
predictor of blood flow, as we will see in Problem 20.8.
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Pressure
distribution

τw
Shear stress
distribution

p < 0

p > 0

U

(a)

(b)

(c)

U

L

DU

FIGURE 20.3
Forces on two-dimensional airfoil: (a) pressure force, (b) viscous force, and (c) resultant lift and drag forces.

the resultant pressure forces on submerged curved surfaces, there are sometimes ways to
get around messy integrations involving changing orientations. This is also the case for lift
and drag.

In the simplest force analysis of an airplane, the four important forces are lift, drag, thrust
(forward propulsion provided by engines), and weight of the plane. Lift must exceed
weight, and thrust must exceed drag, in order for flight to be possible. We can calculate
the lift and drag forces for a certain shape in a certain flow using the following formulas:

L = CL
1
2
ρU2 A, (20.21)

D = CD
1
2
ρU2 A, (20.22)

where A is a characteristic area of the object, typically taken to be the frontal area, the pro-
jected area that would be seen by an observer riding along with the onrushing flow, parallel
to the upstream velocity U; or the planform area whose outward normal points in the direc-
tion of the lift force. It is important to specify which A one is using in a calculation, and
why, when citing lift and drag results. The coefficients CL and CD for most common shapes
have been determined from experimental data and are tabulated as functions of Reynolds
number, as shown in Figure 20.4 for a sphere and a circular cylinder.

We notice in Figure 20.4 that the drag coefficient decreases sharply at a Reynolds num-
ber of about 5 × 105. This corresponds to the value of Recrit at which flow transitions from
laminar to turbulent. Turbulent flow is characterized by higher fluid momentum, thinner
boundary layers, and higher viscous stresses at solid surfaces than laminar flow. For flows
over cylinders and spheres, the fluid’s higher momentum causes it to more readily follow
the body surface without “separating” into a wake region. Turbulent wakes behind cylin-
ders and spheres are therefore generally smaller than laminar wakes. This reduction in the
pressure drag on the object overwhelms any increase in viscous drag, and therefore we see
a sharp “drag drop” corresponding to the transition to turbulent flow. This phenomenon is
sometimes exploited, for example, vortex generators on airplane wings serve to trip flow
into turbulent behavior at lower Re than Recrit.
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FIGURE 20.4
Drag coefficients for smooth cylinder and sphere, as functions of Re.

20.4 Why Does a Curveball Curve?

Baseballs and other objects moving through fluids leave wakes behind them. These wakes
can be either laminar (relatively smooth flow, viscosity damping out disorderly structures)
or turbulent (much more disordered, lots of whorls and eddies with no viscosity to wipe
them out). Even in laminar flow, obstructions and protrusions such as wings and flaps
on airplanes and rocks in streams can cause some rotational flow behind them. Zones of
rotational flow are called vortices. Figure 20.5 shows the vortices behind several spheres,
for a range of Reynolds numbers.

There is much that could be said about these flow patterns—a semester’s worth—but for
now, we are interested in baseballs. A typical pitch has a speed of 75–90 mph. A regulation
MLB ball must have a circumference between 9 and 9.25 in, or a diameter of about 2.9 in.
Using the properties of still air at standard atmospheric conditions, we can calculate a
typical Reynolds number:

Re = ρVD
μ

= (1.2 kg/m3)(37 m/s)(0.0737 m)

1.83 × 10−5 N · s/m2 = 1.79 × 105.

For a smooth sphere, the transition to turbulence begins at a critical Reynolds number
of about Recrit ∼ 5 × 105. The main difference between a baseball and the smooth spheres
in Figure 20.5 is the raised stitching. This unevenness on the ball surface makes the tran-
sition to turbulence happen at lower Re. This is actually a favorable condition for sports
balls—as we saw in Figure 20.4, turbulent drag coefficients are lower than laminar ones.
So catalyzing the transition to turbulence can decrease the drag on a ball. This is another
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(a)

(b)

(c)

FIGURE 20.5
Wakes behind smooth bodies. Note dependence on Reynolds number. (a) Sphere at Re = 118. Recirculating
regions behind sphere still attached. (b) Cylinder at Re = 200. Wake develops into two parallel rows of staggered
vortices. (c) Re = 1770. Turbulent wake behind cylinder. Instantaneous flow patterns shown by oil fog. (From Van
Dyke, M. 1982. An Album of Fluid Motion, Parabolic Press, Stanford. With permission.)

way of exploiting the drag drop, and it is why golf balls are dimpled. The dependence of
a baseball’s drag coefficient on its speed is shown in Figure 20.6.

If a baseball is thrown without any backspin or topspin imparted by the pitcher, the
orientation of the seam causes an asymmetry in the wake, which in turn causes an irregular
trajectory. This delivery is commonly known as a knuckleball. If, on the other hand, the
pitcher does impart some spin to the ball as he or she hurls it, the right amount of spin will
stabilize this irregularity and help the trajectory follow a predictable path. This is shown
in Figure 20.7, as we see the streamlines over a spinning baseball. The streamlines are
crowded near the bottom of the ball (representing faster flow), and the wake is deflected



408 Introduction to Engineering Mechanics

200 140 160 180 200

Smooth ball
Normal baseball
Rough ball

C D

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 20 40 60 80

v (mph)
100

FIGURE 20.6
Drag coefficient as function of speed v for various spheres. (After R. K. Adair, The Physics of Baseball, 1994.)

upward by the spin. This deflection is linked to a net downward force on the ball, which
is why a pitch thrown in this way will drop or sink as it approaches the batter.

Other types (different in magnitude and direction) of spin can alter the baseball’s path
in different ways. This effect, known as the Magnus effect, has motivated considerable
research into the aerodynamics of baseball. The types of spin imparted for a range of pitch
deliveries are sketched in Figure 20.8.

FIGURE 20.7
Smoke photograph of flow around a spinning baseball. Flow is from left to right, flow speed is 21 m/s, and ball is
spinning counterclockwise at 15 m/s (=ωr ). (Photograph courtesy of F. N. M. Brown, University of Notre Dame.)
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Fast ball Curve ball Slider Screw ball

FIGURE 20.8
Ball rotation directions, as seen by the batter, for pitches thrown overhand by a right-handed pitcher. Arrow
indicates the direction of rotation. (After R. K. Adair, The Physics of Baseball, 1994.)

PROBLEMS

20.1 Typical values of the Reynolds numbers for several animals moving through air or
water are listed below. In which cases is the fluid inertia important? In which cases
do viscous effects dominate? Do you expect the flow in each case to be laminar or
turbulent? Explain.

Animal Speed Re

Large whale 10 m/s 300,000,000
Flying duck 20 m/s 300,000
Large dragonfly 7 m/s 30,000
Invertebrate larva 1 mm/s 0.3
Bacterium 0.01 mm/s 0.00003

20.2 The velocity distribution in a fully developed laminar pipe flow is given by

u
UCL

= 1 −
( r

R

)2
,

where UCL is the velocity at the centerline and R is the pipe radius. The fluid density
is ρ, and its viscosity is μ.
a. Find the average velocity Uav over the cross section.
b. State the Reynolds number for the flow based on average velocity and pipe

diameter. At what approximate value of this Reynolds number do you expect
the flow to become turbulent? Why is this value only approximate?

c. Assume that the fluid is Newtonian. Find the wall shear stress τw in terms of
μ, R, and UCL.

20.3 A wing generates a lift L when moving through sea-level air with a velocity U. How
fast must the wing move through the air at an altitude of 35,000 ft if it is to generate
the same lift? (Assume the lift coefficient is constant.)

20.4 The drag on a 2-m-diameter satellite dish due to an 80 km/h wind is to be deter-
mined through wind tunnel testing on a geometrically similar 0.4-m-diameter model
dish.
a. At what air speed should the model test be performed?
b. If the measured drag on the model was determined to be 170 N, what is the

predicted drag on the full-scale prototype?
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20.5 The viscous, incompressible flow between the parallel plates shown is caused by
both the motion of the bottom plate and a pressure gradient, ∂p/∂x. Determine the
relationship between U and ∂p/∂x such that the shear stress on the fixed plate is
zero.

b
y

x

U

20.6 Water exits a reservoir at 30 m depth to enter the 150 mm diameter inlet of a turbine,
as shown. The turbine outlet is also 150 mm in diameter. The exit flow is then ejected
to the atmosphere at 9 m/s through a nozzle with diameter 75 mm. What power is
developed by the turbine? What horizontal force is required to anchor the turbine if
the inflow and outflow are horizontal?

D = 0.15 m

T

D = 0.075 m

H = 30 m

9 m/s

20.7 Crude oil flows through a level section of the Alaskan pipeline at a rate of 1.6 mil-
lion barrels per day (1 barrel = 42 gallons). The pipe inside diameter is 120 cm, and
its roughness has a characteristic dimension of 1.5 mm. The maximum allowable
pressure is 8300 kPa, and the minimum pressure required to keep dissolved gases in
solution in the crude oil is 350 kPa. The crude oil has SG = 0.93, and its viscosity at
the pumping temperature is μ = 0.017 Ns/m2. For these conditions, determine the
maximum possible spacing between pumping stations.

20.8 Blood is a very interesting fluid: a suspension of red and white blood cells and
platelets in a liquid plasma. We would like to be as optimistic as Jean Poiseuille in
modeling blood flow, but we know that these cells in the plasma can cause blood’s
viscosity to be dependent on the shear rate, that is, blood’s composition can cause
it to behave like a non-Newtonian fluid. Especially in regions of very low shear rate,
blood’s red blood cells have been shown to aggregate and form clumps that cause
blood to require a certain yield stress to be applied before it flows smoothly again.

You are given the following data for an “average” person. This person’s cardiac
output is 5 l/min; heart rate is 60 bpm; and at a hematocrit of 40%, blood density
is 1.06 g/cm3, and blood viscosity is 3.5 centiPoise (named for Jean Poiseuille, and
abbreviated cP; 1 cP = 1 mPa s). Also:
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Internal Wall Thickness Percentage Typical Pressures
Diameter (mm) (mm) of Heart Q (mm Hg)

Ascending aorta 20 2 100 100
Abdominal aorta 12 1.5 50 90
Femoral artery 8 0.8 10 80
Random arteriole 0.1 0.02 0.001 60

Note that the vessels downstream from the heart receive only a portion of its volu-
metric output, due to branching of vessels. The percentages given here are ballpark
estimates.

Based on these parameters, calculate the following in each of the measured
vessels:
a. Pressure drop
b. Mean velocity
c. Shear rate at vessel wall
d. Reynolds number
e. Percent cross-sectional area change due to pulse pressure, assuming small

strain εθθ = σθθ/E

20.9 Based on the values you calculated in Problem 20.8, answer and explain the
following:
a. In which vessels should elasticity of the vessel be considered?
b. In which vessels should the non-Newtonian behavior of blood be considered?
c. Where in the body might turbulence develop?
d. Why does most of the pressure drop in the arterial system occur in the

arterioles?

20.10 Wind tunnel testing of the concrete reef balls used in artificial reefs is proposed. A
typical reef ball (e.g. Figure 1.2) has a diameter of 6 ft, and is immersed in sea water.
A scale model is prepared with diameter of 6 in.
a. At what range of velocities should wind tunnel tests be performed to ensure

that the experimental data are relevant to the real reef balls?
b. What effect do you believe that the holes in the reef ball will have on the flow,

if any?

20.11 The pressure drop through an oil pipeline is to be modeled by using the flow of
water through an identical length of tubing. The required oil velocity in the pro-
totype pipeline is known to be 35 cm/s. In order for the experimental model to be
relevant and yield transferable results, the Re and the Eu of the model must match
those of the pipeline.
a. Use the Reynolds number to determine the required velocity of the model fluid.
b. Use the Euler number to predict the pressure drop in the model, if the pressure

drop measured in the prototype pipeline was 0.05 psi.

20.12 A streamlined support strut has thickness t = 1 in and drag coefficient CD = 0.02.
Calculate the drag force per unit length of the strut if it is moving at V = 10 mph
in water. Compare this result to the force per unit length of a 1 in diameter circular
strut.
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20.13 Could you reduce friction in a pipe by coating the pipe wall with Teflon? Why or
why not?

20.14 The flow of water in a 4 mm diameter pipe must remain laminar. Plot a graph of the
maximum allowable flowrate as a function of temperature for 0 < T < 100◦C.

20.15 For fully developed laminar pipe flow in a circular pipe, the velocity profile is given
by u(r) = 2(1 − r2/R2) in m/s, where R is the inner radius of the pipe. If the pipe’s
inner diameter is 4 cm, find the maximum and average velocities in the pipe as well
as the volume flow rate.
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Case Study 10: Living with Water, and the Role of
Technological Culture

Recent American history includes severe flooding in two major metropolitan areas: in New
Orleans, due to Hurricane Katrina in 2005, and in the greater New York area, due to 2012’s
Hurricane Sandy. In both regions, the floods caused devastating damage and triggered
calls for increased protections for citizens living in at-risk regions.

The levees in place in New Orleans were breached by Katrina’s unusually high surge.
In fact, the levees on the lower Mississippi River actually funneled more water upstream,
enhancing the surge size and exacerbating damage. Levees (also known as dikes) are built
along rivers and low-lying coastlines and are intended to help prevent flooding by contain-
ing rising waters. However, by confining water they also result in higher and faster flow.
The levee system along the Mississippi River now comprises over 5600 km (2500 miles) of
levees.

Levees may fail due to gradual erosion or sudden rupture, allowing water to flood the
surrounding land. When the water level is higher than the levee, sometimes referred to as
“overtopping,” this will also cause flooding, but is less disastrous as it generally does not
damage the levee itself.

Some were shocked that the New Orleans region incurred such damage after Hurricane
Katrina, despite the levee system. By comparison, it was noted that in the Netherlands,
large parts of the country exist below sea level. Dutch coastal engineers have accomplished
many technological feats, largely in response to their country’s own devastating flood, the
1953 storm surge known as De Ramp, or “The Disaster.” The immediate response of coastal
engineers was to implement the Deltaplan, which involved closing two rivers’ tidal outlets,
and subsequently building a storm gate for a third river that does not impede shipping
or induce environmental hazards: this gate, the Maeslantkering, is typically left open, but
slides closed when a surge is predicted (Figure 21.1). The complete system of dikes or
levees, dams, sluices, and locks built is known as the Delta Works.

In the United States, the primary response to a series of powerful hurricanes in the 1950s
was to develop warning systems and protective measures, including surge prediction
models. As Bijker (2007) notes, the differences among these models and their predictions
result from the different needs of the modelers: protection (USACE), warning (Weather
Service), or insurance (FEMA).

The risk criteria used in both countries are significantly different. The United States
emphasizes “flood hazard mitigation,” accepting that major storms will occur and endeav-
oring to predict them accurately enough to minimize loss of life and property, and designs
levees and other coastal defenses to the technical norm of the “hundred year flood,” or
a 1 :100 chance. In the Netherlands, the criterion of 1 :10,000 was specified for the Delta-
plan and for levees in central Holland. Rather than mitigating the hazards of the inevitable
1 :100, the Dutch Deltaplan aspired to simply keeping the water out.

It is interesting to note that the technological cultures of these two countries are distinct,
with differences in the overall geography, political landscape, and the general public’s
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(a) (b)

FIGURE 21.1
The Maeslantkering storm surge gate closes when a sea level rise of 3 m is predicted. (a) An engineering model;
(b) the constructed gate in place. (Images courtesy of the Rijkswaterstaat Ministry of Infrastructure and the
Environment.)

technical literacy. For example, the Netherlands is almost entirely lowlands, with no
mountains, deserts, or great plains. The lack of diversity in the geography means that
almost everyone in the Netherlands is at risk of flooding∗; this contrasts with an Amer-
ican tendency to disdain those “foolish” enough to live in a region at greater risk of
whatever natural disaster has just occurred. This shared geography and risk in the Nether-
lands is compounded by the nation’s politics, which emphasize a central government role
in healthcare, education, infrastructure, and coastal defense; while in America, without
a shared sense of common good as something government should define and protect,
we are more likely to privatize and individualize such functions (Mukherji, 2007). And
as fiction writer Jim Shepard puts the Dutch perspective in his 2011 short story “The
Netherlands Lives with Water,” “Either we pulled together as a collective or got swept
away as individuals.”

Neither approach is infallible, of course. Each country’s coastal engineers could certainly
learn things of value from the other’s and thus strengthen both defenses. Recently, the
Dutch government relocated several farmers to create river spillways, as if to acknowledge
that sea barriers are insufficient (in the face of rising seas and rivers) as well as ecolog-
ically suboptimal. Rather than fighting nature, the new Dutch approach combines gates
and dikes with spillways to accommodate nature. A new $3 billion dollar water manage-
ment project, Room for the River, consists of nearly 40 interlinked infrastructure projects
throughout the Netherlands. In Rotterdam, a floating pavilion has been constructed as a
model of sustainable (the structures are solar powered) adaptation. The Dutch have cre-
ated an approach that splits the difference between the American fixation on evacuation
and the prior Dutch focus on prevention. The middle way is to focus on: “what to do with
the water once it’s there.”

The devastation in the New Orleans delta region, and in New York and New Jersey, is
not an example of technology’s failing the culture; in many ways, it represents the culture
having failed the technology. Bijker (2007) concludes that “changing a water management

∗ Many of us remember the childhood story Hans Brinker, or the Silver Skates, in which its American author Mary
Mapes Dodge relates the “Dutch folk tale” of a nameless hero who saved a city by plugging a leaky dike (levee)
with his finger. This tale appears to have been invented by Dodge and has been refuted by many Dutch scholars
as improbable—Dutch culture, they insist, would not have created a singular hero in this way, but would have
been more likely to honor a communal effort. See Russell Shorto’s Amsterdam for a more thoughtful analysis
than is permitted here.



Case Study 10 415

style also calls for changing the relevant political culture, and . . .for a much more active
engagement of civil society.”

New York governor Andrew Cuomo seemed to recognize this when he engaged a
Dutch firm to reshape Governors Island in New York City using many of the techniques
employed in the Room for the River projects. New York is now pursuing both a Dutch-
designed barrier as well as relatively inexpensive measures such as restoring wetlands and
planting oyster beds. While the technology is readily transferrable and effectively balances
proven techniques of both prevention and accommodation, Cuomo and other politicians
must work hard to provide affected residents with adequate knowledge and agency.

Engineers must balance the needs of a range of stakeholders when proposing flood pre-
vention and protection techniques and must communicate clearly with the governments
and the public we work with and for. When possible, we should also influence the techno-
logical culture in which we operate, to ensure that citizens understand the value of social,
as well as technical, infrastructure in community resilience. Our most effective and sustain-
able products will both mitigate the damage of disasters and strengthen our communities’
social networks and sense of shared responsibility.
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22
Solid Dynamics: Governing Equations

In Chapters 1 to 11, we considered the equilibrium of solids. By examining the isolated
effects of various types of loading, and then the methods of combining these effects in
more realistic situations, we have come to understand many problems for which

∑
F = 0.

However, although external forces often balance each other, causing a solid to be in equi-
librium, it is also possible for unbalanced external forces to result in the solid’s motion.
In Chapters 13 to 20, we have developed our understanding of the forces on fluids, as
well. Because both solids and fluids can be treated as continua, and because they are gov-
erned by mass conservation and Newton’s second law, we expect their equations of motion
to markedly resemble each other. In this chapter, we will briefly consider the governing
equations for the motion of solids, and some examples of their solution.

The key concepts in the dynamics of deformable solids are continuity, compatibility,
and the relevant constitutive law. In the problems we have considered thus far, we have
rarely had to check these conditions (and the constitutive law, either Hooke’s or Newton’s,
has most often been a straightforward one); we have been able to implicitly assume they
were met. However, as our study of mechanics continues, we will encounter more general,
less constrained problems. In this section, we will discuss the “next level” of continuum
mechanics in the context of these three C’s. We will begin by briefly defining each of them.
As you may recall from Chapters 2 and 4,

Continuity signifies that density is a definable, continuous function
Compatibility implies that all displacements (u, v, w) must be continuous
A Constitutive law relates deformation (strain) to loading (stress)

22.1 Continuity, or Mass Conservation

If a material is a “continuum,” we are able to ignore the fundamentally discrete compo-
sition of matter—all those atoms dancing about—and to assume that the substance of
material bodies is continuously distributed. As has been discussed in Section 1.4, this is
possible when the behavior of interest is on a much larger scale than that of molecular
interactions: lengths much larger than atomic mean free paths; and time scales much larger
than characteristic times of atomic bond vibration. This continuum model allows us to
divide matter into smaller and smaller portions, each of which has the physical properties
of the original body. So, we can assign quantities such as density and velocity to each point
of the space occupied by the body.∗

∗ This is the starting-off point for George Mase’s Continuum Mechanics for Engineers, an excellent transitional text
to move from the mechanics analyses of this textbook to the level of graduate continuum mechanics.
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Recall that for a continuum we are able to mathematically define a mass density:

ρ = lim
� V– →0

�m
� V–

, (22.1)

and that this density, like other properties of the continuum, is a continuous function of
position and time: ρ = ρ(x, t). We can thus describe the mass of an entire body (of total
volume V– ) by

m =
∫

V–

ρ(x, t)dV– . (22.2)

Since mass is neither created nor destroyed, we require that the mass of the body remains
invariant under motion. Its total derivative must be zero:

ṁ = d
dt

∫

V–

ρ(x, t)dV– =
∫

V–

(
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi

)
dV– = 0, (22.3)

where we have, in a sense, used the chain rule to construct a “total” or “material deriva-
tive” of the fluid mass ρ(x, t) V– . Note that vi is the ith component of the vector velocity
field V. Previously, we have used ui to indicate displacements for solids and velocities for
fluids, but this is the first time we have written velocities for solids.

Since the above expression must hold for any d V– of the body, we must have

∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi
= 0, (22.4)

or

∂ρ

∂t
+ ∂

∂xi
(ρvi ) = 0, (22.5)

where the repeated i index, we remember from Chapter 1, represents a summation over i .
In vector notation, we could write the conservation of mass as

∂ρ

∂t
+ ∇ · (ρV) = 0. (22.6)

We note that if the density is constant in x and t, the material is said to be incompressible,
and in this case our continuity equation requires that

∂

∂xi
vi = 0 or ∇ · V = 0, (22.7)

for incompressible continua. Equations 22.6 and 22.7 are exactly how we have written mass
conservation for a fluid in Section 18.4.1.
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22.2 Newton’s Second Law, or Momentum Conservation

Newton’s second law of motion states that F = ma: the resultant force on an object balances
this object’s inertia—its mass times its acceleration. An object’s mass times acceleration can
also be viewed as the time rate of change of that object’s linear momentum. We already
understand how to state the resultant force on a body: so far we have been writing

∑
F = 0

for a variety of systems. The stress tensor for a given body reflects its response to all
external loads and so by writing the stress tensor we have effectively written the resul-
tant surface force on the body. We may also consider the effects of a “body force” such as
gravity or the force due to an electromagnetic field; we will use B to represent such forces
per unit volume, just as we did in Section 2.5. A sample tuberous body with resultant
surface and body forces is shown in Figure 22.1.

Hence we understand that the ith component of the total resultant force F on a body is
written

Fi =
∫

V–

ρBi dV– +
∫

S

σi j n j dS, (22.8)

All that remains is then to write the change in momentum for the same body, or ma.
Again, we will write only the ith component of the body’s acceleration:

∫

V–

ρ
dvi

dt
dV– , (22.9)

where we have taken the total derivative of the momentum per volume, (ρV), and then
used the conservation of mass to eliminate the derivatives of density. F = m a is then
simply the balance of the resultant force and the inertia:

∫

V–

ρBi dV– +
∫

S

σi j n j dS =
∫

V–

ρ
dvi

dt
dV– . (22.10)

dS

dV

Body force per dV:
ρBj

Surface force per dS:
σij

FIGURE 22.1
Forces on a body.
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It only remains for us to convert the surface area integral to a volume integral, which we
may do by Gauss’ theorem, and obtain

∫

V–

ρBi dV– +
∫

V–

∂

∂xj
σi j dV– =

∫

V–

ρ
dvi

dt
dV– . (22.11)

As this must be true for any volume, we truly have

ρBi + ∂

∂xj
σi j = ρ

dvi

dt
. (22.12)

Or, in vector form,

∇σ + ρB = ρ
dV
dt

. (22.13)

For solids in equilibrium, as we have already seen, the resultant forces sum to zero. The
x component of the governing equation for such a solid would be

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ ρBx = 0. (22.14)

Equation 22.13, as expected, looks strikingly like the Navier–Stokes equation developed
for fluids in Section 18.4.2. Here, the viscous force and the pressure force (previously
known as Fvisc, or μ∇2V, and −∇ p dV– , respectively) have been combined, as the pres-
sure (a.k.a. normal stress) and viscous stresses are combined into one stress tensor σ. But
the form of

∑
F = ma looks awfully familiar.

22.3 Constitutive Laws: Elasticity

The behavior of the material in question provides us with our third governing equa-
tion. We can then analyze solids in motion by solving these three equations. If a material
behaves “elastically,” this means two things to us: (1) the stress is a unique function of the
strain and (2) the material is able to fully recover to its “natural” shape after the removal of
applied loads. Although elastic behavior can be either linear or nonlinear, in this textbook
we are concerned primarily with linearly elastic materials to which Hooke’s law applies.
The constitutive law for linearly elastic behavior is simply

σi j = Ci jkmεkm or σ = Cε, (22.15)

where, as we discussed in Section 4.4, C is a fourth-order tensor whose 81 components
reduce to 36 unique components due to the symmetry of both the stress and strain tensors.

For isotropic materials, we are able to find the exact form of C. If the material is isotropic,
then its elastic tensor C must be a fourth-order, isotropic tensor. An isotropic tensor is
one whose components are unchanged by any orthogonal transformation from one set of
Cartesian axes to another. This requirement guides the form that C must take

Ci jkm = λδi jδkm + μ(δikδ jm + δim δ jk) + β(δikδ jm − δim δ jk), (22.16)
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where λ, μ, and β are scalars. We remind ourselves that the Kronecker deltas are simple
second-order identity tensors (δi j = 1 if i = j , but δi j = 0 if i �= j). Due to the symmetry
of both the stress and strain tensors, we must have Ci jkm = C jikm = Ci jm k . This requires
that β = −β, and thus that β = 0. Hooke’s law—here’s the important part—then takes the
form

σi j = [λδi jδkm + μ(δikδ jm + δim δ jk)]εkm , (22.17)

or, using the Kronecker delta’s substitution property,

σi j = λδi jεkk + 2μεi j . (22.18)

This is Hooke’s law for isotropic elastic behavior. If we rearrange this to make it an
expression for strain εi j , we can obtain the following relations for Young’s modulus and
the Poisson’s ratio (the shear modulus G = μ) and finally the generalized form of Hooke’s
law, for linearly elastic materials:

E = μ(3λ + 2μ)

λ + μ
,

ν = λ

2(λ + μ)
,

(22.19)

εi j = 1
E

[
(1 + ν)σi j − νδi jσkk

]
. (22.20)

As long as the material in question does not split apart or overlap itself, its displacements
must be continuous. This compatibility requirement is guaranteed by a displacement
field that is single-valued and continuous, with continuous derivatives. The strain ten-
sor is composed of the derivatives of the displacement field, as we have seen. So in two
dimensions, we may write the compatibility condition in the form:

∂2εxx

∂y2 + ∂2εyy

∂x2 = ∂2γxy

∂x∂y
. (22.21)

Alas, in three dimensions we have six unique strain components to keep track of, and
there are five additional compatibility conditions.

Using these governing equations, it is possible to fully describe the equilibrium or
motion of a continuum. Often, a constitutive law will be experimentally obtained for a
given material, and it is the job of the continuum mechanician to express the governing
equations appropriately and solve them. In most cases, it is not possible to obtain analytical
solutions of these equations; generally, it is necessary to solve them numerically.

By integrating the differential equations of equilibrium, we will obtain results that agree
with our simpler calculations, since our new partial differential equations are simply say-
ing what we have said all along: for a body in equilibrium, the sum of the forces acting
on the body is zero. This is the same statement whether we say it by means of a FBD and
average stresses, or whether we solve complex partial differential equations.

In general, “continuum mechanics” is a field that emphasizes generality and abstraction,
but is based on physical material behavior. The tensor mathematics introduced in this book
support the general applicability of continuum mechanics, and they complement the more
concrete diagrams and physical intuition of an engineer.
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Appendix A: Second Moments of Area

The second moment of area I , sometimes less accurately called the area moment of inertia,
is a property of a shape that describes its resistance to deformation by bending. The polar
second moment of area J , often called the polar moment of inertia, describes the resistance
of a shape to deformation by torsion. Since the coordinate axes used to obtain the I ’s and
J’s listed here run through the centroid of each shape, all second moments of area cited
here may be thought of as having an additional subscript “c” denoting that they are taken
relative to the centroid. Centroid positions are indicated on the figures.

Remember,

Iy =
∫

z2 dA,

Iz =
∫

y2 dA,

J =
∫

r2 dA.

Note that Iy + Iz = J. Here, the axes originate at the area’s centroid, with y horizontal
and positive right and z vertical and positive up.

Second Moment Polar Second Moment
Area (A) of Area (I) of Area ( J )

b/2

h

h
2

b

bh Iy = bh3/12 (bh/12)(h2 + b2)

Iz = hb3/12

(Continued)
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Second Moment Polar Second Moment
Area (A) of Area (I) of Area ( J )

(b + d)1
3

1
3

b
h

h

d

bh/2 Iy = bh3/36 Iy + Iz
Iz = (hb3 − b2hd + bhd2)/36

r

d

πr2 Iy = Iz = πr4/4 J = πr4/2

ri

ro

π(r2
o − r2

i ) Iy = Iz = π(r4
o − r4

i )/4 J = π(r4
o − r4

i )/2

4r
3π

d

r πr2/2 Iy = (π/8 − 8/9π)r4 Jc = (π/4 − 8/9π)r4

Iz = πr4/8

4r
3π

4r
3π

πr2/4 Iy = Iz = (π/16 − 4/9π)r4 Jc = (π/8 − 8/9π)r4



Appendix A 427

The geometrical properties of some standard beam cross sections may be found in
published tables. For example, in contemporary practice, steel I-beams are described
by a standard terminology that encodes information about their dimensions, generally
expressed as

W or S depth (inches) × weight per unit length (pound force per foot),

where “W” or “S” is used depending on whether the flanges are rectangular or tapered,
and “depth” is the total height (in the z-direction) of the beam’s cross section. The dimen-
sions of the flanges and extent of the cross section in the y-direction are incorporated into
the weight per unit length, assuming structural steel’s nominal density.





Appendix B: A Quick Look at the del Operator

We use the del operator to take the gradient of a scalar function, say f (x, y, z):

∇ f = î
∂ f
∂x

+ ĵ
∂ f
∂y

+ k̂
∂ f
∂z

.

If we “factor out” the function f , the gradient of f looks like

∇ f =
(

î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
f .

The term in parentheses is called del and is written as

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
.

By itself, ∇ has no meaning. It is meaningful only when it acts on a scalar function. ∇
operates on a scalar function by taking partial derivatives and combining them into the
gradient. In indicial or index notation, we can write ∇i to mean “take the partial derivative
of what follows with respect to the i direction.” We say that ∇ is a vector operator acting
on scalar functions, and we call it the del operator.

Since ∇ resembles a vector, we will consider all the ways that we can act on vectors and
see how the del operator acts in each case.

Vectors Del

Operation Result Operation Result

Multiply by a scalar a Aa Operate on a scalar f ∇ f
Dot product with another vector B A · B Dot product with a vector F(x, y, z) ∇ · F
Cross product with another vector B A × B Cross product with a vector F(x, y, z) ∇ × F

B.1 Divergence

Let us first compute the form of the divergence in regular Cartesian coordinates. If we let
a random vector F = Fx î + Fyĵ + Fzk̂, then

div F = ∇ · F =
(

î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(

Fx î + Fyĵ + Fzk̂
)

= ∂ Fx

∂x
+ ∂ Fy

∂y
+ ∂ Fz

∂z
.

In inidicial notation, this is: div F = ∇i Fi = Fi ,i .
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Like any dot product, the divergence is a scalar quantity. Also note that, in general, div F
is a function and will change in value from point to point.

B.2 Physical Interpretation of the Divergence

The divergence quantifies how much a vector field “spreads out,” or diverges, from a given
point P . For example, in Figure B.1 the figure on the left has positive divergence at P , since
the vectors of the vector field are all spreading as they move away from P . The figure in the
center has zero divergence everywhere since the vectors are not spreading out at all. This
is also easy to compute, since the vector field is constant everywhere and the derivative
of a constant is zero. The field on the right has negative divergence since the vectors are
coming closer together instead of spreading out.

In the context of continuum mechanics, the divergence has a particularly interesting
meaning. For solids, if the vector field of interest is the displacement vector U, the diver-
gence of this vector tells us about the overall change in volume of the solid. See Equation 4.5
and Problem 4.1. When we have ∇ · U = 0 we know that the volume of a given solid body
remains constant, and we can call the solid “incompressible.” For fluids, we use the veloc-
ity vector V to talk about the deformation kinematics. The divergence of the velocity vector
tells us about the volumetric strain rate, and when we have ∇ · V = 0 we say that the flow
is incompressible. This, generally, allows us to neglect changes in fluid density and say
that density remains constant. See Equation 13.9.

EXAMPLE B.1

Calculate the divergence of F = xî + yĵ + zk̂.

∇ · F = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 1 + 1 + 1 = 3.

This is the vector field shown on the left in Figure B.1. Its divergence is constant
everywhere.

FIGURE B.1
Three vector fields.
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B.3 Curl

We can also compute the curl in Cartesian coordinates. Again, let F = Fx î + Fyĵ + Fzk̂, and
calculate

curl F = ∇ × F =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣∣∣
= î

(
∂ Fz

∂y
− ∂ Fy

∂z

)
+ ĵ

(
∂ Fx

∂z
− ∂ Fz

∂x

)
+ k̂

(
∂ Fy

∂x
− ∂ Fx

∂y

)
.

Not surprisingly, the curl is a vector quantity. In inidicial notation, it can be written as
curl F = εi jk∇ j Fk .∗

B.4 Physical Interpretation of the Curl

The curl of a vector field measures the tendency of the vector field to swirl. Consider the
illustrations below. The field on the left, called F, has curl with positive k̂-component. To
see this, use the right-hand rule. Place your right hand at P . Point your fingers toward the
tail of one of the vectors of F. Now curl your fingers around in the direction of the tip of
the vector. Stick your thumb out. Since it points toward the +z axis (out of the page), the
curl has a positive k̂-component.

The second vector field G has no visible swirling tendency at all, so we would expect
∇ × G = 0. The third vector field does not look like it swirls either, so it also has zero curl.

EXAMPLE B.2

Compute the curl of F = −yî + xĵ.

∇ × F =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

−y x 0

∣∣∣∣∣∣∣∣∣
= 2k̂.

This is the vector field on the left in Figure B.1. As you can see, the analytical approach
demonstrates that the curl is in the positive k̂-direction, as expected.

EXAMPLE B.3

Compute the curl of H = xî + yĵ + zk̂, or H(r) = r.

∇ × H =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z
x y z

∣∣∣∣∣∣∣∣ = 0.

This, as you have probably guessed, is the vector field on the far right in Figure B.1.

∗ This equation in index notation includes the Levi–Civita symbol, εink . This is not strain, but a mathematical
symbol that indicates a 3 × 3 × 3 array of permutations of 0, +1, and −1.
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B.5 Laplacian

The divergence of the gradient appears so often that it has been given a special name: the
Laplacian. It is written as ∇2 or � and, in Cartesian components, has the form

∇2 f = ∂2 f
∂x2 + ∂2 f

∂y2 + ∂2 f
∂z2 .

It operates on scalar functions and produces a scalar result. When we take the Laplacian
of a vector field, F = Fx î + Fyĵ + Fzk̂, we obtain

∇2F = (∇2 Fx)î + (∇2 Fy)ĵ + (∇2 Fz)k̂.

Suggested Reading

Crowe, M. J., A History of Vector Calculus. Dover, 1967.
Schey, H. M., Div, Grad, Curl, and All That. W. W. Norton, 1973.
Wylie, C. R. and Barrett, L. C., Advanced Engineering Mathematics. McGraw-Hill, 1982.



Appendix C: Property Tables

This appendix contains tabulated values for the properties of engineering materials (Tables
C.1 and C.2) and fluids (Tables C.3 and C.4). Exact values of these properties vary widely
with changes in composition, heat treatment, and mechanical working. The natural (and
some engineered) materials listed have properties that are strongly influenced by the
humidity, temperature, and other conditions of the local environment. Composite and
anisotropic materials exhibit different properties in different directions, as well. In some
cases, missing entries in these tables are due to the large range of values; more precise
data are available from manufacturers. Other entries are blank because the values are not
meaningful, for example, brittle materials do not have yield strengths.
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TABLE C.3

Typical Properties of Common Fluids (SI)

Temperature T Density ρ Viscosity μ Surface Tension s
Material (S◦C) (kg/m3) (N s/m2) (N/m)

Water 0 1000 1.75 × 10−3 0.0757
10 1000 1.30 × 10−3 0.0742
20 998 1.00 × 10−3 0.0727
30 996 7.97 × 10−4 0.0712
40 992 6.51 × 10−4 0.0696
50 988 5.44 × 10−4 0.0679
60 983 4.63 × 10−4 0.0662
70 978 4.00 × 10−4 0.0645
80 972 3.51 × 10−4 0.0627
90 965 3.11 × 10−4 0.0608

100 958 2.79 × 10−4 0.0589

Air 0 1.29 1.72 × 10−5

10 1.25 1.77 × 10−5

20 1.21 1.81 × 10−5

30 1.17 1.86 × 10−5

40 1.13 1.91 × 10−5

50 1.09 1.95 × 10−5

60 1.06 2.00 × 10−5

70 1.03 2.04 × 10−5

80 1.00 2.09 × 10−5

90 0.973 2.13 × 10−5

100 0.947 2.17 × 10−5

TABLE C.4

Typical Properties of Common Fluids (US)

Temperature T Density ρ Viscosity μ Surface Tension s
Material (◦F) (slug/ft3) (lbf s/ft2) (lbf/ft)

Water 32 1.94 3.66 × 10−5 0.00519
40 1.94 3.19 × 10−5 0.00514
50 1.94 2.72 × 10−5 0.00509
60 1.94 2.34 × 10−5 0.00503
70 1.93 2.04 × 10−5 0.00498
80 1.93 1.79 × 10−5 0.00492
90 1.93 1.59 × 10−5 0.00486
100 1.93 1.42 × 10−5 0.00480
212 1.86 5.83 × 10−6 0.00404

Air 40 0.00247 3.63 × 10−7

50 0.00242 3.69 × 10−7

60 0.00237 3.75 × 10−7

70 0.00233 3.80 × 10−7

80 0.00229 3.86 × 10−7

90 0.00225 3.91 × 10−7

100 0.00221 3.97 × 10−7

200 0.00187 4.48 × 10−7

Properties of air are obtained at standard atmospheric pressure.



Appendix D: All the Equations

Solids Fluids

Kinematics (What is
the vector (u, v, w)

everything depends on?)

Displacement u Velocity V, that is, displacement rate

Volume change/volume change
rate

∇ · u = ∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= ui ,i ∇ · V = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= Vi ,i

Strain/strain rate ε = εi j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
ε = εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)

1D constitutive law σ = Eε τ = μγ

Hookean/Newtonian τ = Gγ

3D ideal
constitutive lawa

σi j = λεkkδi j + 2Gεi j σi j = −pδi j + 2μεi j

λ = Eν

(1 + ν)(1 − 2ν)

General constitutive law σi j = Ki jkm εkm σi j = Ki jkm εkm

Conservation of mass ρ = constant
∂ρ

∂t
+ (ρui ),i = 0

Conservation of linear
momentum (�F = m a
for an infinitesimal
element)

σi j , j + Bi = ρai σi j , j + Bi = ρai

Bi represents the total body force on the element in question,
most often represented by ρg in the vertical direction.

ai is the acceleration, which was zero in most of this book

Conservation of angular
momentum for an
infinitesimal element

σi j = σ j i σi j = σ j i

a Although it looks different because of the index notation and the fact that it is stress in terms of strain and not
vice versa, the expression for solids is the same as the generalized Hooke’s law of Section 4.4.
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Mechanical Engineering

Integrated Mechanics Knowledge Essential for Any Engineer

Introduction to Engineering Mechanics: A Continuum Approach, Second Edition uses continuum 
mechanics to showcase the connections between engineering structure and design and between solids 
and fluids and helps readers learn how to predict the effects of forces, stresses, and strains. The authors’ 
“continuum checklist” provides a framework for a wide variety of problems in solid and fluid mechanics. 
The essence of continuum mechanics, the internal response of materials to external loading, is often 
obscured by the complex mathematics of its formulation. By gradually building the formulations from 
one-dimensional to two- and three-dimensional, the authors help students develop a physical intuition 
for solid and fluid behavior and for the very interesting behavior of those materials including many 
biomaterials, between these extremes. This text is an accessible first introduction to the mechanics of 
all engineering materials and incorporates a wide range of case studies highlighting the relevance of the 
technical content in societal, historical, ethical, and global contexts. It also offers a useful perspective 
for engineers concerned with biomedical, civil, chemical, mechanical, or other applications.

New in the Second Edition: 
The latest edition contains significantly more examples, problems, and case studies than the first 
edition.

The 22 chapters in this text: 

•	 Define and present the template for the continuum approach

•	 Introduce strain and stress in one dimension, develop a constitutive law, and apply these  
concepts to the simple case of an axially loaded bar

•	 Extend the concepts to higher dimensions by introducing the Poisson’s ratio and strain  
and stress tensors

•	 Apply the continuum sense of solid mechanics to problems including torsion, pressure vessels, 
beams, and columns

•	 Make connections between solid and fluid mechanics, introducing properties of fluids and  
strain rate tensor

•	 Address fluid statics

•	 Consider applications in fluid mechanics

•	 Develop the governing equations in both control volume and differential forms

•	 Emphasize real-world design applications

Introduction to Engineering Mechanics: A Continuum Approach, Second Edition provides a 
thorough understanding of how materials respond to loading: how solids deform and incur stress and 
how fluids flow. It introduces the fundamentals of solid and fluid mechanics, illustrates the mathematical 
connections between these fields, and emphasizes their diverse real-life applications. The authors also 
provide historical context for the ideas they describe and offer hints for future use.
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